A population pharmacokinetic-pharmacodynamic model of YH12852, a highly selective 5-hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation

Siun Kim1,2 | Hyun A. Lee1,2 | Seong Bok Jang3 | Howard Lee1,2,4,5,6,7

Department of Applied Biomedical Engineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
Clinical Development Department, Research & Development Division, Yuhan Corporation, Seoul, Korea
Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
Center for Convergence Approaches in Drug Development, Seoul National University, Seoul, Korea
Advanced Institute of Convergence Technology, Suwon, Korea

Abstract
YH12852, a novel, highly selective 5-hydroxytryptamine 4 (5-HT4) receptor agonist, is currently under development to treat patients with functional constipation. In this study, we aimed to develop a pharmacokinetic (PK)–pharmacodynamic (PD) model that adequately described the time courses of the plasma concentrations of YH12852 and its prokinetic effect as assessed by the Gastric Emptying Breath Test (GEBT) and to predict the prokinetic effect of YH12852 at higher doses through PD simulation. We used the plasma concentrations of YH12852 from patients with functional constipation and healthy subjects and the GEBT results from healthy subjects obtained from a phase I/IIa trial. The PK-PD modeling and covariate analysis were performed using NONMEM software. The prokinetic effect of YH12852 was described using a semimechanistic multicomartment PD model and an empirical model by Ghoos et al. A two-compartment model with first-order absorption adequately described the observed concentration-time profiles of YH12852. The semimechanistic multicompartment PD model and the revised Ghoos model with two slope parameters adequately described the observed kPCDt (the percent dose of 13C excreted in the exhaled air at minute t after completing the test meal, multiplied by 1000) values. YH12852 accelerated gastric emptying even at low doses of 0.05–0.1 mg, and its prokinetic effect was greater in subjects suffering from more severe functional constipation. The PD simulation experiments revealed that the change from baseline in the half time for gastric emptying induced by YH12852 increased in a dose-dependent manner at 0.05–5 mg although the results at doses >0.1 mg were extrapolated. We also showed that the empirical Ghoos model is a special case of the general semimechanistic multicompartment PD model for gastric emptying.
INTRODUCTION

Functional constipation, also known as chronic idiopathic constipation, is characterized by infrequent bowel movements, unfinished feeling, and hard stools. The pooled global prevalence of functional constipation in adults is 14%. Patients with functional constipation experience significantly poorer quality of life and greater health-related impairments in daily life than patients who do not suffer from functional constipation.

The current clinical practice guidelines for functional constipation recommend lifestyle modifications, such as consuming more fluid and dietary fiber and laxatives as initial interventions, which is of little risk for serious adverse events and low in cost. Although many laxatives are effective to reduce the symptoms of chronic constipation, 5-hydroxytryptamine 4 (5-HT₄) receptor agonists have been developed as prokinetic agents or drugs enhancing gastrointestinal motility for those who did not respond to lifestyle modifications or were not satisfied with laxatives.

The benefit-risk profile of 5-HT₄ receptor agonists is closely related to their selectivity for the 5-HT₄ receptor. For instance, cisapride, a nonselective 5-HT₄ receptor agonist, was withdrawn from the global market because of concerns over cardiovascular adverse events, whereas prucalopride, the first approved highly selective 5-HT₄ receptor agonist, was not associated with cardiovascular safety issues.

YH12852, a novel, highly selective 5-HT₄ receptor agonist, is currently under development as an oral treatment for patients with functional constipation. YH12852 more strongly binds to human 5-HT₄ receptor (pKi, negative decadic logarithm of Ki = 10.3) than prucalopride (pKi = 7.84) and tegaserod (pKi = 8.49) while exhibiting high selectivity for the 5-HT₄ receptor over other subtypes of 5-HT receptors (pKi < 7.95). In a phase I/IIa trial, YH12852 was well tolerated over daily doses of 0.05–3 mg in healthy volunteers and patients with functional constipation. Furthermore, no cardiovascular safety issue was reported in the phase I/IIa trial. YH12852 significantly improved the stool consistency score at all tested doses and increased the average weekly frequency of spontaneous bowel movements at doses of 1, 2, and 3 mg, although a clear dose–response relationship was not observed.

In this study, we aimed to develop a population pharmacokinetic (PK)–pharmacodynamic (PD) model for YH12852 using the PK and PD data observed from the previous clinical trial in healthy subjects and patients with functional constipation. Furthermore, we used the final PK-PD model to predict the change in the gastric emptying half time induced by YH12852 of untested higher doses based on the PD simulation.
METHODS

Clinical study and subjects

The plasma concentrations of YH12852, Gastric Emptying Breath Test (GEBT; Cairn Diagnostics) results, and demographic and clinical covariates were obtained from a randomized, double-blind, placebo-controlled, phase I/IIa study (ClinicalTrials.gov registration no. NCT02538367). Briefly, the study consisted of the multiple dose (MD) and multiple low-dose (MLD) cohorts; 56 subjects (29 healthy volunteers and 27 patients with functional constipation) and 16 healthy subjects were enrolled in the MD and MLD cohorts, respectively. Patients were eligible if they had been diagnosed with functional constipation based on the updated Rome III diagnostic criteria, whereas healthy subjects had to document \(\leq 3 \) spontaneous bowel movements per week for at least 3 months.\(^{14}\) Subjects in the MD cohort randomly received YH12852 at 0.3, 0.5, 1, 2, or 3 mg; prucalopride at 2 mg; or placebo. On the other hand, subjects in the MLD cohort were randomized to 0.05 or 0.1 mg of YH12852 in a ratio of 1:1. In the MD and MLD cohorts, subjects orally received YH12852 once daily after the completion of breakfast for 14 days.

PK sample collection and bioanalysis

In the MD cohort, blood samples were obtained for YH12852 plasma concentration at 0 (i.e., predose), 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, and 24 h postdose on Days 1 and 14. On Day 14, we collected additional blood samples at 36, 48, and 72 h postdose. Furthermore, trough predose blood samples were drawn on Days 5, 10, 12, and 13. In the MLD cohort, blood samples were collected at the same times in the MD cohort on Days 1 and 14, whereas the predose samples were collected only on Days 5 and 13.

YH12852 concentrations were determined in plasma samples using a validated liquid chromatography–tandem mass spectrometry (LC-MS/MS) system (LC: Prominance UFLC XR; MS/MS: 5500 QTRAP, AB SCIEX) by BioCore. Plasma samples (200 \(\mu \)l) were mixed with 500 \(\mu \)l of acetonitrile for protein precipitation. The suspension was vortexed and centrifuged. Then, the organic layer was transferred to a glass tube and evaporated under nitrogen. The dry residue was reconstituted in 200 \(\mu \)l of 50% methanol, from which 5 \(\mu \)l of supernatant taken after centrifugation was injected into an LC-MS/MS system. More details on the bioanalysis method can be found elsewhere.\(^{13}\) The lower limit of quantification for bioanalysis was 30 pg/ml.

Gastric emptying breath test

In the MLD cohort, the prokinetic effect of YH12852 was evaluated using the GEBT at baseline and on Day 7. GEBT noninvasively measures the speed of gastric emptying by using a meal containing the stable 13-carbon isotope ([\(^{13}\)C]).\(^{15}\) The test meal containing [\(^{13}\)C]-Spirulina, powdered egg, and saltine crackers was completely or entirely consumed by all subjects in the MLD cohort after an overnight fast. Once ingested, the \(^{13}\)C-labeled GEBT test meal is absorbed in the intestine, and \(^{13}\)C is finally excreted from the lung in the form of \(^{13}\)CO\(_2\), giving rise to the ratio of \(^{13}\)CO\(_2\)/\(^{12}\)CO\(_2\) in exhaled air. GEBT is not only helpful to diagnose delayed gastric emptying but also it is useful to assess the effect of a prokinetic agent without the risk of radiation exposure.

Exhaled air samples were collected at 45, 90, 120, 150, 180, and 240 min after the test meal was fully consumed. The results of the GEBT were reported as a \(k_{PCD} \) value, which is the percent dose of \(^{13}\)C excreted in the exhaled air at minute \(t \) after completing the test meal, multiplied by 1000.\(^{16}\) \(k_{PCD} \) was the pharmacodynamic end point to assess the prokinetic effect of YH12852. Furthermore, time elapsed for gastric emptying by 10% and 50% (\(t_{10} \) and \(t_{50} \), respectively) and the area under the \(k_{PCD} \)-time curve (AUC\(_{k_{PCD}}\)) were estimated. Time for gastric emptying of 50% was also called the “gastric-emptying half time.”

Model development strategies

We used the NONMEM software (version 7.4.3; ICON Development Solutions), and the first-order conditional estimation method with interaction was the estimation method. Concentrations of YH12852 were log-transformed, and the PK-PD models were fitted simultaneously. Visualization of the data set and the results of model diagnostics including goodness-of-fit (GOF) plots and visual predictive checks (VPCs) were performed using R (version 3.5.3; R Foundation for Statistical Computing) and Xpose (version 4.5.3; Uppsala University).

Interindividual variability (IIV) and interoccasion variability (IOV) were assumed to be log-normally distributed with a mean of zero and a variance of \(\omega^2 \). Occasion was defined as a set of sampling times clearly separated between two adjacent occasions (i.e., 1 for Day 1 and 2 the other). To describe residual variability, three residual error models (additive, proportional, and combined additive and proportional) were tested. We chose the models based on physiological plausibility, GOF plots, decrease in the objective function value (OFV), the precision of estimated PK parameters, and the reductions in both residual variability and IIV. Also, we ruled out a model that was associated with a large shrinkage.
because it may obscure the relationships between the random effects and covariate. When comparing the nested models, a decrease in OFV >6.63 between the full and reduced models, corresponding to a significance level of 1% with a single degree of freedom in the χ^2 distribution, was considered statistically significant, and the model with a significantly smaller OFV was selected for further development.

Population PK model

One-compartment and two-compartment PK models with first-order elimination were tested. Also, we tested the following three absorption models: first-order models, combined zero-order and first-order models, and sequential linked zero-order and first-order models. A mixture model on the absorption rate constant (K_a) was also tested to explain a large interindividual variability in T_{max} (the time to maximum plasma concentration).

Population PK-PD model

The prokinetic effect of YH12852 was described using two models (Figure 1): a semimechanistic multicompartment PD model and an empirical model by Ghoos et al. Assuming compartments 1–3 are reserved for the PK of YH12852 and compartments 4, 5, and 6 correspond to the gastrointestinal tract, systemic circulation, and lung, respectively. Then, the semimechanistic multicompartment PD model can be written in Equations (1) to (4):

$$\frac{dA_4(t)}{dt} = - (K_{45} + SLP \times CONC) \times A_4(t) \quad (1)$$

$$\frac{dA_5(t)}{dt} = (K_{45} + SLP \times CONC) \times F_{CL3} \times A_4(t) - K_{56} \times A_5(t) \quad (2)$$

$$\frac{dA_6(t)}{dt} = K_{56} \times A_5(t) - K_{out} \times A_6(t) \quad (3)$$

$$k_{PCD} = \frac{K_{out} \times A_6(t)}{60} \quad (4)$$

where $A_i(t)$ is the amount of 13C in compartment i at time t; K_{45}, K_{56}, and K_{out} are the rate constants for 13C in the test meal transferred from compartment 4 to 5, 5 to 6, and 6 to the air, respectively; SLP represents a slope for the linear PD effect of YH12852 on K_{45}; F_{CL3} is the fraction of 13C in the test meal that is eventually absorbed; and CONC is the concentrations of YH12852 in the central compartment of the PK model. In Equation (4), 60 was used to divide the numerator to convert the time unit from min to h. Because we did not observe the amount of 13C in compartment 5, K_{56} and K_{out} were not independently identifiable. Thus, we assumed that K_{56} was identical to K_{out}. The initial values of compartments 5 and 6, that is, $A_5(0)$ and $A_6(0)$, respectively, were 0, whereas the initial amount of 13C in compartment 4 was set to 100,000 because kPCD (the percent dose of 13C excreted in the exhaled air, multiplied by 1000) is the percent dose of 13C excreted in the exhaled air multiplied by 1000, that is, 100*1000. In addition to the linear model of YH12852 concentration on kPCD (Equations 1 and 2), we tested if an E_{max} model could have better described the prokinetic effect of YH12852.

Next, we fit an empirical model proposed by Ghoos et al. to describe the amount of 13C appearing in breath sample per unit time. To make the estimated rate constants physiologically meaningful, we reparameterized the Ghoos model as

$$k_{PCD} = k_{PCDmag} \times \left(\frac{t}{t_{mag,GE}}\right)^{K_s} \times e^{-\frac{t}{t_{mag,GE}}} \quad (5)$$

where k_{PCDmag} and $t_{mag,GE}*$ denote the magnitude of kPCD and a constant as to how fast kPCD values change in the time-kPCD curves, respectively; K_s is the power term of the Ghoos model that determines the shape of kPCD-time curve; and t is time (minute) after the end of test meal consumption. The changes in kPCDmag and $t_{mag,GE}$* lead to the changes in the maximum kPCD (k_{PCDmax}) and time to reach k_{PCDmax} ($t_{max,GE}$*), respectively, when other constants in Equation (5) are fixed. For examples, when $t_{mag,GE}$* and K_s are fixed, kPCDmag increases proportionally to kPCDmag while $t_{max,GE}$* is constant regardless of kPCDmag. We assumed that YH12852 either decreases $t_{mag,GE}$* or increases kPCDmag or both. Therefore, the PK-PD relationship between the plasma concentrations of YH12852 and its prokinetic effect, expressed in SLP1 or SLP2, was given as Equations (6) and (7), respectively.

$$k_{PCDmag} = k_{PCDmag, baseline} - SLP_1 \times CONC \quad (6)$$

$$t_{mag,GE} = t_{mag,GE, baseline} - SLP_2 \times CONC \quad (7)$$

Covariate analysis

The covariates included age, sex, body weight, body mass index (BMI), blood test results of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and blood urea nitrogen (BUN) tests. The effects of baseline t_{typ}, t_{50}, and AUC_{kPCD} were explored in the PK-PD model development. Continuous covariates were incorporated into the model as follows:

$$P_i = P_{typ} \times \left(\frac{Cov_i}{Cov_{typ}}\right)^{\theta_{cov}} \times e^{\eta_i} \quad (8)$$
where \(P_i \) and \(P_{typ} \) are the individual parameter value of the \(i \)th subject and the typical value in the population, respectively; \(Cov_i \) and \(Cov_{typ} \) are the individual value of a given covariate and its median or typical value, respectively; \(\theta_{cov} \) is the exponent reflecting the covariate relationship; and \(\eta_i \) is a normally distributed IIV with a mean of zero and a variance \(\omega_i^2 \). Covtyp for age, body weight, BMI, \(t_{10} \), \(t_{50} \), and AUC_{kPCD} were 27.6 years, 59.2 kg, 22.0 kg/m\(^2\), 30 min, 100 min, and 140 (unitless), respectively. Baseline \(t_{10} \) and \(t_{50} \) of subjects at baseline were determined by interpolating the portions of gastric emptying at given timepoints. The portions of gastric emptying were estimated through the multiple regression models by Szarka et al.\(^{16} \) using kPCD\(_t \) values at baseline and each subjects’ covariates (e.g., sex and BMI). On the other hand, \(Cov_{typ} \) for AST, ALT, and BUN were 15 U/L, 10 U/L, and 10 mmol/L, respectively. Sex was incorporated into the model as follows:

\[
P_i = P_{typ} \times \theta_{cov}^{Cov} \times e^{\eta_i}
\]

where \(Cov_i \) is sex of an individual patient (0 for male, 1 for female), \(\theta_{cov} \) is the proportional constant reflecting the effect of sex on parameter \(P_i \), and the meanings of the rest of the variables are the same as in Equation (8).

We used the forward-addition and backward-elimination methods for the covariate analysis, and candidate covariates were identified through empirical Bayes estimate–based
model diagnostics. A candidate covariate was considered significant when a decrease in OFV after adding the covariate was >6.63 (p = 0.01, d.f. = 1). In the backward elimination, the covariate was retained in the model if OFV was increased by >10.83 (p = 0.001, d.f. = 1) after removing the covariate. For an efficient covariate search, we performed the covariate analysis on the PK model first and then on the PK-PD models.

Model validation

We evaluated the final PK and PK-PD models using the bootstrap resampling method and VPCs. Furthermore, the 95% confidence interval (CI) of the PK and PK-PD parameters were derived such that the 2.5th and 97.5th percentiles of the refit parameters using 300 bootstrapped data sets were the lower and upper CI bounds, respectively. The final PK and PK-PD parameters were considered stable if they were close to the median of the refit parameters using 300 bootstrapped data sets. The VPCs were both prediction corrected and variability corrected and stratified by the several covariates (e.g., t10, sex, weight, and dose) to rule out a possible model misspecification.

PK-PD simulation

To determine an optimal dose for the phase II trial with YH12852, we simulated the prokinetic effect of YH12852 based on the final PK-PD model. A total of 1050 virtual subjects randomly and equally received once-daily YH12852 at 0.05, 0.1, 0.5, 1, 2, 5, and 10 mg for 2 weeks. kPCD1 values were determined from the virtual subjects whose PK-PD parameters were within the 95% CIs of the respective parameters (Table 1).

In the simulation experiments, the half time for gastric emptying (t50), time taken for the half of food contents in the stomach to escape it, was estimated from the simulated kPCD1 values using the multiple regression models by Szarka et al. (Table S1). The regression models of Szarka et al. predicted the portions of gastric emptying at 45, 90, 120, 150, 180, and 240 min after the 13C-labeled GEBT meal based on the sex, BMI, and kPCD1 values. Because the regression model by Szarka et al. included the sex and BMI of patients as covariates, we derived BMI from the simulated sex and body weight of virtual patients using a linear regression model (adjusted r² = 0.68) [21,22].

In this PK-PD simulation, we relied on the following two assumptions: (1) the systemic exposure to YH12852 is dose-proportional over 0.05–3 mg and untested higher doses of 5 and 10 mg and (2) the prokinetic effect of YH12852 follows the linear PD model on low doses (i.e., 0.05 and 0.1 mg) over 0.5–10 mg.

RESULTS

Data set and study population

The final PK-PD data set included 1287 plasma concentrations of YH12852 and 196 kPCD1 values obtained from 49 subjects in the MD and MLD cohorts and 14 subjects in the MLD cohort, respectively. A total of 71.4% of the subjects were women, and the mean age was 27.3 years (Table 2). The baseline t10 of the subjects in the MLD cohort was 30.3 ± 15.5 min (mean ± standard deviation).

Population PK-PD model

A two-compartment model with first-order absorption adequately described the observed concentration-time profiles of YH12852 (Figure 1). Of the two PD models we tested, the semimechanistic multicompartment PD model, which physiologically integrates the transfer of 13C from the gastrointestinal tract to the lung, adequately described the observed kPCD1 values (Figures 2 and S1). Furthermore, an Eₘₐₓ PD model did not improve the model fit or reduce OFV significantly compared with a linear slope model. Therefore, we chose the semimechanistic multicompartment linear PD model as the final PD model, and the GOF plots showed that observations were comparable with the model predictions and no systematic deviations were noted (Figures S2 and S3).

The estimated parameters from the final PK-PD model fell within the 95% CIs of the parameters obtained by bootstrap analysis (Table 1). IIV was estimated for all of the fixed parameters except for Kₐ5. All of the IIV estimates, expressed as coefficients of variation, were less than 35% except for V₃ and SLP (38.6% and 116.2%, respectively; Table 1). IOV was estimated for clearance (CL), V₂, and Kₐ; the estimates of IOV were low for CL (28.5%) and moderate for V₂ and Kₐ (48.1% and 48.9%, respectively; Table 1). The median bootstrap estimates were close to the parameters estimated from the full analysis data set (by <10% except for SLP; Table 1).

Body weight and baseline t₁₀ were significant covariates on V₃/F and SLP, respectively. All of the other covariates tested (sex, BMI, baseline t₅₀, and AUCₑ₅₀ₐₚ) did not decrease OFV by >6.63 (p = 0.01) from the reduced model or minimally reduced IIV of the respective parameters and therefore were not retained in the final PK-PD model.

Model validation

The VPC plots grouped by occasion showed that the median and 5th and 95th percentiles of the observed YH12852 concentrations and kPCD1 values were similar to their respective simulated values (Figure 3). However, the variabilities in kPCD1 in the simulation were overestimated, particularly for
the 95th percentiles of the predicted kPCD₄, possibly because of a large variability in SLP. Likewise, the similarity between the observations and simulations was noted when the VPCs were separately done by significant covariate (body weight and baseline \(t_{10} \)), dose, and sex, which was required for kPCD₄ regression (Figure S4 and S5).

PK-PD simulation

The half time for gastric emptying or \(t_{50} \) decreased as the dose of YH12852 was increased from 0.05 to 5 mg. All of the decreases in \(t_{50} \) between any two doses were significantly different after the Bonferroni adjustment (\(p \)-value < 0.0001) except for the comparison between 5 and 10 mg (Figure 4).

DISCUSSION

We developed a semimechanistic multicompartment PK-PD model that adequately described the time courses of the plasma concentrations of YH12852 and its prokinetic effect, assessed using kPCD₄ in healthy subjects and patients with
We showed that once-daily YH12852 is likely emptying, the greater the prokinetic effect of YH12852. A mechanistic than the revised Ghoos model, whereas both models doses of 1–3 mg.

In this study with YH12852, where it significantly increased the average weekly frequency of spontaneous bowel movements at doses of 1–3 mg.

The final transit PD model for YH12852 was more mechanistic than the revised Ghoos model, whereas both models adequately described the observed kPCD1 values particularly when the Ghoos model was parameterized with two SLPs (Figures 2 and S1). In the transit PD model, change from baseline in kPCD1 after YH12852 was adequately modeled by a single SLP parameter, whereas two separate slope parameters, that is, SLP1 and SLP2, were required in the Ghoos model to adequately capture the change in kPCD1 profiles after YH12852 (Figure S3). Moreover, the Ghoos model with a single SLP parameter systemically overestimated kPCDmax after YH12852. Indeed, the AUCkPCD was consistently overpredicted by the Ghoos model with a single SLP parameter, even >100,000 (unitless), suggesting complete absorption and excretion of 13C in the test meal, which is practically not possible.

In fact, the Ghoos model is a specific case of the more general transit model that assumes all of the transfer rate constants $K_{i(i+1)}$ being identical as K_0 (Supplementary Method S1). Under this assumption, K_s and $t_{mag,GE}$ in the Ghoos model become equal to the number of transit compartments minus one and the inverse of K_0, respectively, in the transit PD model. Furthermore, the estimated K_i from the Ghoos model, 1.94, suggests that three transit compartments were appropriate for modeling the prokinetic effect of YH12852. It is because the predicted kPCD1 in the transit PD model with N transit compartments is the same as those in the Ghoos model, where K_i is equal to (N-1) under the previous assumption (Table S2). Moreover, the estimated value of $t_{mag,GE}$ was similar to the inverse of the average rate constants in the final PK-PD model (1.64 vs. 1.54 h; Tables 1 and S2). All of those findings support the notion that the semimechanistic multi-compartment PK-PD model for YH12852 in this study was not only physiologically more plausible but also was a general form of the Ghoos model. This may explain why the empirical Ghoos model has been frequently used in describing the time course of kPCD1 to capture the prokinetic effects of a constipation treatment.

Abbreviations: BMI, body mass index; MD, multiple dose; MLD, multiple low dose; NA, not available; SD, standard deviation; t_{10}, times elapsed for gastric emptying by 10%.

Baseline characteristics of subjects by cohort

Characteristic	MD cohort, N=35	MLD cohort, N=14
Sex, n (%)		
Female	24 (68.6)	11 (78.6)
Male	11 (31.4)	3 (22.4)
Age, y		
Mean ± SD	28.6 ± 7.7	24.2 ± 3.6
Range	19–53	19–31
Weight, kg		
Mean ± SD	60.4 ± 8.2	58.2 ± 8.1
Range	45.9–78.8	46.8–77.3
BMI, kg/m²		
Mean ± SD	22.0 ± 1.8	21.6 ± 2.1
Range	19.0–24.8	18.2–25.0
Health status, n (%)		
Functional constipation	17 (48.6)	0 (0.0)
Healthy	21 (51.4)	14 (100.0)
Baseline t_{10}, min		
Mean ± SD	NA	30.3 ± 15.5
Range	NA	11.1–59.4

TABLE 2

The final transit PD model for YH12852 was more mechanistic than the revised Ghoos model, whereas both models adequately described the observed kPCD1 values particularly when the Ghoos model was parameterized with two SLPs (Figures 2 and S1). In the transit PD model, change from baseline in kPCD1 after YH12852 was adequately modeled by a single SLP parameter, whereas two separate slope parameters, that is, SLP1 and SLP2, were required in the Ghoos model to adequately capture the change in kPCD1 profiles after YH12852 (Figure S3). Moreover, the Ghoos model with a single SLP parameter systemically overestimated kPCDmax after YH12852. Indeed, the AUCkPCD was consistently overpredicted by the Ghoos model with a single SLP parameter, even >100,000 (unitless), suggesting complete absorption and excretion of 13C in the test meal, which is practically not possible.

In fact, the Ghoos model is a specific case of the more general transit model that assumes all of the transfer rate constants $K_{i(i+1)}$ being identical as K_0 (Supplementary Method S1). Under this assumption, K_s and $t_{mag,GE}$ in the Ghoos model become equal to the number of transit compartments minus one and the inverse of K_0, respectively, in the transit PD model. Furthermore, the estimated K_i from the Ghoos model, 1.94, suggests that three transit compartments were appropriate for modeling the prokinetic effect of YH12852. It is because the predicted kPCD1 in the transit PD model with N transit compartments is the same as those in the Ghoos model, where K_i is equal to (N-1) under the previous assumption (Table S2). Moreover, the estimated value of $t_{mag,GE}$ was similar to the inverse of the average rate constants in the final PK-PD model (1.64 vs. 1.54 h; Tables 1 and S2). All of those findings support the notion that the semimechanistic multi-compartment PK-PD model for YH12852 in this study was not only physiologically more plausible but also was a general form of the Ghoos model. This may explain why the empirical Ghoos model has been frequently used in describing the time course of kPCD1 to capture the prokinetic effects of a constipation treatment.

Abbreviations: BMI, body mass index; MD, multiple dose; MLD, multiple low dose; NA, not available; SD, standard deviation; t_{10}, times elapsed for gastric emptying by 10%.
K_{out} (0.39/h vs. 0.78/h; Table 1), suggesting that gastric emptying of the 13C-labeled test meal is truly rate limiting. The fraction of absorbed 13C contained in the test meal was 0.22 or 22% (Table 1). Because absorbed 13C might have been excreted via other routes than exhalation, the estimate could have been slightly larger.

This study had a couple of limitations. First, we assumed the concentration of YH12852 linearly affects SLP. Because we measured the k_{PCD} values only in the MLD cohort, the range of YH12852 plasma concentrations was relatively narrow. This allowed us to link the concentrations of YH12852 with k_{PCD} in a linear way, thereby supporting our approach. Thus, although an E_{\max} model did not improve the model fit or significantly reduce OFV than the simpler linear mode, an E_{\max} model could have better described the overall exposure–response relationship of YH12852 if a wider narrow range of dose was incorporated for PK-PD analysis. Second, we assumed that the PK-PD relationship identified in healthy

FIGURE 2 Individual k_{PCD}-time profiles by the final semimechanistic pharmacokinetic–pharmacodynamic model. The circles and lines represent the observed and the individual model-predicted k_{PCD} values, respectively. Red circles and lines denote the observed and predicted k_{PCD} at baseline, and the blue circles and lines denote the observed and predicted k_{PCD} on Day 7. The healthy subject administered 0.1 mg YH12852 is marked by *, whereas the subject administered 0.05 mg YH12852 was not marked. Abbreviations: k_{PCD}, the percent dose of 13C excreted in the exhaled air at minute t after completing the test meal, multiplied by 1000; k_{PCD}, the percent dose of 13C excreted in the exhaled air, multiplied by 1000; IPRED, individual prediction.
Subjects of the MLD cohort (0.05–0.1 mg) would be maintained at higher doses (1–10 mg). Because the prokinetic effect of YH12852 could become saturated at a certain point as the dose is increased, caution needs to be exercised not to overestimate the prokinetic effect of YH12852 at doses greater than 0.1 mg (Figure 4). Third, we performed our simulation experiments using the PK-PD model developed only in healthy subjects, not in patients diagnosed with functional constipation. However, those healthy subjects also had to report ≤3 spontaneous bowel movements per week for at least 3 months. Therefore, they experienced functional constipation to some extent. To support this notion, the mean baseline t_{50} of those healthy subjects was 94.8 min (data not shown), indicating that their gastric emptying was also delayed (i.e., >86 min). Fourth, we used the 95% CIs as the sampling boundaries for the PK parameters in the simulation experiments. However, the 95% prediction intervals would be more appropriate because they are wider than the 95% CIs by accounting for both the uncertainty of the PK parameters and their random variation. Therefore, our simulation experiments might not have captured all of the variability, although they could still have showed the typical behaviors. Lastly, we assumed that the PK linearity of YH12852 would be maintained at doses >3 mg.13

In conclusion, the time courses of the plasma concentrations of YH12852 and its prokinetic effect were adequately described using a semimechanistic multicompartment PK-PD model. Based on PD simulation, YH12852 at 0.05–5 mg is expected to decrease the half time for gastric emptying in a dose-dependent manner. We showed that the empirical Ghoos model is a special case of the general semimechanistic multicompartment PD model for gastric emptying. Our study
not only clarifies the mechanism of the prokinetic effects by YH12852 but also provides the reason why the simple and empirical Ghoos model has been used so successfully for describing kPCd.

CONFLICT OF INTEREST
Seong Bok Jang is an employee of Yuhan Corporation. All other authors declared no competing interests for this work.

AUTHOR CONTRIBUTIONS
S.K., H.A.L., S.B.J., and H.L. wrote the manuscript. S.B.J. and H.L. designed the research. S.K., H.A.L., S.B.J., and H.L. performed the research. S.K. and H.L. analyzed the data.

ORCID
Siun Kim https://orcid.org/0000-0003-1090-3978
Howard Lee https://orcid.org/0000-0001-6713-5418

REFERENCES
1. Lacy BE, Mearin F, Chang L, et al. Bowel disorders. *Gastroenterology*. 2016;150(6):1393-1407.e5. https://doi.org/10.1053/j.gastro.2016.02.031
2. Suares NC, Ford AC. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. *Am J Gastroenterol*. 2011;106:1582-1591. https://doi.org/10.1038/ajg.2011.164
3. Sun SX, DiBonaventura M, Purayidathil FW, Wagner J-S, Dabbous O, Mody R. Impact of chronic constipation on health-related quality of life, work productivity, and healthcare resource use: an analysis of the national health and wellness survey. *Dig Dis Sci*. 2011;56:2688-2695. https://doi.org/10.1007/s10620-011-1639-5
4. Shin JE, Jung HK, Lee TH, et al. Guidelines for the diagnosis and treatment of chronic functional constipation in Korea. *J Neurogastroenterol Motility*. 2016;22:383-411. https://doi.org/10.5056/jnm15185
5. Serra J, Mascort-Roca J, Marzo-Castillejo M, et al. Clinical practice guidelines for the management of constipation in adults. Part 2: Diagnosis and treatment. *Gastroenterología y Hepatología (English Edition)*. 2017;40(4):303-316. https://doi.org/10.1016/j.gastre.2017.03.013
6. Ford AC, Suares NC. Effect of laxatives and pharmacological therapies in chronic idiopathic constipation: systematic review and meta-analysis. *Gut*. 2011;60:209-218. https://doi.org/10.1136/gut.2010.227132
7. De Maeyer J, Lefebvre R, Schuurkes J. 5-HT4 receptor agonists: similar but not the same. *Neurogastroenterol Motil*. 2008;20:99-112. https://doi.org/10.1111/j.1365-2982.2007.01059.x
8. Tack J, Camilleri M, Chang L, et al. Systematic review: cardiovascular safety profile of 5-HT 4 agonists developed for gastrointestinal disorders. *Aliment Pharmacol Ther*. 2012;35:745-767. https://doi.org/10.1111/j.1365-2036.2012.05011.x

9. Gilsenan A, Fortuny J, Cánizos-Achirica M, et al. Cardiovascular safety of prucalopride in patients with chronic constipation: a multinational population-based cohort study. *Drug Saf*. 2019;42:1179-1190. https://doi.org/10.1007/s40264-019-00835-0

10. Camilleri M, Piessevaux H, Yiannakou Y, et al. Efficacy and safety of prucalopride in chronic constipation: an integrated analysis of six randomized, controlled clinical trials. *Dig Dis Sci*. 2016;61:2357-2372. https://doi.org/10.1007/s10620-016-4147-9

11. Tack J, Quigley E, Camilleri M, Vandeplasche L, Kerstens R. Efficacy and safety of oral prucalopride in women with chronic constipation in whom laxatives have failed: an integrated analysis. *United Eur Gastroenterol J*. 2013;1(1):48-59. https://doi.org/10.1177/2050640612474651

12. Jeong EJ, Chung SY, Hong HN, Oh SW, Sim JY. The novel, potent and selective 5-HT4 receptor agonist YH12852 significantly improves both upper and lower gastrointestinal motility. *Br J Pharmacol*. 2018;175:485-500. https://doi.org/10.1111/bph.14096

13. Lee HA, Ju Moon S, Yoo H, et al. YH12852, a potent and selective receptor agonist of 5-hydroxytryptamine, increased gastrointestinal motility in healthy volunteers and patients with functional constipation. *Clin Transl Sci*. 2021;14(2):625-634. https://doi.org/10.1111/bph.14294

14. Shih DQ, Kwan LY. All roads lead to Rome: update on Rome III criteria and new treatment options. *Gastroenterol Rep*. 2007;1:56-65. https://doi.org/10.1038/nrgastro.2013.14

15. ABDiagnostics. [13C]-Spirulina platensis Gastric Emptying Breath Test “GEBT” (Package Insert); 2013. https://doi.org/10.1097/01.bmsas.0000749552.42910.33

16. Szarka LA, Camilleri M, Vella A, et al. A stable isotope breath test with a standard meal for abnormal gastric emptying of solids in the clinic and in research. *Clin Gastroenterol Hepatol*. 2008;6(6):635-643.e1. https://doi.org/10.1016/j.cgh.2008.01.009

17. Xu XS, Yuan M, Karlsson MO, Dunne A, Nandy P, Vermeulen A. Shrinking in nonlinear mixed-effects population models: quantification, influencing factors, and impact. *APS J*. 2012;14:927-936. https://doi.org/10.1208/s12248-012-9407-9

18. Holford NHG, Ambros RJ, Steeckel K. Models for describing absorption rate and estimating extent of bioavailability: Application to cefetamet pivoxil. *J Pharmacokinet Biopharm*. 1992;20:421-442. https://doi.org/10.1007/BF01061464

19. Frame B, Miller R, Lalonde RL. Evaluation of mixture modeling with count data using NONMEM. *J Pharmacokin Pharmacodyn*. 2003;30:167-183. https://doi.org/10.1023/a:1025564409649

20. Ghoos YF, Maes BD, Geypens BJ, et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. *Gastroenterology*. 1993;104:1640-1647. https://doi.org/10.1016/0016-5085(93)90640-x

21. Quigley E, Vandeplasche L, Kerstens R, Ausma J. Clinical trial: the efficacy, impact on quality of life, and safety and tolerability of prucalopride in severe chronic constipation—a 12-week, randomized, double-blind, placebo-controlled study. *Aliment Pharmacol Ther*. 2009;29:315-328. https://doi.org/10.1111/j.1365-2036.2008.03884.x

22. Ke M, Zou D, Yuan Y, et al. Prucalopride in the treatment of chronic constipation in patients from the Asia-Pacific region: a randomized, double-blind, placebo-controlled study. *Neurogastroenterol Motil*. 2012;24:999-e541. https://doi.org/10.1111/j.1365-2982.2012.01983.x

23. Bharucha AE, Camilleri M, Veil E, Burton D, Zinsmeister AR. Comprehensive assessment of gastric emptying with a stable isotope breath test. *Neurogastroenterol Motil*. 2013;25:e60-e69. https://doi.org/10.1111/nmg.12054

24. Odunsi ST, Camilleri M, Szarka LA, Zinsmeister AR. Optimizing analysis of stable isotope breath tests to estimate gastric emptying of solids. *Neurogastroenterol Motil*. 2009;21:706. e38. https://doi.org/10.1111/j.1365-2982.2009.01283.x

25. Szarka LA, Camilleri M. Methods for measurement of gastric motility. *Am J Physiol-Gastrointest Liver Physiol*. 2009;296:G461-G475. https://doi.org/10.1152/ajpgi.00166.2008.00640-x

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Kim S, Lee HA, Jang SB, Lee H. A population pharmacokinetic-pharmacodynamic model of YH12852, a highly selective 5-hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation. *CPT Pharmacometrics Syst Pharmacol*. 2021;10:902–913. https://doi.org/10.1002/psp4.12664