Sprinkler irrigation design with microcontroller based on IoT

E Noerhayati¹*, Margianto², B Dwisulo³ and A Rahmawati⁴

¹Department of Civil Engineering, Faculty of Engineering, University of Malang Islamic, Malang, East Java, Indonesia
²Department of Mechanical Engineering, Faculty of Engineering, University of Malang Islamic, Malang, East Java, Indonesia
³Department of Electrical Engineering, Faculty of Engineering, University of Malang Islamic, Malang, East Java, Indonesia
⁴Faculty of Civil Engineering, University of Malang Islamic, Malang, East Java, Indonesia

*E-mail: eko.noerhayati@unisma.ac.id

Abstract. Sprinkler irrigation is an alternative irrigation technology application that theoretically has a higher efficiency than open irrigation channels. In the form of the field, production of high-efficiency irrigation is achieved when most of the irrigation network is designed correctly and use an excellent tool and smooth operation. 4.0 to support the industry, irrigation precipitation can automatically be developed using the ESP8266 NodeMCU Android-based microcontroller. Tests in the laboratory by direct observation method. The statistical data analysis using the analytical statistic results of the T-test showed that the distribution of the automatic sprinkler water distribution compared to manual testing meets the T-test.

1. Introduction

The problem of scarcity or excess water can make plants grow and produce well [1]. Growth and plant development could be hampered or interrupted because water needs are not met on the ground. Agricultural production will decrease if the plant experiences water stress [2-5]. The problem of scarcity or excess water can make plants grow and produce well [1]. Growth and plant development could be hampered or interrupted because water needs are not met on the ground. Agricultural production will decrease if the plant experiences water stress [2]. Overcoming the lack of water to improve the productivity and efficiency of water use in crop irrigation management technology requires an effective and efficient application. Design of irrigation systems through the use of automated technology to be an alternative that can improve the productivity and efficiency of the use of irrigation water in rice paddies. The use of automatic control systems in the field of irrigation has a significant impact on the improvement of the irrigation system and the efficient use of water resources, as well as for maintaining the level of water in the soil at a certain level by needs of the crop [6-11].

Experiments and studies have been carried out to find water management technologies in agriculture using the Arduino Uno microcontroller AT mega328P [12]. The design of automatic sprinkler plants with pump irrigation systems [13]. The system based on the automatic microcontroller of bulk irrigation shows that the volume of irrigation to maintain soil moisture [14]. Monitoring and control system for the cultivation of geoponic spray water using the NodeMCU ESP8266 that can increase the soil moisture value [15]. The design of automatic plant irrigation systems using wireless sensor networks produces irrigation configurations that can be controlled automatically [16]. The intelligent and low-cost IOT-
based modules for smart irrigation systems proved to be useful with their intelligence, low cost, and easy to transport, which makes it suitable for greenhouses, agriculture. (Neha K. Nawandar Vishal R. Satpute).

Water distribution uniformity is vital for the design of sprinkler irrigation systems — the movement of substantial water droplets after leaving the sprinkler nozzle. Significantly affect the distribution of water from the sprinklers. In this study, the operation of irrigation water bulk done automatically utilizes solenoid valves as actuators functioning open and close the water flow automatically to the microcontroller as a controller, which gives commands to the actuator to open or close.

2. Methods

2.1. Material
This study was carried out in the field of tests of the Islamic University of Malang, covering the design model and the design of the sprinkler irrigation system. It is a series of hardware, automatic control systems, water level sensors, flow measurement devices, solar charge controllers, batteries, and electronic devices. The research stages are the design of the automated control system, the design of irrigation networks, observation, and field trials that continue with the data analysis.

2.2. Automatic Control System Design
The first planning step is to design the software that continues to design hardware. In the software design and testing program that makes automated systems Writing a control program is written in the Arduino IDE and BLYNK page. Using programming language C/C++ programming language. The hardware design consists of a series of ultrasonic sensors, soil moisture sensors, MCU V3 node water flow, MG996R servo, 10A 5V power supply, and two-channel relay.

Ultrasonic sensors have four pins that have their respective functions. Pin 1 is VCC pin two is trig, an echo three-pin, and four and pin. The ultrasonic transducers used in this study ARE 1 fruit used to monitor water levels in the reservoirs. Figure 1 shows the water level sensor circuit. On each leg, it is connected to the NC sensor of the node, which is connected to the Vin V port at 5 feet, while the ground is connected to the leg and the ground port of the foot trigger is connected to the D2 port, the echo of the D3 foot in the port.

![Figure 1. Water level sensor networks Weibull distribution of 60 Hz breakdown voltages 11 cables $\alpha=45.9$ kV peak $\beta=5.08$ confidence intervals 95%](image)

Investigation using soil moisture sensors from a tool to measure soil moisture, these devices have three legs that are A0 A0 node MCU legs connected to the foot, and the foot is connected to GND and VCC nodeMCU connected to the VCC nodeMCU foot. Water flow sensors have three wires: red, black, and yellow — water flow sensor used in this study up to 1 piece. The utility is to determine the discharge of water flow in the pipe. The red wire is connected to 3v nodeMCU, the black wires are connected to
GND, and the yellow wire is connected to nodeMCU D6. MG996r servo motor mounted two pieces to rotate the wear of the android application tap automatically.

In the microcontroller block, several circuits are transmitted as the circuit breakers turn the system, the terminal barrier, the solar panels and the solar charge controller on and off as a support system that uses electrical energy. This energy will be channeled through the relay to drive 561 086 engines Valworx electric tap that automatically serves to open and close the flow of water to the irrigation network.

Tektronix VH400 soil moisture sensors are used to detect soil moisture so that soil moisture level values are unknown based on volume (volumetric water content / VWC). The soil moisture sensor has three bare pins, red and black. Naked as a ground pin, red pin as Vin (3.3 V - 20 VDC) and black pin as the sensor output (0-3 V).

Setpoint level in the tank water level experiments determined at the height of 30 to 90 cm. When the field test at the water table level is less than 30 cm, the microcontroller will emit a signal to activate a relay that will activate electric motors to open the valves. And vice versa, when the level in the tank water level experiments is greater than 90 cm, the microcontroller will give a signal to activate the relay and drive motors for the electric valve cover. Water management systems will be more precise as the control process carried out by the system microcontroller, and the high-level water level can not only be monitored but also measured. Figure 2 shows a flow chart of the design irrigation pipes of the automatic control system in the rice fields.

![Flowchart of automatic control systems.](image)

2.3. Installation of Automatic Control System on Piping Design
Pipe design Irrigation irrigation network installed in rice fields of 10 x 10 m using the pipe system. That uses the force of gravity — height difference with a 320 cm reservoir bottom elevation wetland. Sprinkler paddy in field four pieces provided with pipes 70 cm high and 260 cm away from the irrigation
pipe. Figure 3 shows the network of irrigation pipe systems in rice paddies. Figure 4 shows the design of the irrigation pipe network through the use of automated technology.

![Network irrigation pipes in the field.](image1)

Figure 3. Network irrigation pipes in the field.

![Layout automatic irrigation pipe.](image2)

Figure 4. Layout automatic irrigation pipe.

The manifold pipe taps are mounted with electric motors, controlled by an automatic control system of wetlands with the corresponding high set point. The water level in the tank is set at 30 cm to 90 cm from the bottom of the tank. Fill the water tank until the water level of 90 cm stops automatically filling the water in the tank, while the water decrease reaches 30 cm and then automatically begins to replenish the water in the tank. The arrangement of the control valve electrically detected using a water level sensor placed in the pipe is controlled by android. It is used to detect soil moisture sensor that is planted in field trials with a depth of between 5 and 10 centimeters.

2.4. Data analysis

Land irrigation operation performed with two models of pipe and open pipe completely open ¼ full. The data was then analyzed using a statistical approach. The analytical method used to determine the relationship between variables and parameters in the experiment. The program used to analyze the data is Minitab 8.0.
3. Results and Discussion

3.1. Testing and Field Experiment

The tests in the control system of the sprinkler irrigation network are performed automatically by draining the water from the reservoir to the sprinkler water level of a tank that ranges between 90 cm and 30 cm. Data collection was performed by manual and automatic. The display will show the nominal value of the water level sensors in the tank, the soil moisture sensors, and the water flow through the pipe.

In the field experiment to test the design of the automatic control system according to the plan of the wetland Figure 4. Observations made during the high water tendon down 5 cm continuously to limit the water tank to 30 cm tall. The data obtained are the flow of water, the distribution of water by sprinkling diameter, the level of water in the tank, prolonged drainage, and soil moisture.

![Fitted Line Plot](image1)

Figure 5. Relationship between water flow level and humidity.

![Residual Plots for Water Flow (m3)](image2)

Figure 6. Residual plot for water flows sprinkler irrigation.

3.2. Analysis of Trial Results

Data obtained from the water level sensor readings of the high water tank. The results of the measurement of the jets of length and diameter of the water discharge pipe can be seen on the tendon of the screen and shed any water droplets of 5 cm. The data obtained can describe the performance curve of the automatic control system of the irrigation pipe network with the desired setpoint. Data analysis
research is the ratio of the volume of water flowing in the pipe and the use of a humidity control system according to a predetermined set point. Figure 5 is a graph of the amount of water flowing in the pipeline and humidity values of the soil in field trials, and Figure 6 was a residual plot for the flow of water.

Table 1. Regression analysis: water flow (m³) versus humidity

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	1	27.33	27.335	15.81	0.005
Humidity	1	27.33	27.335	15.81	0.005
Error	7	12.10	1.729		
Total	8	39.44			

Table 2. Model summary.

	S	R-sq	R-sq(adj)	R-sq(pred)
	1.31483	69.31%	64.93%	49.24%

Table 3. Coefficients.

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	20.16	2.08	9.69	0.000	
Humidity	0.1250	0.0314	3.98	0.005	1.00

Table 4. Regression equation.

Water Flow (m³) = 20.16 + 0.1250 Humidity

Table 5. Fits and diagnostics for unusual observations.

Obs	Water Flow (m³)	Fit	Resid	Std Resid
1	31.642	32.249	-0.607	-0.84

After doing the test data, the next step is to analyze the data using Minitab software. Regression analysis with Minitab is the water flow (m³) = 20.16 + 0.1250 moisture, the value of R = R² = 69.31%, and 64.93%, which means a statistically significant correlation between the volume of water flowing in the pipe and humidity of the soil.

4. Conclusion

The results showed that the volume of water flowing in the automatic sprinkler compared to the humidity of soil using the software Minitab Water flow (Y) = 20.16 + 0.1250 Humidity (X), the value of R = 69.31% and R² = 64.93% means the statistically significant correlation between the volume of water flowing in the pipe and humidity of the soil.

References

[1] Romadon K 2014 Rancang Bangun Sistem Irigasi Curah (Sprinkler) Jenis Challanger (Fakultas Pertanian)
[2] Wardani L K 2013 The Int. Journal of Social Science 9 104–118
[3] Nikolidakis S A, Kandris D, Vergados D D and Douligeris C 2015 Comput. Electron. Agr. 113 154–163
[4] Purwanto M Y J and Badrudin U 1999 *Buletin Keteknikan Pertanian* **13** 1–7
[5] Winarbawa S 2000 *Indonesian Journal of Agronomy* **28** 1
[6] Adams M B 2011 *J. Environ. Qual.* **40** 1340–1344
[7] Lozano R 2012 *The Lancet* **380** 2095–2128
[8] Sofiyuddin H A, Martief LM, Setiawan BI, and Arif C 2019 *Jurnal Irigasi* **7** 120–131
[9] Vera J, Arias A, and Romero M 2011 *J. Endod.* **37** 1276–1278
[10] Choir A A 2012 *Rancangan dan Uji Coba Otomatisasi Irigasi Kendi* (Institut Pertanian Bogor)
[11] Coates RW, Delwiche MJ, Broad A, and Holler M 2013 *Comput. Electron. Agr.* **96** 13–22
[12] Sánchez-Molina J A, Rodríguez F, Guzmán J L and Ramírez-Arias J A 2015 *Agric. Water Manag.* **151** 114–125
[13] Sirait S 2015 *Rancangan Bangun Sistem Irigasi Pipa Otomatis Lahan Sawah Berbaik Tenaga Surya* (Institut Pertanian Bogor)
[14] Amuddin A and Sumarsono J 2015 *Jurnal Ilmiah Rekayasa Pertanian dan Biosistem* **3** 95–101
[15] Saptomo S K, Isnain R and Setiawan BI 2016 *Jurnal Irigasi* **8** 115–125
[16] Siregar S L and Rivai M 2019 *Jurnal Teknik ITS* **7** 380–385
[17] Syamsiar M D, Rivai M and Suwito S 2016 *Jurnal Teknik ITS* **5** A261–A266