Association between clinical characteristics and laboratory findings with outcome of hospitalized COVID-19 patients, a report from northeast of Iran

Sahar Sobhani1, Reihaneh Aryan2, Elham Kalantari3, Salman Soltani4, Nafise Malek5, Parisa Pirzadeh6, Amir Yarahmadi7,8, Atena Aghae9,*

1 Department of Nursing and Midwifery, Faculty of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
2 Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Pulmonology, Isfahan University of Medical Science, Isfahan, Iran
4 Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
5 Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
6 Department of Nursing and Midwifery, Faculty of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
7 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
8 Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
9 Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

* Correspondence should be addressed to Atena Aghae; aghaeat@mums.ac.ir

\textbf{NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.}
Abstract

Coronavirus disease 2019 (COVID-19) was first discovered in December 2019 in China and has rapidly spread worldwide. Clinical characteristics, laboratory findings, and their association with the outcome of patients with COVID-19 can be decisive in management and early diagnosis. Data were obtained retrospectively from medical records of 397 hospitalized COVID-19 patients between February and May 2020 in Imam Reza hospital, northeast of Iran. Clinical and laboratory features were evaluated among survivors and non-survivors. The correlation between variables and duration of hospitalization and admission to the Intensive Care Unit (ICU) was determined. Male sex, age, hospitalization duration, and admission to ICU were significantly related to mortality rate. Headache was a more common feature in patients who survived ($p = 0.017$). It was also related to a shorter stay in the hospital ($p = 0.032$) as opposed to patients who experienced chest pain ($p = 0.033$). Decreased levels of consciousness and dyspnea were statistically more frequent in non-survivors ($p = 0.003$ and $p = 0.011$, respectively). Baseline white blood cell count (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) were significantly higher in non-survivors ($p < 0.001$). Patients with higher WBC and CRP levels were more likely to be admitted to ICU ($p = 0.009$ and $p = 0.001$, respectively). Evaluating clinical and laboratory features can help clinicians find ways for risk stratifying patients and even make predictive tools. Chest pain, decreased level of consciousness, dyspnea, and increased CRP and WBC levels seem to be the most potent predictors of severe prognosis.

Keywords: Association; COVID-19; Outcome; Laboratory tests
1. Introduction

In December 2019, severe acute respiratory syndrome coronavirus (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) was first discovered in Wuhan, Hubei Province, China, and has rapidly spread all over the world, causing a pandemic. The virus is considered to be transmitted by respiratory droplets and contaminated surfaces (Huang, Wang, et al. 2020, Zhu et al. 2020, Alamdari et al. 2020). As of October 2020, there are >1 million documented deaths caused by COVID-19 (JPA. October 7, 2020.). In Iran, on February 19, 2020, two patients in Qom city were confirmed as COVID-19 positive. Ultimately, the disease spread expeditiously in adjacent provinces near Qom, such as Tehran, Markazi, Isfahan, and Khorasan Razavi provinces, and shortly after, in all 31 provinces of the country (JPA. October 7, 2020.). To help better diagnose COVID-19, clinicians, and public health professionals should consider the wide variety of signs, symptoms, and laboratory findings of COVID-19 (Abdi 2020).

Although COVID-19 has various clinical manifestations, most patients experience very little or no symptoms, especially in the early disease stage (Alhazzani et al., Wang et al. 2020). The incubation period of COVID-19, extending from exposure to onset of disease symptoms, is estimated at approximately 5.2 days (Bai et al. 2020, Alamdari et al. 2020). This infection's common signs and symptoms include fever, cough, fatigue, sore throat, chest pain, dyspnea, myalgia, headache, anosmia, ageusia, and diarrhea. In more severe cases, the infection can cause pneumonia, acute respiratory distress syndrome (ARDS), kidney failure, and even death (Organization 2020, Wang, Tang, and Wei 2020).

The current knowledge surrounding clinical characteristics, laboratory findings, and their association in critically ill patients with COVID-19 infection is limited but can prove to be decisive in the management and early diagnosis of this deadly disease.
In this survey, we studied patients with confirmed COVID-19 who were admitted to Imam Reza Hospital of Mashhad, Iran. The data regarding the association between clinical presentations, laboratory findings, and survival of COVID-19 patients will be of considerable value for the early identification of individuals at risk of becoming critically ill and most likely to benefit from intensive care treatment.

2. Methods and Materials

2.1. Study population and data collection

All patients with confirmed COVID-19 diagnoses admitted to Imam Reza hospital in northeast of Iran between February and May 2020 were enrolled in the study. The COVID-19 infection was confirmed by Polymerase Chain Reaction (PCR) test and lung High-Resolution Computed Tomography (HRCT) results, as instructed in Iranian national guidelines. The patient outcome was defined as the patients’ status at discharge, whether the patient was alive or deceased. All patients were admitted following moderate to severe stages of the disease (i.e., more than 40% of the lung parenchyma affected or instability of vital signs such as hypoxemia and hypotension or severe leukopenia).

In the first hours of admission, all patients were interviewed. A complete medical history, drug history, patient’s characteristics, laboratory tests, medications prescribed to the patient, para-clinical assessments, and patient outcomes were recorded in the COVID-19 registry of Imam Reza Hospital. Patients were treated according to the national and universal COVID-19 management guidelines.

2.2. Ethics statement

The study protocol was approved by the Ethics Board of Mashhad University of Medical Sciences (IR.MUMS.REC.1399097). Patient's personal information was entered as codes in the database,
2. Statistical Analysis

Categorical variables were expressed as frequency and percentage. Moreover, continuous variables were expressed as mean ± standard deviation (SD). Chi-squared test, Fisher exact test, and Student's t-test were used for nonparametric and parametric analysis, respectively. Pearson's correlation test was used to assess the relationship between clinical features and laboratory findings with hospitalization duration and admission to ICU. A p-value < 0.05 was considered statistically significant. All statistical analyses were performed using SPSS 22 software (SPSS, Chicago, IL, USA).

3. Results

A total of 397 patients were included in this analysis. The mean age was 60.6 years (ranging from 14 to 94 years), 223 (56.2%) were males, and 174 (43.8%) were females. 336 patients (84.6%) survived and were discharged in a stable condition, but unfortunately, 61 patients (15.4%) were deceased. The mean duration of hospitalization was 9.3 days, which was significantly longer in the non-survivors (p < 0.001). The mean age was higher in those who died than those discharged alive (66.01 and 59.64 years, respectively) (p = 0.013). Males had a higher mortality rate compared to females (18.8% and 10.9%, p = 0.035). 68 patients (17.5%) required ICU management, and mortality was significantly higher in these patients (p < 0.001) (Table 1).

Common baseline clinical signs/symptoms among our patients were chest tightness (261 patients [65.7%]), fever (225 patients [56.7%]) and myalgia (126 patients [31.7%]). Decreased levels of
consciousness and dyspnea were statistically more frequent in non-survivors ($p = 0.003$ and $p = 0.011$, respectively). Interestingly, the headache was a more common feature in patients who survived ($p = 0.017$). We also investigated three important laboratory findings in all patients; white blood cell count (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), which all three were significantly higher in non-survivors ($p < 0.001$) (Table 2).

We also evaluated the correlation between clinical features and laboratory findings with hospitalization duration and admission to ICU. Patients who reported headaches had a shorter stay in the hospital ($p = 0.032$) than patients who experienced chest pain, which spent more days hospitalized ($p = 0.033$). Moreover, patients with chest tightness were more likely to be admitted to ICU ($p = 0.033$) (Table 3). The patients with higher CRP levels had a longer stay in the hospital ($p = 0.006$). Furthermore, patients with higher WBC and CRP levels were more likely to be admitted to ICU ($p = 0.009$ and $p = 0.001$, respectively).

4. Discussion

COVID-19 has a range of severity from no symptoms to ARDS. The specific determining factors for the severity of the disease are not well recognized yet. Regarding limited health facilities and a large number of patients referred to hospitals, knowing more about this disease's clinical course helps decide whom to be admitted. In other words, the more we know about the determinants of the clinical course, we can use them in risk stratifying patients and predicting clinical outcomes.

In the present study, the mean age of patients was 60.6 years old. A report from the United States in March 2020 showed that 62% of COVID-19 patients were older than 55 (COVID TC). In our study, the mean age of non-survivors was significantly higher than those who survived (66.01 and 59.64, respectively). This finding was also noted in some other studies, such as in Italy (Cecconi
et al. 2020) and United States (Imam et al. 2020). They found older age as a predictor of mortality in patients with COVID-19. Our results showed that the mortality rate was higher in males. Similarly, in a cohort study by Palaidimos L et al. in the United States, male sex was associated with worse outcomes (Palaiodimos et al. 2020). Another study in Wuhan also showed male sex as a risk factor for severity and mortality (Chen, Bai, et al. 2020).

WBC may be useful in risk stratifying. In our study, the initial WBC count was in direct correlation with mortality and ICU admission. Unfortunately, we did not include lymphocyte count in this survey. Several studies showed that lymphocyte percentage is inversely associated with the severity of COVID-19 disease (Tan, Wang, et al. 2020, Tan, Huang, et al. 2020). A study by Chen R et al. showed that an increased number of neutrophils was a predictor of disease severity (Chen, Bai, et al. 2020).

According to our findings, CRP levels were significantly higher in non-survivors. Also, hospitalization duration in patients with higher CRP levels was longer, and they were more likely to be admitted to ICU. Moreover, elevated CRP correlation with disease severity has been shown in other studies (Huang, Pranata, et al. 2020).

Belvis R et al. showed that headache was the fifth most frequent symptom after fever, cough, myalgia/fatigue, and dyspnea. In the present study, the headache was not a common symptom among our patients (14.9%), but the prevalence of headaches was significantly higher in survivors ($p = 0.017$). Furthermore, patients with headaches had a shorter duration of hospitalization than patients who experienced chest pain. Similarly, Trigo J et al. showed that headache is an independent predictor of lower mortality risk in COVID-19 patients (Trigo et al. 2020). In another study, evaluating 179 hospitalized patients with COVID-19, mortality was shown to be higher in
patients with headache, although it was not statistically significant in multivariate regression analysis (Du et al. 2020).

In a study about the symptoms of COVID-19 patients in the United States, chest pain was among the symptoms reported more commonly after March 8, 2020 (8% before and 35% after). However, a more significant portion of patients in this report was not hospitalized (Burke et al. 2020).

In our study, chest pain prevalence was not significantly different between survivors and non-survivors, but the patients who experienced chest pain spent more days in the hospital. Dyspnea, as a subjective experience of breathing discomfort, has been reported to affect less than 50% of COVID-19 patients and is more common in those who will die compared to those who recover (Chen, Wu, et al. 2020). Also, in the present study, dyspnea was more common in non-survivors than the survivor group ($p = 0.011$), keeping in mind that dyspnea seems to be underreported in patients with covid-19, which is called happy hypoxemia (Couzin-Frankel 2020).

A decreased level of consciousness is caused by a variety of etiologies, from hypoxia to neurologic complications. In our study, a decreased level of consciousness, regardless of its etiology, was more common in non-survivor. Impaired consciousness has been reported in 7.5% of hospitalized patients with covid-19, and it has been more likely to be presented in severely affected patients (Mao et al. 2020). Similarly, Lahiri D et al. reported that impaired consciousness was considered among the presenting features of COVID-19 (Lahiri and Ardila 2020).

5. Conclusions

The COVID-19 pandemic poses many challenges, and it is essential to gather as much knowledge as possible about this disease. Clinical characteristics, laboratory findings, and their association with the outcome of patients with COVID-19 can be decisive in the management and early diagnosis. Besides, considering the importance of optimized use of limited health facilities, it is
essential to know how to stratify patients and even make predictive tools for better treatment. Chest pain, decreased level of consciousness, dyspnea, and increased CRP and WBC levels seem to be the most potent predictors of severe prognosis.

Data Availability

All data used to support the findings of this study are included within the article.

Author Declarations

We confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Acknowledgments

This study was supported by the Vice-Chancellor for research affairs and Research Hospital Ethics Committee of Mashhad University of Medical Sciences (Grant number: 990081).

References

Abdi, Milad. 2020. "Coronavirus disease 2019 (COVID-19) outbreak in Iran: Actions and problems." *Infection Control & Hospital Epidemiology* no. 41 (6):754-755.

Alamdari, Daryoush Hamidi, Ahmad Bagheri Moghaddam, Shahram Amini, Aida Hamidi Alamdari, Mohammadamin Damsaz, and Amir Yarahmadi. 2020. "The application of a reduced dye used in orthopedics as a novel treatment against coronavirus (COVID-19): a suggested therapeutic protocol." *Archives of Bone and Joint Surgery* no. 8 (suppl1):291.

Alhazzani, W, MH Møller, YM Arabi, M Loeb, MN Gong, and E Fan. "& Du, B.(2020). Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19)." *Intensive care medicine*:1-34.
Bai, Yan, Lingsheng Yao, Tao Wei, Fei Tian, Dong-Yan Jin, Lijuan Chen, and Meiyun Wang. 2020. "Presumed asymptomatic carrier transmission of COVID-19." *Jama* no. 323 (14):1406-1407.

Burke, Rachel M, Marie E Killerby, Suzanne Newton, Candace E Ashworth, Abby L Berns, Skyler Brennan, Jonathan M Bressler, Erica Bye, Richard Crawford, and Laurel Harduar Morano. 2020. "Symptom profiles of a convenience sample of patients with covid-19—united states, January–April 2020." *Morbidity and Mortality Weekly Report* no. 69 (28):904.

Cecconi, Maurizio, Daniele Piovani, Enrico Brunetta, Alessio Aghemo, Massimiliano Greco, Michele Ciccarelli, Claudio Angelini, Antonio Voza, Paolo Omodei, and Edoardo Vespa. 2020. "Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy." *Journal of Clinical Medicine* no. 9 (5):1548.

Chen, Jing, Hualin Bai, Jia Liu, Ge Chen, Qiuyue Liao, Jie Yang, Peng Wu, Juncheng Wei, Ding Ma, and Gang Chen. 2020. "Distinct clinical characteristics and risk factors for mortality in female COVID-19 inpatients: a sex-stratified large-scale cohort study in Wuhan, China." *Clinical Infectious Diseases*.

Chen, Tao, Di Wu, Huilong Chen, Weiming Yan, Danlei Yang, Guang Chen, Ke Ma, Dong Xu, Haijing Yu, and Hongwu Wang. 2020. "Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study." *Bmj* no. 368.

Couzin-Frankel, Jennifer. 2020. The mystery of the pandemic's 'happy hypoxia'. American Association for the Advancement of Science.

COVID TC, Team R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)-United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-6.
Du, Rong-Hui, Li-Rong Liang, Cheng-Qing Yang, Wen Wang, Tan-Ze Cao, Ming Li, Guang-Yun Guo, Juan Du, Chun-Lan Zheng, and Qi Zhu. 2020. "Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study." *European Respiratory Journal* no. 55 (5).

Huang, Chaolin, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, and Xiaoying Gu. 2020. "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China." *The lancet* no. 395 (10223):497-506.

Huang, Ian, Raymond Pranata, Michael Anthonius Lim, Amaylia Oehadian, and Bachti Alisjahbana. 2020. "C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis." *Therapeutic advances in respiratory disease* no. 14:1753466620937175.

Imam, Zaid, Fadi Odish, Inayat Gill, Daniel O'Connor, Justin Armstrong, Aimen Vanood, Oluwatoyin Ibironke, Angy Hanna, Alexandra Ranski, and Alexandra Halalau. 2020. "Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States." *Journal of Internal Medicine.*

JPA., Ioannidis. 07 October 2020. "Global perspective of COVID-19 epidemiology for a full-cycle pandemic. European Journal of Clinical Investigation." no. doi:10.1111/eci.13423.

Lahiri, Durjoy, and Alfredo Ardila. 2020. "COVID-19 Pandemic: A Neurological Perspective." *Cureus* no. 12 (4).

Mao, Ling, Mengdie Wang, Shengcai Chen, Quanwei He, Jiang Chang, Candong Hong, Yifan Zhou, David Wang, Xiaoping Miao, and Yu Hu. 2020. "Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study."
Organization, World Health. 2020. "Health Topics. Coronavirus." *Coronavirus: symptoms. World Health Organization*, 2020a. Disponível em: https://www.who.int/healthtopics/coronavirus#tab_3. Acesso em no. 7.

Palaiodimos, Leonidas, Damianos G Kokkinidis, Weijia Li, Dimitrios Karamanis, Jennifer Ognibene, Shitij Arora, William N Southern, and Christos S Mantzoros. 2020. "Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York." *Metabolism* no. 108:154262.

Tan, Chaochao, Ying Huang, Fengxia Shi, Kui Tan, Qionghui Ma, Yong Chen, Xixin Jiang, and Xiaosong Li. 2020. "C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early." *Journal of Medical Virology*.

Tan, Li, Qi Wang, Duanyang Zhang, Jinya Ding, Qianchuan Huang, Yi-Quan Tang, Qiongshu Wang, and Hongming Miao. 2020. "Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study." *Signal transduction and targeted therapy* no. 5 (1):1-3.

Trigo, Javier, David García-Azorín, Álvaro Planchuelo-Gómez, Enrique Martínez-Pías, Blanca Talavera, Isabel Hernández-Pérez, Gonzalo Valle-Peñaoba, Paula Simón-Campo, Mercedes de Lera, and Alba Chavarría-Miranda. 2020. "Factors associated with the presence of headache in hospitalized COVID-19 patients and impact on prognosis: a retrospective cohort study." *The journal of headache and pain* no. 21 (1):1-10.

Wang, Dawei, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xiang, Zhenshun Cheng, and Yong Xiong. 2020. "Clinical characteristics of 138 hospitalized
patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China." *Jama* no. 323 (11):1061-1069.

Wang, Weier, Jianming Tang, and Fangqiang Wei. 2020. "Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China." *Journal of medical virology* no. 92 (4):441-447.

Zhu, Na, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang Zhao, Baoying Huang, Weifeng Shi, and Roujian Lu. 2020. "A novel coronavirus from patients with pneumonia in China, 2019." *New England Journal of Medicine.*
Table 1. Characteristics of survivors and non-survivors COVID-19 patients.

	Total (n=397)	Survivors (n=336)	Non-survivors (n=61)	P value
Age (years)	60.6 ±17.75	59.64 ± 18.13	66.01 ± 15.04	0.013
Sex (male/ female)	223/174	180/156	42/19	0.035
Hospitalization (Days)	9.35 ± 9.65	8.02 ± 6.8	16.63 ± 16.9	<0.001
Admission to ICU (%)	68 (17.5)	33 (10)	35 (58.3)	<0.001

Data are presented as means ± SDs.

Abbreviations. ICU: intensive care unit.
	Total (n=397)	Survivors (n=336)	Non-survivors (n=61)	P value
Fever (%)	225 (56.7)	189 (56.3)	32 (52.4)	0.573
Headache (%)	59 (14.9)	56 (16.7)	3 (5)	0.017
Sore Throat (%)	43 (10.8)	36 (10.7)	7 (11.4)	0.825
Chest Pain (%)	56 (14.1)	51 (15.2)	5 (8.2)	0.166
Myalgia (%)	126 (31.7)	110 (32.7)	16 (26.2)	0.369
Smell Disorder (%)	29 (7.3)	27 (8)	2 (3.3)	0.284
Taste Disorder (%)	24 (6)	22 (6.5)	2 (3.3)	0.557
Pharyngeal Exudates (%)	7 (1.8)	6 (1.8)	1 (1.6)	0.431
Decreased Consciousness (%)	8 (2)	3 (0.9)	5 (8.2)	0.003
Dyspnea (%)	74 (18.6)	55 (16.4)	19 (31.1)	0.011
Chest Tightness (%)	261 (65.7)	211 (62.8)	43 (70.5)	0.303
Nausea and Vomiting (%)	99 (24.9)	87 (25.9)	11 (18)	0.200
Diarrhea (%)	51 (12.8)	46 (13.7)	5 (8.2)	0.300
Initial WBC (10^3/mm^3)	8.80 ± 5.29	8.25 ± 4.51	11.67 ± 7.67	<0.001
Initial CRP (μg/dL)	90.13 ± 77.73	78.86 ± 66.80	140.94 ± 100.92	<0.001
Initial ESR (mm/h)	51.55 ± 32.46	50.34 ± 32.51	57.03 ± 32.03	<0.001

Data are presented as % and means ± SDs.

Abbreviations. WBC: white blood cells; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate.
Table 3. Pearson's correlation coefficients between clinical manifestations and laboratory findings with hospitalization duration and admission to ICU.

	Duration of Hospitalization	Admission to ICU		
	r values	P values	r values	P values
Fever	0.035	0.489	-0.009	0.865
Headache	-0.109	0.032*	0.081	0.109
Sore Throat	0.013	0.794	-0.033	0.520
Chest Pain	0.108	0.033*	-0.015	0.765
Myalgia	0.001	0.983	0.043	0.397
Smell Disorder	0.027	0.597	-0.002	0.972
Taste Disorder	0.043	0.403	-0.034	0.508
Pharyngeal Exudates	0.0005	0.996	0.040	0.437
Decreased Consciousness	-0.008	0.875	0.089	0.078
Dyspnea	0.037	0.462	0.070	0.168
Chest Tightness	0.021	0.679	0.108	0.033*
Nausea and Vomiting	-0.029	0.568	0.018	0.729
Diarrhea	-0.013	0.791	0.042	0.411
Initial WBC (10³/mm³)	-0.002	0.975	0.139	0.009**
Initial CRP (µg/dL)	0.16	0.006**	0.213	0.001**
Initial ESR (mm/h)	0.045	0.454	0.073	0.228

Data are presented as means ± SDs.

*Correlation is significant at the 0.05 level.

**Correlation is significant at the 0.01 level.

Abbreviations. WBC: white blood cells; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate.