On the law of increase of entropy for non-equilibrium systems

A Pérez-Madrid

Departament de Física Fonamental, Facultat de Física, Universitat de
Barcelona, Diagonal 647, 08028 Barcelona, Spain
E-mail: agustiperezmadrid@ub.edu

Received 20 June 2006
Accepted 12 September 2006
Published 28 September 2006

Online at stacks.iop.org/JSTAT/2006/P09015
doi:10.1088/1742-5468/2006/09/P09015

Abstract. Under the assumption of a smooth full phase-space distribution function we prove that the non-equilibrium entropy S which is considered as a functional of the distribution vector for an N-body system possesses a lower bound and therefore cannot decrease. We also compute the rate of change of S, $\partial S/\partial t$, showing that this is non-negative and having a global minimum at equilibrium. As an application we obtain a generalization of the BGK (Bhatnagar–Gross–Krook) relaxation model.

Keywords: rigorous results in statistical mechanics, kinetic theory of gases and liquids
1. Introduction

As is known, the second law of thermodynamics was based on Kelvin’s and Clausius’s principles which establish that work cannot be produced without spending energy. These principles are based on experiments, but to my knowledge no theoretical derivation from first principles has been given [1]. For an adiabatically isolated system the second law establishes that the entropy cannot decrease and is maximum at equilibrium [2].

To provide a theoretical proof of the second law or the law of increase of entropy for an isolated system, first it is necessary to properly define the non-equilibrium entropy which would coincide with the thermodynamic entropy at equilibrium.

The equilibrium entropy is a well established concept. According to Boltzmann the entropy of a microstate X of a macroscopic system is a number, $S_B(X) = k_B \log |\Gamma_M(X)|$, with $|\Gamma_M|$ being the volume of the region of the phase space Γ_M corresponding to the macrostate $M = M(X)$ and k_B is the Boltzmann constant. The macrostate M is all of a group of states Y such that $M(Y) = M(X) = M$. For Boltzmann, every adiabatically isolated system in its natural evolution moves towards an state of maximum disorder—the state of equilibrium, which corresponds with the greatest possible volume in phase space. Gibbs, on the other hand, defines entropy as a functional of the distribution function F in phase space, $S_G = -k_B \int F \ln F \, dX$, and the two entropies coincide at equilibrium. Out of equilibrium the situation is more ambiguous, due to the fact that the Gibbs entropy is a constant of motion under the microscopic dynamics given through the Liouville equation; it has been thought that macroscopic processes require coarse-graining. This point was worked out first by Gibbs and P Ehrenfest and T Ehrenfest. On the other hand, some authors argue that the relevant entropy for understanding thermodynamic irreversibility is the Boltzmann entropy and not the Gibbs entropy [3]–[5].

For this scenario, unlike treatments based on the definition of coarse-grained entropies [6], here we propose a generalization of the fine-grained Gibbs entropy postulate in terms of the set of reduced distribution functions of the system, the distribution vector, as the non-equilibrium entropy of an N-body isolated system [7], [8]. Under the assumption of smooth phase-space densities we prove that this non-equilibrium entropy cannot decrease and is not a constant of motion under the dynamics given through the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy of equations [9]. Here, we assume smoothness to exclude multifractal phase-space distributions which some simulations have shown [7].
It is a fact that the Liouville equation describes an incompressible flow of representative points in phase space; however this is not the case with respect to the BBGKY hierarchy. Additionally, unlike an incompressible flow a compressible flow produces entropy; thus in this fact resides the reason of the behaviour of the entropy we propose. Moreover, this entropy coincides with the thermodynamic entropy at equilibrium. Hence, we are able to compute the entropy production for an isolated system, which is non-negative (zero at equilibrium), therefore conferring the character of the non-equilibrium potential of the system to this entropy production. Is this a theoretical proof of the second law of thermodynamics? It depends on the credit one gives to the non-equilibrium entropy we propose; nonetheless this is the closest definition to the microscopic dynamics of the isolated system we know.

We have structured the paper as follows. In section 2, we introduce the Hamiltonian dynamics of the N-body system obtaining the generalized Liouville equation. In section 3, we analyse the properties of the non-equilibrium entropy, compute the entropy production and obtain the kinetic equation for the one-particle reduced distribution function. Finally in section 4, we emphasize our main conclusions.

2. Hamiltonian dynamics

We will consider an N-body system whose Hamiltonian results from the addition of a kinetic energy term and a term coming from the interaction between the particles:

\[H = \sum_{j=1}^{N} \frac{p_j^2}{2m} + \frac{1}{2} \sum_{j \neq k=1}^{N} \phi(|q_j - q_k|), \] (1)

with \(m \) being the mass of a particle, and \(\phi(|q_j - q_k|) \equiv \phi_{jk} \) the interaction potential. Moreover, the equations of motion are

\[\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}. \] (2)

The statistical description of the system can be performed in terms of the full phase-space distribution function \(F(x^N, t) \), where \(x^N = \{x_1, \ldots, x_N\} \) and \(x_j = (q_j, p_j) \) or alternatively in terms of the distribution vector \(f \) [9], the two being completely equivalent but the latter more appropriate for non-equilibrium systems in order to show irreversibility. Here,

\[f \equiv \{f_0, f_1(x_1, t), f_2(x^2, t), \ldots, f_N(x^N, t)\} \] (3)

is the set of all the s-particle reduced distribution functions, \(s = 0, \ldots, N \), where the s-particle reduced distribution functions

\[f_s = \frac{N!}{(N-s)!} \int F(x^N, t) \, dx_{s+1} \ldots dx_N, \] (4)

are obtained by integrating over \(N-s \) particles with \(f_0 = 1 \). The dynamics of the reduced distribution functions can by obtained from the Liouville equation

\[\frac{\partial}{\partial t} F = [H, F]_p, \] (5)
On the law of increase of entropy for non-equilibrium systems

where \([\ldots,\ldots]_p\) is the Poisson bracket, by using equation (4). One obtains the generalized Liouville equation \([7]–[9]\)

\[
\frac{\partial}{\partial t} f(t) = \mathcal{L} f(t),
\]

which is a compact way of writing the BBGKY hierarchy of equations. In this equation, \(\mathcal{L}\) is the generalized Liouvillian whose diagonal part \(\mathcal{P}\mathcal{L}\) is defined through \([8]\)

\[
\langle s | \mathcal{P}\mathcal{L} | s' \rangle = \delta_{s,s'} \left\{ \sum_{j=1}^{s} L^o_j f + \sum_{j<n}^{s} L'_{j,n} f \right\},
\]

where \(|s\rangle\) represent the \(s\)-particle state defined through \(\langle s | f | x^s \rangle = f_s(x^s)\) with \(x^s = \{x_1,\ldots,x_s\}\), \(s = 0,\ldots,N\). The \(s\)-particle states have the property \(\langle s | s' \rangle = \delta_{s,s'}\) such that \(\sum_{s=0}^{N} |s\rangle \langle s| = 1\) constitutes the closure relation. Moreover, \(L^o_j = [H^o_j,\ldots]_p\), where \(H^o_j = p_j^2/2m\), and \(L'_{j,n} = [H'_{j,n},\ldots]_p\), with \(H'_{j,n} = \frac{1}{2} \phi_{j,n}\). In addition, the non-diagonal part \(\mathcal{Q}\mathcal{L}\) is given by \([8]\)

\[
\langle s | \mathcal{Q}\mathcal{L} | s' \rangle = \delta_{s',s+1} \int \left\{ \sum_{j=1}^{s} L'_{j,s+1} \right\} dx_{s+1}.
\]

Finally, in view of equations (7) and (8) and using the properties of the \(s\)-particle states \(|s\rangle\), by multiplying by \(|x^s\rangle\) to the right and by \(\langle s|\) to the left of (6) one obtains one of the components of the hierarchy

\[
\frac{\partial}{\partial t} f_s - \sum_{j=1}^{s} L^o_j f_s - \sum_{j<n}^{s} L'_{j,n} f_s = \sum_{j=1}^{s} \int L'_{j,s+1} f_{s+1} dx_{s+1},
\]

where the right-hand side is the collision term coupling \(f_s\) with \(f_{s+1}\). In the case of \(s = 1\) equation (9) reduces to

\[
\frac{\partial}{\partial t} f_1 + p_1 \frac{\partial}{\partial q_1} f_1 = - \int \mathbf{F}_{1,2} \frac{\partial}{\partial p_1} f_2 dx_2,
\]

where \(\mathbf{F}_{1,2} = -\nabla_1 \phi_{1,2}\) \([10]\).

3. Entropy production and irreversibility

Our statistical theory is based on the definition of the non-equilibrium entropy proposed in \([7,8]\)

\[
S = -k_B \text{tr} \left\{ f \ln \left(f^{-1} f' \right) \right\} + S_{\text{eq}}
\]

\[
= -k_B \sum_{s=1}^{N} \frac{1}{s!} \int f_s \ln \frac{f_s}{f_{\text{eq},s}} dx_1 \ldots dx_s + S_{\text{eq}}
\]

which generalizes the Gibbs entropy postulate, where \(S_{\text{eq}}\) is the equilibrium entropy coinciding with the thermodynamic entropy and \(f_{\text{eq}}\) is the equilibrium distribution vector satisfying \(\mathcal{L} f_{\text{eq}} = 0\). The non-equilibrium entropy (11) reaches its maximum value \(S = S_{\text{eq}}\) at the equilibrium state, when \(f = f_{\text{eq}}\).
On the law of increase of entropy for non-equilibrium systems

At this point, it should be clarified that a description of the system in terms of the full phase-space \(N \)-particle distribution function is justified for equilibrium systems for which the representative ensemble is distributed uniformly through the phase space. Nonetheless, the non-uniformity of non-equilibrium systems leads to a random clustering caused by the interaction between different \(s \)-particle clusters, and the same global quantity may be obtained for an infinite number of realizations. This fact is taken into account in the BBGKY hierarchy \[11\] which explicitly incorporates the interaction between different \(s \)-particle clusters through the non-diagonal part \(Q \mathcal{L} \) of the generalized Liouvillian \(\mathcal{L} \). The non-equilibrium system behaves as a random mixture of \(s \)-particle systems and therefore the total entropy should be the sum of all the \(s \)-particle entropies. The randomness creates entropy as we will see later on.

More interesting here is to establish the direction of change of this entropy in a natural process. To discern this we first note that since \(f_s \ln f_s / f_{eq,s} \) is a convex function \[12\]

\[
 f_s \ln \frac{f_s}{f_{eq,s}} \geq f_s - f_{eq,s} \quad (\text{for } f_s \geq 0 \text{ and } f_{eq,s} > 0)
\]

and due to the fact that \(f_s \) and \(f_{eq,s} \) are both smooth phase-space densities in the \(s \)-particle phase space

\[
 \int f_s \ln \frac{f_s}{f_{eq,s}} \ dx_1 \ldots dx_s \geq 0.
\]

Thus, given that \(f_s \) is bounded and since \(f_{eq,s} > 0 \) there must exist a constant \(C \) such that

\[
 \int f_s \ln \frac{f_s}{f_{eq,s}} \ dx_1 \ldots dx_s \leq C,
\]

for \(s = 1, \ldots, N \). Hence, a lower bound for the non-equilibrium entropy exists:

\[
 0 > S - S_{eq} \geq -k_B \sum_{s=1}^{N} \frac{1}{s!} C,
\]

which means that the non-equilibrium entropy \((11)\) cannot decrease. Consequently, the law of increase of entropy (i.e. the second law of thermodynamics) follows, constituting this result, one of the goals of the present contribution.

The rate of change of the non-equilibrium entropy \((11)\) or entropy production can be computed using equations \((6)\), giving

\[
 \frac{\partial S}{\partial t} = -k_B \text{tr} \left\{ \frac{\partial f}{\partial t} \ln \left(\frac{f_{eq}^{-1}}{f} \right) \right\} = -k_B \text{tr} \left\{ \mathcal{L} f \ln \left(\frac{f_{eq}^{-1}}{f} \right) \right\},
\]

which according to equation \((15)\) should be non-negative. In a more explicit way, after using equation \((9)\), equation \((16)\) can be written as

\[
 \frac{\partial S}{\partial t} = -\frac{1}{T} \sum_{s=1}^{N} \frac{1}{s!} \sum_{j=1}^{s} \int f_s \mathbf{P}_j \left(-k_B T \frac{\partial}{\partial q_j} \ln f_{eq,s} + \sum_{j \neq i=1}^{s} \mathbf{F}_{j,i} + \mathcal{F}_j \right) dx_1 \ldots dx_s
\]

where \(\mathcal{F}_j(x^s) \) is defined through \(f_s(x^s) \mathcal{F}_j(x^s) = \int \mathcal{F}_j s+1 f_s dx_{s+1} \), \(T \) is the equilibrium kinetic temperature taking into account that the dependence of \(f_{eq,s} \) in the velocities is given through a local Maxwellian and \(\mathbf{F}_{j,i} = -\nabla_j \phi_{j,i} \).
The entropy production given through equation (17) vanishes at equilibrium when f_s coincides with $f_{eq,s}$. Moreover, because p_j is arbitrary
\[
\begin{align*}
\sum_{j \neq i=1}^{s} F_{j,i} + F_{j}^{eq} &= k_B T \frac{\partial}{\partial q_j} \ln f_{eq,s} \\
\text{(18)}
\end{align*}
\]
is sufficient to satisfy the extremum condition $\delta \dot{S}/\delta f_s|_{eq} = 0$, with $\dot{S} \equiv \partial S/\partial t$. Here, the right-hand side of equation (18) is the mean force [13] and the left-hand side is the sum of two parts; the first is the force due to the van der Waals interactions with the $s - 1$ fixed particles different from the jth particle in the sth cluster (responsible for the compressions and dilatations of the sth cluster), while the second is the average force on particle jth from the remaining $N - s$ particles of the system. It is known that equation (18) gives rise to a hierarchy of equations, the Yvon–Born–Green (YBG) hierarchy [9]. Now, by making use of the extremum condition equation (18), we can rewrite the entropy production equation (17) as
\[
\begin{align*}
\frac{\partial S}{\partial t} &= -\frac{1}{T} \frac{1}{s!} \sum_{j=1}^{N} \int f_s p_j (F_j - F_j^{eq}) \, dx_1 \cdots dx_s \\
&= -\frac{1}{T} \sum_{s=1}^{N} \frac{1}{s!} \sum_{j=1}^{s} \int (\Delta f_s + f_{eq,s}) p_j (F_j - F_j^{eq}) \, dx_1 \cdots dx_s, \\
\text{(19)}
\end{align*}
\]
where $\Delta f_s = f_s - f_{eq,s}$. The right-hand side of the last equal sign in equation (19) has two parts, the second of which, involving $f_{eq,s}$, provided that F_j has even parity under time reversal, vanishes. It must be pointed out that F_j has even parity if $f_s(x^{s+1}) = f_1(x_{s+1})f_s(x^s)$ which is a reasonable assumption for large enough timescales. Henceforth, after defining the non-equilibrium current $J_j \equiv \Delta f_s p_j$ which vanishes at equilibrium, equation (19) can be rewritten as
\[
\frac{\partial S}{\partial t} = -\frac{1}{T} \sum_{s=1}^{N} \frac{1}{s!} \sum_{j=1}^{s} \int J_j (F_j - F_j^{eq}) \, dx_1 \cdots dx_s. \\
\text{(20)}
\]
In the previous equation (20) the term under the integral possesses the form of the product of a thermodynamic current J_j times the corresponding conjugated thermodynamic force $(F_j - F_j^{eq})$, which constitutes the typical expression of the entropy production in non-equilibrium thermodynamics. At this point, following the standards of non-equilibrium thermodynamics [14], from equation (20), provided that the existence of an equilibrium state is assumed, it follows that
\[
J_i = -\sum_{j=1}^{s} \frac{L_{ij}}{T} (F_j - F_j^{eq}), \\
\text{(21)}
\]
where L_{ij} is a phenomenological coefficient which should be non-negative and have even parity, or in terms of the related mobility $M_{ij} = L_{ij}/T f_s$
\[
J_i = -\sum_{j=1}^{s} f_s M_{ij} (F_j - F_j^{eq}). \\
\text{(22)}
\]
On the law of increase of entropy for non-equilibrium systems

The phenomenological relations (21) or (22) manifest the fact that a restoring current arises when the system deviates from equilibrium by the action of a thermodynamic force, this constituting a generalization of the Onsager’s regression hypothesis [16]. Additionally, M_{ij} might be a function of f_s and $\{F_j\}$, $M_{ij}(f_s, \{F_j\})$ in general. Therefore, after substituting equation (22) into (20),

$$\frac{\partial S}{\partial t} = \frac{1}{T} \sum_{s=1}^{N} \frac{1}{s!} \sum_{i,j=1}^{s} \int f_s M_{ij} (F_j - F_{eq}^j)^2 \, dx_1 \ldots dx_s \geq 0. \quad (23)$$

To test our previous analysis, near equilibrium we can define an effective mobility $M_{ij}^{eq} = \int M_{ij} f_{eq,s} \, dx_1 \ldots dx_s$, and thus

$$J_i = -\sum_{j=1}^{s} f_s M_{ij}^{eq} (F_j - F_{eq}^j) \quad (24)$$

which, on introducing the inverse mobility matrix $\zeta_{ij}^{eq} (\sum_{j=1}^{s} \zeta_{ij}^{eq} M_{jl}^{eq} = \delta_{il})$, the friction matrix, can be rewritten as

$$f_s (F_i - F_{eq}^i) = -\sum_{j=1}^{s} \zeta_{ij}^{eq} J_j = -\sum_{j=1}^{s} \zeta_{ij}^{eq} p_j (f_s - f_{eq,s}). \quad (25)$$

For $s = 1$, the previous equation allows us to derive from equation (10) the following kinetic equation for $f_1 \equiv f$:

$$\frac{\partial}{\partial t} f + p \frac{\partial}{\partial q} f + k_B T \left(\frac{\partial}{\partial q} \ln f_{eq} \right) \frac{\partial}{\partial p} f = \zeta^{eq} \frac{\partial}{\partial p} p (f - f_{eq}) \quad (26)$$

constituting a generalization of the BGK [15] relaxation model containing the mean force and an extra acceleration term involving $\partial/\partial p (f - f_{eq})$ which distinguishes this equation with respect to the original BGK.

4. Conclusions

In the framework of the BBGKY description we have found a way of generalizing the Gibbs fine-grained entropy for an isolated N-body system leading to irreversibility. We have proved that the non-equilibrium entropy of an isolated N-body system defined as a convex functional of the distribution vector cannot decrease and that the rate of change of this entropy is a non-negative quantity having a global minimum at equilibrium. As an application of those results, after computing the entropy production, following the methods of non-equilibrium thermodynamics we introduce a positively defined mobility matrix which relates the non-equilibrium current to the corresponding thermodynamic force, enabling us to write the entropy production as a positively defined quadratic form. As a consequence of introducing the phenomenological law, we have obtained a generalization of the BGK relaxation model which contains the mean force and an extra acceleration term involving $\partial/\partial p (f - f_{eq})$. At this point it should be mentioned that the non-equilibrium thermodynamic analysis may be generalized to the phase space as is done in mesoscopic non-equilibrium thermodynamics (MNET) [17].

doi:10.1088/1742-5468/2006/09/P09015

7
It should be stressed that as we have shown, a proper description of the non-equilibrium system might be given in terms of the distribution vector which evolves according to the generalized Liouville equation. The compressibility inherent to the BBGKY hierarchy leads to the randomness, so that the system can be thought of either as a random mixture of s-particle systems or an interacting mixture of compressible fluids. Hence, this description brings about the correct macroscopic dynamics.

Due to the generality of our theory of irreversibility even the Boltzmann irreversible equation and hence the Boltzmann H-theorem are embedded in here, as was shown in a previous paper [8]. Moreover, a quantum formulation is possible, which will be shown elsewhere.

References

[1] Cohen E G D and Mauzurall J, 2004 J. Stat. Mech. P07006
[2] Landau L D and Lifshitz E M, 1988 Statistical Physics 3rd edn, part 1 (Oxford: Pergamon)
[3] Lebowitz J L, 1999 Physica A 263 516
[4] Lebowitz J L, 1999 Rev. Mod. Phys. 71 S346
[5] Goldstein S, Boltzmann's approach to statistical mechanics, 2001 Chance in Physics: Foundations and Perspectives (Springer Lectures Notes in Physics vol 574) ed J Bricmont et al (Berlin: Springer)
[6] van Kampen N G, 1990 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
[7] Pérez-Madrid A, 2005 J. Chem. Phys. 123 204108
[8] Pérez-Madrid A, 2004 Physica A 339 339
[9] Balescu R, 1975 Equilibrium and Non-equilibrium Statistical Mechanics (New York: Wiley–Interscience) See also Balescu R, 1997 Statistical Dynamics. Matter out of Equilibrium (London: Imperial College Press)
[10] Harris S, 2004 An Introduction to the Theory of the Boltzmann Equation (New York: Dover)
[11] Martynov G A, 1995 Zh. Eksp. Teor. Phys. 107 1907
Martyonov G A, 1995 J. Exp. Theor. Phys. (JETP) 80 1056
[12] Grad H, 1961 Commun. Pure Appl. Math. 14 323
[13] Hill T L, 1987 Statistical Mechanics. Principles and Selected Applications (New York: Dover)
[14] de Groot S R and Mazur P, 1984 Non-Equilibrium Thermodynamics (New York: Dover)
[15] Bhatnagar P L, Gross E P and Krook M, 1954 Phys. Rev. 94 511
[16] Onsager L, 1931 Phys. Rev. 37 405
[17] Reguera D, Rubi J M and Vilar J M G, 2005 J. Phys. Chem. B 109 21502

doi:10.1088/1742-5468/2006/09/P09015