Testing for SARS-CoV2

0. **Viral Culture: Gold Standard**
 - Requires BSL-4 Lab
 - Long TAT
 - Not commercially feasible

1. **PCR: current Gold Standard; 4-6 hours to run test, batched samples of up to 92 per run.**
 a. In viral transport media/universal transport media, phosphate buffered saline
 b. Unclear infectious dose, semi-arbitrary cut off of 35ct value
 i. Lower the ct value = higher viral load
 Roche cobas
 Abbot M100
 BD Max

2. **Rapid PCR assays**
 a. Either single sample at a time or batched, 15-45 minutes per sample
 b. Must perform on DRY SWAB sample (else, dilutional effect reduces sensitivity)
 Abbot ID Now: 15 min
 Cepheid Xpert Xpress: 45 min

Limitations: all were NP swabs diluted in VCM
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217789/pdf/main.pdf

Table 2

Positive and negative agreement of Abbott ID Now SARS-CoV-2 and Cepheid Xpert SARS-CoV-2 with Roche cobas SARS-CoV-2.

Cobas C ext{t} Category	ID Now (%, 95% CI)	Xpert (%, 95% CI)	Total
Total Positive	65 (73.9, 63.2-82.3)	87 (98.9, 92.9-99.9)	88
Low (> 30)	12 (34.3, 19.7-52.2)	34+ (97.1, 83.4-99.8)	35
Medium (20-30)	38 (100, 88.6-100)	38 (100, 88.6-100)	38
High (< 20)	15 (100, 74.7-100)	15 (100, 74.7-100)	15
Negative	25 (100, 83.4-100)	23 (92.0, 72.4-98.6)	25

Site	Total Samples Tested	ACOV+	INDCO+	ACOV+/ INDCO+	ACOV-	INDCO-	ACOV-/ INDCO-	Positivity	Positive Agreement	Negative Agreement	Performance Agreement (Kappa)
IMCC A	208	13	13	1	161	22%	71.74 (55.32, 83.54)	99.38 (95.09, 99.97)	.783 (.779, .788)		
IMCC B	125	39	17	0	69	44%	69.64 (55.74, 80.84)	100.0 (93.43, 100.0)	.711 (.706, .717)		
ED 1	105	26	11	0	68	35%	70.27 (52.83, 83.56)	100.0 (93.33, 100.0)	.751 (.744, .757)		
ED 2	31	12	3	0	16	50%	80.0 (51.37, 94.69)	100 (75.92, 100.0)	.803 (.792, .814)		
ED 3	55	29	3	1	22	60%	90.63 (73.83, 97.55)	95.65 (76.03, 99.77)	.852 (.844, .861)		
Overall	524	139	47	2	336	35%	74.73 (67.74, 80.67)	99.41 (97.64, 99.89)			
Table 1. Positive percent agreement (PPA) of the Abbott ID Now and Diasorin Simplexa assays for the detection of SARS-CoV-2 was determined using a modified CDC assay as the reference standard

	Detected	Not Detected	PPA (95% CI)
Abbott ID Now	90	6	94% (87-98%)
Diasorin Simplexa	92	4	96% (90-99%)
Modified CDC assay	96	0	Not applicable

Table 2. Clinical performance comparison of three sample-to-answer EUA molecular assays for the detection of SARS-CoV-2 (n = 108).

Molecular Assay	Reference Standard a	(± 95% CI) b	Kappa (κ)d	PPA	NPA	
Xpert Xpress	Positive	57	0	0.98 (1-0.95)	98.3% (0.91-1)	100% (0.93-1)
	Negative	1	50			
ID NOW a	Positive	50	0	0.87 (0.96-0.78)	87.7% (0.76-0.95)	100% (0.93-1)
	Negative	7	50			
ePlex	Positive	53	0	0.91 (0.99-0.83)	91.4% (0.81-0.97)	100% (0.93-1)
	Negative	5	50			

these were NP swabs in VCM.
3. Rapid Antigen Testing

https://www.fda.gov/media/137885/download

a. Quidel Sofia 2 test

Study 1: Due to the limited availability of direct swabs, the clinical performance of the SOFIA 2 SARS Antigen FIA was established with a study using one hundred forty-three (143) previously characterized frozen NP swabs originally collected in 3-mL viral transport media.

SARS-CoV-2 Molecular	POS	NEG	Total	PPA	95% CI
Sofia 2 SARS Antigen FIA Assay	POS	47	0	47	NPA
	NEG	12	84	96	PPV
Total	59	84	143	NPV	88%

Prevalence: 41%, 34%, 49%
% agreement: 92%
4. Antibody Testing

12 tests EUA approved at this time

Study 2:
A limited study using forty-eight (48) direct nasal swabs was performed. The samples were sequentially enrolled from four locations and tested fresh. The SOFIA 2 SARS Antigen FIA was compared to the Lyra SARS-CoV-2 Assay (EUA200016/A002), an extracted RT-PCR assay.

	Lyra SARS-CoV-2 Assay EUA200016/A002			
	POS	NEG	Total	
Sofia 2 SARS	4	0	4	
Antigen FIA Assay				
	1	43	44	
	Total	5	43	48
	Sensitivity	80.0%	37.6%	96.4%
	Specificity	100.0%	91.8%	100.0%
	PPV	100.0%	51.0%	100.0%
	NPV	97.7%	88.2%	99.6%
	Prevalence	10.4%	4.5%	22.2%
	% agreement	97.9%		

Some qualitative, some quantitative, some IgG, some combo of IgG/M, some IgG, IgM, IgA

Timing is very important in regards to when antibodies may be present
- IgG testing may be best to consider at least 2 weeks or more after disease
- Unclear assay sensitivity in immunocompromised patients
- Unclear if temporary or sustained antibody presence

Unclear if these are neutralizing antibodies (e.g., protective antibodies)

https://www.fda.gov/media/137383/download (Abbott IgG quantitative)

- The SARS-CoV-2 IgG assay is intended for use as an aid in identifying individuals with an adaptive immune response to SARS-CoV-2, indicating recent or prior infection.
- At this time, it is unknown for how long antibodies persist following infection and if the presence of antibodies confers protective immunity.
- The SARS-CoV-2 IgG assay should not be used to diagnose acute SARS-CoV-2 infection.
• IgG antibodies to SARS-CoV-2 are generally detectable in blood several days after initial infection, although the duration of time antibodies are present post-infection is not well characterized.
• Individuals may have detectable virus present for several weeks following seroconversion.

Still unknown:

1) Infectious Dose
2) Number of Asymptomatic Patients and their viral loads (?lower viral load if asymptomatic)
3) How long shedding of viable and non-viable virus present in nares, NP, sputum, etc. in different patients.