Association between Hashimoto thyroiditis and clinical outcomes of papillary thyroid carcinoma: A meta-analysis

Qizhi Tang*, Weiyu Pan, Liangyue Peng

Department of Endocrinology, Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, P.R. China

* Tangqizhi5618@outlook.com

Abstract

Objective
To assess association between Hashimoto thyroiditis (HT) and clinical outcomes of papillary thyroid carcinoma (PTC).

Methods
Databases including Pubmed, Embase, Cochrane Library, and Web of Science were searched. Weighed mean differences (WMDs) and odds ratios (ORs) were used to evaluate association between HT and clinical outcomes of PTC, and the effect size was represented by 95% confidence intervals (CIs). Heterogeneity test was performed for each indicator. If the heterogeneity statistic $I^2 \geq 50\%$, random-effects model analysis was carried out, otherwise, fixed-effect model analysis was performed. Sensitivity analysis was performed for all outcomes, and publication bias was tested by Begg’s test.

Results
Totally 47,237 patients in 65 articles were enrolled in this study, of which 12909 patients with HT and 34328 patients without HT. Our result indicated that PTC patients with HT tended to have lower risks of lymph node metastasis (OR: 0.787, 95%CI: 0.686–0.903, $P = 0.001$), distant metastasis (OR: 0.435, 95%CI: 0.279–0.676, $P < 0.001$), extrathyroidal extension (OR: 0.745, 95%CI: 0.657–0.845, $P < 0.001$), recurrence (OR: 0.627, 95%CI: 0.483–0.813, $P = 0.004$), and a better 20-year survival rate (OR: 1.396, 95%CI: 1.109–1.758, $P = 0.005$) while had higher risks of multifocality (OR: 1.245, 95%CI: 1.132–1.368, $P < 0.001$), perineural infiltration (OR: 1.922, 95%CI: 1.195–3.093, $P = 0.007$), and bilaterality (OR: 1.394, 95%CI: 1.118–1.739, $P = 0.003$).

Conclusions
PTC patients with HT may have favorable clinicopathologic characteristics, compared to PTCs without HT. More prospective studies are needed to further elucidate this relationship.
Background

Hashimoto thyroiditis (HT) is a chronic inflammation of the thyroid gland initially described over a century ago, which is now considered the most common autoimmune disease [1, 2]. An incidence is estimated to range from 0.3 to 1.5 cases per 1,000 people, with a prevalence of 5–10% in the overall population [3]. HT is characterized by hypothyroidism, the presence of serum antithyroglobulin and antiperoxidase antibodies, and widespread lymphocytic infiltration with depletion of follicular cells [4, 5]. Thyroid cancer (TC) is the most common malignancy of the endocrine system, with papillary thyroid carcinoma (PTC) being the most prevalent form that accounts for 80% of all diagnosed TCs [6]. The incidence of PTC and HT is rapidly increasing in many countries [7, 8]. The disease of PTC coexisted with HT presents an increasing trend year by year [9]. The coexistence of these two diseases has also been reported to range from 10% to 58% [10, 11], which has aroused great concern.

The relationship between HT and PTC was investigated in several studies. Coexistent HT has been reported to be significantly associated with the less aggressive clinicopathologic characteristics of PTC [10, 12]. Whereas several scholars observed HT is associated with a significantly increased risk of PTC [13]. Other studies have shown no connection between the presence of HT and PCT [14, 15]. Moreover, the association with prognosis between HT and PC remains unclear. It is uncertain whether coexisting with HT in PTC represents a good prognosis or is simply the concurrence of both diseases. It is therefore reasonable to further evaluate the association between HT and PTC.

Herein, we conducted a meta-analysis with a multitude of outcome assessments included to explore the association between HT and PTC prognosis.

Methods

Search strategy

Published literature search was performed on Pubmed, Embase, Cochrane Library, and Web of Science databases from inception to December 11, 2020. The search words were as follows: “Thyroid Cancer, Papillary” OR “Cancer, Papillary Thyroid” OR “Papillary Thyroid Cancer” AND “Hashimoto Disease” OR “Hashimoto Struma” OR “Hashimoto Thyroiditis” OR “Hashimoto Thyroiditides” OR “Autoimmune thyroid disease”. The detailed search terms from PubMed are listed in S1 File.

Inclusion and exclusion criteria

Inclusion criteria were: (1) studies with patients with PTC; (2) studies including patients with HT in the case group, and those without HT in the control group; (3) studies with the latest research results for the same studies by the same authors; (4) studies published in English; (5) cohort studies, case-control studies, and cross-sectional studies.

Exclusion criteria: (1) animal experiments; (2) studies in which data were incomplete; (3) reviews, meta-analyses, case reports, conference reports, editorial materials, and letters.

Quality assessment and data extraction

The Chinese version of the Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the literature in cohort studies and case-control studies. The total score of the scale was 10, with < 5 as low quality and ≥5 as high quality. Regarding quality evaluation of cross-sectional studies, the Business Integration (JBI) scale was adopted, with 1–14 as low quality and 15–20 as high quality.
For each study, the following information was extracted, including author, year, country, study design, group, the number of patients, gender, age, subtype, tumor size, extent of surgery, tumor node metastasis stage, follow up, quality, outcomes.

Outcomes

The association between HT and clinical outcomes of PTC was assessed by lymph node metastasis (including lymph node metastasis, central lymph node metastasis, lateral lymph node metastasis), distant metastasis, extrathyroidal extension, recurrence, multifocality, invasion (includes vascular invasion, capsular invasion, perineural infiltration), bilaterality, number of deaths, AMES stage and MACIS score.

Statistical analysis

Software Stata (version 15.1, Stata Corporation, College Station, TX, USA) was used for statistical analysis. Weighed mean differences (WMDs) were statistics for measurement data, odds ratios (ORs) were used as effect indicators for continuous variables and frequency of events, and effect sizes were represented by 95% confidence intervals (CIs). A heterogeneity test was performed for each indicator. If THE heterogeneity statistic $\hat{I}^2 \geq 50\%$, random-effects model analysis was carried out, otherwise, fixed-effects model analysis was performed. Each meta-analysis may create a false-positive or negative conclusion. Given this, TSA was conducted to reduce these statistical errors [16]. TSA is a methodology that combines an information size calculation (accumulated sample sizes of all included trials) to reduce type I error and type II error for a meta-analysis with the threshold of statistical significance (http://www.ctu.dk/tsa). TSA was used to quantify the statistical reliability of data in the cumulative meta-analyses by adjusting significance levels for sparse data and repetitive testing on accumulating data. Sensitivity analysis was performed for all outcomes, and publication bias was tested by Begg’s test. Given the age imbalance between the case group and control group, an age-based sensitivity analysis was also applied (S2 File). $P<0.05$ was considered statistically significant.

Results

Initially, 1992 studies were searched according to the search strategy, and after duplicated removed, 1331 records were identified. With 174 full-text articles eligible for screening, 65 articles [5, 8, 9, 12, 13, 17–76] were finally included in this meta-analysis, including 32 case-control studies, 27 cohort studies, and 6 cross-sectional studies. The flow chart depicting the study selection process is shown in Fig 1. Totally 47,237 patients were enrolled in this study, of which 12909 patients with HT and 34328 patients without HT. The characteristics of included studies are presented in Table 1.

Lymph node metastasis

Lymph node metastasis. Lymph node metastasis was assessed in 44 studies including 11254 patients. The heterogeneity test results were statistically significant ($\hat{I}^2 = 75.9\%$), so the random-effects model was adopted. The result showed that HT group had a lower risk of lymph node metastasis than non-HT group (OR: 0.787, 95%CI: 0.686–0.903, $P = 0.001$) (Table 2, Fig 2A).

Central lymph node metastasis. Seventeen studies involving 7328 patients were identified to assess central lymph node metastasis. The random-effect model result indicated that PTC patients with HT had a lower risk of developing central lymph node metastasis than those without ($\hat{I}^2 = 86.4\%$, OR: 0.796, 95%CI: 0.636–0.995, $P = 0.045$) (Table 2, Fig 2B).
Lateral lymph node metastasis. A total of 11 studies consisting of 1362 patients provided data to assess lateral lymph node metastasis. The heterogeneity test results were not statistically significant ($I^2 = 43.3\%$), so the fixed-effect model was adopted. It was shown that HT was associated with a decreasing risk of lateral lymph node metastasis in PTC patients (OR: 0.845, 95% CI: 0.733–0.973, $P = 0.02$) (Table 2, Fig 2C).

Distant metastasis

Distant metastasis was assessed in 11 studies comprising 151 patients. The fixed-effects model result showed that the HT group was at a lower risk of distant metastasis than the non-HT group (OR: 0.435, 95% CI: 0.279–0.676, $P<0.001$) (Table 2, Fig 3).
Table 1. Basic characteristics of included studies.

Author	Year	Country	Study design	Group	Diagnosis of HT	No	Sex (female/ male)	Age	Subtype of PTC	Tumor size (cm)	Extent of surgery	TNM stage	Follow up (months)	QA	Outcomes	
Ahn	2011	Korea	retrospective cohort	PTC only	-	211	179/41	48.52 ±14.4	conventional 203, follicular variant 7, tall cell variant 1	1.80±1.5	TT 178, thyroid lobectomy with isthmusectomy 33	I 127, III/ IV 84	62.8±27.0	9	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Dobrinja	2016	Italy	retrospective cohort	PTC + HT	diffuse lymphocytic and plasma cell infiltration, lymphoid follicle formation with germinal centres, varying degree of fibrosis, paracortical atrophy, and the presence of large follicular cells with abundant eosinophilic cell changes	58	55/3	42.8±12.7	conventional 75, follicular variant 2, tall cell variant 1	1.60±1.0	TT 47, thyroid lobectomy with isthmusectomy 11	I 35, III/ IV 23	59.0±28.4	7	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Cortesi	2010	Italy	retrospective cohort	PTC only	-	105	81/24	51.06 ±13.07	papillary 70, FVPC 27, follicular 8	- < 0.558	-	-	-	-	5	☐ ☐
Cai	2015	China	retrospective case-control	PTC only	-	823	827/223	46.2±11.4	-	1.10±0.8	TT or lobectomy with prophylactic CLND and/or therapeutic LLND	II/ II, III/ IV 298	-	5	☐ ☐	
Cai	2015	China	retrospective case-control	PTC + HT	diffuse lymphocytic and plasma cell infiltration, lymphoid follicle formation with germinal centres, paracortical atrophy with eosinophilic changes, and variable amounts of stromal fibrosis throughout the thyroid gland	67	62/5	papillary 95, FVPC 27, follicular 2	- < 0.558	-	-	-	-	5	☐ ☐	
Cai	2015	China	retrospective case-control	PTC + HT	diffuse lymphocytic and plasma cell infiltration, lymphoid follicle formation with germinal centres, paracortical atrophy with eosinophilic changes, and variable amounts of stromal fibrosis throughout the thyroid gland	229	-	-	-	1.10±0.8	-	-	-	-	5	☐ ☐
Caralho	2017	Brazil	prospective cohort	PTC only	-	442	367/95	median 46 (14–78)	-	≤2.132, 2.4–228, >4.82	TT 83	T4N0, thyroid lobectomy + TT or lobectomy with prophylactic CLND and/or therapeutic LLND	86 (24–120)	8	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	
Consolini	2010	Italy	retrospective case-control	PTC only	-	76	57/19	56.27 ±12.79	-	1.26±1.203	TT 101	I 57, II, III/ IV 16	-	6	☐ ☐	
Dohranja	2016	Italy	retrospective cohort	PTC only	-	90	56/34	54 (12–84)	-	2.51±2.09	-	TT 115	I 40, II, III/ IV 8	96 (82–140)	7	☐ ☐
Dohranja	2016	Italy	retrospective cohort	PTC + HT	diffuse lymphocytic and plasma cell infiltration, lymphoid follicle formation with germinal centres, paracortical atrophy with eosinophilic cell changes	70	63/7	45.8±13.2	-	1.56±1.30	TT 85, lobectomy + TT or lobectomy with prophylactic CLND and/or therapeutic LLND	I 50, II, III/ IV 11	39 (18–343)	8	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	

(Continued)
Table 1. (Continued)

Author	Year	Country	Study design	Group	No Sex (female/male)	Age	Subtype of PTC	Tumor size (cm)	Exstent of surgery	TNN stage	Follow up (months)	QA	Outcomes					
Dvorak 2013	Israel	retrospective cohort	PTC only	-	98	80/8	50.5±15	-	TT 196	-	-	1.95±1.3	10	8	(Continued)			
Girardi 2015	Brazil	retrospective cohort	PTC + HT	patient’s history of lymphadenitis with positive antithyroid antibodies or when there was a diffuse lymphocytic infiltration bilaterally on the pathology report	98	91/7	50.5±15	-	-	1.78±1.2	10	5, 9, II, III 24, IV 8	(Continued)					
Jara 2013	USA	retrospective cohort	PTC only	-	554	405/149	30.6±13.1	classic: 312, tall cell 73, follicular 80, mixed form 79, other 10	-	-	1.91±1.7	10	0	(Continued)				
Ieni 2017	Italy	retrospective cohort	PTC only	-	893	817/122	54±14	papillary 410, papillary/follicular 120	2.12±1.62	TT 1380	14	4	1.68±1.53	10	0	(Continued)		
Giagnetta 2014	Greece	retrospective cohort	PTC + HT	dense or diffuse lymphocytic and plasma cell infiltration, oxyphilic cells, and formation of lymphoid follicles in the tissue of both lobes	441	379/62	42±10	papillary 282, papillary/follicular 159	1.83±1.53	TT 1380	14	10	1.3±1.53	10	0	(Continued)		
Garaveli 2015	Brazil	retrospective cohort	PTC only	-	209	205/66	47.15±14.14	-	TT 289	102	10	1.91±1.70	10	0	(Continued)			
Han 2019	China	case-control	PTC only	-	89	65/28	42.3±12.3	papillary/follicular variant 148, follicular variant 32, conventional 150, papillary/follicular 99, papillary 110, follicular 66, papillary/follicular 159	1.2±0.7	-	1.91±1.70	10	0	(Continued)				
Huang 2011	China	retrospective cohort	PTC only	-	1703	1386/337	40.8±14.4	-	TT 431	LND/radical neck dissection 1292	1.15	4	1.2±0.7	10	0	(Continued)		
Jenni 2017	Italy	retrospective case-control	PTC only	-	357	253/94	47.2±11.78	classic: variant 140, follicular variant 118, sclerosing 23, tall cell 4, Warthin-like 3, hobnail/microglandular 6, cebroïdent 1	1.2±0.971	-	1.91±1.70	10	0	(Continued)				
Jara 2013	USA	retrospective case-control	PTC only	-	259	192/77	medium 47(11–86)	conventional: 205, follicular variant 48, papillary/follicular variant 37, tall cell variant 18, trabecular variant 18, Warthin-like 3, follicular 110, papillary/follicular 110, trabecular variant 18, follicular variant 37, Warthin-like 3, follicular 110, papillary 110, papillary/follicular 110	2.0±1.0–2.5	TT 127	LND/radical neck dissection 12	1.69	4	1.4±1.0–2.5	10	0	(Continued)	
Jeong 2012	Korea	retrospective cohort	PTC only	-	402	312/90	48±8	medium: 47(11–86)	conventional: 140, follicular variant 118, sclerosing 23, tall cell variant 18, trabecular variant 18, Warthin-like 3, follicular 110, papillary/follicular 110, trabecular variant 18, follicular variant 37, Warthin-like 3, follicular 110, papillary 110, papillary/follicular 110	1.5±1.0–2.0	TT 127	LND/radical neck dissection 12	1.69	4	1.4±1.0–2.5	10	0	(Continued)
Kashima 1998	Japan	case-control	PTC only	-	2352	1325/129	48.6	-	TT 402	102	10	1.12±0.77	10	0	(Continued)			

Association between Hashimoto thyroiditis and clinical outcomes of papillary thyroid carcinoma

(Continued)
Author	Year	Country	Study design	Group	Diagnosis of HT	No	Sex (female/male)	Age	Subtype of PTC	Tumor size (cm)	Extent of surgery	TNM stage	Follow up (months)	QA	Outcomes
Kebebew	2001	USA	retrospective cohort	PTC only	diffusely lymphoplasmyctotic infiltrate, oxyphilic cells, formation of lymphoid follicles with germinal centers and atrophic changes in the area of normal thyroid tissue	95	62/34	54	-	≤1, 1.5–4	TT/near TT 64, subtotal thyroidectomy 3, lobectomy 20	1, 11 II, 12, III, IV	52.8	8	官方认证
Kim	2009	Korea	case-control	PTC only	diffusely lymphoplasmyctotic infiltrate, oxyphilic cells, formation of lymphoid follicles with germinal centers and atrophic changes in the area of normal thyroid tissue	64	54/10	44.1±13.4	-	≤1, 1.5–4	TT/near TT 64, subtotal thyroidectomy 4, lobectomy 11	1, 11 II, 12, III, IV	-	官方认证	
Kim	2010	Korea	case-control	PTMC only	heavy infiltration of lymphocytes with varying degrees (including germinal centers) in thyroid tissue, the presence of Hurthle cells and varying degree of acinar atrophy	218	174/44	<45	-	0.8–1	TT 128	-	-	官方认证	
Kim	2011	Korea	case-control	PTC only	any 1 of the following criteria: (1) positive for anti-TPO antibody, (2) positive for antithyroglobulin antibody, (3) pathologic confirmation of Hashimoto's thyroiditis	721	527/194	46.0±12.1	-	1.24±0.96	III/IV 132	-	官方认证		
Kim	2013	Korea	retrospective cohort	PTC only	diffusely lymphoplasmyctotic infiltrations with germinal centers, oxyphilic cells, formation of lymphoid follicles with germinal centers and atrophic changes in the area of normal thyroid tissue	931	778/153	46.8±11.01	-	0.9±0.3	lobectomy 106, TT-MRND 294	-	-	官方认证	
Kim	2014	Korea	retrospective cohort	PTC only	diffusely lymphoplasmyctotic infiltrates, oxyphilic cells, formation of lymphoid follicles, fibrosis, and follicular cell atrophy	125	114/11	44.6±25–75	-	0.9±0.2	TT 144	-	官方认证		
Kim	2016	Korea	case-control	PTC only	diffusely lymphoplasmyctotic infiltrates, oxyphilic cells, formation of lymphoid follicles, fibrosis, and follicular cell atrophy	1576	1289/287	47.2±12.0	-	0.9±0.5	TT 1406, ≤TT 110	II, III/IV 619	-	官方认证	
Kim	2016	Korea	case-control	PTC only	diffusely lymphoplasmyctotic infiltrates, oxyphilic cells, formation of lymphoid follicles, fibrosis, and follicular cell atrophy	204	198/8	44.8±11.9	-	0.8±0.5	TT 190, ≤TT 14	II, III/IV 619	-	官方认证	
Kim	2016	Korea	case-control	PTC only	diffuse parenchymal infiltration by lymphocytes (particularly plasma B-cells), a germinal center formation, follicular cell destruction, Hurthle cell change and variable amounts of stromal fibrosis throughout the thyroid gland	1006	912/94	46.0±11.4	-	1.1±0.7	TT-bilateral CND 3332	-	-	官方认证	

(Continued)
Author	Year	Country	Study design	Group	Diagnosis of HT	No	Sex (Female/Male)	Age	Subtype of PTC	Tumor size (cm)	Extant of surgery	TNM stage	Follow up (months)	QA	Outcomes
Kim	2018	Korea	retrospective case-control	PTC only	diffuse lymphatic and plasma cell infiltration, neoplastic cells and the formation of lymphoid follicles or reactive germinal centers in the area of normal thyroid tissue	124	107/17	50.38 ± 11.51	-	0.92 ± 0.73	T1 272	I 117, II 40, IV 13	-	6	
Konturek	2014	Poland	retrospective cohort	PTC + HT (1) high anti-thyroid peroxidase antibodies titer (anti-TPO), (2) lesions visualized by ultrasonography showing a hypochogenic or hypodense, nodular pattern at least 5 mm in diameter, identification of a perinodular hypochogenic or hypechogenic halo and presence of an anechoic lesion with a well-defined posterior wall, (3) histology: presence of a diffuse lymphocytic infiltrate in the thyroid parenchyma and stroma with reactive follicles and lymphoid follicles, presence of small follicles with a decreased colloid volume, focal of fibrosis and epithelial cells containing cells	643	574/69	< 45.27 ± 45.56	-	0.94 ± 0.69	TT + CLND, subtotal bilateral lobectomy	T1a 191, T1b 77, T2 79, T3 108	-	7		
Kurnakovcingslu	2007	Turkey	retrospective case-control	PTC only	diffuse mononuclear cell infiltration with fibrosis, occasional well-developed germinal centers, and enlarged follicular cells with abundant eosinophilic, granular cytoplasms	162	-	46.6 ± 13.5	follicular variant 37	< 1.18 ± 1.14	TT 199	-	6		
Kwon	2015	Korea	retrospective cohort	PTC + HT (1) pathological diagnosis included chronic lymphocytic infiltration	1493	1187/308	46.12 ± 11.13	classical follicular variant 94, cystic 14, oncocytic 4, others 22	0.95 ± 0.67	thyroid lobectomy or TT with cervical LND 1945	I 164, II 9, III 736, IV 100	279 ± 55			
Kwon	2014	Korea	cohort	PTC + HT (1) pathological diagnosis included chronic lymphocytic infiltration	86	72/14	48.8 ± 12.2	conventional follicular variant 79, variants 7	0.003	T1a 191, T1b 77, T2 79, T3 108	I 229, II 38, III 10, IV 16	-			
Kwon	2016	Korea	retrospective cohort	PTC + HT (1) pathological diagnosis included chronic lymphocytic infiltration	473	350/123	48.4 ± 10.5	-	1.23 ± 0.93	TT + CLND 435	40 ± 23.5				
Lee	2018	Korea	case-control	PTC + HT histological diagnosis	215	200/15	46.9 ± 10.4	-	1.11 ± 0.96	TT + CLND 198	-	-			
Lee	2020	Korea	retrospective cohort	PTC + HT pathological reports or chronic lymphocytic thyroiditis	563	528/35	46.4 ± 11.3	-	0.83 ± 0.55	-	-				
Liang	2017	China	retrospective cohort	PTC + HT lymphocytic infiltration of germinal centers and the presence of large follicular cells with abundant granular eosinophilic cytoplasms on histologic examination	1174	1082/92	45.5 ± 10.32	-	0.96 ± 0.71	TT 822, 90 ± 0.2	T1 118, T2 46, T3 109, T4 21	24 (1–90)			
Liang	2017	China	retrospective cohort	PTC + HT diffuse lymphocytic infiltration, germinal centers and enlarged epithelial cells with large nuclei and eosinophilic cytoplasms	1055	789/266	41.34 ± 11.63	-	1.34 ± 1.1	thyroid lobectomy with inhomogeneity 520, TT 972, CLND without LLND 785, comprehensive neck dissection 409	I 164, II 9, III 175, IV 165	38.4 ± (5.1–129.3)			

(Continued)
Table 1. (Continued)

Author	Year	Country	Study design	Group	Diagnosis of HT	No.	Sex	Age	Subtype of PTC	Tumor size (cm)	Extent of surgery	TNN stage	Follow up (months)	QA	Outcomes		
Lim 2013	Korea	retrospective case-control	PTC + HT	-	pathology reports	964	873/3/1	median 43	-	-	0.79	III/IVA 3.11	-	4	(Continued)		
Liu 2014	China	retrospective case-control	PTC + HT	-	diffuse lymphocytic infiltration with the formation of lymphoid follicles and reactive germinal centers	1141	840/1/10	45.23	-	-	1.392	10.04/21	-	-	6	(Continued)	
Liu 2016	China	retrospective case-control	PTC only	-	-	179	77/42	46.35	113.23	-	0.07/0.22	-	-	5	(Continued)		
Lu 2020	China	case-control	PTC only	-	-	89	65/28	42.81/24	-	-	1.11/0.7	-	III/IV 1, III/IV 2	-	4	(Continued)	
Lu 2013	China	case-control	PTC only	-	-	549	45/130	44.81/38	-	-	2.24/1.38	-	III/IV 10	-	6	(Continued)	
Ma 2018	China	case-control	PTC + HT	-	diffuse lymphocytic infiltration, germinal centers, enlarged epithelial cells with large nuclei and eosinophilic cytoplasm (Askanazy or Hurthle cells), and variable amounts of stromal fibrosis throughout the thyroid gland	127	114/9	41.3/12.5	-	-	1.84/0.93	III/IV 8	-	(Continued)			
Molnar 2019	Hungary	case-control	PTC only	-	-	49	47/4	56.513.1	-	0.84/0.44	-	-	(Continued)				
Mohamed 2020	Egypt	cross-sectional	PTC only	-	-	54	50/14	50.2	-	-	0.84/0.44	-	III/IV 10	-	6	(Continued)	
Mohr 2019	Hungary	case-control	PTC only	-	-	173	155/40	57.25/61	-	1.3	(Continued)						
Nam 2016	Korea	retrospective cohort	PTC only	-	-	15	10/5	47.1	13.04	-	1.51/1.4	0.7–4.0	TT + unilateral/bilateral CLND 57	15, II, III, IV 3	51.81/0.35	8	(Continued)
Park 2015	Korea	retrospective case-control	PTC only	-	-	489	48/38	43.82	13.92	-	0.875	0.398	TT 38, lobectomy 38, subtotal thyroidectomy 1	Tia 279, Tia 59, Tia 71, Tia 70, Tia 70	-	6	(Continued)
Table 1. (Continued)

Author	Year	Country	Study design	Group	Diagnosis of HT	No	Sex (female/ male)	Age	Subtype of PTC	Tumor size (cm)	Extent of surgery	TNM stage	Follow up (months)	QA	Outcomes
Paulsen 2012	USA	historical cohort	PTC only	-	diffuse lymphocytomarcous infiltrate, epithelial cells, formation of lymphoid follicles with germinal centers and atrophic changes in the area of normal thyroid tissue	78	57/21	45.6	classic 65, follicular variant 12, other 1	2.8	TT + CLND 139	-	-	8	

Pilk 2018 Italy retrospective cohort | PTC + HT | a rich lymphocytic infiltrate diffuse throughout the thyroid gland, commonly organized in follicles with a germinal center. | 75 | 68/7 | 45.7±14.5 |

Qa 2016 China retrospective cohort | PTC + HT | any one of the following criteria: (1) positive for anti-thyroid peroxidase (TPO) antibody, (2) positive for antithyroglobulin antibody, (3) pathologic confirmation of HT | 300 | 209/91 | 45.1±18.9 | - | - | TT 375 | - | 75.36 ±50.32 | 7 |

Ryu 2020 Korea retrospective cohort | PTC + HT | diffuse lymphocytic infiltration in the area of the normal thyroid tissue irrespective of the presence of anti-thyroid antibodies | 364 | 320/44 | 44.3±10.5 | - | - | TT 54, non-TT 802 | TI 782, T3 83, T4 21 | 85.7±18.6 | 8 |

Singh 1999 USA retrospective cohort | PTC only | diffuse lymphocytic and plasma cell infiltrate, epithelial cells, and the formation of lymphoid follicles and reactive germinal centers | 331 | 222/109 | median 43 | - | median 2 | total 158, 26±31 | median 3 | 43.6 | 8 |

Song 2018 Korea retrospective cohort | PTC only | bilaterally diffuse lymphocytic infiltrates and lymphoid follicles with germinal centers in the area of normal thyroid tissue | 1064 | 854/210 | median 49.0 | - | median 1.2 | TT + CLND 1389 | - | 98 | 8 |

Wang 2018 China retrospective case-control | PTC only | diffuse lymphocytic infiltration in the thyroid parenchyma and stroma, with formation of reactive germinal centers and lymphoid nodules and presence of oxyphilic cells | 119 | 91/28 | <45 70, ≥45 60 | - | 1.924 ±0.93 | bilateral thyroidectomies 206 | I/II 86, III/IV 14, IV 6 | 4 |

Yang 2016 China case-control | PTC only | diffuse lymphocytic and plasma cell infiltration, epithelial cells, and lymphoid follicles with reactive germinal centers | 87 | 81/6 | <45 70, ≥45 51 | 1.518 ±1.01 | I/II 11, III/IV 16 | - | 6 |

Ye 2013 China retrospective case-control | PTC only | diffuse lymphocytic infiltrate and lymphoid follicles with germinal centers | 817 | 648/171 | <30 65, 30–44 362, 45–59 291, ≥60 69 | - | 1.498, 1–4 50, 5–9 17 | I/II 66, III/IV 35 | - | 6 |

Yoon 2012 Korea case-control | PTC only | lymphoid follicles with germinal centers and atrophic changes in the area of normal thyroid parenchyma | 139 | 112/27 | 40.6±11.3 | - | 0.951±0.60 | TT + bilateral CLND 195 | - | - | 4 |

Zong 2016 China retrospective case-control | PTC only | diffuse lymphocytomarcous infiltrate with germinal centers, parenchymatous atrophy with oncocytic changes, and variable amounts of stromal fibrosis throughout the thyroid gland | 222 | 195/27 | 45.9±12.1 | 1.431±0.86 | I/II 140, III/IV 81 | - | 14 |

(Continued)
Table 1. (Continued)

Author	Year	Country	Study design	Group	Diagnosis of HT	No	Sex (female/ male)	Age	Subtype of PTC	Tumor size (cm)	Extent of surgery	TNM stage	Follow up (months)	QA	Outcomes
Zeng	2018	China	cross- sectional	PTC only	pathological diagnosis	46	30/10	< 45 25, ≥ 45 21	-	-	thyroidectomy 129	I 190, II 8	-	10	☐☐☐☐☐
Zhu	2016	China	retrospective cohort	PTC only	-	180 85/23	< 15 16, 15–20 52	-	< 2 25, ≥ 2 80	thyroidectomy 129	I 190, II 8	-	10	☐☐☐☐☐	

Notes: QA, Quality assessment; HT, Hashimoto thyroiditis; CLT, chronic lymphocytic thyroiditis; PTC, papillary thyroid cancer; PTMC, papillary thyroid microcarcinoma; FVPC, follicular variant of papillary cancer; ETE, extrathyroidal extension; TT, total thyroidectomy; LND, lymph node dissection; CLND, central-compartment lymph node dissection; MRND, modified radical neck dissection; TgAb, antithyroglobulin antibodies; MACIS, multifocality; Bilaterality; Invasion; Deaths; AMES stage.

https://doi.org/10.1371/journal.pone.0269995.t001

Extrathyroidal extension. Totally 41 studies covering 13940 patients identified the association between HT and clinical outcome of PTC. The heterogeneity test results were statistically significant ($I^2 = 74.1\%$), so the random-effect model was utilized. The result revealed that the risk of extrathyroidal extension in the HT group was lower than that in the non-HT group (OR: 0.718, 95%CI: 0.572–0.901, $P<0.001$) (Table 2, Fig 4).

Recurrent. Sixteen studies containing 577 patients have assessed the recurrence. The result of fixed-effects model demonstrated that HT could decrease the risk of recurrence in PCT (OR: 0.627, 95%CI: 0.483–0.813, $P<0.001$) (Table 2, Fig 5).

Multifocality. Multifocality referred to two or more foci found in the same lobe of the gland. A total of 44 studies embracing 10320 were included to evaluate multifocality. The heterogeneity test results were statistically significant ($I^2 = 61.3\%$), so the random-effects model was used. The result illustrated that the HT group had a higher risk of multifocality than the non-HT group (OR: 1.245, 95%CI: 1.132–1.368, $P<0.001$) (Table 2).

Invasion.

Vascular invasion. Totally 17 studies embodying 1837 patients probed into the vascular invasion. The result demonstrated that PTC patients with HT had a lower risk of vascular invasion than those without (OR: 0.718, 95%CI: 0.572–0.901, $P = 0.004$) (Table 2, Fig 6).

Capsular invasion. Nine studies including 2273 patients assessed the capsular invasion. No difference was found between the HT and non-HT groups in capsular invasion (OR: 1.234, 95%CI: 0.829–1.835, $P = 0.300$).

PLOS ONE

Association between Hashimoto thyroiditis and clinical outcomes of papillary thyroid carcinoma

June 16, 2022

11 / 24
Variables	OR/WMD (95%CI)	P	I²
Lymph node metastasis			
Overall	0.787(0.686,0.903)	0.001	75.9
Sensitivity analysis	0.787(0.686,0.903)		
Publication bias	Z = 0.86	0.39	
Central lymph node metastasis			
Overall	0.796(0.636,0.995)	0.045	86.4
Sensitivity analysis	0.796(0.636,0.995)		
Publication bias	Z = 1.52	0.127	
Lateral lymph node metastasis			
Overall	0.845(0.733,0.973)	0.02	43.3
Sensitivity analysis	0.845(0.733,0.973)		
Publication bias	Z = 0.78	0.436	
Distant metastasis			
overall	0.435(0.279,0.676)	<0.001	0
Sensitivity analysis	0.435(0.279,0.676)		
Publication bias	Z = 0.08	0.938	
Extrathyroidal extension			
Overall	0.745(0.657,0.845)	<0.001	74.1
Sensitivity analysis	0.745(0.657,0.845)		
Publication bias	Z = 0.82	0.412	
Recurrence			
Overall	0.627(0.483,0.813)	<0.001	16.4
Sensitivity analysis	0.627(0.483,0.813)		
Publication bias	Z = 0.32	0.753	
Multifocality			
Overall	1.245(1.132,1.368)	<0.001	61.3
Sensitivity analysis	1.245(1.132,1.368)		
Publication bias	Z = 1.16	0.245	
Invasion			
vascular invasion			
Overall	0.718(0.572,0.901)	0.004	62
Sensitivity analysis	0.718(0.572,0.901)		
Publication bias	Z = 0.29	0.773	
Capsular invasion			
Overall	1.234(0.829,1.835)	0.3	88.5
Sensitivity analysis	1.234(0.829,1.835)		
Publication bias	Z = 0.73	0.466	
Perineural infiltration			
Overall	1.922(1.195,3.093)	0.007	0
Sensitivity analysis	1.922(1.195,3.093)		
Bilaterality			
Overall	1.394(1.118,1.739)	0.003	78.9
Sensitivity analysis	1.394(1.118,1.739)		
Publication bias	Z = 2.20	0.028	
Deaths			
Overall	0.827(0.386,1.773)	0.626	16.8
Sensitivity analysis	0.827(0.386,1.773)		

(Continued)
Perineural infiltration. Two studies comprising 132 patients assessed the perineural infiltration. The perineural infiltration risk of the HT group was higher than that of the non-HT group (OR: 1.922, 95%CI: 1.195–3.093, \(P = 0.007 \)) (Table 2).

Bilaterality

Bilaterality referred to the presence of PTC in both thyroid lobes. Totally 18 studies involving 3421 were enrolled to assess bilaterality. Because the heterogeneity test results were statistically significant (\(I^2 = 78.9\% \)), the random-effects model was adopted. The result showed that HT increased the risk of bilaterality in PTC patients (OR: 1.394, 95%CI: 1.118–1.739, \(P = 0.003 \)) (Table 2).

Deaths

Deaths. Death was identified in 6 studies containing 42 patients. There was no statistically significant in death between HT and non-HT groups (OR: 0.827, 95%CI: 0.386–1.773, \(P = 0.626 \)).

Disease-specific death. Two studies including 82 patients were included to assess disease-specific death. The result of fixed-effects model demonstrated that HT was not associated with disease-specific death in PTC (OR: 0.305, 95%CI: 0.059–1.585, \(P = 0.158 \)).

Table 2. (Continued)

Variables	OR/WMD (95%CI)	\(P \)	\(I^2 \)
Disease-specific death			
Overall	0.305 (0.059, 1.585)	0.158	0
Sensitivity analysis	0.305 (0.059, 1.585)		
AMES stage			
Low risk			
Overall	1.396 (1.109, 1.758)	0.005	0
Sensitivity analysis	1.396 (1.109, 1.758)		
MACIS score			
overall	-0.221 (-0.306, -0.137)	<0.001	37.8
Sensitivity analysis	-0.221 (-0.306, -0.137)		
<6			
Overall	1.568 (0.930, 2.645)	0.092	56.7
Sensitivity analysis	1.568 (0.930, 2.645)		

Notes: OR: odds ratio; WMD: weighed mean difference.

https://doi.org/10.1371/journal.pone.0269995.t002

Perineural infiltration. Two studies comprising 132 patients assessed the perineural infiltration. The perineural infiltration risk of the HT group was higher than that of the non-HT group (OR: 1.922, 95%CI: 1.195–3.093, \(P = 0.007 \)) (Table 2).

Bilaterality

Bilaterality referred to the presence of PTC in both thyroid lobes. Totally 18 studies involving 3421 were enrolled to assess bilaterality. Because the heterogeneity test results were statistically significant (\(I^2 = 78.9\% \)), the random-effects model was adopted. The result showed that HT increased the risk of bilaterality in PTC patients (OR: 1.394, 95%CI: 1.118–1.739, \(P = 0.003 \)) (Table 2).

Deaths

Deaths. Death was identified in 6 studies containing 42 patients. There was no statistically significant in death between HT and non-HT groups (OR: 0.827, 95%CI: 0.386–1.773, \(P = 0.626 \)).

Disease-specific death. Two studies including 82 patients were included to assess disease-specific death. The result of fixed-effects model demonstrated that HT was not associated with disease-specific death in PTC (OR: 0.305, 95%CI: 0.059–1.585, \(P = 0.158 \)).
AMES stage-low risk

A total of 4 studies embracing 1874 patients were enrolled to assess AMES stage-low risk. The heterogeneity test results showed that the differences were not statistically significant ($I^2 = 0.0\%$), so the fixed-effects model was used for analysis. The low risk in the AMES stage represents a 20-year survival rate of 99%. The HT group had an advantage over the non-HT group in improving 20-year survival (OR: 1.396, 95%CI: 1.109–1.758, $P = 0.005$) (Table 2, Fig 7).

MACIS score

MACIS score. The higher the MACIS score, the worse the survival. Four studies involving 2733 patients were included to assess the MACIS score. The result uncovered that the the HT group had an advantage over the non-HT group in improving 20-year survival (WMD: -0.221, 95%CI: -0.306–-0.137, $P<0.001$) (Table 2, Fig 8).

MACIS score <6. MACIS score <6 was assessed in 3 studies including 2321 patients. When MACIS score was <6, there was no difference in 20-year survival between HT and non-HT groups (OR: 1.568, 95%CI: 0.930–2.645, $P = 0.092$).

Publication bias

Begg’s test was used for the assessment of publication bias. The result showed that there was no publication bias for lymph node metastasis ($Z = 0.86, P = 0.39$), central lymph node metastasis ($Z = 1.52, P = 0.127$), lateral lymph node metastasis ($Z = 0.78, P = 0.436$), distant metastasis ($Z = 0.08, P = 0.938$), extrathyroidal extension ($Z = 0.82, P = 0.412$), recurrence ($Z = 0.32, P = 0.753$), multifocality ($Z = 1.16, P = 0.245$), vascular invasion ($Z = 0.29, P = 0.773$), capsular invasion ($Z = 0.73, P = 0.466$) (Table 2). However, there was a publication bias for bilaterality ($Z = 2.20, P = 0.028$) (Table 2). The trim and fill method was applied to adjust data for
Fig 4. The forest plot of extrathyroidal extension between HT group and non-HT group.

https://doi.org/10.1371/journal.pone.0269995.g004

Fig 5. The forest plot of recurrence between HT group and non-HT group.

https://doi.org/10.1371/journal.pone.0269995.g005
publication bias. The OR value of the random effects model before the trim and fill method was 1.394 (95% CI: 1.118–1.739). The random effects model was used to estimate the number of missing studies after 7 iterations, and the meta-analysis of all studies was conducted again. The OR value of the random-effects model after the trim and fill method was 2.858 (95% CI: 1.999–3.718), there was no significant change before and after the results, indicating that publication bias had little influence and the conclusions in the literature were relatively robust.

TSA

Lymph node metastasis. A total of 44 articles were included, with a total sample size of 28,813 cases. The required information size (RIS) was 34,021. The estimation of RIS was based
on the following variables: Type I error of 0.05, Type II error of 0.2, Power of 80%, Relative Risk Reduction of 20%, and Incidence in Control arm of 10%. The TSA results showed that the cumulative Z curve crossed the traditional boundary line and intersected the TSA boundary line, but did not reach the RIS line, indicating that although the expected sample size was not reached, the positive results were obtained in advance, which further verified that the HT group was better in the low risk of lymph node metastasis than the HT group.

Central lymph node metastasis. Seventeen articles with a total sample size of 15947 cases were included, the RIS was 61030 cases, and the RIS was estimated based on the following variables: Type I error of 0.05, Type II error of 0.2, Power of 80%, Relative Risk Reduction of 20%, Incidence in Control arm of 10%. The TSA results showed that the cumulative Z curve crossed the traditional boundary line, but did not reach the TSA boundary line and the RIS line, revealing that the expected sample size was not reached. In the future, more experiments are needed to verify the risk of central lymph node metastasis in the HT group versus the non-HT group.

Extrathyroidal extension
Forty-one articles were included, with a total sample size of 35,547 cases, and the RIS was 34,408 cases. It was shown that the cumulative Z curve crossed the traditional boundary line, but did not reach the TSA boundary line and the RIS line, indicating that the expected sample size was not reached. More trials are needed in the future to verify the reliability of the conclusion that the HT group has a lower risk of central lymph node metastasis than the non-HT group.

Recurrence
Sixteen studies were included, with a total sample size of 15,856 cases, and the RIS was 8,342 cases. TSA results demonstrated that the cumulative Z curve crossed the traditional boundary line, intersected the TSA boundary line, and reached the RIS line, indicating that the expected sample size had been reached, and the result was true positive, further verifying that the HT group had a lower risk of recurrence than the non-HT group.
Multifocality
Concerning multifocality, 44 articles with 34,235 cases were included. The RIS was 20,849 cases. The TSA results illustrated that the cumulative Z-curve crossed the traditional threshold line, intersected with the TSA threshold line, and reached the RIS line, indicating that the expected sample size had been reached. The result was positive, further verifying that the HT group had a higher multifocality risk than the non-HT group.

Vascular invasion
Seventeen studies were included for vascular invasion, with 14,105 cases sample size, and the RIS was 24,373 cases. The TSA results showed that the cumulative Z-curve crossed the traditional threshold line and intersected with the TSA threshold line, but did not reach the RIS line, indicating that although the expected sample size was not reached, positive results were obtained in advance, further verifying that the risk of vascular invasion in the HT group was lower than that in the non-HT group.

Bilaterality
Eighteen studies were included to evaluate bilaterality, with a total sample size of 12783 cases, and the RIS was 42465 cases. The TSA results showed that the cumulative Z-curve did not reach the TSA threshold line and RIS line, indicating that the expected sample size was not reached. In the future, required to validate the reliability of the conclusion that the risk of bilaterality is higher in the HT group than that in the non-HT group.

Discussion
No consensus exists on the association between PTC and HT. To resolve this controversy, this study was performed to evaluate the relationship between the two conditions using a meta-analysis. Our analysis revealed that HT was associated with improvements in the clinicopathological characteristics and better prognosis of patients with PTC with lower risk of extrathyroidal extension, lower risk of distant metastasis, lower risk of lymph node metastasis, lower risk of vascular invasion, lower risk of recurrence rate, and a higher 20-year survival rate. Multifocal and bilaterality were positively correlated with HT. Since multifocal and bilaterality are thought to be features associated with PTC development, rather than with its deterioration, these findings are consistent with previous reports of a positive association between HT and PTC development and a protective effect of HT on PTC development [48]. Besides, PTC with HT had a risk of perineural infiltration.

There have been a number of proposed hypotheses to explain the linkage between HT and PTC. From a histological perspective, Tamimi et al. [77] assessed the prevalence and severity of thyroiditis among three types of surgically resected thyroid tumors and found a significantly higher rate of lymphocytic infiltration in patients with PTC. Nevertheless, PTC with concurrent HT is associated with less aggressive disease, less frequent capsular invasion, and less nodal metastasis [22]. Our result supported the result that HT may decrease the risk of lymph node metastasis and vascular invasion in patients with PTC. Similarly, Yoon et al. [70] and Donangelo et al. [78] reported that PTC with HT was significantly associated with a lower incidence of lymph node metastasis.

Furthermore, our findings showed that PTC patients with HT were also less likely to develop recurrence and have a higher 20-year survival rate, which were in agreement with prior studies [41, 66]. Although we did not find the presence of HT indicates lower disease-specific deaths, a recent study by Hu et al. reported that patients with HT had lower rates of...
tumor recurrence, and lower disease-related mortality compared with patients without HT [79]. Kashima et al. [13] reported a 0.7% cancer specific mortality and a 95% relapse-free 10-year survival rate in patients with HT compared to a 5% mortality and 85% relapse-free 10-year survival rate without chronic thyroiditis. The lymphocytic infiltration of HT may be an immunological response with a cancer-retarding effect, contributing to a favorable outcome of PTC versus other thyroid cancers [80].

Hypotheses about the mechanism of a better prognosis in PTC patients with HT have been evaluated in different ways [17]. HT is a kind of autoimmune disease that leads to the destruction of thyroid follicles through an immune response to a thyroid specific antigen. As PTC cells originating from the follicular cells would express the thyroid specific antigen, auto-antibodies from coexisting HT might destroy the tumor cells in much the same way as in HT alone [81]. Additionally, the infiltrated lymphocytes in patients with PTC are likely to be cytotoxic T cells acting as carcinoma cell killers, secreting interleukin-1 that inhibits thyroid cancer cell growth [82]. In a study on BRAFV600E, Xing et al. reported a significantly lower prevalence of BRAFV600E mutation in patients with PTC and HT, suggesting that HT is less likely to be associated with poor prognostic outcomes [83].

Interestingly, we observed that PTC patients with HT were younger than PTC patients without HT. We found that the results among age-balanced were similar to our original outcomes. Nevertheless, in the age-imbalanced groups, there were no differences in lateral lymph node metastasis, extrathyroidal extension, extrathyroidal extension, recurrence, multifocality, and bilaterality between PTC patients with HT and PTC alone. A study by Lun et al. also demonstrated that patients with PTC and HT were younger [56]. Zhang et al. reported older age is a risk factors for BRAF mutation in PTC patients, especially in those without HT [84]. This result suggests that age may be one of the potential sources of bias. More studies are needed in the future with a larger sample size and rigorous design to confirm our findings.

The strengths of the current study need to be mentioned. This was an updated meta-analysis including more studies and more outcomes. There was no apparent publication bias, leading to the research results being more reliable and convincing. Besides, we used TSA to further validate our findings. However, residual confounding variables were a problem. Uncontrolled or unmeasured confounding factors have the potential for bias, and the possibility that residual confounders influenced the results cannot be ruled out. Our analysis was largely limited by the retrospective nature of most of the included studies where clinical details were usually not available. More prospective studies with longer follow-ups are needed to further elucidate this relationship.

Conclusions
This meta-analysis shows a clinical relationship between two disease entities. PTC patients with HT may have lower incidence of extrathyroidal extension, distant metastasis, lymph node metastasis, vascular invasion, and better prognosis than patients with PTC alone.

Supporting information
S1 Checklist.
(DOCX)

S1 File.
(DOCX)

S2 File.
(DOCX)
Author Contributions
Conceptualization: Qizhi Tang.
Data curation: Qizhi Tang, Weiyu Pan, Liangyue Peng.
Formal analysis: Qizhi Tang, Weiyu Pan, Liangyue Peng.
Investigation: Qizhi Tang, Weiyu Pan, Liangyue Peng.
Methodology: Qizhi Tang, Weiyu Pan, Liangyue Peng.
Writing – original draft: Qizhi Tang.
Writing – review & editing: Qizhi Tang.

References
1. Ehlers M, Schott M. Hashimoto's thyroiditis and papillary thyroid cancer: are they immunologically linked? Trends in endocrinology and metabolism: TEM. 2014; 25(12):656–64. https://doi.org/10.1016/j.tem.2014.09.001 PMID: 25306886
2. Moon S, Chung HS, Yu JM, Yoo HJ, Park JH, Kim DS, et al. Associations between Hashimoto Thyroiditis and Clinical Outcomes of Papillary Thyroid Cancer: A Meta-Analysis of Observational Studies. Endocrinology and metabolism (Seoul, Korea). 2018; 33(4):473–84. https://doi.org/10.3803/EnM.2018.33.4.473 PMID: 30513562
3. Wiersinga W.M. Hashimoto's Thyroiditis. In: HL Vitti P. Thyroid Diseases. Pathogenesis, Diagnosis, and Treatment. editors Springer; New York, NY, USA. 2018:205–47.
4. Ahmed R, Al-Shaikh S, Akhtar M. Hashimoto thyroiditis: a century later. Advances in anatomic pathology. 2012; 19(3):181–. https://doi.org/10.1097/PAP.0b013e3182534868 PMID: 22498583
5. Molnár C, Molnár S, Bedekovics J, Mokánsvizi A, Győry F, Nagy E, et al. Thyroid Carcinoma Coexisting with Hashimoto’s Thyroiditis: Clinicopathological and Molecular Characteristics Clue up Pathogenesis. Pathology oncology research: POR. 2019; 25(3):1191–7. https://doi.org/10.1007/s12253-019-00580-w PMID: 30666518
6. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. Jama. 2017; 317(13):1338–48. https://doi.org/10.1001/jama.2017.2719 PMID: 28362912
7. Skarpa V, Kousta E, Tertipi A, Anyfandakis K, Yakaki M, Dolianiti M, et al. Epidemiological characteristics of children with autoimmune thyroid disease. Hormones (Athens, Greece). 2011; 10(3):207–14. https://doi.org/10.14310/horm.2002.1310 PMID: 22001131
8. Zeng R, Zhao M, Niu H, Yang KX, Shou T, Zhang GQ, et al. Relationship between Hashimoto’s thyroiditis and papillary thyroid carcinoma in children and adolescents. European review for medical and pharmacological sciences. 2018; 22(22):7778–87. https://doi.org/10.26355/eurrev_201811_16401 PMID: 30536322
9. Wang L, Li W, Ye H, Niu L. Impact of Hashimotoas thyroiditis on clinicopathologic features of papillary thyroid carcinoma associated with infiltration of tumor-infiltrating lymphocytes. International journal of clinical and experimental pathology. 2018; 11(5):2768–75. PMID: 31938394
10. Lee JH, Kim Y, Choi JW, Kim YS. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: a meta-analysis. European journal of endocrinology. 2013; 168(3):343–8. https://doi.org/10.1530/EJE-12-0903 PMID: 23211578
11. Cipolla C, Sandonato L, Graceffa G, Fricano S, Torcivia A, Vieni S, et al. Hashimoto thyroiditis coexistent with papillary thyroid carcinoma. The American surgeon. 2005; 71(10):874–8. PMID: 16468540
12. Song E, Jeon MJ, Park S, Kim M, Oh HS, Song DE, et al. Influence of coexistent Hashimoto's thyroiditis on the extent of cervical lymph node dissection and prognosis in papillary thyroid carcinoma. Clinical endocrinology. 2018; 88(1):123–8. https://doi.org/10.1111/cen.13475 PMID: 28906015
13. Liang J, Zeng W, Fang F, Yu T, Zhao Y, Fan X, et al. Clinical analysis of Hashimoto thyroiditis coexistent with papillary thyroid cancer in 1392 patients. Acta otorhinolaryngologica Italica: organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale. 2017; 37(5):393–400. https://doi.org/10.14639/0392-100X-1709 PMID: 29165434
14. Anil C, Goksel S, Gursoy A. Hashimoto's thyroiditis is not associated with increased risk of thyroid cancer in patients with thyroid nodules: a single-center prospective study. Thyroid: official journal of the American Thyroid Association. 2010; 20(6):601–6.
15. Del Rio P, Cataldo S, Sommaruga L, Concione L, Arcuri MF, Sianesi M. The association between papillary carcinoma and chronic lymphocytic thyroiditis: does it modify the prognosis of cancer? Minerva endocrinologica. 2008; 33(1):1–5. PMID: 18277374

16. Weterslev J, Jakobsen JC, Gluud C. Trial Sequential Analysis in systematic reviews with meta-analysis. BMC medical research methodology. 2017; 17(1):39. https://doi.org/10.1186/s12874-017-0315-7 PMID: 28264661

17. Ahn D, Heo SJ, Park JH, Kim JH, Sohn JH, Park JY, et al. Clinical relationship between Hashimoto’s thyroiditis and papillary thyroid cancer. Acta oncológica (Stockholm, Sweden). 2011; 50(8):1228–34. https://doi.org/10.3109/0284186X.2011.602109 PMID: 21871002

18. Babil S, Payne RJ, Mittmaker E, Rivera J. Effects of Chronic Lymphocytic Thyroiditis on the Clinico-pathological Features of Papillary Thyroid Cancer. European thyroid journal. 2018; 7(2):95–101. https://doi.org/10.1159/000486367 PMID: 29594061

19. Bircan HY, Koc B, Akarsu C, Demiralay E, Demirag A, Adas M, et al. Is Hashimoto’s thyroiditis a prognostic factor for thyroid papillary microcarcinoma? European review for medical and pharmacological sciences. 2014; 18(13):1910–5. PMID: 28264661

20. Cai YF, Wang GX, Ni CJ, Guo GL, Li Q, Wang OC, et al. The Clinical Relevance of Psammoma Body and Hashimoto Thyroiditis in Papillary Thyroid Carcinoma: A Large Case-control Study. Medicine. 2015; 94(44):e1881. https://doi.org/10.1097/MD.0000000000001881 PMID: 26554782

21. Carvalho M, Rosario P, Mourão G, Calsolari MJE. Chronic lymphocytic thyroiditis does not influence the risk of recurrence in patients with papillary thyroid carcinoma and excellent response to initial therapy. 2017; 55(3):954–8. https://doi.org/10.1007/s12020-016-1185-1 PMID: 27877722

22. Consorti F, Loponte M, Milazzo F, Potasso L, Antonaci A. Risk of malignancy from thyroid nodular disease as an element of clinical management of patients with Hashimoto’s thyroiditis. European surgical research Europaiche chirurgische Forschungen Recherches chirurgicales europeennes. 2010; 45(3–4):333–7. https://doi.org/10.1159/000320954 PMID: 21051899

23. Cordioli MI, Cury AN, Nascimento AO, Oliveira AK, Mello M, Saieg MA. Study of the histological profile of papillary thyroid carcinomas associated with Hashimoto’s thyroiditis. Arquivos brasileiros de endocrinologia e metabologia. 2013; 57(6):445–9. https://doi.org/10.1590/s0004-27302013000600006 PMID: 24030184

24. Côrtes MCS, Rosario PW, Mourão GF, Calsolari MR. Influence of chronic lymphocytic thyroiditis on the risk of persistent and recurrent disease in patients with papillary thyroid carcinoma and elevated antithyroglobulin antibodies after initial therapy. Brazilian journal of otolaryngology. 2018; 84(4):448–52. https://doi.org/10.1007/s12021-017-2441-9 PMID: 28625809

25. Dobrinja C, Makovac P, Pastoricchio M, Cipolat Mis T, Bernardi S, Fabris B, et al. Coexistence of chronic lymphocytic thyroiditis and papillary thyroid carcinoma. Impact on presentation, management, and outcome. International journal of surgery (London, England). 2016; 28 Suppl 1:S70–4.

26. Dvorkin S, Robenshtok E, Hirsch D, Strenov Y, Shimon I, Benbassat CA. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimoto’s thyroiditis. The Journal of clinical endocrinology and metabolism. 2013; 98(8):2409–14. https://doi.org/10.1210/jc.2013-1309 PMID: 23609834

27. Fiore E, Rago T, Latrofa F, Provenzale MA, Piaghi P, Delitala A, et al. Hashimoto’s thyroiditis is associated with papillary thyroid carcinoma: role of TSH and of treatment with L-thyroxine. Endocrine-related cancer. 2011; 18(4):429–37. https://doi.org/10.1530/ERC-11-0028 PMID: 21565972

28. Giagourta I, Evangelopoulou C, Papaioannou G, Kassi G, Zapani E, Prokopiou M, et al. Autoimmune thyroiditis in benign and malignant thyroid nodules: 16-year results. Head & neck. 2014; 36(4):531–5. https://doi.org/10.1002/hed.23331 PMID: 23729390

29. Girardi FM, Barra MB, Zettler CG. Papillary thyroid carcinoma: does the association with Hashimoto’s thyroiditis affect the clinicopathological characteristics of the disease? Brazilian journal of otolaryngology. 2015; 81(3):283–7. https://doi.org/10.1016/j.bjorl.2014.04.006 PMID: 25458258

30. Han LT, Hu JQ, Ma B, Wen D, Zhang TT, Lu ZW, et al. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto’s thyroiditis. Diagnostic pathology. 2019; 14(1):52. https://doi.org/10.1186/s13000-019-0832-2 PMID: 31159823

31. Huang BY, Hseuh C, Chao TC, Lin KJ, Lin JD. Well-differentiated thyroid carcinoma with concomitant Hashimoto’s thyroiditis present with less aggressive clinical stage and low recurrence. Endocrine pathology. 2011; 22(3):144–9. https://doi.org/10.1007/s12022-011-9164-9 PMID: 21647844

32. Ieni A, Vita R, Magliolo E, Santaripa M, Di Bari F, Benvenga S, et al. One-third of an Archival Series of Papillary Thyroid Cancer (Years 2007–2015) Has Coexistent Chronic Lymphocytic Thyroiditis, Which Is Associated with a More Favorable Tumor-Node-Metastasis Staging. Frontiers in endocrinology. 2017; 8:337. https://doi.org/10.3389/fendo.2017.00337 PMID: 29250033
33. Jara SM, Carson KA, Pai SI, Agrawal N, Richmond JD, Prescott JD, et al. The relationship between chronic lymphocytic thyroiditis and central neck lymph node metastasis in North American patients with papillary thyroid carcinoma. Surgery. 2013; 154(6):1272–80. [https://doi.org/10.1016/j.surg.2013.07.021] PMID: 24238047

34. Jeong JS, Kim HK, Lee CR, Park S, Park JH, Kang SW, et al. Coexistence of chronic lymphocytic thyroiditis with papillary thyroid carcinoma: clinical manifestation and prognostic outcome. Journal of Korean medical science. 2012; 27(8):883–9. Epub 2012/08/10. [https://doi.org/10.3346/jkms.2012.27.8.883] PMID: 22876054; PubMed Central PMCID: PMC3410235.

35. Kebebew E, Treseler PA, Ituarte PH, Clark OH. Coexisting chronic lymphocytic thyroiditis and papillary thyroid cancer revisited. World journal of surgery. 2001; 25(5):632–7. [https://doi.org/10.1007/s0026800165] PMID: 11369991

36. Kashima K, Yokoyama S, Noguchi S, Murakami N, Yamashita H, Watanabe S, et al. Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma. Thyroid: official journal of the American Thyroid Association. 1998; 8(3):197–202. [https://doi.org/10.1089/thy.1998.8.197] PMID: 9545105

37. Kim HS, Choi YJ, Yun JS. Features of papillary thyroid microcarcinoma in the presence and absence of lymphocytic thyroiditis. Endocrine pathology. 2010; 21(3):149–53. [https://doi.org/10.1007/s12022-010-9124-9] PMID: 20506003

38. Kim HG, Kim EK, Han KH, Kim H, Kwak JY. Pathologic spectrum of lymphocytic infiltration and recurrence of papillary thyroid carcinoma. Yonsei medical journal. 2014; 55(4):879–85. [https://doi.org/10.3349/jymj.2014.55.4.879] PMID: 24954314

39. Kim SS, Lee BJ, Lee JC, Kim SJ, Jeon YK, Kim MR, et al. Coexistence of Hashimoto’s thyroiditis with papillary thyroid carcinoma: the influence of lymph node metastasis. Head & neck. 2011; 33(9):1272–7. [https://doi.org/10.1002/hed.21594] PMID: 21837686

40. Kim SG, Myong JP, Jee HG, Chai YJ, Choi YJ, Min HS, et al. Combined effect of Hashimoto’s thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer. Head & neck. 2014; 36(1):95–101. [https://doi.org/10.1002/hed.23854] PMID: 25213729

41. Kim SK, Song KH, Lim SD, Lim YC, Yoo YB, Kim JS, et al. Clinical and pathological features and the BRAF(V600E) mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid: official journal of the American Thyroid Association. 2009; 19(2):137–41. [https://doi.org/10.1089/thy.2008.0144] PMID: 19014278

42. Kim SK, Woo JW, Lee JH, Park I, Choe JH, Kim JH, et al. Chronic lymphocytic thyroiditis and BRAF V600E in papillary thyroid carcinoma. Endocrine-related cancer. 2016; 23(1):27–34. [https://doi.org/10.1590/ERC-15-0408] PMID: 26598713

43. Kim KW, Park YJ, Kim EH, Park SY, Park DJ, Ahn SH, et al. Elevated risk of papillary thyroid cancer in Korean patients with Hashimoto’s thyroiditis. Head & neck. 2011; 33(5):691–5. [https://doi.org/10.1002/hed.21518] PMID: 21484918

44. Kim WW, Ha TK, Bae SK. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis. Journal of otolaryngology—head & neck surgery = Le Journal d’oto-rhino-laryngologie et de chirurgie cervico-faciale. 2016; 47(1):4. [https://doi.org/10.1186/s40463-017-0247-6] PMID: 29316976

45. Kim WS, Choi HU, Kim ES. Papillary thyroid carcinoma with thyroiditis: lymph node metastasis, complications. Journal of the Korean Surgical Society. 2013; 85(1):20–4. [https://doi.org/10.4174/jkss.2013.85.1.20] PMID: 23837576

46. Konturek A, Barczyński M, Nowak W, Wierzbowski W. Risk of lymph node metastases in multifocal papillary thyroid cancer associated with Hashimoto’s thyroiditis. Langenbeck’s archives of surgery. 2014; 399(2):229–36. [https://doi.org/10.1007/s00423-013-1158-2] PMID: 24407910

47. Kurukahvecigil O, Taneri F, Yüksel O, Aydin A, Tezel E, Onuk E. Total thyroidectomy for the treatment of Hashimoto’s thyroiditis coexisting with papillary thyroid carcinoma. Langenbeck’s archives of surgery. 2014; 399(2):229–36. [https://doi.org/10.1007/s00423-013-1158-2] PMID: 24407910

48. Kwak HY, Choe BJ, Eom YH, Hong YR, Seo JB, Lee SH, et al. Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto’s thyroiditis? International journal of clinical oncology. 2015; 20(3):463–73. [https://doi.org/10.1186/s40463-017-0247-6] PMID: 29316976

49. Kwon H, Choi JY, Moon JH, Park HJ. Lee WW, Lee KE. Effect of Hashimoto thyroiditis on low-dose radioactive-iodine remnant ablation. Head & neck. 2016; 38 Suppl 1:E730–5. [https://doi.org/10.1002/hed.24080] PMID: 25899980

50. Lee I, Kim HK, Soh EY, Lee J. The Association Between Chronic Lymphocytic Thyroiditis and the Progress of Papillary Thyroid Cancer. World journal of surgery. 2020; 44(5):1506–13. [https://doi.org/10.1007/s00268-019-05337-9] PMID: 31915977
51. Lee YK, Park KH, Park SH, Kim KJ, Shin DY, Nam KH, et al. Association between diffuse lymphocytic infiltration and papillary thyroid cancer aggressiveness according to the presence of thyroid peroxidase antibody and BRAF(V600E) mutation. Head & neck. 2018; 40(10):2271–9.

52. Lim JY, Hong SW, Lee YS, Kim BW, Park CS, Chang HS, et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid: official journal of the American Thyroid Association. 2013; 23(11):1423–30. https://doi.org/10.1089/thy.2013.0036 PMID: 23496275

53. Hua Liu C-LQ, Zhi-Yong Shen, Fu Ji. The clinical evaluation of the relationship between papillary thyroid microcarcinoma and Hashimoto’s thyroiditis. Int J Clin Exp Med. 2016; 9(5):8348–54.

54. Liu X, Zhu L, Cui D, Wang Z, Chen H, Duan Y, et al. Coexistence of Histologically Confirmed Hashimoto’s Thyroiditis with Different Stages of Papillary Thyroid Carcinoma in a Consecutive Chinese Cohort. International journal of endocrinology. 2014; 2014:769294. https://doi.org/10.1155/2014/769294 PMID: 25505911

55. Lu ZW, Hu JQ, Liu WL, Wen D, Wei WJ, Wang YL, et al. IL-10 Restores MHC Class I Expression and Interferes With Immunity in Papillary Thyroid Cancer With Hashimoto Thyroiditis. Endocrinology. 2020; 161(10). https://doi.org/10.1210/endo/bqaa062 PMID: 32348468

56. Lun Y, Wu X, Xia Q, Han Y, Zhang X, Liu Z, et al. Hashimoto’s thyroiditis as a risk factor of papillary thyroid cancer may improve cancer prognosis. Otolaryngology—head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2013; 148(3):396–402. https://doi.org/10.1177/0194599812472426 PMID: 23300224

57. Ma H, Li L, Li K, Wang T, Zhang Y, Zhang C, et al. Hashimoto’s thyroiditis, nodular goiter or follicular adenoma combined with papillary thyroid carcinoma play protective role in patients. Neoplasma. 2018; 65(3):436–40. https://doi.org/10.4149/ne_2018_170428N317 PMID: 29788738

58. Marotta V, Guerra A, Zatelli MC, Uberti ED, Di Stasi V, Faggiano A, et al. BRAF mutation positive papillary thyroid cancer is less advanced when Hashimoto’s thyroiditis lymphocytic infiltration is present. Clinical endocrinology. 2013; 79(5):733–8. https://doi.org/10.1111/cen.12194 PMID: 23469895

59. Marotta V, Sciammarella C, Chiofalo MG, Gambardella C, Bellevicine C, Grasso M, et al. Hashimoto’s thyroiditis predicts outcome in intrathyroidal papillary thyroid cancer. Endocrine-related cancer. 2017; 24(9):485–93. https://doi.org/10.1530/ERC-17-0085 PMID: 28696209

60. Mohamed SY, Ibrahim TR, Elbasateeny SS, Abdelaziz LA, Farouk S, Yassin MA, et al. Clinicopathological characterization and prognostic implication of FOXP3 and CK19 expression in papillary thyroid carcinoma and concomitant Hashimoto’s thyroiditis. Scientific reports. 2020; 10(1):10651. https://doi.org/10.1038/s41598-020-67641-6 PMID: 32606302

61. Nam HY, Lee HY, Park GC. Impact of co-existent thyroiditis on clinical outcome in papillary thyroid carcinoma with high preoperative serum antithyroglobulin antibody: a retrospective cohort study. Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery. 2016; 41(4):358–64. https://doi.org/10.1111/coa.12520 PMID: 26283460

62. Park JY, Kim DW, Park HK, Ha TK, Jung SJ, Kim DH, et al. Comparison of T stage, N stage, multifocal-ity, and bilaterality in papillary thyroid carcinoma patients according to the presence of coexisting lymphocytic thyroiditis. Endocrine research. 2015; 40(3):151–5. https://doi.org/10.3109/07435800.2014.979711 PMID: 25531396

63. Paulson LM, Shindo ML, Schuff KG. Role of chronic lymphocytic thyroiditis in central node metastasis of papillary thyroid carcinoma. Otolaryngology—head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2012; 147(3):444–9. https://doi.org/10.1177/0194599812445727 PMID: 22547555

64. Pilli T, Toti P, Occhini R, Castagna MG, Cantara S, Caselli M, et al. Chronic lymphocytic thyroiditis (CLT) has a positive prognostic value in papillary thyroid cancer (PTC) patients: the potential key role of Foxp3+ T lymphocytes. Journal of endocrinological investigation. 2018; 41(6):703–9. https://doi.org/10.1007/s40618-017-0794-8 PMID: 29230715

65. Qu N, Zhang L, Lin DZ, Ji QH, Zhu YX, Wang Y. The impact of coexistent Hashimoto’s thyroiditis on lymph node metastasis and prognosis in papillary thyroid microcarcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016; 37(6):7685–92. https://doi.org/10.1007/s13277-015-4534-4 PMID: 26692097

66. Ryu YJ, Yoon JH. Chronic lymphocytic thyroiditis protects against recurrence in patients with cN0 papillary thyroid cancer. Surgical oncology. 2020; 34:67–73. https://doi.org/10.1016/j.suronc.2020.03.008 PMID: 32891356

67. Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP. Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery. 1999; 126(6):1070–6. https://doi.org/10.1067/msy.1999.101431 PMID: 10598190
68. Yang SW, Kang SH, Kim KR, Choi IH, Chang HS, Oh YL, et al. Do Helper T Cell Subtypes in Lymphocytic Thyroiditis Play a Role in the Antitumor Effect? Journal of pathology and translational medicine. 2016; 50(5):377–84. https://doi.org/10.4132/jptm.2016.07.25 PMID: 27681413

69. Ye ZQ, Gu DN, Hu HY, Zhou YL, Hu XQ, Zhang XH. Hashimoto's thyroiditis, microcalcification and raised thyrotropin levels within normal range are associated with thyroid cancer. World journal of surgical oncology. 2013; 11:56. https://doi.org/10.1186/1477-7819-11-56 PMID: 23496874

70. Yoon YH, Kim HJ, Lee JW, Kim JM, Koo BS. The clinicopathologic differences in papillary thyroid carcinoma with or without co-existing chronic lymphocytic thyroiditis. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUROS): affiliated with the German Society for Oto-Rhino-Laryngology—Head and Neck Surgery. 2012; 269(3):1013–7. https://doi.org/10.1007/s00405-011-1732-6 PMID: 2182854

71. Zeng R, Lyu Y, Zhang G, Shou T, Wang K, Niu H, et al. Positive effect of RORγt on the prognosis of thyroid papillary carcinoma patients combined with Hashimoto's thyroiditis. American journal of translational research. 2018; 10(10):3011–24. PMID: 30416647

72. Zeng RC, Jin LP, Chen ED, Dong SY, Cai YF, Huang GL, et al. Potential relationship between Hashimoto's thyroiditis and BRAF(V600E) mutation status in papillary thyroid cancer. Head & neck. 2016; 38 Suppl 1:E1019–25. https://doi.org/10.1002/hed.24149 PMID: 26041461

73. Zhang Y, Dai J, Wu T, Yang N, Yin Z. The study of the coexistence of Hashimoto's thyroiditis with papillary thyroid cancer. Journal of cancer research and clinical oncology. 2014; 140(6):1021–6. https://doi.org/10.1007/s00432-014-1629-z PMID: 24619663

74. Zhu F, Shen YB, Li FQ, Fang Y, Hu L, Wu YJ. The Effects of Hashimoto Thyroiditis on Lymph Node Metastases in Unifocal and Multifocal Papillary Thyroid Carcinoma: A Retrospective Chinese Cohort Study. Medicine. 2016; 95(6):e2674. https://doi.org/10.1097/MD.0000000000002674 PMID: 26871795

75. Zhu Y, Zheng K, Zhang H, Chen L, Xue J, Ding M, et al. The clinicopathologic differences of central lymph node metastasis in predicting lateral lymph node metastasis and prognosis in papillary thyroid cancer associated with or without Hashimoto’s thyroiditis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016; 37(6):8037–45.

76. Kwon JH, Nam ES, Shin HS, Cho SJ, Park HR, Kwon MJ. P2X7 Receptor Expression in Coexistence of Papillary Thyroid Carcinoma with Hashimoto’s Thyroiditis. Korean journal of pathology. 2014; 48(1):30–5. https://doi.org/10.4132/KoreajPathol.2014.48.1.30 PMID: 24627692

77. Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. International journal of surgical pathology. 2002; 10(2):141–6. https://doi.org/10.1177/106689690201000207 PMID: 12075407

78. Donangelo I, Walts AE, Bresee C, Braunstein GD. Lymphocytic thyroiditis is associated with increased number of benign cervical nodes and fewer central neck compartment metastatic lymph nodes in patients with differentiated thyroid cancer. Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2016; 22(10):1192–8. https://doi.org/10.4158/E151078.OR PMID: 27732096

79. Xu S, Huang H, Qian J, Liu Y, Huang Y, Wang X, et al. Prevalence of Hashimoto Thyroiditis in Adults With Papillary Thyroid Cancer and Its Association With Cancer Recurrence and Outcomes. JAMA network open. 2021; 4(7):e2118526. https://doi.org/10.1001/jamanetworkopen.2021.18526 PMID: 34313737

80. Bradley DP, Reddy V, Prinz RA, Gattuso P. Incidental papillary carcinoma in patients treated surgically for benign thyroid diseases. Surgery. 2009; 146(6):1099–104. https://doi.org/10.1016/j.surg.2009.09.025 PMID: 19958937

81. Kim EY, Kim WG, Kim WB, Kim TY, Kim JM, Ryu JS, et al. Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid cancer. Clinical endocrinology. 2009; 71(4):581–6. https://doi.org/10.1111/j.1365-2265.2009.03537.x PMID: 19222495

82. Kimura H, Yamashita S, Namba H, Tominaga T, Tsuruta M, Yokoyama N, et al. Interleukin-1 inhibits human thyroid carcinoma cell growth. The Journal of clinical endocrinology and metabolism. 1992; 75(2):596–602. https://doi.org/10.1210/jcem.75.2.1322431 PMID: 1322431

83. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2015; 33(1):42–50. https://doi.org/10.1200/JCO.2014.56.8253 PMID: 25332244

84. Zhang Q, Liu BJ, Ren WW, He YP, Li XL, Zhao CK, et al. Association between BRAF V600E Mutation and Ultrasound Features in Papillary Thyroid Carcinoma Patients with and without Hashimoto’s Thyroiditis. Scientific reports. 2017; 7(1):4899. https://doi.org/10.1038/s41598-017-05153-y PMID: 28687736