LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases

Zhenyu Bao¹,²†, Zhen Yang³†, Zhou Huang²†, Yiran Zhou², Qinghua Cui²,⁴,* and Dong Dong¹,*

¹Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China, ²Department of Biomedical Informatics, School of Basic Medical Sciences, MOE Key Lab of Cardiovascular Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing 100190, China, ³Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China and ⁴Center of Bioinformatics, Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China

Received August 03, 2018; Revised September 03, 2018; Editorial Decision September 22, 2018; Accepted September 25, 2018

ABSTRACT

Mounting evidence suggested that dysfunction of long non-coding RNAs (lncRNAs) is involved in a wide variety of diseases. A knowledgebase with systematic collection and curation of lncRNA-disease associations is critically important for further examining their underlying molecular mechanisms. In 2013, we presented the first release of LncRNADisease, representing a database for collection of experimental supported lncRNA-disease associations. Here, we describe an update of the database. The new developments in LncRNADisease 2.0 include (i) an over 40-fold lncRNA-disease association enhancement compared with the previous version; (ii) providing the transcriptional regulatory relationships among lncRNA, mRNA and miRNA; (iii) providing a confidence score for each lncRNA-disease association; (iv) integrating experimentally supported circRNA-disease associations. LncRNADisease 2.0 documents more than 200 000 lncRNA-disease associations. We expect that this database will continue to serve as a valuable resource for potential clinical application related to lncRNAs. LncRNADisease 2.0 is freely available at http://www.rnanut.net/lncrnadisease/.

INTRODUCTION

Large number of studies have indicated that long non-coding RNAs (lncRNAs, >200 nt in length) are highly associated with the progression of a wide variety of diseases (1,2). Over the past decade, associations between dys-function of lncRNAs and diseases have been the subject of intense investigation (3). A tremendous amount of experimentally and/or computationally supported lncRNA-disease associations have been identified (4,5). These disease-related lncRNAs offer potential new clinical application.

Previously, we developed LncRNADisease database (6), which integrated experimentally supported lncRNA-disease associations. The first version of LncRNADisease provided users an easy to use resource and platform to retrieve disease-related lncRNAs. Since its first release in 2013, more lncRNA-disease associations have been identified based on experimental and/or computational methods (5,7,8). It is therefore paramount to update LncRNADisease database to keep a pace with the rate of data accrual. Here, we introduce LncRNADisease 2.0, a significantly expanded version of this database. LncRNADisease 2.0 offers several distinct advantages from its first release: (i) integration from experimentally and/or computationally supported data, exceeding an over 40-fold lncRNA-disease associations enhancement over the previous version; (ii) providing the transcriptional regulatory relationships among lncRNA, mRNA and miRNA; (iii) mapping disease names to disease ontology (DO) (9) and Medical Subject Headings (MeSH)(10); (iv) providing a confidence score for each lncRNA-disease association. In addition, circular RNAs (circRNAs), a class of long endogenous non-coding RNAs (>100 nt in length), are associated with a wide range of diseases (11,12). CircRNA has also been discovered as an important type of lncRNA (13). We therefore integrated experimentally supported circRNA-disease associations into LncRNADisease 2.0 through manual literature curation. The database can be freely available at http://www.rnanut.net/lncrnadisease/.
The confidence scores (CS) can be calculated as follows:

\[
\text{Confidence Score (CS)} = 1 - \prod_{i} \left(1 - \frac{w_{t}}{1 + e^{-n}}\right)
\]

where \(t \) is the evidence type (\(s \): strong experimental evidence, \(w \): weak experimental evidence, \(p \): computational evidence), \(n \) is the number of evidence and \(w_{t} \) is the weight factor.

It is well known that many lncRNAs function together with microRNA and mRNA by forming a well-regulated interacting network (24). Here, we attempted to propose the potential relationships between lncRNAs, microRNAs and mRNAs. We defined the lncRNA-mRNA interactions by measuring the cis-regulatory function of lncRNAs (defined as pairs of lncRNA and mRNA located within a genomic window of 100 kb). MicroRNA was derived from miRBase (25), and microRNA targets were predicted using PITA (26), miRanda (27) and RNAhybrid (28) algorithms, and a high-quality miRNA target dataset was generated by intersecting data generated by at least two different miRNA target prediction methods. At last, LncRNADisease 2.0 contains 12207 lncRNA–mRNA and 2368 miRNA–lncRNA regulatory relationships.

We manually curated 19 166 lncRNAs, 823 circRNAs and 529 diseases from 3878 literatures. Cancer (44.2%), cardiovascular disease (11.6%) and neurodegeneration disease (7.3%) represent the top three classes of diseases. LncRNAs are high-throughput procedure for global gene expression profiling which may not exactly reflect the expression profiling (49).
Table 1. Data summary in LncRNADisease database

Data content	Version 2.0	Version 1.0	lncRNAdb	Lnc2Cancer	EVLncRNAs
lncRNA genes	19 166	321	71	531	4502
circRNA genes	823	NA	NA	NA	NA
Diseases	529	166	86	338	
Experimental lncRNA-disease associations	10 564	480	NA	1057	2324
Computational lncRNA-disease associations	195 395	1564	NA	NA	NA
circRNA-disease associations	1004	NA	NA	NA	NA
Interactions	14 575	475	307	NA	1163

NADisease 2.0 contains 10 564 experimentally supported lncRNA-disease associations and 1004 experimentally supported circRNA-disease associations across four species (Figure 1). A total of 195 395 predicted lncRNA-disease associations were involved in our database, and 23102 entries can be predicted by at least two algorithms.

DATABASE CONSTRUCTION

A user-friendly web interface was developed to present LncRNADisease 2.0. All data were managed by a relational database implemented with MySQL. The web interface for browsing and searching was implemented by PHP and JavaScript program. Apache Tomcat web server was used for the http server.

NEW FEATURES AND DATABASE UTILITY

Expanded entries on lncRNA-disease associations

Recent experimental technologies and computational prediction algorithms have been developed, leading to the expansion of many diverse lncRNA-disease associations. In LncRNADisease 2.0, an over 40-fold increase in lncRNA-disease association enhancement were obtained compared with the previous version (Table 1). We compared the content of LncRNADisease 2.0 with other related database (Table 1), including lncRNAdb (15), Lnc2Cancer (14), EVLncRNAs (29), which are now still available to download. After comparison to related database, the result showed that all these data were involved in LncRNADisease 2.0, and our database will be an important complement to other similar resources. In this release, experimentally supported circRNA-disease associations were also involved. Notably, we assigned confidence score to each entry by integrating the experimental and computational evidence.

Database query and search platform

A user-friendly web interface was developed to present the LncRNADisease 2.0. Users can browse and search all lncRNA-disease associations in the database. LncRNADisease 2.0 also provided an option in the ‘Search’ page that allows users to filter lncRNA-disease associations by certain experimental methods. In LncRNADisease 2.0, each lncRNA-disease association entry contains detailed information, including gene symbol, gene category, disease information, regulatory relationship, PubMed information, etc. To facilitate users accessing disease information from external resources, the disease names were mapped to the DO and MeSH.

LncRNA regulatory network

LncRNAs play increasingly appreciated gene-regulatory roles, and can affect an abundant number of target genes by interacting with sponging miRNAs. To further annotation the functional implication of disease-related lncRNAs, we constructed and visualized lncRNA–miRNA–mRNA network in LncRNADisease 2.0. It was developed on the basis of Cytoscape web program.

CONCLUSION

Emerging evidence suggests that deregulation of lncRNAs plays an important role in diseases. To date, substantial studies have documented numerous lncRNAs involved in the progression of pathological disorders. Most disease-related lncRNAs have been examined in independent studies, and lncRNA-disease associations are scattered in various resources. Comprehensive collection of these lncRNA-disease associations will provide scientists with a resource for disease research. Here, we provided the LncRNADisease 2.0 to curate these data and provided a platform to facilitate the study of lncRNA-disease associations. LncRNADisease 2.0 contains more lncRNA-disease associations. We expect that the number of disease-related lncRNAs will continue to increase in the future release. We will continually maintain and update LncRNADisease database and integrate more related datasets, such as genomic and epigenetic information. We expect that this database will continue to serve as a valuable source for potential clinical application related to lncRNAs.

FUNDING

Special Project on Precision Medicine under the National Key R&D Program [2016YFC0903003 to Q.C.]; National Natural Science Foundation of China [31200956 to D.D., 81670462 to Q.C.]. Funding for open access charge: Special Project on Precision Medicine under the National Key R&D Program [2016YFC0903003 to Q.C.].

Conflict of interest statement. None declared.

REFERENCES

1. Lalevee,S. and Feil,R. (2015) Long noncoding RNAs in human disease: emerging mechanisms and therapeutic strategies. Epigenomics, 7, 877–879.
2. Wapinski, O. and Chang, H. Y. (2011) Long noncoding RNAs and human disease. *Trends Cell Biol.*, 21, 354–361.
3. Mercer, T. R. and Mattick, J. S. (2013) Structure and function of long noncoding RNAs in epigenetic regulation. *Nat. Struct. Mol. Biol.*, 20, 300–307.
4. Schmitz, S. U., Grote, P. and Herrmann, B. G. (2016) Mechanisms of long noncoding RNA function in development and disease. *Cell. Mol. Life Sci.*, 73, 2491–2509.
5. Chen, X., Yan, C. C., Zhang, X. and You, Z. H. (2017) Long non-coding RNAs and complex diseases: from experimental results to computational models. *Brief. Bioinform.*, 18, 558–576.
6. Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G. and Cui, Q. (2013) lncRNA-disease: a database for long-non-coding RNA-associated diseases. *Nucleic Acids Res.*, 41, D983–D986.
7. He, Q., Liu, Y. and Sun, W. (2018) Statistical analysis of non-coding RNA data. *Cancer Lett.*, 417, 161–167.
8. Guo, X., Gao, L., Wang, Y., Chiu, D. K., Wang, T. and Deng, Y. (2016) Advances in long noncoding RNAs: identification, structure prediction and function annotation. *Brief. Funct. Genomics*, 15, 38–46.
9. Kibbe, W. A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G., Mungall, C. J., Binder, J. X., Malone, J., Vasant, D. et al. (2015) Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. *Nucleic Acids Res.*, 43, D1071–D1078.
10. Bhattacharyya, S., Ha-Thuc, V. and Srinivasan, P. (2011) MeSH: a window into full text for document summarization. *Bioinformatics*, 27, i120–i128.
11. Menczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M. et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. *Nature*, 495, 333–338.
12. Li, X. M., Ge, H. M., Yao, J., Zhou, Y. F., Yao, M. D., Liu, C., Hu, H. T., Zhu, Y. X., Shan, K., Yan, B. et al. (2018) Genome-wide identification of circular RNAs as a novel class of putative biomarkers for an ocular surface disease. *Cell Physiol. Biochem.*, 47, 1630–1642.
13. Pan, X. and Xiong, K. (2015) PredicrRNA: computational classification of circular RNA from other long non-coding RNA using hybrid features. *Mol. Biosyst.*, 11, 2219–2226.
14. Ning, S., Zhang, J., Wang, P., Zhi, H., Wang, J., Liu, Y., Gao, Y., Guo, M., Yue, M., Wang, L. et al. (2016) Lnc2Cancer: a manually curated database of experimentally supported IncRNAs associated with various human cancers. *Nucleic Acids Res.*, 44, D980–D985.
15. Quek, X. C., Thomson, D. W., Maag, J. L., Bartonicek, N., Signal, B., Clark, M. B., Gloss, B. S. and Dinger, M. E. (2015) IncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. *Nucleic Acids Res.*, 43, D168–D173.
16. Wang, J., Cao, Y., Zhang, H., Wang, T., Tian, Q., Lu, X., Kong, X., Liu, Z., Wang, N., Zhang, S. et al. (2017) NSDNA: a manually curated database of experimentally supported ncRNAs associated with nervous system diseases. *Nucleic Acids Res.*, 45, D902–D907.
17. Chen, X. and Yan, G. Y. (2013) Novel human IncRNA-disease association inference based on IncRNA expression profiles. *Bioinformatics*, 29, 2617–2624.
18. Lan, W., Li, M., Zhao, K., Liu, J., Wu, F. X., Pan, Y. and Wang, J. (2017) LDAP: a web server for IncRNA-disease association prediction. *Bioinformatics*, 33, 458–460.
19. Sun, J., Shi, H., Wang, Z., Zhang, C., Liu, L., Wang, H., Hao, D., Liu, S. and Zhou, M. (2014) Inferring novel IncRNA-disease associations based on a random walk model of an IncRNA functional similarity network. *Mol. Biosyst.*, 10, 2074–2081.
20. Wang, J., Ma, R., Ma, W., Chen, J., Yang, J., Xu, Y. and Cui, Q. (2016) LncDisease: a sequence based bioinformatics tool for predicting IncRNA-disease associations. *Nucleic Acids Res.*, 44, e90.
21. Chou, C. H., Chang, N. W., Shrestha, S., Hsu, S. D., Lin, Y. L., Lee, W. H., Yang, C. D., Hong, H. C., Wei, T. Y., Tu, S. J. et al. (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. *Nucleic Acids Res.*, 44, D239–D247.
22. Veres, D. V., Gyurko, D. M., Thaler, B., Szalay, K. Z., Fazekas, D., Korcsmaros, T. and Csermely, P. (2015) ComPPI: a cellular compartment-specific database for protein-protein interaction network analysis. *Nucleic Acids Res.*, 43, D485–D493.
23. Kuhn, M., Szklarczyk, D., Pletschek, Frankild, S., Blicher, T. H., von Mering, C., Jensen, L. J. and Bork, P. (2014) STITCH 4: integration of protein-chemical interactions with user data. *Nucleic Acids Res.*, 42, D401–D407.
24. Zhou, M., Wang, X., Li, J., Hao, D., Wang, Z., Shi, H., Han, L., Zhou, H. and Sun, J. (2015) Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous IncRNA and disease network. *Mol. Biosyst.*, 11, 760–769.
25. Kozomara, A. and Griffiths-Jones, S. (2014) miBase: annotating high confidence microRNAs using deep sequencing data. *Nucleic Acids Res.*, 42, D68–D73.
26. Kerstes, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of site accessibility in microRNA target recognition. *Nat. Genet.*, 39, 1278–1284.
27. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C. and Marks, D. S. (2004) Human MicroRNA targets. *Nature*, 435, 868–873.
28. Kruger, J. and Rehmsmeier, M. (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. *Nucleic Acids Res.*, 34, W451–W454.
29. Zhou, B., Zhao, H., Yu, J., Guo, C., Dou, X., Song, F., Hu, G., Cao, Z., Qu, Y., Yang, Y. et al. (2018) EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments. *Nucleic Acids Res.*, 46, D100–D105.