Studies of the Electric Dipole Polarizability of ^{129}Xe using the Relativistic Coupled
Cluster and the Normal Coupled Cluster Methods

Akitada Sakurai1, B. K. Sahoo2, and B. P. Das1

1Department of Physics, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

2Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India

^{129}Xe is an important candidate for the searches of electric dipole moments due to violations of time-reversal and parity violations in diamagnetic atoms. In view of the similarities between the electric dipole moment and the polarizability from the point of view of many-body theory, we have performed rigorous calculations of the ground state polarizability of ^{129}Xe using a self consistent relativistic coupled-cluster method and the relativistic normal coupled-cluster method. The discrepancy between the results from these two methods is two percent, but each of them differs from the accurate measurement of the polarizability of the ground state of ^{129}Xe by one percent. Our results clearly suggest that the two theoretical methods, we have employed in this work, can be applied in the future to capture electron correlation effects in the electric dipole moment of ^{129}Xe to a high degree of accuracy.

I. INTRODUCTION

The electric dipole moments (EDMs) of atoms due to violations of time-reversal (T) and parity (P) symmetries are among the leading table-top probes of physics beyond the Standard Model of particle interactions 1 2 and they are sensitive to new physics at the TeV scale 3. The EDMs of diamagnetic atoms are primarily sensitive to the nuclear Schiff moment (NSM) and the electron-nucleus tensor-pseudotensor (T-PT) interaction, which arise from hadronic and semi-leptonic T or CP violation respectively 3. A number of experiments are currently under way to observe such EDMs 5 6. The current best EDM limit comes from Hg, which is a diamagnetic atom 4. Three EDM experiments on another atom of this class, ^{129}Xe are in progress and new results are expected in the foreseeable future 5 6. These new experimental results for ^{129}Xe in combination with atomic many-body calculations of the ratios of ^{129}Xe EDM to the NSM and the coupling constant of the T-PT interaction (C_T) separately will yield limits for the NSM and C_T.

It is necessary to assess the quality of the atomic many-body calculations of the quantities related to ^{129}Xe EDM mentioned above. One important step in this direction would be to perform calculations of the ground state electric dipole polarizability of ^{129}Xe, which has the same rank and parity as the EDM mentioned above, and therefore both these quantities depend on the same physical effects. The theoretical result obtained for ^{129}Xe polarizability can be compared with its experimental value which has been measured to high accuracy 7. These calculations must be relativistic in character as ^{129}Xe is a heavy atom with 54 electrons. Furthermore, it is necessary to use a many-body theory that can capture the correlation effects to as high an order as possible in an atom with a large number of electrons. Taking these two points into consideration, it would be appropriate to use the relativistic coupled-cluster (RCC) theory, which is arguably the gold standard for the relativistic theory of atoms and molecules 8 9. One important virtue of this theory is that it takes into account correlation effects to all orders in perturbation at every level of particle-hole excitation 10. Furthermore it is size-extensive 11.

In the present paper, we have performed rigorous calculations of the electric dipole polarizability of the ground state of ^{129}Xe using a self-consistent RCC method (RCCM) 11 and the relativistic normal coupled-cluster method (RNCCM) 11. This is the first application of the latter method to the calculation of the electric dipole polarizability of the ground state of ^{129}Xe. The next section gives the salient features of these two methods and some key aspects of the calculations. This is followed by a presentation and discussion of our results and finally, we present our conclusions.

II. THEORY AND METHOD OF CALCULATIONS

The static polarizability in the uniform dc electric field E is defined by

$$\langle D \rangle = \alpha E,$$

(1)

where $\langle D \rangle = \langle \Psi_0 | D | \Psi_0 \rangle$ is induced electric dipole moment of state $|\Psi_0\rangle$ of an atom. In the first order perturbation, $|\Psi_0\rangle$ can be expressed as

$$|\Psi_0\rangle = |\Psi_0^{(r)}\rangle + \lambda |\Psi_0^{(1)}\rangle,$$

(2)

where λ is perturbed parameter for the Dirac-Coulomb (DC) Hamiltonian given by

$$H_0^{(DC)} = \sum_i \left[c \alpha \cdot p_i + m_i c^2 \beta + V_N(r_i) \right] + \frac{1}{2} \sum_{i,j} \frac{1}{r_{ij}},$$

(3)

and the superscript (0) and (1) represent unperturbed and first-order perturbed wave functions, respectively. In
more explicit form, \(|\Psi_0(1)\rangle\) can be written as
\[
|\Psi_0(1)\rangle = \sum_I |\Psi_I(0)\rangle \frac{\langle \Psi_I(0)|H_{int}|\Psi_0(0)\rangle}{E_0 - E_I} = \sum_I |\Psi_I(0)\rangle \frac{\langle \Psi_I(0)|D|\Psi_0(0)\rangle}{E_0 - E_I},
\] (4)
where \(|\Psi_I(0)\rangle\) represents an excited state of \(H_{0}^{(DC)}\). \(E_0\) and \(E_I\) are the energies of the ground and excited states, respectively, \(\lambda H_{int} = -D \cdot E\) is a perturbed Hamiltonian, and \(D\) is the electric-dipole operator. In the above equation, we have used \(\lambda H_{int} = -D \cdot E = DEcos\theta\) and \(\lambda = Ecos\theta\), where \(\theta\) is an angle between \(D\) and \(E\).

Using Eqs (2) and (4), \(\langle D\rangle\) is given by
\[
\langle D\rangle = \langle \Psi_0(1)|D|\Psi_0(0)\rangle = 2 \sum_I \langle \Psi_I(0)|D|\Psi_I(0)\rangle \frac{\langle \Psi_I(0)|D|\Psi_0(0)\rangle}{E_0 - E_I}E,\]
where the first term does not contribute since the electric dipole operator \(D\) is an odd parity operator. From Eqs (1) and (5), \(\alpha\) is given by
\[
\alpha = -2 \sum_I \frac{|\langle \Psi_I(0)|D|\Psi_0(0)\rangle|^2}{E_0 - E_I}.\]
(6)

A. Unperturbed wave function of Coupled Cluster Method (CCM)

In the CCM, the unperturbed wave function \(|\Psi_0(0)\rangle\) for closed-shell atoms can be expressed as \([12]\)
\[
|\Psi_0(0)\rangle = e^{-T(0)}|\Phi_0\rangle
\]
(7)
where \(|\Phi_0\rangle\) is the Dirac-Fock (DF) wave function, which is determined using the mean-field approximation and \(T(0)\) is the sum of all particle-hole excitation operators. In the coupled-cluster singles and doubles (CCSD) approximation, the excitation operator is \(T(0) = T_1(0) + T_2(0)\). In the second quantization notation, these operators can be written as
\[
T_1(0) = \sum_{a,i} t^a_i a^+_a a_i \quad \text{and} \quad T_2(1) = \frac{1}{4} \sum_{a,b,i,j} t^{ab}_{ij} a^+_a a^+_b a_j a_i,
\]
(8)
where \(t^a_i\) and \(t^{ab}_{ij}\) are the particle-hole excitation amplitudes, \(a^+_a\) and \(a_n\) are the creation and annihilation operators respectively, and the scripts \(n = a, b\) and \(n = i, j\) represent virtual and occupied orbitals respectively.

To obtain the \(T(0)\) amplitudes, we solve the following equations \([12]\):
\[
\langle \Phi_0^*|H_{0}^{(DC)} e^{-T(0)}\rangle_{con}|\Phi_0\rangle = 0.
\]
(9)
Here \(|\Phi_0^*\rangle\) represents an excited determinantal state with respect to these reference state. \(H_{0}^{(DC)}\) is the normal ordered Hamiltonian, and we use the relation \(e^{-T(0)}H_{0}^{(DC)} e^{T(0)} = (H_{0}^{(DC)} e^{T(0)})_{con}\) with the subscript “con” representing connected terms \([12]\). In the present work, we have used the Jacobi iterative method to numerically solve Eq. (9) \([13]\).

B. First-order perturbed wave function for the Coupled Cluster Method

In the presence of a uniform dc electric field, the atomic Hamiltonian is given by
\[
H = H_{0}^{(DC)} + \lambda H_{int},\]
(10)
where the perturbed Hamiltonian is \(\lambda H_{int} = -D \cdot E\) has been defined earlier. The first order perturbation equation can be expressed as
\[
(H_{0}^{(DC)} + \lambda H_{int})|\Psi_0(1)\rangle = (E(0) + \lambda E(1))|\Psi_0(1)\rangle + \lambda |\Psi_0(1)\rangle,
\]
(11)
where \(E(0)\) and \(E(1)\) are the unperturbed and the first order perturbed energies, respectively. Keeping only the first-order terms in \(\lambda\) in the above equation, we get
\[
(H_{0}^{(DC)} - E(0))|\Psi_0(1)\rangle = -H_{int}|\Psi_0 + E(1)|\Psi_0\rangle = D|\Psi_0 + \langle \Psi_0|H_{int}|\Psi_0\rangle|\Psi_0\rangle = D|\Psi_0\rangle,
\]
(12)
where \(E(1)\) is zero because \(D\) has odd parity. Using the CCM ansatz for closed-shell atoms, we can express the total wave function \(|\Psi_0\rangle\), which has a definite parity as
\[
|\Psi_0\rangle = e^{T}|\Phi_0\rangle,
\]
(13)
where we define
\[
T = T(0) + \lambda T(1),
\]
(14)
where \(T(1)\) is the first-order excitation operator due to \(H_{int}\). Substituting Eq. (14) in Eq. (13), we get
\[
|\Psi_0\rangle = e^{T(0) + \lambda T(1)}|\Phi_0\rangle = e^{T(0)}(1 + \lambda T(1))|\Phi_0\rangle
\]
(15)
where only terms up to linear in \(T(1)\) have been kept. Comparing the above equation with Eq. (13), it is clear that the first-order wave function can be written as \([14]\)
\[
|\Psi_0(1)\rangle = e^{T(0)}T(1)|\Phi_0\rangle.
\]
(16)
To obtain the \(T(1)\) amplitudes, we substitute Eq. (16) in Eq. (12), and get
\[
\langle \Phi_0^*|H_{0}^{(DC)} e^{T(1)}|\Psi_0\rangle = \langle \Phi_0^*|e^{-T(0)}D e^{T(0)}|\Phi_0\rangle
\]
\[
\langle \Phi_0^*|H_{0}^{(DC)} T(1)|\Psi_0\rangle = \langle \Phi_0^*|D e^{T(0)}|\Phi_0\rangle,
\]
(17)
where we have used the relation \(A = e^{-T(0)} A e^{T(0)} = (A e^{T(0)})_{con}\) for the operator \(A\) \([10]\).
C. CCM expression for polarizability

Using Eqs. (7) and (16), the expression of the polarizability for the CCM can be written as [10]

\[
\alpha = \frac{\langle \Psi_0 | D | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle} = 2 \frac{\langle \Psi_0 | D | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}
= 2 \langle \Phi_0 | (D^{(0)} T^{(1)})_{\text{con}} | \Phi_0 \rangle,
\]
(18)

where we define \(D^{(0)} = e^{T^{(0)*}} D e^{T^{(0)}} \). In the above equation, we use the connected form of the expectation value for a closed shell atom [12], which is non terminating. Therefore in order to calculate the expectation value given in Eq. (18), we have used a self-consistent coupled-cluster approach in which the combined power of \(T^{(0)*} \) and \(T^{(0)} \) is systematically increased till the result for \(\alpha \) converges.

D. Unperturbed wave function of Normal Coupled Cluster Method

Using the NCCM ansatz, the unperturbed bra state \(\langle \Psi_0 | \) can be written as

\[
\langle \tilde{\Psi}_0 | = \langle \Phi_0 | (1 + \tilde{T}^{(0)}) e^{-T^{(0)}},
\]
(19)

where \(T_0 \) contains the excitation operators as defined earlier, \(\tilde{T}_0 \) is the sum of de-excitation operators and is like \(T_0 \). Using Eqs (7) and (19) we get

\[
\langle \tilde{\Psi}_0 | \Psi_0 \rangle = \langle \Phi_0 | (1 + \tilde{T}^{(0)}) e^{-T^{(0)}} e^{T^{(0)}} | \Phi_0 \rangle
= \langle \Phi_0 | \Phi_0 \rangle
= 1.
\]
(20)

Using the above bra state, the expectation value of an one-body operator corresponding to a particular property can be expressed as

\[
\langle \hat{A} \rangle = \langle \Phi_0 | (1 + \tilde{T}^{(0)}) e^{-T^{(0)}} \hat{A} e^{T^{(0)}} | \Phi_0 \rangle,
\]
(21)

where, \(A \) is a general one body operator. The presence of \(e^{-T^{(0)}} \hat{A} e^{T^{(0)}} \) ensures that the expression on the right hand side of Eq. (21) terminates. An important attribute of the NCCM is that it satisfies the Hellman-Feynman theorem [10].

To obtain the \(\tilde{T}^{(0)} \) amplitude, we solve the following equation:

\[
\langle \Phi_0 | (1 + \tilde{T}^{(0)}) | (H e^{T^{(0)}})_{\text{con}} | C^+_I \rangle | \Phi_0 \rangle = 0,
\]
(22)

here we express as \(T^{(0)} = \sum_{l=1}^{N_e} i^{(0)} e^{T^{(0)}} | C^+_I \rangle \), \(i^{(0)} \) are the amplitudes of the excitations and \(C^+_I \) represents a string of creation and annihilation operators corresponding to a given level of particle-hole excitation [10].

E. First-order perturbed wave function for NCCM

Similar to \(T^{(1)} \), we express the perturbed wave function for the bra state as

\[
\langle \tilde{\Psi}_0 | = \langle \Phi_0 | (1 + \tilde{T}^{(0)} + \lambda \tilde{T}^{(1)}) e^{-T^{(0)} - \lambda T^{(1)}}
\]
(23)

In the above expression only terms up to linear in \(T^{(1)} \) have been kept, and \(\tilde{T}^{(1)} \) is given by \(\tilde{T}^{(1)} = \sum_{l=1}^{N_e} \epsilon_l^{(1)} C_l \).

To obtain the amplitudes for \(\tilde{T}^{(1)} \), we solve the following equations:

\[
\langle \Phi_0 | | \tilde{T}^{(1)} | \tilde{T}_N | \Phi_0 \rangle^* + \langle \Phi_0 | (1 + \tilde{T}^{(0)} + \tilde{T}_N) | \Phi_0 \rangle
= -\langle \Phi_0 | | \tilde{T}_N, (1 + \tilde{T}^{(0)}) T^{(1)} | \Phi_0 \rangle,
\]
(24)

where \(\tilde{T}_N = e^{-T^{(0)}} H_N e^{T^{(0)}} \).

F. NCCM expression for polarizability

Using Eqs. (13) and (23), the NCCM expression for polarizability can be written as

\[
\alpha = \langle \tilde{\Psi}_0 | \Psi_0 \rangle + \langle \tilde{\Psi}_0 | \tilde{T}^{(1)} | \tilde{T}_N | \Phi_0 \rangle
= \langle \Phi_0 | \tilde{T}^{(1)} | \tilde{T}_N | \Phi_0 \rangle + \langle \Phi_0 | (1 + \tilde{T}^{(0)}) \tilde{T}_N | \Phi_0 \rangle
\]
(25)

where, we have used relations \(T^{(n)} | \Phi_0 \rangle = 0 \) and \(\langle \Phi_0 | T^{(n)} | 0 \rangle = 0 \), where \(n \) is integer. It is clear from the above expression for polarizability that it terminates naturally. The NCCM is more versatile than another coupled-cluster approach to properties that was proposed by Monkhorst [15]. The calculation of atomic polarizabilities by the latter method is less straightforward than that using the NCCM as it would entail the computation of the double derivative of the energy with respect to the electric field and this would require the knowledge of complicated perturbed coupled-cluster amplitudes [10].

G. Error Estimate from triples excitations

In the present work, the contributions to the polarizability of atomic Xe from three particle-three hole (triple) and higher order excitations have not been included. In order to estimate the size of these neglected effects, we define the following approximate triples RCC amplitudes in a perturbative manner

\[
T_3^{(0), \text{pert}} = \frac{1}{3!} \sum_{ijk,abc} \frac{\epsilon_i + \epsilon_j + \epsilon_k - \epsilon_a - \epsilon_b - \epsilon_c}{(H_0 D_C T_2^{(0)})_{ijk}}
\]
(26)

and

\[
T_3^{(1), \text{pert}} = \frac{1}{3!} \sum_{ijk,abc} \frac{\epsilon_i + \epsilon_j + \epsilon_k - \epsilon_a - \epsilon_b - \epsilon_c}{(H_0 D_C T_2^{(1)})_{ijk}}
\]
(27)

with \(i, j, k \) and \(a, b, c \) subscripts denoting the occupied and unoccupied orbitals, respectively, and \(\epsilon \) representing
TABLE I. The \(\alpha_0\) and \(\beta_0\) parameters of the GTOs, which have used in the present calculations.

Orbital	\(s_{1/2}\)	\(p_{1/2}\)	\(p_{3/2}\)	\(d_{3/2}\)	\(d_{5/2}\)	\(f_{5/2}\)	\(f_{7/2}\)	\(g_{7/2}\)	
\(\alpha_0\)	0.020422	0.042695	0.042695	0.024227	0.024227	0.00084	0.00084	0.0082	0.0082
\(\beta_0\)	2.016	2.025	2.025	2.02	2.25	2.25	2.23	2.23	

the orbital energies. The contributions of \(T_{3}^{(0)}\text{pert}\) will be larger than that of \(T_{3}^{(1)}\text{pert}\) as \(T_{2}^{(0)}\) contains physical effects arising in lower order perturbation. In a similar way, \(T_{1}^{(1)}\) contributions will dominate over those from \(T_{1}^{(0)}\). Based on these considerations, the dominant uncertainty due to the neglected triples excitations are estimated by evaluating the expression

$$\Delta \alpha = 2\langle \Phi_0|T_{3}^{(0)}\text{pert} DT_{2}^{(0)} T_{1}^{(1)}|\Phi_0\rangle. \quad (28)$$

III. RESULT AND DISCUSSIONS

In atomic relativistic many-body calculations, the commonly used basis sets are Gaussian type orbitals (GTOs). In our present work on the polarization of the xenon atom, we use a two point Fermi nuclear distribution [17]. For a finite size nucleus, the GTOs can represent the natural behavior of the relativistic wave function [18]. The radial part of the relativistic wave function using the GTOs are given by

$$G_k^{L/S} = c_k^{L/S} \rho^k e^{-\alpha kr^2}, \quad (29)$$

where the index \(k = 0, 1, 2, \cdots\) for \(s, p, d, \cdots\) type orbital symmetry, respectively, and the index \(L(S)\) means the large(small) component of the relativistic wave function. Using the kinetic balance condition, we can obtain the radial part of the small component of the wave function from the large component [19]. We have considered 9 relativistic symmetries in the present calculations with 40 basis functions for \(s_{1/2}\), 39 for both \(p_{1/2}\) and \(p_{3/2}\), 38 for both \(d_{3/2}\) and \(d_{5/2}\), 37 for both \(f_{5/2}\) and \(f_{7/2}\), and 36 for both \(g_{7/2}\) and \(g_{9/2}\) symmetries. We have used even tempered condition for which the exponent \(\alpha_0\) can be expressed as \(\alpha_0 = \alpha_0 \beta_0^{-1}\) [20]. In our calculation, the values of \(\alpha_0\) and \(\beta_0\) are unique for orbitals of a given symmetry. The accuracies of the results for the DF and CCM calculations depend on these values, (especially \(\beta_0\)). The DF equations in matrix form are solved for given values of these two parameters and they are suitably varied so that the energies and the expectation values of \(r, 1/r\) and \(1/r^2\) of the occupied orbitals matches with those obtained from the numerical GRASP2 code [21]. Keeping this value of \(\alpha_0\) fixed, the optimal value of \(\beta_0\) is obtained by minimizing the DF energy as it is derived from the

$$\frac{\partial E_{DF}}{\partial \beta_0} = 0,$$ \quad (30)

Rayleigh-Ritz variational principle. This leads to

$$\alpha = 2\langle \Phi_0|(D^{(0)}T^{(1)}_{\text{con}})\Phi_0\rangle = 2\langle \Phi_0|((D + (D^{(0)} + c.c) + \cdots)T^{(1)}_{\text{con}})\Phi_0\rangle \quad (31)$$

in increasing powers of \(T^{(0)}\). In the self consistent method, \(\alpha\) is calculated by increasing successively the combined powers of \(T^{(0)}\) and \(T^{(0)}\) till self consistency is achieved. The result from the calculations by this method is given in Table II. The leading contributions

Method	Our work	Others
DF	26.865	26.87
CPDF	26.973	26.98
LPCCSD	26.432	26.43
RCCSD(SC)	28.115	28.13
RNCCSD	27.508	
Experiment	27.815(27)	

Leading Contributions	\(\alpha\)
\((DT_{1}^{(1)} + c.c)_{\text{con}}\)	30.416
\((T_{1}^{(0)})^{\dagger} DT_{1}^{(1)} + c.c)_{\text{con}}\)	-0.376
\((T_{1}^{(0)})^{\dagger} DT_{2}^{(1)} + c.c)_{\text{con}}\)	0.115
\((T_{2}^{(0)})^{\dagger} DT_{1}^{(1)} + c.c)_{\text{con}}\)	-3.408
\((T_{2}^{(0)})^{\dagger} DT_{2}^{(1)} + c.c)_{\text{con}}\)	1.268

\(\alpha\) Linearized perturbed RCCSD
from the terms in Eq. (31) are listed in Table III. In Fig. 1, \(DT_1^{(1)}\) has been decomposed in terms of the DF, and some lower order many perturbation theory diagrams. It illustrates that a CCM diagram subsumes diagrams corresponding to different physical effects to all orders in perturbation of the residual Coulomb interaction.

In Figs. (1-b) and (1-f) represent typical core polarization and pair correlation effects respectively. From the viewpoint of many-body physics, the terms in Table III correspond to various kinds of interplay between the core polarization and the pair correlation effects. The relativistic coupled Hartree-Fock, i.e., the coupled perturbed Dirac-Fock (CPDF) method contains the core polarization effects to all orders in the residual Coulomb interaction. Our DF and CPDF results are given in Table I and compared with those of other calculations that were carried out using the same approximations. They are in very good agreement with the results of Refs. 23 and 24. However, our CPDF result differs from that of Ref. 26 by about two and a half percent. The reason for this seems to be the different number of basis functions and values of the parameters in them that were chosen for the two calculations. All the results for the polarizability calculations given in this paper are in atomic units (a.u.). The remaining contribution (~0.88 a.u.) is due to higher order correlation effects that are present in the three terms given in Eq. (25). The differences in the contributions between the individual terms of the RCCSD(SC) and their counterparts in the RNCCSD are not negligible. However, the final results for the two methods given in Table I differ by only two percent. Both of them are in reasonable agreement with an earlier calculation using the RCCSD method which only took into account lower order correlation effects together are estimated to be about 0.6 % of the total values in the two cases.

IV. CONCLUSION

The results of our calculations of the electric dipole polarizability of \(^{129}\text{Xe}\) using the self-consistent relativistic coupled-cluster theory and the relativistic normal coupled-cluster theory have been presented and discussed. They are within two percent of each other and differ with the measured value by only one percent. The role of correlation effects has been highlighted, and the neglected contributions of these effects and the higher order relativistic effects together are estimated to be about 0.6 % of the total values of both the relativistic coupled-cluster methods.
The present work paves the way for high precision studies of the electric dipole moments of 129Xe using the two above mentioned relativistic coupled-cluster methods.

[1] S. M. Barr, Int. J. Mod. Phys. A 8, 209 (1993).
[2] M. Pospelov and A. Ritz, Ann. Phys. (NY) 318, 119 (2005).
[3] N. Yamanaka et al, Eur. Phys. J. A 53, 54 (2017).
[4] B. Graner, Y. Chen, E. G. Lindahl and B. R. Heckel, Phys. Rev. Lett. 116, 161601 (2016).
[5] T. Chupp, P. Fierlinger, M. Ramsey, J. Singh, arXiv:1710.02504
[6] T. Sato. et al, arXiv:1803.06821
[7] Hohn U, and Kerl K, Mol. Phys, 69, 819 (1990).
[8] H. S. Nataraj, B. K. Sahoo, B. P. Das and D. Mukherjee, Phys. Rev. Lett. 101, 033002 (2008).
[9] V. S. Prasannaa, A. C. Vutha, M. Abe and B. P. Das, Phys. Rev. Lett. 114, 183001 (2015).
[10] R. F. Bishop, Microscopic, "Quantum Many-Body Theories and their Applications", Chap. 1, pp1-70 (Springer, Berlin, 1997).
[11] B. K. Sahoo and B. P. Das, arXiv:1801.07045
[12] I. Shavitt, and R.J Bartlett, “Many-Body Methods in Chemistry And Physics”, Cambridge University (2009).
[13] https://www3.nd.edu/~zxu2/acms40390F12/Lec-7.3.pdf
[14] J. Cizek, and J. Chem, Phys. 45, 4256 (1996) .
[15] H. J Monkhorst, Int. J. Quantum Chem Symp. 11, 421 (1977).
[16] A. Shukla, B. P. Das and D. Mukherjee, Phys. Rev. A 50, 2096 (1994).
[17] M. K. Advani et al, Proc. Phys. Soc. A 69, 650 (1956).
[18] Y. Ishikawa, R. Baretty, and R. C. Binning Jr., Chem. Phys. Lett. 121, 130 (1985).
[19] K. G. Dyall and K. Fægir, Jr. “Introduction to Relativistic Quantum Chemistry ”, Oxford University Press, pp176-178 (2007).
[20] H. M. Quiney, I. P. Grant and S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 22, L15 (1989).
[21] K.G.Dyall et al. Comp. Phys. Comm. 55, 425 (1989).
[22] https://www.benfrederickson.com/numerical-optimization/
[23] B. K. Sahoo and B. P. Das, arXiv:1710.10946v1.
[24] Y. Singh, B. K. Sahoo and B. P. Das, Phys. Rev. A 89, 030502(R) (2014) .
[25] K. V. P. Latha and P. R. Amjith, Phys. Rev. A 87, 022509 (2013).
[26] S. Chattopadhyay, B. K. Mani and D. Angom, Phys. Rev. A 86, 062508 (2012).
[27] I. P. Grant, ”Relativistic Quantum Theory of Atoms and Molecules”, Springer, New York, pp. 339-340 (2007).