Variations of Ground Temperature in Shallow Depths in the Silesian Region

Iwona Pokorska-Silva¹, Marta Kadela², Lidia Fedorowicz³

¹Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5 Str., 44-100 Gliwice, Poland
²Building Research Institute, Filtrowa 1 Str., 00-611 Warszawa, Poland
³Katowice School of Technology, Faculty of Architecture, Civil Engineering and Applied Arts, Rolna 43 Str., 40-555 Katowice, Poland

iwona.pokorska-silva@polsl.pl

Abstract. Knowledge of temperature distribution in relation to time and depth is necessary in many applications. These include: designing GSHP (ground source heat pump) and EAHE (earth-air heat exchangers) systems, calculating heat loss in buildings, in determining foundation depth for buildings and structures with consideration of frost penetration depth, designing pavement of roads and airports or designing underground systems of energy transmission. Regular measurements and perfecting models describing temperature in the ground is therefore extremely valuable. This article presents authors’ own research on ground temperature changes in time and distribution of temperature at different depths, up to c. 2.0 m beneath ground level. The tests were performed in the Silesia region over a period of 6 months between May and October, using thermistors installed in the ground at various depths. The measurements were compared with temperature of the air, measured at test stations using a meteorological multisensor in order to find a correlation. Aside from readings of temperature over time and profiles of ground temperatures the paper contains selected elements of statistical analysis of the measurements. It was noted that the temperature distribution is closely related to depth below ground level, and the influence of outside temperatures decreases with depth.

1. Introduction
The idea of sustainable development is closely related to the need to obtain heat from renewable sources of energy. In Poland, the renewable energy source market began to develop in the 90s. It was then that first professional installations were created which used renewable wind, solar, geothermal and biomass energy [1]. They are currently subject to numerous research projects and analyses such as [2, 3]. Development in this area is connected to international obligations and the necessity to meet EU requirements related to boosting development of renewable energy market, implementing the rule of energy safety and the necessity to protect the environment (climate preservation, maintaining/improvement of environment quality, including air [4]) and most importantly diminishing supply of non-renewable energy sources.
One of potential energy sources is that obtained from the ground [5]. The ground temperature depends mostly on the structure and physical properties of the soil itself, on air temperature changes and other variables of the climate, i.e. sunlight radiation, rainfall, wind and to some degree on the shape of the terrain.

The ground surface temperature is the result of convection and radiation processes between it and its direct surroundings with temperature \(T_e \), radiation between it and further surroundings \(T_{\text{sky}} \), and energy loss resulting from evaporation and transfer of heat between the surface and deeper layers of the soil [6, 7] – figure 1. Therefore, the ground surface temperature is indirectly influenced by its covering; impact of deforestation on ground surface temperature is presented in [8]. Differences between air temperature at the surface, temperature of ground surface and ground temperature at a depth of 0÷5 cm has been analysed in [9]; higher ground surface temperatures were recorded in urban areas [10]. The relationship between air temperature or other variables of the climate and ground temperature were the subject of multiple papers, e.g. [11-14].

Analysing temperature distribution in relation to depth, general three ground temperature zones can be distinguished [9, 13, 15]. Other than the surface zone already mentioned, where the temperature depends strongly on daily fluctuations of surface temperatures, and therefore on the weather conditions, we need to distinguish the shallow zone, where the temperature depends on seasonal fluctuations, is more stable and close to annual average air temperature, and the deep zone, where the ground temperature is constant and increases by c. 2÷3 K per 100 m depending on the local geothermal gradient value [15, 16].

Figure 1. Main heat flux contributions at the surface of the ground, where: \(\alpha_s G \) – short-wave global solar radiation (radiant flux) absorbed by the ground surface; \(h_{\text{conv}} \) – convective heat transfer coefficient, \(\Phi_{\text{conv}} \) – heat flux exchanged between the air and the ground surface; \(\Phi \) – heat flux transferred by conduction across the ground surface, \(\Phi_{\text{evap}} \) – evaporation heat exchange flux, \(\Phi_{\text{sky}} \) – long-wave radiation (radiant flux) emitted by the ground surface to the sky, \(h_{\text{rad}} \) – radiation heat transfer coefficient [7]

Measurements of ground temperature are presented in papers [6-15, 17-32] among others. For example, authors of [9, 29] presented measurements of temperature of frozen soil.

In the past there have been multiple research projects and analyses aimed at assessing the ground profile. Most typical procedures found in literature are short term measurements of ground temperature – authors of [19, 20, 22, 30] have analysed the results of measurements which were accompanied by TRT (thermal response test [33, 34]). Long term temperature measurements are unfortunately much less common [13, 24, 26, 17]. This is related to the necessity to expand monitoring
systems with continuous monitoring stations, described e.g. in [35]. As an example we can bring up a complex measuring system under the Lesser Poland Province Laboratory of Energy-Efficient Construction [36]. That is why it should be emphasized that, despite ground temperature measurements being common, typical weather stations are usually not upgraded with equipment for measuring distribution of temperatures in the ground.

Measured values may be used to determine frost penetration depth [37] or preparing a numerical model of heat transfer and mass [29,38]. [6, 7, 17] present models of predicting changes in ground temperature as a function of depth and time, using meteorological data, verified using measured temperatures.

The most popular of them, called energy balance models, use energy balance equations as boundary condition. The precision of these models strongly depends on the precision of estimating input data, and availability is dependant on the availability of those data. It is therefore valuable to perform regular measurements and continue to perfect the models describing temperatures in the soil. Ground temperatures and its measurements and the designed and used models are also subject of this paper, which presents analyses for Silesia.

2. Methodology

Ground temperature was measured at different depths over six months in 2016. The temperature was measured simultaneously at 5 points at different depths (-0.15, -0.35, -0.75, -1.35, -1.95m) away from any buildings. The profile probe was set up according to [23] – figure 2b – and in a manner similar to measurements of soil strains [39,40].

![Figure 2. Ground profile: a) YSI 44005 thermistor [41], b) documentation from sensors installation](image)

Measurements of ground temperature were taken using a multi-channel, automatic measuring system. The temperature was measure by YSI 44005 thermistors (figure 2a) measuring temperatures in the range -40 to +105°C and with accuracy of 0.5 °C. The temperature sensors were connected to multi-channel recorders from Geokon type 8002. The value being measured is the sensor’s resistance, temperature is calculated from formula (1). Measurements were taken every hour, and data saved in the recorder’s memory.
\[T = \frac{1}{A + B(LnR) + C(LnR)^3} - 273.2 \]

where:
- \(T \) – temperature, °C,
- \(LnR \) – natural logarithm of the sensor’s resistance,
- \(A = 1.4051 \times 10^{-3}, B = 2.369 \times 10^{-3}, C = 1.019 \times 10^{-3} \) (coefficients calculated for values in the range -50 do +150°C).

3. Results and discussions

Figure 3 presents the record of ground temperature measured at different depths over six months, i.e. from 1 May to 31 October 2017 [25].

![Figure 3. Hourly ground temperatures at various depths; May 1-October 31](image)

![Figure 4. a) Monthly average ground temperature profiles at various depths, b) Frame chart of median temperature at various depths; May 1-October 31](image)
Changes in monthly average ground temperature at different depths is presented in figure 4a, the temperature sensitivity on an annual scale corresponding to them is presented in figure 4b.

Figure 5 shows changes in average temperatures of ground at different depths for each day per month, labelled with different colours.

On spring and summer days the ground temperature at the surface is higher than that at greater depths; on autumn days it is the opposite.

Additionally a variability analysis (figure 6) was performed for a selected day in July and a day in October, i.e. average daily temperature, minimum, maximum, median and momentary temperature at two selected times of day.

![Figure 5. Daily average ground temperature profiles at various depths; May 1-October 31](image1)

![Figure 6. a) Daily average and hourly ground temperature profiles at various depths, b) Frame chart of median temperature at various depths; July 5 and October 5](image2)

Ground temperatures were compared to air temperatures measured at the workstation of Department of Building Engineering and Building Physics of the Silesian University of Technology.
in Gliwice, using a meteorological multisensor FMA510H from Ahlborn, with data recording using ALMEMO 5690-2M09 recorder [25]. Changes of air temperature are shown in figure 7.

![Figure 7. Air temperature; May 1-October 31](image)

Correlation of air temperature with ground temperature is shown in figure 8. The correlation coefficient for the linear relationship is 0.8587, which shows strong agreement between the results.

The amplitude of ground temperature changes decreases with depth (figure 6b), and the delay of ground temperature in comparison to air temperature increases. The strength of relationship between the air temperature and the temperature at each measurement point is described using the coefficient of determination (table 1). The results clearly show a decrease in strength of relationship between the variables following increase of measurement point depth. This means that with increasing depth the influence of air temperature decreases.

![Figure 8. Correlation of air temperature with ground temperature (-0.15 m); May 1-October 31](image)
Table 1. Correlation of air temperature with ground temperature; May 1-October 31

Depth, m	Determination coefficient R^2 (Air-Ground)
-0.15	0.737
-0.35	0.482
-0.75	0.353
-1.35	0.194
-1.95	0.080

4. Conclusions

The necessity to protect the environment and the diminishing of non-renewable energy sources drive the search for new solutions in the field of energy and optimising energy consumption throughout the service life of buildings. Optimisation of building foundation level based on frost penetration depth also fits this trend.

The above translates to a need for monitoring ground temperature with particular consideration of temperature relative to depth. Results of such measurements can be found in academic literature. They are typically taken over a short time, which does not allow to interpret their significance in time. Moreover, due to the fact that ground temperature depends on the structure and properties of the ground itself, there is a necessity to account for local conditions both in determining the frost penetration depth or designing geothermal heating, or designing innovative solutions considering transfer of heat [42], including usage of foam concrete [43] insulation e.g. under industrial floors [44-48].

Based on the above, this paper presents ground temperature variations in the Silesia Region, Poland. The following conclusions can be drawn from the above presentation of the results:

- distribution of temperature is closely related to depth; on spring and summer days the ground temperature at the surface is higher than that at greater depths; on autumn days it is the opposite.
- the amplitude of ground temperature decreases with depth,
- influence of air temperature decreases with depth,
- there is linear correlation between air temperature and ground temperature.

References

[1] A. Pultowicz, „The Premises of Renewable Energy Sources Market Development in Poland in the Light of Sustainable Development Idea” („Przesłanki rozwoju rynku odnawialnych źródeł energii w Polsce w świetle idei zrównoważonego rozwoju”), Problemy Ekorozwoju – Problems Of Sustainable Development, vol. 4, No 1, 109-115, 2009.
[2] K.P. Tsagarakis, L. Efthymioua, et al., „A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines”, Renewable Energy – in Press, doi: 10.1016/j.renene.2018.10.007
[3] Sz. Szufa, Ł. Adrian, P. Piersa, Z. Romanowska-Duda, M. Grzesik, A. Cebula, and S. Kowalczyk, „Experimental Studies on Energy Crops Torrefaction Process Using Batch Reactor to EstimateTorrefaction Temperature and Residence Time”, [in:] K. Mudryk and S. Werle (eds.), Renewable Energy Sources: Engineering, Technology, InnovationICORES 2017, Springer, Cham, Switzerland, pp. 365-373, 2018.
[4] A. Gayer, Ł. Adamkiewicz, D. Mucha, and A. Badyda, „Air quality health indices-review”, MATEC Web of Conferences,FESE 2018, vol. 247, issue 00002, pp. 1-8, 2018, doi: 10.1051 /matecconf/201824700002.
[5] J.H. Hussein, M.J. Josifovski, W.Bogusz, D. Sterpi, and K. Georgiadis, „Synthesis of a Benchmark Exercise for Geotechnical Analysis of a Thermoactive Pile”, ICE publishing,
[6] M. Staniec, and H. Nowak, “The application of energy balance at the bare soil surface to predict annual soil temperature distribution”, *Energy and Buildings*, 127, pp.56-65, 2016, doi: 10.1016/j.enbuild.2016.05.047.

[7] M. Badache, P. Eslami-Nejad, M. Ouzzane, Z. Aidoun, and L. Lamarche, “A new modeling approach for improved ground temperature profile determination”, *Renewable Energy*, 85, pp.436-444, 2016, doi: 10.1016/j.renene.2015.06.020.

[8] T. Lewis, “The effect of deforestation on ground surface temperatures”, *Global and Planetary Change*, 18, pp. 1-13, 1998.

[9] D. Luo, H. Jin, S.S. Marchenko, and V.E. Romanovsky, “Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau”, *Geoderma*, 312, pp. 74-85, 2018, doi: 10.1016/j.geoderma.2017.09.037.

[10] J.A. Rivera, P. Blum, and P. Bayer, “Increased ground temperatures in urban areas: Estimation of the technical geothermal potential”, *Renewable Energy*, 103, pp.388-400, 2017, doi: 10.1016/j.renene.2016.11.005.

[11] H. Beltrami, “On the relationship between ground temperature histories and meteorological records: a report on the Pomquet station”, *Global and Planetary Change*, 29, pp. 327-348, 2001.

[12] H. Beltrami, and L. Kellman, “An examination of short-term and long-term air-ground temperature coupling”, *Global and Planetary Change*, 28, pp. 291-303, 2003, doi: 10.1016/S0921-8181(03)00112-7.

[13] G. Tsilingiridis, and K. Papakostas, “Investigating the relationship between air and ground temperature variations in shallow depths in northern Greece”, *Energy*, 73, pp. 1007-1016.2014, doi: 10.1016/j.energy.2014.07.004.

[14] L. Xing, L. Li, J. Gong, C. Ren, J. Liu, and H. Chen, “Daily soil temperatures predictions for various climates in United States using data-driven model”, *Energy*, 160, pp.430-440, 2018, doi: 10.1016/j.energy.2018.07.004.

[15] C. Popiel, J. Wojtkowiak, and B. Biernacka, “Measurements of temperature distribution in ground”, *Experimental Thermal and Fluid Science*, 25, pp.301-309, 2001, doi: 10.1016/S0894-1777(01)00078-4.

[16] M.B. Nantka, “Heating and Ventilation Systems in Construction. Part I. Buildings and their Demand for Heating and Ventilation” (Instalacje grzewcze i wentylacyjne w budownictwie. Część I. Budyinki i ich potrzeby grzewcze i wentylacyjne”), The Silesian University of Technology, Gliwice 2000.

[17] M. Chalhoub, M. Bernier, Y. Coquet, and M. Philippe, “A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers”, *Renewable Energy*, 103, pp.295-307, 2017, doi: 10.1016/j.renene.2016.11.027.

[18] M.P. Deru, and A.T. Kirkpatrick, “Ground-Coupled Heat and Moisture Transfer from Buildings; Part 1: Analysis and Modeling. Part 2: Application Conference paper”, *The American Solar Energy Society National Solar Conference Forum*, Washington, 2001, doi: 10.1115/1.1435652.

[19] G. Florides, P.D. Pouloupatis, at al, “Geothermal properties of the ground in Cyprus and their effect on the efficiency of ground coupled heat pumps”, *Renewable Energy*, 49, pp.85-689, 2013, doi: 10.1016/j.renene.2012.01.059.

[20] Y. Guo, G. Zhang, and S. Liu, “Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata”, *Applied Thermal Engineering*, 143, pp. 836-848, 2018, doi: 10.1016/j.applthermaleng.2018.08.005.

[21] C. Han, K.M. Ellett, S. Naylor and X. Yu, “Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads”, *Renewable Energy*, 113, pp.1046-1055, 2017, doi: 10.1016/j.renene.2017.06.025.

[22] L. Jensen-Page, G.A. Narsilio, A. Bidarmaghz, and I.W. Johnston, “Investigation of the effect of seasonal variation in ground temperature on thermal response tests”, *Renewable Energy*, 125,
pp.609-619, 2018, doi: 10.1016/j.renene.2017.12.095.

[23] M. Kadela, „Annual Report for 2018 on Progress of “LIDER” Program, contract no LIDER/022/537/L-4/12/NCBR/2013“(„Raport roczny za rok 2018 z realizacji Projektu w ramach Programu „LIDER” nr umowy: LIDER/022/537/L-4/12/NCBR/2013“), 2018.

[24] C. Naranjo-Mendozaa, A.J. Wrigthb, M.A. Oyinlob, and R.M. Greenough, „A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements”, Geothermics, 76, pp.38-49, 2018, doi: 10.1016/j.geothermics.2018.06.003.

[25] I. Pokorska-Silva, „Analysis of thermal efficiency of buildings based on experimental research and numerical simulations” („Analiza efektywności termicznej budynków na podstawie badań doświadczalnych i symulacje numerycznych”), PhD Thesis, Silesian University of Technology, Gliwice 2018.

[26] C.O. Popel, and J. Wojtkowiak, “Temperature distributions of ground in the urban region of Poznan City”, Experimental Thermal and Fluid Science, 51, pp.135-148, 2013, doi: 10.1016/j.expthermflusci.2013.07.009.

[27] K. Sikora, „Ground and ground tube heat exchanger temperature measurements within the operating cycle of one year” („Pomiary temperatury w gruncie oraz w gruntowym wymienniku ciepła (GWC) w rocznym cyklu eksploatacyjnym”), Measurements Automation Monitoring (Pomiary Automatyka Kontroła), 3, pp.265-267, 2010.

[30] S.M. van Manen, and E. Wallin, „Ground temperature profiles and thermal rock properties at Wairakei, New Zealand”, Renewable Energy, 43, pp.313-321, 2012, doi: 10.1016/j.renene.2011.11.032.

[31] H. Xu, and J.D. Spitler, „The relative importance of moisture transfer, soil freezing and snowcover on ground temperature predictions”, Renewable Energy, 72, pp.1-11, 2014, doi: 10.1016/j.renene.2014.06.044.

[32] C. Zhang, W. Song, Y. Liu, X. Kong, and Q. Wang„Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate”, Renewable Energy, 136, pp.264-274, 2019, doi: 10.1016/j.renene.2018.12.112.

[34] W. Choi, H. Kikumoto, and R. Ooka, “New perspectives in thermal performance test: Cost-effective apparatus and extended data analysis”, Energy and Buildings, 180, pp.109-121, 2018, doi: 10.1016/j.enbuild.2018.08.008.

[35] L. Fedorowicz, and M. Kadela, „Model calibration of line construction-subsoil assisted by experimental research”, AGH Journal of Mining and Geoengineering, T. 36, pp. 155-164, 2012.

[36] The Lesser Poland Province Laboratory of Energy-Efficient Construction (Małopolskie Laboratorium Budownictwa Energooszczędnego), www.mlbe.pk.edu.pl [15 Feb 2019].
[39] Bartoszek, L. Fedorowicz, and M. Kadela, “Numerical modeling of layered structures with aid of laboratory and in situ tests” („Modelowanie numeryczne konstrukcji warstwowych w świetle badań laboratoryjnych i badań in situ”), Modelling in Engineering (Modelowanie Inżynierskie), vol. 12(43), pp. 15-26, 2012.

[40] L. Fedorowicz, and M. Kadela, „Recreation of Small Strains Phenomenon under Pavement Structure and Consequences of Failure to Address It”, IOP Conference Series: Materials Science and Engineering, World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium – WMCAUS2017, vol. 245, issue 022005, pp. 1-10, doi:10.1088/1757-899X/245/2/022005.

[41] Materials of Vishay,www.vishay.com, Accessed 9 Dec 2015.

[42] I. Yilmaz, M. Marschalko, D. Lamich, M. Drusa, J. Machačík, S. Heviánková, M. Kyncl, E. Lacková, I. Bestová, D. Krčmář, E. Stutz, M. Bednárik, „Monitoring of heat transmission from buildings into geological environment and evaluation of soil deformation consequences in foundation engineering, Environmental Earth Sciences, vol. 72:2947-2955, pp. 2947-2955, 2014, doi: 10.1007/s12665-014-3200-2.

[43] M. Kozłowski, M. Kadela, „Mechanical Characterization of Lightweight Foamed Concrete”, Advances in Materials Science and Engineering, vol. 6801258, pp. 1-8, 2018, doi: 10.1155/2018/6801258.

[44] L. Fedorowicz, M. Kadela, „Foamed concrete used a subbase for some systems structure-subsoil”, 7th congress INŽINIERSKA GEOLÓGIA 2012 ENGINEERING GEOLOGY, 2012.

[45] M. Kadela, and M. Kozłowski, „Foamed concrete layer as sub-structure of industrial concrete floor”, Procedia Engineering, World Multidisciplinary Civil Engineering-ArchitectureUrban Planning Symposium 2016, WMCAUS 2016, vol. 161, pp. 468-476, 2016, doi: 10.1016/j.proeng.2016.08.663.

[46] M. Kadela, M. Kozłowski, and A. Kukielka, “Application of foamed concrete in road pavement –weak soil system”, Procedia Engineering, International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures AMCM’2017, vol. 193, pp. 439-446, 2017, doi: 10.1016/j.proeng.2017.06.235.

[47] M. Kadela, I. Pokorska-Silva, B. Łoboda, „Possibility of using foam concrete in floors of industrial halls due to energy efficiency” („Możliwość zastosowania pianobetonu w posadzkach hal przemysłowych z uwagi na efektywność energetyczną”), Modern Halls (Nowoczesne Hale), no. 2, pp. 48-49, 2018.

[48] J. Vlcek, M. Drusa, W. Scherfel, B. Sedlar, “Experimental Investigation of Properties of Foam Concrete for Industrial Floors in Testing Field”, IOP Conference Series: Earth and Environmental Science, World Multidisciplinary Earth Sciences Symposium (WMESS 2017), vol. 95, issue 022049, pp. 1-8, 2017, doi: 10.1088/1755-1315/95/2/022049.