Dkk1 and noggin cooperate in mammalian head induction

Ivan del Barco Barrantes,1 Gary Davidson,1 Hermann-Josef Gröne,2 Heiner Westphal,3 and Christof Niehrs1,4

1Divisions of Molecular Embryology, 2Department of Molecular and Cellular Pathology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; 3Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA

Growth factor antagonists play important roles in mediating the inductive effects of the Spemann organizer in amphibian embryos and its equivalents in other vertebrates. Dual inhibition of Wnt and BMP signals has been proposed to confer head organizer activity. We tested the requirement of this coinhibition in Xenopus and mice. In Xenopus, simultaneous reduction of the BMP antagonists chordin and noggin, and the Wnt antagonist dickkopf1 (dkk1) leads to anterior truncations. In mice, compound mutants for dkk1 and noggin display severe head defects, with deletion of all head structures anterior to the mid-hindbrain boundary. These defects arise as a result of a failure in anterior specification at the gastrula stage. The results provide genetic evidence for the dual inhibition model and indicate that dkk1 and noggin functionally cooperate in the head organizer.

Received April 17, 2003; revised version accepted July 10, 2003.

The primary body axis of vertebrate embryos arises and is patterned anteroposteriorly during gastrulation. Anterior signaling centers that are required for induction of head structures have been identified in gastrulae of all vertebrates. In amphibians, this induction is mediated by Spemann’s head organizer, a group of cells of anterior mesendoderm fate that is localized in the gastrula upper dorsal blastopore lip [Harland and Gerhart 1997; De Robertis et al. 2000]. In mouse gastrulae, anterior signaling centers, as defined by heterotopic transplantation, are the anterior visceral endoderm (AVE; Thomas and Bedington 1996; Tam and Steiner 1999) and the anterior mesendoderm (AME), whose progenitors are the early- and midgastrula organizers [Camus et al. 2000; Kinder et al. 2001]. Subsequently, during early neural patterning, the anterior neural ridge induces and promotes forebrain, and inducing signals include FGF8 and Tle [Rubenstein et al. 1998; Houart et al. 2002], for reviews, see Bedington and Robertson 1998, Davidson and Tam 2000, Perea-Gomez et al. 2001].

Figure 1. Functional synergy of anti-Wnts and anti-BMPs in anterior development of Xenopus embryos. (A) Two-inhibitor model: BMP and Wnt signaling pathways negatively regulate the Spemann organizer. Formation of the trunk organizer requires inhibition of BMP signals, whereas for formation of the head organizer both Wnt and BMP signals need to be inhibited. Differential expression in mesendoderm and chordamesoderm of secreted anti-Wnts (Dkk1, Frzb1, Crescent/Frzb2, and Cerberus) as well as anti-BMPs (Noggin, Chordin, Xnr3, and Follistatin) mediates regional-specific induction. (B) Specificity of noggin and chordin antisense Morpholino oligonucleotides (Mo): Embryos were injected at the two-cell stage with mRNA encoding either noggin-AP (5 ng) or chordin-AP (2 ng) and again at the four- to eight-cell stage with either noggin or chordin Mo [25 ng]. Protein lysates were prepared at stage 13 and heated at 65°C for 30 min to inactivate endogenous alkaline phosphatase. The remaining AP activity was measured. (C) Xenopus embryos were injected at the four-cell stage in two dorsal blastomeres with a total of 50 ng control Mo or 25 ng each of noggin and chordin Mo as indicated. Zero percent [n = 36] of control Mo and 10% [n = 34] of nog/chd Mo injected embryos were eyeless. Embryos injected into the blastocoel of early gastrulae with 0.1 µg of anti-Dkk1 antibody (anti-Dkk1) showed 0% [n = 32] eyeless embryos. Coinjection of nog/chd Mo together with anti-Dkk1 antibody leads to enhanced head defects (75% eyeless embryos; n = 36).
BMP antagonists chordin, noggin, follistatin, Xnr3, or cerberus [for review, see Niehrs 1999; Yamaguchi 2001]. Although Nodal antagonists can also promote head structures [Piccolo et al. 1999], this may be an indirect consequence of blocking the formation of trunk mesoderm and its associated caudalizing signals, such as Wnt8. Rather, cerberus-like/lefly double mutants reveal a requirement of anti-Nodals to restrict primitive streak formation to the posterior end of mouse embryos [Perego-Gomez et al. 2002].

Consistent with the two-inhibitor model, inhibition of Wnt signals is required for anterior specification. Zebrafish mutants for the negative intracellular regulators of Wnt signaling, tcf3/headless and ask/masterblind display anterior defects [Heisenberg et al. 2001; Kim et al. 2001; van de Water et al. 2001]. Interference with the Wnt antagonist dkk1 in Xenopus and mouse leads to head truncations [Glinka et al. 1998; Kazanskaya et al. 2000; Mukhopadhyay et al. 2001]. Furthermore, Six3 mutant mice lack forebrain structures, and this appears to be due to derepression of Wnt1 [Lagutin et al. 2003]. These negative regulators of the Wnt signaling pathway may help establish a gradient of Wnt activity patterning the antero–posterior axis [Kiecker and Niehrs 2001; Houart et al. 2002].

A requirement for BMP inhibition for normal anterior specification is supported by mice double mutant for the BMP antagonists noggin and chordin, which show a range of anterior defects [Bachiller et al. 2000; Anderson et al. 2002]. Likewise, zebrafish with reduced BMP activity have expanded anterior neural fates [Nguyen et al. 1998; Barth et al. 1999; Fekany-Lee et al. 2000].

Although these data strongly support the role of BMP and Wnt antagonists in promoting rostral cell fates, an important prediction in the above model for head induction that remains untested is that coinhibition of BMP and Wnt signaling is required for anterior specification. To test if BMP and Wnt antagonists act synergistically, we have created compound mutant mice for the Wnt antagonist dkk1 [Glinka et al. 1998; Mukhopadhyay et al. 2001] and the BMP antagonist noggin [Smith and Harland 1992; McMahon et al. 1998]. Analysis of these mice reveals a synergistic effect of both types of antagonists in the specification of anterior cell fates.

Results and Discussion

Dkk1 and anti-BMPs synergize in Xenopus

We initially tested if anti-Wnts and anti-BMPs act synergistically for head formation in Xenopus. Injection of Morpholino-antisense oligonucleotides [Mo] acting specifically against noggin [nog] or chordin [chd; Fig. 1B] alone does not result in head defects [data not shown], possibly because of the presence of pseudoalleles. Mild microcephaly was, indeed, reported for embryos injected with a combination of two different Mos against chordin, which inhibit both pseudoalleles [Oelgeschläger et al. 2003]. However, embryos coinjected with both noggin and chordin Mos show shorter trunks and minor microcephaly [Fig. 1C], consistent with results in the mouse, where they have redundant functions [Bachiller et al. 2000; Anderson et al. 2002]. If limiting doses of a specific inhibitory anti-Dkk1 antibody [Glinka et al. 1998; Kazanskaya et al. 2000] are injected in addition to nog/chd Mo, the anterior phenotype is enhanced, leading to headless and eyeless embryos [Fig. 1C, anti-Dkk1 + nog/chd Mo].

Dkk1 and Noggin synergize in mouse head induction

We next tested the requirement for dual BMP/Wnt inhibition genetically in mice. Dkk1 starts to be expressed in the AVE at embryonic day 6 [E6, data not shown], and in the anterior mesendoderm [AME] at E7 [Glinka et al. 1998]. Homozygous dkk1 mutant animals display lack of head and brain structures anterior to the mid-hindbrain boundary, as well as limb defects [Mukhopadhyay et al. 2001]. Noggin is expressed in the node and AME at E7.5 [McMahon et al. 1998; Bachiller et al. 2000], where its expression partially overlaps with that of dkk1 [Fig. 4A, B, below]. In mice lacking noggin, normal gastrulation and anterior central nervous system patterning take place, although at later stages abnormalities in posterior spinal cord, somites, and limbs are observed [McMahon et al. 1998]. Importantly, dkk1 and noggin heterozygous mice are phenotypically normal and viable, and hence intercrosses were set up between them.

![Figure 2. Dkk1−/− Nog−/− mice have head defects. Frontal (A, B, C, D) and lateral (A’, B’, C’, D’) views of wild-type (A, A’), mild (B, B’), strong (C, C’), and severe (D, D’) newborn mutant animals. Lateral view of skeletal preparations from wild-type (A”), mild (B”), and severe case (D”) newborn mice reveal gradual loss of maxillary [mx], mandibular [mn], and other bones anterior to the parietal bone [p]. Sagittal sections of wild-type [E] and severe [F] newborns show no mouth [arrowhead] or nasal structures [arrow] in the mutant. Skeletal preparation of limbs from wild-type [G] and severe Dkk1−/− Nog−/− [H] animals do not show any difference.](image-url)
Only 98 Dkk1+/− Nog−/− animals of the expected 142 \(n = 571\) survived to adulthood and were fertile. All other newborns showed head defects, which ranged from reduced maxillary structures in mild cases [Fig. 2B–B′], loss of eyes [Fig. 2C,C′], to loss of rostral head structures anterior to the parietal bone in severe cases [Fig. 2D–D′,E,F]. The variability of penetrance of the anterior defects may be due to genetic modifiers. Our analysis has focused on the severe-class animals. No defects caudal to the neck were observed including the developing limbs, which express dkk1 and noggin [Fig. 2G,H; data not shown; Brunet et al. 1998; Grotewold et al. 1999; Monaghan et al. 1999; Mukhopadhyay et al. 2001].

To understand where and when these head defects arise, we analyzed E10.5 embryos. A range of reduced telencephalic vesicles correlates with the head defects in newborns [Fig. 3A–E]. At E9.5, Fgf8 expression, which marks the commissural plate of the forebrain and the mid-hindbrain boundary (MHB; Crossley and Martin 1995; Shimamura and Rubenstein 1997), is only present in the MHB in severe Dkk1+/− Nog−/− mice [Fig. 3F,F′]. Likewise, the forebrain markers Pax6 and Six3 are not expressed in severe Dkk1+/− Nog−/− mice [Fig. 3G,G′,H,H′; Walthier and Gruss 1991; Oliver et al. 1995]. Nkx2.1, which marks the floor of the diencephalon and telencephalon [Lazzaro et al. 1991; Shimamura et al. 1995], is absent in the telencephalon in severe Dkk1+/− Nog−/− mice [Fig. 3I,I′].

Marker analysis reveals that these anterior defects are evident at gastrula stages. At E6.5, expression of the AVE markers Hex, Cerberus-like, and Lim1 [Crompton et al. 1992; Ang et al. 1994; Shawlot and Behringer 1995; Belo et al. 1997; Biben et al. 1998; Shawlot et al. 1998; Beddington and Robertson 1999; Martinez-Barbera et al. 2000a] is unaffected [Fig. 4D,D′,E,E′,F,F′]. Expression of Dkk1 was significantly down-regulated or absent in severe Dkk1+/− Nog−/− embryos [Fig. 4G,G′]. This down-regulation is not observed in Dkk1+/− embryos [data not shown]. At E7.5, expression of the notochord and node markers Hnf3β and Shh [Echelard et al. 1993; Monaghan et al. 1993; Ruiz i Altaba 1993; Ang and Rossant 1994; Chiang et al. 1996] is normal in Dkk1+/− Nog−/− embryos [Fig. 4H,H′,I,I′]. However, expression of Hex1 in AME and anterior neuroectoderm, and Six3, which marks the future forebrain [Oliver et al. 1995; Hermesz et al. 1996; Thomas and Beddington 1996; Martinez-Barbera et al. 2000b], are absent in Dkk1+/− Nog−/− embryos [Fig. 4J,J′,K,K′]. Of note, a mild constriction is visible at the anterior embryonic/extraembryonic border of Dkk1+/− Nog−/− embryos, which is characteristic of several embryos with defects in anterior patterning [Ang and Rossant 1994; Shawlot and Behringer 1995; Rhinn et al. 1998; Bachiller et al. 2000].

In intercrosses between surviving Dkk1+/− Nog−/− mice, homozygous Dkk1+/− Nog−/− mutant animals were never obtained, even when embryos were sampled at E6.5 [\(n = 0\) out of 122, with 7 expected]. This is puzzling because noggin starts to be expressed only at E7.5 by whole-mount in situ hybridization [Fig. 4B; McMahon et al. 1998; Bachiller et al. 2000]. However, by reverse transcriptase PCR (RT-PCR), noggin transcripts are detectable already at E6.5 [Fig. 4C], consistent with a requirement for both genes during early gastrulation. To explore other genotypes, surviving Dkk1+/− Nog−/− mice were bred with Noggin+/− or Dkk1+/−. Both Dkk1+/− Nog−/− and Dkk1+/− Nog−/− mice were obtained in the expected Mendelian ratio. The Dkk1+/− Nog−/− mice did not show any head defects that are not already seen in Dkk1+/− embryos [Mukhopadhyay et al. 2001; data not shown]. In contrast, all Dkk1+/− Nog−/− embryos show anterior defects that are not observed in Noggin−/− mice, ranging from cyclopia to severe reduction of head structures [Fig. 5A,A′,B,B′,C,C′,I,I′]. Similar to severe Dkk1+/− Nog−/− mice, Fgf8 expression remained only in the MHB [Fig. 5D,D′]. Pax6 and Six3 expression was absent in forebrain [Fig. 5E,E′,F,F′,G,G′]. Unlike in severe Dkk1+/− Nog−/− mice, Nkx2.1 was completely abolished in Dkk1+/− Nog−/− mice. No Hex1 expression was detected in E8.5 Dkk1+/− Nog−/− embryos [Fig. 5H,H′], indicating an early defect in forebrain development. We set out to test whether dual inhibition of BMP and Wnt signaling is required for head induction. Our data...
Representative cases of severe mutant class embryos are shown, which occur at 30% frequency. (D,E,F) Expression of Pax6, marking the dorsal forebrain and rostral midbrain, is reduced anteriorly in Dkk1+/− embryos (E,H). (F) Six3 expression in prospecive forebrain and future eye is absent in Dkk1+/− embryos (F). (G) Expression of Hex1 in forebrain is absent in E8.5 Dkk1+/− embryos (H). Sagital sections of E9.5 wild-type (I) and Dkk1+/− embryos (I') show reduction of forebrain (I). (h) Hindbrain, (m) midbrain.

Figure 4. Anterior patterning defects in Dkk1+/− Nog+/− gastrulae. Whole-mount in situ hybridization for Dkk1 [A] and Noggin [B] in E7.5 wild-type embryos shows overlapping expression in the anterior mesendoderm. [C] RT-PCR analysis of Noggin expression in E6.5 and E7.5 wild-type embryos. Whole-mount in situ hybridization of wild-type [D,E,F,G,H,I,J,K] and Dkk1+/− Nog+/− [D',E',F', G',H',I',J',K'] embryos at E6.5 [D-G'] and E7.5 [H-K']. Representative cases of severe mutant class embryos are shown, which occur at 30% frequency. (D,E,F) Hex, Cerb-l, and Lim1 expression in AVE (arrowhead) and Lim1 primitive streak expression [arrow] are unaffected in Dkk1+/− Nog+/− embryos [D',E',F',H',I',J',K']. Expression of Six3 in E6.5 wild-type (C) and E7.5 wild-type embryos (C') shows reduction of forebrain (C). Expression of Nkx2.1 in forebrain is absent in E8.5 Dkk1+/− Nog+/− embryos (C). Expression of Hesx1 in E7.5 wild-type (D) and E7.5 Dkk1+/− Nog+/− (D') embryos shows reduction of forebrain (F). (h) Hindbrain, (m) midbrain. (I) Sagital sections of E9.5 wild-type (I) and Dkk1+/− Nog+/− embryos (I') show reduction of forebrain (I). (h) Hindbrain, (m) midbrain.

Figure 5. Head defects in Dkk1+/− Nog+/− embryos. Frontal [A,B,C] and lateral [A',B',C'] views of newborn noggin mutant [Nog+/− in A,A'] and Dkk1+/− Nog+/− mutants [B,B',C,C'] showing head defects, ranging from cyclopia [arrowhead in B] to complete lack of most anterior structures [C,C']. Whole-mount in situ hybridization of E9–E9.5 wild-type [D,E,F,G] and Dkk1+/− Nog+/− mutants [D',E',F',G']. (D) Expression of Fgf8, in the commissural plate (arrowhead) and isthmus (arrow), is only present in the isthmus in Dkk1+/− Nog+/− embryos [D']. (E) Pax6, marking the dorsal forebrain and rostral midbrain, is reduced anteriorly in Dkk1+/− Nog+/− embryos [E']. (F) Six3 expression in prospecive forebrain and future eyes is absent in Dkk1+/− Nog+/− embryos [F]. (G) Ventral diencephalon and the floor of the telencephalon are marked by Nkx2.1 expression, in Dkk1+/− Nog+/− embryos both domains of expression are missing [G']. (H) Expression of Hex1 in forebrain is absent in E8.5 Dkk1+/− Nog+/− embryos [H]. Sagital sections of E9.5 wild-type [I] and Dkk1+/− Nog+/− embryos [I'] show reduction of forebrain [I]. (h) Hindbrain, (m) midbrain.
Materials and methods

Genotyping and whole-mount in situ hybridization

Dkk1 (Mukhopadhyay et al. 2001) and Noggin (McMahon et al. 1998) heterozygotes were interbred to generate double-heterozygotes (Dkk1+/−; Noggin−/−) mutants by timed matings (Hogan et al. 1994). In the same way Dkk1−/−; Noggin−/− mutant embryos were generated by mating surviving Dkk1−/−; Noggin−/− mice with Noggin−/− mice. Embryos were staged as described previously (Kaufman 1992; Downs and Davies 1993). Both lines were kept in a C57Bl/6 genetic background.

Adults, newborns, and embryos were genotyped by Southern or gene-specific PCR, using DNA from tail or visceral yolk sacs (Hogan et al. 1994). In some experiments, E6.5 and E7.5 embryos were genotyped after in situ hybridization using the whole embryos (Martinez-Barbera et al. 2000a,b).

Embryos were isolated in ice-cold phosphate-buffered saline (PBS), fixed overnight in 4% paraformaldehyde, and processed for whole-mount in situ hybridization as described for E9–E9.5 (Koop et al. 1996) and E6.5–E7.5 embryos (Lowe and Kuehn 2000). Color development was carried out using 4 mM nitroblue tetrazolium (NBT) solution and 0.05 mM 5-bromo-4-chloro-3-indolyl phosphate (BCIP) in NTMT (100 mM NaCl, 100 mM Tris-HCl at pH 9.5, 50 mM MgCl2, 0.1% Tween-20) with 2 mM levamisole.

PCR primers. RT-PCR, and antisense Morpholino oligonucleotides

PCR genotyping primers for Dkk1 wild type were described [Mukhopadhyay et al. 2001] and Dkk1 mutant-specific primers were forward, 5′-GAGAAGGCGCACAGCGGTAGCT-3′; reverse, 5′-TACCCGGTGTGTTGAAATGTG-3′. The Noggin wild-type and mutant specific primers were as described [McMahon et al. 1998]. Noggin expression was analyzed in E6.5 and E7.5 wild-type embryos. Total RNA (RNAeasy kit, Qiagen) was used for in vitro cDNA synthesis (Superscript II kit, GIBCO). The primers were: β-actin forward, 5′-GTGGGCCCCTCTTAGGCACCAAA-3′; reverse, 5′-CTCTTTGATGTCACGACGATATT-3′; Noggin as described [McMahon et al. 1998]. The antisense Morpholino oligonucleotides were Noggin, 5′-TCACAGGGCACGTGGGAATGATCAT-3′; Chordin, 5′-GAGACTGATTTGTGTGTTCCAA-3′.

Histology and skeletal preparations

Hematoxylin/eosin staining was carried out in newborns and E9.5 embryos, which were fixed overnight in 4% paraformaldehyde, dehydrated, embedded in paraffin, and sectioned at 6 µm (Hogan et al. 1994). Cartilage and bone were stained with alcian blue and alizarin red (Wallin et al. 1994).

Acknowledgments

We are indebted to R. Harland for providing Noggin mutant mice. We thank R. Harland and P. Tam for advice and for critical reading of the manuscript, M. Blum for teaching early embryo dissections, D. Baldewski for helpful comments, S.L. Ang for providing probes, and J.P. Martinez-Barbera and F.D. Vella for helpful discussions. Dana Hoppe and Claudia Schmidt kindly assisted during mouse work and histology.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Anderson, R.M., Lawrence, A.R., Stottmann, R.W., Bachiller, D., and Klingensmith, J. 2002. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 129: 4975–4987.

Ang, S.L. and Rossant, J. 1994. HNF-3β is essential for node and notochord formation in mouse development. Cell 78: 561–574.

Ang, S.L., Conlon, R.A., Jin, O., and Rossant, J. 1994. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120: 2979–2999.

Bachiller, D., Klingensmith, J., Kemp, C., Belo, J.A., Anderson, R.M., May, S.R., McMahon, J.A., McMahon, A.P., Harland, R.M., and Rossant, J., et al. 2000. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661.

Barth, K.A., Kishimoto, Y., Rohr, K.B., Seydler, C., Schulte-Merker, S., and Wilson, S.W. 1999. Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126: 4977–4987.

Bedington, R.S.P. and Robertson, E.J. 1998. Anterior patterning in mouse. Trends Genet. 14: 277–284.

1999. Axis development and early asymmetry in mammals. Cell 96: 195–209.

Belen, J.A., Bouwmeester, T., Leyns, L., Kertesz, N., Gallo, M., Follette, M., and De, R.E. 1997. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 65: 45–57.

Büchen, C., Stanley, E., Fabh, L., Kotecha, S., Rhinn, M., Drinkwater, C., Lah, M., Wang, C.C., Nash, A., Hilton, D., et al. 1998. Murine cerberus homologue mCer-1: A candidate anterior patterning molecule. Dev. Biol. 194: 135–151.

Brunet, L.J., McMahon, J.A., McMahon, A.P., and Harland, R.M. 1998. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457.

Camus, A., Davidson, B.P., Billiards, S., Kho, P., Rivera-Perez, J.A., Wakamiya, M., Behringer, R.R., and Tam, P.P. 2000. The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo. Development 127: 1799–1813.

Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., and Beachy, P.A. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413.

Crompton, M.R., Bartlett, T.J., MacGregor, A.D., Mani, M., Buratti, E., Giancotti, V., and Goodwin, G.H. 1992. Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res. 20: 5661–5667.

Crossley, P.H. and Martin, G.R. 1995. The mouse Fgf8 gene encodes a family of polypectides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439–451.

Davidson, B.P. and Tam, P.P. 2000. The node of the mouse embryo. Curr. Biol. 10: R617–R619.

De Robertis, E.M., Larrian, J., Oelgeschlager, M., and Wessely, O. 2000. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1: 171–181.

Downs, K.M. and Davies, T. 1993. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118: 1255–1266.

Echelard, Y., Epstein, D.J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J.A., and McMahon, A.P. 1993. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430.

Fekaney-Lee, K., Gonzalez, E., Miller-Bertoglio, V., and Solnica-Krezel, L. 2000. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127: 2333–2345.

Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C., and NIchrs, C. 1997. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 39: 515–519.

Glinka, A., Wu, W., Delius, H., Monaghan, A.P., Blumenstock, C., and NIchrs, C. 1998. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362.

Grotewold, L., Theil, T., and Rüther, U. 1999. Expression pattern of dkk-1 during mouse limb development. Mech. Dev. 89: 151–153.

Harland, R.M. and Gerhart, J. 1997. Formation and function of Spemann's organizer. Annu. Rev. Dev. Biol. 13: 611–667.

Heisenberg, C.P., Houart, C., Take-Uchi, M., Rauch, G.I., Young, N., Coutinho, P., Masai, I., Campero, L., Concha, M.L., Geisler, R., et al. 2001. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes & Dev. 15: 1427–1434.

Hermsz, E., Mackern, S., and Mahon, K.A. 1996. Rpx: A novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development 122: 41–52.

Hogan, B., Beddington, R., Costantini, F., and Lacy, E. 1994. Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
del Barco Barrantes et al.

Houart, C., Caneparo, L., Heisenberg, C., Barth, K., Take-Uchi, M., and Wilson, S. 2002. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. *Neuror 35*: 255–265.

Kaufman, M.H. 1992. *The atlas of mouse development*. Academic Press, London.

Kazanskaya, O., Glinka, A., and Niehrs, C. 2000. The role of *Xenopus* dickkopf1 in prechordal plate specification and neural patterning. *Development 127*: 4981–4992.

Kiecker, C. and Niehrs, C. 2001. The morphogen gradient of Wnt/β-catenin signaling regulates anteroposterior neural patterning in *Xenopus*. *Development 128*: 4189–4201.

Kim, A.S., Lowenstein, D.H., and Pleasure, S.J. 2001. Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. *Mech. Dev. 103*: 167–172.

Kinder, S.J., Tsang, T.E., Wakamiya, M., Sasaki, H., Behringer, R.R., Nagy, A., and Tam, P.P. 2001. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. *Development 128*: 3633–3634.

Koop, K.E., MacDonald, L.M., and Lobe, C.G. 1996. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. *Mech. Dev. 59*: 73–87.

Lagutin, O.V., Zhub, C.C., Kobayashi, D., Topczewski, J., Shimamura, K., Puelles, L., Russell, H.R., McKinnon, P.J., Solnica-Krezel, L., and Oliver, G. 2003. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. *Genes & Dev. 17*: 388–397.

Lazzaro, D., Price, M., de Felice, M., and Di Lauro, R. 1991. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. *Development 113*: 1093–1104.

Lowe, I.A. and Kuehn, M.R. 2000. Whole mount in situ hybridization to study gene expression during mouse development. *Methods Mol. Biol. 137*: 125–137.

Martinez-Barbera, J.P., Clements, M., Thomas, P., Rodriguez, T., Meloy, D., Kioussis, D., and Beddington, R.R. 2000a. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. *Development 127*: 2433–2445.

Martinez-Barbera, J.P., Rodriguez, T.A., and Beddington, R.R. 2000b. The homeobox gene Hhex is required in the anterior neural ectoderm for normal forebrain formation. *Dev. Biol. 223*: 422–420.

McMahon, J.A., Takada, S., Zimmerman, L.B., Fan, C.M., Harland, R.M., and McMahon, A.P. 1998. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somitogenesis. *Genes & Dev. 12*: 1438–1452.

Monaghan, A.P., Kaestner, K.H., Grau, E., and Schutz, G. 1993. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 α, β and γ genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. *Development 119*: 567–578.

Monaghan, A.P., Kioschis, P., Wu, W., Zuniga, A., Bock, E., Pousta, K., Delius, H., and Niehrs, C. 1999. Dickkopf genes are co-ordinately expressed in mesodermal lineages. *Mech. Dev. 87*: 45–56.

Mukhopadhyay, M., Sh trom, S., Rodriguez-Esteban, C., Chen, L., Tsukui, T., Gomez, L., Dorward, D.W., Glinka, A., Grinberg, A., Huang, S.P., et al. 2001. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. *Dev. Cell 1*: 423–434.

Nguyen, V.H., Schmid, B., Trout, J., Connors, S.A., Ekker, M., and Mullins, M.C. 1998. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2/bmp4 swirr pathway of genes. *Dev. Biol. 199*: 93–110.

Niehrs, C. 1999. Head in the WNT. The molecular nature of Spemann’s head organizer. *Trends Genet. 15*: 314–319.

Olbers, M., Kuroda, H., Rebersade, B., and de Robertis, E.M. 2003. Chordin is required for Spemann organizer formation in zebrafish embryos. *Dev. Cell 4*: 219–230.

Olivier, G., Miallhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., and Gruss, P. 1995. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. *Development 121*: 4045–4055.

Perea-Gomez, A., Vella, F.D., Shawlot, W., Oulad-Abdelghani, M., Chazaud, C., Meno, C., Piester, V., Chen, L., Robertson, E., Hamada, H., et al. 2002. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. *Dev. Cell 3*: 745–756.

Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H., Bouwmeester, T., and De Robertis, E.M. 1999. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. *Nature 397*: 707–710.

Rhinn, M., Dietrich, A., Shawlot, W., Behringer, R.R., Le Meur, M., and Ang, S.L. 1998. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. *Development 125*: 845–856.

Rubenstein, J.L., Martinez, S., and Puelles, L. 1998. Regionalization of the prosencephalic neural plate. *Annu. Rev. Neurosci. 21*: 445–477.

Ruiz Altaba, A. 1993. Induction and axial patterning of the neural plate: Planar and vertical signals. *J. Neurobiol. 24*: 1276–1304.

Shawlot, W. and Behringer, R.R. 1995. Requirement for Lim1 in head-organizer function. *Nature 374*: 425–430.

Shawlot, W., Deng, J.M., and Behringer, R.R. 1998. Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. *Proc. Natl. Acad. Sci. U.S.A. 95*: 6198–6203.

Shimamura, K. and Rubenstein, J.L. 1997. Inductive interactions direct early regionalization of the mouse forebrain. *Development 124*: 2709–2718.

Shimamura, K., Hartigan, D.J., Martinez, S., Puelles, L., and Rubenstein, J.L. 1995. Longitudinal organization of the anterior neural plate and neural tube. *Development 121*: 3923–3933.

Smith, W.C. and Harland, R.M. 1992. Expression cloning of noggin, a new drosophila factor localized to the Spemann organizer in Xenopus embryos. *Cell 70*: 829–840.

Tam, P.P. and Stein, K.A. 1999. Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. *Development 126*: 5171–5179.

Thomas, P. and Beddington, R. 1996. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. *Curr. Biol. 6*: 1487–1496.

van der Wetering, S., van der Wetering, M., Joore, J., Esseling, J., Bink, R., Cleviers, H., and Zivkovic, D. 2001. Ecotropic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. *Development 128*: 3877–3888.

Wallin, J., Wilting, J., Koseki, H., Fritsch, R., Christ, B., and Balling, R. 1994. The role of Pax-1 in axial skeleton development. *Development 120*: 1109–1121.

Walther, C. and Gruss, P. 1991. Pax-6, a murine paired box gene, is expressed in the developing CNS. *Development 113*: 1435–1449.

Yamaguchi, T.P. 2001. Heads or tails: Wnts and anterior-posterior patterning. *Curr. Biol. 11*: R713–R724.
Dkk1 and noggin cooperate in mammalian head induction

Ivan del Barco Barrantes, Gary Davidson, Hermann-Josef Gröne, et al.

Genes Dev. 2003. 17:
Access the most recent version at doi:10.1101/gad.269103

References
This article cites 59 articles, 25 of which can be accessed free at: http://genesdev.cshlp.org/content/17/18/2239.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.