Supplementary Figures and Tables for:

Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS

Melanie A. McDowell¹,³, Julien Marcoux²,⁴, Gareth McVicker¹, Steven Johnson¹, Yu Hang Fong¹, Rebecca Stevens¹, Lesley A. Bowman¹, Matteo T. Degiacomi², Jun Yan², Adam Wise¹, Miriam Friede¹, Justin L. P. Benesch², Janet E. Deane¹,⁵, Christoph M. Tang¹, Carol V. Robinson² and Susan M. Lea¹*

¹Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
²Department of Chemistry, University of Oxford, Oxford, UK.

*Corresponding author: susan.lea@path.ox.ac.uk, +44 1865 275181

Current addresses:
³Biochemistry Centre (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany.
⁴Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR 5089, 205 Route de Narbonne, Toulouse, France
⁵Cambridge Institute for Medical Research, Wellcome Trust/MRC Bldg., Addenbrooke's Hospital, Hills Road, Cambridge, UK

Running title: Uniform C-ring assembly by NF- and flagellar-T3SS

Key words: T3SS, C-ring, pathogenesis, Shigella, structural biology, protein interactions
Fig. S1 – Schematic highlighting components of the NF- and flagellar-T3SS mentioned in this study

A Species specific names from the *Shigella*, *Yersinia*, *Salmonella* SPI-1/2 and flagellar-T3SS along with the unified Sct name (Abrusci *et al.*, 2014) are given for the C-ring protein(s) (blue), IM outer ring protein (red), accessory cytosolic protein (purple), stator (orange), ATPase (yellow) and major export apparatus (green).

B The position of these components within the *Shigella* T3SS is also shown.
Fig S2 - Sequence alignment of Spa33-C with NF- and flagellar-T3SS orthologues

Multiple sequence alignment of the C-terinus of *S. flexneri* Spa33 with the equivalent regions of *S. typhimurium* SPI-1 SpaO, *S. typhimurium* SPI-2 SsaQ, *Y. pseudotuberculosis* YscQ, *P. syringae* HrcQB, *E. coli* FliN and *T. maritima* FliY performed using ClustalW2 (Chenna et al., 2003), with identical, conserved and semi-conserved residues being indicated by asterisks, colons and full-stops respectively. Sequence numbers are shown relative to the full-length protein. Alternative translation start sites that have either been experimentally demonstrated or predicted are highlighted in red and blue respectively. The conserved Val/Ile residues predicted to be involved in binding FliH homologues are highlighted in orange.
Figure S3 – T. maritima FliM/FliN and FliM/FliY complexes are heterogeneous and sample a range of oligomeric states

A Schematic of the species observed in the spectra shown in B and C. Size and sequence overlap of FliN and FliN* are shown relative to *T. maritima* FliY.

B Mass spectrum for *T. maritima* FliM/FliN complexes obtained under non-denaturing conditions, showing multimeric assemblies comprising various ratios of FliN and FliN* (light green). FliN dimers (dark green) and FliM/FliN complexes with either a 1:3 (dark blue; FliM/FliN₃ or FliM/FliN₂/FliN*) or 2:4 (yellow; FliM₂/FliN₄, FliM₂/FliN₂/FliN*₂ or FliM₂/FliN₃/FliN*) stoichiometry are distinguishable. For each assigned complex, the charge state of the most intense peak is shown and a comparison of experimental and theoretical molecular mass is given in Table 3.

C Mass spectrum for *T. maritima* FliM/FliY complexes obtained under non-denaturing conditions, showing multimeric assemblies comprising various ratios of FliY, FliN and FliN*. FliM/FliY complexes with either a 1:1 (light blue), 1:3 (dark blue; FliM/FliY/FliN*₂, FliM/FliY/FliN/FliN* or
FliM/FliY₂/FliN*), 1:5 (red; FliM/FliY₂/FliN₂/FliN* or FliM/FliY₂/FliN/FliN*₂) or 2:4 (yellow; FliM₂/FliY₂/FliN*₂, FliM₂/FliY₂/FliN/FliN* or FliM₂/FliY₃/FliN*) stoichiometry are distinguishable. For each assigned complex, the charge state of the most intense peak is shown and a comparison of experimental and theoretical molecular mass is given in Table 3.
Figure S4 – Detailed view of the dimer-dimer interface within the Spa33\textsubscript{208-293} crystal lattice

Two copies of the Spa33\textsubscript{208-293} dimer extracted directly from the crystal lattice showing a zoomed view of the dimer-dimer interface. One copy of the dimer is shown as a surface representation, with chain A (black) and chain B (grey) differentiated and the key interacting residue Tyr\textsubscript{221} labelled. The second copy is shown by a stick representation, with chain A (green) and chain B (light blue) differentiated and the residues lining the hydrophobic pocket labelled.
Figure S5 – Comparison of packing within the crystal lattices of Spa33\textsubscript{208-293} and homologous structures

A Superimposition of two copies each of the Spa33\textsubscript{208-293} dimer (grey) and HrcQ\textsubscript{B-C} dimer (green; pdb id 1O9Y) extracted directly from their crystal lattices, highlighting the conserved dimer-dimer interface.

B Superimposition of the Spa33\textsubscript{208-293} dimer (grey) and YscQ-C dimer (turquoise; pdb id 3UEP), showing a second copy of Spa33\textsubscript{208-293} extracted directly from the crystal lattice and a zoomed view of the resulting dimer-dimer interface. The non-native LEVLFQ tag stub of YscQ-C (red) interacts with L233, the equivalent residue to Y221 in Spa33\textsubscript{208-293}, and clashes with the second copy of Spa33\textsubscript{208-293}, demonstrating how an interaction via the same dimer-dimer interface was unable to form in the YscQ-C crystal lattice.

C Two copies of the FliN dimer (magenta; pdb id 1YAP) extracted directly from their crystal lattices, highlighting the conserved dimer-dimer interface.
Figure S6 – Mutation of Tyr221 at the conserved dimer-dimer interface disrupts higher order oligomerisation of Spa33-FL/C2

A Native mass spectrum of His-Spa33-FL/Spa33-C complexes containing a Y221R mutation in both proteins. Monomeric (dark blue) and low levels of dimeric (yellow) Spa33-FL/C2 can be observed. For each assigned complex, the charge state of the most intense peak is shown and a comparison of
experimental and theoretical molecular mass is given in Table 3. A parallel spectrum of the wild type protein at an the same concentration was collected (data not shown) and resembles Fig. 3A.

B Analysis of the oligomeric state of His-Spa33-FL/Spa33-C complexes containing no mutation (wild type; blue), a Y221R mutation (green) or a control K235A mutation (red) by SEC and in-line MALS. The left axis represents the molecular mass at any given point of the chromatogram. Elution profiles are shown for the main elution peak for 30 µM each complex and the expected molar mass for Spa33-FL/C₂ is marked.

C CR induction assay for WT, Y221R, Y221R/L141A and Aspa33 strains of *S. flexneri* generated by allelic exchange. Cell cultures were supplemented with 0.2 mg/ml CR and samples taken from the supernatant were separated on a 10% SDS-PA gel and silver-stained. The position of early effectors within the characteristic gel profile are shown.
Figure S7 – Fusion of a C-terminal tag to Spa33-C₂ disrupts higher order assembly of the 1:2 complex

Mass spectra for Spa33-FL/Spa33-C complexes with either a **A** strep, **B** thioredoxin (trx) or **C** maltose binding protein (mbp) C-terminal fusion to Spa33-C obtained under non-denaturing conditions. Monomers (light green) and dimers (dark green) of Spa33-C are observed, along with monomers (dark blue), dimers (yellow) and tetramers (orange) of the Spa33-FL/C₂ complex. For each assigned species, the charge state of the most intense peak is shown and a comparison of experimental and theoretical molecular mass is given in Table 3.
Figure S8 – Recent crystal structures of *S. typhimurium* SpaO (SpoA1-SpoA2) and FliM(SpoA1)-FliN(SpoA2) corroborate our molecular models for C-ring assembly

Superimposition of the Spa33-208,293 (grey) with the structures of *S. typhimurium* A SpaO(SpoA1-SpoA2) (yellow; pdb id 4YX5) and B FliM(SpoA1)-FliN(SpoA2) (red; pdb id 4YXC).
C The crystal packing of FliM-FliN heterodimers shows a good agreement with the cryo-EM map of the flagellar C-ring. A spiral of dimers interacting via the conserved dimer-dimer interface was directly extracted from the crystal lattice and manually positioned in the density corresponding to the cytoplasmic edge of the C-ring in the C34 *S. typhimurium* EM map contoured to contoured to 1σ (Thomas *et al.*, 2006)(EMDB 1887). SpoA1 of FliM is coloured green, whilst SpoA2 of FliN is coloured blue.
Figure S9 – The formation of 1:3 complexes by FliM/FliN is consistent with published cross-linking data

A SCWRL homology model for an assembly of the 1:3 complex of *E. coli* FliM (green) and FliN (blue) is shown, constructed using the sequence alignment with *S. flexneri* Spa33 shown in Figure 4B and the structural coordinates for the model shown in Figure 5D. Residues 72 and 86 within FliN and residues 260, 267, 303 and 316 within FliM are represented by a red sphere for their Cα atom and the cross-links previously identified for cysteine mutants of these residues (Sarkar *et al.*, 2010) are represented by dashed black lines. As for each pairwise combination of FliM and FliN residues there are several possible intermolecular distances within the model, the shortest distance has been chosen here to represent the likely cross-link. Asn134/Met310, Asn76/Met327, Asn76/Met328, Asn134/Met265 and Asn134/Met267 cross-links are unable to be represented as they involve residues not found within our homology model for *E. coli* FliM/FliN.
Figure S10 - Model demonstrating the likely arrangement of C-ring proteins as docked into the clockwise-locked cryo-EM map (EMD-1887).

The FliM/FliN3 model (blue/green) from this study is docked into the spiral density at the bottom as in Figure 5. The complex of the middle domain of FliM (green) and the middle domain of FliG (brown) (pdb id 3SOH) is placed in the density above the spiral, and the remaining two domains of FliG (brown) (pdb id 3HJL) placed in the prominent densities above the FliM ring. Coordinates were manually positioned by hand in Coot and are intended to be illustrative rather than absolute relative positions.
Table S1 – Plasmids created in this study

Name	Description and source	
pET28b-Spa33	Full-length `spa33` amplified from the virulence plasmid (Table S2) cloned between NdeI and BamHI of pET28b (Novagen), Kan'	
pET28b-Spa33(Y221R)	Y221R mutation introduced into `spa33` within pET28b-Spa33 by Quikchange mutagenesis (Table S2), Kan'	
pET28b-Spa33(L141A/Y221R)	L141A mutation introduced into `spa33(Y221R)` within pET28b-Spa33 by Quikchange mutagenesis (Table S2), Kan'	
pET28b-Spa33208-293	Residues 208-293 of `spa33` amplified from pET28b-Spa33 (Table S2) cloned between NcoI and XhoI of pET28b (Novagen), Kan'	
pET28b-Spa33-C	Residues 193-293 of `spa33` cloned amplified from pET28b-Spa33 (Table S2) between NdeI and BamHI of pET28b (Novagen), Kan'	
pET28b-Spa33-CΔN	Residues 208-219 of `spa33` deleted from pET28b-Spa33208-293 by Quikchange mutagenesis (Table S2), Kan'	
pETDuet-Spa33ΔRBS	Full-length `spa33` gene with a N-terminal MGSSHHHHHHSSGLVPRGSH His-tag amplified from pET28b-Spa33 (Table S2) cloned between Ncol and BamHI of pETDuet-1 (Novagen). GGGGA→GGTGA mutation in RBS and GTG→GTC mutation in alternative start codon introduced by Quikchange mutagenesis (Table S2), Amp'	
pETDuet-Spa33-FL(CTD)	Residues 1-131 of `spa33` deleted from pETDuet-Spa33ΔRBS by Quikchange mutagenesis (Table S2), Amp'	
pRSFDuet-Spa33-C	Residues 194-293 of `spa33` amplified from pET28b-Spa33 (Table S2) cloned between Ncol and BamHI of pRSFDuet-1 (Novagen), Kan'	
pRSFDuet-Spa33-Cstrep	C-terminal WSHPQFEK Strep-tag inserted downstream of `spa33-C` within the pRSFDuet-Spa33-C by Quikchange mutagenesis (Table S2), Kan'	
pRSFDuet-Spa33-Ctrx	Residues 2-109 of *E. coli thioredoxin* with a N-terminal GSAM linker amplified (Table S2) and cloned between BamHI and EcoRI of pRSFDuet-Spa33-C. The stop codon at the C-terminus of Spa33-C was subsequently removed by Quikchange mutagenesis (Table S2), Kan'	
pRSFDuet-Spa33-Cmbp	Residues 29-391 of *E. coli malE* with a N-terminal GSAM linker amplified (Table S2) and cloned between BamHI and HindIII of pRSFDuet-Spa33-C. The stop codon at the C-terminus of Spa33-C was subsequently removed by Quikchange mutagenesis (Table S2), Kan'	
pETDuet-FliM/N	Full-length *T. maritima fliM* with a N-terminal MGSSHHHHHHHSSGLVPRGSH His-tag synthesised and cloned between NcoI and BamHI of pETDuet-1 (Novagen) by Eurogentec Ltd. Residues 212-343 of *T. maritima fliY* synthesised and cloned between NdeI and XhoI by Eurogentec Ltd. Amp⁺	
-------------------	--	
pETDuet-FliM/Y	Full-length *T. maritima fliM* with a N-terminal MGSSHHHHHHHSSGLVPRGSH His-tag synthesised and cloned between NcoI and BamHI of pETDuet-1 (Novagen) by Eurogentec Ltd. Full-length *T. maritima fliY* amplified from pET28b-FliY (Table S2) cloned between NdeI and XhoI, Amp⁺	
pETDuet-FliM/N	Residues 212-234 deleted from *fliY* within pETDuet-FliM/N by Quikchange mutagenesis (Table S2), Amp⁺	
pIB279	(Blomfield *et al.*, 1991); template for amplification of *sacB-kanR* fragment (Table S2).	
pKD46	(Datsenko & Wanner, 2000); plasmid used for expression of the λ Red system.	
pGM133	pKO3 (*sacB*) derivative with *spa33*_{FL} fragments inserted via the Gibson Assembly reaction (Table S2).	
pGM134	pKO3 (*sacB*) derivative with *spa33*_{AC} fragments inserted via the Gibson Assembly reaction (Table S2).	
pGM135	pKO3 (*sacB*) derivative with Δ*spa33* fragments inserted via the Gibson Assembly reaction (Table S2).	
pGM136	pKO3 (*sacB*) derivative with *spa33*_{FL}/_{AC} fragments inserted via the Gibson Assembly reaction (Table S2).	
Primer Description	Forward sequence (5’→3’)	Reverse sequence (5’→3’)
-------------------	--------------------------	--------------------------
pET28b-Spa33 (cloning)	GCCGCGCGCAGCCATATGAGTCGCTAAACG	CCGGAGCTCGAATTCGGATCCCTTACTTCT
pET28b-Spa33(Y221R) (mutagenesis)	ACACACACAGAAGTTTCTTTTGAGTTA	CCTTTTACCATCAGAACTTCTG
pET28b-Spa33(L141A/Y221R) (mutagenesis)	AGATGCCGGTATTACGGTACGCTAAACG	GCCGAGCTCGAATTCGGATCCCTTACTG
pET28b-Spa33 (cloning)	TAAGAAGGAGATATACCATGACTTAC	GATGATGCAAATAGTGAATGTAAACG
pET28b-Spa33-C (cloning)	GCCGCGCGGCAGCCATATGACG	CCGGAGCTCGAATTCGGATCCCTTACTG
pET28b-Spa33-C (mutagenesis)	GAAATAATTTTGGTTTAACTTTAGCA	CCTTTTACCATCAAGAAATTCCTG
pETDuet-Spa33ΔRBS (cloning)	TAAGAAGGAGATATAACCATGACTTAC	GCCGAGCTCGAATTCGGATCCCTTACTG
pETDuet-Spa33ΔRBS (mutagenesis)	GTGTAATCAAGTTATTATTGGTGAT	CCTTTTACCATCAGAACTTCTG
pETDuet-Spa33-FL(CTD) (mutagenesis)	GTGCCGCGCGCCCATGTGACG	GTCGAGCTCAATTCGGATCCCTTACTG
pRSFDuet-Spa33-C (cloning)	TAATAAGGAGATATAACCATGACTTAC	GCCGAGCTCGAATTCGGATCCCTTACTG
pRSFDuet-Spa33-C (mutagenesis)	GAGATTAGTTCTTGGATGGTAAAG	CCGGAGCTCGAATTCGGATCCCTTACTG
pRSFDuet-Spa33-Ctx (cloning)	ATGGTAAAGGAGATATAACCATGACTTAC	GCCGAGCTCGAATTCGGATCCCTTACTG
pRSFDuet-Spa33-Ctx (mutagenesis)	ATGGTAAAGGAGATATAACCATGACTTAC	GCCGAGCTCGAATTCGGATCCCTTACTG
(mutagenesis)	ATGGTAAAGGAGTAAAGGATCC GCC	CATTATGCGGCCGCAAGCTT TTACT
pRSFDuet-Spa33-Cmbp (cloning)	ATGGGAAGGAGTTAAAACGTGGTAATC TGGATTAACGC	CATTATGCGGCCGCAAGCTT TTACT
	CTGGAAGAAGGTAAACTGGTAATC	GCGCGTCTTTCAGGGCTTC
pRSFDuet-Spa33-Cmbp (mutagenesis)	ATGGGATGTTAAGGAGGGATCCG	CATTATGCGGCCGCAAGCTT TTACT
	CATGGAAGAAGGCG	GCGCGTCTTTCAGGGCTTC
pETDuet-FliM/Y (FliY cloning)	AGAAGGAGATATACATATGACGGA AAATGAATTCCTCTCAGG	GTTTCTTTTACCAGACTCGAGTCATTC GTTGAGAAGCTCCAG
pETDuet-FliM/N* (FliN* mutagenesis)	CCTTAGATATTAGTTAAGTATAAGA AGGAGATATACATATGGTGAAGGT AAACCGGTAGAATTCGCAGAGCT TGTTACTTAACTAATATACTAAG	

Fragments involved in Gibson Assembly of linear construct used to create strain GMCT113

sacB-kanR fragment amplification from pIB279	CCGGATCCTTTTTAACCACATCA	CCCATATGTCGAAGCGCGTCG
Amplification of spa33-flanking upstream fragment from virulence plasmid	GTTGAATCTTGATGAGTTATCACAA GAGG	ATGTGATGGGTTAAAAAGGATCCTT AGCATTTCTTTCAGCT
Amplification of spa33-flanking downstream fragment from virulence plasmid	GACGAGGCTTGCACATATGTAATG GTGAGTCAGAACACAC	CAGGCAAGAGGGAAAAAATAATG

Fragments involved in Gibson Assembly of plasmids for allelic exchange

Amplification of pKO3 backbone	TTCAATTTCATGTTCTAGTTGC	TAAACCAGCAATAGACATAAGC	
Amplification of spa33 AFL fragments from virulence plasmid	ATGTCTATTGCTGGTTTAGCCAAAC	AAAATGTATTATCTTATGCAATTTC TTCACT	
	AGTTGATACTTG	ACTAGAACATGAAATTGAACAGGC	
Amplification of spa33ΔC fragments from virulence plasmid	ATGTCTATTGCTGGTTTAGCCAAAC AGTTGATACTTG	AAAATGTATTATCTTATGCAATTTC TTCACT	
	AGTTGATACTTG	ACTAGAACATGAAATTGAACAGGC	AAAATGTATTATCTTATGCAATTTC TTCACT
Amplification of Δspa33 fragments from virulence plasmid	TCTG	AAGAGGGAAAAACAATG
ATGTCTATTGCTGGTTTAGGCAAAACAGTTGATACTTG	CACCATTATATTCCTAGCATTCTTCCTCACTC	
ATGCTAAGATAATAATGTTGAGTCAGAACACAC	ACTAGAACATGAAATTGAACAGGC	
	AAGAGGGAAAAACAATG	
Amplification of spa33ΔFL/ΔC fragments from virulence plasmid	TCTG	AAGAGGGAAAAACAATG
ATGTCTATTGCTGGTTTAGGCAAAACAGTTGATACTTG	AAAATGTATTATCTTTAGCATTCTTCCTCACTC	
ATGCTAAGATAATAACATTTTGAGCCTAACGAAAAAAC	CAATATAATCACCATAATAAATTGGATTACACAATAATAAATTATAAAG	
TTATTATTGGTGATTATATTGTCAAGATAAAATGAGGCAAAATTATAAATTGAATTG		
	ACTAGAACATGAAATTGAACAGGC	
	AAGAGGGAAAAACAATG	