Reducing Agent-Mediated Nonenzymatic Conversion of 2-Oxoglutarate to Succinate: Implications for Oxygenase Assays

Amjad Khan, Christopher J. Schofield,* and Timothy D. W. Claridge*
Table of contents

Figure S1. Stabilities of 2OG and L-Asc in Tris-D_{11} buffer. ... 3
Figure S2. 1H NMR time course analysis of L-Asc mediated 2OG conversion to succinate. 4
Figure S3. Dehydroascorbate (DHA) mediated conversion of 2OG to succinate. 5
Figure S4. The effect of catalase on L-Asc mediated conversion of 2OG to succinate. 6
Figure S5. H$_2$O$_2$-mediated 2OG conversion to succinate. ... 7
Figure S6. The effect of oxygen on the L-Asc/2OG/Tris-D$_{11}$ buffer incubation assay. 8
Figure S7. The effect of Fe(II) on H$_2$O$_2$-mediated 2OG conversion to succinate. 9
Figure S8. The effect of different metal ions on the L-Asc mediated 2OG conversion to succinate. 10
Figure S9. The effect of Zn(II) on L-Asc mediated 2OG conversion to succinate. 11
Figure S10. The effect of different buffers on L-Asc mediated 2OG conversion to succinate. 12
Figure S11. L-Asc mediated reaction of 4-hydroxyphenyl pyruvate (4-HPP) to give 4-hydroxyphenyl acetic acid (4-HPA). ... 14
Figure S12. L-Asc-mediated conversion of pyruvate to acetate. ... 16
Figure S13. L-Asc mediated conversion of oxaloacetate to malonate and acetate 18
Figure S14. The effects of Fe(II), Zn(II) and catalase on the L-Asc mediated conversion of pyruvate to acetate ... 19
Figure S15. L-Asc and citrate incubation assay. ... 20
Figure S16. L-Asc and DL-isocitrate incubation assay. ... 21
Figure S17. L-Asc and malate incubation assay .. 22
Figure S18. Dithiothreitol (DTT) – mediated 2OG conversion to succinate. 23
Figure S19. Baicalein-mediated 2OG conversion to succinate ... 24
Figure S20. Propyl gallate-mediated conversion of 2OG to succinate .. 25
Figure S21. Protocatechuic acid (PCA)-mediated 2OG conversion to succinate. 26
Figure S22. Catechol-mediated 2OG reaction to succinate. ... 27
Figure S23. Glutathione (GSH)-mediated 2OG conversion into succinate 28
Figure S24. Tris(2-carboxyethyl)phosphine (TCEP) – 2OG incubation assay. 29
Figure S1. Stabilities of 2OG and L-Asc in Tris-D11 buffer.
(a) Overlay of 1H NMR spectra of a freshly prepared mixture of 2OG in aqueous Tris-D11 buffer (bottom) compared with the same mixture after 10 hours (top). (b) Overlay of 1H NMR spectra of a freshly prepared mixture of L-Asc in aqueous Tris-D11 buffer (bottom) compared with the same mixture after 10 hours (top). Concentrations used: 2OG 200 µM, L-Asc 500 µM in 50 mM aqueous Tris-D11 at pH 7.5.
Figure S2. 1H NMR time course analysis of L-Asc mediated 2OG conversion to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of an L-Asc/2OG/Tris-D$_{11}$ buffer mixture for the shown times. (b) Plot showing L-Asc degradation and simultaneous 2OG reaction to give succinate over time. Concentrations used: 500 µM L-Asc, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ at pH 7.5. DHA: Dehydroascorbate. Error bars represent standard deviations from the mean (n =3) of three separate measurements.
Figure S3. Dehydroascorbate (DHA) mediated conversion of 2OG to succinate.

Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of dehydroascorbate (DHA) and 2OG in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Signals marked with asterisks are likely due to DHA degradation products. Concentrations used: 500 μM DHA, 200 μM 2OG in 50 mM aqueous Tris-D$_{11}$, pH 7.5.
Figure S4. The effect of catalase on L-Asc mediated conversion of 2OG to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of L-Asc/2OG/catalase/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). In the presence of catalase, no 2OG conversion to succinate is observed. (b) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of 2OG/H$_2$O$_2$/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (c) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of 2OG/H$_2$O$_2$/catalase/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). In the presence of catalase, H$_2$O$_2$ mediated 2OG conversion to succinate is not observed. Concentrations used: 500 µM L-Asc, 200 µM 2OG, 500 µM H$_2$O$_2$, 1735 units catalase in 50 mM aqueous Tris-D$_{11}$ at pH 7.5.
Figure S5. H$_2$O$_2$-mediated 2OG conversion to succinate.
(a) 1H NMR time course analysis of the reaction of 2OG with H$_2$O$_2$ to form succinate. (b) Plot of 2OG conversion to succinate vs time (1-10 hours). Concentrations used: 500 µM H$_2$O$_2$, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ at pH 7.5. Error bars represent standard deviations from the mean (n =3) of three separate measurements.
Figure S6. The effect of oxygen on the L-Asc/2OG/Tris-D_{11} buffer incubation assay.

(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of L-Asc/2OG/Tris-D_{11} buffer under anaerobic conditions (bottom) compared with the same mixture after 10 hours (top).

(b) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of L-Asc in Tris-D_{11} buffer under anaerobic conditions (bottom) compared with the same mixture after 10 hours (top). These results imply that under anaerobic conditions, L-Asc does not undergo oxidation, hence, does not generate H_2O_2, and no conversion of 2OG to succinate occurs. Concentrations used: 500 µM L-Asc, 200 µM 2OG in 50 mM aqueous Tris-D_{11} at pH 7.5.
Figure S7. The effect of Fe(II) on H$_2$O$_2$-mediated 2OG conversion to succinate.

(a) 1H NMR time course analysis of H$_2$O$_2$-mediated conversion of 2OG to succinate in the absence (blue curve) and presence (brown curve) of Fe(II). Concentrations used: 200 µM 2OG, 500 µM H$_2$O$_2$, 100 µM Fe(II) in 50 mM aqueous Tris-D$_{11}$ at pH 7.5. Error bars represent standard deviations from the mean (n =3) of three separate measurements.
Figure S8. The effect of different metal ions on the L-Asc mediated 2OG conversion to succinate.

Chart showing the extent of 2OG conversion to succinate on incubating a mixture of L-Asc/2OG/metal ion/aqueous Tris-D11 buffer for 10 hours. Concentrations used: 500 µM L-Asc, 200 µM 2OG, 100 µM metal ion in 50 mM aqueous Tris-D11 buffer at pH 7.5. Error bars represent standard deviations from the mean (n = 3) of three separate measurements.
Figure S9. The effect of Zn(II) on L-Asc mediated 2OG conversion to succinate.

(a) Overlay of \(^1\)H NMR spectra of a 10 hour incubation mixture of L-Asc/2OG/aqueous Tris-D11 buffer without Zn(II) (bottom) compared with the same mixture with Zn(II) (top). In the presence of Zn(II), L-Asc undergoes efficient oxidation enabling succinate formation. (b) The effect of different Zn(II) concentrations on the reaction of L-Asc. Concentrations used: Zn(II); 25 µM, 100 µM, 500 µM, 2.5 mM, 5 mM, L-Asc; 500 µM & 1.5 mM, and 2OG 200 µM in 50 mM aqueous Tris-D11 buffer at pH 7.5. Error bars represent standard deviations from the mean (n = 3) of three separate measurements.
Figure S10. The effect of different buffers on L-Asc mediated 2OG conversion to succinate.

Chart showing the extent of 2OG conversion to succinate on incubating a mixture of L-Asc/2OG/aqueous buffer for 10 hours. Buffers used: sodium phosphate, Tris-D11, tricine, TES, HEPES, PIPES and MOPS. Concentrations used: 500 µM L-Asc, 200 µM 2OG in 50 mM aqueous buffer at pH 7.5. Error bars represent standard deviations from the mean (n = 3) of three separate measurements.
(a) 4-HPA
4-HPA
4-HPA
4-HPA
4-HPA
4-HPA
4-HPA

L-Asc
DHA
L-Asc

7.2 7.0 6.8
5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 ppm

After 10 hours

Freshly prepared mixture

(b) 4-HPP

4-HPP
4-HPP
4-HPP

7.1 7.0 6.9 6.8 6.7
3.9 3.8 3.7 3.6 3.5 3.4 3.3 ppm

After 10 hours

4-HPP/Tris-D_{11}

Freshly prepared mixture

(Figure continues)
Figure S11. L-Asc mediated reaction of 4-hydroxyphenyl pyruvate (4-HPP) to give 4-hydroxyphenyl acetic acid (4-HPA).

(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of L-Asc/4-hydroxyphenyl pyruvate (4-HPP)/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Stability of 4-HPP in buffer: overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of 4-HPP in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (c) H$_2$O$_2$-mediated conversion of 4-HPP to 4-HPA: overlay of 1H NMR spectra (partial spectra shown for clarity) of a freshly prepared mixture of 4-HPP in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture with H$_2$O$_2$ after 25 minutes (top). Concentrations used: 500 µM 4-HPP, 500 µM H$_2$O$_2$ in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S12. L-Asc-mediated conversion of pyruvate to acetate.
(a) Overlay of 1H NMR spectra of a freshly prepared mixture of L-Asc/pyruvate/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Stability of pyruvate in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of pyruvate in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (c) H$_2$O$_2$-mediated oxidative decarboxylation of pyruvate to give acetate: overlay of 1H NMR spectra of a freshly prepared mixture of pyruvate in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture with H$_2$O$_2$ after 10 minutes (top). Concentrations used: 500 µM L-Asc, 200 µM pyruvate, 500 µM H$_2$O$_2$ in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S13. L-Asc mediated conversion of oxaloacetate to malonate and acetate.
(a) Overlay of 1H NMR spectra of a freshly prepared mixture of L-Asc/oxaloacetate/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Peaks marked with asterisks are likely due to impurities. The formation of acetate can occur by non-oxidative decarboxylation of malonate. Note that whereas malonate undergoes facile non-oxidative decarboxylation, succinate does not undergo decarboxylation to give propionate because of the lack of the `β-carbonyl group` to promote decarboxylation. (b) Stability of oxaloacetate in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of oxaloacetate in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (c) H$_2$O$_2$-mediated conversion of oxaloacetate to malonate and acetate: overlay of 1H NMR spectra of a freshly prepared mixture of oxaloacetate in aqueous Tris-D$_{11}$ buffer (bottom) compared with the same mixture containing H$_2$O$_2$ after 15 minutes (middle) and 1 hour (top). Concentrations used: 500 µM L-Asc, 200 µM oxaloacetate, 500 µM H$_2$O$_2$ in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S14. The effects of Fe(II), Zn(II) and catalase on the L-Asc mediated conversion of pyruvate to acetate.

Chart showing the extent of acetate formation after incubation (10 hours) of a mixture of L-Asc/pyruvate/Tris-D11 buffer (blue); mixture of L-Asc/pyruvate/Fe(II)/Tris-D11 buffer (orange); mixture of L-Asc/pyruvate/Zn(II)/Tris-D11 buffer (green); mixture of L-Asc/pyruvate/catalase/Tris-D11 buffer (red). Concentrations used: 500 µM L-Asc, 200 µM pyruvate, 100 µM Fe(II), 100 µM Zn(II) and 1735 units catalase in 50 mM aqueous Tris-D11 buffer at pH 7.5. These observations show that the addition of either Fe(II) or catalase inhibits the L-Asc mediated reaction of pyruvate to acetate. Error bars represent standard deviations from the mean (n = 3) of three separate measurements.
Figure S15. L-Asc and citrate incubation assay.
Overlay of 1H NMR spectra of a freshly prepared mixture of citric acid/L-Asc/Tris-D$_{11}$ buffer compared with the same mixture after 10 hours. No new signals except those assigned to the reaction of L-Asc appear in the spectrum (i.e. there is no evidence for citrate reaction). Concentrations used: 500 µM L-Asc, 200 µM citric acid in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S16. L-Asc and DL-isocitrate incubation assay.
Overlay of 1H NMR spectra of a freshly prepared mixture of DL-isocitrate/L-Asc/Tris-D$_{11}$ buffer compared with the same mixture after 10 hours. No new signals except those assigned to the reaction of L-Asc appear in the spectrum (i.e there is no evidence for the reaction of DL-isocitrate). Concentrations used: 500 µM L-Asc, 200 µM DL-isocitrate in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S17. L-Asc and malate incubation assay.
Overlay of 1H NMR spectra (parts are shown for clarity) of a freshly prepared mixture of maleic acid/L-Asc/Tris-D$_{11}$ buffer compared with the same mixture after 10 hours. No new signals except those assigned to the reaction of L-Asc appear in the spectrum (i.e. there is no evidence for the reaction of maleic acid). Concentrations used: 500 µM L-Asc, 200 µM maleic acid in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S18. Dithiothreitol (DTT) – mediated 2OG conversion to succinate.
(a) Overlay of 1H NMR spectra of a freshly prepared mixture of DTT/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Oxidation of DTT with dioxygen in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of DTT in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). The broad signals marked with asterisks likely represent an oxidised (di)sulfide form of DTT. Concentrations used: 500 µM DTT, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$, pH 7.5.
Figure S19. Baicalein-mediated 2OG conversion to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of baicalein/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Oxidation of baicalein in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of baicalein in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Signals marked with asterisks are believed to represent an oxidised form of baicalein. Concentrations used: 500 µM baicalein, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S20. Propyl gallate-mediated conversion of 2OG to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of propyl gallate/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Oxidation of propyl gallate with dioxygen in buffer: overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of propyl gallate in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Signals marked with asterisks are believed to be an oxidised form of propyl gallate. Concentrations used: 500 µM propyl gallate, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S21. Protocatechuic acid (PCA)-mediated 2OG conversion to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of protocatechuic acid (PCA)/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Oxidation of PCA in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of PCA in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Signals marked with asterisks possibly represent an oxidised form of PCA. Concentrations used: 500 µM protocatechuic acid, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S22. Catechol-mediated 2OG reaction to succinate.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of catechol/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top).
(b) Oxidation of catechol with dioxygen in buffer: overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of catechol in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Signals marked with asterisks possibly represent an oxidised form of catechol. Concentrations used: 500 µM catechol, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.
Figure S23. Glutathione (GSH)-mediated 2OG conversion into succinate.
(a) Overlay of 1H NMR spectra of a freshly prepared mixture of glutathione (GSH)/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) Oxidation of GSH in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of GSH in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). Concentrations used: 500 µM glutathione, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5. GSSG: Disulfide-glutathione.
Figure S24. Tris(2-carboxyethyl)phosphine (TCEP) – 2OG incubation assay.
(a) Overlay of 1H NMR spectra (partial spectra are shown for clarity) of a freshly prepared mixture of TCEP/2OG/Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). (b) TCEP stability in buffer: overlay of 1H NMR spectra of a freshly prepared mixture of TCEP in Tris-D$_{11}$ buffer (bottom) compared with the same mixture after 10 hours (top). The peaks labelled with asterisks may be due to impurities in the TCEP-buffer solution. Concentrations used: 500 µM TCEP, 200 µM 2OG in 50 mM aqueous Tris-D$_{11}$ buffer at pH 7.5.