Evolution of Infant Mortality in Ecuador: A Spatial Analysis From 2010 to 2019

Karina Lalanguí Vivanco (lalanguik@gmail.com)
Instituto Nacional de Investigación en Salud Pública

Karina Rivadeneira Maya
Ministerio de Salud Pública

Christian Sánchez-Carrillo
Universidad Autónoma del Estado de México

Gersain Sosa Cortéz
Universidad Autónoma del Estado de México

Emmanuelle Quentin
Universidad UTE

Research Article

Keywords: Infant mortality, Ecuador, spatio-temporal analysis, LISA, Mann-Kendall.

Posted Date: August 25th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-821151/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Evolution of infant mortality in Ecuador: a spatial analysis from 2010 to 2019

Karina Lalangui Vivanco¹, Karina Rivadeneira Maya², Christian Sánchez-Carrillo³, Gersain Sosa Cortéz³, Emmanuelle Quentin⁴

¹ Instituto Nacional de Investigación en Salud Pública, Centro de Investigación EpiSIG, Quito, Ecuador
² Ministerio de Salud Pública, Quito, Ecuador
³ Universidad Autónoma del Estado de México, Facultad de Geografía, Toluca, México
⁴ Universidad UTE, Centro de Investigación en Salud Pública y Epidemiología Clínica, Quito, Ecuador

Correspondence: Karina Lalangui, lalanguik@gmail.com, https://orcid.org/0000-0001-8506-4107
Karina Rivadeneira Maya, kryvadeneira@hotmail.com, https://orcid.org/0000-0003-3371-0386
Christian Sánchez-Carrillo, sanchezcci27@gmail.com, https://orcid.org/0000-0003-0498-9269
Gersain Sosa Cortéz, gersaingeo@gmail.com, https://orcid.org/0000-0002-0162-235X
Emmanuelle Quentin, emmanuelle.quentin@gmail.com, https://orcid.org/0000-0001-5600-2361

Abstract

The health situation of children is fundamental for the big picture of public health in a country. Particularly, the death of children under one year of age, calculated through the infant mortality rate is still a key indicator, especially in Latin America where the overall rate has been constantly decreasing down to 13.9 infant deaths per 1000 live births. But this global figure encompasses geographical and temporal disparities within the same country. This is why it is interesting to analyze this evolution through a geomatic method of spatial prioritization. By combining hotspots detection (Local Indicators of Spatial Association, LISA) and time trend over 20 years (Mann-Kendall) at municipal level data from Ecuador, a country with infant mortality similar to the regional average, we obtain the most critical townships that should receive special attention with respect to maternal and infant health.

Keywords

Infant mortality, Ecuador, spatio-temporal analysis, LISA, Mann-Kendall.
Background

All around the world, statistic measures of mortality are used to evaluate the health state of a population [1] and consequently reflect the socio-economic development, general conditions of life and social wellbeing of a country [2]. Among these measures, the infant mortality rate (IMR) is one of the indicator most used in health [3] and is defined as the likelihood of a live birth to die before the age of one [4].

In Latin America and the Caribbean, progress in child survival has been remarkable, starting with the United Nations (UN) Millennium Development Goals (MDGs). Between 1990 and 2015, the mortality rate of children under five, including those under one year of age, has been reduced by 67% [5]. However, there is evidence that the mortality rate affects populations with lower socioeconomic levels more strongly [6, 7]. According to information obtained from the National Institute of Statistics and Censuses (INEC) [8], Ecuador's IMR has decreased by 12.7% for every 1000 births between 1990 (21.8‰) and 2016 (9.1‰). According to Pan American Health Organization / World Health Organization (PAHO/WHO) [9], in 2017 Ecuador recorded an IMR of 8.9 per 1000 children born, below Bolivia (50.2‰), Colombia (17.2‰), Brazil (15.1‰), Peru (15‰), Venezuela (14.7‰), Paraguay (14.7‰) and Argentina (9.7‰).

There are studies that have focused on understanding infant mortality from a spatial [10] and temporal [11] or both [12] point of view. With the advance of technology in geographic information systems (GIS), spatial analysis methods have begun to be used for epidemiological and health research [13], which can contribute to policy intervention at the geographic area level [10]. For example, some studies suggest that mortality varies according to geographical region, and show spatial patterns with strong regional differences where high-risk areas can be identified for policy planning and efficient resource allocation (demographic, socio-economic) [14, 15].

This study proposes an analysis of the spatial and temporal variations of infant mortality (IM) in Ecuador at the municipality level and seeks out those areas where there are significant groupings below or above the national average. This could help to prioritize sectors where greater accessibility and availability of child health care services are needed. In order to
prioritize areas of action, it is of interest to identify the municipalities in which the highest rates are found and in which the trend is strongly increasing.

No studies have been found in Ecuador where spatial analysis is used for infant mortality, however our analysis is congruent with other research in Ecuador on suicide, cancer, and neglected tropical diseases that have used significant spatial clusters to determine critical areas [16, 17, 18]. The methods used in this analysis have also been applied in other countries to determine spatial variation, spatial clusters and risk factors influencing infant mortality [10, 19].

Methods

Study area and infant mortality rate

Ecuador is located in South America, bordering Colombia (north), Peru (south-east) and the Pacific Ocean (west). Politically, it is divided into 24 provinces (Figure 3. A) and 221 counties that correspond to municipalities or communes (second political-administrative level after provinces). It has four natural regions: coast, highlands, Amazon and Galapagos Islands. For this study only continental Ecuador was considered.

The public databases of live births and general deaths are downloaded from the INEC website from 2010 to 2019 [8]. The data on deaths of children under one year of age in the study area together with the data on live births are totalized by spatial unit. These data are used to calculate the infant mortality rate per 1000 live births during a year and to construct thematic maps.

Time trend

The Mann-Kendall non-parametric statistical test is used to determine the time trend over a period of the annualized IMR. To apply this test, the data do not need to fit any particular distribution [20]. The statistic makes combinations of each pair of observed values, over time, that is, it checks whether \(IMR_j > IMR_i \) or \(IMR_j < IMR_i \) and counts the number of pairs that increase or decrease over time (it is the relative frequency of increases minus the relative frequency of decreases), it is calculated for each spatial unit as [21]:

\[
\text{Mann-Kendall Stat} = \frac{1}{n(n-1)/2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{sign}(s_{ij}),
\]

where \(s_{ij} \) is the rank of the value \(j \) relative to the value \(i \), and \(\text{sign}(s_{ij}) \) is 1 if \(s_{ij} > 0 \), -1 if \(s_{ij} < 0 \), and 0 if \(s_{ij} = 0 \).
\[S = \frac{2(t - 2)!}{t!} \sum_{i=1}^{t} \sum_{j=i+1}^{t} \text{sign}(IMR_j - IMR_i) \]

where the sign function is given by

\[
\text{sign}(IMR_j - IMR_i) = \begin{cases}
1 & \text{if } (IMR_j - IMR_i) > 0 \\
0 & \text{if } (IMR_j - IMR_i) = 0 \\
-1 & \text{if } (IMR_j - IMR_i) < 0
\end{cases}
\]

IMR_i is the IMR in year \(i \in \{1,2,...,t - 1\} \) with \(t \) as the number of available years and IMR_j is the IMR in year \(j = (i + 1) \in \{1,2,...,t\} \).

Mann-Kendall values range from -1 to +1. When a value approaches +1 it means there is a monotonic upward trend, when it approaches -1, the trend is downward and a value of 0 indicates no trend.

Spatial trend

The observed variable, in this case the IMR in the study area is represented with maps and using the spatial statistics technique for cluster detection using the Moran Indicator both globally and locally. The aim is to observe the spatial dependence that may or may not exist between nearby locations.

Considering a set of \(N \) spatial units in a region, the spatial autocorrelation represents the relationship between the IMR, in one spatial unit, and the IMR values of its \(n \) neighbors, which can be visualized through a connectivity map. To quantify the closeness between two spatial units, a positive \(n \times n \) matrix \(W \) is used, made up of \(n(n-1) \) spatial weights called \(w_{i,j} \) which are defined based on binary contiguity, like this:

\[
w_{i,j} = \begin{cases}
w_{i,j} = 1 & \text{if } j \neq i, \text{neighbouring space units} \\
w_{i,j} = 0 & \text{otherwise}
\end{cases}
\]

The Moran Index (I) is the test considered to be the most applied and statistically strongest to detect spatial independence from debris, this being a summary measure of the intensity of the spatial association between units [22, 23]. Its range of values is based on the weight matrix, usually varying between -1 and +1 but not necessarily restricted by this, unlike a correlation coefficient. If its neighboring municipalities tend to have similar values in their IMR, I will be...
positive indicating that the pattern is clustered, if they are different, \(I \) will be negative, that is,
the pattern is regular and when spatial randomness is present the expected value of \(I \) is given
by \(E[I] = (-1)/(n-1) \), as \(n \) increases, \(E[I] \) approaches 0 [24]. It is similar by Waller as a spatial
extension of the Pearson correlation coefficient.

Given \(i \) and \(j \) in \(\{1,2,\ldots,n\} \), the index is defined by:

\[
I = \frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{i=1}^{n} (x_i-\bar{x})^2} \text{ for } j \neq i,
\]

where \(n \) is the total of municipalities, \(x_i \) the IMR in municipality \(i \), \(x_j \) the IMR in another
municipality \(j \), \(\bar{x} \) the average of the IMR and \(w_{i,j} \) the elements of the contiguity matrix \(W \) that
links municipality \(i \) to \(j \).

As there are spatial effects such as heterogeneity that refer to the indistinct behavior of the
variable observed in each of the units, local patterns can be detected that with the global
measure were ignored, so local measures are introduced as Local Spatial Association
Indicators (LISA) is calculated as [25]:

\[
I_i = (x_i - \bar{x}) \sum_{j=1}^{n} w_{i,j} (x_j - \bar{x}) \text{ for } j \neq i
\]

With this analysis, using the calculation of Moran's \(I \) and the scatter plot, four categories of
groupings can be identified by the type of spatial association: the hotspots, which are
municipalities with an above-average rate and the rate of their neighbors as well, the high-high
category, or otherwise the below-average rate, the low-low category, and the outliers (or
outliers), which are municipalities with an above-average rate but the rates of their neighbors
are below the average, the high-low category, or otherwise the low-high category. To see if
these groupings were not created randomly, a hypothesis test is done, a significance test that
uses a permutation test.

Prioritization criteria for identification of spatial-temporal critical areas

Different types of criteria can be developed and implemented according to the prioritization
needs of the study.
In this case, the methodology was designed according to logical criteria. First, in order to eliminate inconsistent rates, municipalities with less than 2 deaths were excluded. The counties with higher IMR during the most recent year were selected, using the 90% percentile threshold. The frequency, in number of year, of pertaining to a high-high or hotspot cluster is used to give priority. The third factor considered is the higher positive trend over all the period studied.

Eventually the hotspot repetition over years can be more strictly evaluated using the logical AND operator instead of the OR operator (Figure 1).

Figure 1. Methodology in 3 steps.

Results

Since 2000, the national IMR has been steadily decreasing, but as of 2014, the rate has begun to grow again which is of great concern (Figure 2).

Figure 2. Yearly evolution of the national infant mortality rate (2000-2019).
Regarding the leading cause of deaths in children under one year of age in 2019, of the 3355 children who died 15% (504) died from respiratory difficulties, 7.7% (257) from bacterial sepsis, 5.2% (175) from pneumonia and 4.1% (137) from other congenital heart malformations. The following chart shows the top ten causes of mortality in children under one year of age for 2019 (Figure 3).

Figure 3. Top ten causes of death in children under one year of age in 2019.

Figures 4 and 5 show the spatial distribution of the incidence rates of mortality in children under one year of age and the temporal trends analyzed by the Mann-Kendall method (the
number in brackets indicates how many municipalities are in the category) in the 221
municipalities of continental Ecuador. The trends show that the rates are not spatially
constant. At the regional level, there is a slow increase in IMR rates, mainly in the highlands
and the Amazon. In the highlands, the municipalities with rates above >16.7‰ are Ibarra,
Cuenca, with high growth trends, and Guaranda and Tulcan with medium growth trends, and
Latacunga and Quito with low growth trends. Similarly, the municipality of Guamote has a rate
above the threshold, however, this trend is steadily decreasing over time.

Of the 41 municipalities in the Amazon, 15 maintain an increasing trend between medium and
low, however, the municipality Morona, Lago Agrio and Quijos are the only ones rates above
the threshold.

A particular case on the coast is the Piñas municipality, where the rate increased from 0‰ in
2010 to 157.77 deaths per 1000 live births in 2019, making it the municipality with the highest
increasing trend in the entire country. Another important aspect to highlight within this region is
that the municipalities of Manta and Guayaquil, being provincial capitals, have rates above the
established threshold and with an average upward trend. San Lorenzo in the coastal
Esmeraldas province is the only municipality that presents a high decreasing trend.

Figure 4. Provinces of Ecuador (Panel A). Infant mortality rate for 2010 to 2019 (Panel B-K).
Figure 5. Time trend map of Mann-Kendall (Tau) for the period 2010 to 2019.
Through the cluster analysis (LISA) that represents the spatial grouping of infant mortality for the years 2010 to 2019 (Figure 6), it can be deduced that during the 10 years of study, the central highlands concentrate the majority of clusters, which are reduced over time, until concentrating in 2019 in the provinces of Carchi, Chimborazo, Cotopaxi, El Oro, Sucumbios and Morona Santiago. On the contrary, cold spots appear sporadically in Loja, Los Ríos and Morona Santiago.

Figure 6. LISA univariate (cluster) maps.
By means of the prioritization criteria, eight municipalities were defined, of which four belong to the highlands region, two to the coastal region and two to the Amazon region.

Table 1. Municipalities with higher risk of infant mortality.
Discussion

Eight municipalities were identified as a priority (Table 1), where policies could be implemented to improve the socioeconomic conditions of the population, infrastructure, coverage and accessibility to health services, or even improve the registration of deaths and births, among other strategies that could potentially help reduce the high IMR and reverse the trend. While there are many more municipalities with high IMR, these eight municipalities are of more concern as they have higher IMR values, the trend is increasing over the years, and they generate statistically significant spatial clusters. It is most appropriate that the IMR is reduced over time to the lowest possible levels, yet certain municipalities do not show improvement over the period (increasing and stable trend), which could indicate that more national, provincial or municipal efforts are needed to reduce the IMR.

According to the results obtained, the Sierra region has the majority of municipalities with high IMR rates, a growing trend and High-High hotspot values. A study conducted in 1995 in Ecuador showed that the sierra region had the highest rate of the three regions [26], and agreed that the infant mortality profile was mainly due to perinatal conditions (P00-P96), congenital anomalies (Q00-Q99) and respiratory system diseases (J00-J99), which
established the need to improve the quality of Essential Obstetric and Neonatal Care in order to prevent and treat these important health problems in a timely manner [27].

Another important point in this study is that the highest infant mortality rates are in the most important urban areas of the country (Quito, Guayaquil and Cuenca) and the trend in these areas is increasing, despite the fact that sanitary conditions and medical assistance are much better than in rural areas; however, it should be taken into account that the information considered was analyzed by municipality of death, so it would also be important to apply it to municipality of residence in order to identify the main focus of risk; secondly, birth and death data should be better recorded in cities than in rural areas, which suggests that there could be an underestimation of the information in areas away from urban centers.

Conclusions

The application of spatial analysis methods in public health, allowed to analyze the temporal and spatial trend of infant mortality rates in continental Ecuador, the findings of this research can provide important inputs for the correct policy intervention [10] in relation to the prioritization of places that require greater accessibility and availability of child health care services, which contribute to the reduction of deaths of children under one year of age.

The municipalities with the highest risk of infant mortality should be identified as priorities and benefit from policies and the efficient allocation of resources [13, 14]. Associated with the above, this study provides relevant information for decision makers when planning policies and programs focused on this population sector. The geographic location of hotspots in different regions (amazon, coast, and highlands) and settings (urban or rural) makes it possible to combat health inequalities through the spatial targeting of areas [12], since the social and health characteristics are different for each municipality.

Finally, the proposed spatial prioritization method allowed the identification of priority municipalities, specifically those with high rates, increasing temporal trends and significant spatial clusters (Guaranda, Morona, Piñas, Cuenca, Ibarra, Tulcán, Guayaquil and Lago
Agrio), where actions can be taken to prevent and reduce infant mortality. Future studies could focus on determining the social and environmental factors that explain the observed patterns.

Abbreviations
IMR: Infant mortality rate; LISA: Local Indicators of Spatial Association; INEC: National Institute of Statistics and Censuses

Declarations
Ethics approval and consent to participate: Not applicable
Consent for publication: Not applicable
Availability of data and materials: Raw data are freely available at (open access):
https://www.ecuadorencifras.gob.ec/nacimientos_y_defunciones/
Conflicts of interest. None declared by the authors.
Funding: No funding required.
Contribution of the authors. EQ conceived the original study and reviewed the manuscript; KL and KR collected and processed the data, interpreted the results and wrote the first version of the manuscript; CS and GS supported the application of the LISA method. All authors have read and approved the manuscript and have contributed significantly to the work.
Statement. The opinions expressed by the authors are their own and do not necessarily reflect the criteria or policy of the journal.
Acknowledgements: Not applicable

References
1. Reidpath DD, Allotey P. Infant mortality rate as an indicator of population health. Journal of Epidemiology & Community Health. 2003; http://dx.doi.org/10.1136/jech.57.5.344.
2. Dallolio L, Di Gregori V, Lenzi J, et al. Socio-economic factors associated with infant mortality in Italy: an ecological study. Int J Equity Health. 2012; https://doi.org/10.1186/1475-9276-11-45.
3. Organización Panamericana de la Salud: Lineamientos básicos para el análisis de la mortalidad. https://iris.paho.org/bitstream/handle/10665.2/34492/9789275319819-spa.pdf?sequence=7&isAllowed=y (2017). Accessed 14 Jun 2019.

4. Comisión Económica para América Latina y el Caribe/Fondo de las Naciones Unidas para la Infancia: Mortalidad en la niñez: una base de datos de América Latina desde 1960. https://www.cepal.org/es/publicaciones/1425-mortalidad-la-niniez-base-datos-america-latina-1960 (2011). Accessed 22 Jul 2019.

5. Organización Panamericana de la Salud: Informe final sobre los Objetivos de Desarrollo del Milenio relacionados con la salud en la Región de las Américas. https://iris.paho.org/bitstream/handle/10665.2/34114/9789275118782_spa.pdf?sequence=5&isAllowed=y (2017). Accessed 14 Jun 2019.

6. Gayawan E, Adarabioyo M, Okewole D, Fashoto S, Ukaegbu J. Geographical variation in infant mortality in West Africa: a geo-additive discrete-time survival modeling. Genus. 2016; https://doi.org/10.1186/s41118-016-0009-8.

7. Huda TM, Hayes A, El Arifeen S, Dibley M. Social determinants of inequalities in child undernutrition in Bangladesh: A decomposition analysis. Maternal & child nutrition. 2017; https://onlinelibrary.wiley.com/doi/epdf/10.1111/mcn.12440.

8. Instituto Nacional de Estadística y Censos: Nacimientos y defunciones. Ecuador. 2019. https://www.ecuadorencifras.gob.ec/nacimientos_y_defunciones/ Accessed 17 Apr 2019.

9. Organización Panamericana de la Salud/Organización Mundial de la Salud: Indicadores básicos: Situación de salud en las Américas. https://iris.paho.org/bitstream/handle/10665.2/34330/IndBrasicos2017_spa.pdf?sequence=1&isAllowed=y (2017). Accessed 22 Jul 2019.

10. Gupta AK, Ladusingh L, Borkotoky K. Spatial clustering and risk factors of infant mortality: district-level assessment of high-focus states in India. Genus. 2016; https://doi.org/10.1186/s41118-016-0008-9.
11. Almeida MC, Gomes CM, Nascimento LF. Análise espacial da mortalidade neonatal no estado de São Paulo, 2006-2010. Rev Paul Pediatr. 2014; doi:10.1016/j.rpped.2014.01.001.

12. Lome-Hurtado A, Lartigue-Mendoza J, Trujillo J. Modelling local patterns of child mortality risk: a Bayesian Spatio-temporal analysis. BMC Public Health. 2021; https://doi.org/10.1186/s12889-020-10016-9

13. Demirel R, Erdoğan S. Determination of high risk regions of human brucellosis in Turkey using exploratory spatial analysis. Türkiye Klin J Med Sci. 2009;29:25-35.

14. Huda TM, Tahsina T, El Arifeen S, Dibley MJ. The importance of intersectoral factors in promoting equity-oriented universal health coverage: a multilevel analysis of social determinants affecting neonatal infant and under-five mortality in Bangladesh. Glob Health Action. 2016; https://doi.org/10.3402/gha.v9.29741.

15. Ahmed S, Hill K. Maternal mortality estimation at the subnational level: a model-based method with an application to Bangladesh. Bull World Health Organ. 2011;89:12–21.

16. Núñez-González S, Lara-Vinueza AG, Gault C, Delgado-Ron JA. Trends and Spatial Patterns of Suicide Among Adolescent in Ecuador, 1997-2016. Clin Pract Epidemiol Ment Health. 2018; https://doi.org/10.2174/1745017901814010283.

17. Núñez-González S, Delgado-Ron JA, Christopher G, Simancas-Racines D. Trends and Spatial Patterns of Oral Cancer Mortality in Ecuador, 2001–2016. International Journal of Dentistry. 2018; https://doi.org/10.1155/2018/6086595.

18. Núñez-González S, Christopher G, Simancas-Racines Daniel. Spatial analysis of dengue, cysticercosis and Chagas disease mortality in Ecuador, 2011–2016. Tropical Medicine and Hygiene. 2019; https://doi.org/10.1093/trstmh/try106.

19. Sánchez C. Análisis espacial de la transición epidemiológica en la mortalidad infantil en el estado de México. Tesis: Maestría en Análisis Espacial y Geoinformática, Universidad Autónoma del Estado de México. 2019; http://hdl.handle.net/20.500.11799/104843
20. Oti SO, van de Vijver S, Kyobutungi C. Trends in non-communicable disease mortality among adult residents in Nairobi’s slums, 2003-2011: applying InterVA-4 to verbal autopsy data. Glob Health Action. 2014; https://doi.org/10.3402/gha.v7.25533.

21. Douglas EM, Vogel RM, Kroll CN. Trends in Floods and Low Flows in the United States: Impact of Spatial Correlation. Journal of Hydrology. 2000; https://doi.org/10.1016/S0022-1694(00)00336-X.

22. Cliff A, Ord K. Spatial Processes, Models and Applications. In: Cho G, editor. Cartography. London: Pion; 1981. p. 59-60.

23. Anselin L. Spatial econometrics: methods and models. 1st ed. Springer-science+Business media, B.V; 1988.

24. Waller L, Gotway C. Applied spatial statistics for public health data. 1st ed. Wiley-Interscience; 2004.

25. Anselin L. Local indicators of spatial association—LISA. Geographic Analysis. 1995; https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

26. Lozada P, Aguinaga L, Páez R, et al. El peso de la enfermedad en Ecuador. 1995. http://saludecuador.org/maternoinfantil/archivos/A57.PDF Accessed 17 Apr 2019.

27. Bustamante K, Armas S. Diagnóstico de salud del Distrito Metropolitano de Quito. 1st ed. Secretaria de salud del DMQ; 2017.