Some Identities Related to the Second-Order Eulerian Numbers

Amy. M. Fu
School of Mathematics, Shanghai University of Finance and Economics
Shanghai, 200433, China
Email: fu.mei@sufe.edu.cn

Abstract: We express the Norlund polynomials in terms of the second-order Eulerian numbers. Based on this expression, we derive several identities related to the Bernoulli numbers. In particular, we present a short proof of the problem raised by Rządkowski and Urlińska.

Keywords: second-order Eulerian numbers; Norlund polynomials; Bernoulli numbers.

AMS subject classifications: 05A19; 05A15

1 Introduction

The Stirling permutations were introduced by Gessel and Stanley [6]. For some related results on this subject, we refer to [1, 4, 7, 9]. Let Q_n be the multiset $\{1,1,2,2,\ldots,n,n\}$. A Stirling permutation of order n is a permutation of Q_n such that for each $1 \leq m \leq n$, the elements lying between two occurrences of m are greater than m.

The second-order Eulerian numbers $C_{n,k}$ count the Stirling permutations of order n with k decents, which satisfy the recurrence relation:

$$C_{n,k} = kC_{n-1,k} + (2n-k)C_{n-1,k-1}$$

(1.1)

with $C_{1,1} = 1$ and $C_{1,0} = 0$.

By exhibiting a bijection between the set of partitions of $[n + m]$ with m blocks and the bar permutations on the elements of Q_n with m bars, Gessel and Stanley [6] proved that

$$\sum_{m=0}^{\infty} S(n+m,m)x^m = \sum_{k=1}^{n} C_{n,k}x^k/(1-x)^{2n+1},$$

(1.2)

where $S(n,m)$ are the Stirling numbers of the second kind.

The Norlund polynomials $B_n^{(z)}$ can be defined by the exponential generating function:

$$\sum_{n=0}^{\infty} B_n^{(z)} x^n/n! = \left(\frac{x}{e^x - 1}\right)^z.$$

(1.3)

Note that for fixed n, $B_n^{(z)}$ are polynomials in z with degree n. If $z = 0$, then we have $B_0^{(0)} = 1$ and $B_n^{(0)} = 0$ for $n \geq 1$. If $z = 1$, then $B_n^{(1)}$ are the classical Bernoulli numbers B_n, i.e.,

$$\sum_{n=0}^{\infty} B_n^{(1)} x^n/n! = \frac{x}{e^x - 1}.$$

(1.4)

If $z = n$, we have $B_n^{(n)} = (-1)^n c_n^{(2)}$, which are the Cauchy numbers of the second kind [3]:

$$\sum_{n=0}^{\infty} c_n^{(2)} x^n/n! = \frac{-x}{(1-x) \ln(1-x)}.$$

(1.5)
In [2], Carlitz showed that the Nörlund polynomials and the Stirling numbers of the second kind satisfy the relation:
\[
S(m + n, m) = \binom{m + n}{n} B_n(-m).
\] (1.6)

Let \(\langle z \rangle_n \) be the rising factorial defined by \(\langle z \rangle_n = z(z + 1) \cdots (z + n - 1) \). The following result expresses the Nörlund polynomials in terms of the second-order Eulerian numbers.

Theorem 1.1 We have
\[
B_n^{(z)} = \frac{n!}{(2n)!} \sum_{k=1}^{n} (-1)^{k} C_{n,k} \langle z \rangle_k \langle -z + n + 1 \rangle_{n-k}.
\] (1.7)

Based on Theorem 1.1, we obtain several identities involving the convolutions of Bernoulli numbers. In particular, we give a short proof of the problem raised by Rządkowski and Urlińska:
\[
\int_0^1 \sum_{k=0}^{n-1} C_{n,k+1} u^{k+1} (u-1)^{2n-k} du = \frac{B_{n+1}}{n+1}.
\] (1.8)

By computing the integral
\[
\int_0^1 u^{k+1} (u-1)^{2n-k} du = \frac{(-1)^k}{2(n+1) \binom{2n+1}{k}},
\]
we may restate (1.8) as follows.

Theorem 1.2 We have
\[
\sum_{k=1}^{n} (-1)^{k-1} \binom{2n+1}{k}^{-1} C_{n,k} = 2B_{n+1}.
\] (1.9)

Notice that, by considering the partial derivative equation \(\partial_t^n \psi(t) = v_n(\psi) \), where \(\psi \) is defined by the Lambert W-function \(\psi(t, x) = W(x e^{x+t}) \) and \(v_n(x) \) is given by
\[
v_n(x) = -x(1 + x)^{-2n+1} \sum_{k \geq 1} (-1)^k C_{n,k} x^k,
\]
an alternative proof of (1.9) was discussed on Mathoverflow [11] recently.

Let \(H_n \) be the harmonic number defined by \(H_n = \sum_{i=1}^{n} 1/i \). By using the p-adic method, Miki [8] proved that
\[
\sum_{k=2}^{n} \frac{B_k}{k} \frac{B_{n-k}}{n-k} = 2H_n \frac{B_n}{n} + \sum_{k=2}^{n-2} \binom{n}{k} \frac{B_k}{k} \frac{B_{n-k}}{n-k}.
\] (1.10)

By computing the second derivative of the both sides of (1.7), then employing Miki’s identity (1.10), we derive the following the result involving the harmonic numbers.
Theorem 1.3 We have
\[
\sum_{k=1}^{n} (-1)^k \binom{2n-1}{k-1}^{-1} (H_{2n-k} - H_k) C_{n,k} = \frac{n^2}{n-1} B_{n-1} + n \sum_{k=2}^{n-2} \frac{B_k B_{n-k}}{k} n - k. \tag{1.11}
\]

For \(n \geq N \), Dilcher [5] proved that
\[
\sum_{k_1 + k_2 + \cdots + k_N = n} \binom{n}{k_1, k_2, \ldots, k_N} B_{k_1} B_{k_2} \cdots B_{k_N} = N \left(\binom{n}{N} \sum_{k=0}^{N-1} (-1)^{N-k} s(N, N-k) \frac{B_{n-k}}{n-k} \right), \tag{1.12}
\]
where \(s(n, k) \) is the Stirling number of the first kind. By setting \(z = N \) in (1.7), then employing (1.12), we obtain the following identity.

Theorem 1.4 Let \(N, n \) be nonnegative integers with \(n \geq N \). We have
\[
\sum_{k=1}^{n} (-1)^k \binom{2n-1}{N+k-1}^{-1} C_{n,k} = 2n \sum_{k=0}^{N-1} (-1)^{N-k} s(N, N-k) \frac{B_{n-k}}{n-k}. \tag{1.13}
\]
In particular, if we let \(n = N \) in (1.13), the Cauchy numbers can be related by the second-order Eulerian numbers:
\[
2c^{(2)}_n = \sum_{k=1}^{n} (-1)^{n-k} \binom{2n-1}{n+k-1}^{-1} C_{n,k}. \tag{1.14}
\]

2 Proofs

If two polynomials in a single variable \(z \) agree for every nonnegative integer \(z \), then they agree as polynomials. Therefore, to prove Theorem 1.1, it suffices to prove the following lemma.

Lemma 2.5 Given a nonnegative integer \(m \), we have
\[
B_{n}^{(-m)} = \frac{n!}{(2n)!} \sum_{k=1}^{n} (-1)^k C_{n,k} \binom{m}{k} \binom{m+n+1}{n-k}. \tag{2.1}
\]

Proof: Equating the coefficients of \(x^m \) on the both sides of (1.2) leads to
\[
S(m+n, m) = \sum_{k=1}^{n} \binom{2n+m-k}{2n} C_{n,k}. \tag{2.2}
\]
Comparing (1.6) and (2.2) for any integer \(m \geq 0 \), we have
\[
B_{n}^{(-m)} = \frac{m!n!}{(m+n)!} \sum_{k=1}^{n} \binom{2n+m-k}{2n} C_{n,k} = \frac{n!}{(2n)!} \sum_{k=1}^{n} (-1)^k C_{n,k} \binom{m}{k} \binom{m+n+1}{n-k}, \tag{2.3}
\]
as desired. We complete the proof of Lemma 2.5, and the proof of Theorem 1.1 as well.
Observe that
\[
\frac{d}{dx}\ln\left(\frac{e^x-1}{x}\right) = \frac{1}{x} \left(\frac{-x}{e^{-x} - 1} - \frac{x}{x} \right) = \sum_{n=1}^{\infty} (-1)^n \frac{B_n x^{n-1}}{n!}.
\]

Thus,
\[
\ln\left(\frac{e^x-1}{x}\right) = \sum_{n=1}^{\infty} (-1)^n \frac{B_n x^n}{n n!} = \frac{x}{2} + \sum_{n=2}^{\infty} \frac{B_n x^n}{n n!}.
\]

Note that \(B_1 = -\frac{1}{2}\) and \(B_n = 0\) when \(n\) is odd and greater than 1.

Since
\[
\frac{d^\ell}{dz^\ell} \left(\frac{x}{e^x - 1}\right)^z = \frac{d^\ell}{dz^\ell} e^{z \ln\left(\frac{x}{e^x - 1}\right)} = (-1)^\ell e^{z \ln\left(\frac{x}{e^x - 1}\right)} \left[\ln\left(\frac{e^x - 1}{x}\right)\right]^\ell,
\]
we have
\[
\frac{d}{dz} B^{(z)}_n|_{z=0} = \frac{-B_n}{n}
\]
and
\[
\frac{d^2}{dz^2} B^{(z)}_n|_{z=0} = \frac{n}{n-1} B_{n-1} + \sum_{k=2}^{n-2} \binom{n}{k} \frac{B_k B_{n-k}}{k n - k}.
\]

Using Miki’s identity (1.10), we can rewrite (2.5) as
\[
\frac{d^2}{dz^2} B^{(z)}_n|_{z=0} = \frac{n}{n-1} B_{n-1} + \sum_{k=2}^{n-2} \frac{B_k B_{n-k}}{k n - k} - 2H_n \frac{B_n}{n}.
\]

Proof of Theorem 1.2: Applying the derivation \(d/dz\)|\(_{z=0}\) to both sides of (1.7), then using (2.4), we have
\[
-\frac{B_n}{n} = \frac{1}{2n} \sum_{k=1}^{n} (-1)^k \frac{(2n-1)}{k-1} C_{n,k}.
\]

Mutiplying both sides by \(-2n\), then replacing \(n\) by \(n + 1\), we have
\[
\sum_{k=1}^{n+1} (-1)^{k-1} \frac{(2n+1)}{k-1} C_{n+1,k} = 2B_{n+1}.
\]

By the recurrence relation (1.1), the left-hand side of (2.8) can be rewritten as
\[
\sum_{k=1}^{n+1} (-1)^{k-1} \frac{(2n+1)}{k-1} \left(C_{n,k} + (2n + 2 - k)C_{n,k-1}\right)
= \sum_{k=1}^{n} (-1)^{k-1} \frac{k!(2n+2-k)!}{(2n+1)!} C_{n,k} - \sum_{k=1}^{n} (-1)^{k-1} \frac{k!(2n+1-k)!}{(2n+1)!} \frac{C_{n,k}}{C_{n,k-1}}
= \sum_{k=1}^{n} (-1)^{k-1} \frac{k!(2n+1-k)!}{(2n+1)!} C_{n,k} = \sum_{k=1}^{n} (-1)^{k-1} \frac{(2n+1)}{k} C_{n,k},
\]
as desired. We complete the proof of Theorem 1.2.
Proof of Theorem 1.3: Apply the derivation \(\frac{d^2}{dz^2} \big|_{z=0} \) to both sides of (1.7). By (2.7), we have

\[
\frac{d^2}{dz^2} B_n(z) \big|_{z=0} = \frac{1}{n} \sum_{k=1}^{n} (-1)^k \binom{2n-1}{k-1} C_{n,k} (H_{k-1} - (H_{2n-k} - H_n))
\]

Combining with (2.6), after some arrangements, we complete the proof of Theorem 1.3.

We conclude this paper by the proof of Theorem 1.4. Setting \(z = N \) in (1.3) leads to

\[
\sum_{k=0}^{\infty} B_k(N) x^k \frac{k!}{k!} = \left(\frac{x}{e^x - 1} \right)^N = \left(\sum_{k=0}^{\infty} B_k \frac{x^k}{k!} \right)^N
\]

where \(k_1, k_2, \ldots, k_N \) are nonnegative integers.

Hence,

\[
B_n^{(N)} = \sum_{k_1 + k_2 + \cdots + k_N = n} \binom{n}{k_1, k_2, \ldots, k_N} B_{k_1} B_{k_2} \cdots B_{k_N}.
\]

By Theorem 1.1, for \(1 \leq N \leq n \), we have

\[
B_n^{(N)} = \frac{n!}{(2n)!} \sum_{k=1}^{n} (-1)^k C_{n,k} \binom{N}{k} (-N + n + 1)_{n-k}
\]

Combining with Dilcher’s identity (1.12), we have

\[
\frac{N}{2n} \binom{n}{N} \sum_{k=1}^{n} (-1)^k C_{n,k} \binom{2n-1}{N+k-1} = \frac{N}{2n} \binom{n}{N} \sum_{k=0}^{N-1} (-1)^{N-1-k} s(N, N-k) \frac{B_{n-k}}{n-k}.
\]

Divided both sides by \(\frac{N}{2n} \binom{n}{N} \), we complete the proof of Theorem 1.4.

References

[1] M. Bóna, Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley, SIAM J. Discrete Math. 23 (2008), 401–406.

[2] L. Carlitz, Note on Nörlund polynomials \(B_n(z) \), Proc. Amer. Math. Soc. 11 (1960), 452–455.

[3] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, (1974).
[4] W.Y.C. Chen and A.M. Fu, Context-free grammars for permutations and increasing trees, Adv. in Appl. Math. 82(2017), 58–82.

[5] K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60(1996), 23–41.

[6] I. Gessel and R.P. Stanely, Stirling polynomials, J. Combin. Theory Ser. A 24(1978), 24–33.

[7] S.-M. Ma and Y.-N. Yeh, Stirling permutations, cycle structure of permutations and perfect matchings, Electron. J. Comb. 22(2015), #P4.43.

[8] H. Miki, A relation between Bernoulli numbers, J. Number Theory 10(1978), 297–302.

[9] S. Janson, M. Kuba and A. Panholzer. Generalized Stirling permutations, families of increasing trees and urn models, J. Combin. Theory Ser. A 118(2011), 94–114.

[10] G. Rządkowski and M. Urlińska, Some applications of the generalized Eulerian numbers, J. Combin. Theory Ser. A 63(2019), 85–97.

[11] Mathoverflow, https://mathoverflow.net/questions/45756.