ASYMPTOTICS FOR WEAKLY DEPENDENT ERRORS-IN-VARIABLES

Michal Pešta

Linear relations, containing measurement errors in input and output data, are taken into account in this paper. Parameters of these so-called errors-in-variables (EIV) models can be estimated by minimizing the total least squares (TLS) of the input-output disturbances. Such an estimate is highly non-linear. Moreover in some realistic situations, the errors cannot be considered as independent by nature. Weakly dependent (α- and φ-mixing) disturbances, which are not necessarily stationary nor identically distributed, are considered in the EIV model. Asymptotic normality of the TLS estimate is proved under some reasonable stochastic assumptions on the errors. Derived asymptotic properties provide necessary basis for the validity of block-bootstrap procedures.

Keywords: errors-in-variables (EIV), dependent errors, total least squares (TLS), asymptotic normality

Classification: 15A51, 15A52, 62E20, 65F15, 62J99

1. INTRODUCTION

The main goal is to establish results concerning asymptotic normality in linear relations, where weakly dependent measurement errors or disturbances in input and output data (errors-in-variables model) occur simultaneously.

1.1. Errors-in-variables model

Errors-in-variables (EIV) model

\[
\mathbf{Y} = \mathbf{Z} \beta + \mathbf{\varepsilon} \quad \text{and} \quad \mathbf{X} = \mathbf{Z} + \Theta
\]

is considered, where β is a vector of regression parameters to be estimated, \mathbf{X} and \mathbf{Y} consist of observable random variables (\mathbf{X} are covariates and \mathbf{Y} is a response), \mathbf{Z} consists of unknown constants and has full rank, and $\mathbf{\varepsilon}$ and Θ are random errors.

1.2. Weak Dependence

In this paper, the EIV model is not restricted to independent observations due to the fact that in some situations the disturbances cannot be considered as independent by nature.
It is assumed that \(\{\xi_n\}_{n=1}^{\infty} \) is a sequence of random elements on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). For sub-\(\sigma\)-fields \(\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}\), we define
\[
\alpha(\mathcal{A}, \mathcal{B}) := \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|,
\]
and
\[
\varphi(\mathcal{A}, \mathcal{B}) := \sup_{A \in \mathcal{A}, B \in \mathcal{B}, \mathbb{P}(A) > 0} |\mathbb{P}(B|A) - \mathbb{P}(B)|.
\]
Intuitively, \(\alpha\) and \(\varphi\) measure the dependence of the events in \(\mathcal{B}\) on those in \(\mathcal{A}\). There are many ways how to describe weak dependence or, in other words, asymptotic independence of random variables (Bradley, 2005). We concentrate on two approaches.

Considering a filtration \(\mathcal{F}^n_m := \sigma(\xi_i \in \mathcal{F}, m \leq i \leq n)\), sequence \(\{\xi_n\}_{n=1}^{\infty}\) of random elements (e.g., variables) is said to be strong mixing (\(\alpha\)-mixing) if
\[
\alpha(n) := \sup_{k \in \mathbb{N}} \alpha(\mathcal{F}_1^k, \mathcal{F}_{k+n}^\infty) \to 0, \quad n \to \infty;
\]
moreover, it is said to be uniformly strong mixing (\(\varphi\)-mixing) if
\[
\varphi(n) := \sup_{k \in \mathbb{N}} \varphi(\mathcal{F}_1^k, \mathcal{F}_{k+n}^\infty) \to 0, \quad n \to \infty.
\]
Uniformly strong mixing—introduced by Rosenblatt—implies strong mixing (Lin and Lin, 1997), which was proposed by Ibragimov. Coefficients of dependence \(\alpha(n)\) and \(\varphi(n)\) measure how much dependence exists between events separated by at least \(n\) observations or time periods.

Anderson (1958) comprehensively analyzed a class of \(m\)-dependent processes. They are \(\varphi\)-mixing, if they are finite order ARMA processes with innovations satisfying Doeblin’s condition (Billingsley, 1968, p. 168). Finite order processes, which do not satisfy Doeblin’s condition, can be shown to be \(\alpha\)-mixing (Ibragimov and Linnik, 1971, pp. 312–313). Rosenblatt (1971) provides general conditions under which stationary Markov processes are \(\alpha\)-mixing. Since functions of mixing processes are themselves mixing (Bradley, 2005), time-varying functions of any of the processes just mentioned are mixing as well.

It is obvious that \(\alpha(\mathcal{A}, \mathcal{B}) = \alpha(\mathcal{B}, \mathcal{A})\) for arbitrary sub-\(\sigma\)-fields \(\mathcal{A}, \mathcal{B} \subseteq \mathcal{F}\). This symmetry does not hold for the \(\varphi\)-dependence. Indeed, Rosenblatt (1971, pp. 213–214) constructed some strictly stationary Markov chains that are \(\varphi\)-mixing but not “time-reversed” \(\varphi\)-mixing. Therefore, it is not possible to “interchange” the past with the future regarding the definition of the \(\varphi\)-mixing coefficient.

1.3. Error Structure of the EIV model

We think of all the vectors as columns. A “row-column” notation for a matrix \(\mathbf{A}\) is used in this manner: \(\mathbf{A}_{i, \bullet}\) denotes the \(i\)-th row of matrix \(\mathbf{A}\) and \(\mathbf{A}_{\bullet, j}\) corresponds to the \(j\)-th column of matrix \(\mathbf{A}\).

Let us consider a probability space \((\Omega, \mathcal{F}, \mathbb{P})\), where all the further mentioned random elements exist in. Proper distributional assumptions of random errors in the EIV model need to be proposed. Two levels of the error structure have to be distinguished. The first level of error structure—within-individual level—is that each
row $[\Theta_i, \epsilon_i]$ is absolutely continuous with respect to the Lebesgue measure having zero mean and non-singular covariance matrix $\sigma^2 I$, where $\sigma^2 > 0$ is unknown (for simplicity). This assumption can be straightforwardly generalized as discussed in, e.g., Pešta (2011) or Pešta (2012). Relationships between individual observations are represented by the second level of error structure—between-individual level. Here, the rows $[\Theta_i, \epsilon_i]$ form weakly dependent sequences with zero mean, i.e., zero mean α- or φ-mixing. The reason for this can come from the fact that the measurements, which are “close to each other”, influence themselves somehow. Moreover, the influence decreases as the distance between observations increases.

Concerning the within-individual level, the mixing sequences of errors are assumed to be pairwise independent. The necessity and possible weakening of this assumption was discussed by Pešta (2011).

It has to be emphasized that any form of errors’ stationarity is not needed to assume. Omitting this, sometimes restrictive, assumption strengthen our results.

Additional design assumption is necessary for asymptotics even in the case of independent errors:

$$ \Delta := \lim_{n \to \infty} n^{-1} Z^\top Z \text{ exists and is positive definite.} \quad (D) $$

Importance of the previous design assumption has already been thoroughly discussed in Pešta (2012).

1.4. Total Least Squares Estimate

Sometimes, full-information approaches like maximum likelihood (ML) can provide parameter estimates for the previously mentioned model Healy (1975). Nevertheless, it is requisite to elaborate distributional-free estimation method as well, e.g., total least squares introduced by Golub and Van Loan (1980).

TLS estimate $\hat{\beta}$ of an unknown parameter β is defined as any vector β satisfying (E) such that the Frobenius norm of error matrix $\| [\Theta, \epsilon] \|$ is minimal. Geometrically speaking, the Frobenius norm tries to minimize the orthogonal distance between the observations and fitted hyperplane. For a matrix $A \equiv (A_{ij})_{i,j=1}^{n,m}$, it is defined as

$$ \| A \| \equiv \| A \|_F := \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij}^2} = \sqrt{tr(A^\top A)} = \sqrt{\sum_{i=1}^{\min\{n,m\}} \sigma_i^2} = \sqrt{\sum_{i=1}^{r} \sigma_i^2}, $$

where r is the rank of matrix A and σ_is are its singular values. The Frobenius norm can be viewed as a multivariate version of the Euclidean vector norm for matrices.

Let λ be the $(p+1)$-st largest eigenvalue of a matrix $[X, Y]^\top [X, Y]$ and let v_{p+1} be the associated eigenvector. Golub and Van Loan (1980) showed that if $v_{p+1,p+1} \neq 0$, then the TLS estimate has form

$$ \hat{\beta} = (X^\top X - \lambda I)^{-1} X^\top Y. $$

Gleser (1981) proved that with probability tending to one, as n increases, $v_{p+1,p+1} \neq 0$ and, hence, $\hat{\beta}$ exists. In the sequel, it has to be kept in mind that λ depends on n.

Finally, remind that the ML estimate of β (Healy, 1975) coincides with the TLS estimate if the rows of the error matrix are i.i.d. multivariate normal with zero mean and non-singular covariance matrix.

1.5. Consistency of the TLS estimate

Strong consistency of the TLS estimate for independent errors is proved by Gleser (1981) and, moreover, weak consistency—again for independent errors, but with less restrictive assumptions—is widely discussed in Gallo (1982a). When a premise of independence cannot be assumed, strong consistency of the TLS estimate under weak dependence of errors was explored by Pešta (2011).

Similar situation occurs to the TLS estimate’s asymptotic normality, which was proved by Gallo (1982b) for the case of independent errors. This result is going to be extended for the weakly dependent errors now.

2. ASYMPTOTIC NORMALITY

Firstly, central limit theorems for weakly dependent variables, that are going to be used in derivation of the TLS estimate’s asymptotic normality, are needed to be stated. These CLTs cannot assume stationarity, because they will not be applied directly on the (possibly stationary) errors of the EIV model, but on their transformations, which cannot be generally considered as stationary ones. Let us define $S_n := \sum_{i=1}^{n} \xi_i$ and $\varsigma_n^2 := \text{Var} S_n$. All proofs of the following results are in Appendix.

Corollary 2.1 (Central limit theorem for α-mixing). Let $\{\xi_n\}_{n=1}^{\infty}$ be a sequence of zero mean α-mixing random variables with

$$\sup_{n \in \mathbb{N}} \mathbb{E}|\xi_n|^{2+\omega} < \infty$$

and

$$\sum_{n=1}^{\infty} \alpha(n)^{(2+\omega)} < \infty$$

for some $\omega > 0$. Suppose that

$$\frac{\mathbb{E}S_n^2}{n} \to \varsigma^2 > 0, \quad n \to \infty$$

is satisfied. Then $\frac{S_n}{\varsigma_n} \overset{\mathcal{D}}{\to} \mathcal{N}(0,1)$, $n \to \infty$.

Corollary 2.2 (Central limit theorem for ϕ-mixing). Let $\{\xi_n\}_{n=1}^{\infty}$ be a sequence of zero mean ϕ-mixing random variables such that

$$\sup_{n \in \mathbb{N}} \mathbb{E}|\xi_n|^{2+\omega} < \infty$$

for some $\omega > 0$ and

$$\frac{\mathbb{E}S_n^2}{n} \to \varsigma^2 > 0, \quad n \to \infty.$$
For a given sequence \(\xi_0 \equiv \{\xi_n\}_{n=1}^\infty \) of random elements, the dependence coefficients \(\alpha(n) \) is denoted \(\alpha(\xi_0, n) \). Analogous notation is used for \(\varphi \)-mixing sequences.

The first main result of this section is the asymptotic normality for the TLS estimate, where the errors are \(\alpha \)-mixing.

Theorem 2.3 (Asymptotic normality in \(\alpha \)-mixing EIV). Let the EIV model hold and assumption (D) be satisfied. Suppose \(\{\Theta_n, 1\} \to \infty, \ldots, \{\Theta_n, p\} \to \infty, \) and \(\{\varepsilon_n\}_{n=1}^\infty \) are pairwise independent sequences of \(\alpha \)-mixing random variables having

\[
\alpha(\Theta_{o,j}, n) = O(n^{-1-\delta_j}), \ j = 1, \ldots, p \quad \text{and} \quad \alpha(\varepsilon_o, n) = O(n^{-1-\delta_{p+1}}),
\]

as \(n \to \infty \) for some \(\delta_j > 0, j \in \{1, \ldots, p+1\} \). Moreover, assume that

\[
\sup_{n \in \mathbb{N}} Z_{n,j}^2 < \infty, \ j \in \{1, \ldots, p\},
\]

\[
\sup_{n \in \mathbb{N}} \mathbb{E}|\Theta_{n,j}|^{4+\omega_j} < \infty, \ j \in \{1, \ldots, p\}, \quad \text{and} \quad \sup_{n \in \mathbb{N}} \mathbb{E}|\varepsilon_n|^{4+\omega_{p+1}} < \infty
\]

for some \(\omega_j > 0, j \in \{1, \ldots, p+1\} \) such that

\[
\frac{2}{\min_{j=1, \ldots, p+1} \omega_j} < \min_{j=1, \ldots, p+1} \delta_j.
\]

If there exists a positive definite matrix \(\Xi \) such that

\[
n^{-1} \text{Var}[X, Y]^{\top} [X, Y] \begin{pmatrix} \beta \\ -1 \end{pmatrix} \to \Xi > 0, \ n \to \infty;
\]

then \(\sqrt{n} \left(\hat{\beta} - \beta \right) \overset{\mathcal{D}}{\to} N(0, \cdot), \ n \to \infty. \)
Theorem 2.4 (Asymptotic normality in \(\varphi\)-mixing EIV). Let the EIV model hold and assumption \((\mathbb{D})\) be satisfied. Suppose \(\{\Theta_{n,1}\}_{n=1}^\infty, \{\Theta_{n,p}\}_{n=1}^\infty, \text{ and } \{\varepsilon_n\}_{n=1}^\infty\) are pairwise independent sequences of \(\varphi\)-mixing random variables such that
\[
\sum_{n=1}^\infty \sqrt{\varphi(\Theta_{0,j},n)} < \infty, \quad j \in \{1, \ldots, p\} \quad \text{and} \quad \sum_{n=1}^\infty \sqrt{\varphi(\varepsilon_0,n)} < \infty. \tag{13}
\]
Moreover, assume that
\[
\sup_{n \in \mathbb{N}} Z_{n,j}^2 < \infty, \quad j \in \{1, \ldots, p\}, \tag{14}
\]
\[
\sup_{n \in \mathbb{N}} \mathbb{E}|\Theta_{n,j}|^{4+\omega_j} < \infty, \quad j \in \{1, \ldots, p\}, \quad \text{and} \quad \sup_{n \in \mathbb{N}} \mathbb{E}|\varepsilon_n|^{4+\omega_{p+1}} < \infty \tag{15}
\]
for some \(\omega_j > 0, j \in \{1, \ldots, p+1\}\). If there exists a positive definite matrix \(\mathfrak{M}\) such that
\[
n^{-1}\text{Var}[X, Y]^{\top}[X, Y] \left[\begin{array}{c} \hat{\beta} \\ -1 \end{array}\right] \to \mathfrak{M} > 0, \quad n \to \infty; \tag{16}
\]
then
\[
\sqrt{n} \left(\hat{\beta} - \beta\right) \xrightarrow{\mathbb{P}} \mathcal{N}(0, \cdot), \quad n \to \infty.
\]

3. CONCLUSIONS

A structure of the EIV model with \emph{weakly dependent errors} is introduced in this paper. Suitable central limit theorems for strong mixing and uniformly strong mixing sequences are postulated. \emph{Strong consistency} of the TLS estimate under both proposed forms of errors’ \emph{asymptotic independence} is used for proving \emph{asymptotic normality} of the TLS estimate under \(\alpha\)- and \(\varphi\)-mixing errors in the EIV model. Stochastic assumptions for the asymptotic normality of the TLS estimate are derived. Moreover, all the presented results are valid for non-stationary errors.

3.1. Discussion

A straightforward application of the derived asymptotic properties lies in the \emph{justification of the bootstrap methods}. The variance of the asymptotic multivariate normal distribution of the TLS estimate could sometimes be computationally unfeasible. One possible solution to this dilemma is bootstrapping. Pešta (2012) proved validity of various bootstrap procedures in the case of independent errors in the EIV model, where asymptotic normality of the TLS estimate served as a crucial cornerstone. Asymptotic results from this paper will provide a workable basis for the block-bootstrap techniques when constructing confidence intervals and testing hypotheses in the case of weakly dependent errors of the EIV model.

It is known that a sequence of random variables is \(\varphi\)-mixing implies that this sequence is \(\alpha\)-mixing. On the other hand, the CLT for \(\varphi\)-mixing (Corollary \(\ref{corollary2.2}\)) has weaker assumptions than the CLT for \(\alpha\)-mixing (Corollary \(\ref{corollary2.1}\)). Indeed, Corollary \(\ref{corollary2.2}\) does not require any assumptions on \emph{mixing rate} \(\varphi(n)\) such as assumption \((\mathbb{H})\) on \(\alpha\)-mixing rates. Therefore in Theorem \(\ref{theorem2.4}\) we do not have to deal with
mixing rate assumption like (8) nor a restriction on the moment order like (11) as in Theorem 2.3. On the contrary, Theorem 2.2 requires mixing rate assumption (13), which are inherited from the assumptions for the strong consistency of the TLS estimate. Both asymptotic normality results of the TLS estimate (Theorem 2.3 and Theorem 2.4) require all the assumptions from the strong consistency results (Theorem A.1 and Theorem A.2), because they were used in the proofs of asymptotic normality.

Assumptions (12) and (16) concerning the long-run variance of the TLS estimate are requisite and cannot be omitted, because they assure that the variance of the TLS estimate is bounded away from zero and, simultaneously, does not explode into infinity. These assumptions straightforwardly allow to apply the appropriate CLT in order to prove the asymptotic normality of $\sqrt{n}(\hat{\beta} - \beta)$.

All the assumptions and remarks regarding the error structure or the pairwise independence of errors have been already discussed by Peˇsta (2011).

Finally, if identically distributed rows of errors (on the between-individual level) are taken into account together with finiteness of their moments up to a suitable order, then moments’ assumptions (10) and (15) are trivially satisfied. Then, a strict stationarity of the between-individual errors and existence of appropriate moments have to imply these assumptions as well. In other words, moment assumptions (10) and (15) cannot be considered as unattainable. Moreover for strictly stationary errors, even the supremum in definitions (1) and (2) can be simply avoided.

ACKNOWLEDGEMENT

This paper was written with the support of the Czech Science Foundation project “DYME – Dynamic Models in Economics” No. P402/12/G097.

(Received ????)

A. APPENDIX

Theorem A.1 (Strong consistency in α-mixing EIV). Let the EIV model hold and assumption (17) be satisfied. Suppose \(\{\Theta_{n,j}\}_{n=1}^{\infty}, \{\Theta_{n,p}\}_{n=1}^{\infty}, \text{and} \{\varepsilon_{n}\}_{n=1}^{\infty} \) are pairwise independent sequences of α-mixing random variables having

\[
\alpha(\Theta_{o,j}, n) = O(n^{-q_{j}/(2q_{j} - 2) - \delta_{j}}), \quad j = 1, \ldots, p \quad \text{and} \quad \alpha(\varepsilon_{o}, n) = O(n^{-q_{p+1}/(2q_{p+1} - 2) - \delta_{p+1}}),
\]

as $n \to \infty$ for some $\delta_{j} > 0$ and $1 < q_{j} \leq 2$, $j \in \{1, \ldots, p + 1\}$. If

\[
\sup_{n \in \mathbb{N}} Z_{n,j}^{2} < \infty, \quad j \in \{1, \ldots, p\},
\]

\[
\sup_{n \in \mathbb{N}} \mathbb{E}[\Theta_{n,j}]^{2q_{j}} < \infty, \quad j \in \{1, \ldots, p\}, \quad \text{and} \quad \sup_{n \in \mathbb{N}} \mathbb{E}[\varepsilon_{n}]^{2q_{p+1}} < \infty,
\]

then

\[
\lim_{n \to \infty} \hat{\beta} = \beta, \ a.s. \quad \text{and} \quad \lim_{n \to \infty} \frac{\lambda}{n} = \sigma^{2}, \ a.s.
\]

Proof. See Peˇsta (2011, Theorem 3.1).
Theorem A.2 (Strong consistency in φ-mixing EIV). Let the EIV model hold and assumption \([D]\) be satisfied. Suppose \(\{\Theta_{n,1}\}_{n=1}^{\infty}, \{\Theta_{n,p}\}_{n=1}^{\infty}, \) and \(\{\varepsilon_n\}_{n=1}^{\infty}\) are pairwise independent sequences of φ-mixing random variables such that
\[
\sum_{n=1}^{\infty} \sqrt{\varphi(\Theta_{n,j}, n)} < \infty, \quad j \in \{1, \ldots, p\} \quad \text{and} \quad \sum_{n=1}^{\infty} \sqrt{\varphi(\varepsilon_n, n)} < \infty. \tag{21}
\]
If
\[
\sum_{n=1}^{\infty} \frac{\mathbb{E}\Theta_n^4}{n^2} < \infty, \quad j \in \{1, \ldots, p\} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{\mathbb{E}\varepsilon_n^4}{n^2} < \infty, \tag{22}
\]
then
\[
\lim_{n \to \infty} \hat{\beta} = \beta, \quad \text{a.s. and} \quad \lim_{n \to \infty} \lambda_n = \sigma^2, \quad \text{a.s.} \tag{23}
\]
Proof. See Pešta (2011, Theorem 3.2).

Proof. \([\text{Corollary 2.1}]\]

Define random elements on Skorokhod space \(D[0,1]\) as follows:
\[
W_n(t) := \frac{S_{[nt]}}{\varsigma_n}, \quad 0 \leq t \leq 1,
\]
where \([\cdot]\) denotes the nearest integer function. Then weak invariance principle for \(\alpha\)-mixing by Herrndorf (1985) or Lin and Lu (1997, Corollary 3.2.1) completes this proof, because a functional distributional limit (a convergence in Skorokhod space) on a bounded interval implies the pointwise distributional limit at the right end-point of the interval. Indeed, there is a problem with measurability of the functionals of discontinuous processes. Space of càdlàg functions with the uniform metric is not separable, but equipped with the Skorokhod metric is \(\text{(Billingsley, 1968, Section 14)}\). Recall the Skorokhod metric \(\rho_{[0,1]}(\cdot, \cdot)\) for càdlàg functions on \([0,1]\) by introducing \(\mathcal{F}_{[0,1]} := \{ f : [0,1] \xrightarrow{\text{r-1}} [0,1], \text{strictly increasing} \}\) and, hence, \(\rho_{[0,1]}(g, h) := \inf_{f \in \mathcal{F}_{[0,1]}} \max \left\{ \sup_{t \in [0,1]} |f(t) - 1|, \sup_{t \in [0,1]} |g(t) - h(f(t))| \right\}\). If \(f \in \mathcal{F}_{[0,1]}\), then \(f(1) = 1\). Since
\[
\max \left\{ \sup_{t \in [0,1]} |f(t) - 1|, \sup_{t \in [0,1]} |W_n(t) - W(f(t))| \right\} \geq |W_n(1) - W(1)|,
\]
where \(W\) is the standard Wiener process, then
\[
0 \xleftarrow{n \to \infty} \rho_{[0,1]}(W_n, W) = \inf_{f \in \mathcal{F}_{[0,1]}} \max \left\{ \sup_{t \in [0,1]} |f(t) - 1|, \sup_{t \in [0,1]} |W_n(t) - W(f(t))| \right\} \geq |W_n(1) - W(1)|.
\]

Proof. \([\text{Corollary 2.2}]\]

It is sufficient to show that assumptions \([A]\) and \([\mathcal{E}]\) implies Lindeberg condition
\[
\forall \delta > 0 : \lim_{n \to \infty} \frac{1}{\varsigma_n} \sum_{i=1}^{n} \mathbb{E}\xi_i^2 I[|\xi_i| > \delta \varsigma_n] = 0
\]
from \cite{Utev1990}, Corollary 4). The first step is to show that conditions \eqref{eq:cond2} and \eqref{eq:cond3} implies so-called Lyapunov condition, i.e., having fixed $\omega > 0$:

$$
\frac{1}{\varsigma_n^2+\omega} \sum_{i=1}^{n} \mathbb{E}|\xi_i|^{2+\omega} \leq \frac{1}{\varsigma_n^{2+\omega}} \sum_{i=1}^{n} \sup_{i \in \mathbb{N}} \mathbb{E}|\xi_i|^{2+\omega} = \frac{n}{\varsigma_n^{2+\omega}} \sup_{i \in \mathbb{N}} \mathbb{E}|\xi_i|^{2+\omega} \to 0, \quad n \to \infty.
$$

Now, Lyapunov condition $\lim_{n \to \infty} \varsigma_n^{2-\omega} \sum_{i=1}^{n} \mathbb{E}|\xi_i|^{2+\omega} = 0$ holds and we fix $\delta > 0$. Since $|\xi_i| > \delta \varsigma_n$ implies $|\xi_i/\delta \varsigma_n|^\omega > 1$, we obtain

$$
\frac{1}{\varsigma_n^{2-\omega}} \sum_{i=1}^{n} \mathbb{E}|\xi_i|^2 I\{|\xi_i| > \delta \varsigma_n\} \leq \frac{1}{\delta \varsigma_n^{2-\omega}} \sum_{i=1}^{n} \mathbb{E}|\xi_i|^{2+\omega} I\{|\xi_i| > \delta \varsigma_n\}
\leq \frac{1}{\delta \varsigma_n^{2+\omega}} \sum_{i=1}^{n} \mathbb{E}|\xi_i|^{2+\omega} \to 0, \quad n \to \infty.
$$

\[\Box \]

Proof. [Theorem 2.3]

Assumptions of Theorem 2.3 imply the assumptions of Theorem A.1. Indeed, assumptions \eqref{eq:assump3} and \eqref{eq:assump4} coincide. Assumption \eqref{eq:alpha} on α-mixing rates clearly implies assumption \eqref{eq:cond1} for any $\delta_j > 0$ and $1 < q_j \leq 2$, $j \in \{1, \ldots, p+1\}$. Supremum assumption \eqref{eq:cond0} implies \eqref{eq:cond2} for any $\omega > 0$ and $1 < q_j \leq 2$, $j \in \{1, \ldots, p+1\}$ as well, because of a corollary of the Jensen’s inequality

$$(\mathbb{E}|\xi|^r)^{1/r} \leq (\mathbb{E}|\xi|^s)^{1/s}, \quad 0 < r < s < \infty.$$

\cite{GolubVanLoan1980}, Section 2) proved that $[\hat{\beta}, -1]^\top$ is the eigenvector of matrix $[X, Y]^\top [X, Y]$ with associated eigenvalue λ. Hence,

$$
[X, Y]^\top [X, Y] \begin{bmatrix} \hat{\beta} \\ -1 \end{bmatrix} = \begin{bmatrix} X^\top X & X^\top Y \\ Y^\top X & Y^\top Y \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ -1 \end{bmatrix} = \lambda \begin{bmatrix} \hat{\beta} \\ -1 \end{bmatrix}.
$$

Previous partitioning yields $X^\top X \hat{\beta} - X^\top Y = \lambda \hat{\beta}$ and $Y^\top X \hat{\beta} - Y^\top Y = -\lambda$, which can be rewritten in the following manner $X^\top Y = (X^\top X - \lambda I) \hat{\beta}$ and $Y^\top Y = Y^\top X \hat{\beta} + \lambda$. Hence,

$$
[X, Y]^\top [X, Y] = \begin{bmatrix} X^\top X & (X^\top X - \lambda I) \hat{\beta} \\ \hat{\beta}^\top (X^\top X - \lambda I) & Y^\top X \hat{\beta} + \lambda \end{bmatrix} = \begin{bmatrix} 1, \hat{\beta} \end{bmatrix}^\top (X^\top X - \lambda I) \begin{bmatrix} 1, \hat{\beta} \end{bmatrix} + \lambda I.
$$

It can be easily noted that $[1, \beta] \begin{bmatrix} \beta \\ -1 \end{bmatrix} = 0$. Therefore, we obtain

$$
[I, \beta][X, Y]^\top [X, Y] \begin{bmatrix} \beta \\ -1 \end{bmatrix} = [I, \beta] \begin{bmatrix} 1, \hat{\beta} \end{bmatrix}^\top (X^\top X - \lambda I)(\beta - \hat{\beta})
$$

and, then,

$$
\sqrt{n}(\hat{\beta} - \beta) = -\Delta_n^{-1} \left([I, \beta] \begin{bmatrix} 1, \hat{\beta} \end{bmatrix}^\top \right)^{-1} [I, \beta] \left(n^{-1/2}[X, Y]^\top [X, Y] \right) \begin{bmatrix} \beta \\ -1 \end{bmatrix}. \quad \text{(25)}
$$
Since $\mathbb{E}[X, Y]^\top [X, Y] = [I, \beta]^\top Z^\top Z[I, \beta] + n\sigma^2 I$, then

$$[I, \beta] [\mathbb{E}[X, Y]^\top [X, Y] \begin{bmatrix} \beta \\ -1 \end{bmatrix}] = 0.$$ \hfill (26)

Relation (25) can be alternatively rewritten using identity (26) in a slightly more sophisticated way

$$\sqrt{n}(\hat{\beta} - \beta) = -\Delta_n^{-1} \left([I, \beta] [\hat{I}, \hat{\beta}]^\top \right)^{-1} [I, \beta]$$

$$\left(n^{-1/2} \left\{ [X, Y]^\top [X, Y] - \mathbb{E}[X, Y]^\top [X, Y] \right\} \right) \begin{bmatrix} \beta \\ -1 \end{bmatrix},$$

which will be useful in the forthcoming steps of this proof.

The proof of Theorem 3.1 by Pešta (2011) also provides the following important relation

$$\Delta_n := n^{-1} (X^\top X - \lambda I) \xrightarrow{a.s., n \to \infty} \Delta.$$ \hfill (27)

With respect to (27) and Theorem A.1, we have

$$\Delta_n^{-1} \left([I, \beta] [\hat{I}, \hat{\beta}]^\top \right)^{-1} [I, \beta] \xrightarrow{a.s., \Delta^{-1} \left([I, \beta] [\beta]^\top \right)^{-1} [I, \beta], \ n \to \infty.}$$ \hfill (28)

With probability tending to one, the inverse Δ_n exists due to (1) and (27), and the inverse of $[I, \beta] [\hat{I}, \hat{\beta}]^\top$ exists because of (20). Moreover, matrix $[I, \beta] [I, \beta]^\top = I + \beta\beta^\top$ is always positive definite and, hence, regular.

Convergence almost surely from (28) and the Slutsky’s theorem reduce the problem of finding a limiting distribution for $\sqrt{n}(\hat{\beta} - \beta)$ to finding a limiting distribution for

$$n^{-1/2} \left([X, Y]^\top [X, Y] - \mathbb{E}[X, Y]^\top [X, Y] \right) \begin{bmatrix} \beta \\ -1 \end{bmatrix}$$

$$= n^{-1/2} \left([I, \beta]^\top Z^\top [\Theta, \varepsilon] + [\Theta, \varepsilon]^\top [\Theta, \varepsilon] - n\sigma^2 I \right) \begin{bmatrix} \beta \\ -1 \end{bmatrix}. \hfill (29)$$

Now, it is sufficient to prove the univariate asymptotic normality of

$$n^{-1/2} \sum_{i=1}^{n} t^\top \left([Z, Z\beta]_{i, \bullet}[\Theta, \varepsilon]_{i, \bullet} + [\Theta, \varepsilon]_{i, \bullet}[\Theta, \varepsilon]_{i, \bullet} - \sigma^2 I\right) \begin{bmatrix} \beta \\ -1 \end{bmatrix}, \ \forall t \in \mathbb{R}^{p+1};$$

and apply the Cramér-Wold theorem.

The case of $t = 0$ is trivial. If $t \neq 0$, a sum of zero mean α-mixing random variables

$$\rho_i := t^\top \left([Z, Z\beta]_{i, \bullet}[\Theta, \varepsilon]_{i, \bullet} + [\Theta, \varepsilon]_{i, \bullet}[\Theta, \varepsilon]_{i, \bullet} - \sigma^2 I\right) \begin{bmatrix} \beta \\ -1 \end{bmatrix}$$

$$= Z_{i, \bullet} t_{- (p+1)} \Theta_{i, \bullet} \beta + Z_{i, \bullet} t_{p+1} \Theta_{i, \bullet} \beta - Z_{i, \bullet} t_{- (p+1)} \varepsilon_i - Z_{i, \bullet} t_{p+1} \varepsilon_i + \Theta_{i, \bullet} t_{- (p+1)} \Theta_{i, \bullet} \beta + t_{p+1} \varepsilon_i \Theta_{i, \bullet} \beta - \Theta_{i, \bullet} t_{- (p+1)} \varepsilon_i - t_{p+1} \varepsilon_i^2 - \sigma^2 t^\top \begin{bmatrix} \beta \\ -1 \end{bmatrix}$$ \hfill (30)
satisfies all the assumptions of Corollary 2.1. In fact, assumption (3) holds for \(\omega = 1/2 \min_{j=1,...,p+1} \omega_j \) realizing \(9, 10, \) and \(24 \) together with the Cauchy-Schwarz inequality and Jensen's inequality:

\[
\begin{align*}
\sup_n \mathbb{E}[\rho_n^{2+\omega}] & \leq 9^{1+\omega} \sup_n \mathbb{E}\left\{ \left| Z_n \cdot t_{-(p+1)} \Theta_n \right|^{2+\omega} + \left| Z_n \cdot \beta t_{p+1} \Theta_n \right|^{2+\omega} \right. \\
& \quad + \left| t_{p+1} \mathcal{E}_n \Theta_n \cdot \beta \right|^{2+\omega} + \left| \Theta_n \cdot t_{-(p+1)} \mathcal{E}_n \right|^{2+\omega} + \left| \mathcal{E}_{p+1} \mathcal{E}_n \right|^{2+\omega} + \left| \sigma^2 (t_{-(p+1)} \beta - t_{p+1}) \right|^{2+\omega} \left\} \\
& \leq 9^{1+\omega} \left\{ p^{2+\omega} \max_{j=1,...,p} |t_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[Z_{n,j}]^{2+\omega} \max_{j=1,...,p} |\beta_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[\Theta_{n,j}]^{2+\omega} \\
& \quad + p^{2+\omega} |t_{p+1}| \max_{j=1,...,p} |\beta_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[Z_{n,j}]^{2+\omega} \max_{j=1,...,p} |\beta_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[\Theta_{n,j}]^{2+\omega} \\
& \quad + p^{1+\omega} \max_{j=1,...,p} |t_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[Z_{n,j}]^{2+\omega} \mathbb{E}[\mathcal{E}_n]^{2+\omega} \\
& \quad + p^{1+\omega} |t_{p+1}| \max_{j=1,...,p} |\beta_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[\Theta_{n,j}]^{4+2\omega} \\
& \quad + p^{3+2\omega} \max_{j=1,...,p} |t_j|^{2+\omega} \max_{j=1,...,p} |\beta_j|^{2+\omega} \sum_{j=1}^p \mathbb{E}[\Theta_{n,j}]^{4+2\omega} \\
& \quad + p^{3/2+\omega} |t_{p+1}|^{2+\omega} \max_{j=1,...,p} |\beta_j|^{2+\omega} \left(\sup_{n \in \mathbb{N}} \mathbb{E}[\Theta_{n,j}]^{4+2\omega} \right)^{1/2} \left(\sup_{n \in \mathbb{N}} \mathbb{E}[\mathcal{E}_n]^{4+2\omega} \right)^{1/2} \\
& \quad + p^{3/2+\omega} \max_{j=1,...,p} |t_j|^{2+\omega} \left(\sup_{n \in \mathbb{N}} \mathbb{E}[\Theta_{n,j}]^{4+2\omega} \right)^{1/2} \left(\sup_{n \in \mathbb{N}} \mathbb{E}[\mathcal{E}_n]^{4+2\omega} \right)^{1/2} \\
& \quad + |t_{p+1}| \sup_{n \in \mathbb{N}} \mathbb{E}[\mathcal{E}_n]^{4+2\omega} + \sigma^2 (t_{-(p+1)} \beta - t_{p+1})^{2+\omega} \right.< \infty.
\end{align*}
\]

[Bradley (2005), Theorem 5.2(a)] provides \(\alpha(\rho, n) \leq \alpha(\varepsilon, n) + \sum_{j=1}^p \alpha(\Theta_{n,j}, n) \). Con-
sequently, assumption \((4)\) holds due to the concavity of function \(u \mapsto u^{\omega/(2+\omega)}\), \(\omega > 0\):

\[
\sum_{n=1}^{\infty} \alpha(p_n, n)^{\omega/(2+\omega)} \leq \sum_{n=1}^{\infty} \alpha(\varepsilon_n, n)^{\omega/(2+\omega)} + \sum_{j=1}^{p} \sum_{n=1}^{\infty} \alpha(\Theta_o,j, n)^{\omega/(2+\omega)} < \infty, \quad \omega > 0;
\]

which is true because of \((11)\) and the fact that

\[
\alpha(\Theta_o,j, n)^{\omega/(2+\omega)} = O \left(n^{-1-\frac{\delta_j(\omega-2)}{2+\omega}} \right), \quad \delta_j > 2/\omega, \quad j \in \{1, \ldots, p\};
\]

\[
\alpha(\varepsilon_n, n)^{\omega/(2+\omega)} = O \left(n^{-1-\frac{\delta_j(\omega-2)}{2+\omega}} \right), \quad \delta_{p+1} > 2/\omega.
\]

Using \((12)\) and \((29)\), let us calculate

\[
\frac{1}{n} \mathbb{E} \left(\sum_{i=1}^{n} \rho_i \right)^2 = \frac{1}{n} \mathbb{E} \left(t^\top (Z, Z\beta)^\top [\Theta, \varepsilon] + [\Theta, \varepsilon]^\top [\Theta, \varepsilon] - n\sigma^2 1 \right) \left[\begin{array}{c} \beta \\ 1 \end{array} \right]^2
\]

\[
= \frac{1}{n} \mathbb{E} t^\top \left([X, Y]^\top [X, Y] - \mathbb{E}[X, Y]^\top [X, Y] \right) \left[\begin{array}{c} \beta \\ 1 \end{array} \right]
\]

\[
= t^\top \left(\frac{1}{n} \mathbb{V} ar [X, Y]^\top [X, Y] \left[\begin{array}{c} \beta \\ 1 \end{array} \right] \right) t \rightarrow t^\top 2t > 0, \quad n \rightarrow \infty;
\]

and assumption \((5)\) is satisfied as well. Thus, Corollary \(2.1\) implies asymptotically zero mean normal distribution \(n^{-1/2} \sum_{i=1}^{n} \rho_i\).

\[\square\]

Proof. \([\text{Theorem } 2.4] \)

This proof contains very similar ideas as the proof of Theorem \(2.3\).

Assumptions of Theorem \(2.4\) imply the assumptions of Theorem \(A.2\). Indeed, assumption \((24)\) is implied by assumption \((13)\). Assumption \((22)\) directly follows from \((15)\), because \((21)\) and \((15)\) yield

\[
\sup_{n \in \mathbb{N}} \mathbb{E} \xi_n^4 \leq \left(\sup_{n \in \mathbb{N}} \mathbb{E} |\xi_n|^{4+\omega} \right) < \infty
\]

for \(\xi_n \in \{\Theta_n,1, \ldots, \Theta_n,p, \varepsilon_n\} \) and \(\omega = \min_{j=1, \ldots, p+1} \omega_j\). Hence,

\[
\sum_{n=1}^{\infty} \frac{\mathbb{E} \xi_n^4}{n^2} \leq \sum_{n=1}^{\infty} \frac{\sup_{n \in \mathbb{N}} \mathbb{E} \xi_n^4}{n^2} = \sup_{n \in \mathbb{N}} \mathbb{E} \xi_n^4 \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.
\]

Therefore, the consistency results for \(\varphi\)-mixing errors can be used.

With respect to the Slutsky’s theorem, to the Cramér-Wold theorem, and to the proof of Theorem \(2.3\) it is necessary to find the limiting distribution of \(\{\rho_n\}_{n=1}^{\infty}\) from \((30)\). In light of Corollary \(2.2\) we only need to check whether sequences \(\{\rho_n\}_{n=1}^{\infty}\) is \(\varphi\)-mixing sequences, i.e., \(\varphi(\rho_n, \Omega) \rightarrow 0\) as \(n \rightarrow \infty\). This follows directly from \(\text{Bradley} \ 2007, \ \text{Theorem } 5.2(d)\) and assumptions \(\varphi(\Theta_o,j, n) \rightarrow 0\) for \(j = 1, \ldots, p\) and \(\varphi(\varepsilon_n, n) \rightarrow 0\) as \(n \rightarrow \infty\). The rest of the assumptions of Corollary \(2.2\) is included in the assumptions of Corollary \(2.1\) and has been completely checked on sequence \(\{\rho_n\}_{n=1}^{\infty}\) in the proof of Theorem \(2.3\). \[\square\]
REFERENCES

Anderson, T. W. (1958). *An Introduction to Multivariate Statistical Analysis*. New York: John Wiley & Sons.

Billingsley, P. (1968). *Convergence of Probability Measures* (1st ed.). New York: John Wiley & Sons.

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. *Probability Surveys* 2, 107–144.

Gallo, P. P. (1982a). Consistency of regression estimates when some variables are subject to error. *Communications in Statistics: Theory and Methods* 11, 973–983.

Gallo, P. P. (1982b). *Properties of Estimators in Errors-in-Variables Models*. Ph. D. thesis, University of North Carolina, Chapel Hill, NC.

Gleser, L. J. (1981). Estimation in a multivariate “errors in variables” regression model: Large sample results. *Annals of Statistics* 9, 24–44.

Golub, G. H. and C. F. Van Loan (1980). An analysis of the total least squares problem. *SIAM Journal on Numerical Analysis* 17(6), 883–893.

Healy, J. D. (1975). *Estimation and Tests for Unknown Linear Restrictions in Multivariate Linear Models*. Ph. D. thesis, Purdue University.

Herrndorf, N. (1985). A functional central limit theorem for strongly mixing sequence of random variables. *Probability Theory and Related Fields* 69(4), 541–550.

Ibragimov, I. A. and Y. V. Linnik (1971). *Independent and Stationary Sequences of Random Variables*. The Netherlands: Wolters-Noordhoff.

Lin, Z. and C. Lu (1997). *Limit Theory for Mixing Dependent Random Variables*. New York: Springer-Verlag.

Pešta, M. (2011). Strongly consistent estimation in dependent errors-in-variables. *Acta Universitatis Carolinae: Mathematica et Physica* 52(1), 69–79.

Pešta, M. (2012). Total least squares and bootstrapping with application in calibration. *Statistics: A Journal of Theoretical and Applied Statistics*. DOI:10.1080/02331888.2012.658806.

Rosenblatt, M. (1971). *Markov Processes: Structure and Asymptotic Behavior*. Berlin: Springer-Verlag.

Utev, S. A. (1990). The central limit theorem for φ-mixing arrays of random variables. *Theory of Probability and its Applications* 35, 131–139.

Michal Pešta, Charles University in Prague, Faculty of Mathematics and Physics, Department of Probability and Mathematical Statistics, Sokolovská 83, 186 75 Prague 8, Czech Republic

e-mail: pesta@karlin.mff.cuni.cz