Determination of the Potential Biogas Energy Value of Animal Wastes: Case of Antalya

Atılıgan Atılıgan¹, Burak Saltuk²*, Hasan Ertop³, Ercüment Aksoy⁴

¹ Isparta University of Applied Sciences, Faculty of Agriculture, Department of Agricultural Structure and Irrigation, Isparta, Turkey (ORCID: 0000-0003-2391-0317), atilganatilgan01@gmail.com
² Siirt University, Faculty of Agriculture, Department of Biosystem Engineering, Siirt, Turkey, (ORCID: 0000-0001-8673-9372), bsaltuk@gmail.com
³ Ardahan Directorate of Provincial Agriculture and Forestry Ardahan, Turkey, (ORCID: 0000-0003-0987-5885), hasanertop@hotmail.com
⁴ Akdeniz University, Vocational School of Technical Sciences, Antalya, Turkey, (ORCID: 0000-0001-7313-0891), ercumentaksoy@akdeniz.edu.tr

(First received December 2020 and in final form January 2021)

(DOI: 10.31590/ejosat.844631)

ATIF/REFERENCE: Atılıgan, A., Saltuk, B., Ertop, H., Aksoy, E., (2021). Determination of the Potential Biogas Energy Value of Animal Wastes: Case of Antalya. European Journal of Science and Technology, (22), 263-272.

Abstract

Increasing the world population will increase the demand for new energy sources in the future. Waste generated as a result of agricultural activities can be considered as a sustainable energy source. Animal manure that occurs from livestock activities can be shown as an energy source if managed properly. Antalya province and its region, where agriculture and tourism are intense, have been chosen as the study area. In the study, taking into account the data of Turkey Statistical Institute in 2019, for cattle animal breeding the numbers of dairy and beef cattle; for ovine animal breeding the numbers of sheep and goats; for poultry, the numbers of laying hen, turkeys, geese and duck were evaluated. Manure amounts and potential biogas energy values were calculated considering the animal numbers of Antalya province in 2019. The amount of electricity and natural gas energy that can be obtained in this potential biogas energy is also calculated. The obtained results are compared with the relevant literature and calculations are made for the existing biogas potential. As a result of the research, it was calculated that the amount of manure that can be obtained from animal waste in Antalya province could be 3,821.86 million kg and the potential biogas energy could be 45.57 million MJ. It has been calculated that the total amount of biogas that can be obtained is equivalent to approximately 253.23 million kWh of electrical energy or 43.90 million m³ of natural gas energy. As a result, considering the energy need of Antalya province, it can be said that an economic gain can be achieved by utilizing animal wastes for energy production.

Keywords: Antalya, Animal waste, Biogas energy, Cattle, Sheep

Öz

Dünya nüfusunun artması gelecekte yeni enerji kaynaklarına olan talebi artıracaktır. Tarımsal faaliyet sonucu ortaya çıkan atıklar sürdürülebilir enerji kaynağı olarak değerlendirilebilir. Hayvançılık faaliyetleri sonucu ortaya çıkan hayvan gübresi uygunsuz yönetilirse birer enerji kaynağı olarak gösterilebilir. Bu amaçla tarım ve turizmin yoğun olduğu Antalya ili araştırılmasının amacı olarak seçilmiştir. Araştırma Türkiye İstatistik Kurumu’nun 2019 yılları verilerini dikkate alarak, süt, et, gübre miktarları ve potansiyel biyogaz enerjisi değerlendirilmiştir. Elde edilen sonuçlarla, sonucu ilgili literatür bilgileri ile kıyaslanarak muvevat biyogaz potansiyeli için hesaplanmalar yapılmıştır. Araştırma sonucunda, Antalya ilindeki hayvansal atıklardan elde edilebilecek gübre miktarının 3.821.86 milyon kg ve potansiyel biyogaz enerjisinin ise 45.57 milyon MJ olabileceği hesaplanmıştır. Toplam elde edilebilecek biyogaz miktarının yaklaşık 253.23 milyon kWh elektrik enerjisi ve 43.90 milyon m³ doğalgaz enerjine eşdeğer olduğu hesaplanmıştır. Sonuç olarak Antalya ilinin enerji ihtiyacını karşılamak için hayvansal atıklar enerji üretimi için değerlendirilmesi ile ekonomik bir kazanım sağlanabileceği söylenebilir.

Anahtar Kelimeler: Antalya, Hayvansal atık, Biyogaz enerjisi, Süt, Koyun

Corresponding Author: bsaltuk@gmail.com

http://dergipark.gov.tr/ejosat
1. Introduction

The rapid increase in the world population and the continuous decrease in the available energy resources require some measures to be taken in order to ensure that limited natural resources are sufficient for humanity. This process has made it necessary to restrict the use of natural resources and seek new resources instead of them (Nacar Koçer et al., 2006; Jiang et al., 2011).

In the 21st century, the need for energy is increasing day by day with the developments in people’s living standards. One of the most important indicators of developed countries is the amount of energy consumed per capita (Ulusoy et al., 2009; Ergüneş et al., 2009). The world population needs new and renewable energy sources to combat global warming, to close the energy gap and to solve environmental problems. Today, all countries are working to minimize these problems and turning towards renewable energy sources (Korkmaz et al., 2012). One of the energy resources within renewable energy sources is biogas. Biogas technology, which enables organic wastes that cause environmental and health problems to be made harmless through certain processes and converted into energy, has an important place in the renewable energy sector (Çağlayan and Koçer, 2014).

Animal and plant wastes that are not used in biogas production in our country are mostly either directly burned or given to agricultural land as fertilizer. However, it is more common to use waste in heat production by burning. In this way, the desired quality of heat cannot be produced, and it is not possible to use the wastes as fertilizers after heat generation (Koçer et al., 2006). Efficient use of energy in agriculture will minimize environmental problems and prevent the destruction of natural resources (Erdal et al., 2007; İnci et al., 2016).

Biogas energy production among renewable energy sources in the direction of developing technology and increasing population needs can be applied in areas where animal breeding facilities are carried out. In case of animal wastes reaching underground and surface water resources for biogas production, water pollution will occur. Therefore, the properly storage of wastes on animal barns and transfer to biogas plants may remove the potential negative effects on water resources (Ertop et al., 2018a).

In a study carried out in the Euphrates basin (Adiyaman, Sanliurfa, Gaziantep and Kilis) the appropriate biogas production sites were tried to be determined using the ARCMAP 10 software according to the given number of cattle and their wet manure production values. To this end, the regions, where the number of animals is high, are identified as the areas suitable or unsuitable for potential biogas production. In the study area, it was determined that the potential biogas energy of 862863.7 MJ or electricity energy of 239684.4 kWh would be obtained from approximately 2061883.4 tonnes of animal waste per year. It was determined that these values were equal to an amount of the annual energy capacity needs of 103 houses (Saltık et al., 2017).

Gases originating from organic matter, called biogas, can be obtained from many different sources. One of them is animal manure consisting of organic matter. For this reason, the potential of obtaining biogas energy from manure is quite high. Methane from manure is released during the anaerobic decay of organic matter. The higher the amount of animal manure, the higher the amount of organic matter in it and therefore the higher the methane emission (Ersoy, 2017). Animal manure is an important raw material for biogas production (Salihoğlu et al., 2019). As can be understood from literature researches, biogas, which has a great return potential especially for the national economy, has a very important place in terms of environmental sensitivity (Türe et al., 1994) and Demirbaş (2001) cited that Turkey 85% of the waste used in biogas production is expressed from animal manure. Biogas, a colorless and odorless gas, consists of 40-60% methane-weighted carbon dioxide, sulfur and nitrogen gas by fermenting organic wastes. (Kılıç, 2007; Yürek Erdoğlu, 2015).

In a study carried out Tigris basin (Diyarbakır, Mardin, Batman, Siirt and Sırnak). The potential pollution impacts of the cattle breeding enterprises in the research area on the Batman, Botan, Garzan and Tigris Rivers were examined. In this context, the borders of the research provinces and current water resources were drawn with ARCMAP 10.0 software by making geographical adjustments. It was found that the water resources, particularly in the villages of Batman and Diyarbakır provinces, faced a higher risk of contamination. Furthermore, attention was drawn to the issue of environmental pollution caused by animal manure, and the measures to be taken not to experience these and similar situations were mentioned. (Atılgan et al., 2016).

In our country, which has a significant number of animals, if the utilisable animal wastes are used for biogas production, it will be possible to contribute partially to both preventing environmental problems and reducing the problems related to energy consumption and energy use (Bramley et al., 2011; Polatcı et al., 2016).

The aim of this study is to determine the biogas production potential of the manure that can be obtained from these animals by using the cattle, ovine and poultry numbers of Antalya province and its districts and to draw them with the help of an ArcGIS map program.

2. Material and Method

The research covers the Antalya province and its districts located in the Mediterranean Region. The land border of Antalya, one of the most important cities in the Mediterranean Region, is the Taurus mountain range. Three sides of the province’s lands are surrounded by high mountains. The highest mountain is Beydağ (3085m) and Akdağ (3075m). All of these mountains are called the Southern Taurus Mountains. There are plains in the north of the coastline extending from Esen Stream in the west to Kaledron (Kaldiran) Stream in the east. The main rivers within the provincial borders are Alara Stream, Dimçay, Manavgat River, Köprüçay, Eşençay and Devrense Stream (Anonymous, 2020a).

In the study, taking into account the data of Turkey Statistical Institute (TUİK) in 2019, for cattle animal breeding the numbers of dairy and beef cattle; for ovine animal breeding the numbers of sheep and goats; For poultry, the numbers of laying hen, turkeys, geese and duck were evaluated. The numbers of all animals are compiled directly by the Ministry of Agriculture and Forestry (MAF) in the district detail through the Statistical Data Network (SDN) system. SDN is a data entry system established within MAF, and data are entered into this system electronically by responsible personnel in MAF provincial and district organizations. As a result of these data, the potential biogas amount that can be obtained for Antalya province and the equivalent levels of this biogas with other energy sources used were calculated. In determining the potential of manure and biogas that can be obtained from animals, manure production per unit animal, dry matter content, volatile dry matter content, values...
of the methane production rate of the manure and the usability of the manure values were calculated according to (Ekinci et al., 2010).

\[AM \left(\frac{kg}{year} \right) = AN \times DMP \left(\frac{kg}{day} \right) \times 365 \ (day) \]

Here:
- **AM**: Animal manure amount (kg/year)
- **AN**: Animal number
- **DMP**: Daily manure production per animal (kg/day-animal)

\[BE(MJ) = AM \times DM(\%) \times VDM(\%) \times MPR(m^3CH_4/kg) \]

Here:
- **BE**: Amount of biogas energy available (MJ)

DM: Dry matter content (%)

VDM: Volatile Dry Matter content (%)

MPR: Methane Production Rate (m³ CH₄/kg)

It has been tried to compare the potential biogas that can be obtained in the research area with the other energy sources used today. (Zan Sancak et al., 2014), (Baran et al., 2017) and (Ertop et al., 2018b) stated that the amount of energy obtained from biogas is equivalent to 0.63 liters of gas oil, 3.47 kg of wood, 0.43 kg of butane gas, 4.7 kWh of electricity and 0.8 liters of gasoline. Deviren et al., (2017) stated that 1 m³ biogas can be generate energy from 0.62 m³ natural gas in return for thermal energy. These values have been taken into account when comparing the energy that can be obtained from annual biogas with other energy sources.

Table 1. The amount and properties of animal manure accepted for the biogas process (Ekinci et al., 2010)

Type of animal	Manure production per animal (kg/animal-day)	DM (dry matter content) (%)	Specific methane production rate (m³ CH₄/kg VS)	VDM (Volatile dry matter content) (%)	The ratio of collectable animal manure
Dairy cattle	43.00	13.95	0.18	83.36	0.50
Beef cattle	29.00	14.66	0.33	84.65	0.50
Sheep	2.40	27.50	0.30	83.63	0.13
Goats	2.05	31.71	0.30	73.06	0.13
Laying hen	0.13	25.00	0.35	75.00	0.13
Turkeys	0.38	25.53	0.35	75.83	0.26
Duck and geese	0.33	28.18	0.35	61.28	0.22

3. Results

It is known that the tourism potential of Antalya province is quite high. Tourism increases the meat and milk consumption of the region especially in the summer months. Therefore, it is known that the livestock potential of the region increases day by day. While the increase in the number of animals satisfies the producers, the negative environmental wastes that may arise make the authorities think. However, the use of these wastes as biogas energy will both turn into environmental benefits and provide income to producers as a gain. With this study, the animal husbandry data and literature information of the region were formulated and the biogas potential based on province and district was calculated, and potential biogas areas were shown on the map with the help of ArcGIS program.

The Mediterranean climate is dominant in the province of Antalya and its districts, and it is known that a large part of the research area has a hot climate seasonally. Therefore, it is anticipated that all biogas produced can be used as an energy source, as the biogas plants to be established may require no heating in many months of the year or very little heating in some months. The potential amount of manure and biogas amounts that can be obtained from dairy cattle in Antalya Province are given in Table 2.

Table 2. Manure and potential biogas energy amounts that can be obtained from dairy cattle

District	Animal numbers	Available manure amount (kg)	Available biogas energy amount (MJ)
Akseki	991	15553745	162783,13
Akku	4342	68147690	713223,37
Alanya	10058	157860310	1652142,01
Demre	415	6513425	68168,52
Döşemealtı	12101	189925195	1987728,22
Elmali	9766	153277370	1604177,66
Finike	566	8883370	92972,00
Gazipaşa	5419	85051205	890132,98
Gündoğmuş	1006	15789170	165247,05
İbradi	2514	39457230	412953,37
Kaş	4208	66044560	691212,33
When Table 2 is examined, it is seen that the total potential amount of manure that can be obtained from dairy cattle is 647519845 kg per year and 19.79% of this manure is in Korkuteli district, followed by Manavgat district with 15.78%. Similarly, it has been determined that the total potential biogas energy that can be obtained from dairy cattle is 17242692.28 MJ per year, followed by Korkuteli district with 19.79% and the Manavgat district with 15.78%. As can be understood from all these data, Korkuteli district in the north of Antalya Province is one of the important districts of Antalya in terms of animal breeding. In the region, dairy cattle breeding is preferred because of the long production period and the variety of products. Enterprises on milk and dairy products operate in the organized industrial zone in the region (Anonymous, 2019a). 87008 cattle are grown in the fattening enterprises established to meet the beef needs of the region, and 66 enterprises throughout the province are producing (Anonymous, 2019b). Potential manure and biogas amounts that can be obtained from beef cattle in the research area are given in Table 3.

Table 3. Manure and potential biogas energy amounts that can be obtained from beef cattle

District	Animal numbers	Available manure amount (kg)	Available biogas energy amount (MJ)
Akseki	673	7123705,00	145864,90
Aksu	3532	37386220,00	765519,81
Alanya	6527	69088295,00	1414651,13
Demre	248	2625080,00	53751,11
Döşemealtı	15094	159769990,00	3271448,48
Elmalı	811	85854935,00	1757964,66
Finike	360	3810600,00	78025,80
Gazipaşa	2966	31395110,00	642845,91
Gündoğmuş	713	7547105,00	154534,44
İbradi	1695	17941575,00	367371,48
Kaş	2344	24811240,00	508034,66
Kemer	383	4054055,00	83010,78
Kepez	4495	47579575,00	974238,83
Konyaaltı	1076	11389460,00	233210,45
Korkuteli	16801	177838585,00	3641420,82
Kumluca	796	8425660,00	172523,72
Manavgat	13095	138610575,00	2838188,54
Muratpaşa	521	5514785,00	112920,67
Serik	7578	80213130,00	1642443,13
Total	87008	920979680,00	18857969,34

When Table 3 is examined, it is seen that the total amount of potential manure that can be obtained from beef cattle is 920979680 kg per year and 19.31% of this manure is in Korkuteli district and this is followed by the district of Döşemealtı with 17.34%. Similarly, it has been determined that the total potential biogas energy that can be obtained from beef cattle is 18857969,34 MJ per year and 19.31% is in Korkuteli district, followed by Döşemealtı district with 17.34%. Potential manure and biogas amounts that can be obtained from sheep in the research area are given in Table 4.
When Table 4 is examined, it is seen that the total amount of potential manure that can be obtained from sheep is 45,624,357.6 kg per year and 20.83% of this manure is in Manavgat district, followed by Korkuteli district with 19.28%. Similarly, it has been determined that the total potential biogas energy that can be obtained from sheep is 4,092,193.49 MJ per year, followed by Manavgat district with 20.83% and Korkuteli district with 19.28%. Potential manure amount and biogas quantities that can be obtained from laying hen in the research area are given in Table 6.

When Table 5 is examined, it is seen that the total potential amount of manure that can be obtained from goats is 56,328,933.45 kg per year and 17.77% of this manure is in Manavgat district, followed by Korkuteli district with 14.52%. Potential manure amount and biogas quantities that can be obtained from laying hen in the research area are given in Table 6.
When Table 6 is examined, it is seen that the total potential manure amount that can be obtained from laying hens is 25350067,60 kg per year and 29,01% of this manure is in Korkuteli district, followed by Serik district with 12,23%. Similarly, it has been determined that the total potential biogas energy that can be obtained from laying hen is 216267,76 MJ per year and 29,01% of it is located in Korkuteli district, followed by Serik district with 12,23%. The potential amount of manure and biogas amounts that can be obtained from geese, turkeys and duck in the study area are given in Table 7.

When Table 6 is examined, it is seen that the total potential manure amount that can be obtained from laying hens is 25350067,60 kg per year and 29,01% of this manure is in Korkuteli district, followed by Serik district with 12,23%. Similarly, it has been determined that the total potential biogas energy that can be obtained from laying hen is 216267,76 MJ per year and 29,01% of it is located in Korkuteli district, followed by Serik district with 12,23%. The potential amount of manure and biogas amounts that can be obtained from geese, turkeys and duck in the study area are given in Table 7.

Table 7. Manure and potential biogas energy amounts that can be obtained from geese, turkeys and duck

District	Type of animals	Animal Numbers	Available manure amount (kg)	Available biogas energy amount (MJ)
Akseki	Turkeys	180	24966,00	439,83
	Duck and Geese	74	8913,30	118,52
Aksu	Turkeys	258	35784,60	630,42
	Duck and Geese	251	30232,95	402,00
Alanya	Turkeys	190	26353,00	464,26
	Duck and Geese	217	26137,65	347,55
Demre	Turkeys	28	3883,60	68,42
	Duck and Geese	-	-	-
Döşemealtı	Turkeys	-	-	-
	Duck and Geese	320	38544,00	512,52
Elmalı	Turkeys	12500	1733750,00	30543,57
	Duck and Geese	500	60225,00	800,81
Finike	Turkeys	730	101251,00	1783,74
	Duck and Geese	520	62634,00	832,84
Gazipaşa	Turkeys	315	43690,50	769,70
	Duck and Geese	557	67090,65	892,10
Gündoğmuş	Turkeys	-	-	-
	Duck and Geese	-	-	-
İbradi	Turkeys	-	-	-
	Duck and Geese	-	-	-
Kaş	Turkeys	319	44245,30	779,47
	Duck and Geese	195	23487,75	312,31
Kemer	Turkeys	350	48545,00	855,22
When Table 7 is examined, it is seen that the total potential amount of manure that can be obtained from turkey, geese and duck is 4387949.70 kg per year and 40.88% of this manure is in Elmalı district, followed by Korkuteli district with 23.84%. Similarly, it has been determined that the total potential biogas energy that can be obtained from turkeys, geese and duck is 72360.34 MJ per year and 43.32% of it is located in Elmalı district, followed by Korkuteli district with 23.61%. The potential manure amount and biogas quantities that can be obtained based on the presence of cattle, ovine and poultry in Antalya province are given in Table 8.

Table 8. Potential manure and biogas amount that can be obtained in Antalya province

District	Cattle	Manure amount (kg)	Available biogas energy amount (MJ)	Manure amount (kg)	Available biogas energy amount (MJ)
Akseki	Cattle	226774450	308648.03	27134556.25	245029.99
Aksu	Cattle	105533910	1478743.18	25727864.50	231128.57
Alanya	Cattle	226948605	3066793.14	47312559.25	426214.80
Demre	Cattle	9138505	121919.63	23725565.75	214178.46
Döşemealtı	Cattle	349695185	5259176.70	52928431.00	476690.28
Kemer	Cattle	14679570	194215.80	7442350.00	670407.27
Kepez	Cattle	124736195	1781748.29	7467688.75	680328.28
Konyaaltı	Cattle	31965605	448557.26	20867688.00	188047.71
Korkuteli	Cattle	503855125	7053460.37	172233280.00	1550206.77
Kumlucu	Cattle	26647555	363231.30	20746253.25	187129.92
Manavgat	Cattle	398598250	5559180.03	195170610.00	1757148.77
Muratpaşa	Cattle	14162730	203428.75	4543282.75	40847.79
Serik	Cattle	199997370	2896086.78	7424662.00	667097.44
When table 8 is examined, it is seen that the total amount of potential manure that can be obtained in Antalya province is 3821867452.35 kg per year and 17.91% of this manure is in Korkuteli district, followed by Manavgat district with 15.60%. Similarly, it has been determined that the total potential biogas energy that can be obtained in Antalya is 45570947.23 MJ per year and 19.05% of it is located in Korkuteli district, followed by Manavgat district with 16.10%. The equivalent of the potential annual biogas energy of Antalya in the our energy resources we use is given in Table 9.

Table 9. Equivalence of biogas that can be produced in Antalya province in other energies

District	Gas oil (L)	Wood (kg)	LPG (kg)	Gasoline (L)	Electricity (KWh)	Natural gas (m³)
Akseki	350036,01	1927967,14	238913,47	444490,18	2611379,78	344479,89
Aksu	1081956,47	5959347,53	738478,22	1373912,98	8071738,73	1064782,56
Alanya	2209280,12	12168574,62	1507921,35	2805435,07	16481931,05	2174212,18
Demre	214320,65	1180464,54	146282,35	272153,21	1598900,10	210918,74
Döşemealtı	3623865,21	19960019,49	247341,81	4601733,60	27035184,90	2936133,30
Elmalı	2983490,29	16432875,08	2036350,51	3788559,10	22257784,69	2936133,30
Finike	238995,59	1316372,54	163123,97	303486,46	1782982,98	1125202,91
Gazipaşa	1168758,97	6437450,21	797724,38	1483138,38	7813912,96	2174212,18
Gündoğmuş	35530,82	195701,51	24251,20	45118,50	260507,12	349670,17
İbradı	5816295,22	32035784,80	3969852,30	7385771,71	43391408,81	5723973,08
Kaş	1185608,81	6530258,03	809225,06	1505534,99	8845018,08	1163389,62
Kemer	170914,48	941386,09	116655,91	217034,26	12707675,26	168201,55
Kepez	1277333,71	7035472,99	871830,95	1622010,06	9529315,00	1257058,57
Konyaaltu	405816,28	2235210,32	276985,72	515322,06	30275183,30	399374,75
Korkuteli	5470601,84	30131727,58	3733902,84	6946795,98	40812426,41	5383766,89
Kumluca	348275,51	1918279,40	237711,86	442254,62	2598245,87	342747,33
Manavgat	4622395,84	25459862,79	3154968,59	5869709,00	34484540,38	4549024,48
Muratpaşa	154593,96	851493,72	105516,51	196309,79	1153320,03	152140,09
Serik	2266517,79	12483836,10	1549883,38	2878117,83	16908942,26	2230541,32
Total	33944366,75	186963416,89	23168377,31	43103957,78	253235751,98	43902167,31
When Table 9 is examined, it is seen that the amount of biogas that can be obtained per year is equivalent to approximately 253,2 million kWh of electrical energy. According to TEDAŞ (Turkey’s electricity distribution corporation) electricity pricing for October 2019, the residential consumption price of electricity in kWh is 0.366 TL (Anonymous, 2020b). It has been determined that a total of 253235751.98 kWh of electrical energy can be obtained from biogas in Antalya. It has been calculated that the annual economic gain of electrical energy production from biogas to Antalya is 92684285.22 TL. According to the data of 2019, an energy consumption of 8574815390 kWh was realized in Antalya (Anonymous, 2020c). Considering the electricity production potential, it has been determined that Antalya province can meet 2.95% of the electricity consumed by its own resources. By the end of 2019, the average unleaded gasoline price in Antalya is 7.19 (TL/L) (Anonymous, 2020d). Considering the equivalent value of the energy that can be obtained in Antalya province with gasoline energy, an economic gain of 309917456.44 TL can be obtained. The natural gas consumption amount in 2019 in Antalya was 740020000 m3 (Anonymous, 2020e). However, it can be thought that a heat energy equivalent to 43902167.31 m3 natural gas can be obtained in Antalya and 5.93 % of the natural gas consumption of the province can be provided by its own resources.

Conclusions

It is thought that determining the potential amount of biogas energy that can be obtained from cattle, ovine and poultry animal wastes of Antalya province can provide convenience for energy investments that can be planned in districts. The amount of biogas energy that can be obtained from total animal manure has been determined as 45570947.23 MJ per year. It has been concluded that the highest production amount of biogas energy is in Korkuteli district with an annual potential of 8683494.98 MJ and the lowest biogas energy production potential is in Muratpaşa district with 245387.24 MJ. In addition, the energy equivalent values have been found by comparing the biogas energy that can be obtained with other energy sources used as energy sources today. It has been concluded that 16481931.05 kWh of electricity can be obtained in Alanya and 22257784.69 kWh in Elmali from biogas energy that can be obtained from total animal manure, similarly, equivalent energy can be obtained in 2805435.07 L gasoline Alanya and 3788559.10 L gasoline in Elmali. When the total number of animals in Antalya is examined, priority should be given to these districts in a biogas plant project that can be built, since the animal presence of Korkuteli and Manavgat is higher than other districts. As a result, it can be said that an economic gain can be achieved by utilizing the animal wastes that will arise in Antalya province for energy production.
References

Anonymous, 2019a. Antalya Organized Industrial Zone official website. Food industry manufacturers. https://www.antalyaosb.org.tr/tr/sektor/gida/9 Accessed date: 11.07.2020

Anonymous, 2019b. Antalya Provincial Directorate of Agriculture and Forestry Briefing Report. https://www.tarimorman.gov.tr/SGB/TARYAT/Belgeler/ik_yarim_rehberleri/antalya.pdf Accessed date: 11.07.2020

Anonymous, 2020a. Geographical Features of Antalya Province. http://www.cografya.gen.tr/tr/antalya/ Accessed date: 16.09.2020

Anonymous, 2020b. Turkey Electricity Distribution Company Retail Price List. https://www.tedas.gov.tr/sx.web.docs/bedas/docs/elektriktarifleri/2019Ekim_Elektriktarifleri.pdf Accessed date: 01.09.2020

Anonymous, 2020c. Energy Market Regulatory Authority 2019 Electricity Market Sector Report. https://www.epdk.gov.tr/Detay/Cekir/Tarif-4-3-24/yearlik-sektor-raporu Accessed date: 01.07.2020

Anonymous, 2020d. Turkey Petrol Price List. https://www.kisa.link/O8JH Accessed date: 01.07.2020

Anonymous, 2020e. Turkey Natural Gas Distributors’ Association (GAZBIR). Natural Gas Distribution Industry Report for 2019. https://www.kisa.link/O8JI Accessed date: 15.07.2020

Atilgan, A., Saltuk, B., Oz, H., & Artun, O., 2016. Management of Manure from Livestock Housing in Tigris Basin and Its Environmental Potential Impact. 15th International Scientific Conference on Engineering for Rural Development (Pp.517-522). Jelgava, Latvia

Baran, MF., Lüle, F., Gökdoğan, O., 2017. Energy Potential of Adıyaman Province That Can Be Obtained From Animal Wastes. Turkish Journal of Agricultural and Natural Sciences 4(3):245-249.

Bramley, J., Shih, JC., Fobi, L., Axum, T., Peterson, C., Wang, RY., Rainville, L., 2011. Agricultural Biogas in The United States: A Market Assessment. Field Project Number 6. Tufts University

Çağlayan, G., Köçer, N., 2014. Investigation of Biogas Production by Evaluating Animal Potential in Muş Province. Muş Alparslan University Journal of Science, 2 (1): 215-220.

Demirbaş, A., 2001. Energy Balance, Energy Sources, Energy Policy, Future Developments and Energy Investments in Turkey. Energy Conservation and Management, 42 (10):1239-1258.

Deviren, H., Illıç, C., Aydın, S., 2017. Materials Used in Biogas Production and Usage Areas of Biogas. Batman University Journal of Life Sciences Vol 7 No (2/2): 79-90. https://www.kisa.link/O8JL Accessed date: 15.07.2020

Ekinci, K., Kulcu, R., Kaya, D., Yalız, O., Ertekin, C., Öztürk, HH., 2010. The Prospective or Potential Biogas Plants That Can Utilize Animal Manure in Turkey, Energy Exploitation and Exploration 28(3):187-206. https://www.kisa.link/O8JO Accessed date: 07.07.2020

Erdal, G., Esengün, K., Erdal, H., Gunduz, O., 2007. Energy Use and Economical Analysis of Sugar Beet Production in Tokat Province of Turkey. Energy 32:35-41.

Ergünes, G., Tarhan, S., Yardim, MH., Kasap, A., Demir, F., Önal, I., Uçar, T., Tekelioğlu, O., Çalışır, S., Yunak, H., Yağcıoğlu, A., 2009. Agricultural machinery. Nobel Science and Research Center, Publication No: 49, 544s, Ankara.

Ersoy, AE., 2017. Turkey's Animal Manure Greenhouse Gas Emissions Status and Potential of Biogas most-ergic, M.Sc., Hacettepe University, 127s.

Ertop, H., Atilgan, A., Yücel, A., Saltuk, B., 2018a. Management and Potantial Biogas Quantities of Waste from Animal Breeding Enterprises; Antalya Case Scientific Works. Series C. Veterinary Medicine. Vol. LXIV (2), 2018 ISSN 2065-1295; ISSN 2343-9394 (CD-ROM); ISSN 2067-3663 (Online); ISSN-I.2065-1295.

Ertop, H., Atilgan, A., Öz, H., Aksoy, E., 2018b. Determining Biogas Energy Potential from Animal Wastes and Creating Digital Maps: Ardahan Province Case, 14. National Agricultural Structures and Irrigation Congress, 26-28 September 2018. Antalya.

İnci, H., Şogut, B., Gökdogan, O., Ayasen, T., Sengül, T. 2016. Determining the Energy Usage Efficiency and Economic Analysis of broiler Chickens Raised Under Organic Conditions. Indian Journal of Animal Sciences 86(11):1323-1327. https://www.cabdirect.org/cabdirect/abstract/20173001618 Accessed date: 18.07.2019

Jiang X., Sommer SCi, Christensen KV, 2011. A Review of The Biogas Industry In China. Energy Policy, 39(10):6073-6081. https://www.kisa.link/O8JU Accessed date: 18.07.2019

Kılıç, F.C., 2007. Biogas, importance, location and general condition in Turkey. Renewable Energy World, 8, 6. https://www.kisa.link/O8KO Accessed date: 14.07.2020

Korkmaz, Y., Ayyanat, S., Çil, A. 2012. Biogas and Energy Production from Organic Wastes. SAU Journal of Science and Letters, 1: 489-497.

Nacer Koçer N., Oner, C., Sugözü, İ., 2006. Livestock and Biogas Production Potential in Turkey. Eastern Anatolia Studies, 4(2):17-20. https://www.kisa.link/O8K8 Accessed date: 14.07.2020

Polatci, H., Taşova, M., Kasap, A., Yöksel, M., 2016. Biogas Production Potential of Solid Wastes: A Research Experience. Tabad, 9(1):048-050.

Salihoğlu, NK., Teksoy, A., Altan, K., 2019. Determination of Biogas Production Potential from Bovine and Ovine Wastes: Balikesir Province Case. Omer Halisdemir University Journal of Engineering Sciences, 8 (1): 31-47.

Saltuk, B., Artun, O., & Atilgan, A., 2017. Determination of the Areas Suitable for Biogas Energy Production by Using Geographic Information Systems (Gis): Euphrates Basin Case. Scientific Papers-Series E-Land Reclamation Earth Observation & Surveying Environmental Engineering, Vol.6, 57-64

Türe, S., Özdoğan S., Saygün Ö., 1994. Sixth Energy Congress of Turkey. World Energy Council-Turkish National Committee, Proceedings of Technical Session 1, Izmir.

Ulusoy, Y., Ulukardeşler, A. H., Ünal, H., Alibaş, K., 2009. Analysis of Biogas Production in Turkey Utilising Three Different Materials and Two Scenarios. African Journal of Agricultural Research 4(10):996-1003.

Yürik, F., Erdoğmuş, P., 2015. Determination of the Biogas Potential of Düzce Province that can be Produced from Animal Wastes and the Optimum Plant Location by K-Means Clustering. Journal of Advanced Technology Sciences 4 (1): 47-56.

Zan Sancak, A., Sancak, K., Demirtaş, M., Dönmez, D., Kalandar, Ş., Arslan, S., 2014. Animal Waste Biogas Production Potential of cattle in Turkey. 11. Agricultural Economics Congress, September 3-5, Samsun.