Acrodermatitis chronica atrophicans: clinical and microbiological characteristics of a cohort of 693 Slovenian patients

K. Ogrinc1, V. Maraspin1, L. Lusa2,3, T. Cerar Kišek4, E. Ruzič-Sabljić4 & F. Strle1

From the 1Department of Infectious Diseases, University Medical Centre Ljubljana; 2Department of Mathematics, University of Primorska, Koper; 3Institute for Biostatistics and Medical Informatics; and 4Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia

Abstract. Ogrinc K, Maraspin V, Lusa L, Cerar Kišek T, Ruzič-Sabljić E, Strle F (University Medical Centre Ljubljana, Ljubljana; University of Primorska, Koper; and University of Ljubljana, Ljubljana, Slovenia). Acrodermatitis chronica atrophicans: clinical and microbiological characteristics of a cohort of 693 Slovenian patients. J Intern Med 2021; https://doi.org/10.1111/joim.13266

Background. Information on large groups of patients with acrodermatitis chronica atrophicans (ACA) is limited.

Methods. We assessed clinical and microbiological characteristics of patients with ACA diagnosed at a single medical centre and compared findings in periods 1991–2004 vs. 2005–2018. The cohort is representative of Slovenian ACA patients.

Results. We assessed 693 patients: 461 females and 232 males, with median age of 64 years. Median duration of ACA before diagnosis was 12 months. In all but 2 patients, the skin lesions were located on extremities, more often on the lower (70.0%) than the upper (45.2%), bilaterally in 42.4%. Reddish-blue discoloration, swelling, thinning and wrinkling of skin were present in 95.2%, 28.1%, 46.4% and 20.5% of patients, respectively. Overall, 64.4% of patients reported constitutional symptoms, 23.1% had local symptoms, and 20.8% had symptoms/signs of peripheral neuropathy. Nodules, arthritis, joint deformity, muscle atrophy and paresis were rare (<3%). Borreliae were isolated from 200/664 (30.1%) skin samples; 92.8% were Borrelia afzelii. B. garinii and B. burgdorferi s.s. were more often isolated from the skin of male patients (OR = 4.17) and from those with arthropathy (OR = 11.74). Patients included in the more recent period were older, complained less often of constitutional symptoms but more often of local symptoms, and more often had local swelling but less often skin atrophy and bilateral involvement, probably as a consequence of earlier diagnosis.

Conclusions. ACA, typically caused by B. afzelii, usually affects older women. Clinical presentation depends on the duration of illness and probably on the Borrelia species causing the disease.

Keywords: acrodermatitis chronica atrophicans, Borrelia afzelii, Borrelia burgdorferi sensu lato, late Lyme borreliosis.
The aim of this study was to obtain comprehensive clinical and microbiological data on a large group of patients with ACA.

Patients and methods
The present study is a retrospective cohort study, encompassing patients diagnosed with ACA at LB Outpatient Clinic of University Medical Centre Ljubljana, Slovenia, in the period 1991–2018. Whilst the information on the patients has been systematically collected since 1991, the database has been created only recently. Consequently, the data for individual patient were considerably complete; however, for initial years (1991–1994) documentation was missing for several patients (Fig. S1). Since a large majority of patients with suspected ACA from central part of Slovenia are referred to our LB Outpatient Clinic, the present case series is most probably well representative of Slovenian ACA patients. The age and sex of 590 patients included in the present study have been reported previously [6].

The study was approved by the Medical Ethics Committee of the Ministry of Health of the Republic of Slovenia (No. 0120-520/2017/5).

Patients
We reviewed the medical records of patients ≥15 years of age, diagnosed with ACA at our LB Outpatient Clinic during the 28-year period, 1991–2018, and for whom the medical documentation was available. Diagnosis of ACA was based on 3 criteria: suggestive clinical presentation, demonstration of borrelial serum IgG antibodies and histological findings compatible with ACA. We also included some patients with typical clinical presentation and established borrelial infection but for whom skin histology was not available. We analysed the epidemiological, clinical and microbiological characteristics of all these patients. To test the assumption that knowledge of ACA has improved over the years and that diagnosis is therefore earlier, we compared findings in subgroups of patients assessed in the periods 1991–2004 and 2005–2018.

Clinical evaluation
Basic approaches remained similar during the overall study period. We obtained the demographic, epidemiological and clinical data, paying particular attention to constitutional and local symptoms, tick bites, past manifestations of LB, previous antibiotic treatment, skin changes, and neurological and/or joint involvement. The data were collected prospectively. For the purpose of this study, only information obtained at the initial presentation (before treatment) was used.

Serological evaluation
Up to 2010, we measured serum antibodies to B. burgdorferi s.l. in an indirect immunofluorescence assay (IFA) with a local isolate of B. afzelii as antigen. Serum dilutions ≥1:256 were interpreted as positive, based on results in a control group from the same geographic region [7]. For antibody detection from 2010 onwards, we used an indirect chemiluminescence immunoassay (LIAISON®/Dia-Sorin, Italy) with recombinant antigens OspC and VlsE for IgM and VlsE for IgG; results were graded according to the manufacturer’s instructions.

Cultivation and typing of B. burgdorferi s.l.
Skin biopsy specimens (2.5 × 2 × 2 mm) obtained from ACA lesions were inoculated directly into tubes containing 7 mL of modified Kelly–Pettenkofer medium (MKP). Samples of citrated blood (5 mL until 2000, 9 mL from 2001 onwards) were centrifuged (500 rpm for 10 minutes), and 1 mL samples of plasma were inoculated into tubes containing 7 mL MKP. All samples were incubated at 33°C and examined weekly by dark-field microscopy for the presence of spirochetes (up to 9 weeks for skin, 12 weeks for blood specimens). Isolates were identified to species/strain level using pulsed-field gel electrophoresis after MluI restriction of genomic DNA [8], or by PCR-based restriction fragment length polymorphism of the intergenic region [9].

Histopathological evaluation
Skin samples obtained at sites of ACA were placed directly into formalin-containing tubes and subsequently examined after standard haematoxylin and eosin staining. Dermis atrophy and/or lymphocyte and plasma cell inflammatory infiltrates were regarded as indicative of ACA.

Statistical methods
Categorical variables were summarized with frequencies and percentages and 95% confidence
intervals (CI), numerical variables with medians and interquartile ranges (IQRs). The characteristics of the patients diagnosed in the 1991–2004 period were compared to those diagnosed in the 2005–2018 period using the Mann–Whitney test, Fisher’s exact test or chi-squared test, as appropriate. Several covariates, selected using expert opinion (KO, FS) independently from the observed outcomes, were used for testing associations with three outcomes: the presence of serum borrelial IgM antibodies; positive borrelial skin culture; and B. garinii/B. burgdorferi s.s. versus B. afzelii isolated from the ACA skin lesion (Table S1). For the analyses, univariate and multivariable logistic regression models were employed. The R software was used. The missing values for the duration of ACA and skin histology indicative of ACA were imputed using the observed means; for the other covariates included in the analyses, the information was complete. Sensitivity analysis comparing the results obtained with imputation of means and the results obtained with multiply imputed values for covariates with missing values was performed using mice R package. Since the outcomes obtained with the two imputation methods were very consistent (data not shown), only the results using imputation of the observed means are shown.

Results

A total of 693 patients diagnosed with ACA during the 28-year period qualified for the study: 461 females (66.5%) and 232 males, with median age of 64 (IQR: 55–71) years. The lower number of patients in the early 1990s was mainly due to incomplete medical documentation (Fig. S1). Basic demographic, epidemiological and clinical data were assessed for the periods 1991–2004 and 2005–2018 (Table 1).

Information on tick bites was available for 590/693 patients, most of whom (422/590; 71.5%) recalled a tick bite within a 2-year period before the onset of ACA, but only 37/590 (6.3%) attributed the skin lesion to a particular tick bite, with a median latency period of 6 months.

Amongst the 693 patients, 147 (21.2%) reported having had EM (Fig. 1) and 7 (1.0%) having had Lyme neuroborreliosis before the ACA. In 36/103 (35.0%) patients with available information on the location of EM, the location matched the later ACA; in these patients, the time interval from EM to onset of ACA was shorter than in patients with nonmatching locations (19 vs. 63 months; \(P = 0.005 \)).

The median duration of ACA before diagnosis was 12 months (Fig. 2). In all but 2 patients, ACA was located on the limbs: on 1, 2, 3 and all 4 extremities in 55%, 31.3%, 5.6% and 7.8% of patients, respectively. The lower extremities were involved in 70%, and the upper extremities were involved in 45%. Bilateral involvement occurred in 42.1%, more often on the upper extremities than the lower (51.1% vs. 38.4%; \(P < 0.001 \)).

The most frequent skin signs (in descending order) were as follows: redness, bluish discoloration, thinning, swelling and wrinkling. In 4.8% of patients, only swelling or atrophic changes were noted, but no colour change. Rare findings included nodules (2.2%, most often located on the extensor side of the elbow), arthritis (2.6%), joint deformity (0.4%), muscle atrophy (0.4%) and paresis (0.1%).

Constitutional symptoms were reported by 64.4% of patients and local symptoms by 23.1%; in the majority, the symptoms were mild. At least 1 symptom (pain, burning, paresthesia, hypesthesia) and/or sign (muscle atrophy, paresis) suggesting ACA-associated peripheral neuropathy was present in 144 (20.8%) patients; these symptoms and signs were located exclusively at the site of ACA skin lesions.

Borrelial IgG antibody levels were usually very high. Specific IgM antibodies were also present in 32.4% of patients (Table 2). Univariate and multivariable models found no significant associations between predefined covariates and the presence of borrelial serum IgM antibodies (Table 3). Histological findings in skin lesions were available for 567/693 (81.8%) patients and were indicative of ACA in 498/567 (87.8%) patients (Table 2).

Borreliae were successfully isolated from 200/664 (30.1%) skin samples and 4/408 (1.0%) blood samples: B. afzelii predominated (92.8%) in skin, whereas 3 of 4 blood isolates were B. garinii (Table 2). In univariate analyses, isolation of borreliae from skin was positively associated with the presence of oedema and location of ACA on the lower extremities, whilst the association was negative for antibiotic treatment within 6 months.
	1991–2004	2005–2018		1991–2018
	N = 295	N = 398	P	N = 693
Female sex	187 (63.4; 57.6–68.9)	274 (68.8; 64.0–73.4)	0.155	461 (66.5; 62.9–70.0)
Age (years)	62 (53–69)	65 (57–74)	< 0.001	64 (55–71)
Female	64 (57–70)	67 (59–74)	0.002	65 (58–72)
Male	60 (48–67)	61 (53–73)	0.037	61 (50–69)
Annual number of tick	1 (0–4)^a	1 (0–4)^b	0.761	1 (0–4)
bites				
Tick bite in 2-year	191/254 (75.2; 69.4–80.4)	231/336 (68.8; 63.5–73.7)	0.104	422/590 (71.5; 67.7–75.1)
period before ACA				
Time interval from	5 (4–12)^d	6 (2–14)^e	0.883	6 (2–14)
tick bite to ACA				
(months)				
Past EM	57 (19.3; 15.0–24.3)	90 (22.6; 18.6–27.0)	0.340	147^f (21.2; 18.2–24.4)
Time from EM to ACA	19 (6–56)^g	96 (36–178)^h	< 0.001	55 (18–150)
(months)				
Matching location of	19/48 (39.6; 25.8–54.7)	17/55 (30.9; 19.1–44.8)	0.475	36/103 (35.0; 25.8–45.0)
ACA and preceding EM				
Time from EM to ACA	9 (3–22)ⁱ	54 (6–177)^j	0.024	19 (3–55)
in patients with				
matching locations				
(months)				
Past LNB^k	1 (0.3; 0–1.9)	6 (1.5; 0.6–3.3)	0.126	7^j (1.0; 0.4–2.1)
Antibiotic therapy	23/290 (7.9; 5.1–11.7)	33 (8.3; 5.8–11.4)	0.976	56/688 (8.1; 6.2–10.4)
with anti-borrelial				
activity in the 6				
months prior to				
presentation				
Duration of ACA	12 (6–24)	8 (4–18)	< 0.001	12 (5–24)
(months)				
Constitutional	237 (80.3; 75.3–84.7)	209 (52.5; 47.5–57.5)	< 0.001	446 (64.4; 60.7–67.9)
symptoms^m				
Arthralgia	180 (61.0; 55.2–66.6)	118 (29.6; 25.2–34.4)	< 0.001	298 (43.0; 39.3–46.8)
Headache	95 (32.2; 26.9–37.9)	79 (19.8; 16.0–24.1)	< 0.001	174 (25.1; 21.9–28.5)
Myalgia	97 (32.9; 27.5–38.6)	48 (12.1; 9.0–15.7)	< 0.001	145 (20.9; 18.0–24.1)
Fatigue	68 (23.1; 18.4–28.3)	69 (17.3; 13.7–21.4)	0.076	137 (19.8; 16.9–22.9)
Vertigo	42 (14.2; 10.5–18.8)	32 (8.0; 5.6–11.2)	0.013	74 (10.7; 8.5–13.2)
Memory/	21 (7.1; 4.5–10.7)	15 (3.8; 2.1–6.1)	0.073	36 (5.2; 3.7–7.1)
concentration				
disorder				
Duration of	10 (5–24)	6 (3–12)	0.007	9 (4–24)
constitutional				
symptoms (months)				
Local symptoms	56 (19.0; 14.7–23.9)	104 (26.1; 21.9–30.7)	0.034	160 (23.1; 20.0–26.4)
Description of skin lesion	1991–2004	2005–2018	1991–2018	
---	--------------------	--------------------	--------------------	
	N = 295	N = 398	N = 693	
Pain	27 (9.2; 6.1–13.0)	37 (9.3; 6.6–12.6)	0.946 64 (9.2; 7.2–11.6)	
Burning	15 (5.1; 2.9–8.2)	42 (10.6; 7.7–14.0)	0.014 57 (8.2; 6.3–10.5)	
Paresthesia	20 (6.8; 4.2–10.3)	25 (6.3; 4.1–9.1)	0.914 45 (6.5; 4.8–8.6)	
Itching	10 (3.4; 1.6–6.1)	26 (6.5; 4.3–9.4)	0.095 36 (5.2; 3.7–7.1)	
Hypoesthesia	2 (0.7; 0.1–2.4)	5 (1.3; 0.4–2.9)	0.364 7 (1.0; 0.4–2.1)	
Localization of ACA				
Lower extremity	203 (68.8; 63.2–74.1)	282 (70.9; 66.1–75.3)	0.620 485 (70.0; 66.4–73.4)	
Foot	88 (43.3; 36.4–50.5)	157 (55.7; 49.7–61.6)	0.010 245 (50.5; 46.0–55.1)	
Ankle	84 (41.4; 34.5–48.5)	167 (59.2; 53.2–65.0)	< 0.001 251 (51.7; 47.2–56.3)	
Shin	149 (73.4; 66.8–79.3)	177 (62.8; 56.8–68.4)	0.018 326 (67.2; 62.8–71.4)	
Knee	51 (25.1; 19.3–31.7)	75 (26.6; 21.5–32.2)	0.795 126 (26.0; 22.1–30.1)	
Thigh	49 (24.1; 18.4–30.6)	100 (35.5; 29.9–41.4)	0.010 149 (30.7; 26.6–35.0)	
Buttocks	3 (1.5; 0.3–4.3)	8 (2.8; 1.2–5.5)	0.251 11 (2.3; 1.1–4.0)	
Lower extremity – bilateral involvement	111 (54.7; 47.6–61.7)	75 (26.6; 21.5–32.2)	< 0.001 186 (38.4; 34.0–42.8)	
Upper extremity	157 (53.2; 47.3–59.0)	156 (39.2; 34.4–44.2)	< 0.001 313 (45.2; 41.4–49.0)	
Hand	146 (93.0; 87.8–96.5)	150 (96.2; 91.8–98.6)	0.325 296 (94.6; 91.4–96.8)	
Forearm	32 (20.4; 14.4–27.5)	49 (31.4; 24.2–39.3)	0.036 81 (25.9; 21.1–31.1)	
Elbow	26 (16.6; 11.1–23.3)	27 (17.3; 11.7–24.2)	0.980 53 (16.9; 12.9–21.6)	
Upper arm	15 (9.6; 5.4–15.3)	19 (12.2; 7.5–18.4)	0.572 34 (10.9; 7.6–14.8)	
Upper extremity – bilateral involvement	102 (65.0; 57.0–72.4)	58 (37.2; 29.6–45.3)	< 0.001 160 (51.1; 45.4–56.8)	
Trunk	9 (3.1; 1.4–5.7)	10 (2.5; 1.2–4.6)	0.846 19 (2.7; 1.7–4.2)	
Face	1 (0.3; 0–1.9)	1 (0.3; 0–1.4)	0.615 2 (0.3; 0–1.0)	
Description of skin lesion				
Redness	199 (67.5; 61.8–72.8)	290 (72.9; 68.2–77.2)	0.144 489 (70.6; 67.0–73.9)	
Bluish discoloration	175 (59.3; 53.5–65.0)	207 (52.0; 47.0–57.0)	0.066 382 (55.1; 51.3–58.9)	
No colour change	26 (8.8; 5.8–12.6)	7 (1.8; 0.7–3.6)	< 0.001 33 (4.8; 3.3–6.6)	
Swelling	56 (19.0; 14.7–23.9)	139 (34.9; 30.2–39.8)	< 0.001 195 (28.1; 24.8–31.6)	
Shining	47 (15.9; 11.9–20.6)	44 (11.1; 8.1–14.6)	0.077 91 (13.1; 10.7–15.9)	
Thin / atrophic	176 (59.7; 53.8–65.3)	144 (36.2; 31.5–41.1)	< 0.001 320 (46.4; 42.4–50.0)	
Wrinkled	95 (32.2; 26.9–37.9)	47 (11.8; 8.8–15.4)	< 0.001 142 (20.5; 17.5–23.7)	
Venous prominence	43 (14.6; 10.8–19.1)	53 (13.3; 10.1–17.1)	0.716 96 (13.8; 11.4–16.7)	
At least 1 clinical sign of skin atrophy	223 (75.6; 70.3–80.4)	183 (46.0; 41.0–51.0)	< 0.001 406 (58.6; 54.8–62.3)	
Nodule	5 (1.7; 0.6–3.9)	10 (2.5; 1.2–4.6)	0.640 15 (2.2; 1.2–3.5)	
Peeling	7 (2.4; 1.0–4.8)	11 (2.8; 1.4–4.9)	0.937 18 (2.6; 1.5–4.1)	
Arthritis	7 (2.4; 1.0–5.3)	11 (2.8; 0.8–4.2)	0.937 18 (2.6; 1.3–3.8)	
Joint deformity	8 (2.7; 1.2–5.3)	3 (0.8; 0.2–2.2)	0.042 11 (1.6; 0.8–2.8)	
The multivariable model showed significant association only for antibiotic treatment within 6 months before skin biopsy (odds ratio (OR) 0.13; 95% CI, 0.05–0.37; \(P < 0.001 \)). In a skin culture-positive subgroup, multivariable analysis found that isolation of *B. garinii* or *B. burgdorferi s.s.* was associated with patient sex (OR for male sex 4.17; 95% CI, 1.18–14.29, \(P = 0.027 \)) and arthropathy (OR = 11.74; 95% CI, 1.48–93.07; \(P = 0.020 \)). Further information is given in Table 3.

Comparison of demographic, epidemiological, clinical and laboratory characteristics in the 2 time periods (1991–2004 vs. 2005–2018) showed that patients treated in the more recent period were older, had shorter duration of ACA (Fig. 2), reported constitutional symptoms less often but local symptoms more often, presented more frequently with swelling and less frequently with skin atrophy and deformation of joints, and had bilateral ACA less frequently. Also in the later period, patients more frequently had borreial IgM antibodies in serum and histological findings suggestive of ACA (Tables 1 and 2).

Discussion

Several articles on ACA have appeared in recent decades, but the reported series are relatively small and most relate to specific clinical or microbiological aspects of ACA. In North America, only sporadic cases imported from Europe have been described [10–13].

Our study encompasses 693 patients \(\geq 15 \) years old who presented with ACA at our LB Outpatient Clinic in a 28-year period, 1991–2018. In that same period, EM was diagnosed in 17,654 patients, indicating > 25 cases of EM per 1 case of ACA, and corroborating the appraisal that amongst adult patients with LB, ACA represents < 4% of cases [14, 15]. It is of interest that each year we diagnose more cases of ACA than proven Lyme neuroborreliosis [16].

Amongst our ACA patients, the age and sex distribution, localization on dorsal distal parts of extremities and proportion of patients recalling EM before the onset of ACA were similar to those reported elsewhere [16–20]; however, several other findings differed (Table 4). For some distinctions in

Table 1 (Continued)

	1991–2004	2005–2018	\(P \)	1991–2018
Muscle atrophy\(^a \)	3 (1.0; 0.2–2.9)	0 (0–0.9)	0.077	3 (0.4; 0.1–1.3)
Muscle paresis\(^a \)	1 (0.3; 0–1.9)	0 (0–0.9)	0.426	1 (0.1; 0–0.8)

Data are medians (interquartile range) or frequencies (percentage; 95% confidence interval). \(P \) values were obtained with the Mann–Whitney test for numerical variables and with Yates’s corrected chi-squared test or two-tailed Fisher’s exact test for categorical variables.

ACA, acrodermatitis chronica atrophicans; EM, erythema migrans; LNB, Lyme neuroborreliosis.

\(^a \)Data available for 93 patients.

\(^b \)Data available for 260 patients.

\(^c \)Patients who attributed ACA to specific tick bite.

\(^d \)Data available for 4 patients.

\(^e \)Data available for 33 patients.

\(^f \)83 patients treated according to recommendations (azithromycin in 27 patients, doxycycline in 9, ceftriaxone in 6, cefuroxime in 3, amoxicillin in 2, penicillin in 1 and unknown antibiotic in 35); 61 patients not treated, data on treatment not available for 3 patients.

\(^g \)Data available for 38 patients.

\(^h \)Data available for 64 patients.

\(^i \)Data available for 18 patients.

\(^j \)Data available for 15 patients.

\(^k \)4 months to 20 years prior to ACA.

\(^l \)All patients treated according to recommendations.

\(^m \)Mostly of low intensity.

\(^n \)Findings at presentation.

\(^o \)Thin/atrophic and/or wrinkled and/or shining skin and/or venous prominence.
the present study (such as the lower proportion of patients with symptoms/signs of peripheral neuropathy or joint involvement), the shorter duration of ACA (12 months) in comparison with previous reports (≥2 years) might be a reliable explanation, but for the more frequent bilateral involvement and some other distinctions we do not have convincing explanations. For example, peripheral neuropathy and/or arthropathy are reported to occur primarily in the area of impaired skin but in some patients may also occur at other skin sites [21, 24, 28]; in the present study, these complications were found exclusively in the areas of affected skin. We also observed differences within our patient group: those diagnosed more recently (2005–2018) were older, had shorter duration of ACA that was less frequently bilateral, reported constitutional symptoms less often but local symptoms more often, and more frequently had swelling but less frequently had atrophy compared with patients treated earlier (1991–2004) (Table 1). Most of these differences probably relate to the earlier recognition of the disease in more recent years.

The pathogenesis of ACA is not well elucidated. It is postulated that ACA does not heal spontaneously, in contrast to the majority of other manifestations of LB [35, 36]. ACA is frequently the only manifestation of LB. Its incubation period is uncertain. In tick-transmitted infection, incubation signifies the

Fig. 1 Erythema migrans in patients with acrodermatitis chronica atrophicans. Abbreviations: EM, erythema migrans; ACA, acrodermatitis chronica atrophicans. a11/33 (33.3%) patients treated with antibiotic for EM. b27/42 (64.3%) patients treated with antibiotic for EM. cData are medians (interquartile range). dSignificant difference in the time interval from EM to onset of ACA between the two groups (P = 0.005).

Fig. 2 Duration of ACA prior to enrolment in the study. Numbers in the columns represent number of patients according to duration of ACA prior to diagnosis in the two time periods.
time from a tick bite to the onset of disease. In the current study, >70% of patients reported tick bites in the 2 years before onset of ACA, but only 6% of patients associated a specific bite with subsequent ACA developing 6 (2–14) months after the bite. However, tick bites are numerous, not all bites are noticed and/or remembered, and only some ticks are infected. Moreover, just a small proportion of ticks harbouring borreliae successfully transmit the causative agent to humans, resulting in clinical illness. It is very difficult, therefore, to establish a bite causally associated with ACA. Data on EM, which develops within a month after a bite, enable more reliable assessment. Nevertheless, the assumption that prior EM is related to ACA may not be always valid. The chances are probably higher if ACA occurs at the site of previous EM, especially if the EM was not adequately treated. Amongst our patients, 147/693 (21%) reported having EM prior to ACA. In 36/103 (35%) patients with information on EM location, the locations of ACA and EM matched; in these patients, the time interval from EM to the onset of ACA was shorter than in patients with nonmatching locations (median 19 vs. 63 months; \(P = 0.005 \)), implying nonuniform association between EM and subsequent ACA. These findings suggest that the incubation time for ACA is long, ranging from a few months to a few years.

Our study shows that, as for EM, ACA is more common on the lower extremity than on the upper extremity. The fact that EM develops at the site of a tick bite, and that tick bites in adults are more common on the lower than on the upper part of the body, implies localized illness at the site of tick bite not only for EM but also for ACA.

It is not known why patients with ACA are mostly older, why women are more commonly affected than men, and why the distal parts of the limbs are mainly involved. However, female predominance is not a complete surprise; as in several European countries, including Slovenia, LB is more common.
in women than in men. Closer insight shows that female predominance is valid only for cutaneous manifestations of LB (EM and ACA, which are by far the most common clinical signs and account for ≥90% of all LB cases in Slovenia), but not for Lyme neuroborreliosis and Lyme arthritis, which are more common in males [16]. A recent hypothesis suggests that ACA occurs in older individuals because they are likely to have age-related anatomic/physiological skin changes in the distal

Covariate	Univariate analysis OR (95% CI), P	Multivariable analysis OR (95% CI), P
Female sex	1.00 (0.72–1.41), 0.987	1.01 (0.72–1.43), 0.949
Age	0.99 (0.98–1.01), 0.428	1.00 (0.98–1.01), 0.510
Duration of ACA^b	1.00 (1.00–1.01), 0.106	1.00 (1.00–1.01), 0.092
Previous EM	0.98 (0.66–1.44), 0.908	0.95 (0.64–1.41), 0.785
Antibiotic therapy in previous 6 months	0.92 (0.31–1.60), 0.772	0.94 (0.54–1.65), 0.841
Constitutional symptoms^c	1.19 (0.85–1.66), 0.313	1.20 (0.85–1.68), 0.294
Local symptoms^d	1.13 (0.77–1.64), 0.537	1.13 (0.77–1.65), 0.523
Local swelling	1.13 (0.80–1.61), 0.484	1.17 (0.81–1.68), 0.401

Serum Borrelia IgM antibodies

Covariate	Univariate analysis OR (95% CI), P	Multivariable analysis OR (95% CI), P
Female sex	1.32 (0.92–1.89), 0.130	1.36 (0.94–1.99), 0.106
Age	0.99 (0.97–1.00), 0.059	0.99 (0.97–1.00), 0.102
Duration of ACA^b	1.00 (0.99–1.01), 0.914	1.00 (0.99–1.01), 0.801
Antibiotic therapy during previous 6 months	0.13 (0.05–0.38), < 0.001	0.13 (0.05–0.37), < 0.001
Local symptoms^d	1.38 (0.94–2.02), 0.097	1.28 (0.86–1.91), 0.222
Local swelling	1.46 (1.02–2.09), 0.038	1.33 (0.90–1.95), 0.148
Signs of skin atrophy^f	1.12 (0.80–1.57), 0.511	1.36 (0.94–1.97), 0.099
Upper extremity involvement	0.68 (0.48–0.95), 0.025	0.75 (0.45–1.24), 0.259
Lower extremity involvement	1.49 (1.02–2.17), 0.039	1.13 (0.65–1.96), 0.659

Positive Borrelia skin culture result (results available for 664 patients)

Covariate	Univariate analysis OR (95% CI), P	Multivariable analysis OR (95% CI), P
Female sex	0.28 (0.09–0.86), 0.025	0.24 (0.07–0.85), 0.027
Age	0.97 (0.94–1.01), 0.164	0.97 (0.93–1.02), 0.279
Duration of ACA^b	0.93 (0.86–1.01), 0.067	0.93 (0.86–1.01), 0.072
Previous EM	2.06 (0.65–6.51), 0.218	1.92 (0.47–7.79), 0.361
Constitutional symptoms^c	1.21 (0.39–3.76), 0.740	0.95 (0.26–3.51), 0.935
Local symptoms^d	0.70 (0.19–2.63), 0.601	0.45 (0.01–21.97), 0.690
Symptoms and/or signs of peripheral neuropathy^h	0.77 (0.20–2.87), 0.692	1.35 (0.03–65.13), 0.880

Table 3

Covariate	Univariate analysis OR (95% CI), P	Multivariable analysis OR (95% CI), P
Female sex	1.49 (1.02–2.17), 0.039	1.13 (0.65–1.96), 0.659

B. garinii or B. burgdorferi s.s. versus B. afzelii isolated from skin (B. afzelii isolated from 179 patients, B. garinii or B. burgdorferi s.s. from 14)
extremities that may predispose to the development of ACA in those particular body parts [16]. However, if this were the case, why do later similar lesions also appear on the distal part of some other limb and why does this happen contralaterally more often than ipsilaterally, resulting in bilateral, more or less symmetrical lesions that are more often present on hands than on feet? A possible theoretical explanation is that the initial localized infection disseminates early on, before the humoral immune response. Consequently, borreliae are present in other parts of the body as early as during the initial infection, but manifest as clinically visible primary ACA after a longer delay because the skin in these areas is less damaged than at the primary location. Alternative hypotheses are that borreliae spread slowly and continuously from the site of primary infection through the skin or along nerves to other parts of the body, or that despite a pronounced humoral immune response intermittent haematogenous dissemination of borreliae occurs in the course of ACA; in both cases, the infection becomes clinically evident on locations with the most ‘favourable’ conditions for ACA. A further possibility would be reinfection, that is new localized infection at the ‘vulnerable’ site with a long delay until clinical manifestation. However, all these hypotheses are only partial explanations and have several weaknesses.

Several other simple questions remain unanswered, such as why do ACA lesions progress from the distal part of the extremity to more proximal sites, why is spreading so slow, and why is bilateral involvement more often on hands than on feet?

Diagnosis of ACA is based on the suggestive clinical presentation, demonstration of borrelial serum IgG antibodies and histological findings compatible with ACA. Although the histopathological pattern of ACA is not diagnostic per se, it is sufficiently characteristic to alert the experienced pathologist [15, 37]; in our patient group, histological findings were indicative of ACA in nearly 90%, whilst in the remainder it was suggestive (Table 2). We found at least one clinical sign of skin atrophy in 59% of our patient group overall. As expected, atrophy was associated with duration of the lesions: signs of atrophy were present in 51% of patients with ACA duration up to a year and in as many as 70% of patients with longer duration ($P < 0.001$). However, we also found signs of skin atrophy in some patients with relatively short ACA duration.

Table 3 (Continued)

Covariate	Univariate analysis OR (95% CI), P	Multivariable analysisg OR (95% CI), P
Local swelling	3.76 (1.20–11.71), 0.023	3.80 (0.99–14.53), 0.051
Signs of skin atrophyf	0.88 (0.29–2.63), 0.814	1.24 (0.33–4.62), 0.751
Signs of arthropathyi	3.56 (0.68–18.67), 0.133	11.74 (1.48–93.07), 0.020
Skin histology indicative of ACAb	0.51 (0.10–2.50), 0.406	0.30 (0.05–1.91), 0.204

OR, odds ratio, CI, confidence interval, ACA, acrodermatitis chronica atrophicans, EM, erythema migrans.

aIntercept: estimated coefficient 0.48 (95% CI: 0.20–1.15), $P = 0.099$.

bFor duration of ACA (no information available for 84/693 patients) and skin histology indicative of ACA (information not accessible for 126/693), the mean of missing values was imputed. The information was complete for the other covariates included in the analyses.

cArthralgia and/or headache and/or myalgia and/or fatigue and/or vertigo and/or memory/concentration disorder.

dPain and/or burning and/or itching and/or paresthesia and/or hypesthesia.

eIntercept: estimated coefficient 0.60 (95% CI: 0.21–1.69), $P = 0.335$.

fThin/atrophic and/or wrinkled and/or shining skin and/or venous prominence.

gIntercept: estimated coefficient 1.85 (95% CI: 0.05–67.24), $P = 0.736$.

hPain and/or burning and/or paresthesia and/or hypesthesia and/or muscle paresis and/or muscle atrophy at the site of ACA skin lesion.

iArthritis and/or joint deformity.
duration, suggesting that in such patients the process of atrophy may begin within the first few months after onset of ACA. Nevertheless, as the onset is gradual, appreciation of the presence of the lesion may be delayed and assessment of its duration underestimated.

Table 4	Comparison of our results with previous reports on ACA	
Number of patients	693	50 (15–111)\(^b\)
Sex and age	Female 66%	~
	Median age 64 years	Asbrink [18]
		Brehmer-Andersson et al. [19]
		Hulshof et al. [20]
		Strie et al. [16]
Duration	12 months	≥ 24 months
		Asbrink et al. [17]
		Kindstrand et al. [21]
		Lenormand et al. [22]
		Picken et al. [23]
Location	Distal parts of extremities	~
		Asbrink et al. [17]
		Kindstrand et al. [21]
		Kristoferitsch et al. [24]
Bilateral involvement	42%	20%
		Tazelaar et al. [25]
Previous EM	21%	18–55%\(^c\)
		Asbrink et al. [17]
		Lenormand et al. [22]
		Moniuszko-Malinowska et al. [26]
		Picken et al. [23]
ACA–EM location matching	35%	18–24%\(^c\)
		Asbrink [27]
		Asbrink et al. [17]
		Picken et al. [23]
Symptoms of peripheral neuropathy	20%	33–64%\(^c\)
		Hopf [28]
		Kindstrand et al. [21]
		Kristoferitsch et al. [24]
		Tazelaar et al. [25]
Signs of peripheral neuropathy	0.4%	9–11%\(^c\)
(muscle atrophy or paresis)		Hopf [28]
		Kindstrand et al. [21]
Signs of arthropathy	4%	26%
		Hovmark et al. [29]
Positive skin culture	30%	22–40%\(^c\)
	33% (without previous antibiotic)	Asbrink et al. [30]
		Lenormand et al. [22]
		Picken et al. [31]
		Picken et al. [23]
Borrelia species	B. afzelii >>> B. garinii, B. burgdorferi s.s.	B. afzelii predominated
isolated from skin		Picken et al. [23]
		Rijpkema et al. [32]
		Ružić-Sablić et al. [33]
Positive blood culture	1%	3 blood isolates (2 B. afzelii, B. garinii)
		Maraspin et al. [34]

\(^a\) Similar results.
\(^b\) Most studies reported specific clinical or microbiological aspects of ACA.
\(^c\) Range.

© 2021 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine
Clinical presentation depends on the duration of most common, but not exclusive, causative agent. Usually affects older women.

ACA is a late manifestation of European LB that causes skin manifestations of LB (EM) is higher where the proportion of non-B. burgdorferi s.s. from the skin was comparable with EM isolation rate from skin was comparable with previous reports [22, 23, 30, 31]. Skin culture was more likely to be positive in patients with signs of arthropathy. Concerning blood isolates, 3 out of 4 were B. garinii, which is hard to explain, but the total number of blood isolates was small. Until now, only 3 blood isolates (2 B. afzelii, 1 B. garinii) have been reported from patients with ACA [34].

Our study is descriptive, but we hope our insights will encourage analysis of the clinically relevant mechanisms behind the findings. Our results are applicable to European regions with similar ratios of borrelial genospecies causing LB in humans but may not entirely apply to regions where the proportion of non-B. afzelii borreliae causing skin manifestations of LB (EM) is higher [23, 32].

Conclusions

ACA is a late manifestation of European LB that usually affects older women. B. afzelii is by far the most common, but not exclusive, causative agent. Clinical presentation depends on the duration of the ACA skin lesions and probably also on the Borrelia species causing the disease.

Funding

This research was funded by the Slovenian Research Agency, grant number P3-0296 (Javna agencija za raziskovalno dejavnost Republike Slovenije; ARRS; www.arrs.si). The funding source had no role in study design, data collection and analysis, interpretation of data, decision to publish or preparation of the manuscript.

Conflicts of interest

F.S. served on the scientific advisory board for Roche on Lyme disease serological diagnostics, received research support from the Slovenian Research Agency (grant numbers P3-0296, J3-1744 and J3-8195) and is an unpaid member of the steering committee of the ESMCID Study Group on Lyme Borreliosis/ ESGBOR. All other authors (K.O., V.M., L.L., T.C.K. and E.R.S.) have declared no conflicts of interest.

References

1. Buchwald A. Ein Fall von diffuser idiopathischer Haut Atrophie. Vierteljahresschrift Dermatol Syph. 1883;10:553–6. https://doi.org/10.1007/BF01833474.
2. Herxheimer K, Hartmann K. Uber Acrodermatitis chronica atrophicans. Arch Dermatol Syph. 1902;61:235–300.
3. Burgdorfer W, Barbour AG, Hayes SP, Peter O, Aeschlimann A. Erythema chronicum migrans – a tickborne spirochete. Acta Trop. 1983;40:79–83. PMID: 6134457.
4. Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, et al. The spirochetal etiology of Lyme disease. N Engl J Med. 1983;308:733–40. https://doi.org/10.1056/NEJM198303313010301.
5. Asbrink E, Hovmark A, Hederstedt B. The spirochetal etiology of acrodermatitis chronica atrophicans Herxheimer. Acta Derm Venereol. 1984;64:506–12. PMID: 6084922.
6. Ogrinc K, Wormser GP, Visintainer P, Maraspin V, Lotrič-榕lan S, Cimperman J, et al. Pathogenetic implications of the age at time of diagnosis and skin location for acrodermatitis chronica atrophicans. Ticks Tick Borne Dis. 2017;8:266–9. https://doi.org/10.1016/j.ttbdis.2016.11.011. Epub 2016 Nov 24.
7. Ružič-Sabljić E, Maraspin V, Cimperman J, Lotrič-Furlan S, Strle F. Evaluation of immunofluorescence test (IFT) and immuno (western) blot (WB) test in patients with erythema migrans. Wien Klin Wochenschr. 2002;114:586–90. PMID: 12422606.
8. Ružič-Sabljić E, Zore A, Strle F. Characterization of Borrelia burgdorferi sensu lato isolates by pulsed-field gel electrophoresis after MLuI restriction of genomic DNA. Res
Chronic atrophic acrodermatitis / K. Ogrinc et al.

Microbiol. 2008;159:141–8. https://doi.org/10.1016/j.resmic.2008.05.005. Epub 2008 Jun 6.

9 Postic D, Assous MV, Grimont PA, Baranton G. Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf (S5)-rrl (23S) intergenic spacer amplons. Int J Syst Bacteriol. 1994;44:743–52. https://doi.org/10.1099/00207713-44-4-743.

10 Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379:161–73. https://doi.org/10.1016/S0140-6736(11)60103-7.

11 DiCaudo DJ, Su WP, Marshall WF, Malawista SE, Barthold S, Persing DH. Acrodermatitis chronica atrophicans in the United States: clinical and histopathologic features of six cases. Cutis. 1994;54:81–4. PMID: 7956339.

12 Lavoie PE, Wilson AJ, Tuffanelli DL. Acrodermatitis chronica atrophicans presenting in the United States. Adv Dermatol Allergol. 2018;35:940–4. https://doi.org/10.1016/s0176-6724(86)80132-8.

13 Correa-Selm LM, Bronsnick T, Rao BK, Kirkorian AY, Marcus A, Cha J. A souvenir from France: Acrodermatitis chronica atrophicans senso stricto, Borrelia garinii and B. afzelii among isolates from acrodermatitis chronica atrophicans lesions. J Invest Dermatol. 1998;110:211–4. https://doi.org/10.1046/j.1523-1747.1998.00130.x.

14 Berglund J, Eitrem R, Ornstein K, Lindberg A, Ringsvik T, Elmrud H, et al. An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med. 1995;333:1319–24. https://doi.org/10.1056/NEJM199511163332004.

15 Strle F, Stanek G. Clinical manifestations and diagnosis of Lyme borreliosis. Curr Probl Dermatol. 2009;37:51–110. https://doi.org/10.1159/000213070. Epub 2009 Apr 8.

16 Strle F, Wormser GP, Mead P, Dhaduval K, Longo MV, Adenikinju O, et al. Gender disparity between cutaneous and non-cutaneous manifestations of Lyme borreliosis. PLoS One. 2013;8(5):64410. https://doi.org/10.1371/journal.pone.0064110. Print.

17 Asbrink E, Hovmark A, Olsson I. Clinical manifestations of acrodermatitis chronica atrophicans in 50 Swedish patients. Zentralbl Bakteriol Mikrobiol Hyg A. 1986;263:253–61. https://doi.org/10.1056/NEJM199511151749663.

18 Asbrink E. Acrodermatitis chronica atrophicans. Clin Dermatol. 1993;11:369–75. https://doi.org/10.1016/0167-6724(86)80128-6.

19 Brehmer-Andersson E, Hovmark A, Asbrink E. Acrodermatitis chronicum atrophicans: histopathologic findings and clinical correlations in 111 cases. Acta Derm Venereol. 1998;78:207–13. https://doi.org/10.1080/0001555984415558.

20 Hulshof MM, Vandenbrucke JP, Nohlmans LMKE, Spanjaard L, Bavinck NJ, Dijkmans BA. Long-term prognosis in patients treated for erythema chronicum migrans and acrodermatitis chronica atrophicans. Arch Dermatol. 1997;133:233–7. PMID: 906370.

21 Kindström E, Nilsson BY, Hovmark A, Pirskanen R, Asbrink E. Peripheral neuropathy in acrodermatitis chronica atrophicans - a late Borrelia manifestation. Acta Neurol Scand. 1997;95:338–45. https://doi.org/10.1111/j.1600-0404.1997.tb00222.x.

22 Lenormand C, Jaulhac B, Debarbieux S, Dupin N, Granel-Brocard F, Adamski H, et al. Expanding the clinicopathological spectrum of late cutaneous Lyme borreliosis (acrodermatitis chronica atrophicans [ACA]): A prospective study of 20 culture- and/or polymerase chain reaction (PCR)-documented cases. J AM Acad Dermatol. 2016;74:685–92. https://doi.org/10.1016/j.jaad.2015.10.046. Epub 2016 Jan 9.

23 Picken RN, Strle F, Picken MM, Ružič–Sabljič E, Maraspin V, Lotrič–Furlan S, et al. Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J Invest Dermatol. 1998;110:211–4. https://doi.org/10.1046/j.1523-1747.1998.00130.x.

24 Kristoferitsch W, Sluga E, Graf M, Partsch H, Neumann R, Stanek G, et al. Neuropathy associated with acrodermatitis chronica atrophicans. Clinical and morphological features. Ann N Y Acad Sci. 1986;539:35–45. https://doi.org/10.1111/j.1749-6632.1986.tb31836.x.

25 Tazelaar DJ, Velders AJ, de Koning J, Hoogkamp-Korstanje JA. Chronic atrophic acrodermatitis; a deceptive form of Lyme borreliosis. Ned Tijdschr Geneeskd. 1991;135:1358–63. PMID: 1865945.

26 Moniuszko-Malinowska A, Czuprynna P, Dunaj J, Pancewicz S, Garkowski A, Kondrusik M, et al. Acrodermatitis chronica atrophicans: various faces of the late form of Lyme borreliosis. Adv Dermatol Allergol. 2018;35:940–4. https://doi.org/10.1016/s0176-6724(86)80132-8.

27 Asbrink E. Erythema chronicum migrans Afzelius and acrodermatitis chronica atrophicans: early and late manifestations of Ixodes ricinus-borne Borrelia spirochetes. Acta Derm Venereol Suppl (Stockh). 1985;118:1–63. PMID: 3901647.

28 Hopf HC. Peripheral neuropathy in acrodermatitis chronica atrophicans (Herxheimer). J Neurol Neurosurg Psychiatry. 1975;38:452–8. https://doi.org/10.1136/jnnp.38.5.452.

29 Hovmark A, Asbrink E, Olsson I. Joint and bone involvement in Swedish patients with Ixodes ricinus-borne Borrelia infection. Zentralbl Bakteriol Mikrobiol Hyg A. 1986;263:75–84. https://doi.org/10.1056/NEJM199511151749663.

30 Asbrink E, Hovmark A. Successful cultivation of spirochetes from skin lesions of patients with erythema chronicum migrans Afzelius and acrodermatitis chronica atrophicans. Acta Pathol Microbiol Immunol Scand B. 1985;93:161–3. https://doi.org/10.1111/j.1699-0463.1985.tb02870.x.

31 Picken MM, Picken RN, Han D, Cheng Y, Ružič–Sabljič E, Cimperman J, et al. A two year prospective study to compare culture and polymerase chain reaction amplification for the detection and diagnosis of Lyme borreliosis. Mol Pathol. 1997;50:186–93. https://doi.org/10.1136/mp.50.4.186.

32 Rijpkema SGT, Tazelaar DJ, Molkenboer MCH, Noordhoek GT, Plantinga G, Schouls LM, et al. Detection of Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii and group VS116 by PCR in skin biopsies of patients with erythema migrans and acrodermatitis chronica atrophicans. J Microbiol Infect. 1997;3:109–16. https://doi.org/10.1111/j.1469-0691.1997.tb00259.x.

33 Ružič–Sabljič E, Maraspin V, Lotrič–Furlan S, Jurca T, Logar M, Pikelj-Pecnik A, et al. Characterization of Borrelia burgdorferi sensu lato strain isolated from human material in Slovenia. Wien Klin Wochenschr. 2002;114:544–50.PMID: 12422599.

34 Maraspin V, Ogrinc K, Ružič–Sabljič E, Lotrič–Furlan S, Strle F. Isolation of Borrelia burgdorferi sensu lato from blood of adult patients with treponemal lymphocytoma, Lyme neuroborreliosis, Lyme arthritis and acrodermatitis chronica atrophicans. Infection. 2011;39:35–40. https://doi.org/10.1007/s15010-010-0662-8. Epub 2010 Dec 10.
35 Asbrink E, Hovmark A. Early and late cutaneous manifestations in Ixodes-borne borreliosis (erythema migrans borreliosis, Lyme borreliosis). Ann N Y Acad Sci. 1988;539:4–15. https://doi.org/10.1111/j.1749-6632.1988.tb31833.x.

36 Steere AC. Lyme disease. N Engl J Med. 1989;321:586–96. https://doi.org/10.1056/NEJM198908313210906.

37 Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, et al. Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect. 2011;17:69–79. https://doi.org/10.1111/j.1469-0691.2010.03175.x.

38 Asbrink E, Brehmer-Andersson E, Hovmark A. Acrodermatitis chronica atrophicans – a spirochetosis: clinical and histopathological picture based on 32 patients; course and relationship to erythema chronicum migrans Afzelius. Am J Dermatopathol. 1986;8:209–19. https://doi.org/10.1097/00000372-198606000-00005.

39 Moter SE, Hofmann H, Wallich R, Simon MM, Kramer MD. Detection of Borrelia burgdorferi sensu lato in lesional skin of patients with erythema migrans and acrodermatitis chronica atrophicans by ospA-specific PCR. J Clin Microbiol. 1994;32:2980–8. https://doi.org/10.1128/JCM.32.12.2980-2988.1994.

40 Flisiak I, Schwartz RA, Chodynicka B. Clinical features and specific immunological response to Borrelia afzelii in patients with acrodermatitis chronica atrophicans. J Med. 1999;30:267–78. PMID: 17312680.

41 Cerar T, Strle F, Stupica D, Ruzic-Sabljic E, McHugh G, Steere AC, et al. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg Infect Dis. 2016;22:818–27. https://doi.org/10.3201/eid2205.151806.

Correspondence: Katarina Ogrinc, Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia. (e-mail: katarina.ogrinc@kclj.si).

Supporting Information
Additional Supporting Information may be found in the online version of this article:

Figure S1. Number of patients.

Table S1. Covariates used for testing associations with different outcomes.