Using sumac (Rhus coriaria L.), as a miraculous spice with outstanding pharmacological activities

Mohamad H. SHAHRAJABIAN, Wenli SUN*

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hesamshahrajabian@gmail.com; sunwenli@caas.cn (*corresponding author)

Abstract

Sumac is the wine-colored ground spice, belonging to the cashew family (Anacardiaceae). The most important components of sumac ethanolic extract obtained from sumac are Trans-Caryophyllene, diethyl ester, Butanedioic acid, Cembrene, 1,7-Nonadien-4-ol,4,8-dimethyl, Malate, Palmitate, 9-Octadecenoic acid, Ethyl Linoleic acid, Phytol and Ethyl Linoleate. In the Middle East, sumac is used as a spice and is extensively consumed with Kebabs and grilled meats. It is traditionally used by native Indians of North America in the treatments of bacterial diseases, such as syphilis, gonorrhea, gangrene and dysentery. In traditional medicine of Middle Eastern countries, it has been used for cholesterol reduction and sweating because it has shown antibacterial, hypoglycemic activities and even antioxidant properties due to the presence of tannin fractions in both of their fruits and leaves. The most important health benefits of sumac are reduced cholesterol, balance blood sugar levels, rich in antioxidants, calms muscle aches, reduce the chance of bone depletion, and it can help in the fight against cancer. In this review article all relevant papers of different scholars and researchers were searched in Google Scholar, Science Direct, Scopus and PubMed. Sumac has numerous health benefits and important pharmacological activities, and it can be considered as a valuable source of nutraceuticals, and an efficient natural drug.

Keywords: antioxidant; Kaempferol; Isoquercitrin; sumac; traditional medicine

Introduction

Traditional medicines deal with common principles and methods of education, innovation, prevention, treatment and practical research which can benefits the society, patients and improvement of sciences (Shahrajabian et al., 2020 a,b,c,d,e). Traditional medicinal plants have notable function for prevention and treatment of diseases by considering their traditional utilizations (Shahrajabian et al., 2021 a,b,c,d,e,f). Traditional medicine is a collection of written and oral, practical and theoretical knowledge which collected from Iranian, Chinese, Greek, and Indian ancient knowledge and wisdom (Marmitt et al., 2021; Sun et al., 2021 a,b,c,d). Rhus coriaria L. (sumac), belonging to the Anacardiaceae family, is a plant with antioxidant properties whichs grows in Iran, Southern Europe, Mediterranean countries, North Africa, and Afghanistan (Nasar-Abbas and Halkman, 2004; Yang et al., 2016; Abdel-Mawgoud et al., 2019; Khoshkharam et al., 2021). It is considered a reasonable cure in traditional medicine for its analgesic, anorexic, antiarrhertic, antiseptic, and antihyperglycemic properties (Rayne and Mazza, 2007). The name is originated from "sumaga", meaning
red (Wetherilt and Pala, 1994). They have a milky or resinous juice; compound or simple leaves; small flowers, with the parts in fours or sixes; and one-seeded, small dry, usually hairy, sometimes highly colored fruits, generally in dense clusters (Bayram et al., 2005). The name sumac is given also to the commercial preparation of the ground and dried leaves of the Sicilian or tenners sumac (*Rhus coriaria*) of Southern Europe, long applied in making leather (Bayram et al., 2005). *Rhus coriaria*, found mostly in the Middle East and Mediterranean basin, has been used in spice blends and in traditional medicines for hundreds of years (Kirby et al., 2013), while *Rhus typhina*, the Staghorn sumac, also called *Rhus hirta*, is a species found throughout North America (Rayne and Mazza, 2007). Sumac can grow in non-agriculturally viable locations, and has a long history of utilized by indigenous people for medicinal and different purposes (Chen and Chen, 2011), and this shows potential for commercializing it without competing for food production land use (Wyk and Wink, 2004). Many compounds have been isolated from different parts of sumac, such as fatty acids, phenolics, organic acids, volatile oils, proteins, fiber, vitamins and minerals (Ozcan and Haciseferogullari, 2004; Anwer et al., 2013). Sumac extract was characterized by both 7-methyl-cyanidin 3-galactoside and gallic acid derivatives (Romeo et al., 2015). In the Middle East, it is also used as the spice, to give sour lemon taste to grilled stews and meats, but in vegetable and rice dishes too (Giovanelli et al., 2017). The red fruits are tightly ranged together into an inverted cone-shaped spike of 5-30 cm, and the fruits are tiny little spheres tightly packed together forming dense clusters of reddish drupes called sumac bobs (Sakhr and El Khatib, 2020). The dimension and physical properties of *Rhus coriaria* are length (4.72±0.030 mm), width (3.90±0.028 mm), weight (0.018±0.001 g), thickness (2.64±0.025 mm), mean diameter (3.64±0.023 mm), projected area (0.164±0.005 cm2), volume (19.49±0.442 mm3), bulk density (304.25±364 kg/m3), and porosity (68.52±0.578%) (Ozcan and Haciseferogullari, 2004). In Iran, sumac is grown in Mazandaran, Khorasan, Azadbayegan, Ghazvin, Shiraz, Ghom and Hamedan (Khoshkharam et al., 2020). Syrian sumac (*Rhus coriaria* L.) is famously used in Mediterranean region and the Middle East as a spice sauce and drink and Chinese sumac (*Rhustyphina* L.) is indigenous to the Eastern area of North America, is not extensively cultivated in China’s North, Northwest and many other regions such as Lanzhou, Beijing, Hebei, Shanxi where it is usually called huojushu (Kossah et al., 2009). Edible sumac varieties consist of smooth sumac (*Rhus glabra*), dwarf or winged sumac (*Rhus copallina*), staghorn sumac (*Rhus typhina*), lemonade berry (*Rhus integrifolia*), Southwestern sumac (*Rhus microphylla*), sweet sumac (*Rhus aromatic*), sugar bush (*Rhus ovata*), and squaw berry (*Rhus trilobata*) (Khoshkharam et al., 2020). The aim of this manuscript is introduced and survey the most important pharmaceutical and health benefits of sumac and present chemical constituents of sumac.

Chemical Components and Nutritional Constituents

Rhus coriaria consists of numerous substances including polyphenols such as quercetin, gallic acid, kaempferol, methyl gallate (Shabana et al., 2011), and hydrolysable tannins, which shows a significant strong antioxidant impact (Kosar et al., 2007). The fruit of sumac contains phenolic acids, flavonols, hydrolysable tannins, anthocyanins and organic acids such as citric, malic and tartaric acids (Ozcan and Haciseferogullari, 2004; Kossah et al., 2010). The main compound found in Rhus family is hydrolysable gallothannins, and it is the main structural unit in the polyol D-glucose, esterified by gallic acid at its hydroxyl groups to give the β-pentagalloyl-D-glucose (Zalacain et al., 2003). Also, gallic acid contains notable anti-obesity (Hsu and Yen, 2007), hepatoprotective (Jadon et al., 2007), antioxidant (Yen et al., 2002) and anticancer (Sun et al., 2016) activities. Kosar et al. (2007) also reported that while gallic acid was the principle phenolic acid in the extracts, anthocyanin fraction including cyanidin, pelargonidin, peonidin, petunidin, coumarates and delphinidin glucosides. The antibacterial and antioxidant activities of sumac extract are linked to its phenolic compounds, containing tannins and gallic acid, and different flavonoids (Nimri et al., 1999). *R. coriaria* methanol extract was determined to contain high amounts of tannins (0.365 mg TAE/mg extract) contents, and total flavonoids (0.177 mg QE/mg extract) (Taskin et al., 2020).
Leaves of staghorn sumac (*Rhus typhina*) present several galloyltransferases that catalyze the β-glucogallin dependent transformation of 1,2,3,4,6-pentagalloylglucose to gallotannins (Niemetz and Gross, 2001). It has been also reported that ellagitannins and gallotannins, the two subclasses of hydrolysable tannins of *Rhus typhina*, are derivatives of 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (Niemetz and Gross, 2005). Phytochemical compounds detected and characterized in *R. coriaria* L. fruits by HPLC-QTOF-MS in positive and negative ionization modes are Malic acid I, Quinic acid I, Malic acid hexoside I, Malic acid hexoside II, Malic acid hexoside III, Oxysdisuccinic acid, Malic acid II, Malic acid III, Quinic acid II, O-Succinoyl-di-O-caffeoylquinic acid, Malic acid derivative, Caftaric acid, Galloylhexose I, Galloylhexose II, Levoglucosan gallate I, Galloylhexose III, Levoglucosan gallate II, Galloylhexose IV, O-galloylnorbergenin I, Digalloyl-hexoside I, Galloylhexose derivative I, O-galloylnorbergenin II, Digalloyl-hexoside II, Protocatechoic acid, Galloylshikimic acid I, Gallic acid hexose derivative, Syringic acid hexoside, Gallic acid O-malic acid, Galloylshikimic acid II, Digalloyl-hexose malic acid II, Cumaroyl-hexoside, Digalloyl-hexoside IV, Galloylquinic acid II, Trigalloyllevoglucosan I, Kaempferol hexoside or Luteolin hexoside I, Tri-galloylhexoside I, Penstemide, Digallic acid I, Digalloyl-hexoside V, methyl gallate, Digalic acid II, Coumaric acid, Myricetin-hexose malic acid III, Myricetin-3-O-glucuronide, Myricitin derivative, Myricitin derivative, Myricetin-3-O-glucoside, Tetra-O-galloylhexoside II, Horridin, Pentagalloyl-hexoside I, Oxoglycyrretinic acid, Dihydroisovaltrate, Betunolic acid II, Veponol, Moroctic acid, Triterpenoid derivative, Linoleic acid amide, Sespendole, Vapiprost, Rhamnetin I, Rhamnetin II, Hexadecadienoic acid, Deacetylforskolin, and Butein (Abu-Reidah et al., 2015). It has rich mineral compounds such as aluminum, bromine, barium, calcium, chlorine, chrome, copper, iron, magnesium, potassium, lithium, nitrogen, nitrate, phosphorus, zinc, strontium, titanium and vanadium, of which, calcium, magnesium, phosphorous, and potassium are main elements found in sumac fruits (Anwar et al., 2018). Egyptian sumac was more enriched in α-cymene, limonene, and β-ocimene, while Jordanian and Palestinian specimens showed more close volatile profile being enriched in naphthalene and α-pinene (Farag et al., 2018). In one experiment, on the basis of NMR and mass spectral data, the fruit extract of winged sumac contained a new galloyl derivative, (R)-galloyl malic acid dimethyl ester, and eleven known compounds, gallic acid, glucogallin, methyl gallate, methyl m-digallate, quercetin, methyl p-digallate, rhamnazin, myricetin, betulinic acid, kaempferol, and oleanolic acid (Ma et al., 2012). Structures of the most important phenolic compounds from *Rhus coriaria* fruit in Iranian populations were (E)-Caryophyllene (5.9-50.3%), n-nonanal (1.8-23.3%), cembrene (1.9-21.7%), α-pinene (0.0-19.7%), (2E,4E)-decadienal (2.4-16.5%), and nonanoic acid (0.0-15.8%) (Morshedloo et al., 2018). In one experiment, on the basis of NMR and mass spectral data, the fruit extract of winged sumac contained a new galloyl derivative, (R)-galloyl malic acid dimethyl ester, and eleven known compounds, gallic acid, glucogallin, methyl gallate, methyl m-digallate, quercetin, methyl p-digallate, rhamnazin, myricetin, betulinic acid, kaempferol, and oleanolic acid (Ma et al., 2012). Structures of the most important phenolic compounds from *Rhus coriaria* fruit is shown in Figure 1. Structures of the most notable anthocyanins from *Rhus coriaria* are presented in Figure 2.

![Figure 1. Structures of some of selected phenolic compounds from *Rhus coriaria* fruit](image)
Figure 2. Structures of some anthocyanins from *Rhus coriaria*

Potential Health Benefits in Traditional Medicine

In Iran, sumac is used as a spice and is extensively consumed with Kebabs and grilled meats (Fereidoonfar *et al.*, 2018; Langroodi *et al.*, 2018). *Rhus glabra* L. is traditionally used by native Indians of North America in the treatments of bacterial diseases, such as gonorrhea, syphilis, gangrene and dysentery (Erichsen-Brown, 1989). Sumac is often used as a spice by grinding the dried fruits with salt for salads and Kebabs, and is also broadly utilized as a medicinal herb in Iran and Turkey, particularly for skin problems and wound healing (Sezik *et al.*, 1991). In traditional Chinese medicine, all parts of it have been used for treating diseases; for example, the leaves are used for treating diarrhea and inflammations; the root is used for treating jaundice and malaria; the fruits and seeds are commonly used for treating dysentery and hepatitis (Djakpo and Yao, 2010; Zhang *et al.*, 2018). In traditional Arabic Palestinian herbal medicine, this plant has been applied in the treatment of cancer, diarrhea, stroke, dysentery, hypertension, ophthalmia, haematemesis, stomach ache, diuresis, liver disease, diabetes, measles, atherosclerosis, headaches, small-pox, aconuresis, teeth and gum ailments, animal bites, liver disease and dermatitis (Shafiei *et al.*, 2011; Abu-Reidah *et al.*, 2015). Sumac fruit has also been introduced in Iranian traditional medicine as a herb with some therapeutic activities, and traditionally the powdered fruits have been prescribed as astringent, anti-trachoma, anti-diarrhea, and anti-pus in infectious wounds (Ahmadian-Attari *et al.*, 2017). Sumac is utilized in the Iranian traditional medicine as
an astringent and stancher agent, and it is also used to eye trachoma, and to suppress the incidence of pox in eye (Mazaheri et al., 2017). This plant is used in traditional medicine of Jordan for cholesterol reduction and sweating that sumac indicated antibacterial, hypoglycemic properties and even antioxidant activities because of the presence of tannin fractions in both of their fruits and leaves (Adwan et al., 2009; Aliakbarlu et al., 2013). In some Eastern Mediterranean regions powdered sumac is applied in the composition of Zaatar, a mixture of a homemade earthy and herby savory blend of dried thyme-like herbs such as Thymbra spicata and Origanium syriacum, used for a numerous of dishes specially for the Lebanese flatbread "Mankouche" (Alwafa et al., 2021). In traditional Iranian medicine, sumac has been consumed as an anti-diarrhea, hemostasis factor, anti-pus, and trachea treatment (Tohma et al., 2019).

Potential Health Benefits in Modern Pharmaceutical Science

Rhus coriaria contains significant antimicrobial and antioxidant activities (Kossah et al., 2009; Rima et al., 2011; Wu et al., 2013). *Rhus coriaria*-fortified yogurt indicated a significant boost in total phenolic constituents and antioxidant activity in comparison with plain yogurt (Perna et al., 2018). Former studies have shown the positive antimicrobial effects of sumac extracts on Bacillus spp., Listeria monocytogenes, Citrobacter freundii, Staphylococcus aureus, Escherichia coli, Haftiaalveri, Proteus vulgaris, Salmonella typhi, Salmonella enteritidis, and Shigella flexneri in vitro conditions (Nasar-Abbas and Halkman, 2004; Nasar-Abbas et al., 2004; Fazeli et al., 2007). The methanolic extract of *Rhus coriaria* may be considered as an efficacious natural scolicidal agent (Moazeni and Mohseni, 2012). The application of sumac extracts as a potential natural preservative have been used in food industry, for the control of natural microflora of broiler meat has been found in raw broiler wings (Gulmez et al., 2006), and raw broiler drumsticks (Vatansever et al., 2008). Sumac supplementation revealed to have a potential weight-reduction impact, along with a positive influence on insulin resistance in patients who were obese or overweight (Heydari et al., 2019). The analgesic impacts for the hydro alcoholic leaf extract of *Rhus coriaria* (HRCLE) in a rat model may be mediated through both central and peripheral mechanisms, and the presence of flavonoids might be accountable for the antinociceptive characteristic of this plant (Mohammadi et al., 2015). In one experiment, sumac indicated better activity against the tested bacteria compared to avishan-e shirazi suppressing Bacillus cereus and Staphylococcus aureus at concentrations of 0.05% and 0.1%, respectively, and this common Iranian spice which is traditionally used as astringent agent has promising inhibitory impacts on food-borne bacteria and could be considered as natural food preservatives (Fazeli et al., 2007).

Its extract recently underwent evaluation as a potent biocontrol candidate that works against human pathogens (Nasar-Abbas and Halkman, 2004). Its extract can be judged as an affordable and eco-friendly replacement to chemical fungicides in the management of tomato anthracnose disease caused by Colletotrichum acutatum, and it can also cause significant improvement of the shoot height, dry shoot height, dry root length, root length, chlorophyll content and leaf surface area of treated plants (Rashid et al., 2018). Some of the fatty acid compositions of sumac are Palmitic acid, Myristic acid, Palmitoleic acid, Stearic acid, Linoleic acid, Oleic acid, and Linolenic acid; and vitamin content of sumac are Nicotinamide (PP), Thiamin (B₁), Riboflavin (B₂), Pyridoxine (B₆), Cyanocobalamin (B₁₂), Biotin (H), and Ascorbic acid (C) (Kossah et al., 2009). Sumac with a fatty diet effectively decreased blood cholesterol and may possibly help in both prevention and treatment of hyperlipidemia in a small sample of white Wistar rats (Soltani et al., 2017). Clinical studies using sumac or its major constituents, proposed that this herbal product may represent an appropriate therapeutic tool in the management of metabolic-related conditions such as liver-atherosclerosis disorders (Khalil et al., 2021a). It has been reported that some active bio-active constituents of sumac have impacts against metabolic syndrome, such as Gallic acid on diabetes, obesity, NAFLD, oxidative-inflammatory damage; Methyl gallate on oxidative-inflammatory damage, cancer and obesity; Quercetin on obesity and hypertension, Myricetin on obesity and NAFLD; and Cyanidin, delphinidin on obesity, NAFLD, diabetes, and
inflammation (Khalil et al., 2021a). Sumac fruit powder improved intestinal morphology of rainbow trout, and it may boost antioxidant status in rainbow trout, but dietary sumac fruit powder did not influence the serum biochemistry in rainbow trout (Diler et al., 2021). Sakhr and El Khatib (2020) reported that sumac can be applied as an effective food preservative and harmless, natural food additive. Sumac, as an adjuvant therapy, may reduce serum levels of insulin, fasting blood sugar (FBS), and HOMA-IR (Ghafoori et al., 2021). The free phenolics fraction of Rhus family fruits has an effective lipase inhibitory activity, and can potentially treat obesity-related problems; quercetin and myricetin were the principle phenolics in all fractions with good dose-dependent lipase inhibitory impacts, and myricetin had a positive inhibitory effect (Zhang et al., 2018; Wu et al., 2019). Increase in the body weight gain, feed conversion ration because of increased antibody level, intestinal morphology, and some notable microbial population in female broiler chicks receiving the sumac and dried when power (Kheiri et al., 2015). The most important pharmaceutical and health benefits of sumac are shown in Table 1.

Table 1. Health benefits of sumac
Pharmaceutical benefits
Anti-bacterial activity
Anti-cancer activity
Anti-diabetic activity
Anti-inflammation activity
Table

Supplementation with sumac lead to a significant decline in inflammation and oxidative stress.
The neuro-inflammation inhibitory activity of *R. coriaria* extracts consists of the inhibition of NF-κB signaling pathway, and it might carry therapeutic potential against neurodegenerative diseases.
Anti-microbial activity Bactericidal impacts of sumac on Gram positive organisms, *Bacillus* species such as *Bacillus cereus*, *Bacillus subtilis*, *Bacillus megaterium*, and *Bacillus thuringiensis* were reported.
Sumac water extract and oregano oil suspensions reduced *Salmonella Typhimurium* populations on the surfaces of tomatoes without influencing the sensory properties of tomatoes.
Its extract indicated a strong antimicrobial activity with concentration dependence and a broad antimicrobial spectrum for various tested bacteria species. *Staphylococcus aureus* and *Salmonella enteric* were recognized to be sensitive Gram positive and Gram-negative bacteria, respectively, with a minimum inhibitory concentration of <0.78%.
Antioxidant activity The aqueous and alcholic extracts of sumac in especial methanolic (SSE) are appropriate scavengers for reactive oxygen species (ROS) are a potential source of natural antioxidant, that may be applied in food and pharmaceutical industry.
Compared to ethanol extracts, the water extracts of sumac have effective antioxidant and radical scavenging activities.
Conclusions

The sumac group *Rhus* L. belongs to Anacardiaceae family, is considered the largest and the most heterogeneous taxon and is commonly connected to as the *Rhus* complex in the sumac. Sumac is a prominent spice in the Middle East, which is made from berries from a bush of the same name. In order to produce the spice from the plant, its fruit is dried and then crushed into a thin red-purple powder. The red berries are delicious and tangy, containing malic acid which is originated in apples. As a spice, it is delicious on meat, in salad dressing, and makes the tasty infused vinegar if you macerate it in apple cider vinegar. The most important phenolic acids and flavonoids are catechin, gallic acid, ferulic acid, apigenin, gentisic acid, P-coumaric acid, chlorogenic acid, isorhamnetin, caffeic acid, quercetin, cinnamic acid, taxifolin, kaempferol, epicatechin, vanillic acid, P-hydroxybenzoic acid, vanillin, anisic acid, pyrogallol, syringaldehyde, sinapic acid, syringic acid and benzoic acid. Organic acids of sumac are citric acid, malic acid, fumaric acid and tartaric acid. The fatty constituents of sumac fruits are palmitic acid, oleic acid, myristic acid, stearic acid, palmitoleic acid, linoleic acid and linolenic acid. The vitamin contents of sumac fruits are riboflavin, thiamin, pyridoxine, cyanocobalamin, biotin, nicotinamide, and ascorbic acid. The principal health advantages of sumac are 1) anti-inflammatory: inflammation is believed to be the main cause of many diseases and Sumac is an anti-inflammatory medicinal herb that assists fight numerous disorders, colds, and the Flu, 2) anti-cancer: it is packed with vitamin C and a great anti-oxidant which means it can promote ward off diseases like cancers, diabetes, and cardiovascular diseases, 3) anti-microbial and anti-fungal: Sumac is anti-microbial and anti-fungal spice which can increase treatment of skin disorders and inflammation, it has also been studies to be effectual in fighting bacteria like Salmonella and can be applied to safely disinfect vegetables and fruits, 4) It has been considered as a potent in regulating cholesterol levels and treating diabetes by decreasing blood sugar, 5) it can boost breast milk production and decrease menstrual cramps, 6) Sumac is a diuretic which means it assists remove toxins from the body via urine and had been utilized traditionally to treat urine digestive and infections disorders. Due to wonderful pharmacological characteristics, sumac is considered as a high potent natural and organic spice with effective pharmacological activities.

Authors’ Contributions

Both authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

This work was supported by the National Key R&D Program of China (Research grant 2019YFA0904700). This research was also funded by the Natural Science Foundation of Beijing, China (Grant No. M21026).
Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Abdallah S, Abu-Reidah I, Moussa A, Abdel-Latif T (2019). Rhus coriaria (sumac) extract reduces migration capacity of uterus cervix cancer cells. Revista Brasileira de Farmacognosia 29:591-596. https://doi.org/10.1016/j.bjp.2019.06.004

Abdel-Mawgoud M, Khedr FG, Mohammed EI (2019). Phenolic compounds, antioxidant and antibacterial activities of Rhus flexicaulis baker. Jordan Journal of Biological Sciences 12(1):17-21. https://doi.org/10.21608/jbas.2021.214829

Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arraez-Roman D, Segura-Carretero A (2015). HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry 166:179-191. https://doi.org/10.1016/j.foodchem.2014.06.011

Adwan GM, Abu-Shanab BA, Adwan KM (2009). In vitro activity of certain drugs in combination with plant extracts against Staphylococcus aureus infections. African Journal of Biotechnology 8(17):4239-4241. https://doi.org/10.1016/s1995-7645(10)60064-8

Ahmadian-Attari MM, Amini M, Farsam H, Amin G, Fazeli MR, Monsef Esfahani HR, … Bairami A (2016). Isolation of major active antibacterial compounds of sumac fruit (Rhus coriaria L.). International Journal of Enteric Pathogens 4(4):e37101. https://doi.org/10.15171/ijep.2016.11

Ahmadian-Attari M, Khanlarbeik M, Fazeli MR, Jamalifar H (2017). Sumac (Rhus coriaria L.) represents a considerable antibacterial activity against methicillin susceptible and methicillin resistant Staphylococcus aureus. International Journal of Enteric Pathogens 5(3):76-79. https://doi.org/10.15171/ijep.2017.18

Aliakbarlu J, Mohammadi S, Khalili S (2013). A study on antioxidant potency and antibacterial activity of water extracts of some spices widely consumed in Iranian diet. Journal of Food Biochemistry 38(2):159-166. https://doi.org/10.15171/ijep.2017.18

AliShah AS, Daneshyar M, Aghazadeh A (2012). The effect of dietary sumac fruit powder (Rhus coriaria L.) on performance and blood antioxidant status of broiler chickens under continuous heat stress condition. Italian Journal of Animal Science 11(4):e71. https://doi.org/10.2174/1874285802014010142

Alwafa RA, Mudalal S, Mauriello G (2021). Origanum syriacum L. (Za’atar), from raw to go: A review. Plants (Basel) 10(5):1001. https://doi.org/10.2787/pecri.5121v0.1/reviews/1

Anwar MA, Samaha AA, Baydoun S, Iratni R, Eid AH (2018). Rhus coriaria evokes endothelium-dependent vasorelaxation of rat aorta: Involvement of the cAMP and cGMP pathways. Frontiers Pharmacology 9:688. https://doi.org/10.3389/fphar.2018.00688

Anwer T, Sharma M, Khan G, Iqbal M, Ali MS, et al. (2013). Rhus coriaria ameliorates insulin resistance in non-insulin dependent diabetes mellitus (Niddm) rats. Acta Poloniae Pharmaceutica-Drug Research 70:861-867. https://doi.org/10.32383/appdr/80887

Bayram OA, Bayram M, Tekin AR (2005). Spray drying of sumac flavour using sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering 69:253-260. https://doi.org/10.1016/j.foodeng.2005.03.016

Bursal E, Koksal E (2011). Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Research International 44:2217-2221. https://doi.org/10.1007/bf02934192

Candan F (2003). Effect of Rhus coriaria L. (Anacardiaceae) on superoxide radical scavenging and xanthine oxidase activity, Journal of Enzyme Inhibition and Medicinal Chemistry 18:59-62. https://doi.org/10.1007/s00592-007-0018-3

Chen G, Chen H (2011). Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food Chemistry 126:1934-1938. https://doi.org/10.1016/j.foodchem.2010.12.025

Diler O, Ozil O, Bayrak H, Yigit NO, Ozmen O, Saygin M, Aslankoc R (2021). Effect of dietary supplementation of sumac fruit powder (Rhus coriaria L.) on growth performance, serum biochemical, intestinal morphology and
antioxidant capacity of rainbow trout (Oncorhynchus mykiss, Walbaum). Animal Feed Science and Technology 278:11493. https://doi.org/10.1016/j.anifeedsci.2021.11493

Djakpo O, Yao W (2010). Rhus chinensis and Gallanchinesis-folklore to modern evidence. Phytotherapy Research 24:1739-1747. https://doi.org/10.1002/ptr.3468

Dogan A, Celik I (2016). Healing effects of sumac (Rhus coriaria) in streptozotocin-induced diabetic rats. Pharmaceutical Biology 54(10):2092-2102. https://doi.org/10.24925/rjaf_v7i1203-1215.2629

El Khatib S, Salame A (2019). Sumac (Rhus coriaria) extracts to enhance the microbiological safety of the red meat. Food Science and Technology 7(4):41-52. https://doi.org/10.13189/fst.2019.070401

Erichsen-Brown C (1989). Medicinal and Other Uses of North American Plants: A Historical Survey with Special Reference to the Eastern Indian Tribes. Dover Publications, New York, pp 475. https://doi.org/10.5713/ajas.2013.13616

Farag MA, Fayek NM, Reidah IA (2018). Volatile profiling in Rhus coriaria fruit (sumac) from three different geographical origins and upon roasting as analyzed via solid-phase microextraction. Peer J 6:e5121. https://doi.org/10.1080/09712119.2016.1256292

Fazeli MR, Amin G, Attari MMA, Ashtriani H, Jamalifar H, Samadi N (2007). Antimicrobial activities of Iranian sumac and a vishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control 18:646-649. https://doi.org/10.1016/j.foodcont.2013.05.005

Ghafouri A, Estevao MD, Alibakhshi P, Pizarro AB, Faghihi Kashani A, Persad E, ... Morvaridzadeh M (2021). Sumac fruit supplementation improve glycemic parameters in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis. Phytomedicine 90:153661. https://doi.org/10.1016/j.phymed.2021.104745

Gulmez M, Oral N, Vatansever L (2006). The effect of water extract of sumac (Rhus coriaria L.) and lactic acid on decontamination and shelf life of raw broiler wings. Poultry Science 85:1466-1471. https://doi.org/10.3390/biomedicines10010083

Gunduz GT, Gonul SA, Karapinar M (2010). Efficacy of sumac and oregano in the inactivation of Salmonella Typhimurium on tomatoes. International Journal of Food Microbiology 141:39-44. https://doi.org/10.1016/j.ijfoodm.2010.11.001

Heydari M, Nimrouzi M, Hajmohammadi Z, Faridi P, Ranjbar Omrani G, Shams M (2019). Rhus coriaria L. (Sumac) in patients who are overweight or have obesity: A placebo-controlled randomized clinical trial. Shiraz E-Med Journal 20(10):e87301. https://doi.org/10.5812/senj.87301

Hsu CL, Yen GC (2007). Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. British Journal of Nutrition 98:727-735. https://doi.org/10.1017/s000711450774686x

Jadon A, Bhadauria M, Shukla S (2007). Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride-induced damage in albino rats. Journal of Ethnopharmacology 109:214-218. https://doi.org/10.1016/j.jep.2006.07.033

Kazemi S, Shidfar F, Ehsani S, Adibi P, Janani L, Eslami O (2020). The effects of sumac (Rhus coriaria L.) powder supplementation in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complementary Therapies in Clinical Practice 41:101259. https://doi.org/10.5772/intechopen.92976

Khalil M, Hayek S, Khalil N, Serale N, Vergani L, Calasso M, De Angelis M, Portincasa P (2021a). Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. Journal of Functional Foods 87:104811. https://doi.org/10.1016/j.jff.2021.104811

Khalil M, Bazzi A, Zeineddine D, Jomaa W, Daher A, Awada R (2021b). Repressive effect of Rhus coriaria fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. Journal of Ethnopharmacology 269:113748. https://doi.org/10.1016/j.jfoodchem.2020.09.049

Shahrajabian MH and Sun W (2022). Not Sci Biol 14(1):11118
Khalilpour S, Sangiovanni E, Piazza S, Fumagalli M, Beretta G, Dell’Agli M (2019). In vitro evidences of the traditional use of \textit{Rhus coriaria} L. fruits against skin inflammatory conditions. Journal of Ethnopharmacology 238:111829. https://doi.org/10.1085/jenfoodm.2019.1606930

Kheiri F, Rahimian Y, Nasr J (2015). Application of sumac and dried whey in female broiler feed. Archives Animal Breeding 58:205-210. https://doi.org/10.1111/jfpp.12423

Khoshkaram M, Shahrajabian MH, Sun W, Cheng Q (2020). Sumac (\textit{Rhuscoriaria} L.) a spice and medicinal plant- a mini review. Amazonian Journal of Plant Research 4(2):517-523. https://doi.org/10.3390/agronomy11112122

Khoshkaram M, Shahrajabian MH, Esfandiary M (2021). The effects of methanol and amino acid glycin betaine on qualitative characteristics and yield of sugar beet (\textit{Beta vulgaris} L.) cultivars. Notulae Scientia Biologicae 13(2):1-13. https://doi.org/10.15835/nsb13210949

Kirby CW, Wu T, Tsao R, McCallum JL (2013). Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (\textit{Rhus typhina} L.) via UPLC-ESI-MS, 1H, 13C, and 2D NMR spectroscopy. Phytochemistry 94:284-293. https://doi.org/10.1085/jenfoodm.2019.1606930

Kosar M, Bozan B, Temelli F, Baser KHC (2007). Antioxidant activity and phenolic composition of sumac (\textit{Rhus coriaria} L.) extracts. Food Chemistry 103:952-959. https://doi.org/10.1085/jenfoodm.2019.1606930

Kossah R, Nsabimana C, Zhang H, Chen W (2010). Optimization of extraction of polyphenols from Syrian Sumac (\textit{Rhus coriaria} L.) and Chinese Sumac (\textit{Rhus typhina} L.) fruits. Research Journal of Phytochemistry 4:146-153. https://doi.org/10.1016/j.jphs.2003.10.008

Langroodi AM, Tajik H, Mehdizadeh T, Moradi M, Moghaddas Kia E, Mahmoudian A (2018). Effects of sumac extract dipping and chitosan coating enriched with \textit{Zataria multiflora} Boiss oil on the shelf-life of meat in modified atmosphere packaging. LWT-Food Science and Technology 98:372-280. https://doi.org/10.1034/j.1399-3054.1992.860318.x

Ma H, Yuan T, Gonzalez-Sarrias A, Li L, Edmonds ME, Seeram NP (2012). New galloyl derivative from winged sumac (\textit{Rhus copallinum}) fruit. Natural Product Communications 7(1):45-46. https://doi.org/10.1046/j.1439-0523.2000.00476.x

Mahdavi S, Hesami B, Sharafi Y (2018). Antimicrobial and antioxidant activities of Iranian sumac (\textit{Rhus coriaria} L.) fruit ethanolic extract. Journal of Applied Microbiology and Biochemistry 2(2):1-5. https://doi.org/10.1016/j.jphs.2019.1606930

Marmitt D, Shahrajabian MH, Goettert MI, Rempel C (2021). Clinical trials with plants in diabetes mellitus therapy: a systematic review. Expert Review of Clinical Pharmacology 14(4):1-14. https://doi.org/10.1016/j.jphs.2019.1606930

Mazaheri TM, Hesarinejad MA, Razavi SMA, Mohammadian R, Poorkian S (2017). Comparing physicochemical properties and antioxidant potential of sumac from Iran and Turkey. MOJ Food Processing and Technology 5(2):288-294. https://doi.org/10.3390/plants10040757

Moazeni M, Moheb M (2012). Sumac (\textit{Rhus coriaria} L.): scolicidal activity on hydatidcyst protoscolices. Surgical Science 3:452-456. https://doi.org/10.1007/978-1-4020-6754-9_16335

Mohammadi S, Zarei M, Zarei MM (2015). Antinociceptive effects of \textit{Rhuscoriaria} L. extract in male rats. The Journal of Physiological Sciences 2:S23-S28. https://doi.org/10.2174/157340131766210910120735

Mohit M, Nouri M, Samadi M, Nouri Y, Heidarzadeh-Esfahani N, Venkatakrishnan K, Jalili C (2021). The effect of sumac (\textit{Rhus coriaria} L.) supplementation on glycemic indices: A systematic review and meta-analysis of controlled clinical trials. Complementary Therapies in Medicine 61:102766. https://doi.org/10.1016/b978-0-12-819815-5.00048-3

Morshedloo MR, Maggi F, Neko HT, Soleimani Aghdam M (2018). Sumac (\textit{Rhus coriaria} L.) fruit: Essential oil variability in Iranian populations. Industrial Crops and Products 111:1-7. https://doi.org/10.1080/09064701.2019.1606930

Nasar-Abbas SM, Halkman AK (2004). Antimicrobial effect of water extract of sumac (\textit{Rhus coriaria} L.) on the growth of some food born bacteria including pathogens. International Journal of Food Microbiology 97:63-69.

Nasar-Abbas SM, Halkman AK, Al-Haq MI (2004). Inhibition of some foodborne bacteria by alcohol extract of sumac (\textit{Rhus coriaria} L.). Journal of Food Safety 24:257-267. https://doi.org/10.1016/j.jfoodmicro.2004.04.009
Niemetz R, Gross GG (2001). Gallotannin biosynthesis: β-glucogallin: hexagalloyl 3-O-galloyltransferase from Rhus typhina leaves. Phytochemistry 58:657-661. [https://doi.org/10.1016/j.phytom.2004.00506.x]

Niemetz R, Gross GG (2005). Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 66:2001-2011. [https://doi.org/10.1016/j.foodres.2010.11.001]

Nimri LF, Meqdam M, Alkofahi A (1999). Antibacterial activity of Jordanian medicinal plants. Pharmaceutical Biology 37:196-201. [https://doi.org/10.1055/s-0029-1234957]

Romeo FV, Ballistreri G, Fabroni S, Pangallo S, Nicosia MGLD, Schena L, Rapisarda P (2015). Chemical characterization of different sumac and pomegranate extracts effective against Botrytis cinerea rots. Molecules 20:11941-11958. [https://doi.org/10.1093/ps/858.1466]

Shabana MM, El Sayed AM, Yousif MF, El Sayed AM, Sleem A (2011). Bioactive constituents from Harpephyllum caffrum Bernh and Rhus coriaria L. Pharmacognosy Magazine 7:298-306. [https://doi.org/10.4103/0973-1296.90410]

Shahrajabian MH, Sun W, Cheng Q (2020a). Exploring Artemisia annua L, artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):1719-1741. [https://doi.org/10.15835/nbha48312002]

Shahrajabian MH, Sun W, Shen H, Cheng Q (2020e). Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 70(5):437-443. [https://doi.org/10.52305/acagp3915]

Shahrajabian MH, Sun W, Cheng Q (2021a). Pomegranate, fruit of the desert, a functional food, and a healthy diet. Notulae Scientia Biologicae 13(3):11085. [https://doi.org/10.1002/ptr.6880]
Shahrajabian MH, Sun W, Cheng Q (2021b). Plant of the millennium, caper (Capparis spinosa L.), chemical composition and medicinal uses. Bulletin of the National Research Centre 45(131):1-9. https://doi.org/10.1002/tr.5911

Shahrajabian MH, Sun W, Cheng Q (2021c). The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini-Reviews in Organic Chemistry 18:1-26. https://doi.org/10.1016/s1674-6384(17)60069-8

Shahrajabian MH, Sun W, Cheng Q (2021d). Different methods for molecular and rapid detection of human novel coronavirus. Current Pharmaceutical Design 27:1-10. https://doi.org/10.1017/s0278-020-77922-x

Shahrajabian MH, Sun W, Cheng Q (2021e). Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genetic Resources and Crop Evolution 68(3):1709-1730. https://doi.org/10.1002/mhw.32501

Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA (2021f). Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 11(5):698. https://doi.org/10.1002/tr.6055

Shidfar F, Rahideh ST, Rajab A, Khandozini N, Hosseini S, Shidfar S, Mojab F (2014). The effect of sumac Rhus coriaria L. powder on serum glycemic status, ap0B, ap0A-I and total antioxidant capacity in type 2 diabetic patients. Iranian Journal of Pharmaceutical Research 13(4):1249-1255.

Soltani HR, Vahidi A, Dehgham-Tezerjani M, Javaherchian M, Shiryazdi SA (2017). Effect of sumac (Rhus coriaria) extract on blood lipid profile in white wistar rats. Internal Medicine and Medical Investigation Journal 2(3):97-101.

Stular D, Savio E, Simonic B, Sobak M, Jerman I, Poljansek I, Ferri A, Tomsic B (2021). Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix by sumac leaf extract. Applied Surface Science 563:150361.

Sun G, Zhang S, Xie Y, Zhang Z, Zhao W (2016). Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncology Letters 11:150-158. https://doi.org/10.5530/pc.2021.1.7

Sun W, Shahrajabian MH, Cheng Q (2021a). Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Applied Sciences 11(17):7889. https://doi.org/10.15835/nsb11310419

Sun W, Shahrajabian MH, Cheng Q (2021b). Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and Western modern medicine. Avicenna Journal of Phyto medicine 11(2):109-119. https://doi.org/10.1186/40816-021-00255-7

Sun W, Shahrajabian MH, Cheng Q (2021c). Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Israel Journal of Plant Sciences 68(1-2):1-11. https://doi.org/10.5530/pc.2021.1.5

Sun W, Shahrajabian MH, Cheng Q (2021d). Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Reviews in Medicinal Chemistry 21(6):724-730. https://doi.org/10.12968/hosp.1999.60.9.1739

Taskin T, Dogan M, Yilmaz BN, Senkardes I (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Microcetria fructicosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology 27:101670. https://doi.org/10.15530/pc.2020.2.9

Tohma H, Alray A, Koksai E, Goren AC, Gulin I (2019). Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC-MS/MS. Journal of Food Measurement and Characterization 13:1607-1619. https://doi.org/10.1016/s1169-0419-00077-9

Vatansever L, Guler M, Oral N, Guven A, Orulu S (2008). Effects of sumac (Rhus coriaria L.), oregano (Oreganum vulgare L.) and lactic acid on microbiological decontamination and shelf-life of raw broiler drumsticks. Kafkas Universitesi Veteriner Fakultesi Dergisi 14:211-216. https://doi.org/10.9775/kvfd.2008.53-a

Wetherilt H, Pala M (1994). Herbs and spices indigenous to Turkey. In: Charalambous G (Ed). Spices, Herbs and Edible Fungi. Developments in Food Science. Vol. 34. Elsevier, Amsterdam, pp 285-307. https://doi.org/10.1016/0924-2244(94)90189-9

Wu T, McCallum JL, Wang S, Liu R, Zhu H, Tsao R (2013). Evaluation of antioxidant activities and chemical characterization of staghon sumac fruit (Rhus hirta L.). Food Chemistry 138:1333-1340. https://doi.org/10.1016/j.foodchem.2012.10.086
Wu Z, Ma Y, Gong X, Zhang Y, Zhao L, Cheng G, Cai S (2019). *Rhus chinensis* Mill. fruits prevent high-fat/ethanol diet-induced alcoholic fatty liver in rats via AMPK/SREBP-1/FAS signaling pathway. Journal of Functional Foods 61:103498. https://doi.org/10.1016/j.jff.2019.103498

Wyk BE, Wink M (2004). Medicinal plants of the world. Singapore: Times Editions. pp 32-429.

Yang Y-Y, Meng Y, Wen J, Sun H, Nie Z-L (2016). Phylogenetic analyses of *Searsia* (Anacardiaceae) from eastern Asia and its biogeographic disjunction with its African relatives. South African Journal of Botany 106:129-136. https://doi.org/10.1016/j.sajb.2016.05.021

Yen G, Duh P, Tsai H (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry 79:307-309. https://doi.org/10.1016/s0308-8146(02)00145-0

Zalacain A, Prodanov M, Carmona M, Alonso GL (2003). Optimization of extraction and identification of gallotannins from sumac leaves. Biosystems Engineering 84(2):211-216. https://doi.org/10.1016/S1537-5110(02)00246-5

Zhang C, Ma Y, Gao F, Zhao Y, Cai S, Pang M (2018). The free, esterified, and insoluble-bound phenolic profile of *Rhus chinensis* Mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. Journal of Functional Foods 40:729-735. https://doi.org/10.1016/j.jff.2017.12.019