The IVVY Motif and Tumor Necrosis Factor Receptor-associated Factor (TRAF) Sites in the Cytoplasmic Domain of the Receptor Activator of Nuclear Factor κB (RANK) Cooperate to Induce Osteoclastogenesis*

Joel Jules†, Shunqing Wang‡, Zhongqi Shi§, Jianzhong Liu†, Shi Wei†, and Xu Feng†‡

From the †Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and the ‡Department of Hematology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China

Background: The IVVY motif and TRAF-binding sites in the RANK cytoplasmic domain initiate distinct modes of action to promote osteoclastogenesis.

Results: The ability of the IVVY motif to mediate osteoclast lineage commitment for osteoclastogenesis requires TRAF-binding sites.

Conclusion: The RANK IVVY motif cooperates with TRAF-binding sites to induce osteoclastogenesis.

Significance: This reveals a novel mechanism of RANK signaling in osteoclastogenesis.

Receptor activator of NF-κB (RANK) activation by RANK ligand (RANKL) mediates osteoclastogenesis by recruiting TNF receptor-associated factors (TRAFs) via three cytoplasmic motifs (motif 1, PFQEP369–373; motif 2, PVQET559–564; and motif 3, PVQEQG604–609) to activate the NF-κB and MAPK signaling pathways. RANK also has a TRAF-independent motif (IVVY533–538), which is dispensable for the activation of TRAF-induced signaling pathways but essential for osteoclast lineage commitment by inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) to regulate osteoclast gene expression. Notably, TNF/IL-1-mediated osteoclastogenesis requires RANK ligand assistance, and the IVVY motif is also critical for TNF/IL-1-mediated osteoclastogenesis by rendering osteoclast genes responsive to these two cytokines. Here we show that the two types of RANK cytoplasmic motifs have to be on the same RANK molecule to mediate osteoclastogenesis, suggesting a functional cooperation between them. Subsequent osteoclastogenesis assays with TNF or IL-1 revealed that, although all three TRAF motifs play roles in TNF/IL-1-mediated osteoclastogenesis, motifs 2 and 3 are more potent than motif 1. Accordingly, inactivation of motifs 2 and 3 blocks TNF/IL-1-mediated osteoclastogenesis. Mechanistically, double mutation of motifs 2 and 3, similar to inactivation of the IVVY motif, abrogates the expression of nuclear factor of activated T-cells c1 and osteoclast genes in assays reflecting RANK-initiated and TNF/IL-1-mediated osteoclastogenesis. In contrast, double inactivation of motifs 2 and 3 did not affect the ability of RANK to activate the NF-κB and MAPK signaling pathways. Collectively, these results indicate that the RANK IVVY motif cooperates with the TRAF-binding motifs to promote osteoclastogenesis, which provides novel insights into the molecular mechanism of RANK signaling in osteoclastogenesis.

Osteoclasts, the sole bone-resorbing cells, play a critical role in skeleton development and normal bone homeostasis (1). Furthermore, osteoclasts are implicated in the pathogenesis of various bone diseases, including postmenopausal osteoporosis (2) and bone loss in inflammatory bone conditions such as rheumatoid arthritis and periodontitis (3). Osteoclasts are multinucleated giant cells that are derived from mononuclear cells of the monocyte/macrophage lineage upon stimulation by the monocyte/macrophage colony-stimulating factor (M-CSF)2 and RANKL (4). Although M-CSF stimulates the proliferation and survival of osteoclast precursors (5), RANKL drives osteoclast differentiation and regulates the survival and activation of mature osteoclasts (4).

RANKL, a member of the TNF superfamily (6, 7), exerts its effects by activating its receptor, RANK, on the cell surface of osteoclast precursors. RANK belongs to the TNF receptor superfamily (7). RANK contains three functional motifs, PFQEP369–373 (motif 1), PVQET559–564 (motif 2), and PVQEQG604–609 (motif 3), that recruit TRAF proteins to promote osteoclastogenesis (8–10) (Fig. 1A). However, these three TRAF-binding sites activate distinct sets of signaling pathways during osteoclastogenesis. Specifically, in response to RANK activation, osteoclast lineage commitment requires RANK ligand assistance, and the IVVY motif is also essential for osteoclast lineage commitment.

* This work was supported, in whole or in part, by NIAMS/National Institutes of Health Grant AR47830 (to X. F.) and a NIAMS graduate research supplement to Grant AR47830 (to J. J.). This work was also supported by a Within Our Reach innovative basic research grant from the Research and Education Foundation of the American College of Rheumatology (to X. F.), Grants 3087110 and 80171939 from the National Natural Science Foundation of China (to S. Wang), Grant 11C313150710 from the Guangzhou Science and Technology Program (to S. Wang), and Grant 201102A212024 from the Guangzhou Medical Science and Technology Project (to S. Wang). The authors declare that they have no conflicts of interest with the contents of this article.

†To whom correspondence should be addressed: Dept. of Pathology, University of Alabama at Birmingham, 1670 University Blvd., Volker Hall G019E, Birmingham, AL 35294. Tel.: 205-975-0990; Fax: 205-934-1775; E-mail: xufeng@uab.edu.

‡ The abbreviations used are: M-CSF, macrophage/macrophage-colony stimulating factor; TRAF, TNF receptor-associated factor; RANK, receptor activator of nuclear factor κB; RANKL, receptor activator of nuclear factor κB ligand; BMM, bone marrow macrophage; α-MEM, α-minimal essential medium.
activation from RANKL stimulation, motif 1 activates the NF-κB and three MAPK pathways (JNK, ERK, and p38) in bone marrow macrophages (BMMs), which are primary osteoclast precursors (9). In contrast, motif 2 activates the NF-κB and p38 pathways, and motif 3 only activates the NF-κB pathway in BMMs (9). Collectively, these three RANK TRAF motifs trigger the activation of the NF-κB, JNK, ERK, and p38 pathways (Fig. 1A) which play important roles in osteoclast formation and/or function (10).

Moreover, our group further identified a TRAF-independent motif (IVVY535–538) in the RANK cytoplasmic domain by carrying out a detailed structure/function study and showed that the IVVY motif plays an essential role in osteoclastogenesis by committing BMMs to the osteoclast lineage (11) (Fig. 1A). The importance of the IVVY motif in osteoclastogenesis is supported further by clinical data revealing that truncating mutations causing the loss of a RANK region containing the IVVY motif has resulted in osteopetrosis in humans (12). Mechanistically, our group and others showed that the IVVY motif, unlike the TRAF motifs, plays a dispensable role in the activation of the NF-κB, JNK, ERK, and p38 pathways (11, 13, 14). However, the IVVY motif is critical for inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) (15, 16) and the subsequent induction of the osteoclast genes encoding matrix metalloproteinase 9 (MMP9), carbonic anhydrase 2 (Car2), cathepsin K (Ctsk), and tartrate-resistant acid phosphatase (TRAP) during osteoclastogenesis (17) (Fig. 1A).

TNF and IL-1 are two proinflammatory cytokines that play crucial roles in immune and inflammatory responses (18, 19) and are also implicated in the bone loss associated with various pathological conditions, such as postmenopausal osteoporosis (20), rheumatoid arthritis (21), and periodontitis (22). Notably, although IL-1 and TNF can activate TRAF-dependent signaling pathways through activation of their receptors (18, 19), they are unable to stimulate osteoclastogenesis independently of RANKL (23–26), indicating that RANK signaling is required for TNF/IL-1-mediated osteoclastogenesis. Importantly, we have shown recently that the RANK IVVY motif is critical for TNF/IL-1-mediated osteoclastogenesis by appointing osteoclast genes to a TNF/IL-1-inducible state (15, 17). We have further demonstrated that although IL-1 alone is unable to induce the expression of NFATc1 and osteoclast genes (Ctsk, TRAP, MMP9, and Car2), it can do so with the assistance of RANKL, whose effect is drastically abrogated with the inactivation of the IVVY motif (15). Notably, it has also been reported that inhibitory peptide targeting RANK-IVVY-induced signaling blocks inflammatory bone loss and protects against bone loss in ovariectomy (13). Taken together, these findings establish an essential role for the IVVY motif in osteoclastogenesis by promoting osteoclast lineage priming by inducing the expression of NFATc1 and osteoclast genes despite playing a dispensable role in the activation of most of the known osteoclast signaling pathways.

In this study, we investigated the functional relationship between the RANK IVVY motif and TRAF-functional sites in osteoclastogenesis. Moreover, we examined whether RANK TRAF sites play roles in inducing osteoclast lineage commitment for TNF/IL-1-mediated osteoclastogenesis. This study uncovered a novel RANK signaling mechanism in osteoclastogenesis.

Experimental Procedures

Chemical and Biological Reagents—All chemicals were from Sigma. Synthetic oligonucleotides were purchased from Sigma-Genosys (Woodlands, TX). Recombinant mouse IL-1α (catalog no. 400-ML-005) and recombinant mouse TNF-α (TNF, catalog no. 410-TRNC-050) were purchased from R&D Systems (Minneapolis, MN). Anti-human Fas-activating antibody (α-Fas) was from Millipore (Temecula, CA). Anti-human Fas (catalog no. sc-21730PE) and mouse anti-TNF receptor 1 (TNFR1) (catalog no. sc-12746PE) antibodies conjugated with phycoerythrin were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Recombinant GST-RANKL was prepared as described previously (11). The anti-NFATc1 (catalog no. sc-7294) antibody was from Santa Cruz Biotechnology, Inc., and antibodies against p44/42ERK (catalog no. 9102), phospho-p44/42ERK (catalog no. 9101s), JNK (catalog no. 9252), phospho-JNK (catalog no. 9251s), p38 (catalog no. 9212), phospho-p38 (catalog no. 9211s), IκBα (catalog no. 9242), and phospho-IκBα (catalog no. 2859s) were obtained from Cell Signaling Technology, Inc. (Beverly, MA). Mouse M-CSF was generated from the M-CSF-producing cell line CMG14-12 (27).

Preparation of the Retrovirus Encoding the Chimeras—The retrovirus 293GPG-packing cell line was cultured in DMEM containing 10% heat-inactivated FBS supplemented with tetra-cycline, penicillin/streptomycin, puromycin, and G418 as described previously (28). The chimeric receptor constructs pMX-Neo-hFas-mRANK-IVVY (hFas-mIVVY), pMX-puro-TNFR1-mRANK-M123 (TNFR-mTRAF), pMX-puro-hFas-mRANK-M123 (hFas-mTRAF), pMX-puro-hFas-mRANK-M1 (hFas-M1), pMX-puro-hFas-mRANK-M2 (hFas-M2), pMX-puro-hFas-mRANK-M3 (hFas-M3), pMX-puro-hFas-mRANK-M12 (hFas-M12), pMX-puro-hFas-mRANK-M13 (hFas-M13), and pMX-puro-hFas-M123 (hFas-M23) were prepared as indicated in previous studies (9, 11, 29). The pMX-puro-GFP (GFP), pMX-puro-hFas-MARK (hFas-WT), and pMX-puro-TNFR1-RANK (TNFR-WT) constructs were generated as in previous studies (9, 11). 293GPG cells were transiently transfected with specific pMX constructs using Lipofectamine and Plus reagent (Invitrogen), and the virus supernatant was collected after 2, 3, and 4 days of transfection. Harvested retroviruses were used in the subsequent osteoclastogenesis assays.

In Vitro Osteoclastogenesis Assays—BMMs were isolated from long bones of 4- to 6-week-old C3H mice (Harlan Industries, Indianapolis, IN) for most of the assays or from TNF receptor-deficient mice (TNFR1−/−R2−/− mice) (The Jackson Laboratory, Bar Harbor, ME) for the assays involving double retroviral infection. BMMs were maintained in α-minimal essential medium (α-MEM) supplemented with 10% heat-inactivated FBS and M-CSF (220 ng/ml) (30) before infection with the retrovirus for 24 h in the presence of M-CSF (220 ng/ml) and 8 μg/ml Polybrene. Cells were further cultured with 220 ng/ml M-CSF and 2 μg/ml puromycin and/or 0.9 mg/ml G418 for selection and expansion. Selected BMMs (5 × 10⁴ cells/well), seeded in a 24-well tissue culture dish, were treated with

The RANK IVVY Motif Functionally Cooperates with TRAF Sites
The RANK IVVY Motif Functionally Cooperates with TRAF Sites

M-CSF (44 ng/ml) and different dosages of α-Fas with or without IL-1 (5 ng/ml) or TNF (5 ng/ml), as indicated in individual assays. Cultures were then stained for TRAP activity using a Leukocyte acid phosphatase kit (catalog no. 387-A, Sigma). These assays were performed in triplicate and repeated at least twice. The experiments involving mice were performed in accordance with the regulations of the University of Alabama at Birmingham Institutional Animal Care and Use Committee.

Flow Cytometric Analysis—1 × 10⁶ BMMs suspended in 200 ml of α-MEM supplemented with 10% heat-inactivated FBS were blocked with 1 μg of 2.4G2 antibody for 30 min at 4 °C as described previously (17). Under dim light, 10 μl of human Fas or 20 μl of mouse TNFRI antibodies conjugated with phycoerythrin was added to each cell suspension, and cells were incubated for another 30 min at 4 °C. Cells were then centrifuged at 2000 rpm for 5 min and washed three times by gently resuspending cells with α-MEM, followed by centrifugation at 2000 rpm for 5 min. Cells were finally suspended in 1 ml of α-MEM for cytometric analysis using a BD LSR II flow cytometer at the University of Alabama at Birmingham Center for AIDS Research.

Semiquantitative RT-PCR Analysis—Total RNA from BMMs was isolated using TRizol reagent (Invitrogen). 1 μg of total RNA was reverse-transcribed to cDNA with oligo(dT) in a 20-μl volume at 50 °C for 60 min using the SuperScript III RT-PCR system (Invitrogen) as described previously (15). Amplification of the MMP9, Cstk, TRAP, Car2, and GAPDH genes was performed as described previously (17). 20 μl of PCR product was loaded on 2% agarose gel for electrophoretic analysis. These RT-PCR assays were repeated twice independently.

Western Blot Analysis—BMMs were first cultured in serum-free α-MEM for 16 h and then treated with α-Fas as indicated in the individual experiments. Cells were then washed twice with ice-cold PBS and lysed in buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na₃VO₄, 1 mM NaF, 1× protease inhibitor mixture 1 (Sigma, catalog no. P-2850), and 1× protease inhibitor mixture 2 (Sigma, catalog no. P-5726). The cell lysate was submitted to Western blot analysis as described previously (15). Membranes were washed extensively, and an enhanced chemiluminescence detection assay was performed using a SuperSignal West Dura kit from Pierce. The experiment was repeated at least twice independently.

Statistical Analysis—Some osteoclastogenesis assays were quantified by counting the multinucleated TRAP-positive cells (>3 nuclei) in a representative area in each of three replicate samples. The results are shown as mean ± S.D. of the number or percentage of TRAP-positive cells. Statistical significance was determined using Student’s t test, and p values of less than 0.05 were considered significant (*, p < 0.05; **, p < 0.001).

Results

The IVVY and TRAF Functional Motifs Need to Be on the Same RANK Molecule to Mediate Osteoclastogenesis—RANK is a member of the TNF receptor superfamily, which also includes TNFR and Fas (31). Members of this superfamily of receptors are activated by ligand-induced trimerization or oligomerization (32). Therefore, binding of RANK by RANKL leads to trimeration of RANK, which, in turn, activates the NF-κB, JNK, ERK, and p38 pathways and induces the expression of genes involved in osteoclast formation and/or function (Fig. 1B) (33). Previously, we developed two chimeric receptors for performing RANK structural/functional studies in osteoclastogenesis. The first chimera contains the human Fas external domain linked to the transmembrane and cytoplasmic domains of mouse RANK. This chimeric receptor system can be activated specifically to transmit RANK signaling by α-Fas as a surrogate for RANKL (Fig. 1C) (29). The second chimera consists of the mouse TNFR1 external domain linked to the transmembrane and cytoplasmic domains of mouse RANK. These chimeras can be activated to initiate RANK signaling by TNF as a surrogate for RANKL (Fig. 1D) (9).

RANK structural/functional studies using the chimeric receptor approach have led to the identification of three TRAF-functional motifs (motif 1, motif 2, and motif 3) and a TRAF-independent IVVY motif in the RANK cytoplasmic domain (9, 11) (Fig. 2A). These two types of RANK motifs initiate distinct modes of action to promote osteoclastogenesis. Specifically, although these three TRAF sites collectively activate the NF-κB and MAPK signaling pathways, the IVVY motif induces the expression of NFATc1 to regulate the expression of osteoclast genes (Fig. 1A). Moreover, mutational inactivation of the IVVY motif does not affect the activation of the NF-κB and MAPK signaling pathways (11). These observations have raised the possibility that these two types of RANK motifs may act independently to initiate distinct modes of action to promote osteoclastogenesis. To address this possibility, we examined whether concurrent but independent activation of the TRAF-functional sites and IVVY motif in the same BMMs using the two different types of chimeric receptors can promote osteoclastogenesis. The two chimeras containing normal RANK transmembrane and intracellular domains, hFas-WT and TNFR-WT, were prepared in our previous studies and used as controls in this study (9, 29) (Fig. 2B). Here we further modified the hFas-WT and TNFR-WT chimeras to generate two chimeras containing mutated RANK intracellular domains: hFas-mIVVY and TNFR-mTRAF, respectively (Fig. 2C). hFas-mIVVY consists of the human Fas extracellular domain linked to the mouse RANK transmembrane and intracellular domains bearing an inactivating mutation in the IVVY motif but with normal TRAF sites. TNFR-mTRAF comprises the mouse TNFR1 extracellular domain linked to the mouse RANK transmembrane and intracellular domains bearing an inactivating mutation in the IVVY motif but with normal TRAF sites. TNFR-mTRAF consists of the mouse TNFR1 external domain and is activated by TNF, BMMs from TNFR1-/- R2/-/-
mice were used to avoid cross-signaling through endogenous TNF receptors, as in our previous studies (9, 34). As controls, TNFR1−/−R2−/− BMMs were infected with retroviruses encoding GFP, hFas-WT, or TNFR-WT and selected with a single antibiotic. Cell surface expression of hFas-mIVVY and TNFR-mTRAF on doubly infected BMMs and that of hFas-WT or TNFR-WT on singly infected BMMs was determined by flow analysis (Fig. 2, D and E). Cell surface expression levels of hFas-mIVVY (Fig. 2D) and TNFR-mTRAF (Fig. 2E) on doubly infected BMMs were comparable with those of hFas-WT or TNFR-WT, respectively, on singly infected BMMs. Moreover, BMMs expressing hFas-WT generated numerous osteoclasts when treated with M-CSF and α-Fas (Fig. 2F), and TNFR-WT-expressing cells formed many osteoclasts in response to M-CSF and TNF stimulation (Fig. 2G), indicating that the expression levels of hFas-mIVVY and TNFR-mTRAF on doubly infected BMMs were sufficient to be functional.

Next we determined whether BMMs expressing hFas-mIVVY and TNFR-mTRAF could form osteoclasts when stimulated with α-Fas to activate hFas-mIVVY and TNF to activate TNFR-mTRAF. As positive controls, BMMs expressing GFP or both hFas-mIVVY and TNFR-mTRAF formed numerous osteoclasts when treated with M-CSF and RANKL (Fig. 2H). However, these cells failed to form osteoclasts when stimulated with M-CSF plus α-Fas or M-CSF plus TNF, replicating our previous findings that both the IVVY motif and TNF plus α-Fas, the cells formed only few small osteoclasts (Fig. 2H). These results indicate that the two types of RANK motifs have to be on the same RANK molecule to efficiently promote osteoclastogenesis.

The RANK TRAF Sites Are Involved in TNF-/IL-1-mediated Osteoclastogenesis—Although TNF or IL-1 alone cannot mediate osteoclastogenesis, they can stimulate osteoclastogenesis with permissive levels of RANKL, indicating that TNF/IL-1-mediated osteoclastogenesis requires prior commitment of osteoclast precursors to the osteoclast lineage (23–26). The permissive levels of RANKL required for TNF/IL-1-mediated osteoclastogenesis is about one-tenth of the optimal RANKL dosage (100 ng/ml) utilized for standard in vitro osteoclastogenesis assays involving M-CSF and RANKL treatment (23–26). Mechanistically, we have reported that RANKL-evoked TNF/IL-1-mediated osteoclastogenesis involves the activation of the IVVY motif, which, in turn, renders osteoclast genes in a TNF/IL-1 inducible state (15, 17) (Fig. 3A). To further address the potential cooperation between the RANK IVVY motif and the TRAF sites in osteoclastogenesis, we extended our study to investigate whether the three TRAF-functional sites are also involved in committing BMMs to the osteoclast lineage for TNF/IL-1-mediated osteoclastogenesis (Fig. 3A). We reasoned that if the TRAF sites functionally collaborate with the IVVY motif, then mutational inactivation of these sites should block TNF/IL-1-mediated osteoclastogenesis by abrogating the ability of the IVVY motif to initiate its mode of action, namely, rendering osteoclast genes responsive to TNF or IL-1, and,
thereby, blunt the osteoclast lineage. To this end, we used hFas-WT and also prepared another chimeric receptor, hFas-M123, which consists of the human Fas external domain linked to RANK transmembrane and cytoplasmic domains bearing inactivating mutations in all three TRAF sites but with a normal IVVY motif (Fig. 3B). Importantly, the use of hFas-WT and...
The RANK IVVY Motif Functionally Cooperates with TRAF Sites

Motif 2 and Motif 3 Blocks TNF/IL-1-mediated Osteoclastogenesis—Given that inactivation of motif 2 or motif 3 alone resulted in more than a 70% or 55% reduction, respectively, in TNF/IL-1-mediated osteoclastogenesis compared with the hFas-WT control (Fig. 4), we reasoned that mutation of both motif 2 and motif 3 might lead to a drastic reduction in TNF/IL-1-mediated osteoclastogenesis. To address this possibility, we generated a chimeric receptor consisting of the human Fas extracellular domain linked to mouse RANK transmembrane and intracellular domains bearing a double mutation in both motif 2 and motif 3 (hFas-M23) (Fig. 6A). Flow cytometry analysis showed that BMMs expressing hFas-WT or hFas-M23 exhibited comparable cell surface levels of the chimeras (Fig. 6B). BMMs expressing hFas-WT formed many osteoclasts when treated with M-CSF and α-Fas (10 ng/ml) plus TNF or IL-1, but the hFas-M23 expressers formed no osteoclasts under these treatment conditions (Fig. 6C), indicating that double inactivation of motif 2 and motif 3 leads to complete inhibition of TNF/IL-1-mediated osteoclastogenesis.

Motif 2 and Motif 3 Cooperate with the IVVY Motif to Induce NFATc1 Expression to Activate Gene Expression to Promote Osteoclastogenesis—Having demonstrated that double mutation of motif 2 and motif 3 blocks TNF/IL-1-mediated osteoclastogenesis, we then focused on motif 2 and motif 3 to decipher the mechanism by which the TRAF sites cooperate with the IVVY motif to induce osteoclastogenesis. Toward this end, we first examined whether dual mutations of motif 2 and motif 3 affect the ability of RANK to activate the NF-κB, JNK, p38, and ERK pathways using the hFas-WT and hFas-M23 chimeras (Fig. 6A). As shown in Fig. 7, the capacity of hFas-M23 to activate the NF-κB, JNK, p38, and ERK pathways using the hFas-WT and hFas-M23 chimeras (Fig. 6A).

Motif 2 and Motif 3 affect the ability of RANK to activate the NF-κB, JNK, p38, and ERK pathways using the hFas-WT and hFas-M23 chimeras (Fig. 6A). As shown in Fig. 7, the capacity of hFas-M23 to activate the NF-κB, JNK, p38, and ERK pathways using the hFas-WT and hFas-M23 chimeras (Fig. 6A).
consistent with our previous findings that motif 1 alone is sufficient to activate these signaling pathways (9) (Fig. 1A).

In examining this notion, we next sought to investigate whether mutations of these two TRAF sites affect the ability of the IVVY motif to initiate its mode of action in osteoclastogenesis; namely, IVVY motif-mediated NFATc1 expression (15, 16) and the subsequent induction of osteoclast genes (17) (Fig. 1A). In line with our recent report on the role of the IVVY motif in inducing NFATc1 expression, we revealed that double inactivation of motif 2 and motif 3 drastically impaired the ability of hFas-M23 to induce NFATc1 expression despite the presence of a normal IVVY motif (Fig. 8A). On the basis of this finding, we investigated the roles of motif 2 and motif 3 in the expression of the aforementioned osteoclast genes using BMMs expressing hFas-WT or hFas-M123 (Fig. 8B). Treatment of BMMs expressing hFas-WT or hFas-M23 with M-CSF and 10

FIGURE 3. Mutation of the RANK TRAF-functional motifs blocks TNF/IL-1-mediated osteoclastogenesis. A, roles of the RANK motifs in TNF/IL-1-mediated osteoclastogenesis. OC, osteoclast. B, schematic of hFas-WT and hFas-M123. ECD, extracellular domain; TM, transmembrane domain; ICD, intracellular domain. C, flow cytometric analysis of BMMs expressing GFP, hFas-WT, or hFas-M123. D, BMMs expressing GFP, hFas-WT, or hFas-M23 were treated with M-CSF (44 ng/ml) and α-Fas (10 ng/ml), M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus TNF (5 ng/ml), or M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus IL-1 (5 ng/ml) for 5 days. BMMs expressing GFP or hFas-WT were used as negative and positive controls, respectively. The cultures were stained for TRAP activity at the end of the assays. Quantification of the osteoclast formation assays is shown in the bottom panel as the mean number of multinucleated TRAF-positive cells (>3 nuclei) per well. Data are mean ± S.D. **, p < 0.001; NS, not significant. Scale bars = 200 μM.
FIGURE 4. The RANK functional TRAF motifs exert different effects on TNF/IL-1-mediated osteoclastogenesis. A, schematic of hFas-WT, hFas-M1, hFas-M2, and hFas-M3. ECD, extracellular domain; TM, transmembrane domain; ICD, intracellular domain. B, flow cytometric analysis of BMMs expressing GFP, hFas-WT, hFas-M1, hFas-M2, or hFas-M3. C, BMMs expressing GFP, hFas-WT, hFas-M1, hFas-M2, or hFas-M3 were treated with M-CSF (44 ng/ml) and α-Fas (10 ng/ml), M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus TNF (5 ng/ml), or M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus IL-1 (5 ng/ml) for 5 days. BMMs expressing GFP or hFas-WT were used as negative and positive controls, respectively. The cultures were stained for TRAP activity on day 5. Scale bars = 200 μm. D and E, quantification of the osteoclastogenesis assays induced by TNF is shown in mean number (D) or mean percentage (E) of multinucleated TRAP-positive cells (<3 nuclei) per well. F and G, quantification of the osteoclastogenesis induced by IL-1 is shown in mean number (F) or mean percentage (G) of multinucleated TRAP-positive cells (>3 nuclei) per well. Data are mean ± S.D. *, p < 0.05; **, p < 0.001.
FIGURE 5. Double mutation of motif 1 with motif 2 or motif 3 results in a partial reduction in TNF/IL-1-mediated osteoclastogenesis.

A, schematic of hFas-WT, hFas-M12, and hFas-M13. ECD, extracellular domain; TM, transmembrane domain; ICD, intracellular domain.

B, flow cytometric analysis of BMMs expressing GFP, hFas-WT, hFas-M12, or hFas-M13.

C, BMMs expressing GFP, hFas-WT, hFas-M12, or hFas-M13 were treated with M-CSF (44 ng/ml) and α-Fas (10 ng/ml), M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus TNF (5 ng/ml), or M-CSF (44 ng/ml) and α-Fas (10 ng/ml) plus IL-1 (5 ng/ml) for 5 days. BMMs expressing GFP or hFas-WT were used as negative and positive controls, respectively. The cultures were stained for TRAP activity on day 5.

D and E, quantification of the osteoclastogenesis assays induced by TNF is shown in mean number (D) or mean percentage (E) of multinucleated TRAP-positive cells (>3 nuclei) per well.

F and G, quantification of the osteoclastogenesis assays induced by IL-1 is shown in mean number (F) or mean percentage (G) of multinucleated TRAP-positive cells (>3 nuclei) per well. Data are mean ± S.D. *, p < 0.05; **, p < 0.001.
ng/ml of α-Fas failed to stimulate the expression of MMP9, Cstk, Car2, and TRAP, replicating our previous finding that permissive RANK activation is insufficient to induce the expression of osteoclast genes (17). Furthermore, although M-CSF and 10 ng/ml of α-Fas plus TNF or IL-1 up-regulated the expression of these osteoclast genes in BMMs expressing hFas-WT, the same treatment failed to stimulate gene expression in hFas-M23 expressers (Fig. 8B). These results demonstrate that motif 2 and motif 3 are required for inducing osteoclast genes in TNF/IL-1-mediated osteoclastogenesis.

Discussion

The objective of this work is to investigate the functional relationship of the two types of motifs in the RANK cytoplasmic domain in osteoclastogenesis. We have shown previously that inactivation of the IVVY motif exerts no impact on the activa-
The RANK IVVY Motif Functionally Cooperates with TRAF Sites

FIGURE 7. Double inactivation of motif 2 and motif 3 does not affect the ability of RANK to activate the NF-κB, JNK, p38, and ERK pathways. BMMs expressing hFas-WT or hFas-M23 were treated with α-Fas (100 ng/ml) for 0, 5, or 10 min as indicated. The activation of the NF-κB, JNK, p38, and ERK pathways was assessed as phosphorylation of IkB, JNK, p38, and ERK by Western blot analysis. BMMs expressing hFas-WT were used as a positive control.

FIGURE 8. Inactivation of motif 2 and motif 3 drastically impairs the ability of RANK to up-regulate NFATc1 expression and abrogates the capacity of TNF/IL-1 to activate the expression of osteoclast genes. A, effects of inactivation of motif 2 and motif 3 on NFATc1 expression. BMMs expressing GFP, hFas-WT (WT) or hFas-M23 (M23) were treated with M-CSF (44 ng/ml) and α-Fas (100 ng/ml) for 3 days. The expression of NFATc1 was assessed by Western blot analysis using β-actin as a loading control. BMMs expressing GFP or WT were used as negative and positive controls, respectively. B, effects of inactivation of motif 2 and motif 3 on the expression of osteoclast genes. BMMs expressing GFP, hFas-WT, or hFas-M23 were treated with M-CSF (44 ng/ml) and α-Fas (100 ng/ml), M-CSF (44 ng/ml) and α-Fas (100 ng/ml) plus TNF (5 ng/ml), M-CSF (44 ng/ml) and α-Fas (100 ng/ml) plus IL-1 (5 ng/ml) for 3 days. BMMs expressing GFP or WT were used as negative and positive controls, respectively. Gene expression was determined by semiquantitative RT-PCR using GAPDH as a loading control.

On the basis of the findings from this work, we propose that the functional cooperation between motif 2/motif 3 and the IVVY motif is mediated by the direct or indirect effect(s) of TRAF proteins binding to these two TRAF sites (protein Y and protein Z, Fig. 9) on the protein recruited by the IVVY motif (protein X, Fig. 9). It is likely that proteins X, Y, and Z form a signaling complex via direct or indirect interactions to mediate gene expression and, thereby, induce osteoclast lineage commitment. This notion is consistent with our finding that these two types of RANK motifs have to be on the same molecule to be functional.
motif 2/motif 3 and the IVVY motif is likely to be unidirectional in that the function of the IVVY motif/protein X to up-regulate NFATc1 expression for the activation of osteoclast gene expression requires motifs 2/3 and protein Y/Z, but the capacity of motifs 2/3 and proteins Y/Z to activate the NF-κB and MAPK signaling pathways does not depend on the IVVY motif/protein X (Fig. 9).

The IVVY motif has been shown to regulate the late stage of osteoclastogenesis by recruiting early estrogen-induced gene 1 (EEIG 1), which forms a complex with GRB2-associated binding protein 2 (Gab2), resulting in the activation of NFATc1 via the phospholipase Cγ2 (PLCγ2) signaling pathway (14, 16). Also, the IVVY motif can promote the function of mature osteoclasts through indirect interaction with Vav3 to regulate the osteoclast cytoskeleton (13). However, the protein that binds to the IVVY motif to regulate osteoclast lineage commitment has not yet been identified. Moreover, the TRAF proteins binding to motif 2 and motif 3 have not been identified convincingly. An early in vitro study showed that motif 2 interacts with TRAF3 and that motif 3 is capable of binding TRAF1, TRAF2, and TRAF5 (35). Another in vitro study showed that neither TRAF1 nor TRAF3 interacts with RANK (36). Therefore, a better understanding of the molecular mechanism underlying the functional cooperation between motif 2/motif 3 and the IVVY motif depends on the identification of the protein that binds to the IVVY motif to regulate osteoclast lineage commitment as well as the unambiguous elucidation of proteins binding to motif 2 and motif 3.

In conclusion, our data reveal, for the first time, that the IVVY and TRAF motifs of RANK do not function independently in mediating osteoclastogenesis. The function of the IVVY motif requires the presence of intact TRAF sites in the same RANK molecule. Moreover, this functional cooperation is critical for osteoclastogenesis and the induction of osteoclast genes. These findings provide novel insights into the mechanism by which the RANKL/RANK system regulates osteoclastogenesis and suggests that RANK signaling in osteoclasts is more complex than previously thought. Nevertheless, the precise molecular mechanism underlying the functional cooperation between the TRAF and IVVY motifs remains to be determined. As an important next step in addressing this issue, future research should be directed toward identifying the protein(s) with which the IVVY motif interacts and TRAF proteins binding to motif 2 and motif 3 to promote osteoclastogenesis.

Author Contributions—J. J., S. Wang, and X. F. designed the study. J. J., S. Wang, Z. S., and J. L. carried out experiments and collected data. J. J., S. Wang, S. Wei, and X. F. analyzed and interpreted data. J. J., S. Wang, S. Wei, and X. F. prepared the manuscript. All authors approved the final version of the manuscript.

References

1. Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504–1508
2. Feng, X., and McDonald, J. M. (2011) Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145
3. Teitelbaum, S. L. (2006) Osteoclasts: culprits in inflammatory osteolysis. Arthritis Res. Ther. 8, 201
4. Boyle, W. J., Simonet, W. S., and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337–342
5. Ross, F. P., and Teitelbaum, S. L. (2005) oP3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev. 208, 88–105
6. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombo, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J., and Boyle, W. J. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 163–176
7. Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuRose, R. F., Cosman, D., and Gallibert, L. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179
8. Armstrong, A. P., Tometsko, M. E., Glaccum, M., Sutherland, C. L., Cosman, D., and Dougall, W. C. (2002) A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoketosomal organization and resorptive function. J. Biol. Chem. 277, 44347–44356
9. Liu, W., Xu, D., Yang, H., Xu, H., Shi, Z., Cao, X., Takeshita, S., Liu, J., Teale, M., and Feng, X. (2004) Functional identification of three receptor activator of NF-κB cytoplasmic motifs mediating osteoclast differentiation and function. J. Biol. Chem. 279, 54759–54769
10. Feng, X. (2005) Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 350, 1–13
11. Xu, D., Wang, S., Liu, W., Liu, J., and Feng, X. (2006) A novel receptor activator of NF-κB (RANK) cytoplasmic motif plays an essential role in osteoclastogenesis by committing macrophages to the osteoclast lineage. J. Biol. Chem. 281, 4678–4690
12. Guerrini, M. M., Sobacchi, C., Cassani, B., Abinun, M., Kilic, S. S., Pangrazi, A., Moratto, D., Mazzolini, E., Clayton-Smith, J, Orchard, P., Coxon, F. P., Helfrich, M. H., Crockett, J. C., Mellis, D., Vellodi, A., Taccani, L, Notaroangel, L. D., Rogers, M. J., Vezzoni, P., Villa, A., and Frattini, A. (2008) Human osteoclast–poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83, 64–76
13. Kim, H., Choi, H. K., Shin, J. H., Kim, K. H., Huh, J. Y., Lee, S. A., Ko, C. Y., Kim, H. S., Shin, H. I., Lee, H. J., Jeong, D., Kim, N., Choi, Y., and Lee, S. Y. (2009) Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest. 119, 813–825
14. Taguchi, Y., Goehda, J., Koga, T., Takayanagi, H., and Inoue, J. (2009) A unique domain in RANK is required for Gab2 and PLCγ2 binding to establish osteoclastogenic signals. Genes Cells 14, 1331–1345
15. Jules, J., Zhang, P., Ashley, I. W., Wei, S., Shi, Z., Liu, J., Michalek, S. M., and Feng, X. (2012) Molecular basis of requirement of receptor activator of...
nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis. *J. Biol. Chem.* 287, 15728–15738
16. Choi, H. K., Kang, H. R., Jung, E., Kim, T. E., Lin, J. J., and Lee, S. Y. (2013) Early estrogen-induced gene 1, a novel RANK signaling component, is essential for osteoclastogenesis. *Cell Res.* 23, 524–536
17. Jules, J., Shi, Z., Liu, J., Xu, D., Wang, S., and Feng, X. (2010) Receptor activator of NF-κB (RANK) cytoplasmic IVY535–538 motif plays an essential role in tumor necrosis factor-α (TNF)-mediated osteoclastogenesis. *J. Biol. Chem.* 285, 37427–37435
18. Dinarello, C. A. (2009) Immunological and inflammatory functions of the interleukin-1 family. *Annu. Rev. Immunol.* 27, 519–550
19. Pacifici, R. (1998) Cytokines, estrogen, and postmenopausal osteoporosis: the second decade. *Endocrinology* 139, 2659–2661
20. Strand, V., and Kavanaugh, A. F. (2004) The role of interleukin-1 in bone resorption in rheumatoid arthritis. *Rheumatology* 43, iii10–iii16
21. Strand, V., and Kavanaugh, A. F. (2004) The role of interleukin-1 in bone resorption in rheumatoid arthritis. *Rheumatology* 43, iii10–iii16
22. Graves, D. T., and Cochran, D. (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. *J. Periodontol.* 74, 391–401
23. Lam, J., Takeshita, S., Barker, J. E., Kanagawa, O., Ross, F. P., and Teitelbaum, S. L. (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. *J. Clin. Invest.* 106, 1481–1488
24. Li, P., Schwarz, E. M., O’Keefe, R. J., Ma, L., Boyce, B. F., and Xing, L. (2004) TNF signaling is not required for TNFα-mediated increase in CD11(hi) osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. *J. Bone Miner. Res.* 19, 207–213
25. Ma, T., Miyanishi, K., Suen, A., Epstein, N. J., Tomita, T., Smith, R. L., and Goodman, S. B. (2004) Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-α. *Cytokine* 26, 138–144
26. Wei, S., Kitaura, H., Zhou, P., Ross, F. P., and Teitelbaum, S. L. (2005) IL-1 mediates TNF-induced osteoclastogenesis. *J. Clin. Invest.* 115, 282–290
27. Takeshita, S., Kaji, K., and Kudo, A. (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. *J. Bone Miner. Res.* 15, 1477–1488
28. Ory, D. S., Neugeboren, B. A., and Mulligan, R. C. (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. *Proc. Natl. Acad. Sci. U.S.A.* 93, 11400–11406
29. Xu, D., Shi, Z., McDonald, J., Pan, G., Cao, X., Yu, X., and Feng, X. (2004) Development of a chimaeric receptor approach to study signalling by tumour necrosis factor receptor family members. *Biochem. J.* 383, 219–225
30. Feng, X., Novack, D. V., Faccio, R., Ory, D. S., Aya, K., Boyer, M. I., McHugh, K. P., Ross, F. P., and Teitelbaum, S. L. (2001) A Glanzmann’s mutation in β3 integrin specifically impairs osteoclast function. *J. Clin. Invest.* 107, 1137–1144
31. Bodmer, J. L., Schneider, P., and Tschopp, J. (2002) The molecular architecture of the TNF superfamily. *Trends Biochem. Sci.* 27, 19–26
32. Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S., and Yamamoto, T. (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. *Exp. Cell Res.* 254, 14–24
33. Asagiri, M., and Takayanagi, H. (2007) The molecular understanding of osteoclast differentiation. *Bone* 40, 251–264
34. Liu, W., Wang, S., Wei, S., Sun, L., and Feng, X. (2005) Receptor activator of NF-κB (RANK) cytoplasmic motif, 369PFQEP373, plays a predominant role in osteoclast survival in part by activating Akt/PKB and its downstream effector AFX/FOXO4. *J. Biol. Chem.* 280, 43064–43072
35. Galibert, L., Tometsko, M. E., Anderson, D. M., Cosman, D., and Dougall, W. C. (1998) The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. *J. Biol. Chem.* 273, 34120–34127
36. Hsu, H., Lacey, D. L., Dunstan, C. R., Solovyev, I., Colombo, A., Timms, E., Tan, H. L., Elliott, G., Kelley, M. J., Sarosi, I., Wang, L., Xie, X. Z., Elliott, R., Chiu, L., Black, T., Scully, S., Capparelli, C., Morony, S., Shimamoto, G., Bass, M. B., and Boyle, W. J. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. *Proc. Natl. Acad. Sci. U.S.A.* 96, 3540–3545