Measuring the dynamic photosynthome

Erik H. Murchie1*, Shawn Kefauver2, Jose Luis Araus2, Onno Muller3, Uwe Rascher3, Pádraic J. Flood4 and Tracy Lawson5

1Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK, 2Section of Plant Physiology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain, 3Institute of Bio-and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, D-52428, Jülich, Germany, 4Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, D-50829 Köln, Germany and 5School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK

*For correspondence. E-mail erik.murchie@nottingham.ac.uk

Received: 27 October 2017 Returned for revision: 15 December 2017 Editorial decision: 26 April 2018 Accepted: 2 May 2018 Published electronically 4 June 2018

INTRODUCTION

Photosynthesis underpins plant productivity and yet is notoriously sensitive to small changes in environmental conditions, meaning that quantitation in nature across different time scales is not straightforward. The ‘dynamic’ changes in photosynthesis (i.e. the kinetics of the various reactions of photosynthesis in response to environmental shifts) are now known to be important in driving crop yield.

Scope It is known that photosynthesis does not respond in a timely manner, and even a small temporal ‘mismatch’ between a change in the environment and the appropriate response of photosynthesis toward optimality can result in a fall in productivity. Yet the most commonly measured parameters are still made at steady state or a temporary steady state (including those for crop breeding purposes), meaning that new photosynthetic traits remain undiscovered.

Conclusions There is a great need to understand photosynthesis dynamics from a mechanistic and biological viewpoint especially when applied to the field of ‘phenomics’ which typically uses large genetically diverse populations of plants. Despite huge advances in measurement technology in recent years, it is still unclear whether we possess the capability of capturing and describing the physiologically relevant dynamic features of field photosynthesis in sufficient detail. Such traits are highly complex, hence we dub this the ‘photosynthome’. This review sets out the state of play and describes some approaches that could be made to address this challenge with reference to the relevant biological processes involved.

Key words: Photosynthesis, dynamic, steady state, genetics, yield, phenomics.
the static properties and dynamic responses of the photosynthetic apparatus. A simple example would be the inclusion not only of the light-saturated rate of photosynthesis under a particular set of conditions but also the time taken to reach that rate.

The inclusion of dynamic responses, such as Rubisco activation, photoprotection or stomatal responses, is important as they are not always deducible from the steady-state properties and we do not know which process(es) is (are) limiting under fluctuating conditions. This issue has recently been highlighted using evidence that it is possible to alter genetically the dynamics of key processes such as photoprotection to produce a change in overall plant productivity (Kromdijk et al., 2016). Indeed, it is particularly important that light is accurately tracked by the plant for optimal photosynthetic performance (Sinclair and Muchow, 1999; Mott and Woodrow, 2000; Zhu et al., 2004; Lawson et al., 2012; Murchie and Reynolds, 2012; Lawson and Blatt, 2014; Burgess et al., 2015).

The range of environments in which photosynthetic organisms occur exhibits wide variation in the temporal flux of many environmental parameters, in terms not only of light, but also of factors such as temperature and humidity. Plants have numerous mechanisms for adjustment to such environments; some of the most extreme instances are high-altitude equatorial environments that have an intensely diurnal climate, namely winter every night and summer every day. Whilst morphological adaptations to such extreme temperature fluctuations are well documented, the physiological adjustments are not (Hedberg, 1970). Natural genetic variation for the dynamic properties of photosynthesis is poorly documented despite recent studies that show considerable promise for increasing crop yields not only

Physical scale:	Time scale of response:	Examples of processes with potentially mismatched responses to light transients:
Chloroplasts	Seconds to minutes	Rubisco activation state (e.g. Rubisco activase)
		Photoprotective non-photochemical quenching (NPQ: high energy state quenching, qE) induction and relaxation
		Stomatal opening in high light, stomatal closure in low light (also with impact on water use efficiency due to high stomatal conductance in low light)
Stomata	Minutes to hours	Acclimation of photosynthetic capacity to high or low light
Organ/whole plant acclimation	Days to weeks	This is a multi-component process: Calvin cycle, dark respiration, light harvesting, electron transport, leaf thickness, cell size and arrangement.

Kromdijk et al. (2016); Hubbard et al. (2012); Taylor and Long (2017)

Lawson and Blatt (2014)

Athanaisou et al. (2010); Retkute et al. (2015); Viala-Chabrand et al. (2017)

Fig. 1. Aspects of dynamic photosynthesis and the prospects for improvement. Steady-state (or temporary steady-state) photosynthesis is easily measured but hard to relate to biomass and yield production. Here we highlight examples of important dynamic processes at different scales that are not necessarily or easily predictable from a steady-state measurement. The purpose is to demonstrate that dynamic processes which influence photosynthetic rates do not necessarily need to occur within seconds or minutes (such as photosynthetic induction) but can also include acclimation which is a process occurring over days or weeks. We have not provided a complete reference list but merely good relevant examples. Image sources (permission obtained): stomata, Kecheli Batta (University of Essex) and chloroplasts of Monstera deliciosa, O. Muller (Jülich). Scale bar for chloroplasts and stomata = 2 μm and 10 μm, respectively.
per se but also in the face of increasingly unpredictable climates (Ray et al., 2013; Kromdijk et al., 2016).

The high-throughput measurement of plant phenotypes (phenomics) is a broad term that refers to quantification of plant form and function (and component processes) at the whole-plant level. It has received much attention recently due to the rapid expansion in technology and applications for sensing plant growth and plant processes, and the increasing need to assess large numbers of plants at speed (e.g. see recent reviews by Tester and Langridge, 2010; Furbank and Tester, 2011; Pieruschka and Poorter, 2012; Dhondt et al., 2013; Araus and Cairns, 2014; Flood et al., 2016; Hawkesford and Lorence, 2017). For the purposes of crop improvement, this is critical because genotypic diversity needs to be rapidly linked to phenotypic diversity to inform marker-assisted selection. Typically, conventional breeding takes several years or more so, and thus rapid and high-resolution phenotyping is essential to leverage the power of the genomics revolution and drive through the production of new varieties with beneficial traits on a time scale that permits adaptation to current climate change (Challinor et al., 2016).

Photosynthesis is now established as an important target for improving yield, largely due to its effects on overall canopy radiation use efficiency (the amount of biomass produced per unit radiation intercepted) (Long et al., 2006; Zhu et al., 2008, 2010; Murchie et al., 2009; Flood et al., 2011; Hubbart et al., 2018). Hence crop phenotyping must incorporate measurements of plant photosynthesis (Pieruschka and Poorter, 2012; Murchie and Lawson, 2013). However, the importance of the dynamic responses of photosynthesis raises a key problem that has not been adequately addressed: it is difficult to capture photosynthetic responses within (rapidly) fluctuating environments, especially in the field. This is a challenge which must be met because field phenotyping is essential to allow plants to ‘express’ the appropriate phenotype, something that is not always possible in controlled environments, even glasshouses (Poorter et al., 2012, 2016; Viallet-Chabrand et al., 2016). We are at a point where we require a revolution in technology and methodology for measuring photosynthesis at wide spatial (leaf, 3-D canopy, field) and temporal scales in order to capture responses that are relevant to both agricultural productivity and ecosystem health. This review assesses the current strategies for quantifying (phenotyping) photosynthesis over such scales, focusing on the need to measure dynamic responses to the environment meaningfully. In this review, responses to light fluctuations receive emphasis. This is due to the high sensitivity of the photosynthetic process to light over short time scales, the limitation to crop yield by canopy radiation use efficiency and the substantial fluctuations of light in nature which have many stochastic components.

NATURAL GENETIC VARIATION IN PHOTOSYNTHESIS

Phenomic technologies fundamentally depend on having relevant germplasm available. A major component of the epistemic value of high-throughput measurements is in providing empirical data by which the genotype–phenotype map can be resolved for a given population. The choice of germplasm is a key consideration in any research programme as it will determine the nature of the insights the high-throughput phenotyping is likely to generate. For example, a population of plants derived from a mutation experiment will mostly provide insight into loss of function and identify key, often highly conserved, genes involved in the phenotype; on the other hand, a collection of accessions derived from the wild may give insight into gain of function or adaptive differences, particularly if the accessions were collected across an environmental gradient, such as temperature or precipitation (Flood et al., 2011; Hancock et al., 2011). Photosynthesis is an intrinsically dynamic trait which exhibits a high degree of environmental responsiveness. Nevertheless, in recent years, it has become increasingly recognized that plants have genetically adapted their photosynthetic pathway in many ways in order to accommodate the specific environmental challenges. Studies of both intraspecific and interspecific variation repeatedly document divergent adaptation in photosynthetic traits (Guanter et al., 2014; Nevada et al., 2016). So far most of this research has ridden on the back of the genomics revolution and thus taken a reverse genetic approach, i.e. worked from the genotype towards the phenotype. Although photosynthetic processes are regularly implicated in the adaptation of plants to the environment, the precise phenotypic manifestation of these differences is rarely elucidated in terms of dynamic responses.

How can genetic and genomic approaches help to identify the cause of such variation in photosynthesis? To link the insights from population genetic studies in model plants such as in Nevada et al. (2016) to phenotypes, forward genetic approaches are ideal (Flood and Hancock, 2017). To succeed in identifying the causal loci, particularly those of small effect size, large numbers of genotypes (often >1000) should be phenotyped; such numbers also require high-throughput and high-quality phenomics. This supports the common statement that the genomics revolution has shifted the research bottleneck from genotyping to phenotyping (Flood et al., 2016). Accurate phenotype data are essential for genetic mapping where an error rate of as little as 1–2 % can already result in spurious associations (James et al., 2013). Non-crop models have provided much of the early work, but the resources available for crop species are highly advanced, and crop species have now been used in phenotyping programmes for (steady-state) photosynthesis with mixed success (Driever et al., 2014; Carmo-Silva et al., 2017). It is again clear that large populations of plants need to be measured for quite complex and time-consuming traits such as gas exchange. In the field this is difficult, compounding the need for new advances in measurement technology. Recent work with elite lines of wheat, for example, has shown that variation in key (largely steady-state) traits exists but this does not link well with biomass and yield, demonstrating further the need for examination of dynamic traits (Driever et al., 2014).

An important target to aid trait identification is understanding the mechanisms by which photosynthesis actually contributes to plant fitness, biomass and yield, and moreover how this varies with abiotic and biotic factors. This is not a simple task, for example in cereal plants the role of photosynthesis in forming yield can be dependent on developmental stage, and hence timing of measurement is important (Murchie and Reynolds, 2012). Therefore, understanding the range of selective and dynamic pressures that operate on photosynthesis in the field would greatly aid plant breeding programmes via the identification of new and dynamic traits and, importantly, which need measuring. Efforts to develop a big data approach to photosynthetic phenomics by recruiting many researchers into online cloud-based initiatives (Kuhlert et al., 2016) may be promising because not
only can they assay many genotypes but they can also do so under the diverse conditions which plants experience in nature. When combined with fitness/yield data, the key photosynthetic phenotypes that constrain plant performance under naturally dynamic conditions can be identified. The caveat to this is the quality and consistency of in-field methodology. If successful, this might be applied to traditional breeding or biotechnological solutions. All approaches could be made much more relevant when informed by models based on biological processes, as has recently been shown by altering expression levels of genes involved in photoprotection such as PsbS and those regulating the xanthophyll cycle (Kromdijk et al., 2016). It follows that success could arise from the continued advancements in methodology (explained below) focused on the extraction of data describing dynamic traits across large numbers of genotypes in the field and informed by a good understanding of the biology that underpins yield components.

PROXIMITY AND REMOTE SENSING – THE SPATIO-TEMPORAL VARIATIONS OF PHOTOSYNTHESIS FROM THE LEAF AND CANOPY TO THE (AGRO)ECOSYSTEM

Photosynthesis involves processes that span substantial temporal and spatial scales (Fig. 1). The absorption of photons in the photosynthetic pigments and the separation of excitons in the reaction centres happens on the time scales of femtoseconds and on the spatial scales of a few Angstroms. On the other hand, photosynthesis is also quantified on the much larger spatial scale of canopies, fields and whole ecosystems, and temporal aggregates of photosynthetic carbon fixation are included in ecosystem models and used to predict global carbon budgets in times of global change.

Measurements of photosynthesis have historically been performed on single leaves using clip-on devices, methods which underpinned the great efforts to unravel and understand the molecular, biophysical and biochemical organization and functioning of the photosynthetic apparatus. In recent years, however, increasing scientific interest arose in measuring photosynthesis on larger scales to quantify local, regional and global carbon budgets and also to develop methods for fast and automated screening of photosynthetic traits for phenotyping approaches (Wohlfart and Gu, 2015). This inevitably confronted researchers with the challenge to measure photosynthesis under natural, i.e. fluctuating, conditions. Most of our scientific knowledge was obtained under controlled conditions in the laboratory and under a ‘steady state’ or a temporary ‘steady state’ in response to single variables such as light and CO₂. In nature, photosynthesis, however, rarely operates under constant conditions but rather adapts to an ever-changing ‘stream’ of energy that also renders light availability in canopies spatially heterogeneous (Schurr et al., 2006; Rascher and Nedbal, 2006). Temporal variability is translated into spatial heterogeneity, and we will discuss this interplay here.

In this context, chlorophyll fluorescence techniques are very important because they are non-contact and rapid, and have come to be a method of choice to understand the spatio-temporal dynamics of photosynthesis; hence the emphasis here. The classical pulse amplitude-modulated (PAM) approaches cannot always be considered, e.g. in remote applications. There are numerous reviews available that describe the principles and applications of chlorophyll fluorescence (e.g. Maxwell and Johnson, 2000; Baker, 2008; Murchie and Lawson, 2013).

In the following sub-sections, we review recent methods to measure photosynthesis remotely in the field and that are used to quantify photosynthesis on this larger scale, i.e. covering natural canopies, fields and even ecosystems by using aircraft and satellite platforms. In each case, we attempt to focus on the feature that allows the phenotyping of large numbers of plants at appropriate resolution, as explained in the previous section.

Measuring photosynthesis from a distance using fluorescence transients

Pulse amplitude-modulated techniques brought PSII (photosystem II) chlorophyll fluorescence measurement from the lab to the field (Schreiber et al., 1986; Murchie and Lawson, 2013; Porcar-Castell et al., 2014). PAM methods use a saturating flash to measure minimum or steady-state fluorescence and maximum fluorescence, giving information on photochemical processes as well as the degree of photoprotective non-photochemical energy dissipation (NPQ). This method provides reliable data about photosynthetic performance (Schreiber et al., 1986; Murchie and Lawson, 2013). As an alternative method, short sub-saturating flashes (a few at ≤1 µs) can be used to study fluorescence decay kinetics. Using sub-saturating flashes at a fast repetition rate triggers a light-induced fluorescence transient (LIFT), that allows the continuous recording of the fluorescence signal. These transients can be used to quantify the PAM parameters and additionally determine fluorescence parameters such as the photosystem cross-section of PSII or the time constants of electron transfer at PSII (Kolber et al., 1998, 2005).

For field approaches, the LIFT measurement approach has an enormous advantage; it can be used from some distance as the flashlets are of sub-saturating intensity. Based on laboratory experience, a first ‘remote sensing’ instrument was developed in 2001 and 2002 and first employed in the Biosphere 2 mesocosm (Ananyev et al., 2005). Further technical development enabled this instrument to observe fluorescence signals from up to 50 m distance in a fast, non-invasive way to better understand photoprotection in arabidopsis (Kolber et al., 2005), to monitor the dynamics of winter hardening (Pieruschka et al., 2007, 2014; Rascher and Pieruschka, 2008) and to monitor the seasonal dynamics of photosynthetic adaptation in different barley varieties (Raesch et al., 2014). A new, lighter and more integrated LIFT instrument has been developed using light-emitting diodes (LEDs) at 470 nm wavelengths with maximal operating distance of a few metres (Osmond et al., 2017; Wyber et al., 2017). The nature of LIFT means that it could track dynamic shifts in PSI efficiency and NPQ quite easily in a remote setting and at high spatial scale, which would be a significant advance. In terms of ‘mapping’ fluorescence across plant canopies and accounting for spatial heterogeneity, the diameter of the measuring beam may be critical. This can be quite high (up to 10 cm) when operating from a distance but reduced in the LED version to 3 cm when measuring from 60 cm distance.
Measuring and mapping sun-induced fluorescence emission – a new approach to quantify photosynthesis across huge scales

The LIFT measurement approach helped to overcome the limitations of the clip-on PAM devices, and first canopy screening experiments were facilitated. The next scaling would target a mapping of fluorescence on the field, ecosystem or even continental scale sun-induced fluorescence. The measurement concept takes advantage of solar and atmospheric absorption lines in which the incoming irradiance is greatly reduced. In these lines, the emitted weak fluorescence signal can be detected passively by using high-resolution spectrometers (Plascky and Gabriel, 1975; Carter et al., 1990; Moya et al., 2004). In recent years, this measurement principle was used for remote sensing of vegetation (for reviews, see Malenovský et al., 2009; Meroni et al., 2009) and to detect vegetation stress (for a review, see Ać et al., 2015).

The rapid technical development of high-resolution spectrometers in the past years further promoted the scientific exploitation of the sun-induced fluorescence (SIF) signal for photosynthetic activity. Thermoregulated and carefully arranged point spectrometers were used to record diurnal and seasonal time series of canopy fluorescence (Rossini et al., 2010; Meroni et al., 2011). Newer generations of these instruments were used to measure and compare canopy fluorescence across various ecosystems (Rossini et al., 2015) and to better understand the contribution of structural and functional effects in ecosystem adaptation to nitrogen level (Mighavacca et al., 2017). The measurement principle that was developed for point spectrometers could recently also be applied to ground-based imaging spectrometers (Pinto et al., 2016) as well as to a high-resolution airborne imaging sensor HyPlant (Rascher et al., 2015; Rossini et al., 2015; Simmer et al., 2015; Wieneke et al., 2016). Recently, it was also possible to retrieve the relatively weak fluorescence signal from existing atmospheric satellites by fine tuning data acquisition and data retrieval (Frankenberg et al., 2011; Joiner et al., 2011, 2013; Guanter et al., 2012, 2014). Following spatial and temporal averaging to retrieve the relatively weak signal, the novel information content of this new remote sensing signal and its application within agriculture could clearly be demonstrated by, for example, detecting photosynthetic hot-spots within the corn-belt of the USA or by describing the disconnection between canopy greenness and photosynthetic activity during the dry period in Australia (Guanter et al., 2014). It is likely to have applications in tracking photosynthetic activity over wide spatio-temporal scales (Yang et al., 2015). The huge scales over which SIF is measured and its low resolution will define its application in crop science and crop improvement. It is unclear as yet whether the resolution of the SIF signal into components of photosynthesis (such as photochemical or non-photochemical) is possible, but this would overcome some of the difficulties of conventional fluorescence imaging (see below).

Significant challenges remain (to measurement of dynamic photosynthesis) but advanced non-linear retrieval methods such as spectral fitting of the whole high-resolution spectrum have shown promising results (Cogliati et al., 2015). Excitingly, this will also be the basis for a future dedicated satellite mission FLEX, which will be launched in 2022 as the Eighth Earth Explorer from the ESA and which will deliver high-resolution global maps of SIF (Drusch et al., 2017).

Dynamic thermal imaging to assess stomatal behaviour/kinetics

The ability to assess the spatially and temporally variable dynamics of other physiological parameters that directly affect or are affected by photosynthetic processes is key to understanding the mechanistic bases of photosynthetic processes in the field environment (Matthews et al., 2018). For example, both photosynthesis and stomata respond to changes in light intensity; however, stomatal responses are an order of magnitude slower than photosynthetic responses (Kirschbaum and Pearcy, 1988; Tinoco-Ojanguren and Pearcy, 1993; Lawson and Weyers, 1999; Lawson et al., 2010; McAusland et al., 2016). Fluctuations in light through sun and shade flecks drive temporal and spatial dynamics in carbon gain and water loss (Barrada and Jones, 1996; Lawson and Weyers, 1999; Lawson and Blatt, 2014). Slow stomatal conductance (g.) responses to increasing light result in restriction of CO₂ diffusion to match mesophyll demands for photosynthesis or slow stomatal closure when light decreases resulting in unnecessary water loss for no carbon gain (McAusland et al., 2016). This leads to a disconnection between g. and assimilation rate (Lawson et al., 2012) and therefore plant water use efficiency (Lawson and Blatt, 2014) which is defined as the ratio of CO₂ uptake relative to water lost. In addition, stomatal behaviour has important consequences for evaporative cooling and leaf temperature, nutrient uptake, translocation and plant water status.

Identifying genotypes, cultivars, accessions and species with more rapid stomatal responses that are synchronized with mesophyll photosynthetic rates could improve both photosynthesis (Lawson et al., 2012; Matthews et al., 2017) and plant water use efficiency (Lawson and Blatt, 2014). The dynamic response of stomata or g. to fluctuations in light intensity has been studied in several understorey forest-dwelling species, but relatively few reports have studied crop species (Chazdon and Pearcy, 1986; Chazdon, 1991; Tinoco-Ojanguren and Pearcy, 1993; Leakey et al., 2005; McAusland et al., 2016). Additionally, the majority of these studies have relied on examining stomatal kinetics using either porometry, which is notoriously noisy, or infrared gas exchange analysis which is time consuming. Thermography offers an alternative high-throughput phenotyping approach to assess stomatal behaviour (Omasa et al., 1981; Hashimoto et al., 1984; Wang et al., 2004; Leinonen et al., 2006; Jones et al., 2009; McAusland et al., 2016). Higher stomatal conductance leads to greater evaporative cooling of the leaf and a lowering of leaf temperature; as a result thermal imaging of leaf temperature can provide a convenient and reliable method for assessing stomatal behaviour. Thermal screens have been used successfully to identify a number of stomatal mutants (e.g. Merlot et al., 2002; Wang et al., 2004; Xie et al., 2006). An important advance is that measurements of leaf temperature can also be converted to g. using the basic energy balance equations (see Jones, 1999, 2004; Leinonen et al., 2006). However, to date, the majority of these studies have relied on steady-state measurements both in the laboratory and in the field (Grant et al., 2006). Recently, thermography has been shown to be a useful screening tool for...
examining dynamic stomatal behaviour in response to changing environmental cues and, in combination with measurements of photosynthesis via chlorophyll fluorescence imaging, it can be used to estimate plant water use efficiency (McAusland et al., 2013, 2015, 2016). For example, Fig. 2 shows \(g_s \) calculated from thermography from an arabidopsis plant subjected to a dynamic light regime. Corresponding values of \(F_{\text{q}}/F_{\text{m}'} \) from chlorophyll fluorescence imaging illustrated that both \(A \) and \(g_s \) respond to the changes in light intensity, and, as expected, in opposite directions, but with different magnitudes of change. Such data can easily be used to determine the kinetics/speed of stomatal responses as well as provide a measure of the overall ‘steady-state’ \(g_s \) achieved under particular light levels. However, the negative aspect of using thermography to determine \(g_s \) is that the external/environmental conditions surrounding the leaf need to be known, as well as an estimate of the boundary layer resistance to water vapour (Jones, 1999; Jones et al., 2002).

‘Wet’ and ‘dry’ reference standards that mimic the colour and shape of the leaf have been used to estimate the impact of changing environment conditions on temperature. The dry reference provides an infinite resistance to water vapour, whilst the wet provides a near-zero resistance to water vapour. These references standards are used to normalize the measured leaf temperature to the environmental conditions surrounding it, and it is assumed that these surfaces have the same radiative properties (Jones, 2004). Many different materials have been explored as reference materials; however, one of the best is using the leaf itself, with grease applied to both sides of the leaf providing a dry reference, while a leaf painted with a detergent–water mix provides a convenient wet reference (Giulioni et al., 2008; McAusland et al., 2013). Despite these complexities, under controlled conditions thermography provides an accurate and quantitative non-invasive tool for measuring spatial and temporal variation in \(g_s \), providing a rapid screen for stomatal dynamics that can be combined with other spectral signatures (such as chlorophyll fluorescence) to provide novel screening platforms such as plant water use efficiency (McAusland et al., 2013, 2016).

3-D analysis of photosynthesis and canopy photosynthesis dynamics

Canopy structure is a complex trait that needs to be optimized to account for the various trade-offs between light interception, light distribution and other field factors. An ideal canopy would result in a display of leaves that results in a maximum light interception and distributes photosynthetic activity effectively to enhance overall carbon gain per unit ground area. In reality, canopy architecture is highly variable (even among genotypes of the same species) and difficult to quantify. A high degree of self-shading is frequently observed, one function of which may be to compete effectively with weed growth, and the resulting density of foliage can hinder accurate 3-D analysis (Townsend et al., 2018; Walker et al., 2018). Canopy architecture is critical for photosynthesis because it defines the optimal leaf area index for the canopy, the linearity of the canopy–light photosynthesis relationship and the overall canopy photosynthetic rate (Murchie and Reynolds, 2012; Song et al., 2013). For example, leaf angle is considered to be strongly linked to canopy photosynthetic rate, although this depends on growing environment (Hammer et al., 2009). Therefore, it may be possible to improve canopy photosynthesis by tweaking architecture. However here we are primarily concerned with measuring photosynthesis in situ within such complex 3-D structures.
The 3-D architecture of a canopy creates a dynamic light environment. Solar movement and the movement of the canopy in wind creates fluctuations that are spatio-temporally highly complex and occur within sub-seconds to minutes to hours (Song et al., 2013; Burgess et al., 2016). Measurement of such light fluctuations with existing equipment would be difficult, but not impossible, since the numbers of sensors would be large and may themselves physically impede light transmission. Traditional canopy analysis uses parameters that are relatively easy to measure, e.g. leaf area index, fractional interception and canopy extinction coefficient. These are important because they permit a tractable means of mathematically linking light absorption with complex features of leaf angle and foliage density, but they do not provide knowledge of light fluctuations (Hirose, 2005).

Together with knowledge of 3-D canopy architecture, light fluctuations can be defined by light ray tracing techniques to predict photosynthetic responses (Song et al., 2013). Many techniques for 3-D reconstruction of entire canopies have been published (e.g. Godin, 2000; Godin and Sinoquet, 2005; Watanabe et al., 2005; Quan et al., 2006; Wang et al., 2008; Paulus et al., 2014; Pound et al., 2014; Gibbs et al., 2017; Townsend et al., 2018). With such models of 3-D architecture, and even canopy movement, it is possible to predict photosynthesis dynamics at high resolution (Burgess et al., 2016). Techniques for 3-D reconstruction using, for example, laser- or RGB- (for red, green and blue light) based techniques will typically result in a 3-D point cloud that can be processed to generate 2-D leaf surfaces for downstream processes such as ray tracing that can accurately predict light fluctuations within the canopy (Pound et al., 2014). The level of investment in infrastructure varies enormously; some automated techniques require large field installations (Hawkesford and Lorence, 2017; Virlet et al., 2017), while others can be bought at low cost and operated manually or automatically (Pound et al., 2014). A substantial issue is the density of the canopy and the problem of occlusion, meaning, for example, that it is usually only possible to visualize completely the ‘top’ or projected surface area (that excludes overlapped leaves) of a mature field canopy without as yet unavailable techniques such as field computed tomography (CT) scanning. The internal arrangement of leaves may therefore not be visible. This can be overcome by removing plants and scanning (Burgess et al., 2015). Some approaches have partially overcome this imaging problem (Busemeyer et al., 2013; Grobkinsky et al., 2015).

Attaining high-resolution 3-D reconstructions of canopies may be an important first step. This is largely because it is not currently physically possible to measure/monitor photosynthesis at every point within a large and complex canopy. The most common approach is to use portable gas exchange and chlorophyll fluorescence, either at fixed points during the day or as part of a diurnal, to parameterize canopy photosynthesis models in combination with the 3-D reconstruction or an approximation. Canopy photosynthesis modelling is a relatively common technique (Zhu et al., 2012; Song et al., 2017; Wang et al., 2017). This can be done to great effect and has on occasions been validated using the more difficult whole-canopy gas exchange chambers (Song et al., 2016). Long-term chlorophyll fluorescence monitoring techniques are available (Porcar-Castell et al., 2012; Hubbart et al., 2018) and provide high-resolution information on photoprotection and photosynthesis data, but the sensors are large and it is only possible to monitor a small proportion of the leaf surface.

While chlorophyll fluorescence imaging would seem to be a logical step (see other sections in this review), PAM fluorescence suffers from the problem of not being able to cope with great depth or issues such as leaf curvature due to the need to illuminate the leaf evenly, dark adapt the leaf and provide an even saturating flash (Murchie and Lawson, 2013). Previous requirements for dark adaptation of material that would preclude the ability to measure some dynamic processes such as NPQ has been partly overcome with the development of NPQ(T), which does not require dark adaptation (Tietz et al., 2017). Arabidopsis thaliana has a flat rosette canopy and is relatively simple to scan as a 2-D object. Early in plant development when canopy complexity and leaf area index are relatively low, crops such as wheat may be able to be treated as a 2-D surface with some systems. There is currently no way to measure photosynthesis, in situ, in all points of the (occluded) canopy. The best strategy may be to use a large number of monitoring fluorometers (also possible with multiple gas exchange chambers) scattered among a large canopy so that the devices do not impede light transmission.

Given the increasing importance of complex light patterns within plant canopies and the impact they have on biomass and yield (Burgess et al., 2016; Kromdijk et al., 2016; Townsend et al., 2018), it is critical to continue to find new ways of visualizing canopies in three dimensions and measuring photosynthetic dynamics accurately across all (or substantial parts) leaf areas over long time periods. It is fair to say that we have not yet achieved this and for the foreseeable future we may need to rely on 3-D reconstruction combined with modelling and photosynthesis measured/imaged on canopy parts only. Importantly, there have been recent advances in the inclusion of dynamic processes in photosynthesis modelling at the leaf level that may lend themselves to scaling to the canopy (Pearcy et al., 1997; Muller, 2011; Zhu et al., 2012, 2013; Kaiser et al., 2015, 2018). We may see robotic technology capable of highly mobile, discrete in-canopy measurement of architecture and photosynthesis simultaneously.

Affordable high-resolution field phenotyping: problems and opportunities

As highlighted above, many key points regarding the factors that contribute to plant photosynthesis and crop yield often come from a body of knowledge based on controlled experiments with a high frequency of measurements using state-of-the-art and expensive sensors (Fiorani and Schurr, 2013; Cabrera-Bosquet et al., 2016; Hawkesford and Lorence, 2017; Kirchgessner et al., 2017; Virlet et al., 2017). However, when measuring photosynthetic performance under field conditions in a high-throughput manner, it is difficult to capture complex dynamic information. It is evident that a trade-off exists between throughput in data acquisition and the precision of the information gathered. With this premise in mind, we may discern the most efficient and effective techniques for field phenotyping towards measuring photosynthetic performance. A practical dilemma often encountered is the optimal selection...
of instrumentation for budget and field conditions, allowing the precise timing of data acquisition, and the best approach for data analysis (White et al., 2012; Araus and Cairns, 2014). More is not always better in field phenotyping, as time is limited and a focus purely on quantity results in a loss of quality. Easily attainable high-spatial-resolution image data using RGB broadband visible light reflectance may provide more meaningful data for quantifying biomass/growth and photosynthetic pigments compared with lower spatial resolution narrowband multispectral VNIR (visible plus near-infrared light) measurements, and measuring both may result in data overlap (Gracia-Romero et al., 2017; Kefauver et al., 2015). An efficient and focused approach on specific traits of interest will lead to better quality data and results, with the desired levels of high throughput (Tambussi et al., 2005, 2007; Kefauver et al., 2015; Zhou et al., 2015). Here we consider the state of the art in such techniques and then how applicable they may be to ‘dynamic’ phenotyping.

Time-consuming measurements such as carbon assimilation parameters (through an infrared gas analyser, IRGA) that directly measure carbon assimilation can be very insightful and certainly can capture dynamic changes in photosynthesis and photoprotection in a lot of detail (Kromdjik et al., 2016) but are currently not high throughput and require expensive instruments. Even portable porometers, which offer a more convenient and higher throughput alternative compared with IRGA, are not a feasible alternative when large-scale phenotyping is required. Other alternatives include portable spectroradiometers with active sensors, but they do not measure photosynthesis directly. These can be used to assess total photosynthetic surface area, for example through vegetation indexes, such as the normalized difference vegetation index (NDVI). Leaf pigment meters use absorbance for chlorophyll content and other pigments, such as anthocyanins and flavonoids, that are indicative in the photosynthetic responses to stress conditions. Infrared thermometers can measure canopy temperature as a surrogate of transpiration (see above) although they have some disadvantages, e.g. in wind and on cool days. These devices provide meaningful and high-throughput data on plant physiological conditions related to plant vigour, photosynthetic capacity and photosynthetic efficiency, as well as responses to different categories of abiotic and biotic stresses, but will not capture complex photosynthetic dynamics (Prasanna et al., 2013; Winterhalter et al., 2013; Araus and Cairns, 2014). The use of these approaches for breeding is not new. Infrared thermometers and portable spectroradiometers that provide proxy measurements may be considered as scientifically reliable, providing direct measurements of pigment content or leaf temperature (as proxies of potential photosynthetic and stomatal conductance, respectively). The widespread use of these traditional techniques has largely reached its limit in producing new scientific insight for phenotyping, and thus new techniques adapted from the field of remote sensing are being applied more proximally and at higher resolution (Fiorani et al., 2012; Fiorani and Schurr, 2013).

Thermal imaging may be granted separate consideration in terms of the importance of the effects of plant temperature on the dynamic processes of plant photosynthesis and the challenges presented in its measurement. Infrared thermometers, in spite of low cost and easy use, have not been widely adopted as phenotyping tools to assess abiotic stresses such as water, heat or salinity stress. Thermal cameras represent an alternative, but so far the cost has been prohibitive: recent developments have substantially reduced both size and cost. Thermal measurements and thermal image acquisition for plant photosynthesis phenotyping in the field comes with its own unique sets of problems and opportunities. As described above for controlled environments, the key issue is that plant temperature is a very dynamic variable with a high impact on plant photosynthesis, including photosynthetic capacity, photosynthetic efficiency and water use. Temperature measurements across numerous phenotyping plots should be acquired as quickly and precisely as possible, with added benefits from multiple acquisitions per day and under different meteorological conditions for optimal insight (Gonzalez-Dugo et al., 2015). For thermal imaging, the case can be made for significant benefits from acquisition from an aerial platform with a greater capacity for near-simultaneous measurement across plots (Zarco-Tejada et al., 2012; Gonzalez-Dugo et al., 2015). Thermal imaging also has a greater potential for measuring dynamic changes in gas exchange properties than, for example, RGB, but this has not been fully realized in the field (see section on imaging above).

Similarly, the analysis of the stable isotope signatures in plant matter can provide key insights into cumulative photosynthetic activity and has been successful in breeding for water use efficiency (Farquhar et al., 1989; Lopes et al., 2004; Sanchez-Bragado et al., 2014). However, it depends on fairly rapid sampling, can be time consuming in preparation and analysis, is costly for a large number of samples and does not provide insight into the mechanism of specific photosynthesis dynamics but rather their accumulated impact over time. Nevertheless, the use of near-infrared reflectance spectroscopy (NIRS) may represent an alternative (Cabrera-Bosquet et al., 2012; Araus and Cairns, 2014).

Broadband visible light reflectance at high spatial resolution from RGB cameras

From studies of high-resolution field spectroscopy and the spatial dimension added in hyperspectral or imaging spectroscopy work, we can identify a suite of targeted multispectral vegetation reflectance indices that indicate specific plant physiological components related to cumulative and more dynamic photosynthetic processes (Filella et al., 1996; Gitelson et al., 2002; Ustin et al., 2009; Lobos et al., 2014). Similarly, very high spatial resolution image data take advantage of the relatively low cost commercial sensors that provide very high-resolution visible light (RGB) digital images. These same cameras can also be modified (mRGB), albeit with some additional need for calibration (Rasmussen et al., 2016; Berra et al., 2017) to capture near-infrared and red-edge light for capturing high spatial resolution spectral indices, such as NDVI or the normalized difference red-edge index (NDREI). Furthermore, these commercial RGB and mRGB cameras cost a fraction of multispectral scientific instruments, may provide equally meaningful data toward plant photosynthesis phenotyping in the field and are equally adaptable to unmanned aerial vehicle (UAV) platforms (Tattaris
Additionally, the high spatial resolution of these commercial cameras may provide precise 3-D reconstructions used to estimate plant spatial dimension details such as height, biomass and plant architecture (see earlier in this review) and even the possibility of segmentation and counting of individual plant components, such as fruit, wheat heads, maize ears and other important components related to yield prediction (Cointault et al., 2008; Bulanon et al., 2009; Patel et al., 2011).

Lower cost and accessible RGB and mRGB cameras as broadband measurements in VNIR light reflectance may offer insights into the dynamic processes of plant growth at the scale of days and weeks, to produce, for example, detailed growth curves and phenological stage assessments. Currently they do not provide information on dynamic responses of photosynthesis over time scales of seconds and minutes; however, the closest method of this type could be the spectral reflectance indices such as PRI (photochemical reflectance index) or the similar CCI (chlorophyll/carotenoid index), which have not yet been widely used for this purpose (Gamon et al., 1992, 2016; Gitelson et al., 2017). Spectral indices have the potential to indicate changes in biochemical composition, but only a limited number have the potential to indicate dynamics on a fine scale, depending on their biological origin. For example, if the PRI signal is influenced by shifts in de-epoxidation of the xanthophyll cycle then it has the potential to do this (Alonso et al., 2017). However, it is debatable whether spectral reflectance, especially when considering the more narrowband scientific spectrometers or imaging sensors needed for measuring, for example, the PRI and CCI, could be considered low cost. However, when considering sensors that were developed primarily for commercial and aesthetic image acquisition, we must be careful when applying them for scientific purposes. This includes standardized and careful planning in data acquisition, calibration, processing and validation. The continued development of such accessible methods deserves continued attention.

The most limiting time factor is often during data capture in the field. Nevertheless, image control data at the time of image acquisition are necessary and include images of calibration panels for white balance, colour and spatial distortion effects (Lebourgeois et al., 2008; Rabatel et al., 2011; Berra et al., 2017). Improved processing of the calibrated images enables more consistent and accurate results. One example, in the case of calculating the common green pixel indexes GA (green area) and GGA (greener area) as done in the Breedpix 0.2 suite of indices (Casadesús et al., 2007; Casadesús and Villegas, 2014), is the use of alternate colour spaces for providing some minor calibrations extracting the green pixel area within an image scene. The benefit of using hue, saturation and intensity (HSI) colour space is that hue represents one axis of the colour value separate from the illumination intensity and colour saturation components of the image. Segmentation based on green pixel values from the ‘Hue’ channel provides more consistent results compared with a direct extraction from green (Fig. 3). The use of normalized index calculations using an RGB or near-infrared-modified RGB camera image as a three waveband multispectral sensor may also result in more consistent and high-quality results that provide some internal calibration against illumination effects (Vogelmann et al., 1993; Hunt et al., 2011, 2012; Li et al., 2014; Kefauver et al., 2015; Vergara-Diaz et al., 2015; Zhou et al., 2015; Kira et al., 2016; Berra et al., 2017).

Through standardized acquisition, calibration and processing, the combination of image analysis techniques either on field or UAV platforms may offer an ideal combination of efficient and cost-effective image acquisition for photosynthesis phenotyping providing data with both high spatial and temporal resolution, off the shelf sensors and modified digital cameras at a fraction of the cost of scientifically developed sensor systems. The next step is the development and implementation of such methods to capture dynamic photosynthesis over a scale of seconds, minutes and hours.

![Fig. 3. Irrigated (A) and rainfed (B) wheat phenotyping trial plots showing (i.) original RGB image, (ii.) GA (green area: hue 60–120) and (iii.) GGA (greener green area: hue 80–120) results from the Breedpix 0.2 portion of the FIJI plugin CIMMYT Maize Scanner.](https://github.com/sckefauver/CIMMYT)
BRACING PLANTS FOR CHANGE: THE DISTANCE BETWEEN THE STABLE LABORATORY AND THE DYNAMIC FIELD

When developing a phenotyping system, an important consideration is whether or not the environment should be controlled. Controlled environments have many experimental advantages in that they allow for a systematic testing of different environmental variables without having the confounding effects of co-varying environmental parameters. However, it is recognized that growing and measuring plants in controlled conditions does not necessarily translate to field responses. The terminology used in a recent review is appropriate: ‘pampered inside, pestered outside’ (Poorter et al., 2016). This meta-analysis found only a moderate correlation between lab and field phenotypic data, and suggested that differences in light levels and planting density are important.

Perhaps field phenotyping systems should be prioritized because they have high capacity and low cost per unit area, and measure ‘real-world’ phenotypes that will provide the correct conditions for crop yield components. However, environmental conditions may vary, making several sites a necessity. Ideally one would use both approaches, i.e. disentangle subtle phenotypic responses in a controlled setting, perhaps in a model species, and validate relevance in a field setting, leading to genetic analysis and breeding. The species under study will to a large extent determine this.

A controlled environmental set-up is of most relevance when the physiological response to a specific environmental perturbation, for example light intensity, temperature, humidity or day length, is to be investigated. In such cases, keeping all other environmental conditions steady is key to assessing the effect the variable(s) of interest. An example of such a set-up is described by Flood et al. (2016) where the phenotyping and growth systems are integrated so that the act of phenotyping has a minimal effect, e.g. plant removal and movement. In some designs, plants are moved from a growth facility to a phenotyping station; this has the advantage that throughput is not limited by growth space, but comes at the cost of not having full environmental control; the act of moving the plants will always increase noise. Controlled environments can also offer possibilities to manipulate atmospheric concentrations of CO₂ and O₂ to mimic both past and future climates (Elliott-Kingston et al., 2016) and accurate imitation of field conditions, for example the use of LED lighting can alter both intensity and spectral qualities at a rate that matches field conditions (Viallet-Chabrand et al., 2017; Matthews et al., 2018). This shows how the uncoupling of environmental factors under realistic field-like environments may become a feasible route for achieving the lab to field connection.

CONCLUSION AND PERSPECTIVES

Photosynthetic phenomics has now achieved the status of being able to conduct forward genetic screens in diverse species, which, when combined with genomics, should allow the identification of both the genetic and phenotypic changes which have facilitated photosynthetic adaptation to diverse environments. Such knowledge will prove essential to physiologists, ecologists and evolutionary biologists studying how plants adapt to various environments, and to conservationists and plant breeders aiming to facilitate wild or cultivated species to adjust to global climate change. As such, the phenomics of photosynthesis of large populations of crop species and of model plant species is of fundamental importance and is backed up by the enormous investment in both field and laboratory technology (Hawkesford and Lorence, 2017).

This review article concludes that we do not yet have the full capability for automated high-throughput phenotyping of all complex but essential photosynthetic traits, namely the efficiency of responses of photosynthesis to rapid changes in the environment. This conundrum is compounded by the fact that it would be beneficial to assay photosynthesis in the field where the environment is highly variable. One solution is to exploit the advances in controlled-environment technology where larger spaces that mimic the natural environment can be constructed and phenotyping technology can be integrated and advanced enough to measure dynamic traits on multiple plants.

Crop improvement strategies have advanced substantially since the dawn of the genomics revolution. Genomic selection is poised to improve complex traits such as dynamic photosynthesis, thus allowing maximal use of natural genetic variation present, and modern genome editing techniques will allow for novel phenotypic adjustments not present in the germplasm. For these improvement strategies, photosynthetic phenomics will play a key role acting as an essential catalyst, providing both the data necessary for them to work (genomic selection) and the data necessary to validate the most successful combinations of alleles (be they natural or edited) in diverse settings.

ACKNOWLEDGEMENTS

E.H.M. receives funding from the UK Biotechnology and Biological Research Council [BBSRC grant numbers BB/R004633/1 and BB/N021061/1]. S.K. and J.L.A. were supported in part by the Spanish project AGL2016–76527–R. Part of the work by U.R. and O.M. was performed within the German-Plant-Phenotyping Network which is funded by the German Federal Ministry of Education and Research (project identification number: 031A053). T.L. receives funding from the UK Biotechnology and Biological Research Council [BBSRC grant number BB/N021061/1].

LITERATURE CITED

Ač A, Malenovský Z, Olejičková J, Gallé A, Rascher U, Mohammed G. 2015. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment 168: 420–436.

Alosso I, Van Wittenberghse B, Amorós-López J, et al. 2017. Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing 9: 770.

Ananyev G, Kolber ZS, Klímov D, et al. 2005. Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO₂ concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Global Change Biology 11: 1195–1206.

Araus JL, Cairns JE. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science 19: 52–61.

Athanasiou K, Dyson BC, Webster RE, Johnson GN. 2010. Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiology 152: 366–373.
Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89–113.

Barrada VL, Jones HG. 1996. Responses of CO₂ assimilation to changes in irradiance: laboratory and field data and a model for beans (Phaseolus vulgaris L.). Journal of Experimental Botany 47: 639–645.

Berra EF, Gauton R, Barr S. 2017. Commercial off-the-shelf digital cameras on unmanned aerial vehicles for simultaneous monitoring of vegetation reflectance and NDVI. IEEE Transactions on Geoscience and Remote Sensing 55: 4878–4886.

Bulanon DM, Burks TF, Alcanatis V. 2009. Image fusion of visible and thermal images for fruit detection. Biosystems Engineering 103: 12–22.

Burgess AJ, Retkute R, Pound MP, et al. 2015. High-resolution three-dimen-
sional structural data quantify the impact of photoinhibition on long-
term gain in wheat canopies in the field. Plant Physiology 169: 1192–1204.

Burgess AJ, Retkute R, Preston SP, et al. 2016. The 4-dimensional plant: effects of wind-induced canopy movement on light fluctuations and photosynthesis. Frontiers in Plant Science 7: 1392.

Busemeyer L, Mentrup D, Möller K, et al. 2013. BreedVision – a multi-sen-
sor platform for non-destructive field-based phenotyping in plant breed-
ing. Sensors 13: 2830–2847.

Cabrer-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL. 2012. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. Journal of Integrative Plant Biology 54: 312–20.

Cabrer-Bosquet L, Fournier C, Brichet N, Welcker C, Saard B, Tardieu F. 2013. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping plat-
form. New Phytologist 212: 269–281.

Carmo-Silva E, Andralojc PJ, Scales JC, et al. 2017. Phenotyping of field-
grown wheat in the UK highlights contribution of light response of photo-
synthesis and flag leaf longevity to grain yield. Journal of Experimental Botany 68: 3473–3486.

Carter GA, Theisen AF, Mitchell RJ. 1990. Chlorophyll fluorescence mea-
sured using the Franckhofer line-depth principle and relationship to photo-
synthetic rate in the field. Plant, Cell and Environment 13: 79–83.

Casadesús J, Villegas D. 2014. Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. Journal of Integrative Plant Biology 56: 7–14.

Casadesús J, Kaya Y, Bort J, et al. 2007. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of Applied Biology 150: 227–236.

Challinor AJ, Koehler A-K, Ramirez-Villegas J, Whitfield S, Das B. 2016. Current warming will reduce yields unless maize breeding and seed sys-
tems adapt immediately. Nature Climate Change 6: 954–958.

Chazdon RL. 2001. Exploring thermal physiology between stomatal resistance and leaf temperatures in thermography. Agricultural and Forest Meteorology 103: 1137–1146.

Chazdon RL, Peary RW. 1986. Photosynthetic responses to light variation in rainforest species. Oecologia 69: 524–531.

Cotiati S, Verhoef W, Kraft S, et al. 2015. Retrieval of sun-induced fluor-
escence using advanced spectral fitting methods. Remote Sensing of Environment 169: 344–357.

Coutant F, Guerin D, Guillemin JP, Chopinet B. 2008. In-field Triticum aestivum ear counting using colour-texture image analysis. New Zealand Journal of Crop and Horticultural Science 36: 117–130.

Coupe SA, Palmer BG, Lake JA, et al. 2006. Systemic signalling of environ-
mental cues in Arabidopsis leaves. Journal of Experimental Botany 57: 329–341.

Dhondt S, Wuyns N, Inzé D. 2013. Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science 18: 428–39.

Driever SM, Lawson T, Andralojc PJ, Raines CA, Parry MAJ. 2014. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. Journal of Experimental Botany 65: 4959–4971.

Drusch M, Moreno J, Del Bello U, et al. 2017. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Transactions on Geoscience and Remote Sensing 55: 1273–1284.

Elliott-Kingston C, Haworth MW, Yearsley JM, Batke SP, Lawson T, McElwain JC. 2016. Does size matter? Atmospheric CO₂ may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO₂. Frontiers in Plant Science 7: 1253. doi: 10.3389/fpls.2016.01253.

Farquhar GD, Hubick HT, Condon AG, Richards RA. 1989. Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA, eds. Stable isotopes in ecological research. New York: Springer, 21–40.

Filella I, Amaro T, Araus JL, Peñuelas J. 1996. Relationship between photo-
synthetic radiation-use efficiency of barley canopies and the photochem-
ical reflectance index (PRI). Physiologia Plantarum 96: 211–216.

Fiorani F, Schurr U. 2013. Future scenarios for plant phenotyping. Annual Review of Plant Biology 64: 267–291.

Fiorani F, Rascher U, Jahnke S, Schurr U. 2012. Imaging plants dynamics in heterogeneous environments. Current Opinion in Biotechnology 23: 227–235.

Flood PJ, Hancock AM. 2017. The genomic basis of adaptation in plants. Current Opinion in Plant Biology 36: 88–94.

Flood PJ, Harbinson J, Aarts MGM. 2011. Natural genetic variation in plant photosynthesis. Trends in Plant Science 16: 327–335.

Flood PJ, Krujier W, Schnabel SK, et al. 2016. Phenomics for photosynthesis,

gh and reflectance and NDVI. IEEE Transactions on Geoscience and Remote Sensing 55: 4878–4886.
Hawkesford MJ, Lawrence A. 2017. Plant phenotyping: increasing throughput and precision at multiple scales. Functional Plant Biology 44: v–vii.

Hedberg O. 1970. Evolution of the Afroalpine Flora. Biotropica 2: 16.

Hirose T. 2005. Development of the Moni–Saeki theory on canopy structure and function. Dynamic Ecology 95: 483–494.

Hubbart S, Smillie IRA, Healey M. et al. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Communications Biology 1: 22.

Hunt ER, Daughtey CST, Eitel JHU. Long DS. 2011. Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal 103: 201–212.

Hunt ER, Doraiswamy PC, McMurtrey JE, Daughtey CST, Perry EM. Akhmedov B. 2012. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation 21: 103–112.

James GV, Patel V, Nordström KJ, Klasen JR, Salomé PA, Weigel D, Schneeburger K. 2013. User guide for mapping-by–sequencing in Arabidopsis. Genome Biology 14: R61.

Johnson GN, Lawson T, Murchie EH, Raines C. 2015. Photosynthesis in variable environments. Journal of Experimental Botany 66: 2371–2372.

Joiner J, Yoshida Y, Vasiliov AP, Yoshida Y, Corp LA, Middleton EM. 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8: 637–651.

Joiner J, Guantier L, Lindstrom R. et al. 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques 6: 2803–2823.

Jones HG. 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell and Environment 22: 1043–1055.

Jones HG. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany 55: 2427–2436.

Jones HG, Stoll M, Santos T, de Sousa C, Chavez MM, Grant OM. 2002. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental Botany 53: 2229–2240.

Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH. 2009. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology 36: 978–989.

Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcellis LF. 2015. Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany 66: 2415–2426.

Kaiser E, Morales A, Harbinson J. 2018. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiology 176: 977–989.

Kafous K, El-Haddad G, Vergara-Diaz O, Araus JL. 2015. RGB picture vegetation indices for High-Throughput Phenotyping Platforms (HTPPS). Remote sensing for agriculture, ecosystems, and hydrology XVII Vol 9637. International Society for Optics and Photonics.

Kafous K, Vicente R, Vergara-Diaz O. et al. 2017. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Frontiers in Plant Science 8: 1733.

Kira O, Nguy- Robertson AL, Arkebauer TJ, Linker R, Gitelson A. 2016. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agricultural and Forest Meteorology 218: 243–249.

Kirchgesner N, Liebisch F, Yu K. et al. 2017. The ETH field phenotyping platform FIF: a cable-suspended multi-sensor system. Functional Plant Biology 44: 154.

Kirschbaum MUF, Pearcy RW. 1988. Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza. Plant Physiology 86: 782–785.

Kolber ZS, Prášil O, Falkowski PG. 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367: 88–106.

Kolber Z, Klimov D, Ananyev G, Rascher U, Berry J, Osmond B. 2005. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynthesis Research 84: 121–129.

Kromdijk J, Głowacka K, Leonelli L. et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoshading. Science 354: 857–861.

Kuhlert S, Austic G, Zegarak R. et al. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science 3: 160192.

Lawson T, Blatt MR. 2014. Spatial size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556–1570.

Lawson T, Weyers J. 1999. Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. Journal of Experimental Botany 50: 1381–1391.

Lawson T, von Caemmerer S, Barbari I. 2010. Photosynthesis and stomatal behaviour. In: Lütz U, Beyschlag W, Büdel B, Francis D, eds. Progress in botany 72. Berlin Heidelberg: Springer, 265–304.

Lawson T, Kramer DM, Raines CA. 2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opinion in Biotechnology 23: 215–220.

Leakey ADB, Scholes JD, Press MC. 2005. Physiological and ecological significance of sunflacks for diterocarp seedlings. Journal of Experimental Botany 56: 469–82.

Lebourgeois V, Béguè A, Labbé S, Mallavan B, Prévet L, Roux B. 2008. Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors 8: 7300–7322.

Lee H-J, Ha J-H, Kim S-G. et al. 2016. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling 9: ra106.

Leinonen I, Grant OM, Tagliavia CPP, Chaves MM, Jones HG. 2006. Estimating stomatal conductance with thermal imagery. Plant, Cell and Environment 29: 1508–1518.

Li F, Miao Y, Feng G. et al. 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research 157: 111–123.

Lobos GA, Matus I, Rodríguez A, Romero-Bravo S, Araus JL, Del Pozo A. 2014. Wheat genotypic variability in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral reflectance. Journal of Integrative Plant Biology 56: 470–479.

Long SP, Zhu XG, Naidu SL, Ort DR. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29: 315–330.

Lopes MS, Nogueï S, Araus JL. 2004. Nitrogen source and water regime effects on barley photosynthesis and isotope signature. Functional Plant Biology 31: 995–1003.

Malenkozki Z, Mishra KB, Zemek F, Rascher U, Nedbal L. 2009. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. Journal of Experimental Botany 60: 2987–3004.

Matthews JS, Vlaet-Chabrand SR, Lawson T. 2018. Acclimation to fluctuating light impacts the rapidity and diurnal rhythm of stomatal conductance. Plant Physiology 176: 1939–1951.

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659–668.

McAusland L, Davey PA, Kanwal N, Baker NR, Lawson T. 2013. A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. Journal of Experimental Botany 64: 4993–5007.

McAusland L, Vlaet-Chabrand SRM, Matthews JSA, Lawson T. 2015. Spatial and temporal responses in stomatal behaviour, photosynthesis and implications for water-use efficiency. In: Mancuso S, Shabala S, eds. Rhythms in plants. Cham: Springer International Publishing, 97–119.

McAusland L, Vlaet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist 211: 1209–1220.

Merlot S, Mustilli A-C, Genty B. et al. 2002. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. The Plant Journal 30: 601–609.

Meroni M, Barducci A, Cogliati S. et al. 2011. The hyperspectral irradiance meter, a new instrument for long-term and unattended field spectroscopy measurements. Review of Scientific Instruments 82: 43106.

Meroni M, Rossi M, Guanter L, Alonso L. 2009. Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sensing of Environment 113: 2037–2059.

Migliavacca M, Perea-Priego O, Rossini M. et al. 2017. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytologist 214: 1078–1091.
Murchie et al. — Phenotyping dynamic photosynthesis

219

Mott KA, Woodrow IE. 2000. Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. Journal of Experimental Botany 51: 399–406.

Moya I, Camañez L, Eivain S et al. 2004. A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence. Remote Sensing of Environment 91: 186–197.

Muller EB. 2011. Synthesizing units as modeling tool for photosyzhesis organisms with photo-inhibition and nutrient limitation. Ecological Modelling 222: 637–644.

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64: 3983–98.

Murchie EH, Reynolds MP. 2012. Crop radiation capture and use efficiency. In: Myers RA, ed. Encyclopedia of sustainability science and technology. New York: Springer, New York, 2615–2638.

Murchie EH, Pinto M, Horton P. 2009. Agriculture and the new challenges for photosynthesis research. New Phytologist 181: 532–552.

Nevado B, Atchison GW, Hughes CE, Filatov DA. 2016. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nature Communications 7: 12384.

Omata K, Abi F, Aiga I, Hashimoto Y. 1981. Image instrumentation of plants exposed to air pollutants. Transactions of the Society of Instrument and Control Engineers 17: 657–663.

Ott DR, Merchant SS, Alric J et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences, USA 112: 8529–8536.

Osmond B, Chow WS, Wyber R et al. 2017. Relative functional and optical absorption cross-sections of PSII and other photosynthetic parameters monitored in situ, at a distance with a time resolution of a few s, using a prototype light induced fluorescence transient (LIFT) device. Functional Plant Biology 44: 985.

Patel HN, Jain RK, Joshi MV. 2011. Fruit detection using improved multiple features based algorithm. International Journal of Computer Applications 13: 1–5.

Paul MJ, Foyer CH. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany 52: 1383–1400.

Paulus S, Behmann J, Mahlein A-K, Plümer L, Kuhlmann H. 2014. Low-cost 3D systems: suitable tools for plant phenotyping. Sensors (Basel, Switzerland) 14: 3001–3018.

Peary RW, Gross LI, He D. 1997. An improved dynamic model of photosynthesis for estimation of carbon gain in sunfleck light regimes. Plant, Cell and Environment 20: 411–424.

Pierschbauch R, Poorter H. 2012. Phenotyping plants: genes, phenes and machines. Functional Plant Biology 39: 813–820.

Pierschbauch R, Klimont D, Rascher U, Kothber R, Zerry J. 2007. Remote monitoring of cold and light stress induced effects on photosynthesis using laser induced fluorescence transient (LIFT) technique. Photosynthesis Research 91: 318–319.

Pierschbauch R, Albrecht H, Muller O et al. 2014. Daily and seasonal dynamics of remotely sensed photosynthetic efficiency in tree canopies. Tree Physiology 34: 674–685.

Pinto F, Damm A, Schickling A et al. 2016. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant, Cell and Environment 39: 1500–1512.

Plaetzer JA, Gabriel FC. 1975. The Fraunhofer Line Discriminator MKII – an airborne instrument for precise and standardised ecological luminescence measurement. IEEE Transactions on Instrumentation and Measurement 24: 306–313.

Poorter H, Bühl J, van Dusschoten D, Climent J, Postma JA. 2012. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology 39: 839.

Poorter H, Fiorani F, Pierschbauch R et al. 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist 212: 838–855.

Porcar-Castell A, Ignacio Garcia-Plazaola J, Nichol CJ et al. 2012. Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170: 311–323.

Porcar-Castell A, Tyystjärvi E, Atherton J et al. 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65: 4065–4095.

Pound M, French A, Murchie E, Fridimore T. 2014. Automated recovery of 3D models of plant shoots from multiple colour images. Plant Physiology 144: 1688–1698.

Prasanna BM, Araus JL, Crossa J et al. 2013. High-throughput and precision phenotyping for cereal breeding programs. In: Gupta P, Varshney R, eds. Cereal genomics II. Dordrecht: Springer, 314–377.

Quan L, Tan P, Zeng G, Yuan L, Wang J, Kang SB. 2006. Image-based plant modeling. ACM Transactions on Graphics 25: 599.

Rabatel G, Gorretta L, Labbé S. 2011. Getting NDVI spectral bands from a single standard RGB digital camera: a methodological approach. In: Lozano JA, Gámez JA, Moreno JA, eds. Advances in artificial intelligence. CAEP 2011. Lecture Notes in Computer Science, vol 7023. Berlin Heidelberg: Springer, 333–342.

Raesach A, Muller O, Pierschbauch R, Rascher U. 2014. Field observations with laser-induced fluorescence transient (LIFT) method in barley and sugar beet. Agriculture 4: 159–169.

Rascher U, Nedbal L. 2006. Dynamics of photosynthesis in fluctuating light. Current Opinion in Plant Biology 9: 671–678.

Rascher U, Pierschbauch R. 2008. Spatio-temporal variations of photosynthesis: the potential of optical remote sensing to better understand and scale light use efficiency and stresses of plant ecosystems. Precision Agriculture 9: 355–366.

Rascher U, Alonso L, Burkart A et al. 2015. Sun-induced fluorescence – a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. Global Change Biology 21: 4673–4784.

Rasmusen O, Nakos G, Nielsen J, Svensgaard J, Poulsen RN, Christensen S. 2016. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy 74: 75–92.

Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8: e66428.

Rossini M, Meroni M, Migliavacca M et al. 2010. High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field. Agricultural and Forest Meteorology 150: 1283–1296.

Rossini M, Nedbal L, Guanter L et al. 2015. Red and far red sun-induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophysical Research Letters 42: 1632–1639.

Sanchez-Bragado R, Elazab A, Zhou B et al. 2014. Contribution of the ear and the flag leaf to grain filling in durum wheat inferred from the carbon isotope signature: genotypic and growing conditions effects. Journal of Integrative Plant Biology 56: 444–454.

Schreiber U, Schliwa U, Bilger W. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research 10: 51–62.

Schurr U, Walter A, Rascher U. 2006. Functional dynamics of plant growth and photosynthesis – from steady-state to dynamics – from homogeneity to heterogeneity. Plant, Cell and Environment 29: 340–352.

Simmer C, Thiele-Eich I, Masbou M et al. 2015. Monitoring and modelling the terrestrial system from pores to catchments: the transregional collaborative research center on patterns in the soil–vegetation–atmosphere system. Bulletin of the American Meteorological Society 96: 1765–1787.

Sinclair TR, Muchow RC. 1999. Radiation use efficiency. Advances in Agronomy 65: 215–265.

Smith AM, Stitt M. 2007. Coordination of carbon supply and plant growth. Plant, Cell and Environment 30: 1126–1149.

Song Q, Zhang G, Zhu X-G. 2013. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology 40: 109–124.

Song Q, Xiao H, Xiao X, Zhu X-G. 2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agricultural and Forest Meteorology 217: 101–107.

Song Q, Chen D, Long SP, Zhu X-G. 2017. A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space – development of Java WIMOVAC. Plant, Cell and Environment 40: 51–55.

Tambussi EA, Bort J, Guinamet JJ, Ngoué S, Araus JL. 2007. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Critical Reviews in Plant Sciences 26: 1–16.
Murchie et al. — Phenotyping dynamic photosynthesis

Tambussi EA, Noguez S, Araus JL. 2005. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta 221: 446–458.

Tattaris M, Reynolds MP, Chapman SC. 2016. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in Plant Science 7: 1131. doi: 10.3389/fpls.2016.01131.

Teste M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818–822.

Tietz S, Hall CC, Cruz JA, Kramer DM. 2017. NPQ opt; a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, Cell and Environment 40: 1243–1245.

Tinoco-Ojanguren C, Pearcy RW. 1993. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species – II. Stomatal versus biochemical limitations during photosynthetic induction. Oecologia 94: 395–402.

Townsend AJ, Retkute R, Chinnathambi K, et al. 2018. Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiology 176: 1233–1246.

Ustin SL, Gitelson AA, Jacquemoud S, et al. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment 113: S67–S77.

Vergara-Diaz O, Kefauver SC, Elazab A, Nieto-Taladriz MT, Araus JL. 2015. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop Journal 3: 200–210.

Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T. 2017. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology 173: 2163–2179.

Virlet N, Sabermanesh K, Sadeghi-Tehrani P, Hawksford MJ. 2017. Field Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology 44: 143.

Vogelmann JE, Rock BN, Moss DM. 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing 14: 1563–1575.

Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR. 2018. Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiology 176: 1215–1232.

Wang Y, Holroyd G, Hetherington AM, Ng CK-Y. 2004. Seeing ‘cool’ and ‘hot’ – infrared thermography as a tool for non-invasive, high-throughput screening of Arabidopsis guard cell signalling mutants. Journal of Experimental Botany 55: 1187–1193.

Wang Y, Weinacker H, Koch B. 2008. A Lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 8: 3938–3951.

Wang Y, Song Q, Jaisswal D, de Souza A P, Long SP, Zhu X-G. 2017. Development of a three-dimensional ray-tracing model of sugarcane canopy photosynthesis and its application in assessing impacts of varied row spacing. BioEnergy Research 10: 626–634.

Watanabe T, Hanan JS, Room PM, Hasegawa T, Nakagawa H, Takahashi W. 2005. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modeling. Annals of Botany 95: 1131–1143.

White JW, Andrade-Sanchez P, Gore MA, et al. 2012. Field-based phenomics for plant genetics research. Field Crops Research 133: 101–112.

Wieneke S, Ahrends H, Damm A, et al. 2016. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: implications for improved estimates of gross primary productivity. Remote Sensing of Environment 184: 654–667.

Winterhalter L, Mistele B, Schmidhalter U. 2013. Evaluation of active and passive sensor systems in the field to phenotype maize hybrids with high-throughput. Field Crops Research 154: 236–245.

Wohlfahrt G, Gu L. 2015. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. Plant, Cell and Environment 38: 2500–2507.

Wyber R, Osmond B, Ashcroft MB, Malenovsky Z, Robinson SA. 2017. Remote monitoring of dynamic canopy photosynthesis with high time resolution light-induced fluorescence transients. Tree Physiology doi:10.1093/treephys/tpx161

Xie X, Wang Y, Williamson L, et al. 2006. The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Current Biology 16: 882–887.

Yang X, Tang J, Mustard JF, et al. 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters 42: 2977–2987.

Yano S, Terashima I. 2001. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant and Cell Physiology 42: 1303–1310.

Zarco-Tejada PJ, González-Dugo V, Berni JAJ. 2012. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment 117: 322–337.

Zhou B, Elazab A, Bort J, Vergara O, Serret MD, Araus JL. 2015. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Computers and Electronics in Agriculture 116: 20–29.

Zhu XG, Ort DR. Whitmarsch J, Long SP. 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Journal of Experimental Botany 55: 1167–1175.

Zhu X-G, Long SP, Ort DR. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19: 153–159.

Zhu X-G, Long SP, Ort DR. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61: 235–261.

Zhu X-G, Song Q, Ort DR. 2012. Elements of a dynamic systems model of canopy photosynthesis. Current Opinion in Plant Biology 15: 237–244.

Zhu X-G, Wang Y, Ort DR, Long SP. 2013. e-photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis; from light capture to sucrose synthesis. Plant, Cell and Environment 36: 1711–1727.