Electro Magneto Elastic Actuator for Nanomedical Research

Afonin SM*

National Research University of Electronic Technology MIET, Russia

*Corresponding author: Afonin SM, National Research University of Electronic Technology MIET, Moscow, Russia

Received: August 14, 2019
Published: August 23, 2019

Introduction

The electro magneto elastic actuator with the piezoelectric, piezomagnetic, electrostriction, magnetostriction effects is used for nanomedical research in the scanning tunneling microscopy [1-9]. For control system of the deformation of the electro magneto elastic actuator its structural diagram, transfer function, characteristics are calculated [9-18]. The structural diagram and matrix transfer function the electro magneto elastic actuator is applied to describe the dynamic and static characteristics of the electro magneto elastic actuator for nanomedical research with regard to its physical parameters and external load [14-28].

Aim

The aim of this work is to construct the structural diagram and the matrix transfer function of the electro magneto elastic actuator for control systems of nanomedical research.

Method

The method of mathematical physics is used to solve the wave equation with the Laplace transform for obtain the structural diagram, the matrix transfer function, the characteristics of the electro magneto elastic actuator for nanomedical research.

Results

We constructed the structural diagram and the matrix transfer function of the electro magneto elastic actuator. The structural diagram of the electro magneto elastic actuator is difference from Cady and Mason electrical equivalent circuits. The method of the mathematical physics we used for the determination the structural diagram actuator is used decision with Laplace transform the wave equation for the wave propagation in the long line with damping but without distortions. We obtained with using Laplace transform the linear ordinary second-order differential equation with the parameter p [8,14,18].

$$
\frac{d^2 \Xi(x,p)}{dx^2} + \left(\gamma^2 \Xi(x,p) - \alpha \right) = 0
$$

where $\Xi(x,p)$ is the Laplace transform of the displacement of section of the actuator, $\gamma = p/c^* + \alpha$ is the propagation coefficient, c^* is the sound speed for the control parameter $\Psi = \text{const}$, α is the damping coefficient.

Figure 1: Generalized structural diagram of electro magneto elastic actuator for nanomedical research.
We determined the generalized structural-parametric model, the generalized structural diagram [7,8,14] of the actuator on (Figure 1) by the method of the mathematical physics with using the equation of the electro magneto elasticity and the boundary conditions in the following form

\[\xi(p) = [1/(M_\xi p^2) + E(p)](1/\gamma_s) \left\{ [\xi(p) - \xi(p) - \xi(p)] \left\{ \gamma + \delta_{\gamma}(p) \right\} \right\} \]

\[\xi(p) = [1/(M_\xi p^2) + E(p)](1/\gamma_s) \left\{ [\xi(p) - \xi(p) - \xi(p)] \left\{ \gamma + \delta_{\gamma}(p) \right\} \right\} \quad (3) \]

where \(\xi = \xi(p) = \xi(p) = \xi(p) = \xi(p) \) is the piezomodule or the magnetostrictive coefficient, \(\xi = \xi(p) = \xi(p) = \xi(p) = \xi(p) \) is the piezomodule, \(S_{\xi}^{2} \) is the elastic compliance, \(S_{\xi}^{2} \) is the elastic compliance, \(S_{\xi}^{2} \) is the Laplace transforms of the displacements and the forces on two faces. The structural diagrams of the magnetostrictive actuator or piezoelement are determined from the generalized structural diagram of the electro magneto elastic actuator. We obtained the matrix transfer function of the electro magneto elastic actuator \[\Theta(p) \] from the structural-parametric model (3) in the form

\[(\Theta(p)) = (W(p))(P(p)) \]

where \(\Theta(p) \) is the matrix of the Laplace transforms of the displacements for the faces of the actuator. \((W(p)) \) is the matrix transfer function, \((P(p)) \) the matrix of the Laplace transforms of the control parameter and the forces. We calculated the matrix transfer function of the electro magneto elastic actuator for control system of nanomedical research. We obtained the transfer function of the transverse piezoelement with one fixed face for the elastic-inertial load from (4) at \(M \rightarrow \infty, m \ll M_\xi \), in the form

\[W(p) = \Pi(p)/U(p) = K_p/(T_p^2 p^2 + 2T_p \xi p + 1) \]

\[K_p = (d_\xi h/\delta)(1+C_{\xi}/C_{\xi}^2), \quad T_p = \sqrt{M_p/(1+C_{\xi}/C_{\xi}^2)} \]

\[\xi = \alpha hC_{\xi}/C_{\xi}^2 \sqrt{M_p}(c_{\xi} + c_{\xi}^2) \]

where \(U(p) \) is the Laplace transform of the voltage on the piezoelement, \(k_\xi \) is the transfer coefficient, \(T_p \) is the time constant. \(\xi \) is the damping coefficient of the piezoelement. For the transverse piezoelement with one fixed face for the elastic-inertial load at \(d_\xi = 2.4 \times 10^{-5} N/V, \delta = 0 \), \(M_\xi = 1 kg, C_{\xi} = 3.10^{10} N/m \), \(C_{\xi} = 0.6 \times 10^7 N/m \) we obtain values the transfer coefficient \(K_p \approx 2 nm/V \) and the time constant of the piezoelement \(T_p \approx 1.7 \times 10^{-5} s \).

Summary

We obtained the structural diagram and the matrix transfer function of the electro magneto elastic actuator for control systems of nanomedical research.

Conclusion

We constructed the generalized structural diagram of the electro magneto elastic actuator for nanomedical research with the mechanical parameters the displacement and the force in the difference from Cady and Mason electrical equivalent circuits. The generalized structural diagram, the transfer function and the characteristics of the electro magneto elastic actuator are determined for describe the dynamic and static characteristics of the actuator in control systems.

References

1. Schultz J, Ueda J, Asada H (2017) Cellular actuators. Oxford: Butterworth-Heinemann Publisher, pp. 382.
2. Afonin SM (2006) Absolute stability conditions for a system controlling the deformation of an electromagnetoelastic transducer. Doklady Mathematics 74(3): 943-948.
3. Zhou S, Yao Z (2014) Design and optimization of a modal-independent linear ultrasonic motor. IEEE Transaction on Ultrasonics Ferroelectrics and Frequency control 61(3): 535-546.
4. Przybyski J (2015) Static and dynamic analysis of a flextensional transducer with an axial piezoelectric actuation. Engineering Structures 84: 140-151.
5. Ueda J, Secord T, Asada HH (2010) Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Transactions on Mechatronics 15(5): 770-782.
6. Karpelson M, Wei G-Y, Wood RJ (2012) Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical 176: 75-92.
7. Afonin SM (2015) Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of Computer and Systems Sciences International 54(3): 424-439.
8. Afonin SM (2008) Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics 53(3): 137-143.
9. Afonin SM (2006) Solution of the wave equation for the control of an electromagnetoelastic transducer. Doklady Mathematics 73(2): 307-313.
10. Cady WG (1946) Piezoelectricity: An introduction to the theory and applications of electromechanical phenomena in crystals. McGraw-Hill Book Company, pp. 806.
11. Mason W (1964) Physical acoustics: Principles and methods. Part A. Academic Press, New York, USA 1: 515.
12. Zwillinger D (1998) Handbook of differential equations. Boston: Academic Press, pp. 673.
13. Afonin SM (2015) Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: Fundamentals, developments and applications. Parinov IA, (edr.), Nova Science, New York, USA, pp. 225-242.
14. Afonin SM (2017) A structural-parametric model of electroelastic actuator for nano and microdisplacement of mechatronic system. Chapter 8 in Advances in nanotechnology. Bartul Z, Trenor J, editors, Nova Science, New York, USA 19: 259-284.
15. Afonin SM (2012) Nano and micro-scale piezomotors. Russian Engineering Research 32(7-8):519-522.
16. Afonin SM (2007) Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids 42(1):43-49.
17. Afonin SM (2014) Stability of strain control systems of nano- and microdisplacement piezotransducers. Mechanics of Solids 49(2): 196-207.
18. Afonin SM (2017) Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics 5(1): 9-15.
19. Afonin SM (2017) Structural-parametric model of piezoelement nano and microdisplacement for nanoscience. AASCIT Journal of Nanoscience 3(3): 12-18.
20. Afonin SM (2016) Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications 3(4): 31-38.
21. Afonin SM (2018) Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 7(1): 1-9.
22. Afonin SM (2016) Structural-parametric models and transfer functions of electromagnetoelastic actuators nano and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics 2(2): 52-59.
23. Afonin SM (2017) Parametric block diagrams of a multi-layer piezoelectric transducer of nano- and microdisplacements under transverse piezoelectric effect. Mechanics of Solids 52(1): 81-94.
24. Afonin SM (2018) Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics 5(1): 8-12.
25. Afonin SM (2019) A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in nanotechnology (22): 169-186.
26. Afonin SM (2019) Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 8(3): 1-14.
27. Afonin SM (2019) Structural-parametric model multilayer electromagnetoelastic actuator nanodisplacement for nanomechatronics. International Journal of Physics 7(2): 50-57.
28. Bhushan B (2004) Springer Handbook of Nanotechnology. Berlin, New York, USA, pp. 1222.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Article

DOI: 10.32474/GJAPM.2019.02.000128

Global Journal of Anesthesia & Pain Medicine

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

Citation: Afonin SM. Electro Magneto Elastic Actuator for Nanomedical Research. Glob J Anes & Pain Med 2(1)-2019. GJAPM.MS.ID.000128.
DOI: 10.32474/GJAPM.2019.02.000128.