An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease

Kelly Lambert 1*, Judy Mullan 2,3 and Kylie Mansfield 3

Abstract

Background: Dietary modification is an important component of the management of end stage kidney disease (ESKD). The diet for ESKD involves modifying energy and protein intake, and altering sodium, phosphate, potassium and fluid intake. There have been no comprehensive reviews to date on this topic. The aims of this integrative review were to (i) describe the methods used to measure dietary adherence (ii) determine the rate of dietary adherence and (iii) describe factors associated with dietary adherence in ESKD.

Methods: The Web of Science and Scopus databases were searched using the search terms ‘adherence’ and ‘end stage kidney disease’. Of the 787 potentially eligible papers retrieved, 60 papers of 24,743 patients were included in this review. Of these papers, 44 reported the rate of dietary adherence and 44 papers described factors associated with adherence.

Results: Most of the evidence regarding dietary adherence is derived from studies of hemodialysis patients (72% of patients). The most common method of measuring dietary adherence in ESKD was subjective techniques (e.g. food diaries or adherence questionnaires). This was followed by indirect methods (e.g. serum potassium, phosphate or interdialytic weight gain). The weighted mean adherence rate to ESKD dietary recommendations was 31.5% and 68.5% for fluid recommendations. Adherence to protein, sodium, phosphate, and potassium recommendations were highly variable due to differences in measurement methods used, and were often derived from a limited evidence base. Socioeconomic status, age, social support and self-efficacy were associated with dietary adherence. However, factors such as taste, the impact of the diet on social eating occasions; and dietetic staffing also appear to play a role in dietary adherence.

Conclusion: Dietary adherence rates in people with ESKD are suboptimal. Further research is required on dietary adherence in patients with ESKD from different social, educational, economic and ethnic groups. This research may identify other factors which may impact upon adherence, and could be used to inform the design of future strategies to improve dietary adherence. Future research that reports not just the rate of adherence to individual components of the nutrient prescription but also the overall quality of the diet would be useful.

Keywords: Dietary adherence, Self-management, End stage kidney disease, Adherence, Compliance, Chronic kidney disease, Dialysis; fluid restriction, Potassium, Phosphate

* Correspondence: klambert@uow.edu.au
1Department of Clinical Nutrition, Wollongong Hospital, Illawarra Shoalhaven Local Health District, Level 5, Block C, Crown Street, Wollongong, NSW 2500, Australia
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source; provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
The prevalence of Chronic Kidney Disease (CKD) is increasing rapidly [1]. Driven by an aging population and increasing rates of obesity, diabetes and hypertension, approximately 1 in 8 adults globally are known to have CKD [2]; and it is estimated that about 2% of these individuals with CKD will progress to End Stage Kidney Disease (ESKD) [3]. An appropriate diet can slow progression of CKD to ESKD [4]; ameliorate the complications of CKD and ESKD [5–8], and increase survival [9, 10], making dietary modification a critical part of the management of CKD and ESKD [11].

There is no standard renal diet. Instead, a progressive accumulation of dietary restrictions occurs as patients’ progress from CKD to ESKD. Typically, people with early CKD need to modify their intake of protein and sodium. In contrast, people with ESKD need to modify their intake of kilojoules; their fluid and protein intake; reduce their intake of minerals, such as sodium, potassium and phosphate; and potentially increase their intake of vitamins and minerals, such as vitamin C, B, folate, B12 and zinc [12]. Because of the large number of dietary modifications required, the diet for people with ESKD is considered by dietitians to be one of the most complex and restrictive therapeutic diets [13, 14]. Adults with ESKD also perceive diet to be complicated and contradictory to typical healthy eating advice [15, 16]. For example, fruits, vegetables and dairy products are often restricted in ESKD due to their potassium or phosphate content.

In addition to these challenges, the diets for people with CKD and ESKD (hereafter referred to as the renal diet for simplicity) also changes when patients commence or change the type of renal replacement therapy. For example, people receiving hemodialysis are routinely required to restrict dietary potassium intake, whereas those undertaking peritoneal dialysis are not [27]. These subtle differences in the renal diet prescription, combined with conflicting dietary advice between health professionals [16], are often cited as an ongoing source of frustration, bewilderment and confusion for people with ESKD [16, 17]. Given the challenges imposed by the renal diet, it is unsurprising that dietary adherence is often reported to be poor [18, 19].

Adherence, also used interchangeably with the term ‘compliance’, is frequently cited as: “the degrees to which patient behaviours coincide with the recommendations of health care providers” ([20], page S188). Previous researchers have investigated adherence to various ESKD treatment components, such as medications [21]; phosphate binders [22]; hemodialysis attendance [23], and peritoneal dialysis treatments [24]. However, dietary adherence in people with ESKD is more complex and has not been explored in detail. The limited evidence that is available suggests that dietary adherence rates vary greatly between studies [25]. It is also unclear if adherence varies between the individual nutrients modified in the dietary regimen for people with ESKD. A better understanding of dietary adherence in ESKD is critical because poor dietary adherence is associated with worse health outcomes [26, 27]. Improved knowledge and understanding of the issues associated with renal diet adherence may translate to improved dietary management strategies and improved health outcomes. Therefore, the aim of this integrative review is to provide a comprehensive summary of the evidence regarding dietary adherence in people with ESKD. The specific research questions posed in this integrative review were:

1. What methods have been used to measure dietary adherence in adults with ESKD?
2. What is the estimated rate of dietary adherence in adults with ESKD?
3. What factors are associated with dietary adherence in adults with ESKD?

Methods
Integrative reviews provide a comprehensive understanding of a complex phenomenon by synthesising qualitative and quantitative literature [28]. To increase rigour, this integrative review utilised methodology described by previous authors [29, 30]. In brief, this methodology includes clearly delineating the focus of the research question/s, undertaking a well-defined literature search strategy, systematically evaluating studies and compiling a transparent collation of findings.

Literature search
Comprehensive searches of the Web of Science and Scopus databases were conducted during April 2015. The key words ‘adherence’ and ‘end stage kidney disease’ were used to identify suitable peer reviewed journal articles. The corresponding MeSH terms and Boolean operators used to retrieve articles in these searches are shown in Table 1. The reference lists of retrieved studies and review articles were also hand searched for additional relevant publications.

Inclusion criteria
Studies considered eligible for inclusion were any experimental, observational or qualitative studies that included

| Table 1 Search terms used in integrative review of dietary adherence in end stage kidney disease |
Search term	MeSH terms used
Adherence	adheren*OR non adheren* OR non-adheren* OR complian* OR non complian*
End stage kidney disease	end stage kidney failure OR end stage renal failure OR end stage renal disease

* indicates truncation to find variations of root term
human adults with ESKD (stage 4 or 5 CKD, conserva-

tively managed or on any renal replacement therapy mo-

dality); (ii) reported either the rate of dietary adherence or

examined factors associated with dietary adherence; (iii)

reported the results in English and (iv) were available in

full text. Editorials, practice guidelines, review articles,

paediatric studies, studies not in English and studies not

reporting the rate of dietary adherence were excluded

from the analyses. Dates of publication were restricted to

2000–2015. This coincided with the release date of the

first clinical practice guidelines for the nutritional man-

agement of chronic kidney disease [31].

Data extraction

Extracted data from the eligible included studies were

compiled into three summary tables to assist with inter-

pretation and synthesis of the results. Table 2 is com-

prised of all studies included in this integrative review

and contains a description of the salient features of each

study. Table 3 contains the rates of adherence to the

renal diet. Table 4 outlines the factors associated with
dietary adherence in ESKD.

Results

The number of potential articles relevant for review was

787 (see Fig. 1). An additional 85 articles were identified

after hand searching the references. Following the re-

moval of duplicates and irrelevant articles, a total of 60

articles were included in this review. Of the 60 studies,

16 reported the rate of dietary adherence; 28 studies re-

ported both the rate of adherence and factors associated

with adherence; and 16 studies only contained details re-

garding factors associated with adherence (Fig. 1). For

the final synthesis of findings, a total 44 articles reported

the rate of dietary adherence, and 44 articles described

d factors associated with dietary adherence in ESKD.

A summary of the 60 studies included in this integrative

review are shown in Table 2. Overall, a total of 24,743

adults with ESKD were studied, and sample sizes in the

studies varied from 4 people [32] to more than 7000 [27].

Most of these studies were conducted in Asia (17 studies,

28%) or the USA (16 studies, 27%), followed by studies

conducted in the United Kingdom (9 studies, 15%) and

Europe (8 studies, 13%) (Table 2). Two studies were tran-

scontinental in nature involving the USA and Germany

[33]; as well as Europe, the USA and Japan [27]. The

majority of the data on dietary adherence was from studies

involving people with ESKD undertaking hemodialysis (43

studies, 72%); followed by people undertaking peritoneal
dialysis (7 studies, 12%). Only two studies included people

with a kidney transplant (3%). More than half of all in-
cluded studies were cross-sectional observational studies

(\(n = 31\) studies, 52%), and only four studies (6%) were

qualitative in nature [13, 34–36].

Methods used to measure dietary adherence in ESKD

Of the 60 articles in this review, a range of approaches
to measure dietary adherence were evident. These are

summarised in Table 2, and can be broadly categorised

into the use of subjective approaches (28 studies, 47%),

indirect approaches (23 studies, 38%), and combination

approaches (9 studies, 15%).

Subjective approaches

Of the 28 studies that used a subjective approach to mea-

suring dietary adherence in ESKD, there were 15 variations

of how this was conducted. These are shown in Table 2. The

most common method described was the use of the

Dialysis Diet and Fluid Non Adherence Questionnaire

(DDFQ) [37], a four item self-report instrument that

probes the severity and duration of renal diet and fluid re-

striction non-adherence. This instrument has been de-

monstrated to be weakly correlated indirect measures of
dietary adherence including interdialytic weight gain,

serum albumin, serum potassium and serum phosphate

[37]. The DDFQ was used as the only method to measure

dietary adherence in seven studies [33, 37–42]. Other com-

mon methods for collecting subjective information about di-

etary adherence included various iterations of food records

such as 24 h recalls [43], 3 day food recalls [44], 2 day food

recalls [45, 46], 3 day food records [47–50], and food fre-

quency questionnaires [51–54]. Other subjective methods

included the use of stress scales relating to the diet [55] or

self-reported adherence [35, 36, 56].

Indirect approaches

There were 23 studies that used an indirect approach to

measuring dietary adherence. Interdialytic weight gain

(IDWG), which refers to the fluid gain in kilograms gained

between hemodialysis sessions, was the most frequently

reported indirect method for measuring dietary adherence

(16 studies, Table 2). This was followed by 10 studies using

blood tests to measure serum potassium, phosphate, al-

bumin [57, 58], or urea [59] and urine collections to meas-

ure volume or sodium (2 studies, [60, 61]). Ten studies

used IDWG in isolation to measure adherence [62–71].

Five studies used only blood tests to measure adherence

[59, 72–75].

Combination approaches

A combination approach was used in nine studies, with

the combination of blood tests, the DDFQ, and IDWG

being the most common (Table 2). This type of combi-

nation approach theoretically provides information re-
garding adherence to the overall renal diet, fluid intake

and adherence to the low potassium and low phosphate
components of the renal diet. Another common combina-

tion approach reported was the use of IDWG and food

recalls or food records (3 studies).
Authors	Patient numbers	Location	ESKD group	Type of study	Approach used to measure adherence	Methods used to measure adherence	Reports adherence rate	Reports factors associated with adherence
Agondi et al., 2011 [51]	117	Brazil	HD	Cross sectional study	Combination	IDWG, FFQ	✓	✓
Ahrari et al., 2014 [38]	237	Iran	HD	Cross sectional study	Subjective	DDFQ	✓	✓
Antunes et al., 2010 [47]	79	Brazil	HD & PD	Prospective observational study	Subjective	3 day food record	✓	
Baraz et al., 2010 [59]	63	Iran	HD	RCT	Indirect	Blood tests	✓	✓
Barnett et al., 2007 [62]	26	Malaysia	HD	Pre post intervention	Indirect	IDWG	✓	
Casey et al., 2002 [63]	21	England	HD	Prospective observational study	Indirect	IDWG	✓	
Chan et al., 2012 [88]	188	Malaysia	HD	Cross sectional study	Combination	DDFQ, bloods, IDWG	✓	✓
Chan et al., 2010 [30]	173	Hong Kong	PD	Cluster analysis	Subjective	DDFQ	✓	✓
Chen et al., 2006 [48]	70	China	PD	Prospective cohort study	Subjective	3 day food record	✓	
Clark-Cutaia et al., 2014 [44]	122	USA	HD	Secondary analysis of baseline RCT data	Combination	IDWG, 3 day food recall	✓	
DeBrito-Ashurst et al., 2011 [34]	20	England	CKD	Qualitative study using focus groups	Subjective	Focus group	✓	
DeBrito-Ashurst et al., 2013 [61]	56	England	CKD	RCT	Indirect	Urine specimen	✓	
Dowell et al., 2006 [32]	4	USA	HD	Pre post intervention	Subjective	Food diary	✓	
Durose et al., 2004 [72]	71	UK	HD	Cross sectional study	Indirect	Blood tests	✓	✓
Eliot et al., 2015 [84]	95	USA	HD	Cross sectional study	Combination	PAPM, blood tests	✓	✓
Ford et al., 2004 [73]	70	USA	HD	Pre post intervention	Indirect	Blood tests	✓	
Gordon et al., 2010 [36]	88	USA	KT	Qualitative interviews	Subjective	Self-report	✓	
Gordon et al., 2009 [35]	82	USA	KT	Qualitative interviews	Subjective	Self-report	✓	
Harvinder et al., 2013 [45]	245	Malaysia	HD & PD	Cross sectional study	Subjective	2 day food recall	✓	
Hecking et al., 2004 [78]	3039	Europe*a	HD	Prospective observational study	Indirect	Blood tests, IDWG	✓	
Hollingdale et al, 2008 [13]	20	England	NDCKD & dialysis	Qualitative study using two focus groups	Subjective	Focus group	✓	
Johansson et al., 2013 [49]	106	England	HD & PD	Cross sectional study	Subjective	3 day food record	✓	
Kara et al., 2007 [40]	160	Turkey	HD	Cross sectional study	Subjective	DDFQ	✓	
Karavetian et al., 2014 [91]	570	Lebanon	HD	RCT	Subjective	3 day food recall, DNAQ	✓	
Khalil et al., 2011 [76]	100	USA	HD	Cross sectional study	Combination	DDFQ, bloods, IDWG	✓	
Table 2: Summary table of studies describing rates or factors associated with dietary adherence in ESKD (n = 60 studies of 24,743 patients) (Continued)

Authors	Patient numbers	Location	ESKD group	Type of study	Approach used to measure adherence	Methods used to measure adherence	Reports adherence rate	Reports factors associated with adherence
Khalil & Darawad, 2014 [87]	190	Jordan	HD	Cross sectional study	Combination	DDFQ, bloods, IDWG	✓	✓
Khoueiry et al., 2001 [52]	70	USA	HD	Cross sectional study	Subjective	FFQ	✓	✓
Kugler et al., 2011 [41]	456	Germany & USA	HD	Cross sectional study	Subjective	DDFQ	✓	✓
Kugler et al., 2005 [33]	916	Germany & Belgium	HD	Cross sectional study	Subjective	DDFQ	✓	✓
Lam et al., 2010 [42]	173	Hong Kong	PD	Cross sectional study	Subjective	DDFQ	✓	✓
Lee et al., 2002 [56]	62	Hong Kong	HD	Cross sectional study	Combination	Self-report, bloods, IDWG	✓	✓
Lindberg et al., 2009 [64]	4498	Sweden	HD	Retrospective observational study	Indirect	IDWG	✓	✓
Mellon et al., 2013 [19]	50	Ireland	HD	Cross sectional study	Indirect	Blood tests, IDWG	✓	✓
Molaison et al., 2003 [65]	316	USA	HD	RCT	Indirect	IDWG	✓	✓
Mason et al., 2014 [60]	47	Australia	NDCKD	Cross sectional study	Indirect	Urine specimen	✓	
Mok et al., 2001 [55]	50	Hong Kong	HD	Cross sectional study	Subjective	Stress scale	✓	
Moreira et al., 2013 [77]	130	Portugal	HD	Prospective observational study	Subjective	3 day food record	✓	
Morales Lopez et al., 2007 [58]	34	USA	HD	Cross sectional study	Indirect	Blood tests, IDWG	✓	✓
O'Connor et al., 2008 [66]	73	Scotland	HD	Prospective observational study	Indirect	IDWG	✓	✓
Paes-Barreto et al., 2013 [43]	89	Brazil	NDCKD	RCT	Subjective	24 h food recall	✓	✓
Pang et al., 2001 [67]	92	China	HD	Cross sectional study	Indirect	IDWG	✓	✓
Park et al., 2008 [80]	160	South Korea	HD	Cross sectional study	Indirect	Blood tests, IDWG	✓	✓
Poduval et al., 2003 [74]	117	USA	HD	Cross sectional study	Indirect	Blood tests	✓	
Quan et al., 2006 [50]	30	China	PD	Prospective observational study	Subjective	3 day food record	✓	✓
Russell et al., 2011 [57]	19	USA	HD	Pre post intervention	Indirect	Blood tests, IDWG	✓	
Rocco et al., 2002 [46]	1000	USA	HD	Analysis of baseline results of RCT	Combination	2 day food recall, bloods	✓	
Sagawa et al., 2001 [93]	10	Japan	HD	Pre post intervention	Combination	IDWG, 5 day food record	✓	
Saran et al., 2003 [27]	7676	USA, Europe, Japan	HD	Prospective observational study	Indirect	Blood tests, IDWG	✓	✓
Sharp et al., 2005 [68]	56	Scotland	HD	RCT	Indirect	IDWG	✓	✓
Sutton et al., 2001 [82]	34	England	PD	Cross sectional study	Subjective	5 day food record	✓	
Estimated rates of dietary adherence in ESKD

Details regarding the estimated rates of dietary adherence in ESKD were obtained from 44 studies (n = 23,117 adults with ESKD). The rates of adherence from the 44 individual studies are shown in Table 3, and the weighted mean adherence rates for the various components of the dietary prescription for ESKD are summarised in Table 4. The weighted mean adherence rates ranged from 2.9% for fibre recommendations to 85.6% for adherence to the low potassium diet (Table 4). The overall rate of adherence to the renal diet was estimated to be 31.5%.

Attempts to compare dietary adherence rates within or between the various components of the renal diet are difficult. This is due to the highly heterogeneous nature of the study participants and the varying methods used to determine adherence. For example, as shown in Table 3, the gender balance of males in the studies varied from 35% [58] to 71.7% [49]. Studies also included cohorts with a known history of non-adherence [68], high rates of depression [76], high rates of malnutrition [77] or large numbers of highly illiterate adults with ESKD [39, 56]. Furthermore, studies varied according to whether participants were from a single centre, or were from large multi-centre, and/or transcontinental studies. However, to provide some clarity regarding the estimated rates of dietary adherence, the four most frequently reported types of dietary adherence studies are discussed further in the following sections.

Fluid restricted diets

Fluid restrictions are recommended for people with ESKD, and are used to prevent fluid overload and pulmonary oedema. Fluid restricted diets are typically in the range of 1000-1500 ml of fluid per day. For those who have received a kidney transplant, fluid restrictions are not recommended and instead a higher fluid intake is suggested (usually >3000 ml per day [35, 36]). Most studies that report adherence to fluid recommendations in this review were conducted using people undertaking hemodialysis (24 studies), and IDWG was the most frequently used method of measuring adherence.

Overall, adherence rates to fluid recommendations varied from as low as 0% in a population known to be non-adherent [68] to as high as 96.6% [78]. The only two studies which examined adherence to fluid recommendations in people undertaking peritoneal dialysis [39, 42], using the DDFQ to measure adherence found that the adherence rates were between 64 and 85%. In contrast, only one third of adults with a kidney
Authors, Year, Country	N / gender % male	CKD stage / RRT modality	Adherence Measurement Tool	Reported dietary adherence rate (%)									
Ahrari et al., 2014, Iran [38]	237 / 57.7	HD	DDFQ	Renal diet: 58.9, Fluid: 54.8									
Antunes et al., 2010, Brazil [47]	79 / 60.7	HD & PD	3 day food recall	Protein: 43.0									
Baraz et al., 2010, Iran [59]	63 / 52.4	HD	Serum urea, uric acid, creatinine, K, PO4										
Barnett et al., 2007, Malaysia [62]	26 / 50.0	HD	IDWG										
Casey et al., 2002, England [63]	21 / 52.0	HD	IDWG										
Chan et al., 2012, Hong Kong [88]	188 / 48.9	HD	DDFQ	36.2, Energy: 48.4									
Chan et al., 2010, Hong Kong [39]	76 / 39.5	PD	DDFQ	65.8, Protein: 85.0									
Durose et al., 2004, United Kingdom [72]	71 / 58.0	HD	Serum PO4, K and IDWG	77.0, K: 69.0, Na: 96.0									
Elliott et al., 2015, USA [84]	95 / 57.0	HD	PAPM	32.6									
Gordon et al., 2009, USA [35]	82 / 57.3	KT	Self-report	33.0									
Gordon et al., 2010, USA [36]	88 / 58.0	KT	Self-report	35.0									
Harvinder et al., 2013, Malaysia [45]	52 / 51.0	PD	2 day food recall	11.0, CHO: 21.0									
	38	PD		23.0									
	107 / 59.0	HD		25.0, CHO: 33.0									
	48	HD		16.0									
Hecking et al., 2004, UK [78]	620 / 62.0	HD	Serum phosphate, potassium and IDWG	96.6, K: 77.1, Na: 90.2									
Hecking et al., 2004, Spain [78]	576 / 57.0			92.5, K: 77.4, Na: 72.7									
Hecking et al., 2004, Italy [78]	600 / 57.0			82.3, K: 84.5, Na: 72.0									
Hecking et al., 2004, France [78]	571 / 84.6	HD		94.4, K: 61.5, Na: 84.6									
Hecking et al., 2004, Germany [78]	672 / 57.0	HD		85.7, K: 78.7, Na: 89.1									
Johansson et al., 2013, England [49]	106 / 71.7	HD & PD	3 day food record	20.0, Fat: 60.0									
Kara et al., 2007, Turkey [40]	160 / 57.5	HD	DDFQ	49.1, CHO: 31.9									
Khalil et al., 2011, USA [76]	100 / 44.0	HD	DDFQ	66.0, CHO: 50.0									
Khalil and Darawad, 2014, Jordan [87]	190 / 54.0	HD	DDFQ	27.0, CHO: 23.0									
			Serum bloods	46.0, CHO: 20.0									
			IDWG	50.0									
Authors, Year, Country	N / gender % male	CKD stage / RRT modality	Adherence Measurement Tool	Renal diet	Fluid	Energy	Protein	PO4	K	Na	Fat	CHO	Fibre
------------------------	-------------------	-------------------------	---------------------------	------------	-------	--------	---------	-----	---	----	-----	-----	------
Khoueiry et al., 2001, USA [52]	70 / 54.0	HD	FFQ	31.4	48.6	7.1	94.3	2.9					
Kugler et al., 2011, Germany and USA [41]	456 / 57.9	HD	DDFQ	19.6	25.7								
Kugler et al., 2005, Germany and Belgium [33]	916 / 52.9	HD	DDFQ	18.6	25.4								
Lam et al., 2010, Hong Kong [42]	173 / 51.0	PD	DDFQ	38.0	64.0								
Lee et al., 2002, Hong Kong [56]	62 / 50.0	HD	Self-report	Serum PO4, K	35.0	43.5	61.0						
Lindberg et al., 2009, Sweden [64]	4498 / 60.3	HD	IDWG	40.3									
Mellon et al., 2013, Ireland [19]	50 / 60.0	HD	Serum PO4, K and IDWG	38.0	72.0	66.0							
Molaison et al., 2003, USA [65]	316 / 50.6	HD	IDWG	24.6									
Mason et al., 2014, Australia [60]	47 / 51.1	NDDK	Urine	32.0									
Moreira et al., 2013, Portugal [77]	130 / 63.8	HD	3 day food record	25.4	67.7								
Morales Lopez et al., 2007, USA [58]	17 / 35	HD	Serum albumin, PO4, K and IDWG	76.0	88.0	65.0							
O’Connor et al., 2008, Scotland [66]	73 / 60.3	HD	Serum PO4, IDWG	30.0	84.0								
Paes-Barreto et al., 2013, Brazil [43]	43 / 51.2	HD	24 h food recall	46.5									
Pang et al., 2001, China [67]	46 / 52.2	HD	IDWG	37.0									
Park et al., 2008, South Korea [80]	64 / 56.3	HD	Serum PO4, K and IDWG	54.7	68.8	76.6							
Poduval et al., 2003, USA [74]	117 / 52.1	HD	Calcium Phosphate product	37.2	44.8	71.9							
Quan et al., 2006, China [50]	30 / 46.7	HD	3 day food record	19.5									
Russell et al., 2001, USA [57]	19 / 47.0	HD	Serum albumin, PO4 and IDWG	78.9	100.0	68.4							
Rocco et al., 2002, USA [46]	1000 / 46.4	HD	2 day food recall enPCR	24.0	39.0	48.0							
Saran et al., 2006, USA [27]	3359 / 55.1	HD	Serum PO4, K, and IDWG	83.2	84.6	93.7							
Saran et al., 2006, Europe [27]	2337 / 59.7	HD	IDWG	89.0	87.2	80.0							
Saran et al., 2006, Japan [27]	1980 / 62.4	HD	5 day food recall	65.5	87.9	92.4							
Sharp et al., 2005, Scotland [68]	56 / 67.9	HD	IDWG	0.0									
Sutton et al., 2001, England [82]	34 / 70.6	PD	5 day food record	11.8	21	70.6							
transplant self-reported that they were adherent to fluid recommendations [35, 36].

Low phosphate diets

Restriction of dietary phosphate intake is recommended for all adults with ESKD in an attempt to lower the deranged serum phosphate levels [79]. Of the 15 studies that reported low phosphate diet adherence rates, the majority (13 studies) used serum phosphate to measure dietary adherence, and found that rates varied between 43.5%–84.5%. More than half of these studies reported an adherence rate of greater than 70%, with younger people having lower adherence rates (44.8%) when compared to older people (68.8%) [80].

Two studies which measured low phosphate diet adherence used food recalls [81] or food records [82] to obtain data on dietary phosphate intake and neither study reported the proportion of inorganic to organic phosphate intake, an important emerging component of dietary phosphate management [83]. In the only study retrieved that compared the rate of adherence to the low phosphate diet using two different methods, Elliott et al. [84], found that adherence was 32.6% when using a self-report survey on adoption of the low phosphate diet (the Precaution Adoption Process Model tool), compared with an adherence rate of 43.8% using serum phosphate.

Authors, Year, Country	N / gender % male	CKD stage / RRT modality	Adherence Measurement Tool	Reported dietary adherence rate (%)	Renal diet	Fluid	Energy	Protein	PO4	K	Na	Fat	CHO	Fibre
Unruh et al., 2005, USA [75]	739 / 53.7	HD	Serum PO4, K	59.1 79.3										
Vlaminck et al., 2001, Belgium [37]	564 / 49.1	HD	DDFQ	18.0 28.0										
Wang et al., 2003, Hong Kong [53]	266 / 52.3	PD	7 day FFQ	25.5 39.1										
Wang et al., 2007, Hong Kong [54]	249 / 50.6	PD	7 day FFQ	75.0	T:51.0 SF:84.0									
Welch et al., 2001, USA [70]	148 / 52.0	HD	IDWG	33.8										
Yusop et al., 2013, Malaysia [81]	90 / 48.9	HD	2 day food recall	31.1 20.0 24.4 82.2 100.0 86.7										
Total number participants	**23,177**		Weighted mean adherence rate	31.5 68.5 23.1 45.5 79.8 85.6 61.4 T:41.4 SF:72.5 83.1 2.9										

Legend: *gender for total PD group; gender proportion for total HD group; CKD Chronic Kidney Disease, CHO adherence to recommendations for carbohydrate intake, DDFQ Dialysis Diet and Fluid Non Adherence Questionnaire, ePCR equilibrated normalized protein catabolic rate, FFQ food frequency questionnaire, HD hemodialysis, IDWG interdialytic weight gain, K adherence to low potassium diet, Na: adherence to recommendations for sodium intake; NDCKD non-dialysing adults with ESKD; PAPM Precaution Adoption Process Model tool, PO4 adherence to low phosphate diet, PD peritoneal dialysis, Renal diet refers to adherence to all components of the renal diet prescription, RRT renal replacement therapy type; T: adherence to recommendations for total fat intake; SF: adherence to recommendations for saturated fat intake; serum bloods: combination of serum potassium, phosphate and / or others (eg albumin or urea)
Low potassium diets
A low potassium diet is recommended for adults with ESKD [85], and is used to prevent the potentially fatal complication of chronic hyperkalemia [86]. Serum potassium was the most frequently reported method for measuring adherence to the low potassium diet, and only one study used a food recall to determine low potassium dietary adherence [81]. All 12 studies of low potassium diet adherence were conducted on in people undertaking hemodialysis, highlighting an obvious lack of research regarding low potassium diet adherence in those undertaking home hemodialysis and in those with CKD.

Overall renal diet adherence
One challenge of summarising the literature on renal diet adherence is the varying definitions used by previous researchers about what ‘renal diet’ adherence entails. For example, Baraz et al. [59], defined adherence to the renal diet as serum creatinine, sodium, potassium, calcium, phosphate, albumin, urea and uric acid within acceptable limits. In contrast, Quan et al. [50], defined renal diet adherence as ‘following the dietitian’s prescription’. Despite these differences, the reported adherence rates to the renal diet were relatively poor overall, with a weighted mean adherence rate of 31.5%. Only five of the eighteen cohorts studied achieved an adherence rate greater than 50% ([38, 39, 56, 59, 76].

The measurement tools used to determine renal diet adherence also varied, with five different methods used to describe renal diet adherence: serum measures [59], the DDFQ [33, 37–42], the 3 day food record [50], or a combination of measures including self-report [56, 76, 87, 88]. Furthermore, four studies compared overall...
renal diet adherence using two different methods: the DDFQ and serum measures [76, 87, 88] or self-report and serum measures [56]. The findings indicated that renal diet adherence varied in the same cohort of adults with ESKD by 8.9% [88] to 31% [56], suggesting that simply using different adherence measurement methods can also affect the adherence rate results.

Factors reported to be associated with dietary adherence in adults with ESKD
Adherence to medical treatment is a complex process influenced by many social, individual, cultural and environmental factors (83). This component of the integrative review utilised data from 44 studies. To assist with interpretation of the results, the factors reported to be associated with dietary adherence have been categorised according to the WHO Multidimensional Adherence Model [89], and are shown in Table 5. The categories outlined in the WHO model [89] are (i) socioeconomic factors (ii) condition related factors (iii) therapy related factors (iv) health care team and system factors and (v) patient related factors.

Socioeconomic factors
Twenty four studies provided information on socioeconomic factors associated with dietary adherence. From these studies, age, gender and education level were the most frequently explored socioeconomic factors (Table 5). Older adults and individuals with a higher level of education were consistently associated with greater dietary adherence. Evidence regarding occupation level suggests that those who are not working are more likely to adhere to the renal diet. In contrast, results regarding the relationship between gender and dietary adherence were mixed. Overall, female gender was associated with greater dietary adherence to the renal diet in eight of eleven studies. One of the few studies which reported the opposite result, that is, males were more likely to be adherent to the renal diet, came from the largest study cohort included in this integrative review with more than 7000 adults with ESKD [27].

Condition and therapy related factors
Information on condition and therapy related factors associated with dietary adherence were obtained from 25 studies (Table 5). From these studies, most evidence supported an association between the length of time undertaking hemodialysis and poorer renal diet adherence [27, 64, 88]. Reasons for this remain unexplored, but it is thought to be related to the practical challenge of managing the complex dietary modifications required for many years [64], and to the scale of modifications required to long standing behaviours [90].

The relationship between dietary knowledge and renal diet adherence is not clear and the evidence base comes from only 6 studies of less than 2000 adults with ESKD [35, 43, 72, 88, 91, 92]. Poor dietary knowledge was associated with suboptimal renal diet adherence in four studies [35, 88, 91, 92]. Provision of renal diet related practical skills and knowledge, such as learning food composition details [74], self-monitoring strategies [32, 35, 69, 93] or learning appropriate recipe modifications [48, 61] were found to be associated with greater renal diet adherence and were also highly valued by patients in the three qualitative studies [13, 34, 35]. Factors such as receiving conflicting dietary advice from different health professionals [13], and the complexity of the diet [88] were reported to be associated with poorer dietary adherence.

Health care team and system factors
Research on the relationship between the health care team and health care system factors on dietary adherence in ESKD is scarce, but of increasing academic interest [89, 94]. Evidence from nine studies suggests that the quality of the relationship between the patient and the health care professional is important (Table 5). For example, patients with EKSD who receive intensive education from experienced renal dietitians [73, 91], or patients who received support from renal health professionals [39, 50, 71] were more adherent to the renal diet. Furthermore, inadequate support or infrequent contact from renal dietitians was specifically found to impact negatively on dietary adherence [27, 58, 91]. The main reason suggested by the authors for these findings was inadequate staffing ratios [27, 91]. This is an important finding as staffing surveys of renal dietitians from the US [95, 96], UK [97], Asia [98] and Australia [99, 100] consistently report that renal dietitian staffing ratios are below evidence based practice recommendations.

Patient related factors.
Evidence for patient related factors was obtained from 25 studies with ESKD. Factors such as the presence of social and family support, and positive beliefs and attitudes towards the renal diet were frequently studied and found to be consistently associated with improved renal diet adherence. Patients who understood and valued the potential benefits of dietary modification [19, 34–36, 70, 92] were more adherent to the diet than those who felt the diet posed a burden [71]. Self-efficacy refers to a person’s confidence to control their behaviour to achieve a goal [101]. The impact of self-efficacy on dietary adherence was investigated in six studies, and these studies reported that adults exhibiting greater self-efficacy also experienced higher dietary adherence rates [68, 69, 71, 84, 88, 102].

The impact of the renal diet on social eating events was also a specific patient related factor identified with
Authors	Patient numbers	ESKD group	Socioeconomic factors	Condition related factors	Therapy related factors	Health care team and system related factors	Patient related factors
Agondi et al., 2011 [51]	117 HD	Higher education level Older age		Shorter dialysis vintage Dietary knowledge		Positive beliefs regarding the benefits of the diet	Social and family support
Ahrari et al., 2014 [38]	237 HD	Higher education level Being employed Younger age		Diet complexity			
Baraz et al., 2010 [59]	63 HD	Retired or not working Female gender Older age		Diet complexity			Self-efficacy
Chan et al., 2012 [88]	188 HD	Retired or not working Female gender Older age		Diet complexity			
Chan et al., 2010 [39]	173 PD	Nurse support for home dialysis patients					
Chen et al., 2006 [48]	70 PD	Recipe modification knowledge					
Clark-Cutaia et al., 2014 [44]	122 HD	Male gender Older age					
DeBrito-Ashurst et al., 2011 [34]	20 CKD	Recipe modification knowledge					
DeBrito-Ashurst et al., 2013 [61]	56 CKD	Recipe modification knowledge					
Ford et al., 2004 [73]	70 HD	Intensive patient education					
Gordon et al., 2009 [35]	82 KT	Adequate family income					
Gordon et al., 2010 [36]	88 KT	Male gender Private health insurance Being married	Better self-rated health				
Hollingdale et al., 2008 [13]	20 NDCKD & dialysis	Consistent dietary advice / dietary messages					
Authors	Patient numbers	ESKD group	Socioeconomic factors	Condition related factors	Therapy related factors	Health care team and system related factors	Patient related factors
-------------------------	-----------------	------------	-----------------------	--------------------------	------------------------	---	---
Johansson et al., 2013 [49]	106	HD & PD	Higher socioeconomic status	Better quality of life		Absence of depression	Presence of social support
Kara et al., 2007 [40]	160	HD	Older age	Being married		Presence of family support	Presence of social support
Karavetian et al., 2014 [91]	570	HD	Dietary knowledge			Aduedietitian staffing Experienced renal dietitian	
Khalil et al., 2011 [76]	100	HD				Absence of depression	Non-smoking status
Kugler et al., 2011 [41]	456	HD	Lower education level	Female gender	Being married	Short dialysis vintage	Family support
			Older Age			Non-smoker	Non-diabetic status
Kugler et al., 2005 [33]	916	HD	Female Gender	Older Age	Short dialysis vintage		
Lam et al., 2010 [42]	173	PD	Retired occupational status	Low education level Female gender Older age	Dialysis vintage	3 years	Perception that diet fits into lifestyle Strategies to manage the diet at social events Positive beliefs & attitudes about the diet
Lee et al., 2002 [56]	62	HD	Unemployment or non-working status		Shorter dialysis hours per week	Positive attitudes to diet High residual renal function >300 ml day	
Lindberg et al., 2009 [64]	4498	HD	Older age		Short dialysis vintage	Higher BMI	
Mellon et al., 2013 [19]	50	HD	Older age			Perception that diet fits into lifestyle Strategies to manage the diet at social events Positive beliefs & attitudes about the diet	
Molaison et al. 2003 [65]	316	HD	Older age Female gender	Self-monitoring		Adequate psychological coping ability	
Mok et al. 2001 [55]	50	HD	Adequate finances	Long dialysis vintage		Adequate psychological coping ability	
Morales Lopez et al., 2007 [58]	34	HD	Adequate finances	Culturally appropriate format of patient education Dietary knowledge Presence of a dietitian on staff	Presence of family support		
O’Connor et al., 2008 [66]	73	HD	Female gender Older age	Dietary knowledge	Intensive patient education	Lower comorbid disease burden Presence of social support	
Paes-Barreto et al., 2013 [43]	89	NDCKD	Dietary knowledge				
Pang et al., 2001 [67]	92	HD	Lower family income				
renal diet adherence in four studies [13, 19, 34, 35]. Findings from the three qualitative studies [13, 34, 35] indicated several situational or contextual factors relating to social eating that impacted on dietary adherence. For example, dietary adherence was influenced by acceptance of the renal diet by family members or friends [13, 34]. One study also reported that patients were not adherent to the diet to avoid ridicule from others or because foods adherent to the renal diet were not readily available when eating out [35].

Taste preferences (particularly for salt) were also reported as a barrier to renal diet adherence in several studies [34, 35, 88]. For example, De Brito-Ashurst et al. [34] reported perceptions that salt was a vital food ingredient and thus not possible to reduce in the diet without reducing palatability [34]. Finally, depression appears to be an under researched area pertaining to renal diet adherence. This is surprising given the high prevalence of the disorder in patients with ESKD [103]. Two studies explored the relationship between depression and renal diet adherence [49, 76], those who were depressed also exhibited worse dietary adherence. Similarly, those with greater mental health [71] or adequate psychological coping skills [66] were more likely to adhere to the renal diet.

Discussion

Adherence to medical treatment is considered to be the most effective method for improving health outcomes [104]. The intent of this integrative review was to synthesise the body of evidence regarding dietary adherence in adults with ESKD and identify the factors which influence dietary adherence. This review has yielded four key findings that can be used by clinicians and researchers to improve renal diet adherence.

The first key finding of this review was that research on dietary adherence in ESKD is dominated by studies using subjective self-reported information. Measurement
of dietary adherence in ESKD is challenging, and unlike medication or dialysis related adherence studies, there is no ‘gold standard’ or single physiological marker exists that indicates a person is consuming the recommended ESKD diet prescription. Subjective methods such as diet recalls, food frequency questionnaires and diet records impose a significant subject burden in an unwell population. They are also known to be associated with problems of underreporting of dietary intake [105]. Adherence questionnaires like the DDFQ [37] or the Renal Adherence Behaviour questionnaire [106] also assume patients have adequate cognitive capabilities and appropriate levels health literacy; as well as an adequate understanding of the diet to answer the questions appropriately. This is particularly problematic given that cognitive impairment and low health literacy are common in patients with ESKD [107–111]. Consequently, subjective approaches should also be used with caution in those with ESKD.

The second key finding of this review is that indirect physiological measures (such as serum potassium, phosphate or interdialytic weight gain) have been used frequently to measure dietary adherence in ESKD. The obvious advantages of using serum markers are that they are relatively cheap, easy to obtain, and have a low patient burden. However, serum potassium and phosphate are strongly influenced by non-dietary factors such as residual renal function [112, 113], constipation [114]; adherence to prescribed medications [115, 116], acid base balance [117] and time between treatments [118], making them unreliable and inaccurate markers of dietary adherence [119–121]. Future studies of dietary adherence in ESKD should ideally attempt to use direct observation and immediate quantification of dietary intake to provide the most accurate data on dietary intake. However, limited staffing, finances, and the inability to monitor patients for long time periods, make this approach unlikely to be implemented. For pragmatic reasons it is therefore suggested that a combination of indirect measures (eg interdialytic weight gain, urine volume and sodium) and subjective methods (such as dietitian assisted dietary recalls [122]) be used instead to increase the rigour of the information collected [89, 123]. Improved reporting of dietary outcomes in future studies is also needed and future research should include comprehensive details of dietary intake as well as reporting the rate of adherence. This approach has been used in several recent studies [124, 125], and provides superior quality information that could then be used to guide future dietary adherence interventions.

This review provides clinicians with estimates of the rate of adherence to the renal diet and is the third important finding of this review. Attempts to compare the estimated dietary adherence rates to other components of the ESKD treatment regimen are challenging however, because the renal diet contains many components. Overall, the weighted mean adherence rates to fluid, phosphate, potassium and carbohydrate recommendations were similar to rates of adherence in other medical conditions. For example, it is estimated that 50–70% of patients are expected to be adherent to their therapy irrespective of the disease, prognosis or setting [123, 126, 127]. Previous research in people with chronic diseases (such as diabetes, hypertension or ischemic heart disease) [128, 129]; or on other ESKD self-management components [120, 130, 131] have also reported adherence rates of this magnitude. However, the low rate of adherence to the overall renal diet as well as to specific components such as energy, protein, sodium, total fat and fibre reported in this review suggests that designing interventions to improve dietary adherence in those with ESKD is required [132]. Interventions to improve adherence are proposed to have a greater impact on patient health than any further improvements in medical technologies and treatments [89].

The final important findings of this review were that there are several factors that are associated with good dietary adherence: older age; higher education levels; the presence of social or family support; and high levels of self-efficacy. Several other unique factors such as taste, the impact of the diet on social eating occasions; and dietetic staffing also play a role in dietary adherence.

However, several factors impacting on dietary adherence in ESKD examined in this review warrant specific further discussion. For example, the relationship between renal diet knowledge and renal diet adherence requires further investigation. Previous studies of adherence in people with ESKD have demonstrated that knowledge was strongly associated with adherence to the ESKD treatment regimen [23, 133, 134]. However in the present review, greater knowledge of the renal diet was not always associated with improved dietary adherence [72]. This surprising finding is consistent with a recent systematic review on the relationship between dietary knowledge and dietary adherence in general, which also showed that in adults there was only a weak association [135]. In other words, it appears that knowledge alone is not sufficient for optimal renal dietary adherence [65, 136]. Several emerging areas that may explain these findings include the possibility that individuals with ESKD may have lower levels of patient activation [137] and patient engagement [138] for undertaking the changes required when following the renal diet, and therefore further investigation of the reasons for these findings is clearly warranted.

The quality of the relationship between the patient and the health care provider was identified in this review as an important modifier of dietary adherence. In addition, recent evidence indicates that multidisciplinary care slows the rate of decline in renal function [139], suggesting that adherence rates may be better in patients treated by multidisciplinary teams. Further research
exploring how this relationship impacts on dietary adherence is important and could be used to redesign dietary education strategies. Patients with kidney disease have expressed dissatisfaction with the information provided to them by health care providers in numerous studies [16, 140–143]. As a result, patients now use the internet to seek answers to the questions they feel are important to them [140, 142–145]. Whether this occurs with those seeking renal diet information remains unexplored, and the impact of “googling” on dietary adherence is unknown. Similarly, frustrations have been expressed by patients about receiving contradictory dietary information [13, 16], but how this impacts on dietary adherence is also unknown. The perceptions by patients and other staff about the role of the renal dietitian should also be explored further. For example, patients are commonly referred to renal dietitians by medical staff to prevent disease progression or to control side effects [146–148]. However, these are infrequently expressed motivators for attending dietitian appointments or for adhering to the diet [17]. Instead, patients report consulting renal dietitians to either improve their quality of life, or to decrease the negative impact of the diet on social eating occasions [17, 149].

The impact of factors such as health literacy and cognitive impairment on dietary adherence in ESKD also requires further exploration. The renal diet is acknowledged as one of the most complex diets to teach, understand and implement [14]. The presence of cognitive impairment and low health literacy in patients with ESKD could contribute to the poor rates of dietary adherence reported in this review. Previous research has confirmed that health literacy skills and cognitive capabilities are important influences on other self-management abilities in patients with ESKD [150–154]. It seems reasonable therefore, to assume that a poor understanding of the renal diet, poor quality patient education materials or poorly given instructions relating to the diet may lead to errors in the dietary self-management process and worsen health outcomes [150, 152]. Therefore, a better understanding of how these factors impact on dietary adherence is critical for preventing disease progression and further complications.

There are several areas for future research that are evident from this integrative review. For instance, due to the lack of studies on dietary adherence in patients with ESKD not undertaking dialysis, it is recommended that future research on dietary adherence should include this group of patients, as well as kidney transplant recipients. Future studies should also utilise a comprehensive dietitian assisted dietary assessment method such as a diet recall, diet record, FFQ or diet quality index. Exploring differences in adherence that may occur between non-dialysis and dialysis days; as well as the differences in adherence that may occur according to dialysis vintage, or in minority cultural groups are also important. Studies should also investigate differences in adherence to the renal diet according to gender and over time. This is an important area for future research because adherence to the renal diet requires continuous self-regulation and adherence would be expected to vary day to day, as well as over time, between renal replacement therapy modalities and according to season [123, 155]. Future research on renal diet adherence should also consider reporting the impact of the renal diet on overall diet quality [14, 156–158]. The relationship between nutrient modification and overall diet quality is increasingly recognised as important, and is known to influence the risk and development of chronic diseases such as kidney disease [159, 160]. The use of indirect measures will not adequately capture these variations in quality, quantity and adherence [161]. Further research examining how patients make sense of the renal diet, and how this may impact on adherence would also be useful and could be used to inform and guide practitioners about the content of future dietary education strategies and patient education resources.

Several recommendations for clinicians are also evident from this review. Additional support or alternative education and counselling strategies may be required to enhance dietary adherence in individuals who are male; younger; with lower education levels, and with inadequate social and family support. Patients that may be depressed have low self-efficacy and those with a long dialysis vintage may also be another target group for additional support from health professionals. Based on the findings of this review, advice from health professionals within renal units where possible should also be consistent, and delivered utilising appropriate health literacy techniques [162, 163]. Clinicians should also consider utilising or expanding upon the use of pragmatic and flexible dietary prescriptions (such as those described recently for individuals requiring a low protein diets [164–166] in an attempt to improve dietary adherence.

The strengths of this review include the exhaustive coverage of the topic using studies retrieved from a comprehensive search of two large databases and the retrieval of a large number of additional relevant articles from reference lists. There are also limitations relating to this review which need to be acknowledged. The grey literature was not searched and articles in languages other than English were not included. The search strategy used was based on MeSH terms, and alternative or additional search terms may have retrieved other relevant articles.

Conclusions
Dietary modification is an important component of the management of ESKD. Based on the findings of this review it is estimated that around one in three adults with
ESKD are adherent to the renal diet and approximately two thirds of adults with ESKD adhere to recommendations regarding fluid. Uncertainty surrounds these results though due to wide variations in adherence rates between studies, and the use of methodological approaches with inherent flaws in reliability and accuracy. Adults found to be most likely to adhere to the renal diet includes females, older adults, and individuals with adequate family and social support and self-efficacy. This review has also highlighted that further research on dietary adherence is required in several cohorts with ESKD, such as kidney transplant recipients or those with ESKD not undertaking dialysis. Developing strategies to address the barriers identified in this review to dietary adherence in ESKD may improve health outcomes.

Acknowledgements
Not applicable.

Funding
This work was has been conducted with financial support from the Australian Government Research Training Program Scholarship and the King and Amy O'Malley Trust.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Authors’ contributions
KL: Conceptualisation of study design, data collection, data analysis, primary responsibility for writing the article. JM: Refinements to study design, data analysis, writing the article. KM: Refinements to study design, data analysis, writing the article. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Clinical Nutrition, Wollongong Hospital, Illawarra Shoalhaven Local Health District, Level 5, Block C, Crown Street, Wollongong, NSW 2500, Australia. 2Centre for Health Research Illawarra Shoalhaven Population (CHRISP), Australian Health Services Research Institute, University of Wollongong, iC Enterprise 1, Innovation Campus, Wollongong, New South Wales 2522, Australia. 3School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, New South Wales 2522, Australia.

Received: 17 June 2017 Accepted: 27 September 2017
Published online: 23 October 2017

References
1. Jager KJ, Fraser SDS: The ascending rank of chronic kidney disease in the global burden of disease study. Nephrol Dial Transplant. 2017;32(suppl_2):ii121–ii128.
2. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FDR. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.
3. Anderson SA, Halter JB, Hazzard WR, Himmelfarb J, McFarland Horne F, Kaysen GA, et al. Prediction, progression and outcomes of chronic kidney disease in older adults. J Am Soc Nephrol. 2009;20(6):1199–209.
4. Zoccali C, Ruggenenti P, Perna A, Leonards D, Trippoli R, Tripepi G, Mallamaci F, Remuzzi G. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22(10):1923–30.
5. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine anion gap and preserves glomerular filtration rate. Kidney Int. 2014;86(5):1031–8.
6. Urbani J, MS O. The key to halting progression of CKD might be in the produce market, not in the pharmacy. Kidney Int. 2012;81(1):7–9.
7. Isakova T, Barchi-Chung A, Enfield G, Smith K, Vargas G, Houston J, Xie H, Wahl P, Schiavenato E, Dosch a, et al. Effects of dietary phosphate restriction and phosphate binders on FG23 levels in CKD. Clin J Am Soc Nephrol. 2013;8(6):1009–18.
8. Campbell KL, Ash S, Bauer JD. The impact of nutrition intervention on quality of life in pre-dialysis chronic kidney disease patients. Clin Nutr. 2008; 27(4):537–44.
9. Kang S, Chang J, Park Y. Nutritional status predicts 10-year mortality in patients with end-stage renal disease on hemodialysis. Nutrients. 2017;9(4):399.
10. Ortiz A, Covic A, Fiser D, Fouque D, Goldsmith D, Kanbay M, Mallamaci F, Massy ZA, Rossignol P, Vanholder R, et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet. 2014; 383(9931):1831–43.
11. Mitch WE, Remuzzi G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol. 2016;17(1):80.
12. Ash S, Campbell KL, Bogard J, Willichamp A. Nutrition prescription to achieve positive outcomes in chronic kidney disease. Nutrients. 2014;6(4):51.
13. Hollingdale R, Sutton D, Hart K. Facilitating dietary change in renal disease: investigating patients’ perspectives. Journal of Renal Care. 2008;34(3):136–42.
14. Brunete A, Jeong JH, Barnes JL,Wilndur KR. Modified nutritional recommendations to improve dietary patterns and outcomes in hemodialysis patients. J Ren Nutr. 2017;27(1):62–70.
15. Palmer SC, Hanson CS, Craig JC, Stroppoli GFM, Ruoso M, Campbell K, Johnson DW, Tong A. Dietary and fluid restrictions in CKD: a thematic synthesis of patient views from qualitative studies. Am J Kidney Dis. 2015; 65(4):559–73.
16. Lopez-Vargas PA, Tong A, Phoon RK, Chadban SJ, Shen Y, Craig JC. Knowledge deficit of patients with stage 1–4 CKD: a focus group study. Nephrology (Carlton). 2014;19
17. Palmer SC, Hanson CS, Craig JC, Stroppoli GF, Ruoso M, Campbell K, Johnson DW, Tong A. Dietary and fluid restrictions in CKD: a thematic synthesis of patient views from qualitative studies. Am J Kidney Dis. 2015;65
18. Denhaer peppck K, Manhaeve D, Dobels F, Garzoni D, Nolte C, De Geest C. Prevalence and consequences of nonadherence to hemodialysis regimens. Am J Crit Care. 2007;16(3):222–35.
19. Mellon L, Regan D, Curtis R. Factors influencing adherence among Irish haemodialysis patients. Patient Educ Couns. 2013;92(1):88–93.
20. Vitolins MZ, Rand CS, Rapp SR, Ribisl PM, Sevick MA. Measuring adherence to behavioral and medical interventions. Control Clin Trials. 2002;23(5), Supplement 1):S188.
21. Burnier M, Pruijm M, Wuerzner G, Santschi V. Drug adherence in chronic kidney diseases and dialysis. Nephrology Dialysis. Transplantation. 2015;30(1):39–44.
22. Karamanidou C, Clatworthy J, Weinman J, Horne R. A systematic review of the prevalence and determinants of nonadherence to phosphate binding medication in patients with end-stage renal disease. BMC Nephrol. 2008;9:2–2.
23. Matteson ML, Russell C. Interventions to improve hemodialysis adherence: a systematic review of randomized-controlled trials. Hemodial Int. 2012;16(4):370–82.
24. Griva K, Lam AIY, Lim HA, Yu Z, Foo MWY, Newman SP. Non-adherence in patients on peritoneal dialysis: a systematic review. PLoS One. 2014;9(2):e98901.
25. Beto JA, Schuy KA, Bansal VK. Strategies to promote adherence to nutritional advice in patients with chronic kidney disease: a narrative review and commentary. Int J Nephrol Renovasc Dis. 2016;9:21–33.
Desroches SL, Ai; Ratté, S; Gravel, K; Légaré, F; Turcotte, S. Interventions to enhance adherence to dietary advice for preventing and managing chronic diseases in adults. Cochrane Database of Systematic Reviews 2013, Issue 2. Art. No.: CD008722.

Saran R, Bragg-Gresham JL, Rayner HC, Goodkin DA, Keen ML, Van Dijk PC, Kurokawa K, Piera L, Saito A, Fukuhara S, et al. Nonadherence in hemodialysis: associations with mortality, hospitalization, and practice patterns in the DOPPS. Kidney Int. 2003;64(1):254–62.

Russell CL. An overview of the integrative review. Prog Transplant. 2005;15(1):8–13.

Whittemore R, Knaff K. The integrative review: updated methodology. J Adv Nurs. 2005;52(3):546–53.

Souza MT, Silva MD, Carvalho R. Integrative review: what is it? How do to it? Einstein (Sao Paulo). 2010;8(1):102–6.

NKF KDQOI. Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2003;35(5 Suppl 2):S1–140.

Dowell SA, Welch JL. Use of electronic self-monitoring for food and fluid intake: a pilot study. Nephrol Nurs J. 2006;33(3):271–7.

Kugler C, Vlaminck H, Haverich A, Maes B. Nonadherence with diet and fluid restrictions among adults having hemodialysis. J Nurs Scholar. 2005;37(1):25–9.

De Brito-Ashurst I, Peraly L, Sanders TAB, Thomas JE, Yaqoob MM, Dobbie H. Barriers and facilitators of dietary sodium restriction amongst Bangladeshi chronic kidney disease patients. J Hum Nutr Diet. 2011;24(1):85–95.

De Brito-Ashurst I, Prohaska TR, Gallant M, Siminoff LA. Self-care strategies and barriers among kidney transplant recipients: a qualitative study. Chronic Illness. 2009;5:275–91.

De Brito-Ashurst I, Prohaska TR, Gallant MP, Sehgal AR, Strogatz D, Conti D, Siminoff LA. Prevalence and determinants of physical activity and fluid intake in kidney transplant recipients. Clin Transpl. 2010;24(3):E69–81.

Vlaminck H, Maes B, Jacobs A, Reyntjens S, Evers G. The dialysis diet and fluid non-adherence questionnaire: validity testing of a self-report instrument for clinical practice. J Clin Nurs. 2001;10(3/4):707–15.

Ahrai S, Moshki M, Bahrami M. The relationship between social support and adherence of dietary and fluids restrictions among hemodialysis patients in Iran. Journal of Caring Sciences. 2014;3(1):11–9.

Chan MF, Wong FKY, Chow SKY. Investigating the health profile of patients with end-stage renal failure receiving peritoneal dialysis: a cluster analysis. J Clin Nurs. 2010;19(6):649–57.

Kara B, Caglar K, Kilic S. Nonadherence with diet and fluid restrictions and perceived social support in patients receiving hemodialysis. J Nurs Scholar. 2007;39(3):243–8.

Kugler C, Maeding I, Russell CL. Non-adherence in patients on chronic hemodialysis: an international comparison study. J Nephrol. 2011;24(3):366–75.

Lam LW, Twinn SF, Chan SW. Self-reported adherence to a therapeutic regimen among patients undergoing continuous ambulatory peritoneal dialysis. J Adv Nurs. 2010;66(4):763–73.

Paris-Barreto JG, Barreto Silva MI, Qureshi AR, Bregman R, Cervante VF, Carrero JJ, Avesani CM. Can renal nutrition education improve adherence to dietary and fluids restrictions among hemodialysis patients? J Ren Nutr. 2013;23(3):164–71.

Clark-Cutia MN, Ren D, Hoffmann LA, Burke LE, Sevick MA. Adherence to hemodialysis dietary sodium recommendations: influence of patient characteristics, self-efficacy, and perceived barriers. J Ren Nutr. 2014;24(2):92–9.

Harvinder GSC, W. S. S.; Karupaya, T.; Sahathevan, S.; Chinna, K.; Ghazali, a.; Bavanandan, S.; Goh, B. L.: comparison of malnutrition prevalence between hemodialysis patients in Malaysia. J Clin Nurs. 2013;19(3/4):271–83.

Rocco MV, Paranandi L, Burrowes JD, Cockram DB, Dwyer JT, Kusek JW, Leung J, Makoff R, Maroni B, Poole D. Nutritional status in the HEMD study cohort at baseline. Hemodialysis. Am J Kidney Dis. 2002;39(2):245–56.

Antunes AA, Delatim Vannini F, de Arruda Silveira LV, Martin LC, Barretto P, Caramori JT. Influence of protein intake and muscle mass on survival in chronic dialysis patients. Ren Fail. 2010;32(9):1055–9.

Chen W, XH L, Wang T. Menu suggestion: an effective way to improve dietary compliance in peritoneal dialysis patients. J Ren Nutr. 2006;16(2):132–6.

Johansson L, Hickson M, Brown EA. Influence of psychosocial factors on the energy and protein intake of older people on dialysis. J Ren Nutr. 2013;23(3):348–55.

Quan L, Xu Y, Luo SP, Wang L, LeBlanc D, Wang T. Negotiated care improves fluid status in diabetic peritoneal dialysis patients. Perit Dial Int. 2006;26(1):95–100.

Agondi RDF, Gallani MCB, Rodrigues ROM, Carmelino ME. Relationship between beliefs regarding a low salt diet in chronic renal failure patients on dialysis. J Ren Nutr. 2011;21(2):160–8.

Khoueiry G, Waked A, Goldman M, El-Charabaty E, Dunne E, Smith M, Kleiner M, Laferry J, Kalantar-Zadeh K, El-Sayegh S. Dietary intake in hemodialysis patients does not reflect a heart healthy diet. J Ren Nutr. 2011;21(6):438–47.

Wang AY, Sanderson J, Seo MM, Wang M, Lam CW, Li PK, Lui SF, Woo J. Important factors other than dialysis adequacy associated with inadequate dietary protein and energy intakes in patients receiving maintenance peritoneal dialysis. Am J Clin Nutr. 2003;77(4):843–41.

Wang AY-M, Sea MM-M, Ng K, Kwan M, Liu S-F, Woo J. Nutrient intake during peritoneal dialysis at the prince of Wales Hospital in Hong Kong. Am J Kidney Dis. 2007;49(5):582–92.

Mok E, Tam B. Stressors and coping methods among chronic haemodialysis patients in Hong Kong. J Clin Nurs. 2001;10(4/5):513–11.

Lee SH, Molassiotis A. Dietary and fluid compliance in Chinese hemodialysis patients. Int J Nurs Stud. 2002;39(7):795–704.

Russell CL, Cronk NJ, Heron M, Knowles N, Matteson ML, Peace L, Ponferrada L. Motivational interviewing in dialysis adherence study (MIDAS). Nephrol Nurs J. 2011;38(3):229–36.

Morales Lopez C, Burrowes JD, Gizis F, Brommage D. Dietary adherence in Hispanic patients receiving hemodialysis. J Ren Nutr. 2007;17(2):138–47.

Baraz S, Parvadeh S, Mohammad E, Broumand B. Dietary and fluid compliance: an educational intervention for patients having haemodialysis. J Adv Nurs. 2010;66(1):160–70.

Mason B, Ross L, Gill E, Healy H, Juffs P, Kark A. Development and validation of a dietary screening tool for high sodium consumption in Australian renal patients. J Ren Nutr. 2014;24(2):123–34.

de Brito-Ashurst I, Perry L, Sanders TA, Thomas JE, Dobbie H, Varagunam M, Yaqoob MM. The role of salt intake and salt sensitivity in the management of hypertension in south Asian people with chronic kidney disease: a randomised controlled trial. Heart. 2013;99(17):1256–60.

Barrett T, Li Yoon T, Pinkahana J, S-Yen T. Fluid compliance among patients having haemodialysis: can an educational programme make a difference? J Adv Nurs. 2008;61(3):300–6.

Casey J, Johnson V, McClelland P. Impact of stepped verbal and written reinforcement of fluid balance advice within an outpatient haemodialysis unit: a pilot study. J Hum Nutr Diet. 2002;15(1):43–7.

Lindberg P, Prutz KG, Lindeberg S, Wikström B. Interdisciplinary weight gain and self-regulation rate in haemodialysis: Lessons about fluid adherence from a national registry of clinical practice. Hemodialysis international International Symposium on Home Hemodialysis. 2009;13(2):181–8.

Molaison EF, Yadrick MK. Stages of change and fluid intake in dialysis patients. Patient Educ Couns. 2003;49(1):15–2.

O’Connor SM, Jardine AG, Millar K. The prediction of self-care behaviors in end-stage renal disease patients using Leventhal’s self-regulatory model. J Psychosom Res. 2008;65(2):191–200.

Pang SK, Ip WY, Chang AM. Psychosocial correlates of fluid compliance among Chinese haemodialysis patients. J Adv Nurs. 2001;35(5):691–8.

Sharp J, Wild MR, Gumley AI, Deighan CJ. A cognitive behavioral group approach to enhance adherence to hemodialysis fluid restrictions: a randomized controlled trial. Am J Kidney Dis. 2005;45(6):1046–57.

Tsay S-L. Self-efficacy training for patients with end-stage renal disease. J Adv Nurs. 2003;43(4):370–5.

Welch JL. Hemodialysis patient beliefs by stage of fluid adherence. Res Nurs Health. 2001;24(2):105–12.

Yokoyama Y, Suyuzamuro H, Hotta O, Yamazaki S, Kawaguchi T, Hasegawa T, Chiba S, Moriya T, Abe E, Sasaki S, et al. Dialysis staff encouragement and fluid control adherence in patients on hemodialysis. Nephrol Nurs J. 2009;36(3):289–97.

Durose CL, Holdsworth M, Watson V, Prygrodzka F. Knowledge of dietary restrictions and the medical consequences of noncompliance by patients on haemodialysis are not predictive of dietary compliance. J Am Diet Assoc. 2004;101(3):35–41.
Page 19 of 20

73. Ford JC, Pope JF, Hunt AE, Gerald B. The effect of diet education on the laboratory values and knowledge of hemodialysis patients with hyperphosphatemia. J Ren Nutr. 2004;14(1):36–44.

74. Poduval RD, Wolgemuth C, Ferrell J, Hammes MS. Hyperphosphatemia in dialysis patients: is there a role for focused counseling? J Ren Nutr. 2003; 13(3):219–23.

75. Umrul ML, Evans IV, Fink NE, Powe NR, Meyer KB. Skipped treatments, markers of nutritional nonadherence, and survival among incident hemodialysis patients. Am J Kidney Dis. 2005;46(6):1107–16.

76. Khalil AA, Frazier SK, Lennie TA, Sawaya BP. Depressive symptoms and dietary adherence in patients with end-stage renal disease. J Ren Care. 2011;37(1):90–9.

77. Moreira AC, Carolino E, Domingos F, Gaspar A, Ponce P, Camilo ME. Nutritional status influences generic and disease-specific quality of life measures in haemodialysis patients. Nutr Hosp. 2013;28(3):951–7.

78. Hecking E, Bragg-Gresham JL, Rayner HC, Pisoni RL, Andreucci VE, Combe C, Greenwood R, McCulloch K, Feldman HI, Young EW, et al. Haemodialysis prescription, adherence and nutritional indicators in five European countries: results from the dialysis outcomes and practice patterns study (DOPPS). Nephrol Dial Transplant. 2004;19(1):1007–9.

79. Kidney Disease. Improving global outcomes (KDIGO) CKD-MBD work group: KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 2009;76(Suppl 113):S1–S130.

80. Park KA, Choi-Kwon S, Sim YM, Kim SB. Comparison of dietary compliance and dietary knowledge between older and younger Korean hemodialysis patients. J Ren Nutr. 2008;18(5):415–23.

81. Md. Yusop NB, Yoke Mun C, Shariff ZM, Beng Huat C. Factors associated with quality of life among hemodialysis patients in Malaysia. PLoS One. 2013;8(12):e84152.

82. Sutton D, Talbott ST, Stevens JM. Is there a relationship between diet and nutrition status in continuous ambulatory peritoneal dialysis patients? Perit Dial Int. 2001;21:S168–404.

83. Cupisti A, Kalantar-Zadeh K. Management of Natural and Added Dietary Phosphorus Burden in kidney disease. Semin Nephrol. 2013;33(3):180–90.

84. Elliott JO, Ortman C, Almaani S, Lee YH, Jordan K. Understanding the complex interaction between food diaries of adult humans underestimates values determined using a biological marker. J Nutr. 1995;125(9):2333–40.

85. van Duijsen S, van Dijk L, de Rijder D, Heerink R, Bensing J. Patient adherence to medical treatment: a review of reviews. BMC Health Serv Res. 2007;7(155).

86. Snellström LG, Chenard CA, Stumbo PJ. Protein calculation and the renal adherence behaviour questionnaire (RABQ) in hemodialysis patients: the renal adherence attitudes questionnaire (RAAQ) and the renal adherence behaviour questionnaire (RAQB). J Psychosom Res. 1998;45(2):149–57.

87. Palmer S, Vecchio M, Craig JC, Tonelli M, Johnson DW, Niculucci A, Pellegrini F, Saglimbere V, Logroscino G, Fishbane S. Prevalence of depression in chronic kidney disease: systematic review and meta-analysis of observational studies. Kidney Int. 2013;84(1):179–91.

88. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, Strippoli GFM, Palmer SC, et al. Cognition in people with end-stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016.

89. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, Parker D, Gillespie D, Webster AC. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14(1):206.

90. Lambert K, Mullan J, Mansfield K, Lonergan M. A cross-sectional comparison of health literacy deficits among patients with chronic kidney disease. J Health Commun. 2015;20(2):16–23.

91. Lambert K, Mullan J, Mansfield K, Lonergan M. A comparison of the extent and pattern of cognitive impairment among predialysis, dialysis and transplant patients: a cross sectional study from Australia. Nephrology. 2016. doi:10.1111/nep.12892 (Epub ahead of print).

92. Taylor DM, Fraser SDS, Bradley JA, Bradley C, Diaper H, Metcalf W, Oniscu GC, Tomson CRW, Ravanian R, Roderick P, et al. A systematic review of the prevalence and associations of limited health literacy in CKD. Clin J Am Soc Nephrol. 2017.

93. Rhee H, Yang JY, Jung WJ, Shin MJ, Yang BY, Song SH, Kwak IS, Seong EY. Significance of residual renal function for phosphate control in chronic hemodialysis patients. Kidney Research and Clinical Practice. 2014;33(1):38–64.

94. Morduchowicz G, Winkler J, Zabludowski JR, Boner G. Effects of residual renal function in haemodialysis patients. Int Urol Nephrol. 1994;26(1):125–31.

95. Lehnhardt A, Kemper MJ. Pathogenesis, diagnosis and management of hyperkalemia. Pediatric Nephrology (Berlin, Germany). 2011;26(3):377–84.

96. Pani A, Flosi M, Rosner MH, Ronco C. Hyperkalemia in hemodialysis patients. Semin Dial. 2014;27(6):571–6.

97. Kraft MD. Phosphorus and calcium: a review for the adult nutrition support dietitian. J Am Coll Nutr. 1993;12:313–316.

98. Karupaiah T, Morad Z. Perspectives on the nutritional management of renal transplant patients: a cross sectional study from Australia. Nephrology. 2016.

99. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

100. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

101. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

102. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

103. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

104. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

105. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

106. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.

107. Snetselaar LG, Chenard CA, Hunsicker LG, Stumbo PJ. Protein calculation and meta-analysis. Am J Kidney Dis. 2016.
121. Carrero JJ, Chen J, Kovessy CP, Kalantar-Zadeh K. Critical appraisal of biomarkers of dietary intake and nutritional status in patients undergoing dialysis. Semin Dial. 2014;27(6):586–9.
122. Shapiro BB, Bross R, Morrison G, Kalantar-Zadeh K, Kopple JD. Self-reported interview-assisted diet records underreport energy intake in maintenance hemodialysis patients. J Ren Nutr. 2015;25(4):357–63.
123. Burrowes J, Cockram DB. Achieving patient adherence to diet therapy. In: Kopple J, Maspy SGP, editors. Nutritional Management of Renal Disease edn. USA: Lipincott, Williams and Wilkins, 2004. p. 629–39.
124. Luis D, Zatzki K, Comenge B, Garcia Z, Navarro JF, Lorenzo V, Carrero JJ. Dietary quality and adherence to dietary recommendations in patients undergoing hemodialysis. J Ren Nutr. 2016;26(3):190–5.
125. Roach L, Meyer B, Holt J, Lambert K. Diet Quality in Patients with End Stage Renal Disease on Dialysis. J Renal Care. 2017. doi:10.1111/jorc.12215. Published online: 24 September 2017. [Epub ahead of print].
126. Vermeire E, Hearnshaw H, Van Royen P, Denekens J. Patient adherence to treatment: three decades of research. A comprehensive review. J Clin Pharm Ther. 2001;26(5):331–42.
127. Haynes RB, Ackloo E, Sahota N, McDonald HP, Yao X. Interventions for enhancing medication adherence. Cochrane Database Syst Rev. 2008(12).
128. Janas M, Hernandez C, Vidal M, Nuñez M, Bertran MJ, Sanz S, Castell C, Sanz G. Multidimensional analysis of treatment adherence in patients with multiple chronic conditions. A cross-sectional study in a tertiary hospital. Patient Educ Couns. 2010;81(2):161–8.
129. Kinney RL, Lemon SC, Person SD, Pagoto SL, Saczynski JS. The association between patient activation and medication adherence, hospitalization, and emergency room utilization in patients with chronic illnesses: a systematic review. Patient Educ Couns. 2015;98(5):545–52.
130. Rosenthal Asher D, Ver Halen N, Cukor D. Depression and nonadherence predict mortality in hemodialysis treated end-stage renal disease patients. Hemodialysis International International Symposium on Home Hemodialysis. 2012;16(3):387–9.
131. Dunbar-Jacob J, Mortimer-Stephens MK. Treatment adherence in chronic disease. J Clin Epidemiol. 2001;54(12, Supplement 1):557–60.
132. Nieuwlaat R, Wilczynski N, Navarro T, Hobson N, Jeffery R, Keepanasseril A, Agoritsas T, Mistry N, Iorio A, Jack S, et al. Interventions for enhancing medication adherence. Cochrane Database Syst Rev. 2014(21).
133. Sayed SAM, Abu-Asua H, Ahmed ME, Elamin S. Effect of the Patient’s knowledge on peritonitis rates in peritoneal dialysis. Pern Dial Int. 2013;33(4):362–6.
134. Cavanaugh KL, Wingard RL, Hakim RM, Elasy TA, Ikizler TA. Patient dialysis knowledge is associated with permanent arteriovenous access use in chronic hemodialysis. Clin J Am Soc Nephrol. 2009;4(5):950–6.
135. Sporn I, Kullen C, Burdon C, O’Connor H. Relationship between nutrition knowledge and dietary intake. Br J Nutr. 2014;111(10):1713–26.
136. Havas K, Bonner A, Douglas C. Self-management support for people with chronic kidney disease: patient perspectives. J Ren Care. 2016;42(1):7–14.
137. Hibbard JH, Cunningham PJ. How engaged are consumers in their health and health care, and why does it matter? 2008.
138. Hibbard JH, Greene J. What the evidence shows about patient activation: better health outcomes and care experiences; fewer data on costs. Health Aff (Millwood). 2013;32.
139. Bayliss EA, Bhavraja B, Ross C, Beck A, Lanese DM. Multidisciplinary team care may slow the rate of decline in renal function. Clinical Journal of the American Society of Nephrology : CJASN. 2011;6(4):704–10.
140. Tong A, Sainsbury P, Chadban S, Walker RG, Harris DC, Carter SM, Hall B, Hawley C, Craig JC. Patients’ experiences and perspectives of living with CKD. Am J Kidney Dis. 2009;53(4):689–700.
141. Costantini L, Beanlands H, McCoy E, Catran D, Hildowaneu M, Francis D. The self-management experience of patients with mild to moderate chronic kidney disease. Nephrol nursing journal : journal of the American Nephrology Nurses’ Association. 2008;35(2):147–55. quiz 156.
142. Bonner A, Lloyd A. Exploring the information practices of people with end-stage kidney disease. J Ren Care. 2012;38(3):124–30.
143. Lloyd A, Bonner A, Dawson-Rose C. The health information practices of people with living conditions with implications for health literacy. J Librariansh Inf Sci. 2014;46(3):207–16.
144. Pierrotos A. Patient education in CKD and ESRD: merging the left and right brain. Semin Dial. 2013;26(2):135–7.
145. Strekalova YA. Seekers and avoiders: using health information orientation to explore audience segmentation. Journal of Communication in Healthcare. 2014;7(3):228–37.
146. Kent PS, McCarthy MP, Burrowes JD, McCann L, Pavlinic J, Goeddeke-Menciel CM, Wiesen K, Kruger S, Byham-Gray L, Pace RC, et al. Academy of nutrition and dietetics and National Kidney Foundation: revised 2014 standards of practice and standards of professional performance for registered dietitian nutritionists (competent, proficient, and expert) in nephrology nutrition. J Acad Nutr Diet. 2014;114(9):1448–57.
147. Beto JA, Ramirez WE, Bansal VK. Medical nutrition therapy in adults with chronic kidney disease: integrating evidence and consensus into practice for the generalist registered dietitian nutritionist. J Acad Nutr Diet. 2014;114(7):1077–87.
148. Ikuler TA, Fanch HA, Kalantar-Zadeh K, ter Wee PM, Wanner C. Time to revisit the role of renal diet in the dialysis unit. J Ren Nutr. 2014;24(1):58–60.
149. Kidd KE, Alltman DG. Adherence in social context. Control Clin Trials. 2000;21(S, Supplement 1):S184–7.
150. Devraj R, Borrego M, Vilya AM, Gordon EJ, Paiden J, Horowitz B. Relationship between health literacy and kidney function. Nephrology. 2015;20(5):360–7.
151. Fraser S, Roderick P, Casey M, Taal M, Yuen H, Nutbeam D. Prevalence and associations of limited health literacy in chronic kidney disease: a systematic review. Nephrol Dial Transplant. 2013;28:129–37.
152. Devraj R, Gordon EJ. Health literacy and kidney disease: toward a new line of research. Am J Kidney Dis. 2009;53(5):884–9.
153. Heijmans M, Waverijn G, Rijken M, Osborne R, Rademakers J. Using health literacy profiles to tailor interventions to the needs of chronic disease patients. Eur J Pub Health. 2015;25(suppl 3):45.
154. Wang S, Anum EA, Ramakrishnan K, Afifi T, Braunhofer P, Newsome B. Reasons for phosphate binder discontinuation vary by binder type. J Ren Nutr. 2014;24(2):105–9.
155. Sherman AM, Bowen DJ, Vitolins M, Penti MG, Rosal MC, Sevick MA, Ockene JK. Dietary adherence: characteristics and interventions. Control Clin Trials. 2000;21(Suppl 5):2065–115.
156. Kelly JT, Rossi M, Johnson DW, Campbell KL. Beyond sodium, phosphate and potassium: potential dietary interventions in kidney disease. Semin Dial. 2017;
157. Campbell KL, Palmer SC, Johnson DW. Improving nutrition research in nephrology: an appetite for change. Am J Kidney Dis. 2017;69(5):558–60.
158. War SN, Kelly JT, Johnson DW, Campbell KL. Dietary patterns and clinical outcomes in chronic kidney disease: the CKDQLD nutrition study. J Ren Nutr. 2017;27(3):175–82.
159. Jacobs DR, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78(3):505S–13.
160. Gopinath B, Harris DC, Flood VM, Burlutsky G, Mitchell P. A better diet quality is associated with a reduced likelihood of CKD in older adults. Nutr Metab Cardiovasc Dis. 2013;23(10):937–42.
161. Chauveau P, Grijp E, Kolko A, Wolff P, Combe C, Aparicio M. Evaluation of nutritional status in patients with kidney disease: usefulness of dietary recall. J Ren Nutr. 2007;17(1):188–92.
162. Porter K, Chen Y, Estabrooks P, Noel L, Bailey A, ZEolner J. Using teach-back approach. BMC Nephrol. 2016;17(1):124.
163. Chauveau P, Grijp E, Kolko A, Wolff P, Combe C, Aparicio M. Evaluation of nutritional status in patients with kidney disease: usefulness of dietary recall. J Ren Nutr. 2007;17(1):188–92.
164. Berto JA, Ramirez WE, Bansal VK. Medical nutrition therapy in adults with chronic kidney disease: integrating evidence and consensus into practice for the generalist registered dietitian nutritionist. J Acad Nutr Diet. 2014;114(7):1077–87.
165. Ikuler TA, Fanch HA, Kalantar-Zadeh K, ter Wee PM, Wanner C. Time to revisit the role of renal diet in the dialysis unit. J Ren Nutr. 2014;24(1):58–60.
166. Devraj R, Borrego M, Vilya AM, Gordon EJ, Paiden J, Horowitz B. Relationship between health literacy and kidney function. Nephrology. 2015;20(5):360–7.