On the Spectrum of Middle-Cubes

Ke Qina, Rong Qinb, Yong Jiangb, Jian Shenc

aDepartment of Computer Science, Brock University, St. Catharines, Ontario, Canada
bState Key Laboratory of Fire Science, University of Science and Technology of China
Hefei, Anhui 230026, P.R. China
cDepartment of Mathematics, Texas State University, San Marcos, TX 78666, USA

Abstract

A middle-cube is an induced subgraph consisting of nodes at the middle two layers of a hypercube. The middle-cubes are related to the well-known Revolving Door (Middle Levels) conjecture. We study the middle-cube graph by completely characterizing its spectrum. Specifically, we first present a simple proof of its spectrum utilizing the fact that the graph is related to Johnson graphs which are distance-regular graphs and whose eigenvalues can be computed using the association schemes. We then give a second proof from a pure graph theory point of view without using its distance regular property and the technique of association schemes.

1 Introduction

The \(n\)-dimensional hypercube, \(Q_n\), has \(2^n\) nodes such that two nodes \(u\) and \(v\), \(0 \leq u, v \leq 2^n - 1\), are connected if and only if their binary representations differ in exactly one bit. For an odd \(n = 2k + 1\), the middle-cube, \(M_n\), is the subgraph induced by all the nodes whose binary representations have either \(k\) 1’s or \(k + 1\) 1’s. Fig. 1 shows a 3-cube with its middle-cube highlighted.

The middle-cube \(M_{2k+1}\) consists of the nodes at the middle two layers of the corresponding hypercube \(Q_{2k+1}\). Equivalently, these nodes are at the middle levels \(k\) and \(k + 1\) of the Boolean lattice \(B_{2k+1}\) (and the Hasse diagram of \(B_{2k+1}\) is isomorphic to \(Q_{2k+1}\)) [10]. Middle-cubes have been considered as a possible topology to interconnect processors in networks [8]. A well-known open problem concerning middle-cubes is the Revolving Door (Middle Levels) conjecture [6, 14]: All middle-cubes \(M_{2k+1}\) are Hamiltonian. The conjecture has been verified for \(k \leq 17\) [10] but remains open in general. Partial results on the conjecture can be found in [7, 9, 10]. In particular, Johnson proved in 2004 that \(M_{2k+1}\) has a cycle of length \((1 - o(1))|M_{2k+1}|\), where \(|M_{2k+1}| = 2(2k+1)^k\) is the number of vertices in \(M_{2k+1}\).

*Research supported by National Natural Science Foundation of China (No. 50676091) and Program for New Century Excellent Talents in University (NCET-06-0546).
The spectrum of a graph consists of all distinct eigenvalues and their respective multiplicities of the adjacency matrix of the graph. It is worth mentioning that the spectral and structural properties of a graph are related [3, 13]. For example, van den Heuvel [12] proved some necessary spectral conditions for a graph to be Hamiltonian. To better understand various properties for the middle-cubes, it may be necessary to study the spectrum for middle-cubes. In the next section, we give a complete characterization for the spectrum of the middle-cubes by giving two different proofs, one from the distance-regular graph point of view, and the other from a pure graph theory point of view.

2 Spectrum of Middle-Cubes

We always assume \(n = 2k + 1 \) throughout the paper. Without confusion from the context, we abuse the notation \(M_n \) for both the middle cube and its adjacency matrix. The eigenvalues and their corresponding multiplicities for \(M_n \), \(n = 3, 5, 7, 9 \), are given in Table 1. In this section, we will prove that

Theorem 1 The characteristic polynomial of \(M_n \) is

\[
|\lambda I - M_n| = \prod_{i=1}^{k+1} (\lambda \pm i)^{(n_{k+1-i})-(n_{k-i})}.
\]

We also note that the sequence 1, 2, 1, 4, 5, 1, 6, 14, 14, ... appears in the *The On-Line Encyclopedia of Integer Sequences* as sequence A050166 [11, 5].

	-5	-4	-3	-2	-1	1	2	3	4	5
3			1	2	2	1				
5			1	4	5	5	4	1		
7		1	6	14	14	14	6	1		
9	1	8	27	48	42	48	27	8	1	

Table 1: Eigenvalues of Middle-Cubes \(M_n \) for \(n = 3, 5, 7, 9 \).
We will first consider the middle cube by relating it to Johnson graphs. Let X be a finite set and e an positive integer. The \textit{Johnson graph of the e-sets in X} has a vertex set $\binom{X}{e}$, the set of all e-subsets of X (subsets of cardinality e). Two vertices u and v are adjacent whenever $|u \cap v| = e - 1$ [1]. Since Johnson graphs are distance regular, the eigenvalues of Johnson graphs can be computed using association schemes described in [1, Chapter 2] and [2, Pages 69-72].

\textbf{Proof.} Let M_{2k+1} be the adjacency matrix of the middle-cube. Let $J(n, m)$ be the adjacency matrix of the Johnson graph with vertex set $\binom{[n]}{m}$, where two m-subsets are adjacent when they have exactly $m - 1$ elements in common. Then by the definition of M_{2k+1} and $J(n, m)$,

$$M_{2k+1}^2 = \begin{bmatrix} J(2k+1, k+1) & O \\ O & J(2k+1, k+1) \end{bmatrix} + (k+1)I.$$

By [2, Page 79], $J(n, m)$ has eigenvalues $(m-i)(n-m-i) - i$ with multiplicity $\binom{n}{i} - \binom{n}{i-1}$.

(The proof of the spectrum of $J(n, m)$ requires techniques using the association schemes.) Then M_{2k+1}^2 has eigenvalues

$$(k+1-i)(k-i) - i + (k+1) = (k+1-i)^2$$

with multiplicity $2\left(\binom{n}{i} - \binom{n}{i-1}\right)$. Since M_{2k+1} is bipartite, it has symmetric positive/negative eigenvalues. Therefore M_{2k+1} has eigenvalues $\pm(k+1-i)$ with multiplicity $\binom{n}{i} - \binom{n}{i-1}$. □

We now study the spectrum of the middle cube from a graph theoretical point of view. Before we give a second proof for Theorem 1 using graph theory, several definitions are in order. We denote by S the set $\{1, 2, \ldots, n\}$. We use $A + B$ to denote the union of the sets A and B. Similarly, $A - B$ denotes the set of elements that are in A but not in B, while $|A|$ represents the size of the set A. An r-set is a set of size r. We denote by $\binom{S}{k}$ the set of all k-subsets of S. For the convenience of our proofs, we also view $\binom{S}{k} + \binom{S}{k+1}$ as the vertex set of the middle-cube M_n. Thus the edge set of M_n is induced by the inclusion relation; that is, two distinct vertices A, B in $\binom{S}{k} + \binom{S}{k+1}$ are adjacent if and only if $A \subseteq B$ or $B \subseteq A$.

For each positive integer i, let $A_1^{(i)}, A_2^{(i)}, \ldots, A_{\binom{n}{i}}^{(i)}$ be an ordering of all $\binom{n}{i}$ i-subsets of S. Let r be a fixed positive integer with $r \leq k$. Let $x_1, \ldots, x_{\binom{n}{r}}$ be real variables. Define a weight function:

$$f(A^{(r)}_i) = x_i, \quad 1 \leq i \leq \binom{n}{r}$$

subject to the following $\binom{n}{r-1}$ constraints

$$\sum_{i \not\in R} f(R + \{i\}) = 0 \quad \text{for each} \quad R \in \binom{S}{r-1}.$$

(1)

For each $A \subseteq S$, we define

$$f(A) = \sum_{A^{(r)}_i \in \binom{A}{r}} f(A^{(r)}_i).$$

(2)
Thus \(f(A) = 0 \) whenever \(|A| \leq r - 1 \). For each \(i \) with \(r \leq i \leq k \), we define

\[
V_i^{(r)} = \left\{ \left(f \left(A^{(i)}_1 \right), \ldots, f \left(A^{(i)}_n \right) \right) \right\}
\]

and

\[
V_{i,i+1}^{(r)} = \left\{ \left(f \left(A^{(i)}_1 \right), \ldots, f \left(A^{(i)}_r \right), f \left(A^{(i+1)}_1 \right), \ldots, f \left(A^{(i+1)}_n \right) \right) \right\}.
\]

Then both \((V_i^{(r)}, +)\) and \((V_{i,i+1}^{(r)}, +)\) are vector spaces on reals. We will show that \(V_{k,k+1}^{(r)} \) is the eigenspace with dimension \(\binom{n}{r} - \binom{n}{r-1} \) corresponding to the eigenvalue \(k + 1 - r \) for the matrix \(M_n \).

Lemma 1 Let \(A \) be a subset of \(S \). Suppose \(i \not\in A \) and \(j \in A \). Then

\[
f(A + \{i\}) = f(A) + \sum_{R \in \binom{A}{r-1}} f(R + \{i\})
\]

and

\[
f(A - \{j\}) = f(A) - \sum_{R \in \binom{A}{r-1}} f(R + \{j\}).
\]

Proof.

\[
f(A + \{i\}) = \sum_{R \in \binom{A}{r} + \{i\}} f(R) = \sum_{i \in R \in \binom{A}{r} + \{i\}} f(R) + \sum_{i \in R \in \binom{A}{r} + \{i\}} f(R) = \sum_{R \in \binom{A}{r}} f(R) + \sum_{R - \{i\} \in \binom{A}{r-1}} f(R) = f(A) + \sum_{R \in \binom{A}{r-1}} f(R + \{i\}).
\]

Similarly,

\[
f(A - \{j\}) = \sum_{R \in \binom{A}{r} - \{j\}} f(R) = \sum_{R \in \binom{A}{r}} f(R) - \sum_{j \in R \in \binom{A}{r}} f(R) = f(A) - \sum_{R - \{j\} \in \binom{A}{r-1} - \{j\}} f(R) = f(A) - \sum_{R \in \binom{A}{r-1}} f(R + \{j\}).
\]

Lemma 2 Let \(A \) be a subset of \(S \). Then

\[
\sum_{i \not\in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\}) = -rf(A).
\]
Proof. The lemma is trivial if $|A| \leq r - 1$ (in which case $f(A) = 0$). Suppose now $|A| \geq r$. By (1) and Lemma 1,

$$0 = \sum_{R \in \binom{A}{r-1}} \sum_{i \notin R} f(R + \{i\})$$

$$= \sum_{R \in \binom{A}{r-1}} \left(\sum_{i \in A - R} f(R + \{i\}) + \sum_{i \in A} f(R + \{i\}) \right)$$

$$= \sum_{R \in \binom{A}{r-1}} \sum_{i \in A} f(R + \{i\}) + \sum_{i \notin A} f(R + \{i\})$$

$$= \sum_{R \in \binom{A}{r-1}} \sum_{i \notin A} f(R + \{i\}) + \sum_{R \in \binom{A}{r-1}} \sum_{i \in A} f(R + \{i\})$$

$$= \sum_{i \notin A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\}) + \sum_{i \in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\})$$

$$= r \sum_{B \in \binom{A}{r}} f(B) + \sum_{i \notin A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\})$$

$$= rf(A) + \sum_{i \notin A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\}),$$

from which Lemma 2 follows. \hfill \Box

Lemma 3 Let A be a subset of S. Then

$$\sum_{i \in A} \sum_{R \in \binom{A-\{i\}}{r-1}} f(R + \{i\}) = rf(A).$$

Proof. The lemma is trivial if $|A| \leq r - 1$ (in which case $f(A) = 0$). Suppose now $|A| \geq r$. By (1), Lemmas 1 and 2,

$$0 = \sum_{R \in \binom{A}{r-1}} \sum_{i \notin R} f(R + \{i\})$$

$$= \sum_{R \in \binom{A}{r-1}} \left(\sum_{i \in A - R} f(R + \{i\}) + \sum_{i \in A} f(R + \{i\}) \right)$$

$$= \sum_{R \in \binom{A}{r-1}} \sum_{i \in A} f(R + \{i\}) + \sum_{R \in \binom{A}{r-1}} \sum_{i \in A - R} f(R + \{i\})$$

$$= \sum_{i \in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\}) + \sum_{i \in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\})$$

$$= r \sum_{B \in \binom{A}{r}} f(B) + \sum_{i \in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\})$$

$$= rf(A) + \sum_{i \in A} \sum_{R \in \binom{A}{r-1}} f(R + \{i\}),$$

from which Lemma 3 follows. \hfill \Box

Recall that $V_{k,k+1}^{(r)} = \left\{ \left(f\left(A_1^{(k)}\right), \ldots, f\left(A_r^{(k)}\right), f\left(A_1^{(k+1)}\right), \ldots, f\left(A_r^{(k+1)}\right) \right) : A \in \binom{S}{k} \right\}$ is a vector space on reals. Let E_λ be the eigenspace corresponding to the eigenvalue λ for the matrix M_n.

Lemma 4 Let $n = 2k + 1$ and $1 \leq r \leq k$. Then $V_{k,k+1}^{(r)} \subseteq E_{k+1-r}$.

Proof. For any vertex $A \in \binom{S}{k} + \binom{S}{k+1}$ in the middle-cube M_n, let $\Gamma(A)$ be the neighbor set of A. Then

$$\Gamma(A) = \begin{cases} \{A + \{i\} : i \notin A\} & \text{if } A \in \binom{S}{k}; \\ \{A - \{i\} : i \in A\} & \text{if } A \in \binom{S}{k+1}. \end{cases}$$

Thus to prove the lemma, it suffices to prove the following two identities:

$$\sum_{B \in \Gamma(A)} f(B) = \sum_{i \notin A} f(A + \{i\}) = (k + 1 - r)f(A) \text{ for each } A \in \binom{S}{k}$$ \hspace{1cm} (3)
Lemma 5

Let \(n = 2k + 1 \) and \(1 \leq r \leq k \). Then

\[
\dim V^{(r)}_{k,k+1} = \binom{n}{r} - \binom{n}{r-1}.
\]

Proof. Let \(M_{i,j} \) be the incidence matrix whose rows correspond to the \(i \)-subsets \(A^{(i)}_1, A^{(i)}_2, \ldots, A^{(i)}_n \), and whose columns correspond to the \(j \)-subsets \(A^{(j)}_1, A^{(j)}_2, \ldots, A^{(j)}_n \); that is, the \((r,s) \)-entry of \(M_{i,j} \) is 1 if \(A^{(i)}_r \subset A^{(j)}_s \) or \(A^{(j)}_s \subset A^{(i)}_r \), and 0 otherwise. By [4, Corollary 2], the matrix \(M_{i,j} \) has full rank; that is,

\[
\text{rank } M_{i,j} = \min \left\{ \binom{n}{i}, \binom{n}{j} \right\}.
\]

Recall the definition that \(V^{(r)}_r = \left\{ f \left(A^{(r)}_1 \right), \ldots, f \left(A^{(r)}_n \right) \right\} \). By (1), \(V^{(r)}_r \) consists of all solution sets to the following homogeneous matrix equation:

\[
\begin{pmatrix} x_1, x_2, \ldots, x_n \end{pmatrix} M_{r,r-1} = (0,0,\ldots,0).
\]

Thus

\[
\dim V^{(r)}_r = \binom{n}{r} - \text{rank } M_{r,r-1} = \binom{n}{r} - \binom{n}{r-1}.
\]

By (2) and the definition of \(V^{(r)}_{k,k+1} \), each vector in \(V^{(r)}_{k,k+1} \) can be written as

\[
\begin{pmatrix} x_1, x_2, \ldots, x_n \end{pmatrix} \begin{bmatrix} M_{r,k} & M_{r,k+1} \end{bmatrix}
\]
for some vector \((x_1, x_2, \ldots, x_n) \in V_r^{(r)}\). This implies that \(V_{r,k+1}^{(r)} = V_r^{(r)} \left[M_{r,k} : M_{r,k+1} \right] \). Thus

\[
\dim V_r^{(r)} \geq \dim V_{k,k+1}^{(r)} \geq \dim V_r^{(r)} + \text{rank} \left[M_{r,k} : M_{r,k+1} \right] - \binom{n}{r}
\]

\[
\geq \dim V_r^{(r)} + \text{rank} M_{r,k} - \binom{n}{r}
\]

\[
= \dim V_r^{(r)} + \min \left\{ \binom{n}{r}, \binom{n}{k} \right\} - \binom{n}{r}
\]

\[= \dim V_r^{(r)}
\]

and so

\[
\dim V_r^{(r)} = \dim V_r^{(r)} = \binom{n}{r} - \binom{n}{r - 1}.
\]

\[\square\]

Theorem 2 Let \(n = 2k + 1\) and \(1 \leq r \leq k\). Then

\[
E_{k+1-r} = V_{k,k+1}^{(r)}
\]

and

\[
\dim E_{k+1-r} = \dim E_{r-k-1} = \binom{n}{r} - \binom{n}{r - 1}.
\]

Furthermore, the characteristic polynomial of the matrix \(M_n\) is

\[
|\lambda I - M_n| = \prod_{i=1}^{k+1} (\lambda \pm i) \binom{n}{k+1-i} - \binom{n}{k-i}.
\]

Proof. The equation \(\dim E_{k+1-r} = \dim E_{r-k-1}\) holds since the middle-cube \(M_n\) is a bipartite graph. Since \(M_n\) is a connected \((k+1)\)-regular graph, we have \(\dim E_{k+1} = 1\). By Lemmas 4 and 5,

\[
\binom{n}{k} + \binom{n}{k+1} \geq \sum_{r=0}^{k} \left(\dim E_{k+1-r} + \dim E_{r-k-1} \right)
\]

\[= 2 \sum_{r=0}^{k} \dim E_{k+1-r}
\]

\[\geq 2 + 2 \sum_{r=1}^{k} \dim V_{k,k+1}^{(r)}
\]

\[= 2 + 2 \sum_{r=1}^{k} \left(\binom{n}{r} - \binom{n}{r-1} \right)
\]

\[= 2 \binom{n}{k} + \binom{n}{k+1}.
\]

Thus all equalities hold throughout. This also implies that all eigenvalues of \(M_n\) are integers \(i\) with \(1 \leq |i| \leq k + 1\), and that each eigenvalue of \(i\) has multiplicity \(\binom{n}{k+1-i} - \binom{n}{k-i}\), where \(\binom{n}{-1} = 0\).

\[\square\]

3 Conclusion

We prove that the characteristic polynomial of the middle-cube \(M_n\) with \(n = 2k + 1\) is

\[
\prod_{i=1}^{k+1} (\lambda \pm i) \binom{n}{k+1-i} - \binom{n}{k-i}.
\]

This spectral property may be useful in future research on various properties of the middle-cubes.
References

[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, (Springer-Verlag, 1989).

[2] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, (*manuscript*, http://www.cwi.nl/~aeb/math/ipm.pdf).

[3] D. M. Cvetković, M. Doob, and H. Sachs, *Spectra of Graphs*, 3rd ed. (Johann Ambrosius Barth, 1995).

[4] D. H. Gottlieb, A certain class of incidence matrices, *Proc. Amer. Math. Soc.* 17 (1966), 1233–1237.

[5] R. K. Guy, Catwalks, sandsteps and Pascal pyramids, *J. Integer Seq.* 3 (2000), no. 1, Article 00.1.6, (http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html).

[6] I. Havel, Semipaths in directed cubes, in: M. Fiedler (Ed.), *Graphs and other Combinatorial Topics (Prague, 1982)*, 101–108, Teubner-Texte Math., 59, Teubner, Leipzig, 1983.

[7] J. R. Johnson, Long cycles in the middle two layers of the discrete cube, *J. Combin. Theory Ser. A*, 105 (2004) 255-271.

[8] S. V. R. Madabhushi, S. Lakshmivarahan, and S. K. Dhall, Analysis of the modified even networks, *Proc. of the 3rd IEEE Symposium on Parallel and Distributed Processing*, Dallas, Texas (1991) 128-131.

[9] C. D. Savage and P. Winkler, Monotone Gray codes and the middle levels problem, *J. Combin. Theory Ser. A*, 70 (1995), 230-248.

[10] I. Shields, B. J. Shields, and C. D. Savage, An update on the middle levels problem, *preprint* (2006).

[11] N. J. A. Sloane, *The on-line encyclopedia of integer sequences*, (www.research.att.com/~njas/sequences/).

[12] J. van den Heuvel, Hamilton cycles and eigenvalues of graphs, *Linear Algebra Appl. 226/228* (1995), 723–730.

[13] D. B. West, *Introduction to Graph Theory*, 2nd ed. (Prentice Hall, 2001).

[14] D. B. West, Open problems - graph theory and combinatorics, (http://www.math.uiuc.edu/~west/openp/revolving.html).