Health risk assessment of natural background radiation in the soil of Eastern province, Saudi Arabia

A.H. Al-Ghamdi

Department of Physics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia

ABSTRACT

The activity concentrations of natural radionuclides ^{238}U, ^{232}Th, and ^{40}K in surface soil samples from Eastern Province, Damam city, Saudi Arabia were measured by gamma spectrometry using (HPGe) detector. The activity concentration average values of the radionuclides ^{226}Ra, ^{232}Th, and ^{40}K in the soil samples ranged from $11.85–30.43$, $5.74–15.97$, and $362–469$ Bqkg^{-1}, respectively. With overall mean values of 16.73, 10.40, and 419.99 Bqkg^{-1} respectively. These values are within the world average. The mean value radium-equivalent activity was 63.93 Bqkg^{-1}, lower the international limit 370 Bqkg^{-1}. The Representative level index (I_r), internal and external hazard index (I_{HI}, I_{EHI}) of all samples under study were less than the limit of unity. The absorbed dose rate due to three primordial radionuclides lies in the range of $24.23–39.48$ nGyh^{-1} with a mean of 31.68 nGyh^{-1}, which yields an annual effective dose of 0.039 mSv^{-1}. The mean value of Excess lifetime cancer risk was calculated as 0.14×10^{-3} which is below the World average (0.29×10^{-3}). The results obtained in this study are lower than the world recommended values and are found to be safe for the public and environment. Baseline data of this type will almost certainly be important in making estimates of exposure to populations.

1. Introduction

Gamma radiations emitted from naturally occurring radioisotopes, such as ^{40}K and ^{238}U, ^{232}Th and their decay products that are present in environmental materials such as soil, rock, water, granite, building materials, etc (El-Taher, 2012). Radioactivity distribution in soil results from the rock from which it derives and is based on the nature of its geological formation (UNSCEAR, 2000). Soil not only acts as a source of continuous radiation exposure to humans but also as a medium of migration for the transfer of radio nuclides to biological systems (Senthilkumar & Narayanaswamy, 2016). The soil is an important environmental material which is used for many purposes such as building raw materials and products, for landfilling in playgrounds, for streets, etc, containing natural radionuclides that contribute to indoor and outdoor exposure. Therefore, measurement of natural radioactivity in soil is very important to determine the amount of change of the natural background activity with time as a result of any radioactive release. Various studies over the world in the last decades have been done to determine health hazards due to background radioactivity in the soil (Bolat, Öner, & Çetin, 2017; Ismail, Abdullahi, Samat, & Yasir, 2018; Rajesh, Kerur, & Anilkumar, 2017; Shilpa, Anandaram, & Mohankumari, 2018). Such data also enrich the global data bank on radioactivity that will allow a more accurate estimation of global average values of dosimetric quantities. In Saudi Arabia, there are few surveys of radioactivity in soils have been carried for different regions (Alashrah, 2016; Alashrah & El-Taher, 2016; Al-Ghamdi, 2014; El-Taher & Al-Zahrani, 2014). The objective of this study is to measure the activity concentrations of ^{226}Ra, ^{232}Th, and ^{40}K in the surface soil samples from Dammam city, Eastern province, Saudi Arabia, to estimate the potential health impact to the human in the area under investigation. The outcomes of this work will form a baseline data set, which will enable the estimations of population exposure. The data will also contribute to the radioactivity mapping of Saudi Arabia surface soils levels.

2. Materials and methods

2.1. Location of study area

The Eastern Province is the largest province by area and is the third most populous province in Saudi Arabia. The Eastern Province is home to most of Saudi Arabia's oil production. The province's capital is the city of Dammam, which hosts the majority of the region's population. Dammam city has an area of 800 Km2 and it is bound between latitudes 26° 24' and longitudes 50° 08'. The temperature in Dammam city varies from 10°C to 29°C with an average of 15°C. Figure 1 shows the geographical location of this
This study was carried out to determine the concentrations of the natural radionuclides in surface soil from different sampling stations in Dammam city. This area is an industrial region as there are large industrial companies such as for petroleum and chemical factories. This feature makes this region an interesting candidate for radiological studies, although, there is no study on environmental doses from external exposures before.

2.2. Samples collection and preparation
Surface soil samples (about 0–5 cm) were collected from 23 different locations of Dammam city. Each sample was taken with a coring tool within an area of 1 m², five cores were taken for each sample, one in the middle and four cores from the corner, these samples were then mixed to make a single sample after removing a top layer of vegetation and roots. The samples were dried at 105°C for 24 h to remove moisture, then subsequently crushed, ground to fine powder, homogenized by passing through a 2 mm test sieve (IAEA, 1989). About 500 g of the homogenized soil samples was transferred into cylindrical containers. They were carefully sealed and stored for at least 30 days before gamma-ray analysis was performed to allow 226Ra and its short-lived progenies to reach secular equilibrium.

2.3. Measurements
Gamma spectroscopy measurements were carried by using High Purity Germanium (HPGe) detector with coaxial-type vertical dipstick cryostat (Canberra Model number CPVD 530–15,200) P-type with diameter 61 mm, height 54.6 mm. The system has a resolution (FWHM) of (3.0–3.5 keV) for 1332.5 keV gamma-ray peak of 60Co coupled to a computer-based MCA. Spectrum analyzer carried out by using Gamma Vision V6.0 software. The detector was housed inside a massive cylindrical lead shield to reduce the background radiation. Qualitative and quantitative analysis of gamma spectra were processed using the GENIE 2000 program. The spectrometer was tested for its linearity and then calibrated for energy using gamma sources supplied by the International Atomic Energy Agency, Vienna. Counting of samples and background was done for 36000 s duration.

The activity concentration for 226Ra was determined by using the average obtained by gamma peaks at 351.87 keV (214Pb), 609.31 keV (214Bi), and 1764.49 keV (214Bi), while 232Th from gamma peaks 238.63 keV (212Pb) and 911.21 keV (228Ac) and 40K from 1460 keV gamma peak.

The activity concentrations of the natural radionuclides in the measured samples (A_s) were computed using the following relation (El-Taher & Al-Zahrani, 2014):

$$A_s (\text{Bq kg}^{-1}) = \frac{C_s}{\epsilon P_r M_s} \quad (1)$$

where C_s is the net gamma counting rate (counts per second), ϵ the detector efficiency of the specific γ-ray, P_r the absolute transition probability of Gamma–decay and M_s the mass of the sample (kg).

2.4. Calculation of the radiological hazard indices

2.4.1. Radium equivalent activity
Radium equivalent activity gives a single index, which expresses the gamma yield from a various mixtures of 226Ra, 232Th, and 40K in the sample. The radium-equivalent activity index was given as (Beretka & Matthew, 1985; UNSCEAR, 2000):

$$Ra_{eq} = A_{Ra} + 1.43A_{Th} + 0.077A_K \quad (2)$$
where A_{Ra}, A_{Th}, and A_{K} were the radioactivity concentration in Bq kg$^{-1}$ of ^{238}U, ^{232}Th, and ^{40}K. The maximum value of Ra_{eq} must be less than 370 Bq kg$^{-1}$.

2.4.2. The external and internal hazard index

To estimate the level of gamma-radiation associated with natural radionuclides in specific construction materials is defined by the terms external hazard index (Hex) and internal hazard index (Hin) as the following Equations (3) and (4) (Beretka & Matthew, 1985):

$$\text{Hex} = A_{Ra}/370 + A_{Th}/259 + A_{K}/4810 \quad (3)$$

$$H_{\text{in}} = A_{Ra}/185 + A_{Th}/259 + A_{K}/4810 \quad (4)$$

where A_{Ra}, A_{Th}, and A_{K} are the activity concentrations of ^{226}Ra, ^{232}Th, and ^{40}K, respectively. The values of Hex and H$_{\text{in}}$ indices must be less than 1 mSv y$^{-1}$ in order to cause any harmful effect to population (ICRP-65, 1993).

2.4.3. Representative level index

The representative level index, I_y is used to estimate gamma radiation associated with the natural radionuclides in soil and calculated by the following equation (NEA-OECD, 1979):

$$I_{y} = \frac{A_{Ra}}{300} + \frac{A_{Th}}{200} + \frac{A_{K}}{3000} \quad (5)$$

where A_{Ra}, A_{Th}, and A_{K} are the activity concentrations of ^{226}Ra, ^{232}Th, and ^{40}K, respectively, in Bq kg$^{-1}$.

2.4.4. Absorbed gamma dose rate (D)

According to UNSCEAR, 2000, the absorbed gamma dose rate in air 1 m above the ground surface for uniform distribution of natural radionuclides can be calculated using the activity concentration (A_{Ra}, A_{Th}, and A_{K} in Bq kg$^{-1}$) and dose conversion factors 0.462, 0.604, and 0.0417 nGy$^{-1}$/Bq kg$^{-1}$ for ^{238}U, ^{232}Th, and ^{40}K substituted into the formula.

$$D (\text{nGy y}^{-1}) = 0.462 A_{Ra} + 0.604 A_{Th} + 0.0417 A_{K} \quad (6)$$

2.4.5. Annual effective dose (D_{eff})

The annual effective dose equivalent (D_{eff}) was calculated from the absorbed dose (D) by applying the dose conversion factor of 0.7 Sv Gy$^{-1}$ with an outdoor occupancy factor of 0.2 and 0.8 for indoor (UNSCEAR, 2000):

$$(D_{eff}) = D (\text{nGy} / \text{h}) \times 8766 (\text{h/year}) \times 0.7 \times (10^3 \text{mSv/nGy} 10^8) \times 0.2 \quad (7)$$

2.4.6. Excess lifetime cancer risk (ELCR)

Based upon calculated values of annual effective dose excess lifetime cancer risk (ELCR) was calculated using the following equation:

$$\text{ELCR} = D_{eff} \times DL \times RF \quad (8)$$

where (D_{eff}) is the annual effective dose, DL life expectancy (70 years) and RF (Sv$^{-1}$) are a fatal risk factor per Sievert, which is 0.05 for the public (ICRP-60, 1990).

3. Result and discussion

3.1. Activity concentrations of ^{226}Ra, ^{232}Th, and ^{40}K

The estimated activity concentrations of the three primordial radionuclides ^{226}Ra, ^{232}Th, and ^{40}K obtained for each of the samples collected from the study region are reported in Table 1. The activity of ^{226}Ra in the soil ranged from 11.85 Bq/kg to 30.43 Bq kg$^{-1}$ with a mean 16.73 Bq kg$^{-1}$, ^{232}Th ranged from 5.74 Bq kg$^{-1}$ to 15.97 Bq kg$^{-1}$ with a mean of 10.40 Bq kg$^{-1}$ and ^{40}K ranged from 362.62 Bq kg$^{-1}$ to 469.12 Bq kg$^{-1}$ with a mean of 419.78 Bq kg$^{-1}$. The world’s mean values of ^{226}Ra, ^{232}Th, and ^{40}K activity concentrations are 32, 45, and 420 Bq kg$^{-1}$, respectively (UNSCEAR, 2000). The activity concentrations of ^{226}Ra, ^{232}Th, in all samples were measured to be lower than the world’s average values. The high activity of ^{40}K in some samples may be due to the fact that these samples were collected from areas near the industrial or agriculture lands. The mean activity of ^{232}Th was lower than that of ^{226}Ra, whereas the ^{40}K activity was the highest one and represents the largest contribution about 93% of the total activity ($^{226}Ra + ^{232}Th + ^{40}K$) in soil, which is in agreement with the well-known fact that potassium in the earth’s crust is of the order of percentage while U and Th are in ppm level (Ramasamy, Suresh, Meenakshisundaram, & Ponnusamy, 2011). The activity concentrations values ^{226}Ra, ^{232}Th, and ^{40}K in the soil samples from the study region were shown in Figure 2. A comparison of the mean values obtained in the present work with the same investigations soil of Saudi Arabia and other countries were presented in Table 2. The comparison shows that the values of soils under consideration were comparable with others and were within the world average values as reported by UNSCEAR, 2000. The variations in the concentrations of the radioactivity in the soil of the various locations of the world, depending upon the geological and geographical conditions of the area (UNSCEAR, 2000).

3.2. Radiological hazard indices

The computed values of (Ra_{eq}) were tabulated in Table 1, where the other indices average values were summarized in Table 3. The following observations can be detected from these Tables 1 and 3:
Table 1. Values of radioactivity concentrations and Radium-equivalent for soil samples under investigation.

Sample code	226Ra (Bq/kg)	232Th (Bq/kg)	40K (Bq/kg)	Radium-equivalent (Bq/kg)
S1	13.17 ± 1.84	15.97 ± 1.13	364.28 ± 3.54	64.06
S2	16.05 ± 1.62	13.28 ± 1.12	385.91 ± 3.50	64.76
S3	18.91 ± 1.93	12.58 ± 1.4	442.49 ± 3.74	70.97
S4	18.89 ± 2.20	10.14 ± 1.58	432.51 ± 3.62	66.69
S5	19.06 ± 2.11	9.84 ± 1.4	402.56 ± 3.61	64.13
S6	15.80 ± 2.05	5.76 ± 1.48	414.20 ± 3.75	55.93
S7	11.85 ± 2.09	5.74 ± 1.48	362.62 ± 3.48	47.98
S8	15.31 ± 1.95	10.21 ± 0.94	379.26 ± 3.26	59.11
S9	16.28 ± 1.94	19.00 ± 1.27	410.88 ± 3.65	75.09
S10	22.57 ± 1.87	8.84 ± 1.52	444.16 ± 3.75	69.41
S11	12.58 ± 1.98	5.54 ± 1.4	397.56 ± 3.95	51.11
S12	13.56 ± 1.84	12.74 ± 1.22	427.52 ± 3.64	64.70
S13	8.65 ± 1.75	7.34 ± 1.45	432.51 ± 3.66	52.45
S14	16.48 ± 1.26	12.34 ± 1.30	442.50 ± 3.64	68.20
S15	14.53 ± 1.90	7.94 ± 1.31	424.19 ± 3.70	58.55
S16	17.28 ± 1.99	11.52 ± 1.63	442.49 ± 3.66	67.83
S17	16.61 ± 2.56	7.75 ± 1.66	429.18 ± 3.81	60.74
S18	23.13 ± 2.506	15.14 ± 1.33	469.12 ± 3.85	80.90
S19	18.36 ± 2.59	10.36 ± 1.49	440.83 ± 3.74	67.12
S20	12.78 ± 2.02	12.52 ± 1.56	429.18 ± 3.71	63.73
S21	16.24 ± 2.21	8.11 ± 1.49	439.17 ± 3.66	61.65
S22	16.26 ± 2.03	10.54 ± 1.45	419.20 ± 3.64	63.61
S23	30.43 ± 2.28	6.08 ± 1.44	422.52 ± 3.70	71.66
Min–Max	11.85 ± 2.09–30.43	5.74 ± 1.48–15.97	362.62 ± 469.12	47.98–80.90
Mean	16.73	10.40	419.78	63.93
World average	32	45	420	370

Table 2. Average of specific activity concentrations in the soil at last five years of previous works in some regions of Saudi Arabia and other countries as compared to the present study.

Country	Mean activity concentration (Bq kg$^{-1}$)	References
Saudi Arabia (Dammam)	226Ra: 16.73 232Th: 10.40 40K: 419.78	Present study
Saudi Arabia (Abha)	226Ra: 44.1 232Th: 29.3 40K: 251.5	Ibraheem, El-Taher, and Alruwaili (2018)
Saudi Arabia (AlQasseem)	226Ra: 14.1 232Th: 15.5 40K: 143.1	Alashrah and El-Taher (2016)
Saudi Arabia (Riyadh)	226Ra: 22.98 232Th: 21.24 40K: 244.97	Al-Sulaiman and Aboukarima (2016)
Saudi Arabia. (Yanbu city)	226Ra: 40.65 232Th: 42.89 40K: 513.16	Al-Ghamdi (2014)
Yemen	226Ra: 8.8 232Th: 17.5 40K: 102.8	Ademola, Bello, and Adegumobi (2014)
Turkey	226Ra: 14.34 232Th: 25.78 40K: 566.05	Nafee et al. (2017)
India	226Ra: 24.5 232Th: 51.8 40K: 344.9	Durusoy and Yildirim (2017)
China	226Ra: 30.24 232Th: 29.89 40K: 291.06	Amanjeet, Kumar, Singh, Singh, and Bajwa (2017)
Egypt	226Ra: 19.5 232Th: 36.8 40K: 728.1	Li et al. (2017)
National range	226Ra: 8.64 232Th: 13.77 40K: 141.64	Fares (2017)
India	226Ra: 30.24 232Th: 29.89 40K: 291.06	Amanjeet et al. (2017)
Algeria	226Ra: 46.7 232Th: 26.7 40K: 246.5	Bramki, Ramdhane, and Benrachi (2018)
Malaysia	226Ra: 92.23 232Th: 61.82 40K: 621.84	Ismail et al. (2018)
World average	226Ra: 32 232Th: 45 40K: 420	UNSCEAR., 2000

Figure 2. Activity concentrations of 226Ra, 232Th and 40K for surface soil samples Collected from different locations of Dammam city, Saudi Arabia.
(1) Radium equivalent (Ra\(_{eq}\)) in soil samples of the study area ranged from 47.98 to 80.90 Bq kg\(^{-1}\) with a mean value of 63.93 Bq kg\(^{-1}\). All the values of Ra\(_{eq}\) in the studied samples are found to be lower than the critical limit of 370 Bq kg\(^{-1}\) recommended by UNSCEAR, 2000.

(2) External and internal hazard index in the study area varied from 0.13 to 0.22 and 0.16 to 0.28 with mean values 0.17 and 0.22, respectively. All these values were below the limit one (UNSCEAR, 2000).

(3) Representative level index (I\(_{\gamma}\)) for soils varied from 0.19 to 0.31 Bq kg\(^{-1}\) with a mean value of 0.25 Bq kg\(^{-1}\). The external radiation dose within the soil samples is less than the recommended dose of 1 Bq kg\(^{-1}\) (UNSCEAR, 2000).

(4) The observed value of air absorbed dose rate in soil samples of the study area ranges from 24.23 to 39.48 nGy h\(^{-1}\) with a mean value of 31.68 nGy h\(^{-1}\). It is observed that air absorbed dose rate lies below the population-weighted average value of global primordial radiation of 59 nGy h\(^{-1}\) (UNSCEAR, 2000).

(5) The annual effective dose in soil samples ranges from 0.029 to 0.048 mSv yr\(^{-1}\) with an average value of 0.039 mSv yr\(^{-1}\) which is about 3.9% of the 1.0 mSv year\(^{-1}\) as the maximum annual dose as recommended by UNSCEAR, 2000 for an individual member of the public.

(6) Cancer risk calculated values are ranged from 0.10 \times 10^{-3} to 0.16 \times 10^{-3} with an average of 0.14 \times 10^{-3}. These values are lower than the world average (0.29 \times 10^{-3}) reported by UNSCEAR, 2000.

Therefore, based on these results of the radiological hazard, one can conclude that there is no health hazard of the study area and it is still in the zones of normal radiation level, which leaves the soil radioactivity there less a threat to the environment as well as the human health. Comparison of the values of Radium equivalent (Ra\(_{eq}\)), absorbed dose (D), the annual effective dose (D\(_{eff}\)) for the soil samples were plotted in Figure 3. The results of external (Hex), internal hazard index (H\(_{in}\)), level index (I\(_{\gamma}\)) were presented in Figure 4. The relative contribution to dose due to \(^{40}\)K was 56.99%, followed by the contribution due to \(^{226}\)Ra and \(^{232}\)Th as 22.55%, 20.46%, respectively, which were represented in Figure 5.

Table 3. Mean values of external (H\(_{ex}\)) and internal (H\(_{in}\)) hazard indices, Representative level (I\(_{\gamma}\)), absorbed dose rates (D\(_{\gamma}\)), annual effective doses (D\(_{eff}\)) and excess lifetime cancer risk (ELCR) for soil samples under investigation.

Radiation indices	Minimum	Maximum	Mean	UNSCEAR2000
Radium-equivalent (Bq/kg)	47.98	80.90	63.93	370
External index (H\(_{ex}\))	0.13	0.22	0.17	< 1
Internal index (H\(_{in}\))	0.16	0.28	0.22	< 1
Representative level index (I\(_{\gamma}\))	0.19	0.31	0.25	< 1
Absorbed dose (D) (nGy h\(^{-1}\))	24.23	39.48	31.68	59
Annual effective dose (D\(_{eff}\)) (mSv/yr)	0.029	0.048	0.039	1
Cancer risk (ELCR)	0.10 \times 10^{-3}	0.16 \times 10^{-3}	0.14 \times 10^{-3}	0.29 \times 10^{-3}

Figure 3. Radium equivalent (Bq/kg), Absorbed dose rate (nGy/h), and annual effective dose for soil samples from different locations in Dammam city, Saudi Arabia.

4. Conclusion

The average activity concentrations of \(^{226}\)Ra, \(^{232}\)Th, and \(^{40}\)K were 16.73, 10.40, and 419.93 Bq/kg,
respectively. The study showed that the measured values are lower than the values in the worldwide soil. The values of the Radium equivalent and absorbed dose rate were 63.93 Bq/kg and 31.68 nGy/h, respectively. These values were lower than the acceptable limits 370 Bq/kg for Radium equivalent and 59 nGy/h, for absorbed dose rate. The external hazard index (H_{ex}), internal hazard index (H_{in}) and representative level index (I_{gr}) were found to be less than the acceptable limit of unity. The results obtained in this study fall within the range of values reported in similar studies conducted worldwide and are below the values that can cause the significant radiation hazard to both the environment and human health and can be used as a building raw materials or other human activities without any radiological risk. However, this data may provide a general background level for the area being studied and may also serve as a guideline for future measurement and assessment of possible radiological risks to human health in this region.

Disclosure statement

No potential conflict of interest was reported by the author.

References

Ademola, A. K., Bello, A. K., & Adejumobi, A. C. (2014). Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. *Journal of Radiation Research and Applied Sciences*, 7, 249–255.

Alashrah, S., & El-Taher, A. (2016). Assessment of natural radioactivity level and radiation hazards in soil samples of Wadi Al-Rummah Qassim province, Saudi Arabia. *Journal of Environmental Biology*, 37, 985.

Alashrah, S. A. (2016). Radiation properties for red soil in Qassim province, Saudi Arabia. *Journal of Radiation Research and Applied Sciences*, 9, 363–369.

Al-Ghamdi, A. (2014). Natural radioactivity measurements for assessment radiation hazards from surface soil of industrial Yanbu City, Saudi Arabia. *Life Science Journal*, 11, 1123–1130.

Al-Sulaiman, M. A., & Aboukarima, A. M. (2016). Distribution of natural radionuclides in the surface soil in some areas of agriculture and grazing located in west of Riyadh, Saudi Arabia. *Journal of Applied Life Sciences International*, 7, 1–12. Article no.JALSI.28502.

Amanjeet, K., Kumar, A., Singh, S., Singh, J., & Bajwa, B. S. (2017). Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India. *Journal of Radiation Research and Applied Sciences*, 10, 283–288.

Beretka, J., & Matthew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. *Health Physics*, 48, 87–95.

Bolat, B., Öner, F., & Çetin, B. (2017). Assessments of natural radioactivity concentration and radiological hazard indices in surface soils from the Gözlek Thermal SPA (Amasya-Turkey). *Acta Physica Polonica A*, 132, 1200–1202.

Bramki, A., Ramdhane, M., & Benrachi, F. (2018). Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. *Journal of Radiation Research and Applied Sciences*, 11, 49–55.

Durusoy, A., & Yıldırım, M. (2017). Determination of radioactivity concentrations in soil samples and dose assessment for Rize province, Turkey. *Journal of Radiation Research and Applied Sciences*, 10, 348–352.

El-Taher, A. (2012). Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim area, Saudi Arabia. *Romanian Journal of Physics*, 57, 726–735.

El-Taher, A., & Al-Zahrani, J. H. (2014). Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia. *Indian Journal of Pure & Applied Physics (IJPAP)*, 52, 147–152.

Fares, S. (2017). Measurements of natural radioactivity level in black sand and sediment samples of the Temsah Lake.
beach in Suez Canal region in Egypt. *Journal of Radiation Research and Applied Sciences*, 10, 194–203.

IAEA. (1989). International atomic energy agency. Measurement of radiation in food and the environment. *Guidebook. Technical Report Series No. 295*. Vienna: Author.

Ibraheem, A. A., El-Taher, A., & Alruwaili, M. H. (2018). Assessment of natural radioactivity levels and radiation hazard indices for soil samples from Abha, Saudi Arabia. *Results in Physics*, 11, 325–330.

ICRP-60. (1990). Recommendations of the international commission on radiological protection. Oxford: Pergamon Press.

ICRP-65. (1993). *International commission on radiological protection. Annals of the ICRP 23* (2). Oxford: Pergamon Press.

Ismail, A. F., Abdullahi, S., Samat, S., & Yasir, M. S. (2018). Radiological dose assessment of natural radioactivity in Malaysian tiles using resrad-build computer code. *Sains Malays*, 47, 1017–1023.

Li, J., Hu, B., Zhao, J., Bai, F., Dou, Y., Wang, L., ... Ding, X. (2017). Evaluation of natural radioactivity in marine sand deposits from offshore China. *Marine Science*, 7, 357–378.

Nafee, S. S., Al-Othmany, D., Hamidalddin, S. H., Al-Zahrani, J. H., Alharbi, W. R., & Barashed, H. M. (2017). Measurement of gamma emitting radionuclides for assessment, environmental hazards of radiation in rock and soil samples of Shabwah and Hadramout regions, Yemen. *Journal of Geoscience and Environment Protection*, 5, 66.

NEA-OECD. (1979). Exposure to radiation from natural radioactivity in building materials. In *Report by the group of experts of the OECD Nuclear Energy Agency (NEA)*. Paris.

Rajesh, S., Kerur, B. R., & Anilkumar, S. (2017). Radioactivity measurements of soil samples from Devadurga and Lingasugur of Raichur district of Karnataka, India. *International Journal of Pure and Applied Physics*, 13, 127–130.

Ramasamy, V., Suresh, G., Meenakshisundaram, V., & Ponnusamy, V. (2011). Horizontal and vertical characterization of radionuclides and minerals in river sediments. *Applied Radiation and Isotopes*, 69, 184–195.

Senthilkumar, R. D., & Narayanaswamy, R. (2016). Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. *Journal of Radiation Research and Applied Sciences*, 9, 449–456.

Shilpa, G. M., Anandaram, B. N., & Mohankumari, T. L. (2018). Measurement of activity concentration of primordial radionuclides in soil samples from Thirthahalli taluk and the assessment of resulting radiation dose. *Journal of Radioanalytical and Nuclear Chemistry*, 316, 501–511.

UNSCEAR. (2000). Report to the general assembly. *Sources and effects of ionizing radiation*. Sources (Vol. 1). United Nations Publications.