Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease

Gregory J. Heller, Michael S. Marshall, Yazan Issa, Jeffrey N. Marshall, Duc Nguyen, Emily Rue, Koralege C. Pathmasiri, Miriam S. Domowicz, Richard B. van Bremen, Leon M. Tai, Stephanie M. Cologna, Stephen J. Crocker, Maria I. Givogri, Mark S. Sands, and Ernesto R. Bongarzone

INTRODUCTION

Globoid cell leukodystrophy, or Krabbe disease (KD), is a lysosomal storage disorder caused by the loss of function of the lysosomal enzyme galactosylceramidase (GALC), resulting in the abnormal accumulation of the GALC substrate psychosine. Most affected patients are newborns developing diffuse central and peripheral sclerosis (demyelination), with neurosensory deficits and muscle atrophy, leading to death within the first few years of life.

Recent efforts have focused on the development of gene therapy protocols that aim to replace the deficient GALC enzyme. Previous studies have been successful in delaying the onset of demyelination, motor deficits, and significantly prolonging survival.

A study published by our group used a high-dose gene therapy regimen with codon-optimized murine *Galc* packaged in an adenovirus-associated virus, serotype 9 capsid (AAV9-GALC) and globally delivered via intracranial (i.c.), intrathecal (i.t.), and intravenous (i.v.) injections in the Twitcher (TWI) mouse model of KD. Treated TWI mice showed few to no signs of disease for most of their lifespan, which was significantly lengthened from a 44-day median survival to 265 days, with maximal survival of 650 days.

We investigated the factors influencing the long-term survival of AAV9-GALC treated TWI and we determined that there is a late-onset manifestation of the sclerotic phenotype, which is limited to small and well-defined portions in the brain. Instead of the diffuse demyelination traditionally observed in the brain of untreated TWI, multiple focal lesions of demyelination engulfed by gliotic scarring were found in brain white matter. These lesions exhibited a localized neuroinflammatory state featuring the proliferation of

Original Article

Molecular Therapy Vol. 29 No 5 May 2021 © 2021 The Author(s). 1883

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
oligodendrocyte progenitor cells (OPCs), astrocytes, and microglia. Expression of the GALC transgene declined in the lesions and was accompanied by increased levels of psychosine. Analysis of treated TWI animals at a younger age (i.e., 40 days of age) did not reveal any evidence of focal demyelinating lesions, indicating that this phenotype arises as a late-onset phenomenon.

The observations presented in this study hold important implications for understanding the possible long-term safety of AAV gene therapy for KD and emphasize the need for continuous monitoring and improvement of therapeutic protocols and strategies for KD and other genetic leukodystrophies.

RESULTS
Late-onset multifocal demyelination in the brain of AAV9-GALC-treated TWI mice
TWI (GALC-deficient) mice were treated with a global AAV9-GALC gene therapy regimen (i.c., i.v., and i.t.) after birth, as previously described. The TWI mouse displays diffuse demyelination throughout the CNS (Figures 1B and 1F) and peripheral nervous system (PNS) (Figures S1A and S1B), confirmed histologically in sham-treated TWI mice (sham TWI). AAV9-GALC gene therapy, globally administered in a high-dose regimen forestalled this demyelination at P40 both alone (TWI+AAV) (Figure 1G) or in combination with BMT.

The TWI mouse displays diffuse demyelination throughout the CNS (Figures 1B and 1F) and peripheral nervous system (PNS) (Figures S1A and S1B), confirmed histologically in sham-treated TWI mice (sham TWI). AAV9-GALC gene therapy, globally administered in a high-dose regimen forestalled this demyelination at P40 both alone (TWI+AAV) (Figure 1G) or in combination with BMT.
(TWI+AAV+BMT) (Figure 1H) to levels indistinguishable from a wild-type (WT) P40 animal (Figure 1E). The PNS was equally protected at the P40 time point (Figures S1E and S1F) by AAV9-GALC to levels compatible with WT (Figures S1C and S1D).

As reported by Marshall et al.,7 brain tissue from aged (180 days or older) TWI+AAV (Figure 1C) and TWI+AAV+BMT (Figure 1D) showed a global well-preserved myelination comparable to WT brains (Figure 1A), underscoring the power of GALC correction following neonatal gene therapy. A closer inspection of aged, treated TWI brains revealed the presence of multiple (ranging 2–8 lesions per brain), distinct regions of focal demyelination (0.5–2 mm²) (Figures 1C and 1D, arrows and arrowheads). Within the lesions, there was a complete loss of myelin, confirmed by both myelin basic protein (MBP) staining (Figures 1 and 1K, arrows and arrowheads) and by electron microscopy (EM) (Figure 1O). EM identified the ultrastructure of these lesions, highlighting the stark delineation between healthy and demyelinated tissue (Figure 1O, dotted line and arrows). Within the demyelinated lesions, damaged tissue in aged TWI+AAV animals (Figure 1O) had a similar structure to the diffuse damage seen in sham P40 TWI (Figure 1M). Axons with thin myelin layers, suggestive of a remyelination process,15 were not found in the lesions, indicating that these lesions progressively worsened without evidence of remission or effective myelin repair. Areas adjacent to the lesions (Figures 1C, 1D, 1J, 1K, and 1O) remained relatively intact and normal appearing, comparable to aged WT (Figures 1A, 1I, and 1L) and the P40 TWI+AAV (Figures 1G, 1H, and 1N); however, there was some evidence of axonal stress (e.g., axonal swelling) in axons adjacent to lesions (Figure 1O, arrowheads).

Not all regions of the brain were affected equally. Myelinated tracts of the stria terminalis (Figures 1C, 1D, 1J, and 1K, arrows) were affected in all animals. Other affected regions included cerebellar and brainstem white matter (Figures 1C and 1D, arrowheads) and corpus callosum (Figure 1J, arrowheads). Lesions were identified in the brains of all AAV9-GALC-treated animals examined (6 total examined: 3 TWI+AAV, 3 TWI+AAV+BMT). Plaques were not present in any of the brains of treated TWI evaluated at earlier ages (P40; n = 5). Within the CNS, this localized demyelination was present only in the brain. Serial sections from spinal cords from both TWI+AAV and TWI+AAV+BMT animals were examined and showed no evidence of focal demyelination (Figure S2). In addition, focal demyelination was not observed within the PNS of aged TWI+AAV (Figures S1G and S1H) or TWI+AAV+BMT animals (data not shown).

In our previous paper,1 we showed that AAV alone or in combination with BMT ameliorated signs of disease for the first 6–8 months of life through our clinical disease scoring system. The clinical disease score is composed of three components: mass change (which was shown in our previous report1), presence of tremor, and locomotor ability. To better understand when pathology and signs of disease begin, locomotor ability and tremor in relation to age were quantified over time (Figures S3A and S3B). This showed that tremor begins in most TWI+AAV and TWI+AAV+BMT animals at ~16 weeks of age and locomotor ability begins to decline at ~20 weeks of age. This suggests that although these animals display an overall pronounced and lasting clinical improvement and increased survival, there are clinical deteriorations that can be appreciated during these animals’ aging.

Multiple studies have used an AAV gene therapy to treat TWI mice, but only two reports1,14 have presented some imaged evidence of analogous myelin lesions in the CNS of AAV-treated TWI mice. It is important to note the differences in gene therapy design, methodology, and time of analysis between these two studies and ours. Hawkin-Salsbury et al.14 used a combination of L-cycloserine, BMT, and AAV2/5-GALC. Mice received gene therapy (i.e., 6 × 10⁴ vector genomes [vg]/mouse and i.t., 1.5 × 10¹⁵ vg/mouse) between post-natal days (P)2 and 3, followed by BMT on P4 and L-cycloserine (an irreversible inhibitor 3-ketohydrosphingosine synthase, ultimately leading to decreased psychosine20) treatment starting at P5–7 for the life of the animal. Histological analyses of myelin were done on P160. In contrast, Karumuthil-Melethil et al.11 compared AAV9, AAV001, and AAVrh10 administered i.t. (2 × 10¹⁵ vg/mouse) on P11, with histological analyses performed at P35. Despite these methodological differences, both studies presented some evidence of focal lesions after an initial healthy period in treated TWI, but further analysis was not reported. To provide unbiased cross-examination of our study, we examined an independent set of TWI mice produced by the Sands lab and subjected to a triple combined treatment analogous to that reported previously by that lab,14 with the relevant difference that AAV2/5-GALC was replaced with the same AAV9-GALC vector used in this present study (Figure S4). At P35, myelination in treated TWI (Figure S4C) appeared indistinguishable from WT (Figure S4A) compared to untreated TWI (Figure S4B). However, multifocal demyelinated lesions were evident in the brain of aged, treated TWI. Example images of demyelinating lesions in the corpus callosum are shown at P160 (Figure S4D, arrows) and terminal P500 (Figures S4E and S4F, arrows). These findings from an independent study indicate that these multi-focal lesions are not protocol dependent and are a potential comorbidity of AAV gene therapy in different contexts.

Reduced expression of therapeutic GALC enzyme and accumulation of psychosine in focal demyelinated lesions

To understand the cause(s) of these lesions, we aimed to determine whether the expression of therapeutic GALC was compromised in lesioned areas. Fluorescent in situ hybridization (FISH) using a riboprobe specifically designed to recognize the mouse Galc mRNA confirmed the robust expression of therapeutic Galc mRNA throughout the brain of P40 TWI+AAV+BMT (Figures 2B and 2G), but a total absence of Galc mRNA in the sham TWI brain (Figures 2A and 2F). Expression in P40-treated TWI is close to that observed in WT brains (Figures 2D and 2I). In contrast, ISH in lesioned areas (e.g., corpus callosum, brainstem) of aged AAV-treated TWI brains revealed regions with significant reductions of Galc mRNA expression (Figures 2C and 2H, dotted lines). Specificity and background binding levels of the probes are displayed as well (Figures 2E and 2J).
The localized decline of \textit{Galc} mRNA was accompanied by analogous decreases in the levels of GALC protein immunodetected within lesions of aged, treated TWI brains. This staining shows the absence of GALC immunoreaction within a lesion of an aged TWI+AAV (Figure 2L, inside dotted lines). The lesion was identified by its lack of immunoreaction to anti-MBP antibodies (Figure 2M). The lesions were noted to be hypercellular via DAPI staining (Figure 2N). GALC protein was immunodetected in non-lesioned areas of aged, treated TWI brains (Figure 2L, outside dotted lines), P40-treated TWI brains (Figure 2K), and aged WT brains (Figures 2P–2R), but not in sham TWI (Figure 2O). These results provide evidence that demyelinating lesions are associated with areas in the TWI brain where GALC expression was initially restored by AAV9-GALC therapy, but subsequently declined during aging.

To have a measure of the functional effect of this localized decline of expression of therapeutic GALC, serial sections of treated TWI brains were subjected to micropunches and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the detection of psychosine levels. Figure 2S shows that, albeit not reaching statistical significance, lesioned areas of the aged TWI+AAV mice (L–N, dotted line) showed reduced levels of psychosine (O) in comparison to P40 TWI+AAV (K) and WT (P–R) mice. Minimal GALC (I) and MBP staining (M) was detected within lesions in aged TWI+AAV mice (L–N, dotted line). (S) Psychosine levels measured from micropunches within the lesion areas from P40 and aged TWI+AAV and normalized to levels in WT (n = 3 per group). Scale bars: 100 \textmu m.
These analyses provide evidence that localized deficits of GALC activity developed in defined regions of the treated adult TWI brain.

Reduction of GALC expression associated with relapse of lysosomal responses in focal demyelinated lesions

In naive TWI brains, the lack of GALC expression is always accompanied by abnormal lysosomal responses, including exacerbated expression of lysosomal proteins such as LAMP1 and the presence of abundant lysosomal structures throughout the brain (Figure 3B). Aberrant lysosomal responses were detected in multiple brain cell types, including oligodendrocytes (Figures 3E–3I), neurons (Figures 3J–3N), and microglia (Figures 3O–3S). WT brains (Figures 3A, 3E, 3J, and 3O) do not display these abnormal lysosomal responses. Immunofluorescent staining for LAMP1 revealed a multifaceted pathology within the focal demyelinated areas of the aged AA9-GALC-treated TWI (Figures 3C and 3D). Compared with WT (Figures 3A, 3E, 3J, and 3O) and sham TWI (Figures 3B, 3E, 3J, and 3O), gene therapy successfully corrected lysosomal responses in oligodendrocytes, neurons, and microglia throughout the brain of TWI+AAV animals at P40 (Figures 3G, 3L, and 3Q). In stark contrast, brain tissue from aged TWI+AAV and TWI+AAV+BMT had abundant LAMP1+ material accumulated, indicating a return to a pathological state in oligodendrocytes (Figures 3H and 3I), neurons (Figures 3M and 3N), and microglia (Figures 3R and 3S). Quantification (Figure 3T) of LAMP1 expression confirmed that the robust correction of LAMP1 observed at P40 weakened in aged, treated TWI. These results indicate the resurgence of lysosomal dysfunction in focal brain areas during the aging of treated TWI.

Adult-onset lesions are robustly microgliotic and exhibit fibrinogen extravasation

Remyelination is known to occur within TWI, as normal repair mechanisms attempt to replace damaged myelin. This includes the recruitment of inflammatory cells such as microglia, which was observed to occur in these lesions, creating glial scarring around the lesion margins (Figure 4C, arrows) in comparison to WT (Figure 4B) and sham TWI (Figure 4A) brains. Localized damage to white matter is usually associated with leakage of the blood-brain barrier (BBB). In fact, extravasation of plasma proteins, particularly fibrinogen into the brain, has been reported to act as a mediator of microglial activation and damage in multiple neurological conditions,

extravasation were populated by activated IBA1+ microglia and highly restricted to demyelinated lesion areas (Figures 4G–4I, arrow). Fibrinogen leakage was not observed in sham TWI or WT aged animals (Figures 4D and 4E). Leakage of plasma proteins was not observed in the spinal cord (Figure S3), which was consistent with an absence of lesions (Figure S2).

Activation of the fibrinogen-SMAD pathway facilitates a potent inflammatory glial response in adult-onset lesions

Extravasation of fibrinogen is a common finding in the lesioned brain regions of patients with multiple sclerosis and ischemic injury, and this extravasated fibrinogen is associated with astrogliosis. Recent findings have shown that extravasated fibrinogen promotes shifting neural progenitors’ fate to astrocytes by activation of the bone morphogenetic protein (BMP) pathway. We assessed the involvement of these responses in the neuropathology observed in the brain of aged, treated TWI mice. We used immunohistochemistry to examine the association between fibrinogen in demyelinating lesions with glial fibrillary acidic protein (GFAP). We detected a strong glialotic response with abundant GFAP+ astrocytes (Figure 5A) engulfing lesioned areas containing immunodetectable fibrinogen (Figures 5B and 5C). This glialtic response was in stark contrast to areas devoid of demyelinated lesions in the aged brains of TWI+AAV, which lacked any detectable fibrinogen and GFAP astrogliosis, such as the striatum (Figures 5D–5F), and to the generalized gliosis observed throughout the brains of the sham TWI (Figures S5–S1). We did not find significant differences in astrocyte responses between P40 TWI+AAV (Figure 5I) and adult WT (Figure 5K), strongly suggesting that astrogliosis and fibrinogen extravasation in lesions developed together during aging of the treated TWI. Secondary antibody controls are shown in Figure 5L. Quantification of these responses showed significant increases in GFAP in aged TWI+AAV brains (Figure 5X) and of the alpha unit of fibrinogen (Figure 5V). Inflammatory astrogliosis in aged, treated TWI was further confirmed by the quantification of the levels of Serpina3 and LCN2, two known proteins involved in the activation of astrogliosis in multiple sclerosis, revealing significant upregulations (Figures 5Y and 5Z) in the aged, treated TWI brains. These results confirm the activation of a strong inflammatory response in these mice.

Immunohistochemistry for SMAD1 showed strong reactivity within the demyelinated lesions of the aged AA9-treated TWI brain (Figures 5M–5O). As expected, SMAD1 reactivity was strongly associated with glialtotic GFAP+ detection (Figures 5P–5R) and fibrinogen (Figures 5S–5U). Phosphorylation of SMAD1 at Ser 463/465 is a readout of the fibrinogen-SMAD pathway.
activation of SMAD. Phospho-SMAD1 (pSMAD1) was significantly increased in the aged TWI+AAV brain (Figure 5W), in support of the involvement of this pathway.

Degradation of tight-junction components underlying the leakage of fibrinogen in adult-onset lesions

There is a direct correlation between the quantity of plasma proteins and other blood elements leaking in the brain parenchyma and the integrity and permeability of the BBB.23 The efficiency of the BBB to prevent extravasation is largely regulated by the presence of tight junctions, which serve to fully seal the space between endothelial cells of the brain vasculature.25,29 To evaluate the possibility that fibrinogen extravasation is associated with BBB discontinuity, we examined the integrity of the BBB with isolectin-fluorescein isothiocyanate (FITC) staining, which reliably detects disruptions in the continuity of the BBB (Figures 6A–6F). Our results clearly show that within the lesioned areas of the aged, treated TWI, the vessel walls have discontinuities (Figures 6E and 6F, arrowheads). In contrast, non-lesioned areas of the aged, treated TWI brains (Figure 6D, arrows) and P40 TWI+AAV (Figure 6C, arrows) showed a smooth and continuous staining, indistinguishable from WT vessels (Figure 6B) and sham TWI (Figure 6A). Several protein components of the tight junction are sensitive to instability and degradation. Occludin and various claudin proteins play key scaffolding roles in tightening the BBB and can be targeted for degradation by matrix metalloproteinases such as MMP9.34,35 To analyze whether the discontinuity of the vessel detected by isolectin labeling was accompanied by changes in tight junction components, we measured the levels of occludin, claudin5, and activated MMP9. A significant increase in the active form of MMP9 in protein lysates of aged TWI+AAV mice was identified (Figure 6G). A stark increase in the presence of the 60-kDa degraded form of occludin was readily observed in aged TWI lysates, statistically significant from degradation levels observed in any other conditions (Figure 6H). Similarly, levels of claudin5 were significantly reduced in aged TWI+AAV brains with respect to the levels in any of the other experimental conditions (Figure 6I).
Lesion-associated OPCs are depleted of detectable GALC: reemergence of GALC metabolic deficiency by exhaustion of the therapeutic AAV genome

Because oligodendrocytes are the main contributor to psychosine production in KD, the recruitment of proliferating OPCs lacking the therapeutic transgene to an area for damage (likely a doomed attempt to improve remyelination) could contribute to further psychosine accumulation, leading to additional damage. Based on these findings, we hypothesized that the proliferation of OPCs in the treated TWI brain dilutes the episomal AAV9-GALC plasmid, rendering de novo OPCs with minimal to zero therapeutic GALC enzyme. Accordingly, these newly formed cells are expected to have limited, if any, lysosomal GALC activity to metabolize psychosine. Upon transducing a cell, the DNA packaged within an AAV primarily forms extra-chromosomal, non-replicating episomes. We hypothesized that the focal lesions occurred because of a localized loss of AAV9-GALC DNA leading to the loss of GALC and the resulting accumulation of psychosine. Multiple lines of

Figure 5. Areas with fibrinogen deposition present widespread astrogliosis

(A–C) Tissue sections double stained for fibrinogen (green) and GFAP (purple) showed strong colocalization of these proteins within the lesioned areas of aged TWI+AAV. (D–F, J, and K) In contrast, non-lesioned regions of aged TWI+AAC such as the striatum (D–F), P40 TWI+AAV (J), and aged WT (K) had undetectable fibrinogen and normalized expression of GFAP astrocytes. (G–I) Sham P40 TWI showed no fibrinogen but extensive astrogliosis through the brain. (L) Background staining of secondary antibodies is shown.

Lesion-associated OPCs are depleted of detectable GALC: reemergence of GALC metabolic deficiency by exhaustion of the therapeutic AAV genome
experimental evidence support this. We examined the expression of GALC protein in OPCs. Figure 7 shows that platelet-derived growth factor receptor-α+ (PDGFR-α+) OPCs (Figure 7B, arrows) found in lesioned areas of aged TWI+AAV are completely devoid of detectable levels of GALC (Figures 7A and 7C, arrows), similar to PDGFR-α+ OPCs in sham TWI (Figures 7G–7I, arrows). Similar findings were observed in aged TWI+AAV+BMT (data not shown). Instead, PDGFRα+ OPCs located in unaffected regions of the TWI brain such as cortex (Figure 7E, arrow) contained detectable levels of GALC (Figures 7D and 7F, arrow), similar to PDGFR-α+ OPCs in WT (Figures 7J–7L, arrows).

Demyelinating lesions contain dividing oligodendrocyte progenitors

DAPI staining (Figures 8B–8E) revealed a hypercellular profile within lesions in comparison to WT (Figure 8A). Given the hypercellularity of these lesions, we examined these regions for the presence of dividing cells. For this, we used immunofluorescent
Figure 7. Loss of GALC transgenic expression in OPCs within lesions

Tissue was double-stained for GALC (purple) and PDGFR-α (green) to investigate the possibility of OPCs losing the GALC transgene in aged, treated TWI brains. (A–F) Confocal microscopy showed that OPCs within lesions of aged TWI+AAV (A–C, arrows) lacked detectable levels of GALC protein, while OPCs located outside lesioned areas such as the cortex (D–F, arrow) showed GALC expression. (J–L) Aged WT showed detectable GALC expression within OPCs (J–L, arrows), while sham P40 TWI showed a total absence of GALC expression within OPCs (G–I, arrows). Scale bars: 30 μm.
identification of proliferative cell nuclear antigen (PCNA)-positive nuclei. Abundant PCNA+ nuclei were primarily concentrated around the margin and within the lesions, suggesting the lesions were active zones of cellular proliferation (Figures 8B–8E). Proliferation of OPCs has been shown to occur in the brain of TWI mice, especially during the late stages of disease, as well as in the adult human brain. To determine whether dividing OPCs made up a significant portion of the proliferative cells found in lesions, we co-stained brain sections with antibodies against PCNA and PDGFR-α, a well-characterized receptor expressed by replicating OPCs. Our results confirmed the presence of abundant double-positive PDGFR-α/PCNA OPCs undergoing cell division within lesions (Figures 8B–8E, arrows). Secondary antibody controls are shown in Figure 8F. To quantify this response, we performed quantitative PCR (qPCR) for the Pdgfra mRNA. Figure 8M shows that while P40 TWI+AAV mice have levels of Pdgfra mRNA comparable to WT, the brain of aged TWI+AAV mice have an ~2-fold increase in Pdgfra mRNA expression. Western blot analysis shows similar changes in the levels of PDGFR-α protein (Figure 8N). Finally, counting of the PDGFR-α+ OPCs within the lesion areas (Figures 8G–8L) also showed increased levels of OPCs (Figure 8O) in the aged TWI+AAV brain in comparison to P40 TWI+AAV.

We tested our hypothesis by transducing TWI neuroglial progenitors with AAV9-GALC at a multiplicity of infection (MOI) of 5,000, which approximates the dosage used in our in vivo gene therapy of TWI mice. Samples were taken every 4 days for the quantification of episomal DNA via qPCR, GALC activity using our fluorescent assay, and psychosine using MS. The results revealed a decline in viral DNA over time (Figure 9A). GALC activity per cell rapidly declined as well, showing a statistically significant decrease in 4 days, and it was no longer statistically different from untreated TWI control after 20 days (Figure 9C). The decrease in viral DNA and GALC activity was not due to cell death, as the cumulative cell count over time showed a rapid increase in cells (Figure 9B).

To assess whether the loss of GALC activity led to an increase in psychosine in TWI cells, we quantified psychosine by LC-MS/MS and compared the levels between early (4–8 days post-infection, DPI) and late (16–20 DPI) time points. Our results show that a significant decrease in psychosine in AAV-treated cells is measurable at early time points (4–8 DPI). In contrast, psychosine levels in AAV-treated cells increased to levels statistically indistinguishable from untreated cells at later time points (16–20 DPI) (Figure 9D). These results support our hypothesis that non-replicating, episomal AAV DNA is gradually diluted as cells replicate, leading to the reemergence of psychosine accumulation in newly generated TWI cells.

Finally, we investigated whether a similar dilutional process occurred in the mouse brain, particularly during proliferation of OPCs. This was accomplished by transducing WT mice with AAV-001-GFP, which was engineered to preferentially target OPCs and oligodendrocytes. Mice were analyzed for GFP fluorescence at 7, 30, and 60 days of age (Figure 9E). This revealed a statistically significant decline in GFP fluorescence over time from an average fluorescence of ~43 fluorescent units (FUs) at P7 to ~14 FUs at P60 (Figure 9E). The number of fluorescent cells was also quantified, which revealed no significant difference between all time points (Figure 9F). These results further support our hypothesis that the proliferation of progenitor cells in the brains of adult AAV9-GALC-treated TWI facilitates the dilution of therapeutic AAV-GALC genomes (Figures 2 and 9) and leads to a progressive decrease in corrective levels of GALC activity with an increase in psychosine (Figures 2 and 9) and recapitulation of neuropathology in localized areas (Figure 1).

In summary, our study presents multipronged experimental evidence that adult-onset multifocal demyelinating inflammatory lesions linked to BBB disruption and extravasation of plasma fibrinogen form in the brains of neonatally AAV9-GALC- and AAV9-GALC+BMT-treated TWI mice. Our study identifies the focal reemergence of GALC metabolic deficiency in treated TWI arising from the proliferation of OPCs leading to the loss of the episomal AAV DNA containing the therapeutic transgene.

DISCUSSION

AAV gene therapy is proving to be a viable and useful treatment option for monogenetic disorders such as KD. The efficacy of AAV vectors seems paramount if administrated in early infancy, lasting significant periods of time thereafter. Our published protocol is an example of early intervention leading to an effective means of significantly extending the lifespan and delaying the onset of demyelination and inflammation, matching the efficacy of AAV therapies observed by other groups. However, the dynamics of maintaining therapeutic levels of GALC correction during longer periods of time extending into adulthood are less clear. Here, we are the first to describe in detail an adult-onset presentation of KD pathology in long-surviving AAV-treated TWI mice as multi-focal demyelinating lesions with associated inflammatory cells and lysosomal dysfunction. These data are supported by the discovery of similar lesions in aged mice from an independent study performed by the Sands group. Our work shows that these lesions are observed only in long-lived animals. Although many of the animals in this study surpassed survival benchmarks of some previous reports, it does not seem that longevity is a significant factor, as these lesions were identified as early as P180. The reason may also be secondary to the unique regimen of the protocol used, which included a global delivery (via i.c., i.t., and i.v. injections) of...
a higher titer AAV-GALC therapy regimen.⁷,⁸,¹¹,¹⁴ The widespread, high titer treatment could have resulted in greater initial correction, which may have hidden the local loss of GALC leading to the observed focal lesions.

Regional distribution of lesions in the brain does not appear to represent a limitation in the initial distribution of the vector as we confirmed GALC expression at P40 within the regions later affected by local demyelination. This idea is further supported by previous data that confirmed the AAV9-GFP vector to be present in all areas of the brain, and that there was no localized demyelination or neuroinflammatory phenotype observed in AAV9-GALC-treated animals at P40.⁷ The mechanism responsible for initiating damage in these lesions, and therefore driving the regional specificity, could be related to local rates of myelin turnover, involving the generation of new oligodendrocytes. In fact, the proliferation of OPCs has been shown to occur in the TWI CNS⁴⁴ as well as in the adult human brain.⁴⁵–⁴⁷ Myelination is a key driver of psychosine production,⁵¹ suggesting that these regions may normally undergo increased myelin remodeling, with uncorrected OPCs acting as a potential trigger for damage as animals age. Other studies have presented evidence of regional differences in myelin quality,⁵² which may be related to adult myelin remodeling following normal motor learning.⁵³ One anatomical region consistently affected by focal demyelination was the stria terminalis, directly adjacent to the subventricular zone, an area of permanent cell proliferation in the adult brain.⁵⁴

This concentrated insult seems to reveal localized areas of myelin vulnerability and blood-brain/blood-cerebrospinal fluid barrier vulnerability, characterized by serum extravasation and fibrinogen leakage, which has been demonstrated to further activate microglia recruitment and axonal damage via a CD11b/CD18 mechanism.⁵⁷ The observation of plasma protein extravasation implies that there are deficits at the BBB (capillaries), the post-capillary venules, or the blood-cerebrospinal fluid barrier. Although the infiltration of hematogenous cells into the CNS of TWI has been reported,⁵⁵ leakage of plasma proteins has not been observed previously. In fact, the BBB had been shown to remain largely intact in the TWI,⁵⁶ suggesting the emergence of a new mechanism of damage in aged AAV9-GALC-treated TWI.

Because the AAV vector DNA exists largely as non-replicating extra-chromosomal episomes, cellular proliferation inexorably causes its
progressive dilution by successive cell division, which decreases the average number of episomes per cell. The in vitro experiments demonstrated this by showing that episomal viral DNA and transgene encoded GALC declined over time, inversely proportional to cumulative cell count. This effect correlated to increases in psychosine levels, proportionally to cumulative cell count. The in vivo experiments provided further evidence of this effect by showing that fluorescent levels originating from AAV-encoded GFP decreased over time, despite the maintenance of the overall number of fluorescent cells over the duration of the experiment. Because fluorescence is proportional to the transgene expression levels, as transduced cells divide and dilute AAV genome, highly fluorescent cells become less fluorescent, to the point at which fluorescence is minimal or indistinguishable from background.

Given enough time, some cells may lose all copies of the therapeutic episomal Galc DNA, essentially reverting to an untreated state. Those cells and all progeny thereof will be metabolically deficient in their ability to catabolize psychosine. The rapid loss of AAV DNA and GALC transgene per cell in transduced TWI neuroglial progenitors as well as the decline of AAV-mediated GFP fluorescence over time support this episomal dilutional hypothesis. We speculate that this dilutional effect could explain the reduction of GALC activity and increased psychosine concentrations detected in TWI as the animals age, compared to levels observed at P40, as previously reported. In the context of myelin remodeling, if newly generated TWI OPCs continue to increase the local levels of psychosine, this may activate repair mechanisms that direct newly formed cells to the site of injury. Uncorrected repair/inflammatory cells (e.g., OPCs, astroglia, microglia), possessing a limited capacity to break down psychosine, likely enhance the local lesion into a demyelinated lesion. This is supported by the observed loss of Galc transcriptional expression and GALC protein within the lesions and, more important, in OPCs within the lesion, suggesting a cellular turnover with the invasion of non-corrected cell types.

Beyond an evaluation of the ability of an AAV vector to initially correct the pathophysiology of disease, our results provide an interesting observation for how a localized loss of lysosomal function can lead to a presentation that is reminiscent of other focal demyelination such as multiple sclerosis. Heterozygous Galc mutants have been shown to have reduced remyelination and clearance of myelin debris, which supports our theory that the progressive loss of GALC increases myelin vulnerability in the adult and aging brain.

Our study has not fully addressed the temporal nature of how the lesions develop. At this time, we hypothesize that glial cells within the lesioned areas may naturally replicate faster than other regions of the CNS in response to myelin remodeling, leading to more rapid dilution of the therapeutic episomal transgene. This would explain why the lesions were only found within specific areas. Initially, these cells may be metabolically functional, aided by cross-correction from neighboring cells secreting GALC. However, uncorrected cells, as well as an exponentially increasing number of initially corrected cells losing AAV episomal copies, reach a point at which psychosine burden from the uncorrected cells is too large for neighboring cells to correct and pathological effects emerge. Cell death and debris result in astrogliosis, inflammation, and activation of microglia. Inflammatory cells are known to produce MMP9, which participates in breakdown components of the BBB such as claudin5. BBB failure allows the extravasation of blood components such as fibrinogen, which augments astrogliosis, inflammation, and generalized damage.

We did not observe signs of remyelination within the lesions on EM microscopy; however, this still leaves the question of whether these lesions progressively worsen or whether there may be periods of remission. Progressive lesions would be consistent with the proposed mechanism of episomal dilution and recruitment of uncorrected repair cells, no longer containing GALC protein, and would lead to a dysfunctional repair process. Further studies will address these aspects of the pathogenic mechanism.

The observations presented in this study hold important implications. Undoubtedly, the recent cascade of positive results using AAV gene therapy obtained in the KD mouse and GLD dog model exemplifies the advantage of these vectors and supports their future use in clinical trials for KD. While this excitement is totally justified and is expected to gain further momentum, our study, along with recent findings of liver toxicity in AAV-treated TWI mice, highlight the importance of studying long-term safety when using AAV gene therapy for CNS treatment. Further improvements in gene therapy regents, delivery procedures, and quality control protocols will ensure more refined, efficient, long-lasting, and safer results for KD patients.

MATERIALS AND METHODS

Animals and therapy protocol

Animal work in this study was performed in accordance with approved protocols from the Animal Care and Use Committee at the University of Illinois at Chicago. WT (Galc+/+) and TWI (Galc−/−) mice were identified via PCR, as previously described, all maintained on a C57BL/6J background. Males and females were both used in this study and randomly distributed as treatment was initiated before the sex could be identified.

Neonatal TWI mice (P0–P1) were treated with AAV9-GALC via three delivery routes—i.c., i.t., and i.v.—at a dosage of 9.0 × 10^9 vg in 5 × 1 μL PBS, 8.25 × 10^10 vg in 18 μL PBS, and 3.3 × 10^11 vg in 30 μL PBS, respectively (4.2 × 10^11 vg total, indicated as TWI+AAV). i.t. injections were performed with a 28-G insulin syringe (4428-1, Jelco/Smiths Medical ASD, Keene, NH, USA), inserted between L5 and S1, with 1% trypsin blue added to the solution for tracing. i.v. injections were delivered to the superficial temporal vein using a 28-G insulin syringe. i.t. and i.v. injections were performed with pups backlit by a red-light lamp to visualize the spinal cord and vein. i.c. injections were performed as 5 separate injections (1 μL each, 2 in the left cortical hemisphere, 2 in the right cortical hemisphere, and 1 in the cerebellum) with a 26-G Hamilton syringe Model 701 (Hamilton, Reno, NV, USA) inserted 1 mm into the brain parenchyma.
Neonatal (P1) WT C57BL/6 were transduced with AAV-001-GFP or PBS control at a dosage of 1.0×10^{10} vg in a 4 × 1 µL injections (bilateral cortex and thalamus) with a 26-G Hamilton syringe.

All of the injections were performed under isoflurane anesthesia, 1 h after a 2-mg/kg subcutaneous injection of meloxicam (Boehringer Ingelheim Vetmedica, St. Joseph, MO) for the treatment of post-procedure pain and inflammation. Povidone-iodine cat. no. 67618-155 (Betadine, Stamford, CT, USA) was applied to the skin to disinfect before injections.

After 24 h of recovery, a subset of AAV9-GALC treated mice (indicated as TWI+AAV+BMT) were given an additional i.v. treatment of bone marrow stem cells harvested from 6- to 8-week-old syngeneic WT mice (30 million cells each treatment). Bone marrow cells were harvested by flushing the tibiae and femur bones, pelleting the cells, and then resuspending in Dulbecco’s modified Eagle’s medium cat. no. 11966 (Thermo Fisher Scientific, Waltham, MA, USA). An additional control group of TWI mice was treated only with bone marrow on P2 (TWI+BMT only). To measure BMt engraftment efficiency, a subset of mice received bone marrow from C57BL/6 background mice expressing ECFP fluorescent cells (mouse stock no. 004218, The Jackson Laboratory, Bar Harbor, ME, USA). A group of sham (sterile PBS) i.t., i.v., and i.c. injections on TWI and WT were also performed under isoflurane anesthesia, 1 h after a 2-mg/kg subcutaneous injection of meloxicam (Boehringer Ingelheim Vetmedica, St. Joseph, MO) for the treatment of post-progression inflammation. Povidone-iodine cat. no. 67618-155 (Betadine, Stamford, CT, USA) was applied to the skin to disinfect before injections.

Quantification of locomotor ability and tremor
Beginning on P20, animals had their locomotor capabilities and tremor quantified twice per week until 20 weeks and once per week thereafter. Quantification was performed by the same blinded observer every session. Locomotor ability was scored as follows: normal, 0; waddling, 1; partial paralysis, 1.5; and full paralysis, 2. Tremor was scored in a binary system of no tremor, 0 and tremor present, 1.

Vector design and production
The AAV9-GALC vector was made using an inverted terminal repeat (ITR) plasmid provided by Mark Sands’ laboratory at Washington University in St. Louis, with the Chicken-Beta Actin (CBA-CAGGS) promoter driving murine Galc, as described. The AAV9.47-GFP vector was produced using a plasmid encoding EGFP, driven by the CBh promoter,” along with a SV40 poly A tail. These were packaged as single-stranded genomes in an AAV capsid.

The AAV-001-GFP vector was made by the directed evolution of AAV1, AAV2, AAV2i8, AAV2.5, AAV6, AAV8, AAV9, AAV9.47, and AAVrh10 capsids. The capsid library was introduced to rats given 6-hydroxy-dopamine and then recovered via PCR. It contains an enhanced GFP transgene under the hybrid CBh packaged with a self-complementary genome, which was generously provided to us by Dr. Stephen Gray.

Recombinant AAV vectors were generated by the triple transfection of suspension HEK293 cells, using methods developed at the University of North Carolina (UNC) Gene Therapy Center Vector Core facility (Chapel Hill, NC). Vectors were dialyzed in phosphate-buffered saline (PBS) containing 5% d-sorbitol and 350 mM NaCl.

Psychosine quantification
Fresh tissue was homogenized in H2O using a Vibra-cell ultrasonic liquid processor model no. VCX 130 (Sonics and Materials, Newton, CT, USA). Psychosine was extracted from tissue homogenates (200 µg) via a methanol-acetic acid solution (0.5% acetic acid in methanol). Using d-lactosyl-β1-1′-d-erythro-sphingosine cat. no. 860542P (Avanti Polar Lipids, Alabaster, AL, USA) as an internal standard, psychosine content was determined using MS/MS.

Chromatography
Separations were carried out using a Shimadzu (Kyoto, Japan) Nexera ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters (Milford, MA) Acquity UPLC BEH amide column (2.1 × 50 mm, 1.7 µm) or an Agilent (Santa Clara, CA, USA) 1290 Infinity II system equipped with a Poroshell 120 EC-C18 UHPLC column (2.1 × 100 mm, 2.7 µm). Psychosine was eluted from the ethylene bridged hybrid (BEH) amide column using a 30-s isocratic flow of 85% acetonitrile and 15% 5 mM ammonium formate and 0.2% formic acid in water at a flow rate of 0.90 mL/min. The injection volume was 1 µL, and the column temperature was 45°C. Data acquisition and integration were carried out using Shimadzu Lab Solutions software. Psychosine was eluted from the Poroshell 120 EC-C18 column using a gradient elution with mobile phases consisting of solvent (A) water + 0.1% formic acid (B) acetonitrile + 0.1% formic acid, and the flow rate was maintained at 0.3 mL/min. LC gradient was as follows: 0–3.5 min held at 86% (B); 3.5–4 min (B) was increased from 86% to 100%; 4–10 min held at 100% (B). Injection volume is 15 µL, and the column was maintained at 40°C.

Psychosine detection
The Agilent 1290 Infinity II UHPLC system was interfaced to an Agilent 6550 quadrupole time-of-flight mass spectrometer equipped with electrospray source, and the data were acquired in positive ion mode. Source parameters were as follows: nitrogen gas temperature (200°C), drying gas flow (12 L/min), nebulizer (35 psi), sheath gas temperature (350°C), sheath gas flow (11 L/min), VCap (3,500 V), nozzle voltage (500 V), and fragmentor voltage (130 V). MS and MS/MS m/z ranges were set to 50–1,700 with fixed collision energies of 25 eV. MS and MS/MS scan rates were 3 spectra per second. Data acquisition and integration were carried out using Agilent MassHunter software. A surrogate standard of d-lactosyl-β1-1′-d-erythro-sphingosine was used for relative quantification.

MS/MS
The Shimadzu Nexera UHPLC system was interfaced to a Shimadzu LCMS-8050 triple quadrupole mass spectrometer equipped with positive ion electrospray and operated at unit resolution. Nitrogen was used for nebulization at a flow rate of 3.0 L/min, drying gas at 10 L/min, and heating gas flow at 10 L/min. The ion source capillary and vaporizer temperatures were 300°C. Psychosine was measured
using collision-induced dissociation and selected reaction monitoring (SRM). Argon was used as the collision gas at a pressure of 230 kPa. The SRM transition for psychosine was m/z 462–282 and the transition for the surrogate standard D-lactosyl-DL-1-D-erythro-sphingosine was m/z 624–282. The SRM dwell time was 50 ms.

GALC activity quantification

GALC activity was quantified as described previously. Lysate was incubated with the GALC substrate cat. no. EH05989 (6HMU-β-D-galactoside, Carbosynth, Berkshire, UK) at 37°C for 17 h. Enzymatic activity was quantified via fluorescence on a DTX 880 Multimode Detector (Beckman Coulter, Brea, CA, USA) with 385 nm excitation and 450 nm emission.

ISH

FISH was performed on frozen brain sections with a GALC antisense FITC-riboprobe prepared by in vitro reverse transcription using a template derived from a 1.1-kb fragment of Galc. Briefly, the Galc probe used for ISH was generated by sub-cloning a 1.1-kb BamHI/XbaI piece of the 5' end of the murine GALC cDNA from pBRLsinPPT.hPGK mGALC-HA.Wrpe into the PGEM plasmid. Sections were permeabilized by treatment with Proteinase K (1 μg/mL) for 20 min. After post-hybridization washes, bound FITC was detected with a peroxidase-conjugated anti-FITC antibody (PerkinElmer, Waltham, MA, USA) and incubation with the peroxidase substrate FITC-tetramerald. The SRM transition for psychosine was m/z 624–282 and the transition for the surrogate standard D-lactosyl-DL-1-D-erythro-sphingosine was m/z 624–282. The SRM dwell time was 50 ms.

Immunofluorescence

Mice were anesthetized and perfused with saline, followed by fixation with 4% paraformaldehyde, before the tissue was processed for cryosectioning. Cryosections of 30 μm were blocked free-floating with blocking buffer (0.3 M glycine, 1% BSA, 5% normal donkey serum, 0.30% Triton X-100, Tris-buffered saline (TBS-T) for 1 h at room temperature. Blots were visualized with an Odyssey Fluorescent Imaging system (LI-COR, Lincoln, NE, USA). Primary antibodies used included the following: GFAP (mouse [Ms]) cat. no. MAB3402 (EMD Millipore, 1:500 dilution), LAMP1 (Rt) cat. no. sc-19992 (Santa Cruz Laboratories, Santa Cruz, CA, USA, 1:500 dilution) PDGF-α (Rb) cat. no. sc-338 (Santa Cruz Biotechnology, Dallas, TX, USA, 1:200 dilution), PCNA (Ms) cat. no. sc-56 (Santa Cruz Biotechnology, 1:500 dilution), Fibrinogen (Rb) cat. no. A0080 (Aiglent-Dako, Santa Clara, CA, USA, 1:200 dilution), PLP (Rt) (AA3 monoclonal hybridoma, 1:100 dilution), and isolectin-FITC cat. no. L32478 (Thermo Fisher, 1:500 dilution). Secondary antibodies included the following: Alexa Fluor 488 Anti-Mouse cat. no. A-11029 (Thermo Fisher Scientific, 1:500 dilution), Dylight 488 Anti-Rabbit cat. no. 211-482-171 (Jackson Immunoresearch, 1:500 dilution), Cy3 Anti-Rabbit cat. no. 711-166-152 (Jackson Immunoresearch, 1:500 dilution), Alexa Fluor 546 Anti-Mouse cat. no. A11030 (Thermo Fisher Scientific, 1:500 dilution), Dylight 549 Anti-Chicken cat. no. 003-500-003 (Jackson Immunoresearch, 1:500 dilution), Alexa Fluor 647 Anti-Mouse cat. no. A21236 (Thermo Fisher Scientific, 1:500 dilution), and Dylight 649 Anti-Rabbit cat. no. 211-492-171 (Jackson Immunoresearch, 1:500 dilution). Cell nuclei were stained with DAPI cat. no. D1306 (Thermo Fisher, 1:3,000 dilution in TBS). Immunofluorescent complexes were visualized using a Leica TCS SPE confocal laser with an upright DM5500Q Microscope (Leica Biosystems, Buffalo Grove, IL, USA).

Immunoblotting

Tissue was homogenized in 10 volumes of RIPA buffer cat. no. BP-115x (Boston BioProducts, Ashland, MA, USA) using a Vibracell ultrasonic liquid processor model number VXC 130 (Sonics and Materials). Lysates were incubated at 4°C with rocking for 1 h and then spun at 14,000 × g for 20 min. The supernatant was removed, and its protein concentration quantified using a BCA assay cat. no. 32225 (Thermo Fisher Scientific). A total of 12.5 μg protein lysate was loaded into 10-well 4%–12% Bis-Tris Protein Gels, 1.5 mm, cat. no. NP0335BOX (Thermo Fisher Scientific). After gel electrophoresis, protein transfer was made onto a polyvinylidene fluoride (PVDF) membrane cat. no. 1620177 (Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% milk/1% BSA in TBS-Tween (0.5%) (TBS-T) for 1 h at room temperature. Primary antibodies were diluted in 1% BSA/TBS-T and incubated at 4°C overnight. Secondary antibodies were diluted in 5% milk/TBS-T and incubated on blot for 1 h at room temperature. Blots were visualized with an ECL reagent cat. no. 32106 (Thermo Fisher Scientific) on an Odyssey Fc Imaging system (LI-COR, Lincoln, NE, USA). Primary antibodies used included the following: actin (Rb) cat. no. A2066 (Sigma-Aldrich, St. Louis, MO, USA, 1:1,000 dilution), LAMP1 (Rt) cat. no. sc-199992 (Santa Cruz Laboratories, 1:500 dilution), PDGF-α (Rb) cat. no. sc-338 (Santa Cruz Biotechnology, 1:500 dilution), fibronogen (Rb) cat. no. A0080 (Aiglent-Dako, 1:200 dilution), Serpin3 (Goat) cat. no. AF4709 (R&D Systems, Minneapolis, MN, USA, 1:500 dilution), LCN2 (goat) cat. no. AF1857 (R&D Systems, 1:500 dilution); phosphoSMAD (Rb) cat. no. 06-702 (Upstate Biotechnology, Lake Placid, NY, USA, 1:500 dilution); and claudin5 (Rb) cat. no. SAB4502981 (EMD Millipore, 1:500 dilution).

Neuroglial cell culture and collection

P1–P5 TWI mice were anesthetized with 400 mg/kg tribromoethanol before euthanasia. Neuroglial cells were isolated from the
subventricular zone and hippocampus of P1–P5 TWI pups and put into Earle’s Balanced Salt Solution (EBSS) cat. no. E6267 (Sigma-Aldrich) containing 1 mg/mL papain cat. no. LS003126 (Worthington Biochemical, Lakewood, NJ, USA), 0.2 mg/mL i-cysteine cat. no. C7602 (Sigma-Aldrich), 0.2 mg/mL EDTA cat. no. 15575-038 (Life Technologies), and 0.2 mg/mL DNase cat. no. LS002007 (Worthington Biochemical) and incubated at 37°C for 45 min with gentle rocking. Cells were then centrifuged at 123 × g for 10 min and the supernatant removed. Cells were resuspended in GIBCO Hank’s Balanced Salt Solution (HBSS) cat. no. 13170-112 (Thermo Fisher Scientific) with 100 U/mL GIBCO penicillin/streptomycin cat. no. 15140122 (Thermo Fisher Scientific) and 0.6% glucose and mechanically dissociated by repeat pipetting. For proliferation, neuroglial cells were grown in Neurocult Basal Medium (Mo and Rat) cat. no. 05700 (Stem Cell Technologies, Vancouver, BC, Canada) with Neurocult Proliferation Supplement (Mo and Rat) cat. no. 05701 supplement (Stem Cell Technologies) and 100 U/mL penicillin/streptomycin cat. no. AF-100-15 (PeproTech, Rocky Hill, NJ, USA), 10 ng/mL broblast growth factor cat. no. 100-18B (PeproTech, 10 ng/mL), and 1 μg/mL heparin cat. no. H3393 (Sigma-Aldrich). Neuroglial cells were cultured at 37°C, 5% CO2, with daily perturbation to maintain single-cell suspension. Cells were counted on a hemocytometer before transduction with AAV9-GALC at a MOI of 5,000 vg/cell. Samples were collected every 4 days by centrifugation at 800 × g for 10 min and the supernatant removed. Cells were resuspended before vortexing for 10 s. Samples were then lysed using a VC ultrathin sections prepared and stained as described.80

DNA isolation and quantitative polymerase chain reaction (qPCR)

An equivalent volume of (25:24:1) phenol/chloroform/isoamyl alcohol (Invitrogen [Carlsbad, CA, USA] 1857C038, 4C #3) was added to the cell lysate before vortexing for 10 s. Samples were then centrifuged at 10,000 × g at room temperature for 30 s. The aqueous phase was transferred to a new tube and 1/10 volume of 3 M sodium acetate, pH 5.2, was added before vortexing. A 2× volume of ice-cold 100% ethanol was added and vortexed before placing on dry ice for 5 min. Samples were centrifuged at 15,000 × g at room temperature for 5 min and the supernatant removed. Room temperature 70% ethanol, 1 mL, was added before vortexing and centrifugation at 15,000 × g at room temperature for 5 min. The supernatant was discarded and samples were air dried for 15 min to allow any remaining ethanol to evaporate. The samples were resuspended in 50 μL TE buffer and quantified on a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific). 96-Well Clear PCR plates cat. no. MLL9601 were filled with 10 μL iTaq Universal SYBR Green Supermix cat. no. 172512 (BioRad), 0.4 μL 10 μM forward primer, 0.4 μL 10 μM reverse primer, 3 μL 20 ng/μL DNA, and 6.2 μL H2O. qPCR primers are as follows: forward 5'-CATCAGCCACCCAGGACTG-3' and reverse 5'-ATGCCAGTGGTCCCGTTCAG-3'. qPCR was performed on a CFX Connect Real Time PCR Optics Module (BioRad) with the following settings: 95°C for 2 min, then 40 cycles of 95°C for 10 s, then 50.3°C for 30 s, and ending with a gradual increase from 65°C to 95°C.

GFP fluorescence quantification

Animals were anesthetized perfused with saline followed by post-fixing brains in PBS with 4% paraformaldehyde (PFA) for 48 h. Brains were then cryosectioned at 30 μm on a SM2010R sliding microtome (Leica Biosystems). Tile-scanned images were taken on a LSM 880 confocal microscope with 20 air objective lens (Carl Zeiss AG, Jena, Germany). Collection parameters were as follows: excitation at 488 nm from an argon laser, 4% laser power, and 2.8 μm thickness. Every other section from each animal was analyzed to find the section with the highest fluorescence for comparison. The images with the highest fluorescence were then quantified in ImageJ (National Institutes of Health [NIH], Bethesda, MD, USA).

Electron microscopy

Animals were anesthetized before perfusion with heparinized PBS (0.09 mg/mL) and tissue was then removed and fixed with 3% paraformaldehyde/2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) for 12 h at 4°C. The tissue was then transferred to 4% paraformaldehyde/1% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) until processed for EM. For EM, the tissue was embedded in araldite, and ultrathin sections prepared and stained as described.

Statistical analysis

Statistics and graphs were prepared with Prism 8 software (GraphPad Software, La Jolla, CA, USA). Data were analyzed using a one-way ANOVA with a Tukey’s post hoc analysis, with p < 0.05 considered significant. Graphs represent the mean of independent measurements with error bars representing the standard error of the mean. All immunoblotting was performed with technical replicates of at least 3. Variation was comparable between groups.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.ymthe.2021.01.026.

ACKNOWLEDGMENTS

We thank Dr Steve Gray for the generous gift of the AAV-001-GFP vector and the technical assistance of Benas Jakobauskas, Monika Stoskute, and Alexandra Socovich. M.S.M. was funded through a pre-doctoral NRSA fellowship from the NIH (NRSA F30NS090684). E.R.B. was funded with grants from the NIH (R01 NS065808), the Legacy of Angels Foundation, Partners for Krabbe Disease Research, and the European Leukodystrophy Association.

AUTHOR CONTRIBUTIONS

G.J.H., M.S.M., and E.R.B. designed the study and analyzed the data; G.J.H. and M.S.M. administered all of the treatments; M.S.M. and...
D.N. took care of the mouse colony; G.J.H., M.S.M., Y.I., and J.N.M. collected the tissue; M.S.M. prepared the psychosine extractions; K.C.P., S.M.C., E.R., and R.v.B. performed the MS measurements and the analysis of the psychosine concentrations; G.J.H., M.S.M., Y.I., J.N.M., L.M.T., and E.R.B. performed all of the histological staining and confocal and epifluorescent microscopy imaging; E.R.B. performed the EM imaging and analysis; M.I.G. and S.J.C. performed the immunoblotting; M.S.S. performed the independent quality control experiments for lesions at Washington University in St. Louis; G.J.H. cultured the neuronal cells and performed qPCR as well as quantified the GALC activity on the lysates; G.J.H., M.S.M., and E.R.B. prepared the figures; G.J.H., M.S.M., and E.R.B. wrote the manuscript, with contributions from L.M.T., S.M.C., S.J.C., M.S.S., E.R., Bolino, A., Bianchi, F., Del Carro, U., et al. (2015). Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum. Mol. Genet. 24, 3372–3389.

MUSOLINO, P.L., Lund, T.C., Pan, J., Escolar, M.L., Paker, A.M., Duncan, C.N., and Eichler, F.S. (2014). Hematopoietic stem cell transplantation in the leukodystrophies: a systematic review of the literature. Neuropediatrics 45, 169–174.

Escolar, M.L., Poe, M.D., Martin, H.R., and Kurtzberg, J. (2006). A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics 118, e879–e889.

Escolar, M.L., Poe, M.D., Provenzale, J.M., Richards, K.C., Allison, J., Wood, S., Wenger, D.A., Pietryga, D., Wall, D., Champagne, M., et al. (2005). Transplantation of umbilical cord blood in babies with infantile Krabbe’s disease. N. Engl. J. Med. 352, 2069–2081.

Hildebrand, C. (1989). Myelin sheath remodelling in remyelinated rat sciatic nerve. J. Neurocytol. 18, 285–294.

Sundaram, K.S., and Lev, M. (1985). Inhibition of cerebroside synthesis in the brains of mice treated with L-cycloserine. J. Lipid Res. 26, 473–477.

Kondo, Y., Adams, J.M., Vanier, M.T., and Duncan, I.D. (2011). Macrophages counteract demyelination in a mouse model of globoid cell leukodystrophy. J. Neurosci. 31, 3610–3624.

Gay, D., and Estir, M. (1991). Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytochemical study. Brain 114 (Pt 1B), 557–572.

Ballabh, P., Braun, A., and Nedergaard, M. (2004). The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13.

Del Zoppo, G.J., and Mabuchi, T. (2003). Cerebral microvascular responses to focal ischemia. J. Cereb. Blood Flow Metab. 23, 879–894.

Kirk, J., Plumb, J., Mirakhor, M., and McQuaid, S. (2003). Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J. Pathol. 201, 319–327.

Del Zoppo, G.J., and Milner, R. (2006). Integrin-matrix interactions in the cerebral microvasculature. Arterioscler. Thromb. Vasc. Biol. 26, 1966–1975.

Davalos, D., Ryu, J.K., Merlino, M., Baeten, K.M., Le Moan, N., Petersen, M.A., Deerinck, T.J., Simronn, D.S., Bedard, C., Hakozaki, H., et al. (2012). Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227.

Ahn, H.J., Glickman, J.F., Poon, K.L., Zamolodchikov, D., Ino, Charles, O.C., Norris, E.H., and Strickland, S. (2014). A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer’s disease mice. J. Exp. Med. 211, 1049–1062.

Vos, C.M., Geurts, J.J., Montagne, L., van Haastert, E.S., Bö, L., van der Valk, P., Barkhof, F., and de Vries, H.E. (2005). Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol. Dis. 20, 953–960.

Hamann, G.F., Okada, Y., and del Zoppo, G.J. (1996). Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J. Cereb. Blood Flow Metab. 16, 1373–1378.

Pous, L., Deshpande, S.S., Nath, S., Mezey, S., Malik, S.C., Schildge, S., Bohrer, C., Topp, K., Pfeifer, D., Fernández-Klett, F., et al. (2020). Fibrinogen induces neural stem cell differentiation into astrocytes in the subventricular zone via BMP signaling. Nat. Commun. 11, 630.
32. Häggmark, A., Bystroëm, S., Ayooglu, B., Qundos, U., Uhlein, M., Khademi, M., Olsson, T., Schwenk, J.M., and Nilsson, P. (2013). Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics 13, 2256–2267.

33. Al Nimer, F., Elliott, C., Bergman, J., Khademi, M., Dring, A.M., Ainellah, S., Bergenhaim, T., Romme Christensen, J., Sellebjerg, F., Svenningson, A., et al. (2016). Lipopolis-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol. Neuroimmunol. Neuroinflamm. 3, e191.

34. Spampinato, S.F., Merlo, S., Sano, Y., Kanda, T., and Sortino, M.A. (2017). Astrocytes contribute to Aβ-induced blood–brain barrier damage through activation of endothelial MPP3. J. Neurochem. 142, 464–477.

35. Song, J., Hu, Y., Li, H., Huang, X., Hu, Y., Wang, J., Jiang, X., Li, J., Yang, Z., et al. (2018). miR-1303 regulates BBB permeability and promotes CNS lesions following CA16 infections by directly targeting MPP3. Emerg. Microbes Infect. 7, 155.

36. Schulte, S., and Stoofel, W. (1993). Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc. Natl. Acad. Sci. USA 90, 10265–10269.

37. Keirstead, H.S., Levine, J.M., and Blakemore, W.F. (1998). Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22, 161–170.

38. Reynolds, R., Cenci di Bello, I., Dawson, M., and Levine, J. (2001). The response of adult oligodendrocyte progenitors to demyelination in EAE. Prog. Brain Res. 132, 165–174.

39. McCarty, D.M., Young, S.M., Jr., and Samulski, R.J. (2004). Integration of adeno-associated virus vector persistence and rescue. J. Virol. 8191, 72–84.

40. Duncan, I.D., Radcliff, A.B., Heidari, M., Kidd, G., August, B.K., and Wierenga, L.A. (2005). Guggino, W.B., Cutting, G.R., Carter, B.J., and Flotte, T.R. (1996). In vivo model of adult spinal cord. Glia 170, 1210–1220.

41. McCown, T.J. (2016). Characterization of a novel adeno-associated viral vector E11807, E11820, and recombinant AAV vectors. Annu. Rev. Genet. 819, 425–448.

42. Smith, M.E. (1973). A regional survey of myelin development: some compositional and metabolic aspects. J. Lipid Res. 14, 541–551.

43. Xiao, L., Ohayon, D., McKenzie, I.A., Sinclair-Wilson, A., Wright, J.L., Fudge, A.D., Emery, B., Li, H., and Richardson, W.D. (2016). Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19, 1210–1217.

44. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., and Baron-Van Evercooren, A. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366.

45. Wu, Y.P., Matsuda, J., Kubota, A., Suzuki, K., and Suzuki, K. (2000). Infiltration of hematogenous lineage cells into the demyelinating central nervous system of twitcher mice. J. Neuropathol. Exp. Neurol. 59, 628–639.

46. Zaka, M., and Wenger, D.A. (2004). Psychosine-induced apoptosis in a mouse oligodendroglioma cell line. Neurobiol. Dis. 17, 696–6976.

47. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., and Baron-Van Evercooren, A. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366.

48. Tohyama, J., Matsuda, J., and Suzuki, K. (2001). Psychosine is as potent an inducer of cell death as C6-ceramide in cultured C6 cells. J. Neurochem. 77, 541–551.

49. McCown, T.J. (2016). Characterization of a novel adeno-associated viral vector E11807, E11820, and recombinant AAV vectors. Annu. Rev. Genet. 819, 425–448.

50. Rajput, H., Fuster, M.A., and Wenger, D.A. (1996). Retroviral vector-mediated transfer of the galactocerebrosidegalactocerebrosidegalactodiglyceride, and lactosylceramide. Adv. Exp. Med. Biol. 68, 99–114.

51. McCown, T.J. (2016). Characterization of a novel adeno-associated viral vector E11807, E11820, and recombinant AAV vectors. Annu. Rev. Genet. 819, 425–448.

52. Smith, M.E. (1973). A regional survey of myelin development: some compositional and metabolic aspects. J. Lipid Res. 14, 541–551.
72. Fei, M., Wang, H., Zhou, M., Deng, C., Zhang, L., and Han, Y. (2020). Podoplanin influences the inflammatory phenotypes and mobility of microglia in traumatic brain injury. Biochem. Biophys. Res. Commun. 523, 361–367.

73. Bradbury, A.M., Bagel, J.H., Nguyen, D., Lykken, E.A., Pesayco Salvador, J., Jiang, X., Swain, G.P., Assenmacher, C.A., Hendricks, I.J., Miyadera, K., et al. (2020). Krabbe disease successfully treated via monotherapy of intrathecal gene therapy. J. Clin. Invest. 130, 4906–4920.

74. Li, Y., Miller, C.A., Shea, L.K., Jiang, X., Guzman, M.A., Chandler, R.J., Ramakrishnan, S.M., Smith, S.N., Venditti, C.P., Vogler, C.A., et al. (2021). Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe disease. Mol. Ther. Published online December 31, 2020. https://doi.org/10.1016/j.ymthe.2020.12.031.

75. Sakai, N., Inui, K., Tatsumi, N., Fukushima, H., Nishigaki, T., Taniike, M., Nishimoto, J., Tsukamoto, H., Yanagihara, I., Ozono, K., and Okada, S. (1996). Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J. Neurochem. 66, 1118–1124.

76. Gray, S.J., Foti, S.B., Schwartz, J.W., Bachaboina, B., Taylor-Blake, B., Coleman, J., Ehlers, M.D., Zylka, M.J., McCown, T.J., and Samulski, R.J. (2011). Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 22, 1143–1153.

77. Greiger, J.C., Soltys, S.M., and Samulski, R.J. (2016). Production of Recombinant Adeno-associated Virus Vectors Using Suspension HEK293 Cells and Continuous Harvest of Vector From the Culture Media for GMP FIX and FLT1 Clinical Vector. Mol. Ther. 24, 287–297.

78. Dolcetta, D., Perani, L., Givogri, M.L., Galbiati, F., Amadio, S., Del Carro, U., Finocchiaro, G., Fanzani, A., Marchesini, S., Naldini, L., et al. (2006). Design and optimization of lentiviral vectors for transfer of GALC expression in Twitcher brain. J. Gene Med. 8, 962–971.

79. Domowicz, M.S., Sanders, T.A., Ragsdale, C.W., and Schwartz, N.B. (2008). Aggrecan is expressed by embryonic brain glia and regulates astrocyte development. Dev. Biol. 315, 114–124.

80. Smith, B.R., Santos, M.B., Marshall, M.S., Cantuti-Castelvetri, I., Lopez-Rosas, A., Li, G., van Breemen, R., Claycomb, K.L., Gallea, J.L., Celej, M.S., et al. (2014). Neuronal inclusions of α-synuclein contribute to the pathogenesis of Krabbe disease. J. Pathol. 232, 509–521.