Penguins and Mixing Dependent CP Violation

N.G. Deshpande

Institute of Theoretical Science
University of Oregon
Eugene OR 97403-5203

Abstract

Constraints on angles of Unitarity triangle are reviewed, and in particular constraint on γ from limit on Δm_s is emphasized. Effects of penguin diagram on measurement of β and α are then reviewed. New measurements on $B \rightarrow \pi^+\pi^-$ in QCD improved factorization approximation suggest large penguin effects. It is possible to estimate the error in measurement of α as a function of γ for different $|V_{ub}/V_{cb}|$ values.

1. This work is supported by DOE Grant DE-FG03-96ER40069.
2. To appear in Proceedings of the Third International Conference on B Physics and CP Violation, Taipei, December 3-7, 1999, H.-Y. Cheng and W.-S. Hou, eds. (World Scientific, 2000).
3. email: desh@oregon.uoregon.edu
1 Constraints on Angles of Unitarity Triangle

Constraints on unitarity triangle expressed in terms of Wolfenstein parameterization are given below:

[a] From charmless semileptonic B decays [1]:

\[\left| \frac{V_{ub}}{V_{cb}} \right| = 0.08 \pm 0.02 \] (1)

which yields

\[\left(\rho^2 + \eta^2 \right)^{1/2} = 0.36 \pm 0.09 \] (2)

[b] From \(B_d - \bar{B}_d \) mixing. Error is dominated by \(f_B \) and the bag factor \(B_B \):

\[|V_{td}| = 0.009 \pm 0.003 \] (3)

which yields

\[|1 - \rho - i\eta| = 1.0 \pm 0.3 \] (4)

[c] Value of \(\epsilon \) in \(K \) system. Error is dominated by hadronic matrix elements:

\[\eta (1 - \rho + 0.35) = 0.48 \pm 0.20 \] (5)

[d] Constraints from \(B_s - \bar{B}_s \) [2]

\[(\Delta m_s) > 14.3ps^{-1} (90\%CL) \] (6)

Using the relation from Box diagrams

\[\left| \frac{V_{td}}{V_{ts}} \right| = \xi \left[\frac{m_{B_s} \Delta m_d}{m_{B_d} \Delta m_s} \right]^{1/2} \] (7)
where
\[\xi = \frac{f_{B_s}}{f_{B_d}} \sqrt{\frac{B_{B_s}}{B_{B_d}}} \]
(8)

Lattice calculations yield for \(\xi \) the value \[\xi = 1.15 \pm 0.05 \]
(9)

This translates into the bound
\[|V_{td}/V_{ts}| < 0.214 \]
(10)

or
\[|1 - \rho - i\eta| < 0.96 \]
(11)

The last constraint in particular implies \(\gamma < 90^\circ \) and \(75^\circ < \alpha < 120^\circ \). This allowed range of \(\gamma \) leads to unique estimate of errors in \(\alpha \) as we shall see.

2 CP Violation Through Mixing

Strategy to measure \(\beta \) and \(\alpha \) involve measuring time dependent asymmetry in \(B \) decays to CP eigenstate. Defining the long and short lived eigenstates of \(B \) as
\[|B\rangle_{L,S} = p |B^0\rangle \pm q |\bar{B}^0\rangle, \]
(12)

the amplitudes for decays into CP eigenstates are defined as
\[A = \langle f_{CP}|H_w|B^0\rangle \]
(13)
\[\bar{A} = \langle f_{CP}|H_w|\bar{B}^0\rangle. \]
(14)
The asymmetry is then defined by

\[\text{Asy}(t) = \left((1 - |\lambda|^2) \cos(\Delta M t) - 2 \text{Im}(\lambda) \sin(\Delta M t) \right) / \sqrt{1 + |\lambda|^2} \]

(15)

where \(\lambda = (q/p) \frac{\bar{A}}{A} \). In the standard model \((q/p) = e^{-2i\beta}\). If \(A \) is dependent on a single weak phase,

\[\left(\frac{\bar{A}}{A} \right) = e^{-2i\phi_{\text{weak}}} \]

(16)

then we have the expression

\[\text{Asy}(t) = -\text{Im}(\lambda) \sin(\Delta M t) \]

(17)

2.1 Measurement of \(\beta \)

The mode that has the least theoretical uncertainty is \(B \to \psi K_s \). The amplitude for this mode can be written in terms of Tree and Penguin contribution as

\[A = V_{cb} V_{cs}^* T + V_{tb} V_{ts}^* P = V_{cb} V_{cs}^* (T - P) + V_{ub} V_{us}^* P \]

(18)

since \(|V_{ub} V_{us}^*/V_{cb} V_{cs}^*| \approx 1/50 \), and the Penguin contribution has predominantly \(\bar{c}c \) in a color octet state, the contribution due to penguin diagram is less than 1%.

If \(B \to D^+ D^- \) mode is used instead, the penguin contribution is much larger, and there is no color suppression either.

\[A = V_{cb} V_{cs}^* T + V_{tb} V_{ts}^* P = V_{cb} V_{cs}^* (T - P) - V_{ub} V_{us}^* P \]

(19)

The value of \(|V_{ub} V_{us}^*/V_{cb} V_{cs}^*| \approx 0.3 \), and although \(P \) is suppressed compared to \(T \) due to small Wilson coefficients, one can expect a contamination due to penguin of a few percent.
2.2 Measurement of α

The mode $B^o \to \pi^+\pi^-$ lends itself to the earliest measurement of α. For this mode the amplitude is

$$ A = V_{ub} V_{ud}^* T + V_{tb} V_{td}^* P = V_{ub} V_{ud}^* (T - P) + V_{cb} V_{cd}^* P $$ \hspace{1cm} (20)

The value of $|V_{cb} V_{cd}^* / V_{ub} V_{ud}^*| \approx 3$ giving a crude estimate of around 15% for the penguin contamination. Gronau and London [4] have presented a method of extracting α from measurements of $B^o \to \pi^+\pi^-$, $B^o \to \pi^0\pi^\pm$, $B^+ \to \pi^0\pi^\pm$, and $B^+ \to \pi^\pm\pi^0$. However, the most recent theoretical estimates of $B^o \to \pi^0\pi^0$ branching ratio are around 5×10^{-7}, making this method academic at present. However, we now discuss theoretical developments that may allow us to extract the correct α from measurements of asymmetry in $B^o \to \pi^+\pi^-$ alone.

3 Determination of α from $B^o \to \pi^+\pi^-$

This is based on recent work of Agashe and Deshpande [5]. Recently, the CLEO collaboration has reported the first observation of the decay $B \to \pi^+\pi^-$ [6]. The effective Hamiltonian for B decays is:

$$ H_{eff} = \frac{G_F}{\sqrt{2}} \left[V_{ub} V_{ud}^* (C_1 O_1^{u} + C_2 O_2^u)
ight. $$

$$ + V_{cb} V_{cd}^* (C_1 O_1^{c} + C_2 O_2^c) - V_{tb} V_{td}^* \sum_{i=3}^{6} C_i O_i \right]. $$ \hspace{1cm} (21)

The C_i’s are the Wilson coefficients (WC’s). In a recent paper, Beneke et al. found that the matrix elements for the decays $B \to \pi\pi$, in the large m_b limit, can be written as [7]

$$ \langle \pi\pi | O_i | B \rangle = \langle \pi | j_1 | B \rangle \langle \pi | j_2 | 0 \rangle $$

$$ \times \left[1 + \sum r_n \alpha_s^n(m_b) + O(\Lambda_{QCD}/m_b) \right], $$ \hspace{1cm} (22)
where \(j_1 \) and \(j_2 \) are bilinear quark currents. If the radiative corrections in \(\alpha_s \) and \(O(\Lambda_{QCD}/m_b) \) corrections are neglected, then the matrix element on the left-hand side factorizes into a product of a form factor and a meson decay constant so that we recover the “conventional” factorization formula. These authors computed the \(O(\alpha_s) \) corrections. In this approach, the strong interaction (final-state rescattering) phases are included in the radiative corrections in \(\alpha_s \) and thus the \(O(\alpha_s) \) strong interaction phases are determined \([7]\). The matrix element for \(B \to \pi^+\pi^- \) is \([7]\):

\[
i \bar{A} \left(B_d \to \pi^+\pi^- \right) = \frac{G_F}{\sqrt{2}} \left[V_{ub} V_{ud}^* \left(a_1 + a_4^u + a_6^u r_\chi \right) + V_{cb} V_{cd}^* \left(a_4^c + a_6^c r_\chi \right) \right] \times X. \tag{23}
\]

Here

\[
X = f_\pi \left(m_B^2 - m_\pi^2 \right) F_{0}^{B \to \pi^-} \left(m_\pi^2 \right), \tag{24}
\]

where \(f_\pi = 131 \text{ MeV} \) is the pion decay constant and \(F_{0}^{B \to \pi^-} \) is a form factor. In the above equations, the \(a_i \)'s are (combinations of) WC’s with the \(O(\alpha_s) \) corrections added. The values of the \(a_i \)'s are given in Table \([7]\). The imaginary parts of \(a_i \)'s are due to final-state rescattering. For the \(CP \) conjugate processes, the CKM elements have to be complex-conjugated. We discuss two values of the form factors: \(F_{B \to \pi^-} = 0.27 \) and 0.33. Model calculations indicate that the \(SU(3) \) breaking in the form factors is given by \(F_{B \to K^-} \approx 1.13 F_{B \to \pi^-} \) \([8, 9]\). The large measured \(BR(B \to K\eta') \) requires \(F_{B \to K^-} \approx 0.36 \) \([10]\) which, in turn, implies a larger value of \(F_{B \to \pi^-} \) (\(\approx 0.33 \)). If \(F_{B \to K^-} \approx 0.36 \), then we require a “new” mechanism to account for \(BR(B \to K\eta') \): high charm content of \(\eta' \) \([11]\), QCD anomaly \([12]\) or new physics. Also, if \(F_{B \to \pi^-} < 0.27 \), then the value of \(F_{B \to K} \) is too small to explain the measured BR’s for \(B \to K\pi \) \([13]\). We use \(|V_{cb}| = 0.0395 \), \(|V_{ud}| = 0.974 \), \(|V_{cd}| = 0.224 \), \(m_B = 5.28 \text{ GeV} \) and \(\tau_B = 1.6 \text{ ps} \) \([1]\). In Fig. \([4]\) we show the \(CP \)-averaged BR for \(B \to \pi^+\pi^- \) as a functions of \(\gamma \) for \(F_{B \to \pi^-} = 0.33 \) and 0.27 and for \(|V_{ub}/V_{cb}| = 0.1, 0.08 \) and 0.06.
Figure 1: CP-averaged $BR(B \rightarrow \pi^+\pi^-)$ as a function of γ for $F^{B \rightarrow \pi} = 0.27$ (left) and 0.33 (right) and for $|V_{ub}/V_{cb}| = 0.1$ (solid curves), 0.08 (dashed curves) and 0.06 (dotted curves). The BR measured by the CLEO collaboration lies (at the 1 σ level) between the two horizontal (thicker) solid lines. The errors on the CLEO measurement have been added in quadrature to compute the 1 σ limits.
\[
\begin{array}{|c|c|}
\hline
a_1 & 1.047 + 0.033 i \\
\hline
a_2 & 0.061 - 0.106 i \\
\hline
a_4^u & -0.030 - 0.019 i \\
\hline
a_4^c & -0.038 - 0.009 i \\
\hline
a_6^{u,c} r_X & -0.036 \\
\hline
\end{array}
\]

Table 1: The factorization coefficients for the renormalization scale \(\mu = m_b/2 \).

The CLEO measurement is \(B \to \pi^+\pi^- = (4.7^{+1.8}_{-1.5} \pm 0.6) \times 10^{-6} \). If \(F_{B \to \pi^-} = 0.33 \) and for \(\gamma \approx 90^\circ \), we see from the figures that smaller values of \(|V_{ub}/V_{cb}| \approx 0.06 \) are preferred: \(|V_{ub}/V_{cb}| = 0.08 \) is still allowed at the 2\(\sigma \) level for \(\gamma \sim 100^\circ \). The smaller value of \(|V_{ub}/V_{cb}| \) leads to greater penguin contamination. However, if the smaller value of the form factor (0.27) is used, then the CLEO measurement is consistent with \(|V_{ub}/V_{cb}| \approx 0.08 \). We obtain similar results using “effective” WC’s (\(C^{eff} \))’s and \(N = 3 \) in the earlier factorization framework.

Since the \(B_d - \bar{B}_d \) mixing phase is \(2\beta \), if we neglect the (QCD) penguin operators, i.e., set \(a_{4,6} = 0 \) in Eq. (23), we get
\[
\frac{\bar{A}}{A} = e^{-i2\gamma}
\]
and
\[
\text{Im}\lambda = \sin (-2(\beta + \gamma)) = \sin 2\alpha.
\]
In the presence of the penguin contribution, however, \(\bar{A}/A \neq e^{-i2\gamma} \) so that \(\text{Im}\lambda \neq \sin 2\alpha \). We define
\[
\text{Im}\lambda = \text{Im} \left(e^{-i2\beta} \frac{\bar{A}}{A} \right) \equiv \sin 2\alpha_{\text{meas}}.
\]
as the “measured” value of \(\sin 2\alpha \), i.e., \(\sin 2\alpha_{\text{meas}} = \sin 2\alpha \) if the penguin operators can be neglected. In Fig. 3 we plot the error in the measurement of
Figure 2: The error in the measurement of CKM phase α using (only) time-dependent $B \to \pi^+\pi^-$ decays as a function of γ for $|V_{ub}/V_{cb}| = 0.1$ (solid curve), 0.08 (dashed curve) and 0.06 (dotted curve).

α, $\Delta \alpha \equiv \alpha_{\text{meas}} - \alpha$, where α_{meas} is obtained from Eq. (27) and α is obtained from γ and $|V_{ub}/V_{cb}|$. Note that $\Delta \alpha$ is independent of $F_{B \to \pi^-}$ since the form factor cancels in the ratio \bar{A}/A. We see that for the values of $|V_{ub}/V_{cb}| \approx 0.06$ preferred by the $B \to \pi^+\pi^-$ measurement (if $F_{B \to \pi^-} \approx 0.33$), the error in the determination of α is large $\sim 15^\circ$ (for $\gamma \sim 90^\circ$). If $F_{B \to \pi^-} \approx 0.27$, then $|V_{ub}/V_{cb}| \approx 0.08$ is consistent with the $B \to \pi^+\pi^-$ measurement which gives $\Delta \alpha \sim 10^\circ$ (for $\gamma \sim 90^\circ$).

The computation of Beneke et al. [7] includes final state rescattering phases, i.e., it is exact up to $O(\Lambda_{QCD}/m_b)$ and $O(\alpha_s^2)$ corrections. Thus, the value of $\sin 2\alpha$ “measured” in $B \to \pi^+\pi^-$ decays (Eq. (27)) is a known function of γ and $|V_{ub}/V_{cb}|$ only (in particular, there is no dependence on
Figure 3: The “true” value of $\sin 2\alpha$ as a function of the value of $\sin 2\alpha$ “measured” in $B \to \pi^+\pi^-$ decays for $|V_{ub}/V_{cb}| = 0.1$ (solid curve), 0.08 (dashed curve) and 0.06 (dotted curve).
the phenomenological parameter $\xi \sim 1/N$ and strong phases are included unlike in the earlier factorization framework [11]). Since, the “true” value of α can also be expressed in terms of γ and $|V_{ub}/V_{cb}|$, we can estimate the “true” value of $\sin 2\alpha$ from the “measured” value of $\sin 2\alpha$ for a given value of $|V_{ub}/V_{cb}|$ (of course, up to $O(\Lambda_{QCD}/m_b)$ and $O(\alpha_s^2)$ corrections); this is shown in Fig. 3 where we have restricted γ to be in the range $(40^\circ, 120^\circ)$ as indicated by constraints on the unitarity triangle from present data. If $0^\circ \leq \gamma \leq 180^\circ$ is allowed, then there will be a discrete ambiguity in the determination of $\sin 2\alpha$ from $\sin 2\alpha_{\text{meas.}}$.

4 Conclusions

We have shown how α can be obtained from the measured value of $\sin 2\alpha$ inspite of large penguin effects. The theoretical work can be extended to $K\pi$ modes to obtain values of γ from the measured branching ratios. Naive factorization suggest $\gamma \approx 100^\circ$ [14, 13].

References

[1] Review of Particle Physics by Particle Data Group, Eur. Phys. J. C3 (1998) 1.

[2] Talk by G. Blaylock at the XIX International Symposium on Lepton and Photon Interactions at High Energies, Stanford University, August 9-14, 1999 [http://LP99.slac.stanford.edu/db/program.asp].

[3] A. J. Buras, invited talk given at the Symposium on Heavy Flavors, Santa Barbara, July 7-11, 1997, [hep-ph/9711217].

[4] M. Gronau, D. London, Phys. Rev. Lett. 65 (1990) 3381.
[5] K. Agashe, N.G. Deshpande, hep-ph/9909298, to be published in Phys. Rev. D.

[6] Talk by R. Poling at the XIX International Symposium on Lepton and Photon Interactions at High Energies, Stanford University, August 9-14, 1999 (http://LP99.slac.stanford.edu/db/program.asp).

[7] M. Beneke et al., Phys. Rev. Lett. 83 (1999) 1914.

[8] M. Bauer, B. Stech, M. Wirbel, Z. Phys. C34 (1987) 103.

[9] P. Ball, V. M. Braun, Phys. Rev. D58 (1998) 094016.

[10] See, for example, N.G. Deshpande, B. Dutta, S. Oh, Phys. Rev. D57 (1998) 5723.

[11] See, for example, A. Ali, C. Greub, Phys. Rev. D57 (1998) 2996.

[12] P. Ball, J.M. Frere, M. Tytgat, Phys. Lett. B365 (1996) 367; A. Ali, J. Chay, C. Greub, P. Ko, Phys. Lett. B424 (1998) 161.

[13] See, for example, B. Dutta, S. Oh, hep-ph/9911263.

[14] N. G. Deshpande, X-G. He, W-S. Hou, S. Pakvasa, Phys. Rev. Lett. 82 (1999) 2240; W-S. Hou, J.G. Smith, F. Wurthwein, hep-ex/9910014.