Transfer of Hexon- and Penton-selected adenovirus-specific T cells for refractory adenovirus infection after haploidentical stem cell transplantation

Rebecca E. Schultze-Florey¹,² | Sabine Tischer-Zimmermann²,³ | Hans-Gert Heuft³ | Christoph Priesner⁴ | Britta Lamottke¹ | Albert Heim⁵ | Martin Sauer¹ | Karl-Walter Sykora¹ | Rainer Blasczyk³ | Britta Eiz-Vesper²,³ | Britta Maecker-Kolhoff¹,²

¹Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
²Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
³Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
⁴Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
⁵Institute for Virology, Hannover Medical School, Hannover, Germany

Correspondence
Britta Maecker-Kolhoff, Department for Pediatric Hematology and Oncology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Email: maecker.britta@mh-hannover.de

Present address
Hans-Gert Heuft, Institute of Transfusion Medicine and Immune Hematology, University Hospital Magdeburg, Magdeburg, Germany

Abstract
Adenovirus (HAdV) infections confer a high risk of morbidity and mortality for immunocompromised patients after stem cell transplantation (SCT). Treatment with standard antiviral drugs is of limited efficacy and associated with a high rate of adverse effects. HAdV-specific T cells are crucial for sustained viral elimination and the efficacy of adoptive T-cell therapy with donor-derived HAdV-specific T cells has been reported by several investigators. Here, we report our experience with the transfer of HAdV-specific T cells specific for penton, which was recently identified as an immunodominant target of T cells, and hexon in a 14-year-old boy after T-cell-depleted haploidentical SCT for myelodysplastic syndrome (MDS). He developed severe HAdV-associated enteritis complicated by acute graft-versus-host disease (GvHD). The patient received ten infusions of allogeneic HAdV-specific T cells manufactured from the haploidentical stem cell donor using the Clinimacs Interferon-γ (IFN-γ) cytokine capture and immunomagnetic selection. Initially, T cells were generated against the immunodominant target hexon and in subsequent transfers dual antigen-specific T cells against hexon and penton were applied. T-cell transfers were scheduled individually tailored to current immunosuppressive treatment. Each transfer was followed by reduction of HAdV load in peripheral blood and clinical improvement. Importantly, T-cell responses to both penton and hexon pools emerged in patient blood after repetitive transfers. Unfortunately, the patient experienced bacterial sepsis, and in this context, severe GvHD requiring intensive immunosuppression followed by secondary progression of HAdV infection. The patient succumbed to multiorgan failure 283 days after SCT. This case demonstrates the feasibility of HAdV-specific T-cell transfer even in the presence of immunosuppressive treatment. Targeting of multiple immunodominant viral proteins may prove valuable in patients with complicated HAdV infections.

Schultze-Florey, Tischer-Zimmermann, Eiz-Vesper and Maecker-Kolhoff contributed equally to the manuscript.

The copyright line for this article was changed on 16 December 2019 after original online publication.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2019 The Authors. Transplant Infectious Disease published by Wiley Periodicals, Inc.
1 | CASE PRESENTATION

A 14-year-old boy suffered from Shwachman-Bodian-Diamond syndrome and developed a myelodysplastic syndrome (refractory cytopenia) with monosomy 7. In the absence of a matched related or unrelated donor, he underwent haploidentical SCT. After myeloablative conditioning with upfront CCE (clofarabine $[1 \times 40 \text{mg/m}^2, \text{day } -18 \text{ to } -16], \text{cyclophosphamide } [1 \times 400 \text{mg/m}^2, \text{day } -18 \text{ to } -16], \text{etoposide } [1 \times 100 \text{mg/m}^2, \text{day } -18 \text{ to } -16]) \text{ followed by fludarabine } [1 \times 40 \text{mg/m}^2, \text{day } -8 \text{ to } -5], \text{thiotepa } [2 \times 5 \text{mg/kg, day } -4], \text{melphalan } [1 \times 70 \text{mg/m}^2, \text{day } -3 \text{ to } -2], \text{ATG } [1 \times 1 \text{mg/kg, day } -12; 1 \times 9 \text{mg/kg, day } -11 \text{ to } -10; 1 \times 10 \text{mg/kg, day } -9]), \text{he underwent SCT with a TCRαβ/CD34+ cells (11.5} \times \text{10}^{5}/\text{kg CD34+ cells, } 18.2 \times \text{10}^{6}/\text{kg TCRαβ+ cells, } 13.8 \times \text{10}^{5}/\text{kg CD34+ cells)} \text{from his haploidentical mother. For post-transplant graft-versus-host disease (GvHD) prophylaxis, mycophenolate mofetil (MMF) was used. Neutrophil engraftment occurred on day 15. Acute GvHD grade III of the skin developed on day 19 and responded quickly to systemic steroid treatment. The patient was discharged on day 36. Two months after transplantation, the patient was re-admitted to the hospital with gastrointestinal symptoms (loss of appetite and vomiting). Adenovirus (HAdV species C, type C2) was detected by quantitative PCR in blood (day 72; Figure 1A). Initial treatment with cidofovir did not result in a sufficient response with an increasing viral load from 10^6 to 10^7 copies/mL (day 110) in blood and up to 10^9 copies/mL in stool. Therefore, we decided to switch the therapy to brincidofovir (CMX001) in combination with ribavirin. Upper and lower endoscopy showed no macroscopic or histological evidence of GvHD, thus MMF was discontinued on day 110 after transplantation. Due to a complete lack of lymphocyte reconstitution and persistent high HAdV load, we decided to apply HAdV-specific T cells retrieved from the original stem cell donor. Four subsequent T-cell preparations were manufactured on a CliniMACS Plus device (Miltenyi Biotech) using the IFN-γ cytokine capture system (CCS, Miltenyi Biotech) according to standard procedures. GMP PepTivator AdV5 Hexon was used for the first two preparations. Because of failure to achieve durable response in the patient (Figure 1B) and the presence of penton-directed HAdV-specific T cells in the blood of the mother (Figure 2A,B; Table S1), we decided to include the newly identified immunogenic PepTivator AdV5 Penton for the third and fourth preparation. The child received a total of ten doses of HAdV-specific T cells within a period of 5 months (Table 1, Figure 1A). The first five doses were hexon-selected HAdV-specific T cells. The last five doses were penton- and hexon-selected HAdV-specific T cells between 1.6×10^3 HAdV-CTLs (cytotoxic T-lymphocytes, CTLs)/kg body weight and 1×10^4 HAdV-CTLs/kg body weight. The first two doses of T cells were freshly transferred, whereas the others were cryopreserved.

A decrease in HAdV load was seen after the first application of 2.5×10^3 HAdV-CTLs/kg body weight on day 114 and the concurrent antiviral drug therapy. The blood HAdV load decreased from 5.2×10^9 to 9×10^4 copies/mL on day 117. Subsequently, the patient developed a skin rash and worsening diarrhea 2 weeks after cessation of MMF (day 119). Histologically grade I-II skin and duodenal mucosa GvHD were documented and treated with steroids and MMF (Figure 1B). To conserve anti-HAdV effect and avoid GvHD progression, the patient received subsequently lower doses of HAdV-CTLs ($5 \times 10^3 \text{HAdV-CTLs/kg body weight}$) in short intervals every other week and finally weekly (Table 1). Due to poorly responsive GvHD, immunosuppression was then changed on day 150 to ruxolitinib, prednisolone, and extracorporeal photopheresis on two subsequent days every two. To improve cellular reconstitution, the boy received a CD34-selected stem cell boost (day 188) from his haploidentical mother ($1.7 \times 10^3 \text{CD3+ T cells/kg body weight}$). Diarrhea still persisted, and brincidofovir was discontinued for severe hyperbilirubinemia (day 189). However, GvHD of the liver was observed histologically. Sirolimus was introduced instead of ruxolitinib to enhance virus-specific effector function while preserving GvHD treatment (day 216). To further improve the antiviral effects of CTL therapy, a subsequent HAdV-specific T-cell product consisting of the penton peptide pool in addition was manufactured as a second stimulus after confirming a strong penton-specific T-cell response in the T-cell donor (Figure 2A,B). He received the first dose of penton/hexon-selected HAdV-specific T cells on day 198 (Table 1). Subsequently diarrhea improved continuously. The viral load decreased from 10^7 to a minimum of 10^5 copies/mL. Leukocyte counts ranged between 1000 and 2000/µL containing 100-300/µL lymphocytes. We prospectively measured the HAdV hexon- and HAdV penton-specific T-cells via ELISpot from day 103 on. A response for hexon-selected HAdV-specific T cells was detected after eight transfusions (day 225) followed by a response for penton-selected HAdV-specific T cells after ten transfers (day 240; Figure 1B). HAdV-reactive T cells were detectable directly ex vivo and proliferated after in vitro restimulation and 7-day culture.

Unfortunately, the patient developed a bacterial sepsis with multiorgan failure and required subsequent circulation support as well as mechanical ventilation and dialysis (day 248). Immunosuppression was tapered followed by reactivation of the intestinal GvHD. Retreatment with steroids led to a recurrence of HAdV in blood (10^6 copies/mL), stool, and bronchoalveolar lavage. Finally, the patient died of multiorgan failure 7 months after the first onset of adenovirus infection and 9 months after stem cell transplantation (day 283).

2 | MATERIAL AND METHODS

Manufacturing of HAdV-specific T cells was carried out with the CliniMACS Plus device and the MACS GMP PepTivator®.
AdV5_Hexon (1st and 2nd manufacturing process) and MACS GMP PepTivator AdV5_Hexon+ MACS research grade PepTivator AdV5_Penton (3rd and 4th manufacturing process) for antigenic restimulation. The intentional use of non-clinical grade PepTivator AdV5_Penton was subjected to and justified by thorough clinical risk-benefit assessment and effective pharmaceutical risk mitigation, parents, and patient were fully informed and provided consent.

Enrichment of IFN-γ-secreting cells was performed by immunomagnetic separation by antibody-conjugated super-paramagnetic particles (CliniMACS IFN-γ Enrichment Reagent, Miltenyi Biotec). Target and non-target cells were quantified by a newly developed single-platform assessment and gating strategy using positive (CD3/CD4/CD8/CD45/IFN-γ), negative (CD14/CD19/CD56), and dead cell (7-AAD) discriminators. The final T-cell products had a mean viability of 53.8% (52.9%-55.0%) in which a mean of 25.5% (19.0%-35.2%) was AdV-specific IFN-γ-positive T cells. For cryopreservation, the eluate fraction was adjusted to 2.86% HSA, 7.5% DMSO (dimethyl sulfoxide), aliquoted, subsequently processed in a controlled-rate freezer, and finally transferred to −140°C or lower in the vapor phase above liquid nitrogen for long-term storage. A fully automated microbial detection system was used for microbiological testing (sterility) of the leukapheresis and the ClinimACS CCS T-cell fraction. Quality control (QC) of the cryopreserved T-cell products (1st process, n = 0; 2nd process, n = 3, 3 × 20 mL, transfused
SCHULTZE-FLOREY ET AL.

Monitoring of HAdV viral load in blood and stool was performed by routine quantitative PCR as described earlier.\(^3\) Quantification of HAdV-specific T-cell frequencies was done before and after T-cell transfer by IFN-\(\gamma\) ELISpot assay as described and using the following peptide pools: ppADV5 Hexon, ppADV5 Penton (all Miltenyi Biotec).\(^1\) If suitable numbers of PBMCs were obtained, HAdV-specific T cells were expanded over 7 days using the respective antigens ppADV5 Hexon and ppADV5 Penton in TexMACS media (Miltenyi Biotec) containing 50 U/mL IL-2 (Peprotec). After 7 days, IFN-\(\gamma\) ELISpot assay was repeated using the respective antigens.

TABLE 1

Infusion No.	Production No.	Day	Antigens used for manufacturing	HAdV-CTLs (CD3+)/kg body weight	% IFN-\(\gamma^+\)/CD3+
1	1	114	H	\(2.5 \times 10^4\)	23.7
2	2	162	H	\(5 \times 10^3\)	24.2
3	2	176	H	\(9 \times 10^3\)	24.2
4	2	183	H	\(9 \times 10^3\)	24.2
5	2	190	H	\(9 \times 10^3\)	24.2
6	3	198	H + P	\(1 \times 10^4\)	19.0
7	3	204	H + P	\(3.6 \times 10^3\)	19.0
8	3	211	H + P	\(3.6 \times 10^3\)	19.0
9	3	226	H + P	\(3.6 \times 10^3\)	19.0
10	4	239	H + P	\(5 \times 10^3\)	35.2

Note: H = PepTivator AdV5 Hexon; P = PepTivator AdV5 Penton.

3: 3rd process, \(n = 4\), \(4 \times 15\) mL, transfused 4; 4th process, \(n = 4\), \(4 \times 20\) mL, transfused 1) was performed as described.
TABLE 2 Overview of clinical studies using HAdV- and multivirus-specific T cells for transfer in chronological order

Reference	No. of patients with HAdV infection	Symptoms	T-cell donor	Target specificity (HAdV)	Manufacturing	Doses	Time lines	Additional therapies (anti-viral drugs)	Outcome
Feuchtinger et al16	9	Multiorgan: gastrointestinal tract, lung, liver, heart, brain, retina, kidney	Stem cell donor	HAdV lysate	IFN-γ cytokine capture system	1.2-50 × 10^7 cells/kg body weight (BW)	Therapeutic	Cidofovir, ribavirin, valacyclovir, ganciclovir	4/9 CR 3/9 NR 1/9 NE
Uhlin et al23	1	Viremia	Third party family donor	HAdV peptide	Direct isolation via peptide-HLA multimers	3.1 × 10^6-1.7 × 10^7 cells/kgBW	Preemptive	Cidofovir	1/1 NR
Qasim et al9	5	Viremia organ: lung	Stem cell donor or third party family donor	HAdV lysate	IFN-γ cytokine capture system + expansion	1 × 10^4-1 × 10^5 cells/kgBW	Therapeutic	Cidofovir, ribavirin	3/5 CR 2/5 NR
Geyeregger et al24	2	Viremia, gastrointestinal and urinary tract, liver	Stem cell donor or third party donor	AdV5 PepTivator (Hexon)	In vitro stimulation and expansion 1x	1 × 10^4 cells/kgBW	Therapeutic	Cidofovir, ribavirin	2/2 CR 1/2 survived
Feucht et al7	30	Nasopharyngeal, gastrointestinal and urinary tract, lung, kidney, liver, brain	Stem cell donor	Hexon protein	IFN-γ cytokine capture system	5 × 10^7 cells/kgBW (HLA mismatch), 2.5 × 10^6 cells/kgBW (HLA-matched)	Therapeutic	Cidofovir, ribavirin	18/30 CR 3/30 PR 8/30 NR
Qian et al25	11	Viremia, gastrointestinal tract, lung	Stem cell donor or third party family donor	AdV5 PepTivator (Hexon)	IFN-γ cytokine capture system	5.83 ± 8.23 × 10^7 cells/kgBW	Therapeutic	Cidofovir, ribavirin	9/11 CR 2/11 NR
Withers et al26	1	Not specified	Third party donor	AdV5 PepTivator (Hexon)	In vitro stimulation and expansion	2 × 10^7 cells/m^2	Therapeutic	Cidofovir	1/1 CR
Ip et al13	8	Viremia, gastrointestinal tract	Stem cell donor	AdV5 PepTivator (Hexon)	In vitro stimulation and expansion	1 × 10^4-1 × 10^5 cells/kgBW	Preemptive	Cidofovir	8/8 CR
Kallay et al27	1	Viremia, gastrointestinal and urinary tract	Third party donor (family and unrelated)	AdV5 PepTivator (Hexon)	IFN-γ cytokine capture system	2.7 × 10^6 cells/kgBW	Therapeutic	Cidofovir, foscarnet	1/1 CR, but died of aspergilosis
Gössling et al28	1	Viremia, gastrointestinal tract	Third party donor (unrelated)	AdV5 PepTivator (Hexon)	IFN-γ cytokine capture system	2.6 × 10^7 cells/kgBW	Therapeutic	Cidofovir	1/1 CR
Multivirus-specific T cells									
Leen et al19	5	None	Stem cell donor	Ad5f35pp65 vector infected B-LCLs	Ex vivo expansion	5 × 10^6-1 × 10^8 cells/m^2	Prophylactic	Not specified	5/5 CR
Leen et al18	13	Gastrointestinal tract	Stem cell donor	Ad5f35null vector infected B-LCLs	Ex vivo expansion	5 × 10^6-1.35 × 10^8 cells/m^2	Prophylactic (n = 12), therapeutic (n = 1)	Cidofovir	9/9 CR (received as prophylaxis) 2/2 CR (active disease)

(Continues)
TABLE 2

Reference	No. of patients with HAdV infection	Symptoms	T-cell donor	Target specificity (HAdV)	Doses	Manufacturing	Manufacturing Time lines	Application	Tumor response
Leen et al	18	Not specified	Stem cell donor (unrelated)	Ad53505p65 vector	Up to 2 × 10^7 cells/m^2	Third party donor	Ex vivo stimulation and expansion	Therapeutic Cidofovir	7/17 CR, 7/17 PR, 3/17 NR
Gerdemann et al	6	Not specified	Third party donor (unrelated)	NTC385 EpH, Penton	5 × 10^6 cells/m^2	Third party donor	Ex vivo expansion	Prophylactic Cidofovir, Ganciclovir	5/5 CR
Papadopoulou et al	5	Viremia	Stem cell donor (unrelated)	Overlapping peptides for HAdV, Penton	5 × 10^7 cells/m^2	Overlapping peptides for HAdV, Penton	Ex vivo expansion	Therapeutic Cidofovir	1/1 CR
Tzannou et al	10	Upper respiratory tract, gastro-intestinal, and urinary tract, lung	Third party donor (unrelated)	Overlapping peptides for HAdV, Penton	2 × 10^7 cells/m^2	Overlapping peptides for HAdV, Penton	Ex vivo expansion	Therapeutic Cidofovir	7/10 CR, 7/10 PR, 2/10 NR

Abbreviations: CR, complete response; NE, not evaluated; NR, no response.

DISCUSSION

Complications after hematopoietic SCT are mainly treatment-related toxicity and viral infections. HAdV infection is among the most common viral infections in pediatric patients and confers a high risk of morbidity and mortality. Mounting an anti-HAdV T-cell response is required for viral clearance. The effects of antiviral drugs (eg, cidofovir and ribavirin) are limited and associated with toxicity and delayed immune reconstitution. The adoptive transfer of adenovirus-specific T cells presents an alternative treatment option.

This case describes a 14-year-old boy with a severe adenovirus infection after SCT treated with HAdV-specific T cells from his haploidentical stem cell donor. This is the first report on the feasibility of adeno-reactive T-cells that had been produced using penton-directed manufacturing and subsequently leading to specific T-cell responses upon adoptive transfer. The adenoviral penton protein is a recently described second immunodominant target. Application of penton-specific T cells improved the immune response shown in ELSpot assay and was followed by a 2 log decrease of viral loads. This underlines the importance for an effective defense against adenovirus. Weekly T-cell transfusions resulted in a stable HAdV-specific T-cell count irrespective of absolute CD3+ T-cell numbers, which could be potentially suppressed through constant GvHD treatment. However, subsequent infusion intervals were 3-4 weeks as already described by Feucht et al and due to persisting infection and availability of the cells. Schedules of T-cell administration may need to be adapted to individual patients on the basis of concurrent GvHD, GvHD treatment, tolerability of antiviral drugs, and efficiency.

The management of GvHD treatment in patients with viral infections is always critical. For the physician, it is a fine line to balance on an effective antiviral treatment with potent immune cells and an intensification of immunosuppression to treat the GvHD. Ruxolitinib as a JAK1/2 inhibitor is a new drug to treat corticosteroid-refractory GvHD as shown in a multicenter survey. There are increasing numbers of reports of infectious complications in patients on ruxolitinib treatment. Ruxolitinib influences the cytokine expression, down-regulates regulatory T cells and interferes with dendritic cells and natural killer cells. In the presented case consistent with short-lived therapeutic effect of adoptive T-cell infusions, ruxolitinib abolished any ELISpot signal even the positive control completely demonstrating the potent ability of this compound to suppress T-cell responses. After switch to sirolimus, sustained T-cell reactivity against HAdV became detectable despite continuously low absolute CD3+ counts. This may be explained by beneficial effects of sirolimus selectively on antivirus memory T-cell function. Therefore, the discontinuation of ruxolitinib switch to an alternative immunosuppressive treatment for GvHD should be strongly considered upon viral infections or reactivations.

In summary, we reported on a boy that received HAdV-reactive T cells from a haploidentical stem cell donor that had been manufactured under GMP conditions using the CCS with overlapping peptide pools. The patient showed no infusion-related toxicity and a...
decrease of viral load suggesting feasibility and effectiveness as similarly described in many recent studies (summary in Table 2).7,8,12,28 In addition, we could detect the immune response by ELISpot demonstrating an induction of penton- and hexon-specific T cells in the patient after transfer. Diligent monitoring of GvHD and anti-HAdV immune response enabled personally tailored immunosuppressive and antiviral therapy and led to control of both GvHD and HAdV infection in this patient.

ACKNOWLEDGEMENTS

This work was supported in part by the German Federal Ministry of Education and Research (01EO1302) and the German Childhood Cancer Foundation (DKS 2011.5). We thank Nicole Neumann, Dörthe Rokitta, Christopher Mielke, and Marina Kramer for excellent technical assistance.

CONFLICT OF INTEREST

The authors have no relevant conflict of interest to disclose.

AUTHORS CONTRIBUTION

RSF treated the patient, collected, and analyzed the clinical data and wrote the manuscript; STZ performed experiments on donor selection, quality control and immune monitoring, analyzed the data, and wrote the experimental part of the manuscript; HGH performed blood donation for T-cell transfer and was responsible for GMP T-cell product manufacturing; CP was involved in regulatory issues and GMP T-cell product manufacturing; BL treated the patient and revised the manuscript; AH performed viral monitoring; MS and KWS treated the patient; RB supervised the donor selection and GMP T-cell production, BEV performed the T-cell donor selection, supervised the GMP T-cell product manufacturing, and data analysis and writing of the manuscript; BMK treated the patient, supervised data analysis, and preparation of the manuscript; BEV and BMK designed the project and provided overall academic leadership; and all authors reviewed and approved the final version of the manuscript.

ORCID

Rebecca E. Schultze-Florey https://orcid.org/0000-0003-3293-2550

REFERENCES

1. Tischer S, Geyeregger R, Kwoczek J, et al. Discovery of immunodominant T-cell epitopes reveals penton protein as a second immunodominant target in human adenovirus infection. J Transl Med. 2016;14(1):286.
2. Bak S, Tischer S, Dragon A, et al. Selective effects of mTOR inhibitor sirolimus on naive and CMV-specific T cells extending its applicable range beyond immunosuppression. Front Immunol. 2018;9:2953.
3. Mynarek M, Ganzenmueller T, Mueller-Heine A, et al. Patient, virus, and treatment-related risk factors in pediatric adenovirus infection after stem cell transplantation: results of a routine monitoring program. Biol Blood Marrow Transplant. 2014;20(2):250-256.
4. Chakrabarti S, Mautner V, Osman H, et al. Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood. 2002;100(5):1619-1627.
5. Lion T, Kosulin K, Landlinger C, et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia. 2010;24(4):706-714.
6. Feuchtinger T, Lucke J, Hamprecht K, et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2005;128(4):503-509.
7. Feucht J, Ophek K, Lang P, et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood. 2015;125(12):1986-1994.
8. Lindemans CA, Leen AM, Boelens JJ. How I treat adenovirus in hematopoietic stem cell transplant recipients. Blood. 2010;116(25):5476-5485.
9. Qasim W, Gilmour K, Zhan H, et al. Interferon-gamma capture T cell therapy for persistent Adenoviraemia following allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2013;161(3):449-452.
10. Zeiser R, Burchert A, Lengerke C, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29(10):2062-2068.
11. Dioverti MV, Abu Saleh OM, Tande AJ. Infectious complications in patients on treatment with Ruxolitinib: case report and review of the literature. Infect Dis (Lond). 2018;50(5):381-387.
12. Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93(3):339-347.
13. Bollard CM, Heslop HE. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood. 2016;127(26):3331-3340.
14. Tzannou I, Papadopoulou A, Naik S, et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017;35:3547-3557.
15. Ip W, Silva JMF, Gaspar H, et al. Multicenter phase 1/2 application of adenovirus-specific T cells in high-risk pediatric patients after allogeneic stem cell transplantation. Cytotherapy. 2018;20(6):830-838.
16. Feuchtinger T, Matthes-Martín S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64-76.
17. Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113-5123.
18. Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283-4292.
19. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12(10):1160-1166.
20. Naik S, Nicholas SK, Martinez CA, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498-1505.e1491.
21. Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6(242):242ra83.
22. Gerdemann U, Katari UL, Papadopoulou A, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Moi Ther. 2013;21(11):2113-2121.

23. Uhlin M, Gertow J, Uzunel M, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55(8):1064-1073.

24. Geyeregger R, Freimuller C, Stemberger J, et al. First-in-man clinical results with good manufacturing practice (GMP)-compliant polypeptide-expanded adenovirus-specific T cells after haploidentical hematopoietic stem cell transplantation. J Immunother. 2014;37(4):245-249.

25. Qian C, Campidelli A, Wang Y, et al. Curative or pre-emptive adenovirus-specific T cell transfer from matched unrelated or third party haploidentical donors after HSCT, including UCB transplantations: a successful phase I/II multicenter clinical trial. J Hematol Oncol. 2017;10(1):102.

26. Withers B, Blyth E, Clancy LE, et al. Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Adv. 2017;1(24):2193-2205.

27. Kallay K, Kassa C, Reti M, et al. Early experience with ClinIMACS progidy CCS (IFN-gamma) system in selection of virus-specific T cells from third-party donors for pediatric patients with severe viral infections after hematopoietic stem cell transplantation. J Immunother. 2018;41(3):158-163.

28. Gossling KL, Fouz H, Kyrillopoulou O, et al. Clearance of treatment refractory adenoviremia via adenovirus-specific donor T-cell transfer during aplasia after alphabetatcr-CD19-depleted stem cell transplantation. Clin Infect Dis. 2019;68(8):1406-1409.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Schultze-Florey RE, Tischer-Zimmermann S, Heuft H-G, et al. Transfer of Hexon- and Penton-selected adenovirus-specific T cells for refractory adenovirus infection after haploidentical stem cell transplantation. Transpl Infect Dis. 2020;22:e13201. https://doi.org/10.1111/tid.13201