Effect of variation in miRNA-binding site (rs8176318) of the *BRCA1* gene in breast cancer patients

Mushtaq AHMAD¹, Fazal JALIL², Mutiul HAQ³, Aftab Ali SHAH¹*

¹Department of Biotechnology, Faculty of Biological Sciences University of Malakand, Chakdara, Pakistan
²Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Pakistan
³Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan

Background/aim: A variation in the 3 prime untranslated regions (3′-UTRs) affects the binding of microRNA (miRNA) to the breast cancer (BC) susceptibility gene 1 (*BRCA1*) gene, and thus regulate its expression. In this study, the consequences of a variation in the miRNA-binding site (rs8176318G>T) in the 3′-UTRs of *BRCA1* and its association with the risk of BC were investigated.

Materials and methods: The selected variation (rs8176318G>T) was genotyped in BC patients (n = 300) and healthy controls (n = 300) using allele-specific polymerase chain reaction (PCR) [tetra-primer amplification refractory mutation system-PCR (T-ARMS-PCR)]. The results of the T-ARMS-PCR were further confirmed by Sanger sequencing through a random selection of 10% previously analyzed samples by T-ARMS-PCR. Association of this variation with BC was tested by calculating the odds ratio (OR) (at 95% CI) and χ²-value using 4 different genetic models (codominant, dominant, recessive, and additive models).

Results: Using Fisher's exact test, a significant association between variant rs8176318 (G>T) and BC was found in codominant [χ²-value = 15.68, df: 2 P < 0.0004], dominant [OR = 1.557 (1.082–2.241), P <0.0213], recessive [OR = 0.474 (0.3204–0.7017), P = 0.0002] and additive models [OR = 1.609 (1.282–2.018), P < 0.0001].

Conclusion: It was therefore concluded that there is a significant association between rs8176318 and BC risk in a case-control study in a Pakistani population. Furthermore, an association study using a large sample size is required to further verify these findings.

Key words: Case-control study, single nucleotide polymorphism, untranslated regions, miRNAs

1. Introduction

Breast cancer (BC) is estimated to be the second leading cause of cancer related death in women worldwide [1]. There are several environmental and genetic factors contributing to BC. Among genetic factors, a number of protein coding and noncoding genes contribute to the etiology of BC. BC susceptibility gene 1 (*BRCA1*) is one of the main protein-coding genes related to the causes of BC. Mutations in *BRCA1* account for about 40%–45% of BCs [2]. Defects in *BRCA1* affect the cell cycle at various points, destabilizing the DNA and triggering DNA damage response, hence increasing the formation of tumors [3,4]. *BRCA1* is specifically involved in repairing breaks in double-stranded DNA, transcription, and recombination. The frequency and types of mutations in *BRCA1* vary among different populations worldwide. The 3 prime untranslated regions (3′-UTRs) of *BRCA1* play a pivotal role in the stability, localization, and transport of mRNA, hence affecting its expression [5,6]. Single nucleotide polymorphisms (SNPs) in the 3′-UTRs affect the expression of genes, thus influencing the risk of cancer development. It has been reported that SNPs in the 3′-UTRs of *BRCA1* disturb the binding sites of microRNA (miRNA). Therefore, it can be used as a biomarker for BC [7]. A previous study reported that the homozygous (TT)/heterozygous (TG) variant is linked with increased risk of BC [8].

MiRNAs are small noncoding RNA molecules that control gene expression by regulating their corresponding mRNA. They act by binding to their target through miRNA:mRNA complementary base pairing at the untranslated regions of the genes. The capability of miRNAs binding to their target mRNA in the 3′-UTR is crucial for the proper expression of proteins. However, the binding capacity can be adversely affected by mutations/SNPs in the sites to which miRNA binds in the gene [9].
These observations lead to the assumption that unidentified variations in the miRNA binding sites at the 3′-UTR of the BRCA1 could provide an important insight into the etiology of BC risk factors.

Several techniques are used for the detection of mutations in the genome. However, tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS PCR) is a flexible, fast, and inexpensive SNP discovery strategy when compared to other genotyping tools [10]. It includes a single PCR and subsequent gel electrophoresis [11]. It utilizes 4 primers, 2 inner and 2 outer. The 2 inner primers are allele-specific and result in allele-specific amplification. The inner primer amplification depends on the genotype used in the PCR. The 2 outer primers act as an internal control and generate the outer fragment of the flanking locus of the SNP. Unequal positioning of the inner primers from the corresponding outer primer results in the generation of PCR products with diverse sizes, which are then easily identified in the gel [12].

In the current study, it was sought to investigate SNPs in the 3′-UTR of the BRCA1 and explore their association with BC in sporadic BC patients.

2. Materials and methods

2.1. Study subjects and ethical approval

This study included female patients (n = 300), ranging in age from 22 to 68 years, with confirmed BC at the Institute of Radiotherapy and Nuclear Medicine, in Peshawar, Pakistan, and matching controls (n = 300), ranging in age from 20 to 70 years, with no history of cancer, as shown in Table 1.

Informed consent was given by all patients and healthy controls included in the present study. The present study followed the guidelines of the Helsinki declaration. The current research work was approved by the Advanced Study and Research Board at its 40th meeting held on March 29, 2017, University of Malakand, Pakistan.

2.2. Inclusion/exclusion criteria and genomic DNA extraction

The inclusion criterion for this study was a confirmed history of BC, while women with no history of BC were excluded. A total of 5 mL whole blood was collected from the BC patients and healthy controls in EDTA tubes and stored at refrigeration temperature until further processing. Genomic DNA was isolated from the collected blood samples using the phenol-chloroform method and it was stored at –20 °C until further processing.

2.3. PCR-based amplification and Sanger sequencing of BRCA1 gene

To amplify the 3′-UTRs of the BRCA1, 2 sets of primers (Table 2) were used under the following thermocycling conditions: initial denaturation at 95 °C for 10 min, followed by 35 cycles of 95 °C for 1 min, primer annealing at 56 °C for 30 s, extension at 72 °C for 1 min, and final single step extension at 72 °C for 10 min. The PCR product

BRCA 1 primers	Primer sequences	Product size
BRCA 1 3′-UTR 1 forward	5-AGGTTTCAAGTCTTCTCTCTTCA-3	646 bp
BRCA 1 3′-UTR 1 reverse	5-AGGTTTCAAGTCTTCTCTCTTCA-3	646 bp
BRCA 1 3′-UTR 2 forward	5-GAGTGTTGGGATGATTATGTTGACTT-3	678 bp
BRCA 1 3′-UTR 2 reverse	5-GCAGAGCTGCTGCTGCTGCTGG-3	678 bp

Table 1. Categorization of the preclinical data for each patient with their age and cancer stages (I–IV).

Age group	Stage I	Stage II	Stage III	Stage IV	Total
20s	3	9	3	6	21
30s	7	27	21	12	67
40s	7	34	22	16	79
50s	3	31	40	13	87
60s	5	8	19	5	37
70s	0	0	9	0	9
80s	0	0	0	0	0
Grand total	25	109	114	52	300

Table 2. List of primers used for amplification of the selected region of the BRCA1.
was visualized on 1% agarose gel by staining with ethidium bromide. The amplified region was commercially sequenced using the Sanger sequencing method and the sequencing results were compared with the reference sequence obtained from the National Center for Biotechnology Information (NCBI). The analysis was carried out using Vector NTI software. Single nucleotide variants were detected.

2.4. Allele-specific T-ARMS-PCR amplification
The SNP (rs8176318; G>T) in the 3' UTRs of the BRCA1 was identified through Sanger sequencing. Further screening was performed for genotyping of the selected SNPs in the patients and controls using the T-ARMS PCR technique. Primer 1 software, available online (http://primer1.soton.ac.uk/primer1.html), was used to design allele-specific primers for the identified SNPs (Table 3).

A PCR reaction mixture of 30 µL in a 0.2-mL PCR tube containing approximately 100 ng/µL of DNA template, 17 µL of green-Taq PCR master mix (Thermo Fisher Scientific Inc., Waltham, MA, USA), 4 µL of primers (1 µL of forward inner, 1 µL of inner reverse, 1 µL of forward outer, and 1 µL of reverse outer primer) (each primer of 10 pmol/µL), and up to 7 µL of nuclease-free water was prepared and processed. The amplification conditions used were initial denaturation at 95 °C for 10 min, followed by 35 cycles of denaturation, annealing, and extension at 95 °C for 1 min, 56 °C for 40 s, and 72 °C for 40 s, respectively. This was followed by the final extension step at 72 °C for 10 min. The products of amplification were separated by subjection to electrophoresis on 3% Agarose gel. Ethidium bromide was used for the staining and visualization of the PCR products. The results were confirmed by reproducing 15% of the samples and the accuracy of reproducibility was 99%. Furthermore, the results of the Sanger sequencing and T-ARMS PCR were 100% reproducible. The 3' UTRs of the BRCA1 were wild (GG) as well as mutant (TT) genotypes, which yielded 177 bp, 279 bp products, while the outer primer product was 400 bp, respectively, as depicted in Figure 1.

2.5. Statistical analysis
The Hardy–Weinberg equilibrium was applied as quality control to check the observed and expected genotype frequencies in both the patients and controls. Codominant, dominant, recessive, and additive models were applied on the collected data. The odds ratio (OR) at 95% confidence intervals (CIs) was also calculated. P < 0.05 was considered significant.

3. Results
Through the alignment of the DNA sequences of the BRCA1 against reference sequences from NCBI, using gene sequencing analysis software, a genetic variant (rs8176318; G>T) in the 3'UTRs of the BRCA1 was identified. The variant was presented as homozygous (GG), homozygous (TT), and heterozygous (GT) in the analyzed samples (Figure 1). Furthermore, genotype data obtained through the T-ARMS PCR were statistically analyzed for association with BC (Table 4). Selected samples were sequenced to confirm the result of the T-ARMS PCR.

Table 3. List of the outer and inner primers used for the genotyping of (rs8176318) in the miRNA-binding site of the BRCA1.

Primer	Sequence	Product size
Forward inner primer (G allele)	TTACCTTCTCTAAAACCCCTGTGTTCACAGAG	177 bp
Reverse inner primer (T allele)	TCCATTGAAGGGTCTGACTCTCTACA	279 bp
Forward outer primer (5' - 3')	CTAAAAGATTTTCTGTTGAAGTCTCCCT	400 bp
Reverse outer primer (5' - 3')	TTCCTTTTCATTTTCTTATACCTGCCTCA	

Figure 1. Gel electrophoresis image of the T-ARMS-PCR for the detection of polymorphisms in the BRCA1. Genotypes are indicated (lanes 1 and 8: GT; lane 3: TT; lanes 2, 4, 5, 6, 7: GG genotypes and M: marker).
results obtained by the T-ARMS PCR were concordant with the sequencing (Figure 2). The distribution of genotypes was found to be consistent with the Hardy–Weinberg equilibrium in both the BC patients ($P = 0.5707$) and the controls ($P = 0.4672$). In the codominant model (genotype frequency distribution), frequency of the GG genotype was 31.33% ($n = 94$) in the BC patients and 22.67% ($n = 68$) in the controls. Similarly, frequency of the GT genotype was higher in the BC patients (52.0%, $n = 156$) than in the controls (47.67%, $n = 143$), whereas the frequency of the TT genotype was significantly lower in the BC patients (16.67%, $n = 50$) than in the controls (29.67%, $n = 89$). Thus, a significant statistical difference in the genotypes was determined through the codominant

Table 4. Genotype and allele frequencies between the subject and control groups at locus rs8176318) in the miRNA-binding site of the BRCA1 using the codominant, dominant, recessive, and additive statistical models.

Statistical models	Genotypes	Patients (age%)	Controls (age%)	Fisher’s exact test OR (95% CI)	χ^2 value, df	P-value
Co dominant	GG	94 (31.33)	68 (22.67)	-	15.68, 2	<0.0004
	GT	156 (52.0)	143 (47.67)			
	TT	50 (16.67)	89 (29.67)			
Dominant	GG	94 (31.33)	68 (22.67)	1.557 (1.082–2.241)		<0.0213
	TT + GT	206 (68.67)	232 (77.33)			
Recessive	TT	50 (16.67)	89 (29.67)	0.4742 (0.3204–0.7017)		<0.0002
	GG + GT	250 (83.33)	211 (70.33)			
Additive	G	344 (57.33)	279 (45.51)	1.609 (1.282–2.018)		<0.0001
	T	256 (42.67)	334 (54.49)			

Figure 2. Validation assay to confirm the T-ARMS-PCR result using sequencing. The sequencing result of rs8176318 showed homozygote (GG), heterozygous, and (CG) genotypes using reverse primer, respectively.
model analysis ($\chi^2 = 15.68; P < 0.004$), indicating the role of this variant in the risk of BC. However, through the additive model (allele frequency distribution) analysis, it was found that the G allele was significantly higher in BC patients (57.33%) than in the controls (45.51%). Thus, a significant difference in the allele frequency was determined through the additive model analysis in BC patients when compared to the controls, with the following 95% CI: OR = 1.609 (1.282–2.018); $P < 0.0001$, indicating that the G allele was a susceptible allele, while the T allele was protective. Similarly, both the dominant (GG vs. GT + TT) and recessive (TT vs. GT + GG) statistical models showed a significant association with the risk of BC, with a 95% CI of $P < 0.0213$ and $P < 0.0002$, respectively, indicating that individuals with the GG genotype were at risk of BC, while those with the TT genotype were protected from this risk.

4. Discussion

In the current study, the association of (rs8176318; G>T) with the risk of BC in the 3′-UTRs of the BRCA1 SNPs was investigated. The risk of BC was found to be significantly increased in individuals that had the GG or GT genotype when compared with those that had the TT genotype, in a Pakistani population. The TT genotype was observed to have decreased the risk of BC when compared to the GG genotype. The GG genotype had an OR of 1.557 and appeared to be the risk allele, while the TT allele was protective. Similarly, both the dominant (GG vs. GT + TT) and recessive (TT vs. GT + GG) statistical models showed a significant association with the risk of BC, with a 95% CI of $P < 0.0213$ and $P < 0.0002$, respectively, indicating that individuals with the GG genotype were at risk of BC, while those with the TT genotype were protected from this risk.

Acknowledgment

The authors are extremely grateful to the Higher Education Commission of Pakistan for providing financial support under the Indigenous PhD scholarship Scheme to Mr. Mushtaq Ahmad (Ref. No. 213-59624-2BM2-131).
References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer Journal for Clinicians 2018; 68 (6): 394-424. doi: 10.3322/caac.21492
2. Zhong R, Liu L, Zou L, Sheng W, Zhu B et al. Genetic variations in the TGFβ signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis 2012; 34 (4): 936-942. doi: 10.1093/carcin/bgs395
3. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 2002; 108 (2): 171-182. doi: 10.1016/S0092-8674(02)00615-3
4. Brodie SG, Deng C-X. BRCA1-associated tumorigenesis: what have we learned from knockout mice? Trends in Genetics 2001; 17 (10): S18-S22. doi: 10.1016/S0168-9525(01)02451-9
5. Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biology 2002; 3 (3): REVIEWS0004. doi: 10.1186/gb-2002-3-3-reviews0004
6. Hervé C, Mickleburgh I, Hesketh J. Zipcodes and postage stamps: mRNA localisation signals and their trans-acting binding proteins. Briefings in Functional Genomics 2004; 3 (3): 240-256. doi: 10.1093/bfgp/3.3.240
7. Chen X, Paranjape T, Stahlhut C, McVeigh T, Keane F et al. Targeted resequencing of the microRNAome and 3′ UTRome reveals functional germline DNA variants with altered prevalence in epithelial ovarian cancer. Oncogene 2015; 34 (16): 2125. doi: 10.1038/onc.2014.117
8. Dorairaj JJ, Salzman DW, Wall D, Rounds T, Preskil C et al. A germline mutation in the BRCA1 3′ UTR predicts stage IV breast cancer. BMC cancer 2014; 14 (1):421. doi: 10.1186/1471-2407-14-421
9. Chen K, Song F, Calin GA, Wei Q, Hao X et al. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis 2008; 29 (7): 1306-13011. doi: 10.1093/carcin/bgn116
10. Gaudet M, Farah AG, Beritognolo I, Sabatti M. Allele-specific PCR in SNP genotyping. Methods in Molecular Biology 2009; 415-424. doi: 10.1007/978-1-60327-411-1_26
11. Medrano RFV, de Oliveira CA. Guidelines for the tetra-primer ARMS-PCR technique development. Molecular Biotechnology 2014; 56 (7): 599-608. doi: 10.1007/s12033-014-9734-4
12. Ye S, Dhillon S, Ke X, Collins AR, Day IN. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Research 2001; 29 (17): e88-e. doi: 10.1093/nar/29.17.e88
13. Wei J, Shi J, Yuan Q, Zhang X, Yang M et al. A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma. Carcinogenesis 2013; 34 (10): 2309-2313. doi: 10.1093/carcin/bgt213
14. Mir R, Javid J, Al Balawi IA, Alkharsah KR, Hadi MA et al. A germline mutation in the BRCA1 3′ UTR variant predicts susceptibility to breast cancer in a Saudi Arabian population. Asian Pacific Journal of Cancer Prevention 2018; 19 (3): 859-866. doi: 10.22034/APJCP.2018.19.3.859
15. Yang F, Chen F, Xu J, Guan X. Identification and frequency of the rs12516 and rs8176318 BRCA1 gene polymorphisms among different populations. Oncology letters 2016; 11 (4): 2481-2486. doi: 10.3892/ol.2016.4252
16. Newman B, Mu H, Butler LM, Millikan RC, Moorman PG et al. Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. Journal of the American Medical Association 1998; 279 (12): 915-921. doi: 10.1001/jama.279.12.915
17. Pongsavvee M, Yamkamon V, Dakeng S, O-charoenrat P, Smith DR et al. The BRCA1 3′-UTR: 5711+ 42T/T_5711+ 1286T/T genotype is a possible breast and ovarian cancer risk factor. Genetic Testing and Molecular Biomarkers 2009; 13 (3): 307-317.
18. Pelletier C, Speed WC, Paranjape T, Keane K, Blitzblau R et al. Rare BRCA1 haplotypes including 3′ UTR SNPs associated with breast cancer risk. Cell Cycle 2011; 10 (1): 90-99. doi: 10.4161/cc.10.1.14359
19. Freedman ML, Penney KL, Stram DO, Riley S, McKean-Cowdin R et al. A haplotype-based case-control study of BRCA1 and sporadic breast cancer risk. Cancer Research 2005; 65 (16): 7516-22. doi: 10.1158/0008-5472.CAN-05-0132
20. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 2008; 29 (3): 579-584. doi: 10.1093/carcin/bgn304
21. Chen K, Song F, Calin GA, Wei Q, Hao X et al. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis 2008; 29 (7): 1306-1311. doi: 10.1093/carcin/bgn116
22. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Research 2008; 68 (20): 8535-8540. doi: 10.1185/0008-5472.CAN-08-2129