Three novel insect-associated species of *Simplicillium* (Cordycipitaceae, Hypocreales) from Southwest China

Wan-Hao Chen¹, Chang Liu², Yan-Feng Han³, Jian-Dong Liang¹, Wei-Yi Tian¹, Zong-Qi Liang³

¹ Department of Microbiology, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China ² School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China ³ Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China

Corresponding author: Yan-Feng Han (swallow1128@126.com)

Abstract

In this paper, we introduce three new species of *Simplicillium*, viz. *S. cicadellidae*, *S. formicidae* and *S. lepidopterorum*, which were isolated from an infected leafhopper, ant and carpenterworm, respectively. Morphological comparisons and phylogenetic analyses based on multigene datasets (LSU+RPB1+RPB2+TEF and ITS+LSU) support the establishment of the three new species. *Simplicillium cicadellidae* was distinguished from other species in morphological characteristics by having smaller phialides and ellipsoidal conidia, and lacking octahedral crystals. The reverse of colonies were yellowish (#FFBF00), especially in the middle, and radially sulcate. *Simplicillium formicidae* was morphologically distinguished from other by having longer phialides and filiform to fusoid conidia, and by lacking octahedral crystals. *Simplicillium lepidopterorum* was morphologically distinguished from other species by having smaller, ellipsoidal to fusiform conidia, and by lacking octahedral crystals. The reverse of the colony was pale white. The three new species are likely to be nourished by plant to animal (especially insect) nutrients based on the evolutionary pattern of the Hypocreales, and they are described herein as being clearly distinct from other species in *Simplicillium*.

Keywords

Commensal fungi, morphology, nutritional preference, phylogeny
Introduction

The genus *Simplicillium* W. Gams & Zare was introduced by Zare and Gams (2001) with *S. lanosoniveum* (J. F. H. Beyma) Zare & W. Gams as the type species. The genus is characterized with its complete lack of verticillate branching; mostly solitary phialides, which are discrete, aculeate and narrow and arise from aerial hyphae; conidia short-ellipsoidal to suglobose or obclavate, and adhering in globose heads or imbricate chains (Zare and Gams 2001). The members of *Simplicillium* are fungicolous and occur on various substrata (Zare and Gams 2001; Chen et al. 2008; Baiswar et al. 2014; Gauthier et al. 2014; Gomes et al. 2018). Furthermore, Zare and Gams (2001) introduced three additional species, viz., *S. lamellicola* (F. E. V. Sm.) Zare & W. Gams, *S. obclavatum* (W. Gams) Zare & W. Gams and *S. wallacei* H. C. Evans. The typical characteristics of *Simplicillium* include mostly solitary phialides, conidia adhering in globose, slimy heads or imbricate chains, and commonly present crystals in the agar (Zare and Gams 2001). Later, Zare and Gams (2008) transferred *S. wallacei* to *Lecanici- illium* W. Gams & Zare based on the phylogenic analysis of internal transcribed spacer (ITS) region and this transfer was confirmed by Sung et al. (2007).

Liu and Cai (2012) reported a new species, *S. chinense* F. Liu & L. Cai, which was the first *Simplicillium* species from China. Five new *Simplicillium* species, *S. aogashimaense* Nonaka, Kaifuchi & Masuma, *S. cylindrosporum* Nonaka, Kaifuchi & Masuma, *S. minatense* Nonaka, Kaifuchi & Masuma, *S. subtropicum* Nonaka, Kaifuchi & Masuma and *S. sympodiophorum* Nonaka, Kaifuchi & Masuma were reported by Nonaka et al. (2013) from Tokyo, Japan. *Simplicillium calcicola* Z. F. Zhang, F. Liu & L. Cai, *S. coffeanum* A. A. M. Gomes & O. L. Pereira and *S. filiforme* R. M. F. Silva, R. J. V. Oliveira, Souza-Motta, J. L. Bezerra & G. A. Silva were reported by Zhang et al. (2017), Gomes et al. (2018) and Crous et al. (2018), respectively. Currently, *Simplicillium* consists of 12 species.

Kepler et al. (2017) re-evaluated the Cordycipitaceae based on the multigene dataset (SSU, LSU, TEF, RPB1 and RPB2), and indicated that *Simplicillium* species group in a clade and are the earliest diverging lineage in Cordycipitaceae. The nuclear ribosomal ITS and LSU were first used to identify cryptic diversification among *Simplicillium* species by Liu and Cai (2012) and then were widely applied in the identification of *Simplicillium* species by Nonaka et al. (2013), Zhang et al. (2017), Gomes et al. (2018) and Crous et al. (2018).

Zare and Gams (2001) noted that *Simplicillium* species were found on various substrata and fungi. Other substrata were found later, such as limstone and wood (Liu and Cai 2012; Zhang et al. 2017). Many bioactive compounds were discovered in *Simplicillium*, such as alkaloids (Fukuda et al. 2014), peptides (Liang et al. 2016; 2017; Dai et al. 2018), diketopiperazine (Yan et al. 2015), xylanases (Roy et al. 2013), anthraquinones (Huang et al. 2015), antibiotics (Takata et al. 2013; Dong et al. 2018), and especially Simpotentin, which is a new potentiator of amphotericin B activity against *Candida albicans* (C. P. Robin) Berkhout and has showed great potential ap-
Novel insect-associated Simplicillium species

Applications in medicine (Uchida et al. 2019). Furthermore, the antimicrobial activities and entomopathogenicity has meant that Simplicillium has potential applications in biocontrol (Ward et al. 2012; Zhao et al. 2013; Le Dang et al. 2014; Lim et al. 2014; Chen et al. 2017; Skaptsov et al. 2017). However, as far as we know, there are limited reports of Simplicillium species isolated from infected insects.

Three infected insect specimens were found during a survey of araneogenous fungi and allies from southwestern China. Some fungal strains were isolated and purified from the three specimens. Based on polyphasic approach (morphological, ecological characteristics along with a phylogenetic analysis), they were identified as three new species, Simplicillium cicadellidae sp. nov., S. formicidae sp. nov. and S. lepidopterorum sp. nov.

Materials and methods

Collection and isolation

Three infected insect specimens (DL1004, GY1101 and GY2913) were collected from Dali, Rongjiang Country (26°01’58.70”N, 108°24’48.06”E) and Tongmuling (26°23’25.92”N, 106°41’3.35”E), Huaxi District, Guizhou Province, on 1 October, 9 November and 31 July, 2018, respectively. The surface of the specimens were rinsed with sterile water, followed by surface sterilization with 75% ethanol for 3–5 s. A part of the insect body was cut off and used to inoculate a piece of tissue in haemocoel on potato dextrose agar (PDA) and improved potato dextrose agar (PDA, 1% w/v peptone) (Qu et al. 2018). The strain was isolated and cultured at 22 °C for 14 d under 12 h light/12 h dark conditions following protocols described by Zou et al. (2010). Strains DL10041, DL10042, GY11011, GY11012, GY29131 and GY29132 were obtained.

Culture and identification

The strains were incubated in PDA at 25 °C for 14 d. Macroscopic and microscopic morphological characteristics of the fungi were examined using classical mycological techniques, and the growth rates were determined. The fresh hyphae were observed with an optical microscope (OM, BX35, Olympus, Japan) following pretreatment with lactophenol cotton blue solution or normal saline. The ex-type cultures and dried culture as holotype specimens were deposited in GZAC, Guizhou University, Guiyang, China.

DNA extraction, PCR amplification and nucleotide sequencing

DNA extraction was carried out in accordance with Liang et al. (2009). The extracted DNA was stored at −20 °C. The amplification of large subunit ribosomal
RNA (LSU) genes was performed using NS1-1/AB28 primers (Curran et al. 1994). Translation elongation factor 1 alpha (TEF) and DNA-directed RNA polymerase II largest subunit 2 (RPB2) were amplified using 983F/2218R and RPB2-5F/RPB2-7Cr primers according to van den Brink et al. (2012). DNA-directed RNA polymerase II largest subunit 1 (RPB1) was amplified with the primer pair CRPB1 and RPB1-Cr (Castlebury et al. 2004). The internal transcribed spacer (ITS) region was amplified using ITS4/ITS5 primers by PCR following the procedures described by White et al. (1990). PCR products were purified using the UNIQ-10 column PCR products purification kit [no. SK1141; Sangon Biotech (Shanghai) Co., Shanghai, China] in accordance with the manufacturer’s protocol and sequenced at Sangon Biotech (Shanghai) Co. The resulting sequences were submitted to GenBank.

The new species *Simplicillium cicadellidae*, *S. formicidae* and *S. lepidopterorum* were registered in MycoBank with the numbers MB 831336, MB 831337 and MB 831335, respectively.

Sequence alignment and phylogenetic analyses

DNA sequences generated in this study were assembled and edited using DNASTAR Lasergene software (version 6.0). Sequences of ITS, LSU, RPB1, RPB2 and TEF were selected based on previously published data by Nonaka et al. (2013), Zhang et al. (2017), Gomes et al. (2018), Crous et al. (2018) and Mongkolsamrit et al. (2018). Multiple sequence alignments for ITS, LSU, RPB1, RPB2 and TEF were carried out using MAFFT v7.037b (Katoh and Standley 2013). Sequence editing was performed with MEGA6 (Tamura et al. 2013), and the resulting output was in Fasta file format. The concatenated LSU+RPB1+RPB2+TEF and ITS+LSU sequences were assembled by SequenceMatrix v.1.7.8 (Vaidya et al. 2011). Gene concordance was assessed with the ‘hompart’ command in PAUP4.0b10 (Swofford 2002).

Two different analyses have been carried out using Bayesian inference (BI) and maximum likelihood (ML) methods. Analysis 1: To check the relationship between *Simplicillium* species and its allies in Cordycipitaceae based on the combined dataset of (LSU+RPB1+RPB2+TEF). Analysis 2: To check the relationship among *Simplicillium* spp. based on the combined dataset of (ITS+LSU). For the BI analysis, two runs were executed simultaneously for 10,000,000 generations, saving trees every 500 generations, with the GTR+G nucleotide substitution model across all the partitions, in MrBayes 3.2 (Ronquist et al. 2012). After the analysis was finished, each run was examined with the program Tracer v1.5 (Drummond and Rambaut 2007) to determine burn-in and confirm that both runs had converged. For the ML analysis in RAxML (Stamatakis 2014), the GTRGAMMA model was used for all the partitions in accordance with recommendations in the RAxML manual against the use of invariant sites. The final alignment is available from TreeBASE under submission ID: 24549 (http://www.treebase.org)
Novel insect-associated *Simplicillium* species

Results

Phylogenetic analyses

A phylogenetic tree of *Simplicillium* in Cordycipitaceae was generated from the maximum-likelihood (ML) and Bayesian inference (BI) based on a combined data set of LSU, RPB1, RPB2 and TEF sequence data. Statistical support (≥ 50%/0.5) is shown at the nodes for ML bootstrap support/BI posterior probabilities (Fig. 1). The strain numbers are noted after each species’ name. The tree is rooted with *Purpureocillium lilacinum* (Thom) Luangsa-ard, Houbraken, Hywel-Jones & Samson (CBS 284.36 and CBS 431.87). The concatenated sequences including 40 taxa and contained 2,205 characters with gaps (LSU: 447, RPB1: 518, RPB2: 560, and TEF: 680).

A phylogenetic tree of *Simplicillium* species level was generated from the maximum-likelihood (ML) and Bayesian inference (BI) analysis based on a combined data set of ITS and LSU sequence data set. Statistical support (≥ 50%/0.5) are shown at the nodes for ML bootstrap support/BI posterior probabilities. The strain numbers are noted after each species’ name. The tree is rooted with *Pochonia chlamydosporia* (Goddard) Zare & W. Gams (CBS 103.65). The dataset includes 16 taxa and consists of 1,000 characters with gaps (ITS: 489 and LSU: 511).

Analysis 1: family Cordycipitaceae. The RAxML analysis of the combined dataset (LSU+RPB1+RPB2+TEF) yielded a best scoring tree (Fig. 1) with a final ML optimization likelihood value of \(-24,337.973328\). Parameters for the GTR model of the concatenated data set was as follows: estimated base frequencies; \(A = 0.242689, C = 0.276532, G = 0.270879, T = 0.209901\); substitution rates \(AC = 0.926706, AG = 2.728719, AT = 0.823168, CG = 0.803225, CT = 6.257555, GT = 1.000000\); gamma distribution shape parameter \(\alpha = 0.410435\). The Bayesian analysis resulted in 20,001 trees after 10,000,000 generations. The first 4,000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining 16,001 trees were used for calculating posterior probabilities in the majority rule consensus tree. In the phylogenetic tree (Fig. 1), *Simplicillium cicadellidae*, *S. formicidae* and *S. lepidopterorum* cluster with other *Simplicillium* species in a clade, and within the earliest diverging lineage in Cordycipitaceae.

Analysis 2: *Simplicillium* species. The RAxML analysis of the combined dataset (ITS+LSU) yielded a best scoring tree (Fig. 2) with a final ML optimization likelihood value of \(-4,849.039588\). Parameters for the GTR model of the concatenated data set was as follows: Estimated base frequencies; \(A = 0.243952, C = 0.258870, G = 0.268223, T = 0.228956\); substitution rates \(AC = 1.296760, AG = 2.678402, AT = 1.354112, CG = 1.488619, CT = 5.097242, GT = 1.000000\); gamma distribution shape parameter \(\alpha = 0.462419\). The Bayesian analysis resulted in 20,001 trees after 10,000,000 generations. The first 4,000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining 16,001 trees were used for calculating posterior probabilities in the majority rule consensus tree. In the phylogenetic tree
Figure 1. Phylogenetic relationships among the genus *Simplicillium* and its allies in Cordycipitaceae based on multigene dataset (LSU, RPB1, RPB2 and TEF). Statistical support values (≥ 0.5/50%) are shown at the nodes for ML bootstrap support/BI posterior probabilities. The tree is rooted with *Paracordycipillus bilacinum* (CBS 284.36 and CBS 431.87). The new species are in bold face. T in the upper right corner indicates the type strains.
Figure 2. Phylogenetic relationships among the new taxa *S. cicadellidae*, *S. formicidae*, *S. lepidopterorum* and other *Simplicillium* species by ITS+LSU sequences. Statistical support values (≥ 0.5/50%) are shown at the nodes for ML bootstrap support/BI posterior probabilities. The tree is rooted with *Pochonia chlamydospora* (CBS 103.65). The new species are in bold face. T in the upper right corner indicates the type strains.

(Fig. 2), *Simplicillium* species were resolved into four obvious clades. *S. cicadellidae*, *S. formicidae* and *S. lepidopterorum* were nested in a subclade and formed three independent branches, which received maximum statistical support (BI posterior probabilities 1, ML bootstrap 100%).
Table 1. Taxa included in the phylogenetic analyses

Species	Strain No.	GenBank Accession No.				
		ITS	LSU	RPB1	RPB2	TEF
Akanthomyces aculeatus	HUA 772	KC519370				KC519366
A. attenuatus	CBS 402.78	AF339565	EF468888	EF468935	EF468782	
A. coccidioperitheciatus	NHJ 6709	EU369042	EU369067		EU369025	
A. farinosa	CBS 541.81	QJ425686				
A. kanyawimiae	TBRC 7242	MF140718	MF140784	MF140808	MF140383	
A. lecanii	CBS 101247	AF339555	DQ522407	DQ522466	DQ522359	
A. sulphureus	TBRC 7247	MF140720				MF140841
A. thailandicus	TBRC 7245	MF140719				MF140383
A. tuberculatus	BCC 16819	GQ249987				GQ250037
A. waltergansii	TBRC 7250	MF140715				MF140385
A. attenuatus	TBRC 7251	MF140713	MF140781	MF140805	MF140383	
Blackwellomyces cardinalis	OSC 111002	DQ518767	DQ522384	DQ522435	DQ522388	
B. pseudomilitaris	NBRC 101409	JN941393	JN992482			
Cordyceps bifusispora	EFCC 5690	EF468806	EF468854	EF468909	EF468746	
C. blackwelliae	EFCC 8260	EF468807	EF468855	EF468910	EF468747	
C. ninchukispora	EFCC 5197	EF468820	EF468868			
C. blackwelliae	EFCC 5693	EF468821	EF468869			
Cordyceps bifusispora	EG 38.165	EF468846	EF468900			
Engyodontium annaeorum	CBS 309.85	AF339526	DQ522387	DQ522439	DQ522341	
Gibellula longispora	NHJ 12014	EU369055	EU369075	EU369017		
G. pseudohyphaliformis	NHJ 10808	EU369035	EU369076	EU369018		
G. rutticandata	ARSEF 1915	DQ518777	DQ522408	DQ522467	DQ522360	
G. rutticandata	NHJ 5401	EU369059	EU369079			
G. pseudohyphaliformis	NHJ 10788	EU369036	EU369058	EU369078	EU369019	
G. rutticandata	NHJ 13158	EU369037	EU369057	EU369077	EU369020	
G. pseudohyphaliformis	NHJ 10469	EU369031	EU369047		EU369008	
H. cinerea	NHJ 3510	EU369048	EU369070	EU369009		
H. novoguineensis	NHJ 4314	EU369051	EU369071	EU369012		
H. cinerea	NHJ 11923	EU369032	EU369052	EU369072	EU369013	
Hyperdermium pulvinatum	IC. 602	AF242353	DQ127237		DQ118746	
L. annaeorum	CBS 726.73a	AF339537	EF468887	EF468934	EF468781	
L. fusiformis	CBS 164.70T	AF339549	EF468889		EF468783	
Novel insect-associated *Simplicillium* species

Species	Strain No.	GenBank Accession No.	
L. psalliotae	CBS 363.86T	AF339559 EF468890	EF468784
	CBS 532.81	AF339560 EF469096	EF469112 EF469067
	CBS 101270	EF469081 EF469095	EF469113 EF469066
Pochonia chlamydosporia	CBS 103.65	MH858504	
Purpureocillium lilacinum	CBS 284.36	FR775484 EF468898	EF468941 EF468792
	CBS 431.87	EF468844 EF468897	EF468940 EF468791
Samoniella alboarantarium	CBS 240.32	JF415979 JN049895	JF415999 JF416019
S. aurantia	CBS 262.58	MG665232 JQ425685	
S. inthanonensis	TBRC 7271T	MFI40728 MFI40791	MFI40818 MFI40846
	TBRC 7272	MFI40727 MFI40817	MFI40845
	TBRC 7273	MFI40726 MFI40816	MFI40844
	MFI40725 MFI40790 MFI40815 MFI40849		
	TBRC 7916	MFI40724 MFI40789	MFI40814 MFI40848
	TBRC 7270	MFI40723 MFI40788	MFI40813 MFI40847
Simplicillium	JCM 18167T	AB604002	
aogashimaense	JCM 18168	AB604004	
S. calcicola	LC 5371	KU746705 KU74675	
	LC 5568T	KU746706 KU746752	
S. chinense	LC 1342	JQ410323 JQ410321	
	LC 1345	NR155782 JQ410322	
S. cicallellidae	GY11011T	MN006243 MN006249	MN022271 MN022263
	GY11012	MN006244 MN006250	MN022272 MN022264
S. coffeanum	COAD 2057T	MF066034 MF066032	
	COAD 2061	MF066035 MF066033	
S. cylindrosporum	JCM 18169T	AB603989	
	JCM 18170	AB603994	
	JCM 18171	AB603997	
	JCM 18172	AB603998	
	JCM 18173	AB603999	
	JCM 18174	AB604005	
	JCM 18175	AB604006	
S. filiforme	URM 7918	MH979338 MH979399	
S. formicidae	DL10041T	MN006241 MN006247	MN022269 MN022267
	DL10042	MN006242 MN006248	MN022270 MN022268
S. lamellicola	CBS 116.25T	AJ292393 AF339552	DQ522404 DQ522462 DQ522356
	UAMH 2055	AF108471	
	UAMH 4785	AF108480	
S. lamellicola	KYK00060	AB378533	
S. lanosoniveum	CBS 704.86	AJ292396 AF339553	DQ522406 DQ522464 DQ522358
	CBS 101267	AJ292395 AF339554	DQ522405 DQ522463 DQ522357
S. lepidopterorum	GY29131T	MN006246 MN006251	MN022273 MN022265
	GY29132	MN006245 MN006252	MN022274 MN022266
S. minatense	JCM 18176T	AB603992	
	JCM 18177	AB603991	
	JCM 18178	AB603993	
S. obclavatum	CBS 311.74T	AJ292394 AF339517	EF468798
	JCM 18179	AB604000	
S. subtropicum	JCM 18180T	AB603990	
	JCM 18181	AB603995	
	JCM 18182	AB603996	
	JCM 18183	AB604001	
S. sympodiophorum	JCM 18184T	AB604003	
Torrubilla wallacci	CBS 101237T	AY184967 EF469102	EF469119 EF469073

T= type strains, strain and sequences generated in this study are shown in bold.
Taxonomy

Simplicillium cicadellidae W.H. Chen, C. Liu, Y.F. Han, J.D. Liang, Z.Q. Liang sp. nov.
MycoBank: MB 831336
Figure 3

Etymology. The epithet *cicadellidae* refers to an insect host in family Cicadellidea.

Diagnosis. Characterized by phialides always solitary and rather long and narrow, 12.9–18.3 × 0.8–1.1 μm. Conidia adhering in globose slimy heads, mostly ellipsoidal,
Novel insect-associated Simplicillium species

1.8–2.8 × 1.4–1.8 μm. Octahedral crystals absent. Reverse of colony yellowish, especially in the middle, and radially sulcate.

Type. CHINA, Guizhou Province, Huaxi District (26°23’25.92”N, 106°41’3.35”E), 9 November 2018, Wanhao Chen, holotype GZAC GY1101, ex-type culture GZAC GY11011. Sequences from isolated strain GY1101 has been deposited in GenBank with accession numbers: ITS = MN006243, LSU = MN006249, RPB1 = MN022271 and TEF = MN022263.

Description. Colonies reaching 45–47 mm in diameter in 14 d on PDA; white; reverse yellowish, especially in the middle, and radially sulcate. Hyphae septate, hyaline, smooth-walled, 0.9–1.9 μm wide. Phialides arising from aerial hyphae, gradually tapering towards apex, without basal septa, always solitary and rather long and narrow, 12.9–18.3 × 0.8–1.1 μm. Conidia adhering in ellipsoidal slimy heads, mostly ellipsoidal, hyaline, smooth-walled, 1.8–2.8 × 1.4–1.8 μm. Octahedral crystals absent.

Host. Leafhopper (Hemiptera)

Distribution. Huaxi District, Guizhou Province, China

Remarks. Zare and Gams (2001) summarized the typical characteristics of Simplicillium as having mostly solitary phialides arising from aerial hyphae, conidia adhering in globose slimy heads or imbricate chains, crystals commonly present, fungicolous and on various other substrata. Simplicillium cicadellidae was easily identified as belonging to Simplicillium because of its solitary phialides, conidia adhering in ellipsoidal slimy heads, and lack of octahedral crystals. Comparing with the typical characteristics of 12 species (Table 2), it was easily distinguished from other species in having the phialides always solitary and rather long and narrow (12.9–18.3 × 0.8–1.1 μm), the conidia adhering in globose slimy heads, which are mostly ellipsoidal (1.8–2.8 × 1.4–1.8 μm), and the octahedral crystals absent. The reverse of colony was yellowish, especially in the middle, and radially sulcate. Based on ITS and LSU rDNA, S. cicadellidae is phylogenetically close to S. formicidae and S. lepidopterorum. However, S. cicadellidae has ellipsoidal conidia and shorter phialides (12.9–18.3 × 0.8–1.1 μm), and the reverse of colony was yellowish.

Simplicillium formicidae W.H. Chen, C. Liu, Y.F. Han, J.D. Liang, Z.Q. Liang, sp. nov.

Mycobank: MB 831337

Figure 4

Etymology. The epithet formicidae refers to an insect host in family Formicidae.

Diagnosis. Characterized by phialides always being solitary and rather long and narrow, 51–70.1 × 0.7–0.9 μm. Conidia adhering in globose slimy heads, mostly filiform to fusoid, 3.9–7.9 × 0.8–1.3 μm. Octahedral crystals absent.

Type. CHINA, Guizhou Province, Rongjiang County (26°01’58.70”N, 108°24’48.06”E), 1 October 2018, Wanhao Chen, holotype GZAC DL1004, ex-type culture GZAC DL10041. Sequences from isolated strain DL10041 has been deposited in GenBank with accession numbers: ITS = MN006241, LSU = MN006247, RPB1 = MN022269 and RPB2 = MN022267.
Description. Colonies reaching 26–32 mm in diameter in 14 d on PDA; white; reverse pale brown to brown, and with brown secretions. Hyphae septate, hyaline, smooth-walled, 1.2–1.8 μm wide. Phialides arising from aerial hyphae, gradually tapering towards the apex, without basal septa, always solitary and rather long and narrow, 51–70.1 × 0.7–0.9 μm. Conidia adhering in globose slimy heads, mostly filiform to fusoid, hyaline, smooth-walled, 3.9–7.9 × 0.8–1.3 μm. Octahedral crystals absent.

Host. Ant (Hymenoptera)

Distribution. Rongjiang County, Guizhou Province, China

Remarks. *Simplicillium formicidae* was easily identified as belonging to *Simplicillium* because of its solitary phialides, conidia adhering in globose slimy heads, and lack of octahedral crystals. Compared with the typical characteristics of 12 species (Table 2), it was easily distinguished from those species by having the phialides always solitary and rather long and narrow (51–70.1 × 0.7–0.9 μm) and the conidia mostly filiform to fusoid (3.9–7.9 × 0.8–1.3 μm), and adhering in globose slimy heads, and in having octahedral crystals absent. Based on ITS and LSU rDNA, *S. formicidae* is phylogenetically close to *S. cicadellidae* and *S. lepidopterorum*. However, *S. formicidae* has larger filiform to fusoid conidia (3.9–7.9 × 0.8–1.3 μm).
Simplicillium lepidopterorum W.H. Chen, C. Liu, Y.F. Han, J.D. Liang & Z.Q. Liang, sp. nov.
MycoBank: MB 831335

Figure 5

Etymology. The epithet *lepidopterorum* refers to an insect host in order Lepidoptera.

Diagnosis. Characterized by phialides always being solitary and rather long and narrow, 15.3–26.2 × 0.7–1.4 μm, Conidia adhering in globose slimy heads, mostly ellipsoidal, 1.6–2.4 × 1.4–1.7 μm. Octahedral crystals absent. The reverse of colony was pale white.

Type. CHINA, Guizhou Province, Huaxi District (26°23’25.92”N, 106°41’3.35”E), 31 July 2018, Wanhao Chen, **holotype** GZAC GY2913, ex-type culture GZAC GY29131, sequences from isolated strain GY29131 has been deposited in GenBank with accession numbers: ITS = MN006246, LSU = MN006251, RPB1 = MN022273 and TEF = MN022265.

Description. Colonies reaching 48–51 mm in diameter in 14 d on PDA; white; reverse pale white. Hyphae septate, hyaline, smooth-walled, 1.1–2.2 μm wide. Phi-

Figure 5. *Simplicillium formicidae* A isolated substrate an infected ant (Hymenoptera) **B–C** culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium **D, E** phialides solitary, conidia adhering globose slimy head and conidia **F** conidia. Scale bars: 10 mm (B, C), 10μm (D, E, F).
alides arising from aerial hyphae, gradually tapering towards the apex, without basal septa, always solitary and rather long and narrow, 15.3–26.2 × 0.7–1.4 μm. Conidia adhering in globose slimy heads, ellipsoidal to fusiform, hyaline, smooth-walled, 1.6–2.4 × 1.4–1.7 μm. Octahedral crystals absent.

Host. Carpenter worm (Lepidoptera)

Distribution. Huaxi District, Guizhou Province, China

Remarks. Simplicillium lepidopterorum was easily identified as belonging to *Simplicillium* because of its solitary phialides, conidia adhering in globose slimy heads, and lack of octahedral crystals. Comparing with the typical characteristics of 12 species (Table 2), *S. lepidopterorum* could easily distinguished from other species by having the phialides always solitary and rather long and narrow, 15.3–26.2 × 0.7–1.4 μm. Conidia ellipsoidal (1.6–2.4 × 1.4–1.7 μm), adhering in globose slimy heads, and in

Table 2. Morphological comparison of three new species with other *Simplicillium* species

Species	Morphological characteristics	Notes		
Phialide (Conidiogenous cell) (μm)	Conidia (μm)	Conidia mass	Octahedral crystals	Notes
S. aogashimaense a	(19–)23–53 × 1.2–2.0	cylindrical, 4.2–6.5 × 1.2–2.0	globose heads	Chlamydospores present
S. calcicola b	14–38 × 1–2	micro-: globose, oval or ellipsoidal, 2–3.5 × 1–1.5	absent	
S. chinense c	(6.0–)15–30–(68.0) × 1.5	oval, ellipsoidal or cylindrical, 3.5–5.0 × 1.0–1.5	branched or unbranched chains	present
S. coffeanum d	11–40(–70) × 1.0–2.4	micro-: spindle-shaped, 5.3–8.8 × 1.0–1.6	subglobose to ellipsoidal heads	absent
S. cylindrosporum e	17–32 × 1.2–2.0(–2.5)	cylindrical, 3.0–4.5(–5.0) × 1.0–2.0	globose heads	present
S. filiforme f	9–18 × 1	fusoid to filiform, 7.2–12.5 × 1	zigzag chains	absent
S. lamellicola g	15–50 × 0.7–1.0	micro-: spindle-shaped, 4.5–9.0 × 0.8–1.2	subglobose to ellipsoidal heads	present
S. lanonivireum h	15–35 × 0.7–1.5	subglobose, oval, ellipsoidal 1.5–3 × 0.7–1.3	globose heads	present
S. minatense i	11–31(–47) × 1.0–1.7	globose to subglobose, sometimes ellipsoidal, 2.0–3.5 × 1.8–2.5	globose heads	present
S. obclavatum j	30–52 × 0.8–1.2	obclavate to ellipsoid, 2.5–3.5 × 1–2	short imbricate chains	present
S. subtropicum k	(15–)20–42(–50) × 1.0–2.3	subglobose to ellipsoidal, 2.3–4.0(–4.5) × 1.5–3.3	globose heads	present
S. sympodiophorum l	20–34(–47) × 0.5–1.3	oval to ellipsoidal, 2.2–3.5 × 1.0–2.0	denticles present	present
S. cicadellidae m	12.9–18.3 × 0.8–1.1	ellipsoidal, 1.8–2.8 × 1.4–1.8	ellipsoidal heads	colonies reverse pale white
S. formicidae n	51–70.1 × 0.7–0.9	filiform to fusoid, 3.9–7.9 × 0.8–1.3	globose heads	absent
S. lepidopterorum o	15.3–26.2 × 0.7–1.4	ellipsoidal, 1.6–2.4 × 1.4–1.7	globose heads	colonies reverse yellowish

a–f: data are derived from Zare and Gams (2001), Nonaka et al. (2013), Zhang et al. (2017), Liu and Cai 2012, Gomes et al. (2018) and Crous et al. (2018), respectively.
having the octahedral crystals absent. Based on ITS and LSU rDNA, *S. lepidopterorum* is phylogenetically close to *S. cicadellidae* and *S. formicidae*. However, *S. lepidopterorum* has ellipsoidal conidia, longer phialides (15.3–26.2 × 0.7–1.4 μm), and the reverse of colony was pale white.

Key

1. Conidia in globose or subglobose heads 2
 - Conidia in chains or solitary 11
2. Macro- and microconidia present 3
 - Only one type of conidia present 4
3. Octahedral crystals present ... 5
 - Octahedral crystals absent ... 9
4. Conidia subglobose or ellipsoidal 7
 - Conidia cylindrical .. 6
5. Chlamydospores present, conidia 4.2–6.5 × 1.2–2.0 μm ... *S. aogashimaense*
 - Chlamydospores absent, conidia 3.0–4.5 (–5.0) × 1.0–2.0 μm
 ... 8
 Conidia subglobose to ellipsoidal 7
 - Conidia oval or ellipsoidal to subcylindrical, 1.5–3.0 × 0.7–1.3 μm
 ... 10
 Conidia globose to subglobose, sometimes ellipsoidal, 2.5–3.5 × 1.8–2.5 (–2.8) μm 10
9. Conidia ellipsoidal ... 14
 - Conidia fusoid to filiform, form zigzag chains *S. filiforme*
10. The reverse of colony pale white, phialide 12.9–18.3 × 0.8–1.1 μm
 - The reverse of colony yellowish, phialide 15.3–26.2 × 0.7–1.4 μm
 ... 14
11. Denticles present in conidiogenous cell (phialide) *S. sympodiophorum*
 - Denticles absent in conidiogenous cell (phialide) 12
12. Macro- and microconidia present *S. calcicola*
 - Only one type of conidia present *S. formicidae*
13. Conidia ellipsoidal ... 14
 - Conidia fusoid to filiform, form zigzag chains *S. filiforme*
14. Conidia in branched or unbranched chains, 3.5–5.0 × 1.0–1.5 μm *S. chinense*
 - Conidia in short imbricate chains, 2.5–3.5 × 1.0–2.0 μm *S. obclavatum*
Discussion

Two types of the evolutionary correlation patterns between fungi and hosts are known, co-evolutionary patterns and the more frequent host jump events (Spatafora et al. 2007). The generation of host jumping is closely related to a common living environment (Vega et al. 2009). Nutritional sources are very important factors in determining whether a host has undergone a host jump. The nutritional model of Hypocreales fungi is from plants (including living plants and plant residues) to animals (especially insects), and finally to fungi. Plants and their residues were the initial sources of nutrition for the common ancestor of Hypocreaceae and Clavicipitaceae. The jumps from plants to animals and then to fungi indicate that the fungal nutrient requirements have changed with the environment (Spatafora et al. 2007). Prediction of the characteristics and evolutionary placement of any given member should be based on the correlation between molecular-phylogenetic genealogy and nutritional preferences (Spatafora et al. 2007; Vega et al. 2009). Additionally, host insect species are an important diagnostic feature in the identification of entomopathogenic fungi.

Among the 12 reported Simplicillium species, S. aogashimaense (soil), S. calcicola (calcareous rock), S. chinense (decaying wood), S. cylindrosporum (soil), S. minatense (soil), S. obclavatum (air), S. subtropicum (soil) and S. sympodiophorum (soil) were isolated from soil, marine water, rock, decaying wood and air (Zare and Gams 2001; Liu and Cai 2012; Nonaka et al. 2013; Liang et al. 2017). Simplicillium filiforme and S. coffeanum were isolated as endophytic fungi from plants (Crous et al. 2018; Gomes et al. 2018). Simplicillium lamellicola belongs to the hyperparasite fungi (Shin et al. 2017). Simplicillium lanosoniveum was reported as both an endophytic and hyperparasite fungi (Baiswar et al. 2014). It has been reported that Simplicillium is pathogenic to insects. Unfortunately, there are limited reports of insect-related Simplicillium.

The hosts of Simplicillium cicadellidae and S. lepidopterorum were larvae of Cicadidae and Lepidoptera, which feed through piercing-sucking and chewing. Moreover, S. formicidae was isolated from an infected ant. These three strains are likely to receive nutrients from plants (including living plants and plant residues) and animals (especially insects) based on the evolutionary pattern of Hypocreales. Simplicillium cicadellidae, S. formicidae and S. lepidopterorum represent three new species based on their nutritional preferences. To our knowledge, this is the first report of insect-associated Simplicillium species.

ITS and LSU have been widely used in the identification of Simplicillium (Liu and Cai 2012; Nonaka et al. 2013; Zhang et al. 2017; Sliva et al. 2018). In the present study, the combined dataset (ITS+LSU) was used to analysis of phylogenetic relationships among the new taxa and other Simplicillium species. Additionally, RPB1, RPB2 and TEF loci were added to analysis that the relationship among Simplicillium and its allies. The new species clustered with other Simplicillium species in a clade (Fig. 1), and this was consistent with morphological characteristics based identification. Six strains were clustered into three subclades (Fig. 2) and were distinctly different from other reported Simplicillium spp. Additionally, three species, S. chinense, S. coffeanum and
S. filiforme were clustered in a subclade, and these species were associated with plants. This may be because of their nutritional preferences. Therefore, S. cicadelliae, S. formicidae and S. lepidopterorum are based on morphological characteristics, ecological characteristics and a phylogenetic analysis.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31460010, 31860002), the Doctoral Fund of Guiyang University of Chinese Medicine (3043-043170023), the National first-class construction discipline in Guizhou province (Chinese medical science) (GNYL[2017]008), and Engineering Research Center of General Higher Education in Guizhou Province (Qianjiaohe(2015)337). We thank Dr. Lesley Benyon, from Liwen Bianji and Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

Baiswar P, Ngachan SV, Rymbai H, Chandra S (2014) Simplicillium lanosoniveum, a hyperparasite on Aecidium elaeagni-latifoliae in India. Australasian Plant Disease Notes 9(1): 144. https://doi.org/10.1007/s13314-014-0144-z

Castlebury LA, Rossman AY, Sung GH, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108: 864–872. https://doi.org/10.1017/S0953756204000607

Chen RS, Huang CC, Li JC, Tsay JG (2008) First report of Simplicillium lanosoniveum causing brown spot on Salvinia auriculata and S. molesta in Taiwan. Plant Disease 92(11): 1589–1589. https://doi.org/10.1094/PDIS-92-11-1589C

Chen RS, Huang CC, Li JC, Tsay JG (2017) Evaluation of characteristics of Simplicillium lanosoniveum on pathogenicity to aphids and in vitro antifungal potency against plant pathogenic fungi. International Journal of Environmental & Agriculture Research 3 (1): 2454–1850.
Krisai-Greilhuber I, Li YC, Lima AA, Machado AR, Madrid H, Magalhães OMC, Marbach PAS, Melanda GCS, Miller AN, Mongkolsamrit S, Nascimento RP, Oliveira TGL, Ordoñez ME, Orzes R, Palma MA, Pearce CJ, Pereira OL, Perrone G, Peterson SW, Pham THG, Piantelli E, Pordel A, Quijada L, Raja HA, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo SS, Sandoval-Denis M, Santos TAB, Seifert KA, Silva BDB, Smith ME, Soares AM, Sommai S, Sousa JO, Suetrong S, Susca A, Tedersoo L, Telleria MT, Thanakitpipattana D, Valenzuela-Lopez N, Visagie CM, Zapata M, Groenewald JZ (2018) Fungal Plan-Net description sheets: 785–867. Persoonia: Molecular Phylogeny and Evolution of Fungi 41: 1–238. https://doi.org/10.3767/persoonia.2018.41.12

Curran J, Driver F, Ballard JWO, Milner RJ (1994) Phylogeny of *Metarhizium*: analysis of ribosomal DNA sequence data. Mycological Research 98: 547–552. https://doi.org/10.1016/S0953-7562(09)80478-4

Dai Y, Lin Y, Pang X, Luo X, Salendra L, Wang JF, Zhou XF, Lu YJ, Yang B, Liu Y (2018) Peptides from the soft coral-associated fungus *Simplicillium* sp. SCSIO41209. Phytochemistry 154: 56–62. https://doi.org/10.1016/j.phytochem.2018.06.014

Dong Q, Dong R, Xing X, Li Y (2018) A new antibiotic produced by the cyanobacterium-symbiotic fungus *Simplicillium lanosoniveum*. Natural Product Research 32(11): 1348–1352. https://doi.org/10.1080/14786419.2017.1343320

Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 1–214. https://doi.org/10.1186/1471-2148-7-214

Fukuda T, Sudoh Y, Tsuchiya Y, Okuda T, Igarashi Y (2014) Isolation and biosynthesis of preusin B, a pyrrolidine alkaloid from *Simplicillium lanosoniveum*. Journal of Natural Products 77 (4): 813–817. https://doi.org/10.1021/np400910r

Gauthier NW, Maruthachalam K, Subbarao KV, Brown M, Xiao Y, Robertson CL, Schneider RW (2014) Mycoparasitism of *Phakopsora pachyrhizi*, the soybean rust pathogen, by *Simplicillium lanosoniveum*. Biological Control 76: 87–94. https://doi.org/10.1016/j.biocontrol.2014.05.008

Gomes AA, Pinho DB, Cardeal ZL, Menezes HC, De Queiroz MV, Pereira OL (2018) *Simplicillium coffeanum*, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phyto taxa 333(2): 188–198. https://doi.org/10.11646/phytotaxa.333.2.2

Huang Z, Yan SZ, Chen SL (2015) Optimization on fermentation conditions of *Simplicillium obclavatum* YX016 for the production of anthraquinones. Food Science and Technology 7: 3 pp.

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/msr010

Liang JD, Han YF, Zhang JW, Du W, Liang ZQ, Li ZZ (2009) Optimal culture conditions for keratinase production by a novel thermophilic *Myceliophthora thermophila* strain GZUIFR-H49-1. Journal of Applied Microbiology 110: 871–880. https://doi.org/10.1111/j.1365-2672.2011.04949.x

Liang X, Nong XH, Huang ZH, Qi SH (2017) Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus *Simplicillium obclavatum* EIODSF 020. Journal of Agricultural and Food Chemistry 65 (25): 5114–5121. https://doi.org/10.1021/acs.jafc.7b01238
Novel insect-associated *Simplicillium* species

Liang X, Zhang XY, Nong XH, Wang J, Huang ZH, Qi SH (2016) Eight linear peptides from the deep-sea-derived fungus *Simplicillium obclavatum* EIODSF 020. Tetrahedron 72(22): 3092–3097. https://doi.org/10.1016/j.tet.2016.04.032

Lim SY, Lee S, Kong HG, Lee J (2014) Entomopathogenicity of *Simplicillium lano-soniveum* isolated in Korea. Mycobiology 42(4): 317–321. https://doi.org/10.5941/MYCO.2014.42.4.317

Liu F, Cai L (2012) Morphological and molecular characterization of a novel species of *Simplicillium* from China. Cryptogamie, Mycologie 33(2): 137–145. https://doi.org/10.7872/crym.v33.iss2.2012.137

Mongkolsamrit S, Noisripoom W, Thanakitpipattana D, Wutikhun T, Spatafora JW, Luangsa-ard J (2018) Disentangling cryptic species with *isaria*-like morphs in Cordycipitaceae. Mycologia 110(1): 230–257.

Nonaka K, Kaifuchi S, Ômura S, Masuma R (2013) Five new *Simplicillium* species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54(1): 42–53. https://doi.org/10.1016/j.myc.2012.07.002

Qu JJ, Yu LQ, Zhang J, Han YF, Zou X (2018) A new entomopathogenic fungus, *Ophiocordyceps ponerus* sp. nov., from China. Phytotaxa 343(2): 116–126. https://doi.org/10.11646/phytotaxa.343.2.2

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Roy S, Dutta T, Sarkar TS, Ghosh S (2013) Novel xylanases from *Simplicillium obclavatum* MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. SpringerPlus 2(1): 382. https://doi.org/10.1186/2193-1801-2-382

Shin TS, Yu NH, Lee J, Choi GJ, Kim JC, Shin CS (2017) Development of a biofungicide using a mycoparasitic fungus *Simplicillium lamellicola* BCP and its control efficacy against gray mold diseases of tomato and ginseng. The Plant Pathology Journal 33(3): 337. https://doi.org/10.5423/PPJ.FT.04.2017.0087

Skaptsov M, Smirnov S, Kutsev M, Uvarova O, Sinitsyna T, Shmakov A, Matsyura A (2017) Pathogenicity of *Simplicillium lano-soniveum* to *Coccus hesperidum*. Ukrainian Journal of Ecology 7 (4): 689–691. https://doi.org/10.15421/2017_1801

Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology 16: 1701–1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu333

Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. Studies in Mycology 57: 1–64. https://doi.org/10.3114/sim.2007.57.01
Swofford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland.

Takata K, Iwatsuki M, Yamamoto T, Shirahata T, Nonaka K, Masuma R, Hayakawa Y, Hanaki H, Kobayashi Y, Petersson GA, Ōmura S, Shiomi K (2013) Aogacillins A and B produced by Simplicillium sp. FKI-5985: new circumventors of arbekacin resistance in MRSA. Organic Letters 15(18): 4678–4681. https://doi.org/10.1021/ol401975z

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

Uchida R, Kondo A, Yagi A, Nonaka K, Masuma R, Kobayashi K, Tomoda H (2019) Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981. The Journal of Antibiotics 72(3): 134 pp. https://doi.org/10.1038/s41429-018-0128-x

Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP (2012) Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Diversity 52: 197–207. https://doi.org/10.1007/s13225-011-0107-z

Ward NA, Robertson CL, Chanda AK, Schneider RW (2012) Effects of Simplicillium lanozoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Phytopathology 102(8): 749–760. https://doi.org/10.1094/PHYTO-01-11-0031

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, New York. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yan B, Fang ST, Li WZ, Liu SJ, Wang JH, Xia CH (2015) A new minor diketopiperazine from the sponge-derived fungus Simplicillium sp. YZ-11. Natural Product Research 29 (21): 2013–2017. https://doi.org/10.1080/14786419.2015.1027890

Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1–50.

Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycological Research 112 (7): 811–824. https://doi.org/10.1016/j.mycres.2008.01.019

Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia: Molecular Phylogeny and Evolution of Fungi 39: 1 pp. https://doi.org/10.3767/persoonia.2017.39.01

Zhao D, Liu B, Li LY, Zhu XF, Wang YY, Wang JQ, Duan YX, Chen LJ (2013) Simplicillium chinense: a biological control agent against plant parasitic nematodes. Biocontrol Science and Technology 23 (8): 980–986. https://doi.org/10.1080/09583157.2013.809514

Zou X, Liu AY, Liang ZQ, Han YF, Yang M (2010) Hirsutella liboensis, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China. Mycotaxon 111 (1): 39–44. https://doi.org/10.5248/111.39

Zhao D, Liu B, Li LY, Zhu XF, Wang YY, Wang JQ, Duan YX, Chen LJ (2013) Simplicillium chinense: a biological control agent against plant parasitic nematodes. Biocontrol Science and Technology 23 (8): 980–986. https://doi.org/10.1080/09583157.2013.809514

Zou X, Liu AY, Liang ZQ, Han YF, Yang M (2010) Hirsutella liboensis, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China. Mycotaxon 111 (1): 39–44. https://doi.org/10.5248/111.39