Yet another way to obtain
low temperature expansions for discrete spin systems

C. Vohwinkel
Deutsches Elektronen-Synchrotron DESY, Hamburg

Abstract
I present a modification of the shadow-lattice technique, which allows one to
derive low temperature series for discrete spin models to high orders. Results are
given for the 3-d Ising model up to 64 excited bonds, for the 4-d Ising model up to
96 excited bonds and the 3-d Potts model up to 56 excited bonds.

1
Series expansions are a major tool to obtain critical properties of statistical systems and to
test Monte Carlo programs. Usually series are derived using graphical techniques, but recently
a method using direct enumeration of the relevant configurations on the lattice has been proposed [1].
Whereas the diagrammatic techniques have the disadvantage that they are hard
to port to parallel or vector machines, the direct enumeration relies heavily on fast machines,
taking full advantage of parallel architecture, but is computationally too demanding to be
implemented on smaller machines. One advantage of direct enumeration is that it is done automatically, i.e. once the program is set up it can in principle calculate the series to any given order.

In this paper I shall sketch a method which is a variant of the shadow method (see for
example [2]) and which seems to be powerful, especially for higher dimensional systems. A
detailed description will be published elsewhere [3]. Although it is a graphical technique, the
generation of the series is fully automatic, minimizing possible errors due to missing diagrams.
Using this method, existing series for the Ising and Potts model [4][5][6] are extended by more
than ten terms using 1 day of CPU-time on a personal computer. To obtain the magnetisation
and free energy for the \(d = 3 \) Ising model up to 48 excited bonds I need 43 seconds, which has
to be compared to more than a day on a Cray-YMP, which was needed in [1] to obtain the
free energy to the same order. Because the method uses an embedding which corresponds to
real configurations, the calculation of correlation functions could be added rather easily and,
based on the experience of [5], I expect an additional factor of 15 for the CPU-time needed.
The method could be reasonably well adapted to vector computers, allowing the generation of
series for various discrete models with a small amount of CPU-time.

In the next section I shall describe the proposed method using the Ising model as an example.
In section 3 the generalization to other discrete models is addressed. Finally some results are
presented.
Consider the Ising model on a \(d\)-dimensional hypercubic lattice of volume \(N\) in the presence of an external magnetic field \(h\). The spin variables on each site \(\sigma(x)\) can take on the values \(\pm 1\) and the action of the model is given by

\[
S_h = -2\kappa \sum_{<xy>} \sigma(x)\sigma(y) - h \sum_x \sigma(x),
\]

where the first sum runs over nearest neighbours.

The free energy per unit volume \(f\) is given by

\[
f(h) = -\lim_{N \to \infty} \frac{1}{N} \ln Z_h.
\]

At couplings \(\kappa \gg \kappa_c\) most of the spins are aligned even with no magnetic field. Thus one can start with a lattice of \(N\) aligned spins and treat excitations arising from groups of flipped spins. For zero magnetic field all states are doubly degenerate due to the symmetry \(\sigma \to -\sigma\). One can overcome this degeneracy by introducing a small magnetic field. With \(u = e^{-8\kappa}\) and \(y = e^{-2h}\) the partition function for \(N\) spins can be rewritten as

\[
\ln Z_N = -\frac{N}{2} \ln y - \frac{qN}{8} \ln u + \sum_{r>0} P_{r,N}(y)u^r,
\]

where the \(P_{r,N}(y)u^r\) are contributions from flipped spins.

The task of the low temperature expansion is to obtain the \(P_{r,N}(y)\), giving an expansion of thermodynamic quantities in \(u\). Because the free energy is an extensive quantity it suffices to calculate

\[
\tilde{f} = \sum_{r>0} p_r(y)u^r,
\]

where \(p_r(y)\) is the part of \(P_{r,N}(y)\) linear in \(N\).

One can divide the lattice into an even and an odd sub-lattice, depending whether the sum of coordinates for a given site is even or odd. The shadow method uses the fact that spins on odd sites do not interact with each other: If one flips a spin on an odd site, the change in the power of \(u\) is given by the number of its flipped neighbours, which are entirely on even sites. It is therefore sufficient to embed sub-configurations consisting only of spins on the even sub-lattice and note the number \(\omega(o)\) of flipped neighbours for each odd site \(o\). From now on I shall refer to odd sites as “shadows” and use the term “spin” exclusively for even sites. We can break up the free energy into contributions \(f_{s,t}\) coming from \(s\) flipped spins and \(t\) flipped shadows:

\[
\tilde{f} = \sum_{s,t} f_{s,t}.
\]

Because the even and the odd sub-lattice are symmetric, one must get the same result when interchanging flipped spins and flipped shadows:

\[
f_{s,t} = f_{t,s}.
\]

This property is referred to as code-balance. The advantage of the shadow method is that one has to embed approximately only half the spins with little overhead for the bookkeeping of the \(\omega(o)\). In practice one saves less CPU-time than expected, because usually all configurations up
to a given number \(s\) of spins are generated. The resulting series are correct up to the lowest order one obtains with \(s + 1\) spins. Most of the \(s\)-spin contributions have a degree higher than that and are thus generated in vain. To give an example: only 1 out of 113636 (or even more) 8-spin diagrams is needed to calculate the \(d = 4\) Ising model series up to order 32.

Here I propose to use code-balance in conjunction with predetermining the lowest degree of a diagram in order to generate only those diagrams which are actually needed for a given maximum order \(l_{\text{max}}\) in \(u\). Because code balance is employed one needs to find all diagrams \(M\) which will give non-zero contributions \(f_{s,t}(M)\) with \(s \leq t\) and an order in \(u\) less than or equal to \(l_{\text{max}}\). Contributions \(f_{s,t}\) with \(s > t\) are given by code-balance.

Let me briefly review the steps necessary to construct a series: A configuration on a lattice will consist of one or more clusters of flipped spins where the different clusters are not joined by nearest-neighbour bonds, but the spins within a cluster are connected among themselves. The configurations are described by connectivity matrices. Because the shadow method is used, only the spins on even sites are entered into the connectivity matrix. An entry in the connectivity matrix describes whether two spins have 0, 1 or 2 shadows in common. Let me call a matrix describing \(s\) spins an \(s\)-matrix. It is impractical to embed a configuration consisting of more than one cluster because there will be of the order \(N^c\) different relative positions for \(c\) clusters. Instead one constructs only connectivity matrices which correspond to a single cluster and determines in a second step the number of ways two or more of such matrices can be put on the lattice.

The construction of the connectivity matrices can be done recursively: One starts with the (trivial) matrix for one spin and adds another spin, which must be connected to the first spin by a non-zero entry in the connectivity matrix. Other spins are then added in such a way that each new spin is connected to at least one spin of the old matrix.

Having constructed a connectivity matrix, one can embed it on the lattice in order to find its embedding number and its code (that is the set \(\{\omega(o)\}\) for all shadows).

The embedding number of two clusters on the lattice is the product of the embedding numbers of the two clusters (modulo symmetry factors) minus the number of embeddings where the two clusters are positioned in such a way that they actually form one cluster. Only the second term is of interest because the first term is \(\sim N^2\) and does therefore not contribute to the free energy. Instead of trying to figure out when two clusters overlap, one can work the way backwards and determine how often a single cluster can be split into two or more clusters.

As said above, one needs to consider only configurations with \(s \leq t\). Consequently I define the degree of an \(s\)-matrix \(M\) as the minimum order in \(u\) of its contributions \(f_{s,t}(M)\) with \(t \geq s\). The calculation of the minimum degree can be performed easily if the code of the matrix is known.

Because all the matrices considered are finite one can show that in each matrix there is at least one spin which can be removed without increasing the degree of the matrix and without disconnecting the matrix into more than one cluster. Turning this around, all required \((s + 1)\)-matrices can be constructed by adding a spin\(^1\) to \(s\)-matrices, and the \((s + 1)\)-matrices will have at least the degree of the \(s\)-matrix they were constructed from. This allows us to discard immediately any \(s\)-matrices which have a degree higher than \(l_{\text{max}}\). This in turn will prevent many \((s + 1)\)-diagrams of degree \(> l_{\text{max}}\) from being generated and will save a large amount of computational effort. For some \(s = s_{\text{max}}\) no matrices with degree less than or equal to \(l_{\text{max}}\) are produced when adding another spin. At this point all connectivity matrices have been constructed.

\(^1\)The conditions this spin has to fulfill will be given elsewhere.
As was mentioned earlier I take a single cluster apart in order to obtain disconnected diagrams. Also for this procedure one can show that the degree of the resulting diagram is at least the same as the degree of the diagram one uses as starting point.

Using these two observations one is able to construct the required series without generating unnecessary matrices or partitionings.

Despite using code balance to construct the series, it can still serve to check the calculation: A matrix which contributes to the order u^k of $f_{s,t}$ with $s \geq t$ is guaranteed to be among the constructed matrices if

$$k \leq l_{\text{max}} - (s - t)(d - 1).$$

(7)

This allows one to check $f_{t,s}$ against $f_{s,t}$ for orders k bounded by eq. (7).

I performed the code balance test on series where some diagrams or some partitionings were deliberately missing. In all cases the series did not fulfill the code balance, giving confidence in the reliability of this test. But, as obvious from eq. (7), the highest $(d - 1)$ orders of a series cannot be checked.

3

As an example of another discrete model let me consider the 3-state Potts model on a d-dimensional lattice with N sites. The action reads:

$$S_h = -\kappa \sum_{<xy>} \delta(p(x), p(y)) - h \left(\sum_x \delta(p(x), 1) - \frac{1}{3} N \right)$$

(8)

with $p(x) \in \{1, 2, 3\}$.

Again one starts with a ground state where all spins are aligned with the external magnetic field. Using $u = \exp(-\kappa)$, $y = \exp(-h)$, the free energy for N spins can be rewritten as

$$f = \frac{2}{3} N \ln y + \frac{qN}{2} \ln u - \sum P_{l,r,N} y^{l+r} u^l,$$

(9)

where the $P_{l,r,N}$ are configurations with l left-pointing ($p(x) = 2$) spins and r right-pointing ($p(x) = 3$) spins.

The expansion is done similarly to the Ising model. One only has to insert another step which selects a subset of the flipped spins to be left-pointing. The shadow method can be used as well, but instead of noting for each shadow the number of flipped neighbours, one has to note ω_l, the number of left-pointing and ω_r, the number of right-pointing neighbours.

The minimum degree for a given s-matrix can be achieved by aligning all flipped spins, for example letting them point to the left. In this case the degree is equal to the one for the Ising model3. Therefore the set of matrices is identical to the one for the Ising model. As in the Ising model, the series can be checked by code balance.

4

The number of matrices contributing for a given degree of the series are given in table 1. The time needed on a personal computer doing about 12 MIPS is given in the last row of the table. Memory requirements were below 3Mbyte. For the Potts model the time needed was 300 sec for

2Up to a factor which comes from the different definitions of u.

4
\(l_{max} = 48 \) and \(6775 \) sec for \(l_{max} = 56 \). This is about a factor 6 more than for the corresponding Ising model.

Although the time needed for the \(d=3 \) Ising model is of the order of a day, a further extension of the series seems rather hard with this method. Even if one assumes a 1000 MIPS machine, I would expect 1 day of CPU time to go up to \(u^{36} \) and a year for \(u^{40} \).

The expansion gives the free energy and all susceptibilities at the same time, but I shall give only the magnetisation

\[
v = \langle \sigma(0) \rangle |_{h=0}
\]

(10)

for the \(d = 3, 4 \) Ising model and the \(d = 3 \) Potts model (tables 2, 3, 4) in this report. Further results and an analysis of the series will be published elsewhere [3] or are available by email from the author.

Acknowledgements

I would like to thank Peter Weisz for helpful discussions.

References

1. M. Creutz, Phys. Rev. B43 (1991) 10659.

2. C. Domb, “Ising Model”, in Phase transitions and critical phenomena, vol. 3, eds. C. Domb, M. S. Green (Academic Press, London, 1976).

3. C. Vohwinkel, in preparation.

4. G. Bhanot, M. Creutz, J. Lacki, Phys. Rev. Let. 69 (1992), 1841.

5. C. Vohwinkel, P. Weisz, Nucl. Phys. B374 (1992) 647.

6. A. J. Gutman in Lattice 90, Capri, Nucl. Phys. B (Proc. Suppl.) 17 (1990) 328.
Table 1: Number of connected diagrams for given dimension, maximum degree and number of spins. Diagrams with embedding number zero are not included. The last row gives the CPU time (≈ wall-clock time) needed. Note that the series with a smaller l_{max} for a given dimension are not a prerequisite for the series with the largest l_{max}, but are listed for demonstration purposes.

$n \ \backslash \ l_{\text{max}}$	$d = 3$	$d = 4$				
	20 24 28 32	32 48				
1	1 1 1 1	1 1				
2	2 2 2 2	2 2				
3	5 5 5 5	5 5				
4	25 25 25 25	26 26				
5	114 117 117 117	134 134				
6	136 817 823 823	201 1071				
7	11 1994 6332 6343	1 10010				
8	2 689 26319 56200	1 113636				
9	67 20797 316462	442220				
10	13 5885 489566	78367				
11	702 241691	2424				
12	98 65554	48				
13	2 10431					
14	1650					
15	57					
16	7					
t[sec]	2.0	43	1360	91000	2.5	50000

Table 2: Magnetisation $v = \sum_i v_i u^i$ for the $d = 3$ Ising model

i	v_i	i	v_i	i	v_i	i	v_i
0	1	9	-792	17	-9205800	25	-144655483440
1	0	10	2148	18	30371124	26	488092130664
2	0	11	-7716	19	-101585544	27	-1650000819068
3	-2	12	23262	20	338095596	28	5583090702798
4	0	13	-79512	21	-1133491188	29	-18918470423736
5	-12	14	252054	22	3794908752	30	64167341172984
6	14	15	-846628	23	-12758932158	31	-217893807812346
7	-90	16	2753520	24	42903505030	32	740578734923544
8	192						
Table 3: Magnetisation $v = \sum_i v_i u^i$ for the $d = 4$ Ising model

i	v_i	v_i	v_i	v_i	v_i	
0	1	-1824	25	129304000	37	15255028712400
1	0	6672	26	107955904	38	-4516841179848
2	0	-9216	27	-1194988848	39	37715130731968
3	0	-15522	28	2988132104	40	189905139915462
4	-2	103920	29	-1295881792	41	-854318113944656
5	0	-219240	30	-16000351200	42	1385743813707512
6	0	-6640	31	58541360096	43	1495234729403168
7	-16	1433114	32	-74808889446	44	-14211533765551580
8	18	432	33	-161492842096	45	34480173277650448
9	0	401504	34	1010237004872	46	-1092506839033224
10	-168	16249856	35	-2065384405984	47	-202854191914872688
11	384	-7665022	36	-389570701738	48	714978709717419746
12	-266					

Table 4: Magnetisation $v = \sum_i v_i u^i$ for the $d = 3$ Potts model

i	v_i	v_i	v_i	v_i	v_i	
0	2/3	-180	29	2153016	43	-27015116172
1	0	318	30	-792218	44	-31628035554
2	0	432	31	-8867580	45	98446988808
3	0	-1320	32	935124	46	143499949662
4	0	-1992	33	34889512	47	-353956661016
5	0	2760	34	63834	48	-64558433882
6	-2	9368	35	-130265472	49	1271653865928
7	0	-14460	36	-39322372	50	2769960888510
8	0	-35280	37	507892056	51	-4398383060152
9	0	36680	38	239776590	52	-1184592653964
10	-12	134568	39	-1940344524	53	14827768507104
11	-12	-108516	40	-1297972266	54	49906450655776
12	28	-609692	41	7120754760	55	-4863595747320
13	0	370500	42	6805163432	56	-206168758520142
14	-90					

Table 3: Magnetisation $v = \sum_i v_i u^i$ for the $d = 4$ Ising model

Table 4: Magnetisation $v = \sum_i v_i u^i$ for the $d = 3$ Potts model