Universally consistent predictive distributions

Vladimir Vovk

August 31, 2017

Abstract

This paper describes simple universally consistent procedures of probability forecasting that satisfy a natural property of small-sample validity, under the assumption that the observations are produced independently in the IID fashion.

The version of this paper at http://arxiv.org (Working Paper 18, first posted on 17 April 2017) is updated most often.

1 Introduction

Predictive distributions are probability distributions for a future value of a response variable satisfying a natural property of validity. They were introduced independently by Schweder and Hjort [17, Chapter 12] and Shen et al. [19], who also gave several examples of predictive distributions in parametric statistics. Earlier, related notions had been studied extensively by Tilmann Gneiting with co-authors and their predecessors (see, e.g., the review [8]). First nonparametric predictive distributions were constructed in [26] based on the method of conformal prediction (see, e.g., [23, 24, 14, 15]). The nonparametric statistical model used in [26] is the one that is standard in machine learning: the observations are produced independently from the same probability measure; we will refer to it as the IID model in this paper (as we did in [24]). To make the notion of predictive distributions applicable in the nonparametric context, [26] slightly generalizes it allowing randomization; unless the amount of training data is very small, randomization affects the predictive distribution very little, but it simplifies definitions.

This paper follows [26] in studying randomized predictive distributions under the IID model. Namely, we construct randomized predictive distributions that, in addition to the small-sample property of validity that is satisfied automatically, satisfy an asymptotic property of universal consistency; informally, the true conditional distribution of the response variable and the randomized predictive distribution for it computed from the corresponding predictor and training data of size n approach each other as $n \to \infty$. (The procedures studied in [26] were based on the Least Squares procedure and far from universally consistent; cf. Example [14] below.)
Our approach is in the spirit of Gneiting et al.’s [7] paradigm (which they trace back to Murphy and Winkler [16]) of maximizing the sharpness of the predictive distributions subject to calibration. We, however, refer to calibration as validity, sharpness as efficiency, and include a validity requirement in the definition of predictive distributions (following Shen et al. [19]).

We are mostly interested in results about the existence (and in explicit constructions) of randomized predictive distributions that satisfy two appealing properties: the small-sample property of validity and the asymptotic property of universal consistency. However, if we do not insist on the former, randomization becomes superfluous (Theorem 26).

As in [26], our main technical tool will be conformal prediction. Before [26], conformal prediction was typically applied for computing prediction sets. Conformal predictors are guaranteed to satisfy a property of validity, namely the right coverage probability, and a remaining desideratum is their efficiency, namely the smallness of their prediction sets. Asymptotically efficient conformal predictors were constructed by Lei et al. [13] in the unsupervised setting and Lei and Wasserman [15] in the supervised setting (namely, for regression). This paper can be considered another step in this direction, where the notion of efficiency is formalized as universal consistency.

For convenience, in this paper we will refer to procedures producing randomized predictive distributions as predictive systems; in particular, conformal predictive systems are procedures producing conformal predictive distributions, i.e., randomized predictive systems obtained by applying the method of conformal prediction.

The main result of this paper (Theorem 31) is that there exists a universally consistent conformal predictive system, in the sense that it produces predictive distributions that are consistent under any probability distribution for one observation. The notion of consistency is used in an unusual situation here, and our formalization is based on Belyaev’s [3, 4, 21] notion of weakly approaching sequences of distributions. The construction of a universally consistent conformal predictive system adapts standard arguments for universal consistency in classification and regression [22, 6, 10].

We start in Section 2 from defining randomized predictive systems, which are required to satisfy the small-sample property of validity under the IID model. The next section, Section 3, defines conformal predictive systems, which are a subclass of randomized predictive systems. The main result of the paper, Theorem 31 stated in Section 4, requires a slight generalization of conformal predictive systems (for which we retain the same name). Section 4 introduces another subclass of randomized predictive systems, which is wider than the subclass of conformal predictive systems of Section 3; the elements of this wider subclass are called Mondrian predictive systems. A simple version of Theorem 31 given in Section 5 (Theorem 24) states the existence of Mondrian predictive systems that are universally consistent. An example of a universally consistent Mondrian predictive system is given in Section 6, and Section 7 is devoted to a short proof that this predictive system is indeed universally consistent. Section 8 gives an even shorter proof of the existence of a universally consistent probability
forecasting system (Theorem 26), which is deterministic and not required to satisfy any small-sample properties of validity. Theorem 31 stated in Section 9 asserts the existence of universally consistent conformal predictive systems. An example of such a conformal predictive system is given in Section 10, and it is shown in Section 11 to be universally consistent. One advantage of Theorem 31 over the result of Section 5 (Theorem 24) is that, as compared with Mondrian predictive systems, conformal predictive systems enjoy a stronger small-sample property of validity (see Remarks 10 and 23). In conclusion, Section 12 lists some natural directions of further research.

Remark 1. There is a widely studied sister notion to predictive distributions with a similar small-sample guarantee of validity, namely confidence distributions: see, e.g., [27]. Both confidence and predictive distributions go back to Fisher’s fiducial inference. Whereas, under the nonparametric IID model of this paper, there are no confidence distributions, [26] and this paper argue that there is a meaningful theory of predictive distributions even under the IID model.

2 Randomized predictive distributions

In this section we give some basic definitions partly following [19] and [26]. Let X be a measurable space, which we will call the predictor space. The observation space is defined to be $Z := X \times \mathbb{R}$; its element $z = (x, y)$, where $x \in X$ and $y \in \mathbb{R}$, is interpreted as an observation consisting of a predictor $x \in X$ and a response variable (or simply response) $y \in \mathbb{R}$. Our task is, given training data consisting of observations $z_i = (x_i, y_i), i = 1, \ldots, n$, and a new (test) predictor $x_{n+1} \in X$, to predict the corresponding response y_{n+1}; the pair (x_{n+1}, y_{n+1}) will be referred to as the test observation. We will be interested in procedures whose output is independent of the ordering of the training data (z_1, \ldots, z_n); therefore, the training data can also be interpreted as a multiset rather than a sequence.

Let U be the uniform probability measure on the interval $[0, 1]$.

Definition 2. A measurable function $Q : \cup_{n=1}^{\infty}(Z^{n+1} \times [0, 1]) \to [0, 1]$ is called a randomized predictive system if it satisfies the following requirements:

R1 i For each n, each training data sequence $(z_1, \ldots, z_n) \in Z^n$, and each test predictor $x_{n+1} \in X$, the function $Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau)$ is monotonically increasing in both y and τ (i.e., monotonically increasing in y for each τ and monotonically increasing in τ for each y).

ii For each n, each training data sequence $(z_1, \ldots, z_n) \in Z^n$, and each test predictor $x_{n+1} \in X$,

$$\lim_{y \to -\infty} Q(z_1, \ldots, z_n, (x_{n+1}, y), 0) = 0, \quad (1)$$

$$\lim_{y \to \infty} Q(z_1, \ldots, z_n, (x_{n+1}, y), 1) = 1.$$
For each n, the distribution of Q, as function of random training observations $z_1 \sim P, \ldots, z_n \sim P$, a random test observation $z_{n+1} \sim P$, and a random number $\tau \sim U$, all assumed independent, is uniform:

$$\forall \alpha \in [0, 1]: P(Q(z_1, \ldots, z_n, z_{n+1}, \tau) \leq \alpha) = \alpha.$$ \hfill (2)

The function $Q(z_1, \ldots, z_n, (x_{n+1}, \cdot), \tau)$ is the predictive distribution (function) output by Q for given training data z_1, \ldots, z_n, test predictor x_{n+1}, and $\tau \in [0, 1]$. Requirement R1 says, essentially, that, as a function of y, Q is a distribution function, apart from a slack caused by the dependence on the random number τ. The size of the slack is

$$Q(z_1, \ldots, z_n, (x_{n+1}, y), 1) - Q(z_1, \ldots, z_n, (x_{n+1}, y), 0)$$ \hfill (3)

(remember that Q is monotonically increasing in $\tau \in [0, 1]$, according to requirement R1(i)). In typical applications the slack will be small unless there is very little training data; see Remark 15 for details.

Requirement R2 says, informally, that the predictive distributions agree with the data-generating mechanism. It has a long history in the theory and practice of forecasting. The review [8] refers to it as probabilistic calibration and describes it as critical in forecasting; [8, Section 2.2.3] reviews the relevant literature.

Remark 3. Requirements R1 and R2 are the analogues (introduced in [17, Chapter 12] and [19]) of similar requirements in the theory of confidence distributions: see, e.g., [27, Definition 1] or [17, Chapter 3].

Definition 4. Let us say that a randomized predictive system Q is consistent for a probability measure P on Z if, for any bounded continuous function $f : \mathbb{R} \to \mathbb{R}$,

$$\int f dQ_n - \mathbb{E}_P(f \mid x_{n+1}) \to 0 \quad (n \to \infty)$$ \hfill (4)

in probability, where:

- Q_n is the predictive distribution $Q_n : y \mapsto Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau)$ output by Q as its forecast for the response y_{n+1} corresponding to the test predictor x_{n+1} based on the training data (z_1, \ldots, z_n), where $z_i = (x_i, y_i)$;
- $\mathbb{E}_P(f \mid x_{n+1})$ is the conditional expectation of $f(y)$ given $x = x_{n+1}$ under $(x, y) \sim P$;
- $z_i = (x_i, y_i) \sim P$, $i = 1, \ldots, n+1$, and $\tau \sim U$, are assumed all independent.

It is clear that the notion of consistency given in Definition 4 does not depend on the choice of the version of the conditional expectation $\mathbb{E}_P(f \mid \cdot)$ in (4). The integral in (4) is not quite standard since we did not require Q_n to be exactly a distribution function, so we understand $\int f dQ_n$ as $\int f d\bar{Q}_n$ with the measure \bar{Q}_n on \mathbb{R} defined by $\bar{Q}_n((u, v]) := Q_n(v+) - Q_n(u+)$ for any interval $(u, v]$ of this form in \mathbb{R}.
Definition 5. A randomized predictive system \(Q \) is *universally consistent* if it is consistent for any probability measure \(P \) on \(Z \).

As already mentioned in Section 1, Definition 5 is based on Belyaev’s (see, e.g., [4]). Our goal is construction of universally consistent randomized predictive systems.

3 Conformal predictive distributions

A way of producing randomized predictive distributions under the IID model has been proposed in [26]. This section reviews a basic version, and Section 9 introduces a simple extension.

Definition 6. A *conformity measure* is a measurable function \(A : \bigcup_{n=1}^{\infty} Z^{n+1} \to \mathbb{R} \) that is invariant with respect to permutations of the training observations: for any \(n \), any sequence \((z_1, \ldots, z_n) \in Z^n\), any \(z_{n+1} \in Z\), and any permutation \(\pi \) of \(\{1, \ldots, n\} \),

\[
A(z_1, \ldots, z_n, z_{n+1}) = A(z_{\pi(1)}, \ldots, z_{\pi(n)}, z_{n+1}).
\]

The standard interpretation of a conformity measure \(A \) is that the value \(A(z_1, \ldots, z_n, z_{n+1}) \) measures how well the new observation \(z_{n+1} \) conforms to the comparison data \((z_1, \ldots, z_n)\). In the context of this paper, and conformal predictive distributions in general, \(A(z_1, \ldots, z_n, z_{n+1}) \), where \(z_{n+1} = (x_{n+1}, y_{n+1}) \), measures how large the response variable \(y_{n+1} \) is, in view of the corresponding predictor \(x_{n+1} \) and comparison data \(z_1, \ldots, z_n \).

Definition 7. The *conformal transducer* corresponding to a conformity measure \(A \) is defined as

\[
Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau) := \frac{1}{n+1} \left| \left\{ i = 1, \ldots, n+1 \mid \alpha_i^y < \alpha_{n+1}^y \right\} \right| + \frac{\tau}{n+1} \left| \left\{ i = 1, \ldots, n+1 \mid \alpha_i^y = \alpha_{n+1}^y \right\} \right|,
\]

where \(n \in \{1, 2, \ldots\} \), \((z_1, \ldots, z_n) \in Z^n\) is training data, \(x_{n+1} \in X \) is a test predictor, and for each \(y \in \mathbb{R} \) the corresponding *conformity scores* \(\alpha_i^y \) are defined by

\[
\alpha_i^y := A(z_{i-1}, z_{i+1}, \ldots, z_n, (x_{n+1}, y), z_i), \quad i = 1, \ldots, n, \\
\alpha_{n+1}^y := A(z_1, \ldots, z_n, (x_{n+1}, y)).
\]

A function is a conformal transducer if it is the conformal transducer corresponding to some conformity measure.

The usual interpretation of (5) is as a randomized p-value obtained when testing the IID model for the training data extended by adding the test predictor \(x_{n+1} \) combined with a postulated response \(y \) (cf. Remark 16 at the end of this section).
Definition 8. A conformal predictive system is a function that is both a conformal transducer and a randomized predictive system. If \(Q \) is a conformal predictive system, \(Q(z_1, \ldots, z_n, (x_{n+1}, \cdot), \tau) \) are the corresponding conformal predictive distributions (or, more fully, conformal predictive distribution functions).

Example 9. The simplest non-trivial conformal predictive system is a version of the classical Dempster–Hill procedure (to use the terminology of [26]; Dempster [5] referred to it as direct probabilities and Hill [11, 12] as Bayesian nonparametric predictive inference, which was abbreviated to nonparametric predictive inference by Coolen [1]). The conformity measure is

\[
A(z_1, \ldots, z_n, (x_{n+1}, y_{n+1})) := y_{n+1},
\]

so that it ignores the predictors. Since the predictors are ignored, we will write \(y_i \) in place of \(z_i = (x_i, y_i) \in \mathcal{Z} \), omitting the predictors from our notation. Now suppose we are given training data \(y_1, \ldots, y_n \) and are interested in the conformal predictive distribution for the next response \(y_{n+1} \); for simplicity, we will assume that \(y_1, \ldots, y_n \) are all different. The conformity scores (6) are

\[
\alpha_{y_i} = y_i \quad \text{and} \quad \alpha_{y_{n+1}} = y_{n+1},
\]

and so the conformal predictive distribution is

\[
Q(y_1, \ldots, y_n, y, \tau) = \begin{cases}
(i + \tau)/(n + 1) & \text{if } y \in (y(i), y(i+1)), i = 0, \ldots, n \\
(i - 1 + 2\tau)/(n + 1) & \text{if } y = y(i), i = 1, \ldots, n,
\end{cases}
\]

where \(y(1), \ldots, y(n) \) is the sequence \(y_1, \ldots, y_n \) sorted in the increasing order, \(y(0) := -\infty \), and \(y(n+1) := \infty \). A more intuitive (and equally informative) representation can be given in terms of the intervals

\[
Q(y_1, \ldots, y_n, y) := [Q(y_1, \ldots, y_n, y, 0), Q(y_1, \ldots, y_n, y, 1)];
\]

namely,

\[
Q(y_1, \ldots, y_n, y) = \begin{cases}
[i/(n + 1), (i + 1)/(n + 1)] & \text{if } y \in (y(i), y(i+1)), i = 0, \ldots, n \\
[(i - 1)/(n + 1), (i + 1)/(n + 1)] & \text{if } y = y(i), i = 1, \ldots, n.
\end{cases}
\]

(8)

For a further discussion of the Dempster–Hill procedure in the context of conformal prediction, see [26]. For another example of a conformal predictive system (depending on the predictors in a simple but non-trivial way), see Example 13.

Remark 10. Requirement R2 in the previous section is sometimes referred to as the frequentist validity of predictive or confidence distributions (see, e.g., [27] and [19]). It can be argued that there is no need to appeal to frequencies in these and similar cases (see, e.g., [18]). However, the property of validity enjoyed by conformal predictive systems is truly frequentist: for them R2 (see (2)) can be strengthened to say that the random numbers \(Q(z_1, \ldots, z_n, z_{n+1}, \tau_n) \), \(n = 1, 2, \ldots \), are distributed uniformly in \([0, 1]\) and independently, provided \(z_n \sim P \) and \(\tau_n \sim U, n = 1, 2, \ldots \), are all independent [26, Theorem 8.1].
combination with the law of large numbers this implies, e.g., that for \(\epsilon \in (0, 1) \) the frequency of the event

\[
Q(z_1, \ldots, z_n, z_{n+1}, \tau_n) \in \left[\frac{\epsilon}{2}, 1 - \frac{\epsilon}{2} \right]
\]

(i.e., the frequency of the central \((1 - \epsilon)\)-prediction interval covering the true response) converges to \(1 - \epsilon\) as \(n \to \infty\). Notice that this frequentist conclusion depends on the independence of \(Q(z_1, \ldots, z_n, z_{n+1}, \tau_n)\) for different \(n\); R2 alone is not sufficient.

For a natural class of conformity measures the corresponding conformal transducers are automatically conformal predictive systems.

Definition 11. A conformity measure \(A\) is monotonic if \(A(z_1, \ldots, z_{n+1})\) is:

- monotonically increasing in \(y_{n+1}\),

 \[
y_{n+1} \leq y'_{n+1} \implies A(z_1, \ldots, z_n, (x_{n+1}, y_{n+1})) \leq A(z_1, \ldots, z_n, (x_{n+1}, y'_{n+1}));
 \]

- monotonically decreasing in \(y_{1}\),

 \[
y_1 \leq y'_1 \implies A((x_1, y_1), z_2, \ldots, z_n, z_{n+1}) \geq A((x_1, y'_1), z_2, \ldots, z_n, z_{n+1})
 \]
 (which is equivalent to being decreasing in \(y_i\) for any \(i = 2, \ldots, n\)).

Let \(A_n\) be the restriction of \(A\) to \(Z^{n+1}\).

Lemma 12. Suppose a monotonic conformity measure \(A\) satisfies the following three conditions:

- for all \(n\), all training data sequences \((z_1, \ldots, z_n)\), and all test predictors \(x_{n+1}\),

 \[
 \inf_y A(z_1, \ldots, z_n, (x_{n+1}, y)) = \inf_y A_n, \quad (9)
 \]

 \[
 \sup_y A(z_1, \ldots, z_n, (x_{n+1}, y)) = \sup_y A_n; \quad (10)
 \]

- for each \(n\), the \(\inf_y\) in \((9)\) is either attained for all \((z_1, \ldots, z_n)\) and \(x_{n+1}\) or not attained for all \((z_1, \ldots, z_n)\) and \(x_{n+1}\);

- for each \(n\), the \(\sup_y\) in \((10)\) is either attained for all \((z_1, \ldots, z_n)\) and \(x_{n+1}\) or not attained for all \((z_1, \ldots, z_n)\) and \(x_{n+1}\).

Then the conformal transducer corresponding to \(A\) is a randomized predictive system.
As usual, the two inf in (9) are allowed to take value $-\infty$, and the two sup in (10) are allowed to take value ∞. The conditions of Lemma 12 will be satisfied if (9) and (10) hold with inf A_n and sup A_n replaced by $-\infty$ and ∞, respectively; we will usually use this simplified version of the lemma (except for the proof of our main result, where we will need a $[0,1]$-valued conformity measure). Before proving Lemma 12 we will give a less trivial example of a conformal predictive system (cf. Example 9).

Example 13. In this example we will modify the conformity measure (7) of the Dempster–Hill predictive procedure by making it dependent, in a very simple way, on the predictors; it will satisfy all conditions of Lemma 12 (with $-\infty$ and ∞ on the right-hand sides of (9) and (10), respectively). Namely, we set

$$A((x_1, y_1), \ldots, (x_n, y_n), (x_{n+1}, y_{n+1})) := y_{n+1} - \hat{y}_{n+1},$$

where \hat{y}_{n+1} is the response y_i corresponding to the nearest neighbour x_i of x_{n+1}: $i \in \arg\min_{k \in \{1, \ldots, n\}} \rho(x_k, x_{n+1})$, ρ being a measurable metric on the predictor space X. In this example we only consider the case where the pairwise distances $\rho(x_i, x_j), i, j \in \{1, \ldots, n+1\}$, are all different; the definition will be completed in Example 12. For each $i \in \{1, \ldots, n\}$, let \hat{y}_i be the response y_j corresponding to the nearest neighbour x_j to x_i among x_1, \ldots, x_n: $j \in \arg\min_{k \in \{1, \ldots, n\}\setminus\{i\}} \rho(x_k, x_i)$. Let $I \subseteq \{1, \ldots, n\}$ be the set of $i \in \{1, \ldots, n\}$ such that x_i is closer to x_{n+1} than to any of x_j, $j \in \{1, \ldots, n\}\setminus\{i\}$. The conformity scores (6) are $\alpha_{n+1}^y = y - \hat{y}_{n+1}$, where \hat{y}_{n+1} is defined as in (11), $\alpha_i^y = y_i - y$ if $i \in I$, and $\alpha_i^y = y_i - \hat{y}_i$ if $i \in \{1, \ldots, n\}\setminus I$. Solving the equation $\alpha_i^y = \alpha_{n+1}^y$ (cf. (5)) gives $y = C_i := (\hat{y}_{n+1} + y_i)/2$ if $i \in I$ and

$$y = C_i := \hat{y}_{n+1} + (y_i - \hat{y}_i)$$

if $i \in \{1, \ldots, n\}\setminus I$. Assuming, for simplicity, that C_1, \ldots, C_n are all different, we obtain the conformal predictive distribution

$$Q(y_1, \ldots, y_n, y) =
\begin{cases}
\frac{i/(n+1), (i+1)/(n+1)} {i/(n+1), (i+1)/(n+1)} & \text{if } y \in (C_{(i)}(i), C_{(i+1)}) , i = 0, \ldots, n \\
\frac{(i-1)/(n+1), (i+1)/(n+1)} {i/(n+1), (i+1)/(n+1)} & \text{if } y \in (C_{(i)}, i = 1, \ldots, n}
\end{cases}$$

(cf. (8)), where $C_{(1)}, \ldots, C_{(n)}$ is the sequence C_1, \ldots, C_n sorted in the increasing order, $C_{(0)} := -\infty$, and $C_{(n+1)} := \infty$.

The naive nearest-neighbour modification of the Dempster–Hill predictive distribution (8) would be (13) with all C_i defined by (12). The conformal predictive distribution is different only for $i \in I$, and I is typically a small set (its expected size is 1). For such i the conformal predictive distribution modifies the residual $y_i - \hat{y}_i$ in (12) by replacing it by $(y_i - \hat{y}_{n+1})/2$. Intuitively, the nearest neighbour to x_i in the augmented set $\{x_1, \ldots, x_{n+1}\}$ is x_{n+1}, so we would like to use y_{n+1} instead of \hat{y}_i; but since we do not know y_{n+1} as yet, we have to settle for its estimate \hat{y}_{n+1}, and the resulting loss of accuracy is counterbalanced by halving the new residual. This seemingly minor further modification ensures the small-sample property of validity R2.
Example 14. Another natural conformity measure is (11) with \hat{y}_{n+1} being the Least Squares prediction of y_{n+1} computed for the predictor x_{n+1} given z_1, \ldots, z_n as training data; this makes $y_{n+1} - \hat{y}_{n+1}$ the deleted residual for y_{n+1}. Alternative definitions use ordinary residuals (where (x_{n+1}, y_{n+1}) is added to the training data) and studentized residuals (which are half-way between deleted and ordinary residuals, in a certain sense). These conformity measures give rise to what is called Least Squares Prediction Machines in [26]. Only the studentized version is a randomized predictive system; the other two versions satisfy property R1(i) only under the assumption of the absence of high-leverage points. See [26] for an in-depth study of properties of Least Squares Prediction Machines, especially of their asymptotic efficiency under a standard Gaussian linear model.

Remark 15. The degree to which a randomized predictive system is affected by randomness, for given training data (z_1, \ldots, z_n), test predictor x_{n+1}, and postulated response y, is (3). As already mentioned, in interesting cases this difference will be small. For example, for the Dempster–Hill predictive system (Example 9), the nearest neighbour predictive system (Example 13), and Least Squares Prediction Machines (Example 14), the difference (3) is $1/(n+1)$ except for at most n values of y, apart from pathological cases (see, e.g., [8] and [13]). A randomized predictive system can be universally consistent only if the difference (3) is small with high probability.

Proof of Lemma 12. We need to check requirements R1 and R2. R2 is the standard property of validity for conformal transducers (see, e.g., [23], Theorem 8.1). The intuition behind the proof of this property is given in Remark 16 at the end of this section.

The second statement of R1(i) is that (9) is monotonically increasing in τ; this follows from (5) being a linear function of τ with a nonnegative slope (the slope is in fact always positive as $i = n + 1$ is allowed).

The first statement of R1(i) is that (5) is monotonically increasing in y. We can rewrite (9) as

$$Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau) = \frac{1}{n+1} \sum_{i=1}^{n+1} \left(1_{\{\alpha^y_i < \alpha^{y}_{n+1}\}} + \tau 1_{\{\alpha^y_i = \alpha^{y}_{n+1}\}} \right), \quad (14)$$

where $1_{\{E\}}$ stands for the indicator function of a property E, and it suffices to prove that each addend in (14) is monotonically increasing in y; we will assume $i \leq n$ (the case $i = n + 1$ is trivial). This follows from α^y_i being monotonically decreasing in y and α^y_{n+1} being monotonically increasing in y, and therefore,

$$1_{\{\alpha^y_i < \alpha^{y}_{n+1}\}} + \tau 1_{\{\alpha^y_i = \alpha^{y}_{n+1}\}}$$

taking all or some of the values $0, \tau, 1$ in this order as y increases.

For concreteness, we will prove only the first statement of R1(ii), (11). Fix an n. First let us assume that the \inf_y in (9) is attained for all (z_1, \ldots, z_n) and x_{n+1}. We will have $\alpha^y_{n+1} = \inf A_n$ for sufficiently small y, and plugging $\tau := 0$
into \(\mathcal{T} \) will give 0, as required. It remains to consider the case where the \(\inf_y \) in (9) is not attained for any \((z_1, \ldots, z_n) \) and \(x_{n+1} \). Since \(\min_{i=1,\ldots,n} \alpha^y_i > \inf \mathcal{A} \), for sufficiently small \(y \) we will have
\[
\alpha_i^{y_{n+1}} < \min_{i=1,\ldots,n} \alpha_i^0 \leq \min_{i=1,\ldots,n} \alpha_i^y,
\]
and so plugging \(\tau : = 0 \) into (9) will again give 0.

Remark 16. The proof of Lemma 12 refers to [23] for a complete proof of R2. However, the intuition behind the proof is easy to explain. Setting \(\tau : = 1 \) and assuming that there are no ties among the conformity scores, the right-hand side of (5) evaluated at \(y : = y_{n+1} \) is the rank of the last observation \((x_{n+1}, y_{n+1}) \) in the augmented training data \((z_1, \ldots, z_n, (x_{n+1}, y_{n+1})) \). Under the IID model (and the weaker assumption of the exchangeability of all the \(n+1 \) observations), the rank is uniformly distributed in the set \(\{1, \ldots, n+1\} \). Dividing by \(n+1 \) and making \(\tau \sim U \) leads to (5) (evaluated at \(y : = y_{n+1} \)) being uniformly distributed in \([0, 1]\) (even if some conformity scores are tied). This makes (5) a bona fide randomized p-value for testing the IID model.

4 Mondrian predictive distributions

First we simplify our task by allowing Mondrian predictive distributions, which are more general than conformal predictive distributions but enjoy the same property of validity R2.

Definition 17. A taxonomy \(\kappa \) is an equivariant measurable function that assigns to each sequence \((z_1, \ldots, z_n, z_{n+1}) \in \mathbb{Z}^{n+1} \), for each \(n \in \{1, 2, \ldots\} \), an equivalence relation \(\sim \) on \(\{1, \ldots, n+1\} \).

The requirement that \(\kappa \) be equivariant will be spelled out in Definition 18.

The idea behind a taxonomy is to determine the comparison class for computing the p-value (5); instead of using all available data we will only use the observations that are equivalent to the test observation (intuitively, similar to it in some respect, with the aim of making the p-value more relevant).

The notation \((i \sim j \mid z_1, \ldots, z_{n+1}) \), where \(i, j \in \{1, \ldots, n+1\} \), means that \(i \) is equivalent to \(j \) under the equivalence relation assigned by \(\kappa \) to \((z_1, \ldots, z_{n+1}) \) (where \(\kappa \) is always clear from the context and not reflected in our notation).

The measurability of \(\kappa \) means that, for all \(n, i, j, \) and \(\sim \), the set \(\{ (z_1, \ldots, z_{n+1}) \mid (i \sim j \mid z_1, \ldots, z_{n+1}) \} \) is measurable.

Definition 18. A permutation \(\pi \) of \(\{1, \ldots, n+1\} \) respects an equivalence relation \(\sim \) if \(\pi(i) \sim i \) for all \(i = 1, \ldots, n+1 \). The requirement that a Mondrian taxonomy \(\kappa \) be equivariant means that, for each \(n \), each \((z_1, \ldots, z_{n+1}) \in \mathbb{Z}^{n+1} \), and each permutation \(\pi \) of \(\{1, \ldots, n+1\} \) respecting the equivalence relation assigned by \(\kappa \) to \((z_1, \ldots, z_{n+1}) \), we have
\[
(i \sim j \mid z_1, \ldots, z_{n+1}) \implies (\pi(i) \sim \pi(j) \mid z_{\pi(1)}, \ldots, z_{\pi(n+1)}).
\]
Remark 19. The notion of taxonomy used in this paper is introduced in [25] under the name of Venn taxonomies and subsumes Mondrian taxonomies as defined in [23, Section 4.5], Venn taxonomies as defined in [23, Section 6.3], and n-taxonomies as defined in [2, Section 2.2]. A narrower notion of taxonomy requires that (15) hold for all permutations π of $\{1, \ldots, n+1\}$; the taxonomy of Section 6 belongs to this narrower class.

Definition 20. Define
\[\kappa(j \mid z_1, \ldots, z_{n+1}) := \{i \in \{1, \ldots, n+1\} \mid (i \sim j \mid z_1, \ldots, z_{n+1})\} \]
to be the equivalence class of j. The Mondrian transducer corresponding to a taxonomy κ and a conformity measure A is
\[Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau) := \frac{|\{i \in \kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y)) \mid \alpha^y_i < \alpha^y_{n+1}\}|}{|\kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y))|} \]
\[+ \tau \frac{|\{i \in \kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y)) \mid \alpha^y_i = \alpha^y_{n+1}\}|}{|\kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y))|} \]
where $n \in \{1, 2, \ldots\}$, $(z_1, \ldots, z_n) \in \mathbb{Z}^n$ is training data, $x_{n+1} \in X$ is a test predictor, and for each $y \in Y$ the corresponding conformity scores α^y_i and α^y_{n+1} are still defined by (6). A function is a Mondrian transducer if it is the Mondrian transducer corresponding to some taxonomy and conformity measure. A Mondrian predictive system is a function that is both a Mondrian transducer and a randomized predictive system, as defined in Section 2.

Notice that the denominator in (16) is always positive. The Mondrian p-value (16) differs from the original p-value (5) in that it uses only the equivalence class of the test observation (with a postulated response) as comparison class. See [23, Fig. 4.3] for the origin of the attribute “Mondrian”.

Lemma 21. If a taxonomy does not depend on the responses and a conformity measure is monotonic and satisfies the three conditions of Lemma 12, the corresponding Mondrian transducer will be a randomized (and, therefore, Mondrian) predictive system.

Proof. As in Lemma 12, the conformity scores (defined by (6)) α^y_i are monotonically increasing in y when $i = n+1$ and monotonically decreasing in y when $i = 1, \ldots, n$. Since the equivalence class of $n+1$ in (14) does not depend on y, the value of (16) is monotonically increasing in y: it suffices to replace (14) by
\[Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau) = \frac{1}{|\kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y))|} \sum_{i \in \kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, y))} (1_{\{\alpha^y_i < \alpha^y_{n+1}\}} + \tau 1_{\{\alpha^y_i = \alpha^y_{n+1}\}}) \]
in the argument of Lemma 12. In combination with the obvious monotonicity in \(\tau \), this proves R1(i). R1(ii) is demonstrated as in Lemma 12. The proof of R2 is standard and valid for any taxonomy (see, e.g., [23, Section 8.7]); the intuition behind it is given in Remark 22 below.

The properties listed in Lemma 21 will be satisfied by the conformity measure and taxonomy defined in Section 6 to prove Theorem 24, a weaker form of the main result of this paper.

Remark 22. Remark 16 can be easily adapted to Mondrian predictive systems. For \(\tau := 1 \) and assuming no ties among the conformity scores, the right-hand side of (16) at \(y := y_{n+1} \) is the rank of the last observation \((x_{n+1}, y_{n+1})\) in its equivalence class divided by the size of the equivalence class. Let us introduce another notion of equivalence: sequences \((z_1, \ldots, z_{n+1})\) and \((z'_1, \ldots, z'_{n+1})\) in \(\mathbb{Z}^{n+1}\) are equivalent if

\[
(z'_1, \ldots, z'_{n+1}) = (z_{\pi(1)}, \ldots, z_{\pi(n+1)})
\]

for some permutation \(\pi\) of \(\{1, \ldots, n+1\}\) that respects the equivalence relation assigned by \(\kappa\) to \((z_1, \ldots, z_{n+1})\); this is indeed an equivalence relation since \(\kappa\) is equivariant. The stochastic mechanism generating the augmented training data (the IID model) can be represented as generating an equivalence class (which is always finite) and then generating the actual sequence of observations in \(\mathbb{Z}^{n+1}\) from the uniform probability distribution on the equivalence class. Already the second step ensures that the rank is distributed uniformly in the set of its possible values, which leads to (16) being uniformly distributed in \([0, 1]\), provided \(y := y_{n+1}\) and \(\tau \sim U\).

Remark 23. One advantage of conformal predictive systems over Mondrian predictive systems is that the former satisfy a stronger version of R2, as explained in Remark 10.

5 Universally consistent Mondrian predictive systems and probability forecasting systems

Our results (Theorems 24–31) will assume that the predictor space \(X\) is standard Borel (see, e.g., [13, Definition 12.5]); the class of standard Borel spaces is very wide and contains, e.g., all Euclidean spaces \(\mathbb{R}^d\). In this section we start from an easy result (Theorem 24) and its adaptation to deterministic forecasting (Theorem 26).

Theorem 24. If the predictor space \(X\) is standard Borel, there exists a universally consistent Mondrian predictive system.

In Section 6 we will construct a Mondrian predictive system that will be shown in Section 7 to be universally consistent.
Belyaev’s generalization of weak convergence can also be applied in the situation where we do not insist on small-sample validity; for completeness, the following corollary of the proof of Theorem 24 covers this case.

Definition 25. A probability forecasting system is a measurable function $Q : \bigcup_{n=1}^{\infty} Z^{n+1} \to [0, 1]$ such that:

- for each n, each training data sequence $(z_1, \ldots, z_n) \in Z^n$, and each test predictor $x_{n+1} \in X$, $Q(z_1, \ldots, z_n, (x_{n+1}, y))$ is monotonically increasing in y;
- for each n, each training data sequence $(z_1, \ldots, z_n) \in Z^n$, and each test predictor $x_{n+1} \in X$,
 \[
 \lim_{y \to -\infty} Q(z_1, \ldots, z_n, (x_{n+1}, y)) = 0,
 \]
 \[
 \lim_{y \to \infty} Q(z_1, \ldots, z_n, (x_{n+1}, y)) = 1;
 \]
- for each n, each training data sequence $(z_1, \ldots, z_n) \in Z^n$, and each test predictor $x_{n+1} \in X$, the function $Q(z_1, \ldots, z_n, (x_{n+1}, \cdot))$ is right-continuous (and therefore, a bona fide distribution function).

A probability forecasting system Q is universally consistent if, for any probability measure P on Z and any bounded continuous function $f : \mathbb{R} \to \mathbb{R}$, (4) holds in probability, where $Q_n : y \mapsto Q(z_1, \ldots, z_n, (x_{n+1}, y))$, assuming $z_n \sim P$ are independent.

Theorem 26. If the predictor space X is standard Borel, there exists a universally consistent probability forecasting system.

6 Histogram Mondrian predictive systems

Remember that the measurable space X is assumed to be standard Borel. Since every standard Borel space is isomorphic to \mathbb{R} or a countable set with discrete σ-algebra (combine Theorems 13.6 and 15.6 in [13]), X is isomorphic to a Borel subset of \mathbb{R}. Therefore, we can set, without loss of generality, $X := \mathbb{R}$, which we will do.

Definition 27. Fix a monotonically decreasing sequence h_n of powers of 2 such that $h_n \to 0$ and $nh_n \to \infty$ as $n \to \infty$. Let P_n be the partition of X into the intervals $[kh_n, (k+1)h_n)$, where k are integers. We will use the notation $P_n(x)$ for the interval (cell) of P_n that includes $x \in X$. Let A be the conformity measure defined by $A(z_1, \ldots, z_n, z_{n+1}) := y_{n+1}$, where y_{n+1} is the response variable in z_{n+1}. This conformity measure will be called the trivial conformity measure. The taxonomy under which $(i \sim j \mid z_1, \ldots, z_{n+1})$ is defined to mean $x_j \in P_n(x_i)$ is called the histogram taxonomy.
Lemma 28. The trivial conformity measure is monotonic and satisfies all other conditions of Lemma 12. Therefore, the Mondrian transducer corresponding to it and the histogram taxonomy is a randomized predictive system.

Proof. The infimum on the left-hand side of (9) is always \(-\infty\) and never attained, and the supremum on the left-hand side of (10) is always \(\infty\) and never attained. By definition, the histogram taxonomy does not depend on the responses. It remains to apply Lemma 21. \(\square\)

Definition 29. The Mondrian predictive system corresponding to the trivial conformity measure and histogram taxonomy is called the histogram Mondrian predictive system.

The histogram Mondrian predictive system will be denoted \(Q\) in the next section, where we will see that it is universally consistent.

7 Proof of Theorem 24

Let us fix a probability measure \(P\) on \(\mathbb{Z}\); our goal is to prove the convergence (4) in probability. We fix a version of the conditional expectation \(E_P(f \mid x)\), \(x \in X\), and use it throughout the rest of this paper. We can split (4) into two tasks:

\[
\mathbb{E}_P(f \mid P_n(x_{n+1})) - \mathbb{E}_P(f \mid x_{n+1}) \to 0,
\]

\[
\int f dQ_n - \mathbb{E}_P(f \mid P_n(x_{n+1})) \to 0,
\]

where \(\mathbb{E}_P(f \mid P_n(x_{n+1}))\) is the conditional expectation of \(f(y)\) given \(x \in P_n(x_{n+1})\) under \((x, y) \sim P\).

The convergence (17) follows by Paul Lévy’s martingale convergence theorem [20, Theorem VII.4.3]; Paul Lévy’s theorem is applicable since, by our assumption, the partitions \(P_n\) are nested (as \(h_n\) are powers of 2). This theorem implies \(\mathbb{E}_P(f \mid P_n(x)) - \mathbb{E}_P(f \mid x) \to 0\) almost surely and, therefore, in probability when \((x, y) \sim P\). The last convergence is clearly equivalent to (17).

It remains to prove (18). Let \(\epsilon > 0\); we will show that

\[
\left| \int f dQ_n - \mathbb{E}_P(f \mid P_n(x_{n+1})) \right| \leq \epsilon
\]

with high probability for large enough \(n\). By [6 the proof of Theorem 6.2], the number \(N\) of observations \(z_i = (x_i, y_i)\) among \(z_1, \ldots, z_n\) such that \(x_i \in P_n(x_{n+1})\) tends to infinity in probability. Therefore, it suffices to prove that (19) holds with high conditional probability given \(N > K\) for large enough \(K\). Moreover, it suffices to prove that, for large enough \(K\), (19) holds with high conditional probability given \(x_1, \ldots, x_{n+1}\) such that at least \(K\) of predictors \(x_i\) among \(x_1, \ldots, x_n\) belong to \(P_n(x_{n+1})\). (The remaining randomness is in the responses.) Let \(I \subseteq \{1, \ldots, n\}\) be the indices of those predictors; remember
that our notation for $|I|$ is N. By the law of large numbers, the probability (over the random responses) of

$$\left| \frac{1}{N} \sum_{i \in I} f(y_i) - E_P(f \mid P_n(x_{n+1})) \right| \leq \epsilon/2 \quad (20)$$

can be made arbitrarily high by increasing K. It remains to notice that

$$\int f dQ_n = \frac{1}{N+1} \sum_{i \in I} f(y_i); \quad (21)$$

this follows from \bar{Q}_n (in the notation of Section 2) being concentrated at the points $y_i, i \in I$, and assigning weight $a_i/(N+1)$ to each such y_i, where a_i is its multiplicity in the multiset $\{y_i \mid i \in I\}$ (our use of the same notation for sets and multisets is always counterbalanced by using unambiguous descriptors). Interestingly, $\int f dQ_n$ in (21) does not depend on the random number τ.

8 Proof of Theorem 26

Define a probability forecasting system Q by the requirement that $Q_n(\cdot) := Q(z_1, \ldots, z_{n+1}, (x_{n+1}, \cdot))$ be the distribution function of the empirical probability measure of the multiset $\{y_i \mid i \in I\}$, in the notation of the previous section. In other words, the probability measure corresponding to Q_n is concentrated on the set $\{y_i \mid i \in I\}$ and assigns the weight a_i/N to each element y_i of this set, where a_i is its multiplicity in the multiset $\{y_i \mid i \in I\}$. (This is very similar to \bar{Q}_n at the end of the previous section.) If $I = \emptyset$, let $Q_n(\cdot)$ be the distribution function of the probability measure concentrated at 0. We still have (20) with high probability, and we have (21) with N in place of $N+1$.

9 Universally consistent conformal predictive systems

In this section we will introduce a clearly innocuous extension of conformal predictive systems allowing further randomization. In particular, the extension will not affect the small-sample property of validity, R2 (or its stronger version given in Remark 10).

First we extend the notion of a conformity measure.

Definition 30. A **randomized conformity measure** is a measurable function $A : \cup_{n=1}^{\infty} (Z \times [0,1])^{n+1} \to \mathbb{R}$ that is invariant with respect to permutations of extended training observations: for any n, any sequence $(z_1, \ldots, z_{n+1}) \in Z^{n+1}$, any sequence $(\theta_1, \ldots, \theta_{n+1}) \in [0,1]^{n+1}$, and any permutation π of $\{1, \ldots, n\}$,

$$A((z_1, \theta_1), \ldots, (z_n, \theta_n), (z_{n+1}, \theta_{n+1})) = A((z_{\pi(1)}, \theta_{\pi(1)}), \ldots, (z_{\pi(n)}, \theta_{\pi(n)}), (z_{n+1}, \theta_{n+1})).$$
This is essentially the definition of Section 3 except that each observation is extended by adding a number (later it will be generated randomly from U) that can be used for tie-breaking. We can still use the same definition, given by the right-hand side of (3), of the conformal transducer corresponding to a randomized conformity measure A, except for replacing each observation in (6) by an extended observation:

\[
\alpha_i^y := A((z_1, \theta_1), \ldots, (z_{i-1}, \theta_{i-1}), (z_{i+1}, \theta_{i+1}), \ldots, (z_n, \theta_n), (x_{n+1}, y, \theta_{n+1}), (z_i, \theta_i)), \quad i = 1, \ldots, n,
\]

\[
\alpha_i^{y+1} := A((z_1, \theta_1), \ldots, (z_n, \theta_n), (x_{n+1}, y, \theta_{n+1})).
\]

Notice that our new definition of conformal transducers is a special case of the old definition, in which the original observation space Z is replaced by the extended observation space $Z \times [0, 1]$. An extended observation $(z, \theta) = (x, y, \theta)$ will be interpreted to consist of an extended predictor (x, θ) and a response y. The main difference from the old framework is that now we are only interested in the probability measures on $Z \times [0, 1]$ that are the product of a probability measure P on Z and the uniform probability measure U on $[0, 1]$.

The definitions of randomized predictive systems and monotonic conformity measures generalize by replacing predictors x_j by extended predictors (x_j, θ_j). We still have Lemma 12. Conformal predictive systems are defined literally as before.

Theorem 31. Suppose the predictor space X is standard Borel. There exists a universally consistent conformal predictive system.

In Section 10 we will construct a conformal predictive system that will be shown in Section 11 to be universally consistent. The corresponding randomized conformity measure will be monotonic and satisfy all the conditions of Lemma 12 (with predictors replaced by extended predictors).

Example 32. This example will show the notion of a randomized conformity measure in action completing the definition in Example 13. Now we drop the assumption that the pairwise distances among x_1, \ldots, x_{n+1} are all different. We can use the same conformity measure (11), except that now the index j of the nearest neighbour x_j of x_i, $i \in \{1, \ldots, n+1\}$, is chosen randomly from the uniform probability measure on the set $\arg\min_{k \in \{1, \ldots, n\} \setminus \{i\}} \rho(x_k, x_i)$.

10 Histogram conformal predictive systems

In this section we will use the same partitions \mathcal{P}_n of $X = \mathbb{R}$ as in Section 6.

Definition 33. The histogram conformity measure is defined to be the randomized conformity measure A with $A((z_1, \theta_1), \ldots, (z_n, \theta_n), (z_{n+1}, \theta_{n+1}))$ defined as a/N, where N is the number of predictors among x_1, \ldots, x_n that belong to
$P_n(x_{n+1})$ and a is essentially the rank of y_{n+1} among the responses corresponding to those predictors; formally,

$$a := \{|i = 1, \ldots, n \mid x_i \in P_n(x_{n+1}), (y_i, \theta_i) \leq (y_{n+1}, \theta_{n+1})\}.$$

where \leq refers to the lexicographic order (so that $(y_i, \theta_i) \leq (y_{n+1}, \theta_{n+1})$ means that either $y_i < y_{n+1}$ or both $y_i = y_{n+1}$ and $\theta_i \leq \theta_{n+1}$). If $N = 0$, set, e.g.,

$$A((z_1, \theta_1), \ldots, (z_n, \theta_n), (z_{n+1}, \theta_{n+1})) := \begin{cases} 1 & \text{if } y_{n+1} \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

Since the histogram conformity measure is monotonic and satisfies all other conditions of Lemma 12 (where now both inf and sup are always attained as 0 and 1, respectively), the corresponding conformal transducer is a conformal predictive system. In the next section we will show that it is universally consistent.

11 Proof of Theorem 31

The proof in this section is an elaboration of the proof of Theorem 24 in Section 7. The difference is that now we have a different definition of Q_n. It suffices to show that (19) holds with probability at least $1 - \epsilon$ for large enough n, where $\epsilon > 0$ is a given (arbitrarily small) positive constant. In view of (20), it suffices to prove that

$$\left| \int f dQ_n - \frac{1}{N} \sum_{i \in I} f(y_i) \right| \leq \epsilon/2$$

holds with probability at least $1 - \epsilon/2$ for large enough n. In this section we are using the notation introduced in Section 7 such as N and I.

On two occasions we will use the following version of Markov’s inequality applicable to any probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Lemma 34. Let \mathcal{G} be a sub-σ-algebra of \mathcal{F} and $E \in \mathcal{F}$ be an event. For any positive constants δ_1 and δ_2, if $\mathbb{P}(E) \geq 1 - \delta_1 \delta_2$, then $\mathbb{P}(E \mid \mathcal{G}) > 1 - \delta_2$ with probability at least $1 - \delta_2$.

Proof. Assuming $\mathbb{P}(E) \geq 1 - \delta_1 \delta_2$,

$$\mathbb{P}\left(\mathbb{P}(E \mid \mathcal{G}) \leq 1 - \delta_1 \right) = \mathbb{P}\left(\mathbb{P}(E^c \mid \mathcal{G}) \geq \delta_1 \right) \leq \frac{\mathbb{E}(\mathbb{P}(E^c \mid \mathcal{G}))}{\delta_1} = \frac{\mathbb{P}(E^c)}{\delta_1} \leq \frac{\delta_1 \delta_2}{\delta_1} = \delta_2;$$

where E^c is the complement of E and the first inequality in the chain is a special case of Markov’s.

Set $C := \sup |f| \vee 10$. Remember that $\epsilon > 0$ is a given positive constant. Let B be so large that $y \in [-B, B]$ with probability at least $1 - 0.001 \epsilon^2/C$ when $(x, y) \sim P$. This is the first corollary of Lemma 34 that we will need:

17
Lemma 35. For a large enough n, the probability (over the choice of $z_1, \ldots, z_n, x_{n+1}$) of the fraction of y_i, $i \in I$, satisfying $y_i \in [-B, B]$ to be more than $1 - 0.02\epsilon/C$ is at least $1 - 0.11\epsilon$.

Proof. By Lemma 34 we have

$$\mathbb{P}(\mathbb{P}(y \in [-B, B] \mid x \in \mathcal{P}_n(x')) > 1 - 0.01\epsilon/C) \geq 1 - 0.1\epsilon,$$ \hspace{1cm} (23)

where the inner \mathbb{P} is over $(x, y) \sim P$ and the outer \mathbb{P} is over $x' \sim P_X$, P_X being the marginal distribution of P on the predictor space X. To obtain the statement of the lemma it suffices to combine (23) with the law of large numbers. \hfill \square

Since f is uniformly continuous over $[-B, B]$, there is a partition

$$-B = y_0^* < y_1^* < \cdots < y_m^* < y_{m+1}^* = B$$

of the interval $[-B, B]$ such that

$$\max_{y \in [f(y_{j+1}^*), f(y_j^*)]} f(y) - \min_{y \in [f(y_{j+1}^*), f(y_j^*)]} f(y) \leq 0.01\epsilon$$ \hspace{1cm} (24)

for $j = 0, 1, \ldots, m$. Without loss of generality we will assume that $y \in \{y_0^*, \ldots, y_m^*\}$ with probability zero when $(x, y) \sim P$. We will also assume, without loss of generality, that $m > 10$.

Along with the conformal predictive distribution Q_n we will consider the distribution function Q_n^* of the multiset $\{y_i \mid i \in I\}$ (as defined in Section 8, where it was denoted Q_n); it exists only when $N > 0$. The next lemma will show that Q_n is typically close to Q_n^*. Let K be an arbitrarily large positive integer.

Lemma 36. For sufficiently large n, $Q_n(y_j^*)$ and $Q_n^*(y_j^*)$ (both exist and) differ from each other by at most $1/K + 0.11\epsilon/C(m+1) + 1/n$ for all $j = 0, 1, \ldots, m+1$ with probability (over the choice of $z_1, \ldots, z_n, x_{n+1}$ and random numbers $\tau, \theta_1, \ldots, \theta_n$) at least $1 - 0.11\epsilon$.

Proof. We can choose n so large that $N \geq K$ with probability at least $1 - 0.01\epsilon^2/C(m+1)(m+2)$. By Lemma 34 for such n the conditional probability that $N \geq K$ given x_1, \ldots, x_n is at least $1 - 0.1\epsilon/C(m+1)$ with probability (over the choice of x_1, \ldots, x_n) at least $1 - 0.1\epsilon/(m+2)$. Moreover, we can choose n so large that the fraction of x_i, $i = 1, \ldots, n$, which have at least $K - 1$ other x_j, $i = 1, \ldots, n$, in the same cell of \mathcal{P}_n is at least $1 - 0.11\epsilon/C(m+1)$ with probability at least $1 - 0.11\epsilon/(m+2)$ (indeed, we can choose n satisfying the condition in the previous sentence and generate sufficiently many new observations).

Let us fix $j \in \{0, 1, \ldots, m+1\}$. We will show that, for sufficiently large n, $Q_n(y_j^*)$ and $Q_n^*(y_j^*)$ differ from each other by at most $1/K + 0.11\epsilon/C(m+1) + 1/n$ with probability at least $1 - 0.11\epsilon/(m+2)$. We will only consider the case $N > 0$; we will be able to do so since the probability that $N = 0$ tends to 0 as $n \to \infty$. The conformity score of the extended test observation $(x_{n+1}, y_j^*, \theta_{n+1})$ with the postulated response y_j^* is, almost surely, a/N, where a is the number
of observations among \((x_i, y_i), \ i \in I\), satisfying \(y_i \leq y^*_i\). (We could have written \(y_i < y^*_i\) since we assumed earlier that \(y = y^*_i\) with probability zero.) If a cell of \(P_n\) contains at least \(K\) elements of the multiset \(\{x_1, \ldots, x_n\}\), the percentage of elements of this cell with conformity score less than \(a/N\) is, almost surely, between \(a/N - 1/K\) and \(a/N + 1/K\); this remains true if “less than” is replaced by “at most”. (It is here that we are using the fact that our conformity measure is randomized and, therefore, conformity scores are tied with probability zero.) And at most a fraction of \(0.11\epsilon/C(m+1)\) of elements of the multiset \(\{x_1, \ldots, x_n\}\) are not in such a cell, with probability at least \(1 - 0.11\epsilon/(m+2)\). Therefore, the overall percentage of elements of the multiset \(\{x_1, \ldots, x_n\}\) with conformity score less than \(a/N\) is between \(a/N - 1/K - 0.11\epsilon/C(m+1)\) and \(a/N + 1/K + 0.11\epsilon/C(m+1)\), with probability at least \(1 - 0.11\epsilon/(m+2)\); this remains true if “less than” is replaced by “at most”. Comparing this with the definition (4), we can see that \(Q_n(y^*_i)\) is between \(a/N - 1/K - 0.11\epsilon/C(m+1) - 1/n\) and \(a/N + 1/K + 0.11\epsilon/C(m+1) + 1/n\), with probability at least \(1 - 0.11\epsilon/(m+2)\). It remains to notice that \(Q_n^*(y^*_i) = a/N\) almost surely. \(\Box\)

Now we are ready to complete the proof of the theorem. For sufficiently large \(n\), we can transform the left-hand side of (22) as follows (as explained later):

\[
\left| \int f \text{d}Q_n - \frac{1}{N} \sum_{i \in I} f(y_i) \right| = \left| \int f \text{d}Q_n - \int f \text{d}Q_n^* \right| \leq \int_{(-B,B)} f \text{d}Q_n - \int_{(-B,B)} f \text{d}Q_n^* \leq C \left(Q_n^*(-B) + 1 - Q_n^*(B) + Q_n(-B) + 1 - Q_n(B) \right) \leq \sum_{i=0}^{m} |f(y^*_i)| \left(Q_n(y^*_i) - Q_n(y^*_i) - Q_n^*(y^*_i) + Q_n^*(y^*_i) \right) + 0.2\epsilon \leq \sum_{i=0}^{m} |f(y^*_i)| \left(\left(\frac{2}{K} + \frac{0.22\epsilon}{C(m+1)} + \frac{2}{n} \right) \right) + 0.2\epsilon \leq \frac{2C(m+1)}{K} + 0.42\epsilon + \frac{2C(m+1)}{n} \leq 0.5\epsilon. \tag{30}
\]

Inequality (26) holds always. Inequality (27) holds with probability (over the choice of \(z_1, \ldots, z_n, x_{n+1}\), and random numbers \(\tau\) and \(\theta_1, \ldots, \theta_{n+1}\) at least \(1 - 0.11\epsilon - 0.11\epsilon = 1 - 0.22\epsilon\) by (24) and Lemmas 35 and 36; the addend 0.02\epsilon arises by (24) from replacing integrals by sums, the addend 0.08\epsilon/C is four times the upper bound on \(Q_n^*(-B)\), or \(1 - Q_n^*(B)\), given by Lemma 35 (the factor of four arises from bounding \(Q_n^*(-B)\), \(1 - Q_n^*(B)\), \(Q_n(-B)\), and
1 − Q_n(B), and the expression $2/K + 0.22\epsilon/C(m + 1) + 2/n$ arises from applying Lemma 36 to reduce bounding $Q_n(B)$ and $1 − Q_n(B)$ to bounding $Q^*_n(B)$ and $1 − Q^*_n(B)$, respectively. Inequality (28) holds for sufficiently large K and n. Inequality (29) holds with probability at least $1 − 0.11\epsilon$ by Lemma 36, but this probability has already been accounted for. And finally, the second inequality in (30) holds for sufficiently large K and n. Therefore, the whole chain (25)–(30) holds with probability at least $1 − 0.22\epsilon ≥ 1 − \epsilon/2$. This proves (22), which completes the overall proof.

To avoid any ambiguity, this paragraph will summarize the roles of ϵ, B, m, K, and n in this proof. First we fix a positive constant $\epsilon > 0$ (which, however, can be arbitrarily small). Next we choose B, sufficiently large for the given ϵ, and after that, a sufficiently fine partition of $[-B, B]$ of size m. We then choose K, which should be sufficiently large for the given ϵ and partition. Finally, we choose n, which should be sufficiently large for the given ϵ, partition, and K.

12 Conclusion

This paper constructs a universally consistent Mondrian predictive system and, which is somewhat more involved, a universally consistent conformal predictive system. There are many interesting directions of further research. These are the most obvious ones:

- Investigate the best rate at which conformal predictive distributions and the true conditional distributions can approach each other.

- Replace universal consistency by strong universal consistency (i.e., convergence in probability by convergence almost surely), perhaps in the online prediction protocol (as in Remark 10).

- Construct more natural, and perhaps even practically useful, universally consistent randomized predictive systems.

References

[1] Thomas Augustin and Frank P. A. Coolen. Nonparametric predictive inference and interval probability. Journal of Statistical Planning and Inference, 124:251–272, 2004.

[2] Vineeth N. Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk, editors. Conformal Prediction for Reliable Machine Learning: Theory, Adaptations, and Applications. Elsevier, Amsterdam, 2014.

[3] Yuri Belyaev. Bootstrap, resampling, and Mallows metric. Technical report, Department of Mathematical Statistics, Umeå University, Sweden, 1995.

[4] Yuri Belyaev and Sara Sjöstedt–de Luna. Weakly approaching sequences of random distributions. Journal of Applied Probability, 37:807–822, 2000.
[5] Arthur P. Dempster. On direct probabilities. *Journal of the Royal Statistical Society B*, 25:100–110, 1963.

[6] Luc Devroye, László Györfi, and Gábor Lugosi. *A Probabilistic Theory of Pattern Recognition*. Springer, New York, 1996.

[7] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. Probabilistic forecasts, calibration and sharpness. *Journal of the Royal Statistical Society B*, 69:243–268, 2007.

[8] Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. *Annual Review of Statistics and Its Application*, 1:125–151, 2014.

[9] Tilmann Gneiting and Roopesh Ranjan. Combining predictive distributions. *Electronic Journal of Statistics*, 7:1747–1782, 2013.

[10] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A Distribution-Free Theory of Nonparametric Regression*. Springer, New York, 2002.

[11] Bruce M. Hill. Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. *Journal of the American Statistical Association*, 63:677–691, 1968.

[12] Bruce M. Hill. De Finetti’s theorem, induction, and $A_{(n)}$ or Bayesian nonparametric predictive inference (with discussion). In Dennis V. Lindley, José M. Bernardo, Morris H. DeGroot, and Adrian F. M. Smith, editors, *Bayesian Statistics 3*, pages 211–241. Oxford University Press, Oxford, 1988.

[13] Alexander S. Kechris. *Classical Descriptive Set Theory*. Springer, New York, 1995.

[14] Jing Lei, James Robins, and Larry Wasserman. Distribution free prediction sets. *Journal of the American Statistical Association*, 108:278–287, 2013.

[15] Jing Lei and Larry Wasserman. Distribution free prediction bands for nonparametric regression. *Journal of the Royal Statistical Society B*, 76:71–96, 2014.

[16] Allan H. Murphy and Robert L. Winkler. A general framework for forecast verification. *Monthly Weather Review*, 115:1330–1338, 1987.

[17] Tore Schweder and Nils L. Hjort. *Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions*. Cambridge University Press, Cambridge, UK, 2016.

[18] Glenn Shafer. Bayesian, fiducial, frequentist. The Game-Theoretic Probability and Finance project, http://probabilityandfinance.com, Working Paper 50, August 2017.
A Marginal calibration

The main notion of validity (R2 in Definition 2) used in this paper is, in the terminology of [5, Definition 3(b)], being probabilistically calibrated. The following definition gives another version of the calibration property [5, Definition 3(a)] for conformal predictive systems (of course, that version is applicable in a much wider context). The number of training observations will be referred to as the sample size.

Definition 37. A conformal predictive system is marginally calibrated for a sample size \(n \) and a probability measure \(P \) on \(Z^{n+1} \) if, for any \(y \in \mathbb{R} \),

\[
\mathbb{E}(Q(z_1, \ldots, z_n, (x_{n+1}, y), \tau)) = \mathbb{P}(y_{n+1} \leq y),
\]

(31)

where both \(\mathbb{E} \) and \(\mathbb{P} \) are over \((z_1, \ldots, z_n, (x_{n+1}, y_{n+1}), \tau) \sim P \times U \).
In this appendix we will see that conformal predictive systems are not always marginally calibrated under the IID model. But we will start from an easier statement.

The probabilistic calibration property R_2 for a given sample size n depends only on the observations (z_1, \ldots, z_{n+1}) being generated from an exchangeable distribution on Z^{n+1} (and $\tau \sim U$ independently): see Remark 16 or, e.g., [23, Theorem 8.1]. The following example shows that there are conformal predictive systems that are not marginally calibrated for some sample size n and an exchangeable probability measure on Z^{n+1}, even among conformal predictive systems corresponding to conformity measures satisfying the conditions of Lemma 12.

Example 38. Set $n := 1$, suppose $|X| > 1$, and let the data be generated from the exchangeable probability measure P on Z^2 that assigns equal weights $1/2$ to the sequences $((x^{-1}, -1), (x^1, 1))$ and $((x^1, 1), (x^{-1}, -1))$ in Z^2, where x^{-1} and x^1 are two distinct elements of X (fixed for the rest of this appendix). Let a conformity measure A satisfy

$$A((x_1, y_1), (x_2, y_2)) = \begin{cases}
 y_2 & \text{if } x_2 = x^1 \\
 3y_2 + 2 & \text{if } x_2 = x^{-1};
\end{cases}$$

(32)

it is clear that A can be extended to the whole of X and to all sample sizes n in such a way that it satisfies all conditions in Lemma 12. For $y = 0$, the right-hand side of (31) is $1/2$, whereas the left-hand side is different, namely $3/4$:

- with probability $1/2$ the training and test data form the sequence $((x^{-1}, -1), (x^1, 1))$, and so the conformal predictive distribution is

$$Q((x^{-1}, -1), (x^1, y)) = \begin{cases}
 [0, 1/2] & \text{if } y < -1/3 \\
 [0, 1] & \text{if } y = -1/3 \\
 [1/2, 1] & \text{if } y > -1/3;
\end{cases}$$

(33)

the position $y = -1$ of the jump is found from the condition $\alpha_1^y = \alpha_2^y$, i.e., $3 \times (-1) + 2 = y$;

- with probability $1/2$ the training and test data form the sequence $((x^1, 1), (x^{-1}, -1))$, and so the conformal predictive distribution is

$$Q((x^1, 1), (x^{-1}, y)) = \begin{cases}
 [0, 1/2] & \text{if } y < -1/3 \\
 [0, 1] & \text{if } y = -1/3 \\
 [1/2, 1] & \text{if } y > -1/3;
\end{cases}$$

(34)

the position $y = -1/3$ of the jump is found from the same condition $\alpha_1^y = \alpha_2^y$, which becomes $1 = 3y + 2$;

- therefore, the mean value of the conformal predictive distribution at $y = 0$ is $3/4$.

23
Example 38 can be strengthened by replacing the assumption of exchangeability by the IID model.

Example 39. Now we assume that the two observations are generated independently from the probability measure on Z assigning equal weights $1/2$ to the observations $(x^{-1}, -1)$ and $(x^1, 1)$. We consider the same conformity measure as in Example 38, see (52). For $y = 0$, the right-hand side of (31) is still $1/2$, and the left-hand side becomes $5/8$:

- with probability $1/4$ the training and test data form the sequence $((x^{-1}, -1), (x^1, 1))$, and so the conformal predictive distribution is (33), averaging $3/4$ at $y = 0$;
- with probability $1/4$ the training and test data form the sequence $((x^1, 1), (x^{-1}, -1))$, and so the conformal predictive distribution is (34), averaging $3/4$ at $y = 0$;
- with probability $1/4$ the training and test data form the sequence $((x^{-1}, -1), (x^{-1}, -1))$, and so the conformal predictive distribution is

$$Q((x^{-1}, -1), (x^{-1}, y)) = \begin{cases} [0, 1/2] & \text{if } y < -1 \\ [0, 1] & \text{if } y = -1 \\ [1/2, 1] & \text{if } y > -1, \end{cases}$$

which is $3/4$ on average at $y = 0$; the position $y = -1$ of the jump is found from the condition $\alpha^y_1 = \alpha^y_2$, which now is $3 \times (-1) + 2 = 3y + 2$;
- finally, with probability $1/4$ the training and test data form the sequence $((x^1, 1), (x^1, 1))$, and so the conformal predictive distribution is

$$Q((x^1, 1), (x^1, y)) = \begin{cases} [0, 1/2] & \text{if } y < 1 \\ [0, 1] & \text{if } y = 1 \\ [1/2, 1] & \text{if } y > 1, \end{cases}$$

which is $1/4$ on average at $y = 0$; the position $y = 1$ of the jump is found from the condition $\alpha^y_1 = \alpha^y_2$, which now is $1 = y$;
- therefore, the mean value of the conformal predictive distribution at $y = 0$ is $5/8$.

B Venn predictors

In [26] and this paper, conformal prediction is adapted to probability forecasting. A traditional method of probability forecasting enjoying properties of validity similar to those of conformal prediction is Venn prediction [23, Chapter 6]. This appendix reviews Venn prediction and its properties of validity. We fix the sample size n.

24
Definition 40. Let κ be a taxonomy (as defined in Definition 17). The Venn predictor corresponding to κ is the family \{\(Q_u\mid u \in \mathbb{R}\)\} of distribution functions defined by

\[
Q_u(z_1, \ldots, z_n, (x_{n+1}, y)) := \frac{|\{i \in \kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, u)) \mid y_i \leq y\}|}{|\kappa(n+1 \mid z_1, \ldots, z_n, (x_{n+1}, u))|}
\]

for any training data \((z_1, \ldots, z_n)\) and test predictor \(x_{n+1}\).

The definition (35) is similar to, but simpler than, (16). The intuition is that the Venn predictor contains (for \(u := y_{n+1}\) being the actual response in the test observation) the true empirical distribution function of the responses in the observations that are similar, in a suitable sense (determined by κ), to the test observation. The Venn prediction (35) is useful when the distribution functions Q_u are close to each other for different u. Whereas this is a reasonable assumption for a suitable choice of κ in the case of classification (such as binary classification, $y_i \in \{0, 1\}$, in [23]), in the case of regression it might make more sense to restrict attention to the conformal predictor Γ (see, e.g., [23, Section 2.2]) and a small significance level $\epsilon > 0$.

The following theorem shows that Venn predictors are ideal in the technical sense of [9, Definition 2.2] (and independent work by Tsyplakov).

Theorem 41. Let \mathcal{G} be the σ-algebra on \mathbb{Z}^{n+1} consisting of the measurable subsets E of \mathbb{Z}^{n+1} that are predictably invariant with respect to the taxonomy κ in the following sense: if a permutation π of $\{1, \ldots, n+1\}$ respects the equivalence relation \sim assigned by κ to z_1, \ldots, z_n (in the sense of Definition 18) and leaves $n+1$ in the same equivalence class, then

\[
(z_1, \ldots, z_{n+1}) \in E \implies (z_{\pi(1)}, \ldots, z_{\pi(n+1)}) \in E.
\]

For any $y \in \mathbb{R}$,

\[
Q_{y_{n+1}}(z_1, \ldots, z_n, (x_{n+1}, y)) = \mathbb{P}(y_{n+1} \leq y \mid \mathcal{G}),
\]

where \((z_1, \ldots, z_n, (x_{n+1}, y_{n+1}))\) are generated from an exchangeable probability distribution on \mathbb{Z}^{n+1}.

Equation (36) expresses the condition of being ideal, with respect to some information base (namely, the σ-algebra \mathcal{G}). According to [9, Theorem 2.8], this means that Venn predictors are both marginally and probabilistically calibrated, in the sense of one of their component distribution functions, namely $Q_{y_{n+1}}(z_1, \ldots, z_n, (x_{n+1}, \cdot))$, being such. And according to [9, Theorem 2.11], in
the case of the binary response variable taking values in \{0, 1\}, being probabilistically calibrated is equivalent to being \textit{conditionally calibrated}

\[P(y_{n+1} = 1 \mid p_{n+1}) = p_{n+1}, \tag{37} \]

where \(p_{n+1} := 1 - Q_{y_{n+1}}(z_1, \ldots, z_n, (x_{n+1}, 0)) \) is the predicted probability that \(y_{n+1} = 1 \). Equation \((37) \) for Venn predictors, in the case of binary classification, is Theorem 1 in \[25]\.

\textbf{Proof of Theorem \(\{\} \).} Fix \(y \in \mathbb{R} \). Let \(P \) be the data-generating distribution (an exchangeable probability distribution on \(Z^{n+1} \)), \(Q \) be the random variable \(Q_{y_{n+1}}(z_1, \ldots, z_n, (x_{n+1}, y)) \), and \(E \in \mathcal{G} \). Notice that \(Q \) is \(\mathcal{G} \)-measurable. Our goal is to prove

\[\int_E 1\{y_{n+1} \leq y\} dP = \int_E Q dP, \tag{38} \]

where \((z_1, \ldots, z_n, (x_{n+1}, y_{n+1})) \sim P \).

There are finitely many equivalence relations on the set \(\{1, \ldots, n+1\} \). For each of them the set of data sequences \((z_1, \ldots, z_{n+1}) \) that are assigned this equivalence relation by the taxonomy \(\kappa \) is measurable (by the requirement of measurability in the definition of a taxonomy) and, moreover, is an element of \(\mathcal{G} \). Therefore, \(E \) can be decomposed into a disjoint union of elements of \(\mathcal{G} \) all of whose elements are assigned the same equivalence relation by \(\kappa \). We will assume, without loss of generality, that all elements of \(E \) are assigned the same equivalence relation, which is fixed to the end of this proof. Let \(\kappa(j) \) stand for the equivalence class of \(j \in \{1, \ldots, n+1\} \).

Let us say that two data sequences in \(E \) are \textit{similar} if, for any equivalence class \(C \subseteq \{1, \ldots, n+1\} \), they have the same numbers of observations with indices in \(C \) and with responses less than or equal to \(y \). Following the same argument as in the previous paragraph, we further assume that all elements of \(E \) are similar.

Now we can see that both sides of \((38) \) are equal to

\[P(E) \frac{\left| \{i \in \kappa(n+1) \mid y_i \leq y\} \right|}{|\kappa(n+1)|} \]

(cf. \((34) \)).