The association between dietary habits and metabolic syndrome: findings from the Shahedieh-cohort study

Zahra Fallah1,2†, Mina Darand3†, Amin Salehi-Abargouei1,2, Masoud Mirzaei4, Gordon A. Ferns5 and Sayyed Saeid Khayyatzadeh1,2*

Abstract

Objective: Metabolic syndrome (MetS) is a complex disorder with an increasing prevalence globally. Limited data are available about the association between dietary habits and the prevalence of MetS. The present cross-sectional study aimed to investigate the association between dietary habits and MetS in a large population sample from Iranians.

Methods: The study was conducted on 9261 adults aged 35–70 years who attended the baseline phase of Shahedieh cohort study, Yazd, Iran. Dietary habits including meal frequency, fried food consumption, adding salt to prepared meal, barbecued food consumption, used oil type and reuse oil number were assessed by a standard questionnaire. MetS was defined using the National Cholesterol Education Program Adult Treatment Panel III criteria. Logistic regression was used in different adjusted models to investigate the relationship between dietary habits and MetS: (Model I: adjusted for age, sex and energy. Model II: Model I + adjusted for wealth score index and physical activity. Model III: Model II + adjusted for cardiovascular diseases and liver diseases).

Results: The subjects who ate barbecued-food more than 3 times/month had 1.18 times greater odds for MetS than individual who ate this less than once/month (OR: 1.18, 95% CI: 1.01–1.38). After further adjustment for other confounding variables, the association remained significant. No significant association was found between other dietary habits and odds of MetS.

Conclusion: Higher intakes of barbecued-food consumption were related to the prevalence of MetS. Larger longitudinal studies in other population groups are needed to confirm these associations.

Keywords: Metabolic syndrome, Dietary habits, Barbecued-food, Meal, Fried food

Introduction

Metabolic syndrome (MetS) is a clustering of metabolic and anthropometric abnormalities, including abdominal obesity, hypertension, increased blood glucose, elevated triglyceride (TG) and decreased high-density lipoprotein cholesterol (HDL-c) that is associated with an increased risk of coronary heart disease, stroke, type 2 diabetes and mental disorders [1, 2]. The global prevalence of MetS is increasing dramatically, and its prevalence among adults was approximately 25% in 2017 [3]. The prevalence of MetS among Iranians is high and is estimated to be approximately 30.4% [4]. MetS is a major health care problem and reduces the quality of life, therefore, finding effective strategies to prevent and manage this disease is essential [5, 6].

© The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
The pathophysiology of MetS is complex, and genetic as well as environmental factors are involved [7]. Diet is one of the most important modifiable environmental factors [8]. Some studies [9, 10] but not all [11, 12] indicate that poor eating habits can lead to the development and progression of MetS. A recent study indicated that subjects with MetS had a higher consumption of fatty and sweeter food and undesirable eating habits such as faster eating and frequent overeating than healthy people [9]. Adding salt to the food, not regularly eating salads, high meat consumption, a high intake of fried foods and adherence to the western diets are associated with risk of MetS [10, 12]. However, limited data are available about some other dietary habits including meal frequency or barbecued food consumption and MetS. Therefore, the aim of this study was evaluating the relationship between some dietary habits and prevalence of MetS among a large sample of adults who live in central region of Iran.

Method and materials
Study population and data collection
The present study is a cross-sectional analysis of subjects in the recruitment phase of the Shahedieh cohort study (this study was begun in 2015 and will be completed in 2025), and is a part of the PERSIAN multi-center cohort study performed on a representative sample of the Iranian adult population of 35–70 years old from 2015 to 2016 [13]. The details of the study protocol of the PERSIAN cohort was published previously [14]. In enrollment of this cohort study, 10,000 people 35–70 years residing in three areas of Yazd, Iran were recruited by multistage cluster random. Inclusion criteria included men and women aged 35–70 years that were active and multistage cluster random. Inclusion criteria included men and women aged 35–70 years that were active and energetic enough to participate in the study, being of Iranian descent and living in the designated areas for at least 9 months of the year. The individuals with physical or psychological disabilities who were unable to complete the enrollment process were excluded from the cohort study. History of diseases was assessed by a physician. In this cross-sectional study, the individuals with a history of cancer or autoimmune diseases were excluded (n = 739), and finally 9261 individuals were included in analyses. The written informed consent was obtained from all the participants and the ethics committee of Shahid Sadoughi University of Medical Sciences approved the study (approval code: IR.SSU.SPH.REC.1397.161). All methods were carried out in accordance with relevant guidelines and regulations.

Demographic assessments
Data on age and sex were obtained through by face to face interview. The participants reported their physical activity level in the last year, and the data obtained from questionnaire was converted into the metabolic equivalent of task hours per week (MET-h/wk) [15]. Wealth score index (WSI) is estimated by multiple correspondence analysis of variables (own car, car type, the number of books the participant has read in the past year, the total number of international trips the participant has taken during lifetime, the number of international pilgrimage trips the participant has taken, the number of international non-pilgrimage trips the participant has taken and the number of trips the participant has made within Iran in the past 10 years).

Anthropometric and blood pressure measurements
Weight was measured using a digital scale (SECA, model 755, Germany) with minimum clothing and without shoes with an accuracy of 0.1 kg. Height was measured accurately without shoes by a tape measure attached to the wall without any bumps with a precision of 0.5 cm. Body Mass Index (BMI) (kg/m²) was calculated as the weight (kg) divided by height squared (m²). Mid-distance between the iliac crest and lowest rib was considered to measure waist circumference (WC). Blood pressure (BP) was measured twice by an experienced nurse using a digital automatic blood pressure monitor (Model M6 Comfort; Omron), with a 5-minute interval between readings.

Dietary intakes assessments
Dietary intakes were assessed using a 121-item semi-quantitative food frequency questionnaire (FFQ), and the participants were asked about their dietary intakes over the past year. The study participants were interviewed by trained nutritionists. Two types of questions were asked from the participants about each food item: 1) the frequency of food consumption (number of times per month, week, or day the food was consumed) in the previous year, and 2) the amount of the food that was usually consumed every time (portion size based on the standard serving sizes commonly consumed by Iranians). All reported intakes were converted to g/day using household measures of consumed foods. Finally, the Nutritionist IV software was used to calculate nutrients intakes [16].

Dietary habits evaluation
Information on dietary habits was obtained at the same time as blood samples were collected. Dietary habits including meal frequency (<3 meals/day, 3 meals/day, 4–6 meals/day and > 6 meals/day), fried food consumption (<1 time/month, 1–3 times/month, 1–3 times/week and daily), adding salt to prepared food (no, sometimes, yes), barbecued food consumption (<1 time/month, 1–3 times/month and > 3 time/month), used oil type (solid oil, semi solid oil or margarine, liquid oil, frying oil),
(none, once, more than twice) were assessed through a standard questionnaire during the past year.

Biochemical assessment
After 10–12 hours of fasting, 25 ml of the patient’s blood sample was collected. Blood samples were centrifuged to separate serum. Serum fasting blood glucose (FBG), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-c) were measured using an auto-analyzer (Analyzer BT1500) using Pars Azmun standard kits.

Metabolic syndrome definition
MetS was defined based on National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria. According to the NCEP ATP III definition, metabolic syndrome is present if three or more of the following five criteria are met: waist circumference over 40 in. (men) or 35 in. (women), blood pressure equal to or greater than 130/85 mmHg, TG level equal to or greater than 150 mg/dl, HDL-c level less than 40 mg/dl (men) or 50 mg/dl (women) and FBG equal to or greater than 100 mg/dl [17].

Statistical analysis
The quantitative (age, physical activity, BMI, WC, FBG, and dietary intakes) and qualitative data (gender, cardiovascular or liver diseases presence) were compared across categories for dietary habits using one-way ANOVA and chi-square tests, respectively. Tukey test was applied as a post hoc analysis. To find the association between dietary habits and metabolic syndrome, we used logistic regression in different models. In model I, we adjusted only age and total energy intake; in model II, BMI, gender, smoking, and physical activity were additionally adjusted. Final adjustments were performed for the history of cardiovascular diseases and liver diseases. Data were analyzed using the Statistical Package for Social Sciences (SPSS, version 15.0). P values less than 0.05 were considered statistically significant.

Results
The general characteristics of study participants across categories of dietary habits are reported in Table 1. The findings of Tukey’s analysis show that consumption of barbecued food and fried foods and also, adding salt to prepared meals was more common among young people. Furthermore, the WSI was significantly different among the categories of fried food consumption, barbecued food consumption, and used oil type. For example, people who used more barbecued foods and also used frying oil in food preparation had a higher WSI.

The distribution of MetS and its components are presented in Table 2. The results of Tukey’s analysis showed that TG levels were higher in people who consumed barbecue food more than 3 times a month compared to those who consumed it less than 1 a month, while HDL-C levels were significantly lower. In addition, significant differences were seen for SBP and WC among categories of adding salt to a prepared meal. Surprisingly, individuals who added salt to prepared food had significantly lower waist circumference and systolic blood pressure.

Dietary macronutrient and micronutrient intakes of study participants according to categories of dietary habits are shown in Tables 3 and 4, respectively. After Tukey Analysis, the individual in the last categories of meal frequency, fried food consumption, and adding salt to a prepared meal had significantly higher energy intake. There were significant differences in protein, fiber, vitamin A, folate, potassium, and sodium across categories of meal frequency. The individuals with daily consumption of fried food received lower amounts of protein, carbohydrate, and fiber. The intake of fat, folate, and potassium was higher in people who ate barbecued food more than 3 times/month than in other people, while the intake of carbohydrates and sodium was lower in them.

Multivariate-adjusted odds ratios of the associations between dietary habits and metabolic syndrome are presented in Table 5. Participants who ate barbecued food more than three times a month had a greater odds of MetS than those who ate barbecued food less than once a month (OR: 1.185, 95% CI: 1.015–1.383, P = 0.051). These associations remained significant after adjustment for for age, sex, energy, WSI and physical activity (OR: 1.200, 95% CI: 1.025–1.405, P = 0.028). Further adjustment for cardiovascular and liver diseases did not change the association. (OR: 1.190, 95% CI: 1.014–1.396, P = 0.034). No significant associations were observed between odds of MetS with other dietary habits such as meal frequency (OR: 1.296, 95% CI: 0.886–1.895, P = 0.85), fried food consumption (OR: 0.902, 95% CI: 0.708–1.150, P = 0.771), adding salt to prepared food (OR: 1.011, 95% CI: 0.865–1.180, P = 0.781), used oil type (OR: 1.096, 95% CI: 0.932–1.288, P = 0.268), and reuse oil number (OR: 1.051, 95% CI: 0.761–1.451, P = 0.764) in model I, II and III.

Discussion
In the present cross-sectional study we found that the greater consumption of barbecued-food was positively associated with greater odds of MetS among Iranian adults. However, there was no significant association between meal frequency, fried food consumption, used oil type, reuse of oil number, and adding salt to prepared food with MetS.

Our findings showed that the consumption of barbecued-food increased the odds of MetS. The studies
Table 1	General characteristics of study participants according to categories of dietary habits							
	Age	Sex (Male)	Physical activity	Body mass index	Wealth score index	Cardiovascular Diseases (%)	Liver diseases (%)	
Meal frequency	< 3 meal/day	48.39±9.87^a	182 (49.1)	41.23±8.04	2824±5.55	−0.404±1.015	23.9	13.9
	3 meal/day	48.82±11.1	801 (53.3)	41.23±7.78	2829±5.21	−0.201±1.060	25.2	14.7
	4–6 meal/day	48.16±9.46	3533 (50.7)	41.03±7.10	2841±4.71	0.072±0.964	24.1	15.5
	> 6 meal/day	48.44	144 (54.8)	41.86±7.62	2841±4.68	0.150±0.970	26.0	15.5
P-value		0.109	0.155	0.239	0.781	<0.001	0.725	0.752
Fried-food consumption	< 1 time/month	54.41±9.65	247 (43.3)	40.22±7.66	2886±5.08	−0.533±1.088	43.0	19.2
	1–3 time/month	49.26±9.65	1322 (49.6)	40.91±7.49	2847±4.80	−0.008±0.983	26.4	17.4
	1–3 time/week	47.17±9.26	2550 (53.8)	41.24±7.22	2825±4.80	0.094±0.973	21.6	14.2
	Daily	47.56±9.15	543 (48.1)	41.33±6.70	2850±4.90	−0.026±0.942	21.6	13.3
P-value		* <0.001	<0.001	0.004	0.014	* <0.001	<0.001	<0.001
Adding salt to prepared meal	No	48.73±9.68	3365 (48.1)	40.95±7.13	2855±4.82	−0.012±0.998	27.3	15.7
	Sometimes	47.27±9.26	502 (58.6)	41.51±7.17	2814±4.75	0.036±0.984	16.0	14.0
	Yes	46.50±9.06	795 (63.2)	41.58±8.07	27.62±4.89	−0.020±0.959	13.8	13.9
P-value		* <0.001	<0.001	0.004	<0.001	0.402	<0.001	0.133
Barbecued ‑food consumption	< 1 time/month	50.49±10.03	1450 (43.3)	40.82±7.15	28.61±4.99	−0.345±0.984	29.9	14.7
	1–3 time/month	47.03±8.98	2308 (53.6)	41.34±7.35	28.25±4.76	0.180±0.918	20.6	15.8
	3 time/month	46.95±9.43	904 (61.4)	40.98±7.30	28.26±4.66	0.317±0.979	22.5	15.4
P-value		* <0.001	<0.001	0.007	0.003	* <0.001	<0.001	0.0384
Used oil type	Solid oil	50.35±10.18	442 (48.9)	41.37±7.76	28.21±4.75	−0.271±0.966	25.1	13.7
	Semi solid oil (Margarine)	49.17±10.02	370 (48.5)	41.38±7.03	28.03±5.16	−0.281±0.979	24.4	12.8
	Liquid oil	48.34±9.57	888 (50.2)	41.02±7.37	28.71±5.01	0.001±1.031	26.2	18.2
	Frying oil	47.67±9.33	2792 (52.2)	41.04±7.25	28.33±4.75	0.087±0.957	22.9	14.6
P-value		<0.001	0.071	0.412	0.003	* <0.001	0.028	<0.001
Reuse oil number	none	48.31±9.65	3955 (51.6)	41.16±7.29	28.33±4.81	0.025±0.989	24.4	15.6
	once	48.23±9.28	602 (49.3)	40.83±7.10	28.60±4.94	−0.088±0.987	23.6	13.8
	more than twice	47.39±9.15	96 (48.2)	40.29±7.03	2900±4.93	0.080±1.087	23.8	15.8
P-value		0.398	0.225	0.091	0.041	0.001	0.836	0.258

*P-value after Posthoc Tukey analysis remained significant

^a Mean±standard deviation (SD)

^b One-Way Anova for quantitative variables and chi-square test for qualitative variables
Table 2 Metabolic syndrome and its components in categories of dietary habits

Meal frequency	Metabolic syndrome (%)	Triglyceride	Fasting blood glucose	Systolic blood pressure	Diastolic blood pressure	High density lipoprotein-cholesterol	Waist circumference
< 3 meal/day	4	166.10 ± 10.852a	105.128 ± 3739	109.01 ± 18.694	67.20 ± 11.294	52.768 ± 10.371	95.18 ± 13.24
3 meal/day	16.7	165.18 ± 103.392	107.69 ± 42.96	110.93 ± 17.241	68.55 ± 10.850	52.785 ± 12.463	95.68 ± 12.27
4-6 meal/day	75.8	166.99 ± 104035	107.24 ± 40.47	109.96 ± 16.748	67.85 ± 10.807	52.672 ± 12.165	96.12 ± 11.26
> 6 meal/day	3.4	184.07 ± 11843	114.197 ± 51.42	110.85 ± 17.397	67.44 ± 10.375	51.351 ± 11.764	96.80 ± 11.40

P-value

Fried-food consumption	P-value	< 3 meal/day	0.115	0.061	0.039	0.108	0.058	0.252	0.172
< 1 time/month	0.004	0.256	<0.001	<0.001					
1–3 time/month	0.88	172.47 ± 1133	105.60 ± 38.93	109.13 ± 16.431	67.62 ± 10.821	52.260 ± 12.488	95.33 ± 11.53		
1–3 time/week	12.4	174.29 ± 1255	105.44 ± 39.77	107.30 ± 15.315	66.92 ± 10.548	51.616 ± 12.265	94.54 ± 12.09		
Daily	0.002	*0.027	0.001	<0.001	0.001	0.001	0.001	0.001	0.001

P-value

Barbecued-food consumption	P-value	< 1 time/month	0.002	*0.027	0.001	<0.001	0.001	0.001
< 3 time/month	0.0137	0.001	<0.001	0.001	0.012	0.005	0.646	

P-value

Used oil type	P-value
Solid oil	0.002
Semi solid oil (Margarine)	0.001
Liquid oil	0.0137
Frying oil	0.001

P-value

Reuse oil number	P-value
none	0.560
once	0.820
more than twice	0.262

P-value

*P-value after Posthoc Tukey analysis remained significant

\(\text{Mean ± standard deviation (SD)}\)

\(b\) One-Way Anova for quantitative variables and chi-square test for qualitative variables
Dietary habits	Energy intake (Kcal/d)	Protein Crude	Energy-adjusted	Fat Crude	Energy-adjusted	Carbohydrate Crude	Energy-adjusted	Fiber Crude	Energy-adjusted	Sucrose Crude	Energy-adjusted
Meal frequency											
< 3 meal/day	2497 ± 122478	63.03 ± 31.93	25.51 ± 4.82	69.28 ± 39.73	28.09 ± 9.26	412.2 ± 219.09	161.4 ± 216.7	20.25 ± 12.74	83.4 ± 2.84	50.26 ± 6439	19.39 ± 17.18
3 meal/day	2690 ± 117256	71.69 ± 33.63	26.73 ± 4.19	73.32 ± 36.40	27.82 ± 8.16	442.9 ± 210.04	163.5 ± 179.6	23.13 ± 11.22	8.79 ± 2.58	40.37 ± 3203	15.29 ± 10.3
4–6 meal/day	2919 ± 113628	78.31 ± 32.06	26.92 ± 3.55	82.24 ± 35.84	28.68 ± 7.51	476.8 ± 204.02	162.2 ± 164.5	27.80 ± 11.85	9.7 ± 2.66	42.66 ± 3524	14.56 ± 8.48
> 6 meal/day	3482 ± 137854	91.67 ± 36.31	26.67 ± 3.8	96.84 ± 40.97	28.4 ± 7.08	578.2 ± 247.84	164.5 ± 160.6	36.55 ± 15.04	10.75 ± 2.84	57.17 ± 4589	15.94 ± 9.04
P-value	*<0.001	*<0.001	*<0.001	<0.001	0.001	*<0.001	0.004	*<0.001	*<0.001	*<0.001	*<0.001
Fried-food consumption											
< 1 time/month	2269 ± 101545	62.5 ± 29.93	27.62 ± 4.32	58.86 ± 32.7	26.37 ± 8.02	380.2 ± 180.61	166.7 ± 177.4	21.88 ± 10.6	98.9 ± 3.34	31.07 ± 2484	13.83 ± 8.46
1–3 time/month	2711 ± 106511	71.88 ± 29.06	26.69 ± 3.76	74.12 ± 31.9	27.88 ± 7.41	448.5 ± 194.32	164.1 ± 166.3	25.44 ± 11.2	9.55 ± 2.72	40.38 ± 3568	14.82 ± 10.02
> 3 time/month	2992 ± 118495	80.22 ± 33.89	26.87 ± 3.64	84.77 ± 37.33	28.88 ± 7.68	487.3 ± 212.56	161.7 ± 168.9	27.95 ± 12.4	9.49 ± 2.53	45.11 ± 3925	15.07 ± 9.24
P-value	*<0.001	*<0.001	*<0.001	<0.001	0.001	*<0.001	0.004	*<0.001	*<0.001	*<0.001	*<0.001
Adding salt to prepared meal											
Daily	3120 ± 120974	82.74 ± 33.83	26.58 ± 3.72	89.86 ± 38.79	29.5 ± 7.92	505.6 ± 218.61	160.5 ± 168.7	29.10 ± 12.8	9.46 ± 2.59	46.43 ± 3246	15.07 ± 8.75
No	2790 ± 111814	74.83 ± 31.6	26.93 ± 3.75	78.28 ± 35.32	28.53 ± 7.69	456.3 ± 199.99	162.5 ± 169.8	26.54 ± 11.7	9.68 ± 2.7	40.63 ± 3494	14.54 ± 9.02
Sometimes	3027 ± 120296	80.91 ± 33.39	26.81 ± 3.45	83.35 ± 36.88	28.16 ± 7.75	497.3 ± 220.55	162.9 ± 167.5	27.31 ± 12.7	9.12 ± 2.36	44.85 ± 3267	15.03 ± 8.87
P-value	*<0.001	*<0.001	*<0.001	*<0.001	0.362	*<0.001	0.870	*<0.001	*<0.001	*<0.001	*<0.001
Barbecued-food consumption											
< 1 time/month	2606 ± 11095	69.72 ± 31.54	26.83 ± 3.73	70.26 ± 33.29	27.61 ± 8.19	431.8 ± 201.99	164.4 ± 177.7	24.31 ± 11.4	9.5 ± 2.74	38.28 ± 3224	14.78 ± 9.75
1–3 time/month	2967 ± 11286	79.02 ± 31.49	26.75 ± 3.62	83.83 ± 34.87	28.82 ± 7.37	484.3 ± 204.41	162.0 ± 163.5	27.65 ± 11.7	9.49 ± 2.56	44.12 ± 3747	14.86 ± 9.18
> 3 time/month	3249 ± 124086	87.46 ± 35.32	27.04 ± 4.07	94.93 ± 41.69	29.61 ± 7.21	524.1 ± 218.51	160.4 ± 163.7	31.04 ± 13.8	9.69 ± 2.72	50.48 ± 4287	15.4 ± 9.08
P-value	*<0.001	*<0.001	0.035	*<0.001	*<0.001	*<0.001	*<0.001	0.030	*<0.001	0.090	
Dietary habits	Energy intake (Kcal/d)	Protein	Fat	Carbohydrate	Fiber	Sucrose					
----------------	------------------------	---------	-----	--------------	-------	--------					
		Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted
Type of frying vegetables											
Little frying, Sauteing	2864±114978	76.47±32.7	26.75±3.73	80.61±36.81	28.58±7.57	468.3±203.78	162.6±16.72	27.1±12.27	961±2.64	42.84±34.44	15.06±9.31
Medium amount of frying, until golden yellow	2946±120007	78.91±34.05	26.62±3.78	83.3±36.97	28.92±7.75	480.4±216.57	161.6±17.05	26.93±12.24	93±2.62	43.9±41.35	14.79±9.5
A lot of frying, until browned	3049±120455	81.9±34.01	26.95±3.83	85.88±38.21	28.69±8.06	497.1±217.58	161.8±17.77	27.91±13.92	92.2±3.7	46.35±31.95	15.48±9.23
Does not fry foods	2800±113161	75.2±31.27	27.02±3.69	77.24±35.18	28.06±7.65	461.0±204.07	163.5±16.81	26.59±11.5	9.7±2.66	41.54±37.23	14.69±9.39
P-value	> 0.001	* < 0.001	0.001	> 0.001	> 0.001	> 0.001	> 0.001	> 0.001	> 0.001	> 0.001	> 0.001
Used oil type											
Solid oil	2883±122445	75.53±35.13	26.22±3.93	80.73±35.72	28.85±8	472.0±224.73	161.9±17.59	25.8±12.29	9.07±2.52	44.51±44.08	15.38±10.76
Semi solid oil(Margarine)	2907±116238	75.88±32.84	26.1±3.72	83.47±38.71	29.3±8.4	471.2±205.11	161.0±18.12	25.5±11.57	8.94±2.44	44.42±33.2	15.41±9.56
Liquid oil	2786±112241	74.65±30.69	27.38±3.87	78.24±37.08	28.49±7.96	456.2±201	162.7±17.65	26.78±12.44	9.78±2.8	41.75±39.86	14.73±9.35
Frying oil	2914±115992	78.3±32.84	26.96±3.63	81.35±43.8	28.31±7.43	477.9±208.44	162.9±16.38	27.36±12.1	9.55±2.59	43.18±35.11	14.89±9.18
P-value	0.001	> 0.001	> 0.001	0.004	0.004	0.002	0.017	< 0.001	< 0.001	< 0.001	0.196
Reuse oil number											
none	2866±11398	76.62±31.93	26.85±3.74	80.48±36.14	28.58±7.71	468.7±204.19	162.4±17	26.94±12.03	9.56±2.67	42.8±36.02	14.9±9.17
once	2939±128625	78.14±36.51	26.66±3.68	81.07±39.06	28.13±7.48	483.6±229.87	163.4±16.4	26.91±12.72	9.35±2.56	44.51±42.34	15.18±10.54
more than twice	3088±121316	83.22±37.14	26.77±3.97	84.45±35.25	28.02±8.16	508.1±226.4	163.2±17.96	28.5±14.33	9.19±2.44	41.76±32.85	13.85±9.36
P-value	0.005	0.007	0.233	0.285	0.108	0.003	0.138	0.195	0.007	0.284	0.163

*P-value after Posthoc Tukey analysis remained significant

* Obtained from One-Way Anova
Table 4 Dietary micronutrient intakes of participants according to categories of dietary habits

Dietary habits	Calcium	Vitamin A	Folate	Potassium	Sodium					
	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted				
Meal frequency										
< 3 meal/day	809.6±40.392	308.6±92.42	572.6±453.89	220.4±148.19	334.5±221.21	137.69±57.13	2933±2021.25	1199±406.33	3746±1871.34	1582±572.34
3 meal/day	897.5±386.23	319.3±79.22	655.1±455.47	235.6±132.12	359.0±186.75	137.61±49.47	3102±1436.51	1198±376.52	4139±2109.67	1584±548.29
4–6 meal/day	983.2±411.95	335.0±83.53	773.3±525.03	267.9±160.03	406.0±195.57	142.09±46.59	3631±1558.44	1277±375.05	4354±1979.65	1523±457.15
> 6 meal/day	1171±478.53*	345.8±94.45	945.4±757.19	280.3±177.2	528.3±236.01	155.64±52.68	4835±2013.63	1426±371.86	5020±2295.73	1484±497.77
P-value	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001
Fried-food consumption										
< 1 time/month	750.2±391.25	328.8±95.80	4854±333.65	221.2±153.33	357.1±166.94	124.23±52.54	2890±1486.17	1313±440.33	3568±2023.5	1607±625.54
1–3 time/month	858.8±377.38	323.6±89.49	6360±500.19	240.7±153.83	3697±178.25	139.8±47.96	3347±1473.89	1267.44±366.54	3994±1713.05	1520±461.05
> 3 time/month	942.3±422.40	320.2±81.70	724.1±507.80	249.4±143.12	416.1±208.47	141.9±47.24	367±1643.19	1260±356.04	4491±2112.52	1534±462.48
Daily	972.9±415.87	318.0±83.29	694.3±467.82	230.7±138.11	437.6±198.43	143.9±47.34	3825±1672.71	1257±357.55	4689±2058.53	1532±425.29
P-value	<0.001	0.013	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001	*<0.001
Adding salt to prepared meal										
No	984.8±450.08	303.6±81.14	794.1±543.99	234.4±141.27	389.9±193.78	142.8±48.51	3486±1561.91	1282±369.75	4090±1890.79	1506±470.15
Sometimes	942.3±406.05	315.5±76.86	674.0±464.59	228.6±132.84	409.7±185.78	138.5±42.7	3853±1614.84	1213±336.65	4626±2001.94	1563±440.05
Yes	892.6±402.67	326.3±87.32	669.6±492.90	247.0±150.65	441.1±227.91	136.9±46.89	3888±1797	1207±349.45	5335±2326.11	1674±533.26
P-value	0.0061	0.026	*<0.001	*<0.001	<0.001	0.074	<0.001	0.011	*<0.001	*<0.001
Barbecued-food consumption										
< 1 time/month	830.5±586.31	321.7±87.97	5534±389.71	219.3±134.49	357.7±179.73	141.0±47.9	3142±1411.59	1248±372.55	4022±1932.73	1585±475.31
1–3 time/month	933.4±396.79	320.0±81.72	7142±459.46	249.1±140.93	407.7±189.23	140.5±46.43	3644±1533.56	1260±352.96	4406±1995.73	1514±464.79
> 3 time/month	1032.4±450.15	325.0±88.96	8861±703.43	281.1±181.07	465.9±241.88	145.7±51.33	4200±1942.45	1318±379.06	4696±2160.26	1480±523.54
P-value	<0.001	*<0.001	<0.001	<0.001	*<0.001	<0.001	*<0.001	*<0.001	*<0.001	*<0.001
Table 4 (continued)

Dietary habits	Calcium		Vitamin A		Folate		Potassium		Sodium	
	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted	Crude	Energy-adjusted
Type of frying vegetables										
Little frying, Sautéing	909.4 ± 411.26	322.0 ± 84.16	693.4 ± 499.53	248.0 ± 149.48	395.9 ± 190.42	141.4 ± 47.02	3571.0 ± 1578.16	1278.0 ± 359.46	4288.0 ± 1942.72	1537.0 ± 465.26
Medium amount of frying, until golden yellow	914.2 ± 426.11	317.1 ± 86.48	693.3 ± 489.58	244.1 ± 147.05	407.5 ± 20.73	141.0 ± 51.02	3543.0 ± 1998.15	1236.0 ± 364.87	4426.0 ± 2235.55	1532.0 ± 515.64
A lot of frying, until browned	917.7 ± 410.80	306.0 ± 84.58	743.2 ± 552.92	248.3 ± 153.07	412.8 ± 201.06	138.6 ± 47.01	3652.0 ± 1702.17	1225.0 ± 359.61	4541.0 ± 1978.4	1530.0 ± 448.89
Does not fry foods	906.0 ± 400.40	330.6 ± 86.85	640.6 ± 484.04	236.8 ± 145.05	391.6 ± 190.1	142.9 ± 46.49	3504.0 ± 1615.38	1284.0 ± 371.36	4190.0 ± 1923.49	1535.0 ± 478.81

P-value

Used oil type	Crude	Energy-adjusted								
Solid oil	867.6 ± 416.57	307.7 ± 83.88	622.1 ± 444.36	226.3 ± 151.45	390.5 ± 195.63	138.5 ± 44	3392.0 ± 1442.44	1180.0 ± 343.3	4426.0 ± 2235.55	1557.0 ± 487.59
Semi solid oil (Margarine)	871.7 ± 390.60	303.2 ± 78.06	610.1 ± 427.14	213.6 ± 122.09	373.2 ± 173.64	131.7 ± 38.62	3235.0 ± 1442.44	1180.0 ± 343.3	4426.0 ± 2235.55	1557.0 ± 487.59
Liquid oil	896.7 ± 408.42	329.1 ± 91.37	699.6 ± 572.96	255.7 ± 165.38	404.5 ± 220.78	147.9 ± 53.86	3553.0 ± 1688.05	1305.0 ± 385.66	4541.0 ± 1978.4	1557.0 ± 478.72
Frying oil	924.5 ± 408.58	323.0 ± 83.23	686.3 ± 478.02	242.8 ± 138.70	400.1 ± 191.59	140.3 ± 45.84	3592.0 ± 1575.24	1264.0 ± 356.6	4190.0 ± 1923.49	1530.0 ± 463.99

P-value

Reuse oil number	Crude	Energy-adjusted								
none	911.5 ± 406.73	324.1 ± 86.39	685.7 ± 505.69	246.1 ± 150.82	398.6 ± 198.91	142.0 ± 48.2	3551.0 ± 1598.2	1271.0 ± 367.41	4283.0 ± 1995.36	1530.0 ± 481.01
once	903.3 ± 435.23	311.2 ± 82.50	656.9 ± 457.64	229.6 ± 130.28	394.4 ± 187.94	138.2 ± 43.67	3521.0 ± 1633.9	1236.0 ± 343.77	4433.0 ± 2117.94	1554.0 ± 475.56
more than twice	908.2 ± 410.96	320.1 ± 87.25	674.9 ± 498.59	243.6 ± 145.2	426.4 ± 242	138.0 ± 50.27	3688.0 ± 1744.2	1210.0 ± 378.4	4683.0 ± 2061.02	1553.0 ± 483.96

* *P-value after Posthoc Tukey analysis remained significant*

* Obtained from One-Way Anova
investigating the association between barbecued-food consumption with MetS and each of its components are scarce. In a study that conducted by Liu et al. [18], higher consumption of barbecued-red meat increased the risk of type 2 diabetes by 1.23 times. It has been found that chemicals produced by cooking meat at high temperatures (grilling/barbecuing) can induce inflammation, oxidative stress, and insulin resistance, and consequently lead to damage of the inner vascular wall and development of atherosclerosis. All of these processes increase the risk of developing high blood pressure and the likelihood of MetS [19]. In contrast, Heller et al. [20] examined the effect of daily consumption of 8 oz. of barbecued-hamburgers and 6 oz. of barbecued-steak on lipid profile of adults. The results of this study showed that daily consumption of barbecued-meat for 15 days increased HDL-c and decreased total cholesterol and low density lipoprotein-cholesterol (LDL-c). However, the short duration of the study, failure to adjust potential confounders, and the small number of participants were major limitations that can not be relied on the results of this study. Some hazardous chemicals such as heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs) are produced in foods prepared at high temperatures (barbecuing/grilling) [21–23]. These chemicals can induce pro-inflammatory cytokines, decrease insulin secretion, and consequently increase the risk of diabetes and metabolic syndrome [24, 25]. In addition, cooking meat at high temperatures produces advanced glycation end products (AGEs) that are associated with oxidative stress, inflammation, and insulin resistance in animals and humans, which in turn provide the basis for metabolic disorders [26, 27]. More investigations are needed to clarify the mechanistic pathways linking high-temperature cooking with metabolic syndrome.

Table 5 Multivariable-adjusted odds ratio of the associations between dietary habits and metabolic syndrome

	Model I	Model II	Model III
Meal frequency			
< 3 meal/day	1	1	1
3 meal/day	1.048 (0.791–1.387)	1.047 (0.790–1.387)	1.030 (0.775–1.370)
4–6 meal/day	0.995 (0.768–1.289)	0.995 (0.767–1.293)	0.979 (0.752–1.274)
> 6 meal/day	1.296 (0.886–1.895)	1.304 (0.888–1.914)	1.267 (0.859–1.871)
P-trend	0.850	0.883	0.931
Fried-food consumption			
< 1 time/month	1	1	1
1–3 time/month	0.928 (0.750–1.147)	0.951 (0.768–1.179)	1.008 (0.810–1.255)
1–3 time/week	0.973 (0.792–1.196)	0.998 (0.810–1.229)	1.071 (0.865–1.325)
Daily	0.902 (0.708–1.150)	0.921 (0.721–1.176)	0.999 (0.779–1.281)
P-trend	0.771	0.851	0.683
Adding salt to prepared meal			
No	1	1	1
Sometimes	1.049 (0.878–1.254)	1.057 (0.884–1.264)	1.137 (0.949–1.362)
Yes	1.011 (0.865–1.180)	1.010 (0.864–1.181)	1.098 (0.937–1.286)
P-trend	0.781	0.769	0.143
Barbecued-food consumption			
< 1 time/month	1	1	1
1–3 time/month	1.034 (0.923–1.158)	1.063 (0.946–1.194)	1.073 (0.953–1.207)
> 3 time/month	1.185 (1.015–1.383)	1.200 (1.025–1.405)	1.190 (1.014–1.396)
P-trend	0.051	0.028	0.034
Used oil type			
Solid oil	1	1	1
Semi solid oil (Margarine)	0.923 (0.739–1.154)	0.932 (0.745–1.166)	0.914 (0.727–1.149)
Liquid oil	1.033 (0.859–1.241)	1.050 (0.872–1.265)	0.981 (0.811–1.186)
Frying oil	1.096 (0.932–1.288)	1.111 (0.943–1.309)	1.072 (0.906–1.267)
P-trend	0.268	0.206	0.418
Reuse oil number			
none	1	1	1
once	1.077 (0.939–1.235)	1.062 (0.925–1.219)	1.083 (0.941–1.247)
more than twice	1.051 (0.761–1.451)	1.013 (0.732–1.402)	1.007 (0.721–1.405)
P-trend	0.764	0.939	0.969

Model I: adjusted for age, sex and energy
Model II: Model I + adjusted for WSI and physical activity
Model III: Model II + adjusted for cardiovascular diseases and liver diseases
We found no association between adding salt to prepared food and MetS. In contrast, a study that conducted by Sarebanhassanabadi et al. [10] showed that eating salt with food increases the risk of MetS. Other studies have also reported an association between sodium intake/excretion with food and MetS and its components [28, 29]. A possible reason for this discrepancy is the differences in methods of evaluating salt intake. Baudrand et al. [28, 29] and Oh et al. [28, 29] used urinary sodium (that has higher accuracy compared to the FFQ) to estimate the sodium intake. In addition, differences in design of the study, sample size and mean age of participants are other possible reasons for this discrepancy. The studies investigating the association between fried food consumption and risk of MetS are scarce. Similar to our findings, Sayon-Orea et al. [30] showed no significant association between fried food consumption with prevalence of MetS. However, some studies have reported that eating fried foods increases the insulin resistance and risk type 2 diabetes [31, 32]. The studies with contradictory results [31, 32] did not investigate the association between fried foods intake with incidence or odds of MetS and had different hypotheses, objectives and study design.

The present cross-sectional study has some strengths and limitations that should be considered. First, the present study comprised a large sample size that reduces the bias in interpreting the results. Second, in data analysis, we used different adjustment models to adjust potential confounding factors such as age and gender. However, in the design of cross-sectional, it is not possible to measure causal relationships. In addition, because FFQ is a memory-based dietary assessment method, it may cause some errors in reporting precise intakes.

In conclusion, the present study demonstrated a direct association between barbecued food consumption with the odds of MetS. On the other hand, we did not find any significant relationship between meal frequency, fried food consumption, adding salt to prepared food, used oil type, and reuse oil number with odds of MetS. To confirm these relationships, further investigations especially prospective cohort studies are needed.

Acknowledgments
We acknowledge the contribution of the co-researchers. We also thank the participants for their cooperation throughout recruitment and data collection processes.

Authors’ contributions
S.Kh and M.M: designed and conducted the study; Z. F and M.D: wrote the manuscript; M. M and A.S.A: critically revised the manuscript; S.Kh: supervised the study. A.S.A: involved in study analysis. The final version of the manuscript was approved by all authors.

Funding
The present study was supported by a grant provided by Shahid Sadoughi University of Medical Sciences.

Availability of data and materials
The data and materials of the current study is available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All methods of this study were carried out under the Declaration of Helsinki’s ethical principle for medical research involving human subjects. Ethical approval to conduct this study was obtained from the ethical committee of Shahid Sadoughi University of Medical Science (IR.SSU.SPH.REC.1399.046). Written informed consent was obtained from all participants before the data collection.

Consent for publication
Not applicable.

Competing interests
The authors have declared no competing interests.

Author details
1 Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Shoahdaye gomnam BLD. ALEM square, Yazd, Iran.
2 Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
3 Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
4 Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
5 Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK.

Received: 4 May 2021 Accepted: 29 September 2022
Published online: 23 October 2022

References
1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.
2. Bagheri-Niya M, Khayatzadeh SS, Avan A, Safarian M, Nematy M, Ferns GA, et al. Metabolic syndrome and its components are related to psychological disorders: a population based study. Diabet Metab Syndrome. 2017;11(Suppl 2):S561–6.
3. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: a pooled analysis. Prev Med Rep. 2017;7:211–5.
4. Farmanfarma KK, Kaykhaei MA, Azinhe MA, Mohammad M, Dabiri S, Ansari-Moghaddam A. Prevalence of metabolic syndrome in Iran: a meta-analysis of 69 studies. Diabetes Metab Syndr. 2019;13(1):792–9.
5. Scholze J, Allegra E, Ferri C, Langham S, Stevens W, Jeffries D, et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy: a prevalence-based model. BMC Public Health. 2010;10(1):1–12.
6. Saboya PP, Bodanese LC, Zimmermann PR, Gustavo AS, Assumpção CM, Londero F. Metabolic syndrome and quality of life: a systematic review. Rev Latin Am Enfermagem. 2016;24.
7. McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14–20.
8. Yoshida J, Eguchi E, Nagaoka K, Ito T, Ogino K. Association of night eating habits with metabolic syndrome and its components: a longitudinal study. BMC Public Health. 2018;18(1):1–12.
9. Shin A, Lim SY, Sung I, Shin HR, Kim J. Dietary intake, eating habits, and metabolic syndrome in Korean men. J Am Diet Assoc. 2009;109(4):633–40.
10. Sarebanhassanabadi M, Mirhosseini SJ, Mirzaei M, Namayandeh SM, Soltani MH, Pakseresht M, et al. Effect of dietary habits on the risk of metabolic syndrome: Yazd healthy heart project. Public Health Nutr. 2018;21(6):1139–46.
11. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome. Circulation. 2008;117(6):754–61.
12. Lorzadeh E, Sangsefidi ZS, Mirzaei M, Hosseinizadeh M. Dietary habits and their association with metabolic syndrome in a sample of Iranian adults: a population-based study. Food Sci Nutr. 2020;8(11):6217–25.
13. Eghtesad S, Mohammadi Z, Shayanrad A, Faramarzi E, Joukar F, Hamzeh B, et al. The PERSIAN cohort: providing the evidence needed for healthcare reform. Arch Iran Med. 2017;20(1):691–5.

14. Poustiti H, Eghtesad S, Kamangar F, Etemadi A, Keshtkar A-A, Heidari-Doost A, et al. Prospective epidemiological research studies in Iran (the PERSIAN cohort study): rationale, objectives, and design. Am J Epidemiol. 2018;187(4):647–55.

15. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(9 Suppl):S498–504.

16. Bodner-Montville J, Ahuja JK, Ingersent LA, Haggerty ES, Enns CW, Perloff BP. USDA food and nutrient database for dietary studies: released on the web. J Food Compos Anal. 2006;19:100–57.

17. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52.

18. Liu G, Zong G, Hu FB, Willett WC, Eisenberg DM, Sun Q. Cooking methods for red meats and risk of type 2 diabetes: a prospective study of U.S. Women. Diabetes care. 2017;40(8):1041–9.

19. Moreno-Franco B, Rodríguez-Ayala M, Donat-Vargas C, Sandoval-Insauri H, Rey-Garcia J, Lopez-Garcia E, Guallar-Castillón P. Association of cooking patterns with inflammatory and cardio-metabolic risk biomarkers. Nutrients. 2021;13(2):633.

20. Heller RF, Hartley RM, Lewis B. The effect on blood lipids of eating charcoal-grilled meat. Atherosclerosis. 1983;48(2):185–92.

21. Anderson KE, Sinha R, Kulldorff M, Gross M, Lang NP, Barber C, et al. Meat intake and cooking techniques: associations with pancreatic cancer. Mutat Res. 2002;506-507:225–31.

22. Lee JK, Kim SY, Moon JS, Kim SH, Kang DH, Yoon HJ. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 2016;199:632–8.

23. Friesen MD, Rothman N, Strickland PT. Concentration of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in urine and alkali-hydrolyzed urine after consumption of charbroiled beef. Cancer Lett. 2001;173(1):43–51.

24. Khalil A, Villard PH, Diao MA, Bercelin R, Champion S, Fouchier F, et al. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol Lett. 2010;196(3):161–7.

25. Pei XH, Nakanishi Y, Inoue H, Takayama K, Bai F, Hara N. Polycyclic aromatic hydrocarbons induce IL-8 expression through nuclear factor kappaB activation in A549 cell line. Cytokine. 2002;19(5):236–41.

26. Vlassara H, Cai W, Tripp E, Pyszyl R, Yee K, Goldberg L, et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia. 2016;59(10):2181–92.

27. Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9):526–39.

28. Cahill LE, Pan A, Chiuve SE, Sun Q, Willett WC, Hu FB, et al. Fried-food consumption and risk of type 2 diabetes and coronary artery disease: a prospective study in 2 cohorts of US women and men. Am J Clin Nutr. 2014;100(2):667–75.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions