APPENDIX DISCRETIZATION INVARIANCE FOR DEEP LEARNING ON NEURAL FIELDS

Clinton J. Wang & Polina Golland
MIT CSAIL
{clintonw,polina}@csail.mit.edu

ABSTRACT

While neural fields have emerged as powerful representations of continuous data, there is a need for neural networks that can perform inference on such data without being sensitive to how the field is sampled, a property called (approximate) discretization invariance. We develop DI-Net, a framework for learning discretization invariant operators on neural fields of any type. Whereas current theoretical analyses of discretization invariant networks are restricted to the limit of infinite samples, our analysis does not require infinite samples and establishes upper bounds on the variation in DI-Net outputs given different finite discretizations. Our framework leads to a family of neural networks driven by numerical integration via quasi-Monte Carlo sampling with discretizations of low discrepancy. DI-Nets manifest desirable theoretical properties such as universal approximation of a large class of maps between L^2 functions, and gradients that are also discretization invariant. DI-Nets can also be seen as generalizations of many existing network families as they bridge discrete and continuous network classes, such as convolutional neural networks (CNNs) and neural operators respectively. Experimentally, DI-Nets derived from CNNs are able to classify and segment visual data represented by neural fields under various discretizations, and sometimes even generalize to new types of discretizations at test time.

1 INTRODUCTION

Neural fields (NFs), which encode signals as the parameters of a neural network, have many useful properties. NFs can efficiently store and stream continuous data (Sitzmann et al., 2020b; Dupont et al., 2022; Gao et al., 2021; Takikawa et al., 2022; Cho et al., 2022), represent and render detailed 3D scenes at lightning speeds (Müller et al., 2022), and integrate data from a wide range of modalities (Gao et al., 2022). NFs are thus an appealing data representation for many applications.

However, current approaches for training networks on a dataset of NFs have major limitations. The sampling-based approach converts such data to pixels or voxels as input to discrete networks (Vora et al., 2021), but it incurs interpolation errors and does not leverage the ability to evaluate the NF anywhere on its domain. The hypernetwork approach trains a model to predict NF parameters (or a lower dimensional “modulation” of such parameters) which can be tailored for downstream tasks (Tancik et al., 2020a; Dupont et al., 2022; Mehta et al., 2021), but hypernetworks based on the parameter space of one type of NF are incompatible with other types. Moreover, hypernetworks are unsuitable for important classes of NFs whose parameters extend beyond a neural network, such as those with voxel (Sun et al., 2021; Alex Yu and Sara Fridovich-Keil et al., 2021), octree (Yu et al., 2021) or hash table (Müller et al., 2022; Takikawa et al., 2022) components. Our work strengthens the sampling-based approach with the notion of approximate discretization invariance: the output of an operator that processes a continuous signal by sampling it at a set of discrete points should be largely independent of how the sample points are chosen, particularly as the number of points becomes large.

Although the term “discretization invariance” implies strict equality for all discretizations, this term is usually used in the literature to denote this weaker approximation condition, hence we drop the qualifier “approximate” for most of this work.
In this paper we propose the DI-Net, a discretization invariant family of neural networks for learning and inference on neural fields (Fig. 1). By designing layers as integrals over parametric functions of the input field, DI-Nets have access to powerful numerical integration techniques that yield strong convergence properties, including a universal approximation theorem for a wide class of maps between function spaces. DI-Nets can be applied to any type of NF, or in fact any data that can be represented as integrable functions on a bounded measurable set. Thus DI-Nets are a broad class of neural networks that encompass other continuous networks such as neural operators, and also extend discrete networks that act on pixels, point clouds, and meshes. They can be trained to perform classification, segmentation, and many other tasks.

Our contributions are as follows:

- We show that discretization invariance gives rise to a family of neural networks based on numerical integration, which we call DI-Nets.
- DI-Nets universally approximate a large class of maps between function spaces. We prove backpropagation through DI-Nets is also discretization invariant.
- DI-Nets generalize a wide class of discrete models to the continuous domain. For concreteness, we derive continuous analogues of convolutional neural networks to perform inference on neural fields that encode visual data.
- We demonstrate convolutional DI-Nets on NF classification and dense prediction tasks and show it can perform well under a range of discretization schemes, with some ability to generalize to unseen discretizations at test time.

2 RELATED WORK

Neural fields Multilayer perceptrons (MLPs) can be trained to capture a wide range of continuous data with high fidelity. The most prominent domains include shapes (Park et al., 2019; Mescheder et al., 2018), objects (Niemeyer et al., 2020; Müller et al., 2022), and 3D scenes (Mildenhall et al., 2020; Sitzmann et al., 2021), but previous works also apply NFs to gigapixel images (Martel et al., 2021), volumetric medical images (Corona-Figueroa et al., 2022), acoustic data (Sitzmann et al., 2020b; Gao et al., 2021), tactile data (Gao et al., 2022), depth and segmentation maps (Kundu et al., 2022), and 3D motion (Niemeyer et al., 2019). Hypernetworks and modulation networks were developed for learning directly with NFs, and have been demonstrated on tasks including generative modeling, data imputation, novel view synthesis and classification (Sitzmann et al., 2020b; 2021; Tanck et al., 2020a; Sitzmann et al., 2019; 2020a; Mehta et al., 2021; Chan et al., 2021; Dupont et al., 2021; 2022). Hypernetworks use meta-learning to learn to produce the MLP weights of desired output NFs, while modulation networks predict modulations that can be used to transform the parameters of an existing NF or generate a new NF. Another approach for learning maps between NFs in 3D space evaluates an input NF at grid points, produces features at the same points via a U-Net, and passes “raytraced” features through an MLP to produce output values from arbitrary camera angles (Vora et al., 2021).

Discretization invariant networks Networks that are agnostic to the discretization of the data domain has been explored in several contexts. Hilbert space PCA, DeepONets and neural operators
learn discretization invariant maps between function spaces \(\text{Bhattacharya et al., 2020} \), \(\text{Lu et al., 2021} \), \(\text{Li et al., 2020} \), \(\text{Kovachki et al., 2021b} \), and are tailored to solve partial differential equations efficiently. On surface meshes, DiffusionNet \(\text{Sharp et al., 2022} \) uses the diffusion operator to achieve convergent behavior under mesh refinement. At the core of many other discretization invariant approaches is the continuous convolution, which also provides permutation invariance, translation invariance and locality. Its applications include modeling point clouds \(\text{Wang et al., 2021} \), \(\text{Boulch, 2019} \), graphs \(\text{Fey et al., 2017} \), fluids \(\text{Ummenhofer et al., 2019} \), and sequential data \(\text{Romero et al., 2021b; a} \). These previous works define discretization invariance as convergent behavior in the limit of infinite sample points, but do not characterize how different discretizations yield different behaviors in the finite case. In this work, we choose a stronger definition that bounds the difference between any two finite discretizations, which we show implies the convergence condition. We formulate discretization invariant networks on general metric spaces, which generalizes DeepONets and neural operators, then we focus on the continuous convolution as a core layer for vision applications.

Approximation capabilities of neural networks A fundamental result in approximation theory is that the set of single-layer neural networks is dense in a large space of functionals including \(L^p(\mathbb{R}^n) \) \(\text{Hornik, 1991} \). Subsequent works designed constructive examples using various non-linear activations \(\text{Chen et al., 1995} \), \(\text{Chen & Chen, 1993} \). While this result is readily extended to multi-dimensional outputs, existing approximation results for the case of infinite dimensional outputs (e.g., \(L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n) \)) do not explicitly characterize the contribution of data discretization to the approximation error \(\text{Bhattacharya et al., 2020} \), \(\text{Lanthaler et al., 2022} \), \(\text{Kovachki et al., 2021b; a} \).

3 PRINCIPLES OF DI-NETS

In this section we define a DI-Net, formalize discretization invariance, and derive properties that enable DI-Nets to serve as a general deep learning framework on continuous data.

3.1 Preliminaries

Let \(\Omega \) be a bounded measurable subset of a \(d \)-dimensional compact metric space. The most common case is \(\Omega \subset \mathbb{R}^d \), and in the Appendix we consider the case of a \(d \)-dimensional manifold. Let \(\mathcal{F}_c \) denote the space \(L^2(\Omega, \mathbb{R}^c) = \{ f : \Omega \rightarrow \mathbb{R}^c : \int_{\Omega} \| f \|^2 d\mu < \infty \} \). We refer to elements of \(\mathcal{F}_c \) as (neural) fields. We call \(d \) the dimensionality of the field and \(c \) the number of channels. For example, an occupancy network \(\text{Mescheder et al., 2018} \) is 3-dimensional and has 1 channel. NeRF \(\text{Mildenhall et al., 2020} \) is 5-dimensional (world coordinates and view angles) and has 4 channels.

Definition 1. A DI-Net layer \(\mathcal{H} \) is a bounded continuous map \(\mathcal{F}_n \rightarrow \mathcal{F}_m \) (e.g., linear combinations of channels), or \(\mathbb{R}^n \rightarrow \mathbb{R}^m \) (e.g., in a generative model), or \(\mathcal{F}_n \rightarrow \mathbb{R}^m \) (e.g., in a classifier), or \(\mathcal{F}_n \times \mathcal{F}_m \rightarrow \mathcal{F}_c \) (e.g., in style transfer) for some \(n, m, c \in \mathbb{N} \). A DI-Net is a directed acyclic graph of such layers. Note that many common loss functions also generalize naturally to the continuous domain as bounded continuous maps \(\mathcal{F}_c \rightarrow \mathbb{R} \) or \(\mathcal{F}_c \times \mathcal{F}_c \rightarrow \mathbb{R} \).

Proposition 1. A DI-Net is invariant to the parameterization of the fields used to train it. If \(f, g \in \mathcal{F}_c \) are equal in the sense that \(f_i = g_i \) for all \(i \in \{1, \ldots, c\} \), then any DI-Net or loss function on \(\mathcal{F}_c \) maps \(f \) and \(g \) to the same output.

This property follows directly from our definition of the DI-Net, and confers interoperability that is missing from hypernetwork or modulation-based learning approaches.

Basic operations For simplicity we only characterize the single-channel layers, i.e., the bounded continuous maps \(L^2(\Omega) \rightarrow L^2(\Omega) \), \(L^2(\Omega) \rightarrow \mathbb{R}^n \), and \(\mathbb{R}^n \rightarrow L^2(\Omega) \). In Appendix B we extend each of our results to the multi-channel case.

- Each function (single-channel field) \(f \in L^2(\Omega) \) is endowed with addition, pointwise multiplication, the norms \(\| f \|_p = \left(\int_{\Omega} |f|^p d\mu \right)^{1/p} \) for \(p \in [1, 2] \), and the inner product \((f, g) = \int_{\Omega} fg d\mu \).

- \(f \) can undergo pointwise transformation by a locally bounded piecewise continuous non-polynomial function \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \), which defines the activation layer \(\mathcal{H} : L^2(\Omega) \rightarrow L^2(\Omega) \) such that \(\mathcal{H}[f](x) = \sigma(f(x)) \) for all \(x \in \Omega \). This class of nonlinearities is sufficient for MLPs to form a class of universal approximators \(\text{Leshno et al., 1993} \).
We say that a map \(f \) weak derivatives are integrable, i.e., This naturally leads to parameterizations of discretization invariant maps as integrals over \(\Omega \). This definition then establishes an upper bound on the deviation between any two discretizations for multi-index \(\alpha \). The discretization of a function \(f \) of this work.

We require that maps from \(L^2(\Omega) \to \mathbb{R}^n \) and \(L^2(\Omega) \to L^2(\Omega) \) be discretization invariant, as we describe in the following section.

3.2 Discretization Invariance via Numerical Integration

The discretization of a function \(f \in L^2(\Omega) \) is a point set \(X \subset \Omega \) on which the function is evaluated. We say that a map \(\mathcal{H}_\phi : L^2(\Omega) \to \mathbb{R}^n \) is discretizable if it induces a discrete map \(\hat{\mathcal{H}}^N_\phi : L^2(\Omega)/I_N \to \mathbb{R}^n \) for every discretization \(X \), where \(I_N \) is the ideal of \(L^2(\Omega) \) that vanishes on \(X \). We are interested in two notions of discretization invariance: (1) upper bounding the deviation of the map \(\hat{\mathcal{H}}^N_\phi \) from \(\hat{\mathcal{H}}_\phi \) for any two discretizations \(X, Y \), and (2) establishing convergence of \(\hat{\mathcal{H}}^N_\phi \) to \(\mathcal{H}_\phi \) under particular sequences \(\{X_N\}_{N \in \mathbb{N}} \) of discretizations. We use the first notion to formally define discretization invariant maps, then characterize sequences of discretizations under which such maps converge.

Definition 2. A discretizable map \(\mathcal{H}_\phi : L^2(\Omega) \to \mathbb{R}^n \) is discretization invariant if for every discretization \(X \) and input \(f \), the deviation of \(\mathcal{H}_\phi \) from the induced map \(\hat{\mathcal{H}}^N_\phi \) is bounded by the product of the variation of \(f \) and the discrepancy of \(X \). A map \(\hat{\mathcal{H}}_\phi : L^2(\Omega) \to L^2(\Omega) \) is discretization invariant if it is discretization invariant at each point in its image.

This definition then establishes an upper bound on the deviation between any two discretizations by a simple application of the triangle inequality. The upper bound is expressed in terms of the function’s variation, which measures how much it fluctuates over its domain, and the discretization’s discrepancy, which is low for dense, evenly distributed point sets (see Appendix A for precise definitions of variation and discrepancy for various domains). This product is precisely the upper bound in the celebrated Koksma–Hlawka inequality, which bounds the difference between a function’s integral and its sample mean:

Definition 3. A function \(f \in L^2(\Omega) \) satisfies a Koksma–Hlawka inequality if for any point set \(X \subset \Omega \),

\[
\left| \frac{1}{|X|} \sum_{x' \in X} f(x') - \int_{\Omega} f(x) \, dx \right| \leq V(f) \, D(X),
\]

for normalized measure \(dx \), variation \(V \) of the function and discrepancy \(D \) of the point set.

This naturally leads to parameterizations of discretization invariant maps as integrals over \(\Omega \). In the \(L^2(\Omega) \to \mathbb{R} \) case:

\[
\mathcal{H}_\phi[f] = \int_{\Omega} H_\phi[f] \, d\mu = \int_{\Omega} h(x, f(x), \ldots, D^n f(x); \phi) \, d\mu(x),
\]

for a function \(h \) which is Fréchet differentiable at all \(f \in L^2(\Omega) \), is of bounded variation in \(\Omega \) for all \(f \), is differentiable w.r.t. its parameters \(\phi \), and may depend on weak derivative \(D^\alpha f = \frac{\partial^{\alpha_1} f}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \) for multi-index \(\alpha \). The dependence of \(h \) on weak derivatives up to order \(k = |\alpha| \) requires that the weak derivatives are integrable, i.e., \(f \) is in the Sobolev space \(W^{k,2}(\Omega) \). Its induced map under discretization \(X \) is then:

\[
\hat{\mathcal{H}}^N_\phi[f] = \sum_{x \in X} H_\phi[f](x) w(x; \mu, X),
\]

We assume that function evaluation yields pointwise values of \(f \), i.e. the point spread function of the signal is a delta function. It is possible to accommodate non-trivial point spread functions, but this is beyond the scope of this work.
For every $w(x; \mu, X)$ are quadrature weights ($1/|X|$ by default). We write the $L^2(\Omega) \rightarrow L^2(\Omega)$ case similarly:

$$\hat{H}_\phi[f](x') = \int_\Omega \hat{H}_\phi[f](x, x') d\mu(x)$$ \hspace{1cm} (5)

$$\hat{H}_\phi[f](x') = \int_\Omega h(x, f(x), \ldots, D^\alpha f(x), x', f(x'), \ldots, D^\alpha f(x'); \phi) d\mu(x)$$ \hspace{1cm} (6)

$$\hat{H}^X_\phi[f](x') = \sum_{x \in X} \tilde{H}_\phi[f](x, x') w(x; \mu, X).$$ \hspace{1cm} (7)

Such a parameterization opens up a rich toolkit of numerical integration methods. When we can choose the discretization of the field, we can generate low discrepancy discretizations using quasi-Monte Carlo (QMC), a numerical integration method with favorable convergence rates compared to standard Monte Carlo (Caflisch, 1998). The QMC discretization only requires a single pass through the network, can be deterministic or pseudorandom, and can accelerate computation when the same discretization is used for multiple network layers and/or all fields in a minibatch. To sample from non-uniform measures, the standard Monte Carlo method with rejection sampling can be used instead. To integrate over a given discretization of high discrepancy, we can use an appropriate quadrature method. Finally, adaptive quadrature techniques can be used to attain specific error bounds at inference time, which can be valuable in applications requiring robustness or verification.

Our definition of discretization invariance immediately yields a class of discretization sequences under which discretized maps converge:

Definition 4. We call a sequence of discretizations $\{X_N\}_{N \in \mathbb{N}}$ whose discrepancy tends to 0 as $N \rightarrow \infty$ an equidistributed discretization sequence.3

Proposition 2. If H_ϕ is a discretization invariant map and $f \in L^2(\Omega)$ has finite variation, $\lim_{N \rightarrow \infty} \hat{H}^X_\phi[f] = H_\phi[f]$ for any equidistributed discretization sequence $\{X_N\}_{N \in \mathbb{N}}$.

Thus a network composed of discretization invariant layers converges in the forward direction. We can also establish convergence of the network’s discretized gradients as follows (proved in Appendix B.1):

Theorem 1. A DI-Net permits backpropagation of its outputs with respect to its input as well as all its learnable parameters. Under an equidistributed discretization sequence, the gradients of each layer converge to the appropriate derivative under the measure on Ω.

For concreteness, we briefly describe the case for a layer $H_\phi : L^2(\Omega) \rightarrow \mathbb{R}$.

Proposition 3. Fix an equidistributed discretization sequence $\{X_N\}_{N \in \mathbb{N}}$. For each parameter ϕ_k,

$$\lim_{N \rightarrow \infty} \frac{\partial}{\partial \phi_k} \hat{H}^X_\phi = \frac{\partial}{\partial \phi_k} H_\phi.$$ \hspace{1cm} (8)

For every $f \in L^2(\Omega)$ and fixed $\hat{x} \in \Omega$, we can design a sequence of bump functions $\{\psi^N_{\hat{x}}\}_{N \in \mathbb{N}}$ which is 1 in a small neighborhood around \hat{x} and vanishes at each $X_N \setminus \{\hat{x}\}$, such that:

$$\lim_{N \rightarrow \infty} \frac{\partial}{\partial f(\hat{x})} \hat{H}^X_\phi[f] = \lim_{N \rightarrow \infty} \nabla_{\phi} \psi^N_{\hat{x}} H_\phi[f],$$ \hspace{1cm} (9)

which is finite due to Fréchet differentiability of H_ϕ.

Thus the gradients of the discretized layer w.r.t. its parameters ϕ and inputs $f(\hat{x})$ converge to gradients of the continuous map. In Appendix B.1, we show these results naturally extend to the vector-valued case $L^2(\Omega) \rightarrow \mathbb{R}^n$ and field-valued case $L^2(\Omega) \rightarrow L^2(\Omega)$ via the Gateaux derivative. Using the chain rule for Gateaux derivatives, we then show that backpropagation through the entire DI-Net is convergent.

3Any equidistributed sequence of points generates an equidistributed discretization sequence by truncating to the first N terms, although the class of all equidistributed discretization sequences is much larger than this. Quasi-Monte Carlo sampling can efficiently generate equidistributed sequences on a wide range of domains.
3.3 Universal Approximation Theorem

Recall that discretization invariant maps were defined in terms of an arbitrary discretizable map on a continuous domain. Then Proposition 2 suggests that for every discretizable map there exists some discretization of sufficiently low discrepancy such that the induced discrete map approximates the continuous-domain map to desired precision for particular types of functions. This universal approximation theorem can be formalized as follows:

Theorem 2. Let G, G' be subsets on $L^2(\Omega)$ restricted to functions of bounded variation. For every Lipschitz continuous map $R : G \to G'$, there exists a DI-Net T that approximates it to arbitrary accuracy w.r.t. a finite measure ν on G. As a corollary, every Lipschitz continuous map $G \to \mathbb{R}^n$ or $\mathbb{R}^n \to G$ can also be approximated by some DI-Net.

Appendix B.2 provides a full proof, including the extension to multi-channel maps. A high-level sketch of the $G \to G'$ case is as follows:

1. Fix a discretization X of sufficiently low discrepancy to approximate any function in $G \cup G'$ to desired accuracy. Let $N = |X|$.
2. Let π be the projection that maps any function $f \in G \cup G'$ to \mathbb{R}^N by selecting its N values along the discretization. Through π, the measure ν on G induces a measure μ on \mathbb{R}^N.
3. We construct an MLP that approximates any function in $L^2(\mathbb{R}^N)$, by covering the volume under the graph of the function with rectangles, and then at inference time summing the rectangles under the given \mathbb{R}^N input [Lu et al., 2017]. Here, we cover the graph of $(\pi f, R[\pi f](x))$ for each $x \in X$, and compute volumes w.r.t. μ. The DI-Net specifies the desired connections on Ω using element-wise products with cutoff functions and linear combinations of channels.
4. Repeating this construction N times, we fully specify the desired behavior of $f \mapsto R[\pi f]$ to desired accuracy w.r.t. the measure ν.

4 Design and Implementation of DI-Nets

DI-Nets encompass a very large family of neural networks: we have only specified the architecture as a directed acyclic graph, and Equations 4 and 7 can represent almost every type of neural network layer. On one side of the DI-Net family includes networks such as DeepONets and neural operators [Kovachki et al., 2021b; Lu et al., 2021], which can learn general maps between function spaces but in practice are designed to solve partial differential equations. On the other side are networks that are designed entirely on discrete domains such as convolutional neural networks, but can be readily extended to the continuous domain. In the same way that neural fields extend signals on point clouds, meshes, grids, and graphs to a compact metric space, DI-Nets extend neural networks that operate on discrete signals by converting every layer to an equivalent discretizable map. We make this connection concrete in the case of convolutional neural networks below.

4.1 Convolutional DI-Nets

Proposition 4. Every convolutional neural network (CNN) T_θ induces a convolutional DI-Net T_θ that behaves identically when every layer is restricted to a particular grid discretization.

To demonstrate this proposition, we describe how to extend convolutional layers and multi-scale architectures to DI-Nets here (also see Fig. 2), and discuss other layers in Appendix C, including normalization, max pooling, tokenization and attention. The resulting convolutional DI-Nets can be initialized directly with the weights of a pre-trained CNN as we investigate in Appendix E.1.

Convolution

For a measurable $S \subset \Omega$ and a polynomial basis $\{p_{j,\phi}\}_{j \geq 0}$ that spans $L^2(S)$, S is the support of a polynomial convolutional kernel $K_\phi : \Omega \times \Omega \to \mathbb{R}$ defined by:

$$K_\phi(x, x') = \begin{cases} \sum_{j=0}^n p_{j,\phi}(x - x')^j & \text{if } x - x' \in S \\ 0 & \text{otherwise.} \end{cases}$$ \hspace{1cm} (10)

\[\text{See Appendix A for which notion of variation applies to a given } \Omega.\]
Figure 2: Convolutional DI-Nets generalize convolutional neural networks to arbitrary discretizations of the domain. Low discrepancy point sets used in quasi-Monte Carlo integration are amenable to the multi-scale structures often found in discrete networks. Convolutional DI-Nets may be initialized directly from pre-trained CNNs.

for some chosen \(n \in \mathbb{N} \). A convolution is the linear map \(\mathcal{H}_\phi : L^2(\Omega) \rightarrow L^2(\Omega) \) given by:

\[
\mathcal{H}_\phi[f] = \int_\Omega K_\phi(\cdot, x') f(x') dx'.
\]

(11)

An MLP convolution is defined similarly except the kernel becomes \(\tilde{K}_\phi(x, x') = \text{MLP}(x - x'; \phi) \) in the non-zero case. While MLP kernels are favored over polynomial kernels in many applications due to their expressive power [Wang et al., 2021], polynomial bases can be used to construct filters satisfying desired properties such as group equivariance [Cohen & Welling, 2016a;b], \(k \)-Lipschitz continuity, or boundary conditions.

The input and output discretizations of the layer can be chosen independently, allowing for padding or striding (see Appendix C). The input discretization fully determines which points on \(S \) are evaluated.

Multi-scale architectures Many discretizations permit multi-scale structures by subsampling the discretization, and QMC is particularly conducive to such design. Under QMC, downsampling is efficiently implemented by truncating the list of coordinates in the low discrepancy sequence to the desired number of terms, as the truncated sequence is itself low discrepancy. Similarly, upsampling can be implemented by extending the low discrepancy sequence to the desired number of terms, then performing interpolation by copying the nearest neighbor(s) or applying some (fixed or learned) kernel. Residual or skip connections can also be implemented efficiently since downsampling and upsampling are both specified with respect to the same discretization (Fig. 2 right).

4.2 Training DI-Nets

Algorithm 1: Classifier Training

Input: network \(T_\theta, \) NF / label dataset \(D, \) classifier loss \(\mathcal{L}, \) input discretization \(X \)

for step \(s \in 1 : N_{\text{steps}} \) **do**

- NFs \(f_i \), labels \(y_i \) ← minibatch(\(D \))
- Label estimates \(\hat{y}_i \) ← \(T_\theta[f_i; X] \)
- Update \(\theta \) based on \(\nabla_\theta \mathcal{L}(\hat{y}_i, y_i) \)

end

Output: trained network \(T_\theta \)

Algorithm 2: Dense Prediction Training

Input: network \(T_\theta, \) dataset \(D \) with dense coordinate-label pairs, task-specific loss \(\mathcal{L} \)

for step \(s \in 1 : N_{\text{steps}} \) **do**

- NFs \(f_i \), point labels \((x_{ij}, y_{ij}) \) ← minibatch(\(D \))
- Output NFs \(g_i \) ← \(T_\theta[f_i] \)
- Point label estimates \(\hat{y}_{ij} \) ← \(g_i(x_{ij}) \)
- Update \(\theta \) based on \(\nabla_\theta \mathcal{L}(\hat{y}_{ij}, y_{ij}) \)

end

Output: trained network \(T_\theta \)

As with discrete networks, the pipeline for training a DI-Net varies with the task. We outline steps for training a classifier and dense prediction model in Algorithms [1] and [2]. When training an NF classifier, the discretization may be specified manually or sampled from a low discrepancy sequence to perform QMC integration. When training networks for dense prediction, the output discretization should be...
chosen to match the coordinates of the ground truth labels. The input discretization can be arbitrarily chosen, but in our experiments we set it equal to the output discretization. At inference time, the network can be evaluated under any desired output discretization, making the output in effect an NF. Similar pipelines can be used to train DI-Net for other tasks such as scene editing, inverse problems, or representation learning.

5 Experiments

We demonstrate our framework on toy classification (NF→scalar) and dense prediction (NF→NF) tasks, and analyze its performance under different discretizations. Our aim is not to compete with pixel-based methods on these tasks, but rather to demonstrate that simply deriving DI-Nets from convolutional neural networks is sufficient to yield a feasible class of models for performing discretization invariant learning on NFs, without introducing any new techniques or types of layers. We discuss techniques that could be leveraged to design more competitive variants in Appendix F.

5.1 Neural Field Classification

We perform classification on a dataset of 8,400 NFs fit to a subset of ImageNet1k (Deng et al., 2009), with 700 samples from each of 12 superclasses (Engstrom et al., 2019). For each class we train on 500 SIRENs (Sitzmann et al., 2020b) and evaluate on 200 Gaussian Fourier feature networks (Tancik et al., 2020b). Note that training and testing on different NF types is not possible for hypernetwork and modulation-based approaches. Appendix D provides further details about data and implementation.

We train DI-Nets with 2 and 4 MLP convolutional layers (DI-Net-2 and DI-Net-4), as well as convolutional neural networks (CNNs) with equivalent architectures. Each network is trained for 8K iterations with an AdamW optimizer (Loshchilov & Hutter, 2017) and a learning rate of 10^{-3}. At training time, the CNNs sample SIRENs along the 32×32 grid. DI-Nets sample 1024 points generated from a scrambled Sobol sequence (QMC discretization). We evaluate each model with top-3 accuracy at the same resolution as well as at higher resolution (64×64 or 4096 points).

Under any discretization, DI-Nets somewhat underperform their CNN counterparts (Table 1), and the gap in performance is larger for the deeper models. However, our discretization invariant model better generalizes to higher-resolution images, where it outperforms CNNs on images at twice the resolution and has a very small drop in performance compared to the resolution it was trained on.

Having found that discretization invariance enables generalization to a different resolution at test time, we examine to what extent the network can adapt to an entirely different type of discretization at test time. We use grid, QMC (randomized Sobol sequence) and shrunk discretizations of 1024 (32×32) points. The Shrunk discretization shrinks a Sobol sequence towards the center of the image (each point $x \in [-1, 1]^2$ is mapped to $x^2 \text{sgn}(x)$). In image classification, the object of interest is often centered in the image, which may explain why the shrunk→shrunk discretization outperforms QMC→QMC.

Interestingly, changing discretization type at inference time has varying impact, usually only slightly degrading the performance of DI-Net (Table 2), but resulting in a dramatic drop in performance when shifting from a high discrepancy discretization to a low discrepancy discretization (shrunk→QMC). This suggests that discretization invariance only provides a weak guarantee on the stability of a model’s behavior in the general case, and points to the importance of training on the right discretizations to attain a network that generalizes well to other discretizations.

Table 1: NF classifier accuracy at two resolutions on ImageNet-Big12.

Model Type	32 × 32	64 × 64
2-layer CNN	59.8%	54.1%
DI-Net-2 (QMC)	56.6%	55.2%
4-layer CNN	65.7%	53.5%
DI-Net-4 (QMC)	57.4%	56.4%

Table 2: DI-Net-2 accuracy under various discretizations.

Train→Test Type	Accuracy
QMC→Grid	53.7%
Grid→QMC	54.4%
QMC→Shrunk	51.3%
Shrunk→QMC	33.9%
Grid→Shrunk	55.8%
QMC→QMC	56.6%
Shrunk→Shrunk	57.0%
5.2 **Neural Field Segmentation**

We perform pixel-wise segmentation on SIRENs fit to street view images from Cityscapes (Cordts et al., 2016), grouping the segmentation labels into 7 categories. We train on 2975 NFs with coarsely annotated segmentations only, and test on 500 NFs with both coarse and fine annotations (Fig. 3). Both models use a 48×96 grid discretization since segmentation labels are only given at pixel coordinates. We compare the performance of 3 and 5 layer DI-Nets and fully convolutional networks (FCNs). Networks are trained for 10K iterations with a learning rate of 10^{-3}. We evaluate each model with mean intersection over union (mIoU) and pixel-wise accuracy (PixAcc).

DI-Net-3 outperforms the equivalent FCN, and less often confuses features such as shadows and road markings (Fig. 3). However, the performance deteriorates when downsampling and upsampling layers are added (DI-Net-5 in Table 3), echoing the difficulty in scaling DI-Nets observed in classification. We suggest potential methods for remediating this in Appendix F.

Model Type	Coarse Segs	Fine Segs		
	mIoU	PixAcc	mIoU	PixAcc
3-layer FCN	0.409	69.6%	0.374	63.6%
DI-Net-3 (grid)	0.471	78.5%	0.417	69.4%
5-layer FCN	0.488	79.4%	0.436	72.5%
DI-Net-5 (grid)	0.443	77.7%	0.394	68.4%

5.3 **Signed Distance Function Prediction**

We train a convolutional DI-Net to map a field of RGBA values in 3D to its signed distance function (SDF). Here we create a synthetic dataset of 3D scenes with randomly colored balls embedded in 3D space, and train on RGBA-SDF pairs using a mean squared error (MSE) loss between predicted and ground truth SDF. See Appendix D.3 for details. We train with grid ($16 \times 16 \times 16$), QMC (4096 points drawn from a randomized Sobol sequence), shrunk, Monte Carlo (i.i.d. points drawn uniformly from the domain), and mixed discretizations. In the mixed setting, each minibatch chooses one of the other four discretizations at random.

Under any fixed discretization, the convolutional DI-Net significantly outperforms the equivalent discrete network (MSE of 0.022 vs. 0.067 respectively). In Figure 4, we illustrate our model’s ability to also produce outputs that are discretized differently than the input, making DI-Net’s output in
Figure 4: 2D slices of two toy 3D scenes with SDFs predicted from RGB values by DI-Net and a fully convolutional network (discrete CNN) given an input discretization of 4096 points. The discrete network forced to output predictions at the resolution it was trained on. In contrast, our convolutional DI-Net can produce outputs along a high-quality grid discretization given a coarse QMC discretization, even when it is only trained with QMC output discretizations. Finer outputs are produced by changing the output discretization of the final convolution layer.

Effect a neural field. By changing the output discretization of the last convolutional DI-Net layer, we can evaluate the output SDF anywhere on the domain without changing the input discretization.

DI-Net performs almost equally well under grid, QMC and shrunk discretizations, but on this task it is more sensitive to unseen discretizations than the classifier in Section 5.1. While shrunk→QMC was the worst performing combination for the classifier, here it is one of the better performing combinations. DI-Net struggles with Monte Carlo sampling, which may be due to cases where smaller balls are missed under high discrepancy discretizations. Interestingly, the model fares worse when trained on multiple discretizations simultaneously. These observations illustrate the complex task-dependent interplay between the type of discretizations observed at training time and the ability of the model to generalize to new discretizations.

6 Conclusion

DI-Net constitutes the first discretization invariant sampling approach for performing inference directly on neural fields. Motivated by discretization invariance, we designed a parameterization based on numerical integration that gives rise to strong convergence properties including a universal approximation theorem for a wide class of functions. Not only is our framework agnostic to NF parameterization, but it also extends to any data that can be represented as piecewise smooth integrable functions over a wide class of domains, and thus can be applied to many systems that process a continuous signal by querying it on a subset of its domain. We outline several directions for further enhancing such models in Appendix F, which may enable them to scale to deeper architectures and tackle more challenging tasks. With the increasing popularity and diversity of NFs as well as the emergence of tools to efficiently create large datasets of NFs, DI-Nets may become an attractive option when interoperability and discretization invariance are desired.

Acknowledgements

We thank Daniel Moyer and Nalini Singh for their proofreading and extensive comments. We thank Wei-Chiu Ma for pointing out the work in (Gao et al., 2021) and offering tips on continuous convolutions. Clinton gratefully acknowledges his funding from the Takeda Fellowship. This work was also supported in part by NIH NICHD under Grant R01HD100009, NIH NINDS under Grant U19NS115388, NIH NIBIB NAC under Grant P41EB015902.
REFERENCES

Christoph Aistleitner and Josef Dick. Low-discrepancy point sets for non-uniform measures, 2013. URL https://arxiv.org/abs/1308.5049.

Alex Yu and Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks, 2021.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Alexandre Boulch. Generalizing discrete convolutions for unstructured point clouds. CoRR, abs/1904.02375, 2019. URL http://arxiv.org/abs/1904.02375.

Luca Brandolini, Leonardo Colzani, Giacomo Gigante, and Giancarlo Travaglini. On the koksma–hlawka inequality. Journal of Complexity, 29(2):158–172, 2013. ISSN 0885-064X. doi: https://doi.org/10.1016/j.jco.2012.10.003. URL https://www.sciencedirect.com/science/article/pii/S0885064X12000854.

Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1–49, 1998.

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. Pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5799–5809, 2021.

Tianping Chen and Hong Chen. Approximations of continuous functionals by neural networks with application to dynamic systems. IEEE Transactions on Neural Networks, 4(6):910–918, 1993.

Tianping Chen, Hong Chen, and Ruey wen Liu. Approximation capability in c(t /sup n/) by multilayer feedforward networks and related problems. IEEE Transactions on Neural Networks, 6(1):25–30, 1995. doi: 10.1109/72.363453.

Junwoo Cho, Seungtae Nam, Daniel Rho, Jong Hwan Ko, and Eunbyung Park. Streamable neural fields. arXiv preprint arXiv:2207.09663, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on machine learning, pp. 2990–2999. PMLR, 2016a.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-Taylor, Sarath Bethapudi, Hubert P. H. Shum, and Chris G. Willcocks. Mednerf: Medical neural radiance fields for reconstructing 3d-aware ct-projections from a single x-ray, 2022. URL https://arxiv.org/abs/2202.01020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions. CoRR, abs/2102.04776, 2021. URL https://arxiv.org/abs/2102.04776.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data to functa: Your data point is a function and you should treat it like one. arXiv preprint arXiv:2201.12204, 2022.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness (python library), 2019. URL https://github.com/MadryLab/robustness.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric deep learning with continuous b-spline kernels. CoRR, abs/1711.08920, 2017. URL http://arxiv.org/abs/1711.08920.
Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and Jiajun Wu. Objectfolder: A dataset of objects with implicit visual, auditory, and tactile representations. In CoRL, 2021.

Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li Fei-Fei, Wenzhen Yuan, and Jiajun Wu. Objectfolder 2.0: A multisensory object dataset for sim2real transfer, 2022. URL https://arxiv.org/abs/2204.02389

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds for fourier neural operators. Journal of Machine Learning Research, 22:Art–No, 2021a.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481, 2021b.

Abhijit Kundu, Kyle Genova, Xiaoxi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas Guibas, Andrea Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic neural fields: A semantic object-aware neural scene representation, 2022. URL https://arxiv.org/abs/2205.04334

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for DeepONets: a deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1), 03 2022. ISSN 2398-4945. doi: 10.1093/imatrm/tnac001. URL https://doi.org/10.1093/imatrm/tnac001

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895, 2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. CoRR, abs/2201.03545, 2022. URL https://arxiv.org/abs/2201.03545

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218–229, mar 2021. doi: 10.1038/s42256-021-00302-5. URL https://doi.org/10.1038%2Fs42256-021-00302-5

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A view from the width. Advances in neural information processing systems, 30, 2017.

Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and Gordon Wetzstein. Acorn: Adaptive coordinate networks for neural scene representation. arXiv preprint arXiv:2105.02788, 2021.

Ishit Mehta, Michael Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Mannmohan Chandraker. Modulated periodic activations for generalizable local functional representations. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14214–14223, 2021.

Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function space. CoRR, abs/1812.03828, 2018. URL http://arxiv.org/abs/1812.03828
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *CoRR*, abs/2003.08934, 2020. URL https://arxiv.org/abs/2003.08934.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. *arXiv:2201.05989*, January 2022.

Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulò, Matthias Nießner, and Peter Kontschieder. Autofis: Learning 3d object radiance fields from single view observations, 2022. URL https://arxiv.org/abs/2204.03593.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d reconstruction by learning particle dynamics. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5379–5389, 2019.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision. In *Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove. Deepsdf: Learning continuous signed distance functions for shape representation. *CoRR*, abs/1901.05103, 2019. URL http://arxiv.org/abs/1901.05103.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space, 2017. URL https://arxiv.org/abs/1706.02413.

David W. Romero, Robert-Jan Bruintjes, Jakub M. Tomczak, Erik J. Bekkers, Mark Hoogendoorn, and Jan C. van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes. *CoRR*, abs/2110.08059, 2021a. URL https://arxiv.org/abs/2110.08059.

David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn. Ckconv: Continuous kernel convolution for sequential data. *CoRR*, abs/2102.02611, 2021b. URL https://arxiv.org/abs/2102.02611.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusionet: Discretization agnostic learning on surfaces. *ACM Transactions on Graphics (TOG)*, 41(3):1–16, 2022.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous 3d-structure-aware neural scene representations. *CoRR*, abs/1906.01618, 2019. URL http://arxiv.org/abs/1906.01618.

Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf: Meta-learning signed distance functions. *CoRR*, abs/2006.09662, 2020a. URL https://arxiv.org/abs/2006.09662.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit neural representations with periodic activation functions. *CoRR*, abs/2006.09661, 2020b. URL https://arxiv.org/abs/2006.09661.

Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Frédéric Durand. Light field networks: Neural scene representations with single-evaluation rendering. *CoRR*, abs/2106.02634, 2021. URL https://arxiv.org/abs/2106.02634.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction, 2021. URL https://arxiv.org/abs/2111.11121.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler. Variable bitrate neural fields. In *ACM SIGGRAPH 2022 Conference Proceedings*, pp. 1–9, 2022.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. *CoRR*, abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.
Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representations. *CoRR*, abs/2012.02189, 2020a. URL https://arxiv.org/abs/2012.02189

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. *CoRR*, abs/2006.10739, 2020b. URL https://arxiv.org/abs/2006.10739

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation with continuous convolutions. In *International Conference on Learning Representations*, 2019.

Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi S. M. Sajjadi, Etienne Pot, Andrea Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic fields for generalizable semantic segmentation of 3d scenes, 2021.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric continuous convolutional neural networks. *CoRR*, abs/2101.06742, 2021. URL https://arxiv.org/abs/2101.06742

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for real-time rendering of neural radiance fields. In *ICCV*, 2021.
Appendix

Appendix A provides additional background on the variation of a function and discrepancy of a point set, including details about the conditions under which our theoretical results hold. Appendix B provides proofs of the Universal Approximation and Convergent Empirical Gradients theorems, as well as extensions of these properties from the single-channel case stated in the main text to multi-channel maps. Appendix C provides a detailed specification of DI-Net layers that enable DI-Nets to replicate the behavior of grid-based networks. Appendix D provides additional details of the data and architectures used in our classification experiment. Appendix E provides several analyses including properties of DI-Nets under different discretizations. Appendix F describes limitations and directions for future work.

A Koksma–Hlawka inequality and low discrepancy sequences

Recall that a function \(f \in L^2(\Omega) \) satisfies a Koksma–Hlawka inequality if for any point set \(X \subset \Omega \),

\[
\left| \frac{1}{|X|} \sum_{x' \in X} f(x') - \int_{\Omega} f(x) \, dx \right| \leq V(f) \cdot D(X),
\]

for normalized measure \(dx \), some notion of variation \(V \) of the function and some notion of discrepancy \(D \) of the point set. The classical inequality gives a tight error bound for functions of bounded variation in the sense of Hardy-Krause (BVHK), a generalization of bounded variation to multivariate functions on \([0,1]^d\) which has bounded variation in each variable. Specifically, the variation is defined as:

\[
V_{HK}(f) = \sum_{\alpha \in \{0,1\}^d} \int_{[0,1]^d} \left| \frac{\partial^{d}}{\partial x^\alpha} f(x) \right| \, dx,
\]

with \(\{0,1\}^d \) the multi-indices and \(x_\alpha \in [0,1]^d \) such that \(x_{\alpha,j} = x_j \) if \(j \in \alpha \) and \(x_{\alpha,j} = 1 \) otherwise. The classical inequality also uses the star discrepancy of the point set \(X \), given by:

\[
D^*(X) = \sup_{I \in J} \left| \frac{1}{|X|} \sum_{x' \in X} \mathbb{1}_I(x_j) - \lambda(I) \right|,
\]

where \(J \) is the set of \(d \)-dimensional intervals that include the origin, and \(\lambda \) the Lebesgue measure.

A point set is called low discrepancy if its discrepancy is on the order of \(O((\ln N)^d / N) \). Quasi-Monte Carlo calculates the sample mean using a low discrepancy sequence (see Fig. A.1 for examples in 2D), as opposed to the i.i.d. point set generated by standard Monte Carlo, which will generally be high discrepancy. Because the Koksma–Hlawka inequality is sharp, when estimating the integral of a BVHK function on \([0,1]^d\), the error of the QMC approximation decays as \(O((\ln N)^d / N) \), in contrast to the error of the standard Monte Carlo approximation that decays as \(O(N^{-1/2}) \) (Caflisch, 1998).

![Figure A.1: Examples of low and high discrepancy sequences in 2D.](image)

However, BVHK is a rather restrictive class of functions defined on \([0,1]^d\) that excludes all functions with discontinuities. Brandolini et al. (2013) extended the Koksma–Hlawka inequality to two classes of functions defined below:
Piecewise smooth functions Let \(f \) be a smooth function on \([0,1]^d\) and \(\Omega \) a Borel subset of \([0,1]^d\). Then \(f|_{\Omega} \) is a piecewise smooth function with the Koksma–Hlawka inequality given by variation

\[
V(f) = \sum_{\alpha \in \{0,1\}^d} 2^{d-|\alpha|} \int_{[0,1]^d} \left| \frac{\partial^\alpha}{\partial x^\alpha} f(x) \right| dx,
\]

and discrepancy

\[
D(X) = 2^d \sup_{I \subseteq [0,1]^d} \left| \frac{1}{|X|} \sum_{x' \in X} 1_{\Omega \cap I}(x_j) - \lambda(\Omega \cap I) \right|.
\]

\(W^{d,1} \) functions on manifolds Let \(\mathcal{M} \) be a smooth compact \(d \)-dimensional manifold with normalized measure \(dx \). Given local charts \(\{\phi_k\}_{k=1}^K \), \(\phi_k: [0,1]^d \to \mathcal{M} \), the variation of a function \(f \in W^{d,1}(\mathcal{M}) \) is characterized as:

\[
V(f) = c \sum_{k=1}^K \sum_{|\alpha| \leq n} \int_{[0,1]^d} \left| \frac{\partial^\alpha}{\partial x^\alpha} (\psi_k(\phi_k(x))) f(\phi_k(x)) \right| dx,
\]

with \(\{\psi_k\}_{k=1}^K \) a smooth partition of unity subordinate to the charts, and constant \(c > 0 \) that depends on the charts but not on \(f \). Defining the set of intervals in \(\mathcal{M} \) as \(J = \{U : U = \phi_k(I) \text{ for some } k \text{ and } I \subseteq [0,1]^d\} \), with measure \(\mu(U) = \lambda(I) \), the discrepancy of a point set \(Y = \{y_j\}_{j=1}^N \) on \(\mathcal{M} \) is:

\[
D(Y) = \sup_{U \in J} \left| \frac{1}{|X|} \sum_{x' \in X} 1_{U}(x_j) - \mu(U) \right|.
\]

The notion of discrepancy is not limited to the Lebesgue measure. The existence of low discrepancy point sets has been proven for non-negative, normalized Borel measures on \([0,1]^d\) due to Aistleitner & Dick (2013). An extension of our framework to non-uniform measures is a promising direction for future work (see Section F).

B Proofs

B.1 Proof of Theorem 1 (Convergence of Discretized Gradients)

A DI-Net permits backpropagation of its outputs with respect to its input as well as all its learnable parameters. Under an equidistributed discretization sequence, the gradients of each layer converge to the appropriate derivative under the measure on \(\Omega \).

We note that this property automatically holds if the layer does not perform numerical integration. This includes layers which take \(\mathbb{R}^n \) as input, as well as point-wise transformations. Then the (sub)derivatives with respect to inputs and parameters need only be well-defined at each point of the output in order to enable backpropagation.

Choose an equidistributed discretization sequence \(\{X_N\}_{N \in \mathbb{N}} \) on \(\Omega \). We consider a layer \(\mathcal{H}_\phi \) which takes an NF \(f \) as input and may output a vector or NF. By (2) and (5), it can be written as:

\[
\mathcal{H}_\phi[f] = \int_\Omega H_\phi[f](x) dx.
\]

We write the estimate of \(\mathcal{H}_\phi[f] \) under \(X_N \) as:

\[
\hat{\mathcal{H}}^N_\phi[f] = \frac{1}{|X_N|} \sum_{x \in X_N} H_\phi[f](x),
\]

and call its derivatives the discretized derivatives of \(\mathcal{H}_\phi[f] \). We are interested in proving the convergence of the discretized gradients of \(\mathcal{H}_\phi[f] \) with respect to its input \(f \) as well as the parameters \(\phi \) of the layer.
Definition 5. For given discretization X, the projection $\pi : f \mapsto \mathbf{f}$ is a quotient map $L^2(\Omega) \to L^2(\Omega)/\sim$ under the equivalence relation $f \sim g$ iff $f(x) = g(x)$ for all $x \in X$.

Thus we can write $\pi f = \{f(x)\}_{x \in X}$ when the discretization is clear from the context.

Lemma 1. For any DI-Net layer \mathcal{H}_ϕ which takes an NF $f \in \mathcal{F}_m$ as input, the discretized gradient of $\mathcal{H}_\phi[f]$ w.r.t. its parameters ϕ is convergent in N:

$$\lim_{N \to \infty} \left| \nabla_{\phi} \mathcal{H}^N_\phi[f] \right| < \infty. \tag{21}$$

Additionally, the discretized gradient of $\mathcal{H}_\phi[f]$ w.r.t. its discretized input πf is convergent in N:

$$\lim_{N \to \infty} \left| \nabla_{\pi f} \mathcal{H}^N_\phi[f] \right| < \infty. \tag{22}$$

Proof. NF to Vector: gradients w.r.t. parameters

Consider the case of a layer $\mathcal{H}_\phi : \mathcal{F}_m \to \mathbb{R}^n$. As in (5), such a layer can be expressed as:

$$\mathcal{H}_\phi[f] = \int h(x, f(x), \ldots, D^\alpha f(x); \phi) dx, \tag{23}$$

for some h parameterized by ϕ, with weak derivatives up to order $|\alpha|$ taken with respect to each channel.

If $\phi = (\phi_1, \ldots, \phi_K)$, then denote $\phi + \tau e_k = (\phi_1, \ldots, \phi_{k-1}, \phi_k + \tau, \phi_{k+1}, \ldots, \phi_K)$.

$$\lim_{N \to \infty} \frac{\partial}{\partial \phi_k} \mathcal{H}^N_\phi[f] = \lim_{N \to \infty} \frac{\partial}{\partial \phi_k} \left(\frac{1}{|X_N|} \sum_{x \in X_N} H_\phi[f](x) \right) \tag{24}$$

$$= \lim_{N \to \infty} \lim_{\tau \to 0} \left(\frac{1}{\tau N} \sum_{j=1}^{N} H_{\phi+\tau e_k}[f](x) - H_\phi[f](x) \right) \tag{25}$$

$$= \lim_{\tau \to 0} \frac{1}{\tau} \int_\Omega h(x, f(x), \ldots, \phi + \tau e_k) - h(x, f(x), \ldots, \phi) dx \tag{26}$$

$$= \lim_{\tau \to 0} \frac{\mathcal{H}_{\phi+\tau e_k}[f] - \mathcal{H}_\phi[f]}{\tau} \tag{27}$$

$$= \frac{\partial}{\partial \phi_k} \mathcal{H}_\phi[f], \tag{28}$$

where (26) follows by eqn. (23) and the Moore-Osgood theorem. Thus the discretized gradient converges to the Jacobian of \mathcal{H}_ϕ w.r.t. each parameter, which is finite by assumption.

NF to NF: gradients w.r.t. parameters

From (5), we stated that a DI-Net layer $\mathcal{H}_{\phi'} : L^2(\Omega) \to L^2(\Omega)$ can be expressed as:

$$\mathcal{H}_{\phi'}[f](x') = \int_\Omega h(x, f(x), \ldots, D^\alpha f(x), x', f(x'), \ldots, D^\alpha f(x') ; \phi') dx. \tag{29}$$

We can in fact follow the same steps as the NF to Vector case above, to arrive at:

$$\lim_{N \to \infty} \frac{\partial}{\partial \phi_k'} \left(\frac{1}{|X_N|} \sum_{x \in X_N} \bar{H}_{\phi'}[f] \right) = \frac{\partial}{\partial \phi_k'} \mathcal{H}_{\phi'}[f], \tag{30}$$

with equality at each point $x' \in \Omega$ and channel of the output NF.

NF input: gradients w.r.t. inputs
Here we combine the NF to vector and NF to NF cases for brevity. For fixed \(\tilde{x} \in \Omega \), the discretized derivative of \(H_\phi \) w.r.t. \(f(\tilde{x}) \) can be written:

\[
\frac{\partial}{\partial f(\tilde{x})} \hat{H}_\phi^N[f] = \frac{\partial}{\partial f(\tilde{x})} \left(\frac{1}{|X_N|} \sum_{x \in X_N} H_\phi[f](x) \right) = \lim_{\tau \to 0} \frac{1}{\tau|X_N|} \sum_{x \in X_N} H_\phi[f + \tau \psi_\tilde{x}^N](x) - H_\phi[f](x),
\]

(31)

where \(\psi_\tilde{x}^N \) is any function in \(W^{[\alpha],1}(\Omega) \) that is 1 at \(\tilde{x} \) and 0 on \(X_N \setminus \{ \tilde{x} \} \), and whose weak derivatives are 0 on \(X_N \). As an example, take the bump function which vanishes outside a small neighborhood of \(\tilde{x} \) and smoothly ramps to 1 on a smaller neighborhood of \(\tilde{x} \), making its weak derivative 0 at \(\tilde{x} \).

By (23) we know that the sequences \(\| \hat{H}_\phi^N[f] - H_\phi[f] \| \) and \(\| \hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - H_\phi[f + \tau \psi_\tilde{x}^N] \| \) converge uniformly in \(N \) to 0 for any \(\tau > 0 \), where we can use the \(\ell_1 \) norm for vector outputs or the \(L^1 \) norm for NF outputs. So for any \(\epsilon > 0 \) and any \(\tau > 0 \), we can choose \(N_0 \) large enough such that for any \(N > N_0 \):

\[
\| \hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - H_\phi[f + \tau \psi_\tilde{x}^N] \| < \frac{\epsilon}{2},
\]

(33)

and

\[
\| \hat{H}_\phi^N[f] - H_\phi[f] \| < \frac{\epsilon}{2}.
\]

(34)

Then,

\[
\| \hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - H_\phi[f + \tau \psi_\tilde{x}^N] \| + \| \hat{H}_\phi^N[f] - H_\phi[f] \| < \epsilon,
\]

(35)

by the triangle inequality,

\[
\left\| \left(\hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - H_\phi[f + \tau \psi_\tilde{x}^N] \right) - \left(\hat{H}_\phi^N[f] - H_\phi[f] \right) \right\| < \epsilon
\]

(36)

hence \(\left\| \left(\hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - \hat{H}_\phi^N[f] \right) - \left(H_\phi[f + \tau \psi_\tilde{x}^N] - H_\phi[f] \right) \right\| \) converges uniformly to 0. Since the distance between two vectors is 0 iff they are the same, we can write:

\[
\lim_{N \to \infty} \hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - \hat{H}_\phi^N[f] = \lim_{N \to \infty} H_\phi[f + \tau \psi_\tilde{x}^N] - H_\phi[f],
\]

(38)

\[
\lim_{\tau \to 0} \lim_{N \to \infty} \left(\hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - \hat{H}_\phi^N[f] \right) = \lim_{\tau \to 0} \lim_{N \to \infty} \left(H_\phi[f + \tau \psi_\tilde{x}^N] - H_\phi[f] \right).
\]

(39)

By the Moore-Osgood theorem,

\[
\lim_{N \to \infty} \lim_{\tau \to 0} \frac{1}{\tau} \left(\hat{H}_\phi^N[f + \tau \psi_\tilde{x}^N] - \hat{H}_\phi^N[f] \right) = \lim_{N \to \infty} \lim_{\tau \to 0} \frac{1}{\tau} \left(H_\phi[f + \tau \psi_\tilde{x}^N] - H_\phi[f] \right)
\]

(40)

\[
\lim_{N \to \infty} \lim_{\tau \to 0} \frac{\partial}{\partial f(\tilde{x})} \hat{H}_\phi^N[f] = \lim_{N \to \infty} dH_\phi[f; \psi_\tilde{x}^N].
\]

(41)

The limit on the right hand side is finite due to Fréchet differentiability of \(H_\phi \) at all \(f \).

For each discretization \(X_N \), choose a sequence of bump functions around each \(x \in X_N \), \(\{ \psi_\tilde{x}^N \}_{\tilde{x} \in X_N} \). An example of such a family is the (appropriately designed) partitions of unity with \(|X_N| \) elements.

Then the discretized gradient w.r.t. \(\pi f \) converges to the limit of the Gateaux derivatives of \(H_\phi \) w.r.t. the bump function sequence as \(N \to \infty \).

Lemma 2. Chained discretized derivatives converge to the chained Gateaux derivatives. □
where the bump function ψ w.r.t. the input, we would like to show the analogue of (41):

Then we complete the equality in (42) as follows:

$$
\frac{\partial}{\partial f(x)} \left(\hat{H}_\theta^N \circ \hat{H}_\phi^N \right)[f] = \frac{\partial}{\partial f(x)} \left(H_\theta \left[\hat{H}_\phi^N[f] \right](x) \right)
$$

as in (32).

By (41) we know $\|H_\theta \left[\hat{H}_\phi^N[f + \tau \psi_\tau^N] \right] - H_\theta \left[\hat{H}_\phi^N[f + \tau \psi_\tau^N] \right]\|$ converges to 0 in N for all $\tau > 0$ (where we can use the ℓ_1 norm for vector outputs or the L^1 norm for NF outputs), as does $\|H_\theta \left[\hat{H}_\phi^N[f] \right] - H_\theta \left[\hat{H}_\phi^N[f] \right]\|_{L^1}$. Reasoning as in (33)-(40), we have:

$$
\lim_{N \to \infty} \lim_{\tau \to 0} \frac{1}{\tau} \left(H_\theta \left[\hat{H}_\phi^N[f + \tau \psi_\tau^N] \right] - H_\theta \left[\hat{H}_\phi^N[f] \right] \right)
$$

Note that

$$
d\mathcal{H}[f; \psi_\tau^N] = \frac{1}{\tau} \left(\hat{H}_\phi^N[f + \tau \psi_\tau^N] - \hat{H}_\phi^N[f] \right) + o(\tau)
$$

Then we complete the equality in (42) as follows:

$$
\text{LHS} = \lim_{N \to \infty} \frac{\partial}{\partial f(x)} \left(\hat{H}_\theta^N \circ \hat{H}_\phi^N \right)[f]
$$

The case of derivatives w.r.t. parameters is straightforward. In the same way we used (33)-(40) to obtain (41), we have:

$$
\lim_{N \to \infty} \frac{\partial}{\partial \theta_k} (\hat{H}_\theta^N \circ \hat{H}_\phi^N)[f] = \lim_{N \to \infty} \frac{1}{\tau} \left(\hat{H}_\theta^N \left[\hat{H}_\phi^N[\tau \psi_\tau^N] \right] - \hat{H}_\theta^N[\mathcal{H}^N][f] \right)
$$

By induction, the chained derivatives converge for an arbitrary number of layers.
We now state the following lemmas which will be used to prove our universal approximation theorem.

Let \(\mathcal{G} \) be a set of functions that are measurable, and thus which measures on \(\mathbb{R}^N \) are permitted. However, if the desired measure \(\nu \) is not permitted, we may write it as an open problem. Since \(\mathcal{G} \) is not a Lipschitz continuous map, hence it is expressible by a DI-Net layer.

Consider a Lipschitz continuous map \(\mathcal{R} : \mathcal{G} \to \mathcal{G}' \) such that \(d(\mathcal{R}[f], \mathcal{R}[g])_{L^1} \leq M_0 d(f, g)_{L^1} \) for some constant \(M_0 \) and all \(f, g \in \mathcal{G} \). Let \(M = \max\{M_0, 1\} \).

Fix a discretization \(X \subset \Omega \) with discrepancy \(D(X) = 12(M + 2)\). By (1) this yields:

\[
\frac{1}{|X|} \sum_{x' \in X} f(x') - \int_{\Omega} f(x) \, dx \leq \frac{\epsilon}{12(M + 2)},
\]

for all \(f \in \mathcal{G} \cup \mathcal{G}' \). Let \(N' \) be the number of points in \(X \).

Define the equivalence relation \(\sim \) and projection \(\pi \) as in Definition 5. \(L^2(\Omega)/\sim \) is isomorphic to \(\mathbb{R}^{N'} \), and thus can be given the normalized \(\ell^1 \) norm:

\[
\|\pi f\|_{\ell^1} = \frac{1}{|X|} \sum_{x' \in X} |f(x')|.
\]

Definition 7. Denote the preimage of \(\pi \) as \(\pi^{-1} : \mathcal{G}' \to \{ f' \in \mathcal{G}' : \pi f' = f \} \). Invoking the axiom of choice, define the inverse projection \(\pi^{-1} : \pi \mathcal{G}' \to \mathcal{G}' \) by a choice function over the sets \(\pi^{-1}(\pi \mathcal{G}') \).

Note that this inverse projection corresponds to some way of interpolating the \(N \) sample points such that the output is in \(\mathcal{G}' \). Although our definition implies the existence of such an interpolator, we leave its specification as an open problem. Since \(\Omega \) only permits discontinuities along a fixed Borel subset of \([0, 1]^d\), these boundaries can be specified \(\text{a priori} \) in the interpolator. Since all functions in \(\mathcal{G}' \) are bounded and continuous outside this set, the interpolator can be represented by a bounded continuous map, hence it is expressible by a DI-Net layer.

Definition 8. \(\pi \) generates a \(\sigma \)-algebra on \(\mathcal{G} \) given by \(\mathcal{A} = \{ \pi^{-1}(S) : S \in \mathcal{L} \} \), with \(\mathcal{L} \) the \(\sigma \)-algebra of Lebesgue measurable sets on \(\mathbb{R}^N \). Because this \(\sigma \)-algebra depends on \(\epsilon \) and the Lipschitz constant of \(\mathcal{R} \) via the point set’s discrepancy, we may write it as \(\mathcal{A}_{\epsilon, \mathcal{R}} \).

In this formulation, we let the tolerance \(\epsilon \) and the Lipschitz constant of \(\mathcal{R} \) dictate what subsets of \(\mathcal{G} \) are measurable, and thus which measures on \(\mathcal{G} \) are permitted. However, if the desired measure \(\nu \) is more fine-grained than what is permitted by \(\mathcal{A}_{\epsilon, \mathcal{R}} \), then it is \(\nu \) that should determine the number of sample points \(N \), rather than \(\epsilon \) or \(\mathcal{R} \).

We now state the following lemmas which will be used to prove our universal approximation theorem.

Lemma 3. There is a map \(\tilde{\mathcal{R}} : \pi \mathcal{G} \to \pi \mathcal{G}' \) such that

\[
\int_{\Omega} \left| \tilde{\mathcal{R}}[f](x) - \pi^{-1} \circ \tilde{\mathcal{R}} \circ \pi [f](x) \right| \, dx = \frac{\epsilon}{6}.
\]
Proof. Let \(g(x) = |f(x)| \) for \(f \in \mathcal{G} \cup \mathcal{G}' \). Because (62) applies to \(g(x) \), we have:

\[
\left| \frac{1}{|X|} \sum_{x' \in X} g(x') - \int_{\Omega} g(x) \, dx \right| \leq \frac{\epsilon}{12(M + 2)} \quad (65)
\]

\[
\left\| \pi f \right\|_{\ell^1} - \left\| f \right\|_{L^1} \leq \frac{\epsilon}{12(M + 2)} \quad (66)
\]

Eqn. (66) also implies that for any \(f \in \pi \mathcal{G} \cup \pi \mathcal{G}' \), we have:

\[
\left\| f \right\|_{\ell^1} - \left\| \pi^{-1} f \right\|_{L^1} \leq \frac{\epsilon}{12(M + 2)} \quad (67)
\]

Combining (66) and (67), we obtain

\[
\left\| f \right\|_{L^1} - \left\| \pi^{-1} \circ \pi [f] \right\|_{L^1} \leq \frac{\epsilon}{6(M + 2)} \quad (68)
\]

By the triangle inequality and applying \(\mathcal{R} \):

\[
\int_{\Omega} \left| \mathcal{R}[f](x) - \pi^{-1} \circ \pi \circ \mathcal{R}[f](x) \right| \, dx \leq \frac{\epsilon}{6(M + 2)} \quad (69)
\]

For any \(f, g \in \mathcal{G} \) such that \(\pi f = \pi g \), (66) tells us that \(d(f, g)_{L^1} \) is at most \(\epsilon/(M + 2) \). Recall \(M \) was defined such that \(d\left(\mathcal{R}[f], \mathcal{R}[g] \right)_{L^1} \leq M \cdot d(f, g)_{L^1} \) for any \(\mathcal{R} \).

\[
d(\pi \circ \mathcal{R}[f], \pi \circ \mathcal{R}[g])_{L^1} \leq \frac{M \epsilon}{6(M + 2)} + \frac{\epsilon}{6(M + 2)} \quad (70)
\]

\[
= \frac{(M + 1) \epsilon}{(M + 2) 6} \quad (71)
\]

So defining:

\[
\tilde{\mathcal{R}} = \arg \min_{\mathcal{H}} d(\mathcal{H} \circ \pi [f], \pi \circ \mathcal{R}[f])_{\ell^1},
\]

we have

\[
\left| \tilde{\mathcal{R}} \circ \pi [f] - \pi \circ \mathcal{R}[f] \right| \leq \frac{(M + 1) \epsilon}{(M + 2) 6} \quad (72)
\]

Then by (69),

\[
\int_{\Omega} \left| \mathcal{R}[f](x) - \pi^{-1} \circ \tilde{\mathcal{R}} \circ \pi [f](x) \right| \, dx \leq \frac{\epsilon}{6(M + 2)} + \frac{(M + 1) \epsilon}{(M + 2) 6} \quad (73)
\]

\[
= \frac{\epsilon}{6} \quad (74)
\]

Lemma 4. Consider the extension of \(\tilde{\mathcal{R}} \) to \(\mathbb{R}^N \rightarrow \mathbb{R}^N \) in which each component of the output has the form:

\[
\tilde{\mathcal{R}}_j(f) = \begin{cases} \mathcal{R}[\pi^{-1}f](x) & \text{if } f \in \pi \mathcal{G} \\ 0 & \text{otherwise.} \end{cases} \quad (75)
\]

Then any finite measure \(\nu \) on the measurable space \((\mathcal{G}, \mathcal{A}) \) induces a finite measure \(\mu \) on \((\mathbb{R}^N, \mathcal{L}) \), and \(\int_{\mathbb{R}^N} |\tilde{\mathcal{R}}_j(f)| \mu(df) < \infty \) for each \(j \).
which the extension of π is finite and defined w.r.t. the Lebesgue measurable sets on πG. Since πG can be identified with a measurable subset of \mathbb{R}^N, μ can be naturally extended to \mathbb{R}^N. Doing so makes it absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^N.

To show $\mathcal{R}_j(f)$ is integrable, it is sufficient to show it is bounded and compactly supported.

G is bounded in the L^1 norm. Thus by (66), πG is bounded in the normalized ℓ_1 norm. The ℓ_1 norm in \mathbb{R}^N is strongly equivalent to the uniform norm, so there is some compact set $[-c,c]^N$, $c > 0$ for which the extension of πG to \mathbb{R}^N vanishes, so $\text{supp}(\mathcal{R}_j(f)) \subseteq [-c,c]^N$.

Similarly, $\pi G'$ is bounded in the ℓ^1 norm, hence there exists c' such that $\mathcal{R}_j < c'$ for all j.

Lemma 5. For any finite measure μ absolutely continuous w.r.t. the Lebesgue measure on \mathbb{R}^n, $J \in L^1(\mu)$ and $\epsilon > 0$, there is a network K such that:

$$\int_{\mathbb{R}^n} |J(f) - K(f)| \mu(d\mathbf{f}) < \frac{\epsilon}{2}.$$ \hspace{1cm} (77)

Proof. The following construction is adapted from [Lu et al. (2017)]. Since J is integrable, there is a cube $E = [-c,c]^n$ such that:

$$\int_{\mathbb{R}^n \setminus E} |J(f)| \mu(d\mathbf{f}) < \frac{\epsilon}{8}$$ \hspace{1cm} (78)

$$\|J - 1_E J\|_1 < \frac{\epsilon}{8}.\hspace{1cm} (79)$$

Case 1: J is non-negative on all of \mathbb{R}^n

Define the set under the graph of $J|_E$:

$$G_{E,J} \triangleq \{(f,y) : f \in E, y \in [0,J(f)]\}. \hspace{1cm} (80)$$

$G_{E,J}$ is compact in \mathbb{R}^{n+1}, hence there is a finite cover of open rectangles $\{R_i\}$ satisfying $\mu(\cup_i R_i) - \mu(G_{E,J}) < \frac{\epsilon}{8}$ on \mathbb{R}^n. Take their closures, and extend the sides of all rectangles indefinitely. This results in a set of pairwise almost disjoint rectangles $\{R_i\}$. Taking only the rectangles $R = \{R_i : \mu(R_i \cap G_{E,J}) > 0\}$ results in a finite cover satisfying:

$$\sum_{i=1}^{|R|} \mu(R_i) - \mu(G_{E,J}) < \frac{\epsilon}{8}. \hspace{1cm} (81)$$

This implies:

$$\sum_{i=1}^{|R|} \mu(R_i) < \|J\|_1 + \frac{\epsilon}{8}, \hspace{1cm} (82)$$

and also,

$$\frac{\epsilon}{8} > \sum_{i=1}^{|R|} \int_{\mathbb{R}^n} 1_{R_i}(f,J(f)) \mu(d\mathbf{f}) + \|J\|_1 \hspace{1cm} (83)$$

$$\geq \int_{E} |J(f) - \sum_{i=1}^{|R|} 1_{R_i}(f,J(f))| \mu(d\mathbf{f}), \hspace{1cm} (84)$$

by the triangle inequality. For each $R_i = [a_{i1}, b_{i1}] \times \ldots \times [a_{in}, b_{in}] \times [\zeta_i, \zeta_i + y_i]$, let X_i be its first n components (i.e., the projection of R_i onto \mathbb{R}^n). Then we have

$$\int_{E} |J(f) - \sum_{i=1}^{|R|} y_i 1_{X_i}(f)| \mu(d\mathbf{f}) < \frac{\epsilon}{8}. \hspace{1cm} (85)$$
Let $Y(f) \triangleq \sum_{i=1}^{\lvert R \rvert} y_i \mathbb{1}_{X_i}(f)$. By the triangle inequality,

$$
\int_{\mathbb{R}^n} |J(f) - K(f)| \mu(df) \leq \|J - \mathbb{1}_E J\|_1 + \|\mathbb{1}_E J - Y\|_1 + \|K - Y\|_1
$$

(86)

$$
< \frac{\epsilon}{4} + \|K - Y\|_1,
$$

(87)

by (79) and (85). So it remains to construct K such that $\|K - Y\|_1 < \frac{\epsilon}{4}$. Because $\mathbb{1}_{X_i}$ is discontinuous at the boundary of the rectangle X_i, it cannot be produced directly from a DI-Net (recall that all layers are continuous maps). However, we can approximate it arbitrarily well with a piece-wise linear function that rapidly ramps from 0 to 1 at the boundary.

For fixed rectangle X_i and $\delta \in (0, 0.5)$, consider the inner rectangle $X_{i\delta} \subset X_i$:

$$
X_{i\delta} = (a_1 + \delta(b_1 - a_1), b_1 - \delta(b_1 - a_1)) \times \cdots \times (a_n + \delta(b_n - a_n), b_n - \delta(b_n - a_n)),
$$

(88)

where we omit subscript j for clarity. Letting $b'_i = b_i - \delta(b_i - a_i)$, define the function:

$$
T(f) = \prod_{i=1}^{n} \frac{1}{\delta} \left[\text{ReLU}(\delta - \text{ReLU}(f_i - b'_i)) - \text{ReLU}(\delta - \text{ReLU}(f_i - a_i))\right],
$$

(89)

where $\text{ReLU}(x) = \max(x, 0)$. $T(f)$ is a piece-wise linear function that ramps from 0 at the boundary of X_i to 1 within $X_{i\delta}$, and vanishes outside X_i. Note that

$$
\|\mathbb{1}_{X_i} - T\|_1 < \mu(X) - \mu(X_{i\delta})
$$

(90)

$$
= (1 - (1 - 2\delta)^n)\mu(X),
$$

(91)

if μ is the Lebesgue measure. δ may need to be smaller under other measures, but this adjustment is independent of the input f so it can be specified a priori.

Recall that the function we want to approximate is $Y(f) = \sum_{i=1}^{\lvert R \rvert} y_i \mathbb{1}_{X_i}(f)$. We can build NF-Net layers $K : f \mapsto K(f) = \sum_{i=1}^{\lvert R \rvert} y_i T_i(f)$, since this only involves linear combinations and ReLUs. Then,

$$
\|K - Y\|_1 = \int_{\mathbb{R}^n} \sum_{i=1}^{\lvert R \rvert} y_i (T_i(f) - \mathbb{1}_{X_i}(f)) \, df
$$

(92)

$$
= \sum_{i=1}^{\lvert R \rvert} y_i \|\mathbb{1}_{X_i} - T_i\|_1
$$

(93)

$$
< (1 - (1 - 2\delta)^n) \sum_{i=1}^{\lvert R \rvert} y_i \mu(X_i)
$$

(94)

$$
= (1 - (1 - 2\delta)^n) \sum_{i=1}^{\lvert R \rvert} \mu(R_i)
$$

(95)

$$
< (1 - (1 - 2\delta)^n) \left(\|J\|_1 + \frac{\epsilon}{8} \right),
$$

(96)

by (82). And so by choosing:

$$
\delta = \frac{1}{2} \left(1 - \left(1 - \frac{\epsilon}{4} \left(\|J\|_1 + \frac{\epsilon}{8} \right)^{-1} \right)^{1/n} \right),
$$

(97)

we have our desired bound $\|K - Y\|_1 < \frac{\epsilon}{4}$ and thereby $\|J - K\|_1 < \frac{\epsilon}{2}$.

Case 2: J is negative on some region of \mathbb{R}^n

Letting $J^+(f) = \max(0, J(f))$ and $J^-(f) = \max(0, -J(f))$, define:

$$
G_{E,J}^+ \triangleq \{(f, y) : f \in E, y \in [0, J^+(f)]\}
$$

(98)

$$
G_{E,J}^- \triangleq \{(f, y) : f \in E, y \in [0, J^-(f)]\}.
$$

(99)
As in [81], construct covers of rectangles R^+ over $G_{E,J}^+$ and R^- over $G_{E,J}^-$ each with bound $\frac{\epsilon}{16}$ and \mathbb{R}^n projections X^+, X^-. Let:

$$Y^+(f) = \sum_{i=1}^{\left| R^+ \right|} y_i^+ \mathbb{1}_{X_i^+}(f)$$

(100)

$$Y^-(f) = \sum_{i=1}^{\left| R^- \right|} y_i^- \mathbb{1}_{X_i^-}(f)$$

(101)

$$Y = Y^+ - Y^-$$

(102)

We can derive an equivalent expression to (85):

$$\frac{\epsilon}{8} > \int_{E} |J(f) - \sum_{i=1}^{\left| R^+ \right|} y_i^+ \mathbb{1}_{X_i^+}(f) + \sum_{i=1}^{\left| R^- \right|} y_i^- \mathbb{1}_{X_i^-}(f)| \, df$$

(103)

$$= \| \mathbb{1}_{E} - Y \|_1.$$

(104)

Similarly to earlier, we use (79) and (104) to get:

$$\int_{\mathbb{R}^n} |J(f) - \mathcal{K}(f)| \, df < \frac{\epsilon}{4} + \|\mathcal{K} - Y\|_1.$$

(105)

Choosing $T_i^+(f)$ and $T_i^-(f)$ the piece-wise linear functions associated with X_i^+ and X_i^-, and:

$$\mathcal{K}(f) = \sum_{i=1}^{\left| R^+ \right|} y_i^+ T_i^+(f) - \sum_{i=1}^{\left| R^- \right|} y_i^- T_i^-(f),$$

(106)

we have:

$$\|\mathcal{K} - Y\|_1 = \int_{\mathbb{R}^n} \left| \sum_{i=1}^{\left| R^+ \right|} y_i^+ \left(T_i^+(f) - \mathbb{1}_{X_i^+}(f) \right) - \sum_{i=1}^{\left| R^- \right|} y_i^- \left(T_i^-(f) - \mathbb{1}_{X_i^-}(f) \right) \right| \, df,$$

(107)

applying the triangle inequality,

$$\leq \sum_{i=1}^{\left| R^+ \right|} y_i^+ \left\| \mathbb{1}_{X_i^+} - T_i^+ \right\|_1 + \sum_{i=1}^{\left| R^- \right|} y_i^- \left\| \mathbb{1}_{X_i^-} - T_i^- \right\|_1$$

(108)

$$< (1 - (1 - 2\delta^+)n) \sum_{i=1}^{\left| R^+ \right|} y_i^+ \mu(X_i^+) + (1 - (1 - 2\delta^-)n) \sum_{i=1}^{\left| R^- \right|} y_i^- \mu(X_i^-)$$

(109)

$$< (1 - (1 - 2\delta^+)n) \left(\|J^+\|_1 + \frac{\epsilon}{16} \right) + (1 - (1 - 2\delta^-)n) \left(\|J^-\|_1 + \frac{\epsilon}{16} \right).$$

(110)

By choosing:

$$\delta^+ = \frac{1}{2} \left(1 - \left(1 - \frac{\epsilon}{8} \left(\|J^+\|_1 + \frac{\epsilon}{16} \right)^{-1/n} \right)^{1/n} \right)$$

(111)

$$\delta^- = \frac{1}{2} \left(1 - \left(1 - \frac{\epsilon}{8} \left(\|J^-\|_1 + \frac{\epsilon}{16} \right)^{-1/n} \right)^{1/n} \right),$$

(112)

and proceeding as before, we arrive at the same bounds $\|\mathcal{K} - Y\|_1 < \frac{\epsilon}{4}$ and $\|J - \mathcal{K}\|_1 < \frac{\epsilon}{2}$.
Putting it all together, Algorithm 3 implements the network logic for producing the function K.

Algorithm 3: DI-Net approximation of $f \mapsto J(f)$

Setup

Input: target function J, L_1 tolerance $\epsilon/2$

Choose rectangles $R^+_i = [a^+_i, b^+_i] \times \ldots \times [a^+_n, b^+_n] \times [\zeta^+_i, \zeta^+_i + y^+_i]$ satisfying (81) and R^- similarly

\[
\delta^+ = \frac{1}{2} \left(1 - \frac{\epsilon}{8} \left(\|J^+\|_1 + \frac{\epsilon}{16}\right)^{-1/3} \right)
\]

\[
\delta^- = \frac{1}{2} \left(1 - \frac{\epsilon}{8} \left(\|J^-\|_1 + \frac{\epsilon}{16}\right)^{-1/3} \right)
\]

Inference

Input: discretized input $f = \{f_k\}_{k=1}^n$

$x \leftarrow (0, 0, 1, 0, 0)$

for rectangle $R^+_i \in R^+$ **do**

for dimension $k \in 1 : n$ **do**

\[
x \leftarrow (f_k - b^+_ik + \delta(b^+_ik - a^+_ik), f_k - a^+_ik, x_3, x_4, x_5)
\]

\[
x \leftarrow \text{ReLU}(x)
\]

\[
x \leftarrow (\delta - x_1, \delta - x_2, x_3, x_4, x_5)
\]

\[
x \leftarrow \text{ReLU}(x)
\]

\[
x \leftarrow (0, 0, x_3(x_1 - x_2)/\delta, x_4, x_5)
\]

end

end

for rectangle $R^-_i \in R^-$ **do**

for dimension $k \in 1 : n$ **do**

\[
x \leftarrow (f_k - b^-ik + \delta(b^-ik - a^-ik), f_k - a^-ik, x_3, x_4, x_5)
\]

\[
x \leftarrow \text{ReLU}(x)
\]

\[
\ldots
\]

end

end

Output: $x_4 - x_5$

We can provide x with access to f either through skip connections or by appending channels with the values $\{c + f_k\}_{k=1}^n$ (which will be preserved under ReLU).

\[\square\]

Theorem 3 (Maps between Single-Channel NFs). For any Lipschitz continuous map $R : \mathcal{G} \rightarrow \mathcal{G}'$, any $\epsilon > 0$, and any finite measure ν w.r.t. the measurable space $(\mathcal{G}, \mathcal{A}, \mathcal{F})$, there exists a DI-Net T that satisfies:

\[
\int_{\mathcal{G}} \|R(f) - T(f)\|_{L^1(\nu)} \nu(df) < \epsilon.
\]

(Proof. If ν is not normalized, the discrepancy of our point set needs to be further divided by $\max\{\nu(\mathcal{G}), 1\}$. We assume for the remainder of this section that ν is normalized. Perform the construction of Lemma 4 N times, each with a tolerance of $\epsilon/2N$. Choose a partition of unity $\{\psi_j\}$ for which $\psi_j(x_k) = \delta_j k$, and output N channels with the values $\{K_j(f)\psi_j(\cdot)\}_{j=1}^N$. By summing these channels we obtain a network \tilde{K} that fully specifies the desired behavior of $\tilde{R} : \mathbb{R}^N \rightarrow \mathbb{R}^N$, with combined error:

\[
\int_{\mathbb{R}^N} \|\tilde{R}(f) - \tilde{K}(f)\|_{L^1(\mu)} \mu(df) < \frac{\epsilon}{2}.
\]

Thus,

\[
\int_{\mathcal{G}} \left| \frac{1}{|X|} \sum_{x' \in X} \mathcal{R} \circ \pi[f](x') - \tilde{K} \circ \pi[f](x) \right| \nu(df) \leq \frac{\epsilon}{2}.
\]
By (67) we have:
\[
\int_{\Omega} \left| \pi^{-1} \circ \tilde{R} \circ \pi[f](x) - \pi^{-1} \circ \tilde{K} \circ \pi[f](x) \right| dx \leq \frac{\epsilon}{2} + \frac{\epsilon}{6(M + 2)} \tag{116}
\]

By Lemma 3 we have:
\[
\int_{\Omega} \left| \mathcal{R}[f](x) - \pi^{-1} \circ \tilde{K} \circ \pi[f](x) \right| dx \nu(df) \leq \frac{\epsilon}{2} + \frac{\epsilon}{6(M + 2)} + \frac{\epsilon}{6} \tag{117}
\]

And thus the network \(\mathcal{T} = \pi^{-1} \circ \tilde{K} \circ \pi \) gives us the desired bound:
\[
\int_{\mathcal{G}} \| \mathcal{R}(f) - \mathcal{T}(f) \|_{L^1(\Omega)} \nu(df) < \epsilon. \tag{118}
\]

\[\square\]

Corollary 2 (Maps from NFs to vectors). For any Lipschitz continuous map \(\mathcal{R} : \mathcal{G} \rightarrow \mathbb{R}^n \), any \(\epsilon > 0 \), and any finite measure \(\nu \) w.r.t. the measurable space \((\mathcal{G}, \mathcal{A}, \nu) \), there exists a DI-Net \(\mathcal{T} \) that satisfies:
\[
\int_{\mathcal{G}} \| \mathcal{R}(f) - \mathcal{T}(f) \|_{\ell_1(\mathbb{R}^n)} \nu(df) < \epsilon. \tag{119}
\]

Proof. Let \(M_0 \) be the Lipschitz constant of \(\mathcal{R} \) in the sense that \(d(\mathcal{R}[f], \mathcal{R}[g])_{\ell^1} \leq M_0 d(f, g)_{\ell^1} \). Let \(M = \max\{M_0, 1\} \). There exists \(\mathcal{R} : \pi \mathcal{G} \rightarrow \mathbb{R}^n \) such that \(\| \mathcal{R} \circ \pi[f] - \mathcal{R}[f] \|_{\ell^1} \leq \epsilon/12 \). As in Lemma 4, consider the extension of \(\tilde{R} \) to \(\mathbb{R}^N \rightarrow \mathbb{R}^n \) in which each component of the output has the form:
\[
\tilde{R}_j(f) = \begin{cases}
\mathcal{R}[\pi^{-1}f]_j & \text{if } f \in \pi \mathcal{G} \\
0 & \text{otherwise}.
\end{cases} \tag{120}
\]

Then for similar reasoning, \(\nu \) on \(\mathcal{G} \) induces a measure \(\mu \) on \(\mathbb{R}^N \) that is finite and absolutely continuous w.r.t. the Lebesgue measure, and \(\int_{\mathbb{R}^N} |\tilde{R}_j(f)| \mu(df) < \infty \) for each \(j \).

We construct our \(\mathbb{R}^N \rightarrow \mathbb{R} \) approximation \(n \) times with a tolerance of \(\epsilon/2n \), such that:
\[
\int_{\mathbb{R}^N} \| \tilde{R}(f) - \tilde{K}(f) \|_{\ell_1(\mathbb{R}^n)} \mu(df) < \frac{\epsilon}{2}. \tag{121}
\]

Applying (66), we find that the network \(\mathcal{T} = \tilde{K} \circ \pi \) gives us the desired bound:
\[
\int_{\mathcal{G}} \| \mathcal{R}(f) - \mathcal{T}(f) \|_{\ell_1(\mathbb{R}^n)} \nu(df) < \epsilon. \tag{122}
\]

\[\square\]

Corollary 3 (Maps from vectors to NFs). For any Lipschitz continuous map \(\mathcal{R} : \mathbb{R}^n \rightarrow \mathcal{G} \) and any \(\epsilon > 0 \), there exists a DI-Net \(\mathcal{T} \) that satisfies:
\[
\int_{\mathbb{R}^n} \| \mathcal{R}(x) - \mathcal{T}(x) \|_{L^1(\Omega)} dx < \epsilon. \tag{123}
\]

Proof. Define the map \(\tilde{R} : \mathbb{R}^n \rightarrow \pi \mathcal{G} \subset \mathbb{R}^N \) by \(\tilde{R} = \pi \circ \mathcal{R} \). Since \(\tilde{R} \) is bounded and compactly supported, \(\int_{\mathbb{R}^N} |\tilde{R}_i(x)| dx < \infty \) for each \(i \).

We construct a \(\mathbb{R}^n \rightarrow \mathbb{R} \) approximation \(N \) times each with a tolerance of \(\epsilon/2N \), such that:
\[
\int_{\mathbb{R}^n} \| \tilde{R}(x) - \tilde{K}(x) \|_{L^1(\Omega)} dx < \frac{\epsilon}{2}. \tag{124}
\]

Applying (67), we find that the network \(\mathcal{T} = \pi^{-1} \circ \tilde{K} \) gives us the desired bound:
\[
\int_{\mathbb{R}^n} \| \mathcal{R}(x) - \mathcal{T}(x) \|_{L^1(\Omega)} dx < \epsilon. \tag{125}
\]

\[\square\]
Denote the space of multi-channel NFs as $\mathcal{F}_c = \{ f : \Omega \to \mathbb{R}^c : \int_\Omega \| f \|_1 dx < \infty, f_i \in \mathcal{G} \text{ for each } i \}$. Denote the norm on this space as:

$$\| f \|_{\mathcal{F}_c} = \int_\Omega \sum_{i=1}^c |f_i(x)| dx.$$ \hfill (126)

\mathcal{F}_1 is identified with \mathcal{G}.

Definition 9 (Concatenation). Concatenation is a map from two NF channels $f_i, f_j \in \mathcal{G}$ to $[f_i, f_j] \in \mathcal{F}_2$. The concatenation of NFs can be defined inductively to yield $\mathcal{F}_n \times \mathcal{F}_m \to \mathcal{F}_{n+m}$ for any $n, m \in \mathbb{N}$.

All maps $\mathcal{F}_n \times \mathcal{F}_m \to \mathcal{F}_c$ can be expressed as a concatenation followed by a map $\mathcal{F}_{n+m} \to \mathcal{F}_c$. A map $\mathbb{R}^n \to \mathcal{F}_m$ is also equivalent to m maps $\mathbb{R}^n \to \mathcal{G}$ followed by concatenation. Thus, we need only characterize the maps that take one multi-channel NF as input.

Considering the maps $\mathcal{F}_n \to \mathcal{F}_m$, we choose a lower discrepancy point set X on Ω such that the Koksma–Hlawka inequality yields a bound of $\epsilon/12mn(M + 2)$. Let π project each component of the input to $\pi \mathcal{G}$, and π^{-1} inverts this projection under some choice function. We take \mathcal{G}' to be the product σ-algebra generated from this π: $\mathcal{G}' = \{ E_1 \times \cdots \times E_c : E_1, \ldots, E_c \in \mathcal{A} \}$ where \mathcal{A} is the σ-algebra on \mathcal{G} from Definition 8.

Corollary 4 (Maps between multi-channel NFs). For any Lipschitz continuous map $\mathcal{R} : \mathcal{F}_n \to \mathcal{F}_m$, any $\epsilon > 0$, and any finite measure ν w.r.t. the measurable space $(\mathcal{F}_n, \mathcal{A}'_{c, \mathcal{R}})$, there exists a DI-Net T that satisfies:

$$\int_{\mathcal{F}_n} \| \mathcal{R}(f) - T(f) \|_{\mathcal{F}_m} \nu(df) < \epsilon.$$

Proof. The proof is very similar to that of Theorem 8. Our network now requires nN maps from $\mathbb{R}^{mN} \to \mathbb{R}$ each with error $\epsilon/2mnN$. Summing the errors across all input and output channels yields our desired bound. \hfill \Box

The multi-channel analogue of Corollary 2 is clear, and we state it here for completeness:

Corollary 5 (Maps from multi-channel NFs to vectors). For any Lipschitz continuous map $\mathcal{R} : \mathcal{F}_n \to \mathbb{R}^m$, any $\epsilon > 0$, and any finite measure ν w.r.t. the measurable space $(\mathcal{F}_n, \mathcal{G}'_{c, \mathcal{R}})$, there exists a DI-Net T that satisfies:

$$\int_{\mathcal{F}_n} \| \mathcal{R}(f) - T(f) \|_{\mathcal{F}_1(\mathbb{R}^m)} \nu(df) < \epsilon.$$

\hfill (128)

C Pixel-Based DI-Net Layers

Here we present a variety of layers that show how to generalize pixel-based networks (convolutional neural networks and vision transformers) to DI-Net equivalents. Many of the following layers were not directly used in our experiments, and we leave an investigation of their properties for future work. We use c_{in} to denote the number of channels of an input NF and c_{out} to denote the number of channels of an output NF.

Convolution layer The convolution layer aggregates information locally and across channels. It has $c_{in}c_{out}$ learned filters K_{ij}, which are defined on some support S which may be a ball or orthotope. The layer also learns scalar biases b_j for each output channel:

$$g_j = \sum_{i=1}^{c_{in}} K_{ij} \ast f_i + b_j,$$

\hfill (129)

with \ast the continuous convolution as in [11].

To transfer weights from a discrete convolutional layer, K can be parameterized as a rectangular B-spline surface that interpolates the weights (Fig. 2(left)). To replicate the behavior of a discrete convolution layer with odd kernel size, S is zero-centered. For even kernel size, we shift S by half.
the dimensions of a pixel. We use a 2nd order B-spline for 3×3 filters and 3rd order for larger filters. We use deBoor’s algorithm to evaluate the spline at intermediate points.

Strided convolution is implemented by simply truncating the output discretization to the desired factor as described in Section 4. Different padding behaviors from the discrete case are treated differently. Zero-padding is replicated by scaling $H[f](x)$ by $\frac{(S + x) - 0}{S + x}$ where $S + x$ is the kernel support S translated by x. For reflection padding, the value of the NF at points outside its domain are calculated by reflection. For no padding, the NF’s domain is reduced accordingly, dropping all sample points that are no longer on the new domain.

Linear combinations of channels Linear combinations of channels mimic the function of 1×1 convolutional layers in discrete networks. For learned scalar weights W_{ij} and biases b_j:

$$g_j(x) = \sum_{i=1}^{c_m} W_{ij} f_i(x) + b_j, \quad (130)$$

for all $x \in \Omega$. These weights and biases can be straightforwardly copied from a 1×1 convolutional layer to obtain the same behavior. One can also adopt a normalized version, sometimes used in attention-based networks:

$$W_{ij} = \frac{w_{ij}}{\sum_{k=1}^{c_m} w_{kj}} \quad (131)$$

Normalization All forms of layer normalization readily generalize to the continuous setting by estimating the statistics of each channel with numerical integration, then applying point-wise operations. These layers typically rescale each channel to have some mean m_i and standard deviation s_i.

$$\mu_i = \int_{\Omega} f_i(x) dx \quad (132)$$

$$\sigma_i^2 = \int_{\Omega} f_i(x)^2 dx - \mu_i^2 \quad (133)$$

$$g_i(x) = \frac{f_i(x) - \mu_i}{\sigma_i + \epsilon} \times s_i + m_i, \quad (134)$$

where we assume dx is normalized and $\epsilon > 0$ is a small constant. Just as in the discrete case, μ_i and σ_i^2 can be a moving average of the means and variances observed over the course of training different NFs, and they can also be averaged over a minibatch of NFs (batch normalization) or calculated per datapoint (instance normalization). Mean m_i and standard deviation s_i can be learned directly (batch normalization), conditioned on other data (adaptive instance normalization), or fixed at 0 and 1 respectively (instance normalization).

Max pooling There are two natural generalizations of the max pooling layer to a collection of points: 1) assigning each point to the maximum of its k nearest neighbors, and 2) taking the maximum value within a fixed-size window around each point. However, both of these specifications change the output’s behavior as the density of points increases. In the first case, nearest neighbors become closer together so pooling occurs over smaller regions where there is less total variation in the NF. In the second case, the empirical maximum increases monotonically as the NF is sampled more finely closer together so pooling occurs over smaller regions where there is less total variation in the NF. In both of these behaviors are detrimental.

If we consider the role of max pooling as a layer that shuttles gradients through a strong local activation, then it is sufficient to use a fixed-size window with some scaling factor that mitigates the impact of changing the number of sampling points. Consider the following simplistic model: assume each point in a given patch of an NF channel is an i.i.d. sample from $\mathcal{U}([-b, b])$. Then the maximum of N samples $\{f_i(x_j)\}_{j=1}^N$ is on average $\frac{N-1}{N+1} b$. So we can achieve an “unbiased” max pooling layer by taking the maximum value observed in each window and scaling it by $\frac{N+1}{N-1}$ (if $N = 1$ or our empirical maximum is negative then we simply return the maximum), then (optionally) multiplying a constant to match the discrete layer.

To replicate the behavior of a discrete max pooling layer with even kernel size, we shift the window by half the dimensions of a pixel, just as in the case of convolution.
Tokenization A tokenization layer chooses a finite set of non-overlapping regions $\omega_j \subset \Omega$ of equal measure such that $\bigcup_j \omega_j = \Omega$. We apply the indicator function of each set to each channel f_i. An embedding of each $f_i|_{\omega_j}$ into \mathbb{R}^n can be obtained by taking its inner product with a polynomial function whose basis spans each $L^2(\omega_j)$. To replicate a pre-trained embedding matrix, we interpolate the weights with B-spline surfaces.

Average pooling An average pooling layer performs a continuous convolution with a box filter, followed by downsampling. To reproduce a discrete average pooling with even kernels, the box filter is shifted, similarly to max pooling.

An adaptive average pooling layer can be replicated by tokenizing the NF and taking the mean of each token to produce a vector of the desired size.

Attention layer There are various ways to replicate the functionality of an attention layer. Here we present an approach that preserves the domain. For some $d_k \in \mathbb{N}$ consider a self-attention layer with $c_{in}d_k$ parametric functions $q_{ij} \in L^2(\Omega)$, $c_{in}d_k$ parametric functions $k_{ij} \in L^2(\Omega)$, and a convolution with d_k output channels, produce the output NF g as:

$$Q_j = \langle q_{ij}, f_i \rangle$$ \hspace{1cm} (135)

$$K_j = \langle k_{ij}, f_i \rangle$$ \hspace{1cm} (136)

$$V[f] = \sum_{i=1}^{c_{in}} v_{ij} \ast f_i + b_j$$ \hspace{1cm} (137)

$$g(x) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V[f](x)$$ \hspace{1cm} (138)

A cross-attention layer generates queries from a second input NF. A multihead-attention layer generates several sets of (Q, K, V) triplets and takes the softmax of each set separately.

Data augmentation Most data augmentation techniques, including spatial transformations, pointwise functions and normalizations, translate naturally to NFs. Furthermore, spatial transformations are efficient and do not incur the usual cost of interpolating back to the grid. Thus DI-Nets might be suitable for a new set of data augmentation methods such as adding Gaussian noise to the discretization coordinates.

Positional encoding Given their central role in neural fields, positional encodings (adding sinusoidal functions of the coordinates to each channel) would likely play an important role in helping pixel-based DI-Nets capture high-frequency information under a range of discretizations.

Vector → NF layers and parametric functions in $L^2(\Omega)$ A vector can be expanded into an NF in several ways. To mimic the behavior of many discrete networks that reshape a vector into grid values, we can create an NF that interpolates between the given values at grid coordinates (e.g., bilinear interpolation or fitting with B-splines). Alternatively, we can define a parametric function that spans $L^2(\Omega)$ using the input vector as the parameters. If Ω is a subset of $[a, b]^d$, one can use a separable basis defined by the product of rescaled 1D Legendre polynomials along each dimension. If Ω is a d-ball, we can use the Zernike polynomial basis. For a general coordinate system, a small MLP could be used. Beyond vector → NF layers, such parametric functions also enable an NF to be modulated by taking its elementwise product with the function, or for global information to be aggregated in a learned manner by taking its inner product with the function.

D Experimental Details

D.1 ImageNet NFs

We split ImageNet1k into 12 superclasses (dog, structure/construction, bird, clothing, wheeled vehicle, reptile, carnivore, insect, musical instrument, food, furniture, primate) based on the big12 dataset ([Engstrom et al., 2019](Engstrom2019)), which is in turn derived from the WordNet hierarchy.
We fit SIREN (Sitzmann et al., 2020b) to each image in ImageNet using 5 fully connected layers with 256 channels and sine non-linearities, trained for 2000 steps with an Adam optimizer at a learning rate of 10^{-4}. It takes coordinates on $[-1, 1]^2$ and produces RGB values in $[-1, 1]^3$. We fit Gaussian Fourier feature (Tancik et al., 2020b) networks using 4 fully connected layers with 256 channels with ReLU activations. It takes coordinates on $[0, 1]^2$ and produces RGB values in $[0, 1]^3$.

The average pixel-wise error of SIREN is $3 \cdot 10^{-4} \pm 2 \cdot 10^{-4}$, compared to $1.6 \cdot 10^{-2} \pm 8 \cdot 10^{-3}$ for Gaussian Fourier feature networks. The difference in quality is visible at high resolution, but indistinguishable at low resolution (Fig. D.1).

DI-Net-2 uses strided MLP convolutions, a global average pooling layer, then two fully connected layers. DI-Net-4 adds a residual block with two MLP convolutions after the strided convolutions.

Figure D.1: Comparison of SIREN (left) and Gaussian Fourier feature network (right) representations of an image, rendered at 256×256 resolution. The Fourier feature network’s representation is slightly blurrier (compare the tree bark), but this effect is not noticeable at lower resolutions.

D.2 CITYSCAPES NFs

SIREN is trained on Cityscapes images for 2500 steps, using the same architecture and settings as ImageNet. Seven segmentation classes are used for training and evaluation, labeled in the dataset as ‘flat’ (e.g. road), ‘construction’ (e.g. building), ‘object’ (e.g. pole), ‘nature’, ‘sky’, ‘human’, and ‘vehicle’.

DI-Net-3 uses three MLP convolutional layers at the same resolution. DI-Net-5 uses a strided MLP convolution to perform downsampling and nearest neighbor interpolation for upsampling. There is a residual connection between the higher resolution layers.

D.3 SIGNED DISTANCE FUNCTIONS

In our SDF prediction experiment, we construct toy scenes of 2-4 balls of random radii (range 0.2-0.5), centers, and colors scattered in 3D space ($\Omega = [-1, 1]^3$). In order to eliminate any effect of neural field fitting, we train each network directly on the closed form expressions for the RGBA fields and signed distance functions, rather than fitting neural fields first.

The discrete CNN (fully convolutional network) contains 3 convolutional layers of kernel lengths 3, 5 and 1 respectively. Accordingly, the convolutional DI-Net contained 2 convolutional layers followed by a linear combination layer. We train each network for 1000 iterations with an AdamW optimizer with a batch size of 64 and a learning rate of 0.1 with an MSE loss on the SDF.
E ADDITIONAL ANALYSIS

E.1 INITIALIZATION WITH DISCRETE NETWORKS

When a DI-Net is initialized with a large pre-trained convolutional neural network, its outputs are identical by construction. However, the behavior of the pre-trained CNN is not preserved when the DI-Net switches to other discretizations – even tiny perturbations from the regular grid are sufficient to change a classifier’s predictions. Although the effect on the output of a single layer is much lower than the signal, small differences in each layer accumulate to exert a large influence on the final output. Figure E.2 illustrates this phenomenon for DI-Net initialized with a truncated EfficientNet. In addition, we find that once grid discretization is abandoned, large DI-Nets cannot easily be fine-tuned to restore the behavior of the discrete network used to initialize it. This suggests that not only does the discretization at training time not necessarily permit new discretizations at inference time, but also that the optimization landscape of maps on $L^2/I_X \rightarrow \mathbb{R}$ can vary significantly with X.

Table E.1: Pre-trained models fine-tuned on ImageNet NF classification.

Model Type	Accuracy
EfficientNet (Tan & Le, 2019)	66.4%
DI-Net-EN	48.1%

Table E.2: Pre-trained models fine-tuned on Cityscapes segmentation.

Model Type	Mean IoU	Pixel Accuracy
ConvNexT (Liu et al., 2022)	0.429	68.1%
DI-Net-CN	0.376	68.7%

In Tables E.1 and E.2, we illustrate that DI-Net initialized with a large pre-trained discrete network does not match the performance of the original model when fine-tuned with QMC sampling. We use a truncated version of EfficientNet (Tan & Le, 2019) for classification, and fine-tune for 200 samples per class. For segmentation we use a truncated version of ConvNexT-UPerNet (Liu et al., 2022), fine-tuning with 1000 samples.

We also find that the output of an NF-Net is less stable under changing sampling resolution with a grid pattern (Fig. E.1). While the output of a network with QMC sampling converges at high resolution, the grid sampling scheme has unstable outputs until very high resolution. Only the grids that overlap each other (resolutions in powers of two) produce similar activations.

Figure E.1: Distance of the output of a DI-Net from its grid output at 32×32 resolution, when sampling at various resolutions. Its outputs deviate rapidly as its discretization shifts from a regular grid to a low discrepancy sequence.

Figure E.2: An DI-Net’s output diverges as sample points are gradually shifted from a grid layout to a low discrepancy sequence.
Our preliminary experience with DI-Nets highlights the need for improved sampling schemes and parameterizations that will allow large continuous-domain neural networks to learn effectively. Stable, scalable methods are needed to realize DI-Nets’ full potential for continuous data analysis.

E.2 Computational Complexity

The DI-Net’s complexity is similar to that of a discrete model with an equivalent architecture. In general time and memory both scale linearly with the number of sample points (regardless of the dimensionality of Ω), as well as with network depth and width.

Implemented naively, the computational cost of the continuous convolution is quadratic in the number of sample points, as it must calculate weights separately for each neighboring pair of points. We can reduce this to a linear cost by specifying a N_{bin} Voronoi partition of the kernel support B, then using the value of the kernel at each seed point for all points in its cell. Thus the kernel need only be evaluated N_{bin} times regardless of the number of sample points. Additionally N_{bin} can be modified during training and inference.

DI-Net-4 (our ImageNet classifier) performs a forward pass on a batch of 48 images in 96 ± 4ms on a single NVIDIA RTX 2080 Ti GPU.

F Future Directions

Scaling convolutional DI-Nets Our initial experiments suggest that convolutional DI-Nets do not scale well in depth. We suspect that within a CNN-like architecture, the gradients of discrete convolutional layers with respect to kernel parameters have much smoother optimization landscapes over large networks relative to continuous convolutional layers parameterized with MLPs or coefficients of a polynomial basis. It is then no surprise that implementations of neural networks with continuous convolutions do not simply substitute the convolutional layers in a standard CNN architecture, but also make use of a variety of additional techniques (Qi et al., 2017; Wang et al., 2021; Boulch, 2019) which would likely be helpful for scaling convolutional DI-Nets.

Parameterization of output NFs In this work we assume that a DI-Net that produces an NF specifies the output discretization a priori, but some applications may need the output to be sampled several times at different discretizations. It is inefficient to re-evaluate the entire network in such cases, and we propose two solutions for future work. One method can store the last layer(s) of the network alongside the input activation, and adapt the discretizations as needed in these last few layers only. A preliminary version of this technique was demonstrated in Figure 4, but requires further testing on non-toy examples. A second approach can treat the discretized outputs of DI-Net as parameters of the output NF in the manner of Vora et al. (2021), which would maintain interoperability of the entire framework.

Extending DI-Net to high discrepancy sequences In many applications, there are large regions of the domain that are less informative for the task of interest. For example, most of the information in 3D scenes is concentrated at object surfaces, so DI-Nets should not need to process a NeRF by densely sampling all 5 dimensions. Moreover, ground truth labels for dense prediction tasks may only be available along a high discrepancy discretization. Such a discretization can be handled by quadrature, but more work is required to design efficient quadrature methods within a neural network. Additional techniques such as learned coordinate transformations or learned discretizations may also be helpful for extending our model to extreme discretizations or highly non-uniform measures.

Error propagation When an NF does not faithfully represent the underlying data, it is important to characterize the influence on DI-Net’s output. In the worst case, these deviations are adversarial examples, and robustness techniques for discrete networks can also be applied to DI-Net. But what can we say about typical deviations of NFs? Future work should analyze patterns in the mistakes that different types of NFs make (e.g. floaters observed in NeRF scenes), and how to make DI-Nets robust to these.