Kai Cieliebak1 and Edward Goldstein2

A NOTE ON MEAN CURVATURE, MASLOV CLASS AND SYMPLECTIC AREA OF LAGRANGIAN IMMERSIONS

Abstract. In this note we prove a simple relation between the mean curvature form, symplectic area, and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An immediate consequence is that in Kähler-Einstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.

1. Introduction

Let (M, ω) be a Kähler-Einstein manifold whose Ricci curvature is a multiple of the metric by a real number λ. Hence the Kähler form ω and the first Chern class $c_1(M)$ are related by $c_1(M) = \lambda[\omega]$. Let L be an immersed Lagrangian submanifold of M and let σ_L be the mean curvature form of L (which is a closed 1-form on L). Let $F : \Sigma \to M$ be a smooth map from a compact connected surface to M whose boundary ∂F is contained in L. Let $\mu(F)$ be the Maslov class of F and $\omega(F)$ its symplectic area. The goal of this note is to prove the following simple relation between these quantities:

\begin{equation}
\mu(F) - 2\lambda\omega(F) = \frac{\sigma_L(\partial F)}{\pi}.
\end{equation}

This relation was given in \cite{M} for \mathbb{C}^n and in \cite{Ar} for Calabi-Yau manifolds. Dazord \cite{D} showed that the differential of the mean curvature form is the Ricci form, so in the Kähler-Einstein case σ_L is closed. Y.G. Oh \cite{Oh2} investigated the symplectic area in the case that the mean curvature form is exact.

In the case $\lambda > 0$, Lagrangian submanifolds for which the left-hand side vanishes on all disks F are called monotone in the symplectic geometry literature, cf. \cite{Oh1}. An immediate consequence of (1) is that in Kähler-Einstein manifolds with positive scalar curvature, minimal Lagrangian immersions are monotone.

In view of the condition $c_1(M) = \lambda[\omega]$, the left-hand side of (1) depends only on the boundary of F. Thus if the map $H_1(L; \mathbb{R}) \to H_1(M; \mathbb{R})$ is trivial it defines a cohomology class $\delta_L \in H^1(L; \mathbb{R})$ via $\delta_L(\gamma) := \mu(F) - 2\lambda\omega(F)$ for some 2-cycle F with $\partial F = \gamma$. It follows that in this case the cohomology class of the mean curvature form σ_L is invariant under symplectomorphisms of M. This generalizes Oh’s observation \cite{Oh2} that the cohomology class is invariant under Hamiltonian deformations. One consequence is the following:

Let (M, ω) be a Kähler manifold with $c_1(M) = \lambda[\omega] \in H_2(M; \mathbb{R})$. Let L be an immersed Lagrangian submanifold of M such that the map $H_1(L; \mathbb{R}) \to H_1(M; \mathbb{R})$ is trivial and $\delta_L \neq 0$. Suppose there is a Kähler-Einstein metric ω_{KE} in the same cohomology class as ω and $\phi : (M, \omega) \to (M, \omega_{KE})$ is a symplectomorphism (e.g. the one provided by Moser’s theorem). Then $\phi(L)$ is Lagrangian but not minimal.

Note that for $\lambda \neq 0$ most Lagrangian submanifolds L with nontrivial first Betti number such that $H_1(L) \to H_1(M)$ vanishes have $\delta_L \neq 0$: For any such L, pick a

1kai@mathematik.uni-muenchen.de
2egold@math.stanford.edu
normal vector field \(v \) to \(L \) such that \(i_v \omega \) is closed on \(L \) and non-trivial cohomologically. Then small time variations of \(L \) through \(v \) produce Lagrangian submanifolds with nontrivial \(\delta_L \).

2. Notation

We first recall the definition of the Maslov index that is suitable for our purposes. Let \(V \) be a Hermitian vector space of complex dimension \(n \). Let \(\Lambda^{(n,0)}V \) be the (one-dimensional) space of holomorphic \((n,0)\)-forms on \(V \) and set

\[
K^2(V) := \Lambda^{(n,0)}V \otimes \Lambda^{(n,0)}V.
\]

Let \(L \) be a Lagrangian subspace of \(V \). We can associate to \(L \) an element \(\kappa(L) \) in \(\Lambda^{(n,0)}V \) of unit length which restricts to a real volume form on \(L \). This element is unique up to sign and therefore defines a unique element of unit length

\[
\kappa^2(L) := \kappa(L) \otimes \kappa(L) \in K^2(V).
\]

Thus we get a map \(\kappa^2 \) from the Grassmanian \(\text{Gr}_{\text{Lag}}(V) \) of Lagrangian planes to the unit circle in \(K^2(V) \). This map induces a homomorphism \(\kappa_2^* \) of fundamental groups

\[
\kappa_2^* : \pi_1(\text{Gr}_{\text{Lag}}(V)) \to \mathbb{Z}.
\]

To understand the map \(\kappa_2^* \), let \(L \) be a Lagrangian subspace and let \(v_1, \ldots, v_n \) be an orthonormal basis for \(L \). For \(0 \leq t \leq 1 \) consider the subspace

\[
L_t = \text{span}\{v_1, \ldots, v_{n-1}, e^{\pi it}v_n\}.
\]

This loop \(\{L_t\} \) is the standard generator of \(\pi_1(\text{Gr}_{\text{Lag}}(V)) \). The induced elements in \(\Lambda^{(n,0)}V \) are related by \(\kappa(L_t) = \pm e^{-\pi it}\kappa(L) \), so \(\kappa^2(L_t) = e^{-2\pi it}\kappa^2(L) \) and \(\kappa^2(\{L_t\}) = -1 \). Thus we see that the homomorphism \(\kappa_2^* \) is related to the Maslov index \(\mu \) (as defined, e.g., in [ALP]) by

\[
\kappa_2^* = -\mu : \pi_1(\text{Gr}_{\text{Lag}}(V)) \to \mathbb{Z}.
\]

Now let \((M, \omega)\) be a symplectic manifold of dimension \(2n \). Pick a compatible almost complex structure \(J \) on \(M \) and let \(K(M) \) be the canonical bundle of \(M \), i.e., \(K(M) := \Lambda^{(n,0)}T^*M \) is the bundle of \((n,0)\)-forms on \(M \). Note that \(c_1(K(M)) = -c_1(M) \). Let \(K^2(M) := K(M) \otimes K(M) \) be the square of the canonical bundle.

Let \(L \) be an immersed Lagrangian submanifold of \(M \). For any point \(l \in L \) there is an element of unit length \(\kappa(l) \) of \(K(M) \) over \(l \), unique up to sign, which restricts to a real volume form on the tangent space \(T_lL \). The squares of these elements give rise to a section of unit length

\[
\kappa_2^L : L \to K^2(M).
\]

Now let \(F : \Sigma \to M \) be a smooth map with boundary \(\partial F \) on \(L \). The \textit{symplectic area} of \(F \) is

\[
\omega(F) = \int_{\Sigma} F^*\omega.
\]

This defines a map from the relative second homology group to \(\mathbb{R} \),

\[
\left[\omega \right] : H_2(M, L; \mathbb{Z}) \to \mathbb{R}.
\]

To define the Maslov class \(\mu(F) \), choose a unitary frame for the tangent bundle \(TM \) along \(F \). Consider the dual frame and wedge all its elements. Thus we get a
A NOTE ON MEAN CURVATURE ... 3

unit length section \(\kappa_F \) of \(K(M) \) over \(F \). Now on the boundary \(\partial F = F(\partial \Sigma) \) we also have the section \(\kappa_L^2 \) defined above. We can uniquely write

\[
\kappa_L^2 = e^{i\theta} \kappa_F^2
\]

for a function \(e^{i\theta} : \partial \Sigma \to S^1 \) to the unit circle. The Maslov class \(\mu(F) \) is minus its winding number,

\[
\mu(F) := -\frac{1}{2\pi} \int_{\partial F} d\theta.
\]

This defines a map

\[
\mu : H_2(M, L; \mathbb{Z}) \to \mathbb{Z}.
\]

In view of the discussion above, this definition agrees with the usual definition of the Maslov class, cf. \[ALP\].

Now suppose that \(c_1(M) = \lambda[\omega] \in H_2(M; \mathbb{R}) \). It is well-known that if \(\partial F \) is trivial in \(H_1(L; \mathbb{R}) \), then \(F \) represents an element in \([F] \in H_2(M; \mathbb{R})\) and

\[
\mu(F) = 2c_1(M)([F]) = 2\lambda \omega(F).
\]

So in this case \(\mu(F) - 2\lambda \omega(F) \) depends only on the boundary \(\partial F \in H_1(L; \mathbb{R}) \). If, moreover, the map \(H_1(L; \mathbb{R}) \to H_1(M; \mathbb{R}) \) is trivial, this expression defines a cohomology class \(\delta_L \in H^1(L; \mathbb{R}) \) via

\[
\delta_L(\gamma) := \mu(F) - 2\lambda \omega(F)
\]

for some 2-cycle \(F \) with \(\partial F = \gamma \).

3. PROOF

Now assume that \((M, \omega)\) is Kähler-Einstein, i.e., \(M \) carries a Kähler metric whose Ricci curvature is a multiple of the metric by a constant \(\lambda \in \mathbb{R} \). This is equivalent to saying that the curvature form of the canonical bundle \(K(M) \) equals \(-\frac{2}{\pi} \lambda \omega\). We denote the connections on \(K(M) \) and \(K^2(M) \) (induced by the Levi-Civita connection) by \(\nabla \).

Let \(L \) be an immersed Lagrangian submanifold of \(M \) and let \(\kappa_L^2 \) be the canonical section of \(K^2(M) \) over \(L \) as above. The section \(\kappa_L^2 \) defines a connection 1-form \(\xi_L \) for \(K^2(M) \) over \(L \) by the condition \(\nabla \kappa_L^2 = \xi_L \otimes \kappa_L^2 \). Since \(\kappa_L^2 \) has constant length \(1 \), \(\xi_L \) is an imaginary valued 1-form on \(L \). From the Einstein condition and the fact that \(L \) is Lagrangian we get \(d(i\xi_L) = -4\pi \lambda \omega|_L = 0 \), so the form \(i\xi_L \) is closed.

Let \(H \) be the trace of the second fundamental form of \(L \) (the mean curvature vector field of \(L \)). Thus \(H \) is a section of the normal bundle to \(L \) in \(M \) and we have a corresponding 1-form \(\sigma_L := i_H \omega \) on \(L \). The following fact goes back to \[Oh2\] (see also \[Gold1\] for a proof):

\[
\sigma_L = i\xi_L/2.
\]

(Here the factor \(1/2 \) is due to the fact that \(\xi_L \) is a connection 1-form for \(K^2(M) \) rather than \(K(M) \).) Thus \(\sigma_L \) is a closed 1-form on \(L \), called the mean curvature form on \(L \).

Having explained all the terms in formula \[1\], we now turn to its proof. Let \(F : \Sigma \to M \) be a smooth map from a compact surface with boundary on \(L \). Define the section \(\kappa_F \) of \(K(M) \) over \(F \) as above, using a unitary trivialization of \(TM \) over
Let ξ_F be the connection 1-form along F defined by $\nabla \kappa^2_F = \xi_F \otimes \kappa^2_F$. The Einstein condition tells us that $d(i\xi_F) = -4\pi \lambda F^* \omega$. Thus by Stokes’ theorem,

$$2\lambda \omega(F) = \int_{\partial F} -i \xi_F.$$

Recall that along ∂F we have $\kappa^2_L = e^{i\theta} \kappa^2_F$ for a function $e^{i\theta} : \partial \Sigma \to S^1$, and the Maslov class is given by

$$\mu(F) = -\frac{1}{2\pi} \int_{\partial F} d\theta.$$

The connection 1-forms ξ_F and ξ_L are related by $\xi_L = \xi_F + i \, d\theta$.

Thus

$$\frac{\sigma_L(\partial F)}{\pi} = \int_{\partial F} \frac{i \xi_L}{2\pi} = \int_{\partial F} \frac{i \xi_F}{2\pi} - \int_{\partial F} \frac{d\theta}{2\pi} = \mu(F) - 2\lambda \omega(F).$$

REFERENCES

[Ar] A. Arsie, *Maslov class and minimality in Calabi-Yau manifolds*, J. Geom. Phys. 35, no. 2-3, 145-156 (2000).

[ALP] M. Audin, F. Lalonde and L. Polterovich, *Symplectic rigidity: Lagrangian submanifolds*, In: Holomorphic Curves in Symplectic Geometry, ed. M. Audin and J. Lafontaine, Progress in Math. 117, Birkhäuser, Basel (1994).

[D] P. Dazord, *Sur la géométrie des sous-fibrés et des feuilletages lagrangiens*, Ann. Sci. Éc. Norm. Super. IV, Sr. 13, 465-480 (1981).

[Gold1] E. Goldstein, *A construction of new families of minimal Lagrangian submanifolds via torus actions*, J. Diff. Geom. 58, 233-261 (2001).

[M] J.-M. Morvan, *Classe de Maslov d’une immersion lagrangienne et minimalité*, C.R. Acad. Sci. 292, 633-636 (1981).

[Oh1] Y.-G. Oh, *Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks I*, Comm. Pure Appl. Math. 46, no. 7, 949-993 (1993).

[Oh2] Y.-G. Oh, *Mean curvature vector and symplectic topology of Lagrangian submanifolds in Einstein-Kähler manifolds*, Math. Z. 216, 471-482 (1994).