Childhood trauma history is linked to abnormal brain connectivity in major depression

Meichen Yua,b, Kristin A. Linna,c, Russell T. Shihoharaa,c, Desmond J. Oathesa,b, Philip A. Cookc,d, Romain Duprata,b, Tyler M. Mooree, Maria A. Oquendof, Mary L. Phillipsg, Melvin McInnish, Maurizio Favai, Madhukar H. Trivedii, Patrick McGrathj, Ramin Parsleyk, Myrna M. Weissmanl, and Yvette I. Shelinee,b,d,l,1

aCenter for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; dDepartment of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; eBrain and Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; fDepartment of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; gDepartment of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI 48109; hDepartment of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; iCenter for Depression Research and Clinical Care, Peter O’Donnell Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; jDepartment of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY 10032; kDepartment of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104

Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved March 12, 2019 (received for review January 18, 2019)

Patients with major depressive disorder (MDD) present with heterogeneous symptom profiles, while neurobiological mechanisms are still largely unknown. Brain network studies consistently report disruptions of resting-state networks (RSNs) in patients with MDD, including hypoconnectivity in the frontoparietal network (FPN), hyperconnectivity in the default mode network (DMN), and increased connection between the DMN and FPN. Using a large, multisite fMRI dataset (n = 189 patients with MDD, n = 39 controls), we investigated network connectivity differences within and between RSNs in patients with MDD and healthy controls. We found that MDD could be characterized by a network model with the following abnormalities relative to controls: (i) lower within-network connectivity in three task-positive RSNs [FPN, dorsal attention network (DAN), and cingulo-opercular network (CON)], (ii) higher within-network connectivity in two intrinsic networks [DMN and salience network (SAN)], and (iii) higher within-network connectivity in two sensory networks [sensorimotor network (SMN) and visual network (VIS)]. Furthermore, we found significant alterations in connectivity between a number of these networks. Among patients with MDD, a history of childhood trauma and current symptoms quantified by clinical assessments were associated with a multivariate pattern of seven different within- and between-network connectivities involving the DAN, FPN, CON, subcortical regions, ventral attention network (VAN), auditory network (AUD), VIS, and SMN. Overall, our study showed that traumatic childhood experiences and dimensional symptoms are linked to abnormal network architecture in MDD. Our results suggest that RSN connectivity may explain underlying neurobiological mechanisms of MDD symptoms and has the potential to serve as an effective diagnostic biomarker.

Maj or depressive disorder (MDD) is a common mental disorder characterized by heterogeneous symptoms: persistently depressed mood, loss of interest, low self-esteem and energy level, weight change, insomnia or hypersomnia, and disturbance in cognitive functions such as attention and memory (1). These symptoms impair daily life function and increase the risk of suicide (2). According to the WHO, depression is the fourth leading cause of disability worldwide and is projected to be second by 2020 (3). In addition, experiences of childhood trauma, including physical, sexual, or emotional abuse, as well as physical or emotional neglect, have been found to be associated with the emergence and persistence of depressive and anxiety disorders (4). However, neurobiological mechanisms underlying the dimensional symptoms of MDD remain unclear (5, 6).

The human brain contains an estimated 100–1,000 trillion synapses. This complex neural system is amenable to scientific investigation from a network perspective by using modern network theory (7) to reveal resting-state networks (RSNs) (8, 9) that play important roles in brain function and disease, including major depression. MDD has been found to be associated with specific abnormalities in multiple RSNs compared with healthy controls (10). In particular, fMRI studies have consistently reported reduced functional connectivity (hypoconnectivity) within the frontoparietal network (FPN) (11, 12), increased connectivity (hyperconnectivity) within the default mode network (DMN) (13, 14), and hyperconnectivity between the DMN and FPN in patients with MDD. The FPN is involved in executive control of attention and emotion, while the DMN is involved in internally oriented attention and self-referential processing (15, 16). Dysfunction of these networks is integrally associated with MDD (5). A few studies also

Author contributions: M.Y. and Y.I.S. designed research; M.Y., K.A.L., R.T.S., and Y.I.S. performed research; M.A.O., M.L.P., M.M., M.F., M.H.T., P.M., R.P., and M.M.W. collected data; M.Y., P.A.C., and T.M.M. analyzed data; and M.Y., K.A.L., R.T.S., D.J.O., R.D., and Y.I.S. wrote the paper.

Conflict of interest statement: A comprehensive list of lifetime disclosures of M.F. is available at https://mghcme.org/faculty/faculty-detail/maurizio_fava. M.A.O. receives royalties for the use of the Columbia Suicide Severity Rating Scale and has received financial compensation from Pfizer for the safety evaluation of a clinical facility, unrelated to the current study; she was the recipient of a grant from Eli Lilly to support a year’s salary for the Lilly Suicide Scholar, Enrica Baca-Garcia; she has received unrestricted educational grants and/or lecture fees from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Jansen, Otsuka Pharmaceuticals, Sanofi-Aventis, and Shire; and her family owns stock in Bristol-Myers Squibb. P.M. has received research grant support from Forest, Naurex, and Sunovion. M.M.W. has received funding from the Interstitial Cystitis Association, National Alliance for the Research of Schizophrenia and Depression (NARSAD), the National Institute on Drug Abuse, the National Institute of Mental Health (NIMH), the Sackler Foundation, and the Templeton Foundation, and she receives royalties from American Psychiatric Publishing, MultiHealth Systems, Oxford University Press, and Perseus Press. M.H.T. is or has served as an advisor/consultant and has received fees from Abbott Laboratories, Abdi Ibrahim, Alza (Organon Pharmaceuticals), Alkermes, AstraZeneca, Axon Advisors, Bristol-Myers Squibb, Cephalon, Cerecor, the CME Institute of Physicians, Concert Pharmaceuticals, Eli Lilly, Evotec, Fabre Kramer Pharmaceuticals, Forest Pharmaceuticals, GlaxoSmithKline, Jansen Global Services LLC, Jansen Pharmaceutica Products LP, Johnson and Johnson Pharmaceutical Research and Development, Libby, Lundbeck, Meade Johnson, Medavante, Merck, Mitsubishi Tanabe Pharma Development America, Naurex, Neuronetics, Otsuka Pharmaceuticals, Pamlab, Parke-Davis Pharmaceuticals, Pfizer, PgiHealth, Phoenix Marketing Solutions, Rexahn Pharmaceuticals, Ridge Diagnostics, Roche Products Ltd., SeparaShire Development, Sierra, SL Life Science, Sunovion, Takeda, Tal Medical/Puretech Venture, Tango, Transcept, Transpoint, VantagePoint, Vivus, and Wyeth-Ayerst Laboratories, and he has received grant/research support from the Agency for Healthcare Research and Quality, Concep Therapeutics, Cyneonics, Merck, NARSAD, the NIMH, and the National Institute on Drug Abuse. All other authors report no financial relationships with commercial interests.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: sheline@pennmedicine.upenn.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1900801116/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1900801116

PNAS Latest Articles | 1 of 9
Significance

The primary finding in this study was the dramatic primary association of brain resting-state network (RSN) connectivity abnormalities with a history of childhood trauma in major depressive disorder (MDD). Even though participants in this study were not selected for a history of trauma and the brain imaging took place decades after trauma occurrence, the scar of prior trauma was evident in functional dysconnectivity. In addition to childhood trauma, dimensions of MDD symptoms were related to abnormal network connectivity. Further, we found that a network model of MDD described within- and between-network connectivity differences from controls in multiple RSNs, including the default mode network, frontotemporal network, and attention and sensory systems.

Network Modeling of MDD. We concentrated on 10 well-established, large-scale RSNs derived from the atlas of Power et al. (25): the DMN, FPN, SAN, cingulo-opercular network (CON), sensorimotor network (SMN), visual network (VIS), dorsal attention network (DAN), ventral attention network (VAN), auditory network (AUD), and subcortical network (SUB). We qualitatively characterized the average functional role of the 10 RSNs by mapping the group average within- and between-network connectivity into a 2D parameter space (Fig. 1 A and B; technical details are provided in SI Appendix). Connectivity was defined as temporal coherence of blood oxygen level-dependent signals in different regions (26). According to mean values of within- and between-network connectivity (depicted by the horizontal and vertical dotted lines in Fig. 1 A–C), eight RSNs from the two groups were concordantly classified into four network roles: cohesive connector (FPN and DMN), cohesive provincial (VIS and SMN), incohesive connector (DAN, SAN, and CON), and incohesive provincial (SUB). The VAN and AUD showed divergent roles in the two groups. Specifically, the VAN and AUD were incohesive connectors and provincial networks, respectively, in patients with MDD, and the opposite was found in controls.

Comparison of Network Connectivity in Patients with MDD Versus Controls. We tested for differences in the means of within- and between-network connectivity between patients with MDD and controls. Although the FPN and DMN were both cohesive connectors in the two groups (Fig. 1 A and B), the FPN showed significantly lower within-network connectivity and the DMN showed significantly higher within-network connectivity in patients with MDD compared with controls (Fig. 1 F and G). Similarly, although the DAN, SAN, and CON were incohesive connectors in both groups, patients with MDD had significantly higher SAN connectivity and lower DAN and CON connectivity relative to controls (Fig. 1 F and G). The VIS and SMN, two cohesive provincial networks that had the highest within-network connectivity overall in both groups (Fig. 1 A and B), showed significantly higher within-network connectivity in patients with MDD compared with controls (Fig. 1 F). Patients with MDD also showed consistently higher one-versus-all-others-network connectivity in the DMN, FPN, SAN, and DAN compared with controls (Fig. 1 F).

We computed pairwise between-network connectivity as the normalized mean connectivity between each pair of RSNs and compared the connectivity profiles of patients with MDD and controls. Fig. 1 F shows that the pairwise between-network connectivity was significantly higher in patients with MDD in the following pairs: DMN-FPN, DMN-SAN, FPN-VIS, DAN-DMN, DAN-FPN, DAN-CON, and DAN-VIS. In contrast, patients demonstrated hyperconnectivity between the following pairs: DAN-SAN, DAN-AUD, and FPN-SAN. Fig. 1G illustrates the hyperconnected links between the DMN and FPN, as well as the FPN and DAN. Additional illustrations of between-group differences in other RSNs are provided in SI Appendix, Figs. S2 and S3. Fig. 2 summarizes the MDD network model estimated relative to healthy controls in a plot that we call a connectivity analysis of network dysfunction (CANDY) plot. The CANDY plot simultaneously displays abnormalities in patterns of within- and between-network connectivity. In our study, these abnormalities included three task-positive RSNs (FPN, DAN, and CON), two intrinsic networks (DMN and SAN), and three sensory networks (SMN, VIS, and AUD).

Correlation Patterns of Network Connectivity with MDD Symptoms. Next, we performed CCA to link brain network connectivity measures with 213 item-level clinical survey responses in patients with MDD. To reduce the dimension of the clinical data, we derived four clinical summary variables using K-means clustering of the 213 item-level clinical data (details are provided in Materials and

Results

Demographic and clinical characteristics of the study participants are presented in SI Appendix, Table S1. Distributions of age, sex, and educational level did not differ significantly between the two groups.

found salience network (SAN) (17) and dorsal attention network (DAN) (18) dysfunction in MDD, but these findings are less frequently reported than those for the DMN and FPN. A recent large (556 patients with MDD and 518 healthy controls) meta-analysis of seed-based RSN studies confirmed alterations in functional connectivity in the DMN, FPN, SAN, and DAN among patients with MDD (19). Moreover, the abnormalities in network connectivity in MDD have been shown to be associated with depression severity (20), illness duration (18, 21), the number and length of episodes (13, 21), and treatment outcomes (22, 23). However, none of these studies used multivariate methods to simultaneously examine relationships among brain networks and item-level data from clinical assessments.

In this study, we first compared differences in brain networks between patients with MDD and controls. Then, among the patients with MDD, we used multivariate methods to examine correlations between network measures and a large number of clinical variables that had first been grouped into clusters. In particular, we used a multisite fMRI dataset consisting of 189 patients with MDD and 39 healthy controls to investigate abnormalities in the system-level brain network architecture in patients with MDD relative to controls. Among the patients with MDD, we also studied relationships between brain networks and clinical symptoms, including depression (general and anhedonic depression), anxiety, personality (neuroticism, extraversion, openness, agreeableness, and conscientiousness), suicidality, and experiences of childhood trauma (physical abuse/neglect, emotional abuse/neglect, and sexual abuse), which were measured by 213 item-level survey questions. We hypothesized that (i) patients with MDD would present with abnormal connectivity patterns of RSNs, including the DMN and FPN, compared with controls, using a system-level connectivity analysis, and (ii) multivariate patterns of network connectivity within and between RSNs in patients with MDD would be associated with clinical symptoms, quantified by data-driven clustering of item-level survey data. To test our second hypothesis, we used canonical correlation analysis (CCA) to identify multivariate relationships between RSN connectivity measures and item-level clinical data in patients with MDD. Recent studies (20, 24) have shown that CCA, a powerful multivariate approach that seeks to identify clusters of maximal correlation between two groups of variables, can detect associations between structural or functional connectivity and behavioral measures. To our knowledge, our work is the first to apply CCA to study multivariate relationships between network connectivity and item-level clinical data in patients with MDD.
Methods). The four clinical summary variables included the following: (i) anxious misery (including symptoms of depression, anhedonia, anxiety, neuroticism, and suicidality), (ii) positive traits (extraversion, openness, agreeableness, conscientiousness, and positive mood), (iii) physical and emotional neglect or abuse, and (iv) sexual abuse. Only the first pair of CCA modes was significantly correlated [Fig. 3C; canonical correlation: \(r = 0.68, P = 0.005 \) (permutation test), \(P = 0.03 \) (\(\chi^2 \) statistic)]. In an effort to understand the composition of the first clinical CCA mode, we tested for univariate correlations with each of the four clinical summary variables. We found that the first clinical CCA mode was highly correlated with physical and emotional neglect or abuse scores (\(r = -0.98, P < 0.0001 \)) and moderately correlated with anxious misery (\(r = -0.41, P < 0.0001 \)), positive traits (\(r = 0.34, P < 0.0001 \)), and sexual abuse (\(r = -0.31, P < 0.0001 \)) scores (Fig. 3A). Patients with MDD and controls presented with significantly different childhood trauma experiences, including physical abuse (\(P = 0.002 \)), physical neglect (\(P < 0.0001 \)), emotional abuse (\(P < 0.0001 \)), and sexual abuse (\(P = 0.0015 \)). All \(P \) values were false discovery rate (FDR)-corrected (more details are provided in SI Appendix, Figs. S2 and S3).

Fig. 1. Network roles (C) in brain networks of patients with MDD (A) and controls (B); within- and pairwise between-network connectivity matrices of patients with MDD (D) and controls (E); P value matrix of group differences in within-, one-versus-all-others-, and pairwise between-network connectivity (F); and cortical surface representation of the links that demonstrated significant between-group differences in several selected within- and between-network connectivity (G; corresponding results of other within- and between-network connectivity are provided in SI Appendix, Figs. 52 and 53) are illustrated. Note that the colors of the nodes in G correspond to those in A. The red and blue elements in F and the links in G represent MDD > control and MDD < control, respectively.

Heterogeneity Analyses by Sex and Age. The aforementioned network and CCA analyses were performed on individual data features that were orthogonal to age and sex, since we residualized the network variables with respect to age, sex, and motion and residualized the clinical variables with respect to age and sex (details are provided in Materials and Methods). Although we found that the results were similar whether or not age and sex were regressed out before performing the CCA (SI...
CCA Analysis

Yu et al.

controls; blue link between nodes). A white node represents a nonsignificant difference in

www.pnas.org/cgi/doi/10.1073/pnas.1900801116

A

controls) and black (no difference).

controls; light red node) or decreased (MDD

brain network cor-

the other networks: dark red (MDD

between patients with MDD and controls. The colors of the circles that outline each node represent differences in connectivity between that node and a

within-network connectivity between patients with MDD and controls. A black link represents a nonsignificant difference in between-network connectivity between patients with MDD and controls. A white node represents a nonsignificant difference between-network connectivity between patients with MDD and controls. The colors of the circles that outline each node represent differences in connectivity between that node and all of the other networks: dark red (MDD > controls) and black (no difference).

Fig. 2. CANDY plot displaying a network model of MDD. The brain networks of patients with MDD differed significantly from those of healthy controls in the DAN, FPN, DMN, SAN, CON, VIS, SMN, and AUD. Patients with MDD were characterized by within-network connectivity that was abnormally increased (MDD > controls; light red node) or decreased (MDD < controls; blue node) and between-network connectivity that was abnormally increased (MDD > controls; dark red link between nodes) or decreased (MDD < controls; blue link between nodes). A white node represents a nonsignificant difference in within-network connectivity between patients with MDD and controls. A black link represents a nonsignificant difference in between-network connectivity between patients with MDD and controls. The colors of the circles that outline each node represent differences in connectivity between that node and all of the other networks: dark red (MDD > controls) and black (no difference).

Appendix, Figs. S10 and S14), it is possible that multivariate ef-

effects of age and sex persist in both analyses. Importantly, esti-
mation of a single multivariate correlation pattern using CCA con-

cceals potential heterogeneity related to age and sex. Fur-

thermore, females and males had significantly different child-

hood experiences, particularly with respect to sexual abuse (SI

Appendix, Fig. S13). We thus sought to explore the multivariate re-

lationships between network and clinical variables in females

and males, as well as in younger and older participants, sepa-

rately. These post hoc analyses were generally consistent subject to the limitations of small sample size (details are provided in SI

Appendix, CCA Analysis).

Post hoc Correlation with Clinical Symptom Subsets. Our analysis detected a single significant CCA mode that correlated patterns of brain network connectivity with patterns of clinical symptoms derived from data-driven clusters of item-level data. However, the clinical clusters obtained from K-means clustering contained more specific information on multidimensional symptoms of MDD that is important for understanding heterogeneity of the disease. Therefore, we performed a post hoc correlation analysis to determine the direction and magnitude of associations between the first network CCA mode and subsets of symptoms (SI

Appendix, Table S4) derived from the four clinical clusters.

Specifically, we calculated Pearson’s correlation between the first network CCA mode and the means of the symptom subsets (Fig. 4). We found that emotional abuse and neglect were most associated with increased network connectivity between the DAN and SMN; physical abuse and neglect were most associated with increased connectivity between the CON and VIS, as well as between the DAN and VAN (Fig. 4A). Within the anxious misery cluster (Fig. 4B), there were subsets of symptoms (depression, anhedonia, suicidality, neuroticism, and anxiety) all with primarily negative correlations with specific networks. Neuroticism was most associated with decreased connectivity within the subcortical structures (SUB). Anhedonia was associated with increased connectivity between the DAN and VAN, as well as between the DAN and SMN. Depression, anxiety, and suicidality were negatively associated with network connectivity between the DAN and FPN. In the positive trait cluster (Fig. 4C), positive mood and extraversion were both associated with increased within-SUB connectivity. Agreeableness and conscientiousness were most (negatively) correlated with network connectivity between the CON and VIS and between the CON and AUD, respectively. Openness was most associated with decreased connectivity between the DAN and VAN. The majority of the item-level sexual abuse questions were most associated with increased within-DAN connectivity (Fig. 4D).

Discussion

Symptom-Specific Changes of Within- and Between-Network Connectivity in MDD. This data-driven study shows symptom-specific, system-level alterations of brain network connectivity in major depression. Our main findings are reflected in both network measures correlated with symptom clusters and connectivity abnormalities relative to controls. Previous studies that used the same subjects have found that several symptoms of major depression, such as anhedonia (27) (using task-fMRI data), anxiety (using clinical data) (28), and neuroticism (using EEG data) (29), were related to neural function and behavioral phenotyping in patients with MDD. However, these studies did not examine resting-state fMRI data and did not examine a full spectrum of data-driven behavioral brain network architectures. Several previous studies that examined brain network attributes have shown associations with depression and anxiety symptoms measured by various summary clinical scores (11, 13, 21, 30). Our study, however, investigates multivariate network-related associations with item-level data that characterize a broad range of dimensional symptoms: experiences of childhood trauma, depression, anxiety, anhedonia, neuroticism, suicidal tendency, and personality traits. Notably, we found that experiences of childhood trauma [not reported previously in association with brain networks in depression (5, 19)] had by far the strongest association among these patient symptom–brain network correlations. Traumatic experiences were correlated with within-network connectivity of the DAN and subcortical regions (SUB) and with between-network connectivity involving task-positive networks (DAN, FPN, and CON) and sensory systems (SMN, VIS, and AUD).

With estimates of ∼10% of all children in the United States

having been subjected to child abuse, the significance of child maltreatment on brain morphology and function is an important consideration (31). The population-attributable risk of adverse childhood experiences (ACEs) accounts for 67% of suicide attempts (32), and exposure to six or more ACEs was found to account for a 20-y reduction in lifespan (33). SMN connectivity with the DAN and VIS connectivity with the CON were especially indicative of emotional abuse/neglect and physical abuse/neglect,
These systems have been related to treatment outcomes in affective disorders, risk, and family history of depression (34), and to functional domains, including error monitoring and top-down attentional control (35). We speculate that physical abuse/neglect and emotional abuse/neglect may have induced abnormal activation of sensory systems, such as the sensorimotor...
and visual cortex, and to have dysregulated connectivity with ventral and dorsal attention systems. Specifically, the increased DAN-SMN correlation with emotional abuse/neglect and increased CON-VIS and DAN-VAN correlations with physical abuse and neglect identified in our study can be interpreted in light of the role of the DAN in regulation of perceptual attention (36). How this alteration in connections occurs is not clear, but one hypothesis is that it might involve early developmental changes that are then impacted by experience. For example, the interhemispheric coherence within the DMN is already strong by the age of 6 y, but anterior-posterior coherence between the medial prefrontal cortex and parietal regions is relatively weak at this stage compared with future stages (37), suggesting an important experiential aspect in sculpting the DMN. Analogously, interhemispheric connectivity within the dorsal attention system may develop early, but anterior-posterior coherence may receive important experiential influences (e.g., ACEs), disrupting connectivity. This network sculpting may be affected by early-life stressors and trauma, which have been shown to predispose individuals to the development of depression (38), potentially through factors acting on neuroplasticity and connectivity (39). Another study (40) also found that childhood emotional maltreatment was associated with abnormal SUB and SAN connectivity.

Our findings regarding childhood trauma-related functional network abnormalities in MDD could also be interpreted alternatively. Both experimental (41, 42) and modeling (43) studies have demonstrated that functional networks are shaped by the underlying structural networks. Of note, previous studies have shown that patients who experienced repeated episodes of trauma had alterations in gray matter volumes and structural integrity of sensory systems (44–46). Thus, it is plausible that resting-state functional connectivity with sensory systems could be disrupted as sequelae of childhood maltreatment, as found in our study. A comprehensive review of the structural and functional consequences of childhood maltreatment (47) identified over 180 studies with findings of associated brain abnormalities, frequently manifested as structural abnormalities in subcortical regions. In the current study, we found that childhood trauma-related network connectivity abnormalities were preserved and
detected even well into adulthood. Therefore, our current study not only confirmed the important relationship between childhood trauma and major depression but also linked patients’ experiences of childhood trauma with specific functional brain network abnormalities that suggest a possible environmental contributor to neurobiological clinical symptom profiles.

In addition, we found that depressive symptoms, personality traits, and sexual abuse were associated with subcortical and between-network connectivity involving the three task-positive networks (DAN, FPN, and CON) (48) and three sensory systems (SMN, VIS, and AUD), which is consistent with previous studies (5, 10, 49) and supports the idea that many brain network features contribute to broad clinical pathology. Several items of sexual abuse, as with physical and emotional abuse, were especially related to increased within-network DAN connectivity and network connectivity between the DAN and FPN. This system may be particularly related to regulation of perceptual attention (36, 50) with related consequences for depressed patients (51, 52), increasing negative attention bias. Neuroticism (negative correlation) and positive mood symptoms (positive correlation) were especially linked to within-SUB connectivity, which has a consistent precedent in the prior literature (53–55). As might be expected, opposite behavioral characteristics (suicidality and openness, anxiety and agreeableness) had opposite signs in their network correlations with DAN-VAN and CON-VIS, respectively. Moreover, the association between network connectivity involving the task-positive networks and sensory systems with dimensional depression symptoms and personality, such as FPN-DAN (negative correlation with depression), DAN-SMN (positive correlation with anhedonia), and CON-AUD (negative correlation with conscientiousness), further confirmed that disturbance of executive control (FPN/CON), external attention processing (DAN-VAN), and personality in patients with MDD could be characterized by abnormal information transfer between corresponding networks (10, 19, 56). Although the specific symptom and brain network domains were linked in a broad way across these measures in this cohort, the specific links between clinically relevant features and resting fMRI detailed here may guide research into additional patient populations that may share symptom and brain pathology profiles with MDD (57, 58).

Difference in Within- and Between-Network Connectivity in Patients with MDD Compared with Controls. We identified a network model of patients with MDD relative to controls that corroborates the abnormal within-network connectivity of DMN and FPN that has consistently been reported by previous experimental studies (11, 13, 14) and by a recent large meta-analysis (19). However, our study also identified less frequently reported abnormal within-network connectivity in the DAN (18), SAN (17), and CON (59). Of note, increased DMN connectivity and decreased FPN, CON, and DAN connectivity have been found in other studies to be related to higher levels of maladaptive rumination (11) and goal-oriented attention deficits in MDD (19), respectively. Overall, the interpretation of the current findings can be placed in a broader context supporting network imbalance between the task-positive (FPN, CON, and DAN) and intrinsic (DMN and SAN) networks that results in the cognitive and executive dysfunction, as well as emotional dysregulation, that characterize MDD (60).

In addition to different within-network connectivity from controls, we identified abnormal between-network connectivity. These network abnormalities occur in both task-positive and task-negative systems. Task-positive networks (i.e., the FPN, CON, DAN) are primarily involved in executive control and external attention. Our results suggest that the abnormal connectivity patterns of these networks are related to dysfunction of executive control (as reflected by decreased FPN and CON connectivity) (61, 62) and external attention (as related to decreased DAN connectivity) (63). In contrast, the DMN plays an important role in internal attention and self-referential thinking when external demands for attention are minimal (8, 16). The increased connectivity of the DMN, with its focus on internal states, could exacerbate the tendency for patients to dwell or ruminate on negative feelings and events (11, 14, 64). Moreover, the prominent role of the SAN in emotion regulation for salient events and sensory experiences might explain how the abnormal increased within-network connectivity (segregation) in the SAN could contribute to ruminative responses to negative mood states and life events in patients with MDD (65). Thus, our results provide further evidence for the integrative role of DMN and FPN in cognitive processing and for further understanding the neurocircuity basis of major depression. In summary, we provide evidence for brain network abnormalities in patients with MDD compared with controls and for multivariate patient symptom–brain network associations that are most notably driven by experiences of childhood trauma.

Future Directions. In this study, our primary focus was on the multivariate correlation patterns between symptom profiles in major depression and brain networks. In future work, these multivariate patient symptom–brain network associations can be extended to other patient samples with depressive symptoms and other samples with a history of childhood trauma to determine whether these associations generalize. Further, CCA can be employed more generally to investigate multivariate correlation profiles in other psychiatric disorders.

Materials and Methods

The Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study consists of 200 unmedicated depressed patients with MDD and 40 healthy subjects. Several papers (27, 29, 66) have published analyses of the EMBARC task fMRI, structural MRI, and EEG data. In this study, we used the EMBARC resting-state fMRI data to study brain network differences between patients with MDD and controls and multivariate correlations between network measures and item-level clinical measures in MDD. The participants were recruited and scans were acquired at four clinical sites: Columbia University, Massachusetts General Hospital, the University of Texas Southwestern Medical Center, and the University of Michigan. Institutional review boards from the four clinical sites approved all study procedures. Participants provided written informed consent. In this study, 11 depressed patients and one healthy individual were excluded due to excessive motion (>4 mm), low signal-to-noise ratio (<80), and severe slice artifacts in MRI data. The final sample for comparison of network measures between groups included 189 patients with MDD and 39 healthy individuals (SI Appendix, Fig. S1). Resting-state fMRI images were acquired in 2 × 6-min blocks (12 min total) for each participant. Following preprocessing, the network connectivity measures of the two scans were first computed separately and then averaged per participant; the network measures were used in the CCA analysis. Details of the network and CCA analyses are provided in the following sections. Detailed descriptions of the samples, acquisition parameters, data preprocessing (including procedures for motion correction), network and clinical measures, K-means clustering, CCA, harmonization procedures, and software used for the statistical analyses are provided in SI Appendix.

Functional Network Analysis. We used the atlas of Power et al. (25) to partition the brain of each participant into 264 cortical and subcortical areas. Wavelet coherence (26, 67) was used to estimate the functional connectivity between all pairs of regions of interest for both patients with MDD and controls. The functional connectivity matrices were corrected for site effects using the Combat harmonization approach (66, 68). Subsequently, network connectivity was calculated within 10 RSNs defined by previous fMRI studies (25, 48). We also calculated network connectivity between all pairs of the 10 RSNs, as well as between each RSN and all other RSNs (one-versus-all-others).

Group Comparisons of Demographic Characteristics and Network Metrics. Statistical comparisons of demographic characteristics and network metrics between patients with MDD and controls were performed using a significance level of \(p < 0.05 \) for a two-tailed test. The significance level was corrected for multiple comparisons using two-sample, two-tailed \(t \) tests. Differences in the distribution of sex between the two groups was assessed using a \(\chi^2 \) test. A detailed description of the study participants is provided in SI Appendix. Before computing the
network metrics, the resting-state time series data from each participant were processed using the XCP Engine (69, 70), which uses an optimized combination of several imaging methods to reduce the influence of subject motion (71, 72). In particular, the XCP Engine can substantially eliminate potential distance-dependent motion artifacts in fMRI network connectivity measurements. A detailed description of motion correction procedures is provided in SI Appendix. Each network metric (within-, one-versus-all-others-, and pairwise-between-network connectivity) was compared across groups using a generalized linear model (GLM) analysis adjusting for age, sex, and in-scanner motion (mean relative displacement averaged over two imaging sessions (68)) as covariates. All P values were adjusted for multiple comparisons (10 within-network metrics + 10 one-versus-all-others-network metrics + 45 pairwise between-network metrics = 65 comparisons) by controlling the FDR (73).

Clustering Analysis of Item-Level Clinical Data. Patients’ clinical symptoms and history were evaluated using a total of 213 item-level variables from nine questionnaires (a detailed description of item-level clinical measures is provided in SI Appendix). Sixty-eight of 189 patients with MDD were excluded due to missing item-level clinical data; therefore, 183 patients were used in the downstream analyses (SI Appendix, Fig. S1). All 213 item-level variables were residualized with respect to age and sex using GLMs before performing subsequent analyses.

We used K-means clustering (74) to group the 213 item-level variables into homogeneous variable subgroups. Critically, the Childhood Trauma Questionnaire (CTQ) (75) measures childhood experiences of trauma, whereas the other clinical items characterize patients’ current clinical symptoms. In light of this inherent dichotomization, we applied K-means clustering separately to the item-level CTQ scores and the remaining item-level clinical items. Details of our implementation of K-means clustering are provided in SI Appendix. K-means clustering of CTQ scores resulted in two clusters: (i) sexual abuse (five items) and (ii) physical and emotional abuse and neglect (20 items). The other clinical measures were also grouped into two clusters: (i) an anxious misery cluster consisting of 13 Hamilton Depression Rating Scale (HAMD), 14 Smith–Hamilton Pleasure Scale, 10 Spielberg State-Trait Anxiety Inventory (STAI) items, and 3 NEO (neuroticism) items; and (ii) a cluster of positive traits consisting of 48 NEO (extraversion, openness, agreeableness, and conscientiousness), 10 STAI, 2 HAMD, 4 CAST, and 1 MASQ items (65 items in total). Each item’s description (i.e., from the questionnaires) and cluster assignment are provided in SI Appendix, Table S3. To investigate the sensitivity of the results to our clustering approach, we also applied a single K-means clustering to all of the item-level clinical measures together, which resulted in four similar (Rand index = 0.73) (76) clinical clusters (SI Appendix, Fig. S8 and Table S3).

CCA Analysis. We used CCA to link clinical data and RSN connectivity in patients with MDD. One set of variables included within- and pairwise-between-network connectivity, individually residualized with respect to age, sex, and in-scanner motion using linear models (a detailed description of motion correction procedures is provided in SI Appendix). The other set consisted of each patient’s four mean values that resulted from averaging over the item-level variables that made up each of the four clinical clusters. Before performing the CCA analysis, both sets of variables were standardized using a z-score transformation to make the scale comparable across all variables. A schematic illustration of the CCA analysis is provided in SI Appendix, Fig. S5, with technical details given in SI Appendix. The CCA provided a set of modes that maximally correlated the network variables and clinical cluster summaries. For each CCA mode, we used a permutation testing procedure to test the significance of the corresponding canonical correlation (24, 77), details of which are provided in SI Appendix. The P values for the correlation of each CCA mode pair were explicitly corrected for multiple testing across all CCA mode pairs estimated (i.e., against the maximum correlation value (24)). More strictly, Bartlett’s χ^2 statistic (78, 79) was performed to assess the significance of the full multivariate distribution. A CCA mode pair was considered to be significantly correlated only if both tests rejected the null hypothesis of no association at the level of $P < 0.05$. Given a significant CCA mode, we next assessed Pearson’s correlation between the CCA mode and the corresponding set of original variables of which it consisted. More specifically, we correlated the multivariate projection of the network variables with the original, univariate network variables and, similarly, we correlated the multivariate projection of the clinical cluster summaries with the individual clinical cluster summaries. These tests helped quantify the strength of contribution of the individual network and clinical cluster summaries to the corresponding CCA mode(s). To test that our CCA analysis was not driven by separating CTQ measures from other clinical measures in the K-means clustering analysis approach, we repeated the CCA using the clusters from a single k-means clustering analysis applied to all of the clinical measures through a permutation test (SI Appendix, Table S3); the results of the two CCA analyses were comparable (Fig. 3 and SI Appendix, Fig. S9).

Next, we further divided each clinical cluster of items into more symptom-specific groups of item-level data to better characterize the multidimensional nature of MDD symptoms (details are provided in SI Appendix, Table S4). For example, the anxious misery cluster was subdivided into five subsets of depressive symptoms, including depression, anhedonia, anxiety, neuroticism, and suicidality. Similarly, the positive traits cluster was subdivided into extraversion, openness, agreeableness, conscientiousness, and positive mood. For each symptom subset, we computed Pearson’s correlation between the mean of the item-level data in the subset and the first brain network CCA mode. Finally, the correlation coefficients were visualized using the radar plots in Fig. 4. For the sexual abuse cluster, we note that this post hoc correlation analysis was performed using the five individual items.

ACKNOWLEDGMENTS. We thank Dr. Danielle Basset, Dr. Richard Betzel, and Dr. Theodore Satterthwaite for their helpful suggestions about the estimation of functional connectivity and motion correction. We thank Jared Zimmerman for many helpful discussions and suggestions about presentation of the results. We also thank Rastko Ciric and Irem Aseciolgu for helping with data processing and providing valuable support and assistance. We thank Maria Prockl for her assistance with the preparation and submission of the manuscript. We also thank all participants for their participation. We acknowledge the following support: Grant U01 MH109991 (to Y.I.S.), Grants R01 NS085211 and R01 NS111985 (to R.T.S.), and Grant U01 MH092250 (to M.H.T.), and Grant U01 MH092250 (to P.M., R.P., and M.M.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

1. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (American Psychiatric Association Publishing, Washington, DC).
2. Cheney E, Goodwin GM, Fazel S (2014) Risks of all-cause and suicide mortality in mental disorders: A meta-review, World Psychiatry 13:153–160.
3. Kessler RC, Bromet EJ (2013) The epidemiology of depression across cultures. Ann Rev Public Health 34:119–138.
4. Hovens JGFM, et al. (2010) Childhood life events and childhood trauma in adult patients suffering from major depressive disorder and comorbid disorders vs. controls, Acta Psychiatr Scand 122:66–74.
5. Otte C, et al. (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065.
6. Kupfer DJ, Frank E, Phillips ML (2012) Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet 379:1045–1055.
7. Basset DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364.
8. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711.
9. Smith SM, et al. (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17:468–482.
10. Williams LM (2016) Precision psychiatry: A neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3:472–480.
11. Hamilton JP, et al. (2011) Default-mode and task-positive network activity in major depressive disorder: Structural equation modeling and associative networks. Biol Psychiatry 70:327–333.
12. Lui S, et al. (2011) Resting-state functional connectivity in treatment-resistant depression. Am J Psychiatry 168:642–648.
13. Greicius MD, et al. (2007) Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437.
14. Sheline YI, Price JL, Yan Z, Mintun MA (2010) Resting-state functional MRI in depression: unmask increases in connectivity between networks via the dorsal nucleus. Proc Natl Acad Sci USA 107:11020–11025.
15. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn Sci 14:277–290.
16. Raichle ME (2015) The brain’s default mode network. Ann Rev Neurosci 38:433–447.
17. Sikora M, et al. (2016) Salience network functional connectivity predicts placebo effects in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 1:1–6.
18. Sacchet MD, et al. (2016) Large-scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major depressive disorder. Neuropsychopharmacology 41:2961–2969.
19. Aghajani H, Andrews-Hanna JR, Wagner TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72:603–611.
20. Drysdale AT, et al. (2017) Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression (Nat Med 22:264–270).
21. Meng C, et al. (2014) Aberrant topology of striatum connectivity is associated with the number of episodes in depression. Brain 137:598–609.
22. Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord 172:8–17.

23. Yang Z, et al. (2018) Network changes associated with transdiagnostic depressive symptom improvement following cognitive behavioral therapy in MDD and PTSD. Mol Psychiatry 23:214–232.

24. Smith SM, et al. (2015) Positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci 18:1565–1567.

25. Power JD, et al. (2011) Functional network organization of the human brain. Neuron 72:665–678.

26. Zhang Z, Telesford QK, Giusti C, Lim KO, Bressett DS (2016) Choosing wavelet methods, filters, and lengths for functional brain network construction. PLoS One 11:e0157243.

27. Greenberg T, et al. (2015) Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: Findings from the EMBARC study. Am J Psychiatry 172:881–891.

28. Trombello JM, et al. (2018) Characterizing anxiety subtypes and the relationship to behavioral phenotyping in major depression: Results from the EMBARC study. J Psychiatr Res 102:207–215.

29. Webb CA, et al. (2016) Neural correlates of three promising endophenotypes of depression: Evidence from the EMBARC study. Neuropsychopharmacology 41:454–463.

30. Outhred T, Craddock R, Schatzberg AF, Etkin A (2015) Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol Psychiatry 77:385–393.

31. US Department of Health & Human Services (2009) Child Maltreatment 2009 (US Government Printing Office, Washington, DC), Report 20.

32. Dube SR, Felitti VJ, Dong M, Giles WH, Anda RF (2003) The impact of adverse childhood experiences on health problems: Evidence from four birth cohorts dating back to 1900. Prev Med 37:268–277.

33. Brown DW, et al. (2009) Adverse childhood experiences and the risk of premature mortality. Am J Epidemiol 169:389–396.

34. Samara Z, et al. (2018) Orbital and medial prefrontal cortex functional connectivity of major depression vulnerability and disease. Biol Psychiatry Cogn Neurosci Neuroimaging 3:348–357.

35. Sylvester CM, et al. (2012) Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci 35:527–535.

36. Dixon ML, et al. (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115:E15198–E1607, and erratum (2018) 115:E1608.

37. Fair DA, et al. (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–4032.

38. Heim C, Newport DJ, Mietzsch T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710.

39. Uys JD, et al. (2006) Developmental trauma is associated with behavioral hyperarousal, altered HPA axis activity, and decreased hippocampal neurotrophin expression in the adult rat. Ann N Y Acad Sci 1071:542–546.

40. van der Werff SJA, et al. (2013) Resting-state functional connectivity in adults with childhood emotional maltreatment. Psychol Med 43:1825–1836.

41. Abdelnour F, Dayan M, Devinsky O, Thesen T, Raj A (2018) Functional brain connectivity is predictable from anatomic network’s Laplacian eigen-structure. Neuronamage 172:728–739.

42. Shen K, et al. (2015) Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc Natl Acad Sci USA 112:13830–13835.

43. Tomoda A, et al. (2011) Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. Neuroimage 54(Suppl 1):S280–S286.

44. Choi J, Jeong B, Rohan ML, Polcarzi AM, Teicher MH (2009) Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol Psychiatry 65:227–234.

45. Choi J, Jeong B, Polcarzi A, Rohan ML, Teicher MH (2012) Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. Neuroimage 59:1071–1079.

46. Teicher MH, Samson JA, Anderson CM, Ohashi K (2016) The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 17: 652–666.

47. Cole MW, et al. (2011) Motion artifact in studies of functional connectivity best predicts the personality dimension of openness to experience. Personal Neurosci 1:66.

48. deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne NB (2015) Closed-loop training of attention with real-time brain imaging. Nat Neurosci 18:470–475.

49. Duque A, Vázquez C (2011) Unfolding connectivity for positive and negative emotional facial cues in clinical depression: Evidence from an eye-tracking study. J Behav Ther Exp Psychiatry 46:107–114.

50. Weinberg A, Perlman G, Kotov R, Hajack G (2016) Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset. J Abnorm Psychol 125:26–39.

51. Everaert D, Klumpers F, van Wingen G, Tendolkar I, Fernández G (2015) Association between neuroticism and amygdala responsivity emerges under stressful conditions. Neuroimage 112:218–224.

52. Indovina I, Riccielli R, Staab JP, Lacquaniti F, Passamonti L (2014) Personality traits modulate subcortical and cortical vestibular and anxiety responses to sound-evoked otolithic receptor stimulation. J Psychosom Res 77:391–400.

53. deYoung KN, et al. (2015) Connectomics and neuroticism: An altered functional network organization. Neuropsychopharmacology 40:296–304.

54. Forino A, Bullmore ET, Zalesky A (2017) Opportunities and challenges for psychiatry in the connectome era. Biol Psychiatry Cogn Neuroimaging 2:9–19.

55. Goss M, et al. (2015) Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72:305–315.

56. Sheffield JM, et al. (2017) Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry 74:605–613.

57. Satterthwaite TD, et al. (2015) Connectome-wide network analysis of youth with Psychosis-Spectrum symptoms. Mol Psychiatry 20:1508–1515.

58. Davey CG, Breakspear M, Pujol J, Harrison BJ (2017) A brain model of disturbed self-appraisal in depression. Am J Psychiatry 174:895–903.

59. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-network architecture of top-down control. Trends Cogn Sci 12:99–105.

60. Cole MW, Repovs G, Anticevic A (2014) The frontoparietal control system: A central role in mental health. Neuropsychologist 20:652–664.

61. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215.

62. Sheline YI, et al. (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106:1942–1947.

63. Seeley WW, et al. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356.

64. Fortin JP, et al. (2018) Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–120.

65. Gu S, et al. (2015) Emergence of system roles in normative neurodevelopment. Proc Natl Acad Sci USA 112:13806–13811.

66. Tomoda A, et al. (2015) Connectome-wide functional connectivity best predicts the personality dimension of openness to experience. Neuroimage 106:2035–2040.

67. Tomoda A, et al. (2011) Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. Neuroimage 54(Suppl 1):S280–S286.

68. Choi J, Jeong B, Rohan ML, Polcarzi AM, Teicher MH (2009) Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol Psychiatry 65:227–234.

69. Tomoda A, et al. (2011) Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. Neuroimage 54(Suppl 1):S280–S286.

70. Choi J, Jeong B, Rohan ML, Polcarzi AM, Teicher MH (2009) Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol Psychiatry 65:227–234.

71. Choi J, Jeong B, Polcarzi A, Rohan ML, Teicher MH (2012) Reduced fractional anisotropy in the visual limbic pathway of young adults witnessing domestic violence in childhood. Neuroimage 59:1071–1079.

72. Teicher MH, Samson JA, Anderson CM, Ohashi K (2016) The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci 17: 652–666.

73. Cole MW, et al. (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355.