The Mid Infrared Instrument of the James Webb Space Telescope:
The Swiss Hardware Contribution and Preparatory Studies of Protoplanetary Disks

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
ADRIAN MICHAEL GLAUSER
Dipl. Phys., University of Zurich

born April 27, 1977
citizen of Mötschwil BE

accepted on the recommendation of
PD Dr. Manuel Güdel, examiner
Prof. Dr. Simon Lilly, co-examiner
Dr. Alex Zehnder, co-examiner

2008
Abstract

The James Webb Space Telescope (JWST) is a large, cryogenic and infrared-optimized astronomic space observatory which will lead to ground-breaking achievements in future astronomy. Due to its observing wavelength range (0.6 – 28 \(\mu\)m), its high sensitivity and spatial resolution, JWST is the ideal observatory to study the end of the “Dark Ages” of the universe by detecting first light objects, to detect and observe the very first galaxies and their evolution until present, to study complex processes in star and planet formation and to provide indicators for the search for origins of life. The Mid Infrared Instrument (MIRI) is one of the four scientific instruments and unique due to its observable wavelength range of 5-28 \(\mu\)m. In this thesis, we focus on two aspects related to MIRI: Preparatory scientific work in the field of protoplanetary disks, and a series of instrumental investigations in the context of the Swiss hardware contribution to this instrument.

We describe two studies demonstrating the present-day observing access to protoplanetary disks; both studies underline the need for JWST and MIRI for future investigations and scientific achievements in this field. We concentrate on two different observational techniques in the infrared wavelength regime to investigate mainly the dust disks around young stellar objects.

Scattered light images in the near-infrared and advanced modeling techniques allow a detailed understanding of the structure and composition of circumstellar disks. We demonstrate this on the basis of a case study of the low-mass T Tauri star IRAS 04158+2805. Further observations such as polarimetry, mid-infrared spectroscopy, and photometry over a wide spectral wavelength range are used to confirm and to narrow the model parameters. We find a total dust disk mass of 1.0 – 1.75 \(\times\) 10^{-4} \(M_\odot\), an outer disk radius of 1120 AU, a maximum grain size of 1.6 – 2.8 \(\mu\)m and a disk inclination of 62° – 63°. We are able to describe the observations with a disk-only model without protostellar envelope. This shows that earlier classifications as a class I object, based on its spectral energy distribution, misinterpret its effective evolutionary state (class II) due to the near-edge-on geometry. We also add X-ray spectroscopy data to measure the gas column density along the line of sight and thus achieve for the first time a direct determination of the gas-to-dust mass ratio (G/D) of a protoplanetary disk, although large uncertainties dominate the result of G/D \(\approx\) 220.

Mid-infrared spectroscopy is a prolific observational tool to study the dust of protoplanetary disks and its chemical composition. The shape of the 10 \(\mu\)m silicate emission feature depends on the mineralogy of the dust and therefore, the abundances of different dust
components can be determined, in particular those of amorphous and crystalline silicates. We show in this thesis that the crystalline mass fraction of the warm dust is negatively correlated with the X-ray emission of the central object. This leads to the conclusion that X-rays have a destructive impact on the crystalline structure of the dust grains. Consequently, the complex scenario of dust processing in circumstellar disks gains a new aspect which has to be taken into account when studying star and planet formation.

JWST will allow us to continue and deepen studies of such protoplanetary disks in great detail. The same techniques developed in this work will be applied and enhanced, leading to a much better understanding of the processes of star and planet formation. We show how JWST meets the required performance for these studies by focusing on the architecture of the satellite, and we give a short description of the four scientific instruments. We highlight MIRI and our hardware contribution, consisting of the design, the procurement and the qualification of the complex Cryoharness and the critical Contamination Control Cover; the latter is a single-point failure device. To achieve our tasks, we developed a thermal analysis software as well as a test facility for the qualification of the instrument components at cryogenic conditions. We describe in detail specific design approaches, the development and the qualification tests of the Verification, Qualification and Flight Models.

The nominal operational temperature of MIRI is 7 K. The cryogenic condition has impact on several aspects of the instrument such as the dedicated thermal budget and the risk of freeze-out of molecules on the optical surfaces of MIRI. The Cryoharness provides 196 electrical lines connecting the mechanisms, calibration sources and the thermal hardware of the cold instrument with the warmer electronics. The thermal gradient within the electrical wires leads to a thermal heat load on the cold optical module of MIRI. This heat load has to be minimized. Therefore, we developed the Cryoharness using advanced thermal design techniques; we show how the theoretical assessment of the heat load is done and how we implement it by selecting small-diameter wires of low-conducting materials such as phosphor bronze and stainless steel. To confirm the assumed thermal conductivity for the calculations, we measured the conductive thermal heat load of two cable types used for the Cryoharness. We found the effective thermal heat load to be higher by a factor of \(\sim 1.5 \) than the analytical, to be considered in the final thermal modeling of MIRI. We confirm the significance of the result with a calibration measurement.

The impact of contaminants on optical surfaces is demonstrated for a gold mirror, homogeneously coated with a 1.5 \(\mu \)m \(\text{H}_2\text{O} \) ice layer, leading to a reduction of reflectivity up to one order of magnitude. The risk of the freeze-out of molecules is reduced by introducing a closing mechanism, the so-called Contamination Control Cover. We present the design of, and test approach to this cryo-mechanism and further describe a dedicated measurement to characterize the molecular conductance of its contact-free labyrinth seal. We complete the discussion about contamination control by describing several procedures to prevent contamination during the integration and test phase of this space hardware. We built a test chamber to perform outgassing measurements and to permit the cleaning of the instrument components on molecular basis.
Zusammenfassung

Das „James Webb Space Telescope“ (JWST) ist ein grosses, kryogenisches und infrarot-optimiertes Weltraumteleskop, das grosse Fortschritte in einem weiten Bereich der zukünftigen Astronomie bringen wird. JWST ist, dank dem beobachtbaren Wellenlängenbereich von \(0.6 - 28\, \mu m\), der hohen Empfindlichkeit und der grossen Winkelauflösung, das ideale Observatorium für die Untersuchung der Endphase des „dunklen Zeitalters“, als die ersten leuchtenden Objekte das neutrale Universum reionisierten, für die Untersuchung der ersten Galaxien sowie deren Evolution bis heute, für die Erforschung der Stern- und Planetenentstehung sowie für das Auffinden der ersten Spuren von extraterrestrischem Leben. Das „Mid Infrared Instrument“ (MIRI) ist eines von vier wissenschaftlichen Instrumenten von JWST und ist durch seinen beobachtbaren Spektralbereich von \(5 - 28\, \mu m\) einmalig. In dieser Dissertation konzentrieren wir uns auf zwei Aspekte, die mit MIRI verbunden sind: Vorbereitende wissenschaftliche Studien im Bereich der protoplanetaren Scheiben und eine Reihe von instrumentellen Arbeiten im Zusammenhang mit den Komponenten, die im Rahmen des Schweizer Beitrags an MIRI beigesteuert wurden.

Den aktuellen beobachtbaren Zugang zu protoplanetaren Scheiben zeigen wir anhand von zwei Studien, die beide die Notwendigkeit für JWST und MIRI verdeutlichen, um in diesen Bereichen weitere Erkenntnisse zu erhalten. Wir beschränken uns dabei auf zwei unterschiedliche Beobachtungstechniken im infraroten Wellenlängenbereich, die die Untersuchung von Staubscheiben um junge stellare Objekte ermöglichen.

Die Struktur und Zusammensetzung von zirkumstellaren Scheiben lassen sich anhand von Streulichtaufnahmen im nahen Infrarot und mittels Modellierung studieren. Wir verdeutlichen dies anhand einer Fallstudie des messaarmen T Tauri-Sterns IRAS 04158. Wir zeigen mit weiteren Beobachtungen, so etwa Polarimetrie, Spektroskopie im mittleren Infrarot und Photometrie vom nahen Infrarot bis in den mm-Bereich, dass das Model konsistent ist und die Modellierungsparameter stark eingeschränkt werden können. Wir bestimmen damit eine totale Staubscheibennmasse von \(1.0 - 1.75 \cdot 10^{-4} \, M_\odot\), einen äusseren Scheibenradius von 1120 AU, eine maximale Staubkorngröße von 1.6 – 2.8 \(\mu m\) und eine Scheibeninklination von \(62^\circ - 63^\circ\). Die erfolgreiche Modellierung erlaubt es uns, das Objekt mit nur einer Scheibe und ohne verbleibende Hüle zu beschreiben. Daher ist die frühere Klassifizierung dieses Objektes (Klasse I), die nur auf der spektralen Energieverteilung basiert, unzutreffend und deutet das Klasse-II-Objekt durch die Seitenansicht der Scheibe falsch. Weiter benutzen wir Röntgenspektroskopie, um die Gaskolonnedichte entlang der Sichtlinie zum Stern zu messen und können damit erstmals das Verhältnis zwischen Gas-
und der Staubmasse einer protoplanetaren Scheibe zu ≈ 220 bestimmen.

Spektroskopie im mittleren Infrarotbereich ist ein ergebiges Mittel, um den Staub in seiner chemischen Zusammensetzung zu studieren. Die Form der 10 μm-Silikatemission hängt von der genauen Mineralogie des Staubs ab, und entsprechend kann man damit die relative Häufigkeit der einzelnen Mineralien sowie deren amorphe und kristalline Anteile bestimmen. Wir zeigen in dieser Arbeit, dass der Anteil an kristallinem Staub negativ mit der Röntgenemission des zentralen Objektes korreliert. Wir interpretieren diesen Zusammenhang mit dem destruktiven Einfluss von Röntgenstrahlen auf die Kristallstruktur der Staubkörner. Entsprechend wird das komplexe Szenario der Staubentwicklung innerhalb einer protoplanetaren Scheibe um einen neuen Aspekt erweitert, was wiederum für das globale Verständnis der Planeten- und Sternentstehung von Relevanz sein dürfte.

JWST wird uns ermöglichen, solche Studien im Zusammenhang mit protoplanetaren Scheiben weiterzuführen und zu vertiefen. Die oben beschriebenen Techniken werden auch auf zukünftige Beobachtungen mit JWST angewandt und weiterentwickelt werden und erlauben so einen viel tieferen Einblick in die Prozesse der Stern- und Planetenentstehung. Wir zeigen, wie die verlangten Leistungsspezifikationen von JWST erfüllt werden, indem wir die Teleskoparchitektur beschreiben und die vier wissenschaftlichen Instrumente kurz vorstellen. Dabei werden wir MIRI und unseren Instrumentenbeitrag hervorheben; letzterer besteht aus dem “Cryoharness” und dem “Contamination Control Cover”. Wir werden deren Entwicklung und Qualifizierung detailliert beschreiben. Um diesen Beitrag aufgrund zu ermöglichen entwickelten wir eine thermische Analysesoftware und eine Testanlage für die Qualifizierung der Komponenten unter kryogenischen Bedingungen.

Die nominelle Betriebstemperatur von MIRI beträgt ca. 7 K, was zu verschiedenen Komplikationen führt, so etwa das komplexe thermische Budget wie auch das Risiko, dass flüchtige Moleküle an den kalten Spiegelflächen angefroren werden. Das “Cryoharness” verbindet mittels 196 elektrischen Leitungen die Komponenten auf der kalten Instrumentenseite mit der warmen Elektronik, was jedoch auch zu einem Wärmefluss innerhalb dieser Leitungen führt. Um diesen Wärmefluss zu minimieren, zeigen wir zunächst theoretische Überlegungen, die dann zum endgültigen Konzept des “Cryoharness” geführt haben. Wir berechnen den resultierenden Wärmefluss und bestätigen die Berechnungen mittels einer Messung der thermischen Leitfähigkeit des “Cryoharnesses”. Wir finden im Vergleich zu den theoretischen Werten einen ~ 1.5 mal höheren Wärmefluss, entsprechend muss dies bei einem endgültigen thermischen Modell von MIRI mitberücksichtigt werden.

Wir berechnen, dass die Reflektivität einer durch eine 1.5 μm dicke H$_2$O-Eisschicht kontaminierte Spiegelfläche bis um eine Größenordnung kleiner wird. Entsprechend muss das Risiko, dass die optischen Oberflächen durch das Ausfrieren von Molekülen kontaminiert werden, reduziert werden. Dies wird mit der Einführung des “Contamination Control Covers” gewährleistet. Wir beschreiben dessen Aufbau, Funktionalität und Testverfahren und zeigen weiter, wie wir die molekulare Leitfähigkeit der kontaktfreien Labyrinthdichtung bei kryogenischen Temperaturen gemessen haben. Wir vervollständigen die Diskussion über Kontamination, indem wir verschiedene Prozeduren zu deren Minimierung während der Integrations- und Testphase beschreiben. Wir konstruierten eine Testkammer um Ausgasraten zu messen und um die Komponenten auf molekularer Basis zu reinigen.