Minimally invasive chest wall stabilization: a novel surgical approach to video-assisted rib plating (VARP)

Jose J Diaz,1,2 Faris K Azar3

ABSTRACT

The current morbidity of rib plating is due to the size of the incision required to perform an open procedure. We describe a minimally invasive laparoscopic approach to rib plating. A cadaver model was used to develop the surgical technique by performing both left and right posterior-lateral rib plating. A small incision was made over the auscultatory triangle. The potential working space is developed under the posterior shoulder girdle and the scapula. A table-based retractor was used to elevate the scapula and the muscles. Two separate ports were placed: one camera port and one working port. In three cadaver models, 12 rib fractures were plated and the surgical technique is described. This novel technique will likely allow for faster recovery and was especially useful in the subscapular space.

Level of evidence II.

INTRODUCTION

Chest wall trauma is a source of significant morbidity and mortality.1–12 The rate of complications for chest trauma increases with age, number of rib fractures, and displaced or flail segments.1–3 Early rib fixation has been shown to yield better outcomes.4,8 Studies have demonstrated a decrease in the duration of mechanical ventilation, length of intensive care unit (ICU) days, and overall hospital length of stay.7–10

There appears to be less of a need for tracheotomy or non-invasive ventilatory measures after extubation in patients who have undergone chest wall stabilization.7–11 Functional outcomes are also improved, particularly subjective measures of pain, quality of life, mobility, and disability.12

The main concern with rib plating has been the morbidity of the surgical approach. Initially, surgeons used standard thoracotomy incisions (posterior thoracotomy or anterior thoracotomy incisions) which divided the muscle groups. Occasionally some surgeons would include overzealous surgical debridement of the chest wall injury. This resulted in loss of the chest wall integrity and would require mesh closure of large chest wall defects. Thoracic surgeons developed better outcomes. They sought to delineate the steps of the procedure and demonstrate a proof of concept. Initially, the space was developed with a hernia balloon spacer (Covidien Spacemaker Medtronic). This created a sufficient space to work in.

During the second cadaver procedure, the rib fractures were created prior to the development of the operative space. The cadavers were positioned in a standard lateral decubitus position. A small 3–4 cm transverse incision was made over the auscultatory triangle and dissection continued onto the thoracic rib cage. In the first cadaver no rib fractures were created, we sought to delineate the steps of the procedure and demonstrate a proof of concept. Initially, the space was developed with a hernia balloon spacer device (Covidien Spacemaker Medtronic). This created a sufficient space to work in.

Development of the operative field

The cadavers were positioned in a standard lateral decubitus position. A small 3–4 cm transverse incision was made over the auscultatory triangle and dissection continued onto the thoracic rib cage. The cadavers were positioned in a standard lateral decubitus position. A small 3–4 cm transverse incision was made over the auscultatory triangle and dissection continued onto the thoracic rib cage. The cadavers were positioned in a standard lateral decubitus position. A small 3–4 cm transverse incision was made over the auscultatory triangle and dissection continued onto the thoracic rib cage.
operating space by elevating the scapula and tenting the muscles up (figure 3). In addition, it was necessary to maintain an open wound at the auscultatory triangle to move the instruments (drill handle, clamps, and rib plate) into the space.

For all the procedures, two separate ports were placed: one 10 mm port for the camera was placed along the posterior axillary line at the level of the auscultatory triangle and one 5 mm working port between the camera and the auscultatory triangle incision. Posterior-lateral rib fractures were created from T3-7 from subscapular to lateral position. Acute Innovations RibLoc system 50, 75, and 110 mm plates were used for rib plating. The U-plate design allows for the initial reduction of the fracture and hold the reduction in place without additional clamps (figure 3).

Results

1. The auscultatory triangle is a consistent anatomic structure and a landmark that can be used to dissect down to the chest wall. It allows for creation of the surgical space in the initial site.
2. The development of the space can be created using a ‘sponge clamp’. A balloon spacemaker device should not be used as during the inflation process unstable rib fractures may become more displaced.
3. A table-based self-retaining retractor is required to maintain the surgical exposure (figure 4).
4. Visualization of lateral and posterior fractures can be visualized at multiple levels, including the subscapular and paraspinous spaces with additional magnification.
5. The overlying soft tissues on the fractured ribs are cleared using long surgical instruments to expose the fracture site and the periosteum.
6. The fractured segments can be reduced using thoracic instruments, including a long right-angle clamp to elevate displaced rib fractures.
7. The auscultatory triangle incision is the access point into the surgical field for the rib plates and the right-angle drill.
 A. The plates are introduced into the space, positioned, and the fracture reduced.
 B. A low-profile right-angle drill is used to secure the plate to the fractured rib.
8. Longer plates 75 mm and above require careful precontouring prior to securing them.
9. Prior to the final drilling and securing of the screws, the additional magnification of the scope allows careful placement of the plate (on top of the rib and centered over the rib fracture).
operative field. A separate incision was made and a trocar was
placed in the midaxillary line through which a laparoscope was
introduced. The posterior fractures on ribs 4 and 5 were visual-
ized. They were reduced and the anterior surface of the ribs
close to the fractures was cleaned off. The fractures were bridged
and plated with 50 mm Acute Innovations RibLoc plates. Identi-
fication of the anterior-lateral fractures proved difficult as the
fracture on fifth and sixth ribs was directly under the anterior
serratus muscle. The laparoscope was removed. A separate inci-
sion was made directly over the anterior-lateral fractures on ribs
5 and 6. Two 50 mm plates using standard open technique. Prior
to closure, the left hemithorax was drained thoracoscopically
and a chest tube was left in place.

The patient was brought to the ICU postoperatively. A chest
radiograph was done to confirm adequate drainage of the pleural
space. He was maintained on a ventilator for 48 hours and was
extubated to high flow nasal cannula. During the course of the
next 24 hours he was weaned to room air. His chest drain was
removed. His pain was negligible and he was walking the halls
independently. He was discharged on postoperative day 4. On
his follow-up appointment, he continued to feel well without
any disabling symptoms.

Figure 4 (A) During the cadaver model part of the study, a makeshift
table-based retractor is set up. (B) Surgical set-up for Minimally Invasive
Rib Plating, a standard Bookwalter table-based retractor system using
a segmented ring. A long Richardson blade is inserted through the
incision at the auscultatory triangle and placed under the scapula to
maintain the surgical field.

CASE REPORT
These anatomic findings were modified slightly and employed
clinically. The patient is a 53-year-old man who presented to
a level 1 trauma center after being involved in a motor vehicle
crash. He was the unrestrained driver of a car that crashed
into a tree. He had multiple left-sided rib fractures with a flail
segment and hemothorax. The patient’s respiratory status did
not improve during the course of 3 days with maximal multi-
modal pain management including an epidural pain catheter
and aggressive pulmonary toilet. He had persistent spells of
sharp incapacitating pain along his left chest and could not pull
volumes greater than 300 mL on incentive spirometry.

A 3D reconstruction was done on his admission CT scan
(figure 5). His left ribs were fractured at multiple levels: ribs
2 and 3 fractured posteriorly but not displaced, rib 4 fractured
posteriorly with displacement, rib 5 fractured in a flail pattern
laterally and posteriorly, and rib 6 fractured laterally with
displacement. After informed consent was obtained, he was
taken to the operating room for evacuation of hemothorax and
chest wall stabilization.

The patient was placed in the right lateral decubitus posi-
tion. A small incision was made posteriorly along the inferior
aspect of the scapula. The dissection was carried down to the
chest wall and a plane was developed with blunt dissection using
a sponge stick. A Bookwalter was used to exposure placing a
chest wall stabilization.

Figure 5 Preoperative 3D CT scan of the chest and postoperative
chest X-ray of a patient after rib plating.

Posterior: from the angle of the rib to the head of the rib.
The importance of defining the injury patterns is critical as
it dictates whether or not a particular surgical approach will be
effective. We determined that the VARP approach is ideal for
posterior-lateral injuries specifically for the subscapular rib frac-
tures. Lateral rib fractures can also be performed. Our patient
had rib fractures on the boarder of the anterior and lateral
aspect. This required a separate incision to address these injuries.

Instrumentation
Like any new procedure, many of our current surgical instru-
m ents are not specifically designed for this type of surgery.

DISCUSSION
Chest wall stabilization is still an evolving science and has shown
promising results in certain patients. In this study, the authors
aimed to prove a feasibility and clinical application of a new,
minimally invasive method for rib plating to obviate some of the
morbidity associated with the procedure as was shown to be true
with the culmination of abdominal laparoscopy, much of which
has become standard of care.13
Minimally invasive surgery as a field has evolved during the last century. In 1901, the Russian surgeon Dimitri Oskarovich Ott performed the first endoscopic examination of the abdominal viscera through a posterior vaginal incision. The first laparoscopic procedure in the USA was done at the Johns Hopkins Hospital, where Bertram Bernheim used a 12 mm proctoscope to evaluate the peritoneal cavity through an epigastric incision, later confirming his observations with laparotomy.

The course of minimally invasive chest wall stabilization may have similarities with the success of minimally invasive cholecystectomy. With the development of better lens technology, Erich Muhe performed the first laparoscopic cholecystectomy in Germany in 1985, about 100 years after the first open cholecystectomy. In 1987, Phillippe Mouret performed the first video-guided laparoscopic cholecystectomy in France, obviating the need for the surgeon to hold the scope with one hand to view through it. Early reports of laparoscopy were met with much skepticism and criticism, but with perseverance, by 1993 laparoscopic cholecystectomy was deemed the procedure of choice for uncomplicated cholelithiasis. By this time the patients presented to their surgeons requesting for a specific operation. It would be several years before the data were developed which demonstrated laparoscopic versus open cholecystectomy was superior.

The master-slave concept where a surgeon sits on a console and performs surgery remotely emerged in the late 1990s. During the last decade, we have seen a boom in the use of robotic surgery, which has led to improved ergonomics when compared with traditional laparoscopy. If the outlook of minimally invasive rib plating has any resemblance to the emergence of laparoscopy in other disciplines, robotic approaches may be a part of the foreseeable future.

Similarly, technology in the setting of chest wall stabilization continues to evolve. The concept of operative stabilization of rib fractures has been around since the 1950s. It was not until the mid-2000 that the technological advancement with the operative systems to make the procedure safe. There are many devices that can be used for plating, including unicortical of bicortical fixation systems. These authors used a second-generation, U-plate Acute Innovations RibLoc system which allows for purchase on the front and back of the fractured rib. With increasing experience, surgeons are able to stabilize multiple levels through smaller incisions. Thoracoscopic rib fixation was recently proven to be feasible. This method allows for visualization and stabilization of all rib segments from inside the thoracic cavity. This method allows for video-assisted washout but calls for single-lunge ventilation and will likely require surgeons to have more advanced training. The technique described in this article allows for an extrathoracic/VARP approach using standard plating assisted by laparoscopy.

Some authors have advocated partial surgical stabilization of numerous fractures, including those ribs which are readily accessible. This idea prevents additional incisions, and doing so appears to have similar outcomes on restoring chest wall physiology. However, leaving fractured ribs, particularly those that are displaced, in a malaligned position can cause long-term pain. An extrathoracic minimally invasive approach to rib plating may allow the surgeon to address multiple fractured levels along the chest wall through a few small incisions. This can be accomplished by creating an operative field and not dividing any muscles.

With the advent of laparoscopy has come smaller incisions which are both esthetically appealing and cause less trauma, thus decreasing morbidity. We have demonstrated feasibility of minimally invasive technique for chest wall stabilization in the cadaver model. As with any new surgical procedures, there is a learning curve and correct patient selection. We have demonstrated in a cadaver model the feasibility of VARP with a particular injury pattern, and defined the initial surgical steps. This procedure now requires application in the general patient population to further define the patient indications which is best done in a prospective study.

Funding This project received research grant from Acute Innovations, Industry Grant $30 000.00.

Competing interests JJD receives honorarium for consulting services from Acute Innovations.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) licence, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Nirula R, Diaz JJ, Trunkey DD, Maybery JC. Rib fracture repair: indications, technical issues, and future directions. World J Surg 2009.
2. de Campos JR, White TW. Chest wall stabilization in trauma patients: why, when, and how? J Thorac Dis 2018;10:5951–62.
3. Holcomb JB, McMullin NR, Kozar RA, Lygas MH, Moore FA. Morbidity from rib fractures increases after age 45. J Am Coll Surg 2003;196:549–55.
4. Fitzgerald MT, Ashley DW, Abulkheir H, Christie DB. Rib fracture fixation in the 65 years and older population: a paradigm shift in management strategy at a level I trauma center. J Trauma Acute Care Surg 2017;82:524–7.
5. Chien C-Y, Chen Y-H, Han S-T, Blaney GN, Huang T-S, Chen K-F. The number of displaced rib fractures is more predictive for complications in chest trauma patients. Scand J Trauma Resusc Emerg Med 2017;25.

Diaz JJ, Azar FK. Trauma Surg Acute Care Open 2019;4:e000366. doi:10.1136/tsaco-2019-000366
6 Pieracci FM, Coleman J, Ali-Osman F, Mangram A, Majercik S, White TW, Jeremitsky E, Doben AR. A multicenter evaluation of the optimal timing of surgical stabilization of rib fractures. *J Trauma Acute Care Surg* 2018;84:1–10.

7 Marasco SF, Davies AR, Cooper J, Varna D, Bennett V, Nevill R, Lee G, Bailey M, Fitzgerald M. Prospective randomized controlled trial of operative rib fixation in traumatic flail chest. *J Am Coll Surg* 2013;216:924–32.

8 Coughlin TA, Ng JWW, Rollins KE, Forward DP, Ollivere BJ. Management of rib fractures in traumatic flail chest: a meta-analysis of randomised controlled trials. *Bone Joint J* 2016;98-B:1119-25.

9 Kocher GJ, Sharafi S, Azenha LF, Schmid RA. Chest wall stabilization in ventilator-dependent traumatic flail chest patients: who benefits? *Eur J Cardiothorac Surg* 2017;51:696–701.

10 Uchida K, Nishimura T, Takesada H, Morioka T, Haga M, Yamamoto T, Kaga S, Terada T, Shinya N, Yamamoto H, et al. Evaluation of efficacy and indications of surgical fixation for multiple rib fractures: a propensity-score matched analysis. *Eur J Trauma Emerg Surg* 2017;43:541–7.

11 Pieracci FM, Lin Y, Rodil M, Synder M, Herbert B, Tran DK, Stovall RT, Johnson JL, Biffi WL, Barnett CC, et al. A prospective, controlled clinical evaluation of surgical stabilization of severe rib fractures. *J Trauma Acute Care Surg* 2016;80:187–94.