Unconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus

Katherine A. Rempe, a,b Lynn A. Spruce, b Eric A. Porsch, b Steven H. Seeholzer, b Niels Nørskov-Lauritsen, d Joseph W. St. Geme III b,c

Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA; a The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; a University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; b Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark d

ABSTRACT Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. In the present study, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C that are not encoded near a gene encoding an obvious acceptor protein. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild-type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function.

IMPORTANCE This work emphasizes the importance of glycosylation for proper function of bacterial proteins. Here we show that the Kingella kingae Knh and the Aggregatibacter aphrophilus EmaA trimeric autotransporter proteins are N-glycosylated by novel homologues of the Haemophilus influenzae HMW1C glycosyltransferase, highlighting the first examples of trimeric autotransporters that are modified by HMW1C-like enzymes. In the absence of glycosylation, Knh and EmaA lack adhesive activity. This work has relevance to our understanding of bacterial pathogenicity and expression of potential vaccine antigens.

Glycosylation provides a means by which a cell can further specify a particular function for a protein. Once thought to be unique to eukaryotic organisms, glycosylation of proteins is now recognized to be common in prokaryotes (1). Modification of bacterial proteins promotes proper folding (2), adhesive activity (3), solubility (4), antigenic variation (5), and protection against proteases (6). There are two major forms of protein glycosylation: O-linked, in which the modification is attached to the side chain of a serine, threonine, or asparagine (7). These glycosyltransferases are not membrane bound and are commonly able to transfer only a single specific activated saccharide molecule (8). In a limited number of cases, O-glycosylation has been shown to occur in the periplasm. Specifically, the O-linked modification of pili in Pseudomonas aeruginosa and Neisseria meningitidis involves an inner membrane bound oligosaccharyltransferase (9). At present, there is no recognized consensus sequence for modification by O-linked glycosylation, though existing evidence suggests that there may be a structural element in the acceptor peptide that directs glycosylation (2).

The best-studied mechanism of bacterial protein N-linked glycosylation is the pgl system used by the Gram-negative pathogen Campylobacter jejuni. In this system, undecaprenyl-linked sugars are used to assemble branching heptasaccharide chains attached to a lipid anchor on the cytoplasmic face of the bacterial inner membrane. Once assembled, the chains are flipped across the membrane into the periplasm and are transferred to proteins by an inner membrane-bound oligosaccharyltransferase. Glycans are attached to the substrate protein at the consensus site Asn-Xaa-Ser/Thr, where Xaa can be any amino acid except proline (10). The pgl system mimics the N-linked glycosylation system found in eukaryotic cells, in which branching sugar chains are built on the cytoplasmic face of the endoplasmic reticulum, flipped into the
lumen, and then transferred to substrate proteins by a membrane-bound oligosaccharyltransferase at the same Asn-Xaa-Ser/Thr consensus site (10). Nontypeable Haemophilus influenzae (NTHi) uses a glycosylation system with elements of both the N-linked and O-linked processes. In this system, the N-linking glycosyltransferase HMW1C transfers glucose and galactose to the acceptor protein HMW1 using the activated UDP forms of the sugars (11). This transfer occurs in the cytoplasm, and sugar chains are built on HMW1, similar to O-linked glycosylation. However, the sugars are added at the Asn-Xaa-Ser/Thr N-linked glycosylation consensus site (12). HMW1 is modified at at least 31 sites with either mono- or dihexoses, and HMW1C is responsible for this modification (3, 11, 12).

HMW1 is an adhesive protein that mediates interaction between bacterial cells and human epithelial cells and is encoded by a two-partner secretion system gene cluster that also encodes HMW1B (an outer membrane pore-forming protein that facilitates the translocation of HMW1 to the bacterial cell surface) and HMW1C (13, 14). Without glycosylation, HMW1 is released from the bacterial cell surface and is unable to facilitate adherence (3). A two-partner secretion system genetic locus with similar organization is found in enterotoxic Escherichia coli (ETEC). This locus contains the etpB, etpA, and etpC genes, with the HMW1C homologue EtpC being responsible for modifying the adhesive protein EtpA in a manner similar to HMW1C modification of HMW1 (15).

Due to the unique nature of HMW1C-mediated glycosylation, we wondered if this system is used by Gram-negative pathogenic species other than NTHi and ETEC. In this study, we identified a number of HMW1C homologues in other species using bioinformatic approaches. Interestingly, these HMW1C homologues were not always encoded by a genetic locus that also encodes a potential acceptor protein as in NTHi and ETEC. To look specifically at HMW1C homologues in these species modify adhesive proteins with mono- and dihexoses and establish that modification is needed for normal function of the acceptor protein.

RESULTS

Kingella kingae and Aggregatibacter aphrophilus have HMW1C homologues. An NCBI standard protein BLAST search using the HMW1C polypeptide sequence as the query sequence and default parameters revealed 21 bacterial species encoding an HMW1C homologue with identity over 50%. From these results, we chose to investigate the homologues in K. kingae and A. aphrophilus, in particular because of their high homology to HMW1C (Fig. 1), the fact that they are encoded in the genome away from any gene encoding an obvious acceptor protein, and the relevance of K. kingae and A. aphrophilus to human health. The K. kingae homologue is encoded by a gene located between an upstream gene encoding a putative protein-disulfide reductase and a downstream gene encoding a 2-C-methyl-d-erythritol 4-phosphate cytidylytransferase, gene products that are predicted cytoplasmic proteins and are not suspected to be targets of glycosylation. Similarly, the A. aphrophilus homologue is encoded between genes encoding putative cytoplasmic proteins, namely, an upstream gene encoding the putative ribosomal protein S12 methyltransferase and a
downstream gene encoding a putative low-molecular-weight protein tyrosine phosphatase. The fact that the flanking genes do not encode proteins that are targets of glycosylation or are involved in glycosylation suggests that any phenotypes observed when the *hmw1C* homologue genes are interrupted are not due to polar effects. The *K. kingae* and *A. aphrophilus* HMW1C homologues are referred to here as HMW1CKk, encoded by *hmw1C*Kk, and HMW1CAa, encoded by *hmw1C*Aa.

Previous work identified residues in HMW1C that are needed to bind UDP-hexose, including lysine 467, asparagine 547, and aspartic acid 551. Aligning HMW1C to HMW1CKk and HMW1CAa revealed that these residues are conserved, suggesting that the homologues may be capable of binding and transferring UDP-hexose (Fig. 1).

**HMW1CKk is required for *K. kingae* adherence to human epithelial cells and autoaggregation.** *K. kingae* derivatives with an interruption of *hmw1C*Kk or reversion of the interrupted *hmw1C*Kk gene were compared with the wild-type strain for their ability to adhere to cultured human epithelial cells. The interruption of *hmw1C*Kk resulted in a marked reduction in adherence (Fig. 2A). Wild-type levels of adherence were restored when the interrupted *hmw1C*Kk was reverted to the wild-type sequence (Fig. 2A).

A number of bacterial species are capable of autoaggregation (adherence of bacteria to themselves). To assess whether *K. kingae* autoaggregates, we performed tube settling assays, measuring optical density at 600 nm (OD₆₀₀) over time. We found that *K. kingae* is capable of autoaggregation when the polysaccharide capsule (*ctrA*) and type IV pili (*PilA*) are lacking, suggesting that these two surface factors mask one or more other surface factors responsible for autoaggregation. Interruption of *hmw1C*Kk in a capsule-deficient, type IV pilus-deficient mutant abolished autoaggregation, and reversion of the interrupted *hmw1C*Kk gene reversed this phenotype. Interestingly, elimination of the trimeric autotransporter Knh by interruption of the *knh* gene abolished the ability of *K. kingae* to autoaggregate, suggesting that Knh may be a substrate of HMW1CKk. These results are illustrated in Fig. 2B, where it can be seen that the curves for the wild type and the *pilA*, the *ctrA*, the *pilA ctrA knh*, and the *pilA ctrA hmw1C*Kk mutants overlap and the curves for the *pilA ctrA* and *pilA ctrA hmw1C*Kk(hmw1C*Kk) mutants are indistinguishable.

**HMW1CKk glycosylates the trimeric autotransporter Knh.** In previous work on *K. kingae*, we established that type IV pili and the trimeric autotransporter Knh are responsible for mediating bacterial adherence to human epithelial cells (16, 17). In an effort to determine the mechanism by which interruption of *hmw1C*Kk interferes with *K. kingae* adherence, we examined the PilA1 major subunit of type IV pili and the Knh protein in the wild-type, mutant, and revertant strains. The results of these experiments are shown in Fig. 2C and 2D.
TABLE 1 Glycopeptides identified with single hexose modification in Knh

| Modified sequence | Asparagine position(s) | Calculated m/z |
|-------------------|------------------------|----------------|
| STDGKPSTTTTDDADINK | 218                    | 685.6502       |
| STDGKPSTTTTDDADINK | 221                    | 739.6678       |
| FlAGDNENFTQGNSNYSPSLNK | 603, 610 | 2,741.2953     |
| DGNAGNATISNVK       | 640, 643               | 930.4338       |
| DLTTPGDPSPVGNPVTK   | 665                    | 1,986.9384     |
| DTLPNGDPSPVGNPVTK   | 670                    | 1,986.9376     |
| DGSGSPVNASNYTSQISAIK| 785, 788              | 1,128.54       |
| GVDNFYTLNQGTITTVNK  | 801, 807               | 1,056.039      |
| VNYTITTPTPDNVNTINEAGK| 844, 845            | 899.0979       |
| KVNVTITTPNPDANNVNTINEAGK | 845, 849 | 941.7963       |
| VYAPTNSTVAGNTETLAK  | 859, 865               | 705.695        |
| NFTQGTGTSTTVATK     | 912, 914               | 1,985.0025     |
| DNVFNHNMVNTTMTVGSKPNDANFK | 929          | 3,151.4489     |
| TSNAPPTLQNTSADGK    | 967, 974               | 949.9575       |
| GTCNGTSVANADGKNAATGIGTEVTK | 1171         | 2,838.3720     |
| SNVSVNADVNDK        | 1267                   | 898.402        |
| TTTLDVSTEPMTANNNTPAGK| 1329, 1330           | 2,486.1227     |
| AQGENASVNPQTVDMK    | 1371, 1376            | 1,049.478      |
| INVSTNTTGTGNIYDVSVNTGK | 1497              | 865.0836       |
| INVSTNTTGTGNIYDVSVNTGK | 1501              | 865.0836       |
| SLTNSITGAIKV        | 1522                   | 1,742.8663     |
| GDITVANNTVTVK       | 1638                   | 669.3434       |
| NFTNVPSVTNMMGNK     | 1649                   | 936.4256       |

*Underlined residues represent hexosylated sites.

TABLE 2 Glycopeptides identified with dihexose modification in Knh

| Modified sequence | Asparagine position | Calculated m/z |
|-------------------|---------------------|----------------|
| SNVSVNADVNDK      | 1267                | 979.4284       |
| AQGENASVNPQTVDMK  | 1371                | 705.3196       |
| GDITVANNTVTVK     | 1638                | 750.3698       |
| NFTNVPSVTNMMGNK   | 1649                | 1,017.452      |

*Underlined residues represent dihexosylated sites.

tant, and revertant strains by Western analysis. There was no difference in mobility of the PilA1 protein (data not shown). However, Western analysis using Knh antiserum demonstrated that Knh migrated at a lower density than PilA1 and was less abundant in the hmw1C Kk mutant than in the wild-type strain (Fig. 2C). Both species of Knh were excised from a Coomassie blue-stained gel of outer membrane fractions from K. kingae and K. kingae lacking HMW1CKk and were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a hybrid LTQ Orbitrap Elite mass spectrometer.

We obtained 57% coverage of the Knh protein from the wild-type strain. With this coverage, we identified 32 sites of glycosylation (Table 1). All 32 of these sites were modified with at least a single hexose, and four of the 32 sites were modified with either a single hexose or a dihexose (Table 2). Potential sites of glycosylation were sorted by comparing the expected and observed m/z ratios. Sites for which the expected and observed m/z ratios were within 1 ppm of each other were considered true sites of modification. All hexose modifications were on asparagine residues, though only 81% of these sites were in the recognized Asn-Xaa-Thr consensus sequence for N-linked glycosylation. In contrast, there was no evidence of glycosylation of the Knh protein from the hmw1C Kk mutant (for which we obtained 50% coverage).

For samples from the wild-type and hmw1C Kk mutant strains, control database searching for O-linked glycosylation on serine or threonine residues showed nothing above the false discovery rate.

**Coexpression of Knh and HMW1CKk in E. coli is sufficient to facilitate bacterial adherence to epithelial cells.** To further demonstrate the dependence of Knh function on glycosylation, we coexpressed both Knh and HMW1CKk in the nonadherent E. coli strain BL21. When Knh or HMW1CKk was expressed alone, the bacteria remained nonadherent (Fig. 2D). However, when Knh and HMW1CKk were coexpressed, the bacteria were capable adhering to human epithelial cells, establishing that Knh is capable of facilitating adherence only when glycosylated.

**Mutating hmw1C Kk decreases the amount of Knh on the bacterial cell surface.** In an effort to assess whether HMW1CKk influences surface structures on K. kingae, we immunogold labeled Knh on the the wild-type and hmw1C Kk mutant strains and examined them by transmission electron microscopy. In order to avoid interference by type IV pili, we used strains lacking type IV pili. As shown in Fig. 3, we saw labeling on the surface of the type IV pili mutant (Fig. 3A) that disappeared when the knh gene was interrupted (Fig. 3B). Labeling was less abundant in the hmw1C Kk mutant strain (Fig. 3C) and became more abundant when hmw1C Kk was reverted to the wild type (Fig. 3D). The average number of gold particles on the type IV pili mutant strain was 19.1. When the knh gene was interrupted, there was an average of 1.1 particles per cell; when hmw1C Kk was interrupted, there was an average of 6.7 particles per cell; and when hmw1C Kk was reverted to the wild type, there was an average of 11.1 particles per cell. Bacteria were also examined without labeling, as Knh fibers can be detected on the surface. Observations made in this way corresponded with the immunogold-labeling experiments, as fewer fibers were seen on the surface of the hmw1C Kk mutant (data not shown).

**HMW1C Kk is necessary for A. aphrophilus autoaggregation and adherence to human epithelial cells.** To expand our knowledge of species that use HMW1C-mediated glycosylation, the
hmw1C<sub>Aa</sub> gene in *A. aphrophilus* was interrupted, and adherence by this strain was compared with adherence by the wild-type strain. The interruption of hmw1C<sub>Aa</sub> resulted in a statistically significant reduction in adherence (Fig. 4A). Wild-type levels of adherence were restored when the interrupted hmw1C<sub>Aa</sub> was reverted to the wild-type sequence (Fig. 4A).

Experiments with *A. aphrophilus* have demonstrated that this species autoaggregates rapidly in liquid culture in the absence of agitation (18). To determine if interruption of hmw1C<sub>Aa</sub> affects the ability of *A. aphrophilus* to autoaggregate, the OD<sub>600</sub> was measured over the course of 8 h for isogenic strains containing the wild-type, interrupted, and reverted forms of the hmw1C<sub>Aa</sub> gene. As shown in Fig. 4, the hmw1C<sub>Aa</sub> mutant initially autoaggregated at a lower rate but was able to attain the same degree of autoaggregation as the wild-type strain over the course of the experiment. Reversion of the interrupted hmw1C<sub>Aa</sub> to the wild type restored the rate of autoaggregation to wild-type levels (Fig. 4B).

**HMW1C<sub>Aa</sub> glycosylates the trimeric autotransporter EmaA.**

Adherence factors have not been described previously for *A. aphrophilus*. To determine the mechanism by which interruption of hmw1C<sub>Aa</sub> interferes with adherence in this species, we examined outer membrane fractions from isogenic strains of *A. aphrophilus* with wild-type, interrupted, or reverted hmw1C<sub>Aa</sub> on a Coomassie blue-stained SDS-PAGE gel (Fig. 4C). We noticed a band at approximately 180 kDa that had increased mobility in the strain with an interrupted hmw1C<sub>Aa</sub> and a band larger than 300 kDa that disappeared in the strain with an interrupted hmw1C<sub>Aa</sub> (Fig. 4C). These bands were excised and analyzed by LC-MS/MS on a hybrid LTQ Orbitrap Elite mass spectrometer.

In the samples from *A. aphrophilus*, both the 180-kDa band and the >300-kDa band were identified as the trimeric autotransporter protein EmaA, with the 180-kDa band corresponding to the monomer form and the >300-kDa band likely representing a multimer. Coverage of 82% of the EmaA sequence in the sample from wild-type *A. aphrophilus* revealed six sites of glycosylation with a single hexose (Table 3). All six of the identified sites were asparagine residues and were in the Asn-Xaa-Ser/Thr consensus sequence for N-linked glycosylation. We obtained 23% coverage of the EmaA protein from the strain with an interrupted hmw1C<sub>Aa</sub> gene and detected no modifications. Peptides obtained from the mutant corresponded to the peptides that were modified in the wild-type sample.

**EmaA facilitates autoaggregation and bacterial adherence to host cells.** The identification of EmaA as the substrate of HMW1C<sub>Aa</sub> and the phenotypes demonstrated by an hmw1C<sub>Aa</sub> mutant suggested that EmaA is involved in *A. aphrophilus* adherence to human epithelial cells and autoaggregation. To determine if EmaA does indeed mediate these functions, we insertionally inactivated the *emaA* gene with a kanamycin resistance cassette. The resulting mutant was unable to adhere to human epithelial cells or autoaggregate (Fig. 5). The dependence of bacterial adherence and autoaggregation on EmaA was confirmed by reverting the *emaA* gene to the wild type by removing the kanamycin resistance cassette (Fig. 5).

**DISCUSSION**

In this study, we describe two homologues of the *H. influenzae* HMW1C protein that are functional glycosyltransferases. Unlike HMW1C, HMW1C<sub>Kk</sub> in *K. kingae* and HMW1C<sub>Aa</sub> in *A. aphrophilus* are not encoded in the same genetic locus as a two-partner secretion system. Rather, these enzymes modify type V secretion proteins encoded by genes at distant locations in the genome.
acceptor protein for HMW1C<sub>Kk</sub> was identified as the trimeric autotransporter protein Knh, and the acceptor protein for HMW1C<sub>Aa</sub> was found to be EmaA, also a trimeric autotransporter.

Autotransporters are a family of adhesive proteins characterized by a C-terminal domain that forms an outer membrane beta-barrel pore and facilitates surface localization of the N-terminal passenger domain of the protein. A number of autotransporters are modified by O-glycosylation, including Ag43, AIDA-I, and TibA of <i>E. coli</i>. Glycosylation of these proteins affects stability (AIDA-I and TibA), oligomerization (TibA), and adhesive activity (AIDA-I and TibA) (19–21). In the case of trimeric autotransporters, the protein must trimerize in order to form a fully functional pore. To date all known trimeric autotransporters have adhesive properties, and only one has been identified as being glycosylated, namely, the <i>Aggregatibacter actinomycetemcomitans</i> EmaA protein (22).

Knh is a trimeric autotransporter adhesin expressed by the pediatric pathogen <i>Kingella kingae</i> and has been shown in previous work to be essential for bacterial adherence to human epithelial cells (17). Our data in this study show that the ability of Knh to mediate adherence and autoaggregation is dependent on expression of <i>hmw1C</i><sub>Aa</sub>. Interestingly, only 81% of the identified modified residues in Knh were in the N-linked glycosylation consensus sequence. This lack of sequence specificity is reminiscent of O-linking glycosyltransferases, for which no glycosylation consensus sequence has been identified, leading to the hypothesis that O-linked glycosylation sites are specified by structural cues (2). It is possible that there is a structural component to the selection of modification sites on Knh. Recent work showed that the HMW1C homologue from <i>Actinobacillus pleuropneumoniae</i> is able to modify asparagine residues outside the NXS/T consensus sequence, including NXA and NXV, albeit with low efficiency (23). This variation is much more limited than the sites identified in Knh, which included NXG, NXV, NXF, NXP, and NXN.

Glycosylation can protect against protease activity, stabilize protein structure, and facilitate interaction between a protein and a protein.

![FIG 4](image_url) **FIG 4** HMW1C<sub>Aa</sub> expression is required for <i>A. aphrophilus</i> adherence and autoaggregation. (A) Mean adherence of <i>A. aphrophilus</i> with the wild-type <i>hmw1C</i><sub>Aa</sub> gene, an interrupted <i>hmw1C</i><sub>Aa</sub> gene, and the interrupted <i>hmw1C</i><sub>Aa</sub> gene reverted to the wild type. (B) Mean autoaggregation of <i>A. aphrophilus</i> with the wild-type <i>hmw1C</i><sub>Aa</sub> gene, an interrupted <i>hmw1C</i><sub>Aa</sub> gene, and the interrupted <i>hmw1C</i><sub>Aa</sub> gene reverted to the wild type. The graphs in panels A and B show data from biological replicates performed in triplicate. Error bars represent standard errors. An asterisk denotes a <i>P</i> value of <0.05 obtained from a paired <i>t</i> test. (C) Commassie blue-stained 7.5% SDS-PAGE gel of the outer membrane fractions of <i>A. aphrophilus</i> with the wild-type <i>hmw1C</i><sub>Aa</sub> gene, an interrupted <i>hmw1C</i><sub>Aa</sub> gene, and the interrupted <i>hmw1C</i><sub>Aa</sub> gene reverted to the wild type.

TABLE 3 Glycopeptides identified in EmaA

| Peptide sequence | Asparagine position | Calculated m/z |
|-----------------|---------------------|----------------|
| ÍNLNNTILDGSGS1K| 687                 | 904.96         |
| VSGTSPITV1NK    | 819                 | 632.83         |
| TTNNGVDDYAVSFNGTEAAK| 834          | 1,118.49       |
| AAAGTPVNGA5GTDKDGVATQNVVDALNK| 907     | 1,062.53       |
| VSLGDDNQTTK7E   | 1140                | 727.33         |
| DGQANATIVAQGK   | 1592                | 697.34         |

*Underlined residues represent hexosylated sites.*
played reduced adherence to cultured epithelial cells and delayed autoaggregation. Unlike the strain lacking EmaA, the strain lacking HMW1C was still capable of a low level of adherence to human epithelial cells, suggesting that unmodified EmaA is still functional, though to a lesser extent than glycosylated EmaA.

The EmaA protein in *A. aphrophilus* is 69% identical to the EmaA protein in *Aggregatibacter actinomycetemcomitans*, a protein that has been studied extensively and facilitates adherence to collagen (24). Interestingly, *A. actinomycetemcomitans* EmaA is O-glycosylated in a process involving enzymes used in the biosynthesis of the O-polsaccharide of LPS (23). The proposed modification is a nonasaccharide rather than the monosaccharide that we identified on *A. aphrophilus* EmaA. It is interesting that *A. actinomycetemcomitans* does not contain an HMW1C homologue.

In summary, this work describes the first examples of an HMW1C-like enzyme that glycosylates a protein that is not encoded in the same gene cluster as the enzyme itself and is not a member of a two-partner secretion system. Furthermore, Knh and EmaA are the first examples of trimeric autotransporters that are N-glycosylated. To date, all known targets of HMW1C-facilitated modification are members of type V secretion systems and function as adhesins, with adhesive activity being dependent on HMW1C-mediated glycosylation. As adherence to host tissue is a critical first step in infection, the ability to interrupt HMW1C-mediated glycosylation may have therapeutic potential.

**MATERIALS AND METHODS**

**Strains and culture conditions.** The bacterial strains are listed in Table 4. *K. kingae* strains were cultured at 37°C with 5% CO₂ on chocolate agar supplemented with 50 μg/ml kanamycin, 1 μg/ml erythromycin, or 0.75 μg/ml chloramphenicol, as needed. *A. aphrophilus* strains were cultured at 37°C with agitation (225 rpm) in tryptic soy broth (TSB) supplemented with NAD (3.5 μg/ml) and lysed horse blood (1:1,000 dilution), using 50 μg/ml kanamycin for selection as necessary.

**Strain construction.** Disruption of *hmw1C* (the *K. kingae* *hmw1C* homologue) was achieved via random transposon mutagenesis as described earlier and was identified by nucleotide sequencing (16). All other gene disruptions in *K. kingae* and *A. aphrophilus* were generated as described previously (17). Briefly, plasmid-based gene disruption constructs were made in *E. coli*, linearized, and introduced into the appropriate species via natural transformation. Transformants were recovered after plating on medium containing the appropriate antibiotic. Correct localization of the interruption was confirmed by PCR and nucleotide sequencing.

Reversions of gene disruptions were generated by PCR amplifying a wild-type copy of the gene and using the wild-type gene to replace the disrupted copy via natural transformation. Transformants were screened for loss of resistance to the appropriate antibiotic, and sequence integrity was confirmed by nucleotide sequencing.

**Homologue identification.** Homologues of HMW1C were identified by using the NCBI BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with the nonypeptide *Haemophilus influenzae* HMW1C protein (GenBank no. ADO91626.1) as the query sequence. Results were organized by percent similarity and were assessed for relevance of the host organism to human health. Identity and similarity were determined using the EMBoss Needle program (http://www.ebi.ac.uk/Tools/psa/emboss_needle/).

**Adherence assays.** Quantitative adherence assays were performed as previously described using Chang epithelial cells (ATCC CCL 20.2) (16). Briefly, approximately 6.5 × 10⁵ CFU of bacteria were inoculated onto a monolayer of epithelial cells in a 24-well tissue culture plate. Bacteria were allowed to adhere to the cells for 30 min. Subsequently, monolayers were rinsed with phosphate-buffered saline (PBS) to remove nonadherent bac-

---

FIG 5 EmaA is an adhesin and involved in autoaggregation. (A) Mean adherence to human epithelial cells by *A. aphrophilus* with the wild-type *emaA* gene, an interrupted *emaA* gene, and the interrupted *emaA* gene reverted to the wild type. (B) Mean autoaggregation of *A. aphrophilus* with the wild-type *emaA* gene, an interrupted *emaA* gene, and the interrupted *emaA* gene reverted to the wild type. Each graph shows data from biological replicates performed in triplicate. Error bars represent standard errors. An asterisk denotes a *P*-value of <0.05 obtained from a paired *t* test.
teria. Adherent bacteria were released from the monolayer using trypsin-EDTA and were quantitated by plating dilutions on chocolate agar plates. CFU counts of adherent bacteria were compared to CFU counts of the supernatant. Adherent bacteria were released from the monolayer using trypsin-EDTA to prevent disruption of the monolayer by the RTX toxin.

**Formic acid treatment of outer membrane proteins.** Outer membrane fractions were incubated with 75% formic acid overnight, at 25°C in the dark. Samples were then lyophilized three times to remove the formic acid, and the dried protein was resuspended in 1.5 M Tris (pH 8.8).

**SDS-PAGE.** Samples were boiled with Laemmli SDS-PAGE loading buffer for 5 min and were then loaded and resolved on 7.5% SDS-PAGE gels.

**In-gel digestion.** Coomassie-stained samples were excised from gels, cut into 1-mm cubes, destained with 50% methanol–1.25% acetic acid, reduced with 5 mM dithiothreitol (Thermo), and alkylated with 20 mM iodoacetamide (Sigma). Gel pieces were then washed with 20 mM ammonium bicarbonate (Sigma) and dehydrated with acetonitrile (Fisher). Trypsin (Promega) (5 ng/ml in 20 mM ammonium bicarbonate) was added to the gel pieces, and proteolysis was allowed to proceed overnight at 37°C. Peptides were extracted with 0.3% trifluoroacetic acid (J.T. Baker) and then 50% acetonitrile. Extracts were combined, and the volume was reduced by vacuum centrifugation.

**Mass spectrometry analysis.** Tryptic digests were analyzed by LC-MS/MS on a hybrid LTQ Orbitrap Elite mass spectrometer (Thermo, Fisher Scientific San Jose, CA) coupled with a nanoLC Ultra (Eksigent). Peptides were separated by reverse phase high-performance liquid chromatography (RP-HPLC) on a nanocapillary column (75 μm [inside diameter] by 15 cm; ReproSil-pur; 3 μm; 150 Å pore diameter; Dr. Maisch, Germany) in a nanoflex chip system (Eksigent). Mobile phase A consisted of 0.1% formic acid (Thermo) and mobile phase B consisted of 1% methanol–0.1% formic acid–80% acetonitrile. Peptides were eluted into the mass spectrometer at 300 nl/min, with each RP-LC run comprising a 90-min gradient from 10 to 25% B in 65 min and 25 to 40% B in 25 min. The mass spectrometer was set to repetitively scan m/z from 300 to 1,800 (R = 240,000 for LTQ-Orbitrap Elite) followed by data-dependent MS/MS scans on the twenty most

---

**TABLE 4 Bacterial strains**

| Strain | Description | Reference |
|--------|-------------|-----------|
| DH5α  | F− ΔlacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(m− mcr−) supE44 thi-1 gyrA96 relA | 16 |
| 269–492 (KK03) | Clinical isolate, spontaneous spreading, corroding colony variant of 269-492 |  |
| KK03 hmw1C₃α::kan | Interruption of hmw1C₃α with kanamycin resistance cassette | This study |
| KK03 hmw1C₃α::kan(hmw1C₃α) | Reversion of interrupted hmw1C₃α to wild type | This study |
| KK03 ctrA::erm | Interruption of ctrA with erythromycin resistance cassette | This study |
| KK03 pilA1::cm | Interruption of pilA1 with chloramphenicol resistance cassette | This study |
| KK03 ctrA::erm pilA1::cm | Interruption of ctrA with erythromycin resistance cassette and pilA1 with chloramphenicol resistance cassette | This study |
| KK03 ctrA::erm pilA1::cm hmw1C₃α::kan | Interruption of ctrA with erythromycin resistance cassette, pilA1 with chloramphenicol resistance cassette, and hmw1C₃α with kanamycin resistance cassette | This study |
| KK03 ctrA::erm pilA1::cm knh::kan | Interruption of ctrA with erythromycin resistance cassette, pilA1 with chloramphenicol resistance cassette, and knh with kanamycin resistance cassette | This study |
| KK03 ctrA::erm pilA1::cm hmw1C₃α::kan(hmw1C₃α) | Interruption of ctrA with erythromycin resistance cassette and pilA1 with chloramphenicol resistance cassette and reversion of interrupted hmw1C₃α to wild type | This study |
| CCUG 11575 | Clinical isolate of A. aphrophilus | Culture collection of the University of Gothenburg |
| CCUG 11575 hmw1C₃α::kan | Interruption of hmw1C₃α with kanamycin resistance cassette | This study |
| CCUG 11575 hmw1C₃α::kan(hmw1C₃α) | Reversion of interrupted hmw1C₃α to wild type | This study |
| CCUG 11575 emaA::kan | Interruption of emaA with kanamycin resistance cassette | This study |
| CCUG 11575 emaA::kan(emeaA) | Reversion of the interrupted emaA to wild type | This study |
| E. coli BL21 pACYC HMW1C₃α + pBAD | E. coli expressing HMW1C₃α | This study |
| E. coli BL21 pACYC + pBAD Knh | E. coli expressing Knh | This study |
| E. coli BL21 pACYC HMW1C₃α + pBAD Knh | E. coli expressing HMW1C₃α and Knh | This study |
abundant ions, with a minimum signal of 1,500, dynamic exclusion with a...#H11001

1.3. The Haemophilus influenzae HMW1C protein is a glycosyltransferase that...

REFERENCES

1. Szymanski CM, Wren BW. 2005. Protein glycosylation in bacterial mu-

2. Charbonneau ME, Côté JP, Haurat MF, Reiz B, Crépin S, Berthiaume

3. Grass S, Buscher AZ, Swords WE, Apicella MA, Barenkamp SJ, 

4. Marceau P, Kinsella N, Guerry P, Trust TJ. 1996. Characterization of 

5. Doig P, Kinsella N, Guerry P, Trust TJ. 1996. Characterization of a 

6. Herrmann JL, O’Gaora P, Gallagher Å, Thole JE, Young DB. 1996.

Bacterial glycoproteins: a link between glycosylation and proteolytic 

cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J 

15:3547–3554.

7. Hofsteenge J, Müller DR, de Beer T, Löffler A, Richter WJ, Vliegenthart 

8. Iwaskiw IA, Vozza NF, Kinsella RL, Feldman MF. 2013. Pour some 

sugar on it: the expanding world of bacterial O-linked glycosyla-

tion. Mol Microbiol 89:14–28. http://dx.doi.org/10.1111/mmi.12265.

9. Faridmoayer A, Fentabli MA, Mills DC, Klassen JS, Feldman MF. 2007. 

Functional characterization of bacterial oligosaccharidyltransferases in-

volved in O-linked protein glycosylation. J Bacteriol 189:8088–8098. 

http://dx.doi.org/10.1128/JB.01318-07.

10. Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P. 1999. Evidence for a 
system of general protein glycosylation in Campylobacter jejuni. Mol 

Microbiol 32:1022–1030. http://dx.doi.org/10.1046/j.1365-

2958.1999.01415.x.

11. Grass S, Lichti CF, Townsend RR, Gross J, St Geme JW, III. 2010. The 

Haemophilus influenzae HMW1C protein is a glycosyltransferase that 

transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS 

Pathog 6:e1000919. http://dx.doi.org/10.1371/journal.ppat.1000919.

12. Gross J, Grass S, Davis AE, Gilmore-Erdmann P, Townsend RR, St 

Geme JW, III. 2008. The Haemophilus influenzae HMW1 adhesin is a 
glycoprotein with an unusual N-linked carbohydrate modification. J Biol 

Chem 283:26010–26015. http://dx.doi.org/10.1074/jbc.M801819200.

13. St Geme JW, III, Falkow S, Barenkamp SJ. 1993. High-molecular-weight 

proteins of nontypable Haemophilus influenzae mediate attachment to 

human epithelial cells. Proc Natl Acad Sci U S A 90:2875–2879. http:

//dx.doi.org/10.1073/pnas.90.19.2875.

14. Fleckenstein JM, Roy K, Fischer JF, Burkitt M. 2006. Identification of a 
two-partner secretion locus of enterotoxigenic Escherichia coli. Infect 

Immun 74:2245–2258. http://dx.doi.org/10.1128/IAI.74.7.2245-2258.2006.

15. Kehl-Fie TE, St Geme JW, III. 2007. Identification and characterization 
of an RTX toxin in the emerging pathogen Kingella kingae. J Bacteriol 

189:430–436. http://dx.doi.org/10.1128/JB.01319-06.

16. Porsch EA, Kehl-Fie TE, St Geme JW, III. 2012. Modulation of Kingella 

kingae adherence to human epithelial cells by type IV pilus, capsule, and 
a novel trimeric autotransporter. mBio 3:e00372-12. http://dx.doi.org/

10.1128/mBio.00372-12.

17. Kahrat O. 1940. Endocarditis due to a new species of Haemophilus. J 

Pathol Bacteriol 50:497–505. http://dx.doi.org/10.1002/path.1700500312.

18. Sherlock O, Dobrindt U, Jensen JB, Munk Vejborg R, Klemm P. 2006. 

Glycosylation of the self-recognizing Escherichia coli Ag43 autotrans-

porter protein. J Bacteriol 188:1798–1807. http://dx.doi.org/10.1128/

JB.188.7975-1807.2006.

19. Benz I, Schmidt MA. 2001. Glycosylation with heptose residues mediated 

by the ah gene product is essential for adherence of the AIDA-I adhesin. 

Mol Microbiol 40:1403–1413. http://dx.doi.org/10.1046/j.1365-

2958.2001.02487.x.

20. Côté JP, Charbonneau ME, Mourez M. 2013. Glycosylation of the Esh-

cherichia coli Tba self-associating autotransporter influences the confor-

mation and functionality of the protein. PLoS One 8:e00739. http:

//dx.doi.org/10.1371/journal.pone.000739.

21. Tang G, Mintz KP. 2010. Glycosylation process of the collagen adhesion 

EmaA of Aggregatibacter actinomycetemcomitans is dependent upon the 

lipopolysaccharide biosynthetic pathway. J Bacteriol 192:1395–1404. 

http://dx.doi.org/10.1128/JB.01453-09.

22. Naegeli A, Michaud G, Schubert M, Lin CW, Darbre T, Reymond JL, 

Aebi M. 2014. Substrate specificity of cytoplasmic N-glycosyl-

transferase. J Biol Chem 289:24521–24532. http://dx.doi.org/10.1074/

jbc.M114.579326.

23. Mintz KP. 2004. Identification of an extracellular matrix protein adhe-

sion, EmaA, which mediates the adhesion of Actinobacillus actinomyce-

temcomitans to collagen. Microbiology 150:2677–2688. http://dx.doi.

org/10.1099/mic.0.27110-0.