Use of Cement Kiln Dust and Silica Fume as partial replacement for cement in concrete

Raid Hussain¹
¹ Department of Environment, Ministry of Oil, Iraq
Email: r.hussain@yahoo.com

Abstract. Cement is amongst the most polluting materials utilized in the building sector, contributing to a variety of hazardous pollutants, including greenhouse gas emissions. This raises health impacts related to the manufacture of cement. As a result, a substitute substance for conventional cement with low environmental effects and better building characteristics is required. The purpose of the study would be to look at the consequences of using supplementary cementitious materials (SCMS) to substitute cement in a concrete mix partially. This study employed silica fume (SF) and cement kiln dust (CKD) as supplementary cementitious materials. Several concrete mixtures were created by substituting cement by a combination of SF and CKD in three proportions which that 25%, 35%, and 45% within curing periods of (one week and four weeks); the concrete mixtures were tested. The ultrasonic pulse velocity (UPV) test has been used to investigate the concrete mixture's strength in this study. The findings show that the optimal proportion of SF replacement cement and CKD involvement ranged from 25% to 35%. The pulse velocity of specimens improves when the proportion of CKD and SF increases to the optimal percentage, while the larger amounts of these by-products begin to lower the pulse velocity of specimens.

1. Introduction
Cement is an essential part of several forms of the construction industry and is needed in large quantities to create new buildings [1, 2]. Despite the fact that cement has a vital role in the upkeep of civilization and the global financial system, its role in environmental deterioration is well-known [3-5]. Cement factories are estimated to emit 7 to 10% of total carbon dioxide in the air, leading to catastrophic environmental effects such as weather change [6-10]. Therefore, the pollution and consumption of water have risen substantially. The released effluents from concrete plants and casting activities are highly particular due to the chemical composition of conventional concrete [11, 12]. Also, the production of solid waste from the cement industry had resin remarkably, especially from demolishing old concrete structures in the cities (municipal areas) [13-15]. As a result, devastating impacts on the overall quality of water and the degradation of living beings have occurred [16, 17]. Different treatments techniques have been developed to remove many pollutants found in cement plant effluent and other industrial wastewaters [18-20], including filtrations [21-24], coagulation [25-29], electrocoagulation [30-32], sonication-assisted [33, 34], electro-chemical [35-38], electro-physical [39-42], and hybridised methods [43-46]. However, recent studies show an increase in water pollution [47] and freshwater consumption [48-50]. Additionally, these techniques are inadequate to control all anticipated pollutants from cement factories. Because of the huge volumes of carbon dioxide released into the air from the operations related to conventional cement, which is responsible for climate change [51, 52] and global warming [53, 54], as well as contaminants discharged into water bodies, cement manufacture has become a growing subject of attention [1, 55]. As a consequence, reviews show that the development of replacements for cement components, such as silica fume (SF) and cement kiln dust (CKD), is the most viable solution to minimize cement production [9].
Although the utilization of SF and CKD can improve the properties of concrete, Previous studies have proven that the use of these materials also has detrimental effects on the characteristics of concrete. As the percentage of CKD to cement increased, the workability of fresh mixes dropped. Furthermore, as the percentage of CKD increases, the strength of concrete lowers. SCMS materials like SF and CKD are extremely effective and widely employed as cementitious materials because they have large surface surfaces and considerable silica oxides. Earlier research has shown that replacing cement with SF at a proportion of (0.22-.30) is an effective way to maintain the strength of concrete. The ultrasonic pulse velocity (UPV) is a non-destructive testing method used to assess the quality of concrete buildings. This technique, which involves measuring the velocity of the ultrasonic pulse velocity travelling through concrete members, is used to analyze several attributes of concrete, such as quality and strength [56, 57].

This research assessed the effectiveness of SF and CKD as cement substitutes. The main goal of this study is to investigate if these chemicals impact cement characteristics like strength at different curing periods using an ultrasonic pulse velocity test (one and 4) weeks. The ultrasonic pulse technology was used in this study because it is cheap and accurate [58-61], and also it could be used on the surface of the concrete sample or by embedding it in the body of the concrete and connect it to the receiver using wireless technologies [62-66].

2. Experimentation curriculum
In a number of lab tests, the ultrasonic pulse velocity of the concrete mix produced by partially substituting cement with SF and CKD was measured.

2.1. Materials
Cement kiln dust (CKD) is a by-product of the cement industry. It's a finely powdered substance that looks like Portland cement. Usually, CKD is made up of micron-sized grains recovered by combustion processes during the cement clinker manufacturing process [4, 9]. Cement kiln dust CKD is a fine powdery substance that ranges in hue from grey to brown and is relatively homogeneous in dimension. The manufacturing process, dust collecting technique, chemical properties of CKD, and alkali concentration all influence the gradation of CKD. With fly ash and GGBS in various percentages up to 16%, this product could be used as a cementitious substance. If CKD is utilized separately, the resultant combination may have decreased workability, weight, and setting time due to the high alkali concentration [9, 56].

Silica fume is regarded as a by-product of the silicon and ferrosilicon alloy manufacturing industries, and it is produced at extreme temps from quartz reduction. Because of its properties that promote the cementitious reaction, silica fume is widely utilized as a cementitious material in concrete. It is an ultrafine powder consist of 84-96 non-crystalline silica and about 76 percent silicon [4]. The quantity of Silicon dioxide in silica fume is proportional to the kind of alloy generated in the manufacturing facility.

SF partials are extremely tiny and round, roughly 100 times finer than ordinary cement particles. Previous researches show that the SF concrete has reduced bleeding, porosity, and permeability. Because SF oxides react with and consume Calcium hydroxide, which is CH generated during cement hydration. The main binding ingredient in this experiment was Portland Cement, which has strong mechanical characteristics that help the combination to remain coherent. The cement properties used in this study were measured according to BS EN 196-2:2013.

Diagrams 1, 2 and 3 show the chemical composition of SF, CKD, and Portland cement. These features meet the requirements of the BS-EN-197-1(2011) and BS-EN-450-1 standards (2012). The particle size of the grains, and even the chloride and sulfate concentrations, were checked using the BS EN 12620:2002+A1 standard (2008).

Concrete was prepared and treated using impure and organic-free portable water.
Figure 1: The chemical structure of silica fume.

Figure 2: The chemical structure of CKD.

Figure 3: The chemical structure of Portland cement.
2.2. Testing Techniques
For every mix, three prisms (160x40x40 mm) were cast to see how substituting cement with CKD and SF affected the quality of the mortar mixture. These tests are limited to examining items poured from cement mortar. The investigated specimens are then built up of cement in three different concentrations of CKD and SF. Upon completion of the initial setting time of the mixtures, all samples were maintained in good condition, moulded, and placed in water for the cure. BS EN 12504-4:2004 was used to conduct ultrasonic tests on hardening specimens at one week and 4 weeks.

2.3. Design of Mixture
In this study, part of the design process includes determining the proportions of fine aggregate, water, cement, and materials additive ingredients for the control concrete mixes. To match conventional rating curves, fine aggregates have been utilized in the mixture design. The water to binder ratio was 0.4 in all of the mixes. The ratio of sand to a binder that used in this study was 2.4 in all of the mixes. The percentage of each component of the mix is shown in figure (4).

![Figure 4: The Mix design.](image)

The ultrasonic pulses are sent through the sample to be examined, and the time required for the pulse to permeate the specimen is measured. A high speed implies that the examined structure is of top condition, whereas a low velocity suggests that the examined structure is of bad condition. Pulse producers, a transducer for converting electronic pulses into mechanical pulses with vibrations of 40 to 50 kHz, and a pulses detector are all used in UPV assessment. The velocities of pulses are determined as follows:

\[
\text{Pulse velocity} = \frac{\text{The specimen's thickness}}{\text{The required time for the pulse to penetrate the sample}}
\] (1)

3. Results
The results of examining a control concrete mix with substitute material of cement with varying quantities of SF and CKD at different curing periods are explained in Table 1 and Figure 5.
Table 1. One week and 4 weeks ultrasonic pulse velocity testing.

Number of tests	Cement (%)	SF (%)	CKD (%)	UPV test (m/s)	
MIX1	100	0	0	3828	4008
MIX2	75	12.5	12.5	3850	4102
MIX3	65	17.5	17.5	3785	4055
MIX4	55	22.5	22.5	3578	3863

The main conclusions that may be drawn from the findings of this study are listed below:
The use of a partial replacement of SF and CKD in mixes has been demonstrated to lower concrete pulse velocity values by a tiny portion. In comparison to the control mixture, the pulse velocity of mixtures two and three have been enhanced by 2.3% and 11% after 4 weeks of curing, respectively. Whereas mixture number four decrease the velocity by 3.6 %. This would be based on the view that just a little amount of cementitious materials is required to fill empty fields in the mortar, therefore improving its mechanical properties. Previous studies showed that CKD and SF are ineffectual substances at first and require time to connect with cement components. Therefore, it can be noted that After one week of curing, using 45 percent of a partial substitute decreases the pulse velocity measurements of the mix by around 6.5 percent. At the same time, this value fell to 3.6 after curing for 4 weeks. This is because extra cementitious ingredients reduce concrete compressive strength, which is a key component of the manufacture gel (C-S-H) in concrete. After sitting time, they interact and utilize the moisture components, Ca (OH)2, to allow and initiate hydration of silica fume and cement kiln dust.

Figure 5. Ultrasonic Pulse Velocity Monitoring with one week and 4 weeks curing day mixtures.

According to the observations, specimens that were treated for four weeks had greater pulse velocity readings. That was based on the fact that the curing time improves C-S-H, which leads to a decline in the number of interior gaps or porosity in the conventional concrete, which impacts the properties of concrete and enhances its capacity to withstand compressive stresses.
The Ultrasonic Pulse Velocity method, a non-destructive test methodology, was used in this investigation. As a result, more sophisticated procedures for verifying concrete properties are now accessible. Sensors were used to monitor microcracks, concrete humidity, and other applications in the past. Additional research might utilize the same approach.
4. Conclusions
According to the results of the analysis, it could be stated that as the fraction of cement substituted by silica fume and CKD in concrete increases, the pulse velocity values decrease. The material quality, on the other hand, shows a little improvement with a restricted replacement rate. Whenever the cement in a combination is replaced with extra material, a longer curing period results in a higher-quality specimen.

The use of 25 ~ 35 percent additional cementitious material as a cement substitution for cement could be appropriate proportions, with an increment in this ratio resulting in a slight improvement in quality assessment. Moreover, the used strategy in this research was Ultrasonic Pulse Velocity, which is a traditional instrument; consequently, more current approaches, such as Laser Scanners, are recommended to evaluate the mechanical properties of concrete.

References
[1] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020. Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data in Brief, 31 105961-72.
[2] Jasim I, Farhan S and AL-Mamoori S 2021. Climatic Treatments for Housing in the Traditional Holy Cities: A Comparison between Najaf and Yazd Cities. IOP Earth and Environmental Science, 012017.
[3] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020. The impact of grinding time on properties of cement mortar incorporated high volume waste paper slime and silica fume. Karbala International Journal of Modern Science, 6 1-23.
[4] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering, Berlin: Springer.
[5] Farhan S, Antón D, Akek V and Hashim K S 2021. Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf. Scientific Review Engineering and Environmental Sciences, 30 365-75.
[6] Obaid M, Nasr M, Ali I, Ali A and Hashim K S 2021. Performance of green mortar made from locally available waste tiles and silica fume. Journal of Engineering Science and Technology, 16 136-51.
[7] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufailly M and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK 214-9.
[8] Grmasha R, Al-sareji O, Salman J and Jasim I 2020. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment. Journal of King Saud University - Engineering Sciences, 33 1-18.
[9] Kadhim A, Sadique M, Al-Mufi R and Hashim K 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. Journal of Building Engineering, 32 1-17.
[10] Al-Sareji O, Grmasha R, Salman J, Idowu I and Hashim K S 2021. Street dust contamination by heavy metals in Babylon governorate, Iraq. Journal of Engineering Science and Technology, 16 3528 - 46.
[11] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020. Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. IOP Conference Series: Materials Science and Engineering, 012032.
[12] Alnaimi H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants. 888 1-9.
[13] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017. Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? Procedia engineering, 196 771-8.
[14] Abdulredha M, Ali A and Jordan D 2020. Estimating municipal solid waste generation from service processions during the Ashura religious event. IOP Materials Science and Engineering, 012075.
[15] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020. Investigating municipal solid waste management system performance during the Arba’e’en event in the city of Kerbala, Iraq. Environment, Development and Sustainability, 22 1431-54.
[16] Alwan H, Saleh L and Abdulredha M 2020. Experimental prediction of the discharge coefficients for rectangular weir with bottom orifices. Journal of Engineering Science and Technology, 15 3265-80.
[17] Abdulredha M, Jordan D and Abdulridha A 2018. Benchmarking of the Current Solid Waste Management System in Karbala, Iraq, Using Wasteware Benchmark Indicator. World Environmental
and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change, 40-8.

[18] Hashim K, Al-Saati N, Hussein A and Al-Saati Z 2018. An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment. 1st Int. Conference on Materials Engineering & Science, Istanbul Aydin University, Turkey 12-22.

[19] Hashim K, Al-Saati N, Alquzweeni S, Kraidi L, Hussein A and Alwash R 2019. Decolourisation of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. First International Conference on Civil and Environmental Engineering Technologies, University of Kufa, Iraq 25-32.

[20] Alattabi A, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M 2017. Online Monitoring of a sequencing batch reactor treating domestic wastewater. Procedia engineering, 196 800-7.

[21] Abdulraheem F S, Al-Khafaji Z, Muradov M, Kot P and Shubbar A A 2020. Natural filtration unit for removal of heavy metals from water. IOP Materials Science and Engineering, 012034.

[22] Aimeni M., Hassan A A, Muradov M, Kot P and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. IOP Conference Series: Materials Science and Engineering, 012064.

[23] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. Water Science and Technology, 83 1-17.

[24] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. Desalination and Water Treatment, 150 406-12.

[25] Omran I I, Al-Saati N H, Al-Saati H H, Hashim K S and Al-Saati Z N 2021. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Practice and Technology, 16 648-60.

[26] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019. Assessment of heavy metal pollution in the Great Al-Musaiab irrigation channel. Desalination and Water Treatment, 168 165-74.

[27] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019. A Novel Gesomin Detection Method Based on Microwave Spectroscopy. 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia 429-33.

[28] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia 274-7.

[29] Mousazadeh M, Paibal T, Najhdali Z, Morteza Z, Hashemi M, Aghabaee M, Ghorbankhani M, Lichtfouse E, Sillanpää M and Emanjomeh M M 2021. Positive environmental effects of the coronavirus 2020 episode: a review. Environment, Development and Sustainability, 21 1-23.

[30] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. 2nd International Scientific Conference, Al-Qadisiyah University, Iraq 12-22.

[31] Hashim K, Kot P, Zubaidi S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. Journal of Water Process Engineering, 33 101079-86.

[32] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management, Berlin: Springer.

[33] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. IOP Conference Series: Materials Science and Engineering, 012033.

[34] Khalid K, Andy S and Shamma’a A 2021. Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 280 1-17.

[35] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020. Electrochemical removal of brilliant green dye from wastewater. IOP Conference Series: Materials Science and Engineering, 012036.

[36] Mohammed A, Hussein A, Yeboah D, Abdulhadi B, Ali A A and Hashim K S 2020. Electrochemical removal of nitrate from wastewater. IOP Materials Science and Engineering, 012037.
[37] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. *Science of The Total Environment*, 760 1-16.

[38] Al-Saati N H, Omran I I, Salman A A, Al-Saati Z and Hashim K S 2021. Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study. *Water Practice and Technology*, 16 681-91.

[39] Emamjomeh M, Kakavand S, Jamali H, Alizadeh S, Safdari M, Mousavi S and Mousazadeh M 2020. The treatment of printing and packaging wastewater by electrocoagulation–flotation: the simultaneous efficacy of critical parameters and economics. *Desalination and water treatment*, 205 161-74.

[40] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkabiadi M, Naghdali Z, Hashim K S and Ghanbari R 2020. Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes. *Separation Science and Technology*, 55 3184-94.

[41] Hashim S, Ali S, AlRifaie J Al Khaddar R, Idowu I and Gkantou M 2020. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. *Chemosphere*, 247 125868-75.

[42] Bareq B, Andy A and Rafid R 2019. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. *1st Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq 12-22.

[43] Abdulla G, Kareem M, Muradov M, Kot P, Mubarak H, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. *IOP Materials Science and Engineering*, 012035.

[44] Alenezi A K, Hasan H A, Hashim K S, Amoako-Atta J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. *IOP Conference Series: Materials Science and Engineering*, 012031.

[45] Alhendal M, Nasir M, Amoako J, Al-Faluji D, Muradov M and Abdulhadi B 2020. Cost-effective hybrid filter for remediation of water from fluoride. *IOP Materials Science and Engineering*, 012038.

[46] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini S L and Al-Khafaji Z S 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. *IOP Conference Series: Materials Science and Engineering*, 012073.

[47] Idowu I A, Hashim K, Shaw A and Nunes L J 2021. Enhancing the fuel properties of beverage wastes as non-edible feedstock for biofuel production. *Biofuels*, 14 1-8.

[48] Salah Z, Abdulkareem I, Al-Bugharbee H, Ridha H, Gharghan S, Al-Qim F, Muradov M, Kot P and Alkhaddar R 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction of stochastic water demand. *Water*, 12 1-18.

[49] Salah Z, Hashim K, Ethisb S, Al-Bdairei N, Al-Bugharbee H and Gharghan S 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. *Journal of King Saud University-Engineering Sciences*, 32 1-18.

[50] Salah Z, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. *Water Resources Management*, 34 1265-79.

[51] Zubaidi S, Al-Bugharbee H and Alkhaddar R 2020. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. *IOP Materials Science and Engineering*, 012018.

[52] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. *Water*, 12 1-18.

[53] Zubaidi Salah L, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairei N and Kot P 2020. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. *Water*, 12 1-17.

[54] Zubaidi S, Alkhaddar R, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. *IOP Materials Science and Engineering*, 012026.

[55] Ali A, Al-Shaer A, Hawesah H and Sadique M 2019. Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. *1st Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq 31-8.

[56] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. *Advances in Cement Research*, 32 1-38.

[57] Al-Maliki L A, Farhan S L, Jasim I A, Al-Mamoori S K and Al-Ansari N 2021. Perceptions about water pollution among university students: A case study from Iraq. *Cogent Engineering*, 8 1895473.
[58] Kot P, Hashim K S, Muradov M and Al-Khaddar R 2021 How can sensors be used for sustainability improvement?. In Methods in Sustainability Science. Elsevier, United Kingdom: Joe Hayton. p 426.
[59] Kot P, Muradov M, Gkantou M, Kamaris G S, Hashim K and Yeboah D 2021. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. Applied Sciences, 11 1-28.
[60] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2021. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. Karbala International Journal of Modern Science, 7 61-71.
[61] Ryecroft S, Shaw A, Fergus P, Moody A and Conway L 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. Sensors, 19 1813-23.
[62] Ryecroft S, Fergus P, Tang A, Moody A and Conway L 2021. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. Karbala International Journal of Modern Science, 7 113-29.
[63] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection. Sensors, 19 5175-89.
[64] Khalaf M, Hussain A J, Keight R, Al-Jumeily D, Fergus P, Keenan R and Tso P 2017. Machine learning approaches to the application of disease modifying therapy for sickle cell using classification models. Neurocomputing, 228 154-64.
[65] Ghazali R, Hussain A J, Al-Jumeily D and Merabti M 2007. Dynamic ridge polynomial neural networks in exchange rates time series forecasting. International Conference on Adaptive and Natural Computing Algorithms, 123-32.
[66] Fergus P, Hussain A, Al-Jumeily D, Huang D-S and Bouguila N 2017. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms. Biomedical engineering online, 16 1-26.