Monoclonal Antibody Therapy for COVID-19 in Solid Organ Transplant Recipients

Zachary A. Yetmar, MD¹; Elena Beam, MD³; John C. O’Horo, MD, MPH¹,²; Ravindra Ganesh, MBBS, MD³; Dennis M. Bierle, MD³; Lisa Brumble, MD⁴; Maria Teresa Seville, MD⁵; Raymund R. Razonable, MD¹

¹Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
²Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
³Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
⁴Division of Infectious Diseases, Mayo Clinic, Jacksonville, Florida, USA
⁵Division of Infectious Diseases, Mayo Clinic, Scottsdale, Arizona, USA

Corresponding author: Zachary A. Yetmar; 200 First Street SW, Rochester, MN, USA; Telephone: 507-284-5278; Fax: 507-538-0001; email: yetmar.zachary@mayo.edu

Alternate corresponding author: Raymund R. Razonable; 200 First Street SW, Rochester, MN, USA; Telephone: 507-284-3747; Fax: 507-538-0001; email: razonable.raymund@mayo.edu

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Key points: Monoclonal antibody therapy for COVID-19 appears to be safe with good outcomes in solid organ transplant recipients. No episodes of rejection or anaphylaxis were noted. Earlier administration appears to be associated with fewer hospitalizations.
Abstract

Background: Bamlanivimab and casirivimab-imdevimab are authorized for emergency use treatment of mild-to-moderate COVID-19 in patients at high-risk for developing severe disease or hospitalization. Their safety and efficacy have not been specifically evaluated in solid organ transplant recipients.

Methods: We retrospectively reviewed solid organ transplant recipients who received monoclonal antibody infusion for COVID-19 at Mayo Clinic sites through January 23, 2021. Outcomes included emergency department visit, hospitalization, mortality, and allograft rejection.

Results: Seventy-three patients were treated, most commonly with bamlanivimab (75.3%). Median age was 59 years, 63% were male, and the median Charlson comorbidity index was 5. Transplant type included 41 kidney (56.2%), 13 liver (17.8%), 11 heart (15.1%), 4 kidney-pancreas (5.5%), 2 lung (2.7%), 1 heart-liver, and 1 pancreas. Eleven (15.1%) patients had an emergency department visit within 28 days of infusion, including 9 (12.3%) who were hospitalized for a median of 4 days. One patient required intensive care unit admission for a non-respiratory complication. No patients required mechanical ventilation, died, or experienced rejection. Ten adverse events occurred with one seeking medical evaluation. Hypertension was associated with hospital admission (p<.05) while other baseline characteristics were similar. Median time from symptom onset to antibody administration was 4 days in non-hospitalized patients compared to 6 days among hospitalized patients (p<.05).

Conclusions: Monoclonal antibody treatment has favorable outcomes with minimal adverse effects in solid organ transplant recipients with mild-to-moderate COVID-19. Earlier administration of monoclonal antibody therapies appears to be more efficacious.

Keywords: SARS-CoV-2; COVID-19; transplant; bamlanivimab; casirivimab-imdevimab
Introduction

As of March 9, 2021, the SARS-CoV-2 pandemic has affected over 116 million people and is responsible for over 2.5 million deaths worldwide [1]. Morbidity and mortality from coronavirus disease-2019 (COVID-19) is higher in patients with medical conditions, including solid organ transplantation [2–4]. Data from a large, multicenter registry showed that transplant recipients with COVID-19 had poor outcomes, including a hospitalization rate of 78%, mechanical ventilation rate of 31%, and 28-day mortality of 20.5% [5]. Other studies have shown similarly poor outcomes in this immunocompromised population [6–10].

Several therapies have been approved or authorized for treatment of COVID-19, often directed at later stages of illness when patients need hospitalization [11]. Monoclonal antibodies targeting the SARS-CoV-2 spike protein, such as bamlanivimab and casirivimab-imdevimab, have specifically been evaluated as an early outpatient treatment to prevent the clinical progression of mild-to-moderate COVID-19. In an interim analysis of the BLAZE-1 trial, there were fewer hospitalizations and emergency department (ED) visits in patients who received bamlanivimab, particularly among older populations and those with body mass index (BMI) of 35 and higher [12]. The REGN-COV2 trial of casirivimab and imdevimab showed a similar reduction in medically attended visits [13]. On the basis of these trials, bamlanivimab and casirivimab-imdevimab received separate emergency use authorizations (EUA) in the United States in November 2020, for the treatment of mild-to-moderate COVID-19 in patients at high-risk for progression to severe disease or hospitalization [14,15]. Patients receiving immunosuppressive drug treatment, such as solid organ transplant recipients, are included in the high-risk criteria for emergency use, although they were not specifically analyzed as part of the BLAZE-1 or REGN-COV2 trials.

There is very limited experience with monoclonal antibodies in transplant recipients [16]. Furthermore, there are no data regarding adverse effects or risk of allograft rejection after monoclonal antibody therapy in transplant population. In this report, we aim to describe our early
experience with the use of monoclonal antibody therapy for the treatment of solid organ transplant recipients with mild-to-moderate COVID-19.

Methods

Monoclonal antibody allocation process

The Mayo Clinic monoclonal antibody treatment (MATRx) program was established on November 7, 2020, with the creation of COVID-19 dedicated outpatient infusion units and multidisciplinary teams in anticipation of the EUA of monoclonal antibody therapies for COVID-19 by the US Food and Drug Administration [17].

The MATRx team developed the Monoclonal Antibody Selection Score that automatically and rapidly identified all eligible patients, including transplant recipients, from the electronic health record system. Under the EUA, patients were eligible for monoclonal antibodies if they have positive SARS-CoV-2 polymerase chain reaction (PCR) or antigen test, have mild-to-moderate COVID-19, are within 10 days of symptom onset, and had at least one of the following criteria: age ≥ 65 years, BMI ≥ 35, diabetes mellitus, chronic kidney disease, immunosuppressive medication use, or an immunocompromising condition, including solid organ transplant recipients. Patients 55 years and older also qualified if they have hypertension, cardiovascular disease, or chronic lung disease.

A multidisciplinary MATRx team reviewed all patients identified from this registry of patients with positive SARS-CoV-2 PCR tests and self- and provider-referred patients. All eligible patients were proactively approached for education about monoclonal antibodies, and discussion about their potential benefits and adverse reactions. During the first 45 days of the MATRx program, a total of 2820 patients were deemed eligible and were approached for monoclonal antibody therapy. However, only 60% of them consented to monoclonal antibody infusion. All patients who agreed with treatment were immediately scheduled for infusion in one of 9 COVID-19 infusion therapy units at any Mayo Clinic site. Patients who were initially undecided were referred to their transplant
providers, who have supported the treatment and have encouraged transplant patients to consent for the monoclonal antibody infusion. Accordingly, during the time of this study, all eligible solid organ transplant recipients consented to and received an infusion of either bamlanivimab monotherapy or casirivimab-imdevimab.

Monoclonal antibody was infused over an hour without premedication followed by another hour of monitoring for adverse effects. Patients were subsequently followed by remote monitoring program and/or were provided a phone number to call back to report any untoward reactions [18]. All transplant patients were included in the Monoclonal Antibody Treatment Registry.

Patient Data

After approval by the Mayo Clinic Institutional Review Board, we retrospectively reviewed and collected data from recipients of bamlanivimab or casirivimab-imdevimab who have a history of solid organ transplantation. Patients were included if treated between the first infusion date of November 19, 2020, through January 23, 2021. Patients were followed up to 28 days. Abstracted data included demographics, comorbid conditions, type and date of transplantation, and dates of symptom onset, positive COVID-19 testing, and monoclonal antibody administration. Chronic lung disease included chronic obstructive pulmonary disease, asthma, and interstitial lung disease. Chronic liver disease included cirrhosis, nonalcoholic steatohepatitis, and nonalcoholic fatty liver disease. Recent acute rejection included those occurring within 6 months of COVID-19 diagnosis. We included details surrounding ED visits, hospital admission, intensive care unit (ICU) admission, mortality, adverse events, and allograft rejection.

Outcome Definitions

Outcomes included ED visit, hospital admission, ICU admission, mortality, and allograft rejection at 28 days after monoclonal antibody administration. All-cause ED visits, hospital admission, and death were included. Short-term outcomes were also analyzed at 14 and 21 days.
Adverse events were defined as new or worsened symptomatology following monoclonal antibody administration. Episodes of allograft rejection were based on pathologic findings or empiric anti-rejection treatment for acute changes in organ function.

Statistical Analysis

Continuous variables were summarized as their median with interquartile range (IQR). Other variables were reported as total number with associated percentage. The hospitalized and non-hospitalized groups were analyzed using Fischer Exact test for categorical variables and t-test for continuous variables.

Results

Patient Characteristics

We identified 73 patients meeting inclusion criteria. These patients were a majority male with a median age of 59 years (Table 1). Most patients received bamlanivimab (75.3%). The most common types of transplanted organs were kidney (56.2%), liver (17.8%), and heart (15.1%). Median time from transplantation to COVID-19 diagnosis was 4.9 years (IQR: 2.0-9.8). Median Charlson comorbidity index (CCI) was 5 (supplemental table). Three patients experienced acute allograft rejection within 6 months of COVID-19 diagnosis. However, these episodes were mild, and no one required augmented immunosuppression for rejection. Patients received monoclonal antibody at a median of 4 days (IQR: 3-7) from symptom onset and 2 days (IQR: 1-2) from positive COVID-19 testing. All patients had completed full 28-day follow-up. Characteristics of the cohort are detailed in table 1.
Outcomes

The majority of ED visits (8 of 11) occurred within 14 days after monoclonal antibody infusions. Eleven patients (15.1%) presented to ED within 28 days of monoclonal antibody infusion. Median time from symptom onset to ED visit was 5 days (IQR: 3.5-6.5) and median time from antibody administration to ED visit was 2 days (IQR: 1.5-2). The most common reason for an ED visit was respiratory symptoms (7 patients, 63.6%). Other presenting complaints or conditions were hypertension, chest pain, headache with fever, and fever alone.

Most hospital admissions (7 of 9) occurred within 14 days of monoclonal antibody infusion. Nine patients were hospitalized within 28 days. All were admitted after an ED evaluation. Hospitalization was attributed to COVID-19 in 7 patients (77.8%). The other two patients were admitted for acute pyelonephritis and septic arthritis, respectively. Median time from symptom onset to hospitalization was 11 days (IQR: 6-16) and median time from antibody infusion was 1 day (IQR: 0-9). Hospitalized patients had a median of 6 days (IQR: 4-7) from symptom onset to antibody administration, compared to 4 days (IQR: 2-6.25) in the non-hospitalized cohort (Table 2). Median time from positive COVID-19 testing to monoclonal infusion was longer for the hospitalized group at 2 days (IQR: 2-2) compared to 1 day (IQR: 1-2.25) in those not requiring hospitalization.

One heart transplant patient required ICU admission for dopamine infusion, and not related to COVID-19 progression. Patients tended to be normoxic or mildly hypoxic, with median admission oxygen saturation of 96% and highest recorded supplemental oxygen rate of 3 L/min. No patients required high-flow oxygen therapy, non-invasive positive pressure ventilation, or mechanical ventilation. No death was recorded during follow-up (table 2). Rates of ED visit, hospitalization, and ICU admission at 14, 21, and 28 days are presented in table 3.

Comorbidities and time from symptom-onset or positive COVID-19 testing to monoclonal antibody administration were analyzed for association with hospitalization (table 1). Hypertension
was significantly associated with hospitalization (p=0.023). Longer time from symptom-onset to monoclonal antibody administration was associated with hospitalization (p=0.03). There was not a significant difference in outcomes between the two monoclonal antibody therapies.

Adverse Events

Ten adverse events potentially attributable to monoclonal antibody therapy were noted. These included four patients with fever, two patients with vomiting, and one patient each with nausea, rash, rigors, and acutely worsened sinus congestion. One patient with vomiting presented to the ED and was subsequently admitted. There were no cases of anaphylaxis. No patients experienced allograft rejection (including three patients who had routine allograft biopsy, one who had biopsy for evaluation of worsened forced expiratory volume in one second, and one with newly diagnosed proteinuria).

Discussion

We report our initial experience with COVID-19-directed monoclonal antibody therapy in 73 solid organ transplant recipients. Compared to historical data showing high morbidity and mortality [5,10], the outcomes appear favorable in our cohort of transplant recipients who received monoclonal antibodies for mild-to-moderate COVID-19. While historical studies do not provide optimal comparison given the difference in availability of COVID-19 therapies and improvement in practices over time, our cohort had no deaths and only one patient required ICU admission for a non-respiratory condition. Respiratory complications were uncommon in those patients who required hospitalization, with little-to-no oxygen support and no requirement for advanced respiratory support. Hospital length of stay was relatively short, compared a median length of stay of 6 (IQR: 4-12) days for all patients admitted for COVID-19 at Mayo Clinic (unpublished data).

Hospitalizations and ED visits occur most commonly within 14 days of COVID-19 diagnosis. In this cohort of transplant patients, hypertension was significantly associated with hospitalization. This
is consistent with prior reports of risks for severe COVID-19 [19]. While hospitalized patients tended to be older, male, have higher BMI, more recent transplant, and have more comorbid conditions, these observations were not statistically significant, probably due to the small size of our cohort [3,20,21]. We further observed that the hospitalized patients had a longer time from symptom onset to monoclonal antibody infusion, which highlights the time-sensitive nature of these experimental therapies [12]. Accordingly, earlier treatment appears to be important to maximize therapeutic benefit.

We did observe a small but non-significant difference in hospitalizations between those that received bamlanivimab and casirivimab-imdevimab. Whether this relates to escape mutant variants of concern is difficult to prove, since we did not perform gene sequencing analysis. However, current data suggests that SARS-CoV-2 variant of concern B.1.1.7 is predominant in our communities at the present time. B.1.1.7 was first identified in Minnesota on January 9, 2021, near the end of our study period, and the data suggests that it remains susceptible to bamlanivimab and casirivimab-imdevimab [22]. Another resistant variant of concern, P.1, was identified in Minnesota on January 25, 2021, and was travel-related with no documented local transmission [23]. The P.1 variant, along with other subsequently identified variants, has reduced susceptibility to bamlanivimab, but casirivimab-imdevimab remains active. It is possible these variants were present in our study; however, without systematic testing, their prevalence in our study population is not established. As the predominant SARS-CoV-2 strains in our regions are currently wild-type and B.1.1.7, which retains susceptibility to bamlanivimab, we believe that the difference in the hospital admission rates between the two monoclonal antibodies may be related to our small sample size. Regardless, we encourage surveillance of circulating SARS-CoV-2 variants as it is essential in determining optimal monoclonal antibody therapy.

The safety data presented here is encouraging. Adverse effects were mild, with only one event leading to an ED visit or hospital admission. Many of the reported adverse events could have
been due to COVID-19 infection rather than the monoclonal antibody treatment. No cases of anaphylaxis were observed. There have been concerns regarding allograft rejection related to prior antibody therapies [24], and it was unclear if bamlanivimab or casirivimab-imdevimab carry this risk. Our patient cohort did not experience allograft rejection, including 5 patients who were evaluated by allograft biopsy.

This study has several limitations. First, this is a retrospective review which is subject to biases intrinsic to such studies. Second, we did not include a control arm of untreated patients in this report, since all transplant patients who were eligible for monoclonal antibody therapies during the study period consented to the infusion. Due to the strong partnership with transplant providers who have advocated the treatment for their compromised patients, we did not have any untreated cohort of transplant patients during the period of this study. This prevented comparison to a contemporary cohort of untreated transplant patients which would have otherwise been provided similar care. Similarly, while the outcomes are better than prior studies, there has also been further improvement in the medical care of patients in recent months with the use of remdesivir and corticosteroids, leading to potentially better outcomes. Most patients were closely followed by our remote monitoring program. However, it is possible some who declined remote monitoring sought ED evaluation or hospitalization at another center. Finally, the sample size was relatively small, which limited robust analysis of outcomes, although this is the largest cohort of transplant patients treated with monoclonal antibodies to date.
In conclusion, this single-center experience on monoclonal antibody therapy for COVID-19 in solid organ transplant recipients demonstrates favorable efficacy and safety outcomes. While ED visits and hospitalizations remain common, there were no deaths, COVID-19-related ICU admissions, or requirement for advanced respiratory support. While a randomized controlled trial is preferred to assess the efficacy in transplant patients, this is difficult to perform after EUA has been issued for these products. Thus, the encouraging data that we report here may help guide and encourage the transplant community in recommending monoclonal antibody therapy for mild-to-moderate COVID-19 in the transplant population.
Acknowledgement

This work was supported by research funding from the Mayo Clinic (to RRR).

Potential Conflicts of Interest

The authors of this manuscript declare no relevant conflicts of interest.

Patient Consent Statement

The design of this work was approved by our local Institutional Review Board. Written patient consent was obtained when necessary; however, this was deemed exempt by our local IRB.
References

1. WHO. Weekly epidemiological update - 9 March 2021. 2021.

2. Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med 2020; 288:469–476.

3. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. 2020; 12:12493–12503.

4. Caillard S, Chavarot N, Francois H, et al. Is Covid-19 infection more severe in kidney transplant recipients? Am J Transplant 2020; 10.1111/aj.

5. Kates OS, Haydel BM, Florman SS, et al. Coronavirus Disease 2019 in Solid Organ Transplant: A Multicenter Cohort Study. Clin Infect Dis 2020; :1–10.

6. Elias M, Pievani D, Randoux C, et al. COVID-19 infection in kidney transplant recipients: Disease incidence and clinical outcomes. J Am Soc Nephrol 2020; 31:2413–2423.

7. Rivinius R, Kaya Z, Schramm R, et al. COVID-19 among heart transplant recipients in Germany: a multicenter survey. Clin Res Cardiol 2020; 109:1531–1539. Available at: https://doi.org/10.1007/s00392-020-01722-w.

8. Myers CN, Scott JH, Criner GJ, et al. COVID-19 in lung transplant recipients. Transpl Infect Dis 2020; 22:1–5.

9. Heldman MR, Kates OS, Haydel BM, et al. Healthcare resource use among solid organ transplant recipients hospitalized with COVID-19. Clin Transplant 2020; e14174.

10. Raja MA, Mendoza MA, Villavicencio A, et al. COVID-19 in solid organ transplant recipients: A systematic review and meta-analysis of current literature. Transplant Rev 2021; 35:100588.
11. Bhimraj A, Morgan RL, Hirsch Shumaker A, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis 2020; ciaa478.

12. Chen P, Nirula A, Heller B, et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N Engl J Med 2021; 384:229–237.

13. Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 2021; 384:238–251.

14. Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibody for Treatment of COVID-19. 2020. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19. Accessed 3 February 2021.

15. Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19. 2020. Available at: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19. Accessed 3 February 2021.

16. Dhand A, Lobo SA, Wolfe K, Feola N, Nabors C. Bamlanivimab for treatment of COVID-19 in solid organ transplant recipients: Early single-center experience. Clin Transplant 2021; e14245. Available at: http://www.ncbi.nlm.nih.gov/pubmed/33595145.

17. Razonable R, Aloia N, Anderson R, et al. A Framework for Outpatient Infusion of Anti-Spike Monoclonal Antibodies to High-Risk Patients with Mild to Moderate Coronavirus Disease-19: The Mayo Clinic Model. Mayo Clin Proc 2021.

18. Ganesh R, Salonen BR, Bhuiyan MN, et al. Managing patients in the COVID-19 pandemic: A
Virtual Multidisciplinary Approach. Mayo Clin Proc Innov Qual Outcomes 2020; :1–9.

19. Gao C, Cai Y, Zhang K, et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur Heart J 2020; 41:2058–2066.

20. Yetmar ZA, Issa M, Munawar S, et al. Inpatient Care of Patients with COVID-19: A Guide for Hospitalists. Am J Med 2020; 133:1019–1024.

21. Grasselli G, Greco M, Zanella A, et al. Risk Factors Associated with Mortality among Patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med 2020; 180:1345–1355.

22. Firestone MJ, Lorentz AJ, Wang X, et al. First Identified Cases of SARS-CoV-2 Variant B.1.1.7 in Minnesota — December 2020–January 2021. MMWR Morb Mortal Wkly Rep 2021; 70:278–279. Available at: http://www.cdc.gov/mmwr/volumes/70/wr/mm7008e1.htm?s_cid=mm7008e1_w.

23. Firestone MJ, Lorentz AJ, Meyer S, et al. First Identified Cases of SARS-CoV-2 Variant P.1 in the United States — Minnesota, January 2021. MMWR Morb Mortal Wkly Rep 2021; 70:346–347. Available at: http://www.cdc.gov/mmwr/volumes/70/wr/mm7010e1.htm?s_cid=mm7010e1_w.

24. Ros J, Matos I, Martin-Liberal J. Immunotherapy in organ-transplanted cancer patients: efficacy and risk of organ rejection. Ann Oncol 2019; 30:1173–1177. Available at: https://doi.org/10.1093/annonc/mdz129.
Table 1: Patient Characteristics

	Total (n=73)	Hospitalized (n=9)	Non-Hospitalized (n=64)	P-value¹	
Age, years, median (IQR)	59 (49-67)	62 (60-74)	57 (49-67)	0.16	
Male gender, n (%)	46 (63.0%)	7 (77.8%)	39 (60.9%)	0.47	
Bamlanivimab, n (%)	55 (75.3%)	8 (88.9%)	47 (73.4%)	0.44⁺	
**Casirivimab-Imdevimab, n (%)	18 (24.7%)	1 (11.1%)	17 (26.6%)		
Time from symptom-onset to antibody administration, days, median (IQR)	4 (3-7)	6 (4-7)	4 (2-6.25)	0.03	
Time from positive COVID-19 testing to antibody administration, days, median (IQR)	2 (1-2)	2 (2-2)	1 (1-2.25)	0.24	
BMI, kg/m², median (IQR)	29.17 (25.78-33.01)	31.91 (27.53-32.9)	28.75 (25.37-33.08)	0.22	
Kidney, n (%)	41 (56.2%)	7 (77.8%)	34 (53.1%)	0.28[†]	
Kidney-pancreas, n (%)	4 (5.5%)	0	4 (6.3%)		
Liver, n (%)	13 (17.8%)	0	13 (20.3%)		
Heart, n (%)	11 (15.1%)	2 (22.2%)	9 (14.1%)		
Heart-liver, n (%)	1 (1.4%)	0	1 (1.6%)		
Lung, n (%)	2 (2.7%)	0	2 (3.1%)		
Pancreas, n (%)	1 (1.4%)	0	1 (1.6%)		
Prednisone, n (%)	45 (61.6%)	8 (88.9%)	37 (57.8%)	0.14	
Tacrolimus, n (%)	64 (87.7%)	8 (88.9%)	56 (87.5%)	1	
Cyclosporine, n (%)	2 (2.7%)	0	2 (3.1%)	1	
Sirolimus, n (%)	6 (8.2%)	0	6 (9.4%)	1	
Mycophenolate, n (%)	57 (78.1%)	7 (77.8%)	50 (78.1%)	1	
Azathioprine, n (%)	2 (2.7%)	0	2 (3.1%)	1	
Belatacept, n (%)	3 (4.1%)	1 (11.1%)	2 (3.1%)	0.33	
Recent rejection, n (%)	3 (4.1%)	0	3 (4.7%)	1	
Time from transplant, days, median (IQR)	1777 (729-3582)	1503 (366-1829)	1890 (801.75-3821.25)	0.22	
CAD, n (%)	13 (17.8%)	3 (33.3%)	10 (15.6%)	0.19	
CHF, n (%)	7 (9.6%)	2 (22.2%)	5 (7.8%)	0.20	
Hypertension, n (%)	48 (65.8%)	9 (100%)	39 (60.9%)	0.023	
Diabetes mellitus, n (%)	31 (42.5%)	3 (33.3%)	28 (43.8%)	0.72	
CKD, n (%)	40 (54.8%)	6 (66.7%)	34 (53.1%)	0.50	
Malignancy, n (%)	16 (21.9%)	3 (33.3%)	13 (20.3%)	0.40	
Chronic lung disease, n (%)	8 (11.0%)	1 (11.1%)	7 (10.9%)	1	
Chronic liver disease, n (%)	9 (12.3%)	0	9 (14.1%)	0.59	
(%)	Current tobacco use, n (%)	2 (2.7%)	0	2 (3.1%)	1
-----	----------------------------	----------	---	----------	---
(%)	Previous tobacco use, n (%)	26 (35.6%)	4 (44.4%)	22 (34.4%)	0.71
	CCI, median (IQR)	5 (3-7)	6 (4-8)	5 (3-7)	0.30

BMI, body mass index; CAD, coronary artery disease; CCI, Charlson comorbidity index; CHF, congestive heart failure; CKD, chronic kidney disease; IQR, interquartile range

1 Comparison of hospitalized and non-hospitalized groups.
2 Comparing risk of hospitalization for bamlanivimab and casirivimab-imdevimab.
3 Comparing risk of hospitalization for kidney transplant and non-kidney transplant.
Table 2: Characteristics of Hospitalizations

Characteristic	Hospitalized Patients (n=9)
Admission attributable to COVID-19, n (%)	7 (77.8%)
Time from symptom-onset to hospital admission, days, median (IQR)	11 (6-16)
Time from antibody administration to hospital admission, days, median (IQR)	1 (0-9)
Admission oxygen saturation, %, median (IQR)	96 (93-96)
Maximum administered oxygen, L/min, median (IQR)	1 (0-2)
Mechanical ventilation, n	0
Remdesivir administration, n (%)	7 (77.8%)
Corticosteroid administration, n (%)	2 (22.2%)
Pre-COVID-19 lymphocyte count, 10^9/L, median (IQR)	1.5 (0.94-1.96)
Admission lymphocyte count, 10^9/L, median (IQR)	0.79 (0.66-0.96)
Hospital length of stay, days, median (IQR)	4 (2-5)
ICU admission, n (%)	1 (11.1%)
Mortality, n	0

ICU, intensive care unit; IQR, interquartile range
Table 3: Outcomes at Differing Time-Points from Monoclonal Antibody Administration in 73 Transplant Recipients with Mild-to-Moderate Coronavirus Disease-2019

	14 Days	21 Days	28 Days
ED Visit, n (%)	8 (11.0%)	10 (13.7%)	11 (15.1%)
Hospital Admission, n (%)	7 (9.6%)	8 (11.0%)	9 (12.3%)
ICU Admission, n (%)	1 (1.4%)	1 (1.4%)	1 (1.4%)

*Includes ICU admission

ED, emergency department; ICU, intensive care unit