Herschel-PACS photometry of the five major moons of Uranus

Ö. H. Detre 1, T. G. Müller 2, U. Klaas 1, G. Marton 3,4, H. Linz 1, and Z. Balog 1,5

1 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
e-mail: detre@mpia.de
2 Max-Planck-Institut für extraterrestrische Physik (MPE), PO Box 1312, Giessenbachstraße, 85741 Garching, Germany
3 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege-Miklós 15-17, 1121 Budapest, Hungary
4 ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter 1/A, 1171 Budapest, Hungary
5 Astronomisches Recheninstitut des Zentrums für Astronomie, Mönchhofstrasse 12–14, 69120 Heidelberg, Germany

Received 30 January 2020 / Accepted 9 June 2020

ABSTRACT

Aims. We aim to determine far-infrared fluxes at 70, 100, and 160 µm for the five major Uranus satellites, Titania, Oberon, Umbriel, Ariel, and Miranda. Our study is based on the available calibration observations at wavelengths taken with the PACS photometer aboard the Herschel Space Observatory.

Methods. The bright image of Uranus was subtracted using a scaled Uranus point spread function (PSF) reference established from all maps of each wavelength in an iterative process removing the superimposed moons. The photometry of the satellites was performed using PSF photometry. Thermophysical models of the icy moons were fitted to the photometry of each measurement epoch and auxiliary data at shorter wavelengths.

Results. The best-fit thermophysical models provide constraints for important properties of the moons, such as surface roughness and thermal inertia. We present the first thermal infrared radiometry longward of 50 µm for the four largest Uranian moons, Titania, Oberon, Umbriel, and Ariel, at epochs with equator-on illumination. Due to this inclination geometry, heat transport took place to the night side so that thermal inertia played a role, allowing us to constrain that parameter. Also, we found some indication for differences in the thermal properties of leading and trailing hemispheres. The total combined flux contribution of the four major moons relative to Uranus is 5.7×10^{-3}, 4.8×10^{-3}, and 3.4×10^{-3} at 70, 100, and 160 µm, respectively. We therefore precisely specify the systematic error of the Uranus flux by its moons when Uranus is used as a far-infrared prime flux calibrator. Miranda is considerably fainter and always close to Uranus, impeding reliable photometry.

Conclusions. We successfully demonstrate an image processing technique for PACS photometer data that allows us to remove a bright central source and reconstruct point source fluxes on the order of 10^{-3} of the central source as close as $\approx 3 \times$ the half width at half maximum of the PSF. We established improved thermophysical models of the five major Uranus satellites. Our derived thermal inertia values resemble those of trans-neptunian object (TNO) dwarf planets, Pluto and Haumea, more than those of smaller TNOs and Centaurs at heliocentric distances of about 30 AU.

Key words. space vehicles: instruments – techniques: image processing – techniques: photometric – infrared: planetary systems – radiation mechanisms: thermal

1. **Introduction**

The planet Uranus is a well suited primary flux standard at the upper end of the accessible flux range for a number of contemporary far-infrared space and airborne photometers, such as ISO-PHOT (Lemke et al. 1996), Herschel-PACS (Poglitsch et al. 2010), and HAWC+ (Harper et al. 2018). Uranus is also an important flux/amplitude calibrator for submm/mm/cm ground-based observatories, such as IRAM (Kramer et al. 2008) or JCMT (SCUBA-2; Chaplin et al. 2013).

Uranus was routinely observed during the Herschel mission (Pilbratt et al. 2010) as part of the PACS photometer 70, 100, and 160 µm filter flux calibration program, in particular for a quantitative verification of the flux non-linearity correction for PACS (Müller et al. 2016).

Due to its flux density of $\gtrsim 500$ Jy, Uranus exhibits an extended intensity profile in the PACS maps which reaches out to radii $\gtrsim 1$, and overshadows the emission from its moons. An example is the Uranus image shown in the left panel of Fig. 1. Nevertheless, with a detailed comparison of the Uranus image with a PACS reference point spread function (PSF; Fig. 1 middle), it is possible to trace extra features on top of the Uranus PSF. That is how we recognised the two largest and most distant of the five major Uranian moons, Titania and Oberon, in the PACS maps. Titania and Oberon were discovered by the name patron of the Herschel Space Observatory, William (Wilhelm) Herschel, himself. In the following sections, we describe the method used to generate the Uranus reference PSF and subtract it from the maps in order to extract FIR fluxes for all five major moons of Uranus. This photometry will be compared with the thermophysical modelling of the moons.

2. **Data reduction**

2.1. **Input maps for Uranus PSF reference**

The key to a good PSF subtraction is to have a good reference PSF. Since Uranus is a slightly extended source ($\gtrsim 3'$), the standard PACS PSF references based on maps of the asteroids Ceres...
HIPE is a joint development by the PACS+photometer+point+spread+function (PSF) consortium. The PACS photometer detected Uranus at five distinct epochs (cf. Table A.1). The PACS photometer was able to take data simultaneously in the 160 µm filter as well as either the 70 or 100 µm filter. The starting point of our PSF analysis was, therefore, the ten 70 and 100 µm and the twenty 160 µm, high-pass filtered and flux-calibrated level 2 scan maps produced for the Uranus photometry as published in Müller et al. (2016). The data reduction and calibration performed in HIPE (Ott 2010) up to this level is described in Balog et al. (2014). A general description of PACS high-pass filter processing is given in the PACS Handbook (Exter et al. 2018). In order to determine any dependence of our PSF photometry on the data reduction, we re-processed the maps with a variety of map parameter combinations for HPF radius and pixfrac, as listed in Table 1. The variation of the results among the nine different created maps of the same observation identifier (OBSID) is one component in our photometric uncertainty assessment. The related uncertainty is listed under σ_{rel} in Tables A.1–A.6.

2.2. Establishment of the Uranus reference PSFs

As a first step the WCS (world coordinate system) astrometries of the images were corrected by finding the centre of Uranus. This was crucial to correct the majority of astrometric uncertainties of the images. In addition to the standard flux calibration in HIPE, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background, a final flux calibration step was done by removing the dependence of the detector response on the telescope background. The relation of detector responsivity with telescope background could be established from the Uranus observations themselves with a very high signal-to-noise-ratio (S/N). All images were then flux-normalised to a mean Uranus-to-Herschel distance and rotated to the same reference angle. The distance correction was on the order of 6%, while the detector response correction with telescope background was on the order of 1%. Details of these flux corrections are detailed in Appendix B. Following these corrections, the uncertainty of Uranus flux was within a remarkable 0.19–0.27% depending on the filter, proving the outstanding flux stability of the PACS instrument. This was important because flux variation could have a negative effect on the creation of the median image for the Ref PSF in the next steps. On the other hand, an arbitrary normalisation compensating for the flux differences would render any later photometry unreliable.

Table 1. Applied scan map parameters for the input maps of the PSF fitting step.

Filter (µm)	FWHM_{PSF} (\arcsec)	outpix (\arcsec)	HPF radius (a)	pixfrac
70	5.6	1.1	15, 20, 35	0.1, 0.5, 1.0
100	6.8	1.4	15, 20, 35	0.1, 0.5, 1.0
160	10.7	2.1	30, 40, 70	0.1, 0.5, 1.0

Notes. FWHM_{PSF} is the average full width at half maximum of the PSF for a point-like source in the corresponding filter. “Outpix” marks the output pixel size in the final map. This was kept constant, which means a sampling of the PSF FWHM by 5 pixels in each filter. “HPF” is the abbreviation for the high-pass filter. “pixfrac” is the ratio of drop size to input pixel size used for the drizzling algorithm (Fruchter & Hook 2002) within the photProject() mapper. (a) This parameter determines the elementary section of a scan over which the high-pass filter algorithm computes a running median value. Its unit is “number of read-outs”. The spatial interval between two readouts is \(\alpha_{\text{d}} = \frac{\nu_{\text{scan}}}{\nu_{\text{rate}}} \). For the standard \(\nu_{\text{scan}} = 10 \text{ Hz} \) read-out scheme in PACS prime mode, and a scan speed \(\nu_{\text{scan}} = 20^\circ \text{ s}^{-1} \), the spatial interval \(\alpha_{\text{d}} \) between two read-outs corresponds to \(2^\circ \). The entire width of the HPF window (\(\sigma \)) = \([2 \times \text{HPF radius} + 1] \times \alpha_{\text{d}} \).

The relation of detector responsivity with telescope background could be established from the Uranus observations themselves with a very high signal-to-noise-ratio (S/N). All images were then flux-normalised to a mean Uranus-to-Herschel distance and rotated to the same reference angle. The distance correction was on the order of 6%, while the detector response correction with telescope background was on the order of 1%. Details of these flux corrections are detailed in Appendix B. Following these corrections, the uncertainty of Uranus flux was within a remarkable 0.19–0.27% depending on the filter, proving the outstanding flux stability of the PACS instrument. This was important because flux variation could have a negative effect on the creation of the median image for the Ref PSF in the next steps. On the other hand, an arbitrary normalisation compensating for the flux differences would render any later photometry unreliable.
Four-time oversampling was used for the Ref PSF (FWHM was sampled by 20 pixels) to mitigate the information loss by the re-sampling of the data back and forth. A separate Ref PSF was generated for each of the two scan directions due to minor differences between them. The very first Ref PSF was generated by a simple median over the individual images on each pixel. The median removed the orbiting moons for most of the pixels around the PSF centre. However, for some areas of the Ref PSF the moons were overlapping multiple times. To remove the remnants of the moons at these spots the generation of the Ref PSF was done in an iteration loop. The iteration loop also corrected small distortions and flux differences between the images (called PSF matching, see Sect. 2.3) and further enhanced the astrometry of the images. The generation of the iteration loop is shown in Fig. 2. Its three main parts are: (1) generating a Ref PSF. The improved Ref PSF was generated from moon-cleaned individual images, calculated in the previous loop. (2) Improving the astrometry (RA and Dec) of Uranus and the moons. (3) Decomposing the individual images into matched PSFs at the position of Uranus and its five major moons. These are called the Uranus component and the Moon component (including all five moons) of a given image.

The iteration loop stopped when no significant change was found for the Ref PSF, nor any flux change for the moons.
2.4. PSF subtraction

After fitting of all parameters to all individual images at the same time, two intermediate outputs were generated. First is the Uranus component-subtracted images. Second is the Moon component-subtracted images for Ref PSF generation at the beginning of the next iteration loop. This ensures that remnants of the moons on the Ref PSF are gradually removed with each iteration.

After the last iteration loop, the Uranus and Moon components were saved into the FITS files of the final moon map products. Subtracting both the Uranus and Moon components give the residual image. The residual image seen at the right of Fig. 4 clearly proves the correctness of the fit parameters and the correct balance of free fit parameters and constraints.

3. Maps of the Uranian moons

All data products with the PSF subtracted maps and including the convolved Uranus PSF and the moon PSFs in additional extensions will be available in FITS format as Herschel Highly Processed Data Products (HPDPs) in the Herschel Science Archive.

Figures A.1 to A.2 show the final actual maps of the Uranian moon constellations with the Uranus PSF subtracted for the five observation epochs. The corresponding scan and cross-scan maps have been averaged. It is clear that there is an inner area where the PSF subtraction does not work perfectly. The area is quantified by the results illustrated in Fig. 5.

4. Photometry of the Uranian moons

The PSF photometry of the moons is a side product of our PSF subtraction itself, as we have to fit and subtract the moons to get a moon-cleared image for the Ref PSF generation. In comparison with aperture photometry, the constraint of knowing the exact PSF shape provides extra information to the PSF photometry, giving better results in crowded fields for overlapping sources.

\[\text{References} \]

3 [https://www.cosmos.esa.int/web/herschel/highly-processed-data-products]
Fig. 5. Upper panel: derived fluxes f_{moon} from PSF photometry and their uncertainties σ_{tot} depending on the distance of the Uranian moon from the Uranus position for the 70, 100, and 160 μm filter, respectively. Lower panel: corresponding signal-to-noise ratios ($S/N = \frac{f_{\text{moon}}}{\sigma_{\text{tot}}}$). The dashed vertical line at $\approx 7\prime\prime.8$, $11\prime\prime.1$, and $17\prime\prime.8$, respectively (scaling with λ_c of the filter) indicates a radius inside which the uncertainty increases and the S/N degrades noticeably due to PSF residuals.

To get additional confidence in our PSF photometry, we also performed standard aperture photometry whenever any moon was well-separated from Uranus.

4.1. PSF photometry

An example of PSF photometry fit results is shown in Fig. 4 for the combined scan and cross-scan map of OBSIDs 134221117+18, from which 70 μm photometry for all five moons can be obtained. The PSF images of Oberon and Miranda are disturbed in the residual map due to imperfect Uranus PSF subtraction in this central area, nevertheless a significant fraction of the moon PSF is available to recover the total flux and reconstruct the intensity distribution. As already mentioned earlier in this paper, the fitting algorithm weights the pixels with their sigma value using the associated standard deviation map of the image product. In the case of Miranda, the PSF is fitted dominantly to this outer part of the Uranus PSF, where the S/N of the pixels is higher than the ones closer to the Uranus centre. Of course the uncertainty of the PSF fit worsens if only part of the PSF is available.

The unitless PSF flux fit parameters were relative fluxes used to weight the Ref PSF. To get the flux in Jy from these weights, they have to be multiplied with the aperture photometry of the Ref PSF, in other words, the average flux of Uranus over the measurements. The flux uncertainties were calculated the same way from the unitless 1-sigma parameter error values of the PSF fit parameters. This is the second component in our photometric uncertainty assessment. The related value is listed under σ_{par}.

4.2. Aperture photometry

Based on the Uranus subtracted products, we also performed standard aperture photometry, as described in the PACS Handbook (Exter et al. 2018), Sect. 7.5.2. Subtracting all other moons from the product (except the one we were measuring) clearly enhanced the aperture photometry results. Still, it was possible when a given moon was well separated from Uranus at a given epoch. This is mainly the case for Oberon and Titania, while unfortunately the number of comparison cases for Umbriel and Ariel is quite limited, in particular at 160 μm (70 μm: 8 cases, 100 μm: 4 cases, 160 μm: 0 cases).

The detailed comparison of PSF photometry with aperture photometry has been compiled in Table A.7. A statistical overview is given in Table 2. From this, it can be seen that the consistency of the two photometric methods is very good (within 3–4%), thus confirming the principal quality of our PSF photometry procedure. This does not, however, exclude that individual fits may be unreliable or even fail, particularly in areas with high PSF residuals or confusion from close sources. The uncertainty of the fit gives then already good advice on the reliability.

The aperture photometry shows on average a systematic 3–4% negative flux offset with regard to the PSF photometry. This flux loss was a result of the small apertures and sky radii to achieve good residual rejection.

4.3. Photometry results

In Fig. 5, we plotted the PSF photometry fluxes and their uncertainties and the corresponding S/N of the individual measurements depending on the distance of the Uranian moon from the Uranus position for each filter. As a general feature, we note that the uncertainties increase and, hence, the S/N degrades noticeably inside a certain radius, which is $\approx 7\prime\prime.8$, $11\prime\prime.1$, and $17\prime\prime.8$ for 70, 100, and 160 μm, respectively (these radii scale with λ_c of the filter). This is due to PSF residuals as seen in Figs. A.1–A.3.

Filter	n	$f_{\text{PSF}}^{\text{PSF}}$
70	26	1.030 ± 0.003
100	22	1.032 ± 0.005
160	28	1.036 ± 0.004
S/Ns are following. It should be noted that negative fluxes and, hence, the negative S/Ns are very high quality. The corresponding \(f_{\text{mean,160}} \) \(\mu \) fluxes have S/Ns between 2–5, so that this photometry is less reliable; – for Miranda, which is considerably fainter than the other moons, the S/Ns of the 70 and 100 \(\mu \) measurements are \(\approx 4 \cdot 10 \), so that they are less reliable. The S/Ns of all \(\mu \) measurements of epochs 2–5 are between 10–50, so that their quality should be medium. However, the corresponding \(f_{\text{mean,160}} \) \(\mu \) fluxes have S/Ns between 2–5, so that this photometry is still reliable; – for Ariel, which is considerably fainter than the other moons and always close to Uranus, the S/Ns of the 70 \(\mu \) measurements of epochs 1 and 5, which are outside the critical radius, are of very high quality. The corresponding \(f_{\text{mean,160}} \) \(\mu \) fluxes have S/Ns \(\lesssim 10 \), so that they are less reliable. The S/Ns for the 70 and 100 \(\mu \) measurements of epochs 2–4 are between 10–50, so that their quality should be medium. However, the corresponding \(f_{\text{mean,160}} \) \(\mu \) fluxes have S/Ns between 2–5, so that this photometry is less reliable; – for Miranda, which is considerably fainter than the other four moons and always close to Uranus, the S/Ns of the 70 \(\mu \) measurements of epochs 1 and 3 are in the range between 1 and 3. These measurements indicate the order of flux, but they are not very reliable. All other measurements at 70 and 100 \(\mu \) have S/Ns \(\lesssim 1 \), so that individual measurements are not reliable at all. At 160 \(\mu \) S/Ns are \(\approx 1 \). Small S/Ns indicate that there are some restriction in the subsequent analysis. It is important to bear in mind that this is not a deficiency of the observational design since the original design with just one modular mini scan map was meant to observe Uranus, so that the S/N for the moons is, naturally, not optimal. The results of photometry from the individual scan maps are given in Tables A.2–A.6. For completeness we compile the Uranus photometry in Table A.1. This table gives both the actually measured flux \(f_{\text{measured,160}} \) \(\mu \) and a flux normalised to a reference distance \(f_{\text{distancecorrected,160}} \) \(\mu \) which is needed in generating the PSF reference. The determination of the distance corrected Uranus flux is described below.

Table 3 provides an overview of the Uranian moon photometry with mean fluxes. For it a weighted mean moon-to-Uranus flux ratio was calculated from the individual photometry results listed in Tables A.1–A.6,

\[
\left(\frac{f_{\text{mean,moon,i}}}{f_{\text{mean,Uranus}}} \right)_{\lambda} = \frac{\sum_{i=1}^{n_{\text{moon}}} \left(\frac{f_{\text{measured,moon,i}}}{f_{\text{mean,Uranus}}} \right)_{\lambda} \left(\frac{1}{\sigma_{\text{obs,moon,i}}} \right)^2}{\sum_{i=1}^{n_{\text{moon}}} \left(\frac{1}{\sigma_{\text{obs,moon,i}}} \right)^2},
\]

using the \(\sigma_{\text{tot}} \) of the moon photometry as weights. For the calculation of the mean moon fluxes, a weighted mean Uranus flux at a mean distance of all \(\text{Herschel} \) observations is used. The mean Uranus distance is derived from the \(\Delta_{\text{obs,moon}} \) of the 20 individual observations (\(\Delta_{\text{obs,mean}} = \frac{\sum_{i=1}^{20} \Delta_{\text{obs,moon,i}}}{20} = 20.024 \text{AU} \); for the \(\Delta_{\text{obs,mean}} \) of Table A.1). Individual distance corrected Uranus fluxes \(f_{\text{distancecorrected,160}} \) \(\mu \) are determined by scaling the measured Uranus flux \(f_{\text{measured,160}} \) with the correction factor \(c_{\text{dist}} = \left(\frac{\Delta_{\text{obs,160}}}{\Delta_{\text{obs,mean}}} \right)^2 \) (see also Table B.1 for values of \(c_{\text{dist}} \) per observation epoch). The weighted mean Uranus flux is then calculated as

\[
\left(\frac{f_{\text{mean,moon,i}}}{f_{\text{mean,Uranus}}} \right)_{\lambda} = \frac{\sum_{i=1}^{n_{\text{moon}}} \left(\frac{f_{\text{distancecorrected,moon,i}}}{f_{\text{distancecorrected,Uranus}}} \right)_{\lambda} \sigma_{\text{tot,moon,i}}}{\sum_{i=1}^{n_{\text{moon}}} \sigma_{\text{tot,moon,i}}},
\]

using the \(\sigma_{\text{tot}} \) of the individual Uranus measurements as weights. These mean distance corrected fluxes of Uranus are listed in Table 3, too. The mean moon flux is then calculated as

\[
\left(\frac{f_{\text{mean,moon,i}}}{f_{\text{mean,Uranus}}} \right)_{\lambda} = \left(\frac{f_{\text{measured,moon,i}}}{f_{\text{measured,Uranus}}} \right)_{\lambda} \times \left(\frac{f_{\text{distancecorrected,160}}}{f_{\text{distancecorrected,Uranus}}} \right)_{\lambda},
\]
The variation of the angular separation of the moons is expected since all the moons have orbits with small eccentricities calculated according to Eq. (4) for the displayed temperature range. The temperature tick marks represent the colours of modified blackbody emission, that is,

\[\log_{10} \left(\frac{f_\beta}{f_\alpha} \right) \text{ and } \log_{10} \left(\frac{f_\gamma}{f_\delta} \right) \text{, respectively.} \]

The straight lines with the temperature tick marks represent the colours of modified blackbodies calculated according to Eq. (4) for the displayed temperature range and with \(\beta \) as indicated in the upper right corner of each panel. Derived \(\beta \) and \(T_b \) are used for a plausibility check of the PACS photometry.

No dependence of the moon fluxes on the distance to Uranus is expected since all the moons have orbits with small eccentricities. The variation of the angular separation of the moons to Uranus stands as a pure projection effect that is due to the inclination of the Uranian system.

Another plausibility check of the PACS photometry can be obtained from FIR two-colour diagrams. In Fig. 6, we show the individual two-colour diagrams for the Uranian moons. The PACS fluxes are not colour corrected and refer to the PACS standard photometric reference SED \(\nu \times f_\nu = \text{const.} \) The boxes with the central cross indicate the uncertainty range of the measured colours (determined by \(\log_{10} \left(\frac{f_\beta}{f_\alpha} \right) \text{ and } \log_{10} \left(\frac{f_\gamma}{f_\delta} \right) \text{, respectively.} \) The straight lines with the temperature tick marks represent the colours of modified blackbodies calculated according to Eq. (4) for the displayed temperature range and with \(\beta \) as indicated in the upper right corner of each panel. Derived \(\beta \) and \(T_b \) are used for a plausibility check of the PACS photometry.

In addition to the new PACS measurements, we searched in the literature to find more thermal data for the Uranian satellites. Brown et al. (1982) presented standard broad-band \(Q \)-filter measurements taken by the 3-m IRTF \(^4\) telescope. We re-calibrated the \(Q \)-band magnitudes (after applying the listed monochromatic correction factors and taking the specified \(\pm 3.32 \text{ mag for } \alpha \text{ Boo} \)) with the template flux of 185.611\(\text{ ly at } 20.0 \mu \text{m} \) (Cohen et al. 1996). The resulting flux densities are given in Table 4. A major set of measurements was taken by Spitzer-IRS (14–37\(\mu \text{m} \)) (Houck et al. 2004). We took the reduced and calibrated low-resolution spectra (Lebouteiller et al. 2011) and high-resolution spectra (Lebouteiller et al. 2015) from CASSIS, all related to the Spitzer Program ID 71\(^6\). The programme includes thermal emission spectroscopy between 10 and 40\(\mu \text{m} \) for Uranus’ synchronous satellites (among other objects), observing the leading and trailing hemispheres at large separations from the planet. These observations were taken under aspect angles between 96.8° and 104.6°, that is, close to an equator-on view of Uranus and its four satellites. An overview of these observations is given in Table 5.

The “optimal” extraction of the spectra from the CASSIS data assumes a perfect point-like source which is certainly the case for the Uranian satellites at 18–20 AU distance from the 0.85 m Spitzer Space Telescope. We also looked into the high-resolution scans, but they only cover the longer wavelength range (19.5–36.9\(\mu \text{m} \)) and from the comparison with the low-resolution spectra we concluded that they do not add any new information. At longer wavelengths (>22\(\mu \text{m} \) for Umbriel and >30\(\mu \text{m} \) for Oberon), the CASSIS spectra (both, low- and high-resolution ones) show significant additional fluxes, which probably originate from the Uranus PSF (cf. Figs. 9 and 7, respectively). The Ariel spectra have fluxes which are at least a factor of 2–3 too high and it seems the data are still affected by the influence of Uranus (cf. Fig. 10). We eliminated those parts which show a strong deviation from a typical satellite thermal emission spectrum. We rebinned the spectra down to 10–15 wavelength points and added 10% to the measurement errors to account for absolute flux calibration uncertainties in the close proximity of a very bright source.

Cartwright et al. (2015) presented IRTF/SpEx (0.81–2.42\(\mu \text{m} \)) and Spitzer/IRAC (3.6, 4.5, 5.8, and 8.0\(\mu \text{m} \)) measurements. But even at 8\(\mu \text{m} \), the measured fluxes are dominated by reflected sunlight. In the most favourable case, the thermal contribution was still well below 10%. We therefore excluded these measurements from our radiometric studies.

Hanel et al. (1986) studied the Uranian system with infrared observations obtained by the infrared interferometer

\(^4\) Infrared Telescope Facility on Mauna Kea, Hawaii.

\(^5\) https://cassissirtf.com/atlas/welcome.shtml

\(^6\) ID 71: Observations of Outer Solar System Satellites and Planets; PI: J. R. Houck.
The geometric albedo calculated from the specified radii (both from Table IV). The phase integral is the range of target centre wrt. the observer, i.e. IRTF, which means that IRTF saw mainly the South-pole region of Uranus and the four satellites.

Notes. Data were taken in May 1982 with the IRTF (Miranda was not part of the study). \(r_{\text{helio}} \) is the light-time corrected heliocentric range. \(\Delta_{\text{obs}} \) is the range of target centre wrt. the observer, i.e. IRTF; \(\alpha \) is the phase angle and “ang-sep” is the apparent angular separation from Uranus. The aspect angle during the measurements was around 163.5° which means that IRTF saw mainly the South-pole region of Uranus and the four satellites.

Table 5. Overview of the Spitzer-IRS CASSIS spectra.

Object	MJD	\(r_{\text{helio}} \) (AU)	\(\Delta_{\text{obs}} \) (AU)	\(\alpha \) (deg)	ang-sep (")	AORkey	hemisp.	UsefulSpectrum (\(\mu \))
Ariel (UI) [701]	53 563.98055	20.067	19.547	2.54	13.45	4.521 984	L	–
	53 323.25416	20.056	19.724	2.76	13.33	4.522 240	T	–
Umbral (UII) [702]	53 695.76250	20.073	19.673	2.69	18.63	4.522 496	L	14.1–22.0
	53 183.96250	20.049	19.582	2.62	18.72	4.522 752	T	14.1–22.0
Titania (UIII) [703]	53 181.21458	20.048	19.624	2.67	30.61	4.523 008	L	14.1–37.3
	53 716.59166	20.074	19.724	2.89	30.08	4.523 364	T	14.1–37.3
Oberon (UIV) [704]	53 184.28680	20.049	19.577	2.61	41.09	4.523 520	L	14.1–30.0
	53 325.65486	20.056	19.763	2.80	40.70	4.523 776	T	14.1–30.0

Notes. \(r_{\text{helio}} \) is the light-time corrected heliocentric range, \(\Delta_{\text{obs}} \) is the range of target centre wrt. the observer, i.e. Spitzer, \(\alpha \) is the phase angle and “ang-sep” is the apparent angular separation from Uranus. The model considers a one-dimensional heat conduction into the surface, controlled by the thermal inertia. The surface roughness is implemented via segmented hemispherical craters where the effective rms of the surface slopes controlled by the crater depth-to-radius ratio and the surface coverage of the craters (Lagerros 1998). Additional input parameters are the object’s thermal mid-/far-IR emissivity (assumed to be 0.9), the absolute V-band magnitudes \(H_V \) of the Uranian satellites, the phase integrals \(q \), the Bond albedo \(A \) from Table VII (\(q \) and \(q_{\text{eff}} \) of F, respectively). The geometric albedo \(p_V \) was calculated via \(A = p q \), with \(p/f_0/f \approx 1 \) (Morrison & Lebofsky 1979).

6. Thermophysical modelling of the Uranian moons

For the interpretation of the available thermal IR fluxes, we used the thermophysical model (TPM) by Lagerros (1996, 1997, 1998) and Müller & Lagerros (1998, 2002). The calculations are based on the true observer-centric illumination and observing geometry for each data point (topocentric for IRTF, Herschel-Spitzer-centric). The model considers a one-dimensional heat conduction into the surface, controlled by the thermal inertia. The surface roughness is implemented via segmented hemispherical craters where the effective rms of the surface slopes is controlled by the crater depth-to-radius ratio and the surface coverage of the craters (Lagerros 1998). Additional input parameters are the object’s thermal mid-/far-IR emissivity (assumed to be 0.9), the absolute V-band magnitudes \(H_V \) of the Uranian satellites, the phase integrals \(q \), the measured sizes \(D_{\text{eff}} \) and albedos \(p_V \). The \(H_V \) is only relevant in cases where we solve for radiometric size-albedo solutions. In cases where we keep the size fixed, \(H_V \) is not used. Table 6 summarises these values. For the satellites’ rotation properties, we assume a spin-axis orientation perpendicular to Uranus’ equator (orbital inclinations are below 1 K and 84°).
0.5°, only for Miranda it is 4.2°), and a (presumed) synchronous rotation.

Using the above properties (and their uncertainties) allows us now to determine the moons’ thermal properties. We vary the surface roughness from very smooth (rms of surface slopes <0.1) up to very rough surfaces (rms of surface slopes >0.7). In addition, low-conductivity surfaces can have very small thermal inertias (here, we use a lower limit of 0.1 J m⁻² s⁻⁰.⁵ K⁻¹) and compact solid surfaces have high conductivities (we consider thermal inertias up to 100 J m⁻² s⁻⁰.⁵ K⁻¹).

One problem of radiometric studies in general is related to objects seen pole-on, or very close to pole-on (especially for distant objects where the Sun and observer face the same part of the surface). In these cases, there is no significant heat transfer to the night side and it is much more difficult to constrain the object’s thermal properties. A pole-on geometry is connected to an aspect angle of 0° (north pole) or 180° (south pole), while an equator-on geometry has 90°. During the 1980s (including the IRTF measurements, but also the time of the Voyager 2 flyby) mainly the south pole region (of Uranus and also the synchronous satellites) was visible, the 2004/2005 Spitzer measurements were taken at aspect angles between about 97° and 105°, the 2010–2012 Herschel observations saw the Uranus system under aspect angles between about 70° and 81°, meaning that both were close to an equator-on view. The phase angles are typically small (below 3°) and the measured signals are in all cases related to almost fully illuminated objects.

Representative examples of our thermophysical models for the epoch 2011-07-12 (period 2) covering the wavelength range between 5–300 µm are shown for Oberon, Titania, Umbriel, and Ariel in Figs. 7–10, including the corresponding surface temperature maps. All derived (and approved) flux densities for the 5 satellites, as well as the corresponding best TPM SEDs will be made available by the Herschel Science Centre through 'User Provided Data Products' in the Herschel Science Archive. Our Herschel flux densities and the auxiliary photometry shall also be imported into the 'Small Bodies: Near and Far' (SBNAF) data base for thermal infrared observations of Solar System’s small bodies (Szakáts et al. 2020).

At the time of Voyager flyby, when the south pole of the moons was facing the Sun, maximum surface temperatures reached or exceeded 85 K, but nighttime polar temperatures are typically small (below 3°) and the measured signals are in all cases related to almost fully illuminated objects.

6.1. Oberon

A standard radiometric analysis of the combined Herschel-PACS, IRTF, and Spitzer IRS measurements leads to a range of size-albedo-thermal solutions with reduced χ²-values close to or below 1.0. However, the optimum solutions resulted in an effective diameter which is about 3–5% above the object’s true size (and a geometric albedo of 0.29), connected to a thermal inertia in the range 20–40 J m⁻² s⁻⁰.⁵ K⁻¹.

When we keep the diameter fixed to 1522 km (with pᵥ = 0.31) we can still find acceptable solutions (with reduced χ²-values close to 1): for an intermediate level of surface roughness (rms of surface slopes between 0.3 and 0.7) and thermal inertias between 9 and 33 J m⁻² s⁻⁰.⁵ K⁻¹ (higher thermal inertias are connected to higher levels of surface roughness and vice versa).

The best solution is found for a thermal inertia of around 20 J m⁻² s⁻⁰.⁵ K⁻¹ and an intermediate level of surface roughness (rms = 0.5). We confirmed the solution by using a modified input data set where the close-proximity PACS data (at only 6′ apparent separation from Uranus) were eliminated.

The leading (PACS 2nd epoch, IRS-1)/trailing (PACS 4th and 5th epoch, IRS-2) analysis did not show any clear differences: both data subsets led to the same thermal properties (thermal inertia of 20 J m⁻² s⁻⁰.⁵ K⁻¹) with very similar reduced χ² values. From the available measurements, we cannot distinguish the leading and trailing hemispheres. The IRS spectra confirm this finding: both spectra (in comparison with the corresponding optimum TPM prediction) agree within 5%, except at the shortest end below 16 µm where the difference is about 10%.

The overall consistency (|rḥ/rtom|) of the models with colour corrected PACS fluxes for all five periods is 0.95 ± 0.02, 0.94 ± 0.06, and 1.00 ± 0.02 at 70, 100, and 160 µm, respectively. Excluding the first epoch photometry, when Oberon was at an only 6′ apparent separation from Uranus, gives ratios of 0.95 ± 0.01, 0.96 ± 0.01, and 1.00 ± 0.02. An illustrated comparison for epoch 2 is shown in Fig. 7.

6.2. Titania

The standard thermal analysis (PACS, IRTF, IRS) led to reduced χ² values close to 1 for a radiometric size which is again 2–4% larger than the true value, and a thermal inertia of 9–31 J m⁻² s⁻⁰.⁵ K⁻¹. All data are taken at sufficient separation from

7 http://archives.esac.esa.int/hsa/whsa/
8 https://ird.konkoly.hu/
and thermal properties led to an unrealistically small thermal inertia below 5 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) and a diameter of just below 1100 km (\(p_r \approx 0.30\)), with reduced \(\chi^2\) values close to 1.0. The size and albedo values are in clear contradiction to the published values of 1170 km and \(p_r = 0.26\) (Karkoschka 2001). Taking the larger size requires a higher thermal inertia to fit all observed fluxes. Intermediate levels of surface roughness, combined with thermal inertias between 5 and 15 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) seem to fit best (reduced \(\chi^2\) values just below the 1.7 threshold).

However, if we look at the observation-to-model ratios we can identify a few observations which suffer from low signal-to-noise ratios (all five PACS measurements at 160 \(\mu\)m and both IRS 15 \(\mu\)m spectral parts have \(S/N \leq 3\)), but our radiometric weighted solutions handle correctly the proper flux errors. More problematic are the long-wavelength fluxes when Umbriel had only a small apparent separation (below 7\(\arcsec\)) from Uranus: the PACS 100 and 160 \(\mu\)m measurements from 26-Dec.-2011 and also the long-wavelength parts of both IRS spectra beyond about 22 \(\mu\)m seem to be affected by residual Uranus PSF features. Excluding these problematic measurements, we obtained reduced \(\chi^2\) values close to 1.0 (for the fixed size of 1170 km), with a preference for a lower surface roughness (around 0.3) than for Oberon and Titania, and a thermal inertia in the range between 5 and 12 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\).

The Umbriel data have a well-balanced coverage of the leading (PACS 1st epoch, IRS-1) and trailing (PACS 5th epoch, IRS-2) hemispheres. Separate fits to the data for the two hemispheres led to the following results: the fits to the trailing hemisphere data are excellent (reduced \(\chi^2\) well below 1.0) with a thermal inertia at the lower end (around 5 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\)). The leading hemisphere data show an indication for a slightly higher thermal inertia closer to 10 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\). However, within the error bars, both sets can be fit with an intermediate solution.

The overall consistency (\(\chi^2_{\text{model}}\)) of the models with colour corrected PACS fluxes for all five epochs is 1.02 \(\pm\) 0.05, 1.05 \(\pm\) 0.08, and 1.16 \(\pm\) 0.12 at 70, 100, and 160 \(\mu\)m, respectively. Excluding the second and third epoch, where Umbriel is at less than 9\(\arcsec\) apparent separation from Uranus, slightly improves the 70 \(\mu\)m ratio (1.01 \(\pm\) 0.04), but not the 100 and 160 \(\mu\)m ratios (1.05 \(\pm\) 0.08 and 1.23 \(\pm\) 0.13, respectively). An illustrated comparison for epoch 2 is shown in Fig. 9.

6.3. Umbriel

The standard radiometric search for the object’s best size, albedo, and thermal properties led to an unrealistically small thermal inertia between 5 and 300 \(\mu\)m (black line) for the second epoch (2011-07-12). Photometric measurements are PACS observations (red boxes), the IRTF observation (blue diamond), and the Spitzer-IRS CASSIS data (orange spectrum: leading hemisphere observation; red spectrum: trailing hemisphere data). The CASSIS spectra suffer from Uranus stray light longward of 30 \(\mu\)m. The IRTF and IRS data were re-scaled to the model epoch with (\(\chi^2_{\text{model}}\)). Nevertheless, the IRTF flux appears to be too high with regard to the model, because the IRTF measurement was done under close to pole-on illumination, when the moon was hotter, while the model reflects more a viewing geometry close to equator-on, when the moon was colder due to heat transport to the night side. The insert shows the resulting TPM surface temperature map of Oberon for the range 40–85 K.

Uranus (>14\(\arcsec\)), but the IRS spectra still seem to be contaminated around 30 \(\mu\)m. Adding the constraints from Titania’s known size and albedo (see Table 6), leads to thermal inertia values of 5–15 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\), with optimum values of 7–11 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\), again for an intermediate level of surface roughness (rms \(=\) 0.4). We explicitly tested also other solutions for the thermal inertia, but a value of 20 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\), as found for Oberon, caused already severe problems in fitting our thermal measurements. The TPM predictions for the PACS measurements would decrease by 5–15% and the match to the observations would not be acceptable (outside 3\(\sigma\)). The higher thermal inertia predictions would fit the IRS spectrum at short wavelength below 22 \(\mu\)m and beyond 35 \(\mu\)m, but not in between. Overall, we can exclude a thermal inertia larger than about 15 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) and smaller than about 5 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) for Titania.

The Herschel-PACS measurements of Titania cover mainly the trailing hemisphere (1st, 2nd, and 5nd epoch) and a clean leading or trailing analysis is not possible. However, we ran our analysis on these trailing hemisphere measurements (three PACS epochs and IRS-2) and compared the results with the leading hemisphere IRS-1 measurement. The trailing data give a very consistent (reduced \(\chi^2\) of 0.7) solution with a thermal inertia between 5 and 9 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\). But this solution overestimates the fluxes from the IRS-1 spectrum. A higher thermal inertia of 9–15 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) is needed to explain the leading hemisphere data. There are no PACS data to confirm this finding and due to the reduction and stray light residuals in the IRS spectra so close to Uranus; thus, this can only be considered an indication of differences between both hemispheres.

The spherical shape of the moon led to a leading hemisphere and a trailing hemisphere with a radius of 1170 km (\(p_f \approx \frac{1}{3}\)) and a diameter of just below 1100 km (\(p_r \approx 0.30\)), with reduced \(\chi^2\) values close to 1.0. The size and albedo values are in clear contradiction to the published values of 1170 km and \(p_r = 0.26\) (Karkoschka 2001). Taking the larger size requires a higher thermal inertia to fit all observed fluxes. Intermediate levels of surface roughness, combined with thermal inertias between 5 and 15 J m\(^{-2}\) s\(^{-0.5}\) K\(^{-1}\) seem to fit best (reduced \(\chi^2\) values just below the 1.7 threshold).
corrected PACS fluxes for all five epochs is 1.07.

Fig. 9. Thermophysical model of Umbriel between 5 and 300 µm (black line) for the second epoch (2011-07-12). Photometric measurements are PACS observations (red boxes), the IRTF observation (blue diamond), and the Spitzer-IRS CASSIS data (orange spectrum: leading hemisphere observation; red spectrum: trailing hemisphere data). The CASSIS spectra suffer from Uranus stray light longward of 22 µm. For an explanation of the IRTF and IRS data re-scale, see text and caption of Fig. 7. The insert shows the resulting TPM surface temperature map of Umbriel for the range 40–85 K.

6.4. Ariel

Ariel was also seen by IRTF, Spitzer-IRS (leading and trailing), and Herschel-PACS. However, the thermal IR fluxes are even lower than for Umbriel and the apparent distances to Uranus are smaller. Two PACS measurement sequences (08-Jun.−2012 and 14-Dec.−2012) were taken with Ariel below 6′′ separation and had to be skipped. None of the IRS spectra are usable: the fluxes are too high by factors of 3−4 (cf. Fig. 10).

A first radiometric analysis (just PACS 70/100 µm fluxes and the IRTF flux) produced sizes between about 1100 and 1400 km and only a very weak constraint on the thermal inertia (values below 100 J m² s⁻¹/² K⁻¹). Using the size constraint of 1159 km (a x b: 581 km x 578 km, Karkoschka 2001) requires a thermal inertia between 6 and 25 J m² s⁻¹/² K⁻¹ for an intermediate surface roughness. However, the reduced χ² is larger than 2.0 and a closer inspection shows a clear separation in the fits to the leading and trailing hemispheres. Taking the PACS measurements for the leading hemisphere (2011-Jul.-12) and the trailing hemisphere (2010-Dec.-13, and 2011-Dec.-26) separately gives much better fits (reduced χ² close to 1.0), indicating a lower thermal inertia (5−13 J m² s⁻¹/² K⁻¹) for the leading hemisphere, and a higher thermal inertia (13−40 J m² s⁻¹/² K⁻¹) for the trailing hemisphere. Although the IRS spectra cannot be used for the radiometric studies, the flux levels for the leading hemisphere are about 5−10% higher. This also points to a lower thermal inertia for the leading side compared to the trailing side. With our final solution, we calculated a maximum brightness temperature of about 86 K for the South-pole viewing geometry in early 1986. This compares very well with the maximum brightness temperature of 84 ± 1 K seen by Voyager-2/IRIS (Hanel et al. 1986).

The overall consistency (∆(log(TₚM))) of the models with colour corrected PACS fluxes for all five epochs is 1.07 ± 0.12, 0.94 ± 0.29, and 2.09 ± 0.48 at 70, 100, and 160 µm, respectively. The high 160 µm ratio of ≥2 is due to the fact that the measured values are all, except for one, far too low. Excluding the fourth and fifth epoch, where Ariel is at less than 6′′ apparent separation from Uranus, improves the consistency at 70 and 100 µm considerably with ratios of 0.99 ± 0.04, 1.00 ± 0.17, respectively. However, due to the generally low 160 µm fluxes, this ratio (2.20 ± 0.11) does not improve. An illustrated comparison for epoch 2 is shown in Fig. 10.

6.5. Miranda

For Miranda we have only the PACS measurements, but neither IRTF nor Spitzer-IRS data. The object was always within 10′′ from Uranus and the contamination problems are severe. We eliminated all 160 µm fluxes which are clearly completely off. In addition, we skipped the second- and fourth-epoch data, when Miranda was only at 3′:4 and 4′:4 apparent distance, respectively. For the last epoch, we also had to take out the 100 µm data.

In the end, only very few data points remained and the required coverage (in aspect angles, wavelengths, leading and trailing geometries, etc.) is missing for a robust radiometric analysis. With the size (974 km) and albedo (p_r = 0.45) we only obtained an upper limit of about 50 J m² s⁻¹/² K⁻¹ for Miranda’s thermal inertia. Larger values would force the TPM calculations to smaller fluxes which are not compatible with the highest S/N detections by PACS (the upper limit goes down to 20 J m² s⁻¹/² K⁻¹, if we consider only the best 70 µm fluxes). The corresponding TPM calculations (with a thermal inertia below 20 J m² s⁻¹/² K⁻¹) for the Voyager-2/IRIS measurements in January 1986 produce a maximum temperature of about 87 K, in excellent agreement with the 86 ± 1 K by Hanel et al. (1986).

6.6. Discussion

Table 7 provides an overview of the derived model parameters. Using these model SEDs, we also calculated the colour correction factors to be applied to the measured PACS fluxes (cf. Tables A.2–A.6).

How do the derived properties for the Uranian satellites compare with thermal inertias of other satellites and distant trans-neptunian objects (TNOs)? Lellouch et al. (2013) analysed a large sample of TNOs and found a Γ = 2.5 ± 0.5 J m⁻² s⁻¹/² K⁻¹ for objects at heliocentric distances of r_helio = 20−50 AU (decreasing values for increasing heliocentric distance). The Uranian system is at about 20 AU and therefore one would expect (under the assumption of TNO-like surfaces) to find low values, maybe up to 5 J m⁻² s⁻¹/² K⁻¹.

However, looking at dwarf planets, these general TNO-derived values are usually exceeded: Haumea is at r_helio = ~51 AU and it was found to have a thermal inertia of around 10 J m⁻² s⁻¹/² K⁻¹ (Müller et al. 2019). The thermal inertias
of Pluto and Charon (at \(r_{\text{helio}} > 30 \, \text{AU} \)) are even larger: \(\Gamma_{\text{Pluto}} = 16\text{–}26 \, \text{J m}^{-2} \, \text{s}^{-0.5} \, \text{K}^{-1} \) and \(\Gamma_{\text{Charon}} = 9\text{–}14 \, \text{J m}^{-2} \, \text{s}^{-0.5} \, \text{K}^{-1} \) (Lellouch et al. 2011, 2016). And putting the Pluto-Charon system closer to the Sun would increase the values significantly (assuming that the \(T^3 \) term dominates in the thermal conductivity, then the thermal inertia scales with \(\propto r^{-1/2} \); see e.g. Delbo et al. 2015). In case of Pluto-Charon, the high \(\Gamma \)-values are attributed to a large diurnal skin depth due to their slow rotation (\(\sim \text{few days} \), see also discussion in Kiss et al. 2019). In summary, the Uranian satellites Oberon, Titania, Umbriel, Ariel, and Miranda have thermal inertias which are higher than the very low values found for TNOs and Centaurs at 30 AU heliocentric distance. It seems that the thermal properties of the icy satellite surfaces are closer to the properties found for the TNO dwarf planets Pluto and Haumea.

7. Conclusions

In this study, we successfully demonstrate an image processing technique for PACS photometer data, allowing us to remove the bright central PSF of Uranus and reconstructing source fluxes of its five major satellites on the order of \(10^{-3} \) of Uranus. We obtained reliable moon fluxes outside radii of \(\approx 7\,\prime\prime, 11\,\prime\prime \), and \(17\,\prime\prime \) at 70, 100, and 160 \(\mu \text{m} \), respectively, which corresponds to \(\approx 3\times \) the half width at half maximum of the standard PSF (FWHMPSF = \(5\,\prime\prime, 6\,\prime\prime \) and \(10\,\prime\prime \), respectively). For Titania and Oberon we have established full sets of 70, 100, and 160 \(\mu \text{m} \) PACS photometry for all five observing epochs. For Umbriel, there are two epochs (1 & 3). For Ariel, there are three epochs (1–3). The 160 \(\mu \text{m} \) photometry of these two moons is either of low quality (Umbriel) or unreliable (Ariel). For Miranda, 70 \(\mu \text{m} \) flux estimates could be obtained for two epochs (1 & 3). This new FIR photometry, in combination with auxiliary data at shorter wavelengths from literature, has allowed us to establish TPM solutions for the five major Uranian satellites and to put constraints on their thermal inertia and surface roughness.

Acknowledgements

PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KUL, CSL, IMEC (Belgium); CEA, OAMP (France); MPIA (Germany); IFSI, OAP/ATO, OAA/CAISMI, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI (Italy), and CICYT/MCYT (Spain). Z.B. acknowledges funding by DLR for this work. T.M. has received funding from the Hungarian National Research, Development and Innovation Office (NKFIH) grant PD-128360. G.M. acknowledges partial support from the EC Horizon 2020 project OPTICON (730890) and the ESA PRODEX contract nr. 4000129910. We thank the referee for constructive comments.

References

Balog, Z., Müller, T., Nielbock, M., et al. 2014, Exp. Astron., 37, 129
Brown, R. H., Cruikshank, D. P., & Morrison, D. 1982, Nature, 300, 423
Cartwright, R. J., Emery, J. P., Rivkin, A. S., Trilling, D. E., & Pinilla-Alonso, N. 2015, Icarus, 257, 428
Cartwright, R. J., Emery, J. P., Pinilla-Alonso, N., et al. 2018, Icarus, 314, 210
Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNras, 430, 2545
Cohen, M., Witteborn, F. C., Carbon, D. F., et al. 1996, AJ, 112, 2274
Delbo, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. 2015, Asteroids IV (Tucson, AZ: University of Arizona Press), 107
Ester, K., Balog, Z., Culozetti, L., et al. 2018, The Photodetector Array Camera and Spectrometer (PACS) Handbook, Herschel-HSOC-DOC-2101, https://www.cosmos.esa.int/documents/121319/996891/PACS+Explanatory+Supplement
Fruchter, A. S., & Hook, R. N. 2002, PASP, 114, 144
Hanel, R., Conrath, B., Flasar, F. M., et al. 1986, Science, 233, 70
Harper, D. A., Runyan, M. C., Dowell, C. D., et al. 2018, J. Astron. Instrum., 7, 1840008
Houck, J. R., Roellig, T. L., van Cleve, J., et al. 2004, ApJS, 154, 18
Karkoschka, E. 2001, Icarus, 151, 51
Kiss, C., Marton, G., Parker, A. H., et al. 2019, Icarus, 334, 1
Klaas, U., Herschel Technical Report on Herschel telescope background in photometer bands, PICC-MA-TN-013, https://www.cosmos.esa.int/documents/121319/996891/A+Herschel+telescope+background+model+for+the+PACS+photometer
Kramer, C., Moreno, R., & Greve, A. 2008, A&A, 482, 359
Laggers, J. S. V. 1996, A&A, 310, 1011
Laggers, J. S. V. 1997, A&A, 325, 1226
Laggers, J. S. V. 1998, A&A, 332, 1123
Lebouteiller, V., Barry, D. J., Spoon, H. W. W., et al. 2011, ApJS, 196, 8
Lebouteiller, V., Barry, D. J., Goes, C., et al. 2015, AIPs, 218, 21
Lellouch, E., Stansberry, J., Emery, J., Grundy, W., & Cruikshank, D. P. 2011, Icarus, 214, 701
Lellouch, E., Santos-Sanz, P., Fornasier, S., et al. 2016, A&A, 588, A2
Lemke, D., Klaas, U., Abolins, J., et al. 1996, A&A, 315, L64
Lutz, D. 2015, Herschel Technical Report on PACS photometer point spread function, PICC-ME-TN-033, https://www.cosmos.esa.int/documents/121319/996891/PACS+photometer+point+spread+function
Morrison, D., & Lebofsky, L. 1979, Asteroids, eds. T. Gehrels, & M. S. Matthews (Tucson, AZ: University of Arizona Press), 184
Müller, T. G., & Laggers, J. S. V. 1998, A&A, 338, 340
Müllner, T., & Laggers, J. S. V. 2002, A&A, 381, 324
Müller, T. G., Balog, Z., Nielbock, M., et al. 2016, A&A, 588, A109
Müller, T. G., Kiss, C., Ali-Lagoa, V., et al. 2019, Icarus, 334, 39
Ott, S. 2010, ASP Conf. Ser., 434, 139
Pilbratt, G., Riedinger, J., Passvogel, T., et al. 2010, A&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, id.L2
Szakáts, R., Müller, T., Ali-Lagoa, V., et al. 2020, A&A, 635, A54
Veverka, J., Brown, R. H., & Bell, J. F. 1991, Uranus satellites – Surface properties, eds. J. T. Bergstralh, E. D. Miner, & M. S. Matthews (Tucson, AZ: University of Arizona Press), 528
Appendix A: PSF subtracted maps and photometry of individual maps

A.1. 70\,\mu m maps of Uranian moons

Fig. A.1. 70\,\mu m maps of the Uranus moons after subtraction of the Uranus PSF reference. Pixel scale is 1\,\prime\prime. Moons for which the PSF is not or only slightly affected by PSF subtraction residuals are labelled in white. The central positions of moons for which the PSF is more significantly affected by PSF subtraction residuals or which are located closely together are marked by a red cross. If only the initial of a moon is labelled, then its PSF peak is located inside the critical residual area. The central position of Uranus is marked by a black or white cross and labelled in italics. The positions of the moons relative to Uranus within plus minus one day of the observation are indicated by small red lines (we note that these refer to the Uranus position at the time of observation). Since Miranda has an orbital period of $P = 1.413$ d, a closed orbit line is seen.
A.2. 100\(\mu m\) maps of Uranian moons

Fig. A.2. 100\(\mu m\) maps of the Uranus moons after subtraction of the Uranus PSF reference. Pixel scale is 1'. Moons for which the PSF is not or only slightly affected by PSF subtraction residuals are labelled in white. The central positions of moons for which the PSF is more significantly affected by PSF subtraction residuals or which are located closely together are marked by a red cross. If only the initial of a moon is labelled, then its PSF peak is located inside the critical residual area. The central position of Uranus is marked by a black or white cross and labelled in italics.
A.3. 160\,\mu m maps of Uranian moons

Fig. A.3. 160\,\mu m maps of the Uranus moons after subtraction of the Uranus PSF reference. Pixel scale is 2\,\arcsec.1. Moons for which the PSF is not or only slightly affected by PSF subtraction residuals are labelled in white. The red cross marks the central positions of moons for which the PSF is more significantly affected by PSF subtraction residuals or which are located closely together are marked. If only the initial of a moon is labelled, then its PSF peak is located inside the critical residual area. The central position of Uranus is marked by a black or white cross and labelled in italics.
A.4. Photometry of Uranus from individual maps

OBSID	OD	MJD mid-time obs.	λ_{ref} (µm)	f_{total} (Jy)	$f_{\text{measured}}^{\text{Uranus}}$ (Jy)	σ_{par} (Jy)	σ_{red} (Jy)	σ_{tot} (Jy)	$f_{\text{distancecorrected}}^{\text{Uranus}}$ (Jy)	τ_{helio} (AU)	Λ_{obs} (AU)
1342211117	579	55 543.720600	70.0	871.595	866.586	0.336	0.535	0.632	862.636	20.090	19.975
1342211118	579	55 543.724640	70.0	869.527	864.426	0.321	1.072	1.119	860.492	20.090	19.975
1342211120	579	55 543.731280	100.0	888.362	884.066	0.317	0.354	0.475	880.049	20.090	19.975
1342211121	579	55 543.735320	100.0	887.348	882.873	0.322	0.302	0.441	878.867	20.090	19.975
1342223982	789	55 575.057940	70.0	886.482	881.336	0.366	0.360	0.513	862.139	20.083	19.801
1342235629	957	55 921.949240	70.0	858.994	853.920	0.381	1.098	1.162	862.251	20.076	20.118
1342235632	957	55 921.953280	70.0	856.286	851.288	0.371	1.424	1.472	859.599	20.076	20.118
1342235634	957	55 921.959920	100.0	874.231	870.139	0.307	0.405	0.509	878.640	20.076	20.118
1342224677	1121	56 086.185000	70.0	835.110	830.155	0.384	0.910	0.988	862.297	20.069	20.404
1342224673	1121	56 086.189040	70.0	833.527	828.737	0.371	1.504	1.554	860.819	20.069	20.404
1342224674	1121	56 086.193080	100.0	874.231	870.139	0.307	0.405	0.509	878.640	20.076	20.118
1342224675	1121	56 086.197120	100.0	874.231	870.139	0.307	0.405	0.509	878.640	20.076	20.118

Notes: f_{total} gives the total flux of the Uranus system (Uranus plus the moons). $f_{\text{measured}}^{\text{Uranus}}$ gives the flux at the actual distance of Uranus to Herschel. $f_{\text{distancecorrected}}^{\text{Uranus}}$ gives the flux corrected to the same mean distance ($\Delta_{\text{obs,mean}} = 20.024$ AU) by scaling $f_{\text{distancecorrected}}^{\text{Uranus}} = \left(\frac{\Delta_{\text{obs}}}{\Delta_{\text{obs,mean}}} \right)^2 \times f_{\text{measured}}^{\text{Uranus}}$. Δ_{obs} is the range of target centre wrt. the observer, i.e. Herschel, τ_{helio} is the light-time corrected heliocentric range. σ_{par} is the uncertainty in the PSF fitting parameters, σ_{red} is the uncertainty due to the reduction method (dependence on the map parameter selection), σ_{tot} is the geometrical mean of the latter two uncertainties. The five epochs with 4 observations each are separated by horizontal lines.
Table A.2. PSF photometry of Titania.

OBSID	OD	MJD	λ_{det} (μm)	f_{monoc} (Jy)	f_{mon} (Jy)	σ_{rap} (Jy)	σ_{red} (Jy)	σ_{tot} (Jy)	f_{monoc,cc} (Jy)	f_{model} (Jy)	r_{helio} (AU)	Δ_{obs} (AU)	α (deg)	θ_{L-O} (°)	δ_{LSR} (km/s)		
1342223982	789	55754.05794	70.0	1.934	1.705	0.0012	0.0151	0.0152	1.732	1.697	0.012	20.084	19.802	T	2.837	29.52	+0.97 (TH)
1342235629	957	55921.94924	70.0	1.909	1.630	0.0022	0.0083	0.0096	1.656	1.635	0.013	20.079	20.121	L	2.828	21.86	+0.72 (TH)
1342235630	957	55921.95328	70.0	1.978	1.684	0.0022	0.0207	0.0209	1.711	1.653	0.047	20.079	20.121	L	2.828	21.86	+0.72 (TH)
1342235632	957	55921.95992	100.0	1.666	1.449	0.0057	0.0058	0.0082	1.451	1.371	0.058	20.079	20.121	L	2.828	21.86	+0.72 (TH)
1342235633	957	55921.96396	100.0	1.689	1.466	0.0067	0.0093	0.0114	1.471	1.422	0.010	20.079	20.121	L	2.828	21.86	+0.72 (TH)

Notes. Applied colour correction factors cc to derive colour corrected fluxes f_{monoc,cc} are listed in Table 7. r_{helio} is the light-time corrected heliocentric range, Δ_{obs} is the range of target centre wrt. the observer, i.e. Herschel, α is the phase angle with indication of L(leading) or T(railing) the Sun and θ_{L-O} is the angular separation from Uranus. r_{helio} is the heliocentric range and Δ_{LSR} indicates L(leading) H(emisphere) or T(railing) H(emisphere), if the absolute value of the ratio is greater than 1, or B(oth) H(emispheres) otherwise. All five figures have been computed with the JPL Horizons On-Line Ephemeris System. The five epochs with 4 observations each are separated by horizontal lines.
Table A.3. PSF photometry of Oberon.

OBSID	OD	MJD	\(\Delta_{\text{obs}}\) & \(\Delta_{\text{helio}}\) & \(\Delta_{\text{cc}}\) & \(\Delta_{\text{f}}\) & \(\Delta_{\text{tot}}\) & \(\Delta_{\text{univ}}\) & \(\Delta_{\text{mod}}\) & \(\Delta_{\text{model}}\)	\(\Delta_{\text{helio}}\) & \(\Delta_{\text{obs}}\)												
1342211117	579	55543.72060	70.0	1.892	1.639	0.0229	0.1034	0.1059	1.666	1.529	1.090	20.086	19.971	L 2.826	6.31	+0.03 (BH)
1342211118	579	55543.72464	70.0	1.796	1.553	0.0241	0.0561	0.0660	1.587	1.529	1.032	20.086	19.971	L 2.826	6.32	+0.03 (BH)
1342211120	579	55543.73128	100.0	1.612	1.425	0.0316	0.1059	0.1105	1.426	1.288	1.107	20.086	19.971	L 2.826	6.35	+0.03 (BH)
1342211121	579	55543.73532	100.0	1.776	1.568	0.0319	0.0324	0.0454	1.569	1.288	1.218	20.086	19.971	L 2.826	6.37	+0.03 (BH)
1342223982	789	55575.05794	70.0	1.828	1.611	0.0010	0.0077	0.0078	1.637	1.578	1.038	20.086	19.804	T 2.837	30.90	−0.74 (LH)
1342223983	789	55575.06398	70.0	1.867	1.638	0.0011	0.0116	0.0117	1.664	1.578	1.055	20.086	19.804	T 2.837	30.95	−0.74 (LH)
1342223985	789	55575.06862	100.0	1.526	1.374	0.0012	0.0114	0.0115	1.376	1.326	1.037	20.086	19.804	T 2.837	31.02	−0.74 (LH)
1342223986	789	55575.07266	100.0	1.559	1.398	0.0015	0.0127	0.0128	1.400	1.326	1.055	20.086	19.804	T 2.837	31.07	−0.74 (LH)

Notes. Applied colour correction factors cc to derive colour corrected fluxes \(f_{\text{model}}\) are listed in Table 7. \(f_{\text{model}}\) is the light-time corrected heliocentric range, \(\Delta_{\text{obs}}\) is the range of target centre wrt. the observer, i.e. Herschel, \(\alpha\) is the Phase angle with indication of (Leading) or (Trailing) the Sun, and \(\theta_{\text{U} \rightarrow \text{O}}\) is the angular separation from Uranus. \(\Delta_{\text{helio}}\) indicates \(L\) (hemisphere) or \(T\) (trailing) \(H\) (hemisphere), if the absolute value of the ratio is greater than \(\frac{1}{2}\), or \(B\) (both) \(H\) (hemispheres) otherwise. All five figures have been computed with the JPL Horizons On-Line Ephemeris System. The five epochs with 4 observations each are separated by horizontal lines.
Table A.4. PSF photometry of Umbriel.

OBSID	OD	MJD	$\Delta t_{\text{mid-time obs.}}$	f_{moon} (µm)	σ_{moon} (µm)	σ_{moon} (µm)	σ_{moon} (µm)	$f_{\text{moon},cc}$ (µm)	f_{model} (µm)	f_{model} (µm)	f_{model} (µm)	r_{helio} (AU)	Δ_{obs} (AU)	σ (deg)	θ_{L-T} (°)	θ_{B-L} (°)
1342211117	579	55.543.72060	70.0	0.962	0.833	0.0035	0.0182	0.0185	0.847	0.915	0.926	20.091	19.976	L 2.825	16.59	-0.90 (LH)
1342211118	579	55.543.72464	70.0	1.071	0.880	0.0034	0.0116	0.0211	0.894	0.915	0.977	20.091	19.976	L 2.825	16.64	-0.90 (LH)
1342211120	579	55.543.73128	100.0	0.812	0.718	0.0059	0.0076	0.0096	0.719	0.766	0.938	20.091	19.976	L 2.825	16.71	-0.91 (LH)
1342211121	579	55.543.73532	100.0	0.863	0.762	0.0059	0.0078	0.0083	0.763	0.766	0.996	20.091	19.976	L 2.826	16.76	-0.91 (LH)
1342223982	789	55.754.05794	70.0	1.004	0.919	0.0107	0.0157	0.0189	0.934	0.941	0.992	20.085	19.983	T 2.837	8.62	+0.38 (BH)
1342223983	789	55.754.06198	70.0	1.062	0.932	0.0080	0.0200	0.0215	0.947	0.941	1.007	20.085	19.983	T 2.837	8.54	+0.37 (BH)
1342223985	789	55.754.06682	100.0	0.898	0.809	0.0235	0.0144	0.0275	0.810	0.786	1.030	20.085	19.983	T 2.836	8.42	+0.36 (BH)
1342223986	789	55.754.07266	100.0	0.884	0.793	0.0196	0.0125	0.0232	0.794	0.786	1.010	20.085	19.983	T 2.838	8.34	+0.36 (BH)

Notes. Applied colour correction factors cc to derive colour corrected fluxes $f_{\text{moon},cc}$ are listed in Table 7. r_{helio} is the light-time corrected heliocentric range, Δ_{obs} is the range of target centre wrt. the observer, i.e. $Herschel$, α is the Phase angle with indication of L(leading) or T(railing) the Sun, and θ_{L-T} is the angular separation from Uranus. r_{helio} is the heliocentric range and Δ_{obs} indicates L(ading) H(emisphere) or T(railing) H(emisphere), if the absolute value of the ratio is greater than $\frac{1}{2}$, or B(oth) H(emispheres) otherwise. All five figures have been computed with the JPL Horizons On-Line Ephemeris System. The five epochs with 4 observations each are separated by horizontal lines.
Table A.5. PSF photometry of Ariel.

OBSID	OD	MJD mid-time obs.	Δt_{ef} (\mu\text{m})	$f_{\text{flux, reff}}$ (10^{-15} Jy)	$f_{\text{flux, nom}}$ (Jy)	σ_t (Jy)	σ_r (Jy)	$f_{\text{flux, nom,cc}}$ (Jy)	f_{model} (Jy)	η_{helio} (AU)	Δ_{obs} (AU)	α (deg)	$\theta_{\text{L-T}}$ (°)	η_{helio}		
1342211117	579	55 543.72060	70.0	0.859	0.745	0.0063	0.0093	0.0112	0.758	0.751	1.009	20.090	19.975	2.826	13.15	+1.00 (TH)
1342211117	579	55 543.72464	70.0	0.845	0.730	0.0069	0.0236	0.0246	0.743	0.751	0.999	20.090	19.975	2.826	13.14	+1.00 (TH)
1342211120	579	55 543.73128	100.0	0.728	0.644	0.0130	0.0285	0.0313	0.645	0.656	0.984	20.090	19.975	2.826	13.12	+1.00 (TH)
1342211121	579	55 543.73532	100.0	0.660	0.582	0.0148	0.0201	0.0249	0.584	0.656	0.890	20.090	19.975	2.826	13.11	+0.99 (TH)
134223982	789	55 754.05794	70.0	0.932	0.821	0.0052	0.0119	0.0119	0.835	0.780	1.071	20.083	19.802	T 2.837	13.05	−0.98 (LH)
134223983	789	55 754.06198	70.0	0.910	0.798	0.0056	0.0225	0.0232	0.812	0.779	1.042	20.083	19.802	T 2.837	13.07	−0.98 (LH)
134223985	789	55 754.06862	100.0	0.868	0.782	0.0103	0.0161	0.0191	0.784	0.678	1.157	20.083	19.801	T 2.837	13.11	−0.98 (LH)
134223986	789	55 754.07266	100.0	0.943	0.846	0.0122	0.0153	0.0196	0.848	0.678	1.251	20.083	19.801	T 2.837	13.13	−0.99 (LH)

Notes. Applied colour correction factors cc are listed in Table 7. η_{helio} is the light-time corrected heliocentric range, Δ_{obs} is the range of target centre wrt. the observer, i.e. H_{sche}, α is the Phase angle with indication of L(eading) or T(railing) the Sun, and $\theta_{\text{L-T}}$ is the angular separation from Uranus. η_{helio} is the heliocentric range corrected for η_{ref} indicates L(eading) or H(semisphere) or T(railing) H(semisphere), if the absolute value of the ratio is greater than $\frac{1}{2}$, or B(oth) (Hemispheres) otherwise. All five figures have been computed with the JPL Horizons On-Line Ephemeris System. The five epochs with 4 observations each are separated by horizontal lines.
Notes. The aperture photometry has been corrected for the finite aperture size according to the description in the PACS Handbook (Exter et al. 2018), Sect. 7.5.2.

Table A.6. PSF photometry of Uranus' five major moons

OBSID	OD	MJD	mid-time obs.	\(\lambda_{\text{ref}}\)	\(r_{\text{aperture}}\)	\(r_{\text{aperture}}/f_{\text{mss}}\)	\(f_{\text{mss}}\)	\(\sigma_{\text{aper}}\)	\(f_{\text{PSF}}/f_{\text{mss}}\)	\(\alpha\)	\(\theta_{\text{L-H}}\)					
1342211117	579	55 543.72060	70.0	0.141	0.122	0.0996	0.0650	0.1189	0.124	0.129	0.964	20.089	19.974	L 2.826	7.56+	0.84 (TH)
1342211118	579	55 543.72464	70.0	0.299	0.258	0.1219	0.0253	0.1244	0.263	0.129	2.038	20.089	19.975	L 2.826	7.65+	0.85 (TH)
1342211120	579	55 543.73128	100.0	0.110	0.097	0.2645	0.0254	0.2657	0.097	0.112	0.870	20.090	19.975	L 2.826	7.78+	0.86 (TH)
1342211121	579	55 543.73532	100.0	0.187	0.165	0.3222	0.0610	0.3032	0.166	0.112	1.480	20.090	19.975	L 2.826	7.85+	0.87 (TH)
134223982	789	55 754.05794	70.0	0.102	0.090	0.3742	0.0720	0.3810	0.092	0.134	0.684	20.082	19.801	T 8.373	3.50+	0.21 (BH)
134223983	789	55 754.06198	70.0	0.042	0.037	0.6955	0.0482	0.6213	0.037	0.134	0.279	20.082	19.800	T 8.373	3.43+	0.19 (BH)
134223985	789	55 754.06862	100.0	–	–	–	–	–	–	–	–	20.082	19.800	T 8.373	3.33+	0.17 (BH)
134223986	789	55 754.07266	100.0	–	–	–	–	–	–	–	–	20.082	19.800	T 8.373	3.27+	0.15 (BH)

Notes. Applied colour correction factors \(cc\) to derive colour corrected fluxes \(f_{\text{mss}}cc\), are listed in Table 7. \(r_{\text{helio}}\) is the light-time corrected heliocentric range. \(\Delta \phi_{\text{obs}}\) is the range of target centre wrt. the observer, i.e. \(Hershel\), \(a\) is the heliocentric range and \(r_{\text{max}}\) indicates \(L(H)\) (hemisphere) or \(T\) (trailing). The \(\sigma_{\text{aper}}\) is the range of target centre wrt. the observer, i.e. \(Hershel\), \(a\) is the heliocentric range and \(r_{\text{max}}\) indicates \(L(H)\) (hemisphere) or \(T\) (trailing). The column \(f_{\text{PSF}}/f_{\text{mss}}\) indicates \(L(H)\) (hemisphere) or \(T\) (trailing). The column \(f_{\text{PSF}}/f_{\text{mss}}\) indicates \(L(H)\) (hemisphere) or \(T\) (trailing).
Table A.7. continued.

OBSID	OD	MJD	Object	λ_{ref}	f_{aperture}	f_{moon}	σ_{aper}	f_{PSF}	σ_{tot}	σ_{ratio}	
				μm	(Jy)	(Jy)	(Jy)	(Jy)	(Jy)	(Jy)	
134223985	789	55 754.06862	Oberon	70.0	5.6	1.581	0.014	1.638	0.012	1.036	0.012
			Ariel	70.0	5.6	0.681	0.061	0.798	0.023	1.172	0.110
134223986	789	55 754.07266	Titania	100.0	6.8	1.418	0.010	1.455	0.005	1.026	0.008
			Oberon	100.0	6.8	1.331	0.011	1.374	0.012	1.032	0.012
134235629	957	55 921.94924	Titania	70.0	5.6	1.592	0.044	1.630	0.097	1.024	0.067
			Oberon	70.0	5.6	1.557	0.013	1.573	0.014	1.010	0.012
134235630	957	55 921.95328	Titania	70.0	5.6	1.550	0.041	1.584	0.021	1.086	0.032
			Oberon	70.0	5.6	1.556	0.023	1.576	0.015	1.013	0.018
134246772	1121	56 086.18500	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134246773	1121	56 086.18904	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134246774	1121	56 086.19308	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134246775	1121	56 086.19712	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134225193	1310	56 275.07361	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134225194	1310	56 275.07765	Titania	70.0	5.6	1.581	0.030	1.630	0.038	1.031	0.031
			Oberon	70.0	5.6	1.517	0.019	1.566	0.033	1.032	0.025
134225195	1310	56 275.08169	Titania	70.0	5.6	1.449	0.013	1.487	0.015	1.026	0.014
			Oberon	70.0	5.6	1.356	0.017	1.396	0.015	1.053	0.018
134225196	1310	56 275.08573	Titania	70.0	5.6	1.420	0.014	1.470	0.005	1.035	0.011
			Oberon	70.0	5.6	1.324	0.008	1.382	0.013	1.044	0.012
			Umbral	70.0	5.6	0.703	0.009	0.802	0.007	1.141	0.018
Appendix B: Relation of PACS photometer detector response with the telescope background power in the 70, 100, and 160 µm PACS filters

Table B.1. Telescope background correction factors for the Uranus observations derived from Eqs. (B.3)–(B.5).

OD	\(c_{70}^{\text{telbg}} \)	\(c_{100}^{\text{telbg}} \)	\(c_{160}^{\text{telbg}} \)	\(c_{\text{dist}} \)
579	1.0001	0.9989	1.0009	1.0046
789	1.0020	1.0007	1.0038	1.0223
957	0.9939	0.9965	0.9979	0.9903
1121	0.9976	0.9990	1.0020	0.9627
1310	0.9892	0.9947	0.9959	1.0201

Notes. The last column gives the distance correction (dc) factor to bring the Uranus photometry to a mean distance.

According to Exter et al. (2018), Sect. 7.4.2, the monochromatic PACS flux density is inversely proportional to the detector response \(R \):

\[
f_{\nu,1}(\lambda_0) [\text{Jy}] = U_{\text{sig}} \frac{C_{\text{conv}}}{R} = U_{\text{sig}} \frac{R_{\nu,1}}{R_{\nu,1}}
\]

with

\[
R_{\nu,1} [\text{V/Jy}] = \frac{R [\text{V/W}]}{C_{\text{conv}} [\text{Jy/pW}]}.
\]

\(R_{\nu,1} \) is actually not a constant. It depends on the operational temperature of the bolometers and the IR total flux load, hence \(R_{\nu,1} = f(T, B_{\text{totalflux}}) \). \(B_{\text{totalflux}} \) is dominated by the background of the only passively cooled telescope \(B_{\text{telescope}} \). A first description of this detector response effect by the telescope background was given by Balog et al. (2014). In that study the telescope background was described as flux/photometer pixel. Klaas (2016) describes a telescope background model, from which a telescope background per photometer pixel can be calculated for each Herschel Operational Day (OD). In Sect. 6 detector response relations with regard to this calculated telescope background are shown which are based on observations of standard stars. In particular at 160 µm the stars are already quite faint (<3 Jy) and no significant correlation could be derived due to the uncertainties of the measured fluxes and hence a large scatter of the data points.

However, the Uranus observations offer high S/N data points for all three filters. The only prerequisite is to scale all observations to the same distance (dc). Figure B.1 shows the derived relations for the correction factors \(c_{\text{telbg}}(\text{Telescope}) = \left(\frac{c_{\text{Uranus}}(B_{\text{model}})}{c_{\text{Uranus}}(B_{\text{telescope}})} \right)_{\text{dc}} \). These are (from PSF photometry):

\[
70 \mu \text{m} : c_{\text{telbg}} = 1.2445 - 0.1041 \times B_{\text{telescope}} (\text{pW})
\]

\[
100 \mu \text{m} : c_{\text{telbg}} = 1.1859 - 0.1496 \times B_{\text{telescope}} (\text{pW})
\]

\[
160 \mu \text{m} : c_{\text{telbg}} = 1.3678 - 0.2015 \times B_{\text{telescope}} (\text{pW})
\]

For our Uranus observations the following correction factors in Table B.1 are applied to the fluxes (by division, since R is inversely proportional with \(f_{\nu,1}(\lambda_0) \)).

While the effect of the distance correction \((\frac{c_{\text{max}}}{c_{\text{min}}})_{\text{dist}} \) is in the order of 6%, the effect of the detector response change with telescope background \((\frac{c_{\text{max}}}{c_{\text{min}}})_{\text{telbg}} \) is in the order of 1.3%, 0.6%, and 0.8% at 70, 100, and 160 µm, respectively, for the data set of Uranus and its satellites.