Exome Sequencing Reveals a Novel PRPS1 Mutation in a Family with CMTX5 without Optic Atrophy

Jin Park, Young Se Hyun, Ye Jin Kim, Soo Hyun Nam, Sung-hee Kim, Young Bin Hong, Jin-Mo Park, Ki Wha Chung, Byung-Ok Choi

Introduction

Mutations in the gene encoding phosphoribosyl pyrophosphate synthetase I (PRPS1) have been reported in four syndromes: X-linked Charcot-Marie-Tooth disease type 5 (CMTX5, or Rosenberg-Chutorian syndrome; MIM 311070), PRS-I superactivity (MIM 300661), Arts syndrome (MIM 301835), and nonsyndromic sensorineural deafness (DFN2; MIM 304500). PRPS1 belongs to a family that comprises three highly conserved genes: PRPS1, PRPS2 (MIM 311860), and PRPS1L1 (MIM 611566).

The phenotypes associated with PRPS1 mutation cover a wide clinical spectrum. The characteristic phenotypes of CMTX5 are peripheral neuropathy, early-onset hearing loss, and optic atrophy. PRS-I superactivity is characterized by gout with uric-acid overproduction and neurodevelopmental impairment. Patients with Arts syndrome present with mental retardation, early-onset hypotonia, ataxia, delayed motor development, hearing impairment, and optic atrophy. X-linked postlingual nonsyndromic hearing loss is an isolated symptom in DFN2.

Charcot-Marie-Tooth disease (CMT), which is also known
to be a hereditary motor and sensory neuropathy, is a clinically and genetically heterogeneous disorder of the peripheral nervous system.\(^9\) The disease is conventionally classified into demyelinating neuropathy (CMT1), axonal neuropathy (CMT2), and X-linked inheritance (CMTX). CMTX has been further divided into many subtypes (from CMTX1 to CMTX6) according to the clinical symptoms and genetic causes. CMT is reportedly associated with more than 60 causative genes or loci (Inherited Peripheral Neuropathies Mutation Database, http://www.molgen.ua.ac.be/CMTMutations/mutations). However, it is believed that many causative genes remain unidentified. Thus, efficient analytical tools are required to expedite the identification of the underlying genetic causes of this disease.\(^{10,11}\)

In the present study, the application of whole-exome sequencing (WES) proved to be an effective strategy for identifying a rare genetic cause in a small pedigree.

The literature contains only one case report of patients with CMTX.\(^1\) The present study applied WES to reveal a novel p.Ala121Gly mutation in \textit{PRPS1} in a Korean family with CMTX5 without optic atrophy.

Case Report

The proband (Fig. 1A, IV-1; family ID: FC360) visited our neurology clinic at 15 years of age because of gait disturbance and hearing loss. His parents had first noticed a decreased response to auditory stimulation at an age of 5 months. At 6 years of age he experienced frequent falls and steppage gait caused by weakness of the distal lower extremities. Audiological examinations at 12 years of age revealed bilateral sensorineural hearing loss, and after cochlear surgery he began using a hearing aid. He did not exhibit any symptoms or signs of mental retardation, ataxia, optic atrophy, hypotonia, or hyperuricemia. A neurological examination performed when the patient was 17 years of age revealed weakness and atrophy of the bilateral distal muscles of the lower limbs without proximal muscle involvement. The values on the Medical Research Council scale were G3/5 for the finger abductor, G3/5 for the anterior tibial, and G4/5 for the gastrocnemius muscles. The vibration and position senses were more severely disturbed than the pain and temperature senses. The deep tendon reflexes were absent in all extremities, and no pathological reflexes were observed. Examination of the dilated fundus and visual evoked potentials (VEPs) produced normal findings.

The serum level of creatine kinase was elevated (432 IU/L; normal range, 0-185 IU/L), but that of uric acid was within the normal range.

Two male relatives (III-3 and III-5) had CMT phenotypes similar to the proband. A gait problem was noticed in patient III-3 (a 43-year-old man) at the age of 4 years, and this walk-
ing difficulty progressed so that he had been confined to a wheelchair since the age of 40 years. His brother (III-5, 39 years of age) experienced similar symptoms at the age of 5 years; however, he was still able to walk with assistance. Both III-3 and III-5 experienced hearing loss before 1 year of age, but dilated fundus and VEP examinations produced normal findings. Neither of these family members agreed to participate in a DNA analysis. Neither the proband’s mother (III-2, 45 years of age) nor her relative (II-5, a 68-year-old woman) had hearing loss, gait disturbance, or optic atrophy. Nerve conduction studies of the proband’s mother were normal. From history taking it appeared that neither of the deceased relatives of the proband’s mother (I-2 and II-3) had complained of gait, hearing, or visual impairments.

The results of the nerve conduction studies performed in the proband at the ages of 15 and 17 years are given in Table 1. Motor-nerve-conduction studies revealed decreased amplitudes of compound muscle action potentials and slowing of motor conduction velocities in the bilateral median, ulnar, peroneal, and tibial nerves, which were more severe in the lower extremities. Sensory-nerve action potentials could not be elicited in any of the tested nerves, which was compatible with sensorimotor peripheral neuropathy. Needle EMG re-

Table 1. Electrophysiological studies in the patient (IV-1) with a novel p.Ala121Gly PRPS1 mutation

Examination item	Age at examination (years)	Determined values	Normal value		
	15	17			
Side					
Right	4.0	4.2	3.4	4.6	<3.9
Left	6.8	4.1	6.0	4.1	>6.0
Median nerve					
TL (ms)	45.0	37.0	47.1	44.1	>50.5
CMAP (mV)	6.8	4.1	6.0	4.1	>6.0
MNCV (m/s)					

Ulnar nerve

TL (ms)	3.7	4.1	3.2	3.2	<3.0
CMAP (mV)	1.7	2.4	3.1	3.0	>8.0
MNCV (m/s)	43.0	40.0	46.0	45.7	>51.1

Peroneal nerve

TL (ms)	6.7	6.4	4.3	5.7	<5.3
CMAP (mV)	1.1	0.5	1.9	1.1	>1.6
MNCV (m/s)	37.0	36.0	32.4	32.4	>41.2

Tibial nerve

TL (ms)	4.8	4.3	4.7	4.9	<5.4
CMAP (mV)	1.0	1.5	2.4	1.1	>6.0
MNCV (m/s)	35.0	34.0	26.4	32.2	>41.1

Median sensory nerve

| SNAP (µV) | A | A | A | A | >8.8 |
| SNCV (m/s) | A | A | A | A | >39.3 |

Ulnar sensory nerve

| SNAP (µV) | A | A | A | A | >7.9 |
| SNCV (m/s) | A | A | A | A | >37.5 |

Sural nerve

| SNAP (µV) | A | A | A | A | >6.0 |
| SNCV (m/s) | A | A | A | A | >32.1 |

A: absent potentials, CMAP: compound muscle action potential, MNCV: motor-nerve conduction velocity, SNAP: sensory-nerve action potential, SNCV: sensory-nerve conduction velocity, TL: terminal latency.

Table 2. Whole-exome sequencing analysis in the affected individual

Item	FC360-1, IV-1
Total sequencing yields	6.3 Gbp
Mappable reads relative to total reads	93.0%
Coverage of target region (≥1✕)	89.6%
Coverage of target region (≥10✕)	83.4%
Total number of SNPs	46301
Number of coding SNPs	17409
Total number of indels	8158
Number of coding indels	505
CMT gene variants*	31

*Observed number of functionally significant variants (nonsynonymous variants, coding indels, and splice sites).

CMT: Charcot-Marie-Tooth disease, SNP: single-nucleotide polymorphism.
revealed fibrillation potentials and neurogenic motor-unit action potentials.

The total sequencing yield of WES was approximately 6.3 Gbp, and the coverage rate of the targeted exonic regions (read depth \(\geq 10 \times \)) was 83.4\%. The number of observed variants was 46301 single-nucleotide polymorphisms (SNPs) and 8158 indels, of which 17409 and 505 were coding SNPs and indels, respectively (Table 2). After functionally significant SNPs in CMT-related genes were selected, the SNPs reported in dbSNP135 (http://www.ncbi.nlm.nih.gov) and 1000 Genomes Project database (http://www.1000genomes.org/) were further filtered out. Subsequent capillary sequencing of the DNA of the proband’s mother revealed a novel missense mutation, c.362C>G (Ala121Gly), in exon 3 of PRPS1.

The proband and his mother were hemizygous and heterozygous for this mutation, respectively (Fig. 1B), which is compatible with an X-linked recessive inheritance mode. The c.362C>G mutation has not been reported in the worldwide dbSNP135 and 1000 Genomes Project human genome databases, or in the Inherited Peripheral Neuropathies Mutation Database (http://www.molgen.ua.ac.be/CMTMutations/mutations). The mutation was not found in 250 healthy controls, and the site was well conserved among different species (Fig. 1C). Several in silico analyses predicted that the mutation may affect protein function, with scores of 0.01, 0.88, -1.00 in Sorting Intolerant From Tolerant (http://sift.jcvi.org/), Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/), and MUpro (SVM) program (http://mupro.proteomics.ics.uci.edu/), re-

Table 3. Functionally significant variants in CMT-associated genes

Gene	Reference sequence*	Chromosome: position	Variants	dbSNP135	1000 G*	Read depth	Remark	
			Nucleotide†	Amino acid	rs	Total	Altered	
KIF1B	NM_015074.3	1: 10381887	c.A2192G	p.N731S	rs117525287	0.01	88	40 Polymeric
LMNA	NM_005572.3	1: 156107534	c.C1698T	p.H566H	rs4641	0.20	25	9 Polymeric
FIG4	NM_014845.5	6: 11064928	c.A1090T	p.M364L	rs2295837	0.10	322	146 Polymeric
GARS	NM_002047.2	7: 30634661	c.T1961C	p.V654A	rs9885672	0.37	169	79 Polymeric
IKBKAP	NM_003640.3	9: 111659439	c.A2490G	p.I830M	rs2230794	0.08	206	94 Polymeric
SETX	NM_015046.5	9: 135139826	c.A7834G	p.S2612G	rs3739927	0.16	82	34 Polymeric
DHTKD1	NM_018706.5	10: 1211090	c.T58C	p.F20L	rs1279138	0.98	56	53 Polymeric
IGHMBP2	NM_002180.2	11: 68705674	c.C2363A	p.T879K	rs17612126	0.23	70	43 Polymeric
WNK1	NM_018979.3	12: 990912	c.A3166C	p.T1056P	rs956868	0.85	82	43 Polymeric
SEPT9	NM_001113495.1	17: 75494705	c.A1390G	p.M464V	rs2627223	0.92	43	43 Polymeric
DNMT1	NM_001379.2	19: 10273372	c.A931G	p.I311V	rs2228612	0.18	270	113 Polymeric
PRX	NM_181882.2	19: 10298111	c.A290G	p.H97R	rs16999593	0.06	129	63 Polymeric
DMPK	NM_004409.3	12: 46275976	c.C1267G	p.L428V	rs527221	0.12	76	25 Polymeric
ATP7A	NM_000052.5	X: 77298857	c.G408A	p.E1350K	rs4826245	1.00	152	145 Polymeric
PRPS1	NM_002764.3	X: 106884187	c.C362G	p.A121G	-	-	125	112 Causative

*GenBank registration number of reference sequences. †CDNA numbering was achieved with +1 corresponding to the A of the ATG initiation codon. ‡Frequencies of altered alleles in the 1000 Genomes Project database (Oct, 2011). CMT: Charcot-Marie-Tooth disease.
respectively.

In addition to the PRPS1 c.362C>G mutation, 30 more nonsynonymous variants were identified in CMT-relevant genes (Table 3). However, none of the variants was considered as being causative because they were all also observed in controls or did not fit the X-linked recessive inheritance mode observed within the family. The 17p12 duplication was also excluded by pretesting before exome sequencing.

Discussion

Whole-exome sequencing was used to identify a novel PRPS1 mutation in a family with CMTX with peripheral polyneuropathy and early-onset sensorineural hearing loss. The previously described CMTX5 patients harboring PRPS1 mutations (c.344T>C and c.129A>C) exhibited peripheral neuropathy with segmental demyelination and axonal loss, sensorineural hearing loss from infancy, and visual impairment during the first decade of life, and experienced optic neuropathy at approximately the same age as they developed peripheral neuropathy. The clinical phenotypes of the family presented herein are similar to those reported CMTX5 patients; however, the present patients did not have optic atrophy. These findings suggest that the severity and progression of CMTX5 phenotypes vary according to the sites of the PRPS1 mutations.

Defects in X-linked PRPS1 manifest as PRS-I enzyme overexpression (PRS-I superactivity), severe PRS-I deficiency (Arts syndrome), moderate PRS-I deficiency (CMTX5), and mild PRS-I deficiency (DFN2). PRS-I superactivity is an X-linked disease associated with hyperuricemia and hyperuricosuria. Neurodevelopmental impairments, particularly sensorineural deafness, have been reported occasionally. Arts syndrome has the most disabling clinical manifestations of PRPS1 missense mutations, resulting in severe functional loss of the protein. These patients harbor neurological deficits, including mental retardation, ataxia, hypotonia, delayed motor development, optic atrophy, peripheral neuropathy, and sensorineural deafness, which result in early death (during the first decade of life). Moderately decreased PRS-I activity caused by a PRPS1 missense mutation is known as CMTX5 or Rosenberg-Chutorian syndrome. Early sensorineural deafness, peripheral neuropathy, and optic neuropathy together constitute a typical symptom triad of this disease, but variations in disease duration and severity have been reported. DFN2 caused by PRPS1 mutations manifests as progressive nonsyndromic hearing loss. The patient described herein displayed peripheral sensorimotor neuropathy and early-onset sensorineural deafness, but he did not exhibit mental retardation, optic atrophy, hypotonia, or hyperuricemia. In addition, his middle-aged male relatives with the same manifestations did not complain of any visual disturbances. Therefore, his symptoms did not correspond accurately with any of the four known distinct syndromes associated with PRPS1 mutation, strongly suggesting that the clinical spectrum of diseases with PRPS1 mutation is wider than previously described.

PRS, which is an enzyme that is distributed in all human tissues, occurs in two isoforms (PRS-I and II), which are encoded by the highly conserved genes PRPS1 and PRPS2, respectively. PRS-I catalyzes the synthesis of phosphoribosyl pyrophosphate, which is an essential cofactor for both the synthesis and salvage of purine, pyrimidine, and pyridine nucleotides. Thus, PRPS1 mutation affects vital cell functions, including nucleic acid synthesis, energy metabolism, and cellular signaling. Based on the primary sequence alignment with PRS-I from other species and on its quaternary structure, the location of Ala121 does not seem to be an allosteric regulatory site. Rather, it is located in the vicinity of the intracellular interacting region and catalytic site. Thus, reduced enzymatic activity might be derived from a loose interaction between the hexamers or the slightly altered catalytic site associated with Ala121 mutation.

The results of several recent studies suggest that mutant PRPS1-mediated disease can be treated by improving nucleotide metabolism; supplementation of the diet with S-adenosyl methionine (SAM) in patients with Arts syndrome yielded improvements in their condition. Nucleotides such as purines are usually not absorbed in the body because of oxidation to uric acid; however, pyrimidines can be absorbed by oral intake through the gastrointestinal tract. Nevertheless, unlike most purines, SAM can cross both the gut and the blood-brain barrier, and has been successfully used in the treatment of depression, dementia, and osteoarthritis. The improvement in the symptoms of Arts syndrome after SAM supplementation implies that this treatment may also alleviate some of the symptoms of patients with other PRPS1 mutations by replenishing purine nucleotides. These clinical data imply the applicability of this therapeutic approach in the patients described herein.

In summary, a novel PRPS1 mutation was identified in a family with CMTX5 using WES. The findings of this study will expand the clinical spectrum of diseases with PRPS1 mutation and will be useful for the molecular diagnosis of clinically heterogeneous peripheral neuropathies.

Conflicts of Interest

The authors have no financial conflicts of interest.

Acknowledgements

This study was supported in part by the Korean Health Technology R&D Project, Ministry of Health & Welfare (A120182), and by the Ba-
CMTX5 with PRPS1 Mutation

sic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea (2011-0021533).

REFERENCES

1. Kim HJ, Sohn KM, Shy ME, Krajewski KM, Hwang M, Park JH, et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5). Am J Hum Genet 2007;81:552-558.
2. Rosenberg RN, Chutorian A. Familial opticocoustic nerve degeneration and polyneuropathy. Neurology 1967;17:827-832.
3. Sperling O, Eilam G, Sara-Persky-Brosh, De Vries A. Accelerated erythrocyte 5-phosphoribosyl-1-pyrophosphate synthesis. A familial abnormality associated with excessive uric acid production and gout. Biochem Med 1972;6:310-316.
4. Arts WF, Loonen MC, Sengers RC, Slooff JL. X-linked ataxia, weakness, deafness, and loss of vision in early childhood with a fatal course. Ann Neurol 1993;33:535-539.
5. de Brouwer AP, Williams KL, Duley JA, van Kuilenburg AB, Nabuurs SB, Egmont-Petersen M, et al. Arts syndrome is caused by loss-of-function mutations in PRPS1. Am J Hum Genet 2007;81:507-518.
6. Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, et al. Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet 2010;86:65-71.
7. de Brouwer AP, van Bokhoven H, Nabuurs SB, Arts WF, Christodoulou J, Duley J. PRPS1 mutations: four distinct syndromes and potential treatment. Am J Hum Genet 2010;86:506-518.
8. Becker MA, Heidler SA, Bell GI, Seino S, Le Beau MM, Westbrook CA, et al. Cloning of cDNAs for human phosphoribosylpyrophosphate synthetases 1 and 2 and X chromosome localization of PRPS1 and PRPS2 genes. Genomics 1990;8:555-561.
9. Lee HJ, Choi BO. Charcot-marie-tooth disease: seventeen causative genes. J Clin Neurol 2006;2:92-106.
10. Montenegro G, Powell E, Huang J, Speziani F, Edwards YJ, Beecham G, et al. Exome sequencing allows for rapid gene identification in a Charcot-Marie-Tooth family. Ann Neurol 2011;69:464-470.
11. Choi BO, Koo SK, Park MH, Rhee H, Yang SJ, Choi KG, et al. Exome sequencing is an efficient tool for genetic screening of Charcot-Marie-Tooth disease. Hum Mutat 2012;33:1610-1615.
12. Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase association of uric acid overproduction and sensorineural deafness. Am J Med 1988;85:383-390.
13. Kim HJ, Hong SH, Ki CS, Kim BJ, Shim JS, Cho SH, et al. A novel locus for X-linked recessive CMT with deafness and optic neuropathy maps to Xq21.32-q24. Neurology 2005;64:1964-1967.
14. Duley JA, Christodoulou J, de Brouwer AP. The PRPP synthetase spectrum: what does it demonstrate about nucleotide syndromes? Nucleosides Nucleotides Nucleic Acids 2011;30:1129-1139.
15. Bottiglieri T. S-Adenosyl-L-methionine (SAMe): from the bench to the bedside–molecular basis of a pleiotrophic molecule. Am J Clin Nutr 2002;76:1151S-1157S.