We are Telling the World Everything the Cerebral Cortex Memorises

Zhang Yue
Department of Physics, Hunan Normal University, P.R. of China
E-mail: phys_zhangyue@126.com

Abstract:
The cognitions and thoughts of a human brain are accomplished by the neurons to transmit informations in brain. If we want to know the thoughts of a brain, we must to contact the neural network of the brain. One of the well-known way is to penetrate the capillary holes of the surface of the brain with electromagnetic waves to contact neurons. The modern method is to emit electromagnetic waves with radar via the GPS which can make lights exactly and easily pass through the capillary holes of the brain. The paper will simply describe the principle of their works.

Keywords:
neuron; synaptic; cerebral cortex; capillary hole; electromagnetic wave

I. Introduction

“Can someone really read your thoughts?” A few neuroscientists and psychologists discussed such an interesting question at a forum held at the Franklin Institute in Philadelphia. With the development of science and technology, the significance of this question is now not only relative to the neuroscience, but also becomes even greater in the industry of robot, a number of scientists may be working hard for the purpose of making the cerebral cortex in silicon, and to create robots like human thinking, walking, labouring and speaking (Miller, 2006).

In the recent years, a research group performed an experiment of continuously and automatically tracing and studying the brain of a collaborator by use of the scanner of radar and GPS, in order to get the informations of the cerebral cortex of the collaborator, the incident lights arising from the radar via the GPS directly project on a large number of areas of hair bundles on the skin of his brain, then passing through the thin membranes at the areas to enter the depth of skin which can connect the central nervous system by means of nerve fibres.

II. Review of Literatures

Synaptic Interaction

In a human brain, the transmission of informations is accomplished by the synaptic interactions of neuron - neuron at the synaptic terminals, all of the neurons can be correlated via the large networks of neurons. Our cerebral cortex bears the work of processing all of the informations of the higher activities of thoughts, it is composed of the left and right hemispheres which are not completely symmetrical and function different processing task, and memorises enormous informations of human's thoughts, perceptions and others. Inside the neural layerstructures of the cerebral cortex, there are a large number of pyramidal neurons which function the most efferent projections of the cerebral cortex, and therefore play the major role in transmission, this can be demonstrated by the fact that the pyramidal tract in human carries about 1,000,000 axons, but among them, nearly 60% coming from the

DOI: https://doi.org/10.33258/bioex.v2i2.224
neurons of the motor cortex (Ghez, 1985). Moreover, the spinal cord, carried by primary dendrodendritic fibres, mediates the outputs arising from the cerebral cortex which, in turn, controls the behaviour of the spinal network. The spinal cord conveys informations from the cerebral cortex to the motor neurons via the corticobudar and the corticospinal tracts. Relying on a series of relay points, the motor neurons can carry the informations to the peripheral nervous system in the skin or the depths of skin via the complicated nerve fibres. Moreover, some anatomical experiments have predicted or proven that the activities of neurons are hierarchically arranged and constantly feedback from higher level to lower level in the neural network, in various cortical areas in Stevens (1993) and Fink (1996), this implies that there are enough opportunities for the incident lights to contact the countless motor neurons constantly coming from the cerebral cortex. But meanwhile, all regions of the cerebral cortex are capable of influencing the motor cortex through their corti - cortical connections.

III. Discussion

The Capillary Holes

The nervous system of a brain consists of the central nervous system and the peripheral nervous system, the central nervous system functions to process the informations of thoughts and others, and the spinal cord and motor neurons can transmit informations of the central nervous system to the peripheral nervous system by means of the efferent nerve fibres to control the behaviours of the human. Neurons in the skin rect to the stimuli light by dispersing or aggregating intracellular pigment granules (Arnheiter, 1998), the cerebral cortex innervates the skin sense through various peripheral nerve fibres. In the depths of skin, there are a large number of hair cells underlain the stems of hairs, and innervated by the nerve fibres, these hair cells can mediate informations. The hair cells may play the remarkable role in the communication, because the incident lights are easier to directly contact them, as well as the motor neurons constantly coming from the central nervous system. When the incident lights penetrate the capillary holes where grow hairs and connect the nerve fibres, to contact the motor neurons or hair cells, the both sides are likely to communicate energies or informations from each other, therefore, the reflected lights will carry the countless informations arising from the cerebral cortex to the receiver of radar for processing.

In experiments, the researchers find that all the initial informations are analogous, it reminds them to convert the analogous into digital informations by use of the A / D convertor, this task is usually accomplished by the computer. From the information processing the researchers curiously discovered that all the analogous informations can be successively converted into languages which arise from the cerebral cortex, from the collaborator's thoughts.

IV. Conclusion

The paper simply analysed and described the principle of how to get informations of thoughts of a brain by use of the radar via the GPS. However, the mechanism of the communication between the incident lights and the cerebral cortex is not very clear, in fact, we have not clearly known how the communication involves with the substructure of cells, such as the protein of cells. Moreover, because the speed of activities of thoughts are much faster than that of common computers, the information processing of thoughts must be accomplished by means of the supercomputer. Therefore, that some one can read your thoughts is not a dream.
References

Miller, G. (2006). An Enterprising Approach to Brain Science. Science: 314(6), 76-77.
Ghez, C. (1985). Principles of Neural Science (Second Edition, by Eric R. Kandel and James H. Schwartz). New York. Amsterdam. Oxford: Elsevier. 325 – 326.
Stevens, C F. (1993). Theories on the brain. Nature: 361(11), 500 – 501.
Fink, G R, Halligan, P W, Marshall, J C, Frith, C D, Frackowiak, R S J and R J. Dolan, R J. (1996). Where in the brain does visual attention select the forest and the trees?. Nature: 382(15), 626 – 628.
Arnheiter, H. (1998). Eyes viewed from the skin. Nature: 391(12), 632 – 633.