Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Oils from Different Sources

Qi Qiu,* Yiting Zhang

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

Received March 10, 2021; Accepted May 22, 2021; Published May 23, 2021

Regenerated gutter oil (i.e., waste oil) accounts for 10% of the edible oil market, which has caused serious food safety issues. Currently, there is no standard protocol for the identification of the gutter oil. In this study, the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) method was employed to analyze eleven oil samples including edible vegetable oils (tea oil, corn oil, olive oil, sunflower oil, peanut oil and blend vegetable oil) and waste oils (used frying oil, lard, chicken fat, inferior oil and kitchen waste grease). Three factors of pyrolysis temperature, reaction time and sample volume were investigated to optimize the analytical parameters. The optimal pyrolysis conditions were determined to be 600°C, 1 min and an injection volume of 0.3 μL. Five characteristic components (tetradecane, z,z-9,12-octadecadienoic acid, decanoic acid-2-propenyl ester, 17-octadecenoic acid, and z-9-octadecenoic acid) were found in all oil samples. The existence of C11-C16 olefins in the pyrolytic products of the animal fats and the other low-quality oils could be utilized to distinguish vegetable oils from gutter oils.

Keywords: Pyrolysis; Gutter oil; GC/MS; Waste oil; Olefins

Introduction

In the past ten years, food safety issues related to the reuse of waste oil or grease (i.e., gutter oil) have been frequently exposed [1]. It is estimated that the regenerated waste oil accounts for up to 10% of the cooking oil market, i.e., about 2.5 to 3 million tons of waste oil returns to the dining table every year [2]. As edible oils are a necessity in everyday life, the National Health Department of China began to focus on strengthening the techniques to detect and analyze edible oils.

In addition to the conventional physical and chemical indicators, the current detection/analytical methods of waste oils include various chromatographic methods, spectroscopy, nuclear magnetic resonance, etc. [3-5]. However, due to the complicated sources of waste oil, the complex composition, different processing methods, and different refining degrees, there is no single specific indicator or standard to distinct waste oils from edible oils. Consequently, it is imperative to develop a standard analytical method for the detection of the waste oil.

Because of the high boiling point, food oils are hardly to be analyzed directly. Therefore, the oil or grease is usually methylated and then analyzed by gas chromatography (GC) or gas chromatography coupled with mass spectrometry (GC/MS) [6]. In terms of the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS)
technology, oils can be directly pyrolyzed and the small molecules produced by the pyrolysis process are further identified by GC/MS [7]. The obtained pyrolytic products are a very intuitive reflection of the cracked fragments of the oil, which is equivalent to a series of changes in the simulated oil under pyrolytic temperature conditions [8]. The pyrolysis reactor adopts a vertical micro-furnace structure to measure the temperature of the sample in real time. The pyrolysis results demonstrate good reproducibility and overcome the deficiency of easy loss of high-boiling substances, which is conducive to obtaining more accurate analysis results [9].

In this study, eleven different oil samples were collected. The samples included vegetable oils (tea oil, olive oil, peanut oil, corn oil, sunflower oil, and blend vegetable oil), animal fat/oils (lard and chicken fat), and some low-quality oils (used frying oil, kitchen waste grease, and inferior oil). Py-GC/MS was conducted to analyze the pyrolytic products and characteristic peaks of oils from different sources.

Materials and Methods

Sample Collection and Preservation

The samples of this study mainly included two categories: edible vegetable oils and waste oils (used frying oil, lard, chicken fat, inferior oil and kitchen waste grease). The edible vegetable oils were purchased from the supermarket. The used frying oil and animal oils (chicken fat and lard) were collected from the home kitchen following cooking. The inferior oil with a very low price was purchased from the market. The waste grease was collected from the dining hall of the University. The sample names and the sources are summarized in Table 1. All samples were stored at room temperature.

Number	Name	Brand or Source
1	Sunflower seed oil	Jinlongyu®®
2	Corn oil	Jinlongyu®®
3	Peanut oil	Hujihua®®
4	Olive oil	Geely Tree®®
5	Tea oil	Jinggangshan®®
6	Blend vegetable oil	Maidelong®®
7	Frying oil	Home kitchen after cooking
8	Inferior oil	Market place
9	Waste grease	Dining hall of the University
10	Lard	Home kitchen after cooking
11	Chicken fat	Home kitchen after cooking

*The oil samples of 7 to 11 satisfied with the definition of the gutter oil or the waste oil.

Pretreatment of Oil Samples

The oil samples of 9-11 (i.e., waste grease, lard, and chicken fat) contained a small amount of water. Therefore, a pretreatment was conducted to remove the moisture from these oils. Firstly, an appropriate amount of oil sample was poured into the centrifuge tube, and then an appropriate amount of anhydrous sodium sulfate was added to the centrifuge tube. The centrifuge tube was vortexed and the water absorption of the sodium sulfate can be observed. In case, if there is no floating matter aggregates, it is still necessary to add a small amount of sodium sulfate until granular particles appeared.
Finally, the centrifuge tube was centrifuged at 3000×G for 20 minutes. Then, the supernatant was carefully collected as the pretreated oil sample.

Pyrolysis Coupled with Gas Chromatograph/Mass Spectrometer (Py-GC/MS)

Pyrolysis of oil samples was conducted in a sample cup of Frontier PY-2020iD pyrolyzer (Fukushima, Japan). For each experiment, the pyrolyzer was pre-heated to the desired temperature (300°C, 400°C, 500°C or 600°C), and then purged with ultra-purity helium to remove oxygen. A certain amount of samples (0.1 μL, 0.3 μL, or 0.5 μL) was allowed to drop into the pyrolyzer, whereby the sample was pyrolyzed for 30 s, 1 min, 3 min or 5 min. The volatilized products were injected directly into a Shimadzu GCMS-QP2010 gas chromatograph/mass spectrometer (Shimadzu, Japan) equipped with a Frontier Ultra-Allo5 capillary column (Fukushima, Japan).

For GC/MS analysis, the carrier gas of helium (99.999% purity) with a flow rate of 1 mL·min⁻¹ and the split ratio of 50:1 were used. The inlet temperature of GC was maintained at 300°C. The temperature of the GC oven was initially set at 35°C and held at 35°C for 2 min, then ramped to 350°C at a rate of 15 °C·min⁻¹ and held at 350°C for 10 min. The pyrolytic products were identified by comparison with the NIST mass spectral library (National Institute of Standards and Technology, USA). The distribution of compounds was calculated as the peak area percentage.

Results and Discussions

This study attempted to optimize the detection method of the waste oils, mainly from the three influencing factors of pyrolysis temperature, the sample amount, and the pyrolysis residence time. The pyrolysis temperature refers to the temperature whose sample is pyrolyzed in the pyrolysis furnace, i.e., the temperature before entering the GC column.

Determination of Pyrolysis Reaction Conditions

Impact of Pyrolysis Temperature

The direct pyrolysis of the waste oils without methyl esterification was performed by Py-GC/MS and the parameters were optimized accordingly. Firstly, the effect of the pyrolysis temperature was studied. Because the smoke point of edible oils starts at 170°C, a lower pyrolysis temperature of 150-200°C was first studied. However, it was found that the pyrolysis at the low temperature was difficult to obtain the volatile effluent, and almost no pyrolytic products appeared. Therefore, the pyrolysis temperature was further increased to 300°C, 400°C, 500°C and 600°C. Taking sunflower oil as an example, the experiments were carried out under the conditions of the sample volume of 1 μL and the pyrolysis time of 1 min. The total ion current (TIC) chromatograms are shown in Figures 1 and 2.

Comparison of Figure 1 with Figure 2 shows that as the pyrolysis temperature rose from 300°C to 600°C, the number of pyrolytic products gradually increased, resulting in more peaks on the TIC chromatogram. The resolution was higher at 600°C which is determined as the optimal pyrolysis temperature in this study.
Figure 1. The pyrolysis TIC chromatogram of sunflower oil at (a) 200°C, (b) 150°C

Figure 2. The pyrolysis TIC chromatogram of sunflower oil at (a) 600°C, (b) 500°C, (c) 400°C and (d) 300°C

Optimization of Sample Volume

To optimize the sample volume of pyrolysis, the oil samples of 0.1 μL, 0.3 μL and 0.5 μL were injected into the Py-GC/MS. After each pyrolysis, a blank experiment was performed under the same reaction conditions to check the residue remaining in the GC column. Taking the peanut oil as an example, all experiments were conducted at the pyrolysis temperature of 600°C for 1 min. The TIC chromatogram results are shown in Figures 3-5.
Figure 3. The pyrolysis TIC chromatogram of 0.1 μL peanut oil and the blank analysis after pyrolysis

Figure 4. The pyrolysis TIC chromatogram of 0.3 μL peanut oil and the blank analysis after pyrolysis

Figure 5. Pyrolysis TIC chromatogram of 0.5 μL peanut oil and the blank analysis after pyrolysis

The comparison with the blank chromatogram after pyrolysis shows that when the injection volume was 0.1 μL and 0.3 μL, the amount of residue in the GC column was
relative negligible. When the injection volume increased to 0.5 μL, the amount of residue in the column was more evident. This may affect the analytic results of the following samples. Additionally, the peaks of the TIC chromatogram were not clear for the sample injection of 0.1 μL. Therefore, the optimal injection volume was determined as 0.3 μL in this study.

Optimization of Pyrolysis Reaction Time

Pyrolysis time was investigated at the pyrolysis temperature of 600°C and an injection volume of 0.3 μL. Times studied were 30 s, 1 min, 3 min, and 5 min. The TIC chromatogram in Figure 6 shows very similar results under the reaction time of 0.5 to 5 min. However, when the pyrolysis time was greater than 1 min, the peak intensities of the total ion current were more evident than those of 0.5 min. Accordingly, the optimal pyrolysis time was determined as 1 min.

![Pyrolysis TIC Chromatogram](image)

Figure 6. The pyrolysis TIC chromatogram of the inferior oil for (a) 5 min, (b) 3 min, (c) 1 min, (d) 0.5 min

Pyrolysis of Oils from Different Sources

The oil samples including tea oil, olive oil, peanut oil, corn oil, sunflower oil, vegetable blend oil, used frying oil, lard, chicken fat, inferior oil and kitchen waste grease were pyrolyzed at 600°C and a volume of 0.3 μL for 1 min. The TIC results are shown in Figures 7-17.
Figure 7. The pyrolysis TIC chromatogram of the tea oil

Figure 8. The TIC chromatogram of pyrolysis of the olive oil

Figure 9. The pyrolysis TIC chromatogram of the peanut oil

Figure 10. The pyrolysis TIC chromatogram of the corn oil
Figure 11. The pyrolysis TIC chromatogram of the sunflower oil

Figure 12. The TIC chromatogram results of pyrolysis of the blend vegetable oil

Figure 13. The pyrolysis TIC chromatogram of the used frying oil

Figure 14. The pyrolysis TIC chromatogram of the lard
The TICs of all oil samples were quite complicated in terms of the number of peaks and the peak shape. Because vegetable oils or animal oils are essentially fatty acid glycerides, the resulting TICs after pyrolysis were very similar. Nevertheless, the TICs of oil samples from different sources could be distinguished by either the retention time for different compounds or the peak height/area for the same compound.

A specific peak, named as Peak 1 was observed at the retention time of 9.5 min. This peak was identified as tetradecane by searching through the NIST library. The comparison of Peak 1 of different oil samples is listed in Table 5.
Table 5. Comparison of Peak 1 of different samples

Sample	Retention time (min)	Peak area	Peak height	Similarity
Tea oil	9.524	6.74E+04	7.30E+04	92%
Olive oil	9.518	4.94E+04	6.69E+04	92%
Peanut oil	9.535	3.50E+04	4.17E+04	90%
Corn oil	9.545	1.14E+05	1.32E+05	92%
Sunflower oil	9.527	1.11E+05	1.24E+05	92%
Blend vegetable	9.529	8.60E+04	8.58E+04	92%
Used frying oil	9.519	2.31E+05	1.71E+05	96%
Chicken fat	9.51	2.52E+05	5.10E+05	97%
Lard	9.532	5.65E+05	2.21E+05	96%
Inferior oil	9.532	2.10E+05	1.70E+05	96%
Kitchen waste grease	9.517	3.38E+05	3.42E+05	95%

The area of Peak 1 of all edible vegetable oils was less than 2.0E+05, and the peak height was less than 1.50E+05. And the similarity of all edible vegetable oils in this peak was less than 92%, while the results of animal oils, used frying oil, inferior oil, and kitchen waste grease showed opposite trends. This feature may be employed as an evaluation indicator to distinguish vegetable oils from lard, chicken fat, kitchen waste grease, and inferior oil.

Two other distinct peaks appeared between 14 and 16 minutes were marked as Peak 2 and 4, respectively. These two peaks showed obvious higher peak intensities. A smaller peak between Peak 2 and 4 was marked as Peak 3. To be more specific, Peak 3 could be distinguished into two very close small peaks, labeled as Peaks 3-1 and 3-2. The height of these peaks of various oil samples is summarized in Table 6.

Table 6. The height of Peak 2, 3 and 4 of various oils and fats

Sample	H#2	H#3-1	H#3-2	H#4	Ratio of H#4/H#2
Tea oil	1.79E+05	1.95E+05	1.37E+05	1.67E+06	9.33
Olive oil	1.36E+05	1.82E+05	1.13E+05	1.89E+06	13.90
Peanut oil	1.28E+05	1.42E+05	9.47E+04	8.16E+05	6.38
Corn oil	1.27E+06	2.84E+05	2.43E+05	2.65E+05	2.09
Sunflower oil	1.06E+05	1.84E+05	1.69E+05	1.27E+06	11.98
Blend vegetable	2.27E+05	1.89E+05	1.48E+05	1.25E+06	5.51
Used frying oil	1.01E+06	4.50E+05	1.91E+05	1.09E+06	1.08
Chicken fat	4.04E+05	4.12E+05	3.18E+05	8.46E+05	2.09
Lard	3.33E+05	5.00E+05	2.92E+05	6.84E+05	2.05
Inferior oil	9.48E+05	4.25E+05	1.70E+05	1.86E+05	0.20
Kitchen waste grease	1.87E+05	3.04E+05	2.86E+05	7.95E+05	4.25

H: the peak height; #: the peak number

For most vegetable oils, the height of Peak 2 was shorter, but the height of Peak 4 was higher. In terms of the peak height ratio of these two peaks, the ratio of H#4/H#2 was the largest for vegetable oils. For animal oils and other low-quality oils, this ratio was small. For example, the height of Peak 2 of the inferior oil was slightly higher than that of Peak 4 with a ratio of 0.20. However, corn oil and kitchen waste oil did not
conform to the above rules. This ratio (2.09) for corn oil was not as large as other vegetable oils, while kitchen waste grease had a sufficient height difference with a ratio of 4.25. The height of Peak 3-2 of all oils and fats peaks was relatively close. But the height of Peak 3-1 was obviously different, i.e., the peak heights of all edible vegetable oils were less than 3.00E +05 and others were greater than 3.00E+05. Therefore, edible vegetable oils can be distinguished from other fats.

Analysis of Pyrolytic Products of Oils from Different Sources

Because the structure of the pyrolytic products following Peak 4 was relatively complex and the similarities of the corresponding chemicals were low, this study specifically analyzed the pyrolytic products prior to Peak 4 and compared the similarity of various oils. The main ingredients (about 90%) are listed in the following Tables 7-17.

Table 7. Analysis of the pyrolytic products of tea oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	96%	56	C₃H₄O	1.725
2	Cyclopentene	92%	68	C₅H₈	1.9
3	Hexene	97%	84	C₆H₁₂	2.009
4	Cyclohexene	94%	82	C₆H₁₀	2.492
5	Heptene	98%	98	C₇H₁₄	2.533
6	Octene	95%	112	C₈H₁₆	3.358
7	E-1,4-octadiene	90%	110	C₈H₁₄	3.7
8	Nonene	95%	126	C₉H₁₈	4.392
9	Cyclooctene	98%	110	C₈H₁₄	4.534
10	Decene	93%	140	C₁₀H₂₀	5.492
11	1-Undecene	95%	154	C₁₁H₂₂	6.575
12	2-Undecene	95%	154	C₁₁H₂₂	6.717
13	1,4-Undecene	91%	152	C₁₁H₂₀	6.933
14	E-1,8-Dodecadiene	91%	166	C₁₂H₂₂	7.949
15	Tetradecene #1	92%	196	C₁₄H₂₈	9.524
16	8-heptadecene	97%	238	C₁₇H₃₄	11.908
17	cis-9-hexadecenal	96%	238	C₁₆H₃₂O	13.525
18	Z,Z-9,12-octadecadienoic acid #2	87%	282	C₁₈H₃₆O₂	14.042
19	Decanoic acid-2-propenyl ester#3-1	85%	212	C₁₃H₂₄O₂	14.2
20	17-octadecenoic acid #3-2	86%	282	C₁₈H₃₄O₂	14.233
21	Z-9-octadecenoic acid #4	96%	282	C₁₈H₃₄O₂	15.284

#1---Peak 1; #2---Peak 2; #3-1---Peak 3-1; #3-2---Peak 3-2; #4---Peak 4
Table 8. Analysis of the pyrolytic products of olive oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acryl aldehyde	94%	56	C₃H₄O	1.7
2	Hexene	96%	84	C₆H₁₂	1.982
3	Heptene	97%	98	C₇H₁₄	2.515
4	Octene	93%	112	C₈H₁₆	3.35
5	Nonene	93%	126	C₉H₁₈	4.382
6	Cyclooctene	97%	110	C₈H₁₄	4.524
7	Decene	88%	140	C₁₀H₂₀	5.483
8	Undecene	93%	154	C₁₁H₂₂	6.566
9	2-Undecene	93%	154	C₁₁H₂₂	6.699
10	E-1,4-Undecadiene	91%	152	C₁₁H₃₀	6.926
11	E-1,8-Undecadiene	90%	166	C₁₂H₂₂	7.951
12	2E,4Z-Dodecadiene	93%	166	C₁₂H₂₂	8.291
13	E-7-tetradecene	90%	196	C₁₄H₂₈	8.591
14	Tetradecene #1	92%	196	C₁₄H₂₈	9.517
15	8-heptadecene	94%	238	C₁₇H₃₄	11.899
16	Cis-9-hexadecenal	96%	238	C₁₈H₃₀O	13.518
17	Z,Z-9,12-octadecadienoic acid#2	90%	280	C₁₈H₃₂O₂	14.092
18	Decanoic acid-2-propenyl ester#3-1	86%	212	C₁₃H₂₄O₂	14.666
19	17-octadecenoic acid #3-2	87%	282	C₁₈H₃₄O₂	14.725
20	Z-9-octadecenoic acid #4	92%	282	C₁₈H₃₄O₂	15.274

Table 9. Analysis of the pyrolytic products of peanut oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-propenaldehyde	93%	56	C₃H₄O	1.75
2	Hexene	95%	84	C₆H₁₂	2.025
3	Heptene	96%	98	C₇H₁₄	2.55
4	Octene	93%	112	C₈H₁₆	3.375
5	Nonene	90%	126	C₉H₁₈	4.409
6	Cyclooctene	96%	110	C₈H₁₄	4.542
7	Decene	90%	140	C₁₀H₂₀	5.5
8	Undecene	91%	154	C₁₁H₂₂	6.591
9	6-Butyl-1,4-cycloheptadiene	89%	150	C₁₁H₁₈	7.342
10	Dodecene	88%	168	C₁₂H₃₄	7.626
11	Cetyl Alcohol	91%	242	C₁₆H₃₄O	9.533
12	Tetradecene #1	90%	196	C₁₄H₂₈	9.535
13	Cis-9-hexadecenal	92%	238	C₁₈H₃₀O	13.533
14	Z,Z-9,12-octadecadienoic acid#2	87%	280	C₁₈H₃₂O₂	14.158
15	Decanoic acid-2-propenyl ester#3-1	83%	212	C₁₃H₂₄O₂	14.683
16	17-octadecenoic acid #3-2	86%	280	C₁₈H₃₂O₂	14.742
17	Z-9-octadecenoic acid #4	88%	280	C₁₈H₃₂O₂	15.209
Table 10. Analysis of the pyrolytic products of corn oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	94%	56	C₃H₄O	1.733
2	Cyclopentene	92%	68	C₅H₁₀	1.917
3	Hexene	97%	84	C₆H₁₂	2.016
4	Cyclohexene	93%	82	C₆H₁₀	2.508
5	Heptene	96%	98	C₇H₁₄	2.55
6	3-methyl-cyclohexene	92%	96	C₇H₁₂	2.942
7	Octene	93%	112	C₈H₁₆	3.375
8	2-octene	94%	112	C₈H₁₆	3.525
9	1,3-octadiene	94%	110	C₈H₁₄	3.717
10	Nonene	91%	126	C₈H₁₈	4.408
11	Cyclooctene	96%	110	C₉H₁₄	4.55
12	1,3-nonadiene	90%	124	C₉H₁₈	4.783
13	Decene	92%	140	C₁₀H₂₀	5.508
14	Undecene	90%	154	C₁₁H₂₂	6.6
15	6-Butyl-1,4-cycloheptene	92%	150	C₁₁H₁₈	7.358
16	Dodecene	90%	168	C₁₂H₂₄	7.633
17	Tridecene	91%	182	C₁₃H₂₆	8.617
18	Tetradecene #1	92%	196	C₁₄H₂₈	9.545
19	Cetyl Alcohol	92%	242	C₁₆H₃₄O	9.542
20	Z,Z-9,17-octadecadienal	93%	264	C₁₈H₃₂O	13.501
21	Cis-9-hexadecenal	92%	238	C₁₆H₃₀O	13.534
22	Z,Z-9,12-octadecadienoic acid #2	86%	284	C₁₈H₃₆O₂	14.058
23	Decanoic acid-2-propenyl ester #3-1	86%	212	C₁₃H₂₄O₂	14.7
24	17-octadecenoic acid #3-2	87%	254	C₁₆H₃₀O₂	14.758
25	Z-9-octadecenoic acid #4	91%	280	C₁₈H₃₂O₂	15.284

Table 11. Analysis of the pyrolytic products of sunflower oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	93%	56	C₃H₄O	1.775
2	Cyclopentene	93%	66	C₅H₁₀	1.95
3	Hexene	96%	84	C₆H₁₂	2.059
4	Cyclohexene	95%	82	C₆H₁₀	2.525
5	Heptene	97%	98	C₇H₁₄	2.567
6	Octene	93%	112	C₈H₁₆	3.383
7	2-octene	94%	112	C₈H₁₆	3.525
8	1,3-octadiene	95%	110	C₈H₁₄	3.717
9	Nonene	93%	126	C₈H₁₈	4.408
10	Cyclooctene	98%	110	C₉H₁₄	4.55
11	E-1,3-nonadiene	91%	124	C₉H₁₆	4.767
12	Decene	93%	140	C₁₀H₂₀	5.5
13	6-Butyl-1,4-cycloheptadiene	93%	150	C₁₁H₁₈	7.342
14	3-dodecene	91%	166	C₁₂H₂₄	7.616
Table 12. Analysis of the pyrolytic products of the blend vegetable oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	95%	56	C₂H₄O	1.733
2	Hexene	97%	84	C₆H₁₂	2.016
3	Heptene	97%	98	C₇H₁₄	2.542
4	Octene	92%	112	C₈H₁₆	3.367
5	2-octene	93%	112	C₈H₁₆	3.509
6	1,3-octadiene	94%	110	C₈H₁₄	3.708
7	Nonene	92%	126	C₈H₁₈	4.4
8	Cyclooctene	97%	110	C₈H₁₄	4.542
9	Decene	91%	140	C₁₀H₂₀	5.492
10	6-Butyl-1,4-cycloheptene	92%	150	C₁₁H₁₈	7.342
11	n-hexadecene	92%	224	C₁₆H₃₂	9.525
12	Tetradecene #1	92%	196	C₁₄H₂₈	9.529
13	Z-9,17-octadecadienal	94%	264	C₁₃H₃₂O	13.484
14	Z,Z-9,12-octadecadienoic acid #2	91%	280	C₁₈H₃₂O₂	14.050
15	Decanoic acid-2-propenyl ester #3-1	86%	212	C₁₃H₂₈O₂	14.675
16	17-octadecenoic acid #3-2	86%	282	C₁₈H₃₂O₂	14.741
17	Z-9-octadecenoic acid #4	89%	280	C₁₈H₃₂O₂	15.241

Table 13. Analysis of the pyrolytic products of used frying oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	95%	56	C₂H₄O	1.733
2	Hexene	98%	84	C₆H₁₂	2.016
3	Heptene	97%	98	C₇H₁₄	2.542
4	Octene	95%	112	C₈H₁₆	3.358
5	Nonene	96%	126	C₈H₁₈	4.391
6	Cyclooctene	98%	110	C₈H₁₈	4.525
7	Decene	95%	140	C₁₀H₂₀	5.483
8	Undecene	96%	154	C₁₁H₂₂	6.567
9	2-Undecene	93%	154	C₁₁H₂₂	6.709
10	1,4-Undecadiene	90%	152	C₁₁H₂₀	6.926
11	6-Butyl-1,4-cycloheptene	88%	150	C₁₁H₁₈	7.326
Table 14. Analysis of the pyrolytic products of chicken fat

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylaldehyde	94%	56	C₄H₇O	1.733
2	Hexene	97%	84	C₆H₁₂	2.009
3	Heptene	97%	98	C₇H₁₄	2.534
4	Octene	96%	112	C₈H₁₆	3.35
5	1,3-octadiene	94%	110	C₈H₁₄	3.691
6	Nonene	97%	126	C₉H₁₈	4.384
7	Cyclooctane	98%	110	C₈H₁₄	4.525
8	Decene	96%	140	C₁₀H₂₀	5.476
9	Undecene	96%	154	C₁₁H₂₂	6.559
10	2-Undecene	94%	154	C₁₁H₂₂	6.7
11	1,4-Undecadiene	91%	152	C₁₁H₂₀	6.916
12	6-Butyl-1,4-cycloheptadiene	90%	152	C₁₁H₁₈	7.316
13	Dodecene	96%	168	C₁₂H₂₄	7.6
14	E-1,8-Dodecadiene	90%	166	C₁₂H₂₂	7.942
15	2E,4Z-Dodecadiene	90%	166	C₁₂H₂₂	8.283
16	Tridecene	96%	182	C₁₃H₃₆	8.584
17	Tetradecene #1	97%	196	C₁₄H₂₈	9.509
18	Pentadecene	93%	210	C₁₅H₃₀	10.383
19	Pentadecane	95%	212	C₁₅H₃₂	10.449
20	6-pentadecenal	91%	226	C₁₅H₃₀O	11.101
21	Hexadecene	92%	224	C₁₆H₃₂	11.217
22	8-heptadecene	93%	238	C₁₇H₃₄	11.9
23	Octadecenal	94%	266	C₁₈H₃₆O	12.183
24	Cis-9-hexadecenal	96%	238	C₁₈H₃₆O	13.501
25	Z,Z-9,12-octadecadienoic acid #2	91%	282	C₁₉H₃₄O	14.225
26	Decanoic acid-2-propenyl ester #3-1	86%	212	C₁₃H₂₄O₂	14.667
27	17-octadecenoic acid #3-2	93%	282	C₁₈H₃₆O₂	14.725
28	Z-9-octadecenoic acid #4	89%	282	C₁₈H₃₆O₂	15.208
Table 15. Analysis of the pyrolytic products of lard

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	91%	56	C₅H₈O	1.775
2	Cyclopentene	95%	66	C₅H₈	1.95
3	Hexene	97%	84	C₆H₁₂	2.05
4	Heptene	97%	98	C₇H₁₄	2.567
5	Octene	96%	112	C₈H₁₆	3.384
6	2-octene	90%	112	C₈H₁₆	3.517
7	1,3-octadiene	93%	110	C₉H₁₄	3.717
8	Nonene	97%	126	C₉H₁₈	4.408
9	Cyclooctene	98%	110	C₉H₁₄	4.55
10	1,3-nonadiene	91%	124	C₁₀H₁₆	4.767
11	Decene	96%	140	C₁₀H₂₀	5.5
12	Undecene	93%	154	C₁₁H₂₂	6.583
13	2-Undecene	94%	154	C₁₁H₂₂	6.724
14	1,4-Undecadiene	91%	152	C₁₁H₂₀	6.942
15	6-Butyl-1,4-cycloheptene	89%	150	C₁₁H₁₈	7.333
16	Dodecene	96%	168	C₁₂H₂₄	7.616
17	E-1,8-Dodecadiene	91%	166	C₁₂H₂₂	7.958
18	Tridecane	96%	182	C₁₃H₂₆	8.6
19	Tridecan	92%	184	C₁₃H₂₈	8.675
20	Tetradecene #1	96%	196	C₁₄H₃₂	9.533
21	Pentadecene	95%	210	C₁₅H₃₀	10.4
22	Pentadecane	96%	212	C₁₅H₃₂	10.467
23	6-pentadecenol	93%	226	C₁₅H₄₀O	11.116
24	Hexadecene	96%	224	C₁₆H₃₂	11.233
25	8-heptadecene	96%	238	C₁₇H₃₄	11.908
26	Octadecenal	95%	266	C₁₈H₃₂O₂	12.2
27	Cis-9-hexadecenal	95%	238	C₁₆H₆₀O	13.516
28	Z,Z-9,12-octadecadienoic acid #2	87%	282	C₁₈H₃₂O₂	14.141
29	Decanoic acid-2-propenyl ester #3-1	82%	212	C₁₃H₂₅O₂	14.683
30	17-octadecenoic acid #3-2	88%	282	C₁₈H₃₂O₂	14.742
31	Z-9-octadecenoic acid #4	84%	282	C₁₈H₃₂O₂	15.275

Table 16. Analysis of the pyrolytic products of inferior oil

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	94%	56	C₅H₈O	1.758
2	Hexene	97%	84	C₆H₁₂	2.034
3	Heptene	97%	98	C₇H₁₄	2.55
4	Octene	96%	112	C₈H₁₆	3.375
5	1,3-octadiene	87%	110	C₉H₁₄	3.708
6	Nonene	96%	126	C₉H₁₈	4.4
7	Cyclooctene	97%	110	C₉H₁₄	4.542
8	Decene	96%	140	C₁₀H₂₀	5.5
Table 17. Analysis of the pyrolytic products of kitchen waste grease

No.	Possible chemical	Similarity	Molecular Weight	Formula	Retention time
1	2-Acrylic aldehyde	90%	56	C3H6O	1.784
2	Cyclopentene	96%	68	C5H8	1.966
3	Hexene	96%	84	C6H12	2.067
4	Heptene	98%	98	C7H16	2.575
5	Octene	93%	112	C8H16	3.375
6	2-octene	93%	112	C8H16	3.517
7	1,3-octadiene	96%	110	C9H18	3.708
8	Nonene	94%	126	C9H18	4.4
9	Cyclooctene	97%	110	C8H14	4.542
10	E-1,3-nonadiene	92%	124	C9H16	4.758
11	Decene	93%	140	C10H20	5.483
12	Undecene	89%	154	C11H22	6.576
13	1,4-Undecadiene	89%	152	C11H20	6.925
14	6-Butyl-1,4-cycloheptene	90%	150	C11H18	7.325
15	Dodecene	93%	166	C12H24	7.608
16	Tridecene	92%	182	C13H26	8.592
17	Tetradecene #1	95%	196	C14H28	9.517
18	Pentadecene	91%	210	C15H30	10.392
19	Pentadecane	91%	212	C15H32	10.45
20	Hexadecene	93%	224	C16H32	11.217
21	E,8-Heptadecene	90%	238	C17H34	11.9
22	Cis-9-hexadecenal	93%	238	C18H30	13.5
23	Z,Z-9,12-octadecadienoic acid#2	88%	280	C18H32O2	14.174
24	Decanoic acid-2-propenyl ester#3-1	82%	212	C13H24O2	14.667

Similarity values range from 82% to 98%.
According to these results, during the first 6.5 minutes, the pyrolytic products of all oil samples were quite similar, most of which were small-molecule chemicals such as 2-acrolein, hexene, heptane, aldehydes, and olefins. Moreover, these substances had a higher similarity, mostly over 90%.

For animal fat/oils, inferior oil, and kitchen waste grease, pentadecane (C15) was observed at the retention time of 10.4 min, and the similarity was higher than 90%. Other vegetable oils did not show pentadecane in the pyrolytic products.

Peak 2 was identified as z,z-9,12-octadecadienoic acid, while Peak 3-1 was identified as decanoic acid-2-propenyl ester. Due to its low strength, Peak 3-2 was identified as 17-octadecenoic acid, but the potential was low. For the used frying oil, animal fat/oils, and inferior oil, Peak 4 was mainly z-9-octadecenoic acid. But Peak 4 of vegetable oils could also be a mixture of z-9-octadecenoic acid and z,z-9,12-octadecadienoic acid.

As shown in the mass spectrum, not all olefins having a carbon number higher than 11 (undecane) were present in the pyrolytic products of vegetable oils. For example, dodecane, tridecane, and pentadecane were absent from the products of tea oil, olive oil, and peanut oil. But the products from animal fats, used frying oil, and inferior oil contained all kinds of C11-16 olefins (Table 18). The possible reason is that these oils have been used and recovered, wherein the C16-C18 fatty acids were degraded to a certain degree. So, the pyrolytic products of these low-quality oils contained all kinds of olefins. This can be used as a key indicator to distinguish inferior oils and animal fats from vegetable oils.

Table 18. Olefin present in the products

Oil	Undecene C11	Dodecane C12	Tridecane C13	Tetradecene C14	Pentadecane C15	Hexadecane C16
Tea oil	√		√			√
Olive oil	√		√			√
Peanut oil	√	√	√			√
Corn oil	√	√	√			√
Sunflower oil		√	√			√
Blend vegetable oil						√
Used frying oil	√	√	√	√	√	√
Chicken fat	√	√	√	√	√	√
Lard	√	√	√	√	√	√
Inferior oil	√	√	√	√	√	√
Kitchen waste grease	√	√	√	√	√	√

CONCLUSIONS

The pyrolysis conditions of oil samples were optimized as the pyrolysis temperature of 600°C, the sample volume of 0.3 μL, and the reaction time of 1 min. According to the TIC of Py-GC/MS, when the retention time was less than or equal to 6.5
min, the pyrolytic products of all oil samples were similar. But at the retention time of 9.5 min, the area of Peak 1 (tetradecene) of the vegetable oils was less than 2.00E+05 and the peak high was lower than 1.50E 05. Dodecane, tridecane, and pentadecene were absent from the products of tea oil, olive oil, and peanut oil. The pyrolytic products from animal oils, used frying oil, inferior oil and kitchen waste grease contained C11-C16 olefins. Therefore, the Py-GC/MS technology could be used to distinguish vegetable oils from animal fat/oil, inferior oil, and kitchen waste grease.

ACKNOWLEDGMENTS

This work was partially supported by Natural Science Foundation of Guangdong Province (2017A030310133) and the College of Chemistry and Environmental Engineering at Shenzhen University.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this paper.

REFERENCES

[1] Li, J., Cui, N., and Liu, J. (2017). Gutter oil: an overview of Chinese food safety issues and policies. *Global Health Promotion*, 24(3), 75-78. DOI: 10.1177/1757975915623733

[2] Lu, F., and Wu, X. (2014). China food safety hits the “gutter”. *Food Control*, 41, 134-138. DOI: https://doi.org/10.1016/j.foodcont.2014.01.019

[3] López-Diez, E. C., Bianchi, G., and Goodacre, R. (2003). Rapid Quantitative Assessment of the Adulteration of Virgin Olive Oils with Hazelnut Oils Using Raman Spectroscopy and Chemometrics. *Journal of agricultural and food chemistry*, 51(21), 6145-6150. DOI: 10.1021/jf034493d

[4] Lin, C., Liao, C., Zhang, Y., Xu, L., Wang, Y., Fu, C., Yang, K., Wang, J., He, J., and Wang, Y. (2018). Optofluidic gutter oil discrimination based on a hybrid-waveguide coupler in fibre. *Lab on a Chip*, 18(4), 595-600. DOI: 10.1039/c8lc00008e

[5] Tian, K., Wang, W., Yao, Y., Nie, X., Lu, A., Wu, Y., and Han, C. (2018). Rapid identification of gutter oil by detecting the capsaicin using surface enhanced Raman spectroscopy. *Journal of Raman Spectroscopy*, 49(3), 472-481. DOI: https://doi.org/10.1002/jrs.5306

[6] Zhang, B., Wu, J., Yang, C., Qiu, Q., Yan, Q., Li, R., Wang, B., Wu, J., and Ding, Y. (2018). Recent Developments in Commercial Processes for Refining Bio-Feedstocks to Renewable Diesel. *BioEnergy Research*, 11(3), 689-702. DOI: 10.1007/s12155-018-9927-y

[7] Qiu, Q., Cai, Y., Ye, Q., and Lv, W. (2019). Catalytic Pyrolysis of Kapok Fiber for Production of Olefins. *Trends in Renewable Energy*, 5(2), 218-228. DOI: 10.17737/tre.2019.5.2.0097

[8] Zhang, B., and Wang, Y. (2013). *Biomass Processing, Conversion and Biorefinery*, Nova Science Publishers, Inc., New York.
[9] Yang, C., Li, R., Qiu, Q., Yang, H., Zhang, Y., Yang, B., Wu, J., Li, B., Wang, W., Ding, Y., and Zhang, B. (2020). Pyrolytic behaviors of Scenedesmus obliquus over potassium fluoride on alumina. *Fuel*, 263, 116724. DOI: https://doi.org/10.1016/j.fuel.2019.116724

Article copyright: © 2021 Qi Qiu, Yiting Zhang. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and distribution provided the original author and source are credited.