Brachybacterium massiliense sp. nov., a new bacterium isolated from stool from a healthy Senegalese child

F. Mekhalif1,2, M. Tidjani Alou1,2, R. Zgheib1,3, C. I. Lo1,2, P.-E. Fournier2,3, D. Raoult1,2 and J.-C. Lagier1,2
1) Aix-Marseille Université, IRD, AP-HM, MEPHI, 2) IHU-Méditerranée Infection and 3) Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France

Abstract

Based on our phenotypic and genotypic analyses, Brachybacterium massiliense strain Marseille-P2240T (= CSURP2240; = DSM 101766) is a new species isolated from stool of a healthy subject. The strain was stained Gram-positive. It was aerobic, catalase-positive and oxidase-negative. Its optimal growth occurs at 37°C in aerobic condition. The 16S ribosomal RNA sequence analysis revealed that strain Marseille-P2240T shown 98.18% similarity with Brachybacterium saurashtrense strain JG 06, the more closely related species with standing in nomenclature.

Keywords: Brachybacterium massiliense, Culturomics, Human gut, Taxonogenomics

Introduction

Brachybacterium faecium is the type strain of the genus isolated from poultry deep litter in 1966 [1]. Brachybacteria species have been isolated from a stool sample of a healthy 3-year-old child [2] but also from environmental samples such as garden soil, salt-fermented seafood, oil-contaminated coastal sand, sediment samples and seawater [3–5].

It is crucial to understand the part of bacterial diversity in normal physiologic functions and susceptibility to disease [6]. The culturomic method, based on variable culture conditions, has made it possible to discover species never before cultivated. This new approach was invented to complete the metagenomics of 16S ribosomal RNAs (rRNAs) and to study the diversity of human gut microbiota [7–9]. In the same way, the taxonogenomic method has been elaborated to make a complete description of bacterial species by cumulating the analysis the features of the genome and the phenotypic criteria of the strain [10,11].

Isolation and growth conditions

In 2015 we isolated an unidentified bacterial strain from the stool. The study was validated by the ethics committee of IHU Méditerranée Infection (no. 2016-011). A screening was made by MALDI-TOF MS on a Microflex LT spectrometer (Bruker Daltonics, Bremen, Germany) as previously described [12]. The obtained spectra (Fig. 1) were imported into MALDI Biotyper 3.0 software (Bruker Daltonics) and analysed against the main spectra of the bacteria included in the database (Bruker database constantly updated with the Microbes Evolution Phylogeny and Infections database). Strain Marseille-P2240 was first isolated after a 24-hour preincubation in a liquid medium containing 37 g Difco Marine Broth (Becton Dickinson, Le Pont de Clai, France) per litre of sterile water at 37°C and on 5% sheep’s blood–enriched Columbia agar (bioMérieux, Marcy l’Etoile, France) under aerobic conditions. This strain grew temperatures ranging from 28 to 42°C, and its pH ranged from 6 to 8.
FIG. 1. MALDI-TOF MS reference mass spectrum of Brachybacterium massiliense sp. nov. Spectra from 12 individual colonies were compared and reference spectrum generated.

FIG. 2. Phylogenetic tree highlighting position of Brachybacterium massiliense sp. nov., strain Marseille-P2240T, relative to most closely related type strains within genus Brachybacterium. GenBank accession numbers of 16S ribosomal RNA are indicated in parentheses. Sequences were aligned using MUSCLE with default parameters. Phylogenetic inference were obtained using maximum likelihood method and MEGA7 software. Numbers at nodes are percentages of bootstrap values obtained by repeating analysis 1000 times to generate majority consensus tree. Scale bar indicates 1% nucleotide sequence divergence.
Strain identification

The 16S rRNA gene was sequenced in order to classify this bacterium. Amplification was done by using the primer pair fD1 and rP2 (Eurogentec, Angers, France), and sequencing by the Big Dye Terminator v1.1 Cycle Sequencing Kit and the ABI Prism 3130xl Genetic Analyzer capillary sequencer (Thermo Fisher, Saint-Aubin, France), as previously described [13]. The 16S rRNA nucleotide sequences were assembled and corrected using CodonCode Aligner software (http://www.codoncode.com). Strain Marseille-P2240T exhibited a 98.18% sequence identity with Brachybacterium saurashtrense strain JG 06 (GenBank accession no. NR_116516.1), the phylogenetically closest species with standing in nomenclature (Fig. 2). We consequently classified this strain as a member of a new species within the genus Brachybacterium, family Dermabacteraceae and phylum Actinobacteria.

Phenotypic characteristics

Colonies were circular and opaque with a mean diameter of 0.5 to 0.9 μm. Bacterial cells were cocci shaped and Gram positive. Analysis via the Hitachi TM4000 electron microscope (Hitachi Group, Krefeld, Germany) revealed small, round bacteria (Fig. 3). Strain Marseille-P2240T showed catalase-positive and oxidase-negative activities. Biochemical characteristics of the Marseille-P2241T strain obtained using the API ZYM and 50 CH strips (bioMérieux) are provided in Table 1. The results of a

TABLE 1. Phenotypic characterization of Brachybacterium massiliense sp. nov., based on analytical profile index (API) tests

Test	Result
API 50 CH	
Glycerol	+
Erythrol	+
d-Arabinose	+
L-Arabinose	-
d-Ribose	+
L-Xylose	-
d-Xylose	+
d-Adonitol	+
Methyl β-D-xylopyranoside	+
d-Galactose	+
d-Glucose	+
d-Fructose	+
L-Mannose	-
L-Sorbose	+
L-Rhamnose	-
Dulcitol	+
Inositol	+
d-Mannitol	-
d-Sorbitol	-
Methyl d-Mannopyranoside	-
Methyl d-Glucoxyranoside	-
N-acetylglucosamine	-
Amygdalin	-
Arbutin	+
Estulin	+
Salcin	-
d-Cellulbiose	-
d-Maltose	+
L-Lactose	+
d-Melibiose	+
d-Sorbose	-
d-Trehalose	+
Insulin	+
d-Melezitose	-
d-Raffinose	+
Starch	+
Glycogen	+
Xylose	+
Gentiobiose	-
d-Turanose	+
L-Lyxose	+
d-Tagatose	+
d-Fucose	+
L-Fucose	+
d-Arabinose	+
L-Arabinol	+
Potassium gluconate	-
Potassium 2-ketogluconate	-
Potassium 5-ketogluconate	+
API ZYM	
Alkaline phosphatase	-
Esterase (C4)	+
Esterase lipase (C8)	+
Lipase (C14)	-
Leucine arylamidase	+
Valine arylamidase	+
Cystine arylamidase	-
Trypsin	-
d-Chymotrypsin	-
Phosphatase acid	-
Naphthol-AS-Bi-phosphohydrolase	-
d-Galactosidase	-
β-Galactosidase	-
β-Glucuronidase	+
d-Glucoceidase	+
β-Glucosidase	+
N-Acetyl-β-glucosaminidase	-
d-Mannosidase	-
d-Fucosidase	-

© 2019 The Authors. Published by Elsevier Ltd. NMNI, 31, 100588
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
comparative study of the biochemical characteristics of this strain with its closely related *Brachybacterium saurashtrense* strain JG 06T are detailed in Table 2.

Genome sequencing

Genomic DNA was extracted using the EZ1 biorobot with the EZ1 DNA tissue kit (Qiagen, Hilden, Germany), then sequenced on a MiSeq sequencer (Illumina, San Diego, CA, USA) with the Nextera Mate Pair sample prep kit and Nextera XT Paired End (Illumina), as previously described [14]. The assembly was performed using a pipeline containing several different softwares (Velvet [15], Spades [16] and Soap Denovo [17]) and trimmed (MiSeq and Trimmomatic [18] softwares) or untrimmed data (only MiSeq software). GapCloser was used to reduce assembly gaps. Scaffolds <800 bp and scaffolds with a depth value of <25% of the mean depth were removed. The best assembly was selected by using different criteria (number of scaffolds, N50, number of N). The genome of strain Marseille-P2240T is 3,865,488 bp long with 70.7 mol% G + C content, and it contains 3574 predicted genes. The degree of genomic similarity of strain Marseille-P2240T with closely related species was estimated by OrthoANI software [19]. Values among closely related species (Fig. 4) ranged from 75.58% between *Brachybacterium alimentarium* and *Brachybacterium nesterenkovii* to 83.44% with *Brachybacterium faecium*.

Conclusion

Strain Marseille-P2240T exhibited a 16S rRNA sequence divergence of >1.3% and an OrthoANI value < 95% with its phylogenetically closest species with standing in nomenclature; it also had unique phenotypic features. We consequently propose *Brachybacterium massiliense* sp. nov. strain Marseille-P2240T as the type strain of a new species, *Brachybacterium massiliense* sp. nov.

Nucleotide sequence accession number

The 16S rRNA gene and genome sequences were deposited in GenBank under accession numbers LN906631 and FXXB00000000, respectively.

Deposit in culture collections

Strain Marseille-P2240T was deposited in two different strain collections under numbers CSURP2240 and DSM 101766.

Conflict of Interest

None declared.
Acknowledgements

Supported in part by the Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, the National Research Agency under the programme ‘Investissements d’avenir,’ reference ANR-10-IAHU-03. The authors thank the Hitachi Corporation for providing the TM4000Plus tabletop microscope.

References

[1] Schefferle HE. Coryneform bacteria in poultry deep litter. J Appl Bacteriol 1966;29:147–60.
[2] Tidjani Alou M, Cadoret F, Brah S, Diallo A, Sokhna C, Mehrej V, et al. ‘Khelaiella massiliensis,’ ‘Brachybacterium massiliense,’ ‘Enterobacter simonensis,’ ‘Massilibacillus massiliensis,’ new bacterial species and genera isolated from the gut microbiota of healthy infants. New Microbes New Infect 2017;19:1–7.
[3] Singh H, Du J, Yang JE, Yin CS, Kook M, Yi TH. Brachybacterium horti sp. nov., isolated from garden soil. Int J Syst Evol Microbiol 2016;66:189–95.
[4] Kaur G, Kumar N, Mual P, Kumar A, Kumar RM, Mayilraj S. Brachybacterium aquaticum sp. nov., a novel actinobacterium isolated from seawater. Int J Syst Evol Microbiol 2016;66:4705–10.
[5] Gontia I, Kavita K, Schmid M, Hartmann A, Jha B. Brachybacterium saurashtraense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 2011;61(Pt 12):2799–804.
[6] Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JL. The human microbiome project. Nature 2007;449(7164):804–10.
[7] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.
[8] Lagier JC, Hugon P, Khelafia S, Fournier PE, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015;28:237–64.
[9] Lagier JC, Khelafia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;1:16203.
[10] Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi M, Sentausa E, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64:384–91.
[11] Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015;36:73–8.
[12] Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009;49:543–51.
[13] Morel AS, Dubourg G, Prudent E, Edouard S, Gouriet F, Casalta JP, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 2015;34:561–70.
[14] Lo CJ, Sankar SA, Fall B, Ba BS, Diawara S, Gueye MW, et al. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genomic Sci 2016;11:31.
[15] Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–9.
[16] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–77.
[17] Solovyov V, Proctor G, Agarwal A, Carnes K, Brown A, Chu H, et al. GenomeScope 2.0: a new efficient tool for determining genome size. Gigascience 2015;4:1.
[18] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
[19] Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–3.