TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids

Igor Fedorov*1, Marko Stamenovic*,2, Carl Jensen*,2, Li-Chia Yang*,2, Ari Mandell2, Yiming Gan3, Matthew Mattina1, Paul N. Whatmough1

1Arm ML Research Lab, Boston, MA
2Bose Corp., Boston, MA
3University of Rochester, Rochester, NY

Abstract

Modern speech enhancement algorithms achieve remarkable noise suppression by means of large recurrent neural networks (RNNs). However, large RNNs limit practical deployment in hearing aid hardware (HW) form-factors, which are battery powered and run on memory constrained microcontrollers (MCUs) with limited memory capacity and compute capability. In this work, we use model compression techniques to bridge this gap. We define the constraints imposed on the RNN by the HW and describe a method to satisfy them. Although model compression techniques are an active area of research, we are the first to demonstrate their efficacy for RNN speech enhancement, using pruning and integer quantization of weights/activations. We also demonstrate state update skipping, which reduces the computational load. Finally, we conduct a perceptual evaluation of the compressed models to verify audio quality on human raters. Results show a reduction in model size and operations of 11.9\times and 2.9\times, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR.

Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351\times better than previous work.

Index Terms: Noise Suppression, Speech Enhancement, Recurrent Neural Networks (RNNs), Pruning, Quantization

1. Introduction

The healthy ear is a complex, non-linear system, capable of operating over a large dynamic range. When the ear is damaged, the auditory system can be augmented with a hearing aid (HA), which performs some of the amplification and filtering functions that the ear is no longer able to do. Speech enhancement (SE) could ease listening difficulty in noisy environments, although SE models must achieve low latency and operations of 11.9\times and 2.9\times, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR.

Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351\times better than previous work.

Index Terms: Noise Suppression, Speech Enhancement, Recurrent Neural Networks (RNNs), Pruning, Quantization

1. Introduction

The healthy ear is a complex, non-linear system, capable of operating over a large dynamic range. When the ear is damaged, the auditory system can be augmented with a hearing aid (HA), which performs some of the amplification and filtering functions that the ear is no longer able to do. Speech enhancement (SE) could ease listening difficulty in noisy environments, which ranks among the top concerns of HA users [1,2,3].

Recent SE approaches are often embodied by recurrent neural networks (RNNs) [5,6]. The SE model must achieve low audio latency to ensure listener comfort. Audio latency is defined as the delay between noise arriving at the HA and clean sound being produced for the listener. The amount of latency that can be tolerated varies depending on the HA type and how the user’s own voice is processed [7,8,9]. Using previous work [7,8,9] as a guideline, we target a maximum audio latency of 30ms. For the frame-based approach we employ, with 50% overlap between frames and a causal model, the compute latency constraint for processing each frame is 10ms.

The HA form factor imposes another set of constraints, especially in combination with the frame processing requirement. Due to their small form factor, HAs use a microcontroller unit (MCU) hardware (HW) platform. MCUs enable cheap, low power computation, at the cost of severe memory and computation constraints [10]. The MCU Flash memory restricts the maximum allowable model size (MS), whereas the on-chip SRAM memory upper bounds model working memory (WM), i.e. the memory used to store intermediate results. To achieve efficient computation, the SE model must be quantized to integer data types and we must minimize the number of operations (ops) required per second (ops/s), where an op represents a single addition or multiplication. In this work, we target the STM32F746VE MCU [11] as a typical HW platform, which contains a 216MHz Arm Cortex-M7 [11] with 512KB Flash memory, and 320KB SRAM. We used Mbed OS [12] and CMSIS kernels [13,14]. Table 1 summarizes the SE model constraints.

A few recent works have considered similar constraints. For example, Wilson et al. [6] use a black box optimizer to search for SE models in a family of causal and non-causal models that include compute-heavy convolutions on the model inputs. Model complexity is not explicitly constrained in the search, with the reported models in the 3.7 – 248 MB range, violating the MS constraint. Moreover, some of the models include many layers of dilated convolutions on the front-end, which require roughly 4.4 MB of WM, violating the WM constraint.

Other works seek to prune [15] and quantize [16] RNNs, but do not apply their techniques to SE. Although parameters are quantized in [16], activations are not and the resulting computation is not suitable for integer arithmetic. Moreover, it is unclear from [15,16] if pruning and quantization can be jointly applied to RNNs. In Wu et al. [17], a non-recurrent convolutional SE model is pruned and quantized. Their use of non-uniform quantization, however, requires non-standard HW support [15] to avoid incurring non-trivial performance overhead from decoding each weight after loading it from memory. With a large receptive field, a convolutional model may also need large buffers operating at the audio sample rate. This greatly inflates WM and dramatically tightens the constraints on computational time. Finally, Hsu et al. [19] investigated separately quantizing the floating point mantissa and exponent values of recurrent and convolutional SE models [19], but these quantized weights would still need to run in floating point HW and incur overheads for decompression.

In this work, we present a methodology to generate optimized RNN SE models which meet the requirements in Table 1. Firstly, we demonstrate pruning of SE LSTMs to reduce MS, WM and ops without incurring SE performance degradation. Extending [15], we directly learn the pruning thresholds within the optimization, obviating costly hyperparameter search, resulting in 255\times less GPU hours (GPUH) compared to previous work [6]. Secondly, we show for the first time that standard
weight and activation quantization techniques extend well to
SE RNNs. Moreover, we show that pruning and quantization can be applied to SE RNNs jointly, which is also unique to our
work. Finally, we propose a scheme for skipping RNN state
updates, reducing the average number of operations.

Our optimized SE models are evaluated using traditional
objective metrics, as well as a subjective perceptual evaluation
of the audio output. The audio source files we used for this
are available online. Our perceptual study is a significant
improvement over [5, 6, 17, 19, 20, 21], because (compressed) SE
objective metrics, as well as a subjective perceptual evaluation
work. Finally, we propose a scheme for skipping RNN state
updates, which is also unique to our SE RNNs. Moreover, we show that pruning and quantization
can be applied to SE RNNs jointly, which is also unique to our
work. Finally, we propose a scheme for skipping RNN state
updates, reducing the average number of operations.

We specifically use structured pruning because it leads to direct
benefits in both model size and throughput [26, 27].

We begin by delineating the dependence of MS and computa-
tional cost on the properties of the model. Then, in Sections
3.1 and 3.2 we describe our proposed approach.

The MS is the total number of parameters in all layers, mul-
tiplied by the data type of each matrix. The number of opera-
tions required per inference also depends on the number of pa-
rameters, since (almost) all of the operations performed in our
model are matrix-vector multiplications, which require 2 ops
(multiply and add) per parameter. Although the operation count
independent of model quantization, the throughput that can be
achieved on real HW is much higher with lower precision
integer data types. Therefore, to reduce overall latency, we em-
ploy two optimizations: 1) pruning to reduce operations, and 2)
weight/activation quantization, which reduces MS and enables
deployment with low-precision integer arithmetic [25].

3. Optimizing LSTMs for HA Hardware

This section introduces optimizations for SE models, such as
those in Section 2.2, to satisfy the constraints given in Table 1.

weight and activation quantization techniques extend well to
SE RNNs. Moreover, we show that pruning and quantization can be applied to SE RNNs jointly, which is also unique to our
work. Finally, we propose a scheme for skipping RNN state
updates, reducing the average number of operations.

Our optimized SE models are evaluated using traditional
objective metrics, as well as a subjective perceptual evaluation
of the audio output. The audio source files we used for this
are available online. Our perceptual study is a significant
improvement over [5, 6, 17, 19, 20, 21], because (compressed) SE
objective metrics, as well as a subjective perceptual evaluation
work. Finally, we propose a scheme for skipping RNN state
updates, reducing the average number of operations.

We specifically use structured pruning because it leads to direct
benefits in both model size and throughput [26, 27]. This is in con-
trast to random pruning, which is harder to exploit on real HW,
unless the sparsity is very high. We begin by grouping weights
in \(\theta \) into a set \(\Gamma \), where \(w_{\theta} \in \Gamma \) denotes the set of weights in a
particular group, stacked into a vector. The organization of
the groups defines the kind of structures we can learn. For FC
layers, we group weights by the neuron they are connected to [15]. We assign a bi-
ary mask \(g \) to each group of weights

\[
\frac{1}{0} = \text{tanh}(W_{ru}x + h^{t-1}W_{ho} + b_0), \quad u^t = \text{tanh}(W_{ru}x + h^{t-1}W_{ho} + b_0), \quad c^t = r^t \odot c^{t-1} + i^t \odot \sigma \left(W_{xi}x + b_i \right),
\]

where \(\sigma \) is the sigmoid function [23]. The baseline architecture consists of 2 unidirectional LSTM layers with 256 units each
and 2 FC layers with 128 units each, with batch normalization
between the last LSTM and first FC layers. ReLU activation
is applied after the first FC layer and sigmoid after the second.
In all cases, the spectral input to the network is mapped onto
a 128-dimensional mel space [24] and power-law compressed
with an exponent of 0.3. The network output, which shares
the dimensionality of the input, is inverted using the corresponding
transposed mel matrix to produce spectral mask \(M \).

2. Background

Let lowercase and uppercase symbols denote vectors and ma-
trices, respectively, and let \(X = [x_1 \cdots x_N] \in \mathbb{R}^{N \times N} \).

2.1. Speech Enhancement

Let \(x \in \mathbb{R}^N \) denote \(N \) samples of a single channel time-domain
speech signal. In SE, \(x \) is corrupted by noise \(v \) and the goal is
to extract \(x \) from \(y = x + v \). In this work, denoising is applied in
the time-frequency domain, whereby \(y \) is transformed into
\(Y \in \mathbb{C}^{B_t \times B_t} \) using a short time Fourier transform where \(B_t \) is
the number of frames that \(N \) is decomposed into and \(B_t \) is the
number of frequency bins. In this work, the denoiser is a mask
\(M \in \mathbb{R}^{B_t \times B_t} \), applied to the spectrogram, such that the ap-
proximation of the target is given by \(\hat{X} = M \odot |Y| \exp (\angle Y) \),
where \(\odot \) denotes the Hadamard product and \(\angle Y \) is the phase of
the noisy input \(Y \).

The mask is a function of \(Y \) and learn-
able parameters \(\theta \), i.e. \(M = f_\theta(Y) \). Specifically, \(f_\theta() \) is a
neural network whose parameters are learned by minimizing a
phase-sensitive spectral approximation loss [20]:

\[
L(\theta) = \| |X|^{0.3} - |\hat{X}|^{0.3} \|_F^2 + 0.113 \| X^{0.3} - \hat{X}^{0.3} \|_F^2,
\]

where frames are power-law compressed with an exponent of
0.3 to reduce the dominance of large values.

2.2. Baseline Model Architecture

Due to the latency requirement, we restrict our attention to
causal models [5], whereby \(h^{t-1} = f_{y^t}(y^1 \cdots y^t) \). We use an architecture consisting of a series of recurrent layers
followed by fully connected (FC) layers. The recurrent layers
serve to model interactions across time. For a recurrent layer,
we use long-short term memory (LSTM) cells, which are state-
ful and have update rules \(i^t = \sigma(W_{xi}x + h^{t-1}W_{hi} + b_i), f^t = \sigma(W_{xf}x + h^{t-1}W_{hf} + b_f), o^t = \sigma(W_{xo}x + h^{t-1}W_{ho} +

\text{Table 1: Model constraints. MOPS/inf denotes } 10^6 \text{ operations per frame inference. Target MCU is STM32F746VE [4].}

Constraint	Specification	Rationale
Compute Complexity	\(\leq 1.55 \text{ MOPS/inf} \)	Compute budget to achieve \(\leq 10 \text{ ms latency on target MCU} \)
Model Size	\(\leq 0.5 \text{ MB} \)	0.5 MB device Flash memory
Working Memory	\(\leq 320 \text{ KB} \)	320 KB device SRAM
Data Type	Integer	Lowest energy on target MCU
Perceptual Quality	Minimal degradation vs. uncompressed model	Compression should not affect user preference

https://github.com/BoseCorp/efficient-neural-speech-enhancement
LSTM weights from [15], but we improve upon the manually

cator function, we approximate it by the sigmoid function in the

where \(\lambda \) is a hyperparameter controlling the degree of pruning
and \(K \) is the number of layers. To differentiate the indicator function, we approximate it by the sigmoid function in the backward pass [29]. The pruning approach described above is unique amongst the pruning literature and is particularly suited for our particular task. We adopt the structural grouping of LSTM weights from [15], but we improve upon the manually selected pruning thresholds in [15] by learning them directly. The result is that we do not need to perform a hyperparameter search for \(\{x, 1 \leq k \leq K\} \), which can be prohibitively costly since SE RNNs take roughly 14 GPUh to train and the hyperparameter space grows exponentially with \(K \).

3.2. Quantization

Let \(w \in \mathbb{R} \) denote a real-valued (floating point) value and \(Q_{\alpha, \beta}(w) \) its quantized value, where the quantization is performed uniformly over the range \((\alpha, \beta) \) with \(2^{\beta - \alpha} - 1 \) levels, i.e. \(Q_{\alpha, \beta}(w) = \sigma \cdot \text{round} \left(\frac{(\text{clip}(w, \alpha, \beta) - \alpha)}{\zeta} \right) + \alpha \), where \(\alpha < \beta \) and \(\zeta = (2^{\beta - \alpha} - 1) / (\beta - \alpha) \). For brevity, we omit \(\alpha \) and \(\beta \) subscripts moving forward. We adopt a standard approach of making the model resilient to quantized tensors by performing training-aware quantization [25]. This exposes the model outputs to quantization noise, while still allowing the model to backpropagate on real-valued weights. Concretely, \(3 \) becomes

\[
\min_{\hat{w}^{I, J}} L_Q \left(Q \left(\theta \circ P \right) \right) + \lambda \sum_{g=1}^{I} r_g \| Q(w_g) \|_2
\]

where \(\Omega \) is the set of quantization parameters for all weights and activations, \(Q(\theta \circ P) \) represents the fact that the masked network weights are quantized, and \(L_Q \) denotes that activations are quantized. During backpropagation, the round(\(\sigma \)) operation is ignored [25]. We quantize the weights, activations and model input to 8 bits; the mask itself, is quantized to 16 bits.

3.3. Skip RNN Cells

Finally, we evaluated the skip RNN approach [30], which can be considered a form of dynamic temporal pruning. A binary neuron \(g^t \in \{0, 1\} \) is introduced that acts as a state update gate on the candidate LSTM states \(\tilde{s} \), representing both \(c^t \) and \(h^t \) from [2]:

\[
g^t = \text{round} \left(\hat{g}^t \right), \quad \tilde{s}^t = g^t s^t + (1 - g^t) s^{t-1}
\]
4.1. Baseline Model

We begin by confirming that our baseline SE model is competitive with the state of the art. Our baseline achieves 12.77dB SDR on the CHiME2 development set (Table 2), and 13.70dB SDR on the test set (Table 3), which is comparable to [34, 20].

4.2. Structured Pruning and Quantization

Next, we examine the effect of structural pruning and quantization on the baseline model. In all cases, we set $\lambda = 10^{-5}$. The trade-off between model size and performance is illustrated in Fig. 1, where each point represents a snapshot during the optimization process. We plot the pareto frontier of SISDR values with respect to the MS. Our experiments show that structural pruning can achieve a 47% pruned model with identical performance to the baseline. Moreover, with both pruning and quantization in effect, a 37% pruned model achieves around 0.2dB reduction in SISDR (Pruned (INT8) 1), and a 66% pruned model shows around 0.5dB decay (Pruned (INT8) 2). Table 3 shows SDR evaluations of our models on the CHiME2 test set.

Our optimized models achieve latency suitable for a smaller frame processing time (hop size) in the audio pipeline. However, a small hop size leads to increased inference frequency and energy consumption. So, to address this challenge, we apply the skip RNN architecture on top of our compressed model. Results for “Pruned Skip RNN (INT8)” show 12.07dB SDR on the CHiME2 development set (Table 2) and 12.96dB SDR on the test set (Table 3). Although the skip RNN requires more inferences per second, the skip rate of 63% results in reduced average energy consumption per inference compared to Pruned (INT8) 2.

Finally, Table 4 details each of the models described. Although the models in 20, 6 achieve slightly better SISDR/SDR performance, their MS, WM, and MOps/inf severely violate HA HW constraints. In contrast, Pruned (INT8) model 2 and Pruned Skip RNN (INT8) can be deployed on a real HA MCU and deliver significant SE capabilities. In contrast to 20, 6, our models achieve compute latency in the 2.39-6.71ms range, satisfying the 10ms requirement. Moreover, the proposed models consume significantly less energy per inference than 20, 6, leading to better HA battery life.

4.3. Perceptual Evaluation

Human perception of audio quality is highly subjective and does not always correlate with objective metrics. Therefore, to understand real-world performance, we conducted perceptual studies to get subjective feedback on the quality of the optimized model compared to our baseline. We conducted surveys for both Pruned (INT8) models (Table 2), each consisting of disjoint sets of 50 participants. Two samples were randomly chosen from each of the 6 SNR levels of the CHiME2 evaluation set, for a total of 12 sample utterances. Each participant was randomly presented with paired comparisons of the original and processed utterance for both the baseline and pruned & quantized models, resulting in 24 paired comparisons per participant. Given the prompt “Considering both clarity and quality of speech, which recording do you prefer?”, the participants rated comparative preference on a 7-point Likert scale ranging from “Strongly prefer unprocessed” to “Strongly prefer enhanced”, with “No preference” as a midpoint.

The results in Fig. 2 show that participants expressed a “moderate preference” on average for the enhanced audio. We note this compares favorably with industry-standard approaches to improving HA speech-in-noise performance, where participants in a similar study expressed a “slight preference” for directionally processed audio compared to unprocessed [25]. We compare preference for the uncompressed (baseline) and the compressed (pruned and quantized) models to the original unprocessed utterances using a Wilcoxon signed rank test [37] and find no statistical difference between ratings across SNRs (Survey 1: $Z = 0.09, p = 0.92$; Survey 2: $Z = 0.19, p = 0.85$), indicating that participants prefer the enhanced audio, independently of whether it was produced by the baseline or optimized model.

5. Conclusions

Neural speech enhancement is a key technology for future HA products. However, the latency and power consumption constraints for tiny battery-powered HW is extremely hard to meet due to the large NNs required to achieve satisfactory audio performance. In this work, we applied structural pruning and integer quantization of inputs, weights, and activations to reduce model size by 11.9×, compared to the baseline. We also applied skip RNN techniques to further reduce the ops per inference by 1.78× compared to our smallest compressed model. Our optimized models demonstrate negligible degradation in objective (SISDR) metrics and no statistical difference in subjective human perceptual evaluation. While our baseline model has a computational latency of 12.52ms on our target HW platform, the optimized implementation achieves 4.26ms, which is more than sufficient to meet the 10ms compute latency target.
6. References

[1] S. Kochkin, “MarkeTrak V: Why my hearing aids are in the drawer’ the consumers’ perspective,” The Hearing Journal, vol. 53, no. 2, pp. 34–36, 2000.

[2] H. B. Abrams and J. Kihm, “An introduction to markettrak ix: A new baseline for the hearing aid market,” Hearing Review, vol. 22, no. 6, p. 16, 2015.

[3] (2020) Hearing aids, the ultimate guide: Types, features, prices, reviews, and more. [Online]. Available: https://www.hearingtracker.com/hearing-aid

[4] ST Microelectronics STM32F746VE. [Online]. Available: https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32f7-series/stm32f746ve.html

[5] D. Takeuchi, K. Yatake, Y. Koizumi, Y. Okawa, and N. Harada, “Real-time speech enhancement using equilibriated rnn,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 851–855.

[6] K. Wilson, M. Chinen, J. Thorpe, B. Patton, J. Hershey, R. A. Saurous, J. Skoglund, and R. F. Lyon, “Exploring tradeoffs in models for low-latency speech enhancement,” in 2018 46th International Workshop on Acoustic Signal Enhancement (IWAENC), IEEE, 2018, pp. 366–370.

[7] M. A. Stone and B. C. J. Moore, “Tolerable hearing aid delays. i. estimation of limits imposed by the auditory path alone using simulated hearing losses,” Ear and Hearing, vol. 20, no. 3, pp. 182–192, 1999.

[8] ———, “Tolerable hearing aid delays. ii. estimation of limits imposed during speech production, ear and hearing,” Ear and Hearing, vol. 23, no. 4, pp. 325–338, 2002.

[9] ———, “Tolerable hearing aid delays. iii. effects on speech production and perception of across-frequency variation in delay,” Ear and Hearing, vol. 24, no. 2, pp. 175–183, 2003.

[10] I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough, “SpArSe: Sparse architecture search for CNNs on resource-constrained microcontrollers,” in Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 4978–4990.

[11] Arm Cortex-M7 Embedded Processor. [Online]. Available: https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7

[12] Arm Mbed. [Online]. Available: https://os.mbed.com/

[13] Arm CMSIS Library. [Online]. Available: https://github.com/ARM-software/CMSIS

[14] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: efficient neural network kernels for arm cortex-m cpus,” CoRR, vol. abs/1801.06601, 2018.

[15] W. Wen, Y. He, S. Rajbhandari, M. Zhang, W. Wang, F. Liu, B. Hu, Y. Chen, and H. Li, “Learning intrinsic sparse structures within long short-term memory,” in International Conference on Learning Representations, 2018.

[16] L. Hou, J. Zhu, J. Kwock, F. Gao, T. Qin, and T.-y. Liu, “Normalization helps training of quantized lstm,” in Advances in Neural Information Processing Systems, 2019, pp. 7344–7354.

[17] J. Wu, C. Yu, S. Fu, C. Liu, S. Chien, and Y. Tsao, “Increasing compactness of deep learning based speech enhancement models with parameter pruning and quantization techniques,” IEEE Signal Processing Letters, vol. 26, no. 12, pp. 1887–1891, 2019.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: efficient inference engine on compressed deep neural network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[19] Y.-T. Hsu, Y.-C. Lin, S.-W. Fu, Y. Tsao, and T.-W. Kuo, “A study on speech enhancement using exponent-only floating point quantized neural network (esdf-qnn),” in 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018, pp. 566–573.

[20] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, “Phase-sensitive and recognition-behind-speech separation using deep recurrent neural networks,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 708–712.

[21] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J. R. Hershey, and B. Schuller, “Speech enhancement with lstm recurrent neural networks and its application to noise-robust asr,” in International Conference on Latent Variable Analysis and Signal Separation. Springer, 2015, pp. 91–99.

[22] Y. Wang, A. Narayanan, and D. Wang, “On training targets for supervised speech separation,” IEEE/ACM transactions on audio, speech, and language processing, vol. 22, no. 12, pp. 1849–1858, 2014.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of the psychological magnitude pitch,” Journal of the Acoustical Society of America, vol. 8, pp. 185 – 190, 1937.

[25] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[26] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in neural information processing systems, 1990, pp. 598–605.

[27] M. C. Mozer and P. Smolensky, “Skeletionization: A technique for trimming the fat from a network via relevance assessment,” in Advances in neural information processing systems, 1989, pp. 107–115.

[28] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,” in Advances in neural information processing systems, 2016, pp. 2074–2082.

[29] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, N. B. Priyantha, J. Liu, and D. Marculescu, “Single-path mobile automil: Efficient convnet design and nas hyperparameter optimization,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–1, 2020.

[30] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S. Chang, “Skip RNN: learning to skip state updates in recurrent neural networks,” in International Conference on Learning Representations, 2018.

[31] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matassoni, “The second chimespeech separation and recognition challenge: Datasets, tasks and baselines,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 126–130.

[32] E. Vincent, R. Girinovval, and C. Févotte, “Performance measurement in blind audio source separation,” IEEE transactions on audio, speech, and language processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[33] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr-half-baked or well done?” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 626–630.

[34] F. Weninger, J. R. Hershey, J. Le Roux, and B. Schuller, “Discriminatively trained recurrent neural networks for single-channel speech separation,” in 2014 IEEE Global Conference on Signal and Information Processing (GlobalsIP). IEEE, 2014, pp. 577–581.

[35] R. Likert, “A technique for the measurement of attitudes,” Archives of Psychology, vol. 140, pp. 1–55, 1932.

[36] J. M. Vaisberg, A. Sabin, and S. Banerjee, “Speech-in-noise benefits using Bose directional technology,” in 2020 16th International Conference on Latent Variable Analysis and Signal Separation. IEEE, 2020, pp. 626–630.

[37] J. Wu, C. Yu, S. Fu, Y. Chen, and H. Li, “Learning intrinsic sparse structures within long short-term memory,” in International Conference on Learning Representations, 2018.