Incipient Gear Fault Detection Using Adaptive Impulsive Wavelet Filter Based on Spectral Negentropy

Mang Gao
Harbin Institute of Technology

Gang Yu (gangyu@hit.edu.cn)
Harbin Institute of Technology https://orcid.org/0000-0001-9439-2030

Ning Chang Li
Suzhou University of Science and Technology

Original Article

Keywords: Incipient Fault Diagnosis, Negentropy, Spectral Kurtosis, Gear, Adaptive Wavelet

DOI: https://doi.org/10.21203/rs.3.rs-84021/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Adaptive wavelet filtering is a very important fault feature extraction method in the domain of condition monitoring, however, due to the time-consuming computation and difficulty of choosing criteria used to represent incipient faults, the engineering applications are limited to some extent. In order to detect the incipient gear faults with a fast speed, a new criterion is proposed to optimize the parameters of modified impulsive wavelet for constructing an optimal wavelet filter to detect impulsive gear faults. Firstly, a new criterion based on the spectral negentropy is proposed. Then, a novel searching strategy is applied to optimize the parameters of the impulsive wavelet based on the new criterion. Finally, envelope spectral analysis is applied to find the incipient fault characteristic frequency. Both the simulation and experimental validation have shown the superiority of the proposed approach.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.