The Impact of IncRNA Dysregulation on Clinicopathology and Survival of Breast Cancer: A Systematic Review and Meta-analysis

Tian Tian,1,5 Meng Wang,1,2 Shuai Lin,1,5 Yan Guo,2 Zhiming Dai,3 Kang Liu,1 Pengtao Yang,1 Cong Dai,1 Yuyao Zhu,1 Yi Zheng,1 Peng Xu,1 Wenge Zhu,4 and Zhijun Dai1

1Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China; 2School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, China; 3Department of Anesthesia, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China; 4Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA

Dysregulation of multiple long non-coding RNAs (lncRNAs) was reported to play major roles in breast cancer (BC). Here we aimed to collect most of the relevant literature to assess the prognostic value of lncRNAs in BC. To this end, we systematically searched PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang to identify published articles on the associations of lncRNAs with clinicopathology and/or survival of BC. Via this searching, we identified 70 articles involving 9,307 BC patients and regarding 48 lncRNAs. The expression of 41 lncRNAs was related to one or more clinicopathological parameters of BC, including tumor size; lymph node metastasis; histological grade; TNM stage; and estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) statuses (p < 0.05). Dysregulation of 28 lncRNAs was associated with overall survival, and abnormal expression of 9 lncRNAs was linked to disease-free survival. Furthermore, the expression level of 3 lncRNAs was correlated with metastasis-free survival, 3 lncRNAs with relapse-free survival, and 3 lncRNAs with progression-free survival. Our analysis showed that multiple lncRNAs were significantly associated with BC clinicopathology and survival. A large-scale study is needed to verify the prognostic value of these lncRNAs in BC.

INTRODUCTION

Breast cancer (BC) is the most common type of cancer among women and the main cause of female cancer death in the world.1 Although the survival rates of BC have been improved by early detection and progress in treatment, it remains to be a frequent malignancy with a poor survival.2,3 Many studies on the role of lncRNAs in BC revealed that the expression level of lncRNAs was associated with BC clinical features and possibly making them diagnostic or prognostic biomarkers or potential therapeutic targets for cancer.15–17

In recent years, more and more BC studies have focused on long non-coding RNAs (lncRNAs) because of their key roles in human diseases, including cancer.9 lncRNAs are a class of RNA transcripts, with a length of >200 nt, that do not encode proteins. They were proven to be involved in diverse biological processes, such as chromosome remodeling, epigenetic modulation, and transcriptional and posttranscriptional modifications.10,11 Studies have revealed that lncRNAs play an important role in cancer biology, and the expression of specific lncRNAs is implicated in the development and progression of cancer.12 For example, enforced expression of HOTAIR in epithelial cancer cells can induce genome-wide re-targeting of polycomb repressive complex 2 (PRC2), leading to altered histone H3 lysine 27 methylation and gene expression, and thus it promotes cancer invasiveness and metastasis in a manner dependent on PRC2.13 In BC, BCAR4 can bind to two transcription factors (SNIP1 and PUNTS) with extended regulatory consequences, and it relieves inhibition of RNA polymerase II (Pol II) via activation of the PP1 phosphatase. Thus, it activates a noncanonical Hedgehog/GLI2 pathway that promotes cell migration.14 Moreover, a large number of lncRNAs, such as MALAT1, MEG3, HOTAIR, CCAT2, H19, etc., are dysregulated in multiple tumors, including BC, hepatocellular carcinoma, and kidney cancer, possibly making them diagnostic or prognostic biomarkers or potential therapeutic targets for cancer.15–17

Traditionally, we used clinicopathological features, including tumor size, lymph node status, TNM stage, histological grade, hormone receptor status, and human epidermal growth factor receptor 2 (HER-2) amplification, to predict the patient outcome.4 In addition, several biomarkers, such as tumor-associated macrophages (TAMs), microRNAs, matrix metalloproteinases (MMPs), retinoic acid receptor α (RARA), Ki-67, aromatase, osteopontin, etc., have also been identified.7

Received 23 November 2017; accepted 20 May 2018; https://doi.org/10.1016/j.omtn.2018.05.018.

These authors contributed equally to this work.

Correspondence: Zhijun Dai, Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
E-mail: dzj0911@xjtu.edu.cn

Correspondence: Wenge Zhu, Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA
E-mail: wz6812@gwu.edu
IncRNAs	Reference	Country	Race	Number of Patients	Expression in Tumor	Method	Sample Type	Cutoff	Survival	Follow-up (Month)	Quality Score
MALAT1	26	China	Asian	43	upregulated	qRT-PCR	tissue	median	OS	60	7
	25	China	Asian	118	upregulated	qRT-PCR	tissue	NR	OS	50	7
	20	France	Caucasian	446	upregulated	qRT-PCR	tissue	3.02-fold	NR	NR	7
	24	China	Asian	139	upregulated	qRT-PCR	tissue	median	OS	55	7
	22	China	Asian	204	upregulated	qRT-PCR	tissue	75% expression	RFS	65	8
	21	China	Asian	135	downregulated	qRT-PCR	tissue	NR	NR	NR	6
	23	China	Asian	78	upregulated	qRT-PCR	tissue	median	DFS	60	8
	27	China	Asian	86	upregulated	qRT-PCR	tissue and serum	median	OS	NR	5
	31	China	Asian	120	upregulated	qRT-PCR	tissue	NR	OS	90	6
	32	Iran	Caucasian	48	normal	qRT-PCR	tissue	median	NR	NR	6
	61	Netherlands	Caucasian	747	upregulated	qRT-PCR	tissue	quartile	OS, MFS	>120	7
	60	China	Asian	67	upregulated	qRT-PCR	tissue	8-fold	OS	60	7
	62	Germany	Caucasian	129	NR	qRT-PCR	tissue	median	MFS	120	8
	15	America	Caucasian	132	upregulated	qRT-PCR	tissue	125-fold	OS, MFS	180	8
	83	Denmark	Caucasian	488	NR	microarray	tissue	mean	OS, RFS	86	8
	84	Italy	Caucasian	336	NR	qRT-PCR	tissue	median	OS	40	5
	85	China	Asian	30	NR	qRT-PCR	tissue	median	NR	NR	6
	44	America	Caucasian	94	NR	ISH	tissue	median	DFS	48	7
	43	China	Asian	112	upregulated	qRT-PCR	serum	median	DFS	48	7
MEG3	28	China	Asian	90	downregulated	qRT-PCR	tissue	NR	OS, DFS	80	6
	29	China	Asian	207	downregulated	qRT-PCR	tissue	median	OS, DFS	80	6
	30	China	Asian	257	downregulated	qRT-PCR	tissue	ΔCt = 8.065	OS, RFS	60	8
TUSC7	34	China	Asian	42	downregulated	qRT-PCR	tissue	median	NR	NR	6
	35	Germany	Caucasian	96	NR	qRT-PCR	tissue	NR	NR	NR	6
BCAR4	36	Netherlands	Caucasian	786	NR	qRT-PCR	tissue	detection limit	OS, PFS, MFS	97	8
TP73-AS1	37	China	Asian	86	upregulated	qRT-PCR	tissue	median	NR	NR	8
	36	China	Asian	36	upregulated	qRT-PCR	tissue	median	OS	48	8
NEAT1	40	China	Asian	118	upregulated	qRT-PCR	tissue	NR	OS	60	6
	39	China	Asian	70	upregulated	qRT-PCR	tissue	NR	OS	60	6
	40	China	Asian	40	upregulated	qRT-PCR	tissue	2-fold	OS	24	6
TUG1	41	China	Asian	100	upregulated	qRT-PCR	tissue	mean	NR	NR	7
	42	China	Asian	58	downregulated	qRT-PCR	tissue	mean	NR	NR	6
CRNDE	46	China	Asian	103	upregulated	qRT-PCR	tissue & serum	NR	OS	NR	6

OS, overall survival; DFS, disease-free survival; MFS, metastasis-free survival; RFS, relapse-free survival; PFS, progression-free survival; NR, not report; ISH, in situ hybridization.
outcome.17–19 By far, however, no study has evaluated these associations systematically. Therefore, we conducted this systematic review to clarify the present state of knowledge about the correlations between lncRNAs and BC clinicopathology and survival.

RESULTS

Characteristics of Included Studies

A total of 991 articles was identified by mining databases and manual searching, and 732 articles were left after removing duplication. After screening titles and abstracts, 111 full-text articles remained for further assessment, and 41 articles were excluded according to the selection criteria. Finally, 70 articles involving 9,307 patients were included in the review. The main characteristics and quality score of studies included in the meta-analysis are presented in Table 1, and the information on the rest of the studies is shown in Table S1. Most of these articles were published within the last 3 years. Among all these articles, 63 articles involving 48 lncRNAs described the clinicopathological features of BC, and 48 articles involving 32 lncRNAs investigated the survival of BC.

Association of lncRNA Expression with Clinicopathological Features of BC

Ten lncRNAs, MALAT1, MEG3, CCAT2, BCAR, TUSC7, TP73-AS1, NEAT1, TUG1, HOTAIR, and CRNDE, were included in meta-analyses for clinicopathological features of BC, and 48 articles involving 32 lncRNAs investigated the survival of BC.

Figure 1. Forest Plots of the Significant Associations between the Expression of Five lncRNAs and Clinical Features of Breast Cancer

Each square indicates a study, and the area of squares is proportional to the weight of the study. The diamond represents the pooled OR and 95% CI.
Another 24 lncRNAs were also correlated with OS of BC. Among them, the elevated expression of 7 lncRNAs (FGF14-AS2, AFAP1-AS1, EPB41L4A-AS2, BC040587, EGOT, GAS6-AS1, and FENDRR) related to a better survival, while increased expression of the other 17 lncRNAs (BCAR4, HOTTIP, CCAT1, Z38, TUNAR, CRNDE, HULC, MVII, TP73-AS1, linc-ITGB1, PVT1, UCA1, OR3A4, DANC, LINP1, SNHG15, and SUMO1P3) related to a worse survival (Figure 4). The expression of 9 lncRNAs (MALAT1, HOTTIP, MVII, LINC00978, linc-ITGB1, MEG3, GAS6-AS1, HOTAIR, and LINP1) had an impact on disease-free survival (DFS) of BC. Furthermore, MALAT1, MEG3, and HOTAIR levels had a relationship with relapse-free survival (RFS); CCAT1, MEG3, and FENDRR levels were associated with progression-free survival (PFS); and the expression of BCAR4 was related to MFS. The detailed information is provided in Table 3.

DISCUSSION

Increasing evidence has demonstrated that lncRNAs are involved in the initiation and progression of cancer and participate in multiple biological behaviors of cancer, including cell proliferation, apoptosis, migration, and metastasis. Aberrant expression of lncRNAs has been observed in various types of cancer, including BC. Previous reviews and meta-analyses have reported the prognostic values of lncRNAs in multiple cancers, such as colorectal cancer, ovarian cancer, prostate cancer, lung cancer, etc. However, no one investigated BC specifically. Since many studies found that dysregulation of multiple lncRNAs may have an impact on the prognosis of BC, we conducted this systematic review to highlight the prognostic values of lncRNAs in BC. To our knowledge, this review is a thorough work that comprehensively clarifies the association of lncRNA expression with clinicopathological features and survival of BC.

In the present study, we systematically reviewed all the published literature regarding the clinical and prognostic values of lncRNAs in BC. We identified a number of relevant lncRNAs, most of which have been studied only once. We found that the expression levels of these lncRNAs were most often linked to tumor size (n = 15), lymph node metastasis (n = 24), and TNM stage (n = 21), while fewer of them associated with histological grade (n = 9), hormone receptor status (n = 9), and HER-2 status (n = 6). Moreover, several lncRNAs were related to more than two clinical features of BC. However, all the lncRNA expression had no relationship with patient age. These results indicated the intrinsic role of lncRNAs in the pathogenesis and progression of BC, which suggested lncRNAs may be important biomarkers for BC. As for survival, most of the studies investigated the relationship between lncRNA expression and OS, and a majority of them (n = 28) had a statistically significant correlation with the OS of BC. Only a few studies evaluated the associations of lncRNA expression with other types of survival, including DFS, MFS, PFS, and RFS, and there was also a strong connection between them. The detailed information is provided in Table 3.

Table 2. Summary of IncRNAs Related to Clinicopathological Features of Breast Cancer

Clinicopathological Feature	IncRNA
Tumor size	SNHG12, HOTTIP, H19, CRNDE, SPRY4-IT1, FGF14-AS2, AP001P1-3, EGOT, 91H, HOXA-A52, PT11, CRALA, SNHG15, SUMO1P3, ARA
LN metastasis	NEAT1, SNHG12, HOTTIP, CCAT1, AFAP1-AS1, Z38, TUNAR, FGF14-AS2, HULC, EGOT, 91H, HIFI-A52, UCA1, lnc-ROR, HOXA-A52, GAS6-AS1, linc-ITGB1, DANC, PVT1, OR3A4, CRALA, FENDRR, SNHG15, SUMO1P3
Histological grade	MEG3, CCAT1, TUNAR, EPB41L4A-AS2, HULC, BC040587, GAS6-AS1, DANC, OR3A4
TNM stage	TP73-AS1, NEAT1, HOTTIP, CCAT1, AFAP1-AS1, ACT2-AS1, Z38, SPRY4-IT1, FGF14-AS2, EPB41L4A-AS2, HULC, HOXA-A52, linc-ITGB1, DANC, PVT1, OR3A4, CRALA, HOXB-A55, LINP1, SNHG15, SUMO1P3
ER status	BCAR4, H19, LINC00978, EPB41L4A-AS2, CRALA
PR status	MALAT1, H19, EPB41L4A-AS2, CRALA, FENDRR
HER-2 status	TUSC7, 91H, ANRASSF1, OR3A4, FENDRR

Prognostic Value of IncRNA Expression for BC Survival

Five lncRNAs, including MALAT1, MEG3, CCAT2, HOTAIR, and NEAT1, were included in meta-analyses for survival. As shown in Figure 2, patients with high expression of CCAT2, MALAT1, or NEAT1 had shorter overall survival (OS) (hazard ratio [HR] = 1.29, 95% CI: 1.03–1.63, p = 0.03; HR = 2.78, 95% CI: 1.95–3.97, p < 0.01; HR = 1.65, 95% CI: 1.08–2.54, p = 0.02, respectively), while an increased level of MEG3 was associated with better OS (HR = 0.47, 95% CI: 0.37–0.71, p < 0.01). In addition, elevated expression of CCAT2 or HOTAIR was related to poor metastasis-free survival (MFS) (HR = 1.18, 95% CI: 1.02–1.36, p = 0.03; HR = 1.90, 95% CI: 1.41–2.55, p < 0.01, respectively) (Figure 3).
in BC. Hence, these lncRNAs may be independent predictors of prognosis in BC.

The most frequently evaluated lncRNAs in BC included MALAT1, MEG3, CCAT2, and HOTAIR. All of them are statistically significant predictors of BC prognosis. The expression of MALAT1, CCAT2, and HOTAIR was increased in BC, and the upregulation was associated with shorter survival. The expression of HOTAIR was downregulated in BC. Tumor with a lower MEG3 expression tended to be poorly differentiated, and the survival of patients was worse. This indicated the oncogenic role of MALAT1, CCAT2, and HOTAIR in BC, whereas MEG3 may be a tumor suppressor of BC. In terms of mechanism, MALAT1 was reported to mainly act as a competing endogenous RNA (ceRNA) to sponge microRNAs, thus regulating cell progression, invasion, and metastasis in BC through their targets.24–26 CCAT2 can promote BC tumor growth and metastasis by regulating Wnt- and transforming growth factor β (TGF-β)-signaling pathways.80,94 HOTAIR was proven to promote BC metastasis through inducing or repressing critical genes in cell proliferation and migration as well as modulating the cancer epigenome.13,95 As for MEG3, it can inhibit cell proliferation, invasion, and angiogenesis both by sponging microRNAs and through regulating signaling transduction, such as the AKT and TGF-β pathways.28,96,97

![Figure 2. Forest Plots of the Associations between the Expression of Five IncRNAs and Breast Cancer Overall Survival](https://www.moleculartherapy.org)
Overall, the results are comprehensive and credible because the quality of included articles is relatively high. However, there are still limitations in our analysis. First, heterogeneity exists between studies regarding the same lncRNA, and the heterogeneity is stubborn owing to the differences in methodology, such as sample selection, tissue preservation, determination of cutoff value, and statistical analysis. Second, almost all the studies in our review reported a statistically significant result. Although the Begg’s funnel plot suggested there is no publication bias on OS (Figure S1), we still suspect that selective reporting bias is prominent in the literature regarding lncRNA and BC prognosis. Third, about half of the included studies had a small sample size (<100), and small studies are considered associating with inflated estimates of effect size and higher heterogeneity. Lastly, language bias may exist since only two languages were used in the literature review.
Our analysis demonstrated the prognostic value of lncRNAs in BC, and it highlighted the important biological function of lncRNAs in BC progression. These lncRNAs may exert their effects by directly binding to functional protein, modulation of DNA methylation, or post-transcriptional regulation of target genes. These genes and proteins include those that are involved in tumorigenesis and metastasis, such as Wnt, P53, PI3K, MYC, etc. Therefore, dysregulation of certain lncRNAs may have an effect on the development of BC, thus influencing the outcome of BC. Though the exact mechanisms are not yet fully clarified, we believe they will be better understood in the future with more studies in this field.

In conclusion, this systematic review identified a number of lncRNAs that were correlated with BC clinicopathological features and survival, and almost all the lncRNAs are statistically significant predictors of BC prognosis. The weightiness of these correlations is difficult to ascertain due to a lot of uncontrollable factors. Hence, a large-scale study with a standardized process of detection, analysis, and report is needed to further verify the prognostic value of these lncRNAs in BC.

MATERIALS AND METHODS

This review has been performed based on preferred reporting items for systematic reviews and meta-analyses (PRISMA). Two authors (T.T. and M.W.) reviewed potentially eligible articles independently. The Newcastle-Ottawa Scale was used to assess the quality of each study. The following information was extracted from each included study: (1) original study focus on human beings; (2) investigated the relationship between lncRNA expression and clinicopathological features or survival of BC; (3) reported an OR or HR with 95% CI or there were sufficient data to calculate them; (4) full text was available. Exclusion criteria were as follows: (1) lacked key information, such as clinical parameters and survival curves, or lacked usable data; (2) reprocessed data from public databases; (3) HRs were for a combination of multiple lncRNAs; and (4) reviews, letters, single case reports, and conference abstracts. If multiple articles published by the same author reporting overlapping data, only the most complete one was included. The details about the selection process are shown in Figure 5.

Quality Assessment and Data Extraction

Two authors (T.T. and M.W.) reviewed potentially eligible articles independently. The Newcastle-Ottawa Scale was used to assess the quality of each study. The following information was extracted from each included study: (1) original study focus on human beings; (2) investigated the relationship between lncRNA expression and clinicopathological features or survival of BC; (3) reported an OR or HR with 95% CI or there were sufficient data to calculate them; (4) full text was available. Exclusion criteria were as follows: (1) lacked key information, such as clinical parameters and survival curves, or lacked usable data; (2) reprocessed data from public databases; (3) HRs were for a combination of multiple lncRNAs; and (4) reviews, letters, single case reports, and conference abstracts. If multiple articles published by the same author reporting overlapping data, only the most complete one was included. The details about the selection process are shown in Figure 5.

Statistical Analysis

ORs and their 95% CIs were used to estimate the association of lncRNAs with clinical features of BC. Patients were divided into two groups for comparison (for instance, histological grade III versus I and II, TNM stages III and IV versus I and II, and ER/PR status positive versus negative). As for survival rates, HRs with corresponding 95% CIs were used. All the ORs and HRs were calculated for high expression of lncRNAs. When two or more different studies investigated the same lncRNA, a meta-analysis was carried out to combine the effect size. The Z test was used to determine the significance of ORs or HRs. Heterogeneity between studies was tested using the following keywords and search terms were used: long noncoding RNA or long ncRNA or IncRNA or lincRNA or long intergenic non-coding RNA or long untranslated RNA, BC or breast carcinoma or breast tumor or breast neoplasm, and clinical or clinicopathological or clinicopathology or survival or odds ratio or OR or hazard ratio or HR. Additionally, references in relevant articles were also screened manually. The languages of the retrieved literature were confined to English and Chinese.

Inclusion and Exclusion Criteria

Studies were included if they fulfilled the following criteria: (1) original study focus on human beings; (2) investigated the relationship between lncRNA expression and clinicopathological features or survival of BC; (3) reported an OR or HR with 95% CI or there were sufficient data to calculate them; (4) full text was available. Exclusion criteria were as follows: (1) lacked key information, such as clinical parameters and survival curves, or lacked usable data; (2) reprocessed data from public databases; (3) HRs were for a combination of multiple lncRNAs; and (4) reviews, letters, single case reports, and conference abstracts. If multiple articles published by the same author reporting overlapping data, only the most complete one was included. The details about the selection process are shown in Figure 5.

Table 3. Summary of Other Significant Associations of lncRNAs with Breast Cancer Survival

Survival	lncRNA	HR and 95% CI	Analysis	Reference
DFS	MALAT1	2.36 (1.04–5.38)	univariate	22
DFS	HOTTIP	4.08 (1.13–14.71)	multivariate	53
DFS	MVIH	2.55 (1.06–6.12)	multivariate	47
DFS	LINC00978	2.27 (1.24–4.16)	multivariate	65
DFS	lin-ITGB1	3.13 (1.89–6.14)	multivariate	97
DFS	MEG3	0.59 (0.36–0.96)	univariate	28
DFS	GAS56-AS1	0.28 (0.13–0.60)	multivariate	60
DFS	HOTAIR	1.89 (1.15–3.11)	univariate	43
DFS	LINP1	8.40 (1.72–41.06)	univariate	76
RFS	MALAT1	2.02 (1.02–3.98)	multivariate	72
RFS	MEG3	0.37 (0.15–0.87)	multivariate	91
RFS	HOTAIR	0.47 (0.26–0.87)	multivariate	88
PFS	CCAT1	3.59 (2.00–7.84)	multivariate	52
PFS	MEG3	0.37 (0.13–0.88)	multivariate	22
PFS	FENDRR	0.578 (0.454–0.735)	multivariate	57
MFS	BCAR4	4.11 (1.03–1.94)	univariate	70

DFS, disease-free survival; MFS, metastasis-free survival; RFS, relapse-free survival; PFS, progression-free survival.
Q statistic and I^2 test. When I^2 value was more than 50%, which indicated a significant heterogeneity, the random-effects model was utilized. Otherwise, the fixed-effects model was used. All statistical analyses were done with the software Review Manager 5.3 (Cochrane Collaboration, London, UK). A p value less than 0.05 was considered statistically significant.

SUPPLEMENTAL INFORMATION
Supplemental Information includes one figure and three tables and can be found with this article online at https://doi.org/10.1016/j.omtn.2018.05.018.

AUTHOR CONTRIBUTIONS
T.T. and Zhijun Dai conceived and designed the study. T.T. and M.W. searched and reviewed literature. S.L., Y.G., Zhiming Dai, K.L., and C.D. contributed to data collection, analysis, and interpretation. P.Y., Y. Zhu, Y. Zheng, and P.X. prepared tables and figures. T.T. drafted the manuscript. Zhijun Dai and W.Z. revised the manuscript. All authors approved the final manuscript.

CONFLICTS OF INTEREST
The authors declare that they have no competing interest.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation, People’s Republic of China (81471670); the International Cooperative Project of Shaanxi province, China (2016KW-008); and the Key Research and Development Plan, Shaanxi Province, People’s Republic of China (2017ZDXM-SF-066). The sponsors had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

REFERENCES
1. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108.
2. Smith, R.A., Andrews, K., Brooks, D., DeSantis, C.E., Fedewa, S.A., Lortet-Tieulent, J., Manassaram-Baptiste, D., Brawley, O.W., and Wender, R.C. (2016). Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 66, 96–114.
3. Shi, J.F., Huang, H.Y., Guo, L.W., Shi, D., Gu, X.Y., Liang, H., Wang, L., Ren, J.S., Bai, Y.N., Mao, A.Y., et al. (2016). Quality-of-life and health utility scores for common cancers in China: a multicentre cross-sectional survey. Lancet 388(Suppl 1), S29.
4. Hayes, D.F. (2005). Prognostic and predictive factors revisited. Breast 14, 493–499.
5. Tang, X. (2013). Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett. 332, 3–10.
6. Bahrami, A., Aledavood, A., Anvari, K., Hassanian, S.M., Maftouh, M., Yaghoubzade, A., Salarzadeh, O., ShahidSales, S., and Avan, A. (2018). The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J. Cell. Physiol. 233, 774–786.
7. Ren, F., Tang, R., Zhang, X., Madushi, W.M., Luo, D., Dang, Y., Li, Z., Wei, K., and Chen, G. (2015). Overexpression of MMP Family Members Functions as Prognostic Biomarker for Breast Cancer Patients: A Systematic Review and Meta-Analysis. PLoS ONE 10, e0135544.
8. Kutomi, G., Mizuguchi, T., Satomi, F., Maeda, H., Shima, H., Kimura, Y., and Hirata, K. (2017). Current status of the prognostic molecular biomarkers in breast cancer: A systematic review. Oncol. Lett. 13, 1491–1498.
9. Wapinski, O., and Chang, H.Y. (2011). Long non-coding RNAs and human disease. Trends Cell Biol. 21, 354–361.
10. Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62.
11. Beermann, J., Piccoli, M.T., Viereck, J., and Thum, T. (2016). Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol. Rev. 96, 1297–1325.
12. Pretsner, J.R., and Chinnaiyan, A.M. (2011). The emergence of lncRNAs in cancer biology. Cancer Discov. 1, 391–407.
13. Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR programs chromatin state to promote cancer metastasis. Nature 464, 1071–1076.
14. Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., Park, P.K., Qin, L., Wei, Y., Hawke, D.H., et al. (2014). lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159, 1110–1125.
15. Klingenberg, M., Matsuda, A., Diederichs, S., and Patel, T. (2017). Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J. Hepatol. 67, 603–618.
16. Martens-Uzunova, E.S., Böttcher, R., Croce, C.M., Jenster, G., Visakorpi, T., and Calin, G.A. (2014). Long non-coding RNA in prostate, bladder, and kidney cancer. Eur. Urol. 65, 1140–1151.
17. Wang, J., Ye, C., Xiong, H., Shen, Y., Lu, Y., Zhou, J., and Wang, L. (2017). Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 8, 5508–5522.
18. Cerk, S., Schwarzenbacher, D., Adiprasito, J.B., Stotz, M., Hutterer, G.C., Gerger, A., Ling, H., Calin, G.A., and Pichler, M. (2016). Current Status of Long Non-Coding RNAs in Human Breast Cancer. Int. J. Mol. Sci. 17, E1485.
19. Serghiou, S., Kyriakopoulou, A., and Ioannidis, J.P. (2016). Long non-coding RNAs in Human Breast Cancer. Int. J. Mol. Sci.
20. Meseure, D., Vacher, S., Lallemand, F., Alsibai, K.D., Hatem, R., Chemlali, W., Xu, S., Sui, S., Zhang, J., Bai, N., Shi, Q., Zhang, G., Gao, S., You, Z., Zhan, C., Liu, F., and Pang, D. (2015). Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation and metastasis in human breast cancer. Oncotarget 7, 37957–37965.
21. Xiao, Y., Fan, R., Chen, L., and Qian, H. (2016). Clinical Significance of Long Non-coding RNA MALAT1 Expression in Tissue and Serum of Breast Cancer. Ann. Clin. Lab. Sci. 46, 418–424.
22. Im, C., Yan, B., Lu, Q., Lin, Y., and Ma, L. (2016). Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol. 37, 7383–7394.
23. Wang, Y., Zhou, Y., Yang, Z., Chen, B., Huang, W., Liu, Y., and Zhang, Y. (2017). miR-204/ZEB2 axis functions as key mediator for MALAT1-induced epithelial-mesenchymal transition in breast cancer. Int. J. Clin. Exp. Pathol. 8, 4881–4891.
24. Huang, N.S., Chi, Y.Y., Xue, J.Y., Liu, M.Y., Huang, S., Mo, M., Zhou, S.L., and Wu, J. (2016). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget 7, 37957–37965.
25. Zhang, J.J., Guo, S.H., and Jia, B.Q. (2016). Down-regulation of long non-coding RNA MEG3 serves as an unfavorable risk factor for survival of patients with breast cancer. Eur. Rev. Med. Pharmacol. Sci. 20, 5143–5147.
26. Shi, W., Xia, S., Yin, Y., Qi, X., and Xing, C. (2016). Decreased expression of IncRNA MEG3 in breast cancer associated with poor prognosis. Int. J. Clin. Exp. Pathol. 9, 5327–5333.
27. Deng, X., Zhao, Y., Wu, X., and Song, G. (2017). Upregulation of CCAT2 promotes cell proliferation by repressing the P15 in breast cancer. Biomed. Pharmacother. 91, 1160–1166.
28. Sarrafzadeh, Sh., Geranpayeh, L., Tasharofi, R., Soudyab, M., Nikpayam, E., Iranpour, M., Mirfakhraie, R., Ghas SOURAN, J., Ghafouri-FARD, S., and Ghafouri-FARD, S. (2017). Expression Study and Clinical Correlations of MYC and CCAT2 in Breast Cancer Patients. Iran. Biomed. J. 21, 303–311.
29. Zhang, J.I. (2017). The Expression of Long Non-coding RNA-Loc285194 in Breast Cancer and Its Association with Clinicopathological Characteristics (Inner Mongolia Medical University).
30. Huang, Q.X., Chen, G., Feng, Z.B., Wei, K.L., and Chen, H. (2017). Expression and clinical significance of long chain non-coding RNA LOC285194 in human breast cancer tissue. Chongqing Med. 46, 1223–1225.
31. van Agthoven, T., Dorssers, L.C., Lehmann, U., Kreipe, H., Looijenga, L.H., and Christgen, M. (2015). Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) Drives Proliferation of IPH-926 Lobular Carcinoma Cells. PLoS ONE 10, e0136845.
32. Godinho, M.F., Siewerts, A.M., Look, M.P., Meijer, D., Foekens, J.A., Dorssers, L.C., and van Agthoven, T. (2010). Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br. J. Cancer. 103, 1284–1291.
33. Zhou, Q., Zhou, E., Xu, F., Zhang, D., Yi, W., and Yao, J. (2018). A TP73-AS1/miR-200a/PIK3CA/AKT1 regulating loop promotes breast cancer cell invasion and migration. J. Cell. Biochem. 119, 2189–2199.
34. Yao, J., Xu, F., Zhang, D., Yi, W., Chen, X., Chen, G., and Zhou, E. (2018). TP73-AS1 promotes breast cancer cell proliferation through miR-200a-mediated TFAM inhibition. J. Cell. Biochem. 119, 680–690.
35. Zhao, D., Zhang, Y., Wang, N., and Yu, N. (2017). NEAT1 negatively regulates miR-218 expression and promotes breast cancer progression. Cancer Biomark. 20, 247–254.
36. Li, X., Wang, S., Li, Z., Long, X., Guo, Z., Zhang, G., Zu, J., Chen, Y., and Wen, L. (2017). The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/ HMG2A axis in breast cancer. Int. J. Biol. Macromol. 105, 346–353.
37. Li, T., Liu, Y., Xiao, H., and Xu, G. (2017). Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer. Breast Cancer 24, 535–543.
38. Fan, S., Yang, Z., Ke, Z., Huang, K., Liu, N., Fang, X., and Wang, K. (2017). Downregulation of the long non-coding RNA TUG1 is associated with cell proliferation, migration, and invasion in breast cancer. Biomed. Pharmacother. 95, 1636–1643.
39. Lv, R., Zhang, J., Zhang, W., Huang, Y., Wang, N., Zhang, Q., and Qu, S. (2018). Circulating HOTAIR expression predicts the clinical response to neoadjuvant chemotherapy in patients with breast cancer. Cancer Biomark. Published online March 30, 2018, https://doi.org/10.3233/CBM-170874.
40. Gökmen-Polar, Y., Vladislav, I.T., Neelamraju, Y., Janga, S.C., and Badve, S. (2015). Prognostic impact of HOTAIR expression is restricted to ER-negative breast cancers. Sci. Rep. 5, 8765.
41. Li, Z.B., Zhou, J., Zhou, L., and Yang, F.H. (2018). Value of detection of long non-coding RNA CRNDE in the diagnosis of breast cancer. Pract. Prev. Med. 25, 276–279.
42. Huan, J., Xing, L., Lin, Q., Xiu, H., and Qin, X. (2017). Long noncoding RNA CRNDE activates Wnt/β-catenin signaling pathway through acting as a molecular sponge of microRNA-136 in human breast cancer. Am. J. Transl. Res. 9, 1977–1989.
43. Lei, B., Xu, S.P., Liang, X.S., Li, Y.W., Zhang, J.F., Zhang, G.Q., and Pang, D. (2016). Long non-coding RNA MVH is associated with poor prognosis and malignant biological behavior in breast cancer. Tumour Biol. 37, 5257–5264.
44. Irandour, M., Soudyab, M., Geranpayeh, L., Mirfakhraie, R., Azargashb, E., Movafagh, A., and Ghafouri-FARD, S. (2016). Expression analysis of four long non-coding RNAs in breast cancer. Tumour Biol. 37, 2993–2940.
Shi, Y., Li, J., Liu, Y., Ding, J., Fan, Y., Tian, Y., Wang, L., Lian, Y., Wang, K., and Shu, X., Wang, P., You, Z., Meng, H., Mu, G., Bai, X., Zhang, G., Zhang, J., and Pang, Z.X., Chen, G., Feng, Z.B., Wei, K.L., and Chen, H. (2015). The expression and clinical significance of a long non-coding RNA CCAT1 as a candidate biomarker in breast cancer. J. Clin. Lab. Anal. 32. Published online March 1, 2017. https://doi.org/10.1002/jcla.22193.

Li, H., Zhu, L., Xu, L., Qin, K., Liu, C., Yu, Y., Su, D., Wu, K., and Sheng, Y. (2017). Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer. Mol. Carcinog. 56, 3–17.

Shi, F., Xiao, F., Ding, P., Qin, H., and Huang, R. (2016). Long Noncoding RNA Highly Up-regulated in Liver Cancer Predicts Unfavorable Outcome and Regulates Metastasis by MMPs in Triple-negative Breast Cancer. Arch. Med. Res. 47, 446–453.

Xie, B. (2016). The expression and clinical significance of a long non-coding RNA AFAP1-AS1 in breast cancer. Mod. Oncol. 24, 3739–3742.

Huang, Q.X., Chen, G., Feng, Z.B., Wei, K.L., and Chen, H. (2015). The expression and significance of long non-coding RNA UCO0116k in human breast cancer. J. Clin. Pathol. Res. 35, 1992–1998.

Shi, Y., Li, J., Liu, Y., Ding, J., Fan, Y., Tian, Y., Wang, L., Lian, Y., Wang, K., and Shu, Y. (2015). The long noncoding RNA SPRY4-IT1 increases proliferation of human breast cancer cells by upregulating ZNF703 expression. Mol. Cancer 14, 51.

Yang, F., Liu, Y.H., Dong, S.Y., Ma, R.M., Bhandari, A., Zhang, X.H., and Wang, O.C. (2016). A novel long non-coding RNA FGF14-A52 is correlated with progression and prognosis in breast cancer. Biochem. Biophys. Res. Commun. 470, 479–483.

Xu, S., Wang, P., You, Z., Meng, H., Mu, G., Bai, X., Zhang, G., Zhang, J., and Pang, D. (2016). The long non-coding RNA EPB41L4A-A52 inhibits tumor proliferation and is associated with favorable prognosis in breast cancer and other solid tumors. Oncotarget 7, 20704–20717.

Chi, Y., Huang, S., Yuan, L., Liu, M., Huang, N., Zhou, S., Zhou, B., and Wu, J. (2014). Role of BC040587 as a predictor of poor outcome in breast cancer. Cancer Cell Int. 14, 123.

Xu, S.P., Zhang, J.F., Sui, S.Y., Bai, N.X., Gao, S., Zhang, G.W., Shi, Q.Y., You, Z.L., Zhan, C., and Pang, D. (2015). Downregulation of the long noncoding RNA EGO1 correlates with malignant status and poor prognosis in breast cancer. Tumour Biol. 36, 9807–9812.

Deng, L.L., Chi, Y.Y., Liu, L., Huang, N.S., Wang, L., and Wu, J. (2016). LINC00978 predicts poor prognosis in breast cancer patients. Sci. Rep. 6, 37936.

Liao, J.H., Wang, J.G., Li, L.Y., Zhou, D.M., Ren, K.H., Jin, Y.T., Lv, L., Yu, J.G., Yang, J.Y., Lu, Q., et al. (2016). Long intergenic non-coding RNA APOC1P1-3 inhibits apoptosis by decreasing α-tubulin acetylation in breast cancer. Cell Death Dis. 7, e2236.

Vennin, C., Spruyt, N., Robin, Y.M., Chassat, T., Le Bourhis, X., and Adriaenssens, E. (2017). The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/GF2 expression through epigenetic modifications. Cancer Lett. 385, 198–206.

Li, X., Zhang, R., Liu, Z., Li, C., and Xu, H. (2016). Low expression of long noncoding RNA GAS6-A51 as a novel biomarker of poor prognosis for breast cancer. Int. J. Clin. Exp. Med. 9, 15820–15827.

Liu, M., Xing, L.Q., and Liu, Y.I. (2017). A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine (Baltimore) 96, e6222.

Chen, Y.M., Liu, Y., Wei, H.Y., Lv, K.Z., and Fu, P. (2016). Linc-ROR induces epithelial-mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells. Tumour Biol. 37, 10861–10870.

Li, W.X., Sha, R.L., Bao, J.Q., Luan, W., Su, R.L., and Sun, S.R. (2017). Expression of long non-coding RNA linc-ITGB1 in breast cancer and its influence on prognosis and survival. Eur. Rev. Med. Pharmacol. Sci. 21, 3397–3401.

Fang, Y., Wang, J., Wu, F., Song, Y., Zhao, S., and Zhang, Q. (2017). Long non-coding RNA HOXA-AS2 promotes proliferation and invasion of breast cancer by acting as a miR-520c-3p sponge. Oncotarget 8, 46090–46103.

Sha, S., Yuan, D., Liu, Y., Han, B., and Zhong, N. (2017). Targeting long non-coding RNA DANC2 inhibits triple negative breast cancer progression. Bio. Open 6, 1310–1316.

Wang, Y., Zhou, J., Wang, Z., Wang, P., and Li, S. (2017). Upregulation of SOX2 activated IncRNA PVT1 expression promotes breast cancer cell growth and invasion. Biochem. Biophys. Res. Commun. 493, 429–436.

Liu, G., Xu, H., and Zhou, G. (2017). Long non-coding RNA OR3A4 promotes proliferation and migration in breast cancer. Biomed. Pharmacother. 96, 426–433.

Li, Y., Wang, B., Lai, H., Li, S., You, Q., Fang, Y., Li, Q., and Liu, Y. (2017). Long non-coding RNA CRALA is associated with poor response to chemotherapy in primary breast cancer. Thorac. Cancer 8, 582–591.

Rui, J., Chunning, Z., Binbin, G., Na, S., Shenghai, W., and Wei, S. (2017). IL-22 promotes the progression of breast cancer through regulating HOXB-ASS. Oncotarget 8, 103661–103662.

Liang, Y., Li, Y., Song, X., Zhang, N., Sang, Y., Zhang, H., Liu, Y., Chen, B., Zhao, W., Wang, L., et al. (2018). Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer. Cancer Biol. Ther. 19, 120–131.

Kong, Q., and Qiu, M. (2018). Long noncoding RNA SNHG15 promotes human breast cancer cell proliferation and migration by sponging miR-211-3p. Biochem. Biophys. Res. Commun. 495, 1594–1600.

Liu, J., Song, Z., Feng, C., Lu, Y., Zhou, Y., Lin, Y., and Dong, C. (2017). The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR-320a. Am. J. Transl. Res. 9, 5594–5602.

Jiang, M., and Guan, H.G. (2017). Long noncoding RNA adriamycin resistance associated is overexpressed in triple negative breast cancer and contributes to shorter survival. Chin. J. Exp. Surg. 34, 1757–1759.

Cai, Y., He, J., and Zhang, D. (2015). Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. Oncotargets Ther. 8, 2657–2664.

Redis, R.S., Sieuwerts, A.M., Look, M.P., Tudorcan, O., Ivan, C., Spizoo, R., Zhang, X., de Weerd, V., Shimizu, M., Ling, H., et al. (2013). CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 4, 1748–1762.

Ling, H., Spizoo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R.S., Nishida, N., Gali, S., Song, J., Guo, Z., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 23, 1446–1461.

Sørensen, K.P., Thomassen, M., Tan, Q., Bak, M., Cold, S., Burton, M., Larsen, M.J., and Kroese, T.A. (2013). Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142, 529–536.

Liu, L., Zhu, G., Zhang, C., Deng, Q., Katsaros, D., Mayne, S.T., Risch, H.A., Mu, Canuto, E.M., Gregori, G., et al. (2012). Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat. 136, 875–883.

Li, J.T., Wang, L.F., Zhao, Y.L., Yang, T., Li, W., Zhao, J., Yu, F., Wang, L., Meng, Y.L., Liu, N.N., et al. (2014). Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res. 16, 454.
86. Zhang, M., Wu, W.B., Wang, Z.W., and Wang, X.H. (2017). lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur. Rev. Med. Pharmacol. Sci. 21, 1020–1026.

87. Li, Y., Zhang, W., Liu, P., Xu, Y., Tang, L., Chen, W., and Guan, X. (2018). Long non-coding RNA FENDRR inhibits cell proliferation and is associated with good prognosis in breast cancer. OncoTargets Ther. 11, 1403–1412.

88. Liu, H., Wang, G., Yang, L., Qu, J., Yang, Z., and Zhou, X. (2016). Knockdown of Long Non-Coding RNA UCA1 Increases the Tamoxifen Sensitivity of Breast Cancer Cells through Inhibition of Wnt/β-Catenin Pathway. PLoS ONE 11, e0168406.

89. Tehrani, S.S., Karimian, A., Parsian, H., Majidinia, M., and Yousefi, B. (2018). Multiple Functions of Long Non-Coding RNAs in Oxidative Stress, DNA Damage Response and Cancer Progression. J. Cell. Biochem. 119, 223–236.

90. Wang, J., Du, S., Wang, J., Fan, W., Wang, P., Zhang, Z., Xu, P., Tang, S., Deng, Q., Yang, W., and Yu, M. (2017). The prognostic value of abnormally expressed lncRNAs in colorectal cancer: A meta-analysis. PLoS ONE 12, e0179670.

91. Luo, P., Liu, X.F., Wang, Y.C., Li, N.D., Liao, S.J., Yu, M.X., Liang, C.Z., and Tu, J.C. (2017). Prognostic value of abnormally expressed lncRNAs in ovarian carcinoma: a systematic review and meta-analysis. Oncotarget 8, 23927–23936.

92. Ma, W., Chen, X., Ding, L., Ma, J., Jing, W., Lan, T., Sattar, H., Wei, Y., Zhou, F., and Yuan, Y. (2017). The prognostic value of long non-coding RNAs in prostate cancer: a systematic review and meta-analysis. Oncotarget 8, 57755–57765.

93. Jing, W., Li, N., Wang, Y., Liu, X., Liao, S., Chai, H., and Tu, J. (2017). The prognostic significance of long non-coding RNAs in non-small cell lung cancer: a meta-analysis. Oncotarget 8, 3957–3968.

94. Wu, Z.J., Li, Y., Wu, Y.Z., Wang, Y., Nian, W.Q., Wang, L.L., Li, L.C., Luo, H.L., and Wang, D.L. (2017). Long non-coding RNA CCAT2 promotes the breast cancer growth and metastasis by regulating TGF-β signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 706–714.

95. Yu, X., and Li, Z. (2015). Long non-coding RNA HOTAIR: A novel oncogene (Review). Mol. Med. Rep. 12, 5611–5618.

96. Zhang, C.Y., Yu, M.S., Li, X., Zhang, Z., Han, C.R., and Yan, B. (2017). Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol. 39, 1010428317701311.

97. Mondal, T., Subhash, S., Vaid, R., Enroth, S., Uday, S., Reinius, B., Mitra, S., Mohammed, A., James, A.R., Hoberg, E., et al. (2015). MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6, 7743.

98. Ioannidis, J.P. (2008). Why most discovered true associations are inflated. Epidemiology 19, 640–648.

99. IntHout, J., Ioannidis, J.P., Borm, G.F., and Goeman, J.J. (2015). Small studies are more heterogeneous than large ones: a meta-meta-analysis. J. Clin. Epidemiol. 68, 860–869.

100. Nagino, T., and Fraser, P. (2011). No-nonsense functions for long noncoding RNAs. Cell 145, 178–181.

101. Forrest, M.E., and Khalil, A.M. (2017). Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett. 407, 106–112.

102. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G.; PRISMA Group (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8, 336–341.

103. Zeng, X.T., Liu, H., Chen, X., and Leng, W.D. (2012). Meta Analysis series four: quality assessment tools for observational studies. Chin. J. Evid. Based. Cardiovasc Med. 4, 297–299.