Supporting Information

for

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpeno with an unique 2,5-dihydrofuran structure

Irene Torres-García, Josefa L. López-Martínez, Rocío López-Domene, Manuel Muñoz-Dorado, Ignacio Rodríguez-García and Miriam Álvarez-Corral

Beilstein J. Org. Chem. **2022**, *18*, 1264–1269. doi:10.3762/bjoc.18.132

Experimental procedures, characterization of other substances, and copies of IR, NMR spectra and HPLC chromatograms
Table of contents

Experimental section
 General remarks .. S2
 Synthesis of ethyl 4-oxobutanoate (4) .. S3
 Synthesis of 2,6-dimethylocta-6,7-diene-2,5-diol (7) .. S3
 Silver (I) promoted cyclization of 2,6-dimethylocta-6,7-diene-2,5-diol (7) S3
 Enzymatic kinetic resolution of α-allenic alcohols .. S4
 Synthesis of (R)-2,6-dimethylocta-6,7-diene-2,5-diol ((+)-(R)-7) S4
 Synthesis of the Mosher’s derivatives of compound (−)-(S)-3 .. S5
 Synthesis of the Mosher’s derivative of racemic compound (+)-3 S6
 References .. S6

NMR and IR spectra .. S7
 1H NMR, DEPT 135, 13C NMR, HSQC, HMBC and IR of 3-methyl-2-(3-methylbut-2-en-1-yl)-
 2,5-dihydrofuran (1) .. S7
 1H NMR, DEPT 135, 13C NMR and IR of ethyl 3-(3-methyl-2,5-dihydrofuran-2-yl)propanoate (2) . S12
 1H NMR, DEPT 135, 13C NMR and IR of ethyl 4-hydroxy-5-methylhepta-5,6-dienoate (3) S15
 1H NMR, DEPT 135, 13C NMR and IR of ethyl 4-oxobutanoate (4) S18
 1H NMR, DEPT 135, 13C NMR and IR of 5-(buta-2,3-dien-2-yl)dihydrofuran-2(3H)-one (5) S21
 1H NMR, DEPT 135, 13C NMR and IR of 2-methyl-4-(3-methyl-2,5-dihydrofuran-2-
 yl)butan-2-ol (6) .. S24
 1H NMR, DEPT 135, 13C NMR and IR of 2,6-dimethylocta-6,7-diene-2,5-diol (7) S27
 1H NMR, DEPT 135 and 13C NMR of ethyl (S)-5-methyl-4-((S)-3,3,3-trifluoro-2-methoxy-2-
 phenylpropanoyl)oxy)hepta-5,6-dienoate ((4S,2’S)-8) .. S30
 1H NMR, DEPT 135 and 13C NMR of ethyl (S)-5-methyl-4-((R)-3,3,3-trifluoro-2-methoxy-2-
 phenylpropanoyl)oxy)hepta-5,6-dienoate ((4S,2’R)-8) .. S32
 1H NMR analysis of diastereomeric MTPA esters ... S34
 19F NMR: a) (4S,2’S)-8; b) (4S,2’R)-8 ... S34
 1H NMR of diastereomeric mixture (4S,2’S)-8 and (4R,2’S)-8 ... S35
 1H NMR, DEPT 135, 13C NMR and IR of (R)-ethyl 4-acetoxy-5-methylhepta-5,6-dienoate ((+)-9) S36
 HPLC data .. S39
Experimental section

General remarks

NMR spectra were recorded on Bruker Nanobay Avance III HD 300 MHz, Avance III HD 500 MHz and Avance III HD 600 MHz spectrometers. Proton-decoupled 13C NMR spectra and DEPT-135 were measured in all cases. When required, HSQC and HMBC experiments were used for signal assignation. Chemical shifts (δ) are expressed in ppm and coupling constants (J) in hertz (Hz). Chemical shifts are reported using CDCl$_3$ as internal reference. IR Spectra were recorded with a Bruker Alpha spectrometer. Mass spectra were recorded in a Waters Xevo by LC-QToF-MS by electrospray ionization. The samples were analyzed by high performance liquid chromatography (HPLC) using an Agilent 1100 quaternary pump. The chromatographic columns used were Daicel Chiracel OD-H and Daicel Chiralpack IA. An isocratic elution of a mixture of hexane/isopropanol is all that is needed to analyze the compounds, and filtration is the only sample preparation required before injection. Separations are performed at a temperature of 25 °C and at flow rates of 0.4–0.5 mL/min. A UV detector with a diode array was also used and the compounds of interest were quantified at wavelengths 210 nm. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.2 mm DC-Fertigfolien Alugram® XtraSil G/UV254 silica gel plates. The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO$_4$ in water/heat. Flash chromatography was performed on silicagel 60 (0.04–0.06 mm). Commercially available chemicals were obtained from Aldrich Chemical Co., Acros, Alfa Aesar, and TCI and were used as received. In all experiments involving Ti(III), reactions were performed under argon atmosphere, using oven-dried glassware in all cases. THF was distilled from Na/benzophenone under argon, and was deoxygenated prior to use.
Synthesis of ethyl 4-oxobutanoate (4)

Ozone was bubbled through a solution of ethyl pent-4-enoate (1.22 g, 9.52 mmol) in DCM (20 mL) at −78 °C until the solution turned blue. Then, PPh₃ (3 g, 11.42 mmol) was added and the mixture was stirred overnight at room temperature. The solvent was removed in vacuum and the residue purified by silica gel flash column chromatography (pentane/diethyl ether 7:3) to afford ethyl 4-oxobutanoate (4, 935 mg, 76%) as colorless oil. ¹H NMR and IR spectral data are in agreement with literature values [1]. ¹³C{¹H}NMR (75 MHz, CDCl₃, DEPT) δ (ppm) 200.1 (CH), 172.3 (C), 60.8 (CH₂), 38.6 (CH₂), 26.6 (CH₂), 14.2 (CH₃).

Synthesis of 2,6-dimethylocta-6,7-diene-2,5-diol (7)

To a solution of methylmagnesium bromide (3 M in Et₂O, 0.14 mL, 0.43 mmol) in anhydrous Et₂O (1 mL), a solution of 5-(buta-2,3-dien-2-yl)-dihydrofuran-2(3H)-one (5, 24 mg, 0.17 mmol) in anhydrous diethyl ether (0.6 mL) was slowly added. The mixture was stirred under N₂ at room temperature for 40 min. The reaction was quenched with saturated NH₄Cl and extracted with ethyl acetate. The combined organic layer was washed with saturated NaHCO₃ and brine, dried over anhydrous MgSO₄. The solvent was removed in vacuum to give 7 (24 mg, 83%) as colorless oil. IR (ATR) ν (cm⁻¹) 3376, 2970, 2928, 2872, 1959, 1646, 1377, 1262, 1213, 1152, 1058, 1024, 907, 846, 803. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.80 (dq, J = 5.4, 3.0 Hz, 2H), 4.07 (m, 1H), 2.08 (br s, 2H), 1.73 (t, J = 3.0 Hz, 3H), 1.64 (m, 4H), 1.25 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃, DEPT) δ (ppm) 204.9 (C), 102.0 (C), 76.8 (CH₂), 72.7 (CH), 70.7 (C), 39.4 (CH₂), 29.8 (CH₂), 29.5 (CH₃), 29.3 (CH₃), 14.5 (CH₃). HRMS (ESI/Q-TOF) m/z: [M+H]+ calcd for C₁₀H₁₉O₂ 171.1385; found 171.1397.

Silver(I)-promoted cyclization of 2,6-dimethylocta-6,7-diene-2,5-diol (7)

A solution of the allenol 7 (16 mg, 0.09 mmol) in acetone (1.5 mL) was added to a suspension of AgNO₃ (30 mg, 0.19 mmol) in acetone (1.5 mL) in the absence of light, and the mixture was stirred at 40 °C overnight. Brine was added and the mixture was extracted with Et₂O. The organic phase was dried over anhydrous MgSO₄, and concentrated under reduced pressure to
afford 2-methyl-4-(3-methyl-2,5-dihydrofuran-2-yl)butan-2-ol (6, 12 mg, 75%) that was isolated as colorless oil.

Enzymatic kinetic resolution of α-allenic alcohols

Based on the previous literature procedure [2], the reaction of ethyl 4-hydroxy-5-methylhepta-5,6-dienoate (3, 0.13 g, 0.71 mmol), lipase AK (35.5 mg, 20,000 U/g) and vinyl acetate (0.53 mL, 5.68 mmol) in methyl tert-butyl ether (7 mL), after purification by flash chromatography (n-hexane/Et2O 7:3), provided the desired compounds including ethyl (S)-4-hydroxy-5-methylhepta-5,6-dienoate ((−)-(S)-3, 60 mg, 46%, 90% ee), [α]25D -9.2 (c 0.037, CHCl3), and ethyl (R)-4-acetoxy-5-methylhepta-5,6-dienoate ((+)-(R)-9, 63 mg, 39%, 95% ee), [α]25D +115 (c 0.042, CHCl3), as light yellow oils. Enantiomeric excess (ee) was determined by chiral HPLC (see HPLC Data). Compound (+)-(R)-9: IR (ATR) ν (cm⁻¹) 2982, 2937, 1961, 1731, 1431, 1371, 1227, 1178, 1020, 854. ¹H NMR (300 MHz, CDCl3) δ (ppm) 5.23 (t, J = 6.5 Hz, 1H), 4.78 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.37 (t, J = 8.1 Hz, 2H), 2.08 (s, 3H), 2.03 (m, 2H), 1.70 (t, J = 3.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H).¹³C{¹H} NMR (75 MHz, CDCl3, DEPT) δ (ppm) 206.3 (C), 172.9 (C), 170.3 (C), 97.8 (C), 76.5 (CH₂), 73.4 (CH), 60.5 (CH₂), 30.3 (CH₂), 27.7 (CH₂), 21.0 (CH₃), 14.7 (CH₃), 14.2 (CH₃). HRMS (ESI/Q-TOF) m/z: [M+H]+ calcd for C₁₂H₁₉O₄ 227.1283; found 227.1260.

Synthesis of (R)-2,6-dimethylocta-6,7-diene-2,5-diol ((+)-(R)-7)

A solution of ethyl (R)-4-acetoxy-5-methylhepta-5,6-dienoate ((+)-(R)-9, 60 mg, 0.27 mmol) in anhydrous Et₂O (1 mL) was slowly added to a solution of methylmagnesium bromide (3 M in Et₂O, 0.45 mL, 1.35 mmol) in anhydrous Et₂O (1.5 mL). The mixture was stirred under N₂ at room temperature for 5 h. The reaction was quenched with saturated NH₄Cl and extracted with ethyl acetate. The combined organic layer was washed with saturated NaHCO₃ and brine, dried with anhydrous MgSO₄. The solvent was evaporated in vacuum to give (+)-(R)-7 (31.2 mg, 67%) [α]25D +17.5 (c 0.026, CHCl₃) as colorless oil.
Synthesis of the Mosher's derivatives of compound (−)-(S)-3

a) DCC (60 mg, 0.29 mmol), DMAP (7 mg, 0.06 mmol) and (S)-(−)-α-methoxy-α-(trifluoromethyl)phenylacetic acid (65 mg, 0.27 mmol) were added to a solution of (−)-(S)-3 (21 mg, 0.11 mmol) in CH₂Cl₂ (7 mL) at 0 °C. The mixture was stirred at room temperature overnight. CH₂Cl₂ (15 mL) was added and the organic layer was washed with NaOH (2 N), HCl (5%) and brine. After drying over anhydrous MgSO₄, the solvent was removed in vacuum. The residue was purified by flash chromatography (n-hexane/EtOAc 8:2), to provide ethyl (S)−5−methyl−4−(((S)−3,3,3−trifluoro−2−methoxy−2−phenylpropanoyl)oxy)hepta−5,6−dienoate ((4S,2′S)−8) as a white solid (29 mg, 66%) and 5−(buta−2,3−dien−2−yl)dihydrofuran−2(3H)−one (5, 5 mg, 28%). Compound (4S,2′S)−8: [α]₂⁵D −138 (c 0.013, CHCl₃), ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.54 (m, 2H), 7.40 (m, 3H), 5.44 (t, J = 6.7 Hz, 1H), 4.82 (dqd, J = 10.8, 3.0, 1.2 Hz, 1H), 4.76 (dqd, J = 10.8, 3.0, 1.2 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 3.55 (s, 3H), 2.24 (m, 2H), 2.03 (m, 2H), 1.70 (q, J = 3.2 Hz, 3H), 1.25 (q, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃, DEPT) δ (ppm) 207.0 (C), 172.5 (C), 165.9 (C), 132.3 (C), 129.6 (CH), 128.4 (CH), 127.4 (CH), 125.3 (C, q, J_C−F = 287 Hz), 96.9 (C), 84.6 (C, q, J_C−F = 27 Hz), 77.0 (CH₂), 76.9 (CH), 60.6 (CH₂), 55.5 (CH₃), 29.8 (CH₂), 27.6 (CH₂), 14.6 (CH₃), 14.2 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ (ppm) −71.31 (s).

b) The same protocol was repeated using (R)−(−)−α−methoxy−α−(trifluoromethyl)phenylacetic acid. Ethyl (S)−5−methyl−4−(((R)−3,3,3−trifluoro−2−methoxy−2−phenylpropanoyl)oxy)hepta−5,6−dienoate ((4S,2′R)−8, 32 mg, 73%) and 5−(buta−2,3−dien−2−yl)dihydrofuran−2(3H)−one (5, 4 mg, 22%) were obtained. Compound (4S,2′R)−8: [α]₂⁵D +10.1 (c 0.0063, CHCl₃), ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.53 (m, 2H), 7.40 (m, 3H), 5.42 (t, J = 6.8 Hz, 1H), 4.79 (m, 1H), 4.67 (m, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.55 (s, 3H), 2.34 (m, 2H), 2.09 (q, J = 7.8 Hz, 2H), 1.58 (t, J = 3.6 Hz, 3H), 1.25 (q, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃, DEPT) δ (ppm) 207.0 (C), 172.5 (C), 165.9 (C), 132.2 (C), 129.6 (CH), 128.4 (CH), 127.4 (CH), 127.0 (C, q, J_C−F = 287 Hz), 96.7
(C), 84.6 (C, q, J_{CF} = 27 Hz), 77.2 (CH₂), 76.8 (CH), 60.7 (CH₂), 55.5 (CH₃), 30.1 (CH₂), 27.6 (CH₂), 14.2 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ (ppm) -71.50 (s).

Synthesis of the Mosher's derivative of racemic compound (±)-3

Compound 3 (15.8 mg, 0.09 mmol), DCC (46 mg, 0.22 mmol), DMAP (5.50 mg, 0.045 mmol) and (S)-(-)-α-methoxy-α-(trifluoromethyl)phenylacetic acid (53.70 mg, 0.26 mmol), according to mentioned procedure, afforded compound 8 (11 mg, 31%) (as a mixture of inseparable isomers (4S,2'S)-8, and (4R,2'S)-8), and 5-(buta-2,3-dien-2-yl)dihydrofuran-2(3H)-one (5, 5.4 mg, 43%).

References

[1] Smith, A. B.; Fukui, M.; Vaccaro, H. A.; Empfield, J. R. *J. Am. Chem. Soc* **1991**, *113*(6), 2071-2092. https://doi.org/10.1021/ja00006a029

[2] Li, W.; Lin, Z.; Chen, L.; Tian, X.; Wang, Y.; Huang, S.-H.; Hong, R. *Tetrahedron Lett.* **2016**, *57*(5), 603-606. https://doi.org/10.1016/j.tetlet.2015.12.098
NMR and IR spectra

1H NMR, DEPT 135, 13C NMR, HSQC, HMBC and IR of 3-methyl-2-(3-methylbut-2-en-1-yl)-2,5-dihydrofuran (1)
1H NMR, DEPT 135, 13C NMR and IR of ethyl 3-(3-methyl-2,5-dihydrofuran-2-yl)propanoate (2)
The image contains a graph with the x-axis labeled "Wavenumber cm⁻¹" and the y-axis labeled "Transmittance [%]." The graph shows various transmittance values at different wavenumbers, with peaks and troughs indicating absorptions and transmissions across the wavelength spectrum.
1H NMR, DEPT 135, 13C NMR and IR of ethyl 4-hydroxy-5-methylhepta-5,6-dienoate (3)
1H NMR, DEPT 135, 13C NMR and IR of ethyl 4-oxobutanoate (4)
1H NMR, DEPT 135, 13C NMR and IR of 5-(buta-2,3-dien-2-yl)dihydrofuran-2(3H)-one (5)
1H NMR, DEPT 135, 13C NMR and IR of 2-methyl-4-(3-methyl-2,5-dihydrofuran-2-yl)butan-2-ol (6)
1H NMR, DEPT 135, 13C NMR and IR of 2,6-dimethylocta-6,7-diene-2,5-diol (7)
1H NMR, DEPT 135 and 13C NMR of ethyl (S)-5-methyl-4-(((S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)hepta-5,6-dienoate ((4S,2'S)-8)
1H NMR, DEPT 135 and 13C NMR of ethyl (S)-5-methyl-4-(((R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)hepta-5,6-dienoate

((4S,2'R)-8)
1H NMR analysis of diastereomeric MTPA esters

1H NMR δ data (phenyl group shielding effect is indicated by the blue arrows in each representation)

19F NMR: a) (4S,2'S)-8; b) (4S,2'R)-8
1H NMR of diastereomeric mixture ($4S,2'S$)-8 and ($4R,2'S$)-8
1H NMR, DEPT 135, 13C NMR and IR of (R)-ethyl 4-acetoxy-5-methylhepta-5,6-dienoate ((+)-9)
HPLC data

Ethyl 4-acetoxy-5-methylhept-5,6-dienoate (rac-9)

System: Agilent 1100 series with a UV-DAD detector 210 nm. Column Daicel Chiracel OD-H

Solvent: hexane:iPrOH 99.5:0.5. Flow rate: 0.4 mL/min. Temperature: 25 °C

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.351	MM	0.1107	2.3657e4	2055.3609	50.0119
2	15.033	MM	0.1380	2.3645e4	1975.8990	49.9881

Totals: 47303.2237 4031.2599

Ethyl (R)-4-acetoxy-5-methylhept-5,6-dienoate ((+)-9)

System: Agilent 1100 series with a UV-DAD detector 210 nm. Column Daicel Chiracel OD-H

Solvent: hexane:iPrOH 99.5:0.5. Flow rate: 0.4 mL/min. Temperature: 25 °C

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.809	MM	0.1296	77.4528	11.9526	2.3525
2	15.796	MM	0.2075	3214.9666	309.8763	97.6475

Totals: 3292.4195 321.8289
Ethyl 4-hydroxy-5-methylhepta-5,6-dienoate (rac-3)

System: Agilent 1100 series with a UV-DAD detector 210 nm. Column Daicel Chiralpack IA
Solvent: hexane:iPrOH 95:5. Flow rate: 0.5 mL/min. Temperature: 25 °C

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.061	MM	1.7634	31319.8821	348.2564	48.9336
2	19.344	MM	1.8692	32684.9985	342.8645	51.0664

Totals: 64004.8806 691.1209

Ethyl (S)-4-hydroxy-5-methylhepta-5,6-dienoate ((-)-3)

System: Agilent 1100 series with a UV-DAD detector 210 nm. Column Daicel Chiralpack IA
Solvent: hexane:iPrOH 95:5. Flow rate: 0.5 mL/min. Temperature: 25 °C

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.020	MM	0.8359	1072.1546	25.6527	5.0313
2	17.022	MM	2.0067	20237.5093	201.6994	94.9687

Totals: 21309.6639 227.3521