A high-salt diet enhances leukocyte adhesion in association with kidney injury in young Dahl salt-sensitive rats

This article has been corrected since Advance Online Publication and an erratum is also printed in this issue

INTRODUCTION

An increasing number of studies suggest that proinflammatory cytokines released from anchored leukocytes have an important role in the progression of cardiovascular damage in metabolic and hypertensive diseases.1 The proinflammatory process is an integral component of insulin resistance as well as glucose metabolism.2

Salt-sensitive hypertension is associated with severe organ damage. Generating oxygen radicals is an integral component of salt-induced kidney damage, and activated leukocytes are important in oxygen radical biosynthesis. We hypothesized that a high-salt diet causes the upregulation of immune-related mechanisms, thereby contributing to the susceptibility of Dahl salt-sensitive rats to hypertensive kidney damage. For verifying the hypothesis, we investigated leukocytes adhering to retinal vessels when Dahl salt-sensitive rats were challenged with a high-salt (8% NaCl) diet using acridine orange fluoroscopy and a scanning laser ophthalmoscope. The high-salt diet increased leukocyte adhesion after 3 days and was associated with a significant increase in mRNA biosynthesis of monocyte chemotactic protein-1 and intercellular adhesion molecule-1 (ICAM-1) -related molecules in the kidney. Losartan treatment did not affect increased leukocyte adhesion during the early, pre-hypertensive phase of high salt loading; however, losartan attenuated the adhesion of leukocytes during the hypertensive stage. Moreover, the inhibition of leukocyte adhesion in the pre-hypertensive stage by anti-CD18 antibodies decreased tethering of leukocytes and was associated with the attenuation of functional and morphological kidney damage without affecting blood pressure elevation. In conclusion, a high-salt challenge rapidly increased leukocyte adhesion through the over-expression of ICAM-1. Increased leukocyte adhesion in the pre-hypertensive stage is responsible for subsequent kidney damage in Dahl salt-sensitive rats. Immune system involvement may be a key component that initiates kidney damage in a genetic model of salt-induced hypertension.

Keywords: Dahl salt-sensitive rats; kidney injury; leukocyte adhesion molecules; leukocytes; salt-sensitive hypertension

1Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan; 2Department of Ophthalmology, Jichi Medical University, Shimotsuke, Japan; 3Department of Cardiology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China; 4Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women’s University, Tokyo, Japan; 5Department of Medicine, Moka Hospital, Moka, Japan; 6Medical Retina, Singapore National Eye Centre, Singapore, Singapore; 7Medical Retina, Singapore Eye Research Institute, Singapore, Singapore; 8The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore Correspondence: Dr H Takahashi, Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

E-mail: takahah-ty@umin.ac.jp

Received 26 September 2016; revised 18 January 2017; accepted 12 February 2017; published online 16 March 2017
and kidney impairment).12,13 Dahl S rats are susceptible to angiotensin II- or oxygen stress-mediated organ damage.14-16 Moreover, it has been reported that leukocyte-endothelial cell interaction is involved in organ damage through endothelin receptor in salt-dependent hypertension in DOCA-salt rats.17 Based on these studies, this susceptibility presumably results from the leukocyte adhesion mechanism. In established salt-dependent hypertension of Dahl S rats, the mono-
cyte-endothelial interaction is increased and 1-arginine administration restores the capacity for nitric oxide biosynthesis with attenuation of leukocyte adhesion.18 These processes strongly suggest that leukocyte-
endothelial adhesion is involved in the initiation of hypertension in Dahl S rats.

A method was recently introduced to detect in vivo leukocyte-
endothelial cell adherence by using retinal vessels and a scanning laser ophthalmoscope.19,20 Real-time tethering and blocking by specific antibodies against adhesion molecules can be monitored. Using such methods in the present study, we examined the influence of a high-salt challenge on leukocyte-endothelial adhesion and assessed the involve-
ment of angiotensin II in the association between high salt intake and leukocyte adhesion. In addition, we directly blocked leukocyte adhesion using anti-ICAM-1 antibodies to assess the pathophysio-
gical implications of the leukocyte-endothelial interaction in salt-induced hypertension and kidney damage in Dahl S rats.

METHODS

Effect of high salt loading on leukocyte adhesion (experiment 1)
Dahl S/Jr Sea rats utilized in the present study were selectively bred for their blood pressure response to a diet high in salt. This strain was originally obtained from Mollegård (Ejby, Denmark), shared with the Seiwa Animal Laboratory (Fukuoka, Japan), and then maintained as an inbred strain at the Kyudo Laboratory (Kyudo, Saga, Japan).

Sixty 4-week-old male Dahl S rats were divided into two groups: (1) 30 rats were fed a low-salt (0.3% NaCl, w/w) diet (low-salt group); and (2) 30 were fed a high-salt (8% NaCl, w/w) diet (high-salt group). Water was provided ad libitum. We evaluated leukocyte adhesion on day 3 after salt loading and then every week throughout the study.

To assess leukocyte adhesion, the rats were anesthetized with an intraper-
tonal injection (5 ml kg$^{-1}$) of a mixture (7:1) of 10 mg ml$^{-1}$ ketamine hydrochloride (Ketalar; Sanxyo, Tokyo, Japan) and 23 mg ml$^{-1}$ xylazine hydrochloride (Celatal; Bayer, Tokyo, Japan), and each pupil was dilated with one drop of 0.5% tropicamide (Mydrin M; Santen Pharmaceutical, Osaka, Japan). Leukocyte adhesion to the retinal vessels was evaluated using the acridine orange fluorescence method. Three weeks after salt loading (rats 7 weeks of age), the kidneys were processed to evaluate the expression of adhesion molecule mRNA by real-time PCR.

Rats used to investigate leukocyte adhesion were not used for other experiments, but killed after the test period. All rats were used solely for assessment of leukocyte adhesion, immunological characterization of adherent leukocytes or determination of mRNA in the kidney study.

To characterize leukocyte adhesion after salt loading in Dahl S rats prone to salt-induced hypertension, we investigated the adherence of leukocytes in response to the high-salt challenge in a genetic rat model of SHR. Eighteen male SHRs were divided into three groups, and leukocyte adhesion was evaluated in (1) six 4-week-old rats fed a regular (0.75% NaCl, w/w) chow male SHRs were divided into three groups, and leukocyte adhesion was

Effects of angiotensin II receptor blockade on leukocyte adhesion (experiment 2)
Twenty-five 4-week-old male Dahl S rats were divided into the following five groups (n = 5 per group): (1) rats fed a low-salt (0.3% NaCl, w/w) diet (0.3% DS); (2) rats fed a high-salt (8% NaCl, w/w) diet (8% DS-control); (3) rats fed a high-salt diet and treated with losartan (30 mg per kg body weight [BW] per day) for the first 10 days (8% DS-early); (4) rats fed a high-
salt diet and treated with losartan (30 mg per kg BW per day) for the last 10 days (8% DS-late); and (5) rats fed a high-salt diet and treated with losartan (30 mg per kg BW per day) throughout the experiment (8% DS-whole). Water was available ad libitum during the experiment. The rats were maintained for 20 days; at the end of the experiment, the rats were anesthetized and the leukocytes adhering to the retinal vessels were detected. The mRNA levels of the adhesion molecules in the kidney were measured using real-time PCR.

Effects of adhesion blockade with anti-CD18 antibodies on kidney damage (experiment 3)
To elucidate the pathophysiological role of leukocyte adhesion in the initiation of kidney damage in Dahl S rats, we blocked adhesion using an anti-CD18 (integrin β-2) antibody, the integral cell-surface proteins involved in leukocyte adhesion. Thirty-six 4-week-old male Dahl S rats were divided into three groups (n = 12 per group): (1) rats fed a low-salt (0.3% NaCl, w/w) diet and injected with nonspecific mouse IgG (1 mg kg$^{-1}$; Southern Biotech, Birmingham, AL, USA) as the control antibody (control [LS]), (2) rats fed a high-salt (8% NaCl, w/w) diet and injected with the control antibody (HS-IgG), and (3) rats fed a high-salt (8% NaCl) diet and injected with mouse anti-rat CD18-specific antibodies (1 mg kg$^{-1}$ BW) (clone WT.3; Serotec, Oxford, UK) (HS-anti-CD18). The antibodies were injected intraperitoneally every 2 days for the first 10 days.21,22 The rats were killed at week 1 or 3 to evaluate leukocyte adhesion and inhibition of binding to the retinal vessels in animals challenged with a high-salt diet.

Systolic blood pressure was measured using the tail cuff method, with a modified detection system (Natsuke Seiskuku Model KN-210-1; Tokyo, Japan).23,24 The same investigator measured the blood pressure of all rats in a quiet, warm room. The rats were placed in metabolic cages to collect 24-h urine samples weekly to determine the variables that indicate kidney damage. The urine samples were stored at −80 °C until assayed.

At week 1 and at the end of the study, blood samples and organs of interest were obtained under anesthesia. Retinal vessels were perfused with 250 ml kg$^{-1}$ BW phosphate-buffered saline containing 1.25 mg kg$^{-1}$ BW fluorescein isothiocyanate-conjugated concanavalin A (ConA) lectin (Vector Laboratories, Burlingame, CA, USA), as described previously.19 Both eyeballs were enucleated to determine leukocyte adhesion to the retinal vessels using stained retinal flat mounts.19,20 The separated plasma samples were stored at −80 °C until assayed. The weights of the kidney and heart were standardized relative to body weight. A portion of the kidneys was placed in 10% formalin solution for morphological examination.

Acridine orange fluorescence for in vivo determination of adherent leukocytes
Leukocyte adhesion to the retinal vessels was determined using acridine orange fluorescence.25 A scanning laser ophthalmoscope (Rodenstock Instruments, Munich, Germany) was used to obtain interlaced video frames of the fundus stained using metachromatic fluorochrome acridine orange (Wako Pure Chemicals, Osaka, Japan). The dye emits green fluorescence when interacting with DNA. The maximum excitation and emission wavelengths of the acridine orange–DNA complex are 502 and 522 nm, respectively. An argon blue laser was used for excitation, with a regular emission filter for fluorescent angiography.

The laser focus was adjusted to the deep retinal capillary layer. Fluorescent leukocytes were recorded for 10 s on a DVCPRO digital videotape at 30 frames per second, with two interlaced fields per frame. The recorded videos were transferred to a computer system equipped with Image software (National Institutes of Health, Bethesda, MD, USA). The recorded video frames were stacked to one frame to enhance arrest leukocyte signals and depress noise from flowing and rolling leukocytes. All leukocytes adhering to the retina around the optic disk (5-disc diameter) were counted. A 10°×10° angle of view of the retina (170×170 pixels) was used for leukocyte detection.

Immunological characterization of adherent leukocytes
Leukocytes adhering to the retinal vessels were identified using retinal flat mounts and anti-CD18 antibodies. Briefly, retinal vessels were perfused with 250 ml kg$^{-1}$ BW phosphate-buffered saline containing 1.25 mg kg$^{-1}$ BW.
Leukocyte adhesion and the kidney
H Takahashi et al

RESULTS

High-salt diet increases leukocyte adhesion in young Dahl S rats

We assessed changes in leukocyte adhesion to retinal vessels by acridine orange fluorescence when Dahl S rats were challenged with a high-salt diet. On day 3, the high-salt group showed higher systolic blood pressure than the low-salt group (125 ± 2 mm Hg (n = 19) vs. 123 ± 2 mm Hg (n = 18), P < 0.05); however, the blood pressure level was within the normal range. Blood pressure increased in a time-dependent manner in both the high-salt and the low-salt groups (Table 1). The high-salt group exhibited higher blood pressure at all timepoints compared with the low-salt group.

The high-salt diet significantly increased leukocyte adhesion to retinal vessels at day 3 when the average blood pressure was 125 mm Hg in the high-salt group and 123 mm Hg in the low-salt group (Figure 1a). In addition to blood pressure elevation with a high-salt challenge; however, it declined at weeks 3 and 4, whereas blood pressure still increased. Leukocyte adhesion was higher in the high-salt group than in the low-salt group throughout the experiment, while the total number of peripheral leukocytes and their differentiation did not differ between the two groups.

By contrast, in 4-week-old SHRs, the number of leukocytes adhering to the retinal vessel was lower than in Dahl S rats, and the high salt loading did not increase leukocyte adhesion in SHRs at stage 0, no lesions; stage 1, 1–25% sclerosis; stage 2, 26–50% sclerosis; stage 3, 51–75% sclerosis; and stage 4, 76–100% sclerosis. An overall glomerular sclerosis score was calculated by multiplying the severity score (0–4) by the percentage of glomeruli affected and obtaining the total of these values.

Plasma and urinary creatinine levels and urinary sodium excretion were measured using an autoanalyzer (Model Hitachi 736; Hitachi, Tokyo, Japan). Urinary protein concentrations were measured using a protein assay kit (BioRad, Hercules, CA, USA).

Statistical analysis

Values are expressed as the mean ± s.d. Differences were assessed using the Kruskal–Wallis test followed by the Mann–Whitney U-test with Bonferroni correction for non-parametric distribution and one-way analysis of variance followed by post-hoc analysis using the Scheffe test for parametric distribution. Correlation was performed using simple Pearson correlations. Multiple regression analysis was performed using maximum likelihood estimation with the Akaike information criterion. Statistical analysis was performed using JMP software (SAS Institute, Cary, NC, USA). P-values <0.05 were considered statistically significant. Correlation and multiple regression analyses were performed for 8% salt-loading rats.

Guidelines for animal experiments

All animal experiments were performed according to the guidelines of the Association for Research in Vision and Ophthalmology and were approved by the Animal Care Committee of the Tokyo University Hospital. The experiments were conducted in accordance with the National Institutes of Health guidelines.
8%DS-late 139
±
8%DS-early 138
8%DS-control 139
* assessed by one-way ANOVA followed by post-hoc analysis using the Scheffe test.

There were rats tested 3 days after loading and then weekly for 4 weeks. Differences were assessed using the Mann–Whitney U-test with Bonferroni correction. *P<0.01 and †P<0.001 vs. the low-salt group at each time point. (b) Characterization of leukocytes adhering to the retina vessels. Cells were stained with fluorescein isothiocyanate conjugated with ConA (top, green), and anti-CD18, CD11a, CD11b and CD45 antibodies (middle, red). Signals of ConA were consistent with those of the antibodies (bottom, Merge), thereby indicating that the ConA-positive cells detected were leukocytes loaded with CD18, CD11a, CD11b and CD45 antigens. Arrowheads indicate leukocytes adhered to the retinal artery. Scale bar, 20 μm. (c) Adhesion molecule mRNA expression in the kidney. Adhesion molecule mRNA expression in the kidney of 7-week-old Dahl S rats was determined 3 weeks after salt loading. Open bars represent Dahl S rats fed the low-salt diet (n=5), and solid bars represent Dahl S rats fed the high-salt diet (n=5).

The mRNA content is expressed relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA in the kidney tissue. Differences were assessed using the Kruskal–Wallis test followed by Mann–Whitney U-test with Bonferroni correction. *P<0.02 and †P<0.01 vs. Dahl S rats fed the low-salt diet.

Characterization of leukocytes adhering to the retinal vessels

We characterized the adhered nucleated cells using fluorescein isothiocyanate conjugated to ConA lectin. Approximately 95% of the leukocytes stained with ConA were positive for anti-CD18 antibody staining. The cells were also positive for CD11a (90%), CD11b (55%) and CD45 (71%) antibody staining (Figure 1b). Double staining showed that each antibody signal matched the ConA signal of leukocyte adherence to the retinal vessels.

To investigate the expression of adhesion molecules after salt loading, we determined the mRNA expression in renal tissue using real-time PCR. As shown in Figure 1c, the expression levels of e-selectin, ICAM-1, and integrin αM were significantly higher in the high-salt group than in the low-salt group (e-selectin, P<0.02, ICAM-1, P<0.01, and integrin αM, P<0.01).

Leukocyte adhesion and the renin–angiotensin system

We examined whether the increased leukocyte adhesion in response to a high-salt diet was mediated by the renin–angiotensin system. In the present study, we utilized losartan, an angiotensin II subtype-1 receptor antagonist, to block signal transduction of angiotensin II. Systolic blood

Table 2 Systolic blood pressure in experiment 2

Group	Start	Week 1	Week 2	Week 3
0.3%DS	138±2	145±2*	152±1*	156±2*
8%DS-control	139±1	176±2	204±2	222±4
8%DS-early	138±2	174±2	203±3	208±2*
8%DS-late	139±1	174±2	198±3*	204±2*
8%DS-whole	138±2	172±2	199±1*	207±3*

Abbreviation: ANOVA, analysis of variance.
Experimental groups: 0.3%DS, Dahl S rats fed a low-salt (0.3%) diet; 8%DS-control, Dahl S rats fed a high-salt (8% NaCl) diet; 8%DS-early, Dahl S rats fed a high-salt diet and treated with losartan for the first 10 days only; 8%DS-late, Dahl S rats fed a high-salt diet and treated with losartan throughout the experiment. There were five rats per group. Differences were assessed by one-way ANOVA followed by post-hoc analysis using the Scheffe test.

*P<0.001 vs. respective values in 8% DS-control group, †P<0.05 vs. respective values in 8% DS-early group.

week 1 (40.9±9.4 vs. 36.9±11.4 cells per 10×10° retinal view in the high-salt and low-salt groups, respectively).
pressure was increased in the five experimental groups in a time-dependent manner (Table 2). However, angiotensin II antagonism decreased the rise in blood pressure due to high salt intake as compared with the untreated Dahl S rats fed the high-salt diet. Blood pressure was higher in Dahl S rats treated during the first half (early period) of the experiment than those treated during whole period.

Losartan treatment significantly decreased the number of adhered leukocytes to the level of that in the untreated Dahl S rats fed the high-salt diet. Blood pressure was higher in Dahl S rats treated during the second half (late period) of the experiment (Figure 2a). Losartan treatment during the late period generally decreased the mRNA level of ICAM-1, ICAM-1-related molecules, integrin αM and integrin β2 compared with levels in the untreated high-salt group, whereas the mRNA expression was almost unchanged in Dahl rats treated during the early period (Figure 2b).

Inhibition of leukocyte adhesion and kidney damage

ICAM-1 and ICAM-1-related adhesion molecules were upregulated, in addition to CD18-laden leukocyte adhesion, in response to the high salt loading. We directly blocked tethering of CD18-loaded leukocytes to ICAM-1 and ICAM-1-related molecules using anti-CD18-specific antibodies. The high-salt diet increased the number of CD18-positive leukocytes adhered to the retinal arterioles and smaller veins at weeks 1 and 3 compared with the low-salt diet (Figure 3a). Treatment with anti-CD18 antibodies significantly decreased leukocyte adherence at week 1, and the decrease in leukocyte adhesion was maintained at week 3.

Because anti-CD18 antibodies blocked the ligation, we examined functional or morphological changes in the kidney of Dahl S rats with salt-induced hypertension. Treatment with anti-CD18 antibodies did not influence body weight and urinary sodium excretion at week 1 (Table 3). Administration of anti-CD18 antibody attenuated the increase in proteinuria, and the creatinine clearance rate was significantly increased compared with the HS-IgG group (Figures 3b and c).

We examined morphologically the protection from renal damage resulting from adhesion blocking. As shown in Figures 3d–f, the high-salt diet significantly increased the glomerular sclerosis score; this increase was significantly attenuated by antibody treatment, and the effect was observed until 12 days after treatment cessation (3 weeks after loading). The glomerular sclerosis score was significantly correlated with the number of leukocytes adhering to the arterioles (Figure 3g, r = 0.62, P < 0.05). Treatment with anti-CD18 antibodies significantly decreased the number of adhered leukocytes to the retinal arterioles and smaller veins.
antibodies did not influence body weight but improved urinary sodium excretion at week 3 (Table 3).

DISCUSSION

The most important finding in the present study was that leukocyte adhesion was increased in response to a high-salt challenge in Dahl S rats. The adhesion quickly increased 3 days after salt loading when systolic blood pressure was within a normotensive range. The mechanism of the rapid leukocyte adherence response was unclear. We demonstrated that the early response of leukocyte adhesion to high-salt intake was not abolished by the angiotensin II subtype-1 receptor antagonist losartan, whereas the later phase of the response...
was almost completely abolished by the antagonist. These findings suggest that the mechanisms underlying the leukocyte response to high salt intake differed between the early and later phases. At present, we do not have data to explain the mechanism of the angiotensin II-independent events. However, it has been reported that levels of vascular vasodilators, such as prostacyclin and nitric oxide, are reduced in Dahl S rats while those of vasoconstrictors are enhanced.27 Since prostacyclin and nitric oxide are potent inhibitors of leukocyte adhesion to endothelial cells, the imbalance between vasodilator and vasoconstrictor substances, as well as an increase in shear stress, may be responsible for the angiotensin II-independent leukocyte adhesion in the early phase.28-31 On the basis of these findings, leukocyte adhesion in response to high salt loading is multifactorial and the role of the renin–angiotensin system becomes apparent along with progression of vascular damage.

Angiotensin II activates nicotinamide adenine dinucleotide phosphate oxidase in leukocytes and thereby increases the amount of radicals. There is considerable evidence suggesting that oxygen radicals have an important role in damaging endothelial cells and cardiac function in advanced heart failure in Dahl S rats.32-34 In the present study, we did not investigate the role of oxygen stress in leukocyte adhesion-related kidney injury. However, we have reported previously that progression of salt-induced hypertension and associated kidney damage is attenuated by oxygen radical scavengers, and immune suppression decreases leukocyte infiltration in peritubular and is associated with attenuation of kidney dysfunction in Dahl S rats.35-37 These findings suggested that, at least in established salt-induced hypertension in Dahl S rats, oxygen radicals are involved in progression of kidney damage. In fact, it has been reported that Dahl S rats are susceptible to angiotensin-induced kidney damage. Thus, it is possible that the rapid increase in leukocyte adhesion in response to a high-salt diet may be related to the high sensitivity of the renin–angiotensin system in Dahl S rats.14,15 Furthermore, we demonstrated that leukocyte adhesion did not increase in response to a high salt load in the rat model of SHR. This rat model is less salt-sensitive than spontaneously hypertensive stroke prone (SHRsp) rats.38,39 The increase in leukocyte adhesion in Dahl S rats is related to salt sensitivity, but is not a consequence of the elevation of blood pressure.

Ang II inhibition with losartan in the early stage of salt loading was associated with upregulation of p-selectin. The mechanism was not clear; however, we may address at least two possibilities. Firstly, we have reported that Ang II-mediated intracellular signal transduction also upregulates the regulator of G protein signaling 2 which attenuates intracellular Ang II signal transduction.40 A small amount of Ang II in the early stage of salt loading more likely influences regulator of G protein signaling 2 regulation than the signal transduction. Secondly, losartan inhibits Ang II-mediated action through receptor antagonism and it also directly stimulates regulator of G protein signaling 2 biosynthesis, suggesting that Ang II-mediated signal transduction is potently down-regulated by both receptor-mediated and regulator of G protein signaling 2-mediated mechanisms. The withdrawal of losartan may provoke upregulation of Ang II signal transduction in the subsequent phase.

The inhibition of ICAM-1 binding to its receptors by specific antibodies decreased urinary protein excretion in Dahl S rats; the decrease continued for 5 days after treatment cessation. Angiotensin II activates nicotinamide adenine dinucleotide phosphate oxidase and increases oxygen radical generation. Oxygen stress influences nuclear factor kappa B-related transcriptional regulation of various bioactive substances.1 In the present study, we did not examine the status of oxygen radicals when the rats were challenged with a high-salt diet. However, we reported previously that renal damage in Dahl S rats with hypertension is attenuated by scavengers of oxygen radicals.14 It seems probable that the rapid response of leukocyte adhesion to a high-salt diet is mediated by a mechanism involving angiotensin/nicotinamide adenine dinucleotide phosphate and oxygen radicals.

We demonstrated that the inhibition of leukocyte adhesion was associated with the attenuation of kidney damage. We did not directly examine the leukocytes on the vessels of the kidney. However, the blocking antibody indeed reduced leukocyte adherence in the vessels of the retina, and it is presumed that this antibody was effective in the vessels of the kidney. In fact, we demonstrated that the CD18 antigen was expressed in tethered leukocytes and that mRNA of the CD18-binding molecules and ICAM-1 adhesion molecules was overexpressed in renal tissue. Moreover, leukocyte adhesion was inhibited by the anti-CD18 antibody. Taken together, our results strongly suggest that leukocyte adhesion through ICAM-1 linkage caused renal injury in Dahl S rats.

To assess the adhesive activity of leukocytes in the target organ circulation, we observed leukocytes tethered to the retinal vessels using acridine orange fluoroscopy. Myeloperoxidase activity has been used thus far as a surrogate marker for leukocyte infiltration into the kidney. Recent advances in technology made it possible to investigate the superficial microvasculature in the hydronephrotic kidney induced by bilateral ligation of the ureter41 or in the vital kidney using intravital two-photon imaging.42 In our studies, however, we investigated morphological injury in glomeruli localized in the deep cortex. Glomeruli in the deep cortex are more susceptible to injury in Dahl S rats as compared with those in the superficial cortex. It might

Table 3 Body weight and urinary sodium excretion

Body weight (g)	Start	Week 1	Week 2	Week 3
Control (LS)	105±2.2	158±1.7	207±2.1	257±2.1
HS-IgG	101±1.5	155±2.6	202±3.8	223±4.2*
HS-Anti-CD18	102±1.7	153±2.1	198±2.8	235±4.3*

Urinary sodium excretion (mEq per day per 100 g body weight)	Control (LS)	HS-IgG	HS-Anti-CD18
	Control (LS)	0.26±0.09	0.33±0.05
	HS-IgG	0.34±0.16	16.22±1.53*
	HS-Anti-CD18	0.27±0.09	15.81±0.77*

Abbreviation: ANOVA, analysis of variance.

The difference was assessed by one-way ANOVA followed by post-hoc analysis using the Scheffe test. Values are presented as mean±s.d.

Control (LS), Dahl S rats fed a low-salt (0.3% NaCl); HS-IgG, Dahl S rats fed a high-salt (8% NaCl) diet and given a nonspecific IgG fraction; HS-Anti-CD18, Dahl S rats fed a high-salt diet and given an active anti-CD18-specific antibody.

*P<0.0001, 1P<0.005 vs. control (LS), 2P<0.005 vs. HS-IgG. There was no other difference between the HS-IgG and HS-Anti-CD18 groups.
be technically difficult to investigate leukocyte migration in vivo in the deep microvasculature.

In relation to this, there has been much evidence that microalbuminuria is associated with cardiovascular disease, suggesting that microalbuminuria reflects widespread vascular damage.

Several mechanisms have been proposed, including an inflammatory process, but there is not yet sufficient direct evidence to suggest that vasculature in the retina can predict widespread vascular damage; however, recent advances in endothelial cell integrity may suggest that retinal microvascularity may be implicated in predicting widespread damage.

More interestingly, we demonstrated that leukocytes more likely adhered to veins than arteries in response to salt loading. Joussen et al. reported that leukocytes often adhere to post-capillary vessels. The pathophysiological implications remain to be elucidated; however, it is noteworthy that the initiation of vascular damage may occur in post capillary vessels rather than arteries of the kidney.

Recent studies have demonstrated that leukocyte adhesion in the cerebral circulation is related to the SHR. Mazor et al. reported that leukocyte depletion significantly attenuated the development of hypertension in salt-loaded Sabra rats. In our study, anti-CD18 antibody treatment with decreased leukocyte adherence did not influence the blood pressure in Dahl S rats (data not shown). The reason for the discrepancy was not clear. However, in our study we observed an early response of leukocytes to salt loading and the effects blockade using a short-term anti-CD18 antibody infusion on blood pressure and kidney damage. Long-term inhibition would have provided clearer evidence of anti-hypertension and protection of kidney function.

Finally, in general, high-salt challenges decrease the activity of the renin–angiotensin system. In this study, we demonstrated the involvement of the renin–angiotensin system in leukocyte adhesion and the related organ damage. In this context, we have reported that the renin–angiotensin system in Dahl S rats is not sufficiently suppressed by a high-salt challenge, as compared with a low-salt diet, and this strain exhibits a higher response to angiotensin II stimulation. This may be caused by a depressed vasodilator system or the impaired regulator of Gq signaling-2 (RGS-2) that downregulates intracellular angiotensin II signal transduction.

In conclusion, we demonstrated that a high-salt challenge increases leukocyte adhesion to retinal vessels in Dahl S rats, probably through the renin–angiotensin axis. Furthermore, inhibiting ICAM-1 binding to its receptors resulted in decreased leukocyte adhesion to retinal vessels, and this was associated with the attenuation of kidney damage. This mechanism may lead to new strategies for renal protection during salt-induced hypertension.

CONFLICT OF INTEREST
HT received grants from JSPS KAKENHI, Bayer Yakuin, Nihon Alcon, and Novartis Pharmaceuticals, outside this work. YY is a Board member of Bayer Yakuin, Novartis Pharmaceuticals and Santen Pharmaceutical, outside this work.

ACKNOWLEDGEMENTS
We thank Juhe Takahashi for blind evaluation of leukocytes adhered to the vessels. This work was supported by a grant (2006) from the Ueda Memorial Trust Fund for Research of Heart Diseases and JSPS KAKENHI Grant (Scientific Research (C), 21592217, 2009) from the Ministry of Education, Culture, Sports, Science and Technology-JAPAN. Hidenori Takahashi has received a grant (2006) from the Ueda Memorial Trust Fund for Research of Heart Diseases. Hidenori Takahashi, Yasuhiro Tamaki, and Yoshio Uchida have received a grant (Scientific Research (C), 21592217, 2009) from the Ministry of Education, Culture, Sports, Science and Technology-JAPAN.

REFERENCES
1. Galikin E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Ann Rev Immunol 2009; 27: 165–197.
2. Olesfsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Ann Rev Physiol 2010; 72: 219–246.
3. Lui H, Wei XB, Sun R, Cai YK, Lou HY, Wang JW, Chen AF, Zhang XM. Angiotensin II stimulates intercellular adhesion molecule-1 via an ATP receptor/nuclear factor-kappaB pathway in brain microvascular endothelial cells. Life Sci 2006; 78: 1293–1299.
4. Arndt H, Smith CW, Granger DN. Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension 1995; 21: 667–673.
5. Shen K, Sung KL, Whittemore DE, Delano FA, Zweifach BW. Schmid-Schonbein GW. Properties of circulating leukocytes in spontaneously hypertensive rats. Biochem Cell Biol 1995; 73: 491–500.
6. Waki H, Liu B, Miyake M, Katabira K, Murphy D, Kasparov S, Paton JF. Functional adhesion molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a prohypertensive role within the brain stem. Hypertension 2007; 49: 1321–1327.
7. Hoshikata K, Yoshikawa D, Tanaka A, Ando H, Fujimura A. Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake. Hypertens Res 2016; 39: 19–26.
8. Komatsu S, Panes J, Russell JM, Anderson DC, Muzikantov VR, Miyakasa M, Granger DN. Effects of chronic arterial hypertension on constitutive and induced intercellular adhesion molecule-1 expression in vivo. Hypertension 1997; 29: 683–689.
9. Chen Y, Ha JN, Delano FA, Schmid-Schonbein GW. Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat. J Leukoc Biol 2012; 92: 183–194.
10. McManus E, Muller DN, Park K, Dechend R, Schmidt F, Fiebeler A, Bieringer M, Breu V, Ganten D, Haller H, Luft FC. Cyclosporin A protects against angiotensin II-induced end-organ damage in double transgenic rats harboring renin and angiotensinogen genes. Hypertension 2000; 35: 360–366.
11. Ono R, Kakahashi A, Ito Y, Sugiura M, Nakano S, Kobayashi E, Hakamada Y, Takagi Y, Kitazuma Y, Kawakami M. Effect of topical nipradilol on retinal microvascular leukocyte adhesion in diabetic rats. Ophthalmic Res 2006; 38: 270–273.
12. Dahl LK, Heine M, Tasasini L. Role of genetic factor in susceptibility to experimental hypertension due to chronic salt ingestion. Nature 1962; 184: 480–482.
13. Rapp JD, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 1985; 7: 340–349.
14. Hirawa N, Uehara Y, Kawabata Y, Ohshima N, Ono H, Nagata T, Gomi T, Ikeeda T, Goto A, Yagi S. Mechanistic analysis of renal protection by angiotensin-converting enzyme inhibitor in Dahl salt-sensitive rats. J Hypertens 1994; 12: 909–918.
15. Aagami T, Reaven GM, Tsao PS. Enhanced monocytoid adherence to thoracic aorta from rats with two forms of experimental hypertension. Am J Hypertens 1999; 12: 890–893.
16. Kobayashi N, Hara K, Tojo A, Orozato ML, Honda T, Yoshida K, Mitaka S, Nakano S, Tsukobu Y, Matsuoka H. Eplerenone shows renoprotective effect by reducing L0X-1-mediated adhesion molecule, PKK ve MAP-p90RSK, and Rho-kinase pathway. Hypertension 2005; 45: 538–544.
17. Caillere GE, Montezano AC, Touyz RM, Zorn TMT, Carvalho MHC, Forbes ZB, Nigro D, Schiffrin EL, Tostes RC. ETa receptor mediates altered leukocyte-endothelial cell interaction and adhesion molecules expression in DOCA-salt rats. Hypertension 2004; 43: 872–879.
18. Artigues C, Richard V, Rousset C, Lallemand F, Henry JP, Thilliez G. Increased endothelium-monocyte interactions in salt-sensitive hypertension: effect of L-arginine. J Cardiovascular Pharmacol 2000; 35: 468–473.
19. Ishida S, Yamashiro K, Usui T, Kaji Y, Ogura H, Tida H, Honda Y, Oguchi Y, Adams AP. Leukocytes mediate retinal vascular remodeling during development and vascular obliteration in disease. Nat Med 2003; 9: 781–788.
20. Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Burssel SE, Adams AP. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 2001; 158: 147–152.
21. Smith JR, O'Tourke LM, Becker MD, Cao M, Williams KA, Planck SR, Rosenbaum JT. Anti-ICAM-1 antibody does not influence the course of experimental melanin-induced uveitis. Curr Eye Res 2000; 26: 901–906.
22. Becker MD, Garman K, Whitcup SM, Planck SR, Rosenbaum JT. Inhibition of leukocyte sticking and inflammation, but not rolling, by antibodies to ICAM-1 and LFA-1 in murine endothin-induced uveitis. Invest Ophthalmol Vis Sci 2001; 42: 2563–2566.
23. Friedman M, Freed SC. Microphonic manometer for indirect determination of systolic blood pressure in the rat. Proc Soc Exp Biol Med 1949; 70: 670–672.
24. Hirawa N, Uehara Y, Kawabata Y, Numabe A, Ohshima N, Ono H, Gomi H, Ikeeda T, Yagi S, Toyokawa T, Onmata M. Subpressor dose of angiotensin II increases susceptibility to the haemodynamic injury of blood pressure in Dahl salt-sensitive rats. J Hypertens 1999; 17: 81–90.
25. Cao AM, Olson PR, Nelson S, Miyra TR, Bankhead P, McGowan JG, Curtis TM, Ambati BK. Acridine orange leukocyte fluorescence in mice. Exp Eye Res 2014; 120: 15–19.
26. Yoshinaga M, Toda N, Tamura Y, Terakado S, Ueno M, Otsuka K, Numabe A, Kamekura Y, Uehara Y, Japanese traditional miso soup attenuates salt-induced hypertension and its organ damage in Dahl salt-sensitive rats. Nutrition 2012; 28: 924–931.
27. Tobian L, Uehara Y, Iwai J. Prostaglandin alterations in barely hypertensive Dahl S rats. Toxins 2007; 1: 71–83.
28. Barton M, Vos I, Shaw S, Boer P, D'uscio LV, Grone HJ, Rabilien TJK, Lattmann T, Moreau P, Lusher TF. Dysfunction renal nitric synthase as a determinant of salt-sensitive
hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and glomerulosclerosis. J Am Soc Nephrol 2006; 11: 835-846.

29 Lindeman S, Gierer C, Darius H. Prostacyclin inhibits adhesion of polymorphonuclear leukocytes to human vascular endothelial cells due to adhesion molecule independent regulatory mechanisms. Basic Res Cardiol 2003; 98: 8-15.

30 Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651-4655.

31 Moazam F, DeLano FA, Zwelfach BW, Schmid-Schonbein GW. The leukocyte response to fluid stress. Proc Natl Acad Sci USA 1997; 94: 5338-5343.

32 Tojo A, Oonoato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T. Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension 2002; 40: 834-839.

33 Chandramohan G, Bai Y, Norris K, Rodriguez-Iturbe B, Vaziri ND. Effects of dietary stress in Dahl Salt-sensitive rat with heart failure. Proc Natl Acad Sci USA 1997; 94: 5338-5343.

34 Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage for vascular hypertrophy and glomerulosclerosis. Proc Natl Acad Sci USA 1997; 94: 1191-1197.

35 Uehara Y, Kawabata Y, Hirawa A, Gomi T, Ikeda T, Ohnishi T, Ishii M. Immunosuppressant HR-325 attenuates progression of malignant arteritis in the kidney. Immunosuppressant HR-325 effects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32: 219-226.

36 Sen S, Hoffman GC, Stowe NT, Smeby RR, Bumpus FM. Spontaneous hypertension in vascular smooth muscle cells of wistar rat. Am J Hypertens 1993; 6: 463-472.

37 Uehara Y, Hirawa N, Kawabata Y, Akie Y, Ichikawa A, Funahashi N, Omata M. Immunosuppressant HR-325 attenuates progression of malignant arteritis in the kidney of Dahl salt-sensitive rats. Hypertens Res 1997; 20: 91-97.

38 Sen S, Hoffman GC, Stowe NT, Smeby RR, Bumpus FM. Spontaneous hypertension and erythrocytosis in rats. In: Okamoto K (ed), Spontaneous Hypertension. Igaku Shoin Ltd.: Tokyo, Japan, 1972, 227.

39 Sen S, Smeby RR, Bumpus FM. Renin in rats with spontaneous hypertension. Circ Res 1972; 31: 876-880.

40 Wu Y, Nakagawa S, Takahashi H, Kubota Y, Suzuki E, Uehara Y. The Angiotensin II receptor antagonist, losartan, enhances regulator of G protein signaling 2 mRNA expression in vascular smooth muscle cells of wistar rat. Hypertens Res 2016; 39: 299-301.

41 Ruth AJ, Kitching AR, Kwan BY, Dobsasic D, Ooi JD, Timoshanko JR, Hickey MJ, Holdsworth SR. Anti-neutrophil cytoplasmic antibodies and effector CD4 cells play a crucial role in the pathogenesis of crescentic glomerulonephritis. J Am Soc Nephrol 2006; 17: 1940–1949.

42 Shahfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL, Jones BE, Gupta A, Grinnell BW, Molitoris BA. Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 2009; 20: 524-534.

43 Mann JF, Yi QL, Genest HC. Albuminuria as a predictor of cardiovascular and renal outcomes in people with known atherosclerotic cardiovascular disease. Kidney Int Suppl 2004; 92: S59-S62.

44 Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res 2009; 32: 115-121.

45 Currie G, Delles C. Proteinuria and its relation to cardiovascular disease. Int J Nephrol Renovasc Dis 2014; 7: 13-24.

46 Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofod-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32: 219-226.

47 Deckert T, Kofod-Enevoldsen A, Norgaard K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen T. Microalbuminuria. Implications for micro- and macrovascular disease. Diabetes Care 1992; 15: 1181–1191.

48 Nagasawa T, Mori T, Ohsaki Y, Yoney K, Guo Q, Sato E, Oba I, Ito S. Albuminuria indicates the pressure-associated injury of juxtaglomerular nephrons and cerebral branch vessels in spontaneously hypertensive stroke-prone rats. Hypertens Res 2012; 35: 1024–1031.

49 Gu Y, Petl T, Wei FF, Thijl S, Jacobs L, Zhang YZ, Yang WY, Cauwenberghs N, Knez J, Struijker-Boudier HA, Kuznetsova T, Verhamme P, Staessen JA. Renal glomerular dysfunction in relation to retinal arteriolar narrowing and high pulse pressure in seniors. Hypertens Res 2016; 39: 138–143.

50 Lin F, Zhu P, Huang F, Li Q, Yuan Y, Gao Z, Yu P, Lin J, Chen F. Aortic stiffness is associated with the central retinal arteriolar equivalent and retinal vascular fractal dimension in a population along the southeastern coast of China. Hypertens Res 2015; 38: 342–348.

51 Mazor R, Kristal B, Cohen-Mazor M, Yagil C, Yagil Y, Sela S. The polymorphonuclear leukocyte contributes to the development of hypertension in the Sabra rat. J Hypertens 2007; 25: 2249–2256.

52 Shirahase H, Wada K, Uehara Y, Nakamura S, Ichikawa A. Renal and cerebral protective effects of NKY-722 in hypertensive Dahl rats: role of angiotensin II and prostaglandins. Am J Hypertens 1997; 10: 869–878.

53 Hirawa N, Uehara Y, Numabe A, Kawabata Y, Gomi T, Ikeda T, Ohnishi T, Ishii M, Omata M. The implication of renin-angiotensin system on renal injury seen in Dahl salt-sensitive rats. Am J Hypertens 1997; 10: 1026–1035.

54 Wu Y, Takahashi H, Suzuki E, Krulisch P, Soucek M, Uehara Y. Impaired response of regulator of Gq signaling-2 mRNA to angiotensin II and hypertensive renal injury in Dahl salt-sensitive rats. Hypertens Res 2016; 39: 210–216.

© The Author(s) 2017

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/