Review article

An overview on the most outstanding Italian endemic moth, *Brahmaea (Acanthobrahmaea) europaea* (Lepidoptera: Brahmaeidae)

Fabio MOSCONI¹,²,*, Alberto ZILLI³, Renato SPICCIARELLI⁴, Emanuela MAURIZI¹,⁵, Augusto VIGNA TAGLIANTI⁶, Paolo AUDISIO²,⁶

¹Council for Agricultural Research and Economics, Research Centre for Agrobiology and Pedology (C.R.A.-A.B.P) - Via Lanciola 12/A, I-50125 Cascine del Riccio (Florence), Italy - fabio.mosconi@gmail.com
²Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome - Via Alfonso Borelli 50, I-00161 Rome, Italy - paolo.audisio@uniroma1.it
³The Natural History Museum, Life Sciences, Insect Division - DC2-2N, Cromwell Road, London SW7 5BD, UK - a.zilli@nhm.ac.uk
⁴School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata - Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy - renato.spicciarelli@unibas.it
⁵Department of Sciences, Roma Tre University - Viale Guglielmo Marconi 446, I-00146 Rome, Italy - emanuela.maurizi@uniroma3.it
⁶Museum Centre, Zoological Museum, Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome - Piazzale Valerio Massimo 6, I-00162 Rome, Italy - augusto.vignataglianti@uniroma1.it
*Corresponding author

Abstract
The state of knowledge about the European Bramea, *Brahmaea (Acanthobrahmaea) europaea* Hartig, 1963, is briefly summarized in relation to growing concern about the conservation status of the most outstanding Italian endemic moth species.

Key words: *Brahmaea (Acanthobrahmaea) europaea*, Brahmaeidae, Lepidoptera, endemic species, host-plants, conservation, Italy.

Introduction
Brahmaea (Acanthobrahmaea) europaea Hartig, 1963 (Fig. 1), the so called European Owl Moth or European Bramea, was discovered by Federico Hartig (Fig. 9) in 1963 in Basilicata, Southern Italy (Hartig 1963, 1966, 1997; Sbordoni & Forestiero 1984; Stella 1987; Vigna Taglianti & Zilli 2008).

Subsequent research has shown that *B. europaea* is an Italian endemic with exceedingly restricted range (e.g. Rougeot 1971, 1975); in fact, the species occurs only in a very small area, mainly around Mount Vulture, and in a few localities along the valleys of the rivers Basento and Cavone (provinces of Potenza and Matera; Fig. 8).

Brahmaea europaea was long considered as the only Brahmaeid present in Europe, a family which in its strict sense included a few species from Asia and the Afrotopical region (Minet 1994; Lemaire & Minet 1999; Nässig & Naumann 2010). Nonetheless, following outcomes of molecular studies, the family Lemoniidae, with five species in Europe (all in the genus *Lemonia* Hübnner, 1820), two of which also in Italy, was recently merged with the Brahmaeidae (Regier et al. 2008; Zwick 2008; Zwick et al. 2011).
growth of privet, hawthorns and *Phyllirea*, at an altitude between 200 m and 800 m (Fig. 3). Adults (Fig. 1) are on the wing only for a short period of the year, during three or four weeks between late March and early May, with a peak of activity in the first half of April (Laplanche 1973; Spicciarelli & Fimiani 2004). After the rapid development and hatching of eggs, about 12–15 days after deposition (Spicciarelli 2013), caterpillars grow fast; fifth instar larvae (Fig. 5) pupate into the ground, where they will remain until the following spring (Fig. 6). The spines present on the abdominal segments (Fig. 7) are likely to support active movements by the chrysalis into the ground, as evidenced by conspicuous daily movements by the pupae in breeding cages observed by Enrico Stella (personal communication, 1986).

The ecological requirements of the species are still poorly known. Adults are active during the early hours of the night, just after sunset, and they are capable of flying also at very low temperatures, even when snowing (Dufay 1970; Spicciarelli & Fimiani 2004). After the rapid development and hatching of eggs, about 12–15 days after deposition (Spicciarelli 2013), caterpillars grow fast; fifth instar larvae (Fig. 5) pupate into the ground, where they will remain until the following spring (Fig. 6). The spines present on the abdominal segments (Fig. 7) are likely to support active movements by the chrysalis into the ground, as evidenced by conspicuous daily movements by the pupae in breeding cages observed by Enrico Stella (personal communication, 1986).

The ecological requirements of the species are still poorly known. Adults are active during the early hours of the night, just after sunset, and they are capable of flying also at very low temperatures, even when snowing (Dufay 1970; Spicciarelli & Fimiani 2004).

For a long time, host plants and feeding habits by the larvae remained unknown; in fact, larvae were rarely ob-

Life history and ecology

The moth lives in mixed broadleaved forests dominated by deciduous oaks, ashes and hornbeams with rich under-

Fig. 1 – Adult of *Brahmaea (Acanthobrahmaea) europaea* (Grotticcelle Nature Reserve; photo by V. Viglioglia).
An overview on the Italian endemic *Brahmaea europaea*

Figs 2–7 – 2. Information board at main entrance of Grotticelle Nature Reserve (Basilicata); 3, edge of a forest habitat, Grotticelle Nature Reserve; 4, larva of *Brahmaea (Acanthobrahmaea) europaea* Hartig, 1963 feeding on *Fraxinus angustifolia* subsp. *oxyarpa* (Willd.); 5, mature larva of *B. europaea* about to pupate (top), and pupa soon after formation (bottom); 6, hardened and darkened pupa of *B. europaea* a few hours after formation (ventral view); 7, detail of pupal cremaster of *B. europaea* and three rows of stout spines on segments A5-A7 (dorsal view). Photos 2 and 4-7 by R. Spicciarelli; photo 3 by A. Rositi.
served in nature, though there were rumors that Hartig had occasionally spotted clusters of caterpillars on bushes of narrow-leaved ash [Fraxinus angustifolia subsp. oxycarpa (Wild.); Oleaceae]. More recently Spicciarelli (1997, 2013, 2014) demonstrated that larvae in the wild actually feed on Fraxinus angustifolia subsp. oxycarpa (Fig. 4) but also on the evergreen Phyllirea latifolia L. (Oleaceae); in captivity larvae would also freely accept Ligustrum vulgare L. (Bilek 1965, 1967), whereas they appear to refuse Fraxinus ornus L. (Spicciarelli 2014).

All host plants of Brahmaea (Acanthobrahmaea) europaea are thus members of the Oleaceae, as for all known palaearctic Brahmaea species (Nässig 1980; De Freina 1982, 1985; Konno et al. 2001). Interestingly, the host plant range by the European Bramea closely matches that of its ally B. ledereri, which in the wild was recorded from Fraxinus “excelsior” L. and Phyllirea latifolia and in captivity accepted other Oleaceae (Korb 1899; De Freina 1985). The larvae show a gregarious behavior; in accordance with the observations made by Spicciarelli (2013, 2014) about the feeding strategies of caterpillars, they appear to have a “nomadic foraging” behavior (Fitzgerald & Peterson 1988).

Eggs are laid in clusters on tree trunks, from which the larvae spread and reach the tip of relevant trees and bushes which are consumed first. Subsequently, they descend onto lower twigs and then, when a given size is attained, they disperse onto other plants even at remarkable distance (Spicciarelli 2014). The attitude of consuming the host plants starting from the uppermost shoots is a behavioral trait shared with its geographically closest relative, the Anatolian-Iranian Brahmaea ledereri (Nässig personal communication, 1985).

Geographic distribution

In figure 8 the few localities in Southern Italy where Brahmaea (Acanthobrahmaea) europaea is known to occur are listed; data were obtained from Hartig (1963, 1997), Parenzan (1978), Bertaccini et al. (1995) and personal observations. Rumors that the species had been collected by amateurs or students in far apart areas of region Campania and even Gargano promontory in Apulia (e.g. Parenzan & Porcelli 2006) were never formally corroborated. In this respect, it is worth noting that samplings run in fully suitable biotopes in Daunia Mts in Northern Apulia (e.g. Catola Valley near Volturara Appula, Foggia Province) regularly revealed all species accompanying the European Bramea where it thrives in the Ofanto Valley with the exception of the brahmaeid itself.

Survey methods

Dedicated monitoring methods for Brahmaea (Acanthobrahmaea) europaea have not been developed. As larvae are very difficult to locate in the wild they are not suitable for monitoring the species. In contrast, adults are easily recorded at artificial lights so the generic monitoring method described by Trizzino et al. (2013) for nocturnal Lepidoptera may be easily applied to assay distribution, abundance and demographic fluctuations of populations of the species.

Conservation status and threats

At present, Brahmaea (Acanthobrahmaea) europaea is not protected by law and it is not included in CITES and Habitat Directive annexes, though concern about its long-term survival was often raised (Zilli 1991; Spicciarelli 2000, 2004, 2006) and it was explicitly recorded in some red lists (e.g. Spicciarelli 2002). Nevertheless, in 1971 the Riserva Naturale Orientata Grotticelle (Fig. 2) was established by the former Italian Ministry of Agriculture and Forestry in order to preserve the possibly most relevant colony of the species so far identified, that representing probably the first Nature Reserve in the World to be specifically designed to protect an insect species. Interestingly, the Italian Postal Service (Poste Italiane) dedicated to B. europaea a postage stamp (Fig. 10), issued in August 1996 within the framework of the XX International Congress of Entomology held in Florence (Zilli 1996).

During the preparation of the management plan of the Grotticelle Nature Reserve a number of threats to the survival of the species could be identified, despite the lack of knowledge about its ecological requirements (Audisio et al. 2012; Spicciarelli 2013).

Generally speaking, menaces to populations of the European Bramea may be sorted among two orders of scale, that is local, viz. at the level of individual topodemes, and regional.

At the broadest level, habitat fragmentation undoubtedly represents the most worrying variable. The European Bramea is a strictly mesophilous woodland species the persistence of which is clearly linked to the presence of suitable, unaltered woodland biotopes. In fact, no individual strays have ever been recorded substantially far apart from woods. Furthermore, despite an evergreen Mediterranean shrub like Phyllirea latifolia enters the dietary spectrum by the caterpillars, no population of the species has ever been located in both low and tall Mediterranean maquis, where Phyllirea spp. are among the main dominant plant species shaping the vegetation. The region Basilicata, once known as Lucania, which after the most plausible etymology took name from lucus (the sacred wood of Romans) to stress its extensive forest coverage, faced a long history of deforestation. Spanning from classical to recent times, woodlands of Basilicata were subject to massive cuttings to get wood for building fleets, heating and support manufacturing industry, to clear spaces for the cultivation of wheat and other cereals, contrast diffusion
of banditry or producing wooden ties for the rail industry (e.g. Morano 1981; McNeill 1992; Spicciarelli 2004; Lamendola 2008). In addition to the general logging which already led to a dramatic reduction and fragmentation of forested areas, and regrettably is still partly ongoing, it must be also considered that in evident consequence of the mesohygrophily shown by one of its main host plants, the narrow-leafed ash, populations B. europaea are somewhat associated with fluvial axes, which is right were a concentration of infrastructures such as roads, railways, industrial plants and commercial warehouses is increasingly being settled. The loss of connectivity between woodland fragments hosting the species and their reduced size are likely to turn as the most detrimental factors affecting wealth and persistence of the Bramea populations. Furthermore, it was shown both with light surveys and after mapping of host plants in the Grotticelle Reserve that the distribution of the individuals and suitable environmental patches across woodlands is far not uniform (Spicciarelli 2014), so that the very presence of the species in the woodland fragments where it occurs is actually a subset of the wooded areas themselves.

At a local scale, the natural behavior and activities of B. europaea are evidently disrupted by light pollution when this extends over the home range by the adults; in fact, the species is markedly phototropic and comes freely to artificial lights, as Longcore & Rich (2004) generally stressed for moth populations. The State Forestry Corp pursues a careful policy of management of artificial lights in some minor railway stations around the Grotticelle Reserve (e.g. Aquilonia Scalo, Monticchio Scalo). To enhance protection of the species it would thence be essential to employ lamps with low impact on the flight paths by B. europaea and permanently reduce light pollution in proximity of all known populations of the moth.

The alteration or simply an improper management of the environment may also affect the abundance and distribution of the host plants; for example, the clearing of the forest undergrowth for fire prevention may lead to a drastic reduction of the bushes of Oleaceae supporting the moth populations, so for the grazing by sparse cattle in woodland habitats.

A traditional threat for B. europaea is represented by the collection of individuals; in fact, this is a so localized and handsome species that is highly coveted by amateur entomologists.

Last but not least, another menace to Bramea populations is represented by the increase of wild boar populations, chiefly in protected areas, with individuals rooting anything edible out from soils. As a matter of fact, insects, among which pupae of large sized moths, are known to enter the diet of the wild boar (Genov 1981; Schley & Roper 2003), and the presence of digested pupae of B. europaea was recently confirmed in excrements of wild boars collected under stands of narrow-leafed ash in the Grotticelle Reserve (Spicciarelli 2014), thus demonstrating a clear impact that the foraging behavior of these animals may have on the persistence of populations of the moth at a local scale.

Measures for conservation

Considering its extremely restricted range and known ecological requirements by the species every possible effort should be addressed to increase extension and connectivity of environmental patches actually or potentially hosting the species. In fact, with such a fragmented pattern of suitable biotopes even a small increase of the forested surface may turn out essential in ensuring steadiness or recovery of Bramea populations. In any case, it is highly recommended that regional forestry management plans are reviewed focusing on the presence of this so valuable moth, so that at least no logging activity may be undertaken without a prior assessment about its putative occurrence in sites allotted for forest exploitation. In positive cases, a redefinition of the boundaries of forest plots and density of tree cuttings should clearly take place by leaving intact stands of the Bramea host plants inside respect zones of adequate width.

An integrate management and protection of forested areas currently shared between different administrative bodies should also be put in force. This is particularly true for the Ofanto Valley which is so far the area where most abundant Bramea populations were found but marks the boundary between two different provinces (Avellino and Potenza) pertaining to two distinct regions (Campania and Basilicata) with fairly different forestry policies.

Following the IUCN guidelines (IUCN 2014), B. europaea should be assigned the EN (Endangered) category of risk, as based on the relevant application of Criterium B [B1ab(iii) + B2ab(iii)]. This proposal combines its Extent of Occurrence (the area of a virtual polygon laid out so as to join all its known sites of occurrence) of less than 5,000 Km2 (in fact, less than 2,000 Km2; Fig. 6); an Area of Occupancy (calculated using a contour square area of 2x2 Km2 for each of the known localities) of less than 500 Km2 (in fact, less than 50 Km2); the markedly fragmented structure of its geographic range (Fig. 6); the total number (12) of the so far known localities, some of them being very close to each other, and clustered in only three main locations; and the observed decline in habitat quality by most of the known sites of occurrence, mostly due to recent diffusion of invasive populations of wild boars in two out of the three main locations (Vulture and Gallipoli-Cognato protected areas).

Present-day unfeasibility to broaden the list of protected species in the EU Habitats Directive (HD) by member countries hinders conservation of this rare and threatened species. However, as part of its Regulatory Fitness and Performance Programme (REFIT), the European Commission is undertaking a “Fitness Check” of the EU nature legislation, the Birds Directive and the Habitats Di-
ID	Locality	Province	Reference
1	Aquilonia (Rail Station)	AV	Parenzan 1978; Audisio et al. 2012; Spicciarelli 2013, 2014
2	Monticchio (Rail Station)	PZ	Parenzan 1978; Spicciarelli 2004
3	Monticchio lakes, Forest Station	PZ	Hartig 1963; Spicciarelli 2014
4	Grotticelle Nature Reserve	PZ	Hartig 1963; Audisio et al. 2012; Spicciarelli 2013, 2014
5	Rapone (Rail Station)	PZ	Bertaccini et al. 1995
6	Brindisi di Montagna (Rail Station)	PZ	Parenzan 1978
7	Campomaggiore (Rail Station)	PZ	Parenzan 1978
8	Gallipoli Forest, near Campomaggiore	PZ	Bertaccini et al. 1995
9	Calciano (Rail Station)	MT	Parenzan 1978
10	Oliveto Lucano	MT	Bertaccini et al. 1995
11	Salandrella Valley	MT	Bertaccini et al. 1995
12	Accettura	MT	Bertaccini et al. 1995

Fig. 8 – Known distribution area of *Brahmaea (Acanthobrahmaea) europaea* Hartig, 1963 with list of known sites for the species.
An overview on the Italian endemic *Brahmaea europaea*

7

means of integrative methods the population size of each *B. europaea* demes. Classical Capture-Mark-Recapture (CMR) protocols for species monitoring will be combined with molecular procedures aimed to assess effective population size using F-statistics, which describes the statistically expected level of heterozygosity in a population (Holsinger & Weir 2009), and a modelling of both the ecological niche and distribution of this endangered taxon will be performed (see Barve et al. 2011).

Acknowledgements – The authors wish to express their most sincere gratitude to Franco Mason, Giovanni Adinolfi, Angela Malaspina, Alessandro Bottacci, Marco Panella, Donato Garripoli, Gianluca Lipani, Michelangelo Repole and Donato Pierro (State Forestry Corp) for invaluable help, assistance and logistic support received during realization of this study, and Wolfgang A. Nässig (Senckenberg Museum, Frankfurt am Main) and Enrico Stella (Rome) for sharing useful information. The authors are also grateful to Carlo Rondinini (IUCN Italy, Rome) and Gloria Antonini (Rome) for valuable suggestions on previous drafts of the paper, and to Valerio Viglioglia, Angela Rositi, Valerio Sbordoni and Francesca Marini (Rome) for supplying photo work.

References

Audisio P., Boitani L., Malaspina A., Mason F., Spicciarello R., Vigna Taglianti A. (eds) 2012. Piano di gestione della Riserva Naturale Orientata Grotticelle. Ufficio per la Biodiversità, Corpo Forestale dello Stato, Rome, Technical Report, 146 pp + CD-ROM.

Barve N., Barve V., Jiménez-Valverde A., Lira-Noriega A., Maher S.P., Townsend Peterson A., Soberón J., Villalobos F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecolog-
An overview on the Italian endemic *Brahmaea europaea*

Parenzan P., Porcelli F. 2006. I macrolepidotteri italiani. Fauna Lepidopterorum Italicae (Macrolepidoptera). Allegato in .pdf. Phytophaga, 15: 1–1051.

Paukstadt U., Paukstadt L.H., Brosch U. 2000. Anmerkungen zum taxonomischen Status von *Brahmaea* (Brahmophthalma) ardisjeno (Kalis, 1934) (stat. nov.) sowie zur geographischen Verbreitung der Taxa der hearseyi-Gruppe in Asien (Lepidoptera: Brahmaeidae). Entomologische Zeitschrift, 110 (1): 5–9.

Regier J.C., Cook C.P., Mitter C., Hussey A. 2008. A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Systematic Entomology, 33: 175–189.

Rougeot P.C. 1971. Bombycoides (Lepidoptera-Bombycoidae) de L’Europe et du Bassin Méditerranéen. Tome I. Lamoniidae, Bombycidae, Brahmaeidae, Attacidae, Endromididae. Faune de L’Europe et du Bassin Méditerranéen 5. Masson et Cie, Paris, 159 pp.

Rougeot P.C. 1975. *Acanthobrahmaea europaea* (Lep. Brahmaeidae), le papillon du volcan Vulture (Italie du sud). L’Entomologiste, 31 (4-5): 145–149.

Sauter W. 1967. Zur systematischen Stellung von *Brahmaea europaea* Hartig (Lep. Brahmaeidae). Mitteilungen der Schweizerischen entomologischen Gesellschaft, 40 (1/2): 124–129.

Sauter W. 1986. Zur Morphologie von *Acanthobrahmaea europaea* (Hartig, 1963) und zur systematischen Gliederung der Brahmaeidae (Lepidoptera): Dactyloceratinae, subfam. n. Nota lepidopterologica, 9 (3/4): 262–271.

Sbordoni V., Forestiero S. 1984. Il mondo delle farfalle. Arnoldo Mondadori Editore, 312 pp.

Scheda J., van 1967. Un événement capital en Entomologie: découverte d’une *Brahmaea* en Italie, *Brahmaea europaea* Hartig. Endémisme ou relique miocène? Limesta Beliega, 3 (5): 91–103.

Schley L., Roper T.J. 2003. Diet of wild boar *Sus scrofa* in Western Europe, with particular reference to consumption of agricultural crops. Mammal review, 33 (1): 43–56.

Spicciarelli R. 1997. Primi reperti di larve di *Acanthobrahmaea europaea* (Hrt.) (Lepidoptera: Brahmaeidae) su *Phyllirea latifolia* L. Entomologica, 31: 191–195.

Spicciarelli R. 2000. La falena del Vulture, una collina la sua culla un Vulcano la sua forza. Input, Roma, 50: 47.

Spicciarelli R. 2002. La Bramea europea e il Vulture. In: Cerfolli F., Petras F., Petretti F. (eds), Libro Rosso degli Animali d’Italia, Invertebrati, pp. 56–58. WWF Italia, Roma.

Spicciarelli R. 2004. La Psiche del Frassino. Consiglio Regionale della Basilicata, Figurin Guerra Arti Grafiche, Lavello, 176 pp.

Spicciarelli R. 2006. La Bramea europea. Pp. 641-645 in: “Salvati dall’Arca – WWF Italia”. A. Perdisa Editore, Bologna.

Spicciarelli R. 2013. La Riserva Naturale Orientata di Grotticelle 1963-2013. 50 anni dalla scoperta della Bramea. Corpo Forestale dello Stato, Unità Territoriale per la Biodiversità, Potenza, 157 pp.

Spicciarelli R. 2014. Affidamento servizio per la fornitura dati sulla biologia dell’unico brameide europeo (*Acanthobrahmaea europaea* (Hartig)) presente nella Riserva Naturale Orientata “Grotticelle”. Final Technical Report, 57 pp.

Spicciarelli R., Fimiani P. 2004. Chasse en Lucanie, Mont Vulture (Italie méridionale). Alexanor, 22 (7) (2002): 411–415.

Stella E. 1987. La Bramea, falena made in Italy. Airone, VII (74): 116–123.

Trizzino M., Audisio P., Bisi F., Bottacci A., Campanaro A., Carpaneto G.M., Chiari S., Handersen S., Mason F., Nardi G., Pretoni D.G., Vigna Taglianti A., Zauli A., Zilli A., Cerretti P. 2013. Gli artropodi italiani in Direttiva Habitat: biologia, ecologia, riconoscimento e monitoraggio. Quaderni Conservazione Habitat, Verona: 7. CFS-CNBFVR, Centro Nazionale Biodiversità Forestale. Cierre Grafica, Sommeramagna, 256 pp.

Vigna Taglianti A., Zilli A. 2008. Il Conte e le farfalle - Omaggio a Federico Hartig. Series Le Scienze (7), Edizioni Belvedere, Latina, 76 pp.

Zhang X., Yang J. 1993. A new genus and species of Brahmaeidae (Lepidoptera). Entomotaxonomia, 15 (1): 48–52.

Zhang X., Yang J. 1994. Two new species of *Brahmaea* (Lepidoptera: Brahmaeidae) from China. Entomotaxonomia, 16 (2): 111–114.

Zilli A. 1991. Progetto per lo studio e la salvaguardia di *Acanthobrahmaea europaea* (Hartig). Dispar, 2: 10–12.

Zilli A. 1996. Emissione di quattro francobolli ordinari appartenenti alla serie tematica “Gli animali” dedicata alle farfalle. Poste Italiane, 21/96, Ente Poste, Bologna, 4 pp.

Zilli A. 1998. Endemismi italiani, 38: *Acanthobrahmaea europaea* (Hartig, 1963) (Lepidoptera, Brahmaeidae). Bollettino dell’Associazione Romana di Entomologia, 51: i–ii.

Zwick A. 2008. Molecular phylogeny of Anthelidae and other bombycoid taxa (Lepidoptera: Bombycoidea). Systematic Entomology, 33: 190–209.