The structure of CR manifolds.

Abstract.

In this paper we study the topology of CR pseudoconvex manifo lds whose Reeb flow preserve the Levi metric.

Definition 1.
A CR-manifold of dimension $2n + 1$ is a manifold N of dimension $2n + 1$ endowed with the followings properties:

Let TN be the tangent bundle of N, there exists a subbundle V of $TN \otimes \mathbb{C}$, of complex dimension n, such that $V \cap \overline{V} = 0$, where \overline{V} is the complex conjugate of V, and $[V, V] \subset V$.

The bundle $\overline{V} = H$ is the kernel of a real 1-form $\theta \in T^*N$, where T^*N is the cotangent bundle of N.

Let $(U_p)_{p \in I}$ be an open contractible covering of N by open subsets. We denote by θ_p the restriction of θ to U_p, and (u^p_1, \ldots, u^p_n) a basis of the restriction of the dual of V to U, we have:

$$d(\theta_p) = \sum i h_{cd} u_c \wedge \overline{u_d}$$

The coefficients h_{cd}, define a pseudo-Hermitian metric on V. We can extend this metric to H by supposing that V is orthogonal to \overline{V}, and the complex conjugate is an isometry. This metric is called the Levi metric.

Definition 2.
The CR-manifold is pseudo convex if the Levi metric is positive definite. In this case there exists a vector field X of TN such that $L_X \theta = 0$, where L_X is the Lie derivative. The vector field X is called the Reeb vector field.

The purpose of this paper is to show the following result:

Theorem 1.
Let N be a compact pseudo-convex CR manifold, X a flow transverse to H which preserves the Levi metric then the closure of the orbits of X are torus, if these closure have the same dimension, then N is the total space of a bundle whose typical fiber is the closure of an orbit of X flow over a Satake manifold.

The complex transverse geometry of the Reeb flow.

Let N be a CR pseudo-convex manifold, and X a flow transverse to H which preserves the Levi metric. The complex transverse bundle TX of X is
the quotient of $TN \otimes I_C$ by $X \otimes I_C$. Let U be a contractible open subset of N, and T a submanifold of U transverse to X. We denote by $L_X N_U$, the restriction of the bundle of complex frames $L_X N$ of $TX N$ to U, we have a projection $p_U : L_X N \to LT \otimes I_C$, where LT is the bundle of transverse complex frames of T. The kernel of the differential dp_U of dP define on $L_X N_U$ a distribution tangent to a flow. This distribution is independent of the choice of the local transversal T. We have thus defined on $L_X N$ a flow \hat{X}, which is called the lift of X.

The Levi metric $<,>$, defines an Hermitian reduction H_X of $L_X N$ (which is invariant by the orbit of \hat{X}) of $L_X N$, since the manifold N is compact, H_X is also a compact submanifold. To show the theorem 1, we shall prove that the restriction X' of \hat{X} to H_X is a riemannian flow, (in fact, we are going to construct a transverse parallelism to X') and apply a well-known result of Yves Carriere on the structure of Riemannian flows.

The transverse parallelism of X'.

The manifold H_X is a principal bundle over N whose typical fiber is $U(2n)$, the group of Hermitian matrices. Each element c of the Lie algebra $u(2n)$ of $U(2n)$ defines on H_X a vector field c_N defined by $c_N(x) = \frac{d}{dt=0} \exp(tc_N)(x)$. The vector c_N are called the fundamental vector fields of H_X.

Let α be the fundamental form of H_X. Recall that for every element u of the tangent space $TH_x N_x$ of $x \in TH_x$ (x is a linear map $L^{2n} \to T_{p(x)} N \otimes I_C / I_C \otimes X$, where $p : H_X \to N$ is the bundle projection map, $\alpha(u) = x^{-1} (dp_x (u))$. For each element y of L^{2n}, we can define the vector field \hat{y} of H_X by setting $\alpha(\hat{y}) = y$.

The vector \hat{y}, $y \in L^{2n}$ and the fundamental vector fields define the transverse parallelism to X'.

Proof of theorem 1.

Let X be an isometry transverse to the Levi metric, then the lift X' of X to H_X is a riemannian flow, we can apply the result of Carriere. The closure of the orbits of X are the projections of the closure of the orbits of X' by the bundle map $H_X \to N$.

We can obtain this most general result:

Theorem 2.

Let N be a pseudo convex compact CR manifold, endowed with a transverse flow X which is a conformal flow in respect to the Levi metric, then the closure of the orbits of X are torus.

Proof.

Consider the group generated by $U(n)$ and the complex homothetic maps, and we denote $L(n)$, its quotient by an homothetic map h_{λ_0} such that the norm of λ_0 is strictly superior to 1. The transverse bundle of X can be reduced to
The lifts X' of X to $L(n)$ is a transversely conformal analytic flow of codimension greater than 3. We can apply the theorem of Tarquini which asserts that in this situation that the flow of X' is riemannian or Moebius. Then we apply the structure theorem for riemannian flows and Moebius flows.

The previous result suggests the study of transversely Hermitian foliations:

Definition 3.
Let N be a manifold, and \mathcal{H} a foliation defined on N, the foliation \mathcal{H} is a transversely Hermitian foliation, if there exists a symmetric Hermitian basic 2-tensor \langle , \rangle defined on $TN \otimes IC'$ such that:

- For each $u \in N$, $Tu\mathcal{H} \otimes IC'$ the tensor product of the subspace $T_x\mathcal{H}$ of TuN tangent to \mathcal{H} and IC' is the kernel of \langle , \rangle.
- The projection of \langle , \rangle to the transverse complex bundle of \mathcal{H} is a positive definite Hermitian metric. We have the following nice result:

Theorem 3.
Let N be a compact manifold endowed with a transversely Hermitian foliation \mathcal{H}, then the closure of the leaves of \mathcal{H} are submanifolds.

References.
1. Yves Carriere, Flots riemanniens Asterisque 116
2. Tarquini, Feuilletages conformes, Annales Institut Fourier 2004