META-ANALYSIS

Current standard values of health utility scores for evaluating cost-effectiveness in liver disease: A meta-analysis

Tomohiro Ishinuki, Shigenori Ota, Kohei Harada, Masaki Kawamoto, Makoto Meguro, Goro Kutomi, Hiroomi Tatsumi, Keisuke Harada, Koji Miyanishi, Toru Kato, Toshio Ohyanagi, Thomas T Hui, Toru Mizuguchi

Tomohiro Ishinuki, Toru Mizuguchi, Department of Nursing, Surgical Sciences, Sapporo Medical University, Sapporo 0608556, Japan
Shigenori Ota, Goro Kutomi, Toru Kato, Departments of Surgery, Surgical Science and Oncology, Sapporo Medical University, Sapporo 0608543, Japan
Kohei Harada, Department of Radiology, Sapporo Medical University, Sapporo 0608543, Japan
Masaki Kawamoto, Departments of Surgery, Nemuro City Hospital, Nemuro 0870008, Japan
Makoto Meguro, Departments of Surgery, Sapporo Satozuka Hospital, Sapporo 0040811, Japan
Hiroomi Tatsumi, Department of Intensive Care Medicine, Sapporo Medical University, Sapporo 0608543, Japan
Keisuke Harada, Department of Emergency Medicine, Sapporo Medical University, Sapporo 0608543, Japan
Koji Miyanishi, Department of Medical Oncology, Sapporo Medical University, Sapporo 0608543, Japan
Toshio Ohyanagi, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo 0608556, Japan
Thomas T Hui, Departments of Surgery, Stanford University School of Medicine, Stanford, 94598, United States
Corresponding author: Toru Mizuguchi, MD, PhD, Professor, Department of Nursing, Surgical Sciences, Sapporo Medical University, S1, W17, Chuo-ku, Sapporo 0608556, Japan. tmizu@sapmed.ac.jp

Abstract

BACKGROUND
Health utility assessments have been developed for various conditions, including chronic liver disease. Health utility scores are required for socio-economic evaluations, which can aid the distribution of national budgets. However, the standard health utility assessment scores for specific health conditions are largely unknown.
AIM
To summarize the health utility scores, including the EuroQOL 5-dimensions 5-levels (EQ-5D-5L), EuroQol-visual analogue scale, short from-36 (SF-36), RAND-36, and Health Utilities Index (HUI)-Mark2/Mark3 scores, for the normal population and chronic liver disease patients.

METHODS
A systematic literature search of PubMed and MEDLINE, including the Cochrane Library, was performed. Meta-analysis was performed using the RevMan software. Multiple means and standard deviations were combined using the StatsToDo online web program.

RESULTS
The EQ-5D-5L and SF-36 can be used for health utility evaluations during antiviral therapy for hepatitis C. HUI-Mark2/Mark3 indicated that the health utility scores of hepatitis B patients are roughly 30% better than those of hepatitis C patients.

CONCLUSION
The EQ-5D-5L is the most popular questionnaire for health utility assessments. Health assessments that allow free registration would be useful for evaluating health utility in patients with liver disease.

Key Words: Quality of life; EuroQOL 5-dimensions 5-levels; Short from-36; RAND-36; Health Utilities Index-Mark

INTRODUCTION
The quality of health is an important factor when assessing medical management rather than simple survival periods[1,2]. Health utility is an important factor in medical assessments and socio-economic politics[3]. National health budgets have risen steadily in various countries, and governments need to deeply consider the need to maintain a socio-economic balance[4]. Therefore, health benefits should be compared with social costs to avoid national financial collapse.

It is difficult to quantify health quality at regular intervals[5]. We are developing wearable devices that can automatically obtain health data, including data regarding mental health. Some health utility assessments require the use of questionnaires, which are associated with low compliance and involve bothersome calculations[2,6,7]. Before launching our novel health utility assessment tool, we performed this meta-analysis in order to summarize the currently available health utility assessment tools. The most useful questionnaire for evaluating health status depending on liver disease status or sex is unclear. In addition, no universal health utility assessment values for specific liver diseases or the normal population have been reported. Therefore, we conducted a meta-analysis to estimate health utility assessment values for specific populations.

The EuroQOL 5-dimensions 5-levels (EQ-5D-5L) is the simplest instrument for evaluating health utility and has been widely translated into various languages with high reliability and validity[6,8-10]. It only involves five questions and five answering levels. The health utility scores produced by the EQ-5D-5L can be used to calculate quality-adjusted life year (QALY) values[8]. The Health Utilities Index Mark 2/Mark 3 is another instrument for evaluating health utility scores and can also be used to obtain QALY values[11]. However, the Health Utilities Index is complicated, as it involves 45 questions, which take a long time to answer. The short-form 36-item (SF-36) is also widely used to evaluate health quality, although it does not directly involve QALY evaluations[9,12,13].
There are two types of SF-36, and the copyrights to these tools belong to The RAND Corporation (Santa Monica, CA, United States)[14] and QualityMetric (Johnston, RI, United States), respectively[15]. However, most researchers do not actively consider which version they use[12]. Therefore, the exact method and results of such assessments are not always described in the literature (Table 1).

In this meta-analysis, we describe the scores obtained with various health utility indexes (HUIs) in normal healthy populations or patients with different types of liver disease (Table 2)[16-32].

MATERIALS AND METHODS

Literature search
The PICOS scheme was used to set appropriate inclusion criteria. A systematic literature search of PubMed and MEDLINE, including the Cochrane Library, was performed independently by two authors (Ishunuki T and Ota S). The search was limited to human studies whose findings were reported in English. No restrictions were placed on the type of publication, the publication date, or publication status. The search strategy was based on different combinations of words for each database. For the PubMed database, the following combination was used: (("liver"[MeSH Terms] OR "liver"[All Fields] OR "livers"[All Fields] OR "liver s"[All Fields]) AND "qol"[All Fields]) AND (1990/1/1:3000/12/12[pdat]). For the MEDLINE database, the following combination was used: [quality of life (QOL) and Liver].

Study selection
The two independent authors screened the titles and abstracts of the primary studies identified in the database search. Duplicate studies were excluded. The following inclusion criteria were employed for the meta-analysis: (1) Studies that compared QOL in patients who had liver disease; (2) Studies that compared QOL between male and female patients with liver disease; (3) Studies that reported at least one QOL outcome; and (4) If the same institute reported more than one study, only the most recent or the highest-level study was included.

Data extraction
The same two authors extracted the following primary data: (1) The questionnaires used for each QOL evaluation; (2) The first author, year of publication, and type of study; (3) The etiology of the disease and the number of times each intervention was performed; and (4) The timing of the evaluations.

Statistical analysis
Meta-analyses were performed using the RevMan software (version 5.3.; The Cochrane Collaboration). The mean differences (MD) between groups were calculated for continuous variables. The interquartile ranges of the data were transformed by dividing them by 1.35 to produce alternative standard deviation values. Multiple means and standard deviations were combined using the StatsToDo online web program (https://www.statstodo.com/index.php).

The chi-square test was used to evaluate heterogeneity, and the Cochran Q and I^2 statistics were reported. The I^2 value describes the percentage variation between studies in degrees of freedom. P values of <0.05 were considered significant.

RESULTS

EQ-5D-5L
The EQ-5D-5L has been widely investigated as a tool for evaluating general health in normal populations and patients with different stages of liver disease (Table 3)[17,18,22,25-27,30,32]. Health utility indices should be affected by age, sex, ethics, religion, and geography. However, the EQ-5D-5L produced similar utility indices for groups with different health statuses (Table 3), such as normal healthy individuals (0.8413 ± 0.1905) and hepatitis C virus (HCV)-infected patients with compensated or decompensated cirrhosis (0.8113 ± 0.2261 and 0.7903 ± 0.2182), HCV-infected patients exhibiting a sustained virologic response (SVR) (0.846 ± 0.1816), and patients with hepatocellular carcinoma 0.8127 ± 0.2084).

In general, the EQ-5D-5L produces significantly higher scores in males than in females (Figure 1A) (0.8267 ± 0.229 vs 0.7922 ± 0.239; P < 0.001). The mean total EuroQol-visual analogue scale score for the general population was found to be 79.796 ± 17.614 in two independent studies (Table 4)[26,30].

SF-36
The SF-36 consists of eight scales, including physical functioning (85.07 ± 15.40); role limitations due to physical health problems (RP)(82.50 ± 25.15); bodily pain (BP) (77.62 ± 17.55); general health perceptions...
Table 1 Current health-related outcome for liver disease

Questionnaire	Total Permission	Company/Organization
EQ-5D-5L	Five questions	The EuroQol Research Foundation.
Health Utilities Index Mark 2 or 3	45 questions	Health Utilities Inc.
36-Item Short Form Survey	36 questions	QualityMetric
	Free	The RAND Corporation

Table 2 List of previous studies and health utility assessments

Ref.	Subjects and countries	EQ-5D-5L	EQ-VAS	HUI-mark	SF-36	Type of SF-36	Others
Jenkinson et al[16]	Normal population from United Kingdom	O	Δ	Δ	O	RAND®	
Ratcliffe et al[17]	Normal population/Liver transplantation patients from United Kingdom	Δ	Δ	Δ	O	Not described	
Chong et al[18]	Normal population from Canada	O	Δ	Δ	Δ 1		
Grieve et al[19]	Population from United Kingdom	O	Δ				
Bondini et al[20]	Population from United States		Δ 1		CLDQ		
Dan et al[21]	Population from United States	O					
Björnsson et al[22]	Population from Sweden	O				SF-6D	
Hsu et al[23]	Population from Vancouver	O				v2	HQLQv2
McDonald et al[24]	Population from United Kingdom	O	Δ				
Scalone et al[25]	Population from United Kingdom	O	Δ				
Vahidnia et al[26]	Population from United States	O	Δ				
Kaishima et al[27]	Population from Japan	O	Δ				
Blanco et al[28]	Population from Spain	O	Δ				
Kesen et al[29]	HCV patients from Turkey	O				Not described	HADS
Cortesi et al[30]	Population from Italy	O					HADS
Karimi Sari et al[31]	HCV patients from Iran	O				Not described	
Zanone et al[32]	HCV patients from Italy	O					

1Modified scale excluding from the analyses.
O: The eligible study including the analyses; Δ: The excluding outcomes due to different conditions; EQ-5D-5L: EuroQol 5-dimensions 5-levels; EQ-VAS: EuroQol-visual analogue scale; HUI-mark: Health utility index mark; SF-36: Short form-36; CLDQ: Chronic liver disease questionnaire; SF-6D: Short form 6-dimensions; HQLQv2: Hepatitis Quality of Life® survey version 2; HADS: Hospital anxiety and depression scale; HCV: Hepatitis C virus.

Modified scale excluding from the analyses. O: The eligible study including the analyses; Δ: The excluding outcomes due to different conditions; EQ-5D-5L: EuroQol 5-dimensions 5-levels; EQ-VAS: EuroQol-visual analogue scale; HUI-mark: Health utility index mark; SF-36: Short form-36; CLDQ: Chronic liver disease questionnaire; SF-6D: Short form 6-dimensions; HQLQv2: Hepatitis Quality of Life® survey version 2; HADS: Hospital anxiety and depression scale; HCV: Hepatitis C virus.

(GH) (63.37 ± 14.16); vitality, energy, or fatigue (VT) (63.37 ± 14.16); social functioning (SF) (86.97 ± 15.13); role limitations due to emotional problems (RE) (83.94 ± 23.57); and general mental health (63.37 ± 14.16). Although the eligible healthy controls differed among countries and age groups, the health utility scores produced by each scale were similar (Table 5) [16,17,22,23].

Compensated liver cirrhosis vs sustained virologic response

Patients with hepatitis C had achieved an SVR exhibited significantly better health utility scores for each SF-36 scale (Figure 2) [22,29,31] and the EQ-5D-5L (Figure 1B) [18,19,22,32] than those with compensated liver cirrhosis (Table 6) [18,19,22,29,31,32]. In particular, significant differences in the scores for RP (61.5 ± 31.6 vs 73.3 ± 27.3), GH (64.8 ± 20.9 vs 74.8 ± 18.5), VT (70.5 ± 24.0 vs 78.1 ± 18.4), RE (56.8 ± 32.0 vs 68.1 ± 27.3), and the EQ-5D-5L (0.6863 ± 0.3065 vs 0.846 ± 0.1816) were seen between these groups. These results indicate that health utility indices improve by 10%-20% after patients with hepatitis C achieve an SVR.
Table 3 EuroQol 5-dimensions 5-levels

Ref.	Total	Mean	SD
Normal healthy individuals			
Ratcliffe et al[17]	3386	0.85	0.03
Chong et al[18]	1518	0.821	0.011
Björnsson et al[22]	2953	0.819	0.217
Vahidnia et al[26]	1565	0.94	0.1
Cortesi et al[30]	6800	0.915	0.107
Total	42622	0.8413	0.1905
Compensated cirrhosis with hepatitis C			
Chong et al[18]	24	0.74	0.085
Grieve et al[19]	40	0.55	0.34
Björnsson et al[22]	76	0.749	0.212
Scalone et al[25]	222	0.736	0.259
Kaishima et al[27]	20	0.824	0.106
Cortesi et al[30]	574	0.891	0.119
Zanone et al[32]	94	0.68	0.37
Total	1050	0.8113	0.2261
Decompensated cirrhosis with hepatitis C			
Chong et al[18]	9	0.66	0.2
Grieve et al[19]	64	0.45	0.24
Björnsson et al[22]	53	0.565	0.266
Kaishima et al[27]	4	0.524	0.25
Cortesi et al[30]	523	0.859	0.14
Total	653	0.7903	0.2182
Sustained virologic response			
Chong et al[18]	36	0.83	0.065
Grieve et al[19]	24	0.82	0.21
Björnsson et al[22]	52	0.792	0.209
Zanone et al[32]	91	0.89	0.18
Total	203	0.846	0.1816
Hepatocellular carcinoma			
Chong et al[18]	15	0.65	0.21
Grieve et al[19]	64	0.45	0.24
Scalone et al[25]	85	0.777	0.241
Kaishima et al[27]	14	0.75	0.057
Cortesi et al[30]	545	0.867	0.146
Total	723	0.8127	0.2084

HUI Mark-2/Mark-3

Hepatitis B and C are the main causes of viral-associated chronic liver disease (Figure 3)[20,21]. The health utility scores of hepatitis B patients were significantly better than those of hepatitis C patients (0.6312 ± 0.2867 vs 0.8186 ± 0.1886); i.e., there was a roughly 30% difference between the scores of these patients.
Table 4 EuroQol-visual analogue scale in normal healthy individuals

Ref.	Total	Mean	SD
Vahidnia et al[26]	1565	87.6	10.6
Cortesi et al[30]	6800	78	18.4
Total	8365	79.796	17.614

Figure 1 EuroQOL 5-dimensions 5-levels. A: Men vs women; B: Compensated liver cirrhosis vs sustained virologic response. EQ-5D-5L: EuroQol 5-dimensions 5-levels.

DISCUSSION

Which HUI should be used for normal populations or patients with chronic liver disease?

In this meta-analysis, we summarized the findings of previous studies examining health utility evaluations in patients with chronic liver disease. Various questionnaires have been used to evaluate health utility in different populations at different times. The EQ-5D-5L is the most popular of the questionnaires used to examine health utility scores internationally[17].

One of the concerns regarding the application of health utility scores is their sensitivity[33]. For example, the health utility scores produced by the EQ-5D-5L for patients with compensated cirrhosis and decompensated cirrhosis did not differ significantly (Table 3). On the other hand, the health utility scores for hepatitis C patients with compensated liver cirrhosis and those who achieved an SVR differed significantly according to both the SF-36 and EQ-5D-5L (Table 6). This indicated that both questionnaires are suitable for evaluating health utility in hepatitis C patients after viral elimination. Although the health utility scores derived from the EQ-5D-5L were calculated from 5 questions, the score range of the EQ-5D-5L (123.3%) was greater than that of the SF-36 (105.8%-119.2%). Therefore, the EQ-5D-5L could be suitable for evaluating health utility scores in this specific disease state. On the other hand, EQ-5D-5L-derived health utility scores are based on only five personal factors, mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Therefore, their sensitivity and any ceiling effects should be validated in each language and ethnic group.

It is well known that the prevailing subtype of viral hepatitis differs depending on the geographic region[34]. Hepatitis B is the prevailing subtype in East Asia[13], whereas hepatitis C is the most common in Western countries[35]. Both types of hepatitis can be controlled by nucleic acid analogs[36]. In this meta-analysis, the HUI scores of hepatitis C patients were roughly 30% lower than those of hepatitis B patients. The differences between hepatitis B and hepatitis C need to be investigated using the EQ-5D-5L and SF-36 in future.

The second concern regarding the use of questionnaires for health assessments relates to the number of questions in each questionnaire. The EQ-5D-5L consists of only five questions[5], whereas the other tools consist of 36[14-16] or 45[11] questions. The number of questions affects study compliance, especially in the elderly[37]. If possible, the number of questions should be minimized.
Table 5: Short form-36: Healthy controls

Ref.	Total	Mean	SD
Physical function			
Björnsson et al[22]	339	87	19
Jenkinson et al[16] M 60	681	80	22.1
Jenkinson et al[16] W 60	684	74.8	23.5
Ratcliffe et al[17]	8883	85.4	2.55
Hsu et al[23]	9367	85.8	20
Total	19954	85.07	15.40
Role physical			
Björnsson et al[22]	339	82	32
Jenkinson et al[16] M 60	717	78.8	36.1
Jenkinson et al[16] W 60	757	76.8	36.9
Ratcliffe et al[17]	9151	83.7	4.4
Hsu et al[23]	9367	82.1	33.2
Total	20331	82.50	25.15
Body pain			
Björnsson et al[22]	339	72	27
Jenkinson et al[16] M 60	724	78.8	23.6
Jenkinson et al[16] W 60	779	75	25.1
Ratcliffe et al[17]	9214	80	3.05
Hsu et al[23]	9367	75.6	23
Total	20423	77.62	17.55
General health			
Björnsson et al[22]	339	68	24
Jenkinson et al[16] M 60	707	62.9	20.3
Jenkinson et al[16] W 60	763	59	21.4
Ratcliffe et al[17]	9089	61.1	2.75
Hsu et al[23]	9367	65.8	18
Total	20265	63.37	14.16
Vitality, energy, fatigue			
Björnsson et al[22]	339	68	24
Jenkinson et al[16] M 60	707	62.9	20.3
Jenkinson et al[16] W 60	763	59	21.4
Ratcliffe et al[17]	9089	61.1	2.75
Hsu et al[23]	9367	65.8	18
Total	20265	63.37	14.16
Social function			
Björnsson et al[22]	339	88	21
Jenkinson et al[16] M 60	729	86.9	22.6
Jenkinson et al[16] W 60	783	85.9	22.6
Ratcliffe et al[17]	9219	87.8	2.8
Hsu et al[23]	9367	86.2	19.8
The last concern is about gaining permission to use such questionnaires for health utility assessments. It takes great effort to develop a questionnaire. However, health utility assessments need to be repeated continuously. In certain human health emergencies, the use of some vaccines has been allowed without patent royalties having to be paid[38]. Commercial companies that own the rights to health assessments should reconsider their policies regarding their use.

CONCLUSION

Health assessments that allow free registration would be useful for evaluating health utility in patients with liver disease. Alternatively, a portable QOL tracker could be used to perform QOL evaluations of any patient-reported outcome, and we are currently developing such a tracker.
Ishinuki T et al. Health utility scores in liver disease

Figure 2 Short from-36: Compensated liver cirrhosis vs sustained virologic response. A: Physical function; B: Role physical; C: Body pain; D: General health; E: Vitality; F: Social function; G: Role emotional; H: Mental health.

Figure 3 Health Utilities Index-Mark2 or 3: Hepatitis C vs hepatitis B. HUI: Health Utilities Index.

ARTICLE HIGHLIGHTS

Research background
The most useful questionnaire for evaluating health status depending on liver disease status or sex is unclear.

Research motivation
No universal health utility assessment values for specific liver diseases or the normal population have been reported.

Research objectives
The objective of this study was to conduct a meta-analysis to estimate health utility assessment values for specific populations in the liver disease.

Research methods
A systematic literature search was performed using PubMed and MEDLINE, including the Cochrane Library.

Research results
The short from-36 and EuroQOL 5-dimensions 5-levels (EQ-5D-5L) can be used for health utility evaluations during antiviral therapy for hepatitis C.

Research conclusions
The EQ-5D-5L is the most popular questionnaire for health utility assessments. Health assessments that allow free registration would be useful for evaluating health utility in patients with liver disease.

Research perspectives
Alternatively, a portable quality of life (QOL) tracker could be used to perform QOL evaluations of any patient-reported outcome in future.
ACKNOWLEDGEMENTS

We thank Sandy Tan and Miyako Nara for their valuable discussions and help in preparing this manuscript.

FOOTNOTES

Author contributions: Ishinuki T and Ota S conceptualized and designed the review; Ishinuki T, Harada K, Kawamoto M, and Meguro M searched for and screened the articles; Kutomi G, Tsutumi H, Harada K, and Kato T assessed the articles for eligibility; Miyanishi K and Ohyanagi T carried out the statistical analyses; Hui TT and Mizuguchi T drafted the initial manuscript; Mizuguchi T finalized the manuscript; and all of the authors reviewed and approved the final manuscript as submitted.

Supported by Grants-in-Aid from JSPS KAKENHI, No. JP 20K10404 (to Mizuguchi T) and No. JP 21K10715 (to Ishinuki T); the Hokkaido Hepatitis B Litigation Orange Fund, No. 2000666; Pfizer Health Research Foundation, No. 2000777; the Viral Hepatitis Research Foundation of Japan, No. 3039838; Project Mirai Cancer Research Grants, No. 202110251; Takahashi Industrial and Economic Research Foundation, No. 12-003-106; Daichi Sankyo Company, No. 2109540; Shinogoi and Co., No. 2109493; MSD, No. 2099412; Takeda Pharmaceutical Company, No. 2000555; Sapporo Doto Hospital, No. 2039118; Noguchi Hospital, No. 2029083; Doki-kai Tomakomai Hospital, No. 2059203; Tsuchida Hospital, No. 200092; Shinyu-kai Noguchi Hospital, No. 2029083 (to Mizuguchi T); and the Yasuda Medical Foundation, No. 28-1 (to Ishinuki T).

Conflict-of-interest statement: All authors have nothing to disclose.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist statement, and the manuscript was prepared and revised according to the PRISMA 2009 Checklist statement.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Japan

ORCID number: Tomohiro Ishinuki 0000-0003-3225-9781; Shigenori Ota 0000-0003-3123-9172; Kohei Harada 0000-0002-3245-6980; Masaki Kawamoto 0000-0002-2800-6207; Makoto Meguro 0000-0002-9170-6919; Goro Kato 0000-0003-4557-5126; Hiroomi Tsutumi 0000-0002-9688-6154; Keisuke Harada 0000-0002-7497-6191; Koji Miyanishi 0000-0002-6466-3458; Toru Kato 0000-0002-8520-1949; Toshio Ohyanagi 0000-0001-8335-3087; Thomas Hui 0000-0003-2717-3983; Toru Mizuguchi 0000-0002-8225-7461.

Corresponding Author’s Membership in Professional Societies: The Japanese Society of Gastroenterology.

S-Editor: Ma YJ
L-Editor: A
P-Editor: Ma YJ

REFERENCES

1 Donabedian A. Evaluating the quality of medical care. 1966. Milbank Q 2005; 83: 691-729 [PMID: 16279964 DOI: 10.1111/j.1468-0009.2005.00397.x]
2 Hazawa Y, Kutomi G, Shima H, Honma T, Ohmura T, Wada A, Mikami T, Hotta M, Narumi M, Ishinuki T, Kuno Y, Meguro M, Takemasa I, Okazaki M, Masuoka H, Asaishi K, Ohyangagi T, Hui TT, Mizuguchi T. The Unique Mental Impacts of Breast-Conserving Surgery and Mastectomy According to a Multi-Centered Cross Sectional Survey Conducted in Japan. Arch Breast Cancer 2020; 7: 119-126 [DOI: 10.32768/abc.202073119-126]
3 Whitehead SJ, Ali S. Health outcomes in economic evaluation: the QALY and utilities. Br Med Bull 2010; 96: 5-21 [PMID: 21037243 DOI: 10.1093/bmb/ldq033]
4 Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, Abdulle ASM, Abebe ND, Abraha RN, Abu-Raddad LJ, Abualhasan A, Adedeji IA, Advani SM, Afarideh M, Afshari M, Aghaali M, Agius D, Agrawal S, Almadi A, Ahmad E, Ahmadian E, Ahmadpour E, Ahmied MB, Akbari ME, Akinyemiju T, Ali-Al Y, AlAbdulkader AM, Alahdab F, Alam T, Alamene GM, Alemmnew BTT, Alene KA, Alinia C, Alipour V, Aljunid SM, Bakeshe FA, Almadi MAH, Almassi-Hasani A, Alsharif U, Alswaidi S, Alvis-Guzman N, Amin N, Amini E, Amin Z, Amoako Y, Anbari Z, Anber NH, Andrei CL, Anjomshooh M, Ansari F, Ansari
Appiah SCY, Arab-Zozani M, Arablooj J, Arefi Z, Arenou O, Areri HA, Artaman A, Asayesh H, Ashraf ET, Ashagre AF, Assadi R, Ataeinia B, Atalay HT, Atarov Z, Atique S, Ausloos M, Avloko-Burgos L, Avolkahpo EFGA, Awasthi A, Awoke N, Ayala Quintanilla BP, Ayano MA, Ayteke HT, Babae E, Bacha U, Badawi A, Bagherzadeh M, Bagli E, Balakrishnan S, Balouchi A, Bärmighausen TW, Battista RJ, Behzadifar M, Bekele BB, Belay YB, Belayneh YM, Berkhoff KKS, Berhanse A, Bernabe E, Beuran M, Bhakta N, Bhattacharyya K, Biaodgo B, Bijani A, Bin Sayeed MS, Birungi C, Bisignano C, Bitew H, Bjorge T, Bleyer A, Bogale KA, Bojka HA, Borzi AM, Bosetti C, Botteri F, Boulo S, Bourguignon S, Boutron-Iga J, Carvalho MT, Casado C, Castro C, Catrala-López F, Cerén F, Chabi Y, Chanis VP, Chattu VK, Chaudhari P, Chauhan NS, Chehrazi M, Chiang PP, Chichibbelli TY, Chido-Amajuoyi OG, Chimed-Ochir O, Choi JJJ, Christopher DJ, Chu DT, Constantin MM, Costa VM, Crocetti E, Crowe CS, Cupado MP, Dahlwai SMA, Damiani G, Darwish AH, Daryani A, d...
Ishinuki T et al. Health utility scores in liver disease

Kikuchi A, Koide R, Iwasaki M, Teramoto M, Satohisa S, Tamate M, Horiguchi M, Niwa N, Saito T, Mizuguchi T. Assessing quality of life using the brief cancer-related worry inventory for gynecological surgery. *World J Obstet Gynecol* 2019; 8: 1-7 [DOI: 10.5317/wjog.v8.i1.11]

Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. *Ann Med* 2001; 33: 337-343 [PMID: 11491192 DOI: 10.1080/07853901090020807]

Ishinuki T, Ota S, Harada K, Tsutsumi H, Miyaniishi K, Nagayama M, Takemasa I, Ohyanagi T, Hui TT, Mizuguchi T. Health-related quality of life in patients who have undergone liver resection: A systematic review and meta-analysis. *World J Metast Anal* 2021; 9: 88-100 [DOI: 10.13105/wjma.v9.i1.88]

Shiroiwa T, Fukuda T, Ikeda S, Igarashi A, Noto S, Saito S, Shimozuma K. Japanese population norms for preference-based measures: EQ-5D-3L, EQ-5D-5L, and SF-6D. *Qual Life Res* 2016; 25: 707-719 [PMID: 26303761 DOI: 10.1007/s11136-015-1108-2]

Younossi ZM, Boparai N, McCormick M, Price LL, Guyatt G. Assessment of utilities and health-related quality of life in patients with chronic liver disease. *Am J Gastroenterol* 2001; 96: 579-583 [PMID: 11232711 DOI: 10.1111/j.1572-0241.2001.03537.x]

Whitehurst DG, Engel L, Bryan S. Short Form health surveys and related variants in spinal cord injury research: a systematic review. *J Spinal Cord Med* 2014; 37: 128-138 [PMID: 24559417 DOI: 10.1177/1098664814536328]

de Medeiros MMD, Carletti TM, Magno MB, Maia LC, Cavalcanti YW, Rodrigues-Garcia RC. Does the institutionalization influence elderly's quality of life? *BMC Geriatr* 2020; 20: 44 [DOI: 32024470 DOI: 10.1006/bmcg.2020.01452-0]

Hays RD, Sherbourne CD, Mazel RM. The RAND 36-Item Health Survey 1.0. *Health Econ* 1993; 2: 217-227 [PMID: 8275167 DOI: 10.1002hec.47.0300653]

Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. *Med Care* 1992; 30: 473-483 [PMID: 1593914]

Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. *BMJ* 1993; 306: 1437-1440 [PMID: 8518639 DOI: 10.1116/bmj.306.6980.1437]

Ratcliffe J, Longworth L, Young T, Bryan S, Burroughs A, Buxton M. Cost-Effectiveness of Liver Transplantation Team. Assessing health-related quality of life pre- and post-liver transplantation: a prospective multicenter study. *Liver Transpl* 2002; 8: 263-270 [PMID: 11910572 DOI: 10.1053/jtlt.2002.31345]

Chong CA, Gulamhussein A, Heathcott EJ, Lilly L, Sherman M, Naglie G, Krahn M. Health-state utilities and quality of life in hepatitis C patients. *Am J Gastroenterol* 2003; 98: 630-638 [PMID: 12650799 DOI: 10.1111/j.1572-0241.2003.07332.x]

Grieve R, Roberts J, Wright M, Sweeting M, DeAngelis D, Rosenberg W, Bassedine M, Main J, Thomas H. Cost effectiveness of interferon alpha or peginterferon alpha with ribavirin for histologically mild chronic hepatitis C. *Gut* 2006; 55: 1332-1338 [PMID: 15994216 DOI: 10.1136/gut.2005.064774]

Bondini S, Kallman J, Dan A, Younossi Z, Ramsey L, Nader F, Younossi ZM. Health-related quality of life in patients with chronic liver disease. *Liver Int* 2007; 27: 1119-1125 [PMID: 17845541 DOI: 10.1111/j.1478-3231.2007.01558.x]

Dan AA, Kallman JB, Srivastava R, Younossi Z, Kim A, Younossi ZM. Impact of chronic liver disease and cirrhosis on health utilities using SF-6D and the health utility index. *Liver Transpl* 2008; 14: 321-326 [PMID: 18306356 DOI: 10.1002/lt.21376]

Björnsson E, Verbaan H, Oksanen A, Frydén A, Johansson J, Friberg S, Dalgård O, Kalaitzakis E. Health-related quality of life in patients with different stages of liver disease induced by hepatitis C. *Scand J Gastroenterol* 2009; 44: 878-887 [PMID: 19437190 DOI: 10.1080/0365552090298135]

Hsu PC, Krajden M, Yoshida EM, Anderson FH, Tomlinson GA, Krahn MD. Does cirrhosis affect quality of life in hepatitis C virus-infected patients? *Liver Int* 2009; 29: 449-458 [PMID: 19267865 DOI: 10.1016/j.jhep.2008.01.086.x]

McDonald SA, Hutchinson SJ, Palmateer NE, Allen E, Cameron SO, Goldberg DJ, Taylor A. Decrease in health-related quality of life associated with awareness of hepatitis C virus infection among people who inject drugs in Scotland. *J Hepatol* 2013; 58: 460-466 [PMID: 23149064 DOI: 10.1016/j.jhep.2012.11.004]

Scalone L, Ciampichini R, Fagiuoli G, Gardini I, Fusco F, Gaeta L, Del Prete A, Cesana G, Mantovani LG. Comparing the performance of the standard EQ-5D 3L with the new version EQ-5D 5L in patients with chronic hepatic diseases. *Qual Life Res* 2013; 22: 1707-1716 [PMID: 23192252 DOI: 10.1007/s11136-012-0318-0]

Vahidinia F, Stramer SL, Kessler D, Shaz B, Lepar G, Krysztof DE, Glynn SA, Custer B. Recent viral infection in US blood donors and health-related quality of life (HRQOL). *Qual Life Res* 2017; 26: 349-357 [PMID: 27534773 DOI: 10.1007/s11136-016-1392-3]

Kanishma T, Akita T, Ohisa M, Sakumane K, Kurisu A, Sugiyama A, Aiikata H, Chayama K, Tanaka J. Cost-effectiveness analyses of anti-hepatitis C virus treatments using quality of life scoring among patients with chronic liver disease in Hiroshima prefecture, Japan. *Hepatol Res* 2018; 48: 509-520 [PMID: 29316059 DOI: 10.1111/hepr.13053]

Blanco JR, Barrio I, Ramallem-Gomara E, Beltran MI, Ibbara V, Metola L, Sanz M, Oteo JA, Melis E, Antón L. Gender differences for frailty in HIV-infected patients on stable antiretroviral therapy and with an undetectable viral load. *PLoS One* 2019; 14: e0215764 [PMID: 31071105 DOI: 10.1371/journal.pone.0215764]

Kesen O, Kani HT, Yanartaş Ö, Aykut UE, Gök B, Gündüz F, Yilmaz Y, Özdoğan OC, Özen Ahaldah Y. Evaluation of depression, anxiety and quality of life in hepatitis C patients who treated with direct acting antiviral agents. *Turk J Gastroenterol* 2019; 30: 801-806 [PMID: 31530524 DOI: 10.1512/jg.2019.18679]

Cortesi PA, Conti S, Scalone L, Jaffé A, Ciaccio A, Okolicansy S, Rota M, Fabris L, Colledan M, Fagiuoli S, Belli LS, Cesana G, Strazzabosco M, Mantovani LG. Health related quality of life in chronic liver diseases. *Liver Int* 2020; 40: 2624-2642 [PMID: 32851764 DOI: 10.1111/liv.14647]

Karimi-Sari H, Hosseini MA, Nikjoo N, Bagheri Baghdasht MS, Alaviam SM. Patient-reported outcomes of sleep, mood and quality of life after treatment of chronic hepatitis C infection using direct-acting antiviral agents. *Clin Microbiol Infect* 2020; 26: 1093.e5-1093.e8 [PMID: 32353413 DOI: 10.1016/j.cmi.2020.04.029]
32 Zanone MM, Marinucci C, Ciancio A, Cocito D, Zardo F, Spagone E, Ferrero B, Cerruti C, Charrier L, Cavallo F, Saracco GM, Porta M. Peripheral neuropathy after viral eradication with direct-acting antivirals in chronic HCV hepatitis: A prospective study. Liver Int 2021; 41: 2611-2621 [PMID: 34219359 DOI: 10.1111/liv.15002]
33 Feng YS, Kohlmann T, Janssen MF, Buchholz I. Psychometric properties of the EQ-5D-5L: a systematic review of the literature. Qual Life Res 2021; 30: 647-673 [PMID: 33284428 DOI: 10.1007/s11136-020-02688-y]
34 Jefferies M, Rauff B, Rashid H, Lam T, Rafiq S. Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases 2018; 6: 589-599 [PMID: 30430114 DOI: 10.12998/wjcc.v6.i13.589]
35 Nainan OV, Alter MJ, Kruszen-Moran D, Gao FX, Xia G, McQuillan G, Margolis HS. Hepatitis C virus genotypes and viral concentrations in participants of a general population survey in the United States. Gastroenterology 2006; 131: 478-484 [PMID: 16890602 DOI: 10.1053/j.gastro.2006.06.007]
36 Holmes JA, Rutledge SM, Chung RT. Direct-acting antiviral treatment for hepatitis C. Lancet 2019; 393: 1392-1394 [PMID: 30765125 DOI: 10.1016/S0140-6736(18)32326-2]
37 Uchmanowicz B, Chudak A, Mazur G. The influence of quality of life on the level of adherence to therapeutic recommendations among elderly hypertensive patients. Patient Prefer Adherence 2018; 12: 2593-2603 [PMID: 30584283 DOI: 10.2147/PPA.S182172]
38 Davis BG. Could You Patent the Sun? ACS Cent Sci 2021; 7: 508-509 [PMID: 34056081 DOI: 10.1021/acscentsci.1c00377]
