Research Article

Well-Posedness and Stability Result of the Nonlinear Thermodiffusion Full von Kármán Beam with Thermal Effect and Time-Varying Delay

Abdelbaki Choucha,1 Djamel Ouchenane,2 Salah Mahmoud Boulaaras3,4 Bahri Belkacem Cherif3,5 and Mohamed Abdalla6,7

1Laboratory of Operator Theory and PDEs: Foundations and Applications, Department of Mathematics, Faculty of Exact Sciences, University of El Oued, Algeria
2Laboratory of Pure and Applied Mathematics, Amar Telidji Laghouat University, Algeria
3Department of Mathematics, College of Sciences and Arts, Qassim University, Ar Rass, Saudi Arabia
4Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Algeria
5Preparatory Institute for Engineering Studies in Sfax, Tunisia
6Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
7Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

Correspondence should be addressed to Salah Mahmoud Boulaaras; s.boularas@qu.edu.sa, Bahri Belkacem Cherif; bahi1968@yahoo.com, and Mohamed Abdalla; moabdalla@kku.edu.sa

Received 5 March 2021; Revised 19 March 2021; Accepted 22 March 2021; Published 5 April 2021

Academic Editor: Qifeng Zhang

Copyright © 2021 Abdelbaki Choucha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we consider a new full von Kármán beam model with thermal and mass diffusion effects according to the Gurtin-Pinkin model combined with time-varying delay. Heat and mass exchange with the environment during thermodiffusion in the von Kármán beam. We establish the well-posedness and the exponential stability of the system by the energy method under suitable conditions.

1. Introduction and Preliminaries

In this paper, we are concerned with the following problem:

\[
\begin{align*}
\begin{cases}
\dfrac{\partial^2 w}{\partial t^2} - d_1 \left(u_x + \frac{1}{2} (u_x)^2 \right) u_t + d_2 w_{xxxx} + \mu_1 w_t + \mu_2 w(x, t - \tau(t)) &= 0, \\
\dfrac{\partial^2 u}{\partial t^2} - d_t \left(u_x + \frac{1}{2} (u_x)^2 \right) u_t - \delta_1 u_x - \delta_2 P &= 0,
\end{cases}
\end{align*}
\]

where

\[
(x, \sigma, t) \in (0, L) \times \mathbb{R}_+ \times (0, \infty).
\]

Here, \(\tau(t) > 0 \) represents the time-varying delay, and \(d_1, d_2, \delta_1, \delta_2, c, d, r, \) and \(\mu_1 \) are positive constants; \(\mu_2 \) is a real number, and \(\beta_1 \) and \(\beta_2 \) are the relaxation functions, with the initial data

\[
\begin{align*}
\begin{cases}
\begin{aligned}
\omega(x, 0) &= \omega_0(x), \\
\omega_t(x, 0) &= \omega_1(x), \\
u(x, 0) &= \nu_0(x),
\end{aligned}
\end{cases}
\end{align*}
\]

(1)
\[u_t(x, 0) = u_1(x), \]
\[\theta(x, 0) = \theta_0(x), \]
\[P(x, 0) = P_0(x), \]
\[w_\tau(x, t - \tau(0)) = f_0(x, t - \tau(0)), \]
where \((x, t) \in (0, L) \times (0, \tau(0)), \)

and Neumann–Dirichlet boundary conditions
\[
\begin{align*}
\omega(x, t) &= u(x, t) = P(x, t) = 0, \quad x = 0, L, \forall t \geq 0, \\
w_\tau(x, t) &= \theta(x, t) = 0, \quad x = 0, L, \forall t \geq 0.
\end{align*}
\]

The case of time-varying delay in the wave equation has been studied recently by Nicaise et al. [1]; they proved the exponential stability under the condition
\[
\mu_2 < \sqrt{1 - \nu d},
\]
where \(d \) is a constant that satisfies\n\[
\tau'(t) \leq d < 1, \quad \forall t > 0.
\]

For the wave equation with a time-varying delay, in [1], the authors consider the system
\[
\begin{align*}
\begin{cases}
\frac{\partial u}{\partial t} - \Delta u &= 0, \\
u(x, t) &= 0, \\
\frac{d u}{d \nu}(x, t) &= \mu_1 u_t(x, t) + \mu_2 w_\tau(x, t - \tau(t)),
\end{cases}
\end{align*}
\]
where the time-varying delay \(\tau(t) > 0 \) satisfies
\[
\begin{align*}
0 &\leq \tau(t) \leq \overline{\tau}, \quad \forall t > 0, \\
\tau'(t) &\leq 1, \quad \forall t > 0, \\
\tau(t) &\in W^{2, \infty}(0, T], \quad \forall T > 0.
\end{align*}
\]

They proved the exponential stability under suitable conditions.

The purpose of this work is to study problem (1)–(5), with a delay term appearing in the control term at the first equation, introducing the time-varying delay term \(\beta_1 \omega_\tau(x, t - \tau(t)) \); thermal and mass diffusion effects make the problem different from those considered in the literature (see [2–30]).

This paper is organized as follows: in the rest of this section, we put the preliminaries necessary for problem (1); in Section 2, we establish the well-posedness. As for Section 3, we prove the exponential stability result by the energy method and Lyapunov function.

In order to prove the existence of a unique solution of problem (1)–(5), we introduce the new variable
\[
z(x, \rho, t) = u_\tau(x, t - \tau(t) \rho).
\]

Then, we obtain
\[
\begin{align*}
\begin{cases}
\tau(t) z_\tau(x, \rho, t) + (1 - \tau'(t) \rho) z_\rho(x, \rho, t) &= 0, \\
z(x, 0, t) &= u_\tau(x, t).
\end{cases}
\end{align*}
\]

And it is more convenient to work in the history space setting by introducing the so-called summed past history of \(\theta \) and \(P \) defined by (see [31–36])
\[
\begin{align*}
\eta'(\sigma) &= \int_0^\sigma \theta(t - \zeta) d\zeta, \\
v'(\sigma) &= \int_0^\sigma P(t - \zeta) d\zeta, \quad (t, \sigma) \in [0, \infty) \times \mathbb{R}_+.
\end{align*}
\]

Differentiating (14), and (14), we get
\[
\begin{align*}
\begin{cases}
\eta'(\sigma) + \eta''(\sigma) &= \theta(t), \\
v'(\sigma) + v''(\sigma) &= P(t),
\end{cases}
\end{align*}
\]
with the boundary and initial conditions
\[
\begin{align*}
\eta'(0) &= v'(0) = 0, \quad t \geq 0, \\
\eta(0) &= \eta_0(\sigma), \quad v(0) = v_0(\sigma), \quad \sigma \geq 0.
\end{align*}
\]

We set
\[
\begin{align*}
\eta_0(\sigma) &= \int_0^\sigma \theta_0(r) dr, \\
v_0(\sigma) &= \int_0^\sigma \rho_0(r) dr, \quad \sigma \in \mathbb{R}_+.
\end{align*}
\]

Concerning the memory kernels \(\beta_1 \) and \(\beta_2 \), we set
\[
\begin{align*}
\beta(\sigma) &= -\beta_1'(\sigma), \\
\lambda(\sigma) &= -\beta_2'(\sigma).
\end{align*}
\]

Assuming \(\beta_1(\infty) = \beta_2(\infty) = 0 \), then from (14), we infer
\[
\begin{align*}
\int_0^\infty \beta_1(\sigma) \theta(t - \sigma) d\sigma &= -\int_0^\infty \beta_1'(\sigma) \eta'(\sigma) d\sigma, \\
\int_0^\infty \beta_2(\sigma) P(t - \sigma) d\sigma &= -\int_0^\infty \beta_2'(\sigma) v'(\sigma) d\sigma,
\end{align*}
\]
with the initial and boundary conditions
\begin{align*}
&(x, \sigma, \rho, t) \in (0, L) \times \mathbb{R}_+ \times (0, 1) \times (0, \infty), \\
\phi(x, \sigma) = \phi_0(x), \quad \psi(x, \sigma) = \psi_0(x, \sigma), \\
\tau(t) = (t, t^2) + (1 - t^2) \rho = 0, \\
\tau(t) = 0, \quad \rho = 0, \\
\phi(x, 0) = \phi_0(x), \quad \psi(x, 0) = \psi_0(x, \sigma), \\
\phi(x, \sigma) = \phi_0(x, \sigma), \quad \psi(x, \sigma) = \psi_0(x, \sigma), \\
(\phi, \psi) \in (0, L) \times \mathbb{R}_+ \times (0, 1) \times (0, \infty), \\
\forall (x, \rho, t) \in (0, L) \times (0, 1) \times (0, \infty) \times (0, \infty), \\
\end{align*}

where the function \(\tau(t) \) satisfies (7), (11), and the condition
\[0 < \tau_0 < \tau(t) < \tau, \quad \forall t > 0. \]

In this paper, we establish the well-posedness and prove the exponential stability by using the variable of Kato under some restrictions and assumptions:

\((H1) \). The symmetric matrix \(\Lambda \) is positive definite, where
\[
\Lambda = \begin{pmatrix} c d \\ d r \end{pmatrix}. \tag{27}
\]

That is, \(|\Lambda| = cr - d^2 > 0 \) implies that
\[
\frac{d}{c} < \xi < \frac{r}{d}. \tag{29}
\]

Thus, Young's inequality leads to
\[
2d \int_0^L \theta \phi dx + \frac{d}{\xi} \int_0^L \theta^2 dx + \frac{1}{\tau} \int_0^L \tau^2 dx > 0. \tag{30}
\]

(\(H2 \)). The symmetric matrix \(\Lambda \) is positive definite, where
\[
\beta, \lambda \in C^1(\mathbb{R}_+) \cap L^1(\mathbb{R}_+),
\]
\[
\beta(\sigma), \lambda(\sigma) \geq 0, \quad \beta'(\sigma), \lambda'(\sigma) \leq 0, \quad \forall \sigma \in \mathbb{R}_+,
\]
\[
\beta'(\sigma) + \alpha_1 \beta(\sigma) \leq 0, \quad \lambda'(\sigma) + \alpha_2 \lambda(\sigma) \leq 0, \quad \text{for some} \ \alpha_1, \alpha_2 > 0, \forall \sigma \in \mathbb{R}_+.
\]

Let \(f \) be a memory kernel satisfying the assumptions (31) and (32).

Now, we consider the weighted Hilbert spaces
\[
\mathcal{M}_f = L^2(\mathbb{R}_+, H^1_0(0, L))
\]
\[
= \left\{ \phi : \mathbb{R}_+ \to H^1_0(0, L) \mid \int_0^L \int_0^\infty f(\sigma) \phi_x^2(\sigma) d\sigma dx < \infty \right\},
\]

equipped with the inner product
\[
<\phi, \psi >_{\mathcal{M}_f} = \int_0^L \int_0^\infty f(\sigma) \phi_x^2(\sigma) \psi_x^2(\sigma) d\sigma dx, \tag{34}
\]
and the norm
\[\|\Phi\|_\mathcal{M}_f^2 = \langle \Phi, \Phi \rangle_{\mathcal{M}_f} = \int_0^L \int_0^\infty f(\sigma) \Phi_x^2(\sigma) d\sigma dx. \] \hspace{1cm} (35)

We also introduce the linear operator \(T \) on \(\mathcal{M}_f \) defined by
\[T \Phi = -\Phi_x, \quad \Phi \in \mathcal{D}(T), \] \hspace{1cm} (36)
with
\[\mathcal{D}(T) = \{ \Phi \in \mathcal{M}_f | \Phi_x \in \mathcal{M}_f, \Phi(0) = 0 \}. \] \hspace{1cm} (37)

where \(\Phi_x \) is the distributional derivative of \(\Phi \) with respect to the internal variable \(\sigma \), and then, the operator \(T \) is the infinitesimal generator of a \(C_0 \)-semigroup of contractions. Following Ref. [39], there holds
\[\langle T \Phi, \Phi \rangle_{\mathcal{M}_f} = \langle -\Phi_x, \Phi \rangle_{\mathcal{M}_f} = \frac{1}{2} \int_0^\infty f(\sigma) \frac{d}{d\sigma} \int_0^\infty \Phi_x^2(\sigma) d\sigma d\sigma, \quad \forall \Phi \in \mathcal{D}(T). \] \hspace{1cm} (38)

Integration by parts yields
\[\int_0^\infty f(\sigma) \frac{d}{d\sigma} \int_0^\infty \Phi_x^2(\sigma) d\sigma d\sigma = f(\sigma) \int_0^\infty \Phi_x^2(\sigma) d\sigma \bigg|_0^\infty - \int_0^\infty f'(\sigma) \int_0^\infty \Phi_x^2(\sigma) d\sigma d\sigma. \] \hspace{1cm} (39)

Hence, from (31), we obtain
\[\langle T \Phi, \Phi \rangle_{\mathcal{M}_f} = \frac{1}{2} \int_0^\infty f'(\sigma) \int_0^\infty \Phi_x^2(\sigma) d\sigma d\sigma \leq 0. \] \hspace{1cm} (40)

As a direct consequence, we deduce from (32) and (40) that
\[\langle T \eta, \eta \rangle_{\mathcal{M}_f^2} = \frac{1}{2} \int_0^\infty \beta'(\sigma) \int_0^\infty \eta_x^2(\sigma) d\sigma d\sigma \leq -\frac{\alpha_1}{2} \int_0^\infty \eta_x^2(\sigma) d\sigma d\sigma, \]
\[\langle T \nu, \nu \rangle_{\mathcal{M}_f^2} = \frac{1}{2} \int_0^\infty \lambda'(\sigma) \int_0^\infty \nu_x^2(\sigma) d\sigma d\sigma \leq -\frac{\alpha_2}{2} \int_0^\infty \nu_x^2(\sigma) d\sigma d\sigma, \] \hspace{1cm} (41)

with the domain
\[\mathcal{D}(L_f) = \{ \Phi \in \mathcal{M}_f | \int_0^\infty f(\sigma) \Phi_x(\sigma) d\sigma \in L^2(0, L), \Phi(0) = 0 \}. \] \hspace{1cm} (43)

2. Well-Posedness

In this section, we give sufficient conditions that guarantee the well-posedness of this problem. Let
\[U = (w, w_1, u, u_1, \theta, \eta', P, \nu', z)^T. \] \hspace{1cm} (44)

For the sake of simplicity, we write \(\eta = \eta'(\sigma) \) and \(\nu = \nu'(\sigma) \) and the new dependent variables \(\varphi = \omega_t \) and \(\psi = u_t \); then, (21)–(23) can be written as
\[\begin{cases} U' = \mathcal{A}(t) U + \mathcal{F}(U), \quad U(0) = (w_0, w_1, u_0, u_1, \theta_0, \eta_0, P_0, \nu_0 f_0(t, -\rho \tau(0)))^T, \end{cases} \] \hspace{1cm} (45)

with the linear problem
\[\begin{cases} U' = \mathcal{A}(t) U, \quad U(0) = (w_0, w_1, u_0, u_1, \theta_0, \eta_0, P_0, \nu_0 f_0(t, -\rho \tau(0)))^T, \end{cases} \] \hspace{1cm} (46)

where the time-varying operator \(\mathcal{A} \) is defined by
\[\mathcal{A}(t) = \begin{pmatrix} \varphi & -d_3 w_{xxxx} - \mu_1 \varphi - \mu_z z(x, t) \\ \psi & \rho_d \end{pmatrix}, \]
\[\begin{pmatrix} \omega \\ \varphi \\ u \\ \psi \\ \theta \\ \eta \\ p \\ \nu \\ z \end{pmatrix} = \begin{pmatrix} \varphi \\ \psi \\ d_1 u_{xx} + \delta_1 \theta_x + \delta_2 P_x \\ \frac{1}{\alpha_1} \left[(d \delta_2 - r \delta_1) \psi_{xx} - r \delta_1 \eta + d \delta_2 \nu \right] \\ \theta + T \eta \\ -\frac{1}{\alpha_2} \left[(d \delta_1 - c \delta_2) \psi_{xx} + d \delta_1 \eta - c \delta_2 \nu \right] \\ P + T \nu \\ \frac{\rho' - 1}{\tau(t)} z_\rho \end{pmatrix}. \] \hspace{1cm} (47)
Theorem 1. Let (7), (11), and (25) be satisfied and assume that (26)–(31) hold. Then, for all \(U_0 \in \mathcal{D}(\mathcal{A}(0)) \), there exists a unique solution \(U \) of problem (21)–(23) satisfying
\[
U \in C([0,+\infty), \mathcal{D}(\mathcal{A}(0)) \cap C^1([0,+\infty), \mathcal{H}).
\]

In order to prove Theorem 1, we will use the variable norm technique developed by Kato in [40]. The following theorem is proved in [40].

Theorem 2. Assume that

(1) \(\mathcal{D}(\mathcal{A}(0)) \) is a dense subset of \(\mathcal{H} \)

(2) \(\mathcal{D}(\mathcal{A}(t)) = \mathcal{D}(\mathcal{A}(0)), \forall t > 0 \)

(3) For all \(t \in [0, T] \), \(\mathcal{A}(t) \) generates a strongly continuous semigroup on \(\mathcal{H} \) and the family \(\mathcal{A} = \{ \mathcal{A}(t): t \in [0, T] \} \) is stable with stability constants \(C \) and \(m \) independent of \(t \); i.e., the semigroup \((S_t(s))_{s \geq 0} \) generated by \(\mathcal{A}(t) \) satisfies
\[
\| S_t(s) u \|_{\mathcal{H}} \leq C e^{ms} \| u \|_{\mathcal{H}}, \quad \forall u \in \mathcal{H}, \ s \geq 0.
\]

(4) \(\mathcal{D}(\mathcal{A}(t)) \cap L^\infty((0, T], B(\mathcal{D}(\mathcal{A}(0)), \mathcal{H})) \) is the space of equivalent classes of essentially bounded, strongly measurable functions from \([0, T] \) into the set \(B(\mathcal{D}(\mathcal{A}(0)), \mathcal{H}) \) of bounded operators from \(\mathcal{D}(\mathcal{A}(0)) \) into \(\mathcal{H} \).

Then, problem (46) has a unique solution
\[
U \in C([0, T], \mathcal{D}(\mathcal{A}(0))) \cap C^1([0, T], \mathcal{H}),
\]
for any initial datum in \(\mathcal{D}(\mathcal{A}(0)) \).

Proof. To prove Theorem 1, we use the method in [11] with the necessary modification.

(1) First, we show that \(\mathcal{D}(\mathcal{A}(0)) \) is dense in \(\mathcal{H} \).

Let \(\mathbf{F} = (f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_{10}) \in \mathcal{H} \) be orthogonal to all elements of \(\mathcal{D}(\mathcal{A}(0)) \) with respect to the inner product \(\langle \cdot, \cdot \rangle_{\mathcal{H}} \):
\[
0 = \langle U, \mathbf{F} \rangle_{\mathcal{H}} = \int_0^1 \{ \phi \dot{\psi} + d_1 u_x \ddot{u} + \psi \dot{\phi} + d_2 w_{xx} \ddot{w} \} \, dx \\
+ \int_0^1 \frac{\rho}{2} (\Lambda(\theta, P) - \Lambda(\theta, \tilde{P})) \, dx \\
+ \langle \eta, \tilde{\eta} \rangle_{\mathcal{A}} + \langle \nu, \tilde{\nu} \rangle_{\mathcal{A}},
\]

with the existence and the uniqueness in the following result.

Theorem 1. Let (7), (11), and (25) be satisfied and assume that (26)–(31) hold. Then, for all \(U_0 \in \mathcal{D}(\mathcal{A}(0)) \), there exists a unique solution \(U \) of problem (21)–(23) satisfying
\[
U \in C([0,+\infty), \mathcal{D}(\mathcal{A}(0)) \cap C^1([0,+\infty), \mathcal{H}).
\]
And let \(U = (w, 0, 0, 0, 0, 0, 0, 0)^T \); then, we obtain from (55) that
\[
\int_0^L w_x f_{1xx} dx = 0. \tag{58}
\]

It is obvious that \(U = (w, 0, 0, 0, 0, 0, 0, 0)^T \in \mathcal{D}(\mathscr{A}(0)) \) only if \(w \in H^4(0, L) \cap H^2_0(0, L) \) is dense in \(H^2_0(0, L) \), with respect to the inner product
\[
< g, h >_{H^2_0(0, L)} = \int_0^L g_x h_{xx} dx. \tag{59}
\]

We get \(f_1 = 0 \). By the same ideas as above, we can also show that \(f_3 = 0 \).

For \(u \in \mathcal{D}(\mathscr{A}(t)) \), we get from (55) that
\[
\int_0^L u_x f_{3xx} dx = 0, \tag{60}
\]
and by the density of \(\mathcal{D}(\mathscr{A}(t)) \) in \(H^2_0(0, L) \), we obtain \(f_3 = 0 \).

For \(\psi \in \mathcal{D}(\mathscr{A}(t)) \), we get from (55) that
\[
\int_0^L \psi f_{4x} dx = 0, \tag{61}
\]
and by the density of \(\mathcal{D}(\mathscr{A}(t)) \) in \(H^1(0, L) \), we obtain \(f_4 = 0 \).

Next, let \(U = (0, 0, 0, 0, 0, 0, 0, 0)^T \); then, we obtain from (55) that
\[
\int_0^L \theta f_5 dx = 0. \tag{62}
\]

It is obvious that \(U = (0, 0, 0, 0, 0, 0, 0, 0)^T \in \mathcal{D}(\mathscr{A}(0)) \) only if \(\theta \in L^2(0, L) \) is dense in \(L^2(0, L) \); we get \(f_5 = 0 \); for \(\eta \in \mathcal{M}_\theta \), we get from (55) that
\[
\int_0^L \int_0^\infty \beta(\sigma) \eta f_{\sigma x} d\sigma dx = 0, \tag{63}
\]
which gives \(f_6 = 0 \). Similarly, for \(P \) and \(v \). This completes the proof of (1).

(2) With our choice, \(\mathcal{D}(\mathscr{A}(t)) \) is independent of \(t \); consequently,
\[
\mathcal{D}(\mathscr{A}(t)) = \mathcal{D}(\mathscr{A}(0)), \quad \forall t > 0. \tag{64}
\]

(3) Now, we show that the operator \(\mathscr{A}(t) \) generates a \(C_0 \)-semigroup in \(\mathcal{H} \) for a fixed \(t \). We define the time-dependent inner product on \(\mathcal{H} \):
\[
< U, \bar{U} >_t = \int_0^L \{ \phi \bar{\phi} + d_1 u_x \bar{u}_x + \psi \bar{\psi} + d_2 w_{xx} \bar{w}_{xx} \} dx
+ \xi(t) \int_0^L z(x, \rho, t) \bar{z}(x, \rho, t) d\rho dx
+ \langle \Lambda(\theta, P), (\bar{\theta}, \bar{P}) \rangle^T + < \eta, \bar{\eta} >_{\mathcal{M}_\theta} + < v, \bar{v} >_{\mathcal{M}_v}, \tag{65}
\]
where \(\xi \) satisfies
\[
\frac{|\mu_1|}{\sqrt{1 - d}} \leq \xi \leq \left(2\mu_1 - \frac{|\mu_2|}{\sqrt{1 - d}} \right), \tag{66}
\]
thanks to hypothesis (26).

Let us set
\[
\kappa(t) = \left(\frac{\tau(t)^2 + 1}{2\tau(t)} \right)^{1/2}. \tag{67}
\]

In this step, we prove the dissipativity of the operator \(\mathscr{A}(t) = \mathscr{A}(t) - \tau(t)I \).

For a fixed \(t \) and \(U = (w, \varphi, u, \psi, \theta, \eta, P, v, z)^T \in \mathcal{D}(\mathscr{A}(t)) \), we have
\[
< \mathcal{D}(\mathscr{A}(t)) U, U >_t = -\mu_1 \int_0^L \varphi^2 dx - \mu_2 \int_0^L \varphi z(x, 1, t) dx
+ < T\eta, \bar{\eta} >_{\mathcal{M}_{\theta}} + < Tv, \bar{v} >_{\mathcal{M}_v}
- \xi \int_0^L \int_0^1 \left(1 - \tau'(t) \right) \bar{z}(x, \rho, t) z(x, \rho, t) d\rho dx. \tag{68}
\]

Observe that
\[
\int_0^L \int_0^1 \left(1 - \tau'(t) \right) \bar{z}(x, \rho, t) z(x, \rho, t) d\rho dx
= \frac{1}{2} \int_0^L (1 - \tau'(t) \rho) \frac{d}{d\rho} z^2 d\rho dx
= \frac{\tau'(t)}{2} \int_0^L z^2(x, \rho, t) d\rho dx
+ \frac{1}{2} \int_0^1 \left\{ z^2(x, 1, t) \left(1 - \tau'(t) \right) - z^2(x, 0, t) \right\} d\rho dx,
\]
\[
< T\eta, \bar{\eta} >_{\mathcal{M}_{\theta}} + < Tv, \bar{v} >_{\mathcal{M}_v}
= \frac{1}{2} \int_0^\infty \rho'(\sigma) \int_0^1 \eta^2(\sigma) d\sigma + \frac{1}{2} \int_0^\infty \lambda'(\sigma) \int_0^1 \psi^2(\sigma) d\sigma
\leq -\frac{\alpha_1}{2} \| \eta(\sigma) \|^2_{\mathcal{M}_{\theta}} - \frac{\alpha_2}{2} \| \psi(\sigma) \|^2_{\mathcal{M}_v}, \tag{69}
\]
whereupon
\[
<\mathcal{A}(t)U, U>_I = -\mu_1 \int_0^1 \varphi^2(x, 1, t)dx - \frac{\alpha_1}{2} \|\eta(\sigma)\|_{H^\beta}^2 - \frac{\alpha_2}{2} \|\nu(\sigma)\|_{H^\lambda}^2 - \frac{\xi}{2} \int_0^1 \|z^2(x, \rho, t)\|dpdx \nabla t \int_0^1 \|y^2(x, 1, t)\|dx + \frac{\xi}{2} \int_0^1 \varphi^2 dx.
\]

By using Young’s inequality and (7), we get
\[
<\mathcal{A}(t)U, U>_I \leq \left(-\mu_1 + \left|\frac{\mu_2}{2 \sqrt{1-d}} + \frac{\xi}{2}\right\|0^1 \varphi^2 dx + \left|\frac{\mu_2}{2 \sqrt{1-d}} + \frac{\xi}{2}\right\|0^1 \varphi^2 dx \right. \left. - \frac{\alpha_1}{2} \|\eta(\sigma)\|_{H^\beta}^2 - \frac{\alpha_2}{2} \|\nu(\sigma)\|_{H^\lambda}^2 + \kappa(t) < U, U>_I, \right.
\]

under condition (66) which allows to write
\[
-\mu_1 + \left|\frac{\mu_2}{2 \sqrt{1-d}} + \frac{\xi}{2}\right\|0^1 \varphi^2 dx \left|\frac{\mu_2}{2 \sqrt{1-d}} + \frac{\xi}{2}\right\|0^1 \varphi^2 dx - \frac{\alpha_1}{2} \|\eta(\sigma)\|_{H^\beta}^2 - \frac{\alpha_2}{2} \|\nu(\sigma)\|_{H^\lambda}^2 \leq 0.
\]

(72)

Consequently, the operator \(\mathcal{A}(t) = \mathcal{A}(t) - \kappa(t)I\) is dissipative.

Now, we prove the subjectivity of the operator \(I - \mathcal{A}(t)\) for fixed \(t > 0\).

Let \(\{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}^T \in \mathcal{H}\); we seek \(U = (w, \varphi, u, \psi, \theta, \eta, \mu, \nu, z)^T \in \mathcal{D}(\mathcal{A}(t))\) solution of the following system:
\[
\begin{align*}
 w - \varphi &= f_1, \\
 \varphi + d_2 w_{xxxx} + \mu_1 \varphi + \mu_2 z(.,1,t) &= f_2, \\
 u - \psi &= f_3, \\
 \psi - d_1 u_{xx} - \delta_1 \theta_x - \delta_2 P &= f_4, \\
 \alpha_1 \theta + (d\delta_2 - r\delta_1) \psi_x - rL_\theta \eta + DL_\lambda \nu &= \alpha_1 f_5, \\
 \eta - \theta - T \eta &= f_6, \\
 \alpha_2 P + (d\delta_1 - c\delta_2) \psi_x + dL_\theta \eta - cL_\lambda \nu &= \alpha_2 f_7, \\
 \nu - P - T \nu &= f_8, \\
 z &= \left(\frac{\tau'(t) \rho - 1}{\tau(t)}\right) f_9.
\end{align*}
\]

(73)

Suppose that we have found \(w\) and \(u\). Then,
\[
\begin{align*}
 w - \varphi &= f_1, \\
 u - \psi &= f_3.
\end{align*}
\]

(74)

Furthermore, by (73), we can find \(z\) as
\[
\begin{align*}
 z(x,0) &= \varphi(x), \quad x \in (0, L).
\end{align*}
\]

(75)

Following the same approach as in [1], we obtain, by using the last equation in (73),
\[
\begin{align*}
 z(x, \rho) &= \varphi(x) e^{-\rho \tau(t)} + \tau(t) e^{-\rho \tau(t)} \int_0^1 f_9(x,y) e^{\tau(t) y} dy, \quad \text{if } \tau'(t) = 0, \\
 z(x, \rho) &= \varphi(x) \varphi'(t) + \varphi'(t) \left[\int_0^1 \tau(t) f_9(x,y) e^{\tau(t) y} dy \right], \quad \text{if } \tau'(t) \neq 0,
\end{align*}
\]

(76)

where \(\eta\rho(t) = (\tau(t) / \tau'(t)) \log (1 - \tau'(t) \rho)\). Whereupon, from (74), we obtain
\[
\begin{align*}
 z(x, \rho) &= \varphi(x) e^{-\rho \tau(t)} - f_1 e^{-\rho \tau(t)} + \tau(t) e^{-\rho \tau(t)} \int_0^1 f_9(x,y) e^{\tau(t) y} dy, \quad \text{if } \tau'(t) = 0, \\
 z(x, \rho) &= \varphi(x) \varphi'(t) - f_1 \varphi'(t) + \varphi'(t) \left[\int_0^1 \tau(t) f_9(x,y) e^{\tau(t) y} dy \right], \quad \text{if } \tau'(t) \neq 0.
\end{align*}
\]

(77)
Integrating (73)\textsubscript{6} and (73)\textsubscript{8} with \(\eta(0) = \nu(0) = 0\), we have

\[
\begin{align*}
\eta(\sigma) &= (1 - e^{-\sigma})\theta + \int_0^\sigma e^{-\sigma} f_6(s) ds, \\
\nu(\sigma) &= (1 - e^{-\sigma})P + \int_0^\sigma e^{-\sigma} f_8(s) ds.
\end{align*}
\]

(78)

Substituting (73)\textsubscript{1,3,6,8,9} into the others, we obtain the following system. Now, we have to find \(w, u, \theta, \) and \(P\) as solutions of the equations:

\[
\begin{align*}
w + d_2 w_{xxxx} + \mu_1 \phi + \mu_2 z(.,1,t) &= f_2 + f_3 + \beta f_1, \\
u - d_1 u_{xx} - \delta_1 \theta_x - \delta_2 P_x &= f_4 + f_3, \\
\alpha_1 \theta - r C_\beta \theta_{xx} + d C_\lambda P_{xx} + (d \delta_2 - r \delta_1) u_x &= h_3, \\
\alpha_2 P + d C_\beta \theta_{xx} - c C_\lambda P_{xx} + (d \delta_1 - c \delta_1) u_x &= h_4.
\end{align*}
\]

(79)

Solving (79), we get

\[
\begin{align*}
\mu_1 w + d_2 w_{xxxx} &= h_1, \\
u - d_1 u_{xx} - \delta_1 \theta_x - \delta_2 P_x &= h_2, \\
\alpha_1 \theta - r C_\beta \theta_{xx} + d C_\lambda P_{xx} + (d \delta_2 - r \delta_1) u_x &= h_3, \\
\alpha_2 P + d C_\beta \theta_{xx} - c C_\lambda P_{xx} + (d \delta_1 - c \delta_1) u_x &= h_4,
\end{align*}
\]

where

\[
\begin{align*}
\mu_3 &= 1 + \mu_1 + e^{-\tau(t)}, \\
h_1 &= f_2 + (1 + \mu_1)f_2 - \mu_2 z_0, \\
h_2 &= f_4 + f_3, \\
h_3 &= \alpha_1 f_5 + (d \delta_2 - r \delta_1)f_{3x} + r \int_0^\infty \beta(\sigma) \int_0^\sigma e^{-\sigma} f_{6xx}(s) ds d\sigma - d \int_0^\infty \lambda(\sigma) \int_0^\sigma e^{-\sigma} f_{8xx}(s) ds d\sigma, \\
h_4 &= \alpha_2 f_7 + (d \delta_1 - c \delta_2)f_{5x} - d \int_0^\infty \beta(\sigma) \int_0^\sigma e^{-\sigma} f_{6xx}(s) ds d\sigma + c \int_0^\infty \lambda(\sigma) \int_0^\sigma e^{-\sigma} f_{8xx}(s) ds d\sigma.
\end{align*}
\]

(81)

From (77), we have

\[
z(x,1) = \begin{cases} w(x)e^{-\tau(t)} + z_0(x), & \text{if } \tau'(t) = 0, \\
w(x)e^{\nu(t)} + z_0(x), & \text{if } \tau'(t) \neq 0,
\end{cases}
\]

(82)

where \(x \in (0, L)\) and

\[
z_0(x) = \begin{cases} -f_1 e^{-\nu(t)} + \tau(t)e^{\nu(t)} \int_0^1 f_6(x,y) e^{\nu(t)} dy, & \text{if } \tau'(t) = 0, \\
-f_1 e^{\nu(t)} + e^{\nu(t)} \int_0^1 \tau(t) f_6(x,y) e^{\nu(t)} dy, & \text{if } \tau'(t) \neq 0.
\end{cases}
\]

(83)

It is clear from the above formula that \(z_0\) depends only on \(f_1, f_9\). Consequently, problem (80) is equivalent to

\[
\zeta\left(\left(w, u, \theta, P, \left(\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P}\right)\right)\right) = \Gamma\left(\left(\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P}\right)\right),
\]

(84)

where the bilinear form \(\zeta : [H^2_0(0,L) \times H^1_0(0,L)] \times L^2(0,L) \times L^2(0,L)]^2 \to \mathbb{R}\) and the linear form \(\Gamma : [H^2_0(0,L) \times H^1_0(0,L)] \times L^2(0,L) \times L^2(0,L)] \to \mathbb{R}\) are defined by

\[
\zeta\left(\left(w, u, \theta, P, \left(\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P}\right)\right)\right) = \int_0^L (\mu_1 \omega \omega + d_2 \omega_{xxxx} \omega_{xx} + u \omega + d_1 \omega \omega) dx + a_1 \int_0^L \theta dx
\]

\[
+ \int_0^L \left(\mu_3 w \omega + d_2 w_{xxxx} \omega_{xx} + u u + d_1 u \omega \right) dx + a_1 \int_0^L \theta dx
\]

\[
+ \int_0^L \left(\mu_1 \theta \theta + d_2 \theta_{xx} \theta_{xx} + u \theta + d_1 \theta \theta \right) dx + c_1 \int_0^L \theta \theta dx
\]

\[
- d_2 \int_0^L \theta \theta_{xx} + c_1 \int_0^L \theta \theta_{xx} dx
\]

\[
+ \int_0^L \left(\mu_3 P \tilde{P} \tilde{P} + d_2 P_{xxxx} \tilde{P}_{xx} + u \tilde{P} + d_1 \tilde{P} \tilde{P} \right) dx
\]

\[
+ \int_0^L \left(\mu_1 \tilde{P} \tilde{P} + d_2 \tilde{P}_{xx} \tilde{P}_{xx} + u \tilde{P} + d_1 \tilde{P} \tilde{P} \right) dx + c_1 \int_0^L \tilde{P} \tilde{P} dx
\]

\[
+ \int_0^L \left(\mu_3 \tilde{P} \tilde{P} + d_2 \tilde{P}_{xx} \tilde{P}_{xx} + u \tilde{P} + d_1 \tilde{P} \tilde{P} \right) dx + c_1 \int_0^L \tilde{P} \tilde{P} dx.
\]

(85)
Now, for \(\mathcal{H}_1 = H^1_0(0, L) \times H^1_0(0, L) \times L^2(0, L) \times L^2(0, L) \),
equipped with the norm
\[
\| (w, u, \theta, P) \|_{\mathcal{H}_1}^2 = \| w \|_{2}^2 + \| u \|_{2}^2 + \| \theta \|_{2}^2 + \| P \|_{2}^2,
\]
then, we have
\[
B((w, u, \theta, P), (w, u, \theta, P)) = \mu_3 \int_0^t \omega^2 \, dx + d_2 \int_0^t u_\omega^2 \, dx + d_1 \int_0^t u^2 \, dx \\
+ \alpha_1 \int_0^t \theta^2 \, dx + \alpha_2 \int_0^t P^2 \, dx + rC_\beta \int_0^t P^2 \, dx \\
- (dC_\beta + dC_\lambda) \int_0^t \theta \, dx + (d \delta_2 - r \delta_1) \int_0^t u \, dx \\
+ (d \delta_1 - c \delta_2) \int_0^t u \, dx + \int_0^t \left(\delta_1 \theta + \delta_2 P \right) u \, dx.
\]

(87)

Then, for some \(M_0 > 0 \),
\[
B((w, u, \theta, P), (w, u, \theta, P)) \geq M_0 \| (w, u, \theta, P) \|_{\mathcal{H}_1}^2.
\]

(88)

Thus, \(B \) is coercive.

By Cauchy-Schwarz’s and Poincaré’s inequalities, we obtain
\[
B\left((w, u, \theta, P), \left(\widetilde{u}, \widetilde{u}, \widetilde{\theta}, \widetilde{P} \right) \right) \leq M_1 \| (w, u, \theta, P) \|_{\mathcal{H}_1} \| (\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P}) \|_{\mathcal{H}_1}^2.
\]

(89)

Similarly, we get
\[
\Gamma\left(\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P} \right) \leq M_2 \| \tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P} \|_{\mathcal{H}_1}^2.
\]

(90)

Consequently, applying the Lax-Milgram theorem, problem (84) admits a unique solution \((w, u, \theta, P) \in \mathcal{H}_1 \), for all \((\tilde{w}, \tilde{u}, \tilde{\theta}, \tilde{P}) \in \mathcal{H}_1 \). Applying the classical elliptic regularity, it follows from (80) that \((w, u, \theta, P) \in \mathcal{H}_1 \).

Therefore, the operator \(I - \mathcal{A}(t) \) is surjective for any fixed \(t > 0 \). Since \(\kappa(t) > 0 \) and
\[
I - \mathcal{A}(t) = (1 + \kappa(t))I - \mathcal{A}(t),
\]
we deduce that the operator \(I - \mathcal{A}(t) \) is also surjective for any \(t > 0 \).

To complete the proof of (3), it suffices to show that
\[
\frac{\| U \|_{L^2}}{\| U \|_{L^2}} \leq e^{c(t - t_0)\nu^2}, \quad \forall t, s \in [0, T],
\]

(92)

where \(U = (w, \phi, u, \psi, \eta, P, \nu, \zeta)^T \) and \(||.||_{L^2} \) is the norm associated with the inner product (56).

For \(t, s \in [0, T] \), we have from (56) that
\[
\| U \|_{L^2}^2 - \| U \|_{L^2}^2 e^{c(t - t_0)\nu^2} \\
= \left(1 - e^{c(t - t_0)\nu^2} \right) \int_0^T \left\{ \phi^2 + d_2 \omega^2 + d_1 u^2 + \psi^2 \right\} \, dt \\
+ \left(1 - e^{c(t - t_0)\nu^2} \right) < \Lambda(\theta, P)^T, (\theta, P)^T > \\
+ \left(1 - e^{c(t - t_0)\nu^2} \right) \left\{ \| \theta \|_{L^2}^2 + \| v \|_{L^2}^2 \right\}
\]

+ \frac{\hat{x}}{(\tau(t) - \xi(s))e^{c(t - t_0)\nu^2}} \int_0^T z(x, \rho, t) \, d\rho.
\]

(93)

It is clear that \((1 - e^{c(t - t_0)\nu^2}) \leq 0 \). Now, we will prove that \((\tau(t) - \tau(s))e^{c(t - t_0)\nu^2} \leq 0 \) for \(c > 0 \). To do this, we have
\[
\tau(t) = \tau(s) + \tau'(a)(t - s),
\]

(94)

where \(a \in (s, t) \), which implies
\[
\frac{\tau(t)}{\tau(s)} \leq 1 + \frac{\tau(a)}{\tau(s)} |t - s|.
\]

(95)

By using (11), we deduce that
\[
\frac{\tau(t)}{\tau(s)} \leq 1 + \frac{c}{T_0} |t - s| \leq e^{c(t - t_0)\nu^2},
\]

(96)

which proves (92); therefore, this completes the proof of (3).

(4) It is clear that
\[
\frac{d}{dt} \mathcal{A}(t) U = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
(\tau'(t) e^{-\xi(t)}(t) \rho - \tau'(t) \left(\tau(t) \right) - 1) z_p
\end{pmatrix}
\]

(97)

Then, by (11) and (25), (4) holds exactly as in [1]. Consequently, from the above analysis, we deduce that the problem
\[
\begin{align*}
\dot{U}_1 = \mathcal{A}(t) U_t, \\
U_1(0) = U_0,
\end{align*}
\]

(98)
has a solution \(\bar{U} \in C([0, \infty), \mathcal{H}) \), and if \(U_0 \in \mathcal{D}(\mathcal{A}(0)) \), then
\[
U(t) = e^{\mathcal{A}(t)} \bar{U}(t),
\]
(100)
with \(\mathcal{A}(t) = \int_0^t k(s)ds \); then, by using (98), we have
\[
U_i(t) = \kappa(t)e^{\mathcal{A}(t)} \bar{U}(t) + e^{\mathcal{A}(t)} \bar{U}(t) = \kappa(t)\mathcal{A}(t) \bar{U}(t) + e^{\mathcal{A}(t)} \bar{A}(t) \bar{U}(t) = e^{\mathcal{A}(t)}(\mathcal{A}(t) \bar{U}(t) + \bar{A}(t) \bar{U}(t)).
\]
(101)

Consequently, \(U(t) \) is the unique solution of (46).

3. General Decay

In this section, we shall prove the stability of system (21)–(23) using the multiplier technique under the assumptions (26)–(31).

We define the energy functional \(E \) by
\[
E(t) = \frac{1}{2} \int_0^t \left(w^2 + u_t^2 + d_1 w_{x_2}^2 + d_1 \left(u_x + \frac{1}{2} w_{x_1}^2 \right)^2 + \theta^2 + rP^2 \right) dx
\]
\[\quad + d \theta, \quad P > + \frac{1}{2} \|\eta\|_{\mathcal{H}^\beta}^2 + \frac{1}{2} \|\mathcal{V}\|_{\mathcal{H}^\beta}^2 + \frac{1}{2} \int_0^t \tau(t) z^2(x, \rho, t) d\rho dx,
\]
(107)
where
\[
\frac{|\mu_2|}{\sqrt{1 - d}} \leq \xi \leq \left(2\mu_1 - \frac{|\mu_2|}{\sqrt{1 - d}} \right).
\]
(108)

The following lemma shows that the energy is decreasing.

Lemma 3. Assume that (26)–(31) hold and the hypotheses (7), (11), and (25) are satisfied. Then, for \(\forall C \geq 0 \),
\[
E'(t) \leq -C \left(\int_0^t w_t^2 dx + \int_0^t z^2(x, I, t) dx \right) - \frac{\alpha_1}{4} \|\eta\|_{\mathcal{H}^\beta}^2 + \frac{1}{4} \int_0^t \beta' (\sigma) \|\eta_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma - \frac{\alpha_1}{4} \|\mathcal{V}\|_{\mathcal{H}^\beta}^2 + \frac{1}{4} \int_0^t \lambda' (\sigma) \|\mathcal{V}_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma \leq 0.
\]
(109)

Proof. Multiplying the equations of (21) by \(w_t, u_t, \theta, \eta, P, v \), and \(\xi z \), respectively, then by integration by parts, we get
\[
\frac{1}{2} \frac{d}{dt} \int_0^t \left(w_t^2 + u_t^2 + d_1 w_{x_2}^2 + d_1 \left(u_x + \frac{1}{2} w_{x_1}^2 \right)^2 + \theta^2 + rP^2 \right) dx
\]
\[+ \frac{d}{dt} \left(d \theta, \quad P > + \frac{1}{2} \|\eta\|_{\mathcal{H}^\beta}^2 + \frac{1}{2} \|\mathcal{V}\|_{\mathcal{H}^\beta}^2 + \frac{1}{2} \int_0^t \tau(t) z^2(x, \rho, t) d\rho dx \right)
\]
\[= -\mu_1 \int_0^t w_t^2 dx - \mu_2 \int_0^t w_t z(x, 1, t) dx
\]
\[+ \frac{1}{2} \int_0^t \beta' (\sigma) \|\eta_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma + \frac{1}{2} \int_0^t \lambda' (\sigma) \|\mathcal{V}_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma
\]
\[+ \frac{1}{2} \int_0^t \tau'(t) z^2(x, \rho, t) d\rho dx
\]
\[= -\mu_1 \int_0^t w_{x_2}^2 dx - \mu_2 \int_0^t w_t z(x, 1, t) dx
\]
\[+ \frac{1}{2} \int_0^t \beta' (\sigma) \|\eta_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma + \frac{1}{2} \int_0^t \lambda' (\sigma) \|\mathcal{V}_x(\sigma)\|_{\mathcal{H}^\beta}^2 d\sigma
\]
\[+ \xi \int_0^t \left(1 - \tau'(t) \rho \right) z(x, \rho, t) z_x(x, \rho, t) d\rho dx
\]
\[\leq -\mu_1 \int_0^t w_{x_2}^2 dx - \mu_2 \int_0^t w_t z(x, 1, t) dx - \frac{\alpha_1}{4} \|\eta\|_{\mathcal{H}^\beta}^2 - \frac{\alpha_1}{4} \|\mathcal{V}\|_{\mathcal{H}^\beta}^2,
\]
From (110), we find

\[
E'(t) \leq -\left(\mu_1 - \frac{\xi}{2}\right) \int_0^L w_2^2 dx + \left(\frac{\xi r(t)}{2} - \frac{\xi}{2}\right) \int_0^L z^2(x, 1, t) dx
- \mu_2 \int_0^L \left(w_1 z(x, 1, t) dx - \frac{\alpha_1}{4} \|\eta_1\|^2_{L^2} - \frac{\alpha_2}{4} \|\eta_2\|^2_{H^1}\right) + \frac{1}{4} \int_0^{\infty} \beta'(\sigma) \|\eta_1(\sigma)\|^2 d\sigma + \frac{1}{4} \int_0^{\infty} \lambda'(\sigma) \|\nu_1(\sigma)\|^2 d\sigma.
\]

(111)

Using Young’s inequality, we have

\[
-\mu_2 \int_0^L w_1 z(x, 1, t) dx \leq \frac{|\mu_2|}{2} \int_0^L w_1^2 dx + \frac{|\mu_2|}{2} \int_0^L z^2(x, 1, t) dx.
\]

(112)

Inserting (112) into (111), we get

\[
E'(t) \leq -\left(\mu_1 - \frac{\xi}{2} - \frac{|\mu_2|}{2\sqrt{1-d}}\right) \int_0^L w_2^2 dx + \left(\frac{\xi r(t)}{2} - \frac{\xi}{2}\right) \int_0^L z^2(x, 1, t) dx
- \frac{\alpha_1}{4} \|\eta_1\|^2_{L^2} - \frac{\alpha_2}{4} \|\eta_2\|^2_{H^1} + \frac{1}{4} \int_0^{\infty} \beta'(\sigma) \|\eta_1(\sigma)\|^2 d\sigma + \frac{1}{4} \int_0^{\infty} \lambda'(\sigma) \|\nu_1(\sigma)\|^2 d\sigma.
\]

(113)

Then, by using (7), (28)–(31), and (108), we obtain (109).

In the following, we state and prove our stability result; we introduce and prove several lemmas.

Lemma 4. The functional

\[
F_1(t) = \int_0^L \left(u_1 u + \frac{1}{2} w_1 w + \frac{\mu_1}{4} w_2^2 \right) dx,
\]

satisfies, for any \(\varepsilon_1 > 0 \),

\[
F_1'(t) \leq -d_1 \int_0^L \left(u_1 + \frac{1}{2} w_1^2 \right)^2 dx - d_2 \int_0^L w_1^2 dx + \int_0^L u_1^2 dx
+ \frac{1}{2} \int_0^L w_2^2 dx + 2 \varepsilon_1 \int_0^L w_1^2 dx + \frac{\delta_1^2}{4 \varepsilon_1} \int_0^L \theta^2 + \frac{\delta_2^2}{4 \varepsilon_1} \int_0^L p^2
+ c \int_0^L z^2(x, 1, t) dx.
\]

(115)

Proof. By differentiating \(F_1 \), then by integration by parts, we obtain

\[
F_1'(t) = \int_0^L \left(u_1^2 + \frac{1}{2} w_1^2 - \frac{1}{2} d_1 \int_0^L \left(u_1 + \frac{1}{2} w_1^2 \right) w_1^2 dx
- d_1 \int_0^L \left(u_1 + \frac{1}{2} w_1^2 \right) \theta_1 dx - d_2 \int_0^L w_1^2 dx + d_2 \int_0^L \theta_1^2 + \delta_2 \int_0^L p^2
+ c \int_0^L \frac{M_2^2}{2} dx.
\]

(116)

In what follows, using Young’s and Poincaré’s inequalities, we obtain (115).

Then, we have the following lemma.

Lemma 5. The functional

\[
F_2(t) := \int_0^L u_1 \Phi dx,
\]

where \(-\delta_1 \Phi_x = \theta + dP \), with \(\Phi(0) = \Phi(L) = 0 \), satisfies

\[
F_2'(t) \leq -\int_0^L u_1^2 dx + \varepsilon_2 \left(u_1 + \frac{1}{2} w_1^2 \right)^2 dx + c \|\eta_1\|^2_{H^1}
+ \left(1 + \frac{1}{\varepsilon_2} \right) \int_0^L \theta^2 dx + c \left(1 + \frac{1}{\varepsilon_2} \right) \int_0^L p^2 dx.
\]

(118)

Proof. For direct computations, we have

\[
F_2'(t) = \int_0^L u_1 \Phi dx + \int_0^L u_1 \Phi_x dx
\]

(119)
Using Young’s inequality and integrating by parts, we obtain
\[
\begin{align*}
 f_1(t) & \leq \varepsilon_2 \int_0^t \left(u_x + \frac{1}{2} u_x^2 \right)^2 \, dx + c \left(1 + \frac{1}{\varepsilon_2} \right) \int_0^t \rho^2 \, dx \\
 & \quad + c \left(1 + \frac{1}{\varepsilon_2} \right) \int_0^t u_x^2 \, dx.
\end{align*}
\]
(120)

\[
\begin{align*}
 f_2(t) &= - \frac{1}{\delta_1} \int_0^t u_t \phi_x \left(\int_0^\infty \beta(\sigma) \eta_x(\sigma) d\sigma + \delta_1 u_t \right) \, dx \\
 & \quad - \frac{1}{\delta_1} \int_0^t u_t \left(\int_0^\infty \beta(\sigma) \eta_x(\sigma) d\sigma + \delta_1 u_t \right) \, dx \\
 & \leq - \frac{1}{\delta_1} \int_0^t u_t^2 \, dx + c \| \eta \|_{p,0}^2.
\end{align*}
\]
(121)

From (120) and (121), we obtain (118).

Lemma 6. Assuming that assumptions (31) and (32) hold, the functional
\[
F_4(t) = - \int_0^\infty \beta(\sigma) \int_0^L (\theta + d\rho) \eta_x d\sigma - \int_0^\infty \lambda(\sigma) \int_0^L (d\theta + r\rho) \eta_x d\sigma,
\]
(122)

satisfies
\[
\begin{align*}
 F_4'(t) & \leq - \kappa \int_0^L \rho^2 \, dx - \bar{\kappa} \int_0^L \rho^2 \, dx + \beta_c \| \eta \|_{p,0}^2 + \lambda_c \| \eta \|_{p,0}^2 \\
 & \quad + c \left(\frac{1}{\varepsilon_3} \right) \int_0^t u_t^2 \, dx - C_{\rho_0} \int_0^\infty \beta'(\sigma) \| \eta_x(\sigma) \|_{p,0}^2 \, d\sigma,
\end{align*}
\]
(123)

where
\[
\kappa = \frac{1}{2} \left(\beta_c - (\beta_c + \lambda_c) \frac{d}{\zeta} \right),
\]
\[
\bar{\kappa} = \frac{1}{2} \left(\lambda_c r - (\mu_c + \lambda_c) d \zeta \right),
\]
(124)

and \(\zeta > 0 \) satisfies (29).

Proof. We take the derivative of \(F_3 = \mathcal{G}_1 + \mathcal{G}_2 \), which gives
\[
\begin{align*}
 \mathcal{G}'_3(t) &= - \int_0^\infty \beta(\sigma) \int_0^L (\theta + d\rho) \eta_x d\sigma \\
 & \quad - \int_0^\infty \beta(\sigma) \int_0^L (\theta + d\rho) \eta_x d\sigma \\
 & \quad - \int_0^\infty \beta(\sigma) \int_0^L (\theta + d\rho) \eta_x d\sigma \\
 & \quad + d \int_0^\infty \beta(\sigma) \int_0^L \rho \eta_x d\sigma - c \int_0^\infty \beta(\sigma) \int_0^L \rho \eta_x d\sigma \\
 & \quad + \left(\frac{d}{\varepsilon_3} \right) \int_0^t u_t^2 \, dx + c \int_0^\infty \beta(\sigma) \int_0^\infty \beta'(\sigma) \| \eta_x(\sigma) \|_{p,0}^2 \, d\sigma \\
 & \quad + \left(\beta_c + (\varepsilon_3) \left\| \eta \right\|_{p,0}^2 \right).
\end{align*}
\]
(125)

The first term on the right-hand side of (125) is
\[
\begin{align*}
 - \int_0^\infty \beta(\sigma) \int_0^L (\theta + d\rho) \eta x d\sigma \\
 = - \int_0^\infty \beta(\sigma) \int_0^L \eta x d\sigma - \int_0^\infty \beta(\sigma) \eta x d\sigma \\
 & \quad - \int_0^\infty \left(\int_0^\infty \beta(\sigma) \eta x d\sigma \right) \left(\int_0^\infty \beta(\sigma) \eta x d\sigma \right) dx,
\end{align*}
\]
(126)

and can be controlled in the following way:
\[
\begin{align*}
 \left| - \delta_1 \int_0^\infty \beta(\sigma) \int_0^L \eta x d\sigma \right| & \leq C(\varepsilon_3) \| \eta \|_{p,0}^2 dx + c \int_0^t u_t^2 \, dx,
\end{align*}
\]
(127)

\[
\begin{align*}
 - \int_0^\infty \left(\int_0^\infty \beta(\sigma) \eta x d\sigma \right) \left(\int_0^\infty \beta(\sigma) \eta x d\sigma \right) dx & \leq \beta_0 \| \eta \|_{p,0}^2.
\end{align*}
\]
(128)

Moreover, by integration by parts, we get
\[
\begin{align*}
 \left| c \int_0^\infty \beta(\sigma) \int_0^L \eta x d\sigma \right| & = c \left| - \int_0^\infty \beta'(\sigma) \int_0^L \eta x d\sigma \right| \\
 & \leq \frac{c \rho_0}{8} \int_0^L \eta x d\sigma - C_{\rho_0} \int_0^\infty \beta'(\sigma) \eta_x(\sigma) \| \eta_x(\sigma) \|_{p,0}^2 d\sigma,
\end{align*}
\]
(129)

where \(C_{\rho_0} > 0 \). Similarly, we obtain
\[
\begin{align*}
 \left| d \int_0^\infty \beta(\sigma) \int_0^L \rho x d\sigma \right| & = \left| c \int_0^\infty \beta'(\sigma) \int_0^L \rho x d\sigma \right| \\
 & \leq \frac{r \lambda_0}{8} \int_0^L \rho x d\sigma - C_{\rho_0} \int_0^\infty \beta'(\sigma) \eta_x(\sigma) \| \eta_x(\sigma) \|_{p,0}^2 d\sigma,
\end{align*}
\]
(130)

where \(C'_{\rho_0} > 0 \). Using (29), we get
\[
\begin{align*}
 - d \int_0^\infty \beta(\sigma) \int_0^L \rho x d\sigma \, d\sigma & \leq \beta_0 \frac{d}{2} \int_0^L \rho x d\sigma + \beta_0 \frac{d \zeta}{2} \int_0^L \rho x d\sigma.
\end{align*}
\]
(131)

Then, we obtain
\[
\begin{align*}
 \mathcal{G}'_3(t) & \leq \frac{\beta_0}{2} \left(\frac{d}{\zeta} - \frac{3c}{2} \right) \int_0^L \rho x d\sigma + \frac{1}{2} \beta_0 \frac{d \zeta}{2} \int_0^L \rho x d\sigma \\
 & \quad + c \int_0^t u_t^2 \, dx - \mathcal{G}'_3(t) \int_0^\infty \beta'(\sigma) \| \eta_x(\sigma) \|_{p,0}^2 \, d\sigma \\
 & \quad + (\beta_0 + C(\varepsilon_3)) \left\| \eta \right\|_{p,0}^2,
\end{align*}
\]
(132)
where $\mathcal{G}_1 = C_0 + C_1 \lambda$. Then, using the same arguments, we find

\[
\mathcal{G}_1(t) \leq \frac{1}{2} \left(\lambda_0 \frac{d}{\bar{d}} + \frac{\beta_0 c}{2} \right) \int_0^t \theta^2 dx + \frac{\lambda_0}{2} \left(d \zeta - 3 r \right) \int_0^t p^2 dx
\]

\[
+ \frac{c}{\zeta} \int_0^t w_t dx - \mathcal{G}_2 \sum_{i=0}^{\infty} \left(\lambda_i \sigma \right) \int_0^t d\sigma
\]

\[
+ (\lambda_0 + C(\epsilon_3) \|v\|_{H^1_0})^2.
\]

Adding (127) and (133), we obtain (123).

We choose ζ in such a way that

\[
\zeta = \frac{1}{2} \left(\beta_0 c - (\beta_0 + \lambda_0) d \right) > 0,
\]

\[
\zeta = \frac{1}{2} (\lambda_0 r - (\beta_0 + \lambda_0) d) > 0,
\]

which implies

\[
\frac{d}{\bar{d}} < \frac{\beta_0 + \lambda_0}{\beta_0} \frac{1}{\zeta} \frac{c}{\zeta} < \frac{\lambda_0}{\beta_0 + \lambda_0} \frac{r}{d} < \frac{r}{d}.
\]

Then, ζ satisfies (29).

Now, let us introduce the following functional.

Lemma 7. The functional

\[
F_4(t) := \xi \tau(t) \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, \rho, t) d\rho dx,
\]

satisfies

\[
F_4(t) \leq -2F_4(t) - \eta_1 \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, t) dx + \xi \int_0^t w_t^2 dx,
\]

where η_4 is a positive constant.

Proof. By differentiating F_4, with respect to t, we have

\[
F_4'(t) = \xi \tau'(t) \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, \rho, t) d\rho dx
\]

\[
+ \xi \tau(t) \int_0^t \left\{ -2\tau'(t) e^{-2\tau(t) \rho} z^2 + e^{-2\tau(t) \rho} z_t^2 \right\} d\rho dx.
\]

By using the last equation of (21), we have

\[
\tau(t) \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z_t^2 d\rho dx
\]

\[
= \int_0^t \left(\tau(t) - 1 \right) e^{-2\tau(t) \rho} z_t^2 d\rho dx
\]

\[
= \frac{1}{2} \tau(t) \int_0^t \int_0^{\tau(t)} \left\{ \left(\tau'(t) - 1 \right) e^{-2\tau(t) \rho} z^2 \right\} d\rho dx
\]

\[
+ \tau(t) \int_0^t \int_0^{\tau(t)} \left(\tau'(t) - 1 \right) e^{-2\tau(t) \rho} z_t^2 d\rho dx
\]

\[
- \frac{\tau'(t)}{2} \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2 d\rho dx.
\]

Using (137)–(139), we get

\[
F_4'(t) = -2\xi \tau(t) \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, \rho, t) d\rho dx + \xi \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, 1, t) dx
\]

\[
- \xi \left(1 - \tau'(t) \right) e^{-2\tau(t)} \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, t) dx.
\]

Then, by using (7), (25), and the fact that $z(x, 0, t) = w_0(x, t)$ and setting $\eta_4 = \xi(1 - d)e^{-2\tau}$, we obtain (137).

We are now ready to prove the following result.

Theorem 8. Assume (26)–(31) hold; there exist positive constants C_1 and C_2 such that the energy functional given by (107) satisfies

\[
E(t) \leq C_2 e^{-C_1 t}, \quad \forall t \geq 0.
\]

Proof. We define a Lyapunov functional

\[
\mathcal{L}(t) := NE(t) + \sum_{i=1}^{\infty} N_i F_i(t) + F_4(t),
\]

where N and N_i, $i = 1, 2, 3$, are positive constants to be selected later.

By differentiating (142) and using (109), (115), (118), (123), and (137), including the relation

\[
\int_0^t w_t^2 dx = \int_0^t \left(w_x^2 + \frac{1}{2} w_x^2 - \frac{1}{2} w_x^2 \right) dx
\]

\[
\leq 2 \int_0^t \left(w_x + \frac{1}{2} w_x^2 \right)^2 dx - \frac{1}{2} \int_0^t w_t^2 dx
\]

\[
\leq 2 \int_0^t \left(w_x + \frac{1}{2} w_x^2 \right)^2 dx - \frac{L}{4} \int_0^t w_t^2 dx,
\]

we have

\[
\int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2(x, \rho, t) d\rho dx
\]

\[
= \int_0^t \int_0^{\tau(t)} \left(\tau(t) - 1 \right) e^{-2\tau(t) \rho} z_t^2 d\rho dx
\]

\[
= \frac{1}{2} \tau(t) \int_0^t \int_0^{\tau(t)} \left\{ \left(\tau'(t) - 1 \right) e^{-2\tau(t) \rho} z^2 \right\} d\rho dx
\]

\[
+ \tau(t) \int_0^t \int_0^{\tau(t)} \left(\tau'(t) - 1 \right) e^{-2\tau(t) \rho} z_t^2 d\rho dx
\]

\[
- \frac{\tau'(t)}{2} \int_0^t \int_0^{\tau(t)} e^{-2\tau(t) \rho} z^2 d\rho dx.
\]
we get

\[L'(t) \leq -\left((d_1 - 2\epsilon_1)N_1 - \epsilon_2 N_2 \right) \int_0^L \left(u_x + \frac{1}{2} w_x^2 \right)^2 dx \]

\[-\left[N_2 - N_1 - \frac{C}{\epsilon_3} \right] \int_0^L u'_t^2 dx \]

\[-\left[\left(\frac{d_2}{4} - \frac{L}{2} \epsilon_1 \right) N_1 \right] \int_0^L w'_{xx} dx \]

\[-\left[CN - \frac{1}{2} N_1 - \xi \right] \int_0^L \omega_t^2 dx \]

\[-\left[\tau N_3 - \frac{\delta_1^2}{4 \epsilon_1} N_1 - c \left(1 + \frac{N_2}{N_1} \right) N_2 \right] \int_0^L \theta^2 dx \]

\[-\left[\frac{\alpha_1}{4} N + c N_1 + \eta_1 \right] \int_0^L z^2 (x, 1, t) dx - 2F_4(t) \]

\[-\left[\frac{\alpha_2}{4} N - \lambda_0 N_3 \right] \| \eta \|_{\mathcal{H}_\beta}^2 \]

\[-\left[\frac{\alpha_2}{4} N - \lambda_0 N_3 \right] \| v \|_{\mathcal{H}_\alpha}^2 \]

\[-\left[\frac{1}{4} \left(1 + \frac{N_2}{N_1} \right) N_2 \right] \int_0^\infty \theta^2 dx \]

\[-\left[\frac{1}{4} \lambda' (\sigma) \| v_x (\sigma) \|_{\mathcal{S}}^2 d\sigma \right. \]

\[-\left[\frac{1}{4} \lambda' (\sigma) \| v_x (\sigma) \|_{\mathcal{S}}^2 d\sigma \right. \]

Next, we carefully choose our constants so that the terms inside the brackets are positive.

We choose \(N_2 \) large enough such that

\[k_1 = \frac{1}{2} N_2 - N_1 > 0. \]

Then, we choose \(N_3 \) large enough such that

\[k_2 = \tau N_3 - \frac{\delta_2}{4 \epsilon_1} N_1 - c \left(1 + \frac{N_2}{N_1} \right) N_2 > 0, \]

\[k_3 = \tau N_3 - \frac{\delta_2}{4 \epsilon_1} N_1 - c \left(1 + \frac{N_2}{N_1} \right) N_2 > 0. \]

Thus, we arrive at

\[L'(t) \leq -k_0 \int_0^L \left(u_x + \frac{1}{2} w_x^2 \right)^2 dx - \int_0^L \left(u_x + \frac{1}{2} w_x^2 \right)^2 dx - \int_0^L \left(u_x + \frac{1}{2} w_x^2 \right)^2 dx - \int_0^L \left(u_x + \frac{1}{2} w_x^2 \right)^2 dx \]

where \(k_0 = (1/2)(d_1 - 2\epsilon_1)N_1 \) and \(k_4 = ((d_2/4) - (L/2)\epsilon_1)N_1 \).

On the other hand, we let

\[\Theta(t) = \sum_{i=1}^{\infty} N_i F_i(t) + F_4(t). \]
Exploiting Young’s, Cauchy-Schwarz’s, and Poincaré’s inequalities, we get
\[
\|\mathcal{I}(t)\| \leq c \int_0^T \left(a_1^2 + u_1^2 + \left(u_2 + \frac{1}{2} w_1 \right)^2 + \frac{1}{2} \omega_{xx}^2 + \theta_1^2 + p^2 \right) \, dx \\
+ c\|\eta\|_{H_0}^2 + c\|\psi\|_{H_0}^2 + c\int_0^T \left(\chi^2(x, \rho, t) \right) \, dt.
\]
(152)

Then,
\[
\|\mathcal{I}(t)\| \leq cE(t).
\]
(153)

Consequently, we obtain
\[
\|\mathcal{I}(t)\| = \|\mathcal{L}(t) - NE(t)\| \leq cE(t),
\]
(154)

that is,
\[
(N - c)E(t) \leq \mathcal{L}(t) \leq (N + c)E(t).
\]
(155)

Now, we choose \(N\) large enough such that
\[
N - c > 0,
\]
\[
\frac{a_1}{4} N - c > 0,
\]
\[
\frac{a_2}{4} N - c > 0,
\]
\[
N - c > 0,
\]
\[
\frac{1}{4} N - c > 0 > 0,
\]
\[
CN - c > 0.
\]

Exploiting (107), estimates (150) and (155), respectively, give
\[
\mathcal{L}(t) \leq -a_1 E(t),
\]
(157)

for some \(a_1 > 0\), and
\[
c_1 E(t) \leq \mathcal{L}(t) \leq c_2 E(t), \quad \forall t \geq 0,
\]
(158)

for some \(c_1, c_2 > 0\); we have
\[
\mathcal{L}(t) \sim E(t).
\]
(159)

A combination with (157) and (158) gives
\[
\mathcal{L}(t) \leq -C_1 \mathcal{L}(t), \quad \forall t \geq 0,
\]
(160)

where \(C_1 = a_1/c_2\).

Finally, by simple integration of (159) and (160), we obtain the result (141).

Data Availability

No data were used to support the study.

Conflicts of Interest

This work does not have any conflicts of interest.

Acknowledgments

The fifth author extends their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No. G.R.P-10/42.

References

[1] A. S. Nicaise, C. Pignotti, and J. Valein, “Exponential stability of the wave equation with boundary time-varying delay,” *Discrete Contin. Dyn. Syst. Ser. S*, vol. 2, pp. 559–581, 2009.

[2] A. Benabdallah and I. Lasiecka, “Exponential decay rates for a full von Kármán system of dynamic thermoelasticity,” *Journal of Differential Equations*, vol. 160, pp. 51–93, 2000.

[3] A. Benabdallah and D. Teniou, “Exponential stability of a von Kármán model with thermal effects,” *Electron. J. Differ. Equations*, vol. 7, p. 13, 1998.

[4] S. Boulaaras and N. Doudi, “Global existence and exponential stability of coupled Lamesystem with distributed delay and source term without memory term,” *Boundary Value Problems*, vol. 2020, no. 1, 2020.

[5] S. M. Boulaaras, A. Choucha, A. Zara, M. Abdalla, and B. B. Cherif, “Global existence and decay estimates of energy of solutions for a new class of -Laplacian heat equations with logarithmic nonlinearity,” *Journal of Function Spaces*, vol. 2021, Article ID 5558818, 11 pages, 2021.

[6] L. Bouzettouta and A. Djebabla, “Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay,” *Journal of Mathematical Physics*, vol. 60, article 041506, 2019.

[7] A. Choucha and D. Ouchenane, “Local existence and blow up of solutions to a logarithmic nonlinear wave equation with time-varying delay,” Studia. UBB. Math, 2020.

[8] A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, and M. Abdalla, “Exponential stability of swelling porous elastic with viscoelastic damping and distributed delay term,” *Journal of Function Spaces*, vol. 2021, Article ID 5581634, 8 pages, 2021.

[9] A. Choucha, D. Ouchenane, and S. Boulaaras, “Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term,” *Mathematical Methods in the Applied Sciences*, vol. 43, no. 17, pp. 9983–10004, 2020.

[10] I. Chueshov and I. Lasiecka, *Von Kármán Evolution Equations*, Springer Monographs in Mathematics, Springer, New York, 2010.

[11] C. M. Dafermos, “Asymptotic stability in viscoelasticity,” *Archive for Rational Mechanics and Analysis*, vol. 37, no. 4, pp. 297–308, 1970.

[12] A. Djebabla and N. Tatar, “Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping,” *Georgian Mathematical Journal*, vol. 20, pp. 427–438, 2013.
[13] A. Favini, M. Ann Horn, I. Lasiecka, and D. Tataru, "Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation," *Differential and Integral Equations*, vol. 9, pp. 267–294, 1996.

[14] T. Fastovska, "Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory," *Communications on Pure & Applied Analysis*, vol. 6, no. 1, pp. 83–101, 2007.

[15] A. E. Green and P. M. Naghdi, "On undamped heat waves in an elastic solid," *Journal of Thermal Stresses*, vol. 15, pp. 253–264, 1992.

[16] M. A. Horn and I. Lasiecka, "Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback," *Applied Mathematics and Optimization*, vol. 31, pp. 57–84, 1995.

[17] M. Ann Horn and I. Lasiecka, "Uniform decay of weak solutions to a von Kármán plate with nonlinear boundary dissipation," *Differential and Integral Equations*, vol. 7, pp. 885–908, 1994.

[18] J. U. Kim and Y. Renardy, "Boundary control of the Timoshenko beam," *SIAM Journal on Control and Optimization*, vol. 25, no. 6, pp. 1417–1429, 1987.

[19] M. Kirane, B. Said-houari, and M. N. Anwar, "Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks," *Pure and Applied Analysis*, vol. 10, no. 2, pp. 667–686, 2011.

[20] J. E. Lagnese, "Modelling and stabilization of nonlinear plates," in *Estimation and Control of Distributed Parameter Systems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique*, W. Desch, F. Kappel, and K. Kunisch, Eds., vol. 100, pp. 247–264, Birkhäuser, Basel, 1991.

[21] I. Lasiecka, "Uniform stabilizability of a full von Kármán system with nonlinear boundary feedback," *SIAM Journal on Control and Optimization*, vol. 36, pp. 1376–1422, 1998.

[22] I. Lasiecka, "Uniform decay rates for full von Kármán system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation," *Communications in Partial Differential Equations*, vol. 24, pp. 1801–1847, 1999.

[23] G. Perla Menzala, A. F. Pazoto, and E. Zuazua, "Stabilization of Berger-Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates," *ESAIM: Mathematical Modelling and Numerical Analysis*, vol. 36, pp. 657–691, 2002.

[24] G. P. Menzala and E. Zuazua, "Explicit exponential decay rates for solutions of von Kármán’s system of thermoelastic plates," *Comptes Rendus de l’Académie des Sciences-Série I-Mathématique*, vol. 324, pp. 49–54, 1997.

[25] J. P. Puel and M. Tucsnak, "Boundary stabilization for the von Kármán equations," *SIAM Journal on Control and Optimization*, vol. 33, pp. 255–273, 1995.

[26] Z. Quanxinx, "Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control," *IEEE Transactions on Automatic Control*, vol. 64, no. 9, pp. 3764–3771, 2019.

[27] Z. Quanxinx and H. Tingwen, "Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion," *Systems & Control Letters*, vol. 140, article 104699, 2020.

[28] M. A. Ragusa and A. Tachikawa, "Partial regularity of the minimizers of quadratic functionals with VMO coefficients," *Journal of Mathematical Physics*, vol. 60, article 081503, 2019.

[29] M. Reissig and Y. G. Wang, "Cauchy problems for linear thermoelastic systems of type III in one space variable," *Mathematical Methods in the Applied Sciences*, vol. 28, no. 11, pp. 1359–1381, 2005.

[30] Z. Quanxin, "On the correction for shear of the differential equation for transverse vibrations of prismatic bars," *Philosophical Magazine*, vol. 41, pp. 744–746, 1921.

[31] A. Aouadi and A. Miranville, "Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory," *Evolution Equations & Control Theory*, vol. 4, pp. 241–263, 2015.

[32] A. Aouadi and A. Miranville, "Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin’s model," *Asymptotic Analysis*, vol. 95, pp. 129–160, 2015.

[33] M. Aouadi and A. Castejon, "Properties of global and exponential attractors for nonlinear thermo-diffusion Timoshenko system," *Journal of Mathematical Physics*, vol. 60, article 081503, 2019.

[34] S. Boulaaras, A. Choucha, B. Cherif et al., "Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions," *AIMS Mathematics*, vol. 6, no. 5, pp. 4664–4676, 2021.

[35] A. Choucha, S. Boulaaras, D. Ouchenane, S. Alkhalf, I. Mekawy, and M. Abdalla, "On the system of coupled nondegenerate Kirchhoff equations with distributed delay: global existence and exponential decay," *Journal of Function Spaces*, vol. 2021, Article ID 5577277, 13 pages, 2021.

[36] A. Menaceur, S. Boulaaras, A. Makhlouf, K. Rajagobal, and M. Abdalla, "Limit cycles of a class of perturbed differential systems via the first-order averaging method," *Complexity*, vol. 2021, Article ID 5581423, 6 pages, 2021.

[37] M. Aouadi, M. Campo, M. I. M. Copetti, and J. R. Fernández, "Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects," *Zeitschrift für angewandte Mathematik und Physik*, vol. 70, article 117, 2019.

[38] Y. Qin and X. Pan, "Global existence, asymptotic behavior and uniform attractors for a non-autonomous Timoshenko system of thermoelasticity of type III with a time-varying delay," *Journal of Mathematical Analysis and Applications*, vol. 484, no. 1, article 123672, 2020.

[39] C. Giorgi, M. G. Naso, and V. Pata, "Exponential stability in linear heat conduction with memory: a semigroup approach," *Communications in Applied Analysis*, vol. 5, pp. 121–134, 2001.

[40] T. Kato, "Linear and quasilinear equations of evolution of hyperbolic type," *C.I.M.E.*, II, 1976.