Proposta de um Escore Inflamatório de Citocinas e Adipocinas Plasmáticas Associado à Hipertensão Resistente, mas Dependente dos Parâmetros de Obesidade

A Proposed Inflammatory Score of Circulating Cytokines/Adipokines Associated with Resistant Hypertension, but Dependent on Obesity Parameters

Ana Paula de Faria,1 Alessandra Mileni Versuti Ritter,1 Carolina Souza Gasparetti,1 Nathália Batista Corrêa,1 Veridiana Brunelli,1 Aurélio Almeida,1 Nayara Fraccari Pires,1 Rodrigo Modolo,1 Heitor Moreno Junior2

Departamento de Farmacologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas,1 Campinas, SP – Brasil
Pontifícia Universidade Católica de Campinas (PUC-Campinas),2 Campinas, SP – Brasil

Resumo

Fundamento: Evidências indicam que a inflamação sistêmica subclínica está presente na hipertensão arterial resistente (HAR).

Objetivo: Desenvolver uma medida que integra citocinas envolvidas na fisiopatologia da HAR.

 Métodos: Indivíduos com HAR (n = 112) e indivíduos com hipertensão leve a moderada (HT) (n = 112) foram estudados em delineamento transversal. Valores de citocinas/adipocinas plasmáticas [TNF-alfa, interleucinas (IL)-6, -8, -10, leptina e adiponectina] foram divididos em tercis, e lhes atribuído um escore variando de 1 (tercil mais baixo) a 3 (tercil mais alto). O escore inflamatório (EI) de cada participante foi calculado como a soma dos escores de cada citocina pró-inflamatória da qual subtraía-se o escore de cada citocina anti-inflamatória (adiponectina e IL-10). O nível de significância aceito foi alfa = 0,05.

Resultados: O EI foi mais alto nos indivíduos com HAR em comparação a indivíduos com HT [4 (2-6) vs. 3 (2-5); p = 0,02, respectivamente]. O EI correlacionou-se positivamente com parâmetros de gordura corporal, tais como índice de massa corporal (r = 0,40; p < 0,001), circunferência da cintura (r = 0,30; p < 0,001) e massa gorda avaliada por bioimpedância (r = 0,31; p < 0,001) em todos os indivíduos hipertensos. Análises de regressão logística mostraram que o EI foi um preditor independente de HAR (OR = 1,20; p = 0,02), independentemente de idade, sexo e raça; porém, o modelo perdeu significância estatística após ajuste para os parâmetros de gordura corporal.

Conclusão: Um estado de inflamação subclínica definida pelo EI incluindo TNF-alfa, IL-6, IL-8, IL-10, leptina e adiponectina está associado com indivíduos obesos com HAR. Além disso, o escore correlaciona-se com parâmetros de obesidade, independentemente do grau de hipertensão. O EI pode ser usado na avaliação de condições que envolvem inflamação subclínica, tal como HAR relacionada à obesidade. O estudo também destaca a forte relação entre obesidade e inflamação. (Arq Bras Cardiol. 2019; 112(4):383-389)

Palavras-chave: Hipertensão/fisiopatologia; Obesidade; Inflamação; Citocinas; Probabilidade; Fatores de Risco.

Abstract

Background: There is evidence that subclinical systemic inflammation is present in resistant hypertension (RHTN).

Objective: The aim of the study was to develop an integrated measure of circulating cytokines/adipokines involved in the pathophysiology of RHTN.

Methods: RHTN (n = 112) and mild to moderate hypertensive (HTN) subjects (n = 112) were studied in a cross-sectional design. Plasma cytokines/adipokines (TNF-alfa, interleukins [IL]-6, -8, -10, leptin and adiponectin) values were divided into tertiles, to which a score ranging from 1 (lowest tertile) to 3 (highest tertile) was assigned. The inflammatory score (IS) of each subject was calculated as the sum of each pro-inflammatory cytokine scores from which anti-inflammatory cytokines (adiponectin and IL-10) scores were subtracted. The level of significance accepted was alpha = 0,05.

Results: IS was higher in RHTN subjects compared with HTN subjects [4 (2-6) vs. 3 (2-5); p = 0,02, respectively]. IS positively correlated with body fat parameters, such as body mass index (r = 0,40; p < 0,001), waist circumference (r = 0,30; p < 0,001) and fat mass assessed by bioelectrical impedance analysis (r = 0,31; p < 0,001) in all hypertensive subjects. Logistic regression analyses revealed that IS was an independent predictor of RHTN (OR = 1,20; p = 0,02), independent of age, gender and race, although it did not remain significant after adjustment for body fat parameters.

Conclusion: A state of subclinical inflammation defined by an IS including TNF-alfa, IL-6, IL-8, IL-10, leptin and adiponectin is associated with obese RHTN. In addition, this score correlates with obesity parameters, independently of hypertensive status. The IS may be used for the evaluation of conditions involving low-grade inflammation, such as obesity-related RHTN. Indeed, it also highlights the strong relationship between obesity and inflammatory process. (Arq Bras Cardiol. 2019; 112(4):383-389)

Keywords: Hypertension/physiopathology; Obesity; Inflammation; Cytokines; Adipokines; Probability; Risk Factors

Correspondência: Ana Paula de Faria •
Rua Tessália Vieira de Camargo, 126. FCM 10. Universidade Estadual de Campinas (UNICAMP). CEP 13093-970, Barão Geraldo, Campinas, SP – Brasil
E-mail: ana_paula_dfaria@hotmail.com, ana.cabralfaria@gmail.com
Artigo recebido em 28/04/2018, revisado em 22/08/2018, aceito em 05/09/2018

DOI: 10.5935/abc.20190032
Introdução

A inflamação é um importante fator na fisiopatologia da hipertensão, da obesidade e da síndrome metabólica. O status de sobrepeso ou obesidade implica uma maior prevalência de hipertensão e consequências adversas, incluindo doenças metabólicas e cardiorrenais. A gordura visceral, quando em excesso, é fonte de citocinas que geram uma cascata de inflamação e estresse oxidativo, a qual contribui para resistência à insulina, disfunção endotelial, enrijecimiento vascular, e retenção de sódio nos rins. A presença combinada de obesidade e de resistência à insulina também contribui para a hiperativación do sistema nervoso simpático (SNS) e do sistema renina-angiotensina-aldosterona. Todos esses mecanismos podem proporcionar resistência ao tratamento anti-hipertensivo.

Nosso grupo de pesquisa tem estudado citocinas inflamatórias – a adiponectina e interleucina-10 (anti-inflamatórias), e a leptina, o fator de necrose tumoral alfa (TNF-α) e as interleucinas 6 (IL-6) (pró-inflamatórias) na hipertensão arterial resistente (HAR), associando-as à ausência de controle da pressão arterial (PA) e a danos vasculares e renais. A inflamação crónica subclínica, estimada por níveis elevados de proteína C-reativa, foi capaz de predizer desfechos fatais e não fatais, bem como remodelamento cardíaco nessa população de alto risco.

A adiponectina, por seu papel anti-inflamatório, estimula diretamente a produção de óxido nítrico (NO) nas células endoteliais via fosforilação da NO sintase endotelial. A adiponectina diminui a produção de TNF-α pelos macrófagos pela inibição do fator de transcrição nuclear kappa B (NF-kB). Por outro lado, a IL-6 inibe a expressão e a secreção de adiponectina in vitro em adipócitos 3T3-L1. Ainda, o TNF-α aumenta a secreção de leptina, a qual estimula o SNS. Uma vez que as citocinas e as adipocinas possuem papeis inter-relacionados, nosso objetivo com o presente estudo foi (1) desenvolver uma medida integrada de várias citocinas/adipocinas circulantes em indivíduos com HAR e hipertensão leve à moderada (HT), e (2) avaliar o potencial impacto desse escore inflamatório (EI) sobre a resistência ao tratamento anti-hipertensivo.

População e métodos

Uma amostra de conveniência de 112 indivíduos com diagnóstico de HAR atendidos no Ambulatório Especializado em HAR da Universidade Estadual de Campinas (UNICAMP, Campinas, Brasil), e 112 pacientes com HT atendidos na Clínica de Hipertensão de Valinhos (Valinhos, Brasil) foram recrutados consecutivamente neste estudo transversal. A HAR foi definida segundo a American Heart Association como (1) indivíduos cujos níveis de PA permanecessem acima da meta (≥140/90 mmHg) apesar de uso concomitante de três ou mais drogas anti-hipertensivas de classes distintas, ou (2) pacientes com níveis controlados de PA usando quatro ou mais drogas anti-hipertensivas. O ideal era que ao menos um dos medicamentos fosse um diurético, e todos os demais deveriam ser prescritos em doses otimizadas. Pacientes com PA controlada utilizando três ou menos drogas anti-hipertensivas, ou com PA não controlada, em uso de dois ou menos dessas medicações, foram classificados como apresentando HT (hipertensão estágios 1 e 2).

Realizou-se um período de seis meses de acompanhamento para o rastreamento e exclusão de causas secundárias da hipertensão, a fim de garantir um diagnóstico preciso de HT e HAR. Os critérios de exclusão foram estenose da artéria renal, coarcação da aorta, feocromocitoma, hiperaldosteronismo primário (razão aldosterona-renina > 20 ng.dL-1 por ng.mL-1.h-1), síndrome de Cushing, síndrome da apneia/hipopneia obstrutiva do sono (pacientes com diagnóstico prévio pela polissonografia, ou classificados como alto risco utilizando-se o questionário de Berlim). O período também incluiu contagem de comprimidos para excluir a falta de controle pressórico devido à baixa adesão ao tratamento medicamentoso, e monitorização ambulatorial da PA (MAPA) a fim de excluir hipertensão do jaleco branco. Excluímos pacientes com doença cardíaca isquêmica sintomática, disfunção renal, doença renal crônica (clearance de creatinina < 30 mL/min/1,73m2) e doença hepática (história clínica, níveis de plaquetas e de transaminases). O critério de inclusão foi idade superior a 18 anos.

Medidas de pressão arterial

A pressão arterial sistólica (PAS) e a pressão arterial diastólica (PAD) de consultório foram medidas por profissional da saúde treinado segundo as diretrizes da Sociedade Europeia de Hipertensão para o manejo da hipertensão arterial. Utilizamos um esfigmomanômetro digital validado (HEM-907XL, OMRON Healthcare Inc., Bannockburn, IL, EUA). A medida DA PA ambulatorial foi realizada usando-se um monitor oscilométrico automático (Spacelabs90207, Spacelabs Inc, Redmon, WA, EUA). Os pacientes foram orientados a manter suas atividades diárias normais e fazer um registro das atividades realizadas em 24 horas em um diário pessoal.

Composição corporal

A composição corporal foi determinada pelo aparelhe Bioimpedance Analyser 450 (Biodynamics Corporation, Seattle, WA, EUA) para avaliar a massa magra e a massa gorda (MG). Em resumo, o método baseia-se na impedância bioelétrica tetrapolar (eletrodos posicionados nos pés e nas mãos) para estimar a distribuição de massa e os compartimentos de água corporais. As medidas foram realizadas após um período de jejum de 8 horas, e os pacientes foram orientados a evitar atividade física e fumar antes do exame.

Testes bioquímicos

As amostras de sangue foram coletadas pela manhã após jejum de 8 horas dos pacientes na posição sentada. Os níveis de aldosterona e de renina foram medidos por radioimunoensaio (Immunotech SAS, Marselha, França), e as citocinas e adipocinas (TNF-alfa, IL-6, IL-8, IL-10, leptina e adiponectina) medidas por ensaio imunoenzimático (ELISA) (R&D Systems, Inc., Minneapolis, EUA), seguindo as instruções do fabricante. O clearance de creatinina foi calculado a partir da concentração de creatinina na urina 24 horas, e concentração plasmática, como a taxa de remoção por minuto dividida pela concentração plasmática de creatinina.

Análise estatística

As variáveis contínuas foram expressas em média e desvio padrão ou mediana (1º e 3º quartis) de acordo com a distribuição...
dos dados avaliada pelo teste de Kolmogorov-Smirnov. O teste t de Student não pareado ou o teste de Mann-Whitney foi usado para comparação das variáveis contínuas entre o grupo de indivíduos com HAR e o grupo de indivíduos com HT. As variáveis categóricas foram apresentadas em frequências e porcentagens, e comparadas pelo teste do qui-quadrado ou o teste exato de Fisher. O teste de Pearson ou o teste de Spearman foi usado para verificar correlação entre os dados contínuos. Análises de regressão logística múltipla foram realizadas para avaliar a associação do EI com resistência ao tratamento anti-hipertensivo, ajustando-se aos potenciais fatores de confusão.

Para o cálculo do EI, os valores plasmáticos das citocinas/adipocinas (TNF-alfa, IL-6, IL-8, IL-10, leptina e adiponectina) foram divididos em tercios, e lhes foram atribuídos um escore de 1 (tercil mais baixo) a 3 (tercil mais alto). O EI foi considerado como a soma do escore de cada citocina pró-inflamatória (TNF-alfa, IL-6, IL-8, e leptina), da qual foram subtraídos os escores da adiponectina e de IL-10 (ambas citocinas anti-inflamatórias). Calculou-se o EI de cada indivíduo.

As análises foram realizadas usando-se o programa SigmaPlot (versão 12, Systat Software, Inc., San Jose, CA, EUA; e www.systatsoftware.com) e GraphPad Prism (versão 7.00 para Windows, GraphPad Software, La Jolla, CA, EUA, www.graphpad.com). O nível de significância adotado foi alfa 0,05.

Resultados

As características gerais de ambos os grupos (HAR e HT) estão descritas na Tabela 1. Os parâmetros da gordura corporal – índice de massa corporal (IMC), circunferência da cintura (CC), e MG encontravam-se elevados nos indivíduos HAR, bem como o perfil lipídico, níveis de hemoglobina glicada e aldosterona, em comparação aos indivíduos HT. Em comparação aos indivíduos HT, o grupo HAR utilizaram um maior número de drogas antiplaquetárias, e quase todas as classes de agentes anti-hipertensivos, com exceção de bloqueadores do receptor da angiotensina II (BRAs). Por outro lado, um maior número de indivíduos HT utilizavam estatinas (Tabela 2).

O EI foi mais alto no grupo HAR [4 (2-6)] em comparação ao grupo HT [3 (2-5); p = 0,02 (Figura 1). Curiosamente, o EI correlacionou-se positivamente com o IMC (r = 0,40; p < 0,001), a CC (r = 0,30; p < 0,001) e com a MG (r = 0,31; p < 0,001) em todos os indivíduos hipertensos.

Finalmente, os modelos de regressão logística independentes revelaram que o EI associou-se com a presença de HAR (Odds ratio (OR) = 1,20; p = 0,02), independentemente de idade, sexo, e raça, apesar de essa significância deixar de existir após ajustes quanto aos parâmetros de gordura corporal analisados no estudo (Tabela 3).

Discussão

Nosso estudo revelou que a medida integrada dos escores de citocinas e adipocinas pró-inflamatórias e anti-inflamatórias associou-se com a ocorrência de HAR. O EI surge como um potente fator relacionado com os parâmetros de gordura corporal, sugerindo a importância da inflamação subclínica na obesidade, independentemente do grau de hipertensão.

Achados recentes de nosso grupo sugeriram que a inflamação é um dos fatores fisiopatológicos da HAR e comorbidades relacionadas, tais como diabetes, obesidade e síndrome metabólica. Níveis alterados de citocinas e adipocinas, tais como IL-10, IL-1 beta, adiponectina e leptina foram relatados em indivíduos com HAR em comparação a controles. A hiperleptinemia e a hipoadiponectinemia estavam associadas com a falta de controle da PA, e com danos em órgãos alvo – renitência arterial e microalbuminúria – nessa população de alto risco. Indivíduos obesos diabéticos com HAR apresentaram níveis mais baixos de adiponectina combinados com maior disfunção autonômica (caracterizados por hiperatividade do sistema simpático e hipoatividade do sistema parassimpático) em comparação a indivíduos não diabéticos.

Recentemente, encontramos uma enorme prevalência (73%) de síndrome metabólica nesses pacientes com HAR, o que pode explicar o alto EI. Interessante notar que o grupo com HT também apresentou uma prevalência importante da síndrome (60%), o que pode justificar a piora de seu escore em nosso estudo. Além disso, nosso grupo HT era mais velho que o grupo com HAR e, assim, um EI aumentado poderia ser atribuído ao fator idade.

Estudos experimentais apresentam resultados similares do papel da inflamação sobre a hipertensão. Pesquisadores investigaram mudanças na pressão sistólica de ratos espontaneamente hipertensos (SHR) tratados com infliximabe – um agente neutralizador de TNF-alfa. Esse estudo revelou benefícios cardiovasculares da inibição dessa citocina em SHR com a redução tanto da PA como do remodelamento cardíaco. Os autores sugeriram um mecanismo dependente de vasodilação, no qual o efeito do infliximabe é capaz de induzir a síntese de NO. Em um estudo recente, os autores escreveram um novo mecanismo da hipertensão envolvendo sistema imune, processo inflamatório e estresse oxidativo. Kirabo et al., demonstraram que um modelo com camundongos que receberam angiotensina II endovenosa aumentou os níveis de espécies reativas a oxigênio em células dendríticas secretoras de citocinas pró-inflamatórias (IL-6, IL-1 beta, e IL-23), as quais promoveram a proliferação de células T e um fenótipo pró-inflamatório. Em última análise, esses mecanismos levaram à hipertensão, sugerindo novos alvos potenciais para tratar a hipertensão.

Nosso estudo mostrou que o EI – previamente investigado em diabetes tipo 2 – foi capaz de abordar uma grande variedade de citocinas e adipocinas de mecanismos alinhados e envolvidas na fisiopatologia da HAR. Assim, essa abordagem poderia melhorar a estimativa da relação entre a inflamação subclínica e populações em alto risco, tal como a população de indivíduos obesos com HAR estudados neste estudo.

Já está bem estabelecido que a obesidade, caracterizada por uma atividade crônica do sistema imune e de vias inflamatórias, é um fator crítico no desenvolvimento de resistência à insulina e do diabetes tipo 2, ambos frequentemente presentes na HAR. De fato, muitos estudos corroboraram essa relação. Esposito et al. encontraram que a perda de peso e mudanças no estilo de vida reduziram os níveis de marcadores inflamatórios vasculares, tais como IL-6, IL-8 e proteína C-reactiva, ao passo que os níveis de adiponectina aumentaram significativamente em mulheres obesas. Efeitos similares de redução dos níveis de TNF-alfa foram encontrados...
Tabela 1 – Características clínicas e bioquímicas dos indivíduos com hipertensão leve a moderada (HT) e indivíduos com hipertensão arterial resistente (HAR)

	HT (n = 112)	HAR (n = 112)	Valor de p
Idade (anos)	66 ± 10	58 ± 10	< 0,001
Mulheres, n (%)	63 (56)	78 (70)	0,27
Negros, n (%)	13 (12)	55 (49)	< 0,001
IMC (Kg/m²)	27(25-31)	31(27-35)	< 0,001
CC (cm)	94 ± 12	101 ± 14	0,003
MM (Kg)	53 (46-62)	55 (49-64)	0,11
MG (Kg)	20 (15-27)	26 (20-35)	< 0,001
PAS consultório (mmHg)	139 (131-149)	149 (134-163)	< 0,001
PAD consultório (mmHg)	82 (77-85)	85 (78-92)	0,03
PAS MAPA (mmHg)	126 (118-134)	130 (118-144)	0,03
PAD MAPA (mmHg)	75 (70-81)	75 (70-86)	0,22
FC (bpm)	67 (61-75)	67 (58-75)	0,35
Glicose (mg/dL)	97 (90-107)	101 (90-126)	0,09
HbA1C (%)	6,0 (5,7-6,4)	6,3 (5,9-7,3)	0,03
Colesterol (mg/dL)	165 (136-187)	181 (150-209)	0,001
LDL-c (mg/dL)	88 (64-109)	97 (77-125)	0,004
HDL-c (mg/dL)	48 (41-56)	46 (38-54)	0,31
Triglicerídeos (mg/dL)	108 (80-150)	126 (93-185)	0,02
Urea (mg/dL)	34 (27-43)	35 (27-44)	0,52
Creatinina (mg/dL)	0,95 (0,79-1,10)	0,94 (0,80-1,18)	0,19
Renina (pg/mL)	29 (14-73)	25 (12-72)	0,39
Aldosterona (pg/mL)	68 (41-111)	92 (56-176)	0,006
Clear Creat (mL/min/1.73m²)	75 (58-83)	81 (61-97)	0,89

Valores expressos em média ± desvio padrão ou mediana (1º, 3º quartis), de acordo com a distribuição dos dados. IMC: índice de massa corporal; CC: circunferência da cintura; MM: massa magra; MG: massa gorda; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; MAPA: monitorização ambulatorial da pressão arterial; FC: frequência cardíaca; HbA1C: hemoglobina glicada; LDL: lipoproteína de baixa densidade; HDL: lipoproteína de alta densidade; Clear Creat: clearance de creatinina.

Tabela 2 – Medicamentos usados pelos indivíduos com hipertensão leve a moderada (HT) e indivíduos com hipertensão arterial resistente (HAR)

	HT (n = 112)	HAR (n = 112)	Valor de p
Drogas anti-hipertensivas			
Número de classes	2 (2-3)	4 (4-5)	< 0,001
Diuréticos, n (%)	70 (63)	108 (96)	0,02
IECAs, n (%)	20 (18)	43 (38)	0,02
BRAs, n (%)	81 (72)	61 (54)	0,01
BCCs, n (%)	53 (47)	94 (84)	< 0,001
Beta-bloqueadores, n (%)	14 (13)	79 (71)	< 0,001
Agonistas alfa-2 centrais, n (%)	01 (01)	31 (28)	< 0,001
Estatinas, n (%)	84 (75)	60 (54)	0,001
Hipoglicemiantes, n (%)	42 (38)	57 (51)	0,06
Drogas antiplaquetárias, n (%)	20 (18)	65 (58)	< 0,001

IECAs: inibidores de enzima conversora de angiotensina; BRAs: bloqueadores de receptores de angiotensina; BCCs: bloqueadores de canais de cálcio.
em resposta a essas intervenções. 27 Existem evidências de que o sobrepeso e a obesidade possam causar disfunção microvascular caracterizada por (1) sensibilidade à insulina diminuída; (2) ativação do SNS; e (3) resistência vascular periférica aumentada. Ainda, estudos sugerem que alterações na secreção de adipocinas que levam ao aumento dos níveis de ácidos graxos livres e mediadores inflamatórios também estão envolvidas. 28-30 Um dado interessante é que, em indivíduos obesos, a disfunção microvascular foi normalizada um ano após cirurgia bariátrica (bypass gástrico), o que esteve associado à redução da PA. 31 Níveis elevados de ácidos graxos livres proporcionam disfunção endotelial pela redução da produção de NO, e por aumento da vasoconstrição induzida por endotelina-1 e liberação de citocinas pró-inflamatórias, 32 o qual é um fator precoce relacionado à hipertensão associado a eventos cardiovasculares futuros.33,34

Nossos achados mostraram que a associação do EI com a HAR foi abolida quando a influência dos parâmetros de gordura corporal foi considerada. Além disso, o EI deixou de ser significativo após a exclusão de indivíduos obesos em ambos os grupos (dados não apresentados). Mostramos que o escore aqui proposto é altamente dependente da obesidade no grupo HAR, resultado de certa forma já esperado, dada à elevada prevalência de sobrepeso/obesidade nessa população (88% em nosso estudo). Ainda, o EI pode ser um reflexo do processo inflamatório subjacente à HAR, de maneira dependente da obesidade, com o potencial de ser usado como uma ferramenta prognóstica, permitindo a estratificação de risco cardiovascular nesses indivíduos obesos. Por outro lado, nós reconhecemos que o delineamento deste estudo não é suficiente para inferirmos uma relação temporal ou de causa e efeito. Também sugerimos que, uma vez que a obesidade esteja estabelecida, com manifestação da hipertensão, a PA elevada também contribua para a ativação do processo inflamatório. Assim, é criado um ciclo vicioso com ambas as condições – hipertensão e obesidade – que se reforçam por meio de vias inflamatórias.

Figura 1 – Escore inflamatório calculado entre indivíduos com hipertensão leve a moderada (HT) e hipertensão arterial resistente (HAR) [3 (2-5) vs. 4 (2-6), p = 0,02, respectivamente]. O EI de cada participante foi calculado como a soma do escore de cada citocina pró-inflamatória – TNF-alfa, interleucinas (IL) -6, -8, -10 – da qual subtraiu-se o escore de cada citocina anti-inflamatória (adiponectina e IL-10). *p < 0,05 vs. HT.

Tabela 3 – Modelos de regressão logística independentes para avaliar a associação do escore inflamatório com a presença de hipertensão resistente

Modelo	OR (IC95%)	Valor de p
Modelo 1	EI 1,20 (1,02-1,38)	0,02
Modelo 2	EI 1,10 (0,92-1,28)	0,35
	IMC (Kg/m²) 1,12 (1,05-1,20)	< 0,01
Modelo 3	EI 0,97 (0,80-1,18)	0,73
	CC (cm) 1,04 (1,01-1,07)	0,01
Modelo 4	EI 1,00 (0,84-1,19)	0,96
	MG (Kg) 1,08 (1,04-1,13)	< 0,01

Todas as regressões foram ajustadas quanto a idade, sexo e raça. EI: escore inflamatório; IMC: índice de massa corporal; CC: circunferência da cintura; MG: massa gorda.
mineralocorticoides são capazes de reverter o aumento de citocinas pró-inflamatórias. De fato, a prática de exercícios e a mudança no estilo de vida reduziram os níveis de IL-8 em indivíduos com síndrome metabólica, o que aumentou significativamente os níveis de adiponectina em pacientes obesos. Contudo, apesar de essas fontes potenciais de variabilidade possam estar presentes, provavelmente não afetaram nossos resultados, uma vez que os indivíduos com HAR apresentaram EI elevado apesar do uso de um maior número de drogas anti-hipertensivas. O tratamento individualizado também justifica a falta de uma terapia padronizada, e devido a aspectos éticos, nossos pacientes não puderam ser avaliados retirando-se seus medicamentos. Por fim, do ponto de vista terapêutico, drogas anti-inflamatórias ou moléculas anti-citocinas direcionadas ao sistema imune, tais como a minociclina, podem ser atrativas e de grande interesse na prática clínica para o tratamento de hipertensão e prevenção de complicações cardiovasculares, de acordo com o apresentado em estudos anteriores.

Algumas limitações devem ser mencionadas. Uma vez que a população estudada consiste em uma amostra de conveniência, sem cálculo amostral, nossos achados podem não refletir as características da população geral. Ainda, podem existir vieses ao se comparar populações de diferentes centros. Vale mencionar que o processo inflamatório é muito complexo e medir seus mediadores é ainda mais desafiador, uma vez que (i) apresenta alto custo, (ii) não está disponível na prática clínica, e (iii) os valores de corte podem ter perfis heterogêneos, o que dificulta ainda mais a reprodutibilidade. Ainda assim, testar a especificidade e a sensibilidade em diferentes populações é mandatório para garantir um escore confiável. Por fim, o valor do escore proposto pode sofrer alterações caso haja mudança no número de citocinas pró-inflamatórias e/ou citocinas anti-inflamatórias.

Conclusão

Nossos achados sugerem que o EI, que abrange muitas citocinas e adipocinas circulantes, pode fornecer informações clínicas importantes para complementar a estratificação de risco cardiovascular em indivíduos obesos com HAR. Ainda, o escore proposto parece ser altamente dependente da hipertensão relacionada à obesidade. É necessário validar esse escore em populações maiores para permitir seu uso de maneira segura na prática clínica.

Contribuição dos autores

Concepção e desenho da pesquisa e redação do manuscrito: de Faria AP; obtenção de dados: de Faria AP, Ritter AMV; análise e interpretação dos dados e revisão crítica do manuscrito quanto ao conteúdo intelectual importante: de Faria AP, Ritter AMV, Gasparetto CS, Corrêa NB, Brunelli V, Almeida A, Pires NF, Modolo R, Moreno Junior H; análise estatística: de Faria AP, Modolo R; obtenção de financiamento: de Faria AP, Ritter AMV, Moreno Junior H.

Potencial conflito de interesses

Os autores declaram não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi financiado por Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Aprovação ética e consentimento informado

Este estudo foi aprovado pelo Comitê de Ética da Faculdade de Ciências Médicas da Universidade Estadual de Campinas sob o número de protocolo 188.161/2013; CAAE: 11189712.8.0000.5404. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.

Referências

1. Lyon CJ, Law RE, Hsueh WA. Minireview: adiposity, inflammation, and atherosclerosis. Endocrinology. 2003;144(6):2195-200.
2. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62(11):1543-52.
3. Briones AM, Aras-López R, Alonso MJ, Salaices M. Small artery remodeling in obesity and insulin resistance. Curr Vasc Pharmacol. 2013;62(11):1543-52.
4. Briones AM, Aras-López R, Alonso MJ, Salaices M. Small artery remodeling in obesity and insulin resistance. Curr Vasc Pharmacol. 2013;62(11):1543-52.
5. Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis. 2014 Feb;7:75-88.
6. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62(11):1543-52.
7. Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278(45):45021-6.
11. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473-6.

12. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296-301.

13. Fasshauer M, Krälsch S, Klier M, Lossner U, Bluhmer M, Klein J, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003;301(4):1045-50.

14. Gurnfeld C, Zhao C, Fuller J, Pollack A, Moser A, Friedman J, et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest. 1996;97(9):2152-7.

15. Machleidt F, Simon P, Krapalis AF, Hallschmid M, Lehnert H, Sayk F. Experimental hyperleptinemia acutely increases vasoconstrictory sympathetic nerve activity in healthy humans. J Clin Endocrinol Metab. 2013;98(3):E1403-19.

16. Calhoun DA, Jones D, Tostor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403-19.

17. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Röhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159-219.

18. de Souza WA, Sabha M, de Faveri Favero F, Bergsten-Mendes G, Yugar-Escobar J, et al. Enkephalin-modified proteins activate T cells and promote hypertension. J Clin Invest. 2011;121(7):2833-45.

19. de Haro Moraes C, Figueiredo VN, de Faria AP, Barbaro NR, Sabbatini AR, et al. Experimental hyperleptinemia acutely increases vasoconstrictory sympathetic nerve activity in healthy humans. J Clin Endocrinol Metab. 2013;98(3):E1403-19.

20. Boer-Martins L, Figueiredo VN, Demacq C, Martins LC, Consolin-Colombo F, Figueiredo MJ, et al. Relationship of autonomic imbalance and circadian disruption with obesity and type 2 diabetes in resistant hypertensive patients. Cardiovasc Diabetol. 2011 Mar 22;10:29.

21. Catharina AS, Modolo R, Ritter AMV, Sabbatini AR, Lopes HF, Moreno Junior H, Faria AP. Metabolic Syndrome-Related Features in Controlled and Resistant Hypertensive Subjects. Arq Bras Cardiol. 2018 Jan;110(1):514-521.

22. Enkhmaa B, Anuurad E, Zhang W, Kim K, Berglund L. Diverging trajectory patterns of systemic versus vascular inflammation over age in healthy Caucasians and African-Americans. Atherosclerosis. 2013;239(2):509-15.

23. Filho AG, Kinote A, Pereira DJ, Rennó A, dos Santos RC, Ferreira-Melo SE, et al. Infliximab prevents increased systolic blood pressure and upregulates the AKT/eNOS pathway in the aorta of spontaneously hypertensive rats. Exp Mol Pathol. 2011;91(1):362-7.

24. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, et al. Comparative effects of diet and statin on NO bioactivity and matrix metalloproteinases in hypercholesterolemic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2002;22(9):e19-23.

25. Koh KK, Ahn JY, Jin DK, Kim HS, Choi YM, et al. Comparative effects of diet and statin on NO bioactivity and matrix metalloproteinases in hypercholesterolemic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2002;22(9):e19-23.

26. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Arfella R, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799-804.

27. Monzillo LU, Hamdy O, Horton ES, Ledbury S, Mullaney C, Jarema C, et al. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes Res. 2003;11(9):1048-54.

28. Scalia, R. The microcirculation in adipose tissue inflammation. Rev Endocr Metab Disord. 2013;14(1):69-76.

29. Bakker W, Sipkema P, Stehouwer CD, Seres EH, Smidders YN, van Hinsbergh VW, et al. Protein kinase C theta activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes. 2008;57(3):706-13.

30. Yudkin JS, Eringa E, Stehouwer CD. “Vasocine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817-20.

31. Rossi M, Nannipieri M, Anselmino M, Pesce M, Muscelli E, Santoro G, et al. Skin vasoconstrictor function and vasomotion in patients with morbid obesity: effects of gastric bypass surgery. Obes Surg. 2011;21(1):87-94.

32. Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diab Rep. 2003;3(4):279-88.

33. El Sayed M, El Shazly M, Atia A, Eldawlatly H, El-Batal H, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2003;104(2):191-6.

34. Sacco R, Di Rienzo M, Mancuso F, Pontillo A, Giugliano G, Masella R, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2002;105(13):1531-3.

35. Koh KK, Ahn JY, Han SH, Kim JS, Kim HS, et al. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol. 2003;42(5):905-10.

36. Trenk Y, Brull DJ, Needham EW, Montgomery HE, Morris A, Mutt K. Effect of enalapril and losartan on cytokines in patients with stable angina pectoris awaiting coronary artery bypass grafting and their interaction with polymorphisms in the interleukin-6 gene. Am J Cardiol. 2004;94(5):564-9.

37. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, perilipin, and proinflammatory adipokines. Circulation. 2008;117(17):2253-61.

38. Trøseid M, Løvlien E, Mayhall K, Marsal T, Mørkrid L, Brendberg R, et al. The inflammatory status score including IL-6, TNF-alpha, C-reactive protein and adiponectin is improved in morbidly obese patients after gastric bypass surgery. Endocr Metab Immuno Endocr Disord. 2013;11(2):78-89.