A microtranslatome coordinately regulates sodium and potassium currents in the heart

Catherine A. Eichel¹, Erick B. Ríos-Pérez¹, Fang Liu¹, Margaret B. Jameson¹, David K. Jones¹², Jennifer J. Knickelbine³ and Gail A. Robertson¹*

¹Dept. of Neuroscience and Cardiovascular Research Center
University of Wisconsin School of Medicine and Public Health
1111 Highland Ave. #5505
Madison, WI 53705

²Current address: Dept. of Pharmacology
University of Michigan Medical School
Ann Arbor, MI 48109

*Corresponding author: garobert@wisc.edu

Keywords: action potential, ion channels, co-knockdown, arrhythmia, KCNH2, Kv11.1, Na,1.5, cotranslational

ABBREVIATION LIST
AP: Action potential
APD: Action potential duration
Co-IP: Co-immunoprecipitation
ER: Endoplasmic reticulum
FISH: Fluorescence in-situ hybridization
IF: Immunofluorescence
IP: Immunoprecipitation
IPSC-CM: Cardiomyocyte derived from induced pluripotent stem cells
RBP: RNA binding protein
RNA-IP: RNA-immunoprecipitation
shRNA: Short hairpin RNA
ABSTRACT

Catastrophic arrhythmias and sudden cardiac death can occur with even a small imbalance between inward sodium currents and outward potassium currents, but mechanisms establishing this critical balance are not understood. Here, we show that mRNA transcripts encoding I_{Na} and I_{Kr} channels ($SCN5A$ and $hERG$, respectively) are associated in defined complexes during protein translation. Using biochemical, electrophysiological and single-molecule fluorescence localization approaches, we find that roughly half the $hERG$ translational complexes contain $SCN5A$ transcripts. Moreover, the transcripts are regulated in a way that alters functional expression of both channels at the membrane. Association and coordinate regulation of transcripts in discrete "microtranslatomes" represents a new paradigm controlling electrical activity in heart and other excitable tissues.
INTRODUCTION

Signaling in excitable cells depends on the coordinated flow of inward and outward currents through a defined ensemble of ion channel species. This is especially true in heart, where the expression of many different ion channels controls the spread of excitation triggering the concerted contraction of the ventricular myocardium. Even small perturbations in the quantitative balance due to block or mutations affecting a single type of channel can initiate or perpetuate arrhythmias and lead to sudden death. Repolarization is a particularly vulnerable phase of the cardiac cycle, when imbalance of inward and outward currents can prolong action potential duration and trigger arrhythmias such as Torsades de Pointes\(^1\). The genetic basis of such catastrophic arrhythmias is in many cases unknown; mechanisms coordinating expression of multiple ion channels may represent novel disease targets.

Cardiac \(I_{Kr}\) is critical for normal repolarization\(^2\) and is a major target of acquired and congenital long QT syndrome\(^3,4\). \(I_{Kr}\) channels minimally comprise hERG1a and hERG1b subunits\(^5,6\), which associate cotranslationally\(^7\) and preferentially form heteromultimers\(^8\). Underlying heteromultimerization is the cotranslational association of \(hERG1a\) and \(1b\) mRNA transcripts\(^9\). Because current magnitude is greater in heteromeric hERG1a/1b vs. homomeric hERG1a channels, and loss of hERG1b is pro-arrhythmic\(^5,10\), the mechanism of cotranslational assembly of hERG subunits is important in cardiac repolarization\(^9\).

In this study we found that association of transcripts could occur not only between alternate \(hERG\) transcripts encoded by a single gene locus, but also between transcripts encoding entirely different ion channel types whose balance is critical to cardiac excitability. Indeed, we show that \(SCN5A\), encoding the cardiac \(Na_v1.5\) sodium channel, associates with \(hERG\) transcripts as demonstrated by co-immunoprecipitation of nascent protein in heterologous expression systems, cardiomyocytes derived from human induced pluripotent stem cells, and native human myocardium. Single-molecule fluorescent \textit{in situ} hybridization (smFISH)
quantitatively reveals hERG and SCN5A transcript colocalization captured during protein translation. Targeting hERG transcripts for shRNA degradation coordinately reduces SCN5A transcript levels as well, along with native I_{Kr} and I_{Na} currents recorded from cardiomyocytes. Thus, cotranslational association and regulation of transcripts is a novel mechanism establishing and preserving a balance of I_{Kr} and I_{Na} in heart, where relative levels of these currents are critical for normal action potential production and coordinated electrical activity.
RESULTS

Copolurification of hERG 1a and SCN5A transcripts with their encoded proteins

Using specific antibodies that target the N-terminus of hERG1a, we purified hERG1a protein from induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and human ventricle lysates and performed RT-PCR to identify associated transcripts (“RNA-IP”; Fig. 1a). As previously reported\(^9\), both hERG1a and 1b transcripts co-immunoprecipitated with nascent hERG 1a protein. Surprisingly, SCN5A transcripts encoding Na\(_{\alpha}1.5\) channels also copurified with nascent hERG1a protein (Fig. 1b and Supplementary Fig. S1). The interaction appears specific since neither ryanodine receptor RyR2 nor inward rectifier channel Kir2.1 (KCNJ2) transcripts copurified as part of this complex. The counterpart experiment using anti-Na\(_{\alpha}1.5\) antibodies confirmed association of transcripts encoding hERG1a, hERG1b and Na\(_{\alpha}1.5\), but not RyR2 (Fig. 1b). Bead-only controls showed no signal, indicating specific interactions of antibodies with corresponding antigens. The association also occurred in HEK293 cells, where additional controls showed that the antibodies used did not interact nonspecifically with mRNA encoding the other ion channels or subunits (Supplementary Fig. S1).

Interestingly, when lysates independently expressing hERG1a and Na\(_{\alpha}1.5\) were mixed, hERG1a antibodies copurified only hERG1a mRNA, and Nav1.5 antibodies copurified only SCN5A mRNA, indicating that association of the two mRNAs requires their co-expression in situ. In addition, the interaction between hERG1a and SCN5A does not require the presence of hERG1b (Supplementary Fig. S1). This experiment demonstrates that transcripts encoding hERG1a, hERG1b and Na\(_{\alpha}1.5\) physically interact within the cell and can be copurified using antibodies targeting either nascent hERG1a or Na\(_{\alpha}1.5\) proteins. Their association with either encoded protein implies the transcripts associate during protein translation, or cotranslationally.

hERG1a and SCN5A transcript distribution

To independently confirm hERG1a and SCN5A transcript association, we performed single-molecule fluorescence in situ hybridization (smFISH) experiments in iPSC-CMs (Fig. 2a). We
used a combination of short DNA oligonucleotides (20 nucleotides), each labelled with a single fluorophore, that bind in series on the target mRNA and collectively are detected as a single fluorescent spot (see Methods). Probes for \textit{hERG1a} and \textit{SCN5A} mRNAs were designed with spectrally separable labels for simultaneous detection (Quasar 647 and 546 respectively; see Methods and Supplementary Fig. S2 for probe validation, and Table S1 for list of probes). Punctate signal for each mRNA species appeared singly and in clusters (Fig. 1a, b). To evaluate mRNA copy number in each detected signal, we fitted the histogram of the total fluorescence intensity of smFISH signals with the sum of Gaussian functions and determined mean intensity of a single mRNA molecule for each species (Fig. 2b and Supplementary Fig. S3). We found that approximately 25% of detected molecules exist singly, whereas about 20% occupy clusters containing 6 or more transcripts (Fig. 2c). Both transcripts were observed throughout the cytoplasm with higher density within 5-10 μm from the nucleus (Fig. 2a, d), consistent with the expected distribution of perinuclear endoplasmic reticulum where these mRNA molecules are translated into proteins. A \textit{GAPDH} mRNA probe set served as a positive control for smFISH experiments (Stellaris® validated control). In contrast with signals observed for \textit{hERG1a} and \textit{SCN5A} transcripts, \textit{GAPDH} transcript clustered less, with 50% found as single molecules and <5% in clusters of 6 or more transcripts (Fig. 2c). Moreover, \textit{GAPDH} molecules distributed more homogeneously throughout the cytoplasm with higher density in the range of 10 to 20 μm from the nucleus (Fig. 2d). We noted similar numbers of \textit{hERG1a} and \textit{SCN5A} transcripts per cell but fewer than those for \textit{GAPDH} (Fig. 2e). Thus, numbers and spatial distribution of \textit{hERG1a} and \textit{SCN5A} transcripts can be simultaneously resolved. Further work will be required to elucidate the significance or possible physiological role of differently sized mRNA clusters.

\textbf{\textit{hERG1a} and \textit{SCN5A} transcript expression levels correlate}
Although we observed a range in numbers of \textit{hERG1a} and \textit{SCN5A} mRNAs among iPSC-CMs (Fig. 2e), regression analysis revealed clear correlation in their expression levels within
a given cell (Fig. 3 and Supplementary Table S3). Plotted against each other, hERG1a and SCN5A mRNA numbers exhibited a coefficient of determination (R^2) of 0.57 (P=0.00001; 41 cells; Fig. 3a and b). In contrast, pairwise combinations of hERG1a and RyR2, hERG1a and GAPDH, or SCN5A and GAPDH exhibited much lower linear correlation (R^2= 0.22, P=0.017; R^2=0.18, P=0.15; and R^2=0.33, P=0.000134 respectively; n=26, 13, and 28 cells respectively; Fig. 3c and d, Supplementary Fig. S5 a and b, and Supplementary Table S3). Spearman coefficients revealed similar results as Pearson coefficients, where significant correlation is observed only between SCN5A and hERG1a (Supplementary Table S3). These findings indicate a roughly constant ratio of hERG1a and SCN5A mRNA copies.

hERG1a and SCN5A transcripts colocalize

To determine potential hERG1a and SCN5A transcript association using smFISH, we measured proximity between the two signals using the centroid position, scored from touching to 67% (1 pixel) overlap (Fig. 4a and b). To discern colocalization from random overlap, we calculated the expected number of particles that could associate based on chance only for the different association criteria. Two-tailed t tests with Bonferroni correction revealed association between hERG1a and SCN5A transcripts significantly greater than that expected by chance (see Methods; P values summarized in Supplementary Table S2; Fig. 4b). Approximately 25% of each transcript population was associated with the other (Fig. 4c). To test specificity of interaction between hERG1a and SCN5A transcripts, smFISH and pairwise comparisons were also performed with RyR2 and GAPDH transcripts, which revealed no significant association (Fig. 4d and e; Supplementary Table S2). These results show that association of hERG and SCN5A transcripts demonstrated in lysates can also be visualized in iPSC-CMs *in situ*, and provide strong evidence for the existence of a discrete mRNA complex comprising hERG1a and SCN5A transcripts.
Discrete hERG1a and SCN5A cotranslational complexes

To further explore whether colocalized mRNAs were part of a translational complex, we combined smFISH with immunofluorescence using hERG1a antibodies. We observed close association between hERG1a and SCN5A mRNAs and hERG1a protein significantly greater than that expected by chance (Fig. 5a and b and Supplementary Fig. S6a and b).

Interestingly, among the 16% of actively translated hERG1a mRNAs (i.e. those associated with hERG1a protein), 46% were also associated with SCN5A mRNAs (Fig. 5c), indicating a 3-fold enrichment of their association in translational complexes. Analysis of the distribution of colocalized molecules revealed that 70% are located close to the nucleus (within 10μm, Fig. 5d).

We monitored association of hERG1a protein and transcript in the presence of puromycin, which releases translating ribosomes from mRNAs13 (Fig. 6a). We observed no change due to puromycin in the total number of respective mRNAs detected per cell (Fig. 6b). As expected, puromycin reduced association between hERG1a mRNA and hERG1a protein (antibody) and the S6 ribosomal protein (Fig. 6c). In addition, triple colocalization of hERG1a and SCN5A transcripts and either hERG1a protein or the ribosomal subunit S6 was robustly reduced (Fig 6d). These findings further support the conclusion that hERG1a and SCN5A associate cotranslationally.

hERG1a and SCN5A mRNAs are coregulated

We previously demonstrated that targeted knockdown of either hERG1a or 1b transcripts by specific short hairpin RNA (shRNA) caused a reduction of both transcripts not attributable to off-target effects in iPSC-CMs or in HEK293 cells9. To determine whether hERG and SCN5A transcripts are similarly subject to this co-knockdown effect, we evaluated expression levels by performing RT-qPCR experiments in iPSC-CM. We found that hERG1a, hERG1b and SCN5A expression levels were all reduced by about 50% upon hERG1a silencing compared to the effects of a scrambled shRNA (Fig. 7a, orange bars). RYR2 transcript levels were
unaffected. We observed similar results using the specific hERG1b shRNA (Fig. 7a, blue bars). Expressed independently in HEK293 cells, only hERG1a mRNA was affected by the 1a shRNA, and only hERG1b was affected by the 1b shRNA (Fig. 7b). SCN5A was unaffected by either shRNA, indicating that the knockdown in iPSC-CMs was not due to off-target effects and levels of associated hERG1a and SCN5A are quantitatively coregulated. Similar results of approximately 40% co-knockdown of discrete hERG1a and SCN5A mRNA particles were obtained using smFISH (Supplementary Fig. S7). Even more than the total population of mRNA, the number of colocalized particles is decreased by approximately 55%, indicating that physically associated transcripts are subjected to co-knockdown (Fig. S7c). Together these results indicate a coordinated and quantitative regulation of mRNAs encoding a complement of ion channels.

I_Kr and I_Na are coregulated

To assess functional consequences of transcript coregulation, we recorded effects of hERG1b silencing on native currents in iPSC-CMs. Fig. 7c shows the repolarizing current \(I_{Kr} \) in iPSC-CMs transfected with either hERG1b or scrambled shRNA. Steady state and peak tail \(I_{Kr} \) were decreased in hERG1b-silenced cells compared to cells transfected with scrambled shRNA (Fig. 7d). \(I_{Kr} \) reduction was the result of a decrease in \(G_{max} \) upon hERG1b-specific silencing with no modifications in the voltage dependence of activation (Fig. 7e and Supplementary Table S4). These results are in accordance to our previous studies reporting a reduction in \(I_{Kr} \) density upon hERG1b-specific silencing, and indicate that transcripts targeted by shRNA are those undergoing translation\(^9,10\). To determine whether hERG1b silencing also affects translationally active SCN5A, we measured peak \(I_{Na} \) density in iPSC-CMs and detected significant reduction of about 60% when hERG1b was silenced, compared to control cells (Fig. 7f, g and h). Peak \(G_{max} \) was decreased but no alterations in voltage dependence of activation or inactivation were detected (Fig. 7h and Supplementary Tables S4 and S5). Late \(I_{Na} \), measured as the current integral from 50 to 800 ms from the beginning of the pulse\(^14\), was similarly reduced in magnitude (Fig. 7i, j and k). This analysis indicates
that coregulation via co-knockdown results in quantitatively similar alteration of $I_{\text{Na,late}}$ and I_{Kr}, which operate together to regulate repolarization15. I_{Lo}, which does not regulate action potential duration in larger mammals16, is unaffected by hERG1b silencing (Fig. 8a, b, c and d), suggesting the coregulation of I_{Na} and I_{Kr} reflects their coherent participation in repolarization.
DISCUSSION

We have demonstrated using diverse and independent approaches the association and coregulation of transcripts encoding ion channels that regulate excitability in cardiomyocytes. By co-immunoprecipitating mRNA transcripts along with their nascent proteins, we have shown that hERG and SCN5A transcripts associate natively in human ventricular myocardium and iPSC-CMs as well as when heterologously expressed in HEK293 cells. Using smFISH together with immunofluorescence in iPSC-CMs, we demonstrate that the ratio of hERG and SCN5A transcripts is approximately 1:1 despite a range of pool sizes from roughly 5 to 200 molecules per cell. These transcripts colocalize about 25% of the time, but when considering only those hERG transcripts undergoing translation, nearly 50% are associated with SCN5A. When hERG1a or hERG1b transcripts are targeted by shRNA, SCN5A levels are reduced by about the same amount. Both peak and late I_{Na} are correspondingly reduced. Reflecting their coherent roles in the process of cardiac repolarization, the term “microtranslatome” captures the cotranslational properties of this discrete complex comprising functionally related mRNAs and their nascent proteins.

What is the functional role of cotranslational association of transcripts? Deutsch and colleagues showed that cotranslational interaction of nascent Kv1.3 N-termini facilitates proper tertiary and quaternary structure required for oligomerization. Cotranslational heteromeric association of hERG1a and hERG1b subunits ensures cardiac I_{Kr} has the appropriate biophysical properties and magnitude shaping the normal ventricular action potential. Coordinated protein translation of different channel types could control relative numbers of ion channels involved in electrical signaling events. Such a balance is critical during repolarization, when alterations in I_{Kr} or late I_{Na} are known to cause arrhythmias associated with long QT syndrome or Brugada syndrome. Indeed, during normal Phase 3 repolarization, non-equilibrium gating of sodium channels leads to recovery from inactivation and re-activation of currents substantially larger than the tiny steady-state late I_{Na} observed under voltage-clamp steps. Our observation of roughly equivalent hERG1a and SCN5A
mRNA levels squares with previous reports of fixed channel transcript ratios associated with certain identified crustacean neurons23,24. Cotranslating mRNAs in a stoichiometric manner could buffer noise associated with transcription25 and render a stable balance of channel protein underlying control of membrane potential.

These studies raise questions of the mechanism by which transcripts associate. Although hERG1a and hERG1b N-termini interact during translation7, association of transcripts does not rely on this interaction: alternate transcripts encoding the proteins interact even when translation of one of the proteins is prevented9. In principle, transcripts could associate via complementary base pairing or by tertiary structural interactions as ligand and receptor. Alternatively, they could be linked by one or more RNA binding proteins (RBPs). Because the association and coregulation observed in native heart can be reproduced in HEK293 cells, the same or similar mechanisms are at work in the two systems. More work will be required to discern among possible mechanisms, and to determine the time course with respect to transcription, nuclear export and cytosolic localization of interacting transcripts.

A mechanism involving RBPs is appealing because it comports with the idea of the “RNA regulon,” a term describing a complex of transcripts bound by one or more RBPs26,27. RBPs in the yeast Puf family bind large collections of mRNAs to control their localization, stability, translation and decay28,29. In mammalian systems, the Nova protein serves to coordinate expression of mRNAs encoding splicing proteins important in synaptic function30. Presumably in both cases these proteins interact in multiple regulons (complexes) serving different or related roles. Mata and colleagues isolated individual mRNA species in yeast and showed they associate with other mRNAs encoding functionally related (but nonhomologous) proteins, along with mRNA encoding the RBP itself31. Moreover, these mRNAs encoded proteins that formed stable macromolecular complexes32. Taking it one step further, Cosker et al. showed that two mRNAs involved in cytoskeletal regulation bind the same RBP to form
a single RNA granule33, possibly analogous to the microtranslatome regulating key elements of excitability in the heart reported here.

A comprehensive analysis of the microtranslatome’s components will require RNA-seq at a level of multiplexing that ensures sufficient statistical power in the face of potentially reduced complexity of the RNA-IP samples. These efforts will necessarily be followed by validation through complementary approaches such as RNAi and smFISH to confirm their identity within the microtranslatome.

One of the more curious findings of our study is the coordinate knockdown of different mRNAs in the complex by shRNAs targeted to only one of the mRNA species. The mechanism by which multiple mRNA species may be simultaneously regulated is not clear. shRNAs silence gene expression by producing an antisense (guide) strand that directs the RNA-induced silencing complex (RISC) to cleave, or suppress translation of, the target mRNA34,35. Since hERG shRNA has no off-target effect on \textit{SCN5A} mRNA expressed heterologously in HEK293 cells, we assume there is insufficient complementarity for a direct action. Perhaps by proximity to RISC, translation of the nontargeted mRNA is also disrupted, but to our knowledge no current evidence is available to support this idea. A transcriptional feedback mechanism seems unlikely given that co-knockdown can occur with plasmids transiently expressed from engineered promoters and not integrated into the genome of HEK293 cells. It is also important to note that it is unknown whether \textit{SCN5A} is the only sodium channel transcript coregulated by \textit{hERG} knockdown. In principle, transcripts encoding other sodium channels implicated in late \textit{I\textsubscript{Na}}, such as Nav1.836,37, could also be affected, as could transcripts encoding auxiliary subunits associated with Nav1.538.

Whether disrupting the integrity of these complexes gives rise to some of the many arrhythmias not attributable to mutations in ion channel genes \textit{per se} remains to be determined. Although the coregulation of inward \textit{I\textsubscript{Na}} and outward \textit{I\textsubscript{Kr}} shown in this study may
suggest a compensatory mechanism, in a previous study we showed that selective
knockdown of hERG1b prolongs action potential duration and enhances variability, both
cellular markers of proarrhythmia10. Perhaps in the absence of co-regulation the effects
would be more deleterious. Jalife and colleagues have introduced the concept of the
“channelosome,” a macromolecular protein complex mediating a physiological action.
Interestingly, Nav1.5 and Kir2.1, which regulates resting and diastolic membrane potential,
exhibit compensatory changes when the levels of either are genetically manipulated39. In this
case, the effect seems to be on stability of the nontargeted channel proteins, which form a
complex together with SAP97, and not on mRNA levels40. We do not yet know whether the
complex of transcripts we have studied encodes a similarly stable macromolecular complex,
or perhaps ensures appropriate ratios of channels distributed independently at the
membrane. Based on current evidence, we propose that the microtranslatome of associated
transcripts is a novel mechanism governing the quantitative expression of multiple ion
channel types and thus the balance of excitability in the cardiomyocyte.
METHODS

Cell culture, plasmids and transfection
HEK293 cells were cultured under standard conditions (37°C, 5% CO₂) in DMEM medium (Gibco) supplemented with 10% Fetal Bovine Serum (FBS, Gibco). iPSC-CM (iCell®, Cellular Dynamics International) were plated and cultured following manufacturer’s instructions. ShRNA sequences specific for hERG1a 5’-GCGCAGCGGCTTGCTCAACTCCACCTCGG-3’ and its control 5’-GCACTACCAGAGCTAACTCAGATAGTACT-3’ were provided by Origene into a pGFP-V-RS vector. shRNA specific for hERG1b 5’-CCACAACCACCTGGCTTCAT-3’ and its respective control were purchased from Sigma-Aldrich. For heterologous expression, hERG1a (NM_000238) and hERG1b (NM_172057) sequences were cloned into pcDNA3.1. Transient transfections were performed using 2.5 µl/ml Lipofectamin™ 2000 (Thermofisher) with 2 µg/ml plasmid. Cells were collected for further analysis 48h after transfection. When needed, a second transfection was performed 24h after the first one with either hERG1a or hERG1b shRNA and the corresponding scrambled shRNA as a control. Cells were then collected for experiments 48h after last transfection.

Antibodies
Rabbit anti-hERG1a (#12889 from Cell Signaling, 1:100), rabbit anti-hERG1b (#ALX-215-051 from Enzo, 1:100), rabbit anti-pan hERG (#ALX-215-049 from Enzo, 1:3000), rabbit anti Naᵥ1.5 (#ASC-005 from Alomone or #D9J7S from Cell signaling, 1:500), were used for immunofluorescence, western blot or RNA-IP experiments. Alexa 647 goat anti-rabbit, Alexa 488 goat anti-rabbit or Alexa 488 donkey anti-mouse were employed for indirect immunofluorescence or immunoblotting experiments (Thermofisher; 1:1000).

RNA isolation and semi-quantitative real-time PCR
RNA isolation and purification were achieved using TriZol reagent (Life Technologies) and RNeasy Mini Kit (Qiagen). RT-qPCR experiments were performed using a TaqMan Gene
Expression Assay (Life Technologies) and mRNA expression levels were calculated using the $2^{ΔΔCT}$ cycle threshold method. All data were normalized to mRNA level of β-actin housekeeping genes. Because iPSC-CMs are subject to inherent biological variability, we used a standardization procedure to normalize the independent biological replicates as previously described. Briefly, a log transformation of the normalized relative expression gene level was performed, followed by mean centering and autoscaling of the data set. Results are expressed as average and 95% confidence intervals. Primers were purchased from Invitrogen (hERG1a: Hs00165120_m1; hERG1b: Hs04234675_m1; SCN5A: Hs00165693_m1; RYR2: Hs00892883_m1; and β-actin: Hs01060665_g1).

Immunofluorescence

For immunofluorescence studies, iPSC-CMs were grown on gelatin-coated coverslips, rinsed in PBS three times and fixed in 4% paraformaldehyde for 10 minutes at room temperature. Following fixation, cells were incubated 1h at room temperature with a solution containing 0.5% triton 100X for permeabilization and 1% bovine serum albumin along with 10% serums (secondary antibodies species) diluted in PBS to saturate samples and limit nonspecific binding. Cells were then processed for indirect immunofluorescence using a combination of primary and secondary antibodies (see antibodies section above). Cells were washed three times with PBS, incubated with DAPI to counterstain nuclei and mounted with Vectafield mounting medium.

Single-molecule fluorescence in situ hybridization (smFISH)

FISH was performed using Stellaris® probe sets, which comprised up to 48 oligonucleotides designed to selectively bind in series the targeted transcripts. Probes were designed using the StellarisTM Probe Designer by LGC Biosearch Technologies with the following parameters: masking level: 5, oligo length: 20 nucleotides, and minimum spacing length: 2 nucleotides. Oligonucleotides were labeled with TAMRA or Quasar® 670 dyes for detection of SCN5A and hERG respectively. 48 oligonucleotides were designed for SCN5A, RyR2 and
GAPDH and 35 for the specific N-terminal sequence of hERG1a. Sequences for all probes are provided in Supplementary Table 1. FISH was performed on iPSC-CMs according the manufacturer’s protocol. Briefly, fixation was performed by adding paraformaldehyde to a final concentration of 4% (32% solution, EM grade; Electron Microscopy Science) followed by a hybridization step for at least 4h at 37°C in a buffer containing a final concentration of 125 nM probes and 10% formamide (Stellaris hybridization buffer). Cells were washed for 30 min (Stellaris washing buffer A) before incubation for 30 min at 37°C with DAPI to counterstain the nuclei. A final washing step was performed (Stellaris washing buffer B) and coverglasses were mounted onto the slide with Vectashield mounting medium.

Digital images were acquired using a 63X objective on a Leica DMi8 AFC Inverted wide-field fluorescence microscope. Z-sections were acquired at 200 nm intervals. Image pixel size: XY, 106.3 nm. Image post-treatments were performed using ImageJ software (NIH). Briefly, a maximum projection was performed before background subtraction and images were filtered using a Gaussian blur filter to improve the signal/noise ratio and facilitate spot detection. Spot detection and colocalization was performed using the plugin ComDet on ImageJ42,43.

FISHQUANT was used as a second method for spot detection and gave similar values. Briefly, background was substracted using a Laplacian of Gaussian (LoG) and spots were fit to a three-dimensional (3D) Gaussian to determine the coordinates of the mRNA molecules. Intensity and width of the 3D Gaussian were thresholded to exclude non-specific signal11,12.

To evaluate the number of mRNA molecules, the total fluorescence intensity of smFISH signals was fitted with the sum of Gaussian functions (see equation below) to determine the mean intensity of a single mRNA.

\[y = y_0 + \frac{A}{w \sqrt{\pi}} e^{-2(x-x_c)^2 \over w^2} \]
Statistical analysis of smFISH and IF

For the purpose of our statistical calculations, we assumed that the protein and mRNA signals were circular. The following formulas were used to calculate the expected number of mRNAs (E_m) that would interact based on chance alone for each association criteria:

$$E_m = \frac{N_{m1}N_{m2}(2\pi r^2 - I)}{A}$$

where N_{m1} is the total number of mRNA in one channel, N_{m2} is the total number of mRNA in the second channel, r is the average radius of mRNA spots (in nm), I is the intersection between particles (nm2), and A is the total area of the region analyzed (in nm2). As the distance between particles is increased, the number of expected associated mRNAs will increase since more mRNAs will be considered associated. We used criteria with different stringency in the first set of experiments (from 1 pixel to 4 pixels distance between spots) and considered the 2 pixels distance between spots physiologically relevant for triple association analysis and co-knockdown experiments.

To test the significance of triple associations between hERG1a mRNA, SCN5A mRNA and hERG1a protein, the following formula was used:

$$E_p = \frac{N_p E_m(\pi r^2 - I)}{A}$$

where N_p is the total number of proteins, E_m is the expected number of mRNA that would interact based on chance alone as calculated above. For each association criteria, the intersection between particles was calculated using the following equation:

$$I = 2r^2 \cos^{-1}\left(\frac{d}{2r}\right) - \frac{1}{2} d\left(\sqrt{4r^2 - d^2}\right)$$
Correlation analysis

mRNA numbers were plotted against each other from different combinations of smFISH signals as scatter plots. Then Pearson’s and Spearman’s correlation coefficients were evaluated to assess correlation between considered mRNA species. The following equation was used to calculate Pearson’s coefficient R and determine the coefficient of determination R^2 from the mRNA pairs x_i, y_i:

$$ R = \frac{Cov(x_i, y_i)}{\sigma_x \sigma_y} $$

where $Cov(X_i, Y_i)$ is the covariance of the values and $\sigma_x - \sigma_y$ is the difference between the standard deviation of the values. Significance was determine using a F test.

The Spearman’s coefficient ρ was determined on ranked values X_i and Y_i using the following equation:

$$ \rho = \frac{Cov(X_i, Y_i)}{\sigma_{X_i} \sigma_{Y_i}} $$

where $Cov(X_i, Y_i)$ is the covariance of the rank values and $\sigma_{X_i} - \sigma_{Y_i}$ is the difference between the standard deviation of the ranked values. Significance was determine using two-tailed probability test.

RNA-IP (RNA-immunoprecipitation)

Ribonucleoprotein (RNP) complexes were isolated with a RiboCluster Profiler TM RIP-Assay Kit (Medical & Biological Sciences) using protein-specific antibodies and Ab-immobilized A/G agarose beads. After formation of the RNP/beads complex, we used guanidine hydrochloride solution to dissociate beads from RNP complexes. Finally, target RNAs were analyzed using RT-PCR.
Electrophysiological measurements

Patch clamp under whole-cell configuration was used to record all ionic currents. \(I_{Kr} \) and \(I_{Na,late} \) were recorded at physiological temperatures (37°C), while \(I_{Na} \) was recorded at room temperature (22°C) using an Axon 200B amplifier and Clampex Software (Molecular Devices). Glass pipettes with a resistance of 2.5 – 5 MΩ measured with physiological solutions (below) were pulled using an automatic P-97 Micropipette Puller system (Sutter Instruments).

To record steady state and tail \(I_{Kr} \), cells were continuously perfused with an external solution containing (in mM): NaCl 150, KCl 5.4, CaCl\(_2\) 1.8, MgCl\(_2\) 1, Glucose 15, HEPES 15, Na-pyruvate 1, and the pH was adjusted to 7.4 with NaOH. Pipettes were filled with an internal solution containing (in mM): NaCl 5, KCl 150, CaCl\(_2\) 2, EGTA 5, HEPES 10, Mg-ATP 5, and the pH was adjusted to 7.3 with NaOH. The voltage protocol for \(I_{Kr} \) was completed at physiological temperature (37°C) and determined as an E-4031 (2μM) sensitive current.

Cells were recorded using a holding potential of -50 mV, followed by a pulse at -40 mV to inactivate sodium channels, then 3-second depolarizing steps (from -50 to +30 mV in 10 mV increments) to activate hERG channels and finally to -40 mV for 6 seconds. Steady-state \(I_{Kr} \) was measured as the 5 ms average current at the end of the depolarizing steps. Tail currents were measured following the return to -40 mV.

To record \(I_{Na} \), cells were perfused with an external solution containing (in mM): NaCl 50, Tetraethylammonium (TEA) methanesulfonate 90, CaCl\(_2\) 2, MgCl\(_2\) 1, Glucose 10, HEPES 10, Na-pyruvate 1, Nifedipine 10 μM, and pH adjusted to 7.4 with TEA-OH. Micropipettes were filled with an internal solution containing (in mM): NaCl 10, CaCl\(_2\) 2, CsCl 135, EGTA 5, HEPES 10, Mg-ATP 5, and pH was adjusted to 7.3 with CsOH. \(I_{Na} \) activation was investigated by applying pulses between -140 and +20 mV in 10 mV increments from a holding potential of -120 mV. To measure inactivation of sodium channels,
conditioning pulses from -140 to +20 mV in 10 mV increments were applied from a holding potential of -120 mV following by a test pulse to -20 mV.

To record $I_{Na,late}$, cells were perfused with an external solution containing (in mM): 140, CsCl 5.4, CaCl$_2$ 1.8, MgCl$_2$ 2, HEPES 5, Nifedipine 10 μM, and pH was adjusted to 7.3 with NaOH. Pipette were filled with an internal solution containing (in mM): NaCl 5, CsCl 133, Mg-ATP 2, TEA 20, EGTA 10, HEPES 5, and pH was adjusted to 7.33 with CsOH. $I_{Na,late}$ was measured by applying an 800 ms single pulse to -30 mV from a holding potential of -120 mV. The mean current was measured at the last 200 ms of the pulse. An external solution containing 30 μM TTX was perfused after the first pulse to determine if the current was due to the activity of sodium channels.

To record I_{to}, cells were continuously perfused with an external solution containing (in mM): NaCl 150, KCl 5.4, CaCl$_2$ 1.8, MgCl$_2$ 1, Glucose 15, HEPES 15, Na-pyruvate 1, E4031 2, CdCl$_2$ 0.5 and the pH was adjusted to 7.4 with NaOH. Pipettes were filled with an internal solution containing (in mM): NaCl 5, KCl 150, CaCl$_2$ 2, EGTA 5, HEPES 10, Mg-ATP 5, and the pH was adjusted to 7.3 with NaOH.

Both activation (for I_{Kr}, I_{to} and I_{Na}) and inactivation (for I_{Na}) were fitted to Boltzmann equations (Equations (1) and (2), respectively) and voltage dependence parameters were obtained.

$$I(V) = \frac{(V - V_{rev})G_{max}}{1 + e^{(V-V_{1/2})/k}} \quad (1)$$

$$I(V) = \frac{(I_{min} - I_{max}) + I_{max}}{1 + e^{(V-V_{max})/k}} \quad (2)$$

Acknowledgements

Research reported in this publication was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health R01HL131403. The authors thank Dr. Peter Mohler of the Dorothy Davis Heart and Lung Institute for heart samples and Drs. Barry
Ganetzky of the University of Wisconsin-Madison, Andrew Harris of the Rutgers New Jersey Medical School and Drs. Cynthia Czajkowski and Baron Chanda of the University of Wisconsin School of Medicine and Public Health for comments on an earlier version of the manuscript.

Author Contributions

Experiments were conceived and designed by C.A.E, E.R.-P., F.L. and G.A.R. C.A.E. and M.B.J. carried out single molecule FISH experiments. F.L. and J.J.K. conducted RNA-IP and knock-down experiments. E.B.R-P. and D.K.J. performed electrophysiology experiments. C.A.E. and G.A.R. wrote the manuscript and all authors provided critical feedback to the final version.

Data Availability

The source data corresponding to Figures 1b, 2b, 2c, 2d, 2e, 3b, 3d, 4b, 4c, 4e, 5b, 5c, 5d, 6b, 6c, 6d, 7a, 7b, 7d, 7e, 7g, 7h, 7j, 8a, 8b, 8d and Supplementary Figures S1, S3a, S3b, S3c, S4a, S4b, S5a, S5b, S6b, S7b, S7c. Raw files images and other data supporting the findings of this study are available upon request.

Reference list

1. Roden, D. M. Predicting drug-induced QT prolongation and torsades de pointes. *J. Physiol.* **594**, 2459–2468 (2016).
2. Sanguinetti, M. C. & Jurkiewicz, N. K. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. *J. Gen. Physiol.* **96**, 195–215 (1990).
3. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. *Cell* **81**, 299–307 (1995).
4. Trudeau, M. C., Warmke, J. W., Ganetzky, B. & Robertson, G. A. HERG, a human inward rectifier in the voltage-gated potassium channel family. *Science* **269**, 92–95 (1995).
5. Sale, H. *et al.* Physiological properties of hERG 1a/1b heteromeric currents and a hERG 1b-specific mutation associated with Long-QT syndrome. *Circ. Res.* **103**, e81-95 (2008).
6. Jones, E. M. C., Roti, E. C. R., Wang, J., Delfosse, S. A. & Robertson, G. A. Cardiac
IKr Channels Minimally Comprise hERG 1a and 1b Subunits. *J. Biol. Chem.* **279**, 44690–44694 (2004).

7. Phartiyal, P., Jones, E. M. C. & Robertson, G. A. Heteromeric Assembly of Human Ether-à-go-go-related Gene (hERG) 1a/1b Channels Occurs Cotranslationally via N-terminal Interactions. *J. Biol. Chem.* **282**, 9874–9882 (2007).

8. McNally, B. A., Pendon, Z. D. & Trudeau, M. C. hERG1a and hERG1b potassium channel subunits directly interact and preferentially form heteromeric channels. *J. Biol. Chem.* **292**, 21548–21557 (2017).

9. Liu, F., Jones, D. K., de Lange, W. J. & Robertson, G. A. Cotranslational association of mRNA encoding subunits of heteromeric ion channels. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 4859–4864 (2016).

10. Jones, D. K. *et al.* hERG 1b is critical for human cardiac repolarization. *Proc. Natl. Acad. Sci.* **111**, 18073–18077 (2014).

11. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. *Nat. Methods* **5**, 877–879 (2008).

12. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of Single RNA Transcripts in Situ. *Science* **280**, 585–590 (1998).

13. Azzam, M. E. & Algranati, I. D. Mechanism of Puromycin Action: Fate of Ribosomes after Release of Nascent Protein Chains from Polysomes. *Proc. Natl. Acad. Sci.**70**, 3866–3869 (1973).

14. Glynn, P. *et al.* Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. *Circulation* **132**, 567–577 (2015).

15. Banyasz, T., Horvath, B., Jian, Z., Izu, L. T. & Chen-Izu, Y. Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp. *J. Mol. Cell. Cardiol.* **50**, 578–581 (2011).

16. Sun, X. & Wang, H.-S. Role of the transient outward current (Ito) in shaping canine ventricular action potential – a dynamic clamp study. *J. Physiol.* **564**, 411–419 (2005).

17. Tu, L. & Deutsch, C. Evidence for dimerization of dimers in K+ channel assembly. *Biophys. J.* **76**, 2004–2017 (1999).

18. Robinson, J. M. & Deutsch, C. Coupled tertiary folding and oligomerization of the T1 domain of Kv channels. *Neuron* **45**, 223–232 (2005).

19. Rook, M. B. *et al.* Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. *Cardiovasc. Res.* **44**, 507–517 (1999).

20. Bezzina, C. *et al.* A single Na(+) channel mutation causing both long-QT and Brugada syndromes. *Circ. Res.* **85**, 1206–1213 (1999).

21. Bennett, P. B., Yazawa, K., Makita, N. & George, A. L. Molecular mechanism for an inherited cardiac arrhythmia. *Nature* **376**, 683 (1995).

22. Clancy, C. E., Tateyama, M., Liu, H., Wehrens, X. H. T. & Kass, R. S. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. *Circulation* **107**, 2233–2237 (2003).

23. Schulz, D. J., Goaillard, J.-M. & Marder, E. E. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 13187–13191 (2007).

24. Schulz, D. J., Goaillard, J.-M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. *Nat. Neurosci.* **9**, 356–362 (2006).

25. Dar, R. D. *et al.* Transcriptional burst frequency and burst size are equally modulated across the human genome. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 17454–17459 (2012).

26. Brown, V. *et al.* Microarray identification of FMRP-associated brain mRNAs and...
altered mRNA translational profiles in fragile X syndrome. *Cell* **107**, 477–487 (2001).

27. Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs May Represent Posttranscriptional Operons. *Mol. Cell* **9**, 1161–1167 (2002).

28. Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast. *PLoS Biol.* **2**, (2004).

29. García-Rodríguez, L. J., Gay, A. C. & Pon, L. A. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. *J. Cell Biol.* **176**, 197–207 (2007).

30. Ule, J. *et al.* CLIP Identifies Nova-Regulated RNA Networks in the Brain. *Science* **302**, 1212–1215 (2003).

31. Duncan, C. D. S. & Mata, J. Widespread Cotranslational Formation of Protein Complexes. *PLoS Genet.* **7**, (2011).

32. Duncan, C. D. & Mata, J. Cotranslational protein-RNA associations predict protein-protein interactions. *BMC Genomics* **15**, 298 (2014).

33. Cosker, K. E., Fenstermacher, S. J., Pazyra-Murphy, M. F., Elliott, H. L. & Segal, R. A. The RNA-binding protein SFPQ orchestrates an RNA regulon to promote axon viability. *Nat. Neurosci.* **19**, 690–696 (2016).

34. Petersen, C. P., Bordeleau, M.-E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. *Mol. Cell* **21**, 533–542 (2006).

35. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. *Nat. Struct. Mol. Biol.* **13**, 1102–1107 (2006).

36. Yang, T. *et al.* Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. *Circ. Res.* **111**, 322–332 (2012).

37. Macri, V. *et al.* Common Coding Variants in SCN10A Are Associated With the Nav1.8 Late Current and Cardiac Conduction. *Circ. Genomic Precis. Med.* **11**, e001663 (2018).

38. Isom, L. L., De Jongh, K. S. & Catterall, W. A. Auxiliary subunits of voltage-gated ion channels. *Neuron* **12**, 1183–1194 (1994).

39. Milstein, M. L. *et al.* Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. *Proc. Natl. Acad. Sci. U. S. A.* **109**, E2134-2143 (2012).

40. Matamoros, M. *et al.* Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. *Cardiovasc. Res.* **110**, 279–290 (2016).

41. Willems, E., Leyns, L. & Vandesompele, J. Standardization of real-time PCR gene expression data from independent biological replicates. *Anal. Biochem.* **379**, 127–129 (2008).

42. Chang, L., Shav-Tal, Y., Treck, T., Singer, R. H. & Goldman, R. D. Assembling an intermediate filament network by dynamic cotranslation. *J. Cell Biol.* **172**, 747–758 (2006).

43. Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J. & Salmon, E. D. Microtubule-dependent Changes in Assembly of Microtubule Motor Proteins and Mitotic Spindle Checkpoint Proteins at PtK1 Kinetochores. *Mol. Biol. Cell* **12**, 1995–2009 (2001).
Figure 1: Complex of ion channel transcripts with nascent proteins. a, Scheme of the RNA-IP protocol in which channel-specific antibodies are used to pull down nascent proteins and associated transcripts. RNP: ribonucleoprotein. b, Lanes 1 and 2, RT-PCR products from input lysate of human left ventricle (LV), and iPSC-CM. Lanes 3-16 shows the corresponding RNA-IP’s using an anti-hERG1a or anti-Na\textsubscript{v}1.5 antibodies; Lane 7 shows the control (+) and represents signal amplified from purified plasmid template. Similar results were obtained in at least 3 independent experiments. (N=5 for anti-hERG1a and N=3 for anti-Na\textsubscript{v}1.5 using human LV and iPSC-CMs).
Figure 2: Quantitative description of single hERG1a and SCN5A transcripts and their distribution in iPSC-CMs. a, Representative confocal images and enlargement (outlined in yellow) of iPSC-CMs subjected to the smFISH protocol. b, By fitting the intensity histogram of smFISH signals (n=2611 spots) to the sum of Gaussian functions (red line), the typical intensity corresponding to a single mRNA molecule (vertical dashed line) was extracted. c, The distribution of the number of mRNA molecules associated in clusters for each transcript evaluated by smFISH. d, Histogram showing the cytoplasmic distribution of mRNA signals with distance from the nucleus. e, The number of mRNAs detected per cell was plotted for SCN5A, hERG1a and GAPDH (lines represent mean ± SE).
Figure 3: *hERG1a* and *SCN5A* transcript expression levels correlate. a, Representative confocal images and enlargements of double smFISH experiments for *SCN5A* (red) and *hERG1a* (cyan) mRNAs. b, The number of mRNA molecules detected per cell in double smFISH experiments were plotted for *SCN5A* and *hERG1a* and the coefficient of determination R^2 was determined from the Pearson’s correlation coefficient R (n=41 cells; N=2). c, Representative confocal images and enlargements of double smFISH experiments for *RyR2* (red) and *hERG1a* (cyan) mRNAs. d, The number of *hERG1a* mRNA was plotted against the number of *RYR2* mRNAs per cells and showed a low correlation in their expression (n=26 cells; N=2).
Figure 4: hERG1a and SCN5a transcript colocalization.

a, Representative confocal images and enlargement (outlined in yellow) of iPSC-CMs subjected to smFISH showing the colocalization of hERG1a and SCN5A mRNAs.

b, Comparison of the average number of associated hERG1a and SCN5A mRNAs particles observed vs. expected by chance using different overlap criteria illustrated (mean ± SE; n=41 cells; N=2).

c, Diagram illustrating that the association of hERG1a and SCN5A mRNAs account for 24% and 23% of their total population respectively.

d, Representative confocal images of smFISH for hERG1a and RyR2 transcripts.

e, Comparison of the average number of associated hERG1a and RyR2 mRNAs particles observed vs. expected by chance using different overlap criteria (mean ± SE; n=26 cells; N=2).
Figure 5: Cotranslational association of hERG1a protein and hERG1a and SCN5A mRNAs.

a, Representative confocal images and enlargement of iPSC-CMs subjected to immunofluorescence (IF) combined with smFISH protocol. Arrows indicate triply colocalized particles. **b**, The average number of particles comprising hERG1a and SCN5A mRNAs and hERG1a protein per cell compared to the expected number based on chance using a maximum distance of 2 pixels between center of mass (minimum 50% overlap; mean ± SE; n=13 cells, N=2). **c**, Histogram showing that 16% of hERG1a mRNA associate with hERG1a protein (actively translated population); of that percentage, 46% also interact with SCN5A transcripts.(mean ± SE; n=13 cells; N=2) **d**, Histogram showing the distribution of colocalized mRNA spots through the cytoplasm and from the nucleus revealing that RNP complexes are mostly localized within 10 µm from the nucleus. In the top right corner, representative examples of colocalized spots (yellow circles) and analysis of distance from the nucleus (white dashed arrows).
Figure 6: Distribution and association of hERG1a and SCN5A transcripts under puromycin treatment in iPSC-CMs. a, Representative confocal images and enlargement (outlined in yellow) of iPSC-CMs subjected to immunofluorescence combined with smFISH for control cells (left panel) or cells treated with 100 µM puromycin for 15 min (right panel). b, The number of mRNAs detected per cell was plotted for SCN5A and hERG1a in the presence of puromycin and compared to control cells (lines represent mean ± SE). c, Histogram showing the reduction of association between hERG1a mRNA and hERG1a protein after puromycin treatment compared to non-treated cells (mean ± SE). d, Histogram showing that the % of triply colocalized particles (hERG1a protein or the ribosomal subunit S6 associated with both hERG1a and SCN5A mRNAs) is decreased upon puromycin treatment (mean ± SE).
Figure 7: Co-knockdown of I_{Kr} and I_{Na} by hERG transcript-specific shRNA.

a, Effects of hERG1a or hERG1b silencing on channel mRNA expression levels detected by RT-qPCR (mean ± 95% CI) in IPSC-CMs. A non-targeting shRNA (scrambled shRNA) is used as a control.

b, Effects of specific hERG1a or hERG1b silencing on ion channel mRNAs expressed alone in HEK293 cells.

c, Representative family of traces show I_{Kr} in presence of control (upper) or hERG1b shRNA (lower).

d, Summary of steady-state current density vs. test potential shows effect of hERG1b shRNA (mean ± SE).

e, Effects of 1b shRNA on peak tail current vs. pre-pulse potential (mean ± SE).

f, Representative family of traces recorded from iPSC-CMs showing effects of hERG1b-specific shRNA compared to control shRNA on peak I_{Na}.

g, Summary current-voltage plot of peak I_{Na} vs. test potential (mean ± SE).

h, Summary conductance (G)-voltage plot based on data from g (mean ± SE).

i, Late sodium current representative trace in control and 1b shRNA-transfected cells, measured by applying a single pulse protocol of 800 ms.

j, Summary statistics of peak I_{Na} showed a decrease upon transfection with hERG1b shRNA (mean ± SE).

k, Late I_{Na} measured as the integral from 50 to 800 ms from the beginning of the pulse showed a decrease upon transfection with hERG1b shRNA (mean ± SE).
Figure 8: Effects of hERG1b silencing on I_{to} and $K_{v}4.2$ channels in iPSC-CMs.

a, Effects of hERG1a or hERG1b silencing on $K_{v}4.2$ channel mRNA expression levels detected by RT-qPCR (mean ± 95%CI) in iPSC-CMs. A non-targeting shRNA (scrambled shRNA) is used as a control.

b, Effects of specific hERG1a or hERG1b silencing on $K_{v}4.2$ channel mRNAs expressed alone in HEK293 cells.

c, Representative family of traces show I_{to} in presence of control (upper) or hERG1b shRNA (lower).

d, Summary of steady-state current density vs. test potential shows effect of hERG1b shRNA (mean ± SE).
Supplementary
Table S1: List of probes used in smFISH experiments.

The probes were designed using Stellaris® probe Designer software with the following parameters: 18 to 20 nucleotides oligo length, a masking level of 5, a minimum spacing length of 2 nucleotides and a maximum number of probes of 48. Due to the length of the N-terminal specific sequence for hERG1a mRNA, the number of probes used to detect hERG1a is limited to 35.

hERG1a probes	SCN5A probes	RyR2 probes
caagactggactgcgggc	cccgaggtaataggaagttt	tccatttttcacatcaact
gacagactggactgcgggc	tagatagctgacacaccttttt	acatcaaatatttttcctgga
caggataaggttttgctgcgggc	agttctgctgcgtggctagtct	atcgcaagctgctgcaaaa
tgggttggtgtcatgtgctgcgggc	cagcatctgtcctgactgac	acattctccacacttcc
cctttaactcctgttcctgccggatacttggtctgcgggtaataggaagttt	tccatttttcacatcaact	tctttactttttgcttcagtc
ccacacagactgcgggc	tgaattcttcacgggcacgagagagtccgactgaggaagagcagc	ccaggtggaggacgttcatgag
catgacatttcaacttctttcgctggtactggagagcagcaggg	gatgtgacactctactgtt	ctagtgctggagagcagcaggg
ttcctctttctttcgaagctggaggaggagagagtccgactgaggaagcagc	aaacttctatggaatcccgc	gccgacccagcaagggagagcagcaggg

Table S1.
Table S2: Summary of colocalization analysis performed in iPSC-CMs for different association criteria. Comparison of the average number of mRNAs particles observed to be associated and the expected number based on chance alone using centroid positions and different association criteria (from touching to 67% overlap). The significance is tested with a paired t-test Bonferroni’s correction. The number of *hERG1a* and *SCN5A* mRNAs observed to be associated is significantly above that expected by chance alone for all association criteria tested while no significant differences are observed for *hERG1a/RyR2*, *hERG1a/GAPDH* and *SCN5A/GAPDH* associations.

Association	Expected by chance	Measured	P value	Significance after Bonferroni’s correction:		
hERG1a/SCN5A (n=41 cells)	8.10 ± 0.87	5.56 ± 0.61	3.20 ± 0.34	0.40 ± 0.04	5.73 ± 0.82	4.51E-8 (***) Significance after Bonferroni’s correction: *P≤0.00125; **P≤0.000122; ***P≤0.0000244
hERG1a/RyR2 (n=26 cells)	4.92 ± 0.66	4.03 ± 0.54	2.88 ± 0.39	1.74 ± 0.23	2.04 ± 0.24	0.38 (ns) Significance after Bonferroni’s correction: *P≤0.00197; **P≤0.000193; ***P≤0.0000385
hERG1a/GAPDH (n=13 cells)	14.87 ± 2.65	7.47 ± 1.33	5.48 ± 1.23	0.54 ± 0.10	0.92 ± 0.15	0.24 (ns) Significance with Bonferroni correction: *P≤0.0039; **P≤0.000386; ***P≤0.000077
SCN5A/GAPDH (n=28 cells)	17.31 ± 1.71	12.73 ± 1.25	6.82 ± 0.67	0.92 ± 0.09	1.62 ± 0.28	0.012 (ns) Significance after Bonferroni’s correction: *P≤0.0013; **P≤0.000186; ***P≤0.0000275
Table S3: Summary of correlation analysis performed in iPSC-CMs. The linear correlation between the different combination of mRNAs was evaluated using the Pearson correlation coefficient. Because the Pearson coefficient is highly sensitive to outliers and only assess linear correlation, the Spearman’s correlation coefficient was also calculated. Both tests revealed a significant correlation between hERG1a and SCN5A mRNAs and no significant correlation for hERG1a/RyR2, hERG1a/GAPDH and SCN5A/GAPDH pairs. Levels of significance were adjusted with a Bonferroni correction taking into account correlation coefficients and either linear correlation or non-linear correlation for Pearson’s and Spearman’s test respectively.

	hERG1a/SCN5A (41 cells)	hERG1a/RyR2 (26 cells)	hERG1a/GAPDH (13 cells)	SCN5A/GAPDH (28 cells)
Pearson’s test				
Correlation coefficient R	0.7546	0.4654	0.4197	0.4808
Coefficient of determination R²	0.56943	0.2166	0.1761	0.2315
P value	0.00001 (***	0.01658 (*)	0.153373 (ns)	0.0096 (*)
Slope of linear regression line	0.6844	0.3732	0.2662	1.4651
Significance after Bonferroni correction	* P<0.038	* P<0.024	* P<0.023	* P<0.025
	** P<0.0076	** P<0.0049	** P<0.0046	** P<0.0005
	*** P<0.00076	*** P<0.00049	*** P<0.00046	*** P<0.00005
Spearman’s test				
Correlation coefficient ρ	0.7449	0.3224	0.4890	0.3692
P value	0 (***	0.1084 (ns)	0.08991 (*)	0.05315 (ns)
Significance after Bonferroni correction	* P<0.019	* P<0.0055	* P<0.013	* P<0.0061
	** P<0.0039	** P<0.0011	** P<0.0027	** P<0.0012
	*** P<0.00039	*** P<0.00011	*** P<0.00027	*** P<0.00012
Table S4 and S5

Condition	G_{max} (nS/pF) or I_{max} (pA/pF)	$V_{1/2}$ (mV)	k (mV)	V_{rev} (mV)	n
Activation					
Control	1.22 ± 0.1	-45.9 ± 1.1	-4.7 ± 0.4	36.5 ± 3.0	16
1b shRNA	0.73 ± 0.1	-45.7 ± 1.6	-4.8 ± 0.5	31.7 ± 3.2	9
Inactivation					
Control	-54.1 ± 7.7	-89.8 ± 1.3	7.2 ± 0.3	16	
1b shRNA	-33.2 ± 9.7	-88.6 ± 1.9	6.8 ± 0.5	9	

Table S4: Voltage dependence of activation and inactivation parameters for the sodium channels in cells transfected with a control shRNA or a hERG1b specific shRNA. Parameters were obtained after fitting to a Boltzmann equation activation and inactivation data.

Condition	$I_{\text{max peak-tail}}$ (pA/pF)	$V_{1/2}$ (mV)	k (mV)	n
Control	0.50 ± 0.01	-26.0 ± 0.5	5.6 ± 0.5	5
1b shRNA	0.21 ± 0.03	-23.1 ± 4.5	7.1 ± 5.3	4

Table S5: Voltage dependence of activation of hERG channels in cells transfected with a control shRNA or a hERG1b specific shRNA. Parameters were obtained by fitting the experimental data of the I-V curve of the peak tail I_k to a Boltzmann equation.
Figure S1: Complete RNA-IP from Figure 1. Lanes 1-6, RT-PCR products from input lysate of human left ventricle (LV), iPSC-CM, and HEK293 cells expressing: hERG1a; SCN5A; hERG1a plus SCNA5; and hERG1a plus hERG1b and SCN5a. Lane 7 shows RT-PCR product from lysates independently expressing hERG1a and SCN5A, mixed. Lanes 8-14 shows the corresponding RNA-IP’s using an anti- hERG1a antibody, followed by a bead-only control and H2O control. The next group shows the corresponding RNA-IP’s using the anti-Na\textsubscript{1.5} antibody, followed by a group of IgG controls. H2O and beads lanes show absence of template contamination; control (+) represents signal amplified from purified plasmid template.
Figure S2: Specificity of the probes used in smFISH experiments. Representative images of smFISH for either hERG1a (top panel) or SCN5A (bottom panel) mRNAs performed in HEK293 cells transiently transfected with *hERG1a* or *SCN5A*. Only the cells expressing *hERG1a* or *SCN5A* showed a positive signal for smFISH revealing the specificity of the probes used in smFISH experiments.
Figure S3: Single mRNA intensity determination. The distribution of total fluorescence intensity of smFISH signals for hERG1a (2611 spots; a), SCN5A (2815 spots; b), and GAPDH (3507 spots; c). By fitting the histogram to the sum of Gaussian functions (red line), the typical intensity corresponding to a single mRNA molecule (vertical dashed line) was extracted.
Figure S4: Quantification of mRNA expression using two different methods.

a, The distribution of total fluorescence intensity of smFISH signals for hERG1a (2892 spots) obtained using FISHQUANT software for analysis. By fitting the histogram to the sum of Gaussian functions (red line), the typical intensity corresponding to a single mRNA molecule (vertical dashed line) was extracted.

b, Comparison of the number of mRNA molecules detected per cells for hERG1a using 2 different methods of analysis (Method 1: manual using ImageJ; Method 2: Semi-automatic using FISHQUANT).
Figure S5: Correlation of mRNA expressions. The number of mRNA molecules detected per cells in double smFISH experiments were plotted for SCN5A and GAPDH (28 cells, a), and hERG1a and GAPDH (13 cells, b). The Pearson’s correlation coefficient (R²) were calculated for each pairs of mRNAs.
Figure S6: hERG1a mRNA protein interaction.

a, Representative confocal images and enlargement (outlined in yellow) of iPSC-CMs subjected to Immunofluorescence combined to smFISH protocol showing the colocalization (yellow arrows) of *hERG1a* mRNA (magenta) and hERG1a protein (green).

b, Pie chart showing the percentage of *hERG1a* mRNA population interacting with hERG1a protein revealing that 16% of *hERG1a* mRNA were actively translated at the moment of fixation.
Figure S7: Co-knockdown of hERG and SCN5A mRNAs by hERG transcript-specific shRNA. a, Representative confocal images of smFISH for hERG1a and SCN5A transcripts in iPSC-CMs transfected with either a control or hERG1b shRNA. b, Histogram of the average number of transcripts detected per cell for hERG1a or SCN5A transcripts in presence of hERG1b shRNA compared to a scrambled shRNA (mean ± SE). c, Histogram of the mean number of hERG1a transcript colocalized with SCN5A transcript in cells silenced for hERG1b compared with control (mean ± SE).