Pwr Fuel Macroscopic Cross Section Analysis for Calculation Core Fuel Management Benchmark

S. Pinem¹, T.M. Sembiring², Tukiran Surbakti¹

¹Center for Nuclear Reactor Technology and Safety, National Nuclear Energy Agency of Indonesian (BATAN), Kawasan Puspiptek Building No. 80,Tangerang Selatan 15310, Banten, Indonesia
²Center for Nuclear Energy System Assesment Jalan Kuningan Barat, Mampang Prapatan, Jakarta – 12710, Indonesia

Email : pinem@batan.go.id

Abstract. The in-core fuel management of PWR reactor is very complex because the core is loaded by several enrichments as well as the number and types of burnable poison rod (pyrex) of the fuel assemblies. Besides that, the boron content in the moderator rely on the operation condition. Therefore, the core calculation requires macroscopic neutron cross section representing each type of fuel assemblies and operating conditions. The evaluation of in-core fuel management in the PWR needs a validated code. The PWR-FUEL code has been verified on the criticality cases and showed a satisfaction results. However, the code is not yet validated with the benchmark in-core fuel management cases. This study aims to generate the macroscopic cross sections for the fuel assemblies of PWR Almaraz Unit II which used as a benchmark case for the in-core fuel management that described in the IAEA-TECDOC-815. The cross sections are generated by using the SRAC2006 core which has been used in the criticality analysis of AP1000 reactor. The calculation results showed that the cross section is accurate since the maximum difference value of k_{inf} is 1.87%.

Keywords: PWR, in-core fuel management, macroscopic neutron cross section, benchmark, SARC2006

1. Introduction

In support of the nuclear R & D program, especially for the first nuclear power plant in Indonesia, BATAN as a nuclear R & D institution has undertaken several planned and sustainable phases. BATAN has been developing NODAL3 codes for determine neutronic and thermal-hydraulic parameters of Pressurized Water Reactor (PWR). The NODAL3 code has been validated for static and transient PWR-type reactor[1–4]. Furthermore, it is necessary to evaluate the core fuel management for optimization of fuel and reactor operation safety. The PWR-FUEL code has been developed for PWR core management based on 3-dimensional nodal method [5]. The program has been verified [6] and the accuracy needs to be validated with the benchmark case.

Calculation of core fuel management is very important role in the safety of PWR reactors because through this calculation can determine the fuel element efficiency, maximum power peaking factor, in each fuel assembly or fuel rod, flux neutron, boron concentration and fuel fraction per fuel assembly [7]. Type of fuel element is large and varied in the PWR core, the usual calculation of core management is done by nodal method by solving the multi-group neutron diffusion equations in 3-dimensional (3-D) Cartesian geometry. Calculation of core fuel management is still developing, especially in the optimization of fuel loading in the core [8–10].

For PWR core, operating parameters that influential in the core fuel management calculations are fuel temperature, moderator temperature and boron concentration. In the calculation of the depletion of fissile material a concentration of each split nuclide for each level of the burn up as well as each operating condition (temperature and boron concentration) shall be provided. In addition, the
complexity of fuel management on PWR core is due to the enrichment types, burnable poison configurations and different types burnable poison for each fuel assembly [11]. Therefore, the accuracy of the core fuel management computer package is highly dependent on the macroscopic cross section data [11–14].

Before used for PWR core management, in-core fuel management code need to be validated with a benchmark containing the core management case. The PWR core management benchmark case is not widely publicized, except those presented by the IAEA within the IAEA-TECDOC-815 [15]. The benchmark case presented is the result of the experimental operation of the PWR Almaraz Unit-II (in Spain) reactor having a thermal power of 2686 MW. In this benchmark case, no macroscopic cross section, or diffusion constant, were given the only available data are fuel assembly data and other operating reactor data [15]. Therefore, before doing the calculation of the core fuel management, cross section generation should be performed for each core material with high accuracy. The research activities aimed to generate the macroscopic cross section data of PWR fuel used in the PWR core management benchmark case, Almaraz Unit II reactor.

The benefit of this research is to obtain an accurate methodology in preparing the macroscopic cross section data of PWR fuel. The cross section generation of PWR fuel is carried out with the SRAC2006 program package[16]. In an accuracy analysis, the value of kinf (infinity multiplication factor) of fuel cells is determined. In the future research will be continued by determining the macroscopic cross section derivative, core calculation and core fuel management.

2. Almaraz II PWR Core Description
PWR Almaraz Unit II (Almaraz-II) core consists of 157 pieces of fuel assembly whose fuel rods are arranged in the form of 17×17. Each assembly is composed of 264 fuel rods. Table 1 shows some data of Almaraz-II core.
Table 1. Design parameters of Almaraz-II core [15]

Core Description	Value
Thermal power, MW	2686
Heat generated in fuel, %	97.4
Coolant	
Hot full power (HFP) inlet temperature, °C	291.4
Hot full power (HFP) average core outlet temperature, °C	326
Hot full power (HFP) average moderator temperature, °C	309.9
Hot full power (HFP) average fuel cladding temperature, °C	340
Hot full power (HFP) average fuel temperature, °C	654
Hot full power (HFP) effective fuel temperature BOL (beginning of life) & HFP, °C	640
Core	
Number of batch for initial core	3
Uranium enrichment for first cycle, %	2.1; 2.6; 3.1
Pellet	
Material	UO₂
Density (percent of theoretical)	95%
Radius, cm	0.4096
Pellet length, cm	1.346
Height of UO₂, in rod, cm	365.76
Burnable Poison Rod	
Material to hold absorber	Pyrex-l assassin
Fraction of B in material (B₂O₃), w/o	12.5
Mass of 10B per unit length of rod, g/cm	0.006234
Active length, cm	359.562
Outside thickness, cm	0.48387
Clad thickness, cm	0.04699
Clad material	SS-304
Inner tube material	SS-304
Inner tube outside radius, cm	0.2305
Inner tube thickness, cm	0.01651
Configuration	
Reactor Core	Figure 1
Pyrex in fuel assembly	Figure 2
Control rod in the core	Figure 3
Figure 1. Almaraz-II reactor core layout [15]

Figure 2. Almaraz II burnable poison rod arrangement within an assembly [15]
3. Methodology

The preparation of cross section data is very important in the use of core fuel management code [11-14]. The PWR-FUEL code requires cross sections in various reactor operating conditions. The cross section of materials Almaraz-II reactor is generated by the SRAC2006 code using PIJ cell calculations. The PIJ program uses the neutron transport method. The cross section is generated in 2 (two) groups of neutrons, fast and thermal. The cross section is generated for 6 (six) types of fuel assembly, namely:

a. Enrichment 2.1% without burnable poison
b. Enrichment 2.6% without burnable poison
c. Enrichment 3.1% without burnable poison
d. Enrichment 2.6% with 12 burnable poison
e. Enrichment 2.6% with 16 burnable poison
f. Enrichment 2.6% with 20 burnable poison

The cross section generation can be divided into two parts that the cross section in fresh condition and as a function of the fuel burnup. In fresh conditions, there are 5 operating conditions, whereas at the burn up conditions there are 15 steps of burn up for each type of fuel assembly to be generated from 0.0 GWd / tHM - 50 GWd / tHM. The selected operating conditions are:

a. Case A: $T_{fuel} = 20 \, ^\circ C$; $T_{cladding} = 20 \, ^\circ C$ and $T_{moderator} = 20 \, ^\circ C$
b. Case B: $T_{fuel} = 291.4 \, ^\circ C$; $T_{cladding} = 291.4 \, ^\circ C$ and $T_{moderator} = 291.4 \, ^\circ C$
c. Case C: $T_{fuel} = 704 \, ^\circ C$; $T_{cladding} = 340 \, ^\circ C$ and $T_{moderator} = 309.9 \, ^\circ C$
d. Case D: $T_{fuel} = 904 \, ^\circ C$; $T_{cladding} = 340 \, ^\circ C$ and $T_{moderator} = 309.9 \, ^\circ C$
e. Case E: \(T_{\text{fuel}} = 704 \, ^{\circ}\text{C} \); \(T_{\text{cladding}} = 340 \, ^{\circ}\text{C} \) and \(T_{\text{moderator}} = 279.9 \, ^{\circ}\text{C} \).

Operating conditions used for cross section generation as a function of burn up fraction using Case C (1000 ppm boron in moderator). For fresh condition, conducted at boron 0 ppm and 1000 ppm. The generated cross section accuracy is expressed in \(k_{\text{inf}} \) of each cell calculation. There are 5 (five) countries that participated in validation activity of Almaraz-2 cell calculation result such as Spain (SPA), India (IND), South Africa (SAP), Turkey (TUR) and Croatia (CRO).

Therefore, the accuracy of the results of the calculations of all institutions, including SRAC-2006, will be compared with the results of the Spanish (SPA). Fig 3. Almaraz II rod cluster control assembly pattern [15].

4. Results and discussion
Verification and validation computer code are basic calculation to know the accuracy and reliability of the calculation results. Table 2 presents the calculated cell \(k_{\text{inf}} \) value of SRAC2006 (PTKRN) for 6 types of non-boron fuel assembly (0 ppm) for each operating condition (T), compared with 5 other institutions.

Fuel assembly 2.1% ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0							
A	1.28558	1.29692	1.2875	1.28451	1.28805	1.29695	
B	1.24877	1.26303	1.2505	1.24599	1.24984	1.25933	
C	1.22941	1.24416	1.23194	1.22536	1.23193	1.23875	
D	1.22279	1.23751	1.22479	1.21988	1.22641	1.23285	
E	1.23841	1.2525	1.24062	1.23939	1.24178	1.24856	

Fuel assembly 2.6% ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0							
A	1.34788	1.35929	1.35022	1.346	1.34916	1.35908	
B	1.30594	1.32024	1.30743	1.3019	1.30532	1.31597	
C	1.28513	1.30003	1.28762	1.27981	1.28594	1.29389	
D	1.27829	1.29317	1.2806	1.27417	1.28025	1.28781	
E	1.29562	1.30982	1.29755	1.29551	1.29745	1.30529	

Fuel assembly 3.1% ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0							
A	1.39370	1.40536	1.39642	1.39108	1.39383	1.40479	
B	1.34785	1.36244	1.34922	1.34273	1.34570	1.35746	
C	1.32603	1.3413	1.32848	1.31962	1.32527	1.3343	
D	1.31903	1.33434	1.32066	1.31390	1.31950	1.3281	
E	1.33761	1.35216	1.33940	1.33655	1.33803	1.3468	

Fuel assembly 2.6% with 12 burnable poison ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0							
A	1.22020	1.22202	1.22315	1.20708	1.20511	1.21908	
B	1.15389	1.15674	1.15439	1.1486	1.13413	1.1542	
C	1.13261	1.13576	1.13409	1.12649	1.11450	1.13217	
D	1.12638	1.12955	1.12715	1.12177	1.10926	1.12663	
E	1.14575	1.14884	1.14695	1.14256	1.12826	1.14553	
Fuel assembly 2.6% with 16 burnable poison

ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0	A	1.17835	1.18324	1.18143	1.16374	1.15765	1.17870
0	B	1.10748	1.11264	1.10772	1.09980	1.08247	1.10953
0	C	1.08642	1.09214	1.08760	1.08004	1.06325	1.08767
0	D	1.08039	1.08612	1.08089	1.07558	1.05817	1.08228
0	E	1.09988	1.10579	1.10087	1.09605	1.07705	1.10135

Fuel assembly 2.6% with 20 burnable poison

ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
0	A	1.13789	1.14225	1.14090	1.12183	1.11232	1.13708
0	B	1.06375	1.06768	1.06365	1.05495	1.03465	1.06483
0	C	1.04300	1.04696	1.04381	1.03583	1.01588	1.04331
0	D	1.03717	1.04114	1.03732	1.03162	1.01094	1.03809
0	E	1.05661	1.06093	1.05733	1.05169	1.02956	1.05708

The accuracy of the results of the SRAC-2006 calculation can be seen in Figures 4-9, which shows the Δk results of each institution compared to the Spanish (SPA) as reference.

Figure 4. The value of Δk for each operating condition for fuel assembly 2.1%

Figure 5. The value of Δk for each operating condition for fuel assembly 2.6%
Figure 6. The value of Δk for each operating condition for fuel assembly 3.1%

Figure 7. The value of Δk for each operating condition for fuel assembly 2.6% with 12 burnable poison

Figure 8. The value of Δk for each operating condition for fuel assembly 2.6% with 16 burnable poison
Figure 9. The value of Δk for each operating condition for fuel assembly 2.6% with 20 burnable poison

It is apparent in Figures 4-9 that the value of Δk of SRAC-2006 results is compared with Spanish results (SPA) in the range of -0.001 - 0.011. Large Δk values occur for Case A and fuel assembly without burnable poison, as shown in Figure 4-6. The value of Δk decreases, or in other words very close to the SPA results, for the case of fuel assembly that have burnable poison, as presented in Figures 7-9. This shows that the calculation of k_{inf} with SRAC-2006 has a good accuracy.

The difference in the value of Δk reaching 0.011 with the calculation of SRAC-2006 in the fuel assembly is consistent with the result of India (IND). Similar to that generated by SRAC-2006, IND calculation results the value of Δk also decrease using the fuel assembly with burnable poison calculation. However, calculations from TUR and CRO institutions produce the opposite result. The cause of this difference in value of Δk is not simple to explain, but one possible cause of the difference is in the nuclear data used, in addition to the neutron transport method used. In this study, the SRAC-2006 code uses ENDF / B-VII nuclear data.

The value of k_{inf} as show in Table 2, i.e. the results of cell calculation SRAC-2006, is consistent with the expected value that the largest occur in case A compared to 4 (four) other cases, i.e. in cold temperature (cold) has a higher value of k_{inf} compared to hot temperatures. Likewise, the k_{inf} value decrease with increase in number of burnable poison (pyrex) because of greater reaction of neutron absorption by boron. Table 3 presents the calculated k_{inf} value of PIJ calculation results (SRAC-2006), i.e. on the PTKRN column, for 5 (five) operating conditions, T, and 6 (six) types of fuel assembly compared to 5 (five) other institutions. The condition of boron in this condition is 1000 ppm.

| Table 3. k_{inf} values for each operating condition (T) and each fuel assembly |
|--|----------|----------|----------|----------|----------|
| Fuel assembly 2.1% | | | | | |
ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
1000	A	1.06973	1.07791	1.06694	1.07010	1.07723	1.07438
1000	B	1.08552	1.09911	1.08770	1.08621	1.09074	1.09276
1000	C	1.07630	1.09001	1.07868	1.07568	1.08219	1.08237
1000	D	1.07033	1.08414	1.07258	1.07089	1.07717	1.07717
1000	E	1.07268	1.08564	1.07553	1.07656	1.07971	1.07920

Fuel assembly 2.1% 2.6%							
ppm	T	SPA	IND	SAP	TUR	CRO	PTKRN
-----	---	-----	-----	-----	-----	-----	-------
1000	A	1.14592	1.15480	1.14353	1.14619	1.15282	1.15070
1000	B	1.15566	1.16982	1.15756	1.15545	1.15957	1.16264
The accuracy of the results of the SRAC-2006 calculation can be seen in Figure 10-15 which shows the magnitude of each institution compared to the Spanish (SPA result as references).
Figure 10. The value of each operating condition for the fuel assembly 2.1%

Figure 11. The value of each operating condition for the fuel assembly 2.6%

Figure 12. The value of each operating condition for the fuel assembly 3.1%
Figures 10-15 show that the value of Δk of SRAC-2006 results is compared with Spanish results (SPA) in the range of -0.005 - 0.007. The highest value of Δk occur for case B for 2.1%, 2.6% and 3.1% enrichment, in addition to 2.1% and 2.6% in case D and E. Compared with other institutions, the maximum difference of 0.007 indicates the modeling has a good accuracy. This difference probably...
due to the nuclear data used is ENDF/B-VII which is much more recent than that of other institutions. Table 4 - 9 show the result of k_{inf} value as a function of the fuel burnup for fuel assembly with enrichment of 2.1%, 3.1%, and 2.6% (without pyrex) and 2.6% with pyrex (12, 16 and 20).

Table 4. The value of k_{inf} as a function of the fuel burnup (BU) for fuel assembly 2.1%

BU, GWd/tHM	SPA	IND	CRO	SAF	TUR	SER	PTKRN
0	1.07630	1.09001	1.08219	1.07868	1.07568	1.08720	1.08237
0.15	1.04163	1.05207	1.04930	1.04471	1.04062	1.05213	1.04588
2	1.03382	1.03866	1.03699	1.03307	1.02830	1.04420	1.03504
4	1.01710	1.02112	1.01828	1.01520	1.00988	1.01177	1.01809
6	0.99792	1.00130	0.99787	0.99586	0.99040	1.00794	0.99954
8	0.97898	0.98201	0.97798	0.97721	0.97195	0.98881	0.98156
10	0.96107	0.96438	0.95915	0.95960	0.95479	0.97072	0.96452
14	0.92807	0.93239	0.92507	0.92806	0.92378	0.93739	0.93337
18	0.89850	0.90410	0.89516	0.89558	0.89631	0.90752	0.90516
22	0.87191	0.87873	0.86877	0.87381	0.87168	0.88067	0.87971
26	0.84812	0.85602	0.84529	0.85059	0.84595	0.85664	0.85696
30	0.82704	0.83523	0.82436	0.82989	0.82972	0.83535	0.83688
34	0.80859	0.81657	0.80570	0.81163	0.81201	0.81671	0.81937
38	0.79263	0.79985	0.78913	0.79569	0.79627	0.80059	0.80429
42	0.77894	0.78483	0.77456	0.78189	0.78233	0.78676	0.79143
46	0.76728	0.77148	0.76189	0.77003	0.77002	0.77499	0.78052
50	0.75740	0.75953	0.75110	0.75986	0.75914	0.76501	0.77131

Table 5. The value of k_{inf} as a function of the fuel burnup (BU) for fuel assembly 3.1%

BU, GWd/tHM	SPA	IND	CRO	SAF	TUR	SER	PTKRN
0	1.19641	1.21152	1.19971	1.19871	1.19399	1.20858	1.20195
0.15	1.15679	1.16830	1.16172	1.15959	1.15525	1.16851	1.16188
2	1.14043	1.14617	1.14084	1.13941	1.13474	1.15195	1.14190
4	1.12088	1.12434	1.11983	1.11873	1.11368	1.13220	1.12155
6	1.09967	1.10190	1.09800	1.09727	1.09194	1.11077	1.10048
8	1.07882	1.08064	1.07679	1.07655	1.07112	1.08971	1.08018
10	1.05900	1.06087	1.05659	1.05692	1.05154	1.06969	1.06093
14	1.02224	1.02456	1.01949	1.02124	1.01576	1.03256	1.02557
18	0.98869	0.99200	0.98605	0.98873	0.98367	0.99867	0.99319
22	0.95753	0.96218	0.95549	0.95855	0.95394	0.96720	0.96313
26	0.92835	0.93461	0.92723	0.93032	0.92632	0.93772	0.93511
30	0.90104	0.90855	0.90096	0.90388	0.90052	0.91014	0.90903
34	0.87566	0.88428	0.87649	0.87921	0.87644	0.88450	0.88494
38	0.85229	0.86160	0.85372	0.85634	0.85406	0.86090	0.86290
42	0.83101	0.84041	0.83268	0.83537	0.83338	0.83940	0.84296
46	0.81189	0.82081	0.81349	0.81635	0.81441	0.82009	0.82513
50	0.79495	0.80272	0.79629	0.79929	0.79714	0.80298	0.80934
Table 6. The value of k_{ef} as a function of the fuel burnup (BU) for fuel assembly 2.6 %

BU, GWd/tHM	SPA	IND	CRO	SAF	TUR	SER	PTKRN
0	1.14454	1.15645	1.14910	1.14688	1.14295	1.12085	1.15032
0.15	1.01664	1.11758	1.11293	1.10958	1.10550	1.16851	1.11148
2	1.09312	1.09921	1.09496	1.09222	1.08767	1.15195	1.09456
4	1.07418	1.07779	1.07742	1.07216	1.06711	1.13220	1.07508
6	1.05353	1.05576	1.05276	1.05115	1.04581	1.11077	1.05462
8	1.03292	1.03497	1.03174	1.03091	1.02558	1.08971	1.03492
10	1.01358	1.01583	1.01178	1.01182	1.00688	1.06969	1.01629
14	0.97787	0.98090	0.97541	0.97732	0.97238	1.03256	0.98219
18	0.94547	0.94978	0.94289	0.94602	0.94150	0.99867	0.95109
22	0.91568	0.92143	0.91356	0.91721	0.91360	0.96720	0.92254
26	0.88832	0.89556	0.88692	0.89069	0.88797	0.93772	0.89636
30	0.86331	0.87146	0.86254	0.86632	0.86446	0.91014	0.87253
34	0.84068	0.84939	0.84025	0.84414	0.84295	0.88450	0.85108
38	0.82044	0.82916	0.81998	0.82417	0.82341	0.86090	0.83200
42	0.80259	0.81064	0.80168	0.80639	0.80575	0.83940	0.81523
46	0.78703	0.79389	0.78543	0.79071	0.78989	0.82099	0.80067
50	0.77360	0.77873	0.77124	0.77701	0.77574	0.80298	0.78809

Table 7. The value of k_{ef} as a function of the fuel burnup (BU) for fuel assembly 2.6% (12 Pyrex)

BU, GWd/tHM	SPA	IND	CRO	SAF	TUR	SER	PTKRN
0	1.02775	1.03157	1.01460	1.02900	1.02084	1.03941	1.02612
0.15	0.99856	1.00022	0.98871	1.00032	0.99242	1.00985	0.99578
2	1.06064	1.00499	0.99745	1.00476	0.99705	1.01738	1.00127
4	1.00733	1.00824	1.00018	1.00452	0.99736	1.01808	1.00249
6	1.00331	1.00536	0.99791	1.00095	0.99424	1.01462	1.00040
8	0.99769	0.99920	0.99257	0.99542	0.98915	1.00893	0.99638
10	0.99020	0.99243	0.98480	0.98798	0.98210	1.00136	0.99033
14	0.96934	0.97247	0.96382	0.96804	0.96253	0.98026	0.97207
18	0.94371	0.94775	0.93899	0.94330	0.93829	0.95435	0.94828
22	0.91687	0.92201	0.91338	0.91740	0.91317	0.92720	0.92275
26	0.89106	0.89738	0.88875	0.89242	0.88905	0.90110	0.89795
30	0.86713	0.87417	0.86574	0.86915	0.86656	0.87690	0.87497
34	0.84534	0.85278	0.84455	0.84785	0.84587	0.85487	0.85416
38	0.82578	0.83310	0.82514	0.82861	0.82698	0.83509	0.83557
42	0.80842	0.81501	0.80759	0.81138	0.80983	0.81753	0.81917
46	0.79318	0.79858	0.79185	0.79611	0.79434	0.80212	0.80483
50	0.77994	0.78363	0.77806	0.78269	0.78041	0.78873	0.79240
Table 8. The value of k_{inf} as a function of the fuel burnup (BU) for fuel assembly 2.6% (16 Pyrex)

BU, GWd/tHM	SPA	IND	CRO	SAF	TUR	SER	PTKRN
0	0.99118	0.97322	0.97322	0.98404	1.00283	0.99103	
0.15	0.96461	0.95040	0.92602	0.95801	0.97590	0.96292	
2	0.97865	0.97198	0.96744	0.97732	0.96935	0.99007	0.97420
4	0.98548	0.98723	0.97742	0.98327	0.97581	0.99698	0.98080
6	0.98745	0.98948	0.98115	0.98510	0.97801	0.99897	0.98358
8	0.98640	0.98742	0.98058	0.98409	0.97737	0.99791	0.98387
10	0.98254	0.98435	0.97651	0.98019	0.97385	0.99401	0.98147
12	0.96626	0.96925	0.96020	0.96467	0.95869	0.97754	0.96821
14	0.94275	0.94684	0.93769	0.94200	0.93666	0.95375	0.94700
16	0.92167	0.92208	0.91325	0.91703	0.91255	0.92757	0.92262
18	0.89158	0.89791	0.89227	0.89257	0.88989	0.90198	0.89838
20	0.86801	0.87501	0.86675	0.86967	0.86689	0.87814	0.87573
22	0.84650	0.85385	0.84590	0.84867	0.84651	0.85638	0.85516
24	0.82716	0.83436	0.82683	0.82967	0.82788	0.83681	0.83676
26	0.80996	0.81643	0.80952	0.81264	0.81092	0.81941	0.82050
28	0.79484	0.80012	0.79399	0.79752	0.79559	0.80412	0.80627
30	0.78167	0.78525	0.78032	0.78419	0.78178	0.79079	0.79390

The calculation results show that the maximum value k_{inf} (Δk) occurs at 50 GWd/tHM for fuel assembly 2.6% without pyrex with 1000 ppm with difference 1.87%.

5. Conclusions
The cross section generation fuel assembly of the Almaraz-II reactor has been completed with the SRAC2006 code. Cross section data for various operating conditions are available so that it can be used for PWR-FUEL program validation. The difference in maximum k_{inf} value with a reference value of 1.87% indicates that the cross section generation obtained has high accuracy.
Acknowledgement

Our thanks to Head of PTKRN and Dr Syaiiful Bakhri and the staff of Reactor Physics and Technology Division, PTKRN-BATAN for their cooperation and financial support using DIPA in the year of 2016 in completing this research.

References

[1] Sembiring T M and Pinem S 2012 Validasi paket program nodal3 untuk kasus statis benchmark teras reaktor PWR J. Iptek Nukl. Ganendra 15 82–92
[2] Pinem S, Sembiring T M and Liem P H 2014 The verification of coupled neutronics thermal-hydraulics code NODAL3 in the PWR rod ejection benchmark Sci. Technol. Nucl. Install. 2014 1–9
[3] Pinem S, Sembiring T M and Liem P H 2016 NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR) Sci. Technol. Nucl. Install. 2016 1–11
[4] Sembiring T M, Pinem S and Liem P H 2017 Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code Sci. Technol. Nucl. Install. 2017 1–8
[5] PWR-FUEL 2012 PWR In-Core Fuel Management Code User Guide
[6] Pinem S, Sembiring T M and Tukiran 2015 Verifikasi Program PWR-FUEL Dalam Manajemen Bahan Bakar PWR J. Sains dan Teknol. Nukl. Indonesia 16
[7] Salazar D, Franceschini F, Ferroni P and Petrovic B 2015 Fuel Consortium for Advanced Management Option Simulation of LWRs for an 18-Month Cycle Length Adv. Nucl. Fuel Manag. V (ANFM 2015) 0–11
[8] Mahmoudi S M, Aghaie M, Bahonar M and Poursalehi N 2016 A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization Ann. Nucl. Energy 95 23–34
[9] Hill N J and Parks G T 2015 Pressurized water reactor in-core nuclear fuel management by tabu search Ann. Nucl. Energy 75 64–71
[10] Kashi S, Minuchehr A, Poursalehi N and Zolfaghari A 2014 Bat algorithm for the fuel arrangement optimization of reactor core Ann. Nucl. Energy 64 144–51
[11] Moghaddam N M, Fadaei A H and Zahedi E 2011 Evaluating the effect of using different sets of enrichment for FAs on fuel management optimization using CA Ann. Nucl. Energy 38 835–45
[12] Erba S, Vrban B, Lüley J, Haščík J and Nečas V 2017 Multigroup cross section library for GFR2400 EPJ Web Conf. 146 4–7
[13] Jeremy Bousquet, Friederike Bostelmann, Kiril Velkov W Z and Gesellschaft 2017 Macroscopic Cross Section Generation with SCALE 6.2 for the MYRRHA Minimal Critical Core M&C 2017 - Int. Conf. Math. Comput. Methods Appl. to Nucl. Sci. Eng. 1–11
[14] Fiel J C B, Da Silva F C, Martinez A S and Leal L C 2014 Parameterized representation of macroscopic cross section for PWR reactor Ann. Nucl. Energy 75 736–41
[15] IAEA 1995 In-core fuel management code package validation for WWER IAEA 156
[16] Okumura K, K K and K T 2007 SRAC2006: A Comprehensive Neutronics Calculation Code System Tokai IAEA 44–64