Two New Species of Placolecis (Lichenized Ascomycota) from China

An Cheng Yin a,b, Xin Yu Wang a, Dong Liu c, Yan Yun Zhang a, Mei Xia Yang d,e and Li Juan Li a and Li Song Wang a,t

aKey Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming, China; bSchool of Life Science, Yunnan University, Kunming, China; cKorean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon, Korea; dSnow and Landscape Research (WSL), Federal Institute for Forest, Zurich, Switzerland; eUniversity of Bern, Bern, Switzerland

ABSTRACT
Two new species of the lichen genus Placolecis are discovered in China, namely P. kunmingensis An. C. Yin & Li S. Wang and P. sublaevis An. C. Yin & Li S. Wang. The new combination P. loekoesiana (S.Y. Kondr., Farkas, J.J. Woo & Hur) An. C. Yin is proposed. Placolecis kunmingensis is characterized by having simple, spherical or ellipsoid, hyaline spores, and pear-shaped pycnidia; while P. sublaevis can be distinguished by its thallus forming larger aggregations with slightly flattened lobes at the thallus margin, and urn-shaped pycnidia. Descriptions, a phylogenetic tree and a key are provided for all the known Placolecis species in China.

1. Introduction
The genus Placolecis Trevis. was established by Trevisan (1857) with two species: Placolecis balanina (Fr.) Trevis. and P. plumbea (Lightf.) Trevis [1]. Later, Hafellner synonymized one more species Lecidea opaca Dufour into Placolecis, as P. opaca (Dufour) Hafellner, based on the morphological characters and secondary metabolites [2,3]. In recent studies, P. balanina was merged into P. opaca [4,5], and P. plumbea was treated as synonym of Pectenia plumbea (Lightf.) P. M. Jørg. [6]. After this study, four species (Placolecis kunmingensis, P. loekoesiana, P. opaca, and P. sublaevis) are recognized in this genus.

The genus Placolecis is mainly distributed in the Mediterranean region, and has been infrequently reported from Algeria, Russia, South Korea, and India, and so forth [7–14]. Species of this genus frequently occur on limestone in open and sunny habitats [9]. Placolecis opaca (= Lecidea opaca var. crocea (B. de Lesd.) Zahrib.) was first reported from China by Handel-Mazzetti based on collections from Sichuan Province, however, few studies were carried out [15,16]. Recently, during a field survey in Yunnan Province, some specimens of Placolecis were collected, and morphological, anatomical, chemical, and molecular phylogenetic analyses based on the internal transcribed spacer regions (ITS) were performed in order to determine species composition. A key to Placolecis species worldwide is provided.

2. Materials and methods
2.1. Materials and morphological observation
The specimens in this study are deposited in the Lichen Herbarium, Kunming Institute of Botany (KUN), and Korean Lichen Research Institute (KoLRI). Anatomical descriptions are based on observations under a NIKON Eclipse 50i microscope, and photographs were taken using NIKON digital camera head DS-Fi2. Spot tests were conducted by K (a 10% aqueous solution of potassium hydroxide), C (a saturated solution of aqueous sodium hypochlorite), and P (a saturated solution of p-phenylenediamine in 95% ethyl alcohol). Secondary metabolites were detected by thin-layer chromatography (TLC) as described by Orange et al. [17] in solvent C (toluene: acetic acid =170:30).

2.2. DNA isolation, PCR and phylogenetic analysis
Genomic DNA was extracted from dried materials using AxyPrep Multisource Genomic DNA Miniprep Kit50-prep (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. ITS was amplified via polymerase chain reaction (PCR) using the primers ITS1F [18] and ITS4 [19]. Amplifications were performed in a 25 μL volume comprising 12.5 μL of 2 × MasterMix, 0.5 μL of each primer, 10.5 μL distilled H2O, and 1 μL of DNA.

CONTACT Li Song Wang wanglisong@mail.kib.ac.cn
This article has been republished with minor changes. These changes do not impact the academic content of the article.

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
PCR amplifications program were performed as following: initial denaturation at 94 °C for 4 min, 34 cycles each composed of 94 °C for 1 min, 62 °C for 1 min, 72 °C for 1.5 min, and a final extension at 72 °C for 10 min. PCR products were sequenced by TsingKe biological technology company (Kunming, China).

The ITS dataset consists of 6 newly generated sequences and 17 relevant ITS sequences from GenBank (Table 1). All raw sequences were assembled and edited using SeqMan 7.0 (DNASTar packages), then aligned with MAFFT version 7 [20] with default parameters. Ambiguous regions were excluded using Gblocks [21] with default settings. Maximum likelihood (ML) was generated using the RAxML-HPC2 on XSEDE (8.2.10) in the CIPRES Science Gateway Platform (http://www.phylo.org/portal2/) using GTRGAMMA model, fast bootstrap analyses of 1000 pseudoreplicates were completed [22]. Phylogenetic trees were visualized using the program FigTree 1.4.0 [23]. The Bayesian analysis was conducted with MrBayes v.3.2.6 to evaluate Bayesian posterior probabilities by Markov Chain Monte Carlo sampling (MCMC). Bayesian inference was conducted using four chains and run for one million generations. Lecidea tessellata Flörke, L. atrobrunnea (DC.) Schärl., Teloschistes flavicans (Sw.) Norman, T. exilis (Michx.) Vain. were used as outgroup [24].

3. Results and discussion

Topologies were established based on 23 ITS sequences including related species of family Catillariaceae and four species for outgroup (Table 1). The tree topology obtained from the maximum likelihood is used to represent phylogenetic relationships. A phylogenetic analysis using ITS sequences revealed 19 species, including *P. kunmingensis, P. sublaevis* new to science (Figure 1). Molecular phylogenetic analyses strongly supported the current taxonomic delimitation of species within the genus of *Placolecis*, which is in accordance with the taxonomic study based on morphological and chemical characters.

Placolecis is characterized by saxicolous, crustose to effigurate, dark brown or yellowish brown or yellowish thallus, areolate in the center; Lobes contiguous, flat to convex, usually branched. Cortex paraplectenchymatous; medulla reddish orange in the upper portion and white in the lower portion. Apothecia lecideine, 0.3–1.3 mm across, black, sessile, with a flat to convex disc and a persistent proper margin. Hymenium colourless, I+ blue; paraphyses capitate, the apical cells with an internal pigment cap. Ascii 8-spored, narrowly clavate, *Catillaria*-type (with a prominent amyloid tholus, lacking any internal differentiation, I+ blue). Ascosporas simple, hyaline, ellipsoidal, (7.5-)10-14 × (4-)5-7.5 μm. Pycnidia frequent, immersed or slightly protruding. Conidia hyaline, bacilliform, straight. Chemistry: medulla with anthraquinones [2,3,12,16].

Although these species have similar habit, colour reaction, thallus section, *Catillaria*-type ascus and simple hyaline ascosporas, and so forth, they can be distinguished by the thallus morphology. The thallus of *P. opaca* usually dark brown or yellowish brown, areolate in the center, forming regular to irregular rosettes to 4 cm diameter; lobes are elongate, contiguous, flat to slightly convex, radiating from center toward to periphery, often with secondary lobes as branches of main lobes, in having yellow-ochre-orange medulla [1,2,7,25]. The new species *P. kunmingensis* has a crustose thallus with rather few lobes,

Table 1. Sequence information used in this study.

Species Collection No.	GenBank No.	Locality
Placolecis laekeosiana	041238 (KoLRI)	MN052962 South Korea
Placolecis sublaevis	19-625750(KUN)	MK995874 China, Yunnan
Placolecis kunmingensis	18-58070(KUN)	MK995884 China, Yunnan
Placolecis kunmingensis	56759(KUN)	MK995879 China, Yunnan
Placolecis opaca	Inv.Nr.8763	MK995882 Spain
Placolecis opaca	Inv.Nr.8764	MK995885 Spain
Solenospora lapina	Liparia-2-CZ (Herb. SAV)	KF689879 Czech Republic
Solenospora cesatii	Cesatii-19-FR (Herb. J. Malczek, Sedlarycz 5338)	KF689850 France
Solenospora vultuensis	Vulturiniensis-4-FR (Herb. SAV)	KF689897 France
Solenospora grisea	Grisea-9-AL (Herb. BP)	KF689875 Albania
Solenospora olivacea	Olivacea-3-ME (Herb. O 11378)	KF689889 Montenegro
Solenospora marina	Marina-4-FR (Herb. SAV)	KF689883 France
Austrolecia sp1	JX036089	Antarctica
Austrolecia sp2	JX036083	Antarctica
Austrolecia sp3	JX036047	Antarctica
Austrolecia sp4	JX036104	Antarctica
Austrolecia sp5	JX036103	Antarctica
Catillaria scotinodes	O: L 161161	MG925964 Norway
Catillaria corymbosa	Hur ANTO50798	DQ354457 Antarctica
Lecidea tessellata	UR00138	KX120213 Argentina
Lecidea atrobrunnea	UR00200	KX120206 Argentina
Teloschistes flavicans	03.22.03-13A (DUKE)	JQ301685 Costa Rica
Teloschistes exilis	D. Hills 07-726 (DUKE)	JQ301684 USA

Newly generated sequences were in bold.
areolate-squamulose in the center, forming irregular patches or clumps 10–50 mm wide; upper surface dark brown, uneven; rarely with radiating shorter lobules at the thallus margin, sometimes difficult to delimitate secondary lobules and main lobes. P. sublaevis is similar to P. kunmingensis in having the same crustose thallus in the center, differs in having larger aggregations of lobes at the thallus margin, in having distinct secondary lobules as branches of main lobes, slightly subflattened at the apex, in having pear-shaped pycnidia and elongated conidia. All four species contain unidentified anthraquinones by TLC and the same compounds: emodin, erythrin, fragilin, 7-chloro-EMODIN, 2-chloro-derivatives [26,27].

4. Taxonomy
4.1. New species
Placolecis kunmingensis An. C. Yin & Li S. Wang, sp. nov.

Holotype: CHINA: Yunnan Province, Baiyi village, 25°21’N, 102°50’E, 2130 m, on rock, April 12, 2018. Li S. Wang et al. 18-58078 (KUN-L).

Mycobank no. MB: 831234.

Description (Figure 2): Thallus saxicolous, crustose to effigurate, areolate-squamulose in the center, forming irregular patches or clumps 10–50 mm wide; rarely with radiating shorter lobules at the thallus margin; lobes to 0.5–1 mm long and 0.2–0.3 mm wide in the middle part and distinctly widened towards the tips, 0.35–0.5 mm wide, dark brown, swollen at the apex, equal dichotomous branching, sometimes difficult to delimitate secondary lobules and main lobes. Upper surface dark brownish, uneven. Upper cortex 25–30 μm thick, parapectenomatous. Algal layer uniform, 50–70 μm thick, photobionts cells Trebouxia-like, 7–12.5 μm diameter Medulla 180–250 μm thick, reddish orange in the upper portion and white in the lower portion. Lower cortex absent. Apothecia
0.3–1.2 mm diameter, sessile, lecideine, numerous, scattered to crowded, margin well developed, black. **Exciple** 40–60 μm thick at the sides, black. **Ephymenium** 7–15 μm thick, brown. **Hymenium** hyaline, 50–75 μm thick, 1+ blue. **Hypothecium** 75–120 μm thick, brown. **Asci** clavate to cylindrical, *Catillaria-type* with amyloid tholus, 1+ blue, 8-spored. **Paraphyses** simple or sparsely branched, with dark brown cap at the apex. **Ascospores** hyaline, simple, spherical or ellipsoid, 5–10 × 4–6 μm, with smooth 0.5–1 μm thick wall. **Pycnidia** numerous, is not totally immersed (ca. 2/3 immersed), 150–190 × 100–130 μm, pear-shaped, ostiole slightly black. **Conidia** bacilliform, 3–5 μm.

Chemistry: Medulla K+ violet in the upper yellow portion, P−, C−; containing fragilin and anthraquinone (detected by TLC).

Ecology and distribution: This species occurs on limestone in sunny slopes, and is only found in Kunming and surrounding areas in the high mountains in Yunnan (SE China).

Notes: *Placolecis kunmingensis* is characterized by a thallus areolate-squamulose in the thallus center, forming irregular patches or clumps 10–50 mm wide and ellipsoid or globose ascospores with slightly thickened wall. This species is similar to *P. opaca* in having similarly dark brownish thallus, but the latter has a thallus forming regular or irregular rosettes, areolate in the center, with longer lobes radiating in the periphery of the thallus. It differs from *P. loe-koesiana* in having areolate-squamulose thallus center, in having brown (vs. yellow) thallus colour, somewhat shorter thalline lobes at the thallus margin.

Etymology: The epithet “kunmingensis” refers to the type locality.

Further specimens: Yunnan Prov. Kunming City: Xiaohe village, Songhuaba, 25°11′54″N, 102°48′26″E,
2,000 m, on rock, 10 December, 2001. Li S. Wang 01-21029; Lunan Co., near Shilin and Stone Forest. 24°43'56"N, 103°20'33"E, 1,900 m, on limestone, October 27, 2002, A. Aptroot. 56795 (in KUN-L).

Placolecis sublaevis An. C. Yin & Li S. Wang, sp. nov.

Holotype: CHINA: Yunnan Province, Lijiang City, on the way from Lijiang to Ninglang, 26°58'54.38"N, 100°24'57.24"E, 1,902 m, on limestone, April 9, 2019. Li S. Wang et al. 19-62675 (KUN-L).

MycoBank no. MB: 831362.

Description (Figure 3): Thallus saxicolous, crustose to effigurate, areolate-squamulose in the center, forming irregular patches or clumps, pseudopycnidia numerous, immersed into thallus; lobes distinctly forming larger aggregations at the thallus margin: to 2–3 (–4) mm long and 0.1–0.3 mm wide in the middle part and slightly widened towards the tips to 0.15–0.4 mm wide, dark brown, slightly subflattened at the apex; often secondary lobules as branches of main lobes to 1–2 mm long observed. **Upper surface** dark brownish, uneven. **Upper cortex** 12.5–20 μm thick, paraplectenchymatous. **Algal layer** diffuse, 25–40 μm thick, photobiont cells *Trebouxia*-like, 6–12 μm diameter. **Medulla** 60–140 μm thick, reddish orange in the upper portion and white in the

![Figure 3. *Placolecis sublaevis*, holotype. (A) Thallus and habit; (B) cross-section of thallus and a pycnidium; (C) conidia. Scale bars: A = 1 mm; B = 25 μm; C = 5 μm.](image-url)
lower portion. **Lower cortex** absent. **Apothecia** none. **Pycnidia** numerous, immersed into thallus, 75–95 × 40–60 μm, urceolate, ostiole black. **Conidia** bacilliform, 5–6 μm.

Chemistry: Medulla K+ violet in the upper yellow portion, P–, C–; fragilin, solorinic acid and anthraquinone substances detected by TLC.

Ecology and distribution: This species occurs on exposed steep slopes with limestone boulders near the stream, in the high mountain area in Yunnan and Sichuan (SE China).

Notes: The variety *Lecidea opaca* var. *crocea* (B. de Lesd.) Zahlbr. was described from France and reported later also from China [28,29]. According to Handel-Mazzetti’s specimen information, *L. opaca* var. *crocea* was collected in Sichuan Yanyuan. We visited the original locality and collected samples from similar habitats, in order to compare with the European specimens (L-76218, L-203661, L-622068, L-622018, L-676136, L-685879) in UPS. According to the ITS phylogenetic tree, the morphological descriptions, and the WU online data query, we believe that the specimens Handel-Mazzetti collected in Sichuan in 1914 were misidentified as *L. opaca* var. *crocea* [15,16], they are in fact a new species in *Placolecis, P. sublaevis*. It differs from *P. opaca* in having areolate-squamulose in the thallus center, in having somewhat shorter and somewhat narrower thalline lobes, especially towards the tips (0.15–0.4 mm wide versus to 0.4–0.6 mm wide), medulla yellow in the upper portion and white in the lower portion (vs. yellow-brown), *Trebouxia* algae normally have smaller size cells (6–12 μm vs. 10–15 μm), in having elongated conidia (5–6 μm vs. 3–5 μm). The species *P. sublaevis* is similar to *P. kunmingensis* in having similar small crustaceous thallus center, but it is different in having larger aggregations of lobes at the thallus margin (2–3 (–4) mm vs. 0.5–1 mm), in having distinct secondary lobules as branches of main lobes (vs. equal dichotomous branching), in having thinner algal layer (diffuse, not uniform, 25–40 μm vs. uniform, 50–70 μm), in having pear-shaped pycnidia (vs. urn-shaped), elongated conidia (5–6 μm vs. 3–5 μm).

Etymology: The epithet *sublaevis* refers to the shape of lobes, slightly subflattened at the apex.

4.2. **New combination**

Placolecis loekoesiana (S.Y. Kondr., Farkas, J.J. Woo & Hur) An. C. Yin, **comb. nov.**

Basionyym: *Astroplaca loekoesiana* S.Y. Kondr., Farkas, J.J. Woo & Hur, in Kondratyuk et al., Acta Bot. Hung. 59(1/2): 139 (2017).

Type: Republic of Korea. Gangwon-do: Jeongseon-gun, Jeongseon-eup, Aesan-ri, limestone rocky wall along river, on calcareous rocks. Lat.: 37°22’18.66”N; Long.: 128°40’27.76”E; Alt.: 325 m a.s.l. Coll.: Kondratyuk, S. Y. and Lökös, L. (163000), 16.09.2016 (KoLRI 041238 – holotype!).

MycoBank no. MB: 831252.

Notes: Baglietto established the genus *Astroplaca* based on *Lecidea opaca* Dufour in 1858, which was published later than *Placolecis* [1]. The genus *Astroplaca* is synonymized with *Placolecis* [1,2,4,30–34], our phylogenetic study supported this view, and this species *A. loekoesiana* is now synonymized as *P. loekoesiana*.

4.3. Key to the *Placolecis* species worldwide

1. Thallus center areolate-squamulose, rather few lobes; in high mountain2
2. Thallus center areolate, elongated lobes; in lower elevations1
2. Thallus dark brown, algal layer diffuse, not uniform, 25–40 μm; apothecia none, pycnidia urn-shaped, 75–95 × 40–60 μm, conidia 5–6 μm*P. sublaevis*
3. Thallus yellow, thalline lobes shorter and narrower, medulla yellow; apothecia plane, rare, ascospores ellipsoid, 10–14 × 5–6 μm*P. kunmingensis*
4.3. **Key to the *Placolecis* species worldwide**

3. Thallus brown or yellowish brown, thalline lobes elongated and contiguous, medulla ochre to reddish orange; apothecia convex, rather rare, ascospores ellipsoid, 9–11 × 4–5 μm*P. opaca*

Acknowledgments

The authors thank UPS, KoLRI, Prof. Christoph Scheidegger (Zurich, Switzerland) and Prof. Jae-Seon Hur for (KoLRI) the loan of specimens and permission to extract DNA from the samples. They also appreciate Prof. Josef Hafellner (Graz, Austria) for providing literature, as well as support and advice during the study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was supported by grants from the National Natural Science Foundation of China [Nos 31670028, 31750001, 31970022] and the Second Tibetan Plateau Scientific Expedition and Research (STEP) program [No. 2019QZKK0503].
References

[1] Trevisan V. Nuovi studi sui licheni spettanti alle tribù delle Patellariee, Bacomyeet e Lecideiteene. Rev Period Lav Della Imper Reg Accad Padova. 1857;5:63–79.

[2] Haßelner J. Studien in Richtung einer natürlichen Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beihfte zur Nova Hedwigia. 1984;(79):241–371.

[3] Nimis PL, Poelt J. The lichens and lichenicolous fungi of Sardinia (Italy). Stud Geobot. 1987;7:1–269.

[4] Kotlov YV. Preliminary checklist of lichen family Catillariaceae. Novitates Systemat Plant Vascul. 2004;37:234–252.

[5] Wijayawardene NN, Hyde KD, Lumbsch HT, et al. Phylogeny and a revised generic classification of the lichens and lichenicolous fungi. Stud Geobot. 2015;5(4):367–393.

[6] Ekman S, Wedin M, Lindblom L, et al. Extended Outline of Ascomycota: 2017. Fungal Diver. 2018;88(1):167–263.

[7] Roux C. Phytogéographie des lichens saxicoles-calci-coles d’Europe méditerranéenne. Botan Chron. 1991:10:163–178.

[8] Amrani S, Seaward MRD, Sipman HJM, et al. Noteworthy lichen-forming and lichenicolous fungi from Montenegro. Fritschiana (Graz). 2008;62:1.

[9] Aptroot A, Moon KH. 114 new reports of microlichens from Korea, including the description of five new species, show that the microlichen flora is predominantly Eurasian. Herzogia. 2014;27(2):347–366.

[10] Nimis PL, Martellos S. ITALIC-The Information System on Italian Lichens. Version 5.0. University of Trieste, Department of Biology, Internet version. [cited 2017 June 20]. Available form: http://dryades.units.it/italic.

[11] Gp S, Gupta P, Kar R, et al. A checklist of Lichens of Rajasthan, India. Curr Res Environ Appl Mycol. 2015;5(4):367–375.

[12] Makry TV. Placolecis opaca (Catillariaceae), a new to Russia lichen genus and species from Dauria (Chita region). Botanicheskiy Zhurnal. 2003;88:123–127.

[13] Handel-Mazzetti H, Brotherus VF. Symbolae Sinicae: botanische Ergebnisse der Expedition der Akademie der Wissenschaften in Wein nach Südwest-China, 1914–1918. Wien (Austria): J. Springer; 1929; p. 110.

[14] Bruns TD, Gardes M. Molecular tools for the identification of lichens. London (UK): British Lichen Society, Natural History Museum; 2001.

[15] Nimis PL, Poelt J. The lichens and lichenicolous fungi of Sardinia (Italy). Stud Geobot. 1987;7:1–269.

[16] Hertel H. Gesteinsbewohnende Arten der Sammelgattung Leucidea (Lichenes) aus Zentral-, Ost- und Südasiien: eine übersicht. Khbum Himal. 1977;6(3):145–378.

[17] Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. London (UK): British Lichen Society, Natural History Museum; 2001.

[18] Bruns TD, Gardes M. Molecular tools for the identification of ectomycorrhizal fungi–taxon-specific oligonucleotide probes for suillus fungi. Mol Ecol. 1993;2(4):233–242.

[19] White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl. 1990;18(1):315–322.

[20] Kotolh K, Stanley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics. 2016;32(13):1933–1942.

[21] Talaveria G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–577.

[22] Westberg M, Millanes AM, Knudsen K, et al. Phylology of the Acrasporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascocama. Fungal Divers. 2015;73(1):145–158.

[23] Rambaut A. FigTree: tree figure drawing tool, v.1.4.0. Institute of Evolutionary Biology. University of Edinburgh. Available from: http://tree.bio.ed.ac.uk/software/figtree/. 2012.

[24] Endikssby M, Timdal E. Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphly and morphological/ecological convergence. Taxon. 2013;62(5):940–956.

[25] Kondratyuk Y, Sjogren B, Steen J, et al. New or otherwise interesting lichenized and lichenicolous fungi of the Anarock senv sensu lato (Lichenes) aus Zentral-, Ost- und Südasiien: eine erste Überansicht. Khbum Himal. 1977;6(3):145–378.

[26] Schneider G. Flechtengattung Psora sensu Zahlbruckner, Bibl Lichenol. 1979:13:1–291.

[27] Steiner M, Glombitzka KW, Wagner A, et al. Anthraquinones of Astroleplaca opaca. Phytochemistry. 1974;13(1):273–274.

[28] Zahlbruckner A. Lichenes in Handel-Mazzetti. Symbol Sin. 1930;3:1–254.

[29] Zahlbruckner A. Catalogus Lichenum Universalis. Bomttraeger, Leipzig. 1925;3:885.

[30] Fries E. Lichenographia Europaea reformata: praemittuntur lichenologiae fundamenta. Typis Berlingianis. 1831;107–108, 289.

[31] Nylander W. Essai d’une nouvelle classification des Lichens (second mémorie). Mémoires de la Societe impérial de sciences naturelles de Cherbourg. 1855;3:161–391.

[32] Baglietto F. Enumerazione dei Licheni di Liguria. Symboles Sinicae: botanische Ergebnisse der Expedition der Akademie der Wissenschaften in Wein nach Südwest-China, 1914–1918. Wien (Austria): J. Springer; 1929; p. 110.

[33] Talaveria G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–577.

[34] Hue AM. Quelques lichens nouveaux. Bulletin de la Sociéité Botanique de France. 1897;44(5):425–431.