Electronic analogy of the Goos–Hänchen effect: a review

Xi Chen1,2, Xiao-Jing Lu1, Yue Ban2 and Chun-Fang Li1

1 Department of Physics, Shanghai University, 200444 Shanghai, People’s Republic of China
2 Departamento de Química-Física, UPV-EHU, Apdo 644, E-48080 Bilbao, Spain

E-mail: xchen@shu.edu.cn

Received 15 October 2012, accepted for publication 3 January 2013
Published 29 January 2013
Online at stacks.iop.org/JOpt/15/033001

Abstract
The analogies between optical and electronic Goos–Hänchen effects are established based on electron wave optics in semiconductor or graphene-based nanostructures. In this paper, we give a brief overview of the progress achieved so far in the field of electronic Goos–Hänchen shifts, and show the relevant optical analogies. In particular, we present several theoretical results on the giant positive and negative Goos–Hänchen shifts in various semiconductor or graphene-based nanostructures, their controllability, and potential applications in electronic devices, e.g. spin (or valley) beam splitters.

Keywords: Goos–Hänchen shift, electron wave optics

Extended to other physics fields [2] including nonlinear optics, plasmas, semiconductor, acoustics [24], neutron physics [25, 26] and even atom optics [27].

The considerable number of publications on the subject, and a recent workshop on ‘Beam shifts: analogies between light and matter waves’ held at the Lorentz Center, Leiden, The Netherlands (28 March–1 April 2011) demonstrate much current interest, not only from the optics community but also from other fields such as condensed matter and particle physics. In recent years, the lateral GH shift and transverse Imbert-Fedorov (IF) shift (also known as the spin-Hall effect of light) [28–33] have attracted much attention (see review [34]). The field covered here is vast, and we pay special attention to work done by the authors, while making an effort to offer a global perspective. Therefore, in this review we shall concentrate on the electronic GH shifts in semiconductor and graphene-based nanostructures and their applications in spin (or valley) beam splitters and filters.

Historically, the study of the electronic GH shift dates back to the 1960s [5, 35]. In 1964, Renard [5] proposed the energy flux method to investigate the GH shift for matter waves, based on the analogy between the Schrödinger

1 2040-8978/13/033001

+ 12$33.00

© 2013 IOP Publishing Ltd Printed in the UK & the USA
equation in quantum mechanics and the Helmholtz equation in electromagnetism. Later on, Carter and Hora [35] considered the GH shift of matter waves in total reflection at grazing incidence. Motivated by the progress on optical GH and IF shifts, Miller et al [36] made a theoretical investigation of the analogous GH shifts of a Dirac electron beam which undergoes a series of total internal reflections from finite potential barriers of arbitrary smoothness. In general, it is found that the GH shift for Dirac electrons is at most of the order of a Compton wavelength. To observe it macroscopically, the GH shift for Dirac electrons was further proposed to be amplified by multiple reflections [37]. However, it is still an open challenge to detect the electric GH shift, due to the smallness of the GH shift, and the difficulty in the preparation of a well-collimated electron beam, the analog of an optical beam in electronics.

With the advent of techniques for the semiconductor growth and fabrication of semiconductor nanoelectronic devices, the optics-like phenomena [38], such as reflection, focusing, diffraction, and interference, have given rise to a field of research which is best described as ballistic electron optics in two-dimensional electron systems. All of these electron wave devices result from the quantum-mechanical wave nature of electrons [39, 40]. In 1993, Wilson et al [41] studied the GH shift and associated time delay for an electron beam totally reflected from a potential-energy/effective-mass interface in a semiconductor. It was found that the phase shift resulting in the GH shift and time delay upon the total internal reflection has a great effect on the quantum interference in electron wave devices, and thus contributes to novel electron waveguiding characteristics. Again, the smallness of the electronic GH shift in total reflection has impeded its direct measurement and applications in electron devices. To overcome this bottleneck, we generalized the electronic GH shift in total internal reflection to that in partial reflection [42, 43]. The resonance-enhanced GH shift of ballistic electrons in transmission was found in semiconductor quantum barriers [42] as well as quantum wells [43]. More interestingly, the lateral shifts of an electron beam transmitted through a semiconductor quantum well, acting as an electron wave slab, can be negative and positive, depending on the incidence angle [43]. Moreover, the negative and positive GH shifts separate the spin-up electron beam from the spin-down one spatially in a more realistic setup, i.e., parabolic potential well under a uniform vertical magnetic field [44] and δ-magnetic barrier nanostructures [45]. This achievement leads to some other interesting investigations and applications in quantum electronic devices such as spin filters or spin beam splitters. For instance, the GH shift in magnetic–electric nanostructures can be utilized to design a spin beam splitter, when the GH shift can be controlled by adjusting the electric potential induced by an applied voltage and the magnetic field strength of ferromagnetic stripes [45]. For recent developments in this line of research, see [46–49].

A different but relevant line is the electronic GH shift in graphene [50–58]. The first experimental fabrication of monolayer graphene [59, 60], a graphic sheet of one-atom thickness, has inspired many interesting and new concepts in Dirac electron optics to design graphene-based electron wave devices [61]. Motivated by electronic negative refraction, the Veselago lens and focusing in graphene [62], Beenakker and his collaborators [50] have pioneered the quantum GH effect at the p–n interface in graphene, and have shown that the electronic GH shifts result in a remarkable $8e^2/\hbar$ conductance plateau in the p–n–p graphene junction. This work has stimulated other progress on resonance-enhanced GH shifts in various graphene-based nanostructures, including single [52], (asymmetric) double barrier [53], and superlattices [54]. These huge (negative or positive) GH shifts are considered to be more suitable to design the controllable valley and spin beam splitter. Similar to those in semiconductors, the GH shifts in graphene can also be modulated by electric and magnetic barriers [55], which influences the electronic transport in graphene-based electronics. Besides, a different and intriguing phenomenon is that the GH shifts can also be controlled by using only strain, without requiring any external fields [56, 57]. In strained graphene, the lateral shifts, depending on the strain tensor and direction [58], lead to valley-dependent transport and graphene-based valleytronic devices like valley beam splitters [57].

This review is organized as follows. In sections 2 and 3, we shall present the work on GH shifts in semiconductor and graphene nanostructures, respectively. Throughout this review, we attempt to establish analogies between GH shifts of light beams and electron beams in semiconductor or graphene, and address such issues as (i) the properties of GH shifts in reflection and transmission, (ii) their controllability, and (iii) their dependence on different degrees of freedom, e.g. spin or valley. Some remarks and prospects will be presented in section 4.

2. Electronic Goos–Hänchen shifts in semiconductors

2.1. Single interface

We shall start with the GH shift for the totally reflected electron beam at a single interface between two different potential energies in a semiconductor, which helps to establish the analogy of optical and electronic GH shifts on a heuristic basis. As shown in figure 1, we consider a ballistic electron beam of total energy E that is incident at an incidence angle θ_0 from one region to the other, where the conduction band edge potential energies are V_1 and V_2 ($V_1 < V_2$), and the effective masses are m^*_1 and m^*_2, respectively. When the incidence angle θ_0 is larger than the critical angle

$$\theta_c = \sin^{-1} \left(\frac{m^*_2 (E - V_2)}{m^*_1 (E - V_1)} \right),$$

(1)

total internal reflection will occur. The critical angle for total reflection is valid for the potential step (rise), when the energy satisfies $V_2 < E < E_C$ with $E_C = (m^*_2 V_2 - m^*_1 V_1)/(m^*_2 - m^*_1)$ [41]. In this case, the reflectivity and phase shift are
respectively given by
\[r = \frac{1 - \frac{m_1^2 \kappa}{m_2^2 \kappa}}{1 + \frac{m_1^2 \kappa}{m_2^2 \kappa}} = e^{i \phi_r}, \quad (2) \]

and
\[\phi_r = -2 \tan \left(\frac{m_1^2 \kappa}{m_2^2 \kappa} \right), \quad (3) \]

where \(k_x = k \cos \theta, k_y = k \sin \theta, \kappa = (k_x^2 - k_y^2)^{1/2}, k = [2m_1^2(E - V_1)]^{1/2}/h \) and \(k' = [2m_2^2(E - V_2)]^{1/2}/h \). Here \(\theta \) is the incidence angle for the plane wave component under consideration. Now we are ready to calculate the GH shift for a finite-sized electron beam. The wavefunction of the incident beam is assumed to be
\[\Psi_{im} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} A(k_y - k_{y0}) \exp[i(k_x x + k_y y)] \, dk_x, \quad (4) \]

with the angular spectrum distribution \(A(k_y - k_{y0}) \) around the central wavevector \(k_{y0} \). The wavefunction of the reflected one is thus expressed as
\[\Psi_r = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} r(k_y) A(k_y - k_{y0}) \exp[i(-k_x x + k_y y)] \, dk_x, \quad (5) \]

where \(r(k_y) \) is given by equation (2). In practice, the range of the above integral is from \(-k_x \) to \(k_x \), and here it can be ideally extended from \(-\infty \) to \(\infty \) for a well-collimated electron beam.

To find the position where \(|\Psi_r|^2 \) is maximum, that is, the GH shift of the reflected beam, we look for the position at which the total phase \(\Phi = -k_x x + k_y y + \phi_r \) has an extremum when differentiated with respect to \(k_y \), that is, \(\partial \Phi / \partial k_y = 0 \) [63]. This provides the stationary phase expression of the GH shift, namely
\[s_r = -\frac{\partial \phi_r}{\partial k_y} \bigg|_{k_y = 0}, \quad (6) \]

which yields the electronic GH shift in total reflection [41, 42]
\[s_r = \frac{2}{\kappa_0} \frac{(k_x^2 - k_y^2 \tan \theta_0)}{(m_1^2/m_2^2)k_0^2 + (m_2^2/m_1^2)k_0'^2}, \quad (7) \]

where the subscript 0 denotes the value taken at \(\theta = \theta_0 \), namely \(k_y = k_{y0} \). This demonstrates that there exists a GH shift for ballistic electrons in the semiconductor. So far, spin is totally neglected in our discussions. Since the GH shift is proportional to the de Broglie wavelength, \(1/\kappa_0 \), it is a purely wave-like effect, and has nothing to do with the spin–orbit coupling. Like the GH shift in optics, the electronic GH shift in total internal reflection is only about the order of the electron wavelength, which has impeded its direct measurement and applications in electron devices. This drawback motivates us to study the enhancement of electronic GH shifts, see below.

The close analogy between ballistic electron transport (electron wave propagation) in semiconductors and the electromagnetic wave propagation in classical optics has been well established [39, 64]. The similarity and difference for electron waves and electromagnetic waves are shown in table 1. As shown in figure 1, we can calculate the GH shift of light beam totally reflected from a single interface of two media with different refraction indices, \(n_1 = \sqrt{\mu_1 \varepsilon_1} \) and \(n_2 = \sqrt{\mu_2 \varepsilon_2} \).

\[s_{r,TE} = \frac{2}{\kappa_0} \frac{(k_x^2 - k_y^2 \tan \theta_0)}{\left(\mu_1/\mu_2\right)k_0^2 + (\mu_2/\mu_1)k_0'^2}, \quad (8) \]

\[s_{r,TM} = \frac{2}{\kappa_0} \frac{(k_x^2 - k_y^2 \tan \theta_0)}{\left(\varepsilon_1/\varepsilon_2\right)k_0^2 + (\varepsilon_2/\varepsilon_1)k_0'^2}, \quad (9) \]

which are the same as equation (7). With the parameters in table 1, we have \(k = \sqrt{\mu_1 \varepsilon_1 \omega} \) and \(k' = \sqrt{\mu_2 \varepsilon_2 \omega} \) which are the wavevectors in two different media, and other parameters are expressed as \(\kappa = (k_x^2 - k_y^2)^{1/2}, k_x = k \cos \theta, \) and \(k_y = k \sin \theta \) in the optical analogy, respectively. Apart from the similarity,
we should also point out that the difference in the electron effective masses brings a new degree of freedom, and as a result the critical angle, reflection, transmission, and GH shift are more complicated and also interesting. For instance, when the negative effective electron mass is considered in a semiconductor, e.g. GaN [65], the electronic analogy of negatively refractive media can be achieved, and the GH shift of ballistic electrons is expected to be negative [66].

2.2. Quantum barrier and well

Based on the previous results [41, 42], the GH shift in total reflection can be further generalized to partial transmission in a semiconductor quantum barrier and well, as shown in figure 2. First, we discuss the GH shift in transmission through a semiconductor quantum barrier, extending from 0 to a, where V_2 > V_1, V_2 is the height of the potential barrier, V_1 are the potential energies on its two sides, and the corresponding electron effective masses are m_1^* and m_2^*. In this case, the critical angle for total reflection is given by equation (1), so that the electron wave propagation inside the region of the barrier can be divided into two cases: evanescent and propagating waves. Different from the GH shift in total reflection, the GH shift in transmission though the potential barrier can be enhanced by transmission resonances [42], where the potential barrier is described in figure 2(b). Therefore, we just emphasize the propagating case when the incidence angle θ_0 is less than the critical angle θ_c (see equation (1)) for total reflection. In this case, the GH shift of the transmitted beam is easily obtained by the stationary phase method

\[s = -\frac{\partial \phi}{\partial k_y} \bigg|_{a=0}, \]

where the phase \(\phi \) is given by

\[\tan \phi = \frac{1}{2} \left(\frac{m_2^* k_x}{m_1^* k_x} + \frac{m^*_2 k'_x}{m_1^* k_x} \right) \tan k'_x a, \]

where \(k'_x = k' \cos \theta', k' = \sqrt{2m^*_2(E - V_2)^{1/2}/\hbar}, \) and \(\theta' \) is determined by Snell’s law for electron waves, \(\sin \theta'/\sin \theta = \sqrt{m^*_2(E - V_1)/m_1^*E_2 - 2V_2}/2V_2. \) Thus, the GH shift in transmission has the following form:

\[s = \frac{s_g}{2a^2} \left[\frac{m_2^* k_{x0} + m^*_2 k'_{x0}}{m_1^* k_{x0}} - \left(1 - \frac{k'^2_{x0}}{k^2_{x0}} \right) \sin \frac{2k^2_{x0}a}{2k'^2_{x0}} \right]. \]

In the evanescent case where the incident angle θ_0 is larger than the critical angle θ_c, the above expression is still valid, only if \(k'_{x0} \) is replaced by \(k_{x0}. \) Importantly, the GH shift in this case becomes independent of the barrier’s thickness, and saturates at a constant, which is the order of the electron wavelength. This phenomenon is similar to the optical GH shift and associated with the Hartman effect in FTIR [14, 15]. Here we are more interested in the GH shift in the propagating case, instead of the evanescent case.

When \(k'_{x0}a = m\pi \) \((m = 1, 2, 3, \ldots)\), we have \(T_0 = 1 \), which is the so-called transmission resonance. At resonances, and the lateral shift is maximal,

\[s_{\text{max}} = s(k'_{x0}a = m\pi) = \frac{s_g}{2} \left(\frac{m_2^* k_{x0} + m^*_2 k'_{x0}}{m_1^* k_{x0}} + \frac{m_2^* k'_{x0}}{m_1^* k_{x0}} \right). \]

If the incidence angle θ_0 is close to the critical angle θ_c, \(k'_{x0} \) is much less than \(k_{x0} \), so that \(s_{\text{max}} \) is much larger than \(s_g. \) On the other hand, when \(k'_{x0}a = (m + 1/2)\pi, T_0 \) reaches its minima and the electron beam is most reflected back. In this case, the

Figure 2. (a) Schematic diagram of (positive and negative) lateral GH shifts of ballistic electrons propagating obliquely through a quantum barrier or well, corresponding to a two-dimensional semiconductor potential barrier (b) and a well under an external applied electric field (c).
lateral shift is also minimal,

\[s_{\text{min}} = 4|k_j^{0}|(m + 1/2) = 2\kappa \left(\frac{m^2 k_0^j}{m_1^2 k_0^j} + \frac{m_2^2 k_0^j}{m^2 k_0^j} \right)^{-1}. \] (14)

Obviously, the GH shift is modulated by the transmission probability \(T_0 \), so that it can be greatly enhanced by transmission resonances resulting from the multiple reflections inside the barrier.

In analogy with the negative GH shift in a dielectric slab [20], the GH shift of ballistic electrons is found to be negative as well as positive when the electron beam transmits through a semiconductor quantum well, as shown in figure 2(c), acting as a quantum slab [43]. The expression for the GH shift in the quantum well is the same as that for the quantum barrier. The only difference considered here is \(V_2 < V_1 \) for the semiconductor quantum well. When the necessary condition

\[\frac{m_2^2 k_0^j}{m_1^2 k_0^j} + \frac{m_1^2 k_0^j}{m_2^2 k_0^j} < \left(1 - \frac{k_2^2}{k_0^2} \right) \left(\frac{m_2^2 k_0^j}{m_1^2 k_0^j} - \frac{m_1^2 k_0^j}{m_2^2 k_0^j} \right), \] (15)

is fulfilled, the GH shift becomes negative, when the incident angle satisfies

\[\cos \theta_0 < \left[\frac{m_2^2(E - V_2)/m_1^2(E - V_1) - 1}{1 + (m_2^2/m_1^2)^2} \right]^{1/2} = \cos \theta_1. \] (16)

Further analysis shows that when the incident energy is in the region of \(V_1 < E < E_c \), the necessary condition (16) is satisfied, so that the lateral shift of ballistic electrons in the quantum slab can be negative as well as positive. In other words, if the incidence angle \(\theta_0 \) is larger than the threshold angle \(\theta_1 \), the GH shifts in transmission through a semiconductor quantum slab can be negative for some values \(a \), width of the semiconductor quantum well, while the GH shifts are always positive in the semiconductor quantum barrier (\(V_2 > V_1 \)).

In addition, when \(V_2 < V_1 \) is assumed for the quantum well, there exists the critical angle, \(\theta_c \), at the electron energies above \(E_c \). In the case of \(E > E_c \), total internal reflection occurs. Thus, lateral shifts are always positive, since the necessary condition (16) is invalid. In contrast, when \(E > E_c \) for the quantum barrier \(V_2 > V_1 \), the GH shifts can be negative under some conditions [43]. All these complicated but interesting behaviors result from the effective masses. Note that if the effective masses are equal, \(m_1^* = m_2^* \), the critical angle for the quantum well does not exist because the critical energy \(E_c \) goes to infinity.

Before we turn to the modulation of GH shifts and its applications, we have to clarify the physical explanation of positive and negative GH shifts of ballistic electrons in the quantum barrier and well. Originally, the GH shift was explained by the reshaping of totally reflected plane wave components undergoing different phase shifts, based on Artmann’s stationary phase method [4]. The GH shifts presented here can be further understood from the destructive and constructive interference due to the multiple reflections and transmission inside the barrier or well. The negative GH shift is similar to that of a light beam transmitted through a dielectric slab [20], but different from that in negatively refractive media [66, 20]. As illustrated in the optical analogy, we have already demonstrated that the negative lateral shift is produced by the reshaping effects due to the multiple reflections [23].

2.3. Modulation by external fields

From the point of view of applications, the controllability of GH shifts by external fields will provide more flexibility to design the electronic devices, based on the negative and positive shifts mentioned above. To this end, we first focus on the control of the GH shift by an external electric field, accounting for imposing an applied bias field on the semiconductor quantum well, see figure 2(c). As the system is translationally invariant along the \(y \) direction, the wavefunction in the region of the quantum well under an applied electric field can be expressed as \(\psi(x, y) = \psi(x)e^{ih\theta} \), where the longitudinal wavepacket is determined by

\[\frac{\partial^2 \psi(x)}{\partial x^2} + \frac{2m^*_e}{\hbar^2} \left(E_x - V_2 + \frac{eV_a}{a} \right) \psi(x) = 0, \] (17)

where \(E_x = \hbar^2 k_2^2/2m^*_e \) is the longitudinal energy and \(V_a \) is the applied biased voltage. Generally, the solutions of the Schrödinger equation for the Hamiltonian with applied biased voltage \(V_a \) are the well-known linearly independent Airy functions \(Ai(\eta) \) and \(Bi(\eta) \), that is, \(\psi(x) = MAi(\eta) + NBi(\eta) \), where

\[\eta = \left(-\frac{2m^*_e eV_a}{a \hbar^2} \right)^{1/3} \left[\frac{a}{eV_a} (E_x - V_2) + x \right] \] (18)

with longitudinal energy \(E_x = \hbar^2 k_2^2/2m^*_e \). Based on the boundary conditions, the analytical expressions for the transmission coefficient and the corresponding phase shift are obtained; then the GH shift is finally numerically calculated. In [43], the numerical results show that the GH shifts with a biased voltage can also be negative as well as positive in the same way as those in the absence of an external applied electric field, and the lateral shifts are tuned from negative to positive when the biased voltage \(V_a \) is increased. In addition, we have also illustrated that the parameter \(\chi \) of the semiconductor has a great effect on the lateral shifts, when we consider the semiconductor quantum well consisting of \(Ga_{1-x}Al_xAs/GaAs/Ga_{1-x}Al_xAs \). Thus, this provides a more feasible scheme to control the GH shifts by using external fields, instead of manipulating the parameters of the semiconductor structure, e.g. the width \(a \) of the quantum well.

Next, we shall discuss that the external magnetic field provides an alternative way to modulate the (negative and positive) GH shifts in the quantum well. As depicted in figure 3, we consider the GH shift for ballistic electrons with total energy \(E \) in a parabolic quantum well under a uniform magnetic field, in which the Hamiltonian is given by

\[H = \frac{1}{2m^*} (p - A)^2 + \frac{1}{2} \mu_B g \sigma B + H_{\text{conf}}. \] (19)
with the parabolic confinement energy $H_{\text{conf}} = \frac{1}{2}m^*\omega_0^2z^2$. This system is particularly interesting, because at high magnetic fields, Landau levels form and the quantum-Hall effect has no optical analogy [39]. In such a quantum well, the uniform magnetic field continuously bends the trajectory of the electron, exhibiting cyclotron motion, which implies that the motion of the electron has no direct analogy with the linear propagation of light. However, the transmitted electron beam still experiences the GH shift in such quantum systems, and the unique properties of GH shifts depend not only on the incident energy and incidence angle, but also the magnetic field and Landau quantum number. After some lengthy but direct calculations, the GH shift in a quantum well under a uniform magnetic field is obtained, by using the stationary phase method, as [44]

$$s = \frac{a \tan \theta_0}{2f_0^2} \left(1 - \frac{k_0^2}{k_0^2} \right) \sin(2k_0^2f_0), \quad (20)$$

where the subscript 0 means the value at $k_r = k_{r0}$, that is $\theta = \theta_0$, as before, for the plane wave component under consideration.

$$f \exp(i\phi) = \cos(k'_r a) + i \left(\frac{k_0^2 + k_{r0}^2}{2k_0k_{r0}} \right) \sin(k'_r a), \quad (21)$$

the corresponding longitudinal wavevector $k_x = (k^2 - k_{y0}^2)^{1/2}$, and k_0' in the central potential region is

$$k'_x = \sqrt{\frac{2m^*\omega_0^2}{\hbar^2} \left(E_n - \left(n + \frac{1}{2} \right) \hbar\omega_c - \frac{1}{2} \mu_B g \sigma B \right) \frac{2 \omega_0}{\omega_0^2 + \omega_c^2}}, \quad (22)$$

with the parameters: $k = (2m^*E)^{1/2}/\hbar$, effective mass of electron m^*, energy E_n (n is Landau level), cyclotron frequency $\omega_c = \frac{eB}{mc}$, and $\omega_0^2 = \omega_c^2 + \omega_r^2$. When only the plane wave is considered, the spatial location inside the potential well is around

$$Y = \hbar k'_r/eB = v(n, k'_r) \frac{\omega_0^2 + \omega_r^2}{\omega_c \omega_0^2}, \quad (23)$$

with the velocity

$$v(n, k'_r) = \frac{1}{\hbar} \frac{\partial E_n}{\partial k'_r} = \frac{\omega_0^2 \hbar k'_r}{\omega_c^2 m^*}. \quad (24)$$

The transverse location for each plane wave eigenstate is proportional to the velocity and magnetic field. From the classical viewpoint, the spatial displacement can be plausibly explained by the Lorentz force [39]. As a consequence, the transverse shifts for the forward and backward propagating states inside the central region are positive and negative, since the Lorentz force is opposite for electrons moving in the opposite direction. However, the lateral displacement predicted by the GH effect will be totally different. On the one hand, in the propagating case, when the transmission resonances $k'_{i0}a = m\pi$ or anti-resonances $k'_{f0}a = (m + 1/2)\pi$ occur, the GH shift is zero, which means the positions in the y direction are the same for both incident and transmitted electrons. On the other hand, the GH shifts can be negative and positive, depending not only on the incident energy, but also on the magnetic field. In contrast, in the evanescent case, the GH shifts become always positive, like in the semiconductor barrier. The dependence of the GH shift on the strength of the magnetic field and the Landau energy level provides more freedom to control the GH shifts. In the propagating case, the GH shifts can be changed from negative to positive by controlling the strength of the magnetic field, and vice versa. However, the GH shifts finally become positive with increasing the strength of the magnetic field, since the propagation of electrons is actually evanescent. Based on these phenomena, the spin beam splitter is proposed in [44], in which the spin-up and spin-down electron beams can be completely separated by negative and positive GH shifts. In addition, we can choose the incident energy within the range of $E_c^+ < E < E_c^-$, where the critical energy for evanescent waves with spin-up and spin-down polarizations is

$$E_c = \left(n + \frac{1}{2} \right) \hbar\omega_c + \frac{1}{2} \mu_B g \sigma B. \quad (25)$$

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure3.png}
\caption{(a) Schematic diagram for a 2DEG with the parabolic quantum well under a uniform magnetic field B along the vertical z-direction. (b) Negative and positive GH shifts of ballistic electrons are presented in this configuration. (c) Description of the parabolic confinement potential H_{conf}.}
\end{figure}
Figure 4. (a) Schematic illustration of the magnetic–electric nanostructure with two metallic ferromagnetic stripes deposited on the top and bottom of the semiconductor heterostructure; (b) the magnetic–electric barrier models exploited here correspond to the P and AP magnetization configurations of two ferromagnetic stripes, respectively. (c) The positive and negative GH shifts in this nanostructure.

obtained from equation (22). This suggests that the spin-down polarized electrons for $E > E_c$ can traverse through the structure in the propagating mode with high transmission probability, while the spin-up polarized electrons for $E < E_c$ tunnel through it in the evanescent mode with very low transmission probability. These phenomena describe an alternative physical mechanism to design a spin spatial filter with energy gap, $E = \mu_B g B$. In what follows, we will discuss the applications of GH shifts in spintronics.

2.4. Applications in spintronics

Now we shall discuss the spin-dependent GH shift and its application in spintronics. As mentioned before, the proposal for designing spin beam splitters is that the spin-up and spin-down polarized electron beams are separated by different GH shifts in a parabolic quantum well under a uniform magnetic field, due to their energy dispersion relation depending on the spin polarization [44]. In other realistic electronic devices, a significant class of 2DEG nanostructures, magnetic barriers, can be experimentally realized by the deposition of a 2DEG in an inhomogeneous field, see the references in [45–49]. In 2008, we proposed for the first time the tunable GH shifts and spin beam splitter in the modulation-doped semiconductor heterostructure, depositing two metallic ferromagnetic stripes on the top and bottom of the semiconductor heterostructure [45]. The configuration of such a magnetic–electric nanostructure is shown in figure 4. The Hamiltonian describing such a system in the (x, y) plane, within the single particle effective-mass approximation, is

$$H = \frac{p_x^2}{2m^*} + \frac{[p_y + eA_y(x)]^2}{2m^*} + U(x) + \frac{eg^* \sigma h}{2m_0} B_z(x),$$

where m^* is the electron effective mass and m_0 is the free electron mass, (p_x, p_y) are the components of the electron momentum, g^* is the effective Landé factor, $\sigma = +1$ for spin-down electrons, and $A_y(x)$ is the y-component of the vector potential given, in the Landau gauge, by $\vec{A} = [0, A_y(x), 0]$. For GaAs, we can choose $B_z = 0.1$ T, $g^* = 0.44$, and $m^* = 0.067 m_0$. Once the Hamiltonian is given, we can follow a similar process to calculate the GH shift in terms of the stationary phase method. It was found that the GH shifts of the transmitted electron beam are negative and positive, and can be controlled by the magnetic field strength of ferromagnetic stripes and the applied voltage. Depending on the magnetic barriers, described by $B_z(x) = B_1 \delta(x+a/2) - \chi B_2 \delta(x-a/2)$, the behaviors of GH shifts for $\chi = +1$ (P case) and $\chi = -1$ (AP case) are totally different with respect to spin polarization. In the AP configuration, the GH shift depends on the electron spin due to its asymmetry, so that the spin polarized electron beam can be separated spatially, while in the P configuration the GH shift does not depend on spin polarization. As a result, the negative and positive GH shifts depend on electron spins when two δ-magnetic barriers point at the same direction; thus, a spin beam splitter that separates spin-up and spin-down electron beams by their corresponding GH shifts can be proposed in parallel double δ-magnetic barrier nanostructures. The proposed spatially separating spin filter and spin beam splitter are different from those designed by the refraction of a spin electron beam at the interface by
3. Electronic Goos–Hänchen shifts in graphene

3.1. Single interface

In this section, we shall turn to the GH shift in graphene, which is different from that in semiconductors. As we know, graphene is a two-dimensional zero-gap semiconductor with the linear dispersion relation, \(E = \hbar k v_F \); thus, the low-energy quasi-particles are formally described by the Dirac-like Hamiltonian [60], \(\hat{H}_0 = -i\hbar v_F \sigma \cdot \nabla \), where \(v_F \approx 10^6 \text{ m s}^{-1} \) is the Fermi velocity, \(k \) is the Fermi wavevector, and \(\sigma = (\sigma_x, \sigma_y) \) are the Pauli matrices. The linear-energy dispersion and two-spinor component of the wavefunction differentiate the electron wave propagation in graphene from that in semiconductors, which leads to many interesting optic-like phenomena, such as negative refraction [62], collimation [69], Fabry–Perot interference [70], Bragg reflection [71] and waveguides [72]. To consider the GH shift in graphene, the incident electron beam is assumed to be

\[
\Psi_{in} = \int_{-\infty}^{\infty} \, dk_y A(k_y - k_{0}) e^{i(k\bar{x} + k_y y)} \left(e^{-i\theta/2} e^{i\theta/2} \right),
\]

and the reflected one is thus expressed as

\[
\Psi_r = \int_{-\infty}^{\infty} \, dk_y r(k_y) A(k_y - k_{0}) e^{i(-k\bar{x} + k_y y)} \left(e^{-i\theta/2} e^{i\theta/2} \right),
\]

where \(A(k_y - k_{0}) \) is the angular spectral distribution around the central wavevector \(k_{0} \) and the reflection amplitude is \(r(k_y) = |r| \exp[i\phi_r(k_y)] \). The two upper and lower components \(\Psi_{in, \pm} \) at the interface \(x = 0 \) centered at two different mean \(y \) coordinates, \(\bar{y}_\pm = \pm \frac{1}{2} \theta'(k_{0}) \). The two components \(\Psi_{r, \pm} \) at the interface \(x = 0 \) centered at \(\bar{y}_\pm = -\phi'_r(k_{0}) \mp \frac{1}{2} \theta'(k_{0}) \).

Thus, the upper spinor component displaced along the interface by an amount \(\phi_+ = \bar{y}_{\pm} - \sum_{0} = -\phi'_r(k_{0}) - \theta'(k_{0}) \), while the displacement of the lower spinor component is given by \(\phi_- = \bar{y}_{\pm} - \sum_{0} = -\phi'_r(k_{0}) + \theta'(k_{0}) \). Different from that in semiconductors, the GH shift in graphene is defined as

\[
s_r = \frac{1}{2} (\sigma_+ + \sigma_-) = -\frac{\partial \phi_r}{\partial k_y} |_{k_y = k_{0}},
\]

which means the average displacement of the upper and lower spinor components. Note that a different spin component for the incident wave will lead to a different definition of the GH shift in graphene. In order to clarify the difference from the GH shift in semiconductors, we would like to repeat the calculations of the GH shift in the literature [50, 51]. As shown in figure 5, we consider the incident electron beam with incidence angle \(\theta \), \(\theta \) is the incidence angle for the plane wave component under consideration. Based on the Dirac-like equation described above, we can write the wavefunctions in the two different regions of I and II. By defining \(k = |E|/\hbar v_F \) and \(k' = |E - V_0|/\hbar v_F \), we have

\[
\psi_I = \frac{1}{\sqrt{2}} \left(e^{-i\theta/2} e^{i\bar{y} \theta/2} \right) e^{i k_{s} x + i k_{y} y} + r \frac{\sqrt{2}}{\sqrt{s} e^{i \theta/2}} e^{-i k_{s} x + i k_{y} y},
\]

with \(k_s = k \cos \theta \), \(k_y = k \sin \theta \), and \(s = \text{sgn}(E) \), where \(r \) is the reflection amplitude. In region II, the transmitted wave is given by

\[
\psi_{II} = \frac{t}{\sqrt{2}} \left(e^{-i\theta/2} e^{i\bar{y} \theta/2} \right) e^{i k'_{s} x + i k_{y} y},
\]

with \(k' = k' \cos \varphi \) and \(s' = \text{sgn}(E - V_0) \). By using boundary conditions at \(x = 0 \), we can calculate the coefficients \(r \) and \(t \).
where \(r \) is given by

\[
r = \frac{i(e^{i\theta} - s's'e^{i\theta})}{1 + s's'e^{i\theta}}. \tag{32}
\]

When the incidence angle \(\theta \) is larger than the critical angle \(\theta_0 = \arcsin[|V_0/E - 1|] \), total reflection occurs. In this case, \(\kappa' = i = (k_x^2 - k_y^2)^{1/2} \), the reflection coefficient becomes

\[
r = |r| \exp[i\varphi_r(k_y)] = \frac{ie^{i\theta} s's'k' + (\kappa + k_y)}{s's'k' + ie^{i\theta}(\kappa + k_y)}. \tag{33}
\]

According to the above definition (29), the GH shift at the single interface, as shown in figure 5, is obtained as [50]

\[
s_r = \frac{k_0^2}{k_0^2} + s's^2((V_0/E - 1)) \tag{34}
\]

Noting that 0 in the subscript means the value at \(k_y = k_0 \) and the GH shift in total reflection is again the order of the electron wavelength, \(1/k_0 \). In general, when the graphene n–n interface (when \(E > V_0 \) is considered, \(s's' = 1 \), thus the GH shift is always positive, like the GH shift at the single semiconductor interface. Interestingly, the negative GH shift appears at a graphene p–n interface (when \(E < V_0 \)), due to \(s's' = -1 \), for the incidence angles satisfying

\[
\theta_c < \theta_0 < \theta^* = \arcsin \sqrt{\sin \theta_c} \tag{35}
\]

In contrast, when \(\theta_0 > \theta^* \), the GH shift becomes positive, regardless of the relative magnitude of \(E \) and \(V_0 \).

To understand the positive and negative GH shifts in graphene, we may define the effective refractive index as \(n_r = E/(E - V_0) \). In the case of \(E < V_0 \), the Klein tunneling is analogous to the phenomenon of negative refraction in a metamaterial with \(n_r < 0 \). In contrast, the classical motion for \(E > V_0 \) corresponds to the positive refractive index \(n_r > 0 \) in the normal dielectric. Since the link between Klein tunneling and negative refraction, many intriguing phenomena in metamaterials, for example, negative refraction, Veselago lens and focusing [62], have been transferred to the electron transport in graphene. In addition, the optical analogy of graphene has also been proposed in photonic crystals [73–75] and negative–zero–positive index metamaterial (NZPIM) [76, 77]. For more information, see the recent review in [78].

3.2. Single, double and multiple barriers

Recent publications have shown that the GH shifts in graphene can be greatly enhanced by transmission resonances in various graphene-based nanostructures including single [52], double [53] and multiple barriers [54].

In graphene-based barriers, the expression of the GH shift is similar to that in semiconductor barriers, so we will not repeat them. However, owing to the unique properties of electron transport in graphene, the GH shifts are simply discussed in two different cases: Klein tunneling and classical motion [79]. In classical motion, the critical angle becomes

\[
\theta_c = \arcsin \left(1 - \frac{V_0}{E}\right), \tag{36}
\]

when \(E > V_0 \) is satisfied. Thus, the electron wave propagations can be propagating and evanescent cases, which depend on the incidence angle below or above the critical angle for total reflection. In both cases, the GH shifts are always positive as those in the 2D semiconductor barrier [42]. In the Klein tunneling case, there is a critical angle for total reflection, defined as

\[
\theta_c = \arcsin \left(\frac{V_0}{E} - 1\right), \tag{37}
\]

when the condition \(E < V_0 < 2E \) is satisfied. When the incidence angle \(\theta_0 \) is less than the critical angles \(\theta_c \), that is, \(\theta_0 < \theta_c \), the GH shifts can be positive as well as negative. In particular, the lateral shifts can be positive for a thin barrier, while at some resonance or anti-resonance points they become negative. Furthermore, the negative lateral shifts can be enhanced by the transmission resonances. When \(\theta_0 > \theta_c \), the GH shift in the evanescent case is about the order of the electron wavelength, and becomes independent of the barrier’s thickness. More interestingly, the saturated GH shift is negative when the incidence angle satisfies \(\theta_c < \theta_0 < \theta^* \), while it becomes positive when \(\theta_0 > \theta^* \). This result is related to the pseudospin degree, as mentioned in [50]. As a consequence, the sign change of the GH shifts appears at different incidence angles, which also provides the freedom to control the GH shift. As a matter of fact, the positive and negative GH shifts discussed here remind us of those of a light beam transmitted through a slab of negative index metamaterial [20]. In the slab of negative index metamaterial, the negative index contributes to the negative lateral shift, while the positive lateral shift results from the reshaping effect due to the multiple reflections. This provides the physical explanation of positive and negative GH shifts in the graphene barrier, which is totally different from those in the semiconductor quantum slab [43]. In the semiconductor quantum slab, the negative lateral shift has nothing to do with Klein tunneling (negative refraction in the language of optics), and originates from the beam reshaping resulting from multiple reflections inside the slab [20]. Our recent work is devoted to the optical simulation of the transmission gap and Klein tunneling in a graphene barrier [22], by using the negative–zero–positive index metamaterial (NZPIM) [76, 77], in which similar negative and positive GH shifts, relevant to Klein tunneling and classical motion, are also found.

Most recently, the GH shifts in graphene-based barrier are directly generalized to graphene double barrier and multiple barrier (superlattice) structures. Different from the GH shifts in graphene barriers, the GH shifts in double barrier structures can be greatly enhanced [53] inside the transmission gap in a single barrier [52, 79]. This giant GH shift is attributed to the quasibound states formed in double barriers. Moreover, they have made the conclusion that the smoothness of the potential barrier will not restrict the application of the giant GH shifts, by studying a realistic potential which varies smoothly on the scale of the graphene lattice constant. (We should point out that the similar analysis of electronic GH shifts is also interesting for the smooth interfaces in semiconductors.) In subsequent work, we have also investigated the giant...
negative and positive lateral shifts for the transmitted electron beam through monolayer graphene superlattices [54]. The GH shifts, depending on the location of the new Dirac point, can be negative as well as positive. Especially when the condition $q_A d_A = -q_B d_B = m \pi$ $(m = 1, 2, 3, \ldots)$ is satisfied, the lateral shifts can be controlled from negative (positive) to positive (negative) when the incident energy is above (below) the Dirac point, by increasing the incidence angle. In addition, the lateral shifts can be greatly enhanced by the effect of the defect mode inside the zero-k bandgap. Actually, the optical analogy of giant GH shifts in graphene superlattices can be realized near the band-crossing structure of one-dimensional photonic crystals containing left-handed metamaterials [80]. The tunable and giant GH shifts will have potential applications in graphene-based electron wave devices, such as electronic wave filters and beam splitters.

3.3. Strain effect

As far as we know, the GH shifts in graphene can be tuned by external electric and magnetic fields. For example, Sharma and Ghosh [55] have studied the electronic GH shifts in terms of the analogy between light propagation and electron transport in graphene. The GH shifts are shown to be controlled by adjusting electric and magnetic barriers. In recent years, more attention has been paid to mechanical strain, which induces a pseudo-vector potential, and can be used to manipulate electron transport without using external fields. Motivated by these advances, Chang et al [56] have demonstrated that the electrons in opposite valleys (K and K') show different Brewster-like angles and GH shifts, by engineering of local strains. In the strained graphene, the low-energy electrons can be well described by the effective Hamiltonian $H = v_F \sigma^i \cdot (p + \xi A_i)/v_F + V^i$, where the superscript i indicates the different regions, V^i is the electrostatic potential in the region i, $\xi = \mp 1$ labels K and K' valleys, and the Landau gauge $A = (0, A_y, 0)$ is used here. Here we focus on the analogy between the strained graphene and the metamaterial. For simplicity, $V^i = 0$ can be set, since the valley-dependent Brewster angle is the gauge vector ξA. Let us start by considering an electron with $k = E/hv_F$ reflection from a region of uniform uniaxial strain. In the strained region, we have $k_{x, \xi}^2 + (k_y + \xi A_y)^2 = k^2$, so that the critical angle for total reflection is

$$\theta_{c, \xi} = \arcsin \left(\frac{k_y + \xi A_y}{k} \right), \quad (38)$$

and the effective refractive index in optics can be defined as $n_{e, \xi} = (k_y + \xi A_y)/k_y$. Note that when $k_y(k_y + \xi A_y) < 0$, the refractive index of the strained graphene is negative just like for a metamaterial with a negative refractive index. As pointed out in [56], the refractive index can be tuned mechanically in a large range, which is not so for the metamaterial in optics. Besides, the perfect transmission through a region of uniform uniaxial strain with width D has different windows in the K or K' valley, since the above critical angle has a different dependence on the vector potential for two valleys denoted by $\xi = \pm 1$. For some incidence angles, we can achieve totally transmitted electron beams for one valley and totally reflected electron beams for the other valley simultaneously. These characteristic angles are further analogous to the so-called Brewster angle in optics. Going back to the case of a single interface, we apply the stationary phase method, and calculate the GH shift for a uniform uniaxial strain in graphene [56]

$$s_r = \frac{2k_i \xi A_y}{k_i k_0 \sqrt{r}}, \quad (39)$$

from the reflection coefficient

$$r = \frac{k_x + i(k_y - k_y' - \kappa)}{k_x - i(k_y - k_y' - \kappa)} = e^{2\phi_r(k_y)}, \quad (40)$$

and phase shift

$$\phi_r(k_y) = \arctan \left(\frac{k_y - k_y' - \kappa}{k_x} \right), \quad (41)$$

with $k_y' = k_y + \xi A_y$ and $\kappa = (k_y^2 - k^2)^{1/2}$ for the total reflection when the incidence angle is above the critical angle. Again the subscripts 0 means the value at $\theta = \theta_0$, where θ_0 is the incidence angle of the electron beam, and θ is the incidence angle of the plane wave under consideration. Clearly, the GH shifts can be positive or negative, and the strain effect will provide a totally different scheme to control the GH shift in graphene, which is different from the control of GH shifts by an external electric [50] and/or inhomogeneous magnetic field [44, 45]. This valley-dependent GH shift will further give rise to applications in valleytronics [57, 58]. Exhibiting a close analogy with optical GH shifts in dielectric and superlattices. The common feature is that the two

4. Summary and outlook

We have reviewed the strained electronic GH shifts in semiconductor and graphene-based nanostructures, including single, double barriers and superlattices. The common feature is that the GH shift can be enhanced by transmission resonances, and the (negative or positive) lateral shifts can be controlled by various approaches. From the point of view of application, the controllability of GH shifts can be realized by using external electric/magnetic fields in semiconductors
even by adjusting the strain in graphene. The spin (or valley)-dependent GH shifts also open the new possibility to design electronic devices such as spin (or valley) beam splitters and filters.

Usually, the analogies between phenomena occurring in two different physical systems open a route to find new effects or to translate techniques or devices, and quite often help one to understand both systems better. In this emerging field, we have gained an increased understanding and intriguing phenomena, and new physical effects of electronic GH shifts. However, there still exist several open questions. For the application, the measurement of electronic GH shifts for electron beams in semiconductors or graphene remains challenging for several possible reasons, for example, preparation of required (well-collimated) electron beams, electron scattering, the smoothness of the potential, and the smallness of the GH shifts. These imply the electronic systems are different and more complicated, which sets the limits of the optical analogy in the solid state. For example, in the recent experiment on electron waveguides in graphene [72], the GH shift is about 1 nm ($\approx 2\pi/\hbar$) under typical doping conditions. With the estimated disorder being of the same order of a few nanometers, it is impossible to observe the signature of the GH effect, i.e. a quantized conductance of $8e^2/\hbar$ at a guide thickness of 1.5 nm [50]. Theoretically, the electronic GH shift may have a close connection with the electron transport in semiconductors and graphene, since there is a hint that the lateral and angular GH shifts are analogous to the skew scattering and side jump [84], but without pursuing (see figure 8.4 in [84]). Therefore, the spin-dependent GH shifts are considered to be relevant to the anomalous-Hall effect [82, 83]. However, so far the spin-dependent GH shifts presented in this review have nothing to do with the spin–orbit coupling. Thus, the spin-dependent GH shift and relevant electronic transport in the presence of spin–orbit coupling might be extremely interesting and significant for further work, and will definitely help in the understanding of the beam shifts and spin–orbit coupling in optics.

Last but not least, recent theoretical prediction [85] and experimental realization [86, 87] on electron vortex beams carrying orbital angular momentum pave new avenues to investigate angular momentum, spin–orbit interaction [88], relativistic spin-Hall effect [89], and (GH or IF) beam shifts, which are beyond the scope of this review but worth mentioning.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant nos. 60806041 and 61176118), and the Shanghai Rising-Star Program (grant nos. 08QA14030 and 12QH1400800). YB also acknowledges the funding by the Basque Government (grant no. BFI-2010-255).

References

[1] Goos F and Hänchen H 1947 Ann. Phys., Lpz. 1 333
Goos F and Hänchen H 1949 Ann. Phys., Lpz. 5 251

[2] Lotsch H K V 1970 Optik (Stuttgart) 32 116
Lotsch H K V 1970 Optik (Stuttgart) 32 189
Lotsch H K V 1971 Optik (Stuttgart) 32 299
Lotsch H K V 1971 Optik (Stuttgart) 32 553

[3] Newton I 1704 Opticks: A Treatise of the Reflections, Refractions, Inflexions and Colours of Light (London: Royal Society)

[4] Artmann K V 1948 Ann. Phys., Lpz. 2 87

[5] Renard R-H 1964 J. Opt. Soc. Am. 54 1190

[6] Sakata T, Togo H and Shimokawa F 2004 Appl. Phys. Lett. 76 2814

[7] Yin X B and Hesselink L 2006 Appl. Phys. Lett. 89 261108

[8] Yu T-Y, Li H-G, Cao Z-Q, Wang Y, Shen Q-S and He Y 2008 Opt. Lett. 33 1001

[9] Steinberg A M and Chiao R Y 1994 Phys. Rev. A 49 3283

[10] Stahlhofen A 2000 Phys. Rev. A 62 012112

[11] Balcou Ph and Dutriaux L 1997 Phys. Rev. Lett. 78 851

[12] Ghatak A K, Shenoy M R, Goyal I C and Thyagarajan K 1986 Opt. Commun. 56 313

[13] Haibel A, Nimtz G and Stahlhofen A A 2001 Phys. Rev. E 63 047601

[14] Chen X, Li C-F, Wei R-R and Zhang Y 2009 Phys. Rev. A 80 015803

[15] Chen X, Lu X-J, Zhao P-L and Zhu Q-B 2012 Opt. Lett. 37 1526

[16] Yin X, Hesselink L, Liu Z, Fang N and Zhang X 2004 Appl. Phys. Lett. 85 372

[17] Pillon F, Gilles H, Girard S, Laroche M, Kaiser R and Gazibegovic A 2005 J. Opt. Soc. Am. B 22 1290

[18] Hsue C W and Tamir T 1985 J. Opt. Soc. Am. A 2 978

[19] Riesz R P and Simon R 1985 J. Opt. Soc. Am. A 2 1809

[20] Li C-F 2003 Phys. Rev. Lett. 91 133903

[21] Chen X and Li C-F 2004 Phys. Rev. E 69 066617

[22] Müller D, Tharanga D, Stahlhofen A A and Nimtz G 2006 Europhys. Lett. 73 526

[23] Chen X, Wang L-G and Li C-F 2009 Phys. Rev. A 80 043839

[24] Chen X and Li C-F 2009 J. Opt. A: Pure Appl. Opt. 11 085004

[25] Briers R, Leroy O and Sherer G 2000 J. Acoust. Soc. Am. 108 1624

[26] Ignatovich V K 2004 Phys. Lett. A. 322 36

[27] de Haan V-O, Plomp I, Rekveldt T M, Kraan W H, van Well A A, Dalgliesh R M and Langridge S 2010 Phys. Rev. Lett. 104 010401

[28] Huang J-H, Duan Z-L, Ling H-Y and Zhang W-P 2008 Phys. Rev. A 77 063608

[29] Fedorov F I 1955 Dokl. Akad. Nauk SSSR 105 465

[30] Imbert C 1972 Phys. Rev. D 5 787

[31] Costa de Beayregard O and Imbert C 1972 Phys. Rev. Lett. 28 1211

[32] Li C-F 2007 Phys. Rev. A 76 013811

[33] Hosten O and Kwiat P 2008 Science 319 787

[34] Aiello A, Lindlelein N, Marquardt C and Leuchs G 2009 Phys. Rev. Lett. 103 100401

[35] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001

[36] Carter J L and Hora H 1971 J. Opt. Soc. Am. 61 1640

[37] Miller S C Jr and Ashby N 1972 Phys. Rev. Lett. 27 2775

[38] Fradkin D M and Kashuba R J 1974 Phys. Rev. D 9 1137

[39] Gaylord T K, Glytsis E N, Henderson G N, Martin K P, Walker D B, Wilson D W and Brennan K F 1991 Proc. IEEE 79 1159 and references therein

[40] Datta S 1996 Electronic Transport in Mesoscopic Systems (New York: Cambridge University Press) p 276

[41] Walker D B, Wilson D W and Brennan K F 1991 Proc. IEEE 1159 and references therein

[42] Morgan D and Dragoman M 1999 Prog. Quantum Electron. 23 131

[43] Wilson D W, Glytsis E N and Gaylord T K 1993 IEEE J. Quantum Electron. 29 1364

[44] Chen X, Li C-F and Ban Y 2006 Phys. Lett. A 354 161

[45] Chen X, Ban Y and Li C-F 2009 J. Appl. Phys. 105 093710
[44] Chen X, Lu X-J, Wang Y and Li C-F 2011 *Phys. Rev.* B **83** 195409
[45] Chen X, Li C-F and Ban Y 2008 *Phys. Rev.* B **77** 073307
[46] Yuan L, Lu M-W, Zhao Y-H and Shen L-H 2011 *Phys. Lett.* A **375** 4198
[47] Yuan L, Xiang L-L, Kong Y-H, Lu M-W, Lan Z-J, Zeng A-H and Wang Z-Y 2012 *Eur. Phys. J.* B **85** 1434
[48] Kong Y-H, Lu M-W, Chen S-Y and Zhang G-L 2012 *J. Magn. Magn. Mater.* **324** 2519
[49] Lu M-W, Zhang G-L and Chen S-Y 2012 *J. Appl. Phys.* **112** 014309
[50] Beenakker C W J, Sepkhanov R A, Akhmerov A R and Tworzydło J 2009 *Phys. Rev. Lett.* **102** 146804
[51] Zhao L and Yelin S F 2010 *Phys. Rev.* B **81** 115441
[52] Chen X, Tao J-W and Ban Y 2011 *Eur. Phys. J.* B **79** 203
[53] Song Y, Wu H-C and Guo Y 2012 *Appl. Phys. Lett.* **100** 253116
[54] Chen X, Zhao P-L, Lu X-J and Wang L-G 2011 arXiv:1111.1753
[55] Sharma M and Ghosh S 2011 *J. Phys.: Condens. Matter* **23** 055501
[56] Wu Z, Zhai F, Peeters F M, Xu H Q and Chang K 2011 *Phys. Rev. Lett.* **106** 176802
[57] Zhai F, Ma Y-L and Chang K 2011 *New J. Phys.* **13** 083029
[58] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 *Science* **306** 666
[59] See review Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 *Rev. Mod. Phys.* **81** 109
[60] Raza H 2012 *Graphene Nanoelectronics* (Berlin: Springer) chapter 15
[61] Cheianov V V, Fal’ko V and Altshuler B L 2007 *Science* **315** 1252
[62] Bohm D 1951 *Quantum Theory* (New York: Prentice-Hall) p 259
[63] Dragoman D and Dragoman M 2004 *Quantum-Classical Analogies* (Berlin: Springer)
[64] Dragoman D and Dragoman M 2007 *J. Appl. Phys.* **101** 104316
[65] Berman P R 2002 *Phys. Rev.* E **66** 067603
[66] Berman P R 2005 *Phys. Rev.* E **71** 039903(E)
[67] Khodas M, Shekhter A and Finkel’stein A M 2004 *Phys. Rev. Lett.* **92** 086602
[68] Zhang X-D 2006 *Appl. Phys. Lett.* **88** 052114
[69] Park C H, Son Y W, Yang L, Cohen M L and Louie S G 2008 *Nano Lett.* **8** 2920
[70] Ghosh S and Sharma M 2009 *J. Phys.: Condens. Matter* **21** 292204
[71] Williams J R, Low T, Lundstrom M S and Marcus C M 2011 *Nature Nanotechnology* **6** 222
[72] Haldane F D M and Raghu S 2008 *Phys. Rev. Lett.* **100** 013904
[73] Peleg O, Bartal G, Freedman B, Manela O, Segev M and Christodoulides D N 2007 *Phys. Rev. Lett.* **98** 103901
[74] Sepkhanov R A, Bazaliy Y B and Beenakker C W J 2007 *Phys. Rev. A* **75** 063813
[75] Wang L-G, Wang Z-G, Zhang J-X and Zhu S-Y 2009 *Opt. Lett.* **34** 1510
[76] Wang L-G, Wang Z-G and Zhu S-Y 2009 *Europhys. Lett.* **86** 47008
[77] Chen X and Wang L-G 2011 Propagation of electron waves in monolayer graphene and optical simulations with negative-zero-positive index metamaterials *Physics and Applications of Graphene-Theory* ed S Mikhailov (Rijeka: InTech)
[78] Chen X and Tao J-W 2009 *Appl. Phys. Lett.* **94** 262102
[79] Wang L-G and Zhu S-Y 2010 *Appl. Phys. B* **98** 459
[80] Cheng M 2012 *Eur. Phys. J. B* **85** 89
[81] Smitsyn N A, Niu Q, Sinova J and Nomura K 2005 *Phys. Rev. B* **72** 045346
[82] Bliokh K Y and Freilikher V D 2006 *Phys. Rev. B* **74** 174302
[83] Dyakonov M I 2008 *Spin Physics in Semiconductors (Springer Series in Solid-State Sciences)* vol 157 (Berlin: Springer)
[84] Bliokh K Y, Bliokh Y P, Savelyv S and Nori F 2007 *Phys. Rev. Lett.* **99** 190404
[85] Uchida M and Tonomura A 2010 *Nature* **464** 737
[86] Verbeeck J, Tian H and Schattschneider P 2010 *Nature* **467** 301
[87] Bliokh K Y, Dennis M R and Nori F 2011 *Phys. Rev. Lett.* **107** 174802
[88] Bliokh K Y and Nori F 2012 *Phys. Rev. Lett.* **108** 120403