THE MAMMALIAN CIRCADIAN SYSTEM

The beginnings of biological rhythms research go back to the 18th century when Carl Linnaeus developed the ‘flower clock’ to predict time based on the flowering plants across the solar day. Nevertheless, chronobiology is a relatively young field with its molecular basics having been discovered only about 50 years ago. Today it is well accepted that endogenous circadian clocks serve to anticipate daily environmental changes, most importantly the light-dark cycle, to optimize the temporal coordination of physiology and behaviour. Thus, the increasing awareness about the crucial importance of circadian systems for human health, well-being and general physiology has cumulated in the 2017 Nobel Prize for circadian research, awarded to M. Rosbash, M. Young and...
JC. Hall for their discovery of the molecular mechanisms controlling circadian rhythms.1,2

Circadian clocks are believed to have evolved in adaptation to periodically reoccurring environmental Zeitgebers (German for ‘time giver’), for example light-dark, nutritional and temperature cycles.3 Indeed, being ‘circadian’ provides a fitness advantage to organisms,4 probably because it guarantees the temporal coordination of behaviour with ambient conditions, thereby optimizing survival-related activities such as foraging or encounters of predators and mating partners. In addition, endogenous clocks self-sustain rhythmic physiology even when environmental entrainment signals are absent, thereby temporally separating incompatible biological processes such as sleep and wakefulness or anabolism and catabolism. Experimental studies have accumulated evidence for the adaptive value of circadian systems. Most noteworthy, early chronobiological experiments using cyanobacteria strains with different circadian periods clearly demonstrated that resonance between environmental and intrinsic circadian rhythms provides a fitness advantage to bacteria with periods that match the external light-dark cycle.5 Similarly, studies in mammalian species have demonstrated that functional circadian clocks are crucial for survival: behaviourally arrhythmic animals are exposed to increased predator attacks or mistime their hibernation.6-8 Moreover, under laboratory conditions, housing of mice in abnormal light-dark cycles leads to increased mortality, emphasizing the importance of living in resonance with the outside world.9

2 | SYSTEM-LEVEL ORGANIZATION OF MAMMALIAN CLOCK NETWORKS

In mammals, including humans, the circadian system is hierarchically organized with the suprachiasmatic nucleus

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Organization of mammalian circadian systems. Mammalian circadian clocks are organized hierarchically. The suprachiasmatic nucleus (SCN) or pacemaker clock is superior to other body clocks as it is required for entrainment of the mammalian circadian system to the environmental light-dark cycle, as well as for driving rhythms in locomotor activity and hormones. Photic entrainment information, mainly sensed by intrinsically photosensitive retinal ganglion cells in the retina, is transmitted to the SCN via the retinohypothalamic tract (RHT). Subsequently the SCN aligns body clocks with each other and with the light-dark cycle by forming efferent connections that regulate endocrine and behavioural rhythms. In addition, peripheral clocks can entrain to rest-activity, feeding-fasting and (body) temperature cycles that may or may not be driven by the SCN. If and how body clocks exchange mutual time information or give feedback about their entrainment state to the pacemaker clock remains to be investigated in detail. Figure created with BioRender}
\end{figure}
(SCN) on top (Figure 1). In the 1970s, the SCN was discovered as endogenous mammalian clock that governs hormonal and behavioural rhythms. As pacemaker clock, the SCN is very important for photic entrainment and transmission of light-dark signals to downstream tissue clocks. It consists of two bilaterally paired clusters made up by several thousand densely packed neurons located in the anterior hypothalamus superior to the optic chiasm. Organization and circuitry of the SCN are complex, comprising many different cell types, afferent and efferent connections, as well as heterogenous circadian gene expression and neuropeptide signalling. Each SCN is divided into core and shell with region-specific functional roles that remain to be explored in detail. Briefly, the SCN core contains vasoactive intestinal polypeptide (VIP) expressing neurons, which are important for light-perception via the retinohypothalamic tract (RHT) and tissue synchrony. The shell region, rich in arginine vasopressin (AVP) expressing neurons, is innervated by the hypothalamus, limbic areas and the SCN core and appears to be involved in setting the phase of non-SCN brain and peripheral body clocks.

Diurnal changes in light intensity are transmitted to the SCN and intergeniculate leaflet (IGL) via intrinsically photosensitive retinal ganglion cells (ipRGC). These ipRGC are specialized neurons within the retina that, unlike other retinal ganglion cells, express the photopigment melanopsin (OPN4) and mediate light responses even when rod and cone photoreceptors are non-functional. Interestingly, ectopic OPN4 expressing neurons, which are important for light-perception, express the photopigment melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGC). These ipRGC are specialized neurons within the retina that, unlike other retinal ganglion cells, express the photopigment melanopsin (OPN4) and mediate light responses even when rod and cone photoreceptors are non-functional. Briefly, the SCN core contains vasoactive intestinal polypeptide (VIP) expressing neurons, which are important for light-perception via the retinohypothalamic tract (RHT) and tissue synchrony. The shell region, rich in arginine vasopressin (AVP) expressing neurons, is innervated by the hypothalamus, limbic areas and the SCN core and appears to be involved in setting the phase of non-SCN brain and peripheral body clocks. The SCN may project directly to endocrine or pre-autonomic neurons to regulate neuroendocrine responses. In addition to the SCN, virtually all peripheral and non-SCN central tissues possess cell-autonomous and self-sustained circadian oscillators, that can drive cell-type specific, rhythmic biological functions independently of the SCN. Yet, the pacemaker clock is required to transmit environmental entrainment signals (from the light-dark cycle) to other, light-insensitive, body clocks to align their rhythms within the body and with the outside world. Without the SCN, phases of peripheral tissue rhythms drift apart. As mentioned above, precise mechanisms and efferent connections underlying SCN-driven peripheral synchronization are still under investigation, but both, neuronal and humoral pathways are involved (Figure 1). In 2013, Gerber et al suggested that an unknown factor, rhythmically present in blood, may function as systemic synchronization signal through activating serum response factor, an important transcription factor inducing the immediate early expression of clock genes, for example Per2. Whether or not abundance of this unknown serum factor is regulated by the SCN, remains to be investigated.

SCN-driven behavioural activity rhythms may lead to entrainment of peripheral clocks by regulating feeding-fasting, rest-activity and body temperature cycles. In vivo, restricted feeding, as well as voluntary (wheel running) and forced (treadmill exercise) activity cycles can serve as entrainment signals for peripheral clocks. Mechanisms of food and activity driven entrainment remain to be explored in detail, however, rhythms in glucocorticoids (GC) appear to act as potent Zeitgebers for peripheral oscillators. The SCN drives circadian glucocorticoid production directly via the hypothalamic-pituitary-adrenal (HPA) axis or indirectly via the autonomic nervous system. However, rhythms in GC release may also be driven by local adrenal clocks, be induced during stress and physical exercise or following the ingestion of a meal via the activation of the HPA. Glucocorticoids act as resetting signal for circadian clocks by altering the molecular clock machinery. Interestingly, glucocorticoid receptors have been found in peripheral tissues but not the SCN, suggesting that GC act as entrainment signals specifically for peripheral clocks. Indeed, presentation of feeding signals in anti-phase to rest-activity cycles (driven by the SCN) induces desynchrony among the SCN and peripheral body clocks.
In addition to GC, feeding-related hormones and metabolites, as well as metabolic and redox states may transmit nutritional signals to circadian clocks. Endogenous fluctuations in nicotinamide adenine dinucleotide (NAD\(^+\)) cofactors and \(\text{H}_2\text{O}_2\), as well as the activity of the NAD\(^+\) sensing protein deacetylase SIRT1 can regulate circadian clocks. Insulin may alter circadian dynamics by inducing kinase depending signalling, including protein kinase B (AKT), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Moreover, gastrointestinal hormones, for example glucagon-like peptide 1 (GLP-1), vasoactive intestinal peptide (VIP), oxyntomodulin (OXM), gastrin, ghrelin and cholecystokinin (CCK) are rhythmically secreted and may regulate peripheral circadian clocks. Recently, the mechanistic target of rapamycin (mTOR) pathway has been proposed as important link between feeding, metabolic state and peripheral circadian clock function.

As mentioned beforehand, besides feeding-fasting and rest-activity cycles, the SCN governs rhythms in body temperature. Temperature cycles can entrain rhythms of peripheral tissues ex vivo and in vivo. Transcriptional regulation of heat shock enhancer elements (HSE) by heat shock factor 1 (HSF1) or translational regulation of RNAs by cold-inducible RNA-binding protein (CRIP) are involved in temperature entrainment and responses of peripheral clocks to temperature pulses.

The contribution of mutual interactions between non-SCN clocks, as well as of peripheral-to-central feedback mechanisms to the regulation of mammalian circadian systems on the organizational level are currently not well understood (Figure 1). Yet, progress in elucidating organizational levels of circadian networks has been made by targeted genetic (in)activation of selected tissue clocks. Koronowski et al (2019) showed that reconstituted liver clocks, in otherwise clock-less animals, are able to maintain circadian metabolism, whereas the majority of other rhythmic liver functions were lost. This suggested that full circadian tissue function requires input from other body clocks. Interestingly, similar results were reported by Welz et al (2019) regarding the independence of skin circadian clock function. Moreover, tissue-specific disruption of circadian clock function may result in alterations of the molecular clock machinery or circadian regulated transcriptomes in other tissues or even behavioural changes. An adipocyte-specific deletion of the core clock gene Bmal1 has been reported to induce a shift in diurnal food intake and obesity in mice, likely by promoting altered neuropeptide expression in the hypothalamus. However, when interpreting the effects of tissue-specific clock disruptions, one must recognize that gentic tools used to generate such models may not be completely specific and may induce off-target effects, for example due to overlapping tissue expression of promoters used to drive the expression of transgenes. For example, the aP2 (Fabp4) gene promoter, used to knock-out Bmal1 specifically in adipocytes, displays limited expression in the brain, which may have impacted observed hypothalamic changes. Many cancerous tissues appear to emit signals that disrupt the molecular clock machinery at remote sites, inducing chrono-disruption of body clocks. Moreover, the role of the microbiome as circadian regulator has gained interest in the last years. Intestinal microbiota compositions display circadian fluctuation. Mutual interaction between the gut microbiome and circadian clocks are known to alter host metabolism, potentially via short chain fatty acids (SCFA) derived from bacterial fermentation. Interestingly, SCFAs constitute a regulatory link to pancreatic islet cellular clocks by stimulating glucagon-like peptide-1 (GLP-1) secretion, which can synchronize \(\alpha\) and \(\beta\)-cell oscillators. In addition, gut microbiota-derived SCFAs act as Zeitgeber for mouse peripheral tissues.

3 | THE MOLECULAR CLOCK MACHINERY

Circadian clocks can be found in virtually all cell types. Cellular oscillators are autonomous and self-sustained. This is because on the molecular level, circadian oscillations are generated and maintained by interlocked transcriptional-translational feedback loops (TTFL) between genes and their own protein products (Figure 2). The so-called core loop consists of BMAL1 and CLOCK proteins that, as heterodimers, drive the expression of Period (Per1-3) and Cryptochrome (Cry1-2) genes by binding to E-box DNA sequences in the genes’ promoters. After a defined time delay, necessary to generate about 24-hour oscillations, PERs and CRYs, as part of large macromolecular protein complexes, translocate back into the nucleus and suppress the activity of their own activators BMAL1 and CLOCK. Interaction of PER and CRY proteins with casein kinase 1ε and 1δ (CK1ε/δ) is crucial for the generation of circadian rhythms as it regulates PER protein abundance, localization and half-life. Expression of casein kinase mutants is associated with altered circadian periods and sleep disorders.

In addition to the core clock loop, accessory loops, consisting of RORs, REV-ERBs (NR1D1-2), DBP and NFIL3 (E4BP4) (Figure 2), fine-tune circadian oscillations generated by the core loop (periods and amplitudes). Besides Pers and Crys, BMAL1/CLOCK heterodimers drive the E-box dependent transcription of the retinoic acid-related orphan nuclear receptors Rev-erb-\(\alpha/\beta\), the RAR-related orphan receptor Ror-\(\alpha/\beta\), as well as of the D site albumin promoter binding protein Dbp. Expression of both, Nfil3 and Bmal1, is regulated by the competitive action of REV-ERBs and RORs on their ROR/REV-ERB (RRE) enhancer elements. Depletion or loss-of-function of REV-ERBs and RORs leads to a shortened period of locomotor activity rhythms in mice under free-running conditions.
In addition, DBP and NFIL3 proteins competitively regulate D-box dependent gene expression of Rev-erb, Ror and Per genes. Because of their anti-phasic expression and antagonistic transcriptional activity, DBP and NFIL3 have been proposed to regulate amplitudes of circadian oscillations.

Besides the molecular TTFL, the rhythmic regulation of tissue-specific biological processes is controlled via the activation of clock-controlled enhancer elements (CCE), for example E-boxes, D-boxes and RREs, in the promoters of clock-controlled genes. Indeed, 5%-20% of transcripts, proteins and metabolites exhibit circadian rhythms in a tissue-specific fashion. Interestingly however, rhythmic protein expression is not always correlated with rhythmic transcription, suggesting that post-transcriptional and post-translational processes are involved in driving circadian oscillations on the cellular level.

4 | **DEVELOPMENT OF CIRCADIAN CLOCKS**

The mammalian circadian system develops gradually throughout development (for review see). Whereas circadian rhythmicity, despite the expression of clock genes, has not been observed in germ line cells, zygotes, early embryos, as well as embryonic and induced pluripotent stem cells, foetuses show circadian rhythms in behaviour (foetal breathing and limb movement), humoral factors and cardiovascular function (foetal heart rate). To what extent foetal circadian rhythms are self-sustained or driven by maternal circadian rhythms, as well as which communication factors promote synchronization between mother and foetus, is still under investigation. In vitro studies suggest that the cell-autonomous generation of circadian oscillations depends on the
cellular differentiation status with embryonic tissue and foetal SCN rhythms emerging around day 15 post-fertilization (in mice). Precise mechanisms of circadian rhythm emergence, however, remain elusive. It has been suggested that (relative) clock genes expression levels are related to the robustness of circadian rhythms. In addition, post-transcriptional modulation of molecular clock components, for example suppression of CLOCK expression via the endonuclease-microprocessor complex DICER/DGRC8, may regulate circadian clock development. Catheterized foetal models and fluid sampling have shown that human, monkey and sheep foetuses display 24-hour rhythms in hormones, behaviour and cardiovascular function. Melatonin, glucocorticoids and dopamine have been proposed as candidate factors mediating maternal entrainment of foetal circadian clocks during pregnancy. In addition, Sletten et al (2018) reported that circadian rhythms in human foetal heart rate are modified by gestational age, foetal gender, maternal physical activity and season. If truly circadian and not imposed by the maternal circadian system, foetal rhythms should persist after birth and independently of environmental Zeitgebers. Studies report that circadian rhythms in body temperature and heart rate can be detected in about 50% of preterm infants in intensive care units (constant light and temperature conditions, 2-hour feeding intervals), as well as to a greater percentage in full-term neonates 2 days postnatally. However, such rhythms displayed large variability with respect to acrophase, suggesting that synchronization with the environment is beginning at later postnatal ages. Circadian rhythms of cortisol are established 2-4 months postnatally.

Figure 3 Modern life challenges to mammalian circadian clocks. Circadian clocks regulate rhythmic physiological and behavioural processes that are important for human health and well-being. Modern lifestyle encompasses many challenges to the endogenous circadian system that can induce circadian disruption and misalignment, as well as promote the development of associated diseases. For example a mismatch between endogenous circadian and social clocks (work/school schedules) promotes social jetlag, whereas trans-meridian travel causes travel-related jetlag, abnormal dietary habits and the gut microbiome impact rhythmic metabolic and gastrointestinal functions and may lead to metabolic syndrome or gastrointestinal pathologies, immune responses to pathogens are affected by the state of our circadian system, and neurodegenerative and tumorigenic diseases may arise from ageing-related clock changes. In addition, disruption/misalignment of body clocks feeds back to rhythmically regulated physiological and behavioural processes, thereby enhancing susceptibility to chrono-disruptive stimuli and aggravating associated pathologies. This Figure was created with BioRender.
after birth and rhythms in melatonin 48-52 weeks post-conception (for review see129).

5 | MODERN LIFE CHALLENGES TO THE HUMAN CIRCADIAN SYSTEM

Mammalian circadian systems regulate numerous physiological and behavioural functions. Perturbation of the molecular clock machinery, for example because of mutations or gene deletions, as well as misalignment between endogenous circadian and exogenous environmental cycles, for example because of travel across time zones, artificial lighting or shift work, can result in acute or chronic ‘circadian disruption’ (Figure 3; for review see130). To date, many severe health conditions, including metabolic syndrome, diabetes, psychiatric and autoimmune disorders, cardiovascular diseases and even cancer have been associated with disruption of the circadian system.131,132

6 | ‘SOCIAL CLOCKS’

The period of human circadian clocks varies between individuals resulting in distinct ‘phase-relationships’ between internal and external rhythms. Such phase-relationships are referred to as chronotypes, simply put, the preference to be awake as night owl (late types), morning lark (early types), or in-between. Most human populations display a slight tendency towards late chronotypes,133 especially during teenage years, favouring the development of social jetlag, that is the discrepancy between sleep timing on work/school days versus work-free days arising from social obligations.134,135 Trying to compensate for the mismatch between the endogenous circadian and exogenous rhythms has been reported to cause sleep deprivation136,137 accompanied by sleep loss induced pathologies like immunodeficiency, cognitive and mood disorders, or obesity.138-140 In mice, chronic jetlag protocols have been found to shift the temporal expression of clock genes in the SCN and peripheral clocks, to disrupt locomotor activity and feeding rhythms, to induce leptin resistance and dysregulation of the immune system, as well as to promote tumour growth, metastasis, weight/fat gain and metabolic disruption.141-146 In particular, shift work, one of the major causes of chronic social jetlag, has been associated with increased mortality, as well as the development of metabolic disorders, for example reduced insulin sensitivity or even type 2 diabetes.147-149 Exploring the role of inter-individual differences in chronotypes for the development of pathologies, as well as for individualized medical treatment plans and prevention has gained major attention in the field of chronobiology.150,151 In recent years, researchers have been working on the establishment of practical, yet accurate, sensitive and reliable methods for the determination of endogenous circadian clock time. Such ‘chrono-diagnostic’ tools will help to develop recommendations not only for clinicians, for example for the optimization of drug treatment times and clinical study designs, but also for general political decisions, like consolidation of flextime (at the workplace and at schools) or chronotype-matched work schedules.

With respect to misalignment between endogenous and exogenous cycles, the impact of Daylight Saving Time (DST) on the human circadian system has become a highly debated topic.152 While the European Commission decided on the abolishment of the biannual switch between DST and Standard Time (ST), it is currently debated whether DST or ST will be fixed as new annual time and whether all member states have to stick to the same standard. During the summer months (DST), social clocks are advanced by 1 hour, whereas sun clocks (daily progression of the sun) remain the same. As endogenous circadian clocks are predominantly set by the light-dark cycle, DST may promote misalignment between social and body clocks and further enhance social jetlag (for review see153,154). Moreover, acute DST-ST switching can promote sleepiness. Thus, not surprisingly it has been correlated with an increased risk of accidents, hospitalization and cardiovascular incidents.155-157 Constitutive DST on the other hand may result in chronic health effects, comparable to chronic social jetlag.156 From a chronobiological perspective referring to natural clock time (sunset and sunrise) as new annual standard and in a region-specific manner may be most advisable for EU member states.

In contrast to social jetlag, travel induced jetlag is transient and caused by misalignment of our endogenous circadian system with the new light-dark cycle of the travel destination. Trans-meridian travel has been associated with sleep-wake disorders, daytime sleepiness, general malaise, impaired alertness and motivation, as well as gastrointestinal upset with severity of symptoms depending on the number and direction of time zones crossed.159-161 In addition, body clocks may adjust to the new light-dark cycle with different rates, thereby aggravating symptoms resulting from circadian misalignment rather than from poor sleep. Commonly, jetlag is perceived to be worse when travelling eastward rather than westward. This was supported by a study looking at performance of professional Baseball players, who displayed impaired parameters of home-team offensive, as well as home and away defensive performance following mainly eastward travel.162 Using computational models, Diekman and Bose (2018) report that this east-west asymmetry stems from a combination of endogenous clock period (commonly >24 hours in humans) and external day length and predict that changes in day length may even induce jetlag when travelling from north to south.163 On the other hand, Zhang et al (2020) reported that west-to-east jetlag induced
brain and neuroendocrine changes that were related to jet-lag symptoms.164 Noteworthy, repeated long distance travel, as experienced by aircrews, may induce more severe health consequences than less extensive trans-meridian travel. For example, flight attendants display more variable melatonin rates (potentially correlated with menstrual irregularities), higher salivary cortisol levels, as well as exacerbation of cognitive and psychiatric disorders.165-168

7 | CLOCKS AND METABOLISM

In addition to the light-dark cycle, other environmental cues have been discovered to act as important entrainment signals for mammalian circadian systems (see above). Meal timing acts as Zeitgeber for circadian clocks and time-restricted feeding can uncouple peripheral clocks from the SCN.50,51,169 Many studies focus on the impact of time-restricted and mis-timed feeding on health and well-being. Hypercaloric diet in mice has been shown to alter molecular and locomotor activity rhythms, as well as entrainment to the light-dark cycle.170-172 Sundaram et al (2020) reported that high-fat diet alters circadian rhythms in mammary glands of pubertal mice,173 potentially contributing to early childhood puberty in girls. Moreover, Sato et al (2018) showed that nutritional timing alters tissue-specific metabolomic profiles in a time-of-day-dependent fashion,174 indicating that feeding-related cues play an important role for rhythmic metabolic organ functions.

On the other hand, circadian clocks temporally regulate metabolic processes and energy expenditure,175,176 thus it does not only matter what and how much we eat but also when we eat. Indeed, genetic disruption of endogenous clocks by mutation of the \textit{Clock} gene results in hyperphagia and development of metabolic syndrome in mice.177 In addition, misalignment of endogenous and exogenous cycles, for example during shift work, promotes the development of metabolic morbidities.176 Recently, it has been demonstrated that, besides lunch and dinner, an additional meal in the late evening, rather than in the morning, attenuates overnight lipid catabolism,178 potentially counteracting weight loss. In mice, pathological consequences of high-fat diet, that ismetabolic disruption and obesity, depend on the time of food intake rather than calories consumed.179-181

Shift work promotes unhealthy snacking behaviour, as well as abnormal glucose tolerance,182-186 thereby increasing the risk for obesity and type 2 diabetes. In addition, circadian disruption because of genetic perturbation or misalignment of endogenous and exogenous rhythms has been found to cause dysbiosis of the gut microbiome.187-190 Vice versa, changes to the microbiome, for example by antibiotics, altered diet, age or stress, may disrupt endogenous clock functions of the gastrointestinal tract and promote metabolic disease.191 Gut microbiota and host circadian rhythms are intertwined by their concomitant regulation of the host’s metabolism and their response to feeding-related signals. Drivers of a so-called ‘microbiome-circadian clock-axis’ are still under investigation. However, as mentioned earlier, microbiota-derived short chain fatty acids (SCFA), as well as microbiota modified host bile acids (BA) have been reported to regulate host metabolism and energy balance, as well as to be altered upon changes in feeding regimens.83 Kuang et al (2020) recently demonstrated that intestinal microbiota regulate diurnal metabolic rhythms of the host by inducing the epithelial expression of histone deacetylase 3 (HDAC3).192 Ku et al (2020) showed 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA), two metabolites derived from \textit{Clostridium sporogenes}, induce changes in the molecular clock machinery in a fibroblast model of peripheral clocks.193 Thus, maintenance of cyclic variations in gut microbiota may play an important role for the prevention of metabolic and gastrointestinal pathologies.194

Lastly, diets may reprogram glucocorticoid (GC) rhythms, another important entrainment signal for peripheral circadian clocks. In mice, glucocorticoid receptors (GR) regulate rhythmic metabolism through time-dependent target gene induction and rhythms in GR target genes are altered by high-fat diet.195 This may be a consequence of arrhythmic corticosterone levels following high-fat diet as shown by Appiakannan et al (2019).196 In humans, shift work at young adult age has been found to be associated with elevated cortisol levels, which were further correlated with increased body mass index.197 Interestingly, in patients with Cushing’s disease, caused by hypercortisolism and commonly accompanied by weight gain and metabolic syndrome, rhythmic clock gene expression is impaired.198 These findings highlight the interplay between the circadian, glucocorticoid and metabolic system. Thus, not surprisingly prolonged administration of synthetic glucocorticoids, for example in systemic and topical anti-inflammatory therapy, is often accompanied by severe side effects, such as hyperglycaemia, hepatosteatosis or increased body fat accumulation.199 Moreover, abnormal GC levels may cause the disruption of intrinsic circadian clocks and promote associated pathologies.200

8 | CLOCKS AND INFECTION

In the light of the 2020 SARS-CoV-2 pandemic, the interplay between the circadian and immune system has become more relevant than ever. As other bodily cell types, cells of the immune system possess circadian oscillators that drive rhythms in synthesis and release of cytokines, chemokines and cytolytic factors, thereby gating rhythmic innate and adaptive immune responses.201-203 On the molecular level circadian clock components acts as transcription factors driving cyclic expression of important immune genes, but also
clock regulated post-translational modifications (e.g., histone acetylation and methylation) or direct interaction with inflammatory pathways (e.g., NFκB pathways) play a role in controlling inflammatory processes and immune cell trafficking. Through gating immune functions, the circadian system governs time-of-day susceptibility to pathogens. Generally, circadian variability in severity of infections appears to be related to differences in pathogen burden resulting from daytime dependent inflammatory responses. Subudhi et al. (2020) report that malaria parasites are at least partly responsible for generating about 24-hour rhythms in their intra-erythrocytic developmental cycle and coordinating their developmental cycle with their host. Thus, the time of infection with SARS-CoV-2 may predict disease outcomes and better knowledge about such dynamics may help to optimize treatment strategies. On the other hand, inflammatory processes may induce complex re-organization of cellular and molecular circadian rhythms. Circadian disruption, often accompanied by sleep deprivation, alters the immune response to pathogen challenge, potentially leading to an excess risk for SARS-CoV-2 infection among shift workers, including health care professionals. In addition, prolonged social distancing and home stay to counteract the spread of the pandemic may affect circadian health by reducing daylight exposure from outdoor activities or altering meal timing, diets and physical activity.

Besides virus infections, parasitic infections are the cause of a tremendous burden of disease, with malaria causing the most deaths globally. Even today, about 600,000 people per year, mostly young children, die from malaria infections (according to CDC, Centers of Disease Control and Prevention). Many parasitic infections display rhythmic daily patterns, potentially to predict circadian environments and coordinate the parasite's metabolism, life cycle and transmission with the host's circadian rhythm. Malaria parasites exhibit circadian rhythms during replication and transmission. Recently, Rijo-Ferreira et al. (2020) demonstrated that Plasmodium chabaudi possesses flexible and intrinsic circadian clocks that can be adjusted to the host's circadian rhythm and persist despite the absence of rhythmic feeding signals or functional circadian clocks in the host. Similarly, two other studies published in recent years reported that Plasmodium cell cycle occurs in synchrony with the host's circadian cycle. However, while Hirako et al. (2018) show that rhythms of systemic TNFα production and host food intake govern synchronization of Plasmodium stages with the host’s circadian cycle, and coordinating their developmental cycle with their host. Subudhi et al. (2020) report that malaria parasites are at least partly responsible for generating about 24-hour rhythms in their intra-erythrocytic developmental cycle and coordinating their developmental cycle with their host.

9 | CLOCKS AND AGEING

Today, one of the most prevalent population trends is ageing. This is mainly because of an increased life expectancy (better nutrition, health care, sanitation, education) and reduced birth rates. The United Nations Population Fund predicts that by 2050, almost 22% of the global population will be older than 60 years. Ageing not only alters sleep timing, duration and quality, it also affects the circadian system leading to differences in entrainment, reduced amplitudes and altered phases of endogenous rhythms. Such changes may stem from altered transmission of clock resetting blue light, for example because of yellowing of the lens with age, from changes to electrical activity, neuropeptide expression and intercellular coupling within the SCN or from altered clock gene expression (for review see 235,236). Interestingly, Bmal1 knock-out mice display phenotypes resembling premature ageing, including sarcopenia, cataracts, reduced subcutaneous fat and organ shrinkage. However, except for irradiation induced premature ageing in Clock mutant mice, no other clock gene mutant models display ageing-related phenotypes comparable to Bmal1 knock-out mice, suggesting that phenotypic changes may be a consequence of pleiotropic functions of Bmal1 rather than circadian disruption. Other prevalent pathologies related to old age, and possibly resulting circadian disruption, are neurodegenerative diseases and cancer. In older people, decreased activity rhythms (with respect to robustness, amplitude and mesor) have been associated with higher likelihoods of developing dementia, mild cognitive impairment, or Parkinson disease. Alzheimer's and Parkinson disease, commonly occurring during later stages in life, have been linked to single nucleotide polymorphisms in the clock genes BMAL1, PER1 and CLOCK and are usually accompanied by disruptions of sleep-wake cycles. Moreover, it has been reported that the absolute expression levels and day-night differences of AVP mRNA, as well as the density of AVP/VIP- and MT1 (melatonin receptor)-expressing neurons in the human SCN are diminished in Alzheimer’s patients. Sirtuin 1 (SIRT1), an NAD-dependent deacetylase known to regulate circadian clock components, appears to be involved in both, ageing and circadian-clock regulation. While in aged mice, SIRT1 levels in the SCN are decreased, in young mice lack of SIRT1 promotes premature ageing and ageing-related circadian phenotypes. In addition, age-related neoplasms have been associated with aberrant levels of SIRT1, potentially promoting circadian and cell cycle disruption, as well as tumorigenesis.
10 | CLOCKS IN SPACE (A BRIEF PERSPECTIVE)

Space Extrapolation Technologies Corp. (SpaceX), an American aerospace manufacturer and space transportation service, is the first private company to have launched astronauts into orbit. Considering that space transportation may someday be available to the broader public, dissecting interactions between weightlessness in space and human circadian systems may be worthwhile.255 During space flight, astronauts are exposed to changes in basically all environmental Zeitgebers experienced on earth. Sunrise and sunset occur approximately every 45 minutes, instead of every 24-hours, diets and potentially feeding-fasting cycles are altered, and microgravity entails prolonged muscle unloading and induces a fluid shift in the human body, impacting the metabolic, mechano-skeletal and cardiovascular systems.256,257 Interestingly, however, circadian rhythms in blood pressure have been shown persist in space with lower pressure during sleep.258-260 A study conducted in a Drosophila model of space travel showed that rhythms of clock genes, as well as fly locomotor activity and sleep are maintained during space flight.261 Additionally, a study in 21 astronauts collected over almost 9 years demonstrated that alignment of the sleep schedule to the endogenous circadian cycle (estimated using the Circadian Performance Simulation software) enhances sleep time and quality, as well as reduces the use of medication.262 Together these findings suggest that maintaining 'circadian health' during space travel is beneficial for astronaut's physiology and performance and may be able to improve health deterioration during prolonged weightlessness.

11 | CONCLUSIONS

In summary, modern life poses widespread challenges to our circadian systems. Social jetlag, abnormal diets, ageing-related processes and infections can disturb circadian clock systems and prevent a correct entrainment to periodically changing environmental conditions, most importantly the light-dark cycle. Disruption of and misalignment between internal and external rhythms has been associated with numerous health consequences, including metabolic and cardiovascular diseases, psychiatric disorders, cancer or even increased mortality.130,132,152,263,264 For most of these ‘circadian pathologies’, molecular mechanisms are not well understood. Thus, elucidation of molecular links between circadian clocks and human pathologies should enable the development of personalized preventative and therapeutic strategies. Along that way, continuous progress in biomarker testing to determine people's chronotypes,265,266 in human study designs to assess the impact of feeding-fasting and shift work cycles on our well-being,149,267-269 as well as in studying molecular oscillator properties in vitro and in vivo270 will help to achieve harmony between our body clocks and the outside world.

ACKNOWLEDGEMENTS

AF is supported by the Joachim Herz Stiftung. Work in AK's laboratory is funded by the Deutsche Forschungsgemeinschaft (grants TRR186/P17 and KR1989/12-1). Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

There is no conflict of interest to declare.

ORCID

Anna-Marie Finger https://orcid.org/0000-0001-9148-4490
Achim Kramer https://orcid.org/0000-0001-9671-6078

REFERENCES

1. Dibner C, Schibler U. Body clocks: time for the Nobel Prize. Acta Physiol. 2018;222(2):e13024.
2. Persson PB, Bondke PA. Circadian rhythms. Acta Physiol. 2019;225(1):e13220. https://doi.org/10.1111/apha.13220
3. Persson PB, Persson AB. Light and darkness in circadian rhythms. Acta Physiol. 2018;222(3):e13036. https://doi.org/10.1111/apha.13036
4. Vaze KM, Nikhil KL, Sharma VK. Circadian rhythms: 4. Why do living organisms have them? Resonance. 2014;19(2):175-189. https://doi.org/10.1007/s12045-014-0020-3
5. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14(16):1481-1486. https://doi.org/10.1016/j.cub.2004.08.023
6. DeCoursey PJ, Walker JK, Smith SA. A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A Sensory, Neural Behav Physiol. 2000;186(2):169-180. https://doi.org/10.1007/s003590050017
7. Ruby NF, Dark J, Heller HC, Zucker I. Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Proc Natl Acad Sci USA. 1996;93(18):9864-9868. https://doi.org/10.1073/pnas.93.18.9864
8. DeCoursey PJ, Kruutas JR, Mele G, Holley DC. Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol Behav. 1997;62(5):1099-1108. https://doi.org/10.1016/S0031-9384(97)00263-1
9. Park N, Cheon S, Son GH, Cho S, Kim K. Chronic circadian disturbance by a shortened light-dark cycle increases mortality. Neurobiol Aging. 2012;33(6):1122.e11-1122.e22. https://doi.org/10.1016/j.neurobiolaging.2011.11.005
10. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypotalamic lesions. Proc Natl Acad Sci USA. 1972;69(6):1583-1586. https://doi.org/10.1073/pnas.69.6.1583
11. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42(1):201-206. https://doi.org/10.1016/0006-8993(72)90054-6
12. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975-978. https://doi.org/10.1126/science.2305266

13. Yan L, Karatsoreos I, LeSauter J, et al. Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb Symp Quant Biol. 2007;72(1):527-541. https://doi.org/10.1101/sub.2007.72.037

14. Wen S, Ma D, Zhao M, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci. 2020;23(3):456-467. https://doi.org/10.1038/s41593-020-0586-x

15. Evans JA, Suen T-C, Callif BL, et al. Shell neurons of the master circadian clock coordinate the phase of tissue clocks throughout the brain and body. BMC Biol. 2015;13(1):43. https://doi.org/10.1186/s12915-015-0157-x

16. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065-1070. https://doi.org/10.1126/science.1069609

17. Güler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453(7191):102-105. https://doi.org/10.1038/nature06829

18. Panda S, Provencio I, Tu DC, et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science. 2003;301(5632):525-527. https://doi.org/10.1126.science.1086179

19. Pulivarthy SR, Tanaka N, Welsh DK, De Haro L, Verma IM, Panda S. Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc Natl Acad Sci USA. 2007;104(51):20356-20361. https://doi.org/10.1073/pnas.0708877104

20. Qi U, Kumbalasiri T, Carlson SM, et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433(7027):745-749. https://doi.org/10.1038/nature03345

21. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A. 1991;169(1):39-50. https://doi.org/10.1007/BF00198171

22. Panda S, Sato TK, Castrucci AM, et al. Melanopsin (OPN4) requirement for normal light-induced circadian phase shifting. Science. 2002;298(5601):2213-2216. https://doi.org/10.1126/science.1076848

23. Fernandez DC, Komal R, Langel J, et al. Retinal innervation tunes circuits that drive nonphotic entrainment to food. Nature. 2020;581(7807):194-198. https://doi.org/10.1038/s41586-020-02204-1

24. O’Neill JS, Reddy AB. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem Soc Trans. 2012;40(1):44-50. https://doi.org/10.1042/BST20110691

25. Kornhauser JM, Mayo KE, Takahashi JS. Light, immediate-early genes, and circadian rhythms. Behav Genet. 1996;26(3):221-240. https://doi.org/10.1007/BF02359382

26. Shearman LP, Zylik MJ, Weaver DR, Kolakowski LF, Reppert SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron. 1997;19(6):1261-1269. https://doi.org/10.1016/S0896-6273(00)80417-1

27. Kalsbeek A, Palm IF, La Fleur SE, et al. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21(6):458-469. https://doi.org/10.1177/0748738406293854

28. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci. 1987;7(6):1626-1638. https://doi.org/10.1523/JNEUROSCI.07-06-01626.1987

29. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996;382(6594):810-813. https://doi.org/10.1038/382810a0

30. Kramer A, Yang FC, Snodgrass P, et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science. 2001;294(5551):2511-2515. https://doi.org/10.1126/science.1076716

31. Cheng MY, Bullock CM, Li C, et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 2002;417(6887):405-410. https://doi.org/10.1038/3417405a

32. Kraves S, Weitz CJ. A role for cardiortrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci. 2006;9(2):212-219. https://doi.org/10.1038/nn1633

33. Mohawk JA, Cox KH, Sato M, et al. Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) is required for normal circadian and sleep behavior in mice. J Neurosci. 2019;39(40):7958-7967. https://doi.org/10.1523/JNEUROSCI.0411-19.2019

34. Leise TL, Wang CW, Gitis PJ, Welsh DK. Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2:LUC bioluminescence. PLoS One. 2012;7(3):e33334. https://doi.org/10.1371/journal.pone.0033334

35. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol. 2004;14(24):2289-2295. https://doi.org/10.1016/j.cub.2004.11.057

36. Yoo S-H, Yamazaki S, Lowrey PL, et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA. 2004;101(15):5339-5346. https://doi.org/10.1073/pnas.0308709101

37. Abe M, Herzog ED, Yamazaki S, et al. Circadian rhythms in isolated brain regions. J Neurosci. 2002;22(1):350-356. https://doi.org/10.1523/JNEUROSCI.22-01-00350.2002

38. Gerber A, Essaut C, Aubert G, Treisman R, Pralong F, Schibler U. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell. 2013;152(3):492-503. https://doi.org/10.1016/j.cell.2012.12.027

39. Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001;6(3):269-278. https://doi.org/10.1046/j.1365-2443.2001.00419.x

40. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal Muscle. Med Sci Sports Exerc. 2012;44(9):1663-1670. https://doi.org/10.1249/MSS.0b013e318255c4f4c

41. Schroeder AM, Truong D, Loh DH, Jordan MC, Roos KP, Colwell CS. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J Physiol. 2012;590(23):6213-6226. https://doi.org/10.1113/jphysiol.2012.233676

42. Pendergast JS, Branecky KL, Huang R, Niswender KD, Yamazaki S. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior. Front Psychol. 2014;5:177. https://doi.org/10.3389/fpsyg.2014.00177
43. Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. *EMBO J.* 2001;20(24):7128-7136. https://doi.org/10.1093/emboj/20.24.7128

44. Sasaki H, Hattori Y, Ikeda Y, et al. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice. *Sci Rep.* 2016;6(1):27607. https://doi.org/10.1038/srep27607

45. Dickmeis T. Glucocorticoids and the circadian clock. *J. Endocrinol.* 2009;200(1):3-22. https://doi.org/10.1677/JOE-08-0415

46. Balsalobre A, Brown SA, Maracci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. *Science.* 2000;289(5488):2344-2347. https://doi.org/10.1126/science.289.5488.2344

47. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. *Cell.* 1998;93(6):929-937. https://doi.org/10.1016/S0092-8674(00)81199-X

48. Kamagata M, Ikeda Y, Sasaki H, et al. Potent synchronization of peripheral circadian clocks by glucocorticoid injections in PER2::LUC-Clock/Clock mice. *Chronobiol Int.* 2017;34(8):1067-1082. https://doi.org/10.1080/07420528.2017.1338716

49. Rosenfeld P, van Eeckelen JAM, Levine S, de Kloet ER. Ontogeny of corticosterone receptors in the brain. *Cell Mol Neurobiol.* 1993;13(4):295-319. https://doi.org/10.1007/BF00711575

50. Damiola F, Le Minli N, Pretinier N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. *Genes Dev.* 2000;14(23):2950-2961. https://doi.org/10.1101/gad.183500

51. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. *Science.* 2001;291(5503):490-493. https://doi.org/10.1126/science.1073680

52. Zhang S, Dai M, Wang XU, et al. Signalling entrains the peripheral circadian clock. *Cell Signal.* 2020;69:109433-https://doi.org/10.1016/j.cellsig.2019.109433

53. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of croceral circadian clock gene expression through PER2 deacetylation. *Cell.* 2008;134(2):317-328. https://doi.org/10.1016/j.cell.2008.06.050

54. Pei J-F, Li X-K, Li W-Q, et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. *Nat Cell Biol.* 2019;21(12):1553-1564. https://doi.org/10.1038/s41556-019-0420-4

55. Pet G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. *Cell.* 2008;134(2):317-328. https://doi.org/10.1016/j.cell.2008.06.050

56. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-Mediated NAD+ biosynthesis. *Science.* 2009;324(5927):651-654. https://doi.org/10.1126/science.1171641

57. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. *Cell.* 2008;134(2):329-340. https://doi.org/10.1016/j.cell.2008.07.002

58. Dang F, Sun X, Ma X, et al. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. *Nat Commun.* 2016;7(1):12696. https://doi.org/10.1038/ncomms12696

59. Yamajuku D, Inagaki T, Haruma T, et al. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. *Sci Rep.* 2012;2(1):439. https://doi.org/10.1038/srep00439

60. Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain. *Best Pract. Res. Clin. Endocrinol. Metab.* 2017;31(6):561-571. https://doi.org/10.1016/j.beem.2017.10.007

61. Wang Q, Yin Y, Zhang W. Ghrelin restores the disruption of the circadian clock in steatotic liver. *Int J Mol Sci.* 2018;19(10):3134-https://doi.org/10.3390/ijms19103134

62. Landgraf D, Tsang AH, Leliavski A, et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. *Elife.* 2015;4:e06253. https://doi.org/10.7554/elife.06253

63. Ando H, Ushijima K, Fujimura A. Indirect effects of glucagon-like peptide-1 receptor agonist exenatide on the peripheral circadian oscillators in mice. *PLoS One.* 2013;8(11):e81119. https://doi.org/10.1371/journal.pone.0081119

64. Crosby B, Hamnett R, Putker M, et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. *Cell.* 2019;177(4):896-909.e20

65. Ramanathan C, Kathale ND, Liu D, et al. mTOR signaling regulates central and peripheral circadian clock function. *PLoS Genet.* 2018;14(5):e1007369. https://doi.org/10.1371/journal.pgen.1007369

66. Brown SA, Zumbrunn G, Fleury-Olela F, Pretinner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. *Carr. Biol.* 2002;12(18):1574-1583. https://doi.org/10.1006/jble.2002.0081

67. Refinetti R. Entrainment of circadian rhythm by ambient temperature cycles in mice. *J Biol Rhythms.* 2010;25(4):247-256. https://doi.org/10.1177/0748737910372074

68. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. *Science.* 2010;330(6002):379-385. https://doi.org/10.1126/science.1195262

69. Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin II, Schibler U. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. *Genes Dev.* 2008;22(3):331-345. https://doi.org/10.1101/gad.453808

70. Chappuis S, Ripperger JA, Schnell A, et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. *Mol Metab.* 2013;2(3):184-193. https://doi.org/10.1016/j.molmet.2013.05.002

71. Tamura T, Hattori M, Honda K, Benjamin I, Ozawa T, Takamatsu K. Synchronization of circadian Per2 rhythms and HSF1-MLC:1-clock interaction in mouse fibroblasts after Short-Term heat shock pulse. *PLoS One.* 2011;6(9):e24521. https://doi.org/10.1371/journal.pone.0024521

72. Saini C, Morf J, Stratmann M, Gos P, Schibler U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. *Genes Dev.* 2012;26(6):567-580. https://doi.org/10.1101/gad.183251.111

73. Morf J, Rey G, Schneider K, et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. *Science.* 2012;338(6105):379-383. https://doi.org/10.1126/science.1217726

74. Koronowski KB, Kiouchi K, Welz P-S, et al. Defining the independence of the liver circadian clock. *Cell.* 2019;177(6):1448-1462.e14. https://doi.org/10.1016/j.cell.2019.04.025

75. Welz P-S, Zinna VM, Symeonidi A, et al. BMAL1-driven tissue clocks respond independently to light to maintain homeostasis.
Amano T, Liu F, Davies SK, et al. Investigation of metabolites for estimating blood deposition time. Int J Legal Med. 2012;126(4):5541-5546. https://doi.org/10.1007/s00414-017-1638-y

108. Green CB. Circadian posttranscriptional regulatory mechanisms in mammals. Cold Spring Harb Perspect Biol. 2018;10(6):a030692. https://doi.org/10.1101/cshperspect.a030692

109. Peußner M, Heyd F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch Eur J Physiol. 2016;468(6):983–991. https://doi.org/10.1007/s00424-016-1820-y

110. Mauvoisin D. Circadian rhythms and proteomics: it’s all about posttranslational modifications! Wiley Interdiscip. Rev Syst Biol Med. 2019;11(5): https://doi.org/10.1002/wsbm.1450

111. Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019;20(1):49–65. https://doi.org/10.1038/s41588-018-0088-y

112. Alvarez JD, Chen D, Storer E, Sehgal A. Non-cyclic and developmentally regulated circadian molecular oscillation development using induced pluripotent stem cells. J Biol Rhythms. 2019;34(5):525–532. https://doi.org/10.1177/07487387198865436

113. Serón-Ferré M, Ducsay CA, Valenzuela GJ. Circadian rhythms during pregnancy. Endocr Rev. 1993;14(5):594–609. https://doi.org/10.1210/edrv-14-5-594

114. Bates K, Herzog ED. Maternal-fetal circadian communication during pregnancy. Front Endocrinol (Lausanne). 2020;11:198. https://doi.org/10.3389/fendo.2020.00198

115. Sletten J, Cornelissen G, Assmus J, Kiserud T, Albrechtsen S, Kessler J. Maternal exercise, season and sex modify the daily fetal heart rate rhythm. Acta Physiol. 2018;224(2):e13093. https://doi.org/10.1111/apha.13093

116. Bernardes J. Foetal circadian rhythms, interpretation of foetal heart rate recordings and clues about foetal preparedness for stressful situations. Acta Physiol. 2018;224(2):e13174. https://doi.org/10.1111/apha.13174

117. Mirmiran M, Kok JC. Circadian rhythms in early human development. Early Hum Dev. 1991;26(2):121–128. https://doi.org/10.1016/0378-3782(91)90016-V

118. Sitka U, Weinert D, Berle K, Rumlwer W, Schuh J. Investigations of the rhythmic function of heart rate, blood pressure and temperature in neonates. Eur J Pediatr. 1994;153(2):117-122. https://doi.org/10.1007/BF01959222

119. Serón-Ferré M, Torres-Farfán C, Forcelledo ML, Valenzuela GJ. The development of circadian rhythms in the fetus and neonate. Semin Perinatol. 2001;25(6):363–370. https://doi.org/10.1053/sper.2001.29037

120. Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci. 2020;51(1):531–550. https://doi.org/10.1111/ejn.14255

121. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: Misalignment of biological and social time. Chronobiol Int. 2006;23(1-2):497–509. https://doi.org/10.1080/07420520500545979

122. Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and social jetlag: Misalignment of biological and social time. Chronobiol Int. 2006;23(1-2):497–509. https://doi.org/10.1080/07420520500545979

123. Roenneberg T, Pilz LK, Zerbini G, Winnebeck EC. Chronotype and social jetlag: a (self-) critical review. Biology. 2019;8(3):54. https://doi.org/10.3390/biology8030054

124. Czeisler CA. Perspective: casting light on sleep deficiency. Nature. 2013;497(7450):S13. https://doi.org/10.1038/497S13a

125. Levenson JC, Shensa A, Sidani JE, Colditz JB, Primack BA. The association between social media use and sleep disturbance among young adults. Prev Med. 2016;85:36–41. https://doi.org/10.1016/j.ypmed.2016.01.001

126. Aguirre CC. Sleep deprivation: a mind-body approach. Curr Opin Palm Med. 2016;22(6):583–588. https://doi.org/10.1097/MCP.0000000000000323

127. Opp MR, Krueger JM. Sleep and immunity: a growing field with clinical impact. Brain Behav Immun. 2015;47:1–3. https://doi.org/10.1016/j.bbi.2015.03.011
FINGER and KRAMER

140. Bass J, Turrek FW. Sleepless in America: a pathway to obesity and the metabolic syndrome? Arch Intern Med. 2005;165(1):15–16. https://doi.org/10.1001/archinte.165.1.15

141. Iwamoto A, Kawai M, Furuse M, Yasuo S. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice. Chronobiol Int. 2014;31(2):189–198. https://doi.org/10.3109/07420528.2013.837478

142. Kettner NM, Mayo SA, Hua J, Moore DD, Fu L. Circadian dysfunction induces leptin resistance in mice. Cell Metab. 2015;22(3):448–459. https://doi.org/10.1016/j.cmet.2015.06.005

143. Wu M, Zeng J, Chen Y, et al. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol Rep. 2012;27(5):1417-1428. https://doi.org/10.3892/or.2012.1688

144. Castanon-Cervantes O, Wu M, Ehlen JC, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–5805. https://doi.org/10.4049/jimmunol.1001026

145. Casiraghi LP, Oda GA, Chiesa JJ, Friesen WO, Golombek DA. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. J Biol Rhythms. 2012;27(1):59–69. https://doi.org/10.1177/0748730411429447

146. Casiraghi LP, Alzamendi A, Giovambattista A, Chiesa JJ, Golombek DA. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice. Physiol Rep. 2016;4(8):e12743. https://doi.org/10.14814/phy2.12743

147. Gu F, Han J, Larden F, et al. Total and cause-specific mortality of U.S. nurses working rotating night shifts. Am J Prev Med. 2015;48(3):241–252. https://doi.org/10.1016/j.amepre.2014.10.018

148. De Bacquer D, Van Risseghem M, Clays E, Kittel F, De Backer G. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice. J Biol Rhythms. 2012;27(1):59–69. https://doi.org/10.1177/0748730411429447

149. Bescos R, Boden MJ, Jackson ML, et al. Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol. 2018;223(2):e13039. https://doi.org/10.1111/apha.13039

150. Münch M, Kramer A. Timing matters: new tools for personalized chronomedicine and circadian health. Acta Physiol. 2019;227(2):e13300. https://doi.org/10.1111/apha.13300

151. Peeples L. Medicine’s secret ingredient — it’s in the timing. J Neurosci. 2000;20(6):RC66. https://doi.org/10.1523/JNEUROSCI.0005-00.2000

152. Lewis P, Oster H, Korff HW, Foster RG, Ennaceur A, Cole RJ, Hein MJ. Measuring and identifying large-study metrics for circadian health. Scand J Work Environ Health. 2003;29(5):337-346.

153. Katz G, Knobler HY, Lavel L, Strauss Z, Durst R. Time zone change and major psychiatric morbidity: the results of a 6-year study in Jerusalem. Compr Psychiatry. 2002;43(1):37–40.

154. Lewis P, Oster H, Korff HW, Foster RG, Ennaceur A, Cole RJ, Heim MJ. Measuring and identifying large-study metrics for circadian health. Scand J Work Environ Health. 2003;29(5):337-346.

155. Manfredini R, Fabbian F, De Giorgi A, et al. Daylight saving time and myocardial infarction: Should we be worried? A review of the evidence. Eur Rev Med Pharmacol Sci. 2018;22(3):750–755. https://doi.org/10.26355/eurrev_201802_14306

156. Sipilä JOT, Ruuskanen JO, Rautava P, Kytö V. Changes in ischemic stroke occurrence following daylight saving time transitions. Sleep Med. 2016;27-28:20–24. https://doi.org/10.1016/j.sleep.2016.10.009

157. Borisenkov MF, Tserne TA, Panev AS, et al. Seven-year survey of sleep timing in Russian children and adolescents: chronic 1-h forward transition of social clock is associated with increased social jetlag and winter pattern of mood seasonality. Biol Rhythm Res. 2017;48(1):3–12. https://doi.org/10.1080/0992016.2016.1223778

158. Avidan AY, Zee PC. Handbook of sleep medicine. Ann Int Med. 2001;135(1):72. https://doi.org/10.7326/0003-4819-135-1-20010703-00044

159. Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lancet. 2007;369(9567):1117-1129.

160. Waterhouse J, Nevill A, Finnegan J, et al. Further assessments of the relationship between jet lag and some of its symptoms. Chronobiol Int. 2005;22(1):121-136.

161. Song A, Severini T, Allada R. How jet lag impairs major league baseball performance. Proc Natl Acad Sci USA. 2011;114(6):1407–1412. https://doi.org/10.1073/pnas.1016249495

162. Diekman CO, Bose A. Reentrainment of the circadian pacemaker during jet lag: east-west asymmetry and the effects of north-south travel. J Theor Biol. 2018;437:261–285. https://doi.org/10.1016/j.jtbi.2017.10.002

163. Zhang F, Li W, Li H, et al. The effect of jet lag on the human brain: A neuroimaging study. Hum Brain Mapp. 2020;41(9):2281–2291. https://doi.org/10.1002/hbm.24945

164. Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci. 2001;4(4):567–568. https://doi.org/10.1038/88384.

165. Cho K, Ennaceur A, Cole JC, Chronic SuhCK, Deficits ILPC. J Neurosci. 2000;20(6):RC66. https://doi.org/10.1523/JNEUROS CI.20-06-0318-z

166. Hajjarieh S, Rantanen P, Hanecak R. The effect of phase advance of light on repeated circadian timing in humans. Chronobiol Int. 2019;36(6):653–666. https://doi.org/10.3109/07420528.2018.159566

167. Brander DJ, Niswender KD, Pendergast JS. Disruption of circadian rhythms disrupts female jetlag behavior. J Biol Rhythms. 2005;20(6):598–607.

168. Manfredini R, Fabbian F, De Giorgi A, et al. Daylight saving time and myocardial infarction: Should we be worried? A review of the evidence. Eur Rev Med Pharmacol Sci. 2018;22(3):750–755. https://doi.org/10.26355/eurrev_201802_14306

169. Sipilä JOT, Ruuskanen JO, Rautava P, Kytö V. Changes in ischemic stroke occurrence following daylight saving time transitions. Sleep Med. 2016;27-28:20–24. https://doi.org/10.1016/j.sleep.2016.10.009

170. Sipilä JOT, Ruuskanen JO, Rautava P, Kytö V. Changes in ischemic stroke occurrence following daylight saving time transitions. Sleep Med. 2016;27-28:20–24. https://doi.org/10.1016/j.sleep.2016.10.009

171. Branecky KL, Niswender KD, Pendergast JS. Disruption of circadian rhythms disrupts female jetlag behavior. J Biol Rhythms. 2005;20(6):598–607.
16. Voigt RM, Forsyth CB, Green SJ, et al. Circadian disorganization alters intestinal microbiota. PLoS One. 2014;9(5):e97500. https://doi.org/10.1371/journal.pone.0097500

17. Thaiss C, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–529. https://doi.org/10.1016/j.cell.2014.09.048

18. Ku K, Park I, Kim D, et al. Gut microbial metabolites induce changes in circadian oscillation of clock gene expression in the mouse embryonic fibroblasts. Mol Cells. 2020;43(3):276–285. https://doi.org/10.14348/molcells.2020.2309

19. Teichman EM, O’Riordan KD, Gahan CGM, Dinan TG, Cryan JF. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metab. 2020;31(3):448–471. https://doi.org/10.1016/j.cmet.2020.02.008

20. Appiapannan HS, Kestuyts DR, Weber ET. Effects of high fat diet and chronic circadian challenge on glucoctocorticid regulation in C57BL/6J mice. Physiol Behav. 2019;204:100–105. https://doi.org/10.1016/j.physbeh.2019.01.014

21. Manenschijn L, van Kruysbergen RGPM, de Jong FH, Koper JW, van Rossum EFC. Shift work at young age is associated with elevated long-term cortisol levels and body mass index. J Clin Endocrinol Metab. 2011;96(11):E1862–E1865.

22. Soares VR, Silva Martins C, Martinez EZ, et al. Peripheral clock system circadian abnormalities in Cushing’s disease. Chronobiol Int. 2020;1–10. https://doi.org/10.1080/07420528.2020.1758126

23. Schücke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1):23–43. https://doi.org/10.1016/S0163-7258(02)00297-8

24. Baxter M, Ray DW. Circadian rhythms in innate immunity and stress responses. Immunology. 2020;http://doi.org/10.1111/imm.13166

25. Labrecque N, Cermakian N. Circadian clocks in the immune system. J Biol Rhythms. 2015;30(4):277–290. https://doi.org/10.1177/0748730415577723

26. Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018;18(7):423–437. https://doi.org/10.1038/s41577-018-0008-4

27. Tognini P, Thaiss CA, Elinav E, Sassone-Corsi P. Circadian coordination of antimicrobial responses. Cell Host Microbe. 2017;22(2):185–192. https://doi.org/10.1016/j.chom.2017.07.007

28. Hergenhahn S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system. J Mol Biol. 2020;432(12):3700–3713.

29. Pick R, He W, Chen CS, Scheiermann C. Time-of-day-dependent trafficking and function of leukocyte subsets. Trends Immunol. 2019;40(6):524–537.

30. Edgar RS, Stangherlin A, Nagy AD, et al. Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci USA. 2016;113(36):10085–10090. https://doi.org/10.1073/pnas.1601895113

31. Ehlers A, Xie W, Agapov E, et al. BMAL1 links the circadian clock to viral airway pathology and asthma phenotypes.
238. Antoch MP, Gorbatcheva VY, Vykhoverants O, et al. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008;7(9):1197–1204. https://doi.org/10.4161/cc.7.9.5886

239. DePinho RA. The age of cancer. Nature. 2000;408(6809):248–254. https://doi.org/10.1038/35041694

240. Leng Y, Blackwell T, Cawthon PM, et al. Association of circadian abnormalities in older adults with an increased risk of developing parkinson disease. JAMA Neurol. 2020;e201623. https://doi.org/10.1001/jamaneurol.2020.1623

241. Tranah GJ, Blackwell T, Stone KL, et al. Decreased vasopressin gene expression in the suprachiasmatic nucleus of older women. Ann Neurol. 2011;70(5):722–732. https://doi.org/10.1002/ana.22468

242. Gu Z, Wang BinBin, Zhang Y-B, et al. Association of ARNTL (BMAL1) rs2278749 polymorphism T>C and susceptibility to Alzheimer disease in a Chinese population. Genet Mol Res. 2015;14:18515–18522. https://doi.org/10.4238/2015.December.23.39

243. Chen Q, Peng XD, Huang CQ, Yu XY, Zhang XM. Association between ARNTL (BMAL1) rs4580704 C>G is associated with susceptibility of Alzheimer’s disease in a Chinese population. Arch Med Res. 2013;44(3):203–07. https://doi.org/10.1016/j.arcmed.2013.01.002

244. Yang YK, Peng XD, Li YH, et al. The polymorphism of CLOCK Gene 3111T/C>T is associated with susceptibility of Alzheimer disease in Chinese population. J Invest Med. 2013;61(7):1084–1087. https://doi.org/10.2310/JIM.0b013e31829f91c0

245. Rothman SM, Mattson MP. Sleep disturbances in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Med. 2012;14(3):194–204. https://doi.org/10.1007/s12071-012-8181-2

246. Liu R-Y, Zhou J-N, Hoogendijk WJG, et al. Decreased vasopressin gene expression in the biological clock of alzheimer disease patients with and without depression. J Neuropathol Exp Neurol. 2000;59(4):314-322.

247. Wu Y-H, Zhou J-N, Van Heerikhuize J, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28(8):1239-1247.

248. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448–1460. https://doi.org/10.1016/j.cell.2013.05.027

249. Wang R-H, Zhao T, Cui K, et al. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Scientific Reports. 2016;6(1):28633. https://doi.org/10.1038/srep28633

250. Maiese K. Moving to the rhythm with clock (Circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res. 2017;14(3):299–304. https://doi.org/10.2174/156720261466617018092010

251. Jung-Hynes B, Reiter RJ, Ahmad N. Sirtuin-mediated cell death and the dark side of being an astronaut. Acta Physiol. 2017;228(3):e13263. https://doi.org/10.1111/apha.13263

252. Zarrinpar A, Chaix A, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27(2):69–83. https://doi.org/10.1016/j.tem.2015.11.007

253. Gabel K, Hoddy KK, Haggerty N, et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Heal Aging. 2018;4(4):345–353. https://doi.org/10.3233/NHA-170036
269. Resuehr D, Wu G, Johnson RL, Young ME, Hogenesch JB, Gamble KL. Shift work disrupts circadian regulation of the transcriptome in hospital nurses. *J Biol Rhythms*. 2019;34(2):167–177. https://doi.org/10.1177/0748730419826694

270. Saini C, Brown SA, Dibner C. Human peripheral clocks: applications for studying circadian phenotypes in physiology and pathophysiology. *Front Neurol*. 2015;6:95. https://doi.org/10.3389/fneur.2015.00095

How to cite this article: Finger A-M, Kramer A. Mammalian circadian systems: Organization and modern life challenges. *Acta Physiol.* 2021;231:e13548. https://doi.org/10.1111/apha.13548