Comparative Genome Analysis Reveals the Molecular Basis of Niche Adaptation of Staphylococcus epidermidis Strains

Fei Su1†, Rui Tian2†, Yi Yang3†, Hexin Li1, Gaoyuan Sun1, Ying Li4, Bingqing Han4, Xiaomao Xu4, Xue Chen5, Gang Zhao6, Hongyuan Cui6* and Hongtao Xu5*

OPEN ACCESS

Staphylococcus epidermidis is one of the most commonly isolated species from human skin and the second leading cause of bloodstream infections. Here, we performed a large-scale comparative study without any pre-assigned reference to identify genomic determinants associated with the diversity and adaptation of S. epidermidis strains to various environments. Pan-genome of S. epidermidis was open with 435 core proteins and had a pan-genome size of 8,034 proteins. Genome-wide phylogenetic tree showed high heterogeneity and suggested that routine whole genome sequencing was a powerful tool for analyzing the complex evolution of S. epidermidis and for investigating the infection sources. Comparative genome analyses demonstrated a range of antimicrobial resistance (AMR) genes, especially those within mobile genetic elements. The complicated host-bacterium and bacterium-bacterium relationships help S. epidermidis to play a vital role in balancing the epithelial microflora. The highly variable and dynamic nature of the S. epidermidis genome may contribute to its success in adapting to broad habitats. Genes related to biofilm formation and cell toxicity were significantly enriched in the blood and skin, demonstrating their potentials in identifying risk genotypes. This study gave a general landscape of S. epidermidis pan-genome and provided valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible species.

Keywords: Staphylococcus epidermidis, antimicrobial resistance, pan-genome, mobile genetic element, comparative genome analysis

Abbreviations: SCCmec, staphylococcal chromosome cassette mec; AMPs, antimicrobial peptides; SNPs, single-nucleotide polymorphisms; COGs, clusters of orthologous groups; ST, sequence type; AMR, antimicrobial resistance.
INTRODUCTION

The coagulase-negative *Staphylococcus epidermidis* is a common human skin commensal bacterium that can be cultured from the body surface of almost all healthy individuals. It also plays a central role in the skin microbiome (Otto, 2009; Oh et al., 2016; Zhou et al., 2020), especially in keeping the ecological balance of human skin microflora (Schommer and Gallo, 2013). *S. epidermidis* can produce various bacteriocins, which directly kill other microorganisms and may enhance survival of the producer strains in a competitive fashion (Jetten and Vogels, 1972; Jack et al., 1995). Especially, serine protease Esp, secreted by *S. epidermidis*, can inhibit the biofilm formation of *Staphylococcus aureus* and destroy the pre-existing *S. aureus* biofilms (Iwase et al., 2010).

However, *S. epidermidis* is the second most common cause of nosocomial infections, which in most cases are antibiotic-resistant (Otto, 2009; Joo and Otto, 2015). Antibiotic resistance remarkably complicates the treatment and increases the medical expenses (Foster, 2017; Lee et al., 2018). The large gene pool of antibiotic resistance in *S. epidermidis* is shared with many other pathogenic species (e.g., *S. aureus*) through rare horizontal gene transfer events (Diep et al., 2006). Mobile genetic elements such as multidrug-resistant conjugative plasmids, arginine catabolic mobile element (ACME; Diep et al., 2006), and staphylococcal chromosome cassette mec (SCCmec) elements (Mcm anus et al., 2015) conferring β-lactam resistance are transferred frequently, enabling rapid evolution and adaptation of *S. epidermidis* against antibiotic selection pressure (Miragaia et al., 2007; Bloemendaal et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010). When the protective layer of the human epithelium is breached and the host immunity fails, staphylococcal infections can become extremely dangerous and even fatal (Yao et al., 2010).

Su et al. Pan-Genome Analysis of Staphylococci

Information (NCBI) with isolation or clinical information when the analysis was performed. We assembled the consensus “pan-chromosome” without any pre-assigned genome reference and identified both core and variable regions within the chromosome. Second, we utilized a comparative genomics approach on 198 genomes to analyze the diversity of antibiotic resistance of *S. epidermidis*. Our results revealed that *S. epidermidis* isolates encoded a vast collection of genetic determinants and mechanisms to confer antibiotic resistance, AMPs resistance, and survival adaptations. These analyses were expected to provide insight into the coevolution of *S. epidermidis* as a nosocomial pathogen and directly aid the future efforts for large-scale epidemiological studies of this continuously evolving multi-drug resistant organism.

MATERIALS AND METHODS

Strains

A total of 198 *S. epidermidis* isolates were selected to represent known diversity within geographical position, isolation source, and host tissue sampled when this analysis was performed, including reference genome of strain RP62A (Gill et al., 2005). All the available genome sequence of *S. epidermidis* strains and related annotation data were downloaded through the GenBank database (Benson et al., 2013) of NCBI (see Supplementary Table S1 in the Supplementary Material). Totally 121 strains were isolated from different human tissues and the others were from environments.

SCCmec and ACME Typing

An SCCmec sequence cassette database was prepared with the following accession numbers downloaded from NCBI: AB033763.2 (Type I), AB433542.1 (Type I.2), D86934.2 (Type II), AB261975.1 (Type II.4), AJ810123 (Type II-B), AB127982.1 (Type II-B), AM983545.1 (Type II-D), HE858191.1 (Type II-E), AB037671.1 (Type III), HM030721.1 (Type IV), HM030720.1 (Type IV), AM292304.1 (ZH47 mobile elements), AB425824.1 (Type IV), EU437549.2 (Type IV-A), AB063172.2 (Type IV-A), AB063173 (Type IV-B), AX271717.1 (Type IV-C), AB096217 (Type IV-C), AB245470.1 (Type IV-C), AB097677.1 (Type IV-D), AJ810121.1 (Type IV-E), DQ106887.1 (Type IV-G), AB633329.1 (Type IV-I), AB425823.1 (Type IV-I), AB121219.1 (Type IV), AB478780.1 (Type V), AB512767.1 (Type V), AF411935.3 (Type VI), AB462393.1 (Type VII), AB373032.1 (Type V-C), FJ670542.1 (Type VIII), FJ390057.1 (Type VIII), AB505628.1 (Type IX), AB505630.1 (Type X), and FR821779.1 (Type XI; Ugolotti et al., 2016).

The ACME-arcA and ACME-opp3AB genes were used as markers of the ACME-arc cluster and the ACME-opp cluster, respectively. ACME was classified as type I (contains the ACME-arcA and ACME-opp3AB gene clusters), type II (carries only the ACME-arcA locus), and type III (carries only the ACME-opp3AB locus; Barbier et al., 2011). ACME-arcA and ACME-opp3AB identified in this study were compared with the reference sequences of ACME-arcA (USA300_FPR3757) and ACME-opp3AB (USA300_FPR3757).
kSNP S. epidermidis Trees

Because microbial genomes are subject to massive gene gains and losses, insertion, deletions and rearrangements, alignment of whole microbial genome sequences has proven to be computationally intensive. Here, we used kSNP (version: 3.0\(^1\)), a validated method to build the phylogenetic tree without alignment (Gardner et al., 2015) by using a k-mer length 19 nucleotides and based on a requirement that at least 80% of the genomes have a nucleotide at a given Single-nucleotide polymorphisms (SNPs) position in order for the SNP to be considered to be a core and included in tree building. A total of 1,832 core SNP positions were identified.

jModelTest2 was used to carry out statistical selection of best-fit models of nucleotide substitution by implementing different model selection strategies (Ehsan Vafadarnejad et al., 2020) and maximum-likelihood tree was built with RAxML (Stamatakis, 2014) with generalized time reversible (GTR) model. Branch support values were inferred from a rapid bootstrap method applied with 100 replications. Visualization and annotation of the phylogenetic tree was performed by ggtree (Yu et al., 2018).

Pan-Genome Analysis

Clustering of orthologous proteins were generated with version 3.24 of PanOCT\(^2\) as previously described (Fouts et al., 2012). Briefly, PanOCT dealt with recently diverging paralogs by using neighborhood gene information. All the parameters were set to default values except for the length ratio to discard shorter protein fragments when a protein was split due to a frameshift mutation. Orthologous clusters were stringently defined as all protein fragments when a protein was split due to a frameshift mutation. Because microbial genomes are subject to massive gene gains and losses, insertion, deletions and rearrangements, alignment of whole microbial genome sequences has proven to be computationally intensive. Here, we used kSNP (version: 3.0\(^1\)), a validated method to build the phylogenetic tree without alignment (Gardner et al., 2015) by using a k-mer length 19 nucleotides and based on a requirement that at least 80% of the genomes have a nucleotide at a given Single-nucleotide polymorphisms (SNPs) position in order for the SNP to be considered to be a core and included in tree building. A total of 1,832 core SNP positions were identified.

jModelTest2 was used to carry out statistical selection of best-fit models of nucleotide substitution by implementing different model selection strategies (Ehsan Vafadarnejad et al., 2020) and maximum-likelihood tree was built with RAxML (Stamatakis, 2014) with generalized time reversible (GTR) model. Branch support values were inferred from a rapid bootstrap method applied with 100 replications. Visualization and annotation of the phylogenetic tree was performed by ggtree (Yu et al., 2018).

Characterization of Strains

In silico multilocus sequence typing of 198 strains was performed with the MLST 1.8 online server (Larsen et al., 2012). The antimicrobial resistance (AMR) genes in the sequenced isolates were identified by BLASTp (Altschul et al., 1990) searching against the databases of ARDB (Liu and Pop, 2009), CARD (Alcock et al., 2020), and ResFinder (Zankari et al., 2012), with \(10^{-5}\) as expect value threshold. Genes conferring virulence factors were identified using BLASTp with VFDB (Chen et al., 2012). Given that many virulence factors for S. epidermidis that are not contained in the VFDB, we used the orthologous proteins and virulence factors from RP62a (Assembly: GCF_000011925.1; Gill et al., 2005) and ATCC1228 (Assembly: GCA_000007645.1; Zhang et al., 2003) to make up the missing information.

Functional Analysis

All genes were BLASTed against the database of KOBAS 2.0\(^3\) (Xie et al., 2011). The cutoffs were BLASTp E-value \(< 10^{-5}\) and BLAST subject coverage \(> 70\%\). We used the genes from the same genome as the default background distribution and considered the only pathways for which there were at least two genes mapped. For the enrichment analysis, Fisher’s exact test was performed, and Bonferroni correction was used to reduce the high overall Type-I error with p.adjust from R package.

Statistical Analyses

The differences in the prevalence of AMR genes and phenotypes among isolates were analyzed by using two-tailed Fisher’s exact test, and Bonferroni correction was also performed as mentioned above. All the statistical analyses were carried out using R package (version: 3.3). A P-value of \(< 0.05\) was regarded as statistically significant.

RESULTS

Core Pan-Genome of S. epidermidis

Despite the intensive effort to characterize S. epidermidis and the sizable number of whole genome comparisons in literature (Conlan et al., 2012; Meric et al., 2018), more and more genome data is rapidly accumulated and could easily be obtained from public databases, such as NCBI. Based on PanOCT, a total of 8,034 orthologous protein clusters were identified from a collection of all S. epidermidis genomes publicly available at the time of the analysis (Supplementary Table S1). PanOCT only includes non-paralogs in clusters and uses conserved gene neighborhood to separate duplicated genes. This means that insertion sequence elements that are in novel contexts will often form singleton clusters even though they are identical in sequence to other IS elements within or between genomes analyzed. When the “core” pan-genome was defined to be present at all 198 genomes analyzed, there were 435 (5.4\%) core protein clusters and 2,915 (36.3\%) novel clusters (groups with a single member from a single genome; Figure 1A). To predict the theoretical maximum pan-genome size (i.e., the total number of genes, including core, unique, and accessory genes), a pan-genome model was implemented using medians and an exponential decay function (Figure 1B). The maximum pan-genome size was estimated to be 12,554 \pm 65 genes. To determine whether the S. epidermidis pan-genome had an unlimited large gene repertoire (open) or seemed to be limited by a maximum number of genes in their gene pool (closed), the number of new genes identified (i.e., unique or strain-specific genes) for each genome added was determined and fit to a power law function \(n = \kappa N^{-\alpha} \) as described previously (Tettelin et al., 2005). According to the result, we found the pan-genome of S. epidermidis appeared to be open (\(\alpha = 0.226 \pm 0.002\); Figure 1B). For each genome added, the number of new genes was extrapolated by calculating \(t g(\theta)\), which was determined to be 7.7 \pm 0.4 (Figure 1C).

\(^{1}\)https://sourceforge.net/projects/knsnp/

\(^{2}\)https://sourceforge.net/projects/panoct/

\(^{3}\)http://kobas.cbi.pku.edu.cn/
Su et al. Pan-Genome Analysis of Staphylococci

FIGURE 1 | Analysis of the Staphylococcus epidermidis pan-genome. (A) The distribution of protein cluster sizes generated from the comparison of 198 S. epidermidis genomes using PanOCT. (B) The pan-genome size (left) and the number of novel genes discovered with the addition of each new genome (C, right) were estimated for all 198 genomes using a pan-genome model based on the original Tettelin et al. (2005) model.

The function of the genes within the variable genome was investigated by assigning all gene clusters to clusters of orthologous groups (COGs; Tatusov et al., 2003), and the results showed that novel genes were most likely to be assigned to categories (Figure 2 and Supplementary Tables S2, S3) such as mobilome, ribosomal structure and biogenesis, carbohydrate transport and metabolism, and nucleotide transport and metabolism, based on the result of Fisher’s exact test.

Phylogenetic Relationship of S. epidermidis Isolates

To estimate the genetic relationships among S. epidermidis strains, we compared all 198 genomes by using a single nucleotide polymorphism-based phylogeny. SNPs were identified from the combined set of genome sequences by using kSNP. Nucleotide positions present in at least 80% of all genomes were used to build a Maximum-Likelihood phylogenetic tree with RAxML following the tutorial. Strikingly, the 198 S. epidermidis isolates formed two distinct groups (Figure 3), called Cluster A (solid line) and B (dotted line). Most of Sequence Type (ST) 2 nosocomial isolates were near-identical at the nucleotide level for all core genes (Supplementary Table S4). All of ST 2 strains in this study presented in Cluster A and had an extremely short evolutionary distance from each other (scaled branch lengths < 0.01), with 99.7% identical in sequence, indicating that these strains were probably derived from a recent common ancestor. By contrast, Cluster B represented a lineage with reduced virulence and all of ST 5 commensal strains presented in Cluster B and clustered together. The rest of Cluster B had a much longer evolutionary distance from ST 5 strains. This clade might have a more complex history of evolution and produce a variety of sub-groups.
Antimicrobial Resistance Across S. epidermidis

Antimicrobial resistance is very common among S. epidermidis isolates and often limits treatment options (Kleinschmidt et al., 2015). Given the clinical importance of AMR in S. epidermidis, we performed a genome-wide analysis of all known AMR genes within our genomic dataset. According to the analysis of ARDB, ResFinder and CARD databases, we found 28 different genes involved in 31 antibiotics (Figure 3). Nearly all isolates carried at least one antibiotic resistance gene. Among the genes involved in AMR, our data showed that there were two genes, norA (AAW53745.1) and bacA (AAW53717.1), conserved in all strains. Based on the enrichment analysis of strains from different niches, we found that strains from different sources (skin, blood, environment, and plant) had significantly different antibiotic resistance profiles: isolation from blood (9 antibiotic resistance genes) and skin (8 antibiotic resistance genes) had significantly enriched antibiotics (Supplementary Table S5), while isolates from environment had no significantly enriched antibiotics. First-line antibiotic therapy for catheter-related bloodstream infections was vancomycin. None of these isolates were resistant to the antibiotic at the genetic level, regardless of isolation source.

SCCmec and ACME in S. epidermidis

Staphylococcal chromosome cassette mec, or staphylococcal cassette chromosome mec, is a mobile genetic element that carries the central determinant for broad-spectrum beta-lactam resistance encoded by the mecA gene (AAW53314.1), a mobile genetic element of Staphylococcus bacterial species (IWG-SCC, 2009; Mcmanus et al., 2015). According to the completeness of genome in this study (only 7 complete genome sequences), we only analyzed the genes from well-defined SCCmec genomic islands (Kos et al., 2012). There were 58.6% (116/198) of S. epidermidis strains, in which complete mecA genes complexes, mecA (AAW53314.1), and mecR1 (AAW53313.1) genes were detected (Supplementary Table S1). However, only 39.4% (78/198) of strains had ccr gene complex from type IV cassette, in which both ccrA and ccrB were present but not in RP62a. Similar to the previous results (Conlan et al., 2012; Du et al., 2013), nearly all of the ST 2 nosocomial isolates (94.6%, 70/74) had at least one copy of mecA from type IX cassette and mecR1 from Type VIII or IV-G cassette. On the other hand, a high prevalence (98%, 195/198) of ACME was found in S. epidermidis strains in this study, of which 22.7% (45/198) was type I and 75.8% (150/198) was type II.

Biofilm Formation of S. epidermidis

Biofilm formation is the major virulence factor of S. epidermidis strains, which contributes to the persistence of clinical infection. Here, we analyze some well-known factors involved in biofilm formation such as adhesive molecules, including polysaccharide intercellular adhesin...
(icaABCD), proteinaceous factors (bh p (AAW53225.1), and aap (AAW53239.1), teichoic acids, extracellular DNA (Supplementary Table S6). The polysaccharide intercellular adhesion (icaABCD) genes that encode biofilm-associated genes for poly-N-acetylglucosamine synthesis were found in 60% of the commensal isolates, in agreement with previous studies (Du et al., 2013). Especially, any of the ica genes was not found in some ST 2 strains (Figure 4). Gene aap was enriched in the blood (adjusted P-value < 0.01) compared to the remaining isolates and therefore might be a potential biomarker for S. epidermidis.
Human-Bacterium and Bacterium-Bacterium Interactions in S. epidermidis

Staphylococcus epidermidis is the major colonization microorganisms in the human skin with complex human-bacterium and bacterium-bacterium interactions. We analyzed the genes (Figure 5, Table 1 and Supplementary Table S5) involved in resistance against AMPs that can inhibit the growth of most skin microorganism including S. epidermidis. We also identified 25 genes related to biofilm formation (7/17) and cell toxicity (8/17), which were significantly enriched in the blood and skin, were reported to assist the strain to survive on the skin surface (Joo and Otto, 2015). We also analyzed genes involved in bacterium-bacterium interactions. We found that the genes involved in short-chain fatty acids...
biosynthesis and extracellular proteases (e.g., Esp) had no difference among the isolates.

DISCUSSION

Staphylococcus epidermidis is a coagulase-negative and Gram-positive staphylococcus that is part of the normal mucosa and skin microflora in humans and other mammals (Oh et al., 2016). It is the second leading cause of nosocomial infections (Ziebuhr et al., 2006). Although *S. epidermidis* is a saprophyte and an opportunistic pathogen with plenty of antibiotic resistance and virulence factors (Namvar et al., 2014), this natural skin colonizer plays a critical role in balancing the epithelial microflora (Otto, 2009, 2010). As an innocuous commensal microorganism, *S. epidermidis* has long been seen as an avirulent species. With the accumulation of genomic sequences, we can now further explore the genetic mechanisms of environmental adaptability of *S. epidermidis*, the evolution process during the outbreak, and the molecular biomarkers for clinical diagnosis (Otto, 2009; Didelot et al., 2012).

In our current pan-genome analysis, *S. epidermidis* had a relatively compact genome with a size of about 2.5 Mb, and yet almost 20% of this genome was in flux, exchanging with a large
The prevalence of *S. epidermidis* in a quicker and more accurate manner. On the other hand, predict the infection isolation sources and antibiotic resistance has been developed (Tolo et al., 2016), WGS may help to have been available and a new machine learning algorithm S. epidermidis Pankhurst et al., 2016). As more genetic data of strains of blood from those of skin, with 17 potential contaminates clinical specimens (Tolo et al., 2016). According to infection isolates from commensally available isolates that however, these markers have much less power to distinguish be enriched in hospital isolates than in non-hospital isolates; however, these markers have much less power to distinguish infection isolates from commensally available isolates that contaminate clinical specimens (Tolo et al., 2016). According to our enrichment analysis, we found it was possible to distinguish the strains of blood from those of skin, with 17 potential biomarkers related to biofilm formation and cell toxicity, demonstrating the potential for identifying risk genotypes. Whole genome sequencing has been proved to be a more powerful routine diagnostic tool than the traditional multi-locus sequence typing (MLST) or single gene marker (16S rDNA). From the phylogenetic tree, we found the ST 2 isolates had an extremely short evolutionary distance from each other.

The genetic markers mecA and icaA, which are used to predict the AMR and biofilm phenotypes, have been shown to be enriched in hospital isolates than in non-hospital isolates; however, these markers have much less power to distinguish infection isolates from commensally available isolates that contaminate clinical specimens (Tolo et al., 2016). According to our enrichment analysis, we found it was possible to distinguish the strains of blood from those of skin, with 17 potential biomarkers related to biofilm formation and cell toxicity, demonstrating the potential for identifying risk genotypes. Whole genome sequencing has been proved to be a more powerful routine diagnostic tool than the traditional multi-locus sequence typing (MLST) or RT-PCR because it can rapidly identify the infection source and antibiotic resistance in an affordable manner (Rasko et al., 2011; Pankhurst et al., 2016). As more genetic data of *S. epidermidis* have been available and a new machine learning algorithm has been developed (Tolo et al., 2016), WGS may help to predict the infection isolation sources and antibiotic resistance in a quicker and more accurate manner. On the other hand, *S. epidermidis* has very complicated relationship with human and other bacteria. The prevalence of *S. epidermidis* gene content and other genetic features exhibited strain specificity, suggesting functional specialization to the niche. AMPs play an important role in providing immunity to bacterial colonization on human epithelia (Liu et al., 2020; Zhou et al., 2020). Recent research has shown that *Staphylococci* have multiple systems to combat AMP activity, including AMP sensor that can regulate the expressions of genes involved in AMP resistance depending on the presence of AMPs (Joo and Otto, 2015). We analyzed the distribution of gene involved in AMP resistance and found the enrichment was significant in blood and skin and variable among different strains, which may be the consequence of coevolution of human's immune system. On the other side, *S. epidermidis* strains also can inhibit the growth of other bacterium to be dominant species on the skin surface. Serine protease Esp, which is secreted by *S. epidermidis*, has been found to be able to inhibit the biofilm formation of *S. aureus* and destroy pre-existing *S. aureus* biofilms (Iwase et al., 2010). Other mechanisms are also involved in fighting against pathogens and maintaining homeostasis (Otto et al., 2001; Wang et al., 2014). *S. epidermidis* was also found to be a reservoir of antibiotic resistance, with its virulence determinants shared with other more pathogenic species such as *S. aureus*, as demonstrated in previous studies (Conlan et al., 2012). In particular, SCCmec, ACME elements conferring β-lactam resistance, and other genes are transferred frequently between *Staphylococcus* strains, enabling rapid evolution and adaptation against antibiotic selection pressure and provide additional competitive advantage. For instance, type III of SCCmec carries a phenol soluble modulin psm-mec, which may affect the virulence of *S. aureus* (Qin et al., 2016). This provides strong support for pathogen carriage and increased infection risks elsewhere in the body, such as of methicillin-resistant *S. aureus* in the nares, as well as for the contextual microbiome affecting infection risk via HGT of pathogenicity reservoirs.

CONCLUSION

Our current study provides information on the molecular characteristics of *S. epidermidis* strains isolated from different environments from all over the world. From a genomic perspective, the pan-genome analysis of the *S. epidermidis* reveals a high level of diversity among the generic and strain-specific genes and provides novel insights into the adaptation and evolution of *S. epidermidis* isolates as opportunistic, multidrug-resistant nosocomial pathogens. *S. epidermidis* strains from habitats are not equivalent and pathogenic sub-population acquired genetic elements and related phenotypes that promote infection. We identified 17 potential biomarkers related to

TABLE 1 | *Staphylococcus epidermidis* resistance mechanisms that target antimicrobial peptides (AMPs).

Resistance Mechanism	Gene	Target AMPs	Functions	Enrichment
AMP sensing	apsSRX	Most cationic AMPs	3-Component sensor/regulator	–
	braSR/braDE/vraDE	Bacitracin, nisin		–
Phosphatidylglycerol lysozyme	mprF	Most cationic AMPs	Lysylation of membrane phospholipids	–
Teichoic acids alanylation	dltABCD	Most cationic AMPs	Alanylation of teichoic acids	Blood/Skin (dltD)
Exopolymers	icaABCD	HBD3, LL-37, DCD-1	Production of PNAG	Blood(icaB)
	capABCD	HBD3, LL-37, DCD-1	exopolysaccharide; icaAB	
Extracellular proteases	sepA	LL-37	Degradases AMPs	–
	esp	LL-37a		–
ABC transporters	vraFG	Vancomycin, polymyxin B, colistin	Putative AMP exporter	–
biofilm formation and cell toxicity, which may help to distinct blood strains from skin stains. A better understanding of the mechanisms of gene transfer will help to control the epidemic of pan-drug-resistant \textit{S. epidermidis} strains.

DATA AVAILABILITY STATEMENT

The original contributions generated in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

FS, HX, and HC designed the project. FS conceived the experiment and analyzed the genome data. RT, YY, HL, GS, YL, BH, XX, XC, and GZ interpreted the results and drafted the manuscript. All authors reviewed the manuscript.

FUNDING

This work was supported by the National Key Research and Development Program of China (Grant: 2018YFC2000505), the Fundamental Research Funds for the Central Universities (No: 3332019121), the Applied Research Program of Capital Clinical Features (Grant: Z18110001718172), and CAMS Innovation Fund for Medical Sciences (Grant: 2018-12M-1-002).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2020.566080/full#supplementary-material

REFERENCES

Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., et al. (2020). CARD 2020: antibiotic resistance surveillance with the comprehensive antibiotic resistance database. \textit{Nucleic Acids Res.} 48, D517–D525. doi: 10.1093/nar/gkz935

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. \textit{J. Mol. Biol.} 215, 403–410. doi: 10.1016/S0022-2836(85)80360-2

Barbier, F., Lebeaux, D., Hernandez, D., Delannoy, A. S., Caro, V., Francois, P., et al. (2011). High prevalence of the arginine catabolite mobile element in carriage isolates of methicillin-resistant \textit{Staphylococcus epidermidis}. \textit{J. Antimicrob. Chemother.} 66, 29–36. doi: 10.1093/jac/dkq410

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., et al. (2013). GenBank. \textit{Nucleic Acids Res.} 41, D36–D42. doi: 10.1093/nar/gks1195

Bloemendaal, A. L., Brouwer, E. C., and Fluit, A. C. (2010). Methicillin resistance transfer from \textit{Staphylococcus epidermidis} to methicillin-susceptible \textit{Staphylococcus aureus} in a patient during antibiotic therapy. \textit{PLoS One} 5:e11841. doi: 10.1371/journal.pone.0011841

Chen, L., Xiong, Z., Sun, L., Yang, J., and Jin, Q. (2012). VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. \textit{Nucleic Acids Res.} 40, D641–D645. doi: 10.1093/nar/gkr989

Conlan, S., Mijares, L. A., Program, N. C. S., Becker, J., Blakesley, R. W., Bouffard, G. G., et al. (2012). \textit{Staphylococcus epidermidis} pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. \textit{Genome Biol.} 13:R64. doi: 10.1186/gb-2012-13-7-r64

Dideot, X., Bowden, R., Wilson, D. J., Petö, T. E., and Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. \textit{Nat. Rev. Genet.} 13, 601–612. doi: 10.1038/nrg3226

Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., et al. (2006). Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant \textit{Staphylococcus aureus}. \textit{Lancet} 367, 731–739. doi: 10.1016/s0140-6736(06)68231-7

Du, X., Zhu, Y., Song, Y., Li, T., Luo, T., Sun, G., et al. (2013). Molecular analysis of \textit{Staphylococcus epidermidis} strains isolated from community and hospital environments in China. \textit{PLoS One} 8:e62742. doi: 10.1371/journal.pone.0062742

Ehsan Vafadarnejad, G. R., Laura, K., Panagiota, A., Vallery, A. N., Dirk, S., Melanie, R., et al. (2020). Time-resolved single-cell transcriptomics uncovers dynamics of cardiac neutrophil diversity in murine myocardial infarction. \textit{bioRxiv [Preprint]}. doi: 10.1101/738005

Foster, T. J. (2017). Antibiotic resistance in \textit{Staphylococcus aureus}. Current status and future prospects. \textit{FEBS Microbiol. Rev.} 41, 430–449. doi: 10.1093/femsre/fxf007

Fouts, D. E., Brinkac, L., Beck, E., Inman, J., and Sutton, G. (2012). PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. \textit{Nucleic Acids Res.} 40:e172. doi: 10.1093/nar/gks757

Gardner, S. N., Slezak, T., and Hall, B. G. (2015). kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. \textit{Bioinformatics} 31, 2877–2878. doi: 10.1093/bioinformatics/btv271

Gill, S. R., Fouts, D. E., Archer, G. L., Mongodin, E. F., Deboy, R. T., Ravel, J., et al. (2005). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant \textit{Staphylococcus aureus} strain and a biofilm-producing methicillin-resistant \textit{Staphylococcus epidermidis} strain. \textit{J. Bacteriol.} 187, 2426–2438. doi: 10.1128/JB.187.7.2426-2438.2005

Grant, J. R., Arantes, A. S., and Stothard, P. (2012). Comparing thousands of circular genomes using the CGView comparison tool. \textit{BMC Genom.} 13:202. doi: 10.1186/1471-2164-13-202

Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., et al. (2010). \textit{Staphylococcus epidermidis} Esp inhibits \textit{Staphylococcus aureus} biofilm formation and nasal colonization. \textit{Nature} 465, 346–349. doi: 10.1038/nature09074

IWG-SCC (2009). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. \textit{Antimicrob. Agents Chemother.} 53, 4961–4967. doi: 10.1128/aac.00579-09

Jack, R. W., Tagg, J. R., and Ray, B. (1995). Bacteriocins of gram-positive bacteria. \textit{Microbiol. Rev.} 59, 171–200. doi: 10.1128/mbr.59.2.171-200.1995

Jetten, A. M., and Vogels, G. D. (1972). Mode of action of a \textit{Staphylococcus aureus} bacteriocin. \textit{Antimicrob. Agents Chemother.} 2, 456–463. doi: 10.1128/aac.2.6.456
Joo, H. S., and Otto, M. (2015). Mechanisms of resistance to antimicrobial peptides in Staphylococci. Biochim. Biophys. Acta 1848, 3055–3061. doi: 10.1016/j.bbamem.2015.02.009

Kleinschmidt, S., Huyngens, F., Faaogali, J., Rathnayake, I. U., and Hafner, L. M. (2015). Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol. 10, 1859–1879. doi: 10.2217/fmb.15.98

Kos, V. N., Desjardins, C. A., Griggs, A., Cerqueira, G., van Tonder, A., Johnson, D. J., et al. (2012). Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 3:e00112. doi: 10.1128/mBio.00112-12

Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., et al. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361. doi: 10.1128/jcm.00694-11

Lee, J. Y. H., Monk, I. R., Goncalves Da Silva, A., Seemann, T., Christensen, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., et al. (2012). Comparison of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 3:e00112. doi: 10.1128/mBio.00112-12

Liu, B., and Pop, M. (2009). ARDB—antibiotic resistance genes database. Nucleic Acids Res. 37, D443–D447. doi: 10.1093/nar/gkn656

Liu, Q., Liu, Q., Meng, H., Lv, H., Liu, Y., Liu, J., et al. (2020). Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbiol. 27, 68–78.e6. doi: 10.1016/j.chom.2019.11.003

Mcmannus, B. A., Coleman, D. C., Deasy, E. C., Brennan, G. J., Brain, O. C., Moncke, S., et al. (2015). Comparative genotypes, Staphylococcal cassette chromosome mec (SCC mec) Genes and antimicrobial resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus isolates from infections in humans and companion animals. PLoS One 10:e0138079. doi: 10.1371/journal.pone.0138079

Meric, G., Mageiros, L., Pensar, J., Laabei, M., Y ahara, K., Pascoe, B., et al. (2016). Whole-genome sequencing as standard practice for the analysis of clonality in outbreaks of meticillin-resistant Staphylococcus aureus in a paediatric setting. J. Hosp. Infect. 93, 375–381. doi: 10.1016/j.jhin.2016.04.003

Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., et al. (2014). Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 98, 411–424. doi: 10.1007/s00253-013-5394-8

Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., et al. (2011). KOBASE 2.0: a web server for annotation and visualization associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043. doi: 10.1093/molbev/msy194

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. doi: 10.1093/jac/dks261

Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., et al. (2005). Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect. Immun. 73, 1856–1860. doi: 10.1128/iai.73.3.1856-1860.2005

Yu, G., Lam, T. T., Zhu, H., and Guan, Y. (2018). Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043. doi: 10.1093/molbev/msy194

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Su, Tian, Yang, Li, Sun, Li, Han, Xu, Chen, Zhao, Cai and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.