The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease

Mwila Kabwe1,2, Stuart Dashper3 and Joseph Tucci1,2*

1 Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia, 2 La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia, 3 Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia

While the mortality rates for many cancers have decreased due to improved detection and treatments, that of pancreatic cancer remains stubbornly high. The microbiome is an important factor in the progression of many cancers. Greater understanding of the microbiome in pancreatic cancer patients, as well as its manipulation, may assist in diagnosis and treatment of this disease. In this report we reviewed studies that compared microbiome changes in pancreatic cancer patients and non-cancer patients. We then identified which bacterial genera were most increased in relative abundance across the oral, pancreatic, duodenal, and faecal tissue microbiomes. In light of these findings, we discuss the potential for utilising these bacteria as diagnostic biomarkers, as well as their potential control using precision targeting with bacteriophages, in instances where a causal oncogenic link is made.

Keywords: bacteriophage, pancreatic cancer, microbiome, Porphyromonas gingivalis, oncobacterium

INTRODUCTION

Cancer is the leading cause of death world-wide and an ever-increasing barrier to improving life expectancy (Bray et al., 2021). Due to low-survival and poor outcomes in the past decade, pancreatic cancer has been identified as the emerging cancer of most concern as it remains the only major cancer type in the European Union and the UK showing no signs of an overall fall in mortality trends (Carioli et al., 2021). While it has a relatively low incidence rate globally, pancreatic cancer is the seventh leading cause of cancer-related death and remains a lethal disease. Despite the advances in anti-cancer therapies, patients with pancreatic cancer have poor survival prospects with a five-year survival rate of just 10% (Dahan et al., 2021). Worldwide, there were 495,773 new diagnoses of pancreatic cancer in 2020 and 466,003 deaths (Sung et al., 2021). The highest incidence of pancreatic cancer is found across Europe, with new diagnoses ranging from 7-9 cases per 100,000 population. The lowest numbers are seen in parts of Africa and South-Central Asia, where incidence is recorded to be between 1-4 cases per 100,000 population (Rawla et al., 2019; Sung et al., 2021). Figure 1
depicts estimated numbers of cases in the world in 2020, with predictions to 2040, for pancreatic cancer.

In pancreatic cancer, surgery remains the curative treatment. However, 90% of the patients with stage I and stage II disease relapse and do not survive (Hartwig et al., 2013). While adjuvant chemotherapy (gemcitabine with erlotinib or 5-fluorouracil and cisplatin) and radiotherapy have been evaluated in treatment of pancreatic cancer, these regimes remain controversial, and without additional survival benefits, compared to surgery (Moore, 2005; Dahan et al., 2010; Hammel et al., 2016). Current research is underway into minimally invasive endoscopic deliveries such as 125I seeds (Jin et al., 2008), celiac neurolysis (Wyse et al., 2011), and fiducial placement for stereotactic body radiation therapy (Sanders et al., 2010). Immunotherapy phase I/II clinical trials have failed to show any positive effects in pancreatic cancer (Kaur et al., 2021). Therefore, pancreatic cancer remains difficult to treat. As such, more extensive research into biomarkers, new precision medicine, and multidisciplinary approaches, is required to optimise therapy for individual patients (Zhu et al., 2018).

Since Warren and Marshall’s pioneering work linking Helicobacter pylori (initially described as a spiral or curved bacilli related to Campylobacter spp.) with gastric cancer (Marshall and Warren, 1984), there has been an expansion of research investigating the roles of bacteria in oncogenesis and promotion of carcinoma growth. To date bacterial species have been implicated in the initiation or progression of a wide range of different types of cancer. Recently oral bacteria including Fusobacterium nucleatum have been linked to cancers distant from the oral cavity (Abed et al., 2020; Parhi et al., 2020). F. nucleatum and other oral bacterial species such as Prevotella heparinolytica and Peptostreptococcus anaerobius are now widely accepted as oncobacteria (Brennan and Garrett, 2019, Kabwe et al., 2021a, Rai et al., 2021).

Like many cancers, early diagnosis for pancreatic cancer is important for better treatment efficacy and prognosis (Yamada et al., 2021). However, only 8% of pancreatic cancer patients are initially diagnosed with localised resectable disease (De La Cruz et al., 2014). Screening and surveillance is recommended using endoscopic ultrasound (EUS) and MRI/magnetic retrograde cholangiopancreatography (Goggins et al., 2020). EUS coupled with fine needle aspiration (EUS-FNA) provides a more definitive diagnosis with the benefits of a biopsy (Cherian et al., 2010). However, for many asymptomatic patients with localised disease cytology examinations are usually negative (Masuda et al., 2022). Despite this, the cytology samples may provide an unexplored opportunity for microbiome sequencing and use of bacterial species as biomarkers for diagnosis.

Since minimally invasive EUS-FNA are incorporated into routine diagnostics, it is possible that applying genomic screening of the tumour microbiome may offer higher resolution than cytology as well as opportunities for treatment by manipulating the microbiome using specific antimicrobial solutions such as bacteriophages. Bacteriophages are viral predators of bacteria, whose actions are almost exclusively specific for their target host species (Clokie et al., 2011; Batinovic et al., 2019). There have been extensive reports and reviews on the application of bacteriophages in clinical scenarios (Genevière et al., 2021, Liu et al., 2021b, Pirnay et al., 2022; Satta et al., 2022). More recently, bacteriophage therapy has been successfully applied in human clinical trials, and on compassionate grounds for critically ill patients with resistant and difficult to treat infections, in Western countries (Vandenheuvel et al., 2015; Schooley et al., 2017; Dedrick et al., 2019; Maddocks et al., 2019). In some instances, these applications have resulted in complete bacterial elimination, a phenomenon not previously reported when using conventional antibiotics (Wunderink, 2019). Bacteriophage therapy has also been shown to be well tolerated and safe when administered intravenously (Petrovic Fabijan et al., 2020). Our previous work has reviewed the role of important oncobacteria, in many cancers, as well as introducing the prospect of using bacteriophages to negate the effects of the pro-oncogenic microbiome (Kabwe et al., 2021a). Although other means of manipulating the microbiome such as antibiotics, probiotics, prebiotics and faecal transplantation (Abdul Rahman et al.,
2021) have been considered, all are usually nonspecific and offer varied results. For instance, with antibiotics there are problems such as resistance, and their incapacity to reach therapeutic levels to eliminate intracellular bacteria (Imbuluzqueta et al., 2010) or bacteria in biofilms (Hoiby et al., 2010). Further, they lack specificity for bacteria that promote cancer progression, and contribute to dysplasia (Boursi et al., 2015; Theochari et al., 2018; Dicks et al., 2019). Similarly, probiotics and faecal transplants may contain biological material that do not directly remove oncobacteria and pose the risk of transmitting pathogenic bacteria (Abdul Rahman et al., 2021). Bacteriophages, on the other hand, offer the possibility of precisely eliminating specific bacteria in the microbiome (Belizario and Napolitano, 2015; Clavijo and Florez, 2018; Gagliardi et al., 2018; Paule et al., 2018) and they overcome resistance from bacteria as they have done during co-evolution with their hosts over time (Shabbir et al., 2016).

There has been some research into manipulation of the microbiome in pancreatic cancer. Preclinical data have shown that intratumour bacteria metabolise gemcitabine to its inactive form in pancreatic cancer (Geller et al., 2017; Thomas, 2017; Geller and Straussman, 2018). A recent review of retrospective clinical data of antibiotic use in pancreatic cancer patients did not reveal any significant differences in patients with localised disease but showed significant improvement in survival in metastatic pancreatic patients by at least 2-3 months when patients received gemcitabine-based chemotherapy as first-line therapy (Mohindroo et al., 2021). However, antibiotic use creates clinical problems in pancreatic cancer treatment. A recent analysis of the comparator arm of the MPACT trial (NCT01442974) showed that use of antibiotic therapy was associated with grade 3 or above haematological and gastrointestinal adverse events in patients treated with gemcitabine for metastatic pancreatic cancer (Corty et al., 2020). Scope therefore exists for antimicrobial therapy that targets cancer promoting bacteria and negates chemotherapy resistance and adverse events associated with antibiotic use. Bacteriophage use in cancer therapy is not a new concept, first suggested by Bloch in 1940 (Budynek et al., 2010). Recent studies in this area include the finding that bacteriophage EFA1 was able to eliminate and negate the proliferative effects of Enterococcus faecalis on colon cancer cells (Kabwe et al., 2021b). In other work, azodibenzocyclooctyne-modified irinotecan loaded dextran nanoparticles were covalently linked to azide-modified Fusobacterium bacteriophages. This construct, a bacteriophage-guided biotic-abiotic hybrid nanosystem, was used to deliver the encapsulated chemotherapy and eliminate intratumour F. nucleatum in piglets, without significant changes in haemocytoc counts, immunoglobin and histamine levels, or liver and renal functions (Zheng et al., 2019).

In this study, we reviewed bacteria that have increased relative abundance in patients with pancreatic cancer, including bacteria in the pancreatic tumour microenvironment itself. However, extending the investigation to tissues upstream and adjacent to the pancreas is also important. This is because in many systemic diseases the state of the oral cavity often predicts the health of an individual (Rautema et al., 2007), and the majority of oncobacteria are often of oral origin (Kabwe et al., 2021a). Therefore, exploration of the oral microbiome changes in pancreatic cancer is important. Further, due to retrograde bacterial migration from the duodenum to the opening of the pancreatic duct, the microbiome of the duodenum may provide data on predicting pancreatic cancer development (Geller et al., 2017). The microbiome of stools is also commonly assessed. Analysis of the microbiome in these sites provides minimally invasive opportunities for potential diagnosis of pancreatic cancer. At the same time, bacteria whose relative abundance is increased may be specifically targeted by precision antibacterial therapy such as can be offered by bacteriophages. Such possibilities are discussed in this study.

METHODS

We performed a systematic literature review to identify the important bacteria in the microbiome of pancreatic cancer patients. We searched PubMed central (PMC), Medline and Web of Science for studies that compared microbiome composition of pancreatic cancer patients to non-pancreatic cancer patients up to October 2021. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, as previously described. (Liberati et al., 2009). The search terms were: (“Fine needle” OR “FNA” OR “FNBI”) AND pancreatic microbiome; (“phage” OR “bacteriophage”) AND pancreatic microbiome; Pancreas AND bacteriophages; Pancreas AND microbiome; and Pancreas AND virome. Articles were tracked using Microsoft Excel, removing duplicates and screening firstly by title, then abstract screening and finally screening the full text. All references were managed using the Endnote X9 reference manager.

Inclusion Exclusion Criteria

The study selection included English-written articles investigating global abundance of different bacteria genera and species across a patient sample in comparison to matched non-pancreatic cancer patients or tissues. The characteristics of studies excluded were: reviews, languages other than English, studies on biomarkers other than microbiome, microbiome in non-cancer/non malignancy, animal studies, abstracts and posters, antibiotic use, bacterial species-specific PCR amplification studies, studies describing phyla only, studies without non-malignant controls.

RESULTS

Studies Identified

A total of 887 articles were identified from the search strategy. The initial title screening eliminated 841 articles to leave 46 for abstract assessment. From the abstracts, 26 were eliminated based on the exclusion criteria and a further 12 articles were excluded on examination of the full text, leaving eight articles to be incorporated into the analysis (Figure 2).
Some of the studies that were reviewed undertook prospective recruitment of participants while others utilised tissue samples that were available in their institutional biobanks. Only one study reported both the number of participants and number of samples examined (Del Castillo et al., 2019): the authors recruited 76 participants, whose ethnicities were described as Caucasian (72), black (2) and other (2). Among these participants, there were 50 patients with pancreatic cancer. The authors examined 189 tissue samples (pancreatic duct, duodenum, pancreas), 57 swabs (bile duct, jejunum, stomach), and 12 stool samples (Del Castillo et al., 2019) (Table 1).

Another American report described a case-control study comparing bacterial profiles from 63 pancreatic cancer patients and 63 healthy controls, with 57 in each group denoted as Caucasian, as well as five African Americans and one unknown in the healthy participants; four African Americans and two unknown in the patient cohort (Kohi et al., 2020). Other studies that listed the number of participants were from the United Kingdom (UK) and China, however, ethnicity of the participants wasn’t noted. The UK study recruited 17 participants of which nine had pancreatic cancer (Masi et al., 2021). There were three Chinese studies; Mei et al. recruited nine pancreatic cancer patients and eight controls (Mei et al., 2018), Ren et al. collected 85 pancreatic cancer patients and 57 matched healthy controls (Ren et al., 2017) while the other study recruited 80 patients and 69 healthy controls from the community (Wei et al., 2020) (Table 1).

The remaining two studies utilised biobanks and analysed large numbers of samples. These included 361 samples of incident adenocarcinoma of the pancreas and 371 matched controls, from two prospective cohort studies: the American Cancer Society Cancer Prevention Study II and the National Cancer Institute Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (Fan et al., 2018). The other study to utilise biobanks analysed 1526 samples across seven cancer types (tumours and their adjacent normal tissues), of which 67 were from pancreatic cancer patients (Nejman et al., 2020) (Table 1).

Bacteria With Significantly Increased Relative Abundance

Eight studies were identified as having compared microbiome sequence data from pancreatic cancer patients with that from non-pancreatic cancer patients. These studies compared the microbiomes of the oral cavity, pancreas, duodenum, and stools (Figure 3). They identified specific bacteria in the tissues examined to be a signature of pancreatic cancer, and our review collated this data, and indicated that a range of bacteria had their relative abundances increased in this disease. Our findings identified seven bacterial genera whose relative abundance was increased in more than one anatomic site (highlighted in bold in Figure 3). *Selenomonas* were increased in three of four sites reviewed including the pancreas (Del Castillo et al., 2019), the duodenum (Del Castillo et al., 2019) and stools (Ren et al., 2017). *Porphyromonas* were increased in the pancreas (Del Castillo et al., 2019) and oral cavity (Fan et al., 2018). *Fusobacterium* were increased in the pancreas (Del Castillo et al., 2019; Nejman et al., 2020; Masi et al., 2021) and the duodenum (Kohi et al., 2020). *Enterobacter, Klebsiella* and *Prevotella* were all increased in the pancreas (Nejman et al., 2020) and stools (Ren et al., 2017), while
TABLE 1 | Results from studies investigating bacterial relative abundance in pancreatic tumour patients and pancreatic tumour samples.

Bacterial genera increased in relative abundance	Sites where bacterial genera were increased in relative abundance	Study type and size	Population	Reference
Porphyromonas	Pancreas, Pancreatic duct	Case: Caucasian 72 (93.5%), Black 2 (2.6%), Others 2 (2.6%)	(Del Castillo et al., 2019)	
Fusobacterium, Prevotella, Capnocytophaga, Parvimonas, and Haemophilus	Pancreas	Control: Caucasian 30 (88%), Black 2 (6%), Others 2 (6%)		
Selenomonas	Pancreas, Duodenum	Cases: Male 38 (49%), Female 39 (51%)		
Gemella	Duodenum	Controls: Male 21 (62%); Female 13 (38%)		
Fusobacterium, Enterobacter, Citrobacter, and Klebsiella	Pancreas	Biobank		
Fusobacterium	Pancreas	Participant numbers listed only	(Nejman et al., 2020)	
Acinetobacter, Aquabacterium, Oceanobacillus, Rahnella, Massilia, Delftia app., Deinococcus, and Sphingobium	Duodenum	Participant numbers listed only	(Mei et al., 2021)	
Bilobobacterium, Fusobacterium, Rothia, Enterococcus, “Escherichia-Shigella”, and Clostridium	Duodenum	Participant numbers listed only	(Mei et al., 2018)	
Porphorymonas, Aggregatibacter, and Alloprevotella	Oral	Cases: White 57 (90.4%), American 4 (6.4%), missing 2 (3.2%)	(Kohi et al., 2020)	
Actinomyces, Aggregatibacter, Escherichia Lactobacillus, Leptotrichia, Rothia, and Streptococcus	Oral	Controls: White 23 (6.4%)	(Fan et al., 2018)	
		Cases: Male 24 (59%), Female 17 (41%)		
		Controls: Male 52		

(Continued)
Rothia were increased in the duodenum (Kohi et al., 2020) and the oral (Wei et al., 2020) microbiomes.

DISCUSSION

Established Role of Keystone Bacteria Identified in Pancreatic Cancer Microbiomes

It has been proposed that oral bacteria may play a role in the causation of cancer locally and in distant organs, as these oncobacteria may traverse impaired blood vessels and circulate to colonise distant tissues where they promote cancer growth (Kostic et al., 2013; Abed et al., 2020; Kabwe et al., 2021a). For instance, it has been shown using murine models that Fusobacterium normally resident in gingival margins and the crypts of the tongue may spread through the circulatory system (Abed et al., 2020) as well as through the gastrointestinal tract (Kostic et al., 2013; Pushalkar et al., 2018) to the pancreas. As such, it may be expected that a particular bacterial species may be located in more than one of the oral, pancreatic, duodenal, and faecal microbiomes in cancer patients. In this systematic review of the literature, we identified seven bacteria genera whose relative abundance was increased in more than one of these anatomic sites (Figure 3). In the pancreas and oral cavity, Porphyromonas was increased; in the pancreas and the duodenum, Fusobacterium and Selenomonas were increased, while in the pancreas and stool, Enterobacter, Klebsiella, Prevotella and Selenomonas were all increased. Selenomonas was the only bacterial genus reported to have increased abundance in at least three of four sites explored. Rothia was the only bacterial genus that were increased in more than one site

Bacterial genera increased in relative abundance	Sites where bacterial genera were increased in relative abundance	Study type and size	Population	Reference
Cronobacter, Enterobacter, (Ren et al., 2017) Hallella, (Ren et al., 2017) Klebsiella, Prevotella, Selenomonas, and Veillonella	Stool	Prospective study that collected 85 Pancreatic cancer and 57 matched healthy controls to analyze microbial characteristics by MiSeq sequencing	(72%), Female 19 (28%)	(Ren et al., 2017)
Actinomyces, Aggregatibacter, Alloprevotella, Escherichia, Lactobacillus, Leptotrichia, Porphyromonas, Rothia, and Streptococcus	Oral microbiome			
Capnocytophaga, Citrobacter, Enterobacter, Fusobacterium, Haemophilus, Klebsiella, Parvimonas, Porphyromonas, Prevotella, and Selenomonas	Pancreatic microbiome			
Acinetobacter, Aquabacterium, Bifidobacterium, Clostridium, Deinococcus, Delftia, Enterococcus, “Escherichia Shigella”, Fusobacterium, Gamella, Massilia, Oceanobacillus, Rahnella, Rothia, Selenomonas, and Sphingobium	Duodenum microbiome			
Cronobacter, Enterobacter, Hallella, Klebsiella, Prevotella, Selenomonas, and Veillonella	Stool microbiome			

FIGURE 3 | Bacterial genera increased in relative abundance in the microbiome of the oral cavity, pancreas, duodenum, and stools of pancreatic cancer patients, compared to samples from people without pancreatic cancer. Bacteria whose relative abundance were increased in more than one site are highlighted in bold font. Created in Biorender.com
excluding the pancreas. These were increased in the duodenum and the oral microbiomes (Figure 3).

While microbiome sequencing studies are important in identifying potentially oncogenic bacteria, experimental evidence remains key to demonstrating their effects on cancer progression. It is also important to highlight that there are complex interactions within tissue microbiomes which may influence the initiation of cancers. Within this polymicrobial ecosystem there may be species that while not directly oncogenic, may promote the colonisation of a site by an oncobacterium, or others that protect bacteria from the host response. Our previous review on tissue microbiomes across several cancer types has revealed a range of different bacteria whose relative abundance was shown to be increased or decreased in the tumour microbiome, as well as those shown to attenuate, as well as promote oncogenicity (Kabwe et al., 2021). *Fusobacterium* is the most studied oncobacteria in diverse cancer types where mechanisms of oncogenicity have been elucidated (Slade, 2021). In pancreatic cancer, *Porphyromonas gingivalis* is the most studied, and data have shown in murine models that they are able to promote progression of pancreatic cancer (Chen et al., 2020; Giananakaran et al., 2020; Hiraki et al., 2020). Other experimental data have shown that the *P. gingivalis* may invade and promote proliferation of other cancer types including oral squamous cell carcinoma (Inaba et al., 2014; Geng et al., 2017; Chang et al., 2019; Hoppe et al., 2019; Yao et al., 2021), endothermal cancer (Crooks et al., 2021), colorectal carcinoma (Mu et al., 2020; Wang et al., 2021), oesophageal squamous cell carcinoma (Meng et al., 2019; Liang et al., 2020; Chen et al., 2021), and head and neck cancer (Utispán et al., 2018). Further, *P. gingivalis* has been shown to promote chemotherapy resistance to paclitaxel in oral squamous cell carcinoma (Song et al., 2019). The mechanisms by which *P. gingivalis* promotes gastrointestinal cancers including pancreatic cancer have been reviewed (Olsen and Yilmaz, 2019). As shown in Figure 4, its role in cancer commences with infection of epithelial cells, with the FimA fimbria as the main adhesion and invasive virulence factor (Nakagawa et al., 2002). This induces inflammation and disruption of the epithelial barrier through IL-9 induced CD4+ T cells (Sohn et al., 2022) whilst enhancing its intracellular survival through modulating reactive oxygen species production (Choi et al., 2013) and small RNA packaging in outer membrane vesicles (OMVs) (Li et al., 2021a). Further, *P. gingivalis* has also been shown to induce carcinogenesis by epithelial to mesenchymal transition (Inaba et al., 2014; Ha et al., 2015; Gao et al., 2016; Lee et al., 2017; Abdulkareem et al., 2018) and to promote cancer proliferation (Nakjhi et al., 2001; Kuboniwa et al., 2008; Lin et al., 2013; Pan et al., 2014; Liang et al., 2020). *P. gingivalis* has also been shown to modulate the immune system, enabling survival of the tumours (Groeger et al., 2011; Groeger et al., 2017; Groeger et al., 2020; Adel-Khattab et al., 2021), as well as promoting chemotherapy resistance (Woo et al., 2017; Gao et al., 2021).

Apart from *P. gingivalis* however, there is no knowledge of how the other bacteria may influence the progression of pancreatic cancer. For some, there is evidence of the role they play in other cancer types (Table 2). *F. nucleatum* can travel via the blood stream (Abed et al., 2020) and lodge into distant tumours of the breast (Hieken et al., 2016; Smith et al., 2019), lung (Liu et al., 2018) and genitourinary tract (Audirac-Chalifour et al., 2016), where they colonise nascent tumours (Cavrini et al., 2016). Further, *F. nucleatum* has been shown to inhibit myeloid leukemia HL-60 cells (Husain et al., 2016) and cervical cancer HeLa and SiHa cells (Zhao et al., 2015), as well as promoting NCM460 and CRL1700 colon cancer cells (Yurdakul et al., 2015). *Prevotella* have also displayed contrasting actions with *P. heparinolytica* shown to indirectly promote multiple myeloma while *P. melaninogenica* counters such effects (Calcino et al., 2018). Some *Klebsiella* species have been linked to cancer cachexia (Pötgens et al., 2018)

![FIGURE 4](image-url)

FIGURE 4 | Possible mechanisms for promotion of carcinogenesis by Porphyromonas, including infection, epithelial to mesenchymal transition, evasion of immune system, increased proliferation and chemotherapy resistance.
and their production of colibactin induces tumourigenic effects in epithelial cells (Strakova et al., 2021). The other bacteria increased in the pancreatic tumour microenvironment included *Capnocytophaga* (Del Castillo et al., 2019), *Citrobacter* (Nejman et al., 2020), *Haemophilus* (Del Castillo et al., 2019), and *Parvimonas* (Del Castillo et al., 2019). Of these, *Citrobacter rodentium* has been shown to increase the proliferation of colon cancer and to activate cancer promoting biochemical pathways (Umar, 2012), and *Haemophilus influenzae* has been shown to increase the proliferation of k-ras positive lung adenocarcinoma (Jungnickel et al., 2017). There were no studies of *Parvimonas* or *Capnocytophaga* roles in cancer, although their prevalence has been reported to be increased in several different tumour microenvironments (Jolivet-Gougeon and Bonnaure-Mallet, 2021; Kabwe et al., 2021a). No research detailing the role of *Selenomonas* or *Rothia* in cancer progression has been reported either.

Implications for Diagnosis

Although the oral, duodenal and faecal microbiomes have been previously suggested as potential biomarkers in pancreatic cancer (Sun et al., 2020), our study has shown a diversity in the microbiome across these sites. For this reason, it may be difficult to select specific bacteria to use as biomarkers in these sites for application in pancreatic cancer diagnosis. Further, while some studies have identified bacteria to be increased solely in cancer patients, others have found increases also in non-cancer controls, or that their prevalence is not consistently increased in all tissues assayed. For instance, *Porphyromonas* were reported to have been increased in the duodenum (Mei et al., 2018) and oral microbiome (Wei et al., 2020) of healthy controls, and *Selenomonas, Prevotella* (Wei et al., 2020) and *Fusobacterium* (Fan et al., 2018) were all decreased in the oral microbiome of pancreatic cancer patients. It may be that the faecal, oral and duodenal microbiomes may not represent ideal biomarkers for pancreatic cancer. Further, they may not be specific

TABLE 2 | Potential significance of the bacteria whose relative abundance are increased in pancreatic cancer.

Bacteria genera	Possible significance in cancer
Porphyromonas	*Porphyromonas gingivalis* has been shown to promote progression of pancreatic cancer (Chen et al., 2020; Gnanasekaran et al., 2020; Hiraki et al., 2020), oral squamous cell carcinoma (Inaba et al., 2014; Geng et al., 2017; Chang et al., 2019; Hoppe et al., 2019; Yao et al., 2021), endothelial cancer (Crooks et al., 2021), colorectal carcinoma (Mu et al., 2020; Wang et al., 2021), oesophageal squamous cell carcinoma (Meng et al., 2019; Liang et al., 2020; Chen et al., 2021), and head and neck cancer (Jitphan et al., 2018) promote chemotherapy resistance to paclitaxel in oral squamous cell carcinoma (Song et al., 2019).
Fusobacterium	Can travel via the blood stream (Abed et al., 2020) and lodge into distant tumours of the breast (Heiken et al., 2016; Smith et al., 2019), lung (Li et al., 2018) and goutourinary tract, (Audirac-Chalifour et al., 2016) where they colonise nascent tumours (Cavini et al., 2005) or promote metastasis (Parti et al., 2020).
Enterobacter	Inhibit myeloid leukemia HL-60 cells (Husain et al., 2016) and cervical cancer HeLa and SiHa cells (Zhao et al., 2015), as well as promoting NCM460 and CRL1700 colon cancer cells (Yurdakul et al., 2015).
Prevotella	*Prevotella heparinolytica* promote multiple myeloma while *Prevotella melaninigenica* counters such effects (Calcino et al., 2018).
Klebsiella	*Klebsiella* sp. Infection has been linked to cancer cachexia (Pütgens et al., 2018) and their production of colibactin, induces tumourigenic effects in epithelial cells (Strakova et al., 2021).
Citrobacter	Citrobacter rodentium has been shown to increase the proliferation of colon cancer and to activate cancer promoting biochemical pathways (Umar, 2012).
Haemophilus	*Haemophilus influenzae* has been shown to increase the proliferation of k-ras positive lung adenocarcinoma (Jungnickel et al., 2017).
Enterococcus	*Enterococcus faecalis* has been shown to promote proliferation of colon cancer cells (Kabwe et al., 2021b).
Escherichia	Shigella* Polyketide synthetase (pks) positive E. coli strains that express the afimbrial adhesin operon afaC and/or the polyketide synthetase pathogenic island have been shown to promote tumourigenesis of colon cancer (Lennard et al., 2016, lyadorai et al., 2020).
Deinococcus	EXTRacts from Deinococcus sp. UDEC-P1 have been shown to inhibit the proliferation of Saos-2 osteosarcoma cells (Tapia et al., 2021) and breast cancer (Majool et al., 2023).
Bifidobacterium	Shown to have anti-proliferative effects against colon (Lee et al., 2008; Asadollahi et al., 2020; Faghfoori et al., 2021) and non-small cell lung cancers (An et al., 2020).
Clostridium	Clostridium perfringens has been shown to inhibit proliferation of colon cancer cells (Arimochi et al., 2006).
Parvimonas	No clear role established.
Capnocytophaga	No clear role established.
Selenomonas	No clear role established.
Rothia	No clear role established.
Acinetobacter	No clear role established.
Aggregatibacter	No clear role established.
Alloprevotella	No clear role established.
Aqua bacterium	No clear role established.
Delfta	No clear role established.
Gemella	No clear role established.
Massila	No clear role established.
Oceanobacillus	No clear role established.
Rahnella	No clear role established.
Sphingobium	No clear role established.
enough as similar patterns across oral, gut, and intratumour microbiomes may be observed in many different tumour types (Kabwe et al., 2021a; Stasiewicz et al., 2021). As such, screening of the oral, duodenal or faecal microbiomes may not provide an accurate and specific diagnostic tool for pancreatic cancer. In contrast, the pancreatic tumour tissue microbiome may have diagnostic potential. However, more work is needed to establish this, as there is limited data to date. Other indirect serological methods may be considered, for instance, Michaud et al. (Michaud et al., 2013) found that individuals with high levels of circulating antibodies against *P. gingivalis*, had a significant two-fold higher risk of pancreatic cancer than individuals with lower levels of these antibodies (OR 2.14; 95% CI 1.05 to 4.36).

Potential for Targeting Keystone Bacteria Using Bacteriophage Therapy

Bacteriophages have been shown to have the capacity to disrupt biofilms (Lusiak-Szelachowska et al., 2020) and eliminate intracellular bacteria (Goswami et al., 2021). One key feature by which bacteria such as *P. gingivalis* promote their spread and colonisation is through outer membrane vesicles (OMVs) (Farrugia et al., 2020). OMVs increase the permeability of blood vessels allowing for systemic spread of the bacteria to colonise distant organs (Farrugia et al., 2020; Zhang et al., 2021) and such a mechanism may allow *P. gingivalis* to contribute to pancreatic cancer. It has also been suggested that OMVs may provide defence mechanisms, in that they act as decoys for bacteria to lure bacteriophages and the immune system in order to limit their effectiveness against the bacterial community (Manning and Kuehn, 2011; Reyes-Robles et al., 2018; Furuyama and Sircili, 2021). As such, prudent application of bacteriophages, such as in suppressing the bacterium in the oral cavity, may be warranted for potential therapy or prophylaxis against *P. gingivalis* in cancers. Bacteriophages also have the capacity to modulate the immune system (Van Belleghem et al., 2018; Popescu et al., 2021) which is an aspect being explored as a novel treatment for pancreatic cancer (Krishnamoorthy et al., 2020). Bacteriophages have been used to treat pancreatitis caused by multidrug resistant *Acinetobacter baumannii* (Schooley et al., 2017), indicating their capacity to treat invasive bacterial infection in this organ. To date, there have been no studies that have evaluated the use of bacteriophages for treatment of pancreatic cancer or modulation of its microbiome. Possible methods for delivery of bacteriophage have been summarised in **Figure 5**.

As shown in **Figure 3**, a range of bacteria genera have been identified with increased abundance in the pancreatic tumour microbiome. Of these, the potential exists for precision control of *Klebsiella*, as numerous bacteriophages against this genus have been

![FIGURE 5](https://example.com/figure5.png)
isolated and fully characterised (Herridge et al., 2020). *Fusobacterium* have had only one lytic bacteriophage isolated and fully characterised (Kabwe et al., 2019). Other lytic bacteriophages against *F. nucleatum* (Machuca et al., 2010) and *F. necrophorum* (Tamada et al., 1985), as well as prophages against *Fusobacterium varium* (Andrews et al., 1997) and *Fusobacterium symbiosum* (Foglesong and Markovetz, 1974), have been described but not fully characterised. Lytic bacteriophages that target *Citrobacter rodentium* and *Citrobacter freundii* have also been isolated and characterised (Chaudhry et al., 2014; Edwards et al., 2015; Hwang et al., 2015; LeSage et al., 2015; Nguyen et al., 2015; Shaw et al., 2015; Tikhé et al., 2015; Hamdi et al., 2016; Mizuno et al., 2020). For *H. influenzae* and *Haemophilus parasuis* only prophages have been isolated and characterised (Jablońska et al., 1976; Williams et al., 2002; Zehr et al., 2012; Adamczyk-Popawska et al., 2020). To date there have been no bacteriophages found against *Porphyromonas*, *Capnoctypophaga*, *Enterobacter*, *Parvimonas*, *Prevotella*, or *Selenomonas*. Bacteriophages are the most abundant organisms in the human body (Cani, 2018) and possibly in nature (Clokie et al., 2011), so efforts to isolate bacteriophages that target oncogenic bacteria are warranted. Metagenomic analysis of the phageome in the oral cavity has revealed an extensive resource that may yield suitable bacteriophages (Szafranski et al., 2019; Szafranski et al., 2021). No studies as yet have focussed on the pancreatic phageome.

CONCLUSION

We have identified some bacteria that need to be further investigated regarding their contribution to carcinogenesis in pancreatic cancer. Of these, we could only find experimental evidence that supports promotion of pancreatic cancer growth by *Porphyromonas*. There is need for more primary data to examine the role of other possible oncoc bacteria in the development and progression of pancreatic cancer. There is evidence that bacteriophages can access and treat multi-antibiotic resistant pancreatic infections. Studies into their role in pancreatic cancer or their capacity to manipulate the pancreatic tumour microbiome should accompany those elucidating the role of oncoc bacteria in these tumours. However, this will only be possible if more bacteriophages against these keystone bacteria are isolated.

AUTHOR CONTRIBUTIONS

MK and JT, conceptualization. MK, JT, and SD, data search. MK, JT, and SD, finalization of manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

Abdulkareem, A. A., Shelton, R. M., Landini, G., Cooper, P. R., and Millward, M. R. (2018). Periodontal Pathogens Promote Epithelial-Mesenchymal Transition in Oral Squamous Carcinoma Cells *In Vitro*. *Cell Adh Migr* 12, 127–137. doi: 10.1080/19338918.2017.1322253

Abul Rahaman, R., Larma, A., Hubner, R. A., Valle, J. W., and McNamara, M. G. (2021). The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. *Cancers (Basel)* 13(15), 3779. doi: 10.3390/cancers13153779

Abed, J., Maalouf, N., Manson, A. L., Earl, A. M., Parhi, L., Engmård, J. E. M., et al. (2020). Colon Cancer-Associated Fusobacterium Nucleatrum May Originate From the Oral Cavity and Reach Colon Tumors via the Circulatory System. *Front. Cell Infect. Microbiol.* 10, 400. doi: 10.3389/fcimb.2020.00400

Adamczyk-Popawska, M., Traczyk-Gasiewska, Z., Lasota, P., Kwiatek, A., and Piekarowicz, A. (2020). Haemophilus Influenzae HP1 Bacteriophage Encodes a Lytic Cystetic With a Pinholin and a Signal-Arrest-Release Endolysin. *Int. J. Mol. Sci.* 21, 4013. doi: 10.3390/ijms21140413

Adel-Khattab, D., Groeger, S., Domann, E., Chakraborty, T., Lochnit, G., and Meyle, J. (2021). Porphyromonas Gingivalis Induced Up-Regulation of PD-1 in Colon Carcinoma Cells. *Mol. Oral. Microbiol.* 36, 172–181. doi: 10.1111/omi.12332

Andrews, D. M. A., Gharbia, S. E., and Shah, H. N. (1997). Characterization of a Novel Bacteriophage in Fusobacterium Varium. *Clin. Infect. Dis.* 25, S287–S288. doi: 10.1086/516196

An, J., Kim, H., and Yang, K. M. (2020). An Aqueous Extract of a Bifidobacterium Species Induces Apoptosis and Inhibits Invasiveness of Non-Small Cell Lung Cancer Cells. *J. Microbiol. Biotechnol.* 30, 885–893. doi: 10.4014/jmb.1912.12054

Arimochi, H., Morita, K., Kataoka, K., Nakashima, S., Kukuhara, T., and Ohnishi, Y. (2006). Suppressive Effect of Clostridium Perfringens-Produced Heat-Stable Substance(s) on Proliferation of Human Colon Adenocarcinoma HT29 Cells in Culture. *Cancer Lett.* 241, 224–238. doi: 10.1016/j.canlet.2005.10.016

Asadollahi, P., Ghanavati, R., Rohani, M., Razavi, S., Esghaei, M., and Talebi, M. (2020). Anti-Cancer Effects of Bifidobacterium Species in Colon Cancer Cells and a Mouse Model of Carcinogenesis. *PloS One* 15, e0232930. doi: 10.1371/journal.pone.0232930

Audridac-Chalifour, A., Torres-Poveda, K., Bahena-Román, M., Téllez-Sosa, J., Martínez-Barnetche, J., Cortina-Ceballos, B., et al. (2016). Cervical Microbiome and Cytokine Profile at Various Stages of Cervical Cancer: A Pilot Study. *PloS One* 11, e0153274. doi: 10.1371/journal.pone.0153274

Batimovic, S., Wassef, F., Knowler, S. A., Rice, D. T. F., Stanton, C. R., Rose, J., et al. (2019). Bacteriophages in Natural and Artificial Environments. *Pathogens* 8(3), 100. doi: 10.3390/pathogens8030100

Belizario, J. E., and Napolitano, M. (2015). Human Microbiomes and Their Roles in Dysbiosis, Common Diseases, and Novel Therapeutic Approaches. *Front. Microbiol.* 6, 1050. doi: 10.3389/fmicb.2015.01050

Boursi, B., Mantani, R., Haynes, K., and Yang, Y. X. (2015). Recurrent Antibiotic Exposure may Promote Cancer Formation—Another Step in Understanding the Role of the Human Microbiota? *Eur. J. Cancer* 51, 2655–2664. doi: 10.1016/j.ejca.2015.08.015

Bray, F., Laversanne, M., Weiderpass, E., and Soerjomataram, I. (2021). The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. *Cancer* 127, 3029–3030. doi: 10.1002/cncr.33587

Brennan, C. A., and Garrett, W. S. (2019). *Fusobacterium Nucleatum* - Symbiont, Opportunist and Oncobacterium. *Nat. Rev. Microbiol.* 17, 156–166. doi: 10.1038/s41579-018-0129-6

Budynek, P., Dabrowska, K., Skaradzinski, G., and Gorski, A. (2010). Bacteriophages and Cancer. *Arch. Microbiol.* 192, 315–320. doi: 10.1007/s00203-010-0559-7

Bullman, S, Pedamallu, CS, Sicinska, E, Clancy, TE, Zhang, X, Cai, D, et al. (2017). Bullman, S and Pedamallu, CS. *Gut Microbiomes and Their Roles in Disease Progression and Therapeutic Strategies*. In *Gut Microbiomes and Their Roles in Disease Progression and Therapeutic Strategies* (eds S. Bullman, S. and C. Pedamallu). San Francisco, CA: Academic Press. 358–448. doi: 10.1126/science.aal5240

Calcino, O., Brevi, A., Cheni, M., Ferrarese, R., Garcia Perez, L., Grioni, M., et al. (2018). Microbiota-Driven Interleukin-17-Producing Cells and Eosinophils Synergize to Accelerate Multiple Myeloma Progression. *Nat. Commum.* 9, 4832. doi: 10.1038/s41467-018-07305-8

Cani, P. D. (2018). Human Gut Microbiome: Hopes, Threats and Promises. *Gut* 67, 1716–1725. doi: 10.1136/gutjnl-2018-316723

Carioli, G., Malvezzi, M., Bertuccio, P., Boffetta, P., Levi, F., La Vecchia, C., et al. (2019). European Cancer Mortality Predictions for the Year 2021 With Focus on Pancreatic and Female Lung Cancer. *Ann. Oncol.* 32, 478–487. doi: 10.1016/j.anonc.2021.01.006
