Contrast of oropharyngeal leak pressure and clinical performance of I-gel™ and LMA ProSeal™ in patients: A meta-analysis

Yuan Tan1,2, Jingyao Jiang1,2, Rurong Wang1,2*

1 Departments of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China, 2 Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China

* wangrurong@scu.edu.cn

Abstract

Background
Conflicting outcomes have been reported for the i-gel™ and laryngeal mask airway (LMA) ProSeal™ in children and adults during general anesthesia. Randomized controlled trials (RCTs) that yielded wide contrast outcomes between i-gel™ and LMA ProSeal™ were included in this meta-analysis.

Methods
Two authors independently identified RCTs that compared i-gel™ with LMA ProSeal™ among patients receiving general anesthesia by performing searches in EMBASE, Cochrane, PubMed, and ScienceDirect. Discussion was adopted to resolve disagreements. Data were counted with Review Manger 5.3 and pooled by applying weighted mean difference (MD) and risk ratio (RR), and related 95% confidence intervals.

Results
A total of 33 RCTs with 2605 patients were included in the meta-analysis. I-gel™ provided a considerably lower oropharyngeal leak pressure [weighted average diversity (MD) = -1.53 (-2.89, -0.17), P = 0.03], incidence of blood staining on the supraglottic airway devices [RR = 0.44, (0.28, 0.69), P = 0.0003], sore throat [RR = 0.31 (0.18, 0.52), P < 0.0001], and a short insertion time [MD = -5.61 (-7.71, -3.51), P < 0.00001] than LMA ProSeal™. Compared with LMA ProSeal™, i-gel™ offered a significantly higher first-insertion success rate [RR = 1.03 (1.00, 1.06), P = 0.03] and ease of insertion [RR = 1.06 (1.01, 1.11), P = 0.03]. The gastrointestinal-placement first insertion rate [RR = 1.04 (0.99, 1.10), P = 0.11], laryngospasm [RR = 0.76 (0.17, 3.31), P = 0.72], and cough [RR = 1.30 (0.49, 3.44), P = 0.60] between the two devices were similar.

Conclusions
Both devices could achieve a good seal to provide adequate ventilation. Compared with the used LMA ProSeal™, the i-gel™ was found to have fewer complications (blood staining,
sore throat) and offers certain advantages (short insertion time, higher first-insertion success rate and ease of insertion) in patients under general anesthesia.

Introduction

The common modality of airway administration in pediatric and adult patients for short surgical operations during general anesthesia is Supraglottic airway device (SAD) [1, 2]. Sufficient ventilation, delivery of anesthetic agents and oxygenation are provided with low-risk respiratory adverse events, displacing the demand for traditional tracheal intubation [3]. The second-generation SADs with a gastric drain tube have been recommended to decrease the danger of reflux and aspiration of the first-generation tools [4]. I-gel™ and LMA ProSeal™ belong to second-generation SADs.

Given the single-use supraglottic airway, i-gel™ shows a total insertion success rate of 100% with an anatomically designed and noninflatable mask made of a gel-like thermoplastic elastomer; a broadened and flattened stem with a hard bite block is adopted to decrease the axial rotation and malpositioning as a buccal stabilizer, and a port is provided for gastric tube interpolation [5]. The laryngeal mask airway (LMA) ProSeal™ is a laryngeal mask tool with an altered cuff and a drain tube. If inflated, its altered cuff presses the bowl of the tool forwards while improving the seal in virtue of the larynx [6].

To quantify the effectiveness of airway sealing and protecting airway in tools, oropharyngeal leak pressure (OLP) is adopted [7, 8]. Several randomized controlled trials (RCTs) have reported to compare i-gel™ with LMA ProSeal™. Seven RCTs [9–15] observed higher OLP values in i-gel™ compared with LMA ProSeal™. However, 15 studies [16–30] recorded lower OLP values in i-gel™ compared with LMA ProSeal™, and 8 other research [3, 31–37] found no difference. Therefore, RCTs alone cannot sufficiently offer adequate insights into the clinical applications of i-gel™ and LMA ProSeal™.

To compare the superior airway sealing and certain advantages in patients under general anesthesia between the two SADs, 33 randomized controlled trials (RCTs) that yielded wide contrast outcomes between i-gel™ and LMA ProSeal™ were included in this meta-analysis. OLP was the primary result, and the first insertion success rate, insertion ease, intubation time, gastric-tube first insertion rate, and adverse events related to the SADs were the secondary results. In addition, subgroups analysis were performed in consideration of confounding elements, including age, type of operation, neuromuscular blocker (NMB) application, and the evaluation approach for OLP.

Materials and approaches

The registration of meta-analysis was performed in PROSPERO (CRD42022312261), in inplasy.com (INPLASY2022100013) and on the foundation of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reports [38].

Literature search

Eligible studies were made by searching e-databases EMBASE, Cochrane, PubMed, and the ScienceDirect. All studies were made in April 2022. The search items are shown below: (a) “i-gel™” and “i-gel®” laryngeal mask”; (b) “Laryngeal Mask Airway ProSeal,” “PLMA,” and “LMA ProSeal™”; (c) “random controlled trial,” “random,” and “randomly.” The pivotal words were connected applying “AND” (for “i-gel”,”, “ProSeal Laryngeal Mask Airway,” and
“randomized”) and “OR” (for “i-gel™” and “i-gel” laryngeal mask”). The search was performed in English.

Research selection

Only published prospective RCTs that compared i-gel™ with LMA ProSeal™ were included. Case reports, correspondence, reviews, manikin research, animal studies, and non-English articles were excluded.

Data collection

The information below were gathered: the first author’s name, year of publication, the number of patients, age, type of operation, NMB application, premedication, mode of ventilation, evaluation approach for OLP, first-insertion success rate, ease of insertion, device insertion time, gastric-tube first-insertion success rate, and adverse events related to the SADs (sore throat, laryngospasm, blood-soiled devices, and cough). The information was collected by two independent authors (Yuan Tan and Jingyao Jiang). Discussion was adopted to resolve disagreements.

Risk of bias evaluation

The risk of bias in RCTs was evaluated by using Cochrane collaboration standards. The criteria were as follows: randomization, concealment of allocation, blinding, incomplete data, selective reporting, and other bias. Each item was judged to be at high, unclear, or low risk of material bias.

Statistical analysis

Data were counted with Review Manger 5.3 and pooled by applying weighted mean difference (MD) and risk ratio (RR), and related 95% confidence intervals. The random-effects model was applied if $I^2 > 50\%$, which indicated high heterogeneity, and the fixed-effects model was used when $I^2 < 50\%$. Possible explanations for great heterogeneity were searched for with a sensitivity analysis. Subgroups were explored in consideration of confounding elements, including age, kind of operation, NMB application, and the promising role of the evaluation approach for OLP. Inspection of funnel plots (if the number of trials was beyond 10) was adopted to test the publication bias of including articles by visually.

Results

Fig 1 illustrates the particular procedures and research selection. The initial search yielded 691 articles (PubMed = 52, Embase = 96, ScienceDirect = 463, Cochrane Library = 80). After excluding duplications, 301 studies were examined. Next, 260 of the 301 studies were excluded because of unrelated studies and reviews. Apart from 1 not retrieved report, the remaining 40 studies were continued to be examined. Then, 7 of 40 studies were excluded based on the exclusion criteria. Finally, a total of 33 studies were included in this meta-analysis [3, 9–37, 39–41]. Tables 1 and 2 show the features and methodological quality of RCTs, respectively.

1. **OLP**

According to the pooled analysis of data from 30 trials [3, 9–37], i-gel™ offered a considerably lower OLP than LMA ProSeal™ [MD = -1.53 (-2.89, -0.17), $I^2 = 97\%$, $P = 0.03$] (Fig 2). Upon certification by sensitivity analysis, the pooled result was not altered by a single research. In consideration of substantial heterogeneity, the influence of confounding elements was
PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only

Identification of studies via databases and registers

- Records identified from*: Databases (n=691) (Pubmed n=52; ScienceDirect n=463; EMBASE n=96; Cochrane n=80)
- Records removed before screening: Duplicate records removed (n=390) Records marked as ineligible by automation tools (n=0) Records removed for other reasons (n=0)
- Records screened (n=301)
- Records excluded (n=260): Unrelated studies (n=231) Review of literature (n=29)
- Reports sought for retrieval (n=41)
- Reports not retrieved (n=1)
- Reports assessed for eligibility (n=40)
- Reports excluded (n=7): Manikin studies (n=5) Japanese language (n=1) Chinese language (n=1)
- Studies included in review (n=33)
- Reports of included studies (n=33)

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Fig 1. Flow chart of meta-analysis.

https://doi.org/10.1371/journal.pone.0278871.g001
Table 1. Characteristics of included trials.

Surgery	Premedication	Surgery	Premedication
Elective hernioplasty, laparoscopic cholecystectomy, facial plating and skin grafting	Midazolam 1mg IV	Elective surgeries of less than one hour	Midazolam 0.3mg/kg orally
Elective gynecological or orthopedic surgery	Midazolam 0.05–0.1 mg/kg orally	Elective short duration pediatric surgery	Atracurium 0.5 mg/kg IV
Lower-extremity orthopedic surgery	Calcium 50 mg IV	Elective procedures	Norepinephrine 0.05 mg/kg IV
Lower abdominal,inguinal and orthopedic surgery	No	Short surgical procedures	Atracurium 0.05 mg/kg IV
Elective surgeries < 1 hour	No	Short surgical procedures	Atracurium 0.5 mg/kg IV
Elective gynecologic operation	No	Short surgical procedures	Atracurium 0.5 mg/kg IV

NMB	OLP measurements	Ventilation	OLP measurements	Ventilation
Rocuronium 0.9 mg/kg IV	Controlled	Midazolam 0.05–0.1 mg/kg orally	Controlled	Midazolam 0.3 mg/kg orally
Rocuronium 0.6 mg/kg IV	Controlled	Atracurium 0.05 mg/kg IV	Controlled	Atracurium 0.5 mg/kg IV
Vecuronium 0.08–0.1 mg/kg IV	Controlled	Atracurium 0.5 mg/kg IV	Controlled	Atracurium 0.5 mg/kg IV
No	Controlled	Spontaneous	No	Controlled

Author/Year	Age Group	Number	Author/Year	Age Group	Number
Singh [17]	Adult	30	Gasteiger [18]	Adult	76
Sharma [19]	Adult	30	Gasteiger [19]	Adult	53
Shin [20]	Adult	64	Das [21]	Adult	30
Das [22]	Adult	64	Goyal [23]	Adult	64
Das [24]	Adult	64	Goyal [25]	Adult	64
Mitra [26]	Adult	30	Goyal [26]	Adult	64
Van Zundert [27]	Adult	15	Goyal [28]	Adult	64
Chauhan [29]	Adult	30	Goyal [29]	Adult	64
Fukuhara [31]	Adult	67	Goyal [32]	Adult	67
Das [33]	Adult	30	Goyal [34]	Adult	67
Kini [35]	Adult	30	Goyal [36]	Adult	67
(Continued)			(Continued)		
Procedure	Anesthetic Product A	Anesthetic Product B	Spontaneous/Audible leak	OLP Pressure	Age (y)
--	----------------------	----------------------	---------------------------	--------------	---------
Extra-ocular ophthalmic surgery	Midazolam 0.3 mg/kg orally	No	Controlled	Audible leak	Saran [33]
Elective surgeries	Alprazolam 0.25 mg orally	Vecuronium	Controlled	Manometer	Ekinci [40]
Elective surgeries	Midazolam 0.3 mg/kg oral	Atracurium 0.5 mg/kg IV	Controlled	Audible leak	JadHAV [22]
Elective surgeries	No	No	Spontaneous	Audible leak	Kayhan [15]
Elective short surgical procedures	Midazolam 0.05 mg/kg IV	Vecuronium 0.1 mg/kg IV	Controlled	Audible leak	Henlin [24]
Elective surgeries	No	Atracurium 0.5 mg/kg IV	Controlled	Audible leak	Mishra [26]
Elective surgical procedures	Alprazolam 0.25 mg oral	Rocuronium 0.6 mg/kg IV	Controlled	Manometer	MishraSK [23]
Elective short surgical procedures	No	No	Controlled	Audible leak	Mukadder [25]
Minor (<1 hour in duration) elective surgery	No	No	Controlled	Audible leak	Peker [34]
Elective surgery	Alprazolam 0.25 mg oral	Vecuronium 0.02 mg/kg IV	Controlled	Not reported	Taxak [27]
Elective short duration surgeries	Phenergan 0.5 mg/kg orally	Atracurium 0.5 mg/kg IV	Controlled	Manometer	Nirupa [12]

y = years, LMA = Laryngeal Mask Airway, NMB = Neuromuscular blocker, OLP = Oropharyngeal leak pressure
determined with subgroup analysis (Table 3). According to age subgroup exploration, the pooled outcomes displayed that i-gel™ offered a slightly greater OLP in the children subgroup, although an inadequate statistical difference was observed [MD = 1.34 (−0.37, 3.04), \(I^2 = 95\%\), \(P = 0.12\)]; a lower OLP was recorded in the adult subgroup [MD = -3.48 (-5.62, -1.33),

Table 2. Risk of bias assessment for evaluation the quality of each included trials.

Study (author, year)	Random sequence generation	Allocation concealment	Blinding of participant and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Singh 2009	Unclear	Unclear	Low	Low	Low	Low	Unclear
Gasteiger 2010	Low	Low	Low	Low	Low	Low	Low
Sharma 2010	Low	Low	Low	Low	Low	Low	Low
Shin 2010	Low	Low	Low	Low	Low	Low	Low
Das 2012	Low	Low	Low	Low	Unclear	Low	Low
Gasteiger 2012	Low	Low	Low	Low	Low	Low	Low
Goyal 2012	Low	Low	Unclear	Low	Low	Unclear	Low
Mitra 2012	Low	Low	Unclear	Low	Low	Unclear	Low
Van 2012	Low	Low	Unclear	Low	Low	Unclear	Low
Chauhan 2013	Low	Low	Unclear	Low	Low	Low	Low
Fukuhara 2013	Low	Low	Unclear	Low	Low	Low	Low
Das 2014	Low	Low	Low	Low	Low	Low	Low
Kini 2014	Low	Low	Low	Low	Low	Low	Low
Saran 2014	Low	Low	Low	Low	Unclear	Low	Low
Ekinci 2015	Low	Low	Unclear	Unclear	Low	Low	Low
Jadhav 2015	Low	Low	Low	Low	Low	Low	Low
Kayhan 2015	Low	Low	Low	Low	Low	Low	Low
Henlin 2015	Low	Low	Low	High	Low	Low	Low
Mishra 2015	Low	Low	Unclear	Unclear	Low	Low	Low
Mishra SK 2015	Low	Low	Unclear	Unclear	Low	Low	Low
Mukadder 2015	Low	Low	Unclear	Unclear	Low	Low	Low
Pecker 2015	Low	Low	Low	High	Low	Low	Low
Taxak 2015	Low	Low	Unclear	Unclear	Low	Low	Low
Nirupa 2016	Low	Low	Low	Low	Low	Low	Low
Liew 2016	Low	Low	Unclear	Unclear	Low	Low	Low
Das 2017	Low	Low	Low	Low	Low	Low	Low
Banerjee 2018	Low	Low	Unclear	Unclear	Low	Low	Low
Singh 2018	Low	Low	Low	Low	Low	Low	Low
Luthra 2019	Low	Low	Unclear	Unclear	Low	Low	Low
Obs 2020	Low	Low	Unclear	Unclear	Low	Low	Low
Shiveshi 2021	Low	Low	Unclear	Low	Low	Low	Low

https://doi.org/10.1371/journal.pone.0278871.t002
Table 3. Subgroup meta-analysis for oropharyngeal leak pressure with i-gel™ and LMA ProSeal™.

Subgroup	References	P-value	MD	95% CI	I-square; P-value
Total (95% CI)	1203	1195	100.0%	-1.53 [-2.89, -0.17]	
Heterogeneity: Tau² = 13.32;	Ch² = 1060.09; df = 29 (P = 0.00001); P = 97%				
Test for overall effect: Z = 2.21	(P = 0.03)				

Fig 2. Forest plot for comparison of i-gel™ and LMA ProSeal™ for OLP (cmH₂O). CI, confidence interval; I², I-square heterogeneity statistic; IV, inverse variance.

https://doi.org/10.1371/journal.pone.0278871.g002

Table 3. Subgroup meta-analysis for oropharyngeal leak pressure with i-gel™ and LMA ProSeal™.

- **Subgroup**: age (≤18 years, >18 years)
- **Group**: NMB (no, yes), Laparoscopic surgery (no, yes)
- **OLP methods**: Audible leak, Manometer

OLP, oropharyngeal leak pressure; LMA, Laryngeal Mask Airway; NMB, Neuromuscular blocker; MD, mean difference; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0278871.t003
\[I^2 = 98\%, P = 0.001 \] compared with LMA ProSeal™. Considering the potential use of NMB during anesthesia, the pooled results indicated that 15 trials [3, 13, 14, 17, 19–21, 23, 25–29, 33, 35] that applied NMB were covered, and the integrated outcome was lower for i-gel™ than for LMA ProSeal™ [MD = -2.74 (-4.92, -0.57), \(I^2 = 98\%, P = 0.001 \)]. Without NMB, the integrated outcome showed no considerable variation between the two groups [MD = -0.34 (-2.31, 1.64), \(I^2 = 97\%, P = 0.74 \)]. In case of the pooled analysis of the surgery type, no great difference was found between the two groups with neither laparoscopic nor non-laparoscopic surgery [MD = -1.66 (-6.74,3.42), \(I^2 = 98\%, P = 0.52; MD = -1.42 (-2.91,0.08), I^2 = 97\%, P = 0.06, respectively] \]. Considering the different measurements of OLP (audible leak and manometric stability), the subgroup analysis showed no great difference between the two groups [MD = -1.55 (-6.74,3.42), \(I^2 = 97\%, P = 0.11; MD = -1.53 (-3.8,0.73), I^2 = 98\%, P = 0.18, respectively] \]. The funnel plot of OLP did not indicate obvious substantial asymmetry (Fig 3).

2. First-insertion success rate, insertion ease of SADs, the time spent on intubation, and gastric-tube first-insertion success rate

A total of 26 trials [3, 9–15, 17–20, 22–25, 27–28, 30–36, 40] showed that i-gel™ provided a higher rate of first-insertion success [RR = 1.03 (1.0, 1.06), \(I^2 = 32\%, P = 0.03 \)] than LMA ProSeal™ (Fig 4). Exactly 21 trials [3, 9–12, 16, 17, 19, 21–23, 25, 28–31, 33, 34, 39–41] indicated that the insertion ease was substantially higher for i-gel™ than for LMA ProSeal™ [RR = 1.06 (1.01, 1.11), \(I^2 = 47\%, P = 0.01 \)] (Fig 4). In addition, 23 trials [3, 12–16, 19, 21–25, 27–29, 31–34, 36, 37, 40] showed that SAD intubation time was notably shorter for i-gel™ than for LMA ProSeal™ [MD = -5.61 (-7.71, -3.51), \(I^2 = 98\%, P < 0.00001 \)] (Fig 5). Twelve trials [3, 11, 14, 17, 19, 21, 23, 25, 27, 32, 33, 40] examined the rate of gastric-tube first-insertion success and observed no great difference between the two SADs [RR = 1.04 (0.99, 1.18), \(I^2 = 66\%, P = 0.11 \)] (Fig 5). With the removal of studies one by one, the heterogeneity of intubation time and the rate of gastric-tube first interpolation success revealed no marked decrease. The funnel plot of first-insertion success rate (Fig 3), insertion ease of SADs, and intubation time (Fig 6) did not indicate obvious substantial asymmetry.

3. Adverse events

The incidence of revealed adverse events were evaluated: blood staining on the SADs, sore throat, cough, and laryngospasm was shown in 15 [3, 9–11, 14–17, 19–21, 28, 29, 32, 39], 10 [3, 14, 19–22, 29, 30, 39, 40], 5 [3, 10, 16, 22, 39], 3 studies [15, 16, 22], respectively. Blood staining on the SADs after surgery (Fig 5) and sore throat (Fig 7) were greatly more universally occurring with LMA ProSeal™ than with i-gel™ [RR = 0.44 (0.28, 0.69), \(I^2 = 25\%, P = 0.0003 \); RR = 0.31 (0.18, 0.52), \(I^2 = 0\%, P < 0.0001 \), respectively]. The two groups showed similar incidence of coughs and laryngospasm [RR = 1.17 (0.39, 3.46), \(I^2 = 0\%, P = 0.78; RR = 0.83 (0.15, 4.52), I^2 = 0\%, P = 0.83, respectively] (Fig 7). The funnel plot of blood staining did not show evident substantial asymmetry (Fig 8). The included studies reported none of the severe complications.

Discussion

The major finding of the current meta-analysis is that i-gel™ provided a greatly lower OLP, incidence of blood staining on the SADs, sore throat, and a shorter intubation time than LMA ProSeal™ among patients during general anesthesia. In addition, i-gel™ offered a significantly higher first-insertion success rate and ease of insertion than LMA ProSeal™. No great differences were found in gastric-tube placement first-insertion rate, laryngospasm, and cough between i-gel™ and LMA ProSeal™.
Fig 3. Funnel plots for comparison of i-gel™ and LMA ProSeal™ for OLP (A) and insertion success rate at the first attempt (B).

https://doi.org/10.1371/journal.pone.0278871.g003
OLP refers to the airway leak or pressure airway sealing, and it is the most significant index for evaluating the security and effectiveness of airway tools [42]. Between the cuff of the mask and soft tissue around the neck was decided the power of the seal [7, 43], the OLP determines the feasibility of the extent of protecting airway and security of positive pressure ventilation.

The current meta-analysis observed a greatly higher OLP with LMA ProSeal™ than with i-gel™. The higher OLP in the LMA ProSeal™ group caused by the inflatable cuff with a ventral and dorsal cuff could have led to better seal than i-gel™ with a noninflatable cuff [30].

Fig 4. Forest plot for comparison of i-gel™ and LMA ProSeal™ for insertion success rate at the first attempt (A); and ease of insertion (B). CI, confidence interval; I², I-square heterogeneity statistic; IV, inverse variance.

https://doi.org/10.1371/journal.pone.0278871.g004
Fig 5. Forest plot for comparison of i-gel™ and LMA ProSeal™ for insertion time (A); gastric tube placement first insertion success rate (B); blood staining on the SADs (C). CI, confidence interval; I², I-square heterogeneity statistic; IV, inverse variance.

https://doi.org/10.1371/journal.pone.0278871.g005

OLP provides specific merits in fat patients, restrictive and obstructive lung diseases, lithotomy position, and pneumo-peritoneum patients [44].
Fig 6. Funnel plots for comparison of i-gel™ and LMA ProSeal™ for ease of insertion (A); insertion time (B).

https://doi.org/10.1371/journal.pone.0278871.g006
Patient age, the use of NMB, intra-abdominal pressure during operation, evaluation approach of OLP, and LMA size selection standards may influence OLP [45]. Distinct data heterogeneity in the united OLP outcome was observed in our findings. A great heterogeneity ($I^2 = 97\%$) cannot be reduced although different subgroup analyses were adopted, probably due to the application of various sizes of SADs in these trials. The research by Mitra [11] used a 2.5 device. In Shiveshi’s research [3], despite the use of 2 and 2.5 devices, the device adopted showed the evident size of 2 in more than 70% of kids. In addition, diversities in induction, maintenance, anesthesia depth, measurement standards, and the number of patients researched might also have contributed to the distinct data heterogeneity.

SADs with an inflatable mask show promise in causing tissue distortion, venous compression, and nerve injury, which translate into the growing incidence of related postoperative morbidity [5]. The incrimination of trauma on insertion, various insertions, and pressure brought by cuff against the pharyngeal mucosa cuff volumes and pressure has been made for postoperative complications [46, 47]. In the present study, i-gel™ provided a higher first-insertion success rate, higher ease of insertion, and shorter intubation time than LMA ProSeal™.
Fig 8. Funnel plots for comparison of i-gel™ and LMA ProSeal™ for sore throat (A); and blood staining (B).

https://doi.org/10.1371/journal.pone.0278871.g008
possibly because of a convenient disposable device, relieve of interpolation by stiff bite block, and the natural oropharyngeal curvature of i-gel™ compared with LMA ProSeal™. In addition, we observed that the application of the i-gel™ is related to a lower incidence of pharyngolaryngeal morbidity (blood staining of the SADs and sore throat) compared with the LMA ProSeal™.

By comparing with a previous review [48], our study presented different findings. First, the included studies in the previous review were published from 2009 to 2014, which is a long time ago. However, nearly 50% of the studies [3, 12, 14–16, 22–30, 34, 35, 40, 41] in our present meta-analysis were published after 2014 and reported conflicting results. Second, this work added several new outcomes compared with the past reviews. The first research showed that i-gel™ can offer a higher first-insertion success rate and insertion ease, similar gastric-tube-placement first-insertion rate, laryngospasm, and cough by comparing with LMA ProSeal™ in adults. Third, previous meta-analyses [49] comparing the two devices reported higher a OLP in i-gel™ than LMA ProSeal™ for pediatric patients, forming a contrast against our findings, which indicated that i-gel™ offers a similar OLP compared with LMA ProSeal™ in children. This disparity may be due to the differences in the included studies. Finally, LMA ProSeal™ did not show a higher OLP compared with i-gel™ under conditions of NMB and laparoscopic surgery.

Several limitations were observed in the current work. First, diversities in induction, maintenance, anesthesia depth, and the number of patients researched might have contributed to the distinct data heterogeneity. In spite of subgroups and sensitivity explorations were performed to control several factors, all possible confounding factors cannot be accounted for. Second, while comprehensively searching the published articles, the bias of potential publication might have been present because of the unsucess to include in-progress or unpublished studies. Third, the mean difference of OLP from the pooled estimates is 1.53, with the absolute value of OLP from the included studies were all more than 20cmH₂O. An OLP value of more than 20cmH₂O is generally accepted as an adequate seal. In clinical practice, the difference in OLP values may not be meaningful, when both devices could achieve a enough seal to provide adequate ventilation. In the end, poor quality was found in several included studies. Two studies [24, 34] conducted a single-blinded rather than a double-blinded trial, and several research did not illustrate the details of binding in the result evaluation. Hence, extra high-quality research and follow-up studies such as trial sequential analysis are necessary to certify our outcomes.

To conclude, our outcomes showed that both i-gel™ and LMA ProSeal™ may offer a good seal to provide adequate ventilation. In addition, i-gel™ offers certain advantages over LMA ProSeal™ (higher insertion success rate at the first attempt, insertion ease, and rapid intubation time) with limited adverse events (blood staining, and sore throat) in anesthetized patients.

Author Contributions

Data curation: Yuan Tan.

Formal analysis: Yuan Tan.

Methodology: Yuan Tan.

Supervision: Rurong Wang.

Writing – original draft: Jingyao Jiang.

Writing – review & editing: Yuan Tan, Rurong Wang.
References

1. Ramesh S, Jayanthi R, Archana SR. Paediatric airway management: What is new? Indian J Anaesth. 2012 Sep; 56(5):448–53. https://doi.org/10.4103/0019-5049.103989 PMID: 23293883

2. Mushfaq R, Zahoor S A, Naqash I, et al. Cardiovascular responses to tracheal extubation in normotensive patients; A comparison with LMA removal. JK Practioner. 2003; 10:22–4.

3. Shiveshi P, Anandaswamy TC. Comparison of Proseal LMA with i-gel in children under controlled ventilation: a prospective randomised clinical study. Braz J Anaesthesiol. 2021 Apr 3;50(4):100118-4. https://doi.org/10.1016/j.bjane.2021.02.042 PMID: 33823205

4. Hendinezhad M A, Babaei A, Baradari A G, et al. Comparison of Supraglottic airway devices for airway management during surgery in children: A review of literature. 2019; 7:89–98.

5. Levitan RM, Kinkle WC. Initial anatomic investigations of the I-gel™ airway: a novel supraglottic airway without inflatable cuff. Anaesthesia. 2005 Oct; 60(10):1022–6. https://doi.org/10.1111/j.1365-2044.2005.04258.x PMID: 16179048

6. Brain AI, Verghese C, Strube PJ. The LMA 'ProSeal' —a laryngeal mask with an oesophageal vent. Br J Anaesth. 2000 May; 84(5):650–4. https://doi.org/10.1093/bja/84.5.650 PMID: 10844848

7. Keller C, Brimacombe JR, Keller K, et al. Comparison of four methods for assessing airway sealing pressure with the laryngeal mask airway in adult patients.[J]. Anesthesiology, 1998, 87(6):1379–82. https://doi.org/10.1093/bja/82.2.286 PMID: 11359590

8. Liew G H, Yu E D, Shah S S, et al. Comparison of the clinical performance of i-gel™, LMA Supreme and LMA ProSeal™ in elective surgery[J]. Singapore medical journal, 2016, 57(8):432–437. https://doi.org/10.11622/smmedj.2016135 PMID: 27549212

9. Kayhan GE, Begec Z, Sanli M, et al. Performance of size 1 I-gel compared with size 1 ProSeal laryngeal mask in anesthetized infants and neonates. Scientific World Journal. 2015; 2015:426186. https://doi.org/10.1155/2015/426186 PMID: 25793219

10. Obasa S, Türk HŞ, Kılınç L, et al. Comparing I-gel to ProSeal Laryngeal Mask Airways in Infants: A Prospective Randomised Clinical Study. Turk J Anaesthesiol Reanim. 2020 Aug; 45(4):308–313. https://doi.org/10.5152/TJAR.2019.47936 PMID: 32684646

11. Singh I, Gupta M, Tandon M. Comparison of Clinical Performance of I-gel with LMA-ProSeal in Elective Surgeries. Indian J Anaesth. 2009 Jun; 53(3):302–5. PMID: 20640137

12. Gasteiger L, Brimacombe J, Perkhofer D, Kaufmann M, Keller C. Comparison of guided insertion of the LMA ProSeal vs the i-gel. Anaesthesia. 2010 Sep; 65(9):913–6. https://doi.org/10.1111/j.1365-2044.2010.06422.x PMID: 20645948

13. Sharma B, Sehgal R, Sahai C, et al. PLMA vs. I-gel: A Comparative Evaluation of Respiratory Mechanics in Laparoscopic Cholecystectomy. J Anaesthesiol Clin Pharmacol. 2010 Oct; 26(4):451–7. PMID: 21547168

14. Shin WJ, Cheong YS, Yang HS, et al. The supraglottic airway I-gel in comparison with ProSeal laryngeal mask airway and classic laryngeal mask airway in anaesthetized patients. Eur J Anaesthesiol. 2010 Jul; 27(7):598–601. https://doi.org/10.1097/EJA.0b013e3283340a81 PMID: 19915475
21. Chauhan G, Nayar P, Seth A, et al. Comparison of clinical performance of the I-gel with LMA ProSeal. J Anaesthesiol Clin Pharmacol. 2013 Jan; 29(1):56–60. https://doi.org/10.4103/0970-9185.105798 PMID: 23493414

22. JadHAV PA, DalVI NP, Tendolkar BA. I-gel versus laryngeal mask airway-Proseal: Comparison of two supraglottic airway devices in short surgical procedures. J Anaesthesiol Clin Pharmacol. 2015 Apr-Jun; 31(2):221–5. https://doi.org/10.4103/0970-9185.155153 PMID: 25948905

23. Mishra SK, Sivaraman B, Balachander H, et al. Effect of pneumoperitoneum and Trendelenberg position on oropharyngeal sealing pressure of I-gel™™ and ProSeal LMA™™ in laparoscopic gynecological surgery: A randomized controlled trial. Anesth Essays Res. 2015 Sep-Dec; 9(3):353–8. https://doi.org/10.4103/0259-1162.159771 PMID: 26712973

24. Henlin T, Sotak M, Kovaricek P, et al. Comparison of five 2nd-generation supraglottic airway devices for airway management performed by novice military operators. Biomed Res Int. 2015; 2015:201898. https://doi.org/10.1155/2015/201898 PMID: 26495289

25. Mukadder S, Zekine B, Erdogan KG, et al. Comparison of the proseal, supreme, and i-gel SAD in gynecological laparoscopic surgeries. Scientific World Journal. 2015; 2015:634320. https://doi.org/10.1155/2015/634320 PMID: 25802890

26. Mishra SK, Nawaz M, Satyaprakash MV, et al. Influence of Head and Neck Position on Oropharyngeal Leak Pressure and Cuff Position with the ProSeal Laryngeal Mask Airway and the I-gel: A Randomized Clinical Trial. Anesthesiol Res Pract. 2015; 2015:705669. https://doi.org/10.1155/2015/705669 PMID: 25648620

27. Taxaik S, Gopinath A, Saini S, et al. A prospective study to evaluate and compare laryngeal mask airway ProSeal and i-gel in the laryngeal mask airway in the prone position. Saudi J Anaesth. 2015 Oct-Dec; 9(4):446–50. https://doi.org/10.4103/1658-354X.159712 PMID: 26543466

28. Das B, Varshney R, Mitra S. A randomised controlled trial comparing ProSeal laryngeal mask airway, i-gel and Laryngeal Tube Suction-D under general anaesthesia for elective surgical patients requiring controlled ventilation. Indian J Anaesth. 2017 Dec; 61(12):972–977. https://doi.org/10.4103/ija.IJA_339_17 PMID: 26712973

29. Singh A, Bhalotra AR, Anand R. A comparative evaluation of ProSeal laryngeal mask airway, I-gel and Supreme laryngeal mask airway in adult patients undergoing elective surgery: A randomised trial. Indian J Anaesth. 2018 Nov; 62(11):858–864. https://doi.org/10.4103/ija.IJA_153_18 PMID: 30532321

30. Luthra A, Chauhan R, Jain A, et al. Comparison of Two Supraglottic Airway Devices: I-gel Airway and ProSeal Laryngeal Mask Airway Following Digital Insertion in Nonparalyzed Anesthetized Patients. Anesth Essays Res. 2019 Oct-Dec; 13(4):669–675. https://doi.org/10.4103/aer.AER_132_19 PMID: 32009713

31. Fukuhara A, Okutani R, Oda Y. A randomised comparison of the i-gel™™ and the ProSeal laryngeal mask airway in pediatric patients: performance and fiberoptic findings. J Anesth. 2013 Feb; 27(1):1–6. https://doi.org/10.1007/s00540-012-1477-4 PMID: 22965330

32. Gasteiger L, Brimacombe J, Oswald E, et al. LMA ProSeal™™ vs. i-gel™™ in ventilated children: a randomised, crossover study using the size 2 mask. Acta Anaesthesiol Scand. 2012 Nov; 56(10):1321–4. https://doi.org/10.1111/j.1399-6576.2012.02765.x PMID: 22946775

33. Saran S, Mishra SK, Bardhe AS, et al. Comparison of i-gel supraglottic airway and LMA-ProSeal™™ in pediatric patients under controlled ventilation. J Anaesthesiol Clin Pharmacol. 2014 Apr; 30(2):195–8. https://doi.org/10.4103/0970-9185.130013 PMID: 24803756

34. Peker G, Takmaz SA, Baltaci B, et al. Comparison of Four Different Supraglottic Airway Devices in Terms of Efficacy, Intra-ocular Pressure and Haemodynamic Parameters in Children Undergoing Ophthalmic Surgery. Turk J Anaesth Reanim. 2015 Oct; 43(5):304–12. https://doi.org/10.5152/TJAR.2015.49091 PMID: 27366519

35. Banerjee G, Jain D, Bala I, et al. Comparison of the ProSeal laryngeal mask airway with the I-gel™™ in anaesthetised paralysed children: A randomised controlled trial. Indian J Anaesth. 2018 Feb; 62(2):103–108. https://doi.org/10.4103/ija.IJA_594_17 PMID: 29491514

36. Kini G, Devanna GM, Mukkapati KR, et al. Comparison of I-gel with proseal LMA in adult patients undergoing elective surgical procedures under general anesthesia without paralysis: A prospective randomized study. J Anaesthesiol Clin Pharmacol. 2014 Apr; 30(2):183–8. https://doi.org/10.4103/0970-9185.130008 PMID: 24803754

37. Van Zundert TC, Brimacombe JR. Similar oropharyngeal leak pressures during anaesthesia with i-gel, LMA-ProSeal and LMA-Supreme Laryngeal Masks. Acta Anaesthesiol Belg. 2012; 63(1):35–41. PMID: 22783708
38. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6:e1000100. https://doi.org/10.1371/journal.pmed.1000100 PMID: 19621070
39. Das A, Majumdar S, Mukherjee A, et al. i-gel™ in Ambulatory Surgery: A Comparison with LMA-ProSeal™ in Paralyzed Anaesthetized Patients. J Clin Diagn Res. 2014 Mar; 8(3):80–4. https://doi.org/10.7860/JCDR/2014/7890.4113 PMID: 24783088
40. Ekinci O, Abitagaoglu S, Turan G, et al. The comparison of ProSeal and i-gel™ laryngeal mask airways in anaesthetized adult patients under controlled ventilation. Saudi Med J. 2015 Apr; 36(4):432–6. https://doi.org/10.15537/smj.2015.4.10050 PMID: 25828279
41. Kaira N, Gupta A, Sood R, et al. Comparison of Proseal Laryngeal Mask Airway with the I-gel™ Supraglottic Airway During the Bailey Manoeuvre in Adult Patients Undergoing Elective Surgery. Turk J Anaesthesiol Reanim. 2021 Apr; 49(2):107–113. https://doi.org/10.5152/TJAR.2020.29569 PMID: 33997838
42. Beleña J M, Núñez M, Anta D, et al. Comparison of Laryngeal Mask Airway Supreme and Laryngeal Mask Airway Proseal with respect to oropharyngeal leak pressure during laparoscopic cholecystectomy: a randomised controlled trial[J]. European Journal of Anaesthesiology (EJA), 2013, 30(3): 119–123. https://doi.org/10.1097/EJA.0b013e32835aba6a PMID: 23318811
43. Seet E, Rajeev S, Firoz T, et al. Safety and efficacy of laryngeal mask airway Supreme versus laryngeal mask airway ProSeal: a randomized controlled trial[J]. European Journal of Anaesthesiology (EJA), 2010, 27(7): 602–607. https://doi.org/10.1097/EJA.0b013e32833679e3 PMID: 20540172
44. LOPEZ-GIL M, Brimacombe J. The ProSeal laryngeal mask airway in children[J]. Pediatric Anesthesia, 2005, 15(3): 229–234. https://doi.org/10.1111/j.1460-9592.2005.01427.x PMID: 15725321
45. Shimbori H, Ono K, Miwa T, et al. Comparison of the LMA-ProSeal and LMA-Classic in children[J]. British journal of anaesthesia, 2004, 93(4): 528–531. https://doi.org/10.1093/bja/aeh238 PMID: 15298876
46. Burgard G, Möllhoff T, Prien T. The effect of laryngeal mask cuff pressure on postoperative sore throat incidence. J Clin Anesth. 1996 May; 8(3):198–201. https://doi.org/10.1016/0952-8180(95)00229-4 PMID: 8703453
47. Brimacombe J, Holyoake L, Keller C, et al. Pharyngolaryngeal, neck, and jaw discomfort after anesthesia with the face mask and laryngeal mask airway at high and low cuff volumes in males and females. Anesthesiology. 2000 Jul; 93(1):26–31. https://doi.org/10.1097/00000542-200007000-00009 PMID: 10861142
48. Shin HW, Yoo HN, Bae GE, et al. Comparison of oropharyngeal leak pressure and clinical performance of LMA ProSeal and i-gel® in adults: Meta-analysis and systematic review. J Int Med Res. 2016 Jun; 44 (3):405–18. https://doi.org/10.1177/0300060515607386 PMID: 27009026
49. Maitra S, Baidya DK, Bhattacharjee S, et al. Evaluation of i-gel™ airway in children: a meta-analysis. Paediatr Anaesth. 2014 Oct; 24(10):1072–9. https://doi.org/10.1111/pan.12483 PMID: 25041224