Weak and strong type estimates for fractional integral operators on Morrey spaces in metric measure spaces

I. Sihwaningrum and Y. Sawano

Abstract

We discuss here a weak and strong type estimate for fractional integral operators on Morrey spaces, where the underlying measure μ does not always satisfy the doubling condition.

Keywords: Weak type estimates, fractional integral operators, Morrey spaces, non-doubling measure

2000 Mathematics Subject Classification: 42B20, 26A33, 47B38, 47G10.

1 Introduction

The aim of this paper is to propose a framework of Morrey spaces and fractional integral operators when we are given a Radon measure μ on a metric measure space (X, d, μ), where μ is a Radon measure.

We recall that the Riesz potential I_α on \mathbb{R}^d is given by

$$I_\alpha f(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-\alpha}} dy.$$

According to the Hardy-Littlewood-Sobolev theorem [2, 3, 10], I_α is bounded from $L^p(\mathbb{R}^d)$ to $L^q(\mathbb{R}^d)$ as long as $p, q \in (1, \infty)$ satisfy $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$. Morrey spaces, named after C. Morrey, can also be used to describe the boundedness property of I_α. Here we adopt the following notation to denote Morrey spaces. Let $1 \leq q \leq p < \infty$. For a measurable function f on \mathbb{R}^d, we define

$$\|f\|_{\mathcal{M}^p_q(\mathbb{R}^d)} := \sup \left\{ |B|^{\frac{1}{p} - \frac{1}{q}} \|f\|_{L^q(B)} : B \text{ is a ball} \right\}.$$

The space $\mathcal{M}^p_q(\mathbb{R}^d)$ denotes the set of all measurable functions f for which the norm $\|f\|_{\mathcal{M}^p_q}$ is finite. According to Adams [11], I_α is bounded from $\mathcal{M}^p_q(\mathbb{R}^d)$ to $\mathcal{M}^s_t(\mathbb{R}^d)$, provided that $p, q, s, t \in (1, \infty)$ satisfy $\frac{1}{q} = \frac{1}{s} : \frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d}$.

In this paper, we aim to show that this theorem is independent from the geometric structure of \mathbb{R}^d by extending it to metric measure spaces, where all we have are the distance function d and the Radon measure μ.

Let (X, d, μ) be a metric measure space with a distance function d and a Borel measure μ. Recall that the measure μ is a doubling measure if
it satisfies the so-called doubling condition, that is, there exists a constant $C > 0$ such that
\[\mu(B(a, 2r)) \leq C \mu(B(a, r)) \] (1)
for every ball $B(a, r)$ with center $a \in X$ and radius $r > 0$. The doubling condition was a key property in classical harmonic analysis but around a decade ago, it turned out to be unnecessary. The point is that we modify the related definitions. Indeed, in the present paper, we propose to redefine the fractional integral operator by
\[I_\alpha f(x) := \int_X \frac{f(y)}{\mu(B(x, 2d(x, y)))^{1-\alpha}} d\mu(y). \] (2)

Note that the definition is independent of any notion of dimensions. The same can be said for Morrey spaces, which we define now. For $k > 0, 1 \leq p < \infty$ and $f \in L^1_{\text{loc}}(\mu)$, the norm is given by
\[\|f\|_{\mathcal{M}^p_{k}(k, \mu)} := \sup \left\{ \mu(B(x, kr))^{1/p-1} \|\chi_{B(x, r)}f\|_{L^1(\mu)} : x \in X, r > 0, \mu(B(x, r)) > 0 \right\}, \]
where $\chi_{B(x, r)}$ denotes the characteristic function of the ball $B(x, r)$.

We will prove here that I_α satisfies weak and strong type estimates on Morrey spaces. Our main results are:

Theorem 1.1. If $1 < p < \infty$, $1 < s < \infty$, $0 < \alpha < \frac{1}{p}$ and $\frac{1}{s} = \frac{1}{p} - \alpha$, then there exists $C > 0$ such that
\[\mu\{x \in B(a, r) : I_\alpha f(x) > \gamma\} \leq C \mu(B(a, 6r))^{1-1/p} \left(\frac{\|f\|_{\mathcal{M}^p_{s}(2, \mu)}}{\gamma} \right)^{s/p} \]
for all positive μ-measurable functions f.

Theorem 1.2. If $1 < q \leq p < \infty$, $1 < s < \infty$, $0 < \alpha < \frac{1}{p}$, $\frac{q}{p} = \frac{1}{s}$ and $\frac{1}{s} = \frac{1}{p} - \alpha$, then there exists $C > 0$ such that
\[\|I_\alpha f\|_{\mathcal{M}^s_{q}(6, \mu)} \leq C \|f\|_{\mathcal{M}^s_{p}(2, \mu)} \]
for all positive μ-measurable functions f.

It hardly looks likely to replace $2d(x, y)$ with $d(x, y)$ in the definition of fractional integral operators and have the similar results according to the example in [9, Section 2]. The proof is a future work.
2 Main Results

We define, for \(k > 0 \), the centered maximal operator

\[
M_k f(x) := \sup_{r > 0} \frac{1}{\mu(B(x, kr))} \int_{B(x, r)} |f(y)| \, d\mu(y) \quad (x \in \text{supp}(\mu)).
\]

For the maximal operator \(M_2 \), we prove the following boundedness property on Morrey spaces.

Theorem 2.1. For any \(\gamma > 0 \), any positive \(\mu \)-measurable function \(k \) and any ball \(B(a, r) \),

\[
\mu\{x \in B(a, r) : M_2 f(x) > \gamma\} \leq 4 \frac{\mu(B(a, 6r))^{1-1/p}}{\gamma} \|f\|_{M^p_t(2, \mu)}.
\]

Proof. We actually prove

\[
\mu\{x \in B(a, r) : M_2 f(x) > 2\gamma\} \leq 2 \frac{\mu(B(a, 6r))^{1-1/p}}{\gamma} \|f\|_{M^p_t(2, \mu)}. \tag{3}\]

Once we prove

\[
\mu\{x \in B(a, r) : M_2[\chi_{B(a,3r)} f]\}(x) > \gamma\} \leq \frac{\mu(B(a, 6r))^{1-1/p}}{\gamma} \|f\|_{M^p_t(2, \mu)} \tag{4}\]

and

\[
\mu\{x \in B(a, r) : M_2[\chi_{X \setminus B(a,r)} f]\}(x) > \gamma\} \leq \frac{\mu(B(a, 6r))^{1-1/p}}{\gamma} \|f\|_{M^p_t(2, \mu)}, \tag{5}\]

then estimate (3) follows automatically. Estimate (4) follows from the weak-
\(L^1(\mu)\) boundedness of \(M_2 \) (see \[11\]).

Denote by \(B(\mu) \) the set of all balls with positive \(\mu \)-measure. A geometric observation shows that

\[
M_2[\chi_{X \setminus B(a,3r)} f](x) \leq \sup_{B \in B(\mu), B \cap B(a,r) \neq \emptyset, B \setminus (X \setminus B(a,3r)) \neq \emptyset} \frac{1}{\mu(2B)} \int_B |f(y)| \, d\mu(y).
\]

Let \(B \) be a ball which intersects both \(B(a, r) \) and \(X \setminus B(a, 3r) \). The ball \(B \) engulfs \(B(a, r) \) if we double the radius of \(B \). Thus,

\[
\mu(B(a, 6r))^{1/p-1} \mu\{x \in B(a, r) : M_2[\chi_{B(a,3r)} f]\}(x) > \gamma\}
\leq \mu(B(a, r))^{1/p-1} \sup_{B \in B(\mu), B \cap B(a,r) \neq \emptyset, B \setminus (X \setminus B(a,3r)) \neq \emptyset} \frac{1}{\mu(2B)} \int_B |f(y)| \, d\mu(y)
\leq \sup_{B \in B(\mu), B \cap B(a,r) \neq \emptyset, B \setminus (X \setminus B(a,3r)) \neq \emptyset} \frac{\mu(2B)^{1/p}}{\mu(2B)} \int_B |f(y)| \, d\mu(y)
\leq \|f\|_{M^p_t(2, \mu)}.
\]

Thus, (5) follows. \(\square \)
Analogously, the following inequality holds:

Theorem 2.2. Let \(1 < q \leq p < \infty \). Then there exists \(C > 0 \) such that
\[
\|M_2 f\|_{\mathcal{M}_q^p(\mu)} \leq C\|f\|_{\mathcal{M}_q^p(\mu)}
\]
for all positive \(\mu \)-measurable functions.

The proof of Theorem 2.2 being similar to that of Theorem 2.1, we skip the proof, which is based on the \(L^q(\mu) \)-boundedness of \(M_2 \) established in [8].

Next, we prove a Hedberg type estimate [4].

Theorem 2.3. If \(1 < p < \infty \) and \(0 < \alpha < \frac{1}{p} \), then there exists \(C > 0 \) such that
\[
|I_\alpha f(x)| \leq CM_2 f(x)^{1-p\alpha} \|f\|_{\mathcal{M}_1^p(\mu)}^{p\alpha} \quad (x \in X)
\]
for all positive \(\mu \)-measurable functions.

Proof. Let \(x \in X \) be fixed. We define
\[
R_k(x) := \inf\left(\{R > 0 : \mu(B(x, 2R)) > 2^k\} \cup \{\infty\}\right).
\]
Then, we have
\[
|I_\alpha f(x)| \leq \sum_{k=-\infty}^{\infty} \lim_{\varepsilon \downarrow 0} \int_{B(x, R_k(x)) \setminus B(x, R_{k-1}(x))} \frac{|f(y)|}{\mu(B(x, 2d(x, y) + \varepsilon))^{1-\alpha}} d\mu(y)
\]
\[
= \sum_{k=-\infty}^{\infty} \lim_{\varepsilon \downarrow 0} \int_{B(x, R_k(x)) \setminus B(x, R_{k-1}(x))} \frac{|f(y)|}{\mu(B(x, 2R_{k-1}(x) + \varepsilon))^{1-\alpha}} d\mu(y)
\]
\[
\leq \sum_{k=-\infty}^{\infty} \lim_{\varepsilon \downarrow 0} \frac{1}{\mu(B(x, 2R_{k-1}(x) + \varepsilon))^{1-\alpha}} \int_{B(x, R_k(x)) \setminus B(x, R_{k-1}(x))} |f(y)| d\mu(y)
\]
\[
\leq \sum_{k \in \mathbb{Z}, R_{k-1}(x) < R_k(x)} \lim_{\varepsilon \downarrow 0} \frac{1}{\mu(B(x, 2R_{k-1}(x) + \varepsilon))^{1-\alpha}} \int_{B(x, R_k(x))} |f(y)| d\mu(y).
\]
The condition \(R_{k-1}(x) < R_k(x) \) means that
\[
2^{k-1} < \mu(B(x, 2R_{k-1}(x) + \varepsilon)) \leq 2^k
\]
for each \(\varepsilon \in (0, R_k(x) - R_{k-1}(x)) \). Therefore
\[
|I_\alpha f(x)| \leq C \sum_{k=-\infty}^{\infty} 2^{k\alpha} \min\left(M_2 f(x), 2^{-k/p}\|f\|_{\mathcal{M}_q^p(\mu)}\right)
\]
\[
\leq CM_2 f(x)^{1-p\alpha} \|f\|_{\mathcal{M}_q^p(\mu)}^{p\alpha}.
\]
Thus, the estimate is proved. \(\square \)
Now we prove Theorem 1.1.

Proof. For $|I_\alpha f(x)| > \gamma$, Theorem 2.3 gives us

$$M_2 f(x) > \left(\frac{\gamma}{C\|f\|_{\mathcal{M}^p_1(2,\mu)}} \right)^{1/(1-p\alpha)}.$$

Hence, by applying Theorem 2.1 we obtain

$$\mu \{ x \in B(a, r) : |I_\alpha f(x)| > \gamma \} \leq \mu \left\{ x \in B(a, r) : M_2 f(x) > \left(\frac{\gamma}{C\|f\|_{\mathcal{M}^p_1(2,\mu)}} \right)^{1/(1-p\alpha)} \right\} \leq C \mu(B(a, 6r))^{1-1/p} \|f\|_{\mathcal{M}^p_1(2,\mu)} \left(\frac{\|f\|_{\mathcal{M}^p_1(2,\mu)}}{\gamma} \right)^{1/(1-p\alpha)} \leq C \mu(B(a, 6r))^{1-1/p} \left(\frac{\|f\|_{\mathcal{M}^p_1(2,\mu)}}{\gamma} \right)^{s/p}.$$

Thus, the proof is complete. \(\square\)

Theorem 1.2 can be proved in a similar way by using Theorem 2.3.

Acknowledgments. The first author was supported by Fundamental Research Program 2012 by Directorate General of Higher Education, Ministry of Education and Culture, Indonesia. The second author was financially supported by Grant-in-Aid for Young Scientists (B), No. 21740104, Japan Society for the Promotion of Science.

This research project is supported by the GCOE program of Kyoto University.

References

[1] D. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

[2] G.H. Hardy and J.E. Littlewood, “Some properties of fractional integrals. I”, Math. Zeit. 27 (1927), 565–606.

[3] G.H. Hardy and J.E. Littlewood, “Some properties of fractional integrals. II”, Math. Zeit. 34 (1932), 403–439.
[4] L.I. Hedberg, “On certain convolution inequalities”, Proc. Amer. Math. Soc. 36 (1972), 505–510.

[5] G. Liu and L. Shu, “Boundedness for the commutator of fractional integral on generalized Morrey space in nonhomogenous space”, Anal. Theory Appl. 27 (2011), 51–58.

[6] E. Nakai, “Hardy-Littlewood maximal operator, singular integral operators, and the Riesz potentials on generalized Morrey spaces”, Math. Nachr. 166 (1994), 95–103.

[7] F. Nazarov, S. Treil, and A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on non-homogeneous spaces”, Internat. Math. Res. Notices no. 9 (1998), 463–487.

[8] Y. Sawano, “Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas”, Hokkaido Math. J. 34 (2005), 435–458.

[9] Y. Sawano and T. Shimomura, “Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents”, Collectanea Mathematica, online.

[10] S.L. Sobolev, “On a theorem in functional analysis” (Russian), Mat. Sob. 46 (1938), 471–497 [English translation in Amer. Math. Soc. Transl. ser. 2 34 (1963), 39–68].

[11] Y. Terasawa, “Outer measures and weak type (1,1) estimates of Hardy-Littlewood maximal operators”, J. Inequal. Appl. 2006, Art. ID 15063, 13 pp.

Idha SIHWANINGRUM
Faculty of Sciences and Engineering
Jenderal Soedirman University
Purwokerto, 53122 Indonesia
email: idha.sihwaningrum@unsoed.ac.id

YOSHIHIRO SAWANO
Department of Mathematics and Information Sciences
Tokyo Metropolitan University
Tokyo 192-0397, Japan
email: ysawano@tmu.ac.jp

Received: