Review article

Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury

Dayu Pan a,b,1, Weixiao Liao a,b,1, Shibo Zhu a,b, Baoyou Fan a,b, Nanxi Yu c, Guangzhi Ning a,b,**, Shiqing Feng a,b,*

a Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, PR China
b Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Heping District, Tianjin, 300052, PR China
c Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China

ARTICLE INFO

Keywords:
- Spinal cord injury
- MicroRNA
- Exosome

ABSTRACT

Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome’s advantage is transporting the carried material to the target cells across the blood–brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.

1. Introduction

SCI is a devastating neurological disorder that causes severe physical and psychological injury to the patient and brings a substantial economic burden to society [1,2]. It is a common injury with complex and disastrous clinical and pathological processes separated into immediate mechanical primary damage and secondary cascade damage [3,4]. According to current knowledge, multiple factors are involved in secondary damage: blood–brain barrier dysfunction, local inflammation, glia or fibrotic scar formation, neuronal death, demyelination and disruption of neural pathways (Fig. 1) [2,5]. After the primary injury, the infiltration of activated microglia and peripheral immune cells triggers a robust neuroinflammatory response. Monocytes infiltrate and occupy the center of the injury site to remove tissue debris. T and B lymphocytes also infiltrate the spinal cord in the subacute phase and produce pro-inflammatory cytokines, chemokines, autoantibodies, reactive oxygen species and nitrogen substances. The loss of oligodendrocytes in the acute and subacute phases of SCI leads to axon demyelination, followed by spontaneous remyelination in the subacute and chronic phases. Astrocytes and Oligodendrocyte progenitor cells (OPCs) proliferate in the spinal cord parenchyma and migrate to the injured site, helping to form glial scars. Pericytes, fibroblasts, and released collagen and fibrinectin together form fibrotic scars (Fig. 1). In addition, mesenchymal stem cells (MSCs) secrete a number of neurotrophic factors, such as brain-derived growth factor (BDNF), glial-derived growth factor (GDNF), nerve growth factor (NGF), Neurotensin-1 (NT-1), Neurotensin-3 (NT-3), Ciliary Neurotrophic Factor (CNTF), and basic fibroblast growth factor (bFGF) [6–11]. Moreover, MSCs can not only prevent nerve degeneration and apoptosis, but also support neurogenesis, axonal growth, re-myelination, and cell metabolism [12–19] (Fig. 2).

As for SCI treatment, current therapies involve Methylprednisolone (MP), which is a drug approved by both European medical institutions and the Food and Drug Administration (FDA) for 48 h in high doses in the acute phase [20]. MP is a corticosteroid that make an inhibition of lipid...
peroxidation as a free radical scavenger. It also inhibits the inflammatory activities, protects the blood-spinal cord barrier, and promotes blood flow to the spinal cord. Whereas the side effects like urinary tract infection, respiratory infection as well as wound surface infection limit its’ broad utilization [20,21]. According to the pathologic process of central nervous system damage, the current therapeutic theory is composed of neuroprotective treatment and neurorestorative treatment. The neuroprotective treatment focuses on the reduction/prevention of secondary damage nerve cell death and damage size. And the neurorestorative treatment aims to enhance neurological recovery by neurovascular remodeling, involving angiogenesis, neurogenesis, oligodendrogensis and the outgrowing of dendrite/axon [22].

Exosomes released by oligodendrocytes and the internalization of neurons play an important role in increasing neuronal activity under situations of cellular stress (hypoxia and glucose deficiency). Microglia can also secrete exosomes that contain cytokine interleukin-1β (IL-1β) proprotein. Furthermore, when exosomes are exposed to high levels of extracellular ATP-releasing by astrocytes or damaged tissue, the purinergic (P2X7) receptors of micro vesicles are activated, resulting in caspase-1 mediated leukocyte-mediated division of interleukin-1β proprotein and secrete the mature interleukin-1β from the vesicles [27]. This process may be the promoter of the primary inflammation during SCI. Besides, recent studies have indicated that the effect of stem cells on stroke and traumatic brain damage relied on the production and release of exosomes, which provides the basis for exosome treatment [5,28,29]. Importantly, exosomes could carry proteins, lipids, and RNAs to transport messages among various cell types that affect the normal physiological condition and pathological state [23]. And exosomes are capable of transporting cargoes across blood brain barrier (BBB) and blood-spinal cord barrier (BSCB) to reach distant organs without significant

Fig. 1. Schematic diagram of SCI. The upper diagram shows the composition of the intact spinal cord, and the lower diagram shows the synthesis of the spinal cord at various stages after SCI.

Fig. 2. The functions of different cell-derived exosomes.
through the systemic circulation. And the ability to modify recipient cell communication between cells may potentially occur at a distance by exosomes [48]. Delivered by exosomes make them to be ideal candidate for gene therapy called “exosomal shuttle RNA” (esRNA) [47]. This genetic communication between cells may potentially occur at a distance by exosomes through the systemic circulation. And the ability to modify recipient cell protein production and gene expression by specific mRNA or miRNA delivered by exosomes make them to be ideal candidate for gene therapy [48].

Exosome-mediated circulating miRNA is a new way of intercellular [49] gene transfer among cells and a biomarker for many diseases [50–52]. The exosome shuttle miRNA is fused with multivesicular bodies (MVBs) and secreted by the endosomal membrane compartment, which can be transported long distances in body fluids [53–55].

Down-regulation of miR-291–3p, −183, −92, −200b, and −200c through the neurogenesis and neural tube (NT) growth in mouse, and inner human central nervous system developmental models, while miR-9, −124a, −7, −125a and −125b are up-regulated [56–58]. MiR-124, −125b, −137 and −9 enhance neuronal differentiation. However, to the contrary, miR-183 and miR-8–200 anti-apoptotic family is divided into anti-apoptotic, neural progenitor maintenance, and proliferative molecules [59,60].

Except for their physiological function, miRNAs act on the pathogenesis processes of SCI. For example, miR-21 has been detected that determining the shift from hypertrophy to hyperplasia during the process of astrogliosis [3]. By using viral miR-133b infection adult mouse spinal cord model, Thomas Theis, et al. observed reduction of RhoA, xylosyl-transferase 1 (Xylt1), ephrin receptor A7 (EphA7), and purinergic receptor P2X ligand-gated ion channel 4 (P2RX4), that has been determined as a negative factor in neurite outgrowth [61]. In addition, miR-494, which was discovered and proved by Huaguang Zhu et al., has the ability to inhibit apoptotic cells, reduce lesion size and improve functional recovery [62]. Furthermore, up-regulation of miR-126 enhances angiogenesis and inhibits leukocyte overflow in the damaged spinal cord [63]. Whereas, due to drug challenges like degradation in the blood and poor target delivery of system-delivered miRNA mimics, and clinical difficulties related to local transfer, the prime research has barely succeeded in applying these methods to clinical practice [64].

3. MSCs derived exosomal miRNAs and SCI

Like general exosomes, MSC-derived exosomes carry complex cargo, including proteins, nucleic acids and lipids [65–67]. The miRNAs encapsulated in MSC exosomes mainly exist in the form of their precursors [68]. MSCs have been used to treat central nervous system damage. It has been demonstrated that MSCs generalized axons promotes neurogenesis and angiogenesis, decrease neuroinflammation, decrease model separation and spatial learning disorders, and enhance recovery of function of animal brain injury models [69–71] (Fig. 2). Emerging evidence shows that the efficacy of MSC treatment is mainly derived from releasing nutrient factors through paracrine actions to reduce inflammation, support nerves, and promote regeneration of damaged tissue instead of differentiating and replacing the lost cells in the injury site [72,73]. Extensive studies have indicated that exosomes from MSCs carrying miRNAs have efficient repair effects on SCI [74,75]. Exosomal miRNAs currently studied in SCI mainly include miRNA-486, miRNA-21, miRNA-133b, and miRNA-126 (Table 1).

Knockdown of miRNA 486 in vitro and in vivo by small interfering RNAs can effectively improve motor functional recovery and neuroprotection in mice after SCI by inducing the expression of NeuroD6 [76]. MiRNA-21 is one of the most common and most studied miRNAs secreted by MSCs derived exosomes for SCI treatment. Xu et al. [77,78] reported that miRNA-21 regulates apoptosis and differentiation of neurons in patients with SCI by targeting the expression of PTEN or tumor suppressor gene programmed cell death 4 (PDCD4). Interestingly, the protective effect of MSCs derived exosomes could be weakened to reduce the secretion of miRNA-21 by insulin resistance in obese rat [79].

MiRNA-126 was found highly expressed after SCI, while reduced inflammation, increased angiogenesis and improved functional recovery were observed when increasing the level of miRNA-126 by using agomir-126. This process is concurrent with downregulation of expression of Sprouty Related EHV1 Domain Containing 1 (SPRED1), Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) and Vascular Cell Adhesion Molecule 1 (VCAM) target genes [80].

MiRNA-133b plays an important role in neuronal differentiation, growth, and apoptosis [81–83]. Downregulating miRNA-133b by using
morpholino antisense oligonucleotides is not conducive to the recovery of motor function and reduces neuronal axonal regeneration after SCI [84]. Li et al. showed increased neurons survival and improved motor function and reduces neuronal axonal regeneration after SCI morpholino antisense oligonucleotides is not conducive to the recovery of SCI. Different miRNAs from different cells-derived exosomes and related targets, functions and study models involved in SCI.

Table 1

Cell (s)	MiRNA (s)	Target (s)/Mechanism (s)	Function	Study model	Ref
MSC	miR-486	NeuroD6	Reduce neurons protection	Mice	[76]
	miR-126	RhoA	Promote axonal regeneration Alleviate histopathological damage	Rat	[80]
	miR-29b	NF, GAP43		Rat/Mice/ Zebrafish	[82,94, 95]
	miR-133b	NF, GAP43, CREB and STAT3			
	RhoA				
	miR-21	Fasl	Reduce neurons apoptosis	Rat/Human	[96]
	PDCD4		Promote functional recovery		
	PTEN				
	miR-19b	PTEN			
	miR-216a-5p	TLR4/NF-kB, PI3K/AKT	Promote microglia polarization	Human	[78]
	miR125-a	Bif5	Promote M2 macroglia polarization	Rat	[89]
	miR124-3p	Em1		in vitro	[90]
	miR199a-3p	NGE/TrkA	Promote locomotor function	Rat	[91]
	/145-5p				
Neuron	miR-21	MEF2C	Enhance potassium channel behaviors and expression of nerve important transcription factors	Rat/Human	[97-99]
	miR-146	TLR/NF-kB, TRAF5/BAK1	Promote the repair of SCI and reduce inflammatory responses	Rat	[100]
	miR-7a/b	Zdhhc9/Pkrb/Wipf2/Pin2	Neurite Outgrowth	Rat	[101, 102]
Microglia	miR-124–3p	Rela/ApoE	Promote M2 polarization	Mice	[103]
			Allieving neurodegeneration		
Oligodendrocyte	miR-9 and miR-19a	DCX	Initiate neuronal precursor cell differentiation and allow mature neurons to be polarized	in vitro	[53]

To explore the miRNA’s effect in exosomes related to SCI, Emily B and his colleagues purified RNA from mouse brains of traumatic brain injury (TBI) and control groups, then sequenced the miRNA [54,97,98]. They indicated that the miR-212 releasing was significantly reduced with elevating the simultaneous of miR-21 in neurons, indicating miR-21 expressed as potential extracellular vesicle cargos out of neurons. Nevertheless, miR-21, miR-146, miR-7a, and miR-7b all enhanced dramatically after injury [98]. Interestingly, miR-21 mimics treatment enhanced neuroprotective effect in SCI model and overexpression of miR-21 target PTEN [48] reduced the neurotoxicity of the TBI model. Many studies suggested miR-21 plays an important role in neuroprotection and regeneration in stroke [104] and axotomy [105] models. Otherwise, miR-21 is vital in glial cell activities after SCI by decreasing astrocyte hypertrophy and glial scar formation [106]. Moreover, miR-21 targets microglia Fasl to reduce microglia-mediated Neuronal death in the stroke model [107]. Although miR-21 expression has potential advantages in neuronal damage, it remains defective. Such as in the human immunodeficiency virus infection (HIV), which is a related neurocognitive disorder, elevated miR-21 leads to enhanced potassium channel behaviors and expression of nerve important transcription factors MEF2C, causing neurological disorders [108]. Recently, Weihua C and his colleagues also found exosomal miR-124–3p derived from neuron can suppress the activation of M1 microglia and A1 astrocytes by attenuating the activity of myosin heavy chain 9 (MYH9) to promote recovery after SCI through PI3K/AKT/NF-κB signaling cascade in mice [109]. In summary, miRNAs, especially miR-21 secreted by neurons might be a great approach to treating the SCI [110].

5. Microglia derived exosomal miRNAs and SCI

Shan Huang and his colleagues found that miR-124–3p expression was elevated in exosomes from microglia at 3, 7, 14, 21-, and 28-days post TBI. And microglia exosomal miR-124–3p could reduce neurodegeneration and improve cognitive outcome by targeting Rela/ApoE signaling pathway. It is revealed that miR-124–3p can switch cell polarization from the M1 to the M2 phenotype in various subsets of monocyte cells and microglia [111]. Down-regulation of its expression level is an indicator of neuroinflammation in various diseases, such as experimental autoimmune encephalomyelitis [112] intracerebral hemorrhage [93]. At present, researchers confirmed that miR-124–3p benefited anti-inflammatory M2 polarization in microglia and exerted an
anti-inflammatory effect on injured neurons via their transfer by microglial exosomes. Thus, these findings suggest that the increased miR-124–3p in microglial exosomes exerts a protective effect in injured brain after TBI [111]. Guofeng C et al. suggested that exosomes derived from M2 microglia alleviates ischemia-reperfusion brain injury through transporting exosomal miRNA-137 targeting Notch1, which indicate a potential therapeutic target for SCI treatment.

6. Oligodendrocyte derived exosomal miRNAs and SCI

In the central nervous system, the significant function of oligodendrocytes is providing support and insulation to axons, equivalent to the function of Schwann cells in the peripheral nervous system [113]. Oligodendrocytes includes multivesicular bodies (MVBs) at the axon perimeter, express exosomes involving proteolipid proteins (PLP), myelin proteins, and anti-oxidative stress-related proteins [113,114]. Besides, oligodendroglial precursor cell line Oli-neu can secret exosomes, carrying miR-9 and miR-19a, to decrease neuronal DCX expression. Both miRNAs were predicted to combine with Doublecortin (DCX) [115].Thus, the downregulated expression of neuronal DCX may be mediated by the miRNAs in the exosomes. DCX, as a microtubule-stable protein, is down-regulated in the course of neuronal differentiation. Exosomal-mediated down-regulation of DCX might be vital in the program of the nervous system. During the growth of the nervous system, oligodendrocytes can provide differentiation signals to neurons. The type of DCX can initiate neuronal precursor cell differentiation and also allow mature neurons to be polarized [116]. As a result, the miRNAs carried by exosomes released by oligodendroglial precursor cells may play an essential role in neuroplasticity post SCI.

7. Conclusions and future perspectives

Transferring information through circulating vesicles is considered a third way of intercellular association, as crucial as intercellular contact-dependent signals and soluble molecular delivery signals [93,112]. Extracellular vesicles, subdivided into exosomes, microvesicles (MVs), and apoptotic bodies, can transport proteins, lipids, mRNAs and miRNAs. In particular, exosomal miRNA has been shown to regulate protein expression in recipient cells and have functional role in vivo [48,117]. It has been reported that treatment by exosomes in the early stage after SCI could attenuate neuronal cell apoptosis [118]. For example, systemic injection of MSCs derived exosomes could promote recovery of SCI rats by increasing the expression level of anti-apoptotic protein B-cell lymphoma 2 (Bcl2) and markedly reducing the activity of pro-apoptotic protein Bcl-2-associated X protein (Bax) [119,120]. In addition, other studies also demonstrated that the anti-apoptotic effect induced by MSC-exosomes targeting Wnt/β-catenin signaling pathway [121] and MSC-exosomes could also reduce neuronal apoptosis by inducing autophagosome formation through improving the expression of autophagy-related proteins, including LC3IIIB and Beclin1 [122,123] (Fig. 2).

Moreover, when SCI occurs, the injured spinal column is hypoxic. MSCs derived exosomes, which full of phosphatase and tensin homologous small interfering RNA (ExoPTEN), can significantly enhance the angiogenesis and axon regeneration in the damaged spinal cord by reducing PTEN expression in rats [30,124] (Fig. 2). More importantly, MSCs derived exosomes are also found to decrease the permeability of the blood-spinal- cord barrier (BSCB), enhance its integrity, and promote axon regeneration by down-regulating the NF-κB p65 signaling pathway in pericytes [125]. Furthermore, our previous work also indicated that schwann cell-derived exosomes could repair SCI by attenuating chondroitin sulfate proteoglycans (CSPGs) deposition through activating the Toll-like receptor II on astrocytes [126].

miRNAs have been shown to bind to mRNA in cells and silence their expression and participate in post-transcriptional regulation. A miRNA can have hundreds of target mRNAs and interact with other miRNAs to regulate post-transcriptional mRNA expression [69]. Previously, miRNAs can only exert their modulatory function within the cell to regulate mRNA expression instead of being secreted outside the cell and act on other cells [70]. The miRNAs cannot exert their regulatory effects if they existing in the extracellular matrix with no protection and no target cells. However, the miRNAs in exosomes can not only been well protected by the phospholipid bilayer and then escape the hydrolysis of RNases, but also receive targeting effect of exosomes, which can act on specific cell populations [71,127,128].

Accumulated researches have indicated that exosomes are capable of mediating cell-to-cell communication [129–131], packaging and transporting miRNAs to new cells and participating in regulating gene expression. Nowadays, exosomal miRNAs are regarded as novel biomarkers for cervical cancer prediction and diagnosis [131,132]. Moreover, BMSCs-derived exosomal miR-150–5p can inhibit the apoptosis of cardiomyocytes and improve the cardiac function via targeting Bax [133,134]. In addition, exosomes derived from BMSCs contained higher miR-29 and miR-24 and lower miR-21, miR-34, and miR-378. These exosomal miRNAs can improve cardiac function by attenuating fibrosis and inflammation in the rat model of myocardial infarction [133,135].Except for MSCs, neurons, microglia and oligodendrocytes, emerging studies also indicate that astrocytes-derived exosomal miR-26a may impact neuronal function and morphology [136] and infiltrated macrophages after SCI could aggravate BSCB integrity breakdown by delivering exosomal miR-155 through activating the NF-κB pathway [137]. Nevertheless, it has not been well studied whether exosomes can accurately transfer miRNAs from their parent cells to their target cells, and the functions of regulating post-transcriptional translation and contribution of SCI and TBI are not transparent.

According to the traditional understanding, most of the carriers for communication between different cells are proteins. However, it has not been found that cells can also transport nucleic acids from one cell to another by encapsulating vesicles and exerting their regulatory effects on target cells [26]. Is this regulation vital in cell's growing, differentiating, as well as function? Does it also participate in various pathophysiological processes that include damage to the CNS and regeneration after SCI? The structure and function of multicular individuals are inseparable from the information and material exchanges between cells. However, the detailed mechanism of communication between cells is still not well known. As the individual organisms evolve toward higher levels, the communication between cells will also be more accurate, stable, and rapid. The appearance of synapses is a way of precise communication between cells. Exosomal microRNA work on specific cell populations also suggests that they are a more accurate and stable means of the cell-to-cell communication.

Funding
This work was supported by the following funding: National Natural Science Foundation of China (Project Number: 81772342, 82072439), Key Program of National Science Foundation of Tianjin (19JCZDJC36300), International Cooperation Program of National Natural Science Foundation of China (81620108018).

Consent for publication
Not applicable.

Availability of supporting data
Not applicable.

Declaration of competing interest
The authors declare no conflict of interest.
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017;8:45-69. doi:10.1016/j.wjbc.2017.03.029.

Heyer MP, Pani AK, Smeyne RJ, Kenny PJ, Feng G. Normal midbrain development and the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. J Med Virol 2016;88:437-47. doi:10.1002/jmv.24355.

Yu YM, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011;33:1587-97. doi:10.1111/j.1460-9568.2011.07643.x.

Li D, et al. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front Neurosci 2018;12:845. https://doi.org/10.3389/fnins.2018.00845.

Ren ZW, Zhou JG, Xiong ZK, Zhu FZ, Guo XD. Effect of exosomes derived from MiR-133b-modified ASCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci 2019;23:52-60. https://doi.org/10.26355/eurrev_201901.16747.

Xin H, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfers of exosome-expressing mesenchymal cellular. Stem Cells 2020;31:2773-47. doi:10.1002/stem.1409.

Zhang Y, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 2017;54:2659-73. https://doi.org/10.1007/s12031-016-9516-4.

Chang Q, et al. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury downregulating iNOS. Brain Res Bull 2021;170:199-210. https://doi.org/10.1016/j.brainresbull.2021.02.015.

Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124A-5p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating En1 and promoting M2 macrophage polarization. Archivs Ther Res 2020;22:75. https://doi.org/10.11097/02-2146-x.

Wang Y, et al. Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther 2021;12:117. doi:10.1186/s13287-021-02148-5.

Liu, W. et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M2 polarization. J Neuroinflammation 2017;14, 47. doi:10.1186/s13075-020-2146-x.

Zhang J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Dev Reprod Biol 2015;13:17-24. doi:10.1016/j.devr.2015.02.001.

Ni M, Xu R, Wang J, Hou B, Xie A. MiR-133b ameliorates axon degeneration induced by MPP(+) via targeting RhoA. Neuroscience 2016;325:39-49. https://doi.org/10.1016/j.neuroscience.2016.03.042.

Wu X, et al. RhoA/RO kinase mediates neuronal death due to regulating cPLA2 activation. Mol Neurobiol 2017;54:6885-95. doi:10.1007/s12020-016-0187-6.

Hu JZ, et al. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 2013;30:1349-60. doi:10.1089/neu.2012.2748.

Sakai A, Suzuki H. Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun 2013;435:176-81. doi:10.1016/j.bbrc.2013.04.089.

Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis 2010;1:777. doi:10.1038/cddis.2010.56.

Zhang T, et al. The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal Cord 2019;57:141-9. doi:10.1038/s41393-018-0180-1.

Li YC, et al. Effects of MiR-146a on repair and inflammation in rats with spinal cord injury through the TLR/NF-kappaB signaling pathway. Eur Rev Med Pharmacol Sci 2019;23:4558-63. https://doi.org/10.26355/eurrev_201906_8031.

Ding LZ, Xu J, Yuan C, Teng X, Wu QM. MiR-7a ameliorates spinal cord injury by inhibiting neuronal apoptosis and oxidative stress. Eur Rev Med Pharmacol Sci 2020;24:11-7. https://doi.org/10.26355/eurrev_202001_19890.

Ghiabaudi M, et al. MicroRNA-7b exerts a dual role after spinal cord injury, by supporting plasticity at early stage. Front Mol Biosci 2021;8:618869. https://doi.org/10.3389/fmolb.2021.618869.

Ge X, et al. Increased microglial exosomal miR-124-3p alleviates neurodegeneration and improves cognitive outcome after mTBI. Mol Ther 2020;28:2543-52. https://doi.org/10.1016/j.ymthe.2020.11.017.

Huang S, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. Faseb J 2018;32:512-28. https://doi.org/10.1096/fj.201700673R.

Willenberg DF, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996;157:3227-33.

Sinn DI, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. J Neurotrauma 2007;24:99-108. doi:10.1089/neur.2006.0206.

Zhang B, et al. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cell Dev 2014;23:1233-44. https://doi.org/10.1007/s12015-013-0479-1.
[108] Zhang R, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2015;12:106. https://doi.org/10.1186/1742-2094-10-106.

[109] Jiang D, et al. Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnol 2020;18:105. https://doi.org/10.1186/s12951-020-00665-8.

[110] Kircher M, et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310–5. https://doi.org/10.1038/ng.2892.

[111] Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: exosomes. J Neurosci Res 2018;96:45–52. https://doi.org/10.1002/jnr.24113.

[112] Corrado C, et al. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 2013;14:5338–66. https://doi.org/10.3390/ijms1405338.

[113] Buller B, et al. MicroRNA-21 protects neurons from ischemic death. FEBS J 2010;277:4299–307. https://doi.org/10.1111/j.1742-4658.2010.07818.x.

[114] Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. J Neurotrauma 2000;17:927–38. https://doi.org/10.1089/neo.2000.17.927.

[115] Bhalaria OG, et al. microRNA-21 regulates astrocitary response following spinal cord injury. J Neurosci 2012;32:17925–47. https://doi.org/10.1523/JNEUROSCI.3860-12.2012.

[116] Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 2012;60:1888–95. https://doi.org/10.1002/glia.22404.

[117] Groot M, Lee H. Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells 2020;9.https://doi.org/10.3390/cells90401044.

[118] Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019;20:175–93. https://doi.org/10.1038/s41571-019-0010-7.

[119] Yuan X, et al. Exosomes derived from pericytes improve microcirculation and recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 2019;13:209. https://doi.org/10.3389/fnins.2019.00209.

[120] Pan, D. et al. Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury. J Neuroinflammation 18, 172. doi:10.1186/s12974-021-02215-x(2021).

[121] Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014;3. https://doi.org/10.3402/jev.v3.23743.

[122] Koga Y, et al. Exosome can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol 2011;2:215–22. https://doi.org/10.3978/j.issn.2078-6891.2011.01.5.

[123] Ha D, Yang N, Nadite V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016;6:287–96. https://doi.org/10.1016/j.jpsb.2016.02.001.

[124] Ichim TE, et al. Exosomes as a tumor immune escape mechanism: possible therapeutic implications. J Transl Med 2008;6:37. https://doi.org/10.1186/1479-5876-6-37.

[125] You X, et al. Exosomal miR663b exposed to TGFbeta1 promotes cervical cancer metastasis and epithelialmesenchymal transition by targeting MGAT3. Oncol Rep 2021;45. https://doi.org/10.3892/opr.2021.8470.

[126] Devhare PB, et al. Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol 2017;91. https://doi.org/10.1128/JVI.02225-16.

[127] Nasser MI, et al. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 2021;143.107389. https://doi.org/10.1016/j.biopha.2021.112118.

[128] Lu Y, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front Neurosci 2019;13:209. https://doi.org/10.3389/fnins.2019.00209.

[129] Kim HY, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment. Nano Lett 2018;18:4965–75. https://doi.org/10.1021/acs.nanolett.8b01816.

[130] Ge X, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and angiogenesis after traumatic spinal cord injury. J Neurotrauma 2016;33:3450–60. https://doi.org/10.1089/jneu.2015.39916.

[131] You X, et al. Exosomal miR-663b exposed to TGFbeta1 promotes cervical cancer metastasis and epithelial-mesenchymal transition by targeting MGAT3. Oncol Rep 2021;45. https://doi.org/10.3892/opr.2021.8470.

[132] Devhare PB, et al. Exosome-mediated intercellular communication between Hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol 2017;91. https://doi.org/10.1128/JVI.02225-16.

[133] Nasser MI, et al. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 2021;143.107389. https://doi.org/10.1016/j.biopha.2021.112118.

[134] Wu, Z., Cheng, S., Wang, S., Li, W. BMSCs-derived exosomal microRNA-150-5p attenuates myocardial infarction in mice. Int Immunopharm 2015;37:389, 10.1016/j.intimp.2015.07.038.2016.

[135] Shao L, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. BioMed Res Int 2017;2017:5346316.10.1155/2017/5346316.

[136] Lafourcade C, Ramirez JP, Luarte A, Fernandez A, Wyneken U. MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J Exp Neurosci 2016;10:1–8. https://doi.org/10.1186/s12974-016-02215-x.

[137] Ge X, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and angiogenesis after traumatic spinal cord injury. J Neurotrauma 2016;33:3450–60. https://doi.org/10.1089/jneu.2015.39916.