Sound insulation of PVC windows at negative outdoor temperatures

A Konstantinov¹, A Verkhovsky² and E Lyabakova²

¹Moscow State University of Civil Engineering, 129337 Yaroslavskoe shosse, 26, Moscow, Russia
²Research Institute of Building Physics of the Russian Academy Architecture and Construction Sciences, 127238 Lokomotivny proezd, 21, Moscow, Russia

Corresponding author: apkonst@yandex.ru

Abstract. The PVC windows using experience in the climatic conditions of the Russian Federation shows that their profile elements are subject to temperature deformations under the influence of the temperature gradient of outdoor air and indoor air. This physical phenomenon is observed both in the summer and winter operation period. In this article we study the influence of external air negative temperatures into the sound insulation of PVC windows. The research was performed on a standard PVC window in a climate chamber with acoustic equipment. The PVC window sound insulation measurements were carried out at the following temperatures inside the cold compartment of the climate chamber: +20 °C, 0°C, -5°C, -20°C (at a constant temperature in the warm compartment of the chamber + 20°C). It is established that the reduction of PVC windows sound insulation begins to occur only at outdoor temperatures below 0 °C. The sound insulation of PVC window at an outdoor temperature -20°C is 3 dB lower than the sound insulation of the same window, determined under standard conditions (+20 °C). Obviously, existing methods of calculation of sound insulation of PVC windows it is necessary to adjust in terms of operational ambient temperatures and design features of the windows.

1. Introduction
Currently, the use of modern windows types (especially PVC windows) has significantly increased in civil construction. This trend is primarily related to increasing requirements for energy efficiency of buildings [1,2]. For this purpose it is necessary to use windows with high thermal characteristics and tightness [3,4]. Another important issue, especially for large cities and megacities, is the need to ensure acoustic comfort in the premises [5-7]. This requires the use of windows with high levels of sound insulation. The modern approach to the assignment of window performance characteristics (including air permeability and sound insulation) involves the use of data obtained under standard conditions (at air temperatures of about + 20 °C) [8-10]. In other words, the calculations do not take into account the actual operating conditions of windows. That is, when assigning window characteristics such as breathability and sound insulation, the actual operating conditions of Windows in winter and summer operating conditions, which differ significantly in outdoor temperatures in most countries of the world, are not taken into account.

At the same time, the experience of using PVC windows in the climatic conditions of the Russian Federation shows that they can be subjected to significant temperature deformations during the
operation [11]. Research shows that temperature PVC windows deformations can reach values comparable to those caused by wind loads [12]. Temperature deformations of PVC windows can occur both in the summer operation period as a result of solar radiation (this phenomenon is most evident in the case of using dark-colored PVC profiles), and in the winter operation period (for PVC window profiles of any color) – due to temperature differences in the outdoor and indoor air. A number of studies show that due to temperature deformations of profiles, the tightness of PVC windows decreases, and, as a result, their performance characteristics deteriorate. - resistance to heat transfer, as well as air permeability [13]. These phenomena also lead to a violation of the normalized indicators of thermal protection – the appearance of condensate, ice [14].

In this work, the authors aim to assess the influence of negative outdoor temperatures on the sound insulation of PVC windows. To date, research on this issue has not been carried out and is at the level of theoretical assumptions. The relevance of this issue is associated with the widespread use of large-sized windows in modern mass construction [15], as well as energy-efficient window systems with wide profile elements characterized by increased temperature deformations. Taking into account the already conducted research, the study of this issue will allow us to further comprehensively approach the purpose of the PVC windows performance characteristics for various climatic conditions.

2. Methods
A standard PVC window was selected to investigate the issue under consideration. The window had a casement and a fixed light. The overall dimensions of the window were H × B = 1.4 × 1.2 m. PVC Profile elements had a mounting width of 70 mm. IGU had the formula 4-16-4-14-4.

The research was conducted on the basis of research Center "Facades SPK" NIISF RAACS (Moscow). The study was conducted in a climate chamber. The climate chamber consisted of two compartments – cold and warm. In each of the compartments, a pre-set temperature was maintained – in the warm compartment +20 °C, in the cold compartment from +20 °C to -20 °C. Between the compartments was a insulated partition with an opening in which the test window was installed. Fixing and sealing the window in the opening was performed in accordance with current installation recommendations. To assess the temperature and humidity conditions inside the climate chamber compartments and on the window surfaces, temperature sensors and heat flow sensors were used. To measure the deformations of the window profile elements, hour-type sensors were used. Broadband "white" noise of constant power over the entire measuring frequency range was created inside the cold compartment of the climate chamber using a noise source from the company "Bruel & KJAER". The sound pressure level inside the cold, warm chamber compartment was measured using a noise analyzer "Bruel & KJAER". Measurements of PVC windows sound insulation were carried out only after stabilization of window profile elements temperature deformations and the stationary mode onset of heat transfer through the window. Measurements were made in the frequency range from 100 to 3150 Hz. The window sound insulation rating was determined in each frequency range as the difference in the average sound pressure levels in the compartments.

The calculation of the window sound insulation \(R_{A\text{tran}} \) (isolation of air noise generated by the urban transport flow) was performed on the basis of the measured values of the frequency air noise insulation characteristic of the window according to the following formula:

\[
R_{A\text{tran}} = 75 - 10 \log \left(\sum_{i=1}^{16} 10^{\frac{1}{10} L_i - R_i} \right) \tag{1}
\]

where \(L_i \) – corrected by the frequency correction curve "A" sound pressure levels of the reference spectrum in the i-th third-octave frequency band, dB;

\(R_i \) – isolation of air noise by this window design in the i-th third-octave frequency band, dB.

The schematic diagram of the test stand for evaluating the windows sound insulation at negative outdoor temperatures is shown in figure 1. The General view of the test stand with the PVC window installed is shown in figure 2.
Figure 1. Schematic diagram of a test stand for evaluating sound insulation of windows at negative outdoor temperatures. 1 – cold compartment; 2 – warm compartment; 3 – insulated partition; 4 – climate system with air temperature control; 5 – test window; 6 – temperature and heat flux sensors; 7 – work station; 8 – linear displacement sensors; 9 – speaker system; 10 – sound level meter.

Figure 2. General view of the test stand with a PVC window installed
3. Results and Discussion
The results of the study are presented in table 1.

Table 1. Results of evaluation of PVC window sound insulation at various outdoor temperatures

Average geometric frequency of third-octave bands f, Hz	Sound pressure levels adjusted for A, dB	Air noise isolation R(f), dB, at the air temperature in the cold compartment of the climate chamber			
		+20 °C	0 °C	-5 °C	-20 °C
100	55	25.7	27.6	26.7	27.4
125	55	19.8	20.7	17.5	20.4
160	56	25.2	22.1	24	22.2
200	59	24.7	24.7	24.6	19.7
250	60	25.9	21.7	24.9	22.1
315	61	21.5	24.1	20.5	20.9
400	62	19.7	21.4	19.3	19.0
500	63	19.8	25.4	15.9	22.1
630	64	20.6	24.5	17.3	23.6
800	66	23.9	23.8	21.9	23.4
1000	67	30.1	25.6	28.9	23.6
1250	66	36.4	29.0	36.4	23.4
1600	65	40.1	26.6	40.2	23.6
2000	64	42.1	27.0	41.1	23.0
2500	62	39.9	26.2	37.9	21.5
3150	60	39.2	24.4	35.6	20.3

Sound insulation R_{A}, dBA

| | 25 | 25 | 23 | 22 |

It is established that the decrease in PVC windows sound insulation is observed only at negative outdoor temperatures. The decrease in PVC windows sound insulation at negative outdoor temperatures can be explained by the following reasons:

- reducing the tightness of the flaps joining the window frame due to temperature deformations of window profiles and reducing the elasticity of window seals;
- reducing the IGU sound insulation due to deflections of glass and reducing the distance between the glass under the influence of temperature differences.

Based on the conducted research, we can say that the PVC windows sound insulation at negative outdoor temperatures is largely influenced by temperature deformations of their profiles. Therefore, the existing engineering methods for the purpose of windows sound insulation based on the available characteristics of their individual structural elements should be adjusted [16-18]. At the same time, it is obvious that they must take into account the following design windows parameters that affect temperature deformations and tightness under the influence of negative outdoor temperatures:

- overall dimensions of windows;
- number and overall dimensions of casements;
- material and geometry of profile elements of windows;
- the construction of translucent filling, as well as the method of fixing it in the casements and the window frame;
- material and characteristics of window seals, the presence of ventilation valves.
To study each of these factors, it is necessary to conduct additional comprehensive research. Currently, only certain factors affecting the windows sound insulation have been studied [19-22]. At the same time, the influence of acoustic holes on the sound insulation of enclosing structures (including ventilation valves in windows) has been well studied. The phenomena of sound transmission through open ventilation valves and slits in windows can be considered similar. Therefore, by determining the temperature deformations of window profiles and window seals under the influence of negative outdoor temperatures (and, accordingly, the size of the resulting cracks), you can evaluate the change in windows sound insulation. It should be noted that currently, methods for determining the windows sound insulation at negative outdoor temperatures in laboratory conditions have not yet been developed and tested. This paper is the first attempt to conduct such research. The method developed in this paper can only be used for evaluating the windows sound insulation at negative outdoor temperatures. Currently, the author's team is improving the methodology proposed in the work, as well as conducting comprehensive research on the influence of the above parameters of windows structural elements on sound insulation at negative outdoor temperatures. It seems appropriate to conduct computer simulation of windows at negative outdoor temperatures to determine not only their sound insulation, but also resistance to heat transfer and air permeability. Such multiphysical calculations of windows are currently performed in a limited volume due to the complexity of setting the design scheme of windows, including taking into account the joint work of the frame and sash elements [23], the characteristics of materials (such as PVC) that depend on the outdoor temperature, and other factors.

4. Conclusions

Based on the research conducted in this work, we can draw the following conclusions:

1. Sound insulation of PVC windows decreases as the outdoor temperature decreases. The decrease in sound insulation of PVC windows begins to be observed only at outdoor temperatures below 0 °C. Studies have shown that the sound insulation of PVC windows at an outdoor temperature of -20 °C is 3 dB lower than at the standard test temperature (+20 °C).

2. Existing methods of laboratory determination and engineering methods for calculating windows should be further developed. In this case, it is necessary to take into account not only the operating temperature of the outdoor air, but also the windows technical parameters that affect their deformation characteristics and ensure their tightness.

References

[1] Allard I, Olofsson T and Hassan O A B 2013 Methods for energy analysis of residential buildings in Nordic countries Renew. Sustain. Energy Rev.
[2] Casals X G 2006 Analysis of building energy regulation and certification in Europe: Their role, limitations and differences Energy Build.
[3] Galvin R 2010 Thermal upgrades of existing homes in Germany: The building code, subsidies, and economic efficiency Energy Build.
[4] Cuce E and Riffat S B 2015 A state-of-the-art review on innovative glazing technologies Renew. Sustain. Energy Rev.
[5] Van Den Bossche N and Janssens A 2016 Airtightness and watertightness of window frames: Comparison of performance and requirements Build. Environ.
[6] Amundsen A H, Klaeboe R and Aasvang G M 2011 The Norwegian Façade Insulation Study: The efficacy of façade insulation in reducing noise annoyance due to road traffic J. Acoust. Soc. Am.
[7] Secchi S, Astolfi A, Calosso G, Casini D, Cellai G, Scamoni F, Scrosati C and Shtrepi L 2017 Effect of outdoor noise and façade sound insulation on indoor acoustic environment of Italian schools Appl. Acoust.
[8] Casini D, Cellai G, Fogola J, Scamoni F and Secchi S 2016 Correlation between facade sound insulation and urban noise: A contribution to the acoustic classification of existing buildings
Miškinis K, Bliūdžius R, Dikavičius V and Burlingis A 2019 Assessment of acoustic and thermal properties of airtight wooden windows used in baltic and scandinavian countries J. Environ. Eng. Landsc. Manag.

Konstantinov A P and Verkhovsky A A 2019 Air Permeability of Modern PVC and Aluminum Window Blocks Zhilishchnoe Stroit.

Verkhovskiy A, Bryzgalin V and Lyubakova E 2018 Thermal Deformation of Window for Climatic Conditions of Russia IOP Conference Series: Materials Science and Engineering

Konstantinov A and Verkhovsky A 2020 Assessment of the Wind and Temperature Loads Influence on the PVC Windows Deformation IOP Conference Series: Materials Science and Engineering

Konstantinov A and Verkhovsky A 2020 Assessment of the Negative Temperatures Influence on the PVC Windows Air Permeability IOP Conference Series: Materials Science and Engineering

Konstantinov A P, Krutov A A and Tikhomirov A M 2019 Assessment of the PVC Window Thermal Characteristics in Winter Stroit. Mater.

Konstantinov A P and Ibragimov A M 2019 Complex Approach to Calculation and Design of Translucent Structures Zhilishchnoe Stroit.

Blasco M, Belis J and De Bleecker H 2011 Acoustic failure analysis of windows in buildings Eng. Fail. Anal. 18 1761–74

Garg N, Kumar A and Maji S 2013 Parametric sensitivity analysis of factors affecting sound insulation of double glazing using Taguchi method Appl. Acoust. 74 1406–13

Tadeu A J B and Mateus D M R 2001 Sound transmission through single, double and triple glazing. Experimental evaluation Appl. Acoust. 62 307–25

Yu X, Lau S K, Cheng L and Cui F 2017 A numerical investigation on the sound insulation of ventilation windows Appl. Acoust. 117 113–21

Park H K and Kim H 2015 Acoustic insulation performance of improved airtight windows Constr. Build. Mater. 93 542–50

Shimizu T, Kawai Y and Takahashi D 2015 Numerical analyses and experimental evaluation of reduction technique for sound transmission through gaps Appl. Acoust. 99 97–109

Puzankov A N, Shchegolev D L, Tishkov V A and Bobylev V N 2018 Extra edge damping as a way to improve sound insulation of window structures Int. J. Acoust. Vib.

Konstantinov A and Motina M 2018 Influence of Sashes Stiffness on PVC Windows Resistance to Wind Load IOP Conference Series: Materials Science and Engineering