Patients with heart failure and an implanted cardioverter-defibrillator
during the COVID-19 pandemic: insights from a multicentre registry in
Poland

Authors: Mateusz Tajstra, Adam Wojtaszczyk, Maciej Sterliński, Ewa Świerżyńska, Łukasz Szumowski, Mikołaj Tomasiuk, Marcin Grabowski, Łukasz J. Januszkiewicz, Janusz Romanek, Andrzej Przybylski, Przemysław Mitkowski, Aneta Klotzka, Andrzej Szafranek, Mariusz Gąsior, Zbigniew Kalarus, Oskar Kowalski

Article type: Short communication

Received: January 30, 2021.

Accepted: March 16, 2021.

Published online: March 30, 2021.

ISSN: 0022-9032
e-ISSN: 1897-4279

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.
Patients with heart failure and an implanted cardioverter-defibrillator during the COVID-19 pandemic: insights from a multicentre registry in Poland

Short title: Patients with a cardioverter-defibrillator during the pandemic

Mateusz Tajstra¹, Adam Wojtaszczyk¹,¹¹, Maciej Sterliński², Ewa Świerżyńska²,³, Łukasz Szumowski²,⁴, Mikołaj Tomasiuk⁵, Marcin Grabowski⁶, Łukasz J. Januszkiewicz⁶, Janusz Romanek⁷, Andrzej Przybylski⁷, Przemysław Mitkowski⁸, Aneta Klotzka⁸, Andrzej Szafranek⁹, Mariusz Gąsior¹, Zbigniew Kalarus⁵, Oskar Kowalski⁵,¹⁰.

¹ 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland

² Department of Arrhythmia Institute of Cardiology, Warsaw, Poland

³ 1st Department of Cardiology, Doctoral School, Medical University of Warsaw, Warsaw, Poland.

⁴ Cardinal Stefan Wyszyński University in Warsaw, Poland

⁵ Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, Zabrze, Poland;

⁶ 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.

⁷ Cardiology Department with the Acute Coronary Syndromes Subdivision, Clinical Provincial Hospital No 2, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland

⁸ 1st Department of Cardiology, Poznan University of Medical Sciences, Poznań, Poland

⁹ Computer Science Laboratory, Silesian Center for Heart Diseases, Zabrze, Poland

¹⁰ Department of Dietetics, School of Public Health in Bytom, Medical University of Silesia, Katowice, Poland.

¹¹ Department of Electrocardiology, Medical University of Łódź, Łódź, Poland
Address for correspondence:

Mateusz Tajstra M.D., PhD

Silesian Centre for Heart Diseases, Curie 9, 41-800 Zabrze; Poland

Phone: +48-32-3733674; Fax: +48-32-2732679; Email: mateusztajstra@wp.pl

Conflict of interest: MT-fee from Abbott, Biotronik, Boston Scientific; MS-fee from Abbott, Boston Scientific, Biotronik, Medtronic, Zoll
Introduction

The outbreak of the coronavirus disease 2019 (COVID-19) has spread into a pandemic affecting more than 76 million people worldwide and causing nearly 1.7 million deaths so far and has become a disaster for healthcare systems around the world. Moreover, similar to other pandemics of the past, it is forcing preponderant alterations in many fields of medicine.

According to current practice guidelines, a significant portion of patients with heart failure (HF) receive implantable cardioverter-defibrillators (ICDs) with or without cardiac resynchronization therapy (CRTs) due to well evidenced clinical benefits which include a long-term improvement of prognosis [1]. In patients hospitalized for COVID-19, the presence of HF is a powerful independent predictor of mortality and in-hospital complications [2].

While a follow-up is a strongly recommended element of care in patients with HF and ICD/CRT, including in many cases an in-person visit for clinical and technical evaluation of the implanted device, the pandemic has limited patient’s contact with the medical staff in order to obtain rigorous isolation and reducing a human-to-human possible virus transmission.

In accordance with the Heart Rhythm Society Guidance, direct medical visits should be limited as much as possible in favour of the use of telehealth solutions [3]. Furthermore, teleconsultations have been approved by the Polish National Health Fund and implemented countrywide. However, prior to the spread of the pandemic, the use of telemedical services for patients with HF and ICD/CRTs was not widely implemented in every day clinical practice.

Although, over the last years, the introduction of remote monitoring (RM) of ICD/CRTs has significantly improved the prognosis in HF-patients [4] and its role may be even more significant in the current difficult reality, it is well known that RM can be clinically effective when RM care is based on experienced medical staff. This requires logistic solutions, such as developing a model of alert-triggered clinical reactions, which requires ample time to achieve [5]. Moreover, mainly due to reimbursement issues, the use of RM in
Poland is restricted. Besides some initial data regarding their clinical efficacy [6],
teleconsultations, as the only pattern of supervision in patients with HF and ICD/CRT to date,
have not been widely examined. Therefore, there are some legitimate concerns about the
safety of such a model of supervision, especially regarding potentially lethal and clinically
silent events (arrhythmic events, lead integrity defects, premature battery depletion, or device
related infections).

Taking into consideration the above-mentioned issues, the purpose of the present study
was to analyse the landscape of follow-up in patients with HF and implanted ICD/CRTs
during the first two months of the outbreak of COVID-19 in Poland. We strongly believe that
the study may be a cornerstone for assessing the impact of the change in supervision related to
the pandemic on long-term clinical outcomes in patients with HF and ICD/CRTs in the future.

Methods

We performed an analysis in consecutive patients with HF and implanted ICD/CRTs
included in the multicentre registry from six tertiary, academic, high-volume cardiovascular
hospitals in Poland. The study compared follow-up routines from the two-month observation
period starting with the beginning of the Covid-19 epidemic in Poland (March 14th, 2020)
and the corresponding period of 2019. We investigated baseline characteristics, types of visits,
ICD/CRT interventions, arrhythmic events, and clinical reactions. The percentage of
individual forms of visits was calculated in relation to the number of all visits in the observed
periods. At the same time the number of interventions is presented in relation to the overall
number of patients included in the analysed groups. The study was approved by an
appropriate institutional review board and – given the retrospective nature of the analysis – a
written informed consent to participate in the study was not required.
Statistical analysis

The qualitative variables were expressed as absolute number and percentage and were analyzed with the χ^2 test (where numbers were anticipated to be less than 5, Yates’ correction for continuity was implemented). The distribution of continuous variables was verified using the Shapiro–Wilk test. Continuous variables were expressed as median and interquartile range (IQR). The significance of differences between median values was tested with the U-Mann-Whitney test. A P value of less than 0.05 was regarded as significant. Statistical analysis was performed using SPSS software version 25.0 (IBM Corp., Armonk, New York, United States).

Results and discussion

We recorded a reduction (16.5%) in the number of patients included in the study and in the control period (1259 and 1508, respectively), which provided a basis for the analysis. The baseline clinical and device characteristics were similar between the study groups (Table 1). During the coronavirus pandemic, a landscape shift in the follow-up care was observed, with a 16.8% reduction in all follow-up visits (1343 vs. 1615), a higher rate of cancelled scheduled visits (15.8% vs 0.7%; $P < 0.001$), scheduled telephone visits (66.7% vs. 0%, $P < 0.001$), and scheduled visits using only remote monitoring (14.4% vs. 0%, $P < 0.001$), as well as a lower rate of scheduled outpatients visits (20.1% vs. 87.6%, $P < 0.001$).

Despite the fact that significantly more patients with ICD/CRTs were supervised remotely (RM or teleconsultations), the rate of diagnosed appropriate ICD interventions (ATP or shock) due to life-threatening ventricular arrhythmias and the detection of *de-novo* atrial fibrillation remained similar in both groups (5.1% vs. 4.4%; $P = 0.43$ and 2.62% vs. 2.4%; $P = 0.7$, respectively). Equally, a proportion of diagnosed ICD/CRT technical dysfunctions were comparable in both analysed time periods (3.5% vs. 2.65%; $P = 0.7$). However, a significantly lower rate of inappropriate ICD interventions, and any arrhythmia detections and
clinical reactions, mainly due to a pharmacotherapy change, were recorded in 2020 (Table 1). Possible reasons for this appear to include the organizational changes in the health care system and the greater level of stress among patients [7,8]. However, which is noteworthy, this was not related to urgent or scheduled hospitalization recommendations (Table 1).

The study shows a significant change in the rate and types of follow-up visits, inappropriate ICD interventions, any arrhythmia findings and clinical reactions in patients with HF and implanted with ICD/CRTs during the first two months of the COVID-19 pandemic in six high-volume cardiovascular centres in Poland. It’s possible impact, particularly on long-term clinical outcomes, requires a further evaluation.

The study has been a retrospective analysis and it involves all the limitations related thereto.

Source of Funding: none

Disclosures: none declared
References:

1. Piotr Ponikowski, Adriaan A Voors, Stefan D Anker, et al. ESC Scientific Document Group, 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2016; 37: 2129–2200.

2. Tomasoni D, Inciardi RM, Lombardi CM et al. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID-19. Results of the Cardio-COVID-Italy multicentre study. Eur J Heart Fail. 2020; Nov 12. [Epub ahead of print].

3. Lakkireddy DR, Chung MK, Gopinathannair R et al. Guidance for Cardiac Electrophysiology During the COVID-19 Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Circulation. 2020; 14: e823-e831.

4. Hindricks G, Varma N, Kacet S, et al. Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J. 2017; 38:1749-1755.

5. Tajstra M, Sokal A, Gadula-Gacek E, et al. Remote Supervision to Decrease Hospitalization Rate (RESULT) study in patients with implanted cardioverter-defibrillator. Europace. 2020; 22:769-776.

6. Paskudzka D, Kołodzińska A, Cacko et al. Telephone follow-up of patients with cardiovascular implantable electronic devices during the coronavirus disease 2019 pandemic: early results. Kardiol Pol. 2020; 78: 725-731.
7. Lelonek M, Książczyk M, Pawlak A et al. Heart failure management in Polish medical centers during the coronavirus disease 2019 pandemic: results of a survey. Kardiol Pol. 2020; 78: 1035-1038.

8. Finlay MC, Lambiase PD, Ben-Simon R, Taggart P. Effect of mental stress on dynamic electrophysiological properties of the endocardium and epicardium in humans. Heart Rhythm. 2016; 13: 175-182.
Table 1. A comparison of baseline and device characteristics, type of visits, and clinically important interventions in patients with heart failure and implantable cardioverter-defibrillators (with or without resynchronisation). The study period is defined as the time between the state of epidemic introduced by the Polish government (March 14, 2020) and May 14, 2020. The control period was from March 14, 2019 to May 14, 2019.

Variable	Study period	Control period	\(P \) value
Patients	n= 1259	n= 1508	
Baseline characteristics			
Male n, (%)	1003 (79.7)	1185 (78.6)	0.81
Age (years) (IQR)	68 (15)	68 (15)	0.92
Ischemic aetiology n, (%)	827 (65.7)	939 (62.3)	0.71
Implantation due to secondary prevention of sudden cardiac death n, (%)	189 (15)	256 (17)	0.61
Remote monitoring n, (%)	475 (37.7)	525 (34.8)	0.64
Device type			0.92
Single chamber ICD n, (%)	464 (36.9)	558 (37.0)	
Dual chamber ICD n, (%)	326 (25.9)	404 (26.8)	
Subcutaneous ICD n, (%)	1 (0.1)	3 (0.2)	
CRT n, (%)	467 (37.1)	543 (36)	
Device manufacturers			0.03
Abbott/StJude n, (%)	244 (19.4)	332 (22)	
	Biotronik n, (%)	Boston n, (%)	Medtronic n, (%)
-------------------------------	------------------	--------------	------------------
	235 (18.7)	302 (20)	
	410 (32.6)	398 (26.4)	
	369 (29.3)	476 (31.6)	
Follow-up visits			
All follow-up visits, n	1343	1615	
Cancelled scheduled visits, n	212 (15.8)	11 (0.7)	<0.001
Scheduled outpatient visits, n	270 (20.1)	1415 (87.6)	<0.001
Scheduled telephone visits, n	896 (66.7)	0 (0)	
Scheduled visits using only remote monitoring, n	194 (14.4)	0 (0)	<0.001
Unscheduled outpatient visits, n	35 (2.6)	19 (1.2)	0.02
Unscheduled telephone visits, n	11 (0.8)	0 (0)	0.001
Unscheduled visits triggered by patient or alert using only remote monitoring, n	118 (8.8)	144 (8.9)	0.91
Appropriate ICD intervention, n (%)	64 (5.1)	67 (4.4)	0.43
VT, n (%)	59 (4.7)	63 (4.2)	0.35
ATP during VT, n (%)	55 (4.4)	56 (3.7)	0.65
Shock during VT, n (%)	15 (1.2)	19 (1.3)	0.46
VF, n (%)	12 (0.9)	17 (1.1)	0.42
Shock during VF, n (%)	12 (0.9)	16 (1.1)	0.25
Electrical storm, n (%)	9 (0.7)	5 (0.3)	0.42
Inappropriate ICD intervention, n (%)	12 (1.0)	24 (1.6)	0.03
AF de-novo episode, n (%)\(^b\)	33 (2.6)	36 (2.4)	0.72
---------------------------------	---------	---------	------
Any arrhythmia, n (%)\(^b\)	107 (8.4)	201 (13.3)	<0.001
ICD/CRT dysfunction, n (%)\(^b\)	44 (3.5)	40 (2.7)	0.70
Any clinical reaction, n (%)\(^b,c\)	206 (16.4)	321 (21.3)	<0.001
Phone contact, n (%)	111 (8.8)	104 (6.9)	0.57
Pharmacotherapy change, n (%)	82 (6.5)	137 (9.1)	<0.001
Urgent hospitalization, n (%)	41 (3.2)	47 (3.1)	0.52
Scheduled hospitalization, n (%)	23 (1.8)	30 (2.0)	0.33

\(^a\)% of all visits in the analysed period

\(^b\)% of all patients included in the analysed period

\(^c\)Due to clinical and/or arrhythmic event

AF denotes atrial fibrillation

ATP denotes anti-tachycardia pacing

CRT denotes cardiac resynchronisation therapy

ICD denotes implantable cardioverter-defibrillator

RM denotes remote monitoring

VT denotes ventricular tachycardia

VF denotes ventricular fibrillation