Ancient friends, revisited: Systematic review and case report of pyoderma gangrenosum-associated autoinflammatory syndromes

Roman Saternus ab, Jérôme Schwingel b, Cornelia S.L. Müller a, Thomas Vogt a, Jörg Reichrath a

a Department of Dermatology, The Saarland University Hospital, 66421, Homburg, Germany
b Department of Internal Medicine, CaritasKlinikum Saarbrücken St. Theresia, 66113, Saarbrücken, Germany

ARTICLE INFO
Keywords: PASS -syndrome, Ankylosing spondylitis, Autoinflammatory syndrome, Hidradenitis suppurativa, Pyoderma gangrenosum, Adalimumab

ABSTRACT
In the last decade, new scientific findings significantly improved our understanding of the molecular pathogenesis of autoinflammation and have resulted in the identification and definition of several pyoderma gangrenosum-associated autoinflammatory syndromes (PAGAIS) as new and distinct clinical entities. These different clinical entities include PAPA (pyogenic arthritis, pyoderma gangrenosum and acne conglobata), PASH (pyoderma gangrenosum, acne and suppurative hidradenitis), PsAPASH (pyoderma gangrenosum, acne, suppurative hidradenitis and psoriatic arthritis), PASS (pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis) and PAC (pyoderma gangrenosum, acne and ulcerative colitis), which can be distinguished by their clinical presentation and the presence or absence of mutations in several genes, such as the genes encoding proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1), nicastrin (NCSTN), Mediterranean fever (MEFV) and nucleotide-binding oligomerization domain-containing protein (NOD). In this systematic review, we summarize the present knowledge of this rapidly developing hot topic and provide a guide to enable the easy diagnosis of these syndromes in everyday clinical practice. Moreover, we report a rare case of PASH syndrome demonstrating successful treatment with adalimumab and another case of a previously unreported combination of symptoms, including psoriatic arthritis, pyoderma gangrenosum, suppurative hidradenitis and Crohn’s disease (newly coined PsAPSC), as examples. Because of the identification of similar genetic and pathogenic mechanisms of PAGAIS, we think the wide variety of seemingly different syndromes may represent distinct phenotypes of one disease.

1. Introduction

Because of their often dismal clinical outcomes and the lack of effective therapies, the management of pyoderma gangrenosum (PG) and its associated autoinflammatory syndromes is still a great challenge today. During the last decade, however, knowledge about the molecular mechanism of autoinflammation has greatly expanded, opening new avenues for effective therapies. Several PG-associated inflammatory disorders have been coined as distinct PG-associated autoinflammatory syndromes, leading to a vast system of acronyms such as PAPA, PASH, PAPASH, PsAPASH, PASS and PAC. All of these syndromes are considered hereditary and thus associated with mutations in various genes, including genes encoding proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), nicastrin (NCSTN), nucleotide-binding oligomerization domain-containing protein (NOD) and Mediterranean fever (MEFV). In this systematic review, we summarize the current knowledge of this rapidly developing hot topic and provide, for the first time, a guide that was developed to enable the easy diagnosis of these disease in clinical practice.

1.1. Methods

Relevant publications in MEDLINE (from 1946) and ISI Web of Science (from 1945) were searched independently by two authors (RS and JR) using the following key terms: “pyoderma gangrenosum”, “pyoderma gangrenosum-associated autoinflammatory syndrome”, “PAPA”, “PASH”, “PAPASH”, “PsAPASH”, “PASS”, and “PAC”. The articles identified, including reviews, were cross-referenced to find articles missed in the database search. The following two criteria were used for inclusion: studies/reports published to January 15, 2019 and reports on a clinical outcome and/or molecular basis of PAGAIS. There were no language restrictions. The exclusion criteria were defined accordingly.

As examples of how to use this new guide in clinical practice, we...
report a rare case of PASS syndrome demonstrating successful treatment with adalimumab and another case report of a previously unreported combination of symptoms, including psoriatic arthritis, pyoderma gangrenosum, suppurative hidradenitis and Crohn’s disease. We therefore propose the term PsAPSC.

1.2. Unraveling hidden secrets: the molecular basis of pyoderma gangrenosum-associated autoinflammation

PG is a rare neutrophilic dermatosis characterized both by aseptic neutrophil infiltration, destruction of the skin and systemic inflammation [1–3]. A multifactorial pathogenesis of pyoderma gangrenosum which include neutrophilic dysfunction, inflammatory mediators, and genetic predisposition has been described [3,4]. Clinically, PG lesions are painful ulcers with sharply circumscribed and demarcated, frequently undermined, livid borders and a necrotic base [2]. Notably, a complex reaction pattern in all areas of neutrophil activity has been described for PG [rev. in 1]. Although the histological examination of the skin lesions indicates normal-looking and mature neutrophils in the dermis, several investigations have reported dysfunctions in these cells, including the elevated expression and dysregulated signaling of integrins [rev. in 1]. It has been established that PG is a type of neutrophilic dermatitis. In combination with other symptoms, including pyogenic arthritis (PA), acne (A) or suppurative hidradenitis (SH), PG can be a symptom of...
distinct autoinflammatory syndromes [5].

Another group of autoinflammatory diseases not associated with PG includes cryopyrin-associated periodic syndromes (CAPS), familial Mediterranean fever (FMF), hyper-IgD syndrome (hyper-gammaglobulinemia D and HIDS, also known as mevalonate kinase deficiency), tumor necrosis factor receptor-associated periodic syndrome (TRAPS) and Schnitzler’s syndrome (urticarial vasculitis) [5,6]. CAPS, FMF, HIDS and TRAPS are distinct entities of hereditary periodic fever syndrome (HPFS), usually seen in children [6]. CAPS comprises familial cold urticarial syndrome (FCAS), Muckle-Wells syndrome (MWS) and chronic infantile neurological cutaneous and articular syndrome (CINCA) [6].

The basic shared pathomechanism of autoinflammatory syndromes is the dysfunction of inflammasomes [5].

Inflammasomes comprise protein complexes located within the cytosol that are in a group involved in the production of important proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 via caspase 1 activation [5,7]. Inflammasomes also play key roles in recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) [5,7].

In general, two families of core inflammasome components can be distinguished: the NLR (nucleotide-binding oligomerization domain (NOD)-like receptor) family and the PYHIN (Pyrin and hemato poetic interferon-inducible nuclear antigens with 200 amino-acid repeats domain-containing protein) family [7]. An example for a possible domain organization and its activation of the inflammasome is shown in [Fig. 1].

A member of the cytosolic NLR family is NOD2 that activates the downstream pro-inflammatory pathway mediated by NF-κB [8]. Mutations in the NOD2 gene are associated with susceptibility to Crohn’s disease, ulcerative colitis, psoriatic arthritis and sarcoidosis [9].

Another important mechanism of the adaptive immune system is the recognition of foreign peptides bound to major histocompatibility complex (MHC) molecules (pMHC) via the specific binding by T cell receptors [10]. Since this bond is weak, additional molecules are necessary to stimulate the efficiency of the T cell activation process. One of these costimulatory molecules is cluster of differentiation 2 (CD2), a transmembrane cell surface glycoprotein expressed on T cells, thymocytes, and NK cells that act as an effector of T cell activation and adhesion [10,11].

In mature T cells, CD2BP1 (CD2-binding protein 1, also known as PSTPIP1 (Proline-serine-threonine phosphatase-interacting protein 1)) is involved in recruiting PTP-PEST (protein tyrosine phosphatase - proline, glutamic acid, serine and threonine-rich region) to the cytoplasmic tail of CD2, resulting in the downregulation of the adhesion process by regulating the dephosphorylation of relevant substrates [11–13]. Mutations in the PSTPIP1 gene influence the activity of PSTPIP1 to phosphorylate proinflammatory pyrin domains [13–15] [Fig. 2]. This downregulation leads to the accumulation, activation and reduced inhibition of the inflammasome, release of IL-1β and IL-18, and activation of caspase 1 [1,14,15]. This may alter T-cell activity, resulting in an influx of neutrophils to inflammatory sites which leads to an exaggeration of the signal for proliferation and infiltration of inflammatory initiator cells, modifying apoptotic pathways and inhibiting cell clearance [12]. These mechanisms may explain one possible pathogenetic pathway of PAGAIS.

It has been shown that the location of the mutation site within the PSTPIP1 protein varies [see Table 1].

The rare autoinflammatory diseases hypercalprotectinemia and hyperzincemia (Hz/Hc) have also been reported to be linked to mutations in the PSTPIP1 gene [16]. Hz/Hc is characterized by severe systemic and cutaneous inflammation, hepatosplenomegaly, arthritis, pancytopenia, failure to thrive and extremely high myeloid-related protein 8 (MRP8, S100A8) and 14 (MRP14, S100A9) serum levels [16]. MRP8 and MRP14 are endogenous ligands of Toll-like receptor (TLR) 4 [16]. The term PSTPIP1-associated myeloid-related proteinemia inflammatory syndrome (PAMI syndrome) has been proposed for this condition [16].

As described above, mutated PSTPIP1 shows increased binding to pyrin [12,15]. Pyrin is encoded by the MEFV gene in inflammatory cells and is part of the inflammasome [7,17]. Mutations in the MEFV gene are associated with typical symptoms of recessive familial Mediterranean fever [9,15]. FCAS, MWS and neonatal-onset multisystem inflammatory disease are autoinflammatory syndromes caused by mutations in the C1S1 gene, which encodes cryopyrin (NLRP3) [15]. These syndromes are summarized as a cryopyrin-associated periodic syndrome (CAPS) [rev. in 14].

Nicacin is part of the gamma secrectase protein complex, one of the proteases involved in processing amyloid precursor protein to amyloid beta, which plays a pathogenic role in Alzheimer’s disease [18]. Gamma-secretase is a multicomponent protein complex serving as an asparyl protease with intramembrane domain-cleaving activity [18].

Mutations in the above mentioned genes are reported to be associated with PAGAIS. These syndromes include PAPA, PASH, PAPASH, PsA-PASH, PASS and PAC and other subsets of PAGAIS symptoms. The clinical and molecular findings of the established syndromes are presented below.

2. Pyoderma gangrenosum-associated autoinflammatory syndromes: clinical and molecular findings

The clinical phenotypes PAGAIS are ill-defined [19].

2.1. PAPA (pyogenic arthritis, pyoderma gangrenosum and acne conglobata) syndrome

The autosomal-dominantly inherited PAPA syndrome was first described by Lindor in 1997 [20].

Clinically, PAPA syndrome is characterized by the presence of pyogenic arthritis, pyoderma gangrenosum and acne conglobata [21]. The severity of individual symptoms may vary [20], leading to the term PAPA-like syndrome in which cutaneous manifestations, such as pyoderma gangrenosum and acne fulminans, predominate [22].

However, a homozygous PSTPIP1 mutation, which may define a novel form of a recessively inherited PAPA-like syndrome, has been reported [22].

Mutations in the CD2BP1/PSTPIP1 gene have been shown to be linked with PAPA syndrome [Table 2] [12,13,16,22,29]. Hong et al. reported a case without mutation in the CD2BP1/PSTPIP1 gene [30].

Treatment with the tumor necrosis factor (TNF)-alpha antagonists infliximab, etanercept or adalimumab has been effective [23–25,31–34]. Other options include the IL-1 receptor antagonist anakinra and the
anti–interleukin 1 monoclonal antibody canakinumab [22,24,35,36] as well as less targeted drugs like corticosteroids, tacrolimus, methotrexate, isotretinoin, mycophenolate and antibiotics (such as dapsone or minocycline).

2.2. PASH (pyoderma gangrenosum, acne, and suppurative hidradenitis) syndrome

The present of pyoderma gangrenosum, acne, suppurative hidradenitis has been described as PASH syndrome [Table 3] [37–40].

Mutations in the NLRP3, PSTPIP1 (CD2BP1), NOD2, MEFV and/or NCSTN genes have been shown to be associated with PASH syndrome [Table 2] [40–43].

Reported successful treatment includes infliximab, anakinra, prednisolone, azathiothepine, cyclosporine and prolonged targeted antibiotic therapy, eg. dapsone for 20 months [37,41,44–46].

2.3. PAPASH (pyoderma gangrenosum, acne, suppurative hidradenitis and pyogenic arthritis) syndrome

Clinically, PAPASH syndrome is characterized by the presence of pyoderma gangrenosum, acne, suppurative hidradenitis and pyogenic arthritis [9]. Associations with mutations in PSTPIP1, IL1RN (interleukin 1 receptor antagonist) and MEFV genes have been reported [Table 2] [9, 41].

Reported successful treatment include infliximab, methotrexate, adalimumab and anakinra [9,19,41,47].

2.4. PsAPASH (pyoderma gangrenosum, acne, suppurative hidradenitis and psoriatic arthritis) syndrome

Clinically, PsAPASH syndrome is characterized by the presence of pyoderma gangrenosum, acne, suppurative hidradenitis and psoriatic arthritis [39]. To date, no mutations have been reported to be linked with PsAPASH syndrome [48]. It has been speculated that mutations in PSTPIP1 gene could cause PsAPAH [48]. Successful treatment with adalimumab and methotrexate has been reported [19,39,48].

2.5. PASS (pyoderma gangrenosum, acne conglobata, suppurative hidradenitis and axial spondyloarthritis) syndrome

In 2012, Bruzzese et al. presented a case of pyoderma gangrenosum, acne conglobata, suppurative hidradenitis and axial spondyloarthritis and termed this combination of symptoms PASS syndrome [49]. However, a link between PASS syndrome and PSTPIP mutations has not yet been found [49]. Reported successful treatment include adalimumab with sirolimus or methotrexate, anakinra, infliximab, periodic antibiotic and/or steroid treatment [19,49,50].

2.6. PAC (pyoderma gangrenosum, acne and ulcerative colitis) syndrome

Clinically, PAC syndrome is characterized by the presence of pyoderma gangrenosum, acne and ulcerative colitis [51]. A mutation in the PSTPIP1 gene has been described [Table 2] [51].

Successful treatment with 100 mg of anakinra taken daily, 10 mg of prednisone taken every other day and 40 mg of isotretinoin taken three times a week has been reported [51].
One of her sons had pyogenic arthritis and acne. Another son suffered syndrome of autoimmune hepatitis and primary sclerosing cholangitis. coli, pyogenic arthritis, acne, suppurative hidradenitis and an overlap syndrome of PASH and SAPHO syndrome [41]. They found a mutation in the PSTP1P gene [52]. A female from this family suffered from ulcerative colitis who was successfully treated with adalimumab [55]. Rarer subsets of symptoms have been described. In a recent article, Sch et al. presented a family whose members had a con-
siderable number of symptoms, including pyogenic arthritis, acne, suppurative hidradenitis, and an overlap syndrome but also with ulcerative colitis and the presence of cANCA [53].

PG was described in association with other diseases in the 1970s, and its symptoms include synovitis, acne, pustulosis, hyperostosis, and ostitis [37–41].

Murphy et al. presented a patient with PASH syndrome and ulcerative colitis who was successfully treated with adalimumab [55]. Rarer subsets of the common autoinflammatory phenomena can be named accordingly [Table 3].

Table 1
Protein structure of PTSTPIP1.

amino acid	schematic protein structure	Binding location of downstream interaction proteins	reported location site of mutation
1-122	N	FCH	
123-288	CDC15-like	PTP-PEST, Pyrin	
320-340	PEST	c-Ab; WASP, CD2; Pyrin; FASL	
359-416	SH3	C	

The protein structure of PTSTPIP1 with its corresponding amino acid sites, the binding location of downstream interaction proteins and reported location site of mutation within the protein are shown.

c-Ab: c-Ablon tyrosine kinase; CD2: cluster of differentiation 2; FASL: Fas ligand; FCH: Fes/CIP4 homology; PEST: proline, glutamic acid, serine and threonine rich region; PTP-PEST: protein-tyrosine phosphatase with C-terminal rich in proline, glutamic acid, serine, and threonine residues)-type motif; SH3: Src-homology 3, WASP: Wiskott–Aldrich Syndrome protein. Modified from Ref. [56,57].

2.7. Overlap and undefined syndromes

In addition to the syndromes mentioned above, some alternative subsets of symptoms have been described. In a recent article, Schäffler et al. presented a family whose members had a confirmed mutation in the PSTP1P gene [52]. A female from this family suffered from ulcerative colitis, pyogenic arthritis, acne, suppurrative hidradenitis and an overlap syndrome of autoimmune hepatitis and primary sclerosing cholangitis. One of her daughters had pyogenic arthritis and acne. Another son suffered from Crohn’s disease and PA [52]. However, based only on the proof of mutation in the PSTP1P gene, the authors concluded that this family exhibited PAPA syndrome, although none of the family members were described as having PG [52].

Ursani et al. presented a patient with acne, suppurrative hidradenitis, pyoderma gangrenosum and arthritis, corresponding to PAPASH syndrome but also with ulcerative colitis and the presence of canCA [53].

Niv et al. described a case of PG, acne, and SH corresponding to PASH [42]. However, based only on the proof of mutation in the PSTP1P gene, the authors concluded that this family exhibited PAPA syndrome, although none of the family members were described as having PG [52].

Because distinguishing individual PAGAIS may be challenging in clinical practice, we have developed a short guide for easy diagnosis [Fig. 3] and demonstrate its use using two case reports of two white females. This guide is based on a four-step questionnaire about the most frequent symptoms of possible PAGAIS. The first three criteria are met by presentation with symptoms of PG, acne and HS, and the fourth criterion is presentation with symptoms of axial spondyloarthritis, psoriatic arthritis, pyogenic arthritis, ulcerative colitis, Crohn’s disease or leukocytoclastic vasculitis. We demonstrate the application of this new guide on two case reports.

Table 2
Reported mutations in genes involved in the pathomechanism in PAGAIS with the corresponding protein alteration and associated distinct PAGAIS syndromes are shown.

Gene	Mutation	Protein Change	PAGAIS	Reference
PTSTPIP1/CD2BP1	c.1034 A > G	p.Y345C	PASH	[43]
	c.1213C > T	p.R405C		
	c.773G > C	p.G258A	PAPA-like	[22]
	c.904 G > C	p.A230T	homonymous PAPA/FRA	[1,2,25, 26]
	n/a	p.E250Q		
	n/a	p.E256G		
	n/a	p.E256G		
	n/a	p.D266 N		
	c.736G > A	p.D246 N		
	n/a	p.E250K		
	c.1207G > C	p.G403R	PAM1	[15]
	c.831G > T	p.E277D		
	c.344_351del	p.T115 N*20	PASH	[42]
NCSTN	Chr1:3293880 A > G	p.M694V	PAPASH	
MBFV	chr1:3293407 T > C	p.V726A		
NOD2	chr1:50745926C > T	p.R702W	PASH	
	chr1:50756540G > C	p.G908R		
NLRP3	Chr1:247588858C > A	p.Q703K	PASH	
IL1RN	chr:1:13890284G > A	p.A106T	PAPASH	
PSMB8	Chr6:32811752C > T	p.G8R	Overlap	

3. Introduction of a short guide for the easy identification of PAGAIS and demonstrations for its use in clinical practice using two case reports: a patient with PASS syndrome and a patient with an overlap syndrome

The first patient was a female, born in 1988, who first presented to our dermatological outpatient clinic in 2009. She was diagnosed with suppurrative hidradenitis, and most of the skin lesions, which were predominantly localized in both axillae and the genital area (Hurley stage III), were widely excised. Wound healing was attained without any complications. The patient was, at the time of initial treatment, a non-obese ex-smoker who used oral contraceptives with no other reported risk or trigger factors for SH. In 2011, she was diagnosed with ankylosing spondylitis, which was successfully treated with etanercept for 5 months. The therapy was stopped due to an “infected wound”. Shortly thereafter, the first skin ulceration appeared spontaneously around her right ankle. Considering the clinical presentation and because of the histological and laboratory findings (including blood analysis for
HIV, hepatitis, ANAs, ANCAs, paraprotein and lymphocyte sub-populations) did not reveal evidence of any other disease, pyoderma gangrenosum was diagnosed. Because she presented with no acne, PGAAIS were excluded as diagnoses.

In agreement with the usually accepted treatment recommendations for PG, we initiated an intravenous high-dose pulse treatment with methylprednisolone (250 mg/day for 3 days every four weeks) as the first-line therapy. Additionally, we prescribed oral treatment with cyclosporine A (200 mg/day) and methylprednisolone (16 mg/day between pulse treatments). For external therapy, anti-septic treatment was combined with tacrolimus ointment 0.1%. Because the symptoms of spondylitis showed little improvement, the oral treatment with cyclosporine was discontinued, and etanercept (50 mg s.c./week) was reintroduced. By 2015, the PG lesions had spread to both shanks, and the suppurative hidradenitis flared again in the axillary and groin areas. The patient presented seemingly ill, with two very painful inflamed and purulent ulcers, one on each shank, and with disseminated erythematous acne papules and scarring on both shoulders/axillae. The blood analysis revealed elevated C-reactive peptide (52.0 mg/dl; ref: 0–10.0), thrombocytosis (453 × 10⁹/l; ref: 140–400) and leukocytosis (19.9 × 10⁹/l; ref: 4.0–10.0), especially neutrophilia (72%; ref: 50–65) and lymphopenia (17%; ref: 25–45).

Due to the new clinical findings of acne lesions, we reconsidered the diagnosis and defined the clinical picture as PASS syndrome. To confirm the diagnosis, we recommended mutational analysis of genes linked to the pathogenesis of PGAAIS. However, the patient did not agree to perform this genetic examination. We then started therapy with adalimumab, which had been shown to be effective and safe for the treatment of both SH and PG (initial dose 160 mg s.c., followed by 80 mg and 40 mg for maintenance therapy). External therapy was conducted with 0.1% betamethasone valerate and 1% gentamicin containing ointments and various exudate-managing hydrocolloids, depending on the general wound condition. Along with this therapy, we observed the quick improvement of all clinical symptoms. When using the 4-step guide, the first 3 criteria (presence of pyoderma, acne and suppurative hidradenitis), which are the cardinal symptoms of PGAAIS, were met. The fourth criterion in this case was axial spondylarthropathy. Following this guide led to the diagnosis of PASS syndrome. This example illustrates that PGAAIS are ill-defined clinical diagnoses. Genetic testing is not required for proper assessment and treatment.

The second patient was a female born in 1966 who first presented to our dermatological outpatient clinic in 2018. She had suffered from Crohn’s disease since 1996. In 2004, she was diagnosed with severe SH at Hurley stage IV. In 2010, she underwent en bloc resection of a skin lesion in the left groin, which included the left labia majora. In 2017, a so-called LOOP thread inlay procedure was performed in the genital area.

In February 2018, therapy with a TNF-alpha inhibitor infliximab was initiated and replaced adalimumab due to initial adverse effects. Under treatment with adalimumab, the intestinal symptoms and skin lesions remained stable. After May 2018, week 1 light therapy® (light and radiofrequency) of the SH area was performed. Unfortunately, under weekly doses of adalimumab, the known psoriasis vulgaris worsened, and she developed PG on both lower legs. For the treatment of PG, systemic steroid therapy was started, which ameliorated the PG lesions but worsened the SH areas.

When the patient first presented to our dermatological outpatient clinic in December 2018, she was a nonobese smoker. Due to joint pain in her left foot, we performed X-rays of both feet, which showed signs of psoriatic arthritis. After consultation with gastroenterologists, we recommended magnetic resonance imaging of both legs and the pelvis to determine the extent of the abscess and fistula. We also proposed systemic therapy with interleukin 12 and 23 inhibitor ustekinumab at a dosage established for Crohn’s disease. The patient was undecided about accepting the treatment, and the course of the disease remains unclear because she did not return to our clinic.

To our knowledge, the second patient described represents the first case of a combination of symptoms that included psoriatic arthritis, PG, SH and Crohn’s disease. We therefore propose the term PsAPSC [Table 3]. When using the 4-step guide, the first criterion (presence of PG) was fulfilled. The second criterion (acne) was not present. Nevertheless, a PGAAIS was suspected due to the existing suppurative hidradenitis, psoriatic arthritis and Crohn’s disease. The guide led specifically to the presence of a PsAPSC syndrome. This case illustrates that, even in the absence of a cardinal symptom (such as acne in this case), PGAAIS may still be present.

4. Outlook and discussion: challenge and promise - treatment and new perspectives for the management of pyoderma gangrenosum-associated autoinflammatory syndromes

In the last decade, new findings have significantly improved our understanding of the molecular pathogenesis of autoinflammation,
Fig. 3. Short guide (four-step algorithm) for the easy identification and definition of pyoderma gangrenosum-associated autoimmune inflammatory syndromes in clinical practice. This guide is based on a four-step questionnaire about the most frequent symptoms of possible PGAIS. Beginning with the presence of PG, presence of acne (A), suppurative hidradenitis (SH) and as fourth step, the presence of axial spondylarthritis (S), psoriatic arthritis (PsA), pyogenic arthritis (PA), colitis ulcerosa (C), Crohn’s disease (CD) or leukocytoclastic vasculitis (V).
resulting in the identification and definition of several PGAAIS. Despite phenotypic heterogeneity of distinct PGAAIS entities, these syndromes seem to share similar underlying pathomechanisms. The improvement of our understanding of pathomechanisms and the identification of relevant genetic variants are preconditions for the development of therapeutic strategies.

Although great progress has been made in recent years in identifying several PGAAIS as distinct entities, in unraveling their underlying molecular mechanisms and in developing pathogenesis-oriented targeted therapies, their clinical management remains challenging. The current treatment focus is on a relatively unspecific immunosuppressive regimen. Despite the combination of different immunosuppressants, some cases show no or little clinical improvement. The risk of serious infections must also be mentioned.

These aspects are particularly true with respect to individual symptoms, such as PSC. PSC has been described in several patients, but its pathogenesis remains largely unclear. None of the discussed genes have been proven to play a role. Similar to SAPHO syndrome, in which recurrent inflammation leads to chronic osteomyelitis, one hypothesis suggests that PSC plays a role through recurrent cholangitis and bacterial invasion.

The pathogenesis of Crohn’s disease and ulcerative colitis is better known. In addition to complex barrier disease, NOD2 seems to be involved in inflammatory bowel disease, which also manifests several times in the course of PGAAIS.

There is a large variety of autoinflammatory, let alone autoimmune diseases. Two patients with the same diagnosis may experience very different courses of symptoms and treatment response. Additionally, these ailments tend to occur in multitudes in individual patients. This suggests an “inflammatory phenotype” that is on one hand genetically determined, on the other hand strongly influenced by a multitude of individual factors.

Interestingly, in a recent analysis of eight patients with PAPASH, PsPASH or PASS by Gottlieb et al. showed that seven out of eight patients had positive serological detection for anti-Saccharomyces cerevisiae antibodies (ASCA) as well as evidence of subclinical digestive tract inflammation and refractory course under immunosuppressive therapies [19]. The authors conclude that these facts could be explained by an underlying digestive dysbiosis [19].

To provide physicians of various disciplines with a convenient tool for easy assessment of individual PGAAIS in clinical practice, we have developed a short guide that is based on a four-step guide [Fig. 3]. Here, we demonstrate its use as a diagnostic tool in cases of PGAAIS. Treatment of PG and related PGAAIS can be difficult, as the therapeutic response to particular therapies varies greatly, and the outcome is not known in most cases. While some investigators, including Saraceno et al. [39], have previously reported successful treatment of PASS syndrome using treatment regimens primarily targeting SH (antibiotics, isotretinoin and dapsone), in our first patient, we focused on the latest on-label SH treatment with adalimumab, as this antibody may also effectively target spondyloarthritides. Interestingly, in contrast to the patient presented by Bruzzese et al. [49] who did not respond to etanercept therapy, a fusion protein predicted to bind free TNF and receptor-bound TNF was much less effective than adalimumab, which was developed based on the receptor-blocking principle. For instance, in terms of her psoriatic arthritis and plaque psoriasis, our first patient showed an impressive and fast remission of dermatological and rheumatological symptoms within a hospitalization period of only 14 days, rendering her quickly eligible for discharge and further outpatient management. Hence, according to our experience and the published literature, TNF-alpha inhibitors, such as adalimumab are promising single agents for the effective and safe therapy of PG and at least of some symptoms of associated PGAAIS. Potential new molecular treatment regimens include IL-1 inhibitors in combination with TNF-alpha antagonists, Janus kinase (JAK)- and methyltenatetrahydrofolate-mediated signaling pathway inhibitors and IL-17 antagonists established for psoriasis therapy [rev. in 1.31]. However, the effects of these promising new molecule-targeting therapeutics for ameliorating PGAAIS remain to be evaluated in future studies.

It is still an open question whether different mutations, e.g., in the PSTPIP1 gene, are associated with clinically variable PGAAIS, which might require the use of a single first-line treatment or even diverse, if not individualized, strategies [9,13,41].

Conflict of interest:

The authors declare that there is no conflict of interest.

Acknowledgements

None.

References

[1] A. Alavi, L.E. French, M.D. Davis, A. Brassard, R.S. Kirnser, Pyoderma gangrenosum: an update on pathophysiology, diagnosis and treatment, Am. J. Clin. Dermatol. 18 (3) (2017) 355–372. https://doi.org/10.1007/s40257-017-0251-7.
[2] L. Trenzeyagesu, R. Schmalz, T. Vogt, J. Reichrath, Management of pyoderma gangrenosum. An update on clinical features, diagnosis and therapy, Hautarzt 61 (4) (2010) 345–353. https://doi.org/10.1007/s00105-009-1909-8.
[3] S.P. Braswell, T.C. Kostopoulos, A.G. Ortega-Loyaza, Pathophysiology of pyoderma gangrenosum (PG): an updated review, J. Am. Acad. Dermatol. 73 (2015) 691–699. https://doi.org/10.1016/j.jaad.2015.06.021.
[4] A.B. Nesterovitch, M.D. Hoffman, M. Simon, P.A. Petukhov, M.D. Tharp, T.T. Grant, Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin. Exp. Dermatol. 36 (8) (2011) 889–895. https://doi.org/10.1111/j.1365-2230.2011.04137.x.
[5] L. Engels, T. Ruzicka, K. Giehl, Autoinflammatory syndrome in the Dermatologe, Hautnah Dermatol. 35 (1) (2019) 54–40. https://doi.org/10.1007/s18502-019-2886-y.
[6] C.S.L. Müller, J. Schwingel, J. Reichrath, T. Vogt, C. Pfohlner, Report of a case of familial Mediterranean fever with special emphasis on histopathologic characteristics, Global Dermatology 3 (4) (2016) 375–378. https://doi.org/10.15761/GOD.00051010.
[7] T. Strowig, J. Hema-Meija, E. Elina, R. Flavell, Inflammasomes in health and disease, Nature 481 (7381) (2012) 278–286. https://doi.org/10.1038/nature10759.
[8] M. Girardelli, C. Loganes, A. Pin, E. Stacul, E. Deleva, D. Vozi, G. Baj, C. De Giacomo, A. Tommasini, A.M. Bianco, Novel Nod2 mutation in early-onset inflammatory bowel phenotype, Inflamm. Bowel Dis. 18 (6) (2012) 1204–1212, 24, https://doi.org/10.1097/MIB.0b013e31825f6061.
[9] A.V. Marzano, V. Trevician, M. Gattorno, L. Ceccherini, C. De Simoni, C. Crosti, Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene, J.A.M.A. Dermatol. 149 (6) (2013) 762–768. https://doi.org/10.1001/jamadermatol.2013.2907.
[10] H. Yang, E.L. Reinherz, CD2BP1 modulates CD2-dependent T cell activation via linkage to protein tyrosine phosphatase (PTP)-PEST, J. Immunol. 176 (2006) 5906–5907. https://doi.org/10.4049/jimmunol.176.10.5896.
[11] J. Li, K. Nishizawa, W. An, R.E. Husen, F.E. Liiolio, R. Salgia, R. Sunder-Plassmann, E.L. Reinherz, A cd15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplastmic domain and regulates CD2-triggered adhesion, EMBO J. 17 (24) (1998), 7320–36, https://doi.org/10.1093/emboj/17.24.7320.
[12] C.A. Wise, J.D. Gilum, C.E. Seidman, N.M. Lindor, R. Veile, S. Bashiarides, M. Lovett M. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder, Hum. Mol. Genet. 11 (8) (2002) 961–969. https://doi.org/10.1093/hmg/11.8.961.
[13] E. Lindwall, S. Singla, W.E. Davis, R.J. Quinnet, Novel PSTPIP1 gene mutation in a patient with pyogenic arthritis, pyoderma gangrenosum and acne (PAPA)-syndrome, Semin. Arthritis Rheum. 25 (2015) 91–93. https://doi.org/10.1016/j.semarthrit.2015.02.012.
[14] A.V. Marzano, G. Damian, G. Genovese, M. Gattorno, A dermato logic perspective on autoinflammatory diseases, Clin. Exp. Rheumatol. 36 (1) (2018) 32–38. Suppl 110.
[15] N.G. Shoham, M. Centola, E. Mansfield, K.M. Hull, G. Wood, C.A. Wise, D.L. Kastner, Pyrin binds the PSTPIP1CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway, Proc. Natl. Acad. Sci. Unit. States Am. 100 (23) (2003) 13501–13506. https://doi.org/10.1073/pnas.1339510100.
[16] D. Holzinger, S.K. Fassl, W. de Jager, P. Lohse, U.F. Röhrig, M. Gattorno, A. Omenetti, S. Chiesa, F. Schaena, J. Austermann, T. Vogl, D.B. Kuhns, S.M. Holland, C. Rodríguez-Gallego, J.I. Arostegui, E. Colino, R. Roldan, S. Fessotte, B. Isidor, S. Piaignant, K. Ito, H.I. Eppe, J.A. Bernstein, M. Jung, J. Frankovich, G. Lionetti, J.A. Church, P.Y. Ong, M. LaPlant, M. Abinun, R. Skinner, V. Bigley, U.J. Sachs, C. Hinze, E. Hoppenreijs, J. Ehrchen, D. Foell, J.J. Chae, A. Omenetti, I. Akestjösson, C. Sunderkötter, J. Roth, Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting
