Abstract. We study the Chow motive (with rational coefficients) of a hypersurface X in the projective space by using the variety $F(X)$ of l-dimensional planes contained in X. If the degree of X is sufficiently small, we show that the primitive part of the motive of X is the tensor product of a direct summand in the motive of a suitable complete intersection in $F(X)$ and the l-th twist $\mathbb{Q}(-l)$ of the Lefschetz motive.

Introduction

Let X be a smooth hypersurface of degree d in the projective space \mathbb{P}^n_k over a field k. In this paper we study the Chow motive (with rational coefficients) of X provided that d is sufficiently small.

Roitman has shown that the Chow group of zero-dimensional cycles of degree 0 is a torsion group if $d \leq n$ [4]. For higher dimensional cycles it is known [1, Theorem 4.6] that the Chow groups satisfy

$$\text{CH}_{l'}(X) \otimes \mathbb{Q} = \text{CH}_{l'}(\mathbb{P}^n) \otimes \mathbb{Q} = \mathbb{Q}$$

for $0 \leq l' \leq l - 1$ if $n \geq (\frac{d+1}{l+1})$ and $d \geq 3$. The identity also holds if X is covered by l-dimensional planes [3, Theorem 9.28], or more generally if X is a hyperplane section of a hypersurface Y which is covered by l-dimensional planes [3].

Results on triviality of Chow groups give rise to a decomposition of the motive $h(X)$ associated with X. In our case, we get

$$h(X) \cong M_D \otimes \mathbb{Q}(-l) \oplus \bigoplus_{i=0}^{l-1} \mathbb{Q}(-i),$$

where $\mathbb{Q}(-1)$ is the Lefschetz motive and M_D is a direct summand of the motive $h(D)$ of some variety D. Our purpose is to describe M_D.

In order to state the theorem we need the following notation. An l-dimensional plane E in \mathbb{P}^n is called an osculating plane if the intersection $E \cap X$ is an $(l-1)$-dimensional plane or if E is contained in X. We say that X has sufficiently many osculating planes if there exists an osculating plane through every closed point of X (the planes may be defined over a field extension of k).
Theorem (see Theorem 2.5). Let \(n, d, l \) be numbers such that a general hypersurface of degree \(d \) in the projective space \(\mathbb{P}^n \) has sufficiently many osculating \(l \)-dimensional planes. Let \(X \subset \mathbb{P}^n \) be a smooth hypersurface of degree \(d \) such that the Fano variety \(F(X) \) of \(l \)-dimensional planes contained in \(X \) is smooth and has the expected dimension. Furthermore, let \(HF(X) \subset F(X) \) be a smooth complete intersection of hyperplanes (in the Plücker embedding) with \(\dim HF(X) = n - 2l - 1 \). Then there is an isomorphism in the category of Chow motives with rational coefficients:

\[
h(X) \cong M_{HF(X)} \otimes \mathbb{Q}(-l) \oplus \bigoplus_{i=0}^{n-1} \mathbb{Q}(-i),
\]

where \(M_{HF(X)} \) is a direct summand in the motive of \(HF(X) \).

The conditions on \(n, d, l \) hold if \(n \geq \frac{(1+d-1)+l-1}{l} \). For a finite field \(k \) there may be no smooth complete intersection \(HF(X) \) of hyperplanes over \(k \). In this case the variety \(HF(X) \) exists over a suitable finite field extension of \(k \).

Let us sketch the idea of the proof. We consider the family of planes

\[
\Xi = \{(x, E) \in X \times HF(X) \mid x \in E\} \subset X \times HF(X)
\]

over \(HF(X) \). The cycle \(\Xi \) defines a correspondence \(\phi_1: HF(X) \otimes \mathbb{Q}(-l) \to X \), resp. \(\phi_2: X \to HF(X) \otimes \mathbb{Q}(-l) \). The composite \(\phi_1 \circ \phi_2 \) is the cycle

\[
Z_X = \{(x, y) \in X \times X \mid x, y \in E, E \in HF(X)\}
\]

in \(CH^{n-1}(X \times X) \). The most important step is to show that

\[
(0.0.1) \quad Z_X = \tau^*(a) + m \cdot \Delta_X,
\]

for some \(a \in CH^{n-1}(\mathbb{P}^n \times \mathbb{P}^n) \), some nonzero integer \(m \), the inclusion \(\tau: X^2 \hookrightarrow (\mathbb{P}^n)^2 \) and the diagonal \(\Delta_X \). In order to prove (0.0.1) we introduce the doubled incidence variety of degree \(d \) hypersurfaces together with two points:

\[
\Sigma = \{(x, y, Y) \in (\mathbb{P}^n)^2 \times \mathbb{P}(\text{Sym}^d(k^{n+1})) \mid x, y \in Y\}.
\]

The projection \(p: \Sigma \to (\mathbb{P}^n)^2 \) is a projective bundle over \((\mathbb{P}^n)^2 - \Delta_{\mathbb{P}^n} \) and \(\Delta_{\mathbb{P}^n} \), so that \(CH^{n-1}(\Sigma) \) can be calculated by using the projective bundle formula and the localization sequence. The cycle \(p^{-1}(\Delta_{\mathbb{P}^n}) \in CH^{n-1}(\Sigma) \) maps to the diagonal \(\Delta_X \) by the pullback map \(\gamma^* \) of the inclusion \(j: X \times X \to \Sigma \). One defines a cycle \(Z \in CH^{n-1}(\Sigma) \) with \(\gamma^*(Z) = Z_X \), and by comparing \(Z \) with \(p^{-1}(\Delta_{\mathbb{P}^n}) \) we obtain (0.0.1) after applying \(\gamma^* \).

1. **Cycles in the doubled incidence variety**

1.1. Let \(k \) be a field and let \(\mathbb{P}(\text{Sym}^d(k^{n+1})) \) denote the hypersurfaces of degree \(d \) in the projective space \(\mathbb{P}^n \). We denote by \(\Sigma \) the doubled incidence variety

\[
\Sigma = \{(x, y, X) \in (\mathbb{P}^n)^2 \times \mathbb{P}(\text{Sym}^d(k^{n+1})) \mid x, y \in X\}.
\]

Letting \(p: \Sigma \to (\mathbb{P}^n)^2 \) be the projection, we define \(\Sigma_1 := p^{-1}(\Delta_{\mathbb{P}^n}) \) and \(\Sigma_0 := \Sigma - \Sigma_1 \). In the diagram

\[
\begin{array}{ccc}
\Sigma_0 & \xrightarrow{p} & \Sigma \\
\downarrow & & \downarrow \\
(\mathbb{P}^n)^2 - \Delta_{\mathbb{P}^n} & \xleftarrow{p} & (\mathbb{P}^n)^2 - \Delta_{\mathbb{P}^n}
\end{array}
\]
the varieties \(\Sigma_0 \), resp. \(\Sigma_1 \), are projective bundles with fiber dimension \(N - 2 \), resp. \(N - 1 \), where \(N = \dim \mathbb{P}(\text{Sym}^d(k^{n+1})) \). It is easy to see that \(\text{Sing}(\Sigma) = \{(x, x, X) \mid x \in \text{Sing}(X)\} \). The singular locus is a projective bundle over \(\Delta_p \) with fiber dimension \(N - 1 - n \).

1.2. There is an exact sequence

\[
(1.2.1) \quad \text{CH}^0(\Sigma_1) \to \text{CH}^{n-1}(\Sigma) \to \text{CH}^{n-1}(\Sigma_0) \to 0
\]

from the localization sequence of Chow groups (\(\text{CH}^i \) denotes the group of \(i \) codimensional cycles modulo rational equivalence). Moreover, there is a natural splitting defined as follows.

Let \(\phi : \Sigma \to \mathbb{P}(\text{Sym}^d(k^{n+1})) \) be the projection and set \(c = \phi^*(c_1(\mathcal{O}(1))) \). For the other projection \(p : \Sigma \to (\mathbb{P}^n)^2 \) we may define \(p^* \) to be the composite \(\epsilon \circ \text{pr}\), where \(\epsilon : \Sigma \to (\mathbb{P}^n)^2 \times \mathbb{P}(\text{Sym}^d(k^{n+1})) \) is the regular embedding and \(\text{pr} \) is the projection to \((\mathbb{P}^n)^2 \). From the projective bundle formula we see that

\[
\bigoplus_{i=0}^{n-1} (n-1-i)^* \text{CH}^i((\mathbb{P}^n)^2) \subset \text{CH}^{n-1}(\Sigma)
\]

splits the sequence (1.2.1), so that every class \(Z \) in \(\text{CH}^{n-1}(\Sigma) \) can be written as

\[
Z = \sum_{i=0}^{n-1} (n-1-i)^* \cdot p^*(a_i) + m \cdot [\Sigma_1]
\]

with \(a_i \in \text{CH}^i((\mathbb{P}^n)^2) \) and \(m \) is an integer.

1.3. Let \(\mathcal{H} \) be a smooth, connected projective \(k \)-scheme and \(\Xi \subset \mathcal{H} \times \mathbb{P}^n \) be a family of \(\kappa \)-dimensional subschemes of \(\mathbb{P}^n \), flat over \(\mathcal{H} \). We assume that \(\kappa \geq 1 \) and that the sheaf \(\text{pr}_{1*}(\mathcal{O}_\Xi \otimes \text{pr}_2^*\mathcal{O}_{\mathbb{P}^n}(d)) \) on \(\mathcal{H} \) is locally free. Furthermore, we assume that the map

\[
(1.3.1) \quad \text{Sym}^d((k^{n+1})^\vee) \otimes \mathcal{O}_{\mathcal{H}} = \text{pr}_{1*}\text{pr}_2^*\mathcal{O}_{\mathbb{P}^n}(d) \to \text{pr}_{1*}(\mathcal{O}_\Xi \otimes \text{pr}_2^*\mathcal{O}_{\mathbb{P}^n}(d)),
\]

induced by \(\mathcal{O}_{\mathcal{H} \times \mathbb{P}^n} \to \mathcal{O}_\Xi \) and \(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) = \text{Sym}^d((k^{n+1})^\vee) \), is surjective.

We denote by \(E \) the kernel of (1.3.1). It is convenient to write \(QE \) for the sheaf \(\text{pr}_{1*}(\mathcal{O}_\Xi \otimes \text{pr}_2^*\mathcal{O}_{\mathbb{P}^n}(d)) \). In the following commutative diagram we fix the notation for the various maps:

\[
\begin{array}{cccccc}
\Xi \times \mathcal{H} & \Xi \times \mathcal{H} & \mathcal{H}(\mathcal{E}^\vee) & f_E & \Sigma & \mathbb{P}(\mathbb{P}^n)^2 \\
\downarrow f_{\mathcal{H}(\mathcal{E}^\vee)} & \downarrow f_{\mathcal{H}(\mathcal{E}^\vee)} & \downarrow f_{\mathcal{H}(\mathcal{E}^\vee)} & \downarrow f_{\mathcal{H}(\mathcal{E}^\vee)} & \downarrow f_{\mathcal{H}(\mathcal{E}^\vee)} \\
\mathcal{H}(\mathcal{E}^\vee) & \mathcal{H}(\mathcal{E}^\vee) & \mathcal{H}(\mathcal{E}^\vee) & \downarrow \psi & \mathbb{P}(\text{Sym}^d(k^{n+1})) \\
\downarrow \psi & \downarrow \psi & \downarrow \psi & \downarrow \psi & \downarrow \psi \\
\mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} \\
\end{array}
\]

Here \(\psi : \mathcal{H}(\mathcal{E}^\vee) \to \mathbb{P}(\text{Sym}^d(k^{n+1})) \) is the composite

\[
\mathcal{H}(\mathcal{E}^\vee) \xrightarrow{\psi} \mathcal{H} \times \mathbb{P}(\text{Sym}^d((k^{n+1})^\vee)) \xrightarrow{\text{pr}_2} \mathbb{P}(\text{Sym}^d((k^{n+1})^\vee)),
\]
and \(\psi \) is induced by the surjective map \(\text{Sym}^d((k^{n+1})^\vee) \otimes \mathcal{O}_\mathcal{H} \to E^\vee \). By definition, \(\mathbb{P}_\mathcal{H}(E^\vee) \) is the incidence variety \(\{(L, X) \in \mathcal{H} \times \mathbb{P}(\text{Sym}^d((k^{n+1})^\vee)) \mid L \subset X \} \). The map \(f_\Sigma \) is defined as follows. By using \(\Xi \subset \mathcal{H} \times \mathbb{P}^n \) we get

\[
\Xi \times \mathcal{H} \Xi \times \mathcal{H} \mathbb{P}_\mathcal{H}(E^\vee) \longrightarrow (\mathcal{H} \times \mathbb{P}^n) \times_\mathcal{H} (\mathcal{H} \times \mathbb{P}^n) \times_\mathcal{H} \mathbb{P}_\mathcal{H}(E^\vee)
\]

and the image of \(\tilde{f}_\Sigma \) is the incidence variety \(\{(x, y, X) \mid \exists L \in \mathcal{H} x, y \in L \subset X \} \). In particular, \(\tilde{f}_\Sigma \) factors through \(\Sigma \), and we denote this map by \(f_\Sigma \).

Defining

\[
Z := f_\Sigma \circ f_{\mathbb{P}_\mathcal{H}(E^\vee)} \circ f_\mathcal{H} : \text{CH}^{n-\epsilon}(\mathcal{H}) \to \text{CH}^*(\Sigma),
\]

we will be mainly interested in cycles \(Z(a) \in \text{CH}^{n-1}(\Sigma) \) and their pullback to \(X \times X \subset \Sigma \) for a hypersurface \(X \).

The cycle \(\Xi \in \text{CH}^{n-\epsilon}(\mathcal{H} \times \mathbb{P}^n) \) has a unique representation,

\[
[\Xi] = \sum_{i=0}^{n-\kappa} \xi_{n-\kappa-i} \otimes H^i,
\]

with \(\xi_j \in \text{CH}^j(\mathcal{H}) \) and \(H = c_1(\mathcal{O}_{\mathbb{P}^n}(1)) \).

Lemma 1.4. For \(a \in \text{CH}^{n-1-\epsilon}(\mathcal{H}) \), let \(Z(a)|_{\Sigma_0} = \sum_{i=0}^{n-1} c^{n-1-i} \cdot p^*(a_i) \) be the pullback of \(Z(a) \) to \(\Sigma_0 \). The classes \(a_i \) can be computed as follows:

\[
\sum_i a_i = \sum_{0 \leq s, t \leq n-\kappa} b_{s,t}H^s \otimes H^t \]

in \(\text{CH}^*(\mathbb{P}^n)^2 - \Delta_{\mathbb{P}^n} \) and where

\[
b_{s,t} = \int_H \xi_{n-\kappa-s} \cdot (1 + d \otimes H)(1 + H \otimes d).
\]

Proof: On \(U := (\mathbb{P}^n)^2 - \Delta_{\mathbb{P}^n} \) the evaluation morphism

\[
\text{Sym}^d((k^{n+1})^\vee) \otimes \mathcal{O}_U \to \text{pr}_1^* \mathcal{O}_{\mathbb{P}^n}(d) \oplus \text{pr}_2^* \mathcal{O}_{\mathbb{P}^n}(d)
\]

is surjective; let \(G \) be the kernel. We have \(\Sigma_0 = \mathbb{P}_U(G^\vee) \) and \(c|_{\Sigma_0} = c_1(\mathcal{O}_{\mathbb{P}_U(G^\vee)}(1)) \), so that

\[
p_a(\frac{1}{1 - c} Z(a)|_{\Sigma_0}) = \sum_{j \geq 0} s_j(G) \cdot \sum_{i=0}^{n-1} a_i,
\]

where \(s_j(G) \) are the Segre classes. Since \(G \) is the kernel of \ref{iso}, we see that

\[
(1 + d \cdot \text{pr}_1^* c_1(\mathcal{O}_{\mathbb{P}^n}(1))) (1 + d \cdot \text{pr}_2^* c_1(\mathcal{O}_{\mathbb{P}^n}(1))) \sum_{j \geq 0} s_j(G) = 1.
\]

Define

\[
T_i(a) = p_a(c^{n-1+i}Z(a))
\]
and let \(j : U \subset (\mathbb{P}^n)^2 \) be the open immersion. It follows from \((1.4.2)\) and \((1.4.3)\) that
\[
\sum_{i=0}^{n-1} a_i = \frac{\sum_{i\geq 0} f^* T_i(a)}{(1 + d \otimes \mathbb{H})(1 + \mathbb{H} \otimes d)}.
\]

Let us now compute the \(T_i \):
\[
p_* (c^{N-n-1+i} Z(a)) = p_* f_{\Sigma *} ((\phi \circ f_{\Sigma})^* c_1 (\mathcal{O}(1))^N \cdot f_{\mathbb{H}} \circ f_{\mathbb{H}} (E^*)^*(a))
\]
\[
= p_* f_{\Sigma *} f_{\mathbb{H}} (E^*) \psi^* c_1 (\mathcal{O}(1))^N \cdot f_{\mathbb{H}} (a).
\]
The map \(T = p_* f_{\Sigma *} f_{\mathbb{H}} (E^*) \) is given by the correspondence \(\mathbb{P}(E^') \times \mathbb{H} \Sigma \times \mathbb{H} \Sigma \) in \(\mathbb{P}(E^') \times (\mathbb{P}^n)^2 \), and using \((1.3.3)\), we see that
\[
[\Sigma \times \mathbb{H} \Sigma] = \sum_{0 \leq s, t \leq n - \kappa} (\xi_{n-\kappa-s} \cdot \xi_{n-\kappa-t}) \otimes H^s \otimes H^t
\]
in \(\text{CH}^*(\mathbb{H} \times (\mathbb{P}^n)^2) \), so that the coefficient of \(H^s \otimes H^t \) in \(T_i(a) \) is
\[
\int_{\mathbb{P}(E^')} f_{\mathbb{H}}^* (\xi_{n-\kappa-s} \cdot f_{\mathbb{H}}^* \xi_{n-\kappa-t}) \cdot \psi^* c_1 (\mathcal{O}(1))^N \cdot f_{\mathbb{H}}^* (a)
\]
\[
= \int_{\mathbb{H}} \xi_{n-\kappa-s} \cdot \xi_{n-\kappa-t} \cdot s_{N-n-\rk(E)+i}(E) \cdot a.
\]
If \(Z(a) \in \text{CH}^{n-1}(\Sigma) \), then \(T_i(a) \in \text{CH}^1((\mathbb{P}^n)^2) \) by definition so that the coefficient of \(H^s \otimes H^t \) in \(T_i(a) \) vanishes if \(s + t \neq i \). The identity \(s_{N-n-\rk(E)+i}(E) = c_{\rk(QE)-n-\rk(E)+i}(E) \) completes the proof. \(\square \)

The next lemma computes the pullback of \(Z(a) \) to \(X \times X \) for a smooth hypersurface \(X \). We write \(i_{\Sigma}^* \) for the inclusion \(X \times X \to \Sigma \) and \(i_{(\mathbb{P}^n)^2}^* \) for the inclusion \(X \times X \to (\mathbb{P}^n)^2 \). Note that both inclusions are locally complete intersections; thus the pullback is well-defined. Indeed, since \(X \) is smooth the image \(i_{\Sigma}^*(X \times X) \) is contained in the open smooth part of \(\Sigma \) (see \((1.1)\)).

Lemma 1.5. For \(Z(a) \in \text{CH}^{n-1}(\Sigma) \) and \(Z(a)|_{\Sigma_n} = \sum_{i=0}^{n-1} c^{n-1-i} \cdot p^*(a_i) \), we have
\[
i_{\Sigma}^* Z(a) = i_{(\mathbb{P}^n)^2}^*(a_{n-1}) - m \cdot \Delta_X,
\]
where
\[
m = d \cdot \sum_{j=\kappa-1}^{n-1} (-d)^j \int_{\mathbb{H}} \xi_{n-\kappa} \cdot \xi_{j-\kappa+1} \cdot c_{\rk(QE)-2-j}(QE) \cdot a.
\]

Proof. We know that
\[
Z(a) = \sum_{i=0}^{n-1} c^{n-1-i} \cdot p^*(a_i) - m \cdot [\Sigma_1]
\]
for some \(m \). The line bundle \(i_{\Sigma}^* \phi^* \mathcal{O}(1) \) is trivial and \(i_{\Sigma}^*[\Sigma_1] = \Delta_X \); therefore
\[
i_{\Sigma}^* Z(a) = i_{(\mathbb{P}^n)^2}^*(a_{n-1}) - m \cdot \Delta_X.
\]

We claim that
\[
i_{(\mathbb{P}^n)^2}^* \cdot i_{\Sigma}^* \beta = p_* (c^{N} \cdot \beta)
\]
for every class \(\beta \in \text{CH}^*(\Sigma) \). This follows from the following fact. If \(g : D \subset Y \) is a Cartier divisor on \(Y \) and \(L \) is the associated line bundle, then \(g_* g^*(\beta) = c_1(L) \cdot \beta \).
2.1. In the following we work with the Grassmannian of

2.2. We will be interested in cycles

By applying \(i_{(p^n)} \) to (2.2.2) and using \(i_{(p^n)}^* i_{(p^n)_2}^* a_{n-1} = d^2 (H \otimes H) \cdot a_{n-1} \) and \(i_{(p^n)}^* \Delta X = d \cdot \sum_{i \geq 0} H^{i+1} \otimes H^{n-i} \), we find that \(m = d \cdot \gamma \), as claimed.

2. Motives of hypersurfaces and their Fano varieties

2.1. In the following we work with the Grassmannian of \(\kappa \)-planes \(\mathcal{H} = \text{Gr}_\kappa \) in projective space where \(\Xi \subseteq \text{Gr}_\kappa \times \mathbb{P}^n \) is the universal family. We denote by \(V \), resp. \(QV \), the tautological bundle \(V \subseteq O_{\text{Gr}^1} \), resp. the quotient \(O_{\text{Gr}^1}/V \). The family \(\Xi \) is the projective bundle \(\Xi = P_{\text{Gr}_\kappa}(V') \), and it is easy to see that

\[
[\Xi] = \sum_{i=0}^{n-k} c_{n-k-i}(QV) \otimes H^i
\]

in \(\text{CH}^{n-k}(\text{Gr} \times \mathbb{P}^n) \). Furthermore we have that \(QE = pr_{1*}(O_{\Xi} \otimes pr_2^* O_{\mathbb{P}^n} (d)) = \text{Sym}^d (V') \).

2.2. We will be interested in cycles \(Z(c_1(V')^s) \in \text{CH}^{n-1}(\Sigma) \), for \(s \geq 0 \) (notation as in (1.3.2)). By counting dimensions we see that

\[
\text{dim } \Xi - \text{rk}(QE) - (n - 1) = \kappa(n - \kappa) - \left(\frac{d + \kappa}{\kappa} \right) + \kappa + 1.
\]

Let us consider the variety

\[
\{(x, E_{\kappa-1}, E_{\kappa}, X) \in \mathbb{P}^n \times \text{Gr}_{\kappa-1} \times \text{Gr}_{\kappa} \times \mathbb{P}(\text{Sym}^d (k^{n+1})) \mid x \in E_{\kappa-1} \subseteq E_{\kappa}, E_{\kappa} \cap X = E_{\kappa-1} \text{ or } E_{\kappa} \subseteq X \}\.
\]

More formally, this variety is defined as follows. On \(\Xi = P_{\text{Gr}_\kappa}(V') \) there is an exact sequence of vector bundles

\[
0 \to V_1' \to V' \otimes O_{\Xi} \to O_{\Xi}(1) \to 0,
\]

and the points of \(P_{\Xi}(V_1) \) are \(\{(x, E_{\kappa-1}, E_{\kappa}) \mid x \in E_{\kappa-1} \subseteq E_{\kappa} \} \).

Since \(O_{P_{\Xi}(V_1)(-1)} \subset V_1' \otimes O_{P_{\Xi}(V_1)} \subset V' \otimes O_{P_{\Xi}(V_1)} \), we can define \(G \) to be the kernel of

\[
\text{Sym}^d (k^{n+1})' \otimes O_{P_{\Xi}(V_1)} \to \text{Sym}^d (V')/O_{P_{\Xi}(V_1)}(-d).
\]

Then \(P_{\Xi}(V_1)(G') \) is the variety (2.2.2).

The following condition will imply that the diagonal \(\Delta_X \), for a hypersurface \(X \), can be written in terms of the pullback of \(Z(c_1(V')^s) \) to \(X \times X \) (i.e. \(m \neq 0 \) in Lemma 1.5).

(B) The following map is surjective:

\[
P_{P_{\Xi}(V_1)}(G') \to \{(x, X) \in \mathbb{P}^n \times \mathbb{P}(\text{Sym}^d (k^{n+1})) \mid x \in X \},
\]

\[
(x, E_{\kappa-1}, E_{\kappa}, X) \mapsto (x, X).
\]

By counting dimensions we see that a necessary condition for (B) is \(s \geq 0 \) (with \(s \) as in (2.2.1)). If \(d = 2 \), then \(s \geq 0 \) is not sufficient; the first example is \(\kappa = 3 \).
and $n = 5$. In fact, (B) is equivalent to $n \geq 2 \cdot \kappa$ if $d = 2$, which can be checked by using the following lemma. However, we don’t know any counterexamples to (2.2.4) for $d > 2$. If $\kappa = 1$, then (2.2.4) is true. This also holds for

$$(n, d, \kappa) = (6, 3, 2), (8, 4, 2), (11, 5, 2), (9, 3, 3).$$

It is known [1 Lemma 1.1 + Lemma 4.2] that (B) is true if $d \geq 3$ and

$$n - \kappa + 1 \geq \left(\frac{\kappa - 1 + d}{\kappa} \right).$$

Lemma 2.3. Condition (B) holds if and only if

$$m = d \cdot \sum_{j=\kappa-1}^{n-1} (-d)^j \int_K \xi_{n-\kappa} \cdot \xi_{j-\kappa+1} \cdot c_{\text{rk}(QE) - 2 - j}(QE) \cdot c_1(V^\vee)^s$$

is nonzero.

Proof. From the construction of $\mathbb{P}_{\Xi(V_1)}(G^\vee)$ we have the maps

$$\mathbb{P}_{\Xi(V_1)}(G^\vee) \xrightarrow{f} \mathbb{P}_{\Xi}(V_1) \xrightarrow{g} \Xi \xrightarrow{h} \text{Gr}_{\kappa}.$$ We claim that

$$(h \circ g \circ f)_*(c_1(O_\Xi(1))^{n-1} \cdot c_1(O_{\mathbb{P}_{\Xi(V_1)}(G^\vee)}(1))^N) = (-1)^{n-1}d \cdot \sum_{j=\kappa-1}^{n-1} (-d)^j \xi_{n-\kappa} \cdot \xi_{j-\kappa+1} \cdot c_{\text{rk}(QE) - 2 - j}(QE)$$

$$(N = \dim \mathbb{P}(\text{Sym}^d(k^{n+1}))).$$ Indeed, $g_*(f_*(c_1(O_{\mathbb{P}_{\Xi(V_1)}(G^\vee)}(1))^N)) = g_s c_{\text{rk}(QE) - 1}(G) = g_s c_{\text{rk}(QE) - 1}(QE/O_{\mathbb{P}_{\Xi(V_1)}}(-d)) = g_s \sum_i d^i c_{\text{rk}(QE) - i - 1}(QE) \cdot c_1(O_{\mathbb{P}_{\Xi(V_1)}}(1)^i) = \sum_i d^i c_{\text{rk}(QE) - i - 1}(QE) \cdot s_{i-\kappa+1}(V_1^\vee),$

and from (2.2.3) we obtain $s_j(V_1^\vee) = s_j(V^\vee) + c_1(O_\Xi(1)) \cdot s_{j-1}(V^\vee)$ for all j. Thus, (2.3.2)

$$(h \circ g \circ f)_*(c_1(O_\Xi(1))^{n-1} \cdot c_1(O_{\mathbb{P}_{\Xi(V_1)}(G^\vee)}(1))^N) = \sum_i d^i c_{\text{rk}(QE) - i - 1}(QE) \cdot (s_{n-\kappa-1}(V)s_{i-\kappa+1}(V^\vee) + s_{n-\kappa}(V)s_{i-\kappa}(V^\vee)).$$

On Ξ the natural morphism $QE \otimes O_\Xi(-d) \to O_\Xi$ is surjective, so that the top Chern class of $QE \otimes O_\Xi(-d)$ vanishes:

$$h_*(c_{\text{rk}(QE)}(QE \otimes O_\Xi(-d)) = h_*(\sum_i (-d)^i c_{\text{rk}(QE) - i}(QE) \cdot c_1(O_\Xi(1)^i)$$

$$= \sum_i (-d)^i c_{\text{rk}(QE) - i}(QE)s_{i-\kappa}(V) = (-1)^{n-1}d \cdot \sum_i d^i c_{\text{rk}(QE) - i - 1}(QE)s_{i+1-\kappa}(V^\vee)$$

is zero and together with (2.3.2) we obtain

$$(h \circ g \circ f)_*(c_1(O_\Xi(1))^{n-1} \cdot c_1(O_{\mathbb{P}_{\Xi(V_1)}(G^\vee)}(1))^N) = d \cdot \sum_i d^i c_{\text{rk}(QE) - i - 2}(QE) \cdot s_{n-\kappa}(V)s_{i+1-\kappa}(V^\vee).$$

Then, $(-1)^j s_j(V^\vee) = s_j(V) = c_j(QV) = \xi_j$ proves the claim.
Let \(\pi \) be the map in condition (B). For a general closed point \((x, X)\) the irreducible components of \(\pi^{-1}(x, X) \) map generically one to one to \(\text{Gr}_\kappa \). The class \(c_1(V^\vee) = c_1(\Lambda^{\kappa+1}V^\vee) \) is the class of an ample line bundle, and \(s \) is the dimension of the generic fiber of \(\pi \) if \(\pi \) is surjective. Thus, \(\pi \) is surjective if and only if

\[
\int_{\mathbb{P}^{\mathbb{P}(V_1)}(G')} c_1(V^\vee)^* \cdot [\pi^{-1}(x, X)] > 0.
\]

Since \(\mathcal{O}_{\Xi}(1) = \pi^*\mathcal{O}_{\mathbb{P}^n}(1) \) and \(\mathcal{O}_{\mathbb{P}^{\mathbb{P}(V_1)}(G')} \) is a generically finite surjective morphism which resolves the singularities of the pullback and the pushforward commute [2, Theorem 6.2, Remark 6.2.1], because some sufficiently general points \((x_i, X_i)\) for some sufficiently general points \((x_i, X_i)\), and \(c_1(\mathcal{O}_{\Xi}(1))^{n-1} \cdot c_1(\mathcal{O}_{\mathbb{P}^{\mathbb{P}(V_1)}(G')} \mathcal{O}_{\mathbb{P}(\text{Sym}^d(k^{n+1}))}) = \sum_i \pi^*(x_i, X_i). \) Now (2.3.1) implies the lemma.

In the following theorem we work with the category of (pure) Chow motives with rational coefficients (see [2, Chapter 16]), where \(\mathbb{Q}(-1) \) denotes the Lefschetz motive.

Theorem 2.5. Let \(n, d, \kappa \) be numbers satisfying (B). Let \(X \subset \mathbb{P}^n \) be a smooth hypersurface of degree \(d \) such that the Fano variety \(F_\kappa(X) \) of \(\kappa \)-dimensional planes contained in \(X \) has the expected dimension (i.e. \(\dim F_\kappa(X) = (\kappa+1)(n-\kappa) - \binom{\kappa+1}{\kappa} \)), and let \(HF_\kappa(X) \subset F_\kappa(X) \) be a complete intersection of hyperplanes (in the Plücker embedding) with \(\dim HF_\kappa(X) = n - 2\kappa - 1 \). Furthermore, let \(\psi : HF_\kappa(X) \rightarrow HF_n(X) \) be a generically finite surjective morphism which resolves the singularities of \(HF_\kappa(X) \). Then there is an isomorphism in the category of Chow motives with rational coefficients

\[
(X, \text{id}_X) \cong (\widetilde{HF_\kappa(X)}, P) \otimes \mathbb{Q}(-\kappa) \oplus \bigoplus_{i=0}^{n-1} \mathbb{Q}(-i)
\]

for a suitable projector \(P \). We give an explicit formula for \(P \) in the proof.

Proof. From Lemma 1.5 and Lemma 2.3 we obtain

\[
(2.5.1) \quad \Delta_X = -\frac{1}{m} \iota^*_\Sigma Z(c_1(V^\vee)^*) + \frac{1}{m} \iota^*_{\mathbb{P}^n} (a_{n-1}).
\]

In the Cartesian diagram

\[
\begin{array}{ccc}
\Xi \times F_\kappa(X) & \xrightarrow{f_{\times X}} & X \times X \\
\downarrow & & \downarrow \pi_X \\
\Xi \times \text{Gr}_\kappa & \xrightarrow{f_{\times \text{Gr}_\kappa}} & \Sigma
\end{array}
\]

the pullback and the pushforward commute [2, Theorem 6.2, Remark 6.2.1], because \(F_\kappa(X) \) has the expected dimension. Therefore

\[
(2.5.2) \quad \iota^*_\Sigma Z(c_1(V^\vee)^*) = f_{\times X} \ast (c_1(V^\vee)^*) = (f_{\times X} \circ \eta)_\ast ([\Xi \times HF_\kappa(X)] \Xi),
\]

where \(\eta : HF_\kappa(X) \rightarrow F_\kappa(X) \) is a complete intersection of \(s \) hyperplanes (thus the dimension is \(\dim HF_\kappa(X) = n - 2\kappa - 1 \)). It is more convenient to write \(H = HF_\kappa(X) \) and \(\tilde{H} = \tilde{HF}_\kappa(X) \).
There is a cycle \(Y \in \text{CH}_{n-2k-1}(\hat{H}) \otimes \mathbb{Q} \) (i.e. \(Y \) is a rational linear combination of connected components of \(\hat{H} \)) such that \(\psi_*(Y) = [H] \).

Let \(\phi_1 \in \text{Cor}(\hat{H} \otimes \mathbb{Q}(-k), X) \) (resp. \(\phi_2 \in \text{Cor}(X, \hat{H} \otimes \mathbb{Q}(-k)) \)) be the correspondence defined by the cycle \(\hat{H} \times_H \Xi \) in \(\hat{H} \times X \) (resp. \([\Xi \times_H \hat{H}] \cdot \text{pr}_H^*(Y) \) in \(X \times \hat{H} \), where \(\text{pr}_H : X \times \hat{H} \to \hat{H} \) is the projection).

We consider the commutative diagram

\[
\begin{array}{ccc}
\Xi \times \hat{H} & \xrightarrow{\psi'} & \Xi \\
\downarrow_{\text{id} \times \psi \times \text{id}} & & \downarrow_{f \times X \circ \eta} \\
X \times \hat{H} & \xrightarrow{\text{pr}_H} & X 	imes X
\end{array}
\]

It is easy to see that \(\phi_1 \circ \phi_2 = (f \times X \circ \eta \circ \psi')_*([\Xi \times_H \hat{H}] \cdot \text{pr}_H^*(Y)) \), and \(\psi'_*([\Xi \times_H \hat{H} \times \Xi] \cdot \text{pr}_H^*(Y)) = [\Xi \times_H \hat{H}] \) together with (2.5.2) yields

\[
(2.5.3) \quad \phi_1 \circ \phi_2 = Z(c_1(V^V)^*).
\]

If \(H \) is the class of a hyperplane in \(\mathbb{P}^n \), then we write \(P_i \) for the pullback of \(\frac{1}{n} H^{n-1-i} \otimes H^i \in \text{CH}^{n-1}(\mathbb{P}^n \times \mathbb{P}^n) \otimes \mathbb{Q} \) to \(X \times X \). The correspondences \(P_0, \ldots, P_{n-1} \) are idempotent and orthogonal. We may write \(a_{n-1} = \frac{m}{n} \sum_{i=0}^{n-1} \beta_i H^{n-1-i} \otimes H^i \), and it follows from (2.5.1) and (2.5.3) that

\[
\Delta_X - \sum_i P_i = -\frac{1}{m} \phi_1 \circ \phi_2 + \sum_{i=0}^{n-1} (\beta_i - 1) P_i.
\]

Composition with \(P_i \) shows that \(\frac{1}{m} \phi_1 \circ \phi_2 \circ P_i = (\beta_i - 1) P_i \) and

\[
(2.5.4) \quad \Delta_X - \sum_i P_i = \phi_1 \circ (-\frac{1}{m} \phi_2 + \frac{1}{m} \sum_{i=0}^{n-1} \phi_2 \circ P_i).
\]

Since \((X, P_i) \cong \mathbb{Q}(-i) \) and \((X, \Delta_X - \sum_i P_i) \cong (\hat{H}, -\frac{1}{m} \phi_2 \circ (\Delta_X - \sum_i P_i) \circ \phi_1) \) by (2.5.4), this proves the theorem.

\[\square \]

Acknowledgments

I thank H. Esnault for introducing me to this subject and for her interest in my work. I am grateful to Y. André for valuable discussions. I thank the École Normale Supérieure for its hospitality.

References

[1] Esnault, Hélène; Levine, Marc; Viehweg, Eckart, Chow groups of projective varieties of very small degree, Duke Math. J. 87 (1997), 29–58. MR140062 (98d:14002)

[2] Fulton, William, Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Springer-Verlag, Berlin, 1998. MR1644323 (99d:14003)

[3] Otwinowska, Anna, Remarques sur les groupes de Chow des hypersurfaces de petit degré [Remarks on Chow groups of hypersurfaces of low degree], C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 51–56. MR1703267 (2000g:14007)
[4] Roitman, A. A., *Rational equivalence of zero-dimensional cycles*. (Russian), Mat. Sb. (N.S.) 89 (131) (1972), 569–585. (Translation in Math. USSR-Sb. 18 (1974), 571–588.) MR0327767 (48:6109)

[5] Voisin, Claire, *Hodge theory and complex algebraic geometry. II*. Translated from the French by Leila Schneps. Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, Cambridge, 2003. MR1997577 (2005c:32024b)