Denoising performance analysis of adaptive decision based inverse distance weighted interpolation (DBIDWI) algorithm for salt and pepper noise

Vorapoj Patanavijit
Assumption University, Thailand

ABSTRACT
Due to its superior performance for denoising an image, which is contaminated by impulsive noise, an adaptive decision based inverse distance weighted interpolation (DBIDWI) algorithm is one of the most dominant and successful denoising algorithm, which is recently proposed in 2017, however this DBIDWI algorithm is not desired for denoising the full dynamic intensity range image, which is comprised of min or max intensity. Consequently, the research article aims to study the performance and its limitation of the DBIDWI algorithm when the DBIDWI algorithm is performed in both general images and the images, which are comprised of min or max intensity. In this simulation experiments, six noisy images (Lena, Mobile, Pepper, Pentagon, Girl and Resolution) under salt&pepper noise are used to evaluate the performance and its limitation of the DBIDWI algorithm in denoised image quality (PSNR) perspective.

Keywords: Digital image denoising, DBIDWI (decision based inverse distance weighted interpolation), SMF (standard median filtering)

1. GENERAL OVERVIEW
In general, an impulsive noise is created in a digital image [1-3] because of camera sensor malfunction or communication fault therefore many denoising algorithms [4-24] have been invented for advance applications [25-28]. One of the most dominant and successful denoising algorithms is the standard median filter (SMF) [4-6], which is invented for denoising salt and pepper noise however its performance is limited because the SMF is processed all pixels (both noisy and noiseless). Later, the alternative denoising algorithms [7-24] based on detecting and denoising techniques are intensively invented for improving denoising performance. Recently, one of the most powerful and effective denoising algorithm is an adaptive decision based inverse distance weighted interpolation (DBIDWI) algorithm [29], which is proposed in 2017. Due to the constrain of its characteristic process, this denoising algorithm can only be performed on image, which is comprised of min or max intensity range thereby the research article aims to study the performance and its limitation of the DBIDWI algorithm.

The research article is aligned as follow: the general overview is offered in section 1 and the main concept of DBIDWI (Decision Based Inverse Distance Weighted Interpolation) is offered in section 2. Later, the comprehensive simulated consequence and its experimental outline are offered in section 3 and section 4, respectively.

Journal homepage: http://iaescore.com/journals/index.php/ijeecs
2. **THE MAIN CONCEPT OF DBIDWI (DECISION BASED INVERSE DISTANCE WEIGHTED INTERPOLATION)**

The denoising algorithm based on DBIDWI algorithm [29] compounds of the detecting and denoising technique as offering in the following sub-section. Overall flowchart of denoising sub-process based on DBIDWI (Decision Based Inverse Distance Weighted Interpolation) as shown in Figure 1.

![Overall flowchart of denoising sub-process based on DBIDWI](image)

Figure 1. Overall flowchart of denoising sub-process based on DBIDWI (Decision Based Inverse Distance Weighted Interpolation)
2.1. Detecting Sub-Process of the DBIDWI Based Denoising Algorithm

At first, the detecting process of the DBIDWI based denoising algorithm simply checks every pixel and defined that pixel is noisy \(\text{NDM}(i, j) = 1 \) if the pixel intensity is min (0) or max (255) in dynamic range otherwise the pixel is noiseless \(\text{NDM}(i, j) = 0 \).

2.2. Denoising Sub-Process of the DBIDWI Based Denoising Algorithm

Step 1. The denoising sub-process filters only noisy pixels, which are classified from the previous detecting sub-process, by creating the calculated window \(W_{y,\text{win}} \), which is initially set at 3x3 (or \(n = 3 \)) with center at noisy pixel \(y(i, j) \) and, later, the noiseless pixels are counted in that window \(W_{y,\text{win}} \). Support that noiseless pixels \(N_{\text{noiseless, pixels}} \) are counted and less than 3 pixels (in order to prevent blur and unreliable case) therefore calculated window expands by 1 pixel (as shown in following figure) and the noiseless pixels are recounted in the expanded window \(W_{y,\text{win}} \) again until there are more than 3 noiseless pixels in the expanded window.

Step 2. Support that there are more than 3 noiseless pixels in the expanded window therefore the inverse distance of noiseless pixels \(d(n_{\text{noiseless, pixels}}) \) is computed as following equation:

\[
d(n_{\text{noiseless, pixels}}) = d_n(n_{\text{noiseless, pixels}}) = \left(\frac{1}{d(i-j_{\text{noiseless, pixels}})} \right) + \left(\frac{1}{d(i-j_{\text{noiseless, pixels}})} \right) \quad \text{for} \quad n_{\text{noiseless, pixels}} = 1, 2, \ldots, N_{\text{noiseless, pixels}}
\]

Step 3. The noisy pixel \(y(i, j) \) are replacing denoised pixel \(\hat{x}(i, j) \), which is computed as following equation:

\[
\hat{x}(i, j) = \sum_{n_{\text{noiseless, pixels}}=1}^{N_{\text{noiseless, pixels}}} d_n(n_{\text{noiseless, pixels}}) \times W_y(n_{\text{noiseless, pixels}})
\]

Where,

\[
d_n(n_{\text{noiseless, pixels}}) = d(n_{\text{noiseless, pixels}}) = \sum_{i=1}^{N_{\text{noiseless, pixels}}} d(n_{\text{noiseless, pixels}})
\]

The overall flowchart of denosing sub-process based on DBIDWI (Decision Based Inverse Distance Weighted Interpolation) can be appeared as following figure.

3. COMPUTATIONAL EXAMPLES
3.1. EXAMPLE 1

Support that the the calculated window \(W_{y,\text{win}} \) of the interested noisy pixel \(y(i, j) \) can be formulated as following.

\(y(i-k, j-l) \)	\(y(i, j-1) \)	\(y(i+k, j-l) \)
125	131	118
\(y(i-1, j) \)	\(y(i, j) \)	\(y(i+1, j) \)
0	255	0
\(y(i-k, j+l) \)	\(y(i, j+1) \)	\(y(i+1, j+l) \)
120	0	255
and the noise detected matrix of the calculated window can be formulated as following.

\[
\text{NDM} = \begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]

Step 1. The denoising sub-process filters only noisy pixels, which are classified from the previous detecting sub-process, by creating the calculated window.

From noise detected matrix can **NDM**, the noiseless pixels are counted in that window \(\text{NDM} \), therefore \(\text{N}_{\text{noiseless_pixels}} = 3 \).

Step 2. Support that there are more than 3 noiseless pixels in the expanded window therefore the inverse distance of noiseless pixels \(d\left(\text{n}_{\text{noiseless_pixels}}\right) \) is computed as following equation:

\[
d\left(\text{n}_{\text{noiseless_pixels}}\right) = \left(\sum_{i=1}^{n_{\text{noiseless_pixels}}} d_{n_{\text{noiseless_pixels}}} \right)_{i=1,2,\ldots,n_{\text{noiseless_pixels}}}
\]

\[
d = \begin{bmatrix}
0.5359 & 1 & 0.5359 \\
1 & 0 & 1 \\
0.5359 & 1 & 0.5359
\end{bmatrix}
\Rightarrow
d\left(\text{n}_{\text{noiseless_pixels}}\right) = \begin{bmatrix}
0.5359 & 0 & 0.5359 \\
0 & 0 & 0 \\
0.5359 & 0 & 0
\end{bmatrix}
\]

Therefore,

\[
d_{N}(\text{n}_{\text{noiseless_pixels}}) \times \text{W}_{Y}(\text{n}_{\text{noiseless_pixels}}) = \begin{bmatrix}
125 & 131 & 118 \\
0 & 255 & 0 \\
120 & 0 & 255
\end{bmatrix} \times \begin{bmatrix}
0.5359 & 0.5359 \\
0 & 0.5359 \\
0.5359 & 0
\end{bmatrix} = \begin{bmatrix}
41.66 & 0 & 39.33 \\
0 & 0 & 0 \\
40 & 0 & 0
\end{bmatrix}
\]

Step 3. The noisy pixel \(y(i,j) \) are replaced by the denoised pixel \(\hat{x}(i,j) \), which is computed as following equation:

\[
\hat{x}(i,j) = \sum_{n_{\text{noiseless_pixels}}} d_{N}(\text{n}_{\text{noiseless_pixels}}) \times \text{W}_{Y}(\text{n}_{\text{noiseless_pixels}})
\]

\[
\hat{x}(i,j) = \left(41.66 + 39.33 + 40\right) = 121
\]

3.2. **EXAMPLE 2**

Support that the the calculated window \(\text{W}_{Y_x_y} \) of the interested noisy pixel \(y(i,j) \) can be formulated as following.
and the noise detected matrix of the calculated window can be formulated as following.

\[
\text{NDM} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

Step 1. The denosing sub-process filters only noisy pixels, which are classified from the previous detecting sub-process, by creating the calculated window.

\[
W_{Y,3,3} = \begin{bmatrix}
255 & 255 & 0 \\
0 & 255 & 255 \\
112 & 114 & 255 \\
\end{bmatrix}
\quad \text{and} \quad
\text{NDM} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

From noise detected matrix can \(\text{NDM}\), the noiseless pixels are counted in that window \(W_{Y,3,3}\) therefore \(N_{\text{noiseless, pixels}} = 2\).

Support that noiseless pixels \(N_{\text{noiseless, pixels}} = 2\) are counted and less than 3 pixels therefore calculated window expands by 1 pixel.

\[
W_{Y,3,5} = \begin{bmatrix}
0 & 0 & 255 & 0 & 255 \\
0 & 255 & 255 & 0 & 118 \\
0 & 0 & 255 & 255 & 0 \\
255 & 112 & 255 & 255 & 255 \\
255 & 0 & 0 & 255 & 111 \\
\end{bmatrix}
\quad \text{and} \quad
\text{NDM} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

From noise detected matrix can \(\text{NDM}\), the noiseless pixels are counted in that window \(W_{Y,3,5}\) therefore \(N_{\text{noiseless, pixels}} = 4\).

Step 2. Support that there are more than 3 noiseless pixels in the expanded window therefore the inverse distance of noiseless pixels \(d\left(N_{\text{noiseless, pixels}}\right)\) is computed as following equation:
Denoising performance analysis of adaptive decision based inverse distance... (Vorapoj Patanavijit)

\[
d(d_{\text{noiseless}}) = \left(\sum_{i_{\text{noiseless}} \text{ pixel}} + \sum_{j_{\text{noiseless}} \text{ pixel}} \right)^{d_b} \]

\[
d = \begin{bmatrix}
0.1539 & 0.2349 & 0.2872 & 0.2349 & 0.1539 \\
0.2349 & 0.5359 & 1 & 0.5359 & 0.2349 \\
0.2872 & 1 & 0 & 1 & 0.2872 \\
0.1539 & 0.2349 & 0.2872 & 0.2349 & 0.1539
\end{bmatrix}
\]

Therefore,

\[
d(d_{\text{noiseless}}) \times W_y(d_{\text{noiseless}}) = \begin{bmatrix}
0 & 0 & 255 & 0 & 255 \\
0 & 255 & 255 & 0 & 118 \\
0 & 0 & 255 & 255 & 0 \\
255 & 112 & 114 & 255 & 255 \\
255 & 0 & 0 & 255 & 111
\end{bmatrix}
\]

\[
d(d_{\text{noiseless}}) \times W_y(d_{\text{noiseless}}) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 14.40 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 59.23 & 0 & 0 \\
0 & 0 & 0 & 8.87 & 0
\end{bmatrix}
\]

Step 3. The noisy pixel \(y(i, j) \) are replaced the denoised pixel \(\hat{x}(i, j) \), which is computed as following equation:

\[
\hat{x}(i, j) = \sum_{n_{\text{noiseless}} \text{ pixel}} d_y(n_{\text{noiseless}} \text{ pixel}) \times W_y(n_{\text{noiseless}} \text{ pixel}) \\
\hat{x}(i, j) = (31.18 + 59.23 + 14.40 + 8.87) = 113.69
\]

4. **COMPREHENSIVE SIMULATED CONSEQUENCE**

The numerical experiment is conducted by using MATLAB program on six simulated data, which are comprised of Lena (256x256), Pepper (256x256), Resolution (128x128), Girl-Tiffany (256x256), Baboon (256x256), House (128x128), used to evaluate the upper and lower range of DBIDWI performance. First, all original data are added by Salt and Pepper Noise from 5% to 90% for forming the noisy data. Later these noisy data are filtered to suppress Salt and Pepper Noise by DBIDWI algorithm. From the numerical consequences, the quality measurement (PSNR) of the denoised image by DBIDWI algorithm are indicated in Table 1 for Lena (256x256), Pepper (256x256), Resolution (128x128) and Table 2 for Girl-Tiffany (256x256), Baboon (256x256), House (128x128). The DBIDWI algorithms can improve the image quality in almost all simulated data, except for Resolution (128x128) because the Resolution image is comprised of max ("255") and min ("0") in intensity dynamic range.

5. **CONCLUSION**

This research article aims to exhaustively evaluate the upper and lower range of DBIDWI performance, one of the most dominant and successful denoising algorithm, which is recently proposed in 2017, under Salt and Pepper Noise at several density. Comprehensive simulated consequences conduct on six simulated data, which are comprised of Lena (256x256), Pepper (256x256), Resolution (128x128), Girl-Tiffany (256x256), Baboon (256x256), House (128x128). Due to the limitation of noise detection process of the DBIDWI algorithms, the DBIDWI algorithms has obviously improve the image quality...
(PSNR) in almost all simulated data, except for Resolution (128x128) because the Resolution image is comprised of max and min in intensity dynamic range.

ACKNOWLEDGEMENTS

The research project was funded by Assumption University. Comprehensive Simulated Consequence of Salt and Pepper Noise (Lena, Pepper, Resolution) as shown in Table 1 and Comprehensive Simulated Consequence of Salt and Pepper Noise (Girl, Babool, House) as shown in Table 2.

Table 1. Comprehensive Simulated Consequence of Salt and Pepper Noise (Lena, Pepper, Resolution)

Tested Images	SPN	Noise Density	Observed Image	Denoising Algorithm	SMF	DBIDWI
Lena (256x256)	5	18.7139	31.6421	43.7281		
	10	15.6564	30.7076	40.5308		
	15	13.8274	29.2982	38.6418		
	20	12.6389	27.6257	37.2258		
	25	11.6783	25.4101	35.9382		
	30	10.8971	23.6811	35.1593		
	35	10.2240	20.8127	34.1636		
	40	9.6481	19.0080	33.3373		
Pepper (256x256)	45	9.0745	16.8389	32.7176		
	50	8.6553	15.4758	32.1273		
	55	8.2118	13.8573	31.4207		
	60	7.7813	12.3280	30.8325		
	65	7.4884	11.3251	30.1591		
	70	7.1697	10.2861	29.5147		
	75	6.8497	9.1271	28.7243		
	80	6.5846	8.3311	27.9712		
	85	6.3241	7.5344	27.3899		
	90	6.0604	6.8241	26.1503		
	5	18.4752	32.2578	45.2269		
	10	15.3798	30.6116	42.3736		
	15	13.5570	28.8470	40.2444		
	20	12.3593	26.5888	38.9573		
	25	11.3929	24.2073	37.7392		
	30	10.6242	22.0663	36.7617		
	35	9.9742	20.3774	36.0150		
	40	9.3998	18.4321	35.0674		
Pepper (128x128)	45	8.8599	16.6168	34.1463		
	50	8.3843	14.8506	33.3663		
	55	7.9930	13.4655	32.8686		
	60	7.6189	12.0128	32.1738		
	65	7.2684	10.8920	31.5987		
	70	6.9246	9.7704	30.7429		
	75	6.6418	8.8751	29.8355		
	80	6.3710	8.0166	29.0865		
	85	6.1097	7.2402	28.0305		
	90	5.8582	6.5767	27.0502		
	5	16.1344	18.2861	8.6930		
	10	13.4819	17.9425	8.5201		
	15	11.4968	17.0880	8.4935		
	20	10.1271	16.2124	8.3813		
	25	9.2699	15.2214	8.2850		
	30	8.4430	14.4548	8.1603		
	35	7.9307	13.6304	8.2997		
	40	7.3308	12.6223	7.7616		
Resolution (128x128)	45	6.6368	11.3597	8.0067		
	50	6.2938	10.4851	7.9123		
	55	5.8134	9.4501	7.8132		
	60	5.4436	8.5925	7.3368		
	65	5.0707	7.6495	7.4990		
	70	4.6795	6.6295	7.6584		
	75	4.5178	6.3093	7.2709		
	80	4.1940	5.3585	7.1479		
	85	3.9342	4.7261	7.1875		
	90	3.7113	4.2234	6.7209		
Table 2. Comprehensive Simulated Consequence of Salt and Pepper Noise (Girl, Babool, House)

Tested Images	SPN	PSNR (dB)			
	Noise Density	Observed Image	Denoising Algorithm	SMF	DBIDWI
Girl (256x256)	5	16.4490	32.4667	39.3666	
	10	13.6890	31.5583	38.4352	
	15	11.9287	27.6179	37.2170	
	20	10.6567	25.5153	36.5714	
	25	9.5498	22.9614	35.6831	
	30	8.8677	20.7738	35.3124	
	35	8.0984	18.4410	34.2244	
	40	7.5978	16.5146	33.9797	
	45	7.0728	14.8145	33.5408	
	50	6.5712	13.0319	32.5247	
	55	6.2085	11.8226	32.2016	
	60	5.8609	10.4981	31.7084	
	65	5.4832	9.1396	30.9636	
	70	5.1311	8.0463	30.4654	
	75	4.8712	7.1994	29.8662	
	80	4.5674	6.2520	29.0774	
	85	4.3054	5.4218	28.0161	
	90	4.0573	4.7465	27.2722	

Baboon (256x256)	45	7.0728	14.8145	33.5408
	50	6.5712	13.0319	32.5247
	55	6.2085	11.8226	32.2016
	60	5.8609	10.4981	31.7084
	65	5.4832	9.1396	30.9636
	70	5.1311	8.0463	30.4654
	75	4.8712	7.1994	29.8662
	80	4.5674	6.2520	29.0774
	85	4.3054	5.4218	28.0161
	90	4.0573	4.7465	27.2722

House (128x128)	45	7.0728	14.8145	33.5408
	50	6.5712	13.0319	32.5247
	55	6.2085	11.8226	32.2016
	60	5.8609	10.4981	31.7084
	65	5.4832	9.1396	30.9636
	70	5.1311	8.0463	30.4654
	75	4.8712	7.1994	29.8662
	80	4.5674	6.2520	29.0774
	85	4.3054	5.4218	28.0161
	90	4.0573	4.7465	27.2722

REFERENCES

[1] J. Astola and P. Kuosmanen, “Fundamentals of Nonlinear Digital Filtering”, CRC Press, Boca Raton, Fla, USA, 1997.
[2] R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[3] M. H. Hayes, “Statistical Digital Signal Processing and Modeling”, JohnWiley & Sons, Singapore, 2002.
[4] W. K. Pratt, “Median filtering,” Tech. Rep., Image Proc. Inst., Univ. Southern California, Los Angeles, Sep. 1975.
[5] N. C. Gallagher Jr. and G. L. Wise, “A Theoretical Analysis of the Properties of Median Filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1136-1141, 1981.
[6] T. A. Nodes and N. C. Gallagher Jr., “Median Filters: Some Modifications and Their Properties,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 5, pp. 739-746, 1982.

Denoising performance analysis of adaptive decision based inverse distance... (Vorapoj Patanavijit)
[7] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A New Efficient Approach for the Removal of Impulse Noise from Highly Corrupted Images,” IEEE Transactions on Image Processing, vol. 5, no. 6, pp. 1012-1025, 1996.

[8] D. R. K. Brownrigg, “The weighted median filter,” Communications of the ACM, vol. 27, no. 8, pp. 807-818, 1984.

[9] O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the Properties of Median and Weighted Median Filters Using Threshold Logic and Stack Filter Representation,” IEEE Transactions on Signal Processing, vol. 39, no. 2, pp. 395-410, 1991.

[10] G. R. Arec and J. L. Paredes, “Recursive Weighted Median Filters Admitting Negative Weights and Their Optimization,” IEEE Transactions on Signal Processing, vol. 48, no. 3, pp. 768-779, 2000.

[11] Y. Dong and S. Xu, “A New Directional Weighted Median Filter for Removal of Random-Valued Impulse Noise,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 193-196, 2007.

[12] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-State Median Filter for Image Denoising,” IEEE Transactions on Image Processing, vol. 8, no. 12, pp. 1834-1838, 1999.

[13] H. Hwang and R. A. Haddad, “Adaptive Median Filters: New Algorithms and Results,” IEEE Transactions on Image Processing, vol. 4, no. 4, pp. 499-502, 1995.

[14] S. Zhang and M. A. Karim, “A New Impulse Detector for Switching Median Filters,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 360-363, 2002.

[15] H.-L. Eng and K.-K. Ma, “Noise Adaptive Soft-Switching Median Filter,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 242-251, 2001.

[16] Z. Wang and D. Zhang, “Progressive Switching Median Filter for the Removal of Impulse Noise from Highly Corrupted Images,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 1, pp. 78-80, 1999.

[17] P.-E. Ng and K.-K. Ma, “A Switching Median Filter with Boundary Discriminative Noise Detection for Extremely Corrupted Images,” IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 1506-1516, 2006.

[18] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detailpreserving Regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479-1485, 2005.

[19] K. S. Srinivasan and D. Ebenezer, “A New Fast and Efficient Decision-Based Algorithm for Removal of High-Density Impulse Noises,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 189-192, 2007.

[20] S. Schulze, M. Nachtegael, V. DeWitte, D. van der Weken, and E. E. Kerre, “A Fuzzy Impulse Noise Detection and Reduction Method,” IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1153-1162, 2006.

[21] A. Ben Hamza and H. Krim, “Image Denoising: A Nonlinear Robust Statistical Approach,” IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3045-3054, 2001.

[22] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: from Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004.

[23] E. Pavankumar, Manoj Kumar Rajgopal, Robust Visual Multi-Target Trackers: A Review, Indonesian Journal of Electrical Engineering and Computer Science(IJECS), Vol. 12, No. 1, October 2018, pp. 7-16.

[24] Nur Ateqa Binti Mat Kasim, Nur Hidayah Binti Abd Rahman, Zaidah Ibrahim, Nur Nabilah Abu Mangshor, Celebrity Face Recognition using Deep Learning, Indonesian Journal of Electrical Engineering and Computer Science(IJECS), vol. 12, No. 2, November 2018, pp. 476-481.

[25] Raden Arie Setiyawan, Rudy Sunoko, Mohdhammad Agus Choiron, Panca Mudji Rahardjo, “Implementation of Stereo Vision Semi-Global Block Matching Methods for Distance Measurement”, Indonesian Journal of Electrical Engineering and Computer Science(IJECS), Vol. 12, No. 2, November 2018, pp. 585-591.

[26] Vorapoj Palanavijit, “Performance Analysis of Denoising Algorithm Based on Adaptive Median Filter Under Unsystematic Intensity Impulse and Salt&Pepper Noise”, The 6th International Electrical Engineering Congress (iEECON2017), Krabi, Thailand, March 2018.

[27] V. Jayaraj and D. Ebenezer, “A New Switching-BasedMedian Filtering Scheme and Algorithm for Removal of High-Density Salt and Pepper Noise in Images”, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, 2010.

[28] P. Zhang, F. Li, “A New Adaptive Weighted Mean Filter for Removing Salt-Andpepper Noise”. IEEE Signal Process Lett. 21(10), 1280–1283 (2014).

[29] V. Kishorebabu et al, “An Adaptive Decision Based Interpolation Scheme for the Removal of High Density Salt and Pepper Noise in Images”, EURASIP Journal on Image and Video Processing, 2017, pp. 1-18.
Vorapoj Patanavijit received the B.Eng., M.Eng. and Ph.D. degrees from the Department of Electrical Engineering at the Chulalongkorn University, Bangkok, Thailand, in 1994, 1997 and 2007 respectively. He has served as a full-time lecturer at Department of Electrical and Electronic Engineering, Faculty of Engineering, Assumption University since 1998 where he is currently an Associate Professor. He has authored and co-authored over 150 national/international peer-reviewed publications in Digital Signal Processing (DSP) and Digital Image Processing (DIP). He received the best paper awards from many conferences such as ISCTIT2006, NCTIT2008, EECON-33 (2010), EECON-34 (2011), EECON-35 (2012) and etc. Moreover, he is invited to be the guest speaker at IWAIT2014 and contributed the invited paper at iECON 2014. He has served as a Technical Program Committees (TPC) on Signal Processing of ECTI (Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology) Association, Thailand since 2012 to 2015. As a technical reviewer of international journals since 2006, he has been assigned to review over 60 journal papers (indexed by ISI) from IEEE Transactions on Image Processing, IEEE Journal of Selected Topics in Signal Processing (J-STSP), IET in Image Processing (IEEE), IEEE Signal Processing Letters (IEEE), EURASIP Journal on Applied Signal Processing (JASP), Digital Signal Processing (Elsevier Ltd.), Journals of Neurocomputing (Elsevier Ltd.), Neural Networks (Elsevier Ltd.), International Journal for Light and Electron Optics (Optik) (Elsevier Ltd.), The Visual Computer (Springer), Journal of Electronic Imaging (SPIE), Journal of Optical Engineering (SPIE), IEICE Journal Electronics Express (ELEX) and ECTI Transactions on CIT (ECTI Thailand). As a technical reviewer of over 40 international/national conferences since 2006, he has been assigned to review over 130 proceeding papers. He has participated in more than 8 projects and research programmed funded by public and private organizations. He works in the field of signal processing and multidimensional signal processing, specializing, in particular, on Image/Video Reconstruction, SRR (Super-Resolution Reconstruction), Compressive Sensing, Enhancement, Fusion, Digital Filtering, Denoising, Inverse Problems, Motion Estimation, Optical Flow Estimation and Registration.