Upsilon production in Z decays

L3 Collaboration

AMBROSI, Giovanni (Collab.), et al.

Abstract

We have searched for evidence of \(\Upsilon \) production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991–1995. No signals are observed for the decay chain \(Z \rightarrow TX; \ \Upsilon \rightarrow \ell^+\ell^- \ (\ell=e,\mu) \), therefore upper limits at 95\% confidence level are set on the following Z branching fractions: \(Br(Z \rightarrow \Upsilon(1S)X) < 5.5 \times 10^{-5}; Br(Z \rightarrow \Upsilon(2S)X) < 13.9 \times 10^{-5}; Br(Z \rightarrow \Upsilon(3S)X) < 9.4 \times 10^{-5} \).

Reference

L3 Collaboration, AMBROSI, Giovanni (Collab.), et al. Upsilon production in Z decays. Physics Letters. B, 1997, vol. 413, p. 167-175

DOI : 10.1016/S0370-2693(97)01002-2

Available at:
http://archive-ouverte.unige.ch/unige:113056

Disclaimer: layout of this document may differ from the published version.
Upsilon production in Z decays

L3 Collaboration

M. Acciarri ab, O. Adriani q, M. Aguilar-Benitez aa, S. Ahlen k, J. Alcaraz aa, G. Alemanni w, J. Allaby r, A. Aloisio ad, G. Alversion l, M.G. Alviggi ad, G. Ambrosi i, H. Anderhub ax, V.P. Andreev am, T. Angelescu m, F. Anselli o, A. Arefiev ac, T. Azemoon c, T. Aziz j, P. Bagnaia al, L. Baksay as, R.C. Ball c, S. Banerjee j, Sw. Banerjee i, K. Banicz au, A. Barczyk av, R. Barillère r, L. Barone ad, P. Bartalini ai, A. Basichrotto ab, M. Basile i, R. Battiston ai, A. Bay w, F. Becattini q, U. Becker p, F. Behner ax, J. Berdugo aa, P. Berges p, B. Bertucci ai, B.L. Betev ax, S. Bhattacharya j, M. Biasini r, A. Biland ax, G.M. Bilei ai, J.J. Blaising d, S.C. Blyth aj, G.J. Bobbink b, R. Bock a, A. Böhm a, L. Boldizsar n, B. Borgia ad, A. Boucham d, A. Boraiov bx, G. Borioli ak, A. Boucham d, D. Bourilkov ax, M. Bourquin i, D. Boutigny d, S. Braccini t, J.G. Branson ao, V. Brigljevic ax, I.C. Broock aj, A. Buffini q, A. Biixs al, J.D. Burger p, W.J. Burger i, J. Busenitz as, X.D. Cai p, M. Campanelli ax, M. Capell p, G. Cara Romeo i, G. Carlino ad, A.M. Cartacci q, J. Casaus aa, G. Castellini q, F. Cavallari a', N. Cavallo ad, C. Cecchi t, M. Cerrada aa, F. Cesaroni x, M. Chamizo aa, Y.H. Chang az, U.K. Chaturvedi s, S.V. Chekanov af, M. Chemarin c, A. Chen az, G. Chen g, G.M. Chen g, H.F. Chen u, H.S. Chen g, M. Chen p, G. Chiefi ad, C.Y. Chien c, L. Cifarelli an, F. Cindolo i, C. Cividini q, I. Clare p, R. Clare p, H.O. Cohn ag, G. Coignet d, A.P. Colin b, N. Colino aa, V. Commichau a, S. Costantini b, F. Cotorobai m, B. de la Cruz aa, A. Csilling n, T.S. Dai p, R. D’Alessandro q, R. de Asmundis ad, A. Dege d, K. Deiters av, P. Denes ak, F. DeNotaristefani ai, D. DiBitonto as, M. Diemou ai, D. van Dierendonck b, F. Di Lodovico ax, C. Dionisi ai, M. Dittmar ax, A. Dominguez ao, A. Doria ad, I. Dornic d, M.T. Dova s, E. Drago ad, D. Duchesneau d, P. Duinker b, I. Duran ap, S. Dutta j, S. Easo ai, Yu. Efremenko ag, H. El Mamouni z, A. Engler aj, F.J. Eppling p, F.C. Emé b, J.P. Ernenwein z, P. Extermann t, M. Fabre ay, R. Facchin i, S. Falciamento al, A. Favara q, J. Fay z, O. Fedin am, M. Felcini ax, B. Fenyi as, T. Ferguson aj, F. Ferroni al, H. Fesefeldt a, E. Fiandrini ai, J.H. Field t, F. Filthaut aj, P.H. Fisher p, I. Fisk ao, G. Forconi p,
Abstract

We have searched for evidence of T production in 3.5 million hadronic Z decays collected by the L3 detector at LEP in 1991–1995. No signals are observed for the decay chain $Z \rightarrow TX; Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$), therefore upper limits at the 95% confidence level are set on the following Z branching fractions: $\text{Br}(Z \rightarrow T(1S)X) < 5.5 \times 10^{-5}; \text{Br}(Z \rightarrow T(2S)X) < 13.9 \times 10^{-5}; \text{Br}(Z \rightarrow T(3S)X) < 9.4 \times 10^{-5}$. Published by Elsevier Science B.V.

1. Introduction

Recent theoretical predictions for T production in hadronic Z decays [1] suggest that each LEP experiment should be able to observe a few T events using the decay modes $T \rightarrow \ell^+\ell^-$, where $\ell^+\ell^-$ denotes either e^+e^- or $\mu^+\mu^-$. Such an observation would support the novel colour-octet models which have been invoked to explain the anomalously high T production rates observed by the CDF Collaboration [2].

This paper describes the search for T production at LEP using the L3 detector, which is described elsewhere [3,4]. The analysis uses a sample of approximately 3.5 million hadronic Z events acquired during 1991–1995 at $\sqrt{s} \approx M_Z$.

1 Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina.
2 Also supported by Panjab University, Chandigarh-160014, India.
3 Supported by the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie.
4 Supported by the National Natural Science Foundation of China.

5 Supported by the Hungarian OTKA fund under contract numbers T14459 and T24011.
6 Supported also by the Comisión Interministerial de Ciencia y Tecnología.
7 Throughout this paper, we use T to denote the three states $T(1S), T(2S),$ and $T(3S)$.
2. Simulation of T production and backgrounds

We have considered five distinct mechanisms for the production of (unpolarised) T's in Z decays, as shown in Fig. 1 of Ref. [5]. Table 1 shows the predicted branching ratios, $\text{Br}(Z \rightarrow TX)$, for the colour-singlet (1–3) and colour-octet (4–5) processes. To study the sensitivity of the L3 detector to events containing $T \rightarrow \ell^+\ell^-$ decays, we generate samples of 5000 e^+e^- events, for each of these five production mechanisms using the OPAL implementation [5,13] of the differential cross sections. The JETSET Monte Carlo program [14,15] is used to simulate the subsequent parton showering, hadronisation, and particle decays. The T's are required to decay via the chain $T \rightarrow \ell^+\ell^-$. Table 2 shows the masses and leptonic branching ratios of the $T(1S)$, $T(2S)$, and $T(3S)$ which are assumed in this analysis [16]. A "combined model" sample is also used, which is the sum of the five distinct samples weighted according to the production rates predicted by the theory.

For the background studies a sample of approximately seven million hadronic events is generated using JETSET, not including the production of T's. In addition, samples of 1000 four-fermion events are generated, using the FERMISV [17] Monte Carlo

T production mechanism	$\text{Br}(Z \rightarrow TX) \times 10^{-5}$
1. $Z \rightarrow T_{bb}$ (b-quark fragmentation)	1.6 [6,7]
2. $Z \rightarrow T_{gg}$ (gluon fragmentation)	0.07 [8,9]
3. $Z \rightarrow T_{g}$ (gluon radiation)	0.05 [10–12]
4. $Z \rightarrow T_{q}$ (gluon fragmentation)	4.1 [1]
5. $Z \rightarrow T_{g}$ (gluon radiation)	0.1 [1]
Combined model	5.9

Table 1

T production mechanisms in Z decays and their predicted branching ratios

![Fig. 1. Predictions for the dilepton invariant mass distributions for a) $T \rightarrow e^+e^-$, and b) $T \rightarrow \mu^+\mu^-$ decays. Invariant mass spectra obtained from the data (solid line) for c) e^+e^-, and d) $\mu^+\mu^-$; the dashed lines show the background predicted by the Monte Carlo. The number of selected dilepton candidates in a given bin is denoted by $n_{\ell\ell}/N_{\ell\ell}$ while $N_{\ell\ell}$ denotes the total number in the sample.](image-url)
Table 2
Properties of the T(1S), T(2S), and T(3S) assumed in this analysis

Mass [GeV]	Br(T → e⁺e⁻) [%]	Br(T → μ⁺μ⁻) [%]
T(1S) 9.460	2.52 ± 0.17	2.48 ± 0.07
T(2S) 10.023	= Br(T(2S) → μ⁺μ⁻)	1.31 ± 0.21
T(3S) 10.355	= Br(T(3S) → μ⁺μ⁻)	1.81 ± 0.17

All the simulated events produced are passed through the GEANT-based L3 detector simulation program [18] and reconstructed using the same algorithms as for the data.

3. Event selection

Hadronic events are selected by making use of their characteristic energy distributions and high multiplicity [19]. A total of \(N_{\text{had}} = 3.453 \times 10^7 \) events pass the selection with an efficiency, determined from Monte Carlo, of \(\varepsilon_{\text{had}} = 0.99 \pm 0.01 \).

Candidate electrons with energies of more than 4 GeV are selected within \(|\cos \theta| < 0.97 \), where \(\theta \) is the polar angle. An electron is characterised by an isolated energy cluster in the BGO electromagnetic calorimeter with a shower shape consistent with that of electromagnetic particles. To reject photons, the cluster is required to match with a charged track to within 5 mrad in the plane transverse to the beam direction. The transverse momentum of the track must be compatible with the cluster energy. Muon candidate tracks in the muon spectrometer, with momenta of more than 3 GeV, are required to be within \(|\cos \theta| < 0.8 \). The tracks must have hits in at least two of the three \(r\phi \) layers and at least one of the two \(z \) layers. Backgrounds from punchthrough hadrons, decays in flight, and cosmic rays are suppressed by requiring the muon chamber track to point towards the primary vertex. To reject residual background from hadronic events, each candidate electron (muon) must be isolated by at least 10° (15°) from the closest jet, which may in some cases include another electron (muon) candidate. The event is required to contain either two electrons or two muons which satisfy these selection criteria. The lepton pairs are required to have opposite charges and to have an opening angle of less than 90°.

Fig. 1 shows the expected dilepton invariant mass distributions for the “combined model” Monte Carlo sample after application of the selection procedure described above for a) \(T \rightarrow e⁺e⁻ \), and b) \(T \rightarrow μ⁺μ⁻ \). The shapes of the distributions for each individual \(T \) sample are similar. The average dilepton invariant mass resolutions are 100 MeV for electrons from \(T \rightarrow e⁺e⁻ \) decays and 235 MeV for muons from \(T \rightarrow μ⁺μ⁻ \) decays. Table 3 shows the efficiencies for each \(T \) production mechanism and decay mode, as determined from the T Monte Carlo samples. The efficiencies for the three \(T \) states differ, for a given model, by typically 0.5% for the \(e⁺e⁻ \) channel and 0.2% for the \(μ⁺μ⁻ \) channel. This variation is accounted for in the analysis. The systematic errors on the efficiencies are estimated by comparing the data and Monte Carlo distributions of the selection variables with various less stringent values for the cuts applied. Since no significant discrepancies are observed, the systematic errors are assigned according to the statistical accuracies of the comparisons. Uncertainties in the theoretical modelling which affect the efficiencies are treated explicitly, as described below.

Fig. 1 shows the dilepton invariant mass spectra obtained from the data (solid line) for c) \(e⁺e⁻ \), and d) \(μ⁺μ⁻ \). No evidence is seen for \(T \) production in either of the decay modes considered. The dashed line represents the background contribution which is estimated from the Monte Carlo sample of hadronic \(Z \) and four-fermion events. For the \(e⁺e⁻ \) channel the background is dominated by hadronic events in which a fake electron is paired with a genuine electron.

Table 3
Efficiencies for the process \(Z \rightarrow TX; T \rightarrow \ell'\ell' \). The first error in each case is statistical and the second is systematic

T production mechanism	\(\varepsilon(Z \rightarrow TX; T \rightarrow \ell'\ell') \) [%]	
	\(e⁺e⁻ \) channel	\(μ⁺μ⁻ \) channel
Z \rightarrow T b̅b	37.4 ± 0.6 ± 5.0	21.2 ± 0.5 ± 2.6
Z \rightarrow T q̅q̅g	25.5 ± 0.6 ± 3.4	14.3 ± 0.5 ± 1.7
Z \rightarrow T g̅g	32.1 ± 0.6 ± 4.3	19.6 ± 0.5 ± 2.4
Z \rightarrow T q̅q̅̅̅	33.2 ± 0.6 ± 4.4	21.2 ± 0.5 ± 2.6
Z \rightarrow T g̅g̅̅̅̅	41.5 ± 0.6 ± 5.5	33.3 ± 0.6 ± 4.1
from a heavy-quark decay. For the $\mu^+\mu^-$ channel
the background events are predominantly genuine
muon pairs from the four-fermion process. The aver-
age number of background events expected in the
mass window of 7–12 GeV is $10.3 \pm 2.0 \pm 1.1$ for
the e^+e^- sample and $1.5 \pm 0.1 \pm 0.1$ events for the
$\mu^+\mu^-$ sample, where the first error is due to the
Monte Carlo statistics and the second is systematic.
The number of events observed in the data are five
and three for the e^+e^- and $\mu^+\mu^-$ samples respectively, which is consistent with the background.

4. Determination of upper limits on $\text{Br}(Z \rightarrow T X)$

Given the absence of a signal, upper limits on the
branching fractions $\text{Br}(Z \rightarrow T X)$ are obtained from
binned maximum-likelihood fits to the $c\bar{c}$ invariant
mass distributions. The likelihood function is
given by

\[\mathcal{L}(\text{Br}(Z \rightarrow T X)) = \prod_{i=1}^{n_{\text{bins}}} \prod_{j=1}^{n_{\text{bins}}} \exp \left[-\left(\mu_{ij}^{s} + \mu_{ij}^{b} \right) \right] \left(\mu_{ij}^{s} + \mu_{ij}^{b} \right)^{N_{ij}} / N_{ij}, \]

where $i = 1, 2$ denotes the two T decay channels,
$T \rightarrow e^+e^-$ and $T \rightarrow \mu^+\mu^-$; N_{ij} is the number of
observed data events in mass bin j; and μ_{ij}^{s} and
μ_{ij}^{b} denote the expected numbers of events for
signal and background, respectively. The expectation
for the total number of $Z \rightarrow T X; T \rightarrow c\bar{c}$ events
in the selected data sample is

\[\mu_T = \sum_{j=1}^{n_{\text{bins}}} \mu_{ij}^{T}. \]

\[= \left(\frac{N_{\text{had}}}{\varepsilon_{\text{had}} R_{\text{had}}} \right) \text{Br}(Z \rightarrow T X) \text{Br}(T \rightarrow c\bar{c} c\bar{c}) \]

\[\times \varepsilon(Z \rightarrow T X; T \rightarrow c\bar{c} c\bar{c}), \]

where $R_{\text{had}} = 0.6990 \pm 0.0015$, is the Z branching
fraction to hadrons.

Separate limits are derived for each of the five
production mechanisms considered and for each T
state, assuming conservatively in each case that there
is zero contribution from the other mechanisms and
T states. Limits are also determined using the
‘‘combined model” sample. To facilitate comparison
with other experiments, which do not resolve the
$T(1S)$, $T(2S)$, and $T(3S)$ states, we also derive
limits for the production of an “average T” which is
an admixture of $T(1S)$, $T(2S)$, and $T(3S)$. The
range of relative fractions considered is discussed
below. In deriving combined limits for different T
states and theoretical models, the separate likeli-
hoods are combined. The systematic errors, which
are propagated numerically allowing for correlations,
include contributions from the following sources:

T reconstruction efficiencies The efficiencies are
varied within the errors shown in Table 3. The
statistical errors are uncorrelated for each model of
a given sample. The systematic errors for a given
decay mode are completely correlated for all five
models. The efficiency errors do not include uncer-
tainties in the modelling which are treated explicitly,
as described below.

T branching ratios. The uncertainties on the T
leptonic branching ratios are shown in Table 2. The
branching ratios $\text{Br}(T(2S) \rightarrow e^+e^-)$ and
$\text{Br}(T(2S) \rightarrow \mu^+\mu^-)$ are completely correlated, as
are $\text{Br}(T(3S) \rightarrow e^+e^-)$ and $\text{Br}(T(3S) \rightarrow \mu^+\mu^-)$.

Background. The uncertainties on the background
for a given final state include statistical and system-
atric uncertainties for both the hadronic and the
four-fermion components, as discussed above. The
systematic uncertainties for the hadronic compo-
nents are estimated by relaxing the selection cuts
and comparing the data and Monte Carlo distribu-
tions of the selection variables. A common system-
etic error of 5% is assumed for the theoretical
uncertainty on the four-fermion cross-sections [17].

Number of Z events. The Z hadronic branching
fraction, $R_{\text{had}} = 0.6990 \pm 0.0015$, and the hadronic
event selection efficiency, $\varepsilon_{\text{had}} = 0.99 \pm 0.01$, are
varied within their errors.

**Invariant mass scale, resolution, fit range, and
binning.** The J peaks in the e^+e^- and $\mu^+\mu^-$ mass
spectra are used to verify the di-lepton invariant
mass scales and resolutions. The fitted J masses are
3083 ± 9 MeV and 3106 ± 13 MeV, for the e^+e^-
and $\mu^+\mu^-$ final states, respectively, which are
consistent with the current world average of $m_J = 3097$ MeV [16]. The e^+e^- and $\mu^+\mu^-$ invariant
mass resolutions for data are 72 ± 10 MeV and
118 ± 13 MeV, respectively, which are in agree-
ment with the Monte Carlo expectations of $66 \pm$
7 MeV and 107 ± 11 MeV. The \(T \) results are insensitive to changes of the mass scale or resolution, compatible with these measurements, and to the range and binning of the invariant mass distributions.

T polarisation. Since the \(T \) polarisation is unknown, we account for the changes in the efficiencies when going from the nominal flat distribution in \(\cos \theta^* \) to a \(1 + \cos^2 \theta^* \) distribution, where \(\theta^* \) is the lepton angle in the rest frame of the \(T \). For the \(1 + \cos^2 \theta^* \) distribution the efficiencies are relatively lower with respect to the nominal values shown in Table 3 by between 6% and 13%, depending on the \(T \) production mechanism and decay mode.

Feed-down from higher-mass \(T \) and \(\chi_b \) states. Feed-down decays from higher-mass \(T \) and \(\chi_b \) states, with typical \(Q \)-values of less than 1 GeV, tend to soften the \(T \) momentum spectra. To estimate the impact on the reconstruction efficiency, we consider a scenario in which all \(T \) 's originate from higher states which decay with an average \(Q \)-value of 0.5 GeV. The resulting efficiencies are relatively lower by up to 4% with respect to the nominal values shown in Table 3.

Relative fractions of \(T(1S) \), \(T(2S) \), and \(T(3S) \) states. The relative fractions of \(T(1S) \), \(T(2S) \), and \(T(3S) \) which are assumed for the definition of the “average \(T \)’s” depend on the amount of feed-down from the \(T(2S) \), \(T(3S) \), and \(\chi_b \) states. The effect of feed-down is to enhance the contribution of the lower-mass \(T \)’s compared to the higher-mass \(T \)’s. For example, for a \(1:1:1 \) initial admixture of \(T(1S) \), \(T(2S) \), and \(T(3S) \), the relative proportions after allowing only for measured \(T \) decays [16] are approximately 0.46:0.27:0.27. Since the decay modes and relative production rates of the various \(T \) and \(\chi_b \) states are poorly known, we consider the range of relative weights from \(1:1:1 \) to 1:0:0.

Table 4 summarises the upper limits obtained at the 95% confidence level (C.L.). The upper limit of \(\text{Br}(Z \rightarrow T X) < 7.6 \times 10^{-5} \) is consistent with the theoretical prediction of \(\text{Br}(Z \rightarrow T X) = 5.9 \times 10^{-5} \), shown in Table 1, and previous less stringent upper limits from LEP [20,21]. Consistency with the OPAL measurement of \(\text{Br}(Z \rightarrow T X) = (10 \pm 4 \pm 1) \times 10^{-5} \) [5] is marginal.

Acknowledgements

We wish to express our gratitude to the CERN accelerator divisions for the excellent performance of the LEP machine. We acknowledge with appreciation the effort of all engineers, technicians and support staff who have participated in the construction and maintenance of this experiment.

References

[1] P. Cho, Phys. Lett. B 368 (1996) 171.
[2] CDF Collab., F. Abe et al., Phys. Rev. Lett. 75 (1995) 4358.
[3] L3 Collab., B. Adeva et al., Nucl. Instr. and Meth. A 289 (1990) 35.
[4] L3 Collab., O. Adriani et al., Physics Reports 236 (1993) 1.
[5] OPAL Collab., G. Alexander et al., Phys. Lett. B 370 (1996) 185.
[6] E. Braaten, K. Cheung, T.C. Yuan, Phys. Rev. D 48 (1993) 4230.
[7] V. Barger, K. Cheung, W.Y. Keung, Phys. Rev. D 41 (1990) 1541.
[8] E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71 (1993) 1673.
[9] K. Hagiwara et al., Phys. Lett. B 267 (1991) 527; B 316 (1993) 631 (E).
[10] K.A. Abrahim, Zeit. für Phys. C 44 (1989) 467.
[11] J.H. Kühn, H. Schneider, Zeit. für Phys. C 11 (1981) 263.
[12] W.Y. Keung, Phys. Rev. D 23 (1981) 2072.
[13] We are grateful to F. Odorici, E. Ros for making available to us the OPAL implementation of the differential cross sections for \(T \) production in \(Z \) decays.
[14] T. Sjöstrand, M. Bengtsson, Comput. Phys. Commun. 43 (1987) 367.
[15] T. Sjöstrand, M. Bengtsson, CERN Preprint CERN-TH 6488/92 (1992).
[16] Particle Data Group, R.M. Barnett et al., Phys. Rev. D 54 (1996) 1.
[17] J. Hilgart, R. Kleiss, F. le Diberder, Comput. Phys. Commun. 75 (1993) 191.
[18] The L3 detector simulation program is based on GEANT Version 3.15 (see: R. Brun et al., GEANT 3, CERN DD/EE/84-1, revised (1987)); GHEISHA is used to simulate hadronic interactions (see: H. Fesefeldt, RWTH Aachen Report PITHA 85/02 (1985)).
This program allows for the effects of energy loss, multiple scattering, decays and interactions in the detector material, as well as for time-dependent detector effects.
[19] L3 Collab., O. Adriani et al., Phys. Lett. B 307 (1993) 237.
[20] ALEPH Collab., Inclusive T production in hadronic Z decays, in: Proceedings of ICHEP96, PA05-066, Warsaw (25–31 July 1996).
[21] DELPHI Collab., P. Abreu et al., Zeit. für Phys. C 69 (1996) 575.