Crossingless matchings and the cohomology of \((n, n)\) Springer varieties

Mikhail Khovanov

February 12, 2002

Contents

1 Introduction 1
2 Proof of Theorem 2 6
3 Proof of Theorem 3 7
4 Proof of Theorem 4 12
5 Symmetric group action on the center of \(H^n\) 15
6 Conjectures on centers of highest weight categories 17

1 Introduction

We constructed in [6] a family of rings \(H^n, n \geq 0\), a new invariant of tangles, and a conjectural invariant of tangle cobordisms. The invariant of a tangle is a complex of \((H^n, H^m)\)-bimodules (up to chain homotopy equivalences). This paper relates \(H^n\) to the Springer variety \(B_{n,n}\) of complete flags in \(\mathbb{C}^{2n}\) stabilized by a fixed nilpotent operator with two Jordan blocks of size \(n\).

Theorem 1 The center of \(H^n\) is isomorphic to the cohomology ring of \(B_{n,n}\):

\[Z(H^n) \cong H^*(B_{n,n}, \mathbb{Z}). \]

Both rings have natural gradings and the isomorphism is grading-preserving.

Theorem 1 is proved in a roundabout way, by finding generators and defining relations for both rings. Cohomology ring of the Springer variety \(B_\lambda\),
for a partition λ of n, is well-understood. In Section 2 we use a presentation of B_λ via generators and relations obtained by de Concini and Procesi [4] to prove

Theorem 2 The cohomology ring of $B_{n,n}$ is isomorphic, as a graded ring, to the quotient of the polynomial ring $R = \mathbb{Z}[X_1, \ldots, X_{2n}]$, deg$X_i = 2$, by the ideal R_1 with generators

$$X_i^2, \quad i \in [1, 2n];$$

$$\sum_{|I|=k} X_I, \quad k \in [1, 2n];$$

where $X_I = X_{i_1} \ldots X_{i_k}$ for $I = \{i_1, \ldots, i_k\}$ and the sum is over all cardinality k subsets of $[1, 2n]$.

Generators (2) are elementary symmetric polynomials in X_1, \ldots, X_{2n}. The quotient of R by the ideal generated by (2) is isomorphic to the cohomology ring of the variety B of complete flags in \mathbb{C}^{2n}. The inclusion $B_{n,n} \subset B$ induces a surjection of cohomology rings $H^*(B, \mathbb{Z}) \twoheadrightarrow H^*(B_{n,n}, \mathbb{Z})$. It turns out that by adding relations $X_i^2 = 0$ we get a presentation for the cohomology ring of $B_{n,n}$.

We recall several notations and definitions from [6], including that of H^n. Let $A = H^*(S^2, \mathbb{Z})$ be the cohomology ring of the 2-sphere, $A \cong \mathbb{Z}[X]/(X^2)$. The trace form

$$\text{tr} : A \to \mathbb{Z}, \quad \text{tr}(1) = 0, \quad \text{tr}(X) = 1,$$

makes A into a commutative Frobenius algebra. We assign to A a 2-dimensional topological quantum field theory \mathcal{F}, a functor from the category of oriented cobordisms between 1-manifolds to the category of abelian groups. \mathcal{F} associates

- $A \otimes k$ to the disjoint union of k circles,
- the multiplication map $A \otimes A \to A$ to the ”pants” cobordism (three-holed sphere viewed as a cobordism from two circles to one circle),
- the comultiplication

$$\Delta : A \to A \otimes A, \quad \Delta(1) = 1 \otimes X + X \otimes 1, \quad \Delta(X) = X \otimes X$$

to the ”inverted pants” cobordism,
either the trace or the unit map to the disk (depending on whether we consider the disk as a cobordism from one circle to the empty manifold or vice versa).

Let B^n be the set of crossingless matchings of $2n$ points. Equivalently, B^n is all pairings of integers from 1 to $2n$ such that there is no quadruple $i < j < k < l$ with (i, k) and (j, l) paired. Most of the time n is fixed, and we denote B^n simply by B. Figure 1 depicts elements of B^2.

![Figure 1: crossingless matchings $\{(12), (34)\}$ and $\{(14), (23)\}$](image)

Figure 1: crossingless matchings $\{(12), (34)\}$ and $\{(14), (23)\}$

For $a, b \in B$ denote by $W(b)$ the reflection of b about the horizontal axis, and by $W(b)a$ the closed 1-manifold obtained by gluing $W(b)$ and a along their boundaries, see figure 2.

![Figure 2:](image)

$F(W(b)a)$ is an abelian group isomorphic to $A^\otimes I$, where I is the set of connected components of $W(b)a$. For $a, b, c \in B$ there is a canonical cobordism from $W(c)bW(b)a$ to $W(c)a$ given by "contracting" b with $W(b)$, see figure 3.

This cobordism induces a homomorphism of abelian groups

$$F(W(c)b) \otimes F(W(b)a) \rightarrow F(W(c)a).$$ (3)

Let

$$H^n \overset{\text{def}}{=} \bigoplus_{a,b \in B} b(H^n)_a, \quad b(H^n)_a \overset{\text{def}}{=} F(W(b)a).$$

Homomorphisms (3), over all a, b, c, define an associative multiplication in H^n (we let the products $d(H^n)_c \otimes b(H^n)_a \rightarrow d(H^n)_a$ be zero if $b \neq c$).
Figure 3: The contraction cobordism

\(a(H^n)_a \) is a subring of \(H^n \), isomorphic to \(\mathcal{A}^{\otimes n} \). Its element \(1_a \overset{\text{def}}{=} 1^{\otimes n} \in \mathcal{A}^{\otimes n} \) is an idempotent in \(H^n \). The sum \(\sum a \) is the unit element of \(H^n \). Notice that \(b(H^n)_a = 1_{bH^n}1_a \).

Cohomological grading of \(\mathcal{A} \) (deg(1) = 0, deg(\(X \)) = 2) gives rise to a grading of \(H^n \), see [6] for details.

Denote by \(S \) the 2-sphere \(S^2 \). Consider the direct product

\[S^{\times 2n} \overset{\text{def}}{=} S \times S \times \cdots \times S \quad (2n \text{ terms}) \]

and a submanifold \(S_a \in S^{\times 2n} \), for \(a \in B \), which consists of sequences
\((x_1, \ldots, x_{2n}), x_i \in S \) such that \(x_i = x_j \) whenever \((i, j)\) is a pair in \(a \). This submanifold is diffeomorphic to \(S^{\times n} \). Let \(\tilde{S} = \cup_{a \in B} S_a \), a subspace in \(S^{\times 2n} \). For example, if \(n = 2 \) then \(\tilde{S} \) is homeomorphic to two copies of \(S \times S \) glued together along their diagonals.

\(H^n \) and \(\tilde{S} \) are constructed along similar lines: the cohomology ring of \(S_a \) is canonically isomorphic to the ring \(a(H^n)_a \), while the abelian group \(a(H^n)_b \) is canonically isomorphic to \(H^*(S_a \cap S_b, \mathbb{Z}) \). These isomorphisms are our starting point in the proof (Section 3) of

Theorem 3 The center of \(H^n \) is isomorphic to the cohomology ring of \(\tilde{S} \):

\[Z(H^n) \cong H^*(\tilde{S}, \mathbb{Z}). \]

In Section 4 we prove

Theorem 4 Cohomology ring of \(\tilde{S} \) is isomorphic, as a graded ring, to the quotient of the polynomial ring \(R = \mathbb{Z}[X_1, \ldots, X_{2n}], \deg X_i = 2, \) by relations

\[X_i^2 = 0, \quad i \in [1, 2n]; \quad (4) \]
\[\sum_{|I|=k} X_I = 0, \quad k \in [1, 2n]. \quad (5) \]
Theorems 2, 3 and 4 imply Theorem 1. They also show that spaces \(\tilde{S} \) and \(B_{n,n} \) have isomorphic cohomology rings. These spaces have similar combinatorial structure. Irreducible components of \(B_{n,n} \), just like those of \(\tilde{S} \), are enumerated by crossingless matchings. Each component \(K_a \subset B_{n,n} \) is an iterated \(\mathbb{P}^1 \)-bundle over \(\mathbb{P}^1 \) (see [5]), and homeomorphic to \(S_a \subset \tilde{S} \). Moreover, \(K_a \cap K_b \) and \(S_a \cap S_b \) are homeomorphic. We expect that there is a compatible family of homeomorphisms and suggest

Conjecture 1 \(B_{n,n} \) and \(\tilde{S} \) are homeomorphic.

Warning: \(\tilde{S} \) can be naively upgraded to an algebraic variety, by changing the 2-sphere \(S \) to \(\mathbb{P}^1 \) in the definition of \(\tilde{S} \). With this structure, however, \(\tilde{S} \) is not isomorphic to \(B_{n,n} \) as an algebraic variety, since irreducible components of \(B_{n,n} \) are nontrivial iterated \(\mathbb{P}^1 \) bundles over \(\mathbb{P}^1 \), while those of \(\tilde{S} \) are just direct products of \(\mathbb{P}^1 \).

Let \(B_\kappa \) be the Springer variety of complete flags in \(\mathbb{C}^n \) stabilized by a fixed nilpotent operator with Jordan decomposition \(\kappa = (k_1, \ldots, k_m) \). The cohomology ring of \(B_\kappa \) admits a natural action of the symmetric group, see [3, Section 3.6] and references therein. In particular, \(S_{2n} \) acts on the cohomology ring of \(B_{n,n} \). In view of Theorem 1 it therefore acts on the center of \(H^n \). Explicitly, the action is by permutations of \(X_i \)'s. It does not come from any action of \(S_{2n} \) on \(H^n \).

In Section 5 we present an intrinsic construction of this action. The 2
\[\text{stranded braid group acts on the category} \ K \text{ of complexes of} \ H^n \text{-modules modulo chain homotopies, as follows from [6]. This action descends to the braid group action on centers of} \ K \text{ and} \ H^n \text{ and factors through to the symmetric group action on the center of} \ H^n. \]

In Section 6 we discuss conjectural isomorphisms between centers of parabolic blocks of the highest weight category for the Lie algebra \(\mathfrak{sl}_n \) and cohomology algebras of Springer varieties.

Acknowledgments: Ideas relating rings \(H^n \) and \((n,n)\) Springer varieties appeared during discussions between Paul Seidel and the author, and we are planning a joint paper on various aspects of this correspondence [7]. The present work can be viewed as a side result of [7]. I am grateful to Ragnar-Olaf Buchweitz and Ivan Mirkovic for useful consultations. This work was partially supported by NSF grant DMS-0104139.
2 Proof of Theorem 2

De Concini and Procesi [4] found a presentation for the cohomology ring of the Springer variety associated to a partition. We describe their result specialized to the \((n,n)\) partition.

Start with the ring \(R = \mathbb{Z}[X_1, \ldots, X_{2n}] \). For \(I \subset [1,2n] \) let \(X_I = \prod_{i \in I} X_i \) and let \(e_k(I) \) be the elementary symmetric polynomial of order \(k \) in variables \(X_i \), for \(i \in I \):

\[
e_k(I) = \sum_{|J|=k, J \subseteq I} X_J.
\]

Proposition 1 (see [4]) The cohomology ring of \(B_{n,n} \) is isomorphic to the quotient ring of \(R = \mathbb{Z}[X_1, \ldots, X_{2n}] \) by the ideal \(R_2 \) generated by \(e_k(I) \) for all \(k + |I| = 2n + 1 \), \(X_I \) for all \(|I| = n + 1 \), and \(X_i^2 \) for \(i \in [1,2n] \).

Remark: Defining relations are expressed in [4] in terms of complete symmetric functions. Complete and elementary symmetric functions coincide modulo the ideal generated by \(X_i^2, i \in [1,2n] \).

We want to show the equality of ideals \(R_1 = R_2 \), where \(R_1 \) was defined in Theorem 1. Let \(R_3 \) be the ideal of \(R \) generated by \(X_i^2, i \in [1,2n] \). Let \(e_k = e_k([1,2n]) \in R_1 \).

Claim: \(R_2 \subset R_1 \). Since both \(R_1 \) and \(R_2 \) are stable under the permutation action of \(S_{2n} \) on \(R \), it suffices to show that \(e_k([1,2n - k + 1]) \) and \(X_{[1,n+1]} \) lie in \(R_1 \). Indeed,

\[
e_k([1,2n-k+1]) \equiv \sum_{i=0}^{k-1} (-1)^i e_i([2n-k+2,2n]) e_{k-i} \pmod{R_3}, \quad (6)
\]

\[
X_{[1,n+1]} \equiv \sum_{i=0}^{n-1} (-1)^i e_i([n+2,2n]) e_{n+1-i} \pmod{R_3}. \quad (7)
\]

The right hand sides lie in \(R_1/R_3 \) and the claim follows. □

Claim: \(R_1 \subset R_2 \). Equalities (6) and induction on \(k \) imply that \(e_k \in R_2 \) for all \(k \leq n \). Moreover, \(e_k \in R_2 \) for \(k > n \) since \(X_I \in R_2 \) for any \(|I| > n \). □

Therefore, \(R_1 = R_2 \) and the cohomology ring of \(B_{n,n} \) is isomorphic to \(R/R_1 \).

□
3 Proof of Theorem 3

$H(Y)$ will denote the cohomology ring of a topological space Y with integer coefficients.

There is a canonical isomorphism of rings $H(S_a) \cong \mathcal{A}^I \cong aH_a$, where I is the set of arcs of a. Similarly, there are natural abelian group isomorphisms $H(S_a \cap S_b) \cong \mathcal{A}^I \cong aH_b$, where I is the set of connected components of $W(a)b$. These isomorphisms allow us to make aH_b into a ring. $a1_b \overset{\text{def}}{=} 1 \otimes k \in \mathcal{A}^k$ is the unit of this ring.

Inclusions $S_b \supset (S_a \cap S_b) \subset S_a$ induce ring homomorphisms

$$\psi_{a,a,b} : H(S_a) \rightarrow H(S_a \cap S_b), \quad \psi_{b,a,b} : H(S_b) \rightarrow H(S_a \cap S_b).$$

Likewise, maps

$$\gamma_{a,a,b} : a(H^n)_a \rightarrow a(H^n)_b, \quad \gamma_{b,a,b} : b(H^n)_b \rightarrow a(H^n)_b,$$

given by $x \mapsto x a 1_b$ and $x \mapsto a 1_b x$ are ring homomorphisms. The following diagram made out of these homomorphisms and automorphisms commutes:

\[
\begin{array}{ccc}
H(S_a) & \longrightarrow & H(S_a \cap S_b) \\
\downarrow{\cong} & & \downarrow{\cong} \\
a(H^n)_a & \longrightarrow & a(H^n)_b
\end{array}
\]

\[\begin{array}{ccc}
\cong & & \cong \\
\end{array}\]

\[\begin{array}{ccc}
b(H^n)_b & \longleftarrow & b(H^n)_b
\end{array}\]

\[
(8)
\]

Suppose given finite sets I and J, rings $A_i, i \in I$ and $B_j, j \in J$, and ring homomorphisms $\beta_{i,j} : A_i \rightarrow B_j$ for some pairs (i, j). Let

$$\beta = \sum_{i \in I} \beta_{i,j}, \quad \beta : \prod_{i \in I} A_i \rightarrow \prod_{j \in J} B_j.$$

Define the equalizer of β (denoted $\text{Eq}(\beta)$) as the subring of $\prod_{i \in I} A_i$ which consist of $\times a_i$ such that $\beta_{i,j} a_i = \beta_{k,j} a_k$ whenever $\psi_{i,j}$ and $\psi_{k,j}$ are defined.

Diagrams (8) give rise to a commutative diagram of ring homomorphisms

\[
\begin{array}{ccc}
\text{Eq}(\psi) & \longrightarrow & \prod_{a} H(S_a) \\
\downarrow{\cong} & & \downarrow{\cong} \\
\text{Eq}(\gamma) & \longrightarrow & \prod_{a} a(H^n)_a
\end{array}
\]

\[\begin{array}{ccc}
\cong & & \cong \\
\end{array}\]

\[\begin{array}{ccc}
\prod_{a} H(S_a) & \rightarrow & \prod_{a \neq b} H(S_a \cap S_b) \\
\downarrow{\cong} & & \downarrow{\cong} \\
\prod_{a} a(H^n)_a & \rightarrow & \prod_{a \neq b} a(H^n)_b
\end{array}\]

\[\begin{array}{ccc}
\cong & & \cong \\
\end{array}\]

\[\begin{array}{ccc}
(9)
\end{array}\]
where
\[\psi = \sum_{a \neq b} (\psi_{a,a,b} + \psi_{b,a,b}) \quad \text{and} \quad \gamma = \sum_{a \neq b} (\gamma_{a,a,b} + \gamma_{b,a,b}). \]

For an element \(z \in H \) write \(z = \sum_{a,b} b z_a \) where \(b z_a \in \mu H_a \). If \(z \) is central, \(b z_a = 0 \) if \(a \neq b \), since \(0 = z 1_b 1_a = 1_b z_a = b z_a \). Thus, \(z = \sum_{a} a z_a \). Denote \(a z_a \) by \(z_a \). Clearly, \(z = \sum_{a} z_a \) is central iff \(z_a 1_b = a 1_b z_b \) for all \(a, b \) such that \(a \neq b \). Therefore, \(Z(H^n) \cong \text{Eq}(\gamma) \).

Inclusions \(S_a \subset \tilde{S} \) induce ring homomorphisms \(H(\tilde{S}) \longrightarrow \prod_a S_a \) which factor through \(\text{Eq}(\psi) \). Putting everything together, we obtain the following diagram

\[
\begin{array}{ccccccc}
H(\tilde{S}) & \xrightarrow{\tau} & \text{Eq}(\psi) & \longrightarrow & \prod_a H(S_a) & \xrightarrow{\psi} & \prod_{a \neq b} H(S_a \cap S_b) \\
\downarrow{\cong} & & & & \downarrow{\cong} & & \downarrow{\cong} \\
Z(H^n) & \xrightarrow{\cong} & \text{Eq}(\gamma) & \longrightarrow & \prod_a (H^n)_a & \xrightarrow{\gamma} & \prod_{a \neq b} (H^n)_b
\end{array}
\]

Theorem 3 will follow from

Proposition 2 \(\tau \) is an isomorphism.

Proof of this proposition occupies the rest of this section.

For \(a, b \in B \) we will write \(a \rightarrow b \) if there is a quadruple \(i < j < k < l \) such that \((i, j)\) and \((k, l)\) are pairs in \(a \), \((i, l)\) and \((j, k)\) are pairs in \(b \), and otherwise \(a \) and \(b \) are identical (see Figure 4). Figure 5 depicts all arrow relations for \(n = 3 \).

```
Figure 4: a → b
```

Introduce a partial order on \(B \) by \(a < b \) iff there is a chain of arrows \(a \rightarrow a_1 \rightarrow \cdots \rightarrow a_m \rightarrow b \). We extend the partial order \(< \) to a total order on \(B \) in an arbitrary way and denote it by \(< \).
Define the distance $d(a, b)$ between a and b as the minimal length m of a sequence $(a = a_0, a_1, \ldots, a_m = b)$ such that for each i either $a_i \to a_{i+1}$ or $a_{i+1} \to a_i$. One geometric interpretation of the distance: the diagram $W(b)a$ has $n - d(a, b)$ circles.

Lemma 1 For any $a, b \in B$ there is c such that $d(a, b) = d(a, c) + d(c, b)$ and $a \succ c \prec b$.

Proof is left to the reader. □

Lemma 2 If $d(a, c) = d(a, b) + d(b, c)$ then

$$S_a \cap S_c = S_a \cap S_b \cap S_c.$$

□

Let $S_{<a} = \bigcup_{b < a} S_b$ and $S_{\leq a} = \bigcup_{b \leq a} S_b$. Note that if c is the next element after a in the total order $<$ on B then $S_{<c} = S_{\leq a}$.

Lemma 3

$$S_{<a} \cap S_a = \bigcup_{b \to a} (S_b \cap S_a).$$

Follows from the previous lemma and lemma □.

Lemma 4 $S_{<a} \cap S_a$ has cohomology in even degrees only. The inclusion $(S_{<a} \cap S_a) \subset S_a$ induces a surjective homomorphism of cohomology rings $\text{H}(S_a) \twoheadrightarrow \text{H}(S_{<a} \cap S_a)$.

Proof: We construct a cell decomposition of S_a. Let I be the set of arcs of a. There is a canonical homeomorphism $S_a \cong S^{\times I}$. Let Γ be the graph with I as the set of vertices and $y, z \in I$ are connected by an edge iff there
exist \(b \rightarrow a \) such that \(b \) is obtained from \(a \) by erasing \(y, z \) and reconnecting their endpoints in a different way. See Figure 6 for an example.

\(\Gamma \) is a forest (a disjoint union of trees). Let \(E \) be the set of edges of \(\Gamma \). Mark a vertex in each connected component of \(\Gamma \) and denote by \(M \) the set of marked vertices. Note that \(|E| + |M| = n \).

Fix a point \(p \in S \). For each \(J \subset (E \sqcup M) \) let \(c(J) \) be the subset of \(S \times I \) consisting of points \(\{x_i\}_{i \in I}, x_i \in S \) such that

\[
\begin{align*}
 x_i &= x_j \quad \text{if } (i, j) \in J, \\
 x_i &\neq x_j \quad \text{if } (i, j) \notin J, \\
 x_i &= p \quad \text{if } i \in M \cap J, \\
 x_i &\neq p \quad \text{if } i \in M, i \notin J.
\end{align*}
\]

Clearly, \(S \times I = \sqcup_J c(J) \) and \(c(J) \) is homeomorphic to \(\mathbb{R}^{2(n-|J|)} \). We obtain a decomposition of \(S_a \cong S \times I \) into even dimensional cells. It restricts to a cell decomposition of \(S \cap S_a \), the latter a union of cells \(c(J) \) such that \(J \cap E \neq \emptyset \). The lemma follows, since these decompositions give us cochain complexes with zero differentials that describe cohomology groups of \(S_a \) and \(S \cap S_a \).

\begin{lemma}
Homomorphism
\[
\begin{array}{c}
H(S_{<a} \cap S_a) \longrightarrow \bigoplus_{b \rightarrow a} H(S_b \cap S_a)
\end{array}
\]
induced by inclusions \((S_b \cap S_a) \subset (S_{<a} \cap S_a) \) is injective.
\end{lemma}

\begin{proof}
It suffices to check that

\[
\begin{array}{c}
H(S_{<a} \cap S_a) \longrightarrow \bigoplus_{b \rightarrow a} H(S_b \cap S_a)
\end{array}
\]

is injective. The cell decomposition of \(S_{<a} \cap S_a \) constructed above restricts to a cell decomposition of \(S_b \cap S_a \), for each \(b \rightarrow a \). Since \(S_{<a} \cap S_a = \sqcup_{b \rightarrow a} (S_b \cap S_a) \), the lemma follows.
\end{proof}
Note that $S_{\leq a} = S_{< a} \cup S_a$. Consider the Mayer-Vietoris sequence for $(S_{< a}, S_a)$:

$$\rightarrow H^m(S_{\leq a}) \rightarrow H^m(S_{< a}) \oplus H^m(S_a) \rightarrow H^m(S_{< a} \cap S_a) \rightarrow$$

Proposition 3 $S_{\leq a}$ has cohomology in even degrees only. The Mayer-Vietoris sequence for $(S_{< a}, S_a)$ breaks down into short exact sequences

$$0 \rightarrow H^{2m}(S_{\leq a}) \rightarrow H^{2m}(S_{< a}) \oplus H^{2m}(S_a) \rightarrow H^{2m}(S_{< a} \cap S_a) \rightarrow 0 \quad (10)$$

for $0 \leq m \leq n$.

Proof: Induction on a with respect to the total order $<$. Induction base is obvious. Induction step: let e be the element before a relative to $<$ and assume the proposition holds for e. Then spaces $S_{< e}, S_a, S_{< a} \cap S_a$ have cohomology in even degrees only (the last one by lemma 4) and the Mayer-Vietoris sequence degenerates into exact sequences

$$0 \rightarrow H^{2m}(S_{\leq a}) \rightarrow H^{2m}(S_{< a}) \oplus H^{2m}(S_a) \rightarrow H^{2m}(S_{< a} \cap S_a) \rightarrow \rightarrow H^{2m+1}(S_{\leq a}) \rightarrow 0.$$

By lemma 4 the map $H(S_a) \rightarrow H(S_{< a} \cap S_a)$ is surjective, so that the last term of the sequence is zero. \(\square \)

Proposition 4 The following sequence is exact

$$0 \rightarrow H(S_{\leq a}) \xrightarrow{\phi} \bigoplus_{b \leq a} H(S_b) \xrightarrow{\psi^-} \bigoplus_{b \leq c \leq a} H(S_b \cap S_c),$$

where ϕ is induced by inclusions $S_b \subset S_{\leq a}$, while

$$\psi^- \overset{\text{def}}{=} \sum_{b \leq c \leq a} (\psi_{b,c} - \psi_{c,b}),$$

where

$$\psi_{b,c} : H(S_b) \rightarrow H(S_b \cap S_c)$$

is induced by the inclusion $(S_b \cap S_c) \subset S_b$.

Proof: Induction on a. The induction base, a is minimal relative to $<$, is obvious. Induction step: assume e precedes a relative to $<$ and the claim is true for e. Lemma 4 allows us to substitute $\bigoplus_{b \leq a} H(S_b \cap S_a)$ for $H(S_{< a} \cap S_a)$.
in the sequence (10) while maintaining exactness everywhere but in the last term. Thus,

\[0 \rightarrow H(S_{\leq a}) \rightarrow H(S_{<a}) \oplus H(S_a) \rightarrow \bigoplus_{b<a} H(S_b \cap S_a) \] (12)

is exact. Moreover, \(S_{<a} = S_{\leq e} \). By induction hypothesis

\[0 \rightarrow H(S_{\leq e}) \rightarrow \bigoplus_{f \leq e} H(S_f) \rightarrow \bigoplus_{f < g \leq e} H(S_f \cap S_e) \]

is exact. Substituting in (12), and using standard properties of complexes, we conclude that (11) is exact. \(\square \)

When \(a \) is the maximal element of \(B \), Proposition 4 tells us that the sequence

\[0 \rightarrow H(\tilde{S}) \xrightarrow{\phi} \bigoplus_{b} H(S_b) \xrightarrow{\psi} \bigoplus_{b < c} H(S_b \cap S_c) \] (13)

is exact. This is equivalent to Proposition 4. \(\square \)

Remark: A similar method establishes an isomorphism between the quotient of \(H^n \) by its commutant subspace and homology of \(\tilde{S} \) with integer coefficients:

\[H^n/[H^n, H^n] \cong H_*(\tilde{S}, \mathbb{Z}). \]

If \(\Lambda \) is a symmetric ring, the center of \(\Lambda \) is dual to \(\Lambda/[\Lambda, \Lambda] \). Ring \(H^n \) is symmetric [6, Section 6.7].

4 Proof of Theorem 4

Lemma 6 \(H(\tilde{S}) \) is a free abelian group of rank \(\binom{2n}{n} \).

Proof The cell decomposition of \(S_a \) defined in the proof of Lemma 4 restricts to a cell decomposition of \(S_a \cap S_{<a} \). Hence, a cell partition of \(\tilde{S} \) can be obtained starting with the cell decomposition of \(S_a \), for the minimal \(a \in B \), and then adding the cells of \(S_a \setminus S_{<a} \), over all \(a \) in \(B \) following the total order \(< \). Note that this is a cell partition of \(\tilde{S} \), not a cell decomposition, since the closure of a cell is not, in general, a union of cells. Nevertheless, since all cells are even-dimensional and the boundary of each cell has codimension 2 relative to the cell, \(H(\tilde{S}) \) is a free abelian group with a basis consisting of delta functions of these cells.
For $a \in B$ let $t(a)$ be the number of ”bottom” arcs of a, that is, arcs with no arcs below them. $t(a)$ is also the number of connected components of the graph Γ, defined in the proof of Lemma 4. For instance, Figure 1 diagrams have two and one bottom arcs (the left diagram has two). Our decomposition of $S_a \setminus S_{<a}$ has $2^{t(a)}$ cells. Therefore, the cell partition of \widetilde{S} has $\sum_{a \in B} 2^{t(a)}$ cells. It is easy to see that this sum equals $\binom{2n}{n}$. Lemma follows. □

Recall that X denotes a generator of $H^2(S)$. The inclusion $\iota : \widetilde{S} \subset S \times 2n$ induces a homomorphism $\iota^* : H(S \times 2n) \to H(\widetilde{S})$. Let $\phi_i : S \times 2n \to S$ be the projection on the i-th component. Consider the composition $\phi_i \circ \iota$ and let $X_i \overset{\text{def}}{=} (-1)^i \iota^* \circ \phi_i^*(X)$, $X_i \in H(\widetilde{S})$.

We denote by $[1,2n]$ the set of integers from 1 to $2n$. For $I \subset [1,2n]$ let $X_I = \prod_{i \in I} X_i$.

Proposition 5 The cohomology ring of \widetilde{S} is generated by X_i, $i \in [1,2n]$ and has defining relations

\begin{align*}
X_i^2 &= 0, \quad i \in [1,2n]; \quad (14) \\
\sum_{|I|=k} X_I &= 0, \quad k \in [1,2n]. \quad (15)
\end{align*}

Proof: First we show that these relations hold. (14) is obvious. Let $j_a : S_a \subset \widetilde{S}$ and j_a^* be the induced map on cohomology. (15) will follow if we check that

\[\sum_{|I|=k} j_a^*(X_I) = 0 \quad (16) \]

for all $a \in B$, since

\[\sum_{a \in B} j_a^* : H(\widetilde{S}) \longrightarrow \bigoplus_{a \in B} H(S_a) \]

is an inclusion. If (i,i') is a pair in a then $j_a^*(X_iX_{i'}) = 0$ and $j_a^*(X_i + X_{i'}) = 0$ (because of the term $(-1)^i$ in the definition of X_i, and since $i+i' \equiv 1(\text{mod } 2)$). Therefore,

\[\sum_{|I|=k, \{i,i'\} \cap I \neq \emptyset} j_a^*(X_I) = 0 \]
where the sum is over all subsets of cardinality k that intersect $\{i, i'\}$ non-trivially. To take care of the remaining terms in the L.H.S. of (16),

$$\sum_{|I|=k, \{i, i'\} \cap I = \emptyset} j_a(X_I),$$

pick another pair (r, r') in a and apply the same reduction to it. After $\frac{n-k}{2} + 1$ iterations all cardinality k subsets will be accounted for. (16) follows.

We say that a subset I of $[1, 2n]$ is admissible if $I \cap [1, m]$ has at most $\frac{m}{2}$ elements for each $m \in [1, 2n]$.

Lemma 7 There are $\binom{2n}{n}$ admissible subsets.

Proof is left to the reader. \Box

Lemma 8 X_J, for any $J \subset [1, 2n]$, is a linear combination of X_I, over admissible I.

Proof: let $y(J) = \sum_{j \in J} j$. Assume the lemma is false, and find such a non-admissible J with the minimal possible $y(J)$. Take the smallest possible m such that $|J \cap [1, m]| > \frac{m}{2}$. Then m is odd, $m = 2r + 1$ and $|J \cap [1, m]| = r + 1$. Arguments in the proof of Theorem 2 in Section 2 imply that $e_{r+1}((J \cap [1, m]) \cup [m + 1, 2n]) = 0$. Therefore, $X_J \cap [1, m] \cup [m + 1, 2n]$ is a linear combination of X_K with $K \subset (J \cap [1, m]) \cup [m + 1, 2n]$ and $y(K) > y(J)$. Since $X_J = X_J \cap [1, m] \cdot X_{J \cap [m+1, 2n]}$, this contradicts minimality of $y(J)$. \Box

Lemma 9 $\{X_I\}$, over all admissible I, are linearly independent in $H(\widetilde{S})$.

Sketch of proof: Induction on n, use homomorphism $H(\widetilde{S}_n) \rightarrow H(\widetilde{S}_{n-1})$ induced by the inclusion $\widetilde{S}_{n-1} \subset \widetilde{S}_n$ (where \widetilde{S}_n is what we usually call \tilde{S}). Details are left to the reader. \Box

Lemmas 6, 7, 8 and 9 imply Proposition 5 and the following results.

Corollary 1 $H(\widetilde{S})$ has a basis $\{X_I\}$, over all admissible I.

Corollary 2 The inclusion $\widetilde{S} \subset S \times 2^n$ induces a surjective ring homomorphism $H(S \times 2^n) \rightarrow H(\widetilde{S})$.

14
5 Symmetric group action on the center of H^n

The center of a category

The center of a category is defined as the commutative monoid of natural transformations of the identity functor. If the category is pre-additive (Hom(X,Y) is an abelian group for any objects X,Y, and the composition of morphisms is bilinear) then the center is a commutative ring. A down-to-earth example: the center of the category of modules over a ring A is isomorphic to the center of A.

Let F be a functor in a category \mathcal{C}. The center of \mathcal{C} acts in two ways on the set $\text{End}(F)$ of endomorphisms of F, since we can compose $\alpha \in Z(\mathcal{C})$ and $\beta \in \text{End}(F)$ on the left or on the right:

\[
\alpha \circ \beta : F \cong \text{Id} \circ F \xrightarrow{\alpha \circ \beta} \text{Id} \circ F \cong F, \\
\beta \circ \alpha : F \cong F \circ \text{Id} \xrightarrow{\beta \circ \alpha} F \circ \text{Id} \cong F.
\]

Assume that F is invertible. Then any endomorphism of F has the form $\text{Id}_F \circ \alpha$, for a unique $\alpha \in Z(\mathcal{C})$, as well as $\alpha' \circ \text{Id}_F$, for a unique $\alpha' \in Z(\mathcal{C})$. Thus, F defines an automorphism of the monoid $Z(\mathcal{C})$ which takes α to α'.

Suppose group G acts weakly on \mathcal{C}, meaning that there are functors $F_g : \mathcal{C} \rightarrow \mathcal{C}$ for each $g \in G$, such that $F_1 \cong \text{Id}$ and $F_g F_h \cong F_{gh}$ (we do not impose compatibility conditions on these isomorphisms). Each F_g is invertible and gives rise to an automorphism of the center of \mathcal{C}. We get an action of G on $Z(\mathcal{C})$. Therefore, a weak group action on a category descends to an action on the center of the category.

Centers of triangulated and derived categories

Define the center of a triangulated category \mathcal{D} as the set of natural transformations of the identity functor that commute with the shift functor $[1]$. Let \mathcal{C} be an abelian category and $\widehat{\mathcal{C}}$ one of the triangulated categories associated to \mathcal{C} (for instance, the bounded derived category of \mathcal{C}, or the category of bounded complexes of objects of \mathcal{C} modulo chain homotopies). There are ring homomorphisms

\[
Z(\mathcal{C}) \xrightarrow{f} Z(\widehat{\mathcal{C}}) \xrightarrow{g} Z(\mathcal{C})
\]

whose composition is the identity. f extends $\alpha \in Z(\mathcal{C})$ termwise to complexes of objects of \mathcal{C}. Homomorphism g is induced by the inclusion of categories $\mathcal{C} \subset \widehat{\mathcal{C}}$.

15
f and g are not always isomorphisms, as observed by Jeremy Rickard. If \mathcal{C} is the category of modules over the exterior algebra in one generator, then f, respectively g, has a nontrivial cokernel, respectively kernel.

Remark: Ragnar-Olaf Buchweitz pointed out to me that a triangulated category \mathcal{D} also has extended center (or "Hochschild cohomology"),

$$\bigoplus_{m \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Fun}(\mathcal{D})} (\operatorname{Id}, \operatorname{Id}[m]),$$

(only natural transformations that supercommute with the shift functor are included). The extended center of the derived category of Λ-mod, for an algebra Λ, contains the Hochschild cohomology algebra $\operatorname{Ext}_{\Lambda^e}(\Lambda, \Lambda)$.

An action of G on $\hat{\mathcal{C}}$ induces an action on $Z(\hat{\mathcal{C}})$. If $\ker(g)$ is G-stable, the action descends to $Z(\mathcal{C})$. Let Λ be a ring and $D(\Lambda)$ the bounded derived category of Λ-mod. If a self-equivalence F of $D(\Lambda)$ is given by tensoring with a bounded complex of left and right projective Λ-bimodules, then it descends to an automorphism of $Z(\Lambda)$ (compare with [8, Proposition 9.2]).

Symmetric group action

The symmetric group action on $Z(H^n)$ can be described intrinsically as follows. Let \mathcal{K} be one of triangulated categories associated to H^n (say, the category of bounded complexes of left H^n-modules up to chain homotopies). The structures described in [8] lead to a weak action of the braid group with $2n$-strands on \mathcal{K}. Diagram U_i (see Figure 7) defines an H^n-bimodule $F(U_i)$ together with bimodule homomorphisms

$$F(U_i) \xrightarrow{\alpha} H^n, \quad H^n \xrightarrow{\beta} F(U_i),$$

induced by elementary cobordisms between U_i and Vert_{2n} (we use notations from [8], note that $H^n \cong F(\text{Vert}_{2n})$).

![Figure 7: Diagrams U_i and Vert_{2n}](image)

Let $\mathcal{R}_i : \mathcal{K} \to \mathcal{K}$ be the functor of tensoring with the complex of bimodules

$$0 \longrightarrow F(U_i) \xrightarrow{\alpha} H^n \longrightarrow 0.$$ \hspace{1cm} (18)

\mathcal{R}_i's are invertible and satisfy the braid group relations.
In Section 4 we defined generators X_i of $H(\tilde{S})$. We now describe the image of X_i (also denoted X_i) in $Z(H^n)$ under the isomorphism $H(\tilde{S}) \cong Z(H^n)$ established in Section 3:

$$X_i = \sum_{a \in B} a(X_i)_a, \quad a(X_i)_a \in \mathcal{A} \otimes_{n-1} \mathcal{A},$$

where the separated \mathcal{A} corresponds to the circle in $\mathcal{F}(W(a)a)$ that contains the i-th endpoint of a, counting from the left.

For a complex V of H_n-bimodules and $z \in Z(H_n)$ let l_z, respectively r_z, be the endomorphism of V given by left, respectively right, multiplication by z. Endomorphisms $l_{X_i} - r_{X_{i+1}}$ and $l_{X_{i+1}} - r_{X_i}$ of the complex (18) are homotopic to 0, via the homotopy $\pm \beta : H^n \to \mathcal{F}(U_i)$. Therefore, the braid group action on K descends to the action of the symmetric group S_{2n} on $Z(H^n)$ by permutations of X_i's.

6 Conjectures on centers of highest weight categories

If e is an idempotent in a ring Λ, there is a homomorphism $Z(\Lambda) \to Z(\mathcal{E} \Lambda \mathcal{E})$ which takes $z \in Z(\Lambda)$ to ze.

Let $\mathcal{O}^{n,n}$ be the full subcategory of a regular block of the highest weight category of \mathfrak{sl}_{2n} which consists of locally $U\mathfrak{p}(n,n)$-finite modules, where $\mathfrak{p}(n,n)$ is the parabolic subalgebra in \mathfrak{sl}_{2n} of (n,n) block-upper-triangular matrices. $\mathcal{O}^{n,n}$ is equivalent to the category of perverse sheaves on the Grassmannian of n-planes in \mathbb{C}^{2n}, constructible relative to the Schubert stratification. There is a unique finite-dimensional \mathbb{C}-algebra $\mathcal{A}^{n,n}$ such that

(i) $\mathcal{O}^{n,n}$ is equivalent to the category of finite-dimensional $\mathcal{A}^{n,n}$-modules,

(ii) every irreducible $\mathcal{A}^{n,n}$-module is one-dimensional.

$\mathcal{A}^{n,n}$ was explicitly described by Tom Braden [1]. In [2] we’ll construct an idempotent e in $\mathcal{A}^{n,n}$ and an isomorphism $h : H^n \otimes_{\mathbb{Z}} \mathbb{C} \cong e\mathcal{A}^{n,n}e$.

Conjecture 2 $Z(\mathcal{A}^{n,n}) \cong Z(e\mathcal{A}^{n,n}e)$, and h induces an isomorphism of centers of $H^n \otimes_{\mathbb{Z}} \mathbb{C}$ and $\mathcal{O}^{n,n}$.

We would like to suggest a more general conjecture relating parabolic highest weight categories and Springer varieties. Let $\kappa = (k_1, \ldots, k_m)$ be a decomposition of n, $k_1 + \cdots + k_m = n$ and denote by $\mathfrak{p}(\kappa)$ the corresponding Lie algebra of block upper-triangular n-by-n matrices. Let \mathcal{O}^κ be the full
subcategory of locally $U^p(\kappa)$-finite modules in a regular block \mathcal{O}_{reg} of the highest weight category \mathcal{O} for \mathfrak{sl}_n. Let Y^κ be the partial flag variety associated to κ. It is known that \mathcal{O}^κ is equivalent to the category of perverse sheaves on Y^κ, smooth along Schubert cells.

Let B_κ be the Springer variety of complete flags in \mathbb{C}^n stabilized by a fixed nilpotent operator with Jordan decomposition (k_1, \ldots, k_m).

Conjecture 3 The center of \mathcal{O}^κ is isomorphic to the cohomology algebra of B_κ:

$$Z(\mathcal{O}^\kappa) \cong H^*(B_\kappa, \mathbb{C}).$$

(19)

Note that the right hand side of the isomorphism (19) depends only on the partition type of κ, i.e. preserved by permutations of terms k_1, \ldots, k_m of κ. The category \mathcal{O}^κ, featured in the left hand side, generally does not possess the same kind of invariance:

Proposition 6 Categories $\mathcal{O}^{2,1,1}$ and $\mathcal{O}^{1,2,1}$ are inequivalent.

However, we have

Proposition 7 If decompositions κ and κ' differ only by a permutation of terms, the categories \mathcal{O}^κ and $\mathcal{O}^{\kappa'}$ are derived equivalent.

Propositions 6 and 7 are proved at the end of this section.

If two rings are derived equivalent, their centers are isomorphic ([8, Proposition 9.2]). Since \mathcal{O}^κ and $\mathcal{O}^{\kappa'}$ are equivalent to categories of modules over finite-dimensional algebras, and these algebras are derived equivalent, centers of \mathcal{O}^κ and $\mathcal{O}^{\kappa'}$ are isomorphic. Thus, the left hand side of (19) also depends only on the partition type of κ.

We would like conjectural isomorphisms (19) to be compatible with the inclusions of categories $\mathcal{O}^\kappa \subset \mathcal{O}_{\text{reg}}$ and topological spaces $B_\kappa \subset B$, where B is the variety of complete flags in \mathbb{C}^n. These inclusion induce ring homomorphisms $Z(\mathcal{O}_{\text{reg}}) \rightarrow Z(\mathcal{O}^\kappa)$ and $H^*(B, \mathbb{C}) \rightarrow H^*(B_\kappa, \mathbb{C})$ which should be a part of the following commutative diagram

$$
\begin{array}{ccc}
\mathbb{H}^*(B, \mathbb{C}) & \longrightarrow & \mathbb{H}^*(B_\kappa, \mathbb{C}) \\
| & & | \\
\cong & & \cong \\
Z(\mathcal{O}_{\text{reg}}) & \longrightarrow & Z(\mathcal{O}^\kappa)
\end{array}
$$

(20)
Let $\Theta_i : \mathcal{O}^\kappa \to \mathcal{O}^\kappa$ be the functor of translation across the i-th wall. Θ_i is the product of two biadjoint functors (translations on and off the i-th wall). Let $\alpha_i : \Theta_i \to \text{Id}$ be one of the natural transformations coming from biadjointness. \mathcal{R}_i is a functor in the derived category of \mathcal{O}^κ. We conjecture that this action descends to a symmetric group action on $Z(\mathcal{O}^\kappa)$, and the ring isomorphism (19) can be made S_n-equivariant.

Let A_κ be a finite-dimensional algebra such that $A_\kappa\text{-mod} \cong \mathcal{O}^\kappa$. Let $e \in A_\kappa$ be the maximal idempotent such that the left A_κ-module $A_\kappa e$ is injective.

Conjecture 4 Inclusion $eA_\kappa e \subseteq A_\kappa$ induces an isomorphism of centers $Z(A_\kappa) \cong Z(eA_\kappa e)$.

Proof of Proposition 6: Assume the two categories are equivalent. Any intrinsic homological information about them is identical. The equivalence restricts to a bijection between isomorphism classes of simple objects. The bijection induces isomorphisms between Ext rings of simple objects of these categories.

Simple objects are in a one-to-one correspondence with Schubert cells in partial flag varieties $X_{2,1,1}$ and $X_{1,2,1}$. For a simple object L let $IC(L)$ be the intersection cohomology sheaf on the closure of the Schubert cell associated to L. Then $\text{Ext}(L, L) \cong \text{Ext}(IC(L), IC(L))$.

Let us count the number of simple objects L in each category with $\dim(\text{Ext}(L, L)) = 3$. The Schubert cell of such an object is necessarily 2-dimensional and its closure is diffeomorphic to \mathbb{CP}^2 (use that the cohomology of the closure of the cell is a direct summand of $\text{Ext}(IC(L), IC(L))$). $X_{2,1,1}$ has only one such cell, while $X_{1,2,1}$ has two. Contradiction. □

Proof of Proposition 7: To construct an equivalence between $D^b(\mathcal{O}^\kappa)$ and $D^b(\mathcal{O}^{\kappa'})$ note that these categories are isomorphic to the derived categories of sheaves on partial flag varieties Y_κ and $Y_{\kappa'}$, smooth along Schubert stratifications. It suffices to treat the case when κ and κ' differ by a transposition of adjacent terms, $\kappa = (k_1, \ldots, k_m), \kappa' = (k_1, \ldots, k_{i-1}, k_i, \ldots, k_m)$. Let $U \subset Y_\kappa \times Y_{\kappa'}$ be the set

$$(F_1, \ldots, F_m) \in Y_\kappa, (F'_1, \ldots, F'_m) \in Y_{\kappa'}) | F_j = F'_j \text{ for } j \neq i, F_i \cap F'_i = F_{i-1},$$

of pairs of partial flags. Let \mathcal{G} be sheaf on $Y_\kappa \times Y_{\kappa'}$ which is the continuation by 0 of the constant sheaf on U. Convolution with \mathcal{G} is an equivalence of
derived categories of sheaves on Y_κ and $Y_{\kappa'}$, and restricts to an equivalence of subcategories of cohomologically constructible (relative to the Schubert startification) complexes of sheaves. The latter categories are equivalent to the derived categories of \mathcal{O}_κ and $\mathcal{O}_{\kappa'}$. □

References

[1] T. Braden. Perverse sheaves on Grassmannians. To appear in Canadian Journal of Math., arXiv:math.AG/9907152.

[2] T. Braden and M. Khovanov. In preparation.

[3] N. Chriss and V. Ginzburg. *Representation theory and complex geometry.* Birkhäuser Boston, Boston, MA, 1997.

[4] C. de Concini and C. Procesi. Symmetric functions, conjugacy classes and the flag variety. *Invent. math.*, 64:203–219, 1981.

[5] F. Y. C. Fung. *On the relation between Springer fibers of the general linear group and Kazhdan-Lusztig theory.* PhD thesis, Princeton University, June 1997.

[6] M. Khovanov. A functor-valued invariant of tangles. arXiv math.QA/0103190.

[7] M. Khovanov and P. Seidel. Work in progress.

[8] J. Rickard. Morita theory for derived categories. *J. London Math. Soc.*, 39:436–456, 1989.