NEW INVARIANTS OF LEGENDRIAN KNOTS

NOBORU ITO AND MASASHI TAKAMURA

Abstract. We give new functions of Legendrian knots derived from Legendrian fronts. These are integer-valued linear functions that are alike the Arnold basic invariant of plane curves. Various generalizations of the Arnold basic invariant have been known. In this paper, we give another extension of Arnold’s idea.

1. Introduction

Arnold \cite{3} introduced integer-valued functions \(J^+, J^-,\) and \(St\) for plane curves, each of which is the image of a generic immersion \(S^1 \to \mathbb{R}^2\), where the self-intersections are transverse double points. A plane curve is regarded as an object called a Legendrian front that is an image of a projection of a Legendrian knot. Arnold showed that \(J^+\) is a Legendrian knot invariant. Nowadays, functions \(J^+, J^-,\) and \(St\) are called Arnold (basic) invariants. Arnold invariants are of much interest to researchers dealing with some aspects, and have been studied a lot: several versions of explicit formulae of them (Polyak \cite{10}, Shumakovitch \cite{11}, and Viro \cite{12}), generalizations to fronts (Aicardi \cite{1}, and Arnold \cite{3}, Polyak \cite{10}), and higher-order cases: Arakawa-Ozawa \cite{2} for \(St\), Goryunov \cite{4} for \(J^+\), and Viro \cite{12} for \(J^-\) with a setting that Arnold invariants are of lower orders.

Arnold showed his function \(J^+\) is a Legendrian knot invariant \cite{3}. In \cite{7}, Hayano and one of the author NI gave Fact 1. In Fact 1, a deformation of type strong RI I (RI II, resp.) is called \(iR_2\)-move (\(R_3\)-move, resp.). From here, the terminologies of this paper obey \cite{7}.

Fact 1 (Hayano-Ito \cite{7}). Let \(r\) be an integer and \(j^+\) an even integer. For a plane curve \(C\), let \(\text{rot}(C)\) be the rotation number and \(J^+(C)\) the Arnold invariant. Then, for any pair \((r, j^+)\), there exists an infinite family of plane curves \(\{C_\lambda \mid \lambda \in \mathbb{N}\}\) satisfying the following conditions:

- \(\text{rot}(C_\lambda) = r\) and \(J^+(C_\lambda) = j^+\) for any \(\lambda\).
- For any \(\lambda\) and \(\mu\), \(C_\lambda\) and \(C_\mu\) are not equivalent under \(iR_2\)-move and \(R_3\)-move.

In order to prove Fact 1 we may use plane curves as in Fig. 1 with the non-negative rotation number \(r \ (= a)\). This example is similar to \cite{7}. This sequence \(C(a, b, c)\) is parametrized by a tuple \((a, b, c)\) of integers \(a, b,\) and \(c\). Here, if \(C(a, b, c)\) has the number of parts of type \((a)\) \((b),\) (c), resp.) is \(a_0\) \((b_0, c_0),\) resp.), we say that \(C(a_0, b_0, c_0)\). Note that \(J^+\)(\(C(a, b, c)\)) = \(a - 2b + 2c\). Further, it is proved that for
fixed nonnegative integers a_0, b_0 and c_0 such that $a_0 - 2b_0 + 2c_0 = j^+$ and the rotation number r ($= a_0$), any two plane curves in the family $\{C(r, b_0 + k, c_0 + k)\}_{k \in \mathbb{Z}_{>0}}$ are not equivalent under iR2-move and R3-move (cf. [7]).

Figure 1. $C(a, b, c)$ (upper) and parts (a), (b), and (c) (lower) with a nonnegative rotation number. The integer a (b, c, resp.) indicates the number of appearances of type (a) ((b), (c), resp.). A plane curve $\tilde{C}(a, b, c)$ is the corresponding $C(a, b, c)$ with the base point at the position on which the arrow mark places.

Let $\tilde{C}(a, b, c)$ be the plane curve $C(a, b, c)$ with the base point at the position on which the arrow mark places as in Fig. 1. Let J^+ be the Arnold invariant of long curves, each of which is identified with a plane curve with a base point [8, Definition 4.3].

Theorem 1. Let r be a nonnegative integer, j^+ an integer, rot the rotation number, and J^+ the Arnold invariant. There exist functions $I_{2,3,k}$ ($1 \leq k \leq 5$) that are invariant under iR2-move, R3-move preserving the base point such that the function detects any two plane curves in the family $\{\tilde{C}(r, b_0 + k, c_0 + k)\}_{k \in \mathbb{Z}_{>0}}$ as in Fig. 1, where $\text{rot}(\tilde{C}(r, b_0 + k, c_0 + k)) = r$ and $J^+(\tilde{C}(r, b_0 + k, c_0 + k)) = j^+$.

Remark 1. For long curves, the Arnold invariant J^+ is formulated by Gusein-Zade [6] and Zhou-Zou-Pan [13], independently.

2. Preliminaries

2.1. Legendrian knots and fronts.** The reader who is familiar with [7] may skip this section; here we pick some definitions in [7].

Definition 1. A plane curve is the image of a generic immersion $S^1 \to \mathbb{R}^2$, where the self-intersections are transverse double points.

Definition 2 (Legendrian knot K_C associated with a plane curve C). Let C be a plane curve. For an given oriented C, we take a generic immersion $f : S^1 \to \mathbb{R}^2$ so that $f(S^1) = C$ and the orientation of C is induced by that of S^1. Let df be the derivative $TS^1 \to T\mathbb{R}^2$. Since f is an immersion, f implies that $df(p) \neq 0$ for every p. Since there exists the projection $\pi : T\mathbb{R}^2 \setminus \mathbb{R}^2 \to UT\mathbb{R}^2$, and the 0-section of $T\mathbb{R}^2$ is identified with \mathbb{R}^2, the map $\pi \circ df|_{S^1} : S^1 \to UT\mathbb{R}^2$ gives a knot in $UT\mathbb{R}^2$. This knot is denoted by K_C and called the Legendrian knot associated with C.

Fact 2. If two plane curves C_0 and C_1 are equivalent under iR2-move and R3-move, then there exists an ambient isotopy in S^3 that deforms K_{C_0} to K_{C_1} and keeps the $(+2)$-framed unknot fixed. In particular, K_{C_0} to K_{C_1} are isotopic as framed knots in S^3.

3. Explicit relationship between plane curves and Legendrian knots

The realization of the Legendrian knot [7] gives one to one correspondence between an iR2 (R3, resp.)-move of plane curves and the Reidemeister move Ω_2 (Ω_3, resp.) as in Fig. 2 (Fig. 3, resp.) if the tangent vector of a branch of a self-tangency (triple point crossing, resp.) is not a horizontal direction vector oriented from right to left (\ast). Note that the condition (\ast) can be excluded from the neighborhood of a digon (triangle, resp.) by small isotopy for plane curves and for knots, respectively. Given a plane curve C, we have a diagram D_{K_C} of a knot K_C keeping the $(+2)$-framed unknot fixed [7] Section 3.2 just after Prop. 3.2 to Prop. 3.4] (Fig. 4).
4. Proof of Theorem

We apply the same argument as [9] with relators [9, Section 2.2, Definition 7]. Although the meaning of “the same argument” may be clear, we pose some comments. (Construction) First of all, if the reader does not know the definition of Gauss diagrams, see, e.g., [5, Page 1046, Fig. 1]. Second, though we have a Legendrian knot diagram D_{KC} from KC, we use relators [9, Section 2.2, Definition 7] given by positive knot diagrams derived from plane curves. Third, we apply the same argument as [9] to these relators. Then we have invariants as in Theorem [1].

(Detection of Legendrian knots) Essentially, we count sub-arrow diagrams, each of which is isomorphic to \square. For every $(2,n)$-torus knot T_n such that $n = 2m + 1$, the number of sub-arrow diagrams of type \square is

$$\frac{1}{6}m(m + 1)(2m + 1).$$

Then the invariant detects two T_n and T'_n corresponding to KC and KC' respectively.

5. New functions of Legendrian fronts

Since we give our formulas with simpler presentations, we slightly change the notation as in [9]. More precisely, we switch each arrow presentation to the signed chord in the way of Fig. [7]

Figure 4. An example KC (right) of Legendrian knots derived from a plane curve C (left)

Figure 5. Switching each arrow presentation to the signed chord.

In the following, we list six invariants $I_{2,1}$ and $I_{3,i}(C)$ ($1 \leq i \leq 5$) for a given plane curve C:
Finally, we would like to mention Proposition 1.

\textbf{Proposition 1.} $I_{2,1}$ is the Arnold invariant of long curve.

\textit{Proof.} For Arnold J^+ invariant of long curves, the known formula \cite[Proposition 4.6 (4.6)]{8} plus \cite[Lemma 4.5 (4.4)]{8} implies that $I_{2,1}$ equals $\frac{r^2 + c^2}{2}$ up to signs. \hfill \square

Acknowledgements

The authors would like to thank Professor Takashi Inaba for his comments. NI would like to thank Sara Yamaguchi for giving me her electronic data of figures of this paper. The work of NI was partially supported by MEXT KAKENHI Grant Number 20K03604.

References

\begin{enumerate}
\item Francesca Aicardi. Discriminants and local invariants of planar fronts. In \textit{The Arnold-Gelfand mathematical seminars}, pages 1–76. Birkhäuser Boston, Boston, MA, 1997.
\item Hideyo Arakawa and Tetsuya Ozawa. A generalization of Arnold’s strangeness invariant. \textit{J. Knot Theory Ramifications}, 8(5):551–567, 1999.
\item V. I. Arnold. Plane curves, their invariants, perestroikas and classifications. In \textit{Singularities and bifurcations}, volume 21 of \textit{Adv. Soviet Math.}, pages 33–91. Amer. Math. Soc., Providence, RI, 1994. With an appendix by F. Aicardi.
\item V. Goryunov. Finite order invariants of framed knots in a solid torus and in Arnold’s J^+-theory of plane curves. In \textit{Geometry and physics (Aarhus, 1995)}, volume 184 of \textit{Lecture Notes in Pure and Appl. Math.}, pages 549–556. Dekker, New York, 1997.
\item Mikhail Goussarov, Michael Polyak, and Oleg Viro. Finite-type invariants of classical and virtual knots. \textit{Topology}, 39(5):1045–1068, 2000.
\item S. M. Gusein-Zade and S. M. Natanzon. The Arf-invariant and the Arnold invariants of plane curves. In \textit{The Arnold-Gelfand mathematical seminars}, pages 267–280. Birkhäuser Boston, Boston, MA, 1997.
\item Kenta Hayano and Noboru Ito. A new aspect of the Arnold invariant J^+ from a global viewpoint. \textit{Indiana Univ. Math. J.}, 64(5):1343–1357, 2015.
\item Noboru Ito. Construction of invariants of curves and fronts using word theory. \textit{J. Knot Theory Ramifications}, 19(9):1205–1245, 2010.
\item Noboru Ito and Takamura Masashi. Arrow diagrams on spherical curves and computations. \textit{J. Knot Theory Ramifications}, 2021.
\item Michael Polyak. Invariants of curves and fronts via Gauss diagrams. \textit{Topology}, 37(5):989–1009, 1998.
\end{enumerate}
[11] A. Shumakovitch. Explicit formulas for the strangeness of plane curves. *Algebra i Analiz*, 7(3):165–199, 1995.

[12] Oleg Viro. Generic immersions of the circle to surfaces and the complex topology of real algebraic curves. In *Topology of real algebraic varieties and related topics*, volume 173 of *Amer. Math. Soc. Transl. Ser. 2*, pages 231–252. Amer. Math. Soc., Providence, RI, 1996.

[13] Jianyi Zhou, Jiancheng Zou, and Jianzhong Pan. The basic invariants of long curve and closed curve perestroikas. *J. Knot Theory Ramifications*, 7(4):527–548, 1998.

National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki, 312-8508, Japan

Email address: nito@gm.ibaraki-ct.ac.jp

School of Social Informatics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan

Email address: takamura@si.aoyama.ac.jp