Evaluation of side resistance of driven precast concrete piles

M C Marcos¹ and Y-J Chen²
¹Adamson University, Civil Engineering Department, Manila, Philippines
²Chung Yuan Christian University, Department of Civil Engineering, Taiwan
E-mail: yjc@cycu.edu.tw

Abstract. This study critically evaluates the axial side resistance of driven precast concrete (PC) piles. A wide range of load test data are classified into drained and undrained databases and subsequently used in the investigation. Each database is further divided into: (1) compression and uplift loading and (2) round and square cross sections. Measured and predicted results are both applied to examine the representative analytical models, including the alpha (α), beta (β), and lambda (λ) methods. The statistical results show that the range of values of the empirical coefficient α is wide. The predicted results of the β method are underestimated in drained loading, but they are reasonable in undrained loading. The relationship between λ and pile depth is also developed. Based on the analyses, the relative merits of the three analytical models are established, and designs for analyzing the side resistance of driven PC piles are recommended.

1. Introduction
Driven precast concrete (PC) piles are widely used as deep foundations for high rise buildings, towers, highway structures and others. Side resistance is an important source of driven PC pile capacity under axial loading, especially when the pile depth is considerably large or for piles under the condition of uplift loading in which the tip resistance is negligibly small. Research on side resistance of deep foundations has been progressing over the years. O’Neill [1] summarized results of significant recent research on a few aspects of side resistance for driven and drilled shafts while Lutenegger [2] focused on the importance of Standard Penetration Test for estimating driven pile side resistance. Another research [3, 4] provided an extensive evaluation of side resistance for drilled shafts using representative analytical models.

Analytical methods can be specified into alpha (α), beta (β), or lambda (λ) methods. Table 1 lists the analysis models and the related variables for each model. The α method [5] is a conventional total stress analysis for driven piles in cohesive soils. The side resistance is related to the average soil undrained shear strength (su) by an empirical coefficient denoted as α, which is the adhesion factor. The original α [5] for concrete piles was based on empirical correlations of mean su over the foundation depth while Stas and Kulhawy [6] developed α-su correlation for drilled shafts shown in Figure 1. In addition, some researchers [3, 4] develop the α-su correlation for a standardized undrained shear strength value from consolidated-isotropically undrained triaxial compression (CIUC) for drilled shafts. Furthermore, several researchers [7-9] also demonstrated that α is complexly related to other soil parameters such as the mean effective overburden stress ($\bar{\sigma}_{om}$), overconsolidation ratio (OCR), and effective stress friction angle (ϕ_e).
Figure 1. α - su Correlation [6]

Table 1. Analytical Models for Side Resistance Analysis

Method	Analytical modela	Definition of factors
α	$Q_α(α) = p\sum_{n=1}^{N} α_n s_n t_n$	$α =$ empirical adhesion factor
		$s_n =$ undrained shear strength
		$K =$ coefficient of horizontal soil stress
		$K_o =$ in-situ K
β	$Q_β(β) = p\left(\frac{K}{K_o} \sum_{n=1}^{N} σ_{vn} K_n \tan \left[\phi_n - δ \right] \right) t_n$	$σ_v =$ vertical effective stress
		$ϕ =$ effective stress friction angle
		$δ =$ soil-shaft interface friction angle
		$β = K \tan δ$
λ	$Q_λ(λ) = λ p(σ_{vm} + 2s_u) D$	$λ =$ empirical factor

The β method [10] is an effective stress analysis which considers frictional resistance of the soil-shaft interface. In this method, side resistance is a function of the horizontal effective stress ($σ_h$), effective stress friction angle ($δ$) for the soil-shaft interface, and pile geometry. Previous study [11] examined available load test data and presented that the stress factor (K/K_o) is dependent on the construction method and its influence on in-situ stress. They suggested that for small displacement piles, K/K_o is in the range of 0.75 to 1.25, whereas for large displacement piles, K/K_o is in the range of 1.0 to 2.0. They also suggested that the ratio of interface friction angle ($δ$) to soil friction angle ($ϕ$) is in the range of 0.8 to 1.0 for precast piles.

Lastly, the λ method [12] is a combination of total and effective stress analyses that can be used for cohesive soils. In this method, side resistance is related to s_u and $σ_{vm}$ by an empirical factor $λ$. The original $λ$ was developed based on a database of driven pipe pile data and is a function of the total depth of the pile.

Although numerous methods have been critically evaluated for side resistance analysis of driven piles, more consistent approaches have been developed for assessing soil design parameters [13] that warrant a complete re-assessment of side resistance behavior of driven PC piles. In addition, more updated load test data exist nowadays that can be utilized for verifying estimated results. Furthermore, the effects of shape and installation methods on side resistance are of equal importance to examine. A broad database is utilized to assess the relative merits and suitability of each analytical model. Results
are compared statistically and graphically. Subsequently, specific design recommendations are given for the use of these models to driven PC pile side resistance design.

2. Database of load tests

The load test data were collected from geotechnical literature and load test reports. The database developed in this study consists of 234 field axial load test conducted in 99 sites. Among these data, 72 sites with 154 load tests are loaded in compression while 27 sites with 80 load tests are loaded in uplift. The case histories cover a range of soil profiles and pile shapes. These load tests were conducted around the world at different points in time. The soil profile is categorized herein as drained or undrained, based on the predominant soil condition along the pile depth. The piles are round or square in cross-section. The load tests are divided into two groups, based on the loading condition, while each group is further subdivided using the two profile types and two cross-sections, with a total of eight categories.

For group 1 in compression: (1) drained compression with round piles (DCR) has 10 sites with 37 tests; (2) drained compression with square piles (DCS) has 23 sites with 44 tests; (3) undrained compression with round piles (UCR) has 18 sites with 37 tests; and (4) undrained compression with square piles (UCS) has 21 sites with 36 tests. For group 2 in uplift: (5) drained uplift with round piles (URU) has 7 sites with 27 tests; (6) drained uplift with square piles (DUS) has 10 sites with 31 tests; (7) undrained uplift with round piles (URR) has 3 sites with 11 tests; and (8) undrained uplift with square piles (UUS) has 7 sites with 11 tests. All of the load tests have almost complete geological data and load-displacement curves, and all were conducted on straight-sided, driven PC piles. Hence, these field data should reflect common field situations and can be representative for subsequent applications in engineering practice.

The basic information for the DCR, DCS, UCR, and UCS tests are given in Tables 2 to 5, respectively, whereas the information for the DUR, DUS, UUR, and UUS tests are given in Tables 6 to 9, respectively. The values of α, β_m, and λ were back-calculated using Eqs. 1 to 3 and the field load test results. The L_1-L_2 method [14, 15] which is a graphical construction method was adopted to measure the axial compression capacity. The method presents reasonable results for pile design based on previous studies [16-18].

Table 2. Basic Information and Side Resistance Analysis Result for Drained Compression Round Section (DCR) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia., D (m)	K_a	β_p	Q_{cap} (kN)	Q_{cap} (kN)	β_m	β_p	$(K/K_m)_f$	
DCR_1	Arkansas; fine & silty sand	13.7	0.41	0.431	0.261	356	1292	3.63	0.947	3.63	3.17
DCR 2-1	Dramen, Norway; medium to coarse sand	8.0	0.28	0.670	0.304	86	203	2.36	0.718	2.36	2.09
DCR 2-2	16.0	0.28	0.544	0.247	257	347	1.35	0.333	1.35	1.20	
DCR 2-3	7.5	0.28	0.677	0.308	78	155	1.98	0.610	1.98	1.76	
DCR 2-4	11.5	0.28	0.583	0.265	160	250	1.57	0.415	1.57	1.39	
DCR 2-5	15.5	0.28	0.544	0.247	242	355	1.47	0.362	1.47	1.30	
DCR 2-6	19.5	0.28	0.513	0.253	380	516	1.36	0.344	1.36	1.20	
DCR 2-7	23.5	0.28	0.472	0.258	551	734	1.33	0.344	1.33	1.17	
DCR 3	Spain; fine silty sand	18.0	0.91	0.420	0.261	1431	2260	1.58	0.413	1.58	1.38
DCR 4-1	38.0	0.60	0.409	0.262	3007	5665	1.88	0.493	1.88	1.65	
DCR 4-2	27.0	0.50	0.454	0.260	1316	2504	1.90	0.494	1.90	1.67	
DCR 4-3	27.0	0.60	0.454	0.260	1579	4175	2.64	0.687	2.64	2.32	
DCR 4-4	27.0	0.60	0.454	0.260	1579	4559	2.89	0.750	2.89	2.54	
DCR 4-5	25.0	0.60	0.454	0.260	1379	3934	2.87	0.746	2.87	2.52	
DCR 4-6	25.0	0.60	0.454	0.260	1370	4225	3.08	0.801	3.08	2.71	
DCR 4-7	22.0	0.50	0.454	0.260	904	1926	2.13	0.554	2.13	1.87	
DCR 4-8	30.0	0.50	0.454	0.260	1599	3864	2.42	0.628	2.42	2.12	
DCR 5-1	Kaohsiung, Taiwan; silty sand	16.0	0.40	0.517	0.285	360	364	1.01	0.255	0.89	0.89
DCR 5-2	Taiwan; clayey silty sand	20.0	0.40	0.517	0.252	548	525	0.96	0.242	0.96	0.85
DCR 5-3	30.0	0.60	0.503	0.254	1778	1749	0.98	0.250	0.98	0.87	
DCR 5-4	27.0	0.60	0.503	0.254	1461	1387	0.95	0.242	0.95	0.84	
DCR 5-5	22.0	0.30	0.503	0.254	497	1726	3.48	0.884	3.48	3.07	
DCR 5-6	22.0	0.40	0.503	0.254	662	1836	2.77	0.705	2.77	2.45	
DCR 5-7	22.0	0.50	0.503	0.254	828	2588	3.13	0.795	3.13	2.76	
DCR 5-8	34.0	0.60	0.503	0.254	2245	4320	1.92	0.489	1.92	1.70	
DCR 5-9	34.0	0.60	0.503	0.254	2245	3309	1.47	0.375	1.47	1.30	
DCR 6-1	Changbin, Taiwan; silty sand	25.0	0.60	0.431	0.261	1322	4007	3.03	0.792	3.03	2.66
DCR 6-2	23.0	0.50	0.431	0.261	943	3130	3.32	0.867	3.32	2.91	
DCR 6-3	23.0	0.50	0.431	0.261	943	2983	3.16	0.826	3.16	2.77	

K_s = in-situ K; *β_p* = predicted beta value; *Q_{esp} = predicted compression side resistance; *Q_{scm} = measured compression side resistance; *β_m* = measured beta value; *(K/K_{in}) = back-calculated stress factor

Table 3. Basic Information and Side Resistance Analysis Result for Drained Compression Square Section (DCS) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia., B (m)	K_s	β_p	Q_{esp} (kN)	Q_{scm} (kN)	Q_{scm}/Q_{esp}	β_m	β_m/β_p	(K/K_{in})	
DCS 1	Florida; sand	18.8	0.762	0.389	0.261	1414	4213	2.92	0.762	2.92	2.54	
DCS 2	Sweden; sand	12.8	0.235	0.727	0.398	300	328	1.09	0.434	1.09	0.96	
DCS 3	Portugal; clayey sand	6.0	0.350	0.815	0.452	201	636	3.17	1.431	3.17	2.78	
DCS 4-1	Kuwait; silty sand	12.1	0.300	0.420	0.261	283	298	1.05	0.275	1.05	0.92	
DCS 4-2	9.3	0.300	0.409	0.262	176	181	1.03	0.269	1.03	0.90		
DCS 5	Kuwait; sand	8.7	0.300	0.389	0.261	154	393	2.55	0.667	2.55	2.22	
DCS 6	USA; fine sand	27.0	0.355	0.454	0.260	971	3119	3.21	0.834	3.21	2.82	
DCS 7	Georgia; coarse sand	15.2	0.406	0.459	0.301	680	2186	3.21	0.968	3.21	2.80	
DCS 8-1	Tidewater, Virginia; silty sand	21.0	0.360	0.420	0.261	917	1975	2.15	0.563	2.15	1.88	
DCS 8-2	21.0	0.360	0.454	0.260	646	1639	2.54	0.659	2.54	2.23		
DCS 8-3	26.0	0.360	0.472	0.270	828	3127	3.78	1.020	3.78	3.32		
DCS 9-1	Iraq; sand	11.0	0.285	0.568	0.325	389	803	2.06	0.671	2.06	1.81	
DCS 9-2	15.0	0.285	0.466	0.259	364	1229	3.37	0.874	3.37	2.97		
DCS 10	China; sandy loam	25.0	0.450	0.454	0.260	1558	2363	1.52	0.394	1.52	1.33	
DCS 11-1	Beijing; silty sand	10.0	0.300	0.437	0.261	490	1673	3.42	0.892	3.42	2.99	
DCS 11-2	12.0	0.300	0.437	0.261	383	1055	2.75	0.718	2.75	2.41		
DCS 12	USA; sand and silt	38.0	0.510	0.420	0.261	3053	7040	2.31	0.603	2.31	2.02	
DCS 13-1	Ontario-site A; sand, silt, and clay with some gravel	11.4	0.305	0.379	0.261	467	1313	2.81	0.734	2.81	2.44	
DCS 13-2	11.2	0.305	0.379	0.261	453	1463	3.23	0.843	3.23	2.81		
DCS 13-3	8.5	0.305	0.379	0.261	246	710	2.89	0.755	2.89	2.51		
DCS 13-4	8.4	0.305	0.379	0.261	245	710	2.90	0.756	2.90	2.52		
DCS 13-5	12.5	0.305	0.384	0.261	545	1463	2.68	0.700	2.68	2.33		
DCS 13-6	15.1	0.305	0.346	0.258	749	1314	1.75	0.453	1.75	1.52		
DCS 14-1	Ontario-site B; silty sand	34.8	0.305	0.431	0.261	1150	2435	2.12	0.553	2.12	1.85	
DCS 14-2	16.5	0.305	0.442	0.261	300	820	2.73	0.712	2.73	2.39		
DCS 15-1	Atlantic Coastal	13.0	0.254	0.518	0.270	168	422	2.52	0.680	2.52	2.22	
Pile no.	Site & description	Depth, D (m)	Dia, B (m)	OCR	K_o	β_p	Q_{uap} (kN)	Q_{um} (kN)	Q_{um}/Q_{uap}	S_C	α	λ
---------	---------------------	--------------	-----------	-----	-------	--------	-------------	-------------	-----------------	------	-------	------
UCR 1	Boston; clay	45.5	0.41	2	0.664	0.379	4914	4325	0.88	158	0.47	0.14
UCR 2	Boston; clay	41.8	0.31	2	0.721	0.353	2826	1921	0.68	85	0.56	0.13
UCR 3	Philippines; sand	57.0	0.41	1	0.470	0.258	3129	2039	0.65	88	0.41	0.09
UCR 4-1	Puerto Rico; silty clay with sand	21.65	0.30	0.192	0.730	1782	1854	1.04	183	0.50	0.19	
UCR 4-2		19.8	0.30	8	1.392	0.914	1893	1042	0.55	199	0.28	0.11
UCR 4-3		22.9	0.30	8	1.372	0.964	2617	2275	0.87	271	0.39	0.17
UCR 5	Brazil; silty clay	40.0	0.42	1	0.470	0.258	5352	3136	0.59	198	0.30	0.08
UCR 6	LA; sandy silty clay	13.0	0.46	6	1.232	0.556	1165	1499	1.29	104	0.77	0.25
UCR 6-2		17.7	0.46	4	0.900	0.524	2121	2084	0.98	171	0.48	0.16
UCR 7	Texas; stiff clay	31.0	0.32	3	0.927	0.367	2341	2898	1.24	175	0.53	0.17
UCR 8	Brazil; clay silt	14.0	0.18	1	0.531	0.250	214	224	1.04	63	0.58	0.12
UCR 9-1	China; muck clay	38.2	0.40	1	0.500	0.255	2463	2550	1.04	95	0.56	0.14
UCR 9-2	China; sandy clay	24.8	0.40	5	1.103	0.606	2562	2613	1.02	119	0.70	0.22
UCR 9-3		19.6	0.30	7	1.318	0.725	1460	1500	1.03	113	0.72	0.24
UCR 10	Canada; silty clay	36.0	0.36	3	0.852	0.454	2510	3430	1.37	116	0.73	0.23
UCR 11	U.S.; clay	8.2	1.37	7	1.323	0.674	1753	2872	1.64	106	0.77	0.36
UCR 12-1	Malaysia; marine clay	35.5	0.25	0.531	0.250	865	545	0.65	38	0.81	0.07	
UCR 12-2		14.5	0.25	2	0.735	0.346	230	274	1.19	45	1.00	0.23
UCR 12-3		23.5	0.25	1	0.531	0.250	404	441	1.09	59	0.63	0.13
UCR 12-4		11.5	0.25	2	0.735	0.346	177	179	1.01	40	0.99	0.20
UCR 13-1	Malaysia; silty clay	14.5	0.30	6	1.215	0.668	1083	1310	1.21	114	0.84	0.28
UCR 13-2	Malaysia; sandy clay	14.2	0.35	5	1.103	0.606	1077	1589	1.48	105	0.41	0.35
UCR 13-3	Malaysia; sandy clay	18.7	0.25	3	0.828	0.472	1024	874	0.85	145	0.41	0.14
UCR 14	Malaysia; clayey silt	28.5	0.40	1	0.459	0.259	2531	2163	0.85	159	0.38	0.10
UCR 15-1	Malaysia; soft marine clay	43.0	1.00	0.679	0.373	7405	6850	0.93	150	0.34	0.11	
UCR 15-2		57.5	1.00	2	0.604	0.397	11689	7909	0.68	150	0.29	0.09
UCR 15-3		33.8	1.00	3	0.828	0.472	5701	5730	1.01	105	0.51	0.17

K_o = in-situ K; β_p = predicted beta value; Q_{uap} = predicted compression side resistance; Q_{um} = measured compression side resistance; β_m = measured beta value; $(K/K_o)_{um}$ = back-calculated stress factor.

Table 4. Basic Information and Side Resistance Analysis Result for Undrained Compression Round Section (UCR) Tests.
Table 5. Basic Information and Side Resistance Analysis Result for Undrained Compression Square Section (UCS) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia. B (m)	OCR	K_u	β_p	Q_u^d (kN)	Q_u^e (kN)	Q_u^{d/e}	α(CIUC)	Q_u ^(CIUC)	λ^b
UCS 1-1	Singapore; marine clay	26.0	0.280	2	0.735	0.346	1426	2038	1.43	46	1.54	0.38
UCS 1-2	Malaysia; silt and clay	17.4	0.350	5	1.059	0.678	2513	3061	1.22	109	0.77	0.28
UCS 2-2	Singapore; clay and silt	14.7	0.300	6	1.179	0.755	1712	2412	1.41	101	0.72	0.27
UCS 2-3	Mexico; clayey soil	16.8	0.250	5	1.059	0.678	1673	2162	0.97	107	0.59	0.22
UCS 2-4	California; lean to fat clay	21.0	0.355	2	0.650	0.384	2629	2164	0.82	180	0.55	0.16
UCS 2-5	London; London clay	8.5	0.305	14.4	1.847	0.855	698	702	1.01	146	0.59	0.23
UCS 2-6	London; London clay	4.4	0.305	25.3	2.679	1.579	328	291	0.89	127	0.54	0.23
UCS 2-7	Guiana; Demerara clay	12.0	0.305	5	1.129	0.531	345	280	0.81	39	0.76	0.19
UCS 2-8	Australia; silt clay	39.0	0.350	1	0.378	0.200	2896	3292	1.14	116	0.66	0.15
UCS 2-9	Louisiana; clays and silts	42.0	0.275	1	0.485	0.257	3304	3806	1.15	118	0.89	0.20
UCS 14	India; soft to stiff clay	22.5	0.400	3.7	0.916	0.541	2888	1472	0.51	168	0.31	0.11
UCS 15	Carbondale; silty clay	6.1	0.305	15	2.320	1.800	320	631	1.98	68	0.70	0.59

OCR = overconsolidation ratio; K_u = in-situ K; β_p = predicted beta value; Q_u^d = predicted compression side resistance; Q_u^e = measured compression side resistance; α(CIUC) = undrained shear strength from CIUC test; λ^b = calculated lambda; α(CIUC) = calculated alpha; h_e = calculated lambda.
Table 6. Basic Information and Side Resistance Analysis Result for Drained Uplift Round Section (DUR) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia., B (m)	K_{so}	β_p	Q_{sup}	Q_{sum}	Q_{sum}/Q_{sup}	β_{pm}	β_{pm}/β_p	(K/Ko)$_{bs}$
DUR_1	Spain; silty sand	18.0	0.91	0.412	0.262	1174	1986	1.69	0.434	1.66	1.45
DUR_2-1	Miliao, Taiwan; silty sand	25.0	0.50	0.441	0.261	1141	1429	1.25	0.325	1.25	1.09
DUR_2-2	Miliao, Taiwan; silty sand	27.0	0.50	0.441	0.261	1315	1799	1.37	0.355	1.36	1.19
DUR_2-3	Miliao, Taiwan; silty sand	23.0	0.50	0.441	0.261	979	1106	1.13	0.293	1.12	0.99
DUR_2-4	Miliao, Taiwan; silty sand	23.0	0.40	0.441	0.261	784	518	0.66	0.172	0.66	0.58
DUR_2-5	Miliao, Taiwan; silty sand	12.0	0.50	0.494	0.292	410	984	2.40	0.699	2.39	2.10
DUR_2-6	Miliao, Taiwan; silty sand	23.0	0.50	0.441	0.261	979	1534	1.57	0.407	1.56	1.37
DUR_2-7	Miliao, Taiwan; silty sand	25.0	0.50	0.441	0.261	1141	1841	1.61	0.419	1.61	1.41
DUR_2-8	Miliao, Taiwan; silty sand	12.0	0.50	0.494	0.292	410	1087	2.65	0.772	2.64	2.32
DUR_2-9	Miliao, Taiwan; silty sand	11.0	0.50	0.415	0.245	295	809	2.74	0.671	2.73	2.40
DUR_2-10	Miliao, Taiwan; silty sand	20.0	0.60	0.531	0.250	844	1483	1.76	0.455	1.82	1.61
DUR_4-1	Dramen, Norway; uniform loose normally consolidated sand	8.0	0.28	0.710	0.307	78	79	1.01	0.326	1.06	0.94
DUR_4-2	Dramen, Norway; uniform loose normally consolidated sand	16.0	0.28	0.562	0.243	243	257	1.06	0.270	1.11	0.99
DUR_4-3	Brazil; silty sand	23.0	0.28	0.440	0.242	469	274	0.58	0.143	0.59	0.52
DUR_5-1	Vietnam; clayey sand	41.0	0.90	0.359	0.189	2560	1652	0.75	0.124	0.76	0.67
DUR_5-2	Vietnam; clayey sand	41.0	0.90	0.359	0.189	2560	1662	0.75	0.125	0.77	0.68
DUR_6-1	Vietnam; clayey sand	20.4	0.60	0.532	0.249	1890	2171	1.15	0.297	1.19	1.06
DUR_6-2	Vietnam; clayey sand	20.4	0.60	0.523	0.251	1902	2421	1.27	0.331	1.32	1.16
DUR_6-3	Vietnam; clayey sand	20.4	0.60	0.574	0.240	1815	1231	0.68	0.172	0.72	0.64
DUR_7-1	Miliao, Taiwan; silty sand	23.0	0.50	0.441	0.261	981	1341	1.37	0.355	1.36	1.19
DUR_7-2	Miliao, Taiwan; silty sand	9.0	0.50	0.441	0.261	279	939	3.37	0.875	3.36	2.94
DUR_7-3	Miliao, Taiwan; silty sand	9.0	0.50	0.441	0.261	279	1006	3.61	0.937	3.59	3.15
DUR_7-4	Miliao, Taiwan; silty sand	14.0	0.50	0.441	0.261	670	1367	2.04	0.530	2.03	1.78
DUR_7-5	Miliao, Taiwan; silty sand	14.0	0.50	0.441	0.261	670	1485	2.22	0.576	2.21	1.94
DUR_7-6	Miliao, Taiwan; silty sand	11.0	0.50	0.441	0.261	498	1588	3.19	0.994	3.81	3.34
DUR_7-7	Miliao, Taiwan; silty sand	23.0	0.50	0.441	0.261	1856	1658	0.89	0.232	0.89	0.78

1 K_{so} = in-situ K; 2 β_p = predicted beta value; 3 Q_{sup} = predicted uplift side resistance; 4 Q_{sum} = measured uplift side resistance = Q_w/W; 5 β_{pm} = measured beta value; 6 (K/Ko)$_{bs}$ = back-calculated stress factor.

Table 7. Basic Information and Side Resistance Analysis Result for Drained Uplift Square Section (DUS) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia. B (m)	K_{so}	β_p	Q_{sup}	Q_{sum}	Q_{sum}/Q_{sup}	β_{pm}	β_{pm}/β_p	(K/Ko)$_{bs}$		
DUS_1	Iraq; uniform	11.0	0.285	0.455	0.260	312	408	1.31	0.341	1.31	1.15		
Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia. B (m)	OCR	K_o	β_p	Q_{um}	Q_{um}	\sum_s	\sum_C	$\sum_d(CIUC)$	$\alpha(CIUC)$	λ
----------------	---	-------------	-----------	-----	------	--------	--------	--------	--------	--------	----------	-----------	-------
UUR 1-1	Negeri, Malaysia; clay	17.5	0.50	1.062	0.243	984	600	0.61	37	0.67	0.099		
UUR 1-2	Negeri, Malaysia; clay	17.5	0.50	1.062	0.243	984	600	0.61	37	0.67	0.099		
UUR 1-3	Negeri, Malaysia; clay	7.5	0.50	0.741	0.342	245	360	1.47	27	1.24	0.271		
UUR 2-1	Bangkok, Thailand; soft clay	20.0	0.40	1.04	0.368	173	350	1.04	39	0.43	0.092		
UUR 2-2	Bangkok, Thailand; soft clay	20.0	0.40	1.04	0.368	173	350	1.04	39	0.43	0.092		
UUR 3-1	China; silty clay	43.0	0.50	1.72	0.081	941	631	0.67	20	0.59	0.039		
UUR 3-2	China; silty clay	43.0	0.50	1.72	0.081	941	631	0.67	20	0.59	0.039		
UUR 3-3	China; silty clay	43.0	0.50	1.72	0.081	941	786	0.84	20	0.70	0.049		
UUR 3-4	China; silty clay	43.0	0.60	1.72	0.081	1130	897	0.79	20	0.70	0.046		
UUR 3-5	China; silty clay	43.0	0.60	1.72	0.081	1130	927	0.82	20	0.72	0.048		
UUR 3-6	China; silty clay	43.0	0.60	1.72	0.081	1130	933	0.83	20	0.72	0.048		

* $K_o = \text{in-situ } K_o$; $\beta_p = \text{predicted } beta \text{ value}; \ Q_{um} = \text{predicted uplift side resistance}; \ Q_{um} = \text{measured uplift side resistance} = Q_{c-W}; \ Q_{um} = \text{measured uplift side resistance} = Q_{c-W}; \ Q_{um} = \text{measured uplift side resistance} = Q_{c-W}; \ Q_{um} = \text{measured uplift side resistance} = Q_{c-W};$ $\sum_s = \text{undrained shear strength from CIUC test}$; $\alpha(CIUC) = \text{calculated alpha}$; $\lambda = \text{calculated lambda}$
Table 9. Basic Information and Side Resistance Analysis Result for Undrained Uplift Square Section (UUS) Tests

Site & Pile no.	Test site/Soil description along pile depth	Depth, D (m)	Dia., B (m)	OCR a	K o b	β p c	Q sup d (kN)	Q sum e (kN)	Q sum/ Q sup f	s(CIUC) g	α(CIUC) h	λ i
UUS_1	Mexico; clayey soil	15.0	0.300	1	0.531	0.250	386	363	0.94	48.0	0.58	0.141
UUS_2-1	Canada-Site A; glacial clay	25.0	0.380	1	0.212	0.108	857	615	0.72	78.0	0.30	0.056
UUS_2-2	Canada-Site B; marine silt	23.8	0.380	1	0.224	0.114	819	629	0.77	76.0	0.33	0.063
UUS_3		47.2	0.380	1	0.100	0.047	1266	1090	0.86	50.0	0.44	0.034
UUS_4	Louisiana; clays and silt	25.0	0.356	2	0.234	0.124	833	477	0.57	182.0	0.19	0.031
UUS_5-1	Illinois; silt clay	6.4	0.305	12	1.744	0.923	265	381	1.44	75.0	0.56	0.356
UUS_5-2		6.4	0.305	10	1.588	0.841	241	303	1.26	75.0	0.56	0.283
UUS_5-3		6.4	0.305	10	1.588	0.841	241	191	0.79	75.0	0.45	0.178
UUS_6-1	Kinnegar N. Ireland; clayey silt	6.0	0.250	2	0.693	0.367	81	55	0.68	30.0	0.45	0.150
UUS_6-2		6.0	0.250	2	0.693	0.367	81	52	0.65	30.0	0.43	0.145
UUS_7	Singapore; clay & silt	11.6	0.320	2	0.693	0.367	616	597	0.97	121.0	0.44	0.173

OCR = overconsolidation ratio; K o = in-situ K; β p = predicted beta value; Q sup = predicted uplift side resistance; Q sum = measured uplift side resistance = Q l2 - W; s(CIUC) = undrained shear strength from CIUC test; α(CIUC) = calculated alpha; λ = calculated lambda

The load-displacement curve in Figure 2 can generally be simplified into three distinct regions: initial linear, curve transition, and final linear. Point L1 (elastic limit) corresponds to the load (Q L1) and butt displacement (ρ L1) at the end of the initial linear region, while L2 (failure threshold) corresponds to the load (Q L2) and butt displacement (ρ L2) at the initiation of the final linear region. Q L2 is defined as the “interpreted failure load or capacity” because beyond Q L2, a small increase in load gives a significant increase in displacement. The interrelationships between L2 and other interpretation criteria from the lower to higher bounds that was previously developed [17] are used to infer the required L2 if the test data are insufficient or are terminated prematurely.

![Figure 2. Regions of Axial Load-Displacement Curve](image-url)
geometry, side resistance, and their statistics are summarized in Tables 10 and 11 for compression and uplift, respectively. As can be seen, the range of geometry is broad and the diameters for the four categories are roughly comparable.

Table 10. Range of Driven Pile Geometry for Compression Side Resistance Analysis

Data	Number of tests	Statistics	Pile geometry (m)	D/B	Side resistance (KN)	
			Depth, D	Diameter\(^a\), B		
		Range	7.5-40.0	0.28-0.91	11.4-133.3	78-3028
		Mean	22.1	0.48	48.6	1062
		COV	0.37	0.33	0.43	0.73
DCR	37	Range	6.0-48.5	0.24-0.76	17.1-121.2	154-3203
		Mean	17.9	0.38	49.3	819
		COV	0.56	0.30	0.52	0.89
		Range	8.2-57.5	0.18-1.37	6.0-142.0	177-11689
DCS	44	Mean	26.9	0.50	63.7	3355
		COV	0.48	0.57	0.55	0.82
		Range	4.4-60.3	0.25-0.46	14.5-152.7	74-6827
UCR	37	Mean	18.7	0.33	56.6	1647
		COV	0.61	0.17	0.61	0.81
UCR	37	Range	8.0-41.0	0.30-0.90	19.8-82.1	78-2560
		Mean	19.8	0.50	39.7	1007
		COV	0.42	0.30	0.34	0.69
UCR	37	Range	3.0-23.5	0.20-0.80	15.0-70.6	26-2190
		Mean	14.5	0.40	38.3	561
		COV	0.35	0.48	0.47	0.95
UCUS	37	Range	7.5-43.0	0.40-0.60	15.0-86.0	81-1266
		Mean	31.0	0.50	59.8	517
		COV	0.46	0.14	0.41	0.75
UUR	11	Range	6.0-47.2	0.30-0.40	21.0-124.2	245-1130
		Mean	16.3	0.30	47.3	830
		COV	0.80	0.15	0.68	0.41

\(^a\) or width of square section; \(^b\) from \(\beta\) method

Table 11. Range of Driven Pile Geometry for Uplift Side Resistance Analysis

Data	Number of tests	Statistics	Pile geometry (m)	D/B	Side resistance (KN)	
			Depth, D	Diameter\(^a\), B		
		Range	8.0 - 41.0	0.30 - 0.90	19.8 - 82.1	78 - 2560
		Mean	19.8	0.50	39.7	1007
		COV	0.42	0.30	0.34	0.69
DUR	27	Range	3.0 - 23.5	0.20 - 0.80	15.0 - 70.6	26 - 2190
		Mean	14.5	0.40	38.3	561
		COV	0.35	0.48	0.47	0.95
DUS	31	Range	7.5 - 43.0	0.40 - 0.60	15.0 - 86.0	81 - 1266
		Mean	31.0	0.50	59.8	517
		COV	0.46	0.14	0.41	0.75
UUR	11	Range	6.0 - 47.2	0.30 - 0.40	21.0 - 124.2	245 - 1130
		Mean	16.3	0.30	47.3	830
		COV	0.80	0.15	0.68	0.41

\(^a\) or width of square section; \(^b\) from \(\beta\) method

\[
\alpha = \frac{Q_s (L_2)}{pD_{su}}
\]

in which \(Q_s (L_2)\) = interpreted side resistance using \(L_2\) method and \(s_u\) = mean undrained shear strength over the pile depth (D), and \(p =\) perimeter. To standardize the \(\alpha\)-\(s_u\) relationship for driven piles, the unique test type of undrained shear strength from consolidated-isotropically undrained triaxial compression (CIUC) [3] was adopted. The CIUC was selected as reference test because it is quite common and of good quality test. The \(s_u\) values from all other tests were converted to “equivalent”
s_u(CIUC). The procedures to convert are based on previous study [20] for unconsolidated-undrained triaxial (UU) and unconfined compression (UC) tests.

Figure 3 illustrates the correlations between α and undrained shear strength for compression and uplift loading, with regression equations given as:

Compression:

$$\alpha_{(CIUC)} = \frac{0.33 + 0.32}{s_u(CIUC)/p_a} \quad (n = 73; \text{SD} = 0.20; r^2 = 0.54) \quad (2)$$

Uplift:

$$\alpha_{(CIUC)} = \frac{0.22 + 0.14}{s_u(CIUC)/p_a} \quad (n = 22; \text{SD} = 0.25; r^2 = 0.32) \quad (3)$$

All data:

$$\alpha_{(CIUC)} = \frac{0.35 + 0.15}{s_u(CIUC)/p_a} \quad (n = 95; \text{SD} = 0.28; r^2 = 0.42) \quad (4)$$

The $s_u(CIUC)$ is normalized by p_a, which is the atmospheric stress (101.3 kN/m2) in the same unit as s_u. As can be seen in Figure 3, the trends of round and square piles for compression loading are somewhat comparable. The same is true for uplift loading. Comparisons of compression and uplift $\alpha_{CIUC-s_u(CIUC)}$ correlations show some interesting points. First, the coefficient of determination (r^2) is larger for compression which may be due to the limited number of data used for uplift. Second, the compression data points are seen above uplift data points indicating that α_{CIUC} values are generally smaller for uplift for a range of s_u values. Third, Figure 3 demonstrates that α for small values of $s_u(CIUC)/p_a$ produces steep regression lines for compression and uplift. Hence, the use of $\alpha_{CIUC-s_u(CIUC)}$ correlation for design may tend to be conservative and sensitive for relatively small s_u-values.

Based on the available load test data, α for compression is in the range of 0.28 to 1.77, whereas for uplift, α is in the range of 0.19 to 1.62.

![Figure 3. $\alpha_{CIUC} - s_u(CIUC)/p_a$ Correlations for Driven Piles](image)

The $\alpha_{CIUC-s_u(CIUC)}$ correlation for drilled shafts [4] is compared to the $\alpha_{CIUC-s_u(CIUC)}$ correlation developed in this study. The $\alpha_{CIUC-s_u(CIUC)}$ correlation by the previous study [4] was developed from compression and uplift data. For comparison purposes, the compression and uplift $\alpha_{CIUC-s_u(CIUC)}$ correlations were combined. The comparison is presented in Figure 4 wherein some significant points...
are observed. First, the coefficient of determination (r^2) is higher in drilled shaft than in driven pile. This implies that consistent α value can be expected from drilled shaft than from driven pile. This behavior can be attributed to the better adhesion of soil-pile interface of drilled shaft which is the result of its installation procedure. The effect of hammer pile driving on the pore water pressure may indirectly affect the soil-pile adhesion resulting to more variable behavior of driven pile. Second, for smaller s_u(CIUC)/p_o (< 0.50), the regression lines of drilled shaft and driven pile are converging. However, for larger values of s_u(CIUC)/p_o, drilled shaft tends to produce smaller values of α than driven pile. However, the difference is small. Third, the range of α for drilled shaft is smaller (with a maximum of < 1.0) than for driven pile (with a maximum of < 1.8).

\[
\alpha_{CIUC} = 0.30 + 0.17 / \left[s_u(CIUC)/p_o \right]
\]

$n=148$, SD=0.09, $r^2=0.66$

Figure 4. Comparison of Driven Pile and Drilled Shaft α_{CIUC} - s_u(CIUC)/p_o Correlations

3.1.2. α_{CIUC} - s_u(CIUC)/$\bar{\sigma}_v$ - $\bar{\sigma}_v$ correlations. The undrained shear strength ratio correlation, α_{CIUC}- s_u(CIUC)/$\bar{\sigma}_v$ - $\bar{\sigma}_v$, was developed in which the overburden pressure was taken into account. The correlations were developed directly from field load test database and are presented in Figures. 5(a) to 5(c) for compression, uplift, and all data combined. These figures also include the statistical data for the individual curve. Result for compression loading in Figure 5(a) shows that the regression lines are closer when the undrained shear strength ratio (USR) is greater than 1.0. This could be due to a more scattered data for USR <1.0. Although the data points are few for small values of $\bar{\sigma}_v$, the regression lines appear to be stiffer for these values. This behavior is similar to the result in Figure 3 that the design may tend to be conservative for small values of $\bar{\sigma}_v$. Furthermore, α_{CIUC} is decreasing with increasing s_u(CIUC)/$\bar{\sigma}_v$ and $\bar{\sigma}_v$. For uplift, the data were subdivided into two ratios only due to limited number of data points and the correlation is shown in Figure 5(b). Roughly, similar behavior is observed as in compression that the trend of α_{CIUC} is decreasing with increasing s_u(CIUC)/$\bar{\sigma}_v$ and $\bar{\sigma}_v$. The compression and uplift data were combined as shown in Figure 5(c) which indicates a wide variation of data for USR < 0.50.

The α_{CIUC} value from α_{CIUC}- s_u(CIUC)/$\bar{\sigma}_v$ - $\bar{\sigma}_v$ correlations can precisely be distinguished than using the conventional α_{CIUC}- s_u(CIUC) correlations. Therefore, the necessary α value can be reasonably selected. These correlations can be regarded as an alternative method of analysis for traditional α - s_u correlations or in verifying the required value of α for design.

3.2. β method

Approximate beta values can be predicted as follows:
\[\beta_p = K_o \left(\frac{K}{K_o} \right) \tan \left[\bar{\phi} \cdot \delta / \bar{\phi} \right] \] \hspace{1cm} (5)

Then, the average \(\beta_p \) over the pile depth was calculated by weighted average. The average \(\bar{\phi} \) and \(K_o \) are shown in Tables 2 to 5 and Tables 6 to 9 for compression and uplift loading, respectively. In this study, \(\delta / \bar{\phi} \) was taken as 0.90, and therefore all cases used \(\delta / \bar{\phi} = 0.90 \) for this calculation. For \(K/K_o \), a value of 1.0 was adopted which is a value within the range of small to large displacement piles. The detailed analysis results for the DCR, DCS, UCR, and UCS tests are given in Tables 2 to 5, respectively, whereas the results for the DUR, DUS, UUR, and UUS tests are given in Tables 6 to 9, respectively.

![Graph of Compression Results](attachment:compression_graph.png)

![Graph of Uplift Results](attachment:uplift_graph.png)
3.2.1. Drained load tests. The result for the drained loading is summarized in Table 12 including the statistics. For group 1 (compression loading), the predicted side resistance \((Q_{scm}) \) is compared to the measured side resistance \((Q_{sum}) \). The mean side resistance ratios \((Q_{scm}/Q_{scp}) \) are 2.25 and 2.44 for round and square cross section piles, respectively. The COVs for both results are more than 30%. The capacity ratios indicate an obvious underprediction of side resistance for both pile sections. For uplift, the predicted side resistance \((Q_{sup}) \) likewise is compared to the measured side resistance \((Q_{sum}) \) as shown in Table 12. The mean side resistance ratios \((Q_{sum}/Q_{sup}) \) are 1.64 and 1.88, for round and square cross section piles, respectively. The COVs for both results are around 50%. As in compression, the capacity ratios indicate an obvious underprediction of side resistance for both pile sections.

![Figure 5. Correlations for (a) Compression Loading, (b) Uplift Loading, and (c) All data](image)

Table 12. Statistics of \(Q_{sum}/Q_{scp} \) for Drained Load Tests

Data	Statistics	\(Q_{scm}/Q_{scp} \)	Data	Statistics	\(Q_{sum}/Q_{sup} \)
	n	37	n	27	
DCR	mean	2.25	DUR	mean	1.64
	COV	0.37	COV	0.53	
	n	44	n	31	
DCS	mean	2.44	DUS	mean	1.88
	COV	0.31	COV	0.50	
	n	81	n	58	
All data	mean	2.35	All	mean	1.77
	COV	0.34	data	COV	0.51

Comparison of compression and uplift side resistances is shown in Figure 6. For comparison, round and square piles were combined since their behavior is somewhat comparable. Results of all data combined for compression and uplift are likewise presented in Table 12. The mean side resistance ratios are 2.35 and 1.77 for compression and uplift load tests, respectively. The COVs are 0.34 and 0.51 for compression and uplift, respectively. The regression lines shown in Figure 6 indicate that \(Q_{scm} = 1.96 \ Q_{scp} \) and \(Q_{sum} = 1.51 \ Q_{sup} \) and are in good agreement with the mean results. Apparently, compression loading exhibits greater Underestimation of side resistance than uplift loading.
The underprediction of side resistance can be attributed to several factors. Underestimation of soil parameters is one possible reason because due to pile driving, the fact that the soil surrounding the pile becomes denser may have been neglected. Another reason may be due to the overconsolidation at shallower pile depths in which K_0 may have been underestimated. The stress coefficient K/K_0 which was assumed to be equal to 1.0 may be another reason.

The effects of pile depth on side resistance are examined in Figure 7. In general, the behavior for compression and uplift is comparable. It can be observed that the ratio of Q_{sm}/Q_{sp} generally decreases as the depth of the pile increases. However, for uplift square piles, the depth range is small and a wide variation is observed from the data points. The β method appears to be more consistent for long piles because it shows a wide range of results for short piles. In general, this phenomenon supports the above analysis that K_0 has been underestimated at shallower depths.
To verify the issue of underestimation of side resistance in drained soils, K/K_o values were back-calculated utilizing the field load test data. As a first approximation, the measured beta (β_m) can be computed as follows:

$$\beta_m = \frac{Q_s(L_2)}{[pD\bar{\sigma}_v]}$$

In which $Q_s(L_2)$ = interpreted side resistance from L2 method and $\bar{\sigma}_v$ = mean vertical effective stress. Using Eqs. 5 and 6 and with the assumptions of $\beta_m = \beta_p$ and $\delta/\phi = 1.0$, the mean K/K_o was back-calculated for the overall foundation depth of driven PC piles. Table 13 lists the statistical results for K/K_o. For compression, the K/K_o values are 1.98 for round piles and 2.15 for square piles. For uplift, the K/K_o values are 1.47 for round piles and 1.67 for square piles. Square piles yield somewhat larger stress factor which can be attributed to the larger perimeter of a square pile for a same area of a round pile. The larger perimeter can provide larger influence area of denser soil resulting to better side resistance.

The K/K_o values for drilled shafts were recommended by a previous study [4]. It is suggested that for drained tests, K/K_o are 0.73, 0.97, and 1.03 for slurry, casing, and dry construction respectively, whereas for undrained tests, K/K_o are 0.79, 0.88, and 1.12 for slurry, casing, and dry construction respectively. Comparison of these values with the K/K_o values developed for driven piles indicates that larger stress factor can be expected for driven PC piles. This can be attributed to the installation method of driven PC piles to which the driving procedure provides denser soil surrounding the pile.

Table 13. Back-Calculated K/K_o

Test type	Pile section	Statistics	K/K_o
Compression	DCR	mean	1.98
		COV	0.37
	DCS	mean	2.15
		COV	0.31
Uplift	DUR	mean	1.47
		COV	0.54
	DUS	mean	1.67
		COV	0.50

3.2.2. Undrained load tests.
A similar evaluation is done for undrained β analysis. The detailed analysis results for undrained load tests are presented in Tables 4 and 5 and Tables 8 and 9 for compression and uplift loading and are summarized in Table 14 including the statistics. The mean side resistance ratios (Q_{scm}/Q_{scp}) are 1.05 and 1.04, for round and square cross section piles, respectively. The COVs for round piles is 29% while it is 30% for square piles. The mean predicted side resistance is in quite good agreement with the mean measured side resistance. For uplift loading, the mean side resistance ratios (Q_{sum}/Q_{sup}) are 0.86 and 0.88, for round and square cross section piles, respectively. The COVs for both sections are 30%. The mean predicted side resistance is in somewhat good agreement with the mean measured side resistance. Contrary to drained load tests, it appears that the β method reasonably predicts the undrained side resistance of driven precast concrete piles.
Comparison of undrained compression and uplift side resistances is shown in Table 14 and Figure 8. Similar to drained tests, round and square piles were combined because their behavior is somewhat comparable. Results of all data combined for both compression and uplift in Table 14 indicate that the mean side resistance ratios are 1.05 and 0.87 for compression and uplift load tests, respectively. The COVs are 0.29 and 0.30 for compression and uplift, respectively. The regression analysis shown in Figure 8 indicates that $Q_{scm} = 0.92 Q_{scp}$ and $Q_{sum} = 0.81 Q_{sup}$. Uplift loading exhibits a slight overprediction of side resistance. However, in general, β method can reliably be used in undrained side resistance analysis of driven PC piles.

As in drained loading, examination on the effects of pile depth to side resistance for undrained condition is explored and is shown in Figure 9. In general, the scatter is substantial for undrained loading. The effect of depth on side resistance is not explicitly defined by the data points due to a wide range of results throughout the depth with Q_{sm}/Q_{sp} ranging from 0.5 to 1.50. Although it can also be noted that wider range (0.50 to 2.0) is observed for shallower depths (< 10 m). Hence, careful engineering judgment on the use of the β method in undrained conditions is suggested.
Table 14. Statistics of Q_{um}/Q_{up} for Undrained Load Tests

Data	Statistics	Q_{um}/Q_{up}	Data	Statistics	Q_{um}/Q_{up}
UCR	mean	1.05	UUR	mean	0.86
	COV	0.29		COV	0.30
UCS	mean	1.04	UUS	mean	0.88
	COV	0.30		COV	0.30
All	mean	1.05	All	mean	0.87
	COV	0.29		COV	0.30

3.3. λ method

Undrained load tests were evaluated using λ method. The value of λ for driven PC piles was back-calculated from field load test results as follows:

$$
\lambda = \frac{Q_u (L_2)}{pD(\sigma_{vm} + 2s_u)}
$$

In which all terms have been defined previously. Figures. 10(a) and 10(b) demonstrate the variation of λ to pile depth for compression and uplift loading, respectively. Both figures show a somewhat wider scatter for square piles than for round piles for shorter pile depths ($D < 30$ m). The combined round and square result presents the mean λ values for specified depths in the inclusive table. Result shows that λ generally decreases with increasing depth. Since the behavior of compression and uplift data is comparable, these data were merged to provide a relation applicable to both test types. The relation is shown in Figure 10(c) indicating a range of λ value for shorter piles (< 30 m) of 0.29 to 0.20 whereas for longer piles (> 30 m), λ value is ranging from 0.20 to 0.11. The variation of λ values can be adopted for side resistance analysis of driven PC piles. The λ method was likewise adopted by previous research [4] for drilled shaft in cohesive soils. Their findings indicated that λ method produces less reliable results when applied to drilled shafts. Comparison of the previous study [4] and this study reveals that lambda method is more applicable to driven piles than drilled shafts.
Figure 10. λ versus Depth for (a) Compression (b) Uplift Loading, and (c) All Data

4. Conclusion
Compression and uplift field load test data were utilized to evaluate the side resistance of driven precast concrete piles. For drained loading, β method was applied while for undrained loading, α, β, and λ methods were applied. Based on these analyses, the following conclusions emerge.

- For undrained loading, the $\alpha_{\text{CIUC}} - s_d(\text{CIUC})/p_e$ correlation is developed using field load test data and can be utilized for driven PC pile total stress analysis. For undrained loading, the correlation $\alpha_{\text{CIUC}} - s_d(\text{CIUC})/\sigma' - \sigma_e$ developed from field load test data can be regarded as an alternative base for driven PC pile total stress analysis.

- For drained loading, β method underpredicts the side resistance. The method is more consistent for long piles because it shows a wide range of results for short piles. For undrained loading, β
method reasonably predicts the side resistance. The suggested stress factor K/K_o for drained compression loading is 1.98 for round piles and 2.15 for square piles whereas for drained uplift loading, the suggested stress factor K/K_o is 1.47 for round piles and 1.67 for square piles. These values can substantially improve the pile capacity prediction using β method.

For undrained loading, the compression and uplift λ versus depth relations for driven PC piles are developed that can be utilized for pile analysis and design. The α, β, λ methods can reasonably be applied in driven piles under undrained loading conditions, whereas, β method can be suitable for driven piles in drained loading condition with the use of appropriate stress factors.

Acknowledgments

This study was supported by the Center for Research and Development, Adamson University and the National Science Council, Taiwan, under contract number: NSC 100-2221-E-033-073-MY3.

References

[1] O’Neill M W 2001 *J. Geotech. and Geoenvi. Eng.* Eng. 127 pp 1–16
[2] Lutenegger A J 2001 *International foundation congress and equipment expo*, ASCE Florida pp 9–17
[3] Chen Y J and Kulhawy F H 1994 *Case history evaluation of behavior of drilled shafts under axial & lateral loading Final Report TR-104601* (Palo Alto, California: Electric Power Research Institute)
[4] Chen Y J, Lin S S, Chang H W and Marcos M C 2011 *J. Mar. Sci. and Tech.*, 19 pp 210–221
[5] Tomlinson M J 1957 *4th International conference on soil mechanics and foundation engineering* 2 pp 66–71
[6] Stas C V and Kulhawy F H 1984 *Critical evaluation of design methods for foundations under axial uplift and compression loading Report EL-3771* (Palo Alto, California: Electric Power Research Institute)
[7] Randolph M F and Murphy B S 1985 *17th Offshore technical conference Houston* 1 pp 371–378
[8] Semple R M and Rigden W J 1986 *Grnd. Eng.* 19 pp 11–17
[9] Kulhawy F H and Jackson C S 1989 *Proc. Foundation engineering: Current principles and practices USA* pp 1011–1025
[10] Kulhawy F H, *Foundation engineering handbook (2nd Ed)* 1991 (New York: Van Nostrand Reinhold) pp 537–552
[11] Kulhawy F H, Trautmann C H, Beech J F, O’Rourke T D, McGuire W, Wood W A and Capano C 1983 *Transmission line structure foundations for uplift - compression loading Report EL-2870* (Palo Alto, California: Electric Power Research Institute)
[12] Vijayvergiya V N and Focht J A jr 1972 *4th Offshore technology conference* pp 865–874
[13] Kulhawy F H and Mayne P W 1990 *Manual on Estimating Soil Properties for Foundation Design Report EL-6800* (Palo Alto, California: Electric Power Research Institute)
[14] Hirany A and Kulhawy F H 1988 *Conduct & interpretation of load tests on drilled shaft foundations: Detailed guidelines Report EL-5915(1)* (Palo Alto, California: Electric Power Research Institute)
[15] Hirany A and Kulhawy F H 2002 *Deep foundations (GSP 116)* ed M W O’Neill & F C Townsend (Reston: American Society of Civil Engineers) pp 1018–1028
[16] Chen Y J and Fang Y C 2009 *J Geotech. and Geoenvi. Eng.* Eng. 135 pp 1056–1069
[17] Marcos M C, Chen Y J and Kulhawy F H 2013 *KSCE J. Civil Eng.* 17 pp 1–15
[18] Marcos M C and Chen Y J 2018 *IJETI* 8 pp 118–132
[19] Marcos M C 2013 *Ph.D. Dissertation* Chung Yuan Christian University, Taiwan pp 101-102
[20] Chen Y J and Kulhawy F H 1993 *J. Geotech. Eng.* 119 pp 1732–1750