Melittopalynological studies of *Apis dorsata* honey samples from Kolar District, Karnataka, India

Gopal, T.C.
Department of Botany, J.S.S Arts, Science and Commerce College, Gokak (Karnataka), India
Email: gopaltcgokak@gmail.com

How to Cite
Gopal, T. C. (2021). Melittopalynological studies of *Apis dorsata* honey samples from Kolar District, Karnataka, India. *Journal of Applied and Natural Science*, 13(2), 654 - 667. https://doi.org/10.31018/jans.v13i2.2189

Abstract
Honeybees, while foraging for nectar on flowers, also gather some pollen which retains in the honey even after extraction. Pollen grains are the essential tools in the analysis of honey. The aim of the present report was to find the *Apis dorsata* honey floral resources in Kolar district state Karnataka. In the present study, the pollen content of 28 *A. dorsata* honey samples were collected from 5 different locations of Kolar district, Karnataka, India. Samples were subjected to Melittopalynological studies to identify their honey plant resources and colour, optic density and collection places were documented. A wide variety of pollen types represent their plant sources and their frequency classes were recognized in each honey sample. Among 28 honey samples analysed, 10 samples were identified as multifloral, 18 unifloral with predominant pollen types such as *Syzygium cumini*, *Pongamia pinnata*, *Eucalyptus sp.*, *Guizotia abyssinica*, *Psidium guajava* and *Coriandrum sativum*, each count was found above 45%. Pollen spectra indicated a total of 56 pollen types belonging to 27 plant families. Fabaceae was represented as the largest family with 14 species contributing honey production. Among the habitat, tree was dominant with 51.78%, followed by herbs (32.14%) and shrubs (16.07%). The economic importance of identified plants with apiculture importance was categorized as medicinal, ornamental, vegetable, timber and oil yielding, weeds, fruits and nuts. *A. dorsata* depends on wild trees and cultivated plants bloom throughout the year as pollen and nectar source. From the results, it is evident that there is a lot of potential in establishing beekeeping industries in the study area.

Keywords: *Apis dorsata*, Kolar district, Melittopalynology, Multifloral, Unifloral

INTRODUCTION
Melittopalynology is an applied branch of Palynology deals with the microscopic analysis of pollen grains in honey. Honeybees depend on plants for pollen and nectar. In turn bees provide pollination services to a wide variety of flowering plants. Honey contains pollen grains, which are collected by honeybees while foraging the flowers for nectar. The microscopic analysis of pollen is a standard method to identify the abundance of nectar sources, distribution, geographical and botanical origin, and honey adulteration in a given area (Silva and Santos, 2014). Knowledge of floral diversity of apicultural importance is a prerequisite for beekeepers to undertake migratory beekeeping to increasing honey production and pollination (Singh et al., 2016). Beekeeping provides self-employment to the farmers and tribes to generate income. Honeybees naturally produce honey from the nectar of plants. It is widely consumed as a health food product worldwide, but adulteration and the false labelling of honey are common problems in many countries (Sajwani et al., 2007; Louveaux et al., 1978). In this context, Melittopalynology plays an important role in ascertaining honey’s botanical and geographical origins by studying the pollen contained in the honey (Anklam, 1998; Oliveira et al., 2010; Ramirez-Arriaga et al., 2011; Upadhyay and Bera, 2012).

In the growth and development of honey bees, nectar is the source of carbohydrates and proteins are provided by pollen (Turner, 1984; Lin et al., 1993). Pollen analyses of honey and bee loads are used to learn honey bee foraging ecology, the habitat and vegetation, habitat composition, changes in honey bee food sources and the geographical region of the hive location (Ramanho and Kleint-Giovannini, 1986; Feller-Demalsy et al., 1989; Barth, 1990; Diaz-Losada et al., 1998; Terrab et al., 2004). Pollen contents of honey samples offer dependable evidence on floral resources of honey along with the relative predilections of bees.
amongst the varied assemblies of plant species flower-
ing synchronously (Deodikar and Thakar, 1953; Deodi-
kar, 1961; Garg, 2006). Melittopalynological study was introduced over a hun-
dred years ago by several scientists from different part
of the world (Maurizio, 1975; Lieux, 1980; Agwu and
Akanbi, 1985; Moar, 1985; Deodikar, 1961; Alves and
Santos, 2014; Jesus et al., 2015; Majid et al., 2020). In
India, the earliest contribution in this field was by Deodi-
kar and Thakar (1953), Sen and Banerjee (1956) and
Novais et al. (2009) characterized pollen in honey
samples of Mahabaleshwar hills of Maharashtra State
and from West Bengal, respectively. Later, Vishnu-
Mitter (1958) analyzed the pollen content of honey from
Nepal, Kashmir and Lucknow. Recently, several scient-
ists reported the botanical origin of honey in many
places of India (Shubharani et al., 2012; Raghunandan
and Basavarajappa, 2014; Neha Singh and Chaturvedi,
2016; Manju Sahney et al., 2018). However, no study
has been reported from Kolar district, Karnataka. The
present study aimed to identify the floral diversity of
apicultural importance by melittopalynological studies
of A. dorsata honey of Kolar district, Karnataka state.

MATERIALS AND METHODS

Study area
The Kolar district is situated in the southeastern part of
Karnataka state and called the land of gold, silk and
milk. The district lies almost in the central part of penin-
sular India, which has an immense bearing on its geo-
climatic conditions and experiences tropical climatic
condition throughout the year. The district is situated
between 12° 46’ and 13° 58’ north latitude and 77° 21’
and 78° 35’ east longitude between Eastern and West-
ern coast and is bound on the West by Bangalore and
Tumkur districts, South by North Arcot and Dharmapuri
districts of Tamilnadu, East and North by Chittor district
of Andhra Pradesh. The district has an area of 8,233 sq
km and occupies 12th place in the state, having 11 Ta-
luk viz., Bagepalli, Bangarpet, Chikballapur, Chin-
tamani, Gudibande, Gauribidanur, Kolar, Malur, Mulb-
agal, Siddlagatta and Srinivasapura (Fig. 1). The district
is endowed with a number of hills with peaks of varying
heights, particularly in the northern part. Kolar district falls in the eastern dry agro climatic zone. It experiences a semi-arid climate, characterized by
typical monsoon tropical weather with hot summer and
mild winter. The average rainfall is around 850 mm with
55-65 rainy days in Kolar district and the greater portion
of the rainfall is from September to November. District
experience scanty and erratic rainfall with uneven dis-
tribution during monsoon. The large variation in rainfall
was noticed from year to year and amongst talk to a
larger extent. The main occupation of the people of this
district is agriculture; 5% of the total area in the district
is covered by forest, 46% under cultivation and 28% is
uncultivated area.

Preparation of honey samples
In the present study, 28 honey samples were collected
from the hives of A. dorsata from 5 different locations of
Kolar district such as Kolar, Srinivasapura, Mulbagal,
Malur and Bangarpet during 2017-2019. The Honey
samples collected details are documented in Table 1.

Melittopalynological analysis
The collected honey samples were subjected to pollen
analysis to characterize and identify the floral origin,
according to the guidelines of Erdtman (1960), Louveaux et al. (1978) and Moore et al. (1991). Ten grams of crude honey sample was dissolved in 20
ml of warm (40 °C) distilled water and then centrifuged
for 10 min at 2500 rpm. The sediment was treated with
acetolysis mixture, centrifuged and the supernatant
was decanted. The sediment was washed twice with
distilled water to remove the debris. A drop of glycerine
was added to prevent the sample from drying and
gently heated. Five different slides were prepared
from each honey sample by adding 50 µl of treated
sample and cover with a coverslip. The slides were
subjected to microscopic study to identify the pollen
type by using a Leica DM2500 light microscope. The
pollen types present in honey samples were identified
by comparison with reference slides and pollen photo-
micrographs. The pollen types and their number were
counted by using Haemocytometer. Based on the per-
centage of pollen type and its distribution frequency,
the honey was categorised into unifloral (one pollen
type represented >45%) or multifloral (no pollen type
>45%) and also classified to different groups like pre-

Fig. 1. Map of Kolar district of Karnataka showing honey
samples collected areas.
dominant pollen (>45%), secondary pollen (16-45%), important minor pollen (3-15%) and minor pollen (<3%) by constructing pollen spectrum (Louveaux et al., 1978; White, 2005). Furthermore, the pollen morphology of the identified pollen from the honey samples was also documented.

RESULTS AND DISCUSSION

Kolar district has established beekeeping centres, maintained by the Department of Industries and Commerce of Apiculture wing. The present study identified the bee foraging plants of apiculture importance with particular reference to floral fidelity. The giant bee, A. dorsata is a widely distributed wild bee and is one of the important natural pollinators with high foraging potential (Neupane et al., 2006). Twenty-eight honey samples collected from 5 different regions in the study area were subjected to Melittopalynological studies to identify its honey plant resources. The colour, Optic density and place of the collection are documented in Table 1. The colour of the collected honey samples varied from light yellow to dark red. This variation may be due to floral source or exposure of honey to high temperature (Matos and Santos, 2016). The colour classification of honey is very important for commercial purpose. The optical density of the honey samples ranged from 0.208-0.996. Melittopalynological analysis is one of the main tools to determine the honey's botanical origin and differentiate the type of honey as unifloral or multifloral (Rodopoulou et al., 2018). A wide variety of pollen types representing their plant sources and their frequency classes were recognized in each honey samples and listed in Table 2. Among 28 honey samples analysed, 10 samples were identified as multifloral, whereas 18 were unifloral with predominant pollen types such as S. cumini, P. pinnata, Eucalyptus sp, G. abyssinica, P. guajava and C. sativum. Each count was found to be above 45% (Table 2).

The pollen type of Eucalyptus sp. was identified in 8 honey samples collected from the study area. The two different species, E. globules and E. citriodora have been known to occur in this region, has a significant role in providing nectar and pollen to A. dorsata. Bees
Table 2. Pollen spectrum of honey samples collected from Kolar District.

Honey sample	Predominant pollen types 45% & above	Secondary pollen types (16-45%)	Important minor pollen types (3-15%)	Minor pollen types (Less than 3%)	Honey types
ADH-1	S. cumini	Eucalyptus	C. equisetofolia, C. sativum, C. nucifera	D. regia, M. pudica, Poaceae, H. auriculata, Amaranthaceae, Fabaceae, C. bonplandianum, C. lemon	Unifloral
ADH-2	P. pinnata	Eucalyptus, A. catechu, A. lebeck	M. pudica, C. nucifera, P. pterocarpum, Poaceae, E. alsinoides	M. pudica, Asteraceae, D. metal, E. alsinoides, A. catechu, Poaceae, C. sativum.	Unifloral
ADH-3	P. guajava	Asteraceae, M. pucica, A. indica	C. nucifera, S. jambosa, Amaranthaceae sp., Cassia sp., O. sanctum, C. lemon.		Multifloral
ADH-4	Eucalyptus		H. auriculata, M. pudica, C. nucifera, O. sanctum, C. benghalensis.	P. nigrum, Poaceae, H. auriculata, A. catechu, C. benghalensis, R. indica.	Unifloral
ADH-5	G. abyssinica	C. nucifera	Asteraceae, D. metal, C. lemon.	C. argentea, Poaceae, T. angustata, O. sanctum.	Unifloral
ADH-6	Eucalyptus		M. pudica, B. nigrum, C. nucifera, Asteraceae, C. nucifera, C. benghalensis.	H. auriculata, M. alba, O. sanctum, Poaceae, C. sativum.	Unifloral
ADH-7	Eucalyptus		A. catechu, Poaceae, H. auriculata, C. benghalensis, R. indica.		Multifloral
ADH-8	Asteraceae, Eucalyptus	C. nucifera	Asteraceae, M. pudica, O. sanctum.	B. nigra, A. catechu, C. benghalensis, H. auriculata, C. lemon, Solanaceae, R. communis.	Unifloral
ADH-9	Eucalyptus	M. pudica	Asteraceae, C. nucifera, O. sanctum.	A. catechu, Fabaceae, B. nigra, Poaceae, C. benghalensis.	Multifloral
ADH-10	Eucalyptus	M. pudica	Asteraceae, C. nucifera, O. sanctum.	Amaranthaceae sp., H. auriculata, C. sativum, C. nucifera, D. metal, T. terestris	Unifloral
ADH-11	Eucalyptus		Asteraceae, M. pudica, O. sanctum	M. pudica, Solanaceae, P. sylvestris, C. lemon, O. sanctum.	Unifloral
ADH-12	Eucalyptus		H. auriculata, C. nucifera, C. sativum.		Unifloral
ADH-13	Eucalyptus	H. auriculata	Asteraceae, C. sativum, C. nucifera.	Amaranthaceae sp., O. sanctum, B. nigrum, M. pudica.	Unifloral
ADH-14	Eucalyptus, Bignoniaceae	Asteraceae, C. sativum, G. sepium	Asteraceae, C. nucifera, O. sanctum.	P. sylvestris, Poaceae, Asteraceae, C. nucifera, Citrus sp., M. pudica, Solanaceae, Acacia sp.	Multifloral
ADH-15	Asteraceae, Eucalyptus	C. sativum	C. nucifera, O. sanctum, H. auriculata, M. pudica, C. nucifera.	T. argentea, P. sylvestris, Fabaceae, Acacia sp. Amaranthaceae sp. C. bonplandianum, D. metal, Poaceae.	Multifloral
ADH-16	Eucalyptus, Bignoniaceae	Asteraceae, C. nucifera	Asteraceae, C. nucifera, O. sanctum.	A. catechu, Acacia sp., Poaceae, M. pudica, R. communis, C. sativum, A. lebeck.	Multifloral
ADH-17	P. guajava	Asteraceae, Eucalyptus	P. pinnata, C. nucifera, Citrus sp., A. indica, Poaceae, C. bonplandianum, P. sylvestris, D. regia.	C. nucifera, Citrus sp., A. indica, Poaceae, C. bonplandianum, P. sylvestris, D. regia.	Unifloral
ADH-18	Eucalyptus, Syzygium sp., M. pudica	C. nucifera	P. pinnata, Poaceae, P. guajava, P. sylvestris, Fabaceae, C. bonplandianum.		Multifloral

Contd....
ADH-19 *Eucalyptus* sp., *Asteraceae*
P. guajava, *M. pudica*, *C. commelina*, *C. nucifera*, *H. auriculata*, *A. marmelos*, *C. sativum*, *P. poaeceae*, *S. cumini*, *V. negundo*
Unifloral

ADH-20 *Eucalyptus*, *M. pudica*
Asteraceae, *S. sativum*, *V. laurinifolius*
Multifloral

ADH-21 *P. guajava*
Asteraceae, *S. syzygium*, *E. sp., I. opomea*
Unifloral

ADH-22 *P. guajava*
Asteraceae, *S. nucifera*, *E. sp., O. sanctum*
Unifloral

ADH-23 *Eucalyptus*
Asteraceae, *M. pudica*
P. guajava, *M. sativum*, *B. nigra*
Unifloral

ADH-24 *Eucalyptus*
C. nucifera, *T. indicus*
Asteraceae, *M. pudica*, *J. simplex*
Unifloral

ADH-25 *C. sativum*
Eucalyptus, *Asteraceae*
C. nucifera, *B. hispida*, *C. inerme*
Unifloral

ADH-26 *Eucalyptus*, *C. nucifera*
Asteraceae, *M. pudica*, *C. sativum*, *M. indica*
Multifloral

ADH-27 *Syzygium sp.*
Eucalyptus, *C. nucifera*, *H. auriculata*
Unifloral

ADH-28 *P. pinnata*
Eucalyptus, *Asteraceae*
F. elephantum, *E. alsinoides*
Unifloral

Table 2. Contd……..

| S. cumini (ADH-1 and 27) and P. pinnata (ADH-2 and 28) | Pollen type were found in 2 samples each. S. cumini is a large evergreen tree found all along the avenues and around the forest area. It is an important source of nectar and pollen for honeybees because the tree flowers from February and continues to bloom till the end of April (Abou-Shaara, 2014). Eucalyptus, C. eqisetofolia, C. sativum, C. nucifera, D. regia, M. pudica, H. auriculata, C. lemon, C. bonplandianum and O. sanctum pollen types were associated with this unifloral honey. Whereas P. pinnata, a much branched bushy tree, widely cultivated medicinal application. A non-timber tree flowers profusely during the onset of summer month, it closes before the early monsoon. The Pongamia honey associated with Eucalyptus sp., A. catechu, M. pudica, C. nucifera, Peltophorum pterocarpum, Evolups alsinoides, Ferronia elephantum, Grevillea robusta and Delonix regia. Further, pollen spectrum revealed the association of Guizotia abyssinica unifloral honey sample (ADH-5) was Eucalyptus Sp., Hygrophila auriculata, M. pudica, Commelina benghalensis, C. nucifera, O. sanctum, P. hysterophorus, B. nigra, Justicia simplex and Typha angustata. Guizotia abyssinica is an annual erect herb to a height of 3 feet. It is cultivated as a minor crop along with ragi or groundnut which flowers during August to December. Coriander pollen occurs as dominant pollen in the sam-
Sl. No.	Plant species	Family	Habit	Flowering period	Economic importance
1	Acacia catechu (L.f.) Willd.	Fabaceae	Tree	June-October	Medicinal
2	Acacia chundra (Roxb. ex Rottler)	Fabaceae	Tree	April-August	Medicinal
3	Albizia lebbeck (L.) Willd.	Fabaceae	Tree	July-November	Timber
4	Amaranthus spinosus L.	Amaranthaceae	Herb	July-October	Vegetable
5	Areca catechu L.	Arecaceae	Tree	January-March	Nut
6	Azadirachta indica Juss.	Meliaceae	Tree	March-April	Medicinal
7	Bauhinia purpurea L.	Fabaceae	Tree	August-November	Ornamental
8	Boronia hispida (L.) Schum.	Rubiaceae	Herb	January-December	Medicinal
9	Bororia stricta (L.f.) Schum.	Rubiaceae	Herb	January-December	Medicinal
10	Brassica nigra (L.) Koch.	Brassicaceae	Tree	March-June	Oil Yielding
11	Caesalpinia pulcherrima (L.) Swart.	Fabaceae	Tree	January-December	Ornamental
12	Cassia mimosaoides L.	Fabaceae	Tree	August-October	Ornamental
13	Casuarina equisetifolia J.R.and G.forst.	Casuarinaceae	Tree	February-September	Timber
14	Celosia argentea L.	Acanthaceae	Herb	June-September	Vegetable
15	Chrysanthemum indicum L.	Asteraceae	Tree	January-December	Ornamental
16	Citrus aurantium L.	Rutaceae	Tree	April-May	Fruit
17	Citrus medica L.	Rutaceae	Tree	April-May	Fruit
18	Clerodendrum inerme	Lamiaceae	Shrub	October-March	Medicinal
19	Coccos nucifera L.	Arecaceae	Tree	January-December	Oil Yielding
20	Commelina benghalensis L.	Commelinaceae	Shrub	June-October	Medicinal
21	Coriandrum sativum L.	Apiaceae	Herb	June-July	Vegetable
22	Croton bonplandianum Baill.	Fabaceae	Shrub	January-December	Medicinal
23	Cyperus Sp	Cyperaceae	Herb	May-June	Medicinal
24	Datura metala L.	Solanaceae	Shrub	January-June	Weed
25	Delonix rega (Boj.ex.) Raf.	Fabaceae	Tree	June-June	Ornamental
26	Eucalyptus Sp	Myrtaceae	Tree	March-June	Timber
27	Evolvulus alsinoides L.	Convolvulaceae	Shrub	February-June	Medicinal
28	Feronia elephantum Correa	Rutaceae	Shrub	January-December	Fruit
29	Gillicidia sepium (Jacq) Kunth ex. Steud.	Fabaceae	Tree	November-March	Medicinal
30	Grevillea robust A. Cunn	Proteaceae	Tree	January-December	Timber
31	Guizotia abyssinica Cass.	Asteraceae	Herb	May-October	Oil yielding
32	Helianthus annus L.	Asteraceae	Shrub	July-October	Oil Yielding
33	Hygrophila auriculata (Schum) Heine.	Acanthaceae	Herb	October-April	Medicinal
34	Ipomoea sp. L.	Convolvulaceae	Herb	January-December	Weed
35	Justicio simplex Don.	Acanthaceae	Herb	October-December	Weed
36	Mangifera indica L.	Anacardiaceae	Tree	March-April	Fruit
37	Mimosa pudica L.	Fabaceae	Herb	January-December	Weed
38	Morus alba L.	Moraceae	Tree	May-June	Silk Production
39	Ocimum sanctum L.	Lamiaceae	Herb	January-December	Medicinal
40	Parthenium hysterophorus L.	Acanthaceae	Herb	January-December	Weed
41	Peltophorum pterocarpum (DC) Baker.	Fabaceae	Tree	March-April	Ornamental
42	Phoenix sylvestris (L.) Roxb.	Arecaceae	Tree	June-August	Fruit
43	Pongamia pinnata Vent.	Fabaceae	Tree	April-June	Oil Yielding
44	Prosopis julifera D.C.	Fabaceae	Tree	August-Feb	Medicinal
45	Psidium guajava L.	Myrtaceae	Tree	February-April	Medicinal
46	Ricinus communis L.	Euphorbiaceae	Tree	March-April	Oil Yielding
47	Rosa indica L.	Rosaceae	Shrub	January-December	Ornamental
48	Sapindus laurifolius Vahl.	Sapindaceae	Tree	February-April	Medicinal
49	Syzygium cumini (L.) Skeels.	Myrtaceae	Tree	March-April	Fruit
50	Tabebuia argentina (R & S) Brit.	Bignoniaceae	Tree	August-September	Ornamental
51	Tamarindus indicus L.	Fabaceae	Tree	March-May	Fruit
52	Toddalia asiatica (L.) Lamk.	Rutaceae	Herb	March-September	Medicinal
53	Tribulus terrestris L.	Zygophyllaceae	Herb	March-May	Weed
54	Typha angustata L.	Typhaceae	Herb	May-July	Medicinal
55	Vitex negundo Mill.	Lamiaceae	Shrub	July-August	Medicinal
56	Ziziphus oenoplia (L.) Mill.	Rhamnaceae	Tree	July-November	Fruit
Table 4. Floral calendar of bee forage plants of Kolar district during 2017-2019.

Sl. No.	Taxonomical Name of the Plant	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
1	*Acacia catechu* (L.f.) Willd.												
2	*Acacia chundra* (Roxb. ex Rottler)												
3	*Albizia lebbeck* (L.) Wild												
4	*Amaranthus spinosus* L.												
5	*Areca catechu* L.												
6	*Azadirachta indica* Juss.												
7	*Bauhinia purpurea* L.												
8	*Borreria hispida* (L.) Schum.												
9	*Borreria stricta* (L.f.) Schum.												
10	*Brassica nigra* (L.) Koch.												
11	*Caesalpinia pulcherrima* (L.) Swart.												
12	*Cassia mimosoides* L.												
13	*Casuarina equisetfolia* J.R.and G.forsst.												
14	*Celosia argentea* L.												
15	*Chrysanthemum indicum* L.												
16	*Citrus aurantium* L.												
17	*Citrus medica* L.												
18	*Clerodendrum inerme*												
19	*Cocos nucifera* L.												
20	*Commelina benghalensis* L.												
21	*Coriandrum sativum* L.												
22	*Croton bonplandianum* Baill.												
23	*Cyperus* Sp.												
24	*Datura metel* L.												
25	*Delonix regia* (Boj.ex.) Raf.												
26	*Eucalyptus* Sp.												
27	*Evolvulus alsinoides* L.												
28	*Feronia elephantum* Corea												
29	*Gänickea sepium* (Jacq) Kunth ex.Steud.												
30	*Grevillea robust* A. Cunn												
31	*Guizotia abyssinica* Cass.												
32	*Helianthus annus* L.												
33	*Hygrophila auriculata* (Schum) Heine.												
34	*Ipomoea* sp. L												
35	*Justicia simplex* Don.												
36	*Mangifera indica* L.												
37	*Mimosa pudica* L.												
38	*Morus alba* L.												
Ocimum sanctum L. (8), Coriandrum sativum L. (6), Peltophorum pterocarpum (DC) Baker. (18), Phoenix sylvestris (L.) Roxb. (9), Pongamia pinnata Vent. (4), Ricinus communis L. (6), Rosea indica L. (4), Sapium sebiferum L. (4), Syzygium cumini (L.) Skeels. (9), Tabebuia argentea (R. & S) Britt. (4), Tribulus terrestris L. (18), Vitex negundo Mill. (5), Ziziphus oenoplia (L.) Mill. (8).

Table 4. Contd......

Fig. 3. Number of plant species with economic importance.
Sl. No.	Taxon	Aperture	Ornamentation	Size, Shape & Exine pattern	Photomicrograph
1	*Acacia sp.*	Tricolpoid	Striato Reticulate	38-45, 50-58 µm, exine 1.5-3µm	![Micrograph](image1)
2	*Asteraceae*	Tricolporate	Echinulate	35-38µm, exine 5µm	![Micrograph](image2)
3	*A. indica*	Tetracolporate	Reticulate	Prolate spheroidal, exine 1-0.5µm	![Micrograph](image3)
4	*B. purpurea*	Tricolporate	Striate	25x30µm, exine 1.5 µm	![Micrograph](image4)
5	*B. nigra*	Tricolpate	Reticulate	28-31µm subspherical, exine 1.5µm	![Micrograph](image5)
6	*Citrus sp.*	Tetracolporate	Reticulate	30-34, 24-31 µm amb tetragonal	![Micrograph](image6)
7	*C. nucifera*	Monosulcate	Granulate	Oblate	![Micrograph](image7)
8	*C. sativum*	Tricolporate ora elliptic	Granulate	25-28, 40-50µm, exine 2µm	![Micrograph](image8)

Table 5. pollen morphology of some dominant pollen types of the study area.
	Species	Aperture	Surface Pattern	Measurements	Exine Thickness
9	*C. bonplandianum*	Omni aperturate	Reticulate with crotonoid pattern	46-48µm, exine 3µm	
10	*Cyperus sp.*	3-4 colpoid	Granulate	36-41, 26-34µm, exine 1µm	
11	*D. metal*	Tricolporate	Strito reticulate	50x50µm spheroidal, exine 4µm	
12	*Eucalyptus ssp.*	3-4 syncolporate	Psilate	19-22x26-31µm, exine 1µm amb semi-angular exine 0.5µm	
13	*G. sepium*	Tricolporate	Psilate	25-28, 29-31µm, exine 1.5µm	
14	*G. abyssinica*	Tricolporate	Echinulate	25-30µm spheroidal	
15	*M. indica*	Tricolporate	Striato reticulate	28-24µm, exine 2µm	
16	*M. pudica*	Tetrad	Psilate	Spheroidal, exine 1µm	
17	*O. sanctum*	Hexacolpate	Reticulate	55-75µm suboblate, exine 4µm	
with 14 species contributing to the honey production in the study area. In addition, Rutaceae and Asteraceae comprised of 4 species each, followed by Arecaceae, Lamiaceae and Myrtaceae recorded with 3 species each. Convolvulaceae, Amaranthaceae, Rubiaceae and Acanthaceae were found with 2 species each and Anacardiaceae, Apiaceae, Bignoniaceae, Brassicaceae, Casurinaceae, Commelinaceae, Cyperaceae, Euphorbiaceae, Moraceae, Proteaceae comprised of single species each.

All the 56 pollen types recorded comprised several plant types such as trees, shrubs and herbs. Among the reported habit, there was a dominance of the tree with 51.78%, followed by herbs and shrubs with 32.14% and 16.07%, respectively, represent floral diversity (Fig. 2). The economic importance of the identi-

	Pollen Type	Polarity	Shape	Size	Exine Thickness
18	*P. pterocarpum*	Tricolporate	Reticulate	35-40, 55µm,	exine 3-5µm
19	*P. pinnata*	Tricolporate	Psilate	21-41, 43µm,	exine 2µm
20	*P. guajava*	Tricolporate	Psilate	14-20µm triangular,	exine 1.4µm
21	*R. communis*	Tricolporate	Reticulate	26x26µm spheroidal,	exine 2µm
22	*R. indica*	Tricolporate	Striate reticulate	25x45µm,	exine 2.5µm
23	*S. cumini*	Trisyn colporate	Psilate	12x28µm oblate,	exine 1.5µm
24	*T. argentea*	Tricolporate	Reticulate	44-31µm subprolate	to prolate
25	*T. indicus*	Tricolporate	Striate	35-35µm,	amb circular, exine 2µm
fied plants of apiculture importance was categorized as medicinal, ornamental, vegetable, timber, oil yielding, weeds, fruits and nuts (Fig. 3). According to the present result, predominant and secondary dominant pollen types with medicinal importance were A. catechu, A. chundra, A. indica, Gliciridia sepium, C. inerme, B. hispida, B. stricta, C. benghalensis, Croton bonplandianum, Cyperus sp., Evolvulus alsinooides, H. auriculata, O. sanctum, Prosopis julifera, Sapindus laurifolius, Todalia asiatica, Typha angustata and Vitex negundo. Pollen types of Bauhinia pupleurea, Caesalpinia pulcherima, Delonix regia, C. mimosoides, Chrysanthemum indicum, Rosa indica, Tabebuia argentaia and P. pterocarpum were grouped as ornamental plants. Amaranthus spinosu, Celosia argentea and C. sativum were vegetables and Albizia lebbbeck, Casuarina equisetifolia, Eucalyptus sp. and Grevillea robust were timber plants. B. nigra, Guizotia abyssinica, H. annus, C. nucifera, P. pinnata and R. communis are important oil yielding plants. The fruit and nuts yielding plants were Feronia elephanum, P. sylvestris, P. guajava, S. cumini, C. aurantium, C. medica, Tamarindus indicus, Ziziphus oenoplia and A. catechu. Weeds of forage importance to A. dorsata in the study area were D. metal, M. pudica, P. hyserophorus, Ipomoea sp., J. simplex and Tribulus terrestris, whereas M. alba was cultivated for production of silk.

From the study it is observed that, most of the plant species such as B. hispida, B. stricta, C. pulcherrima, C. nucifera, C. indicum, C. bonplandianum, Eucalyptus sps. F. elephanum, G. robust, Ipomoea sp, M. pudica, O. sanctum, P. hyserophorus, R. communis and R. indica have prolonged blooming period throughout the year. These species provide greater forage potential for honeybees in the study area. Pollen grains are the most important component of honey helps to identify the distribution of floral source of honey. The blooming period of each species was recorded as shown in Table 4. According to the present observation, B. hispida, B. stricta, C. pulcherrima, C. indicum, C. nucifera, C. bonplandianum, F. elephanum, G. robust, Ipomoea sp, M. pudica, O. sanctum, P. hyserophorus and R. indica bloom throughout the year. The peak flowering period of most important honey plants were observed during February to June and less blooming period was observed during October to January. Microscopic analysis of honey helps to identify the pollen types with their size, shape and ornamentation. The morphology of pollen grains differ in shapes, exine structure, symmetry and sculpture among plant species. Table 5 demonstrated the morphology of various types of pollen obtained from the present study. The pollen of Acacia sp. are sub globes, whereas P. pinnata pollen are spherical. It has been established in this study that the species belongs to the family Asteraceae pollen type were spinelous, Myrtaceae pollen types are colporate and prolate. But there is variability in the pollen type of the species belongs to family Fabaceae. Therefore, it is essential to examine a large number of pollen grains from one family in order to obtain a complete knowledge of different types within that family.

Conclusion

The present study contributes to the floral resources of A. dorsata honey produced in Kolar district of Karnataka state. A. dorsata mainly depends on the wild tree and cultivated plant blooms throughout the year as pollen and nectar source. From the results, it is evident that there is a lot of potential in establishing beekeeping industries in the study area. Among 28 honey samples analysed, 18 were unifloral, with the predominant pollen types were C. sativum, E. globulus, G. abyssinica, S. cumini, P. pinnata and P. guajava. The most represented families were Fabaceae, Rutaceae and Asteraceae. These plants may be introduced in social forestry and afforestation programs to enhance the honey yield. Further, the yield of economic crops may also be able to increase by pollination. Assessment of honey bee pollen as a bioindicator of the environment may throw more light on floral diversity.

Conflict of interest

The author declares that he has no conflict of interest.

REFERENCES

1. Abou-Shaara, H.F. (2014). The foraging behaviour of honey bees, Apis mellifera: A review. Veterinarni Medicina, 59 (1), 1-10. doi:10.17221/7240-VETMED
2. Agwu, C.O.C. & Akanbi, T.O. (1985). A palynological study of honey from four vegetation zones in Nigeria. Pollen et Spores, 27, 335-348.
3. Alves, R.F. & Santos, F.A.R. (2014). Plant sources for bee pollen load production in Sergipe, Northeast Brazil. Polynology, 38(1), 90-100. doi:10.1080/01916122.2013.846280
4. Anita, M., Sivararam, V. & Jayaramappa, K.V. (2012). Influence of bee attractants on pollination and yield parameters in guava (Psidium guajava L.). International Journal of Plant Reproductive Biology, 4(1), 41-46.
5. Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549-562. doi:10.1016/S0308-8146(98)00057-0
6. Barth, O.M. (1990). Pollen in monofloral honeys from Brazil. Journal of Apicultural Research, 29(2), 89-94. doi:10.1080/00218839.1990.11101202
7. Barth, O.M., Munhoz, M.C. & Luz, C.F.P. (2009). Botanical origin of Apis pollen loads using colour, weight and pollen morphology data. Acta Alimentaria, 38(1), 133-139. doi:10.1556/aalim.2008.0026
8. Baum, K.A., Rubink, W.L., Coulson, R.N. & Bryant Jr. V.M. (2011). Diurnal patterns of pollen collection by feral honey bee colonies in southern Texas, USA. *Apidologie*, 35(1), 85-93. doi:10.1007/s13552-010-0546621

9. Behera, S.S., Ray, R.C. & Zdolec, N. (2018). *Lactobacillus plantarum* with functional properties: An approach to increase safety and shelf-life of fermented foods. *BioMed Research International*, 9361614. doi.org/10.1155/2018/9361614

10. Chauhan, M.S., Farooqui, A. & Trivedi, A. (2017). Plants foraged by bees for honey production in northern India: The diverse flora of India and its implications for apiiculture. *Acta Palaeobotanica*, 57(1), 119-132. doi:10.1515/acpa-2017-0003

11. Deodikar, G.B. & Thakar, C.V. (1953). A pollen study of honey yielding plants of Mahabaleshwar hills. *Apicultural Lab. Bulletin*, No.1, 1-6.

12. Deodikar, G.B. (1961). Some aspects of bee botany. *Indian Bee Journal*, 23, 60-61.

13. Díaz-Losada, E., Ricciardelli-d’Alboere, G. & Saa-Otero, M.P. (1998). The possible use of honeybee pollen loads in characterizing vegetation. *Grana*, 37(3), 155-163. doi:10.1080/0173139890362660

14. Dietz, A. (1975). Nutrition of the adult honey bee. In: The hive and the honey bee, (Graham JM, ed.) Hamilton, Illinois: Dadant & Sons. pp.125-156.

15. Dimou, M. & Thrasyvoulou, A. (2007). Seasonal variation in vegetation and pollen collected by honeybees in Thesaloniki, Greece. *Grana*, 46(4), 292-299. doi:10.1080/0173130701760718

16. Dimou, M. & Thrasyvoulou, A. (2009). Pollen analysis of honeybee rectum as a method to record the bee pollen flora of an area. *Apidologie*, 40, 124-133. doi.org/10.1051/apido:2008066

17. Erdtman, G. (1960). The acetolysis method. A revised description. *Svensk Botanisk Tidskr.*, 54, 561-564.

18. Feller-Demalsy, M.J., Parent, J. & Strachan, A. (1989). Microscopic analysis of honeys from Manitoba, Canada. *Journal of Apicultural Research*, 28(1), 41-49. doi.org/10.1080/01767502909368877

19. Garg, A. (2006). Bee botany of Bhilmat in Western Himayas: Melissopalynological analysis. 1st ed. Dehra Dun: Bishen Singh & Mahendra Pal Singh.

20. Jesus, M.C., Borges, R.L.B., Souza, B.A., Brandao, H.N. & Santos, F.A.R. (2015). A study of pollen from light honeys produced in Piaui state, Brazil. *Apidologie*, 39(1), 10-124. doi:10.1080/01916122.2014.942440

21. Layek, U. & Karmakar, P. (2018). Pollen analysis of *Apis dorsata* Fabricius honeys in Bankura and Paschim Medinipur districts, West Bengal. *Grana*, 57(4), 298-310. doi:10.1007/s13552-017-06064

22. Lieux, M.H. (1980). Acetolysis applied to microscopic honey analysis. *Grana*, 19, 57-61. doi:10.1007/s13552-009-0424988

23. Lin, S.H., Chang, S.Y. & Chen, S.H. (1993). Nectar and pollen sources for honeybee (*Apis cerana* Fabr.) in Qinglan mangrove area, Hainan Island, China. *Journal of Integrative Plant Biology*, 48, 1266-1273.

24. Louveaux, J., Maurizio, A. & Vorwohl, G. (1978). Methods of melissopalynology. *Bee World*, 59(4), 139-157. doi:10.1007/s136772X.1978.11097714

25. Manju Sainey, Snehlata Rahi, Ajay Kumar & Roma Jaiswal. (2018). Melissopalynological studies on winter honeys from Allahabad, Uttar Pradesh, India. *Apidologie*, 42(4), 540-552. doi:10.1007/s13552-017-1418445

26. Mats, V.R. & Santos, F.A.R. (2016). Pollen in honey of *Melipona scutellaris* L. (*Hymenoptera: Apidae*) in an Atlantic rainforest area in Bahia, Brazil. *Palynology*, 41, 144-156. doi:10.1080/01916122.2015.1115434

27. Maurizio, A. (1975). Microscopy of honey. In: Honey, a comprehensive survey. (Cran, E. editor). New York: Crane, Russak and Co., pp.240-257.

28. Majid, M., Ellulu, M.S. & Bakar, M.F.A. (2020). Melissopalynological Study, Phenolic Compounds, and Antioxidant Properties, of *Heterotrigona itama* Honey from Johor, Malaysia. *Hindawi Scientific*, Volume 2020, Article ID: 2529592, 9 pages doi.org/10.1155/2020/2529592

29. Moar, N.T. (1985). Pollen analysis of New Zealand honey. *New Zealand Journal of Agricultural Research*, 28(1), 39-70. doi.org/10.1080/00288233.1985.10426997

30. Moore, P.D., Webb, J.A. & Collinson, M.E. (1991). Pollen analysis. London, Blackwell Sci. Publ., (2nd edition), pp. 216.

31. Neha Singh & Chatturvedi, S.K. (2016). Melissopalynological Studies of Honey Samples from Bastar District, Chhattisgarh. *The International Journal of Plant Reproductive Biology*, 9(1), 37-40. doi:10.14787/ijprb.2017.9.1.3 7-40

32. Neupane, K.R., Dhakal, D.D., Thapa, R.B. & Gautam, D.M. (2006). Foraging preference of giant honeybee *Apis dorsata* F., to selected horticultural crops. *Journal of the Institute of Agriculture and Animal Science*, 27, 87-92.

33. Novais, J.S., Lima, L.C.L. & Santos, F.A.R. (2009). Botanical affinity of pollen harvested by *Apis mellifera* L. in a semi-arid area from Bahia, Brazil. *Grana*, 48(3), 224-234. doi:10.1080/0173130903037725

34. Oliveira, P.P., Van Den Berg, C. & Santos, F.D.A.R.D. (2010). Pollen analysis of honeys from Caatinga vegetation of the state of Bahia, Brazil. *Grana*, 49(1), 66-75. doi.org/10.1080/01731309093485122

35. Raghunandan & Basavarajappa. (2014). Melissopalynological of multifloral honey of Asian giant honeybee *Apis dorsata* fabricius at Southern Karnataka, India. *Indian Journal of Applied Research*, 4(8), 667-669.

36. Ramalho, M. & Kleinert-Giovannini, A. (1986). Some aspects of the utilization of pollen analysis in ecological research. *Apidologie*, 17(2), 159-174. doi.org/10.1051/apido:19860207

37. Ramirez-Ariagga, E., Navarro-Calvo, L.A. & Diaz-Carbajal, E. (2011). Botanical characterisation of Mexican honeys from a subtropical region (Oaxaca) based on pollen analysis. *Grana*, 50(1), 40-54. doi.org/10.1080/01916122.2010.537767

38. Rodopoulou, M.A., Tananaki, C., Bimou, M., Liolios, V., Kanelis, D., Goras, G. & Thrasyvoulou, A. (2018). The determination of the botanical origin in honeys with over-represented pollen: combination of melissopalynological, sensory and physicochemical analysis. *Journal of the Science of Food and Agriculture*, 98(7), 2705-2712. doi.org/10.1002/jsfa.8764

39. Sajwani, A., Farooq, S.A., Patzelt, A., Eltayeb, E.A. & Bryant, V.M. (2007). Melissopalynological studies from Oman. *Palynology*, 31, 63-79.

40. Sen, J. & Banerjee, D. (1956). A pollen analysis of Indian
honey. *Bee World*, 37(3), 52-54. doi.org/10.1080/0005772X.1956.11094919

41. Shubharani, R., Sivaram, V. & Roopa, P. (2012). Assessment of honey plant resources through pollen analysis in Coorg honeys of Karnataka state. *The International Journal of Plant Reproductive Biology*, 4(1), 31-39.

42. Silva, A.P.C. & Santos, F.A.R. (2014). Pollen diversity in honey from Sergipe, Brazil. *Grana*, 53(2), 159-170. doi:10.1080/00173131.2014.896941

43. Singh, A.K. Deepak Kumar Jaiswal, Singh, H.K. & Thakur, R.K. (2016). Diversity of Bees’ flora and floral calendar of native honey bees in Nagaland, India. *Advances in Life Sciences*, 5(6), 2285-2292.

44. Tamar Keasar & Avi Shmida. (2009). An evaluation of Israeli forestry trees and shrubs as potential forage plants. *Israeli Journal of Plant Sciences*, 57(1), 49-64. doi:10.1560/IJPS.57.1-2.49

45. Terrab, A., Pontes, A., Heredia, F.J. & Diez, M.J. (2004). Palynological and geographical characterization of avocado honeys in Spain. *Grana*, 43(2), 116-121. doi.org/10.1080/00173130310017634

46. Turner, V. (1984). Banksia pollen as a source of protein in the diet of two Australian marsupials *Cercartetus nanus* and *Tarsius rostratus*. *Oikos*, 43, 53-61.

47. Upadhyay, D. & Bera, S. (2012). Pollen spectra of natural honey samples from a coastal district of Orissa, India. *Journal of Apicultural Research*, 51(1), 10-22. doi.org/10.3896/IBRA.1.51.1.03

48. Vishnu-Mitre. (1958). Pollen content of some Indian honeys. *Journal of Scientific and Industrial Research*, 17, 123-124.

49. White, J.W. (2005). Honey. In: The hive and the honey bee. (Graham JM, ed.) Hamilton, Illinois: Dadant & Sons. pp. 869-927

50. Yao, Y.F., Bera, S., Wang, Y.F. & Li, C.S. (2006). Nectar and pollen source for honeybee *Apis cerana cerana* Fabr. during October-November in Qinglan Harbor mangrove area, Hainan Island, China. *Journal of Integrative Plant Biology*, 11(48), 1266-1273.