LOOP HOMOLOGY OF QUATERNIONIC PROJECTIVE SPACES

MARTIN ČADEK, ZDENĚK MORAVEC

Abstract. We determine the Batalin-Vilkovisky algebra structure of the integral loop homology of quaternionic projective spaces and octonionic projective plane.

1. Introduction

Let M be a closed oriented manifold of dimension d and let $LM = \text{Map}(S^1, M)$ denote its free loop space. By loop homology we understand the homology groups of LM with the degree shifted by $-d$

$$H_*(LM) = H_{*+d}(LM).$$

In [2] it was shown that this graded group can be equipped with a product and an operator Δ giving $\mathbb{H}_*(LM)$ the structure of a Batalin-Vilkovisky algebra. The methods computing the product on concrete manifolds are based either on the modified Serre spectral sequence derived in [4] or on the isomorphism of the loop homology of M with the Hochschild cohomology $HH^*(C^*(M); C^*(M))$ of the cochain complex as rings, [3]. There is also a way of defining a BV-structure on $HH^*(C^*(M); C^*(M))$, [11].

The BV-algebra structures on the loop homology and the Hochschild cohomology are isomorphic over the fields of characteristic zero ([5]) but not over other coefficients in general. Hence the computation of the BV operator is more subtle. So far the BV-algebra structure of the loop homology with integral coefficients has been determined for the Lie groups [7], for the spheres [9], for the complex Stiefel manifolds [10] and for the complex projective spaces [8]. Over rationals it has been described for the quaternionic projective spaces [13] and the surfaces [12].

The aim of this note is to describe the BV-algebra structure of the integral loop homology of the quaternionic projective spaces $\mathbb{H}P^n$ and the octonionic projective plane $\mathbb{O}P^2$.

Theorem 1.1. The string topology BV-algebra structure of $\mathbb{H}P^n$ is given by

$$\mathbb{H}_*(L\mathbb{H}P^n; \mathbb{Z}) \cong \mathbb{Z}[a, b, x] / \langle a^{n+1}, b^2, a^n \cdot b, (n+1)a^n \cdot x \rangle$$

with $a \in \mathbb{H}_{-4}(L\mathbb{H}P^n; \mathbb{Z})$, $b \in \mathbb{H}_{-1}(L\mathbb{H}P^n; \mathbb{Z})$ and $x \in \mathbb{H}_{4n+2}(L\mathbb{H}P^n)$, and

$$\Delta(a^px^q) = 0, \quad \Delta(a^p bx^q) = [(n-p) + q(n+1)]a^p x^q$$

Date: April 9, 2010.

2000 Mathematics Subject Classification. 55P35; 55R20.

Key words and phrases. Quaternionic projective space, octonionic projective plane, free loop space, integral loop homology, Batalin-Vilkovisky algebra.

This work was supported by the grant MSM0021622409 of the Czech Ministry of Education and the grant 0964/2009 of Masaryk University.

1
for all $0 \leq p \leq n$, $0 \leq q$.

Let us note that for $n = 1$ the quaternionic projective space is S^4 and the statement agrees with the result obtain by L. Menichi in [9] for even dimensional spheres.

Theorem 1.2. There are elements $a \in \mathbb{H}_{-8}(L\Omega P^2; \mathbb{Z})$, $b \in \mathbb{H}_{-1}(L\Omega P^2; \mathbb{Z})$ and $x \in \mathbb{H}_{22}(L\Omega P^2)$ such that the string topology BV-algebra structure of ΩP^2 is given by

$$
\mathbb{H}_*(L\Omega P^2; \mathbb{Z}) \cong \frac{\mathbb{Z}[a,b,x]}{(a^3, b^2, a^{2}\cdot b, 3a^n \cdot x)}
$$

and

$$
\Delta(a^p x^q) = 0, \quad \Delta(a^p b x^q) = (2 + 3q - p)a^p x^q
$$

for all $0 \leq p \leq 2$, $0 \leq q$.

The statements of Theorem 1.1 concerning the ring structure are consequences of the computation of $HH^*(\mathbb{Z}[y]/y^{n+1}; \mathbb{Z}[y]/y^{n+1})$ in [13] and the ring isomorphism between the loop homology and the Hochschild cohomology. Nevertheless, we provide an alternative proof using the Serre spectral sequence for the fibrations $\Omega M \to LM \to M$ converging to the ring $\mathbb{H}_*(LM; \mathbb{Z})$. These computations will be carried out in the next section.

In the last section we will show what the BV operator Δ looks like. We use the knowledge of Δ on S^4 and S^8 and the inclusions $S^4 = \mathbb{H}P^1 \hookrightarrow \mathbb{H}P^n$ and $S^8 \hookrightarrow \Omega P^2$. The computation will be completed by comparing Δ in integral homology with BV-operator Δ in rational cohomology computed by Yang in [13]. The results show that for the quaternionic projective spaces and the octonionic projective plane the BV-algebra structures on the loop homology and the Hochschild homology over integers are isomorphic (in contrast to the complex projective spaces, see [8]).

2. **The ring structure of loop homology**

According to [4] the spectral sequence for the fibration $\Omega M \to LM \to M$ with $E_2^{p,q} = H^{-p}(M; H_q(\Omega M; \mathbb{Z}))$ and the product coming from the Pontryagin product in $H_*(\Omega M; \mathbb{Z})$ and the cup product in $H^*(M; H_*(\Omega M; \mathbb{Z})$ converges to $\mathbb{H}_{p+q}(LM; \mathbb{Z})$ as an algebra. To apply this spectral sequence to $M = \mathbb{H}P^n$ we have to determine the Pontryagin ring $H_*(\Omega \mathbb{H}P^n; \mathbb{Z})$. We will consider $n \geq 2$ since for $\mathbb{H}P^1 = S^4$ the statement of Theorem 1.1 has been proved in [9].

Lemma 2.1. For $n \geq 2$ the Pontryagin ring structure of $H_*(\Omega \mathbb{H}P^n; \mathbb{Z})$ is given by

$$
H_*(\Omega \mathbb{H}P^n; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t]
$$

where the degrees of x and t are $4n + 2$ and 3, respectively.

Proof. The Hopf fibration $S^3 \to S^{4n+3} \to \mathbb{H}P^n$ gives us the fibration

$$
\Omega S^{4n+3} \xrightarrow{i} \Omega \mathbb{H}P^n \xrightarrow{p} S^3
$$

Since $p_* : \pi_k(\Omega \mathbb{H}P^n) \to \pi_k(S^3)$ is an isomorphism for $0 \leq k \leq 6$, there is up to homotopy a unique map $i : S^3 \to \Omega \mathbb{H}P^n$ such that $p \circ i$ is homotopic to the identity.
on S^3. Therefore the long exact sequence of homotopy groups for this fibration passes to short exact sequences which split:

$$0 \longrightarrow \pi_* (\Omega S^{4n+3}) \xrightarrow{j_*} \pi_* (\Omega \mathbb{H} P^n) \xrightarrow{p_*} \pi_* (S^3) \longrightarrow 0$$

Denote by μ the Pontryagin product on $\Omega \mathbb{H} P^n$. The map $h = \mu \circ (j, i) : \Omega S^{4n+2} \times S^3 \rightarrow \Omega \mathbb{H} P^n$ is a homotopy equivalence since it induces an isomorphism of homotopy groups. So we obtain an isomorphism of homology groups

$$H_*(\Omega \mathbb{H} P^n; \mathbb{Z}) \cong H_*(\Omega S^{4n+3}; \mathbb{Z}) \otimes H_*(S^3; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t].$$

The Pontryagin ring structure of $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ can be recovered using the duality between the Hopf algebras $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ and $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$. The map h induces an algebra isomorphism $h^* : H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \rightarrow H^*(\Omega S^{4n+3}; \mathbb{Z}) \otimes H^*(S^3; \mathbb{Z})$. We know that $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$ is a commutative associative Hopf algebra with μ^* as a coproduct. As an algebra $H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \cong \Gamma_\infty[\alpha_1, \alpha_2, \ldots] \otimes \Lambda[\beta]$, where $\Gamma_\infty[\alpha_1, \alpha_2, \ldots]$ is a divided polynomial algebra with generators α_i and relations $\alpha_i \alpha_j = \binom{i+j}{i} \alpha_{i+j}$. Since $j^* : H^*(\Omega \mathbb{H} P^n; \mathbb{Z}) \rightarrow H^*(\Omega S^{4n+3}; \mathbb{Z})$ is a homomorphism of Hopf algebras and the Hopf algebra structure of $H^*(\Omega S^{4n+3}; \mathbb{Z})$ is well known, the coproduct on $H_*(\Omega \mathbb{H} P^n; \mathbb{Z})$ is given by

$$\mu^*(\beta) = \beta \otimes 1 + 1 \otimes \beta, \quad \mu^*(\alpha_k) = \sum_{k=i+j} \alpha_i \otimes \alpha_j,$$

$$\mu^*(\alpha_k \beta) = \sum_{k=i+j} \alpha_i \beta \otimes \alpha_j + \sum_{k=i+j} \alpha_i \otimes \beta \alpha_j.$$

By duality this coproduct completely determines the Pontryagin product in $H^*(\Omega \mathbb{H} P^n; \mathbb{Z})$. Let $t \in H_*(\Omega \mathbb{H} P^n)$ be a dual element to β, x_k be a dual to α_k and z_k be a dual to $\alpha_k \beta$. Then

$$x_{i+j} = x_i x_j, \quad z_{i+j} = z_i x_j.$$

If we put $x = x_1$, we obtain $x_i = x^i$ and $z_i = x^i t$ for all $i \geq 0$. This completes the proof. □

Now we return to the spectral sequence converging to the algebra $\mathbb{H}_*(L \mathbb{H} P^n; \mathbb{Z})$. Its E^2 term is

$$E^2_{p,q} = H^p(\mathbb{H} P^n, H_q(\Omega \mathbb{H} P^n; \mathbb{Z})) \cong H^p(\mathbb{H} P^n; \mathbb{Z}) \otimes H_q(\Omega \mathbb{H} P^n; \mathbb{Z}) \cong \frac{\mathbb{Z}[a] \otimes \mathbb{Z}[x, t]}{(a^n+1, t^2)}.$$
where \(a \in H^4(M; \mathbb{Z}) \) and \(x, t \) as in Lemma 2.1. The stages \(E^4 \) and \(E^{4n} \) of the spectral sequence with possible nonzero differentials are shown in the following diagram:

\[
E^4_{p,q}, E^{4n}_{p,q} \quad
\]

Since \(E^\infty_p \Rightarrow \mathbb{H}^p + q_\mathbb{H}(\mathbb{H}P^n; \mathbb{Z}) = H_p + 4q_\mathbb{H}(\mathbb{H}P^n; \mathbb{Z}) \) we can determine the differentials from the knowledge of the additive structure of \(H_*(\mathbb{H}P^n; \mathbb{Z}) \).

To compute it we use the result of [1] on the existence of a stable decomposition

\[
(L\mathbb{H}P^n)_+ \simeq \mathbb{H}P^n_+ \vee \bigvee_{l \geq 1} S(\eta)^{l \xi \oplus (l-1)\zeta}
\]

where \(\eta \) is tangent bundle of the quaternionic projective space \(\mathbb{H}P^n \), \(\xi \) is the 3-dimensional Lie algebra bundle over \(\mathbb{H}P^n \) and \(\zeta \) is the fibrewise tangent bundle of \(S(\eta) \) and \(S(\eta)^\omega \) stands for the Thom space of the vector bundle \(\omega \) over \(S(\eta) \). Note that \(\dim S(\eta) = 8n - 1 \) and \(\dim \zeta = 4n - 1 \). Using the Gysin long exact sequence for the fibration \(S^{4n-1} \to S(\eta) \to \mathbb{H}P^n \) and the fact that the Euler characteristic class of \(\eta \) is an \((n+1)\)-multiple of the generator \(a^n \in H_{4n}(\mathbb{H}P^n; \mathbb{Z}) \) we get

\[
H_i S(\eta) = \begin{cases}
\mathbb{Z} & i = 0, 4, \ldots, 4n - 4, 4n + 3, 4n + 7, \ldots, 8n - 1, \\
\mathbb{Z}_{n+1} & i = 4n - 1, \\
0 & \text{otherwise}.
\end{cases}
\]

The dimension of the vector bundle \(l \xi \oplus (l-1)\zeta \) is \(4n(l-1) + 2l + 1 \), so due to the Thom isomorphism

\[
H_*(L\mathbb{H}P^n; \mathbb{Z}) \cong H_*(\mathbb{H}P^n; \mathbb{Z}) \oplus \bigoplus_{l \geq 1} H_{*+4n(l-1)+2l+1}(S(\eta); \mathbb{Z}).
\]
Since $\mathbb{H}_s(L\mathbb{H}P^n; \mathbb{Z}) \cong E_{s,s}^\infty$, the E^∞ stage of the spectral sequence is the following:

\[
\begin{array}{cccccccccccc}
 & & & & & & & & & & & & \downarrow q \\
 & \vdots \\
0 & \cdots \\
\downarrow p & \vdots \\
0 & \cdots \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
- & - & - & - & Z & - & - & - & Z & - & - & 0 && 8n + 7 \\
- & Z_{n+1} & - & - & - & Z & - & - & Z & - & - & Z && 8n + 4 \\
- & - & Z & - & - & - & Z & - & - & Z & - & - & Z && 4n + 5 \\
- & Z_{n+1} & - & - & - & Z & - & - & Z & - & - & Z && 4n + 2 \\
- & - & Z & - & - & - & Z & - & - & Z & - & - & Z && 3 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & \cdots \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
- & - & - & - & Z & - & - & - & Z & - & - & 0 & 3 \\
- & Z_{n+1} & - & - & - & Z & - & - & Z & - & - & Z & 0 \\
\end{array}
\]

It forces the differentials d^4 in E^4 to be zero and the differentials $d^{4n} : E_{0,(4n+2)i+3}^4 \to E_{4n,(4n+2)(i+1)}^4$ to be the multiplication by $n + 1$.

So $E_{s,s}^\infty$ as a ring is generated by the group generators $a \in E_{-4,0}^\infty \cong H^4(\mathbb{H}P^n; \mathbb{Z})$, $x \in E_{0,4n+2}^\infty \cong H_{4n+2}(\Omega\mathbb{H}P^n; \mathbb{Z})$ and $b \in E_{-4,3}^\infty \cong H^4(\mathbb{H}P^n; \mathbb{Z}) \otimes H_3(\Omega\mathbb{H}P^n; \mathbb{Z})$ which satisfy relations $a^{n+1} = 0$, $(n+1)x \otimes a^n = 0$, $b \otimes a^n = 0$, $b^2 = 0$. We conclude that as rings

\[
\mathbb{H}_s(L\mathbb{H}P^n; \mathbb{Z}) \cong E_{s,s}^\infty \cong \mathbb{Z}[a, b, x]/\langle a^{n+1}, b^2, a^n b, (n+1)a^n x \rangle.
\]

In the case of the octonionic projective plane the derivation of the ring structure of the loop homology follows the same lines.

Lemma 2.2. The Pontryagin ring structure of $H_*(\Omega\mathbb{O}P^2; \mathbb{Z})$ is given by

\[
H_*(\Omega\mathbb{O}P^2; \mathbb{Z}) \cong \mathbb{Z}[x] \otimes \Lambda[t]
\]

where $|x| = 22$ and $|t| = 7$.

Proof. Using the fact that

\[
H^*(\Omega\mathbb{O}P^2) \cong \Gamma[\alpha_1, \alpha_2, \ldots] \otimes \Lambda[\beta]
\]

where $|\alpha_i| = 22i$ and $|\beta| = 7$, proved in [6], we can proceed in the same way as in the proof of Lemma 2.1. \[\square\]
The additive structure of \(H_*(L\mathcal{O}P^2; \mathbb{Z}) \) was found in [1] using a stable decomposition of \(L\mathcal{O}P^2 \) derived there:

\[
H_i(L\mathcal{O}P^2) = \begin{cases}
\mathbb{Z} & i = 0, 8, 16, 22m - 15, 22m - 7, 22m + 8, 22m + 16, \\
\mathbb{Z}_3 & i = 22m, \\
0 & \text{otherwise}.
\end{cases}
\]

It yields that in the spectral sequence starting with

\[
E^2_{p,q} = H^p(\mathcal{O}P^2; H_q(\Omega\mathcal{O}P^2; \mathbb{Z})) \cong H^p(\mathcal{O}P^2; \mathbb{Z}) \otimes H_q(\Omega\mathcal{O}P^2; \mathbb{Z}) \cong \mathbb{Z}[a] \otimes \mathbb{Z}[x, b]
\]

all the differentials are zero with the exception of the differentials \(d^{16} : E^{16}_{0,22m-15} \rightarrow E^{16}_{1,22m} \) which act as the multiplication by \(3 \). The group generators \(a \in E^{\infty}_{-8,0} \cong H^*(\mathcal{O}P^2; \mathbb{Z}), \ x \in E^{\infty}_{0,22} \cong H_{22}(\Omega\mathcal{O}P^2; \mathbb{Z}) \) and \(b \in E^{\infty}_{8,7} \cong H^8(\mathbb{H}\mathcal{P}^n; \mathbb{Z}) \otimes H_7(\Omega\mathcal{O}P^2; \mathbb{Z}) \), generate \(E^{\infty}_{*,*} \cong \mathbb{H}_*(L\mathcal{O}P^2; \mathbb{Z}) \) as a ring satisfying relations \(a^3 = 0, \ b^2 = 0, \ 3ax = 0 \) and \(a^2b = 0 \).

3. The BV Operator

The BV operator \(\Delta : \mathbb{H}_*(LM) \rightarrow \mathbb{H}_{*+1}(LM) \) and its unshifted version \(\Delta' : H_*(LM) \rightarrow H_{*+1}(LM) \) come from the canonical action of \(S^1 \) on \(LM \). So any map \(f : N \rightarrow M \) between manifolds induces a homomorphism \(H_*(LN) \rightarrow H_*(LM) \) which commutes with \(\Delta' \). To determine the BV operator on \(\mathbb{H}_*(L\mathbb{H}\mathcal{P}^n; \mathbb{Z}) \) and \(\mathbb{H}_*(L\mathcal{O}P^2; \mathbb{Z}) \) we use this fact for the inclusions \(S^1 \hookrightarrow \mathbb{H}\mathcal{P}^n \) and \(S^8 \hookrightarrow \mathcal{O}P^2 \) together with the knowledge of the BV operator on \(\mathbb{H}_*(S^n; \mathbb{Z}) \), see [9].

We start with the quaternionic projective space. First, \(\Delta(a^p x^q) = 0 \) because \(\mathbb{H}_{[a^p x^q]+1}(L\mathbb{H}\mathcal{P}^n; \mathbb{Z}) = 0 \). Since \(\mathbb{H}_{[a^p b]+1}(L\mathbb{H}\mathcal{P}^n; \mathbb{Z}) \cong \mathbb{Z} \) is generated by \(a^p b \), there is an integer \(\nu_p \) such that \(\Delta(a^p b) = \nu_p a^p b \). Due to the relation

\[
\Delta(xyz) = \Delta(x)yz + (-1)^{|x|}\Delta(y)z + (-1)^{|y|}y\Delta(z) - \Delta(x)y - (-1)^{|y|}y\Delta(x)z - (-1)^{|x|+|y|}xy\Delta(z)
\]

we obtain

\[
\Delta(a^pb) = \Delta(a^{p-1}ab) = a^{p-1}\Delta(ab) + a\Delta(a^{p-1}b) - a^p\Delta(b).
\]

It yields the equation \(\nu_p = \nu_1 - \nu_0 + \nu_{p-1} \), which can be rewritten as

\[
\nu_p = p(\nu_1 - \nu_0) + \nu_0.
\]

The relation \(a^nb = 0 \) implies that \(\nu_n = 0 \). Consequently, for \(p = n \) the equation above gives \(n\nu_1 = (n-1)\nu_0 \). Hence for \(n \geq 2 \) the only possible integer solutions of this equation are

\[
\nu_1 = (n-1)\lambda_n, \quad \nu_0 = n\lambda_n,
\]

where \(\lambda_n \) is an integer. Consequently, we obtain \(\nu_p = (n-p)\lambda_n \).

For \(n = 1 \) the quaternionic projective space is \(S^4 \). According to [9] the generators of \(\mathbb{H}_*(L\mathbb{H}\mathcal{P}^1; \mathbb{Z}) \) as an algebra are \(a_1, b_1 \) and \(v_1 \) in degrees \(-4, -1 \) and \(6 \), respectively, and \(\Delta(b_1) = 1 \).
The standard inclusion $i: S^4 = \mathbb{H}P^1 \hookrightarrow \mathbb{H}P^n$ induces the commutative diagram of fibrations

\[
\begin{array}{ccc}
\Omega \mathbb{H}P^1 & \longrightarrow & \Omega \mathbb{H}P^n \\
\downarrow & & \downarrow \\
L \mathbb{H}P^1 & \longrightarrow & L \mathbb{H}P^n \\
\downarrow & & \downarrow \\
\mathbb{H}P^1 & \longrightarrow & \mathbb{H}P^n
\end{array}
\]

The inclusion i induces an isomorphism $H_4(\mathbb{H}P^1; \mathbb{Z}) \cong H_4(\mathbb{H}P^n; \mathbb{Z})$ and the inclusion $\Omega \mathbb{H}P^1 \hookrightarrow \Omega \mathbb{H}P^n$ yields an isomorphism $H_3(\Omega \mathbb{H}P^1; \mathbb{Z}) \cong H_3(\Omega \mathbb{H}P^n; \mathbb{Z})$.

The commutative diagram above gives us a homomorphism between the Serre spectral sequences of the corresponding fibrations. (Here we consider the spectral sequence of the inclusion $\mathbb{H}P^1 \hookrightarrow \mathbb{H}P^n$ yielding an isomorphism $H_4(\mathbb{H}P^1; \mathbb{Z}) \cong H_4(\mathbb{H}P^n; \mathbb{Z})$.)

Choose $b \in \mathbb{H}_1(L \mathbb{H}P^n; \mathbb{Z})$ and $a \in \mathbb{H}_2(\mathbb{H}P^n; \mathbb{Z})$ so that a^{n-1} is the image of 1 and $a^{n-1}b$ is the image of $b_1 \in \mathbb{H}_1(L \mathbb{H}P^n; \mathbb{Z})$ under the above isomorphism. Since these isomorphisms commute with Δ, we obtain $\Delta(a^{n-1}b) = a^{n-1}$. Consequently, $\lambda_n = 1$.

Analogously we get $\Delta(bx^q) = \rho_q x^q$ for an integer ρ_q and derive that

$$\Delta(a^p bx^q) = \Delta(a^p b)x^q + a^p \Delta(bx^q) - a^p x^q \Delta(b) = (n-p) + q(p_1 - n) |a^p x^q|.$$

In [13] T. Yang computed the BV-algebra structure of the Hochshild cohomology of truncated polynomials. Using Theorem 1 from [5] on the existence of a BV-algebra isomorphism between the loop homology $\mathbb{H}_*(LM; F)$ of a manifold and the Hochschild cohomology $HH^*(C^*(M); C^*(M))$ of the singular cochain complex over fields of characteristic zero, he was able to calculate the BV-algebra structure of $\mathbb{H}_*(L \mathbb{H}P^n; \mathbb{Q})$. This is given by

$$\mathbb{H}_*(L \mathbb{H}P^n; \mathbb{Q}) = \mathbb{Q}[\alpha, \beta, \chi]/(\alpha^{n+1}, \beta^2, \alpha^n \beta, \alpha^n \chi),$$

where $|\alpha| = -4$, $|\beta| = -1$, $|\chi| = 4n + 2$, and by

$$\Delta(a^p \chi^q) = 0, \quad \Delta(a^p \beta \chi^q) = [(n-p) + q(n+1)]a^p \chi^q.$$

Consider the homomorphism $r_*: \mathbb{H}_*(L \mathbb{H}P^n; \mathbb{Z}) \rightarrow \mathbb{H}_*(L \mathbb{H}P^n; \mathbb{Q})$ induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Let

$$r_*(a) = k \alpha, \quad r_*(b) = l \beta, \quad r_*(x) = m \chi,$$

where, $k, l, m \in \mathbb{Q} - \{0\}$. Since r_* is a homomorphism of BV-algebras, we obtain

$$[(n-p) + q(p_1 - n)]k^p m^q a^p \chi^q = r_*(\Delta(a^p bx^q)) = r_*(\Delta(r_*(a^p bx^q))) = l[(n-p) + q(n+1)]k^p m^q a^p \chi^q.$$
Putting \(q = 0 \) we get \(l = 1 \). Then the choice \(p = 0, q = 1 \) yields \(\rho_1 = 2n + 1 \) which concludes our computation.

To compute the BV operator in \(\mathbb{H}_*(L\mathbb{O} P^2; \mathbb{Z}) \) we can follow the same procedure step by step replacing the inclusion \(S^4 \hookrightarrow \mathbb{H}P^n \) by the inclusion \(S^8 \hookrightarrow \mathbb{O}P^2 \).

References

[1] M.B. Böckstedt, I.M. Ottosen, The suspended free loop space of a symmetric space, arXiv:math.AT/0511086 (2005).
[2] M. Chas, D. Sullivan, String topology, arXiv:math.GT/9911159v1.
[3] R.L. Cohen, J.D.S. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002), 773-798.
[4] R.L. Cohen, J.D.S. Jones, J. Yan, The loop homology algebra of sphere and projective spaces, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 77–92, Progr. Math. 215, Birkhäuser, Basel, 2004.
[5] Y. Félix, J. Thomas, Rational BV-algebra in string topology, Bull. Soc. Math. France 136 (2008), no. 2, 311–327.
[6] E. Halpern, The cohomology algebra of certain loop spaces, Proc. Amer. Math. Soc. 9 (1958), 808-817.
[7] R.A. Hepworth, String topology for Lie groups, arXiv:math.AT/0905.1199v1.
[8] R.A. Hepworth, String topology for complex projective spaces, arXiv:math.AT/0908.1013v1.
[9] L. Menichi, String topology for spheres, Comment. Math. Helv. 84 (2009), 135-157.
[10] H. Tamanoi, Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds, Int. Math. Res. Not.23 (2006), Art. ID 97193, 23 pp.
[11] T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier (Grenoble) 58 (2008), 2351–2379.
[12] D. Vaintrob, The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces, arXiv:math.AT/0702.2850.
[13] T. Yang, A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials, arXiv:math.AT/0707.4213.