Desingularization of the Sweeping Process Mapping

A. Daniilidis and S. Tapia-Garcia

Abstract. In [9], the celebrated KL-inequality has been extended from definable functions $f : \mathbb{R}^n \to \mathbb{R}$ to definable multivalued maps $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$, by establishing that the co-derivative mapping D^*S admits a desingularization around every critical value. As was the case in the gradient dynamics, this desingularization yields a uniform control of the lengths of all bounded orbits of the corresponding sweeping process $-\dot{\gamma}(t) \in N_{S(t)}(\gamma(t))$. In this paper, working outside the framework of o-minimal geometry, we characterize the existence of a desingularization for the coderivative in terms of the behaviour of the sweeping process orbits and the integrability of the talweg function. These results are close in spirit with the ones in [3], where characterizations for the desingularization of the (sub)gradient of functions had been obtained.

Key words Sweeping process, KL-inequality, desingularization.

AMS Subject Classification Primary 49J53 ; Secondary 26D10, 34A60, 37C10

Contents

1 Introduction

2 Notation and Preliminaries

3 Characterization of desingularization of the coderivative

4 Proofs

1 Introduction

It is well-known that every C^1 smooth function $f : \mathbb{R}^n \to \mathbb{R}$ which is definable in some o-minimal structure has finitely many critical values. Kurdyka [11] showed that if $\tilde{r} \in f(\mathbb{R}^n)$ is a critical
value and U is a nonempty open bounded subset of \mathbb{R}^n, then there exist $\rho > 0$ and a C^1-smooth function $\psi : [\bar{r}, \bar{r} + \rho] \to [0, +\infty)$ satisfying

$$\|\nabla(\psi \circ f)(x)\| \geq 1, \quad \text{for all } x \in U \text{ such that } f(x) \in (\bar{r}, \bar{r} + \rho).$$

(1)

The above inequality generalizes to o-minimal functions the Łojasiewicz gradient inequality (established in [15] for the class of C^1 subanalytic functions) and is nowadays known as the Kurdyka-Łojasiewicz inequality (in short, KL-inequality). For definitions and properties of o-minimal functions the reader is referred to [20]. Both the Łojasiewicz and the KL-inequality have been further extended to nonsmooth (subanalytic and respectively o-minimal) functions, see [16, 11, 1].

One of the main features of Kurdyka’s work [11] was to consider the so-called talweg function

$$m(r) = \inf_{x \in U} \{ \|\nabla f(x)\| : f(x) = r \}, \quad r \in (\bar{r}, \bar{r} + \rho),$$

(2)

which captures the worst behaviour (lower value of the norm of the gradient) at the level set $\{f = r\}$. Kurdyka used the above function to defined the talweg set $V(r)$ consisting of points $x \in f^{-1}(r)$ with $\|\nabla f(x)\| \leq 2 m(r)$. He then made use of a definable version of the curve selection lemma to obtain a smooth curve $r \mapsto \theta(r) \in V(r)$ which is directly linked to the desingularizing function ψ. A straightforward consequence of (1) is that the length of every bounded gradient curve $\tilde{\gamma} = -\nabla f(\gamma)$ contained in $f^{-1}((\bar{r}, \bar{r} + \rho))$ is majorized by $\psi(\bar{r} + \rho) - \psi(\bar{r})$ (and therefore it is bounded). The same is true for the lengths of the piecewise gradient curves, that is, curves obtained by concatenating countably many gradient curves $\{\gamma_i\}_{i \geq 1}$, where $\gamma_i \subset f^{-1}([r_{i+1}, r_i])$ and $\{r_i\}_i$ is a strictly decreasing sequence in $(\bar{r}, \bar{r} + \rho)$ converging to \bar{r}. These curves may have countably many discontinuities.

Outside the framework of o-minimality the KL-inequality [11] may fail even for C^2-smooth functions [3, Section 4.3] or for C^∞-smooth function with a unique critical value [18, p. 12]. Bolte, Daniilidis, Ley and Mazet in [3] considered the problem of characterizing the existence of a desingularization function ψ and the validity of (1) for an upper isolated critical value \bar{r} of a semiconvex coercive function f defined in a Hilbert space. (A function f is called coercive, if it has bounded sublevel sets. This assumption replaces the use of an open bounded set U in Kurdyka’s result.) We reproduce below one of the main results of the aforementioned work, see [3, Theorem 20], for the special case where the function is smooth and defined in finite dimensions.

Theorem 1 (characterization of the KL-inequality). Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a C^2-smooth (or more generally C^1-smooth semi-convex) coercive function and $\bar{r} \in f(\mathbb{R}^n)$ an upper isolated critical value. The following statements are equivalent:

a) **(KL-inequality)** There exist $\rho > 0$ and a smooth function $\psi : [\bar{r}, \bar{r} + \rho] \to [0, \infty)$ such that

$$\|\nabla(\psi \circ f)(x)\| \geq 1, \quad \text{for all } x \in f^{-1}((\bar{r}, \bar{r} + \rho)).$$

b) **(Length control for gradient curves)** There exist $\rho > 0$ and a strictly increasing continuous function $\sigma : [\bar{r}, \bar{r} + \rho] \to [0, \infty)$ with $\sigma(\bar{r}) = 0$ such that

$$\int_0^T \|\dot{\gamma}(t)\| dt \leq \sigma(f(\gamma(0))) - \lim_{t \to T} \sigma(f(\gamma(t))), \quad (\text{we may have } T = +\infty)$$

for all gradient curves $\gamma : [0, T) \to \mathbb{R}^n$ with $\gamma([0, T)) \subset f^{-1}((\bar{r}, \bar{r} + \rho))$.

2
c) (Length bound for piecewise gradient curves) There exist $\rho, M > 0$ such that
\[
\int_0^T \| \dot{\gamma}(t) \| dt \leq M,
\]
for all piecewise gradient curves $\gamma : [0, T) \to \mathbb{R}^n$ with $\gamma([0, T)) \subset f^{-1}((\bar{r}, \bar{r} + \rho))$.

d) (Integrability condition) There exists $\rho > 0$ such that the function
\[
r \mapsto \sup_{x \in f^{-1}(r)} \frac{1}{\| \nabla f(x) \|}, \quad r \in (\bar{r}, \bar{r} + \rho),
\]
is finite-valued and belongs to $L^1(\bar{r}, \bar{r} + \rho)$.

Recently, Daniilidis and Drusvyatskiy [9] showed that every multivalued map $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ with definable graph admits a desingularization of its graphical coderivative $D^* S : \mathbb{R}^n \rightrightarrows \mathbb{R}$ around any critical value $t \in \mathbb{R}$. (Relevant definitions and a more precise statement are given in Section 2.3.) This result yields a uniform bound for the lengths of all bounded orbits of the sweeping process defined by S (see forthcoming Definition 2). The aforementioned results of [9] are also covering the results of Kurdyka in [11] by considering a sweeping process mapping S related to the sublevel sets of the smooth definable function f (c.f. Remark 9).

The main contributions of this work are the following:

- Without assuming o-minimality, we characterize the desingularization of the coderivative of a smooth sweeping process (see Definition 10) by establishing an analogous result to Theorem 1. This is the main result of this work, which is resumed in Section 3.2.

- Since the evolution of the sweeping process is not reversible in time, we introduce in Definition 3 an asymmetric version of the modulus for the coderivative of a multivalued map S, $\| D^* S(t, x) \|$, that captures the orientation of the dynamics. (In [9], the prevailing assumption of o-minimality made it possible to work directly with the usual modulus.)

- We establish an asymmetric version of [19, Theorem 9.40] (sometimes known as the Mordukhovich Criterion) relating the asymmetric modulus of the coderivative to the oriented calmness of the multivalued map (Proposition 23). We then obtain Theorem B (Section 3.3) which relates the desingularization of the coderivative with the length of discrete sequences given by the catching–up algorithm. (This algorithm can be perceived as the proximal algorithm over a function f whenever the multivalued map S is defined by the sublevel sets of f.)

The outline of this manuscript is as follows: In Section 2 we fix our notation, we quote preliminary results of variational analysis required in the sequel. In Section 3 we fix our setting, explain our assumptions and state the two main results of this paper (Theorem A and Theorem B). The proofs of these results together with other auxiliary results will be given in Section 4.
The notation used along this paper is standard and follows the lines of [19]. For any two nonempty sets $A, B \subset \mathbb{R}^n$, the excess of A over B is given by $\text{ex} (A, B) := \sup \{ d(x, B) : x \in A \}$ and their Hausdorff-Pompeiu distance is defined by $\text{dist} (A, B) := \max \{ \text{ex} (A, B), \text{ex} (B, A) \}$.

Let $C \subseteq \mathbb{R}^n$ be a closed set and let $x \in \mathbb{R}^n$. The set of projections of x at C is defined by $\text{Proj}_C(x) := \{ y \in C : \| x - y \| = d(x, C) \}$, where $d(x, C) := \inf_{y \in C} d(x, y)$. The Fréchet normal cone to C at $x \in C$, denoted by $\mathring{N}_C(x)$, is the set of vectors $v \in \mathbb{R}^n$ satisfying

$$\limsup_{y \to x} \frac{\langle v, y - x \rangle}{\| y - x \|} \leq 0.$$

The limiting normal cone to C at x, denoted by $N_C(x)$, consists of all vectors $v \in \mathbb{R}^n$ such that there exists a sequence $(x_i)_i \subset C$ and $v_i \in \mathring{N}_C(x_i)$ satisfying $x_i \to x$ and $v_i \to v$.

2.1 Sweeping process dynamics

Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a multivalued map. The effective domain of S, denoted by $\text{dom}(S)$, is the set $\{ t \in \mathbb{R} : S(t) \neq \emptyset \}$. We denote by $S = \text{gph}(S)$ the graph of the multivalued map S, that is,

$$S = \text{gph} (S) := \{ (t, x) \in \mathbb{R}^{n+1} : x \in S(t) \}.$$

Let us introduce the following dynamical system, known as sweeping process, determined by the multivalued function S. The definition implicitly implies that $\text{dom}(S)$ has nonempty interior, and is often an interval (possibly unbounded). In particular, in our setting (c.f Assumptions in Section 2.1) $\text{dom}(S)$ will always be an interval (possibly unbounded).

Definition 2 (sweeping process dynamics). Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a multivalued map and $I \subset \text{dom}(S)$ be a nonempty interval of \mathbb{R}. We say that the absolutely continuous curve $\gamma : I \to \mathbb{R}^n$ is a solution (orbit) of the sweeping process defined by S if

$$\left\{\begin{array}{l}
-\dot{\gamma}(t) \in N_{S(t)}(\gamma(t)), \forall \text{a.e. } t \in I, \\
\gamma(t) \in S(t), \forall t \in I,
\end{array}\right.$$

where $N_{S(t)}(\gamma(t))$ stands for the normal cone of $S(t)$ at $\gamma(t)$.

Notice that (3) can be formally satisfied by curves with possible discontinuities (the set of discontinuities has then to be of measure zero). For our purposes it is useful to consider the class of piecewise absolutely continuous curves, that is, curves $\gamma : I \to \mathbb{R}^n$ whose possible discontinuities are contained in a closed countable set D and being absolutely continuous on each interval of $I \setminus D$. This latter set is open, therefore it is a countable union of disjoint intervals J_i, and γ is required to be absolutely continuous on each J_i.

Notation ($\mathcal{AC}(S, I)$, $\mathcal{PAC}(S, I)$). We denote by $\mathcal{AC}(S, I)$ (respectively $\mathcal{PAC}(S, I)$) the set of absolutely continuous (respectively, piecewise absolutely continuous) orbits of the sweeping process S defined on the interval $I \subset \text{dom}(S)$. The length of a (piecewise) absolutely continuous curve $\gamma : I \to \mathbb{R}^n$ is given by the formula

$$\ell(\gamma) := \int_I \| \dot{\gamma}(t) \| dt.$$
2.2 Coderivative, (oriented) modulus and (oriented) talweg.

Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a multivalued map with closed values.

Definition 3 (Coderivative). The (limiting) coderivative of S at $(t, x) \in S$ in $u \in \mathbb{R}^n$ is defined as follows:

$$D^*S(t, x)(u) := \{ a \in \mathbb{R} : (a, -u) \in N_S(t, x) \}. $$

Therefore $D^*S(t, x) : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is a multivalued map and

$$(u, a) \in \text{gph } D^*S(t, x) \text{ if and only if } (a, -u) \in N_S(t, x). $$

Since $\text{gph } D^*S(t, x)$ is a cone, the map $D^*S(t, x)$ is positively homogeneous and we can define its modulus via the formula:

$$\|D^*S(t, x)\|_+^+ := \sup_{\|u\| \leq 1} \{ |a| : a \in D^*S(t, x)(u) \}. $$

Although the above definition of a modulus is classical and relates nicely to the Lipschitz continuity of S (cf. [19, Theorem 9.40]), the symmetry of the absolute value of \mathbb{R} (representing the time in our dynamics) does not fit to the non-reversible dynamics of the sweeping process. To remedy this, one needs to replace $|a|$ in the above formula by $a^+ := \max\{0, a\}$ which eventually gives rise to the following definition.

Definition 4 (Asymmetric modulus of coderivative). For every $(t, x) \in S$ we define the asymmetric modulus of the coderivative $D^*S(t, x)$ as follows:

$$\|D^*S(t, x)\|_+^+ = \sup \{ a^+ : a \in D^*S(t, x)(u), \|u\| \leq 1 \},$$

where we adopt the convention $\sup(\emptyset) = 0$.

The following example gives some insight about the difference between the two moduli.

Example 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1-smooth function and set

$$S(r) = \{ f \leq r \} := \{ x \in \mathbb{R}^n : f(x) \leq r \}, \text{ for all } r \in \mathbb{R}. $$

This defines a multivalued map $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ associated to f, in the sense that the graph S of S is the epigraph of f (up to a permutation of coordinates that brings the first coordinate of \mathbb{R}^{n+1} to the last position). Let $x \in S(r)$.

If $f(x) < r$, then $x \in \text{int}(S(r))$ and $N_S(r, x) = \{0\}$, yielding $\|D^*S(r, x)\|_+^+ = \|D^*S(r, x)\|_+^+ = 0$. On the other hand, since the normal space of $\text{gph}(f)$ at $(x, f(x))$ is exactly $\mathbb{R}(\nabla f(x), -1)$, if $f(x) = r$, then $N_S(r, x) = \mathbb{R}_+(-1, \nabla f(x))$. Thus,

$$\|D^*S(t, x)\|_+^+ = \frac{1}{\|\nabla f(x)\|}, \text{ but } \|D^*S(t, x)\|_+^+ = 0.$$

We now define the oriented talweg function associated to the multivalued map $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$. This captures the worst case (larger value of the oriented modulus of the coderivative) on each set $S(t), t \in \mathbb{R}$. This function will play an important role in our main result.
Definition 6 (oriented talweg). The oriented talweg function of S denoted by φ^\dagger is defined as follows:

$$\varphi^\dagger(t) = \sup_{x \in S(t)} \{ \| D^* S(t, x) \|^+ \}, \text{ for all } t \in \text{dom}(S).$$

Remark 7 (Asymmetric structures). In [9] the usual talweg function φ has been considered, based on the (symmetric) modulus of the coderivative.

$$\varphi(t) = \sup_{x \in S(t)} \{ \| D^* S(t, x) \|^+ \}, \text{ for all } t \in \text{dom}(S).$$

The difference between φ and φ^\dagger is that the modula $\| D^* S(t, x) \|^+$, $(t, x) \in S$, are now replaced by their asymmetric versions $\| D^* S(t, x) \|^+$. The reader might notice that $a^\dagger := \max\{0, a\}$ is a typical asymmetric norm of \mathbb{R} and $\| D^* S(t, x) \|^+$ can be seen as a natural asymmetricization of the modulus $\| D^* S(t, x) \|^+$. The use of asymmetric objects seems to be a natural tool in nonsmooth dynamics as well as in operations research (orientable graphs). More details on asymmetric structures can be found in [4] and [10].

2.3 Desingularization of the coderivative (definable case).

We now recall the main result of [9]. If $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ is a multivalued map with a closed bounded graph S, then assuming that S is definable in some o-minimal structure, for every $a \in \mathbb{R}$ there exists $\rho > 0$ and a strictly increasing, continuous function $\Psi : [0, \rho] \to \mathbb{R}$ that is C^1-smooth on $(0, \rho)$, it satisfies $\Psi(0) = a$ and $\Psi'(r) > 0$ for all $r \in (0, \rho)$ and

$$\| D^* (S \circ \Psi)(r, x) \|^+ \leq 1 \quad \text{for all } r \in (0, \rho) \text{ and all } x \in S(\Psi(r)). \quad (4)$$

It is easily seen that Ψ is a homeomorphism between $[0, \rho]$ and $[a, b]$ where $b = \Psi(\rho)$ and a diffeomorphism between $(0, \rho)$ and (a, b). Inequality (4) has a particular interest when $a \in \mathbb{R}$ is a critical value of the coderivative $D^* S$ of the sweeping process, that is,

$$\varphi(t) = \sup_{x \in S(t)} \| D^* S(t, x) \|^+ = +\infty.$$

In this case we say that Ψ desingularizes the (modulus of the coderivative around the) critical value a. The assumption of o-minimality on S guarantees that the set of critical values is finite. In [9] it has further been established, as consequence of (4), that all bounded orbits of the sweeping process S have finite length and that the talweg function φ is integrable on $[a, b]$.

Let us notice that $\| D^* S(t, x) \|^+ \leq \| D^* S(t, x) \|^+$ (and consequently $\varphi^\dagger(t) \leq \varphi(t)$) for all $t \in [a, b]$ and $x \in S(t)$. Therefore, we obtain the following.

Corollary 8 (Desingularization of oriented coderivative – definable case). If $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ is a multivalued map with a closed definable bounded graph, then for every $a \in \mathbb{R}$ (possibly critical for the oriented modulus) there exists $\rho > 0$ and $b > a$ such that:

(i). there exists an increasing homeomorphism $\Psi : [0, \rho] \to [a, b]$ which is C^1-diffeomorphism on $(0, \rho)$ such that:

$$\| D^* (S \circ \Psi)(r, x) \|^+ \leq 1 \quad \text{for all } r \in (0, \rho) \text{ and all } x \in S(\Psi(r)). \quad (5)$$

(ii). $\int_a^b \varphi^\dagger(t) < \infty$ (the oriented talweg function is integrable).
Remark 9. [Relation with the KL-inequality] (i). The described desingularization of the coderivative can be seen as a generalization of the KL-inequality for C^1-smooth definable functions (established by Kurdyka in [11]) in the following sense: let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^1-smooth coercive function which is definable in some o-minimal structure. Then, the multivalued function

$$
\begin{align*}
S_f : \mathbb{R} &\to \mathbb{R}^n \\
S_f(t) &= [f \leq -t], \quad t \in \mathbb{R}
\end{align*}
$$

is o-minimal (it is definable in the same o-minimal structure as f) and the desingularization of its gradient described in (1) can be deduced from the desingularization coderivative of S and vice versa. We refer the reader to [9, Section 5.1] for more details.

(ii). In [9], the assumption that S is bounded has not been made, and similarly to (2), the supremum of the definition of $\varphi(t)$ had to be taken over $S(t) \cap \mathcal{U}$, where $\mathcal{U} \subset \mathbb{R}^n$ is a fixed open bounded set, which gives rise to a talweg function φ_S depending on \mathcal{U}. Even if in Section 3 we deal with potentially unbounded sweeping processes, we do not need to make use of \mathcal{U}, thanks to the assumptions given in Section 3.1.

3 Characterization of desingularization of the coderivative

In this paper we are interested in sweeping process mappings S that are not o-minimal (we shall assume smoothness of their graph instead). Under some mild assumptions, we shall characterize the existence of a desingularizing function Ψ that desingularizes the asymmetric modulus of the coderivative (c.f. Corollary 8). We give below our setting.

3.1 Assumptions, setting

Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a multivalued map with closed graph S.

Definition 10 (smooth sweeping process). We say that S is a smooth sweeping process if either

- S is a closed connected C^1-smooth submanifold of \mathbb{R}^{n+1} of dimension at most n; or
- S is a connected smooth manifold of full dimension with boundary and ∂S is a C^1-smooth manifold of dimension n.

It is clear that the above assumption is satisfied if S is a sweeping process associated to a C^1-smooth function f (c.f. Example 5 or Remark 9). As a consequence of this assumption we have the following result, which compares the modulus of D^*S versus its asymmetric modulus.

Lemma 11. Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a smooth sweeping process and $(t, x) \in S$. If either

(a) S is a smooth manifold or
(b) $\|D^*S(t, x)\|^+ > 0$

then we have

$$
\|D^*S(t, x)\|^+ = \|D^*S(t, x)\|.$$

Proof. If S is a smooth submanifold of \mathbb{R}^{n+1}, the requested equality holds true for every $(t, x) \in S$ as a consequence of the fact that the limiting normal cone at any point coincides with the normal space of the manifold at the same point. On the other hand, if S is a manifold of
full dimension with boundary such that \(\partial S \) is also a smooth manifold, then the normal cone \(N_S(t,x) \) is either \(\{0\} \) or a ray generated by an outer pointing normal vector \((s,y)\) of \(S \) at \((t,x)\). The conclusion follows. □

Connectedness of \(S \) yields that \(\text{dom}(S) \) is an interval (possibly unbounded). We shall use the following notation:

\[
T = \sup(\text{dom}(S)). \quad (\text{Notice that } T \in \mathbb{R} \cup \{+\infty\}.)
\]

We also define the multivalued map \(H_S: \mathbb{R} \to \mathbb{R}^{n+1} \) by

\[
H_S(t) := \partial S \cap (\{t\} \times \mathbb{R}^n), \quad \text{for all } t \in \mathbb{R}.
\]

Assumptions. We say that \(S \) satisfies the:

(A1) **existence assumption** if for every \((t,x) \in S\) with \(\|D^*S(t,x)\| < +\infty \), there exist \(\delta_x > 0 \) and at least one orbit \(\gamma_x \in AC(S; [t,t+\delta_x]) \) such that \(\gamma_x(t) = x \).

(A2) **upper regular assumption** at \(\bar{t} \in \text{dom}(S) \) with \(\bar{t} < T \), if there exists \(\delta > 0 \) such that \(\varphi^\dagger(t) < +\infty \) for all \(t \in (\bar{t}, \bar{t} + \delta) \).

(A3) **continuity assumption** at \(\bar{t} \in \text{dom}(S) \) with \(\bar{t} < T \), if there exists \(\delta > 0 \) such that the multivalued map \(H_S \) is continuous for the Pompeiu-Hausdorff metric on \((\bar{t}, \bar{t} + \delta)\) (it may be discontinuous at \(\bar{t} \)).

Let us make some comments about the above assumptions:

Assumption (A1) ensures the existence of orbits issued from any non-critical point. This assumption is satisfied if the sweeping process is defined via (6) where \(f \) is a \(C^{1,1} \)-smooth function, since in this case the existence of gradient orbits \(\dot{\gamma} = -\nabla f(\gamma) \) is guaranteed, and these orbits are also orbits for the sweeping process \(S_f \) up to a suitable reparametrization, see Remark [6]. Assumption (A1) is also fulfilled if \(S \) is a definable sweeping process, see [9, Section 6] or [12]. In the general case, classical existence results go back to the seminal work of J.J. Moreau [17] for convex-valued multifunctions which are Lipschitz continuous under the Hausdorff-Pompieu metric. Since then, several extensions have been obtained, see [5, 6, 14] and references therein.

Assumption (A2) is automatically satisfied in the definable case, since in this case the set of critical values is finite. In the general case, this assumption is analogous to the hypothesis made in [8, Section 3.3] that the critical values of \(f \) are upper isolated (see also statement of Theorem [1]).

Assumption (A3) is the more restrictive, although it is natural in our setting. It is satisfied for the sweeping process \(S_f \) defined in (6) whenever \(f \) is convex or quasiconvex. In general, a smooth multivalued map \(t \mapsto S(t) \) is not necessarily monotone in the sense of set-inclusion and the sets \(S(t) \) are not assumed convex (or of the same homology), therefore (A3) is required to guarantee a control on the behavior of the boundaries. In particular, the following result holds. (For the definitions of outer and inner semicontinuity of a multifunction the reader is referred to [19, §5].)

Proposition 12. Let \(S: \mathbb{R} \to \mathbb{R}^n \) be a smooth sweeping process with bounded values and \(a, b \in \mathbb{R} \) such that \((a, b) \subset \text{dom}(S) \). If \(H_S \) is continuous on \((a, b)\), then \(S \) is also continuous on \((a, b)\).
Proof. Let I be a nontrivial interval contained in a compact subset of (a,b). It is sufficient to prove that S is continuous on I. Since $S \subset \mathbb{R}^{n+1}$ is closed and $S(t) = S \cap \{t\} \times \mathbb{R}^n$, for every $t \in \mathbb{R}$, the map S has closed (therefore, compact) values and S is outer semicontinuous. Let us assume, towards a contradiction, that S is not continuous on I, that is, there exists $\bar{t} \in I$ such that S is not inner semicontinuous at \bar{t}. We deduce that there exist $x \in S(\bar{t})$, $\varepsilon > 0$ and a sequence $\{t_k\} \subset \text{dom}(S)$, converging to \bar{t}, such that
\[
d(\bar{x}, S(t_k)) \geq \varepsilon, \quad \text{for all } k \in \mathbb{N}.
\]
The above easily yields that $(\bar{t}, \bar{x}) \in S \setminus \text{int}(S)$, that is, $(\bar{t}, \bar{x}) \in \partial S$. However, since $S \cap \{t\} \times B(x, \varepsilon) = \emptyset$,
this contradicts the continuity of H_S at \bar{t}.

Remark 13. In general, the converse of Proposition 12 is not true. To see this, set
\[
S := (\mathbb{R} \times [-2,2]) \setminus \{(t, x) \in \mathbb{R}^2 : (t-1)^2 + x^2 \leq 1\}
\]
and consider the sweeping process $S : \mathbb{R} \Rightarrow \mathbb{R}$ defined by
\[
S(t) = S \cap \{t\} \times \mathbb{R}^2.
\]
It follows easily that S is a smooth sweeping process. Moreover, S is continuous at every $t \in \mathbb{R}$, but H_S is discontinuous at 0.

3.2 Theorem A (characterizations via continuous dynamics)

Before we proceed, let us set
\[
\mathcal{T} := \{ t \in \text{dom}(S) : (A2)-(A3) are fulfilled at } t \}.
\]
Observe that, if $t \in \mathcal{T}$, then there is $\delta > 0$ such that $[t, t + \delta) \subset \mathcal{T}$.

We are now ready to state the main result of this work. The proof will be given in Section 4.2.

Theorem A. Let $S : \mathbb{R} \Rightarrow \mathbb{R}^n$ be a smooth sweeping process with bounded values that satisfies (A1). Let $a \in \mathcal{T}$ (typically a critical value for D^*S).

The following assertions are equivalent:

1) (Desingularization of the coderivative) There exist $b > a$, $\rho > 0$ and a homeomorphism $\Psi : [0, \rho] \to [a, b]$, which is a C^1-diffeomorphism between $(0, \rho)$ and (a, b) with $\Psi'(r) > 0$ for every $r \in (0, \rho)$, such that:
\[
\|D^*(S \circ \Psi)(r, x)\|^+ \leq 1, \quad \text{for all } r \in (0, \rho), \text{ for all } x \in S(\Psi(r)).
\]

2) (Uniform length control for the absolutely continuous orbits) There exist $b > a$ and an increasing continuous function $\sigma : [a, b] \to \mathbb{R}^+$ with $\sigma(a) = 0$ such that for every $a \leq t_1 < t_2 \leq b$ and $\gamma \in AC(S; [t_1, t_2])$ we have:
\[
\ell(\gamma) \leq \sigma(t_2) - \sigma(t_1).
\]
c) **(Length bound for the piecewise absolutely continuous orbits)** There exist $b > a$ and $M > 0$ such that for every $\gamma \in \mathcal{PAC}(S, [a, b])$ we have:

$$\ell(\gamma) \leq M.$$

d) **(Integrability of the talweg)** There exists $b > a$ such that

$$\int_a^b \varphi^\uparrow(t) < \infty.$$

3.3 Theorem B (characterizations via discrete dynamics)

We first need the following definition.

Definition 14 (piecewise catching-up sequence). Let $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ be a multivalued map with closed values.

(i). A (finite or infinite) sequence $\{(t_i, x_i)\}_{i \geq 0} \subset S$ is called a *catching-up sequence* for S if $\{t_i\}_{i \geq 0}$ is strictly increasing and

$$x_{i+1} \in \text{Proj}_{S(t_{i+1})}(x_i), \text{ for } i \geq 0.$$

(ii). A (finite or infinite) sequence of the form

$$(t_0^0, Y_0^0), (t_1^0, Y_1^0), \ldots, (t_{k_0}^0, Y_{k_0}^0), (t_1^1, Y_1^1), \ldots, (t_{k_1}^1, Y_{k_1}^1), \ldots$$

is called a *piecewise catching-up sequence* for S if for every $j \geq 0$

$$\{(t_i^j, Y_i^j)\}_{i=0}^{k_j} \subset S \text{ is a catching-up sequence for } S \text{ and } t_{k_j}^j = t_{k_{j+1}}^j.$$

Now we are ready to state our second result which complements Theorem A.

Theorem B. The statements (a)-(d) of Theorem A are also equivalent to the following:

e) **(Uniform control of catching-up sequences)** There exist $b > a$ and a continuous increasing function $\sigma : [a, b] \rightarrow [0, \infty)$, with $\sigma(a) = 0$, such that for every catching-up sequence $\{(t_i, x_i)\}_{i \geq 0} \subset S$ with $\{t_i\}_{i \geq 0} \in (a, b)$, and every $k \geq 1$ we have

$$\sum_{i=0}^k \|x_{i+1} - x_i\| \leq \sigma(t_k) - \sigma(t_0).$$

f) **(Length bound for piecewise catching-up sequences)** There exist $b > a$ and $C > 0$ such that for any piecewise catching-up sequence

$$\left\{(t_i^j, Y_i^j) : j \geq 0, \ i \in \{0, \ldots, k_j\}\right\}$$

with

$$a < t_0^0 < t_1^0 < \ldots < t_{k_0}^0 = t_1^1 < t_1^1 < \ldots < b$$

we have:

$$\sum_{j \geq 0} \sum_{i=0}^{k_j} \|Y_{i+1}^j - Y_i^j\| \leq C.$$

10
4 Proofs

In this section we give proofs to our two main results, Theorem A (Subsection 4.2) and Theorem B (Subsection 4.4). To do so, we shall need some auxiliary results (Subsection 4.1) and a new notion of oriented calmness (Subsection 4.3).

4.1 Auxiliary results

The first result concerns continuity of the moduli maps. It is based on the fact that the normal space mapping of the smooth manifold is continuous (in the Grassmannian metric). The details are left to the reader.

Lemma 15 (continuity of the (oriented) modulus on ∂S). Let $S : \mathbb{R} \to \mathbb{R}^n$ be a smooth sweeping process. Then, the functions

$$(t, x) \mapsto \|D^* S(t, x)\|^+ \quad \text{and} \quad (t, x) \mapsto \|D^* S(t, x)\|^{+}$$

are continuous on ∂S for the usual topology on $\mathbb{R} \cup \{+\infty\}$.

The second result asserts continuity of the (oriented) talweg function. Let us recall from Subsection 3.1 that the multivalued function $H_S : \mathbb{R} \to \mathbb{R}^n$ is defined by $H_S(t) := \partial S \cap \{(t) \times \mathbb{R}^n\}$, for all $t \in \mathbb{R}$.

Lemma 16 (continuity of the (oriented) talweg function). Let $S : \mathbb{R} \to \mathbb{R}^n$ be a smooth sweeping process such that $S(t)$ is bounded for all $t \in \mathbb{R}$. Let $[a, b] \subset \text{dom}(S)$ such that H_S is continuous for the Pompeiu-Hausdorff metric on $[a, b]$. Then the talweg functions φ^+ and φ are continuous on $[a, b]$, where the image space $\mathbb{R} \cup \{+\infty\}$ is considered with its usual topology.

Proof. Set $K := H_S([a, b])$, which is a compact set. Since

$$\varphi^+(t) = \max_{x \in H_S(t)} \|D^* S(t, x)\|^+ \quad \text{(respectively, } \varphi(t) = \max_{x \in H_S(t)} \|D^* S(t, x)\|^{+}).$$

the result follows from Lemma 15. \qed

Proposition 17 (diffeomorphic rescaling of time). Let $S : \mathbb{R} \to \mathbb{R}^n$ be a multivalued map and $\gamma \in \mathcal{AC}(S, (a, b))$. If $\Psi : (0, \rho) \to (a, b)$ is a C^1-smooth diffeomorphism such that $\Psi'(r) > 0$ for all $r \in (0, \rho)$, then $\tilde{\gamma} := \gamma \circ \Psi$ is an orbit of the sweeping process defined by $\tilde{S} := S \circ \Psi$, that is, $\tilde{\gamma} \in \mathcal{AC}(\tilde{S}, (0, \rho))$.

Proof. It is straightforward that $\tilde{\gamma} = \gamma \circ \Psi$ is an absolutely continuous curve. Since Ψ is a bi-Lipschitz homeomorphism on each compact interval contained in $(0, \rho)$ we deduce that for any null subset A of (a, b) the set $\Psi^{-1}(A)$ is also null (with respect to the Lebesgue measure).

If I be the points of differentiability of γ for which (31) holds, it follows that $J := \Psi^{-1}((a, b) \setminus I)$ is a null set and for every $r \in (0, \rho) \setminus J$ it holds:

$$\tilde{\gamma}'(r) = (\gamma \circ \Psi)'(r) = \gamma'((\Psi(r))\Psi'(r) \in N_{S(\Psi(r))}(\gamma(\Psi(r))).$$

yielding that $\tilde{\gamma}$ is an orbit solution of the sweeping process defined by $S \circ \Psi$. \qed

In the sequel, given a curve $\gamma : I \to \mathbb{R}^n$ we define its lifting $\zeta : I \to \mathbb{R}^{n+1}$ by

$$\zeta(t) = (t, \gamma(t)), \quad t \in I.$$
Proposition 18 (geometric facts). Let \(S : \mathbb{R} \to \mathbb{R}^n \) be a smooth sweeping process. Fix \(\vec{t} \in \text{dom}(S) \setminus \{T\} \) and \(\hat{x} \in S(\vec{t}) \). Then:

a) If there is \(\delta > 0 \) such that \(\hat{x} \in S(t) \), for all \(t \in (\vec{t}, \vec{t} + \delta) \), then \(\alpha \leq 0 \) for all \((\alpha, u) \in N_S(\vec{t}, \hat{x}) \).

b) If \(\|D^*S(\vec{t}, \hat{x})\| > 0 \), then for any \(\tau > \vec{t} \) and \(\gamma \in \mathcal{AC}(S, [\vec{t}, \tau]) \) with \(\gamma(\vec{t}) = \hat{x} \), there exists \(\delta > 0 \) such that
\[
\zeta(t) := (t, \gamma(t)) \in \partial S, \quad \text{for all } t \in [\vec{t}, \vec{t} + \delta).
\]

c) If \(\text{int}(S) \) is nonempty and \(N_S(\vec{t}, \hat{x}) = \mathbb{R}_+(\alpha, u) \) with \(\alpha < 0 \), then there is \(\delta > 0 \) such that \(\hat{x} \in S(t) \) for all \(t \in [\vec{t}, \vec{t} + \delta) \).

Proof. (a). If \((\vec{t}, \hat{x}) \in \text{int}(S) \) then \(N_S(\vec{t}, \hat{x}) = \{(0, 0)\} \) and the conclusion follows trivially. In the case when \((\vec{t}, \vec{x}) \in \partial S \), since \(\partial S \) is a smooth manifold, the limiting normal cone \(N_S(\vec{t}, \hat{x}) \) is equal to the Fréchet normal cone and is contained in the normal space of \(\partial S \) at \((\vec{t}, \hat{x}) \). Therefore, for any \((\alpha, u) \in N_S(\vec{t}, \hat{x}) \) and \(t \in (\vec{t}, \vec{t} + \delta) \), we have \((t, \hat{x}) \in S \) and
\[
\limsup_{t \to \vec{t}} \frac{\langle (\alpha, u), (t - \vec{t}, \hat{x} - \hat{x}) \rangle}{\| (t - \vec{t}, \hat{x} - \hat{x}) \|} = \alpha \leq 0.
\]

(b). Let \(\tau > \vec{t} \) and \(\gamma \in \mathcal{AC}(S, [\vec{t}, \tau]) \) with \(\gamma(\vec{t}) = \hat{x} \) and assume \(\|D^*S(\vec{t}, \hat{x})\| > 0 \). Since \((t, y) \mapsto \|D^*S(t, y)\| \) is continuous on \(\partial S \) (Lemma 15), there exists a neighborhood \(\mathcal{V} \) of \(\vec{t}, \hat{x} \) such that for all \((t, y) \in \mathcal{V} \cap \partial S \) we have \(\|D^*S(t, y)\| > 0 \). Therefore, there is \(\delta > 0 \) such that \(\|D^*S(\zeta(t))\| > 0 \) and consequently, \(\zeta(t) \in \partial S \) for all \(t \in [\vec{t}, \vec{t} + \delta) \).

(c). It follows from our assumption that \(\dim(\partial S) = n \) and \((\alpha, u) \) is a nonzero outer normal vector of \(S \) at \((\vec{t}, \hat{x}) \). Without loss of generality, let us assume that \((\alpha, u) \) is a unit vector. Since \(\text{int}(S) \neq \emptyset \), we deduce that \((\vec{t}, \hat{x}) - \lambda(\alpha, u) \in S \) for all \(\lambda > 0 \) sufficiently small. Let us assume, reasoning towards a contradiction, that there exists a decreasing sequence \(\{t_k\}_k \subset \mathbb{R} \) converging to \(\vec{t} \) such that \(\hat{x} \notin S(t_k) \), for all \(k \in \mathbb{N} \). Let us now take a decreasing sequence \(\{\lambda_k\}_k \subset \mathbb{R}_+ \) that converges to 0 and satisfies \((\vec{t}, \hat{x}) - \lambda_k(\alpha, u) \in S \) for all \(k \). Let \(z_k \in \mathbb{R}_+^{n+1} \) be any vector such that
\[
z_k \in \partial S \bigcap \left[(t_k, \hat{x}), (\vec{t} - \lambda_k \alpha, \hat{x} - \lambda_k u) \right],
\]
where \(\left[(t_k, \hat{x}), (\vec{t} - \lambda_k \alpha, \hat{x} - \lambda_k u) \right] \) stands for the line segment joining the points \((t_k, \hat{x}) \) and \((\vec{t} - \lambda_k \alpha, \hat{x} - \lambda_k u) \). It follows easily that \(\{z_k\}_k \) converges to \((\vec{t}, \hat{x}) \) and that
\[
\langle z_k - (\vec{t}, \hat{x}), (\alpha, u) \rangle = \langle (1, 0), (\alpha, u) \rangle = \alpha.
\]

Let \(d \) be any accumulation point of the sequence \((z_k - (\vec{t}, \hat{x})\|z_k - (\vec{t}, \hat{x})\| \). Then, \(d \) belongs to the Bouligand tangent cone of \(\partial S \), which coincides with the tangent space of \(S \) at the same point. Therefore \(d \) should be orthogonal to the normal vector \((\alpha, u) \). However, \(\langle d, (\alpha, u) \rangle \leq \alpha < 0 \), which leads to a contradiction. \(\square \)

The following lemma is crucial in the proof of our main theorem since it relates the value of the coderivative with the velocity of the orbit of the sweeping process. The proof follows closely the proof of [9, Theorem 4.1] where a similar result has been established for the usual modulus \(\|D^*S(t, \gamma(t))\| \).
Lemma 19. Let $S : \mathbb{R} \to \mathbb{R}^n$ be a smooth sweeping process and $\gamma \in AC(S, [a, b])$. Then,

$$||\dot{\gamma}(t)|| = ||D^*S(t, \gamma(t))||^+,$$

for all $t \in [a, b]$ such that $-\dot{\gamma}(t) \in N_{S(t)}(\gamma(t))$ and $||D^*S(t, \gamma(t))||^+$ is finite.

Proof. Let $t \in [a, b]$ be a point of differentiability of γ such that $-\dot{\gamma}(t) \in N_{S(t)}(\gamma(t))$ and that $||D^*S(t, \gamma(t))||^+$ is finite.

First case: $\dot{\gamma}(t) = 0$.

If $\zeta(t) := (t, \dot{\gamma}(t)) \in \text{int}(S)$, the desired equality holds trivially, while if $\zeta(t) \in \partial S$, then $\dot{\zeta}(t) = (1, 0)$ belongs to the tangent space of ∂S at $\zeta(t)$. Since S is a smooth sweeping process, the normal cone $N_S(\zeta(t))$ is contained in the normal space of ∂S at $\zeta(t)$. Therefore,

$$\langle (1, 0), N_S(\zeta(t)) \rangle = \{0\}.$$

Hence, if $(\alpha, u) \in N_S(\zeta(t))$, then $\alpha = 0$. Thus, $||D^*S(\zeta(t))||^+ = 0$.

Second case: $\dot{\gamma}(t) \neq 0$.

Then $\zeta(t) \in \partial S$ and $\dot{\zeta}(t)$ belongs to the tangent space of ∂S at $\zeta(t)$. As in the first case, we obtain that

$$\langle (1, \dot{\zeta}(t)), N_S(\zeta(t)) \rangle = \{0\}.$$

Hence, for every $(\alpha, u) \in N_S(\zeta(t))$ with $||u|| = 1$ we have $\alpha + \langle \dot{\zeta}(t), u \rangle = 0$. Thanks to Cauchy-Schwarz inequality, we obtain

$$||\dot{\gamma}(t)|| \geq ||D^*S(\zeta(t))||^+.$$

By Proposition 18(c), we can assume that

$$\sup_{||u|| \leq 1} \{ \alpha : a \in D^*S(t, x)(u) \} \geq 0.$$

Setting $H = \{t\} \times \mathbb{R}^n$ we have $\{t\} \times S(t) = H \cap S$. Due to the fact that $-\dot{\gamma}(t) \in N_{S(t)}(\gamma(t))$, we have:

$$(1, -\dot{\gamma}(t)) \in N_{H \cap S}(\zeta(t)).$$

In addition, since S is a smooth sweeping process and $||D^*S(t, \gamma(t))||^+ < \infty$, we have that $(t, 0) \in N_S(t, \gamma(t))$ only if $t = 0$. Hence, applying the calculus rule [19, Theorem 6.42], we get

$$N_{H \cap S}(\zeta(t)) \subset N_H(\zeta(t)) + N_S(\zeta(t)) = \mathbb{R} \times \{0\} + N_S(\zeta(t)).$$

Therefore, the inclusion $(\lambda, -\dot{\gamma}(t)) \in N_S(\zeta(t))$ holds for some $\lambda \in \mathbb{R}$. By orthogonality between normal and tangent vectors, we get that:

$$\langle (\lambda, -\dot{\gamma}(t)), (1, \dot{\gamma}(t)) \rangle = 0.$$

and thus $\lambda = ||\dot{\gamma}(t)||^2$. After normalization, we obtain:

$$\left(||\dot{\gamma}(t)||, -\frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} \right) \in N_S(\zeta(t)),$$

which readily yields $||D^*S(t, \gamma(t))||^+ \geq ||\dot{\gamma}(t)||$, as claimed. \qed

Let us finally quote the following result, which is a restatement of (and can be proved in the same way as) [3 Proposition 27].

13
Proposition 20 (concatenation). Let $b > a$ and Γ be a collection of absolutely continuous curves γ defined in some nontrivial interval $J \subset (a, b)$ with values in \mathbb{R}^n. Assume that for each $t \in (a, b)$ there exist $\varepsilon_t > 0$ and $\gamma_t \in \Gamma$ with $\text{dom}(\gamma_t) = [t, t + \varepsilon_t]$. Then there exist a countable partition \{I_n\}_{n \in \mathbb{N}} of (a, b) into intervals I_n of nonempty interior and a piecewise absolutely continuous curve $\gamma : (a, b) \rightarrow \mathbb{R}$ such that for each $n \in \mathbb{N}$, there is $\gamma^n \in \Gamma$ such that $\gamma = \gamma^n$ on I_n.

We are now ready to prove our main result.

4.2 Proof of Theorem A

We prove $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$.

\textbf{a) } \Rightarrow \textbf{b) } : Let $\Psi : [0, \rho] \rightarrow [a, b]$ be given by (a). Let $\gamma \in \mathcal{AC}(S, [t_1, t_2])$ with $[t_1, t_2) \subset [a, b)$. Since Ψ is a C^1-smooth function, $\partial \text{graph}((S \circ \Psi)|_{(0, \rho)})$ is a smooth manifold. By Proposition 17, $\gamma \circ \Psi \in \mathcal{AC}(S \circ \Psi, \Psi^{-1}([t_1, t_2)))$. Applying Lemma 19 we deduce that

$$\frac{d (\gamma \circ \Psi)}{dr}(r) = \|D^*(S \circ \Psi)(r, \gamma(\Psi(r)))\| \leq 1, \quad \forall_{a.e} r \in (a, d).$$

Since Ψ is increasing and smooth, by change of variables we obtain:

$$\int_{t_1}^{t_2} \|\dot{\gamma}(\tau)\| d\tau = \int_{\Psi^{-1}(t_1)}^{\Psi^{-1}(t_2)} \|\dot{\gamma}(\Psi(r))\| \frac{d (\gamma \circ \Psi)}{dr}(r) dr = \int_{\Psi^{-1}(t_1)}^{\Psi^{-1}(t_2)} \left(\frac{d (\gamma \circ \Psi)}{dr}(r) \right) dr$$

$$\leq \int_{\Psi^{-1}(t_1)}^{\Psi^{-1}(t_2)} \frac{d (\gamma \circ \Psi)}{dr}(r) dr = \Psi^{-1}(t_2) - \Psi^{-1}(t_1).$$

Therefore (b) is satisfied by setting $\sigma := \Psi^{-1}$.

\textbf{b) } \Rightarrow \textbf{c) } : Since σ is an increasing function and $\sigma(a) = 0$, statement (c) follows by setting $M := \sigma(b)$.

\textbf{c) } \Rightarrow \textbf{d) } : Let $b > a$ and let $M > 0$ given by statement (c). Let $\varphi^\uparrow : (a, b) \rightarrow \mathbb{R} \cup \{+\infty\}$ be the oriented talweg function of S and let us assume, towards a contradiction, that for any $c \in (a, b)$ the function φ^\uparrow is not integrable on (a, c). By Lemma 15 the function $(t, x) \mapsto \|D^*S(t, x)\| \uparrow$ is continuous on ∂S. By assumptions (A2)–(A3), shrinking b if necessary, we may assume that $\varphi^\uparrow(t) < \infty$ for all $t \in (a, b)$ and that the multivalued map $t \mapsto H_S(t)$ is continuous on (a, b). By Lemma 16 φ^\uparrow is continuous on (a, b).

By Lemma 19 if J is a nontrivial interval of (a, b) then for any $\gamma \in \mathcal{AC}(S, J)$ we have $\|\dot{\gamma}(t)\| = \|D^*S(t, \gamma(t))\| \uparrow$ for almost every $t \in J$. Let $k \in \mathbb{N}$ and $t \in (a, b)$ and define a curve γ_k^t as follows:

- If $\varphi^\uparrow(t) = 0$, take $\gamma_k^t \in \mathcal{AC}(S, [t, \tau))$ be any curve such that $\tau - t < 1/k$.
- If $\varphi^\uparrow(t) > 0$, since $H_S(t)$ is compact, there exists $x \in S(t)$ such that $\|D^*S(t, x)\| = \varphi^\uparrow(t)$. Thanks to assumption (A1) and Lemma 16 we can take $\gamma_k^t \in \mathcal{AC}(S, [t, \tau))$, for some $\tau > t$, such that $\gamma(t) = x$ and

$$\|\gamma_k^t(s)\| > \frac{k - 1}{k} \varphi^\uparrow(s), \quad \text{for almost every } s \in (t, \tau).$$
Gluing together, thanks to Proposition 20 (concatenation), we obtain $\gamma^k \in \mathcal{PAC}(S, (a, b))$ such that for almost every $t \in (a, b)$

$$\varphi^\dagger(t) \geq \|\dot{z}^k(t)\| \geq f_k(t) := \begin{cases} 0, & \text{if } t \in A_k \\ \frac{k - 1}{k} \varphi^\dagger(t), & \text{if } t \in (a, b) \setminus A_k. \end{cases}$$

where $A = \{t \in (a, b) : \varphi^\dagger(t) = 0\}$ and $A_k = (a, b) \cap (A + [0, 1/k])$ for all $k \in \mathbb{N}$.

The continuity of φ^\dagger yields that A is a closed set relatively to (a, b). Therefore, $A = \cap_{k \in \mathbb{N}} A_k$.

Then, for all $t \in (a, b)$, $f_k(t) \nearrow \varphi^\dagger(t)$ as k tends to infinity. Hence, by the Monotone Convergence Theorem, $(\int_a^b f_k)_k$ converges to $\int_a^b \varphi^\dagger$, which is infinity. Thus, there is $K \in \mathbb{N}$ such that

$$\int_a^b \|\dot{z}^k(t)\| dt \geq \int_a^b f_K(t) dt > M,$$

which contradicts statement (c) since $\gamma^K \in \mathcal{PAC}(S, (a, b))$.

$d) \rightarrow a)$: Let us assume that the oriented talweg function φ^\dagger is integrable on $[a, b]$ for some $b > a$. As a consequence of assumptions (A2) and (A3), shrinking b if necessary, we may assume that φ^\dagger is continuous on $[a, b]$ and $\varphi^\dagger(t) < \infty$ for all $t \in (a, b)$. Let $\overline{\varphi} := \max\{\varphi^\dagger, 1\}$ which is an integrable continuous majorant of φ^\dagger and set

$$\theta(t) := \int_a^t \overline{\varphi}(s) ds, \quad \text{for } t \in [a, b].$$

Since $\overline{\varphi}$ is positive and integrable on $[a, b]$, we set $\rho := \theta(b)$ and define $\Psi : [0, \rho] \rightarrow [a, b]$ as the inverse function of θ, that is, $\Psi(r) = \theta^{-1}(r)$. Since $\theta'(t) = \overline{\varphi}(t) \in [1, +\infty)$, for every $t \in (a, b)$, it follows that Ψ is C^1-smooth on $(0, \rho)$, with derivative

$$\Psi'(r) = \frac{1}{\overline{\varphi}(\Psi(r))} \leq 1, \quad \text{for all } r \in (0, \rho).$$

Thus, Ψ is a Lipschitz homeomorphism between $[0, \rho]$ and $[a, b]$. Finally, using the chain rule for coderivatives [19] Theorem 10.37, we deduce that

$$\|D^* (S \circ \Psi)(r, x)|^+ \leq \frac{\|D^* S(\Psi(r), x)|^+}{\overline{\varphi}(\Psi(r))} \leq 1, \quad \text{for all } r \in (0, \rho).$$

The proof is complete. \hfill \Box

4.3 Oriented calmness

Before proceeding to the proof of Theorem B, we need to introduce the modulus of oriented calmness and establish a result analogous to the Mordukhovich criterion for the oriented modulus of the coderivative. Let us first recall that the Lipschitzian graphical modulus of $S : \mathbb{R} \rightrightarrows \mathbb{R}^n$ at t for x is defined by

$$\operatorname{Lip} S(t, x) := \inf\{\kappa > 0 \mid \exists \epsilon > 0, \ \delta > 0, \ \text{such that} \ S(t_2) \cap B(x, \delta) \subset S(t_1) + \kappa|t_2 - t_1|B, \ \text{for all } t_1, t_2 \in (t - \epsilon, t + \epsilon)\},$$

where B stands for the open unit ball.

We recall that the multivalued function S has the Aubin property at t for x if and only if $\operatorname{Lip} S(t, x) < \infty$. More precisely, we have the following (see [19] Theorem 9.40).
Theorem 21. For every \((t, x) \in S\) such that \(\|D^*S(t, x)\|^+ < \infty\) it holds:

\[
\text{Lip} \, (t, x) = \|D^*S(t, x)\|^+.
\]

Motivated by the above, we introduce the following graphical modulus.

Definition 22 (oriented calm modulus). Let \(S : \mathbb{R} \rightrightarrows \mathbb{R}^n\) be a multivalued map and \((t, x) \in S\). The oriented calm graphical modulus, denoted by \(\text{calm}^\uparrow S\), at \(t\) for \(x\) is defined by

\[
\text{calm}^\uparrow S(t, x) := \inf\{\kappa > 0| \exists \epsilon > 0, \delta > 0, \text{ such that } S(t) \cap B(x, \delta) \subset S(t_1) + \kappa|t_1 - t|B \text{ for all } t_1 \in (t, t + \epsilon)\}.
\]

Observe that, if \(S\) is a single-valued function and \(\text{calm}^\uparrow S(t, x) < \infty\), then \(S\) is calm at \(t\) to the right. More information on the notion of calmness for multivalued maps can be found in [13] and references therein. We are now ready to give the oriented version of Theorem 21.

Proposition 23 (oriented calm vs oriented modulus). Let \(S : \mathbb{R} \rightrightarrows \mathbb{R}^n\) be a smooth sweeping process, \(t \in \text{dom}(S) \setminus \{T\}\) and \(x \in S(t)\) such that \(\|D^*S(t, x)\|^+ < +\infty\). Then

\[
\text{calm}^\uparrow S(t, x) = \|D^*S(t, x)\|^+.
\]

Proof. Let us first notice that \(\text{calm}^\uparrow S(t, x) \leq \text{Lip} S(t, x)\). We consider two cases:

Case 1: \(\|D^*S(t, x)\|^+ = 0\).

If \(\|D^*S(t, x)\|^+ = 0\), then \(\text{calm}^\uparrow S(t, x) = 0\). If \(\|D^*S(t, x)\|^+ > 0\), then, by Lemma 11, \(S\) is a manifold of full dimension with boundary \(\partial S\) which is a smooth manifold of dimension \(n\). Let us assume by contradiction that \(\text{calm}^\uparrow S(t, x) > 0\). Then, for every \(k \in \mathbb{N}\) such that \(k^{-1} < \text{calm}^\uparrow S(t, x)\), there exists \(y_k \in S(t) \cap B(x, 1/k)\) such that

\[
y_k \notin S(t_k) + \left(\frac{t_k - t}{k}\right)B, \text{ for some } t_k \in (t, t + 1/k).
\]

Set \(t_k := \inf\{r \in (t, t + 1/k) : y_k \notin S(r)\}\). It is clear that \((t_k, y_k) \in \partial S\) and that \(y_k\) is not right-locally stationary for \(S\) at \(t_k\). Thus, by Proposition 18 (c), for every \(k \in \mathbb{N}\) and \((\beta_k, v_k) \in N_S(t_k, y_k)\), we have \(\beta_k \geq 0\). Since \(N_S(t, x)\) is a ray and \(\{(t_k, y_k)\}_k \rightarrow (t, x)\), the continuity of unit outer normal vectors of \(S\) on \(\partial S\) ensures that \(\beta \geq 0\) whenever \((\beta, v) \in N_S(t, x)\) This leads to the equality \(\|D^*S(t, x)\|^+ = \|D^*S(t, x)\|^+\), which is a contradiction. Therefore, \(\text{calm}^\uparrow S(t, x) = 0\).

Case 2: \(\|D^*S(t, x)\|^+ = \alpha > 0\).

In this case, we deduce from Lemma 11 (b) that

\[
\|D^*S(t, x)\|^+ = \|D^*S(t, x)\|^+ = \text{Lip} S(t, x) \geq \text{calm}^\uparrow S(t, x).
\]

By Lemma 15 and compactness of the unit ball of \(\mathbb{R}^n\), there exists \(u \in \mathbb{R}^n\) with \(\|u\| = 1\) such that \((\alpha, u) \in N_S(t, x)\). Let \(\{t_k\}_{k \geq 1} \subset \mathbb{R}\) be a decreasing sequence that converges to \(t\). Let \(\{y_k\}_{k \geq 1} \subset \mathbb{R}^n\) be a sequence that satisfies \(y_k \in \text{Proj}(x, S(t_k))\) for each \(k \in \mathbb{N}\). By compactness of the unit sphere of \(\mathbb{R}^{n+1}\), up to a subsequence we deduce that

\[
\lim_{k \to \infty} \frac{(t_k - t, y_k - x)}{\|t_k - t, y_k - x\|} = (\beta, v),
\]

16
where \((\beta, v)\) belongs to the tangent space of \(S\) at \((t, x)\) and \(\beta \geq 0\). Since \(S\) is a smooth sweeping process, it follows that
\[
(\alpha, u) \perp (\beta, v) \quad \text{yielding} \quad \langle u, v \rangle = -\alpha \beta.
\]

Since calm\(^\dagger\)\(S(t, x) \leq \|D^*S(t, x)\|^+ < +\infty\), \(\beta\) must be a strictly positive number. Therefore
\[
\lim_{k \to \infty} \frac{\|y_k - x\|}{t_k - t} = \frac{\|v\|}{\beta} \geq \frac{\|\langle u, v \rangle\|}{\beta} = \alpha,
\]
implying that
\[
\text{calm}\(^\dagger\)S(t, x) \geq \alpha = \|D^*S(t, x)\|^+.
\]
The proof is complete. \(\square\)

Lemma 24 (controlling excess of \(S(t_0)\)). Let \(S: \mathbb{R} \Rightarrow \mathbb{R}^n\) be a smooth sweeping process and \([t_0, t_1] \subset \text{dom}(S)\). Then
\[
\text{ex} (S(t_0), S(t_1)) := \sup_{x \in S(t_0)} d(x, S(t_1)) \leq \left(\sup_{t \in [t_0, t_1]} \varphi^\dagger(t) \right) (t_1 - t_0)
\]
and
\[
\text{dist}(S(t_0), S(t_1)) \leq \left(\sup_{t \in [t_0, t_1]} \varphi(t) \right) (t_1 - t_0).
\]

Proof. Let us first notice that
\[
K := \sup_{t \in [t_0, t_1]} \varphi^\dagger(t) \geq \|D^*S(t, x)\|^+ = \text{calm}\(^\dagger\)S(t, x), \quad \text{for all } t \in [t_0, t_1] \text{ and } x \in S(t).
\]
If \(K = \infty\), there is nothing to prove. Let \(K < +\infty\) and assume, towards a contradiction, that for some \(\delta > 0\) we have
\[
\text{ex} (S(t_0), S(t_1)) > (K + \delta)(t_1 - t_0).
\]
Let \(\tau \in \mathbb{R}\) be defined by
\[
\tau := \inf \{ t \in [t_0, t_1] : \text{ex} (S(t_0), S(t)) > (K + \delta)(t - t_0) \}.
\]
By Proposition \(23\) and the definition of the graphical modulus calm\(^\dagger\), for each \(x \in S(t_0)\), there is \(\varepsilon_x > 0\) and \(\delta_x > 0\) such that
\[
S(t_0) \cap B(x, \delta_x) \subset S(t) + (K + \frac{\delta}{2})|t - t_0|B, \quad \text{for all } t \in [t_0, t_0 + \varepsilon_x).
\]
Let \(\tilde{\varepsilon}_x > 0\) be the supremum of all \(\varepsilon > 0\) such that:
\[
x \in S(t) + (K + \frac{\delta}{2})|t - t_0|B, \quad \text{for all } t \in [t_0, t_0 + \varepsilon).
\]
If \(\tau = t_0\), then there exists a sequence \(\{x_k\} \subset S(\tau)\) such that \(\tilde{\varepsilon}_{x_k} < 1/k\), for all \(k \geq 1\). Since \(S(\tau)\) is compact, the sequence \(\{x_k\}\) has some cluster point \(\overline{x} \in S(\tau)\). By Proposition \(23\) there exist \(\varepsilon_{\overline{x}} > 0\) and \(\delta_{\overline{x}} > 0\) such that
\[
S(t_0) \cap B(\overline{x}, \delta_{\overline{x}}) \subset S(t) + (K + \frac{\delta}{2})|t - t_0|B, \quad \text{for all } t \in [t_0, t_0 + \varepsilon_{\overline{x}}).
\]
which contradicts the maximality of ε_{x_k}, for k large enough. This establishes that $t_0 < \tau$. Proceeding in the same way, we can actually show that $\tau \geq t_1$. Indeed, assuming $\tau < t_1$, and using the same argument as above (with t_0 in the place of τ) together with the triangle inequality we obtain a contradiction in a similar way. Therefore, for every $\delta > 0$ we have:

$$\text{ex}(S(t_0), S(t_1)) \leq (K + \delta)(t_1 - t_0),$$

which finishes the first assertion of the lemma.

For the second part, we follow the same procedure to estimate the reverse excess $\text{ex}(S(t_1), S(t_0))$, and conclude thanks to the fact that $\text{dist}(S(t_0), S(t_1)) = \max\{\text{ex}(S(t_0), S(t_1)), \text{ex}(S(t_1), S(t_0))\}$. The details are left to the reader.

\[\square\]

Now, we proceed with the proof of our second main result.

4.4 Proof of Theorem B.

We recall from Section 4.2 the definition of \mathcal{T} and fix $a \in \mathcal{T}$. We prove $(a) \Rightarrow (e) \Rightarrow (f) \Rightarrow (d)$.

$(a) \Rightarrow (e)$: Choose $b > a$ such that the statements (a)–(d) of Theorem A hold true, and $\varphi^\uparrow(t) < +\infty$ for all $t \in (a, b)$ (c.f. Assumption (A2)). We set

$$\sigma(t) = \int_a^t \varphi^\uparrow(s)ds, \quad t \in (a, b).$$

By the above integral is well-defined and σ is continuous with $\sigma(a) = 0$. Let $\{(t_i, x_i)\}_{i \geq 0} \subset \mathcal{S}$ be any catching-up sequence for S with $I := [t_0, t_k] \subset (a, b)$. We shall prove that (7) holds for every $k \geq 1$. By Proposition 12, S is continuous on the interval $[t_0, t_k]$ and by Lemma 16 φ^\uparrow is continuous (and finite), hence Riemann integrable there. Let $\{s^i_j\}_{j=0}^{k_i}$ be a partition of the interval $[t_i, t_{i+1}]$, $i \in \{0, \ldots, k - 1\}$, with width

$$\max_{j \in \{0, \ldots, k_i - 1\}} |s^i_{j+1} - s^i_j| < \frac{1}{N}, \quad \text{for all } i \in \{0, \ldots, k - 1\}.$$

Notice that for every $i \in \{0, \ldots, k - 1\}$, we have $s^i_0 = t_i$ and $s^i_{k_i} = t_{i+1}$. We set

$$z^i_0 := x_i \in S(t_i) \quad \text{and for each } j \in \{0, \ldots, k_i - 1\} \text{ we pick } z^i_{j+1} \in \text{Proj}_{S(s^i_j)}(z^i_j).$$

Then using triangle inequality and the fact that

$$\|x_{i+1} - x_i\| = d(x_i, S(t_{i+1})) \leq \|z^i_{k_i} - z^i_0\|,$$

we deduce from Lemma 24 that:

$$\|x_{i+1} - x_i\| \leq \sum_{j=0}^{k_i-1} \|z^i_{j+1} - z^i_j\| \leq \sum_{j=0}^{k_i-1} \left(\sup_{t \in [s^i_j, s^i_{j+1}]} \varphi^\uparrow(t) \right) (s_{j+1} - s_j).$$

Taking the limit as $N \to \infty$ we obtain that

$$\|x_{i+1} - x_i\| \leq \int_{t_i}^{t_{i+1}} \varphi^\uparrow(s)ds$$

18
and consequently,

\[\sum_{i=0}^{k-1} \| x_{i+1} - x_i \| \leq \int_{t_0}^{t_k} \varphi^\dagger(t) \, dt = \sigma(t_k) - \sigma(t_0). \]

\(e \) \(\rightarrow f \): It follows directly by taking \(M = \sigma(b) \).

\(f \) \(\rightarrow d \): Let \(b > a \) and \(M > 0 \) be given by statement \(f \). By (A2)–(A3), shrinking \(b \) if necessary, we may assume that \(\varphi^\dagger(t) < \infty \), for all \(t \in (a, b) \) and \(\partial S^* \) is continuous on \((a, b) \). Notice that for any compact interval \([c, d] \subset (a, b) \), the function \(\varphi^\dagger \) is continuous and finite on \([c, d] \), therefore Riemann integrable. We shall prove that its integral is bounded by \(M \) (independently of the values of \(c \) and \(d \)).

To this end, let \(t_0 \in [c, d] \) and \(N \in \mathbb{N} \). By compactness, there exists \(x \notin S(t_0) \) such that \(\| D^* S(t_0, x) \| = \varphi^\dagger(t_0) \). If \(\varphi^\dagger(t_0) < \frac{1}{N} \), we set \(t_1 := \min\{t_0 + \frac{1}{N}, d\} \), \(x_0 = x \) and \(y_0 \in \text{Proj}_{S(t_1)}(x_0) \). Observe that

\[\| x_0 - y_0 \| \geq 0 \geq (t_1 - t_0) \left(\varphi^\dagger(t_0) - \frac{1}{N} \right). \]

If \(\varphi^\dagger(t_0) \geq \frac{1}{N} \), by Proposition 23 since \(\text{calm}^\dagger S(t, x) = \varphi^\dagger(t) \), there are \(x_0 \in S(t_0) \) and \(t_1 \in (t_0, \min\{t_0 + \frac{1}{N}, b\}) \) such that any \(y_0 \in \text{Proj}_{S(t_1)}(x_0) \) satisfies

\[\| x_0 - y_0 \| \geq (t_1 - t_0) \left(\varphi^\dagger(t_0) - \frac{1}{N} \right). \]

Using transfinite induction we obtain an increasing net \(\{t_\lambda\}_{\lambda \leq \Lambda} \subset [c, d] \) indexed over a countable ordinal \(\Lambda \), such that \(t_0 = c, t_\Lambda = d \), \(0 < t_{\lambda+1} - t_\lambda \leq 1/N \) for all \(\lambda < \Lambda \), and for any limit ordinal \(\alpha \leq \Lambda, t_\alpha = \sup\{t_\lambda : \lambda < \alpha\} \). Also, we get a net \(\{(x_\lambda, y_\lambda)\}_{\lambda \leq \Lambda} \) such that \(x_\lambda \in S(t_\lambda), y_\lambda \in \text{Proj}_{S(t_\Lambda)}(x_\lambda) \) and

\[\| x_\lambda - y_\lambda \| \geq (t_{\lambda+1} - t_\lambda) \left(\varphi^\dagger(t_\lambda) - \frac{1}{N} \right), \text{ for all } \lambda < \Lambda. \]

For every finite subset \(F \subset \Lambda \) we have

\[\sum_{\lambda \in F} \| x_\lambda - y_\lambda \| \geq \left(\sum_{\lambda \in F} (t_{\lambda+1} - t_\lambda) \varphi^\dagger(t_\lambda) \right) - \frac{d - c}{N}. \]

Since \(\{(t_\lambda, x_\lambda), (t_\lambda, y_\lambda) : \lambda \in F\} \) is a subsequence of a piecewise catching-up sequence for \(S \), taking the supremum over all finite families \(F \) of \(\Lambda \) we get

\[M \geq \sum_{\lambda < \Lambda} \| x_\lambda - y_\lambda \| \geq \left(\sum_{\lambda < \Lambda} (t_{\lambda+1} - t_\lambda) \varphi^\dagger(t_\lambda) \right) - \frac{d - c}{N}. \]

Taking the limit as \(N \) goes to infinity we obtain:

\[M \geq \int_c^d \varphi^\dagger(t) \, dt. \]

Since the above is independent of the interval \([c, d]\), we deduce that \(\varphi^\dagger \) is integrable on \((a, b)\).

Acknowledgements. The first author thanks J. Bolte (Toulouse) for useful discussions which originated this work.
References

[1] J. Bolte, A. Daniilidis, A. Lewis, The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, *SIAM J. Optim.* 17 (2007), 1205–1223.

[2] J. Bolte, A. Daniilidis, A. Lewis, M. Shiota, Clarke subgradients of stratifiable functions, *SIAM J. Optim.* 18 (2007), 556–572.

[3] J. Bolte, A. Daniilidis, O. Ley, L. Mazet, Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity, *Trans. Amer. Math. Soc.* 362 (2010), 3319–3363.

[4] S. Cobzas, *Functional analysis in asymmetric normed spaces*, Springer Science & Business Media, 2012.

[5] G. Colombo, V. Goncharov, The sweeping processes without convexity. *Set-Valued Anal.* 7 (1999), 357–374.

[6] G. Colombo, C. Kozaily, Existence and uniqueness of solutions for an integral perturbation of Moreau’s sweeping process. *J. Convex Anal.* 27 (2020), 229–238.

[7] G. Colombo, M. Monteiro, Sweeping by a continuous prox-regular set. *J. Diff. Eq.* 187 (2003), 46–62.

[8] R. Correa, D. Salas, L. Thibault, Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces. *J. Math. Anal. Appl.* 457 (2018), 1307–1332.

[9] A. Daniilidis, D. Drusvyatskiy, Sweeping by a tame process, *Ann. Inst. Fourier* 67 (2017), 2201–2223.

[10] A. Daniilidis, J.-M. Supelcre, F. Venegas M., Asymmetric free spaces and canonical asymmetrizations, *Studia Matematica* 261 (2021) (in press).

[11] K. Kurdyka, On gradients of functions definable in o-minimal structures, *Ann. Inst. Fourier* 48 (1998), 769–783.

[12] B. Georgiev, N. Ribarska, On sweeping process with the cone of limiting normals. *Set-Valued Var. Anal.* 21 (2013), 673–689.

[13] R. Henry and J. Outrata, A subdifferential condition for calmness of multifunctions. *J. Math. Anal. Appl.* 258 (2001), 110–130.

[14] A. Jourani, E. Vilchez, Positively α-far sets and existence results for generalized perturbed sweeping processes. *J. Convex Anal.* 23 (2016), 775–821.

[15] S. Lojasiewicz, *Une propri{é}t{é} topologique des sous-ensembles analytiques r{é}els*, Colloques Internationaux du CNRS. Les equations aux d{é}riv{ées} partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963.

[16] S. Lojasiewicz, Sur les trajectoires du gradient d’une fonction analytique, *Seminari di Geometria* (Bologna 1982/83), Università degli Studi di Bologna, Bologna (1984), 115–117.
Aris DANIILIDIS
DIM–CMM, UMI CNRS 2807
Beauchef 851, FCFM, Universidad de Chile
E-mail: arisd@dim.uchile.cl
http://www.dim.uchile.cl/~arisd
Research supported by the grants:
CMM AFB170001, FONDECYT 1211217 (Chile), ECOS-ANID C18E04 (Chile, France).

Sebastián TAPIA GARCIA
DIM–CMM, UMI CNRS 2807
Beauchef 851, FCFM, Universidad de Chile
IMB, UMR CNRS 5251
Cours de la Libération 351, Talence, Université de Bordeaux.
E-mail: stapia@dim.uchile.cl
Research supported by the grants:
CMM AFB170001, FONDECYT 1211217 (Chile), ECOS-ANID C18E04 (Chile, France), ANID-PFCHA/Doctorado Nacional/2018-21181905.