ABSTRACT

Background: Viticulture occupies an important place in agricultural production of Diyarbakır province, Turkey. However, weeds significantly impair the productivity of vineyards in the province. The knowledge of weed flora of a particular region is crucial to develop region-specific weed management strategies.

Methods: This study was carried out to determine the weed species, their densities and frequency of occurrence in 78 vineyards of 13 districts in Diyarbakır province. Exploratory surveys were conducted to record the occurrence, density and coverage area of weed species. A 1×1 m quadrat was used, which was randomly placed in vineyards and weed species falling within the quadrature were noted.

Results: A total 165 weed species and 128 taxa belonging to 35 botanical families (1 parasitic, 16 monocotyledons and 18 dicotyledons) were identified from the surveyed area. The weed species’ density over the whole province was 91 weeds m⁻². *Avena sterilis* L. was the most widespread weed with the highest density (9.93 plants m⁻²) in the surveyed area followed by *Fumaria asepale* Boiss. (7.18), *Galium tricornutum* (4.85), *Ranunculus arvensis* (3.82), *Silene aegyptiaca* (3.70), *Bromus sterilis* (3.64), *Lamium purpureum* (3.58), *Hordeum spontaneum* (3.35), *Anthemis sp.* (3.07), *Crepis alpina* (2.94), *Thlaspi perfoliatum* (2.91), *Allopecurus myosuroides* (2.81), *Bongardia chrysogonum* (2.80), *Scandix pecten-verenis* (2.24), *Cynodon dactylon* (1.71), *Hypecoum procumbens* (1.69), *Lolium perenne* (1.41), *Sorghum halepense* (1.33), *Sinapis arvensis* (1.24), *Buglossoides arvense* (1.22), *Daucus carota* (1.21), *Trifolium nigrescens* (1.21), *Vicia hybrida* (1.05), *Senecio vernalis* (1.04) and *Ornithogalum narbonense* (1.02). The most prevalent weed were *L. purpureum* (66.68%), *Papaver sp.* (66.49%), *S. vernalis* (65.82%), *Anthemis sp.* (65.10%), *A. sterilis* (63.07%), *R. arvensis* (60.44%), *Convolvulus arvensis* (56.76%), *Carduus pycnocephalus* (55.79%), *G. tricornutum* (55.43%), *Fumaria asepale* (55.05%), *Crepis alpina* (54.08%), *Thlaspi perfoliatum* (51.95%) and *S. arvensis* (51.04%).

Key words: Density, Diyarbakır, Prevalence, Vineyards, Weed flora.

INTRODUCTION

Grapevine (*Vitis vinifera* L.) is an economically important species that has a very old historical background and is widely cultivated in the world. Numerous countries in the temperate zone, especially the USA, see grapes as the most valuable fruit. Similarly, grapes are regarded an important fruit in Turkey also (Çelik, 2013). Turkey, located in the most favorable climate zone for viticulture, has a rich vineyard gene potential with a very old and deep-rooted grapevine cultivation culture due to its location at the center of the geography where grapevine genes intersect and are cultured for the first time (Çelik et al., 1998, Ağaoğlu, 1999, Ağaoğlu, 2002). Southeastern Anatolia is an important region in terms of its vineyard area and grape production. Simultaneously, the region has diverse genetic potential for cultured (*Vitis vinifera* ssp. *sativa*) and wild (*Vitis vinifera* ssp. *sylvestris*) grapevine species (Karataş et al., 2015).

Turkey ranks fifth globally in terms of vineyard production area after Spain, France, Italy and China (FAO, 2014). Different countries have showed considerable variability in the production of grapes and similar trend has been observed in Turkey. Turkey ranks sixth in terms of grape production following China, Italy, USA, France and Spain.

Vineyards are the source of livelihood of many families because of their easy adaptability and production in almost every region. The producers dealing with viticulture sector in Turkey are generally ranked in the small business group (Anonymous, 2014). Viticulture not only plays an important role in the livelihood of the people in many parts of Turkey, but also provides significant value addition to the national economy. Grapes are consumed fresh and dry on one hand, while several products obtained by the processing of grapes such as wine, vinegar, molasses, sausage, fruit pulp etc. are used in human nutrition (Ergenoğlu and Tangelor, 2000). The production and yield of vineyards varies by years in the country (TÜK, 2016). The vineyards were cultivated on 435,227 ha during 2016 in the country. Diyarbakır ranked fifth in the country in terms of area under vineyard cultivation, with 19,963 ha under vineyard cultivation.

Disease, pests and weeds are among the most important factors affecting yield and quality in crop production (Özer et al., 2001). The seeds of weeds arrive in
vineyards with fertilizers and composts. The biggest damage caused by these weed seeds to the vineyards is suppression of vine growth through nutrient uptake by emerging weeds. Thus, vines remain smaller in size, which result in low grape yield (Oraman, 1972). Weeds are one of the most important factors limiting vineyard production. Several weed species can be recorded in the vineyards (Özer et al., 2001; Altıncı et al., 2001; Topçu Altıncı et al., 2017; Özcan et al., 2014; Özcan 2016). While the management of annual weeds is easy, it is very difficult to manage perennial weeds that reproduce by stolon and rhizome (Uzun, 2004). Weeds are competitive and hard-to-control plant (Uygun et al., 1984) and decrease quality and quantity of the crops produced (Günçan, 1982; Yeşen, 1984; Çınar and Uygun, 1987). Weeds also serve as alternative hosts for pests and pathogens (Sönmez, 1976; Özaslan, 2011).

Weed community ecology studies are aimed at determining the distribution patterns of the weeds and factors affecting their distribution. The weed surveys are critical in determining the distribution patterns of the weed species at spatial and landscape scales (Önen and Özer, 2001; Özaslan et al., 2016; Korres et al., 2015a, b; Önen, 2020). The surveys allow the land managers, ecologists and weed scientists to determine the presence of weed species at landscape scales, distribution patterns of the weed species and possible factors shaping the distribution patterns (Rankins et al., 2005; Önen, 2015). This knowledge, in turn, can be used to develop effective weed management strategies at regional and landscape scales.

The current survey study was conducted to determine the weed flora prevailing in the vineyards of Diyarbakır province, Turkey. The results will improve overall knowledge of the weed flora and will contribute towards the development of alternative site-specific weed management approaches for vineyards in the province.

MATERIALS AND METHODS

Geographic location

Survey studies were carried out in 78 vineyards in thirteen districts of Diyarbakır province during 2017. Diyarbakır is located in the north of Mesopotamia in the central part of the South-eastern Anatolia Region. It is surrounded by Elazığ and Bingöl provinces from the north, Siirt and Muş from the east, Mardin from the south and Şanlıurfa, Adıyaman, Malatya from the west. The total area of the province is 15,362 km² and lies between 37.90 and 40.23 north latitudes and 40.37 and 41.20 east longitudes.

Survey studies

Survey studies in vineyards were carried out in April and May, when weed species could be easily identified. Vineyards were selected from different directions and locations representing the whole province. Vineyards were surveyed by randomly stopping at every 5 km. The surveys were carried out starting from 10 meters inside, avoiding the border effect as much as possible. A 1 m² quadrat was used for density determination. The number of quadrates to be placed was determined through preliminary observations. The quadrates to be placed within a vineyard were: 3 for vineyard smaller than 0.5 ha, 5 for 0.5-1.0 ha and 8 for > 1.0 ha (Bora and Karaca, 1970; Önen et al., 2018). The whole plant of broad-leaved weed species were accepted as one plant, whereas each tiller was considered a plant for the narrow leaved weed species. The recorded data on coverage area and density from different sub-sampling sites of the same vineyard were averaged to get the coverage and density for whole vineyard. Herbaria of the recorded weed species were prepared and stored in the Department of Plant Protection, Dicle University Diyarbakır, Turkey. The recorded weed species were identified with the help of Flora of Turkey (Davis, 1965-1989).

The frequency of occurrence of the observed weed species was computed using following formula;

\[
\text{Frequency of Occurrence} \times 100 = \frac{N}{M} \times 100
\]

Here,

- \(N \) = Number of vineyards where particular species was observed.
- \(M \) = Total number of vineyards surveyed.

For density (plant/m²) calculation, arithmetic averages were taken by counting the weeds in the quadrant according to their types and species and density was calculated. The density was calculated by following Odum (1971) and Uygun (1991). The plants that having density smaller than 0.05 were denoted with letter A. The density of parasitic weed species was measured by following 1-5 (a-e) scale devised by Tepe et al. (1997). In the scale a = no parasitic plant found, b = low density (host plants are safe and no danger of yield loss), c = medium density (parasitic plant can be visually observed and loss started), d = high density (significant yield losses) and e = very high density (host plant died).

Surveyed sites

The geographic location of the surveyed vineyards was recorded with the help of GPS. The surveyed sites are represented in Fig 1.

RESULTS AND DISCUSSION

Twenty-five weed species had density >1 m² and these are presented in Table 1. The weed species having density > 3 plants m² in the province were; *Avena sterilis* L. (9.93), *Fumaria asepalae* Boiss. (7.18), *Galium tricornutum* (4.85), *Ranunculus arvensis* (3.82), *Silene aegyptiaca* (3.70), *Bromus sterilis* (3.64), *Lamium purpureum* (3.58), *Hordeum spontaneum* (3.35) and *Anthemis* sp. (3.07). There were 13 species in the province which had >50% frequency of occurrence. These species were; *L. purpureum* (66.68%), *Papaver* sp. (66.49%), *S. vernalis* (65.82%), *Anthemis* sp. (65.10%), *A. sterilis* (63.07%), *R. arvensis* (60.44%), *Convolvulus arvensis* (56.76%), *Carduus pycnocephalus*...
A total 165 weed species and 128 taxa belonging to 35 botanical families (1 parasitic, 16 monocotyledons and 18 dicotyledons) were identified from the surveyed area. The families represented by the highest number of weed species were; Asteraceae (24 species), Fabaceae (20 species), Poaceae (16 species), Brassicaceae (16 species), Apiaceae (14 species), Papaveraceae (9 species), Lamiaceae (7 species), Liliaceae (6 species) and Boraginaceae and Caryophyllaceae (5 species each). The remaining plant families were represented by 1-4 weed species. The weed density over the whole province was 91 plants m\(^{-2}\). The families, Latin names, density in m\(^2\) and frequency of occurrence of the recorded weed species is given in Table 2.

There exist large variations in the soil properties and weather data of surveyed province. Distribution and establishment of weed communities are affected by several factors including soil properties and weather attributes (Fried et al., 2008; Pinke et al., 2010). Temperature and rainfall have been considered as the main determinants of weed species’ boundaries (Önen, 2006; Tanaka et al., 2010; Belnap et al., 2016). Different plant species and weeds have distinct soil and climatic requirements and both factors can strongly mediate the distribution patterns at different spatial and landscape scales (Udoh et al., 2007). Preference of a weed species for a particular soil property may increase or decrease its density on different soils which are poor or rich in that particular soil property. Patchy distribution of weeds in arable fields and orchards is due to preference of weeds for a particular soil property (Otto et al., 2007).

The commonly observed weed species in vineyards are more competitive in terms of their faster emergence than grapevines. Weeds directly harm vineyards by lowering yield and profitability, whereas indirectly damage by making harvesting difficult. The first step to devise effective weed management strategy is determining the species and their density. The selection of effective management methods is only possible with the determination of the weeds’ species

Table 1: Weed species having density >1 plant m\(^{-2}\) in vineyards of Diyarbakır province.

Weed Species	Density (plant/m\(^2\))	FO (%)
Avena sterilis L.	9.93	63.07
Fumaria asepale Boiss.	7.18	55.05
Galium tricornutum Dandy.	4.85	55.43
Ranunculus arvensis L.	3.82	60.44
Silene aegyptiaca (L.) F.	3.70	41.30
Bromus sterilis L.	3.64	33.73
Lamium purpureum L.	3.58	66.68
Hordeum spontaneum L.	3.35	28.79
Anthemis sp.	3.07	65.10
Crepis alpina L.	2.94	54.08
Thlaspi perfoliatum L.	2.91	18.09
Alopecurus myosuroides Huds.	2.81	16.21
Bongardia chrysogonum (L.) Spach.	2.80	16.32
Scandix pecten-venenis L.	2.24	35.69
Cynodon dactylon (L.) Pers.	1.71	16.11
Hypecoum procumbens L.	1.69	27.72
Lolium perenne L.	1.41	13.56
Sorghum halepense (L.) Pers.	1.33	32.16
Sinapis arvensis L.	1.24	51.04
Buglossoides arvensis (L.) I.M. Johnst.	1.22	47.60
Daucus carota L.	1.21	26.81
Trifolium nigrescens L.	1.21	24.72
Vicia hybrida L.	1.05	39.92
Senecio vernalis Waldst. And Kit.	1.04	65.82
Onithogalum narbonense L.	1.02	8.15

FO = frequency of occurrence.
Table 2: Weed species, their plant families, frequency of occurrence (FO) and density in vineyards of Diyarbak province.

Weed Species and Families	Density	FO
Parasitic Species		
Fam: Cuscudaceae		
Cuscuta monogyna Vahl	b	41.70
MONOCOTYLEDONEAE		
Fam: Liliaceae		
Allium noeanum Reuter ex Regel	A 6.50	
Bellevalia sp.	0.10	13.83
Gagea sp.	A	9.19
Muscari comosum (L.) Miller	A 30.25	
Ornithogalum narbonense L.	1.02	8.15
Tulipa aleppensis Boiss. ex Regel	0.23	19.77
Fam: Poaceae		
Aegilops cylindrica Host	0.19	1.11
Alopecurus myosuroidi Huds.	2.81	16.21
Apera spica-venti (L.) P.B.	A 10.72	
Avena sterilis L.	9.93	63.07
Bromus hordeaceus L.	A	12.97
Bromus sterilis L.	3.64	33.73
Cnoucopiae cucullatum L.	A 2.00	
Cynodon dactylon (L.) Pers.	1.71	16.11
Echinaria capitata (L.) Desf.	0.40	19.88
Hordeum murinum L.	A 5.67	
Hordeum spontaneum L.	3.35	28.79
Imperata cylindrica (L.) Rauschel	0.31	1.11
Lolium perenne L.	1.41	13.56
Poa bulbosa L.	A	7.95
Sorghum halepense (L.) Pers.	1.33	32.16
DICOTYLEDONEAE		
Fam: Apiaceae (Umbelliferae)		
Ainsworthia trachycarpa Boiss.	A 2.57	
Anmii visnaga (L.) Lam.	0.69	8.83
Aridia squamata L.	A 2.00	
Bupleurum rotundifolium L.	0.13	7.58
Caucalis platycarpus L.	0.63	20.95
Daucus carota L.	1.21	26.81
Echinophora tenuifolia L.	0.40	19.88
Falcaria vulgaris Bernh.	A	3.50
Lagoezia cuminoides L.	A 4.53	
Liasca strigosa (Banks Et Sol.) Elg	A 25.07	
Malabaila secacul Banks and Sol.	A 11.57	
Scandix pecten-veneris L.	2.24	35.69
Scandix stellata Banks et Sol.	0.59	9.32
Turgenia latifolia (L.) Hofm.	A 15.38	
Fam: Araceae		
Emnium ruwwolfi (Blume) Schott var. kotschyi (Schott) H. Riedl	0.17	25.10
Fam: Amaryllidaceae		
Ixiolirion tataricum (Pallas) Herbert	A 5.43	

Table Continue...
Table Continue...	
Thlaspi arvense L.	A 11.61
Thlaspi perfoliatum L.	A 18.09
Fam: Campanulaceae	
Campanulastrigosa Banks Et Sol.	A 5.83
Fam: Caryophyllaceae	
Cerastium dichotomum L.	0.26 7.00
Silene aegyptiaca (L.) L. F.	3.70 41.30
Silene conica L.	0.20 19.52
Silene conoides L.	0.30 24.21
Vaccaria pyramidalata Medik.	A 13.08
Fam: Cistaceae	
Helianthemum ledifolium (L.) Miller	A 3.92
Fam: Convolvulaceae	
Convolvulus arvensis L.	0.56 56.76
Convolvulus betonicifolius Mill.	A 14.04
Convolvulus galacticus Roston. ex Choisy	0.21 14.26
Fam: Dipsacaceae	
Cephalaria syriaca (L.) Schrad.	0.92 14.73
Scabiosa caucasica Bieb.	0.34 4.75
Fam: Euphorbiaceae	
Euphorbia aleppica L.	0.29 22.84
Euphorbia helioscopia L.	0.24 27.02
Euphorbia sp.	0.69 30.98
Fam: Fabaceae	
Onobrychis galegifolia Boiss.	A 2.5
Trigonella mesopotamica	A 5.00
Alhagi pseudoaohagi (Bieb.) Desv.	A 6.34
Astragalus sp.	A 5.27
Coronilla scorpioides (L.) Koch	A 6.74
Lathyrus aphaca L.	0.18 9.44
Lathyrus gorgoni Parl.	0.19 7.77
Lathyrus sylvestris L.	0.32 10.72
Medicago sp.	0.16 14.60
Pisum sativum L.	A 13.97
Psoralea jaubertina Fenzl	A 1.00
Trifolium nigrescens L. öğğül	1.21 24.72
Trifolium pauciflorum Da’unv.	0.82 19.50
Trifolium campestre Schreb.	0.18 4.76
Trifolium purpureum Lois.	0.12 5.97
Trifolium resupinatum L.	A 3.97
Trifolium spumosum L.	A 5.17
Vicia ervilia (L.) Willd.	A 3.92
Vicia hybrida L.	1.05 39.92
Vicia narbonensis L.	0.25 35.56
Fam: Geraniaceae	
Erodium gruinum (L.) L’ Herit.	0.42 20.67
Geranium tuberosum L.	0.46 29.41
Geranium molle L.	0.54 12.28
Fam: Guttiferae	
Hypericum triquetrifolium Turra.	A 5.83
Fam: Indraceae	
Gladiolus atroviolaceus Boiss.	A 4.00

Table Continue...	
Fam: Lamiaceae	
Lallemantia iberica (Bieb.) Fisch. and Mey.	0.31 16.06
Lamium purpureum L.	3.58 66.68
Moluccella laevis L.	0.12 7.33
Phlomis kurdica Rech. Fil.	0.14 11.2
Salvia multiflora Hahl.	0.14 11.93
Teucrium polium L.	A 5.33
Zizyphora capitata L.	A 2.54
Fam: Linaceae	
Linum pubescens Banks et Sol.	0.38 2.54
Fam: Malvaceae	
Alcea sp.	A 22.39
Malva sp.	A 2.78
Fam: Papaveraceae	
Fumaria asepal Boiss.	7.18 55.05
Fumaria ciliaca Hausskn.	A 16.37
Fumaria parviflora Lam.	A 21.80
Glaucium grandiflorum Boiss. Et Huet.	A 11.80
Hypecom procumbens L.	1.69 27.72
Papaver macrostomum Boiss. and Huet, ex Boiss	A 13.20
Papaver sp.	0.80 66.49
Roemeria hybrida (L.) Dc.	A 12.44
Roemeria sp.	A 1.0
Fam: Plantaginaceae	
Plantago lanceolata L.	A 0.5
Fam: Polygonaceae	
Polygonum aviculare L.	0.26 4.11
Polygonum convolvulus L.	A 3.43
Fam: Primulaceae	
Anagallis arvensis L.	A 12.70
Fam: Ranunculaceae	
Adonis aleppica Boiss.	A 2.00
Adonis aestivalis L.	A 21.00
Ceratocephalus falcatus (L.) Pers.	A 12.63
Ranunculus arvensis L.	3.82 60.44
Fam: Rosaceae	
Sanguisorba minor Scop.	A 6.00
Fam: Rubiaceae	
Aspatera orientalis Boiss et Hohen	A 2.78
Calipeltis cucullaria (L.) Steven	A 5.83
Cruciata taurica (Pallas Ex Willd.) Ehrend.	A 11.11
Galium tricornutum Dandy.	4.85 55.43
Fam: Scrophulariaceae	
Veronica bozakman M. A. Fischer	A 3.97
Veronica hederifolia L.	A 1.00
Verbascum sp.	A 3.00
Fam: Solanaceae	
Hyacynus niger L.	A 11.00
Fam: Valerianaceae	
Valerianella vesicaria (L.) Moench.	0.35 14.49
Fam: Violaceae	
Viola occultata LEHM.	A 12.22
Viola sp.	A 3.11

FO = frequency of occurrence, A = density <0.05 plants m².
and density (Özer et al., 2001; Eroğlu, 2006). The presence of weed species in the cultivated areas reduces the effectiveness of agricultural inputs, promotes the development of harmful microorganisms and consequently reduces the yield and quality of crops (Uygur et al., 1984; Önen et al., 2006; Önen, 2020). A total 165 weed species and 128 taxa belonging to 35 botanical families (1 parasite, 16 monocotyledons and 18 dicotyledons) were identified from the surveyed area. The families represented by the highest number of weed species were; Asteraeceae (24 species), Fabaceae (20 species), Poaceae (16 species), Brassicaceae (16 species), Apiaceae (14 species), Papaveraceae (9 species), Lamiaeceae (7 species), Liliaceae (6 species) and Boraginaceae and Caryophyllaceae (5 species each).

Five out of 35 otanical families (i.e., Asteraeceae, Fabaceae, Poaceae, Brassicaceae and Apiaceae) had >50% of the weed species observed during the surveys. The highest contribution of these families to the observed weed flora is attributed to the higher presence of weedy species in these families (Düzenli et al., 1993; Özer et al., 1999). The predominance of annuals could be attributed to their short life span and higher allocation resources for reproduction even under harsh climatic conditions (Sans and Masalles, 1995). Large variations were observed in density and frequency of occurrence of the recorded weed species in different surveyed fields (Table 1). The variation in the weed densities and frequency of occurrence could be explained by heterogeneity in the soil properties and microclimatic conditions (James et al., 2006).

Kaçan (2014) found 54 weed species in the vineyards of Manisa province. The study also reported that Asteraeceae, Fabaceae and Poaceae were the most represented families in the region. Thus, these results support our findings. Similarly, Topçu (2011) recorded 67 weed species from vineyards in Tokat province. Senecio vernalis Wald. and Kit., Thlapsi arvense L., Stellaria media L. Vill. and Lamium amplexicaule L. were the most frequently observed weed species in Tokat province. These results also support our findings.

Southeastern Anatolia region occupies an important position in terms of vineyard production in the country. Diyarbakır is an important province in the region having intensive vineyard cultivation (Karataş et al., 2015). However, it was noted that vineyard producers do not fully apply modern viticulture practices, do not have knowledge of recent production techniques and are not sensitive to weeds. Furthermore, the producers manage weeds late in the season, which increase weed density and in turn reduces yield.

CONCLUSION

It is concluded that the problematic weed species in the surveyed vineyards are generally cosmopolite species and it is possible to imply a general recommendation for their management. The existence of large-scale spatial variation in weed distribution and soil properties necessitates the adoption of site-specific management practices for successful weed management in the region.

ACKNOWLEDGEMENT

The current study was supported by Scientific Research Projects Commission (DÜBAP) of Dicle University, Diyarbakır under grant number DÜBAP.17.006

REFERENCES

Ağaçoğlu, Y.S. (1999). Bilimsel ve Uygulamalı Bağcılık Cilt I: Asma Biyolojisi. Kavaklidere Eğitim Yayınları No: 1, 205 s., Ankara.
Ağaçoğlu, Y.S. (2002). Bilimsel ve Uygulamalı Bağcılık Cilt II. Asma Fizyolojisi. Kavaklidere Eğitim Yayınları No:5, 445 s., Ankara.
Anonymous, (2014). Türkiye’de Bağçılık. http://www.dunyaqida.com.tr/haber.php?nid=2260 Update: 25.07.2017.
Belnap, J., Stark, J.M., Rau, B.M., Allen, E.B. and Phillips, S. (2016). Soil moisture and biogeochemical factors influence the distribution of annual Bromus species, In: Exotic Bromegrasses in Arid and Semiarid Ecosystems of the Western US. [Germino, M.J., Chambers, J.C. and Brown, C.S. (eds.)], Springer International Publishing, pp. 227-256.
Bora, T. and Karaca, I. (1970). Kültür Bitkilerinde Hasıtağın ve Zararın Ölçümlesi, Ege Üniversitesi Ziraat Fakültesi Yardımcı Ders Kitabı, 167-43, İzmir.
Çelik, H. (2013). Türkiye Bağçılığında Üretim Hedefleri, Vizyon 2023 Bağçılık Çalıştayı, 40s, Tekirdağ Bağçılık Araştırma İstasyonu, 26-27 Haziran 2013, Tekirdağ, Türkiye.
Çelik, H., Ağaçoğlu, Y.S., Fidan, Y., Marsal, B. and Söylemezoğlu, G. (1998). Genel Bağçılık, Sunfidan A.S. Mesleki Kitaplar Serisi.
Çinar, A. and Uygun, N. (1987). Bitki Koruma, Çukurova Üniversitesi, Ziraat Fakültesi Ders Kitabı, No: 32, 285s, Adana.
Davis, P.H. (1965-1988). Flora of Turkey and the East Aegean Island, Edinburg University Pres, Edinburg (Vol, 1-10).
Düzenli, A., Türkmen, N., Uygur, F.N., Uygur, S. and Boz, Ö. (1993). Important weeds of Aegean region and their botanical features. Türkiye 1. Herboloji Kongresi, 3-5 Adana, Turkey. (In Turkish)
 Ergençoğlu, F. and Tangolar, S. (2000). Bağcılık İçin Pratik Bilgiler. TÜBITAK, Türkiye Bilimsel ve Teknik Araştırma Kurumu, TARP, Türkiye Tarımsal Araştırma Projesi Yayınları, Adana.
Erdoğ, (2006). Karamanda Nohutlarda Sorun Olubturup Yardımcı Olarak Kullanılan ve Kritik Periyotun Bezi Tercili, SÜ Fen Bilimleri Enst. Yüksek Lisans Tezi, 44 s. Konya.
FAO. (2014). Agricultural Statistics Database. http://www.fao.org/faostat/en/#data/QC (Update: 10:12.2017).
Fried, G., Norton, L.R. and Reboud, X. (2008). Environmental and management factors determining weed species composition and diversity in France. Agriculture, Ecosystem and Environment. 128(1): 68-76.
Güncan, A. (1982). Erzurum Yöresinde Buğday Üründe Karışan Bazı Yardımcı Ottohumlarının Çimlenme Biyolojisi
Weed Flora of Vineyards in Diyarbakir Province, Turkey

Üzerinde Araştırmalar. A.Ü, Ziraat Fakültesi Yayınları. No: 270, Erzurum.
James J.J., Caird M.A., Drenovsky R.E. and Sheley R.L. (2006). Influence of resource pulses and perennial neighbors on the establishment of an invasive annual grass in the Mojave Desert, 67(3): 528-534.
Kaçan, K. (2014). Ege bölgelerine geleneksel ve organsık bağ alanlarında bulunan yabancı otların belirlenmesi ile alternatif mücadele yöntemlerinin araştırılması, Adrián Menderes Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, Aydın.
Karataş, D., Karataş, H. and Özdemir, G. (2015). Diyarbakır İl Bağçılığının Durum Analizi. Dicle Üniversitesi Ziraat Fakültesi Bahçe Bilimleri Bölümü. ISBN: 978-975-7635-58-1.
Korres, N.E., Norsworthy, J.K., Bagavathianan, M.V. and Mauro-moustakos, A. (2015a). Distribution of arable weed populations along eastern Arkansas Mississippi Delta roadsides: occurrence, distribution and favored growth habitats. Weed Technology. 29(3): 587-595.
Korres, N.E., Norsworthy, J.K., Bagavathianan, M.V. and Mauro-moustakos, A. (2015b). Distribution of arable weed populations along eastern Arkansas-Mississippi Delta roadsides: factors affecting weed occurrence. Weed Technology. 29(3): 596-604.
Odum, E.P. (1971). Fundamentals of Ecology. W.B. Saunders Company, Philadelphia, London, Tokyo.
Önen, H. (2015). Türkiye İstılab Bağcıklı Kataloğu. T.C. Gıda, Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Bağcıklı Sağlığı Araştırmaları Daire Başkanlığı. Ankara. ISBN: 978-605-9175-05-0.
Önen, H., Ito, M. and Imaizumi, T. (2006). Horsenettle (Solanum carolinense L.) plants emerged at different times after corn (Zea mays L.) planting. Weed Biology and Management. 6: 55-58.
Önen, H. (2006). The influence of temperature and light on seed germination of mugwort (Artemisia vulgaris L.). J. Plant Diseases and Protection - Sonderheft XX, 393-399.
Önen, H. (2020). Endüstriyel Kızyapılarla Mücadelede Üretici Davranışlar ve Alternatif Mücadele Yöntemlerinin Belirlenmesi ile Alterna-

Fungal Etmenlerin Tespiti ve Bio-Etkinlik Potansiyellerinin Araştırılması, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Doktora Tezi, Konya.
Özaslan, C., Önen, H., Farooq, S., Gunal, H. and Akyol, N. (2016). Common ragweed: An emerging threat for sunflower production and human health in Turkey. Weed Biology and Management 16(1): 42-55.
Özcan, S., Aslan, K., Çoban, N. and Önen, H. (2014). Effects of Different Training Systems on the Weed Growth in the Cultivation of Grapes. International Mesopotamia Agriculture Congress, 22-25 September 2014, Diyarbakır-Turkey.
Özcan, S. (2016). Antepfüşüşü ve bağ alanlarında sorun olan yabancı otlar ve alternatif mücadele yöntemlerinin belirlenmesi. Doktora Tezi. Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
Özer, Z., Önen, H., Tursun, N. and Uygun, F.N. (1999). Türkiye’nin Bazı Önemli Yabancı Otları (Tanımları ve Kimyasal Savaşımaları). Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Yayınları, No: 38, Kitap serii No: 16, ISBN: 975-7328-24-3.
Özer, Z., Kadoğlu, I., Önen, H. and Tursun, N. (2001). Herboloji (Yabancý Ot Bilimi) Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Yayınları, No: 20 Kitap serii No:10 Tokat.
Pinke, G., Pál, R. and Botta-Dukát, Z. (2010). Effects of environ-
mental factors on weed species composition of cereal and stubble fields in western Hungary. Central European Journal of Biology, 5(2): 283-292.
Rankins, A.Jr., J.D. Byrd, Jr., Mask, D.B., Barnett, J.W. and Gerard, P.D. (2005). Survey of soybean weeds in Mississippi. Weed Technology. 19: 492-498.
Sans, F.X. and Masalles R.M. (1995). Phenological patterns in an arabic land weed community related to disturbance. Weed Res. 35: 321-332.
Sönmez, S. (1976). Bölü ilinde Patateslerde Yabancı Ot Rekabeti ve Savaşını üzerine araştırı-

Takana, S., Miura, R. and Tomina, T. (2010). Small scale hetero-

 génity in the soil environment influences the distribution of lawn grass and weeds. Weed Biology and Manage-

ment. 10(4): 209-218.
Tepe, I., Deveci, M. and Keskin, B. (1997). Investigations on parasitization and damage levels of dodder (Cuscuta approximata Bab.) on some alfalfa varieties. In: Proceedings of Turkey II. Herbololoji Congress, pp. 355-360 (in Turkish with abstract in English).
Topçu Altıncı, N., Cangi, R. and Önen, H. (2017). Tokat İl Bağcıklı Yaprısı ve Yabancı Otlarla Mücadelede Üretici Davranışların Belirlenmesi (Determination of Vicitulture Structure and Grower Behaviours at Weeds Management of Tokat Province). Turkish Journal of Applied Sciences and Technology. 1(1): 17-24.
Topçu, N. (2011). Tokat İl:bganlarında ekolojik koşullarla bağlı olarak yabancı otların dağılımı. Yüksek Lisans Tezi. Gaziosmanpaşa Üniversitesi Fen Bilimleri Enstitüsü, Tokat.
TÜİK, Seçilmiş Göstergelerde Diyarbakır, (2016). http://www.tuik.gov.tr

Volume 40 Issue 4 (December 2020)
Udoh, B.T., Ogunkunle, A.O. and Ndaeyo, N.U. (2007). Influence of soil series and physico-chemical properties on weed flora distribution at moor plantation Ibadan, southwestern Nigeria. Journal of Agriculture and Social Sciences. 3(2): 55-58.

Uygur, F.N. (1991). Herboloji Araştırmalar Yöntemleri. Ç. Ü. Ziraat Fakültesi Bitki Koruma Bölümü, Yardımcı Ders Notu, Adana.

Uygur, F.N., Koch, W. and Walter, H. (1984). Yabancı Ot Bilimine Giriş. PLITS, 1984/2(1), Verlog J. Margraf, Stuttgart, Germany, 114s.

Uzun, İ. (2004). Bağcılık El Kitabı. Hasad Yayıncılık.

Yeğen, O. (1984). Yabancı Otlar ve Mücadelesi. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 146s. Ankara.