Regular Methods of Summability and the Banach-Saks Property for Double Sequences

Ralucu Dumitrua, Jose A. Francoa, Richard F. Pattersona

aDepartment of Mathematics and Statistics
University of North Florida
Jacksonville, FL 32224

Abstract. A Banach space B is said to satisfy the Banach-Saks property with respect to a regular summability method if every bounded subsequence has a summable subsequence. We show that if a Banach space satisfies the Banach-Saks property with respect to a Robison-Hamilton regular summability method, for every bounded double sequence there exists a β-subsequence whose subsequences are all summable to the same limit.

1. Introduction

A Banach space B is said to have the Banach-Saks property with respect to a regular summability method \((a_{i,j})_{i,j}\) if for every bounded sequence, there exists a summable subsequence. Erdős and Magidor showed that if the Banach space B has the Banach-Saks property with respect to a summability method \((a_{i,j})\) then every bounded sequence has a summable subsequence such that every subsequence of the subsequence is also \((a_{i,j})\)-summable [2]. In this short note, we take advantage of a new type of subsequence of a double sequence recently introduced by Dumitru and Franco [1] to generalize the result of Erdős and Magidor to double sequences and Robison-Hamilton regular summability methods.

1.1. Definitions and Notation

In [1], a new type of double subsequence of a double sequence was introduced. Let $\psi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined recursively in the following way

$$
\psi(1,n) = (n-1)^2 + 1,
$$
$$
\psi(m,1) = m^2,
$$
$$
\psi(m,n) = \begin{cases}
\psi(m-1,n) + 1 & \text{if } 1 < m \leq n, \\
\psi(m,n-1) - 1 & \text{if } 1 < n < m.
\end{cases}
$$

2010 Mathematics Subject Classification. Primary 40B05; Secondary 40A05
Keywords. Banach-Saks; Double Sequences; β-subsequences.
Received: 17 April 2020; Revised: 13 July 2020; Accepted: 15 July 2020
Communicated by Eberhard Malkowsky
Email addresses: raluca.dumitru@unf.edu (Ralucu Dumitru), jose.franco@unf.edu (Jose A. Franco), rpatters@unf.edu (Richard F. Patterson)
In matrix form, this looks like the following,

\[
\begin{pmatrix}
\psi(1, 1) & \psi(1, 2) & \psi(1, 3) & \psi(1, 4) & \cdots \\
\psi(2, 1) & \psi(2, 2) & \psi(2, 3) & \psi(2, 4) & \cdots \\
\psi(3, 1) & \psi(3, 2) & \psi(3, 3) & \psi(3, 4) & \cdots \\
\psi(4, 1) & \psi(4, 2) & \psi(4, 3) & \psi(4, 4) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 5 & 10 & \cdots \\
4 & 3 & 6 & 11 & \cdots \\
9 & 8 & 7 & 12 & \cdots \\
16 & 15 & 14 & 13 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}
\]

Then, define a β-section $S_\beta \subseteq \mathbb{N} \times \mathbb{N}$ by

\[
S_\beta := \left\{ (m, n) \in \mathbb{N} \times \mathbb{N} \mid \frac{1}{\beta} \leq \frac{m}{n} \leq \beta \right\}.
\]

Definition 1.1 (β-subsequence [1]). Let $x = [x_{k,l}]$ be a double sequence and let $\beta > 1$ be an extended real. The double sequence $y^{(\pi, \beta)}$ is called a β-subsequence of the double sequence x if and only if there exists a strictly increasing function $\pi : \psi(S_\beta) \to \psi(S_\beta)$ such that

\[
y^{(\pi, \beta)}_{\pi(p), \pi(q)} =
\begin{cases}
\psi(p, q), & \text{if } 1 - \frac{1}{\beta} < \frac{p}{q} \text{ or } \frac{p}{q} > \beta \\
\psi(x(p, q)), & \text{if } 1 - \frac{1}{\beta} \leq \frac{p}{q} \leq \beta
\end{cases}
\]

where $z_i = x^{\psi^{-1}(1)}$. If $\beta = +\infty$, the inequalities are understood in the limit sense.

Definition 1.2 (Summability Method [6]). Let A be a four dimensional summability method that maps the complex double sequences x into the double sequence Ax where the m, n-th term of Ax is given by

\[
(Ax)_{m,n} = \sum_{k,l=1}^{\infty} a_{m,n,k,l} x_{k,l}.
\]

Definition 1.3 (P-convergence [5]). A double sequence $x = [x_{k,l}]$ has a Pringsheim limit L if and only if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

\[
|x_{k,l} - L| < \epsilon,
\]

whenever $k, l > N$. In this case, we say x is P-convergent and we denote it by

\[
L = \lim_{k,l \to \infty} x_{k,l}.
\]

Unless otherwise specified, the notation \lim is reserved in this article to limits in the Pringsheim sense.

Definition 1.4 (RH-regular [6]). Let A be a four dimensional matrix. A is said to be RH-regular if it maps every bounded P-convergent sequence into a P-convergent sequence with the same P-limit.

Hamilton and Robison provide a characterization of RH-regularity that will be useful for the rest of the article.

Theorem 1.5 (Hamilton [4], Robison [6]). A 4-dimensional matrix A is RH-regular if and only if

(RH1) $\lim_{m,n \to \infty} a_{m,n,k,l} = 0$ for each $(k, l) \in \mathbb{N}^2$;

(RH2) $\lim_{m,n \to \infty} \sum_{k,l=0}^{\infty} a_{m,n,k,l} = 1$;

(RH3) $\lim_{m,n \to \infty} \sum_{k=0}^{\infty} |a_{m,n,k,l}| = 0$, for each $l \in \mathbb{N}$.

(RH4) \[\lim_{m,n \to \infty} \sum_{l=0}^{\infty} |a_{m,n,k,l}| = 0, \text{ for each } k \in \mathbb{N}; \]

(RH5) \[\lim_{m,n \to \infty} \sum_{k,l=0}^{\infty} |a_{m,n,k,l}| \text{ is } P\text{-convergent;} \]

(RH6) there exist finite positive integers \(A \) and \(B \) such that
\[\sum_{k>B \atop l>B} |a_{m,n,k,l}| < A \]
for each \((m,n) \in \mathbb{N}^2\).

In order to keep our notation consistent to [3] and [2], we introduce the following definitions.

Definition 1.6. Let \(S \) be a set and \(\kappa \) a cardinal. Then,

1. \(2^S := \{ X | X \subseteq S \} \) and
2. \([S]^{\kappa} = \{ X \subseteq S | |X| = \kappa \} \).

Let \(\omega \) denote the set of natural numbers and let \(P(\omega) \) denote the set of all infinite subsets of \(\omega \).

Definition 1.7. A subset \(S \) of \(2^\omega \) is Ramsey if and only if there exists \(M \in [\omega]^{<\omega} \) such that either \([M]^{<\omega} \subseteq S \) or \([M]^{<\omega} \subseteq 2^\omega \setminus S \).

In other words, an infinite subset \(S \) of \(2^\omega \) is Ramsey if and only if there exists an infinite subset of the natural numbers \(M \) such that every infinite subset of \(M \) belongs to \(S \) or every infinite subset of \(M \) does not belong to \(S \). Lastly, in the proof of the following theorem we use the concept of a Borel set. Therefore, we remind the reader of this definition.

Definition 1.8 (Borel Sets). Let \(X \) be a topological space. The Borel \(\sigma \)-algebra of \(X \) is the smallest \(\sigma \)-algebra that contains all open sets of \(X \). Elements of the Borel \(\sigma \)-algebra are called Borel sets.

We remark that all Borel sets in \(P(\omega) \) are Ramsey sets [3].

2. Main Theorem

Theorem 2.1. Let \(\langle e_{i,j} \rangle_{i,j \in \mathbb{N}} \) be a bounded double sequence of elements in a Banach space \(B \) and \(\langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}} \) a RH-regular summability method. Then, there exists a \(\beta \)-subsequence \(\langle e_{i,j} \rangle_{\gamma,\delta \in \mathbb{N}} \) such that:

1. every \(\beta \)-subsequence of \(\langle e_{i,j} \rangle_{\gamma,\delta \in \mathbb{N}} \) is summable with respect to \(\langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}} \), where they all are summed to the same limit; or
2. no \(\beta \)-subsequence of \(\langle e_{i,j} \rangle_{\gamma,\delta \in \mathbb{N}} \) is summable with respect to \(\langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}} \).

Proof. The proof is adapted from [2]. As in [2], we consider the topology on \(P(\omega) \) generated by the subbasis \(\{ A_n \}_{n \in \omega} \cup \{ B_n \}_{n \in \omega} \), where
\[A_n = \{ X \in P(\omega) | n \notin X \}, \quad B_n = \{ X \in P(\omega) | n \in X \}. \]

There exists a unique bijective and increasing map \(\tau : \psi(S_\beta) \to \mathbb{N} \) (see Figure 1). We impose the topology on \(P(\psi(S_\beta)) \) induced by this map and the topology on \(P(\omega) \).

Consider a set \(X \in P(\psi(S_\beta)) \). It is clear that there exists a unique bijective and monotonically increasing function from \(\psi(S_\beta) \) to \(X \). Denote this function by \(\tau_X : \psi(S_\beta) \to X \). Now, we consider \(\beta \)-subsequence of \(\langle e_{i,j} \rangle_{i,j \in \mathbb{N}} \) corresponding to \(X \) to be the \(\beta \)-subsequence \(\langle e_{i,j}^{(\tau_X,\beta)} \rangle_{i,j \in \mathbb{N}} \) as defined in Definition 1.1.
Partition $P(\omega)$ into two sets,

\[A = \{ X \in P(\omega) \mid \langle e^{(\pi-1)(\omega, \theta)} \rangle_{i,j \in \mathbb{N}} \text{ is } \langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}} \text{ summable}, \right. \]

\[B = P(\omega) \setminus A. \]

We will show next that A is a Ramsey set. If this is the case, then there exists an $M \in P(\omega)$ such that either all infinite subsets of M are in A, or else they all are not in A. Since each of those M’s corresponds to a β-subsequence of $\langle e^{(\pi-1)(\omega, \theta)} \rangle_{i,j \in \mathbb{N}}$, then they would all be either $\langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}}$-summable, or else they would all be not $\langle a_{i,j,k,l} \rangle_{i,j,k,l \in \mathbb{N}}$-summable.

It suffices to show that A is a Borel set in $P(\omega)$.

To simplify the notation, define

\[\langle d^X_{i,j} \rangle_{i,j \in \mathbb{N}} := \langle e^{(\pi-1)(\omega, \theta)} \rangle_{i,j \in \mathbb{N}} \]

and consider

\[B_{c,m,n,p,q} = \left\{ X \in P(\omega) \mid \left\| \sum_{i,j=1}^{\infty, \infty} a_{m,n,k,l} d^X_{i,j} - \sum_{i,j=1}^{\infty, \infty} a_{p,q,k,l} d^X_{i,j} \right\| < \epsilon \right\}. \]

With respect to this definition,

\[A = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcup_{m,n,p,q} B_{1,k,m,n,p,q}. \]

As a result, to show that A is a Borel set, it suffices to show that $B_{c,m,n,p,q}$ is open. Let $\epsilon' > 0$ be such that

\[\left\| \sum_{i,j=1}^{\infty, \infty} a_{m,n,k,l} d^X_{i,j} - \sum_{i,j=1}^{\infty, \infty} a_{p,q,k,l} d^X_{i,j} \right\| < \epsilon' < \epsilon. \]

Let $T > 0$ be an upper bound of $\langle e_{i,j} \rangle_{i,j \in \mathbb{N}}$ and by (RH2) pick $J > 0$ large enough so that following inequalities
It can be verified that if
\[\left| a_{m,n,k,l} \right| + \sum_{i,j=1}^{\infty} \left| a_{p,q,k,l} \right| < \frac{e - e'}{4}, \]
by (RH3),
\[\left| \sum_{i,j=1}^{\infty} a_{m,n,k,l} + \sum_{i,j=1}^{\infty} a_{p,q,k,l} \right| < \frac{e - e'}{4}, \]
by (RH4),
\[\left| \sum_{i,j=1}^{\infty} a_{m,n,k,l} + \sum_{i,j=1}^{\infty} a_{p,q,k,l} \right| < \frac{e - e'}{4}, \]
by (RH5).

Let \(X \in B_{e,m,n,p,q} \). We construct next an open neighborhood \(C \) of \(X \) such that \(C \subseteq B_{e,m,n,p,q} \). We start by defining the set
\[S_K = \{ c \in \omega | \pi_{\tau^{-1}(X)} \circ \tau^{-1}(c) < \psi(K, K) \} , \]
where \(K = \max(p \in \mathbb{N} | 1/\beta \leq p/\beta \leq \beta) \).

Finally, we define
\[C = \{ Y \in P(\omega) | \ Y \cap S_K = X \cap S_K \} . \]

It can be verified that if \(Y \in C \), then \(d_{k,l}^X = d_{k,l}^Y \). In particular,
\[\left| \sum_{i,j=1}^{\infty} a_{m,n,k,l}d_{k,l}^Y - \sum_{i,j=1}^{\infty} a_{p,q,k,l}d_{k,l}^Y \right| = \left| \sum_{i,j=1}^{\infty} a_{m,n,k,l}d_{k,l}^X - \sum_{i,j=1}^{\infty} a_{p,q,k,l}d_{k,l}^X \right| . \]

The set \(C \) is open in the topology on \(P(\omega) \) and clearly \(X \in C \). We now show that \(C \subseteq B_{e,m,n,p,q} \).
\[\left| \sum_{i,j=1}^{\infty} a_{m,n,k,l}d_{k,l}^Y - \sum_{i,j=1}^{\infty} a_{p,q,k,l}d_{k,l}^Y \right| \leq \left| \sum_{i,j=1}^{\infty} a_{m,n,k,l}d_{k,l}^X - \sum_{i,j=1}^{\infty} a_{p,q,k,l}d_{k,l}^X \right| + T \left| \sum_{i,j=1}^{\infty} a_{m,n,k,l} + \sum_{i,j=1}^{\infty} a_{p,q,k,l} \right| . \]
and thus
\[
\left\| \sum_{i,j=1}^{\infty} a_{m,n,k,j}d_{ij}^X - \sum_{i,j=1}^{\infty} a_{p,q,k,j}d_{ij}^X \right\| < \left\| \sum_{i,j=1}^{\infty} a_{m,n,k,j}d_{ij}^X - \sum_{i,j=1}^{\infty} a_{p,q,k,j}d_{ij}^X \right\|
+ \left\| \sum_{i,j=1}^{\infty} a_{m,n,k,j}d_{ij}^X - \sum_{i,j=1}^{\infty} a_{p,q,k,j}d_{ij}^X \right\|
+ \frac{3(\epsilon - \epsilon')}{4} < \epsilon' + \epsilon - \epsilon' = \epsilon.
\]

Therefore, \(C \subseteq B_{c,m,p,q} \). Hence every element of \(B_{c,m,p,q} \) has an open neighborhood \(C \) included in \(B_{c,m,p,q} \), therefore \(B_{c,m,p,q} \) is open.

As noted above, this implies that \(A \) is a Ramsey set. Hence there exists an infinite subset of the natural numbers \(M \) such that every infinite subset of \(M \) belongs to \(A \) or every infinite subset of \(M \) does not belong to \(A \). If \(M \not\subseteq A \), then for any infinite \(X \subset M \) the subsequence \(\langle d_{ij}^X \rangle_{r \in \mathbb{N}} \) is not \(\langle a_{i,j,k} \rangle_{i,j,k \in \mathbb{N}} \)-summable. In this case, conclusion (2) is obtained.

Otherwise, if \(M \in A \) it is clear that for all infinite \(X \subset M \) the subsequence \(\langle d_{ij}^X \rangle_{r \in \mathbb{N}} \) is \(\langle a_{i,j,k} \rangle_{i,j,k \in \mathbb{N}} \)-summable. Moreover, one can argue in the same way as in [2] to show that for all infinite \(X \subset M \) the subsequences \(\langle d_{ij}^X \rangle_{r \in \mathbb{N}} \) sum to the same limit. \(\square \)

Corollary 2.2. Assume that \(\langle e_{ij} \rangle_{i,j \in \mathbb{N}} \) and \(\langle a_{i,j,k} \rangle_{i,j,k \in \mathbb{N}} \) are as in Theorem 2.1. Assume further, that \(B \) satisfies the Banach-Saks property with respect to the summability method \(\langle a_{i,j,k} \rangle_{i,j,k \in \mathbb{N}} \). Then, there exists a \(\beta \)-subsequence \(\langle e_{ij} \rangle_{r \in \mathbb{N}} \) such that every \(\beta \)-subsequence of \(\langle e_{ij} \rangle_{r \in \mathbb{N}} \) is summable with respect to \(\langle a_{i,j,k} \rangle_{i,j,k \in \mathbb{N}} \), where they all are summed to the same limit.

References

[1] R. Dumitru and J. A. Franco. Fundamental Theorems of Summability Theory for a New Type of Subsequences of Double Sequences. *J. Class. Anal.*, 15(1):23–33, 2019.

[2] P. Erdös and M. Magidor. A note on regular methods of summability and the Banach-Saks property. *Proc. Amer. Math. Soc.*, 59(2):232–234, 1976.

[3] Fred Galvin and Karel Prikry. Borel sets and Ramsey’s theorem. *J. Symbolic Logic*, 38:193–198, 1973.

[4] H. J. Hamilton. Transformations of multiple sequences. *Duke Math. J.*, 2(1):29–60, 1936.

[5] A. Früngheim. Zur Theorie der zweifach unendlichen Zahlenfolgen. *Math. Ann.*, 59(3):289–321, 1900.

[6] G. M. Robison. Divergent double sequences and series. *Trans. Amer. Math. Soc.*, 28(1):50–73, 1926.