Abstract

For a prime number p and a sequence of integers $a_0, \ldots, a_k \in \{0, 1, \ldots, p\}$, let $s(a_0, \ldots, a_k)$ be the minimum number of $(k+1)$-tuples $(x_0, \ldots, x_k) \in A_0 \times \cdots \times A_k$ with $x_0 = x_1 + \cdots + x_k$, over subsets $A_0, \ldots, A_k \subseteq \mathbb{Z}_p$ of sizes a_0, \ldots, a_k respectively. We observe that an elegant argument of Samotij and Sudakov can be extended to show that there exists an extremal configuration with all sets A_i being intervals of appropriate length. The same conclusion also holds for the related problem, posed by Bajnok, when $a_0 = \cdots = a_k =: a$ and $A_0 = \cdots = A_k$, provided k is not equal 1 modulo p. Finally, by applying basic Fourier analysis, we show for Bajnok’s problem that if $p \geq 13$ and $a \in \{3, \ldots, p-3\}$ are fixed while $k \equiv 1 \pmod{p}$ tends to infinity, then the extremal configuration alternates between at least two affine non-equivalent sets.

Mathematics Subject Classifications: 11B30, 05D99
the minimum of $s(A_0, \ldots, A_k)$ over subsets $A_0, \ldots, A_k \subseteq \Gamma$ of sizes a_0, \ldots, a_k respectively. Additionally, for $a \in [0, p]$, let $s_k(a; \Gamma)$ be the minimum of $s_k(A)$ over all a-sets $A \subseteq \Gamma$.

The question of finding the maximal size of a sum-free subset of Γ (i.e., the maximum a such that $s_2(a; \Gamma) = 0$) originated in a paper of Erdős [2] in 1965 and took 40 years before it was resolved in full generality by Green and Ruzsa [3]. Huczynska, Mullen and Yucas [4], and later Samotij and Sudakov [7], introduced the problem of finding $s_2(a; \Gamma)$. This function has a resemblance to some classical questions in extremal combinatorics, where one has to minimise the number of forbidden configurations, see [7, Section 1] for more details.

Huczynska, Mullen and Yucas [4] were able to solve the s_2-problem for $\Gamma = \mathbb{Z}_p$, where p is prime and \mathbb{Z}_p is the cyclic group of order p. Samotij and Sudakov [7] solved the s_2-problem for various groups, including a different proof of the \mathbb{Z}_p case. Bajnok [1, Problem G.48] suggested the more general problem of considering $s_k(a; \Gamma)$. Since even the s_2-case is still wide open in full generality, Bajnok [1, Problem G.49] proposed, as a possible first step, to consider $s_k(a; \mathbb{Z}_p)$, where p is prime and $k \geq 3$.

This paper concentrates on the latter question of Bajnok. Therefore, let p be a fixed prime and let, by default, the underlying group be \mathbb{Z}_p, which we identify with the additive group of residues modulo p (also using the multiplicative structure on it when this is useful). In particular, we write $s(a_0, \ldots, a_k) := s(a_0, \ldots, a_k; \mathbb{Z}_p)$ and $s_k(a) := s_k(a; \mathbb{Z}_p)$. Since the case $p = 2$ is trivial, let us assume that $p \geq 3$. By an m-term arithmetic progression (or m-AP for short) we mean a set of the form \{x, x + d, \ldots, x + (m - 1)d\} for some $x, d \in \mathbb{Z}_p$ with $d \neq 0$. We call d the difference. For $I \subseteq \mathbb{Z}_p$ and $x, y \in \mathbb{Z}_p$, write $x \cdot I + y := \{x \cdot z + y \mid z \in I\}$.

As we already mentioned, the case $k = 2$ has been completely resolved: Huczynska, Mullen and Yucas determined $s_2(a)$, and Samotij and Sudakov [7] showed that, when $s_2(a) > 0$, then the a-sets that achieve the minimum are exactly those of the form $\xi \cdot I$ with $\xi \in \mathbb{Z}_p \setminus \{0\}$, where I consists of the residues modulo p of a integers closest to $\frac{p - 1}{2} \in \mathbb{Z}$. Each such set is an arithmetic progression; its difference can be any non-zero value but the initial element has to be carefully chosen.

Here we propose a generalisation of Bajnok’s question, namely to investigate the function $s(a_0, \ldots, a_k)$. First, by adopting the elegant argument of Samotij and Sudakov [7], we show that at least one extremal configuration consists of $k + 1$ arithmetic progressions with the same difference. Note that since

$$s(A_0, \ldots, A_k) = s(\xi \cdot A_0 + \eta_0, \ldots, \xi \cdot A_k + \eta_k), \quad \text{for } \xi \neq 0 \text{ and } \eta_0 = \eta_1 + \cdots + \eta_k, \quad (1)$$

finding such arithmetic progressions reduces to finding progressions with difference 1 (and starting element 0 for some k of the sets).

Theorem 1. For arbitrary $k \geq 1$ and $a_0, \ldots, a_k \in [0, p]$, there is $t \in \mathbb{Z}_p$ such that

$$s(a_0, \ldots, a_k) = s([a_0] + t, [a_1], \ldots, [a_k]).$$

In particular, if $a_0 = \cdots = a_k =: a$, then one extremal configuration consists of $A_1 = \cdots = A_k = [a]$ and $A_0 = [t, t + a - 1]$ for some $t \in \mathbb{Z}_p$. Given this, one can write
down some formulas for \(s(a_0, \ldots, a_k) \) in terms of \(a_0, \ldots, a_k \) involving summation (based on (3) or a version of (13)) but there does not seem to be a closed form in general.

If \(k \equiv 1 \pmod{p} \), then by taking \(\xi := 1, \eta_1 := \cdots := \eta_k := -t(k-1)^{-1}, \) and \(\eta_0 := -(k-1)^{-1}t \) in (1), we can get another extremal configuration where all sets are the same: \(A_0 + \eta_0 = \cdots = A_k + \eta_k \). Thus Theorem 1 directly implies the following corollary.

Corollary 2. For every \(k \geq 2 \) with \(k \not\equiv 1 \pmod{p} \) and \(a \in [0, p] \), there is \(t \in \mathbb{Z}_p \) such that \(s_k(a) = s_k([t, t+a-1]) \).

Unfortunately, if \(k \geq 3 \), then there may be sets \(A \) different from APs that attain equality in Corollary 2 with \(s_k([A]) > 0 \) (which is in contrast to the case \(k = 2 \)). For example, our (non-exhaustive) search showed that this happens already for \(p = 17 \), when

\[
s_3(14) = 2255 = s_3([-1, 12]) = s_3([6, 18] \cup \{3\}).
\]

Also, already the case \(k = 2 \) of the more general Theorem 1 exhibits extra solutions. Of course, by analysing the proof of Theorem 1 or Corollary 2 one can write a necessary and sufficient condition for the cases of equality. We do this in Section 2; in some cases this condition can be simplified.

However, by using basic Fourier analysis on \(\mathbb{Z}_p \), we can describe the extremal sets for Corollary 2 when \(k \not\equiv 1 \pmod{p} \) is sufficiently large.

Theorem 3. Let a prime \(p \geq 7 \) and an integer \(a \in [3, p-3] \) be fixed, and let \(k \not\equiv 1 \pmod{p} \) be sufficiently large. Then there exists \(t \in \mathbb{Z}_p \) for which the only \(s_k(a) \)-extremal sets are \(\xi \cdot [t, t+a-1] \) for all non-zero \(\xi \in \mathbb{Z}_p \).

Problem 4. Find a ‘good’ description of all extremal families for Corollary 2 (or perhaps Theorem 1) for \(k \geq 3 \).

While Corollary 2 provides an example of an \(s_k(a) \)-extremal set for \(k \not\equiv 1 \pmod{p} \), the case \(k \equiv 1 \pmod{p} \) of the \(s_k(a) \)-problem turns out to be somewhat special. Here, translating a set \(A \) has no effect on the quantity \(s_k(A) \). More generally, let \(\mathcal{A} \) be the group of all invertible affine transformations of \(\mathbb{Z}_p \), that is, it consists of maps \(x \mapsto \xi \cdot x + \eta, x \in \mathbb{Z}_p \), for \(\xi, \eta \in \mathbb{Z}_p \) with \(\xi \neq 0 \). Then

\[
s_k(\alpha(A)) = s_k(A), \quad \text{for every } k \equiv 1 \pmod{p} \text{ and } \alpha \in \mathcal{A}.
\]

Let us call two subsets \(A, B \subseteq \mathbb{Z}_p \) (affine) equivalent if there is \(\alpha \in \mathcal{A} \) with \(\alpha(A) = B \). By (2), we need to consider sets only up to this equivalence. Trivially, any two subsets of \(\mathbb{Z}_p \) of size \(a \) are equivalent if \(a \leq 2 \) or \(a \geq p - 2 \).

Again using Fourier analysis on \(\mathbb{Z}_p \), we show the following result.

Theorem 5. Let a prime \(p \geq 7 \) and an integer \(a \in [3, p-3] \) be fixed, and let \(k \equiv 1 \pmod{p} \) be sufficiently large. Then the following statements hold for the \(s_k(a) \)-problem.

1. If \(a \) and \(k \) are both even, then \([a] \) is the unique (up to affine equivalence) extremal set.
2. If at least one of \(a\) and \(k\) is odd, define \(I' := [a-1] \cup \{a\} = \{0, \ldots, a-2, a\}\). Then
 \(s_k(a) < s_k([a])\) for all large \(k\);
 \(I'\) is the unique extremal set for infinitely many \(k\);
 \(s_k(a) < s_k(I')\) for infinitely many \(k\), provided there are at least three non-equivalent \(a\)-subsets of \(\mathbb{Z}_p\).

It is not hard to see that there are at least three non-equivalent \(a\)-subsets of \(\mathbb{Z}_p\) if and only if \(p \geq 13\) and \(a \in [3, p-3]\), or \(p \geq 11\) and \(a \in [4, p-4]\). Thus Theorem 5 characterises pairs \((p,a)\) for which there exists an \(a\)-subset \(A\) which is \(s_k(a)\)-extremal for all large \(k \equiv 1 \pmod{p}\).

Corollary 6. Let \(p\) be a prime and \(a \in [0, p]\). There is an \(a\)-subset \(A \subseteq \mathbb{Z}_p\) with \(s_k(A) = s_k(a)\) for all large \(k \equiv 1 \pmod{p}\) if and only if \(a \leq 2\), or \(a \geq p-2\), or \(p \in \{7, 11\}\) and \(a = 3\).

As is often the case in mathematics, a new result leads to further open problems.

Problem 7. Given \(a \in [3, p-3]\), find a ‘good’ description of all \(a\)-subsets of \(\mathbb{Z}_p\) that are \(s_k(a)\)-extremal for at least one (resp. infinitely many) values of \(k \equiv 1 \pmod{p}\).

Problem 8. Is it true that for every \(a \in [3, p-3]\) there is \(k_0\) such that for all \(k \geq k_0\) with \(k \equiv 1 \pmod{p}\), any two \(s_k(a)\)-extremal sets are affine equivalent?

2 Proof of Theorem 1

Here we prove Theorem 1 by adopting the proof of Samotij and Sudakov [7].

Let \(A_1, \ldots, A_k\) be subsets of \(\mathbb{Z}_p\). Define \(\sigma(x; A_1, \ldots, A_k)\) as the number of \(k\)-tuples \((x_1, \ldots, x_k) \in A_1 \times \cdots \times A_k\) with \(x = x_1 + \cdots + x_k\). Also, for an integer \(r \geq 0\), let

\[
 N_r(A_1, \ldots, A_k) := \{x \in \mathbb{Z}_p \mid \sigma(x; A_1, \ldots, A_k) \geq r\},
\]

\[
 n_r(A_1, \ldots, A_k) := |N_r(A_1, \ldots, A_k)|.
\]

These notions are related to our problem because of the following easy identity:

\[
 s(A_0, \ldots, A_k) = \sum_{r=1}^{\infty} |A_0 \cap N_r(A_1, \ldots, A_k)|.
\]

Let an *interval* mean an arithmetic progression with difference 1, i.e. a subset \(I\) of \(\mathbb{Z}_p\) of form \(\{x, x+1, \ldots, x+y\}\). Its *centre* is \(x+y/2 \in \mathbb{Z}_p\); it is unique if \(I\) is proper (that is, \(0 < |I| < p\)). Note the following easy properties of the sets \(N_r\):

1. These sets are nested:
 \[
 N_0(A_1, \ldots, A_k) = \mathbb{Z}_p \supseteq N_1(A_1, \ldots, A_k) \supseteq N_2(A_1, \ldots, A_k) \supseteq \ldots
 \]

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(1) (2019), #P1.30

4
2. If each A_i is an interval with centre c_i, then $N_r(A_1, \ldots, A_k)$ is an interval with centre $c_1 + \cdots + c_k$.

We will also need the following result of Pollard [6, Theorem 1].

Theorem 9. Let p be a prime, $k \geq 1$, and A_1, \ldots, A_k be subsets of \mathbb{Z}_p of sizes a_1, \ldots, a_k. Then for every integer $r \geq 1$, we have

$$\sum_{i=1}^{r} n_i(A_1, \ldots, A_k) \geq \sum_{i=1}^{r} n_i([a_1], \ldots, [a_k]).$$

Proof of Theorem 1. Let A_0, \ldots, A_k be some extremal sets for the $s(a_0, \ldots, a_k)$-problem. We can assume that $0 < a_0 < p$, because $s(A_0, \ldots, A_k)$ is 0 if $a_0 = 0$ and $\prod_{i=1}^{k} a_i$ if $a_0 = p$, regardless of the choice of the sets A_i.

Since $n_0([a_1], \ldots, [a_k]) = p > p - a_0$ while $n_r([a_1], \ldots, [a_k]) = 0 < p - a_0$ when, for example, $r > \prod_{i=1}^{k} a_i$, there is a (unique) integer $r_0 \geq 0$ such that

$$n_r([a_1], \ldots, [a_k]) > p - a_0, \quad \text{all } r \in [0, r_0],$$

$$n_r([a_1], \ldots, [a_k]) \leq p - a_0, \quad \text{all integers } r \geq r_0 + 1. \tag{5}\tag{6}$$

The nested intervals $N_1([a_1], \ldots, [a_k]) \supseteq N_2([a_1], \ldots, [a_k]) \supseteq \ldots$ have the same centre $c := ((a_1 - 1) + \cdots + (a_k - 1))/2$. Thus there is a translation $I := [a_0] + t$ of $[a_0]$, with t independent of r, which has as small as possible intersection with each N_r-interval above given their sizes, that is,

$$|I \cap N_r([a_1], \ldots, [a_k])| = \max \{0, n_r([a_1], \ldots, [a_k]) + a_0 - p\}, \quad \text{for all } r \in \mathbb{N}. \tag{7}$$

This and Pollard’s theorem give the following chain of inequalities:

$$s(A_0, \ldots, A_k) \overset{(3)}{=} \sum_{i=1}^{\infty} |A_0 \cap N_i(A_1, \ldots, A_k)|$$

$$\geq \sum_{i=1}^{r_0} |A_0 \cap N_i(A_1, \ldots, A_k)|$$

$$\geq \sum_{i=1}^{r_0} (n_i(A_1, \ldots, A_k) + a_0 - p) \overset{\text{Thm 9}}{=} \sum_{i=1}^{r_0} (n_i([a_1], \ldots, [a_k]) + a_0 - p)$$

$$\overset{(5)-(6)}{=} \sum_{i=1}^{\infty} \max \{0, n_i([a_1], \ldots, [a_k]) + a_0 - p\} \overset{(7)}{=} \sum_{i=1}^{\infty} |I \cap N_i([a_1], \ldots, [a_k])|$$

$$\overset{(3)}{=} s(I, [a_1], \ldots, [a_k]),$$

giving the required. \qed
Let us write a necessary and sufficient condition for equality in Theorem 1 in the case \(a_0, \ldots, a_k \in [1, p - 1]\). Let \(r_0 \geq 0\) be defined by (5)–(6). Then, by (4), a sequence \(A_0, \ldots, A_k \subseteq \mathbb{Z}_p\) of sets of sizes respectively \(a_0, \ldots, a_k\) is extremal if and only if

\[
\begin{align*}
A_0 \cap N_{r_0+1}(A_1, \ldots, A_k) &= \emptyset, \\
A_0 \cup N_{r_0}(A_1, \ldots, A_k) &= \mathbb{Z}_p, \\
\sum_{i=1}^{r_0} n_i(A_1, \ldots, A_k) &= \sum_{i=1}^{r_0} n_i([a_1], \ldots, [a_k]).
\end{align*}
\]

(8) (9) (10)

Let us now concentrate on the case \(k = 2\), trying to simplify the above condition. We can assume that no \(a_i\) is equal to 0 or \(p\) (otherwise the choice of the other two sets has no effect on \(s(A_0, A_1, A_2)\) and every triple of sets of sizes \(a_0, a_1\) and \(a_2\) is extremal). Also, as in [7], let us exclude the case \(s(a_0, a_1, a_2) = 0\), as then there are in general many extremal configurations. Note that \(s(a_0, a_1, a_2) = 0\) if and only if \(r_0 = 0\); also, by the Cauchy-Davenport theorem (the special case \(k = 2\) and \(r = 1\) of Theorem 9), this is equivalent to \(a_1 + a_2 - 1 \leq p - a_0\). Assume by symmetry that \(a_1 \leq a_2\). Note that (5) implies that \(r_0 \leq a_1\).

The condition in (10) states that we have equality in Pollard’s theorem. A result of Nazarewicz, O’Brien, O’Neill and Staples [5, Theorem 3] characterises when this happens (for \(k = 2\)), which in our notation is the following.

Theorem 10. For \(k = 2\) and \(1 \leq r_0 \leq a_1 \leq a_2 < p\), we have equality in (10) if and only if at least one of the following conditions holds:

1. \(r_0 = a_1\),
2. \(a_1 + a_2 \geq p + r_0\),
3. \(a_1 = a_2 = r_0 + 1\) and \(A_2 = g - A_1\) for some \(g \in \mathbb{Z}_p\),
4. \(A_1\) and \(A_2\) are arithmetic progressions with the same difference.

Let us try to write more explicitly each of these four cases, when combined with (8) and (9).

First, consider the case \(r_0 = a_1\). We have \(N_{a_1}([a_1], [a_2]) = [a_1 - 1, a_2 - 1]\) and thus \(n_{a_1}([a_1], [a_2]) = a_2 - a_1 + 1 > p - a_0\), that is, \(a_2 - a_1 \geq p - a_0\). The condition (8) holds automatically since \(N_i(A_1, A_2) = \emptyset\) whenever \(i > |A_1|\). The other condition (9) may be satisfied even when none of the sets \(A_i\) is an arithmetic progression (for example, take \(p = 13\), \(A_1 = \{0, 1, 3\}\), \(A_2 = \{0, 2, 3, 5, 6, 7, 9, 10\}\) and let \(A_0\) be the complement of \(N_3(A_1, A_2) = \{3, 6, 10\}\)). We do not see any better characterisation here, apart from stating that (9) holds.

Next, suppose that \(a_1 + a_2 \geq p + r_0\). Then, for any two sets \(A_1\) and \(A_2\) of sizes \(a_1\) and \(a_2\), we have \(N_{r_0}(A_1, A_2) = \mathbb{Z}_p\); thus (9) holds automatically. Similarly to the previous case, there does not seem to be a nice characterisation of (8). For example, (8) may hold
even when none of the sets A_i is an AP: e.g. let $p = 11$, $A_1 = A_2 = \{0, 1, 2, 3, 4, 5, 7\}$, and let $A_0 = \{0, 2, 10\}$ be the complement of $N_1(A_1, A_2) = \{1, 3, 4, 5, 6, 7, 8, 9\}$ (here $r_0 = 3$).

Next, suppose that we are in the third case. The primality of p implies that $g \in \mathbb{Z}_p$ satisfying $A_2 = g - A_1$ is unique and thus $N_{r_0+1}(A_1, A_2) = \{g\}$. Therefore (8) is equivalent to $A_0 \not= g$. Also, note that if I_1 and I_2 are intervals of size $r_0 + 1$, then $n_{r_0}(I_1, I_2) = 3$. By the definition of r_0, we have $p - 2 \leq a_0 \leq p - 1$. Thus we can choose any integer $r_0 \in [1, p - 2]$ and $(r_0 + 1)$-sets $A_2 = g - A_1$, and then let A_0 be obtained from \mathbb{Z}_p by removing g and at most one further element of $N_{r_0}(A_1, A_2)$. Here, A_0 is always an AP (as a subset of \mathbb{Z}_p of size $a_0 \geq p - 2$) but A_1 and A_2 need not be.

Finally, let us show that if A_1 and A_2 are arithmetic progressions with the same difference d and we are not in Case 1 nor 2 of Theorem 10, then A_0 is also an arithmetic progression whose difference is d. By (1), it is enough to prove this when $A_1 = [a_1]$ and $A_2 = [a_2]$ (and $d = 1$). Since $a_1 + a_2 \leq p - 1 + r_0$ and $r_0 + 1 \leq a_1 \leq a_2$, we have that

$$\begin{align*}
N_{r_0}(A_1, A_2) &= [r_0 - 1, a_1 + a_2 - r_0 - 1] \\
N_{r_0+1}(A_1, A_2) &= [r_0, a_1 + a_2 - r_0 - 2]
\end{align*}$$

have sizes respectively $a_1 + a_2 - 2r_0 + 1 < p$ and $a_1 + a_2 - 2r_0 - 1 > 0$. We see that $N_{r_0+1}(A_1, A_2)$ is obtained from the proper interval $N_{r_0}(A_1, A_2)$ by removing its two endpoints. Thus A_0, which is sandwiched between the complements of these two intervals by (8)–(9), must be an interval too. (And, conversely, every such triple of intervals is extremal.)

3 The proof of Theorems 3 and 5

Let us recall the basic definitions and facts of Fourier analysis on \mathbb{Z}_p. For a more detailed treatment of this case, see e.g. [8, Chapter 2]. Write $\omega := e^{2\pi i/p}$ for the p^{th} root of unity. Given a function $f : \mathbb{Z}_p \to \mathbb{C}$, we define its Fourier transform to be the function $\hat{f} : \mathbb{Z}_p \to \mathbb{C}$ given by

$$\hat{f}(\gamma) := \sum_{x=0}^{p-1} f(x) \omega^{-x\gamma}, \quad \text{for } \gamma \in \mathbb{Z}_p.$$

Parseval’s identity states that

$$\sum_{x=0}^{p-1} f(x) g(x) = \frac{1}{p} \sum_{\gamma=0}^{p-1} \hat{f}(\gamma) \overline{g(\gamma)}. \quad (11)$$

The convolution of two functions $f, g : \mathbb{Z}_p \to \mathbb{C}$ is given by

$$(f * g)(x) := \sum_{y=0}^{p-1} f(y) g(x - y).$$

It is not hard to show that the Fourier transform of a convolution equals the product of Fourier transforms, i.e.

$$\hat{f}_1 * \ldots * \hat{f}_k = \hat{f}_1 \cdot \ldots \cdot \hat{f}_k. \quad (12)$$
We write f^{*k} for the convolution of f with itself k times. (So, for example, $f^{*2} = f * f$.) Denote by 1_A the indicator function of $A \subseteq \mathbb{Z}_p$, which assumes value 1 on A and 0 on $\mathbb{Z}_p \setminus A$. We will call $\hat{1}_A(0) = |A|$ the trivial Fourier coefficient of A. Since the Fourier transform behaves very nicely with respect to convolution, it is not surprising that our parameter of interest, $s_k(A)$, can be written as a simple function of the Fourier coefficients of 1_A. Indeed, let $A \subseteq \mathbb{Z}_p$ and $x \in \mathbb{Z}_p$. Then the number of tuples $(a_1, \ldots, a_k) \in A^k$ such that $a_1 + \ldots + a_k = x$ (which is $\sigma(x; A, \ldots, A)$ in the notation of Section 2) is precisely $1_A^\ast(x)$. The function $s_k(A)$ counts such a tuple if and only if its sum x also lies in A. Thus,

$$s_k(A) = \sum_{x=0}^{p-1} 1_A^\ast(x) 1_A(x) = \frac{1}{p} \sum_{\gamma=0}^{p-1} \hat{1_A}^\ast(\gamma) \hat{1_A}(\gamma) = \frac{1}{p} \sum_{\gamma=0}^{p-1} (\hat{1_A}(\gamma))^k \hat{1_A}(\gamma). \tag{13}$$

Since every set $A \subseteq \mathbb{Z}_p$ of size a has the same trivial Fourier coefficient (namely $\hat{1_A}(0) = a$), let us re-write (13) as

$$ps_k(A) - a^{k+1} = \sum_{\gamma=1}^{p-1} (\hat{1_A}(\gamma))^k \hat{1_A}(\gamma) = F(A). \tag{14}$$

Thus we need to minimise $F(A)$ (which is a real number for any A) over a-subsets $A \subseteq \mathbb{Z}_p$. To do this when k is sufficiently large, we will consider the largest in absolute value non-trivial Fourier coefficient $\hat{1_A}(\gamma)$ of an a-subset A. Indeed, the term $(\hat{1_A}(\gamma))^k \hat{1_A}(\gamma)$ will dominate $F(A)$, so if it has strictly negative real part, then $F(A) < F(B)$ for all a-subsets $B \subseteq \mathbb{Z}_p$ with $\max_{\delta \neq 0} |\hat{1_B}(\delta)| < |\hat{1_A}(\gamma)|$.

Given $a \in [p-1]$, let

$$I := [a] = \{0, \ldots, a-1\} \quad \text{and} \quad I' := [a-1] \cup \{a\} = \{a, \ldots, a-2, a\}.$$

In order to prove Theorems 3 and 5, we will make some preliminary observations about these special sets. The set of a-subsets which are affine equivalent to I is precisely the set of a-APs.

Next we will show that

$$F(I) = 2^{\frac{(p-1)/2}{\gamma=1}} (-1)^{(a-1)(k-1)} |\hat{1_I}(\gamma)|^{k+1} \quad \text{if} \quad k \equiv 1 \pmod{p}. \tag{15}$$

Note that $(-1)^{(a-1)(k-1)}$ equals $(-1)^\gamma$ if both a, k are even and 1 otherwise. To see (15), let $\gamma \in \{1, \ldots, \frac{p-1}{2}\}$ and write $\hat{1_I}(\gamma) = re^{\theta i}$ for some $r > 0$ and $0 \leq \theta < 2\pi$. Then θ is the midpoint of $0, -2\pi\gamma/p, \ldots, -2(a-1)\pi/p$, i.e. $\theta = -\pi(a-1)\gamma/p$. Choose $s \in \mathbb{N}$ such that $k = sp + 1$. Then

$$\left(\hat{1_I}(\gamma)\right)^k \hat{1_I}(\gamma) = (re^{-\pi(a-1)\gamma/p})^k re^{\pi(a-1)\gamma/p} = r^{k+1} e^{-\pi(a-1)\gamma s}, \tag{16}$$
and \(e^{-\pi i (a-1)s} \) equals 1 if \((a-1)s\) is even, and \(-1\) if \((a-1)s\) is odd. Note that, since \(p\) is an odd prime, \((a-1)s\) is odd if and only if \(a\) and \(k\) are both even. So \((16)\) is real, and the fact that \(\hat{\Pi}(p - \gamma) = \hat{\Pi}(\gamma)\) implies that the corresponding term for \(p - \gamma\) is the same as for \(\gamma\). This gives \((15)\). A very similar calculation to \((16)\) shows that

\[
F(I + t) = \sum_{\gamma=1}^{p-1} e^{-\pi i (2t+a-1)(k-1)\gamma/p} |\hat{\Pi}_{I+t}(\gamma)|^{k+1} \quad \text{for all } k \geq 3. \tag{17}
\]

Given \(r > 0\) and \(0 \leq \theta < 2\pi\), we write \(\text{arg}(re^{i\theta}) := \theta\).

Proposition 11. Suppose that \(p \geq 7\) is prime and \(a \in [3, p - 3]\). Then \(\text{arg} \left(\hat{\Pi}_R(1) \right)\) is not an integer multiple of \(\pi/p\).

Proof. Since \(\hat{\Pi}_A(\gamma) = \hat{\Pi}_{\mathbb{Z}_p \setminus A}(\gamma)\) for all \(A \subseteq \mathbb{Z}_p\) and non-zero \(\gamma \in \mathbb{Z}_p\), we may assume without loss of generality that \(a \leq p - a\). Since \(p\) is odd, we have \(a \leq (p - 1)/2\).

Suppose first that \(a\) is odd. Let \(m := (a - 1)/2\). Then \(m \in \left[1, \frac{p - 3}{4}\right]\). Observe that translating any \(A \subseteq \mathbb{Z}_p\) changes the arguments of its Fourier coefficients by an integer multiple of \(2\pi/p\). So, for convenience of angle calculations, here we may redefine \(I := [-m, m]\) and \(I' := (-m - 1) \cup [-m + 1, m]\). Also let \(I^- := [-m + 1, m - 1]\), which is non-empty. The argument of \(\hat{\Pi}_{I^-}(1)\) is 0. Further, \(\hat{\Pi}_R(1) = \hat{\Pi}_{I^-}(1) + \omega^{m+1} + \omega^{-m}\). Since \(\omega^{m+1}, \omega^{-m}\) lie on the unit circle, the argument of \(\omega^{m+1} + \omega^{-m}\) is either \(\pi/p\) or \(\pi + \pi/p\). But the bounds on \(m\) imply that it has positive real part, so \(\text{arg}(\omega^{m+1} + \omega^{-m}) = \pi/p\). By looking at the non-degenerate parallelogram in the complex plane with vertices 0, \(\hat{\Pi}_{I^-}(1), \omega^{m+1} + \omega^{-m}, \hat{\Pi}_R(1)\), we see that the argument of \(\hat{\Pi}_R(1)\) lies strictly between that of \(\hat{\Pi}_{I^-}(1)\) and \(\omega^{m+1} + \omega^{-m}\), i.e. strictly between 0 and \(\pi/p\), giving the required.

Suppose now that \(a\) is even and let \(m := (a - 2)/2 \in [1, \frac{p - 5}{4}]\). Again without loss of generality we may redefine \(I := [-m, m + 1]\) and \(I' := (-m - 1) \cup [-m + 1, m + 1]\). Let also \(I^- := [-m + 1, m]\), which is non-empty. The argument of \(\hat{\Pi}_{I^-}(1)\) is \(-\pi/p\). Further, \(\hat{\Pi}_R(1) = \hat{\Pi}_{I^-}(1) + \omega^{m+1} + \omega^{-(m+1)}\). The argument of \(\omega^{m+1} + \omega^{-(m+1)}\) is 0, so as before the argument of \(\hat{\Pi}_R(1)\) is strictly between \(-\pi/p\) and 0, as required. \(\square\)
We say that an a-subset A is a punctured interval if $A = I' + t$ or $A = -I' + t$ for some $t \in \mathbb{Z}_p$. That is, A can be obtained from an interval of length $a + 1$ by removing a penultimate point.

Lemma 12. Let $p \geq 7$ be prime and let $a \in \{3, \ldots, p - 3\}$. Then the sets $I, I' \subseteq \mathbb{Z}_p$ are not affine equivalent. Thus no punctured interval is affine equivalent to an interval.

Proof. Suppose on the contrary that there is $\alpha \in \mathcal{A}$ with $\alpha(I') = I$. Let a reflection mean an affine map R_c with $c \in \mathbb{Z}_p$ that maps x to $-x + c$. Clearly, $I = [a]$ is invariant under the reflection $R := R_{a-1}$. Thus I' is invariant under the map $R' := \alpha^{-1} \circ R \circ \alpha$. As is easy to see, R' is also some reflection and thus preserves the cyclic distances in \mathbb{Z}_p. So R' has to fix a, the unique element of I' with both distance-1 neighbours lying outside of I'. Furthermore, R' has to fix $a - 2$, the unique element of I' at distance 2 from a. However, no reflection can fix two distinct elements of \mathbb{Z}_p, a contradiction. \hfill \square

We remark that the previous lemma can also be deduced from Proposition 11. Indeed, for any $A \subseteq \mathbb{Z}_p$, the multiset of Fourier coefficients of A is the same as that of $x \cdot A$ for $x \in \mathbb{Z}_p \setminus \{0\}$, and translating a subset changes the argument of Fourier coefficients by an integer multiple of $2\pi/p$. Thus for every subset which is affine equivalent to I, the argument of each of its Fourier coefficients is an integer multiple of π/p.

Let
\[
\rho(A) := \max_{\gamma \in \mathbb{Z}_p \setminus \{0\}} |\hat{1}_A(\gamma)| \quad \text{and} \quad R(a) := \left\{ \rho(A) : A \in \left(\mathbb{Z}_p/a\right) \right\} = \{m_1(a) > m_2(a) > \ldots\}.
\]

Given $j \geq 1$, we say that A attains $m_j(a)$, and specifically that A attains $m_j(a)$ at γ if $m_j(a) = \rho(A) = |\hat{1}_A(\gamma)|$. Notice that, since $\hat{1}_A(-\gamma) = \overline{\hat{1}_A(\gamma)}$, the set A attains $m_j(a)$ at γ if and only if A attains $m_j(a)$ at $-\gamma$ (and $\gamma, -\gamma \neq 0$ are distinct values).

As we show in the next lemma, the a-subsets which attain $m_1(a)$ are precisely the affine images of I (i.e. arithmetic progressions), and the a-subsets which attain $m_2(a)$ are the affine images of the punctured interval I'.

Lemma 13. Let $p \geq 7$ be prime and let $a \in [3, p - 3]$. Then $|R(a)| \geq 2$ and

(i) $A \in \left(\mathbb{Z}_p/a\right)$ attains $m_1(a)$ if and only if A is affine equivalent to I, and every interval attains $m_1(a)$ at 1 and -1 only;

(ii) $B \in \left(\mathbb{Z}_p/a\right)$ attains $m_2(a)$ if and only if B is affine equivalent to I', and every punctured interval attains $m_2(a)$ at 1 and -1 only.

Proof. Given $D \in \left(\mathbb{Z}_p/a\right)$, we claim that there is some $D_{\text{pri}} \in \left(\mathbb{Z}_p/a\right)$ with the following properties:

- D_{pri} is affine equivalent to D;
- $\rho(D) = |\hat{1}_{D_{\text{pri}}}(1)|$; and
• $-\pi/p < \text{arg} (\frac{1}{h_D} (1)) \leq \pi/p$.

Call such a D_{pri} a \textit{primary image} of D. Indeed, suppose that $\rho(D) = |\widehat{h}_D(\gamma)|$ for some non-zero $\gamma \in \mathbb{Z}_p$, and let $\widehat{h}_D(\gamma) = r'e^{\theta'i}$ for some $r' > 0$ and $0 \leq \theta' < 2\pi$. (Note that we have $r' > 0$ since p is prime.) Choose $\ell \in \{0, \ldots, p-1\}$ and $-\pi/p < \phi \leq \pi/p$ such that $\theta' = 2\pi\ell/p + \phi$. Let $D_{\text{pri}} := \gamma \cdot D + \ell$. Then

\[|\widehat{h}_D(1)| = \sum_{x \in D} \omega^{-\gamma x - \ell} = |\omega^{-\ell} \widehat{h}_D(\gamma)| = |\widehat{h}_D(\gamma)| = \rho(D), \]

and

\[\text{arg} (\frac{1}{h_D} (1)) = \text{arg}(e^{\theta'i} \omega^{-\ell}) = 2\pi\ell/p + \phi - 2\pi\ell/p = \phi, \]

as required.

Let $D \subseteq \mathbb{Z}_p$ have size a and write $\widehat{h}_D(1) = re^{\theta i}$. Assume by the above that $-\pi/p < \theta \leq \pi/p$. For all $j \in \mathbb{Z}_p$, let

\[h(j) := \Re(\omega^{-j}e^{-\theta i}) = \cos \left(\frac{2\pi j}{p} + \theta \right), \]

where $\Re(z)$ denotes the real part of $z \in \mathbb{C}$. Given any a-subset E of \mathbb{Z}_p, we have

\[H_D(E) := \sum_{j \in E} h(j) = \Re \left(e^{-\theta i} \sum_{j \in E} \omega^{-j} \right) = \Re \left(e^{-\theta i} \widehat{h}_E(1) \right) \leq |\widehat{h}_E(1)|. \tag{18} \]

Then

\[H_D(D) = \sum_{j \in D} h(j) = \Re(e^{-\theta i} \widehat{h}_D(1)) = r = |\widehat{h}_D(1)|. \tag{19} \]

Note that $H_D(E)$ is the (signed) length of the orthogonal projection of $\widehat{h}_E(1) \in \mathbb{C}$ on the 1-dimensional line $\{xe^{i\theta} \mid x \in \mathbb{R}\}$. As stated in (18) and (19), $H_D(E) \leq |\widehat{h}_E(1)|$ and this is equality for $E = D$. (Both of these facts are geometrically obvious.) If $|\widehat{h}_D(1)| = m_1(a)$ is maximum, then no $H_D(E)$ for an a-set E can exceed $m_1(a) = H_D(D)$. Informally speaking, the main idea of the proof is that if we fix the direction $e^{i\theta}$, then the projection length is maximised if we take a distinct elements $j \in \mathbb{Z}_p$ with the a largest values of $h(j)$, that is, if we take some interval (with the runner-up being a punctured interval).

Let us provide a formal statement and proof of this now.

\textbf{Claim 14.} Let \mathcal{I}_a be the set of length-a intervals in \mathbb{Z}_p.

(i) Let $M_1(D) \subseteq \left(\frac{\mathbb{Z}_p}{a} \right)$ consist of a-sets $E \subseteq \mathbb{Z}_p$ such that $H_D(E) \geq H_D(C)$ for all $C \in \left(\frac{\mathbb{Z}_p}{a} \right)$. Then $M_1(D) \subseteq \mathcal{I}_a$.

(ii) Let $M_2(D) \subseteq \left(\frac{\mathbb{Z}_p}{a} \right)$ be the set of $E \notin \mathcal{I}_a$ for which $H_D(E) \geq H_D(C)$ for all $C \in \left(\frac{\mathbb{Z}_p}{a} \right) \setminus \mathcal{I}_a$. Then every $E \in M_2(A)$ is a punctured interval.
Proof. Suppose that $0 < \theta < \pi/p$. Then $h(0) > h(1) > h(-1) > h(2) > h(-2) > \ldots > h\left(\frac{p-1}{2}\right) > h\left(\frac{p-3}{2}\right)$. In other words, $h(j_i) > h(j_{i-1})$ if and only if $\ell < k$, where $j_m := (-1)^{m-1}\lfloor m/2 \rfloor$. Letting $J_{a-1} := \{j_0, \ldots, j_a\}$, we see that

$$H_D(J_{a-1} \cup \{j_a\}) > H_D(J_{a-1} \cup \{j_a\}) > H_D(J_{a-1} \cup \{j_{a+1}\}) > H_D(J_{a-2} \cup \{j_{a-1}, j_a\}) > H_D(J)$$

for all other a-subsets J. But $J_{a-1} \cup \{j_{a-1}\}$ and $J_{a-1} \cup \{j_a\}$ are both intervals, and $J_{a-1} \cup \{j_{a+1}\}$ and $J_{a-2} \cup \{j_{a-1}, j_a\}$ are both punctured intervals. So in this case $M_1(D) := \{J_{a-1} \cup \{j_{a-1}\}\}$ and $M_2(D) \subseteq \{J_{a-1} \cup \{j_{a+1}\}, J_{a-2} \cup \{j_{a-1}, j_a\}\}$, as required.

The case when $-\pi/p < \theta < 0$ is almost identical except now $j_{\ell} := (-1)^{\ell}\lceil \ell/2 \rceil$ for all $0 \leq \ell \leq p-1$. If $\theta = 0$ then $h(0) > h(1) = h(-1) > h(2) = h(-2) > \ldots > h\left(\frac{p-1}{2}\right) = h\left(-\frac{p-1}{2}\right)$. If $\theta = -\pi/p$ then $h(0) = h(-1) > h(1) = h(-2) > \ldots = h\left(-\frac{p-1}{2}\right) > h\left(-\frac{p-1}{2}\right)$. \hfill \Box

We can now prove part (i) of the lemma. Suppose $A \in \left(\mathbb{Z}_a^p\right)$ attains $m_1(a)$ at $\gamma \in \mathbb{Z}_p \setminus \{0\}$. Then the primary image D of A satisfies $|\widehat{I}_D(1)| = m_1(a) = |\widehat{I}_A(\gamma)|$. So, for any $E \in M_1(D)$,

$$|\widehat{I}_A(\gamma)| = |\widehat{I}_D(1)| \overset{(19)}{=} |H_D(D)| \overset{(18)}{=} |H_D(E)| \overset{|\widehat{I}_E(1)|}{\leq}$$

with equality in the first inequality if and only if $D \in M_1(D)$. Thus, by Claim 14(i), D is an interval, and so A is affine equivalent to an interval, as required. Further, if A is an interval then D is an interval if and only if $\gamma = \pm 1$. This completes the proof of (i).

For (ii), note that $m_2(a)$ exists since by Lemma 12, there is a subset (namely I') which is not affine equivalent to I. By (i), it does not attain $m_1(a)$, so $\rho(I') \leq m_2(a)$. Suppose now that B is an a-subset of \mathbb{Z}_p which attains $m_2(a)$ at $\gamma \in \mathbb{Z}_p \setminus \{0\}$. Let D be the primary image of B. Then D is not an interval. This together with Claim 14(i) implies that $H_D(D) < H_D(E)$ for any $E \in M_1(D)$. Thus, for any $C \in M_2(D)$, we have

$$m_2(a) = |\widehat{I}_B(\gamma)| = |\widehat{I}_D(1)| = |H_D(D)| \leq |H_D(C)| \leq |\widehat{I}_C(1)|$$

with equality in the first inequality if and only if $D \in M_2(D)$. Since C is a punctured interval, it is not affine equivalent to an interval. So the first part of the lemma implies that $|\widehat{I}_C(1)| \leq m_2(a)$. Thus we have equality everywhere and so $D \in M_2(D)$. Therefore B is the affine image of a punctured interval, as required. Further, if B is a punctured interval, then D is a punctured interval if and only if $\gamma = \pm 1$. This completes the proof of (ii). \hfill \Box

We will now prove Theorem 3.

Proof of Theorem 3. Recall that $p \geq 7$, $a \in [3, p-3]$ and $k > k_0(a, p)$ is sufficiently large with $k \not\equiv 1 \pmod{p}$. Let $I = [a]$. Given $t \in \mathbb{Z}_p$, write $\rho_t := (\widehat{\Im}_1(1))^{k} \widehat{\Im}(1)$ as $r_t e^{\theta_t i}$, where $\theta_t \in [0, 2\pi)$ and $r_t > 0$. Then (17) says that θ_t equals $-\pi(2t + a - 1)(k - 1)/p$ modulo 2π. Increasing t by 1 rotates ρ_t by $-2\pi(k - 1)/p$. Using the fact that $k - 1$ is invertible modulo p, we have the following. If $(a - 1)(k - 1)$ is even, then the set of θ_t for $t \in \mathbb{Z}_p$ is precisely 0, $2\pi/p$, \ldots, $(2p - 2)\pi/p$, so there is a unique t (resp. a unique t')
in \mathbb{Z}_p for which $\theta_t = \pi + \pi/p$ (resp. $\theta_{t'} = \pi - \pi/p$). Furthermore, $t' = -(a - 1) - t$ and $I + t' = -(I + t)$; thus $I + t$ and $I + t'$ have the same set of dilations. If $(a - 1)(k - 1)$ is odd, then the set of θ_t for $t \in \mathbb{Z}_p$ is precisely $\pi/p, 3\pi/p, \ldots, (2p - 1)\pi/p$, so there is a unique $t \in \mathbb{Z}_p$ for which $\theta_t = \pi$. We call t (and t', if it exists) optimal.

Let t be optimal. To prove the theorem, we will show that $F(\xi \cdot (I + t)) < F(A)$ (and so $s_k(\xi \cdot (I + t)) < s_k(A)$) for any a-subset $A \subseteq \mathbb{Z}_p$ which is not a dilation of $I + t$.

We will first show that $F(I + t) < F(A)$ for any a-subset A which is not affine equivalent to an interval. By Lemma 13(i), we have that $|\mathbb{I}_{I+t}(\pm 1)| = m_1(a)$ and $\rho(A) \leq m_2(a)$. Let $m_2'(a)$ be the maximum of $\mathbb{I}_J(\gamma)$ over all length-a intervals J and $\gamma \in [2, p - 2]$. Lemma 13(i) implies that $m_2'(a) < m_1(a)$. Thus

$$|F(I + t) - 2(m_1(a))^{k+1} \cos(\theta_t) - F(A)| \leq (p - 1)(m_2(a))^{k+1} + (p - 3)(m_2'(a))^{k+1}.$$ \tag{20}

Now $\cos(\theta_t) \leq \cos(\pi - \pi/p) < -0.9$ since $p \geq 7$. This together with the fact that $k \geq k_0(a,p)$ and Lemma 13 imply that the absolute value of $2(m_1(a))^{k+1} \cos(\theta_t) < 0$ is greater than the right-hand side of (20). Thus $F(I + t) < F(A)$, as required.

The remaining case is when $A = \zeta \cdot (I + v)$ for some non-optimal $v \in \mathbb{Z}_p$ and non-zero $\zeta \in \mathbb{Z}_p$. Since $s_k(A) = s_k(I + v)$, we may assume that $\zeta = 1$. Note that $\cos(\theta_t) \leq \cos(\pi - \pi/p) < \cos(\pi - 2\pi/p) \leq \cos(\theta_v)$. Thus

$$F(I + t) - F(I + v) \leq 2(m_1(a))^{k+1}(\cos(\theta_t) - \cos(\theta_v)) + (2p - 4)(m_2'(a))^{k+1}$$

$$\leq 2(m_1(a))^{k+1}(\cos(\pi - \pi/p) - \cos(\pi - 2\pi/p)) + (2p - 4)(m_2'(a))^{k+1}$$

$$< 0$$

where the last inequality uses the fact that k is sufficiently large. Thus $F(I + t) < F(I + v)$, as required.

Finally, using similar techniques, we prove Theorem 5.

Proof of Theorem 5. Recall that $p \geq 7$, $a \in [3, p - 3]$ and $k > k_0(a,p)$ is sufficiently large with $k \equiv 1 \pmod{p}$. Let $I := [a]$ and $I' := [a - 1] \cup \{a\}$.

Suppose first that a and k are both even. Let $A \subseteq \mathbb{Z}_p$ be an arbitrary a-set not affine equivalent to the interval I. By Lemma 13, I attains $m_1(a)$ (exactly at $x = \pm 1$), while $\rho(A) < m_1(a)$. Also, $m_2'(a) < m_1(a)$, where $m_2'(a) := \max_{\gamma \in [2,p-2]} |\mathbb{I}_A(\gamma)|$. Thus

$$F(I) - F(A) \leq 2 \sum_{\gamma=1}^{p-2} (-1)^{\gamma} \left| \mathbb{I}_I(\gamma) \right|^{k+1} + \sum_{\gamma=1}^{p-1} \left| \mathbb{I}_A(\gamma) \right|^{k+1}$$

$$\leq -2(m_1(a))^{k+1} + (2p - 4)(\max\{m_2(a), m_2'(a)\})^{k+1} < 0,$$

where the last inequality uses the fact that k is sufficiently large. So $s_k(a) = s_k(I)$. Using Lemma 13, the same argument shows that, for all $B \in (\mathbb{Z}_p/a)$, we have $s_k(B) = s_k(a)$ if and only if B is an affine image of I. This completes the proof of Part 1 of the theorem.
Suppose now that at least one of a, k is odd. Let A be an a-set not equivalent to I. Again by Lemma 13, we have

$$F(I) - F(A) \geq \sum_{\gamma=1}^{p-1} \left| \Gamma_I(\gamma) \right|^{k+1} - \sum_{\gamma=1}^{p-1} \left| \Gamma_A(\gamma) \right|^{k+1} \geq 2(m_1(a))^{k+1} - (p - 1)(m_2(a))^{k+1} > 0.$$

So the interval I and its affine images have in fact the largest number of additive $(k+1)$-tuples among all a-subsets of \mathbb{Z}_p. In particular, $s_k(a) < s_k(I)$.

Suppose that there is some $A \in \binom{\mathbb{Z}_p}{a}$ which is not affine equivalent to I or I'. (If there is no such A, then the unique extremal sets are affine images of I' for all $k > k_0(a, p)$, giving the required.) Write $\rho := re^{\theta i} = \overline{I'}(1)$. Then by Lemma 13(ii), we have $r = m_2(a)$, and $\rho(A) \leq m_3(a)$. Given $k \geq 2$, let $s \in \mathbb{N}$ be such that $k = sp + 1$. Then

$$\left| F(I') - 2m_2(a)^{k+1}\cos(sp\theta) - F(A) \right| \leq (p - 1)m_3(a)^{k+1} + (p - 3)(m_2'(a))^{k+1}. \quad (21)$$

Proposition 11 implies that there is an even integer $\ell \in \mathbb{N}$ for which $c := p\theta - \ell\pi \in (-\pi, \pi) \setminus \{0\}$. Let $\varepsilon := \frac{1}{2} \min\{|c|, \pi - |c|\} > 0$. Given an integer t, say that $s \in \mathbb{N}$ is t-good if $sc \in ((t - \frac{1}{2})\pi + \varepsilon, (t + \frac{1}{2})\pi - \varepsilon)$. This real interval has length $\pi - 2\varepsilon > |c| > 0$, so must contain at least one integer multiple of c. In other words, for all $t \in \mathbb{Z} \setminus \{0\}$ with the same sign as c, there exists a t-good integer $s > 0$. As $sp\theta \equiv sc \pmod{2\pi}$, the sign of $\cos(sp\theta)$ is $(-1)^t$. Moreover, Lemma 13 implies that $m_2(a) > m_3(a)$, $m_2'(a)$. Thus, when $k = sp + 1 > k_0(a, p)$, the absolute value of $2m_2(a)^{k+1}\cos(sp\theta)$ is greater than the right-hand side of (21). Thus, for large $|t|$, we have $F(A) > F(I')$ if t is even and $F(A) < F(I')$ if t is odd, implying the theorem by (14).

\[\square\]

Acknowledgements

We are grateful to an anonymous referee for their careful reading of the manuscript and for many helpful comments.

References

[1] B. Bajnok, Additive combinatorics: A menu of research problems, CRC Press, Roca Baton, FL, 2018.

[2] P. Erdős, Extremal problems in number theory, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 181–189.

[3] B. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. 147 (2005), 157–188.

[4] S. Huczynska, G. L. Mullen, and J. L. Yucas, The extent to which subsets are additively closed, J. Combin. Theory Ser. A 116 (2009), 831–843.
[5] E. Nazarewicz, M. O’Brien, M. O’Neill, and C. Staples, *Equality in Pollard’s theorem on set addition of congruence classes*, Acta Arith. 127 (2007), 1–15.

[6] J. M. Pollard, *Addition properties of residue classes*, J. Lond. Math. Soc. 11 (1975), 147–152.

[7] W. Samotij and B. Sudakov, *The number of additive triples in subsets of Abelian groups*, Math. Proc. Camb. Phil. Soc. 160 (2016), 495–512.

[8] A. Terras, *Fourier analysis on finite groups and applications*, London Mathematical Society Student Texts, vol. 43, Cambridge University Press, Cambridge, 1999.