Towards nonlinear tuning system of stiffness compensator

E G Gurova

Novosibirsk State Technical University, 20, Karla Marksa Ave., Novosibirsk, 630073, Russia

E-mail: lena@mail.ru

Abstract. In this paper, one of the tuning systems for the stiffness compensator based on permanent magnets with changing of the axial distance between magnets has been described. The dependency of the traction force of the anchor rotation angle relatively the basis in the stiffness compensator has been described. Research & Development was performed under the scholarship of the President of the Russian Federation, order № 231 as of April 3, 2018.

1. Introduction

Application of the power installations not only in industry, but in every type of the vehicles, inevitably leads to vibration. The vibration negatively influences reliability, lifetime of the machines, buildings, apparatuses where they are installed, and also the systems of the automatic control systems [1, 4, 14, 16]. Frequently, the vibration is the reason of the accidents. The most acute problem is vibration protection in the automotive, shipbuilding, where the internal combustion engines (ICE) are used as power installation.

The low-frequency oscillations are produced by the ICE that are mostly harmful for human and lead to different diseases. Nowadays the fight with mechanical oscillations (vibration) is one of the important issues.

There are many ways to decrease the vibrations: the dynamic balancing of the engines, the dynamic suppressors of the oscillations, the active vibroprotection systems with additional vibration source. The most common systems are performed in the form of rubber-metal shock absorbers. However, these simple and reliable vibroisolator are ineffective, because the decreasing of their rigidity factor in order to reduce transferred dynamic forces increases the relative movements of the ICE and the equipment is coupled to the engine. This is lack of vibroisolators with floating segment of the zero stiffness.

The application of the vibroisolation devices with the floating segment of the zero stiffness [1, 2, 5, 9, 15] is the most perspective method of the suppression of the vibration level. In this type of the vibroisolators with a rigid element, the tunable stiffness compensators with a falling power characteristic (the negative stiffness factor) are connected in parallel. Nowadays many types of the compensators have been developed, however their designs do not correspond to modern requirements for vibroisolation. Among the known compensators, the most effective compensator is the electromagnetic stiffness compensator (ESC) [2, 3, 11, 12]; it corresponds most fully to the requirements for the ideal vibration isolation both for constant in magnitude and for arbitrarily changing loads.
2. Calculation and simulations

The design of the ESC is the two counter connected electromagnets. This design provides the falling power characteristic, which allows correcting the stiffness of the vibration isolator as a whole.

For well operation of the vibroisolation suspend with correction of the stiffness under the changing loads, the compensator is equipped with the special tuning system. To provide the floating of the zero stiffness segment during the changing of the forces, the tuning system redistributes the electromagnet coils voltage. In [6] it was established that a law of the change of the voltage on the electromagnets during the movement $\Delta U(\Delta x)$ can be: linear or nonlinear as shown in Figures 1 and 2. In [6, 7] it is shown that the nonlinear law of the changing electromagnets voltage can be approximated by quadratic dependency:

$$\Delta U(\Delta x) = a_2 \cdot (\Delta x)^2,$$

where a_2 - the constant factor.

Let's change of the variables in (1) to variables $\Delta U \rightarrow f$, $\Delta x \rightarrow x$:

$$f(x) = a_2 \cdot (x)^2.$$

where $f(x)$ – the initial continuous function;

x – the independent variable.

The investigation of the vibroisolation system in both cases of the reconstruction system showed that the use of the linear adjustment system is preferable. In addition, it is much easier to implement the linear version of the regulator. Thus we can proceed from the quadratic approximated nonlinear law of the voltage dependency from the relative displacement of the vibrating and protected objects to the linear law. The vibration system is working under small enough relative displacement of the vibrating and protected object. So let's consider the non linear law, which is shown in Figure 2 in the segment $[a, b]$ close to the origin point. After performing some calculations of the nonlinear law of the voltage changing the displacement in given segment, it is possible to note that the law is appropriate for dependency, which is described by eq. 2, but with $a_2 \approx 1$. So the nonlinear law in segment $[a, b]$ is described by:

$$f(x) = x^2.$$

Now we can perform approximation to obtain the linear dependence by using the Weierstrass theorem [10]: if the function $f(x)$ is continuous on the interval $[a, b]$, then, as little as a positive number ϵ, there is a polynomial of sufficiently high degree m, whose deviation from the given function $f(x)$ on the segment $[a, b]$ is less than ϵ, that is, for all points $x \in [a, b]$, the inequality is:

$$\left|f(x) - Q_m(x)\right| < \epsilon$$

Figure 1. Linear law of the voltage changing from displacement changing.

Figure 2. Nonlinear law of the voltage changing from displacement changing.
where \(Q_m(x) \) - the continuous approximating generalized polynomial;
\(\varepsilon \) - the quadratic deviation (deviation from zero).

For the function (3), the polynomial of best approximation is:
\[Q_1(x) = a_1 \cdot x + a_0 \]
(5)
where \(a_0, a_1 \) - constant coefficients.

The first order part in segment \([a, b]\) is:
\[Q_1(x) = x^2 - T_2(x), \]
(6)
where \(T_2(x) \) - the Chebyshev polynomial.

Indeed, according to the meaning of the problem, the difference is:
\[f(x) - Q_1(x) = x^2 - a_1 \cdot x - a_0. \]
(7)
This polynomial is polynomial of the best approximation, which has minimal deviation from zero in a given segment, i.e. the Chebyshev polynomial.

Consequently, the polynomial:
\[Q_2(x) = x^2 - a \cdot x - a_0 \]
(8)
has deviation from zero in the segment \([a, b]\).

The required coefficients in the equation of the polynomial (8) can be calculated from the following expression:
\[Q_2(x) = T_2(x) = \left(\frac{b-a}{2} \right)^2 \cdot T_2 \left(\frac{x - \frac{b+a}{2}}{\frac{b-a}{2}} \right). \]
(9)

After substitution of the equation (8) with the resulting coefficients into expression (6), we obtain:
\[Q_1(x) = x - a_0. \]
(10)
We can use the variables acting in the compensator tuning system are the voltage increment \(\Delta U \) and the increment \(\Delta x \):
\[\Delta U(\Delta x) = \Delta x - a_0. \]
(11)
The characteristic, which approximately describes the dependency of the voltage changing from the displacement changing, is shown in figure 3 (plot 2). From figure 3 we can see that inside of the segment \([a, b]\), the characteristic can be describe by equation 11, i.e. the polynomial of the first order with less deviations from the given curve (plot 1) has been obtained in [6, 8, 13]. Consequently, the dependency of the voltage changing of the one electromagnet from displacement changing of the segment \([a, b]\) can be considered as linear. And the deviation from zero can be calculated by expression:
\[\varepsilon = \left(\frac{b-a}{2} \right)^2 \cdot \frac{1}{2} = \frac{1}{8} \cdot (b-a)^2. \]
(12)
It is possible to note that the deviation is realized with three points:
\[Q_1(a) = Q_1\left(\frac{a+b}{2} \right) = Q_1(b). \]
(13)
From figure 3, we can see that the plot of the function (11) geometrically represents the middle parallel between the secant passing through the extreme points and the tangent parallel to this secant.
4. Acknowledgments

The research «Vibration isolation devices with the stiffness compensators based on electromagnets and neodymium magnets» was performed under the scholarship of the President of the Russian Federation for young scientists, order № 231 of April 3, 2018.

References

1. Alabuzhev P M, Zuev A K, Negodaev M N, Yarunov A M, Kargin V A, Kopeikin G F and Khan V B 1965 Use of high-speed cinematography to study the action of an electromechanical detent hammer *Journal of mining science* 2 № 1 139-141
2. Alabuzhev P M, Gritchin A A, Stepanov P T, Khon V F 1977 Some results of an investigation of a vibration protection system with stiffness correction *Soviet mining science USSR* 13 № 3 338-341
3. Bartel T, Guisbauer S, Stohr P, Herold S and Melz T 2014 Development of functionally integrated mounts for three- and six-axial vibration isolation of sensitive equipment *Proceedings of international conference on noise and vibration engineering (ISMA2014) and international conference on uncertainty in structural dynamics (USD2014)* 119-130
4. Bonisoli E, Vigliani A 2007 Identification techniques applied to a passive elasto-magnetic suspension *Mechanical systems and signal processing* 21 № 3 1479-1488
5. Carrella A, Brennan M J and Waters T P 2007 Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic *Journal of sound and vibration* 301 № 3-5 678-689
6. Gurova E G, Gurov M G, Makarov S V and Sergeev A A Features of the power characteristics of the vibration isolators *Advanced Materials Research* 1040 678-681
7. Gurova E G 2015 Improving of the operation efficiency of the vehicle due to using of the neodymium magnets inside the vibration isolation devices *Conf. Series-Materials Science and
Engineering 91 012091

[8] Gurova E G, Gurov M G and Panchenko Y V 2016 Simulation of the Magnetic Characteristics and Properties of the Neodymium Compensator of the Stiffness IOP Conference Series: Materials Science and Engineering 142 № 1 123667

[9] Koyacic I, Brennan M J, Waters T P 2008 A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic Journal of sound and vibration 315 № 3 700-711

[10] Lee J, Ghasemi A H, Okwudire, C E and Scruggs J 2017 A linear feedback control framework for optimally locating passive vibration isolators with known stiffness and damping parameters Journal of vibration and acoustics-transactions of the asme 139 (1) 011006

[11] Lin S Y, Xu J and Cao H 2016 Analysis on the ring-type piezoelectric ceramic transformer in radial vibration IEEE Transactions on power electronics 31 № 7 5079-5088

[12] Lee C M, Goverdovskiy V N and Temnikov A I 2007 Design of springs with «negative» stiffness to improve vehicle driver vibration isolation Journal of sound and vibration 302 № 4-5 865-874

[13] Prisekin V L, Pustovoi N V and Rastorguev G I 2014 Algorithms for controlling fatigue tests of airplanes Journal of Applied Mechanics and Technical Physics 55 № 1 164-171

[14] Subrahmanyan P K, Trumper D L 2000 Synthesis of passive vibration isolation mounts for machine tools - A control systems paradigm Proceedings of the 2000 American control conference 1-6 2886 – 2891

[15] Xu Z D, Xu F X and Chen H 2015 Vibration suppression on a platform by using vibration isolation and mitigation devices Nonlinear dynamics 83 1341-1353

[16] Wang J, Zhao S G, Wu D F and Jing X J 2016 The interior working mechanism and temperature characteristics of a fluid based microvibrationisolator Journal of sound and vibration 360 1-16