NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton

Hugo Berthelot1 · Solange Duhamel2 · Stéphane L’Helguen1 · Jean-Francois Maguer1 · Seaver Wang3 · Ivona Cetinčić4,5 · Nicolas Cassar1,3

Received: 14 April 2018 / Revised: 9 July 2018 / Accepted: 8 September 2018 / Published online: 15 October 2018 © International Society for Microbial Ecology 2018

Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate (NO$_3^-$), ammonium (NH$_4^+$) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates (based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for Prochlorococcus. Reduced forms of N (NH$_4^+$ and urea) accounted for the majority of N acquisition for all the groups studied. NO$_3^-$ represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell heterogeneity within picoplankton groups was significantly greater for NO$_3^-$ uptake than for C fixation and NH$_4^+$ uptake. We hypothesize that cellular heterogeneity in NO$_3^-$ uptake within groups facilitates adaptation to the fluctuating availability of NO$_3^-$ in the environment.

Introduction
In many regions of the world’s oceans, particularly in the oligotrophic subtropical gyres, nitrogen (N) limits primary production and controls planktonic community composition [1, 2]. In these vast regions, planktonic biomass is dominated by picoplankton (size < 3 µm) whose high surface-area-to-volume ratio is believed to represent a competitive advantage under N scarcity [3]. While genetically diverse [4–7], photosynthetic picoplankton are generally grouped into the pico-eukaryotes (PPE) and the cyanobacterial prokaryotes Prochlorococcus and Synechococcus. As opposed to Synechococcus, which is widely distributed in the ocean between 50°S and 50°N, Prochlorococcus thrives mostly in nitrate-depleted subtropical and tropical waters [8], where it can contribute significantly to primary production [9–11]. In contrast, PPE are most abundant in productive waters such as upwelling or temperate regions [12, 13]. Despite their low abundance relative to pico-cyanobacteria in the open ocean, PPE can occasionally contribute as much as
Prochlorococcus to primary production due to their larger biovolume [9, 10].

Differences in the geographical distributions of PPE, Prochlorococcus, and Synechococcus have been hypothesized to be driven by environmental factors such as light [8, 14–16], temperature [14, 17, 18], and the availability of different sources of N [19–21]. A recent study found, based on isotopic 15N signatures of cytometrically-sorted groups of picoplankton, that PPE obtain roughly half of their N from upwelled NO$_3^-$, while Synechococcus and Prochlorococcus rely on recycled N in the Deep Chlorophyll Maximum (DCM) of the North Atlantic Gyre [22]. However, the discovery of gene pathways for NO$_3^-$ assimilation in the metagenome of Prochlorococcus [23] and the cultivation of isolates able to grow on NO$_3^-$ as an exclusive source of N [24] have raised the possibility that NO$_3^-$ may be a significant source of N in wild populations of Prochlorococcus under certain growth conditions. Measurements from the DCM in the Atlantic show measurable, albeit small, NO$_3^-$ uptake by Prochlorococcus, accounting for ~5–10% of the group total N uptake [25]. Based on these observations, it can be argued that a subset of the genetically diverse Prochlorococcus genus may be capable of assimilating NO$_3^-$ [24, 26–28].

Technological challenges have hindered progress in our understanding of group and cell specific N uptake. In the last two decades, isotope incubations combined with cell sorting by flow cytometry have been used to measure plankton activity at the group level [29]. However, stable 15N isotope analyses by conventional isotope ratio mass spectrometers require substantial amounts of material. As a result, a prohibitively large number of cells must be sorted to measure group-specific N utilization, which is especially problematic in oligotrophic systems. New generations of isotope ratio mass spectrometers, most particularly nano-scale secondary ion mass spectrometers (nanoSIMS), have opened new research directions by allowing analyses of isotopic composition at the single cell level [30, 31].

In this study, we use nanoSIMS coupled with flow cytometry cell sorting to measure the metabolic activity of cells after incubating the natural plankton community with stable isotopes of C and N (13C and 15N). To the best of our knowledge, this is the first study reporting cell-specific contribution of NO$_3^-$, NH$_4^+$, and N-urea to the photosynthetic growth requirements of the Prochlorococcus, Synechococcus, and PPE groups. The large number of cells analyzed (~16 000) from distinct biomes of the North Pacific highlights clear functional differences between picoplankton groups in terms of N uptake and cell-to-cell metabolic heterogeneity.

Materials and methods

Sampling location and hydrological context

Our study was carried out during Schmidt Ocean Institute and NASA’s Sea-to-Space cruise aboard the R/V Falkor in January/February 2017. Two stations in the North Pacific Subtropical Gyre (NPSG, stations 1, 2) and one station in the California Current System (CCS, station 3) were investigated (Fig. 1). Seawater samples were collected using Niskin bottles mounted on a rosette equipped with a CTD probe. Samples were collected at the surface (5 m) and at the 1% surface light level, which corresponded roughly to the DCM at stations 1 and 2. Chlorophyll a (Chl a), NO$_3^-$, NH$_4^+$ and urea were measured in triplicate according to standard procedures (supplementary information). Picoplankton abundances were determined in triplicate by flow cytometry (supplementary information).

Experimental setup and sampling

At each station and depth, C fixation, NO$_3^-$, NH$_4^+$ and urea uptake were measured during daylight. In addition, the same experiments were performed at night from surface samples at stations 1 and 3. Dual 13C-15N isotope incubations were performed with the addition of either dissolved inorganic 13C (DI13C, NaHCO$_3$, 98% Sigma-Aldrich) in combination with 15NO$_3^-$ (KNO$_3$, 99%, Euriso-top) or 15NH$_4^+$ (NH$_4$Cl, 99%, Euriso-top) or with the addition of dual labelled 15N,13C-urea (98% 15N, 99% 13C, Euriso-top). Seawater was collected directly from the Niskin bottles in a set of five HCl-cleaned polycarbonate 1.3 or 2.3 L bottles for each isotopic treatment. Isotopes were added within ~2 h of sample collection, with additions targeted at ≤10% of ambient concentrations estimated from the literature for DIC, NO$_3^-$ and urea and from onboard measurements of

![Fig. 1 Locations of the three stations sampled in the Northeast Pacific Ocean superimposed on surface chlorophyll a concentration (AQUA MODIS composite image of January and February 2017)](image-url)
NH₄⁺. To define the initial ¹³C and ¹⁵N enrichments in the particulate matter, one bottle from each set was immediately filtered after isotope inoculation on a combusted (4 h, 450 °C) GF/F filter using a vacuum pump (<150 mbar). The filters were rinsed using non-labeled 0.2 µm filtered seawater and stored at −20 °C. The other four bottles of each set were placed in an on-deck incubator reproducing the light intensity at the sampling depth using blue light screens (Lee Filter) and cooled with circulating sea surface water. The incubations, centered around local noon for daylight incubations, were short (~5 h on average) in order to minimize bottle artifacts, including isotope dilution effects and recycling of ¹⁵NO₃⁻ that could make ¹⁵N available as reduced N [25, 32]. After incubation, triplicate bottles from each set were filtered onto GF/F filters as described above. The remaining bottle from each set was used to concentrate, recover and store the cells as described in Fawcett et al. [22]. An additional bottle was added to the set of bottles collected from sea surface water at station 2, which was analyzed on average (range: 12–1040) which was achieved in one to four ion images randomly chosen within the previously defined ROIs. This led to a total of ~16,000 cells analyzed for this study. The average sizes of the analyzed Prochlorococcus, Synechococcus, and PPE cells were 0.6 ± 0.1, 1.2 ± 0.2, and 1.7 ± 0.2 µm, respectively.

Rate calculations and statistical analyses

For each cell analyzed with nanoSIMS, CN⁻ ion isotopes were recorded and fractional abundances of \(A_{13C} \left(\frac{¹³C₁₅N}{¹³C₄N + ¹³C₁₇N} \times 100 \right) \) and \(A_{15N} \left(\frac{¹²C₁₅N}{¹²C₁₄N + ¹³C₁₄N} \times 100 \right) \) were computed (Fig. 2).

The cellular C- and N-specific uptake rates (h⁻¹) were calculated as follows:

\[
specific\ uptake = \frac{A_{cell} - A_{nat}}{A_{source} - A_{nat}} \times \frac{1}{t}
\]

where \(A_{cell} \), \(A_{nat} \), and \(A_{source} \) reflect the isotopic fractional abundances of the cell after incubation (\(A_{13C} \) or \(A_{15N} \)), of the cells (mean) prior to incubation (Fig S2) and of the source pool, respectively. \(t \) is the incubation time. Specific uptake rates were converted to group absolute uptake rates (fmol L⁻¹ h⁻¹), by multiplying the specific rates by the cell C or N content and by the cell abundances. Cell C content was computed from cell biovolume (derived from its equivalent spherical diameter) and a volumetric C cell content of 237 fg C µm⁻³ [34]. The cell N content was derived from the cell C content, assuming C/N ratios of 7.7, 9.7 and 11 for Prochlorococcus, Synechococcus and PPE, respectively [35].

In the case of DI¹³C incubations, C-based specific division rates were calculated as follows, assuming that DIC...
the intra-group cell-to-cell rate heterogeneity or each assay (218 on average) allowed for an assessment of information.

Rees uptake rates were corrected using the equation described in increasing additions of N substrates were conducted and N to overcome this issue, kinetics experiments consisting of leading to a potential overestimation of N uptake rates [37].

Ambient NO$_3^-$, NH$_4^+$, and urea concentrations were often low, and the addition of isotopes at tracer level (i.e. < 10% of initial concentration) was not always possible, leading to a potential overestimation of N uptake rates [37].

To overcome this issue, kinetics experiments consisting of increasing additions of N substrates were conducted and N uptake rates were corrected using the equation described in Rees et al. [38], as detailed in the supplementary information.

The large number of cells analyzed for each group in each assay (218 on average) allowed for an assessment of the intra-group cell-to-cell rate heterogeneity or “metabolic heterogeneity”, defined as the coefficient of variation in isotope uptake rate. However, a fraction of the measured variability stems from analytical errors associated with the determination of cellular isotopic ratios. This uncertainty, resulting from the limited signal of CN$^-$ ions detected with the nanoSIMS, follows a Poisson distribution (Fig. S2). The metabolic heterogeneity was thus corrected for the influence of the Poisson dispersion (Po) as follows:

\[
\text{specific division} = \log_2 \left(\frac{A_{\text{source}} - \overline{A}_{\text{nat}}}{(A_{\text{source}} - A_{\text{cell}}) - \overline{A}_{\text{nat}}} \right) \times \frac{1}{t}
\]

where \(A_{\text{nat,GFF}}, A_{\text{POM,GFF}}, \) and POM represent the isotopic abundances prior to and after incubations and the particulate organic matter C or N concentrations (nmol L$^{-1}$), respectively.

Hourly specific division rates were scaled to daily rates using the model developed by Moutin et al. [36].

Total community uptake rates (nmol L$^{-1}$ h$^{-1}$) were estimated from the material collected on GF/F filters and analyzed with an elemental analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS), and calculated as follows:

\[
\text{total community uptake} = \frac{A_{\text{POM,GFF}} - A_{\text{nat,GFF}}}{A_{\text{source}} - A_{\text{nat,GFF}}} \times \frac{\text{POM}}{t}
\]

where \(A_{\text{nat,GFF}} \), \(A_{\text{POM,GFF}} \), and POM represent the isotopic abundances prior to and after incubations and the particulate organic matter C or N concentrations (nmol L$^{-1}$), respectively.

\[
\lambda = \frac{A_{\text{group}} - \overline{A}_{\text{nat}}}{\sqrt{\text{std}(A_{\text{group}})^2 - \text{std}(\text{Po})^2}}
\]

where \(\lambda \) is the Poisson distribution parameterized by \(\lambda = A_{\text{cell}} - \overline{A}_{\text{nat}} \) was higher than two times the standard deviation associated with the Poisson distribution parameterized by \(\lambda = A_{\text{cell}} \times N_{\text{CN}^-_{\text{cell}}} \), where \(N_{\text{CN}^-_{\text{cell}}} \) is the CN$^-$ ion count of the cell. We note that the latter metric should be interpreted cautiously, as it depends not only on the cellular activity itself but also on the isotopic fractional abundance in the initial pool, the duration of the incubation, and the number of ions detected in the cells, which are variable between groups and assays. Both detected and undetected cellular rates were considered in the calculation of average group rates. The groups were considered as active when the mean cellular fractional isotopic abundances of the groups were significantly higher than those of non-incubated cells belonging to the same
group (unpaired Mann-Whitney test, \(p < 0.001\)). Differences in C or N uptake rates between stations, depths or groups were tested using unpaired Mann-Whitney test and considered significant if \(p < 0.05\).

Results

Hydrography and Biogeochemistry of the sampled regions

Stations one and two were characteristic of the oligotrophic NPSG, with low NO\(_3^-\) (<2 nmol L\(^{-1}\)) and Chl \(a\) concentrations (<0.2 µg L\(^{-1}\)) in surface waters and a DCM deeper than 100 m (Table 1). In contrast, station three showed some evidence of coastal upwelling associated with the CCS, with higher NO\(_3^-\) (>100 nmol L\(^{-1}\)) and Chl \(a\) (0.71 µg L\(^{-1}\)) concentrations in surface waters. NH\(_4^+\) concentrations ranged between <3 to 21 nmol L\(^{-1}\) in the NPSG, and were higher in the CCS (55–59 nmol L\(^{-1}\)) (Table 1). Urea concentrations were generally higher but followed the same pattern, ranging between 50–109 nmol N L\(^{-1}\) in the NPSG and from 162 to 165 nmol N L\(^{-1}\) in the CCS. While Prochlorococcus numerically dominated the picoplankton community over Synechococcus and PPE, both at the surface and at the DCM in the NPSG, the opposite was observed in the CCS (Table 1).

C fixation rates and N uptake at the community level

In the NPSG, the low NO\(_3^-\) concentrations at the surface led to significantly lower total community NO\(_3^-\) uptake (<0.1 nmol L\(^{-1}\) h\(^{-1}\)) compared to at the DCM (0.1–0.6 nmol L\(^{-1}\) h\(^{-1}\)) \((p < 0.05)\). In contrast, rates of total community NH\(_4^+\) uptake were significantly higher in the surface than in the DCM \((p < 0.001)\) (Table 1). Rates of community C fixation, and NO\(_3^-\) and NH\(_4^+\) uptake were lower in the NPSG than in the CCS \((p < 0.05)\) (Table 1). Community N-urea uptake rates ranged from 0.7–3.3 nmol N L\(^{-1}\) h\(^{-1}\), without clear trends between the two oceanic regions and at rates similar or higher than NO\(_3^-\) and NH\(_4^+\) uptake in the NPSG. In contrast to the relatively high N-urea uptake, C-urea uptake was not detected in the sampled planktonic communities.

C fixation rates and N uptake at the single-cell and group levels

\(^{13}\)C-enrichment measurements at the cellular level following DI\(^{13}\)C incubations allowed a direct assessment of specific C-based division rates of wild groups of Prochlorococcus, Synechococcus, and PPE. At the single-cell level, division rates varied widely, ranging from undetectable to 1 d\(^{-1}\).
Fig. 3 Whisker plot of C-based specific division rate (d⁻¹) for each group (Prochlorococcus, Synechococcus, and PPE) in each daylight assay. Each dot represents an analyzed cell. Grey dots denote cells with rates not significantly different from zero. Colored lines denote mean division rates and standard deviations (plain horizontal and dashed vertical, respectively) in each assay. The percentages indicate proportions of detected active cells. Grey lines denote mean division rates and standard deviations (plain horizontal and dashed vertical, respectively) in the North Pacific Subtropical Gyre (NPSG) and in the California Current System (CCS) regions.

(Fig. 3) with clear group-level differences in C-based division rates. Prochlorococcus groups were active at all the stations (Fig. 3) but mean division rates were significantly higher in the NPSG (ranging between 0.32 and 0.43 d⁻¹) than in the CCS (< 0.1 d⁻¹) (p < 0.001) which is in agreement with the findings of Ribalet et al. [39] along a similar transect. Mean PPE division rates showed an opposite pattern, with significantly higher rates in the CCS (0.42–0.50 d⁻¹) than in the NPSG (0.15–0.26 d⁻¹) (p < 0.001) highlighting the contrasting biogeography of these two groups. Mean Synechococcus division rates ranged from 0.21 to 0.46 d⁻¹ without a clear pattern between the NPSG and the CCS (p > 0.05). Using cellular volume-to-biomass conversion factors, the measured C fixation by picoplankton (sum of the C fixation attributed to PPE, Prochlorococcus and Synechococcus) was estimated to account for 43 to 67% of the total community C fixation (55% on average), without a clear geographical pattern, demonstrating the important contribution of picoplankton to oceanic C fixation (Table S1). In the NPSG, Prochlorococcus accounted for the largest fraction of community C fixation (25–56%), followed by PPE (7–18%), and Synechococcus (< 1–3%). In the CCS, PPE and Synechococcus accounted for most of the community C fixation (42–50 and 11–19%, respectively), while Prochlorococcus accounted for < 1%.

N-specific uptake rates at the single-cell level were also highly variable (Fig. 4). NH₄⁺ and urea uptake rates were detected in most cells (86 ± 20 and 86 ± 23%, respectively) at rates on average twice higher (p < 0.001) for Synechococcus (0.0130 and 0.0151 h⁻¹, respectively) than for Prochlorococcus (0.0099 and 0.0077 h⁻¹, respectively) and PPE (0.0073 and 0.0067 h⁻¹, respectively). In contrast, group specific NO₃⁻ uptake rates were significantly (p < 0.001) higher for PPE (0.0041 h⁻¹) than for Prochlorococcus (0.0004 h⁻¹) and Synechococcus (0.0010 h⁻¹) and were detected in a greater proportion of PPE cells (81 ± 23%) than for Prochlorococcus (37 ± 32%) or Synechococcus (56 ± 42%) (Fig. 4). As a result, in most of the assays, the average contribution of NO₃⁻ to group N uptake (sum of NH₄⁺, urea and NO₃⁻ uptake rates) was significantly higher for PPE (17.4 ± 11.2%) than for Prochlorococcus (4.5 ± 6.5%) or Synechococcus (2.9 ± 2.1%) (p < 0.001, Fig. 5c). The contribution of NO₃⁻ to group N uptake was, however, highly variable between assays, ranging from 2.4 to 31.8%, undetectable to 17% and undetectable to 5.3% for PPE, Prochlorococcus and Synechococcus, respectively. The contributions of NO₃⁻ to group N uptake were higher in the CCS than in the NPSG for Prochlorococcus (10.1 ± 7.5 vs. 1.5 ± 0.4%, p < 0.05) and PPE (22.3 ± 10.2 vs. 14.5 ± 11%, p > 0.05), albeit not significantly in the latter case. For Synechococcus, variability was lower and no clear spatial trends were observed. In agreement with the results at the community-level, C-urea uptake was undetectable at the group level.

Comparisons of specific C fixation to the sum of specific N uptakes from the daylight incubations were close to the 1:1 unity line (except for surface Prochlorococcus and Synechococcus at station 1) without clear patterns between groups or depths, suggesting that cells meet their N
requirement during their photosynthetic C acquisition period (Fig. S3 and further discussion in the SI information).

Single-cell analyses revealed heterogeneity in C and N uptake of individuals within each planktonic group. The metabolic heterogeneity is qualitatively estimated using the coefficient of variation of cellular rates corrected for the influence of instrumental noise. In all groups, heterogeneity was the lowest for C fixation and NH$_4^+$ uptake (0.2 to 0.8), slightly higher for urea (0.3 to 1.3) and highest for NO$_3^-$ uptake (0.5 to 2.6) (Fig. 6). In most of the assays and for most of the measured rates, Synechococcus was the most homogeneous group, followed by Prochlorococcus and PPE, respectively (Fig. 6).

In assays where Prochlorococcus and Synechococcus contributed to a significant fraction of community C fixation (>5%), these groups did not rely on NO$_3^-$ for their growth (<2% of the group N uptake) (Fig. 7). In contrast, in assays where PPE contributed significantly to C fixation, this group relied substantially on NO$_3^-$ for its growth (11–36% of the group N uptake, Fig. 7), again highlighting the contrasting biogeography and physiologies of these plankton groups.

Discussion

In this study, we determined the forms of N taken up by the most abundant groups of marine phytoplankton: PPE, Prochlorococcus, and Synechococcus. We report the first measurements of the contribution of NO$_3^-$, NH$_4^+$, and urea to N uptake, estimated at the single-cell level, in relation to C-based division rates by individual cells. Our results, based on ~16,000 cells collected in contrasting biomes of the North Pacific Ocean, clearly show substantial intra- and inter-group heterogeneity.

Inter-group similarities and differences in N uptake

NH$_4^+$ and urea species are generally scarce in oligotrophic regions, but are believed to represent the main sources of N for phytoplankton because of their high turnover rate of <1–5 days [40–44]. Our measurements confirm these results at the scale of the entire plankton community (Table 1), but also for each plankton group investigated in the two regions sampled (Fig. 5). In line with earlier studies ([45] and references therein), we find that urea is an important source of N for open ocean photosynthetic picoplankton populations, accounting for the largest fraction of N uptake for all groups tested (38–68%; on average greater than that of NH$_4^+$). However, the absence of 13C-enrichment following the 13C-15N-urea incubations indicates that the C derived from urea is not used by the groups investigated (see supplementary information for further discussion).

While NH$_4^+$ and urea uptake rates were systematically significant for all the groups tested, the contribution of NO$_3^-$ uptake showed greater contrasts between plankton groups. At all the study sites, the prokaryotes Prochlorococcus and Synechococcus relied ~4–6 times less on NO$_3^-$ than PPE on average, indicating clear functional diversity between photosynthetic prokaryotes and PPE (Fig. 5). This is in line with the contrasting δ^{15}N signatures of prokaryotes and eukaryotes in the subtropical Atlantic [22, 46]. If we exclude groups that contributed to an insignificant fraction of C fixation (<5%), N strategies are
even more clear, with an order of magnitude discrepancy in the NO$_3^-$ contribution to N uptake between prokaryotes and eukaryotes (Fig. 7). However, our results do show significant, albeit small, NO$_3^-$ uptake by photosynthetic prokaryotes including Prochlorococcus. This confirms the potential for NO$_3^-$ uptake by wild populations of Prochlorococcus as suggested by genomic and culture studies [23, 24, 47].

Intra-group differences in N uptake between stations and sampled depths

In addition to the inter-group differences in N uptake strategies, we also found large group variations in Prochlorococcus and PPE in the contribution of NO$_3^-$ to the N uptake between locations, with NO$_3^-$ uptake increasing with NO$_3^-$ availability (Fig. 5). This suggests adaptive strategies in response to the N species available, which might result from genetic selection and/or phenotypic plasticity. Prochlorococcus and PPE groups harbor genetically diverse populations [4, 6, 7, 28, 48–51]. These populations display varying affinities for the different sources of N [23, 24, 52, 53] and do not always possess the necessary pathways for NO$_3^-$ assimilation [47, 54] which could result in ecological adaptation as a function of NO$_3^-$ availability.

Our results could also be explained by phenotypic plasticity, since photosynthetic organisms can regulate the expression of genes involved in N assimilation as a function of the availability of different forms of N [54–56]. NO$_3^-$ is energetically more expensive than NH$_4^+$ to assimilate ([57] and references therein), leading to NO$_3^-$ uptake inhibition with increasing NH$_4^+$ availability [52, 58, 59]. One would therefore expect the contribution of NO$_3^-$ to the total N uptake would be controlled by NH$_4^+$ availability. This is not what we observed, presumably because the NH$_4^+$ concentrations observed in this study (< 60 nmol L$^{-1}$) were not high enough to fully inhibit NO$_3^-$ uptake [37]. In other words, at the ambient concentrations measured in this study, both sources of N could efficiently be used by the phytoplankton community and may explain the adaptation of groups to N availability.

Intra-group heterogeneity in C and N uptake within assays

While genetic diversity of plankton in the ocean has received increasing attention in the past two decades [60, 61], the heterogeneity of cellular metabolisms remains poorly characterized. However, there is growing evidence that phenotypic heterogeneity, or the diversity of metabolisms between genetically identical cells living in the same...
environment, plays a role in population dynamics and consequently in ecosystem functions [62]. Through the specialization of subsets of cells in metabolic processes, phenotypic heterogeneity represents an adaptive advantage in fluctuating environments [63–65] and can enhance populations growth rates [66]. Here we shed light on cell-to-cell C and N uptake and metabolic heterogeneity of pico-phytoplankton groups in the ocean using a single cell approach. Within our cytometrically sorted groups we cannot quantitatively assess the relative influences of genetic and phenotypic variabilities on the measured metabolic heterogeneity. Nevertheless, our results of heterogeneity for C fixation and NH$_4^+$ uptake (0.2–0.9) are within the range of those measured from C fixation in pure cultures of the cyanobacterial diazotroph *Crocosphaera* (~0.5) and from NH$_4^+$ uptake in the heterotrophic bacteria *Staphylococcus aureus* and *Pseudomonas aeruginosa* (0.4–0.9) [67, 68]. This suggests that, at the group level, C-fixation and NH$_4^+$ uptake are within the range of the phenotypic noise, despite potentially high genetic diversity.

Interestingly, for each group investigated, the metabolic heterogeneity was systematically higher for NO$_3^-$ uptake compared to NH$_4^+$ and urea uptake or to C fixation (Fig. 6). The lack of data documenting phenotypic diversity in NO$_3^-$ uptake from pure cultures makes it difficult to contextualize our values. However, NO$_3^-$ assimilation is an energetically costly process and NO$_3^-$ availability can be highly dynamic throughout the year in the studied area. It can be postulated that within planktonic populations, a subset of cells invests in NO$_3^-$ assimilation machinery in prevision of higher NO$_3^-$ availability, which might facilitate population’s adaptation to new nutritional environment. Similar strategies for N$_2$ fixation, another energetically costly N assimilation process, have been reported in multicellular filamentous cyanobacteria [69, 70] and in unicellular cyanobacteria [63, 71]. However, we cannot completely rule out the influence of genetic diversity on the metabolic heterogeneity measured here. While the genetic potential for NO$_3^-$ assimilation is widespread in PPE and *Synechococcus* [54, 72], this is not the case for *Prochlorococcus*, for which only some ecotypes present the full set of genes involved in
the NO$_3^-$ assimilation process [47]. Thus, further studies characterizing the relative influence of genetic and phenotypic factors in metabolic heterogeneity are needed to improve our understanding of the role of cell-to-cell heterogeneity in the adaption of plankton populations to their highly dynamic environments.

Potential links between the biogeography of plankton groups and their N uptake strategies

A multitude of factors can limit plankton growth and biomass accumulation, including temperature, light, and N availability. For example, the decrease in Prochlorococcus abundances and growth from the NPSG to the CCS (Fig. 3, Table 1), as reported in previous studies [39], has been attributed to low sea surface temperatures in the CCS (8–12°C) inhibiting growth [15, 16, 73]. Similarly, the slightly lower division rate of PPE at the bottom of the euphotic layer compared to the surface (Fig. 3) suggests regulation by light availability, as previously hypothesized [10, 74]. In addition, the nature of the N sources available are suspected to affect planktonic community structure, particularly in regions where N limits primary production such as in the NPSG [75–78]. Our results highlight group specific N strategies that are in line with this theory. However, with the present dataset it is difficult to disentangle the combined effects of temperature, light and N availability on this contrasting biogeography. Combined with controlled perturbation experiments (e.g. light, temperature, nutrients), the present approach will help to better resolve the relative influence of environmental parameters on the biogeography of marine plankton.

Conclusion

In this study, we investigated the C and N uptake strategies of marine picophytoplankton. For this purpose, we incubated our samples with isotopically-labelled substrates, sorted cells by flow cytometry, and analyzed their isotopic signatures using nanoSIMS technology. The analysis of a large number of cells by nanoSIMS provided a robust characterization of the average nutrient uptake strategy for each group as well as the cell-to-cell heterogeneity in each analyzed group. Our results confirm the differing N acquisition strategies of eukaryotes and prokaryotes. While both groups use reduced sources of N such as NH$_4^+$ and urea, eukaryotes also rely on NO$_3^-$ to fulfill their N demand, a finding which may drive the contrasting biogeography of these pico-phytoplankton groups. However, the relatively large heterogeneity in NO$_3^-$ uptake for all groups implies that only subsets of cells are involved in this process. Molecular [23, 79] and biogeochemical approaches [22] have reported conflicting evidence on whether prokaryotic picoplankton assimilate NO$_3^-$.

Acknowledgements

We would like to thank the Schmidt Ocean Institute for providing the vessel to conduct this research and the captain and crew of the R/V Falkor for their help during the cruise. We are grateful to Aimee Neeley (NASA) for providing us with the Chl a data. We also thank Smail Mostefaoui for his assistance with nanoSIMS analyses at the French National Ion MicroProbe Facility hosted by the Muséum National d’Histoire Naturelle (Paris). N. C. and H. B. were supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. SD was funded by the National Science Foundation (OCE-1434916 and OCE-1458070), IC was funded through Schmidt Ocean Institute and NASA’s PACE mission.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature. 1999;400:525–31.
2. Moore JK, Geider RJ, Guieu C, Jaccard SL, Jickells TD, LaRoche J, et al. Processes and patterns of nutrient limitation. Nat Geosci. 2013;6:701–10.
3. Chisholm SW. Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K, eds. Primary productivity and biogeochemical cycles in the sea. Boston, MA: Springer US; 1992. p. 213–37.
4. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.
5. Kirkham AR, Lepère C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.
6. Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macro-nutrients and iron. ISME J. 2016;10:333–45.
7. Biller SJ, Bernbe PM, Lindell D, Chisholm SW, Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2014;13:13–27.
8. Flombaum P, Gallegos JL, Gordillo RA, Rinconc J, Jaba LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci. 2013;110:9824–9.
9. Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes
in biogeochemically distinct regions of the South East Pacific Ocean. Limnol Oceanogr. 2016;61:806–24.

10. Rii YM, Karl DM, Church MJ. Temporal and vertical variability in picophytoplankton primary productivity in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2016;562:1–18.

11. Hartmann M, Gomez-Pereira P, Grob C, Ostrowski M, Scanlan DJ, Zubkov MV. Efficient CO2 fixation by surface Prochlorococcus in the Atlantic Ocean. ISME J. 2014;8:2280–9.

12. Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci Data. 2012;4:37–46.

13. Jardillier L, Zubkov MV, Pearson J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 2010;4:1180–92.

14. Mackey KRM, Paytan A, Caldeira K, Grossman AR, Moran D, McIlvin M, et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 2013;163:815–29.

15. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.

16. Zinser ER, Johnson ZI, Coe A, Karaca E, Veneziano D, Chisholm SW. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol Oceanogr. 2007;52:2205–20.

17. Moore LR, Goericke R, Chisholm SW. Comparative physiology of Synechococcus and Prochlorococcus: Influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser. 1995;116:259–76.

18. Chen B, Liu H, Huang B, Wang J. Temperature effects on the growth rate of marine picoplankton. Mar Ecol Prog Ser. 2014;505:37–47.

19. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK, Levin SA, et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat Geosci. 2013;6:279–83.

20. Weber TS, Deutsch C. Ocean nutrient ratios governed by plankton biogeography. Nature. 2010;467:550–4.

21. Karl DM, Bidigare RR, Church MJ, Dore JE, Letelier RM, Mahaffey C, et al. The nitrogen cycle in the North Pacific trades biome: an evolving paradigm. In: Nitrogen in the marine environment. 2008. New-York, USA: Academic press. pp. 705–69.

22. Fawcett SE, Lomas MW, Casey JR, Ward BB, Sigman DM. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nature. 2011;471:22–27.

23. Artiñy AC, Kathuria S, Berube PM. Widespread metabolic potential for nitrate and nitrite assimilation among Prochlorococcus ecotypes. Proc Natl Acad Sci USA. 2009;106:10787–92.

24. Berube PM, Biller SJ, Kent AG, Barta-Thompson JW, Roggensack SE, Roache-Johnson KH, et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 2014;9:1195–207.

25. Casey JR, Lomas MW, Mandecki J, Walker DE. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys Res Lett. 2007;34:L10604.

26. Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 2007;3:2515–28.

27. Biller SJ, Berube PM, Barta-Thompson JW, Kelly L, Roggensack SE, Awad L, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data. 2014;1:140034.

28. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.

29. Lomas MW, Bronk DA, van den Engh G. Use of flow cytometry to measure biogeochemical rates and processes in the ocean. Ann Rev Mar Sci. 2011;3:537–66.

30. Musat N, Foster R, Vagnner T, Adam B, Kuypers MM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.

31. Gao D, Huang X, Tao Y. A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol. 2016;36:884–90.

32. López-Lozano A, Diez J, El Alaoui S, Moreno-Vivián C, García-Fernández JM. Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non-axenic cultures. FEMS Microbiol Ecol. 2002;41:151–60.

33. Duhamel S, Van Wambeke F, Lefèvre D, Benavides M, Bonnet S. Mixotrophic metabolism by natural communities of unicellular cyanobacteria in the western tropical South Pacific Ocean. Environ Microbiol. 2018;20:2743–56.

34. Worden AZ, Nolan JK, Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol Oceanogr. 2004:49:168–79.

35. Baer SE, Lomas MW, Terpis KK, Mougnot C, Martiny AC. Stoichiometry of Prochlorococcus, Synechococcus, and small eukaryotic populations in the western North Atlantic Ocean. Environ Microbiol. 2017;19:1568–83.

36. Moutin T, Raimbault P, Poggiale J-C. Primary production in surface waters of the western Mediterranean sea. Calculation of daily production. Comptes Rendus de l’Academie des Sciences. 1999:322:651–9.

37. Harrison WG, Harris LR, Irwin BD. The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations. Limnol Oceanogr. 1996:41:16–32.

38. Rees AP, Joint I, Donald KM. Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea shelf edge. Deep Res Part I Oceanogr Res Pap. 1999;46:483–510.

39. Ribalet F, Swallow J, Clayton S, Jimenez V, Sudek S, Lin Y, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci. 2015;112:8008–12.

40. L’Helgues S, Slawyk G, Le Corre P. Seasonal patterns of urea regeneration by size-fractionated microheterotrophs in well-mixed temperate coastal waters. J Plankton Res. 2005;27:263–70.

41. Clark DR, Rees AP, Joint I. Ammonium regeneration and nitritification rates in the oligotrophic Atlantic Ocean: implications for new production estimates. Limnol Oceanogr. 2008;53:52–62.

42. Price NM, Harrison PJ. Urea uptake by Sargasso Sea phytoplankton: saturated and in situ uptake rates. Deep Res Part A Oceanogr Res Pap. 1988;35:1579–93.

43. Dugdale RC, Goering JJ. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr. 1967;12:196–206.

44. Raimbault P, Garcia N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production. Biogeosciences. 2008;323:38.

45. Solomon C, Collier J, Berg G, Glibert P. Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat Microb Ecol. 2010:59:67–88.

46. Fawcett SE, Lomas MW, Ward BB, Sigman DM. Global Biogeochemical Cycles production in the Sargasso Sea. Glob Biogeochem Cycles. 2014;28:86–102.

47. Berube PM, Coe A, Roggensack SE, Chisholm SW. Temporal dynamics of Prochlorococcus cells with the potential for nitrate

Springer Nature
assimilation in the subtropical Atlantic and Pacific oceans. Limnol Oceanogr. 2016;61:482–95.

48. Massana R. Eukaryotic Picoplankton in Surface Oceans. Annu Rev Microbiol. 2011;65:91–110.

49. Vaulot D, Eikrem W, Viprey M, Moreau H. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. Vol. 32. FEMS Microbiology Reviews. 2008. p. 795–820.

50. Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:article 213.

51. Larkin AA, Blinovsk Y, Howes C, Lin Y, Loftus SE, Schmaus CA, et al. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.

52. Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, et al. Phrases and minuses of ammonium and nitrate uptake and assimilation by phytoplankton for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr. 2016;61:165–97.

53. Kent AG, Dupont CL, Yoos opp S, Martin-Ay. Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME J. 2016;10:1856–65.

54. Ohashi Y, Shi W, Takatani N, Aichi M, Maeda SI, Watanabe S, et al. Regulation of nitrate assimilation in cyanobacteria. J Exp Bot. 2011;62:1411–24.

55. Kang LK, Gong GC, Wu YH, Chang J. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea. Mol Ecol. 2016;25:4838–50.

56. Song B, Ward BB. Molecular cloning and characterization of high-affinity nitrate transporters in marine phytoplankton. J Phycol. 2007;43:542–52.

57. Raven JA, Wollenweber B, Handley LL. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phycol. 1992;121:19–32.

58. Quesada A, Hidalgo J, Fernández E. Three Nrt2 genes are differentially regulated in Chlamydomonas reinhardtii. Mol Gen Genet. 1998;258:373–7.

59. L’Helguen S, Maguer JF, Caradeuc J. Inhibition kinetics of nitrate uptake by ammonium in size-fractionated oceanic phytoplankton communities: Implications for new production and f-ratio estimates. J Plankton Res. 2008;30:1179–88.

60. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

61. Fuhrman JA. Microbial community structure and its functional implications. Nature . 2009;459:193–9.

62. Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.

63. Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.

64. Bödi Z, Farkas Z, Nevozhay D, Kalapos D, Lázár V, Csörgő B, et al. Phenotypic heterogeneity promotes adaptive evolution. PLOS Biol. 2017;15:e2000644.

65. Magadanova LA, Golyasnyaya NV. Heterogeneity as an adaptive trait of microbial populations. Microbiology . 2013;82:1–10.

66. Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S, Kaneko K, et al. Noise-driven growth rate gain in clonal cellular populations. Proc Natl Acad Sci. 2016;113:3251–6.

67. Mohr W, Vagner T, Kuypers MMM, Ackermann M, LaRoch J. Resolution of Conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. PLOS ONE. 2013;8:e66060.

68. Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and 15N labeling with NanoSIMS analysis reveals growth-rate dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56.

69. Finzi-Hart JA, Pett-Ridge J, Weber PK, Popa R, Fallon SJ, Gunderson T, et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. PNAS . 2009;106:6345–50.

70. Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, et al. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 2010;4:1215–23.

71. Foster RA, Sztejrenszus S, Kuypers MM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. Raven J, editor. J Phycol. 2013;49:502–16.

72. Flores E, Herrero A. Nitrogen assimilation and nitrogen control in cyanobacteria. Bioch Soc Trans. 2005;33:164–7.

73. Chisholm SW. Prochlorococcus. Curr Biol. 2017;27:R447–8.

74. Bec B, Hussein-Ratrema J, Collos Y, Soucha P, Vauquer A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picocoeukaryote community. J Plankton Res. 2005;27:881–94.

75. Shilova IN, Mills MM, Robidart JC, Turk-Kubo KA, Björkman KM, Kolber Z et al. Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnology and Oceanography. 2017;62:2550-74.

76. Van Mooy BAS, Devol AH. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol Oceanogr. 2008;53:78–88.

77. Mahaffey C, Björkman KM, Karl DM. Phytoplankton response to deep seawater nutrient addition in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser. 2012;460:13–34.

78. Rii YM, Bidigare RR, Church MJ. Differential responses of Prochlorococcus to mixed-layer nutrient enrichment in the Pacific Ocean. Limnol Oceanogr. 2016;61:482–95.

79. Bellson SE, Roache-Johnson KH, et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 2015;9:1195–207.