Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials

Anatoly N. Vereshchagin *, Nikita A. Frolov, Ksenia S. Egorova, Marina M. Seitkalieva and Valentine P. Ananikov *

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; nikita.frolov298@gmail.com (N.A.F.); egorova-ks@ioc.ac.ru (K.S.E.); s_marina@ioc.ac.ru (M.M.S.)

* Correspondence: vereshchagin@ioc.ac.ru (A.N.V.); val@ioc.ac.ru (V.P.A.)

Abstract: Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure—quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antiviral properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.

Keywords: quaternary ammonium compound; ionic liquid; antibacterial; antimicrobial; biocide

1. Introduction

For many years, quaternary ammonium compounds (QACs) have been included in most antiseptics and disinfectants and used in various areas, from household and agriculture to medicine and industry [1].

The COVID-19 pandemic that broke out in 2020 led to a significant increase in the widespread use of sanitizers, including QACs. Recent studies have shown that more than 90% of the dust samples analyzed during the pandemic contained QACs, and their average concentration doubled compared to the pre-COVID period [2]. It is to be expected that with the further progression of the pandemic, this number will increase, although the virucidal effect of QACs on SARS-CoV-2 requires further research [3].

The constant presence of subinhibitory concentrations of QACs on various working surfaces, together with the frequent use of QACs, increases the risk of the development of a resistant bacterial environment, which will lead to a plummet of the effectiveness of popular antiseptics and disinfectants. The solution to this problem can be found in the synthesis of new QACs, which exhibit superior antibacterial, antifungal, and antiviral properties.

The structure of QACs consists of a positively charged nitrogen atom with four or three substituents and one double bond. The core QAC structure can contain one (mono-
QAC), two (bis-QAC), or more (multi-QAC, poly-QAC) charged nitrogen atoms, including those in heterocyclic compounds (piperidine, pyridine, imidazole, etc.). One or more of the substituents are usually long aliphatic chains containing at least ten carbon atoms. In the case of bis-QACs, multi-QACs, and poly-QACs, the structure that connects the charged nitrogen atoms (the head or nucleus fragment) is called a spacer or linker, and the alkyl chains extending from the heads (if they are present in the molecule) are called tails (Figure 1). QACs are generally water-soluble and stable. The counterion in these compounds usually does not affect the biological activity but often impacts the solubility of the biocide. The majority of the registered QACs contain chloride or bromide as anions. Due to their amphiphilic nature, QACs are able to form micelles. The critical concentration of micelle formation (CCM) is one of the important characteristics of these substances.

![Figure 1](image1.png)

Figure 1. General structures and types of QACs.

The first studies of QACs as antibacterial agents were carried out at the beginning of the 20th century. Hexamethylenetetramine derivatives exhibited an in vitro bactericidal effect [4–6]. With the discovery of benzalkonium chloride (BAC) in 1935 [7], QACs found application in medical practice. Subsequently, the study of this class of compounds has led to the discovery of many valuable properties of QACs, due to which they are now used as surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, and, of course, antiseptics and disinfectants with a wide spectrum of action [8].

Therefore, QACs belong to the group of biocides – chemical compounds designed to neutralize, suppress, or prevent the action of harmful organisms by chemical or biological means [9]. As an example, in 2019, QACs accounted for ca. 11% of the whole biocide market in the United States, which equals ca. $192 million (Figure 2) [10].
The U.S. biocide market has grown by ca. 12% since 2016. The global trade of biocides, including QACs, is expected to grow by 3.9% annually and to reach $10.5 billion in 2027, thus evidencing the relevance and popularity of the topic. In other countries, similar trends can be expected due to the unquestionable significance of QACs.

Biocides are used in a wide variety of fields. Approximately 50% of biocide applications in the global market are in the water purification and paint industry (Figure 3) [10]. However, they also play an important role in the medical field [11].
This review focuses on the main QACs exhibiting the characteristics of biocides, the latest discoveries and issues of this field, and is separated into two parts. The first part presents the main commercial QACs currently used as active substances in antiseptics and disinfectants. The second part describes the scientific research of this class of compounds. Due to the ever-increasing demand for new bactericides and fungicides, the search for compounds active against newly arisen resistant strains of pathogenic bacteria and fungi is one of the most important areas of modern pharmaceutics. Of special concern is the emergence of multidrug-resistant strains (so-called “superbugs”). Therefore, we also discuss the possibilities of applying ionic liquids (ILs) as antimicrobial compounds. ILs, some of which can be classified as QACs, comprise a class of substances with vast molecular diversity. These compounds have been shown to possess a wide range of biological activities, including impressive antimicrobial properties [12,13]. A summary of the bactericidal and fungicidal activities of common ILs, bis-charged ILs, and poly-ILs is provided in the corresponding subsections.

2. Antimicrobial Properties of QACs and ILs

2.1. Commercial QACs

A significant step in the development of biologically active QACs was the discovery of benzalkonium chloride 1 (BAC) by Domagk in 1935. BAC is a mixture of mono-QACs with benzyl, methyl, and alkyl substituents with different chain lengths from C8 to C18 (Figure 4). This drug is the first active QAC compound approved by the US Environmental Protection Agency in 1947, and it has been widely used to date [14]. More details about the most important discoveries of that time in the QAC field can be found in the review by Rahn and Van Eseltine [15].

![Figure 4. Commercial alkyl QACs.](image)

The biological activity of benzalkonium salts depends on the length of the alkyl side chains. It is known that the C12-C14 compounds exhibit stronger bactericidal effects [16]. Due to its broad antibacterial activity and low toxicity, a mixture of benzalkonium derivatives is used in washing disinfectants for hands and face, mouthwashes, creams, and other cleansing and disinfecting products. BAC exhibits bactericidal activity against *Staphylococcus*, *Streptococcus*, Gram-negative bacteria (*E. coli*, *Pseudomonas aeruginosa*, *Proteus*,...
Moreover, cultures treated with Richia septic and urology, Streptococcus plasma and the same market, products of antibiotics have been shown to inactivate the SARS-CoV-2 virus within 15 s [18].

Further study of this class of compounds led to the discovery of several currently widely known QACs with similar structures: alkyltrimethylammonium bromides. The most famous of them are cetyltrimethylammonium bromide (CTAB) 2 and dialkyl dimethylammonium chloride, the main representative of the latter being dimethyldidecylammonium chloride (DDAC) 3. The addition of the second long aliphatic chain increased the biological activity of the substance against S. aureus up to 8 times but, at the same time, increased its toxicity against red blood cells [8].

Miramistin 4 is a nonheterocyclic alkyl QAC and one of the most popular antibacterial agents in antisepsics used in Russia [19]. Miramistin demonstrates a moderate antiseptic effect against pathogenic fungi and viruses. Its aqueous solutions are used in the treatment of pyo-inflamatory diseases in surgery, obstetrics, gynecology, dermatology, urology, dentistry, and ophthalmology [20,21]. Miramistin-containing drugs have a pronounced bactericidal effect on Gram-positive (Staphylococcus spp., Streptococcus spp., Streptococcus pneumoniae, etc.), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella spp., etc.), aerobic, and anaerobic bacteria, both in the form of monocultures and microbial associations, including hospital strains polyresistant to antibiotics. Moreover, miramistin demonstrates antiviral activities (hepatitis, HIV), prevents wound and burn contamination, and facilitates the recovery of damaged tissues [22].

Along with the majority of nonheterocyclic QACs on the antiseptic and disinfectant market, there are also examples of heterocyclic QACs, especially pyridine-based QACs (Figure 5).

![Figure 5. Commercial QACs based on pyridine.](image)

The simplest of them is mono-QAC cetylpyridinium chloride 5 (CPC). First described shortly after BAC in 1939 [23], CPC has been extensively used in many mouthwashes and products for oral care [24]. In addition, CPC works as a preservative agent due to its outstanding inhibition properties of bacterial growth.
The second antiseptic of the subgroup is octenidine dihydrochloride 6 (OCT). Its dimeric structure is more complex than that of the other typical substances of this class. Here, two pyridinic nitrogen atoms linked via an alkyl bridge have alkylamine substituents in the para-position. OCT exists in pyridinic and imino forms. Due to its molecular structure, it demonstrates a broad spectrum of antibacterial activity, affecting *S. aureus*, *S. epidermidis*, *P. mirabilis*, *K. pneumoniae*, *E. coli*, *P. aeruginosa*, etc. [25]. Two cation-active centers divided by the long aliphatic carbon chain facilitate molecule binding to negatively charged surfaces of microbial cells. Strong interactions between octenidine and lipids (in particular, cardiolipins) in the bacterial cell membrane have been detected [26]. OCT has an intense residual effect on the skin, which is observed even 24 h after the last application. Due to its antimicrobial properties and skin compatibility, OCT can be used for various local applications where fast action and long-term effects are required, e.g., for disinfecting the skin of patients or treating acute and chronic wounds spontaneously colonized or locally infected by pathogenic bacteria. OCT can also be used for treating surgical equipment, injection sites of central catheters, infected root canals of teeth, candidiasis, acne, and nail infections [26–29].

A number of other biocides that play an important role in the modern market of antiseptics and disinfectants should also be mentioned. The antiseptics chlorhexidine bigluconate 7 (CHG), alexidine 9, and polyhexamethylene biguanide 8 (PHMB) (Figure 6) are guanidine derivatives from the cationic biocide family, as well as the abovementioned QACs [30].

CHG is a symmetrical bis-biguanide connected by an alkyl chain; it carries two positive charges at physiological pH. Developed in the early 1950s during the screening for antimalarial drugs, CHG has since recommended itself as a broad-spectrum antibacterial drug. CHG is one of the first antiseptics used on the skin and for decontamination of wounds. It is typically applied in the form of bigluconate, gluconate, dichloride, and acetate salts. Antiseptic drugs, which contain chlorhexidine bigluconate as an active substance, have a fairly wide spectrum of action. They are active against Gram-positive bacteria but not Gram-negative bacteria and mycobacteria or fungi. CHG is widely used in surgery and hand washing in the treatment of wound sepsis. It is also used in various oral hygiene products, as an anti-plaque agent, and in periodontal treatments. Similar activities were exhibited by alexidine (Figure 6) [31–34].

PHMB is an alkyl biguanide polymer that can be used in a soluble form as chloride. It is an effective alternative to traditional antiseptics due to its low toxicity and superior
antibacterial and antifungal activity [35]. It is used for treating swimming pools and fabrics, in cleaning products, and as a disinfectant for contact lenses and mouthwashes [36].

2.2. The Latest Scientific Discoveries in the QAC Field

The simplicity of synthesis, vast structural diversity, and high biological activity drive numerous scientific studies on QACs. Over the past 85 years, after the emergence of the class of cationic biocides, the number of publications on the topic has been arising significantly (Figure 7). According to SciFinder, more than 700 articles on QAC properties were published in 2020.

![Figure 7. Number of publications involving QACs from 1935 to 2020 (SciFinder, January 2021).](image)

The scientific society proposes various synthetic procedures and applications for QACs, analyzes their structural fragments, and establishes the relations between the efficiency and molecular structure [37,38]. The last approach, known since the 19th century [39], is widely used in quantitative studies on various activities of chemical substances (QSAR, quantitative structure–activity relationship) [40].

Judging from the basic structure (Figure 1), one can change several parts in a given QAC to determine their impact on its activity:

Head. The number of charged nitrogen atoms (mono-, bis-, multi-QAC), as well as the head structure (non-heterocyclic, heterocyclic, aromatic), can be changed.

Spacer. The structure (aliphatic, aromatic, saturated, unsaturated, mixed, etc.) can be changed.

Tail. The structure (saturated, unsaturated, branched, unbranched) and the length of the aliphatic chain can be changed.

Substituents. A desired group can be introduced into any of the abovementioned fragments of the QAC molecule.

Hereafter, we will focus on representative examples of synthetic biocidal QACs obtained by various scientific groups in recent years. The effect of the structural fragments of the biocides on their biological activity will also be considered. The material is presented sequentially, depending on the QAC charge (mono-QAC, bis-QAC, poly-QAC). Additional information on studies on antimicrobial activity, surfactant properties, usage, and synthesis can be found in recent reviews on the topic [8,41–51].

2.2.1. Single-Charged QACs (Mono-QACs)

Thorsteinsson and colleagues developed “softer” analogues of the existing QAC biocides [52]. While “hard drugs” (CPC, BAC) are specified as drugs that are not subject to in vivo changes, “soft drugs” are metabolized to nontoxic compounds (Figure 8) [43].
Figure 8. “Soft” mono-QACs.

Due to the introduction of amide and ether groups, the synthesized QAC molecules 10-13 are deactivated and decomposed into amides, fatty acids, and alcohols. Compounds without alkyl chains or with short chains (C2, C3) were found to be inactive. Substances with C12-C18 alkyl tails exhibited antibacterial activity comparable to a known analog (BAC 1) against E. coli, S. aureus, and P. aeruginosa. Additionally, some compounds from series 11 showed activity against herpes simplex virus (HSV-1).

Miklas and colleagues carried out the synthesis and studied the biological properties of QACs based on camphorsulfonic acid (CSA) 14-16 (Figure 9) [53,54].

Figure 9. CSA-based mono-QACs.

Upon changing the QAC core from ammonium to a less saturated heterocyclic structure (imidazole), the antimicrobial activity of the compounds gradually decreased. Salts with alkyl tails exhibited better activity than their ester and amide counterparts. The optimal chain length was found to be C12-C14.

In a recent work, Ali and colleagues developed new pyridine-based QACs from Schiff bases of nicotine hydrazines (Figure 10) [55].
These substances had good water solubility, most likely due to the presence of hydrazide groups. Despite the shorter alkyl chains (compared to typical QACs), a series of substances 17 showed high activity against colonies and biofilms of *E. coli* and *S. aureus*. According to this study, the presence of donor groups in the phenyl ring of the R substituent increased the bactericidal activity.

In the works of Liu and colleagues, the effect of combining two biocidal fragments (*N*-chloramines and alkyl QACs) in one molecule 18-19 on bactericidal properties was studied (Figure 11) [56–58].

Chloramines act on bacterial cells through the oxidative transfer of chlorine to biological receptors which leads to cell lysis. The attachment of the QAC molecule with a positive charge allowed anchoring of the N-chloramine moiety on the surface of the bacterial cell, thus enhancing the effect [56]. The introduction of a long alkyl chain into the compound leads to the rupture of the bacterial membrane, penetration of the biocide into the cell, and a subsequent enhancement of the bactericidal effect [57,58]. At the same time, Li and colleagues combined a pyridinic QAC with *N*-chloramine 20 (Figure 11). The antibacterial activity of this compound was similar to that presented by Liu [59].

In the works of Wang and Hou, a similar approach to changing the structure of QAC by adding biologically active fragments to the molecule was used (Figure 12) [60,61].
Initially, guided by the hypothesis that hydroxy groups should stimulate membrane penetration and cell destruction, a series of hydroxy-QACs with different alkyl chain lengths was synthesized. All the resulting compounds exhibited lower antibacterial activity than CHG; they also demonstrated antifungal activity with an optimal tail length of C12. It should be noted that the toxicity of the compounds correlated with their activity [60]. Then, a fragment of oxadiazole derivatives 23-24, benzoazole (X=S) 21, and benzoxazole (X=O) 21 was introduced into the QAC molecule, which led to an increase in bactericidal and fungicidal activity and a decrease in toxicity in epithelial cells and erythrocytes [61].

Bogdanov and colleagues explored the microbiological effect of isatin-based QACs (Figure 13) [62].

As seen from the figure, the structures of these ammonium 25 and pyridine 26-27 salts contain no long alkyl chains. Therefore, the cytotoxicity of these compounds is significantly lower than that of typical QACs. However, the antibacterial activity is markedly reduced in the absence of quaternary nitrogen tails. Thus, none of the compounds from

Figure 12. Mono-QACs containing hydroxyl groups.

Figure 13. Isatin-based mono-QACs.
this series showed a biocidal effect against the Gram-negative bacteria \textit{E. coli} and \textit{P. aeruginosa}. On the other hand, these salts inhibited the growth of Gram-positive bacteria (\textit{S. aureus} and \textit{B. cereus}) and fungi (\textit{C. albicans}) at concentrations comparable to modern antibiotics (chloramphenicol and norfloxacin). Overall, QACs with pyridinium nuclei and donor substituents in the aromatic part of isatin 27 turned out to be more active than the others.

Rusew and colleagues presented a work, in which long lipophilic tails in QACs were replaced by more compact aryl-containing substituents (Figure 14) [63].

![Figure 14. Mono-QACs containing aryl substituents.](image)

The results of a broad antibacterial screening appeared to be nontypical for cationic biocides. Compounds with biphenyl and 1,3-dimethoxyphenyl 29 substituents selectively inhibited the growth of \textit{E. coli} (Gram-negative) and \textit{S. aureus} (Gram-positive) but no other Gram-positive and Gram-negative bacteria. In a quantitative sense, the inhibiting zones of these substances were similar to kanamycin.

Kuca and Soukup studied the biological activity of picolinic QAC with methyl substituents 30 (Figure 15) [64].

![Figure 15. Picolinic mono-QACs.](image)

It was found that the position of the substituent did not significantly affect the biocidal effect of methylpicolinates, possibly due to the small size of the methyl substituent. Overall, picolinates showed a comparable or even superior bacteriostatic effect compared to BAC on a wide range of pathogens. The optimal tail length was C12-C16, and higher activity was observed in Gram-positive bacteria than in Gram-negative bacteria, as with most QACs.

Shtyrlin and his colleagues created a pyridoxine-based QAC library, including bis-derivatives, which will be discussed in the corresponding part of the review (Figure 16) [65–70].
Pyridoxin functional derivatives 31-36 exhibited a broad spectrum of antibacterial and antifungal activity; at that time, they were more active against Gram-positive bacteria than Gram-negative bacteria. It should be mentioned that a combination of the antifungal drug terbinafine with pyridoxin-based QAC 36 was efficient against mixed colonies of pathogenic bacteria and fungi. This example proved the advantage of combining two different biocide fragments in one molecule.

A significant contribution to the development of QACs as a class of cationic biocides was made by the groups of Wuest and Minbiole (Figure 17) [71–76].
It was found that close structural analogs of BAC 37 containing amide and ester groups exhibited comparable activity and lower toxicity than BAC [76]. QAC derivatives of natural compounds (quinine 38 and nicotine 39) demonstrated a wide spectrum of antibacterial action, thus justifying the search for other platforms of natural origin to expand the library of active QAC compounds [74].

An overview of the antibacterial activity of mono-QACs, analyzed in the review, is shown in Table 1.
Table 1. Antimicrobial activity of mono-QACs *.

Series/Compound	Strain	MIC, mg·L⁻¹	MBC, mg·L⁻¹	Method	Notes	Ref.
10	*E. faecalis* ATCC 29212	8	16	Microtiter dilution		[52]
	S. aureus ATCC 25923	2	4			
	E. coli ATCC 25922	64	64			
	P. aeruginosa ATCC 27853	250	250			
11	*E. faecalis* ATCC 29212	4	8	Microtiter dilution	Active towards herpes simplex virus	[52]
	S. aureus ATCC 25923	2	2			
	E. coli ATCC 25922	125	250			
	P. aeruginosa ATCC 27853	250	1000			
12	*E. faecalis* ATCC 29212	1	4	Microtiter dilution		[52]
	S. aureus ATCC 25923	<0.25	1			
	E. coli ATCC 25922	250	250			
	P. aeruginosa ATCC 27853	500	500	Microtiter dilution		[52]
13	*E. faecalis* ATCC 29212	<0.25	8	Microtiter dilution		[52]
	S. aureus ATCC 25923	<0.25	4			
	E. coli ATCC 25922	1000	>2000	Microtiter dilution		[52]
	P. aeruginosa ATCC 27853	1000	>2000			
14	*S. aureus* ATCC 6538	1.05 μM		Broth microdilution		[54]
	E. coli CNCTC 377/79	2.2 μM				
	C. albicans CCM 8186	1.05 μM				
15	*S. aureus* ATCC 6538	5.2 μM		Broth microdilution		[54]
	E. coli CNCTC 377/79	41.2 μM				
	C. albicans CCM 8186	164.9 μM				
16	*S. aureus* ATCC 6538	5.4 μM		Broth microdilution		[53]
	E. coli CNCTC 377/79	144.1 μM				
	C. albicans CCM 8186	5.4 μM				
17	*S. aureus* ATCC 6538	75% (percent of inhibition, 250 mg·L⁻¹)	Broth microdilution	Active towards bacterial biofilms	[55]	
	Percentage of Inhibition (%)	Contact Time (Tk)	Concentration (μM)			
----------------	-----------------------------	-------------------	--------------------			
E. coli CNCTC 377/79	80%		250 mg L⁻¹			
E. coli ATCC 25922			141 μM			
multidrug-resistant (MDR) P. aeruginosa 73104	<1 min		141 μM			
wild-type P. aeruginosan PA01			141 μM			
methicillin-resistant S. aureus (MRSA) 70065	99% (reduction, contact time–5 min, 20 ppm)		141 μM			
E. coli ATCC 25922			141 μM			
multidrug-resistant (MDR) P. aeruginosa 73104	5 min		141 μM			
wild-type P. aeruginosan PA01			141 μM			
S. aureus	100%		141 μM			
E. coli			141 μM			
B. subtilis	17 mm (IZ, 500 ppm)					
E. coli	24.1 mm (inhibition zone, 500 ppm)					
S. aureus	6.25		141 μM			
A. niger			141 μM			
C. mandshurica	1.56		141 μM			
C. albicans	6.25		141 μM			
P. vulgaris	25		141 μM			
P. aeruginosa	25		141 μM			
P. piricola	3.125		141 μM			
S. aureus	22.4 mm (IZ, 500 ppm)					
A. niger	6.25					

Key:
- **Tk:** Time to Kill
- **IZ:** Inhibition Zone
- **AATCC test**
- **Broth tube dilution**
- **Disk diffusion**
| Strain | Broth tube dilution | Broth microdilution | Disk diffusion | Active towards varicella-zoster virus |
|----------------------|---------------------|---------------------|----------------|---------------------------------------|
| *a*-H-tococcus | 6.25 | | | |
| *b*-H-tococcus | 1.56 | | | |
| E. coli | 12.5 | 12.5 | | |
| *P. aeruginosa* | 25 | 25 | | |
| *P. vulgaris* | 12.5 | 12.5 | | |
| C. albicans | 6.25 | 6.25 | | |
| C. mandshurica | 3.125 | 3.125 | | |
| *P. piricola* | 1.56 | 1.56 | | |
| A. niger | 6.25 | 6.25 | | |
| *S. aureus* ATCC 209p| 12.5 | | | |
| *a*-H-tococcus | 12.5 | 12.5 | | |
| *b*-H-tococcus | 6.25 | 6.25 | | |
| E. coli | 25 | 25 | | |
| *P. aeruginosa* | 50 | 50 | | |
| *P. vulgaris* | 25 | 25 | | |
| C. albicans | 12.5 | 12.5 | | |
| C. mandshurica | 12.5 | 12.5 | | |
| *P. piricola* | 6.25 | 6.25 | | |
| A. niger | 12.5 | 12.5 | | |
| *S. aureus* ATCC 8035| 401 µM | | | |
| *C. albicans* 855-653| 200 µM | | | |
| *S. aureus* ATCC 209p| 6.9 µM | | | |
| *B. cereus* ATCC 8035| 28.0 µM | | | |
| *C. albicans* 855-653| 222 µM | | | |
| *S. aureus* C1947 | 0.49 µM | 1.22 µM | | |
| MRSA C1926 | 1.47 µM | 1.95 µM | | |
| Vancomycin-resistant enterococci S2484| 1.95 µM | 2.93 µM | Broth microdilution | Active towards varicella-zoster virus |
| *Y. berovieri* CNCTC6230| 1.95 µM | 2.45 µM | | |
| *A. baumannii* J3474 | 2.93 µM | 2.93 µM | | |
| | MIC (μM) | MIC (μM) |
|------------------|-------------|-------------|
| E. coli A1235 | 5.86 | 5.86 |
| K. pneumoniae C1950 | 7.81 | 7.81 |
| S. maltophilia J3552 | 5.86 | 5.86 |
| Extended-spectrum β-lactamase-producing K. pneumoniae C1934 | 7.81 | 15.63 |
| C. parapsilosis sensu stricto EXF-8411 | 100 | |
| R. mucilaginosa EXF-8417 | 100 | |
| E. dermatitidis EXF-8470 | 30 | |
| A. melanogenum EXF-8432 | 30 | |
| B. dimerum EXF-8427 | 500 | |
| P. chrysogenum EXF-1818 | 300 | |
| A. versicolor EXF-8692 | 65 | |
| S. aureus ATCC29213 | 2 | |
| S. epidermidis (clinical isolate) | 2 | |
| M. luteus (clinical isolate) | 2 | |
| E. coli ATCC25922 | >64 | |
| S. typhimurium TA100 | >64 | |
| P. aeruginosa ATCC27853 | >64 | |
| S. aureus ATCC29213 | 0.5 | |
| S. epidermidis (clinical isolate) | 0.5 | |
| M. luteus (clinical isolate) | 0.5 | |
| E. coli ATCC25922 | 2 | |
| S. typhimurium TA100 | 0.5 | |
| P. aeruginosa ATCC27853 | >64 | |
| S. aureus ATCC29213 | 0.5 | |
| S. epidermidis (clinical isolate) | 0.5 | |
| M. luteus (clinical isolate) | 0.5 | |
| E. coli ATCC25922 | 2 | |
| S. typhimurium TA100 | 0.5 | |
| P. aeruginosa ATCC27853 | >64 | |
| S. aureus ATCC29213 | 0.5 | |

Broth microdilution

[66]
	MIC (μM)	Reference		
S. epidermidis (clinical isolate)	2			
M. luteus (clinical isolate)	1			
E. coli ATCC25922	8			
P. aeruginosa ATCC27853	8			
S. aureus ATCC 29213	4	8	Broth microdilution	Active towards bacterial, fungi and mixed biofilms [69]
B. subtilis 168	4	8		
S. epidermidis	4	8		
E. coli MG1655	16	16		
K. pneumoniae	>64	>64		
P. aeruginosa ATCC 27853	64	64		
S. aureus	2 μM			
E. faecalis	4 μM			
E. coli	16 μM			
P. aeruginosa	63 μM			
MRSA 300-0114	2 μM			
MRSA ATCC 33592	2 μM			
S. aureus	0.5 μM			
MRSA 300-0114	2 μM			
MRSA ATCC 33592	4 μM			
E. faecalis	1 μM			
E. coli	8 μM			
P. aeruginosa	8 μM			
S. aureus	1 μM			
MRSA 300-0114	4 μM			
MRSA ATCC 33592	2 μM			
E. faecalis	1 μM			
E. coli	4 μM			
P. aeruginosa	63 μM			
S. aureus	1 μM			
MRSA 300-0114	4 μM			
MRSA ATCC 33592	2 μM			
E. faecalis	1 μM			

References:
- [69]
- [76]
- [74]
- [72]
| | | |
|---------|---------------------|-------|
| | *E. coli* | 4 μM |
| | *P. aeruginosa* | 63 μM |
| | *S. aureus* SH1000 | 1 μM |
| 41 | *E. faecalis* OG1RF | 16 μM |
| | *E. coli* MC4100 | 16 μM |
| | *P. aeruginosa* PAO1-WT | 16 μM |

	Broth microdilution

IZ, inhibition zone; *Tk*, time to kill; *MIC*, minimum inhibitory concentration; *MBC*, minimum bactericidal concentration; *MRSA*, methicillin-resistant *S. aureus*; only leader compounds from the series are listed in the table.
2.2.2. Common Ionic Liquids and Ionic Liquids with Active Pharmaceutical Ingredients (API-ILs)

ILs are organic salts that generally exist in liquid form at a wide range of temperatures. The most common ILs are composed of a bulky organic cation and a more compact anion (Figure 18). Due to its broad applications in chemistry, this class of compounds has been studied thoroughly, and the chemical and physicochemical properties, as well as biodegradation potential, of various ILs have been determined [12,77].

Initially, ILs were considered green solvents that could replace traditional toxic organic solvents in various chemical processes [78]. However, when evidence of the high biological activity of various classes of ILs has emerged, these substances have quickly become candidates for new drugs and drug-like molecules. In particular, the antimicrobial activity of ILs has attracted much attention, and their possible medical and environmental applications have been proposed [12,13,79,80].

A subclass of ILs with quaternary ammonium cations (which includes several of the above-discussed QACs) has promptly been established as a promising alternative to traditional antimicrobial substances [80]. ILs with other cations have also demonstrated prominent bactericidal and fungicidal activities [12,79]. Some of these ILs (e.g., N-hexadecylpyridinium chloride, or cetylpyridinium chloride, CPC, which is also classified as a QAC) have been extensively used as antiseptics for a long time [81,82]. The first successful results of studies on the antimicrobial activities of various ILs have led to the rapid development of API-ILs (active pharmaceutical ingredient–ionic liquid), that is, known commercial drugs in an ionic liquid form [12,83,84].
An overview of the antimicrobial activities of various members of common IL classes is provided in Table 2 and Table S1. In most cases, there is a direct relation between the length of the alkyl side chain in the cation and the IL antimicrobial activity. ILs with relatively short side chains (ethyl, butyl, hexyl) usually demonstrate weak activity (see Table S1), whereas those with long side chains (dodecyl, tetradecyl, hexadecyl) can be strong.
inhibitors of some bacterial and fungal species, including biofilm-forming and drug-resistant species (see, e.g., entries for [C₆Mim][A], n = 12–16, and [C₆Py], n = 12–16, in Table 2) [81,85–89]. For instance, 1-dodecyl-3-methylimidazolium bromide ([C₆Mim][Br]), N-dodecyl-N-methylpyrrolidinium bromide ([C₆C₇Py][Br]), and N-dodecyl-N-methylpipеридinium bromide ([C₆C₇Pyr][Br]) demonstrated both high antimicrobial and low hemolytic activity, thus allowing their successful application in medicinal practice [90,91]. Cholinium-based ILs with long alkyl chains, in particular, N-(2-hydroxyethyl)-N,N-dimethyl-N-tetradecylammonium bromide, N-(2-hydroxyethyl)-N,N-dimethyl-N-hexadecylammonium bromide, and N-(2-hydroxyethyl)-N,N-dimethyl-N-octadecylammonium bromide, efficiently inhibited the growth of various bacterial strains, including antibiotic-resistant strains (see entries for [HOC₆C₇,1₃,N][Br], n = 14–18, in Table 2) [92]. Surface-active choline ILs with the dodecylbenzenesulfonate anion demonstrated significant activity against Gram-negative and Gram-positive bacteria, fungi, and single-cell algae; these ILs were proposed to be used as coatings for the prevention of biofilm formation on stone surfaces [93].

It should be noted that the anion can also have a significant impact on the antimicrobial activity. Thus, the antibacterial activity of 1-butyl-3-methylimidazolium ILs with different anions against pathogenic and semipathogenic Gram-negative and Gram-positive bacteria varied significantly depending on the anionic nature [94]. In particular, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C₆Mim][NTf₂]) demonstrated the highest activity against E. coli (see entries for [C₆Mim][NTf₂]) demonstrated the highest activity against E. coli and several other microorganisms tested (see entries for [C₆Mim][A] in Table S1) [95]. Interestingly, it was demonstrated that for ILs with tris(pentafluoroethyl)trifluorophosphate anions, the antimicrobial activity decreased upon increasing the alkyl side chain length [96].

Of special interest are ILs containing antimicrobial moieties in their anions or cations. The API-IL concept allows simultaneously solving two common issues of traditional drugs: low solubility in aqueous media and tendency to form polymorphs [12]. Examples of bactericidal API-ILs are given in Figure 19, Table 3, and Table S2. Thus, API-ILs bearing ampicillin as their anion in combination with cetylpyridinium or 1-hexadecyl-2,3-dimethylimidazolium as their cation demonstrated improved activity against several Gram-negative and Gram-positive bacterial strains, including ampicillin-resistant E. coli strains, compared to the ampicillin sodium salt (see the corresponding entries in Table 3) [82,97].
Figure 19. Cations and anions used in antimicrobial API-ILs.
Table 2. Antimicrobial activity of common ILs *

IL	Acronym	Species	MIC, μg mL⁻¹	MBC, μg mL⁻¹	Method	Notes	Ref.
1-Ethyl-3-methylimidazolium bromide	[C₂Mim][Br]	*E. coli* ATCC 25922	>5000 μM		Broth microdilution		[82]
		E. coli TEM CTX M9	5000 μM		E. coli TEM CTX M9, CTX M2, and AmpC MOX2 are ampicillin-resistant strains.		
		E. coli CTX M2	>5000 μM				
		E. coli AmpC MOX2	>5000 μM				
		K. pneumoniae (clinical isolate)	>5000 μM				
		S. aureus ATCC 25293	50 μM				
		S. epidermidis (clinical isolate)	5000 μM				
		E. faecalis (clinical isolate)	>5000 μM				
1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide	[C₄Mim][NTf₂]	*P. aeruginosa* PTCC 1310	3120	3120	Agar disk diffusion/agar well diffusion	Anti-adhesive activity *	[94]
		S. aureus PTCC 1112	3120	3120			
		E. coli PTCC 1338	<40	48			
		B. cereus PTCC 1015	3120	3120			
		S. typhimurium (wild type)	390	390			
		K. pneumonia PTCC 1290	3120	3120			
		B. subtilis PTCC 1715	3120	3120			
		M. luteus ATCC 9341	R				
		S. epidermidis ATCC153-1	930 μM				
		S. aureus ATCC 25178	R				
		S. aureus 209 KCTC1916	64				
		S. aureus R209 KCTC1928	250				
		E. coli ATCC 27325	R				
		E. coli KCTC1924	64				
		K. pneumonia ATCC 9721	R				
		P. aeruginosa ATCC 9721	R				
		C. albicans ATCC10231	R				
		C. albicans KCTC19401	250				
		B. subtilis ATCC663	R				
		B. subtilis KCTC1914	500				
		S. typhimurium KCTC1926	500				

* standard error: ±1 μg mL⁻¹
| 1-Octyl-3-methylimidazolium nitrate | C. regularis | 500 | |
|---|---|---|---|
| | S. aureus | 97 |
| | K. pneumoniae | 780 | 780 |
| | S. typhimurium | 780 | 780 |
| | P. aeruginosa | 1560 | 1560 |
| | E. coli | 39 |
| | B. tequilensis | 19 | 19 |
| | B. subtilis | 19 | 19 |
| | Agar disk diffusion/agar well diffusion | Anti-adhesive activity | [95] |

1-Decyl-3-methylimidazolium chloride	[C10Mim][Cl]	S. aureus ATCC 29213	40 μM (MBEC 2415 μM)	643 μM
E-MRSA 15	40 μM (MBEC 4829 μM)	321 μM		
MRSA (clinical strain 201)	160 μM (MBEC 4829 μM)	643 μM		
S. aureus ATCC 209 KCTC1916	32			
S. aureus R209 KCTC1928	40 μM	644 μM		
S. epidermidis ATCC 12228	40 μM	160 μM		
S. epidermidis ATCC 35984	40 μM (MBEC 4829 μM)	160 μM		
E. coli NCTC 8196	321 μM (MBEC 9659 μM)	1287 μM		
E. coli NCTC1924	8			
E. coli BW25113 (wild-type)	188.9			
E. coli JW3596 (∆rfaC)	100			
E. coli JW3597 (∆rfaL)	155			
E. coli JW3606 (∆rfaG)	67.5			
P. aeruginosa PA01	>1287 μM (MBEC 2415 μM)	>1287 μM		
K. aerogenes NCTC 7427	643 μM (MBEC 19318 μM)	1287 μM		
B. cenocepacia J2315	1287 μM (MBEC 19318 μM)	1287 μM		

Deletions ∆rfaC, ∆rfaL, and ∆rfaG affect the cell surface hydrophobicity and membrane permeability. [81,85,86]
Organism	Concentration (MBEC)	1-Decyl-3-methylimidazolium bromide [C10Mim][Br]
P. mirabilis NCTC 12442	1287 μM (MBEC 9659 μM)	R, resistant at the highest concentration tested (256 μg mL⁻¹)
C. tropicalis NCTC 7393	321 μM (MBEC 19318 μM)	R
B. subtilis KCTC1914	125	
S. typhimurium KCTC1926	125	
C. albicans KCTC19401	250	
C. regularis	250	
1-Decyl-3-methylimidazolium		
bromide 1-Decyl-3-methylimidazolium chloride [C12Mim][Cl]		
1-Dodecyl-3-methylimidazolium		
bromide		
E. coli NCTC 8196	73 μM (MBEC 1089 μM)	
E. coli BW25113 (wild-type)	47.3	
E. coli JW3596 (ΔrfaC)	10.1	
E. coli JW3597 (ΔrfaL)	45.4	
E. coli JW3606 (ΔrfaG)	11.4	

Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability. [85,86]
Organism	MIC (µM)	MBEC (µM)
P. aeruginosa PA01	580	1089
K. aerogenes NCTC 7427	73	2179
B. cenocepacia J2315	290	2179
P. mirabilis NCTC 12442	580	4357
C. tropicalis NCTC 7393	73	8714
M. luteus ATCC 9341	R	
S. epidermidis ATCC155-1	193	
S. epidermidis ATCC 35984	2.5	
S. aureus ATCC 25178	97	
S. aureus ATCC 6538	2.5	40
S. aureus 209 KCTC1916	4	
S. aureus R209 KCTC1928	8	
E. coli ATCC 27325	386	
E. coli ATCC 25922	20	10
E. coli KCTC1924	8	
K. pneumonia ATCC 9721	773	
K. pneumonia ATCC BAA-1705	80	
P. aeruginosa ATCC 9721	R	
P. aeruginosa ATCC 27853	160	20
C. albicans ATCC10231	R	
B. subtilis ATCC6633	48	
B. subtilis KCTC1914	8	
S. typhimurium KCTC1926	32	
A. baumannii AB01	80	
E. faecalis ATCC 29212	5	40
C. albicans KCTC19401	32	
C. regularis	16	

1-Dodecyl-3-methylimidazolium bromide ([C12Mim][Br])

Organism	MIC (µM)	MBEC (µM)	Broth microdilution	Notes			
			R, resistant at the highest concentration tested (256 µg mL⁻¹).	[81,87,90,91]			
1-Dodecyl-3-methylimidazolium iodide	1-Tetradecyl-3-methylimidazolium chloride	S. aureus V329	0.31 μM	5 μM	Broth microdilution	Potent anti-biofilm activity (higher against S. aureus)	[98]
-------------------------------------	--	---------------	--------	-----	-------------------	---	----
[C12Mim][I]	[C14Mim][Cl]	P. aeruginosa PAO1	125 μM	250 μM			
S. aureus ATCC 29213	16 μM (MBEC 124 μM)	66 μM					
E-MRSA 15	16 μM (MBEC 248 μM)	66 μM					
MRSA (clinical strain 201)	16 μM (MBEC 124 μM)	66 μM					
S. aureus 209 KCTC1916	4						
S. aureus R209 KCTC1928	4						
S. epidermidis ATCC 12228	7.75 μM (MBEC 124 μM)	33 μM					
S. epidermidis ATCC 35984	7.75 μM (MBEC 124 μM)	33 μM					
E. coli NCTC 8196	33 μM (MBEC 124 μM)	33 μM					
E. coli KCTC1924	4						
E. coli BW25113 (wild-type)	14.9						
E. coli JW3596 (ΔrfaC)	2.2						
E. coli JW3597 (ΔrfaL)	15.5						
E. coli JW3606 (ΔrfaG)	3.3						
P. aeruginosa PA01	264 μM (MBEC 496 μM)	264 μM					
K. aerogenes NCTC 7427	33 μM (MBEC 124 μM)	66 μM					
B. cenocepacia J2315	132 μM (MBEC 496 μM)	264 μM					
P. mirabilis NCTC 12442	264 μM (MBEC 496 μM)	530 μM					
C. tropicalis NCTC 7393	66 μM (MBEC 248 μM)	132 μM					
B. subtilis KCTC1914	4						
Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.							

Notes: MBEC stands for Minimum Biofilm Eradicating Concentration.
1-Tetradecyl-3-methylimidazolium bromide [C_{14}Mim][Br]	**1-Hexadecyl-3-methylimidazolium chloride** [C_{16}Mim][Cl]		
S. typhimurium KCTC1926	**E. coli JW3597 (ΔrfaC)**		
8	0.014 (MBEC 0.028)		
C. albicans KCTC19401	**E. coli JW3597 (ΔrfaL)**		
8	0.014 (MBEC 0.056)		
C. regularis	**E. coli JW3606 (ΔrfaG)**		
8	0.014 (MBEC 0.056)		
M. luteus ATCC 9341	**C. tropicalis 17A**		
178 μM	0.014 (MBEC 0.028)		
S. epidermidis ATCC155-1	**C. tropicalis 72A**		
6 μM	0.014 (MBEC 0.056)		
S. aureus ATCC 25178	**C. tropicalis 72P**		
45 μM	0.014 (MBEC 0.056)		
S. aureus 209 KCTC1916	**C. tropicalis 94P**		
4	0.014 (MBEC 0.225)		
S. aureus R209 KCTC1928	**Broth microdilution** [81,87]		
4	**E. coli ATCC 27325**		
356 μM	**E. coli KCTC1924**		
K. pneumonia ATCC 9721	4		
356 μM	**P. aeruginosa ATCC 9721**		
C. albicans ATCC10231	356 μM		
178 μM	**B. subtilis ATCC6633**		
B. subtilis KCTC1914	6 μM		
4	**S. typhimurium KCTC1926**		
8	**C. albicans KCTC19401**		
8	**C. regularis**		
16	**E. coli JW3596 (ΔrfaC)**		
3.5	**E. coli BW25113 (wild-type)**		
7.7	**E. coli JW3597 (ΔrfaL)**		
8.2	**E. coli JW3606 (ΔrfaG)**		
3	**The clinical isolates 72A, 72P, and 94P are resistant to fluconazole, amphotericin B, voriconazole and anidulafungin. Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.** [86,88]		
1-Hexadecyl-3-methylimidazolium bromide	[C16Mim][Br]	C. tropicalis 102A	0.014 (MBEC 0.056)
--	--------------	--------------------	---------------------
		S. aureus 209 KCTC1916	8
		S. aureus R209 KCTC1928	4
		S. aureus ATCC 6538	15 μM
		E. coli KCTC1924	8
		E. coli O157:H7 ATCC 43895	10 μM
		B. subtilis KCTC1914	4
		S. typhimurium KCTC1926	4
		E. faecium ATCC 49474	1 μM
		K. pneumonia ATCC 4352	15 μM
		C. albicans KCTC19401	8
		C. regularis	8
		Broth microdilution	
		[81,97]	
1-Hexyl-2,3-dimethylimidazolium bromide	[C6MMim][Br]	S. aureus ATCC 6538	23 μM
		E. coli O157:H7 ATCC 43895	12 μM
		E. faecium ATCC 49474	9 μM
		K. pneumonia ATCC 4352	15 μM
		M. luteus ATCC 9341	R
		S. epidermidis ATCC155-1	49 μM
		S. aureus ATCC 25178	195 μM
		E. coli ATCC 27325	97 μM
		K. pneumonia ATCC 9721	780 μM
		P. aeruginosa ATCC 9721	780 μM
		C. albicans ATCC10231	R
		M. luteus ATCC6633	24 μM
		Broth microdilution	R, resistant at the highest concentration tested (256 μg mL⁻¹).
		[87]	
N-Dodecylpyridinium bromide	[C12Py][Br]	S. epidermidis ATCC155-1	6 μM
		S. aureus ATCC 25178	22 μM
		E. coli ATCC 27325	45 μM
		K. pneumonia ATCC 9721	359 μM
		P. aeruginosa ATCC 9721	359 μM
		C. albicans ATCC10231	359 μM
		Broth microdilution	
		[87]	
N-Tetradecylpyridinium bromide	[C14Py][Br]	S. epidermidis ATCC155-1	6 μM
		S. aureus ATCC 25178	22 μM
		E. coli ATCC 27325	45 μM
		K. pneumonia ATCC 9721	359 μM
		P. aeruginosa ATCC 9721	359 μM
		C. albicans ATCC10231	359 μM
		Broth microdilution	
		[87]	
Compound Type	Compound	MIC (μM)	
---------------	----------	----------	
N-Hexadecylpyridinium chloride	[C_{16}Py][Cl]	6 μM	
	B. subtilis ATCC6633	6 μM	
	E. coli ATCC 25922	500 μM	
	E. coli TEM CTX M9	500 μM	
	E. coli CTX M2	>5000 μM	
	E. coli AmpC MOX2	>5000 μM	
	K. pneumoniae (clinical isolate)	2500 μM	
	S. aureus ATCC 25295	500 μM	
	S. aureus 209 KCTC1916	8	
	S. aureus R209 KCTC1928	8	
	S. epidermidis (clinical isolate)	2500 μM	
	E. faecalis (clinical isolate)	500 μM	
	B. subtilis KCTC1914	8	
N-Hexadecylpyridinium bromide	[C_{16}Py][Br]	15 μM	
	S. aureus ATCC 6538	15 μM	
	E. coli O157:H7 ATCC 43895	13 μM	
	E. faecium ATCC 49474	2 μM	
	K. pneumonia ATCC 4352	13 μM	
	S. epidermidis ATCC 35984	10	
	S. aureus	15 μM	
	S. aureus ATCC 6538	10	
	E. coli	20 μM	
	E. coli ATCC 25922	80	
	P. aeruginosa ATCC 27853	320	
	K. pneumonia ATCC BAA-1705	160	
	A. baumannii AB01	80	
	E. faecalis ATCC 29212	20	
	E. coli KCTC1924	8	
	S. typhimurium KCTC1926	16	
	B. subtilis KCTC1914	4	
	C. regularis	8	
	S. epidermidis ATCC 35984	5	
	S. aureus ATCC 6538	5	
	E. coli ATCC 25922	40	

Broth microdilution:

E. coli TEM CTX M9, CTX M2, and AmpC MOX2 are ampicillin-resistant strains. [81,82]
Compound	Bacteria	MIC (μM)	IC₅₀ (μM)
N-Dodecyl-N-methylmorpholinium bromide [C₁₂C₁Mor][Br]	P. aeruginosa ATCC 27853	320	80
	K. pneumonia ATCC BAA-1705	160	
	A. baumannii AB01	320	
	E. faecalis ATCC 29212	10	40
	S. epidermidis ATCC 35984	20	
	S. aureus ATCC 6538	20	
	E. coli ATCC 25922	156.2	
	P. aeruginosa ATCC 27853	312.5	
	E. faecalis ATCC 29212	40	
	Broth microdilution		
	[90]		
Dioctyldimethylammonium chloride [C₈₈₈₁N][Cl]	E. coli BW25113 (wild-type)	104.2	
	E. coli JW3596 (ΔrfaC)	20.8	
	E. coli JW3597 (ΔrfaL)	91.7	
	E. coli JW3606 (ΔrfaG)	22.9	
	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect cell surface hydrophobicity and membrane permeability.	[86]	
Triocetyltrimethylammonium chloride [C₈₈₈₁N][Cl]	E. coli BW25113 (wild-type)	6.8	
	E. coli JW3596 (ΔrfaC)	1.7	
	E. coli JW3597 (ΔrfaL)	6.9	
	E. coli JW3606 (ΔrfaG)	2.5	
	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect cell surface hydrophobicity and membrane permeability.	[86]	
Trimethyldecylammonium chloride [C₈₈₈₁₀N][Cl]	E. coli BW25113 (wild-type)	119.4	
	E. coli JW3596 (ΔrfaC)	83	
	E. coli JW3597 (ΔrfaL)	130	
	E. coli JW3606 (ΔrfaG)	80	
	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect cell surface hydrophobicity and membrane permeability.	[86]	
Trimethylhexadecylammonium chloride [C₈₈₈₁₃₁₃N][Cl]	E. coli BW25113 (wild-type)	13.1	
	E. coli JW3596 (ΔrfaC)	2.8	
	E. coli JW3597 (ΔrfaL)	13	
	E. coli JW3606 (ΔrfaG)	3.3	
	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect cell surface hydrophobicity and membrane permeability.	[86]	
Trimethylhexadecylammonium bromide (cetyltrimethylammonium bromide) [C₈₈₈₁₃₁₃N][Br] (CTAB)	S. aureus V329	0.31 μM	5 μM
	P. aeruginosa PAO1	125 μM	250 μM
	Broth microdilution		
	Potent anti-biofilm activity against S. aureus	[98]	
[HOC₂C₈₈₈₁₂N][Br]]	B. subtilis ATCC 6633	15.62	
	M. smegmatis ATCC 607	15.62	
	Broth microdilution		
	[92]		
Compound	Organism	MIC (μg/mL)	
--------------------------------	-----------	-------------	
Dimethyldodecyl(2-hydroxyethyl)ammonium bromide	K. pneumonia ATCC 9997	N.T.	
	E. faecalis ATCC 29212	N.T.	
	VRE ATCC 51299	62.5	
	S. aureus	31.25	
	MRSA CIP 106760	62.5	
	E. coli ATCC 25922	62.5	
	P. aeruginosa ATCC 27853	250	
	C. albicans ATCC 10231	62.5	
	S. cerevisiae ATCC 2601	7.81	

Dimethyltetradecyl(2-hydroxyethyl)ammonium bromide	Broth microdilution
[HOC₂C₁₁₁₄N][Br]	<0.49
M. smegmatis ATCC 607	1.95
K. pneumonia ATCC 9997	7.82
E. faecalis ATCC 29212	1.95
VRE ATCC 51299	1.95
S. aureus	7.81
MRSA CIP 106760	15.62
E. coli ATCC 25922	15.62
P. aeruginosa ATCC 27853	125
C. albicans ATCC 10231	31.25
S. cerevisiae ATCC 2601	1.95
B. subtilis ATCC 6633	<0.49
M. smegmatis ATCC 607	2.91
K. pneumonia ATCC 9997	0.98
E. faecalis ATCC 29212	0.98
VRE ATCC 51299	0.98
S. aureus	1.95
MRSA CIP 106760	3.91
E. coli ATCC 25922	7.81
P. aeruginosa ATCC 27853	250
C. albicans ATCC 10231	3.91
S. cerevisiae ATCC 2601	1.95
B. subtilis ATCC 6633	1.95

Dimethylhexadecyl(2-hydroxyethyl)ammonium bromide	Broth microdilution
[HOC₂C₁₂₁₆N][Br]	<0.49
M. smegmatis ATCC 607	3.91
K. pneumonia ATCC 9997	0.98
E. faecalis ATCC 29212	0.98
VRE ATCC 51299	0.98
S. aureus	1.95
MRSA CIP 106760	3.91
E. coli ATCC 25922	7.81
P. aeruginosa ATCC 27853	250
C. albicans ATCC 10231	3.91
S. cerevisiae ATCC 2601	1.95
B. subtilis ATCC 6633	1.95

[92]
Dimethyloctadecyl(2-hydroxyethyl)ammonium bromide	[HOC₂C₁₁₃N][Br]	M. smegmatis ATCC 607	3.91	Broth microdilution
		K. pneumonia ATCC 9997	1.95	
		E. faecalis ATCC 29212	1.95	
	VRE ATCC 51299	0.98		
	S. aureus	1.95		
	MRSA CIP 106760	0.98		
	E. coli ATCC 25922	31.25		
	P. aeruginosa ATCC 27853	125		
	C. albicans ATCC 10231	<0.48		
	S. cerevisiae ATCC 2601	<0.48		

Di(2-hydroxyethyl)tetradecylammonium bromide	[(HOC₂)₂C₁₄NH][Br]	B. subtilis ATCC 6633	7.81	Broth microdilution								
		M. smegmatis ATCC 607	15.62									
		K. pneumonia ATCC 9997	7.81									
		E. faecalis ATCC 29212	15.62									
		VRE ATCC 51299	7.81									
		S. aureus	15.62									
		MRSA CIP 106760	15.62									
		E. coli ATCC 25922	31.25									
		P. aeruginosa ATCC 27853	N.T.									
		C. albicans ATCC 10231	15.62									
		S. cerevisiae ATCC 2601	N.T.									
		B. subtilis ATCC 6633	250									
		M. smegmatis ATCC 607	62.5									
		K. pneumonia ATCC 9997	N.A.									
		E. faecalis ATCC 29212	N.A.									
		VRE ATCC 51299	N.A.									
		S. aureus	N.A.									
		MRSA CIP 106760	N.A.									
		E. coli ATCC 25922	N.A.									
		P. aeruginosa ATCC 27853	N.A.									
		C. albicans ATCC 10231	N.T.									
		S. cerevisiae ATCC 2601	N.T.									
Compound	B. subtilis ATCC 6633	M. smegmatis ATCC 607	K. pneumonia ATCC 9997	E. faecalis ATCC 29212	VRE ATCC 51299	S. aureus	MRSA CIP 106760	E. coli ATCC 25922	P. aeruginosa ATCC 27853	C. albicans ATCC 10231	S. cerevisiae ATCC 2601	[92]
----------------------------------	-----------------------	-----------------------	------------------------	------------------------	-----------------	------------	----------------	-------------------	--------------------------	--------------------	----------------------	------
Di(2-hydroxyethyl)dodecylmethylammonium bromide $[(\text{HOC}_2)_{2}\text{C}_{12}\text{N}]\text{Br}$												
Di(2-hydroxyethyl)tetradecylmethylammonium bromide $[(\text{HOC}_2)_{2}\text{C}_{14}\text{N}]\text{Br}$												
Trioctylmethylphosphonium chloride $[\text{C}_{8,8,8}\text{P}]\text{Cl}$												
Trihexyltetradecylphosphonium chloride $[\text{C}_{6,6,6}\text{P}]\text{Cl}$												

Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.
Antibiotic	Organism	Minimum Bactericidal Concentration (MBEC)
Gentamycin	S. typhimurium ATCC 14028	0.25
	E. coli ATCC 25922	0.25
	C. freundii ATCC 27853	1
	B. subtilis KCTC1914	1
	S. typhimurium KCTC1926	0.5
Kanamycin	S. aureus 209 KCTC1916	2
	S. aureus R209 KCTC1928	1
	E. coli KCTC1924	16
	B. subtilis KCTC1914	2
	S. typhimurium KCTC1926	1
Fucnazole	C. tropicalis 17A	0.125 (MBEC 4)
	C. tropicalis 57A	0.125 (MBEC 64)
	C. tropicalis 72A	128 (MBEC 8)
	C. tropicalis 72P	128 (MBEC 128)
	C. tropicalis 94P	64 (MBEC 32)
	C. tropicalis 102A	0.125 (MBEC 128)
Colistin	E. coli ATCC 25922	2
	P. aeruginosa ATCC 27853	1
	K. pneumonia ATCC BAA-1705	2
	A. baumannii AB01	4
Vancomycin	B. subtilis ATCC 6633	<0.48
	K. pneumonia ATCC 9997	15.62
	E. faecalis ATCC 29212	1.95
	VRE ATCC 51299	3.91
	S. aureus	7.82
	MRSA CIP 106760	3.91
Rifampicin	M. smegmatis ATCC 607	<0.48
	E. coli ATCC 25922	0.98

The clinical isolates 72A, 72P, and 94P are resistant to fluconazole, amphothericin B, voriconazole and anidulafungin.
Drug	Species	MIC (μg/mL)	Method	
Norfloxacin	P. aeruginosa ATCC 27853	<0.48	Broth microdilution	[92]
Amphotericin B	C. albicans ATCC 10231	<0.48	Broth microdilution	[92]
	S. cerevisiae ATCC 2601	<0.48		

*IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MBEC, minimum biofilm eradication concentration; MRSA, methicillin-resistant S. aureus; N.A., not active; N.T., not tested; VRE, vancomycin-resistant E. faecalis. *Anti-adhesive activity varies depending on the species.
Table 3. Antimicrobial activity of API-ILs.*

IL	Acronym	Species	IZ, mm	MIC μg mL⁻¹	MBC, μg mL⁻¹	Method	Notes	Ref.
1-Ethyl-3-methylimidazolium nalidixate	[C₂Mim][Nal]	*E. coli* BW25113 (wild-type)	11			Disk diffusion test, 10 μg per disk	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.	[86]
		E. coli JW3596 (ΔrfaC)	20					
		E. coli JW3597 (ΔrfaL)	11					
		E. coli JW3606 (ΔrfaG)	18					
1-Hexadecyl-3-methylimidazolium ampicillinate	[C₆Mim][Amp]	*S. aureus* ATCC 6538	30 μM			Broth microdilution		[97]
		E. coli O157:H7 ATCC 43895	9 μM					
		E. faecium ATCC 49474	13 μM					
		K. pneumonia ATCC 4352	15 μM					
1-Hexadecyl-2,3-dimethylimidazolium ampicillinate	[C₆MMim][Amp]	*S. aureus* ATCC 6538	14 μM			Broth microdilution		[97]
		E. coli O157:H7 ATCC 43895	9 μM					
		E. faecium ATCC 49474	0.4 μM					
		K. pneumonia ATCC 4352	15 μM					
1-Hexadecylpyridinium ampicillinate	[C₆Py][Amp]	*S. aureus* ATCC 6538	8 μM			Broth microdilution		
		S. aureus ATCC 25293	5 μM					
		S. epidermidis (clinical isolate)	5 μM					
		E. coli O157:H7 ATCC 43895	6 μM					
		E. coli ATCC 25922	500 μM					
		E. coli TEM CTX M9	5 μM					
		E. coli CTX M2	50 μM					
		E. coli AmpC MOX2	>5000 μM					
		E. faecium ATCC 49474	0.4 μM					
		E. faecalis (clinical isolate)	5 μM					
		K. pneumonia ATCC 4352	9 μM					
		K. pneumoniae (clinical isolate)	50 μM					
N-Ethyl-N-methylpiperidinium nalidixate	[C₆C₆Pip][Nal]	*E. coli* BW25113 (wild-type)	12.9			Disk diffusion test, 10 μg per disk	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.	[86]
		E. coli JW3596 (ΔrfaC)	22.9					
		E. coli JW3597 (ΔrfaL)	12.8					
		E. coli JW3606 (ΔrfaG)	21					
Compound	Bacterial Strain (Wild-type)	Disk Diffusion Test	Notes					
---	-------------------------------	---------------------	--					
Trimethylhexadecylammonium nalidixate [C1113N][Nal]	E. coli BW25113	12.6	Deletions ΔrafA, ΔrafL, and ΔrafG affect the cell surface hydrophobicity and membrane permeability. [86]					
	E. coli JW3596 (ΔrafA)	22.7						
	E. coli JW3597 (ΔrafL)	12.2						
	E. coli JW3606 (ΔrafG)	20.2						
Diocetyltrimethylammonium nalidixate [C8831N][Nal]	E. coli BW25113	13.3	Deletions ΔrafA, ΔrafL, and ΔrafG affect the cell surface hydrophobicity and membrane permeability. [86]					
	E. coli JW3596 (ΔrafA)	23.3						
	E. coli JW3597 (ΔrafL)	13.6						
	E. coli JW3606 (ΔrafG)	20.3						
Triocetyltrimethylammonium nalidixate [C8881N][Nal]	E. coli BW25113	11.3	Deletions ΔrafA, ΔrafL, and ΔrafG affect the cell surface hydrophobicity and membrane permeability. [86]					
	E. coli JW3596 (ΔrafA)	22.2						
	E. coli JW3597 (ΔrafL)	11						
	E. coli JW3606 (ΔrafG)	18.7						
Tetramethylammonium nalidixate [C1111N][Nal]	E. coli BW25113	13.3	Deletions ΔrafA, ΔrafL, and ΔrafG affect the cell surface hydrophobicity and membrane permeability. [86]					
	E. coli JW3596 (ΔrafA)	22.9						
	E. coli JW3597 (ΔrafL)	13.4						
	E. coli JW3606 (ΔrafG)	20.6						
Tetrabutylammonium nalidixate [C4444N][Nal]	E. coli BW25113	13.3	Deletions ΔrafA, ΔrafL, and ΔrafG affect the cell surface hydrophobicity and membrane permeability. [86]					
	E. coli JW3596 (ΔrafA)	22.7						
	E. coli JW3597 (ΔrafL)	13.6						
	E. coli JW3606 (ΔrafG)	21.3						

Compound	Bacterial Strain (Wild-type)	Disk Diffusion Test	Notes
Didecyldimethylammonium saccharinate [C101013N][Sac]			
	S. aureus ATCC 6538	4 ppm	Tube dilution [99]
	MRSA ATCC 43300	4 ppm	
	E. faecium ATCC 49474	8 ppm	
	E. coli ATCC25922	16 ppm	
	M. luteus ATCC 9341	4 ppm	
	S. epidemidis ATCC 12228	4 ppm	
	K. pneumonia ATCC 4352	4 ppm	
	C. albicans ATCC 10231	16 ppm	
	R. rubra PhB	16 ppm	
	S. mutans PCM	31 ppm	
[C101013N][Ace]	S. aureus ATCC 6538	8 ppm	Tube dilution [99]
	MRSA ATCC 43300	4 ppm	
Compound	Organism	MIC (μM)	IC₅₀ (μM)
--	------------------	----------	----------
Didecyldimethylammonium acesulfamate	E. faecium ATCC 49474	8 ppm	31.2 ppm
	E. coli ATCC25922	16 ppm	62.5 ppm
	M. luteus ATCC 9341	8 ppm	62.5 ppm
	S. epidermidis ATCC 12228	4 ppm	31.2 ppm
	K. pneumonia ATCC 4352	4 ppm	31.2 ppm
	C. albicans ATCC 10231	16 ppm	31.2 ppm
	R. rubra PhB	16 ppm	62.5 ppm
	S. mutans PCM	16 ppm	125 ppm
Tetrabutylphosphonium nalidixate [C₆,₄,₄,₄P][Nal]	E. coli BW25113 (wild-type)	13.3	
	E. coli JW3596 (ΔrfaC)	22.6	
	E. coli JW3597 (ΔrfaL)	12.9	
	E. coli JW3606 (ΔrfaG)	20.4	
	Disk diffusion test, 10 μg per disk		
	Deletions ΔrfaC, ΔrfaL, and ΔrfaG affect the cell surface hydrophobicity and membrane permeability.	[86]	
Trihexyltetradeclyphosphonium ampicillinate [C₆,₆,₆,₁₄P][Amp]	E. coli ATCC 25922	2500 μM	
	E. coli TEM CTX M9	500 μM	
	E. coli CTX M2	500 μM	
	E. coli AmpC MOX2	>5000 μM	
	K. pneumoniae (clinical isolate)	5000 μM	
	S. aureus ATCC 25293	50 μM	
	S. epidermidis (clinical isolate)	50 μM	
	E. faecalis (clinical isolate)	50 μM	
	Broth microdilution		
	E. coli TEM CTX M9, CTX M2, and AmpC MOX2 are ampicillin-resistant strains.	[82]	
Benzalkonium saccharinate [BA][Sac]	S. aureus ATCC 6538	4 ppm	31.2 ppm
	MRSA ATCC 43300	4 ppm	31.2 ppm
	E. faecium ATCC 49474	8 ppm	16 ppm
	E. coli ATCC25922	16 ppm	62.5 ppm
	M. luteus ATCC 9341	8 ppm	62.5 ppm
	S. epidermidis ATCC 12228	4 ppm	31.2 ppm
	K. pneumonia ATCC 4352	4 ppm	62.5 ppm
	C. albicans ATCC 10231	16 ppm	31.2 ppm
	R. rubra PhB	16 ppm	62.5 ppm
	S. mutans PCM	0.1 ppm	0.5 ppm
Benzalkonium acesulfamate [BA][Ace]	S. aureus ATCC 6538	4 ppm	31.2 ppm
	MRSA ATCC 43300	4 ppm	31.2 ppm
	Tube dilution		
	Tube dilution		

[99]
E. faecium ATCC 49474	8 ppm	31.2 ppm
E. coli ATCC25922	31 ppm	125 ppm
M. luteus ATCC 9341	8 ppm	62.5 ppm
S. epidermidis ATCC 12228	4 ppm	62.5 ppm
K. pneumonia ATCC 4352	8 ppm	31.2 ppm
C. albicans ATCC 10231	16 ppm	31.2 ppm
R. rubra PhB	16 ppm	62.5 ppm
S. mutans PCM	1 ppm	16 ppm

Nalidixic acid

E. coli BW25113 (wild-type)	11
E. coli JW3596 (∆rfaC)	20
E. coli JW3597 (∆rfaL)	11
E. coli JW3606 (∆rfaG)	18

Deletions ∆rfaC, ∆rfaL, and ∆rfaG affect the cell surface hydrophobicity and membrane permeability. [86]

Ampicillin sodium salt

S. aureus ATCC 6538	27 μM
S. aureus ATCC 25293	5 μM
S. epidermidis (clinical isolate)	50 μM
E. coli O157:H7 ATCC 43895	12 μM
E. coli ATCC 25922	50 μM
E. coli TEM CTX M9	>5000 μM
E. coli CTX M2	>5000 μM
E. coli AmpC MOX2	>5000 μM
E. faecium ATCC 49474	17 μM
E. faecalis (clinical isolate)	50 μM
K. pneumonia ATCC 4352	20 μM
K. pneumoniae (clinical isolate)	2500 μM

Broth dilution, E. coli TEM CTX M9, CTX M2, and AmpC MOX2 are ampicillin-resistant strains. [82,97]

Benzalkonium chloride

S. aureus ATCC 6538	2 ppm	62.5 ppm
MRSA ATCC 43300	2 ppm	31.2 ppm
S. aureus 209 KCTC1916	8	
S. aureus R209 KCTC1928	8	
E. faecium ATCC 49474	4 ppm	31.2 ppm
E. coli ATCC25922	8 ppm	62.5 ppm
M. luteus ATCC 9341	4 ppm	31.2 ppm
S. epidermidis ATCC 12228	2 ppm	16 ppm

Disks diffusion test, 10 μg per disk, Deletions ∆rfaC, ∆rfaL, and ∆rfaG affect the cell surface hydrophobicity and membrane permeability. [81,99]
	Inhibition Zone (I.Z.)	Minimum Inhibitory Concentration (MIC)	Minimum Bactericidal Concentration (MBC)
K. pneumonia ATCC 4352	4 ppm	31.2 ppm	
B. subtilis KCTC1914	8		
C. albicans ATCC 10231	8 ppm	16 ppm	
R. rubra PhB	8 ppm	31.2 ppm	
S. mutans PCM	2 ppm	16 ppm	
S. aureus ATCC 6538	2 ppm	31.2 ppm	
MRSA ATCC 43300	2 ppm	31.2 ppm	
E. faecium ATCC 49474	4 ppm	31.2 ppm	
E. coli ATCC 25922	8 ppm	31.2 ppm	
M. luteus ATCC 9341	2 ppm	31.2 ppm	
S. epidermidis ATCC 12228	2 ppm	31.2 ppm	
K. pneumonia ATCC 4352	4 ppm	16 ppm	
C. albicans ATCC 10231	8 ppm	16 ppm	
R. rubra PhB	4 ppm	31.2 ppm	
S. mutans PCM	2 ppm	16 ppm	

*IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant *S. aureus.*
2.2.3. Double-Charged QACs (Bis-QACs)

Bis-QAC (or so-called “twin surfactants”) is a subclass of synthetic amphiphiles that contain two cationic nitrogen atoms, a spacer linking them, and two lipophilic alkyl substituents [100]. These are common characteristics of typical bis-QAC, the exact structure of which can vary greatly. The intense development of bis-QACs began later than that of mono-QACs in the 1980s with the discovery of octenidine (see the Commercial QACs section). Nonetheless, there are many publications on the synthesis and biocide properties of bis-QACs.

A significant number of alkyl bis-QACs were synthesized to test the effect of the total charge of the molecule on the activity (Figure 20).

![Figure 20. Alkyl bis-QACs.](image)

Bis-QACs with ester spacer \(46\) showed better activity than their mono analogues, both against Gram-positive and Gram-negative bacteria and fungi [101]. It is worth noting that the activity against *E. coli* was nonlinear and plummeted upon increasing the alkyl chain length from \(C_6\) to \(C_{14}\). This relationship, which is known for the biocidal action of amphiphils on Gram-negative bacteria, is called the “cut-off” effect. It was described by Devinsky and colleagues as a consequence of membrane penetration [102]. The addition of a second charged nitrogen atom increased the activity 3-fold in *S. aureus* and 4-fold in *E. coli* in the work of Hodye (substance \(47\)). The activity also correlated with the distance between the heads, with the optimal spacer length being \(C_6\) [103]. Wuest and Minbiole and colleagues studied the biocidal action of QACs based on polyamines \(43-44\) [71,104]. Tetramethylethylenediamine derivatives (TMEDAs) \(42\) turned out to be an extremely promising class of biocides because of their simple synthesis, cheap starting materials, and high activity [75]. In all the above-mentioned studies, the biological effect on pathogenic bacteria increased 3–4 times, especially for Gram-negative strains, compared to mono-QACs.

Changing the spacer in the bis-QAC structure is one of the key factors in the design of target molecules. Thus, the aforementioned alkyl bis-QACs can contain aromatic spacers (Figure 21).
A study by LaDow and colleagues showed that bis-QACs 48-52 inhibited the growth of Gram-positive bacteria at approximately the same concentration as their mono analogs. However, bis-QACs had a much stronger effect on Gram-negative bacteria, which was confirmed by other studies [105]. In continuation of their work on the study of pyridoxine QAC derivatives, Shtyrlun and colleagues noted a clear dependence of the activity of compounds 54 on their lipophilicity. Thus, the values of the lipophilicity coefficient for the most active compounds (C_{10}, C_{12}) were in the range of 1 to 3; at values higher than 6 or lower than 0, the activity decreased sharply [106]. Forman and colleagues studied QAC derivatives of malachite green 53, comparing its mono- and bis-QACs. Analogos with two long alkyl chains were generally comparable to mono-QACs but were more efficient against resistant bacteria [107].

Similar to mono-QACs, the head of bis-QACs can have a saturated heterocyclic structure (Figure 22).
Kourai and colleagues, in their study of bis-QAC derivatives of piperazine 57, found that compounds with different spacer structures but the same lipophilicity exhibited different activities. This fact suggested that the dependence of the biocidal action on lipophilicity was valid only for the series of QACs differing in the length of the tail \cite{108}. Kontos and colleagues tested the dependence of the activity of 58-59 on the rigidity of the structure. The initial assumption that a more flexible structure would provide easier passage through the bacterial membrane and accelerate cell lysis turned out to be erroneous. Thus, derivatives of the more rigid amine structure 59 of diazobicyclooctane (DABCO) were most active in the series \cite{109}. A series of heterocyclic QACs based on cardanol 60 was developed by Ma and colleagues \cite{110}. Along with moderate antibacterial activity, the compounds appeared to be good surfactants.

There are several examples of mixed bis-QACs carrying two different heterocycles or heterocyclic and alkyl parts (Figure 23).
In the continuation of the work on preparation of the above-mentioned QAC derivatives of quinine and nicotine, the usual “activation” of the second nitrogen charged center did not lead to a significant increase in the activity of 61-62. Presumably, the total charge of the molecule does not affect the activity as strongly as the addition of the second alkyl chain [74]. In the work of Schallenhammer and colleagues, hybrid bis-QACs 63-64 combining CPC 5 and BAC 1 showed higher activity against Gram-negative bacteria than each of the commercial “source drugs” applied separately. At the same time, hybrid monoderivatives did not show such a result [111]. Piperazine bis-QAC derivatives 65 and their “soft” analogs 66 showed similar relationships with the previous bis-QACs [72,112].

Additionally, there is a range of interesting works concerning QACs with polynuclear heterocycles with several heteroatoms (Figure 24).

Thomas and colleagues synthesized QACs based on bis-thiazole 67, bis-imidazole 68 and bis-triazole 69. While thiazole derivatives with an alkyl spacer and without lipophilic tails 67 did not show high activity, bis-QACs with nitrogen heterocycles 68-69 demonstrated MIC values lower than that of CHG [113].

In contrast, in the work of Shirai and colleagues, thiazole bis-QACs with alkyl tails 71 (Figure 25) exhibited a wide spectrum of antibacterial and antifungal effects [114]. This is additional evidence that the tails in the QAC structure are strong inducer of the biological effect against pathogens. Shrestha and colleagues studied the antibacterial and antifungal activity of bis-triazole QAC based on benzoquinone 72 (Figure 25) [115].
Inspired by the success of octenidine on the market of cationic biocides, scientists have begun to actively develop a class of bispyridinium salts with various types of spacers (Figure 26).

In the work of Minbiole and colleagues, bispiridinium QAC derivatives of paraquats 73-75 and bis-QACs without a spacer between pyridinium heads were studied. The activity of meta-75 and parameta-analogs 74 was more pronounced. Cyclovoltamperometric
analysis showed the predisposition of paraquats 73 to reversible oxidation-reduction processes and the formation of “superoxide”. This presumably increases the toxicity, while metaquats 75 and parametaquats 74 are not subject to this possibility and thus can be less toxic. In addition, given the high activity of parameta-derivatives 74, this indicates the incoherence between the increase in the biocidal action of QACs and their redox capacity [116,117]. A study on the dependence of the activity on the rigidity of the structure for bispyridinium-QACs with alkyl spacers with different saturations 76-78 showed ambiguous results. While this dependence was not observed for QACs with alkyl chains as tails, and the MIC values remained approximately at the same level, in the case of bis-QACs with amide bridges in the tails, a sharp decrease in the activity was observed upon increasing the structural rigidity. The authors showed that in such rigid structures, the bis-QAC activity decreased as the charged heads moved away from each other [118].

In the last few years, new biocidal pyridine-based bis-QACs containing an aromatic fragment in a spacer have been synthesized (Figure 27). Thus, bis-QACs with 1,4-dioxo-phenyl as spacer 79 were significantly more active than commercial QACs (BAC 1, CHG 7) [119–121]. Vereshchagin’s group studied the dependence of the activity of biocides on the size of the aromatic spacer of salts, as well as the location of the spacer relative to the charged pyridinium nitrogen 79-83 [122–126]. It was discovered that the QAC activity increased upon increasing the length of the aromatic spacer. The activity increased in the following order: mono- 79 < bi- 80 < terphenyl 82 [122,124]. It can be assumed that in such structures, the activity increases with an increase in the distance between the nitrogen atoms. It is worth noting that the optimal length of the alkyl tails also varied in this series: C6 for phenyl 79, C8 for biphenyl 80, and C10 for terphenyl 82. The influence of the position of substitution in pyridine turned out to be ambiguous. In the case of biphenyl 80, the meta-salts turned out to be slightly more active than the para-derivatives, while the opposite was observed for the more mobile biphenyl ether 81 [123,126]. The ortho-salts showed strikingly lower activity. However, this was not the case for QACs of 2,7-di-hydroxynaphthalene derivatives 83, and the biocidal effect of the orthosalts was extremely high [125]. From the viewpoint of their activity, the leading compounds from the series of bis-QACs with aromatic spacers were superior to the widely used QACs, such as CHG 7, CPC 5, BAC 1, and miramistin 4, and were comparable to OCT 6 (Figure 27).
Figure 27. Pyridine-based bis-QACs containing aromatic spacers.

There is a broad variety of structures of bispyridinium salts containing mixed spacers (Figure 28).
Kourai and colleagues initiated studies on bis-pyridine salts 84, 86-88 [127–132]. Later, Obando and colleagues proposed the synthesis of biologically active bis-QACs containing mixed alkyl-aromatic spacers 89 [133]. In their recent investigation, Hao and colleagues performed a comprehensive physical-chemical and biological analysis of bis-QACs with amide bridges 85 [134].

Pentaerythritol-based bis-QACs 90-91 (Figure 29) were developed by Yamamoto and colleagues. These substances revealed a broad scope of antibacterial and antifungal activities [120]. At that time, the substances with condensed hydroxy groups 90 had higher activity than those with free hydroxy groups 91. The biocompatibility of the series leaders was similar to or higher than that of the common antiseptics (BAC, CPC, OCT, PHMB). Furthermore, Vereshchagin presented a synthetic route and microbiological study of pentaerythritol bis-QACs as OCT analogues 92 [135]. The salts were active towards MRSA and E. coli (Figure 29).
Figure 29. Pyridine-based bis-QACs containing pentaerythritol.

An overview of the antibacterial activity of bis-QACs, analyzed in the review, is shown in Table 4.

Table 4. Antimicrobial activity of Bis-QACs.*

Series/Compound	Strain	MIC, mg.L⁻¹	MBC, mg.L⁻¹	Method	Notes	Ref.
42	*S. aureus* SH1000	1 μM		Broth microdilution		[75]
	E. faecalis OG1RF	1 μM				
	E. coli MC4100	2 μM				
	P. aeruginosa PAO1-WT	4 μM				
43	*S. aureus* SH1000	1 μM		Broth microdilution		[71]
	E. faecalis OG1RF	1 μM				
	E. coli MC4100	2 μM				
	P. aeruginosa PAO1-WT	4 μM				
44	*S. aureus* SH1000α	1 μM		Broth microdilution		[71]
	E. faecalis OG1RF	1 μM				
	E. coli MC4100	1 μM				
	P. aeruginosa PAO1-WT	4 μM				
46	*S. aureus* Mau 29/58	0.4 μM		Suspension micro-method		[101]
	E. coli 377/79	3.1 μM				
	C. albicans 45/54	1.5 μM				
47	*S. aureus*	13 μM		Broth microdilution		[103]
	E. coli	10 μM				
48	*S. aureus* SH1000	2	2	Broth microdilution		[105]
	E. faecalis OG1RF	18	18			
	E. coli MC4100	18	18			
	P. aeruginosa PAO1-WT	37	37			
49	*S. aureus* SH1000	10	10	Broth microdilution		[105]
	E. faecalis OG1RF	18	18			
	E. coli MC4100	37	37			
	Concentration	Broth microdilution				
----------------------	---------------	---------------------				
P. aeruginosa PAO1-WT	149					
	149					
S. aureus SH1000	10					
	10					
E. faecalis OG1RF	30					
	30					
E. coli MC4100	74					
	74					
P. aeruginosa PAO1-WT	297					
	297					
S. aureus SH1000	4					
	4					
E. faecalis OG1RF	18					
	18					
E. coli MC4100	37					
	37					
P. aeruginosa PAO1-WT	74					
	74					
S. aureus SH1000	4					
	4					
E. faecalis OG1RF	10					
	10					
E. coli MC4100	18					
	18					
P. aeruginosa PAO1-WT	74					
	74					
S. aureus SH1000	0.5 µM					
		Broth microdilution				
MRSA 300-0114	1 µM					
MRSA ATCC 33592	0.25 µM					
E. faecalis OG1RF	0.25 µM					
E. coli MC4100	1 µM					
P. aeruginosa PAO1-WT	2 µM					
S. aureus ATCC 29213	0.5	Tested in vivo				
S. epidermidis (clinical)	2					
B. subtilis 168	1					
E. coli ATCC 25922	0.5					
K. pneumoniae 1813	4					
P. aeruginosa ATCC 27853	0.5	Broth microdilution with proved efficiency				
T. rubrum 1336 (clinical)	32					
A. niger F-1119	16					
C. albicans NCTC-885-653	16					
F. oxysporum KM-19 (clinical)	32					
S. aureus ATCC 29213	4					
		Broth microdilution				
P. aeruginosa ATCC 27583	6.3 µM					
P. aeruginosa ATCC 10145	5.2 µM					
P. aeruginosa ATCC 3080	1.6 µM					
K. pneumoniae ATCC 4352	0.4 µM					
K. pneumoniae ATCC 13883	0.8 µM					
P. vulgaris ATCC 13315	0.4 µM					
P. mirabilis NBRC 3849	6.3 µM					
E. coli K12 W3110	0.8 µM					
E. coli IFO 3301	0.2 µM					
E. coli IFO 3972	1.3 µM					
B. subtilis IFO 3134	0.8 µM					
B. subtilis ATCC 6633	0.8 µM					
B. cereus IFO 3001	0.4 µM					
B. megaterium IFO 3003	0.3 µM					
S. aureus ATCC 25923	0.3 µM					
S. aureus IFO 12732	0.4 µM					
A. niger IFO 6341	8 µM					
A. niger IFO 6342	4 µM					
A. niger IFO 4414	4 µM					
C. globosum IFO 6347	8 µM					
R. oryzae IFO 31005	2 µM					
P. citrinum IFO 6352	8 µM					
A. pullulans IFO 6353	16 µM					
C. cladosporioides IFO 6348	4 µM					
Well	Microorganism	Concentration (μM)	Method			
------	--------------	--------------------	--------			
58	*G. virens* IFO 6355	8	Broth microdilution			
	S. aureus SH1000	1				
	MRSA 300-0114	1				
	MRSA ATCC 33592	2				
	E. faecalis OG1RF	8				
	E. coli MC4100	8				
	P. aeruginosa PAO1-WT	8				
	S. aureus SH1000	0.25				
	MRSA 300-0114	2				
	MRSA ATCC 33592	0.5				
	E. faecalis OG1RF	4				
	E. coli MC4100	2				
59	*P. aeruginosa* PAO1-WT	8				
	S. aureus ATCC 29523	64				
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	1	Broth microdilution			
	MRSA 300-0114	4				
	MRSA ATCC 33592	2				
	E. faecalis OG1RF	2				
	E. coli MC4100	4				
	P. aeruginosa PAO1-WT	32				
	S. aureus ATCC 29523	1	Natural derivatives			
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	1	Broth microdilution			
	MRSA 300-0114	1				
	MRSA ATCC 33592	1				
	E. faecalis OG1RF	2				
	E. coli MC4100	2				
	P. aeruginosa PAO1-WT	8				
61	*E. faecalis* OG1RF	2	Natural derivatives			
	E. coli MC4100	4				
	P. aeruginosa PAO1-WT	4				
	S. aureus ATCC 29523	2				
	MRSA 300-0114	1				
	MRSA ATCC 33592	2				
	E. faecalis OG1RF	4				
	E. coli MC4100	1				
	P. aeruginosa PAO1-WT	4				
62	*S. aureus* ATCC 29523	2	Broth microdilution			
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	1	Broth microdilution			
	MRSA 300-0114	1				
	MRSA ATCC 33592	1				
	E. faecalis OG1RF	2				
	E. coli MC4100	2				
	P. aeruginosa PAO1-WT	8				
63	*S. aureus* ATCC 29523	2	Broth microdilution			
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	2	Broth microdilution			
	MRSA 300-0114	1				
	MRSA ATCC 33592	2				
	E. faecalis OG1RF	4				
	E. coli MC4100	1				
	P. aeruginosa PAO1-WT	4				
64	*S. aureus* ATCC 29523	2	Broth microdilution			
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	2	Broth microdilution			
	MRSA 300-0114	1				
	MRSA ATCC 33592	2				
	E. faecalis OG1RF	4				
	E. coli MC4100	2				
	P. aeruginosa PAO1-WT	4				
65	*S. aureus* ATCC 29523	2	Broth microdilution			
	B. subtilis ATCC 6633	16				
	E. coli ATCC 25922	16				
	S. aureus SH1000	0.5	Broth microdilution			
	MRSA 300-0114	0.5				
	MRSA ATCC 33592	0.5				
	P. aeruginosa PAO1-WT	2				
66	*S. aureus* ATCC 29523	0.5	Broth microdilution			
	B. subtilis ATCC 6633	0.5	Broth microdilution			
	E. coli ATCC 25922	0.5	Broth microdilution			
67	*S. aureus* ATCC 29523	0.5	Broth microdilution			
	E. faecalis ATCC 29212	64	Broth microdilution			
	E. coli ATCC 25922	128	Broth microdilution			
	P. aeruginosa ATCC 27853	256	Broth microdilution			
68	*S. aureus* ATCC 29523	0.5	Broth microdilution			
	E. faecalis ATCC 29212	0.5	Broth microdilution			
69	Broth microdilution	[113]				
---	---	---				
Vancomycin-resistant *E. faecalis* (vanA)	0.5					
E. coli ATCC 25922	0.5					
Extended-spectrum β-lactamase-producing *E. coli*	1					
P. aeruginosa ATCC 27853	4					
P. aeruginosa resistant, efflux pump	8					
S. aureus ATCC 29213	0.5					
MRSA (meCA)	0.5					
E. faecalis ATCC 29212	0.5					
Vancomycin-resistant *E. faecalis* (vanA)	0.5					
E. coli ATCC 25922	0.5					
Extended-spectrum β-lactamase-producing *E. coli*	1					
P. aeruginosa ATCC 27853	2					
P. aeruginosa resistant, efflux pump	2					
P. aeruginosa ATCC 27853	17 μM					
K. pneumoniae ATCC 4352	2.1 μM					
P. mirabilis NBRC 3849	3.1 μM					
E. coli IFO 12713	1.6 μM					
S. marcescens ATCC 13880	3.1 μM					
M. luteus IFO 12708	0.65 μM					
B. subtilis ATCC 6633	0.91 μM					
B. cereus IFO 3001	1.6 μM					
S. aureus IFO 12732	0.23 μM					
MRSA COL 1	1.6 μM					
P. aeruginosa ATCC 27853	13 μM					
K. pneumoniae ATCC 4352	1.6 μM					
P. mirabilis NBRC 3849	5.2 μM					
E. coli IFO 12713	1.6 μM					
S. marcescens ATCC 13880	6.3 μM					
M. luteus IFO 12708	0.78 μM					
B. subtilis ATCC 6633	1.0 μM					
B. cereus IFO 3001	1.3 μM					
S. aureus IFO 12732	0.33 μM					
MRSA COL 1	1.3 μM					
S. aureus ATCC 25923	4					
MRSA ATCC 33991	4					
E. faecalis ATCC 1299	1					
E. coli ATCC 25922	2					
P. aeruginosa ATCC 27853	4					
K. pneumoniae ATCC 13883	16					
A. flavus	15.63					
C. albicans 64124	3.91					
C. albicans MYA2876	3.91					
C. neoformans	3.9					
R. pilimanae	2.0					
S. aureus SH1000	2 μM					
E. faecalis OG1RF	2 μM					
E. coli MC4100	2 μM					
P. aeruginosa PAO1-WT	16 μM					
S. aureus SH1000	0.5 μM	Broth microdilution	[117]			
Strain	Concentration (μM)	Method				
------------------------------	-------------------	-------------------------				
E. faecalis OG1RF	0.5	Broth microdilution				
E. coli MC4100	0.5	Broth microdilution				
P. aeruginosa PAO1-WT	1	Broth microdilution				
S. aureus SH1000	0.5	Broth microdilution				
E. faecalis OG1RF	1	Broth microdilution				
E. coli MC4100	1	Broth microdilution				
P. aeruginosa PAO1-WT	2	Broth microdilution				
S. aureus SH1000	1	Broth microdilution				
Method: Broth microdilution						
S. aureus PAO1-WT	1	Broth microdilution				
Method: Broth microdilution						
P. aeruginosa PAO1-WT	2	Broth microdilution				
S. aureus SH1000	16	Broth microdilution				
Method: Broth microdilution						
P. aeruginosa PAO1-WT	63	Broth microdilution				
E. coli ATCC 25922	4	Broth microdilution				
K. pneumoniae ATCC 700603	16	Broth microdilution				
A. baumannii ATCC 19606	4	Broth microdilution				
P. aeruginosa ATCC 27853	8	Broth microdilution				
C. albicans ATCC 90028	0.25	Broth microdilution				
C. neoformans ATCC 208821	0.25	Broth microdilution				
Method: Broth microdilution						
P. aeruginosa ATCC 208821	0.25	Broth microdilution				
C. albicans ATCC 90028	0.25	Broth microdilution				
C. neoformans ATCC 208821	0.25	Broth microdilution				
Method: Broth microdilution						
MRSA ATCC 43300	0.25	Broth microdilution				
E. coli ATCC 25922	1	Broth microdilution				
K. pneumoniae ATCC 700603	8	Broth microdilution				
A. baumannii ATCC 19606	2	Broth microdilution				
P. aeruginosa ATCC 27853	4	Broth microdilution				
C. albicans ATCC 90028	0.25	Broth microdilution				
C. neoformans ATCC 208821	0.25	Broth microdilution				
Method: Broth microdilution						
MRSA ATCC 43300	0.25	Broth microdilution				
E. coli ATCC 25922	16	Broth microdilution				
K. pneumoniae ATCC 700603	0.25	Broth microdilution				
A. baumannii ATCC 19606	0.25	Broth microdilution				
P. aeruginosa ATCC 27853	0.25	Broth microdilution				
C. albicans ATCC 90028	0.25	Broth microdilution				
C. neoformans ATCC 208821	0.25	Broth microdilution				
Method: Broth microdilution						
MRSA ATCC 43300	0.25	Broth microdilution				
E. coli ATCC 25922	1	Broth microdilution				
K. pneumoniae ATCC 700603	16	Broth microdilution				
A. baumannii ATCC 19606	0.25	Broth microdilution				
P. aeruginosa ATCC 27853	0.25	Broth microdilution				
C. albicans ATCC 90028	0.25	Broth microdilution				
C. neoformans ATCC 208821	0.25	Broth microdilution				
Method: Broth microdilution						
Strain	MIC (μM)					
------------------------------	----------					
E. coli ATCC 25922	0.25					
K. pneumoniae ATCC 700603	0.25					
A. baumannii ATCC 19606	8					
P. aeruginosa ATCC 27853	0.25					
C. albicans ATCC 90028	0.25					
C. neoformans ATCC 208821	0.25					
P. aeruginosa ATCC 27583	6.3 μM					
K. pneumoniae ATCC 13883	3.1 μM					
P. mirabilis IFO 3849	6.3 μM					
E. coli K12 W3110	3.1 μM					
M. luteus IFO 12708	0.78 μM					
B. cereus IFO 3001	3.1 μM					
S. aureus IFO 12732	0.39 μM					
MRSA IID 1677	3.1 μM					
P. funiculosa IFO 6345	1.6 μM					
C. globosum IFO 6347	3.1 μM					
A. pullulans IFO 6353	6.3 μM					
R. stolonifera IFO 4781	25 μM					
A. terreus IFO 6346	25 μM					
A. niger IFO 6342	12.5 μM					

84 Broth microdilution

Strain	MIC (μM)
E. coli ATCC 27583	13 μM
K. pneumoniae ATCC 13883	1.6 μM
P. mirabilis IFO 3849	13 μM
E. coli K12 W3110	6.3 μM
M. luteus IFO 12708	0.39 μM
B. cereus IFO 3001	1.6 μM
S. aureus IFO 12732	0.39 μM
MRSA IID 1677	6.3 μM
P. funiculosa IFO 6345	1.6 μM
C. globosum IFO 6347	3.1 μM
A. pullulans IFO 6353	6.3 μM
R. stolonifera IFO 4781	25 μM
A. terreus IFO 6346	12.5 μM
A. niger IFO 6342	6.3 μM

85 Broth microdilution

Strain	MIC (μM)
P. aeruginosa ATCC 27583	25 μM
K. pneumoniae ATCC 13883	1.6 μM
P. mirabilis IFO 3849	13 μM
E. coli K12 W3110	6.3 μM
M. luteus IFO 12708	0.78 μM
B. cereus IFO 3001	3.1 μM
S. aureus IFO 12732	0.39 μM
MRSA IID 1677	6.3 μM
P. funiculosa IFO 6345	0.78 μM
C. globosum IFO 6347	0.78 μM
A. pullulans IFO 6353	3.1 μM
R. stolonifera IFO 4781	6.3 μM
A. terreus IFO 6346	1.6 μM
A. niger IFO 6342	6.3 μM

86 Broth microdilution

Strain	MIC (μM)
P. aeruginosa ATCC 27583	25 μM
K. pneumoniae ATCC 13883	1.6 μM
P. mirabilis IFO 3849	13 μM
E. coli K12 W3110	6.3 μM
M. luteus IFO 12708	0.78 μM
B. cereus IFO 3001	3.1 μM
S. aureus IFO 12732	0.39 μM
MRSA IID 1677	6.3 μM
P. funiculosa IFO 6345	0.78 μM
C. globosum IFO 6347	0.78 μM
A. pullulans IFO 6353	3.1 μM
R. stolonifera IFO 4781	6.3 μM
A. terreus IFO 6346	1.6 μM
A. niger IFO 6342	6.3 μM

87 Broth microdilution

Strain	MIC (μM)
P. aeruginosa ATCC 27583	6.3 μM
P. aeruginosa ATCC 10145	8.3 μM
K. pneumoniae ATCC 4352	1.0 μM
P. rettgeri NIH 96	2.1 μM
P. mirabilis IFO 3849	25 μM

88 Broth microdilution
Organism	MIC (μM)
E. coli IFO 12713	1.8
S. enteritidis IFO 3313	1.3
B. subtilis IFO 3134	0.57
B. subtilis ATCC 6633	1.0
B. cereus IFO 3001	3.1
S. aureus IFO 12732	0.46
MRSA IID 1677	1.1
M. luteus IFO 12708	0.26
A. niger IFO 6342	25
A. niger TSY 0013	13
A. pullulans IFO 6353	3.1
P. citrinum IFO 6345	25
P. furaniculorum IFO 6345	8.3
R. oryzae IFO 31005	13
T. viride IFO 30498	25
C. albicans IFO 1061	29
C. neoformans ATCC 90112	1.3
C. albicans ATCC 10231	1.3
A. fumigatus ATCC 204305	88
E. coli ATCC 25922	8
P. aeruginosa ATCC 6538	32
S. aureus ATCC 278530	2.3
A. baumannii JCM 6841	11
B. cepacia JCM 5964	19
E. hirae ATCC 10541	5.3
E. faecalis ATCC 29212	6.7
MRSA ATCC 700698	11
S. epidermidis ATCC 12228	5.3
C. albicans ATCC 10231	13
E. coli ATCC 25922	1.7
P. aeruginosa ATCC 6538	21
S. aureus ATCC 278530	1.7
A. baumannii JCM 6841	16
B. cepacia JCM 5964	64
E. hirae ATCC 10541	16
E. faecalis ATCC 29212	19
MRSA ATCC 700698	8
S. epidermidis ATCC 12228	9.3
C. albicans ATCC 10231	27
MRSA ATCC 25923	2 ppm
E. coli ATCC 25922	4 ppm
P. aeruginosa ATCC 27853	16 ppm

* MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus; only leader compounds from the series are listed in the table.

2.2.4. Dicationic Ionic Liquids

A number of dicationic ILs have been tested for their antimicrobial activity (see Figure 30, Table 5, and Table S3 for several examples) [90,136–139]. The high bactericidal activity of some of these ILs (in particular, nitro-substituted imidazolium salts) suggests their possible medical applications (see Table 5).
Figure 30. Examples of dicationic ILs with tested antimicrobial activity. The numbers of substances correspond to those in Table 5.
Table 5. Antimicrobial activity of dicationic ILs *.

IL	Acronym	Species	IZ, mm	MIC, μg mL⁻¹	MBC, μg mL⁻¹	Method	Ref.
2-Methyl-3-(4-(2-methyl-5-nitro-1H-imidazolium bromide)butyl-5-nitro-1H-imidazolium bromide	([NO₂C₅Im]-C₅⁺-[NO₂C₅Im])Br⁻	S. aureus	16	0.25	0.25	Disk diffusion (100 μg per well); broth microdilution	[139]
2-Methyl-3-(4-(2-methyl-5-nitro-1H-imidazolium tetrafluoroborate)butyl-5-nitro-1H-imidazolium tetrafluoroborate	([NO₂C₅Im]-C₅⁺-[NO₂C₅Im])BF⁻	S. aureus	15	0.27	0.27	Disk diffusion (100 μg per well); broth microdilution	[139]
2-Methyl-3-(4-(2-methyl-5-nitro-1H-imidazolium hexafluorophosphate)butyl-5-nitro-1H-imidazolium hexafluorophosphate	([NO₂C₅Im]-C₅⁺-[NO₂C₅Im])PF₆⁻	S. aureus	16.5	0.255	0.255	Disk diffusion (100 μg per well); broth microdilution	[139]
2-Methyl-3-(4-(2-methyl-5-nitro-1H-imidazolium trifluoromethanesulfonate)butyl-5-nitro-1H-imidazolium trifluoromethanesulfonate	([NO₂C₅Im]-C₅⁺-[NO₂C₅Im])TrFO⁻	S. aureus	16	0.27	0.27	Disk diffusion (100 μg per well); broth microdilution	[139]
Erythromycin		S. aureus	24	0.23	0.23	Disk diffusion (30 μg per well); broth microdilution	[139]
		E. coli	27	0.23	0.23		
		K. pneumonia	26	0.23	0.23		
		P. aeruginosa	25	0.23	0.23		
		P. vulgaris	32	0.23	0.23		
Nalidixic acid		S. aureus	22	0.23	0.23	Disk diffusion (30 μg per well); broth microdilution	[139]
		E. coli	22	0.23	0.23		
		K. pneumonia	27	0.23	0.23		
		P. aeruginosa	21	0.23	0.23		
		P. vulgaris	24	0.23	0.23		
Amikacin		S. aureus	19	0.23	0.23	Disk diffusion (30 μg per well); broth microdilution	[139]
		E. coli	20	0.23	0.23		
		K. pneumonia	19	0.23	0.23		
		P. aeruginosa	17	0.23	0.23		
		P. vulgaris	17	0.23	0.23		

* IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
2.2.5. Multiple-Charged QACs (Multi-QACs)

Multi-QACs are salts with three or more charged nitrogen atoms in one molecule [8]. This biocide group is rather underexplored compared to mono- and bis-QACs, probably because of the more complicated synthesis and the lack of low-cost platforms for multicharged QAC structures.

Wuest and Minbiole developed a simple synthetic route for obtaining tris- and tetra-QACs on the basis of polyamine platforms 93-97 (Figure 31) [71,72,76,140]. The activity of multi-QACs was significantly higher than that of mono-QACs but was comparable to that of bis-QACs.

Several multi-QACs with aromatic fragments in the structure were also obtained (Figure 32). Forman and colleagues demonstrated that tris-derivatives of crystal violet with one alkyl tail 98 had lower activity than mono-QACs. However, analogs containing ethyl groups at the charged nitrogen instead of methyl groups were more active [107]. Gallagher and colleagues found that tris-QACs with two alkyl tails 99 were more effective against Gram-negative bacteria than tris-QACs with one alkyl tail [141,142]. Tris-pyridinium salts 100 [143] and tetra-pyridinium salts 101 [144] also comprised an efficient group of biocides with a broad spectrum of action and surpassed the activity of the well-known pyridinium antiseptic CPC 5 several times.
Figure 32. Multi-QACs with aromatic fragments.

An overview of the antibacterial activity of multiple QACs, analyzed in the review, is shown in Table 6.

Table 6. Antimicrobial activity of multi-QACs *.

Series/Compound	Strain	MIC, mg·L⁻¹	Method	Notes	Ref.
93	*S. aureus* SH1000	1 μM	Broth microdilution		[71]
	E. faecalis OG1RF	1 μM			
	E. coli MC4100	1 μM			
	P. aeruginosa PAO1-WT	2 μM			
94	*S. aureus* SH1000	0.5 μM	Broth microdilution		[71]
	E. faecalis OG1RF	1 μM			
	E. coli MC4100	1 μM			
	P. aeruginosa PAO1-WT	4 μM			
95	*S. aureus* SH1000	1 μM	Broth microdilution		[112]
	MRSA 300-0114	0.5 μM			
	MRSA ATCC 33592	1 μM			
96	*S. aureus* SH1000	1 μM	Broth microdilution		[72]
	MRSA 300-0114	1 μM			
	E. coli MC4100	2 μM			
	P. aeruginosa PAO1-WT	4 μM			
98	*S. aureus* SH1000	1 μM	Broth microdilution		[107]
	MRSA 300-0114	0.5 μM			
	MRSA ATCC 33592	0.5 μM			
	E. faecalis OG1RF	1 μM			
	E. coli MC4100	0.5 μM			
	P. aeruginosa PAO1-WT	0.5 μM			
	MIC				
---------------------	---------				
MRSA 300-0114	0.5 μM				
MRSA ATCC 33592	0.5 μM				
E. faecalis OG1RF	1 μM				
E. coli MC4100	0.5 μM				
P. aeruginosa PAO1-WT	4 μM				
B. cereus	2 μM				
E. faecalis ATCC 29212	2 μM				
S. agalactiae J48	2 μM				
S. aureus ATCC 29213	2 μM				
E. coli ATCC 25922	4 μM				
P. aeruginosa ATCC 27853	16 μM				
S. aureus SH1000	0.5 μM				
E. faecalis OG1RF	1 μM				
E. coli MC4100	1 μM				
P. aeruginosa PAO1-WT	2 μM				
MRSA 300-0114	0.5 μM				
MRSA ATCC 33592	0.5 μM				
E. coli ATCC 25922	4 μM				
P. aeruginosa ATCC 27853	32				

* MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant *S. aureus*; only leader compounds from the series are listed in the table.

2.2.6. Poly-Charged QACs (Poly-QACs)

Polymer structures with quaternary nitrogen occupy a large niche in the field of cationic biocides. QACs exhibiting antimicrobial activity can be incorporated into polymer structures in several ways [49]:

Ring-opening polymerization. Chain-growth polymerization, in which one end of the polymer chain carries an active site for adding cyclic monomers. The terminal groups of the resulting polymer depend on the initiator used and the termination reaction [145].

Controlled radical polymerization. Continuous polymerization includes several stages: Initiation, growth, and chain termination [146].

Click reaction. Polymerization that utilizes methods of click chemistry [147].

Similar to other types of QACs, the structure of poly-QACs can vary depending on the monomer composition (homogeneous poly-QACs (Figure 33) in the case of the same monomers, or copolymers (Figure 34) in the case of different monomers) and the polymerization type.
Figure 33. Spectrum of biologically active homogeneous poly-QACs.

Lu and colleagues studied the biological properties of poly-QACs with benzyl substituents and ether groups in side chain 102 [148]. The activity of the polyderivatives was significantly higher than that of the corresponding monomers; it increased upon increasing the length of the alkyl substituent. Guo and colleagues compared polymers with quaternary nitrogen in the side 103 and main 104 chains [149]. The presence of charged nitrogen atoms in the main polymer chain enhanced the antibacterial effect on Gram-positive and Gram-negative bacteria by several times. The carbohydrate-based poly-QACs obtained by Badawy’s 108 [150] and Shaban’s 107 [151] groups also exhibited biocidal activity. Polymer salts consisting of monomers with DABCO-containing heterocyclic QACs 106 were obtained by Mathias’ group [152]. Researchers observed an increase in bactericidal activity with the growth of alkyl chains. It should be noted that the monomer did not exhibit antibacterial activity. Polymerization may be the key to achieving the required biocidal effect for inactive QAC molecules. Timofeeva and colleagues developed an approach to the synthesis of quaternary poly(diallyldialkylammonium) salts with various substituents 105 [153]. The researchers noted that the antibacterial effect, but not the antifungal effect, became more pronounced upon increasing the mass of the polymer.
Kallitsis and colleagues studied single-109-110 and two-charged 111 copolymeric QACs in their work [154,155]. The peculiarity of this study was in the fact that the polymer chain in one of the target compounds 110 was an anion, while the cation was a conventional mono-QAC alkyl cation of CTAB type 2, whereas compound 111 was poly-QAC bearing both cations and anions. This composition had a positive impact on the biocidal effect against a wide range of bacteria. The optimal structure was established as 75% ionic and 25% covalent bonds of the polymer with QAC. Jie and colleagues combined the QAC and N-chloramine 113 molecules in one polymer [128]. A similar successful approach was pursued by Liu and colleagues [56–58]. Bai and colleagues synthesized a polymer combining amino and QAC groups 112, which showed excellent bacteriostatic potential [156].

The diversity of homogeneous and copolymeric QACs is very high and is beyond the scope of this review; only exemplary biologically active representatives of this class are presented here. More detailed information on poly-QACs can be found in other reviews [44,47,49,50,157–159].

An overview of the antibacterial activity of poly-QACs, analyzed in the review, is shown in Table 7.

Series/Compound	Strain	MIC, mg.L⁻¹	MBC, mg.L⁻¹	Method	Notes	Ref.
102	*E. coli* ATCC 25922	1.56		Broth microdilution		[148]
	S. aureus ATCC 25923	1.56				
103	E. coli ATCC 8099	0.78	Broth microdilution	[149]		
-----	-----------------	------	---------------------	------		
	S. aureus ATCC 6538	0.91				
104	E. coli ATCC 8099	0.13	Broth microdilution	[149]		
	S. aureus ATCC 6538	0.28				
	E. coli ATCC 25922	7				
	S. aureus ATCC 6538	P				
105	C. albicans ATCC 865-653	3.5	Broth tube dilution	[153]		
	P. aeruginosa ATCC 9027	31				
	P. mirabilis 47	31				
	K. pneumoniae ATCC 13883	62				
106	E. coli	62.5	62.5	Broth dilution	[152]	
	S. aureus	62.5	62.5			
107	E. coli	22 mm/mg (IZ)				
	S. aureus	20 mm/mg (IZ)				
	C. albicans	13 mm/mg (IZ)				
	P. aeruginosa	24 mm/mg (IZ)				
	A. niger	12 mm/mg (IZ)				
108	B. cinerea	106				
	F. oxysporum	720				
	P. debaryanum	164				
109	S. aureus	5.3 (log reduction, 24 h contact)	Plate count	[155]		
	P. aeruginosa	5.4 (log reduction, 24 h contact)	Prevent biofouling			
110	S. aureus	1.7 (log reduction, 24 h contact)	Plate count	[155]		
	P. aeruginosa	1.9 (log reduction, 24 h contact)				
111	S. aureus	6 (log reduction, 24 h contact)	Plate count	[154]		
	E. coli	6 (log reduction, 24 h contact)				
	P. aeruginosa	4.5 (log reduction, 24 h contact)				
112	S. aureus	128	Plate count	[156]		
	E. coli	256				
113	S. aureus ATCC 6538	7.26 (log reduction, 1 min contact)	Plate count	[160]		
	E. coli ATCC 1122	8.26 (log reduction, 1 min contact)				

*IZ, inhibition zone; MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MRSA, methicillin-resistant S. aureus; only leader compounds from the series are listed in the table.

2.2.7. Polyionic Liquids

According to the strict definition, poly-ILs are ionic polymers with complete ionicity [161]. However, ionic polymers with lower levels of ionicity are often considered poly-ILs in
publications. In recent years, poly-ILs have been extensively studied as advantageous materials for antibacterial coatings and surfaces [89,162–169]. Exemplary poly-ILs with tested antibacterial activity are listed in Table 8 and Figure 35. Note that the table includes substances 103 and 104, which are also considered poly-(QACs).

Antibacterial coatings on the basis of 3-(2-(methacryloyloxy)ethyl)-1-alkylimidazolium ILs showed high bactericidal activity against *E. coli* (see entries 114-116 in Table 8) [162]. In the case of 1-alkyl-3-vinylimidazolium-based poly-ILs, the alkyl side chain length and charge density were directly related to the antimicrobial activity against *E. coli* and *S. aureus* (see entries 117-119, 121, and 123-126 in Table 8) [164]. In contrast, the bactericidal activity of the corresponding poly-IL membranes increased upon increasing the charge density but decreased upon increasing the alkyl chain length. A similar picture was observed for pyrrolidinium-based ILs and membranes [89]. The homopolymeric ILs were active against *S. aureus* and *E. coli*, and their antimicrobial activity increased upon increasing the alkyl side chain length in the monomer (see entries 123-126 and 127-131 in Table 8). The opposite was observed for the corresponding poly-IL-based membranes, which also demonstrated good hemocompatibility and low cytotoxicity. Of note, nanoparticles on the basis of 1-alkyl-3-vinylimidazolium poly-ILs showed significantly higher antimicrobial activity than the original poly-ILs [170] (see entries 119-122 in Table 8).

(2-Ethylhexyl)ethylendiaminium bis(trifluoromethanesulfonyl)imide-loaded ionogel surface coatings efficiently inhibited the growth of various microorganisms, including those from the ESKAPE list, and prevented the formation of biofilms [163]. Microneedle patches on the basis of salicylic acid-containing API-poly-IL were successfully tested in the treatment of *Propionobacterium acnes* skin infections [165]. Ionic graft copolymers on the basis of [2-(methacryloyloxy)ethyl]trimethylammonium chloride were studied as possible delivery systems for ionic drugs (*p*-aminosalicylate and clavunate) [171]. IL-grafted wound dressings on the basis of 1-vinyl-3-methylimidazolium bromide demonstrated good antimicrobial activity and low cytotoxicity [172,173].
Figure 35. Examples of poly-ILs with tested antimicrobial activity. The numbers of substances correspond to those in Table 8.

Table 8. Antimicrobial activity of poly-ILs *

Series/Compound	IL	Species	MIC, μM	MBC, μM	Method	Notes	Ref.
103	Poly-(vinylbenzyl dimethylhexylammonium chloride)	*S. aureus* ATCC 6538	910		Broth microdilution	Side-chain polymer	[149]
		E. coli ATCC 8099	780				
104	Poly-((N,N-dimethyl-N-(4-((trimethylammonio)methyl)benzyl)hexan-1-aminium) dibromide)	*S. aureus* ATCC 6538	280		Broth microdilution	Main-chain polymer	[149]
		E. coli ATCC 8099	130				
114	3-(2-(Methacryloxy)ethyl)-1-hexylimidazolium bromide-based polymer	*E. coli* ATCC 25922	3.62		Shake flask test	Antibacterial coating	[162]
115	3-(2-(Methacryloxy)ethyl)-1-octylimidazolium bromide-based polymer	*E. coli* ATCC 25922	1.67		Shake flask test	Antibacterial coating	[162]
116	3-(2-(Methacryloyloxy)ethyl)-1-dodecylimidazolium bromide-based polymer	E. coli ATCC 25922	<0.46	Shake flask test	Antibacterial coating [162]		
117	Poly(1-ethyl-3-vinylimidazolium bromide)	S. aureus ATCC 6538	110345	Broth microdilution			
118	Poly(1-butyl-3-vinylimidazolium bromide)	E. coli ATCC 8099	110345	Broth microdilution [164]			
119	Poly(1-octyl-3-vinylimidazolium bromide)	S. aureus ATCC 6538	1491 (3.71 for NPs)	Broth microdilution [164,170]			
120	Poly(1-decyl-3-vinylimidazolium bromide)	E. coli ATCC 8099	1192 (1.85 for NPs)	Broth microdilution NPs [170]			
121	Poly(1-dodecyl-3-vinylimidazolium bromide)	S. aureus ATCC 6538	61 (2.52 for NPs)	Broth microdilution [164,170]			
122	Poly(1-hexadecyl-3-vinylimidazolium bromide)	E. coli ATCC 8099	122 (1.19 for NPs)	Broth microdilution NPs [170]			
123	Poly(1-ethyl-3-(1-vinylimidazolium-3-hexylimidazolium bromide)	S. aureus ATCC 6538	3.15	Broth microdilution [164]			
124	Poly(1-butyl-3-(1-vinylimidazolium-3-hexylimidazolium bromide)	E. coli ATCC 8099	33180	Broth microdilution [164]			
125	Poly(1-octyl-3-(1-vinylimidazolium-3-hexylimidazolium bromide)	S. aureus ATCC 6538	918	Broth microdilution [164]			
126	Poly(1-dodecyl-3-(1-vinylimidazolium-3-hexylimidazolium bromide)	E. coli ATCC 8099	18	Broth microdilution [164]			
127	Poly-(N-Butyl-N-methylpyrrolidinonium bromide)	S. aureus	549	Broth microdilution [89]			
128	Poly-(N-Hexyl-N-methylpyrrolidinonium bromide)	E. coli	2196	Broth microdilution [89]			
129	Poly-(N-Octyl-N-methylpyrrolidinonium bromide)	S. aureus	236	Broth microdilution [89]			
130	Poly-(N-Decyl-N-methylpyrrolidinonium bromide)	E. coli	548	Broth microdilution [89]			
131	Poly-(N-Dodecyl-N-methylpyrrolidinonium bromide)	S. aureus	147	Broth microdilution [89]			
132	Poly-(1-vinylbenzyl-3-hexylimidazolium chloride)	E. coli ATCC 8099	112	Broth microdilution Side-chain polymer [149]			
133	Poly-(1-vinylbenzyl-4-hexyl-1,4-diazoniabicyclo[2.2.2]octane-1,4-diium chloride bromide)	E. coli ATCC 8099	61	Broth microdilution Side-chain polymer [149]			
2.2.8. QAC-Containing Bactericidal Coatingss

QACs also find application in the composition of bioactive materials and antibacterial coatings. This topic is more relevant than ever due to the growing part of the paint and coatings industry in the biocide market. Thus, research on the application of QACs at surfaces continues to expand.

Antimicrobial films based on surface-modified microfibrillated cellulose grafted with mono-QACs showed high antibacterial activity against S. aureus and E. coli even at low concentrations [174]. Silica nanoparticles functionalized with quaternary ammonium silane inhibited the growth of Gram-negative bacteria due to the synergistic effect of hydrophobicity and antibacterial activity [175]. QACs with N-halamine coated onto cotton fibers were active against S. aureus [176,177]. Similarly, the combination of these biocides was highly effective in macroporous cross-linked antimicrobial polymeric resin [160]. An antibacterial coating of immobilized QACs tethered on hyperbranched polyuria demonstrated high contact-killing efficacies toward adhering staphylococi [178]. Antimicrobial acrylic coatings with a QAC-containing perfluoroalkyl monomer were synthesized by using a self-stratification strategy via one-step UV curing [179]. Polyvinylidene fluoride membranes modified by QACs possess antibiofouling effects [180]. Bacterial cellulose incorporated with QACs showed strong and long-term antimicrobial activity against S. aureus and S. epidermidis [181]. QAC-based silver nanocomposites demonstrated synergistic antibiofilm properties along with a low hemolysis rate [182]. More examples of QACs immobilized on material surfaces with antibacterial activities can be found elsewhere [45,47,49,159].

2.2.9. Ionic Liquid-Containing Bactericidal Coatings

Usage in bactericidal surface coatings seems one of the most promising applications of antibacterial ILs in medicine and other areas. Thus, the number of publications on the topic has been increasing steadily in recent years. As already mentioned above, ILs are proposed to be used as components of ionogels, films, and membranes that demonstrate considerable antimicrobial and antifouling activities (see, e.g., [89,93,163]). Cellulose nanofibers grafted with ammonium ILs and silver ions demonstrated significant antimicrobial activity against S. aureus MRSA and E. coli [183]. Zinc ion-coordinated poly-IL membranes with bactericidal properties were efficiently used for wound healing [184]. A conductive hydrogel wound dressing composed of a poly-IL (1-vinyl-3-(aminopropyl)imidazolium tetrafluoroborate) and konjac glucomannan demonstrated long-lasting bactericidal activity against S. aureus and E. coli [185]. Similarly, promising results were obtained with a poly-IL (1-vinyl-3-butylimidazolium bromide)/poly(vinyl alcohol) wound dressing [172], a reusable 1-vinyl-3-butylimidazolium bromide-grafted cotton gauze wound dressing [173], and molecular brushes with 3-(12-mercaptododecyl)-1-methylimidazolium bromide [186]. Composite membranes composed of bacterial cellulose and cholinium poly-ILs with amino acid anions were active against Gram-negative and Gram-positive bacteria and fungi [187]. Poly(vinylidene fluoride) (PVDF) materials grafted with ILs (1-vinyl-3-butylimidazolium chloride, 1-vinyl-3-ethylimidazolium tetrafluoroborate) showed activity against both common bacteria and “superbugs” [188]. Calcium phosphate–IL (1-alkyl-3-methylimidazolium chloride) materials with bactericidal properties were proposed to be used for implants [189]. Halloysite nanotubes functionalized with
various ILs demonstrated antimicrobial activity [190]. Coatings based on dicationic imidazolium ILs efficiently inhibited bacterial growth on titanium surfaces [191]. TiO2 nanomaterials coated with poly-IL brushes on the basis of imidazolium ILs demonstrated antibacterial and antifouling properties [192]. Cholinium salicylate-containing gelatin films with bactericidal activity were proposed to be used in food packaging [193]. In addition, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C6Mim][NTf2]) was tested as a bactericidal additive in orthodontic adhesive and was shown to reduce biofilm formation [194].

3. Conclusions

Despite the vast diversity of the available QAC structures, there are certain structural criteria designating the biocidal activity of the compounds.

Usually, the optimal alkyl tail length is within C10-C14; it can vary depending on the number of charges: C12 and longer for mono-QACs and C10-C12 for bis-QACs. Nevertheless, in some series of compounds, those with tails of C10 and shorter demonstrated the highest activity. This observation suggests that the optimal chain length is specific for each set of structures and is related to the other fragments of the molecule.

In general, QACs with two or more charges (bis-QACs, multi-QACs, poly-QACs) have superior biocidal effects compared to mono-QACs. Moreover, many mono-QACs show little or no activity against Gram-negative bacteria. However, the addition of the second charged nitrogen without an alkyl chain does not always increase the activity, whereas the addition of the second and third alkyl chains increases the toxicity. The introduction of ether or amide bridges into QACs decreases both the toxicity and activity of the corresponding substances.

The combination of two bactericidal fragments with different mechanisms of action in one QAC has been proven to be a successful approach. These biocides have antibacterial and antifungal effects on a wide range of pathogens.

The assessment of the direct relation between the presence of aromatic and heterocyclic fragments/substituents in QAC molecules and their activity is complicated because this factor is highly specific for some structures. Relatively speaking, pyridine QACs, especially bis-pyridine salts with broad antibacterial/antifungal activity, are the most advanced and promising among all heterocyclic QACs. Aromatic structures are often used in QACs due to their strong reactivity. They can be spacers, substituents, tails, head parts, etc.

In 2016, in his report on antibacterial resistance, O’Neill predicted that by 2050, 10 million people would die because of resistant bacteria annually [195]. Moreover, SARS-CoV-2 aggravated the issue. During the current pandemic, antibacterial drugs are being used rather indiscriminately. It should be expected that the threat from resistant bacteria will increase significantly in the next few years. To avert this danger, the next generation of antibacterial drugs, including QACs, should be developed in the near future.

In this review, we analyze some of the structure–activity dependences and provide a general overview of the current situation in the research on antimicrobial QACs. In addition, a brief overview of the antimicrobial activities of various subclasses of ionic liquids, which are often considered advantageous antimicrobial agents, is also provided. We hope that it will serve as a highlight for future studies on these classes of biocides.

Supplementary Materials: The Supplementary Materials are available online at www.mdpi.com/article/10.3390/ijms22136793/s1.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
30. Hadaway, L. Polyhexamethylene Biguanide Dressing—Another Promising Tool to Reduce Catheter-related Bloodstream Infection. *JAVMA* 2010, 15, 203–205.
31. Roberts, W.R.; Addy, M. Comparison of the in vivo and in vitro antibacterial properties of antiseptic mouthrinses containing chlorhexidine, alexidine, cetlyl pyridinium chloride and hexetidine. *J. Clin. Periodontol.* 1981, 8, 295–310.
32. Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. *J. Appl. Microbiol.* 2005, 99, 703–715.
33. Hope, C.K.; Wilson, M. Analysis of the Effects of Chlorhexidine on Oral Biofilm Vitality and Structure Based on Viability Profiling and an Indicator of Membrane Integrity. *Antimicrob. Agents Chemother.* 2004, 48, 1461–1468.
34. Thomas, B.; Stickler, D.J. Chlorhexidine resistance and the lipids of Providencia stuartii. *Microbiol* 1979, 24, 141–150.
35. Moore, K.; Gray, D. Using PHMB antimicrobial to prevent wound infection. *Wounds UK* 2007, 3, 96–102.
36. Allen, M.J.; White, G.F.; Morby, A.P. The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. *Microbiol* 2006, 152, 989–1000.
37. Zhou, C.; Wang, Y. Structure–activity relationship of cationic surfactants as antimicrobial agents. *Curr. Opin. Colloid Interface Sci.* 2020, 45, 28–43.
38. Vereshchagin, A.N. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. *Russ. Chem. Bull.* 2017, 66, 1765–1796.
39. Brown, A.C.; Fraser, T.R. On the Connection between Chemical Constitution and Physiological Action; with special reference to the Physiological Action of the Salts of the Ammonium Bases derived from Strychnia, Brucia, Thebaia, Codeia, Morphia, and Nicotia. *J. Anat. Physiol.* 1868, 2, 224–242.
40. Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling; Springer International Publishing: Berlin/Heidelberg, Germany, 2015.
41. Obłak, E.; Piecuch, D.; Rewak-Sorożyńska, J.; Paluch, E. Activity of gemini quaternary ammonium salts against microorganisms. *Appl. Microbiol. Biotechnol.* 2019, 103, 625–632.
42. Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? *Chem. Med. Chem.* 2012, 7, 22–31.
43. Thorsteinsson, T.; Loftsson, T.; Masson, M. Soft Antibacterial Agents. *Curr. Med. Chem.* 2003, 10, 1129–1136.
44. Zubris, D.L.; Minbiole, K.P.C.; Wuest, W.M. Polymeric Quaternary Ammonium Compounds: Versatile Antimicrobial Materials. *Curr. Top. Med. Chem.* 2017, 17, 305–318.
45. Makvandi, P.; Jamaledin, R.; Jabbari, M.; Nikfarjam, N.; Borzacchiello, A. Antibacterial quaternary ammonium compounds in dental materials: A systematic review. *Dent. Mater.* 2018, 34, 851–867.
46. Andreica, B.-I.; Cheng, X.; Marin, L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. *Eur. Polym. J.* 2020, 139, 110016.
47. Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymetric Materials with Quaternary Ammonium and Phosphonium Salts. *Int. J. Mol. Sci.* 2015, 16, 3626–3655.
48. Sowmia, S.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Afonso, C.A.M. Pyridinium salts: From synthesis to reactivity and applications. *Org. Chem. Front.* 2018, 5, 453–493.
49. Jiao, Y.; Niu, L.-N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.-H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. *Prog. Polym. Sci.* 2017, 71, 53–90.
50. Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. *Prog. Polym. Sci.* 2012, 37, 281–339.
51. Bureš, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. *Top. Curr. Chem.* 2019, 377, 14.
52. Thorsteinsson, T.; Másson, M.; Kristinsson, K.G.; Hjálmarsdóttir, M.A.; Hilmarsson, H.; Loftsson, T. Soft Antibacterial Agents: Synthesis and Activity of Labile Environmentally Friendly Long Chain Quaternary Ammonium Compounds. *J. Med. Chem.* 2003, 46, 4173–4181.
53. Mikláš, R.; Miklášová, N.; Bukovský, M.; Devínsky, F. Synthesis and antimicrobial properties of camphorsulfonic acid derived imidazolium salts. *Acta Fac. Pharm. Univ. Comen.* 2012, 61, 42–48.
54. Mikláš, R.; Miklášová, N.; Bukovský, M.; Horváth, B.; Kubincová, J.; Devínsky, F. Synthesis, surface and antimicrobial properties of some quaternary ammonium homochiral camphor sulfonamides. *Eur. J. Pharm. Sci.* 2014, 65, 29–37.
55. Ali, I.; Burki, S.; El-Haj, B.M.; Shafiullah; Parveen, S.; Nadeem, H.S.; Nadeem, S.; Shah, M.R. Synthesis and characterization of pyridine-based organic salts: Their antibacterial, biofilm and wound healing activities. *Bioorg. Chem. 2020,* 100, 103937.
56. Li, L.; Pu, T.; Zhanel, G.; Zhao, N.; Ens, W.; Liu, S. New Biocide with Both N-Chloramine and Quaternary Ammonium Moieties Exerts Enhanced Bactericidal Activity. *Adv. Health. Mater.* 2012, 1, 609–620.
57. Ning, C.; Li, L.; Logsetty, S.; Ghanbar, S.; Guo, M.; Ens, W.; Liu, S. Enhanced antibacterial activity of new “composite” biocides with both N-chloramine and quaternary ammonium moieties. *Rsc Adv.* 2015, 5, 93877–93887.
58. Ghanbar, S.; Kazemian, M.R.; Liu, S. New Generation of N-Chloramine/QAC Composite Biocides: Efficient Antimicrobial Agents To Target Antibiotic-Resistant Bacteria in the Presence of Organic Load. *ACS Omega* 2018, 3, 9699–9709.
59. Li, L.; Zhao, Y.; Zhou, H.; Ning, A.; Zhang, F.; Zhao, Z. Synthesis of pyridinium N-chloramines for antibacterial applications. *Tetrahedron Lett.* 2017, 58, 321–325.
60. Liu, W.-S.; Wang, C.-H.; Sun, J.-F.; Hou, G.-G.; Wang, Y.-P.; Qu, R.-J. Synthesis, Characterization and Antibacterial Properties of Dihydroxy Quaternary Ammonium Salts with Long Chain Alkyl Bromides. *Chem. Biol. Drug Des.* 2015, 85, 91–97.
61. Xie, X.; Cong, W.; Zhao, F.; Li, H.; Xin, W.; Hou, G.; Wang, C. Synthesis, physicochemical property and antimicrobial activity of novel quaternary ammonium salts. *J. Enzym. Inhib. Med. Chem.* 2018, 33, 98–105.
62. Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Bukharov, S.V.; Voronina, I.K.; Vandyukov, A.E.; Mironov, V.F. Synthesis and Biological Evaluation of New Isatin-Based QACs with High Antimicrobial Potency. Chem. Sel. 2019, 4, 6162–6166.

63. Rusew, R.; Kurteva, V.; Shivachev, B. Novel Quaternary Ammonium Derivatives of 4-Pyrolidino Pyridine: Synthesis, Structural, Thermal, and Antimicrobial Studies. Crystals 2020, 10, 339.

64. Salajkova, S.; Benkova, M.; Marek, J.; Sleha, R.; Prchal, L.; Malinak, D.; Dolezal, R.; Sepčić, K.; Gunde-Cimerman, N.; Kuca, K.; Soukup, O. Wide-Antimicrobial Spectrum of Picolinum Salts. Molecules 2020, 25, 2254.

65. Shtyrlin, N.V.; Sapozhnikov, S.V.; Koshkin, S.A.; Iksanova, A.G.; Sabirov, A.H.; Kayumov, A.R.; Nureeva, A.A.; Zeldi, M.I.; Shtyrlin, Y.G. Synthesis and Antibacterial Activity of Novel Quaternary Ammonium Pyridoxine Derivatives. Med. Chem. 2015, 11, 656–665.

66. Sapozhnikov, S.V.; Shtyrlin, N.V.; Kayumov, A.R.; Zamaldinova, A.E.; Iksanova, A.G.; Nikitina, E.V.; Krylova, E.S.; Grishaev, D.V.; Balakin, K.V.; Shtyrlin, Y.G. New quaternary ammonium pyridoxine derivatives: Synthesis and antibacterial activity. Med. Chem. Res. 2017, 26, 3188–3202.

67. Kayumov, A.R.; Nureeva, A.A.; Trizna, E.Y.; Gazizova, G.R.; Bogachev, M.I.; Shtyrlin, N.V.; Puşşu, M.; Sapozhnikov, S.V.; Shtyrlin, Y.G. New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded Staphylococcus Cells. Biomed Res. Int. 2015, 2015, 890968.

68. Shtyrlin, N.V.; Sapozhnikov, S.V.; Galiullina, A.S.; Kayumov, A.R.; Bondar, O.V.; Mirchink, E.P.; Isakova, E.B.; Firsov, A.A.; Balakin, K.V.; Shtyrlin, Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. Biomed Res. Int. 2016, 2016, 3864193.

69. Garipov, M.R.; Sabirova, A.E.; Pavylev, R.S.; Shtyrlin, N.V.; Lisovskaya, S.A.; Bondar, O.V.; Laikov, A.V.; Romanova, J.G.; Bogachev, M.I.; Kayumov, A.R.; et al. Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinfine with dual action profile. Bioorg. Chem. 2020, 104, 104306.

70. Sapozhnikov, S.V.; Sabirova, A.E.; Shtyrlin, N.V.; Druk, A.Y.; Agaýonova, M.N.; Chirkova, M.N.; Kazakova, R.R.; Grishaev, D.Y.; Nikishova, T.V.; Krylova, E.S.; et al. Design, synthesis, antibacterial activity and toxicity of novel quaternary ammonium compounds based on pyridoxine and fatty acids. Eur. J. Med. Chem. 2021, 211, 113100.

71. Paniak, T.J.; Jennings, M.C.; Shanahan, P.C.; Joyce, M.D.; Santiago, C.N.; Wuest, W.M.; Minbiole, K.P.C. The antimicrobial activity of mono-, bis-, tris-, and tetracationic amphiphiles derived from simple polyamine platforms. Bioorg. Med. Chem. Lett. 2014, 24, 5824–5828.

72. Mitchell, M.A.; Iannetta, A.A.; Jennings, M.C.; Fletcher, M.H.; Wuest, W.M.; Minbiole, K.P.C. Scaffold-Hopping of Multicationic Amphiphiles Yields Three New Classes of Antimicrobiials. Chem. Bio. Chem. 2015, 16, 2299–2303.

73. Minbiole, K.P.C.; Jennings, M.C.; Ator, L.E.; Black, J.W.; Grenier, M.C.; LaDow, J.E.; Caran, K.L.; Seifert, K.; Wuest, W.M. From antimicrobial activity to mechanism of resistance: The multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 2016, 72, 3559–3566.

74. Joyce, M.D.; Jennings, M.C.; Santiago, C.N.; Fletcher, M.H.; Wuest, W.M.; Minbiole, K.P.C. Natural product-derived quaternary ammonium compounds with potent antimicrobial activity. J. Antibiott. 2016, 69, 344–347.

75. Black, J.W.; Jennings, M.C.; Azarewicz, J.; Paniak, T.J.; Grenier, M.C.; Wuest, W.M.; Minbiole, K.P.C. TMEDA-derived bicationic amphiphiles: An economical preparation of potent antibacterial agents. Bioorg. Med. Chem. Lett. 2014, 24, 99–102.

76. Allen, R.A.; Jennings, M.C.; Mitchell, M.A.; Al-Khalifa, S.E.; Wuest, W.M.; Minbiole, K.P.C. Ester- and amide-containing multiQACs: Exploring multicationic soft antimicrobial agents. Bioorg. Med. Chem. Lett. 2017, 27, 2107–2112.

77. Hayes, R.; Warr, G.G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015, 115, 6357–6426.

78. Egorova, K.S.; Ananikov, V.P. Toxicity of ionic liquids: Eco(cytotoxicity)activity as complicated, but unavoidable parameter for task-specific optimization. Chem. Sust. Chem. 2014, 7, 336–360.

79. Egorova, K.S.; Ananikov, V.P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J. Mol. Liq. 2018, 272, 271–300.

80. Moshikur, R.; Chowdhury, R.; Moniruzzaman, M.; Goto, M. Biocompatible ionic liquids and their applications in pharmacetics. Green Chem. 2020, 22, 8116–8139.

81. Demberelnyamba, D.; Kim, K-S.; Choi, S.; Park, S.-Y.; Lee, H.; Kim, C.-J.; Yoo, I.-D. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg. Med. Chem. Lett. 2004, 12, 853–857.

82. Ferraz, R.; Teixeira, V.; Rodrigues, D.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.C. Antibacterial activity of ionic liquids based on ampilicillin against resistant bacteria. RSC Adv. 2014, 4, 4301–4307.

83. Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž. Ionic liquids as active pharmaceutical ingredients. ChemMedChem 2011, 6, 975–985.

84. Prudêncio, C.; Vieira, M.; Van der Auweraer, S.; Ferraz, R. Recycling old antibiotics with ionic liquids. Antibiotics 2020, 9, 578.

85. Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem. 2009, 11, 492–497.

86. Gundolf, T.; Rauch, B.; Kalb, R.; Rossmanith, P.; Mester, P. Influence of bacterial lipopolysaccharide modifications on the efficacy of antimicrobial ionic liquids. J. Mol. Liq. 2018, 271, 220–227.

87. Cornellas, A.; Perez, L.; Comelles, F.; Ribo, I.; Manresa, A.; Garcia, M.T. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid Interface Sci. 2011, 355, 164–171.
88. Bergamo, V.Z.; Donato, R.K.; Dalla Lana, D.F.; Donato, K.J.Z.; Ortega, G.G.; Schrekker, H.S.; Fuentefría, A.M. Imidazolium salts as antifungal agents: Strong antibiofilm activity against multidrug-resistant Candida tropicalis isolates. Lett. Appl. Microbiol. 2015, 60, 66–71.

89. Qin, J.; Guo, J.; Xu, Q.; Zheng, Z.; Mao, H.; Yan, F. Synthesis of pyrrolidinium-type poly(ionic liquid) membranes for antibacterial applications. ACS Appl. Mater. Interfaces 2017, 9, 10504–10511.

90. Florio, W.; Becherini, S.; D’Andrea, F.; Lupetti, A.; Chiappe, C.; Guazzelli, L. Comparative evaluation of antimicrobial activity of different types of ionic liquids. Mater. Sci. Eng. C 2019, 104, 109907.

91. Florio, W.; Rizzato, C.; Becherini, S.; Guazzelli, L.; D’Andrea, F.; Lupetti, A. Synergistic activity between colistin and the ionic liquids 1-methyl-3-dodecylimidazolium bromide, 1-dodecyl-1-methylpyrrolidinium bromide, or 1-dodecyl-1-methylpyrrolidinium bromide against Gram-negative bacteria. J. Glob. Antimicrob. Resisit. 2020, 21, 99–104.

92. Siopa, F.; Figueiredo, T.; Frade, R.F.M.; Neto, I.; Meirinhas, A.; Reis, C.P.; Sobral, R.G.; Afonso, C.A.M.; Rijo, P. Choline-based ionic liquids: Improvement of antimicrobial activity. Chem. Sci. 2016, 1, 5909–5916.

93. De Leo, F.; Marchetta, A.; Capillo, G.; Germanà, A.; Primerano, P.; Schiavo, S.L.; Urzù, C. Surface active ionic liquids based coatings as subaerial anti-biofilms for stone built cultural heritage. Coatings 2020, 11, 26.

94. Hajifarajollah, H.; Mokhtarani, B.; Nobghabi, K.A.; Shariﬁ, A.; Mirzaei, M. Antibacterial and antiadhesive properties of butylmethylimidazolium ionic liquids toward pathogenic bacteria. Rsc Adv. 2014, 4, 42751–42757.

95. Anvari, S.; Hajifarajollah, H.; Mokhtarani, B.; Enayati, M.; Shariﬁ, A.; Mirzaei, M. Antibacterial and anti-adhesive properties of ionic liquids with various cationic and anionic heads toward pathogenic bacteria. J. Mol. Liq. 2016, 221, 685–690.

96. Weynig-Zerrer, N.; Kalb, R.; Olfmer, R.; Rossmanith, P.; Mester, P. Evidence of a reverse side-chain effect of tris(pentaoﬂuoroe)triﬂuorophosphate [FAP]-based ionic liquids against pathogenic bacteria. Environ. Sci. 2018, 148, 467–472.

97. Cole, M.R.; Li, M.; El-Zahab, B.; Janes, M.E.; Hayes, D.; Warner, I.M. Design, synthesis, and biological evaluation of β-lactam antibacterial-based imidazolium- and pyridinium-type ionic liquids. J. Med. Chem. 2011, 54, 33–41.

98. Venkata Nanchariah, Y.; Reddy, G.K.K.; Lalithamana, P.; Venugopalan, V.P. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antiﬁlm behavior to a cationic surfactant. Biofuels 2012, 8, 1141–1149.

99. Hough-Trouwman, W.L.; Smiglak, M.; Griffin, S.; Matthew Reichert, W.; Mirska, I.; Jodynis-Liebert, J.; Adamska, T.; Nawrot, J.; Stasiewicz, M.; Rogers, R.D.; et al. Ionic liquids with dual biological function: Sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. N. J. Chem. 2009, 33, 26–33.

100. Menger, F.M.; Littau, C.A. Gemini surfactants: A new class of self-assembling molecules. J. Am. Chem. Soc. 1993, 115, 10083–10090.

101. Pavličková-Mořická, M.; Lacko, I.; Devinsky, F.; Masárová, L.; Mlynarčík, D. Quantitative relationships between structure and antimicrobial activity of new “Soft” bisquaternary ammonium salts. Mol. Microbiol. 1994, 39, 176–180.

102. Devinsky, F.; Kopecka-Leitmanová, A.; Šeršňová, F.; Balágyová, P. Cut-off Effect in Antimicrobial Activity and in Membrane Perturbation Efficiency of the Homologous Series of N,N-Dimethylalkylamine Oxides. J. Pharm. Pharm. 1990, 42, 790–794.

103. Hoque, J.; Akypadului, P.; Yarlagadda, V.; Uppu, D.S.S.M.; Kumar, P.; Haldar, J. Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities. Langmuir 2018, 28, 12225–12234.

104. Jennings, M.C.; Buttaro, B.A.; Minbiole, K.P.C.; Wuest, W.M. Bioorganic Investigation of Multicationic Antimicrobials to Combat QAC-Resistant Staphylococcus aureus. ACS Infect. Dis. 2015, 1, 304–309.

105. LaDow, J.E.; Warnock, D.C.; Hamill, K.M.; Simmons, K.L.; Davis, R.W.; Schwantes, C.R.; Flaherty, D.C.; Willcox, J.A.L.; Wilson-Henjum, K.; Caran, K.L.; et al. Bicephalic amphiphile architecture affects antibacterial activity. Eur. J. Med. Chem. 2011, 46, 4219–4226.

106. Shytirli, N.V.; Pugachev, M.V.; Sapozhnikov, S.V.; Garipov, M.R.; Vafina, R.M.; Grishaev, D.Y.; Pavelyev, R.S.; Kazakova, R.R.; Agaﬁnova, M.N.; Iksanova, A.G.; et al. Novel Bis-Ammonium Salts of Pyridoxine: Synthesis and Antimicrobial Properties. Molecules 2020, 25, 4341.

107. Forman, M.E.; Fletcher, M.H.; Jennings, M.C.; Duggan, S.M.; Minbiole, K.P.C.; Wuest, W.M. Structure–Resistance Relationships: Interrogating Antisepitic Resistance in Bacteria with Multicationic Quaternary Ammonium Dyes. Chem. Med. Chem. 2016, 11, 958–962.

108. Zhou, F.; Maeda, T.; Nagamune, K.; Hourai, H. Synthesis and Antimicrobial Characteristics of Novel Biocides, 1, 1’-(Decanediol) bis (4-methyl-4-alkyliceramide iodide) s with a Gemini Structure. Biocontrol Sci. 2004, 9, 61–67.

109. Kontos, R.C.; Schallengerhammer, S.A.; Bentley, B.S.; Morrison, K.R.; Feliciano, J.A.; Tasca, J.A.; Kaplan, A.R.; Bezpalko, M.W.; Kassel, W.S.; Wuest, W.M.; et al. An Investigation into Rigidity–Activity Relationships in BisQAC Amphiphilic Antisepsics. Chem. Med. Chem. 2019, 14, 83–87.

110. Ma, J.; Liu, N.; Huang, M.; Wang, L.; Han, J.; Qian, H.; Che, F. Synthesis, physicochemical and antimicrobial properties of cardanol-derived quaternary ammonium compounds (QACs) with heterocyclic poly head. J. Mol. Lig. 2019, 294, 111669.

111. Schallengerhammer, S.A.; Duggan, S.M.; Morrison, K.R.; Bentley, B.S.; Wuest, W.M.; Minbiole, K.P.C. Hybrid BisQACs: Potent Biscationic Quaternary Ammonium Compounds Merging the Structures of Two Commercial Antisepsics. Chem. Med. Chem. 2017, 12, 1931–1934.

112. Morrison, K.R.; Allen, R.A.; Minbiole, K.P.C.; Wuest, W.M. More QACs, more questions: Recent advances in structure activity relationships and hurdles in understanding resistance mechanisms. Tetrahedron Lett. 2019, 60, 150935.

113. Thomas, B.; Duval, R.E.; Fontanay, S.; Varbanov, M.; Boisbrun, M. Synthesis and Antibacterial Evaluation of Bis-thiazolium, Bis-imidazolium, and Bis-triazolium Derivatives. Chem. Med. Chem. 2019, 14, 1232–1237.
114. Shirai, A.; Sumitomo, T.; Yoshida, M.; Kaimura, T.; Nagamune, H.; Maeda, T.; Kourai, H. Synthesis and Biological Properties of Gemini Quaternary Ammonium Compounds, 5,5′-[2,2′-(a,omega-Poly(methylenedicarbonyl)oxy)diethyl]bis-(3-alkyl-4-methylthiazolium iodide) and 5,5′-[2,2′-(p-Phenylenedicarbonyl)oxy]diethyl]bis(3-alkyl-4-methylthiazolium bromide). Chem. Pharm. Bull. 2006, 54, 639–645.

115. Shrestha, J.P.; Baker, C.; Kawasaki, Y.; Subedi, Y.P.; Vincent de Paul, N.N.; Takemoto, J.Y.; Chang, C.-W. T. Synthesis and bioactivity investigation of quinone-based dimeric cationic triazolium amphiphiles selective against resistant fungal and bacterial pathogens. Eur. J. Med. Chem. 2017, 126, 696–704.

116. Grenier, M.C.; Davis, R.W.; Wilson-Henjum, K.L.; LaDow, J.E.; Black, J.W.; Caran, K.L.; Seifert, K.; Minbiolo, K.P.C. The antibacterial activity of 4,4′-bipyridinium amphiphiles with conventional, bicephalic and gemini architectures. Bioorg. Med. Chem. Lett. 2012, 22, 4055–4058.

117. Ator, L.E.; Jennings, M.C.; McGettigan, A.R.; Paul, J.J.; Wuest, W.M.; Minbiolo, K.P.C. Beyond par aquats: Dialkyl 3,3′- and 3,4′-bipyridinium amphiphiles as antibacterial agents. Bioorg. Med. Chem. Lett. 2014, 24, 3706–3709.

118. Leitgeb, A.J.; Feliciano, J.A.; Sanchez, H.A.; Allen, R.A.; Morrison, K.R.; Sommers, K.J.; Carden, R.G.; Wuest, W.M.; Minbiolo, K.P.C. Further Investigations into Rigidity-Activity Relationships in BisQAC Amphiphilic Antiseptics. Chem. Med. Chem. 2020, 15, 667–670.

119. Tsuji, Y.; Yamamoto, M.; Vereshchagin, A.N.; Dorofeev, A.S.; Geyvandova, T.A.; Agaforonova, I.F.; Geyvandov, R.K. Dimeric Quaternary Pyridinium Salts Possessing Biocidal Activity. Patent #WO158045, 2 October 2014.

120. Yamamoto, M.; Takami, T.; Matsumura, R.; Dorofeev, A.; Hirata, Y.; Nagamune, H. In vitro evaluation of the biocompatibility of newly synthesized bis-quaternary ammonium compounds with spacer structures derived from pentaerythritol or hydroquinone. Biocontrol. Sci. 2016, 21, 231–241.

121. Yamamoto, M.; Matsumura, R.; Hirata, Y.; Nagamune, H. A comparative study of skin irritation caused by novel bis-quaternary ammonium compounds and commonly used antiseptics by using cell culture methods. Toxicol. Vitr. 2019, 54, 75–81.

122. Vereshchagin, A.N.; Gordeeva, A.M.; Frolov, N.A.; Froshin, P.I.; Hansford, K.A.; Egorov, M.P. Synthesis and Microbiological Properties of Novel Bis-Quaternary Ammonium Compounds Based on Biphenyl Spacer. Eur. J. Org. Chem. 2019, 2019, 4123–4127.

123. Vereshchagin, A.N.; Frolov, N.A.; Konuyuhova, V.Y.; Hansford, K.A.; Egorov, M.P. Synthesis and microbiological properties of novel bis-quaternary ammonium compounds based on 4,4′-oxydiphenyl spacer. Mendeleev Commun. 2019, 29, 523–525.

124. Vereshchagin, A.N.; Frolov, N.A.; Konuyuhova, V.Y.; Dorofeeva, E.O.; Hansford, K.A.; Egorov, M.P. Synthesis and biological evaluation of novel bis-quaternary ammonium compounds with p-terphenyl spacer. Mendeleev Commun. 2020, 30, 424–426.

125. Vereshchagin, A.N.; Frolov, N.A.; Pakina, A.S.; Hansford, K.A.; Egorov, M.P. Synthesis and biological evaluation of novel bispipyridinium salts containing naphthalene-2,7-diyli(bis)oxy spacer. Mendeleev Commun. 2020, 30, 703–705.

126. Vereshchagin, A.N.; Frolov, N.A.; Konuyuhova, V.Y.; Kapelystaya, E.A.; Hansford, K.A.; Egorov, M.P. Investigations into the structure–activity relationship in gemini QACs based on biphenyl and oxydiphenyl linker. Rsc Adv. 2021, 11, 3429–3438.

127. Shirai, A.; Maeda, T.; Harai, Y.; Yoshinari, A.; Nagamune, H.; Kourai, H. Antimicrobial Characteristics of Bis-quaternary Ammonium Compounds Possessing a p-Phenylene Group in Their Spacer Chains. Biocontrol Sci. 2003, 8, 151–157.

128. Sumitomo, T.; Maeda, T.; Nagamune, H.; Kourai, H. Bacterioclastic Action of a Bis-Quaternary Ammonium Compound against Escherichia coli. Biocontrol Sci. 2004, 9, 1–9.

129. Yabuhara, T.; Maeda, T.; Nagamune, H.; Kourai, H. Synthesis and Antimicrobial Characteristics of a Novel Biocide, 4, 4′-(1,6-Dioxyhexamethylene) bis-(1-alkylpyridinium halide). Biocontrol Sci. 2004, 9, 95–103.

130. Ohkura, K.; Sukeno, A.; Nagamune, H.; Kourai, H. Bridge-linked bis-quaternary ammonium anti-microbial agents: Relationship between cytotoxicity and anti-bacterial activity of 5,5′-[2,2′-(tetramethylenedicarbonyl)oxy]-diethyl]bis(3-alkyl-4-methylthiazolium iodide). Bioorg. Med. Chem. 2005, 13, 2579–2587.

131. Kourai, H.; Yabuhara, T.; Shirai, A.; Maeda, T.; Nagamune, H. Syntheses and antimicrobial activities of a series of new bis-quaternary ammonium compounds. Eur. J. Med. Chem. 2006, 41, 437–444.

132. Murakami, K.; Yamoto, H.; Murakami, A.; Amoh, T.; Viducic, D.; Hirota, K.; Tabata, A.; Nagamune, H.; Kourai, H.; Matsu, T.; Miyake, Y. Evaluation of the effectiveness of the potent bis-quaternary ammonium compound, 4,4′-(a,ω-hexamethylene diohexylether) bis (1-octylpyridinium bromide) (4DTBP-6,8) on Pseudomonas aeruginos. J. Appl. Microbiol. 2017, 122, 893–899.

133. Obando, D.; Koda, Y.; Pantarat, N.; Lev, S.; Zuo, X.; Bijosono Oei, J.; Widmer, F.; Djordjevic, J.T.; Sorrell, T.C.; Jolliffe, K.A. Synthesis and Evaluation of a Series of Bis(pentamethylpyrididyl) Compounds as Antifungal Agents. Chem. Med. Chem. 2018, 13, 1421–1436.

134. Hao, J.; Qin, T.; Zhang, Y.; Li, Y.; Zhang, Y. Synthesis, surface properties and antimicrobial performance of novel gemini pyridinium surfactants. Colloids Surf. B 2019, 181, 814–821.

135. Vereshchagin, A.N.; Karpenko, K.A.; Egorov, M.P. Synthesis and antibacterial activity of new dimeric pyridinium chlorides based on 2,2-bis(hydroxyethyl)propane-1,3-diyl spacer. Russ. Chem. Bull. 2020, 69, 620–623.

136. Rezki, N.; Al-Sodies, S.A.; Ahmed, H.E.A.; Ihmaid, S.; Messali, M.; Ahmed, S.; Aouda, M.R. A novel dicationic ionic liquids encompassing pyridazinium-phenoxo conjugates as antimicrobial agents targeting diverse high resistant microbial strains. J. Mol. Liq. 2019, 284, 431–444.

137. Gindri, I.M.; Siddiqui, B.A.; Bhardwaj, P.; Rodriguez, L.C.; Palmer, K.L.; Frizzo, C.P.; Martins, M.A.P.; Rodrigues, D.C. Dicationic imidazolium-based ionic liquids: A new strategy for non-toxic and antimicrobial materials. Rsc Adv. 2014, 4, 62594–62602.

138. Ganapathi, P.; Ganesan, K.; Vijayanathan, N.; Arunagirinathan, N. Anti-bacterial screening of water soluble carbonyl diimidazolium salts and its derivatives. J. Mol. Liq. 2016, 219, 180–185.

139. Ganapathi, P.; Ganesan, K. Anti-bacterial, catalytic and docking behaviours of novel di/trimeric imidazolium salts. J. Mol. Liq. 2017, 233, 452–464.
168. Etirajan, S.K.; Sengupta, A.; Jebur, M.; Kamaz, M.; Qian, X.; Wickramasinghe, R. Single-step synthesis of novel polyionics liquids having antibacterial activity and showing π-electron mediated selectivity in separation of aromatics. *ChemistrySelect* 2018, 3, 4959–4968.

169. Claus, I.; Jastram, A.; Pikel, E.; Bucki, R.; Janmey, P.A.; Kraigl, U. Polymerized ion liquids-based hydrogels with intrinsic antibacterial activity: Modern weapons against a nitbiotic-resistant infections. *J. Appl. Polym. Sci.* 2020, 138, 50222.

170. Fang, C.; Kong, L.; Ge, Q.; Zhang, W.; Zhou, X.; Zhang, L.; Wang, X. Antibacterial activities of N-alkyl imidazolium-based poly(ionic liquid) nanoparticles. *Polym. Chem.* 2019, 10, 209–218.

171. Niesyto, K.; Neugebauer, D. Synthesis and characterization of ionic graft copolymers: Introduction and in vitro release of antibacterial drug by anion exchange. *Polymers* 2020, 12, 2159.

172. Fang, H.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. *Chem. Eng. J.* 2019, 365, 153–164.

173. Fang, H.; Li, D.; Xu, L.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A reusable ionic liquid-grafted antibacterial cotton gauze wound dressing. *J. Mater. Sci.* 2021, 56, 7598–7612.

174. Andresen, M.; Stenstad, P.; Moretro, T.; Langsrud, S.; Syverud, K.; Johansson, L.-S.; Stenius, P. Nonleaching Antimicrobial Films Prepared from Surface-Modified Microfibrillated Cellulose. *Biomacromolecules* 2007, 8, 2149–2155.

175. Song, J.; Kong, H.; Jang, J. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. *Colloids Surf. B* 2011, 82, 651–656.

176. Liu, Y.; Ma, K.; Li, R.; Ren, X.; Huang, T.S. Antibacterial cotton treated with N-halamine and quaternary ammonium salt. *Cellulose* 2013, 20, 3123–3130.

177. Liu, Y.; Li, J.; Cheng, X.; Ren, X.; Huang, T.S. Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate. *J. Mater. Chem. B* 2015, 3, 1446–1454.

178. Asri, L.A.T.W.; Crismaru, M.; Roest, S.; Chen, Y.; Ivashenko, O.; Rudolf, P.; Tiller, J.C.; van der Mei, H.C.; Loontjens, T.J.A.; Busscher, H.J. A Shape-Adaptive, Antibacterial-Coating of Immobilized Quaternary-Ammonium Compounds Tethered on Hyperbranched Polyurea and its Mechanism of Action. *Adv. Funct. Mater.* 2014, 24, 346–355.

179. Zhao, J.; Millians, W.; Tang, S.; Wu, T.; Zhu, L.; Ming, W. Self-Stratified AntiMicrobial Acrylic Coatings via One-Step UV Curing. *ACS Appl. Mater. Interfaces* 2015, 7, 18467–18472.

180. Zhang, X.; Ma, J.; Tang, C.Y.; Wang, Z.; Ng, H.Y.; Wu, Z. Antibiofouling Polyvinylidene Fluoride Membrane Modified by Quaternary Ammonium Compound: Direct Contact-Killing versus Induced Indirect Contact-Killing. *Environ. Sci. Technol.* 2016, 50, 5086–5093.

181. Żywicka, A.; Fijalkowski, K.; Junka, A.F.; Grzesiak, J; El Fray, M. Modification of Bacterial Cellulose with Quaternary Ammonium Compounds Based on Fatty Acids and Amino Acids and the Effect on Antimicrobial Activity. *Biomacromolecules* 2018, 19, 1528–1538.

182. He, D.; Yu, Y.; Liu, F.; Yao, Y.; Li, P.; Chen, J.; Ning, N.; Zhang, S. Quaternary ammonium salt-based cross-linked micelle templated synthesis of highly active silver nanocomposite for synergistic anti-biofilm application. *Chem. Eng. J.* 2020, 382, 122976.

183. Alkabli, J.; El-Sayed, W.N.; Elshaarawy, R.F.M.; Khedr, A.I.M. Upgrading *Oryza sativa* wastes into multifunctional antimicrobial and antibiofilm nominees; Ionic Metallo-Schiff base-supported cellulose nanofibers. *Eur. Polym. J.* 2020, 138, 109960.

184. Xu, Q.; Zheng, Z.; Wang, B.; Mao, H.; Yan, F. Zinc ion coordinated poly(ionic liquid) antimicrobial membranes for wound healing. *ACS Appl. Mater. Interfaces* 2017, 9, 14656–14664.

185. Liu, P.; Jin, K.; Wong, W.; Wang, Y.; Liang, T.; He, M.; Li, H.; Lu, C.; Tang, X.; Zong, Y.; et al. Ionic liquid functionalized non-releasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. *Chem. Eng. J.* 2021, 415, 129025.

186. Jin, L.; Shi, Z.; Zhang, X.; Liu, X.; Li, H.; Wang, J.; Liang, F.; Zhao, W.; Zhao, C. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. *J. Mater. Chem. B* 2019, 7, 5520–5527.

187. He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. Polyionionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. *ACS Appl. Mater. Interfaces* 2020, 12, 14784–14796.

188. Guan, J.; Wang, Y.; Wu, S.; Li, Y.; Li, J. Durable anti-superbug polymers: Covalent bonding of ionic liquid onto the polymer chains. *Biomacromolecules* 2017, 18, 4364–4372.

189. Raucci, M.G.; Fasolinol, I.; Pastore, S.G.; Soriente, A.; Capeletti, L.B.; Dessuy, M.B.; Giannini, C.; Schrekker, H.S.; Ambrosio, L. Antimicrobial imidazolium ionic liquids for the development of minimal invasive calcium phosphate-based bioceramic composites. *ACS Appl. Mater. Interfaces* 2018, 10, 42766–42776.

190. Suner, S.S.; Sahiner, M.; Akcali, A.; Sahiner, N. Functionalization of halloysite nanotubes with polyethyleneimine and various ionic liquid forms with antimicrobial activity. *J. Appl. Polym. Sci.* 2019, 137, 48352.

191. Gindri, I.M.; Palmer, K.L.; Siddiqui, D.A.; Agharyan, S.; Frizzo, C.P.; Martins, M.A.P.; Rodrigues, D.C. Evaluation of mammalian and bacterial cell activity on titanium surface coated with dicationic imidazolium-based ionic liquids. *Rsc Adv.* 2016, 6, 36475–36483.

192. Ye, Q.; Gao, T.; Wan, F.; Yu, B.; Pei, X.; Zhou, F.; Xue, Q. Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. *J. Mater. Chem. B* 2012, 22, 13123–13131.

193. Mehta, M.J.; Kumar, A. Ionic liquid assisted gelatin films: Green, UV shielding, antioxidant, and antibacterial food packaging materials. *ACS Sustain. Chem. Eng.* 2019, 7, 8631–8636.
194. Martini Garcia, I.; Jung Ferreira, C.; de Souza, V.S.; Castelo Branco Leitune, V.; Samuel, S.M.W.; de Souza Balbinot, G.; de Souza da Motta, A.; Visioli, F.; Damiani Scholten, J.; Mezzomo Collares, F. Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent. Mater. 2019, 35, 1155–1165.

195. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report And Recommendations; Welcome Trust: London, UK, 2016; p. 84.