Near-infrared properties of asymptotic giant branch stars in nearby
dwarf elliptical Galaxy NGC 205

M.Y. Jung¹, Jongwan Ko²,³, Jae-Woo Kim⁴, Sang-Hyun Chun¹, Ho-II Kim³, and Y.-J. Sohn¹,²

¹ Department of Astronomy, Yonsei University, Seoul 120-749, Korea
² Yonsei University Observatory, Seoul 120-749, Korea
³ Korea Astronomy and Space Science Institute, Daejeon 305-348, Korea
⁴ CEOU, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea

ABSTRACT

Aims. We investigated the distribution of resolved asymptotic giant branch (AGB) stars over a much larger area than covered by
previous near-infrared studies in the nearby dwarf elliptical galaxy NGC 205.

Methods. Using data obtained with the WIRCam near-infrared imager of the CFHT, we selected the AGB stars in the JHK₃ color-magnitude diagrams, and separated the C stars from M-giant stars in the JHK₃ color-color diagram.

Results. We identified 1,530 C stars in NGC 205 with a mean absolute magnitude of ⟨Mₖ₃⟩ = −7.49 ± 0.54, and colors of (⟨J − K₃⟩) = 1.81 ± 0.41 and (⟨H − K₃⟩) = 0.76 ± 0.24. The ratio of C stars to M-giant stars was estimated to be 0.15 ± 0.01 in NGC 205, and the local C/M ratios for the southern region are somewhat lower than those for the northern region. The (⟨J − K₃⟩) color distributions of AGB stars contain the main peak of the M-giant stars and the red tail of the C stars. A comparison of the theoretical isochrone models with the observed color distribution indicates that most of the bright M-giant stars in NGC 205 were formed at log(t₉) ~ 9.0-9.7. The logarithmic slope of the Mₖ₃ luminosity function for M-giant stars was estimated to be 0.84 ± 0.01, which is comparable with dwarf elliptical galaxies NGC 147 and NGC 185. Furthermore, we found that the logarithmic slopes of the Mₖ₃ luminosity function for C and M-giant stars are different to places, implying a different star formation history within NGC 205. The bolometric luminosity function for M-giant stars extends to Mbol = −5.6 < Mₖ₃ < −3.0. The bolometric luminosity function of C stars is unlikely to be a Gaussian distribution and the mean bolometric magnitude of C stars is estimated to be Mbol = −4.24 ± 0.55, which is consistent with our results for dwarf elliptical galaxies NGC 147 and NGC 185.

Key words. galaxies: individual: NGC 205 – galaxies: stellar content – stars: AGB and post-AGB

1. Introduction

Dwarf galaxies are the most numerous galactic systems in the
Universe, and most are found in galaxy groups. Photometric
studies of stars resolved in dwarf galaxies provide clues for stellar evolution and star formation history in the galaxies. Dwarf galaxies in the Local Group (LG) are therefore excellent laboratories in which to study galaxy evolution. Among the bright resolved stars in LG dwarf galaxies, asymptotic giant branch (AGB) stars allow us to study the late evolutionary stages of stars with low and intermediate masses (~ 0.8-8 M⊙) as well as the star formation history in a galaxy of the intermediate age of 1-10 Gyr (Grebel 1999; Tolstoy 2003)

Stars in the AGB phase experience long-period pulsation variabilities, large mass loss through stellar winds, and a change in atmospheric chemical composition. During the thermal pulses (TP-AGB), material from the nuclear region is mixed into the outer layers (dredge-up process; [iben & Renzini 1983]). Owing to this dredge-up, AGB evolution can be classified according to atmospheric abundance, i.e., starting with oxygen-rich (C/O<1) M-giant stars that evolve into carbon-rich (C/O>1) C stars (Nowotny et al. 2001). These two types of AGB stars can be used to estimate the metallicity of the parent galaxy because the ratio of C stars to M-giants (C/M) is anti-correlated with the metal abundance (Battinelli & Demers 2003; Cioni & Habing 2003; Cioni 2009). The AGB stars are among the brightest and coolest stars of the intermediate-age stellar population; accordingly, they appear mostly in near-infrared color-magnitude diagrams (CMDs). Furthermore, C stars are generally located in an extended red tail on near-infrared CMDs, and can be easily and clearly distinguished from M-giant AGB stars (Hughes & Wood 1990; Nikolaev & Weinberg 2000; Cioni & Habing 2003; 2005; Davidge 2003; 2005; Kang et al. 2005; 2006; Sohn et al. 2006; Valcheva et al. 2007). However, Battinelli et al. (2007) pointed out that near-infrared photometry only detects cool C stars and misses warm C stars, which can only be detected spectroscopically.

This paper is part of a series that studies the photometric properties of AGB stars in LG dwarf galaxies from near-infrared photometry. In previous papers (Kang et al. 2005; 2006; Sohn et al. 2006) we showed the near-infrared photometric properties of AGB stars in two dwarf elliptical galaxies (NGC 185 and NGC 147) and a dwarf irregular galaxy (NGC 6822). We also demonstrated that C stars can be distinguished from AGB stars using near-infrared colors. Kang et al. (2005) and Sohn et al. (2006) provided near-infrared photometric properties of 73 and 91 C stars in NGC 185 and NGC 147, respectively, and suggested that star formation in the galaxies has a wide range of ages for intermediate-age stars. In this paper, we investigate the

Send offprint requests to: Jongwan Ko, e-mail: jsko@yonsei.ac.kr

* Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii.
near-infrared properties of resolved AGB populations in NGC 205, a dwarf elliptical satellite of a large spiral galaxy (M31).

Of the three dwarf elliptical companions of M31, NGC 205 has the shortest projected distance from the larger galaxy. It is therefore expected that NGC 205 has experienced a much stronger interaction with M31 than NGC 147 and NGC 185, and consequently has evolved differently. Indeed, many studies support this idea based on photometric and kinematics observations: the presence of young blue stars in the central region of NGC 205 (e.g., Cappellari et al. 1999) AGB stars in NGC 205 that show multiple episodes of star formation during the past gigayear (Davidson 2003) the twisted surface isophotes and a subtle downward break in the surface brightness profile in NGC 205 (Choi et al. 2002); the presence of stellar tidal debris possibly associated with NGC 205 (Demers et al. 2003; Ibata et al. 2001; McConnachie et al. 2004); the dynamically distinct behavior of gas in NGC 205 (Young & Lo 1997; Welch et al. 1998) the estimation of the dust mass associated with the last burst of star formation in NGC 205 (Fich & Hodge 1991; Haas 1998; Marleau & Martínez-Delgado 2005), while Monaco et al. (2009) recently interpreted the continuous star formation as being in line with the C/M ratio of NGC 205 in a 10° × 24' field of the sky. The total integration times on the HST Advanced Camera for Surveys (ACS) with the WIRCam (a wide-field near-infrared detector; Puget et al. 2004) at the 3.6 m CFHT on July 19, 2007. The WIRCam field covers a ~ 24' × 24' area in the central area of NGC 205 (thick line). The six regions of ~ 6' × 11' are divided to investigate the spatial dependence of the photometric properties of C stars in NGC 205 (thin line).

Table 1. Observational log of July 19, 2007

Filter	\(\lambda_{\text{eff}} \)	Exp. time	FWHM
J	1.25	4 × 3 × 30	0.55
H	1.63	4 × 5 × 15	0.52
K	2.15	4 × 5 × 25	0.53

In this paper, we investigate the bright AGB stellar populations of the central ~ 24' × 24' of the nearby dwarf elliptical galaxy NGC 205 through near-infrared photometry. Section 2 presents \(JHK_s \) observations of NGC 205, the data reduction procedure, and photometric measurements of the resolved stars. The CMDs and color-color diagrams (CCDs) of resolved stars based on \(JHK_s \) photometry are presented in Sect. 3. In Sect. 4 we discuss the near-infrared photometric properties of the identified C stars along with the distribution of the C/M ratio, the color distributions, and the luminosity functions of the AGB stars. A summary of the results is given in Sect. 5.

2. Observation, data reduction, photometry, and photometric measurements

We obtained \(JHK_s \) images via Queue Service Observing (QSO) with the WIRCam (a wide-field near-infrared detector: Puget et al. 2004) at the 3.6 m CFHT on July 19, 2007. The WIRCam contains four 2048 × 2048 HgCdTe arrays with a sampling of 0.3'' per pixel, so that each image covers a total field-of-view of ~ 21' × 21' of the sky. The total integration times on the central field of NGC 205 were 600s (J), 300s (H) and 500s (K), which were obtained from individual exposures of 30s (J), 15s (H) and 25s (K) with a five-point dithering pattern by 90° offset...
to fill-in the 45′′ gaps between arrays. At each pointing, the data were acquired using four half-pixel micro-dithering to improve the spatial resolution. Figure[1] shows the observed fields, and a summary of the observation is presented in Table[1].

Each image was detrended (dark-subtraction, flat-fielding, etc.) using the ‘1iw’ preprocessing pipeline provided by the QSO team. After we subtracted the sky background level from each detrended image, we subtracted the thermal signatures using median combined flat-fielded images of blank sky regions. Then, we used TERAPIX[2] software products (SEXtractor, SCAMP, WeightWatcher, Swarp) to correct the distortion and chip-to-chip variation, and then co-added into one final mosaic image with the full exposure time of a ∼ 24′ × 24′ field-of-view. The seeing measured from the final images were about 0.52′′–0.55′′ FWHM in J, H and K$_c$.

We used the point-spread function (PSF) fitting routines DAOPHOT II/ALLSTAR (Stetson & Harris 1988; Stetson 1987) to measure stellar brightness. We adopted a threshold value of the DAOPHOT sharp parameter (sharpness of 0.3–1.4) to weed out extended objects in the photometry, although this is complicated at the faint part. The instrumental magnitudes of JHK$_c$ were photometrically calibrated using stars with 14 < K$_c$ < 15 in the 2MASS Point Source Catalog (Cuti et al. 2003) covering the same area. A total of 145, 246 stars were detected in JHK$_c$ filters on the ∼ 24′ × 24′ field of the WIRCam observations.

Completeness fractions and uncertainties in the photometric measurements were estimated by performing artificial star experiments on the JHK$_c$ images. Only 400 artificial stars were added to each experiment to take into account increasing uncertainties such as stellar density increases. In the left panel of Fig.[2] a total of 10,000 artificial stars from 25 experiments were added to the final mosaic JHK$_c$ images with a field-of-view of 24′ × 24′. Each horizontal panel in Fig.[2] shows the completeness fraction defined as the recovery rate of the input artificial stars, the rms difference in magnitudes (∆M) between the measured and the input brightness, and the standard deviation of ∆M (σ). When J, H and K$_c$ are fainter than 20.9, 20.0 and 19.5 mag, respectively, the completeness is less than ∼ 90%. To check the completeness difference as a function of stellar density, we also performed 36 new experiments by adding 400 artificial stars of K$_c$=15.5–18.5 mag in each experiment with increasing projected radius from the center of NGC 205 ($\alpha = 00^h40^m22.08^s$, $\delta = +41^\circ 41'07.10''$). The right panel of Fig.[2] shows the results of the experiments as a function of the projected radius (R_p) from the center of NGC 205. We only considered stars brighter than K$_c$ = 18.1 mag because we assumed that AGB stars are brighter than K$_c$=18.1 mag in Sec. 3.2. Although the completeness slightly decreases in the central area ($R_p < 1.5'$), it is not less than ∼ 90%. This suggests that incompleteness is not significant for our analysis.

3. Photometric properties of AGB stars

3.1. Adopted reddening, distance, and metallicity range

NGC 205 is the closest dwarf elliptical galaxy to M31 (located at 37' from the center of M31) and behind M31 (Grebel et al. 2003 Howley et al. 2003) the accurate color excess toward NGC 205 is not known yet because of M31’s dust clouds. Schlegel et al. (1998) estimated the foreground reddening (generated by the Galaxy) of E(B − V) = 0.083 from the dust infrared emission feature. Adopting this value and applying the relative extinction ratios of Schlegel et al. (1998) we estimated the interstellar absorptions in JHK$_c$ passbands to be A$_J = 0.075$, A$_H = 0.048$, and A$_K$ = 0.030. The calculated reddening values are then E(J − K$_c$) = 0.045 and E(H − K$_c$) = 0.018.

McConnachie et al. (2005) measured the distance modulus of NGC 205 as (m − M)$_0$ = 24.58, based on the I-band tip of red-giant branch (TRGB) brightness. From investigating the interaction between NGC 205 and M31 with restricted N-body simulations, Howley et al. (2008) estimated a distance modulus of (m − M)$_0$ = 24.50. However, we adopted an unweighted mean distance modulus of NGC 205 as (m − M)$_0$ = 24.54 ± 0.09 (van den Bergh 2000).

Mould et al. (1984) measured a metallicity of [Fe/H] $\geq -0.9 \pm 0.2$ and a metallicity dispersion of ±0.5 dex, based on the color of the RGB stars in NGC 205. However, Jones et al. (1996) estimated a much lower nuclear metallicity of [Fe/H] ≥ -1.4 from the far-UV imaging data. McConnachie et al. (2005) also obtained the median metallicity of [Fe/H] ~ -0.8 (using theoretical evolutionary tracks with no α-enhancement) for the RGB stars in NGC 205. Using HST observations of the central region of NGC 205, Butler & Martinez-De-Leon (2005) inferred the median metallicity of [Fe/H] $\sim -1.06 \pm 0.04$ from ancient stars’ color information, reaching [Fe/H] ~ -0.7 for the RGB

![Graphical representation of the text](attachment:image.png)
The filter fits a polynomial on the order of \(M \) to the data points \(N(m)_j \) with \(j = i, ..., i + J \), and then evaluates the \(L^\text{th} \) derivative of the polynomial at bin \(i \) to estimate \(d^2N/dm^2 \). By applying the Savitzky-Golay filter to the observed LF in \(K_i \) band, we derived the second derivatives of LF per 0.07 mag interval, and detected a peak of the second derivatives caused the TRGB discontinuity with \(-18.1 \text{ mag in } K_i \) in Fig. 4.

From these approaches, we consider that AGB stars are located at brighter than \(K_i = 18.1 \text{ mag, and 11,928 stars are accordingly selected as AGB stars. The bright part for AGB stars has three different components in Fig. 5. The bright blue sequence at } (J-K_s) < 0.97 \text{ mostly corresponds to the Galactic foreground stars, and a vertical sequence (0.97 < } J-K_s < 1.43 \text{) and a red plume (} J-K_s > 1.43 \text{) to the M-giant and C stars} \text{.} \text{ The Galactic star count model of Ratnatunga \\& Bahcall (1985) predicted approximately 550 bright blue foreground stars with } (B-V) < 1.3 \text{ and } V < 22 \text{ in the } \sim 24'' \times 24'' \text{ region of the WIRCam observation toward NGC 205, which is roughly consistent with the count of the bright foreground stars in Fig. 5. It should be noted that the faint part for AGB stars may be contaminated from unresolved background galaxies.}} \text{ According to McCracken et al. (2000, see their Fig. 1) there are } \sim 4000 \text{ galaxies deg}^{-2} \text{ when } 16 < K_i < 18.1 \text{ (magnitude range of AGB stars in Fig. 5). This implies that } \sim 640 \text{ galaxies (16 < } K_i < 18.1 \text{) might be present in the WIRCam field. In other words, at most } \sim 5\% \text{ of our AGB stars are probably intermediate-redshift galaxies. We here assume that all types of background}}
galaxies (16 < Ks < 18.1) will have (J − Ks) ∼ 1.0-2.0 from Cowie et al. (1996), applying the colors of galaxies and the k-corrections from Mannucci et al. (2001).

To confirm the population classification, we compare the observed (J − Ks, Ks) CMD shown in Fig. 3 for stars brighter than Ks = 18.1 with the theoretical isochrones of AGB stars (Marigo et al. 2008). We also plot the C stars identified in RICNTIO photometry (Demers et al. 2003). Although C stars are broadly distributed over the CMD, most of the M-giants and C stars are clearly separated in the CMD (see Fig. 7 in Marigo et al. 2008). Figure 3 shows (J − Ks) colors versus ages at the beginning of the C stars on the isochrones, i.e., C/O > 1. The dotted line indicates the color cut of (J − Ks) = 1.43 to separate C stars from M-giants in the work.

3.3. Color-color diagrams (CCDs) and selection of C stars

The narrowband photometric technique (i.e., CN − TiO approach) for differentiating C stars from M-giants is based on different spectrum types of AGB stars, i.e., M-giants dominated by bands of the TiO molecule and C stars dominated by bands of the C2 and CN molecules (Albert et al. 2000; Battinelli & Demers 2000; Nowotny et al. 2001, 2003; Demers & Battinelli 2002; Letarte et al. 2002; Battinelli et al. 2003; Demers et al. 2003; Battinelli & Demers 2004a,b; Harbeck et al. 2004; Kerschbaum et al. 2004). However, the extremely red C stars can be easily separated from the M-giants because they have different locations on the near-infrared color-color diagrams (Frogel et al. 1980; Wood et al. 1985; Marigo et al. 2003; Davidge 2005; Kang et al. 2005, 2006; Sohn et al. 2006).

Demers et al. (2003) identified 532 C stars in NGC 205 from their position on the (CN − TiO) versus (R − I) CCD, using a CFH12K survey covering a field of view of 48’ × 28’ in NGC 205. By applying their criterion for selecting C stars (i.e., C stars: (R − I) > 0.97, (CN − TiO) > 0.3, M-giants: (R − I) > 0.97, (CN − TiO) < 0.0), we found 394 C stars and 5,054 M-giant stars with Ks magnitude brighter than 18.1 in our WIRCam field. We note, however, that it may possibly contain fainter stars than TRGB brightness. Davidge (2005) assigned the color limits of (J − Ks)0 > 1.4 and (H − Ks)0 > 0.45 to de-
tach C stars from M-giants in nearby dwarf galaxies. Adopting these color cuts to NGC 205, C stars were separated from M-giants at $(J - K_s) > 1.43$ and $(H - K_s) > 0.47$. Figure 7 shows the $(H - K_s) - (J - K_s)$ CCD and color histograms of selected AGB stars with the color cuts of C stars. Most C stars selected in RICNTiO photometry are also distributed in the color range of C stars in the $(H - K_s) - (J - K_s)$ CCD, and the color distribution shows the main peak of M-giants and the red tail of C stars. Finally, 1,550 C stars were selected from the CCD among the observed 11,928 AGB stars of NGC 205. Among the C stars selected in JHKs, 309 C stars matched RICNTiO photometry (Demers et al. 2003). The cross-identified C stars are marked with open circles in Figs. 3 and 7. We can speculate that there is an obvious deficiency of Demers’s C stars near the center of NGC 205 due to crowding, as Demers et al. (2003) also mentioned in their Figure 6. The seeing in JHK_s images (0.52″-0.55″) was better than in RICNTiO images (0.8″), and Demers et al. (2003) also mentioned that sky conditions during the observations were nonphotometric. Therefore, more C stars could be discovered in JHK_s images. Furthermore, Davidge (2005) found 387 C stars near the center of NGC 205 (3.7′ × 3.7′) using CFHTIR JHK_s data, although they adopted a different faint limit for C stars than we did. Therefore, the main reason for the difference in C stars compared to Demers and coworkers is that they missed several C stars near the center of NGC 205.

4. Discussion

4.1. C stars and the distribution of the C/M ratio

The mean magnitude and colors of the 1,550 C stars, which are classified in the JHK_s bands, are estimated to be $⟨K_s⟩ = 17.08±0.54$, $⟨J−K_s⟩ = 1.85±0.41$, and $⟨H−K_s⟩ = 0.78±0.24$. The corrected values are $(M_{K_s}) = −7.49$, $(⟨J−K_s⟩_0) = 1.81$, and $(⟨H−K_s⟩_0) = 0.76$, with the distance modulus and reddening values in Sect. 3.1. For the cross-identified 309 C stars detected in common in the RICNTiO bands by Demers et al. (2003) and JHK bands in this study, the mean absolute magnitude and colors are estimated to be $(M_{K_s}) = −7.73 ± 0.40$, $(⟨J−K_s⟩_0) = 1.72 ± 0.30$, and $(⟨H−K_s⟩_0) = 0.67 ± 0.18$. In our previous studies, the estimated mean absolute magnitude in the K band of C stars in nearby dwarf galaxies, $(M_K) = −7.93 ± 0.38$ for 73 C stars in NGC 185 (Kang et al. 2005), −7.56 ± 0.47 for 91 C stars in NGC 147 (Sohn et al. 2006), and −7.60 ± 0.50 for 141 C stars in NGC 6822 (Kang et al. 2006).

To investigate the spatial distribution of the C stars of NGC 205, we divided the observed WIRCam field of a $24′′×24′′$ area into six $6′×11′$ regions as shown in Fig. 1. Table 2 summarizes the mean magnitude and colors for the C stars found in each region. The mean magnitude of the C stars is slightly brighter in the central part (i.e., ‘N’ and ‘S’ regions), with many more C stars than that of the C stars in the outer part.

We estimate the ratio of the C stars to M-giants (C/M) of the AGB population to be 0.15 ± 0.01 at the WIRCam observed field of NGC 205. As seen in Table 3, we did not find any spatial difference in the local C/M ratio of NGC 205. Instead, the mean C/M ratio in the southern part seems to be slightly lower than in the northern part. This implies that the star formation...
Table 2. The mean magnitude and colors of the selected 1,550 C stars in NGC 205

	(K)	(J − K)	(H − K)	
NE	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
N	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
NW	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
SE	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
S	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
SW	17.20 ± 0.60	1.77 ± 0.41	0.80 ± 0.25	
total	1238	17.03 ± 0.51	1.86 ± 0.42	0.77 ± 0.25
total	1550	17.08 ± 0.54	1.85 ± 0.41	0.78 ± 0.24

1 stars in six selected regions
2 stars in the entire WIRCam observed area

Table 3. The number of C stars and M-giants, C/M ratio, and metallicity in NGC 205

	C	M	[Fe/H]a	[Fe/H]b	
NE	692	0.16 ± 0.02	−0.85 ± 0.03	−1.02 ± 0.02	
N	2814	0.14 ± 0.01	−0.82 ± 0.01	−0.99 ± 0.01	
NW	718	0.16 ± 0.02	−0.85 ± 0.03	−1.01 ± 0.02	
SE	1464	0.13 ± 0.01	−0.79 ± 0.02	−0.97 ± 0.02	
S	2821	0.13 ± 0.01	−0.79 ± 0.01	−0.97 ± 0.01	
SW	554	0.12 ± 0.02	−0.79 ± 0.03	−0.96 ± 0.03	
total	1238	9063	0.14 ± 0.01	−0.81 ± 0.01	−0.98 ± 0.01
total	1550	10378	0.15 ± 0.01	−0.83 ± 0.01	−1.00 ± 0.01

1 stars in six selected regions
2 stars in the entire WIRCam observed area

a Calculated from the correlation of Battinelli & Demers (2005)
b Calculated from the correlation of Cioni (2009)

history for AGB stars in NGC 205 is likely to be different for the northern and southern parts. Alternatively, the difference in C/M ratios between the northern and southern parts of NGC 205 might be caused by contamination from the disk of M31, which lies immediately to the south of NGC 205. The M31 disk is more metal-rich than NGC 205 and consequently will have a lower C/M ratio. Presumably, a significant fraction of the stars in the southern half of the NGC 205 field belong to the M31 disk. Demers et al. (2003) found 289 C stars and evaluated the C/M ratio in the central 10' ellipse of NGC 205 as 0.09 ± 0.01, using the CN−TI0 technique to identify C stars. To examine the difference in the C/M ratios, we applied the color criterion of Demers et al. (2003) C stars: (R − I0) > 0.9 and (CN − TI0) > 0.3; M-giants: (R − I0) > 0.9 and (CN − TI0) < 0.0) to our C and M-giant stars identified in HIK, photometry and found 394 C stars and 5,054 M-giants. The calculated C/M ratio in the observed WIRCam field of NGC 205 is 0.08 ± 0.01. Therefore, the difference in the C/M ratio is largely due to the method for defining the M-giants and C stars of the AGB population.

The C/M ratio of the LG galaxies correlates with metallicity, for instance, a lower C/M ratio corresponds to a higher metallicity (Groenewegen 1999, Marigo 2002, Battinelli & Demers 2005). Since Battinelli & Demers (2005) obtained C/M ratios for the LG galaxies, and found the correlation [Fe/H] = −1.32(±0.07) −0.59(±0.09)×log(C/M). Updating the metallicities for LG galaxies, the correlation is calibrated as [Fe/H] = −1.39(±0.06) −0.47(±0.10)×log(C/M) (Cioni 2009). Using these correlations, we calculated [Fe/H] = −0.79 ~ −1.02 in the WIRCam observed area of NGC 205. Table 3 summarizes the number of C stars and M-giants, C/M ratios, and metallicities of NGC 205. Battinelli et al. (2007) argue that applying C/M (obtained from RICNTI0) vs. [Fe/H] calibration to C/M (obtained from HIK) vs. [Fe/H] calibration is not justified. Therefore, a more uniform data set for the LG galaxies is needed to confirm the correlation in the near-infrared wavelengths.

In previous studies, the estimated C/M ratios of the two elliptical satellites of M31 are 0.11 ± 0.01 for NGC 185 (Kang et al. 2005) and 0.16 ± 0.02 for NGC 147 (Sohn et al. 2006). And the derived metallicities [Fe/H] are −0.76 ± 0.03 and −0.86 ± 0.03 from Battinelli & Demers (2005), and −0.95 ± 0.03 and −1.02 ± 0.02 from Cioni (2009) for NGC 185 and NGC 147, respectively. This indicates that the metallicity of NGC 205 is more similar to NGC 147 than to NGC 185. However, the color criteria for selecting C stars from M-giants are different for each galaxy. Accordingly, we re-estimated the C stars of NGC 147 and NGC 185, using the color criteria for NGC 205 (i.e., (J − K) > 1.4 and (H − K) > 0.45). As a result, the C/M ratios are 0.18 ± 0.02 in NGC 185 and 0.17 ± 0.02 in NGC 147. The derived metallicities [Fe/H] are then −0.88 ± 0.03 and −0.86 ± 0.03 from Battinelli & Demers (2005), and −1.04 ± 0.02 and −1.03 ± 0.02 from Cioni (2009) for NGC 185 and NGC 147, respectively. This result suggests that the metallicities of the three dwarf elliptical satellites of M31 are not very different, although the observed areas of two galaxies are much smaller than NGC 205. The relative metallicities of these three galaxies can also be compared from the luminosity-metallicity (Mg vs. [Fe/H]) relation obtained by using oxygen abundances of HII regions for dwarf irregular galaxies (van Zee et al. 2006). The metallicities of NGC 147, 185, and 205 are estimated to be −1.12, −1.14, and −0.94, respectively. We here assumed that 12 + log(O/H) = 8.66 (Asplund 2003) and used the relation [Fe/H] = [O/H] −0.37 (Mased 1998). It should be noted that at a fixed luminosity, dwarf ellipticals have a higher metallicity than dwarf irregulars. Therefore, the derived metallicities from the relationship can be slightly underestimated (e.g., Gonzalez et al. 2007).

4.2. Color distributions

Figure 8 shows the histogram distributions of the (J − K) color for the selected 11,928 AGB stars (left), and for AGB stars belonging to each region (right) in NGC 205. All histograms of (J − K) have the main peak of M-giant stars and the red tail of C stars. The shapes of the color distributions for AGB stars in each region do not show significantly different features from the color distribution for all selected AGB stars. However, the standard deviation (σJ−K) of the eastern part (i.e., ‘NE’ and ‘SE’) is larger than that of the western part (i.e., ‘NW’ and ‘SW’), indicating a much wider range of stellar ages in the eastern area of NGC 205 because the color distribution of AGB stars can be used to infer the intermediate-ages stellar populations in a galaxy (David et al. 2005, Kang et al. 2005, 2006, Sohn et al. 2006). However, this difference is possibly due to contamination of the color distributions from some foreground stars and/or stars belonging to M31.

In our previous studies (Kang et al. 2005, 2006, Sohn et al. 2006) we used the color distributions of NGC 185, NGC 147, and NGC 6822 to infer the range of ages for intermediate-aged populations in each galaxy: two possible epochs in NGC 185 with log(tage) = 9.0–9.4 and 7.8–8.5 (Kang et al. 2005), a range of epochs in NGC 147 with approximately 8.2 ≤ log(tage) ≤ 8.6 having a peak of log(tage) = 8.4 (Sohn et al. 2006), and a range of epochs in NGC 6822 with approximately 8.0 ≤ log(tage) ≤ 10.0 having a peak of log(tage) = 9.0 (Kang et al. 2006). Similarly, David (2005) also inferred the range of ages for M-giant stars in NGC 147, NGC 185, and NGC 205 by comparing the (J − K)
color in the color histograms of M-giant stars with $Z = 0.008$ with the isochrones of Marigo et al. (2008) having a peak of $\log(t_\text{ff}) = 8.1$ and ages of $\log(t_\text{ff}) = 8.1, 9.0,$ and 9.8. Davidge restricted the brightness range of M-giant stars with $-7.6 < M_K < -7.2$ to avoid sample incompleteness and to span the full range of ages of the stars.

To estimate the range of ages for M-giant stars in NGC 205, we also applied the same technique. Figure 9 shows the histogram distribution of the $(J - K_s)$ for 1,630 M-giant stars with $-7.6 < M_K < -7.2$ at an interval of 0.05 mag. Arrows are the $(J - K_s)$ colors of the theoretical isochrones of M-giant stars at $M_K = -7.4$, with $Z = 0.008$ and no-dust case, for ages of $\log(t_\text{ff}) = 9.0$ and 9.7 with the adopted distance and reddening of NGC 205. The spread of the color distribution of the M-giant stars indicates that NGC 205 contains M-giant stars spanning a wide range of star formation epochs (i.e., $\log(t_\text{ff}) \sim 9.0-9.7$), having a peak of $\log(t_\text{ff}) = 9.3$. Our WIRCam field is approximately 32 times larger than that of Davidge (2005), and we used the new isochrones of Marigo et al. (2008).

4.3. Luminosity functions

Luminosity functions (LFs) for the resolved AGB stars in a galaxy are a useful tool for comparing the evolution models of AGB stars with observations. Moreover, bolometric LF and the mean bolometric magnitude of C stars in a galaxy depend upon the metallicity and star formation history of a galaxy (Groenewegen 1999; Nowotny et al. 2003). Near-infrared observations have an advantage of deriving the LFs of AGB stars in a galaxy because some red bright stars detected on near-infrared images are not always visible in optical images.

The two diagrams on the left of Fig. 10 show the completeness-corrected LFs for the M_K for the M-giants and C stars detected in the entire observed area of NGC 205. The completeness-corrected logarithmic LF in the M_K of M-giant stars is also shown in the inner small panel in the lower-left panel of Fig. 10. The M_K LF of C stars is unlikely to be a Gaussian distribution, which is consistent with our previous results in NGC 147 and NGC 185. We estimated the logarithmic slope of the M_K LF for the M-giant stars in NGC 205 to be 0.84 ± 0.01, by performing a least-squares fit to the brightness interval of $-8.5 < M_K < -7.1$. Compared to the slopes with our previous studies for nearby dwarf galaxies, this value is comparable with dwarf elliptical galaxies, i.e., 0.83 ± 0.02 for NGC 185 (Kang et al. 2005) and 0.79 ± 0.02 for NGC 147 (Sohn et al. 2006), but is lower than a dwarf irregular galaxy, i.e., 1.12 ± 0.03 for NGC 6822 (Kang et al. 2006). This result implies that the star formation history for M-giant stars among dwarf elliptical galaxies is likely similar but different from that in the dwarf irregular galaxy. We will check whether the slope in the K band LF of M-giants depends on the morphology of dwarf galaxies in a forthcoming paper.

Figure 11 shows the M_K and M_{bol} LFs for the C stars in each region of NGC 205. We estimated the mean magnitude in the K_s band and the logarithmic slope of the M_K LF for the C stars in each region of NGC 205 (Table 4). For comparison, we also estimated the logarithmic slope of the M_K, M_{bol} for the M-giant stars in each region, and found that ‘NE’ (0.53) and ‘NW’ (1.45) differ from the value for total M-giants (0.84). It also seems that the slopes of the M_K, M_{bol} for the C stars in the northern part are slightly steeper than in the southern part. With the result of the higher C/M ratio in the northern part, this suggests that the star formation history is different to places within NGC 205.

Bolometric corrections in the K band, BC_K, were estimated separately for the M-giants and C stars in NGC 205 from the empirical relations between BC_K and $(J - K)$ for Galactic and LMC AGB stars. For the M-giants, we applied the relations for the Galactic and LMC M-giants given by Bessell & Wood (1984) while for the C stars we applied that for the Galactic C stars given by Costa & Froebrich (1996). The right panels of Fig. 10 show the completeness-corrected bolometric LFs of the M-giants and C stars in NGC 205. The bolometric LF for the M-giant stars in NGC 205 extends to $M_{bol} = -6.0$ mag, and that of the C stars spans $-5.6 < M_{bol} < -3.0$. The mean bolometric LF of the C stars in NGC 205 is estimated to be $M_{bol} = -4.24 \pm 0.55$. This is the equivalent of those of C stars in nearby dwarf galaxies, i.e., $M_{bol} = -4.50 \pm 0.42$ in NGC 185 (Kang et al. 2005), $M_{bol} = -4.32 \pm 0.49$ in NGC 147 (Sohn et al. 2006), and $M_{bol} = -4.36 \pm 0.54$ in NGC 6822 (Kang et al. 2006).

5. Summary

The JHK_s images were used to investigate the AGB population in the nearby dwarf elliptical galaxy NGC 205. Our main results are summarized as follows.
Table 4. The mean absolute and bolometric magnitude of C stars, and the logarithmic slope of M_K LF for C and M-giant stars in NGC 205

	$\langle M_{Ks} \rangle$ of C stars	$\langle M_{bol} \rangle$ of C stars	slope for C stars ($-8.5 < M_{Ks} < -7.7$)	slope for M-giants ($-8.5 < M_{Ks} < -7.1$)
NE	-7.37 ± 0.60	-4.17 ± 0.59	0.64 ± 0.13	0.53 ± 0.02
N	-7.67 ± 0.44	-4.41 ± 0.46	1.03 ± 0.02	0.93 ± 0.01
NW	-7.42 ± 0.44	-4.17 ± 0.46	0.97 ± 0.16	1.45 ± 0.03
SE	-7.35 ± 0.53	-4.08 ± 0.58	0.59 ± 0.11	0.73 ± 0.01
S	-7.63 ± 0.48	-4.38 ± 0.49	0.68 ± 0.03	0.85 ± 0.01
SW	-7.33 ± 0.52	-4.09 ± 0.52	0.93 ± 0.22	0.73 ± 0.03
total1	-7.54 ± 0.51	-4.29 ± 0.52	0.88 ± 0.01	0.88 ± 0.01
total2	-7.49 ± 0.54	-4.24 ± 0.55	0.89 ± 0.01	0.84 ± 0.01

a Calculated from the correlation of Battinelli & Demers (2005)

b Calculated from the correlation of Cioni (2009)

1 stars in six selected regions

2 stars in the entire WIRCam observed area

1. The CMDs of NGC 205 based on the JHK_s photometry show various populations of MS, RGB, AGB, and foreground stars. The AGB populations in the CMDs are dominated by M-giant stars and red C stars.

2. A total of 1,550 C stars were selected from AGB stars in the near-infrared CCD. The mean magnitude and colors of the 1,550 C stars in a $24' \times 24'$ field of NGC 205 are estimated to be $(K_s) = 17.08 \pm 0.54$, $(J-K_s) = 1.85 \pm 0.41$ and $(H-K_s) = 0.78 \pm 0.24$. This is equivalent to $(M_{Ks}) = -7.49$, $(J-K_s)_0 = 1.81$, and $(H-K_s)_0 = 0.76$ at the distance of NGC 205.

3. The C/M ratio of the entire observed WIRCam field is estimated to be 0.15 ± 0.01. The slightly lower C/M ratio (i.e., higher metallicity) in the southern part compared to the northern part could be the result of different star formation history in NGC 205.

4. The $(J-K_s)$ color histogram shows the main peak of M-giant stars and the red tail of C stars. A spread of the color distribution of the M-giant stars indicates a range of star formation epochs $\log(t_f) \sim 9.0-9.7$ in NGC 205.

5. The logarithmic slope of the M_K LF for the M-giant stars with $-8.5 < M_{Ks} < -7.1$ is estimated to be 0.84 ± 0.01. This value is similar to dwarf elliptical galaxies NGC 147 and NGC 185, but lower than the irregular galaxy NGC 6822.

6. The logarithmic slopes of the M_K LF for the C and M-giant stars are slightly different to places, implying a different star formation history within NGC 205.

Fig. 9. Histogram distribution of $(J-K_s)$ color for 1,630 M-giant stars with $-7.6 < M_{Ks} < -7.2$ per 0.05 mag interval. Arrows indicate the predicted $(J-K_s)$ colors of the isochrones for M-giant stars [Marigo et al. 2008] at $M_{Ks} = -7.4$ with $Z = 0.008$ and ages of $\log(t_f) = 9.0$ and 9.7.

Fig. 10. Left: the completeness-corrected LFs in the M_K for the M-giants and C stars. The inner small panel in the lower panel indicates the logarithmic LF of M-giant of NGC 205. The LFs with solid lines show the M-giants and C stars detected in the WIRCam field of NGC 205. Right: the completeness-corrected bolometric LFs for the M-giants and C stars.
7. The bolometric LF for M-giants in NGC 205 extends to $M_{\text{bol}} = -6.0$ mag, and that for C stars spans $-5.6 < M_{\text{bol}} < -3.0$. The bolometric LF of C stars is probably not a Gaussian distribution, and the mean bolometric magnitude of C stars is estimated to be $M_{\text{bol}} = -4.24 \pm 0.55$, which is comparable with our previous results for the dwarf elliptical galaxies NGC 147 and NGC 185.

Acknowledgements. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021867). This work is partially supported by the KASI-Yonsei Joint Research Program (2010-2011) for the Frontiers of Astronomy and Space Science funded by the Korea Astronomy and Space Science Institute. M.Y. Jung is grateful for the support provided by the EU FP7 participation support program (2008-2011) of the National Research Foundation of Korea.

References

Albert, L., Demers, S., & Kunkel, W. E. 2000, AJ, 119, 2780
Asplund, M. 2003, Astronomical Society of the Pacific Conference Series, 304, 275
Battinelli, P., Demers, S., & Mannucci, F. 2007, A&A, 474, 35
Battinelli, P., & Demers, S. 2005, A&A, 434, 657
Battinelli, P., & Demers, S. 2004a, A&A, 418, 33
Battinelli, P., & Demers, S. 2004b, A&A, 417, 479
Battinelli, P., Demers, S., & Letarte, B. 2003, AJ, 125, 1298
Battinelli, P., & Demers, S. 2000, AJ, 120, 1801
Bessell, M. S., & Wood, P. R. 1984, PASP, 96, 247
Bica, E., Alloin, D., & Schmidt, A. A. 1990, A&A, 228, 23
Bressan, A., Granato, G. L., & Silva, L. 1998, A&A, 332, 135
Butler, D. J., & Martínez-Delgado, D. 2005, AJ, 129, 2217
Cappellari, M., Bertola, F., Burstein, D., et al. 1999, ApJ, 515, L17
Choi, P. H., Guhathakurta, P., & Johnston, K. V. 2002, AJ, 124, 310
Cioni, M.-R. L. 2009, A&A, 506, 1137
Cioni, M.-R. L., & Habing, H. J. 2005, A&A, 429, 837
Cioni, M.-R. L., & Habing, H. J. 2003, A&A, 402, 133
Cioni, M.-R. L., van der Marel, R. P., Loup, C., & Habing, H. J. 2000, A&A, 359, 601
Cook, K. H., Arasonn, M., & Norris, J. 1986, ApJ, 305, 634
Costa, E., & Frogel, J. A. 1996, AJ, 112, 2607
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, "The IRSA 2MASS All-Sky Point Source Catalog, NASA/IPAC Infrared Science Archive. http://irsa.ipac.caltech.edu/applications/Gator/"
Davidge, T. J. 2005, AJ, 130, 2087
Davidge, T. J. 2003, ApJ, 597, 289
Demers, S., Battinelli, P., & Letarte, B. 2003, AJ, 125, 3037
Demers, S., & Battinelli, P. 2002, AJ, 123, 238
Fich, M., & Hodge, P. 1991, ApJ, 374, L17
Frogel, J. A., Persson, S. E., & Cohen, J. G. 1980, ApJ, 239, 495
Geha, M., Guhathakurta, P., Rich, R. M., & Cooper, M. C. 2006, AJ, 131, 332
Girardi, L., Bertelli, G., & Chiosi, C. 2003, A&A, 403, 225
Girardi, L., Bressan, A., et al. 2001, MNRAS, 326, 745
Marigo, P., Girardi, L., Bressan, A., et al. 2008, A&A, 482, 883
Marigo, P., Girardi, L., & Chiosi, C. 2003, A&A, 403, 225
Marigo, P. 2002, A&A, 387, 507
Marleau, F. R., Noriega-Crespo, A., Misselt, K. A., et al. 2006, ApJ, 646, 929
Mateo, M. L. 1998, ARA&A, 36, 435
McConnachie, A. W., Irwin, M. J., Ferguson, A. M. N., et al. 2005, MNRAS, 356, 979
McConnachie, A. W., Irwin, M. J., Lewis, G. F., et al. 2004, MNRAS, 351, L94
McCramden, H. J., Metcalfe, N., Shanks, T., et al. 2000, MNRAS, 311, 707
Monaco, L., Saviane, I., Perina, S., et al. 2009, A&A, 502, L9
Mould, J., Kristian, J., & Du Costa, G. S. 1984, ApJ, 278, 757
Nikolaev, S., & Weinberg, M. D. 2000, ApJ, 542, 804
Nowotny, W., Kerschbaum, F., Olofsson, H., & Olofsson, H. 2003, A&A, 371, 93
Nowotny, W., Kerschbaum, F., Schwartz, H. E., & Olofsson, H. 2001, A&A, 367, 557
Puget, P., Stabler, E., Doyon, R., et al. 2004, Proc. SPIE, 5492, 978
Ramatunga, K. U., & Bahcall, J. N. 1985, ApJS, 59, 63
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sharina, M. E., Afanasiev, V. L., & Puzia, T. H. 2006, MNRAS, 372, 1259
Simmie, F., & Prugnai, P. 2002, A&A, 384, 371
Sohn, Y.-J., Kang, A., Rhee, J., et al. 2006, A&A, 445, 69
Stetson, P. B., & Harris, W. E. 1988, AJ, 96, 909
Stetson, P. B. 1987, PASP, 99, 191
Tolstoy, E. 2003, A&SS, 284, 579
Valcheva, A. T., Ivanov, V. D., Ocharchov, E. P., & Nedialkow, P. L. 2007, A&A, 466, 501
Valenti, E., Ferraro, F. R., & Origlio, L. 2004, MNRAS, 354, 815
van den Bergh, S. 2000, The galaxies of the Local Group, by Sidney Van den Bergh. Published by Cambridge, UK: Cambridge University Press, 2000
Cambridge Astrophysics Series Series, vol no: 35, ISBN: 0521651816.,
van Zee, L., Skillman, E. D., & Haynes, M. P. 2006, ApJ, 637, 269
Welch, G. A., Sage, L. J., & Mitchell, G. F. 1998, ApJ, 499, 209
Wood, P. R., Bessell, M. S., & Paltoglou, G. 1985, ApJ, 290, 477
Young, L. M., & Lo, K. Y. 1997, ApJ, 476, 127
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021867). This work is partially supported by the KASI-Yonsei Joint Research Program (2010-2011) for the Frontiers of Astronomy and Space Science funded by the Korea Astronomy and Space Science Institute. M.Y. Jung is grateful for the support provided by the EU FP7 participation support program (2008-2011) of the National Research Foundation of Korea.
Fig. 11. Completeness-corrected LFs in the M_{K_s} (dot-dashed) and the M_{bol} (solid) for the C stars in each region.