Differential Electroanalysis of Dopamine in the Presence of a Large Excess of Ascorbic Acid at a Nickel Oxide Nanoparticle-Modified Glassy Carbon Electrode

Zahrah T. Althagafi,1,2 Jalal T. Althakafy,1 Badriah A. Al Jahdaly,1 and Mohamed I. Awad1,3

1Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
2Department of Chemistry, Faculty of Applied Sciences, Taif University, 21974 Taif, Saudi Arabia
3Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt

Correspondence should be addressed to Mohamed I. Awad; mawad70@yahoo.com

Received 19 March 2020; Revised 28 May 2020; Accepted 5 June 2020; Published 1 August 2020

Electrochemical determination of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) in their coexistence at a nickel oxide nanoparticle-modified preoxidized glassy carbon electrode (GCox/nano-NiOx) is achieved. The GCox/nano-NiOx electrode is prepared by electrodeposition of nickel nanoparticles (nano-Ni) onto an electrochemically activated glassy carbon (GC) electrode, and the thus prepared nano-Ni were subjected to electrochemical oxidation in alkaline medium for the formation of nickel oxide (NiOx). Modified electrodes were electrochemically and morphologically characterized. The effect of loading level of nickel was investigated by changing the number of potential cycles for the deposition of nano-Ni, i.e., 1, 2, 5, and 10 potential cycles, in the potential range from 0 to -1.0 V vs. SCE. Also, the experimental and instrumental parameters were optimized. Experimental results showed that the modified electrode differentiates well the oxidation peaks of DA and AA enabling the electrochemical determination of DA in the presence of a large excess of AA. Remarkably, it is found that the oxidation current of DA is 2 times larger than that of AA even the concentration of AA is about 5 times larger than that of DA. The LOD and LOQ of DA were calculated and were found to equal 0.69 and 2.3 mM, respectively. This offers the advantage of simple and selective detection of DA free of the interference of AA in real samples.

1. Introduction

Dopamine (DA) is critical for medical treatment and clinical analysis. DA has long been of interest to neuroscientists and chemists because of its role as an essential neurotransmitter in the functionality of the central nervous, renal, hormonal, and cardiovascular systems [1]. Low level of DA in the mean central nervous system is the main cause of many neurological diseases (e.g., schizophrenia and Parkinson’s disease) [2, 3]. A major problem for the detection of DA is the coexistence of many interfering compounds in biological systems. The most critical interferent of DA (typical concentration in vivo is \(10^{-9} - 10^{-5}\) mol L\(^{-1}\)) is AA (typical concentration in vivo is \(10^{-4}\) mol L\(^{-1}\)), which is a cofactor of multiple enzymes [4, 5]. AA is a vital vitamin in the diet of humans, and it has been used for the prevention and treatment of common cold, mental illness, and other diseases [6]. To quantify DA coexisting with a large excess of AA, the major challenge is to achieve both high selectivity and sensitivity of the detection technique.

Many analytical techniques have been reported for the determination of DA and AA such as chromatographic methods, mass spectrometry [7], spectrophotometry [8], and chemiluminescence [9]. However, these methods encounter some drawbacks such as long analysis time, high cost, and the requirement for sample modification. These disadvantages probably make them unsuitable for routine analysis. Electrochemical methods offer several merits such as simplicity, rapidity, high sensitivity and specificity, and ease of fabrication [10].
The simultaneous electrochemical detection of AA and DA faced several challenges as their peaks overlap due to their close redox potentials [11, 12]. AA is usually present in vivo at concentrations 100 to 1000 times larger than those of DA, resulting in an overlap of electrochemical responses and electrode fouling by oxidation products [10]. Thus, it is usually difficult to separate the responses of AA and DA at bare electrodes [13] such as GC, gold, and platinum electrodes. In recent years, several strategies to separate the electrochemical response of the two species while retaining the sensitivities have been introduced [14–23]. It includes the modification of gold and GC electrodes with either an organic or inorganic modifier. Modification with an organic modifier relies on the possible differentiation of the two redox peaks via controlling the electrode surface. For instance, controlling the surface charge could separate the two peaks based on the large difference in the dissociation constants of the two species; DA is positively charged (pK_a = 8.9) whereas AA is negatively charged (pK_a = 4.2) [14, 15] at a physiological pH. In this correspondence, Nafion- [16, 24, 25], clay- [26], and polymeric film [27–29] modified electrodes have been reported to remove the interference of AA with DA [30]. However, the reported selectivity enhancement is not accompanied by a sensitivity improvement of DA detection [31, 32]. Accordingly, another strategy was developed by modification of an electrode with an electroactive material exhibiting preferential catalytic activity towards DA, such as ruthenium oxide pyrochlore [33], nickel hexacyanoferrate [34], carbon nanotube films (CNTs) [31] and metal nanoparticles [33–35].

On the other hand, metal nanoparticles, compared with their counterpart, are excellent electrode materials for potential applications in electroanalysis due to their unique structure and good electrical conductivity [36]. Several nanoparticles (NPs) have been used in this correspondence such as gold [37], silver [38], and platinum [39] as well as metal oxides such as ZnO [40], MnO_2 [41], CuO [42] and NiO [43].

The purpose of this work is to investigate the electroanalysis of DA in the presence of overly abundant AA at the GC electrode modified with nano-NiO_x by cyclic and square wave voltammetries. Experimental conditions were optimized for achieving the largest peak separation for the oxidation potential of DA and AA along with the largest possible sensitivity. It has been reported that nickel oxide electrocatalyzes the oxidation of hydroxyl compounds [44]. Thus, it is expected that nano-NiO_x will help in the differentiation of responses of DA and AA (hydroxyl compounds). Moreover, oxidized glassy carbon (GC_ox) has been reported to separate electrochemical responses of both species based on the generation of various groups. Some of these groups are anionic groups, and thus, it can repel anionic analytes, as AA is under pH of 7, and attract cationic analytes, as DA is under pH of 7 [45]. Thus, the deposition of nano-NiO_x at GC_ox is promising for the selective analysis of the two species in their coexistence.

2. Materials and Methods

2.1. Materials and Reagents. All chemicals were used as received without further purification. AA and DA were purchased from Sigma Chemical Co. (USA). Stock solutions of DA and AA were prepared prior to experiments by dissolving a suitable amount of reagents in deionized water. Appropriate concentrations of analytes are prepared by dilution.

2.2. Apparatus and Electrodes. Electrochemical measurements have been performed on Gamry Instruments (potentiostat/galvanostat/ZRA model Reference 600™). Voltammetric experiments were realized using a conventional electrochemical cell with three electrodes, where the modified glassy carbon electrode (GC_ox/nano-NiO_x) was used as the working electrode and the saturated calomel electrode (SCE) as the reference electrode. The auxiliary electrode was a platinum wire. The GC electrode (1 mm in diameter) was polished to get a mirror shine using polishing papers of two grades (3000 and 2000) and then cleaned thoroughly with deionized water.

2.3. Fabrication of the GC_ox/Nano-NiO_x Electrode. GC was oxidized in 0.5 M H_2SO_4 by potential cycling from -0.2 to 2 V at a scan rate of 100 mV s^{-1}. This oxidized GC was denoted as GC_ox throughout. GC modification with NiO_x was achieved as follows: nickel was electrodeposited from a Watts bath (0.02 M NiSO_4·6H_2O + 0.03 M NiCl_2·6H_2O + 0.03 M H_3BO_3) of pH 5.8 [46] by cycling the potential in the range from 0 to -1.0 V vs. SCE at a scan rate of 50 mV s^{-1} and at 25°C. Then, the thus modified electrode was subjected to several potential cycles in 0.5 M NaOH for oxidizing the deposited nickel (Scheme 1).

2.4. Instrumentation. Morphological characterization of the bare and modified GC electrodes was investigated by scanning electron microscopy (SEM, JSM-7600F Field Emissions Scanning Electron Microscope). Chemical composition was probed by Energy-Dispersive X-ray (EDX, Inca Oxford Instrument), and crystallographic orientation was examined using X-ray diffraction (XRD, D8 Discover Bruker using 2-theta from 5 to 90 degrees with 2 degrees per minute scan speed).

3. Results and Discussion

3.1. Surface Characterization. Typical EDX, SEM, and XRD micrographs obtained on the surface of the bare GC, GC_ox, and GC_ox/nano-NiO_x electrodes are presented in Figures 1–3, respectively. The elemental analysis of the GC_ox/NiO_x electrode is probed by EDX (Figure 1). The extracted data from this figure are shown in Table 1. The GC_ox (Figure 1(b)) exhibits a significant increase in the oxygen signal compared with the bare GC (Figure 1(a)). This observation is clear evidence for the oxidation of GC as previously reported [47–49] after being subjected to electro-oxidation. In Figures 1(a) and 1(d), the nickel signal appeared as evidence for the deposition of Ni on GC_ox. Also, in Figure 1(d), the oxygen signal increased compared with that shown in Figure 1(c), denoting the formation of NiO_x on GC_ox. These results are in line with morphological features seen in SEM (Figure 2). The smooth surface of the bare GC (Figure 2(a)) becomes roughened (Figure 2(b)) with electrochemical oxidation of GC. The GC_ox contains a few flakes on the surface (Figure 2(b)). Figure 2(c) shows the
Scheme 1: Steps of fabrication of the GC_{ox}/nano-NiO_x electrode.

Figure 1: EDX analysis of bare GC (a), GC_{ox} (b), GC_{ox}/Ni (c), and GC_{ox}/NiO_x (d).
formation of a granular overlayer of the deposited Ni nanoparticles by small density and size and diverse geometric structure. Upon oxidation of Ni, the nano-NiO electrodeposited on GC becomes denser and larger, as shown in Figure 2(d).

X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. The XRD patterns recorded from the bare GC, GCox, GCox/Ni, and GCox/NiOx are shown in Figure 3. The sharp peak located at around 19° corresponds to the (002) diffraction of the carbon substrate [50]. In pattern d, diffraction peaks at 37.77°, 43.43°, 63.51°, 76.24°, and 79.45° correspond to the (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) planes, respectively, and characteristics of cubic crystalline NiOx [51, 52] are
shown indicating the successful fabrication of nano-NiO\textsubscript{x} modified electrode.

3.2. Electrochemical Characterization of the Nanostructure

3.2.1. Cyclic Voltammetric Studies. Figure 4 shows a series of cyclic voltammograms obtained from bare GC (curve 1), GC\textsubscript{ox} (curve 2), GC\textsubscript{ox}/nano-Ni (curve 3), and GC\textsubscript{ox}/nano-NiO\textsubscript{x} (curve 4) electrodes in 0.1 M NaOH solution at a scan rate of 100 mV s-1. The cyclic voltammograms at bare GC (curve 1) show no redox peak current in the potential region examined, but the GC\textsubscript{ox} electrode (curve 2) shows an increase in the current due to the fact that the surface area of the GC electrode increases as a result of oxidation, consistent with the SEM shown in Figure 2(b). In curve 3 obtained from GC\textsubscript{ox}/nano-Ni, the Ni/NiO\textsubscript{x} redox couple is revealed; the redox couple is represented by the following equation:

\[
\text{Ni} = \text{Ni}^{2+} + 2e^- \tag{1}
\]

Oxidation peak at 0.55 V corresponds to the oxidation of nickel to Ni2+, and subsequently Ni(OH)\textsubscript{2} is oxidized to NiOOH, as represented in Eq. 2 [53]

\[
\text{Ni(OH)}_2 + \text{OH}^- = \text{NiOOH} + \text{H}_2\text{O} + e^- \tag{2}
\]

However, in this case, the response is obscured by the large background current of GC\textsubscript{ox}. In curve 4, the redox response obtained after oxidation in NaOH is enhanced; the oxidation peak is negatively shifted and revealed at 0.47 V, along with the increase in oxygen evolution, which started at 0.6 V [53]. The oxidation peak is coupled with a redox one appearing at ca. 0.3 V. The electroactive areas of GC\textsubscript{ox}/Ni and GC\textsubscript{ox}/NiO\textsubscript{x} electrodes were estimated from the charge consumed in the oxidation peak taking into consideration the fact that the formation of one monolayer of Ni(OH)\textsubscript{2} consumes 514 µC cm-2 [54]. The electroactive areas of GC\textsubscript{ox}/nano-Ni and GC\textsubscript{ox}/nano-NiO\textsubscript{x} electrodes were estimated to be 2.1 and 1.6 cm2, respectively.

The modified electrodes were examined for the electrochemical behaviour of DA and AA, and data are shown in Figure 5, i.e., at bare GC (1, 2), GC\textsubscript{ox} (3), GC\textsubscript{ox}/nano-Ni (4) and GC\textsubscript{ox}/nano-NiO\textsubscript{x} (5) electrodes in PBs (pH 6.0) (curve 1) containing 0.25 mM DA + 1.0 mM AA (2–5). At bare GC, the electrochemical responses of DA and AA are overlapping, as well as at GC\textsubscript{ox}; albeit the response to DA is enhanced and the one of AA is diminished. At GC\textsubscript{ox}/nano-Ni (curve 4) and GC\textsubscript{ox}/nano-NiO\textsubscript{x} (curve 5), the oxidation peaks of DA and AA are differentiated with the larger response obtained at the latter. It has been reported that NiO\textsubscript{x} rather than metallic nickel is the appropriate electrocatalyst for the oxidation of hydroxyl compounds [44].

The effect of loading of nano-NiO\textsubscript{x} on the electrochemical response of DA and AA is shown in Figure 6 in which CVs obtained from GC\textsubscript{ox}/nano-NiO\textsubscript{x} electrodes, prepared by different potential cycles, in PBs (pH = 6.0) containing 0.25 mM DA + 1.0 mM AA are shown. The effect on both separation of the peak potential of DA and AA and the sensitivity is not that large. The largest separation of peak potentials and the large current response for DA along with a smaller response for AA are obtained from GC\textsubscript{ox}/nano-NiO\textsubscript{x} prepared by two potential cycles. This helps in the simultaneous analysis of the two species, knowing that AA is always in larger concentration than DA in real samples [4, 5]. Hence, the loading prepared by two potential cycles will be used hereafter as the optimum one.

The effect of pH on the electrochemical response of DA and AA at the GC\textsubscript{ox}/nano-NiO\textsubscript{x} electrode in phosphate buffer solutions of different pH at a scan rate of 100 mV s-1 was examined. Oxidation of DA (Equations (3)–(5)) and AA (Equation (6)) involves the release of two protons; thus, it is expected to be dependent on the pH of the electrolyte. According to literature [55], it is proposed that dopamine oxidation leads to the formation of dopamine quinone (B), which subsequently undergoes an intramolecular cyclization to form leucodopaminechrome (C). The leucodopaminechrome is further oxidized to form dopaminechrome (D).

![Figure 3](image3.png)

![Figure 4](image4.png)

![Figure 5](image5.png)

![Figure 6](image6.png)

The anodic peak potentials were strongly dependent on pH (Figure 7), suggesting the participation of H+ in the
oxidation processes. As shown in Figure 7, the effect of pH is significant on both the peak potential and peak current of DA. Regarding AA, the significant effect is on its peak potential but not peak current. The optimum pH shows the largest separation of peak potential of DA, and the current response is obtained at pH 6 (curve 3). Therefore, PBs of pH 6.0 were selected for all subsequent electrochemical studies of DA and AA. At pH larger than 6, the two peaks of DA and AA oxidation overlap. The linear regression equations are given by

\[E_{pa}(V) = -0.051 \text{pH} + 0.514 \, R^2 = 0.994 \text{ (for DA)}, \]

\[E_{pa}(V) = -0.041 \text{pH} + 0.288 \, R^2 = 0.872 \text{ (for AA)}. \]

The slopes of the linear variations of peak potentials with pH were -51 mV/pH and -41 mV/pH for DA and AA, respectively. The correlation coefficient in the case of AA is smaller than one, probably because in the case of AA (pKa = 4.2) at pH larger than 4, the oxidation is little bit retarded [56]; i.e., cyclic voltammetric curves in Figure 7 are for AA while it is protonated and nonprotonated. Also, it has been reported that the response to the electrode fouling occurs due to oxidation products of DA [10]. In the case of DA (pKa1 = 8.9 and pKa 2 = 10.6), it is nonprotonated in the studied pH range [14, 15, 57], so the electrochemical behaviour shows ideal pH dependence, and the correlation coefficient in this case equals almost one. Negative slopes showed that deprotonation was involved in the oxidation process, which was facilitated at
higher pH values. Near Nernstian slopes indicated the equal numbers of electrons and protons in the charge-transfer step at the surface of the modified electrode [58].

3.2.2. Electroanalysis of DA and AA

(1) Selectivity. The selectivity of the GC_{ox}/nano-NiO_x electrode for the determination of DA and AA was examined by measuring the CVs of 1 mM AA in the presence of different concentrations of DA. As it can be seen in Figure 8, the oxidation peak current of AA is constant irrespective of the concentration of DA. Thus, it can be utilized in selective determination of DA in the presence of AA under the present conditions.

(2) Effect of Scan Rate. The effect of scan rate on the peak currents of DA and AA oxidation is shown in Figure 9.
Relations between the scan rate and the peak current for DA and AA are shown in Figure 10.

A good linear relationship between the peak current of AA and square root of scan rate (Figure 10(a)) indicates the diffusion process. For DA, the relation \((i_{pa} - \nu^{1/2})\) is not linear. The relation \((i_{pa} - \nu)\) for DA (data are not shown) gives a linear relation indicating a surface-confined process.

Also, the linear response of the anodic peak current versus scan rate (\(\log i_{pa} - \log \nu\) plot) is illustrated in Figure 10(b) in which the slope of \(\log i_{pa}\) versus \(\log \nu\) is calculated to be 0.83 \((R^2 = 0.992)\) for DA and 0.52 \((R^2 = 0.997)\) for AA. A slope value close to 0.5 indicates a diffusion-controlled reaction, and a value equals 1 indicates an adsorption reaction. A value between 0.5 and 1.0 indicates a mixing diffusion and adsorption reaction [59], but diffusion control is more dominant. In the present case, the slope of DA 0.83 is very close to the theoretical value of 1 for adsorption-controlled processes. Also, the slope of AA 0.52 indicates that oxidation of AA is a diffusion-controlled process.

3.2.3. Square Wave Voltammetry. A square wave voltammetric (SWV) method is utilized for the selective determination of DA and AA. SWV offers excellent discrimination against double-layer charging current, and accordingly it has high sensitivity [60]. Under the optimum conditions of instrumental parameters: step potential (2 mV), square wave
amplitude (25 mV), and frequency (25 Hz), the SWVs of both AA and DA in their coexistence are recorded at the GC_{ox}/nano-NiO_x electrode and shown in Figure 11. The oxidation peaks of DA and AA are clearly observed at about 0.2 and 0.02 V, respectively. The linear calibration curves for both species were obtained in PBs (pH 6.0) over a wide concentration range and shown as an inset. Analytical parameters for simultaneous determination of DA and AA at the GC_{ox}/nano-NiO_x electrode are summarized in Table 2. As can be seen, the sensitivity (slope) of DA is very large compared with that of AA, even the concentration of AA is larger. The high sensitivity is due to the preconcentration of the DA cations at the electrode. The linear relation with correlation coefficients around 0.980 and 0.987 for DA and AA, respectively, and a limit of detection of 0.69 μM for DA and 18 μM for AA are obtained. The LOD and LOQ were calculated from the calibration curve using the equations LOD = 3 S/N and LOQ = 10 S/N, where S is the standard deviation and N is the slope of the regression line. The comparison of this method with other reported electrochemical methods is given in Table 3. It can be seen that the GC_{ox}/NiO_x exhibited a wider linear range with lower detection limit in comparison with other relevant reported results.

3.2.4. Simultaneous Determination of DA in the Presence of a Large Excess of AA. Based on the above results, the difference...
in the oxidation peak potentials for DA and AA at the GC_ox/nano-NiO_x electrode is large enough for the separation and simultaneous determination of DA in the presence of high levels of AA in a mixture. The SWV response of DA and AA in their coexistence is shown in Figure 12. The oxidation peak currents of these species increase with their concentrations, indicating the stable and efficient electrocatalytic activity of the modified electrode. Calibration plots extracted from this figure are shown as an inset. For both species, a calibration curve with two slopes was obtained. The correlation coefficient values in all cases are larger than 0.97.

3.3. Study of Interference. The influences of some possible species on the determination of DA and AA at the GC_ox/nano-NiO_x-modified electrode are examined. To investigate the selectivity of the proposed method, various interfering chemicals including amino acids (glycine and tryptophan), urea, oxalate, and catechol were added to the sample solution containing 0.25 mM DA and 1 mM AA at optimum conditions. As can be seen in Figure 13, the peak currents in the absence (reference) of interferences and in the presence of glycine, urea, potassium oxalate, and tryptophan is almost the same, and catechol exhibits the increased catalytic current of DA compared to other substances. This could be attributed to its similar structure to that of DA, which is a type of catecholamine, 3,4-dihydroxyphenyl (catechol) [66], indicating that this method for detecting DA and AA is of high selectivity.

3.4. Real Sample Analysis. In order to evaluate the applicability of the proposed method for the determination of DA and AA in real samples, the concentrations of the two species were detected separately and in their coexistence. For the analysis of DA and AA separately, real samples of DA-HCl
Table 3: Comparison of analytical parameters for the detection of DA and AA at GC\textsubscript{ox}/nano-NiO\textsubscript{x} with other modified electrodes.

Materials	Technique	Analyte	Linear range (\(\mu\)M)	LOD (\(\mu\)M)	Sensitivity (\(\mu\)A cm\(^{-2}\)/\(\mu\)M)	Reference
OMC/Nafion/GCE\(^a\)	DPV	DA	1–90	0.5	4.76	[61]
		AA	40–800	20	0.496	
Ni@poly-1,5 DAN/GC\(^b\)	SWV	DA	100–500	0.011	0.583	[62]
		AA	100–500	0.0	0.751	
PEDOT-modified Ni/Si MCP\(^c\)	DPV	AA	10–300	6.9	3.78	[63]
			10–300	7.1	2.71	
Ni-Meso-PANI/GCE\(^d\)	SWV	DA	80.0–800	0.69	0.329	This work
		AA	1160–11600	18	0.062	

\(^a\)Ordered mesoporous carbon (OMC)/Nafion composite film; \(^b\)Nickel nanoparticles dispersed at poly1,5-diaminonaphthalene; \(^c\)Ni/silicon microchannel plate (Ni/Si MCP) electrode modified with poly(3,4-ethylenedioxythiophene) (PEDOT); \(^d\)Transition metal ion-exchanged mesoporous polyaniline; \(^e\)Photoelectrochemical.

Figure 12:

(a) SWVs obtained from the GC\textsubscript{ox}/nano-NiO\textsubscript{x} electrode in PBs (pH 6.0) containing different concentrations of AA (0.5, 1, 1.5, 2, 2.5, 3, and 3.5 mM) and DA (1.5, 3, 4.5, 6, 7.5, 9 and 10.5 \(\mu\)M). Square wave amplitude: 25 mV; frequency: 25 Hz; step potential: 2 mV. The electrode potential was scanned from −0.5 V to 0.5 V. Panels (b) and (c) are the calibration plots for DA and AA, respectively.
and vitamin C were used. The results are presented in Table 4. As shown in this table, the recovery is overall between 97% and 106% which is acceptable in this case. The proposed method results were also compared to those of the UV-visible method to confirm that there are no significant differences between these two methods, suggesting that the present method exhibits high selectivity and sensitivity to detect DA and AA. Also, both DA-HCl and vitamin C were mixed and studied by adding different concentrations of vitamin C and DA-HCl (Table 5). The results again proved that the proposed method is accurate and the recovery is in the range of 97.9% and 104%, confirming the suitability of the present method for the analysis of DA in real samples containing a large excess of AA.

![Figure 13: Effect of interferences on DA and AA detection. The concentration of DA, AA, tryptophan, and other interferences is 0.25 mM, 1 mM, 0.05 mM and 0.50 mM, respectively.](image)

Table 4: Electroanalytical determination of AA and DA in real samples with comparison to the UV-Vis approach.

Sample	Proposed method^a (mM)	Proposed method^a (mM)	Recovery^b (%)	UV-visible method (mM)
AA	—	1.35 ± 0.05	—	1.325 ± 0.05
Vitamin C	AA	1.50	2.85 ± 0.05	100
	AA	3	4.29 ± 0.12	98
	DA	—	0.0505 ± 0.001	—
	DA	0.75	0.85 ± 0.01	106
	DA	1.25	1.27 ± 0.017	97

^aAverage of seven determinations; ^bmean ± SD (n = 7).

Table 5: Simultaneous electroanalytical determination of mixed DA-HCl and vitamin C real samples.

Sample	Added	Found^a	Recovery^b (%)		
	DA-HCL (μM)	DA-HCL (μM)	Vitamin C (mM)	DA-HCL	Vitamin C
1	3.15	3.30	6.17	104 ± 0.18	97.9 ± 0.11
2	4.46	4.38	10.4	98 ± 0.07	99 ± 0.09
3	15.75	15.72	21	99 ± 0.06	100 ± 0.03

^aAverage of seven determinations; ^bmean ± SD (n = 7).
4. Conclusions

A simple and rapid electrochemical method to detect DA in the presence of a large excess of AA at the GCox/nano-NiOx electrode is investigated. The modified electrode shows excellent electroanalytical activity towards the oxidation of DA in the presence of excess AA in PBs (pH 6.0) enabling the electrochemical determination of DA and AA using SWV in their simultaneous coexistence. The SWV of DA in the presence of excess AA indicates that the detection limit of DA on the GCox/nano-NiOx can be 0.69 umM, which is much lower than that of AA (18.49 umM). It thus appears that the GCox/nano-NiOx acts as an excellent electrode for detecting DA in an AA-dominating real sample.

Data Availability

The generated or analysed data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code 18-SCI-5-06-0003.

References

[1] S. E. Hyman and R. C. Malenka, “Addiction and the brain: the neurobiology of compulsion and its persistence,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 695–703, 2001.
[2] R. M. Wightman, L. M. May, and A. C. Michael, “Detection of dopamine dynamics in the brain,” Analytical Chemistry, vol. 60, no. 13, pp. 769A–793A, 2002.
[3] S. P. Shervedani, S. M. Siadat-Barzoki, and M. Bagherzadeh, “Electrochemical characterization of gold 6-amino-2-mercaptothiazole self-assembled monolayer for dopamine detection in pharmaceutical samples,” Electroanalysis, vol. 22, no. 9, pp. 969–977, 2010.
[4] C. J. Watson, B. J. Venton, and R. T. Kennedy, “In vivo measurements of neurotransmitters by microdialysis sampling,” Analytical Chemistry, vol. 78, no. 5, pp. 1391–1399, 2006.
[5] J. Chen and C. Cha, “Detection of dopamine in the presence of a large excess of ascorbic acid by using the powder microelectrode technique,” Journal of Electroanalytical Chemistry, vol. 463, no. 1, pp. 93–99, 1999.
[6] S. Zhu, H. Li, W. Niu, and G. Xu, “Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 940–943, 2009.
[7] T. Yoshitake, J. Kehr, K. Todoroki, H. Nohta, and M. Yamaguchi, “Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection,” Biomedical Chromatography, vol. 20, no. 3, pp. 267–281, 2006.
[8] N. Shafi, J. M. Midgley, D. G. Watson, G. A. Smail, R. Strang, and R. G. MacFarlane, “Analysis of biogenic amines in the brain of the American cockroach (Periplaneta Americana) by gas chromatography-negative ion chemical ionisation mass spectrometry,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 490, pp. 9–19, 1989.
[9] F. B. Salem, “Spectrophotometric and titrimetric determination of catecholamines,” Talanta, vol. 34, no. 9, pp. 810–812, 1987.
[10] L. Zhang, N. Teshima, T. Hasebe, M. Kurihara, and T. Kawashima, “Flow-injection determination of trace amounts of dopamine by chemiluminescence detection,” Talanta, vol. 50, no. 3, pp. 677–683, 1999.
[11] K. M. Hassan, G. M. Elhaddad, and M. Abdel Azem, “Simultaneous determination of ascorbic acid, uric acid and glucose using glassy carbon electrode modified by nickel nanoparticles at poly 1, 8-diaminonaphthalene in basic medium,” Journal of Electroanalytical Chemistry, vol. 728, pp. 123–129, 2014.
[12] R. D. O’Neill, “Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review,” Analyt., vol. 119, no. 5, pp. 767–779, 1994.
[13] T. Liu, M. Li, and Q. Li, “Electroanalysis of dopamine at a gold electrode modified with N-acetylcyysteine self-assembled monolayer,” Talanta, vol. 63, no. 4, pp. 1053–1059, 2004.
[14] M. E. Rice, “Ascorbate regulation and its neuroprotective role in the brain,” Trends in Neurosciences, vol. 23, no. 5, pp. 209–216, 2000.
[15] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N, N-dimethylaniline)-modified electrodes,” Bioelectrochemistry, vol. 59, no. 1–2, pp. 11–19, 2003.
[16] K. T. Kawagoe, J. B. Zimmerman, and R. M. Wightman, “Principles of voltammetry and microelectrode surface states,” Journal of Neuroscience Methods, vol. 48, no. 3, pp. 225–240, 1993.
[17] M. I. Awad, B. A. al Jahdaly, M. A. Kassem, and O. A. Hazazi, “Nickel oxide nanoparticles modified gold electrode for fractional determination of dopamine and ascorbic acid,” Journal of Analytical Chemistry, vol. 73, no. 12, pp. 1188–1194, 2018.
[18] M. I. Awad, M. A. Kassem, A. M. Hameed, B. A. al Jahdali, and O. A. Hazazi, “Fractional analysis of ascorbic acid and dopamine by copper nanoparticles electrodeposited onto gold electrode,” Oriental Journal of Chemistry, vol. 33, no. 4, pp. 1767–1773, 2017.
[19] G. Li, Y. Xia, Y. Tian et al., “Review—recent developments on graphene-based electrochemical sensors toward nitrite,” Journal of the Electrochemical Society, vol. 166, no. 12, pp. B881–B895, 2019.
[20] Q. Li, Y. Xia, X. Wan et al., “Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid,” Materials Science & Engineering, C: Materials for Biological Applications, vol. 109, pp. 110615–110625, 2020.
[21] G. Li, P. Zhong, Y. Ye et al., “A highly sensitive and stable Dopamine Sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites,” Journal of the Electrochemical Society, vol. 166, no. 15, pp. B1552–B1561, 2019.
[22] X. Wan, S. Yang, Z. Ca et al., “Facile synthesis of MnO2 nano-flowers/N-doped reduced graphene oxide composite and its application for simultaneous determination of dopamine and uric acid,” Nanomaterials, vol. 9, no. 6, p. 847, 2019.
G. A. Gerhardt, A. F. Oke, G. Nagy, B. Moghaddam, and R. N. Adams, "Nafion-coated electrodes with high selectivity for CNS electrochemistry," *Brain Research*, vol. 290, no. 2, pp. 390–395, 1984.

M. E. Rice, A. F. Oke, C. W. Bradberry, and R. N. Adams, "Simultaneous voltammetric and chemical monitoring of dopamine release in situ," *Brain Research*, vol. 340, no. 1, pp. 151–155, 1985.

J. M. Zen and P. J. Chen, "A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes," *Analytical Chemistry*, vol. 69, no. 24, pp. 5087–5093, 1997.

A. J. F. Carvalho, M. Ferreira, D. T. Balogh, O. N. Oliveira, and R. M. Faria, "Synthesis of poly (styrene-co-methyl methacrylate)-based ionomers and their Langmuir and Langmuir-Blodgett (LB) film formation," *The Journal of Physical Chemistry B*, vol. 108, no. 22, pp. 7033–7039, 2004.

A. Ciszewski and G. Milczarek, "Polyphenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid," *Analytical Chemistry*, vol. 71, no. 5, pp. 1055–1061, 1999.

J. W. Mo and B. Ogerove, "Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly (1,2-phenylenediamine)-coated carbon fiber," *Analytical Chemistry*, vol. 73, no. 6, pp. 1196–1202, 2001.

M. Poon and R. L. McCreery, "In situ laser activation of glassy carbon electrodes," *Analytical Chemistry*, vol. 58, no. 13, pp. 2745–2750, 2002.

K. T. Kawagoe and R. M. Wightman, "Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain," *Talanta*, vol. 41, no. 6, pp. 865–874, 1994.

E. W. Kristensen, W. G. Kuhn, and R. M. Wightman, "Temporo- real characterization of perfluorinated ion exchange coated microvoltammetric electrodes for in vivo use," *Analytical Chemistry*, vol. 59, no. 14, pp. 1752–1757, 2002.

J. M. Zen and I. L. Chen, "Voltammetric determination of dopamine in the presence of ascorbic acid at a chemically modified electrode," *Electroanalysis*, vol. 9, no. 7, pp. 537–540, 1997.

D. M. Zhou, H. X. Ju, and H. Y. Chen, "Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion®," *Journal of Electroanalytical Chemistry*, vol. 408, no. 1-2, pp. 219–223, 1996.

R. H. Baughman, C. Cui, A. A. Zakhidov et al., "Carbon nanotube actuators," *Science*, vol. 284, no. 5418, pp. 1340–1344, 1999.

I. Khan, K. Saeed, and I. Khan, "Nanoparticles: properties, applications and toxicities," *Arabian Journal of Chemistry*, vol. 12, no. 7, pp. 908–931, 2019.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, "Gold nanoparticles: past, present, and future," *Langmuir*, vol. 25, no. 24, pp. 13840–13851, 2009.

K. Tschürik, C. Batchelor-McAuley, H. S. Toh, E. J. E. Stuart, and R. G. Compton, "Electrochemical studies of silver nanoparticles: a guide for experimentalists and a perspective," *Physical Chemistry Chemical Physics*, vol. 16, no. 2, pp. 616–623, 2014.
A. M. Ghonim, B. E. el-Anadouli, and M. M. Saleh, “Electrocatalytic glucose oxidation on electrochemically oxidized glassy carbon modified with nickel oxide nanoparticles,” *Electrochimica Acta*, vol. 114, pp. 713–719, 2013.

J. van Drunen, B. Kinkead, M. C. P. Wang, E. Sourty, B. D. Gates, and G. Jerkiewicz, “Comprehensive structural, surface-chemical and electrochemical characterization of nickel-based metallic foams,” *ACS Applied Materials & Interfaces*, vol. 5, no. 14, pp. 6712–6722, 2013.

S. Shahrokhsian and S. Bozorgzadeh, “Electrochemical oxidation of dopamine in the presence of sulfhydryl compounds: application to the square-wave voltammetric detection of penicillamine and cysteine,” *Electrochimica Acta*, vol. 51, no. 20, pp. 4271–4276, 2006.

J.-M. Zen, “Selective voltammetric method for uric acid detection using pre-anodized Nafton-coated glassy carbon electrodes,” *Analyst*, vol. 123, no. 6, pp. 1345–1350, 1998.

D. R. Lide, Ed., *Handbook of Chemistry and Physics*, CRC Press, Boca Raton, 84 edition, 2004.

P. S. Dorraji and F. Jalali, "Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs-chitosan and gold nanoparticles attached to thioglycolic acid," *Sensors and Actuators B: Chemical*, vol. 200, pp. 251–258, 2014.

P. S. Ganesh and B. E. K. Swamy, "Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(-glutamic acid) modified carbon paste electrode," *Journal of Electroanalytical Chemistry*, vol. 752, pp. 17–24, 2015.

A. Babaei, M. Aminikhah, and A. R. Taheri, "A multi-walled carbon nano-tube and nickel hydroxide nano-particle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid," *Sensor Letters*, vol. 11, no. 2, pp. 413–422, 2013.

D. Zheng, J. Ye, L. Zhou, Y. Zhang, and C. Yu, “Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film,” *Journal of Electroanalytical Chemistry*, vol. 625, no. 1, pp. 82–87, 2009.

A. A. Hathoot, U. S. Yousef, A. S. Shatla, and M. Abdel-Azzem, "Voltammetric simultaneous determination of glucose, ascorbic acid and dopamine on glassy carbon electrode modified 1,5-diaminonaphthalene," *Electrochimica Acta*, vol. 85, pp. 531–537, 2012.

S. Yu, C. Luo, L. Wang, H. Peng, and Z. Zhu, "Poly (3, 4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid," *Analyst*, vol. 138, no. 4, pp. 1149–1155, 2013.

M. A. Anu Prathap and R. Srivastava, "Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan," *Sensors and Actuators B: Chemical*, vol. 177, pp. 239–250, 2013.

Y. Cheng, C. Chen, S. Hu et al., "A facile photoelectrochemical sensor for high sensitive dopamine and ascorbic acid detection based on Bi surface plasmon resonance-promoted BiVO₄ microspheres," *Journal of the Electrochemical Society*, vol. 167, no. 2, article 027536, 2020.

Z. Pourghobadi and D. Neamatollahi, "Voltammetric determination of dopamine using modified glassy carbon electrode by electrografting of catechol," *Journal of the Serbian Chemical Society*, vol. 82, no. 9, pp. 1053–1061, 2017.