Design Space for Graph Neural Networks

Jiaxuan You, Rex Ying, Jure Leskovec

Presenter: Jiaqing Xie, Ziheng Chi
1. Issues

- Lack of General GNN Design
- Lack of Evaluation on New Tasks
Issue 1: Lack of General GNN Design

Example: GraphSAGE

- GraphSAGE: mean / max / LSTM aggregation
- Change aggregation function to summation, no longer GraphSAGE
- Add skip-connection, no longer GraphSAGE
- However, adding summation and skip-connection could help learn some tasks better
Issue 2: Lack of Evaluation on New Tasks

- Evaluate GNN by introducing new tasks
- However new tasks may not resemble existing GNN benchmarks
- Unclear how to design a GNN for new coming tasks

Scenario 1 (Example):

Large Design Space
- GNN-Layers \{2, 4, 6, 8\}
- Aggregation \{mean, max, sum\}
- Layer Connectivity \{skip-cat, skip-sum\}
- Batch Size \{4 choices\}
- Learning Rate \{4 choices\}

\[4 \times 3 \times 2 \times 4 \times 4 = 384\] potential models

Exhaustive search to find a SOTA model is not time-efficient.
2. Motivations

- Design Space for GNN
- Task Space for GNN
Motivation 1: Design Space for GNN

Main Design Dimensions:
- Intra-layer Design
- Inter-layer Design
- Learning Configuration

315K possible Designs
* Intuition: A condensed search
Motivation 2: Task Space for GNN

It is difficult to tell whether GNN is transferable between tasks/datasets:
- Two tasks belong to node classification but result in different SOTA GNN Design

Task Similarity Metric could:
- Transfer GNN design to similar tasks
- Identify new tasks that are dissimilar to all other tasks

Main Components:
- Selection of anchor models
- Rank distance measurement of the performance of anchor models
Motivation 2: Task Space for GNN

1. Anchor Model: Goal is to find diverse GNN design
 - Sample D random GNN candidates from GNN Space: \(S_1, S_2, \ldots, S_D \).
 - Fix number of GNN tasks, record each GNN's average performance across tasks.
 - Ranked and sliced into M groups, model with median performance is chosen within each group.

Tasks	GNN Score (average)
Node	0.86
Edge	0.8
Graph	0.5
S_6	0.45

Example \(D = 110, M = 10 \)
Motivation 2: Task Space for GNN

2. Rank Distance Measurement

Kendall rank correlation coefficient between tasks

Task	Anchor Model	Similarity to Task A
Task A	M_1, M_2, M_3, M_4, M_5	1.0
Task B	M_1, M_3, M_2, M_4, M_5	0.8
Task C	M_5, M_1, M_4, M_3, M_2	-0.4

M = 12 is enough for comparison
T Tasks lead to a T*T similarity matrix

Only care about the ranking instead of the metric of each task.

A node level task might be highly related with a graph level task
Motivation 2: Task Space for GNN

Extended datasets: Synthetic data and Real-World data

Synthetic data: Embed graph statistics

Average Clustering Coefficient (8 bins)

Node Level Features:
□ Constant features
□ One-hot vectors
□ Node clustering coefficients
□ Node PageRank score

Node-level Labels:

- □ Node clustering coefficients
- □ Node PageRank score

Graph-level Labels:

- □ Average Path Length

Node features predict node labels or graph labels

Average Path Length (8 bins)

0.3	0.3375	0.6
1.8		
1.95		
......			
3.0			
3. Experiments

- Design Space Evaluations
- Task Space Evaluations
Evaluation 1: Design dimensions

● Setup

➢ Previously, total number of task-model pairs: 32 (tasks) × 314,928 (models) ≈ 10,000,000
➢ Condensed design space:

32 tasks	96 task-model pairs
Task 1	Task 1 – Model 1
	Task 1 – Model 2
	Task 1 – Model 3
	……
Task 32	Task 32 – Model 94
	Task 32 – Model 95
	Task 32 – Model 96

Task	BatchNorm	Dropout	Activation	……	Epochs
Task 1	True	0.3	ReLU	……	200
Task 1	False	0.3	ReLU	……	200

➢ Now, number of task-model pairs to test:

96 × (C_{BatchNorm} + C_{Dropout} + C_{Activation} + …… C_{Epochs}) ≈ 3000
Evaluation 1: Design dimensions

- Results

Experimental Results	Val. Accuracy	Design Choice Ranking
Group 1		
0.75	1	
0.54	2	
Group 2		
0.88	1 (a tie)	
0.86	1 (a tie)	
Group 96		
0.89	1	
0.36	2	

Ranking Analysis

- Average

- Distribution

False

Batch Normalization

True
Evaluation 1: Design dimensions

- Results
Evaluation 1: Design dimensions

- Condense the design space
 - Fixed design choices

Activation	BN	Dropout	Batch	LR	Optimizer	Epoch
PReLU	True	False	32	0.01	ADAM	400

 - Debatable design choices

Aggregation	MP layers	Pre-MP layers	Post-MP layers	Connectivity
MEAN, MAX, SUM	2, 4, 6, 8	1, 2	2, 3	SKIP-SUM, SKIP-CAT
3	4	2	2	2

- Condensed design space: $3 \times 4 \times 2 \times 2 \times 2 = 96 \ll 314,928$, which allows grid search.
Evaluation 2: Similarity Between 32 Tasks

Real-world graphs

- 6 node-level
- 6 graph-level
- 8 graph-level

Synthetic graphs

- 12 node-level

Proposed task similarity (computed from 12 models)

1

- Has rich node features.
- Prefers feature information propagation.

2

- Has rich structure-related labels.
- Prefers structural information processing.
Evaluation 3: Effectiveness of 12 Anchor Models

Notations:

- Each point: A pair of two tasks.
- x-value: Similarity calculated from 12 anchor models.
- y-value: Similarity calculated from 96 anchor models.
- Correlation value: 0.94
 - Higher \rightarrow 12 anchors are already representative enough.
Evaluation 4: Model Transferability

Notations:

- Each point: A pair of two tasks.
- x-value: Similarity of task A and task B.
- y-value: Performance ranking (among the condensed design space) after transferring the best model of task A to task B.
- Correlation value: 0.80
 - Higher \rightarrow Similar tasks have similar best models.
Evaluation 5: Application to A New Task

- Each point: One of the 32 tasks.
- \(x\)-value: Similarity between the task and the new task.
- \(y\)-value: Performance ranking after transferring the best model.

Table 1: Performance Comparison

Design	Task A: graph-scalefree-const-path	Task B: node-CoauthorPhysics	Target task: ogbg-molhiv
Best design in our design space	(1, 8, 3, skipcat, sum)	(1, 4, 2, skipcat, max)	(2, 6, 3, skipcat, add)
Best design's performance	0.865	0.968	0.792
Previously reported SOTA	N/A	0.930	0.771
Task Similarity with ogbg-molhiv	0.47	-0.61	1.0
Performance after transfer to ogbg-molhiv	**0.785**	0.736	N/A
Any questions?
Supplementary Slides
Motivation 1: Design Space for GNN

How 315K Comes from?

BatchNorm 2 choices
Dropout 3 choices
Activation 3 choices
Aggregation 3 choices
2 * 3 * 3 * 3 = 54

Connectivity 3 choices
Pre-process 3 choices
Message-Passing 4 choices
Post-Process 3 choices
3 * 3 * 4 * 3 = 108

Batch Size 3 choices
Learning Rate 3 choices
Optimizer 2 choices
Training Epochs 3 choices
3 * 3 * 2 * 3 = 54
So together 54 * 54 * 108 = 314928 ≈ 315K
Issue 3: Lack of Software Support on Exploration

Seeking for a Platform where it could perform

- Extensive exploration of design space in parallel
- Auto-generating analyses across seeds and experiments
- Unifying implementation for node, edge, and graph-level tasks
Register your modules and search for best hyper-parameters!
GraphGym: User Case (ID-GNN, You 2021)

- **Node classification**
- **Link prediction**
- **Graph classification**

Example input graphs:

- A
- B

Existing GNNs’ computational graphs:

- (root nodes are colored with identity)

ID-GNNs’ computational graphs:

- (root nodes are colored with identity)

For each node:

- A
- B

A B

Class labels

node with augmented identity

node without augmented identity

For each node:

- A
- B

A B

node with augmented identity

node without augmented identity