Self-organizing, two-temperature Ising model describing human segregation

Géza Ödor
Research Institute for Materials Science, P.O.Box 49,
Budapest, H-1525, Hungary odor@mfa.kfki.hu

Received Day Month Year
Revised Day Month Year

A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.

Keywords: Segregation; socio-economic models; complex systems; lattice theory; nonequilibrium phase transition

1. Introduction

The problem of human segregation is an important problem of society and politics even in the 21st century [1]. Social sciences have been investigating the reasons and nature of segregation for a long time. Sociologist have introduced several models, one of them is the Schelling model [2]. From physicist point of view that model is a 3-state voter-type non-equilibrium model (groups A,B and empty), with spin-exchange dynamics at zero temperature \(T = 0 \) on a 2-dimensional square lattice. Although the model describes a segregation by a quench without external reasons, unwanted frozen states may also occur.

Recently it was shown by computer simulations [3] that there exists a simpler model, namely the Glauber-Ising model [4,5], which captures the essence of human segregation. Besides that, the usage of the simple \(T > 0 \) spin-flip dynamics makes it computationally easier and one can avoid the frozen states of the Schelling model. In this model the temperature plays the role of a global tolerance; by varying it, the model may or may not evolve into the ordered (segregated) state.

However a constant, global tolerance is rather artificial in a society, it can vary from individual to individual and can change in time as well. By introducing a local, time dependent temperature (tolerance), with a feedback mechanism from the local neighborhood the model becomes more realistic. The results do not change too...
much 6, a self-organization of the average temperature occurs. The parameters of this model are the global rate of forgetting (of tolerance) and the response of local tolerances on the neighborhood. The sum of these local changes determine the local temperature. Hereafter this self-organized segregation model will be called SO-Seg model.

Stepping further towards more realistic models, one can pose the question what happens to this model if the decision of individuals are affected by an independent external noise as well. The external noise can be an artifact of a random environment, housing, moving situation, presence of shopping centers ... etc. The external noise introduced here as a second temperature, i.e. individuals are connected to a second heat bath.

Two-temperature two-state voter-type models have been investigated intensively recently and have become the prototypes of non-equilibrium models (for a review see 7). An important finding of these studies was the discovery of relevant factors affecting the phase transitions of models exhibiting Z_2 (up-down) symmetry 8. In particular models with general, isotropic spin-flip dynamics maintaining the Z_2 symmetry can be classified as two temperature models, where one temperature controls the bulk, the other the interface fluctuations. The Ising model is a special case of these models, where both temperatures are nonzero and the time-reversal symmetry drives the system into an equilibrium state. The transition of these Z_2 symmetric, two-temperature models has been found to be continuous, Ising type unless the bulk temperature is zero. In the latter case it is first order, voter model class type 7. In this work I investigate the effect of a second temperature applied as an external, independent heat-bath to the spins of the SO-Seg model.

2. The model

The model is defined on 2-dimensional square lattice, with periodic boundary conditions and Ising spins ($s_i = (1, -1)$) distributed initially randomly (zero initial magnetization = no segregation). The kinetics follows a Glauber spin-flip (sequential) update with Heath Bath acceptance rate (see Ref. 9), depending on the local temperatures. In the SO-Seg model each individual has four interacting nearest neighbors and a randomized initial local temperature, with an average value $< T_1(0) > = 1.5$. This local temperature is lowered by δT_F at each update for modeling the loss of tolerance. This alone would just make a quench to $T_1 \rightarrow 0$ with domain coarsening.

To model people’s awareness of the dangers of segregation they can increase their own temperature (tolerance) by δT_a, if all four neighbors of an individual belong to the same group as s_i. If all four neighbors belong to the different group the local temperature is decreased by the same amount.

Our external noise is described by a heat bath of a second temperature T_2 applied to the decisions. The actual spin-flip will be the logical OR of internal and external flip decisions. The magnetization $M(t) = < s_i(i) >$, the average number of like neighbors minus unlike neighbors $< N(t) >$, and the average self-organizing
internal temperature (tolerance) \(< T_1(t) > \) is followed up to \(t_{max} = 2 \times 10^5 \) Monte Carlo sweeps (MCS) of the lattice.

3. Simulation results

The simulations were performed on \(L = 400, 2000 \) and \(4000 \) sized square lattices, up to \(t_{max} = 2 \times 10^5 \) MCS, with cooling rates: \(\delta T_F = 0.01, 0.02 \) and tolerance steps: \(\delta T_a = 0.003, 0.002 \). The phase transition of the SO-Seg model is at \(\delta T_a = 0.0029 \), so \(\delta T_a = 0.003 \) corresponds to super-critical, \(\delta T_a = 0.002 \) to sub-critical situations.

As Figure (1) shows the inclusion of a small second temperature \(T_2 \sim 1 \) does not change the composition of neighbors and \(T_1 \) in the steady state (as \(t \to \infty \)). The same can be seen by plotting \(N(t) \) (see Fig. (2)) and the average internal temperature of individuals (Fig. (3)). For stronger external noise the domains are destroyed, but the average tolerance goes to zero too. This means that the unsegregated state

![Fig. 1. Clusters survive small external noise: \(T_2 = 0.5 \).](image1)

![Fig. 2. Average composition as the function of time and external temperature \(T_2 = 0, 1, 2...10 \) (top to bottom)](image2)
can be maintained with the help of strong external noise, without worrying about people’s local tolerance. The same analysis for $\delta T_a = 0.002$ resulted in similar trends in $N(t = 30000)$ (see Fig.[4] and in the average tolerance $T_1(t = 30000)$. Note that one observe even a weak increase in the asymptotic values for $T_2 < 1$. Running the simulations on larger sizes there were no change in this, excluding the possibility of finite size errors.

By increasing the second temperature T_2 the transitions of $N(\infty)$ (see Fig.[4]) and $T_1(\infty)$ are very smeared. The magnetization density $m = M(\infty)/L^2$ on the other hand shows a sharp fall, indicating a first order phase transition at $T_2^* = 0.135(2)$. A fitting attempt using the form $m = A(T_2^* - T_2)^\beta$ did not result in agreement with the 2d Ising class continuous phase transition behavior, characterized by $\beta = 1/8 \ [7]$. Furthermore a hysteresis cycle can also be found by starting the simulations with different initial conditions (ordered vs. disordered), which is a clear hallmark of a first order phase transition. This is in contrast with the results for two-temperature Z_2 symmetric models exhibiting Ising transition in 2d (the bulk noise in nonzero of course). One may understand the discontinuous transition here by realizing that this model is effectively a coupled system: Ising + temperate field. The temperatures can increase if at least four neighbors are in the same state and decrease without condition. In the language of reaction diffusion systems it is a quadruple model, where at least for neighbors are needed for a creation but the removal is spontaneous. It is well known that in 2d such a quadruple model exhibits a first order transition $\ [7]$

Simulations with different initial temperatures ($T_1(0) = 2.5$), cooling rates ($T_F = 0.2$) and δT_a have not resulted in changes in the transition point T_2^*.

Fig. 3. The average tolerance of individuals as the function of time and external temperature $T_2 = 0, 1, 2...10$ (top to bottom)
4. Conclusion

A two-temperature, self-organized Ising-Schelling model has been introduced and investigated by numerical simulations. A low second temperature, which represents the external noise to the decision of individuals for moving does not change the segregation behavior of the model. A temperature bigger than $T_2 = 0.135(2)$ randomizes the segregated, ordered domains and results in low average tolerance of individuals. While the self-organized tolerance and the average composition of the steady state show continuous variation on T_2 the magnetization exhibits a first order phase transition. The threshold did not show considerable dependence on the model parameters.

Acknowledgments

The author thanks D. Stauffer for motivating and discussing his study and providing the code of Ref. 6 for simulations. Support from the Hungarian Research Fund OTKA (Grant No. T-046129) during this study is gratefully acknowledged.

References

1. M. Lim, R. Metzler and Y. Bar-Yam, Science, 317, 1453 (2007);
2. T. C. Schelling, J. Math. Sociol, 1, 143 (1971).
3. D. Stauffer and S. Solomon, Eur. Phys. J. B, 57, 473 (2007).
4. E. Ising, Z. Phys., 31, 253 (1925).
5. R. J. Glauber, J. Math. Phys, 4, 191 (1963).
6. K. Müller, C. Schulze and D. Stauffer, Int. J. of Mod. Phys C, 18, (2008) in preparation.
7. G. Ödor, Rev. Mod. Phys, 76, 663 (2004).
8. J. M. Drouffe and C. Godrêche, J. Phys. A, 32, 249 (1999).
9. Kurt Binder, K. Binder , D. P. Landau, A Guide To Monte Carlo Simulations In Statistical Physics, (Cambridge Univ Pr.2005)