A Case of Infantile Fungal Urinary Tract Infection

Urinary tract infection is common in the pediatric population. The most common causative agents are bacteria, among which Escherichia coli is the most frequent uropathogen. Although fungal urinary tract infection is rare in the healthy pediatric population, it is relatively common among hospitalized patients. Fungus may be isolated from the urine of immunocompromised patients or that of patients with indwelling catheters. The most common cause of funguria is Candida albicans. Although more than 50% of Candida isolates belong to non-albicans Candida, the prevalence of non-albicans candiduria is increasing. Herein, we report a case of community-acquired candiduria in a 4-month-old immunocompetent male infant who had bilateral vesicoureteral reflux and was administered antibiotic prophylaxis. He was diagnosed with urinary tract infection caused by Candida lusitaniae and was managed with fluconazole.

Key words: Candida, Urinary tract infections, Vesico-ureteral reflux, Antibiotic prophylaxis

A 4-month-old male infant presenting with a 1-day history of fever was admitted in Gwangmyeong Sungae Hospital. He was born at 39 weeks of gestation via spontaneous vaginal delivery, and his birth weight was 3,170 g. He did not have any perinatal problems. The patient had two previous events of urinary tract infection as a neonate. At the age of 7 days, he was admitted with urinary tract infection caused by Enterococcus faecalis, and Rotaviral enteritis for 6 days. At the age of 22 days, he was readmitted with urinary tract infection caused by E. faecalis for 8
days. A sonography revealed bilateral hydronephrosis. A 99mTc-dimercaptosuccinic acid scan revealed cortical defects in the left kidney. A voiding cystourethrography revealed bilateral vesicoureteral reflux: grade 4 on the right and grade 5 on the left. Subsequently, the infant was administered daily oral amoxicillin-clavulanate for prophylaxis at a dose of 15 mg/kg/day until admission.

On current admission, the patient was febrile and did not have any other symptoms. Vital signs were stable and physical examinations revealed no abnormal findings. Laboratory examination showed a white blood cell (WBC) count of 14,680/µL (46% neutrophils, 46% lymphocytes, 7% monocytes). The C-reactive protein level was 0.585 mg/dL (normal, <0.5 mg/dL). The serum creatinine level was 0.27 mg/dL (normal, 0.03–0.50 mg/dL). Blood culture showed no growth. Urinalysis showed protein ++++, glucose +, occult blood +, and positive nitrite result. Urine microscopy showed red blood cells (RBCs) 1–4 /HPF, WBCs 5–9 /HPF, and some yeast-like cells. The patient was started on intravenous cefotaxime at a dose of 150 mg/kg/day. Urine culture for a specimen collected by urine bag showed approximately 50,000 (CFU/mL) yeast-like organisms; therefore, fluconazole was started at a dose of 3 mg/kg/day. Despite the absence of bacterial growth, cefotaxime was maintained at the same dose.

Urine culture for a specimen collected by urine bag showed approximately 50,000 (CFU/mL) yeast-like organisms; therefore, fluconazole was started at a dose of 3 mg/kg/day. Despite the absence of bacterial growth, cefotaxime was maintained at the same dose.

Urine culture for a specimen collected by urine bag showed approximately 50,000 (CFU/mL) yeast-like organisms; therefore, fluconazole was started at a dose of 3 mg/kg/day. Despite the absence of bacterial growth, cefotaxime was maintained at the same dose.

On current admission, the patient was febrile and did not have any other symptoms. Vital signs were stable and physical examinations revealed no abnormal findings. Laboratory examination showed a white blood cell (WBC) count of 14,680/µL (46% neutrophils, 46% lymphocytes, 7% monocytes). The C-reactive protein level was 0.585 mg/dL (normal, <0.5 mg/dL). The serum creatinine level was 0.27 mg/dL (normal, 0.03–0.50 mg/dL). Blood culture showed no growth. Urinalysis showed protein ++, glucose +, occult blood +, and positive nitrite result. Urine microscopy showed red blood cells (RBCs) 1–4 /HPF, WBCs 5–9 /HPF, and some yeast-like cells. The patient was started on intravenous cefotaxime at a dose of 150 mg/kg/day. Urine culture for a specimen collected by urine bag showed approximately 50,000 (CFU/mL) yeast-like organisms; therefore, fluconazole was started at a dose of 3 mg/kg/day. Despite the absence of bacterial growth, cefotaxime was maintained at the same dose.

Discussion

The prevalence of urinary tract infection varies with age, sex, and race; the overall prevalence of urinary tract infection is 7.0% among infants presenting with fever. The most common causative agents are bacteria, and Escherichia coli is the most frequent uropathogen, accounting for 34.7–48.0% of bacterial urinary tract infections in all age groups. One study reported that Escherichia coli represented 93.6% of urinary tract infections in the pediatric population.

Fungi are not common pathogens of urinary tract infections. Candida species are the most prevalent pathogens, accounting for more than 95% cases of funguria, while non-Candida funguria is rarely caused by Aspergillus, Cryptococcus, or Blastomyces. Candida species may be isolated from the urine of immunocompromised children or that of children with indwelling catheters. One study reported candiduria in 37% of pediatric patients who were administered more than two antibiotics during their hospitalization. Candida species were identified in 42% of hospital-acquired urinary tract infections in a neonatal intensive care unit. Extremely-low-birth-weight infants with candiduria are at substantial risk of death or neurodevelopmental impairment. In the present case, bilateral vesicoureteral reflux and recent antibiotic usage were the predisposing factors. Patients with asymptomatic candiduria who do not have predisposing factors can be monitored without antifungal treatment. However, patients with asymptomatic candi-
duria who have predisposing factors should be appropriately managed. Outpatients are treated by managing predisposing conditions; however, inpatients with evidence of disseminated candidiasis and unstable or neutropenic inpatients are treated with antifungal agents. Patients with symptomatic candiduria should be treated with antifungal agents, among which fluconazole is safe and effective.

Despite the lack of studies to guide the optimal length and type of therapy in the pediatric population, systemic antifungal therapy for 21 days from the last positive Candida culture is recommended in infants, with oral fluconazole at a dose of 3–12 mg/kg/day or intravenous amphotericin B 1–5 mg/kg/day. In our case, fluconazole at a dose of 3 mg/kg/day was maintained for more than 21 days from the last positive C. lusitaniae culture.

Antifungal resistance exists in less than 1% of fungal infections, and non-albicans Candida are often more resistant than C. albicans. C. lusitaniae, an uncommon candida species in infants, is often resistant to amphotericin B; however, the organism did not show any antifungal resistance in our case.

In conclusion, although community-acquired candiduria in an immunocompetent infant without an indwelling catheter is rare, it can present in infants with structural abnormalities of the urinary tract. Symptomatic candiduria requires appropriate evaluations and should be treated with antifungal agents. We report a case of community-acquired urinary tract infection caused by C. lusitaniae in a 4-month-old immunocompetent male infant presenting with fever, who had bilateral vesicoureteral reflux and was administered antibiotic prophylaxis, that was resolved with fluconazole treatment without resistance.

Patient consent

This study was approved by the institutional review board (IRB), and the consent was waived due to the nature of the retrospective study [IRB number KIRB-2019-N-009].

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

References

1. Chang SL, Shortliffe LD. Pediatric urinary tract infections. Pediatr Clin North Am 2006;53:379-400.
2. Guze LB, Haley LD. Fungus infections of the urinary tract. Yale J Biol Med 1958;30:292-305.
3. Shaikh N, Morone NE, Bost JE, Farrell MH. Prevalence of urinary tract infection in childhood: a meta-analysis. Pediatr Infect Dis J 2008;27:302-8.
4. Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian Omran D. A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Medecina (Buchar) 2010;5:111-5.
5. Alanazi MQ, Alqhtani FY, Aleanizy FS. An evaluation of E. coli in urinary tract infection in emergency department at KAMC in Riyadh, Saudi Arabia: retrospective study. Ann Clin Microbiol Antimicrob 2018;17:3.
6. Sobel JD, Fisher JF, Kauffman CA, Newman CA. Candida urinary tract infections--epidemiology. Clin Infect Dis 2011;52 Suppl 6:S433-S6.
7. Thomas L, Tracy CR. Treatment of fungal urinary tract infection. Urol Clin North Am 2015;42:473-83.
8. Kauffman CA, Vazquez JA, Sobel JD, Gallis HA, McKinsey DS, Karchmer AW, et al. Prospective multicenter surveillance study of funguria in hospitalized patients. The National Institute for Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis 2000;30:14-8.
9. Fisher JF, Sobel JD, Kauffman CA, Newman CA. Candida urinary tract infections--treatment. Clin Infect Dis 2011;52 Suppl 6:S457-S66.
10. Gholamipour P, Mahmoudi S, Pourakbari B, Ashtiani MTH, Sabouni F, Teymuri M, et al. Candiduria in children: a first report from an Iranian referral pediatric hospital. J Prev Med Hyg 2014;55:54-7.
11. Phillips JR, Karlowicz MG. Prevalence of Candida species in hospital-acquired urinary tract infections in a neonatal intensive care unit. Pediatr Infect Dis J 1997;16:190-4.
12. Wynn JL, Tan S, Gantz MG, Das A, Goldberg RN, Adams-Chapman I, et al. Outcomes following candiduria in extremely low birth weight infants. Clin Infect Dis 2012;54:331-9.
13. Kliegman RM, Stanton BF, St Geme III JW, Schor NF. Nelson textbook of pediatrics, 20th ed. Vol 1. Philadelphia: Elsevier, 2016.
14. Buck ML. A monthly newsletter for health care professionals from the children's medical center at the University of Virginia. Pediatric Pharmacotherapy 1997;31-4.
15. Autrzigue J, Tan S, Cohen-Wolkowiez M, Cotton CM, Wiederhold N, Goldberg RN, et al. Antifungal susceptibility and clinical outcome in neonatal candidiasis. Pediatr Infect Dis J 2018;37:923-9.