Original article

Nests of Marsh harrier (Circus aeruginosus L.) as refuges of potentially phytopathogenic and zoopathogenic fungi

Teresa Kornillowicz-Kowalska a, Ignacy Kitowski b,*

a Mycological Laboratory, Department of Environmental Microbiology, University of Life Sciences in Lublin, 7 Leszczyńskiego, 20-069 Lublin, Poland
b State School of Higher Education in Chełm, Pocztowa 54, 22-100 Chełm, Poland

A R T I C L E I N F O

Article history:
Received 18 March 2016
Revised 18 February 2017
Accepted 29 March 2017
Available online 31 March 2017

Keywords:
Fungi
Phytopathogenic
Zoopathogenic
Nests
Marsh harrier

A B S T R A C T

Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiota of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermic animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermic animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae. Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermic animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Birds’ nests are specific microhabitats which are the place of occurrence of different species of fungi (Hubalek, 2000; Kornillowicz-Kowalska and Kitowski, 2013). Nests constructed on wet soil, on water plants or floating characterized by a high humidity (up 80–90%) with temperature, during breeding increasing up to 35–38°C are very attractive for hydrophilic fungi (Kornillowicz-Kowalska and Kitowski, 2009, 2013). An attractive ground for saprotrophic fungi are nests of larger wetland birds. They are characterized by diverse composition of organic matter which, with proper humidity allows the development of most fungal saprophytes. Due to the composition of organic matter, temperature and humidity, nests are similar to compost fungal saprophytes. Due to the composition of organic matter, temperature and humidity, nests are similar to compost fungal saprophytes. Due to the composition of organic matter, temperature and humidity, nests are similar to compost fungal saprophytes.

Accumulation of plant biomass dominated by lignocellulose enriched with native feather keratin, promotes the development of cellulolytic, keratinolytic and ubiquitous fungi (Hubalek, 2000; Kornillowicz-Kowalska et al., 2010). The source of fungi can be nest material, soil as well as birds themselves (Kornillowicz-Kowalska et al., 2010, 2011). Within zoopathogenic fungi the most dangerous for bird’s nests is Aspergillus fumigatus (Hubalek, 2000; Kornillowicz-Kowalska and Kitowski, 2013). The strains of this species cause fungal infections of the lungs and air sacs of birds (aspergillosis) (Barathidasan et al., 2013). Potentially pathogenic fungi isolated from the nests also includes keratinophilic fungi representing geophilic dermatophytes and related species considered as Chrysosporium “group” (Kornillowicz-Kowalska and Bohacz, 2011). Both groups of fungi are able to degrade keratin, using it as the only source of C, N and energy (Kornillowicz-Kowalska, 1997). Among these fungi accidentally pathogenic and pathogenic species are found with wide range of hosts (Hubalek, 2000; Kushwaha, 2000). Among geophilic dermatophytes, human dermatomycosis and animals homoiothermic may be caused most often by Microsporum gypseum, while among members of Chrysosporium group by Ch. keratinophilum (Kornillowicz-Kowalska and Bohacz, 2011). Both species are isolated from nests of wetland birds, but Ch. keratinophilum is found more frequently (Kornillowicz-Kowalska et al., 2011).

Perpetrators of dermatomycosis, the most often onychomycosis can be also molds, referred as non-keratinolytic, in particular Scop-
ulariopsis brevicaulis (Tosti et al., 1996). Some authors consider this species as keratinolytic (Filippello-Marchisio et al., 2000). Dermatophyto-
mycoses including onychomycosis may be also resulting from the presence of other mold species such as Fusarium oxysporum, F. solani, Scopulariopsis acremonium, Alternaria spp. and Phoma spp. (Krzysciak et al., 2011). The above mentioned genera and species belong to ubiquitous (polyphagous) and cellulo-lytic fungi, often isolated from nests (Kornillowicz-Kowalska et al., 2011). Among the phytopathogenic fungi present in the nests the following spe-
cies deserve attention: Fusarium spp., Verticillium spp., Phoma spp., Alternaria spp. and Pythium spp. They are causative agents of plant diseases, wild seedling blight or heal blight and necrosis (Domsh et al., 2007; Kwasna et al., 1991). Marsh harrier (Circus aeruginosus) is the one of numerous raptor in Europe and Poland (BirdLife International, 2017). This species builds its nests on ground, at reedbeds of lakes, on large fishponds, at small water
reservoirs, near recreation reservoirs or near small waterbodies of field. In Poland, water reservoirs on which Marsh harrier nests are frequently used as public beaches or waterholes of cattle. The aim of his paper was to analyze the diversity of mycobiotas in nests of Marsh harriers with special respect to opportunistic potential human, and phytopathogen, animal pathogens.

2. Materials and methods

2.1. Studied nests

Three nests of Marsh harrier were examined. They were collected in middle July of 2006 on small fish ponds located in agricul-
tural landscape of Lublin Region, E Poland: close villages of Nieledew (50°49’47”N 23°47’20”E) - 2 nests, coded: N1 and N3) and Zalesie Krzaszeńskie (51°7’16”N, 23°10’11”E) - 1 nest, coded: N2). Nests were collected after definitely left by juveniles. The nests were localized in common reed Phragmites australis or common bulrush Typha latifolia. Diameter of nests ranged between 50 and 90 cm. c.a. 50 cm of the nests were immersed in water while the above-water dimension was c.a. 70 cm.

The foundation of the nests was constituted of branches while the edges were made of stalks of Burdock Arctium sp. and Canada Thistle Cirsium arvense. Padding of the nests was made of common reed, less often common bulrush filled in with edges and grasses. A large part of padding was animal material: pellets containing fur and bones of mammals, as well as small mammal bodies or feather-
ers of avian prey.

Moreover, feathers of females of Marsh harriers who overwent the process of moulting during the incubation and down from
fledglings, faeces of nestlings (Marsh harriers are nidicolous birds) were found in the nests. Both components of the nest material: vegetal and non-vegetal were strongly mixed and pressed due to
nesting of birds. Apart from water animals, other prey and nest material was delivered to nests by birds from fields surrounding fish
ponds.

2.2. Isolation of fungi from nests

Nests (only the above-water part) were collected 7 days after
leaving by birds, when they did not fulfil any significant functions. From each nest, from uniformly scattered points 15–20 individual samples were collected of total weight of approx. 200 g. In the case of two nests (Nieledew: N1, N3) with poorly visible marked border between padding and the cortex, because of strong compression, samples were taken exclusively from the central (inner) part of the nest. A single nest (Zalesie Krzaszeńskie: N2), with the visibly marked breeding chamber was divided horizontally into 3 parts: inner part (lining material of nest), central part (intermediate part of nest) and outer part (the nest edge), further marked as layers III, II and I, respectively. Samples were collected in a sterile manner into sterile string bags and then cut into 0.5–1.0 cm sections. The contents were mixed for the purpose of averaging and then used for testing.

Mycological analysis of nests included determination of overall number of fungi (mesophilic saprotrophic fungi) isolated on Martin (1950) culture medium in 26 °C. Other fungi were isolated as fol-

dows: mesophilic fungi (30 °C); fungi potentially pathogenic for human and animals (Sabouraud medium supplied with antibacte-
rial antibiotics) (Dvorak and Otcenasek, 1969); thermophiles (45 °C, Martin and Sabouraud medium); fungi potentially phy-
topathogenic from Fusarium group (Nash and Snyder medium) (Kwasna et al., 1991) cellulo-lytic fungi (Waksman cellulose med-
iun on Whatman paper) as the only carbon and energy source (Kornillowicz-Kowalska et al., 2003), chitinophilic fungi using
native chitin as a substrate and keratinophilic fungi using native keratin of feathers as a substrate (Kornillowicz, 1993). Fungi,
excluding chitin- and keratinophilic, were isolated with usage of plate dilution method. Chitinophilic and keratinophilic fungi were isolated by using baiting technique. From each nest 10–20 plates with crumbled nest material was prepared. Plates were lined with sterile native chitin (insects exoskeletons) and keratin (feathers of chickens) prior to isolation. Plates with nest material were incubated at 26 °C in a humid chamber 4–6 weeks. Mycelium growing on native chitin were transplanted to the plate with colloidal chitin (g dcm⁻³): KH₃PO₄ - 1; MgSO₄·7H₂O - 0.5; chitin - 5; glucose - 1; yeast extract - 2; microelements - 1 cm⁻² (Fe(NO₃)₃·9H₂O - 0.7235; ZnSO₄·H₂O - 0.4398; MnSO₄·4H₂O - 0.2030 g dcm⁻³), agar – 20; streptomycin – 30 mg and chlorocy-
clin – 2 mg (antibiotics were added after sterilization of the med-
ium). Pure cultures of keratinophilic fungi grown on feathers were prepared on Sabouraud medium with antibiotics, and actid-
ion (Dvorak and Otcenasek, 1969).

To assess the degree of colonization of the nest material by the cellulo-lytic fungi 0.5 cm fragments of material (totally 100 frag-
ments from each nest) were put onto the Waksman cellulose med-
iun (4/plate). All the fungi cultures isolated with usage of plate dilution method were done in three repetitions. For identification purposes, all colonies grown on plate were isolated. When the number of colonies on the plate was ≤10, colonies from 3 plates were isolated.

2.3. Isolation of fungi from samples of water and sediments

The possibility of permeation of the propagules fungal to the surrounding water was assessed by analysing samples of surface water, taken approx. 0.5 m from the nest. The water was collected into a sterile 1000 cm³ volumetric bottle on the same day as the material of the nest.

Samples of sediments were collected with the ground probe nearby the nest only in the case of N2 nest from Zalesie Krzaszeń-
skie fish ponds. In the case of two other nests terminals (N1, N2) (Nieledew fish ponds) it was impossible due to the location of the nests. Samples were taken from the upper 5 cm layer, which was transferred to a sterile glass jars. Tests of water samples and sedi-
ments included determination of the total number of fungi on a Martin medium (26 °C) and potentially pathogenic fungi for homoeothermic organisms on Sabouraud medium (30 °C).

2.4. Taxonomic identification of fungi

Identification of genera and species of pure cultures of fungi were made on the basis of macro- and micro-morphologic charac-
teristics and on biometric measurements conducted in micro cul-
tures and on plates using standard media. Designation of yeast was carried out considering the morphology of vegetative cells and spores using biochemical tests Fungichrom I from Elitech France SAS.

The final classification of species of the isolated fungi was carried out using reports of Ellis (1971), Kreger-van Rij (1984), Domsch et al. (2007), Nelson et al. (1983), Van Oorschot (1980), Peberdy (1987), Kwasna et al. (1991), Watanabe (2010) and Krzysciak et al. (2011). The criteria for biosafety of fungi potentially pathogenic for humans and animals adopted by the European Confederation of Medical Mycology (ECMM) (Hoog, 1996) were taken. Naming the species was confirmed by visiting Index Fungorum (www.indexfungorum.org).

2.5. Determination of physical and chemical properties of nests

The water content in the nests material was determined by weighing at 105 °C. pH of the nests material, the water and the sediments was determined potentiometrically. Ctot and Sorg in the nests was determined by elemental analysis using high-temperature combustion in oxygen and determining the thermal conductivity. Cer Content was determined by Tiurin method; Ntot, Ptot, K, Ca and Mg contents were determined after wet digestion in a mixture of concentrated H2SO4 and hydrogen peroxide by flow spectrophotometry (Ntot, Ptot) and by the atomic absorption spectrometry (K, Ca, Mg).

2.6. Data analysis

The total number of fungi, number of fungi potentially pathogenic for humans and animals, potentially phytopathogenic Fusarium fungi and cellulolytic fungi reported as the number of colony forming units (cfu g dry weight (dw.) of nest material and sediments (cfug), or 1 cm3 of water (cfu/cm3). The dry weight of the nest material and sediments was determined after drying to constant weight at 105 °C. The results for the number of fungi are shown as the mean of three replicates for each nest. The degree of occupation of nests by cellulolytic fungi (method of lining of nest material) was determined on the basis of the number of settled segments/100 taken from each nest. Diversity of fungi communities was calculated on the basis of Shannon-Wiener index: H = −∑S i = 1 P (log P) where: S – number of species, pi – participation of i – species in the sample (Krebs, 1994).

3. Results

3.1. Marsh harrier nest material analysis

Characterization of physical and chemical properties of nest material is presented in Table 1; pH around nests marked 1, 2 and 3 were 7.29; 7.43 and 8.30; respectively. The pH in sediments (nest No. 2) was 7.40.

In the micromycetes communities of Marsh harrier nests, mesophilic fungi saprotrophic (Martin medium, 26 °C) and fungi potentially pathogenic for humans and animals (Sabouraud medium, 30 °C) belonged to most frequently occurring. The number of both groups of fungi in all three nests reached or slightly exceeded the concentration of 102 cfu g-1 d.m. of nest material (Table 2). Numerous were also cellulolytic fungi and fungi isolated on Nash and Snyder medium, including potentially phytopathogenic fungi of the genus Fusarium (105 – 2 – 107 cfu g-1 d.m. of nest material) (Table 2). The least numerous were thermophilic (45 °C) and saprotrophic fungi as well as potentially pathogenic for homiothermous (104 – 1.3 · 102 cfu g-1 d.m. of nest material; Table 2).

Distribution of the density of the groups of mesophilic micromycetes within a single nest (nest N 2) points to the intensive growth and sporulation of fungi in its peripheral part (nest edge I) as compared with nest lining (III) (Table 2). The opposite effect has occurred in the case of thermophilic fungi (Table 2).

From all the nests 2449 fungal isolates were separated (Table 3). Only 3.2% of them were represented by yeasts, the remaining 96.8% were filamentous fungi. Altogether 63 species of 37 genera were identified, in 101 isolates only genus was determined (Table 4).

The occurrence frequency of the recorded mesophilic species (saprotrophic and potentially pathogenic homiothermous organisms) deviated from the assumed and equal amount in all nest layers, both on Martin medium: χ2 = 24.54; df = 3 < 0.001 as well as on Sabouraud medium: χ2 = 20.63; df = 3 < 0.001.

The occurrence frequency of the potentially pathogenic fungi (45.6%) was higher as compared with saproprotrophic fungi (36.9%).

Table 1
Chemical properties of Marsh harrier nest material.

Nest number	pH	Humidity (in%)	C total	C organic	N total	S total	P total	K	Ca	Mg	
	H2O										
1	6.95	7.44	70.54	45.68	43.95	2.17	0.28	0.15	0.19	0.70	0.043
2-I	7.20	7.44	70.54	45.68	43.95	2.17	0.28	0.15	0.19	0.70	0.043
2-II	6.70	6.81	70.54	45.68	43.95	2.17	0.28	0.15	0.19	0.70	0.043
3	7.23	6.24	49.56	24.54	22.44	2.17	0.40	0.10	0.47	0.030	

1 - outer part (the nest edge); II- central part (intermediate part of nest); III- inner part (lining material of nest).

Table 2
Composition of different fungi (micromycetes) communities in nests of Marsh harrier.

Nest number	A	B	C	D	E	F
	cfu 103					
N1	23082.0	35755.0	14142.0	21837.5	0.0226	0.000
N2-I	249263.0	231564.0	826.0	1165.2	0.0147	0.885
N2-II	82081.0	113185.0	613.4	838.1	0.0345	0.432
N2-III	1223.0	2710.0	185.1	108.0	0.0661	0.152
N3	246350.0	7137.0	403.1	4493.8	1.0441	1.320

A - mesophilic, saprotrophic fungi (Martin medium), B - mesophilic fungi, potentially pathogenic for humans and homeiothermous animals (Sabouraud medium), C - cellulolytic fungi (Martin medium), D - fungi of Nash and Snyder medium; E - thermophilic fungi, (Martin medium), F - thermophilic fungi (Sabouraud medium), cfu – colony forming units, I - outer part (nest edge); II- central part (transition part); III- inner core (lining material, central part of nest).
From 7 analyzed ecological communities, the greatest number of species came from cellulolytic fungi (24 species from 13 kinds).

The most frequent fungi of the genus Aspergillus were dominated by two species: highly toxic A. flavus and A. fumigatus potentially pathogenic for homiothermous organisms (Table 3).

The share of Aspergillus spp. within the mesophilic saprophytes (Martin medium, 26 °C) amounted to 46.8% and did not differ significantly ($\chi^2 = 2.457, df = 1, p = 0.117$) from the share of this type in the group of potentially pathogenic mesophilic fungi (Sabouraud medium, 30 °C) ratio of 38.7%.

The occurrence of the most frequent species of Aspergillus, A. flavus on two above indicated media amounted to 39.4% and 25.0%, respectively (Table 3). Statistical differences in that cases were significant ($\chi^2 = 24.978; df = 1; p = 0.001$). It was found that A. fumigatus was characterized by a lower share within the mesophilic fungi than within the thermophilic fungi (Table 3) 7.4% and 57.8%, respectively. Differences between occurrences of thermophilic strains A. fumigatus grown on Martin medium versus Sabouraud medium were also statistically relevant ($\chi^2 = 10.076; df = 1; p = 0.017$). This species is ecologically ubiquitous and thermostolerant. This was confirmed by the isolation of this fungi in a wide ranges of temperatures: 26–30–45 °C. Scopulariopsis brevicaulis isolated from nests belonged to the fungi potentially pathogenic to humans. It’s frequency on mediums of Martin, Sabouraud as well as on Nash and Snyder amounted to 15.4%, 17.5% and 27.0%, respectively (Table 3).

Apart from the three indicated species frequently noted were strongly cellulolytic fungi from Chaetomium and Trichoderma genera (Tables 3 and 4). Both genera represented 75% of cellulolytic fungi colonizing nests’ material (the fragments lining method) (Table 3). The occurrence obtained for Chaetomium and Trichoderma, especially for T. viride was much lower while isolation was conducted by using dilution method (Table 3).

To the reckoned (23.4%) cellulolytic fungi (isolated by a dilution method) Fusarium family can be included. Interestingly a lower occurrence rate was observed (17.6%) for the population of Fusarium isolated with using Nash and Snyder medium selective for this species (Table 3). The differences of occurrence of the genus Fusarium on both the indicated media were not significant ($\chi^2 = 9.1576; df = 3; p = 0.282$). The decrease in species diversity within the thermophilic saprophytic fungi and the fungi potentially pathogenic was associated with an increase in the population of A. fumigatus. This was confirmed by the negative correlation between the percentages of that species (Table 3) and the Shannon-Wiener coefficient ($r = -0.469, n = 8, p = 0.01$).

Based on the data presented in Table 4 it was calculated that the ratio of the number of potentially phytopathogenic strains to the number of antagonistic strains is 1:1 (293:265). That relation indicates a state of equilibrium between the populations of those fungi in Marsh harrier nests. The ratio of the populations of fungi poten-
Table 4
List of isolated fungi species and their properties follow (Domsch et al., 2007; Kwasna et al., 1991).

Species	Antagonistic capable	Cellulolytic	Chitinophilic	Keratinophilic	Phytopathogenic	Saprotophic
Aspergillus flavus	yes	no	no	no	no	yes
Botrytis cinerea	no	yes	yes	no	yes	yes
Cladosporium herbarum	yes	yes	yes	yes	yes	yes
Fusarium solani	yes	yes	yes	no	yes	yes

3.2. Analysis of water and sediments from vicinity of nests of Marsh harriers

The number of fungi saprotrophic and potentially pathogenic for homoiothermous organisms in water samples from the water in the vicinity of nests ranged from above 3 to 92 thousand cfu cm⁻³ (Table 5). The largest number of fungi was found in water samples from the vicinity of the nest N 2, especially the potentially pathogenic fungi. The numbers of fungi in samples of sediments (nest N 2) were higher (Table 5). The species composition of filamentous fungi in water samples the surrounding marsh harrier nests were most strongly represented by 4 species: Cladosporium herbarum, Trichoderma koningii, Alternaria and Aspergillus fumigatus. The latter two were isolated more frequently from Sabouraud medium (Table 6). Sediments were dominated by fungi from Trichoderma genus representing up to 81% of the total saprotrophic fungi isolated on Martin medium (Table 6).

4. Discussion

Our studies showed that so called total number of fungi (=mesophilic saprotrophic fungi) at Marsh harrier nests is relatively high and amounts to >10 mln cfu/1 g dw of nest material. On a similar level they were as the number of fungi potentially pathogenic for homoiothermic animals. Such the number of microfungi are met periodically in compost (Kornillowicz-Kowalska and Bohacz, 2010). On the other hand this concentrations of fungi are higher than those found in soil, where they usually amount between 10⁵ and 10⁶ cfu/1 g dw of soil (Posudin, 2014). Populations of potentially phytopathogenic and cellulolytic fungi colonizing studied nests were quantitatively similar to the level of total number of fungi in the soil (100 thous. up to 1 million cfu/1 g dw). Very high number of microfungi in nests of Marsh harrier results from the accumulation of great amount of different food substrates. The variety of carbohydrates of plant origin, mainly cellulose as well as accumulation of N, S and P (Table 1) are crucial for vegetative growth of fungi. Within mycobiota of the examined nests dominated populations of fungi potentially pathogenic for humans, homoiothermic animals and plants. Among 63 species of fungi up to 46 (72%) were potentially pathogenic for humans, homoiothermic animals and plants. The above enables the intensive development of phyto- and zoopathogenic fungi in nests of the bird species under study, however, does not permit to exclude the risk of the environmental threat of phytopathogenic fungi as only a considerable prevalence of antagonistic fungi allows an inhibition of the growth of those micromycetes to be observed. Whereas, the 7-fold numerical prevalence of fungi potentially pathogenic to humans and homoiothermic animals relative to antagonistic fungi shows that the growth of those fungi in nests of the bird species under study is stimulated and not subject to inhibition under the effect of antagonists.

Another factor favouring the development of potentially pathogenic fungi in nests of Marsh harrier was also weaker saprophytic competition among species, conditioned by accumulation of the large amounts of food substrates. Stahl and Christensen (1992) showed that the abundance of substrates may limit competition. The above enables the intensive development of phyto- and zoopathogenic fungi in the nests characterized by a weaker saprophytic competition. The opposite effect is observed in soil, where...
generally organic matter deficiency is observed and the ensuing heavy competition for carbon and energy sources.

This entails the selection of microbes with strong antagonistic abilities i.e. saprotrophic fungi of the genus *Penicillium* (Frisvad and Filtenborg, 1999).

The largest, in terms of species composition, trophic specialized group at the Marsh harrier nests were cellulolytic fungi (n = 24) (Tables 3 and 4). The level of occupation of the nest material by this species amounted to 100%. The poorest in species (n = 7) were nests of birds were found by Hubalek (1974a, 1974b).

In our previous studies *Fusarium* was also found on native keratin, though not in the large numbers of *Scopulariopsis brevicaulis* yet examined by other authors in the birds’ nests. Yet prevalence of these species was low except for *Scopulariopsis brevicaulis*. Prevalence of this opportunistic pathogen amounted to 25% of all chitinophilic fungi. Their frequency was higher in relation to ubiquitous saprophytic and potentially pathogenic fungi (Table 4). That suggests that chitin substrates, insect prey remains and the various stages of insects inhabiting the nest are an appropriate medium for the fungus.

High diversity of invertebrates (included insects) in wetland’s birds nests was previously reported (Buczynski et al., 2004). The source of chitin in the nests of birds is also a mycelium. *Scopulariopsis brevicaulis* belonged to the active fungi found in the nests of *Passer montanus* (Hubalek, 1974a, 1974b). From the point of view of biosecurity concerning fungi potentially pathogenic for humans and animals this species is classified as BS2 (biosafety level 2) (Hoog, 1996). In this group one can find pathogens causing surface and systemic opportunistic fungal infections at patients with immunosuppression. *Scopulariopsis brevicaulis* is responsible for nail infection (onychomyecosis) mainly of toenails, rarely internal infections at patients with immunosuppression (Krzyściak et al., 2011). As the cause of human infection originated from presence of this species, the ability for keratin degrading is reported (Filipello-Marchisio et al., 2000). During our studies *S. brevicaulis* was also found on native keratin, though not in the large numbers (Table 3). On the other hand, it was more frequently (22%) isolated from the medium selective for *Fusarium* (Table 3).

Factors facilitating survival of *S. brevicaulis* in nests of Marsh harriers were also thermo-tolerance and predilection for weakly alkaline environments (Domsch et al., 2007).

Aspergillus fumigatus belonged to the deadliest opportunistic pathogens found in nests of Marsh harrier. Mostly it was isolated using selective method of isolation of thermostable fungi.

His participation in other analyzed species, including mesophilic molds ranged from a few to several percent while *A. fumigatus* in nests of birds was found by Hubalek (1974a, 1974b).

According to the criteria ECM it is classified as a BS2 (biosafety level 2). In humans, it causes acute or chronic respiratory infections and at people with immunosuppression also infections of other systems (Latge, 1999). On the other hand, aspergillosis is a severe disease in poultry, pet and free living birds (Nardoni et al., 2006; Tell, 2005; Jung et al., 2009).

Our studies showed that, the number of potentially pathogenic thermophilic (45 °C) strains of *A. fumigatus* in Marsh harrier nests was 360 cfu/g dw. of nest material. In our previous studies (Kornillowicz-Kowalska and Kitowski, 2013) we found that average frequency of thermophilic strains of *A. fumigatus* in nests 7 species of wetland’s species was 650 cfu/g dw. of nest material.

In the data presented here frequency of occurrence of *A. fumigatus* among the mesophilic, potentially pathogenic fungi (30 °C) occupying nests of Marsh harrier was 62 · 10^{3} cfu/g dw of nest material. However its rate in species structure of this community was only 13%. Such a high number of *A. fumigatus* is a threat for Marsh harriers. The cause of severe pollution of the examined nests with mycelium spores of *A. fumigatus* and are favorable conditions for the development of the fungus: elevated nest temperature during breeding, weakly alkaline conditions, elevated humidity and abundance of food substrates, large body size of harrier females.
incubating eggs and brooding nestlings. A. fumigatus grows and sporulates well in habitats of water activities, ranging 0.9–0.95, optimal pH = 7.8, heated periodically, rich in carbohydrates and proteins (Kornilowicz-Kowalska and Kitowski, 2013).

During sporulation A. fumigatus discharged to atmospheric large quantities of conidia of sizes a between 2 and 5 μm, vital for many months. Their respiratory inhalation is the direct cause of lung infections (Warris and Verwej, 2005). Water has importance for invasive epidemiology of aspergillosis as disseminations habitat of A. fumigatus (Warris and Verwej, 2005; Tell, 2005).

In the samples of surface water collected near Marsh harrier nests the frequency of the propagules of A. fumigatus reached 10^4 – 10^5 cfu cm⁻³. Water can be the source of A. fumigatus infection through aerosolization, or in the process of rinsing the fungi propagules from the nests. We showed that nests of Marsh harrier are also refuge of another danger for birds and humans which was Aspergillus flavus. This fungus was frequent in nests of different bird (including raptores) (Hubalek, 1974a). A. flavus has habitat needs similar to A. fumigatus, but this species was not found among thermophilic fungi communities of studied nests.

Kluckez and Kojder (2000) reported that ca.70% of the A. flavus strains are responsible for production of aflatoxins, which are opti-

References
Barathidasan, R., Singh, S.D., Saini, M., Sharma, A.K., Dhana, K. 2013. The first case of angioinvasive pulmonary aspergillosis in a Himalayan Grifflon Vulture (Gyps himalayensis). Avian Biol. Res. 6, 302–306.

BirdLife International, 2017. Circus auritusinus. IUCN Red List of Threatened Species. International Union for Conservation of Nature. <http://www.iucnredlist.org> (accessed: 26/02. 2017).

Buczyński, P., Kitowski, I., Rozwalska, R. 2004. Submerged part of the nests of European bittern Botaurus stellaris L. as a substrate for benthic macroinvertebrates. Acta Univ. Biol. Daugavpilensis 4, 77–80.

Domić, K.H., Gams, W., Anderson, T.H., 2007. Compendium of Soil Fungi. IHW-Verlag Eching.

Dvorak, J., Otencasek, M. 1969. Mycological diagnosis of animal dermatophytes. Academia, Prague, Czechoslovakia.

Ellis, M.B., 1971. Demataeous Hyphomycetes. Commonwealth Mycological Institute, Reaw, Surrey, England.

Filipello-Marchisio, V., Fusconi, A., Querio, F.L., 2000. Scopulariopsis brevicaulis, a keratinophilic or a keratinolytic fungus? Mycoses 43, 281–292.

Frivold, J.C., Filtzborg, O.G., 1999. Revision of Penicillium subgenus Furcatus based on secondary metabolites and conserved characters. In: Sampson, R.A., Pitt, J.I. (Eds.), Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York, USA. pp. 159–172.

Grant, C., Hunter, C.A., Flannigan, R., Bowery, A.F., 1989. The moisture requirements of moulds isolated from domestic dwelling. Int. Biodet. 25, 259–284.

Hoog, G.S., 1996. Risk assessment of fungi reported from humans and animals. Mycoses 39, 407–417.

Hubalek, Z. 1974a. Fungi associated with free-living birds in Czechoslovakia and Yugoslavia. Acta Sci Nat. (Brno) 8, 1–62.

Hubalek, Z., 1974b. The distribution patterns of fungi in free-living birds. Acta Sci Nat. (Brno) 8, 1–51.

Hubalek, Z., 2000. Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha, R.K.S., Guarro, J., (Eds.), Biology of Dermatophytes and other Keratinophilic fungi. Rev. Iber. Microl., 17 pp. 93–103.

Hubalek, Z., Balat, F., Toukovska, I., Vík, J. 1973. Mycoflora of birds’ nests in nest-boxes. Mycopath. Mycol. Appl. 49, 1–12.

Kung, K., Yin, Y., Lee, H., Kim, J.-J., 2009. Aspergillus fumigatus infection in two wild Eurasian black vultures Aegypius monachus Linnaeus with carbofuran insecticide poisoning, a case report. Vet. J. 179, 307–312.

Kluckez, J.P., Kojder, A., 2000. Mycotoxins in outline. University of Sciences and Technology in Bydgoszcz, Bydgoszcz, Poland (in Polish).

Kornilowicz, T., 1993. The frequency of occurrence and distribution of keratinophilic fungi in some arable soils. Acta Mycol. 28, 3–17.

Kornilowicz-Kowalska, T., Kitowski, I., 2013. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175, 43–56.

Kornilowicz-Kowalska, T., Kitowski, I., 2009. Diversity of fungi in nest and pellets of Montag’s harrier Circus pygargus from east Poland – importance chemical and ecological factors. Ecol. Chem. Eng. 16, 453–471.

Kornilowicz-Kowalska, T., Bohacz, J., 2010. Dynamic of growth and succession of bacterial and fungal communities during composting of feather waste. Biores. Technol. 101, 1268–1276.

Kornilowicz-Kowalska, T., Kitowski, I., Iglik, H., 2010. The occurrence of cellulolytic fungi and Fungi in nests of birds. Acta Mycol. 45, 97–114.

Kornilowicz-Kowalska, T., Kitowski, I., Iglik, H., 2011. Geophilic dermatophytes and other keratinophilic fungi in nests of wetland birds. Acta Mycol. 46, 83–102.

Kornilowicz-Kowalska, T., 1997. Studies on the decomposition of keratin wastes by saprotrophic microfungi. I. Criteria for evaluating keratinolytic activity. Acta Mycol. 32, 51–70.

Kornilowicz-Kowalska, T., Iglik, H., Wojdyło, B., 2003. Correlation between the abundance of cellulolytic fungi in selected soil properties. Acta Mycol. 38, 161–172.

Kornilowicz-Kowalska, T., Bohacz, J., 2011. Biodegradation of keratin waste. Theory and practical aspects. Waste Manage. 31, 1689–1701.

Krebs, C.J., 1994. Ecology. Harper Collins, New York, USA.

Kreger-van Rij, N.J.W., 1984. The yeasts a taxonomic study. Elsevier Sci. Publ. Amsterdam, Netherlands.

Krzysciak, P., Skora, M., Macura, A.B., 2011. Atlas of Human Pathogenic Fungi. Wydawnictwo MedPharm, Poland (in Polish).

Kushwaha, R.K.S., 2000. The genus Chrysosporium, its physiology and biotechnological potential. In: Kushwaha, R.K.S., Guarro, J., (Eds.), Biology of dermatophytes and other keratinophilic fungi. Rev. Iber. Microl., 17 pp. 66–78.

Kwasna, H., Chełkowski, J., Zajkowski, P., 1991. Polish flora. Fungi Mycota XXII, 201pp. Polish flora. Fungi Mycota XXII, 201pp.

Deuteromycetes, Hyphomycetales, Fusarium. Polish Academy of Sciences, Warsaw Krakow, Poland. (in Polish).

Langer, J.P., 1999. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 12, 310–326.

Ma, L.J., Geiser, D.M., Proctor, R.H., Rooney, A.P., O’Donnell, K, Trial, F., Gardiner, D. M., Manners, J.M., Kazan, K., 2011. Fusarium pathogenomics. Annu. Rev. Microbiol. 67, 399–416.

Martin, I.P., 1950. Use of rose Bengal and streptomycin in plate method of estimating soil fungi. Soil Sci. 19, 215–233.

Nardoni, S., Ceccherelli, R., Rossi, G., Mancianti, F., 2006. Aspergillosis in Larus canutus micelli. Survey of eight cases. Mycopathologia 161, 317–321.

Nelson, P.E., Toussoun, T.A., Marais, W.F.O., 1983. Fusarium species, an Illustrated Manual for Identification. Pennsylvania State University Press, Philadelphia.

Peberdy, J.F., 1987. Penicillium and Acremonium. Biotechnology Handbooks, vol. 1. Plenum Press, New York, USA.

Posudin, Y., 2014. Methods of Measuring Environmental Parameters. John Wiley & Sons Inc., Hoboken, USA.

Price, T.A., Christensen, M., 1992. In vitro mycelial interactions among members of a soil microfloral community. Soil. Biol. Biochem. 5, 765–771.

Tell, L.A., 2005. Aspergillus in mammals and birds, impact on veterinary medicine. Med. Mycol. Suppl. 43, 571–573.

Torti, A., Piraccini, B.M., Stinchi, G., Lorenzi, S., 1996. Onychomycosis due to Scopulariopsis brevicaulis, clinical features and response to systemic antifungals. J. of Dermatol. 135, 799–802.

Valcheva, A., Valchev, G., 2007. The fusariotoxins zearalenon and deoxinivalenol as natural contaminants of some cereal components in the production of combined feed. Bulg. J. Agric. Sci. 13, 99–104.
Van Oorschot, C.A.N., 1980. A revision of Chrysosporium and allied genera. Stud. Mycol. 20, 1–89.
Warris, A., Verweij, P.E., 2005. Clinical implications of environmental sources for Aspergillus. Med. Mycol. Suppl. 43, 559–565.
Watanabe, T., 2010. Pictorial atlas of soil and seed fungi. Morphologies of cultured fungi and key to species. CRS Press Taylor & Francis Group, Boca Raton-London-New York.