Characterization and phylogenetic analysis of the complete mitochondrial genome of _Pseudothemis zonata_ (Odonata: Anisoptera: Libellulidae)

Ying Wang\(^a, b\), Yimin Du\(^a, b\), Xiang Song\(^a, b\) and Aijun Huang\(^a, b\)

\(^a\)School of Life Sciences, Gannan Normal University, Ganzhou, PR China; \(^b\)National Navel Orange Engineering and Technology Research Center, Ganzhou, PR China

ABSTRACT

Pseudothemis zonata is a commonly seen dragonfly with a big yellow or white ringlike spot on the third and fourth segments of its abdomen. In this study, we sequenced and analyzed the complete mitochondrial genome (mitogenome) of _P. zonata_. This mitogenome was 15,434 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA unit genes (rRNAs). Gene order was conserved and identical to most other previously sequenced Libellulidae dragonflies. The whole mitogenome exhibited heavy AT nucleotide bias (74.6%). Most PCGs of _P. zonata_ have the conventional start codons ATN (six ATG, three ATT, and two ATC), with the exception of _cox1_ and _nad1_ (TTG). Except for four genes (_cox1_, _cox2_, _cox3_, and _nad5_)) end with the incomplete stop codon T–, all other PCGs terminated with the stop codon TAA or TAG. Phylogenetic analysis showed that _P. zonata_ got together with _Brachythemis contaminata_ with high support value, and the relationships (_Brachythemis + Psolodesmus_) + (_(Hydrosilbeus + Trigomphus) + (Orthetrum + Acisoma)) were supported in Libellulidae.

Insects in the order Odonata are the most ancient invertebrates capable of flight and very diverse, with approximately 6000 species worldwide (Cao and Wu 2019). Libellulidae, a family of over 1000 species, is one of the largest dragonfly families in the world. The libellulids have stout-bodied larvae with the lower lip or labium developed into a mask over the lower part of the face. One of the species in Libellulidae, _Pseudothemis zonata_, is a common dragonfly which is widely distributed in north and east China and in Japan.

Specimens of _P. zonata_ were collected from Jingangshan City, Jiangxi Province, China (26°32N, 114°06E, June 2018) and were stored in Entomological Museum of Gannan Normal University (Accession number GNU-EPZ03). Total genomic DNA was extracted from tissues using DNeasy DNA Extraction kit (Qiagen, Hilden, Germany). The mitogenome sequence of _P. zonata_ was generated using Illumina HiSeq 2500 Sequencing System (Illumina, San Diego, CA). In total, 5.2 G raw reads were obtained, quality-trimmed, and assembled using MITObim version 1.7 (Hahn et al. 2013). By comparison with the homologous sequences of other Libellulidae species from GenBank, the mitogenome of _P. zonata_ was annotated using software GENEIOUS R11 (Biomatters Ltd., Auckland, New Zealand).

The complete mitogenome of _P. zonata_ is 15,434 bp in length (GenBank accession no. MT371043), and containing the typical set of 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA), and 22 transfer RNA (tRNA) genes, and 1 non-coding AT-rich region. Gene order was conserved and identical to most other previously sequenced Libellulidae dragonflies (Tang et al. 2014; Yong et al. 2016; Guan et al. 2019; Wang et al. 2019). The nucleotide composition of the mitogenome was biased toward A and T, with 74.6% of A + T content (A 40.3%, T 34.3%, C 14.5%, G 10.9%). Most PCGs of _P. zonata_ have the conventional start codons ATN (six ATG, three ATT, and two ATC), with the exception of _cox1_ and _nad1_ (TTG). Except for four genes (_cox1_, _cox2_, _cox3_, and _nad5_)) end with the incomplete stop codon T–, all other PCGs terminated with the stop codon TAA or TAG. The 22 tRNA genes vary from 63 bp (trnF and trnH) to 70 bp (trnK and trnV). Two rRNA genes (rrnL and rrnS) locate at _trnL1/trnV_ and _trnV/control region_, respectively. The lengths of _rrnL_ and _rrnS_ in _P. zonata_ are 1283 and 746 bp, with the AT contents of 77.2% and 74.4%, respectively.

Phylogenetic analysis was performed based on the nucleotide sequences of 13 PCGs from 18 Odonata species. Phylogenetic tree was constructed through raxmlGUI version 1.5 (Silvestro and Michalak 2012). Results showed that the new sequenced species _P. zonata_ got together with _Brachythemis contaminata_ with high support value (Figure 1), indicating genus _Pseudothemis_ had a closer relationship with _Brachythemis_ within Libellulidae. The relationships (_Brachythemis + Psolodesmus_) + (_(Hydrosilbeus + Trigomphus) + (Orthetrum + Acisoma)) were supported in Libellulidae, and similar results were found in the previous
work (Wang et al. 2019). The complete mitochondrial genome of *P. zonata* will provide useful genetic information to study the genetic evolution of Libellulidae dragonflies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the Foundation of Jiangxi Province Educational Committee [GJJ190759] and Gannan Normal University Bidding Project in 2016 (480070).

Data availability statement

The data that support the findings of this study are openly available in NCBI (National Center for Biotechnology Information) at https://www.ncbi.nlm.nih.gov/, reference number MT371043.

References

Cao L, Wu K. 2019. Genetic diversity and demographic history of globe skimmers (Odonata: Libellulidae) in China based on microsatellite and mitochondrial DNA markers. Sci Rep. 9(1):1–8.

Guan DL, Qian ZQ, Ma LB, Yi B, Xu SQ. 2019. Different mitogenomic codon usage patterns between damselflies and dragonflies and nine complete mitogenomes for odonates. Sci Rep. 9(1):678.

Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129.

Silvestro D, Michalak I. 2012. RaxmlGUI: a graphical front-end for RAxML. Org Divers E. 12(4):335–337.

Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, et al. 2014. Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 42(22):e166.

Wang JD, Wang CY, Zhao M, He Z, Feng Y. 2019. The complete mitochondrial genome of an edible aquatic insect *Eopthalmia elegans* (Odonata: Corduliidae) and phylogenetic analysis. Mitochondrial DNA B. 4(1):1381–1382.

Yong HS, Song SL, Suana IW, Eamsobhana P, Lim PE. 2016. Complete mitochondrial genome of *Orthetrum dragonflies* and molecular phylogeny of Odonata. Biochem Syst Ecol. 69:124–131.