Glucocorticoid-Induced TNF Receptor Family-Related Protein Ligand is Requisite for Optimal Functioning of Regulatory CD4+ T Cells

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Liao, Gongxian, Michael S. O’Keeffe, Guoxing Wang, Boaz van Driel, Rene de Waal Malefyt, Hans-Christian Reinecker, Roland W. Herzog, and Cox Terhorst. 2014. “Glucocorticoid-Induced TNF Receptor Family-Related Protein Ligand is Requisite for Optimal Functioning of Regulatory CD4+ T Cells.” Frontiers in Immunology 5 (1): 35. doi:10.3389/fimmu.2014.00035. http://dx.doi.org/10.3389/fimmu.2014.00035.

Published Version
doi:10.3389/fimmu.2014.00035

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879918

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Glucocorticoid-induced TNF receptor family-related protein ligand is requisite for optimal functioning of regulatory CD4+ T cells

Gongxian Liao 1*, Michael S. O’Keeffe 1, Guoxing Wang 1, Boaz van Driel 1, Rene de Waal Malefyt 2, Hans-Christian Reinecker 3, Roland W. Herzog 4 and Cox Terhorst 1*

1 Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
2 Biologics Discovery, Merck Research Laboratories, Palo Alto, CA, USA
3 Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
4 Department of Pediatrics, University of Florida, Gainesville, FL, USA

ORIGINAL RESEARCH ARTICLE
published: 03 February 2014
doi: 10.3389/fimmu.2014.00035

INTRODUCTION

CD4+ CD25+ FoxP3+ regulatory T cells (Treg), which develop in the thymus or can be induced in peripheral organs, control many aspects of the immune response (1–4). Tregs constitutively express glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR, TNFRSF18, CD357), which is inducible on effector T cells (Teffs) (2, 5–8). Using Fc-GITR-L, a soluble form of the thymus or can be induced in peripheral organs, control many aspects of the immune response (1–4). Tregs constitutively express glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR, TNFRSF18, CD357), which is inducible on effector T cells (Teffs) (2, 5–8). Using Fc-GITR-L, a soluble form of the GITR-L, we found recently that glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITR-L), which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L−/− mice is impaired after injection of the dendritic cells (DCs) inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L−/− mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L−/− Foxp3(GFP) reporter mice using adeno-associated virus (AAV8-OVA) the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen-specific CD8+ T cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L−/− Rag−/− and Rag−/−/− mice that had received AAV8-OVA. Surprisingly, administering aCD3 significantly reduced the numbers of Foxp3+ Treg cells in the liver and spleen of GITR-L−/− but not WT mice. Because soluble Fc-GITR-L partially rescues aCD3 induced in vitro depletion of the CD103+ subset of Foxp3+ CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

Keywords: GITR-L, TNFSF18, Flt3L, Treg, CX3CR1
GITR-L promotes Treg-mediated suppression

In this study, we provide evidence in support of the concept that the interactions between GITR and GITR-L are requisite for optimal functioning of Tregs. To this end, we analyze GITR-L−/− FoxP3(GFP) and GITR-L−/− CX3CR1(GFP) mice after gene transfer of ovalbumin into hepatocytes with adenov-associated virus (AAV8-OVA). Coordinate expansion of Treg and dendritic cells (DCs) was assessed after injection of Fc ligand in GITR-L−/− mice. The interactions between antigen presenting cells and Tregs are also evaluated after administering αCD3 in GITR-L−/− mice or co-activation with αCD3 and soluble Fc-GITR-L.

MATERIALS AND METHODS

MICE

B6, OT-II Tg, and CX3CR1(GFP) reporter mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). OT-I × Rag−/− mice were purchased from Taconic Labs (Germantown, NY, USA). GITR-L−/− and FoxP3-ires-Egfp-SV40 knock-in [FoxP3(GFP)] B6 mice were described previously (8, 25). GITR-L−/− mice were crossed with FoxP3(GFP) and CX3CR1(GFP) mice to generate GITR-L−/− FoxP3(GFP) and GITR-L−/− CX3CR1(GFP) B6 mice. All animals were housed in the Center for Life Science animal facility of BIDMC. The Guide for the Care and Use of Laboratory Animals was followed in the conduct of the animal studies of the Institutional Animal Care and Use Committee at BIDMC. Veterinary care was given to any animals requiring medical attention.

ANTIBODIES

Anti-CD11b-PacBlu, αCD11b-FITC, αCD4-PE, αCD4-APC, αCD11c-APC, αCD11c-PE, αTcrv2-PE, and αCD3s (145–2C11) were purchased from BioLegend (San Diego, CA, USA). Anti-Ly6C-PerCP and αFoxP3-APC were products of eBioscience (San Jose, CA, USA). Flt3L-Fc fusion protein was purchased from BioLegend (San Diego, CA, USA). Fc-GITR-L fusion protein was produced as described previously (9).

AAV8-OVA MEDIATED EXPRESSION OF FOREIGN PROTEIN IN HEPATOCYTES

AAV8-OVA vector (containing an ovalbumin expression cassette driven by AAV-EF1α) was packaged into serotype 8 capsid as described previously (16). Vector was injected i.v. into FoxP3(GFP) and GITR-L−/− FoxP3(GFP) mice at a dose of 10^10 vector genome/mouse. Five weeks later, leukocytes from liver, spleen, and thymus were stained with TCRvα2.

Also, Ly6G NK1.1+ GFP+ cells FACS sorted from the liver of CX3CR1(GFP) mice 7 days after AAV8-OVA injection were incubated with OT-II CD4+ or CFSE-labeled OT-I CD8+ T cells for 3 days. OT-II CD4+ T cell cultures were stained with TCRvα2 and FoxP3. OT-I CD8+ T cell culture was stained with TCRvα2 and proliferating CD8+ cells were evaluated by CFSE dilution.

INDUCTION OF DENDRITIC CELLS AND TREG WITH Flt3L

Flt3L-Fc fusion protein (10 ng/mouse/injection) was i.p. injected into FoxP3(GFP) and GITR-L−/− FoxP3(GFP) mice for nine consecutive days as described previously (26). Leukocytes from the spleen and liver were analyzed at day 10.

CELLULARITY IN MICE AFTER αCD3-MEDIATED ACTIVATION OF T CELLS

Anti-CD3ε was i.p. injected into CX3CR1(GFP) and GITR-L−/− CX3CR1(GFP) mice (20 μg/mouse, one injection). After 72 h, leukocytes of the spleen and liver were stained with CD4 and FoxP3. CX3CR1+ cells were evaluated by expression of the reporter gene GFP.

IN VITRO ACTIVATION OF CD4+ T CELLS

CD4+ T cells from the spleen of FoxP3(GFP) mice were negatively selected using a CD4+ T cells isolation kit (Miltenyi, Auburn, CA, USA) and were activated with αCD3-coupled microbeads in a round bottom 96-well plate in the presence or absence of Fc-GITR-L (1 μg/ml) for 2 days as described previously (9). Cells were stained with CD4 and CD103. Expression of FoxP3 was judged by the reporter protein EGFP. Cell numbers were counted with a Countess Automated Cell Counter (Invitrogen, Grand Island, NY, USA).

ISOLATION OF LIVER LEUKOCYTES

Liver leukocytes were isolated as described previously (27). Briefly, liver was mashed and filtered through a 70 μM cell strainer. Hepatocytes and cell debris were removed by spinning at 300 rpm for 10 min. Supernatant was centrifuged at 1500 rpm for 10 min to collect cells. Leukocytes were isolated from the interface of a 40 and 70% Percoll gradient.

Statistical analysis used Prism 4.0c software (GraphPad, San Diego, CA, USA). Statistical comparisons were performed using the two-tailed Student’s t-test. Values of P < 0.05 were considered to be statistically significant.

RESULTS

Flt3L-INDUCED EXPANSION OF TREG WAS IMPAIRED IN GITR-L DEFICIENT MICE DUE TO A PARTIALLY REDUCED NUMBER OF DENDRITIC CELL SUBPOPULATIONS

We previously found that after administering a Fc-GITR-L fusion protein to WT mice the number of Treg cells increased, which was confirmed by studies with GITR-L transgenic mice (9–11, 28). Surprisingly, we found that GITR-L was dispensable for the development of naturally occurring Treg, as the number of FoxP3+ Treg cells was normal in the thymus and spleen of GITR-L−/− FoxP3(GFP) mice under resting conditions (Figure 1A; Figure S1 in Supplementary Material).
After the injection of Fc-Flt3L fusion protein, both the numbers of pDCs in their WT counterparts was lower in FoxP3(GFP) mice than the FoxP3(GFP) mouse. Each circle represents one mouse.

To further investigate the role of GITR-L in controlling Treg development, we assessed the consequences of injecting Fms-related tyrosine kinase 3 ligand (Flt3L) into FoxP3(GFP) and GITR-L−/− FoxP3(GFP) mice for nine consecutive days. Not only is Flt3L a potent inducer of DC and macrophage proliferation (26, 29), several phagocyte subpopulations express GITR-L (12, 30). Since activated CD8+ T cells carry GITR on their surface, we also evaluated whether the absence of GITR-L in DC subpopulations affects proliferation of antigen-specific GITR+ Treg and CD8+ cells, we immunized GITR-L−/−CX3CR1(GFP) and WT CX3CR1(GFP) mice by gene transfer with AA V8-OVA (Figure 3A). One week after injection of AA V8-OVA, liver CX3CR1(GFP)+ cells purified by FACS were incubated with OVA-specific OT-II CD4+ T cells or OT-I CD8+ cells for 3 days. GITR-L−/−CX3CR1+ cells were less efficient in inducing Treg as compared to the same cells isolated from WT mice (Figures 3B,C). Since activated CD8+ cells carry GITR on their surface, we also evaluated whether in vitro proliferation of CD8+ T cells would be affected by the absence of GITR-L from the surface of these DCs. Indeed, the proliferation of CD8+ OT-I cells was reduced when cocultured with liver CX3CR1+ cells from AA V8-OVA-primed GITR-L−/−CX3CR1(GFP) mice compared to OT-I cells cultured with WT CX3CR1+ DCs (Figures 3D,E).

We conclude that GITR-L on the surface of antigen presenting cells can drive proliferation of both FoxP3+ CD4+ Treg cells and activated CD8+ T cells in an antigen-specific manner.
After AAV8-OVA gene transfer, the number of antigen-specific Treg in GITR-L−/− FoxP3 mice is reduced, which results in an increased number of OVA-specific CD8+ T cells

Because targeted expression of exogenous protein in hepatocytes by AAV8-mediated gene transfer induces a Treg-mediated tolerance (16), we assessed whether this process involves GITR-L. To assess this, we injected an AAV8-OVA vector into in FoxP3(GFP) and GITR-L−/− FoxP3(GFP) mice and determined the number of OVA-specific Treg and CD8+ T cells. Consistent with the results when administering Flt3L, there was a reduced percentage of OVA-specific FoxP3+ TCRαβ+ T cells in the spleen and liver of GITR-L−/− FoxP3(GFP) mice as compared to that of WT mice 5 weeks after vector administration (Figure 3A). Conversely, AAV-expressed OVA-driven expression in the hepatocytes induced an increased percentage of OVA-specific CD8+ TCRαβ+ T cells in the spleen and liver of GITR-L−/− FoxP3(GFP) mice (Figure 3B). By contrast, the total cell numbers were comparable between these two mouse strains (Figure 3C). The data suggest that GITR-L deficiency may impair the induction of antigen-specific Tregs (16–18, 21, 33), which may at least partially compromise their immunosuppressive capability.

As the in vitro data suggest that GITR-L expression on DCs causes the expansion of CD8+ cells, this in vivo result might underestimate the consequences of the reduced number of the Tregs in the GITR-L−/− mice. To test whether GITR-L is implicated in the in vivo expansion of antigen-specific CD8+ cells, we used a system in which the Treg-mediated suppression is absent. To this end, we injected AAV8-OVA into Rag−/− and GITR-L−/− Rag−/− mice followed by the adoptive transfer of OT-I CD8+ T cells after 1 week (Figure 4A). Eight weeks after transfer of OT-I CD8+ T cells, the number of CD8+ T cells in the blood of the GITR-L−/− Rag−/− recipients was significantly lower than that of the Rag−/− recipients (Figure 4B). This was not due to an inadequate amount of OVA antigen production in the GITR-L−/− Rag−/− recipients (Figure 4C). Taken together, the data indicate that GITR-L is required for optimal induction and/or expansion of antigen-specific Treg in the context of hepatic AAV8 gene transfer.

Depletion of CX3CR1+ (GFP) cells by αCD3 in GITR-L−/− mice correlates with a reduced number of FoxP3+ Treg cells

In vitro expansion of FoxP3+ Treg cells can be achieved by stimulation with a combination of αCD3 and soluble GITR-L (Fc–GITR-L) (9). We then assessed whether injection of αCD3 into WT and GITR-L−/− mice would affect the Treg population. As shown in Figures 6A,B, αCD3 induced a significant reduction of the percentage of FoxP3+ Treg in the spleen and liver of GITR-L−/−CX3CR1(GFP) mice, but not in WT CX3CR1(GFP) mice. In support of our observations in this paper, the reduced number of Tregs coincided with a reduction of CX3CR1+ DCs in the spleen.

FIGURE 3 | In vitro induction of OVA-specific Treg and CD8+ T cells with hepatic CX3CR1+ DCs. (A) Schematic for in vitro priming of CD8+ OT-I and CD4+ OT-II T cells. Briefly, AAV8-OVA (10^12 vector genome/mouse) was i.v. injected into CX3CR1(GFP) and GITR-L−/− CX3CR1(GFP) mice. After 7 days, Ly6G/NK1.1-CX3CR1(GFP)+ cells were purified from the liver and incubated with CD8+ OT-I and CD4+ OT-II T cells at different ratios for 3 days. Divisions of CD8+ OT-I cells were evaluated by CFSE dilution. (B) Percentages of OT-I CD8+ T cells in vitro expansion of FoxP3+ Treg. (C) Representative staining of (D). Results represent one of three independent experiments. Error bars indicate mean ± SEM of triplicates.

FIGURE 4 | In vivo induction of OVA-specific Treg and CD8+ T cells in GITR-L−/−FoxP3(GFP) mice. AAV8-OVA (10^12 vector genome/mouse) was i.v. injected into FoxP3(GFP) and GITR-L−/− FoxP3(GFP) mice. Five weeks later, leukocytes from the liver and spleen were stained with TCRαβ2. (A) Percentages of FoxP3+ TCRαβ2+ cells. (B) Percentages of TCRαβ2+/CD8+ cells. (C) Number of leukocytes. Filled circle represents FoxP3(GFP) mouse. Open circle represents GITR-L−/− FoxP3(GFP) mouse. Each circle represents one mouse.

Depletion of CX3CR1+ (GFP) cells by αCD3 in GITR-L−/− mice correlates with a reduced number of FoxP3+ Treg cells

In vitro expansion of FoxP3+ Treg cells can be achieved by stimulation with a combination of αCD3 and soluble GITR-L (Fcg–GITR-L) (9). We then assessed whether injection of αCD3 into WT and GITR-L−/− mice would affect the Treg population. As shown in Figures 6A,B, αCD3 induced a significant reduction of the percentage of FoxP3+ Treg in the spleen and liver of GITR-L−/−CX3CR1(GFP) mice, but not in WT CX3CR1(GFP) mice. In support of our observations in this paper, the reduced number of Tregs coincided with a reduction of CX3CR1+ DCs in the spleen.
and liver of GITR-L−/− CX3CR1(GFP) mice (Figures 6C,D). In contrast, the numbers of CX3CR1+ cells in the spleen and liver were comparable in the two mouse strains under homeostasis (Figure S3 in Supplementary Material).

To further investigate the role of GITR-L in the expansion of FoxP3+ Treg, CD4+ T cells were purified from the spleen of FoxP3(GFP) mice and stimulated in vitro with αCD3 with either Fc-GITR-L or IgG. Forty-eight hours after exposure to αCD3, the number of total CD4+ and FoxP3+CD4+ Treg was significantly higher in the presence of Fc-GITR-L than that of IgG (Figures 7A,B). Interestingly, a subset of CD103+ Treg cells, which is induced in epithelium and in sites of inflammation (23, 34) and comprises approximately 20% of all FoxP3+ Treg cells in the spleen, was also expanded by Fc-GITR-L (Figures 7C,D).

We conclude that while the induction or expansion of Treg is impaired in the absence of GITR-L, Fc-GITR-L provides a positive signal to GITR+ Treg.

DISCUSSION
The receptor-ligand pair GITR/GITR-L (TNFRSF18/TNFSF18) appears to be involved in the development of a variety of inflammation-related diseases in murine models (6, 8, 12, 35, 36). It was originally thought that the suppressor function of Treg cells, which constitutively express GITR, would be abrogated by anti-GITR thus breaking immune self-tolerance (2). More recent additional evidence shows that GITR engagement by its natural ligand GITR-L causes an extensive expansion of functionally competent Tregs (9–11), although the relative role of GITR on Treg and Teff cells remains only partly understood. In this study we find that in the absence of GITR-L the expansion of FoxP3+ Treg cells is impaired in an antigen-specific manner, which can be mimicked by in vivo and in vitro activation of CD4+ Treg cells with αCD3. Our results are consistent with the findings of the Chatila group that expansion and contraction of Teff and Treg dynamically control primary immune responses to foreign antigen (25).

Glucocorticoid-induced TNF receptor family-related protein ligand impacts immune regulation in gene replacement therapy at least at three levels. First, the induction/expansion of antigen-specific Treg cells in the liver after AAV-mediated gene therapy is impaired directly by the absence of GITR-L. Second, the expansion of antigen-specific CD8+ T cells is reduced by GITR-L deficiency. However, impaired expansion of Treg cells can on the other hand up-regulate CD8+ T cell expansion indirectly. Third, GITR-L deficiency affects the infiltration of monocyte-derived MØ to the sites where exogenous protein is expressed and/or the sites of inflammation (30), which changes the local function of different immune cells. These GITR-L-expressing, monocyte-derived MØ may provide a microenvironment for the expression of CD103 in Treg cells, an integrin that facilitates the retention of Treg cells in the sites of inflammation or infection.

Surprisingly, we found that administering αCD3 causes the depletion of CX3CR1+ DCs in the spleen and liver of GITR-L−/−
mice, which correlates with a reduced number of FoxP3+ Tregs. It is reported that IL10-secreting GITR+ Tr1 cells may suppress immune responses by granzyme B-mediated killing of myeloid APCs (37, 38). Granzyme B is also important for the ability of CX3CR1hi in vitro liver are able to induce Treg (41). The mechanism how this Ly6C+ an increased expansion of Treg may inhibit this self-destructive steady state and inflammation. Under resting conditions, the reduction of Treg number during immune responses.

It is reported that IL10-secreting GITR+ Tr1 cells may suppress immune responses by granzyme B-mediated killing of myeloid APCs (37, 38). Granzyme B is also important for the ability of CX3CR1hi in vitro liver are able to induce Treg (41). The mechanism how this Ly6C+ an increased expansion of Treg may inhibit this self-destructive steady state and inflammation. Under resting conditions, the reduction of Treg number during immune responses.

Ly6C+ monocytes give rise to CX3CR1+ DCs in the liver may provide an important tool for the study of migration, colonization, and education of this special DC subset (30).

In conclusion, our data show that GITR and GITR-L have important implications for gene therapy. Optimal induction of an immune regulatory response, which is crucial for tolerance to the transgene product and for immune modulatory gene therapy, requires co-stimulation by GITR-L, which enhances Treg induction and function. Expression of GITR-L on hepatic APCs may in part explain the tolerogenic/Treg inducing capacity of hepatic gene transfer.

AUTHOR CONTRIBUTIONS
Gongxian Liao performed all the experiments; Michael S. O’Keeffe helped in processing the samples and editing the manuscript; Guoxing Wang and Boaz van Driel helped in processing the samples and discussing the results. Rene de Waal Malefyt generated GITR-L deficient mice; Hans-Christian Reinecker brought deeper insight into αCD3-inducing murine model. Roland W. Herzog helped in discussing and writing the manuscript; Cox Terhorst is the major organizer of this work and designed the experiments with Gongxian Liao.

ACKNOWLEDGMENTS
We thank Dr. Talal Chatila for providing the FoxP3EGFP knock-in reporter mice, all other members of the Terhorst Lab for helpful discussions. We thank Dr. Shangzhen Zhou and the AAV research vector core at The Children’s Hospital of Philadelphia for the help with production of AAV8-OVA vector. Grant Support: this work was sponsored by National Institutes of Health (P01 HL078810 to Roland W. Herzog and Cox Terhorst, and R01 DK-52510 and P30 DK-43351 to Cox Terhorst).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00035/abstract

REFERENCES
1. McHugh RS, Shevach EM. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J Immunol (2002) 168:5979–83.
2. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol (2002) 3:135–42. doi:10.1038/nn759
3. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol (2003) 170:3939–43.
4. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity (2013) 38:414–23. doi:10.1016/j.immuni.2013.03.002
5. Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carrero BM, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol (2004) 173:5008–20.
6. Santucci L, Agostini M, Bruscoli S, Mencarelli A, Ronchetti S, Ayroldi E, et al. GITR modulates innate and adaptive mucosal immunity during the development of experimental colitis in mice. Gut (2007) 56:52–60. doi:10.1136/gut.2006.091181
7. Nocenti G, Cuzzocrea S, Genovese T, Bianchini R, Mazzon E, Ronchetti S, et al. Glucocorticoid-induced tumor necrosis factor receptor-related (GITR)-Fc
fusio

28. Ephrem A, Epstein AL, Stephens GL, Thornton AM, Glass D, Shervach EM. Modulation of Treg cells T effector function by GITR signaling is context-dependent. "Exp Hematol (2013) 41:2421–40. doi: 10.1016/j.exphem.2013.04.013

29. Leun JM, Fuller K, Chambers TJ. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. "Blood (2001) 98:2707–13. doi: 10.1182/blood.V98.9.2707

30. Liao G, Van Driel B, Magelley E, O’Keefe MS, De Waal Malefyt R, Engel P, et al. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. "FASEB J (2013) 28:1(474–84. doi: 10.1096/fj.2012-236505

31. Darrasse-Jeze G, Deroubaix S, Mouquet H, Victoria GD, Eisenreich T, Yao KH, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. "Exp Med (2009) 206:1853–62. doi: 10.1090/jem.20090774

32. Swee LK, Bosco N, Malissen B, Ceredi R, Rolink A. Expansion of peripheral naturally occurring T regulatory cells by Fms-like tyrosine kinase 3 ligand treatment. "Blood (2009) 113:6277–82. doi: 10.1182/blood-2008-06-161026

33. Nayak S, Cao O, Hoffman BE, Cooper M, Zhou S, Atkinson MA, et al. Prophylactic immune tolerance induced by changing the ratio of antigen-specific effector to regulatory T cells. "J Thromb Haemost (2009) 7:5123–32. doi: 10.1111/j.1538-7836.2009.03548.x

34. Sufia I, Reckling SK, Salay G, Bellakd A. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. "J Immunol (2005) 174:5444–55.

35. Cazzorla S, Nocentini G, Di Paola R, Mazzon E, Ronchetti S, Genovese T, et al. Glucocorticoid-induced TNF receptor family gene (GTR) knockout mice exhibit a resistance to splanchic artery occlusion (SAO) shock. "J Leukoc Biol (2004) 76:933–40. doi: 10.1189/jlb.0204110

36. Cazzorla S, Ayrolidi E, Di Paola R, Agostini M, Mazzon E, Bruscoli S, et al. Role of glucocorticoid-induced TNF receptor family gene (GTR) in collagen-induced arthritis. "FASEB J (2005) 19:1253–65. doi: 10.1096/fj.04-3556com

37. Magnani CF, Alberigo G, Bacchetta R, Serafini G, Andreani M, Roncarolo MG, et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human T cells. "Eur J Immunol (2011) 41:1652–62. doi: 10.1002/eji.201041120

38. Giglani N, Magnani CF, Huber S, Gianolino ME, Pala M, Licona-Limon P, et al. Coexpression of CD49d and LAG-3 identifies human and mouse T regulatory type 1 cells. "Nat Med (2013) 19:39–46. doi: 10.1038/nm.3179

39. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyne B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. "Immunity (2007) 27:635–46. doi: 10.1016/j.immuni.2007.08.014

40. Chang SY, Song HJ, Guling B, Cotoner A, Arihoro S, Zhao Y, et al. Circulatory antigen processing by mucosal dendritic cells controls CD4+ T cell activation. "Immunity (2013) 38:153–65. doi: 10.1016/j.immuni.2012.09.018

41. Zigmund E, Varod F, Carache J, Elmahia E, Sapathy AT, Friedlander G, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. "Immunity (2012) 37:1076–90. doi: 10.1016/j.immuni.2012.08.026

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 November 2013; accepted: 21 January 2014; published online: 03 February 2014.

Citation: Liao G, O’Keefe MS, Wang G, van Driel B, de Waal Malefyt R, Reinecker H-C, Herzog RW and Terhorst C (2014) Glucocorticoid-induced TNF receptor family-related protein ligand is requisite for optimal functioning of regulatory CD4+ T cells. "Front Immunol, 5:35. doi: 10.3389/fimmu.2014.00035

This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology.

Copyright © 2014 Liao, O’Keefe, Wang, van Driel, de Waal Malefyt, Reinecker, Herzog and Terhorst. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.