Structural Insights into the Broad Substrate Specificity of a Novel Endoglycoceramidase I Belonging to a New Subfamily of GH5 Glycosidases

Received for publication, October 18, 2016, and in revised form, January 11, 2017 Published, JBC Papers in Press, February 8, 2017, DOI 10.1074/jbc.M116.763821

Yun-Bin Han‡1, Liu-Qing Chen‡1, Zhuo Li‡, Yu-Meng Tan‡, Yan Feng‡, and Guang-Yu Yang*‡2

From the ‡State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, the ‡Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, Shanghai 200031, China, and the ‡Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China

Edited by Gerald W. Hart

Endoglycoceramidases (EGCases) specifically hydrolyze the glycosidic linkage between the oligosaccharide and the ceramide moieties of various glycosphingolipids, and they have received substantial attention in the emerging field of glycosphingolipidology. However, the mechanism regulating the strict substrate specificity of these GH5 glycosidases has not been identified. In this study, we report a novel EGCase I from Rhodococcus equi 103S (103S_EGCase I) with remarkably broad substrate specificity. Based on phylogenetic analyses, the enzyme may represent a new subfamily of GH5 glycosidases. The X-ray crystal structures of 103S_EGCase I alone and in complex with its substrates monosialodihexosylganglioside (GM3) and monosialotetrahexosylganglioside (GM1) enabled us to identify several structural features that may account for its broad specificity. Compared with EGCase II from Rhodococcus sp. M-777 (M777_EGCase II), which possesses strict substrate specificity, 103S_EGCase I possesses a longer α7-helix and a shorter loop 4, which forms a larger substrate-binding pocket that could accommodate more extended oligosaccharides. In addition, loop 2 and loop 8 of the enzyme adopt a more open conformation, which also enlarges the oligosaccharide-binding cavity. Based on this knowledge, a rationally designed experiment was performed to examine the substrate specificity of EGCase II. The truncation of loop 4 in M777_EGCase II increased its activity toward GM1 (163%). Remarkably, the S63G mutant of M777_EGCase II showed a broader substrate spectra and significantly increased activity toward bulky substrates (up to >1370-fold for fucosyl-GM1). Collectively, the results presented here reveal the exquisite substrate recognition mechanism of EGCases and provide an opportunity for further engineering of these enzymes.

This work was supported by the National Basic Research Program of China (973 Program, 2011CBZ71003) and Natural Science Foundation of China Grants 31470788 and 11371142. The authors declare that they have no conflicts of interest with the contents of this article.

The atomic coordinates and structure factors (codes 86-21-34207248; Fax: 86-21-34207189; E-mail: yanggy@sjtu.edu.cn.

© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

‡ This article contains supplemental Tables S1–S3 and Figs. S1–S4.

1 Both authors contributed equally to this work.

2 The abbreviations used are: GSL, glycosphingolipid; EGCase, endoglycocerami- dase; EGALC, endogalactosylceramidase; GM1, monosialotetrahexosylganglioside; LacCer, lactosylceramide; GlcCer, glucosylceramide; GalCer, galactosylceramide; Gb4Cer, globotetraosylceramide; r.m.s.d., root mean square deviation; PDBe, Protein Data Bank; GH, glycoside hydrolase; TLC, thin layer chromatography.
nan), EGCases display an unusual substrate specificity that accepts amphiphilic GSLs consisting of a hydrophilic oligosaccharide headgroup and a hydrophobic ceramide tail. The crystal structure of EGCase II from *Rhodococcus* sp. strain M-777 (M777_EGCase II) suggests that the substrate-binding site of EGCase is split into two noticeably different parts: a wide, polar cavity that binds the polyhydroxylated oligosaccharide moiety and a narrow, hydrophobic tunnel that binds the ceramide moiety of the substrates (16). However, the distinct substrate specificities of different EGCases imply different substrate-binding modes, particularly for the oligosaccharide moiety. Unfortunately, because only one crystal structure of EGCase is available so far, detailed investigations of the substrate recognition mechanism have been hampered.

In this study, we report the molecular cloning and enzymatic characterization of a novel EGCase I from *Rhodococcus equi* 103S (103S_EGCase I). The recombinant protein showed high catalytic activity, broad substrate specificity, and a remarkably high expression level in *Escherichia coli*. Based on phylogenetic analyses, EGCase I may represent a new subfamily of GH5 glycosidases. The X-ray crystal structures of 103S_EGCase I alone and in complex with its substrates monosialodihexosylganglioside (GM3) and monosialotetrahexosylganglioside (GM1) were obtained and compared with the structures of M777_EGCase II. A detailed analysis of the substrate-binding mode offers valuable information that enables us to better understand its substrate recognition mechanism, which may facilitate subsequent enzyme engineering studies for the design of better EGCases.

Results

Overexpression and Characterization of EGCase I from *R. equi* 103S—A putative EGCase from *R. equi* 103S (103S_EGCase I) (GenBank™ accession number CBH49814) shares 90% sequence identity with EGCase I from *Rhodococcus* sp. M-750 (M750_EGCase I) (supplemental Fig. S1) (15). The gene was codon-optimized for *E. coli*, chemically synthesized, and subcloned into a pET28a vector. 103S_EGCase I was functionally overexpressed in *E. coli* at a very high level (Fig. 1). In a typical experiment, 80 mg/liter purified protein was obtained from a 1-liter *E. coli* shaking flask culture after 12 h of induction, which is much higher than the previously reported expression of the M750_EGCase I in the *Rhodococcus* system (~1 mg/liter, 24 h of induction).

The substrate specificity of 103S_EGCase I appeared to be similar to that of M750_EGCase I (Table 1) (the raw HPLC data are shown in supplemental Fig. S2). 103S_EGCase I hydrolyzed various GSLs possessing the β-glucosyl-Cer linkage, including GM3 (100%), GM1 (100%), and lactosylceramide (LacCer) (63%), but showed no activity toward GlcCer and galactosylceramide (GalCer) under the conditions used in this study. Compared with M777_EGCase II, 103S_EGCase I hydrolyzed various GSLs at a much higher speed. For example, the specific activities of 103S_EGCase I for GM3, GM1, and LacCer were 8-, 34-, and 8-fold higher, respectively, than the specific activities of M777_EGCase II. 103S_EGCase I also efficiently hydrolyzed fucosyl-GM1 (66%) and globotetraosylceramide (Gb4Cer) (95%), whereas M777_EGCase II showed no activity toward fucosyl-GM1 and very weak activity toward Gb4Cer (6.3%).

FIGURE 1. Purification and activity assessment of recombinant 103S_EGCase I. A, a typical substrate (GM1 ganglioside) for EGCase. The position of EGCase endohydrolysis is indicated by the wavy line. B, SDS-PAGE showing the purification of the recombinant 103S_EGCase I. Lane 1, protein marker; lane 2, sample corresponding to 20 μl of the culture of *E. coli* BL21 (DE3) pLysS transformed with pET28a-103S_EGCase I after 12 h of induction; lane 3, 10 μg of purified recombinant 103S_EGCase I. C, TLC showing the oligosaccharides released from GM1 by 103S_EGCase I. GM1 (10 nmol) was incubated with 1 μg of the recombinant 103S_EGCase I at 37 °C for 60 min. The reaction was terminated by heating the reaction mixture in a boiling water bath for 5 min. After high speed centrifugation, the supernatants were loaded onto a TLC plate and developed with chloroform, methanol, 0.02% CaCl₂ (5:4:1, v/v/v). GSLs and oligosaccharides were visualized with orcinol-H₂SO₄ reagent. STD, GM1 oligosaccharide standard; –, without 103S_EGCase I; +, with 103S_EGCase I.
The optimal substrate for 103S_EGCase I was GM1, whereas M777_EGCase II preferred GM3 over the GSLs with larger and branched sugar moieties, such as GM1, fucosyl-GM1, and Gb4Cer. Thus, these two enzymes probably possess different substrate-binding sites.

Based on the determination of the steady-state kinetic parameters, 103S_EGCase I and M777_EGCase II had similar K_m values for the ganglioside GM1 (the raw data are shown in supplemental Fig. S3). However, the k_{cat} and the k_{cat}/K_m of 103S_EGCase I were 119- and 130-fold higher, respectively, than the values for M777_EGCase II (Table 2).

Phylogenetic Analysis of EGCases—All of the known EGCases belong to the GH5 glycosidase family. EGCrP1 and EGCrP2 are assigned to subfamily GH5_12, eukaryotic EGCases belong to subfamily GH5_33, and GB4Cer. Thus, these two enzymes probably possess different substrate-binding sites.

TABLE 1

Name	Structure	Specific activitya	Reaction yieldb		
		103S_EGCase I	M777_EGCase II	103S_EGCase I	M777_EGCase II
GlcCer	Glcβ1–1Cer	<0.0001	<0.0001	0	0
GalCer	Galβ1–1Cer	<0.0001	<0.0001	0	0
LacCer	Galβ1–4Glcβ1–1Cer	1.80 ± 0.15	0.24 ± 0.02	62.8 ± 5.5	44.6 ± 5.1
GM3	NeuAcα2–3Galβ1–4Glcβ1–1Cer	4.93 ± 0.64	0.61 ± 0.04	100 ± 3.0	95.9 ± 3.5
GM1	Galβ1–3GalαNacβ1–4(NeuAcα2–3)Galβ1–4Glcβ1–1Cer	6.44 ± 0.49	0.19 ± 0.03	100 ± 4.6	35.2 ± 4.3
Fucosyl-GM1	Fucosyl–2Galβ1–3GalαNacβ1–4(NeuAcα2–3)Galβ1–4Glcβ1–1Cer	3.21 ± 0.25	<0.0001	65.8 ± 3.2	0
Gb4Cer	GalNαCer–3Galα1–4Galβ1–4Glcβ1–1Cer	0.45 ± 0.05	<0.0001	95.4 ± 3.3	6.3 ± 1.5

a The substrate specificity toward various GSLs is presented as the specific hydrolytic activities in the initial stage of the reaction. Values represent the means ± S.D. ($n = 3$).

b The substrate specificity toward various GSLs is presented as the reaction yield (%) when the reaction reached equilibrium and was calculated using the equation, peak area for octagiosaccharides × 100/peak area for 0.5 mM oligosaccharide. Values represent the means ± S.D. ($n = 3$). Representative HPLC chromatograms of the reaction yield assay are presented in supplemental Fig. S2.

Structural Insight into EGCCase Substrate Recognition

TABLE 2

Enzyme	k_{cat}	K_m	k_{cat}/K_m
	min$^{-1}$	ms	min$^{-1}$ ms$^{-1}$
103S_EGCase I	630 ± 50	0.23 ± 0.03	2740
M777_EGCase II	5.3 ± 0.4	0.25 ± 0.04	21

The crystal structure of 103S_EGCase I was determined at 2.11 Å resolution with the space group C2121. R_{work} and R_{free} were 19.4 and 22.3%, respectively. Two 103S_EGCase I molecules were present in one asymmetric unit (Fig. 3A). The two monomers of 103S_EGCase I were nearly identical, with an r.m.s.d. of 0.52 Å over 416 residues. Residues 68, 300–307, 309, and 342–343 were not modeled in chain B because of a poor electron density. The monomer-monomer interface buried an extensive, predominantly hydrophobic area of ~962 Å2, which corresponded to 12.7% of the total surface area of one monomer, as calculated by PISA (Fig. 3B) (18). The interface had three hydrogen bonds and 43 non-bonded contacts, suggesting that the observed dimer was not the biological form because the crystal contacts of homodimers or protein complexes tend to have 10–20 hydrogen bonds (19). Moreover, the interface between these two molecules had a 3.36% probability of being the biological interface according to the NOXclass analysis (20), providing further support for the hypothesis that the dimer only results from crystallographic packing.

Each monomer of 103S_EGCase I contained two distinct domains. The N-terminal domain included the characteristic (α/β)$_8$ TIM-barrel fold of all GH5 family members; it contained an internal core of eight β-strands connected by loops of various sizes to an external layer of eight α-helices. The C-terminal domain formed a β-sandwich fold composed of two sheets of four antiparallel β-strands (Fig. 3, A and C). Two disulfide bonds were present in the 103S_EGCase I structure: Cys224–Cys229 and Cys294–Cys313. A structure search using the DALI server (21) suggested that the crystal structure of 103S_EGCase I closely matched the structure of M777_EGCase II (PDB code 2OYM, DALI Z = 41.7, and r.m.s.d. = 2.6 Å for 400 equivalent Cα positions), despite their low sequence similarity (30%). Other similar structures included a cellulase (PDB code 4HTY, DALI Z = 26.6, and r.m.s.d. = 2.6 Å for 269 residues), an endo-β-mannanase (PDB code 4QP0, DALI Z = 25.8, and...
r.m.s.d. = 2.8 Å for 294 residues) (22), and a mannosyl-oligosaccharide gluco-sidase (PDB code 1UUQ, DALI Z = 25.4, and r.m.s.d. = 2.8 Å for 314 residues) (23).

The C-terminal domain of 103S_EGCase I displayed a typical β-sandwich fold that resembled the folds of many carbohydrate-binding modules of glycoside hydrolases (24). The β-sandwich domain may not be involved in binding the carbohydrate portion of the substrate, because it located on the opposite face of the (α/β)8 domain. Similar domains have been observed in other GH5 family members, including M777_EGCase II (16), endo-xyloglucanase (25), and β-glucanase (26). Indeed, many of these carbohydrate-binding modules do not bind the substrate independently (27). This domain may simply stabilize the catalytic (α/β)8 domain.

Structure of the Enzyme-Substrate Complex—103S_EGCase I was co-crystallized with each of its substrates, GM1 and GM3, to further understand the structural basis of the broad substrate specificity of EGCase I. Co-crystallization experiments were performed with the nucleophile mutant 103S_EGCase I/E339S to prevent substrate hydrolysis. The 103S_EGCase I-GM1 structure was determined at 2.15 Å resolution, and the 103S_EGCase I-GM3 structure was determined at 1.915 Å resolution. Both structures belonged to space group C121 and contained two molecules per asymmetric unit. Clear electron density was evident for all the pyranoside rings, with the exception of the sialic acid unit of GM3, which was only partially clear (Fig. 4, A–C). In both complexes, the ceramide moieties were partially distinguished. The superposition of the 103S_EGCase I-GM1 or 103S_EGCase I-GM3 structure on the 103S_EGCase I structure showed that the overall protein structure was almost unchanged, reflected in the r.m.s.d. of 0.21 Å/0.23 Å over 449 common Cα atoms between the 103S_EGCase I structure and the ligand-bound forms, respectively.

Similar to the crystal structure of M777_EGCase II, the substrate-binding site of 103S_EGCase I contained two distinct regions. On one side of the catalytic residues, the active site channel was broad (~27.9 Å) and mainly lined with polar residues that formed the binding cavity for the oligosaccharide moiety. On the opposite side, the active site narrowed to an ~5.8-Å channel that was predominantly lined with hydrophobic residues, forming the ceramide-binding tunnel. This tunnel subsequently opened onto a distinctly flat surface of the enzyme, which also appeared largely composed of hydrophobic residues (Fig. 3, B and D).
understand its potential function. Mutation of Asp342 with Asn or Gln caused the enzyme to retain very low activity, whereas the other mutations completely abolished the enzymatic activity (supplemental Table S2). Because the mutations caused a loss of the enzymatic activities toward GM1 and LacCer, the interaction between Asp342 and the sialic acid unit did not contribute to the loss of activity. We inferred that Asp342 might stabilize the conformation of the “cap,” which might be important for catalysis, because it formed a hydrogen bond with the cap-forming amino acid, Tyr302, located in the α7-helix (Fig. 6A).

The ceramide moieties of GM1 and GM3 were only partially defined in the electron density map. Asn625 and Gln298 directly interacted with ceramide. Both residues are conserved among EGCases and important for catalysis (Table 3). The ceramide-binding channel was lined by the hydrophobic side chains of Phe162, Pro163, Leu167, Trp216, Phe225, Val262, Ile295, and Leu299.

The Substrate Recognition Mechanism and Molecular Engineering Guided by Structural Comparisons—The main difference between EGCase I and EGCase II was their substrate specificity toward oligosaccharide moieties. EGCase I efficiently hydrolyzes fucosyl-GM1 and globo-series GSLs that are resistant to EGCase II. The resolution of the 103S_EGCase I-GM1 structure (PDB code 5J7Z) enabled us to perform a detailed comparison of its structure with the structure of M777_EGCase II-GM3 (PDB code 2OSX). The superposition of 5J7Z and 2OSX monomers using Chimera gave an r.m.s.d. of 1.09 Å between 239 atom pairs. As shown in Fig. 5A, although the overall structure of 103S_EGCase I was similar to that of M777_EGCase II, it showed several major structural differences in the oligosaccharide-binding cavity.

First, the α7-helix of 103S_EGCase I was longer than the equivalent α8-helix in M777_EGCase II (Fig. 5B). The Tyr302 and Leu293 residues in the α7-helix along with Phe162, Pro163, and Leu164 in loop 5 and the α6-helix formed a broad cap over the ceramide-binding channel in 103S_EGCase I, whereas the cap in M777_EGCase II formed by Arg177 and Asp311 was much smaller (Fig. 6A and B). Therefore, the opening of the active site of 103S_EGCase I was obviously smaller than the opening of M777_EGCase II (Fig. 6A and B), which is mainly attributed to the presence of Tyr302.

Second, loop 4 (Gly140–Pro145) in 103S_EGCase I was shorter than the corresponding loop 4 (Thr144–Pro161) in M777_EGCase II (Fig. 5C). The shorter loop increased the volume of the sugar cavity of 103S_EGCase I, which may account for its broad substrate specificity. The truncation of loop 4 in M777_EGCase II from Asn148 to Gly154 may increase the space of the crowded sugar-binding cavity (Fig. 6D), resulting in enhanced activity toward GM1 (163%) and decreased activity (46.8%) toward LacCer (Table 4).

Third, the conformation of loop 2 was different in the two enzymes. Loop 2 in 103S_EGCase I (Val59–Thr73) was more open than loop 2 in M777_EGCase II (Ala62–Thr77) (Fig. 5D). Consequently, 103S_EGCase I possessed a larger sugar-binding pocket, which could accommodate the fucosyl unit of fucosyl-GM1 (Fig. 6C). By contrast, loop 2 in M777_EGCase II was disrupted by a short η1-helix (63SSAK66), and thus it adopted a conformation that was closer to that of the substrate (Fig. 5D).

The Coordination of GM1 and GM3 in the Enzyme is described in detail in Fig. 4, D and E. The glucose unit was held in a fixed position by a hydrogen bond network consisting of Lys61, His131, Asp213, Gln298, and Gln298 residues. These residues are highly conserved among EGCases. Mutation of any of these residues to alanine completely abolished the enzymatic activity toward GM1 (Table 3; for the raw data, see supplemental Fig. S4). The inner galactose unit formed hydrogen bonds with Lys61, Tyr302, and Trp365. Both Lys61 and Trp365 are conserved among EGCases, and mutating them to alanine resulted in a dramatic loss of enzymatic activity (Table 3). Notably, the sialic acid unit showed a remarkable difference in conformation between the GM1 and GM3 complexes (Fig. 4C). The ceramide moieties of GM1 and GM3 were only partially defined in the electron density map. Asn625 and Gln298 directly interacted with ceramide. Both residues are conserved among EGCases and important for catalysis (Table 3). The ceramide-binding channel was lined by the hydrophobic side chains of Phe162, Pro163, Leu167, Trp216, Phe225, Val262, Ile295, and Leu299. The inner galactose, whereas in the GM1 complex, it interacted with the N-acetylglucosamine residue. In the 103S_EGCase I-GM1 complex, Asp62 formed a hydrogen bond with the N-acetylglucosamine unit of GM1. However, the D62A mutant still retained ~70% of the normal activity, suggesting that Asp62 contributes little to catalysis. The terminal galactose unit of GM1 did not directly interact with the protein; instead, its interaction with Asp342 was mediated by a water molecule.

Interestingly, although Asp342 is not a conserved residue in EGCase family, mutation of this residue caused a dramatic loss of activity, suggesting that it has an important role in catalysis. This residue was mutated to several other amino acids to better understand its potential function.
The superimposition of the crystal structures of 103S_EGCase I-GM1 and M777_EGCase II clearly showed that the inclusion of Ser63 in M777_EGCase II resulted in a narrowed sugar-binding cavity, which may also cause its strict specificity. Indeed, the S63G mutant of M777_EGCase II efficiently hydrolyzed fucosyl-GM1, with its catalytic activity increasing more than 1370-fold. Moreover, its activity toward GM1 was also enhanced by ~10-fold (Table 4).
Finally, loop 8 also showed a large difference in conformations between 103S_EGCase I and M777_EGCase II (Fig. 5E). Compared with M777_EGCase II, loop 8 of 103S_EGCase I moved outward ~13 Å and was flatter, which also contributed to the enlarged sugar-binding cavity.

Discussion

EGCases are a group of glycoside hydrolases that are important in cellular glycosphingolipid-glycome analyses. In this study, we identified a new 103S_EGCase I from *R. equi* 103S that hydrolyzes ganglio-, lacto-, and globo-series GSLs, as well as fucosyl-GM1. Remarkably, 103S_EGCase I can be readily overexpressed in *E. coli* at a very high level (80 mg/liter purified protein, 12 h of induction), which is much higher than the previously reported expression of M750_EGCase I in the *Rhodococcus* system (~1 mg/liter, 24 h of induction). The broad substrate specificity, high catalytic activity, and ease of expression make 103S_EGCase I a good biocatalyst for cellular glycomics analysis of GSLs.

The GH5 family is one of the largest GH families, containing >6900 protein sequences with ~20 different enzyme activities (17). Previously, the EGCases were divided into the GH5_12, GH5_27, GH5_28, and GH5_29 subfamilies. A phylogenetic analysis was conducted in this study, and the results suggested that EGCase I genes belong to a new subfamily within the GH5 family. We obtained the first crystal structure of a member of this new subfamily, which may provide new insights into the mechanism of the substrate selectivity of EGCases.

Based on the detailed structural comparison, 103S_EGCase I and M777_EGCase II exhibit several major structural differences in their sugar-binding cavities, which explains their different substrate specificities. First, the α7-helix of 103S_EGCase I is longer than the equivalent α8-helix in M777_EGCase II, forming a larger cap over the glycosidic bond. Second, the flexible loop 4 between α1 and α2 is shorter than the corresponding loop in M777_EGCase II. The loop 4 may play a role in the substrate selectivity of EGCases. For larger substrates, such as GM1, the activity may be inhibited by the space limitation arising from the long loop 4 in M777_EGCase II, but for smaller substrates, such as LacCer, the loop may stabilize the substrates in the active site and efficiently facilitate catalysis. Third, loop 2 of 103S_EGCase I adopts an open conformation compared with the closed conformation in M777_EGCase II, producing a smaller sugar-binding pocket that cannot accommodate more extended oligosaccharides. Presumably, the size of this pocket is the reason why M777_EGCase II cannot hydrolyze fucosyl-GM1. Finally, loop 8 of 103S_EGCase I moved outward and flattened, which could also enlarge the oligosaccharide-binding cavity.

This structural information enabled us to identify a series of conserved amino acids that are important for substrate binding in 103S_EGCase I. The residues that interact with the first two sugar residues (Glu and Gal) are highly conserved in 103S_EGCase I and M777_EGCase II and include Lys83, His131, Asp133, Asn213, Glu214, Gln298, and Trp365. By contrast, the outer sugar
subunits have few interactions with the enzyme; the sialic acid unit of GM1 only interacts with Asp342 through a water molecule. A structure-based sequence alignment of EGCases revealed several regions with low sequence identity. In particular, the main structural differences mentioned above are located in unconserved regions A, B, and C, which may play key roles in determining substrate specificity (Fig. 7).

These analyses provided valuable information for engineering the EGCase protein. As shown in the study by Ishibashi et al. (15), the deletion of loop 4 (residues Asn148–Gly154) from M777 EGCase II forms a large cap over the active site. Lys61, Asp137, Arg177, Pro163, Leu164, Tyr302, and Leu303 in 103S EGCase I form a small cap over the active site. Lys66, Asp137, Arg177, Lys61, Asp137, Pro163, Leu164, Tyr302, and Leu303 in M777 EGCase II form a large opening for the active site pocket. C, loop 2 and the short loop 4 of 103S EGCase I define a broad sugar-binding cavity. The model of fucosyl-GM1 in the binding site was created by superimposing its structure onto GM1 and then adjusting the fucosyl unit to a reasonable conformation using Coot. The small pocket was able to accommodate the fucosyl unit. D, loop 2 and the long loop 4 of M777 EGCase II define a crowded sugar-binding cavity.

In conclusion, the biochemical and structural analyses in this study illustrate the structural basis of the substrate selectivity of EGCases. The broad specificity, high reaction efficiency, and ease of expression of 103S EGCase I make it the best enzyme reported to date for use in the cellular glycomics analysis of GSLs. The structural knowledge obtained in this study revealed several regions that may be important for the substrate recognition of this enzyme class, providing possibilities for the rational design of these enzymes.

Experimental Procedures

Materials—GlcCer, GalCer, and LacCer were purchased from Avanti Polar Lipids (Alabaster, AL). GM3, GM4Cer, and fucosyl-GM1 were purchased from Carbosynth Co., Ltd. (Berkshire, UK). GM1 was purchased from Qilu Pharmaceutical (Jinan, China). 2-Aminobenzoic acid (2-AA) was purchased from Aladdin Industries Corp. (Shanghai, China). GM3, GM1, fucosyl-GM1, and GalCer oligosaccharides were purchased from Eli Lilly Co., Ltd. (Crolles, France). HPLC solvents were purchased from Anpel Co., Ltd. (Shanghai, China). All other reagents were of the highest purity available.

Phylogenetic Analysis—Twenty-one members of the GH5_12, GH5_27, GH5_28, and GH5_29 subfamilies, with at least five members in each subfamily, were selected from the CAZy database. The protein sequences sharing >50% sequence identity with EGCase I from Rhodococcus sp. M-750 were collected by a BLAST search of the NCBI non-redundant protein sequence database. The sequences of the EGCases and EGCase-related proteins were aligned using ClustalX. Evolutionary analyses were conducted and visualized in MEGAl6 (28). The phylogenetic tree of the EGCases was constructed using the maximum likelihood method based on the JTT matrix-based model with 100 bootstrap replications.

Protein Expression and Purification—The gene encoding the mature EGCase I from R. equi 103S, which lacks its 26-residue N-terminal secretion signal sequence, was codon-optimized for E. coli and chemically synthesized (Genscript Corp., Nanjing, China). The gene sequence was subcloned into a pET28a vector (Novagen, Madison, WI) using the BamHI/HindIII restriction enzymes and then transformed into E. coli BL21 (DE3) pLysS cells.

Transformants were grown at 37°C in Luria-Bertani medium containing 100 μg/ml kanamycin until the optical density at 600 nm reached ~0.8. Then protein expression was induced by the addition of isopropyl β-D-1-thiogalactopyranoside to a final concentration of 0.1 mM at 16°C. After 12 h, the cells were harvested and disrupted by sonication, and the enzyme was purified by Ni2+-chelating affinity chromatography to >95% purity, as determined by SDS-PAGE analysis. The protein concentration was determined using a bicinchoninic acid protein assay with BSA as the standard. The activity of EGCase I was confirmed using a thin layer chromatography (TLC) assay with the substrate GM1, as described previously (15).

Mutants of 103S EGCase I were constructed (K61A, D62A, H131A, D133A, N213A, N265A, Q298A, Y302A, E339S, D342A, D342N, D342E, D342Q, D342F, D342Y, D342K, D342L, D342W, and W365A) using whole plasmid PCR. The mutants were purified using the same protocol as for wild-type 103S EGCase I. Wild-type M777 EGCase II and its mutants

Figure 6. Comparison of the active site pockets of 103S EGCase I and M777 EGCase II. A, Phe164, Pro165, Leu164, Tyr302, and Leu302 in 103S EGCase I form a large cap over the active site. Lys61, Asp137, Phe132, Tyr302, Asp342, and Trp388 form a small opening for the active site pocket. B, Arg177, and Asp311 in M777 EGCase II form a small cap over the active site. Lys66, Asp137, Arg177, Trp178, Asp311, Asp314, Asp355, Leu358, Trp382, and Trp389 in M777 EGCase II form a large opening for the active site pocket. C, loop 2 and the short loop 4 of 103S EGCase I define a broad sugar-binding cavity. The model of fucosyl-GM1 in the binding site was created by superimposing its structure onto GM1 and then adjusting the fucosyl unit to a reasonable conformation using Coot. The small pocket was able to accommodate the fucosyl unit. D, loop 2 and the long loop 4 of M777 EGCase II define a crowded sugar-binding cavity.
TABLE 4
Specific activities of M777_EGCase II and its mutants toward the GM1, LacCer, and fucosyl-GM1 substrates

EGCase II	GM1 Specific activity (nmol/min/μg)	Relative activity	LacCer Specific activity (nmol/min/μg)	Relative activity	Fucosyl-GM1 Specific activity (nmol/min/μg)	Relative activity
WT	0.223 ± 0.012	100	0.250 ± 0.010	100	<0.001	100
S63G	2.099 ± 0.016	940	0.228 ± 0.015	91.5	0.137 ± 0.008	>137000
Loop deletion (Asn148-Gly154)	0.364 ± 0.009	163	0.117 ± 0.009	46.8	<0.0001	100

TABLE 5
Data collection and refinement statistics

Parameters	Native	103S_EGCase I-GM1	103S_EGCase I-GM3	
Space group	C121	C121	C121	
Cell dimensions	a, b, c (Å)	192.84, 48.98, 120.30	192.28, 48.92, 120.23	192.52, 49.05, 120.14
Wavelength (Å)	0.979	0.979	0.979	
Resolution (Å)	50–2.11 (2.18–2.11)	50–2.15 (2.23–2.15)	50–1.915 (1.97–1.915)	
R_work/R_free (%)	0.194/0.223	0.176/0.209	0.172/0.208	
Protein	21.8	24.9	12.74	
Ligand	33.9	27.9	22.39	
Water	31.4	31.0	21	
r.m.s.d.	Bond lengths (Å)	0.005	0.009	0.0109
Bond angles (degrees)	1.073	1.458	1.479	
PDB entry	SCCU	5J7Z	5J14	

*Data for the highest resolution shell are shown in parentheses.

(S63G, S64G, and Δloop (loop-deleted mutant, Asn148–Gly154)) were generated using a whole plasmid PCR protocol with the pET28a plasmid containing M777_EGCase II as the template. The plasmid was transformed into E. coli BL21 (DE3) pLysS cells, and the expressed protein was purified as described previously (16). All the primers used in this study are listed in supplemental Table S3.

Enzymatic Assay and Kinetics—The activities of 103S_EGCase I and M777_EGCase II were measured in a standard enzymatic assay using GM1 as substrate. The reaction mixture contained 10 nmol of GM1 and an appropriate amount of enzyme in 20 μl of 50 mM sodium acetate buffer (pH 6.0) with 0.1% (w/v) Triton X-100. Following an incubation at 37 °C for 10 min (103S_EGCase I) or 30 min (M777_EGCase II), the reaction was stopped by heating the mixture in a boiling water bath for 5 min to ensure that the initial velocity was measured. The generation of the GM1 oligosaccharide was measured using the HPLC-based protocol described by Neville et al. (29), with slight modifications. Briefly, a 20-μl sample of the reaction mixture was mixed with 100 μl of the 2-A/A solution in 1.6-mL polypropylene screw cap freeze vials. The vials were capped tightly and heated at 80 °C for 45 min for derivatization. After centrifugation at 13,000 rpm, the supernatant was transferred into a glass vial, and an aliquot (10 μl) was injected into a 4.6 × 250-mm TSK gel-Amide 80 column (4.6-mm inner diameter × 250 mm, 5-μm particle size). Solvent system A consisted of 5% acetic acid and 3% triethylamine in water, and solvent system B consisted of 2% acetic acid in acetonitrile. The following gradient conditions were used: 30% B isoacetic for 5 min followed by a linear increase to 70% B over 1 min, holding at 70% B for an additional 4 min, and then a linear decrease to 30% B over 3 min. The 2-AA-derivatized product was detected using a fluorescence detector (Agilent 1260 FLD, E_ex = 360 nm, E_em = 425 nm) and quantified using a standard curve.

The substrate specificity of EGCase was presented as the specific activity toward different substrates using 10 ng of 103S_EGCase I or 100 ng of M777_EGCase II in a standard enzymatic assay. Substrate specificity was also presented as the reaction yield (percentage) for different substrates after a 24-h reaction in the presence of a sufficient concentration of enzyme. The HPLC method used to detect the oligosaccharides after 2-AA derivatization was similar to the method used for the GM1 oligosaccharides, except that the mobile phase ratio of A/B was adjusted according to the polarity of the released oligosaccharides (supplemental Fig. S2). For the kinetic analysis, 103S_EGCase I (10 ng) was incubated at 37 °C for 10 min in 20 μl of reaction buffer. M777_EGCase II (100 ng) was assayed at 37 °C for 30 min in 20 μl of reaction buffer.

Crystallization—Crystallization experiments were conducted in 48-well plates using the hanging drop vapor diffusion method.
method at 293 K, and each hanging drop was prepared by mixing 1/9262 l each of protein solution and reservoir solution. Initial crystallization trials yielded some small crystals from the PEG/ION crystallization screen (Hampton Research). Crystal quality was improved by the MMS method (30), and the seed stock was generated from the initial crystals. Ultimately, diffraction quality crystals were grown in hanging drops at 21 °C by mixing 1/9262 l of protein (16 mg/ml in 25 mM Tris-HCl, pH 8.0, and 200 mM NaCl) with an equal volume of 0.2M lithium nitrate and 20% PEG 3350. Crystals belonged to the space group C121, with the unit cell dimensions a = 192.8 Å, b = 48.9 Å, c = 120.3 Å, and β = 114.3°. Complex crystals were obtained by co-crystallizing FIGURE 7. Structure-based sequence alignment of 103S_EGCase I, M777_EGCase II and EGALC. The amino acid sequences of 103S_EGCase I (GenBank™ accession number CBH49814), M777_EGCase II (GenBank™ accession number AAB67050), and EGALC (GenBank™ accession number BAF56440) were aligned using PROMALS3D and shaded in ESPript 3.0. Identical residues are shown in open boxes with white letters on a red background. Similar residues are shown in open boxes with black letters on a yellow background. Conserved amino acid residues in the GH5 family of glycosidases are indicated by triangles. Two glutamates, functioning as an acid/base catalyst and nucleophile, respectively, are indicated by stars. Residues that form hydrogen bonds or hydrophobic interactions with the sugar moiety are indicated by empty circles. Residues that form the hydrophobic tunnel are indicated by black filled circles. The secondary structural elements are shown above the amino acid residues in blue (103S_EGCase I, PDB code 5J7Z) and red (M777_EGCase II, PDB code 2OSX). The major differences in the secondary structures of 103S_EGCase I and M777_EGCase II are indicated in brackets and marked as regions A, B, and C.
the E339S mutant with GM1 or GM3. The GM1 or GM3 substrate was dissolved in the protein solution to a final concentration of 10 mM for 2 h at 4 °C before proceeding with the hanging drop crystallization experiments described above.

Data Collection and Structure Determination—For X-ray diffraction experiments, crystals were removed from the crystallization drop with a nylon loop, soaked briefly in a cryoprotectant solution of the crystallization solution supplemented with 30% (v/v) ethylene glycol, and flash-cooled in liquid nitrogen. X-ray diffraction data sets were collected on the BL17U and BL19U beamlines at the Shanghai Synchrotron Research Facility. All diffraction data were indexed, integrated, and scaled using HKL-2000 (31).

Initial phases for each structure were determined by molecular replacement. The structure of 103S_EGCase I was solved using the program BALBES (32) with the Auto-RICSHAW pipeline (33). The structure was completed with alternating rounds of manual model building with Coot (34) and refinement with REFMAC5 (35) in the CCP4 suite (36). The structure of the 103S_EGCase I-substrate complex was determined by molecular replacement with the program MOLREP (37) using the 103S_EGCase I structure as a search model. The structures of GM1 and GM3 were built with Coot Ligand Builder, and restraints were created using PRODRG (38). Iterative model building was performed in Coot, and refinement was conducted with REFMAC5 in the CCP4 suite. The final models were validated using MolProbity (39). Data collection and refinement statistics are provided in Table 5.

Structural Analysis—Searches for similar structures were performed using the DALI server (21). Structure-based sequence alignments were generated with PROMALS3D (40). The alignments were shaded in ESPript version 3.0 (41). Fusocysyl-GM1 was modeled in the binding site by superimposing the structure on GM1, and the fusocysyl unit was adjusted to a reasonable conformation in Coot. Figures were prepared using Chimera (42).

Author Contributions—Y.-B. H. conducted most of the experiments, analyzed the results, and wrote most of the paper. L.-Q. C. purified and crystallized 103S_EGCase I protein, determined its X-ray structure, and contributed to the preparation of the figures. Z. L. participated in the characterization of EGCases. Y.-M. T. participated in the construction of EGCase mutants. G.-Y. Y. and Y. F. conceived the idea for the project, designed the experiment, and analyzed the data. Y.-B. H., L.-Q. C., and G.-Y. Y. wrote the paper. All authors analyzed the results and approved the final version of the manuscript.

Acknowledgments—We thank the staffs of beamlines BL19U1 and 17U at the National Center for Protein Sciences Shanghai and Shanghai Synchrotron Radiation Facility for assistance in data collection. We also thank the Instrument and Service Center of the School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, for equipment service.

References

1. Fujitani, N., Takegawa, Y., Ishibashi, Y., Araki, K., Furukawa J., Mitsutake, S., Igarashi, Y., Ito, M., and Shinohara, Y. (2011) Qualitative and quantitative cellular glycomics of glycosphingolipids based on rhodococcal endoglycosylceramidase-assisted glucan cleavage, glycol blotting-assisted sample preparation, and matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry analysis. *J. Biol. Chem.* **286**, 41669–41679

2. Furukawa J., Sakai, S., Yokota, I., Okada, K., Hanamatsu, H., Kobayashi, T., Yoshida, Y., Higashino, K., Tamura, T., Igarashi, Y., and Shinohara, Y. (2015) Quantitative GSL-glycome analysis of human whole serum based on an EGCase digestion and glycol blotting method. *J. Lipid Res.* **56**, 2399–2407

3. Ito, M., and Yamagata, T. (1986) A novel glycosphingolipid-degrading enzyme cleaves the linkage between the oligosaccharide and ceramide of neutral and acidic glycosphingolipids. *J. Biol. Chem.* **261**, 14278–14282

4. Ashida, H., Yamamoto, K., Kumagai, H., and Tochikura, T. (1992) Purification and characterization of membrane-bound endoglycosidase from *Corynebacterium* sp. *Eur. J. Biochem.* **205**, 729–735

5. Li, S.-C., DeGasperi, R., Muldrey, I. E., and Li, Y.-T. (1986) A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide. *Biochem. Biophys. Res. Commun.* **141**, 346–352

6. Li, Y.-T., Ishikawa, Y., and Li, S.-C. (1987) Occurrence of ceramide-glycanase in the earthworm, *Lumbricus terrestris*. *Biochem. Biophys. Res. Commun.* **149**, 167–172

7. Basu, S. S., Dastgheib-Hosseini, S., Hoover, G., Li, Z., and Basu, S. (1994) Analysis of glycosphingolipids by fluorophore-assisted carbohydrate electrophoresis using ceramide glycanase from *Mercenaria mercenaria*. *Anal. Biochem.* **222**, 270–274

8. Horibata, Y., Okino, N., Ichinose, S., Omori, A., and Ito, M. (2000) Purification, characterization, and cDNA cloning of a novel acidic endoglycosidase from the jellyfish, *Cyanea nozaki*. *J. Biol. Chem.* **275**, 31297–31304

9. Horibata, Y., Sakaguchi, K., Okino, N., Iida, H., Inagaki, M., Fujisawa, T., Hama, Y., and Ito, M. (2004) Unique catabolic pathway of glycosphingolipids in a hydrozoan, *Hydra magnipapillata*, involving endoglycosidase from *Cyanea nozaki*. *Eur. J. Biochem.* **279**, 33579–33589

10. Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide from *Cryptococcus neoformans* by endoglycosidase-related protein 1 (EGCrP1). *J. Biol. Chem.* **287**, 368–381

11. Watanabe, T., Ito, T., Goda, H. M., Ishibashi, Y., Miyamoto, T., Ikeda, K., Taguchi, R., Okino, N., and Ito, M. (2015) Sterylglycoside catabolism in *Cryptococcus neoformans* with endoglycosidase-related protein 2 (EGCrP2), the first steryl-β-glucoside identified in fungi. *J. Biol. Chem.* **290**, 1005–1019

12. Ito, M., and Yamagata, T. (1989) Purification and characterization of glycosphingolipid-specific endoglycosidases (endoglycosidases) from a mutant strain of *Rhodococcus* sp.: evidence for three molecular species of endoglycosidase with different specificities. *J. Biol. Chem.* **264**, 9510–9519

13. Ishibashi, Y., Nakasone, T., Kiyohara, M., Horibata, Y., Sakaguchi, K., Hijiika, A., Ichinose, S., Omori, A., Yasui, Y., Imamura, A., Ishida, H., Kiso, M., Okino, N., and Ito, M. (2007) A novel endoglycosidase hydrolyzes oligagalactoceramides to produce galactoceramide s and ceramides. *J. Biol. Chem.* **282**, 11386–11396

14. Izu, H., Izumi, Y., Kurome, Y., Sano, M., Kondo, A., Kato, I., and Ito, M. (1997) Molecular cloning, expression, and sequence analysis of the endoglycosidase II gene from *Rhodococcus* species strain M-777. *J. Biol. Chem.* **272**, 19846–19850

15. Ishibashi, Y., Kobayashi, U., Hijiika, A., Sakaguchi, K., Goda, H. M., Tamura, T., Okino, N., and Ito, M. (2012) Preparation and characterization of EGCase I, applicable to the comprehensive analysis of GSLs, using a rhodococcal expression system. *J. Lipid Res.* **53**, 2242–2251

16. Caines, M. E. C., Vaughan, M. D., Tarling, C. A., Hancock, S. M., Warren, R. A. J., Withers, S. G., and Strynadka, N. C. J. (2007) Structural and mechanistic analyses of endo-glycosidase II, a membrane-associated family 5 glycosidase in the apo and GM3 ganglioside-bound forms. *J. Biol. Chem.* **282**, 14300–14308
Structural Insight into EGCase Substrate Recognition

17. Aspeborg, H., Coutinho, P. M., Wang, Y., Brumer, H., 3rd, and Henrissat, B. (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). *BMC Evol. Biol.* **12**, 186

18. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. *J. Mol. Biol.* **372**, 774–797

19. Bahadur, R. P., Chakrabarti, P., Rodier, F., and Janin, J. (2004) A dissection of specific and non-specific protein-protein interfaces. *J. Mol. Biol.* **336**, 943–955

20. Zhu, H., Domingues, F. S., Sommer, I., and Lengauer, T. (2006) NOXclass: prediction of protein-protein interaction types. *BMC Bioinformatics* **7**, 27

21. Holm, L., and Rosenström, P. (2010) DALI server: conservation mapping in 3D. *Nucleic Acids Res.* **38**, W545–W549

22. Zhou, P., Liu, Y., Yan, Q., Chen, Z., Qin, Z., and Jiang, Z. (2014) Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 β-mannosidase. *Acta Crystallogr. D Biol. Crystallogr.* **70**, 2970–2982

23. Dias, F. M. V., Vincent, F., Pell, G., Prates, J. A. M., Centeno, M. S. J., Tailford, L. E., Ferreira, L. M. A., Fontes, C. M. G. A., Davies, G. J., and Gilbert, H. J. (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of *Cellvibrio mixtus* mannosidase 5A. *J. Biol. Chem.* **279**, 25517–25526

24. Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. *Biochem. J.* **382**, 769–781

25. Larsbrink, J., Rogers, T. E., Hensworth, G. R., McKee, L. S., Tauzin, A. S., Spadut, O., Klinte, S., Padlo, N. A., Urs, K., Koropatkin, N. M., Creagh, A. L., Haynes, C. A., Kelly, A. G., Cederholm, S. N., Davies, G. J., and Gilbert, H. J. (2014) A discrete genetic locus confers xyloligucan metabolism in select human gut Bacteroidetes. *Nature* **506**, 498–502

26. Venditti, I., Najmudin, S., Luís, A. S., Ferreira, L. M. A., Sakka, K., Knox, J. P., Gilbert, H. J., Fontes, C. M. G. A. (2015) Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloligucan and β-1,3–1,4-glucans through distinct mechanisms. *J. Biol. Chem.* **290**, 10572–10586

27. Correia, M. A. S., Mazumder, K., Brás, J. L. A., Firbank, S. J., Zhu, Y., Lewis, R. J., York, W. S., Fontes, C. M. G. A., and Gilbert, H. J. (2011) Structure and function of an arabinoxylan-specific xylanase. *J. Biol. Chem.* **286**, 22510–22520

28. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kuma, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* **30**, 2725–2729

29. Neville, D. C. A., Coquard, V., Priestman, D. A., te Vruchte, D. J. M., Silience, D. J., Dwek, R. A., Platt, F. M., and Butters, T. D. (2004) Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. *Anal. Biochem.* **331**, 275–282

30. D’Arcy, A., Bergfors, T., Cowan-Jacob, S. W., and Marsh, M. (2014) Microseed matrix screening for optimization in protein crystallization: what have we learned? *Acta Crystallogr. F Struct. Biol. Commun.* **70**, 1117–1126

31. Minor, W., and Otwinowski, Z. (1997) HKL2000 (Denzo-SMN) Software Package. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307–326

32. Long, F., Vagin, A. A., Young, P., and Murshudov, G. N. (2008) BALBES: a molecular-replacement pipeline. *Acta Crystallogr. D Biol. Crystallogr.* **64**, 125–132

33. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S., and Tucker, P. A. (2005) Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. *Acta Crystallogr. D Biol. Crystallogr.* **61**, 449–457

34. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132

35. Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. *Acta Crystallogr. D Biol. Crystallogr.* **67**, 355–367

36. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterson, E. A., Powell, H. R., et al. (2011) Overview of the CCP4 suite and current developments. *Acta Crystallogr. D Biol. Crystallogr.* **67**, 235–242

37. Vagin, A., and Teplyakov, A. (1997) MOLREP: an automated program for molecular replacement. *J. Appl. Crystallogr.* **30**, 1022–1025

38. Schüttelkopf, A. W., and van Aalten, D. M. (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 1355–1363

39. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12–21

40. Pei, J., Kim, B.-H., and Grishin, N. V. (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. *Nucleic Acids Res.* **36**, 2295–2300

41. Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* **42**, W320–W324

42. Petersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera: a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612

43. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* **157**, 105–132