Well-Posedness for Degenerate Schrödinger Equations

Massimo Cicognani - University of Bologna

Nahariya,
22 May 2013
Outline

Introduction

Strategy in the proof

Change of variable

Verification

Concluding remarks and open problems
Joint work with

Michael Reissig - TU Bergakademie Freiberg
Schrödinger equations with time-dependent Hamiltonian

We consider the Schrödinger operator

\[S := \frac{1}{i} \partial_t - H(t) \]

with a time-dependent Hamiltonian

\[H(t) = a(t) \Delta_x - \sum_{j=1}^{n} b_j(t, x) \partial_{x_j}, \quad a(t) \geq 0, \]

\(t \in [0, T], x \in \mathbb{R}^n \), with coefficients which are continuous in time and smooth and bounded in the space variables.
Schrödinger equations with time-dependent Hamiltonian

We consider the Schrödinger operator

\[S := \frac{1}{i} \partial_t - H(t) \]

with a time-dependent Hamiltonian

\[H(t) = a(t) \Delta_x - \sum_{j=1}^{n} b_j(t, x) \partial_{x_j}, \quad a(t) \geq 0, \]

\(t \in [0, T], x \in \mathbb{R}^n, \) with coefficients which are continuous in time and smooth and bounded in the space variables.

We are interested in the Cauchy problem

\[
\begin{cases}
 Su = 0, & t > 0, \\
 u(0, x) = u_0(x).
\end{cases}
\]
Well-posedness

We take Cauchy data u_0 in a Sobolev space H^m, $m \in \mathbb{R}$, or in a Gevrey-Sobolev space $H_{\varrho}^{m,s}$, $s > 1$, $\varrho > 0$, where

$$H_{\varrho}^{m,s} := e^{-\varrho \langle D_x \rangle^{1/s}} H^m, \quad H^{m,s} := \bigcup_{\varrho > 0} H_{\varrho}^{m,s}.$$
Well-posedness

We take Cauchy data u_0 in a Sobolev space H^m, $m \in \mathbb{R}$, or in a Gevrey-Sobolev space $H^{m,s}_\varrho$, $s > 1$, $\varrho > 0$, where

$$H^{m,s}_\varrho := e^{-\varrho \langle D_x \rangle^{1/s}} H^m, \quad H^{m,s} := \bigcup_{\varrho > 0} H^{m,s}_\varrho.$$

We say that the Cauchy problem is well-posed in

$$\begin{cases}
L^2 \\
H^\infty \\
H^{\infty,s} := \bigcap_m H^{m,s}
\end{cases} \quad \text{when for every given } u_0 \in \begin{cases}
H^m \\
H^m \\
H^{m,s}_\varrho
\end{cases} \quad \text{there exists a unique solution } u \in \begin{cases}
C([0, T]; H^m) \\
C([0, T]; H^{m-\delta}) \\
C([0, T]; H^{m',s}_\varrho)
\end{cases}.$$
Decay conditions

When the coefficients $b_j(t, x)$ are pure imaginary we have well-posedness without loss of derivatives by the energy method and Gronwall inequality since $H(t)$ is the sum of a self-adjoint operator and of a bounded operator in L^2.
Decay conditions

When the coefficients $b_j(t, x)$ are pure imaginary we have well-posedness without loss of derivatives by the energy method and Gronwall inequality since $H(t)$ is the sum of a self-adjoint operator and of a bounded operator in L^2. We can not expect any kind of well-posedness for general real valued b_j as one can check solving the equation

$$\frac{1}{i} \partial_t u = \partial_x^2 u + \partial_x u$$

by Fourier transform.
Decay conditions

When the coefficients \(b_j(t, x) \) are pure imaginary we have well-posedness without loss of derivatives by the energy method and Gronwall inequality since \(H(t) \) is the sum of a self-adjoint operator and of a bounded operator in \(L^2 \).

We can not expect any kind of well-posedness for general real valued \(b_j \) as one can check solving the equation

\[
\frac{1}{i} \partial_t u = \partial_x^2 u + \partial_x u
\]

by Fourier transform.

Decay conditions as \(x \to \infty \) for the real parts \(\Re b_j(x) \) have been proved to be necessary in the case of a time-independent Hamiltonian \(H = \Delta_x + \sum_{j=1}^n b_j(x) \partial_{x_j} \), Ichinose et al.
Sufficient conditions

Still in the time-independent case, the condition

$$|\Re b_j(x)| \leq C \langle x \rangle^{-\sigma}, \quad \sigma > 0, \quad \langle x \rangle = \sqrt{1 + |x|^2},$$

is sufficient for the well-posedness in

$$\begin{cases}
L^2, & \sigma > 1, \\
H^\infty, & \sigma = 1, \\
H^\infty, s, & s < \frac{1}{1-\sigma}, \quad \sigma < 1,
\end{cases}$$

Kajitani-Baba et al. These results are optimal.
Sufficient conditions

Still in the time-independent case, the condition

$$|\Re b_j(x)| \leq C \langle x \rangle^{-\sigma}, \quad \sigma > 0, \quad \langle x \rangle = \sqrt{1 + |x|^2},$$

is sufficient for the well-posedness in

\[
\begin{cases}
L^2, & \sigma > 1, \\
H^\infty, & \sigma = 1, \\
H^\infty, s, & s < \frac{1}{1-\sigma}, \quad \sigma < 1,
\end{cases}
\]

Kajitani-Baba et al. These results are optimal.

After minor changes, the same proof works for time-dependent $H(t)$ provided that the coefficient $a(t)$ of the Laplacian never vanishes so that

$$|\Re b_j(t, x)| \leq Ca(t) \langle x \rangle^{-\sigma}.$$
Sufficient conditions

Still in the time-independent case, the condition

\[|ℜb_j(x)| \leq C⟨x⟩^{−\sigma}, \quad \sigma > 0, \quad ⟨x⟩ = \sqrt{1 + |x|^2}, \]

is sufficient for the well-posedness in

\[
\begin{cases}
L^2, & \sigma > 1, \\
H^\infty, & \sigma = 1, \\
H^\infty, s, & s < \frac{1}{1−\sigma}, \quad \sigma < 1,
\end{cases}
\]

Kajitani-Baba et al. These results are optimal.

After minor changes, the same proof works for time-dependent $H(t)$ provided that the coefficient $a(t)$ of the Laplacian never vanishes so that $|ℜb_j(t, x)| \leq Ca(t)⟨x⟩^{−\sigma}$.

As far as we know, there are no well-posedness results for time-dependent Hamiltonians with $a(t)$ that may vanish.
We consider a real coefficient $a(t) \geq 0$ vanishing of finite order ℓ at $t = 0$, that is,

$$ct^\ell \leq a(t) \leq Ct^\ell,$$

for $\ell \in \mathbb{R}_+$ and positive constants c, C.
We consider a real coefficient $a(t) \geq 0$ vanishing of finite order ℓ at $t = 0$, that is,

$$ct^\ell \leq a(t) \leq Ct^\ell,$$

for $\ell \in \mathbb{R}_+$ and positive constants c, C. The other coefficients are complex-valued and satisfy

$$|\Re b_j(t, x)| \leq Ct^k \langle x \rangle^{-\sigma}, \; 0 < k \leq \ell, \; \sigma > 0.$$
We consider a real coefficient $a(t) \geq 0$ vanishing of finite order ℓ at $t = 0$, that is,
\[ct^\ell \leq a(t) \leq Ct^\ell, \]
for $\ell \in \mathbb{R}_+$ and positive constants c, C.

The other coefficients are complex-valued and satisfy
\[|\Re b_j(t, x)| \leq Ct^k \langle x \rangle^{-\sigma}, \quad 0 < k \leq \ell, \quad \sigma > 0. \]

We have new effects for $k < \ell$ when $|\Re b_j(t, x)| \leq Ca(t)\langle x \rangle^{-\sigma}$ does not hold true.
Main Result

Theorem

The Cauchy problem is well-posed in

\[
\begin{cases}
 L^2 & \text{if } k = \ell, \sigma > 1, \\
 H^{\infty} & \text{if } k = \ell, \sigma = 1, \\
 H^{\infty, s} & \text{with } s < \frac{\ell+1}{\ell-k} \text{ if } k < \ell, \sigma \geq 1, \\
 H^{\infty, s} & \text{with } s < \frac{(\ell-k)\sigma+k+1}{(\ell-k)\sigma+(k+1)(1-\sigma)} \text{ if } k \leq \ell, \sigma < 1.
\end{cases}
\]
Main Result

Theorem

The Cauchy problem is well-posed in

\[
\begin{aligned}
L^2 & \text{ if } k = \ell, \sigma > 1, \\
H^\infty & \text{ if } k = \ell, \sigma = 1, \\
H^{\infty,s} & \text{ with } s < \frac{\ell + 1}{\ell - k} \text{ if } k < \ell, \sigma \geq 1, \\
H^{\infty,s} & \text{ with } s < \frac{(\ell - k)^\sigma + k + 1}{(\ell - k)^\sigma + (k + 1)(1 - \sigma)} \text{ if } k \leq \ell, \sigma < 1.
\end{aligned}
\]

For any \(\ell \geq 0 \) and \(k = \ell \) we have the same optimal spaces of well-posedness as in the time-independent case.
Transforming $iH(t)$ into a bounded from above operator

We get the well-posedness of the Cauchy problem after performing a change of variable $v(t, x) = e^{\Lambda}(t, x, D_x)u(t, x)$, where $e^{\Lambda}(t, x, D_x), \ D = \frac{1}{i}\partial$, is an invertible pseudo-differential operator with symbol $e^{\Lambda(t, x, \xi)}, \ \Lambda(t, x, \xi)$ real-valued of order $q, \ 0 \leq q < 1$.

Massimo Cicognani - University of Bologna
Transforming $iH(t)$ into a bounded from above operator

We get the well-posedness of the Cauchy problem after performing a change of variable $v(t, x) = e^\Lambda(t, x, D_x)u(t, x)$, where $e^\Lambda(t, x, D_x)$, $D = \frac{1}{i} \partial$, is an invertible pseudo-differential operator with symbol $e^{\Lambda(t,x,\xi)}$, $\Lambda(t, x, \xi)$ real-valued of order q, $0 \leq q < 1$. We look for $\Lambda(t, x, \xi)$ in order to establish the energy estimate

$$\|v(t)\|_{L^2} \leq C\|v(0)\|_{L^2}$$

for any solution of the transformed equation

$$S_\Lambda v = 0, \ S_\Lambda := e^\Lambda S(e^\Lambda)^{-1}.$$
Transforming $iH(t)$ into a bounded from above operator

We get the well-posedness of the Cauchy problem after performing a change of variable $v(t, x) = e^\Lambda(t, x, D_x)u(t, x)$, where $e^\Lambda(t, x, D_x)$, $D = \frac{1}{i} \partial$, is an invertible pseudo-differential operator with symbol $e^{\Lambda(t, x, \xi)}$, $\Lambda(t, x, \xi)$ real-valued of order q, $0 \leq q < 1$. We look for $\Lambda(t, x, \xi)$ in order to establish the energy estimate

$$\| v(t) \|_{L^2} \leq C \| v(0) \|_{L^2}$$

for any solution of the transformed equation

$$S_\Lambda v = 0, \quad S_\Lambda := e^\Lambda S(e^\Lambda)^{-1}.$$

The energy estimate (without any loss of regularity) follows by Gronwall’s lemma if we find Λ such that

$$iS_\Lambda = \partial_t - ia(t)\Delta_x - A(t, x, D_x), \quad 2\Re(Av, v) \leq C \| v \|_{L^2}^2.$$
The crucial inequality for the symbol Λ

We seek for a function Λ that solves

$$
\partial_t \Lambda(t, x, \xi) + 2 a(t) \sum_{j=1}^n \xi_j \partial_{x_j} \Lambda(t, x, \xi) + \Re \sum_{j=1}^n b_j(t, x) \xi_j \leq 0,
$$

for all $|\xi| \geq h$, and such that $\partial_t \Lambda(t, x, \xi)$ has the order 1 and $a(t)\partial_{x_j} \Lambda$ has the order zero.
The crucial inequality for the symbol Λ

We seek for a function Λ that solves

$$\partial_t \Lambda(t, x, \xi) + 2a(t) \sum_{j=1}^{n} \xi_j \partial_{x_j} \Lambda(t, x, \xi) + R \sum_{j=1}^{n} b_j(t, x) \xi_j \leq 0,$$

for all $|\xi| \geq h$, and such that $\partial_t \Lambda(t, x, \xi)$ has the order 1 and $a(t) \partial_{x_j} \Lambda$ has the order zero.

This means that we make $A(t)$ an operator of order 1 with negative principal symbol. In view of the sharp Gårding inequality, this leads to a bounded from above operator.
The crucial inequality for the symbol Λ

We seek for a function Λ that solves

$$\partial_t \Lambda(t, x, \xi) + 2a(t) \sum_{j=1}^{n} \xi_j \partial_{x_j} \Lambda(t, x, \xi) + \Re \sum_{j=1}^{n} b_j(t, x) \xi_j \leq 0,$$

for all $|\xi| \geq h$, and such that $\partial_t \Lambda(t, x, \xi)$ has the order 1 and $a(t) \partial_{x_j} \Lambda$ has the order zero.

This means that we make $A(t)$ an operator of order 1 with negative principal symbol. In view of the sharp Gårding inequality, this leads to a bounded from above operator. As it is well-known, then the energy estimate gives the well-posedness in L^2 of the Cauchy problem for the operator S_Λ.
The transformation carries the loss

If X is a suitable Banach or Frechet space of functions on \mathbb{R}^n_X such that the operators

$$e^{\Lambda(t)} : X \to H^m, \quad (e^{\Lambda(t)})^{-1} : H^m \to X,$$

are continuous, then we have (at least locally in time) a unique solution $u \in C([0, T]; X)$ of the original Cauchy problem for any given initial data $u_0 \in X$. The order of e^{Λ} corresponds to the loss of derivatives and determines the space X.
The transformation carries the loss

If X is a suitable Banach or Frechet space of functions on \mathbb{R}^n_x such that the operators

$$e^{\Lambda(t)} : X \to H^m, \quad (e^{\Lambda(t)})^{-1} : H^m \to X,$$

are continuous, then we have (at least locally in time) a unique solution $u \in C([0, T]; X)$ of the original Cauchy problem for any given initial data $u_0 \in X$. The order of e^{Λ} corresponds to the loss of derivatives and determines the space X.

We obtain spaces of well-posedness from the following estimates:

$$|\Lambda(t, x, \xi)| \leq \begin{cases} C\langle \xi \rangle^{\frac{\ell-k}{\ell+1}} & \text{if } \sigma > 1, \\ C\langle \xi \rangle^{\frac{\ell-k}{\ell+1}} \log(1 + \langle \xi \rangle) & \text{if } \sigma = 1, \\ C\langle \xi \rangle^{\frac{(\ell-k)\sigma+(k+1)(1-\sigma)}{(\ell-k)\sigma+k+1}} & \text{if } \sigma < 1. \end{cases}$$
Degeneracy leads to solvability in Gevrey spaces

In particular, when $k = \ell$ the operator e^{Λ} is:

- of order zero for $\sigma > 1$, X is the Banach space H^m;
Degeneracy leads to solvability in Gevrey spaces

In particular, when $k = \ell$ the operator e^Λ is:
- of order zero for $\sigma > 1$, X is the Banach space H^m;
- of a finite positive order δ for $\sigma = 1$, X is the Frechet space H^∞ (with a loss of δ derivatives);
Degeneracy leads to solvability in Gevrey spaces

In particular, when $k = \ell$ the operator e^Λ is:

- of order zero for $\sigma > 1$, X is the Banach space H^m;
- of a finite positive order δ for $\sigma = 1$, X is the Frechet space H^∞ (with a loss of δ derivatives);
- of infinite order described by the symbol $e^{\rho \langle \xi \rangle^{1-\sigma}}$ for $\sigma < 1$, X is the Frechet space $H^{m,s}$, $s = 1/(1 - \sigma)$.
Degeneracy leads to solvability in Gevrey spaces

In particular, when $k = \ell$ the operator e^{Λ} is:

- of order zero for $\sigma > 1$, X is the Banach space H^m;
- of a finite positive order δ for $\sigma = 1$, X is the Frechet space H^∞ (with a loss of δ derivatives);
- of infinite order described by the symbol $e^{\rho \langle \xi \rangle^{1-\sigma}}$ for $\sigma < 1$, X is the Frechet space $H^{m,s}$, $s = 1/(1 - \sigma)$.

In this case, we have the same spaces of well-posedness as in in the time-independent case.
Degeneracy leads to solvability in Gevrey spaces

In particular, when $k = \ell$ the operator e^{Λ} is:

- of order zero for $\sigma > 1$, X is the Banach space H^m;
- of a finite positive order δ for $\sigma = 1$, X is the Frechet space H^∞ (with a loss of δ derivatives);
- of infinite order described by the symbol $e^{\varrho \langle \xi \rangle^{1-\sigma}}$ for $\sigma < 1$, X is the Frechet space $H^{m,s}$, $s = 1/(1 - \sigma)$.

In this case, we have the same spaces of well-posedness as in the time-independent case.

- For $k < \ell$ the operator e^{Λ} is of infinite order described by $e^{\varrho \langle \xi \rangle^q}$, $0 < q < 1$, $q = q(\ell, k, \sigma)$, even with a fast decay $\sigma > 1$. A strong degeneracy leads to well-posedness only in Gevrey classes of index $s \leq 1/q$.
Solving modulo a prescribed order

Let us devote to the inequality which is to be satisfied by Λ. Let \(w(\xi) \) be a weight function corresponding to a possible order of solutions. It is sufficient to find \(\lambda(t, x, \xi) \) of the same order as that of \(w(\xi) \) such that

\[
\partial_t \lambda(t, x, \xi) + 2a(t) \sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda(t, x, \xi) + \Re \sum_{j=1}^{n} b_j(t, x) \xi_j \leq Kw(\xi).
\]
Solving modulo a prescribed order

Let us devote to the inequality which is to be satisfied by Λ. Let $w(\xi)$ be a weight function corresponding to a possible order of solutions. It is sufficient to find $\lambda(t, x, \xi)$ of the same order as that of $w(\xi)$ such that

$$
\partial_t \lambda(t, x, \xi) + 2a(t) \sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda(t, x, \xi) + \Re \sum_{j=1}^{n} b_j(t, x) \xi_j \leq Kw(\xi).
$$

In fact, if we define $\Lambda(t, x, \xi)$ by

$$
\Lambda(t, x, \xi) = \varrho(t)w(\xi) + \lambda(t, x, \xi),
$$

then we have a solution of still of the order of $w(\xi)$ taking $\varrho(t)$ such that $\varrho'(t) \leq -K$.
Absorbing lower order terms

It is natural to absorb an error of the order of $w(\xi)$ because terms of such an order appear under the principal part in the asymptotic expansion of the operator $A(t)$ in any case. If $w(\xi)$ is not of order zero, then we also need to control them in the application of the Gårding inequality.
Absorbing lower order terms

It is natural to absorb an error of the order of $w(\xi)$ because terms of such an order appear under the principal part in the asymptotic expansion of the operator $A(t)$ in any case. If $w(\xi)$ is not of order zero, then we also need to control them in the application of the Gårding inequality.

The symbol of this part of the order of $w(\xi)$ will be bounded by $N|\varrho(t)| + N, \ N \geq K$, so we will choose $\varrho(t)$ as a solution of

$$\varrho'(t) + N(\varrho(t) + 1) = 0, \ \varrho(t) > 0.$$
Splitting the phase-space

The study of the inequality for $\lambda(t, x, \xi)$ is crucial in the zone

$$\{(x, \xi) \in \mathbb{R}_{x, \xi}^{2n} : \langle x \rangle \leq \langle x_\xi \rangle \text{ with } \langle x_\xi \rangle = \langle \xi \rangle^{(1-q)/\sigma} \}$$

of the phase-space $\mathbb{R}_{x, \xi}^{2n}$ since we have in the other part

$$\sum_{j=1}^{n} |\Re b_j(t, x)\xi_j| \leq Ct^k \langle \xi \rangle^q, \quad \langle x \rangle \geq \langle x_\xi \rangle.$$

So, we can use here the above absorbing argument.
The solution for mild degeneracy

For $k = \ell$ we have

$$a(t) M_0 |\xi(\langle x \rangle)^{-\sigma} \geq \sum_{j=1}^{n} |\Re b_j(t, x) \xi_j|. $$
The solution for mild degeneracy

For $k = \ell$ we have

$$a(t)M_0|\xi|\langle x \rangle^{-\sigma} \geq \sum_{j=1}^{n} |\Re b_j(t, x)\xi_j|.$$

In this case we can take a time-independent solution $\lambda_0(x, \xi)$

$$\sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda_0(x, \xi) + M|\xi|\langle x \rangle^{-\sigma} \chi(\langle x \rangle/\langle x\xi \rangle) \leq 0,$$

where $\chi(y)$ is a cut-off function.
The solution for mild degeneracy

For $k = \ell$ we have

$$a(t)M_0|\xi|\langle x \rangle^{-\sigma} \geq \sum_{j=1}^{n} |\Re b_j(t, x)\xi_j|.$$

In this case we can take a time-independent solution $\lambda_0(x, \xi)$

$$\sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda_0(x, \xi) + M|\xi|\langle x \rangle^{-\sigma} \chi\left(\langle x \rangle/\langle x\xi \rangle\right) \leq 0,$$

where $\chi(y)$ is a cut-off function.

The equation $\sum_{j=1}^{n} \xi_j \partial_{x_j} \lambda(x, \xi) + |\xi|g(x, \xi) = 0$ is solved by

$$\lambda(x, \xi) = -\int_{0}^{x \cdot \omega} g(x - \tau \omega, \xi) d\tau, \quad \omega = \xi/|\xi|.$$
The order of the time-independent solution

We have

\[|\lambda_0(x, \xi)| \leq \begin{cases}
C_0 \langle \xi \rangle^{(1-q)(1-\sigma)/\sigma}, & \sigma < 1, \\
C_0 \log(1 + \langle \xi \rangle), & \sigma = 1, \\
C_0, & \sigma > 1.
\end{cases} \]
The order of the time-independent solution

We have

\[|\lambda_0(x, \xi)| \leq \begin{cases}
C_0 \langle \xi \rangle^{(1-q)(1-\sigma)/\sigma}, & \sigma < 1, \\
C_0 \log(1 + \langle \xi \rangle), & \sigma = 1, \\
C_0, & \sigma > 1.
\end{cases} \]

For \(\ell = k \) the optimal choice of the order \(q \), together with the related Gevrey index \(s < 1/q \) for \(q > 0 \), follows from

\[\begin{cases}
(1 - q)(1 - \sigma)/\sigma = q, & \sigma \in (0, 1), \\
q = 0, & \sigma \geq 1.
\end{cases} \]

The first line gives \(q = 1 - \sigma \) for \(\sigma < 1 \).
Strong degeneracy - Splitting the extended phase-space

For $k < \ell$ we split the extended phase-space (t, x, ξ) into two zones. Defining $t_{\xi} = \langle \xi \rangle^{-1/(k+1)}$ we introduce the
• pseudo-differential zone: $t \leq t_{\xi}$; evolution zone: $t \geq t_{\xi}$.
Strong degeneracy - Splitting the extended phase-space

For $k < \ell$ we split the extended phase-space (t, x, ξ) into two zones. Defining $t_\xi = \langle \xi \rangle^{-1} (1-q)/(k+1)$ we introduce the

• pseudo-differential zone: $t \leq t_\xi$; evolution zone: $t \geq t_\xi$.

We put in the construction of a solution $\lambda(t, x, \xi)$ a first term

$$
\lambda_\psi(t, \xi) = - M \langle \xi \rangle \int_0^t \tau^k \chi(\tau / t_\xi) d\tau
$$

which is localized to the pseudo-differential zone. The symbol $\lambda_\psi(t, \xi)$ is of order q by the definition of t_ξ.

Massimo Cicognani - University of Bologna
Degenerate Schrödinger
Strong degeneracy - Splitting the extended phase-space

For $k < \ell$ we split the extended phase-space (t, x, ξ) into two zones. Defining $t_\xi = \langle \xi \rangle^{-(1-q)/(k+1)}$ we introduce the

- pseudo-differential zone: $t \leq t_\xi$; evolution zone: $t \geq t_\xi$.

We put in the construction of a solution $\lambda(t, x, \xi)$ a first term

$$\lambda_\psi(t, \xi) = -M \langle \xi \rangle \int_0^t \tau^k \chi(\tau/t_\xi) \, d\tau$$

which is localized to the pseudo-differential zone. The symbol $\lambda_\psi(t, \xi)$ is of order q by the definition of t_ξ.

Taking a sufficiently large M it follows

$$\partial_t \Lambda_\psi(t, \xi) - \chi(t/t_\xi) \Re \sum_{j=1}^n b_j(t, x) \xi_j \leq 0$$

since

$$\sum_{j=1}^n |\Re b_j(t, x) \xi_j| \leq M_0 t^k \langle x \rangle^{-\sigma} |\xi| \leq M_0 t^k |\xi|.$$
The solution in the evolution zone

In the evolution zone we define

\[\lambda_e(t, x, \xi) = \lambda_{e,0}(t, x, \xi) + \lambda_{e,1}(t, \xi) \]

with

\[\lambda_{e,0}(t, x, \xi) = (1 - \chi(t/t_\xi)) t^{k-\ell} \lambda_0(x, \xi), \]

\[\lambda_{e,1}(t, \xi) = -C_1 Mw(\xi) \int_0^t \tau^{k-\ell-1} (1 - \chi(2\tau/t_\xi)) d\tau \]

where \(\lambda_0(x, \xi) \) is the time independent solution for \(k = \ell \) and the weight function

\[w(\xi) = \begin{cases} \langle \xi \rangle^{(1-q)(1-\sigma)} \frac{1}{\sigma}, & \sigma < 1, \\ \log \langle \xi \rangle, & \sigma = 1, \\ 1, & \sigma > 1, \end{cases} \]

gives its order before fixing \(q \).
Fixing the order

We have a solution in the evolution zone as soon as $\partial_t \lambda_e(t, x, \xi) \leq 0$. We have this fixing a large constant C_1 in the correction term $\lambda_{e, 1}(t, \xi)$.
Fixing the order

We have a solution in the evolution zone as soon as $\partial_t \lambda_e(t, x, \xi) \leq 0$. We have this fixing a large constant C_1 in the correction term $\lambda_{e,1}(t, \xi)$.

Using the definitions of t_ξ and the order of the time-independent term $\lambda_0(x, \xi)$, the symbol $\lambda_e(t, x, \xi)$ can be estimated by

$$
\begin{cases}
\langle \xi \rangle (1-q)((\ell-k)/(k+1)+(1-\sigma)/\sigma), & \sigma < 1, \\
\langle \xi \rangle (1-q)(\ell-k)/(k+1) \log \langle \xi \rangle, & \sigma = 1, \\
\langle \xi \rangle (1-q)((\ell-k)/(k+1), & \sigma > 1.
\end{cases}
$$
Fixing the order

We have a solution in the evolution zone as soon as \(\partial_t \lambda_e(t, x, \xi) \leq 0 \). We have this fixing a large constant \(C_1 \) in the correction term \(\lambda_{e,1}(t, \xi) \).

Using the definitions of \(t_\xi \) and the order of the time-independent term \(\lambda_0(x, \xi) \), the symbol \(\lambda_e(t, x, \xi) \) can be estimated by

\[
\begin{cases}
\langle \xi \rangle^{(1-q)((1-k)/(k+1)+(1-\sigma)/\sigma)}, & \sigma < 1, \\
\langle \xi \rangle^{(1-q)(1-k)/(k+1) \log \langle \xi \rangle}, & \sigma = 1, \\
\langle \xi \rangle^{(1-q)(1-k)/(k+1)}, & \sigma > 1.
\end{cases}
\]

In order to have also \(\lambda_e \) of order \(q \) (or \(q \log \) for \(\sigma = 1 \)) we choose

\[
q = \begin{cases}
\frac{(\ell-k)\sigma+(k+1)(1-\sigma)}{(\ell-k)\sigma+k+1}, & \sigma < 1, \\
\frac{\ell-k}{\ell+1}, & \sigma \geq 1.
\end{cases}
\]
The transformed Cauchy problem

For operators of infinite order of Gevrey type, we use the calculus of Kajitani and Nishitani. Localizing the support of $\lambda(t, x, \xi)$ for $|\xi| \geq h$ with a sufficiently large h, we can make the change of variable $v = e^\Lambda u$ invertible with $(e^\Lambda)^{-1}$ given by a Neumann series of operators.
The transformed Cauchy problem

For operators of infinite order of Gevrey type, we use the calculus of Kajitani and Nishitani. Localizing the support of \(\lambda(t, x, \xi) \) for \(|\xi| \geq h \) with a sufficiently large \(h \), we can make the change of variable \(v = e^{\Lambda} u \) invertible with \((e^{\Lambda})^{-1} \) given by a Neumann series of operators. Then, for the transformed operator \(S_{\Lambda} \) we have

\[
iS_{\Lambda} = \partial_t - ia(t)\Delta_x - A(t, x, D_x), \quad 2\Re(Av, v) \leq C\|v\|^2_{L^2}.
\]

This gives the energy estimate without loss of derivatives hence the well-posedness in \(L^2 \) of the Cauchy problem for \(S_{\Lambda} \).
The transformed Cauchy problem

For operators of infinite order of Gevrey type, we use the calculus of Kajitani and Nishitani. Localizing the support of $\lambda(t, x, \xi)$ for $|\xi| \geq h$ with a sufficiently large h, we can make the change of variable $v = e^{\Lambda} u$ invertible with $(e^{\Lambda})^{-1}$ given by a Neumann series of operators. Then, for the transformed operator S_{Λ} we have

$$i S_{\Lambda} = \partial_t - i a(t) \Delta_x - A(t, x, D_x), \quad 2 \Re(Av, v) \leq C \|v\|^2_{L^2}.$$

This gives the energy estimate without loss of derivatives hence the well-posedness in L^2 of the Cauchy problem for S_{Λ}. Taking the order of e^{Λ} into account (the transformation carries the loss) we have the results of well-posedness for the operator S.
General degeneracy

Let us consider a general coefficient $a(t)$ increasing and such that $a(t) = 0$ (also of infinite order) and let us assume

$$|\Re b_j(t, x)| \leq Ca(t)\mu(t)\langle x\rangle^{-\sigma}, \quad \sigma > 0,$$

with $\mu(t)$ decreasing and such that $\lim_{t \to +0} \mu(t) = \infty$.
General degeneracy

Let us consider a general coefficient $a(t)$ increasing and such that $a(t) = 0$ (also of infinite order) and let us assume

$$|\Re b_j(t, x)| \leq C a(t) \mu(t) \langle x \rangle^{-\sigma}, \sigma > 0,$$

with $\mu(t)$ decreasing and such that $\lim_{t \to +0} \mu(t) = \infty$.

The separating line $t = t_{\xi}$ in the extended phase-space is now defined by

$$B(t_{\xi}) = \langle \xi \rangle^{q-1}, \text{ where } B(t_{\xi}) := \int_0^{t_{\xi}} a(\tau) \mu(\tau) d\tau, \ q < 1.$$
General degeneracy

Let us consider a general coefficient $a(t)$ increasing and such that $a(t) = 0$ (also of infinite order) and let us assume

$$|\Re b_j(t, x)| \leq Ca(t)\mu(t)\langle x \rangle^{-\sigma}, \quad \sigma > 0,$$

with $\mu(t)$ decreasing and such that $\lim_{t \to +0} \mu(t) = \infty$. The separating line $t = t_\xi$ in the extended phase-space is now defined by

$$B(t_\xi) = \langle \xi \rangle^{q-1}, \quad \text{where} \quad B(t_\xi) := \int_0^{t_\xi} a(\tau)\mu(\tau)d\tau, \quad q < 1.$$

In the definition of $\lambda_e(t, x, \xi)$ the factor $t^{k-\ell}$ is replaced by $\mu(t)$.
General degeneracy

Let us consider a general coefficient \(a(t)\) increasing and such that \(a(t) = 0\) (also of infinite order) and let us assume

\[
|\Re b_j(t, x)| \leq Ca(t)\mu(t)\langle x\rangle^{-\sigma}, \quad \sigma > 0,
\]

with \(\mu(t)\) decreasing and such that \(\lim_{t \to +0} \mu(t) = \infty\).

The separating line \(t = t_\xi\) in the extended phase-space is now defined by

\[
B(t_\xi) = \langle \xi \rangle^{q-1}, \quad \text{where} \quad B(t_\xi) := \int_0^{t_\xi} a(\tau)\mu(\tau)d\tau, \quad q < 1.
\]

In the definition of \(\lambda_e(t, x, \xi)\) the factor \(t^{k-\ell}\) is replaced by \(\mu(t)\).

Computing the lowest possible order of \(\lambda = \lambda_\psi + \lambda_e\) we can get results of well-psedness.
A model with degeneracy of infinite order

Let us take

\[a(t) = \frac{\alpha}{t^{\alpha+1}} \exp\left(-\frac{1 + c_0}{t^\alpha}\right), \]

\[\mu(t) = \exp\left(\frac{c_0}{t^\alpha}\right), \]

and let us assume, consequently, that

\[|\Re b_j(t, x)| \leq C \frac{\alpha}{t^{\alpha+1}} \exp\left(-\frac{1}{t^\alpha}\right) \langle x \rangle^{-\sigma} \text{ with } \sigma \in (0, 1). \]
A model with degeneracy of infinite order

Let us take

\[a(t) = \frac{\alpha}{t^{\alpha+1}} \exp \left(-\frac{1 + c_0}{t^{\alpha}} \right), \]

\[\mu(t) = \exp \left(\frac{c_0}{t^{\alpha}} \right), \]

and let us assume, consequently,

\[|\Re b_j(t, x)| \leq C \frac{\alpha}{t^{\alpha+1}} \exp \left(-\frac{1}{t^{\alpha}} \right) \langle x \rangle^{-\sigma} \text{ with } \sigma \in (0, 1). \]

The critical order follows from the balance

\[q = \frac{(1-q)(1-\sigma)}{\sigma} + (1 - q)c_0. \]

Then the Cauchy problem is well-posed in the Gevrey spaces \(H^{\infty,s} \) with \(s < \frac{1+c_0\sigma}{1-\sigma+c_0\sigma} \).
Vibrating plates

Let us consider the vibrating plate equation $Pu = 0$

$$Pu := u_{tt} + a^2(t)\Delta_x^2 u + \sum_{|\alpha|\leq 3} b_\alpha(t, x) \partial_x^\alpha u$$

with $a(t) \geq 0$ vanishing at $t = 0$ of finite order ℓ and with real-valued $b_\alpha(t, x)$ with $|\alpha| = 3$ satisfying

$$|b_\alpha(t, x)| \leq Ct^j \langle x \rangle^{-\sigma} \text{ with } \ell \leq j < 2\ell.$$
Vibrating plates

Let us consider the vibrating plate equation $Pu = 0$

$$Pu := u_{tt} + a^2(t)\Delta_x^2 u + \sum_{|\alpha|\leq 3} b_{\alpha}(t, x) \partial_x^\alpha u$$

with $a(t) \geq 0$ vanishing at $t = 0$ of finite order ℓ and with real-valued $b_{\alpha}(t, x)$ with $|\alpha| = 3$ satisfying

$$|b_{\alpha}(t, x)| \leq C t^j \langle x \rangle^{-\sigma} \text{ with } \ell \leq j < 2\ell.$$

The operator P can be formally factorized in the product of two (pseudo-differential) Schrödinger operators

$$P = S_+ S_-, \quad S_\pm = \partial_t \pm ia(t)\Delta_x \pm b(t, x, \partial_x)$$

modulo terms of order 2.
Vibrating plates

Let us consider the vibrating plate equation $Pu = 0$

$$Pu := u_{tt} + a^2(t)\Delta_x^2 u + \sum_{|\alpha| \leq 3} b_\alpha(t, x) \partial_x^\alpha u$$

with $a(t) \geq 0$ vanishing at $t = 0$ of finite order ℓ and with real-valued $b_\alpha(t, x)$ with $|\alpha| = 3$ satisfying

$$|b_\alpha(t, x)| \leq Ct^j \langle x \rangle^{-\sigma} \text{ with } \ell \leq j < 2\ell.$$

The operator P can be formally factorized in the product of two (pseudo-differential) Schrödinger operators

$$P = S_+ S_-, \quad S_\pm = \partial_t \pm ia(t)\Delta_x \pm b(t, x, \partial_x)$$

modulo terms of order 2.

Performing a complete diagonalization in the evolution zone one should obtain for P the same results as for S with $k = j - \ell$.
Necessity

An interesting problem is the optimality of the results, a subject widely studied for non-degenerate models. One can not find “better” spaces of well-posedness in the case $\ell = k$ in view of the necessary decay conditions as $x \to \infty$ obtained for $\ell = k = 0$.
Necessity

An interesting problem is the optimality of the results, a subject widely studied for non-degenerate models. One can not find “better” spaces of well-posedness in the case \(\ell = k \) in view of the necessary decay conditions as \(x \to \infty \) obtained for \(\ell = k = 0 \). We conjecture to have sharp spaces of well-posedness also for \(k < \ell \). In particular, even assuming the strongest decay rate \(\sigma > 1 \) we conjecture that the Cauchy problem is not well-posed neither in \(H^\infty \) nor in \(H^{\infty:s} \) for \(s > (\ell + 1)/(\ell - k) \) in this case.
Necessity

An interesting problem is the optimality of the results, a subject widely studied for non-degenerate models. One can not find “better” spaces of well-posedness in the case \(\ell = k \) in view of the necessary decay conditions as \(x \to \infty \) obtained for \(\ell = k = 0 \). We conjecture to have sharp spaces of well-posedness also for \(k < \ell \). In particular, even assuming the strongest decay rate \(\sigma > 1 \) we conjecture that the Cauchy problem is not well-posed neither in \(H^\infty \) nor in \(H^{\infty :s} \) for \(s > (\ell + 1)/(\ell - k) \) in this case.

THANKS FOR YOUR ATTENTION!!!