GRAPH HOMOMORPHISMS BETWEEN TREES

PÉTER CSIKVÁRI AND ZHICONG LIN

Abstract. In this paper we study several problems concerning the number of homomorphisms of trees. We give an algorithm for the number of homomorphisms from a tree to any graph by the Transfer-matrix method. By using this algorithm and some transformations on trees, we study various extremal problems about the number of homomorphisms of trees. These applications include a far reaching generalization of Bollobás and Tyomkyn’s result concerning the number of walks in trees.

Some other highlights of the paper are the following. Denote by \(\text{hom}(H, G) \) the number of homomorphisms from a graph \(H \) to a graph \(G \).

For any tree \(T_m \) on \(m \) vertices we give a general lower bound for \(\text{hom}(T_m, G) \) by certain entropies of Markov chains defined on the graph \(G \). As a particular case, we show that for any graph \(G \),

\[
\exp(H_\lambda(G)) \lambda^{m-1} \leq \text{hom}(T_m, G),
\]

where \(\lambda \) is the largest eigenvalue of the adjacency matrix of \(G \) and \(H_\lambda(G) \) is a certain constant depending only on \(G \) which we call the spectral entropy of \(G \). In the particular case when \(G \) is the path \(P_n \) on \(n \) vertices, we prove that

\[
\text{hom}(P_m, P_n) \leq \text{hom}(T_m, P_n) \leq \text{hom}(S_m, P_n),
\]

where \(T_m \) is any tree on \(m \) vertices, and \(P_m \) and \(S_m \) denote the path and star on \(m \) vertices, respectively.

We also show that if \(T_m \) is any fixed tree and

\[
\text{hom}(P_m, P_n) > \text{hom}(T_m, T_n),
\]

for some tree \(T_n \) on \(n \) vertices, then \(T_n \) must be the tree obtained from a path \(P_{n-1} \) by attaching a pendant vertex to the second vertex of \(P_{n-1} \). In fact, we conjecture that if \(n \geq 5 \) and \(T_n \) is an arbitrary tree on \(n \) vertices, then

\[
\text{hom}(T_m, P_n) \leq \text{hom}(T_m, T_n)
\]

for any tree \(T_m \).

All the results together enable us to show that

\[
|\text{End}(P_m)| \leq |\text{End}(T_m)| \leq |\text{End}(S_m)|,
\]

where \(\text{End}(T_m) \) is the set of all endomorphisms of \(T_m \) (homomorphisms from \(T_m \) to itself).

Key words and phrases. trees; walks; graph homomorphisms; adjacency matrix; extremal problems; KC-transformation; Markov chains.

The first author is partially supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. K81310 and by grant no. CNK 77780 from the National Development Agency of Hungary, based on a source from the Research and Technology Innovation Fund. He is also partially supported by MTA Rényi "Lendület" Groups and Graphs Research Group.

The second author is supported by the China Scholarship Council (CSC) for studying abroad, CSC no. 2010618092.
1. Introduction

We use standard notations and terminology of graph theory, see for instance [2] [4]. The graphs considered here are finite and undirected without multiple edges and loops. Given a graph G, we write $V(G)$ for the vertex set and $E(G)$ for the edge set. A homomorphism from a graph H to a graph G is a mapping $f : V(H) \to V(G)$ such that the images of adjacent vertices are adjacent. Denote by $\text{Hom}(H, G)$ the set of homomorphisms from H to G and by $\text{hom}(H, G)$ the number of homomorphisms from H to G. Throughout this article, we write P_n and S_n for the path and the star on n vertices, respectively. The length of a path is the number of its edges. The union of graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. A tree T together with a root vertex v will be denoted by $T(v)$.

The problem of computing $\text{hom}(H, G)$ is difficult in general. However, there has been recent interest in counting homomorphisms between special graphs. In particular, formulas for computing the number of homomorphisms between two different paths were given in [1] [4]. But even for these special trees, the formulas are bulky and inelegant. In Section 2, by using the Transfer-matrix method, we shall give an algorithm for computing the number of homomorphisms from trees to any graph. This algorithm will be called Tree-walk algorithm.

Recently, the first author proved a conjecture of Nikiforov concerning the number of closed walks on trees. He proved in [6] that, for a fixed integer m, the number of closed walks of length m on trees of order n attains its maximum at the star S_n and its minimum at the path P_n. In other words,

\[(1.1) \quad \text{hom}(C_m, P_n) \leq \text{hom}(C_m, T_n) \leq \text{hom}(C_m, S_n),\]
where T_n is a tree on n vertices and C_m is the cycle on m vertices.

Bollobás and Tyomkyn [3] gave a variant of the first author’s result by replacing the number of closed walks by the number of all walks, that is
\begin{equation}
\text{hom}(P_m, P_n) \leq \text{hom}(P_m, T_n) \leq \text{hom}(P_m, S_n),
\end{equation}
where T_n is a tree on n vertices. In both [3] and [6], the authors use a certain transformation of trees. In [6], it is called the generalized tree shift, whereas in [3], it is renamed to KC-transformation.

To define this transformation, let x and y be two vertices of a tree T such that every interior vertex of the unique x–y path P in T has degree two, and write z for the neighbor of y on this path. Denote by $N(v)$ the set of neighbors of a vertex v. The KC-transformation, $KC(T, x, y)$, of the tree T with respect to the path P is obtained from T by deleting all edges between y and $N(y) \setminus z$ and adding the edges between x and $N(y) \setminus z$ instead (See Fig. 1). Note that $KC(T, x, y)$ and $KC(T, y, x)$ are isomorphic.

The following property of KC-transformation was proved in [6].

Proposition 1.1. The KC-transformation gives rise to a graded poset of trees on n vertices with the star as the largest and the path as the smallest element. See Figure 2.

In [6] the first author proved that the KC-transformation increases the number of closed walks of fixed length in trees. By Proposition 1.1 this leads to the proof of inequality (1.1).

In the very same spirit, Bollobás and Tyomkyn [3] showed that the KC-transformation increases the number of walks of fixed length in trees. In the language of graph homomorphism, their result can be restated as follows.

Theorem 1.2 (Bollobás-Tyomkyn). Let T be a tree and let T' be obtained from T by a KC-transformation. Then
\begin{equation}
\text{hom}(P_m, T') \geq \text{hom}(P_m, T)
\end{equation}
for any $m \geq 1$.

Now a natural question arises: does inequality (1.3) still true when replacing P_m by any tree? A tree is called starlike if it has at most one vertex
Figure 2. The induced poset of KC-transformation on trees of 6 vertices.

of degree greater than two. Note that paths are starlike. We answer this question in the affirmative for starlike trees.

Theorem 1.3. Let T be a tree and T' the KC-transformation of T with respect to a path of length k. Then the inequality

$$(1.4) \quad \text{hom}(H, T') \geq \text{hom}(H, T)$$

holds when k is even and H is any tree, or k is odd and H is a starlike tree.

Moreover, we find a counterexample for inequality (1.4) when k is odd and H is not a starlike tree (see the end of Section 4). Another extremal problem concerning the number of homomorphisms between trees that worth considering is to find the extremal trees for \text{hom}(\cdot, P_n) over all trees on m vertices. For this problem, we prove the following theorem, which can be considered as a dual of inequality (1.2).

Theorem 1.4. Let T_m be a tree on m vertices and let T'_m be obtained from T_m by a KC-transformation.

(i) If n is even, or n is odd and $\text{diam}(T_m) \leq n - 1$, then

$$(1.5) \quad \text{hom}(T_m, P_n) \leq \text{hom}(T'_m, P_n).$$

(ii) For any m, n,

$$\text{hom}(P_m, P_n) \leq \text{hom}(T_m, P_n) \leq \text{hom}(S_m, P_n).$$

Note that inequality (1.5) is not true in general when n is odd and $\text{diam}(T_m)$ is greater than $n - 1$; see Fig. 15 for a counterexample.

For the sake of keeping this paper self-contained, we will also give a new proof for the following theorem of Sidorenko [17] concerning the extremal property of the stars among trees. Note that Fiol and Garriga [8] proved the special case of this theorem when $T_m = P_m$, clearly, they were not aware of the work of Sidorenko.
Theorem 1.5 (Sidorenko). Let G be an arbitrary graph and let T_m be a tree on m vertices. Then

$$\text{hom}(T_m, G) \leq \text{hom}(S_m, G).$$

We have already seen a few examples to the phenomenon that in many extremal problems concerning trees it turns out that the maximal (minimal) value of the examined parameter is attained at the star and the minimal (maximal) value is attained at the path among trees on n vertices (cf. [7, 15]). In what follows we will show that this phenomenon occurs quite frequently if one studies homomorphisms of trees.

Let $Y_{a,b,c}$ be the starlike tree on $a + b + c + 1$ vertices which has exactly 3 leaves and the vertex of degree 3 has distance a, b, c from the leaves, respectively.

Theorem 1.6. Let T_n be a tree on n vertices. Assume that for a tree T_m we have

$$\text{hom}(T_m, T_n) < \text{hom}(T_m, P_n).$$

Then $T_n = Y_{1,1,n-3}$ and n is even.

In fact, we conjecture that we only have to exclude the case $n = 4$ and $T_4 = S_4$.

Conjecture 1.7. Let T_n be a tree on n vertices, where $n \geq 5$. Then for any tree T_m we have

$$\text{hom}(T_m, P_n) \leq \text{hom}(T_m, T_n).$$

An endomorphism of a graph is a homomorphism from the graph to itself. For a graph G, denote by $\text{End}(G)$ the set of endomorphisms of G. We remark that $\text{End}(G)$ forms a monoid with respect to the composition of mappings. One of the main results of this paper is the following extremal property about the number of endomorphisms of trees.

Theorem 1.8. For all trees T_n on n vertices we have

$$|\text{End}(P_n)| \leq |\text{End}(T_n)| \leq |\text{End}(S_n)|.$$

This paper is organized as follows. In Section 2, we state the tree-walk algorithm. In Section 3, we prove some lower bounds involving Markov chains and an upper bound (Theorem 1.5) for the number of homomorphisms from trees to an arbitrary graph. Section 4 is devoted to the proof of Theorem 1.3. The proofs of Theorem 1.6 and Theorem 1.8 are given in Section 5, where some lower bounds concerning the homomorphisms of arbitrary trees are also proved. In Section 6, we prove Theorem 1.4, this part can be read separately, it only builds on the algorithm of Section 2.

In order to make our paper transparent, we offer the following two tables, Figure 3 and 4, which summarize our results. In both tables, the first row follows from Theorem 1.2 or its generalization Corollary 1.3. The last row is obvious since $\text{hom}(S_m, G)$ is the sum of degree powers of G and it also follows from Corollary 1.3. The first, second and third columns follow from Theorem 1.4, Theorem 1.5 and Corollary 1.5 respectively. The “X” means that there is no inequality between the two expressions in general and the “?” means that we don’t know whether the statement is true or not.
\[\text{hom}(P_n, P_n) \leq \text{hom}(P_n, T_n) \leq \text{hom}(P_n, S_n) \]
\[\text{hom}(T_n, P_n) \leq \text{hom}(T_n, T_n) \leq \text{hom}(T_n, S_n) \]
\[\text{hom}(S_n, P_n) \leq \text{hom}(S_n, T_n) \leq \text{hom}(S_n, S_n) \]

Figure 3. The number of homomorphisms between trees of the same size.

\[\text{hom}(P_m, P_n) \leq \text{hom}(P_m, T_n) \leq \text{hom}(P_m, S_n) \]
\[\text{hom}(T_m, P_n) \leq \text{hom}(T_m, T_n) \leq \text{hom}(T_m, S_n) \]
\[\text{hom}(S_m, P_n) \leq \text{hom}(S_m, T_n) \leq \text{hom}(S_m, S_n) \]

Figure 4. The number of homomorphisms between trees of different sizes. The (\(\ast\)) means that there are some well-determined (possible) counterexamples which should be excluded.

2. The Tree-walk Algorithm

In this section we shall state an algorithm for the number of homomorphisms from a tree to any graph by the Transfer-matrix method. As a generalized concept of walks in graphs, we call a homomorphism from a tree to a graph a *tree-walk* on this graph.

Let \(a = (a_1, a_2, \ldots, a_n)\) and \(b = (b_1, b_2, \ldots, b_n)\) be two vectors. We usually denote by \(\|a\| = a_1 + a_2 + \cdots + a_n\) the norm of \(a\) and by \(a \ast b = (a_1 b_1, \ldots, a_n b_n)\) the Hadamard product of \(a\) and \(b\). Denote by \(1_n\) the \(n\)-dimensional row vector with all entries equal to 1. Let \(G\) be a graph with \(n\) vertices. The adjacency matrix of \(G\) is the \(n \times n\) matrix \(A_G := (a_{uv})_{u,v \in V(G)}\), where \(a_{uv} = 1\) when \(uv \in E(G)\), otherwise 0. We begin with a fundamental lemma about the number of walks in a graph.

Lemma 2.1. Let \(G\) be a labeled graph and \(A = A_G\) the adjacency matrix of \(G\). Then the \((i, j)\)-entry of the matrix \(A^n\) counts the number of walks in \(G\) from vertex \(i\) to vertex \(j\) with length \(n\).

Proof. By easy induction on \(n\). See for example [18, Theorem 4.7.1]. \(\square\)

Definition 2.2 (hom-vector). Let \(T\) be a tree and \(G\) be a graph with vertices labeled by \(1, 2, \ldots, n\). Let \(v \in V(T)\) be any vertex of \(T\). The \(n\)-dimensional vector
\[h(T, v, G) := (h_1, h_2, \ldots, h_n) \]
where
\[h_i = |\{ f \in \text{Hom}(T, G) \mid f(v) = i\}|, \]
is called the hom-vector at \(v \) from \(T \) to \(G \). Clearly, \(\text{hom}(T, G) = \|h(T, v, G)\| \).

The following Tree-walk algorithm can be viewed as a generalization of Lemma 2.1 for computing the number of tree-walks in graphs.

The Tree-walk algorithm. Let \(A = A_G \) be the adjacency matrix of the labeled graph \(G \). Let \(v \) be a leaf of the tree \(T \). We now give the algorithm to compute \(h(T, v, G) \).

Starting from a leaf of the tree \(T \) other than \(v \) (a tree usually has at least two leaves), \(v_0 \) say. Walking along the tree until you come to the first vertex with degree greater than two, \(v_1 \) say. Let \(T_1 \) denote the path from \(v_0 \) to \(v_1 \) with length \(d_1 \). By Lemma 2.1 we have \(h(T_1, v_1, G) = 1_n A^{d_1} \). If the degree of vertex \(v_1 \) is \(k \), we denote its \(k-1 \) branches other than \(T_1 \) by \(T_2, T_3, \ldots, T_k \).

There is one branch that contains the vertex \(v \), \(T_k \) say. We can compute the hom-vectors \(h(T_2, v_1, G), h(T_3, v_1, G), \ldots, h(T_{k-1}, v_1, G) \) by recursively using this algorithm. Clearly we have

\[(2.1) \quad h(\cup_{i=1}^{k-1} T_i, v_1, G) = h(T_1, v_1, G) \ast h(T_2, v_1, G) \ast \cdots \ast h(T_{k-1}, v_1, G),\]

where \(\cup_{i=1}^{k-1} T_i \) is the union of \(T_i \), \(1 \leq i \leq k - 1 \). Now continue to walk on the tree \(T \) from \(v_1 \) along the branch \(T_k \) until you go to the first vertex with degree bigger than two, \(v_2 \) say. Let \(d_2 \) be the length of the path, denoted by \(P \), from \(v_1 \) to \(v_2 \). By induction on \(d_2 \), one easily shows that

\[(2.2) \quad h(\cup_{i=1}^{k-1} T_i \cup P, v_2, G) = h(\cup_{i=1}^{k-1} T_i, v_1, G) A^{d_2},\]

which is the most important operation of this algorithm. Do the same thing on \(v_2 \) as what we have done on \(v_1 \), and the process stop until we walk to the last vertex of \(T \), which must be \(v \) according to the algorithm. At the same time, the hom-vector at \(v \) from \(T \) to \(G \) is obtained and thus \(\text{hom}(T, G) \).

Note that we can modify this algorithm to obtain \(h(T, v, G) \) at any vertex \(v \in V(T) \) by using operation (2.1). The following typical example would explain our algorithm better.

![Figure 5. A labeled tree on 7 vertices.](image-url)
Using the algorithm recursively, to compute \(h(T[1, 2, 3, 4], 4, T) \), we start at vertex 1 and first stop at 3. By operation (2.1), we have
\[
h(T[1, 2, 3], 3, T) = h(T[1, 2, 3, 4], 4, T) \ast h(T[2, 3], 3, T) = (1, 1, 9, 9, 4, 1, 1).
\]

We continue to walk from vertex 3 and stop at 4, by operation (2.2) we get
\[
h(T[1, 2, 3, 4], 4, T) = h(T[1, 2, 3, 4], 3, T)A_T = (9, 9, 11, 14, 10, 4, 9).
\]

Now again by operation (2.1) we have
\[
h(T[1, 2, 3, 4, 5, 6], 4, T) = h(T[1, 2, 3, 4, 5, 6], 4, T) \ast h(T[6, 5, 4], 4, T) = (27, 27, 55, 84, 40, 8, 27).
\]

To finish the computing, we continue to walk from 4 and at last stop at 7 and apply (2.2) again we get
\[
h(T, 7, T) = h(T[1, 2, 3, 4, 5, 6], 4, T)A_T = (55, 55, 138, 122, 92, 40, 84).
\]

Thus \(\text{hom}(T, T) = ||h(T, 7, T)|| = 586 \).

Alternative way: recursions. There is an alternative way to think to the Tree-walk algorithm, namely we consider two type of recursion steps.

Recursion 1. If we have a tree \(T \) with a non-leaf root vertex \(v \), then we can decompose \(T \) to \(T_1 \cup T_2 \) such that \(V(T_1) \cap V(T_2) = \{v\} \), and \(T_1 \) and \(T_2 \) are strictly smaller than \(T \). In this case
\[
h(T, v, G) = h(T_1, v, G) \ast h(T_2, v, G).
\]

Recursion 2. If we have a tree \(T \) with a root vertex \(v \) which is a leaf with the unique neighbor \(u \) then
\[
h(T, v, G) = h(T - v, u, G)A,
\]
where \(A \) is the adjacency matrix of \(G \).

Hence we use Recursion 1 or Recursion 2 according to the root vertex \(v \) is a non-leaf or a leaf. In most of the proofs we simply check whether some property of the vector \(h(T, v, G) \) remains valid after applying Recursion 1 and Recursion 2.

3. Graph homomorphisms from trees

3.1. Markov chains and homomorphisms.

Theorem 3.1. Let \(G \) be a graph and let \(P = (p_{ij}) \) be a Markov chain on \(G \):
\[
\sum_{j \in N(i)} p_{ij} = 1 \quad \text{for all} \quad i \in V(G),
\]
where \(p_{ij} \geq 0 \) and \(p_{ij} = 0 \) if \((i, j) \notin E(G) \). Let \(Q = (q_i) \) be the stationary distribution of \(P \):
\[
\sum_{j \in N(i)} q_j p_{ji} = q_i \quad \text{for all} \quad i \in V(G).
\]
Let us define the following entropies:

\[H(Q) = \sum_{i \in V(G)} q_i \log \frac{1}{q_i}, \]

and

\[H(D|Q) = \sum_{i \in V(G)} q_i \log d_i, \]

where \(d_i \) is the degree of the vertex \(i \), and let

\[H(P|Q) = \sum_{i \in V(G)} q_i \left(\sum_{j \in N(i)} p_{ij} \log \frac{1}{p_{ij}} \right). \]

Let \(T_m \) be a tree with \(\ell \) leaves on \(m \) vertices, where \(m \geq 3 \). Then

\[\hom(T_m, G) \geq \exp \left(H(Q) + \ell H(D|Q) + (m - 1 - \ell) H(P|Q) \right). \]

Proof. Let \(v \) be a root of \(T \). Let \(a_i \) be the number of homomorphisms of \(T_m \) into \(G \) such that the root vertex \(v \) goes into the vertex \(i \in V(G) \). Let

\[F(T_m(v), G) = \prod_{i=1}^{n} a_i^{q_i}. \]

We will show by induction on \(m \) that

\[F(T_m(v), G) \geq \exp \left(\ell H(D|Q) + (m - 1) H(P|Q) \right), \]

where \(\ell^* \) is the number of leaves different from \(v \), so it is \(\ell \) if \(v \) is not a leaf and \(\ell - 1 \) if \(v \) is a leaf. Note that

\[F(K_2(v), G) = \exp H(D|Q). \]

If \(v \) is not a leaf of \(T_m \), then we can decompose \(T_m \) to \(T_1(v) \) and \(T_2(v) \). Then

\[F(T_m(v), G) = F(T_1(v), G) F(T_2(v), G) \]

because of the Hadamard-products of the hom-vectors. From this the claim follows immediately by induction.

If \(v \) is a leaf of \(T_m \) with the unique neighbor \(u \), then let

\[h(T_m - v, u, G) = (b_1, \ldots, b_n). \]

So \(a_i = \sum_{j \in N(i)} b_j \).

For positive numbers \(r_1, \ldots, r_t \) and positive weights \(w_1, \ldots, w_t \) with \(\sum_{i=1}^{t} w_i = 1 \), the weighted AM-GM inequality says that

\[r_1 + \cdots + r_t = w_1 \left(\frac{r_1}{w_1} \right) + \cdots + w_t \left(\frac{r_t}{w_t} \right) \geq \left(\frac{r_1}{w_1} \right)^{w_1} \cdots \left(\frac{r_t}{w_t} \right)^{w_t} = \]

\[= \exp \left(\sum_{i=1}^{t} w_i \log \frac{1}{w_i} \right) \prod_{i=1}^{t} r_i^{w_i}. \]
Hence
\[F(T_m(v), G) = \prod_{i=1}^{n} a_i^{q_i} = \prod_{i=1}^{n} \left(\sum_{j \in N(i)} b_j \right)^{q_i} \geq \prod_{i=1}^{n} \left(\prod_{j \in N(i)} \left(\frac{b_j}{p_{ij}} \right)^{p_{ij}} \right)^{q_i} = \]
\[\prod_{i=1}^{n} \left(\prod_{j \in N(i)} \left(\frac{1}{p_{ij}} \right)^{p_{ij}} \right) \prod_{i=1}^{n} \left(\sum_{j \in N(i)} \left(\frac{1}{p_{ij}} \right)^{p_{ij}} \right) \prod_{i=1}^{n} b_i^{q_i} \]
In the last step we used that \(Q \) is a stationary distribution with respect to \(P \). Hence

\[F(T_m(v), G) \geq \exp(H(P|Q)) F((T_m - v)(u), G). \]

Now the claim follows by induction.

To finish the proof of the theorem, we only have to choose a nonleaf root and use that

\[\hom(T_m, G) = \sum_{i=1}^{n} a_i \geq \exp(H(Q)) F(T_m(v), G). \]

\[\square \]

Remark 3.2. Note that the inequality \(H(D|Q) \geq H(P|Q) \) always hold. Consequently,

\[\hom(T_m, G) \geq \exp(H(Q) + (m - 1)H(P|Q)). \]

As Theorem 3.1 suggests, this is an inequality for entropies and indeed, it can be proved by this way. By \(P \) and \(Q \), we defined a distribution on the set of homomorphisms: we choose a root according to \(Q \), then we choose every nonleaf new vertex according to \(P \) and finally we choose the leaves uniformly. The entropy of this distribution is exactly \(H(Q) + \ell H(D|Q) + (m - 1 - \ell)H(P|Q) \) since every nonleaf vertex has distribution \(Q \). Note that this entropy is smaller than the entropy of the uniform distribution, that is, \(\log \hom(T_m, G) \). For basic facts about entropy, see for example [5].

Theorem 3.3. Let \(G \) be a connected graph on the vertex set \(\{1, 2, \ldots, n\} \) and let \(\lambda \) be the largest eigenvalue of the adjacency matrix of the graph \(G \). Let \(y \) be a positive eigenvector of unit length corresponding to \(\lambda \). Let \(q_i = y_i^2 \). Then for any rooted tree \(T_m \) on \(m \) vertices we have

\[\hom(T_m, G) \geq \exp(H_\lambda(G)) \lambda^{m-1}, \]

where

\[H_\lambda(G) = \sum_{i=1}^{n} q_i \log \frac{1}{q_i} \]

is the spectral entropy of the graph \(G \).

Proof. We will use Theorem 3.1. Let \(p_{ij} = \frac{y_j}{y_i} \). Since \(y \) is a positive eigenvector, we have \(p_{ij} > 0 \). For all \(i \) we have \(\lambda y_i = \sum_{j \in N(i)} y_j \), thus \(\sum_{j \in N(i)} p_{ij} = 1 \). For \(q_i = y_i^2 \) we have

\[q_i p_{ij} = y_i^2 \frac{y_j}{\lambda y_i} = \frac{1}{\lambda} y_i y_j = q_j p_{ji}. \]
Hence
\[
\sum_{i \in N(j)} q_j p_{ji} = \sum_{i \in N(j)} q_i p_{ij} = q_i.
\]
This means that \(P = (p_{ij}) \) is a Markov chain with stationary distribution \(Q = (q_i) \). The conditional entropy
\[
H(P|Q) = \sum_{i \in V(G)} q_i \left(\sum_{j \in N(i)} p_{ij} \log \frac{1}{p_{ij}} \right) = \sum_{i \in V(G)} q_i^2 \left(\sum_{j \in N(i)} \frac{y_j}{\lambda y_i} \log \frac{\lambda y_i}{y_j} \right) = \sum_{(i,j) \in E(G)} y_i y_j \left(2 \log \lambda + \log \frac{y_i}{y_j} + \log \frac{y_j}{y_i} \right) = \log(\lambda) \sum_{(i,j) \in E(G)} y_i y_j = \log \lambda.
\]
Hence the result follows from Theorem 3.1. □

Remark 3.4. A Markov chain is called reversible if \(q_i p_{ij} = q_j p_{ji} \) for all \(i, j \in V(G) \). As we have seen, the Markov chain constructed in the previous proof is reversible. It is not hard to show that on trees every Markov chains are reversible.

Remark 3.5. Theorem 3.3 is the best possible in the sense that there cannot be a larger number than \(\lambda \) in such a statement since
\[
\hom(P_m, G) \leq n \lambda^m - 1.
\]
Indeed,
\[
\frac{\hom(P_m, G)}{n} = \frac{1_n^T A^{m-1} 1_n}{1_n^T 1_n} \leq \max_{v \neq 0} \frac{v^T A^{m-1} v}{v^T v} = \lambda_{\max}(A^{m-1}) = \lambda^m - 1.
\]
Note that we can deduce that if \((T_m)_{m=1}^{\infty} \) is a sequence of trees such that \(T_m \) has \(m \) vertices then
\[
\liminf_{m \to \infty} \hom(T_m, G)^{1/m} \geq \liminf_{m \to \infty} \hom(P_m, G)^{1/m} = \lambda.
\]
This result could have been deduced as well from a theorem of B. Rossman and E. Vee [19] claiming that
\[
\hom(T_m, G) \geq \hom(C_m, G),
\]
where \(C_m \) is the cycle on \(m \) vertices. In fact, this was proved for directed trees and cycles, but it implies the inequality for undirected tree and cycle. This result can also be deduced from Theorem 3.1 of [11].

Theorem 3.6. Let \(G \) be a graph on the vertex set \(\{1, 2, \ldots, n\} \) with \(e \) edges and with degree sequence \((d_1, \ldots, d_n) \). Then for any tree \(T_m \) on \(m \) vertices we have
\[
\hom(T_m, G) \geq 2e \cdot C^{m-2},
\]
where
\[
C = \left(\prod_{i=1}^{n} d_i^{d_i} \right)^{1/2e}.
\]
Proof. Let us consider the following classical Markov chain: \(p_{ij} = \frac{1}{d_i} \) if \(j \in N(i) \). The stationary distribution is \(q_i = \frac{d_i}{2e} \). Note that
\[
H(P|Q) = \sum_{i \in V(G)} q_i \left(\sum_{j \in N(i)} p_{ij} \log \frac{1}{p_{ij}} \right) = \sum_{i \in V(G)} q_i \log d_i = \frac{1}{2e} \sum_{i \in V(G)} d_i \log d_i = \log C
\]
and
\[
H(Q) + H(P|Q) = \sum_{(i,j) \in E(G)} q_i p_{ij} \log \frac{1}{q_i p_{ij}} = \sum_{(i,j) \in E(G)} \frac{1}{2e} \log(2e) = \log(2e).
\]
Hence the result follows from Theorem 3.1. □

Definition 3.7. The homomorphism density \(t(H, G) \) is defined as follows:
\[
t(H, G) = \frac{\text{hom}(H, G)}{|V(G)||V(H)|}.
\]
This is the probability that a random map is a homomorphism.

Sidorenko’s conjecture says that
\[
t(H, G) \geq t(K_2, G)^{e(H)}
\]
for every bipartite graph \(H \) with \(e(H) \) edges. It is known that Sidorenko’s conjecture [16] is true for trees. By now, there are many proofs for this particular case of Sidorenko’s conjecture: see [9, 13] and it can be deduced as well from Theorem 3.1 of [11]. Below we give a new proof for this fact.

Theorem 3.8. For any tree \(T_m \) on \(m \) vertices and a graph \(G \) we have
\[
t(T_m, G) \geq t(K_2, G)^{(m-1)}.
\]
Proof. Let \(|V(G)| = n \). The theorem will immediately follows form Theorem 3.6. By convexity of the function \(x \log x \) we have
\[
\frac{1}{2e} \sum_{i \in V(G)} d_i \log d_i \geq \frac{1}{2e} n \left(\frac{2e}{n} \log \frac{2e}{n} \right) = \log \frac{2e}{n}.
\]
Hence
\[
t(T_m, G) = \frac{\text{hom}(T_m, G)}{n^m} \geq \frac{1}{n^m} \left(\frac{2e}{n} \right)^{m-2} = \left(\frac{2e}{n^2} \right)^{m-1} = t(K_2, G)^{(m-1)}.
\]
□

3.2. Sidorenko’s theorem on extremality of stars. The objective of this section is to give a new proof for Theorem [15] in order to keep this paper self-contained. This was proved originally by Sidorenko [17]. Our proof is very similar to the original one, but it is slightly more elementary.

Before we start the proof we will need two definitions and two lemmas.

Definition 3.9. Let \(M_u \) and \(N_v \) be two rooted graphs with root vertices \(u \) and \(v \), respectively. Then \(M_u \circ_{u=v} N_v \) denotes the graph obtained from \(M_u \cup N_v \) by identifying the vertices \(u \) and \(v \).
Lemma 3.10. Let $R_{u,v}$ be a graph with specified (not necessarily distinct) vertices u and v. Let $J_{u'}$ and $K_{v'}$ be two graphs with root vertices u' and v'. Finally, let the graphs A, B and C be obtained from $R_{u,v}, J_{u'}, K_{v'}$ as follows:

\[A = (R_{u,v} \circ_{u=v} J_{u'}) \circ_{u=v} K_{v'}, \]
\[B = (R_{u,v} \circ_{u=v} J_{u'}) \circ_{u=u'} J_{u'}, \]
\[C = (R_{u,v} \circ_{v=v'} K_{v'}) \circ_{u=v'} K_{v'}. \]

(In other words, in B and C we attach two copies of the same graph at the specified vertex.) Then for any graph G we have

\[2 \text{hom}(A, G) \leq \text{hom}(B, G) + \text{hom}(C, G). \]

Proof. Let $i, j \in V(G)$ and let $h(R_{u,v}, i, j)$ denote the number of homomorphisms of $R_{u,v}$ to G where u goes to i and v goes to j. We similarly define $h(J_{u'}, i)$ and $h(K_{v'}, j)$. Then

\[\text{hom}(A, G) = \sum_{i,j \in V(G)} h(R_{u,v}, i, j) h(J_{u'}, i) h(K_{v'}, j). \]

Similarly,

\[\text{hom}(B, G) = \sum_{i,j \in V(G)} h(R_{u,v}, i, j) h(J_{u'}, i)^2, \]

and

\[\text{hom}(C, G) = \sum_{i,j \in V(G)} h(R_{u,v}, i, j) h(K_{v'}, j)^2. \]

Hence

\[\text{hom}(B, G) + \text{hom}(C, G) - 2 \text{hom}(A, G) = \sum_{i,j \in V(G)} h(R_{u,v}, i, j) (h(J_{u'}, i) - h(K_{v'}, j))^2 \geq 0. \]

We are done. \(\square\)

Definition 3.11. Let $d(u,v)$ be the distance of the vertices $u, v \in V(G)$. Then the Wiener-index $W(G)$ of a graph G is defined as

\[W(G) := \sum_{u,v \in V(G)} d(u,v). \]

In our application $R_{u,v}$ will be a tree and $J_{u'}$ and $K_{v'}$ be the trees on 2 vertices. The following lemma about the Wiener-index is trivial.

Lemma 3.12. Let $R_{u,v}$ be a tree with distinct vertices u and v. Let $J_{u'}$ and $K_{v'}$ be two copies of the two-node trees with root vertices u' and v', respectively. Finally, let the graphs A, B and C be obtained from $R_{u,v}, J_{u'}, K_{v'}$ as in the former lemma. Then $2W(A) > W(B) + W(C)$.

Proof of Theorem 1.5. Let \mathcal{T}_G be the set of those trees F on m vertices for which $\text{hom}(F, G)$ is maximal. Let $T \in \mathcal{T}_G$ be the tree for which $W(T)$ is minimal. We show that $T = S_m$. Assume for contradiction that $T \neq S_m$. Then T has two leaves, a and b such that $d(a, b) \geq 3$. Let u and v be the
unique neighbors of a and b, respectively. Then $u \neq v$. Let $R_{u,v} = T - \{a, b\}$, $J_{u'} = \{u', a\}$ and $K_{v'} = \{v', b\}$. Then

$$A = (R_{u,v} \circ_{u = u'} J_{u'}) \circ_{u = v'} K_{v'} = T.$$

As in the lemmas, let

$$B = (R_{u,v} \circ_{u = u'} J_{u'}) \circ_{u = u'} J_{u'},$$
$$C = (R_{u,v} \circ_{v = v'} K_{v'}) \circ_{v = v'} K_{v'}.$$

Note that B and C are also trees on m vertices. By the Lemma we have

$$2 \hom(A, G) \leq \hom(B, G) + \hom(C, G).$$

Since $A = T \in \mathcal{T}_G$, then $\hom(B, G) + \hom(C, G) \leq 2 \hom(A, G)$. So $\hom(A, G) = \hom(B, G) = \hom(C, G)$ implying that $B, C \in \mathcal{T}_G$ as well. But then $2W(T) > W(B) + W(C)$, so one of them has strictly smaller Wiener-index than T, this contradicts the choice of T. Hence T must be S_m. □

Remark 3.13. After all, it is a natural question whether it is true or not that

$$\hom(P_m, G) \leq \hom(T_m, G)$$

for any tree T_m on m vertices. Surprisingly, the answer is no! It was already known to A. Leontovich [12]. It turns out that even if restrict G to be tree there is a counterexample. Let E_7 be the tree obtained from P_6 by putting a pendant edge to the third vertex of the path. Then there is a tree T for which

$$\hom(P_7, T) > \hom(E_7, T).$$

The following tree T is suitable: let $T = T(k_1, k_2, k_3)$ be the tree where the root vertex v_0 have k_1 neighbors, all of its neighbors has $k_2 + 1$ neighbors and the vertices having distance 2 from v_0 have $k_3 + 1$ neighbors. If we choose k_1, k_2, k_3 such that $k_2 < k_1 < k_3 < k_1k_2$ (for instance $k_i = k^m_i$, where $\alpha_2 < \alpha_1 < \alpha_3 < \alpha_1 + \alpha_2$ and k is large), then

$$\hom(P_7, T) - \hom(E_7, T) = k_1^2k_2^2k_3^2 + o(k_1^2k_2^2k_3^2).$$

4. TREE-WALKS ON TREES

The main purpose of this section is to prove Theorem 1.3. We shall give an inductive proof of Theorem 1.2 which can be generalized to tree-walks by tree-walk algorithm.

We first need some notations. Let T be a tree and $T' = KC(T, p_0, p_k)$ its KC-transformation with respect to a path P of length k, a path with vertices labeled consecutively with p_0, p_1, \ldots, p_k. We denote by A and B the components of p_0 and p_k in the subgraph of T by deleting all the edges of P. Let A', B' and P' be the components of T' corresponding with components A, B and P under the KC-transformation, respectively. The vertices of the path P' will be labeled consecutively with p'_0, p'_1, \ldots, p'_k, where p'_i is corresponding to p_i for $0 \leq i \leq k$. So $p_0 \in A, p_k \in B$ in T, and $p'_0 \in A', B'$ in T'.
Lemma 4.1. Let \(a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2 \) be positive numbers satisfying the inequalities: \(a_i \geq \max(c_i, d_i) \), \(a_i + b_i \geq c_i + d_i \) for \(i = 1, 2 \). Then \(a_1a_2 \geq \max(c_1c_2, d_1d_2) \) and \(a_1a_2 + b_1b_2 \geq c_1c_2 + d_1d_2 \).

Proof. Clearly, we only have to prove that \(a_1a_2 + b_1b_2 \geq c_1c_2 + d_1d_2 \), the other inequality is trivial. Note that \(b_i \geq \max(0, c_i + d_i - a_i) \). If one of \(c_i + d_i - a_i \leq 0 \), say \(c_1 + d_1 < a_1 \) then

\[
a_1a_2 \geq (c_1 + d_1)a_2 \geq c_1c_2 + d_1d_2.
\]

If both \(c_i + d_i - a_i \geq 0 \) for \(i = 1, 2 \), then

\[
a_1a_2 + b_1b_2 \geq a_1a_2 + (c_1 + d_1 - a_1)(c_2 + d_2 - a_2) =
\]

\[
= c_1c_2 + d_1d_2 + (a_1 - c_1)(a_2 - d_2) + (a_1 - d_1)(a_2 - c_2) \geq c_1c_2 + d_1d_2.
\]

Hence we are done. \(\square \)

We first treat the case of \(k \) being even.

Proof of first part of Theorem 1.3. In this proof \(k \) is even: \(k = 2t \). We label \(V(A) \setminus p_0 \) with \(\{a_m \mid 1 \leq m \leq M\} \), \(V(A') \setminus p_0' \) with \(\{a'_m \mid 1 \leq m \leq M\} \), \(V(B) \setminus p_k \) with \(\{b_n \mid 1 \leq n \leq N\} \) and \(V(B) \setminus p'_k \) with \(\{b'_n \mid 1 \leq n \leq N\} \), where \(a_m \) (resp. \(b_n \)) is corresponding to \(a'_m \) (resp. \(b'_n \)) under the KC-transformation.

For \(v \in H \), we always write

\[
h(H, v, T) = (a_1, a_2, \ldots, a_M, p_0, p_1, \ldots, p_k, b_1, b_2, \ldots, b_N)
\]

and

\[
h(H, v, T') = (a'_1, a'_2, \ldots, a'_M, p'_0, p'_1, \ldots, p'_k, b'_1, b'_2, \ldots, b'_N),
\]

where we use the labels of vertices of \(T \) and \(T' \) to index the parameters of the hom-vectors to \(T \) and \(T' \) respectively. We hope that it will not cause any confusion. We shall prove by induction on the steps of tree-walk algorithm that

\[
(4.1) \quad a'_m \geq a_m, \quad b'_n \geq b_n
\]

\[
(4.2) \quad p'_i + p'_{k-i} \geq p_i + p_{k-i}
\]

\[
(4.3) \quad p'_i \geq p_i, \quad p'_i \geq p_{k-i}
\]

for \(1 \leq m \leq M, 1 \leq n \leq N, 0 \leq i \leq t \). We simply write \(h(H, v, T) \leq h(H, v, T') \) if two such hom-vectors from \(H \) to \(T \) and \(T' \) satisfy the inequalities (4.1), (4.2) and (4.3).

It is easy to verify that all these inequalities are satisfied after applying any recursion step of the tree-walk algorithm. When \(v \) is a leaf of \(H \) then it is trivial that these inequalities are preserved. If \(v \) is not a leaf then we use Lemma 4.1 to see that the Hadamard-product preserves these inequalities. \(\square \)

Lemma 4.2. Let \(k \) be odd and assume that \(A \) and \(B \) have at least two vertices. Let \(a_m(r), b_n(r), p_i(r), a'_m(r), b'_n(r), p'_i(r) \) denote the number of homomorphism of \(P_r \) into \(T \) and \(T' \), respectively, such that the endvertex of \(P_r \).
goes to the vertices \(a_m, b_n, p_i, a'_m, b'_n\) and \(p'_i\), respectively. Then the following inequalities hold for every \(r\):

\[
\begin{align*}
(4.4) & \quad a'_m(r) \geq a_m(r), \quad b'_n(r) \geq b_n(r) \\
(4.5) & \quad p'_i(r) + p'_j(r) \geq p_i(r) + p_j(r) \\
(4.6) & \quad p'_i(r) + p'_j(r) \geq p_{k-i}(r) + p_{k-j}(r)
\end{align*}
\]

for \(1 \leq m \leq M, 1 \leq n \leq N\) and \(i + j \leq k\).

\textbf{Proof.} We prove the claim by induction on \(r\). For \(r = 1, 2\), the claim is trivial. Note that we only have to prove that

\[
\begin{align*}
& a'_m(r) \geq a_m(r), \quad b'_n(r) \geq b_n(r) \\
& p'_i(r) + p'_j(r) \geq p_i(r) + p_j(r)
\end{align*}
\]

for \(1 \leq m \leq M, 1 \leq n \leq N\) and \(i + j \leq k\). We obtain the inequality

\[
p'_i(r) + p'_j(r) \geq p_{k-i}(r) + p_{k-j}(r)
\]

by simply exchanging the role of \(A\) and \(B\). Also note that if we put \(i = j\) in the inequality (4.5) and (4.6) we obtain that \(p'_i(r) \geq p_i(r), p_{k-i}(r)\) for \(i < k/2\).

Observe that for any vertex \(v\) we have:

\[
v(r) = \sum_{u \in N(v)} u(r - 1).
\]

We will treat the cases \(k = 1\) and \(k \geq 3\) separately.

\textbf{Case 1:} \(k = 1\). In this case, we have to prove the inequalities:

\[
a'_m(r) \geq a_m(r), \quad b'_n(r) \geq b_n(r), \quad p'_0(r) \geq \max(p_0(r), p_1(r)), \quad p'_0(r) + p'_1(r) \geq p_0(r) + p_1(r).
\]

The inequalities \(a'_m(r) \geq a_m(r), \quad b'_n(r) \geq b_n(r)\) simply follow from the inequalities \(a'_m(r-1) \geq a_m(r-1), \quad b'_n(r-1) \geq b_n(r-1)\), and \(p'_0(r-1) \geq p_0(r-1), p_1(r-1)\).

Observe that

\[
p'_0(r) = \sum_{a'_m \in N(p'_0)} a'_m(r-1) + \sum_{b'_n \in N(p'_0)} b'_n(r-1) + p'_1(r-1) =
\]

\[
= \sum_{a'_m \in N(p_0)} a'_m(r-1) + \sum_{b'_n \in N(p_0)} b'_n(r-1) + p'_0(r-2) \geq
\]

\[
\geq \sum_{a_m \in N(p_0)} a_m(r-1) + \sum_{b_n \in N(p_1)} b_n(r-1) + p_0(r-2) \geq
\]

\[
\geq \sum_{a_m \in N(p_0)} a_m(r-1) + \sum_{b_n \in N(p_1)} b_n(r-2) + p_0(r-2) =
\]

\[
= \sum_{a_m \in N(p_0)} a_m(r-1) + p_1(r-1) = p_0(r).
\]

We used the induction hypothesis and that \(b_m(r-1) \geq b_m(r-2)\). In general, \(u(r) \geq u(r-1)\) since any homomorphism of \(P_{r-1}\) starting at the vertex \(u\) can be extended to a homomorphism of \(P_r\) starting at \(u\). Clearly, we can get \(p'_0(r) \geq p_1(r)\) similarly, or we just switch the role of \(A\) and \(B\).
Finally,
\[p_0'(r) + p_1'(r) = \sum_{a_m' \in N(p_0')} a_m'(r-1) + \sum_{b_n' \in N(p_0')} b_n'(r-1) + p_0'(r-1) + p_1'(r-1) \geq \]
\[\sum_{a_m \in N(p_0)} a_m(r-1) + \sum_{b_n \in N(p_1)} b_n(r-1) + p_0(r-1) + p_1(r-1) = p_0(r) + p_1(r). \]

Hence we are done in this case.

Case 2: $k \geq 3$. Clearly, the inequalities $a_m'(r) \geq a_m(r)$, $b_n'(r) \geq b_n(r)$ simply follow from the inequalities $a_m'(r-1) \geq a_m(r-1)$, $b_n'(r-1) \geq b_n(r-1)$, and $p_0'(r-1) \geq p_0(r-1)$, $p_k(r-1)$ as before.

So we only have to prove the inequality $p_i'(r) + p_j'(r) \geq p_i(r) + p_j(r)$ for $i + j \leq k$. We can assume that $i \leq j$. If $i \geq 1$, then $j \leq k - 1$ and
\[p_i'(r) + p_j'(r) = (p_{i-1}'(r-1) + p_{j+1}'(r-1)) + (p_{i+1}'(r-1) + p_{j-1}'(r-1)) \geq \]
\[(p_{i-1}(r-1) + p_{j+1}(r-1)) + (p_{i+1}(r-1) + p_{j-1}(r-1)) = p_i(r) + p_j(r). \]

So we only have to consider the case $i = 0$. In this case we consider the cases $j = 0, j = 1, 2 \leq j \leq k - 2, j = k - 1, j = k$ separately. Unfortunately, all of them behaves a bit differently.

Subcase $j = 0$:
\[2p_0'(r) = 2 \left(\sum_{a_m' \in N(p_0')} a_m'(r-1) + \sum_{b_n' \in N(p_0')} b_n'(r-1) + p_1'(r-1) \right) \geq 2 \left(\sum_{a_m \in N(p_0)} a_m(r-1) + p_1(r-1) \right) = 2p_0(r), \]
since $p_1'(r-1) \geq p_1(r-1)$, because $1 < k/2$.

Subcase $j = 1$:
\[p_0'(r) + p_1'(r) = \sum_{a_m' \in N(p_0')} a_m'(r-1) + \sum_{b_n' \in N(p_0')} b_n'(r-1) + p_0'(r-1) + p_1'(r-1) \geq \]
\[\sum_{a_m \in N(p_0)} a_m(r-1) + p_1(r-1) + p_0(r-1) + p_2(r-1) = p_0(r) + p_1(r), \]
since $p_1'(r-1) \geq p_1(r-1)$ and $p_0'(r-1) + p_2'(r-1) \geq p_0(r-1) + p_2(r-1)$.

Subcase $2 \leq j \leq k-2$: Here we jump back from r to $r-2$, so we need a few notations. Let d_A and d_B denote the degree of p_0' in A and B, respectively. Furthermore, let $d(v, u)$ denote the distance of the vertices u and v. Then
\[p_0'(r) + p_j'(r) = \sum_{a_m': d(a_m, p_0') = 2} a_m'(r-2) + \sum_{b_n': d(b_n, p_0') = 2} b_n'(r-2) + (d_A + d_B + 1)p_0'(r-2) \]
\[+ p_j'(r-2) + 2p_j'(r-2) + p_{j+2}'(r-2) \geq \]
\[\sum_{a_m: d(a_m, p_0) = 2} a_m(r-2) + (d_A + 1)p_0(r-2) + p_2(r-2) + \]
\[+ p_{j-2}(r-2) + 2p_j(r-2) + p_{j+2}(r-2) = p_0(r) + p_j(r), \]
since the inequality follows from the following inequalities:

\[a'_m(r-2) \geq a_m(r-2), \quad b'_n(r-2) \geq 0 \]

\[(d_B - 1)p'_0(r-2) \geq -p_0(r-2) \]

\[(d_A - 1)p'_0(r-2) \geq (d_A - 1)p_0(r-2) \]

\[p'_2(r-2) + p'_{j-2}(r-2) \geq p_2(r-2) + p_{j-2}(r-2) \]

\[2(p'_0(r-2) + p'_j(r-2)) \geq 2(p_0(r-2) + p_j(r-2)) \]

\[p'_0(r-2) + p'_{j+2}(r-2) \geq p_0(r-2) + p_{j+2}(r-2). \]

Subcase \(j = k - 1: \)

\[p'_0(r) + p'_{k-1}(r) = \sum_{a'_m \in N(p'_0)} a'_m(r-1) + \sum_{b'_n \in N(p'_0)} b'_n(r-1) + p'_1(r-1) + p'_{k-2}(r-1) + p'_k(r-1) = \]

\[= \sum_{a_m \in N(p_0): d(a'_m, p'_0) = 2} a'_m(r-2) + d\, p'_0(r-2) + \sum_{b'_n \in N(p'_0)} b'_n(r-1) + p'_0(r-2) + p'_2(r-2) + p'_{k-3}(r-2) + 2p'_{k-1}(r-2). \]

On the other hand,

\[p_0(r) + p_{k-1}(r) = \sum_{a_m \in N(p_0)} a_m(r-1) + p_1(r-1) + p_{k-2}(r-1) + p_k(r-1) = \]

\[= \sum_{a_m \in N(p_0): d(a_m, p_0) = 2} a_m(r-2) + d\, p_0(r-2) + p_0(r-2) + p_2(r-2) + p_{k-3}(r-2) + 2p_{k-1}(r-2) + \sum_{b_n \in N(p_k)} b_n(r-2). \]

The inequality \(p'_0(r) + p'_{k-1}(r) \geq p_0(r) + p_{k-1}(r) \) follows from

\[a'_m(r-2) \geq a_m(r-2), \quad b'_n(r-1) \geq b_n(r-1) \geq b_n(r-2) \]

\[(d_A - 1)p'_0(r-2) \geq (d_A - 1)p_0(r-2) \]

\[p'_2(r-2) + p'_{k-3}(r-2) \geq p_2(r-2) + p_{k-3}(r-2) \]

\[2(p'_0(r-2) + p'_{k-1}(r-2)) \geq 2(p_0(r-2) + p_{k-1}(r-2)). \]

Subcase \(j = k: \)

\[p'_0(r) + p'_k(r) = \sum_{a'_m \in N(p'_0)} a'_m(r-1) + \sum_{b'_n \in N(p'_0)} b'_n(r-1) + p'_1(r-1) + p'_{k-1}(r-1) \geq \]

\[\geq \sum_{a_m \in N(p_0)} a_m(r-1) + \sum_{b_n \in N(p_k)} b_n(r-1) + p_1(r-1) + p_{k-1}(r-1) = p_0(r) + p_k(r). \]

\[\square \]

Proof of the second part of Theorem 1.3. From Lemma 4.2 we only keep the inequalities

\[a'_m(r) \geq a_m(r), \quad b'_n(r) \geq b_n(r) \]

\[p'_i(r) \geq p_i(r), \quad p_{k-i}(r) \]

for \(1 \leq m \leq M, 1 \leq n \leq N, 0 \leq i \leq k/2. \)
For a tree H and $v \in H$, let us write
\[h(H, v, T) = (a_1, a_2, \ldots, a_M, p_0, p_1, \ldots, p_k, b_1, b_2, \ldots, b_N) \]
and
\[h(H, v, T') = (a'_1, a'_2, \ldots, a'_M, p'_0, p'_1, \ldots, p'_k, b'_1, b'_2, \ldots, b'_N), \]
where we use the labels of vertices of T and T' to index the parameters of the hom-vectors to T and T', respectively. We say that $h(H, v, T) \leq h(H, v, T')$ if the following inequalities hold
\[a'_m \geq a_m, \quad b'_n \geq b_n, \]
\[p'_i + p'_{k-i} \geq p_i + p_{k-i}, \quad p'_i \geq p_i, \quad p'_i \geq p_{k-i} \]
for $1 \leq m \leq M, 1 \leq n \leq N, 0 \leq i \leq k/2$. As we have seen these inequalities hold for a path P_r and its endvertex. Since these inequalities are preserved for Hadamard-product by Lemma 4.1, we see that $h(H, v, T) \leq h(H, v, T')$ for starlike trees H, where v is the center of the starlike tree. This implies that
\[\text{hom}(H, T') \geq \text{hom}(H, T). \]
\[\square \]

The following generalization of inequality (1.2) follows immediately from Proposition 1.1 and Theorem 1.3.

Corollary 4.3. Let H be a starlike tree and let T_n be a tree on n vertices. Then
\[\text{hom}(H, P_n) \leq \text{hom}(H, T_n) \leq \text{hom}(H, S_n). \]

The reader may wonder that if inequality (1.4) holds when k is odd and H is not a starlike tree. This is not true in general. A counterexample will be constructed in the following, which also shows that
\[\text{hom}(H, T_n) \leq \text{hom}(H, S_n) \]
is not true for any tree H.

Proposition 4.4. Let T be a tree with color classes A and B considered as a bipartite graph. Then
\[\text{hom}(T, S_n) = (n-1)^{|A|} + (n-1)^{|B|}. \]

Corollary 4.5. Let T_m be a tree on m vertices, then
\[\text{hom}(P_m, S_n) \leq \text{hom}(T_m, S_n) \leq \text{hom}(S_m, S_n). \]

If $T \neq S_m$ then the second inequality is strict.

Proof of Proposition 4.4. Since T and S_n are bipartite graphs, a color class of T have to go into a color class of S_n. If the color class A goes to the center of S_n, then any vertex belonging to the color class of B can go to any leaf of the star, so it provides $(n-1)^{|B|}$ homomorphisms. The other case provides $(n-1)^{|A|}$ homomorphisms. \square
Figure 6. The doublestar S_{10}^*.

This simple proposition also shows us how to construct a tree T_n for which $\text{hom}(T_n, T_n) > \text{hom}(T_n, S_n)$. Let $T_n = S_{2k}^*$ be the doublestar on $2k$ vertices with $2k - 2$ leaves and two vertices of degree k. Then it is easy to see that

$$\text{hom}(S_{2k}^*, S_{2k}^*) > 2(k - 1)^{2(k-1)} = 2(k^2 - 2k + 1)^{k-1},$$

while

$$\text{hom}(S_{2k}^*, S_{2k}) = 2(2k - 1)^k.$$

Hence for $k \geq 5$ we have

$$\text{hom}(S_{2k}^*, S_{2k}^*) > \text{hom}(S_{2k}^*, S_{2k}).$$

Note that S_{2k} can be obtained from S_{2k}^* by a KC-transformation.

5. Homomorphisms of arbitrary trees

In this section we give the proof of Theorem 1.6 and Theorem 1.8. As we will see, Theorem 1.6 with some additional observations implies Theorem 1.8.

To prove Theorem 1.6 we will build on the fact that there are not many homomorphisms into a path. Indeed, by Theorem 1.5 we have

$$\text{hom}(T_m, P_n) \leq \text{hom}(S_m, P_n) = (n - 2)2^{m-1} + 2.$$

So for a particular tree T_n, it is enough to prove that for every tree T_m we have

$$\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2.$$

This would immediately imply that

$$\text{hom}(T_m, T_n) \geq \text{hom}(T_m, P_n).$$

We will prove that inequality 5.1 is indeed true for all tree T_n with at least four leaves and for a large class of trees with three leaves. For the remaining trees with three leaves we use Theorem 1.3.

Figure 7. The trees T_8 (left) and T'_8 (right).
Remark 5.1. To prove Theorem 1.6 and Theorem 1.8 we cannot rely entirely on the use of KC-transformation. That is why we had to find another strategy to prove these theorems.

Indeed, KC-transformation does not always increase the number of endomorphisms of trees. The first counterexample is the two trees on 8 vertices in Fig. 7. The tree T'_8 is the KC-transformation of T_8, but $|\text{End}(T'_8)| = 10430 < 17190 = |\text{End}(T_8)|$.

5.1. The extremality of star. Note that Theorem 1.5 and Theorem 1.3 together implies the following chain of inequalities:

$$|\text{End}(T_n)| = \text{hom}(T_n, T_n) \leq \text{hom}(S_n, T_n) \leq \text{hom}(S_n, S_n) = |\text{End}(S_n)|,$$

since S_n is a starlike tree. In this section, we will also give a direct proof for it.

Theorem 1.8 (Second part). Let T_n be a tree on n vertices. Then

$$|\text{End}(T_n)| \leq |\text{End}(S_n)|.$$

If $T_n \neq S_n$ then strict inequality holds.

Proof. For the sake of simplicity we prove the statement for $n \geq 17$. The same proof applies to $n < 17$, we only need to compute a bit more carefully. In the end of the proof we will give the details of this more precise calculation.

Note that $|\text{End}(S_n)| = (n - 1)^{n-1} + (n - 1)$.

Let T_n be a tree on n vertices and let $d = d_1 \geq d_2 \geq \ldots \geq d_n$ be its degree sequence. Note that $d_1 + d_2 \leq n$, since the tree has only $n - 1$ edges and the stars corresponding to the first two largest degrees can share at most one common edge.

First we prove that $|\text{End}(T_n)| \leq nd^{n-1}$. To see it, let u_1, \ldots, u_n be the vertices of the tree T_n such that u_1, \ldots, u_k induces a tree for every k. Then we can chose the image of u_1 by n ways, and if we have already chosen the image of u_1, \ldots, u_{k-1}, then we can chose the image of u_k in at most d ways, since it must be the neighbor of some previous vertex. This means that $|\text{End}(T_n)| \leq nd^{n-1}$.

If $d \leq 2n/3$ then

$$nd^{n-1} \leq n \left(\frac{2n}{3}\right)^n \leq (n - 1)^{n-1}$$

if $n \geq 17$, since then

$$ \left(\frac{3}{2}\right)^n \geq en^2 \geq n^2 \left(1 + \frac{1}{n - 1}\right)^{n-1}.$$

So we can assume that $d \geq \frac{2n}{3}$. Set $d = n - k$. We can assume that $T_n \neq S_n$, consequently $k \geq 2$. Let v_1 be the vertex having the largest degree and v_2, \ldots, v_{d+1} its neighbors. Now we can decompose the set of endomorphisms according to the image of v_1 is v_1 or not. If it is v_1 then there can be at most d^{n-1} such endomorphisms. If the image of v_1 is not v_1, then we can chose that image in at most $(n - 1)$ ways and the image of
v_2, v_3, \ldots, v_{d+1} can be chosen at most d_2 times and the image of all other vertices can be chosen in at most d ways. Hence

$$|\text{End}(T_n)| \leq d^{n-1} + (n-1)d_2^{d^{m-1-d}}.$$

All we need to prove is that if $d \leq n - 2$ then

$$d^{n-1} + (n-1)d_2^{d^{m-1-d}} \leq (n-1)^{n-1} + (n-1).$$

With the notations $d = n - k$ we have

$$d^{n-1} + (n-1)d_2^{d^{m-1-d}} = (n-k)^{n-1} + (n-1)k^{n-k}(n-k)^{k-1}.$$

By the binomial theorem we have

$$(n-1)^{n-1} = (n-k+k-1)^{n-1} \geq (n-k)^{n-1} + (n-1)(n-k)^{n-2}(k-1).$$

It is enough to prove that $(n-k)^{n-2} \geq k^{n-k}(n-k)^{k-1}$. This is equivalent with $(n-k)^{n-k-1} \geq k^{n-k}$ and it is true since it is equivalent with

$$\left(\frac{n}{k} - 1\right)^{n-k} \geq 2^{n-k} \geq n - k.$$

In the last step we have used that $n/k \geq 3$.

It is clear from the proof that we only have to check whether one of the inequalities hold for some d:

$$n \leq \left(\frac{n-1}{d}\right)^{n-1} \text{ or } \left(\frac{n}{k} - 1\right)^{n-k} \geq n - k.$$

For $8 \leq n \leq 16$ it is easy to see that if $d \leq n - 4$ then the first inequality holds and if $d > n - 4$, equivalently $k \leq 3$ then the second inequality holds. For $n = 5, 6, 7$ the first inequality holds if $d \leq n - 3$, and the second inequality holds if $d > n - 3$, equivalently $k \leq 2$. For $n = 4$ the claim is trivial $30 = |\text{End}(S_4)| > |\text{End}(P_4)| = 16$. □

5.2. The extremality of path.

Theorem 5.2. Let T_m and T_n be trees on m and n vertices, respectively. If the tree T_n has at least four leaves, then

$$\text{hom}(T_m, T_n) \geq (n-2)2^{m-1} + 2.$$

An easy consequence of this theorem is the following.

Corollary 5.3. If T_n is a tree on n vertices with at least 4 leaves, then

$$\text{hom}(T_m, T_n) \geq \text{hom}(T_m, P_n).$$

Proof. Indeed,

$$\text{hom}(T_m, T_n) \geq (n-2)2^{m-1} + 2 = \text{hom}(S_m, P_n) \geq \text{hom}(T_m, P_n),$$

where the second inequality follows from Theorem 1.3. □

A consequence of this theorem is that path has the minimal number of endomorphisms.

Theorem 1.38 (First part). For all trees T_n on n vertices we have

$$|\text{End}(T_n)| \geq |\text{End}(P_n)|.$$
Proof. If T_n has at least four leaves, then
\[\text{hom}(T_n, T_n) \geq \text{hom}(T_n, P_n) \geq \text{hom}(P_n, P_n), \]
where the first inequality follows from Corollary 5.3, while the second inequality follows from Theorem 1.4. If the tree T_n has exactly three leaves, then it is star-like. Hence we can use Theorem 1.3 to prove the first inequality:
\[\text{hom}(T_n, T_n) \geq \text{hom}(T_n, P_n) \geq \text{hom}(P_n, P_n). \]
\[\square\]

The proof of Theorem 5.2 will be given next, which would complete the proof of Theorem 1.8.

First, we prove a reduction lemma which says that we only have to prove Theorem 5.2 for trees with exactly 4 leaves.

Lemma 5.4 (Reduction lemma). Let T_m be a tree on m vertices and let n be fixed. Assume that for all tree T_k we have
\[\text{hom}(T_m, T_k) \geq (k-2)2^{m-1} + 2, \]
where $k < n$ and T_k has at least four leaves, or $k = n$ and T_k has exactly four leaves. Then for any tree T_n on n vertices with at least 4 leaves we have
\[\text{hom}(T_m, T_n) \geq (n-2)2^{m-1} + 2. \]

In the proof of this lemma we will subsequently use the following very simple fact.

Fact. If G is a graph and G_1, G_2 are induced subgraphs of G with possible intersection, then for any graph H we have
\[\text{hom}(H, G) \geq \text{hom}(H, G_1) + \text{hom}(H, G_2) - \text{hom}(H, G_1 \cap G_2). \]

Proof of the lemma. We can assume that $m \geq 2$. Assume that T_n is tree with at least 5 leaves. Otherwise we have nothing to prove.

Let us call a path maximal in T_n if it connects leaves. If a maximal path contains k vertices of degree at least 3, then we say that the maximal path has k branches.

First we prove the statement if T_n contains a maximal path with at least 3 branches. Let v_0Pv_r be a maximal path with vertices u_1, \ldots, u_k having degree at least 3. Let B_1, \ldots, B_k be the branches which we get if we delete all vertices and edges of the path v_0Pv_r except u_1, \ldots, u_k. So B_i is a rooted tree with root u_i. Let u_2^- and u_2^+ be the two neighbors of u_2 on the path v_0Pv_r. Let T_2 be the tree induced by the vertices $V(B_2) \cup \{u_2^-, u_2^+\}$. Let $|V(T_2)| = t$. We distinguish two cases.

1. **case.** In this case we assume that $\text{hom}(T_m, T_2) < (t-2)2^{m-1} + 2$. Consider the following trees G_1 and G_2. G_1 is the tree spanned by the vertices $v_0Pu_2^+$ and the branches B_1, B_2. G_2 is the tree spanned by the vertices $u_2^-Pv_r$ and the branches B_2, \ldots, B_k. Note that $G_1 \cup G_2 = T_n$, $G_1 \cap G_2 = T_2$ and G_1, G_2
contains at least 4 leaves, because \(k \geq 3 \). By the hypothesis of the lemma we have
\[
\text{hom}(T_m, G_i) \geq (|V(G_i)| - 2)2^{m-1} + 2
\]
for \(i = 1, 2 \). Hence
\[
\text{hom}(T_m, T_n) \geq \text{hom}(T_m, G_1) + \text{hom}(T_m, G_2) - \text{hom}(T_m, G_1 \cap G_2) \geq (|V(G_1)| - 2)2^{m-1} + 2 + (|V(G_2)| - 2)2^{m-1} + 2 - (|V(G_1 \cap G_2)| - 2)2^{m-1} + 2 = ((|V(G_1 \cup G_2)| - 2)2^{m-1} + 2 = (n - 2)2^{m-1} + 2.
\]
In this case we are done.

2. case. In this case we assume that \(\text{hom}(T_m, T_2) \geq (t - 2)2^{m-1} + 2 \). Consider the following trees \(G_1 \) and \(G_2 \). \(G_1 \) is the tree spanned by the vertices \((V(T_n) \setminus V(T_2)) \cup \{u_2, u_2, u_2^+\} \). \(G_2 \) is simply \(T_2 \). Note that \(G_1 \cup G_2 = T_n \), \(G_1 \cap G_2 = \{u_2^-, u_2, u_2^+\} = P_3 \) and \(G_1 \) contains at least 4 vertices. By the hypothesis of the lemma we have
\[
\text{hom}(T_m, G_1) \geq (|V(G_1)| - 2)2^{m-1} + 2.
\]
We also know that in this case
\[
\text{hom}(T_m, G_2) \geq (|V(G_2)| - 2)2^{m-1} + 2.
\]
Note that
\[
\text{hom}(T_m, P_3) \leq \text{hom}(S_m, P_3) = 2^{m-1} + 2.
\]
Then
\[
\text{hom}(T_m, T_n) \geq \text{hom}(T_m, G_1) + \text{hom}(T_m, G_2) - \text{hom}(T_m, G_1 \cap G_2) \geq (|V(G_1)| - 2)2^{m-1} + 2 + (|V(G_2)| - 2)2^{m-1} + 2 - (|V(G_1 \cap G_2)| - 2)2^{m-1} + 2 = ((|V(G_1 \cup G_2)| - 2)2^{m-1} + 2 = (n - 2)2^{m-1} + 2.
\]
In this case we are done too.

Hence if one of the maximal path of \(T_n \) has at least 3 branches then we are done. We still have to consider the trees \(T_n \) where all maximal paths have at most 2 branches. In the following we show that they have quite simple structure: they are starlike or double starlike trees, see Figure 8.

Let \(v_1 \) be a vertex of \(T_n \) of degree at least 3. Let us decompose \(T_n \) to the branches \(B_1, B_2, \ldots B_k \) at \(v_1 \). So \(v_1 \) is a leaf in the trees \(B_1, B_2, \ldots B_k \).
We show that all except at most one of B_1, B_2, \ldots, B_k are paths. Assume that, for instance, B_1, B_2 are not paths. Then they contains at least two leaves of T_n: B_1 contains u_1, u_2, B_2 contains u_3, u_4. Then the maximal path u_1Pu_3 has at least three branches: one-one inside the branches B_1 and B_2 and B_3 at the vertex v. If all branches are paths, then we are done: T_n is starlike. If one of them is not path, say B_1, then let us consider the vertex $v_2 \in V(B_1)$ having degree at least 3 which is closest to v_1. Repeating the previous argument to v_2 instead of v_1, all except one branches at v_2 must be path and we also know that the branch containing v_1 is not path. Hence the tree is double starlike, where the middle path is v_1Pv_2.

![Figure 9. A double starlike tree.](image)

We can consider a starlike tree as a double starlike tree, where $v_1 = v_2$. Let a_1, \ldots, a_s and b_1, \ldots, b_t be the leaves of T_n, where a_1, \ldots, a_s are closer to v_1 than to v_2, while b_1, \ldots, b_t are closer to v_2 than to v_1. If $v_1 = v_2$ we just decompose the set of leaves into two sets of (almost) equal size. Note that $s, t \geq 2$. Since we can assume that there are at least 5 leaves, we assume that $s + t \geq 5$.

If u_1, \ldots, u_t are some vertices of a tree, then we say that the tree spanned by u_1, \ldots, u_t is the smallest subtree which contains the vertices u_1, \ldots, u_t. It is

$$span(u_1, \ldots, u_t) = \bigcup_{1 \leq i, j \leq t} u_iPu_j.$$

If $s \geq 3$ and $t \geq 3$ both hold, then let G_1 be the tree spanned by the vertices a_1, a_2, b_1, b_2, and let G_2 be the tree spanned by the vertices $a_2, \ldots, a_s, b_2, \ldots, b_t$. Then $G_1 \cup G_2 = T_n$, $G_1 \cap G_2 = a_2Pb_2$ and both G_1, G_2 have at least 4 leaves. Since

$$\text{hom}(T_m, G_1 \cap G_2) \leq \text{hom}(S_m, G_1 \cap G_2) = \text{hom}(S_m, a_2Pb_2) = (|V(G_1 \cap G_2)| - 2)2^{m-1} + 2,$$

we have

$$\text{hom}(T_m, T_n) \geq \text{hom}(T_m, G_1) + \text{hom}(T_m, G_2) - \text{hom}(T_m, G_1 \cap G_2) \geq (|V(G_1)| - 2)2^{m-1} + 2 + (|V(G_2)| - 2)2^{m-1} + 2 - (|V(G_1 \cap G_2)| - 2)2^{m-1} + 2) = (|V(G_1 \cup G_2)| - 2)2^{m-1} + 2 = (n - 2)2^{m-1} + 2.$$

Hence we are done in this case.

If $s \geq 4$ and $t = 2$ then let G_1 be the tree spanned by a_1, a_2, b_1, b_2 and let G_2 be the tree spanned by a_2, \ldots, a_k, b_1. Then $G_1 \cup G_2 = T_n$, $G_1 \cap G_2 = a_2Pb_1$ and both G_1, G_2 have at least 4 leaves. In this case we are done as before. Clearly, the case $s \geq 2$ and $t \geq 4$ is completely similar.
The last case is \(s = 3, t = 2 \) (and \(s = 2, t = 3 \)). Let \(G_1 = \text{span}(a_1, a_2, b_1, b_2) \), \(G_2 = \text{span}(a_2, a_3, b_1, b_2) \), \(G_3 = \text{span}(a_2, b_1, b_2) \), \(G_4 = (a_1, a_2, a_3, v_2) \). Then \(G_1 \cap G_2 = G_3, G_3 \cap G_4 = a_2 P v_2 \). Note that \(G_1, G_2, G_4 \) has 4 leaves, thus
\[
\text{hom}(T_m, G_i) \geq (|V(G_i)| - 2)2^{m-1} + 2
\]
for \(i = 1, 2, 4 \). If \(\text{hom}(T_m, G_3) \leq (|V(G_3)| - 2)2^{m-1} + 2 \), then from \(T_n = G_1 \cup G_2, G_3 = G_1 \cap G_2 \) we obtain that \(\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2 \). If \(\text{hom}(T_m, G_3) \geq (|V(G_3)| - 2)2^{m-1} + 2 \), then from \(T_n = G_3 \cap G_4 \) we obtain that \(\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2 \). Hence we are done in this case as well.

Lemma 5.5. Let \(T_n \) be a tree with exactly 4 leaves and two vertices of degree 3. Let \(x \) and \(y \) be the vertices of \(T_n \) with degree 3. Assume that there are at most 3 vertices of \(T_n \) which have degree 2 and not on the path \(xPy \). Then for any tree \(T_m \) on \(m \) vertices we have
\[
\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2,
\]
where \(n \) is the number of vertices of \(G \).

Proof. We can assume that \(m \geq 4 \), otherwise the statement is trivial. We prove the slightly stronger inequality
\[
\text{hom}(T_m, T_n) > \left(n - 2 + \frac{1}{8}\right)2^{m-1}.
\]
If \(m \geq 4 \), then this implies that
\[
\text{hom}(T_m, T_n) > (n - 2)2^{m-1} + 1
\]
or equivalently,
\[
\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2.
\]
To prove this statement we use Theorem 5.1 with a suitable Markov chain. Let \(p_{ij} = \frac{1}{2} \) for \((i, j) \in E(T_n) \) if \(i \) has degree 2. Naturally, \(p_{ij} = 1 \) if \((i, j) \in E(G) \) and \(i \) is a leaf. Finally, if \(i \in \{x, y\}, j \in xPy \) then \(p_{ij} = \frac{1}{2} \) and if \(i \in \{x, y\}, j \notin xPy \) then \(p_{ij} = \frac{1}{4} \).

Let \(r \) be the number of vertices of \(xPy \). Then \(n = r + t + 4 \). Let \(N = 4r + 2t + 4 \). Then the stationary distribution is the following: \(q_i = \frac{4}{N} \) if \(i \in xPy, q_i = \frac{2}{N} \) if \(i \notin xPy, \) but has degree 2 and finally, \(q_i = \frac{1}{N} \) if \(i \) is a leaf.

Then
\[
H(P|Q) = \frac{N - 12}{N} \log 2 + \frac{8}{N} \left(\frac{1}{2} \log 2 + \frac{1}{2} \log 4\right) = \log 2.
\]
On the other hand,
\[
H(Q) + 2(H(D|Q) - H(P|Q)) =
\]
\[
= \left(\frac{4r}{N} \log \frac{N}{4} + \frac{2t}{N} \log \frac{N}{2} + \frac{4}{N} \log \frac{N}{1}\right) + 2 \frac{8}{N} \left(\log 3 \frac{3}{2} \log 2\right) =
\]
\[
= \log \frac{N}{4} + \frac{2t}{N} \log 2 + \frac{16(\log 3 \log 2)}{N}.
\]
Note that
\[
\log \left(n - 2 + \frac{1}{8} \right) - \log \frac{N}{4} \leq \int_{N/4}^{n-2} \frac{1}{x} \, dx \leq \frac{n - 2 + \frac{1}{8} - N/4}{N/4} = \frac{4}{N} \left(\frac{t}{2} + 1 + \frac{1}{8} \right) = \frac{1}{N} \left(2t + \frac{9}{2} \right).
\]

Hence if
\[
\frac{1}{N} \left(2t + \frac{9}{2} \right) \leq \frac{2t}{N} \log 2 + \frac{16(\log 3 - \log 2)}{N},
\]
then
\[
\log \left(n - 2 + \frac{1}{8} \right) \leq H(Q) + 2(H(D|Q) - H(P|Q)),
\]
consequently
\[
\text{hom}(T_k, G) \geq \exp(H(Q) + 2H(D|Q) + (m-3)H(P|Q)) > \left(n - 2 + \frac{1}{8} \right) 2^{m-1}.
\]

The above inequality is satisfied if
\[
t \leq \frac{8 \log \frac{3}{2} - \frac{9}{4}}{1 - \log 2} \approx 3.238.
\]

This proves the statement of the theorem. \(\square\)

Lemma 5.6. Let \(T_n \) be a tree obtained from a path on \(n - 8 \) vertices by gluing one-one \(P_5 \) at the middle vertices to both ends of the path \(P_{n-8} \) (see Fig. 10). Then for any tree \(T_m \) on \(m \) vertices we have
\[
\text{hom}(T_m, T_n) \geq (n - 1)2^{m-1}.
\]

Proof. We will show by induction on \(m \) that

(5.3) \quad \text{hom}(T_m, T_n) \geq (n - 1)2^{m-1}.

Let \(v \) be any leaf of \(T_m \) with unique neighbor \(u \) and let \(T_{m-1} = T_m - v \) be a rooted tree with root \(u \).

![Figure 10. Special double starlike trees.](image)

Let us use the hom-vectors of the Fig.10 that is
\[
h(T_{m-1}, u, T_n) = (x, x, y, y, z, a, \ldots, b, z, y, y, x, x).
\]

Now suppose that
\[
\text{hom}(T_{m-1}, T_n) \geq (n - 1)2^{m-2}.
\]
It is easy to see by induction that \(z > 2^x \) if \(T_{m-1} \) has at least two vertices. By tree-walk algorithm, we have

\[
\text{hom}(T_m(v), T_n) = 4x + 8y + 6z + 2(a + \cdots + b) \\
\geq 8x + 8y + 4z + 2(a + \cdots + b) \\
= 2\text{hom}(T_{m-1}, G) \\
\geq (n - 1)2^{m-1},
\]

which shows (5.3). □

Next we introduce a transformation which we will call LS-switch (Large-
Small switch).

![Figure 11. LS-switch.](image)

Definition 5.7 (LS-switch). Let \(R(u, v) \) be a tree with specified vertices \(u \) and \(v \) such that the distance of \(u \) and \(v \) is even and \(R \) has an automorphism of order 2 which exchanges the vertices \(u \) and \(v \). Let \(T_1(x), T_2(x), T_3(y), T_4(y) \) be rooted trees such that \(T_2(x) \) is the rooted subtree of \(T_1(x) \) and \(T_4(y) \) is the rooted subtree of \(T_3(y) \). Let the tree \(T' \) be obtained from the trees \(R(u, v), T_1(x), T_2(x), T_3(y), T_4(y) \) by attaching a copy of \(T_1(x) \), \(T_4(y) \) to \(R(u, v) \) at vertex \(u \) and a copy of \(T_2(x), T_3(y) \) at vertex \(v \). Assume that the tree \(T' \) is obtained from the trees \(R(u, v), T_1(x), T_2(x), T_3(y), T_4(y) \) by attaching a copy of \(T_1(x), T_3(y) \) to \(R(u, v) \) at vertex \(u \) and a copy of \(T_2(x), T_4(y) \) at vertex \(v \). Then \(T' \) is the LS-switch of \(T \). Observe that there is a natural bijection between the color classes of \(T' \) and \(T \).

A particular case of the LS-switch is when \(R(u, v) \) is a path of even length with end vertices \(u \) and \(v \), \(T_2(x) \) and \(T_4(y) \) are one-vertex rooted trees, then \(T' \) is obtained from \(T \) by an even-KC-transformation, i.e., KC-transformation according to a path of even length. Another useful special case is when \(R(u, v) \) is a tree where we attach an arbitrary tree to the middle vertex of the path on 3 vertices and \(u \) and \(v \) are the end vertices of the path (in this case the automorphism simply switches \(u \) and \(v \)), and \(T_2(x), T_4(y) \) are the rooted trees with 1 vertex, in this case we get back to a particular case of the original Kelmans-transformation [10].
Actually, the following theorem with respect to the LS-switch is also true and its proof is just a trivial extension of the even case of Theorem 1.3.

Theorem 5.8. Let T' be the LS-switch of T. Let H be an arbitrary tree. Then

$$\text{hom}(H, T) \leq \text{hom}(H, T').$$

Proof. (Sketch.) The unique shortest path connecting all T_i’s in T (or T') will be denoted by P_{2k}, a path of even length with vertices labeled consecutively by $0, 1, \ldots, 2k$. Without loss of generality, we can assume that $0 \in V(T_1)$. For $1 \leq j \leq 2k - 1$, let A_j denote the component of T that contains the vertex j when we delete all the edges of P_{2k}. By the definition of LS-switch, the subtrees A_j and A_{2k-j} are isomorphic, so we can identify $V(A_j) \setminus \{j\}$ with $V(A_{2k-j}) \setminus \{2k-j\}$. We will also consider $V(T_1) \setminus \{0, 2k\}$ as the subset of $V(T_1) \setminus \{0, 2k\}$ and $V(T_1) \setminus \{0, 2k\}$ as the subset of $V(T_3) \setminus \{0, 2k\}$.

Let v be a vertex of H. For $0 \leq s \leq 2k$, $u \in V(T_i) \setminus \{0, 2k\}$ ($1 \leq i \leq 4$) and $a \in V(A_j) \setminus \{j\}$ (1 $\leq j \leq 2k - 1$), we define

$$p_s := |\{f \in \text{Hom}(H, T) : f(v) = m\}|, \quad p'_s := |\{f \in \text{Hom}(H, T') : f(v) = m\}|,$$

$$t_s(u) := |\{f \in \text{Hom}(H, T) : f(v) = u\}|, \quad t'_s(u) := |\{f \in \text{Hom}(H, T') : f(v) = u\}|,$$

and

$$p_j(a) := |\{f \in \text{Hom}(H, T) : f(v) = a\}|, \quad p'_j(a) := |\{f \in \text{Hom}(H, T') : f(v) = a\}|.$$

We prove by induction that the following inequalities are preserved by the steps of the tree-walk algorithm. For any $0 \leq s \leq k$, $a \in V(A_j) \setminus \{j\}$ (1 $\leq j \leq k$), $u \in V(T_2) \setminus \{0, 2k\}$, $w \in V(T_4) \setminus \{0, 2k\}$, $x \in V(T_1) \setminus V(T_2)$ and $y \in V(T_3) \setminus V(T_4)$ we have

$$p'_{k-s} + p_{k+s} \geq p_{k-s} + p_{k+s},$$

$$p'_j(a) + p'_{2k-j}(a) \geq p_j(a) + p_{2k-j}(a) \quad \text{and} \quad p'_j(a) \geq p_{2k-j}(a),$$

$$t'_s(u) + t'_s(u) \geq t_s(u) + t_s(u) \quad \text{and} \quad t'_s(u) \geq t_s(u),$$

$$t'_s(w) + t'_s(w) \geq t_s(w) + t_s(w) \quad \text{and} \quad t'_s(w) \geq t_s(w),$$

$$t'_s(x) \geq t_s(x) \quad \text{and} \quad t'_s(y) \geq t_s(y).$$

We only need to check that the two operations in the tree-walk algorithm preserve all the above inequalities, which is routine and left to the reader. □

Lemma 5.9. Let T_n be a tree on n vertices with exactly four leaves. Then for any tree T_m on m vertices we have

$$\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2,$$

where n is the number of vertices of T_n.

Proof. If T_n has a vertex of degree 4 then by Theorem 3.6 we have

$$\text{hom}(T_m, T_n) \geq 2(n - 1)C^{m-2},$$

where

$$C = \left(\prod_{i=1}^n d_i^{1/2} \right)^{1/2} = 2.$$
Hence
\[\text{hom}(T_m, T_n) \geq (n - 1)2^{m-1} \geq (n - 2)2^{m-1} + 2. \]

Now assume that T_n has two vertices, x and y, of degree 3. Among these trees (n vertices, 4 leaves, two vertices of degree 3) let us choose $\overline{T_n}$ to be the one for which $\text{hom}(T_m, \overline{T_n})$ is minimal and among these trees the length of the path is maximal.

Let the four leaves of $\overline{T_n}$ denoted by z_1, z_2, z_3, z_4 such that z_1, z_2 are closer to x than y and z_3, z_4 are closer to y than x. Let the number of edges of $xPy, xPz_1, xPz_2, yPz_3, yPz_4$ be a, b, c, d, e, respectively. We show that $\max(b, c, d, e) \leq 2$. Indeed, if say $b > 2$ then $\overline{T_n}$ can be obtained by an LS-switch from a graph T_\ast_n as follows.

If b is even, then let u be the unique vertex such that $d(z_1, u) = 2$. Then $uP x = R(u, x)$ is a path of even length. Let $T_2 = z_1 Pu$. Furthermore, let T_1 be the tree spanned by the vertices x, z_3, z_4. $T_3 = xP z_2$ and $T_4 = \{u\}$. Then T_2 is a rooted subtree of T_1 and T_4 is a rooted subtree of T_3. Now making an inverse LS-switch we obtain T_\ast_n. We know that
\[\text{hom}(T_m, \overline{T_n}) \geq \text{hom}(T_m, T_\ast_n) \]
and in T_\ast_n, the vertices of degree 3, y and u, has distance $a + b - 2 > a$ contradicting the choice of $\overline{T_n}$.

If b is odd, then let u be the unique neighbor of z_1 and we repeat the previous argument. The distance of u and x is even again.

Hence we can assume that $\max(b, c, d, e) \leq 2$. If not all of them are 2, then we can use Lemma 5.5 to get that
\[\text{hom}(T_m, \overline{T_n}) \geq (n - 2)2^{m-1} + 2. \]

If $b = c = d = e = 2$, then we use Lemma 5.6 to obtain that
\[\text{hom}(T_m, \overline{T_n}) \geq (n - 1)2^{m-1} \geq (n - 2)2^{m-1} + 2. \]

This proves the statement. \hfill \square

Proof of Theorem 5.2. The statement immediately follows from Lemma 5.9 and Lemma 5.4. \hfill \square

5.3. Trees with 3 leaves.

Lemma 5.10. (a) Let $n = a + b + c + 1$, and $\min(a, b, c) \geq 2$. Then for any tree T_m on m vertices we have
\[\text{hom}(T_m, Y_{a,b,c}) \geq (n - 2)2^{m-1} + 2. \]

(b) Let $n = a + b + 2$, and $\min(a, b) \geq 3$. Then for any tree T_m on m vertices we have
\[\text{hom}(T_m, Y_{a,b,1}) \geq (n - 2)2^{m-1} + 2. \]

Proof. (a)

We can think to $Y_{a,b,c}$ with $\min(a, b, c) \geq 2$ as follows: we consider $Y_{2,2,2}$ and we subdivide the edges between the vertex of degree 3 and its neighbors a few times. Let us write the weights 1, 4, 1, 4, 1, 4, 9 to the vertices
of $Y_{2,2,2}$ according to the figure and then let us write weights 6 on the new vertices obtained by subdivision. It is easy to check that there is a unique Markov chain on $Y_{a,b,c}$, where the stationary distribution is proportional to the weights. (In fact, we write a few transition probabilities on the figure.)

It is easy to check that $H(P|Q) = \log 2$ and if $N = 24 + 6(n - 7) = 6(n - 3)$, then

$$H(Q) + 2(H(D|Q) - H(P|Q)) =$$

$$= \left(\frac{9}{N} \log \frac{N}{9} + \frac{12}{N} \log \frac{N}{4} + \frac{3}{N} \log \frac{N}{1} + \frac{6(n - 7)}{N} \log \frac{N}{6} \right) +$$

$$+ 2 \cdot \frac{12}{N} \left(\log 2 - \left(\frac{1}{4} \log 4 + \frac{3}{4} \log \frac{4}{3} \right) \right) =$$

$$= \log \frac{N}{6} + \frac{9}{N} \log \frac{6}{9} + \frac{6}{N} \log \frac{6}{4} + \frac{3}{N} \log \frac{6}{1} + \frac{24}{N} \left(\log 2 - \left(\frac{1}{4} \log 4 + \frac{3}{4} \log \frac{4}{3} \right) \right) =$$

$$= \log(n - 3) + \frac{24}{N} \log \frac{3}{2}.$$

Since

$$\log(n - 2 + \varepsilon) - \log(n - 3) = \int_{n-3}^{n-2+\varepsilon} \frac{dx}{x} \leq \frac{1 + \varepsilon}{n - 3} = \frac{6}{N}(1 + \varepsilon)$$

we can choose $\varepsilon = 4 \log \frac{3}{2} - 1 > \frac{1}{2}$ to deduce that

$$\text{hom}(T_m, Y_{a,b,c}) \geq (n - 2 + \varepsilon)2^{m-1}.$$

This is already greater than $(n - 2)2^{m-1} + 2$ for $m \geq 3$. The statement is trivial for $m \leq 2$.

(b)
We use completely the same argument as in part (a). We think to \(Y_{a,b,1} \) as a subdivision of \(Y_{3,3,1} \) and use the Markov chain on the figure. Again we have
\[
H(P|Q) = \log 2 \quad \text{and the sum of the weights is } N = 48 + 12(n - 8) = 12(n - 4).
\]
Hence
\[
H(Q) + 2(H(D|Q) - H(P|Q)) = \log \frac{N}{12} + \frac{12}{N} \left(\frac{11}{3} \log 3 - \frac{1}{3} \log 2 \right).
\]
Since
\[
\log(n - 2 + \varepsilon) - \log(n - 4) = \int_{n-4}^{n-2+\varepsilon} \frac{dx}{x} \leq \frac{2 + \varepsilon}{n - 4} = \frac{12}{N} (2 + \varepsilon)
\]
we can choose \(\varepsilon = \frac{14}{3} \log 3 - \frac{1}{3} \log 2 - 2 > 1.79 \) to deduce that
\[
\text{hom}(T_m, Y_{a,b,c}) \geq (n - 2 + \varepsilon) 2^{m-1}.
\]
This is already greater than \((n - 2)2^{m-1} + 2\) for \(m \geq 2 \). The statement is trivial for \(m = 1 \).

Remark 5.11. Since every Markov chains are reversible on a tree, there is a natural way to define a new Markov chain on a subdivided edge. Assume that the probabilities of the stationary distribution were \(q_i, q_j \) and \(p_{ij}, p_{ji} \) were the transition probabilities at the vertices \(i, j \). Then \(q_i p_{ij} = q_j p_{ji} \) (reversibility) and we can put a vertex \(r \) with weight \(2q_ip_{ij} \) and \(p_{ri} = p_{rj} = 1/2 \) on the edge \((i, j)\). Then the new stationary distribution will be proportional to the weights \(\{q_i | i \in V(T)\} \cup \{2q_ip_{ij}\} \).

Theorem 1.6 Let \(T_n \) be a tree on \(n \) vertices. Assume that for a tree \(T_m \) we have
\[
\text{hom}(T_m, T_n) < \text{hom}(T_m, P_n).
\]
Then \(T_n = Y_{1,1,n-3} \) and \(n \) is even.

Proof. Note that if \(T_n \) has at least 4 leaves then Theorem 5.9 implies that
\[
\text{hom}(T_m, T_n) \geq (n - 2)2^{m-1} + 2 = \text{hom}(S_m, P_n) \geq \text{hom}(T_m, P_n)
\]
contradicting to the condition of the theorem. Hence \(T_n = Y_{a,b,c} \) for some \(a, b, c \). Observe that if one of \(a, b, c \) is even then \(Y_{a,b,c} \) can be obtained from \(P_n \) by an even-KC-transformation and then Theorem 1.3 implies
\[
\text{hom}(T_m, T_n) \geq \text{hom}(T_m, P_n)
\]
contradicting to the condition of the theorem. Note that if \(n \) is odd, then one of \(a, b, c \) is necessarily even and so we are done. From Lemma 5.10 we also know that \(\min(a, b, c) = 1 \), say \(c = 1 \) and \(\min(a, b) \leq 2 \). But then \(\min(a, b) = 1 \), because it must be even. Hence \(T_n = Y_{1,1,n-3} \) and \(n \) is even.
Remark 5.12. There is a tree T_m for which $\text{hom}(T_m, S_4) < \text{hom}(T_m, P_4)$.

On the figure one can see a rooted tree and its homomorphism vectors to S_4 and P_4. Now if we attach k copies of this rooted tree at the root then for the obtained tree T_m we have

$$\text{hom}(T_m, P_4) = 2 \cdot 4^k + 2 \cdot 10^k > 4 \cdot 9^k = \text{hom}(T_m, S_4)$$

for large enough k.

On the other hand, it seems that $\text{hom}(T_m, Y_{1,1,n-3}) \geq \text{hom}(T_m, P_n)$ if $n \geq 6$ and even.

6. Homomorphisms into a Path

In this section we study the extremal problem about the number of homomorphisms from trees to a fixed path. The main purpose of this section is to prove Theorem 1.4. As the theorem suggests we have to distinguish whether n is even or odd.

6.1. The KC-transformation: the case of even n

In this section we will prove the part (i) of Theorem 1.4.

First we need some new definitions and lemmas.

Definition 6.1. A vector $a = (a_1, a_2, \ldots, a_n)$ is symmetric if $a_i = a_{n-i+1}$ for $1 \leq i \leq n-1$, and unimodal if $a_1 \leq a_2 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n$ for some j. Denote by R_n the set of symmetric positive integer vectors of dimension n. For any $a, b \in R_n$, define the dominance order on R_n by

$$a \preceq b \iff \sum_{i=k}^{n+1-k} a_i \leq \sum_{i=k}^{n+1-k} b_i \quad \text{for} \quad 1 \leq k \leq \left\lceil \frac{n}{2} \right\rceil.$$

It is clear that R_n is a poset with respect to this order and $a \preceq b$ implies $\|a\| \leq \|b\|$. Let U_n be the set of all unimodal vectors in R_n.

Lemma 6.2. Let $c \in U_n$ and $a, b \in R_n$ such that $a \preceq b$. Then $a * c \preceq b * c$.

Proof. It is clear that both $a * c$ and $b * c$ are in R_n. For $1 \leq k \leq \left\lceil \frac{n}{2} \right\rceil$, by the symmetry property of a, b and c, we have the identity

$$\sum_{i=k}^{n+1-k} (b_i - a_i) c_i = c_{k-1} \sum_{i=k}^{n+1-k} (b_i - a_i) + \sum_{j=k}^{\left\lceil \frac{n}{2} \right\rceil} (c_j - c_{j-1}) \sum_{i=j}^{n+1-j} (b_i - a_i)$$
where \(c_0 = 0 \). From \(c \in U_n \) and \(a \preceq b \), we see that \(c_j - c_{j-1} \geq 0 \) and
\[
\sum_{i=j}^{n+1} (b_i - a_i) \geq 0 \quad \text{for} \quad 1 \leq j \leq \left\lceil \frac{n}{2} \right\rceil .
\]
Thus the right-hand side of the above identity is nonnegative, which is equivalent to \(a * c \preceq b * c \). \(\square \)

It is clear that if \(a \in U_{2n} \), then \(aA^k \in U_{2n} \) for any positive integer \(k \), where \(A \) is the adjacency matrix of \(P_{2n} \). But for the path with odd vertices, this is not true in general.

Lemma 6.3. Let \(A \) be the adjacency matrix of \(P_n \) and \(l \) a positive integer. If \(a \in U_n \), then \(aA^l \preceq a * (1_n A^l) \).

Proof. Let \(a = (a_1, a_2, \ldots, a_n) \), \(aA^l = (x_1, x_2, \ldots, x_n) \) and \(a * (1_n A^l) = (y_1, y_2, \ldots, y_n) \). For \(1 \leq j \leq n \), the sum of coefficients of all \(a_i \) \((1 \leq i \leq n) \) in \(x_j \) is the sum of \(j \)-th column of \(A^l \) and the coefficient of \(a_j \) in \(y_j \) also equals the sum of \(j \)-th column of \(A^l \). It follows that the sum of coefficients of all \(a_i \) \((1 \leq i \leq n) \) in \(\sum_{i=k}^{n+1-k} x_i \) equals the sum of coefficients of all \(a_i \) \((1 \leq i \leq n) \) in \(\sum_{i=k}^{n+1-k} y_i \). But for every \(i \), the coefficient of \(a_i \) in \(\|aA^l\| \) is the sum of \(i \)-th row of \(A^l \) and the coefficient of \(a_i \) in \(\|a * (1_n A^l)\| \) is the sum of \(i \)-th column of \(A^l \), which are equal. Thus \(\sum_{i=k}^{n+1-k} x_i \leq \sum_{i=k}^{n+1-k} y_i \) follows from the unimodality of \(a \), which shows that \(aA^l \preceq a * (1_n A^l) \). \(\square \)

Before we prove part (i) of Theorem 1.4, we show that we only have to prove the statement for the case of even \(n \) since the following lemma implies it for the case of odd \(n \) if \(\text{diam}(T) \leq n - 1 \).

Lemma 6.4. If \(\text{diam}(T) \leq n - 1 \) then
\[
\text{hom}(T, P_n) = \frac{1}{2} (\text{hom}(T, P_{n-1}) + \text{hom}(T, P_{n+1})). \tag{6.1}
\]

Proof. Let the vertices of \(P_n \) be labeled consecutively by 1, 2, \ldots, \(n \). We can decompose the set \(\text{Hom}(T, P_n) \) into the following two sets. The first set consists of those homomorphisms which do not contain the vertex \(n \) in their image and the second set consists of those homomorphisms which contain the vertex \(n \) in their image. Clearly, the cardinality of the first set is \(\text{hom}(T, P_{n-1}) \). The cardinality of the second set will be denoted by \(\text{hom}(T, P_n, n \in f(T)) \). So
\[
\text{hom}(T, P_n) = \text{hom}(T, P_{n-1}) + \text{hom}(T, P_n, n \in f(T)). \tag{6.2}
\]
We can repeat this argument with the path \(P_{n+1} \) as well:
\[
\text{hom}(T, P_{n+1}) = \text{hom}(T, P_n) + \text{hom}(T, P_{n+1}, n + 1 \in f(T)).
\]
Rearranging this we obtain that
\[
\text{hom}(T, P_n) = \text{hom}(T, P_{n+1}) - \text{hom}(T, P_{n+1}, n + 1 \in f(T)). \tag{6.3}
\]

The crucial observation is that
\[
\text{hom}(T, P_n, n \in f(T)) = \text{hom}(T, P_{n+1}, n + 1 \in f(T)).
\]
Indeed, if \(n + 1 \in f(T) \) then \(1 \not\in f(T) \) because \(\text{diam}(T) < \text{diam}(P_{n+1}) \), so all these homomorphisms go to the path \(\{2, 3, \ldots, n+1\} \) and therefore there is a natural correspondence between the two sets. Hence if \(\text{diam}(T) \leq \text{diam}(P_n) \) then by adding together Eq. (6.2) and Eq. (6.3) we obtain Eq. (6.1). \(\square \)
Proof of part (i) of Theorem 1.4. Let A be the adjacency matrix of P_n. Let $T'_m = KC(T, x, y)$ be the KC-transformation of the tree T_m with respect to a x–y path P. Let B_1 and B_2 be the components of y and x in the subgraph of T_m by deleting all the edges of P respectively.

The case n is even. It is easy to see that an element of U_n multiplied by A is still in U_n and the Hadamard product of two elements in U_n is also in U_n. By the tree-walk algorithm, any hom-vector from a tree to P_n is in U_n.

Again by the tree-walk algorithm, we have

$$\mathbf{h}(T_m, x, P_n) = (\mathbf{h}(B_1, y, P_n)A^k) * \mathbf{h}(B_2, x, P_n)$$

and

$$\mathbf{h}(T'_m, x, P_n) = \mathbf{h}(B_1, y, P_n) * 1_n A^k * \mathbf{h}(B_2, x, P_n),$$

where k is the length of the path P. By lemma 6.3 we have

$$\mathbf{h}(B_1, y, P_n)A^k \preceq \mathbf{h}(B_1, y, P_n) * 1_n A^k.$$

It follows from lemma 6.2 that $\mathbf{h}(T, x, P_n) \preceq \mathbf{h}(T', x, P_n)$, which implies hom$(T, P_n) \preceq$ hom(T', P_n).

For the case of odd n we have already seen that Lemma 6.4 implies the statement.

The KC-transformation does not always increase the number of homomorphisms to the path P_n when n is odd. For example, in Fig. 15 we have

$$\text{hom}(T_6, P_3) = 20 > 16 = \text{hom}(T'_6, P_3).$$

![Figure 15. The trees T_6 (left) and T'_6 (right).](image)

6.2. More tree transformations: the case of odd n. Clearly, if n is even or n is odd and diam$(T_m) \leq n - 1$, then part (i) of Theorem 1.4 implies the part (ii). In this subsection, we will develop some more transformations on trees to prove part (ii) of Theorem 1.4 for odd n.

From now on in this subsection, n is odd.

For any $u \in V(T)$, denote by $T(u)$ the rooted tree with a root at u. As usual, we will denote by $\mathbf{h}(T, u, G)$ the hom-vector of the rooted tree $T(u)$ into G. One can easily check that the hom-vector of a rooted tree into P_n, i.e., $\mathbf{h}(T, u, P_n)$ is not unimodal anymore. On the other hand, the situation is not as bad as one may think after the first sight.

Definition 6.5. We say that (a_1, a_2, \ldots, a_n) is symmetric bi-unimodal if the sequence itself is symmetric and the two subsequences $(a_1, a_3, a_5, \ldots a_n)$ and $(a_2, a_4, \ldots a_{n-1})$ are unimodal.

Proposition 6.6. Let $T(u)$ be a rooted tree and (a_1, \ldots, a_n) be the hom-vector of $T(u)$ into P_n. Then (a_1, \ldots, a_n) is symmetric bi-unimodal.
Proof. This statement follows from the tree-walk algorithm and the observation that if \((a_1, a_2, \ldots, a_n)\) and \((b_1, b_2, \ldots, b_n)\) are symmetric bi-unimodal, then the sequences \((a_1b_1, a_2b_2, \ldots, a_nb_n)\) and \((a_2, a_1 + a_3, \ldots,a_{n-2} + a_n, a_{n-1})\) are also symmetric bi-unimodal.

The following one is a very surprising theorem. In fact, it is not true for even \(n\).

Lemma 6.7 (Correlation inequality). Let \(T_1(u)\) be a rooted tree and \(T_2(u)\) be its rooted subtree, i.e., \(T_2\) is subtree of \(T_1\) and their roots are the same. Let \((a_1, \ldots, a_n)\) be the hom-vector of \(T_1(u)\) into \(P_n\) and let \((b_1, \ldots, b_n)\) be the hom-vector of \(T_2(u)\) into \(P_n\). Assume that \(i \equiv j \pmod{2}\) and \(|\frac{n+1}{2} - i| \leq |\frac{n+1}{2} - j|\), so \(i\) is closer to the center than \(j\). Then

\[a_ib_j \geq a_jb_i. \]

Proof. We need to prove that \(\frac{a_i}{a_j} \geq \frac{b_i}{b_j}\). (From this form it is clear that it is a natural associative ordering on rooted trees.) We prove this claim by induction on the number of vertices of \(T_1(u)\). If \(|T_1(u)| \leq 2\) then it is trivial to check the statement.

If \(u\) is not a leaf in \(T_1\) then by induction this inequality holds for the branches at \(u\) and then it is true for the Hadamard products. If \(u\) is a leaf in \(T_1\) then so in \(T_2\). Let \(v\) be the unique neighbor of \(u\) and let us consider the rooted trees \((T_1 - u)(v)\) and \((T_2 - u)(v)\). Let \((a'_1, a'_2, \ldots, a'_n)\) and \((b'_1, b'_2, \ldots, b'_n)\) be their hom-vectors. Then,

\[a_i = a'_{i-1} + a'_{i+1} \quad \text{and} \quad b_i = b'_{i-1} + b'_{i+1}, \]

where \(a'_0 = a'_{n+1} = b'_0 = b'_{n+1} = 0\). Note that the numbers \(i-1, i+1, j-1, j+1\) are still congruent modulo 2. Because of the symmetry we can assume that \(j < i \leq \frac{n+1}{2}\). If in addition \(i < \frac{n+1}{2}\) then we have \(j - 1 < j + 1 \leq i - 1 < i + 1 \leq \frac{n+1}{2}\) and we can apply the induction hypothesis:

\[a'_{i\pm1}b'_{j\pm1} \geq a'_{j\pm1}b'_{i\pm1} \]

in all four cases, thus

\[a_ib_j = (a'_{i-1} + a'_{i+1})(b'_{j-1} + b'_{j+1}) \geq (a'_{j-1} + a'_{j+1})(b'_{i-1} + b'_{i+1}) = a_jb_i. \]

If \(i = \frac{n+1}{2}\) then the above four inequalities are still true, because \(\{i-1, i+1\}\) are still closer to \(\frac{n+1}{2}\) than the numbers \(\{j-1, j+1\}\). Hence we have proved the statement. □

Lemma 6.8 (Log-concavity of the hom-vector.). Let \(T_1(u)\) be a rooted tree and let \((a_1, \ldots, a_n)\) be its hom-vector. Assume that \(i < j\) and \(i \not\equiv j \pmod{2}\). Then \(a_i a_j \leq a_{i+1} a_{j-1}\).

Proof. The proof is almost identical to the proof of the Correlation inequality and thus is omitted. □

Definition 6.9. Let \(T_1, T_2\) be trees. Let \(u\) be an arbitrary vertex of \(T_1\) and let \(A\) and \(B\) be the color classes of \(T_2\) considered as a bipartite graph. Let
Let the vertices of P_n be labeled consecutively by $1, 2, \ldots, n$. If $T_2 = P_n$ then $\text{hom}_0(T_1(u), P_n)$ denotes the number of homomorphisms of T_1 into P_n, where the image of u is a vertex of even index and $\text{hom}_1(T_1(u), P_n)$ denotes the number of homomorphisms of T_1 into P_n, where the image of u is a vertex of odd index. Thus in this case

$$g(T_1, P_n) = \text{hom}_0(T_1(u), P_n) \cdot \text{hom}_1(T_1(u), P_n).$$

First we prove the following curious theorem on the function $g(T, P_n)$.

Theorem 6.10. Let T_m be a tree on m vertices. Then

$$g(T_m, P_n) \geq g(P_m, P_n).$$

We will prove Theorem 6.10 by using two transformations: the LS-switch and the so-called short-path shift.

Recall that the LS-switch is a generalization of the even-KC-transformation. For the sake of convenience we repeat its definition below.

Let $R(u, v)$ be a tree with specified vertices u and v such that the distance of u and v is even and R has an automorphism of order 2 which exchanges the vertices u and v. Let $T_1(x), T_2(x), T_3(y), T_4(y)$ are rooted trees such that $T_2(x)$ is the rooted subtree of $T_1(x)$ and $T_4(y)$ is the rooted subtree of $T_3(y)$. Let the tree T be obtained from the trees $R(u, v), T_1(x), T_2(x), T_3(y), T_4(y)$ by attaching a copy of $T_1(x), T_4(y)$ to $R(u, v)$ at vertex u and a copy of $T_2(x), T_3(y)$ at vertex v. Assume that the tree T' is obtained from the trees $R(u, v), T_1(x), T_2(x), T_3(y), T_4(y)$ by attaching a copy of $T_1(x), T_3(y)$ to $R(u, v)$ at vertex u and a copy of $T_2(x), T_4(y)$ at vertex v. Then T' is the LS-switch of T. Observe that there is a natural bijection between the color classes of T' and T.

This transformation seems to be quite general, but still the following theorem is true.

Theorem 6.11. Let T be a tree and T' be the LS-switch of T. Then

$$\text{hom}_k(T'(u), P_n) \geq \text{hom}_k(T(u), P_n)$$

for $k = 0, 1$. In particular,

$$\text{hom}(T', P_n) \geq \text{hom}(T, P_n) \quad \text{and} \quad g(T', P_n) \geq g(T, P_n).$$

Proof. Let the vertices of P_n be labeled consecutively by $1, 2, \ldots, n$. For a rooted tree $T(r)$ let $h(T, i)$ denote the number of homomorphisms of T into P_n such that r goes to the vertex i. So $(h(T, 1), h(T, 2), \ldots, h(T, n))$ is the hom-vector of $T(r)$ into P_n. Let a_{ij} be the number of homomorphisms of $R(u, v)$ into P_n such that u goes to i and v goes to j. Note that $a_{ij} = a_{ji}$, because of the automorphism of order 2 of R switching the vertices u and v.

h_A and h_B be the number of homomorphisms from T_1 to T_2 where u goes to A and B, respectively. Then let

$$g(T_1, T_2) := h_A h_B.$$

Note that $g(T_1, T_2)$ is independent of the vertex u.

Let the tree T be labeled consecutively by $1, 2, \ldots, n$. Then $\text{hom}_0(T_1(u), P_n)$ denotes the number of homomorphisms of T_1 into P_n, where the image of u is a vertex of even index and $\text{hom}_1(T_1(u), P_n)$ denotes the number of homomorphisms of T_1 into P_n, where the image of u is a vertex of odd index. Thus in this case

$$g(T_1, P_n) = \text{hom}_0(T_1(u), P_n) \cdot \text{hom}_1(T_1(u), P_n).$$

First we prove the following curious theorem on the function $g(T, P_n)$.
Also note that $a_{ij} = 0$ if i and j are incongruent modulo 2 since the distance of u and v is even. Observe that for $k = 0, 1$ we have
\[
\text{hom}_k(T'(u), P_n) = \sum_{i,j \equiv k \pmod{2}} a_{ij} h(T_1, i) h(T_3, i) h(T_2, j) h(T_4, j)
\]
and
\[
\text{hom}_k(T(u), P_n) = \sum_{i,j \equiv k \pmod{2}} a_{ij} h(T_1, i) h(T_4, i) h(T_2, j) h(T_3, j).
\]
Using $a_{ij} = a_{ji}$ we can rewrite these equations as follows:
\[
\text{hom}_k(T'(u), P_n) = \sum_{i \equiv k \pmod{2}} a_{ii} h(T_1, i) h(T_3, i) h(T_2, i) h(T_4, i) + \sum_{i < j \equiv k \pmod{2}} a_{ij} h(T_1, i) h(T_3, i) h(T_2, j) h(T_4, j) + h(T_1, j) h(T_3, j) h(T_2, i) h(T_4, i),
\]
and
\[
\text{hom}_k(T(u), P_n) = \sum_{i \equiv k \pmod{2}} a_{ii} h(T_1, i) h(T_3, i) h(T_2, i) h(T_4, i) + \sum_{i < j \equiv k \pmod{2}} a_{ij} h(T_1, i) h(T_4, i) h(T_2, j) h(T_3, j) + h(T_1, i) h(T_4, i) h(T_2, j) h(T_3, j)).
\]
Hence
\[
\text{hom}_k(T'(u), P_n) - \text{hom}_k(T(u), P_n) = \sum_{i < j \equiv k \pmod{2}} a_{ij} (h(T_1, i) h(T_2, j) - h(T_1, j) h(T_2, i)) (h(T_3, i) h(T_4, j) - h(T_3, j) h(T_4, i)).
\]
By the correlation inequalities, the signs of
\[
h(T_1, i) h(T_2, j) - h(T_1, j) h(T_2, i)
\]
and
\[
h(T_3, i) h(T_4, j) - h(T_3, j) h(T_4, i)
\]
only depend on the positions of i and j, so they are the same. Hence
\[
\text{hom}_k(T'(u), P_n) - \text{hom}_k(T(u), P_n) \geq 0.
\]
\[\square\]

The main problem with the LS-switch is that it preserves the sizes of the color classes of the tree (considered as a bipartite graph). So we need another transformation which can help to compare trees with different color class sizes. For this reason we introduce the following transformation which we will call short path shift.

Theorem 6.12. Assume that T' is obtained from the rooted tree $T_1(u)$ by attaching it to the middle vertex of a path on 3 vertices. Let us assume that T' is obtained from $T_1(u)$ by attaching it to an end vertex of a path on 3 vertices. Then for any odd $n \geq 5$, we have
\[
g(T', P_n) \geq g(T, P_n).
\]
We will say that T' is obtained from T by a short-path shift.
Proof. Let \((a_1, a_2, \ldots, a_n)\) be the hom-vector of \(T(u)\). Then the hom-vector of \(T(u)\) is
\[
(2a_1, 3a_2, 4a_3, 4a_4, \ldots, 4a_{n-2}, 3a_{n-1}, 2a_n)
\]
and the hom-vector of \(T'(u)\) is
\[
(a_1, 4a_2, 4a_3, 4a_4, \ldots, 4a_{n-2}, 4a_{n-1}, a_n).
\]
Hence
\[
g(T', P_n) = \left(4 \sum_{i \equiv 0 \pmod{2}} a_i\right) \left(-3a_1 - 3a_n + 4 \sum_{i \equiv 1 \pmod{2}} a_i\right),
\]
while
\[
g(T, P_n) = \left(-a_2 - a_{n-2} + 4 \sum_{i \equiv 0 \pmod{2}} a_i\right) \left(-2a_1 - 2a_n + 4 \sum_{i \equiv 1 \pmod{2}} a_i\right).
\]
Using the symmetry \(a_i = a_{n+1-i}\) we get that
\[
g(T', P_n) - g(T, P_n) = 8 \sum_{3 \leq i \leq n-2} (a_2a_i - a_1a_{i+1}).
\]
By the log-concavity of the hom-vector, all \(a_2a_i - a_1a_{i+1} \geq 0\) for \(i \equiv 1 \pmod{2}\). Hence
\[
g(T', P_n) \geq g(T, P_n).
\]

\[\square\]

Observe that both transformations decreases the Wiener-index (sum of the distances of every pair of vertices in \(T\)) strictly: \(W(T') < W(T)\) if \(T'\) is obtained from \(T\) by an LS-switch or short-path shift and \(T'\) is not isomorphic to \(T\).

Proof of Theorem 6.10. For \(n = 3\) we have \(g(T, P_3) = 2|T|\), so there is nothing to prove. Hence we can assume that \(n \geq 5\).

Let us consider the tree \(T^*_m\) on \(m\) vertices for which \(\text{hom}(T^*_m, P_n)\) is minimal and among these trees it has the largest Wiener-index. We show that \(T^*_m\) is \(P_m\). Assume for contradiction that \(T^*_m\) is not \(P_m\). Let \(v\) be an end vertex of a longest path of \(T^*_m\). Clearly, \(v\) is a leaf, let \(u\) be its unique neighbor. We distinguish two cases.

If \(\text{deg}(u) \geq 3\) then \(T^*_m\) can be decomposed into two branches, one of which is a star on at least 3 vertices. (Otherwise, \(v\) cannot be an end vertex of a longest path.) Hence \(u\) has another neighbor \(w\) which is a leaf. In this case, \(T^*_m\) is an image of a tree \(T\) by a short-path shift with respect to the path.
Let us consider the tree \(T \) as a bipartite graph. If \(T_s \) is not \(P_m \), note that \(d(v, w) \geq 2 \). Let us decompose the tree \(T_m \) into branches \(P(v, w), T_1(w) \) and \(T_3(w) \) at the vertex \(w \), where \(T_1(w) \) and \(T_3(w) \) are non-trivial trees. If \(d(v, w) \) is even, then \(T_m \) is an image of a tree \(\overline{T} \) by an LS-switch, where \(T_2(v) = T_4(v) \) are one-vertex trees. If \(d(v, w) \) is odd (consequently \(d(u, w) \) is even), then \(T_m \) is an image of a tree \(T \) by an LS-switch, where \(T_2(u) \) is a one-vertex tree and \(T_4(u) \) is the rooted tree on the vertex set \(\{u, v\} \). In both cases \(g(\overline{T}, P_n) \leq g(T_m, P_n) \) and \(W(\overline{T}) \geq W(T_m) \). In the first case, the second inequality is strict contradicting the choice of \(T_m \). In the second case, it may occur that \(T_3(w) \) is also an edge implying that \(T_m = \overline{T} \). By changing the role of \(T_2(v) \) and \(T_4(v) \), we can ensure that \(T_1(w) \) is also an edge (otherwise we get the same contradiction as before). Hence in this case \(T_m \) is a path with an edge attached on the second vertex. In this case we can realize that it is a short-path shift of a path at the vertex \(w \). Hence we get a contradiction in this case too, which finishes the proof of the theorem.

To prove part \((ii) \) of Theorem 1.4 we will distinguish two cases according to the parity of \(m \).

6.2.1. **Trees on even number of vertices.** If \(m \) is even, then \(g(P_m, P_n) = \frac{1}{2} \hom(P_m, P_n)^2 \) since \(h_A = h_B = \frac{1}{2} \hom(P_m, P_n) \). (However, the color classes of \(P_n \) are not symmetric, but the color classes of \(P_m \) are symmetric so it is equally likely which color class goes to which one.) Hence by Theorem 6.10 we have

\[
\hom(T_m, P_n) \geq 2g(T_m, P_n)^{1/2} \geq 2g(P_m, P_n)^{1/2} = \hom(P_m, P_n).
\]

If \(m \) is odd then we still need to work a bit.

6.2.2. **Trees on odd number of vertices.** From now on \(n \) and \(m \) are odd. Since \(m \) is odd, it makes sense to speak about large and small color class of the tree considered as a bipartite graph. If \(T_m \) is a tree on \(m \) vertices, then \(S \) will denote the color class of size at most \(\frac{m-1}{2} \) and \(L \) will denote the color class of size at least \(\frac{m+1}{2} \). \(S \) and \(L \) stands for small and large. The notation \(\hom_0(T(S), P_n) \) denotes \(\hom_0(T(u), P_n) \), where \(u \in S \). Hence it means that the small color class goes to the even-indexed vertices of the path. We can similarly define \(\hom_1(T(S), P_n) \).

The following is a simple observation.

Lemma 6.13.

\[
\hom_0(P_m(S), P_n) \geq \hom_1(P_m(S), P_n).
\]

This lemma asserts that the small class of the path \(P_m \) ‘likes’ to go to the large class of the path \(P_n \).

Proof. Let \(u \) be a leaf of \(P_m \). Note that \(u \in L \). Let \(v \) be its neighbor, and let \((a_1, a_2, \ldots, a_n) \) be the hom-vector of \(P_{m-1}(v) \). Then the hom-vector of
$P_m(v)$ is $(a_1, 2a_2, \ldots, 2a_{n-1}, a_n)$. Note that

$$\text{hom}_0(P_m(S), P_n) = \text{hom}_0(P_m(v), P_n) = 2 \sum_{j=0}^{a_j} \text{ (2)}$$

while

$$\text{hom}_1(P_m(S), P_n) = \text{hom}_1(P_m(v), P_n) = -2a_1 + 2 \sum_{j=1}^{a_j} \text{ (2)}$$

Note that

$$\sum_{j=0}^{a_j} \text{ (2)} = \sum_{j=1}^{a_j} \text{ (2)}$$

since P_{m-1} has even number of vertices. Hence

$$\text{hom}_0(P_m(S), P_n) \geq \text{hom}_1(P_m(S), P_n).$$

□

The following theorem is the main result of this part of the proof. It will imply the minimality of the path.

Theorem 6.14. Let m be odd. Then for any tree T_m on m vertices we have

$$\text{hom}_0(T_m(S), P_n) \geq \text{hom}_0(P_m(S), P_n).$$

Theorem [1.4] (ii) n, m are odd positive integers. Let m be odd. For any tree T_m on m vertices we have

$$\text{hom}(T_m, P_n) \geq \text{hom}(P_m, P_n).$$

Proof. From Theorem 6.10 we know that

$$g(T_m, P_n) \geq g(P_m, P_n).$$

In other words,

$$\text{hom}_0(T_m(S), P_n) \text{hom}_1(T_m(S), P_n) \geq \text{hom}_0(P_m(S), P_n) \text{hom}_1(P_m(S), P_n).$$

By Theorem 6.14 and Lemma 6.13 we have

$$\text{hom}_0(T_m(S), P_n) \geq \text{hom}_0(P_m(S), P_n) \geq \text{hom}_1(P_m(S), P_n).$$

These inequalities together imply that

$$\text{hom}_0(T_m(S), P_n) + \text{hom}_1(T_m(S), P_n) \geq \text{hom}_0(P_m(S), P_n) + \text{hom}_1(P_m(S), P_n).$$

Hence

$$\text{hom}(T_m, P_n) \geq \text{hom}(P_m, P_n).$$

□

Now we start to prove Theorem 6.14. We need a few lemmas. The first one is trivial, but crucial.
Lemma 6.15. Let T_1 be a tree on m vertices, and let $u \in L$ be a leaf. Let $v \in S$ an arbitrary vertex of the small class. Let T_2 be a tree obtained from T_1 by deleting the vertex u from T_1 and attaching a leaf u' to v. (So we simply move a leaf of the large class to another place, but we take care not changing the sizes of the color classes.) Then

$$\text{hom}_0(T_1(S), P_n) = \text{hom}_0(T_2(S), P_n).$$

Proof. Let $T^* = T_1 - u = T_2 - u'$. Note that

$$\text{hom}_0(T_1(S), P_n) = 2 \text{hom}_0(T^*(S), P_n)$$

since any homomorphism of T^* into P_n, where the small class goes to even-indexed vertices, can be extended into a similar homomorphism of T_1 in exactly two ways. Similarly,

$$\text{hom}_0(T_2(S), P_n) = 2 \text{hom}_0(T^*(S), P_n).$$

Hence

$$\text{hom}_0(T_1(S), P_n) = \text{hom}_0(T_2(S), P_n).$$

\[\square]\]

We will use the following transformation too.

Definition 6.16 (Claw-deletion). Let T' be a tree which contains a claw: three leaves attached to the same vertex. Let T be obtained from T' by deleting the three leaves and attaching a path of length 3 to the common neighbor of the leaves. We call this transformation \emph{claw-deletion}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{claw-deletion.png}
\caption{Claw-deletion.}
\end{figure}

Note that the claw-deletion changes the sizes of the color classes. We have to be careful when we apply it, because it may occur that claw-deletion changes the small class into the large one.

We need the following property of the claw-deletion.

Lemma 6.17. Let T' be a tree on m vertices with color classes S' and L'. Assume that $|L'| - |S'| \geq 3$ and T' contains a claw. Let T be obtained from T' by a claw-deletion, where we assume that the center v of the claw is in the class S'. Then

$$\text{hom}_0(T'(S'), P_n) > \text{hom}_0(T(S), P_n).$$
Let T be a tree with color classes A and B. Assume that all leaves of T belong to the color class A. Then $|A| \geq |B|$.

Proof. We prove the statement by induction on the number of vertices. If T has at most 3 vertices, the claim is trivial. Assume that T has n vertices and we have proved the statement for trees on at most $n-1$ vertices. Let u_1 be a leaf of T, and let v be its unique neighbor. Let u_1, \ldots, u_k be the leaves of T adjacent to v. Note that $u_1, \ldots, u_k \in A$ and $v \in B$. Erase u_1, \ldots, u_k from T, and let T^* be the obtained tree. If v is a leaf in the obtained tree then erase it as well and let us denote the resulted tree by T'', otherwise $T'' = T^*$. It may occur that T'' is the empty graph, but it is not problem. For T'' it is still true that one color class, A'', contains all leaves. Thus by induction $|A''| \geq |B''|$. Then

$$|A| = |A''| + k \geq |B''| + 1 \geq |B|,$$

as desired.

Remark 6.19. Let T' be a tree on m vertices with color classes L and S. Assume that T' contains a claw, and all leaves belong to L. Then $|L| - |S| \geq 3$. Indeed, if we delete two leaves from the claw then it is still true for the resulting tree T^* that all leaves belong to one color class, and it must be the larger one. Hence $|L^*| \geq |S^*|$, and since m is odd, we have $|L^*| \geq |S^*| + 1$. Thus for the original tree T' we have $|L| - |S| \geq 3$.

Proof of Theorem 6.14. Let T_m be the set of trees on m vertices which minimizes $\text{hom}_0(T(S), P_n)$. From T_m let us choose the tree \overline{T}_m, which has the smallest number of leaves and among these trees it has the largest Wiener-index. We show that $\overline{T}_m \neq P_m$. Assume for contradiction that $\overline{T}_m \neq P_m$. Note that \overline{T}_m is the smallest number of leaves and among these trees it has the largest Wiener-index.
First of all, T_m cannot be an image of an LS-switch, because if T_m can be obtained from a tree F by an LS-switch, then by Theorem 6.11, we have
\[\text{hom}_0(F(S), P_n) \leq \text{hom}_0(T_m(S), P_n), \]
and F has at most as many leaves as T_m, and $W(F) > W(T_m)$. Hence it would contradict the choice of T_m.

Let S and L be the small and large class of T_m, respectively. Note that L must contain a leaf by Lemma 6.18. We will distinguish two cases according to S containing a leaf too or not.

Case 1. S contains a leaf v. Let x be the unique neighbor of v. First, we show that x has degree at least 3. If $\deg(x) = 2$ then let w be the closest vertex to v having degree at least 3. Such a w must exist, because T_m is not P_m. Note that $d(v, w) \geq 2$. Let us decompose the tree T_m into branches $P(v, w), T_1(w)$ and $T_3(w)$ at the vertex w, where $T_1(w)$ and $T_3(w)$ are non-trivial trees. If $d(v, w)$ is even, then T_m is an image of a tree F by an LS-switch, where $T_2(v) = T_4(v)$ are one-vertex trees. If $d(v, w)$ is odd (consequently $d(x, w)$ is even), then T_m is an image of a tree F by an LS-switch, where $T_2(x)$ is a one-vertex tree and $T_4(x)$ is the rooted tree on the vertex set $\{x, v\}$. In the second case, it may occur that $T_3(w)$ is also an edge implying that $T_m = F$. By changing the role of $T_2(v)$ and $T_4(v)$, we can ensure that $T_1(w)$ is also an edge (otherwise we get the same contradiction as before). Hence in this case T_m is a path with an edge attached on the second vertex. In this case we can realise that it is an LS-switch of a path since m is odd. Hence we get a contradiction in this case too.

Now let $u \in L$ be a leaf. Let us delete it, and attach u' to v. This way we get a tree T'. By Lemma 6.15 we know that
\[\text{hom}_0(T_m(S), P_n) = \text{hom}_0(T'(S), P_n). \]
Furthermore, T' is an LS-switch (in fact, an even-KC-transformation) of a tree F. Indeed, let us decompose the tree T' at x to $T_1(x), T_2(x)$ and the path xvu'. Thus if we move $T_2(x)$ from x to u' we get a tree F for which
\[\text{hom}_0(F(S), P_n) \leq \text{hom}_0(T'(S), P_n). \]

Note that u' and v is not a leaf in F anymore. Maybe, the original neighbor of u became a leaf in F, but still the number of leaves of F is strictly less than the number of leaves of T_m. This contradicts the choice of T_m. Hence we are done in this case.

Case 2. S contains no leaf. Hence all leaves belong to the class L. Let u_1Pu_2 be a longest path of T_m. As in the previous case, the unique neighbors x_1 and x_2 of u_1 and u_2, respectively, have degree at least 3. We can assume that $x_1 \neq x_2$, otherwise T_m is a star and it contains a claw and we can do claw-deletion, which strictly decreases $\text{hom}_0(T(S), P_n)$. Since x_1 and x_2 have degree at least 3, and u_1Pu_2 were the longest path, the only possible way it can occur that x_1 and x_2 have other neighbors u_3 and u_4, respectively, which are leaves. Now let us delete u_3' and add a new neighbor u_3' to x_2. Let T' be the obtained tree. Then by Lemma 6.15
\[\text{hom}_0(T_m(S), P_n) = \text{hom}_0(T'(S), P_n). \]
On the other hand, it is still true that all leaves of T' belong to its large class. Moreover, it contains a claw: $\{x_2, u_2, u'_3, u_4\}$. By Remark 6.19 the conditions of Lemma 6.17 are satisfied, and we can do a claw-deletion. Then we get a tree F for which

$$\text{hom}_0(\overline{T}_m(S), P_n) = \text{hom}_0(T'(S), P_n) > \text{hom}_0(F(S), P_n).$$

This contradicts the choice of \overline{T}_m.

Hence we get contradictions in all cases. \square

7. Open problems

We collected a few open problems and conjectures in this section.

We first recall a conjecture from the Introduction, namely that there is no exceptional case in Theorem 1.6 if $n \geq 5$.

Conjecture 1.7 Let T_n be a tree on n vertices, where $n \geq 5$. Then for any tree T_m we have

$$\text{hom}(T_m, P_n) \leq \text{hom}(T_m, T_n).$$

Note that to prove Conjecture 1.7, one only needs to prove that for any tree T_m we have

$$\text{hom}(T_m, P_n) \leq \text{hom}(T_m, Y_{1,1,n-3})$$

for $n \geq 6$, where n is even.

There is also an open problem in Figure 3.

Problem 7.1. Is it true that

$$\text{hom}(P_n, T_n) \leq \text{hom}(T_n, T_n)$$

for every tree T_n on n vertices?

We believe that the answer is affirmative for this question. This question naturally leads to the following problem.

Problem 7.2. Characterize all graphs G for which

$$\text{hom}(P_m, G) \leq \text{hom}(T_m, G)$$

for all m and all trees T_m on m vertices.

Note that if G is d-regular, then $\text{hom}(P_m, G) = \text{hom}(T_m, G) = |V(G)|d^{m-1}$. We have also seen that the inequality of Problem 7.2 is satisfied if $G = P_n$ or S_n. Probably, it is hard to characterize these graphs. Maybe, it is easier to describe those graphs G for which the inequality of Problem 7.2 is satisfied for large enough m.

The dual of Problem 7.2 is also natural:

Problem 7.3. Characterize all trees T_m on m vertices for which

$$\text{hom}(P_m, G) \leq \text{hom}(T_m, G)$$

for all graph G.
Probably, this is an easier problem than Problem 7.2. Note that already Sidorenko [17] achieved nice results on this problem. Still the problem is far from being solved.

In light of the tree-walk algorithm, it would be interesting to develop an algorithm for computing the number of homomorphisms from bipartite graphs to any graph.

Acknowledgments

The first author is very grateful to László Lovász and Miklós Simonovits for suggesting to study the papers of Alexander Sidorenko. He also thanks Benjamin Rossman for the comments on the paper [19].

This research was partly done while the second author was visiting the Alfréd Rényi Institute of Mathematics. He is very grateful to Miklós Abért and the Institute for their hospitality and support. He also would like to thank Yanfeng Luo for introducing the graph homomorphisms and Jiang Zeng for all his encouragement during this work.

Special thanks goes to Masao Ishikawa for suggesting the name tree-walk algorithm.

References

[1] Sr. Arworn and P. Wojtylak, An algorithm for the number of path homomorphisms, Discrete Math., 309 (2009), 5569–5573.
[2] B. Bollobás, *Modern graph theory*, Graduate Texts in Mathematics, 184. Springer-Verlag, New York, 1998.
[3] B. Bollobás and M. Tyomkyn, Walks and paths in trees, J. Graph Theory, 70 (2012), 54–66.
[4] J.A. Bondy and U.S.R. Murty, *Graph Theory*, Springer-Verlag, New York, 2008.
[5] T.M. Cover and J.A. Thomas, *Elements of information theory*, 2nd ed., John Wiley & Sons, New Jersey, 2006.
[6] P. Csikvári, On a poset of trees, Combinatorica, 30 (2010), 125–137.
[7] P. Csikvári, On a poset of trees II, J. Graph Theory, to appear.
[8] M.A. Fiol and E. Garriga, Number of walks and degree powers in a graph, Discrete Math., 309 (2009), 2613–2614.
[9] C. Jagger, P. Stovicek and A. Thomason, Multiplicities of subgraphs, Combinatorica, 16 (1996), 123–141.
[10] A.K. Kelmans, On graphs with randomly deleted edges, Acta. Math. Acad. Sci. Hung., 37 (1981), 77–88.
[11] S. Kopparty and B. Rossman, The homomorphism domination exponent, European J. Combin., 32 (2011), 1097–1114.
[12] A.M. Leontovich, The number of mappings of graphs, the ordering of graphs and the Muirhead theorem, Problemy Peredachi Informatsii 25 (1989), no. 2, 91–104; translation in Problems Inform. Transmission 25 (1989) 154-165.
[13] J.L.X. Li and B. Szegedy, On the logarithmic calculus and Sidorenko's conjecture, Combinatorica, to appear.
[14] Z. Lin and J. Zeng, On the number of congruence classes of paths, Discrete Math., 312 (2012), 1300–1307.
[15] L. Lovász and J. Pelikán, On the eigenvalues of trees, Per. Mathematica Hungarica, 3 (1973), 175–182.
[16] A. Sidorenko, A correlation inequality for bipartite graph, Graph Combin., 9 (1993), 201–204.
[17] A. Sidorenko, A partially ordered set of functionals corresponding to graphs, Discrete Math., 131 (1994), 263–277.

[18] R.P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997.

[19] B. Rossman and E. Vee, Counting homomorphisms from trees and cycles, 2006, unpublished manuscript.

(Péter Csikvári) Eötvös Loránd University, Department of Computer Science, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary & Alfréd Rényi Institute of Mathematics, H-1053 Budapest, Réáltanoda u. 13-15., Hungary
E-mail address: csiki@cs.elte.hu

(Zhicong Lin) Department of Mathematics and Statistics, Lanzhou University, China & Institut Camille Jordan, UMR 5208 du CNRS, Université de Lyon, Université Lyon 1, France
E-mail address: lin@math.univ-lyon1.fr