Moderate Hyponatremia Is Associated with Increased Risk of Mortality: Evidence from a Meta-Analysis

Giovanni Corona1*, Corinna Giuliani2*, Gabriele Parenti2*, Dario Norello2, Joseph G. Verbalis4, Gianni Forti2, Mario Maggi3, Alessandro Peri2*

1 Endocrinology Unit, Maggiore-Bellaria Hospital, Bologna, Italy, 2 Endocrine Unit, “Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies” (DENOThe), Dept. of Experimental and Clinical Biomedical Sciences, University of Florence, Careggi Hospital, Florence, Italy, 3 Andrology Unit, “Center for Research, Transfer and High Education on Chronic, Inflammatory, Degenerative and Neoplastic Disorders for the Development of Novel Therapies” (DENOThe), Dept. of Experimental and Clinical Biomedical Sciences, University of Florence, Careggi Hospital, Florence, Italy, 4 Division of Endocrinology and Metabolism, Georgetown University, Washington, DC, United States of America

Abstract

Background: Hyponatremia is the most common electrolyte disorder in clinical practice, and evidence to date indicates that severe hyponatremia is associated with increased morbidity and mortality. The aim of our study was to perform a meta-analysis that included the published studies that compared mortality rates in subjects with or without hyponatremia of any degree.

Methods and Findings: An extensive Medline, Embase and Cochrane search was performed to retrieve the studies published up to October 1st 2012, using the following words: “hyponatremia” and “mortality”. Eighty-one studies satisfied inclusion criteria encompassing a total of 850222 patients, of whom 17.4% were hyponatremic. The identification of relevant abstracts, the selection of studies and the subsequent data extraction were performed independently by two of the authors, and conflicts resolved by a third investigator. Across all 81 studies, hyponatremia was significantly associated with an increased risk of overall mortality (RR = 2.60[2.31–2.93]). Hyponatremia was also associated with an increased risk of mortality in patients with myocardial infarction (RR = 2.83[2.23–3.58]), heart failure (RR = 2.47[2.09–2.92]), cirrhosis (RR = 3.34[1.91–5.83]), pulmonary infections (RR = 2.49[1.44–4.30]), mixed diseases (RR = 2.59[1.97–3.40]), and in hospitalized patients (RR = 2.48[2.09–2.95]). A mean difference of serum [Na+] of 4.8 mmol/L was found in subjects who died compared to survivors (130.1±5.6 vs 134.9±5.1 mmol/L). A meta-regression analysis showed that the hyponatremia-related risk of overall mortality was inversely correlated with serum [Na+]. This association was confirmed in a multiple regression model after adjusting for age, gender, and diabetes mellitus as an associated morbidity.

Conclusions: This meta-analysis shows for the first time that even a moderate serum [Na+] decrease is associated with an increased risk of mortality in commonly observed clinical conditions across large numbers of patients.

Introduction

Hyponatremia, defined as a serum sodium concentration ([Na+]) <136 mmol/L, is the most common electrolyte disorder encountered in clinical practice [1]. The most common cause of hypotonic or dilutional hyponatremia is the syndrome of inappropriate antidiuresis (SIAD). Mild hyponatremia (serum [Na+] 130–135 mmol/L) has been estimated to occur in about 15–30% of hospitalized patients, whereas the prevalence of moderate to severe hyponatremia (serum [Na+] <130) is as high as 7% among in-hospital patients [2].

Hyponatremia represents a serious health problem with significant associated morbidity and mortality. Acute severe hyponatremia is a medical emergency accompanied by severe neurological symptoms due to cerebral edema and can be lethal if not recognized and appropriately treated [3]. The correction of hyponatremia may per se represent a risk and a rare but potentially lethal complication, i.e. the osmotic demyelination syndrome, may be the result of an overly rapid correction [4]. In contrast, mild chronic hyponatremia has traditionally been considered as an asymptomatic or mildly symptomatic condition. However, recent reports indicated that even mild chronic hyponatremia can have long-term adverse effects, such as deficits in gait and attention [5], falls [3], bone loss and fractures [6–9], especially in the elderly. More recently, chronic hyponatremia has been shown to exacerbate multiple manifestation of senescence in aged rats,
including senile osteoporosis, sarcopenia, cardiac fibrosis, and hypogonadism [10].

The association between hyponatremia and in-hospital mortality has been demonstrated in numerous studies. For instance, a large cohort study, which included all adult hospitalizations (n = 532936) at an academic medical center between 2000–2007, demonstrated that even mild hyponatremia was associated with increased in-hospital mortality, and that the risk of death was increased by 2.3% for each 1 mmol/L decline of serum [Na+] [11].

Hyponatremia has been generally associated with an increased mortality in different conditions such as pneumonia [12], heart failure [13], acute myocardial infarction [14], cirrhosis [15], cancer [14], in the elderly [16], and in intensive care patients [17]. However, whether hyponatremia is an independent risk factor for death or is simply associated with an underlying severe condition that is the cause of death remains to be elucidated [4,18]. Furthermore, there is the possibility that hyponatremia indirectly contributes to mortality by causing organ dysfunction, such as for example bone loss and fractures which are associated with significant mortality in the elderly. Recently, a meta-analysis that included 22 observational studies and randomized controlled trials published to the end of 2008, that was limited to patients with heart failure, indicated that hyponatremia is a powerful predictor of mortality in these patients regardless of ejection fraction [19]. However, no meta-analysis on the relationship between hyponatremia and mortality has addressed other pathological conditions to date.

The aim of this study was to perform a meta-analysis, which included the studies that compared the mortality rate in subjects with or without hyponatremia, in order to verify whether hyponatremia represents a risk factor for mortality, independently of other confounding factors.

Methods

A meta-analysis was performed including studies comparing mortality rate in subjects with or without hyponatremia. An extensive Medline, Embase, and Cochrane search was performed including the following words: hyponatremia and mortality. The search up to October 1st 2012 was restricted to English-language articles and studies of human participants. The identification of relevant abstracts, the selection of studies based on the criteria described above, and the subsequent data extraction were performed independently by two of the authors (G.P., C.G.), and conflicts resolved by a third investigator (G.C.). Full-text articles and meeting abstracts were included. The quality of studies was assessed using the Cochrane criteria [20].

Statistical analysis

Heterogeneity was assessed using the I² statistics for overall mortality rate. Considering that heterogeneity could not be excluded (I² = 92.8%), relative risk of mortality between subjects with or without hyponatremia, was calculated using both a random and fixed effect model. For a more conservative approach, results of random effect models were presented. A meta-regression analysis was performed to test the effect of serum [Na+] threshold selected in the different studies on overall mortality rate levels. In addition, a linear regression analysis model, weighing each study for the number of subjects enrolled, was performed to verify the independent effect of hyponatremia on mortality after the adjustment for age, gender and diabetes mellitus as an associated morbidity. It was not possible to include other co-morbidities because there were not enough data to be collected and analyzed from the selected literature. Finally, sensitivity analyses was performed considering only larger studies (including ≥1000 subjects) or those reporting the prevalence of diabetes mellitus. In addition, mean baseline serum [Na+] in subjects who eventually died or not at follow up were meta-analyzed using a random effect model.

Relative risks (RRs) with 95% CIs were calculated using Comprehensive Meta-analysis Version 2, Biostat, (Englewood, NJ, USA). Logistic multivariate analysis was performed on SPSS (Statistical Package for the Social Sciences; Chicago, USA) for Windows 20.1.

Results

Out of 718 retrieved articles, 637 articles were excluded for different reasons. The flow of the meta-analysis is summarized in Figure 1, and the characteristics of the trials included in the meta-analysis are summarized in Table 1 (see references 3,11–12,16–18, 21–95). Among the 81 selected studies, 7, 13, 8, 5 studies evaluated the effect of hyponatremia on overall mortality rate in subjects with myocardial infarction, heart failure (HF), cirrhosis and pulmonary infections, respectively. In addition, another 26 studies reported data on the effect of hyponatremia on overall mortality for combined mixed diseases, which could not be grouped separately (see Table 1). Finally, 14 studies retrospectively investigated the effect of hyponatremia on overall mortality in hospitalized series of subjects. In these studies, a major diagnosis was not specified.

The mean±SD serum [Na+] in dead or alive individuals was specified in 3 of the aforementioned studies and in a further 8 studies enrolling patients with HF (n = 2), cirrhosis (n = 1), pulmonary infection (n = 2) or mixed disease (n = 3), respectively (Table 1).

Overall 850222 patients and 147948 hyponatremic subjects were included in the meta-analysis. Hyponatremia was defined according to varying cut-off definitions in the included studies (Table 1). The Begg-adjusted rank correlation test, calculated on the basis of overall mortality rate for hyponatremia, suggested no major publication bias (Kendall tau 0.02; p = 0.82).

When all 81 studies were considered, hyponatremia was significantly associated with an increased risk of overall mortality (RR = 2.60[2.31–2.93]; p<0.0001). Similar results were obtained when patients with specific diseases or series of hospitalized patients were analyzed separately (Figure 2, panels A–E). Similar to what observed for mortality rate, the Begg-adjusted rank correlation test, calculated on the basis of mean serum [Na+] between subjects who eventually died when compared to survivors, suggested no major publication bias (Kendall tau −0.145; p = 0.553). The baseline mean difference of serum [Na+] was significantly lower in subjects who eventually died when compared to survivors (130.1±5.6 vs 134.9±5.1 mmol/L) at follow up (Figure 3). Similar results were observed when studies enrolling less than 100 subjects were excluded from the analysis (mean difference in serum [Na+] between survivors vs dead 3.04[1.81–4.27], p<0.0001). Sub-analysis for mean serum [Na+] in specific diseases was not performed due to insufficient data.

A meta-regression analysis showed that the hyponatremia-related risk of overall mortality was inversely correlated with the serum [Na+] threshold considered for each report (Figure 4). Hence, the lower threshold considered, the higher the risk of mortality. The latter association was confirmed in a multiple regression model, adjusting for age, gender and diabetes mellitus (adj. r = −0.278; p<0.0001).
Sensitivity analyses performed considering only larger studies (including ≥1000 subjects), those reporting the prevalence of diabetes mellitus or those with severe hyponatremia ([Na⁺] ≤125 mmol/l), confirmed the association between hyponatremia and mortality (RR = 2.521[2.180–2.916]; p, 0.0001 and 2.886[2.228–3.737], 10.036[5.155–19.540]; all p, 0.0001, respectively).

Discussion

Hyponatremia has been associated with increased in-hospital mortality [11], but no published comprehensive meta-analysis that analyzed the mortality rate in subjects with or without hyponatremia had been performed to date. Very recently, the Meta-Analysis Global Group in Chronic heart failure (MAGGIC) published a meta-analysis that included 14766 patients from 22 studies that recruited patients with HF and reported death from any cause [19]. Patients with hyponatremia (n = 1618) had an increased risk of death (21%), compared to patients with normal serum [Na⁺] (16%), and the risk of death appeared to increase linearly with serum [Na⁺] <140 mmol/L. Hyponatremia was an independent predictor of death either when the patients were considered as a whole, or when they were grouped based on the presence of a reduced (n = 1199) or a preserved (n = 419) ejection fraction. The MAGGIC meta-analysis was limited to patients with HF and considered studies published to the end of 2008.

Our meta-analysis included all of the English-language published studies up until October 1st 2012 that compared the mortality rate in human subjects with or without hyponatremia of any degree. Eighty-one published studies were selected according to specified inclusion criteria for a total of 850222 patients, of whom 17.4% were hyponatremic. This percentage is in general agreement with epidemiological data about the prevalence of hyponatremia among hospitalized patients [2]. Of note, hyponatremia was associated with a significantly increased risk of overall mortality when all studies were considered (RR = 2.60 [2.31–2.93]). A detailed analysis of cause specific mortality was not possible, because this information was not available in several studies, as also was found in the MAGGIC meta-analysis. Nevertheless, we were able to conclude that the risk of mortality was independent of factors including age, gender, and diabetes mellitus as an associated morbidity. Similarly, hyponatremia was found to be associated with an increased risk of death when the patients were analyzed separately based on different disease types or when sensitivity analysis was restricted to larger studies or those reporting the prevalence of diabetes. In particular, we were able to confirm the data of the MAGGIC meta-analysis on hyponatremic patients with HF (RR = 2.47 [2.09–2.92]), analyzing a greater number of patients (168971, of whom 20.4% were hyponatremic).
Table 1. Studies included in meta-analysis.

Source	Type of disease	Age (years)	Male %	DM %	Na⁺ cut-off (mEq/L)	Patients H	NH	Deaths H	DeathsNH	Na⁺ deaths (mEq/L)	Na⁺ survivors (mean ± SD)	
Flear et al., 1979 [21]	Myocardial infarction	57.1	78.7	NA	135	235	88	147	19	10	NA	
Goldberg et al., 2004 [22]	Myocardial infarction	61	78	24.2	135	1047	339	708	61	44	NA	
Goldberg et al., 2006 [23]	Myocardial infarction	59.3	80.7	22.6	136	978	108	870	26	78	NA	
Klopotowski et al., 2009 [24]	Myocardial infarction	NA	72.5	8.9	135	1858	96	1762	13	67	NA	
Havránek et al., 2011 [25]	Myocardial infarction	64	66	33.9	135	218	72	146	25	30	NA	
Tada et al., 2011 [26]	Myocardial infarction	64.4	85	41.4	136	140	29	111	0	3	NA	
Tang et al., 2011 [27]	Myocardial infarction	63.8	6.8	2.9	135	1620	212	1408	29	103	NA	
Panzciroli et al., 1990 [28]	HF	67	70.2	11.8	135	161	64	97	44	39	NA	
Adebowale et al., 1996 [29]	HF	NA	NA	NA	125	64	10	54	7	17	NA	
Chen et al., 2003 [30]	HF	56	63.2	NA	125	234	27	207	20	35	NA	
Villacorta et al., 2003 [31]	HF	72.5	63	NA	135	170	61	109	32	31	NA	
Gheorgiade et al., 2007 [32]	HF	NA	NA	NA	135	40454	7882	32572	473	1042	NA	
Gheorgiade et al., 2007 [33]	HF	56.2	NA	NA	134	430	103	327	31	52	NA	
Mildo-Cotter et al., 2008 [34]	HF	74.9	51	NA	135	296	38	258	11	21	NA	
Tribouilloy et al., 2008 [35]	HF	74	53.8	25.8	NA	662	NA	NA	NA	136.7±4.9	138.4±3.6	
Rusinaru et al., 2009 [36]	HF	75.8	46.6	26.2	136	358	91	267	73	159	NA	
Basheshet et al., 2010 [37]	HF	NA	55.3	51.7	136	2336	537	1799	54	74	NA	
DeWolfe et al., 2010 [38]	HF	54.7	62.9	34.1	135	364	48	316	8	31	NA	
Novack et al., 2010 [39]	HF	75.6	52.2	38.3	136	8246	1755	6491	NA	NA	136.4±5.3	
Baldasseroni et al., 2011 [40]	HF	62	74.4	11.0	135	4670	463	4207	123	433	NA	
Bailing et al., 2011 [41]	HF	68	73	NA	136	3645	602	2863	147	429	NA	
Shorr et al., 2011 [42]	HF	74.7	46.2	NA	135	115969	24562	91407	1372	2783	NA	
Arroyo et al., 1976 [43]	CIRRHOSIS	NA	NA	NA	130	55	21	34	9	6	NA	
Vila et al., 1999 [44]	CIRRHOSIS	47.3	35.2	NA	130	45	20	25	7	9	NA	
Borroni et al., 2000 [45]	CIRRHOSIS	56.9	70.5	NA	130	191	57	134	15	12	NA	
Porcel et al., 2002 [46]	CIRRHOSIS	62.9	62.1	NA	130	74	54	20	37	5	123.8±5.6	
Ruf et al., 2005 [47]	CIRRHOSIS	49	53	NA	130	194	34	160	NA	NA	130±6.0	
Hackworth et al., 2009 [48]	CIRRHOSIS	51	78	NA	130	213	90	123	10	10	NA	
Radha Krishna et al., 2009 [49]	CIRRHOSIS	36.3	70.2	NA	NA	121	50	71	38	16	NA	
Terg et al., 2009 [50]	CIRRHOSIS	NA	NA	NA	130	81	27	54	12	7	NA	
Jenq et al., 2010 [51]	CIRRHOSIS	56	76.2	NA	135	126	67	59	49	33	NA	
Singhi et al., 1992 [52]	PNEUMOPATHY	3.14	NA	NA	135	727	371	356	24	17	NA	
Sharma et al., 1995 [53]	PNEUMOPATHY	35	51	NA	135	112	42	70	NA	NA	117.6±5.8	
Source	Type of disease	Age (years)	Male	DM	Na⁺ cut-off (mEq/L) Patients H NH Deaths N Deaths NH Na⁺ deaths (mEq/L) Na⁺ survivors (mEq/L)							
--------	----------------	-------------	------	----	---------------------------	---------------------------------	---------------------------------					
El-Bary et al., 1997 [54]	PNEUMOPATHY	68.4	15	32	62	293	19	6	127.8	7.4	130.6	7.5
Hussain et al., 2004 [55]	PNEUMOPATHY	47	32	16	62	293	19	6	122.7			
Nair et al., 2007 [56]	PNEUMOPATHY	73.5	20	16	62	293	19	6	127.8	7.4	130.6	7.5
Song et al., 2008 [57]	PNEUMOPATHY	73.5	20	16	62	293	19	6	127.8	7.4	130.6	7.5
Zilberberg et al., 2008 [58]	PNEUMOPATHY	68.4	45.2	16	62	293	19	6	127.8	7.4	130.6	7.5
Sunderam et al., 1983 [59]	AGED	2.7	43.4	16	62	293	19	6	127.8	7.4	130.6	7.5
Samadi et al., 1985 [60]	CHRONIC DIARRHEA	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Cusano et al., 1990 [61]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Vitting et al., 1990 [62]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Erinoso et al., 1993 [63]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Tang et al., 1993 [64]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Terzian et al., 1994 [65]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Chuah et al., 1996 [66]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Olotu et al., 2002 [67]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Oguche et al., 2002 [68]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Agarwal et al., 2004 [69]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Lee et al., 2005 [70]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
SRivastava et al., 1998 [71]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Berghmans et al., 2000 [72]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Manary et al., 2000 [73]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Forfia et al., 2008 [74]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Olotu et al., 2002 [75]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Hanson et al., 2009 [76]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Sherlock et al., 2006 [77]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5
Hoorn et al., 2011 [78]	AIDS	36.6	89	16	62	293	19	6	127.8	7.4	130.6	7.5

Note: The table continues with similar entries for each source, providing data on various conditions such as malaria, fulminant hepatic failure, and others, along with their respective age, male/female ratio, and sodium levels. The entries are likely part of a larger dataset examining the relationship between sodium levels and mortality or other health outcomes in different patient groups.
Table 1. Cont.

Source	Type of disease	Age (years)	Male %	DM %	Na⁺ cut-off (mEq/L)	Patients H (n)	NH (n)	Deaths H (n)	Deaths NH (n)	Na⁺ deaths H (mEq/L) (mean ± SD)	Na⁺ deaths NH (mEq/L) (mean ± SD)	Na⁺ survivors (mean ± SD)
Vaa et al., 2011 [85]	ALCOHOLIC HEPATITIS	51.1	85	NA	135	26	NA	26	26	132 (136)	132	136
Tierney et al., 1986 [86]	HOSPITALIZED SERIES	61.2	47	19	135	1514	757	757	165	60 NA NA NA NA 132 (136)	132	136
Natkunam et al., 1991 [87]	HOSPITALIZED SERIES	NA	NA	NA	125	1217	202	202	1015	84 35 NA NA NA NA 132 (136)	132	136
Singhi et al., 1994 [88]	HOSPITALIZED SERIES	NA	75	NA	135	264	71	71	6 7	NA NA NA NA 132 (136)	132	136
Miller et al., 1995 [89]	HOSPITALIZED SERIES	60–103	91.6	NA	135	119	63	63	56	11 12 NA NA NA NA 132 (136)	132	136
Gill et al., 2006 [3]	HOSPITALIZED SERIES	65	47.5	NA	125	204	104	104	28 9	NA NA NA NA 132 (136)	132	136
Asadollahi et al., 2007 [90]	HOSPITALIZED SERIES	NA	NA	NA	134	1599	356	356	1243	179 377 NA NA NA NA 132 (136)	132	136
Steffox et al., 2008 [17]	HOSPITALIZED SERIES	56.1	58.9	NA	133	5985	917	917	5068	255 799 NA NA NA NA 132 (136)	132	136
Zilberberg et al., 2008 [91]	HOSPITALIZED SERIES	61.8	45.5	NA	135	198281	10899	10899	187382	643 5621 NA NA NA NA 132 (136)	132	136
Hampshire et al., 2009 [92]	HOSPITALIZED SERIES	NA	NA	NA	130	6410	285	285	6125	208 3468 NA NA NA NA 132 (136)	132	136
Whelan et al., 2009 [93]	HOSPITALIZED SERIES	58.5	47.5	NA	134	14039	2795	2795	11244	474 893 NA NA NA NA 132 (136)	132	136
Whyte et al., 2009 [94]	HOSPITALIZED SERIES	68.8	39.8	NA	120	226	113	113	24 7	NA NA NA NA 132 (136)	132	136
Funk et al., 2010 [95]	HOSPITALIZED SERIES	63.2	57.6	NA	135	140952	26782	26782	114170	4369 11074 NA NA NA NA 132 (136)	132	136
Wald et al., 2010 [11]	HOSPITALIZED SERIES	65.3	48.2	14.9	138	34761	13274	13274	14887	451 430 NA NA NA NA 132 (136)	132	136
Chawla et al., 2011 [18]	HOSPITALIZED SERIES	NA	NA	NA	135	209839	46093	46093	164146	2787 3775 NA NA NA NA 132 (136)	132	136

H: patients with hyponatremia; NH: patients without hyponatremia; DM: diabetes mellitus; NA: not available.
doi:10.1371/journal.pone.0080451.t001
In the MAGGIC meta-analysis, only 11% of patients were hyponatremic, which is below the prevalence of hyponatremia generally reported for hospitalized patients (15–30%) [2]; the authors suggested that this might be due to the fact that all patients in the MAGGIC cohort were outpatients at the time of the baseline data. In contrast with the MAGGIC meta-analysis, Figure 2. Odds ratio for overall mortality in patients with or without (no) hyponatremia according to the presence of myocardial infarction (A), heart failure (B), cirrhosis (C), pulmonary infection (D), mixed disease (E), or in hospitalized series of subjects (F). doi:10.1371/journal.pone.0080451.g002
patients with hyponatremia in our meta-analysis were neither older, nor more frequently affected by diabetes mellitus. Furthermore, we found an increased risk of mortality in hyponatremic patients with myocardial infarction (total number of patients 6096, of whom 18.3% with hyponatremia), cirrhosis (total number of patients 906, of whom 42.6% were hyponatremic), or pulmonary infections (total number of patients 10047, of whom 12% were hyponatremic). Some studies (n = 26) reported data regarding other mixed diseases or subpopulations (e.g., elderly people), which could not be grouped together. The most represented diseases

Figure 3. Weighted differences (with 95% CI) of mean serum [Na+] in dead and alive patients.
doi:10.1371/journal.pone.0080451.g003

Figure 4. Relation between serum [Na+] cut-off definition and overall mortality risk.
doi:10.1371/journal.pone.0080451.g004
among these patients (total number of patients 37864, of whom 15.1% were hyponatremic) were AIDS, malaria and malnutrition. Finally, some studies (n = 14, total number of patients 615410, of whom 16.7% were hyponatremic) were considered separately, because the effect of hyponatremia on mortality was investigated retrospectively and the diagnoses were not specified. The meta-analysis of these studies also revealed an increased risk of overall mortality.

The major finding of this meta-analysis is that across all groups of patients the relative risk of mortality in patients with hyponatremia vs patients without hyponatremia ranged between 2.47 and 3.34, thus indicating that this electrolyte disorder strongly predicts prognosis of all hospitalized patients. Another interesting result of our meta-analysis is that a moderate serum [Na+] reduction (i.e., 4.8 mmol/L) was associated with an increased risk of mortality, and a meta-regression analysis showed that the hyponatremia-related risk of overall mortality was inversely correlated with the serum [Na+]. Hence, the lower threshold considered, the higher the risk of mortality. This association was confirmed in a multiple regression model after adjusting for age, gender and diabetes mellitus. The linear increase of risk of death that we showed in our analysis is in agreement with the findings of the MAGGIC meta-analysis, which found a linear increase of mortality starting at serum [Na+] <190 mmol/L. Overall, our findings indicate that even a moderate reduction of serum [Na+] is associated with an increased risk of mortality in patients affected by multiple disease types across large numbers of hospitalized patients.

Although the present meta-analysis both confirms and extends the strong association between hyponatremia and adverse outcomes such as inpatient mortality, it cannot prove a causal relation between these variables. In fact, only diabetes mellitus could be used as a possible confounder in the present study. Perhaps the major outstanding question regarding hyponatremia is whether hyponatremia contributes directly to poor outcomes or is simply a marker for severity of underlying co-morbidities, or possibly for other factors that might influence the progression of underlying co-morbidities [96]. Hence, it should be recognized that potential unmeasured confounders such as other chronic diseases, in addition to diabetes mellitus, may have caused residual confounding, but the measured factors that are correlated with such confounders would have mitigated the bias. Few studies to date have attempted to address the issue of a direct effect of hyponatremia on mortality or other adverse outcomes. One oft-cited potential exception is the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) study of patients with congestive heart failure, which failed to show improvements in cardiovascular outcomes in patients with acute heart failure (AHF) treated with the vasopressin type 2 receptor (V2R) antagonist, tolvaptan, versus placebo [97]. However, that study was not powered to examine outcomes in the smaller subgroup of patients enrolled with both heart failure and hyponatremia. More recently, a significant strong positive relationship between an increase in serum sodium and decreased mortality was noted in 322 patients hospitalized for AHF and followed for 1–3 years [98]. In contrast, a multicenter analysis of 2880 patients hospitalized for AHF in Korea confirmed that hyponatremia on admission was associated with a worse prognosis compared with normonatremia, but this relation persisted regardless of whether the hyponatremia improved during the hospitalization [99]. However, this report was a retrospective analysis from a registry, not a prospective randomized trial, and the assessment of the change in serum sodium was made only once, prior to or at discharge from the hospital [100]. Thus, whether hyponatremia is merely a marker or also a mediator of adverse patient outcomes is still uncertain in heart failure, and has not been studied in other diseases. The current meta-analysis adds further urgency to the need to answer this question for multiple diseases, not only heart failure.

In conclusion, this study represents the first extensive and updated meta-analysis demonstrating that hyponatremia is significantly associated with an increased risk of overall mortality, and that it is a negative prognostic factor across multiple commonly observed clinical conditions, such as myocardial infarction, HF, cirrhosis and pulmonary infections. These findings might suggest the importance to correct this electrolyte disorder, even when mild, using the most appropriate strategies [101–103]. However, our study did not specifically address this issue and this hypothesis at present highlights the need for additional studies of clinical outcomes with effective therapies in all hyponatremic patients.

Supporting Information

Checklist S1 PRISMA Checklist.

(DOC)

Acknowledgments

The authors wish to thank Edoardo Mannucci and Matteo Monami for their assistance in analysis of data.

Author Contributions

Conceived and designed the experiments: GC CG AP JGV. Performed the experiments: GC CG GP DN. Analyzed the data: GC AP. Wrote the paper: GC CG AP JGV.

References

1. Upadhayay A, Jaber BL, Madhia NK (2006) Incidence and prevalence of hyponatremia. Am J Med 119:30–35.
2. Hoorn EJ, Lindeman J, Zietse R (2006) Development of severe hyponatremia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol Dial Transplant 21:70-76.
3. Gill G, Huda B, Boyd A, Skagen K, Wile D, et al. (2006) Characteristics and mortality of severe hyponatremia – a hospital-based study. Clin Endocrinol (Oxf) 65:246–249.
4. Arhugoi HJ (2005) Consequences of inadequate management of hyponatremia. Am J Nephrol 25:240-249.
5. Rembezeoog E, Mosch W, Vandernegel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness and attention deficits. Am J Med 119:71.e1–8.
6. Gankam DF, Andre C, Sattar L, Melot G, Decaux G (2008) Mild hyponatremia and risk of fracture in the ambulatory elderly. JQJM 101:583–588.
7. Kinlessa S, Moran S, Sullivan MO, Molloy MG, Enstea JA (2010) Hyponatremia independent of osteoporosis is associated with fracture occurrence. Cln Am Soc Nephrol 5:275–280.
8. Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, et al. (2010) Hyponatremia-induced osteoporosis. J Bone Miner Res 25:354–363.
9. Barsony J, Sugimura Y, Verbalis JG (2011) Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 286:10864–10875.
10. Barsony J, Manigrasso MB, Xu Q, Tam H, Verbalis JG (2012) Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. Age (Dordr) 35:271–281.
11. Wald R, Jaber BL, Price LL (2010) Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med 170:294–302.
12. Zilberman MD, Erazoza A, Spalding J, Foreman A, Jones AG, et al. (2006) Hyponatremia and hospital outcomes among patients with pneumonia: a retrospective cohort study. BMC Pulm Med 6:16.
13. Klein L, O’Connor CM, Leimberger JD, Gattis-Stough W, Pina IL, et al. (2005) Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF) Study. Circulation 111:2454–2460.
chronic heart failure: neutral effect of treatment with beta-blockers and angiotensin-converting enzyme inhibitors: data from the Italian Network on Congestive Heart Failure (IN-CHF) database. J Cardiovasc Med 12:725–731.

41. Balling L, Schou M, Videbæk I, Hildebrandt P, Wiggers H, et al. (2011) Prevalence and prognostic significance of hyponatremia in outpatients with chronic heart failure. Eur J Heart Fail 13:960–973.

42. Shorr AF, Tabak YP, Johannes RS, Gupta V, Salzberg MT, et al. (2011) Burden of sodium abnormalities in patients hospitalized for heart failure. Congest Heart Fail 17:1–6.

43. Arroyo V, Rodés-Cabau J, Gómez-Ulla E, Violante F, Madias NE, et al. (2009) Prognostic value of spontaneous hyponatremia in cirrhosis with ascites. Am J Nephrol 30:144–150.

44. Porcel A, Díaz F, Revellón P, Macías M, Martín-Herrera L, et al. (2002) Dilutional hyponatremia in patients with cirrhosis and ascites. Arch Intern Med 162:323–328.

45. Rusinaru D, Kremers WK, Chan LS, Hsu WC, et al. (2008) Total paracethesia in cirrhotic patients with tense ascites and dilutional hyponatremia. Am J Gastroenterol 99:2219–2223.

46. Bozorgim M, Faghihian M, Caggiano M, Salerno F, et al. (2001) Clinical relevance of hyponatremia for the hospital outcome of cirrhotic patients. Dig Liver Dis 33:653–610.

47. Porcel A, Díaz F, Revertón P, Macías M, Martín-Herrera L, et al. (2002) Serum sodium predicts prognosis in critically ill cirrhotic patients. J Clin Gastroenterol 34:220–225.

48. Singh S, Dhasawn A (1992) Frequency and significance of electrolyte abnormalities in pneumonia. Indian Pediatr 29:735–740.

49. Sharma SK, Mohan A, Pandi JN, Prasad KL, Gupta AK, et al. (1995) Clinical profile, laboratory characteristics and outcome in miliary tuberculosis. QJM 88:29–37.

50. El-Bihayri M, Sarmiento X, Torres A, Noguez S, Males I, et al. (1997) Prognostic factors of severe Legionella pneumonia requiring admission to ICU. Am J Respir Crit Care Med 156:1467–1472.

51. Hassain SF, Irfan M, Abbas M, Awmer SS, Davidson S, et al. (2004) Clinical characteristics of 110 military tuberculosis patients from a low HIV prevalence country. Int J Tuberc Lung Dis 8:138–142.

52. Nair V, Niederwan MS, Masani N, Fizbanw S (2007) Hyponatremia in community-acquired pneumonia. Am J Nephrol 27:184–190.

53. Song JH, Oh WS, Kang CI, Chung DR, Peck RR, et al. (2008) Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries: a prospective study by the Asian network for surveillance of community-acquired pathogens. Int J Antimicrob Agents 31:107–114.

54. Sundaram SG, Manikkar GD (1983) Hyponatremia in the elderly. Age Ageing 12:77–80.

55. Samad AR, Chowdhury AI, Huq MB, Shahid NS (1985) Risk factors for death in complicated diarrhea of children. Br Med J Clin Res Ed 290:1615–1617.

56. Csano AO, Thies HL, Siegal FP, Dreisbach AW, Maesaka JK (1990) Hyponatremia in patients with acquired immune deficiency syndrome. J Acquir Immun Defic Syndr 3:945–953.

57. Vitting KE, Gardevsmitz MH, Zabateki PM, Tapper ML, Gileen GW, et al. (1990) Frequency of hyponatremia and nonosmolatos vasopressin release in the acquired immunodeficiency syndrome. JAMA 263:973–978.

58. Ezéizoro HO, Akinmija FO, Akinwinka OO (1993) Prognostic factors in severely malnourished hospitalized Nigerian children. Anthropometric and biochemical factors. Trop Geogr Med 45:99–105.

59. Tang WW, Karter KM, Eisenstub EL, Masry SG (1993) Hyponatremia in hospitalized patients with the acquired immunodeficiency syndrome (AIDS) and the AIDS-related complex. Am J Med 94:169–174.

60. Cann CD, Sheehan DJ, Rennick DJ, Popovich RM, et al. (1991) Improved survival of cirrhotic patients with ascites treated with diuretics. Hepatology 14:642–647.

61. Ikedi K, Uebara H, Nishimura K, Tsukiyama K, Yoshikura K, et al. (1992) Impact of the initial levels of laboratory variables on survival in chronic dialysis patients. Am J Kidney Dis 20:541–548.

62. Sreevatsa KL, Mittal A, Kumar A, Gupta S, Natu SM, et al. (1998) Predictors of outcome in fulminant hepatic failure in children. Indian J Gastroenterol 17:43–55.

63. Berghmans T, Parma R, More Jr BB (2000) A prospective study on hyponatremia in medical cancer patients: epidemiology, aetiology and differential diagnosis. Support Care Cancer 8:192–197.

64. Manary MJ, Brestrer DR (2000) Intensive nursing care of kwashiorkor in Malawi. Acta Paediatr 89:203–207.
Hyponatremia and Mortality

69. Opsche S, Onokohiodio SI, Adeyemo AA, Olumese PE (2002) Low plasma bicarbonate predicts poor outcome of cerebral malaria in Nigerian children. West Afr J Med 21:276–279.

70. Agarwal I, Kirubakaran C, Markandeyulu V (2004) Clinical profile and outcome of acute renal failure in South Indian children. J Indian Med Assoc 102:353–356.

71. Lee JH, Choi SJ, Lee JH, Kim SE, Seol M, et al. (2003) Severe metabolic abnormalities after alloplastic hematopoietic cell transplantation. Bone Marrow Transplant 33:63–69.

72. Sherlock M, O’Sullivan E, Agha A, Behan LA, Rawluk D, et al. (2006) The incidence and pathophysiology of hyponatremia after subarachnoid haemorrhage. Clin Endocrinol (Oxf) 64:250–254.

73. Bonney GK, Aitken A, Attia M, Lodge PA, Tooze JD, et al. (2008) Outcomes in right liver lobe transplantation: a matched pair analysis. Transpl Int 21:1045–1051.

74. Forlizzi PR, Mathai SC, Fisher MR, Houten-Harris T, Hennes AR, et al. (2008) Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 177:1364–1369.

75. Olobo AI, Mhaisani S, Newton CR (2008) Haemolytic uraemic syndrome in children admitted to a rural district hospital in Kenya. Trop Doct 38:165–167.

76. Hanson J, Hossain A, Charunwatthana P, Hassan MU, Davis TM, et al. (2008) Hyponatremia in severe malaria: evidence for an appropriate anti-diuretic hormone response to hypovolemia. Am J Trop Med Hyg 80:141–145.

77. Huu HH, Chen YC, Tian YC, Chiu YL, Kuo MC, et al. (2009) Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J Bone Miner Res 26:1822–1828.

78. Dimopoulos K, Diller GP, Petraco R, Koltsida E, Giannakoudis G, et al. (2010) Hyponatremia: A strong predictor of mortality in adults with congenital heart disease. Eur Heart J 31:595–601.

79. Salvador VB, San Juan MD, Sali JA, Consunji RJ (2010) Clinical and microbiological spectrum of necrotizing fasciitis in surgical patients at a Philippine university medical centre. Asian J Surg 33:51–58.

80. Scherz N, Lamberti J, Meun M, Ibrahim SA, Fine MJ, et al. (2010) Prognostic importance of hyponatremia in patients with acute pulmonary embolism. Am J Respir Crit Care Med 182:1170–1183.

81. Hoorn EJ, Rivadeneira F, Van Meurs JB, Ziere G, Stricker BH, et al. (2011) Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. J Bone Miner Res 26:1822–1828.

82. Agarwal I, Kirubakaran C, Markandeyulu V (2004) Clinical profile and outcome of acute renal failure in South Indian children. J Indian Med Assoc 102:353–356.

83. Lee JH, Choi SJ, Lee JH, Kim SE, Seol M, et al. (2003) Severe metabolic abnormalities after alloplastic hematopoietic cell transplantation. Bone Marrow Transplant 33:63–69.

84. Saifudheen K, Jose J, Gafoor VA, Musthafa M (2011) Guillain-Barre syndrome. Clin Endocrinol (Oxf) 64:250–254.

85. Vaa EE, Asrani SK, Dunn W, Kamath PS, Shah VH (2011) Influence of serum sodium on MELD-based survival prediction in alcoholic hepatitis. Mayo Clin Proc 86:37–42.

86. Tierney WM, Martin DK, Greenlee MC, Zerbe RL, McDonald CJ (1986) The prognosis of hyponatremia at hospital admission. J Gen Intern Med 1:380–385.

87. Nakanuma A, Shuck CC, Swaminathan R (1991) Hyponatremia in a hospital population. J Med 22:83–96.

88. Koshi S, Prasad SV, Chath KS (1994) Hyponatremia in sick children: a marker of serious illness. Indian Pediatr 31:19–25.

89. Miller M, Morley JE, Rubenstein LZ (1995) Hyponatremia in a nursing home population. J Am Geriatr Soc 43:1410–1413.

90. Asolelulah K, Hastings EM, Beeching NJ, Gil V (2007) Laboratory risk factors for hospital mortality in acutely admitted patients. QJM 100:501–507.

91. Zilberberg MD, Eunzides A, Spalding J, Foreman A, Jones AG, et al. (2008) Epidemiology, clinical and economic outcomes of admission hyponatremia among hospitalized patients. Curr Med Res Opin 24:1601–1608.

92. Hampshire PA, Welch CA, McGravan LA, Francis K, Harrison DA (2009) Admission factors associated with hospital mortality in patients with haematological malignancy admitted to UK adult, general critical care units: a secondary analysis of the IGNARC Case Mix Programme Database. Crit Care 13:R137.

93. Whelan B, Bennett K, O’Riordan D, Silke B (2009) Serum sodium as a risk factor for inhospital mortality in acute unsedated general medical patients. QJM 102:173–182.

94. Whyte M, Doon G, Mill J, Crook M (2009) Lack of laboratory assessment of severe hyponatremia is associated with detrimental clinical outcomes in hospitalised patients. Int J Clin Pract 63:1451–1455.

95. Funk GC, Linshner G, Drumel W, Metzitz B, Schwarz C, et al. (2010) Incidence and prognosis of dysnatremia present on ICU admission. Intensive Care Med 36:304–311.

96. Konstam MA, Udelson JE (2009) Hyponatremia and vasopressin in heart failure: markers or mediators? Eur J Heart Fail 11:242–244.

97. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld I, Maggioni AP, et al. (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 297:1319–1331.

98. Madan VD, Novak E, Rich MW (2011) Impact of change in serum sodium concentration on mortality in patients hospitalized with heart failure and hyponatremia. Circ Heart Fail 4:637–643.

99. Lee SE, Choi DJ, Yoon CH, Oh IV, Jeon ES, et al. (2012) Improvement of hyponatremia during hospitalisation for acute heart failure is not associated with improvement of prognostic an analysis from the Korean Heart Failure Registry (KorHF) registry. Heart 99:1798–1804.

100. Goldsmith SR (2012) Hyponatremia and outcomes in patients with heart failure. Heart 98:1761–1762.

101. Verbals KS, Goldsmith SR, Greenberg A, Schrier RW, Sterns RH (2007) Hyponatremia treatment guidelines 2007– expert panel recommendations. Am J Med 120:S1–21.

102. Peri A, Pirozzi N, Parenti G, Festuccia F, Mene P (2010) Hyponatremia and outcomes in patients with heart failure. Heart 98:1798–1804.

103. Peri A (2013) Clinical review: the use of vaptans in clinical endocrinology. J Clin Endocrinol Metab 98:1321–1332.