DISTRIBUIÇÃO DAS INTERNAÇÕES HOSPITALARES POR DOENÇAS CARDIOVASCULARES E RESPIRATÓRIAS NA POPULAÇÃO BRASILEIRA
DISTRIBUIÇÃO DAS INTERNAÇÕES HOSPITALARES POR DOENÇAS CARDIOVASCULARES E RESPIRATÓRIAS NA POPULAÇÃO BRASILEIRA

Dissertação apresentada ao Programa de Pós-Graduação em Ciências da Reabilitação da Faculdade de Ciências da Saúde do Trairi da Universidade Federal do Rio Grande do Norte, como requisito parcial para a obtenção do título de Mestre em Ciências da Reabilitação.

Orientadora: Profa. Dra. Lucien Peroni Gualdi.

SANTA CRUZ
2021
Fonseca, Luiza Gabriela de Araújo.
Distribuição das internações hospitalares por doenças cardiovasculares e respiratórias na população brasileira / Luiza Gabriela de Araújo Fonseca. - 2021.
64 f.: il.

Dissertação (Mestrado em Ciências da Reabilitação) - Universidade Federal do Rio Grande do Norte, Faculdade de Ciências da Saúde do Trairi. Santa Cruz, RN, 2021.
Orientadora: Lucien Peroni Gualdi.

1. Hospitalização - Dissertação. 2. Óbitos - Dissertação. 3. Epidemiologia em saúde - Dissertação. 4. Doenças crônicas não transmissíveis - Dissertação. I. Gualdi, Lucien Peroni. II. Título.

Elaborado por Joyanne de Souza Medeiros - CRB-15/533
DISTRIBUIÇÃO DAS INTERNAÇÕES HOSPITALARES POR DOENÇAS CARDIOVASCULARES E RESPIRATÓRIAS NA POPULAÇÃO BRASILEIRA

Dissertação apresentada ao Programa de Pós-Graduação em Ciências da Reabilitação da Faculdade de Ciências da Saúde do Trairi da Universidade Federal do Rio Grande do Norte, como requisito parcial para a obtenção do título de Mestre em Ciências da Reabilitação.
Área de concentração: Saúde funcional nos diferentes ciclos da vida.

Orientadora: Profa. Dra. Lucien Peroni Gualdi.

BANCA EXAMINADORA

Presidente da banca (orientadora): Prof. Dra Lucien Peroni Gualdi
Universidade Federal do Rio Grande do Norte

Examinador interno: Prof. Dra. Illia Nadinne Dantas Florentino Lima
Universidade Federal do Rio Grande do Norte

Examinador externo: Prof. Dra. Vanessa Regiane Resqueti Fregonezi
Universidade Federal do Rio Grande do Norte

Examinador externo: Prof. Dra. Jessica Danielle Medeiros da Fonseca
Examinador externo: Centro Universitário Maurício de Nassau (UNINASSAU)

SANTA CRUZ
2021
PREFÁCIO

Durante a trajetória no mestrado acadêmico em Ciências da Reabilitação/Universidade Federal do Rio Grande do Norte, o projeto de pesquisa original intitulava-se “Avaliação da hemodinâmica cardiovascular e atividade muscular periférica em indivíduos com doença pulmonar obstrutiva crônica e sujeitos saudáveis durante diferentes testes de exercício”. Tendo como objetivo, avaliar as alterações na hemodinâmica cardiovascular, concentração de hemoglobina muscular e atividade muscular periférica durante diferentes testes de campo de sujeitos com doença pulmonar obstrutiva crônica em comparação a sujeitos saudáveis.

A pesquisa foi submetida e aprovada pelo parecer 3.617.034 do conselho de ensino e pesquisa do Hospital Universitário Onofre Lopes (HUOL/EBSERH), vinculado a UFRN, sendo desenvolvida no Laboratório de pesquisa PneumoCardioVascular, localizado no HUOL/EBSERH, em parceria com os professores Dr. Guilherme Augusto de Freitas Fregonezi e Dra, Vanessa Regiane Resqueti.

Em janeiro de 2020 foi desenvolvido o estudo piloto com 10 indivíduos saudáveis, a fim de realizar o cálculo amostral e posteriormente aplicação do protocolo em indivíduos elegíveis para a pesquisa. Entretanto, durante o processo de análise dos dados do estudo piloto, a Organização Mundial da Saúde declarou a pandemia do Sars-Cov 2 (Covid-19) o que impossibilitou a permanência presencial no laboratório de pesquisa, convocação dos indivíduos participantes e coleta de dados por tempo indeterminado, resultando na paralisação do desenvolvimento da pesquisa desenvolvida no laboratório.

Entretanto, foi desenvolvido utilizando a análise do estudo piloto, um resumo, apresentado no 13° congresso ALAT virtual, da Associação Latinoamericana de Tórax, intitulado: Evaluación de la hemodinámica cardíaca en sujetos sanos durante diferentes pruebas de campo (anexo 1).

Contudo, simultaneamente ao projeto de pesquisa em andamento foi desenvolvido no âmbito da vigilância epidemiológica o projeto intitulado “Caracterização das internações hospitalares e mortalidade por doenças cardiovasculares e respiratórias em adultos no Brasil: estudo longitudinal com dados extraídos de um banco de dados nacional” voltado à análise de bancos de dados governamentais do sistema único de saúde brasileiro, fornecido pelo DATASUS. Uma
vez que a análise epidemiológica pode contribuir com o desenvolvimento de novas estratégias de prevenção e promoção de saúde, incluindo a reabilitação cardiopulmonar este estudo teve como objetivo investigar as internações hospitalares e óbitos por doenças cardiovasculares e respiratórias na população brasileira.
DEDICATÓRIA

A minha família que sempre me apoiou nesta caminhada.
AGRADECIMENTOS

Agradeço a Deus, em primeiro lugar, pela força, coragem e sabedoria nesta longa jornada.

Agradeço a minha família, em especial meus pais, Elielza Fonseca e Gilvan Fonseca, e meu irmão Gian Fonseca, que sempre me apoiaram com palavras confortadoras e estiveram sempre presentes.

A minha orientadora, Profa. Dra Lucien Gualdi, por sempre me guiar pelo caminho da escrita e perseverança.

Aos amigos que foram compreensivos na ausência.

Também agradeço aos Professores Dr Guilherme Augusto de Freitas Fregonezi e Dra. Vanessa Regiane Resqueti pelo acolhimento e aprendizado no Laboratório de pesquisa PneumoCardioVascular, vinculado ao Hospital Universitário Onofre Lopes (HUOL) – Empresa Brasileira de Serviços Hospitalares (EBSERH) da Universidade Federal do Rio Grande do Norte (UFRN). E aos colegas do laboratório, em especial a Augusto, pelos dias e experiências vivenciadas.

Muito obrigada.
RESUMO

Introdução: As doenças crônicas não transmissíveis são responsáveis por milhões de internações hospitalares e óbitos em todo o mundo. Foram desenvolvidas estratégias de controle e enfrentamento pela organização mundial da saúde e diversos países, incluindo o Brasil. Objetivo: Analisar a distribuição das internações e óbitos hospitalares na população brasileira por doenças cardiovasculares e respiratórias entre os anos de 2008 e 2019. Métodos: Estudo descritivo longitudinal com dados secundários do Sistema de Informações Hospitalares do SUS (SIH/SUS). Indivíduos com idade entre 20 a maior que 80 anos foram agrupados de acordo com região, sexo e faixa etária. Os dados foram analisados no software GraphPad Prism versões 6.0 e o nível de significância estabelecido foi de 5%. Resultados: Foram observadas 13.380.119 internações hospitalares por doenças cardiovasculares (DCV), entre 2008 e 2019, sendo mais prevalente no sexo masculino (p=0,632), e diagnóstico principal de insuficiência cardíaca (20,68%). Alem disso, foi observada maior taxa de internação na população entre 50 e 79 anos de idade (p<0,0001) e na região sul (p<0,0001). Foram observados 1.058.953 óbitos hospitalares por DCV e taxa de mortalidade de 7.91/100 internações. Quanto as doenças respiratórias, foram registradas 8.448.442 internações hospitalares, entre 2008 e 2019, sendo mais incidente no sexo masculino (p=0,387), e diagnóstico principal de pneumonia (52,80%). Ainda foi observada maior incidência na faixa-etária de 70 e 79 anos (p<0,0001) e maior taxa de internação na região sul (p<0,0001). Foram registrados 991.937 óbitos por DR e taxa de mortalidade de 11,74/100 internações. Conclusão: As doenças cardiovasculares e respiratórias afetam a população brasileira de maneira ativa, representando média na taxa de internação hospitalar de 841/100 mil habitantes e 515,1/100 mil habitantes, respectivamente. Foi observada redução de 10% na taxa de internação hospitalar por DCV e redução de 17% nas DR. Além do aumento progressivo com a idade, afetam principalmente as regiões sul e sudeste.

Palavras-chaves: Hospitalização. Óbitos. Epidemiologia em saúde. Doenças crônicas não transmissíveis.
ABSTRACT

Introduction: Chronic non-communicable diseases are responsible for millions of hospital admissions and deaths worldwide. Control and coping were developed by the world health organization and several countries, including Brazil. Objective: To analyze the distribution of hospital admissions and deaths in the Brazilian population due to cardiovascular and respiratory diseases between the years 2008 and 2019. Methods: Longitudinal descriptive study with secondary data from the SUS Hospital Information System (SIH / SUS). Individuals aged 20 to over 80 years were grouped according to region, sex and age group. The data were formed using the GraphPad Prism software versions 6.0 and the level of significance was set at 5%. Results: There were 13,380,119 hospital admissions for cardiovascular diseases (CVD) between 2008 and 2019, being more prevalent in males (p = 0.632), and the main diagnosis of heart failure (20.68%). In addition, a higher rate of hospitalization was observed in the population between 50 and 79 years of age (p <0.0001) and in the southern region (p <0.0001). 1,058,953 hospital deaths from CVD were observed, with a mortality rate of 7.91 / 100 hospitalizations. The respiratory diseases (RD), 8,448,442 hospital admissions were seen between 2008 and 2019, with a higher incidence in males (p = 0.387), and the main diagnosis of pneumonia (52.80%). There was still a higher incidence in the age group of 70 and 79 years (p <0.0001) and a higher rate of hospitalization in the southern region (p <0.0001). There were 991,937 deaths from RD and a mortality rate of 11.74 / 100 hospitalizations. Conclusion: Cardiovascular and respiratory diseases actively affect a Brazilian population, representing the average hospital admission rate of 841/100 thousand inhabitants and 515.1 / 100 thousand inhabitants, respectively. There was a 10% reduction in the rate of hospitalization for CVD and a 17% reduction in RD. In addition to the progressive increase with age, they mainly affect the south and southeast regions.

Keywords: Hospitalization. Deaths. Health epidemiology. Chronic Non-communicable diseases.
LISTA DE ILUSTRAÇÕES

Figura 1 Análise longitudinal da taxa de internação hospitalar brasileira das doenças cardiovasculares por 100 mil habitantes, entre 2008 e 2019. 23

Figura 2 Taxa de internação hospitalar por região demográfica, causadas pelas doenças cardiovasculares entre 2008 e 2019. 24

Figura 3 Taxa de mortalidade de internações hospitalares, por região geográfica e faixa etária, causadas por doenças cardiovasculares entre 2008 e 2019. 26

Figura 4 Análise longitudinal da taxa de internação hospitalar brasileira das doenças respiratórias por 100 mil habitantes, entre 2008 e 2019. 28

Figura 5 Taxa de internação hospitalar por região demográfica, causadas pelas doenças respiratórias entre 2008 e 2019. 30

Figura 6 Taxa de mortalidade de internações hospitalares, por região geográfica e faixa etária, causadas por doenças respiratórias, entre 2008 e 2019. 31
LISTA DE TABELAS

Tabela 1 Distribuição das internações hospitalares, classificados pela lista de morbidade da CID-10 nas doenças do aparelho circulatório, Brasil, 2008-2019. 22

Tabela 2 Descrição das internações hospitalares por doenças cardiovasculares de acordo com a faixa etária. 24

Tabela 3 Distribuição das internações hospitalares, classificados pela lista de morbidade da CID-10 nas doenças do aparelho respiratório, Brasil, 2008-2019. 27

Tabela 4 Descrição das internações hospitalares por doenças respiratórias de acordo com a faixa etária. 28
Abreviação	Explicação
AIH	Autorização de Internação Hospitalar
CID-10	Décima edição da Classificação Estatística Internacional de Doenças e Problemas Relacionados com a Saúde
CONEP	Comissão Nacional de Ética em Pesquisa
DATASUS	Departamento de informática do Sistema Único de Saúde
DCNT	Doenças crônicas não transmissíveis
DCV	Doenças cardiovasculares
DPOC	Doença pulmonar obstrutiva crônica
DR	Doenças respiratórias
GBD	Global Burden of Disease
IBGE	Instituto Brasileiro de Geografia e Estatística
OMS	Organização Mundial de Saúde
OPAS	Organização Pan-Americana da Saúde
SIH/SUS	Sistema de Informações Hospitalares do SUS
UFRN	Universidade Federal do Rio Grande do Norte
SUMÁRIO

1 REVISÃO DA LITERATURA ... 14
 1.1 Doenças crônicas não transmissíveis ... 14
 1.2 Doenças cardiovasculares ... 15
 1.3 Doenças respiratórias ... 16
 1.4 Sistema de Informações Hospitalares do SUS 17

2 OBJETIVOS .. 19
 2.1 Objetivo geral .. 19
 2.2 Objetivos específicos .. 19

3 MÉTODOS .. 20
 3.1 Desenho do estudo .. 20
 3.2 Extração de dados .. 20
 3.3 Análise estatística ... 21
 3.4 Ética .. 21

4 RESULTADOS .. 22
 4.1 Doenças cardiovasculares .. 22
 4.1.1 Internações hospitalares por DCV .. 22
 4.1.2 Internações hospitalares por DCV por faixa etária 23
 4.1.3 Internações hospitalares por DCV de acordo com a região demográfica .. 24
 4.1.4 Óbitos hospitalares por DCV .. 25
 4.2 Doenças respiratórias .. 27
 4.2.1 Internações hospitalares por doenças respiratórias 27
 4.2.2 Internações hospitalares por doenças respiratórias de acordo com a faixa etária .. 28
 4.2.3 Internações hospitalares por doenças de acordo com a região de demográfica .. 29
 4.2.4 Óbitos hospitalares por doenças respiratórias 30

5 DISCUSSÃO ... 32

6 CONSIDERAÇÕES FINAIS .. 38
 REFERÊNCIAS ... 39
 ANEXO .. 45
 APÊNDICE ... 46
1 REVISÃO DA LITERATURA

1.1 Doenças crônicas não transmissíveis

As doenças crônicas não transmissíveis (DCNT) acarretam milhões de óbitos em todo o mundo e representam 70% das mortes globais, equivalendo a mais de 38 milhões de mortes por ano. Além disso, são responsáveis por mortes prematuras, perda da qualidade de vida, além de impactos econômicos e sociais. No Brasil, 72% das mortes resultam de DCNT, sendo 30% por doenças cardiovasculares, 16% neoplasias e 6% doenças respiratórias.

Devido à gravidade e o impacto das DCNT na saúde pública, a Organização Pan-Americana da Saúde (OPAS) elaborou diversos planos de ações para prevenção e controle dessas doenças, no período de 2013 e 2019, para as Américas. Em 2011, foi assinada a Declaração de Alto Nível na Organização das Nações Unidas com a missão de reduzir as taxas de mortalidade por DCNT. Em 2013, a Assembleia Mundial da Saúde aprovou o Plano de Ação Global de DCNT, estabelecendo o compromisso dos países membros com a redução da probabilidade de morte por DCNT em 25% entre 2015 e 2025.

No Brasil, o Plano de Ações Estratégicas para o Enfrentamento das DCNT (2011-2022) aborda os quatro principais grupos de DCNT (circulatórias, câncer, respiratórias crônicas e diabetes) e seus fatores de risco modificáveis associados, como tabagismo, álcool, inatividade física, alimentação não saudável e obesidade. Dessa forma, visando preparar o Brasil para o enfrentamento e controle das DCNT, foram definidas diretrizes e ações na vigilância, informação, avaliação e monitoramento, promoção da saúde e cuidado integral destes sujeitos. Sendo a redução da mortalidade precoce, entre os 30 e 70 anos de idade, uma de suas principais metas.

No estudo de Malta et al. (2019) foi observado declínio médio de 2,5% ao ano na taxa de mortalidade prematura das DCNT no Brasil entre 2000 e 2013, em todas as regiões e unidades federativas. A probabilidade de morte foi reduzida de 30% em 2000 para 26,1% em 2013, e estima-se redução para 20,5% em 2025. Dessa forma, os autores estimam que o Brasil atingirá a meta global de redução de 25% até 2025. Além disso, destacou-se a necessidade da atuação em ações de saúde e investimento na atenção básica, além de estratégias que busquem reduzir as iniquidades em saúde e garantir acesso aos cuidados a toda a população, em especial aos grupos mais vulneráveis,
devido maior concentração de DCNT e seus fatores de risco na população de baixa renda e escolaridade15. Embora esse declínio tenha sido observado não é possível associar o mesmo ao plano de ações nacionais, lançado pelo Ministério da Saúde em 2011 que estabeleceu diversos direcionamentos para os investimentos federais no compromisso de controle das DCNT e seus fatores de riscos.

Apesar dos estudos defenderem que todas as regiões brasileiras apresentam declínio da mortalidade por DCNT16, estudos em âmbito local e regional objetivam analisar e monitorizar os impactos das ações de estratégia aplicadas para o enfrentamento e controle dessas doenças na população com maior especificidade e clareza. Dessa forma, a vigilância epidemiológica é de extrema importância para quantificar o impacto na morbimortalidade das DCNT na população, além de embasar novas estratégias de controle e ações de saúde incluindo programas de reabilitação cardiovascular e respiratória.

1.2 Doenças cardiovasculares

As doenças cardiovasculares (DCV) são as principais causas de internações hospitalares e geram os maiores custos do sistema de saúde nacional, além de terem sido a principal causa de mortalidade desde a década de 60, sendo responsável por uma substancial carga de doença no Brasil5,17. De acordo com o Estudo \textit{Global Burden of Disease} (GBD) 201718, as DCV acometendo 6% da população com idade ≥ 20 anos, havendo leve redução de 4,2% entre 1990 a 2017. Ainda, foi observado que os homens apresentaram maior prevalência padronizada por idade quando comparados as mulheres.

Segundo a OMS, cerca de 80% dos óbitos e 88% das mortes prematuras por DCV ocorrem em países de baixa e média renda, como o Brasil1. As DCV e suas complicações impactam ainda na produtividade no trabalho e na renda familiar. Segundo projeções da \textit{American Heart Association}, no período 2012-2030, 61% dos gastos diretos com saúde para DCV nos Estados Unidos serão atribuídos a custos hospitalares19. No Brasil, devido as DCV defende-se um déficit estimado de US$ 4,18 bilhões na economia brasileira, entre 2006 e 201520.

Em 2007, as DCV corresponderam a 12,7% das hospitalizações não relacionadas a gestações e 27,4% das internações em indivíduos de 60 anos ou mais21. Nos últimos anos (2000-2009), tem ocorrido uma leve queda nas taxas de internação hospitalar por
DCV12. Além de ser observada, ainda, redução da mortalidade por doenças cerebrovasculares (34\%), outras formas de doenças cardíacas (44\%), e por doenças isquêmicas do coração (26\%). Por outro lado, observou-se aumento de 11\% na mortalidade por doenças cardíacas hipertensivas, representando 13\% do total de óbitos por DCV em 200721. E no estudo de Malta e colaboradores14 (2019), as DCV representaram um terço dos óbitos prematuros nas DCNT.

Rasella e colaboradores22 (2014), defendem que a cobertura do programa saúde da família foi associada com a redução nas hospitalizações e na mortalidade por DCV, tendo seu efeito aumentado de acordo com a duração da implementação do programa nos municípios.

1.3 Doenças respiratórias

Além das DCV, as doenças respiratórias (DR) também geram preocupação aos gestores de saúde. Estima-se que as doenças respiratórias crônicas foram a terceira principal causa de mortes em 2017 em todo o mundo23.

De modo geral, as doenças respiratórias representam 5 das 30 causas mais comuns de morte, a Doença Pulmonar Obstrutiva Crônica (DPOC) é a terceira, o câncer broncogênico a sexta, a tuberculose é a duodécima e a asma é a vigésima oitava24. Mundialmente, estima-se que mais de um bilhão de pessoas sofram de condições respiratórias agudas ou crônicas. Além disso, estima-se que anualmente quatro milhões de pessoas morrem prematuramente de doenças respiratórias crônicas25 e entre os 9 milhões de óbitos em crianças, com menos de 5 anos de idade, a pneumonia é o a principal causa24.

Apesar de estudos demonstrarem redução de 32\% no número de internações hospitalares por DPOC e 38\% por asma, na população adulta entre os anos de 2000 e 200721, e redução de 26\% na mortalidade por doenças respiratórias, entre 1991 e 201026, estas continuam gerando altos gastos para o sistema de saúde brasileiro.

As doenças respiratórias crônicas representam cerca de 7\% da mortalidade global, o que corresponde a 4,2 milhões de óbitos anuais27. Entre os anos de 2000-2009 observou-se redução de 383 internações/100 mil habitantes, em 2000, para 177/100 mil, em 2009, nas internações por doenças respiratórias crônicas no Brasil21. Somente a asma, em 2013, representou 129.728 internações e 2.047 mortes no país, sendo também
observada redução das hospitalizações e da mortalidade na maioria das regiões, em paralelo ao maior acesso nos tratamentos.28

Contudo, de acordo com o DATASUS foram registradas 680.207 internações hospitalares por doenças respiratórias no Brasil, em adultos acima de 20 anos, em 2019. Estas internações geraram custos aproximados de 884 milhões de reais ao sistema de saúde.29 Em casos de asma grave, estima-se comprometimento de mais de um quarto da renda familiar entre os usuários do Sistema Único de Saúde (SUS)30, mas que esses custos podem ser significativamente reduzidos com o controle adequado da doença.30

Estudos descrevem que o perfil das doenças respiratórias apresentam a asma e DPOC como mais prevalentes no Brasil,23 semelhantes a outros países.31,32 Relacionado à carga das doenças respiratórias crônicas, a pesquisa nacional de saúde de 2013 observou severo grau de limitação para atividades diárias para pessoas com asma ou DPOC, 16 e 10\%, respectivamente.33 Por outro lado, de acordo com a OMS a DPOC será a terceira principal causa de óbitos no mundo em 203034 e a asma representa cerca de 489.000 mortes por ano, ou mais de 1300 mortes por dia.24

1.4 Sistema de Informações Hospitalares do SUS

O Sistema de Informações Hospitalares do SUS (SIH/SUS), gerido pelo Ministério da Saúde, através da Secretaria de Assistência à Saúde, em conjunto com as Secretarias Estaduais e Municipais de Saúde, é o sistema oficial do Ministério da Saúde e consolida as informações oficiais referentes às Autorizações de Internação Hospitalares (AIH) do SUS, registradas em serviços públicos ou particulares conveniados, que são processadas pelo Departamento de Informática do SUS (DATASUS).29

Portanto, o SIH/SUS forma uma valiosa base de dados a nível nacional, regional, estadual e municipal, contendo dados de grande parte das internações hospitalares realizadas no Brasil. Além disso, as informações são regidas segundo as regras estabelecidas pela Organização Mundial de Saúde, de acordo com a décima edição da Classificação Estatística Internacional de Doenças e Problemas Relacionados com a Saúde (CID10- 29http://www.cid10.com.br/code).29

Desse modo, destaca-se a necessidade de investigar a distribuição das internações e óbitos hospitalares, de acordo com o perfil das doenças cardiovasculares e
respiratórias na população brasileira. E posteriormente, proporcionar a elaboração de medidas preventivas de agravos direcionadas a minimizar os custos hospitalares e o surgimento de complicações que resultem na necessidade de internação hospitalar.
2 OBJETIVOS

2.1 Objetivo geral

- Analisar a distribuição das internações e óbitos hospitalares na população brasileira por doenças cardiovasculares e respiratórias entre os anos de 2008 e 2019.

2.2 Objetivos específicos

- Descrever as internações hospitalares por doenças cardiovasculares e respiratórias em adultos brasileiros de acordo com região demográfica, sexo, faixa etária e ano de ocorrência;
- Analisar o número de óbitos hospitalares por doenças cardiovasculares e respiratórias na população brasileira de acordo com região demográfica, sexo, faixa etária e ano de ocorrência;
- Analisar a taxa de mortalidade por doenças cardiovasculares e respiratórias na população brasileira de acordo com a região demográfica, sexo, faixa etária e ano de ocorrência.
3 MÉTODOS

3.1 Desenho do estudo

Este é um estudo longitudinal descritivo utilizando dados secundários do Sistema de Informações Hospitalares do SUS (SIH/SUS) para investigação e caracterização dos registros referentes aos eixos de pesquisa nas doenças cardiovasculares e respiratórias na população brasileira, com idade acima de 20 anos, com enfoque a nível nacional e regional. Foram analisadas as internações e óbitos hospitalares causados por doenças cardiovasculares e respiratórias, registradas em serviços próprios e conveniados ao SUS. O período de análise foi entre os anos de 2008 e 2019.

3.2 Extração de dados

Os dados secundários foram extraídos do SIH/SUS do Ministério da Saúde, disponível para acesso público por meio do portal eletrônico (link: http://datasus.saude.gov.br/) do departamento de informática do Sistema Único de Saúde (DATASUS).

Foram extraídos dados referentes ao número de internações hospitalares, ano de processamento, região de domicílio, faixa etária, sexo, causa da internação, número de óbitos hospitalares e taxa de mortalidade hospitalar por doenças cardiovasculares e respiratórias. O número de internações, os óbitos hospitalares e a taxa de mortalidade foram agrupados de acordo com o sexo, região de domicílio e faixa etária para posterior análise. A taxa de internação hospitalar foi calculada pela razão entre o número das internações hospitalares registradas e a estimativa de população residente brasileira, multiplicada por 100.000, conforme os dados do Instituto Brasileiro de Geografia e estatística – IBGE (link: http://ibge.gov.br). A taxa de mortalidade hospitalar foi calculada pela razão entre a quantidade de óbitos e o número de AIHs aprovadas, computadas como internações no período, multiplicada por 100.

Todos os dados extraídos para análise estão disponíveis na plataforma online do SIH/SUS (link: http://datasus.saude.gov.br/). Os dados sobre doenças cardiovasculares foram extraídos em março de 2021 e os das doenças respiratórias em novembro de 2020. O armazenamento dos dados foi realizado no programa Microsoft Excel, versão 2013, para posterior análise estatística.
3.3 Análise estatística

Foi utilizado o software estatístico GraphPad versões 6.0 (San Diego, EUA) para análise dos dados. A normalidade da amostra foi analisada pelo teste de Komogorov-Smirnov. As variáveis foram descritas em frequência absoluta e relativa. As comparações entre os grupos foram realizadas por meio dos testes t student não pareado, Krulkal-Wallis e Anova two-way com pos hoc de Tukey, conforme necessidade e possibilidade estatística. O nível de significância estabelecido foi de α<0,05.

3.4 Ética

Todos os dados do estudo são públicos, de livre acesso e podem ser acessados no SIH/SUS (http://datasus.saude.gov.br/), não havendo necessidade de apreciação em Comitê de Ética em Pesquisa de acordo com o Conselho Nacional de Saúde (Resolução nº510 de 07 de abril de 2016), que regulamenta a Comissão Nacional de Ética em Pesquisa (CONEP). A confidencialidade dos participantes foi preservada de acordo com recomendações do CONEP.
4 RESULTADOS

4.1 Doenças cardiovasculares

4.1.1 Internações hospitalares por DCV

Durante o período de 2008 à 2017 foram registradas 13.380.119 internações hospitalares devido às DCV, sendo a taxa de internação média de 841,0/100 mil habitantes. A maior incidência das internações foi por diagnóstico principal de insuficiência cardíaca (20,68%), outras doenças isquêmicas do coração (13,54%) e acidente vascular cerebral (11,98%). A tabela 1 apresenta a lista completa das internações hospitalares por DCV de acordo com o sexo.

Não houve diferença significativa quando comparado o sexo masculino (n= 6.706.677; 50,12%) e feminino (n= 6.673.442; 49,87%); (p=0,632).

Tabela 1. Distribuição das internações hospitalares, classificados pela lista de morbidade da CID-10 nas doenças do aparelho circulatório, Brasil, 2008-2019.

Descrição	Sexo	Frequência	%	
	Masculino	Feminino		
Febre reumática aguda	16.833	18.707	35.540	0,27
Doença reumática crônica do coração	36.132	50.574	86.706	0,65
Hipertensão essencial (primária)	372.963	539.623	912.586	6,82
Outras doenças hipertensivas	134.821	195.197	330.018	2,47
Infarto agudo do miocárdio	711.205	409.324	1.120.529	8,37
Outras doenças isquêmicas do coração	1.069.413	742.458	1.811.871	13,54
Embolia pulmonar	31.286	49.051	80.337	0,60
Transtornos de condução e arritmias cardíacas	347.685	331.609	679.294	5,08
Insuficiência cardíaca	1.420.174	1.346.819	2.766.993	20,68
Outras doenças do coração	192.225	198.138	390.363	2,92
Hemorragia intracraniana	183.428	177.139	360.567	2,69
Infarto cerebral	104.822	96.737	201.559	1,51
Acidente vascular cerebral não especificado	830.926	771.809	1.602.735	11,98
Outras doenças cerebrovasculares	94.644	95.510	190.154	1,42
Arteroesclerose	114.188	93.910	208.098	1,56
Outras doenças vasculares periféricas	57.957	38.971	96.928	0,72
Embolia e trombose arteriais	127.996	96.861	224.857	1,68
Outras doenças das artérias arteriolas e capilares	243.391	152.438	395.829	2,96
Flebite tromboflebite embolia e trombose venosa	178.543	280.155	458.698	3,43
Veias varicosas das extremidades inferiores	225.540	761.359	986.899	7,38
Hemorroidas	147.391	194.939	342.330	2,56
Outras doenças do aparelho circulatório	65.114	32.114	97.228	0,73
Total	6.706.677	6.673.442	13.380.119	100,00
Legenda: % porcentagem relativa ao número total de internações hospitalares no período de 2008 a 2019.
Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS).

Quanto a variação longitudinal da taxa de internação hospitalar foi observada uma redução de 860/100mil habitantes, em 2008, para 771/100mil, em 2019, representando redução de 10% quando comparados os dois períodos, demonstrado na figura 1.

Figura 1. Análise longitudinal da taxa de internação hospitalar brasileira das doenças cardiovasculares por 100 mil habitantes, entre 2008 e 2019. Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS) e Instituto Brasileiro de Geografia e estatística – IBGE.

4.1.2 Internações hospitalares por DCV por faixa etária

Quando analisada a faixa etária, observa-se tendência de aumento da taxa de internação naqueles indivíduos a partir de 50 anos de idade. A tabela 2 apresenta as diferenças estatísticas entre as faixas-etárias e a taxa de internação hospitalar.
4.1.3 Internações hospitalares por DCV de acordo com a região demográfica

Quando agrupamos a incidência de DCV por regiões, constatou-se maior taxa média de internação hospitalar na região sul (1.173/100mil habitantes), seguido da região sudeste (828/100 mil habitantes), centro-oeste (764/100 mil habitantes), nordeste (679/100 mil habitantes) e norte (533/100 mil habitantes) no período avaliado.

Além disso, quando comparadas as taxas de internações hospitalares entre 2008 e 2019, foram observadas maiores diferenças na região centro-oeste (911/100mil hab. versus 675/100 mil hab.), seguida da região norte (587/100 mil hab. versus 437/100 mil hab.) e sul (1241/100 mil hab. versus 1162/100mil hab.), demonstrado na figura 2A. Ainda, foram observadas diferenças significativas nas taxas de internações hospitalares entre as regiões demográficas (figura 2B).
4.1.4 Óbitos hospitalares por DCV

Observou-se 1.058.953 óbitos hospitalares registrados no país entre 2008-2019 devido as DCV. Quanto ao diagnóstico principal, a maior incidência dos óbitos foi por insuficiência cardíaca (25,7%), acidente vascular cerebral (24,4%) e infarto agudo do miocárdio (12,4%). A taxa de mortalidade hospitalar nacional foi de 7.91/100 internações, sendo 7,18/100 internações em 2008 e 8,43/100 internações em 2019.

Quando ao sexo, não houve diferença estatística na taxa de mortalidade entre o sexo masculino (8,09/100 internações) e feminino (7,74/100 internações), p=0,085.

Além disso, foi observado aumento da taxa de mortalidade com incremento da idade. Tendo a menor taxa de mortalidade na faixa 20-29, 30-39 e 40-49 anos, quando comparadas com as faixas 50-59, 60-69, 70–79 e > 80 anos (p<0,05), enquanto a faixa etária de 50-59 mostrou uma diferença significativa quando comparada com os grupos de 60-69, 70-79 e >80 (p<0,05) (figura 3).

Quanto a região demográfica, a taxa de mortalidade foi maior nas regiões sudeste (8.42/100 internações), seguida da região nordeste (8.33/100 internações), norte (8.06/100 internações), centro-oeste (7.62/100 internações) e sul (6.5/100 internações). Além disso, foram encontradas diferenças estatísticas significativas entre a taxa de mortalidade na região sul e a norte (p<0,0001), nordeste (p=0,0002), sudeste (p<0,0001) e centro-oeste (p=0,001) (figura 3).
Figura 3. Taxa de mortalidade de internações hospitalares, por região geográfica e faixa etária, causadas por doenças cardiovasculares entre 2008 e 2019. * diferença significativa entre a faixa de 20-29 e 40-49, 50-59, 60-69, 70-79 e > 80 anos; & diferença significativa entre a faixa de 30-39 anos e 50-59, 60-69, 70-79 e > 80 anos; # diferença significativa entre a faixa de 40-49 e 50-59, 60-69, 70-79 e > 80 anos; % diferença significativa entre a faixa de 50-59 e 60-69, 70-79 e > 80 anos; $ diferença significativa entre a faixa de 60-69 e 70-79 e @ diferença significativa entre a faixa de 70-79 e >80. pvalor = 0,014 (20-29 e 40-49); p valor =0,03 (40-49 e 50-59); p valor =0,0004 (60-69 e 50-59) e p valor< 0,0001. Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS).
4.2 Doenças respiratórias

4.2.1 Internações hospitalares por doenças respiratórias

Foram observadas 8.448.442 internações hospitalares por doenças respiratórias na população brasileira a partir de 20 anos de idade, entre 2008 e 2019, sendo taxa de internação média de 515,1/100 mil habitantes. De acordo com o diagnóstico principal da internação, observou-se maior incidência de internações por pneumonia (n=4.460.463; 52,80%), seguidas de bronquite enfisema, e outras doenças pulmonares obstrutivas crônicas (n=1.355.569; 16,05%).

Quando comparadas as internações de acordo com o sexo, não foram encontradas diferenças significativas entre o sexo masculino (n=4.262.113; 50,45%) e o feminino (n=4.186.329; 49,55%), p= 0,387, demonstrado na tabela 3.

| Tabela 3. Distribuição das internações hospitalares, classificados pela lista de morbidade da CID-10 nas doenças do aparelho respiratório, Brasil, 2008-2019. |
Doenças do aparelho respiratório	Sexo	Frequência	%	
	Masculino	Feminino		
Faringite aguda e amigdalite aguda	16.019	20.095	36.114	0,43
Laringite e traqueíte agudas	32.992	40.208	73.200	0,87
Outras infecções agudas das vias aéreas superior	39.705	45.579	85.284	1,01
Influenza [gripe]	82.242	93.387	175.629	2,08
Pneumonia	**2.261.095**	**2.199.368**	**4.460.463**	**52,80**
Bronquite aguda e bronquiolite aguda	30.881	38.437	69.318	0,82
Sinusite crônica	11.334	12.029	23.363	0,28
Outras doenças do nariz e dos seios paranasais	82.009	79.783	161.792	1,92
Doenças crônicas das amígdalas e das adenoides	22.683	40.432	63.115	0,75
Outras doenças do trato respiratório superior	55.408	57.751	113.159	1,34
Bronquite enfisema e outras doenças pulmonares obstrutivas crônicas	**713.904**	**641.665**	**1.355.569**	**16,05**
Ama	**236.168**	**373.831**	**609.999**	**7,22**
Bronquiectasia	8.244	9.051	17.295	0,20
Pneumoconiose	3.879	1.984	5.863	0,07
Outras doenças do aparelho respiratório	**665.550**	**532.729**	**1.198.279**	**14,18**
Total	4.262.113	4.186.329	844.8442	100,00

Legenda: Frequência relativa (%). Fonte: Ministério da Saúde – Sistema de informações hospitalares (SIH/SUS).

Quanto a variação longitudinal da taxa de internação hospitalar foi observada uma redução de 547/100mil habitantes, em 2008, para 454/100mil, em 2019, representando redução de 17% (figura 4).
Figura 4. Análise longitudinal da taxa de internação hospitalar brasileira das doenças respiratórias por 100 mil habitantes, entre 2008 e 2019. Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS) e Instituto Brasileiro de Geografia e estatística – IBGE.

4.2.2 Internações hospitalares por doenças respiratórias de acordo com a faixa etária

De acordo com a faixa etária foi observada maior incidência de internações hospitalares por doenças respiratórias na faixa etária de 70-79 anos (n=1.720.922; 20,37%), seguido das faixas etárias de 80- >80 anos (n=1.683.845; 19,93%), 60-69 anos (n=1.485.247; 17,58%), 50-59 anos (n=1.169.570; 13,84%) e 40-49 anos (857.159; 10,15%). Além disso, observa-se tendência de aumento progressivo quanto a média de hospitalização e taxa de internação a partir da faixa de 40-49 anos (tabela 4).

Tabela 4. Internação hospitalar por doenças respiratórias conforme faixa etária.

Faixa etária	Média da população residente	Média de hospitalização	Média da taxa de internação *100 mil habitantes	p valor
20 - 29	34.577.796	64.993	187.76	p<0.0001
30 - 39	31.886.313	62.632	198.64	p<0.0001
40 - 49	26.399.659	71.431	273.10	p<0.0001
50 - 59	20.609.762	97.465	480.06	p<0.0001
60 - 69	13.282.560	123.774	948.32	p<0.0001
70 - 79	7.184.570	143.413	2020.90	p<0.0001
80 ->80	3.423.775	140.325	4118.07	p<0.0001

Legenda: diferenças significativas: +: 20-29 anos; #:30-39 anos; °:40+49 anos; #:50-59 anos; #: 60-69 anos; °: 70-79 anos; #: 80->80 anos. Fonte: Ministério da Saúde -
4.2.3 Internações hospitalares por doenças respiratórias de acordo com a região demográfica

Quando agrupamos a incidência de DR por regiões, constatou-se maior taxa média de internação hospitalar na região sul (844/100mil habitantes) seguido da região centro (577/100 mil habitantes), norte (474/100 mil habitantes), nordeste (462/100 mil habitantes) e sudeste (431/100 mil habitantes) no período avaliado.

Além disso, quando comparadas as taxas de internações hospitalares de 2008 com 2019, foi observada maior diferença na região centro-oeste (705/100mil hab. versus 459/100 mil hab.), seguida da região sul (908/100 mil hab. versus 718/100 mil hab.) e norte (517/100 mil hab. versus 392/100mil hab.), demonstrado na figura 5A. Contudo, foram observadas diferenças significativas das taxas de internações hospitalares entre as regiões demográficas, demonstrado na figura 5B.

Figura 5. Taxa de internação hospitalar por região demográfica, causadas pelas doenças respiratórias entre 2008 e 2019. Legenda: a) Variação longitudinal da taxa de internação hospitalar; b) Média da taxa de internação hospitalar entre 2008 e 2019. *:p<0,0001; **p=0,002 pelo teste Anova two-way e pos roc de Tukey. Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS) e Instituto Brasileiro de Geografia e estatística – IBGE.
4.2.4 Óbitos hospitalares por doenças respiratórias

Com relação aos óbitos foram registrados 991.937 óbitos hospitalares por doenças respiratórias durante o período do estudo. Sendo 56,88% dos óbitos registrados em internações por pneumonia, 30,40% em outras doenças do aparelho respiratório e 10,00% em bronquite, enfisema e outras doenças pulmonares obstrutivas crônicas. A taxa de mortalidade nacional foi de 11.74/100 internações, sendo 8,83/100 internações em 2008 e 13,98/100 internações em 2019.

Quanto ao sexo, não foi observada diferença estatística na taxa de mortalidade quando comparado o sexo masculino (12,39/100 internações) com o sexo feminino (11,08/100 internações), p=0,102.

Além disso, foi observado menor taxa de mortalidade nas faixas etárias de 20-29, 30-39, e 40-49 anos, quando comparada a 50-59, 60-69, 70-79 e >80 anos (p<0,05) (Figura 6).

A maior taxa de mortalidade foi observada na região sudeste (15,22/100 internações), seguido da região sul (10,22/100 internações), nordeste (10,07/100 internações), centro-oeste (8,99/100 internações) e norte (7,64/100 internações). Além disso, foram encontradas diferenças estatísticas significativas entre a taxa de mortalidade entre a região Norte e a nordeste (p<0,0001), sudeste. (p<0,0001), sul (p<0,0001) e centro-oeste (p<0,0001). Além disso, também foram observadas diferenças entre as regiões nordeste e sudeste (p<0,0001) e centro-oeste (p<0,006); entre a região sudeste e sul (p<0,0001), e centro-oeste (p<0,0001). Além de entre a região sul e centro-oeste (p=0,002) (figura 6).
Figura 6. Taxa de mortalidade de internações hospitalares, por região geográfica e faixa etária, causadas por doenças respiratórias, entre 2008 e 2019. * diferença significativa entre a faixa de 20-29 e 40-49, 50-59, 60-69, 70–79 e > 80 anos; & diferença significativa entre a faixa de 30-39 anos e 50-59, 60-69, 70–79 e > 80 anos; # diferença significativa entre a faixa de 40-49 e 60-69, 70–79 e > 80 anos; % diferença significativa entre a faixa de 50-59 e 70–79 e > 80 anos; $ diferença significativa entre a faixa de 60-69 e 70–79 e > 80 anos e @ diferença significativa entre a faixa de 70-79 e > 80 anos; p valor = 0,001 (20-29 e 40-49); p valor =0,02 (60-69 e 70-79) e p valor < 0,0001. Fonte: Ministério da Saúde - Sistema de Informações Hospitalares do SUS (SIH/SUS).
5 DISCUSSÃO

Dentre os principais achados do estudo destacam-se: a) 13.380.119 internações hospitalares devido as DCV, sendo maior incidência na insuficiência cardíaca (21,68%); b) maior taxa internação a partir da faixa etária de 50 anos e região sul (1,177/100 mil hab.); c) 1.058.953 óbitos hospitalares por DCV entre 2008-2019, tendo taxa de mortalidade de 7,91/100 internações; d) aumento progressivo da taxa de mortalidade com a progressão da idade e maior taxa de mortalidade na região sudeste (8,42/100 internações); e) 8.448.442 internações hospitalares por DR, sendo 52,80% em casos de pneumonia; f) maior média de taxa de internação na faixa-etária de >80 anos (4,118/100 mil hab.) e na região sul (844/100 mil hab.); g) 991.937 óbitos por DR entre 2008 e 2019 tendo taxa de mortalidade de 11,74; h) aumento progressivo na taxa de mortalidade com progressão da idade e maior na região sudeste (15,22/100 internações).

No estudo de Santos et al.35, (2015), a taxa de internação hospitalar por doenças cardiovasculares foi de 693/100mil hab. em 2002 e 658/100 mil hab., em 2012; apresentando diminuição de 2% do período do estudo. Santos et al.35 (2015) defendem tendência de estabilização na taxa de internação por DCV durante o período de 2002 a 2012. Tais achados são similares aos encontrados neste estudo, uma vez que a média de internação hospitalar por DCV foi de 860,4/100 mil habitantes em 2008 e 771,4/100 mil habitantes em 2019, observando redução de 10% na taxa de internação por DCV no período avaliado.

Quanto ao diagnóstico principal nas internações por DCV, Oliveira et al.,8 (2020), ao analisar os dados do DATASUS entre 2008 e 2018, contemplando as internações por acidente vascular cerebral, doença arterial coronariana aguda e crônica, cardiomiopatias (incluindo doença de Chagas), insuficiência cardíaca, doenças valvares; e fibrilação atrial, observaram maior incidência de admissões clínicas por insuficiência cardíaca neste grupo, totalizando 2.862.739 hospitalizações (131/100 mil habitantes). Além disso, também observaram redução de 10% nas admissões clínicas no período. Tais estudos corroboram com os achados da presente pesquisa uma vez que a maior incidência das internações hospitalares ocorreu por insuficiência cardíaca (21,68%), além da redução observada de 10% na taxa de internação por DCV na população brasileira, entre 2008 e 2019.
Além disso, no Estudo GBD 2015\(^{36}\) (2017), a taxa de incidência padronizada por idade de DCV no Brasil foi de 755,6/100 mil habitantes, em 1990, e 687,5/100 mil habitantes, em 2017, observando ainda, o declínio de 4,2% na prevalência de DCV na população geral. O que pode favorecer para a redução de 10% na taxa de internação hospitalar encontrada no presente estudo.

Com relação ao sexo, Santos e colaboradores\(^{35}\) (2015) observaram taxas de internação por DCV mais elevadas no sexo masculino a partir de 2010, quando comparado ao sexo feminino, entretanto defendem tendência de estabilidade na taxa de internação por DCV entre os sexos. No presente estudo não foram encontradas diferenças significativas entre os sexos, embora o sexo masculino apresente maior número absoluto de internação por DCV (6.706.677 casos) quando comparado ao sexo feminino (6.673.442 casos) no período avaliado.

Estudos defendem que as mulheres relatam maior morbidade e utilização dos serviços de saúde na modalidade terapêutica, além historicamente utilizarem mais o sistema de saúde de maneira preventiva quando comparadas aos homens, resultando em maiores oportunidades de acesso aos serviços diagnósticos\(^{37-39}\), que podem favorecer as medidas de promoção em saúde e consequentemente, evitar hospitalizações. O que pode justificar a maior incidência, em números absolutos, em internações hospitalares por DCV em homens. Nesse sentido, políticas para melhorar o engajamento na saúde dos homens foram criadas no Brasil\(^{40}\).

Contudo, a prevalência das DCV aumenta significativamente com a progressão da idade\(^8\), quanto maior a longevidade, maior a probabilidade de ser acometido por tais doenças\(^{41}\), além da associação do histórico de tabagismo, e presença de diabetes e hipertensão\(^{42}\). No Brasil, foi observado aumento da esperança de vida ao nascer de 62,6 anos, em 1980, para 75,8, em 2016\(^{43}\), o que pode justificar os achados encontrados no estudo.

Além disso, Santos e colaboradores\(^{35}\) (2015), observaram acréscimo nas taxas de internação por DCV com a progressão da idade, principalmente acima dos 40 anos, em ambos os sexos, e em indivíduos maiores de 70 anos de idade. Corroborando com os achados do presente estudo, que observou maior taxa de internação na faixa etária acima de 50 anos, em especial >80 anos.
Ainda, Santos e colaboradores35 (2015) observam a maior taxa de internação hospitalar na região sul, representando mais de 900/100 mil habitantes, entre 2002 e 2012, além da tendência de estabilização da taxa de internação hospitalar nas regiões brasileiras por DCV, exceto na região centro-oeste que foi observado decréscimo anual de 8,78%. Assim, estes achados corroboram com os resultados deste estudo, com taxa média de internação de 1.177/100 mil hab. na região sul e maior variação da taxa de internações entre 2008 e 2019 (911/100 mil hab. versus 675/100 mil hab.) na região centro-oeste.

Por outro lado, deve-se também levar em consideração a expressiva heterogeneidade demográfica, social e econômica existente no país, que se refletem em diferentes padrões de morbidade e mortalidade nas DCNT44. O estudo GBD 201718 observou que a diminuição da prevalência, padronizada por idade, ocorreu de forma desigual nas unidades federativas brasileiras, sendo maior nas regiões Sudeste e Sul, que estão entre as mais desenvolvidas do país.

O estudo de Nascimento e col.5 (2018) observou que entre 1990 e 2016, a proporção de mortes por DCV manteve-se praticamente estável no país, enquanto padronizada por idade houve redução, sugerindo da mortalidade prematura por DCV. Malta e colaboradores14, ao avaliarem o período de 2000 a 2013, observaram declínio na taxa de mortalidade prematura por DCNT (2,5% ao ano), sendo 3,4% nas cardiovasculares.

Neste estudo, foi observado aumento na taxa de mortalidade hospitalar de 7,18 para 8,43/100 internações que podem ser justificados por divergências metodológicas. Entretanto, o estudo GBD 201718 defende redução significativa da taxa de mortalidade por população residente nas DCV de modo geral, entretanto o número total de mortes por DCV aumentou, corroborando com nossos achados.

Estudos prévios relatam que a insuficiência cardíaca nos idosos está associada à maior mortalidade e mais gastos públicos, devido às internações prolongadas e repetidas45. O que corrobora com os achados na pesquisa, na qual a maior mortalidade foi observada em internações com causa primária por insuficiência cardíaca (25,7%), além do maior numero de hospitalizações serem na faixa etária acima de 50 anos.
Quanto às doenças respiratórias crônicas, Santos e colaboradores35 (2015), defendem declínio na tendência de internação hospitalar entre 2002 (481/100 mil habitante) e 2012 (286/100 mil hab.) em todas as regiões. Leal e col. (2020) também observaram diminuição nas internações por doenças respiratórias crônicas no Brasil, entre 1990 e 201723. Tais achados corroboram com os observados na pesquisa, sendo a variação de 17% da taxa de internação hospitalar das DR, entre 2008 e 2019.

Tal redução da taxa de internação por doenças respiratórias pode ser resultado da implantação de programas de vacinação contra influenza, principalmente na população idosa, a fim de reduzir comorbidades associadas a faixa-etária39, além da diminuição da prevalência do tabagismo21,46. No Brasil são enfatizadas iniciativas para redução do uso do tabaco12. O Programa Nacional de Controle do Tabaco47 e as políticas de controle do tabaco são internacionalmente reconhecidas devido impacto na redução de aproximadamente 60% na prevalência do uso do tabaco entre 1998 a 201348.

A pneumonia foi a principal causa de internação hospitalar por DR, representando 52,8% dos casos. Contudo, estudos defendem que a pneumonia representa a segunda causa principal de anos de vida perdidos devido à mortalidade prematura49 e uma das causas mais frequentes para hospitalização25, corroborando com os achados da pesquisa.

Quanto ao sexo, Santos e colaboradores35 (2015), taxa de internação de 305/100 mil hab. no sexo masculino e 268/100 mil hab. no sexo feminino, em 2012. Neste estudo o número absoluto de internações por DR foi ligeiramente maior no sexo masculino, apesar de não representarem diferença estatística. Contudo, estudos defendem que os homens apresentam 1,5 vezes maior risco de internação por DR, comparado as mulheres50.

Também foi observado por Santos e colaboradores35 (2015) maior taxa de internação por DR a partir de 50 anos. Neste estudo houve aumento da taxa de internação hospitalar por DR com o avançar da idade, principalmente em indivíduos com idade maior que 80 anos.

Estudos similares observaram maiores taxas de internação por doenças respiratórias crônicas nas regiões Sul e Sudeste35. Tal fato pode ser justificado pelo provável envelhecimento populacional mais acelerado, observado no Sul e no Sudeste,
um dos fatores determinantes para a alta prevalência de doenças respiratórias crônicas, bem como de outras DCNT51. Além disso, outros estudos defendem que em regiões mais frias, como a região Sul, a prevalência de DR seja maior52. Neste estudo, a região sul apresentou a maior taxa de internação hospitalar por DR (844/100mil habitantes).

Ainda, em estudo prévio, foram registrados 685.031 óbitos por doenças respiratórias crônicas no Brasil entre 2003 e 2013, com uma média das taxas de mortalidade de 32,6/100 mil habitantes, além de ser observada redução de 2,7% da taxa de mortalidade durante o período53. Tais achados apesar de corroborarem com a quantidade do número de óbitos registrados neste estudo, divergem quanto a taxa de mortalidade hospitalar, que aumento de 8,83 para 13,98/100 internações quando comparados os anos de 2008 e 2019.

Segundo o boletim epidemiológico da Secretaria de Vigilância em Saúde53, registrado em 2003 e 2013, as taxas de mortalidade por doenças respiratórias crônicas foram maiores em homens, com média de 36,7/100 mil homens. Além de também ser observado aumento nas taxas de mortalidade com a progressão da idade, principalmente acima de 50 anos, e mais incidente na região Sul (47,0/100 mil hab. em 2013) e a menor, na região Norte (19,4/100 mil hab. em 2013). Tais achados corroboram com os da pesquisa, ao observarem taxa de mortalidade de 12,39/100 internações no sexo masculino, além do aumento na taxa de mortalidade com progressão da idade e maior na região sudeste (15.22/100 internações). Estudos defendem que apesar da tendência de declínio do tabagismo na população adulta brasileira, entre 2006 e 2013, a frequência de fumantes continua maior entre os homens54,55, além de maiores prevalências de tabagismo serem encontradas na região Sul56.

Por fim, destacam-se como limitações do estudo o uso de dados secundários em banco de dados, que podem sofrer variações quanto ao registro e armazenamento inadequado dos dados. Além de não fornecer dados interligados e mais precisos quanto a internação hospitalar individualizada ou quantitativo de reinterações. Entretanto, os bancos de dados utilizados neste estudo são os considerados os oficiais do governo federal e apresentam eficácia no monitoramento epidemiológico.
6 CONSIDERAÇÕES FINAIS

As doenças cardiovasculares e respiratórias afetam a população brasileira de maneira ativa, representando taxa de internação hospitalar média de 841/100 mil habitantes e 515,1/100 mil habitantes, respectivamente, no período de 2008 e 2019. Ainda, no âmbito hospitalar, apresentam maiores taxas de internações com o aumento progressivo da idade, e nas regiões sul e sudeste. Além disso, foi observado redução de 10% na taxa de internação hospitalar por DCV e 17% nas DR no período do estudo.

Ainda, destaca-se a importância de investimentos e elaborações de estratégias de ações a nível local e regional, a fim de promover cuidados de prevenção e promoção de saúde que sejam efetivas para redução das taxas de internações hospitalares e consequentemente melhorar o manejo do tratamento ambulatorial e reduzir quantitativos de óbitos.

Além disso, destaca-se a necessidade de maiores investimentos em programas de reabilitação cardiovascular e respiratória, tanto no processo preventivo das complicações cardiovascular e respiratórias, quanto no processo de minimização dos danos na internação hospitalar, no controle e manejo das exacerbações da doença, a fim de promover redução das taxas de internação hospitalar e óbitos por DCV e DR.
REFERÊNCIAS

1. World Health Organization. Global Action Plan for the Prevention and Control of NCDs 2013-2020. Geneva: WHO; 2013.
2. Malta DC, Moura L, Prado RR, Escalante JC, Schmidt MI, Duncan BB. Chronic non-communicable disease mortality in Brazil and its regions, 2000-2011. Epidemiol Serv Saude. 2014; 23(4):599-608.
3. Duncan BB, Chor D, Aquino EM, Bensenor IJM, Mill JG, Schmidt MI, Lotufo PA, Vigo A, Barreto SM. Chronic non-communicable diseases in Brazil: priorities for disease management and research. Rev Saude Publica. 2012; 46 Suppl 1:126-34.
4. Malta DC, Franca E, Abreu DMX, Perillo RD, Salmen MC, Teixeira RA, Passos V, Souza MFM. Mortality due to noncommunicable diseases in Brazil, 1990 to 2015, according to estimates from the Global Burden of Disease study. Sao Paulo Med J. 2017; 135(3):213-21.
5. Nascimento BR, Brant LCC, de Oliveira GMM, Malachias MVB, Reis GMA, Teixeira RA, Malta DC, França E, Souza MFM, Roth GA, Ribeiro ALP. Cardiovascular disease epidemiology in portuguese-speaking countries: data from the Global Burden of Disease, 1990 to 2016. Arq Bras Cardiol. 2018;110(6):500-511.
6. Malta DC, Bernal RT, Souza MF, Szwarcwald CL, Lima MG, Barros MB. Social inequalities in the prevalence of self-reported chronic non-communicable diseases in Brazil: national health survey 2013. Int J Equity Health. 2016;15(1):153.
7. GBD 2016 Brazil Collaborators. Burden of disease in Brazil, 1990-2016: a systematic subnational analysis for the Global Burden of Disease Study 2016. Lancet. 2018; 392(10149):760-75.
8. Oliveira GMM, Brant LCC, Polanczyk CA, Biolo A, Nascimento BR, Malta DC et al. Estatística Cardiovascular – Brasil 2020. Arq. Bras. Cardiol. [Internet]. 2020, 115(3): 308-439.
9. Pan American Health Organization, World Health Organization (PAHO/WHO). Plan of action for the prevention and control of noncommunicable diseases. Washington, DC: PAHO; 2013.
10. United Nations General Assembly. Political declaration of the high-level meeting of the general assembly on the prevention and control of non-communicable diseases: sixty-sixth session: agenda item 117. Follow-up to the outcome of the millennium summit. Draft resolution submitted by the President of the general assembly [Internet]. 2011 [acessado em 19 jun. 2012]. Disponível em: http://www.un.org/ga/search/view_doc.asp?symbol=A

11. Beaglehole R, Bonita R, Horton R, Ezzati NB, Bhala N, Amuyunzu-Nyamongo M, et al. Measuring progress on NCDs: one goal and five targets. Lancet 2012; 380(9850): 1283-5. https://doi.org/10.1016/S0140-6736(12)61692-4

12. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação de Saúde. Plano de ações estratégicas para o enfrentamento das doenças crônicas não transmissíveis (DCNT) no Brasil 2011-2022 / Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação de Saúde. – Brasília : Ministério da Saúde, 2011. 160 p. : il. – (Série B. Textos Básicos de Saúde).

13. Truelsen T, Mähönen M, Tolonen H, Asplund K, Bonita R, Vanuzzo D, WHO MONICA Project. Trends in stroke and coronary heart disease in the WHO MONICA Project. Stroke. 2003; 34(6):1346-52.

14. Malta DC, Andrade SSCA, Oliveira TP, Moura L, Prado RR, Souza MFM. Probabilidade de morte prematura por doenças crônicas não transmissíveis, Brasil e regiões, projeções para 2025. Rev Bras Epidemiol 2019; 22: E190030.

15. World Health Organization (WHO). Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011. 176 p.

16. Malta DC et al . Mortalidade por Doenças Cardiovasculares Segundo o Sistema de Informação sobre Mortalidade e as Estimativas do Estudo Carga Global de Doenças no Brasil, 2000-2017. Arq. Bras. Cardiol., 2020; 115, 2, 152-160,

17. Ribeiro ALP, Duncan BB, Brant LCC, Lotufo PA, Mill JG, Barreto SM. Cardiovascular health in Brazil: trends and perspectives. Circulation. 2016;133(4):422-33.

18. Global Burden of Disease Study 2017 (GBD 2017) results. Global Health Data Exchange website. Seattle, WA: Institute for Health Metrics and Evaluation (IHME), University of Washington; 2017. Available from: http://ghdx.healthdata.org/gbd-results-tool . Accessed Feb 10, 2020.
19. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.

20. Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007; 370; 9603:1929-38.

21. Schmidt MI, Duncan BB, Azevedo e silva G, Menezes AM, Monteiro CA, et al. Chronic noncommunicable diseases in Brazil: burden and current challenges. Lancet. 2011; 377(9781):1949-61.

22. Rasella D, Harhay MO, Pamponet ML, Aquino R, Barreto ML. Impact of primary health care on mortality from heart and cerebrovascular diseases in Brazil: a nationwide analysis of longitudinal data. BMJ. 2014;349:g4014.

23. Leal LF, Cousin E, Bidinotto AB, Sganzerla D, Borges RB, Malta DC, Ikuta K, Dal pizzol TS. Epidemiology and burden of chronic respiratory diseases in Brazil from 1990 to 2017: analysis for the Global Burden of Disease 2017 Study. Rev Bras Epidemiol. 2020; 23.

24. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388: 1459–1544.

25. Foro de las Sociedades Respiratorias Internacionales. El impacto gobal de la Enfermedad Respiratoria – Segunda edición. México, Asociación Latinoamericana de Tórax, 2017.

26. Duncan BB, Stevens A, Schmidt MI. Mortalidade por doenças crônicas no Brasil: situação em 2010 e tendências de 1991 a 2010. Em: Saúde Brasil 2011: uma análise da situação de saúde e a vigilância da saúde da mulher. Brasília: Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise de Situação de Saúde; Pp. 93-104, 2012.

27. Goulart FAA. Doenças Crônicas Não Transmissíveis: estratégias de controle e desafios para os Sistemas de Saúde [Internet]. Brasília: Organização Mundial da Saúde; 2011. [citado 2014 nov 14]. Disponível em: http://apsredes.org/site2012/wp-content/uploads/2012/06/Condicoes-Cronicas_flavio1.pdf
28. Cardoso TA, Roncada C, Silva ERD, Pinto LA, Jones MH, Stein RT, et al. The impact of asthma in Brazil: a longitudinal analysis of data from a Brazilian national database system. J Bras Pneumol. 2017;43(3):163-168.

29. BRASIL. Ministério da Saúde. Departamento de Informática do SUS – DATASUS. Informações de Saúde, Epidemiológicas e Morbidade: banco de dados. [Acesso em 19 out 2020]. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0501.

30. Costa E, Caetano R, Werneck GL, Bregman M, Araújo DV, Rufino R. Estimated cost of asthma in outpatient treatment: a real-world study. Rev Saude Publica. 2018;52:27.

31. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention, 2017 [Internet]. 2017 [accessed on Nov 17, 2017]. Available at: Available at: http://ginasthma.org/

32. Global Initiative for Chronic Obstructive Lung Disease. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for diagnosis, management and prevention of Chronic obstructive pulmonary disease (2018 report) [Internet]. 2018 [accessed on Nov 17, 2017]. Available at: Available at: http://goldcopd.org/gold-reports/

33. Malta DC, Stopa SR, Szwarcwald CL, Gomes NL, Silva júnior JB, Reis AACR. A vigilância e o monitoramento das principais doenças crônicas não transmissíveis no Brasil – Pesquisa Nacional de Saúde, 2013. Rev bras epidemiol. 2015; 18 SUPPL 2: 3-16,

34. World Health Organization (HHO). World health statistics 2008. Geneva: WHO; 2008. Disponível em: http://www.who.int/gho/publications/world_health_statistics/EN_WHS08_Full.pdf?ua=1.

35. Santos MAS, Oliveira MM, Andrade SSCA, Nunes ML, Malta DC, Moura L. Tendências da morbidade hospitalar por doenças crônicas não transmissíveis no Brasil, 2002 a 2012. Epidemiol. Serv. Saúde, 2015, 24(3):389-398.

36. GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1603-658.
37. Gomes R, Nascimento EF do, Araújo FC de. Por que os homens buscam menos os serviços de saúde do que as mulheres? As explicações de homens com baixa escolaridade e homens com ensino superior. Cad Saúde Pública, 2007; 23(3): 565-74.

38. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas Estratégicas. Perfil da morbimortalidade masculina no Brasil [Internet]. Brasília: Ministério da Saúde; 2018 [acessado em Nov 28, 2019]. 52 p. Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/perfil_morbimortalidade_masculina_brasil.pdf

39. Góis ALB, Veras RP. Informações sobre a morbidade hospitalar em idosos nas internações do Sistema Único de Saúde do Brasil. Cienc Saude Coletiva, 2010, 15(6):2859-69.

40. Brasil. Portaria nº 1.944/2009. Institui no âmbito do Sistema Único de Saúde (SUS), a Política Nacional de Atenção Integral à Saúde do Homem. Diário Oficial da União [Internet] 2009 [acessado em Nov 28, 2019]. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2009/prt1944_27_08_2009.html

41. Teixeira MM, Santos VE, Silva AMP, Santos ALS, Lacerda LCA et al. perfil clínico-epidemiológico dos portadores de doenças cardiovasculares em petrolina, pernambuco, brasil Revenferm UFPE online [internet]. 2010; 4(spe):1901-908.

42. Massa KHC, Duarte YAO, Chiavegatto ADP. [Analysis of the prevalence of cardiovascular diseases and associated factors among the elderly, 2000-2010]. Cien Saude Colet. 2019;24(1):105-114. doi: 10.1590/1413-81232018241.02072017.

43. Brazilian Institute of Geography and Statistics - IBGE. 2017. Available at: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/18469-expectativa-de-vida-do-brasileiro-sobe-para-75-8-anos. Acessado em outubro de 2019.

44. BRASIL. Ministério da Saúde. A vigilância, o controle e a prevenção das doenças crônicas não-transmissíveis : DCNT no contexto do Sistema Único de Saúde brasileiro / Brasil. Brasília: Organização Pan-Americana da Saúde, 80. : il. 2005.
45. Silveira RE, Santos AS, Sousa MC, Monteiro TS. Gastos relacionados a hospitalização de idosos no Brasil: perspectivas de uma década. Einstein. 2013;11(4):514-20.

46. Silva GA, Valente JG, Malta DC. Tendências do tabagismo na população adulta das capitais brasileiras: uma análise dos dados de inquéritos telefônicos de 2006 a 2009. Rev Bras Epidemiol. 2011 jan-mar [citado 2014 jan 20];14(1):103-14. Disponível em: http://www.scielo.br/pdf/rbepid/v14s1/a11v14s1.pdf

47. Instituto Nacional de Câncer José Alencar Gomes da Silva. Comissão, Nacional para Implementação da ConvençãoQuadro para controle do Tabaco (CONICQ). Política Nacional de controle do tabaco: relatório de gestão e progresso 2011-2012 [Internet]. Rio de Janeiro: INCA; 2014 [accessed on Oct 20, 2017]. 132 p. Available at: http://bvsms.saude.gov.br/bvs/publicacoes/politica_nacional_controle_tabaco_relatorio_gestao.pdf

48. Malta DC, Silva AG da, Machado ÍE, Sá ACMGND, Santos FM dos M, Prates EJS, et al. Trends in smoking prevalence in all Brazilian capitals between 2006 and 2017. J Bras Pneumol 2019; 45(5): e20180384. https://doi.org/10.1590/1806-3713/e20180384.

49. Standards of Practice for Case Management. Little Rock, Case Management Society of America, 2010. Available from: http://www.cmsa.org/portals/0/pdf/memberonly/StandardsOfPractice.pdf

50. Costa EFA, Porto CC, Soares AT. Envelhecimento populacional brasileiro e o aprendizado de geriatria e gerontologia. Rev UFG [Internet]. 2003 dez [citado 2013 dez];5(2):[cerca de 14 p.]. Disponível em: http://www.proec.ufg.br/revista_ufg/idoso/envelhecimento.html

51. Instituto Brasileiro de Geografia e Estatística. Sinopse dos resultados do Censo 2010: pirâmide etária [Internet]. Rio de Janeiro: IBGE; 2010 [citado 2013 dez 20]. Disponível em: http://www.censo2010.ibge.gov.br/sinopse/webservice/

52. Godoy DV, Zotto CD, Bellicanta J, Weschenfelder RF, Nacif SB. Doenças respiratórias como causa de internações hospitalares de pacientes do Sistema Único de Saúde num serviço terciário de clínica médica na região nordeste do Rio Grande do Sul. J Pneumol [Internet]. 2001 jul-ago [citado2014 mai 20];27(4):193-8.
53. Secretaria de Vigilância em Saúde – Ministério da Saúde Boletim Epidemiológico. Perfil da morbimortalidade por doenças respiratórias crônicas no Brasil, 2003 a 2013. Volume 47 N° 19 – 2016.

54. Ministério da Saúde (BR). Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde. Vigitel Brasil 2013: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico. Brasília: Ministério da Saúde; 2014.

55. World Health Organization. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach [Internet]. Geneva: WHO; 2007. [citado 2014 nov 14]. Disponível em: http://www.who.int/gard/publications/GARD%20Book%202007.pdf

56. Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saúde 2013: percepção do estado de saúde, estilos de vida e doenças crônicas no Brasil, grandes Regiões e Unidades da Federação. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2014.
ANEXO

Comprovante de confirmação do resumo.

N°	Título	Resumen	Nombre	Apellido	País	Tipo de investigación	Categoría
491	Medicina de resumen sencillo	Inicio terapia	Juan	Marín	México	Medicina de cuidado	Cirugía torácica
492	Evaluación de la hemorragia cardíaca	Ensayos clínicos	Lucian	Marín	Brasil	Investigación clínica	Fisiopatología
493	Diagnóstico diferencial de masa mesodérmica	Ensayos clínicos	Juan	Marín	México	Medicina de cuidado	Cirugía torácica
494	Tumor multiblasticos infiltración	Ensayos clínicos	Juan	Marín	México	Medicina de cuidado	Cirugía torácica
495	Tratamiento completo	Ensayos clínicos	Juan	Marín	México	Medicina de cuidado	Cirugía torácica
496	Tumor de tronco	Ensayos clínicos	Ignacio	Marín	Argentina	Investigación clínica	Pediatría
497	Score de Graft	Ensayos clínicos	Verónica	Marín	Argentina	Investigación clínica	Enfermedades infecciosas
498	Detección y tratamiento	Ensayos clínicos	Emily	Marín	Colombia	Investigación clínica	Enfermedades infecciosas
A partir dos resultados preliminares apresentados foram construídos os artigos científicos descritos abaixo:

1) Characterization of Brazilian hospital admissions due to cardiovascular diseases: a longitudinal study.

Publicado na *BMC Cardiovascular Disorders* (ISSN: 1471-2261) em 29 de junho 2020.

2) Characterization of Brazilian hospital admissions due to asthma among children and teenagers: a longitudinal study.

Publicado na Plos One (ISSN: 1932-6203) em 15 de março de 2021.
Characterization of Brazilian hospital admissions due to cardiovascular diseases: a longitudinal study

Luiza Gabriela de Araújo Fonseca, Illia Nadinne Dantas Florentino Lima and Lucien Peroni Gualdi*

Abstract

Background: Cardiovascular diseases (CVD) are the main cause of death and comorbidities worldwide. It is estimated that three quarters of all deaths related to CVD occur in low and middle income countries such as Brazil. Furthermore, it is estimated that emerging countries will present the highest worldwide prevalence of such diseases by 2050. In view of the above, this study aims to characterize Brazilian hospital admission distribution classified by the ICD-10 in adults between 2008 and 2017 in Brazil.

Methods: This is a longitudinal descriptive study in which all data regarding hospital admissions registered in the Brazilian Hospital Information System of “Sistema Único de Saúde” (SIH/SUS) due to cardiovascular diseases (ICD-10) were included. All admissions from private or public services linked to the SUS from 2008 and 2017 were evaluated. The following variables were collected: number of hospital admissions, place of hospitalization classified by the ICD-10 and mortality rate at the federal level and according to regions. Absolute values and frequency of hospital admissions were grouped according to sex, age and living region as well as the number of deaths. The extracted data was stored in a Microsoft Excel 2013 program spreadsheet. Statistical analysis was performed by GraphPad Prism version 5.0 software.

Results: There was a total of 11,345,821 hospital admissions due to CVD registered between 2008 and 2017. Individuals from 50 to 79 years old were the most affected. Heart failure (21.3%), other ischemic heart diseases (13.3%) and stroke (11.4%) were responsible for almost half of the hospital admissions associated to CVD. The number of registered deaths caused by any CVD was 867,838 and the national mortality rate was 7.82.

Conclusion: CVD were responsible for around 10% of all hospital admissions in Brazil between 2008 and 2017. Moreover, it was possible to observe a decrease in hospital admissions as well as mortality rate over time after implementing governmental strategies to prevent cardiovascular diseases.

Keywords: Health services research, Cardiovascular diseases, Hospitalization
Background

According to the world health organization (WHO) (2017) cardiovascular diseases (CVD) are the main cause of death worldwide. Thus, more individuals die annually due to these diseases than from any other cause. It is also estimated that three quarters of all deaths related to cardiovascular diseases occur in low and middle income countries such as Brazil. Studies have also shown that 37% of the 17 million premature deaths associated to non-communicable diseases (NCD) are caused by CVD [1].

The epidemiological transition process caused by aging, urbanization, social and economic changes as well as globalization have impacted the way of living, working and eating in the Brazilian population. Behavioral risk factors or those subject to interventions such as smoking, unhealthy eating, physical inactivity, alcohol and consumption of other drugs are potentiated by socioeconomic, cultural and environmental conditioning factors. Almost half of the Brazilian adults (≥ 18 years old) living in state capitals in 2011 reported weight excess (48.5%), 17% reported abusive alcohol consumption, 20% reported to consume insufficient quantities of fruits and vegetables and 14% were physically inactive [2].

According to the health ministry, the impact of risk and protection factors on NCD mortality may be perceived by the number of deaths attributed or preventable by each factor. An example to explain such an affirmation may be arterial hypertension which is the main risk factor for CVD and causes around 7.5 million deaths/year (12.8% of all deaths). On the other hand, regular physical activity and appropriate fruit and vegetable consumption reduces CVD risk.

Non-communicable diseases, which only represented 12% in the 1930s, have shown a considerable increase [3], corresponding to 73.9% of deaths in Brazil in 2010. From this total, 80.1% occurred due to cardiovascular diseases, cancer, chronic respiratory diseases and diabetes [2].

In addition, individuals with a cardiovascular disease are more likely to be hospitalized, present a higher risk of functional impairment, drug-related adverse events and higher prevalence of associated comorbidities [4]. It was estimated that 70% of healthcare spending was associated to NCD in Brazil in 2008. Moreover, inpatient care due to cardiovascular diseases cost R$ 1,183,712.23 totaling 561,350 hospital admissions in the first 6 months of 2018 [5].

In the coming decades, the so-called emerging countries which are unprepared for such social demand, together with industrialized countries will concentrate even higher numbers of deaths due to NCD. Even more, it is estimated that emerging countries will present the highest worldwide prevalence of such diseases by 2050 [6]. This increase will create several challenges for local, regional and national health managers. In fact, chronic diseases are very costly to public health systems such as the Brazilian Sistema Único de Saúde, especially when they are not properly prevented and managed.

Thus, it is worth highlighting the necessity to investigate the distribution of Brazilian hospital admissions according to cardiovascular disease profiles aiming to elaborate new preventive strategies to minimize hospital costs.

In view of the above, this study aims to characterize Brazilian hospital admissions distribution classified by the ICD-10 in adults between 2008 and 2017, as well as to analyze the occurrence of hospital admissions, the regional distribution, and to observe the temporal trend of hospital admissions and mortality rate due to cardiovascular diseases in Brazil.

Methods

Study design

This is a longitudinal descriptive study in which all data regarding hospital admissions registered in the Brazilian Hospital Information System of the “Sistema Único de Saúde” (SIH/SLIS) due to cardiovascular diseases (ICD-10) were included. All admissions from private or public services linked to the SLIS from 2008 and 2017 were evaluated.

Data extraction

Data were collected from the SIH/SLIS provided by the Health Surveillance Bureau of the Brazilian Ministry of Health through its open access webpage available at the Department of Informatics of the Unified Health System (DATASUS). The following variables were collected: number of hospital admissions, place of hospitalization classified by the ICD-10, number of hospital admissions between 2008 and 2017 at the federal level and according to regions, absolute values and frequency by age group, sex and mortality rate.

The absolute values and frequency of hospital admissions were grouped according to sex, age and living region as well as the number of deaths recorded between 2008 and 2017. All data were provided by the hospital information system (SIH/SLIS) from an online platform (link: http://datasus.saude.gov.br/) and were collected from July to December, 2018.

Data analysis

Extracted data were stored in a Microsoft Excel 2013 program spreadsheet. Statistical analysis was performed by the GraphPad Prism version 5.0 software program. Data normality was assessed by the Shapiro-Wilk test. Comparisons among the groups were performed by the Kruskal-Wallis test and Dunn’s Multiple Comparison post hoc test. A p value < 0.05 was considered significant.
Results
A total of 112,265,103 hospital admissions were registered in the SIH/SUS system between 2008 and 2017. From this total, 11,345,821 occurred due to CVD. Heart failure (21.3%), other ischemic heart diseases (13.3%) and stroke (11.4%) were responsible for almost half of the hospital admissions associated to CVD (Table 1).

CVD incidence according to Brazilian region
When we grouped the incidence of CVD according to regions it was found that 44.4% (n = 5,041,034) of hospital admissions occurred in the Southeast region (states of Espírito Santo, Minas Gerais, Rio de Janeiro and São Paulo) region which represents a 10 times higher prevalence when compared to the Northern region. This is followed by the Northeast region (states of Alagoas, Ceará, Maranhão, Paraíba, Pernambuco, Piauí, Rio Grande do Norte and Sergipe) (n = 2,521,200), the South region (states of Paraná, Rio Grande do Sul and Santa Catarina) (n = 2,411,420), the Midwest region (states of Goiás, Mato Grosso and Mato Grosso do Sul and Distrito Federal) (n = 807,937) and he Northern region (states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins) (n = 564,230). Figure 1 shows the percentage described annually during this period.

CVD incidence according to age
Table 2 shows that most of the hospital admissions caused by impairment to the cardiovascular system occurs in subjects aged between 50 and 79 years, which is similar in all Brazilian regions. Statistical differences were found when we compared the 20–29 age group to 50–59, 60–69 and 70–79 age groups as well as between the 30–39 and 70–79 age groups (p < 0.0001).

The number of registered deaths caused by any CVD between 2008 and 2017 was 867,838. The mortality rate was determined by the ratio of the number of deaths and the number of hospital admissions approved and authorized (which were computed as hospital admissions) between 2008 and 2017, and multiplied by 100. Thus,

Table 1 Distribution of hospitalizations by place of hospitalization, classified of ICD-10 circulatory system diseases, Brazil, 2008–2017

Description	Male	Female	Frequency	%
Acute rheumatic fever	20,882	21,838	42,720	0.4
Chronic rheumatic heart diseases	33,718	45,248	78,966	0.7
Essential (primary) hypertension	334,594	484,697	819,291	7.2
Other hypertensive diseases	120,232	175,237	295,469	2.6
Acute myocardial infarction	554,051	319,162	873,213	7.7
Other diseases ischemic acute the heart	885,643	621,154	1,506,797	13.3
Pulmonary embolism	24,569	37,834	62,403	0.6
Conduction disorders and cardiac arrhythmias	291,565	278,730	570,295	5.0
Cardiac insufficiency	1,237,943	1,176,789	2,414,732	21.3
Other heart diseases	175,048	186,907	361,955	3.2
Intracerebral haemorrhage	162,984	154,046	317,030	2.8
Cerebral infarction	82,211	75,945	158,156	1.4
Stroke, Not Specified as Hemorrhagic or Ischemic	667,867	623,021	1,290,888	11.4
Other Cerebrovascular Diseases	80,379	79,812	160,191	1.4
Atherosclerosis	87,427	73,258	160,685	1.4
Other Peripheral Vascular Diseases	44,873	30,031	74,904	0.7
Embolism and Arterial Thrombosis	104,270	78,370	182,640	1.6
Other Disorders of Arteries and Arterioles	215,372	134,821	350,193	3.1
Phlebitis and Thrombophlebitis	148,349	232,405	380,754	3.4
Lower Limb Varicose Veins	191,970	642,773	834,743	7.4
Hemorrhoids	125,327	165,117	290,444	2.6
Other and unspecified Circulatory Tract Disorders	80,357	39,052	119,409	1.1
Total	5,669,631	5,676,247	11,345,878	100

Font: Ministry of Health - SUS Hospital Information System (SIH / SUS)
the national mortality rate was 7.82. This number was higher than the national average in the Southeast and Northeast regions, and increased according to age group (Fig. 2). The mortality rate was significantly lower in the 20–29 and 30–39 groups in comparison to the 60–69, 70–79 and > 80 groups (p < 0.001). The 40–49 age group showed a significantly lower mortality rate when compared to the 60–69, 70–79 and > 80 groups (p < 0.001), while the 50–59 age group showed a significant difference when compared to the 70–79 and > 80 groups (p < 0.001). However, no significant differences were found among mortality rates when we compared geographic regions (p > 0.05).

Longitudinal variation of hospital admissions due to CVD

When hospital admissions were accessed according to annual variation we, found that there were variable changes along the years; however, they showed a decrease in growth amplitude despite the annual increase. Thus, an increased variation of 42,252 hospital admissions was found between 2008 and 2009, followed by 2009 to 2010 (n = 14,073) and 2010 to 2011 (n = 5997) (p > 0.05). We also found declined incidence between 2011 and 2012 (n = 22,186) and 2012 to 2013 (n = 3789), followed by an increase between 2013 and 2014 (n = 7557), and another decline between 2014 and 2015 (n = 12,271) and 2015 and 2016 (2381) (p > 0.05), as shown in Fig. 3.

Moreover, an increase of 62,322 hospital admissions was observed between 2008 and 2011 (p > 0.05). This increase was of 3.85% in 2009, followed by 5.13% in 2010 and 6.58% in 2011 in comparison to 2008 (p > 0.05). We found a reduction of 1.5% when we assessed 2012, in comparison to 2008 (p > 0.05). This decrease was followed by an increase of 3.31% in 2013, 4.0% in 2014,

Table 2

Absolute and relative frequency of hospitalizations caused by cardiovascular diseases regarding geographic region and age groups, between 2008 and 2017

Age range	North	Northeast	Southeast	South	Midwest	p value
20–29	26,469 (4.7)bc	97,995 (3.9)bc	143,315 (2.8)bc	55,379 (2.3)bc	27,854 (3.4)bc	< 0.0001
30–39	43,693 (7.7)bcd	169,859 (6.7)b	313,016 (6.2)b d	122,429 (5.1)bc	56,706 (7.0)b	< 0.0001
40–49	67,440 (12.0)bcd	283,714 (11.3)b	615,446 (12.2)b	278,671 (11.6)bc	104,216 (12.9)b	< 0.0001
50–59	100,647 (17.8)bcdc	433,012 (17.2)bc	1,051,132 (20.9)b	493,168 (20.5)bc	161,939 (20.0)cdc	< 0.0001
60–69	120,098 (21.3)bcdc	546,823 (21.7)bc	1,188,522 (23.6)b	597,849 (24.8)b	184,022 (22.8)b	< 0.0001
70–79	112,225 (19.9)bcdc	526,09 (20.9)b	1,005,225 (19.9)b	520,615 (21.6)b	160,761 (19.9)b	< 0.0001
≥80	72,334 (12.8)bcdc	387,655 (15.4)b	635,092 (12.6)b d	303,782 (12.6)bc	90,284 (11.2)b	< 0.0001
p value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	

Legend: Absolute frequency (%). aNorth; bNortheast; cSoutheast; dSouth and eMidwest; expressing statistically significant differences among regions

Font: Ministry of Health - SUS Hospital Information System (SIH / SUS)

Fig. 1 Relative frequency of hospital admissions caused by cardiovascular diseases according to geographic region from 2008 to 2017. Font: Ministry of Health - SUS Hospital Information System (SIH / SUS)
2.88% in 2015, 2.66% in 2016 and 3.16% in 2017 (p > 0.05). Although we have shown different delta variations along the study period, no significant difference was found when we compared the total number of hospitalizations among the years.

Discussion

In this study heart failure was responsible for the highest number of hospital admissions among the main causes classified by the ICD-10 in all Brazilian regions between 2008 and 2017. Such prevalence may be explained by the improvement of ischemic disease care and the treatment of heart failure with drugs and devices such as pacemakers and artificial ventricles, as well as population aging which results in an increase in the costs related to hospital admissions for the health systems [7].

Population aging and increased prevalence of cardiovascular risk factors, such as hypertension and diabetes, have been the main factors responsible for the increasing impact of CVD in Brazil in the last decades [8]. According to WHO, the most prevalent CVD are ischemic heart disease and cerebrovascular disease, which corroborates with the results found herein. However, such health conditions show common risk factors, as well as

Fig. 2 Hospital admissions’ mortality rate according to geographic region and age group between 2008 and 2017; *significant difference between 20 and 29 and 60-69, 70-79 and > 80 age groups; &significant difference between 30 and 39 and 60-69, 70-79 and > 80 age groups; %significant difference between 40 and 49 and 60-69, 70-79 and > 80 age groups; p value < 0.001. Font: Ministry of Health - SUS Hospital Information System (SIH / SUS)

Fig. 3 Hospital admissions’ incidence caused by cardiovascular diseases from 2008 to 2017 in Brazil. Font: Ministry of Health - SUS Hospital Information System (SIH / SUS)
potentially changeable factors which may be changed by healthier lifestyles [9].

Nevertheless, the literature highlights the existence of important regional differences corroborating with the findings of our study. The pyramid that represents the Northern region still preserves the characteristics of a young population, as well as the South which is marked by a typical demographic transition process [3]. It is also important to highlight the expressive demographic, social and economic heterogeneity existing in Brazil which is reflected in different mortality and morbidity patterns among the study results. Such differences demand actions which involve local managers and are adequate to the reality found in each state.

Although CVD may occur in all ages, its incidence increases as age increases or in those who are 75 years old or more. Thus, the longer the longevity, the higher the likelihood of being affected by such diseases [10]. Such an affirmation corroborates with our results, as we found that higher age groups equated to higher hospital admission incidence.

The greater prevalence of CVD in individuals aged 50 years or more seems to be related to the increase in life expectancy in the Brazilian population, which has been showing positive changes in the last decades. It is estimated that 200 thousand people turn 60 years old each year in the Brazilian population, which generates an important demand on health systems as the number of hospital admissions and health care increase [3].

On the other hand, life expectancy at birth has also shown a progressive increase in the last decades. Life expectancy in 1980 was 62.6 years, and this number increased to 75.8 years in 2016. However, life expectancy differs among social stratum, region and Brazilian states [11]. Such conditions may explain the study results, as we found regional differences among age groups in the number of hospital admissions.

The Brazilian Ministry of Health launched a national action plan in 2011, and established several directions for federal investments, among which the priorities were to focus on the commitment to control chronic non-communicable diseases and their risk factors. The planned goals are similar to global goals and refer to mortality reduction by chronic non-communicable diseases by reducing the use of tobacco, alcohol, salt and obesity [12]. Other Brazilian goals include increasing physical activity and the consumption of fruits and vegetables [13]. The Brazilian government adopted all global goals.

In this context, it is worth highlighting a reduction of hospital admissions from 2011 to currently, as shown in several studies. It is also important to note that all Brazilian regions have suffered socioeconomic changes in the last 30 years. However, we may consider that the changes occurred at different velocities [14] in order to explain the differences among regions.

Brazil is going through a fast demographic transition process in which we can observe several changes regarding population increase and age group distribution. According to the Brazilian Institute of Geography and Statistics (IBGE) [15], there are more than 20 million people aged 60 years or more in Brazil currently which represents 11% of the total population. This profile change in association to increased life expectancy leads to an increase in health costs as well as social security in the Brazilian population. Studies have shown that whichever the indicators are observed in health quality evaluations for the older adult population, they point to a higher use of health services and costs when compared to the younger population [16].

This study has some limitations such as disease diagnosis being performed by the ICD code. This classification is not suitable if little or no information about the patient is available, as symptoms can be caused by several different conditions. It is important to highlight that due to the characteristics of our population (hospitalized subjects) the ICD diagnosis was made after several visits, which reduces the changes of wrong diagnoses. Moreover, echocardiographic measurements, angiographic imaging and clinical signs/markers may be used to confirm diagnosis, however no information about such data are available in the DATASUS system. Finally, the ICD classification is the most important classification as a coding system in medical databases to support research and public health reports, and is most used by physicians. Moreover, due to continuous update of DATASUS system we are not able to calculate the accurate proportion of public and private services from study data as such information was not extracted from the system during data extraction. However, after last system update the percentage of private services was 46.44%, public services 32.04% and unknown/ignored 21.52%.

Conclusion

The Brazilian population from 50 to 79 years showed higher hospital admission frequency due to cardiovascular diseases. A decrease in the number of hospital admission over the years was also observed after implementation of governmental programs which prioritize life quality, physical activity and preventive healthcare, and which reflects equally national decreasing levels in hospital admissions.

Abbreviations

CVD: Cardiovascular diseases; DATASUS: Department of Informatics of the Unified Health System; ICD: international classification of diseases; NCD: non-communicable diseases; SIH/SUS: hospital information system/sistema único de saúde; WHO: world health organization

Acknowledgements

Not applicable.
Financial support
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions
L.G. de A. F was responsible for extracting and analyzing data and writing the manuscript. I.N.D.F.L. was responsible for analyzing data and reviewing the manuscript. L.P.G. was responsible for the rationale of the study and reviewing data and manuscript. The author(s) read and approved the final manuscript.

Funding
This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES). Finance Code 001.

Availability of data and materials
The datasets analyzed during the current study are available in the Brazilian system of Hospital Information of “Sistema Único de Saúde” repository, link: http://datasus.saude.gov.br/.

Ethics approval
All data from the study are public and access free and may be assessed at DATASUS (http://datasus.saude.gov.br/). Ethics approval is not required in accordance to the Brazilian National Health Council (Resolution N°510 from April 07th, 2016), which regulates the National Research Ethics Committee (CONEP).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 November 2019 Accepted: 16 June 2020

References
1. Pan American Health Organization/ World Health Organization Brazil. Cardiovascular diseases. 2017.
2. BRAZIL. Ministry of Health. Health Brazil 2011: an analysis of the health situation and the surveillance of the woman’s health. 2012.
3. BRAZIL. Ministry of Health. Surveillance, control and prevention of chronic non-communicable diseases: NCDs in the context of the Brazilian Health System / Brazil. Ministry of Health - Brasilia: Pan American Health Organization,80.: il. 2005.
4. Freund T, Peters-Klimm F, Rochon J, Mahler C, Gens Ichen J, Erler A, et al. Primary care practice-based care management for chronically ill patients (PracMan): study protocol for a cluster randomized controlled trial. Trials. 2011; 12 (163).
5. BRAZIL. Ministry of Health. Department of Informatics of SUS – DATASUS. Hospital mortality by hospitalization place – Brazil. (Accessed 26 Nov 2018. Available at: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def).
6. Lessa I. Non-communicable chronic diseases in Brazil: a challenge for the complex task of surveillance. Ciência Saúde coletiva. 2004;9(4):931 –43.
7. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–60.
8. Malta DC, Morais Neto OL, Da Silva JR. JB. Strategic Action Plan to face Non-communicable Diseases (NCD) in Brazil. Brasília, Ministry of Health 2011.
9. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva: WHO; 2013.
10. Teixeira MM, Santos VE, Silva AMP, Santos ALS, Lacerda LCA et al. Clinical-epidemiological profile of patients with cardiovascular diseases in Petrolina city, Pernambuco, Brazil. J Nursing UFPE on line. 2010, 4(spe)1901–1908.
11. Brazilian Institute of Geography and Statistics - IBGE. 2017. Available at: https://agenscia/noticias/ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticia/18469-expectativa-de-vida-do-brasileiro-sobe-para-75-8-anos. Accessed Oct 2019.
12. Malta DC, Silva Júnior JB. Brazilian strategic action plan to combat chronic non-communicable diseases and the global targets set to confront these diseases by 2025: a review. Epidemiol Serv Saúde. 2013;22(1):151–64.
13. Kontis V, Mathers CD, Rehm J, Stevens GA, Shield KD, Bonita R, et al. Contribution of six risk factors to achieving the 25x25 non-communicable disease mortality reduction target: a modelling study. Lancet. 2014; 384(9941):427–37.
14. Guimarães RM, Andrade SSCA, Machado-EL, Bahia CA, Oliveira IMJ, Jacques PVL, Regional differences in cardiovascular mortality transition in Brazil, 1980 to 2012. Rev Panam Salud Publica. 2015;37(2):83-9.
15. Brazilian Institute of Geography and Statistics - IBGE. Socio-demographic indicators: prospective for Brazil 1991-2030. UNFPA / BRAZIL project (BRA / 02 / PO2) - population and development - systematization of measures and socio-demographic indicators derived from the projection of the population by sex and age, by demographic method, of the major regions and units of the federation for the period 1991 / 2030. Rio de Janeiro: Arbet; 2006.
16. Guerra IC, Ramos-Cerqueira A. Risk of repeated hospitalizations in elderly users of an academic health center. Cad Saúde Pública. 2007;23(3):585–92.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
• fast, convenient online submission
• thorough peer review by experienced researchers in your field
• rapid publication on acceptance
• support for research data, including large and complex data types
• gold Open Access which fosters wider collaboration and increased citations
• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions
RESEARCH ARTICLE

Time trend of Brazilian hospital admissions and deaths due to asthma among children and teenagers, 1998–2019

Luiza Gabriela de Araújo Fonseca*, Rêncio Bento Florênico*, Illia Nadinne Dantas Florentino Lima, Lucien Peroni Gualdi*

Programa de Pós Graduação em Ciências da Reabilitação, Faculdade de Ciências da Saúde do Trairi (FACISA)/Universidade Federal do Rio Grande do Norte (UFRN), Santa Cruz, Rio Grande do Norte, Brazil

* These authors contributed equally to this work.

✉ lugualdi@hotmail.com

Abstract

Background
Asthma is one of the most prevalent non-communicable diseases worldwide. The aim of this study was to characterize the distribution of Brazilian hospital admissions due to asthma among children and teenagers between 1998 and 2019, as well as to analyze hospital admission incidence and mortality rate during the period according to the geographic region, age group and gender.

Methods
This is a descriptive time trend study using secondary data regarding hospital admissions and lethality registered in the Brazilian System of Hospital Information of the Brazilian Public Health System (SIH/SUS) due to asthma (ICD-10) in subjects aged from 0 to 19 years old between 1998 and 2019. The following variables were collected: number and place of hospital admissions classified by the ICD-10, absolute values and frequency by age group, gender and lethality. Statistical analysis was performed by GraphPad Prism version 5.0 software.

Results
The total number of hospital admissions due to asthma was 3,138,064. It was observed that children aged between 1 to 4 years, living in the Northeast region and males showed the highest number of hospitalizations. A 74.37% reduction over a 21-year period was found. The lethality rate found in the study was 0.06, with the highest rates being from the Northeast region, males and < 1-year-old.

Conclusion
Hospital admissions were more prevalent in young children, male gender and in the Northeast region. A decrease of hospital admissions and lethality rate was observed in all groups.
over time. This profile is important for implementing government strategies to lower hospital admissions and decrease costs.

Background

Asthma is one of the most prevalent non-communicable diseases worldwide [1]. It is estimated that 300 million people of all ages are diagnosed with asthma around the world [2]. However, there is a wide variation in prevalence, severity and mortality according to geographic location [3]. Although the highest prevalence of asthma (> 20%) is found in developed countries, studies have shown that the prevalence of childhood asthma in Latin America varies between 4% and 30%, and is above 10% in almost all countries [4]. Cardoso and colleagues evaluated the number of hospitalizations due to asthma as well as its costs in a period between 2008 and 2013 in Brazil, finding that more than one million hospital admissions occurred due to asthma in the period with an average cost of USD $160 per hospitalization [4].

Studies have also shown that the incidence and prevalence of asthma between genders differs over the lifetime. Prepubertal males present higher incidence, prevalence and hospitalization rates when compared to females of the same age; however, this pattern reverses during adolescence and remains until the 5th decade of life [5]. Although Brazil has one of the highest prevalence of asthma in the world, studies reporting the number of hospital admissions and mortality rates according to geographic region, age group and gender are still scarce. Thus, it is noteworthy to highlight the necessity to identify the most vulnerable population to prevent avoidable hospitalizations and to investigate the distribution of Brazilian hospital admissions according to asthma profile in aiming to elaborate new preventive strategies to minimize hospital costs. Furthermore, Brazil has shown advances in access to asthma treatment since the first decade of this century due to the implementation of a national public healthcare policy by the Ministry of Health across all of Brazil [6].

The information technology (IT) department of the Unified Health System (DATASUS) provides a free and reliable platform through the hospital information system of the Brazilian Public Health System (SIH/SUS) for processing hospital admission authorization information such as number and costs and mortality rate [7] according to geolocation [8], age and gender. In view of the above, this study aims to characterize the distribution of Brazilian hospital admissions classified by ICD-10 in children between 1998 and 2019, as well as to analyze hospital admission incidence and mortality rate due to asthma in the last 21 years according to the geographic region, age group and gender in Brazil.

Methods

Study design

This is a descriptive time trend study using secondary data regarding the hospital admission and lethality rate registered in the Brazilian Hospital Information system of the Brazilian Public Health System (SIH/SUS) due to asthma classified by the ICD-10 including subjects from 0 to 19 years old. All admissions from private or public services linked to the SUS from 1998 and 2019 were assessed.

Data extraction

Data were extracted from the SIH/SUS provided by the Health Surveillance Bureau of the Brazilian Ministry of Health through its open access webpage available at the Department of
Informatics of the Unified Health System (DATASUS). The following variables were collected: number of hospital admissions and the lethality rate classified by the ICD-10 in a period between 1998 and 2019. Absolute values and the frequency of hospital admissions and the number of deaths recorded between 1998 and 2019 of the data set were grouped according to gender, age and region. The total population according to region and age group is shown in Table 1, and the mean human development index (HDI) and weather characteristics for each Brazilian region are shown in Fig 1 (ArcGIS software, version 10.5). The data from 1998 to 2003, 2004 to 2009, 2010 to 2015 and 2016 to 2019 were grouped in the longitudinal analyzes. All data are provided by the hospital information system (SIH/SUS) in an online platform (link: http://datasus.saude.gov.br/), and were collected from March to April, 2020. Regions and age group analysis by resident population followed the standards of the general analysis, of the Brazilian Institute of Geography and Statistics (IBGE) platform (link: http://ibge.gov.br), according to the demographic census of 2010.

Table 1. Hospital admissions according to age and living region between 1998 and 2019.

Age range	Resident population	Hospitalization (%)	Brazil	Brazilian Region			
<1 year	2,879,916	463,906 (16.11)	North (a)	Northeast (b)	Southeast (c)	South (d)	Midwest (e)
	37,650 (1.2%)	158,359 (5.05%)	158,537 (5.05%)	75,042 (2.39%)	34,039 (1.08%)		
1 to 4	11,164,677	1,531,463 (13.72)	141,399 (4.51%)	643,412 (20.5%)	428,716 (13.66%)	222,507 (7.09%)	94,234 (3.0%)
5 to 9	15,233,147	671,495 (4.41)	58,352 (1.86%)	287,638 (9.17%)	179,321 (5.71%)	95,979 (3.06%)	49,737 (1.58%)
10 to 14	17,463,169	284,785 (1.63)	26,657 (0.85%)	140,949 (4.49%)	55,370 (1.76%)	39,448 (1.26%)	22,150 (0.71%)
15 to 19	17,282,045	186,415 (1.08)	21,556 (0.69%)	89,671 (2.67%)	26,799 (0.85%)	30,595 (0.97%)	17,631 (0.56%)
Total	64,022,954	3,138,064 (4.90)	285,614 (9.10)	1,320,029 (42.07)	848,743 (27.05)	463,571 (14.77)	217,791 (6.94)

P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |

Data shown as absolute values and frequency (%)

*North
#Northeast
&Southeast
+South
*Midwest regions.

Comparisons among age groups and living region were made by Two-way ANOVA and Tukey post hoc test. Ignored data is not shown in the table. Source: Brazilian Institute of Geography and Statistics (IBGE) and Ministry of Health, Brazilian Public Health System—Hospital Information System (SIH / SUS).

https://doi.org/10.1371/journal.pone.0248472.t001

Data analysis

Extracted data were stored in a Microsoft Excel 2013 program spreadsheet. Statistical analysis was performed by the GraphPad Prism version 5.0 software program. Data normality was assessed by the Kolmogorov-Smirnov test. Comparisons among the groups were performed by the Kruskal-Wallis test, Dunn’s Multiple Comparison post hoc test and the Mann-Whitney test. Intra and intergroup analysis was performed by Two-way ANOVA with a Tukey post hoc test. A p-value < 0.05 was considered significant.

Ethical aspects

All data from the study are public with free access and may be accessed at DATASUS (http://datasus.saude.gov.br/) and IBGE (http://ibge.gov.br). Ethical approval was not required in
accordance with the Brazilian National Health Council (Resolution No.510 from April 07th, 2016), which regulates the National Research Ethics Committee (CONEP). Patients’ confidentiality was preserved in accordance with CONEP.
Results

The total number of hospital admissions due to asthma was 3,138,064 between 1998 and 2019 in Brazil. When we observed the temporal trend we found a significant decrease in absolute values when we compared 1998 with 2019 (216,477 vs. 55,489, respectively, p = 0.001), constituting a 74.37% reduction over a 21-year period.

Hospital admissions according to age and living region

When comparing total hospital admissions according to age, it was observed that children between 1 and 4 years showed the highest number of hospitalizations due to asthma (1,531,463; 48.80%), followed by children between 5 and 9 years (671,495; 21.40%); and younger than 1 year (463,906; 14.78%) (Table 1). A decrease in hospital admissions according to age was also observed when we compared 1998 to 2019 varying from 85.56% (15,494 vs. 2,237; p < 0.0001) in the group aged between 15 and 19 years, and 61.73% (42,267 vs. 16,176; p = 0.009) in the group aged between 5 and 9 years.

When we assessed hospital admissions grouped according to living region it was found that the Northeast region showed the highest incidence for hospital admissions due to asthma (1,320,029; 42.07%), followed by the Southeast (848,743; 27.05%) and South regions (463,571; 14.77%). All significant differences among regions are shown in Table 1.

Hospital admissions according to sex

Although males showed higher total incidence of hospital admission when compared to females in different Brazilian regions (1,727,198; 55.04% vs. 1,410,858; 44.96%, respectively; p = 0.167), there was no significant difference between genders. When we compared 1998 to 2019 we found a significant decrease for both males and females (115,675 vs. 30,842, p = 0.001; 100,800 vs. 24,647, p = 0.0007; respectively). Fig 2 shows the significant differences between genders according to the time periods.

In the longitudinal analysis, we found that the Northeast region showed higher hospital admissions in all study periods for both genders, while the Midwest region showed the smallest numbers of hospital admissions for both genders. Fig 3A and 3B show the significant differences among the study periods for males and females, respectively.

Lethality according to living region and age group

The number of registered deaths caused by asthma between 1998 and 2019 was 1,977 (1,022 in males and 955 in females). Mean national lethality during the study period was 0.06. There was no significant difference in the lethality mean between 1998 and 2019 (p = 0.224).

When we assessed the lethality rates according to region between 1998 and 2019, we found that the Southeast region showed the highest mean lethality (0.073), followed by the Northeast (0.062) and the Midwest region (0.039). There was no significant difference when we compared the mean lethality according to living region among the study periods (Fig 4A).

We also considered lethality rates according to age group between 1998 and 2019. The higher mean lethality was found in the <1 year group (0.147), followed by the 15 to 19-year-old group (0.101). There was a significant difference between the <1-year-old group and the 1–4 year-old (p = 0.012), the 5–9 year-old (p = 0.002) and 10–14 year-old (p = 0.03) groups. Although there was no significant difference between the study periods, the <1 year-old group showed a higher lethality reduction, while those in the 15–19 year-old group showed an increase in the lethality rate over the years (4B).
Fig 2. Mean hospital admission incidence due to asthma according to gender between 1998 and 2019 in Brazil. Statistical difference calculated by Two-way ANOVA with Tukey post hoc test; * statistically significant difference between period: \(p = 0.01 \), \(** p = 0.001 \), \(*** p = 0.004 \). Closed symbol: males; open symbol: females. Source: Ministry of Health, Brazilian Public Health System—Hospital Information System (SIH/SUS).

https://doi.org/10.1371/journal.pone.0248472.g002

Fig 3. Mean incidence of asthma hospitalizations according to living region and gender between 1998 and 2019 in Brazil. Statistical difference calculated by Two-way ANOVA with Tukey post hoc test; * statistically significant difference between period: \(p = 0.044 \), \(** p = 0.010 \), \(*** p = 0.002 \). A) males and B) females. Source: Ministry of Health, Brazilian Public Health System—Hospital Information System (SIH/SUS).

https://doi.org/10.1371/journal.pone.0248472.g003
Although we did not find a significant difference in the comparison between 1998 and 2019, the Northeast region showed the highest lethality rate reduction (0.11 vs. 0.04; p = 0.890), while the Southeast region showed an increase (0.10 vs. 0.12; p = 0.999) (Fig 5). Lethality was determined by the ratio of the number of deaths to the number of hospital admissions.
admissions approved and authorized (which were computed as hospital admissions) between 1998 and 2019 and multiplied by 100.

Lethality according to gender

Similar absolute numbers were found in the study period when death numbers between genders were considered (51.69%; 1,022 vs. 48.31%; 955 in males and females, respectively). There was no significant difference in the mean lethality when we compared females and males (0.07 vs. 0.05, p = 0.226; respectively). Fig 6 shows lethality according to the study period in males and females.

Discussion

In this study we found 3,138,064 hospital admissions due to asthma in the studied population; however, there was a reduction of 74.37% in hospitalizations between 1998 and 2019. The highest number of hospital admissions occurred in children between 1 and 4 years old and those living in the Northeast region. General lethality was also higher in those individuals from the Northeast region. We also found greater numbers of hospital admissions in the male gender; however, lethality was higher in the female gender.

To our knowledge, this is the first study which has analyzed hospital admissions in different age groups of children and adolescents, as well as considering the living region and separated by gender. The authors of a study performed in four Brazilian state capitals observed no significant difference in hospital admissions due to asthma in three different age groups (12–17 years, 18–40 years and ≥ 41 years) in period of one year [9]. A multicenter prospective observational study conducted in the USA [10] found a higher prevalence of hospitalizations due to asthma in children (6–12 years; 9–22%) when compared to adolescents (13–17 years; 10–17%)
and adults (≥18 years; 5–15%); this finding is consistent with our results, although the age groups are not completely similar.

When we assessed hospital admissions by region we found that the Northeast region showed the highest number of hospitalizations due to asthma, even greater than the national average [4]. These findings may be explained by the socioeconomic characteristics of the Northeast region which is considered the least developed and poorest region of the country [11]. This is further due to the high treatment costs as severe asthma consumes almost 25% of the family income in those least favored patients, although WHO’s recommendation does not exceed 5% of family income [12]. Moreover, Mallot et al. suggested a relationship between the tropical weather and the high prevalence of asthma [13].

The present study generally observed a reduction around 74% in the number of hospitalizations due to asthma in Brazil in the last 21 years. Such a finding corroborates with the Ministry of Health [14] which showed 62% less hospitalizations due to asthma between 2000 and 2011, and by Cardoso et al. (2017) [15] who found a reduction of 36% in absolute numbers when analyzing the period from 2008 to 2013. We found a lethality of 0.06 in the study sample. Moreover, we also found a decrease of 81.5% in the comparison between 1998 and 2009. Pitchon et al. (2019) [15] also found a reduction in asthma mortality, but the reasons for the temporal trend were not investigated. We believe that the implementation of the National Asthma Control Plan [6] to finance drugs for asthma control for severe, moderate and mild asthmatic subjects implemented in 2000 may have influenced disease control and the hospital admission decrease during the study period. Such a decrease was also observed in the study performed by Sole et al. (2015) [16].

The authors believe that the implementation of public health strategies such as family health, humanization and community agents (which provides better monitoring of asthmatic patients) are partially responsible for the reduced hospitalization and lethality in these patients [17]. For example, the implementation of a program for adequate treatment and distribution of medicines in Salvador city located in the Northeastern region resulted in improved control, quality of life and family income [18]. However, better control of such strategies is still needed across all of the Brazilian territory.

A total of 37% of the total deaths occurred in those aged 1–4 years, which corroborates the study performed by Pitchon et al. (2019) in which the same pattern was observed with 2,255 cases (45%) in children of a similar age [15]. Other studies in Brazil have also reported an asthma mortality decrease in pediatric patients (≤19 years of age), as was subsequently reported for the city of Rio de Janeiro [19] and in general since the 1990s [20]. Other studies have also shown that the inpatient mortality rate was higher in the Southeastern and South regions.

In the present study we found that the Northeast region presents higher hospitalization numbers and mortality rate, followed by the Southeast and South regions. It is important to note that such differences may be explained by the study period, as Cardoso et al. [4] calculated mortality rate based on the 2010 findings, while our analysis was performed between 1998 and 2019. Several authors have speculated that a possible explanation may be related to the reduction of infant mortality in all Brazilian regions due to fecundity decrease, as well as public strategies, sanitation and parental education improvement, among other aspects mainly in the poorest Brazilian regions like the Northeast and North [15].

We generally observed a predominance of deaths in female children when compared to males in all age groups. Pitchon et al. (2019) [15] found a predominance of deaths in females only when analyzing the subjects between 10 and 19 years old. These differences are still not well understood in the literature [21], but few studies indicate that boys are more likely to
develop the disease in early childhood, while girls are more likely at older ages, mainly due to testosterone [22, 23].

The main limitation in our study is the descriptive time trend design in which we analyzed secondary data, which may include wrong or underreported diagnoses. However, the DATA-SUS system stores official information from the Brazilian government and may be considered as an asthma overview in the country. Due to the fact that the study population includes infants, another limitation is the non-differentiation of wheezing infants, mainly in those children under two years old [24]. However, we included all data from asthmatic children from the Brazilian government’s official platform.

Conclusion

Despite the high number of reported cases of hospitalizations and deaths due to asthma throughout Brazil, it was possible to observe that the country presented an important reduction in such impairments. Children between 1 and 4 years old living in the Northeast region showed the highest numbers of hospital admissions and deaths in comparison to other Brazilian regions. Thus, public health policies must consider these groups in the development of new asthma prevention strategies.

Author Contributions

Conceptualization: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Illia Nadinne Dantas Florentino Lima, Lucien Peroni Gualdi.

Data curation: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Lucien Peroni Gualdi.

Formal analysis: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Lucien Peroni Gualdi.

Funding acquisition: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio.

Investigation: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio.

Methodology: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Lucien Peroni Gualdi.

Project administration: Lucien Peroni Gualdi.

Supervision: Lucien Peroni Gualdi.

Validation: Lucien Peroni Gualdi.

Visualization: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Illia Nadinne Dantas Florentino Lima, Lucien Peroni Gualdi.

Writing – original draft: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Illia Nadinne Dantas Florentino Lima.

Writing – review & editing: Luiza Gabriela de Araújo Fonseca, Rêncio Bento Florêncio, Illia Nadinne Dantas Florentino Lima, Lucien Peroni Gualdi.

References

1. Dharmage SC, Perret JL, Custovic A. Epidemiology of Asthma in Children and Adults. Frontiers in Pediatrics, June 2019, Volume 7, Article 246. https://doi.org/10.3389/fped.2019.00246 PMID: 31275909

2. Network GA. The Global Asthma Report, Auckland, New Zealand. (2018).
3. To T, Stanoevich S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. (2012) 12:5. https://doi.org/10.1186/1471-2458-12-5 PMID: 22216887

4. Cardoso TA, Roncada C, da Silva ER, Pinto LA, Jones MH, Stein RT, Pitrez PM. Impacto da asma no Brasil: análise longitudinal de dados extraídos de um banco de dados governamental brasileiro. J Bras Pneumol. 2017; 43(3):163–168. https://doi.org/10.1590/S1806-37562016000000352 PMID: 28746526

5. Fuhlbrigg AL, Jackson B, Wright R. Gender and asthma. Immunol Allergy Clin North Am. (2002) 22:10.

6. Brasil. Ministério da Saúde. Portal da Saúde [homepage on the Internet]. Brasília: Ministério da Saúde [cited 2016 Jul 20]. Programa Farmácia Popular do Brasil. Available from: http://portalsaude.saude.gov.br/index.php/o-ministerio/principal/secretarias/sctie/farmaciapopula

7. Brasil. Departamento de Informática do Sistema Único de Saúde-DATASUS [homepage on the Internet]. Brasília: DATASUS [cited 2016 Jun 07]. Available from: http://datasus.saude.gov.br/informacoes-de-saude/tabnet.

8. Rocha TAH, da Silva NC, Amaral PVM, Barbosa ACQ, Vissoci JRN, Thomaz EBPF, et al. Geolocation of hospitalizations registered on the Brazilian National Health System’s Hospital Information System: a solution based on the R Statistical Software. Epidemiol. Serv. Saude, Brasília, 27(4):e2017444, 2018. https://doi.org/10.5123/S1679-49742018000400016 PMID: 30570033

9. Alith MB, Gazzotti MR, Monteagle F, Nascimento OA, Fish J, Jardim JR. Negative impact of asthma on patients in different age groups. J Bras Pneumol. 2014; 41(1):16–22.

10. Dolan CM, Fraher KE, Bleeker ER, Borish L, Chippis B, Hayden ML, et al. Design and baseline characteristics of The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol. 2004 Jan; 92(1):32–9. https://doi.org/10.1016/S1081-1206(10)61707-3 PMID: 14756462

11. Franco J. M., Gurgel R., Sole D., Lúcia Franc¸a V., & Brabin B. Socio-environmental conditions and geographical variability of asthma prevalence in Northeast Brazil. Allergologia et Immunopathologia, 2009. 37(3), 116–121, https://doi.org/10.1016/S0301-0546(09)71722-7 PMID: 19769843

12. Sociedade Brasileira de Pneumologia e Tisiologia. IV Diretrizes Brasileiras para o Manejo da Asma. J Bras Pneumol. 2006; 32 (Suppl 7):S447–S474.

13. Mallol J, Solé D, Asher I, Clayton T, Steinr, Soto-Oquiro M. Prevalence of Asthma symptoms in Latin-America: The International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Pulmonol 2000; 30:439–44. https://doi.org/10.1002/1099-0496(200012)30:6<439::aid-ppul1>3.0.co;2-e PMID: 11109054

14. Ministério da Saúde do Brasil. Departamento de Informática do SUS [homepage on the Internet]. Brasília: DATASUS [cited 22 Jan 2015]. Morbidade hospitalar do SUS—por local de internação—Brasil. Available on http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sh/cnv/miuf.def.

15. Pitchon RR, Alvim CG, Andrade CR, Lasmar MLBF, Cruz AA, Reis APD. Asthma mortality in children and adolescents of Brazil over a 20-year period. J Pediatr (Rio J). 2019 Apr 19. pii: S0021-7557(18)31028-3. https://doi.org/10.1016/j.jped.2019.02.006 [Epub ahead of print]. PMID: 31096918

16. Sole D, Rosario Filho NA, Sarinho ES, Camelo-Nunes IC, Barreto BA, Medeiros ML, et al. Prevalence of asthma and allergic diseases in adolescents: nine-year follow-up study (2003–2012). J Pediatr (Rio J). 2015; 91:30–5.

17. Carmo TA, Andrade SM, Cerci Neto A. Avaliação de um programa de controle da asma em unidades de saúde da família. Cad Saúde Pública. 2011; 27(1):162–72. https://doi.org/10.1590/s0102-311x2011000100017 PMID: 21340115

18. Franco R, Nascimento HF, Cruz AA, Santos AC, Souza-Machado C, Ponte EV, et al. The economic impact of severe asthma to low-income families. Allergy. 2009; 64(3):478–83. https://doi.org/10.1111/j.1398-9995.2009.01981.x PMID: 19210355

19. Silva EM, Silva GA. Asthma-related mortality in the city of Rio de Janeiro, Brazil, 2000–2009: a multi-causal analysis Article in Portuguese. Cad Saúde Pública. 2013; 29(4):667–80. https://doi.org/10.1590/s0102-311x2013000800005 PMID: 23568297

20. Lotufo PA, Bensenor IM. Temporal trends of asthma mortality rates in Brazil from 1980 to 2010. J Asthma. 2012; 49(8):779–84. https://doi.org/10.3109/02770933.2012.693237 PMID: 22953750

21. Tse SM, Coulil BA, Sordillo JE, Datta S, Gold DR. Gender- and agespecific risk factors for wheeze from birth through adolescence. Pediatr Pulmonol. 2015; 50:955–62. https://doi.org/10.1002/ppul.23113 PMID: 25348842

22. Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep. 2017 Mar; 17(3):19. https://doi.org/10.1007/s11882-017-0686-1 PMID: 28332107
23. Arathimos R, Granell R, Haycock P, Richmond RC, Yarmolinsky J, Relton CL, et al. Genetic and observational evidence supports a causal role of sex hormones on the development of asthma. Thorax. 2019 Jul; 74(7):633–642. https://doi.org/10.1136/thoraxjnl-2018-212207 PMID: 30936389

24. Krawiec ME, Westcott JY, Chu HW, Balzar S, Trudeau JB, Schwartz LB, et al. Persistent wheezing in very Young children is associated with lower respiratory inflammation. Am J Respir Crit Care Med. 2001; 163(6):1338–43. https://doi.org/10.1164/ajrccm.163.6.2005116 PMID: 11371398