Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Revealing the toxicity of lopinavir- and ritonavir-containing water and wastewater treated by photo-induced processes to *Danio rerio* and *Allivibrio fischeri*

Bożena Czech a,⁎, Agnieszka Krzyszczak a, Anna Boguszewska-Czubara b, Grzegorz Opielak c, Izabela Jośko d, Mirabbos Hojamberdiev e,⁎

a Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland

b Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland

c Chair and Department of Human Physiology, Medical University of Lublin, ul. Radziwiłłowska 11, 20-080 Lublin, Poland

d Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950 Lublin, Poland

e Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

HIGHLIGHTS

• Lopinavir and ritonavir after photo-induced treatment affected zebrafish and bacteria.
• Photo-induced treatment of lopinavir-containing wastewater showed a lethal effect.
• Lopinavir should be removed from water before any photo-induced treatment.
• Photo-induced processes of ritonavir removal from water reduced the toxicity.
• Lopinavir and ritonavir are priority antiviral drugs that need to be monitored.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 24 October 2021
Received in revised form 7 February 2022
Accepted 14 February 2022
Available online 17 February 2022

Editor: Henner Hollert

Keywords:
Antiviral drugs
Photolysis
Photocatalysis
Lopinavir
Ritonavir
Ecotoxicity
COVID-19

ABSTRACT

In coronavirus disease 2019 (COVID-19), among many protocols, lopinavir and ritonavir in individual or combined forms with other drugs have been used, causing an increase in the concentration of antiviral drugs in the wastewater and hospital effluents. In conventional wastewater treatment plants, the removal efficiency of various antiviral drugs is estimated to be low (<20%). The high values of predicted no-effect concentration (PNEC) for lopinavir and ritonavir (in ng L−1) reveal their high chronic toxicity to aquatic organisms. This indicates that lopinavir and ritonavir are current priority antiviral drugs that need to be thoroughly monitored and effectively removed from any water and wastewater samples. In this study, we attempt to explore the impacts of two photo-induced processes (photolysis and photocatalysis) on the toxicity of treated water and wastewater samples containing lopinavir and ritonavir to zebrafish (*Danio rerio*) and marine bacteria (*Allivibrio fischeri*). The obtained results reveal that traces of lopinavir in water under photo-induced processes may cause severe problems for *Danio rerio*, including pericardial edema and shortening of the tail, affecting its behavior, and for *Allivibrio fischeri* as a result of the oxygen-depleted environment, inflammation, and oxidative stress. Hence, lopinavir must be removed from water and wastewater before being in contact with light. In contrast, the photo-induced processes of ritonavir-containing water and wastewater reduce the toxicity significantly. This shows that even if the physicochemical parameters of water and wastewater are within the standard...
1. Introduction

In the last two years, the inclusion of antiviral drugs in the prophylaxis of coronavirus disease 2019 (COVID-19) has been widespread (Riva et al., 2020). COVID-19 that triggered the pandemic since March 2020 (Ellinger et al., 2021; Marcatili et al., 2021; Umar et al., 2021) is an infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the beta-coronavirus family (Kirmani et al., 2021) and causes acute respiratory infections associated with high mortality.

Since then, significant global efforts have been made to stop the COVID-19 pandemic. The use of antiviral drugs has been one of the promising strategies to reduce virus transmission. As the estimated average time for the approval of new antiviral agent is more than 10 years, repurposing the existing antiviral drugs has been employed to the development of treatment for SARS-CoV-2. A variety of known drugs, such as nitazoxamide, remdesivir, camostat, nafamostat, mefloquine, papaverine, favipiravir, darunavir, hydroxychloroquine, chloroquine, ivermectin, lopinavir, and ritonavir were tested individually and in combination with other drugs to consider their proven activity against other viruses like SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, HIV, and Plasmodium spp. (Ellinger et al., 2021). However, their treatment efficiency was quite diverse (Choudhary et al., 2021; Shamsi et al., 2021). Although the efficacy of some antiviral drugs is still under question (e.g., unknown optimal dosage and treatment duration), they were approved for the emergency treatment of COVID-19 (Rodgers et al., 2021).

Lopinavir (LPV) and ritonavir (RNV) (Ellinger et al., 2021) are among the antiviral drugs intensively tested in the therapy of human immunodeficiency virus (HIV) infections. LPV is an antiretroviral protease inhibitor (C_{27}H_{48}N_{6}O_{5}S_{2}, molecular weight - 720.94 μg·mL^{-1}, logK_{OW} = 5.94), which is usually used in the HIV treatment in combination with RNV - HIV protease inhibitor (C_{27}H_{48}N_{6}O_{5}S_{2} molecular weight - 720.94 g mol^{-1}, logK_{OW} = 6.29) to increase its half-life by inhibiting its degradatio

2. Experimental

2.1. Photolytic and photocatalytic tests

The tests were performed initially in distilled water and then in treated wastewater from municipal wastewater treatment plant (WWTP) in Lublin, Poland (51°15′N 22°34′E). The WWTP is a mechanical and biological wastewater treatment plant with the increased removal of biogenic compounds (nitrogen and phosphorus) from wastewater. The total amount of wastewater flowing into the WWTP in 2020 was 71,907 m³ per day (average). The treated wastewater (WW) was characterized by a low level of COD (chemical oxygen demand) - 27.3 mg L^{-1}, BOD (biological oxygen demand) - 4.9 mg L^{-1}, total solids - 6.0 mg L^{-1}, total phosphorus - 0.28 mg L^{-1}, and total nitrogen - 8.404 mg L^{-1}.

The toxicity of water and wastewater samples, which contained lopinavir (CAS no.: 192725-17-0, ≥98%, Merck) and ritonavir (CAS no.: 155213-67-5, ≥98%, Merck), treated by photolysis and photocatalysis was studied using Danio rerio and Allivibrio fischeri. The photolysis of water and wastewater samples containing antiviral drugs was carried out using a Heraeus photoreactor under visible light irradiation (medium-pressure mercury lamp (150 W) with the intensity of 7.31 -7.53 mW cm^{-2} and 20.83·10^{-19} m^2 s^{-1} for 90 min. The initial concentrations of lopinavir and ritonavir were 10 μg L^{-1} in distilled water and labeled as L_{0} and R_{0}, respectively, and the final solutions after 90 min of visible light irradiation were labeled as L_{f} and R_{f}, respectively. The initial concentrations of lopinavir and ritonavir were also 10 μg L^{-1} in treated wastewater (tWW) and labeled as L_{WW} and R_{WW}, respectively. The final solutions

requirements/limits, the presence of traces of antiviral drugs and their intermediates can affect the survival and behavior of Danio rerio and Allivibrio fischeri. Therefore, the photo-induced processes and additional treatment of water and wastewater containing ritonavir can minimize its toxic effect.
after 90 min of visible light irradiation were labeled as L_{90} and R_{90}, respectively.

To verify the effect of advanced oxidation treatment of tWW, the photocatalytic test was also conducted using a photochemical reactor (0.7 L) equipped with a lamp in the center of the reactor. The light source used was the above-mentioned mercury lamp (150 W) with the intensity centered at 500–550 nm, the intensity of 7.31–7.53 mW·cm$^{-2}$, and the photon flux of 20.83·1019 m$^{-2}$s$^{-1}$. In the photocatalytic test, 400 mg·L$^{-1}$ WO$_3$ (99.9% Merck) was used as the photocatalyst, and the solutions were labeled as L_{90} and R_{90}. First, the WO$_3$ powders were dispersed in lopinavir- or ritonavir-containing tWW (10 mg·L$^{-1}$) under magnetic stirring and maintained for 30 min in the dark to reach adsorption-desorption equilibrium. Afterward, the light was turned on, and the photocatalytic reaction was carried out for 90 min.

The concentration of antiviral drugs was analyzed using an Agilent LC-DAD chromatograph (1260 Infinity II) equipped with an InfinityLab Poroshell 120 EC-C18 column (3.0 × 150 mm, 2.7 µm) and a detector at 238.4 nm (λ). The concentration of antiviral drugs was determined using the Microtox® test. The luminescence inhibition was determined after 5 min and 15 min of exposure of A. fischeri to the aqueous samples according to the standard protocol (Microtox®, 1995) in a Microtox M500 analyzer with the Omni software. The tests using photolytically and photocatalytically treated wastewaters were performed, and the results indicated no changes in Danio rerio. Similarly, wastewaters after both treatments without tested drugs revealed no toxicity to A. fischeri. The obtained data are expressed with the standard deviation (S.D.). The obtained data were analyzed by one-way analysis of variance (ANOVA), followed by Dunnett’s test to assess the significance of differences between the control and treated groups.

3. Results and discussion

3.1. Physicochemical parameters of tested solutions

The fate of all antiviral drugs involves the metabolism in the body and then excretion. LPV and RNV are excreted mainly with feces: 22% LPV as an unchanged drug and 37% RNV as an unmetabolized fraction (Kuroda et al., 2021). The effect of photolytic and photocatalytic treatment on the presence of LPV and RNV and their decomposition products and physico-chemical parameters of water and wastewater samples was studied.

The photolysis of LPV and RNV slightly reduced the electrical conductivity of aqueous solutions (Table 1, Fig. 1A), whereas the photocatalytic treatment led to a significant reduction in electrical conductivity and the related amount of suspended solids. The high values of electrical conductivity indicate water pollution (Teixidó et al., 2019). It implies that the amount of diluted organic carbon was reduced (Poulos et al., 2000), confirming the removal of organic pollutants. By comparing the electrical conductivity of the water containing the traces of LPV and RNV by-products, higher electrical conductivity was noted for RNV due to the presence of sulfates (the decomposition product of S from RNV molecule). The revealed differences in the electrical conductivity of tWW containing RNV and their decomposition products and physico-chemical parameters of water and wastewater samples was statistically significant. However, the photo-induced processes of RNV and LNV-spiked tWW was not detrimental, indicating that a lower concentration of accessible ions was present in the solution. This is the confirmation that photocatalysis is an effective process for the total mineralization of organic compounds into CO$_2$ and H$_2$O. The higher electrical conductivity of photocatalytically treated tWW containing RNV than LNV-containing tWW is caused by the decomposition of sulfur into sulfates.

Other physicochemical parameters of aqueous solutions confirmed the decomposition of LPV and RNV and their intermediates to some extent.

Table 1

Concentration of antiviral drugs	EC* [µS·cm$^{-1}$]	N-NH$_4$ [mg·L$^{-1}$]	DO [mg·L$^{-1}$]	pH [-]
L_{90}	10 ± 0.1	9.3 ± 0.3	0	5.27 ± 0.19
L_{90}	0.20 ± 0.01	6.2 ± 0.2	0	5.78 ± 0.21
tWW	0	1310 ± 48.3	129 ± 4.8	8.36 ± 0.31
L_{90}	10 ± 0.15	1335 ± 49.2	70 ± 2.6	8.16 ± 0.30
L_{90}	1.14 ± 0.01	1286 ± 47.4	135 ± 5.0	7.78 ± 0.29
L_{90}	0.23 ± 0.02	640 ± 23.6	32 ± 1.2	7.74 ± 0.29
L_{90}	10 ± 0.1	9.5 ± 0.3	0	6.41 ± 0.24
L_{90}	0	11.57 ± 0.4	0	5.36 ± 0.20
tWW	0	1310 ± 48.3	129 ± 4.8	8.36 ± 0.31
L_{90}	10 ± 0.15	1261 ± 46.5	79.2 ± 2.9	8.17 ± 0.3
L_{90}	0.82 ± 0.01	791 ± 29.2	130 ± 4.8	7.93 ± 0.29
L_{90}	0	772 ± 28.5	38.7 ± 1.4	7.55 ± 0.28

* EC - electrical conductivity [µS·cm$^{-1}$], N-NH$_4$ - ammonium nitrogen [mg·L$^{-1}$], DO - dissolved oxygen [mg·L$^{-1}$].
The photocatalysis reduced the amount of nitrogen in the form of NH$_4^+$ ion up to 54% of the initial value (Fig. 1B). The results may arise from the fact that ammonia exists in equilibrium as both molecular ammonia (NH$_3$) and ammonium ion (NH$_4^+$). Their relative concentration depends on the pH and temperature. In the solutions with pH > 8, the amount of molecular ammonia was higher but not included in NH$_4^+$-N sum. The amount of determined DO was lower after all applied processes of the treatment of water and wastewater from LPV (Fig. 1C). The photolysis of water containing LPV or RNV did not lead to significant changes in the pH of slightly acidic solutions. However, the treatment of tWW with LPV or RNV resulted in a slightly increased pH, and the pH of the final solutions was neutral (Fig. 1D).

3.2. Toxicity of treated water samples to Danio rerio

Considering their negative impact on algae, daphnia, and fish, antiviral drugs were reported to be the most hazardous and toxic pharmaceuticals (Sanderson et al., 2004; Zhou et al., 2015). Narcosis is a main toxic effect of LPV for aquatic organisms, whereas the toxicity of RNV and its metabolites stems from its acetylcholinesterase, inhibiting the effect, according to the prediction by VEGA (a tool used for the prediction of toxicity) (Kuroda et al., 2021). The Ecological Structure Activity Relationships (ECOSAR) Predictive Model predicted the ecotoxicity (LC$_{50}$ for fish after 96 h exposure) of LPV and RNV at the level of 0.099–0.744 mg L$^{-1}$ and 0.061–0.601 mg L$^{-1}$, respectively (US EPA, 2019).

The phycotoxicity parameters of LPV and RNV (e.g., logK$_{ow} \sim 6$) indicate high bioaccumulation potential, and the low removal rates in the WWTPs were responsible for the estimation of a significant hazard to fish. The hazard quotient of antiviral drugs is expected to reach 10,000 (Sanderson et al., 2004). The mortality of $D. rerio$ was one of the endpoints evaluated in our study (Fig. 2). As shown in Fig. 2, the fish embryos survived in the concentrated solutions (labeled as 100%), only in spiked treated wastewater with LPV (LtWWi) and in irradiated water with LPV (LtW). Interestingly, when LPV-spiked tWW was irradiated or photocatalytically treated, the products of LPV photodecomposition were lethal to $D. rerio$. Fish exposed to 75% of aqueous solutions (LtWW90 and LWO3) showed some malformations, and mainly scoliosis was noted. Considering the effect of tested aqueous solutions on the physical conditions of $D. rerio$, it can be seen that any malformations were noted at 50%-diluted aqueous solutions. The presence of 5 mg L$^{-1}$ LPV in distilled water caused a mandibular malformation and pericardial edema. $D. rerio$ in 75%-diluted aqueous solution of tWW revealed an eye malformation. Although the survival of $D. rerio$ in irradiated LPV-containing solution was increased, the tail autophagy was observed. The length of the tail was significantly shorter, at the 50%- and 75%-diluted solutions, the length of the tail was reduced by 50–60%. This may imply that traces of LPV in water subjected to visible light irradiation may cause severe problems for fishes, including pericardial edema and shortening of tail, which affects their behavior, as a result of the oxygen depletion environment (the presence of organics) (Hashiguchi et al., 2021), inflammation (Mohan Prakash et al., 2020) and oxidative stress (Snega Priya et al., 2021). Another interesting observation was noted when the non-toxic LPV-spiked tWW after 90 min of visible light irradiation (sample labeled as LtWW90) exhibited some toxicity, and scoliosis in fish was detected. In the 50%-diluted aqueous solution, the embryos were shorter (23%) and scoliosis was observed (Fig. 3A). A similar effect was observed in photocatalytically treated solution (LWO3). The data imply that the products generated after irradiation of LPV-containing tWW...
are toxic and cause sublethal changes to tested organisms (Rothe et al., 2021), and LPV should be removed from water and wastewater before light exposure.

The survival rate of *Danio rerio* in RNV-containing water samples was slightly different from that observed for LPV-containing water samples (Fig. 2b). The most toxic (e.g., lethal) was RNV-containing tWW before any additional treatments (RtWWi). The surprising results indicate that even the PNEC for ritonavir was indicated to be toxic to fish, such visible effect was not observed. Nevertheless, it does not exclude any non-lethal changes in the tested organism, including hematological alteration, inflammatory response, altered gut bacterial community, and inhibition of PI3K signaling pathway (Yang et al., 2020). The fish embryos exposed to the highest concentration of RNV-containing solution revealed the highest lethal or sublethal changes. As the number of both dead embryos and noted malformations was strictly linked to the increased concentration of aqueous solution, it can be assumed that the severity of malformations had possibly led to deaths at 100% concentration of aqueous solution (Tenorio-Chávez et al., 2020).

Fig. 2. Effects of (A) LPV and (B) RNV in the water and treated wastewater samples. *tWW* is treated wastewater; *L* and *R* are LPV and RNV (10 mg L\(^{-1}\)) in distilled water, respectively; *L90* and *R90* are LPV and RNV in distilled water after visible light irradiation for 90 min, respectively; *LWW90* and *RWW90* are LPV and RNV in treated wastewater, respectively; *LtWWi* and *RtWWi* are LPV and RNV (10 mg L\(^{-1}\)) in treated wastewater, respectively; *LWO3* and *RWO3* are LPV and RNV in photocatalytically treated wastewater, respectively; *EM*, *HM*, and *MM* are eye, head, and mandibular malformations, respectively; *PE* is pericardial edema; *S* is scoliosis, and *TA* is tail autophagy.

RNV-containing distilled water (*R* and *R90*) did not affect the tested organism. The photolysis of RNV-containing tWW (*RWW90*) reduced toxicity significantly. The products of RNV oxidation include protonated amine formed from the CN bond cleavage and alcohol from hydrolysis of the carbamate bond (Rao et al., 2010). The sublethal changes (e.g., scoliosis - modified rope structure) were observed when the fish was exposed to 75%-diluted effluent. The photocatalytic treatment (*RWO3*) was the most efficient process in toxicity reduction, and the head malformation was observed only at 100% concentration of effluent. Similarly, the multi-phase photocatalysts exhibited a 95% efficiency in the photocatalytic removal of ritonavir within 15 of visible light irradiation, whereas 60 min of visible light irradiation was necessary to achieve 95% efficiency in the photocatalytic removal of lopinavir (Hojamberdiev et al., 2022). Several malformations in the fish and even teratogenic effects were observed for hospital effluents (Tenorio-Chávez et al., 2020) due to the presence of metals and drugs. The obtained data indicate that even if the physicochemical parameters of water and wastewater are within the standard requirements/
limits, the presence of traces of antiviral drugs and their intermediates can affect the survival and behavior of Danio rerio, putting the life of embryos at high risk (Tenorio-Chávez et al., 2020).

Understanding the mechanism of the interaction of LPV and RNT with Danio rerio embryos and fish is still challenging. Nevertheless, other drugs, such as naproxen, ibuprofen, and paracetamol were reported to interact with the hydrophilic groups of the membrane (Teixidó et al., 2019), affecting their development and the formation of pericardial edema and hypopigmentation. According to (Tu et al., 2016), LPV and RNT are highly protein-bound and can induce hepatotoxicity and hypersensitivity in humans. (Abou-El-Naga et al., 2020) studied the interactions of LNV/RNT with Leishmania spp. proteolytic activity, which led to the degenerated nuclear membrane, and the chromatin granules indicating apoptosis with accompanying acidocalcine were observed. On the other hand, many drugs are known as compounds causing oxidative stress and genotoxicity in aquatic organisms (Li et al., 2018; Sánchez-Aceves et al., 2021; Zheng et al., 2012), which affect the growth and development of fishes (Tenorio-Chávez et al., 2020). Simultaneously, the presence of any chemical substances, including drugs, in water and wastewater is characterized as a stressor that increases the level of serotonin in fish brains (Rothe et al., 2021).

Hashiguchi et al. (2021) noted similar observations (malformations) on the toxicity of effluents from oil palm milling, suggesting that an appropriate wastewater treatment should be designed. A 2% removal efficiency of antiviral drugs in the WWTPs was estimated by (Sanderson et al., 2004), and photolysis was demonstrated as a major path for the transformation of pharmaceuticals in the environment and water (Zhou et al., 2015). This process is generally affected by the presence of dissolved ions and dissolved organic matter (DOM) (Zhou et al., 2015). The residual concentration of LPV (Table 1) indicates that the treated wastewater containing the traces of LPV and photocatalytically treated wastewater containing the traces of LNV are very toxic (EC50 < 1 mg L−1) to aquatic organisms (Zhou et al., 2015). The toxicity may arise from the presence of traces of LNV and its oxidation products. The oxidation of LPV leads to the formation of substituted acetamide and 2,6-dimethylphenoxacyclic acid (Chitturi et al., 2008) as the products of hydrolysis and CN bond cleavage.

3.3. Microtox® studies

It can be seen that the visible light irradiation of water containing LPV caused significant changes in the response of A. fischeri (Fig. 4A). Before visible light irradiation of water containing LPV, the growth of bacteria was stimulated; however, the bioluminescence was inhibited up to 20% after 90 min of treatment. After the first slight inhibition of bioluminescence (after 5 min of contact), the tWW induced the habituation of bacteria to the environment (after 15 min of contact). Even at the high concentration of LPV in the tWW, some stimulation on the bacterial growth was noticed. Evidently, the effect of the wastewater matrix was observed, and the stimulation was increased (Ferreira et al., 2002). However, when the LPV-containing tWW was irradiated for 90 min, it revealed a significant toxicity as bioluminescence was hindered >40%. Again, the obtained data clearly indicate that visible light irradiation of water and wastewater samples containing LPV leads to the generation of toxic products to bacteria. This can be explained by the fact that the presence of other components in the water and wastewater matrices, such as nitrates, bicarbonates, and dissolved organic matter (DOM) affects the photo-induced processes (Kim and Tanaka, 2009; Zhou et al., 2015). Non-selective and powerful hydroxyl radicals (·OH) are created under visible light irradiation of nitrates present in water. However, ·OH can be scavenged by the reaction with bicarbonate ion, resulting in the formation of a highly selective CO2 (Zhou et al., 2015). DOM acts in two different ways: (i) the promoter of radicals reactions and (ii) inhibitor (radicals scavenger) (Niu et al., 2014).

RNV in water did not reveal any toxicity to A. fischeri (Fig. 4B). Similar to LPV, visible light irradiation affected the level of toxicity. A slight inhibition of bioluminescence was noted (up to 10%) both in water and wastewater samples although there was no RNV in the irradiated water. The decomposition products affected the bacterial activity. The bioluminescence of A. fischeri exposed to RNV-spiked tWW confirmed the presence of substantial toxic substances that are the most harmful to bacteria. Nevertheless, visible light irradiation of RNV-spiked tWW reduced the toxicity by 60%. This indicates that the photolysis products of RNV were less toxic. Probably, the prolongation of irradiation time beyond 90 min may further lower the toxicity to an acceptable level (20%, non-toxic solution) (Heinlaan et al., 2008). The photocatalytic treatment of RNV-spiked tWW led to the total elimination of toxicity. The data indicate that the photo-induced processes and the additional treatment of water and wastewater containing RNV (e.g., photocatalysis) enabled to minimize the toxic effects of these antiviral drugs.

4. Conclusions

In summary, the effects of two photo-induced processes (photolysis and photocatalysis) on the toxicity of treated water and wastewater containing...
lopinavir and ritonavir to zebrafish (Danio rerio) and marine bacteria (Allivibrio fischeri) were studied. Both photo-induced processes influenced the survival and growth of Danio rerio and Allivibrio fischeri. The photo-induced treatment of lopinavir-containing wastewater showed a lethal effect on Danio rerio, and several malformations, including pericardial edema, tail autophagy, and scoliosis were observed. The non-toxic waste-induced treatment of lopinavir-containing wastewater showed a lethal effect. In contrast, the photo-induced processes in minimizing the toxic effect. It was found that even though the physicochemical parameters of water and wastewater are within the standard requirements/limits, the traces of antiviral drugs and their intermediates can still affect the survival and behavior of Danio rerio and Allivibrio fischeri.

CRediT authorship contribution statement

Bożena Czech: Investigation, Methodology, Visualization, Writing-Reviewing and Editing, Conceptualization, Validation, Supervision; Agnieszka Krzyszczak: Investigation; Anna Boguszewska-Czubara: Investigation, Methodology, Visualization; Grzegorz Opiełak: Investigation; Izabela Jośko: Methodology, Writing-Reviewing and Editing, Validation, Supervision; Mirebbos Hojamberdiev: Writing-Reviewing and Editing, Conceptualization, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Acknowledgements

Miejskie Przedsiębiorstwo Wodociągu i Kanalizacji w Lublinie sp. z o. o. is greatly acknowledged for the samples of treated wastewater.

References

Abafe, O.A., Spáth, J., Fick, J., Janssens, S., Buckley, C., Stark, A., Pietruschka, B., Martinigh, B.S., 2018. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere 200, 660–670. https://doi.org/10.1016/j.chemosphere.2018.02.105.

Carpagnozzi, G.E., Migliore, G., Grassi, S., Procacci, V., Resta, E., Panza, F., Resta, O., 2021. More skilled clinical management of COVID-19 patients modified mortality in an intermediate respiratory intensive care unit in Italy. Respir. Res. 22, 16. https://doi.org/10.1186/s12931-021-01613-2.

Chitruri, S.R., Bharathi, C., Reddy, A.V.R., Reddy, K.C., Sharma, H.K., Handa, V.K., Dandala, R., Bindu, V.H., 2008. Impurity profile study of lopinavir and validation of HPLC method for the determination of related substances in lopinavir drug substance. J. Pharm. Biomed. Anal. 48, 1430–1440. https://doi.org/10.1016/j.jpba.2008.09.015.

Choudhary, J., Bhoerman, S., Sharma, V., Katar, P., Kark, S.K., Sarangi, M.K., Chauhan, A.K., Verma, G., Balyan, N., 2021. Insights of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) pandemic: a current review. Bioproc. Online 23, 5. https://doi.org/10.1186/s12757-020-00141-5.

Czech, B., Hojamberdiev, M., 2016. UVA- and visible-light-driven photocatalytic activity of three-layer perovskite Dion-Jacobson phase Cd2(Bi4M(OH)8)2(M = Ta, Nb) and oxynitride crystals in the removal of caffeine from model wastewater. J. Photochem. Photobiol. A: Chem. 324, 70–80. https://doi.org/10.1016/j.jphotochem.2016.03.020.

Czech, B., Zygmont, P., Kadirova, Z.C., Yubuta, K., Hojamberdiev, M., 2020. Effective photocatalytic removal of selected pharmaceuticals and personal care products by elemental tungsten oxide@ZnS photocatalyst. J. Environ. Manage. 270, 110870. https://doi.org/10.1016/j.jenvman.2020.110870.

Ellinger, B., Bojkova, D., Zaliani, A., Cinati, J., Claussen, C., Westhaus, S., Kemenier, O., Reinschagen, J., Kuzikov, M., Wolf, M., Geislinger, G., Gröbner, P., Ciesek, S., 2021. A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection. Sci. Data 8, 1–10. https://doi.org/10.1038/s41597-021-00848-4.

Abou-El-Naga, F., Mady, R.F., Hussien Mogahe, N.M.F., 2020. In vitro effectivity of three approved drugs and their synergistic interaction against Leishmania infantum. Biomedica 40, 89–101.

Ferreira, R.C.F., Graça, M.A.S., Carneiro, S., Santos, L.M.A., Culp, J.M., 2002. Integrated environmental assessment of BKME discharged to a Mediterranean River. Water Qual. Res. J. Can. 37, 181–193. https://doi.org/10.2166/WQRJ.2002.0011.

Hashiguchi, Y., Zakaria, M.R., Toshniwal, M., Mohd Yusof, M.Z., Shirai, Y., Hassan, M.A., 2021. Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay. Environ. Pollut. 277, 116780. https://doi.org/10.1016/j.envpol.2021.116780.

Heinike, M., Ivask, A., Blinova, J., Dubourgvier, H.-C.C., Kahru, A., 2008. Toxicity of nano-sized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308–1316. https://doi.org/10.1016/j.chemosphere.2007.11.047.

Hojamberdiev, M., Czech, B., Wadlew ska, A., Boguszewska-Czubara, A., Yubuta, K., Waga ta, H., Daminova, S.S., Kadirova, Z.C., Vargas, R., 2022. Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. Photocatal. Sci. Technol. 25, 1–10. https://doi.org/10.1016/j.jallcom.2020.154339.

Hojamberdiev, M., Czech, B., Göktay, A.C., Yubuta, K., Kadirova, Z.C., 2020. SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. J. Alloys Compd. 827, 154339. https://doi.org/10.1016/j.jallcom.2020.154339.
Kim, I., Tanaka, H., 2009. Photodegradation characteristics of PPCPs in water with UV treat-
ment. Environ. Int. 35, 793–802. https://doi.org/10.1016/j.envint.2009.01.003.
Kimani, S.A.K., Ali, P., Azam, F., 2021. Topological indices and QSPR/ QSAR analysis of
some antiviral drugs being investigated for the treatment of COVID-19 patients. Int.
J. Quantum Chem. 121, e26594. https://doi.org/10.1002/qua.26594.
Krumm, Z.A., Lloyd, G.M., Francis, C.P., Nasif, L.H., Mitchell, D.A., Golde, T.E., Giannouli, B.,
Xia, Y., 2021. Precision therapeutic targets for COVID-19. Virol. J. 18, 66. https://doi.
org/10.1186/s12985-021-01526-y.
Kumari, M., Kumar, A., 2021. Can pharmaceutical drugs used to treat Covid-19 infection lead
to human health risk? A hypothetical study to identify potential risk. Sci. Total Environ.
778, 146303. https://doi.org/10.1016/j.scitotenv.2021.146303.
Kuroda, K., Li, C., Dhangar, K., Kumar, M., 2021. Predicted occurrence, ecotoxicological risk
and environmentally acquired resistance of antiviral drugs associated with COVID-19 in
environmental waters. Sci. Total Environ. 776, 145740. https://doi.org/10.1016/j.
cbit.2021.109071.
Sanderson, H., Johnson, D.J., Reitsma, T., Brain, R.A., Wilson, C.J., Solomon, K.R., 2004.
Ranking and prioritization of environmental risks of pharmaceuticals in surface waters.
Regul. Toxicol. Pharmacol. 39, 158–183. https://doi.org/10.1016/j.yrtph.2003.12.006.
Shami, A., Mohammad, T., Anwar, S., Amari, S., Khan, M.S., Hussain, F.M., Rehman, M.T.,
Islam, A., Hassan, M.I., 2021. Potential drug targets of SARS-CoV-2 from genomics to
therapeutics. Int. J. Biol. Macromol. 177, 1–9. https://doi.org/10.1016/j.
bmacrom.2021.02.071.
Sengh Priya, P., Adwitiha, A., Thamizharasan, K., Haridhakumar, M., Dinesh, S., Nitika, T.G.,
Kamaraju, M. 2021. Synergistic effect of durian fruit rind polysaccharide gel encapsulated
prebiotic and probiotic dietary supplements on growth performance, immune-related
gene expression, and disease resistance in zebrafish (Danio rerio). Helilogy 7, e06669.
https://doi.org/10.1002/j.heliyon.2021.e06669.
Teixido, E., Kстинга, T.R., Krupp, Е., Quevedo, C., Muriana, A., Schola, S., 2019. Automated
morphological feature assessment for zebrafish embryo development toxicity screens.
Toxicol. Sci. 167, 438–449. https://doi.org/10.1093/toxsci/kfy250.
Tenzor-Olives, P., Cerro-López, M., Castro-Pastana, L.I., Ramírez-Rodríguez, M.M., Orcocho-
Hernández, J.M., Gómez-Oliván, L.M., 2020. Effects of effluent from a hospital in Mexico
on the embryonic development of zebrafish, Danio rerio. Sci. Total Environ. 727, 138716.
https://doi.org/10.1016/j.scitotenv.2020.138716.
Tu, Y., Pohlewe, R.J., Frelich, B.D., Zarbin, M.A., Bhagat, N., 2016. Retinal toxicity with rito-
in. Int. J. Ophthalmol. 9, 640. https://doi.org/10.18240/ijio.2016.04.29.
Umar, H.I., Sinjé, B., Ajayi, A., Jimoh, T.O., Chukwueke, P.O., 2021. Molecular docking
studies of some selected gallic acid derivatives against five non-structural proteins of
novel coronavirus. J. Genet. Eng. Biotechnol. 19, 16. https://doi.org/10.1186/s43141-
021-00120-7.
US EPA, 2019. Ecological structure activity relationships (ECOSAR) predictive model [WWW
document]. US EPA. https://www.epa.gov/tsca-screening-tools/ecological-structure-
activity-relationships-ecosar-predictive-model.
Yang, C., Song, G., Lim, W., 2020. A review of the toxicity in fish exposed to antibiotics.
Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 237, 108840. https://doi.org/10.
1016/j.cbpc.2020.108840.
Zheng, D., Wang, N., Wang, X., Tang, Y., Zhu, L., Huang, Z., Tang, H., Shi, Y., Wu, Z., Zhang,
L., Bu, B., 2021. Effects of the interaction of TiO2 nanoparticles with bisphenol a on their
physicochemical properties and in vitro toxicity. J. Hazard. Mater. 199–200, 426–432.
https://doi.org/10.1016/j.jhazmat.2011.11.040.
Zhou, C., Chen, J., Xie, Q., Wei, X., Zhang, Y., Nan, F., Fu, Z., 2015. Photolysis of three antiviral
drugs acyclovir, zidovudine and lamivudine in surface freshwater and seawater.
Chemosphere 138, 792–797. https://doi.org/10.1016/J.CHEMOSPHERE.2015.08.033.