Abstract. The mechanisms underlying gene therapy for the treatment of cardiovascular diseases remain to be elucidated. microRNAs (miRs) have been recognized as key regulators in vascular smooth muscle cells, which are involved in the formation of atherosclerosis. The present study aimed to explore the role of miR‑129‑5p in the regulation of high‑mobility group box 1 protein (HMGB1) and the PI3k/Akt signaling pathway, and further explore the role of miR‑129‑5p in the viability and migration of A7r5 cells induced by oxidized low‑density lipoprotein (ox‑LDL). Cell viability, viability and migration were determined using Cell Counting Kit‑8, colony formation, wound healing and Transwell assays. The expression levels of miR‑129‑5p and HMGB1 were detected using reverse transcription‑quantitative PCR and western blotting. A dual‑luciferase assay was used to confirm the association between miR‑129‑5p and HMGB1. RT‑qPCR results in the present study demonstrated that the expression levels of miR‑129‑5p in A7r5 cells induced by ox‑LDL were significantly decreased, compared with the control cells. Moreover, the viability and migration of A7r5 cells induced by ox‑LDL were increased compared with control group. Western blot and RT‑qPCR results showed that miR‑129‑5p decreased the expression of HMGB1 in A7r5 cells compared with control group. The present results demonstrated that miR‑129‑5p inhibited the viability, viability and migration of A7r5 cells induced by ox‑LDL, and directly targeted HMGB1 to regulate the PI3k/Akt signaling pathway. In conclusion, miR‑129‑5p inhibited the PI3k/Akt signaling pathway by directly targeting HMGB1, and reduced the viability, viability and migration of A7r5 cells induced by ox‑LDL.

Introduction

Cardiovascular disease (CVD) is a leading cause of mortality worldwide (1). One of the main causes of CVD is atherosclerosis (AS) (2), and the pathological mechanisms underlying AS have been the focus of a number of studies. AS is recognized as a chronic arterial inflammatory disease that is induced by oxidized low‑density lipoprotein (ox‑LDL) accumulation and inflammation of the arterial intima under hypercholesterolemic conditions (3). The results of previous pharmacological studies have demonstrated that the main risk factors of AS include dyslipidemia, hypertension, alcohol consumption, smoking, diabetes, obesity and a lack of exercise (4). Currently, dyslipidemia is considered the most critical risk factor of AS (5). Ox‑LDL is a critical diagnostic marker of AS (6), and has the ability to cause lipid metabolism disorders, promote the formation of foam cells derived from vascular smooth muscle cells (VSMCs), and regulate the proliferation, apoptosis, migration and differentiation of VSMCs, which serve vital roles in the development of AS (7).

The results of previous studies have revealed the key signals and molecular pathways (e.g., MAPK/ERK, Nrf2) underlying the formation and development of atherosclerotic plaques (8,9). Moreover, the role of microRNAs (miRNAs/miRs) in CVD have remained the focus of a number of studies. miRNAs are a family of highly conserved, endogenous non‑coding small RNA molecules that regulate gene expression through binding of the 3’‑untranslated region (3’‑UTR) of target mRNAs (10‑12). miRNAs are involved in diverse cellular functions, including differentiation, growth, proliferation, migration, senescence and apoptosis in a number of cells including cancer cells, HUVECs and H9c2 (13). Moreover, A previous study demonstrated that miRNAs serve essential roles in regulating AS (14). Geng et al (14) reported that ox‑LDL increased the expression levels of miR‑129‑5p in human aortic endothelial cells, thereby decreasing cell proliferation. This led to a decrease in the mRNA expression of Beclin‑1, which decreased endothelial cell autophagy in AS. Thus, miR‑129‑5p exerted differing effects on a number...
of cells under the pathological conditions of AS, which is dependent on the targeted cell type (8). The results of previous studies have provided novel molecular insights into the impact of miRNAs in AS pathways, identifying them as novel therapeutic targets. For example, miR-181b acts as an inhibitor of endothelial inflammatory responses by targeting NF-κB binding in AS (15). The results of an study demonstrated the role of miR-221/miR-222 in the regulation of platelet derived growth factor-mediated VSMC proliferation (16). Moreover, miR-145 served a regulative role in aberrant VSMC proliferation, which is a key pathological process of AS (17). Liu et al (18) demonstrated the role of miR-21 as a key target for protective reagents against ox-LDL-induced rat vascular endothelial cell injury, which may serve critical roles in the development of AS (18). Furthermore, miR-129-5p has been demonstrated to suppress carcinogenesis in a number of cancers including gastric cancer and osteosarcoma (19,20). However, the specific role of miR-129-5p in the development of AS is yet to be fully elucidated.

High-mobility group box 1 protein (HMGB1), a highly conserved and widely expressed DNA-binding protein, is a key mediator of cell migration and proliferation (21). Notably, the results of a previous study demonstrated that HMGB1 was overexpressed in cancer cells and promoted cell invasion and migration (22). HMGB1 has been reported to participate in the regulation of AS progression. For example, Wu et al (23) demonstrated that miR-328 mitigated ox-LDL-induced endothelial cell injury by targeting HMGB1 in AS. Moreno et al (24) also reported that HMGB1 was highly expressed in atherosclerotic plaques.

In the present study, ox-LDL-induced A7r5 cells were used to determine the role of miR-129-5p in cell migration and proliferation, and to investigate the association of miR-129-5p with HMGB1 and the PI3k/Akt signaling pathway.

Materials and methods

Materials. FBS, bovine serum albumin (BSA) and endothelial cell growth supplement were purchased from Gibco; Thermo Fisher Scientific, Inc. Ox-LDL was purchased from Unionbiol. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Molecular Technologies, Inc. (cat. no. CK04).

Cell culture. A7r5 cells were purchased from The American Type Culture Collection and maintained in DMEM (Gibco; Thermo Fisher Scientific, Inc.) containing 10% FBS (Gibco; Thermo Fisher Scientific, Inc.), 1 mmol/l sodium pyruvate, 4 mmol/l L-glutamine, 4.5 g/l glucose, 1.5 g/l sodium bicarbonate, 100 mg/ml streptomycin and 100 U/ml penicillin at 37°C in a humidified atmosphere with 5% CO₂.

Cell transfection. A7r5 cells were transfected with 20 nM miR-129-5p mimics (5’CUU UUU GCG GUC UGG GCU UGC3’) or the corresponding negative control (Shanghai GenePharma Co., Ltd.) using Lipofectamine® 2000 reagent (Invitrogen; Thermo Fisher Scientific, Inc.) for 48 h at 37°C. For HMGB1 overexpression, the recombinant sense expression vector plasmid Cytomegalovirus promoter DNA 3.1 for HMGB1 (1 μg/μl pcDNA3.1-HMGB1: Invitrogen; Thermo Fisher Scientific, Inc.) was constructed by subcloning the cDNA fragment of HMGB1 containing the complete coding sequence between KpnI and BamHI. Cells were transfected using Lipofectamine® 2000 according to the manufacturer’s protocol. Cells in the control group were transfected with pcDNA3.1-NC (empty vector). Following transfection, cells were incubated with fresh DMEM for 24 h, the medium was replaced with fresh and cells were incubated for a further 24 h at 37°C. Cells were collected for subsequent experiments.

Wound healing. A7r5 cells were cultured in six-well culture plates (1x10⁵ cells/well) for 48 h at 37°C. The wound healing assay was conducted as previously described (25). The cell monolayers on the surface of the six-well plate were scratched with a 200 μl micropipette tip. Cells were subsequently incubated at 37°C for 24 h in DMEM containing 2% FBS (26). Non-adherent cells were washed with PBS and the remaining cells were treated with ox-LDL (0, 10, 20 and 40 μg/ml) based on preliminary experiments. Images were captured using light microscope (magnification, x40), and images of linear wounds were obtained from nine fields/well at 0 and 48 h after injury. Three independent repeats were carried out.

CCK-8 assays for the detection of cell viability. Cell viability was assessed using a CCK-8 assay kit. A7r5 cells were cultured in 96-well plates overnight at a density of 10⁴ cells/well at 37°C, and subsequently transfected with miR-129-5p mimics or an inhibitor as previously described. At 48 h after transfection, 10 μl CCK-8 solution was added to each well for 1 h and absorbance readings at 450 nm were obtained in triplicate using a spectrophotometric plate reader. Three wells were measured for each data point and three independent repeats were conducted.

Transwell migration assay. A total of 1x10⁵ A7r5 cells were collected and seeded in a six-well plate. After the cells had attached, they were treated with ox-LDL at 0, 10, 20, 40 μg/ml for 48 h. The cells were collected and 5,000 cells/well in 200 μl/well were seeded into the upper chambers filled DMEM without FBS that had been pre-coated with 150 mg Matrigel (BD Biosciences) 24 h at 37°C for invasion assays. The lower chambers were filled with DMEM containing 10% FBS. Following incubation at 37°C for 48 h, cells remaining on the upper surface of the membrane were removed. Cells on the lower surface of the membrane were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet for 15 min at room temperature. Stained cells were subsequently observed and counted under a light microscope (magnification, x100). Three independent experiments were performed.

Colony formation assay. A7r5 cells were treated with ox-LDL (0, 10, 20 and 40 μg/ml), seeded in 60-mm plates at 1,000 cells/well and the culture was terminated when colonies became visible to the naked eye and contained ≥50 cells. The cells were washed with 1X PBS, fixed in 4% paraformaldehyde for 15 min and stained with 0.1% (w/v) Giemsa at room temperature. Colonies were subsequently viewed and counted.
in 10 randomly selected fields under a light microscope magnification, x100, Nikon Corporation), and images were captured using a digital camera (Canon Inc.). The percentage of colony formation for each group was calculated using the following equation: Percentage of colony formation (%)=the number of colonies/1,000 x100. Three independent experiments were performed.

Bioinformatics analysis. Bioinformatics analysis was performed to predict the downstream miRNA that would interact with HMGB1, to further investigate the regulatory mechanism of miR129-5p. TargetScan (http://www.targetscan.org/vert_72/) and miRBase (https://www.mirbase.org/) were used for the gene prediction, according to the online software operating instructions.

RNA isolation and reverse transcription-quantitative (RT-q) PCR for miR-129-5p. A total of 1 µg RNA was extracted from A7r5 cells using TRIzol® reagent (Thermo Fisher Scientific, Inc.). Reverse transcription was performed using RT Reagent kit (cat. no. RR037A; Takara, Bio, Inc.) with primers specific to miR-129-5p (Guangzhou RiboBio Co., Ltd.). qPCR conditions were as follows: 95°C for 10 min, followed by 40 cycles at 95°C for 30 sec, 60°C for 30 sec and 72°C for 1 min. Relative quantification of the miRNA expression was calculated using the 2^(-ΔΔCt) method (27). The sequence of miR-129-5p was: 5’CUUUUGCGUCUGGCUCUG3’; HMGB1, Forward 5’ATCCCTGCTTATCCATTTGTTAT3’; Reverse 5’CTCG TCGTCTTCTCTCTTTCT’3. The corresponding PCR primers were: miR-129-5p, Forward 5’-ACACTCCAGCTG GTGCGTTAGAGCCCTTA-3’ and Reverse CTCAACTGG TGTGGAGT-; U6, Forward: 5’-CTCGCTTCGCCAGCA CA-3’ and Reverse 5’-AACGCTTCAGAAYYGGCTT-3’. U6 was selected as the housekeeping gene to normalize the expression of miR-129-5p.

Dual-luciferase reporter assay. Wild-type (WT) or mutant (MUT) versions of miR-129-5p were subcloned into the pGL3 Basic vector (Promega Corporation). A total of 20 nM miR-129-5p mimics (5’CUUUUGCGUCGGGCUCUG3’) (Guangzhou RiboBio Co., Ltd.) were co-transfected with pGLC-3 WT-HMGB1 (5’UACCACUCUGUAUUGACAA AA) or pGLC-MUT-HMGB1 (5’UACCACUCUGUAUUGA CCUAAUAU) (500 ng) into 3x10^5 A7r5 cells. Cells were transfected using Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer’s protocol. After 48 h incubation at 37°C, the cells were lysed by lysis buffer as supplied by the Dual-Luciferase Detection kit (Beyotime Institute of Biotechnology) on ice and luciferase activity was tested using the Dual-Luciferase Reporter assay system (Promega Corporation). Luciferase activity was normalized to Renilla luciferase activity. After transfection for 48 h, relative luminescence was tested using luminometry according to the manufacturer's instructions.

Results

 Ox-LDL increases the viability and migration of A7r5 cells. The viability of A7r5 cells induced by 0, 10, 20 and 40 µg/ml ox-LDL was investigated using CCK-8 and clone formation assays. Following ox-LDL treatment, the results of the CCK-8 assay demonstrated that compared with control group, the absorbance of A7r5 cells significantly increased with the increase of ox-LDL concentration, indicating that ox-LDL increased viability in a dose-dependent manner (Fig. 1A). As presented in Fig. 1, A7r5 cells induced by 40 µg/ml ox-LDL demonstrated the highest level of viability. As exhibited in Fig. 1B, the clone formation of A7r5 cells was significantly increased with the increase of ox-LDL concentration compared with control group, further indicating that ox-LDL increased viability in a dose-dependent manner, and that A7r5 cells induced by 40 µg/ml ox-LDL demonstrated the highest level of viability. Moreover, the results of wound healing and Transwell assays revealed a high level of A7r5 cell migration induced by 40 µg/ml ox-LDL compared with control group (Fig. 1C and D).

Western blotting assay. Cell lysates from ox-LDL treated A7r5 cells were placed on ice in 1X RIPA lysis buffer (Sigma-Aldrich; Merck KGaA) containing protease and phosphatase inhibitors (Thermo Fisher Scientific, Inc.). The concentration of the protein in cells lysates was detected using a BCA kit (Beijing Solarbio Science & Technology Co., Ltd.). The proteins in cell lysates (10 µg) were separated using SDS-PAGE on a 10% gel. The separated proteins were subsequently transferred onto a nitrocellulose membrane and incubated with 5% non-fat milk solution or 5% BSA for 1 h at room temperature. The membranes were incubated with primary antibodies against HMGB1, focal adhesion kinase (FAK; cat. no. 3285, 1:1,000; Cell Signaling Technology, Inc.), Akt (cat. no. 9272, 1:1,000; Cell Signaling Technology, Inc.), PI3k (cat. no. 4255, 1:1,000; Cell Signaling Technology, Inc.), phosphorylated (p)-FAK (cat. no. 3281, 1:1,000; Cell Signaling Technology, Inc.), p-Akt (cat. no. 9275, 1:1,000; Cell Signaling Technology, Inc.), and GAPDH (cat. no. 5174; 1:1,000; Cell signal Technology, Inc.) at 4°C overnight. The membrane was washed with TBS-Tween-20 (20%) 3 times (8 min) and subsequently incubated with anti-rabbit IgG (TA354916, 1:10,000) or anti-mouse IgG antibodies (TA35266, 1:10,000; OriGene Technologies, Inc.) conjugated to horseradish peroxidase for 1 h at room temperature. Bands were visualized using one-way ECL detection kit (Thermo Fisher Scientific, Inc.). Then band intensities were determined using ImageJ software v. 1.4 (National Institutes of Health), and normalized to GAPDH.

Statistical analysis. Each experiment was carried out at least three times, and all values are presented as the mean ± SD. SPSS 22.0 software (IBM Corp.) was used to analyze the data. Comparisons between two means were evaluated using a paired Student's t-test. Comparisons among multiple groups were evaluated using one-way ANOVA followed by Bonferroni's post hoc test. P<0.05 was considered to indicate a statistically significant difference.
in A7r5 cells compared with control group. Notably, the expression level of miR-129-5p was the lowest in A7r5 cells following treatment with 40 µg/ml ox-LDL, compared with the control group (Fig. 2A). Furthermore, HMGB1 mRNA and protein expression levels in A7r5 cells induced by 0, 10, 20 and 40 µg/ml ox-LDL were evaluated using western blot analysis and RT-qPCR. As demonstrated in Fig. 2B-D, both HMGB1 protein and mRNA expression levels were the highest in A7r5 cells induced by 40 µg/ml ox-LDL compared with the control group. Thus, the expression levels of HMGB1 were increased, and the expression levels of miR-129-5p were decreased in A7r5 cells following treatment with ox-LDL.

miR-129-5p regulates HMGB1 expression by binding to the HMGB1 3’UTR. Results generated from TargetScan (http://www.targetscan.org/vert_72/) and miRBase (https://www.mirbase.org/) databases suggested that the 3’UTR of HMGB1 contained miR-129-5p seed sites (Fig. 3A). In order to determine whether miR-129-5p directly targeted HMGB1, a dual-luciferase reporter assay was performed after A7r5 cells were co-transfected with HMGB1-WT or HMGB1-MUT reporter plasmids, and either miR-129-5p or miR-NC. The results of the present study demonstrated that miR-129-5p significantly downregulated the luciferase activity of HMGB1-WT plasmid (Fig. 3B), but exerted no notable effects on the activity of the HMGB1-MUT plasmid, indicating that miR129-5p directly targeted HMGB1. RT-qPCR results revealed that the expression levels of miR-129-5p in the miR-129-5p mimics group were significantly increased compared with the mimics control group (Fig. 3C). Moreover, the expression levels of miR-129-5p in the miR-129-5p inhibitor group were significantly reduced compared with the inhibitor control group. Thus, the results of the RT-qPCR analysis confirmed transfection efficiency. In addition, western blotting and RT-qPCR results revealed differences in the expression levels of HMGB1 in miR-129-5p mimics group. As demonstrated in Fig. 3D and E, miR-129-5p downregulated both the HMGB1 mRNA and protein expression levels in A7r5 cells.

miR-129-5p inhibits the viability and migration of A7r5 cells induced by ox-LDL. RT-qPCR was conducted to detect
the mRNA levels of miR-129-5p in A7r5 cells induced by 0, 10, 20 and 40 µg/ml ox-LDL. The expression levels of miR-129-5p in A7r5 cells induced by 40 µg/ml ox-LDL was significantly reduced compared with the control group (Fig. 4A). Moreover, the expression levels of miR-129-5p were significantly increased in the miR-129-5p mimics group, compared with the ox-LDL group (Fig. 4A). A CCK-8 assay was conducted to analyze the viability of A7r5 cells induced by 40 µg/ml ox-LDL. Notably, the viability of A7r5 cells induced by 40 µg/ml ox-LDL was increased compared with the corresponding control group. However, the viability of A7r5 cells was reduced following transfection with the miR-129-5p mimics and treatment with 40 µg/ml ox-LDL. The viability of A7r5 cells induced by 40 µg/ml ox-LDL was increased compared with the ox-LDL group (Fig. 4A). Notably, the expression level of HMGB1 in the con + miR-129-5p + pcDNA3.1 group was significantly reduced compared with the control group (Fig. 5A). Furthermore, the expression level of HMGB1 was significantly increased in the HMGB1 overexpression group compared with the miR-129-5p mimics group (Fig. 5A). Additionally, the expression level of HMGB1 was markedly increased in the ox-LDL40 + miR-129-5p + pcDNA3.1-HMGB1 group compared with the ox-LDL40 + miR-129-5p + pcDNA3.1 group. A CCK-8 assay was conducted to analyze the viability of A7r5 cells induced by 40 µg/ml ox-LDL. Compared with the control group, the viability of A7r5 cells transfected with miR-129-5p mimics was significantly reduced. Notably, the viability of A7r5 cells induced by 40 µg/ml ox-LDL was significantly increased following HMGB1 overexpression compared with the ox-LDL40 + miR-129-5p + pcDNA3.1-HMGB1 group (Fig. 5B). In order to confirm transfection efficiency, HMGB1 mRNA expression levels were detected using RT-qPCR analysis. The results demonstrated that HMGB1 mRNA expression levels were significantly increased in the con + pcDNA3.1-HMGB1 group compared with the con + pcDNA3.1 group (Fig. 5C). Colony formation and Transwell assays were subsequently performed to determine the viability and migration rates of A7r5 cells induced by ox-LDL. The results of the present study demonstrated that the viability and migration rate of A7r5 cells induced by ox-LDL were significantly increased following HMGB1 overexpression.
Effects of miR-129-5p on the expression and phosphorylation of FAK and Akt. PI3k/Akt-related proteins were investigated in A7r5 cells following transfection with miR-129-5p mimics and treatment with 40 µg/ml ox-LDL. As demonstrated in Fig. 6, the protein expression level of PI3k, along with p-Akt and p-FAK levels were increased in A7r5 cells induced by 40 µg/ml ox-LDL compared with the control group. Moreover, the expression levels of PI3k, and the levels of p-Akt and p-FAK were markedly reduced in A7r5 cells following transfection with the miR-129-5p mimic, compared with A7r5 cells induced by 40 µg/ml ox-LDL (Fig. 6).

Discussion

AS is a main cause of CVDs and cerebrovascular diseases that lead to the highest mortality and morbidity rates worldwide (28). The American Heart Association reported that 17.9 million people died of cardiovascular disease in 2017, accounting for 31 percent of deaths worldwide (29). The main risk factors for AS include hyperglycemia, hyperlipidemia, smoking, poor diet, obesity and diabetes mellitus (30). Epidemiological data have demonstrated that the mortality rate of CVD is much higher than that of other diseases worldwide (31). VSMC proliferation is one of the major contributors to AS, and the associated risk factors remain the focus of current research. For example, ox-LDL
is associated with AS, and is formed as a result of ox-LDL oxidation (32-34). In addition, further research has focused on improving and preventing the development of AS. The role of ox-LDL in hyperlipidemia has also been demonstrated as a key risk factor in the development of AS (35). Moreover, the pharmacological inhibition of miRNAs is being used as treatment for a number of human diseases, and ongoing research has focused on the development of RNA-based therapeutics for clinical applications, such as for the treatment of CVD (36). As one of the most important cells in the arterial mesangium, VSMCs serve a key role in the formation of AS through excessive proliferation (37,38). A number of studies have used VSMCs as models to elucidate the pathological mechanism underlying AS. Furthermore, miRNAs have become an integral part in determining the mechanisms associated with AS, and have the potential to act as biomarkers (39,40). Ruan et al (41) demonstrated that miR-155 overexpression inhibited apoptosis in different cells including vascular endothelial cells and vascular smooth muscle cells by suppressing the expression of p85α to block Akt activation, which supports a potential therapeutic role in AS. Thus, it was hypothesized that miRNA may regulate the proliferation, migration and cell viability of A7r5 cells induced by ox-LDL.

To understand the functional mechanisms underlying miRNAs, the identification of potential targets involved in their regulation is required. Luo et al (42) reported that miR-129-5p attenuates irradiation-induced autophagy and decreases the radio-resistance of breast cancer cells by targeting HMGB1 (42,43). In the present study, the role of miR-129-5p on AS, and the potential underlying molecular mechanisms were investigated. The effects of miR-129-5p on...
the viability and migration of A7r5 cells induced by ox-LDL were also investigated. HMGB1 is a well-established target of the PI3k/Akt signaling pathway. Moreover, the results of the present study demonstrated that miR-129-5p regulated the PI3k/Akt signaling pathway by targeting HMGB1. Thus, the results of the present study identified HMGB1 as a direct functional target of miR-129-5p in A7r5 cells, and also an important regulator of the PI3k/Akt signaling pathway in VSMCs. For example, the results of the present study demonstrated that the 3’UTR of HMGB1 contained a binding site that matched the miR-129-5p seed sequence. Furthermore, compared with control group, overexpression of miR-129-5p decreased the luciferase activity upstream of the WT 3’UTR of HMGB1, whereas a site mutation in miR-129-5p abolished miR-129-5p regulation. Inhibition of miR-129-5p led to an increase in luciferase activity of WT HMGB1 3’UTR in A7r5 cells. Finally, transfection of the miR-129-5p inhibitor into A7r5 cells suppressed HMGB1 expression levels. Thus, the results of the present study demonstrated that miR-129-5p regulated HMGB1 expression by directly binding to its 3’UTR.

Previous studies (44,45) have indicated the potential roles of HMGB1 in VSMCs. HMGB1 serves a role in the regulation of the PI3k/Akt signaling pathway (44), which is crucial for the development or progression of AS in a number of ways, such as cell growth, migration and apoptosis of A7r5 cells induced by ox-LDL. The effective inhibition of VSMC proliferation at the early stage of AS formation is an important method for the prevention and treatment of vascular hyperplastic lesions and restenosis after angioplasty (46).
In conclusion, miR-129-5p mediated HMGB1 to regulate the PI3k/Akt signaling pathway and further inhibited the proliferation and migration of A7r5 cells induced by ox-LDL. Thus, the present study may provide new insights into the treatment of AS through the regulation of VSMC proliferation and migration.

However, the present study was limited in that it primarily focused on the viability, migration and apoptosis of ox-LDL-induced A7r5 cells. For example, despite there being discussions surrounding the pathological mechanisms underlying the atherosclerotic cell model, these were not verified using any in vivo experimental data. In addition, agonists or inhibitors were not used in the present study to explore the signaling pathway. Thus, Akt inhibitors, such as MK2206, should be used in future investigations to further explore the role of the PI3k/Akt signaling pathway regulated by miR-129-5p in CVD.

Acknowledgements

Not applicable.

Funding

The present study was supported by the funded project of National Natural Science Foundation of China (grant. no. 8166020210).

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions

HJ wrote the manuscript and analyzed the data. RG and YW participated in experimental design, modification, data analysis and submission. RG participated in experiments and literature review. HJ and YW confirm the authenticity of all the raw data. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.
References

1. Jackson J, Patterson AJ, MacDonald-Wicks L and McEvoy M: The role of inorganic nitrate and nitrite in CVD. Nutr Res Rep 2020: 247-264, 2020.

2. Veerbeek JH, Brouwers L, Koster MP, Koenen SV, van Vliet EO, Nikkels PG, Franx A and van Rijn BB: Spiral artery remodelling and maternal cardiovascular risk: The spiral artery remodelling (SPAR) study. J Hypertens 34: 1570-1577, 2016.

3. Sivasrinprasan S, Wikan N, Tocharus J, Chaijomphoo W, Sukksamarn A and Tocharus C: Pelargonic acid vanillyl-amide and rosvastatin protect against oxidized low-density lipoprotein-induced endothelial dysfunction by inhibiting the NF-κB/NLPR3 pathway and improving cell-cell junctions. Chem Biol Interact 345: 109572, 2021.

4. Groenen AG, Halmos B, Tall AR and Westerterp M: Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit Rev Biochem Mol Biol 56: 426-439, 2021.

5. Valanti EK, Dalakoura-Karagkouni K, Siasos G, Kardassis D, Eliopoulos AG and Sanoudou D: Advanced in biological therapies for dyslipidemias and atherosclerosis. Metabolism 116: 154461, 2021.

6. Zhou Z, Subramanian P, Sevilmis G, Globbe B, Soehnlein O, Karushova E, Megens R, Heyll K, Chan J, Saulnier-Blache JS, et al.: Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium. Cell Metab 13: 592-600, 2011.

7. Pirillo A, Norata GD and Catapano AL: LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013: 125786, 2013.

8. Yu Q, Chen S, Tang H, Zhang X, Tao R, Yan Z, Shi J, Guo W and Zhang S: Veratic acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway. Int Immunopharmacol 101: 108294, 2021.

9. Gu Y, Xiao ZH, Wu J, Guo M, Lv P and Dou N: Anti-atherosclerotic effect of afrocyclamin A against vascular smooth muscle cells is mediated via p38 MAPK signaling pathway. Cell J 23: 191-198, 2021.

10. Yang Y, Yang L, Liang X and Zhe W: MicroRNA-155 promotes ox-LDL-induced autophagy in human umbilical vein endothelial cells. Mediators Inflamm 2017: 9174801, 2017.

11. Toba H, Cortez D, Lindsey ML and Chilton RJ: Applications of miRNA technology for atherosclerosis. Curr Atheroscler Rep 16: 386, 2014.

12. Zhang Z, Pan X, Yang S, Ma A, Wang K, Yang W, Li T and Liu S: miR-155 promotes ox-LDL-induced autophagy in human umbilical vein endothelial cells. Mediators Inflamm 2020: 1086-1098, 2020.

13. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiue SE, Cushman M, Delling FN, Deo R, et al.: Heart disease and stroke statistics-2018. A report from the american heart association. Circulation 137: e67-e492, 2016.

14. Pastore I, Bolla AM, Montefusco L, Lunati ME, Rossi A, Assi E, Zacchetti GF and Fiorina P: The impact of diabetes mellitus on cardiovascular risk onset in children and adolescents. Int J Mol Sci 31: 4928, 2020.

15. Ezzatvar Y, Izquierdo M, Núñez J, Calatayud J, Ramírez-Vélez R and García-Hermoso A: Cardiorespiratory fitness measured with cardiopulmonary exercise testing and mortality in patients with cardiovascular disease: A systematic review and meta-analysis. J Sport Health Sci 10; 609-619, 2021.

16. Mehta D and Malik AB: Signaling mechanisms regulating endothelial permeability. Physiol Rev 86: 279-367, 2006.

17. Koshman YE, Patel N, Chu M, Iyengar R, Kim T, Ersahin C, Lewis W, Heroux A and Samarel AM: Regulation of connective tissue growth factor gene expression and secretion in human heart failure. J Card Fail 19: 283-294, 2013.

18. Soltani A, Argani H, Rahimpour H, Soleimani F, Rahimi F and Kazerooni F: Oxidized LDL: As a risk factor for cardiovascular disease in renal transplantation. J Bras Nefrol 38: 147-152, 2016 (In English, Portuguese).

19. Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP and Calò LA: The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm 2013: 714653, 2013.

20. Chang CY, Tsai WC, Huang TS, Su SH, Chang CY, Ma HY, Wu CH, Yang CY, Liu S, Huang PH, et al.: Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients. PLoS One 12: e0181562, 2017.

21. Li W, Zhi H, Liu F, He Z, Wang X and Niu X: Atractylodes L indehiscence HO-1 expression and inhibits ox-LDL-induced VSMCs proliferation, migration and inflammatory responses. Exp Cell Res 353: 26-34, 2017.
38. Zhang L, Cheng H, Yue Y, Li S, Zhang D and He R: H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/β-catenin in ox-LDL-stimulated vascular smooth muscle cells. J Biomed Sci 25: 11, 2018.

39. Madrigal-Matute J, Rotllan N, Aranda JF and Fernández-Hernando C: MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15: 322, 2013.

40. Florijn BW, Bijkerk R, van der Veer EP and van Zonneveld AJ: Gender and cardiovascular disease: Are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res 114: 210-225, 2018.

41. Ruan Z, Chu T, Wu L, Zhang M, Zheng M, Zhang Q, Zhou M and Zhu G: miR-155 inhibits oxidized low-density lipoprotein-induced apoptosis in different cell models by targeting the p85α/AKT pathway. J Physiol Biochem 76: 329-343, 2020.

42. Luo J, Chen J and He L: mir-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med Sci Monit 21: 4122-4129, 2015.

43. Han JS, Kim K and Lee M: A high mobility group B-1 box A peptide combined with an artery wall binding peptide targets delivery of nucleic acids to smooth muscle cells. J Cell Biochem 107: 163-170, 2009.

44. Lamb FS, Choi H, Miller MR and Stark RJ: TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis. Am J Hypertens 33: 902-913, 2020.

45. Zhu XS, Zhou HY, Yang F, Zhang HS and Ma KZ: miR-381-3p inhibits high glucose-induced vascular smooth muscle cell proliferation and migration by targeting HMGB1. J Gene Med 23: e3274, 2021.

46. Chen Z, Pan X, Sheng Z, Yan G, Chen L and Ma G: Baicalin suppresses the proliferation and migration of Ox-LDL-VSMCs in atherosclerosis through upregulating miR-126-5p. Biol Pharm Bull 42: 1517-1523, 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.