Aeromonas species are Gram-negative facultative anaerobes that are ubiquitous in aquatic environments and cause infections in several host species, including humans, invertebrates, reptiles, and amphibians (1–5). In particular, many of the Aeromonas species are pathogenic to fish, causing septicemia in carp, tilapia, perch, salmon, catfish, and other species (6). In channel catfish aquaculture, Aeromonas hydrophila is historically considered an opportunistic pathogen. However, since 2009 a clonal group of A. hydrophila isolates have been causing large-scale disease outbreaks in Alabama and Mississippi (7). Strain ML09-119 is an isolate from a disease outbreak on a commercial catfish farm, and it is representative of this clonal group.

The genome sequence of Aeromonas hydrophila ML09-119 was completed using a combination of Illumina Genome Analyzer Ix next-generation sequencing (a total of 4,077,018 reads, with 104× coverage) (Illumina, Inc., San Diego, CA) (M. J. Hossain, G. C. Waldbieser, D. Sun, N. K. Capps, W. B. Hemstreet, K. Carlisle, M. J. Griffin, L. Khoo, A. E. Goodwin, T. S. Sonstegard, S. Schroeder, K. Hayden, J. C. Newton, J. S. Terhune, and M. R. Liles, submitted for publication) and the 454 GS-FLX titanium platform (a total of 96,601 reads with 308× coverage) (Roche Applied Science). Sequences from both platforms were assessed for errors and trimmed for quality using CLC workbench 5.0.1 (CLC Bio) and Illumina Genome Analyzer IIx (Cambridge, MA). Unpaired reads and single-end reads were assembled using CLC workbench 5.0.1 (CLC Bio) and the Illumina Genome Analyzer IIx mapped to the 454 GS-FLX reads to remove misassemblies. Relative to strain ATCC 7966T, ML09-119 contains a relative genome sequence of Aeromonas hydrophila strain ML09-119. Genome Announc. 1(5):e00755-13. doi:10.1128/genomeA.00755-13.

Aeromonas hydrophila is a Gram-negative, rod-shaped, mesophilic bacterium that infects both aquatic poikilothermic animals and mammals, including humans. Here, we present the complete genome sequence of Aeromonas hydrophila strain ML09-119, which represents a clonal group of A. hydrophila isolates causing outbreaks of bacterial septicemia in channel catfish since 2009.

Received 20 August 2013 Accepted 21 August 2013 Published 19 September 2013

Copyright © 2013 Tekedar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License.

Address correspondence to Mark L. Lawrence, lawrence@cvm.msstate.edu.

Aeromonas hydrophila is a Gram-negative, rod-shaped, mesophilic bacterium that infects both aquatic poikilothermic animals and mammals, including humans. Here, we present the complete genome sequence of Aeromonas hydrophila strain ML09-119, which represents a clonal group of A. hydrophila isolates causing outbreaks of bacterial septicemia in channel catfish since 2009.

ML09-119 was deposited in GenBank under the accession number CP005966.1. This work was supported by the Mississippi State University College of Veterinary Medicine, the USDA Agricultural Research Service CRIS project 6402-31000-009-00D, and the Alabama Agricultural Experiment Station (Hatch project number ALA021-1-O9005).

We thank Michelle Banes for technical assistance.
REFERENCES

1. Huys G, Pearson M, Kämpfer P, Denys R, Cnockaert M, Inglis V, Swings J. 2003. *Aeromonas hydrophila* subsp. ranae subsp. nov., isolated from septicaemic farmed frogs in Thailand. Int. J. Syst. Evol. Microbiol. 53:885–891.

2. Noonin C, Jiravanichpaisal P, Söderhäll I, Merino S, Tomás JM, Söderhäll K. 2010. Melanization and pathogenicity in the insect, *Tenebrio molitor*, and the crustacean, *Pacifastacus leniusculus*, by *Aeromonas hydrophila* AH-3. PLoS One 5: e15728. doi:10.1371/journal.pone.0015728.

3. Saejung C, Hatai K, Wada S, Kurata O, Sanoamuang L. 2011. Clinical observations of black disease in fairy shrimps, *Streptocephalus sirindhornae* and *Branchinella thailandensis*, from Thailand and pathogen verification. J. Fish Dis. 34:911–920.

4. Chao CM, Lai CC, Tang HJ, Ko WC, Hsueh PR. 2013. Skin and soft-tissue infections caused by *Aeromonas* species. Eur. J. Clin. Microbiol. Infect. Dis. 32:543–547.

5. Orozova P, Sirakov I, Petkov I, Crumlish M, Austin B. 2012. Recovery of *Aeromonas hydrophila* associated with bacteraemia in captive snakes. FEMS Microbiol. Lett. 334:22–26. doi:10.1111/j.1574-6968.2012.02613.x.

6. Janda JM, Abbott SL. 2010. The genus *Aeromonas*: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23:35–73.

7. Griffin MJ, Goodwin AE, Merry GE, Liles MR, Williams MA, Ware C, Waldbiesser GC. 2013. Rapid quantitative detection of *Aeromonas hydrophila* strains associated with disease outbreaks in catfish aquaculture. J. Vet. Diagn. Invest. 25:473–481.

8. Karlyshev AV, Pallen MJ, Wren BW. 2000. Single-primer PCR procedure for rapid identification of transposon insertion sites. BioTechniques 28:1078–1082.

9. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomas N, White O. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 12: 137–141.

10. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955–964.

11. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108.