A Literature Revision in Primary Cutaneous B-cell Lymphoma

R La Selva, S Alberti Violetti¹, C Delfino², V Grandi², S Cicchelli, C Tomasini, M T Fierro, E Berti³, N Pimpinelli², P Quaglino

Abstract
The term “Primary Cutaneous B-Cell Lymphoma” (PCBCL) comprehends a variety of lymphoproliferative disorders characterized by a clonal proliferation of B-cells primarily involving the skin. The absence of evident extra-cutaneous disease must be confirmed after six-month follow-up in order to exclude a nodal non-Hodgkin’s lymphoma (NHL) with secondary cutaneous involvement, which may have a completely different clinical behavior and prognosis. In this article, we have summarized the clinico-pathological features of main types of PCBCL and we outline the guidelines for management based on a review of the available literature.

Key Words: Cutaneous B-cell lymphoma, Primary Cutaneous Marginal zone Lymphoma, Primary cutaneous follicle-center lymphoma, Primary cutaneous diffuse large B-cell lymphoma leg type, Primary Cutaneous Diffuse Large B cell Lymphoma other

Introduction
The term “primary cutaneous B-cell lymphoma” (PCBCL) comprehends a variety of lymphoproliferative disorders characterized by a clonal proliferation of B-cells, which primarily involves the skin. In the late 1980s, cutaneous B-cell lymphoma (CBCL) were for the first time recognized as an autonomous clinical entity based on homogeneous clinical and prognostic characteristics, with an overall better disease course if compared with nodal counterparts.¹,² The absence of evident extracutaneous disease is a necessary condition for the diagnosis of CBCL because they have a completely different clinical behavior and prognosis from nodal counterpart.

Classification
Nowadays, long debate has been made about pathologic classification of PCBCL. Due to the different clinical behavior, the distinction of cutaneous lymphomas from nodal counterparts is mandatory to settle the optimal treatment, but it is a relatively recent achievement. In fact, both Revised European-American Classification of Lymphoid Neoplasms³ and World Health Organization (WHO)⁴ classifications for NHLs do not deal specifically with cutaneous lymphomas even if they can be adapted to include most of the entities primarily involving the skin. Applying the same terminology used in nodal lymphoma classification, the European Organisation for the Research and Treatment of Cancer (EORTC) proposed a new classification for PCBCL. However, there is a growing trend to apply a grading system to PCBCL that has been used in nodal lymphomas and that could have a great impact on the clinical management of the disease.

What was known?
- Under the 4th World Health Organization classification of tumors of hematopoietic and lymphoid tissues, cutaneous B-cell lymphomas are classified in: primary cutaneous marginal zone B-cell lymphoma (PCMZL), primary cutaneous follicle center lymphoma (PCFCL), primary cutaneous diffuse large B-cell lymphoma (PCDLBCL) leg type (LT) and primary cutaneous diffuse large B-cell lymphoma, other.
- The absence of evident extra-cutaneous disease is a necessary condition for the diagnosis of CBCL because they have a completely different clinical behavior and prognosis from nodal counterpart.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Access this article online
Quick Response Code: Website: www.e-ijd.org
DOI: 10.4103/ijd.IJD_74_17

How to cite this article: La S, Violetti SA, Delfino C, Grandi V, Cicchelli S, Tomasini C, et al. A literature revision in primary cutaneous B-cell lymphoma. Indian J Dermatol 2017;62:146-57.

Received: February, 2017. Accepted: February, 2017.
primary cutaneous lymphomas.[5] Conversely, in 2001, the WHO proposed a unified system that referred to both extranodal (including primary cutaneous) and nodal lymphomas adopting a similar terminology.[6] The differences among original EORTC and WHO CBCL’s classifications lead to confusion.[7] For example, many lesions classified as “follicle center cell lymphoma” in the original EORTC classification and may be classified as “diffuse large B-cell lymphoma” (DLBCL) in the WHO classification and, in contrast with their nodal counterpart, they exhibit clinically indolent behavior and respond to radiotherapy without need of systemic chemotherapy.[8] The definition of “large B-cell lymphoma of the leg” can easily show the intrinsic limits of the original EORTC classification. “Large B-cell lymphoma of the leg” was defined CBCL with preponderance of large B-cells arising in the lower extremities. Based on this criteria, histologically, identical lesions would be classified as “large B-cell lymphoma of the leg” if located on the lower extremities and “follicle center cell lymphoma” if located elsewhere.[8]

In response to the need of a univocal and comprehensive classification solely devoted to primary cutaneous lymphoma, the WHO-EORTC published in 2005 the unified classification for primary cutaneous lymphoma.[9] These guidelines were incorporated into the revised 4th WHO classification of tumors of hematopoietic and lymphoid tissues in 2008 using the framework for nodal lymphomas.[10] Under this classification, primary cutaneous lymphoma are divided into cutaneous T-cell and natural killer-cell lymphomas, CBCLs, and precursor hematologic neoplasm. The CBCLs are classified into primary cutaneous marginal zone B-cell lymphoma (PCMZL), primary cutaneous follicle center lymphoma (PCFCL), primary cutaneous DLBCL (PCDLBCL), leg type (LT), and PCDLBC, other.[9,10]

Epidemiology
PCBCLs represent up to 25%–29% of primary cutaneous lymphomas,[11] for which an estimated annual incidence of 0.5–1 new case/100,000 has been reported.[12,13]

Three of the main European works analyzing the occurrences of cutaneous lymphomas published in 1983,[14]1984,[15] and 1997[16] reported, respectively, a 25%, 32%, and 20.8% of B-cells lymphomas. In 1997, Willemze et al.[6] reported that B-cell lymphomas represent the 18.8% of diagnosis in 626 patients registered by the Dutch Cutaneous Lymphoma Working Group between 1986 and 1994. Zackheim et al.[12] reviewing data from three United States (US) institutions with active PCBCLs found a considerably lower (4.5%) relative frequency of PCBCL in the US. The first large population-based study focusing on cutaneous lymphoma in the USA[11] reported that CBCLs accounted for 29% (IR = 3.1/1,000,000 person-years) of the 3884 cutaneous lymphomas registered. In recent retrospective studies from Japan and Korea,[17,18] lower rates of PCCL were found when compared to those reported in Western countries. Thus, the etiology of cutaneous lymphoma subtypes remains largely unknown, comparison of incidence rates, and patterns for specific subtypes may elucidate important clues for future studies.[11]

PCBCL are more common in male and, in contrast to cutaneous T-cell lymphoma, they are almost exclusively a disease of non-Hispanic White.[11] Consisting with previous reports,[19,20] Bradford et al.[11] found that the rates of CBCL steadily rose with age. Chronic inflammation, DNA damage, and diminished immune surveillance that occur with older age may contribute to lymphoma development.[11]

Primary Cutaneous Marginal Zone Lymphoma
Introduction
PCMZL is defined by the 2008 WHO classification for hematopoietic and lymphoproliferative disorders[10] as an indolent B-cell lymphoma composed of small B-cells, lymphoplasmacytoid cells, and mature plasma cells.[9,21] It is included in the group of extranodal marginal zone lymphoma (MZL) of mucosa-associated lymphoid tissue (MALT) lymphoma.[10,22] However, it has been debated since its first descriptions if PCMZL really shares pathogenic mechanisms and biological similitudes with systemic MALT counterpart, or it has to be considered a completely distinct entity, based on evidence of different translocations, expression of class-switched immunoglobulins (Igs), chemokine receptors, association with infective triggers,[23,24]

Clinical appearance
PCMZL presents as single or more often multifocal, asymptomatic, or slightly itchy lesions that tend to Table 2 enlarge slowly and may reach over 3 cm of diameter. They appear as erythematocyanotic papules or nodules with shiny surface and no desquamation, more frequently localized at the arms or trunk. Rarely, PCMZL may present as multiple erythematous Figure 1 papules localized symmetrically on the face and thus mimicking granulomatous rosacea (PCMZL agminate). Furthermore, in patients which show serological positivity to antiphospholipid antibodies classical lesions associated with anetodermic scar.[25-27]

Histopathology
PCMZL is characterized by nodular infiltration of dermis and subcutis Figure 2 by small lymphocytic cells, lymphoplasmacytoid cells, mature plasma cells, and reactive germinal centers with macrophages.[21,28] The infiltrate could be intermingled with a reactive T-cell infiltrate, in some cases almost totally obscuring the
neoplastic B-cells. It could also be observable a diffuse plasmacytoid differentiation. At immunohistochemistry, tumor cells show positivity for CD20, CD79a, and BCL-2 but are negative for BCL-6; plasmocytes are monotypic for kappa or lambda.

Two subtypes of PCMZL have been described: A more common subtype (class-switched) with perivasculary and periadnexial nodular infiltrate of plasma cells expressing IgG, IgA, IgE, and many intermingled T-cells. There are reactive germinal centers which express IgD. Neoplastic cells lack CXCR3 expression. The other subtype is the nonclass-switched one, and it is characterized by larger nodular infiltrates of neoplastic B-cells expressing IGM and CXCR3, a receptor for interferon (IFN)-gamma induced chemokines (a feature shared with other MALT lymphomas) in half of the cases and lower number of reactive T-cells.

Histopathological differential diagnosis

Histopathological differential diagnosis is versus B-cell pseudolymphomas that are often a true challenge, both for the dermatologist and for pathologist. Multifocal lesions, recalcitrant and relapsing clinical course, and demonstration of predominance of K or L light chain or monoclonality (using JH and JK primers) suggest a diagnosis of PCMZL. However, cases of pseudolymphomas with multifocal presentation are described and “pseudo-clonality” in the presence of oligoclonal B-cell infiltrate is a common problem with clonality assessment.

Other important differential diagnosis is B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) which secondarily involves skin in about 2% of cases. Cutaneous involvement by CLL/SLL may resemble closely PCMZL both clinically and histologically, but tumor cells express a distinct immunophenotype (CD20+, CD79a+, CD5+, CD23+, and CD43+). Other differential diagnosis is cutaneous infiltration by an extramedullary plasmacytoma, especially when dense dermal infiltrate shows plasma cells with monotypic Ig light chains.

Prognosis and prognostic factors

Prognosis of PCMZL is excellent, with an overall survival estimated up to 99% at 5 years. Up to 50% of patients experience cutaneous relapses, locally or at a distance, but these do not impair prognosis. Extracutaneous spread is quite rare, observable in <10% of patients, especially in the nonclass-switched subtype.

Systemic spread is often preceded by large cell transformation and the demonstration of translocations t(14;18)(q32;q21) IgH/BCL-2 and t(14;18)(q32;q21) IgH/MALT1. Histological transformation of low-grade B-cell lymphomas toward more aggressive forms is a well-known phenomenon and it represents an independent negative prognostic factor, leading to resistance to treatments and higher mortality rates. Blastic transformation (presence of up to 30% of large transformed cells in the infiltrate) is a rare event, especially in cutaneous MZL. Its correlation with a more aggressive behavior has been recently analyzed by Magro et al.

Therapy

Due to Table 4 lack of randomized, controlled trials, treatment recommendations for PCMZL are based on small retrospective studies. Consensus recommendations have been published by the EORTC and International Society for Cutaneous Lymphoma (ISCL), but in most cases, the best approach requires a multidisciplinary evaluation by dermatologist, medical oncologist, hematologist, and radiotherapist.

For single small lesion/multiple localized lesions, the recommended first-line treatments are radiotherapy or surgical excision. In selected cases with positive serology for chronic Borrelia burgdorferi infection, oral antibiotics (cephalosporins or tetracyclines classes) can be tried. As second line treatment in these cases, intralesional (IL) IFN-alpha (3 mil UI three times/week), IL rituximab (CR 71%), and IL corticosteroid are all viable options.

In multifocal disease, local radiotherapy, intravenous rituximab, oral antibiotics (if B. burgdorferi positive), oral chlorambucil are all well-tolerated and safe options. Second-line treatments include IL IFN-alpha, IL rituximab, topical or IL steroids.

In all cases, a wait-and-see strategy, reserving active treatments only to symptomatic lesions, is a feasible option.

Primary Cutaneous Follicle Center Lymphoma

Introduction

PCFCL represents about the 11%–18% of all cutaneous lymphomas and is the most common variant of PCBCL representing approximately the 55% of all CBCLs. It is described as a separate entity in the WHO-EORTC classification of primary cutaneous lymphomas as well as in the new WHO classification of hematopoietic and lymphoid tissue tumors.

Clinical appearance

PCFCL usually presents as solitary or Table 2 grouped plaques, nodules, or tumors. Presentation with multifocal skin lesion is rarer and it is not associated with a more unfavorable prognosis. Lesions are typically red to violet and have a smooth shiny mamillated surface. The presence of erythematous papules and...
slightly indurated plaques surrounding tumor is a characteristic finding. In some cases, these lesions precede the development of tumor for months or even many years. The term of “reticulohistiocytoma of the dorsum” or “Crosti lymphoma” was used to describe the typical presentation of the PCFCL on back.50

Less typical presentation may represent a diagnostic challenge. In literature, they are described cases of PCFCL presenting as milary papules and pustules on the face and forehead, difficult to differentiate from the most common face dermatosis (rosacea, folliculitis, acne, lupus miliaris).[51,52] Rosacea-like presentation of PCFCL may include the presence of infiltrative lesions of the nose or rhinophyma.[57,58] Scalp localization may mimic other causes of scarring alopecia by presenting as cluster of tumid annular erythematous plaques.54 Differential diagnoses include inflammatory lesions (e.g., acne cysts and epidermal inclusion cysts), arthropod bites, other cutaneous neoplasms (basal cell carcinoma, Merkel cell carcinoma, cutaneous lymphoid hyperplasia), and other non-B-cell cutaneous lymphomas (e.g., CD8 cutaneous lymphoma of the ear, CD4 pleomorphic small, medium T-cell lymphoma, or folliculotropic mycosis fungoides).55

Histopathology

PCFCL exhibits dermic and subcutaneous infiltrates composed of neoplastic follicle center cells that almost constantly spare the epidermis. Neoplastic follicle center cells usually are a mixture of centrocytes (small/medium and large cleaved and often multilobulated follicular center cells) and variable numbers of centroblasts (large noncleaved follicular center cells with prominent nucleoli).

Architectural pattern is variable along a continuum from follicular, nodular, diffuse growth patterns and a combination thereof. Age, growth rate, and location of biopsied lesions influenced the framework of histological presentation.[9,12,49,56] Small and early lesions contain a mixture of centrocytes, relatively few centroblasts, and many reactive T-cells. Early infiltrates may have a patchy perivascular and periadnexal growth pattern, a common diagnostic pitfall of a reactive infiltrate or “pseudolymphoma.”[57-59] With the progression of lesions to tumor, neoplastic B-cells increase in both number and size whereas the number of reactive T-cells steadily decreases.[9,49,60]

The typical follicular growth pattern is more frequently observed on scalp lesions than in those arising on the trunk.[56] The abnormal follicles are composed of malignant BCL-6 follicle center cells enmeshed in a network of CD21 or CD35 follicular dendritic cells. The follicles are ill-defined mantle zone that is frequently reduced or absent and lacks on tingible body macrophages.[56,61] In tumorous skin lesions, follicular structures are no longer visible, except for occasional scattered CD2 or CD35 follicular dendritic cells. Generally, a monotonous population of large centrocytes and multilobulated cells, and in rare cases, spindle-shaped cells, with a variable admixture of centroblasts and immunoblasts is present.[49,50,52,61]

The follicle center cells express a CD20+, CD79a+, BCL-6+, BCL-2– immunophenotype and a monotypic staining for surface Igs (commonly undetectable in tumorous lesions). Clonally rearranged Ig genes are usually demonstrable as the presence of somatic hypermutation of variable heavy and light chain genes.[62]

The expression of CD43 and CD10 is variable 64, 65. A positivity for the CD10 is predominantly observed in PCFCL with follicular growth pattern and uncommonly in the diffuse one.[63,64]

Immunostaining for multiple myeloma-1/IFN-regulatory factor-4 (MUM1/IRF4) and Forkhead box P1 (FOX-P1) is negative in the majority of cases,[65] and their rare positivity does not seem to influence the prognosis.[66] PCFCLs do not show the BCL-2 protein and its locus containing t(14;18) translocation, which is distinctive of systemic follicular lymphomas and a fraction of systemic DLBCL LT.[60,67,68,69]

Prognosis and predictive factors

The prognosis of PCFCLs is always excellent with a 5-year survival of >95% in large studies.\textsuperscript{[2,5,19,49,50,60] PCFCL is an indolent disease, even if left untreated, skin lesions may be stable, gradually increase in size over years, or regress in rare cases. Dissemination to extracutaneous sites remains an exceptional event (it occurs in 5%–10% of cases).[54]

As reported by Zinzani et al. in one of the largest series published in literature,[70] recurrence after therapy is common (up to 46.5% of cases), it is usually confined to the skin, and it does not affect prognosis. Although the higher incidence of relapse was observed in the first 4 years, a constant 2% to 6% risk of relapse was noted beyond 10 years.[70]

The growth pattern (follicular or diffuse), number of blast cells, likewise the presence of multifocal skin disease, do not seem to influence prognosis.[9,19,48] In contrast, site of presentation is suggested to influence prognosis: PCFCL presenting on the leg carries a poorer prognosis, with 5-year disease specific survival reported at 41%.[71]

There are instances of PCFCL either progressing or coexisting with DLBCL.[66] Transformation to high-grade lymphoma is an independent negative prognostic factor.

Therapy

Local radiation Table 4 therapy with a dose of at least 30 Gy and a margin of clinically uninvolved skin of at
least 1–1.5 cm is the treatment of choice in patients presenting with solitary or localized skin lesions.[45]

Surgical excision is a reasonable option for small, well-demarcated, solitary lesions. No details are provided concerning excision margins.[46] Surgery appears to be an equally effective treatment option for PCBCL, while avoiding some local complications associated with radiation therapy.[72]

Patients with indolent, few scattered lesions of PCFCL may be treated by radiotherapy of all visible skin lesions. Alternatively, a wait-and-see policy associated with treatment of only symptomatic skin lesions is considered acceptable for initial management. IL treatment with IFN-alpha (all the seven cases described in literature obtained a complete response) or rituximab (10 of the 12 patients treated reached a complete response and 2 patients reached a partial response)[46] are proposable second-line choices.[46]

Topical therapies such as high-potency steroids, imiquimod, nitrogen mustard, and bexarotene and IL steroids[73] seem to have some success in selected, symptomatic patients.[44,74]

Similar approach can be adopted to treat relapses that occur in approximately 30% of patients and does not affected prognosis.[44,46]

In patients with very extensive skin lesions, particularly where local treatment is not effective or desirable, systemic rituximab (375 mg/m2 weekly for 1–8 week) can be purposed.[44]

Combination chemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone [R-CHOP] or rituximab, cyclophosphamide, vincristine, and prednisolone) should be reserved for the exceptional cases of patients with resistant, relapsing, or progressive disseminated skin lesion or large tumors or extracutaneous disease.[44,75]

Primary Cutaneous Diffuse Large B-cell Lymphoma, Leg Type

Introduction

PCDLBCL, LT is an aggressive type of CBCL, characterized by skin lesions mainly on the legs and a predominance of diffuse sheets of centroblasts and immunoblasts.[9]

PCDLBCL, LT was first reported as a subgroup of PCFCL in 1987 based on its particular histological feature and more aggressive behavior.[60] In 1996, Vermeer et al. proposed the term “primary cutaneous large B-cell lymphoma of the leg,” which was used to classify it as a distinctive subgroup in the EORTC classification.[5] In the last WHO–EORTC classification, this entity was finally defined PCDLBCL, LT to reflect the predominant but not exclusive anatomic location of the lesions. In this classification, PCDLBCL, LT was distinguished from other CBCL which may present large B-cells: PCFCL and PCDLBCL, other a group of rare large B-cell lymphomas.[9,76]
PCDLBCL, LT represents 5%-10% of all PCBCLs commonly presenting in elderly females (male:female 1:3–4), with a peak incidence in the seventh decade of life.[77]

Clinical appearance

Patients present solitary or multiple Table 2, rapidly growing, red to bluish-red firm tumors on one or both legs, usually below the knee [Figure 3a]. In 10%-15% of cases, the lesions are localized at other sites such as the trunk, head-neck, and upper arms.[Figure 3b] Multiple lesions may be disseminated or aggregated [Figure 5].[8,70,77]

Extracutaneous spreading is often reported, most commonly in lymph nodes, bone marrow, and nervous system.[78]

Histopathology

Histologically, there is a diffuse and dense infiltrate throughout the dermis that often involves the subcutis but is separated from the epidermis by a Grenz zone [Figure 6]. The infiltrate mainly consists of confluent sheets of large B-cells with roundish nuclei, prominent nucleoli, and open chromatin resembling centroblasts and immunoblasts [Figure 4].

The morphology of these cells is different from the cleaved and irregular nuclear morphology of the large centrocytes typically present in the infiltrate of PCFCL. Anaplastic cells are occasionally seen. Mitotic figures are frequently observed. T-cells are rare.[19,77-80]

Tumor cells express B-cell markers (CD20, CD79a, and PAX5) and possible monotypic, surface, and cytoplasmic, Ig. In particular, cytoplasmic IgM expression seems to be a sensitive marker of PCDLBCL, LT as it is negative in PCFCL.[81] BCL-2, MUM1/IRF4, and FOX-P1 are strongly expressed in PCDLBCL, LT regardless of the location of the skin lesions, but not expressed in PCFCL. This immunophenotype is useful for the diagnosis of PCDLBCL, LT even if 10% of cases are negative for BCL-2 and MUM1/IRF4.[76,79,82]

BCL-2 overexpression is associated with a chromosomal amplification of BCL-2 gene in some cases, but t(14;8) is usually not found.[83,84] PCDLBCL, LT is usually characterized by a high proliferation rate (>70%) and BCL-6, CD5, CD10, CD30, CD138, and cyclin D1 negativity[77] [Figure 6c and d].

Cytogenetic studies have revealed a frequent inactivation of p15(INK4b) and p16(INK4a) as a result of promoter hypermethylation (respectively, 11% and 44% of all PCDLBCLs)[85] and chromosomal imbalances in up to 85% of PCDLBCL, LT (mainly gains of chromosome 2q, 3, 7p, 12q, 18q and losses of 6q, 13,14,17p, 19).[8,84,86,87]

Translocations of myc, BCL-6, and IgH genes have been demonstrated by fluorescence in situ hybridization in PCDLBCL, LT but not PCFCL.[86] One gene expression study has revealed an activated B-cell profile in PCDLBCL, LT.[65]

Prognosis and prognostic factor

The prognosis of PCDLBCL, LT is poor and characterized by frequent relapses and extracutaneous spreading. The 5-year survival rate is 40%-55%. Higher survival rates have been reported by Zinzani et al.[70] and Kodama...
et al.[76] (61.7%). A location on the leg is a well-known negative prognostic factor, characterizing PCDLBCL, LT[19,79,83,106] and, in addition, a large multicenter French study found that multiple skin lesions were also negative prognostic factors.[81] The presence of round cell morphology also correlates with a short survival.[19] Other factors that have been reported to be linked to a worse prognosis are the high expression of MUM1 and FOX-P1, and, as in other aggressive lymphomas, deletion of the CDKN2A locus on chromosome 9p21.[71,76] Expression of

Table 1: Principal entities classified in primary cutaneous diffuse large B-cell lymphoma, other
PCDLBCL, other

DLBCL, intravascular (IVDLBCL)[89-93]
EBV-positive DLBCL of the elderly (EBV+ DLBCL-e)[94-96]
Plasmoblastic Lymphoma (PBL)[97]
Posttransplant lymphoproliferative disorder (PTLD)[10,98]
Lymphomatoid Granulomatosis (LG)[99-104]
EBV-positive mucocutaneous ulcer (EBVMCU)[105]

Contd...
BCL-2, associated with a reduced survival in the past, does not seem to have any prognostic role.\(^{[76,77]}\)

Therapy

Given Table 4 the poor prognosis, old age at onset, frequent relapses, and extracutaneous spread of PCLDLBCL, LT, it is often managed as a systemic lymphoma depending on its staging and location, number of skin lesions, and general status of the patient. The EORTC and ISCL consensus recommendations\(^{[44]}\) indicate immunochemotherapy with R-CHOP with or without involved-field radiotherapy as the first-line therapy for single, localized, or generalized lesions. The use of local radiotherapy or rituximab as a single agent can be considered in particular cases. In relapsed cases, the use of protocols for relapsed systemic DLCBLs is recommended. Faulli et al.\(^{[77]}\) have reported autologous stem cell transplant as standard of care. Oral lenalidomide monotherapy has demonstrated significant clinical activity but is still under evaluation as there are now monoclonal antibodies and tyrosine kinase inhibitors.\(^{[77,107]}\)

Table 2: Tumor node metastases (TNM) classification of cutaneous lymphoma other than mycosis fungoides/Sézary syndrome

T classification of cutaneous lymphoma other than MF/SS	T1	T1a	Ø ≤ 5 cm	T1b	Ø >5 cm
T2	solitary lesion	T2a	Ø ≤ 15 cm	T2b	15 ≤ Ø ≤ 30 cm
T2	multifocal lesions in the same body region or in 2 contiguous body regions	T2c	Ø >30 cm		
T3	diffuse lesions in different anatomical regions or non-contiguous regions	T3a	2 non contiguous body regions		
T3		T3b	≥3 body regions		

Table 3: Evaluation and staging after the first diagnosis of primary cutaneous B-cell lymphoma

Evaluation and staging after diagnosis	PCMZL	PCFCL	PCDLBCL
Medical History, Clinical exam, Blood cellcount, profile, and lactate dehydrogenase	Protidogram	Protidogram	Protidogram
Borrelia Burgdorferi serology (in endemic areas)	TC neck, chest, abdomen and pelvis	TC neck, chest, abdomen and pelvis	Bone marrow biopsy

Table 4: Treatment options and follow-up in principal primary cutaneous B-cell lymphoma

Diagnosis	Staging	Therapy	Alternative therapy	FUP/Re-staging					
PCMZL	T1	SE	IFNα – it	RT	R – il	6MM/2YY			
	T1	RT	CS – it						
	T2	RT	ATB						
	T3	WW	CS – t	RT	CS – il	CTxR	IFNα – il	ATB	R – il
PCFCL	T1	RT	IFNα – il	6MM/2YY					
	T2	WW	R - CHOP						
	T3	WW	R - COP						
PCDLBCL	T1	R-CHOP	RTxR – iv	3MM/1YY					
	T2	R-CHOP	R-COP						
	T3	R-CHOP	R-COP						

Primary Cutaneous Diffuse Large B-cell Lymphoma, Other

Introduction

The term PCDLBCL, other, encompasses all cases of CBCL with diffuse infiltration composed of large cells not adaptable in the histopathological criteria for DLBCL, LT. It seems a very rare entity, poorly characterized that shares few cytological features with DLBCL-LT, namely, an infiltrate composed of centroblastic roundish cells and a strong BCL-2 positivity. Neoplastic cells express BCL-6 in all cases described MUM-1+ in 67% and FOX-P1 in 50%. In addition, this large cell infiltrate can be admixed with small lymphocytes. Inside the definition of PCDLBCL, others are also included cases with different and even rare morphological variants such as anaplastic, plasmablastic, or T-cell/histiocyte-rich B-cell lymphoma,\(^{[9,89]}\) Epstein–Barr virus-positive DLCBL of the elderly, and intravascular lymphoma.\(^{[90,91]}\)

Principal entities and their clinical and histopathological features are resumed in Tables 1-4.

Financial support and sponsorship

Nil.
Conflicts of interest

There are no conflicts of interest.

What is new?

Through a review of the available literature, we have highlighted the unique clinical and histological characteristics of the main CBCL, we have underlined their prognosis and we have summarized the diagnostic approach and the therapeutic management.

References

1. Pimpinelli N, Masala G, Santucci M, Miligi M, Alterini R, Cardini P. Primary cutaneous lymphomas in Florence: A population-based study 1986-1995. Ann Oncol 1996; Suppl 3:130.

2. Fink-Puches R, Zenahlhik P, Bäck B, Smolle J, Kerl H, Cerroni L. Primary cutaneous lymphomas: Applicability of current classification schemes (European Organization for Research and Treatment of Cancer, World Health Organization) based on clinicopathologic features observed in a large group of patients. Blood 2002:99:800-5.

3. Harris NL, Jaffe ES, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood 1994;84:1361-92.

4. Jaffe ES, Harris NL, Diebold J, Muller-Hermelink HK. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Am J Clin Pathol 1999;111 Suppl 1:S8-12.

5. Vermeer MH, Geelen FA, van Heselen CW, et al. Primary cutaneous large B-cell lymphomas of the legs. A distinct type of cutaneous B-cell lymphoma with an intermediate prognosis. Dutch Cutaneous Lymphoma Working Group. Arch Dermatol 1996;132:1304-8.

6. Jaffe ES, Harris NL, Stein H, editors. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Hematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001.

7. Smith BD, Wilson LD. Cutaneous lymphoma. Curr Probl Cancer 2008;32:43-87.

8. Smith BD, Glusac EJ, McNiff JM, Smith GL, Heald PW, Cooper DL, et al. Primary cutaneous B-cell lymphoma treated with radiotherapy: A comparison of the European Organization for Research and Treatment of Cancer and the WHO classification systems. J Clin Oncol 2004;22:634-9.

9. Willemsen R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105:3768-85.

10. Swerdlow, S., Campo, E., Harris, et al.: WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC Press, 2008.

11. Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: A population-based study of 3884 cases. Blood 2009;113:5064-73.

12. Zackheim HS, Vonderheid EC, Ramsay DL, LeBoit PE, Rothfleisch J, Kashani-Sabet M. Relative frequency of various forms of primary cutaneous lymphomas. J Am Acad Dermatol 2000;43(5 Pt 1):793-6.

13. Weinstock MA, Horm JW. Mycosis fungoides in the United States. Increasing incidence and descriptive epidemiology. JAMA 1988;260:42-6.

14. Burg G, Braun-Falco O. Cutaneous Lymphomas, Pseudolymphomas, and Related Disorders. Berlin: Springer-Verlag; 1983. p. 93.

15. Burg G, Kerl H, Przybilla B, Braun-Falco O. Some statistical data, diagnosis, and staging of cutaneous B-cell lymphomas. J Dermatol Surg Oncol 1984;10:256-62.

16. Burg G, Kempf W, Haeflner AC, Nestle FO, Schmid MH, Doebbeling U, et al. Cutaneous lymphomas. Curr Probl Dermatol 1997;9:137-204.

17. Park JH, Shin HT, Lee DY, Lee JH, Yang JM, Jang KT, et al. World Health Organization-European Organization for Research and Treatment of Cancer classification of cutaneous lymphomas in Korea: A retrospective study at a single tertiary institution. J Am Acad Dermatol 2012;67:1200-9.

18. Fujita A, Hamada T, Iwatsuki K. Retrospective analysis of 133 patients with cutaneous lymphomas from a single Japanese medical center between 1995 and 2008. J Dermatol 2011;38:524-30.

19. Grange F, Bekkenk MW, Wechsler J, Meijer CJ, Cerroni L, Bernengo M, et al. Prognostic factors in primary cutaneous large B-cell lymphomas: A European multicenter study. J Clin Oncol 2001;19:3602-10.

20. Smith BD, Smith GL, Cooper DL, Wilson LD. The cutaneous B-cell lymphoma prognostic index: A novel prognostic index derived from a population-based registry. J Clin Oncol 2005;23:3390-5.

21. Kempf W, Ralfkiaer E, Duncan L, Burg G, Willemze R, Swerdlow SH, et al. Cutaneous marginal zone B-cell lymphoma. In: LeBoit P, Burg G, Weidorn D, editors. World Health Organization Classification of Tumors. Pathology and Genetics of Skin Tumours. Lyon, France: WHO-IARC; 2006. p. 194-5.

22. Isaacson PG, Chott A, Nakamura S, Muller-Hermelink HK, Harris NL, Swerdlow SH. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Fileri SA, Stein H, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. pp. 214-7.

23. van Maldegem F, van Dijk R, Wormhoudt TA, Kluin PM, Willemze R, Cerroni L, et al. The majority of cutaneous marginal zone B-cell lymphomas expresses class-switched immunoglobulins and develops in a T-helper type 2 inflammatory environment. Blood 2008;112:3355-61.

24. Edinger JT, Kant JA, Swerdlow SH. Cutaneous marginal zone lymphomas have distinctive features and include 2 subsets. Am J Surg Pathol 2010;34:1830-41.

25. Kasper RC, Wood GS, Nihal M, LeBoit PE. Anetodermia arising in cutaneous B-cell lymphoproliferative disease. Am J Dermatopathol 2001;23:124-32.

26. Hodak E, Feuerman H, Barzilai A, David M, Cerroni L, Feinmesser M. Anetodermia cutaneous B-cell lymphoma: A unique clinicopathological presentation of lymphoma possibly associated with antiphospholipid antibodies. Arch Dermatol 2010;146:175-82.

27. Barzilai A, Feuerman H, Quaglini P, David M, Feinmesser M, Halpern M, et al. Cutaneous B-cell neoplasms mimicking granulomatous rosacea or rhinophyma. Arch Dermatol 2012;148:824-31.

28. Servitje O, Gallardo F, Estrach T, Pujol RM, Blanco A, Fernández-Sevilla A, et al. Primary cutaneous marginal zone B-cell lymphoma: A clinical, histopathological, immunophenotypic and molecular genetic study of 22 cases. Br J Dermatol 2002;147:1147-58.

29. Geyer JT, Ferry JA, Longtine JA, Flotte TJ, Harris NL, Zukerberg LR. Characteristics of cutaneous marginal zone lymphomas with marked plasmacytic differentiation and a T cell-rich background. Am J Clin Pathol 2010;133:59-69.

30. Moulonguet I, Ghnassia M, Molina T, Fraïtag S. Miliarial-type
perifollicular B-cell pseudolymphoma (lymphocytoma cutis): A misleading eruption in two women. J Cutan Pathol 2012;39:1016-21.

31. Böer A, Tirumalae R, Bresch M, Falk TM. Pseudoclonality in cutaneous pseudolymphomas: A pitfall in interpretation of rearrangement studies. Br J Dermatol 2008;159:394-402.

32. Swerdlow SH, Kurre M, Bernengo M, Büchner S. Cutaneous involvement in primary extracutaneous B-cell lymphoma by LeBoit PE, Burg G, Weeden D, Sarasin A editors. World Health Organization Classification of Tumours: Pathology and Genetics: Skin Tumors. Lyon, France: IARC Press; 2006. p. 204-6.

33. Kash N, Fink-Puches R, Cerroni L. Cutaneous manifestations of B-cell chronic lymphocytic leukemia associated with *Borrelia burgdorferi* infection showing a marginal zone B-cell lymphoma-like infiltrate. Am J Dermatopathol 2011;33:712-5.

34. Levin C, Mirazamani N, Zwerner J, Kim Y, Schwartz EJ, Sundram U. A comparative analysis of cutaneous marginal zone lymphoma and cutaneous chronic lymphocytic leukemia. Am J Dermatopathol 2012;34:18-23.

35. Yang B, Tubbs RR, Finn W, Carlson A, Pettay J, Hsi ED. Clinicopathologic reassessment of primary cutaneous B-cell lymphomas with immunophenotypic and molecular genetic characterization. Am J Surg Pathol 2000;24:694-702.

36. LeBoit PE, McNutt NS, Reed JA, Jacobson M, Weiss LM. Primary cutaneous immunocytoma. A B-cell lymphoma that can easily be mistaken for cutaneous lymphoid hyperplasia. Am J Surg Pathol 1994;18:969-78.

37. Baldassano MF, Bailey EM, Ferry JA, Harris NL, Duncan LM. Cutaneous lymphoid hyperplasia and cutaneous marginal zone lymphoma: Comparison of morphologic and immunophenotypic features. Am J Surg Pathol 1999;23:88-96.

38. Cerroni L, Signoretti S, Höfler G, Annessi G, Pütz B, Lackinger E, et al. Primary cutaneous marginal zone B-cell lymphoma: A recently described entity of low-grade malignant cutaneous B-cell lymphoma. Am J Surg Pathol 1997;21:1307-15.

39. Hallermann C, Niermann C, Fischer RJ, Schulze HJ. Survival data for 299 patients with primary cutaneous lymphomas: A monocentre study. Acta Derm Venereol 2011;91:521-5.

40. Golling P, Cuzzo A, Dummer R, French L, Kempf W. Primary cutaneous B-cell lymphomas-clinico-pathological, prognostic and therapeutic characterisation of 54 cases according to the WHO-EORTC classification and the ISCL/EORTC TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome. Leuk Lymphoma 2008;49:1094-103.

41. Hoefnagel JJ, Vermeer MH, Jansen PM, Heule F, van Voorst Vader PC, Sanders CJ, et al. Primary cutaneous marginal zone B-cell lymphoma: Clinical and therapeutic features in 50 cases. Arch Dermatol 2005;141:1139-45.

42. Palmedo G, Hantschke M, Rütten A, Mentzel T, Kempf W, Tomasin D, et al. Primary cutaneous marginal zone B-cell lymphoma may exhibit both the t(14;18)(q32;q21) IGH/BCL2 and the t(14;18)(q32;q21) IGH/MALT1 translocation: An indicator for clonal transformation towards higher-grade B-cell lymphoma? Am J Dermatopathol 2007;29:231-6.

43. Magro CM, Yang A, Fraga G. Blastic marginal zone lymphoma: A clinical and pathological study of 8 cases and review of the literature. Am J Dermatopathol 2013;35:319-26.

44. Senff NJ, Noordijk EM, Kim YH, Bagot M, Berti E, Cerroni L, et al. European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood 2008;112:1600-9.

45. Peñate Y, Hernández-Machín B, Pérez-Méndez LI, Santiago F, Rosales B, Servitje O, et al. Intralesional rituximab in the treatment of indolent primary cutaneous B-cell lymphomas: An epidemiological observational multicentre study. The Spanish Working Group on Cutaneous Lymphoma. Br J Dermatol 2012;167:174-9.

46. Morales AV, Advani R, Horwitz SM, Riaz N, Reddy S, Hoppe RT, et al. Indolent primary cutaneous B-cell lymphoma: Experience using systemic rituximab. J Am Acad Dermatol 2008;59:953-7.

47. Bouaziz JD, Bastuji-Garin S, Possepczyńska-Guiné E, Wechsler J, Bagot M. Relative frequency and survival of patients with primary cutaneous lymphomas: Data from a single-centre study of 203 patients. Br J Dermatol 2006;154:1206-7.

48. Bekkenk MW, Vermeer MH, Geerts ML, Noordijk EM, Heule F, van Voorst Vader PC, et al. Treatment of multifocal primary cutaneous B-cell lymphoma: A clinical follow-up study of 29 patients. J Clin Oncol 1999;17:2471-8.

49. Santucci M, Pimpinelli N, Arganini L. Primary cutaneous B-cell lymphoma: A unique type of low-grade lymphoma. Clinicopathologic and immunologic study of 83 cases. Cancer 1991;67:2311-26.

50. Berti E, Alessi E, Caputo R, Gianotti R, Delia D, Vezzoni P. Reticulo-histiocytoma of the dorsum. J Am Acad Dermatol 1988;19(2 Pt 1):259-72.

51. Soon CW, Pincus LB, Ai WZ, McCalmont TH. Acneeiform presentation of primary cutaneous follicle center lymphoma. J Am Acad Dermatol 2011;65:887-9.

52. Massone C, Fink-Puches R, Laimer M, Rütten A, Vale E, Cerroni L. Miliary and agminated-type primary cutaneous follicle center lymphoma: Report of 18 cases. J Am Acad Dermatol 2011;65:749-55.

53. Seward JL, Malone JC, Callen JP. Rhus simplex-like swelling in an 86-year-old woman. Primary cutaneous B-cell lymphoma of the nose. Arch Dermatol 2004;140:751-6.

54. Kluk J, Charles-Holmes R, Carr RA. Primary follicle centre cell lymphoma of the scalp presenting with scarring alopecia. Br J Dermatol 2011;165:205-7.

55. Suárez AL, Pulitzer M, Horwitz S, Moskowitz A, Querfeld C, Ferrara G, et al. Clinicopathologic features of early lesions of primary cutaneous follicle center lymphoma, diffuse type: Implications for early diagnosis and treatment. J Am Acad Dermatol 2011;65:991-1000.

56. Cerroni L, El-Shabrawi-Caelen L, Fink-Puches R, LeBoit PE, Kerl H. Cutaneous spindle-cell B-cell lymphoma: A morphologic variant of cutaneous large B-cell lymphoma. Am J Dermatopathol 2000;22:299-304.

57. Gulia A, Saggini A, Wiesner T, Fink-Puches R, Argenyi Z, Bouaziz JD, et al. Primary cutaneous follicle center lymphoma: Report of 18 cases. J Am Acad Dermatol 2011;65:887-9.

58. Santucci M, Pimpinelli N. Primary cutaneous B-cell lymphomas. Current concepts. I. Haematologica 2004;89:1360-71.

59. Pimpinelli N, Santucci M, Carli P, Paglierani M, Bosi A, Moretti S, et al. Primary cutaneous follicular center cell lymphoma: Clinical and histological aspects. Curr Probl Dermatol 1990;19:203-20.

60. Willemze R, Meijer CJ, Scheffer E, Kluin PM, Van Vloten WA, Toonstra J, et al. Diffuse large cell lymphomas of follicular
center cell origin presenting in the skin. A clinicopathologic and immunologic study of 16 patients. Am J Pathol 1987;126:325-33.

61. Goodlad JR, Krajewski AS, Batstone PJ, McKay P, White JM, Benton EC, et al. Primary cutaneous follicular lymphoma: A clinicopathologic and molecular study of 16 cases in support of a distinct entity. Am J Surg Pathol 2002;26:733-41.

62. Gelrich S, Rutz S, Golembowski S, Jacobs C, von Zimmermann M, Lorentz P, et al. Primary cutaneous follicle center cell lymphomas and large B cell lymphomas of the leg descend from germinal center cells. A single cell polymerase chain reaction analysis. J Invest Dermatol 2001;117:1512-20.

63. de Leval L, Harris NL, Longtine J, Ferry JA, Duncan LM. Cutaneous b-cell lymphomas of follicular and marginal zone types: Use of Bcl-6, CD10, Bcl-2, and CD21 in differential diagnosis and classification. Am J Surg Pathol 2001;25:732-41.

64. Kim BK, Surti U, Pandya AG, Swedlow SH. Primary and secondary cutaneous diffuse large B-cell lymphoma: A multiparameter analysis of 25 cases including fluorescence in situ hybridization for t(14;18) translocation. Am J Surg Pathol 2003;27:356-64.

65. Hoefnagel JJ, Dijkman R, Basso K, Jansen PM, Hallermann C, Willemze R, et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 2005;105:3671-8.

66. Swedlow SH, Quintanilla-Martinez L, Willemze R, Kinney MC. Cutaneous B-cell lymphoproliferative disorders: Report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am J Clin Pathol 2013;139:515-35.

67. Hoefnagel JJ, Vermeer MH, Jansen PM, Fleuren GJ, Meijer CJ, Willemze R. Bcl-2, Bcl-6 and CD10 expression in cutaneous B-cell lymphoma: Further support for a follicle centre cell origin and differential diagnostic significance. Br J Dermatol 2003;149:1183-91.

68. Cerroni L, Volkmanad M, Rieger E, Soyer HP, Kerl H. bcl-2 protein expression and correlation with the interchromosomal 14;18 translocation in cutaneous lymphomas and pseudolymphomas. J Invest Dermatol 1994;102:231-5.

69. Child FJ, Russell-Jones R, Woolford AJ, Calonje E, Photiou A, Orchard G, et al. Absence of the t(14;18) chromosomal translocation in primary cutaneous B-cell lymphoma. Br J Dermatol 2001;144:735-44.

70. Zinzani PL, Quaglino P, Pimpinelli N, Bertoni E, Alivizatos P, Rupoli S, et al. Prognostic factors in primary cutaneous B-cell lymphoma: The Italian Study Group for Cutaneous Lymphomas. J Clin Oncol 2006;24:1376-82.

71. Zinzani PL, Quaglino P, Pimpinelli N, Bertoni E, Alivizatos P, Rupoli S, et al. Prognostic factors in primary cutaneous B-cell lymphoma: The Italian Study Group for Cutaneous Lymphomas. J Clin Oncol 2006;24:1376-82.

72. Senff NJ, Zoutman WH, Vermeer MH, Assaf C, Bertoni E, Cerroni L, et al. Fine-mapping chromosomal loss at 9p21: Correlation with prognosis in primary cutaneous diffuse large B-cell lymphoma, leg type. J Invest Dermatol 2009;129:1149-55.

73. Parbhakar S, Chin AD. Primary cutaneous B-cell lymphoma: Role of surgery. Can J Plast Surg 2011;19:e12-4.

74. Perry A, Vincent BJ, Park SR. Intralymphocytic corticosteroid therapy for primary cutaneous B-cell lymphoma. Br J Dermatol 2010;163:223-5.

75. Farkas A, Kemeny L, French LE, Dummer R. New and experimental skin-directed therapies for cutaneous lymphomas. Skin Pharmacol Physiol 2009;22:322-34.

76. Kodama K, Massone C, Chott A, Metze D, Kerl H, Cerroni L. Primary cutaneous large B-cell lymphomas: Clinicopathologic features, classification, and prognostic factors in a large series of patients. Blood 2005;106:2491-7.

77. Pauli M, Luccioli M, Maffi A, Croci GA, Nicola M, Berti E. Primary cutaneous diffuse large B-cell lymphoma (PCDLBCL), leg-type and other: An update on morphology and treatment. Ital Dermatol Venereol 2012;147:589-602.

78. Hristov AC. Primary cutaneous diffuse large B-cell lymphoma, leg type: Diagnostic considerations. Arch Pathol Lab Med 2012;136:876-81.

79. Vermeer MH, Geelen FA, van Haselen CW, van Voorst Vader PC, Geerts ML, van Vloten WA, et al. Primary cutaneous large B-cell lymphomas of the legs. A distinct type of cutaneous B-cell lymphoma with an intermediate prognosis. Dutch Cutaneous Lymphoma Working Group. Arch Dermatol 1996;132:1304-8.

80. Senff NJ, Hoefnagel JJ, Jansen PM, Vermeer MH, van Baarlen J, Bloks WA, et al. Reclassification of 300 primary cutaneous B-Cell lymphomas according to the new WHO-EORTC classification for cutaneous lymphomas: Comparison with previous classifications and identification of prognostic markers. J Clin Oncol 2007;25:1581-7.

81. Koens L, Vermeer MH, Willemze R, Jansen PM. IgM expression on paraffin sections distinguishes primary cutaneous large-B-cell lymphoma, leg type from primary cutaneous follicle center lymphoma. Am J Surg Pathol 2010;34:1043-8.

82. Grange F, Beylot-Barry M, Courville P, Maubec E, Bagot M, Vergier B, et al. Primary cutaneous diffuse large B-cell lymphoma, leg type: Clinicopathologic features and prognostic analysis in 60 cases. Arch Dermatol 2007;143:1144-50.

83. Geelen FA, Meijer CJ, Van der Putte SC, Kerkhof E, Kluijts PM, et al. bcl-2 protein expression in primary cutaneous large B-cell lymphoma is site-related. J Clin Oncol 1998;16:2080-5.

84. Mao X, Lillington D, Child F, Russell-Jones R, Young B, Whittaker S. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: Identification of common genomic alterations in disease pathogenesis. Genes Chromosomes Cancer 2002;35:144-55.

85. Child FJ, Scarisbrick JJ, Calonje E, Orchard G, Russell-Jones R, Whittaker SJ. Inactivation of tumor suppressor genes p15(INK4b) and p16(INK4a) in primary cutaneous B-cell lymphoma. J Invest Dermatol 2002;118:941-8.

86. Dijkman R, Tensen CP, Jordanova ES, Knijnenburg J, Hoefnagel JJ, Mulder AA, et al. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma. J Clin Oncol 2006;24:296-305.

87. Hallermann C, Kaune KM, Siebert R, Vermeer MH, Tensen CP, Willemze R, et al. Chromosomal aberration patterns differ in subtypes of primary cutaneous B cell lymphomas. J Invest Dermatol 2004;122:1495-502.

88. Hallermann C, Kaune KM, Goeck S, Martin-Subero JJ, Gunawan B, Griesinger F, et al. Molecular cytogenetic analysis of chromosomal breakpoints in the IGH, MYC, BCL6, and MALT1 gene loci in primary cutaneous B-cell lymphomas. J Invest Dermatol 2004;123:213-9.

89. Kempf W, Kazakov DV, Mittendorf C. Cutaneous lymphomas: An update. Part 2: B-cell lymphomas and related conditions. Am J Dermatopathol 2014;36:197-208.

90. Ferreri AJ, Campo E, Seymour JF, Willemze R, Ilariucci F, Ambrosi A, et al. Intravascular lymphoma: Clinical
La Selva, et al.: Revision in primary cutaneous B-cell lymphoma

presentation, natural history, management and prognostic factors in a series of 38 cases, with special emphasis on the ‘cutaneous variant’. Br J Haematol 2004;127:173-83.

91. Ponzoni M, Arrigoni G, Gould VE, Del Curto B, Maggioni M, Scapinello A, et al. Lack of CD29 (beta1 integrin) and CD54 (ICAM-1) adhesion molecules in intravascular lymphomatosis. Hum Pathol 2000;31:220-6.

92. Röglin J, Böer A.: Skin manifestations of intravascular lymphoma mimic inflammatory diseases of the skin. Br J Dermatol. 2007;157:16-25.

93. Asada N, Odawara J, Kimura S, et al: Use of random skin biopsy for diagnosis of intravascular large B-cell lymphoma. Mayo Clin Proc. 2007;82:1525-7.

94. Hoeller A, Tzankov A, Fleri SA, et al.: Epstein-Barr virus-positive diffuse large B-cell lymphoma in elderly patients is rare in Western populations. Hum Pathol. 2010;41:352-7.

95. Wong HH, Wang J.: Epstein-Barr virus positive diffuse large B-cell lymphoma of the elderly. Leuk Lymphoma. 2009;50:335-40.

96. Ok CY, Ye Q, Li L et al.: Age cut-off for Epstein-Barr virus-positive diffuse large B-cell lymphoma - is it necessary? Oncotarget. 2015;6:13935-13946.

97. Morscio J, Dierickx D, Nijs J, et al.: Clinopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases Am J Surg Pathol. 2014;38:875-86.

98. Seçkin D, Barete S, Euvrard S, et al.: Primary cutaneous posttransplant lymphoproliferative disorders in solid organ transplant recipients: A multicenter European case series. Am J Transplant. 2013;13:2146-53.

99. Katzenstein AL, Doxtader E, Narendra S.: Lymphomatoid granulomatosis: insights gained over 4 decades. Am J Surg Pathol. 2010;34:e35-48.

100. Song JY, Pittaluga S, Dunleavy K, et al.: Lymphomatoid granulomatosis—a single institute experience: pathologic findings and clinical correlations. Am J Surg Pathol. 2015;39:141-56.

101. Rysgaard CD, Stone MS.: Lymphomatoid granulomatosis presenting with cutaneous involvement: a case report and review of the literature. J Cutan Pathol. 2015;42:188-93.

102. James WD, Odom RB, Katzenstein AL.: Cutaneous manifestations of lymphomatoid granulomatosis. Report of 44 cases and a review of the literature. Arch Dermatol. 1981;117:196-202.

103. Carlson KC, Gibson LE.: Cutaneous signs of lymphomatoid granulomatosis. Arch Dermatol. 1991;127:1693-8.

104. Beatty MW, Toro J, Sobar L, et al.: Cutaneous lymphomatoid granulomatosis: correlation of clinical and biologic features. Am J Surg Pathol. 2001;25:1111-20.

105. Dojcinov SD, Venkataraman G, Raffeld M, et al.: EBV Positive Mucocutaneous Ulcer—A Study of 26 Cases Associated With Various Sources of Immunosuppression. Am J Surg Pathol. 2010;34:405-17.

106. Goodlad JR, Krajewski AS, Batstone PJ, McKay P, White JM, Benton EC, et al. Primary cutaneous diffuse large B-cell lymphoma: Prognostic significance of clinicopathological subtypes. Am J Surg Pathol 2003;27:1538-45.

107. Savini P, Lanzi A, Foschi FG, Marano G, Stefanini GF. Lenalidomide monotherapy in relapsed primary cutaneous diffuse large B cell lymphoma-leg type. Ann Hematol 2014;93:333-4.