Optimization of the nosing process of metal pipe using genetic algorithm

M. Esmailian

Department of Mechanical Engineering, Malek Ashtar University of Technology, Isfahan, Iran

Original Article

Use your device to scan and read the article online

Citation: Esmailia M. Optimization of the nosing process of metal pipe using genetic algorithm. Mechanics of Advanced and Smart Materials. 2022; 2(2): 188-201.

https://10.52547/masm.2.2.188.

KEY WORDS
Nosing, Pipe forming, Response surface method, Regression equation, Genetic algorithm.

ABSTRACT
Nosing is one of the methods of forming metal pipes, during this process, a metal shell or pipe is guided by a press into a mold that has the shape of the final piece. This method is used to make pressure tanks and CNG cylinders. In this research, the simulation of the nosing process of a steel pipe has been carried out, and then, in order to validate the results of the simulation, it has been compared with experimental tests. Then, with the help of response surface method, a series of experiments were designed and in order to investigate the effect of parameters of thickness, slope of preform pipe wall and friction coefficient between pipe and mold, as well as their interactive effects on the percentage of nosing, analysis of variance method was used. According to the obtained results, the thickness and slope of the preform pipe wall have the greatest effect on the nosing percentage compared to the friction coefficient between the pipe and the mold. A regression equation to predict the percentage of nosing is expressed based on the effective parameters, and finally, the optimal percentage of nosing for the regression equation obtained by the genetic algorithm is obtained.

Extended Abstract

1. Introduction

The nosing process is used to shape parts whose ends have a cone shape with curved edges. In this method, the metal tube or shell is guided by the press into the mold that has the final shape of the workpiece and takes the shape of the mold. The schematic of this process is shown in Figure 1.

Figure 1. Schematic of nosing process
The form of the mold is mostly used in both conical and spherical forms. The conical form is mostly used in the military industry and the manufacture of weapons, and the spherical form is mostly used for industrial purposes such as the production of gas tanks.

Currently, the spinning process is mostly used to close the ends of the pipes in the production of gas tanks, with the help of the nosing process, it is possible to reduce the production time and also improve the quality of the produced parts.

2. Modeling the nosing process

In the nosing process, the workpiece is placed inside the mold and a force is applied to the workpiece by a plate to take the shape of the mold. The workpiece is a formable material and it is shown in Figure 2. Its inner and outer diameters are 38.25 mm, 42.85 mm, respectively, and the length of the piece is 150 mm. Due to the creation of a nose at the bottom of the piece, a 55 x 1.3 mm profile has been used in the lower part of the piece. An analytical rigid mold was used for shaping, which is shown in Figure 3. The gap between the mold and the part is 0.2 mm and the length of the mold is 20 mm. The arc radius of the mold is also 43.05 mm. For movement, giving the piece downwards and inserting it into the mold, an analytical rigid plate similar to Figure 4 with a radius of 60 mm is used. Figure 5 shows the assembled set of the process.

3. Simulation results

The method of simulating the nosing process was described in the previous section. In this part, the results of the simulation are stated. As the rigid plate of the pipe goes down, it gradually takes the shape of the mold. Figure 6 shows the changes in the shape of the piece after the simulation. In this figure, two buckling phenomena are observed; one is related to the upper part of the part, which is under the rigid plate, and the other is in the middle part of the part, which is above the mold. Figure 7 shows the diagram of the forming force in terms of displacement of the rigid plate. From this diagram, it can be concluded that about N 335,000 forces are needed to perform this shaping.
In order to check the accuracy of simulation results, the results should be compared with experimental work. Figure (8-a) shows the nosing mold and Figure (8-b) shows the initial raw pipe for pipe nosing operation. The material of the inner part of the mold is made of SPK steel and the material of the tubular raw piece is made of St37 steel. Figure (9) shows the amount of pipe deformation per 58 mm of rigid plate movement, in the experimental test and the finite element model.

![Figure 7](image7.png)
Figure 7. The force-displacement diagram resulting from the simulation

![Figure 8](image8.png)
Figure 8. Nosing process equipment a) Nosing mold b) Pipe

![Figure 9](image9.png)
Figure 9. Deformed sample in experimental test and simulation

4. Regression analysis

A regression equation is given to predict the values of the percentage of nosing based on the effective parameters, and the value and coefficients of the variables in the model equation show the amount and type of influence of these variables, respectively.

Nosing percentage = 0.212 - 0.1544 t + 0.423 s + 0.931 μ + 0.01256 t^2 - 0.0579 s^2 - 5.29 μ^2
(1)

In Figure 10, the diagram of the main effects of the parameters is shown.

![Figure 10](image10.png)
Figure 10. Main effects diagram

5. Optimizing the percentage of nosing with genetic algorithm

Equation 1 obtained from the regression analysis was checked by the genetic algorithm method and the optimal nosing percentage for the regression equation was obtained, which is the maximum nosing percentage of 60.81 and for the values of $t=4$, $s=3.653$, $\mu=.1$ be

6. Conclusions

In this article, the process of pipe nosing was simulated and the results were compared with the experimental results, which were in good agreement. Then, the effect of friction coefficient parameters, wall slope and pipe thickness on the nosing
percentage was determined by the experimental design method. In this research, response level method and central composite design were used. Variance analysis method is used to check the relationship between output variables and input parameters.

The results show that as the wall slope increases, the percentage of nosing increases and as the thickness and friction coefficient increase, the percentage of nosing decreases. It can also be seen that, to increase the percentage of nosing, the slope of the wall should be high and the friction coefficient should be low. Also, by using the genetic algorithm and optimizing the regression equation obtained from the analysis of variance, the maximum percentage of nosing has been obtained at 60.81.
بهینه سازی فرآیند شکل دهنی نوزینگ لوله های فلزی به کمک الگوریتم زنتیک

متجرب اسامی‌الله

آدرس پست الکترونیک: Mojtaba@mut-es.ac.ir

1 استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان، ایران.

1) Nosing
2) Spinning

1- مقدمه

فرآیند نوزینگ به منظور شکل‌دهی قطعاتی که انتهای آن‌ها دارای حالات مخزوناتی یا بال‌های منحنی می‌باشد به کار می‌رود. در این روش لوله یا پوشه فلزی توسط دستگاه پرس به داخل قابلی که فرم نهایی قطعه کار را دارد هدایت می‌شود و شکل قابل را به خود می‌گیرد. شماتیک این فرآیند در شکل 1 نشان داده شده است.

فرم قابل بیشتر به دو صورت مخروطی و کروی به کار می‌رود. فرم مخروطی بیشتر در صنایع نظامی و ساخت جنگ‌افزارها و کروی بیشتر برای مصارف صنعتی کاربردی مخازن گاز به کار می‌رود.

در حال حاضر بیشتر از فرآیند اسپینینگ 2 به منظور استحلا انتهای لوله‌ها در تولید مخازن گاز استفاده می‌شود که به کمک فرآیند نوزینگ می‌توان زمان تولید را کاهش داد و همچنین کیفیت قطعات تولید شده را از جنبه‌های صافی سطح، خواص مکانیکی و استحلا بیشتری به شکل‌دهی بیشتری تحصیل کند.

این فرآیند توسط جدیدین محقق مورد بررسی قرار گرفته است. محمدصالحی همکاران [1] نوزینگ را بر روي پوسته‌های
آلومینیومی به ضخامت 115، 3 و 4/5 میلی‌متر و به دو صورت سرد و داغ انجام داده و با نرم‌افزار ANSYS شبیه‌سازی نمودند. در این تحقیق از دو قالب مخروطی با زاویه 15 و 30 درجه و از دو روانکار روغن و گرافیت استفاده شد و نمو بر حسب جابجایی به دست آمده بهترین قالب مخروطی با زاویه 10 درجه می‌باشد.

خلاقیت و همکاران [2] فرآیند نوزینگ را به کمک نرم‌افزار ABAQUS شبیه‌سازی نموده و به منظور تأیید نتایج شبیه‌سازی آزمایش تجربی بر روی قالب با زاویه رأس 60 درجه انجام شد. همچنین در این تحقیق امکان استفاده از روش هیدروفرمینگ به صورت تجربی و شبیه‌سازی مورد بررسی قرار گرفته است.

آلوس و همکاران [3] فرآیند نوزینگ را به صورت دوبعدی و سه‌بعدی شبیه‌سازی نمودند و تنش وارد بر بالاتان، فشار وارد بر قاب‌ها و افزایش دما را در این فرآیند بررسی نمودند. لو [4] با ترکیب شرایط حجم تراکم، تراکم نایاب و معادلات لوی - مایسز یک نوع از ارائه داده که شکل بیشترسم و نسبت نوزینگ و سرعت بار را در فرآیند نوزینگ محاسبه می‌کند. سپس با کمک روش اجزای محدود نسبت نوزینگ، کرنش انتهای باله و توسعه ضخامت را در لوله مورد بررسی قرار داد.

آلوس و همکاران [6] فرآیند نوزینگ را برای تولید بوسترهای چنبرهای به‌کاربرده و با روی اجراهای محدود شیب‌سازی نمودند. کوان [6] فرآیند نوزینگ را به صورت خارج از مرکز مورد بررسی قرار داد و با کمک نرم‌افزار DEFORM شبیه‌سازی نمود. در این تحقیق از یک قالب مخروطی خارج از مرکز استفاده شد و اثر پارامترهای فرآیند مثل طول و ضخامت لوله، زاویه و شعاع گوشه قالب، ضرب اصطکاک و نسبت کرنش - سختی ماده باله بر روی نسبت نوزینگ مورد بررسی قرار گرفت.

هانگ [7] به شبیه‌سازی فرآیند نوزینگ و فلیرینگ در شرایط مشترک محوری پرداخت و از قانون اصطکاک کولمب اصلاح شده با جای شرایط اصطکاک لغزشی - جسم‌های استفاده کرد. سپس اثر نسبت ضخامت، اصطکاک و زاویه قالب را بر روی نیروی شکل‌دهی بررسی کردند.
کوان و همکاران [8] به کمک نرم‌افزار ANSYS به شبیه‌سازی فرآیند نوزینگ سرد با قالب مخروطی پرداختند و اثر پارامترهای فرآیند مثل طول و ضخامت لوله، زاویه و شعاع گوشه قالب، ضرب اصطکاک و نهایی کشتن، سختی ماده روی نسبت نوزینگ مورد بررسی قرار گرفت.

جیران فلز از این فرآیند کمی پیچیده بوده و در این موارد ضخامت دیواره یک واحد افزایش یافته و در طول قالب، افزایش ضخامت کار در قالب در نزدیکی انتهای لوله ثابت شد. لوله به‌طور عمده اکتشافاتی در طول قالب طولی با کوتاه شدن یکی از محصولاتی در این فرآیند نوزینگ ایجاد گردید. در انتهای لوله، این مسئله هنگامی رخ می‌دهد که برای برقراری هماهنگی قطعاتی فضای تحت پوشش لوله به قطر اولیه تقسیم بر قطر اولیه نمی‌شود، بیشتر از 4 عدد باشد. در این امر بالا رفت مناسب شکل نیز نشان داده شده است. براوردی با نتیجه مورد نظر شبیه‌سازی شده است. و سپس نتایج حاصل از شبیه‌سازی ABAQUUS در این تحقیق فرآیند نوزینگ با کمک نرم‌افزار ANSYS ثابت شد. در این مطالعه قالب صلب آماده و با روش سطح ناپایاپارامترهای ورودی ضرب اصطکاک، ضخامت لوله و تغییرات لوله به روز در سطح نوزینگ بررسی شد.

2- مدل سازی فرآیند نوزینگ

در فرآیند نوزینگ قطعه کار داخل قالب تخلیه و ویژه یک صفحه بر قطعه کار نیرو وارد می‌شود تا شکل قالب را به خود بگیرد. قطعه کار به‌صورت ماده شكل‌پذیر می‌باشد و در شکل 2 قطعه کار نشان داده شده است. قطعه داخلی و خارجی آن به ترتیب 8/875/820 میلی‌متر و طول قطعه به 20 میلی‌متر می‌باشد. به دلیل ایجاد دمای در پایین قطعه، از یک بروقیل‌کردن 70 میلی‌متر و قطعه کار اینجا قطعه استفاده شده است. از یک قالب صلب تحلیلی برای انجام شکل دیده استفاده گردد که در شکل 3 نشان داده شده است. لوله به قطعه و قطعه 20 میلی‌متر و طول قالب 240 میلی‌متر است. شرایط کننده قطعه به سمت یک قطعه با میانگین اندازه گیری نشان داده شده است. در شکل 4 نشان می‌دهد. مجموعه موطن‌زدایی فرآیند نشان داده شده است.

خواص فیزیکی و مکانیکی قطعه کار در جدول 1 و نمونه‌ی شکل 1-3 نشان داده شده است. برای ایجاد محصول، صفحه صلب بالایی رو به پایین حرکت می‌کند و قلب پایینی ثابت شده است. برای انجام تغییر شکل مرزد، صفحه صلب بالایی به میزان 20 میلی‌متر به سمت پایین در جهت عمودی حرکت دوباره برای تعیین نیرو بین قطعاتی کار از ضرب اصطکاک 10 استفاده شده است. برای مشابهی قطعه کار از 50 ماده روی محیط دایره داخلی و خارجی قطعه و 40 ماده در طول قطعه استفاده شده است. این اطلاعات به نوع 3D8R می‌باشد.

جدول 1: خواص فیزیکی و مکانیکی قطعه کار				
مدول پانگک (E) GPa	ضریب پوشاک (ν)	تنش نهایی (σ) MPa	تنش نهایی (σ) MPa	
7800 Kg/m³	210 GPa	0.3	91.2 MPa	39.1 MPa

شکل 2 مدل سبد صلب تحلیلی

شکل 3 قالب صلب تحلیلی
3- نتایج حاصل از شبیه‌سازی

 نحوه شبیه‌سازی فرآیند نوزنگ در قسمت قبل بیان شد. در این قسمت نتایج حاصل از شبیه‌سازی بیان می‌شود. با پایین آمدن صفحه صلب لوله به تدریج شکل قالب را به خود می‌گیرد. شکل 7 تغییر شکل‌های به وجود آمده روی قطعه را پس از انجام شبیه‌سازی نشان می‌دهد. در این شکل دو پدیدهٔ کمیاب مشاهده می‌شود: یکی مربوط به قسمت بالایی قطعه که زیر صفحه‌سازی نشان می‌دهد و دیگری در قسمت قب یکی از قطعه که بالای قالب قرار دارد. در شکل 8 نمو‌داده‌های شکل 7 در نمودار نیروی شکل‌دهی بر حسب جایگاه صفحه صلب نمایش داده شده است. از این نمو‌داده‌های نیروی شکل‌دهی حداکثر نیروی شکل‌دهی در انجام این شبیه‌سازی مورد نیاز است.
جهت بررسی صحت نتایج شبیه‌سازی، نتایج بدای با کاری تجربی مقایسه گردید. در شکل (9-الف) قالب نوزینگ و در شکل (9-ب) لوله خام اولیه برای عملیات نوزینگ لوله نشان داده شده است. جنس قسمت داخلی قالب از فولاد SPK و جنس قطعه خام لوله‌ای شکل از فولاد St37 می‌باشد. شکل (10) تغییر شکل لوله به ازای 58 میلی‌متر حرکت صفحه صل، در آزمایش تجربی و مدل اجزاء محدود‌رای نشان می‌دهد.

شکل 8-نمودار نیرو-جابجایی حاصل از شبیه‌سازی

شکل 9-تجهیزات فرآیند نوزینگ الف) قالب نوزینگ ب) قطعه لوله‌ای شکل

شکل 10-نمودن تغییر شکل داده شده در آزمایش تجربی و شبیه‌سازی

در شکل (11) نمودار نیرو نسبت به جای‌گاه پرس در دو حالت تجربی و شبیه‌سازی مقایسه شده است. نمودار نیرو در حالت تجربی بسیار شبیه به نتایج بدست‌آمده از شبیه‌سازی اجزاء محدود در شکل (8) می‌باشد و اختلاف بین آن‌ها ناچیز است که نشان از صحت نتایج شبیه‌سازی دارد.
در این مقاله هدف بررسی اثر پارامترهای ورودی بر روی درصد نوزینگ می‌باشد. درصد نوزینگ به صورت اختلاف قطر اولیه و قطر نوزینگ، تقسیم بر قطر اولیه تعیین می‌شود. جهت بررسی این اثرات، از روش سطح پاسخ و طرح مرکب مکانیک هوشمندی استفاده شده است. پارامترهای ورودی ضریب اصطکاک (μ)، ضخامت انتهای لوله (t)، ضخامت اولیه لوله (S) و قطر اولیه لوله (D) می‌باشند که سطوح هریک از آنها در جدول 2 نشان داده شده است.

جدول 2 طریق‌های آزمایش

| درصد نوزینگ | فاکتورهای ثانی‌گانه | آزمایش | از |
|--------------|------------------|--------|---|---|---|---|---|---|---|
| درصد نوزینگ | فاکتورهای ثانی‌گانه | آزمایش | از |
| درصد نوزینگ | فاکتورهای ثانی‌گانه | آزمایش | از |

برای بررسی رابطه بین درصد نوزینگ و پارامترهای ورودی از روش آنالیز واریانس استفاده شد. پس از انجام تحلیل فرآیند و...
استخراج درصد نوزینگ برای هر آزمایش، جدول آنالیز واریانس را به دست آورده که در جدول ۳ نشان داده شده است. در این تحلیل، سطح معنی‌دار بودن ۰/۰۵ است. به طور کلی نتایج تحلیل احتمالاً با ضرب اطمینان ۹۵/۰۰ صادق است. یک پارامتر در صورتی مؤثر است که مقادیر P-value بی‌توجه به مقادیر عادی به دست آمده اثرات متقابل ۰/۰۱ و P-value مؤثر نیست و با حذف این پارامترها دوباره تحلیل احتمالاً با ضرب اطمینان ۹۵/۰۰ صادق است.

با توجه به مقدار P-value به دست آمده، اثرات متغیر ۲۴، ۸۵، ۱۰۹ و ۱۷۱ مؤثر نیستند و با حذف این پارامترها دوباره تحلیل احتمالاً با ضرب اطمینان ۹۵/۰۰ صادق است.

می‌شود که نتایج در جدول ۳ نشان داده شده است. معادله رگرسیون نیز در انتهای جدول آورده که در جدول

جدول ۳ جدول آنالیز واریانس نتایج اولیه

مقدار P	مقدار	درجه آزادی	مجموع مربعات	منبع
معنی‌دار	۰/۰۰۰	۱۷/۶۸	۲۰۴۶/۰۸	درجه آزادی
معنی‌دار	۰/۰۰۰	۱۴/۱۲	۱۸۴۵/۰۲	درجه آزادی
معنی‌دار	۰/۰۰۰	۲/۴۹	۴۱۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۵/۸۱	۹۵۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۲/۴۹	۴۱۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۸/۸۶	۱۳۶۵/۰۷	درجه آزادی
معنی‌دار	۰/۰۰۰	۲/۳۲	۳۶۵/۰۳	درجه آزادی
معنی‌دار	۰/۰۰۰	۷/۸۹	۱۲۹۸/۰۴	درجه آزادی
معنی‌دار	۰/۰۰۰	۱/۴۴	۲۸۵۷/۰۴	درجه آزادی

جدول ۴ جدول آنالیز واریانس پس از حذف اثرات متغیر

مقدار P	مقدار	درجه آزادی	مجموع مربعات	منبع
معنی‌دار	۰/۰۰۰	۷/۳۹	۲۰۴۶/۰۸	درجه آزادی
معنی‌دار	۰/۰۰۰	۴/۷۹	۱۸۴۵/۰۲	درجه آزادی
معنی‌دار	۰/۰۰۰	۲/۳۹	۴۱۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۰/۵۰	۹۵۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۰/۹۱	۴۱۱/۰۱	درجه آزادی
معنی‌دار	۰/۰۰۰	۷/۸۹	۲۰۴۶/۰۸	درجه آزادی

پهلوه سازی فرآیند شکل‌دهی نوزینگ لوله‌های فلزی به کمک الگوریتم زنگیک

یکی از دوگانه فرآیند که برای صبح سنگی تحلیل آماری استفاده می‌شود، نمودارهای باقی‌مانده‌هاست که در شکل ۱۲ نمایش داده شده است. نشان می‌دهد داده‌های آزمایش‌ها نمودارهای باقی‌مانده‌ها از روند خاصی پیروی نمی‌کند. نمودار پرتو نمایش داده شده در شکل ۱۳ میزان تأثیر هر یک از پارامترها را در درصد نوزینگ نمایش می‌دهد.
4- تحلیل رگرسیون

ضریب همبستگی R^2 Squared یا معیاری برای بیان برآورد مدل پیش‌بینی‌شده با داده‌های حاصل از آزمایش‌ها است. شاخص R^2 Squared با ضریب همبستگی محاسبه شده و نیز مانند R^2 Squared درجات آزادی را نیز در نظر می‌گیرد.

با توجه به داده‌های موجود در جدول 5، برای پیش‌بینی مقادیر درصد نوزینگ انتخاب شده است. در این مدل مقدار بالای ضریب همبستگی (R^2) تأیید می‌کند که مدل پیش‌بینی‌شده به‌خوبی با داده‌ها برآورد شده است. مقدار R^2 Adj با مقدار در تطابق است که نشان دهنده دقت این مدل است.

جدول 5 پارامترهای آماری برای اثبات کفايت مدل

	R^2-sq	R^2-sq(adj)
%	92/94	%89/79

یک معادله رگرسیون برای پیش‌بینی مقادیر درصد نوزینگ بر اساس پارامترهای مؤثر آورده شده است که مقادار و ضرایب متغیرها در معادله مدل به ترتیب میزان و نوع اثرگذاری این متغیرها را نشان می‌دهند.

$$ (1)$$

$$ 0.1544 t + 0.423 s + 0.931 \mu + 0.01256 t \ast t - 0.0579 s \ast s - 5.29 \mu \ast \mu = 0.212 - 0.212 \text{ درصد نوزینگ} $$

در شکل 14، نمودار اثرات اصلی پارامترهای نشان داده شده است.
5- بهینه‌سازی درصد نوزینگ با الگوریتم زنتیک

معادله 1 به‌دست‌آمده از تحلیل رگرسیون توسط روش الگوریتم زنتیک بررسی شده و درصد نوزینگ بهینه برای معادله
رگرسیون به‌دست‌آمده است که به‌شیوه درصد نوزینگ \(\frac{1}{0.60} \) و به ازاری مقدار \(\mu = 3.653 \) t = 4.1، 4 می‌باشد.

6- نتیجه‌گیری

در این مقاله فراپن نوزینگ لوله صنعتی شد و نتایج حاصل از آن با تجزیه‌بندی متفاوت گردید که تابعی بین
آنها برقرار بود. سپس با روش طراحی آزمایش اثر پارامترهای ضریب اصطکاک، شیب دیواره و ضخامت لوله بر روی درصد
نوزینگ مشخص شد. در این تحقیق از روش سطح پایه و طرح مرکزی استفاده شد. برای بررسی رابطه بین متغیرها
خروجی با پارامترهای ورودی از روش آنالیز واریانس استفاده شده است.

نتایج نشان می‌دهد که با افزایش شیب دیواره درصد نوزینگ افزایش می‌یابد و با افزایش ضخامت و ضربی اصطکاک در
صد نوزینگ کاهش می‌یابد. همچنین می‌توان دریافت، برای افزایش درصد نوزینگ، باید شیب دیواره در سطح بالا و ضربی اصطکاک
در سطح پایین باشد. همچنین با استفاده از الگوریتم زنتیک و بهینه‌سازی معادله رگرسیون حاصل از تحلیل واریانس، ماکزیم
درصد نوزینگ \(\frac{1}{0.60} \) به‌دست‌آمده است.

7- مراجع

[1] Salih D S M, Ismail A R. Investigation die profile effect on nosing process using finite element method. Modern Applied Science. 2011;5:212.

[2] Khaghani M B M, Gorji A. Experimental study and finite element simulation of pipe nosing process with hydroforming method. in The 31th Annual International Conference of Iranian Society of Mechanical Engineers, 2008. (In Persian)

[3] Orsolini A, Booker J D. Modelling capabilities required for the double nosing process in the assembly of spherical plain bearings. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2012;226:930-940.

[4] Lu Y-H. Study of preform and loading rate in the tube nosing process by spherical die. Computer methods in applied mechanics and engineering. 2005;194:2839-2858.

[5] Alves L M, Martins P A F. Forming of thin-walled tubes into toroidal shells. Journal of Materials Processing Technology. 2010;210:689-695.

[6] Kwan C-T. An analysis of the eccentric nosing process of metal tubes. Journal of Materials Processing Technology. 2003;140:530-534.
[7] Huang Y M. Flaring and nosing process for composite annoy tube in circular cone tool application. The International Journal of Advanced Manufacturing Technology. 2009;43:1167-1176.

[8] Kwan C T, Fang C H, Chiu C J, Chen S W, Wen H W. An analysis of the nosing process of metal tubes. The International Journal of Advanced Manufacturing Technology. 2004;23:190-196.