A Digital Image Analysis to Evaluate Delamination Factor after Drilling GFRP Composites using a Kevlar Drill Bit

J. Babu∗, Tom sunny2, Jose Philip1 and Sukhwinder K. Bhullar3,4

1Department of Mechanical Engineering, St.Joseph’ College of Engineering and Technology, Choonadacherry, Palai - 686579, Kerala, India; jalumedi.babu@gmail.com, joseurasala@gmail.com
2Department of Mechanical Engineering, Amal Jyothi’ College of Engineering and Technology, Koovapally, Kanjirapally, Kerala-686518, India; tomsunny 54@gmail.com
3Department of Mechanical Engineering, Bursa Technical University, Bursa, Turkey
4Department of Mechanical Engineering, University of Victoria, Victoria, 3P6 V8W, BC, Canada, sbhullar@uvic.ca

Abstract

Objectives: Evaluation of three important delamination factor models and compare their values with varying spindle speeds and feed rates in drilling GFRP composites. Methods: Digital image analysis is adopted for measurement of the dimensions of delamination damage. Accurate assessment of delamination damage is essential for the analysis and design of optimum drilling parameters. Experiments were conducted on GFRP composite materials with feed rates ranging from 100-400 mm/min and spindle speeds ranging from 1000-2500 rpm. Findings: These experiments reveal that delamination reduces with increase in the spindle speed and reduction in the feed rate, but higher spindle speeds may increase the delamination damage. Results also reveal the consideration of area of delamination damage in the assessment of delamination is more important than the maximum damage diameter. Applications: The good mechanical properties of GFRP composites allow their use in compartment panels and doors. Digital image analysis improves the accuracy in measurement of delamination damage.

Keywords: Delamination, Digital Image Analysis, Feed Rate, GFRP, Kevlar Drill Bit, Spindle Speed

1. Introduction

Composites are extending the horizons of designers in almost all branches of engineering. Many new composites are being developed through research and innovations of recent years, which find applications in a wide range of fields. Examples are: glass fibre reinforced ones in automobiles and particulate composites in aerospace applications. Latest such materials are formed having the matrix embedded with fibres or particles. Glass fibre reinforced polymer or GFRP is such a composite used in structural applications. GFRP composites find applications as fairings, compartment panels and doors.

Drilling is a common secondary machining operation for fiber-reinforced materials. Composite laminates have low machinability resulting in low drilling efficiency and drilling-induced delamination damage. Here structural fastening of these components call for accurate and defect-free drilling to ensure precision and joint strength. However, composite laminates, by their very nature, are non-homogeneous, anisotropic, and highly abrasive with hard reinforcement fibres. Among the machining issues due to these, the major one in drilling operations is the delamination defect.

Many investigations were conducted to assess the influence of input variables (spindle speed, feed rate, and...
Digital image processing has been widely used to determine the delamination damage around the hole by researchers. Its applications are also extended to various other areas including medicine. Till now there is no common agreement on the method of assessing the delamination.

Present study aims to conduct drilling experiments on GFRP composite by using carbide hard diamond coated and brad point (Kevlar) drill bit and also evaluate the delamination around the hole by using digital image analysis. This paper also presents the variation in values of three delamination factors, namely conventional delamination factor (F_d), adjusted delamination factor (F_{da}) and equivalent delamination factor (F_{ed}) and compare these at different spindle speeds and feed rates.

2. Experiment and Calculation

2.1 Materials

GFRP composite laminate of thickness 6 mm has been used as work-piece material and the information related to the same is given in Table 1. Figure 1 show the drill used, namely, Kevlar drill made of Carbide steel of 10 mm diameter. The machine tool is a MAKINO S 56 CNC vertical milling machine with maximum speed of 3000 rpm. The experiment is carried out by varying spindle speeds from 1000-2500 rpm in the steps of 500 rpm, and feed rates from 100-400 mm/min in the steps of 100 mm/min. Damage around the hole is captured using a digital camera. The area of the damage is calculated using ‘Image J’ software. To obtain an image of good quality the parameters: Noise suppression, brightness intensity, edge detection and image enhancement are adopted. These steps are shown in Figure 2. Histogram of array values of delaminated zone was compared with that of undamaged area to set the threshold value for binary conversion of the images.

Sl.No	Specification	Description/Values
1	No of layers	26
2	Thickness	6 mm
3	Orientation	0/90
4	Resin	L-12
5	Hardener	K-5
6	Fibres	Unidirectional E-glass
Figure 1. KEVLARBOHRER SCD 56279 drill (Carbide).

Figure 2. Stages in digital image processing. (a) Image captured in grey scale. (b) Histogram equalization. (c) Threshold setting. (d) Noise reduction. (e) Processed image.

2.2 Assessment of Delamination

2.2.1 Delamination Factor (F_d)

Author in\(^2\) proposed a delamination factor (F_d) which is defined as the ratio of maximum delaminated diameter (D_{max}) to the hole nominal diameter (D_o).

$$F_d = \frac{D_{\text{max}}}{D_o} \quad (1)$$

D_{max} is the maximum diameter created due to delamination around the hole and D_o is the hole or drill diameter.

2.2.2 Adjusted Delamination Factor (F_{da})

Conventional delamination factor (F_d) accounts for only the size of delamination and the area of the delaminat-

tion damage is not included in the calculation. Hence another delamination factor was proposed by\(^3\), named as Adjusted delamination factor (F_{da}) which is calculated by using Equation (2). First part of the Equation (2) assesses the crack lengths (as in the conventional delamination factor, F_d) and the second part assesses the damage area. The advantage of this measure is that it incorporates the area of damage. It, therefore distinguishes the severity of delamination in cases with different damage areas where the D_{max} is identical. The F_{da} thus is a better measurement of delamination damage than F_d.

$$A_d = \text{Delamination area in the vicinity of the drilled hole},$$
$$A_{\text{max}} = \text{Delamination area related to } D_{\text{max}}$$

$$A_0 = \text{Drilled area with diameter, } D, \text{ which is the nominal hole area}$$

$$F_{da} = F_d + \frac{A_d}{A_{\text{max}} - A_0} \quad (2)$$

2.2.3 Equivalent Delamination Factor (F_{ed})

Another factor has been proposed by\(^2\) for the delamination damage, namely the Equivalent delamination factor (F_{ed}) calculated by using Equation (3). The equivalent diameter is calculated using Equation (4). The various terms in the formula of F_{ed} are shown in Figure 3.

$$F_{ed} = \frac{D_e}{D_0} \quad (3)$$

$$D_e = \left[\frac{4(A_d + A_0)}{\pi} \right]^{0.5} \quad (4)$$

Figure 3. Scheme of the F_{ed} in drilling composite laminate.

3. Results and Discussions

Drilling trials are carried out to evaluate the effect of cutting parameters on the damage to work piece. Damage
around the hole is scanned using a digital camera. The area of the damage zone is calculated using 'Image J' software. After obtaining the values of maximum delamination diameter and area of delaminated zone, conventional delamination factor \(F_d \), adjusted delamination factor \(F_{da} \) and effective delamination factor \(F_{ed} \) are calculated using the Equations (1), (2) and (3), (4) respectively. The results are tabulated in the Table 2.

3.1 Conventional Delamination Factor \((F_d) \)
From the Table 2, it can be observed that the conventional delamination factor \((F_d) \) is increasing with the feed rate and decreasing with the spindle speed. Highest delamination factor is observed at the combination of low spindle speed (1000 rpm) and high feed rate (400 mm/min) and lowest delamination factor is observed at the combination of spindle speed (2500 rpm) and feed rate (100 mm/min). This is in good agreement with the\(^{41}\). Further increase in spindle speed to 3000 rpm may increase the delamination as reported by\(^{35,42}\).

3.2 Adjusted Delamination Factor \((F_{da}) \)
From the Table 2, it is also observed that adjusted delamination factor \((F_{da}) \) gradually decreases with increasing speed and increases with increasing feed rate. It was also observed that for the combination of highest feed and highest spindle speed the value of adjusted delamination factor is high. This may be due to the heat generated in the drilling area causing softening of the fibre and matrix, which makes it difficult for the cutting edges of the tool to cut the fibres and damage the area in the vicinity of the hole. This is reflected in higher value of adjusted delamination factor. These results are in good agreement with those obtained by\(^{42}\).

3.3 Equivalent Delamination Factor \((F_{ed}) \)
From the Table 2, it is also observed that the trend of variation of equivalent delamination factor \((F_{ed}) \) is similar to that of the adjusted delamination factor \((F_{da}) \) for varying spindle speeds and feed rates. This can be explained with the same reasonings as given in Section 3.2. The variation of the three delamination factor values with drilling parameters is illustrated in Figure 4.

3.4 Comparison between \(F_d, F_{da}, F_{ed} \)
Figure 5 shows the variation of different delamination factors \(F_d, F_{da}, F_{ed} \) with respect to the feed rates at different spindle speeds. From the figure it is observed that adjusted delamination factor is higher when compared with the conventional delamination factor and effective delamination factor, for all the spindle speeds and feed rates. This is due to the fact that it considers both the crack length contribution and damaged area contribution on delamination whereas conventional delamination factor considers only the maximum crack diameter and effective delamination factor considers only damaged area for the assessment of delamination factor. For the entire spindle speeds equivalent delamination factor shows lower values when compared to the other two delamination factors, except at the spindle speed 2500 rpm. The reason for this may be at high spindle speeds the heat generated in the drilling area causing softening of fibre and matrix make fibre cutting difficult for cutting edges of the tool and causing more damage in the vicinity of the hole but with minute cracks, which in turn causing the conventional delamination factor values lower compared to those of equivalent delamination factor and adjusted delamination.
factor. Delamination damage is initiated in the vicinity of the drilled hole and then propagates as cracks and hence adjusted delamination factor and equivalent delamination factor are the most suitable factors as compared to the conventional delamination factor for the assessment of delamination damage.

Figure 5. Correlation between various delamination factors with feed rate at various spindle speeds. (a) 1000. (b) 1500. (c) 2000. (d) 2500 rpm.

4. Conclusion

This paper presents the assessment of delamination by using digital image analysis and comparison of various delamination factor models. The important conclusions of this investigation are

- Conventional delamination factor \(F_d \) increases with the feed rate and decreases with the spindle speed. The induced delamination decreases with spindle speed (1000 rpm-2500 rpm) and increases with feed rate (100 mm/min to 400 mm/min).
- Highest value of delamination factor is observed at the combination of low spindle speed (1000 rpm) and high feed rate (400 mm/min) and lowest value of delamination factor is observed at the combination of spindle speed (2500 rpm) and feed rate (100 mm/min).
- Both the factors, adjusted delamination factor \(F_{da} \) and Equivalent delamination factor \(F_{ed} \) gradually decrease with increasing spindle speed and increase with the increasing feed rate.
- At the combination of highest feed rate and highest spindle speed the values of these factors are high.
- The reason for this trend for both the factors may be, the heat generated in the drilling area at high spindle speeds and high feed rates causes soften-

Table 2. Experimental results

Drilling conditions	Delamination parameter	Delamination factor models					
	\(D(\text{mm}) \)	\(D_{\text{max}}(\text{mm}) \)	\(A_{d}(\text{mm}) \)	\(D_{t}(\text{mm}) \)	\(F_d \)	\(F_{da} \)	\(F_{ed} \)
100 1000	10 10.55 6.42 10.40	1.06 1.10 1.04					
100 1500	10 10.5 6.79 10.42	1.05 1.09 1.04					
100 2000	10 10.4 3.15 10.20	1.04 1.06 1.02					
100 2500	10 10.08 6.65 10.41	1.01 1.05 1.04					
200 1000	10 10.6 8.00 10.49	1.06 1.11 1.05					
200 1500	10 10.57 6.50 10.40	1.06 1.10 1.04					
200 2000	10 10.45 6.07 10.38	1.05 1.08 1.04					
200 2500	10 10.22 8.54 10.53	1.02 1.08 1.05					
300 1000	10 10.65 9.01 10.56	1.07 1.12 1.06					
300 1500	10 10.6 7.00 10.43	1.06 1.11 1.04					
300 2000	10 10.5 6.53 10.40	1.05 1.09 1.05					
300 2500	10 10.35 9.39 10.58	1.04 1.10 1.06					
400 1000	10 10.75 9.48 10.58	1.08 1.14 1.06					
400 1500	10 10.65 7.58 10.47	1.07 1.11 1.05					
400 2000	10 10.52 6.95 10.43	1.05 1.10 1.04					
400 2500	10 10.4 17.55 11.06	1.04 1.15 1.11					
ing of the matrix and fibre, which may make fibre cutting difficult for the cutting edges of the tool causing more areas to be damaged in the vicinity of the hole. These result in lower values for the conventional delamination factor compared to the adjusted delamination factor and equivalent delamination factor.

5. References

1. Park KY, Choi JH, Lee DG. Delamination-free and high efficiency drilling of carbon fiber reinforced plastics. J Compos Mater. 1995; 29:1998–2002.
2. Chen WC. Some experimental investigations in the drilling of Carbon Fiber-Reinforced Plastic (CFRP) composite laminates. Int J Mach Tools Manuf. 1997; 37(8):1097–108.
3. Davim JP, Reis P, Antonio CC. Experimental study of drilling Glass Fiber Reinforced Plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol. 2004; 64:289–97.
4. Davim JP, Reis P, Antonio CC. Drilling Fiber Reinforced Plastics (FRPs) manufactured by hand lay-up: Influence of matrix (Vippal VUP 9731 and ATLAC 382-05). J Mater Process Technol. 2004; 155-156:1828–33.
5. Tsao CC, Hocheng H. Analysis of delamination associated with various drill bits in drilling of composite material. Int J Mach Tools Manuf. 2004; 44:1085–90.
6. Hocheng H, Tsao CC. The path towards delamination-free drilling of composite materials. J Mater Process Technol. 2005; 167:251–64.
7. Ramkumar J, Aravindan S, Malhotra SK, Krishamurthy R. An enhancement of machining performance of GFRP by oscillatory assisted drilling. Int J Adv Manuf Technol. 2004; 23:240–44.
8. Hocheng H, Tsao CC. Effects of special drill bits on drilling-induced delamination of composite materials. Int J Mach Tools Manuf. 2006; 46:1408–16.
9. Tsao CC, Hocheng H. The effect of chisel length and associated pilot hole on delamination when drilling composite materials. Int J Mach Tools Manuf. 2003; 43:1087–92.
10. Tsao CC. The effect of pilot hole on delamination when core drill drilling composite materials. Int J Mach Tools Manuf. 2006; 46:1653–61.
11. Sao CC, Hocheng H. Effects of exit back-up on delamination in drilling composite materials using a saw drill and a core drill. Int J Mach Tools Manuf. 2005; 45:1261–70.
12. Sao CC, Hocheng H, Chen YC. Delamination reduction in drilling composite materials by active backup force. CIRP Annals -Manufacturing Technology. 2012; 61:91–4.
13. Mehbudi P, Baghlanii V, Akbari J, Bushrooa AR, Mardi NA. Applying ultrasonic vibration to decrease drilling induced delamination in GFRP laminates. Journal of Procedia CIRP. 2013; 6:578–83.
14. Rubio JC, Abrao AM, Faria PE, Esteves Correia A, Davim JP. Effects of high speed in the drilling of glass fibre reinforced plastic. Int J Mach Tools Manuf. 2008; 48:715–20.
15. Tsao CC, Hocheng H. Effects of exit back-up on delamination in drilling composite materials using a saw drill and a core drill. Int J Mach Tools Manuf. 2005; 45:1261–70.
16. Liu DF, Tang YJ, Cong WL. A review of mechanical drilling for composite laminates. Compos Struct. 2012; 94:1265–79.
17. König W, Grab P. Quality definition and assessment in drilling of fibre reinforced thermosets. Ann CIRP.1989; 38:119–24.
18. Tagliaferri V, Caprino G, Diterlizzi A. Effect of drilling parameters on the finish and mechanical properties of GFRP composites. Int J Mach Tools Manuf. 1990; 30(1):77–84.
19. De Albuquerque VHC, Tavares JMR, Durão LMP. Evaluation of delamination damage on composite plates using an artificial neural network for the radiographic image analysis. J Compos Mater. 2010; 44(9):1139–59.
20. Davim JP, Reis P. Study of delamination in drilling Carbon Fiber Reinforced Plastics (CFRP) using design experiments. Compos Struct. 2003; 59(4):481–7.
21. Gaitonde VN, Karnik SR, Davim JP. Prediction and minimization of delamination in drilling of Medium-Density Fiberboard (MDF) using response surface methodology and Taguchi design. Mater Manuf Process. 2008; 23(4):377–84.
22. Durão LMP, Tavares JMR, De Albuquerque VHC, Marques AT, Magalhães AG, Vieira AA. Tool effects on hybrid laminates drilling. Mater Manuf Process. 2010; 25(6):476–481.
23. Piquet R, Ferret B, Lachaud, Swider P. Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills. Compos Part A. 2000; 31(10):1107–15.
24. Bhatnagar N, Singh I, Nayak D. Damage investigation in drilling of glass fiber reinforced plastic composite laminates. Mater Manuf Process. 2004; 19(6):995–1007.
25. Cai XJ, et al. Experimental analysis on delamination damage by acoustic emission in highspeed drilling of carbon fiber reinforced plastics. Key Engineering Materials. 2014; 589-590:287–92.
26. Seif MA, Khashaba UA, Rojas-Oviedo R. Measuring delamination in carbon/epoxy composites using a shadow moire laser based imaging technique. Compos Struct. 2007; 79:113–8.
27. Babu J, Sunny T, Paul NA, Keerthy PM, Philip J, Davim JP. Assessment of delamination in composite materials: A review. Proc I Mech E Part B: J Engineering Manufacture. 2016; 230(11):1990–2003.
28. Babu J, Philip J, Zacharia T, Davim JP. Delamination in composite materials: Measurement, assessment and pre-
diction. Davim JP, editor. Machinability of fibre-reinforced plastics. Berlin: De Gruyter; 2015. p. 139–62.

29. Khashaba UA. Delamination in drilling GFR-thermoset composites. Compos Struct. 2004; 63(3-4):313–27.

30. Faraz A, Biermann D, Weinert K. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. Int J Mach Tools Manuf. 2009; 49:1185–96.

31. Davim JP, Rubio JC, Abrão AM. A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol. 2007; 67(9):1939–45.

32. Tsao CC, Kuo KL, Hsu IC. Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill. Int J Adv Manuf Technol. 2012; 59:617–22.

33. Babu J, Paul NA, Keerthy PM, Philip J, Davim JP. Examination and modification of equivalent delamination factor for assessment of high speed drilling. Journal of Mechanical Science and Technology 2016; 30(11):5159–65.

34. da Silva DNR. Image processing methodology for assessment of drilling induced damage in CFRP [Thesis 2013]. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa; 2013. p. 38.

35. Nagarajan VA, Rajadurai JS, Annil Kumar T. A digital image analysis to evaluate delamination factor for wind turbine composite laminate blade. Compos Part B. 2012; 43:3153–9.

36. Sastry KVK, Rao VS, Palanikumar K, Dhanalakshmi R, Abhishek K. Assessment of process parameters influencing delamination factor on the drilling of CFRC composite material with TiN coated carbide tool. Indian Journal of Science and Technology. 2014 Jan; 7(2):142–50.

37. Valarmathi TN, Palanikumar K, Sekar S. Parametric analysis on delamination in drilling of wood composite panels. Indian Journal of Science and Technology. 2013 Apr; 6(4):4347–56.

38. Thirunavukkarasu V, Kumar JS. A novel method to detect copy-move tampering in digital images. Indian Journal of Science and Technology. 2016 Feb; 9(8). DOI: 10.17485/ijst/2016/v9i8/87900.

39. Verma A, Khanna G. A survey on digital image processing techniques for tumor detection. Indian Journal of Science and Technology. 2016 April; 9(14). DOI: 10.17485/ijst/2016/v9i14/84976.

40. Prasad KL, Rao TChM, Kannan V. A novel and hybrid secure digital image watermarking framework through sc-LWT-SVD. Indian Journal of Science and Technology. 2016 Jun; 9(23). DOI: 10.17485/ijst/2016/v9i23/95273.

41. Palanikumar K. Experimental investigation and optimization in drilling of GFRP composites. Measurement. 2011; 44:2138–48.

42. Ghasemi FA, Hyvadi A, Payganeh G, Arab NBM. Effects of drilling parameters on delamination of glass epoxy composites. Australian Journal of Basic Applied Sciences. 2011; 5(12):1433–40.

43. Sunny T, Babu J, Philip J. Experimental studies on effect of process parameters on delamination in drilling GFRP composites using Taguchi method. Procedia Materials Science. 2014; 6:1131–42.