Objective Assessed Physical Activity and Weight Loss Maintenance among Individuals Enrolled in a Lifestyle Intervention

Jessica L. Unick, Sarah A. Gaussoin, James O. Hill, John M. Jakicic, Dale S. Bond, Margareta Hellgren, Karen C. Johnson, Anne L. Peters, Mace Coday, Dalane W. Kitzman, Suzette Bossert, Rena R. Wing, and the Look AHEAD Research Group.

Objective: To examine the relationship between objectively assessed moderate-to-vigorous intensity physical activity (MVPA) and 4-year weight loss (WL) and WL maintenance among individuals with diabetes enrolled in the Look AHEAD trial.

Methods: MVPA was measured in a subgroup of lifestyle intervention participants with accelerometer data at baseline and at 1 and 4 years (n = 553; age: 59.7 ± 6.8 y; BMI: 35.5 ± 5.9 kg/m²). Minutes per week of bout-related MVPA were calculated (≥ 3 metabolic equivalents, ≥ 10-min bouts), and adherence to the national physical activity (PA) recommendation for WL maintenance (≥ 250 min/wk) was assessed.

Results: Independent of 1-year WL, 4-year MVPA (β = 0.0001, SE = 0.001, P = 0.50), but not 1-year MVPA (β = −0.0003, SE = 0.002, P = 0.006), was significantly associated with 4-year WL. Compared with “nonmaintainers” (>10% WL at year 1, but <10% at year 4; n = 132), WL maintainers (≥10% WL at years 1 and 4; n = 103) had higher MVPA at year 1 (253.4 ± 251.8 vs. 163.9 ± 158.2 min/wk, P = 0.002) and year 4 (155.3 ± 180.6 vs. 111.4 ± 154.5 min/wk, P = 0.046). Although 38.8% and 22.3% of WL maintainers engaged in ≥250 min/wk at years 1 and 4, respectively, many engaged in <150 min/wk (year 1: 41%, year 4: 61%).

1 Weight Control and Diabetes Research Center, The Miriam Hospital, Providence, Rhode Island, USA. Correspondence: Jessica L. Unick (junick@lifespan.org) 2 Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA 3 Department of Biostatistical Sciences, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA 4 Center for Human Nutrition, School of Medicine, University of Colorado, Denver, Colorado 5 Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, Pennsylvania, USA 6 Department of Public Health and Community Medicine/Primary Health Care, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 7 Department of Preventive Medicine, Health Science Center, University of Memphis, Memphis, Tennessee, USA 8 Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

Funding agencies: This study was supported by the Department of Health and Human Services through the following cooperative agreements from the NIH: DK57136, DK57149, DK56990, DK57177, DK57171, DK57151, DK67182, DK57131, DK57002, DK57078, DK57154, DK57178, DK57219, DK57008, DK57135, and DK56992. The following federal agencies have contributed support: the National Institute of Diabetes and Digestive and Kidney Diseases; the National Heart, Lung, and Blood Institute; the National Institute of Nursing Research; the National Center on Minority Health and Health Disparities; the NIH Office of Research on Women’s Health; and the Centers for Disease Control and Prevention. This research was supported in part by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. The Indian Health Service (IHS) provided personnel, medical oversight, and use of facilities. The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the IHS or other funding sources.

Additional support was received from The Johns Hopkins Medical Institutions Bayview General Clinical Research Center (M01RR02719); the Massachusetts General Hospital Mallinckrodt General Clinical Research Center and the Massachusetts Institute of Technology General Clinical Research Center (M01RR01066); the Harvard Clinical and Translational Science Center (RR025758-04); the University of Colorado Health Sciences Center General Clinical Research Center (M01RR00051) and Clinical Nutrition Research Unit (P30 DK48520); the University of Tennessee at Memphis General Clinical Research Center (M01RR021140); the University of Pittsburgh General Clinical Research Center (M01RR00056); the Clinical Translational Research Center funded by the Clinical & Translational Science Award (UL1 RR 024533) and an NIH grant (DK 049204); the Veterans Affairs Puget Sound Health Care System Medical Research Service; and the Frederic C. Barter General Clinical Research Center (M01RR01346). In addition, Dr. Kitzman is supported by R01AG18915 and P30CA201332. The following organizations have committed to making major contributions to Look AHEAD: the FedEx Corporation; Health Management Resources; LifeScan, Inc., a Johnson & Johnson Company; OPTIFAST of Nestlé HealthCare Nutrition, Inc.; Hoffmann-La Roche, Inc.; Abbott Nutrition; and the SlimFast brand of Unilever, North America.

Some of the information contained herein was derived from data provided by the Bureau of Vital Statistics, New York City Department of Health and Mental Hygiene.

Disclosure: JOH reports having stock options in Retrofit, a company providing weight management to the public, and is also a member of LLC-Shakabuku, which also provides weight management to the public. ALP has served as a consultant and speaker for Boehringer Ingelheim, Eli Lilly and Company, Janssen, Merck, Novo Nordisk, and Sanofi. JMJ received an honorarium for serving on the Scientific Advisory Board for Weight Watchers International and was the Principal Investigator on a grant to examine the validity of activity monitors awarded to the University of Pittsburgh by Jawbone, Inc., a coinvestigator on a grant award to the University of Pittsburgh by Humanscale, and a coinvestigator on a grant awarded to the University of Pittsburgh by Weight Watchers International. The remaining authors declare no conflict of interest.

Clinical trial registration: ClinicalTrials.gov identifier NCT00017953.

Additional Supporting Information may be found in the online version of this article.

Received: 14 June 2017; Accepted: 1 August 2017; Published online 20 September 2017. doi:10.1002/oby.21971
Introduction

Physical activity (PA) has been shown to have a modest effect on initial weight loss (WL); however, PA appears to play a more prominent role in WL maintenance (1-4). The American College of Sports Medicine (ACSM) recommends that adults participate in ≥ 150 min/wk of moderate-to-vigorous intensity physical activity (MVPA) to prevent significant weight gain and reduce chronic disease risk. However, for the prevention of weight regain following WL, ≥ 250 min/wk of objectively assessed MVPA is recommended (1). Although these guidelines are evidence based, they were derived largely from studies that have relied on self-reported measures of PA, which are often prone to participant biases, including social desirability influence and imprecise recall (5). Findings from one study confirmed previous self-reported PA findings, which demonstrated that 200 to 300 min/wk of objectively assessed MVPA, accumulated in bouts > 10 minutes, was associated with improved WL at 18 months. However, the proportion of participants meeting the recommended 250 min/wk threshold was not examined (6). Given that stronger associations between objective PA, rather than subjective PA, and various health indicators have been observed (7,8), it is imperative that the role of objectively assessed PA continues to be examined within the context of long-term WL and weight maintenance.

The optimal level of PA needed for long-term WL and weight maintenance is not entirely understood. Although long-term WL is often examined by determining the proportion of participants meeting a clinically significant WL threshold at a distant time point (e.g., ≥ 10% at 18 mo), WL maintenance requires an individual to both achieve and maintain WL ≥ 10% both initially and at follow-up (9,10). Few studies have examined the quantity of objectively measured MVPA required for successful WL maintenance within the context of behavioral WL intervention trials longer than 18 months. In addition, it is unclear whether the level of MVPA needed to maintain WL is similar in older adults, specifically those with diabetes, given that those individuals typically have lower than average levels of MVPA (11,12).

The Look AHEAD trial provides an excellent opportunity to address these questions. Look AHEAD is a multicenter randomized triald examining the effect of an intensive lifestyle intervention (ILI) on the primary and secondary prevention of cardiovascular disease in adults with overweight or obesity and type 2 diabetes. We have previously reported on changes in weight (13) and objectively assessed PA in Look AHEAD (14) and found that those randomly assigned to the ILI arm had significantly greater WL and significantly more MVPA minutes at 1 and 4 years, compared with the diabetes support and education group (DSE; control condition). In addition, the percentage of participants losing and maintaining ≥ 10% WL was far greater in ILI than in DSE. In this paper, we examined the relationships among (1) PA and WL at 1 year (short-term WL), (2) PA and WL at 4 years (long-term WL), and (3) PA and WL maintenance between years 1 and 4. Specifically, we capitalized on the large number of individuals randomly assigned to ILI who achieved ≥ 10% WL at year 1 (n = 235; 43% of sample), and we examined whether there are differences in MVPA between those who maintain and do not maintain this magnitude of WL. In addition, we examined individual-level MVPA data and identified the percentage of WL maintainers who achieved the PA guidelines for weight control (1).

Methods

Participants

Accelerometry data in Look AHEAD were collected at 8 of the 16 sites of this trial (n = 2,622). Full descriptive data for ILI participants (n = 1,309) enrolled in the accelerometer substudy have been reported previously (15). Given that the aim of this paper was to examine changes in PA and WL between years 1 and 4 (i.e., WL maintenance), we studied only ILI participants who had weight and valid accelerometer data (see definition below) at baseline, year 1, and year 4 (n = 573). In addition, participants who underwent bariatric surgery at any time point were excluded (n = 20); thus, the present analyses focus on 553 participants. Participants included in these analyses were similar to the entire accelerometer substudy cohort on all demographic measures, except for BMI, which was lower in the current subgroup of participants (35.5 ± 5.9 kg/m² vs. 36.4 ± 6.0 kg/m²). In short, participants included in these analyses were 59.7 ± 6.8 years of age, 55% female, and 76% Caucasian at baseline. All participants provided written informed consent, and study procedures were approved by each center’s institutional review board.

Outcome measures

Weight change. Body weight was assessed at baseline, year 1, and year 4 by using a digital scale (model BWB-800; Tanita, Willowbrook, Illinois) operated by a staff member masked to the intervention assignment. The change in weight from baseline to 1 year and from baseline to 4 years was calculated.

Obesity (2017) 25, 1903-1909. doi:10.1002/oby.21971
data were analyzed to determine bout-related MVPA, which was defined as any activity ≥ 3 METs and ≥ 10 minutes in duration, allowing for a 1-minute interruption in MVPA (i.e., 1 min < 3 METs). MET minutes per week spent in bout-related MVPA were calculated by multiplying the number of MVPA minutes by the mean MET value.

 Treatment conditions

Look AHEAD participants were randomly assigned to an ILI group or to a DSE group, which served as the comparison group. Full descriptions of the ILI and DSE conditions have been provided previously (13,17). The analyses presented focus only on ILI participants.

During months 1 to 6, ILI participants attended three weekly group sessions and one individual counseling session per month, which was reduced to two group sessions and one individual session per month in months 7 to 12. During years 2 to 4, participants had one in-person individual meeting (20-30 min) with their interventionist each month, with a second individual contact by telephone (10-15 min) or email 2 weeks later. In addition, in years 2 to 4, monthly group sessions were offered; in these sessions, participants listened to a presentation on a new topic on lifestyle modification, which included information on food intake, PA, or behavior change.

In year 1, ILI participants were prescribed a calorie goal of 1,200 to 1,800 kcal/d depending on initial body weight, were instructed to consume < 30% of total calories from dietary fat, and were provided with meal replacements. Participants were given a home-based PA regimen designed to gradually increase structured activity to ≥ 175 min/wk within the first 6 months, with a further increase to ≥ 200 min/wk for those who met this goal. Effective behavioral strategies such as regular self-weighting, daily self-monitoring, and stimulus control techniques were discussed. In years 2 to 4, participants continued with individualized calorie goals and were encouraged to continue to exercise for at least 175 min/wk.

Statistical analyses

The changes in PA and weight over the three time points were assessed by using general linear models for continuous variables and \(\chi^2 \) tests for categorical variables. Post hoc comparisons across time points and outcomes utilized a Bonferroni correction. Correlations were computed to examine the relationship between both 1-year PA and the 1-year change in PA with 1-year WL, while also controlling for baseline PA, year 1 accelerometer wear time, and other demographic variables, including age, gender, and race. Exploratory analyses examined the relationship between 1-year or 4-year PA and weight change by stratifying participants into one of four PA categories: < 50, 50 to < 150, 150 to < 250, and ≥ 250 min/wk. A general linear model was used to compare these PA categories on 1-year WL or 4-year WL, and post hoc group comparisons utilized a Bonferroni adjustment. Linear models were used to examine whether 1-year or 4-year PA was most strongly associated with 4-year WL and to determine whether 4-year WL was predominately driven by changes in 1-year WL or PA engagement. Linear models were also used to compare WL maintainers and nonmaintainers on PA at each time point. Exploratory analyses, examining whether the distribution of WL maintainers falling into various PA categories at years 1 and 4 differed from nonmaintainers, were performed by using \(\chi^2 \) analyses. All analyses were performed by using SAS version 9.4 (SAS Institute, Cary, North Carolina), and statistical significance was set at \(P < 0.05 \).

Results

Table 1 presents weight change and PA data at baseline and at 1 and 4 years in these participants. Mean WL was 9.7% at year 1 and 5.0% at year 4. Forty-three percent achieved or exceeded the national PA goal for 150 min/wk. A general linear model was used to compare 1-year or 4-year PA with 1-year WL, while also controlling for baseline PA, year 1 accelerometer wear time, and other demographic variables, including age, gender, and race. Exploratory analyses examined the relationship between 1-year or 4-year PA and weight change by stratifying participants into one of four PA categories: < 50, 50 to < 150, 150 to < 250, and ≥ 250 min/wk.

TABLE 1 Descriptive PA and body weight data stratified by assessment time point in ILI participants (n = 553)
PA Accelerometer wear time, h/d
Bout-related MVPA, min/wk
MET-min/wk
% Achieving ≥ 150 min/wk of MVPA
% Achieving ≥ 250 min/wk of MVPA
Body weight
Weight, kg
Weight change from baseline (%)
% Achieving ≥ 5% WL
% Achieving ≥ 10% WL

Values presented as mean (95% CI) or n (%).
Values with different superscripts across columns are significantly different from one another after Bonferroni adjustment.
In our study, we focused on the relationship between physical activity (PA) and weight loss maintenance. We observed that participants engaging in ≥250 min/wk at year 1 and year 4 had greater weight loss (WL) at year 1 than those engaging in <250 min/wk (mean = 11.5% vs. 8.26%, 95% CI: 6.08-10.43, P = 0.001, 95% CI: 3.66-7.44, n = 135). Those engaging in <50 min/wk (mean = 5.80%, 95% CI: 4.02-7.59, n = 290) showed no significant differences between the other PA groups.

We also examined whether 4-year MVPA predicted percent weight change at year 4, independent of 1-year PA or 1-year WL. Findings revealed that 1-year weight change was most strongly associated with the percent weight change at 4 years (β = 0.638, SE = 0.04, 95% CI: 0.56 to 0.71, P < 0.001). However, 4-year MVPA was also a significant predictor of 4-year WL (β = -0.003, SE = 0.001, 95% CI: -0.0001 to -0.006, P = 0.006), whereas 1-year MVPA was not (β = 0.001, SE = 0.001, 95% CI: -0.002 to 0.003, P = 0.50). Translated clinically, these findings suggest that for every additional 1 kg of WL at year 1, 4-year WL was increased by 0.61 kg, and for every additional 30 minutes of MVPA at year 4, 4-year WL increased by 0.12 kg.

Aim 3: PA and weight maintenance

Weight maintenance (i.e., weight change from year 1 to year 4) was examined only in those 235 participants achieving ≥10% WL at year 1. Participants were stratified into one of two categories on the basis of their year 1 and year 4 WL: (1) maintain (n = 103): 1-year and 4-year WL ≥10% and (2) nonmaintain (n = 132): 1-year WL ≥10% and 4-year WL <10%. By definition, 4-year WL was significantly greater in maintainers (mean = 15.1%, 95% CI: 14.23-15.98) than in nonmaintainers (mean = 4.0%, 95% CI: 3.27-4.78, P < 0.001). On average, the maintain and nonmaintain groups regained 11% and 72% of their initial WL, respectively, between years 1 and 4.

Table 2 compares the activity levels of maintainers and nonmaintainers. Although baseline MVPA levels did not differ between groups, the maintain WL group engaged in significantly more activity at both year 1 and year 4. Exploratory analyses were conducted to examine whether the distribution of participants falling into the various PA categories differed between WL maintainers and nonmaintainers at year 1 and year 4 (Figure 2). Compared with the nonmaintain group, a greater percentage of maintainers were engaging in ≥250 min/wk at year 1 (38.8% vs. 22.0%, P < 0.05). At year 4, 22.3% of maintainers and 12.9% of nonmaintainers were engaging in ≥250 min/wk (P = 0.06). It is of note that 18% and 40% of those maintaining ≥10% WL between years 1 and 4 were engaging in <50 min/wk of bout-related MVPA at years 1 and 4, respectively.

TABLE 2 Mean bout-related MVPA at several time points stratified by weight maintenance categories (aim 3)

	Maintain WL (n = 103)	Nonmaintain WL (n = 132)	P value for difference between groups
Baseline	112.12 (85.58 to 138.66)	129.49 (95.61 to 163.37)	0.425
Year 1	253.42 (204.22 to 302.62)	163.86 (136.62 to 191.10)	0.002
Year 4	155.34 (120.04 to 190.64)	111.40 (84.79 to 138.01)	0.046
Year 1 to year 4 change	-98.08 (-141.86 to -54.30)	-52.46 (-80.83 to -24.09)	0.073

Values presented as mean (95% CI).
In this cohort of older adults with type 2 diabetes, higher levels of objectively assessed MVPA were associated with improved WL maintenance. WL maintainers averaged approximately 250 min/wk of bout-related MVPA at year 1 and 150 min/wk at year 4. Although WL maintainers were more likely to engage in ≥ 250 min/wk of MVPA than nonmaintainers, there was large variability, with 40% to 60% of individuals engaging in < 150 min/wk at year 1 or year 4. This suggests that there may be more than one pathway to successful WL maintenance in this population and that ≥ 250 min/wk of MVPA may not be necessary.

In addition to WL maintenance, this study also assessed the relationship between PA and initial WL. The current findings confirm and extend previous reports indicating that higher bout-related MVPA at year 1 was associated with greater 1-year WL (18,19). Approximately one-third of study participants engaged in ≥ 150 min/wk of MVPA at year 1. These individuals lost an additional 4% of initial body weight, compared with those engaging in <150 min/wk. This 4% difference in observed WL is similar to that of a previous study in which behavioral WL participants engaging in ≥150 min/wk of self-reported PA lost approximately 9% of initial body weight at year 1, whereas those engaging in <150 min/wk only achieved a 4% WL (20). However, the latter study (20) reported that those engaging in ≥ 200 min/wk at year 1 had even greater WL (approximately 14% of initial body weight) than those engaging in ≥ 150 min/wk. In the current study, this was not the case; engagement in ≥ 250 min/wk had no additional effect on WL, compared to 150-250 min/wk. Thus, in older adults with type 2 diabetes, meeting the national public health recommendation of ≥ 150 min/wk of bout-related MVPA within the context of a comprehensive weight management program may be sufficient for initial WL success.

A second aim of this study was to examine the relationship between PA and long-term WL. It is generally accepted that high PA is important for long-term weight control (1); however, few behavioral WL interventions have been >24 months in duration, making it difficult to assess this long-term relationship. Previously, Tate et al. (21) reported that participants engaging in approximately 300 min/wk of MVPA at 30 months lost 12 kg, compared to a 1-kg WL observed among those engaging in <300 min/wk. In the Diabetes

Discussion

In this cohort of older adults with type 2 diabetes, higher levels of objectively assessed MVPA were associated with improved WL maintenance. WL maintainers averaged approximately 250 min/wk of bout-related MVPA at year 1 and 150 min/wk at year 4. Although WL maintainers were more likely to engage in ≥ 250 min/wk of MVPA than nonmaintainers, there was large variability, with 40% to 60% of individuals engaging in < 150 min/wk at year 1 or year 4. This suggests that there may be more than one pathway to successful WL maintenance in this population and that ≥ 250 min/wk of MVPA may not be necessary.

In addition to WL maintenance, this study also assessed the relationship between PA and initial WL. The current findings confirm and extend previous reports indicating that higher bout-related MVPA at year 1 was associated with greater 1-year WL (18,19). Approximately one-third of study participants engaged in ≥ 150 min/wk of MVPA at year 1. These individuals lost an additional 4% of initial body weight, compared with those engaging in <150 min/wk. This 4% difference in observed WL is similar to that of a previous study in which behavioral WL participants engaging in ≥150 min/wk of self-reported PA lost approximately 9% of initial body weight at year 1, whereas those engaging in <150 min/wk only achieved a 4% WL (20). However, the latter study (20) reported that those engaging in ≥ 200 min/wk at year 1 had even greater WL (approximately 14% of initial body weight) than those engaging in ≥ 150 min/wk. In the current study, this was not the case; engagement in ≥ 250 min/wk had no additional effect on WL, compared to 150-250 min/wk. Thus, in older adults with type 2 diabetes, meeting the national public health recommendation of ≥ 150 min/wk of bout-related MVPA within the context of a comprehensive weight management program may be sufficient for initial WL success.

A second aim of this study was to examine the relationship between PA and long-term WL. It is generally accepted that high PA is important for long-term weight control (1); however, few behavioral WL interventions have been >24 months in duration, making it difficult to assess this long-term relationship. Previously, Tate et al. (21) reported that participants engaging in approximately 300 min/wk of MVPA at 30 months lost 12 kg, compared to a 1-kg WL observed among those engaging in <300 min/wk. In the Diabetes
Prevention Program, the odds of achieving a 7% WL goal at the end of the intervention (~3.2 y) was 4.11 times greater in those who achieved the PA goal of ≥ 150 min/wk than in those not achieving the goal (22). Although these data suggest the potential importance of PA for long-term weight control, these studies utilized self-reported PA measures, had shorter study durations, and had smaller sample sizes than the Look AHEAD Trial. In the current study, we report that 4-year PA (not 1-year PA) was the strongest predictor of 4-year weight change, and participants achieving ≥ 250 min/wk of MVPA at year 4 lost 8.2% of initial body weight, which was significantly greater than those engaging in any of the lower levels of activity, all of whom lost about 5.7% of body weight. Although these data speak to the importance of PA for weight maintenance, it is difficult to examine this. Finally, given that this was an older population with more comorbidities, it is possible that using a 3-MET threshold may have failed to capture all activity completed for the purpose of exercise or that some individuals lost weight or decreased PA over time as a result of illness, thus reducing the association between MVPA and WL maintenance. Therefore, the generalizability of these findings may be limited to older adults with type 2 diabetes.

This study had numerous strengths, including the objective measurement of PA, long-term follow-up data, and a large sample size. However, it is not without limitations. All analyses were post hoc comparisons, examining the association between PA and weight change. In addition, the direction of this relationship could not be determined; it is unclear whether WL led to increased PA or whether increased PA resulted in additional WL. Finally, although individuals included in these analyses were demographically similar to those without valid accelerometer data at all three time points, it is possible that these subgroups of individuals differed on other unmeasured parameters, thereby limiting the generalizability of these findings to other populations.

Conclusion

In summary, these findings confirm previous reports regarding the importance of PA for weight control, with higher levels of PA associated with greater initial WL, long-term WL, and weight maintenance. However, within an older population with type 2 diabetes, our data suggest that many individuals are able to achieve and maintain clinically significant long-term WL while engaging in less MVPA than is recommended for WL maintenance. Future studies should examine how those who maintain WL with high PA differ in other weight control behaviors (e.g., dietary intake) or cardiometabolic risk profiles from those maintaining clinically significant WL with less PA.

Acknowledgments

This study would not have been possible without the contributions of the entire Look AHEAD Research Group (See Supporting Information).

© 2017 The Obesity Society

References

1. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine position stand: appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459-471.

2. Wadden TA, Vogt RA, Foster GD, Anderson DA. Exercise and the maintenance of weight loss: 1-year follow-up of a controlled clinical trial. J Consult Clin Psychol. 1998;66:429-433.

3. Leser MS, Yanovski SZ, Yanovski JA. A low-fat intake and greater activity level are associated with lower weight regain 3 years after completing a very-low-calorie diet. J Am Diet Assoc. 2002;102:1252-1256.

4. Jakicic JM, Marcus BH, Lang W, Janney C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch Intern Med. 2008;168:1550-1559; discussion 9-60.

5. Shepherd RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37:197-206; discussion 206.

6. Jakicic JM, Tate DF, Lang W, et al. Objective physical activity and weight loss in adults: the step-up randomized clinical trial. Obesity (Silver Spring). 2014;22:2284-2292.

7. Atienza AA, Moser RP, Perna F, et al. Self-reported and objectively measured activity related to biomarkers using NHANES. Med Sci Sports Exerc. 2011;43:815-821.

8. Celis-Morales CA, Perez-Bravo F, Izquierdo L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7:e36345. doi:10.1371/journal.pone.0036345
9. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr 2005;82(suppl):222S-225S.
10. Stevens J, Truesdale KP, McClain JE, Cai J. The definition of weight maintenance. Int J Obes (Lond) 2006;30:391-399.
11. Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007;116:1094-1105.
12. Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S. adults compliance with the Physical Activity Guidelines for Americans. Am J Prev Med 2011;40:454-461.
13. Wadden TA, Neiberg RH, Wing RR, et al. Four-year weight losses in the Look AHEAD study: factors associated with long-term success. Obesity (Silver Spring) 2011;19:1987-1998.
14. Unick JL, Gaussoin SA, Hill JO, et al. Four-year physical activity levels among intervention participants with type 2 diabetes. Med Sci Sports Exerc 2016;48:2437-2445.
15. Miller GD, Jakicic JM, Rejeski WJ, et al. Effect of varying accelerometry criteria on physical activity: the Look AHEAD study. Obesity (Silver Spring) 2013;21:32-44.
16. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: US Department of Health and Human Services; 2008.
17. Wadden TA, West DS, Delahanty L, et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring) 2006;14:737-752.
18. Jakicic JM, Winters C, Lang W, Wing RR. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. JAMA 1999;282:1554-1560.
19. Jeffery RW, Wing RR, Sherwood NE, Tate DF. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am J Clin Nutr 2003;78:684-689.
20. Jakicic JM, Marcus BH, Gallagher KL, Napolitano M, Lang W. Effect of exercise duration and intensity on weight loss in overweight, sedentary women: a randomized trial. JAMA 2003;290:1323-1330.
21. Tate DF, Jeffery RW, Sherwood NE, Wing RR. Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? Am J Clin Nutr 2007;85:954-959.
22. Wing RR, Hamman RF, Bray GA, et al. Achieving weight and activity goals among diabetes prevention program lifestyle participants. Obes Res 2004;12:1426-1434.
23. Catenacci VA, Ogden LG, Stuht J, et al. Physical activity patterns in the National Weight Control Registry. Obesity (Silver Spring) 2008;16:153-161.