Hints on 5d Fixed Point Theories from Non-Abelian T-duality

Yolanda Lozano (U. Oviedo)

IFT, March 2014
Motivation:

- 5d fixed point theories arise in the infinite bare coupling limit of N=1 SUSY gauge theories with very specific gauge groups and matter content \((\text{Seiberg’96; Intriligator, Morrison, Seiberg’97})\)
Motivation:

- 5d fixed point theories arise in the infinite bare coupling limit of N=1 SUSY gauge theories with very specific gauge groups and matter content (Seiberg’96; Intriligator, Morrison, Seiberg’97)

- $Sp(N)$ with specific matter content arises on D-brane probes \rightarrow Dual AdS_6 background as the near horizon geometry (Brandhuber, Oz’99)
Motivation:

- 5d fixed point theories arise in the infinite bare coupling limit of \(N=1 \) SUSY gauge theories with very specific gauge groups and matter content (Seiberg’96; Intriligator, Morrison, Seiberg’97)

- \(Sp(N) \) with specific matter content arises on D-brane probes \(\rightarrow \) Dual \(AdS_6 \) background as the near horizon geometry (Brandhuber, Oz’99)

- Gravity dual description particularly useful since these theories are intrinsically strongly coupled
Motivation:

• 5d fixed point theories arise in the infinite bare coupling limit of \(N=1 \) SUSY gauge theories with very specific gauge groups and matter content \((\text{Seiberg’96; Intriligator, Morrison, Seiberg’97})\)

• \(Sp(N) \) with specific matter content arises on D-brane probes → Dual \(AdS_6 \) background as the near horizon geometry \((\text{Brandhuber, Oz’99})\)

• Gravity dual description particularly useful since these theories are intrinsically strongly coupled

• String theory realization unknown in most cases
Motivation:

- 5d fixed point theories arise in the infinite bare coupling limit of $N=1$ SUSY gauge theories with very specific gauge groups and matter content (Seiberg’96; Intriligator, Morrison, Seiberg’97)

- $Sp(N)$ with specific matter content arises on D-brane probes → Dual AdS_6 background as the near horizon geometry (Brandhuber, Oz’99)

- Gravity dual description particularly useful since these theories are intrinsically strongly coupled

- String theory realization unknown in most cases

- Search for AdS_6 backgrounds: Brandhuber and Oz’s quite unique (Passias’12)
In this talk:

• New AdS_6 solution through non-Abelian T-duality
 (Y.L., O Colgain, Rodriguez-Gomez, Sfetsos, PRL (2013))

• Hints on the associated dual CFT
 (Y.L., O Colgain, Rodriguez-Gomez, arXiv:1311.4842)
Non-Abelian T-duality in AdS/CFT

- In 4 dim: (Sfetsos & Thompson’10)

 \[AdS_5 \times S^5 \quad \xrightarrow{\text{NATD}} \quad AdS_5 \times H_2 \times M_4 \quad (H_2 \rightarrow S^2) \]
 (Gaiotto & Maldacena geometries for N=2 SCFTs)

 \[AdS_5 \times T^{1,1} \quad \xrightarrow{\text{NATD}} \quad AdS_5 \times H_2 \times M_4 \quad (H_2 \rightarrow S^2) \]
 (Sicilian quivers (N=1 SCFTs)
 (Benini, Tachikawa, Wecht))

- Klebanov & Strassler
 \[\xrightarrow{\text{NATD}} \quad \text{New geometries in massive IIA} \]
 Confining quarks, domain walls,
 Seiberg duality,…

 (Itsios, Nuñez, Sfetsos & Thompson’13)
 (Nuñez & colab‘13,14)

martes 5 de agosto de 2014
• In 5 dim: \((Y.L., \text{ O Colgain, Rodriguez-Gomez, Sfetsos'12; Y.L., O Colgain, Rodriguez-Gomez'13}) \)

\[
AdS_6 \times S^4 \quad \xrightarrow{\text{NATD}} \quad \text{New } AdS_6 \text{ geometry in IIB}
\]

Dual CFT quiver with two nodes
Outline

1. 5d fixed point theories
2. The D4-D8 system
3. Non-Abelian T-duality back in the 90’s
4. Non-Abelian T-duality as a solution generating technique
5. The non-Abelian T-dual of Brandhuber & Oz
6. Hints on the 5d dual CFT
7. Conclusions and open issues
1. 5d fixed point theories

5d gauge theories are non-renormalizable:

\[
[g^2] = M^{-1} \rightarrow g^2 E \rightarrow \text{UV completion}
\]
1. 5d fixed point theories

5d gauge theories are non-renormalizable:

\[[g^2] = M^{-1} \rightarrow g^2 E \rightarrow \text{UV completion} \]

In string theory they arise on D4-brane probes:
1. 5d fixed point theories

5d gauge theories are non-renormalizable:

\[[g^2] = M^{-1} \rightarrow g^2 E \rightarrow \text{UV completion} \]

In string theory they arise on D4-brane probes:

• 5d SYM with maximal SUSY defined in the UV in terms of the (2,0) 6d theory.

In fact equivalent (Douglas’10; Lambert, Papageorgakis, Schmidt-Sommerfeld’10)
1. 5d fixed point theories

5d gauge theories are non-renormalizable:

\[[g^2] = M^{-1} \rightarrow g^2 E \rightarrow \text{UV completion} \]

In string theory they arise on D4-brane probes:

- 5d SYM with maximal SUSY defined in the UV in terms of the (2,0) 6d theory.

In fact equivalent (Douglas’10; Lambert, Papageorgakis, Schmidt-Sommerfeld’10)

- 5d SYM with minimal SUSY can be at fixed points for specific gauge groups and matter content, where they can exhibit interesting phenomena such as exceptional global symmetry groups (Seiberg’96; Intriligator, Morrison, Seiberg’97)
• 5d fixed point theories are intrinsically strongly coupled
• The string theory realization is only known for very specific cases

→ Search for new realizations by scanning over the possible AdS_6 vacua in SUGRA
• 5d fixed point theories are intrinsically strongly coupled

• The string theory realization is only known for very specific cases

→ Search for new realizations by scanning over the possible \(AdS_6 \) vacua in SUGRA

Passias’12: • Unique SUSY solution in massive IIA:
Near horizon of the D-brane system giving rise to \(Sp(N) \) with specific matter content
(Brandhuber, Oz’99)*

• Non-existence of \(AdS_6 \) solutions in other SUGRAs not completely excluded, but strongly suggested

* And orbifolds thereof (Bergman, Rodríguez-Gómez’12)
2. The D4-D8 system

5d SUSY fixed points with E_{N_f+1} global symmetry can be obtained in the infinite bare coupling limit of N=1 SYM with gauge group Sp(N), one antisymmetric hypermultiplet and $N_f < 8$ fundamental hypermultiplets (Seiberg’96)
2. The D4-D8 system

5d SUSY fixed points with E_{N_f+1} global symmetry can be obtained in the infinite bare coupling limit of N=1 SYM with gauge group Sp(N), one antisymmetric hypermultiplet and $N_f < 8$ fundamental hypermultiplets (Seiberg’96)

The theory can be engineered in Type I’ ST on a stack of N D4-branes probing a $O8^-$ plane with N_f D8-branes
2. The D4-D8 system

5d SUSY fixed points with E_{N_f+1} global symmetry can be obtained in the infinite bare coupling limit of N=1 SYM with gauge group Sp(N), one antisymmetric hypermultiplet and $N_f < 8$ fundamental hypermultiplets (Seiberg’96)

The theory can be engineered in Type I’ ST on a stack of N D4-branes probing a $O8^-$ plane with N_f D8-branes

From the D4-D4 sector:
- Vector multiplet with Sp(N) gauge symmetry
- Massless hyper in the antisym. of Sp(N)

From the D4-D8 sector:
- Massless hypers in the fundamental of $SO(2N_f)$
A D4-brane probe in the D8-O8 background metric
(Brandhuber, Oz’99; Ferrara, Kehagias, Partouche, Zaffaroni’98)

\[ds^2 = H_8^{-1/2} (-dt^2 + dx_1^2 + \cdots + dx_8^2) + H_8^{1/2} dz^2 \]

\[H_8(z) = c + 16 \frac{z}{l_s} - \sum_{i=1}^{8} \frac{|z - z_i|}{l_s} - \sum_{i=1}^{8} \frac{|z + z_i|}{l_s} \]

(\(z_i \): locations of the 16 D8-branes)

has a gauge coupling \(\frac{1}{g^2} = \frac{H_8}{l_s} \)
A D4-brane probe in the D8-O8 background metric
(Brandhuber, Oz’99; Ferrara, Kehagias, Partouche, Zaffaroni’98)

\[ds^2 = H_8^{-1/2}(-dt^2 + dx_1^2 + \cdots + dx_8^2) + H_8^{1/2}dz^2 \]

\[H_8(z) = c + 16 \frac{z}{l_s} - \sum_{i=1}^{8} \frac{|z - z_i|}{l_s} - \sum_{i=1}^{8} \frac{|z + z_i|}{l_s} \]

(\(z_i \) : locations of the 16 D8-branes)

has a gauge coupling \[\frac{1}{g^2} = \frac{H_8}{l_s} \]

In the field theory limit (\(l_s \to 0 \) + gauge coupling fixed):

\[\phi = \frac{z}{l_s^2} \text{ must be constant } \Rightarrow \text{ Region near } z = 0 \text{ (location of the O8- plane)} \]
Then:
\[
\frac{1}{g^2} = \frac{c}{l_s} + 16\phi - \sum_{i=1}^{8} |\phi - m_i| - \sum_{i=1}^{8} |\phi + m_i|
\]

with \(\phi = \frac{z}{l_s^2} \), \(m_i = \frac{z_i}{l_s^2} \).

This reproduces the effective gauge coupling of the 5d Sp(N) gauge theory with 16 fundamental hypers with masses \(m_i \) and one massless antisym. hypermultiplet \(\text{(Seiberg'96)} \).
Then: \[\frac{1}{g^2} = \frac{c}{l_s^2} + 16\phi - \sum_{i=1}^{8} |\phi - m_i| - \sum_{i=1}^{8} |\phi + m_i| \]

with \(\phi = \frac{\tilde{z}}{l_s^2} \), \(m_i = \frac{\tilde{z}_i}{l_s^2} \).

This reproduces the effective gauge coupling of the 5d Sp(N) gauge theory with 16 fundamental hypers with masses \(m_i \) and one massless antisym. hypermultiplet (Seiberg’96)

Taking \(N_f \) massless hypermultiplets:

\[\frac{1}{g^2} = \frac{1}{g_{cl}^2} + 16\phi - \sum_{i=1}^{N_f} |\phi - m_i| - \sum_{i=1}^{N_f} |\phi + m_i| \]

one gets:

\[\frac{1}{g^2} = \frac{1}{g_{cl}^2} + (16 - 2N_f)\phi \]
\[
\frac{1}{g^2} = \frac{1}{g_{\text{cl}}^2} + (16 - 2N_f)\phi
\]

implies that:

- For \(N_f > 8 \), \(g^2 \) becomes negative at some point in the moduli space → Sick theory
\[\frac{1}{g^2} = \frac{1}{g_{cl}^2} + (16 - 2N_f)\phi \] implies that:

- For \(N_f > 8 \), \(g^2 \) becomes negative at some point in the moduli space \(\rightarrow \) Sick theory

- For \(N_f < 8 \) there are no singularities

\[\Rightarrow \text{If } g_{cl} \rightarrow \infty \text{ there can be a scale invariant fixed point at the origin of the Coulomb branch} \]
\[\frac{1}{g^2} = \frac{1}{g_{cl}^2} + (16 - 2N_f)\phi \] implies that:

- For \(N_f > 8 \), \(g^2 \) becomes negative at some point in the moduli space \(\rightarrow \) Sick theory

- For \(N_f < 8 \) there are no singularities

\[\Rightarrow \text{If } g_{cl} \to \infty \text{ there can be a scale invariant fixed point} \]

at the origin of the Coulomb branch

Here the global symmetry of the theory: \(SU(2) \times SO(2N_f) \times U(1) \)
is enhanced to \(SU(2) \times E_{N_f+1} \) due to instantons (D0-branes) becoming massless
\[
\frac{1}{g^2} = \frac{1}{g_{cl}^2} + (16 - 2N_f)\phi \quad \text{implies that:}
\]

- For \(N_f > 8 \), \(g^2 \) becomes negative at some point in the moduli space \(\rightarrow \) Sick theory

- For \(N_f < 8 \), there are no singularities
 \[\Rightarrow \text{If } g_{cl} \rightarrow \infty \] there can be a scale invariant fixed point at the origin of the Coulomb branch

Here the global symmetry of the theory: \(SU(2) \times SO(2N_f) \times U(1)_I \) is enhanced to \(SU(2) \times E_{N_f+1} \) due to instantons (D0-branes) becoming massless

The field theory calculation can be generalized to other gauge groups and matter content \((\text{Intriligator, Morrison, Seiberg’97}) \), which lack however an AdS/CFT description
The near horizon geometry of the D4-D8 system is a fibration of AdS_6 over half-S^4 with an S^3 boundary at the position of the O8-plane, preserving 16 SUSYs.

$$ ds^2 = \frac{W^2 L^2}{4} \left[9 ds^2(AdS_6) + 4 ds^2(S^4) \right] $$

$$ F_4 = 5 L^4 W^{-2} \sin^3 \theta \, d\theta \wedge \text{Vol}(S^3) $$

$$ e^{-\phi} = \frac{3 L}{2 W^5} , \quad W = (m \cos \theta)^{-\frac{1}{6}} $$

$$ m = \frac{8 - N_f}{2\pi l_s} $$

$\theta \in [0, \frac{\pi}{2}]$
The near horizon geometry of the D4-D8 system is a fibration of AdS_6 over half-S^4 with an S^3 boundary at the position of the O8-plane, preserving 16 SUSYs.

$$ds^2 = \frac{W^2 L^2}{4} \left[9 ds^2(AdS_6) + 4 ds^2(S^4) \right]$$

$$F_4 = 5 L^4 W^{-2} \sin^3 \theta \, d\theta \wedge \text{Vol}(S^3)$$

$$e^{-\phi} = \frac{3 L}{2 W^5}, \quad W = (m \cos \theta)^{-\frac{1}{6}}$$

$\theta \in [0, \frac{\pi}{2}]$

$$m = \frac{8 - N_f}{2\pi l_s}$$

• $SO(5)$ symmetry broken to $SO(4) \sim SU(2) \times SU(2)$:

$SU(2) \leftrightarrow SU(2)_R$ R-symmetry of the field theory

$SU(2) \leftrightarrow$ global symmetry massless antisym. hyper

martes 5 de agosto de 2014
The near horizon geometry of the D4-D8 system is a fibration of AdS_6 over half-S^4 with an S^3 boundary at the position of the O8-plane, preserving 16 SUSYs.

\[ds^2 = \frac{W^2 L^2}{4} \left[9 ds^2(AdS_6) + 4 ds^2(S^4) \right] \]

\[F_4 = 5 L^4 W^{-2} \sin^3 \theta \, d\theta \wedge \text{Vol}(S^3) \]

\[e^{-\phi} = \frac{3 L}{2 W^5} , \quad W = (m \cos \theta)^{-\frac{1}{6}} \]

\[\theta \in [0, \frac{\pi}{2}] \]

\[m = \frac{8 - N_f}{2\pi l_s} \]

- $SO(5)$ symmetry broken to $SO(4) \sim SU(2) \times SU(2)$:

 $SU(2) \leftrightarrow SU(2)_R$ R-symmetry of the field theory

 $SU(2) \leftrightarrow$ global symmetry massless antisym. hyper

- $SO(2, 5) \leftrightarrow$ Conformal symmetry
Passias’12: Analyzed the constraints imposed by SUSY on the geometry and fluxes of $AdS_6 \times M_4$ warped backgrounds in massive IIA → Brandhuber & Oz only possible background
Passias’12: Analyzed the constraints imposed by SUSY on the geometry and fluxes of $AdS_6 \times M_4$ warped backgrounds in massive IIA → Brandhuber & Oz only possible background

Non-existence of AdS_6 solutions in other SUGRAs not completely excluded, but strongly suggested
Passias’12: Analyzed the constraints imposed by SUSY on the geometry and fluxes of $AdS_6 \times M_4$ warped backgrounds in massive IIA \rightarrow Brandhuber & Oz only possible background

Non-existence of AdS_6 solutions in other SUGRAs not completely excluded, but strongly suggested

We will see: New AdS_6 solution in Type IIB through non-Abelian T-duality*

* Also through Abelian T-duality, describing the same fixed point theory
3. Non-Abelian T-duality back in the 90’s

Rocek and Verlinde’s formulation of Abelian T-duality for ST in a curved background (Buscher’88):

\[
S = \frac{1}{4\pi\alpha'} \int \left(g_{\mu\nu} \, dX^\mu \wedge \ast dX^\nu + B_{\mu\nu} \, dX^\mu \wedge dX^\nu \right) + \frac{1}{4\pi} \int R^{(2)} \phi
\]

In the presence of an Abelian isometry: \(\delta X^\mu = \epsilon \, k^\mu \) /

\[
\mathcal{L}_k g = 0, \quad \mathcal{L}_k B = d\omega, \quad i_k d\phi = 0
\]

i) Go to adapted coordinates: \(X^\mu = \{ \theta, X^\alpha \} \) such that \(\theta \rightarrow \theta + \epsilon \) and \(\partial_\theta (\text{backgrounds}) = 0 \)
ii) **Gauge the isometry:**
\[d\theta \rightarrow D\theta = d\theta + A \]

A non-dynamical gauge field / \[\delta A = -d\epsilon \]

iii) **Add a Lagrange multiplier term:** \(\tilde{\theta} dA \), such that
\[\int D\tilde{\theta} \rightarrow dA = 0 \Rightarrow A \text{ exact} \]
(in a topologically trivial worldsheet)

+ fix the gauge: \(A = 0 \) \(\rightarrow \) **Original theory**

iv) **Integrate the gauge field**

+ fix the gauge: \(\theta = 0 \) \(\rightarrow \) **Dual sigma model:**

\[\{\theta, X^\alpha\} \rightarrow \{\tilde{\theta}, X^\alpha\} \text{ and} \]
\[\tilde{g}_{00} = \frac{1}{g_{00}}; \quad \tilde{g}_{0\alpha} = \frac{B_{0\alpha}}{g_{00}}; \quad \tilde{g}_{\alpha\beta} = g_{\alpha\beta} - \frac{g_{0\alpha}g_{0\beta} - B_{0\alpha}B_{0\beta}}{g_{00}} \]

\[\tilde{B}_{0\alpha} = \frac{g_{0\alpha}}{g_{00}}; \quad \tilde{B}_{\alpha\beta} = B_{\alpha\beta} - \frac{g_{0\alpha}B_{0\beta} - g_{0\beta}B_{0\alpha}}{g_{00}} \]

\[\tilde{\phi} = \phi - \log g_{00} \]

Buscher’s formulae

- Conformally invariant
- Involutive transformation: \(\tilde{S} \xrightarrow{\tilde{\theta} \to \tilde{\theta} + \epsilon} S \)

- **Arbitrary worldsheets?** (symmetry of string perturbation theory):

(a) ![Diagram](image1.png)
(b) ![Diagram](image2.png)

martes 5 de agosto de 2014
Non-trivial topologies + compact isometry orbits

Large gauge transformations: \[\int_{\gamma} d\epsilon = 2\pi n ; \ n \in \mathbb{Z} \]

To fix them:

Multivalued Lagrange multiplier: \[\int_{\gamma} d\tilde{\theta} = 2\pi m ; \ m \in \mathbb{Z} \]
such that
\[\int [\text{exact}] \to dA = 0 \quad + \quad \int [\text{harmonic}] \Rightarrow A \text{ exact} \]

The gauging procedure works for all genera

(Rocek, Verlinde’91)
Non-Abelian T-duality

(De la Ossa, Quevedo’93)

Non-Abelian continuous isometry: \[X^m \to g_n^m X^n, \; g \in G \]

i) Gauge it:
\[dX^m \to DX^m = dX^m + A^m_n X^n \]
\[A \in \text{Lie algebra of } G \quad A \to g(A + d)g^{-1} \]

ii) Add a Lagrange multiplier term:
\[\text{Tr}(\chi F) \]
\[F = dA - A \wedge A \]
\[\chi \in \text{Lie Algebra of } G, \; \chi \to g\chi g^{-1}, \text{ such that} \]
\[\int D\chi \to F = 0 \Rightarrow A \text{ exact} \]
(in a topologically trivial worldsheet)

+ fix the gauge: \[A = 0 \Rightarrow \text{Original theory} \]
iii) Integrate the gauge field + fix the gauge \rightarrow \text{Dual theory}
iii) Integrate the gauge field + fix the gauge \rightarrow Dual theory

Example: Principal chiral model with group SU(2):

Geometrically: S^3

$$L = Tr(g^{-1}dg \wedge *g^{-1}dg);\ g \in SU(2)$$

Invariant under:

$$g \rightarrow h_1 \ g \ h_2;\ h_1, h_2 \in SU(2)$$

Choose:

$$g \rightarrow hg;\ h \in SU(2)$$

$$\tilde{L} = \frac{1}{1 + \chi^2} \left(\delta_{ij} - \epsilon_{ijk} \chi^k + \chi_i \chi_j \right) d\chi^i \wedge *d\chi^j$$

Invariant under

$$\chi \rightarrow h\chi h^{-1};\ h \in SU(2)$$
• Non-involutive
• Higher genus generalization? Set to zero \(W_\gamma = P e^{\gamma} A \)
• Global properties?

\[\chi \in \mathbb{R}^3: \text{ Global completion of } \mathbb{R}^3? \]
• Conformal invariance not proved in general
• Non-involutive
• Higher genus generalization? Set to zero \(W_\gamma = P e^{f_\gamma} A \)
• Global properties?
 \[\chi \in \mathbb{R}^3: \text{ Global completion of } \mathbb{R}^3? \]
• Conformal invariance not proved in general

True symmetry in String Theory?
• Non-involutive
• Higher genus generalization? Set to zero \(W_\gamma = Pe^{f_\gamma} A \)
• Global properties?
 \(\chi \in \mathbb{R}^3: \) Global completion of \(\mathbb{R}^3 \) ?
• Conformal invariance not proved in general

True symmetry in String Theory?

Still, interesting as a solution generating technique

(Sfetsos, Thompson’10)
4. Non-Abelian T-duality as a solution generating technique:

Need to know how the RR fields transform

In the Abelian case: Reduce to a unique $N=2, d=9$ SUGRA (Bergshoeff, Hull, Ortín’95)

Hassan’99: Implement the relative twist between left and right movers in the bispinor formed by the RR fields:

$$\hat{P} = P\Omega^{-1}$$

$$P = \frac{e^\phi}{2} \sum_k \frac{1}{k!} F_{\mu_1...\mu_k} \Gamma^{\mu_1...\mu_k}$$

with

$$\Omega = \sqrt{g_{00}^{-1} \Gamma_{11} \Gamma^0}$$

Same thing in the non-Abelian case (Sfetsos, Thompson’10)
Interesting new solutions have been found with CFT duals

But what if NATD is not a symmetry of ST?

Some of the properties of the CFT may no longer hold after adding corrections on the inverse ‘t Hooft coupling or $1/N$
Take the $AdS_6 \times S^4$ background

$$ds^2 = \frac{W^2 L^2}{4} \left[9ds^2(AdS_6) + 4(d\theta^2 + \sin^2 \theta ds^2(S^3)) \right]$$

$$F_4 = 5L^4W^{-2}\sin^3 \theta \, d\theta \wedge \text{Vol}(S^3)$$
5. The non-Abelian T-dual of Brandhuber and Oz

• Take the $AdS_6 \times S^4$ background

\[
ds^2 = \frac{W^2 L^2}{4} \left[9ds^2(AdS_6) + 4\left(d\theta^2 + \sin^2 \theta ds^2(S^3)\right)\right]
\]

\[
F_4 = 5L^4 W^{-2} \sin^3 \theta \, d\theta \wedge \text{Vol}(S^3)
\]

• Dualize it w.r.t. one of the $SU(2)$ symmetries
5. The non-Abelian T-dual of Brandhuber and Oz

• Take the $AdS_6 \times S^4$ background

$$ds^2 = \frac{W^2 L^2}{4} \left[9ds^2(AdS_6) + 4 \left(d\theta^2 + \sin^2 \theta ds^2(S^3) \right) \right]$$

$$F_4 = 5L^4 W^{-2} \sin^3 \theta \, d\theta \wedge \text{Vol}(S^3)$$

• Dualize it w.r.t. one of the $SU(2)$ symmetries

In spherical coordinates adapted to the remaining $SU(2)$:

$$ds^2 = \frac{W^2 L^2}{4} \left[9 \, ds^2(AdS_6) + 4 \, d\theta^2 \right] + e^{-2A} \, dr^2 + \frac{r^2 \, e^{2A}}{r^2 + e^4 A} \, ds^2(S^2)$$

$$B_2 = \frac{r^3}{r^2 + e^4 A} \, \text{Vol}(S^2) \quad e^{-\phi} = \frac{3 L}{2 \, W^5} \, e^A \sqrt{r^2 + e^4 A}$$

$$F_1 = -G_1 - m \, r \, dr \quad F_3 = \frac{r^2}{r^2 + e^4 A} \left[-r \, G_1 + m \, e^{4A} \, dr \right] \wedge \text{Vol}(S^2)$$
• It solves the IIB equations of motion
• It solves the IIB equations of motion
• SUSY preserved! First example of a non-Abelian T-dual geometry with supersymmetry fully preserved
 This is because the internal symmetry is really $SU(2) \times SU(2)_R$ and we dualize on the $SU(2)$ global symmetry
• It solves the IIB equations of motion
• SUSY preserved! First example of a non-Abelian T-dual geometry with supersymmetry fully preserved
 This is because the internal symmetry is really $SU(2) \times SU(2)_R$ and we dualize on the $SU(2)$ global symmetry
• Boundary at $\theta = \frac{\pi}{2}$ inherited.
• It solves the IIB equations of motion

• SUSY preserved! First example of a non-Abelian T-dual geometry with supersymmetry fully preserved

 This is because the internal symmetry is really $SU(2) \times SU(2)_R$ and we dualize on the $SU(2)$ global symmetry

• Boundary at $\theta = \frac{\pi}{2}$ inherited.

• What about r?

 • Background perfectly smooth for all r
 • No global properties inferred from the non-Abelian transf.
 • Assume $r \in [0, R]$ (to avoid a continuous spectrum of fluctuations), and try to infer global properties by demanding consistency to the dual background
6. Hints on the 5d dual CFT

i) Quantization of charges:

\[D4 \leftrightarrow D5 \ (N^\theta_5) \]
\[D7 \ (N^\theta_7) \]
\[D8 \leftrightarrow D7 \ (N^r_7) \]
\[D5 \ (N^r_5) \]
6. Hints on the 5d dual CFT

i) Quantization of charges:

\[\begin{align*}
\text{D4} & \leftrightarrow \text{D5} \quad (N_5^\theta) \\
\text{D7} & \leftrightarrow \text{D8} \quad (N_7^\theta) \\
\text{D7} & \leftrightarrow \text{D5} \quad (N_7^r)
\end{align*} \]

\[N_5^\theta \text{ and } N_5^r \text{ depend on the large gauge transf. of } B_2: \]

\[B_2 = \left(\frac{r^3}{r^2 + e^{4A}} - n\pi \right) \text{Vol}(S^2) \quad \text{with} \quad b = \frac{1}{4\pi^2} \int_{S^2} B_2 \in [0, 1] \]

(which seems, on the other hand, to undergo something reminiscent of the cascade in KS), in such a way that they cannot be integers for all \((r, \theta)\) unless \(n = 0\)
6. Hints on the 5d dual CFT

i) Quantization of charges:

\[B_2 = \left(\frac{r^3}{r^2 + e^{4A}} - n\pi \right) \text{Vol}(S^2) \]

\[b = \frac{1}{4\pi^2} \int_{S^2} B_2 \in [0, 1] \]

\(N_5^\theta \) and \(N_5^r \) depend on the large gauge transf. of \(B_2 \):

\(N_5^\theta \) and \(N_5^r \) depend on the large gauge transf. of \(B_2 \):

\(\text{(which seems, on the other hand, to undergo something reminiscent of the cascade in KS), in such a way that they cannot be integers for all} \ (r, \theta) \ \text{unless} \ n = 0 \)

This fixes the maximum value of \(r \) to \(r = \pi \)
ii) Probe the Coulomb branch:

2 directions \leftrightarrow BPS D5 and D7 branes
ii) Probe the Coulomb branch:

2 directions \leftrightarrow BPS D5 and D7 branes

Fluctuations of these branes:

D5: $S_{DBI} = \int \frac{1}{g_{D5}^2} F_{\mu\nu}^2$, \quad \frac{1}{g_{D5}^2} = \frac{9 L^2 m^{-1/3} N_r^7}{128 \pi^3} \rho$

$S_{5dCS} = \frac{(2\pi)^3}{6} T_5 \int F_1 \int A \wedge F \wedge F = -\frac{N_r^7}{24 \pi^2} \int A \wedge F \wedge F$
ii) Probe the Coulomb branch:

2 directions \leftrightarrow BPS D5 and D7 branes

Fluctuations of these branes:

D5:

$$S_{DBI} = \int \frac{1}{g_{D5}^2} F_{\mu\nu}^2, \quad \frac{1}{g_{D5}^2} = \frac{9 L^2 m^{-1/3} N_r^7}{128 \pi^3} \rho$$

$$S_{5d\,CS} = \frac{(2\pi)^3}{6} T_5 \int F_1 \int A \wedge F \wedge F = -\frac{N_r^7}{24 \pi^2} \int A \wedge F \wedge F$$

Consistently, we should find a wrapped brane with a tadpole given by the CS coefficient:

D1-brane wrapped on r :

$$S_{CS} = -N_r^7 \int A_t$$
ii) Probe the Coulomb branch:

2 directions \leftrightarrow BPS D5 and D7 branes

Fluctuations of these branes:

D5: $S_{DBI} = \int \frac{1}{g_{D5}^2} F_{\mu\nu}^2$, \quad \frac{1}{g_{D5}^2} = \frac{9 L^2 m^{-1/3} N_7^r}{128 \pi^3} \rho$

$S_{5d CS} = \frac{(2\pi)^3}{6} T_5 \int F_1 \int A \wedge F \wedge F = -\frac{N_7^r}{24 \pi^2} \int A \wedge F \wedge F$

Consistently, we should find a wrapped brane with a tadpole given by the CS coefficient:

D1-brane wrapped on r: \quad $S_{CS} = -N_7^r \int A_t$

D7: Same with $N_7^r \leftrightarrow N_5^r$, D1 \leftrightarrow D3 wrapped on S^2
ii) Baryon-like operators:

Dual to branes wrapped on the internal geometry with a tadpole proportional to the rank of the gauge group

In the D4-D8 background: D4-brane with N charge, projected out by the orbifold

In the non-Abelian dual: D1-brane with N_7^θ charge plus D3-brane (wrapped on S^2) with N_5^θ charge

Projected out by the dual orbifold

In any case they inform about the ranks of the dual gauge groups
iv) Putting it all together:

We seem to have two gauge groups with ranks N_7^θ, N_5^θ and flavor symmetries N_5^r, N_7^r.

N_5^θ actually zero, such that the background is globally well defined.

Manifestation in the CFT of a perfectly regular background terminating at a point?
7. Conclusions and open issues

- Could a clear prescription for global properties lead to a regular background for arbitrary large gauge transformations, with non depleted gauge groups in the dual CFT?
7. Conclusions and open issues

• Could a clear prescription for global properties lead to a regular background for arbitrary large gauge transformations, with non depleted gauge groups in the dual CFT?

Depletion of the gauge group reminiscent of the cascade?
7. Conclusions and open issues

• Could a clear prescription for global properties lead to a regular background for arbitrary large gauge transformations, with non depleted gauge groups in the dual CFT?

Depletion of the gauge group reminiscent of the cascade?

Non-Abelian T-dual as an effective description? (Sfetsos’13)
7. Conclusions and open issues

- Could a clear prescription for global properties lead to a regular background for arbitrary large gauge transformations, with non depleted gauge groups in the dual CFT?

Depletion of the gauge group reminiscent of the cascade?

Non-Abelian T-dual as an effective description? (Sfetsos’13)

- Nature of the dual gauge groups: What is the orientifold projection in the dual theory?

\[I_\theta \Omega \rightarrow I_\theta I_\chi \Omega : \]

Dual \(O_\rho^- \) located at \(\theta = \frac{\pi}{2}, r = 0 \)

D5-D7 system?
• New fixed points associated with product gauge groups are ruled out in the “fairly” complete classification of Intriligator, Morrison, Seiberg
• New fixed points associated with product gauge groups are ruled out in the “fairly” complete classification of Intriligator, Morrison, Seiberg

• Uniqueness statement for AdS_6 SUSY solutions in massive IIA (Passias’12) → Classify SUSY AdS_6 solutions in IIB. Abelian and non-Abelian duals of Brandhuber-Oz only solutions?
• New fixed points associated with product gauge groups are ruled out in the “fairly” complete classification of Intriligator, Morrison, Seiberg

• Uniqueness statement for AdS_6 SUSY solutions in massive IIA (Passias’12) → Classify SUSY AdS_6 solutions in IIB. Abelian and non-Abelian duals of Brandhuber-Oz only solutions?

Thanks!