Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission

Yahya Mohtashami1, Ryan A. DeCrescent2, Larry K. Heki3, Prasad P. Iyer1, Nikita A. Butakov1, Matthew S. Wong3,4, Abdullah Alhassan3,4, William J. Mitchell5, Shuji Nakamura1,3,4, Steven P. DenBaars1,3,4 & Jon. A. Schuller1

Phased-array metasurfaces have been extensively used for wavefront shaping of coherent incident light. Due to the incoherent nature of spontaneous emission, the ability to similarly tailor photoluminescence remains largely unexplored. Recently, unidirectional photoluminescence from InGaN/GaN quantum-well metasurfaces incorporating one-dimensional phase profiles has been shown. However, the possibility of generating arbitrary two-dimensional waveforms—such as focused beams—is not yet realized. Here, we demonstrate two-dimensional metasurface axicons and lenses that emit collimated and focused beams, respectively. First, we develop off-axis meta-axicon/metalens equations designed to redirect surface-guided waves that dominate the natural emission pattern of quantum wells. Next, we show that photoluminescence properties are well predicted by passive transmission results using suitably engineered incident light sources. Finally, we compare collimating and focusing performances across a variety of different light-emitting metasurface axicons and lenses. These generated two-dimensional phased-array photoluminescence waveforms facilitate future development of light sources with arbitrary functionalities.
Metasurface beams deflectors1–3, lenses4–7, axicons7–9, polarizers10,11, vortex-beam generators12,13, and holograms14,15 highlight the capacity of metasurfaces for essentially arbitrary control of electromagnetic waveforms generated by spatially coherent sources, i.e., lasers. Light-emitting diodes (LEDs) are important technological light sources that emit light with low spatial coherence. As a result, many emerging LED technologies—such as optical neurostimulators16 and optical communications17—22—necessitate greater control over the spontaneous emission radiation pattern than what is currently demonstrated in the literature. Early studies of quantum dots coupled to plasmonic Yagi–Uda nanonatennas18,19 or plasmonic metasurfaces20–22 demonstrate the possibility to direct photoluminescence (PL) via phasing effects. Subsequent studies of luminescent metasurfaces have mostly comprised uniform arrays that modify and enhance spectra and directivity using resonant nanoantenna structures that are subwavelength in all dimensions23–27. However, these demonstrations lack the \(2\pi\) phase range, amplitude control, and spatially extended phasing needed to achieve the robust wavefront control typical of passive metasurfaces. In a phased-array metasurface, the emission pattern is primarily controlled by the collective behavior of different meta-elements rather than the individual characteristics of the constituent meta-element in a uniform array. Recent studies of phase-gradient metasurfaces have demonstrated some degree of control over spontaneous emission28–31 and raised the yet-unrealized possibility of achieving generalized metasurface-mediated two-dimensional (2D) luminescence focusing.

Here, we show focusing and beaming of spontaneous emission using phased-array metasurfaces. We first develop generalized phased-array metasurface design concepts for redirecting traveling surface waves dominating the emission pattern of InGaN/GaN quantum wells. We then show how spontaneous emission properties can be predicted via transmission measurements with engineered incident light sources. We show that collimating meta-axicons increase the photon extraction and overall directivity. We demonstrate that metalenses focus the emitted PL at the designed focal lengths with beam widths that are inversely proportional to the numerical aperture. These results pave the way for new light sources where photons can be generated and redirected within the same compact space.

Results

Principles of the metasurface design. Figure 1a shows the constituent element of our light-emitting metasurfaces. Metasurfaces comprise nonuniform arrays of 1-\textmu m-tall, square cross-section, GaN nanopillars with embedded InGaN quantum wells located 100 nm below the surface (Methods). The phase of transmitted light at the quantum well peak emission wavelength (560 nm) is varied between 0 to \(2\pi\) by changing the nanopillar lengths (Fig. 1a). This phase-length relationship is used to program desired spatial phase profiles. Consider, for instance, a metasurface that deflects an incident beam into a unidirectional diffraction lobe, defined equivalently by the output angle or in-plane momentum, \(k_{y,\text{out}} = \frac{2\pi}{\lambda_y} \sin[\theta_{\text{out}}]\), where \(n\) is the bulk refractive index of the output medium, \(\lambda_y\) is the free-space wavelength, and \(\theta_{\text{out}}\) is the angle of exitance of the diffraction lobe. This is typically achieved with a 1D phase gradient1,2—\(\varphi_{1D}(r) = (k_{y,\text{out}} - k_{y,\text{in}}) \cdot r = \Delta k \cdot r\) — acting on a normal incidence input \((k_{y,\text{in}} = 0)\). Spontaneous emission, on the other hand, is naturally spread across the 2D momentum space and cannot rigorously be identified with a single input momentum. However, as seen in the back-focal-plane (BFP) image in Fig. 1b, the unpatterned quantum well emission is strongly concentrated just beyond the critical angle (at \(k_{y} = 1.06k_0\), where \(k_0\) is the wavenumber in free space). As a result, the photoluminescence (PL) from phase-gradient metasurfaces exhibits narrow 1D emission lobes (Fig. 1c) directed along the phase-gradient axis (y) according to

\[
k_{y,\text{out}} = \frac{\partial \varphi}{\partial y} + k_{y,\text{in}}
\]

where, we assume that the momentum of the incident wave (i.e., the generated PL) is \(k_{y,\text{in}} = -1.06k_0\) (a thorough discussion on choosing the proper momentum comes in subsequent sections). Below, we show how to generalize this 1D design heuristic to achieve 2D beam collimation and focusing in metasurface axicons and lenses, respectively.

Meta-axicons. Axicons are one of the earliest studied examples of a 2D phased-array metasurface. Axicons can generate Bessel beams that exhibit properties such as non-diffraction and optical pulling forces8. Typical zero-order axicons (those that create
When the ring at a wavelength of 560 nm. The bright spot at the center is the improvement in accuracy, we account for the emission spectrum produced by a meta-axicon at a single wavelength. To further refine our model, we assume a constant conversion efficiency for every meta-axicon, a maximum efficiency of 55% is reported. This is a well-known phenomenon in passive phased-array metasurfaces which can be remedied by using more complex unit cells.

Early works have demonstrated beam collimation via uniform nanocylinder arrays. In these works, the design procedure is relatively ad hoc: the nanocylinder diameters are varied within a range to find the diameter that best generates a collimated beam. In this approach, the emission pattern is mainly determined by the individual characteristic of a single nanocylinder. In a phased-array metasurface, i.e., a meta-axicon, however, the emission pattern is primarily controlled by the collective behavior of nanocylinders of different diameters that cover a 2π phase range. An obvious indication is that meta-axicons with different phase gradients produce drastically different BFP images (Fig. 2 and Supplementary Fig. 4), showing normal exitance collimation only when the correct phase gradient is applied (Fig. 2). This unambiguously indicates that the observed collimation effect in Fig. 2 is a phased-array collimation and not a collimation introduced by an individual nanopillar. Interestingly, the range of diameters used to achieve the 2π phase coverage is not unique, and better collimation may be possible by combining the uniform-array effects described above with the phased-array effects shown here.

Metalenses. The demonstration of collimated PL from light-emitting meta-axicons confirms that our derived 1D design heuristic, which assumes an incident momentum of \(k_{\text{inc}} = 0 \), can be generalized to radially symmetric 2D phase patterns. Applying these principles to metasurface lenses, we develop an “off-axis” phased-array lens equation (Supplementary Note 4) for focusing PL:

\[\phi_{\text{ext}}(r) = -k_0 n \left(\sqrt{f^2 + r^2} - f\right) \pm 1.06k_0 r \]

where, \(f \) is the design focal length. The critical difference between this expression and the conventional metalens phase profile lies in the second term in Eq. (2). This term accounts for the phase evolution of oblique waves propagating radially along the metasurface toward (+) or away (−) from the metalens center. Either choice of sign will lead to focusing of the targeted ray, but, as we will show, with different focusing quality. This can be inferred directly from transmission measurements using a momentum-engineered incident light source. Using BFP illumination techniques (Methods), we illuminate our metalenses with zeroth-order Bessel beams are defined by a linear phase gradient, along all radial directions: \(\phi(r) = \Delta k r \) (Fig. 2a), where \(r \) is the radial distance along the surface from the meta-axicon center. As seen in Fig. 2b, they thus convert a collimated normal incident beam \(k_{\text{inc}} = 0 \) into a ring of illumination \(k_{\text{inc}}(r) = \Delta k r \). When \(\Delta k = 1.06k_0 \), this ring of illumination coincides with the peaked local density of optical states (LDOS) for emission from unpatterned quantum wells (Fig. 1b). Applying principles of time-reversal symmetry, we might expect that same axicon to redirect this ordinarily trapped spontaneous emission toward normal exitance, enhancing the photon extraction and beam collimation. We construct a simple analytical model for this process by taking the calculated LDOS of the thin film, superimposing it with the diffraction mirrors defined by the square lattice (i.e., as if it were a uniform array, described in Supplementary Note 3), assuming equal amplitude for the diffracted modes and the zeroth order mode. We then take every point in this modified LDOS and surround it with a ring of light the amplitude of which is defined from the transmission measurement in Fig. 2b. From this measurement, we observe that 35% of the power is converted to the bright ring of light with a radius of \(\Delta k = 1.06k_0 \) and 25% is converted to the four diffraction lobes adjacent to it (Fig. 2b). In this way, we calculate the BFP image produced by a meta-axicon at a single wavelength. To further improve the image accuracy, we account for the emission spectrum bandwidth (as shown in the Supplementary Fig. 3). We calculate the meta-axicon emission patterns at wavelengths between 535–605 nm in 10 nm increments. Lastly, we produce the final BFP image by taking a weighted sum of the single-wavelength images, with weights determined by the measured meta-axicon PL spectrum. A limitation of the current calculation is that we assume a constant conversion efficiency for every meta-axicon, a maximum efficiency of 55% is reported. This is a well-known phenomenon in passive phased-array metasurfaces which can be remedied by using more complex unit cells.

Early works have demonstrated beam collimation via uniform nanocylinder arrays. In these works, the design procedure is relatively ad hoc: the nanocylinder diameters are varied within a range to find the diameter that best generates a collimated beam. In this approach, the emission pattern is mainly determined by the individual characteristic of a single nanocylinder. In a phased-array metasurface, i.e., a meta-axicon, however, the emission pattern is primarily controlled by the collective behavior of nanocylinders of different diameters that cover a 2π phase range. An obvious indication is that meta-axicons with different phase gradients produce drastically different BFP images (Fig. 2 and Supplementary Fig. 4), showing normal exitance collimation only when the correct phase gradient is applied (Fig. 2). This unambiguously indicates that the observed collimation effect in Fig. 2 is a phased-array collimation and not a collimation introduced by an individual nanopillar. Interestingly, the range of diameters used to achieve the 2π phase coverage is not unique, and better collimation may be possible by combining the uniform-array effects described above with the phased-array effects shown here.
monochromatic light ($\lambda = 560$ nm) comprising an annulus in the momentum space (Fig. 3). This illumination technique is intended to imitate the natural emission pattern of the quantum wells (e.g., Fig. 1b) and help explain the PL images produced by the metalenses. We first consider an annulus defined by $k_0 < |k_{\parallel}| < 1.13k_0$ (Fig. 3). Metalenses employing either choice of sign exhibit a focused beam at the desired focal length (Fig. 3b). However, due to steeper phase gradients, the “outgoing (−)” metalens exhibits poorer focusing efficiency (Supplementary Note 7) and significantly brighter diffractive signatures: the central focus appears near the intersection of four bright circular arcs. We next consider the impact of rays even further beyond the critical angle. When illuminated by rays with $1.17k_0 < |k_{\parallel}| < 1.28k_0$, the “incoming (+)” metalens focal spot expands, while the “outgoing (−)” metalens focal spot evolves into a ring. Interestingly, when we illuminate the metalenses by rays with $0.61k_0 < |k_{\parallel}| < 0.67k_0$, the focal spot for the “incoming” metalens turns into a ring and the “outgoing” metalens shows no clear focusing (Fig. 3b).

Discussion

At the designed focal lengths, both “incoming (+)” and “outgoing (−)” metalenses form PL images (Fig. 4). The evolution of PL images with depth for the “incoming” and “outgoing” metalenses are shown in Supplementary Figs. 7 and 8, respectively. For both metalens designs, PL images closely resemble those produced via passive illumination with momentum-structured beams (e.g., Fig. 3). The “incoming (+)” metalens exhibits superior focusing performance and is the focus of the subsequent analysis. The focused component lies on top of a relatively flat background, which is subtracted through comparison to unstructured thin films (Fig. 4 and Methods). Figure 4g shows the evolution of the beam width (full-width half-max) and normalized amplitude as a function of focal depth for four metalenses. The point of minimal beam width is close to the target focal length for all metalenses. Beam widths as small as ~30 µm were achieved in the shortest focal length metalens. The beam width increases as focal length increases, consistent with conventional diffraction-limited focusing (Fig. 4i). Further analysis of the metalenses is given in Supplementary Note 8. Interestingly, the beam focus is asymmetric; that is the beam width remains relatively constant until the focal point, after which it starts to diverge significantly. This behavior, however, follows from the passive transmission results, where higher momenta rays converge before the designed metalens focus.

The results presented here demonstrate collimation and focusing of PL using generalized phased-array metasurface concepts developed for incoherent emission. We designed meta-axicons and metalenses around highly-oblique surface-like waves that dominate the LDOS of unstructured films. We demonstrate meta-axicons that redirect emitted PL toward normal exitance to increase photon extraction and show how these results can be predicted from transmission experiments. Moreover, we design and fabricate eight different metalenses and characterize their behavior under structured illumination. We then show that these metalenses focus PL at the target focal length with beam widths that are inversely proportional to the numerical aperture. These results pave the way for light-emitting metasurfaces with programmable functionalities where photons are generated and redirected within the same compact space. LED displays, Li-Fi, solid-state lighting, and optogenetics are among the potential beneficiaries of the design concepts developed here. In fact, the developed concepts are wavelength-agnostic and may be used to further control the incoherent thermal emission from IR sources as well, which is an area of active research. Future iterations may employ more sophisticated elements or multi-layer geometries to increase efficiency or unlock more complex beam-forming possibilities.

Methods

Growth. Samples were grown hetero-epitaxially on (0001) c-plane double-side-polished sapphire substrates by atmospheric pressure metal-organic chemical vapor deposition (MOCVD). The whole structure consisted of an AlGaN nucleation layer, an ~0.85-µm unintentionally doped (UID) GaN layer, three-period
multiple quantum wells (MQWs) with a 3 nm InGaN QW, a 2 nm Al0.3 Ga0.7 N cap, and a 10 nm GaN barrier. The InGaN layers were grown at 760 °C, and the GaN and AlGaN layers were grown at 835 °C. Finally, a 100 nm UID GaN protective buffer is grown on top to serve as a protection layer for the emitting QW from fabrication damages. The distance between the quantum well layer and the GaN-air interface is chosen such that the quantum wells are located at the anti-node of standing waves formed in the thin film, resulting in efficient light emission. In addition, the distance between the quantum well layer and the GaN-sapphire interface is chosen to be several wavelengths long. This makes the electromagnetic waves emitted by the quantum wells toward the substrate experience a phase coverage of 2π across the range of nanopillars lengths shown in Fig. 1a. If, however, one wants to modify the PL emission toward air instead of sapphire, then the leftover ruthenium using the same ruthenium etch mentioned earlier. GaN was etched in an ICP etcher (6.8 mT, Cl2 at 38 sccm, N2 at 14 sccm, high-frequency power 200 W, ICP power 500 W). This low-pressure etch recipe almost uniformly etches the nanopillars of different sizes throughout the sample and is extremely vertical. The remaining SiO2 hard mask was removed by dipping the sample in buffered hydrofluoric acid (HF) for 120 s.

FDFT simulations. We performed the simulations using a commercial package from Lumerical Inc. (FDFT Solutions). A unit cell consisting of 1-µm-tall GaN nanopillars (refractive index of 2.28) on top of a sapphire substrate (refractive index of 1.77) was simulated. The nanopillars were 1 µm tall in the z direction. Periodic boundary conditions were considered along the x and y directions, and perfectly matched layers (PML) were used along the z direction. Nanopillars were placed at the center of the unit cell. The period of this square unit cell was 250 nm. Simulations were performed with the assumption of a plane wave that is propagating along the z direction. A minimum mesh size of 2, 2, and 4 nm was considered along the x, y, and z directions, respectively. The length of the nanopillar was varied and the transmission phase and amplitude inside the substrate were monitored. This phase and amplitude as a function of nanopillar size, shown in Fig. 1a, was used for designing the metasurfaces.

Passive transmission measurements. All passive transmission measurements of metalenses with BFP illumination, shown in Fig. 3, were performed using a monochromatic light source at a wavelength of 560 nm. These transmission measurements are intended to imitate the natural emission pattern of our emitting structure (e.g., Fig. 1b) before structuring, which consists primarily of a ring of intensity around 1.06κ0. We illuminated metasurfaces with waves with transverse momentum values lower than, equal to, and higher than that of the design momentum (1.06κ0). These measurements were performed using a home-built momentum-resolved system.

Metalenses were designed assuming an incident wave with a momentum of |k0| = 1.06κ0, corresponding to a ring of light in the momentum space. To
accomplish this, we place a transmitting annulus in the objective’s conjugate BFP, i.e., allowing light with certain momenta, \(|k_x|\), to pass (e.g., Fig. 3b). The annulus was uniformly illuminated with a monochromatic source (wavelength of 560 nm). Three separate experiments were performed, with one a ring of light corresponding to 0.61\(k_x\) < \(|k_x|\) < 0.67\(k_x\), one corresponding to \(k_x\) < \(|k_x|\) < 1.13\(k_x\), and the other corresponding to 1.17\(k_x\) < \(|k_x|\) < 1.28\(k_x\), as shown in Fig. 3. The average momenta of these rings are 0.64\(k_x\) (lower than the design momentum), 1.06\(k_x\) (the design momentum), and 1.22\(k_x\) (higher than the design momentum), respectively. The collection setup consists of a 10X objective lens (Nikon 10X 0.3 NA Plan Fluor) in conjunction with a single lens (focal length = 200 mm), resulting to an equivalent NA = 0.12, as shown in Fig. 3. The collected light is then imaged with a CMOS camera (DCC1545M CMOS Camera, ThorLabs). Scanning was achieved by a motorized stage (Newport). The intensity profiles at different heights were recorded by the camera to obtain the transmission profile created by each metalens.

Calculation of beam widths for the emitting metalenses. We follow the procedure shown in Fig. 4c–f to calculate the beam widths. In order to calculate the beam width, we consider horizontal linecuts of the real-space images and find the inflection points of the intensity (second derivative dropping to zero), for both the metalens and the thin film (Fig. 4). We then normalize the magnitudes of the intensity cuts such that the intensities are equal at the inflection point. We consider the thin film intensity as a “background” or “reference” to represent the behavior of spontaneously emitted light in the absence of structuring, and subtract the thin film intensity from the metalens intensity. The resulting information allows us to quantify both the degree to which the metalens redistributes this light, and the metalens beam widths (e.g., Fig. 4d). Beam widths for the “incoming” and “outgoing” metalenses were defined differently, as described in Fig. 4d, f, respectively.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the plots within this paper are available from the corresponding author upon reasonable request.

Received: 2 October 2020; Accepted: 23 April 2021; Published online: 14 June 2021

References

1. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 1368–1371 (2014).
2. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
3. Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).
4. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited intensity cuts. Nat. Nanotech. 11, 1070–1074 (2016).
5. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging. Nano Lett. 12, 4932–4936 (2012).
6. Chen, W. T. et al. Broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
7. Zhang, S. et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express 24, 18024 (2016).
8. Aita, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nat. Nanotechnol. 12, 4932–4936 (2017).
9. Chen, W. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 6, e16259 (2017).
10. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
11. Chen, W. T. et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 27, 224002 (2016).
12. Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2, 716–723 (2015).
13. Yue, F. et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558–1563 (2016).
14. Zhang, Y., Gao, J. & Yang, X. Spatial variation of vector vortex beams with plasmonic metasurfaces. Sci. Rep. 9, 9699 (2019).
15. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
16. Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).
17. Bi, X.-W. et al. A flexible, micro-lens-coupled LED stimulator for optical neuromodulation. IEEE Trans. Biomed. Circuits Syst. 10, 972–978 (2016).
18. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).
19. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited intensity cuts such that the intensities are equal at the in flm and the thin flm created by each metalens.
20. Yuan, S. et al. Strong photoluminescence enhancement in all-dielectric Fano metasurfaces with high quality factor. ACS Nano 11, 10704–10711 (2017).
21. Bucher, T. et al. Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces. ACS Photonics 6, 1002–1009 (2019).
22. Capretti, A., Lesage, A. & Gregorkiewicz, T. Integrating quantum dots and dielectric Mie resonators: a hierarchical metamaterial inheriting the best of both. ACS Photonics 4, 2187–2196 (2017).
23. Vaskin, A., Kolkowski, R., Koenderink, A. F. & Staudte, I. Light-emitting metasurfaces. Nanophotonics 8, 1151–1198 (2019).
24. Iyer, P. P. et al. Unidirectional luminescence from InGaAs/GaAs quantum-well metasurfaces. Nature Photonics 14, 543–548 (2020).
25. Khaidarov, E. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 14, 1900235 (2019).
26. Rong, K. et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat. Nanotechnol. 15, 927–933 (2020).
27. Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).
28. Arbab, A. et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique. Sci. Rep. 10, 7124 (2020).
29. Van Dam, D. et al. Directional and polarized emission from nanowire arrays. Nano Lett. 15, 4557–4563 (2015).
30. Paniagua-Domínguez, R., Grzelza, G., Rivas, J. G. & Sánchez-Gil, J. A. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. NanoSens 5, 10582 (2013).
31. Van Dam, D. et al. Strong diameter-dependence of nanowire emission coupled to waveguide modes. Appl. Phys. Lett. 108, 121109 (2016).
32. Arbab, A., Horie, Y., Bagheri, M. & Farooq, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
33. Arbab, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

Acknowledgements

This work was supported by the Office of Naval Research (Grant N00014-19-1-0004). Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MSESEC, NSF DMR 1720256) at UC Santa Barbara.

Author contributions

Y.M. and J.A.S. proposed, conceived, and supervised the project. Y.M., P.P.I., N.A.B., and W.J.M. discussed fabrication approaches. Y.M. fabricated the devices, performed the near-field electromagnetics simulations and near-field plane (NFP) illumination measurements, and spatially-resolved luminescence measurements. Y.M., R.A.D., and L.K.H. performed the momentum-resolved luminescence measurements. M.S.W. and A.A. grew the quantum wells under the supervision of S.P.D. and S.N. Y.M., R.A.D., and L.K.H. analyzed the data. All authors contributed to the writing of the manuscript.

Competing interests

The authors declare no competing interests.
