Robotic Central Pancreatectomy with Pancreaticojejunostomy for Solid Pseudopapillary Neoplasm

Jin Woo Lee, M.D., Juno Yoo, Ji Wool Ko, M.D., Sung Hoon Choi, M.D.
Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea

Purpose: Minimally invasive central pancreatectomy has rarely performed because of its technical difficulty. Robot system enhances surgical dexterity to perform such complex procedures.

Methods: A 29-year-old woman was admitted with acute cholecystitis and an 1.4 cm enhancing mass was incidentally found at the pancreatic proximal body on computed tomography. Preoperative image studies suggested a neuroendocrine tumor or solid pseudopapillary neoplasm. The patient underwent robotic cholecystectomy and central pancreatectomy with pancreaticojejunostomy.

Results: The total operation time was 280 minutes and the estimated amount of intraoperative bleeding was 100 ml. The postoperative recovery was uneventful and she was discharged on the 7th postoperative day. Pathologic examination reported a solid pseudopapillary neoplasm.

Conclusion: The technical difficulties associated with the procedure can be overcome with the help of the wrist-like movement of the robotic instruments, especially for the preservation of splenic vessels and for creating precise anastomoses in narrow spaces.

Keywords: Robotic surgical procedure, Pancreatectomy, Pancreaticojejunostomy, Pancreatic neoplasms

Supplementary video file: This article contains supplementary material (https://doi.org/10.7602/jmis.2017.20.2.74).
Her height and weight were 153 cm and 46 kg and the diameter of her body at the umbilical level was 28 cm. Her abdominal cavity was too small to apply a conventional robotic multi-arm technique. Then, a reduced-port technique using the da Vinci Si robot surgical system (Intuitive Surgical, Sunnyvale, CA) was designed. The Glove port with four channels (NELIS, Bucheon, Gyonggi-do, Korea) was installed through the umbilicus. A 12 mm camera and one flexible arm of a single-site system were introduced via the Glove port. Two additional trocars for 8 mm articulating instruments were added bilaterally at a location of 10 cm apart from the umbilicus. A 60 mm medium thick endoGIA and the distal segment of the pancreas was transected using ultrasonic shears. The remnant distal pancreas was reconstructed using pancreaticojejunostomy with a two-layered and duct-to-mucosa technique. The specimen was retrieved through the umbilical wound and a drain tube was inserted through the left 8 mm trocar site.

RESULTS

The total operation time was 280 minutes and the estimated amount of intraoperative bleeding was 100 ml. Pathological assessment indicated that the mass was a solid pseudopapillary neoplasm that was 1.4 cm in size, which was removed using a surgical resection margin of 1.0 cm (Fig. 4). Five tumor free lymph nodes were obtained and neither lymphovascular invasion nor perineural invasion were identified. The postoperative recovery was uneventful and she was discharged on the 7th postoperative day in good condition. She undergoes follow-up on a routine basis for surveillance without adjuvant therapy.

DISCUSSION

Although CP is an appealing surgical option for treating benign or borderline malignant neoplasms of the pancreatic neck or proximal body of pancreas, a minimally invasive approach has been rarely attempted. Laparoscopic distal pancreatectomy is becoming the standard procedure for left-side
pancreatic diseases\(^7\) and the use of laparoscopic pancreatico-duodenectomy has been actively pursued in recent years.\(^8\) Despite the reduced extent of the surgical field in CP compared to distal pancreatectomy and pancreaticoduodenectomy, the use of two surgical planes in CP is a major obstacle for the laparoscopic approach. In this technique, the main dissection plane is the pancreatic neck, while the reconstruction plane is changed to a position that is distal to the pancreatic neck since a segment of the proximal pancreatic body is removed. In laparoscopic surgery, the limited movement of the non-articulating instruments could be overcome via the exact placement of ports toward the target organ.\(^9\) Therefore, changes in the surgical plane complicate the proper placement of the laparoscopic instruments to the target organs. This is the major reason why laparoscopic central pancreatectomy has not been actively performed. However, this change in the target surgical plane is not a serious obstacle for robotic systems given the freedom in angulation of the ‘endowrist’ movement enabled by robotic instruments. This is a meaningful advantage of using a robotic approach in CP.\(^{10}\)

For this operation, we used a ‘reduced-port system.’ The reduced-port system has value not only in reducing the severity of wounds, but also in avoiding a collision between the robotic arms in the narrow abdominal cavity of some patients. We used a glove port in the umbilicus to introduce a robotic camera and a single-site arm through the port, which enabled access of assistant instruments, including a suction catheter, laparoscopic ultrasonography, and laparoscopic surgical stapler. The single-site arm was used for traction or retraction, including of the stomach and pancreas. The two articulating instruments worked effectively to perform the fine dissection of splenic vessels and a delicate anastomosis of pancreatico-jejunostomy.

CP is optimal removing benign or borderline malignant tumors while minimizing the loss of the endocrine and exocrine function of the pancreas. Although its technical difficulty and the potential costs of postoperative complications by the two cut surfaces of pancreas, CP is greatly facilitated by the introduction of robotic surgical systems. The technical difficulties associated with the procedure can be overcome with the help of the wrist-like movement of the robotic instruments. Further experience with and studies of the technical generalization or actual benefits of robotic CP are necessary.

REFERENCES

1) Muller MW, Friess H, Kleeff J, et al. Middle segmental pancreatic resection: An option to treat benign pancreatic body lesions. Ann Surg 2006;244:909–918; discussion 918–920.
2) Crippa S, Bassi C, Warshaw AL, et al. Middle pancreatectomy: indications, short- and long-term operative outcomes. Ann Surg 2007;246:69–76.
3) Sauvanet A, Partensky C, Sastre B, et al. Medial pancreatectomy: a multi-institutional retrospective study of 53 patients by the French Pancreas Club. Surgery 2002;132:836–843.
4) Choi SH, Hwang HK, Kang CM, Lee WJ. Transumbilical single port laparoscopic adrenalectomy: a technical report on right and left adrenalectomy using the glove port. Yonsei Med J 2012;53:442–445.
5) Sa Cunha A, Rault A, Beau C, Collet D, Masson B. Laparoscopic central pancreatectomy: single institution experience of 6 patients. Surgery 2007;142:405–409.
6) Rotellar F, Pardo F, Montiel C, et al. Totally laparoscopic Roux-en-Y duct-to-mucosa pancreaticojejunostomy after middle pancreatectomy: a consecutive nine-case series at a single institution. Ann Surg 2008;247:938–944.
7) Mehrabi A, Hafezi M, Arvin J, et al. A systematic review and meta-analysis of laparoscopic versus open distal pancreatectomy for benign and malignant lesions of the pancreas: it’s time to randomize. Surgery 2015;157:45–55.
8) Dai R, Turley RS, Blazer DG. Contemporary review of minimally invasive pancreaticoduodenectomy. World J Gastrointest Surg 2016;8:784–791.
9) Oppenheimer P, Weghorst S, Williams L, et al. Laparoscopic surgical simulator and port placement study. Stud Health Technol Inform 2000;70:233–235.
10) Kang CM, Kim DH, Lee WJ, Chi HS. Initial experiences using robot-assisted central pancreatectomy with pancreaticogastrostomy: a potential way to advanced laparoscopic pancreatectomy. Surg Endosc 2011;25:1101–1106.