FINITE ELEMENTS IN SOME VECTOR LATTICES OF NONLINEAR OPERATORS

M. A. PLIEV AND M. R. WEBER

Abstract. We study the collection of finite elements $\Phi_1(U(E, F))$ in the vector lattice $U(E, F)$ of orthogonally additive, order bounded (called abstract Uryson) operators between two vector lattices E and F, where F is Dedekind complete. In particular, for an atomic vector lattice E it is proved that for a finite element in $\varphi \in U(E, \mathbb{R})$ there is only a finite set of mutually disjoint atoms, where φ does not vanish and, for an atomless vector lattice the zero-vector is the only finite element in the band of σ-laterally continuous abstract Uryson functionals. We also describe the ideal $\Phi_1(U(\mathbb{R}^n, \mathbb{R}^m))$ for $n, m \in \mathbb{N}$ and consider rank one operators to be finite elements in $U(E, F)$.

1. Introduction

The last time finite elements in vector lattices have been an object of an active investigation [5, 6, 7, 9, 17, 27]. This class of elements in Archimedean vector lattices was introduced as an abstract analogon of continuous functions (on a topological space) with compact support by Makarov and Weber in 1972, see [16]. Recently a systematic treatment of finite elements in vector lattices appeared in [28]. On the other hand the study of nonlinear maps between vector lattices is also a growing area of Functional analysis, where the background has to be found in the nonlinear integral operators, see e.g. [12]. The interesting class of nonlinear, order bounded, orthogonally additive operators, called abstract Uryson operators, was introduced and studied in 1990 by Mazón and Segura de León [18, 19], and then considered to be defined on lattice-normed spaces by Kusraev and Pliev in [14, 15, 21].

Now a theory of abstract Uryson operators is also a subject of intensive investigations [4, 8, 25]. In this paper the investigation of finite elements is extended to the vector lattice $U(E, F)$ of abstract Uryson operators from a vector lattice E to a Dedekind complete vector lattice F.

2. Preliminaries

The goal of this section is to introduce some basic definitions and facts. General information on vector lattices the reader can find in the books [1, 13, 28, 30].

2010 Mathematics Subject Classification. Primary 47H07; Secondary 47H99.

Key words and phrases. Finite elements, orthogonally additive order bounded operators, Uryson operators, rank-one operators.
Definition 2.1. Let E be an Archimedean vector lattice. An element $\varphi \in E$ called finite, if there is an element $z \in E$ satisfying the following condition: for any element $x \in E$ there exists a number $c_x > 0$ such that the following inequality holds
\[|x| \land n|\varphi| \leq c_x z \quad \text{for all } n \in \mathbb{N}. \]

For a finite element φ the (positive) element z is called a majorant of φ. If a finite element φ possesses a majorant which itself is a finite element then φ is called totally finite. The collections of all finite and totally finite elements of a vector lattice E are ideals in E and will be denoted by $\Phi_1(E)$ and $\Phi_2(E)$, respectively. It is clear that 0 is always a finite element.

For our purpose we mention that the relations $\Phi_1(E) = E$ and $\Phi_1(E) = \{0\}$ are possible (for the complete list of the relations between E, $\Phi_1(E)$ and $\Phi_2(E)$ see [28], section 6.2). Finite elements in vector and Banach lattices have been studied in [5], in sublattices of vector lattices in [6], in f-algebras and product algebras [7, 9].

The relations between the finite elements in E and the finite elements in vector sublattices of E are manifold. The result we need later is the following.

Proposition 2.2 ([28], Theorem 3.28 and Corollary 3.29). Let E_0 be a projection band in the vector lattice E, and p_0 the band projection from E onto E_0. Then $p_0(\Phi_1(E)) = \Phi_1(E) \cap E_0 = \Phi_1(E_0)$. If E_1 is another projection band in E and $E = E_0 \oplus E_1$ then $\Phi_1(E) = \Phi_1(E_0) \oplus \Phi_1(E_1)$.

Recall that an element z in a vector lattice E is said to be a component or a fragment of x if $z \perp (x - z)$, i.e. if $|z| \land |x - z| = 0$. The notations $x = y \cup z$ and $z \subseteq x$ mean that $x = y + z$ with $y \downarrow z$ and that z is a fragment of x, respectively. The set of all fragments of the element $x \in E$ is denoted by F_x. Let be $x \in E$. A collection $(p_\xi)_{\xi \in \Xi}$ of elements in E is called a partition of x if $|p_\xi| \land |p_\eta| = 0$, whenever $\xi \neq \eta$ and $x = \sum_{\xi \in \Xi} p_\xi$.

Definition 2.3. Let E be a vector lattice and let X be a real vector space. An operator $T : E \to X$ is called orthogonally additive if $T(x + y) = T(x) + T(y)$ whenever $x, y \in E$ are disjoint elements, i.e. if $|x| \land |y| = 0$.

It follows from the definition that $T(0) = 0$. It is immediate that the set of all orthogonally additive operators is a real vector space with respect to the natural linear operations.

So, the orthogonal additivity of an operator T will be expressed as $T(x \downarrow y) = T(x) + T(y)$.

Definition 2.4. Let E and F be vector lattices. An orthogonally additive operator $T : E \to F$ is called:

- positive if $Tx \geq 0$ holds in F for all $x \in E$,
- order bounded if T maps any order bounded subset of E into an order bounded subset of F.

An orthogonally additive order bounded operator \(T: E \to F \) is called an abstract Uryson operator.

The set of all abstract Uryson operators from \(E \) to \(F \) we denote by \(\mathcal{U}(E,F) \). If \(F = \mathbb{R} \) then an element \(f \in \mathcal{U}(E,\mathbb{R}) \) is called an abstract Uryson functional.

A positive linear order bounded operator \(A: E \to F \) defines a positive abstract Uryson operator by means of \(T(x) = A(|x|) \) for each \(x \in E \).

We will consider some examples. The most famous ones are the nonlinear integral Uryson operators which are well known and thoroughly studied e.g. in [12], chapt. 5.

Let \((A, \Sigma, \mu) \) and \((B, \Xi, \nu) \) be \(\sigma \)-finite complete measure spaces and denote the completion of their product measure space by \((A \times B, \mu \times \nu) \). Let \(K: A \times B \times \mathbb{R} \to \mathbb{R} \) be a function which satisfies the following conditions\(^1\):

\begin{align*}
(C_0) & \quad K(s,t,0) = 0 \text{ for } \mu \times \nu\text{-almost all } (s,t) \in A \times B; \\
(C_1) & \quad K(\cdot,\cdot,r) \text{ is } \mu \times \nu\text{-measurable for all } r \in \mathbb{R}; \\
(C_2) & \quad K(s,t,\cdot) \text{ is continuous on } \mathbb{R} \text{ for } \mu \times \nu\text{-almost all } (s,t) \in A \times B.
\end{align*}

Denote by \(L_0(B,\Xi,\nu) \) or, shortly by \(L_0(\nu) \), the ordered vector space of all \(\nu \)-measurable and \(\nu \)-almost everywhere finite functions on \(B \) with the order \(f \leq g \) defined as \(f(t) \leq g(t) \) \(\nu \)-almost everywhere on \(B \). Then \(L_0(\nu) \) is a Dedekind complete vector lattice. Analogously, the space \(L_0(A,\Sigma,\mu) \), or shortly \(L_0(\mu) \), is defined.

Given \(f \in L_0(\nu) \) the function \(|K(s,\cdot,f(\cdot))| \) is \(\nu \)-measurable for \(\mu \)-almost all \(s \in A \) and \(h_f(s) := \int_B |K(s,t,f(t))| \, d\nu(t) \) is a well defined \(\mu \)-measurable function. Since the function \(h_f \) can be infinite on a set of positive measure, we define

\[\text{Dom}_B(K) := \{ f \in L_0(\nu): h_f \in L_0(\mu) \}. \]

Example 2.5 (Uryson integral operator). Define an operator \(T: \text{Dom}_B(K) \to L_0(\mu) \)

by

\begin{equation}
(Tf)(s) = \int_B K(s,t,f(t)) \, d\nu(t) \quad \mu\text{-a.e.}
\end{equation}

Let \(E \) and \(F \) be order ideals in \(L_0(\nu) \) and \(L_0(\mu) \), respectively and \(K \) a function satisfying the conditions \((C_0) - (C_2)\). Then \((2.1) \) is an orthogonally additive, in general, not order bounded, integral operator acting from \(E \) to \(F \) provided that \(E \subseteq \text{Dom}_B(K) \) and \(T(E) \subseteq F \). The operator \(T \) is called Uryson (integral) operator.

We consider the vector space \(\mathbb{R}^m \) for \(m \in \mathbb{N} \) as a vector lattice with the usual coordinate-wise order: for any \(x, y \in \mathbb{R}^m \) we set \(x \leq y \) provided \(e_i^*(x) \leq e_i^*(y) \) for all \(i = 1, \ldots, m \), where \((e_i^*)_{m=1} \) are the coordinate functionals on \(\mathbb{R}^m \).

\(^1\)(C1) and (C2) are called the Carathéodory conditions.
Example 2.6. A map $T : \mathbb{R}^n \to \mathbb{R}^m$ belongs to $\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ if and only if there are real functions $T_{i,j} : \mathbb{R} \to \mathbb{R}$, $1 \leq i \leq m$, $1 \leq j \leq n$ satisfying the condition $T_{i,j}(0) = 0$ and such that $T_{i,j}([a, b])$ is (order) bounded in \mathbb{R}^m for each (order) interval $[a, b] \subset \mathbb{R}^n$, where the i-th component of the vector $T(x)$ is calculated by the usual matrix rule, i.e.

$$(T(x))_i = e_i^*(T(x_1, \ldots, x_n)) = \sum_{j=1}^n T_{i,j}(x_j), \quad i = 1, \ldots, m$$

In this case we write $T = (T_{i,j})$.

For more examples of abstract Uryson operators see [25].

In $\mathcal{U}(E, F)$ the order is introduced as follows: $S \leq T$ whenever $T - S$ is a positive operator. Then $\mathcal{U}(E, F)$ becomes an ordered vector space. If the vector lattice F is Dedekind complete the following theorem is well known.

Theorem 2.7 ([18], Theorem 3.2.). Let E and F be vector lattices with F Dedekind complete. Then $\mathcal{U}(E, F)$ is a Dedekind complete vector lattice. Moreover, for any $S, T \in \mathcal{U}(E, F)$ and $x \in E$ the following formulas hold

1. $(T \vee S)(x) = \sup\{T(y) + S(z) : x = y \sqcup z\}$.
2. $(T \wedge S)(x) = \inf\{T(y) + S(z) : x = y \sqcup z\}$.
3. $T^+(x) = \sup\{Ty : y \sqsubseteq x\}$.
4. $T^-(x) = -\inf\{Ty : y \sqsupseteq x\}$.
5. $T|_x = (T^+ \vee T^-)(x) = \sup\{T(y) - T(z) : x = y \sqcup z\}$
6. $|T|(x) \leq |T|(x)$.

The formulas (1) - (5) are generalizations of the well known Riesz-Kantorovich formulas for linear regular operators (see [1], Theorems 1.13 and 1.16).

We also need the following result which represents the lattice operations in $\mathcal{U}(E, F)$ in terms of directed systems.

Theorem 2.8 ([19], Lemma 3.2). Let E and F be vector lattices with F Dedekind complete. Then for any $S, T \in \mathcal{U}(E, F)$ and $x \in E$ we have

1. $\left\{ \sum_{i=1}^n S(x_i) \wedge T(x_i) : x = \bigsqcup_{i=1}^n x_i, \ n \in \mathbb{N} \right\} \downarrow (S \wedge T)(x)$.
2. $\left\{ \sum_{i=1}^n S(x_i) \vee T(x_i) : x = \bigsqcup_{i=1}^n x_i, \ n \in \mathbb{N} \right\} \uparrow (S \vee T)(x)$.
3. $\left\{ \sum_{i=1}^n |T(x_i)| : x = \bigsqcup_{i=1}^n x_i, \ n \in \mathbb{N} \right\} \uparrow |T|(x)$.

3. Some properties of finite elements in the vector lattice $\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$

In the one-dimensional case, by definition, $\mathcal{U}(\mathbb{R}) := \mathcal{U}(\mathbb{R}, \mathbb{R})$ coincides with the set all functions $f : \mathbb{R} \to \mathbb{R}$, such that $f(0) = 0$ and for every (order) bounded set $A \subset \mathbb{R}$ its image $f(A)$ is also a bounded set.
The vector lattice of abstract Uryson operators has a lot of finite elements meaning that $\Phi_1(U(\mathbb{R}^n, \mathbb{R}^m)) \neq \{0\}$. The next proposition shows that $\{0\} \neq \Phi_1(U(\mathbb{R})) \neq U(\mathbb{R})$ in the one-dimensional case. For an arbitrary real function f defined on \mathbb{R} denote the set $\{x \in \mathbb{R}: f(x) \neq 0\}$ by $\text{supp}(f)$ and called it the support of f.

Proposition 3.1. The set of all finite elements $\Phi_1(U(\mathbb{R}))$ coincides with the set

$$\mathcal{F}(U(\mathbb{R})) = \{f \in U(\mathbb{R}): \text{supp}(f) \subset [a, b], a, b \in \mathbb{R}\}.$$

Moreover, $\Phi_2(U(\mathbb{R})) = \Phi_1(U(\mathbb{R}))$.

Proof. Fix an arbitrary element $f \in \mathcal{F}(U(\mathbb{R}))$. Then $\text{supp}(f) \subset [a, b]$ for some $a, b \in \mathbb{R}$. If $g \in U(\mathbb{R})$ then the number $c_g = \sup\{|g(x)|: x \in [a, b]\}$ belongs to \mathbb{R}. Define the function

$$z(x) = \begin{cases} 1, & \text{if } x \in \text{supp}(f) \\ 0, & \text{if } x \notin \text{supp}(f). \end{cases}$$

Then z is a bounded function on \mathbb{R}. Due to $z(0) = 0$ and since in \mathbb{R} any orthogonal representation of some element x is trivial, i.e. consists of x and some zeros, the function z belongs to $U(\mathbb{R})$. For $x \in \text{supp}(f)$ we have

$$|g(x)| \leq c_g z(x).$$

The inequality trivially holds for $x \notin \text{supp}(f)$. Therefore f is a finite element in $U(\mathbb{R})$ and z one of its majorants. Hence $\mathcal{F}(U(\mathbb{R})) \subset \Phi_1(U(\mathbb{R}))$.

In order to prove the converse assertion take an element $f \in U(\mathbb{R})$ such that there exist a sequence $(x_n)_{n=1}^\infty$ of real numbers $x_n \neq 0$ with the properties $\lim_{n \to \infty} x_n = \infty$ and $f(x_n) \neq 0$ for all $n \in \mathbb{N}$. Let $f \in \Phi_1(U(\mathbb{R}))$ and let z be a majorant for f. Then we may assume $z(x_n) > 1$ for all $n \in \mathbb{N}$. By assumption, for every $g \in U(\mathbb{R})$ we have

$$\sup_n \{|g| \wedge n|f|\}(x_n) \leq c_g z \text{ for some } c_g \in \mathbb{R}_+,$$

where the existence of the supremum is guaranteed by the Dedekind completeness of $U(\mathbb{R})$ (see Theorem 2.7). In particular, for a function $g \in U(\mathbb{R})$ with

$$g(x) = \begin{cases} \exp(z(x)), & \text{if } x = x_n \text{ for } n = 1, 2, \ldots \\ 0, & \text{if } x \in \mathbb{R}, x \neq x_n \end{cases}$$

there exists $n_0 \in \mathbb{N}$, such that $g(x_n) > c_g z(x_n)$ for all $n \geq n_0$. Fix $m \in \mathbb{N}$ such that $m|f(x_{n_0})| > g(x_{n_0})$. Then

$$\sup_n \{|g| \wedge m|f|\}(x_{n_0}) \geq \left(|g| \wedge m|f|\right)(x_{n_0}) = g(x_{n_0}) > c_g z(x_{n_0}).$$

This contradicts to (3.1) and therefore, $\mathcal{F}(U(\mathbb{R})) \supset \Phi_1(U(\mathbb{R}))$.

Observe that the majorant $z \in U(\mathbb{R})$ of f, constructed in the first part of the proof, is such that $\text{supp}(z) = \text{supp}(f)$. So $\text{supp}(z) \subset [a, b]$, and by what has been proved one has $z \in \Phi_1(U(\mathbb{R}))$. Therefore $\mathcal{F}(U(\mathbb{R})) \subset \Phi_2(U(\mathbb{R}))$.

Since $\Phi_2(\mathcal{U}(\mathbb{R})) \subseteq \mathfrak{F}(\mathcal{U}(\mathbb{R}))$ is clear from $\Phi_2(\mathcal{U}(\mathbb{R})) \subseteq \Phi_1(\mathcal{U}(\mathbb{R}))$, we conclude that any finite element in $\mathcal{U}(\mathbb{R})$ is even totally finite.

Guided by the previous proposition we describe the finite elements in the vector lattice $\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ (see Example 2.6).

Proposition 3.2. For the vector lattice $\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ the ideal $\Phi_1(\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m))$ coincides with the set of all operators $T = (T_{i,j}) \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ for which each function $T_{i,j}$ $(i = 1, \ldots, n; j = 1, \ldots, m)$ satisfies the conditions $T_{i,j}(0) = 0$ and

\[
(3.2) \quad \text{supp}(T_{i,j}) \subset [a^{(ij)}, b^{(ij)}] \quad \text{for some real interval } [a^{(ij)}, b^{(ij)}].
\]

In this case $\Phi_1(\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)) = \Phi_2(\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m))$ also holds.

Proof. The assertion of this proposition is established by a similar argument as for Proposition 3.1. Consider an operator $T \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ such that its constituent functions $T_{i,j}$ have the properties $T_{i,j}(0) = 0$ and (3.2). Then for the interval $[a, b]$ with $a = \min_{ij} a^{(ij)}$ and $b = \max_{ij} b^{(ij)}$ one has $\text{supp}(T_{i,j}) \subset [a, b]$ for all i and j. The set

\[
\text{supp}(T) = \{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n : \exists i \in \{1, \ldots, m\} \text{ with } \sum_{j=1}^n T_{i,j}(x_j) \neq 0 \}
\]

will be called the support of the operator T. It is clear that $\text{supp}(T) = \{ x \in \mathbb{R}^n : T(x) \neq 0 \}$, $0 \notin \text{supp}(T)$ and $T(x) \neq 0$ for all $x \in \text{supp}(T)$. Define the map $Z = (Z_{i,j}) : \mathbb{R}^n \to \mathbb{R}^m$ by

\[
Z(x) = \left(\begin{array}{c}
Z_{1,1}(x_1) + \cdots + Z_{1,n}(x_n) \\
\vdots \\
Z_{m,1}(x_1) + \cdots + Z_{m,n}(x_n)
\end{array} \right),
\]

where $Z_{i,j}$ are real bounded functions with $Z_{i,j}(0) = 0$ for all i, j. Denote the set $\{1, 2, \ldots, n\}$ by N. For an arbitrary vector $w \in \mathbb{R}^n$ its support is the set

\[
\text{supp}(w) = \{ j \in N : w_j \neq 0 \}.
\]

In order to show the orthogonal additivity of Z consider $x = u \uplus v$ with u and v being fragments of x. Then supp$(u) \cap$ supp$(v) = \emptyset$ and

\[
x_j = \begin{cases} u_j, & \text{if } j \in \text{supp}(u) \\ v_j, & \text{if } j \notin \text{supp}(u). \end{cases}
\]

Then

\[
Z(u \uplus v) = \left(\begin{array}{c}
\sum_{j \in \text{supp}(u)} Z_{1,j}(u_j) \\
\vdots \\
\sum_{j \in \text{supp}(u)} Z_{m,j}(u_j)
\end{array} \right) + \left(\begin{array}{c}
\sum_{j \notin \text{supp}(u)} Z_{1,j}(v_j) \\
\vdots \\
\sum_{j \notin \text{supp}(u)} Z_{m,j}(v_j)
\end{array} \right).
\]

By using that $Z_{i,j}(u_j) = 0$ for $j \notin \text{supp}(u)$ and $Z_{i,j}(v_j) = 0$ for $j \in \text{supp}(u)$ (for all $i = 1, \ldots, m$) the summation in each of the coordinates of the last
two vectors can be extended to the whole set N and hence one obtains $Z(u \sqcup v) = Z(u) + Z(v)$ and, so $Z \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$.

For an arbitrary Uryson operator $S = (S_{i,j}) \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ define the number

$$c_S = \sup \{ \sum_{i,j=1}^{m,n} |S_{i,j}(x_j)| : x = (x_1, x_2, \ldots, x_n) \in [a, b] \}.$$

Then $c_S \in \mathbb{R}$ and for $x \in \text{supp}(T)$ one has

$$(|S| \land nT)(x) \leq |S|(x) \leq c_S Z(x).$$

For $x \notin \text{supp}(T)$ the inequality is also true due to $T(x) = 0$ in that case. So T is a finite element in $\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ and Z is one of its majorant.

For the converse let $T \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ be such that there is a sequence $(x^{(k)})$ of vectors $0 \neq x^{(k)} \in \mathbb{R}^n$ with the properties that $T(x^{(k)}) \neq 0$ and $(x^{(k)})$ leaves any ball in \mathbb{R}^n. If T would belong to $\Phi_1(\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m))$ and Z is a fixed majorant of T then for any operator $S \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ one has

$$(3.3) \quad |S| \land nT \leq c_S Z \text{ for all } n \in \mathbb{N} \text{ and some number } c_S > 0.$$

In particular, this holds for an operator $0 < S = (S_{i,j}) \in \mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)$ with

$$S_{i,j}(x_j) = \begin{cases} \exp(Z_{i,j}(x_j)), & \text{if } x \in \text{supp}(T), \\ 0, & \text{if } x \notin \text{supp}(T) \end{cases}, \quad x = (x_1, \ldots, x_n).$$

Then

$$(S \land nT)(x^{(k)}) = S(x^{(k)}) = \left(\sum_{j=1}^{n} \exp(Z_{1,j}(x_j^{(k)})) \right) \cdots \left(\sum_{j=1}^{n} \exp(Z_{m,j}(x_j^{(k)})) \right).$$

It is clear that for sufficiently large k the last vector is greater than $c_S Z(x^{(k)})$ what is in contradiction to (3.3). \blacksquare

Remark 3.3. Actually it is proved that

$$T = (T_{i,j}) \in \Phi_1(\mathcal{U}(\mathbb{R}^n, \mathbb{R}^m)) \text{ if and only if } T_{i,j} \in \Phi_1(\mathbb{R})$$

for all $i = 1, \ldots, m; j = 1, \ldots, n$.

For a band $H \subset F$ we get a result for the abstract Uryson operators which is similar to Theorem 2 in [7] for (linear) regular operators.

Proposition 3.4. Let E, F be vector lattices with F Dedekind complete and let H be a band in F. Then $\mathcal{U}(E, H)$ is a projection band $\mathcal{U}(E, F)$ and the following equation holds

$$\Phi_1(\mathcal{U}(E, H)) = \Phi_1(\mathcal{U}(E, F)) \cap \mathcal{U}(E, H).$$

2 i.e. $|x^{(k)}| \to \infty$.

3 due to the Dedekind completeness of F any band is a projection band.
Proof. Let \(\pi: F \to H \) be the order projection in \(F \) onto \(H \). It is clear that \(\mathcal{U}(E, H) \) is an order ideal in the \(\mathcal{U}(E, F) \). Fix a net \((T_\alpha)\) in \(\mathcal{U}_+(E, H) \), such that \(T_\alpha \uparrow T \) for some \(T \in \mathcal{U}(E, F) \). Then one has \(T_\alpha = \pi T_\alpha \uparrow \pi T \in \mathcal{U}_+(E, H) \). Therefore \(T = \pi T \), i.e. the order ideal \(\mathcal{U}(E, H) \) is a band and, due to the Dedekind completeness of \(\mathcal{U}(E, F) \), even a projection band. Let \(\pi^*: \mathcal{U}(E, F) \to \mathcal{U}(E, H) \) be the related order projection. Then \(\pi^*(T) = \pi T \) holds for every \(T \in \mathcal{U}(E, F) \). To finish the proof, refer to Theorem 2.11 from [6], saying that the finite elements in \(\Phi_1(\mathcal{U}(E, H)) \) are exactly those finite elements of \(\Phi_1(\mathcal{U}(E, F)) \), which belong to \(\mathcal{U}(E, H) \).

Remark 3.5. By the mentioned result from [6] there is proved even the equality \(\pi^*(\Phi_1(\mathcal{U}(E, F))) = \Phi_1(\mathcal{U}(E, H)) \).

4. Finite elements in \(\mathcal{U}(E, \mathbb{R}) \)

Definition 4.1. A non-zero element \(u \) of a vector lattice \(E \) is called an atom, whenever \(0 \leq x \leq |u|, 0 \leq y \leq |u| \) and \(x \land y = 0 \) imply that either \(x = 0 \) or \(y = 0 \).

If \(u \) is an atom in \(E \) then \(F_u = \{0, u\} \). Note that a non-zero element \(u \) of a vector lattice \(E \) is called discrete, if the ideal \(I_u \) generated by \(u \) in \(E \) coincides with the vector subspace generated by \(u \) in \(E \), i.e. if \(0 \leq x < u \) implies \(x = \lambda u \) for some \(\lambda \in \mathbb{R}_+ \). We need the following properties of atoms.

Proposition 4.2 ([29], Theorem 26.4). Let \(E \) be an Archimedean vector lattice. Then the following holds:

(i) Atoms and discrete elements are the same.
(ii) For any atom \(u \) the ideal \(I_u \) is a projection band.
(iii) For any two atoms \(u, v \) in \(E \), either \(u \perp v \), or \(v = \lambda u \) for some \(0 \neq \lambda \in \mathbb{R} \).

Definition 4.3. An Archimedean vector lattice \(E \) is said to be atomic\(^4\) if for each \(0 < x \in E \) there is an atom \(u \in E \) satisfying \(0 < u \leq x \).

A vector lattice is said to be atomless provided it has no atoms.

Equivalently (see [2]), \(E \) is atomic, if and only if there is a collection \((u_i)_{i \in I}\) of atoms in \(E \), such that \(u_i \perp u_j \) for \(i \neq j \) and for every \(x \in E \) if \(|x| \land u_i = 0 \) for each \(i \in I \) then \(x = 0 \). Such a collection is called a generating disjoint collection of atoms.

By Proposition 4.2, a generating collection of atoms in an atomic vector lattice is unique, up to a permutation and nonzero multiples.

Let \(E \) be a vector lattice. Consider any maximal collection of atoms \((u_i)_{i \in I}\) in \(E \), the existence of which is guaranteed by Proposition 4.2 and by applying Zorn’s Lemma. Let \(E_0 \) be the minimal band containing \(u_i \) for all \(i \in I \). If \(E_0 \) is a projection band then \(E = E_0 \oplus E_1 \), where \(E_1 = E_0^d \) is the

\(^4\) or discrete.
disjoint complement to E_0 in E, which is an atomless sublattice of E. So, we obtain the following assertion.

Proposition 4.4. Any vector lattice E with the projection property\(^\text{5}\) has a decomposition into mutually complemented bands $E = E_0 \oplus E_1$, where E_0 is an atomic vector lattice and E_1 is an atomless vector lattice.

The following theorem is the first main results of this section and deals with finite elements in atomic vector lattices.

Theorem 4.5. Let E be an atomic vector lattice and $\varphi \in \Phi_1(\mathcal{U}(E, \mathbb{R}))$. Then there exists only a finite set $\{e_1, \ldots, e_n\}$ of the mutually disjoint atoms in E, such that $\varphi(e_i) \neq 0$ for $i = 1, \ldots, n$.

Proof. If E is a finite dimensional vector lattice then E is isomorphic to \mathbb{R}^k for some $k \in \mathbb{N}$ and $\Phi_1(\mathcal{U}(\mathbb{R}^k, \mathbb{R})) \neq \{0\}$ by Proposition 3.2. Then the coordinate vectors $e^{(i)} = (0, \ldots, 0, 1, 0, \ldots, 0)$, $i = 1, \ldots, k$ are mutually disjoint atoms in \mathbb{R}^k. Obviously, among them for each $0 \neq \varphi \in \Phi_1(\mathcal{U}(\mathbb{R}^k, \mathbb{R}))$ there are some vectors, on which the functional φ does not vanish.

Let be E an infinite-dimensional atomic vector lattice E. Let be $\varphi \in \Phi_1(\mathcal{U}(E, \mathbb{R}))$, $\varphi > 0$ with a fixed positive majorant ψ. Assume that for φ there exists an infinite set of mutually disjoint atoms $e_n \in E$, $n \in \mathbb{N}$ such that $\varphi(e_n) > 0$ for every $n \in \mathbb{N}$. Without restriction of generality\(^\text{6}\) we may assume $\sum_{n=1}^{\infty} \psi(e_n) < \infty$. For arbitrary $T \in \mathcal{U}_+(E, \mathbb{R})$ there exists a number $c_T > 0$ such that $(T \wedge n\varphi)x \leq c_T \psi(x)$ for every $n \in \mathbb{N}$ and $x \in E$, what implies $(\pi_\varphi T)x \leq c_T \psi(x)$. By applying the formula

\begin{equation}
(\pi_\varphi T)x = \sup_{\varepsilon > 0} \inf_{y \in F_x} \{ Ty : \varphi(x - y) \leq \varepsilon \varphi(x) \}.
\end{equation}

(which was proved for any $x \in E$ in [26], Formula (3.8)) to the atom e_n and by taking into account that, due to $\varphi(0) = 0$ and $F_{e_n} = \{0, e_n\}$, the element $y = e_n$ is the only feasible in formula (4.1) (applied to e_n) we get

\begin{equation}
(\pi_\varphi T)e_n = \sup_{\varepsilon > 0} \inf_{y \in F_{e_n}} \{ Ty : \varphi(e_n - y) \leq \varepsilon \varphi(e_n) \} = Te_n.
\end{equation}

Therefore

\begin{equation}
Te_n \leq c_T \psi(e_n) \text{ for every } n \in \mathbb{N}
\end{equation}

and so, $\sum_{n=1}^{\infty} Te_n < \infty$ for each $T \in \mathcal{U}(E, \mathbb{R})$. For every $n \in \mathbb{N}$ choose a natural number $k_n \in \mathbb{N}$ such that $\psi(e_{k_n}) < \frac{1}{(n+1)^\alpha}$ and define numbers β_{k_n} satisfying

\begin{equation}
\text{then } E \text{ is Archimedean.}
\end{equation}

\begin{equation}
\text{Otherwise replace } \varphi \text{ by an element with appropriate smaller values for } \varphi(e_n).
\end{equation}
the condition $\frac{1}{(n+1)^3} < \beta_{k_n} < \frac{1}{(n+1)^{1/2}}$. Take now a functional $T \in \mathcal{U}_+(E, \mathbb{R})$ such that

$$T e_k = \begin{cases} \beta_{k_n}, & \text{if } k = k_n \\ \psi(e_k), & \text{if } k \neq k_n \end{cases}$$

for $k = 1, 2, \ldots$.

It is clear that $\sum_{k=1}^{\infty} T e_k < \infty$. Fix $n_0 \in \mathbb{N}$ with $c_T < n_0$, where c_T is the constant number for the functional T one has according to the finiteness of φ. Then

$$c_T \psi(e_{k_0}) < n_0 \psi(e_{k_0}) < \frac{1}{(n_0 + 1)^3} < \beta_{k_0} = T e_{k_0}.$$

This is a contradiction to (4.2).

Our aim now is to establish that for an atomless vector lattice the band of σ-laterally continuous abstract Uryson functionals possesses only the trivial finite element.

Definition 4.6. A sequence $(x_n)_{n \in \mathbb{N}}$ in a vector lattice E is said to be laterally converging to $x \in E$ if $x_n \subseteq x_m \subseteq x$ for all $n < m$ and $x_n \overset{(o)}{\rightarrow} x$. In this case we write $x_n \overset{\text{lat}}{\rightarrow} x$. For positive elements x_n and x the notion $x_n \overset{\text{lat}}{\rightarrow} x$ means that $x_n \in \mathcal{F}_x$, $x_n \uparrow x$ and $x_n \overset{\text{lat}}{\rightarrow} x$.

Definition 4.7. Let E, F be vector lattices. An orthogonally additive operator $T: E \rightarrow F$ is called σ-laterally continuous if $x_n \overset{\text{lat}}{\rightarrow} x$ implies $Tx_n \overset{(o)}{\rightarrow} Tx$. The vector space of all σ-laterally continuous abstract Uryson operators from E to F is denoted by $\mathcal{U}_{\sigma c}(E, F)$.

It turns out that $\mathcal{U}_{\sigma c}(E, F)$ is a projection bands in $\mathcal{U}(E, F)$ ([18], Proposition 3.8). We need the following auxiliary lemma.

Lemma 4.8. Let E be an atomless vector lattice, $\varphi \in \mathcal{U}_{\sigma c}(E, \mathbb{R})$ and $\varphi(x) > 0$ for some vector $x \in E$. Then there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of mutually disjoint fragments of x, such that $\varphi(x_n) > 0$, for every $n \in \mathbb{N}$.

Proof. Assume that for every fragments x', x'' of x with $x' \perp x''$, we have $\varphi(x') = 0$ and $\varphi(x'') = \varphi(x)$. Put $^7 x_1 = x'$ and consider in the next step the element x''. By repeating the procedure we construct a sequence $(x_n)_{n=1}^{\infty}$ of mutually disjoint fragments of x such that $x = \bigcup_{n=1}^{\infty} x_n$ and $u_n = \bigcup_{i=1}^{n} x_i \overset{\text{lat}}{\rightarrow} x$.

However $\varphi(u_n) = 0$ for each $n \in \mathbb{N}$, what is a contradiction to the fact that φ belongs to $\mathcal{U}_{\sigma c}(E, \mathbb{R})$.

7 Since E is atomless there are nontrivial (i.e. different from 0 and x) elements in \mathcal{F}_x.

Now we deal with lateral ideals in vector lattices.
Definition 4.9. A subset D of a vector lattice E is called a lateral ideal if the following conditions hold:

(i) if $x \in D$ then $y \in D$ for every $y \in F_x$,
(ii) if $x,y \in D$, $x \perp y$ then $x + y \in D$.

Example 4.10. Let E be a vector lattice. Every order ideal in E is a lateral ideal.

Example 4.11. Let E be a vector lattice and $x \in E$. Then F_x is a lateral ideal (see [4], Lemma 3.5).

Lemma 4.12. Let E be a vector lattice and $D = (D_n)_{n \in \mathbb{N}}$ a sequence of mutually disjoint lateral ideals in E. Then the set

$$L(D) := \{ \bigcup_{i=1}^{k} x_i : x_i \in D_n, 1 \leq i \leq k, k \in \mathbb{N} \}$$

is also a lateral ideal.

Proof. Take arbitrary elements $x,y \in L(D)$, such that $x \perp y$. Then

$$x = \bigcup_{i=1}^{k} x_i \text{ for } x_i \in D_n, \quad y = \bigcup_{j=1}^{m} y_j \text{ for } y_j \in D_n,$$

$$x_i \perp y_j \text{ for } 1 \leq i \leq k, 1 \leq j \leq m \quad \text{and}$$

$$x + y = \bigcup_{r=1}^{k+m} z_r, \text{ where } z_r = \begin{cases} x_r, & \text{if } 1 \leq r \leq k \\ y_{r-k}, & \text{if } k < r \leq k + m. \end{cases}$$

Hence the condition (ii) from Definition 4.9 is proved for $L(D)$. Now, let $x \in L(D)$ and $y \in F_x$. Then $x = \bigcup_{i=1}^{k} x_i$ with $x_i \in D_n$. By the Riesz decomposition property every x_i has a decomposition $x_i = y_i \uplus z_i$, where $y = \bigcup_{i=1}^{k} y_i$ and y_i belongs to D_{n_i} due to $y_i \subseteq x_i \in D_{n_i}$ for $i = 1, \ldots, k$. So, the condition (i) from Definition 4.9 is also shown. \hfill \qed

The following extension property of positive orthogonally additive operators was proved in [8].

Theorem 4.13 ([8], Theorem 1). Let E,F be vector lattices with F Dedekind complete and D a lateral ideal in E. Let $T : D \to F$ be a positive orthogonally additive operator such that the set $T(D)$ is order bounded in F. Then there exists an operator $\overline{T} \in U_+(E,F)$ with $Tx = \overline{T}Dx$ for every $x \in D$.

The operator $\overline{T}_D : E \to F$ (or, for simplicity, $\overline{T} : E \to F$) is defined by the formula

$$\overline{T}x = \sup\{Ty : y \in F_x \cap D\}. \hspace{1cm} (4.3)$$

that means, D is saturated in the sense of (i) and (ii).

At least $0 \in D \cap F_x$ for any $x \in E$.

Such an extension of T is not unique. Due to the next lemma the operator $	ilde{T} \in \mathcal{U}_+(E,F)$ is called the minimal extension (with respect to D) of the positive, order bounded orthogonally additive operator $T : D \to F$.

Lemma 4.14. Let E,F,D,T,T be as in Theorem 4.13 and let $R : E \to F$ be a positive abstract Uryson operator such that $Rx = Tx$ for every $x \in D$. Then $\tilde{T}x \leq Rx$ for every $x \in E$.

Proof. Take an arbitrary element $x \in E$ and $y \in F_x \cap D$. Then
\[
R(x) = R(x - y) + R(y) = R(x - y) + Ty \geq Ty \quad \text{and} \quad R(x) \geq \sup\{Ty : y \in F_x \cap D\} = \tilde{T}x.
\]

Now the second main result of this section can be provided.

Theorem 4.15. Let E be an atomless vector lattice. Then $\Phi_1(\mathcal{U}_{sc}(E,\mathbb{R})) = \{0\}$.

Proof. Assume that there exists an element $\varphi \in \Phi_1(\mathcal{U}_{sc}(E,\mathbb{R}))$, $\varphi > 0$. Fix a positive laterally σ-continuous majorant ψ for φ. Then for some $x \in E$, $x \neq 0$ one has $\varphi(x) > 0$. Since E is atomless by Lemma 4.8 it can be deduced that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of mutually disjoint fragments of x such that $\varphi(x_n) > 0$ for every $n \in \mathbb{N}$. Take now a positive functional $T \in \mathcal{U}_{sc}(E,\mathbb{R})$ with $T(x) > 0$ and $T(x_n) > 0$ for every $n \in \mathbb{N}$ (e.g. $T = \varphi$). Since φ is a finite element there is some $c_T > 0$, such that $(\pi_T(x_n)) \leq c_T \psi(x_n)$, $n \in \mathbb{N}$. Consider the functional
\[
G_n : F_{x_n} \to \mathbb{R}_+
\]
defined on the lateral ideal F_{x_n} by $G_n(y) = (\pi_T(y))$. Then G_n is an orthogonally additive functional, the set $G_n(F_{x_n})$ is (order) bounded and $G_n(x_n) = (\pi_T(x_n))$, $n \in \mathbb{N}$. According to Theorem 4.13, G_n can be extended to the functional $\tilde{G}_n \in \mathcal{U}_+(E,\mathbb{R})$ which, according to (4.3), is well defined on E for every $n \in \mathbb{N}$. Since $(\pi_T(x_n)) \geq (T \wedge n\varphi)(x_n)$ one has $(\pi_T(x_n)) > 0$, $n \in \mathbb{N}$. By Lemma 4.14 the inequality $\tilde{G}_n(x) \leq (\pi_T(x))$ holds for every $x \in E$, i.e. $\tilde{G}_n \leq \pi_T$ and $\tilde{G}_n \in \{\varphi\}^{++}$, $n \in \mathbb{N}$. Moreover, $\tilde{G}_n(x_n) = (\pi_T(x_n)) > 0$. It is clear that $\tilde{G}_n \leq c_T \psi$, $n \in \mathbb{N}$. In view of the fact\(^{10}\) that $\sum_{n=1}^{\infty} \psi(x_n) = \psi(x) < \infty$, for every $k \in \mathbb{N}$ there exists an index n_k, such that $\psi(x_{n_k}) < \frac{1}{k^2}$. For every $k \in \mathbb{N}$ fix now numbers β_{n_k} such that
\[
\frac{1}{k^3 \tilde{G}_{n_k}(x_{n_k})} < \beta_{n_k} < \frac{1}{k^2 \tilde{G}_{n_k}(x_{n_k})}.
\]
Then
\[
\sum_{k=1}^{\infty} \beta_{n_k} \tilde{G}_{n_k}(x_{n_k}) < \sum_{k=1}^{\infty} \frac{\tilde{G}_{n_k}(x_{n_k})}{k^2 \tilde{G}_{n_k}(x_{n_k})} = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.
\]
\(^{10}\)see footnote at page 9.
Observe that \(\mathcal{F} = (F_{x_{n_k}})_{k \in \mathbb{N}} \) is a sequence of mutually disjoint lateral ideals. Thus by Lemma 4.12 the set \(L(\mathcal{F}) \) is also a lateral ideal. Denote the operators \(G_{n_{k_i}} \) by \(R_i \) and define the operator \(R: L(\mathcal{F}) \to \mathbb{R}_+ \) by the formula

\[
R \left(\bigcup_{i=1}^{k} u_i \right) = \sum_{i=1}^{k} R_i(u_i).
\]

It will be shown that \(R \) is an orthogonally additive operator from the lateral ideal \(L(\mathcal{F}) \) to \(\mathbb{R} \). Indeed, take \(u, v \in L(\mathcal{F}) \) such that \(u \perp v \). Then

\[
R(u + v) = R \left(\bigcup_{i=1}^{k} u_i + \bigcup_{j=1}^{m} v_j \right) = R \left(\bigcup_{r=1}^{k+m} z_r \right) = \sum_{r=1}^{k+m} R_r(z_r)
\]

where \(z_r = \begin{cases} u_r, & \text{if } 1 \leq r \leq k, \\ v_{r-k}, & \text{if } k < r \leq k + m. \end{cases} \)

For any element \(u = \bigcup_{i=1}^{k} u_i \in L(\mathcal{F}) \) with \(u_i \in F_{x_{n_{k_i}}} \), due to

\[
G_{n_{k_i}}(u_i) = (\pi_\varphi T)(u_i) \leq c_T \psi(u_i) \leq c_T \psi(x_{n_{k_i}}) \leq \frac{c_T}{(k_i)^4},
\]

one has

\[
R(u) = R \left(\bigcup_{i=1}^{k} u_i \right) = \sum_{i=1}^{k} R_i(u_i) < c_T \sum_{i=1}^{k} \frac{1}{(k_i)^4} < c_T \sum_{k=1}^{\infty} \frac{1}{k^4},
\]

and therefore, the operator \(R \) is order bounded. In view of Theorem 4.13 there exists the minimal extension \(\tilde{R} \) of \(R \), which is a positive abstract Uryson functional \(\tilde{R}: E \to \mathbb{R} \) such that \(\tilde{R}(x) = \sup \{ R(v) : v \in F_x \cap L(\mathcal{F}) \} \) for any \(x \in E \). Observe that \(\tilde{R}(x_{n_k}) = \tilde{G}_{n_k}(x_{n_k}) \) for every \(k \in \mathbb{N} \). Let be \(S: E \to \mathbb{R} \) an abstract, positive Uryson functional such that \(S \geq \tilde{G}_{n_k} \) for any \(k \in \mathbb{N} \) and fix an arbitrary element \(x \in E \). Then for every decomposition \(x = y + z \), where \(y \perp z \) and

\[
z \in L(\mathcal{F}), \quad \text{i.e. } z = \bigcup_{i=1}^{m} u_i \text{ with } u_i \in F_{x_{n_{k_i}}} \text{ for some } m,
\]

one has

\[
S(x) = S(y + z) \geq S(z) = S \left(\bigcup_{i=1}^{m} u_i \right) \geq \sum_{i=1}^{m} G_{n_{k_i}}(u_i) = \sum_{i=1}^{m} R_i(u_i).
\]

Passing to the supremum over all fragments \(z \in L(\mathcal{F}) \) we conclude that \(S(x) \geq \tilde{R}(x) \) for every \(x \in E \). Hence \(\tilde{R} = \sup \{ \tilde{G}_{n_{k_i}} \} \) in \(\mathcal{U}(E, F) \). Using the fact that \(\tilde{G}_{n_{k_i}} \in \{ \varphi \}^{\perp\perp} \) for every \(i \in \mathbb{N} \), we deduce that \(\tilde{R} \in \{ \varphi \}^{\perp\perp} \).
Therefore a number $c_R > 0$ exists with $\bar{R} \leq c_R \psi$. For any number $k \in \mathbb{N}$ such that $c_R \leq k$ one has

$$c_R \psi(x_{nk}) \leq k \psi(x_{nk}) < \frac{1}{k^3} < \beta_{nk} G_{nk}(x_{nk}) = \beta_{nk} \bar{G}_{nk}(x_{nk}) = \bar{R}(x_{nk}),$$

what is a contradiction.

Now we are ready to put together the Theorems 4.5 and 4.15.

Theorem 4.16. Let E be a vector lattice with the projection property and $\varphi \in \Phi_1(\mathcal{U}_{ac}(E, \mathbb{R}))$. Then there exists a finite dimensional projection band M generated by a (finite) number of mutually disjoint atoms in E, such that $\varphi(x) = 0$ for every $x \in M^\perp$.

Proof. By Proposition 4.4 there exists a decomposition into mutually complemented bands $E = E_0 \oplus E_1$, where E_0 is an atomic vector lattice and E_1 is an atomless vector lattice. For the finite elements in $\mathcal{U}_{ac}(E, \mathbb{R})$ there holds the equality

$$\Phi_1(\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})) = \Phi_1(\mathcal{U}_{ac}(E_0, \mathbb{R})) \oplus \Phi_1(\mathcal{U}_{ac}(E_1, \mathbb{R})).$$

For that it is proved first that

$$\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R}) = \mathcal{U}_{ac}(E_0, \mathbb{R}) \oplus \mathcal{U}_{ac}(E_1, \mathbb{R}).$$

Take $f_i \in \mathcal{U}_{ac}(E_i, \mathbb{R}), i = 0, 1$. Define the functional $f = f_0 \oplus f_1$ for each $x = (x_0, x_1) \in E$ by the formula $f(x_0, x_1) = f_0(x_0) + f_1(x_1)$, where $x_0 \in E_0, x_1 \in E_1$. The functional f belongs to the set $\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})$. Indeed, take a sequence $(x_n)_{n \in \mathbb{N}}$ in $E_0 \oplus E_1$, such that $x_n \xrightarrow{\text{lat.}} x$, where $x_n = (x_{n0}, x_{n1})$ and $x = (x_0, x_1)$. Then

$$f(x_n) = f(x_{n0}, x_{n1}) = f_0(x_{n0}) + f_1(x_{n1}) \xrightarrow{(o)} f_0(x_0) + f_1(x_1) = f(x).$$

On the other hand, let $f \in \mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})$. Denote by f_i the restriction of f on $E_i, i = 0, 1$. Then $f = f_0 + f_1$, with $f_i \in \mathcal{U}_{ac}(E_i, \mathbb{R})$.

Now it will be shown that $\mathcal{U}_{ac}(E_0, \mathbb{R})^\perp = \mathcal{U}_{ac}(E_1, \mathbb{R})$ and, therefore $\mathcal{U}_{ac}(E_0, \mathbb{R})$ and $\mathcal{U}_{ac}(E_1, \mathbb{R})$ are mutually disjoint bands in $\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})$. Hence the equality (4.4) will be established. Let $0 \leq f_i \in \mathcal{U}_{ac}(E_i, \mathbb{R}), i = 0, 1$ and $x \in E$. Then $x = x_0 \cup x_1$ with $x_i \in E_i, i = 0, 1$ and

$$(f_0 \wedge f_1)(x) = \inf \{f_0(y) + f_1(z) : x = y \cup z \} \leq f_0(x_1) + f_1(x_0) = 0.$$

Since $\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})$ is Dedekind complete, Proposition 2.2 guarantees the required equality

$$\Phi_1(\mathcal{U}_{ac}(E_0 \oplus E_1, \mathbb{R})) = \Phi_1(\mathcal{U}_{ac}(E_0, \mathbb{R})) \oplus \Phi_1(\mathcal{U}_{ac}(E_1, \mathbb{R})).$$

For $\varphi \in \Phi_1(\mathcal{U}_{ac}(E, \mathbb{R}))$ one has now $\varphi = \varphi_0 + \varphi_1$, where $\varphi_i \in \Phi_1(\mathcal{U}_{ac}(E_i, \mathbb{R}))$ for $i = 0, 1$. Theorem 4.15 implies $\varphi_1 = 0$ and, by Theorem 4.5 there exist only finite many e_1, \ldots, e_n of mutually disjoint atoms in E_0, such that $\varphi_0(e_i) \neq 0, i = 1, \ldots, n$. Denote by M the band in E_0, generated by e_1, \ldots, e_n. In view of the assumption on E the band M is a projection band.
in E_0. Then every element $x \in M^\perp$ is a linear combination of atoms disjoint to M and therefore, $\varphi_0(x) = 0$. Thus $\varphi(x) = 0$ for all $x \in M^\perp$.

5. Rank one operators as finite elements in $\mathcal{U}(E, F)$

Let E, F be vector lattices. An operator $T \in \mathcal{U}(E, F)$ is called a finite rank operator, if $T = \sum_{i=1}^{n} \varphi_i \otimes u_i$ for some $n \in \mathbb{N}$, where $\varphi_i \in \mathcal{U}(E, \mathbb{R})$, $u_i \in F$ and, $(\varphi_i \otimes u_i)(x) = \varphi_i(x) u_i$, $x \in E$ for all $i = 1, \ldots, n$. Similarly to the case of linear rank one operators in the vector lattice of regular operators the modulus of a rank one abstract Uryson operator has a simple structure.

Proposition 5.1. Let E, F be vector lattices, with F Dedekind complete. Then the modulus of the operator $T = \varphi \otimes u \in \mathcal{U}(E, F)$ is the operator $\lvert T \rvert = \lvert \varphi \rvert \otimes \lvert u \rvert$.

Proof. Using the relation (3) of Theorem 2.8 one has

$$
\lvert T \rvert(x) = \lvert \varphi \otimes u \rvert(x) = \sup \left\{ \sum_{i=1}^{n} \lvert (\varphi \otimes u)(x_i) \rvert : x = \bigsqcup_{i=1}^{n} x_i, n \in \mathbb{N} \right\}
$$

$$
= \sup \left\{ \sum_{i=1}^{n} \lvert \varphi(x_i) u \rvert : x = \bigsqcup_{i=1}^{n} x_i, n \in \mathbb{N} \right\}
$$

$$
= \lvert u \rvert \sup \left\{ \sum_{i=1}^{n} \lvert \varphi(x_i) \rvert : x = \bigsqcup_{i=1}^{n} x_i, n \in \mathbb{N} \right\} = \lvert \varphi \rvert \lvert u \rvert.
$$

The following theorem tells us that the constituent parts of an abstract Uryson rank one operator T are finite elements in the corresponding vector lattices, whenever T is a finite element in $\mathcal{U}(E, F)$. Recall that the order dual of the vector lattice F is denoted by F^\sim. The expression F^\sim separates the points of F means that for each $0 \neq y \in F$ there exists some $f \in F^\sim$ with $f(y) \neq 0$. The order dual separates the points of F, e.g., if F is a Dedekind complete Banach lattice.

Theorem 5.2. Let E, F be vector lattices with F Dedekind complete and F^\sim separates the points of F. Let $T \in \mathcal{U}(E, F)$ be a rank one operator, i.e. $T = \varphi \otimes u$ for some $\varphi \in \mathcal{U}(E, \mathbb{R})$ and $u \in F$. If $T \in \Phi_1(\mathcal{U}(E, F))$ then $\varphi \in \Phi_1(\mathcal{U}(E, \mathbb{R}))$ and $u \in \Phi_1(F)$.

Proof. By Proposition 5.1 it suffices to consider a positive abstract Uryson operator $T = \varphi \otimes u$, with $0 < \varphi \in \mathcal{U}(E, \mathbb{R})$, $0 < u \in F$. By assumption T is a finite element and therefore an operator $Z \in \mathcal{U}_+(E, F)$ exists, such that for every $S \in \mathcal{U}(E, F)$ the inequality

$$
\lvert S \rvert \wedge nT \leq c_S Z
$$
holds for some \(c_S > 0 \) and every \(n \in \mathbb{N} \). Consider the operator \(S = \varphi \otimes h \) for \(h \in F \) and fix \(m \in \mathbb{N} \). Then for every \(x \in E \) we have

\[
\begin{align*}
c_S Z(x) & \geq (|S| \wedge mT)(x) \\
& = \inf \left\{ \sum_{i=1}^{n} |S|(x_i) \wedge mT(x_i) : x = \bigcup_{i=1}^{n} x_i, \ n \in \mathbb{N} \right\} \\
& = \inf \left\{ \sum_{i=1}^{n} |h| \varphi(x_i) \wedge mu \varphi(x_i) : x = \bigcup_{i=1}^{n} x_i, \ n \in \mathbb{N} \right\} \\
& = \inf \left\{ \sum_{i=1}^{n} \varphi(x_i)(|h| \wedge (mu)) : x = \bigcup_{i=1}^{n} x_i, \ n \in \mathbb{N} \right\} \\
& = \varphi(x)(|h| \wedge (mu)).
\end{align*}
\]

The abstract Uryson functional \(\varphi \) is a nonzero positive element in \(U(E, \mathbb{R}) \), hence there exists \(x_0 \in E \), such that \(\varphi(x_0) > 0 \). By means of the last estimation the inequality

\[
|h| \wedge (mu) \leq \frac{c_S}{\varphi(x_0)} Z(x_0) = \mu Z(x_0)
\]

holds with \(\mu = \frac{c_S}{\varphi(x_0)} \in \mathbb{R}_+ \) and arbitrary \(m \in \mathbb{N} \). Since \(h \) is an arbitrary element of \(F \) it is proved that \(u \in \Phi_1(F) \).

For proving the second assertion consider the rank one operator \(S = \theta \otimes u \), where \(\theta \in U(E, \mathbb{R}) \) is arbitrary. For every \(x \in E \) and \(n \in \mathbb{N} \) we may write

\[
(|\theta| \wedge n\varphi)(x)u \leq (|\theta|(x)u \wedge n\varphi(x)u) = (|S|(x)) \wedge (nT(x)).
\]

Then for every disjoint partition \(\{x_1, \ldots, x_n\} \) of \(x \), i.e. \(x = \bigcup_{i=1}^{n} x_i \), by using the orthogonal additivity of the abstract Uryson functional \(|\theta| \wedge n\varphi \) we have

\[
(|\theta| \wedge n\varphi)(x)u = \sum_{i=1}^{n} (|\theta| \wedge n\varphi)(x_i)u \leq \sum_{i=1}^{n} |S|(x_i) \wedge nT(x_i).
\]

After taking the infimum over all disjoint partitions of \(x \) on the right side of last formula, one has

\[
(|\theta| \wedge n\varphi)(x)u \leq (|S| \wedge nT)(x) \leq c_S Z(x)
\]

for every \(x \in E \) and \(n \in \mathbb{N} \). If now \(\tau \) is a positive linear functional on \(F \), such that \(\tau(u) = 1 \) then

\[
\tau((|\theta| \wedge n\varphi)(x)u) = (|\theta| \wedge n\varphi)(x) \leq \tau(c_S Z(x)) = c_S(\tau \circ Z)(x),
\]

where \(x \in E, \ n \in \mathbb{N} \), and \(\tau Z \in U_+(E, \mathbb{R}) \). Thus \(\varphi \in \Phi_1(U(E, \mathbb{R})) \) is proved and, \(\tau \circ Z \) is one of its majorants.

The converse statement still remains to be an open question.
References

[1] C. D. Aliprantis, O. Burkinshaw, Positive Operators. Springer, Dordrecht. (2006).
[2] C. D. Aliprantis, O. Burkinshaw, Locally solid Riesz spaces with applications to economics. (Math. Surveys and Monographs). Second edition, Vol.105. Amer. Math. Soc., (2003).
[3] C. D. Aliprantis, O. Burkinshaw, The components of a positive operator. Math. Z., 184(2), 1983, pp. 245-257.
[4] M. Ben Amor, M. A. Pliev, Laterally continuos part of an abstract Uryson operator. Intl. Journal of Math. Analysis, v.7, no.58, 2013, pp. 2853-2860.
[5] Z. L. Chen, M. R. Weber, On finite elements in vector lattices and Banach lattices. Math. Nachr., (279), no. 5-6, 2006, pp. 495-501.
[6] Z. L. Chen, M. R. Weber, On finite elements in sublattices Banach lattices. Math. Nachr. (280), no. 5-6, 2007, pp. 485-494.
[7] Z. L. Chen, Z. L., M. R. Weber, On finite elements in lattices regular operators. Positivity. (11), 2007, pp. 563-574.
[8] Gumenchuk A. V., Pliev M. A., Popov M. M., Extensions of orthogonally additive operators. Mat. Stud. v. 41, no. 2, 2014, pp. 214-219.
[9] N. Hahn, S. Hahn, M. R. Weber, On some vector lattices of operators and their finite elements. Positivity, (12), 2008, pp. 485-494.
[10] E. V. Kolesnikov, Decomposition of a positive operator. Siberian Math. J., 30(5), 1989, pp. 77-79.
[11] E. V. Kolesnikov, Several order projections generated by ideals of a vector lattice. Siberian Math. J., 36(6), 1995, pp. 1342-1349.
[12] M. A. Krasnoseľ'skiĭ, P. P. Zabreĭko, E. I. Pustil'nikov, P. E. Sobolevskij, Integral operators in spaces of summable functions. Noordhoff, Leiden. (1976).
[13] A. G. Kusraev, Dominated Operators, Kluwer Acad. Publ., Dordrecht–Boston–London. (2000).
[14] A. G. Kusraev, M. A. Pliev, Orthogonally additive operators on lattice-normed spaces. Vladikavkaz Math. J. no. 3, 1999, pp. 33-43.
[15] A. G. Kusraev, M. A. Pliev, Weak integral representation of the dominated orthogonally additive operators. Vladikavkaz Math. J. no. 4, 1999, pp. 22-39.
[16] B. M. Makarov, M. Weber, On the representation of vector lattices I. (Russian). Math. Nachrichten, 60:281-296, 1974.
[17] H. Malinowski, M. R. Weber, On finite elements in f-algebras and product algebras. Positivity. 17:819-840, 2013.
[18] J. M. Mazón, S. Segura de León, Order bounded orthogonally additive operators. Rev. Roumaine Math. Pures Appl. 35, no. 4, 1990, pp. 329-353.
[19] J. M. Mazón, S. Segura de León, Uryson operators. Rev. Roumaine Math. Pures Appl. 35, no. 5, 1990, pp. 431-449.
[20] B. de Pagter, The components of a positive operator. Indag. Math. 48(2), 1983, pp. 229-241.
[21] M. A. Pliev, Uryson operators on the spaces with mixed norm. Vladikavkaz Math. J. no. 3, 2007, pp 47-57.
[22] M. A. Pliev, Projection of the positive Uryson operator. Vladikavkaz Math. J. no. 4, 2005, pp. 46-51.
[23] M. A. Pliev, Order projections in the space of Uryson operators. Vladikavkaz Math. J. no. 4, 2006, pp. 38-44.
[24] M. A. Pliev, The shadow of bilinear regular operators. Vladikavkaz Math. J. no. 3, 2008, pp. 40-45.
[25] M. Pliev, M. Popov, Narrow orthogonally additive operators. Positivity, v.18, no. 4, 2014, pp. 641-667.
[26] M. A. Pliev, M. R. Weber, Disjointness and order projections in the vector lattices of abstract Uryson operators. arXiv:1507.07372.
[27] M. R. Weber, On finite and totally finite elements in vector lattices. Analysis Mathematica. (21), 1995, pp. 237-244.
[28] M. R. Weber, Finite Elements in Vector Lattices, W. de Gruyter GmbH, Berlin / Boston. (2014).
[29] W. A. J. Luxemburg, A. C. Zaanen, Riesz Spaces. Vol. I, North Holland Publ. Comp., Amsterdam–London. (1971).
[30] A. G. Zaanen, Riesz spaces II, North Holland, Amsterdam. (1983).

The first named author was supported by the Russian Foundation of Fundamental Research, the grant number 14-01-91339.