The connected domination polynomial of some graph constructions

Rafia Yoosuf¹, Preethi Kuttipulackal²
¹Department of Mathematics, MES Mampad College(Autonomous)
²Department of Mathematics, University of Calicut
E-mail: rafiafiroz@gmail.com, pretikut@rediffmail.com

Abstract. The connected domination polynomial of a connected graph G of order n is the polynomial

$$D_c(G, x) = \sum_{i=\gamma_c(G)}^{n} d_c(G, i)x^i,$$

where $d_c(G, i)$ is the number of connected dominating sets of G of cardinality i and $\gamma_c(G)$ is the connected domination number of G [5]. In this paper we find the polynomial $D_c(G, x)$ for some constructive graphs.

1. Introduction

The domination polynomial of a graph is introduced by Saeid Alikhani and Yee-hock Peng in [3]. While extending the concept of domination polynomial in view of connected dominating set (cd-set), we came across with many interesting relations among the connected domination polynomials of different graphs [4].

Let $G = (V, E)$ be a simple graph. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v) = \{u \in V : uv \in E\}$ and the closed neighbourhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. A set $S \subseteq V$ is a dominating set of G, if $N[S] = V$, or equivalently every vertex in $V \setminus S$ is adjacent to atleast one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G [3].

Let G be a simple connected graph of order n. A connected dominating set (cd - set) of G is a set S of vertices of G such that every vertex in $V \setminus S$ is adjacent to some vertex in S and the induced subgraph $<S>$ is connected. The connected domination number $\gamma_c(G)$ is the minimum cardinality of a connected dominating set in G [4].

Saeid Alikhani and Yee-hock Peng introduced the concept of domination polynomial of a graph as the polynomial $D(G, x) = \sum_{i=\gamma(G)}^{n} d(G, i)x^i$, where $d(G, i)$ denotes the number of dominating sets of cardinality i [3].

Considering the polynomial idea of Alikhani et.al., we studied the connected domination(cd—polynomial) polynomial of a connected graph and the information about the graph that we can obtain from the polynomial. For the basic concepts in graph theory we refer mainly Bondy and Murthy [1]. The graphs considered here are all connected and simple of order n.
2. Notation:

- $D_c[G, x]$: Connected domination polynomial of a graph G
- $d_c(G, i)$: number of connected dominating sets of G of cardinality i
- $\gamma_c(G)$: Connected domination number of G
- $N(v)$: Open neighborhood of the vertex v of a graph G
- $N[v]$: Closed neighborhood of the vertex v of a graph G
- $D[G, x]$: Domination polynomial of a graph G
- $\gamma(G)$: The domination number of a graph G
- $cd - set$: Connected dominating set
- $cd - polynomial$: Connected domination polynomial

3. Connected domination polynomial

The minimum cardinality of a $cd-$ set is $\gamma_c(G)$ and the maximum cardinality is n.

Definition 1. [4]. Let G be a connected graph of order n. The connected domination polynomial of G is the polynomial

$$D_c(G, x) = \sum_{i = 1}^{\gamma_c(G)} d_c(G, i)x^i,$$

where $d_c(G, i)$ is the number of connected dominating sets of G of cardinality i.

Example 1. Consider the path $P_3 = v_1v_2v_3$.

The connected dominating sets are $\{v_2\}$, $\{v_1, v_2\}$, $\{v_2, v_3\}$ and $\{v_1, v_2, v_3\}$. So that the polynomial is

$$x + 2x^2 + x^3.$$

Observations

For any connected graph with n vertices, we have

(i) The coefficient of x^n, $d_c(G, n) = 1$.
(ii) $D_c(G, x)$ has no constant term.
(iii) Zero is a root of $D_c(G, x)$ with multiplicity $\gamma_c(G)$.

3.1. Main Theorems

Theorem 1. [5] The $cd -$ polynomial of the star graph $K_{1,n}$ is

$$D_c[K_{1,n}, x] = \sum_{i=1}^{n+1} \binom{n}{i-1}x^i.$$

The cartesian product of two graphs G and H is the graph $G \square H$ with vertex set $V(G) \times V(H)$ and the vertices (u, v) and (x, y) are adjacent if and only if $u = x$ and $vy \in E(H)$ or $ux \in E(G)$ and $v = y$.

An $n-$book graph is obtained as the cartesian product of the star graph $K_{1,n}$ and the path graph P_2.

Remark 1. For $n = 1$ $B_1 \cong C_4$. The $cd -$ polynomial for B_1 is $4x^2 + 4x^3 + x^4$.

Theorem 2. For $n > 1$, the $cd -$ polynomial of the $n-$book graph is given by

$$D_c[B_n, x] = xD_c[K_{1,2n}, x] + 2x^nD_c[K_{1,n}, x]$$
Theorem 3. The $cd-$ polynomial of the cycle switching of the cycle C_n, for $n > 6$ is

$$x^2D_c[K_{1,n-2},x] + x^{n-4}D_c[K_{1,3},x].$$

Proof. Let $\{u_1, u_2, ..., u_n\}$ be the vertices of the cycle C_n. Without loss of generality, we take the vertex u_1 as the switching vertex of C_n, then u_1 is adjacent to all vertices u_i except u_2 and u_n and denote the resulting graph by G. The $cd-$ number of the vertex switching graph cycle G is 3. For every cycle G, $n > 6$ there exist only one $cd-$ set of cardinality 3, namely $\{u_1, u_{n-1}, u_3\}$. Any $cd-$ set must include the two vertices u_{n-1} and u_3 to dominate u_2 and u_n respectively and for connection.

A $cd-$ set that does not contain u_1 must include all the $n-3$ vertices $\{u_3, u_4, ..., u_{n-1}\}$. On the other hand any $cd-$ set of cardinality less than $n-3$, must include the vertex u_1. So that a $cd-$ set of cardinality $i < n-3$, must include the three vertices u_1, u_3 and u_{n-1}. The remaining $i-3$ vertices can be chosen arbitrarily from the $n-3$ vertices. Hence the number of such sets is $\binom{n-3}{i-3}$.

Consider $n-3 \leq i < n$. There are $cd-$ sets containing u_1 and not containing u_1. For a $cd-$ set containing u_1, we have $\binom{n-3}{i-3}$ choices as above. If a $cd-$ set does not contain u_1, the $cd-$ set
must contain the vertices \(\{u_3, u_4, ..., u_{n-1}\} \), for the remaining vertices we have \((\frac{n-2}{i-(n-3)})\) choices. For \(i = n \) we have one choice, for convenient of the proof we take it as \((\frac{n-2}{n-3})\) choices. Therefore the polynomial is

\[
D_c[G, x] = \sum_{i=3}^{n-2} \binom{n-3}{i-3} x^i + \sum_{i=n-3}^{n-1} \binom{n-3}{i-3} \left(\binom{2}{i-3} \right) x^i + \binom{n-3}{n-3} x^n
\]

\[
= \sum_{i=3}^{n} \binom{n-3}{i-3} x^i + \sum_{i=n-3}^{n-1} \binom{2}{i-3} x^i
\]

\[
= x^2 \sum_{i=1}^{n} \binom{n-3}{i-1} x^i + x^{n-4} \sum_{i=1}^{3} \binom{2}{i-1} x^i
\]

\[
= x^2 D_c[K_{1,n-2}, x] + x^{n-4} D_c[K_{1,2}, x]
\]

\[\square\]

Theorem 4. For an end vertex switching graph \(P_n, n \geq 5 \) the \(cd- \) polynomial is

\[
xD_c[K_{1,n-2}, x] + D_c[P_{n-1}, x].
\]

Proof. Let \(v_n \) be the switching end vertex of \(P_n \). If \(G \) denote the switching graph, we have \(\gamma_c(G) = 2 \), and \(\{v_n, v_{n-2}\} \) is the only \(cd- \) set of cardinality 2. Note that a connected dominating set of \(G \) that does not contain \(v_n \), must include all the \(n - 3 \) vertices \(\{v_2, v_3, ..., v_{n-2}\} \).

So that any \(cd- \) set of less than \(n - 3 \) elements must include \(v_n \) and \(v_{n-2} \); and since these two elements are always to dominate the entire graph, the remaining vertices in the \(cd- \) set can be chosen arbitrarily from the \(n - 2 \) vertices. Thus there are \((\frac{n-2}{2})\) \(cd- \) sets of cardinality \(i \), for \(1 < i < n - 3 \).

Now for \(i = n - 3 \), we have one \(cd- \) set that does not contain \(v_n \), namely \(\{v_2, ..., v_{n-2}\} \) and \((\frac{n-2}{n-5})\) \(cd- \) sets containing \(v_n \) (and \(v_{n-2} \)).

Similarly there are two \(cd- \) sets of cardinality \(n - 2 \), that does not contain \(v_n \) and \((\frac{n-2}{n-4})\) \(cd- \) sets containing \(v_n \). Hence the polynomial is

\[
D_c[G, x] = \sum_{i=1}^{n-1} \binom{n-2}{i-1} x^i + x^{n-3} + \binom{2}{1} x^{n-2} + x^{n-1}
\]

\[
= x[x + \binom{n-2}{1} x^2 + ... + \binom{n-2}{n-2} x^{n-1}] + x^{n-3} + \binom{2}{1} x^{n-2} + x^{n-1}
\]

\[
= xD_c[K_{1,n-2}, x] + D_c[P_{n-1}, x].
\]

\[\square\]

Theorem 5. For the vertex switching of the path \(P_n, n \geq 5 \), with respect to a vertex which is neither an end vertex, nor a support vertex, the \(cd- \) polynomial is

\[
x^2 D_c[K_{1,n-3}, x]
\].
The first 2 types together would contain the switching vertex. Note that \(\{v_1, v_{i+2}, v_{i-1}\} \) is a \(\text{cd}^{-}\) set and every \(\text{cd}^{-}\) set must contain the vertices \(\{v_i, v_{i+2}, v_{i-2}\} \). So the number of \(\text{cd}^-\) sets of cardinality \(i \) have \((\binom{n-3}{i-3}) \) choices. Therefore the polynomial is

\[
 x^3 + \left(\frac{n-3}{1}\right)x^4 + \left(\frac{n-3}{2}\right)x^5 + ... + \left(\frac{n-3}{n-3}\right)x^n = x^2[x + \left(\frac{n-3}{1}\right)x^3 + \left(\frac{n-3}{2}\right)x^4 + ... + \left(\frac{n-3}{n-3}\right)x^{n-1}]
 = x^2D_c[K_{1,n-3}, x].
\]

Now the vertex switching graph of \(K_{1,n} \) is disconnected if \(n = 1 \) and \(K_{1,2} \) itself if \(n = 2 \). For \(n > 2 \), we have the following result.

Theorem 6. The \(\text{cd}^-\) polynomial of the vertex switching of the star graph \(K_{1,n} \), \(n \geq 2 \), with respect to a vertex of degree 1 is

\[
 (2 + x)\{D_c[K_{1,n}, x] - x\}.
\]

Proof. The switching vertex of the star graph should be any vertex other than the centre vertex to retain the graph connected, and the graph is denoted by \(G \). The \(\text{cd}^-\) number of this vertex switching graph of \(K_{1,n} \) is 2. Let \(\{v, v_1, v_2, ..., v_n\} \) be the vertices of \(K_{1,n} \) with centre \(v \). Without loss of generality we assume that the vertex \(v_1 \) is the switching vertex. There are two types of \(\text{cd}^-\) sets of cardinality two, one which contains \(v \) but not \(v_1 \) and the other which contains \(v_1 \) but not \(v \). Both of these together have \(2^{(n-1)} \) choices.

From \(i = 3 \) onwards the \(\text{cd}^-\) sets of cardinality \(i \) fall in 3 categories. One which contains \(v \) but not \(v_1 \), second which contains \(v_1 \) but not \(v \) and the third which contains both \(v \) and \(v_1 \). The first 2 types together would contain \((\binom{n-1}{i-1}) \) \(\text{cd}^-\) sets in each as above and the third type has \((\binom{n-1}{i-2}) \) choices. So that for \(i = 3 \) onwards we have

\[
 \sum_{i=3}^{n} 2^{(\binom{n-1}{i-1})} + \sum_{i=3}^{n+1} (\binom{n-1}{i-2})
\]

\(\text{cd}^-\) sets. Therefore the polynomial is

\[
 D_c[G, x] = \sum_{i=3}^{n} 2^{(\binom{n-1}{i-1})}x^i + \sum_{i=3}^{n+1} (\binom{n-1}{i-2})x^i + 2^{(\binom{n-1}{1})}x^2
 = 2\sum_{i=2}^{n} (\binom{n-1}{i-1})x^i + x\sum_{i=2}^{n} (\binom{n-1}{i-2})x^i
 = (2 + x)\sum_{i=2}^{n} (\binom{n-1}{i-1})x^i
 = (2 + x)\{D_c[K_{1,n}, x] - x\}
\]

A spider is a tree with atmost one vertex of degree more than two, called the center of spider.
Theorem 7. The \(cd\)- polynomial of the spider graph \(K_{1,n,n}\) is
\[
D_c[K_{1,n,n}, x] = x^n D_c[K_{1,n}, x]
\].

Proof. We have \(\gamma_c(K_{1,n,n}) = n+1\). Let \(v\) be the centre vertex of the graph \(K_{1,n,n}\), \(\{v_1, v_2, ..., v_n\}\) be the vertices adjacent to \(v\) and \(u_i\) be the vertices adjacent to \(v_i\) for each \(i = 1, 2, ..., n\). Any \(cd\)- set of cardinality \(i\), \(i \geq n+1\) must contain all the vertex \(\{v, v_1, v_2, ..., v_n\}\). First we consider \(cd\)- sets of cardinality \(n+1\), there is only one such set namely \(\{v, v_1, v_2, ..., v_n\}\). Any \(cd\)- sets of cardinality \(i\), \(i > n+1\) we have \(\binom{n}{i}\) choices. Therefore the polynomial is
\[
D_c[K_{1,n,n}, x] = x^{n+1} + \binom{n}{1} x^{n+2} + \binom{n}{2} x^{n+3} + ... + \binom{n}{n} x^{2n+1}
\]
\[
= x^n[x + \binom{n}{1} x^2 + ... + \binom{n}{n} x^{n+1}]
\]
\[
= x^n D_c[K_{1,n}, x]
\]

The bispider graph is a graph obtained by edge introducing between two star graphs and the introducing is the rooted vertices, which is denoted by \(S_{p_1,p_2}\) of order \(2p_1 + 2p_2 + 2\) [5].

Theorem 8. The \(cd\)- polynomial of the bispider graph \(S_{p_1,p_2}\) is
\[
D_c[S_{p_1,p_2}, x] = x^{p_1+p_2+1} D_c[K_{1,p_1+p_2}, x]
\]

Proof. Let \(u, v\) be the rooted vertices of the spider graph \(S_{p_1,p_2}\) and \(\gamma_{cd}(S_{p_1,p_2}) = p_1 + p_2 + 2\). All the \(cd\)- sets must consist of all the \(p_1 + p_2 + 2\) vertices of this graph. For \(p_1 + p_2 + 2 \leq i \leq 2p_1 + 2p_2 + 2\), the \(cd\)- set of cardinality \(i\) have \(\binom{i}{i-p_1-p_2-2}\) choices. Therefore the polynomial is
\[
D_c[S_{p_1,p_2}, x] = \sum_{i=p_1+p_2+2}^{2p_1+2p_2+2} x^i
\]
\[
= x^{p_1+p_2+1} \sum_{i=1}^{p_1+p_2+1} x^i
\]
\[
= x^{p_1+p_2+1} D_{cd}[K_{1,p_1+p_2}, x].
\]

Theorem 9. The \(cd\)- polynomial of the connected graph \(G \circ mK_p\) is
\[
D_c[G \circ mK_p, x] = x^{n-1} D_{cd}[K_{1,nmp}].
\]

Proof. We have \(\gamma_c(G \circ mK_p) = n\). All \(cd\)- sets must contain the \(n\) vertices of the graph \(G\), say \(\{v_1, v_2, ..., v_n\}\) otherwise it wont form a \(cd\)- set. The total number of vertices of this graph is \(nmp + n\). There are only one set of cardinality \(n\) namely the set \(\{v_1, v_2, ..., v_n\}\). For a \(cd\)- sets
of cardinality \(i\), \(i > n\) we have \(\binom{nmp}{i-n}\) choices. It follows that the polynomial is

\[
D_c[G \circ mK_p, x] = x^n + \binom{nmp}{1}x^{n+1} + \ldots + \binom{nmp}{nmp}x^{n+nmp}
\]

\[
= x^n[1 + \binom{nmp}{1}x + \ldots + \binom{nmp}{nmp}x^{nmp}]
\]

\[
= x^{n-1}[x + \binom{nmp}{1}x^2 + \ldots + \binom{nmp}{nmp}x^{nmp+1}]
\]

\[
= x^{n-1}D_c[K_{1,nmp}].
\]

The friendship graph \(F_n\) can be constructed by joining \(n\) copies of the cycle graph \(C_3\) with a common vertex.

Theorem 10. The \(cd\)– polynomial of the friendship graph \(F_n\) \(n \geq 2\) is given by

\[
D_c[K_{1,2n}, x]
\]

Proof. The \(cd\)– number of \(F_n\) is one, there is only one such set namely the center vertex \(v\). Since the blocks of \(F_n\) are connected through the centre vertex only, the center vertex \(v\) must be an element of every \(cd\)– set. For \(i = 2\) onwards we have \(\binom{2n}{i-1}\) choices exists. Therefore the polynomial is

\[
D_c[F_n, x] = \sum_{i=1}^{2n+1} \binom{2n}{i-1}x^i
\]

\[
= D_c[K_{1,2n}, x]
\]

Theorem 11. The \(cd\)– polynomial of the wheel graph \(W_n\), on \(n + 1\) vertices, where \(n \geq 4\) is given by

\[
D_c[K_{1,n}, x] + D_c[C_n, x]
\]

Proof. Let \(\{v, v_1, v_2, \ldots, v_n\}\) be the vertices of the the graph \(W_n\). The \(cd\)– number of \(W_n\) is 1, and the only \(cd\)– set of one element is \(\{v\}\), namely the center vertex \(v\). For \(1 < i < n-1\), every \(cd\)– sets of cardinality \(i\) must include the center vertex \(v\). Since all other vertices are adjacent to \(v\), it follows that there are \(\binom{n}{i-1}\) such \(cd\)– sets exists. For \(n-2 \leq i \leq n\) there are two types of \(cd\)– sets, one containing \(v\) for which there are \(\binom{n}{i-1}\) choices as above and the other which does not contain the vertex \(v\), for which there are \(n\) choices. Finally \(i = n + 1\) is the order of \(W_n\), and we have a unique \(cd\)– set of \(n + 1\) elements. Therefore the polynomial is

\[
D_c[W_n, x] = \sum_{i=1}^{n-3} \binom{n}{i-1}x^i + \sum_{i=n-2}^{n} \left[\binom{n}{i-1} + n\right]x^i + x^{n+1}
\]

\[
= \sum_{i=1}^{n+1} \binom{n}{i-1}x^i + \sum_{i=n-2}^{n} nx^i
\]

\[
= D_c[K_{1,n}, x] + D_c[C_n, x].
\]
Let \((v_1, v_2, ..., v_n) \) be the vertices of the shellgraph \(S_n \) and \(\gamma_c(S_n) = 1 \). Without loss of generality we assume that \(v_1 \) is adjacent to all other vertices of the graph \(S_n \). For \(1 \leq i \leq n-1 \), all the \(cd- \) sets must contain the vertex \(v_1 \), and number of \(cd- \) sets of cardinality \(i \) is \(\binom{n-1}{i-1} \). There are two types of \(cd- \) sets of cardinality \(n-1 \) and \(n-2 \) exists, the one which is which contain \(v_1 \) and the other type is which does not contain the vertex \(v_1 \). For \(i = n-2 \) the \(cd- \) sets which does not contain \(v_1 \) are \(\{v_2, v_3, ..., v_{n-2}\} \) and \(\{v_3, v_4, ..., v_{n-1}\} \) and the \(cd- \) sets which contain \(v_1 \) has \(\binom{n-1}{n-3} \) choices as above. For \(i = n-1 \), the set \(\{v_2, v_3, ..., v_{n-1}\} \) is the only \(cd- \) set which does not contain \(v_1 \), and also there are \(\binom{n-1}{n-2} \) \(cd- \) sets which contain \(v_1 \) exists. There is one \(cd- \) set of cardinality \(n \) exists. Therefore the polynomial is

\[
D_c[S_n, x] = \sum_{i=1}^{n-1} \binom{n-1}{i-1} x^i + \left[\binom{n-1}{n-3} + 2 \right] x^{n-2} + \left[\binom{n-1}{n-2} + 1 \right] x^{n-1} + x^n
\]

\[
= \sum_{i=1}^{n-1} \frac{(n-1)!}{(i-1)!} x^i + x^n + 2x^{n-2} + x^{n-1}
\]

\[
= D_c[K_{1,n-1}, x] + 2x^{n-2} + x^{n-1}.
\]
A bow graph is a double shell with same apex in which each shell has any order.

Theorem 14. If \(B_N \) is a bow graph where \(N > 5 \), the \(cd- \) polynomial is

\[
D_c[B_N, x] = D_c[K_{1,2N-1}, x].
\]

Proof. The bow graph \(B_N \) has \(2N - 1 \) vertices and \(\gamma_c(B_N, x) = 1 \). Let \(v \) be the apex vertex of \(B_N \) and \(v \) must include in all the \(cd- \) sets of \(B_N \), otherwise that set won't form a \(cd- \) set. We can choose any vertices with \(v \) because it is adjacent to all other vertices. For \(1 \leq i \leq 2N - 1 \), the number of \(cd- \) sets of cardinality \(i \) is \((\frac{2N-2}{i-1})\). Therefore the polynomial is

\[
D_c[B_N, x] = \sum_{i=1}^{2N-1} \left(\frac{2N-2}{i-1}\right) x^i
= D_c[K_{1,2N-1}, x].
\]

\(\square \)

4. References

[1] J. A. Bondy and U.S.R. Murty 2008 *Graph Theory*, Springer.
[2] Frank Harary 1969 *Graph Theory*, Addison-Wesley, Reading, MA 9.
[3] Saeid Alikhani and Yee-hock Peng 2009 *arXiv* 0905 225 V 1.
[4] E.Sampathkumar and H.B.Walikar 1979 *J.Math.phys.*
[5] Dhananjaya Murthy B.V. Deepak G. and N.D. Soner 2013 *Int.J.of Math.Ach.* 4(11) 90-96
[6] Dhananjaya Murthy B.V. Deepak G. and N.D. Soner *Amr.J.of Math.Sci and Appl.* 3.38
[7] Samir K. Vaidya and Udayan Prajapati 2012 *Open Journal of Discrete Mathematics* 2, 99-104.