Isotope quantum effects in the metallization transition in liquid hydrogen

Citation for published version:
Van De Bund, S, Wiebe, H & Ackland, GJ 2021, 'Isotope quantum effects in the metallization transition in liquid hydrogen', Physical Review Letters, vol. 126, no. 22, 225701, pp. 1-6.
https://doi.org/10.1103/PhysRevLett.126.225701

Digital Object Identifier (DOI):
10.1103/PhysRevLett.126.225701

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physical Review Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Quantum effects in condensed matter normally only occur at low temperatures. Here we show a large quantum effect in high-pressure liquid hydrogen at thousands of Kelvins. We show that the metallization transition in hydrogen is subject to a very large isotope effect, occurring hundreds of degrees lower than the equivalent transition in deuterium. We examined this using path integral molecular dynamics simulations which identify a liquid-liquid transition involving atomization, metallization, and changes in viscosity, specific heat and compressibility. The difference between H_2 and D_2 is a quantum mechanical effect which can be associated with the larger zero-point energy in H_2 weakening the covalent bond. Our results mean that experimental results on deuterium must be corrected before they are relevant to understanding hydrogen at planetary conditions.

Hydrogen, despite being the simplest element on the periodic table, exhibits rich physics at high pressures. Of particular interest is the insulator-to-metal transition, wherein the system transforms from an insulating molecular phase to a conducting phase. Extremely high static compression is required to reach the metallic solid[1, 2], but transition to a metallic liquid has been observed in both static[3–6] and dynamic[7–9] compression experiments. This liquid-liquid phase transition (LLPT) is of vital importance to the modelling of the interior of Jovian-like planets[10–12], as the metallization of hydrogen is thought to cause the demixing of hydrogen and helium at pressure[13]. Despite this importance, the nature of the LLPT is not fully understood. The prevailing hypothesis is that the LLPT is a first order transition between an insulating molecular liquid and a conducting atomic one, terminating at a critical point between 1000 and 1500 K. This is supported by density functional theory (DFT)[14–18] and quantum Monte Carlo[19–22] simulations. However, a quantitative agreement between theory and experiment has not yet been achieved, and the consensus in modelling was recently challenged[23].

The hydrogen phase diagram exhibits features which are impossible in classical physics. Such features are typically only seen at low temperatures and involve nuclear quantum effects (NQE). One example is the solid "Phase I" of hydrogen, which extends to zero temperature but involves freely-rotating molecules. Then there is a significant difference between H_2 and D_2 in the low temperature phase boundary between Phase I and the broken-symmetry Phase II, in which both isotope mass and quantum spin statistics play a role[24].

However, "Low-temperature" begs the question "Low compared to what?" No isotope effect is known for the melting line in hydrogen, and nuclear quantum effects are often ignored at the kiloKelvin temperatures of liquid hydrogen. The melting transition involves changes in intermolecular bonding, which is a relatively weak interaction. The LLPT, on the other hand, involves breaking the covalent bonds. The zero-point energy of H_2 is 78.46 meV (~ 910 K) higher than that of D_2[25] and so the covalent bonding in H_2 is significantly weaker. Consequently, isotope effects at an unprecedentedly high temperature could be manifested in the experimentally observable difference in the LLPT phase boundary. Indeed, a 700 K difference in the LLPT phase lines of H_2 and D_2 was reported by Zaghoo et al. by monitoring reflectivity in a laser-heated diamond anvil cell[5]. Interestingly, a spectroscopic study conducted by Jiang et al. one year later did not detect an appreciable isotope effect[6].

There are numerous pitfalls in calculating the hydrogen LLPT (see Supplementary Material for further discussion[26]). Cheng et al. recently demonstrated how many previous studies with less than 250 atoms and trajectories several ps in length were stuck in a solid rather than molecular-liquid phase. Γ-only k-point sampling leads to unphysical chain-like "polyhydrogen" structures [27] and inclusion of NQE[19, 21, 22, 28] is essential to finding any isotope effect because in classical theory, the phase boundaries of hydrogen and deuterium are identical[29]. Such a difference undermines the relevance of experiments on deuterium to determine the hydrogen equation of state - a crucial component of planetary and exoplanetary science.

Another challenge for DFT is that most exchange-correlation functionals cannot describe both molecular and metallic phases well, further contributing to the wide spread of results for the LLPT line from DFT (see Table S1 in Supplementary Material[26]). Functionals which do not correctly describe the high density limit of the exchange energy are particularly poor for describing molecule-atom transitions[30]. Here we adopt the BLYP functional for the majority of our results[31, 32] which has been shown to be the closest to Quantum Monte Carlo for molecular systems, including molecular metals which are problematic with PBE[33]. Nevertheless, by comparing to additional simulations performed using PBE[34] and vdw-DF[35] we also show that while the location of the phase boundary strongly depends on the functional, the isotope effect is not nearly as sensitive.

In this paper we use the ring polymer path integral molecular dynamics (PIMD) technique[36] in combina-
tion with DFT to calculate the LLPT boundary for classical H$_2$ and quantum H$_2$/D$_2$. We demonstrate the large isotopic shift by monitoring various properties of the system along five isotherms ranging from 1000 to 2500 K for both H$_2$ and D$_2$. This isotope shift is impossible in classical physics, and is conclusive evidence of important NQEs at kiloKelvin temperatures.

One measure of the LLPT is the fraction of H$_2$ molecules present in the system. This can be obtained by tracking the height of the first peak in the radial distribution function (RDF), which corresponds to the molecular bond length. The results in Fig. 1a) clearly show dissociation occurring for both H$_2$ and D$_2$, as evidenced by a drop in peak height with increasing pressure. The relative sharpness and magnitude of this drop are temperature-dependent, with the low temperature isotherms exhibiting the sharpest, largest drop and high temperature isotherms exhibiting smooth, small changes in peak height. The isotope effect is observed here as a shift in the phase boundary between H$_2$ and D$_2$. This shift is on the order of 250 K.

![Fig. 1](image1)

Fig. 1 Evidence of molecular dissociation. (a) Height of first (normalized) RDF peak, which corresponds to the molecular bond length. While the peak becomes relatively small, it does not disappear even in the atomic phase. (b) Fractions of H$_2$ and D$_2$ dimers present, where a stable dimer is defined as two H or D atoms that are less than 0.9 Å apart for at least 85 fs. Example RDFs are shown in the supplementary materials.

The change in RDF provides clear evidence of a transition, but does not explicitly consider the existence of molecules and does not distinguish between possible H$_n$ clusters for n higher than 2. A more intuitive description of the dissociation can be found by considering the fraction of atoms that form a molecule. This is extracted from the interatomic distances, noting that the molecules continually break apart and reform, akin to a chemical reaction H$_2$ \rightarrow 2H, which naturally introduces the idea of a molecular lifetime. We define a molecule to be two hydrogen or deuterium atoms less than 0.9 Å apart for at least 85 fs. This allows for at least 10 vibrations in the case of hydrogen. This choice is motivated by the limits of experimental detectability: it corresponds to a spectroscopic natural linewidth of 400 cm$^{-1}$.

The resulting dimer fraction across the PIMD runs is shown in Fig. 1b). The limiting cases of high and low temperatures show that the dimer fraction tends to the expected values of 0 and 1 in the atomic and molecular limits, although pressures near the transition here will have a sizeable fraction of the liquid already dissociated. Like the RDF peak height, the dimer fraction drops steeply across the transition pressure for all isotherms. However, this drop can only be considered to be discontinuous around 1000 K for hydrogen and up to around 1250 K for deuterium; at higher temperatures the transitions become a crossover. This suggests that the critical point of the LLPT likely lies between 1000 and 1500 K for both isotopes, and is higher in deuterium.

![Fig. 2](image2)

Fig. 2 Diffusion constant D as calculated from mean square displacements for H$_2$ and D$_2$, showing evidence of increasing diffusivity across the dissociation with a clear isotope effect.

The onset of dissociation is also marked by an increase in the diffusivity. Fig. 2 shows calculated diffusion constants D for all isotherms, where it can be seen that D markedly increases in the high pressure atomic phase. The curves are qualitatively similar, allowing for the two-times larger deuterium mass, but an isotope effect is seen in that the H$_2$ transition is shifted towards lower pressures. The results are qualitatively similar to results obtained previously in AIMD calculations[16, 18] which showed that the proton diffusivity increases rather than decreases with increasing pressure, meaning that the high pressure phase has lower viscosity. The diffusion constant remain nonzero in all simulations above the melt line and...
a close look at the mean squared displacement for these trajectories (shown in the Supplementary Materials) indicates that even at low temperatures, the simulations are indeed of a flowing liquid.

The LLPT is perhaps best thought of as a chemical reaction between distinct species H and H$_2$. This is in part because the transition is anomalous compared to first order transitions usually encountered, as there is no phase separation in the coexistence region: atomic and molecular hydrogen are continually interconverting, and therefore appear miscible[18]. Nevertheless, the location of the phase boundary can be established by considering various thermodynamic quantities. Since the system undergoes a small volume change across the isotherm either abruptly or gradually depending on the temperature, this will create a clear signature in the isothermal compressibility $\kappa_T = -\left(\partial V / \partial P\right)_T / V$. Here, it is estimated using the equilibrated NVT volumes and pressures using finite differences. These results are shown in Fig. 3a), along with a fit to obtain the location of the peak. In theory, κ_T should diverge at a first-order transition and show a peak along an extension of the phase boundary beyond the critical point (the ‘Widom line’). While this cannot happen in a finite sized system, the peaks can still be seen to be very sharp for both isotopes at low temperatures. For both isotopes the peaks also widen at higher temperatures, which is indicative of a crossover rather than a phase transition.

The other thermodynamic quantity considered is the heat capacity at constant volume C_V, as this can be calculated directly from fluctuations in the internal energy. This should also diverge at a first-order transition and show a peak along the Widom line, due to the energy required to break the bonds. To calculate C_V in the PIMD formalism, some modifications must be made to account for interactions between beads. For these results, the centroid virial heat capacity is employed (see Supplementary Materials) to calculate the heat capacity of the full PIMD ring polymer system[37]. The results are shown in Fig. 3b) for the various isotherms for both H$_2$ and D$_2$. The heat capacity is also clearly peaked like κ_T, but noisier due to it being a quantity obtained from fluctuations.

In both the quantities considered, the D$_2$ peaks are shifted compared to H$_2$ which further identifies the isotope effect. The magnitude of the peaks in both the heat capacity and compressibility is also larger in deuterium than hydrogen at lower temperatures. Both the quantities also show broadening of their respective peaks at higher temperatures, clearest in the compressibility, where the transition becomes a crossover rather than a thermodynamic phase transition.

The prevailing belief about the LLPT is that metallization and dissociation occur together,[20, 21] but in principle there is no reason that these two phenomena must coincide exactly. Furthermore, metallization can be observed at a distinctive pressure even beyond the crit-

![Fig. 3](image-url) (a) Estimated isothermal compressibility $\kappa_T = -\left(\Delta V / \Delta P\right)_T / V$ calculated using fixed volumes and equilibrated pressures for both isotopes. Solid lines are fits consisting of an exponential plus a Gaussian function. The centre of the Gaussian peak was then used to establish the location of the phase boundary and Widom line. (b) Heat capacities of the full ring polymer systems for H$_2$ and D$_2$ established from fluctuations in energy estimators. Solid lines are a guide to the eye.

![Fig. 4](image-url) Calculated DC electrical conductivity for H$_2$ and D$_2$ showing the onset of metallization. Scatter points are conductivities of individual samples. A tolerance of 2000 S/cm for metallization is indicated by dotted lines.
tical point, perhaps by a percolation transition[38]. On-
set of metallization in our simulations was monitored by
calculating the Kubo-Greenwood conductivity[39] from
snapshots taken from the PIMD trajectories. These re-
results are shown in Fig. 4, where a minimum conduc-
tivity of 2000 S/cm was used to distinguish the metallic
phase[7, 40]. The conductivity steeply increases by two
orders of magnitude at the transition pressure, coincid-
ing very closely with dissociation in Fig. 1: hydrogen
metallizes at lower temperature than deuterium. Our re-
results show that at all temperatures hydrogen has higher
conductivity than deuterium. Interestingly, this was
noted experimentally by Weir et al.[7] but ascribed to
a large difference in density, and the exact values remain
uncertain[41].

The results are summarized in Fig. 5 on a PT phase
diagram, established using peaks in the isothermal com-
pressibility as this was found to give the most distinctive
peaks. The Clapeyron slope is observed to be negative,
which is consistent with the small but negative volume
change across the transition. The volume change and
Clapeyron slope are slightly larger for D$_2$; configurational
entropy cannot be calculated precisely, but from volume
and slope we estimate it to be about $k_B/2$ per molecule,
consistent with the extra degree of freedom from break-
ing the bond. The isotope effect can be clearly observed
as a shift in the transition pressure, which is largest in
magnitude at lower temperatures where NQE effects are
most significant.

The location of the phase boundary is largely influ-
enced by two contributions. Firstly, including NQE sig-
ificantly lowers the transition pressure. This be seen
from complementary AIMD runs using BLYP and clas-
cial H nuclei shown in Fig. 5b), where the phase bound-
ary is obtained from the isothermal compressibility using
identical methods to the PIMD runs.

Secondly, the location of the LLPT is very sensitive
to the choice of exchange-correlation functional, which
can shift the whole phase boundary by as much as 100
GPa[18]. This is mainly due to the well-known tendency
of the PBE-based functionals[34] towards easy metalliza-
tion compared with functionals which correctly describe
the high density-gradient limit[30]. Additional PIMD
runs, shown in Fig. 5b) (further discussed in the Sup-
plementary Material[26]), reveal a similarly significant
spread in the location of the phase boundary.

Nevertheless, the isotope shift is found to be far less
sensitive to the choice of functional (in contrast to other
systems with significant NQE such as liquid water[21]),
giving a shift of almost 30 GPa at 1000 K. The magnitude
of the isotope effect is smaller than observed in experi-
ments by Zaghoo et al.[5], but more similar to CEIMC
simulations.

The critical point is difficult to locate with MD. The
discontinuous changes in thermodynamic properties be-
low the critical point are blurred by finite size effects, and
anomalous peaks remain along the Widom lines beyond
T_c. Both the molecular dissociation and metallization
curves match up with the thermodynamic phase bound-
dary below the critical point, and thus also exhibit a quan-
titatively similar isotope effect, but beyond this the disso-
ciation line in particular occurs at slightly lower pressures
than the Widom line.

We have shown the existence of a strong isotope effect
of several hundred Kelvins in the liquid-liquid transition
in hydrogen, with the transformation occurring at lower
temperatures and pressures in hydrogen than deuterium,
much lower than in previous work using classical nu-
clei. There is no such effect at the melt line, nor (by defi-
nition) in Born-Oppenheimer dynamics. So we can
confidently ascribe it to the different zero-point energy
of hydrogen and deuterium vibrations; the difference in
these $\frac{1}{2} \hbar (\omega_H - \omega_D)$ has the appropriate order of magni-
tude of hundreds of Kelvin.

The strong dependence of the calculated LLPT line
on the exchange-correlation functional makes it impossi-
ble to confidently state the precise location of the LLPT.
Moreover, above the critical point the transition becomes
a crossover and the associated Widom lines depend on
the precise quantity being measured. In this work, the
magnitude of the isotope effect is likely to be more ac-
curate than the exact location of the LLPT line. While
the exact location of the boundary will likely remain con-
tentious until experimental results can pin it down more
accurately, ab initio PIMD methods are clearly effective
in showing that an isotope effect is indeed present the
LLPT. They also emphasize that experiments on deu-
terium cannot be used as a proxy for the hydrogen phase
diagram.

It is well known the quantum effects are only important
at ”low” temperatures. We show here that low tempera-
ture must be interpreted in terms of the relevant quantum
energy scales, which for molecular vibration modes can
mean shifts in phase boundaries of hundreds of Kelvins
at temperatures of thousands of Kelvins. These con-
clusions have general applicability to other molecular-
association transitions, such as nitrogen and superionic
ammonia and water[9, 44–46], meaning that experiments
on deuterated samples will significantly overestimate the
transition pressures and temperatures compared with the
natural material.

ACKNOWLEDGEMENTS

We acknowledge the support of the ERC grant
HECATE and studentship funding from EPSRC un-
der grant ref EP/L015110/1. This work used the
Cirrus UK National Tier-2 HPC Service at EPCC
(http://www.cirrus.ac.uk) funded by the University of
Edinburgh and EPSRC (EP/P020267/1). We are grate-
ful for computational support from the UK national high
Fig. 5 Summary of the results obtained in this work. (a) Location of the phase boundary as established from peaks in the compressibility. The isotope effect is largest in magnitude at lower temperatures. Melting curve\cite{42} and the likely continuation of the melting line beyond the I-IV-liquid triple point\cite{43} shows where the LLPT phase line is expected to rejoin the solid phase lines. (b) Comparison of the compressibility phase line to the dissociation curve established from peaks in the gradient of the dimer fraction and the metallization line along with MD runs using classical H nuclei, all using BLYP. Additional NPT runs using PBE and vdw-DF functionals at 1000 K are also shown. Snapshots on either side of the transition are PIMD runs of H_2 at 1000 K using BLYP, for 100 GPa and 250 GPa, with bonds highlighted in red.

performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC grant ref EP/P022561/1.

REFERENCES

[1] R. P. Dias and I. F. Silvera, Science 355, 715 (2017).
[2] P. Loubeyre, F. Occelli, and P. Dumas, Nature 577, 631 (2020).
[3] V. Dzyabura, M. Zaghoo, and I. F. Silvera, Proceedings of the National Academy of Sciences 110, 8040 (2013).
[4] M. Zaghoo, A. Salamat, and I. F. Silvera, Phys. Rev. B 93, 155128 (2016).
[5] M. Zaghoo, R. J. Husband, and I. F. Silvera, Phys. Rev. B 98, 104102 (2018).
[6] S. Jiang, N. Holtgrewe, Z. M. Geballe, S. S. Lobanov, M. F. Mahmood, R. S. McWilliams, and A. F. Goncharov, Advanced Science 7, 1901668 (2020).
[7] S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Letters 76, 1860 (1996).
[8] M. Knudson, M. Desjarlais, A. Becker, R. Lemke, K. Cochrane, M. Savage, D. Bliss, T. Mattsson, and R. Redmer, Science 348, 1455 (2015).
[9] P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono, J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson, N. B. Meezan, S. Le Pape, G. W. Collins, R. Jeanloz, and R. J. Hemley, Science 361, 677 (2018).
[10] A. Becker, N. Nettelmann, U. Kramm, W. Lorenzen, M. French, and R. Redmer, Proceedings of the International Astronomical Union 6, 473 (2010).
[11] D. C. Swift, J. Eggert, D. G. Hicks, S. Hamel, K. Caspersen, E. Schwegler, G. W. Collins, N. Nettelmann, and G. Ackland, The Astrophysical Journal 744, 59 (2011).
[12] G. Chabrier, S. Mazevet, and F. Soubiran, The Astrophysical Journal 872, 51 (2019).
[13] J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Reviews of modern physics 84, 1607 (2012).
[14] S. Scandolo, Proceedings of the National Academy of Sciences 100, 3051 (2003).
[15] B. Holst, R. Redmer, and M. P. Desjarlais, Physical Review B 77, 184201 (2008).
[16] W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).
[17] M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M. Ceperley, Reviews of modern physics 84, 1607 (2012).
[18] H. Y. Geng, Q. Wu, M. Marqués, and G. J. Ackland, Phys. Rev. B 100, 134109 (2019).
[19] M. A. Morales, C. Pierleoni, E. Schwegler, and D. Ceperley, Proceedings of the National Academy of Sciences 107, 12709 (2010).
[20] G. Mazzola and S. Sorella, Phys.Rev.Letters 114, 105701 (2015).
[21] C. Pierleoni, M. A. Morales, G. Rillo, M. Holzmann, and D. M. Ceperley, Proceedings of the National Academy of Sciences 113, 4953 (2016).
[22] G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, Proceedings of the National Academy of Sciences 116, 9770 (2019).
[23] B. Cheng, G. Mazzola, C. J. Pickard, and M. Ceriotti, Nature 585, 217 (2020).
[24] X.-D. Liu, P. Dalladay-Simpson, R. T. Howie, H.-C. Zhang, W. Xu, J. Binns, G. J. Ackland, H.-K. Mao, and E. Gregoryanz, Proceedings of the National Academy of Sciences (2020).

[25] K. K. Irikura, Journal of Physical and Chemical Reference Data 36, 389 (2007).

[26] See Supplemental Material at [url] for discussion of previous studies of the LLPT, a tabular comparison of major existing ab initio studies and their simulation parameters, details on the computational methods employed, PIMD bead convergence, sample radial distribution functions, sample mean square displacements, band gaps, PV equations of state, and additional simulations using other exchange-correlation functionals, including Refs. [5, 6, 8, 16–18, 21, 23, 28–35, 37, 39, 47–65].

[27] I. B. Magdáu, F. Balm, and G. J. Ackland, Journal of Physics: Conference Series 950, 042059 (2017).

[28] M. A. Morales, C. Pierleoni, and D. M. Ceperley, Physical Review E 81, 021202 (2010).

[29] G. J. Ackland and I. B. Magdáu, Cogent Physics 2, 1049477 (2015).

[30] S. Azadi and G. J. Ackland, Physical Chemistry Chemical Physics 19, 21829 (2017).

[31] A. D. Becke, Physical review A 38, 3098 (1988).

[32] C. Lee, W. Yang, and R. G. Parr, Physical review B 37, 785 (1988).

[33] R. C. Clay III, J. M. McMahon, C. Pierleoni, D. M. Ceperley, and M. A. Morales, Phys. Rev. B 89, 184106 (2014).

[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys.Rev.Letters 77, 3865 (1996).

[35] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Physical review letters 92, 246401 (2004).

[36] D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, New York, 2009).

[37] K. R. Glaesemann and L. E. Fried, The Journal of chemical physics 117, 3020 (2002).

[38] I. B. Magdáu, M. Marqués, B. Borgulya, and G. J. Ackland, Phys.Rev.B 95, 094107 (2017).

[39] L. Calderin, V. V. Karasiev, and S. B. Trickey, Computer Physics Communications 221, 118 (2017).

[40] W. J. Nellis, S. T. Weir, and A. C. Mitchell, Physical Review B 59, 3434 (1999).

[41] M. Zaghoo and I. F. Silvera, Proceedings of the National Academy of Sciences 114, 11873 (2017).

[42] R. T. Howie, P. Dalladay-Simpson, and E. Gregoryanz, Nature materials 14, 495 (2015).

[43] P. Dalladay-Simpson, R. T. Howie, and E. Gregoryanz, Nature 529, 63 (2016).

[44] M. Millot, F. Coppa, J. R. Rygg, A. C. Barrios, S. Hamel, D. C. Swift, and J. H. Eggert, Nature 569, 251 (2019).

[45] S. Jiang, N. Holtgreve, S. S. Lobanov, F. Su, M. F. Mahmood, R. S. McWilliams, and A. F. Goncharov, Nature communications 9, 1 (2018).

[46] V. N. Robinson and A. Hermann, Journal of Physics: Condensed Matter 32, 184004 (2020).

[47] S. Biermann, D. Hohl, and D. Marx, Journal of Low Temperature Physics 110, 97 (1998).

[48] S. Biermann, D. Hohl, and D. Marx, Solid state communications 108, 337 (1998).

[49] H. Y. Geng, H. X. Song, J. Li, and Q. Wu, Journal of Applied Physics 111, 063510 (2012).

[50] H. Y. Geng, R. Hoffmann, and Q. Wu, Phys.Rev.B 92, 104103 (2015).

[51] I. B. Magdáu and G. J. Ackland, arXiv preprint arXiv:1511.05173 (2015).

[52] I. B. Magdáu and G. J. Ackland, in Journal of Physics: Conference Series, Vol. 950 (IOP Publishing, 2017) p. 042058.

[53] B. Lu, D. Kang, D. Wang, T. Gao, and J. Dai, Chinese Physics Letters 36, 103102 (2019).

[54] J. Hinz, V. V. Karasiev, S. Hu, M. Zaghoo, D. Mejia-Rodriguez, S. Trickey, and L. Calderin, Phys. Rev. Research 2, 032065R (2020).

[55] C. Tian, F. Liu, H. Yuan, H. Chen, and Y. Gan, Journal of Physics: Condensed Matter 33, 015401 (2020).

[56] V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meiflin, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenu, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wiene, C. Corminboeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko, G. A. Tribello, V. V. Speybroeck, and M. Ceriotti, Computer Physics Communications 236, 214 (2019).

[57] P. Giannozzi, O. Andreussi, T. Brumme, O. Bnau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carminati, A. D. Corso, S. de Gironcoli, P. Deugas, R. A. D. Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawai, H.-Y. Ko, A. Kokalj, E. Källström, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Journal of Physics: Condensed Matter 29, 465901 (2017).

[58] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).

[59] S. Azadi and W. M. C. Foulkes, Phys. Rev. B 88, 014115 (2013).

[60] M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, The Journal of Chemical Physics 133, 124104 (2010).

[61] M. Ceriotti, J. More, and D. E. Manolopoulos, Computer Physics Communications 185, 1019 (2014).

[62] D. J. Chadi and M. L. Cohen, Physical Review B 8, 5747 (1973).

[63] D. Hamann, M. Schlüter, and C. Chiang, Physical Review Letters 43, 1494 (1979).

[64] K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Physical Review B 47, 10142 (1993).

[65] L. Wang, M. Ceriotti, and T. E. Markland, The Journal of chemical physics 141, 104502 (2014).