Soil moisture and electrical conductivity relationships under typical Loess Plateau land covers

Tuvia Turkeltaub1 | Jiao Wang2 | Qinbo Cheng1,3 | Xiaoxu Jia2,4 | Yuanjun Zhu4 | Ming-An Shao3,4 | Andrew Binley1

1 Lancaster Environment Centre, Lancaster Univ., Lancaster LA1 4YQ, UK
2 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3 State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai Univ., Nanjing 210098, China
4 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F Univ., Yangling 712100, China

Correspondence
Tuvia Turkeltaub, Lancaster Environment Centre, Lancaster Univ., Lancaster, LA1 4YQ, UK.
Email: tuviat@bgu.ac.il

Abstract
Vegetation changes that are driven by soil conservation measures significantly affect subsurface water flow patterns and soil water status. Much research on water consumption and sustainability of newly introduced vegetation types at the plot scale has been done in the Loess Plateau of China (LPC), typically using local scale measurements of soil water content (SWC). However, information collected at the plot scale cannot readily be upscaled. Geophysical methods such as electromagnetic induction (EMI) offer large spatial coverage and, therefore, could bridge between the scales. A noninvasive, multicoil, frequency domain, EMI instrument was used to measure the apparent soil electrical conductivity (σ_a) from six effective depths under four typical land-covers (shrub, pasture, natural fallow, and crop) in the north of the LPC. Concurrently, SWC was monitored to a depth of 4 m using an array of 44 neutron probes distributed along the plots. The measurements of σ_a for six effective depths and the integrated SWC over these depths, show consistent behavior. High variability of σ_a under shrub cover, in particular, is consistent with long term variability of SWC, highlighting the potential unsustainability of this land cover. Linear relationships between SWC and σ_a were established using cumulative sensitivity forward models. The conductivity–SWC model parameters show clear variation with depth despite lack of appreciable textural variation. This is likely related to the combined effect of elevated pore water conductivity as was illustrated by the simulations obtained with water flow and solute transport models. The results of the study highlight the potential for the implementation of the EMI method for investigations of water distribution in the vadose zone of the LPC, and in particular for qualitative mapping of the vulnerability to excessive vegetation demands and hence, unsustainable land cover.

Abbreviations: CL, crop; DOI, depth of investigation; EMI, electromagnetic induction; ET, evapotranspiration; FL, fallow; GL, grass; HCP, horizontal coplanar; LAI, leaf area index; LPC, Loess Plateau of China; MAPE, mean absolute percentage error; NSE, Nash–Sutcliffe efficiency; SL, shrub; SWC, soil water content; VCP, vertical coplanar.
1 INTRODUCTION

Landscape altering, such as conversion of natural ecosystems to agricultural lands, or application of soil conservation measures as revegetation for preventing land degradation, has a significant effect on soil water dynamics. The conversion of natural vegetation to croplands with shallow rooting systems can increase water levels in unconfined aquifers and mobilize salts to groundwater (Hancock et al., 2008; Kurtzman & Scanlon, 2011; Radford et al., 2009; Scanlon et al., 2009). Afforestation or revegetation, where trees, grass, and shrubs are replanted, are related to depletion of soil water and reduction in groundwater recharge fluxes (Adane et al., 2018; A. Allen & Chapman, 2001; Bai et al., 2020; Gates et al., 2011; T. Huang et al., 2013; Ouyanga et al., 2021; Scott & Lesch, 1997; Zhang et al., 2008). Various factors are attributed to the disturbance of the soil water status, such as high water demand, larger water-holding capacity of forest soils, deep roots, climate variability, and planting of vegetation in an inadequate environment (Barbetta et al., 2015; Cramer et al., 1999; Y. Jia & Shao, 2014; Rodriguez-Iturbe et al., 2001; Lazo et al., 2019). However, the effect on water yield by revegetated areas is debatable and depends on different conditions (van Dijk & Keenan, 2007). Therefore, there is a growing interest in development of monitoring methodologies to improve our knowledge of these processes (Krause et al., 2015; Robinson et al., 2008).

The soil water content (SWC) comprises information regarding the interaction between climate, vegetation, and soil (Rodriguez-Iturbe et al., 2001; Vereecken et al., 2014). However, SWC is spatially and temporally highly variable (Western et al., 2002). Remote sensing of SWC can provide valuable spatial information of SWC but only on the top few centimeters of the soil; other methods, such as time domain reflectometry and neutron probes, are limited in their support volume. In contrast, geophysical methods, such as ground penetrating radar, electromagnetic induction (EMI), and electrical resistivity, can be used for monitoring subsurface water and solute dynamics at a range of temporal and spatial scales (Binley et al., 2015).

The link between soil electrical conductivity (σ) and SWC has been the focus of attention for some time. Gardner (1898) first proposed the use of electrical conductivity for inferring SWC. Although σ is strongly influenced by SWC, it is also affected by other factors, such as soil texture, temperature, and pore water electrical conductivity (e.g., Friedman, 2005), necessitating the development of local (site-specific) relationships between σ and SWC. Binley and Slater (2020) provided a comprehensive analysis of the properties and states of soil that influence electrical conductivity. In Section 2, we discuss the relationship between σ and SWC in detail, and in the context of the current study.

Core Ideas

- An increasing trend in apparent electrical conductivity (ECa) corresponds with the increase in soil water content (SWC) under four typical landcovers.
- Linear relationships between SWC and ECa were established using the cumulative sensitivity model.
- Elevated pore water conductivity effects the relationship between conductivity and SWC.

The EMI method measures the apparent bulk electrical conductivity of the soil (σa), which is the depth weighted average value of the σ, with no requirement to establish any contact with the soil surface. The apparent conductivity is an integrated measurement of electrical conductivity that is governed by the depth-sensitivity pattern of the specific measurement. Electromagnetic induction is a relatively mobile technique allowing the measurement of σa over large scales (Abdu et al., 2008; Robinson et al., 2012). Doolittle and Brevik (2014) review the use of EMI measurements for qualitative mapping of soil properties and soil water processes. A number of studies have illustrated the potential and challenges of the EMI method for estimation of SWC over large areas by establishing relationships between σa and SWC (Altdorff et al., 2018; Calamita et al., 2015; Martínez et al., 2020; Martini et al., 2017; Nagy et al., 2013; Robinson et al., 2012).

Although the σa–SWC relationship can indicate the integrated state of the soil water, a detailed description of the soil water state with depth is limited (Corwin & Rhoades, 1982; Hendrickx et al., 2002). Modern EMI devices are manufactured with multiple coils and multiple frequencies, enabling the simultaneous measurement of σa from multiple effective depths. This permits the inversion of the measured σa values in order to obtain the “real” soil conductivity, σ. Previous studies suggested a number of approaches to establish the σ–SWC relationship under field conditions for different soil types (J. Huang et al., 2016, 2017). They used σ values derived from inversion of the σa data and related these to observed SWC values. The major drawback of the inversion solution is nonuniqueness, that is, multiple solutions for the same dataset. To encourage unique solutions and reduce some uncertainties, various approaches were suggested, such as regularization or joint inversions of geophysical datasets (Constable, 1987; Linde et al., 2006). Recently, Robinet et al. (2018) reported on difficulties to invert σa for the establishment of in situ σ–SWC relationships. Instead, they utilized a σa forward modeling approach to develop field-based σ–SWC relationships.

Given the potential value of EMI for mapping variation in soil water and the need to understand the effect of land...
management practices, we carried out EMI measurements over four typical land covers [peashrub [Caragana korshinskii Lam.], purple alfalfa [Medicago sativa L.], millet [Pennisetum glaucum (L.) R. Br.]–soybean [Glycine max (L.) Merr.], and fallow] at a study site in the north of the Loess Plateau of China (LPC). Previous studies have documented long-term SWC observations up to 4-m depth under each of the four plots (Liu & Shao, 2016; Zhao et al., 2017). Liu and Shao (2016) showed that the vegetation type significantly controls the vadose zone water dynamics. Furthermore, Zhao et al. (2017) analyzed a 10-yr record of soil water variability under different land covers and revealed high temporal variability (coefficients of variation up to 40% to depths of 4 m) under purple alfalfa and peashrub covers, which reflect the significant water demands by these vegetation types. Earlier studies (e.g. J. Li et al., 2008) have shown that water uptake under these vegetation types can extend to several meters’ depth. From the investigation of Zhao et al. (2017), the millet and soybean (and fallow) land covers seem to be the most sustainable in this environment. Therefore, the first objective of this study was to explore the capability of using σ_α, measured by EMI, to assess water sustainability of particular land covers. The second objective was to explore the σ–SWC relationships in the deep vadose zone under the different land covers. Most previous soil water–EMI studies have targeted relatively shallow variation in electrical conductivity; here, we study variation in soil water and σ to depths of 4 m.

2 MATERIALS AND METHODS

2.1 Study site

This study was conducted at the Shenmu Soil Erosion and Environment Experimental Station (38°47′46″N, 110°21′55″E) on the northern LPC. The mean annual air temperature is 8.4 °C, the annual reference evapotranspiration (ET_0) is 1,020 mm, and the average annual precipitation is 437 mm, 70% of which falls from July through October (climate records are presented in Supplemental Material). Significant soil erosion driven by wind and rainfall in this region motivated the implementation of a large-scale vegetation restoration, the “Grain to Green” project, to improve soil stability (Feng et al., 2016; Y. Jia & Shao, 2014). Since 1999, many farmlands were converted into forest and grassland, mainly in areas where slopes exceed 15° (Liang et al., 2015). Throughout the reclamation project, nonindigenous and indigenous vegetation were introduced to the region (Feng et al., 2016). The study site was established to understand the effect of introducing different cover types in the LPC. Experimental data has indicated that the nonindigenous vegetation appear to have excessive demands on soil water, keeping the soil under dry conditions and limiting soil water replenishment, in addition to reducing aquifer recharge. Therefore, the sustainability of some introduced land cover types is in question (Liu & Shao, 2016; Zhao et al., 2017).

Four adjacent plots (61 × 5 m) were established in 2004 on slopes with a uniform gradient (12–14°) (Figure 1). To test the effect of different vegetation types on the dynamics of soil water, three vegetation covers were introduced: “shrub” (Korshinsk peashrub), “grass” (purple alfalfa), and “crop” (2-yr rotation of millet and soybean). A “fallow” plot was also created. This was cultivated until 2004, and subsequently abandoned with no further disturbance. Different vegetation types grow over this plot. For the crop plot, the soybean–millet were sowed during May and harvested in October. After harvest, the crop plot remained clear of vegetation until following May. Both crops were fertilized with 120 kg N ha$^{-1}$ and 60 kg P$_2$O$_5$ ha$^{-1}$ annually, following the recommendation of the local agriculture service. The peashrub were planted at a planting spacing of 70 × 70 cm, then left alone to grow naturally, and alfalfa were planted with a row spacing of 50 cm in 2004. The aboveground parts of the alfalfa were cut in the beginnings of July and October every year. Note that the plots are rainfed and no irrigation is applied. In order to maintain consistency with previous studies at the site, we adopt the same labelling here: shrub (SL), grass (GL), fallow (FL), and crop (CL) (Figure 1).

Neutron-probe access tubes to 4-m depth were installed along 11 points in the centerline of each plot, at 5-m intervals (Figure 1). A previous study (Liu & Shao, 2016) presented analyses of soil samples at the site, indicating similarity in soil physical properties between the plots. The soil is a Calcaric Regosol (Food and Agriculture Organization–United Nations...
Education, Scientific and Cultural Organization), developed from low fertility loess. The soil has weak cohesion, high infil-
trability, low water retention, and is prone to erosion (Fu et al., 2010). The soil texture is composed of 11−14% clay, 30−45% silt, and 45−51% sand (Liu & Shao, 2016) and can be classified as loam. Figure 2 shows example particle size distribution data from two 3-m deep sampling points at the site. The texture profiles show remarkable similarity over 3-m depth; from these and other profiles measured at the site, the soil texture spatial variability is insignificant. As part of a regional deep vadose investigation, a borehole was drilled to bedrock at 60-m depth in Shenmu (X. Jia et al., 2018). Further, there were observations of bulk density from samples extracted from the deep vadose zone (Supplemental Figure S2). These observa-
tions reveal an increase in bulk density over the top 4 m of the profile.

2.2 | Data collection

Soil water content and σ_a measurements were carried out during 3 d in August and September 2017 (Figure 3). All mea-
surements of SWC and σ_a were conducted at each of the four plots, at the 11 locations in the centerline of each plot. The SWC measurements were made using a CNC503DR Hydro probe neutron probe (Beijing Super Power Company). Neutron counts were taken at an interval of 0.1 m in the upper 1 m and at 0.2-m intervals over 1−4 m. Thus, in total there are 3,300 SWC measurements. Apparent electrical conductivity measurements were made using the CMD Explorer (GF Instruments) EMI device, positioned at 1 m above ground level and orthogonal to the neutron probe tube. The instrument is 5-m long and has a 10-kHz transmitter coil and three receiver coils at different spacing from the transmitter (1.48, 2.82, and 4.49 m). The accuracy of measurement is ±4% at 50 mS m$^{-1}$ (GF Instruments). The instrument is used in two types of coil orientation: horizontal coplanar (HCP) and verti-
cal coplanar (VCP). Thus, the EMI device allows the collection of σ_a from six different effective depths. In total, there are 792 measurements of σ_a. Field tests were conducted to con-
firm negligible effect of the neutron probe access tube on the measurements when carried out 1 m above ground level.

If EMI measurements are made at ground level and assuming relatively uniform electrical conductivity, it is normal practice to assume that the cumulative sensitivity patterns can be expressed, for VCP and HCP orientation, as follows (McNeill, 1980):

$$CS_{VCP}(z) = \left[4\left(\frac{z}{s}\right)^2 + 1\right]^{0.5} - 2\left(\frac{z}{s}\right),$$ (1)
FIGURE 4 Cumulative sensitivity functions for vertical coplanar (VCP) and horizontal coplanar (HCP) orientations with instruments located 1 m above ground level. Arrows are positioned at the depth of investigation for a given coil spacing (s).

and

\[
\text{CS}_{\text{HCP}} (z) = \left[4\left(\frac{z}{s}\right)^2 + 1\right]^{-0.5}
\]

where s is the transmitter receiver coil spacing (1.48, 2.82, or 4.49 m).

In Equations 1 and 2 the cumulative sensitivity will be, by definition, unity at the ground surface. As discussed by Morris (2009), measurements made with the coils above ground level result in a modified cumulative sensitivity pattern, as shown in Figure 4 for measurements made 1 m above ground level. As is common practice for EMI measurements, adopting a definition of the depth of investigation (DOI) as the depth over which 70% of the signal is sensitive, then for the VCP orientations, we can compute a DOI of 2.7, 3.4, and 4.5 m for the three-coil spacing, and a DOI of 3.1, 4.6, and 6.9 m for the HCP orientation (Figure 4).

2.3 Establishment of a relationship between SWC and \(\sigma \)

The development of a relationship between SWC and \(\sigma \) is required in order to convert the observed EMI data to SWC. Numerous models have been developed to relate \(\sigma \) to SWC. Many originate from early oil reservoir studies (e.g., the well-established approaches of Archie [1942] and Waxman and Smits [1968]); several approaches have targeted soils (most notably, Rhoades et al. [1976]). Models range from purely empirical, to semiempirical and physics-based. Laloy et al. (2011) documents a valuable comparison of a range of models for soils, using the term “pedo-electrical” model to differentiate this from the classical petrophysics terminology.

Despite the range of approaches, the general structure of a \(\sigma \)–SWC model is that there should be a conducting term for the pores and a parallel contribution from conduction along the particle surface (“surface conduction”), which is intuitively linked to the proportion of fine particles, often based on clay content (see, for example, Revil and Glover [1998]). Laloy et al. (2011) show, from their comparison, that a volume averaging approach, used by Linde at al. (2006), was the most effective at fitting their experimental data. This model can be written as follows:

\[
\sigma = \frac{1}{F} \left[\sigma_f \left(\frac{\theta}{\phi}\right)^n + (F - 1) \sigma_s \right]
\]

where \(F \) is the formation factor, \(\sigma_f \) is the fluid electrical conductivity, \(\theta \) is the SWC, \(\phi \) is porosity, \(n \) is a parameter that is controlled by the texture of the media, and \(\sigma_s \) is the surface electrical conductivity. The formation factor \(F \) is also a function of the soil texture and porosity, typically expressed as \(\phi^{-m} \), where \(m \) is the commonly named cementation exponent.

A number of studies have shown that a simple linear relationship can be established between water content and electrical conductivity (e.g., Calamita et al., 2012; Michot et al., 2003; Robinet et al., 2018), which is clearly equivalent to assuming \(n = 1 \) in Equation 3. Following this, we may write:

\[
\sigma = a \times \theta + b
\]
where, if adopting Equation 3, the coefficients are as follows:

\[a = \sigma_i \phi^{m_{i-1}}, \quad b = (1 - \phi^m) \sigma_i \]

To convert the \(\sigma \) from Equation 4 to \(\sigma_{a} \), the forward solution of the cumulative sensitivity model is utilized, following the approach of Robinet et al. (2018). The EMI instrument measures the bulk \(\sigma_{a} \), which, using the cumulative sensitivity functions in Equations 1 and 2, is related to \(\sigma(z) \). Assuming a series of layers, where the middle of each layer is the SWC depth measurement, with conductivity \(\sigma_i \) (\(i = 1,2,3, \ldots M \)), the apparent conductivity for a given coil spacing (s) and orientation, can be expressed as follows:

\[\sigma_a = \sigma_1 \left[1 - CS \left(z_1 \right) \right] + \sum_{i=2}^{M-1} \sigma_i \left[CS \left(z_i \right) - CS \left(z_{i-1} \right) \right] + \sigma_M CS \left(z_{M-1} \right) \]

where \(M \) is the lowest layer. In this study, we have SWC observations to 4-m depth, and so the value of \(\sigma_M \) is assumed to represent the electrical conductivity at greater depths.

The approach adopted involved taking, for all land cover types, measurements of SWC at 25 depths, and converting these to six apparent conductivities (three coil spacings, two orientations) for the 11 locations on three dates using a given value of \(a \) and \(b \) in Equation 4. The optimum values of \(a \) and \(b \) that minimize the RMSE of a sample size \(N \), are given by the following:

\[\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\sigma_{a,\text{obs}} - \sigma_{a,\text{predicted}} \right)^2} \]

where \(\sigma_{a,\text{obs}} \) are the observed apparent conductivities and \(\sigma_{a,\text{predicted}} \) are the predicted values for a given \(a \) and \(b \). The optimization was carried out using the \textit{fminsearch} function that is available on the Matlab optimization toolbox (MathWorks, 2015). This function uses the Nelder–Mead simplex algorithm (Lagarias et al., 1998).

2.4 Unsaturated water flow and solutes transport modelling

For the current study, there are no measurements of pore water electrical conductivity. To address this, the Richards equation and the advection–dispersion equation were used to simulate the accumulation of chloride in the vadose zone of the four land covers.

We implemented a calibrated unsaturated water flow model that was calibrated to long term data measured at the study site (Bai et al., 2020). For a detailed description of the model calibration and validation results, see Bai et al. (2020). The unsaturated water flow is described by the Richards equation, as follows:

\[\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(\psi) \left(\frac{\partial \psi}{\partial z} + 1 \right) \right] - S \]

where \(\psi \) is the matric potential head (L), \(\theta \) is the volumetric water content (L^3 L^{-3}), \(t \) is time (T), \(z \) is the vertical coordinate (L), \(K(\psi) \) (L T^{-1}), the unsaturated hydraulic conductivity function, is a function of the matric potential head, and \(S \) is a root water-uptake sink term (L^3 L^{-3} T^{-1}). The Richards equation was solved numerically by using the Hydrus 1D code (Šimůnek et al., 2008). Simulation of the root water uptake rate (the sink term) was conducted according to the model suggested by Feddes et al. (1978); parameters used for the different plant types were obtained from the Hydrus 1D database (millet [crop], grass, and alfalfa [shrub]). The Mualem–van Genuchten calibrated unsaturated hydraulic functions obtained by Bai et al. (2020) were implemented in the model.

The advection–dispersion equation was applied to describe the unsaturated chloride transport in the unsaturated zone of the different land covers, as follows:

\[\frac{\partial \partial C_{\text{Chloride}}}{\partial t} = \frac{\partial}{\partial z} \left[\partial D \frac{\partial C_{\text{Chloride}}}{\partial z} \right] - \frac{\partial q C_{\text{Chloride}}}{\partial z} \]

where \(C_{\text{Chloride}} \) (M L^{-3}) is chloride concentration in the pore water solution, \(D \) (L^2 T^{-1}) is the hydrodynamic dispersion coefficient, and \(q \) (L T^{-1}) is the water flux. Turkeltaub et al. (2018) suggested a representative value of 7.5 cm for the longitudinal dispersivity in the LPC. This value was calculated according to sampled chloride and nitrate vadose zone profiles across the LPC.

Atmospheric boundary conditions with a surface layer (assuming zero for ponding depth at the soil surface) were prescribed at the upper boundary (land surface) as rain, leaf area index (LAI), potential evapotranspiration (ET\(_0\)), rain chloride concentrations, and the minimum allowed pressure head at the soil surface (Šimůnek et al., 2008) at a daily temporal resolution. To estimate the potential ET\(_0\) values, reference evapotranspiration (ET\(_{ref}\)) values were multiplied with the single crop coefficients (K\(_c\)). The K\(_c\) values for millet (crop), grass, alfalfa (shrub), and bare soil were based on R. Allen et al. (1998). The chloride concentration in the rain was 1.7 mg L^{-1} (T. Huang et al., 2013).

The vertical root density distributions for the different covers were implemented according to the root profiles that were published by Bai et al. (2020). For the crop plot, a linear root distribution was assumed through ~50-cm depth (Bai et al., 2020). Under the grass and the shrub plots, the roots were distributed over 400 and 270 cm, respectively (Bai et al., 2021).
For the root distribution profiles, see Supplemental Figure S2 (Bai et al., 2020). The increase in LAI during the growing season for millet, grass, and alfalfa was estimated with the model of Leenhardt et al. (1998), where the increase in LAI is assumed a function temperature according to the following:

\[
\text{LAI}(T) = \frac{\text{LAI}_{\text{max}}}{1 + e^{-b(T-T_i)}}
\]

where \(\text{LAI}_{\text{max}}\) is the maximum LAI of the crop, \(T_i\) (°C) is the sum of temperature at the inflection point of the curve, and \(b\) is a curvature parameter. The \(\text{LAI}_{\text{max}}\) and the \(b\) parameters were estimated using the temperature database and reported LAI curves (natural grass, McVicar et al. [2005]; millet, Wu et al. [2003]; and alfalfa, Zhao et al. [2004]). For further information of the calculated LAI of the different plant types, see Supplemental Figure S3. Daily climate data covering the period 1 Jan. 1961 to 31 Dec. 2017 were obtained in the vicinity of the study site (State Bureau of Meteorology, 2020). The simulations started on 1 Jan. 1961 and ceased on 21 Aug. 2017 (20,718 d). By running the models over a long period, the effect of the initial conditions was minimized. The models’ performance evaluation was conducted following the analysis suggested by Bai et al. (2020). Three types of statistical measures were used: (a) the Nash–Sutcliffe efficiency coefficient (NSE); (b) RMSE; and (c) mean absolute percentage error (MAPE). The closer NSE is to 1, the better the model fit. Lower values of RMSE and MAPE indicate a better fit between model and data.

3 | RESULTS AND DISCUSSION

3.1 | Spatiotemporal variability of SWC

In Figure 5, SWC profiles for all the survey dates are shown. The movement of a drying front can be seen between the first two survey dates, followed by subsequent wetting in the third survey (following the late August rainfall event). The profiles show similarity for a given land cover type (limited horizontal variability was observed along the slope) and also the reduced soil water content at depth for the grass and shrub cover type due to the greater water demands of such cover and the deep root penetration, which is estimated to be greater than 4-m depth (Zhao et al., 2017). These are consistent with the long-term study at the site of Zhao et al. (2017), which also showed that water percolates to deeper parts of the vadose zone under the crop cover compared with the other land covers. The significant differences in SWC between the land covers, which are subjected to the same climatic conditions, and uniform soil texture (Figure 2), highlights the potential negative effect on SWC due to the planting of vegetation that is unsustainable in the LPC region (Fang et al., 2016; Liu & Shao, 2016; Zhao et al., 2017). Figure 6 summarizes the SWC data for the three survey dates, adding further illustration of the effect of land cover type on soil water availability.

3.2 | \(\sigma_a\) measurements

The apparent conductivity measurements are summarized as box and whisker plots in Figure 7. The vertical coplanar and horizontal coplanar configurations with similar depths of investigation show consistency. The plots indicate an increasing conductivity with depth across all land cover types and a clear contrast in apparent conductivity for the four land covers, particularly for the measurements over greater depths. There is a clear similarity between land cover contrasts in SWC (Figure 6) and apparent conductivity (Figure 7), particularly when we compare the shrub and grass cover with the fallow and crop cover.

Robinson et al. (2008) reported on similar variability in \(\sigma_a\) for different vegetation species. They related the ranking in \(\sigma_a\) values to the relationship between plant communities and soil types. However, the plots in the current study are adjacent, and major differences in soil texture are not observable (Figure 2). Therefore, it can be assumed that the ranking of \(\sigma_a\) is probably dominated by the water conditions in the vadose zone and influenced by the water demand of the vegetation cover. We note that some discrepancy between crop and fallow cover might be related to the fertilizer application for the crop (Zhao et al., 2017). Similar observations were reported elsewhere (Calamita et al., 2015). Nevertheless, the \(\sigma_a\) values obtained at the crop and fallow are generally higher to those obtained on the shrub and grass plots, which are known to experience bigger demands on soil water status.

Further interpretation was suggested in previous studies regarding the statistics of the \(\sigma_a\) values (Calamita et al., 2015; Robinson et al., 2008). For the following interpretation, two assumptions are made: (a) the \(\sigma_a\) measurements reflect the soil water conditions (as was shown above) and (b) vegetation under optimal conditions would show a low CV of the SWC (Robinson et al., 2008; Zhao et al., 2017). Robinson et al. (2008) showed empirically that highly skewed \(\sigma_a\) distributions and high CV values indicate that vegetation grows outside their optimal environment. The long-term investigation (>10 yr) of SWC time series measurements at the study site by Zhao et al. (2017) revealed a decreasing trend in the CV of SWC as follows: CL < FL < GL < SL. Similarly, a high CV was calculated for the \(\sigma_a\) measurements under the shrub cover (Table 1). Thus, following the presented analysis, we observe the same ranking of variation in apparent conductivity for the deeper measurements (see Table 1). Based on their observations of SWC, Zhao et al. (2017) concluded that the Korshinsk peashurb is not sustainable in terms of SWC.
FIGURE 5 Soil water content profiles in the four plots on the three survey dates. The solid line is the median profile; the shaded region shows the 1st and 3rd interquartile range.

TABLE 1 Coefficient of variation of apparent conductivity measurements

Coil configuration and spacing	Crop	Fallow	Grass	Shrub
VCP, 1.48 m	9.23	15.65	8.57	18.25
VCP, 2.82 m	8.24	6.30	6.90	13.72
VCP, 4.49 m	5.45	5.96	7.23	9.98
HCP, 1.48 m	6.70	5.81	8.90	19.05
HCP, 2.82 m	6.16	6.23	7.80	12.11
HCP, 4.49 m	6.84	7.25	8.54	10.68

Note. VCP, vertical coplanar; HCP, horizontal coplanar.
FIGURE 6 The average soil water content (SWC) under the different land covers. The horizontal line shows the median SWC, the box shows the 2nd and 3rd quartile range, and the whiskers show the 1st and 4th quartiles.

use in the region. The EMI results presented here may offer a means of detecting areas that might be affected by revegetated plants under unsustainable conditions in the LPC.

TABLE 2 Estimated relationships between soil water contents and σ for all land covers

Configuration	Coil spacing, s (m)	DOI (m)	a (mS m$^{-1}$)	b (mS m$^{-1}$)	RMSE (mS m$^{-1}$)
VCP	1.48	2.7	23.7	1.7	0.7
VCP	2.82	3.4	32.3	4.1	0.8
VCP	4.49	4.5	38.9	5.7	1.0
HCP	1.48	3.1	19.6	5.2	0.8
HCP	2.82	4.6	30.3	7.8	1.0
HCP	4.49	6.9	37.5	9.2	1.3

Note. DOI, depth of investigation; VCP, vertical coplanar; HCP, horizontal coplanar.

3.3 σ–SWC relationship

The measurements obtained in the current study enabled us to explore relationships between SWC and σ at the study site. As stated earlier, the approach involved compiling an aggregate dataset for the site, rather than applying the model search for different cover types, because there is likely to be a limited range of the data to perform the latter. Table 2 reports the linear coefficients a and b (Equation 4) obtained using the

FIGURE 7 Box and whisker plots of the apparent electrical conductivity (σ_a) measurements from six effective depths, which were obtained over the different land covers. The horizontal line shows the median soil water content, the box shows the 2nd and 3rd quartile range, and the whiskers show the 1st and 4th quartiles. DOI, depth of investigation; HCP, horizontal coplanar; VCP, vertical coplanar.
FIGURE 8 Estimated vs. observed σ_a for all crop cover types using the relationships in Table 2. The black line in each plot is the 1:1 relationship. DOI, depth of investigation; HCP, horizontal coplanar; VCP, vertical coplanar optimization process adopted here. The fit for each model is similar, approximately 1 mS m$^{-1}$, which is within the accuracy of the instrument. However, power law models were also tested, and these models did not provide any further improvement in performance, which is in line with previous studies (Calamita et al., 2012; Michot et al., 2003). In addition, Robinet et al. (2018) noted that a better linear relationship between σ_a and soil moisture could be obtained by using σ_a observations from their deeper sensed EMI configuration.

Figure 8 shows the model fit for the six coil orientations, plotted to differentiate the four cover types. The grass and shrub cover data show the greatest departure from the 1:1 apparent conductivity, particularly at greater depths. This may be related to the relatively high salinity conditions that might prevail under these cover types due to elevated evapotranspiration.

Figure 9 shows the variation in σ–SWC relationship parameters with depth, using a nominal depth as that at which the cumulative sensitivity function CS(z) equals 0.5, that is, the depth over which 50% of the EMI measurement is sensitive. Note that this “halfdepth” is a nominal depth used for illustration, although it is sometimes used to guide EMI survey design (Morris, 2009). A consistent increase with depth in both a and b is seen for both coil orientations. From Equation 5, an increase in a could account for (a) increase in pore water conductivity, (b) reduction in porosity, and (c) increase in cementation exponent, m. An increase in b can also be attributed to a reduction in porosity and an increase in m, in addition to an increase in surface conductivity. The observations of bulk density reveal an increase in bulk density over the top 4 m of the profile (Supplemental Figure S2). Assuming a particle density of 2.65 g cm$^{-3}$, this equates to a reduction in porosity from 0.50 at 0.5-m depth to 0.44 at 4.5-m depth, that is, a reduction by 10%. Assuming a cementation exponent $m = 2$ because most porous sediments have cementation exponents between 1.5 and 2.5 (Cai et al., 2017), such a reduction in porosity can only account for a 30% increase in a. Therefore, it would appear that pore water conductivity variation with depth is a primary driver of the change in model coefficients with depth.

Developing relationships between soil water content and electrical conductivity is constrained by the influence of a range of properties, making the use of universal models somewhat limited without local calibration. GF Instruments report that the measurement accuracy for the CMD-Explorer is ±4%, and the measurement accuracy of the CNC503DR Hydro neutron probe is also reported to be ~4%. The RMSE values of all the models are ≤10% than the mean of the measurements. Furthermore, the R^2 and the RMSE values that were reported here are comparable to previously published calibrated
models (Calamita et al., 2015; Coppola et al., 2016; Robinet et al., 2018; Robinson et al., 2012; Tromp-van Meerveld & McDonnell, 2009). Therefore, for the dataset studied here, a linear σ–SWC model was considered to be suitable. Although we recognize that given a wider range of soil water, a more nonlinear function may be suitable (e.g., Robinet et al., 2018). Despite this, our results show that qualitative mapping of the effect of soil water reduction from excessive crop water uptake is potentially feasible in the LPC.

3.4 Accumulation of chloride in the vadose zone

Simulated and observed SWC are plotted in Supplemental Figures S4 and S5. Note that the soil hydraulic functions and root vertical distributions were prescribed according to Bai et al. (2020), and no further adjustments were conducted. The RMSE and MAPE were similar and low for all the plots (Supplemental Figure S5), while the NSE value was different for each plot and showed higher efficiency for the crop and grass plots (Supplemental Figure S5). These results were comparable to the analysis presented by Bai et al. (2020). Thus, the model can be considered to adequately describe the SWC dynamic under the investigated plots (Bai et al., 2020). By including the longitudinal dispersivity in the model, the transport of chloride (of rainfall origin) in the vadose zone under the different covers is revealed.

Figure 10 presents the calculated chloride concentrations at the end of the model runs (20 Sept. 2017). The simulated chloride concentrations under the alfalfa are nearly two times higher compared with the fallow and six times that with the crop (millet) (Figure 10). Previous studies in the LPC reported soil profile information that are comparable to the simulated chloride. T. Huang et al. (2013) showed an intensive accumulation of chloride under alfalfa (about 6.5 times higher than under rain-fed winter wheat crop). Additional studies (Gates et al., 2011; Y. Huang et al., 2021) revealed an increase in chloride accumulation in the vadose zone under similar shrub covers as in this study and under orchards in the LPC.

An earlier study by Hilhorst (2000) suggested that under dry conditions, the σ measured by EMI is more affected by the increase of pore water conductivity and less closely associated to SWC. Furthermore, in semiarid areas, the climatic forcing has a major effect on deep drainage. The level of deep drainage intensity would define the build-up of salts and their distribution in the vadose zone (Scanlon et al., 2010). Recently, several studies have indicated that the pore water conductivity distribution in the vadose zone should be considered when establishing an in situ σ–SWC relationship in semiarid areas (Cassiani et al., 2016; Moreno et al., 2015). However, currently there are no reported field studies of in situ simultaneous measurements of SWC, σ, and pore water conductivity under semiarid conditions. The build-up of salts and associated soil salinity in the LPC vadose zone has received surprisingly little attention.
4 | CONCLUSION

The measurements of SWC in deeper parts of the vadose zone at large scales is challenging. Geophysical methods such as the EMI approach might facilitate a bridge between processes observed locally and at larger scales. Here, EMI was applied to measure apparent electrical conductivity over six effective depths in four plots covered by typical land cover types (shrub, grass, fallow, and crop) in the north of the LPC. Soil water content was measured with neutron probes from the ground surface to a depth of 4 m. The unique loess environment in the LPC, with its characteristic deep soils and relatively insignificant soil variability, reduces the effect of soil texture variation on EMI readings to minimum. Moreover, for this particular study, soil textural variation is insignificant and can be neglected. The similarity of the soil texture between all plots enabled a focus of investigation on the potential influences of different cover types on the spatiotemporal variability of SWC and apparent electrical conductivity.

An increasing trend in σ_a values, $SL < GL < FL < CL$, corresponds with the increase in average SWC in the plots. Moreover, σ_a values that were measured in the shrub covered plot show a relatively high variability, which is consistent with documented variability of SWC for soils under this vegetation, indicating unsustainable water conditions in the vadose zone.

Linear relationships between soil water content and specific-depth σ under the different land covers were established. The σ values were estimated using the SWC observations, assuming a linear relationship between these variables. The analysis reveals a change in model parameters with depth. Textural variation is apparently negligible (to 3-m depth, at least); however, such variation in model parameters may be attributed, in part, to changes in bulk density. Increases in pore water electrical conductivity are hypothesized as a primary cause of the depth dependency of the σ--SWC model parameters. Simulations of chloride profiles support the hypothesis that contrasts in pore water electrical conductivity could exist under different crop types. Elevated pore water conductivity beneath shrub and grass covers would imply even greater significance of the soil water content because these two cover types exhibit lower apparent conductivity than the other two cover types. To improve SWC prediction from EMI observations, pore water conductivity should be measured. Nevertheless, the results presented here illustrate how excessive water demands of Koreshinsk peashrub and purple alfalfa at the study site are revealed by their lower apparent conductivity and (for the case of the shrub cover at least) their high variation in apparent conductivity. Our EMI dataset reveals an immense potential for mapping—qualitatively at least—areas of the LPC that are vulnerable to excessive vegetation demands, and hence, unsustainable land cover.

ACKNOWLEDGMENTS

This work was supported by the UK Natural Environment Research Council (grant ref NE/N007409/1 awarded to Lancaster) and the National Natural Science Foundation of China (41571130081). We appreciate Dr. Yuanzhi Wu from Linyi University for her generosity in providing the particle size distribution data.

AUTHOR CONTRIBUTIONS

Tuvia Turkeltaub: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Writing—original draft; Writing—review & editing. Xiaoxu Jia: Data curation; Funding acquisition; Project administration. Qinbo Cheng: Data curation; Investigation. Yuanjun Zhu: Funding acquisition; Project administration. Jiao Wang: Data curation; Investigation. Yuanjun Zhu: Funding acquisition; Project administration. Ming-An Shao: Funding acquisition; Project administration; Resources. Andrew Binley: Conceptualization; Funding acquisition; Project administration.

ORCID

Tuvia Turkeltaub https://orcid.org/0000-0002-1278-3845
Xiaoxu Jia https://orcid.org/0000-0002-6581-9717

REFERENCES

Abdu, H., Robinson, D. A., Seyfried, M., & Jones, S. B. (2008). Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity. Water Resources Research, 44, W00D18. https://doi.org/10.1029/2008WR007043
Adane, Z. A., Nasta, P., Zlotnik, V., & Wedin, D. (2018). Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. Journal of Hydrology: Regional Studies, 15, 171–183. https://doi.org/10.1016/j.jhregres.2018.01.001
Allen, A., & Chapman, D. (2001). Impacts of afforestation on groundwater resources and quality. Hydrogeology Journal, 9, 390–400. https://doi.org/10.1007/s100400100148
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (FAO irrigation and drainage paper 56). Food and Agriculture Organization.
Altdorff, D., Galagedara, L., Nadeem, M., Cheema, M., & Unc, A. (2018). Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction. Catena, 164, 96–106. https://doi.org/10.1016/j.catena.2017.12.036
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146, 54–62. https://doi.org/10.2118/942054-G
Bai, X., Jia, X., Jia, Y., & Hu, W. (2020). Modeling long-term soil water dynamics in response to land-use change in a semi-arid area. Journal of Hydrology, 585, 124824. https://doi.org/10.1016/j.jhydrol.2020.124824
Barbeta, A., Mejía-Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., & Peñuelas, J. (2015). The combined effects of a long-term experimental drought and an extreme drought on the plant-water sources in a
Mediterranean forest. Global Change Biology, 21, 1213–1225. https://doi.org/10.1111/gcb.12785

Binley, A., Hubbard, S. S., Huismann, J. A., Revil, A., Robinson, D. A., Singh, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. https://doi.org/10.1002/2015WR017016

Binley, A., & Slater, L. (2020). Resistivity and induced polarization. Theory and applications to the near-surface earth. Cambridge University Press.

Cai, J., Wei, W., Hu, X., & Wood, D. A. (2017). Electrical conductivity models in saturated porous media: A review. Earth-Science Reviews, 171, 419–433. https://doi.org/10.1016/j.earscirev.2017.06.013

Calamita, G., Brocca, L., Perrone, A., Piscitelli, S., Lapenna, V., Melone, F., & Moramarco, T. (2012). Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. Journal of Hydrology, 454, 101–112. https://doi.org/10.1016/j.jhydrol.2012.06.001

Calamita, G., Perrone, A., Brocca, L., Onorati, B., & Manfreda, S. (2015). Field test of a multi-frequency electromagnetic induction sensor for soil moisture monitoring in southern Italy test sites. Journal of Hydrology, 529, 316–329. https://doi.org/10.1016/j.jhydrol.2015.07.023

Cassiani, G., Boaga, J., Rossi, M., Putti, M., Fadda, G., Majone, B., & Bellin, A. (2016). Soil-plant interaction monitoring: Small scale example of an apple orchard in Trentino, North-eastern Italy. Science of the Total Environment, 543, 851–861. https://doi.org/10.1016/j.scitotenv.2015.03.113

Constable, S. C. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300. https://doi.org/10.1190/1.1442303

Corwin, D. L., & Rhoades, J. D. (1982). An improved technique for determining soil electrical conductivity-depth relations from above-ground electromagnetic measurements. Soil Science Society of America Journal, 46, 288–291. https://doi.org/10.2136/sssaj1982.03615995004600030014x

Coppola, A., Smettem, K., Ajeel, A., Saeed, A., Dragonetti, G., Comenag, A., Lamaddalena, N., & Vacca, A. (2016). Calibration of an electromagnetic induction sensor with time-domain reflectometry data to monitor rootzone electrical conductivity under saline water irrigation. European Journal of Soil Science, 67(6), 737–748. https://doi.org/10.1111/ejss.12390

Cramer, V. A., Thorburn, P. J., & Fraser, G. W. (1999). Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agricultural Water Management, 39, 187–204. https://doi.org/10.1016/S0378-3774(98)00078-X

Doolittle, J. A., & Brevik, E. C. (2014). The use of electromagnetic induction techniques in soils studies. Geoderma, 223, 33–45. https://doi.org/10.1016/j.geoderma.2014.01.027

Fang, X. N., Zhao, W. W., Wang, L. X., Feng, Q., Ding, J. Y., Liu, Y. X., & Zhang, X. (2016). Variations of deep soil moisture under different vegetation types and influencing factors in awatershed of the Loess Plateau, China. Hydrology and Earth System Sciences, 20, 3309–3323. https://doi.org/10.5194/hess-20-3309-2016

Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. John Wiley and Sons.

Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., & Wu, B. (2016). Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6, 1019–1022. https://doi.org/10.1038/nclimate3092

Friedman, S. P. (2005). Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 46, 45–70. https://doi.org/10.1016/j.compag.2004.11.001

Fu, X., Shao, M., Wei, X., & Horton, R. (2010). Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155(1–2), 31–35. https://doi.org/10.1016/j.geoderma.2009.11.020

Gardner, F. D. (1898). The electrical method of moisture determination in soils: results and modifications in 1897. In U.S. Department of Agriculture Division of Soils Bulletin, No. 12. USDA.

Gates, J. B., Scanlon, B. R., Mu, X., & Zhang, L. (2011). Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China. Hydrogeology Journal, 19, 865–875. https://doi.org/10.1007/s10040-011-0716-3

Hancock, T. C., Sandstrom, M. W., Vogel, J. R., Webb, R. M. T., Bayless, E. R., & Barbash, J. E. (2008). Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA. Journal of Environmental Quality, 37, 1086–1100. https://doi.org/10.2134/jeq2007.0024

Hendrickx, J. M. H., Borchers, B., Corwin, D. L., Lech, S. M., Hilgen-dorf, A. C., & Schlue, J. (2002). Inversion of soil conductivity profiles from electromagnetic induction measurements: Theory and experimental verification. Soil Science Society of America Journal, 66, 673–685. https://doi.org/10.2136/sssaj2002.6730

Hilhorst, M. A. (2000). A pore water conductivity sensor. Soil Science Society of America Journal, 64, 1922–1925. https://doi.org/10.2136/ sssaj2000.6461922x

Huang, J., McBratney, A. B., Minasny, B., & Triantafilis, J. (2017). Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter. Geoderma, 285, 76–93. https://doi.org/10.1016/j.geoderma.2016.09.027

Huang, J., Monteiro Santos, F. A., & Triantafilis, J. (2016). Mapping soil water dynamics and a moving wetting front by spatiotemporal inversion of electromagnetic induction data. Water Resources Research, 52(11), 9131–9145. https://doi.org/10.1002/2016WR019330

Huang, T., Pang, Z., & Edmunds, W. M. (2013). Soil profile evolution following land-use change: Implications for groundwater quantity and quality. Hydrological Process, 27(8), 1238–1252. https://doi.org/10.1002/hyp.9302

Huang, Y., Li, B., & Li, Z. (2021). Conversion of degraded farmlands to orchards decreases groundwater recharge rates and nitrate gains in the thick loess deposits. Science of the Total Environment, 314, 107410. https://doi.org/10.1016/j.scitotenv.2021.107410

Jia, X., Zhu, Y., Huang, L., Wei, X., Fang, Y., Wu, L., Binley, A., & Shao, M. (2018). Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau. Science of the Total Environment, 633, 999–1006. https://doi.org/10.1016/j.scitotenv.2018.03.249

Jia, Y. H., & Shao, M. A. (2014). Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. Journal of Hydrology, 519, 523–531. https://doi.org/10.1016/j.jhydrol.2014.07.043

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 9, 112–147. https://doi.org/10.1137/S1052623496303470
Leonhardt, D., Lafolie, F., & Bruckler, L. (1998). Evaluating irrigation strategies for lettuce by simulation: I. Water flow simulations. *European Journal of Agronomy*, 8, 249–265. https://doi.org/10.1016/S1161-0301(97)00065-8

Li, J., Chen, B., Li, X. F., Zhao, Y. J., Ciren, Y. J., Jiang, B., Hu, W., Cheng, J. M., & Shao, M. A. (2008). Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. *Acta Ecologica Sinica*, 28(4), 1429–1445. https://doi.org/10.1016/S1872-2032(08)60052-9

Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D., & Feng, M. (2015). Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau. *Water Resources Research*, 51(8), 6500–6519. https://doi.org/10.1002/2014WR016589

Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. (2006). Improved hydro-geophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. *Water Resources Research*, 42(12), W12404. https://doi.org/10.1029/2006WR005131

Kurtzman, D., & Scanlon, B. R. (2011). Groundwater recharge through vertisols: Irrigated cropland vs. natural land. *Israel Vadoze Zone Journal*, 10, 662–674. https://doi.org/10.2136/vzj2010.0109

Krause, S., Lewandowski, J., Dahm, C. N., & Tockner, K. (2015). Frontiers in real-time ecohydrology—a paradigm shift in understanding complex environmental systems. *Ecology Hydrology*, 8(4), 529–537. https://doi.org/10.1002/eco.1646

Laloy, E., Javaux, M., Vancooijster, M., Roisin, C., & Bielders, C. L. (2011). Electrical resistivity in a loamy soil: Identification of the appropriate pedo-electrical model. *Vadoze Zone Journal*, 10(3), 1023–1033. https://doi.org/10.2136/vzj2010.0095

Lazo, P. X., Mosquera, G. M., McDonnell, J. J., & Crespo, P. (2019). The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. *Journal of Hydrology*, 572, 805–819. https://doi.org/10.1016/j.jhydrol.2019.03.050

Linde, N., Binley, A., Tryggvason, A., Petersen, L. B., & Revil, A. (2006). Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. *Water Resources Research*, 42, W12404. https://doi.org/10.1029/2006WR005131

Liu, B. X., & Shao, M. A. (2016). Response of soil water dynamics to precipitation years under different vegetation types on the northern Loess Plateau, China. *Journal of Arid Land*, 8, 47–59. https://doi.org/10.1007/s40333-015-0088-y

MathWorks. (2015). *MATLAB*. The MathWorks, Inc.

Martini, E., Werban, U., Zacharias, S., Pohle, M., Dietrich, P., & Wollschläger, U. (2017). Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: Validation with data from a wireless soil moisture monitoring network. *Hydrology and Earth System Sciences*, 21(1), 495–513. https://doi.org/10.5194/hess-21-495-2017

Martinez, G., Laguna, A. M., Giráldez, J. V., & Vander Linden, K. (2020). Concurrent variability of soil moisture and apparent electrical conductivity in the proximity of olive trees. *Agricultural Water Management*, 245, 106652. https://doi.org/10.1016/j.agwat.2020.106652

McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers (Technical Note TN-6). Geonics Ltd.

McVicar, T. R., Li, L. T., Van Niel, T. G., Hutchinson, M. F., Mu, X. M., & Liu, Z. H. (2005). Spatially distributing 21 years of monthly hydrometeorological data in China: Spatio-temporal analysis of FAO-56 crop reference evapotranspiration and pan evaporation in the context of climate change. In *CSIRO Land and Water Technical Report 80/5*. CSIRO. http://www.clw.csiro.au/publications/technical/2005/tr8-05.pdf

Michot, D., Benderitter, Y., Dorigny, A., Nicoulau, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. *Water Resources Research*, 39, 1138. https://doi.org/10.1029/2002WR001581

Moreno, Z., Arnon-Zur, A., & Furman, A. (2015). Hydro-geophysical monitoring of orchard root zone dynamics in semi-arid region. *Irrigation Science*, 33(4), 303–318. https://doi.org/10.1007/s00271-015-0467-3

Morris, E. R. (2009). Height above ground effects on penetration depth and response of electromagnetic induction soil conductivity meters. *Computers and Electronics in Agriculture*, 68, 150–156. https://doi.org/10.1016/j.compag.2009.05.009

Nagy, V., Milics, G., Smuk, N., Kovács, A. J., Balla, I., Jolánkai, T., Dékávári, J., Szalay, K. D., Fenyesesi, L., Štekauerová, V., & Wilhelm, Z. (2013). Continuous field soil moisture content mapping by means of apparent electrical conductivity (ECa) measurement. *Journal of Hydrology and Hydromechanics*, 61, 305–312. https://doi.org/10.2478/johh-2013-0039

Ouyanga, Y., Wei, J., Leininger, T. D., Fengd, G., & Yange, J. (2021). Impacts of afforestation on groundwater resource: A case study for Upper Yazoo River watershed, Mississippi, USA. *Hydrological Sciences Journal*, 66, 464–473. https://doi.org/10.1080/02626667.2021.1876235

Radford, B. J., Silburn D. M., & Forster, B. A. (2009). Soil chloride and deep drainage responses to land clearing for cropping at seven sites in Central Queensland, Northern Australia. *Journal of Hydrology*, 379, 20–29. https://doi.org/10.1016/j.jhydrol.2009.09.040

Revil, A., & Glover, P. W. J. (1998). Nature of surface electrical conductivity in natural sands, sandstones, and clays. *Geophysical Research Letters*, 25(5), 691–694. https://doi.org/10.1029/98GL00296

Rhoades, J. D., Raats, P. A. C., & Prather, R. J. (1976). Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. *Soil Science Society of America Journal*, 40, 651–655. https://doi.org/10.2136/sssaj1976.03615995004000050017x

Robinet, J., von Hebel, C., Govers, G., van der Kruk, J., Minella, J. P., Schlesner, A., Ameijeiras-Marino, Y., & Vanderborght, J. (2018). Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry. *Geoderma*, 314, 60–174. https://doi.org/10.1016/j.geoderma.2017.10.045

Robinson, D. A., Abdu, H., Jones, B. S., Beyfried, M., Lebron, I., & Knight, R. (2008). Eco-geophysical imaging of a watershed-scale soil patterns links with plant community spatial patterns. *Vadose Zone Journal*, 7(4), 1132–1138. https://doi.org/10.2136/vzj2008.0101

Robinson, D. A., Abdu, H., Lebron, I., & Jones, S. B. (2012). Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. *Journal of Hydrology*, 416, 39–49. https://doi.org/10.1016/j.jhydrol.2011.11.034

Rodrigue-Rutube, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: I. Scope and general outline.
Scanlon, B. R., Reedy, R. C., Gates, J. B., & Gowda, P. H. (2010). Impact of agroecosystems on groundwater resources in the Central High Plains, USA. *Agriculture, Ecosystems & Environment*, 139, 700–713. https://doi.org/10.1016/j.agee.2010.10.017

Scanlon, B. R., Stonestrom, D. A., Reedy, R. C., Leaney, F. W., Gates, J. B., & Cresswell, R. G. (2009). Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. *Water Resources Research*, 45, 1–17. https://doi.org/10.1029/2008WR006963

Scott, D. F., & Lesch, W. (1997). Streamflow responses to afforestation with *Eucalyptus grandis* and *Pinus patula* and to felling in the Mokobulaan experimental catchments, South Africa. *Journal of Hydrology*, 199, 360–377. https://doi.org/10.1016/S0022-1694(96)03336-7

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., & van Genuchten, M. Th. (2008). The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media (Version 4.0. HYDRUS software series 3). Department of Environmental Sciences, University of California.

State Bureau of Meteorology (2021). China meteorological data service center. https://data.cma.cn

Tromp-van Meerveld, H. J., & McDonnell, J. J. (2009). Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale. *Journal of Hydrology*, 368(1-4), 56–67. https://doi.org/10.1016/j.jhydrol.2009.01.037

Turkeltaub, T., Jia, X., Zhu, Y., Shao, M. A., & Binley, A. (2018). Recharge and nitrate transport through the deep vadose zone of the Loess Plateau: A regional-scale model investigation. *Water Resources Research*, 54(7), 4332–4346. https://doi.org/10.1029/2017WR022190

van Dijk, A. I. J. M., & Keenan, R. J. (2007). Planted forests and water in perspective. *Forest Ecology and Management*, 251(1–2), 1–9. https://doi.org/10.1016/j.foreco.2006.06.010

Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., Van Der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. *Journal of Hydrology*, 516, 76–96. https://doi.org/10.1016/j.jhydrol.2013.11.061

Waxman, M. H., & Smits, L. J. M. (1968). Electrical conductivities in oil-bearing shaly sands. *Society of Petroleum Engineers Journal*, 8, 107–122. https://doi.org/10.2118/1863-A

Western, A. W., Grayson, R. B., & Blöschl, G. (2002). Scaling of soil moisture: A hydrologic perspective. *Annual Review of Earth and Planetary Sciences*, 30, 149–180. https://doi.org/10.1146/annurev.earth.30.091201.140434

Wu, Y., Xie, K., Zhang, Q., Zhang, Y., Xie, Y., Zhang, G., Zhang, W., & Ritsema, C. J. (2003). Crop characteristics and their temporal change on the Loess Plateau of China. *Catena*, 54, 7–16. https://doi.org/10.1016/S0341-8162(03)00053-5

Zhang, X., Zhang, L., Zhao, J., Rustonjii, P., & Hairsine, P. (2008). Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. *Water Resources Research*, 44, W00A07. https://doi.org/10.1029/2007WR006711

Zhao, C., Feng, Z., & Chen, G. (2004). Soil water balance simulation of alfalfa (*Medicago sativa* L.) in the semiarid Chinese Loess Plateau. *Agricultural Water Management*, 69, 101–114. https://doi.org/10.1016/j.agwat.2004.04.006

Zhao, C., Jia, X., Zhu, Y., & Shao, M. A. (2017). Long-term temporal variations of soil water content under different vegetation types in the Loess Plateau, China. *Catena*, 158, 55–62. https://doi.org/10.1016/j.catena.2017.06.006

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.