Case Report

Highly Invasive Intracranial Malignant Schwannoma in a Rat

Mariko Nagatani1, Seiki Yamakawa1, Ryo Ando2, Hiroshi Edamoto2, Tsubasa Saito2 and Kazutoshi Tamura2

1Hamamatsu Branch of Pathology Department, Bozo Research Center Inc., 164-2 Wada-cho, Higashi-ku, Hamamatsu, Shizuoka 435-0016, Japan
2Pathology Department, Gotemba Laboratories, Bozo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan

Abstract: A highly invasive intracranial malignant schwannoma containing several masses was detected in a 28-week-old male Crl:CD(SD) rat. Macroscopically, 3 masses were noted in the cranial cavity; one was present at the bottom of the cranial cavity and involved the trigeminal nerve, and the other two were in the parietal bone. Histologically, each mass consisted of fusiform cells with interlacing fascicular, wavy and nuclear pseudopalisading arrangements and round cells with cystic lesions. The tumor cells invaded not only the brain but also the parietal bone. In the brain, the tumor cells infiltrated diffusely into the leptomeningeal and perivascular spaces and parenchyma, in which the tumor cell morphology and invasive pattern closely resembled those of malignant astrocytoma and malignant reticulosis. Immunohistochemically, the tumor cells in the masses showed positive reactions for both S-100 protein and GFAP, while those in the cerebral invasion sites were negative for GFAP and less positive for S-100 protein. Electron microscopically, a single basal lamina layer and short intricate cell processes were confirmed in the tumor cells. From these results, the present tumor was diagnosed as a malignant schwannoma arising in the cranial cavity, probably originating from the trigeminal nerve. The present tumor is considered to be a relatively unique malignant schwannoma based on its growth and invasion patterns. (J Toxicol Pathol 2009; 22: 139–142)

Key words: malignant schwannoma, cranial cavity, spontaneous, rat

Although malignant schwannomas arise spontaneously in various tissues of the body in rats and occasionally infiltrate into surrounding tissues1–7, intracranial schwannoma rarely occurs, and therefore only limited information is available in the literature5–7. On the other hand, pituitary anterior tumors and astrocytomas are familiar tumors in the rat cranial cavity8. Occasionally, malignant pituitary tumors slightly invade the brain parenchyma and sphenoid bone9, 10, while most malignant astrocytomas extensively invade the surrounding parenchyma and meninges, without growing out of the brain11.

We encountered a case of spontaneous intracranial malignant schwannoma in a rat that severely invaded the brain and parietal bone and formed several masses in a region distant from the original site. In the present paper, we examine its histological and immunohistochemical characteristics.

Received: 11 December 2008, Accepted: 7 January 2009
Mailing address: Mariko Nagatani, Hamamatsu Branch of Pathology Department, Bozo Research Center Inc., 164–2 Wada-cho, Higashi-ku, Hamamatsu, Shizuoka 435-0016, Japan
TEL/FAX: 81-53-467-1002
E-mail: nagatani@bozo.co.jp

The animal was a male Crl:CD(SD) rat purchased from Charles River Laboratories Japan, Inc. (Kanagawa, Japan) and was subjected to a 26-week toxicity study. The present tumor was judged to be spontaneous in nature because no adverse effects of the test substance were detected in the test group including this animal. The animal was housed individually in a wire mesh cage under controlled conditions (23 ± 3°C room temperature, 50 ± 20% relative humidity and a 12-H light/dark cycle) and was given CRF-1 diet (CLEA Japan, Inc., Shizuoka, Japan) and tap water ad libitum. The animal was routinely monitored for clinical signs once a day and was weighed once a week during the study period.

The animal died spontaneously at 28 weeks of age and exhibited convulsion, prone/lateral position and bradypnea just before death; its body weight decreased from 631 g to 566 g during the last 2 weeks. Macroscopically, three intracranial masses that were grayish-white with some dark red areas were observed. The locations of the masses are shown in Fig. 1. One mass (mass A), 10 × 10 × 5 mm in size, was located at the bottom of the cranial cavity and involved the trigeminal nerve and compressed the brain. The other two masses, 10 × 10 × 5 mm (mass B) and 5 × 5 × 2 mm (mass C) in size, were present in the parietal bone. Mass B...
and cut into sections 2 μm thick. The tissues from the masses and surrounding bone tissue were decalcified with 10% formic acid solution and 10% formalin. Sections were stained with hematoxylin and eosin (HE) for histological examination. For immunohistochemical examination, selected sections were subjected to the labeled polymer method using an EnVision kit (Dako Japan, Kyoto, Japan) for anti-rabbit S-100 protein (1:500, Dako Japan) and anti-rabbit glial fibrillary acidic protein (GFAP; 1:500, Dako Japan) and were counterstained with hematoxylin. For electron microscopic examination, small pieces of tumor tissues fixed with 10% formalin were refixed in glutaraldehyde fixative, post-fixed in osmium and then routinely processed and embedded in epoxy resin (Oken Japan) and were counterstained with hematoxylin. For electron microscopy, small pieces of tumor tissues fixed with 10% formalin were refixed in glutaraldehyde fixative, post-fixed in osmium and then routinely processed and embedded in epoxy resin (Oken Shoji, Tokyo, Japan). Ultrathin-sections of the selected areas were double-stained with uranyl acetate and lead citrate and examined under a JEOL 1200 EX electron microscope (Nippon Denshi, Tokyo, Japan).

Microscopically, the masses were not circumscribed with a distinct capsule and consisted of both fusiform and round cells in various proportions. The fusiform cells had oval to elongated nuclei with eosinophilic cytoplasm and were arranged with interlacing fascicles and occasionally formed cystic lesions (Fig. 2a). In comparison, the round cells had round to oval nuclei with scanty cytoplasm, were closely packed and occasionally formed cystic lesions (Fig. 2b). The tumor cells developed along the cranial bone showed a sheet-like proliferation and partially invaded the brain, cranial bone and pituitary gland. In the cerebrum (Fig. 2c), the tumor cells proliferated in the leptomeningeal and perivascular spaces and proliferate in the parenchyma of the brain11. Therefore, attention should be paid to correct diagnosis of these tumors, especially when only limited numbers of tissues samples are available.

In conclusion, the present case was generally consistent with previously reported malignant trigeminal schwannomas6–7 but was unique in terms of formation of multiple masses in the cranial cavity away from the presumptive primary site. It also appeared to be highly invasive in the brain and was morphologically similar to astrocytoma and malignant reticulosis.

Acknowledgements: The authors gratefully acknowledge Dr. Kunio Doi, Emeritus Professor of the University of Tokyo, for critical review of the manuscript.
Fig. 2.

a: Histological picture of mass B. The fusiform cells were arranged with pseudopalisading of nuclei and a wavy pattern. HE stain.
b: Histological picture of mass A. The round cells formed a cyst. HE stain.
c: The cerebrum. The tumor cells invaded diffusely into the parenchyma. HE stain.
d: The cerebellum. The tumor cells proliferated in the leptomeningeal and perivascular spaces. HE stain.
e: Immunohistochemistry for S-100 protein. The tumor cells from mass B showed positive reactions in the cytoplasm and nuclei.
f: Immunohistochemistry for GFAP. The tumor cells from mass B showed positive reactions in the cytoplasm.
142 Intracranial Malignant Schwannoma in a Rat

Fig. 3. Ultrastructure of the tumor cells. A single pericytoplasmic basal lamina layer (arrow heads) was observed.

References

1. Abbott DP. Malignant schwannoma of the dorsal spinal nerve root in a laboratory rat. Lab Anim. 16: 265–266. 1982.
2. Gough AW, Hanna W, Barsoum NJ, Moore J, and Sturgess M. Morphologic and immunohistochemical features of two spontaneous peripheral nerve tumors in Wistar rats. Vet Pathol. 23: 68–73. 1986.
3. Laber-Laird KE, Jokinen MP, and Jerome CP. Naturally occurring schwannoma in a Fischer 344 rat. Vet Pathol. 25: 320–322. 1988.
4. Yoshitomi K and Boorman GA. Intraocular and orbital malignant schwannomas in F344 rats. Vet Pathol. 28: 457–466. 1991.
5. Yoshida M. Malignant schwannoma arising from the Trigeminal nerve in a rat. J Comp Path. 106: 315–318. 1992.
6. Yoshizawa K, Oishi Y, Makino N, Suzuki J, Matsumoto M, Yamauchi K, and Fujihira S. Malignant schwannoma of the intracranial trigeminal nerve in a 19-week-old female Sprague-Dawley rat. J Toxicol Pathol. 9: 107–112. 1996.
7. Ikeda A, Sato Y, Sueyoshi S, Masamoto Y, and Tsuru K. Spontaneously occurring intracranial malignant cystic schwannoma in rat. J Toxicol Pathol. 16: 77–79. 2003.
8. McMartin DN, Sahota PS, Gunson DE, Hsu HH, and Spaet RH. Neoplasms and related proliferative lesions in control Sprague-Dawley rats from carcinogenicity studies. Historical data and diagnostic considerations. Toxicol Pathol. 20: 212–225. 1992.
9. MacKenzie WF and Boorman GA. Pituitary gland. In: Pathology of the F344 Rats. GA Boorman, S Eustis, MR Elwell, CA Montgomery and WF MacKenzie (eds). Academic Press, New York. 485–500. 1990.
10. Hosokawa S, Fukuta T, Imai T, Sonoda J, Aoki T, Hayakawa K, Motooka S, and Nakanowatari J. Pituitary carcinoma of pars distalis as a common neoplasm in Fischer-344 rats. Toxicol Pathol. 21: 283–287. 1993.
11. Krinke GJ, Kaufmann W, Mahrous AT, and Schaetti P. Morphologic characterization of spontaneous nervous system tumors in mice and rats. Toxicol Pathol. 28: 178–192. 2000.
12. Turusov VS and Cabral JPR. S-100 protein and glial fibrillary acidic protein (GFAP) in experimentally induced and spontaneous tumours of peripheral nerves in BDVI rats. Light microscopic and immunohistochemical study. Exp Toxicol Pathol. 46: 343–353. 1994.