A magnetized completion of the ΛCDM paradigm

Massimo Giovanninia,c and Kerstin E. Kunzeb,c

aCentro “Enrico Fermi”, Compendio del Viminale, Via Panisperna 89/A, 00184 Rome, Italy

bDepartamento de Física Fundamental, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain

cDepartment of Physics, Theory Division, CERN, 1211 Geneva 23, Switzerland

Abstract
The standard ΛCDM paradigm is complemented with a magnetized contribution whose effects on the anisotropies of the Cosmic Microwave Background (CMB) are assessed by means of a dedicated numerical approach. The accuracy on the temperature and polarization correlations stems from the inclusion of the large-scale magnetic fields both at the level of the initial conditions and at the level of the Einstein-Boltzmann hierarchy which is consistently embedded in a generalized magnetohydrodynamical framework. Examples of the calculations of the temperature and polarization angular power spectra are illustrated and discussed. The reported results and the described numerical tools set the ground for a consistent inclusion of a magnetized contribution in current strategies of cosmological parameter estimation.
Current analyses of cosmological data sets (see, for instance, [1]) are customarily performed using a variety of theoretical models which represent diverse completions (i.e. delicate improvements) of the pivotal Λ cold dark matter paradigm (ΛCDM in what follows). As an example, if we ought to know how large could be the contribution of a stochastic background of gravitational waves to the anisotropies of the Cosmic Microwave Background (CMB in what follows), the possible presence of tensor modes should be added, as a supplementary feature, to the basic list of cosmological parameters of the standard ΛCDM paradigm whose updated version (improved by a tensor contribution) will then be compared with the experimental data. From the latter comparison likely values of the ratio between the tensor and scalar power spectra can be inferred. Other possible completions of the ΛCDM lore might include, for instance, massive neutrinos, a minimal duration of the inflationary phase, an effective barotropic index for the dark energy component and many others. Yet another class of delicate improvements of the ΛCDM paradigm contemplates the inclusion of one (or more) non-adiabatic modes which can be either correlated or anticorrelated with the standard adiabatic component (see, for instance, [2]). For specific choices of the non-adiabatic amplitude and spectral index the fit to the experimental data may even improve (see, for instance, last reference in [2]).

In this paper we are going to describe another completion of the ΛCDM paradigm. The possibility we are going to present will be dubbed as magnetized ΛCDM scenario (mΛCDM in what follows). Large-scale magnetic fields arise over different scales ranging from galaxies to clusters [3]. Superclusters have also been claimed to have magnetic fields [3] at the μG level even if firmer evidence is still lacking. Hopefully some of the findings of the Auger project [4] could be used for a magnetic “tomography” of the local Universe, say within a cocoon of 60 Mpc.

If the present magnetized structures emanate from pre-existing cosmological relics they must be present prior to matter-radiation equality, affecting, in this way, the physics of photon decoupling and, ultimately, the formation of the CMB anisotropies. In the mΛCDM scenario the CMB anisotropies are computed in the presence of a stochastic magnetic field \footnote{A stochastic magnetic field does not break, by definition, the overall spatial isotropy of the background geometry and allows, as a consequence, for angular power spectra just expressed in terms of their dependence upon the multipole ℓ without any further preferred direction. For the opposite situation see, for instance, [5].} which will affect both the initial conditions and the dynamical evolution of the Einstein-Boltzmann hierarchy:

\[\langle B_i(\vec{k}) B_j(\vec{p}) \rangle = \frac{2\pi^2}{k^3} \delta^{(3)}(\vec{k} + \vec{p}) P_B(k) P_{ij}(k), \]
\[P_{ij}(k) = \delta_{ij} - \frac{k_i k_j}{k^2}, \quad P_B(k) = A_B \left(\frac{k}{k_L} \right)^{n_B - 1}. \] (1)

The minimal mΛCDM scenario contains, on top of the (six) parameters of the ΛCDM paradigm, two new parameters, namely the magnetic spectral index n_B and the ampli-
tude of the magnetic power spectrum $P_B(k)$ evaluated at the magnetic pivot scale k_L. Non minimal extensions of the mΛCDM scenario include: the correlation (or the anticorrelation) between the adiabatic mode and the magnetic field, the simultaneous presence of a magnetized adiabatic mode together with one (or more) magnetized isocurvature modes. For sake of simplicity we will stick here to the minimal situation reporting elsewhere on the complementary cases. There have been lately theoretical and semi-analytical works along this direction [6] but the moment has now come to tailor, for the first time, a consistent numerical approach to treat the effects of a fully inhomogeneous magnetic field on the scalar modes of the geometry.

Since, after neutrino decoupling, the concentration of electrons and protons is roughly 10 orders of magnitude smaller than the concentration of the photons, the Debye length-scale will be approximately 20 orders of magnitude smaller than the Hubble radius (for instance at matter-radiation equality). The conductivity of the globally neutral plasma, i.e. σ_c, will be dominated by Coulomb scattering so that

$$\alpha_{em}\sigma_c \simeq 4\pi(T/m_e)^{1/2}T(\ln \Lambda_C)^{-1}$$

where Λ_C is the argument of the Coulomb logarithm. Ohmic electric fields are then suppressed with respect to the total Ohmic current, as it is the case in a good terrestrial conductor:

$$\vec{E} + \vec{v}_b \times \vec{B} = \frac{\vec{J}}{\sigma} \simeq \frac{\vec{\nabla} \times \vec{B}}{4\pi \sigma}, \quad \sigma = a\sigma_c,$$

where $\vec{E} = a^2\vec{\mathcal{E}}$ and $\vec{B} = a^2\vec{\mathcal{B}}$ are the electric and magnetic fields rescaled through the second power of the scale factor $a(\tau)$ of a (conformally flat) Friedmann-Robertson-Walker (FRW) geometry. The large-scale description of our problem is, physically, the curved-space version of MHD where the electric field, the magnetic field and the Ohmic current are all solenoidal quantities. The effects of the magnetic field on the scalar modes of the geometry are far from trivial: the evolution of the bulk velocity of the plasma is given by

$$\theta_b' + \mathcal{H}\theta_b = \frac{4}{3}\frac{\rho_\gamma}{\rho_b} \epsilon'(\theta_\gamma - \theta_b) + \frac{\vec{\nabla} \cdot [\vec{J} \times \vec{B}]}{a^4 \rho_b}, \quad \theta_b = \vec{\nabla} \cdot \vec{v}_b. \quad (3)$$

Given the hierarchy between the electron and proton masses the bulk velocity of the plasma θ_b will be essentially the proton velocity. Because of the Coulomb-dominated conductivity, the magnetic fields will be present and not diffused for typical length-scales larger than the magnetic diffusivity length L_σ whose ratio to the Hubble radius is so small (i.e. $HL_\sigma \simeq 3.9 \times 10^{-17}(T/eV)^{1/4}$) that the $k_\sigma \simeq L_\sigma^{-1}$ will provide effectively an ultra-violet cut-off to the magnetic power spectrum of Eq. (1). In the presence of diffusion damping (i.e. shear viscosity) the Silk wave-number will be the dominant dissipative scale for the baryon-photon fluid. Under these conditions the magnetic flux (and helicity) will be effectively conserved to a very good approximation.

2A prime denotes a derivation with respect to the conformal time coordinate τ and $\mathcal{H} = (\ln a)'$. The notation $\theta_X = \vec{\nabla} \cdot \vec{v}_X$ denotes the three-divergence of the peculiar velocity of the species X. Throughout the paper $\epsilon' = x_\gamma n_\gamma \sigma_{Th} n_\gamma a/a_0$ denotes the optical depth. Finally, with similar notations, $\delta_X = \delta_\rho X/\rho_X$ is the density contrast of the species X.

2
Large values of the conductivity break explicitly Lorentz invariance. The plasma frame, where the electric fields are suppressed in comparison with the magnetic fields, arises naturally. The scalar fluctuations of the geometry, still relativistic, will be treated, numerically, in the synchronous gauge (S-gauge in what follows) where the only non-vanishing entries of the perturbed metric are, in Fourier space:

\[
\delta_s g_{ij}(k, \tau) = a^2(\tau) \left[\hat{k}_i \hat{k}_j h(k, \tau) + 6 \xi(k, \tau) \left(\hat{k}_i \hat{k}_j - \frac{1}{3} \delta_{ij} \right) \right],
\]

(4)

where the symbol \(\delta_s\) emphasizes that we are dealing here with scalar (as opposed to vector or tensor [7]) fluctuations of the geometry. The mCDM code is an extension of the CMBFAST package [8] which is, in turn, based on the COSMICS package [9]. The evolution of the scale factor is integrated numerically from the usual Friedmann-Lemaître equations

\[
\mathcal{H}^2 = \frac{8\pi G}{3} a^2 \rho_t, \quad \mathcal{H}^2 - \mathcal{H}' = 4\pi Ga^2(p_t + \rho_t),
\]

(5)

where \(\rho_t\) and \(p_t\) are, respectively, the total energy density and pressure of the plasma. Equation (3) will then be supplemented by the governing equations for the magnetic fields as well as by the CDM particles and by the neutrino component:

\[
\delta'_c = -\theta_c + \frac{h'}{2}, \quad \theta'_c + \mathcal{H}\theta_c = 0.
\]

(6)

\[
\delta'_\nu = -\frac{4}{3} \theta_\nu + \frac{2}{3} h', \quad \theta'_\nu = \nabla^2 \sigma_\nu - \frac{1}{4} \nabla^2 \delta_\nu,
\]

(7)

\[
\sigma'_\nu = \frac{4}{15} \theta_\nu - \frac{2}{15} h' - \frac{4}{5} \xi',
\]

(8)

where \(\sigma_\nu = \mathcal{F}_{\nu2}/2\) is the quadrupole of the perturbed phase space distribution. Higher multipoles of the Boltzmann hierarchy (like the octupole \(\mathcal{F}_{\nu3}\)) follow by setting initial conditions on the lower multipoles. The governing equations for baryons and photons are given by Eq. (3) together with

\[
\theta'_\gamma = -\frac{1}{4} \nabla^2 \delta_\gamma + \epsilon'(\theta_b - \theta_\gamma), \quad \delta'_\gamma = -\frac{4}{3} \theta_\gamma + \frac{2}{3} h', \quad \delta'_b = -\theta_b + \frac{h'}{2} + \frac{\vec{E} \cdot (\vec{\nabla} \times \vec{B})}{4\pi a^4 \sigma b},
\]

(9)

where the last term in the evolution of \(\delta_b\) is negligible at finite conductivity. The plasma and the magnetic fields all gravitate and contribute to the Hamiltonian and momentum constraints whose specific form is, respectively:

\[
2 \nabla^2 \xi + \mathcal{H}h' = -8\pi Ga^2 [\delta_s \rho_t + \delta \rho_B],
\]

(10)

\[
\nabla^2 \xi' = 4\pi Ga^2 \left\{ (p_t + \rho_t) \theta_t + \frac{\vec{\nabla} \cdot [\vec{J} \times \vec{B}]}{4\pi a^3 \sigma} \right\},
\]

(11)

where \(\delta_s \rho_t\) is the total density fluctuation in the S gauge and \((p_t + \rho_t) \theta_t = \sum_a (p_a + \rho_a) \theta_a\) is the total peculiar velocity. Since the conductivity \(\sigma\) is always large, the contribution of
the MHD Poynting vector is, in practice, always negligible. The \((ij)\) components of the perturbed Einstein equations read

\[
\begin{align*}
\dot{h}'' + 2\dot{h}' + 2\nabla^2 \xi &= 24\pi Ga^2 [\delta p_t + \delta p_B], \\
(\dot{h} + 6\xi)'' + 2\nabla(h + 6\xi)' + 2\nabla^2 \xi &= 24\pi Ga^2 [(p_\nu + \rho_\nu)\sigma_\nu + (p_\gamma + \rho_\gamma)\sigma_\gamma],
\end{align*}
\]

where \(\delta p_t\) is the fluctuation of the total pressure. In MHD, \(4\pi \mathcal{J} = \nabla \times \mathcal{B}\) so that the Lorentz force and the magnetic anisotropic stress (associated with \(\sigma_B\)) are related by:

\[
\nabla^2 \sigma_B = \frac{3}{16\pi a^4 \rho_\gamma} \nabla \cdot (\nabla \times \mathcal{B}) \times \mathcal{B} + \frac{1}{4} \nabla^2 \Omega_B, \quad \Omega_B(\vec{x}) = \frac{\delta \rho_B(\tau, \vec{x})}{\rho_\gamma(\tau)}. \tag{14}
\]

The simplest set of initial conditions to be imposed on the hierarchies of the fluctuations in the intensity and of the polarization is the magnetized adiabatic mode. When Coulomb and Thompson couplings are both tight (i.e. \(\theta_b \simeq \theta_\gamma = \theta_{\gamma b}\)) the whole system of the governing equations can be solved in the limit when the relevant wavelengths are larger than the Hubble radius prior to matter-radiation equality (i.e., in terms of the wave-number \(k, k\tau \ll 1\)). To lowest order in \(k\tau\) the magnetized adiabatic mode reads, in Fourier space:

\[
\begin{align*}
\xi(k, \tau) &= -2C(k) + \frac{4R_\nu + 5}{6(4R_\nu + 15)} C(k) + \frac{R_\gamma(4\sigma_B(k) - R_\nu \Omega_B(k))}{6(4R_\nu + 15)} k^2 \tau^2, \\
h(k, \tau) &= -C(k)k^2 \tau^2 - \frac{1}{36} \left[\frac{8R_\nu^2}{(2R_\nu + 25)(4R_\nu + 15)} C(k) \\
&\quad + \frac{R_\gamma(15 - 20R_\nu)}{10(4R_\nu + 15)(2R_\nu + 25)} (R_\nu \Omega_B(k) - 4\sigma_B(k)) \right] k^4 \tau^4, \\
\delta_\gamma(k, \tau) &= -R_\gamma \Omega_B(k) - \frac{2}{3} \left[C(k) - \sigma_B(k) + \frac{R_\nu}{4} \Omega_B(k) \right] k^2 \tau^2, \\
\delta_\nu(k, \tau) &= -R_\gamma \Omega_B(k) - \frac{2}{3} \left[C(k) + \frac{R_\nu}{4R_\nu} \left(4\sigma_B(k) - R_\nu \Omega_B(k) \right) \right] k^2 \tau^2, \\
\delta_b(k, \tau) &= -\frac{3}{4} R_\gamma \Omega_B(k) - \frac{C(k)}{2} k^2 \tau^2, \\
\theta_{\nu b}(k, \tau) &= \left[\frac{R_\nu}{4} \Omega_B(k) - \sigma_B(k) \right] k^2 \tau - \frac{1}{36} \left[2C(k) + \frac{R_\nu \Omega_B(k) - 4\sigma_B(k)}{2} \right] k^4 \tau^3, \\
\theta_{\nu}(k, \tau) &= \left[\frac{R_\gamma}{R_\nu} \sigma_B(k) - \frac{R_\nu}{4} \Omega_B(k) \right] k^2 \tau - \frac{1}{36} \left[\frac{2(4R_\nu + 23)}{4R_\nu + 15} C(k) \\
&\quad + \frac{R_\gamma(4R_\nu + 27)}{2R_\nu(4R_\nu + 15)} (4\sigma_B(k) - R_\nu \Omega_B(k)) \right] k^4 \tau^3, \\
\theta_c(k, \tau) &= 0, \\
\sigma_\nu(k, \tau) &= -\frac{R_\gamma}{R_\nu} \sigma_B(k) + \left[\frac{4C(k)}{3(4R_\nu + 15)} + \frac{R_\gamma(4\sigma_B(k) - R_\nu \Omega_B(k))}{2R_\nu(4R_\nu + 15)} \right] k^2 \tau^2,
\end{align*}
\]

where \(R_\nu = r/(r + 1)\) with \(r = 0.681(N_\nu/3)\) and \(R_\gamma = 1 - R_\nu\). The constant mode of \(h\)
leads to a gauge mode and should be projected out of the solution. The second potentially dangerous gauge mode is fixed by setting to 0 the CDM peculiar velocity θ_c. The spectrum of $C(k)$ is simply related to the spectrum of R which parametrizes the curvature perturbations on comoving orthogonal hypersurfaces [6]. Deep in the radiation epoch, according to Eq. (15), $R(k, \tau) = -2C(k)$. Consequently the initial conditions for the adiabatic component will be given in terms of the spectrum of R, i.e. $P_R(k) = A_R(k/k_p)^{n_s-1}$ where n_s is the adiabatic spectral index and A_R is the amplitude of the scalar power spectrum at the pivot scale $k_p = 0.002 \text{Mpc}^{-1}$. The spectrum of the magnetized contribution will be encoded in the spectra of Ω_B and σ_B, i.e. respectively, $P_\sigma(k) = G(n_B)\Omega_B^2(k/k_L)^{2(n_B-1)}$ and $P_\Omega(k) = F(n_B)\Omega_B^2(k/k_L)^{2(n_B-1)}$ where k_L denotes the magnetic pivot scale3 which will be taken 1Mpc^{-1}. In the minimal mΛCDM scenario $n_\sigma = n_B$. The spectra $P_\Omega(k)$ and $P_\sigma(k)$ are not arbitrary but rather computed from Eq. (1) through a rather standard procedure (see, for details, [10]):

$$\Omega_{BL} = \frac{B_L^2}{8\pi\rho_\gamma} = 7.5 \times 10^{-9} \left(\frac{B_L}{\text{nG}}\right)^2,$$

3The range of magnetic spectral indices discussed here is $1 < n_B < 5/2$. In this case, regularizing the magnetic field with a Gaussian window function, the spectra of the Ω_B and σ_B are the ones reported in Eq. (25). For values outside the mentioned range cut-offs are required either in the infra-red or in the ultra-violet [10]. The value of the magnetic pivot scale implies that B_L coincides effectively with the proper amplitude of the magnetic field regularized over a Mpc window at the onset of protogalactic collapse [6].
Figure 2: The magnetized TE and EE correlations are illustrated for different values of the spectral indices and different values of the magnetic field intensities.

\[
G(n_B) = \frac{(2\pi)^{2(n_B-1)}}{\Gamma^2\left(\frac{n_B-1}{2}\right)} \left[\frac{n_B + 29}{15(5 - 2n_B)(n_B - 1)} \right], \quad F(n_B) = \frac{20(7 - n_B)}{n_B + 29} G(n_B). \quad (25)
\]

In Fig. 1 (plot at the left) the effects of the magnetized contribution on the temperature autocorrelations is illustrated for different values of the spectral index and of the magnetic field intensity. If the strength of the magnetic field is augmented (or the value of the spectral index becomes bluer) a distortion of the second and of the third peaks is correlated with an increase of the first peak. This spectral distortion fits with the results of a semi-analytical calculation conducted in the longitudinal gauge (see [6], last reference). In spite of the correct spectral distortion on the shape, the semi-analytical argument is intrinsically less accurate. The predicted height of the first peak varies in a non-monotonic way with the variation of the spectral index and of the magnetic field intensity [10]. If the adiabatic mode is absent from the initial conditions (Fig. 1 plot at the right) the amplitude of the TT correlations is always much smaller than in the case of the magnetized adiabatic mode. Furthermore a hump appears at intermediate multipoles. In Fig. 2 we illustrate the angular power spectrum of the temperature-polarization cross-correlations (for short the TE correlations) as well as the angular power spectrum for the polarization autocorrelations (for short the EE correlations). According to Fig. 3, for high \(\ell \) (where, hopefully, there will be, in the near future more precise data from the Planck explorer mission) the TT correlation is definitely sensitive, for \(\ell \gg 1500 \), to a nG magnetic field. The TE correlation is also sensitive to the nG range (see Fig. 3, plot at the right) especially as soon as the spectral index increases from the nearly scale-invariant limit. The magnetized CMB anisotropies have never been computed consistently and systematically for the scalar modes of the geometry which are the ones observationally more relevant. In this paper we built a consistent numerical approach to
the problem and presented a magnetized completion of the ΛCDM paradigm. Our approach is accurate enough to resolve nG magnetic fields. The usual custom of setting a bound on the magnetic field becomes too simplistic in the light of the present results and according to the standards of CMB physics. In a similar perspective, for instance, the bound on the ratio between tensor and scalar power spectra can only stem from an appropriate strategy of parameter extraction where the tensor contribution is included in the CMB anisotropy calculations and fits. The same must be done in the case of the mΛCDM scenario. If the correct strategy is not enforced, potentially interesting degeneracies between the parameters of the magnetized background and other cosmological parameters can be totally overlooked. Consequently, our program is, in the short run, to extend and complete our code to the case of tensor and vector modes (which are known to be far less relevant at large scales) and to the case of the various magnetized isocurvature modes. In parallel we ought to test the mΛCDM scenario against the various data sets eagerly waiting for Planck data and its claimed high accuracy for large multipoles.

K.E.K. is supported by the “Ramón y Cajal” program and grants FPA2005-04823 and FIS2006-05319 of the Spanish Science Ministry.

References

[1] D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007); L. Page et al., Astrophys. J. Suppl. 170, 335 (2007); D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003); D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005); A. G. Riess et al., Astrophys. J. 607, 665 (2004).
[2] H. Kurki-Suonio, V. Muhonen and J. Valiviita, Phys. Rev. D 71, 063005 (2005); J. Valiviita and V. Muhonen, Phys. Rev. Lett. 91, 131302 (2003); R. Keskitalo, H. Kurki-Suonio, V. Muhonen and J. Valiviita, JCAP 0709, 008 (2007).

[3] M. Giovannini, Int. J. Mod. Phys. D 13, 391 (2004); A. Brandenburg and K. Subramanian, Phys. Rept. 417, 1 (2005); P. P. Kronberg, S. Habib and Q. W. Dufton, Astrophys. J. 637, 19 (2006); E. Battaner and E. Florido, Fund. Cosmic Phys. 21, 1 (2000).

[4] J. Abraham et al., Science 318, 938 (2007); M. Aglietta et al., Astropart. Phys. 27, 244 (2007)

[5] P. D. Naselsky, L. Y. Chiang, P. Olesen and O. V. Verkhodanov, Astrophys. J. 615, 45 (2004); G. Chen, P. Mukherjee, T. Kahliaashvili, B. Ratra and Y. Wang, Astrophys. J. 611, 655 (2004).

[6] M. Giovannini, Phys. Rev. D 73, 101302 (2006); Phys. Rev. D 74, 063002 (2006); Phys. Rev. D 76, 103508 (2007); PMC Phys. A 1, 5 (2007).

[7] K. Subramanian and J. D. Barrow, Phys. Rev. Lett. 81, 3575 (1998); A. Mack, T. Kahliaashvili and A. Kosowsky, Phys. Rev. D 65, 123004 (2002).

[8] U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996); M. Zaldarriaga, D. N. Spergel and U. Seljak, Astrophys. J. 488, 1 (1997).

[9] C. P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995); E. Bertschinger, arXiv:astro-ph/9506070.

[10] M. Giovannini and K. E. Kunze, to appear.