Anti tubercular minimum inhibitory concentration (MIC) and chemical characterization of ethnobotanical mixture used in the treatment of tuberculosis

V Rastogi¹, Jyoti Tomar²*, Tarun Patni³, Chhavi Vijay⁴, Pratiksha Sharma⁴

¹Professor, ²Ph.D. Scholar, ³Microbiologist, ⁴Technical Officer, ¹²Dept. of Microbiology, ¹²Jawaharlal Nehru Medical College, Ajmer, Rajasthan, ³⁴KNSTDC, Ajmer, Rajasthan, India

*Corresponding Author: Jyoti Tomar
Email: jyotibst1998@yahoo.com

Abstract
Introduction: Tuberculosis (TB) is a national health priority and with failing current treatment regimens, uses of ethnobotanical therapies are being more vigorously explored. Treatment of TB using oral and inhalational administration (hawan) of a mixture of herbs (hawan samagri, HS) has been practiced in India since ages. In vitro antitubercular effect of extract of HS against H37Ra strain of Mycobacterium tuberculosis (MTB) was recently reported in an ICMR funded research project.¹ Hence this study aims to document scientific data on antitubercular effect of this HS extract against clinical MTB strains.

Materials and Methods: Minimum inhibitory concentration (MIC) against clinical MTB strains of two different ethnobotanical mixtures (HS₁ and HS₂) used traditionally in India for the indigenous treatment of TB was compared. Extraction of essential oil (EO) from the mixture was done by hydro distillation and chemical characterization was done by Gas Chromatography and mass Spectroscopy (GCMS). Resazurin Microtiter Assay (REMA) was done to study antitubercular MIC.

Result and Discussion: Crude essential oil (EO) extract of HS showed significant antitubercular effect in MIC range 50 - 400 µg/ml. HS₁ showed lower MIC values compared to HS₂. GCMS analysis of EO showed an array of bioactive compounds known to have antitubercular and other beneficial effects.

Conclusion: Scientific validation of ethnobotanical use of HS extract for antitubercular activity was obtained in this work. HS crude EO seems to be a promising natural product with potential for new drug development in the treatment of TB.

Keywords: Ethnobotanical, Antitubercular activity, Essential oil, Multi drug resistant (MDR), Resazurin microtiter assay (REMA), Gas Chromatography and mass spectroscopy (GCMS), Phytochemical, Terpenoids, Phenolics, Hawan samagri (HS).

Introduction
Tuberculosis (TB) is the top infectious disease killer in the world. Mycobacterium tuberculosis (MTB) is the etiological agent of TB. The World Health Organization (WHO) has estimated that 10 million people develop active TB in year 2017 and the situation is complicated by an increase of MTB strains resistant to antitubercular drugs: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. India accounted for 33% of global TB deaths among HIV-negative people, and for 26% of the combined total of TB deaths in HIV-negative and HIV-positive people.² A major problem for the control of TB is the requirement of drug regimens for six to nine months. These lengthy regimens lead to non-compliance with therapy, relapse and development of drug resistance. In order to shorten the duration of therapy, novel drugs that are active against MTB, which act through mechanisms different from those employed in the existing first line and secondary anti-TB regimes are urgently needed.³ Hence there is much regained interest in use of herbs and other alternative therapies for the treatment of TB. Phytochemical aspects of most medicinal plants have been known and used since time immemorial.⁴ ⁶ Ethnobotanical advantages conferred by these plant based products have surpassed the chemical counterparts owing to their lesser side effect and more potent therapeutic effect. Development of effective anti TB drug is a global health priority. It is in this scenario that ancient traditional therapies for TB seem to be worth exploring. Hawan is an ancient fumigation method devised and used by sages (scientists of ancient India), that involves the use of clarified cow’s butter and a mixture of odoriferous and medicinal plant parts (known as Hawan Samagri, HS) for oblating onto consecrated fire of specific medicinal wood.⁷ Inhalation of medicinal fumes emanating from this is proved to be effective in treatment of TB.⁸ The extract of this same HS mixture is also used as oral medicine in such patients as advised by Charak, the famous physician of ancient India, in his treatise Charak Samhita.⁹ However due to lack of scientific validation, the use of these has not been attempted in modern medicine. Recently few studies have tried to prove the depolluting and antibacterial effect of hawan.¹⁰ ¹² Also, In-vitro antitubercular effect of hawan and HS extract was reported by Rastogi et al. against H37Ra strain of MTB.¹² However, In-vitro antitubercular effect of HS extract against clinical MTB strain has not been documented in literature impeding its possible use in TB treatment. This study attempts to fill the above knowledge gap in an effort to explore possibility of effective ethnobotanical alternative therapy for TB.

Materials and Methods
Composition of Herbal Mixture (Hawan Samagri, HS)
In this study two types of ethnobotanical mixtures HS₁ and HS₂ were used. HS₁ consists of- Acacia arabica (Babool) bark; Achyranthes aspera L. (Chirchita) seed; Acorus calamus L. (Vacha) root; Albizia lebbeck (L.) Benth (Sirish) bark; Allium sativum L. (Lehsun, Garlic) tuber; Areca catechu L.(Supari, Arecanut) fruit; Argemone Mexicana (Satyanaashi) all parts; Azadirachta indica A. Juss. (Neem) leaves; Berberis aristata (Daruhaldi) wood;
Brassica campestris L. (Sarsoan, Yellow mustard) seed; Butea monosperma (Lam.) Taub. (Dhaak) seed; Calotropis procera (Aak) all parts; Cassia tora L.(Chakvad) seed; Centrtherum anthemlanticum (L.) Kunze (Kalizeeri, Black cumin) seed; Cinnamomum camphora (Kapur, Camphor); Commiphora mukul (Guggul) latex; Crocus sativus L.(Kesar, Baby saffron) Stigma; Curcuma longa L. (Haldi, Turmeric) tube; Cyperus scariosus (Nagar mothra) root; Datura metel (Dhatur) leaves; Elletaria cardamomum Maton. (Elachi, Green cardamom) seed; Embelia ribes Burn. f. (Vayviding) fruit; Moringa oleifera Lam. (Sahijan, Drumstick) bark; Myristica fragrans Houtt. (Jaifal, Nutmeg) fruit; Ocimum basilicum L.(Van Tulsi) leaves & aerial parts; Ocimum sanctum L. (Tulsi, Basil) leaves; Pinus roxburghii Sarg.(Cheed) wood; Piper longum L.(Peepal) fruit; Plumbago zeylanica L. (Cheeta) root; Pongamia pinnata (L.) Pierre (Dihori) seed; Syzygium irio (Khoobkala) seed; Solanum surattense (Kanthkari) all parts; Styrax benzoin Dry (Lobaan) latex; Surya robus (Raal) latex; Swertia chirayata (Chirayata) all parts; Tinospora cordifolia Miers (Giloy) creepers; Trachyspernum ammi (Ajvain) seed; Vitex negundo L. (Sambal) leaves and Zingiber officinale Roscoe (Soomth, zinger) rhizome. This was indigenously prepared. These herbs are recommended in ancient Indian literature, for use in various fumigation procedures, especially hawan and also as oral medicine in the treatment of TB patients.\(^6\) HS was obtained from “Rishi Udyhan” Arya Samaj, Ajmer, where hawan is being performed daily since ages using the same mixture.

Characterization of MTB Strains

A total of 20 pure isolates of MTB grown on Lowenstein-Jensen (LJ) medium from sputum samples of patients attending Intermediate Reference Laboratory (IRL), State Tuberculosis Training and Diagnosis Centre (STDC), Ajmer, Rajasthan were tested for their sensitivity to the HS extract. All processing was done as per standard guidelines.\(^6\) MTB H37Ra ATCC 25177 was used as standard reference strain. Characterization of isolated strains was done by Line probe assay (LPA).\(^18\)\(^19\)

Extraction and Chemical Characterization of EO from HS

The extraction of oil from HS\(_1\) and HS\(_2\) mixtures was done by hydro distillation technique. Water constituents in the oil collected after hydro distillation was removed by using anhydrous sodium sulphate.\(^20\) Obtained oil was stored at -4\(^\circ\)C in a dark colored bottle.\(^20\)\(^21\) Castor oil was used as an oil control. Chemical analysis of all EO was done by Gas Chromatography and Mass Spectroscopy (GC-MS) (Thermo Scientific DSQ II) at National Botanical Research Institute (NBRI), Lucknow, using injection volume 1 µl and run time of 60 minutes.

Determination of Antitubercular MIC of EO

21-28 days old pure cultures of MTB on LJ slants were used for preparing inoculums as per recommended guidelines of RNTCP manual for drug susceptibility testing\(^16\)\(^19\) and Resazurin Microtiter Assay (REMA) was performed as described by Palomino et al.\(^22\)\(^24\) All procedures were done as per procedure manual of Colorimetric redox indicator (CRI)\(^22\) with following minor modifications - Instead of microbroth dilution, macrobroth dilution of EO was done in 7H9 broth containing 3x10\(^5\) cfu/ml of MTB. A macro broth dilution of EO ranging from 400 µg/ml to 3.125 µg/ml was prepared. Final concentration of 0.5µg/ml of rifampicin was used as drug control. All tubes having different concentrations of oil and same number of MTB were then incubated at 37\(^\circ\)C. After six weeks incubation, 200 µl of each dilution was transferred to wells of REMA plate and 30 µl of resazurin (0.02%) was added to all the wells. The plates were sealed and incubated overnight for color development. A change in color in wells from blue to pink was taken as an indicator of growth of the isolate at that concentration of the drug.\(^22\) The well with lowest concentration of EO showing no colour change was taken as the MIC for that strain. All tests were done in triplicate to ensure reproducibility.

Result and Discussion

Percent inhibition of MTB strains by HS\(_1\) was 100% at 400 µg/ml, 50% at 200 µg/ml, 30% at 100 µg/ml and 5% at 50 µg/ml. Whereas, percent inhibition shown by HS\(_2\) was 100% at 400 µg/ml, 40% at 200 µg/ml and 5% at 100 µg/ml. Below this concentration i.e., from 25 µg/ml to 3.125 µg/ml no inhibition was observed (Table 1). HS crude EO extract showed antitubercular effect on clinical strains of MTB with MIC ranging 50µg/ml to 400 µg/ml. HS\(_1\) (indigenously prepared) showed lower MIC and hence more effective antitubercular effect than HS\(_2\). Control (Castor) oil showed no inhibition on any of the strains. Reference strain H37Ra tested sensitive to RIF (control drug) at concentration 0.5 µg/ml. One of the clinical isolate showed multiple drug resistance (MDR), against which HS\(_1\) and HS\(_2\) both showed inhibition with 200 µg/ml and 400 µg/ml respectively (Table 2). It indicates that EO extract of HS has potential to inhibit MDR MTB also, more so by HS\(_1\). All the remaining (18) isolates were RIF and INZ sensitive and were found to be inhibited by EO extracts of HS\(_1\) and HS\(_2\) at different concentrations (Table 2). Since MIC of HS extract against clinical MTB has not been reported in literature, this being a novel work as undertaken in this study, MIC value results for comparison are not available. However, in 2015 Rastogi et al. reported HS\(_1\) EO MIC value of 31.25 µg/ml against H37Ra MTB reference strain.\(^11\) The MIC of 200 µg/ml reported against the same strain in this study is probably due to testing against 3x10\(^5\) cfu/ml of MTB, as recommended for testing both first line and second line drug sensitivity, in contrast to 0.5x10\(^6\) cfu/ml in the work of V. Rastogi et al. A study conducted by Andrade-Ochoa Sergio et al., reported anti tubercular effect of five different EO extracts of individual herbs viz., Cumin, Clove, Cinnamon, Anis and Laurel against MTB strain H37Ra, with MIC values ranging 6.25 µg/ml to 25 µg/ml.\(^25\) This is quite lower concentration range, though not comparable to results of this study. Also lower inoculum of 1.5x10\(^7\) cfu/ml were used...
and EO was extracted from individual herbs. Hence, ideally our study results are not comparable to theirs. HS1 showed percent yield of 0.5% whereas HS2 showed percent yield of 0.4%.

GCMS analysis of hydrodistilled crude EO of HS revealed an array of bioactive chemical compounds corroborating with the observed antitubercular activity viz. Longifolene (HS1),26 Alpha cadinal (HS1),27 Tridecanone (HS2),28 Myristicin (HS1HS2),29 Dodecanoic acid (HS2),30 Cembrene (HS2).31 It is well known fact that terpenoids such as monoterpenes, sesquiterpenes and related alcohol/phenols have antimycobacterial activity.31,32 All these are found to be present in both HS1 and HS2 (Table 3), again proving the chemical basis of their antitubercular effect. Fig. 1 & 2 show the compound peaks of GCMS chromatogram of HS1 and HS2 respectively. GCMS analysis of castor oil used as oil control in this study is known to contain only long chain fatty acids (Fig. 3)33 explaining the absence of antitubercular effect observed.

Although study of mechanism of action (m.o.a.) was not attempted in this study, it is a known fact that the lipophilic character of their hydrocarbon skeleton and the hydrophilic character of their functional group are of main importance in the antimicrobial action of EO components.31,34 The antimycobacterial activity of terpenes is said to be due to perturbation of the plasma membrane lipid fraction of the microorganism, resulting in alteration of membrane permeability and leakage of intracellular materials.34

Tuberculosis is mostly asymptomatic and is aggravated when impairment of immunity arises due to conditions like malnutrition, diabetes, malignancy, and AIDS.3 Interestingly alpha turmerone was seen to be the most abundant (18.78%) compound in GCMS peaks of HS1 EO and absent in HS2. This compound is known to have potent antioxidant, anti inflammatory, antimicrobial and neural stem cell proliferative property35 which shall contribute to enhancement of immunity. EO analysis showed presence of beta-caryophyllene known to have anti-inflammatory, analgesic action.36,37 Recent research has demonstrated that the bicyclic sesquiterpene beta-caryophyllene has the ability to bind to CB2 cannabinoid receptors. What this means is that along with its cellular and skin-health supporting properties, due to its activation of CB2 receptors, beta-caryophyllene may also support healthy nervous and immune function, and have soothing and relaxing (analgesic, anti-inflammatory), properties on the body.37 The therapeutic attributes of Myristicin identified in both HS1 and HS2 includes hepatoprotective, antibacterial, anti-inflammatory, antioxidant, cytotoxicity and anti-proliferation of cancerous cells, psychoactive and anti-cholinergic effects. Beta-elemene is muscle relaxing, antiflammatory and is able to pass the blood–brain barrier.38 It has demonstrated in vitro, in vivo and clinical antitumoral effects.38 Isolongifoline, Alphaterpinol, Methyl eugenol, Alpha Curcumene, etc., constitute a complex mixture of volatile compounds including terpene hydrocarbons and their oxygenated derivatives (alcohols, esters, aldehydes, ketones, phenols, and ethers) having multi-system health benefits.7,32,38,39 Thus, clinically observed antitubercular effect of the HS extract seems to be a sum total of its anti-oxidant, anti-inflammatory, analgesic, antimicrobial, stem cell proliferative, immunomodulatory, neuroprotective, anxiolytic effects, etc. Together they bring about the desired cure evidenced in traditional medical practice. It is very likely that each of the constituents of the HS EO show activity against MTB as well.

Thus documentation of the chemical fingerprint of EO extract of traditionally used HS and documentation of in-vitro anti-tubercular activity enabled scientific validation of the ethnobotanical use of these for TB treatment. Antitubercular screening for the phytochemicals from indigenously used plant extract represents a starting point for newer potent antimycobacterial drug discovery,39 that might prove to be a panacea in the treatment of TB. However, the exact m.o.a. needs to be further elucidated by in-vivo animal studies and safety/toxicity studies, which were beyond the scope of the present work, but nevertheless warranted in future.

Table 1: MIC of various EO against MTB

| Concentration µg/ml (ppm)* | % Inhibition of MTB strains |
|----------------------------|-----------------------------|
|                            | HS1                         | HS2                         | Control castor oil |
| 25- 3.125                  | No inhibition               | No inhibition               | No inhibition      |
| 50                         | 5% (n=1)                    | No inhibition               | No inhibition      |
| 100                        | 30% (n=6)                   | 5% (n=1)                    | No inhibition      |
| 200                        | 50% (n=10)                  | 40% (n=8)                   | No inhibition      |
| 400                        | 100% (n=20)                 | 100% (n=20)                 | No inhibition      |

*ppm-parts per million
Table 2: In vitro anti tubercular effect of different essential oil extracts on MTB strains

| KNSTDC ID No. | Antitubercular drug sensitivity by LPA | Rifampicin (Drug control) 0.5 µg/ml | Mean MIC of EO (µg/ml) |
|--------------|--------------------------------------|-------------------------------------|------------------------|
|              | RIF | INZ | HS₁ | HS₂ | Castor oil |                      |
| Control      | S   | S   | S   | 200 | 400       | No inhibition        |
| 6163         | R   | R   | R   | 400 | 400       | No inhibition        |
| 6165         | S   | S   | S   | 100 | 200       | No inhibition        |
| 6167         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6168         | S   | S   | S   | 100 | 200       | No inhibition        |
| 6169         | S   | S   | S   | 200 | 200       | No inhibition        |
| 6174         | S   | S   | S   | 50  | 100       | No inhibition        |
| 6175         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6176         | S   | S   | S   | 400 | 400       | No inhibition        |
| 6177         | S   | S   | S   | 200 | 200       | No inhibition        |
| 6181         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6182         | S   | S   | S   | 100 | 400       | No inhibition        |
| 6184         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6185         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6187         | S   | S   | S   | 100 | 200       | No inhibition        |
| 6189         | S   | S   | S   | 100 | 200       | No inhibition        |
| 6190         | S   | S   | S   | 200 | 200       | No inhibition        |
| 6191         | S   | S   | S   | 100 | 200       | No inhibition        |
| 6192         | S   | S   | S   | 200 | 400       | No inhibition        |
| 6193         | S   | S   | S   | 200 | 400       | No inhibition        |

Table No 3: Comparative properties of control (castor oil) and test oils HS₁ and HS₂ EO

| S. No. | Property               | Castor Oil | HS₁ EO | HS₂ EO |
|--------|------------------------|------------|--------|--------|
| 1      | Solubility             | DMSO       | Ether, Ethanol, DMSO, Benene, Di ethyl ether | Ether, Ethanol, DMSO, Benene, Di ethyl ether |
| 2      | Density                | 0.95 gm/ml | 0.9 gm/ml | 0.8 gm/ml |
| 3      | Refractive index       | 1.47       | 1.49   | 1.46   |
| 4      | Water resistant        | Yes        | Yes    | Yes    |
| 5      | Freezing               | No         | No     | Yes    |
| 6      | Percentage yield (%)   | NA         | 0.50%  | 0.40%  |
| 7      | Colour                 | Colourless | Pale yellow | Light brown |
| 8      | Odour                  | Odourless  | Aromatic | Aromatic |
| 9      | Physical state at room temperature | Liquid | Liquid | Liquid |
| 10     | GCMS Characterization with percent abundance | Oleic acid(C18), Palmitic acid (C16), Stearic acid (C17), Undecylenic acid (C11), Methyl ricinoleate (C19), Behenic acid (C21), Tridecylenic acid (C11), nonadecylic acid (C19) | Camphor (23.9%), Thyme camphor (6.94%), Myristicin (2.39%), Longifolene (1.49%), Alpha Terpineol (1.80%), Alpha Copaene (1.08%), Beta-elemene (2.08%), Caryophyllene (5.87%), Muuroline (4.64%), Alpha-Himachaline (1.72%), Alpha-Curcumene (1.39%), Methyl eugenol (4.09%), Caryophyllene oxide (2.93%), Humulane (4.99%), Elemicine (3.11%), Alpha-Cadinal (1.39%), Turmerone (1.00%), Ar-Tumerone (18.78%), Asarone (0.59%), Verticil (0.63%) | Camphor (6.43%), Myristicin (1.11%), Cyclo islongifolene (12.03%), 2 Nonanone (1.81%), 2-Undecanone (9.18%), Decanoic Acid (7.36%), Beta-selinene (0.71%), Tridecanone (0.45%), Dodecanic Acid (31.39%), Epicedrol 1.68%, Patchoulol (1.82%), Germacrone (3.82%), Methoxy cinnamate (0.76%), Cembrene (0.30%), Dehydrotestosterone (0.45%) |
Conclusion

The present study found scientific validation for the ethnobotanical use of mixture of herbs, traditionally used as HS in Hawan fumigation and also as oral medicine for the treatment of TB. Identification of an array of compounds known to have immune enhancing and multi-system health benefits supplementing the potent in-vitro anti-tubercular effect, highlights the promising potential of HS1 crude EO in novel TB drug discovery and management. In this perspective, we recommend bioactivity guided isolation and purification of lead compounds for anti tuberculosis activity. Also, efficacy and toxicity studies of the crude EO in an animal model are warranted. The pharmacobiological advantage of crude HS extract therapy as compared to purified chemical compounds also needs to be elucidated by future studies.

Acknowledgement

Authors are thankful to Dr. R. B. Panwar, Vice Chancellor, Rajasthan University of Health Sciences (RUHS), Jaipur, Dr. V. M. Katoch, Former Secretary DHR and DG, ICMR, for supporting this study. Authors are also thankful to Swami Krishnanand Saraswati, Director Vedic Technical Research Institute, Jaipur (for identification of herbs and preparation of HS); Dr. Moti Asnani, Superintendent, Kamla Nehru State Tuberculosis Diagnostic
and Training Center (KNSTDC), Ajmer; Dr. U. D. Gupta, Scientist-G, JALMA, Agra (for obtaining control strains) and Acharya Satyajit, Rishi Udhyans, Ajmer.

Conflict of Interest: None.

References
1. Rastogi V, Chacko KM, Krishnasand S, Panwar RB. 2015. Studies on antibacterial effect and Chemical characterization of Hawan Smoke, ICMR funded Ad-hoc Research Project, IRIS ID- 2011-17510.
2. World Health Organization (WHO), Global tuberculosis report 2018. Geneva.
3. Antony M, James J, Mishra CS, Mundur LD, Devan S, Kumar A, et al., Antimycobacterial activity of the plant extracts of Alstonia Scholaris. Int J Curr Pharm Res 2012;4(1):40-42.
4. Misra CS, Pratuysh K, Sagadevan LDM, James J, Veettil AKT and Thanikamani V. Comparative study on phytochemical screening and antibacterial activity of roots of Alstonia scholaris with the roots, leaves and stem bark. Int J Res Phytochemistry Pharmacol 2011;1(2):77-82.
5. Nandgopal B, Sankar S, Ramamurthy M, Sathish S, Sridharan G. Could the products of Indian medicinal plants be the next alternative for the treatment of infections? Indian J Med Microbiol 2011;29-93-101.
6. Nguta JM, Mbaria JM. Brine shrimp toxicity and antimarial activity of some plants traditionally used in treatment of malaria in Msimbweni district of Kenya. J Ethnopharmacol 2013;148:988-992.
7. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and tomorrow. Mol Aspects Med 2006;27(1):1-93.
8. Raghuvanshi M, Pandya P, Joshi RR. Yagyopatric herbal treatment of pulmonary tuberculosis symptoms- A clinical trial. Altern Compliment Ther 2004;10(2):101-105.
9. Tripathi B and Pandey GS. Sutrasthana: In Charaka Chandrika- Hindi Commentary on CharakSamhita, vol.1, chapter 1-4, Press Choukambha: Sur Bharathi Publication, Varanasi, U.P, India; 2004:21-24.
10. Nautiyal CS, Chauhan PS and Nene YL. Medititional smoke reduces airborne bacteria. J Ethnopharmacol. 2007;114(3):446-451.
11. Saxena M, Sengupta B, Pandya P. A Study of the impact of Yagga on indoor microbial environments. Indian J Air Pollut Control 2007;7:6-15.
12. Rastogi V. Hawan- Could revival of this ancient wisdom be the panacea to combat microbes of the modern world? paper presented at 38th National conference of Indian Association of Medical Microbiologists - MICROCON 2014, at Birla Auditorium, Jaipur.
13. Ramprakash. Yayja Vinamrash. Chapter- 5: Samagri. D.A.V Publishers. Arya Samaj, Pitampura, Delhi, India. 2010:31-44.
14. Sharma PV, Duvvuryaguna- Vijnana. Chaukhamba Bharati Academy, Varanasi, India; 2011.
15. Nene YL. Fumigation of plants in Vrikshayurveda. Asian Agri-History 2014;18(1):23-41.
16. Revised National TB Control Programme Training Manual for Mycobacterium tuberculosis Culture & Drug susceptibility testing. Central TB Division Directorate General of Health Services Ministry of Health and Family Welfare, Nirman Bhavan, New Delhi 110011, April 2009.
17. Revised National TB Control Programme, Manual of Standard Operating Procedures (SOPs).
18. WHO, Molecular Line Probe Assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (mdr-tb), policy statement, 27 June 2008.
19. Revised National Tuberculosis Control Programme Guidelines on Programmatic Management of Drug Resistant TB (PMDT) in India. Central TB Division, Directorate General of Health Services, Ministry of Health & Family Welfare, Nirman Bhavan, New Delhi – 110011, May 2012.
20. The analyst, Analytical Method Committee, Drying agent for essential oils. 89 (1057), April 1964.
21. Hosseiny Lobna El, Shenawy Moustafa EL, Medhat H and Fadhil A. Comparative Evaluation of the Inhibitory effect of some essential oil with antibiotics against Pseudomonas aeruginosa. Int J Antibiotics 2014:1-5.
22. Martin A and Palomino JC. Procedure Manual. Colorimetric Redox Indicator (CRI). Drug Susceptibility testing for Mycobacterium tuberculosis. Version 06-2012.
23. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Porteals F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002;46:2720-2722.
24. Martin A, Porteals F and Palomino JC. Colorimetric redox indicator methods for the rapid detection of multidrug resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother 2007;59:175–183.
25. Sergio AO, Fabiola CV, Guadalupe NM, Blanca RC, Leon HO. Evaluation of antimycobacterial activity of the essential oils of cumin (Cuminum cuminum), clove (Eugenia caryophyllata), cinnamon (Cinnamomum verum), laurel (Laurus nobilis) and anise (Pimpinella anisum) against Mycobacterium tuberculosis. Adv Biol Chem 2013;3:480-484.
26. Diwan B, Rawat S. Antituberculosis drug research: A critical overview. Wiley online Library: 2012.
27. Bueno J, Escobar P, Martinez JR, Leal SM, Stashenko EE. Composition of three essential oils, and their mammalian cell toxicity and antimycobacterial activity against drug resistant-tuberculosis and nontuberculous mycobacteria strains. Nat Product Commun 2011;6(1):1743–1748.
28. Dijlani A, Dicko A. The Therapeutic Benefits of Essential Oils. Nutrition: Well-Being and Health. Chapter 7:2012.
29. Muchtaridi, Subarnas A, Apiyantomo A & Mustarichien R. Identification of compounds in the essential oil of Nutmeg seeds (Myristica fragransHoutt.) That inhibit locomotor Activity in Mice. Int J Mol Sci 2010;11:4771-4781.
30. Dalmacion GV, Ortega AR, Pena IG and Ang F. Preliminary study on the In-Vitro Susceptibility of Mycobacterium tuberculosis Isolates to Virgin Coconut Oil. Funct Foods Health Dis 2012;2(8):290-299.
31. Salem. Antioxidant, antiinflammatory, antimicrobial Cembrene/ limonene/ terpenes/ pyenes, “Pinus roxburghii” E.O., Bioresources. 2014;9:7454-7466.
32. Nguta J. M., Opong. R.A., Nyarko A. K, Manu. D. Y, Addo P. G.A. Medicinal Plants used to treat TB in Ghana. Int J Mycobacteriol 2015;4:116-123.
33. Warra AA. Physico-Chemical and GC/MS Analysis of Castor Bean (Ricinus communis L.) Seed Oil. Chem Mater Res 2015;7(2).
34. Elhassan IA, Ibrahim NY, Mohammed O, Mahmoud A, Elrasul RH. Antitubercular activity of Essential Oils from Cymbopogon citrates, C. nervatus and C. proximus. J Pharmacogn Phytochemistry 2016;5(1):19-23.
35. Hucklebroich J, Klein R, Neumaier B, Graf R, Fink GR, Schroeter M, Rueger MA. Aromatic-turmericine induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res Ther 2014;5(4):100.
36. Sabahal B, Dan M, John JA, Kurup R, Pradeep NS, Valsamma RK, et al. Anti microbial & anti inflammatory activity of carpyllenne rich rhizome oil of zingiber ninnomii from South India: chemical characterization and antimicrobial activity. Phytochemistry 2006;67:2469-2473.
37. Gertsch J. Beta-carpyllenne is a dietary cannabinoid. Proc Natl Acad Sci U S A 2008;105(26):9099–9104.
38. Qurshi, Alharbi MM, Ahmed MM. Monoterpene, sesquiterpene, sesquiterpene lactones and diterpene which have therapeutic aspects. Cancer Chemother Pharmacol 1993;33:130-138.

39. Setzer W, Volger B. Bioassays for Activity. In Cseke, I, Kirakosyan, A Kaufman, B, Warber S, Duke J, Brielmann H.(eds). Natural Products from Plants. USA: CRC Press Boca; 2006:390-413.

How to cite this article: Rastogi V, Tomar J, Patni T, Vijay C, Sharma P. Anti tubercular minimum inhibitory concentration (MIC) and chemical characterization of ethnobotanical mixture used in the treatment of tuberculosis. Indian J Microbiol Res 2019;6(1):50-56.