Neutrino and antineutrino spectral splits from collective effects in supernovae

Irene Tamborra1,2
1 Dipartimento Interateneo di Fisica “Michelangelo Merlin,”
Via Amendola 173, 70126 Bari, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Bari,
Via Orabona 4, 70126 Bari, Italy
E-mail: irene.tamborra@ba.infn.it

Abstract. In core-collapse supernovae, $\nu - \nu$ interactions affect appreciably the evolution of flavor. Collective effects are discussed in the case of supernova luminosities which are different for different flavors. The observable spectral split features of ν and $\bar{\nu}$ are highlighted. Detection of such effects could provide a handle on two unknown: the neutrino mass hierarchy and the mixing angle θ_{13}.

1. Introduction and supernova framework
Neutrino flavor states (ν_e, ν_μ, ν_τ) are related to the mass states (ν_1, ν_2, ν_3) by means of a unitary matrix that is a function of the mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$) and of a possible CP-violating phase δ. Although the squared mass differences ($\delta m^2 \ll \Delta m^2$) are precisely known, the sign of Δm^2 (i.e., the mass hierarchy) is unknown, as well as θ_{13}. Hints about these two unknowns might come from core-collapse supernova (SN) neutrinos.

In the SN matter, the $\nu_e - \nu_\mu, \nu_\tau$ interaction energy difference is described by the Mikheev-Smirnov-Wolfenstein (MSW) matter potential $\lambda(r) = \sqrt{2} G_F N_e(r)$ where $N_e(r)$ is the electron number density (see [1] for a review). Moreover, $\nu - \nu$ interactions induce collective flavor changes. The corresponding self-interaction potential is given by

$$\mu = \sqrt{2} G_F (N + \bar{N}) ,$$

as a function of the total effective density of neutrinos ($N = N_e + N_\mu + N_\tau$) and antineutrinos (\bar{N}) per unit volume. For sake of simplicity we focus on μ-induced collective effects. Since ν_μ and ν_τ behave similarly at typical SN energies, we call each of them as ν_x. We can reduce the full 3ν evolution to an effective 2ν one, namely: $3\nu = (\nu_e, \nu_x) \oplus (\nu_\mu, \nu_\tau)$, one ν_x acts as “spectator.” The relevant 2ν subspace (ν_e, ν_x) is governed by ($\pm \Delta m^2, \theta_{13}$)[2]. We choose as default values: $\sin^2 \theta_{13} = 10^{-6}$ and $\Delta m^2 = 2 \times 10^{-3}$ eV2.

The total energy luminosity, L_{tot}, is distributed over six ($3\nu + 3\bar{\nu}$) species. One spectator neutrino family ν_x only shares a fraction of luminosity, but does not take part to oscillations. The fractional luminosities ($l_\alpha = L_\alpha/L_{tot}$ for $\alpha = e, \bar{\nu}, x$, and with $l_x \equiv l_\bar{\nu}$) obey the constraint:

$$1 = l_e + l_\nu + 4l_x .$$

© 2010 IOP Publishing Ltd
Figure 1. Equipartition case in inverted hierarchy. Left upper panel: flux of ν_e (black, solid) and of ν_x (red, solid) at the end of collective effects; dotted lines indicate initial spectra. Left lower panel: electron flavor survival probability P_{ee}. Right upper panel: as before, but for $\bar{\nu}$. Vertical green lines mark the crossing energies where the ν_e (or $\bar{\nu}_e$) and ν_x fluxes are equal.

Our purpose is to go beyond the usual assumption of “energy equipartition” among flavors, which amounts to take $l_e = l_{\bar{\nu}} = l_x$.

We assume a total luminosity $L_{\text{tot}} = 10^{53}$ erg/s, and average energies as

$$\langle E_e \rangle = 10 \text{ MeV}, \quad \langle E_{\bar{\nu}} \rangle = 12 \text{ MeV}, \quad \langle E_x \rangle = 15 \text{ MeV}. \quad (3)$$

The densities for unit of volume and energy are then [3]:

$$n_\alpha(r, E) = \frac{L_{\text{tot}}}{4\pi R^2_\nu} \frac{\Phi_\alpha(E)}{\langle E_\alpha \rangle} g(r), \quad (4)$$

where $g(r)$ is a damping factor (decreasing as $\sim 1/r^4$), $\Phi_\alpha(E)$ are thermal ν spectra, and $R_\nu = 10 \text{ km}$ is the ν-sphere radius.

In Fig. 1, oscillated spectra for the equipartition case in inverted hierarchy $(-\Delta m^2)$ are shown [2, 4, 5, 6]. In this case, above a critical energy neutrinos swap their flavors, and similarly for $\bar{\nu}$ (but at lower energy).

2. Ternary Luminosity Diagram

The constraint in Eq. 2 can be represented in terms of a ternary diagram with fractional luminosities on each side. Each internal point of the triangle corresponds to different initial luminosity distributions. The equipartition case, described in Fig. 1, corresponds to $(l_e, l_{\bar{\nu}}, 4l_x) = (1/6, 1/6, 4/6)$. Variations from this case induce dramatic spectral changes [7].

Fig. 2 shows the qualitative spectral split patterns emerging from our numerical exploration of the ternary luminosity diagram, in the case of inverted hierarchy $[7]$. We use different markers for different split patterns, as indicated in the legend of Fig. 2. In the lower half of the diagram, corresponding to relatively low ν_x luminosity $(4l_x < 0.5)$, we always find one ν and one $\bar{\nu}$ split. More precisely, the blue triangles on the right correspond to one dominant ν split at high energy (HE) plus a minor $\bar{\nu}$ split at low energy (LE), qualitatively similar to the equipartition case shown in Fig. 1; for the yellow triangles on the left, the situation is reversed for ν and $\bar{\nu}$. As the ν_x luminosity increases, some 1ν (HE) + $1\bar{\nu}$ (LE) split cases survive (blue triangles), including the equipartition point. However, these cases are now flanked, on the left, by a couple of points where a double ν split occurs (blue squares) and, on the right, by two points with a double $\bar{\nu}$ split (yellow squares) plus two points with a double split for both ν and $\bar{\nu}$ (red circles). One of these two last cases is shown in Fig 3.
Figure 2. Spectral split patterns in inverted hierarchy. Blue (yellow) triangles: one HE ν split and one LE $\bar{\nu}$ split (one LE ν split and one HE $\bar{\nu}$ split). Blue (yellow) squares: two ν splits and no $\bar{\nu}$ split (two $\bar{\nu}$ splits and no ν split). Red circles: two splits for both ν and $\bar{\nu}$.

In conclusion, the luminosity equipartition scenario (1ν HE $+ 1\bar{\nu}$ LE splits) is somewhat “special.” In many other cases, the spectral split pattern may be significantly different [7, 8]. This must be taken into account in the analysis of prospective SN signals. For each different luminosity distribution if a double or a single split should take place, could be understood in terms of the initial conditions of the global vectors.

3. Conclusions

In a core-collapse supernova the ν density is high, and $\nu - \nu$ interactions are not negligible. They induce collective flavor conversion, typically leading to spectral splits/swaps. We have analyzed different luminosity distribution scenarios, embedding the equipartition scenario as a particular case. We find that several split patterns emerge in the luminosity diagram.

Acknowledgments

This work is supported in part by the Italian “Istituto Nazionale di Fisica Nucleare” (INFN) and “Ministero dell’Istruzione, dell’Università e della Ricerca” (MIUR) through the “Astroparticle Physics” research project. The results presented here have been obtained in Ref. [7] in collaboration with G.L. Fogli, E. Lisi, A. Marrone. I.T. is grateful to TAUP 2009 organizers for kind hospitality.

References

[1] T. K. Kuo, J. Pantaleone, *Rev. Mod. Phys.* 61, 937 (1989).
[2] G. L. Fogli, E. Lisi, A. Marrone and I. Tamborra, *JCAP* 0904, 030 (2009).
[3] H. Duan, G. M. Fuller, J. Carlson and Y. Z. Qian, *Phys. Rev.* D 74, 105014 (2006).
[4] G. L. Fogli, E. Lisi, A. Marrone, A. Mirizzi and I. Tamborra, *Phys. Rev.* D 78, 097301 (2008).
[5] S. Hannestad, G. G. Fuller, J. Carlson and Y. Y. Y. Wong, *Phys. Rev.* D 74, 105010 (2006) [Erratum-ibid. D 76, 029901 (2007)].
[6] G. G. Raffelt and A. Y. Smirnov, *Phys. Rev.* D 76, 125008 (2007).
[7] G. Fogli, E. Lisi, A. Marrone and I. Tamborra, arXiv:0907.5115 [hep-ph], to appear in *JCAP* (2009).
[8] B. Dasgupta, A. Dighe, G. G. Raffelt and A. Y. Smirnov, *Phys. Rev. Lett.* 103 (2009) 051105.