Advance Publication by J-STAGE

Japanese Journal of Infectious Diseases

Antiviral effect of favipiravir (T-705) against measles and subacute sclerosing panencephalitis viruses

Koichi Hashimoto, Hajime Maeda, Kyohei Miyazaki, Masahiro Watanabe, Sakurako Norito, Ryo Maeda, Yohei Kume, Takashi Ono, Mina Chishiki, Kazuhide Suyama, Masatoki Sato, and Mitsuaki Hosoya

Received: June 26, 2020. Accepted: July 28, 2020
Published online: August 31, 2020
DOI:10.7883/yoken.JJID.2020.481

Advance Publication articles have been accepted by JJID but have not been copyedited or formatted for publication.
Short communication

Antiviral effect of favipiravir (T-705) against measles and subacute sclerosing panencephalitis viruses

Koichi Hashimoto, Hajime Maeda, Kyohei Miyazaki, Masahiro Watanabe, Sakurako Norito, Ryo Maeda, Yohei Kume, Takashi Ono, Mina Chishiki, Kazuhide Suyama, Masatoki Sato, and Mitsuaki Hosoya

Department of Pediatrics, School of Medicine, Fukushima Medical University

1st Hikariga-oka, Fukushima, Fukushima 9601295, Japan

Corresponding author

Koichi Hashimoto, MD, PhD

TEL: 08-24-547-1295

FAX: 08-25-548-6578

E-mail address: don@fmu.ac.jp

Key words: favipiravir, T-705, measles virus, SSPE, antiviral activity

Running head: Antiviral effect of T-705 against SSPE virus
著者 橋本浩一、前田創、宮崎恭平、渡部真裕、則藤桜子、前田亮、久米庸平、小野貴志、知識美奈、陶山和秀、佐藤晶論、細矢光亮

所属 公立大学法人福島県立医科大学 医学部小児科学講座

責任著者連絡先

橋本浩一

〒960-1295 福島県福島市光が丘1番地

Tel. 024-547-1295

Fax. 024-548-6578

E-mail. don@fmu.ac.jp
Summary

Subacute sclerosing panencephalitis (SSPE) is a late-onset, intractable, and fatal viral disease caused by persistent infection of the central nervous system with a measles virus mutant (SSPE virus). In Japan, interferon-α and ribavirin are administered intracerebroventricularly to patients with SSPE. However, as the therapeutic effect exists but is insufficient, more effective drugs are needed. Favipiravir, which is used clinically as an anti-influenza drug, is widely active against RNA viruses. In this study, the antiviral effect of favipiravir against measles virus (Edmonston strain) and SSPE virus (Yamagata-1 strain) was examined in vitro. The 50% effective concentrations of favipiravir (inhibiting viral plaque formation by 50%) for Edmonston and Yamagata-1 strains were 108.7 ± 2.0 μM (17.1 ± 0.3 μg/mL) and 38.6 ± 6.0 μM (6.1 ± 0.9 μg/mL), respectively, which were similar to those of ribavirin. The antiviral activity of favipiravir against the SSPE virus was demonstrated, for the first time, in this study.
Subacute sclerosing panencephalitis (SSPE) is a late-onset viral infection characterized by persistent infection of the central nervous system with a measles virus mutant (SSPE virus) after measles, leading to severe cognitive impairment and vegetative death in a short period. We reported the clinical efficacy of intracerebroventricular administration of interferon-α and ribavirin in a small number of patients with SSPE without serious adverse reactions (1, 2). Because the therapeutic effect exists but is insufficient, more effective drugs are needed.

Favipiravir (T-705) is an anti-influenza drug classified as an RNA polymerase inhibitor. Favipiravir is phosphorylated in the cell and incorporated into viral RNA as a nucleic acid analog during the mRNA elongation reaction. This inhibits the mRNA transcription process by stopping the elongation reaction (3, 4). Favipiravir has a broad spectrum of activity against RNA viruses other than influenza including Orthomyxoviridae, Bunyaviridae, Arenaviridae, Filoviridae, Paramyxoviridae, Flaviviridae, Togaviridae, Picornaviridae, and Caliciviridae (5, 6). Antiviral activity of favipiravir against the SSPE virus, which is a mutant strain of the measles virus in the Paramyxoviridae family, is expected, but has not yet been reported. The antiviral activity of favipiravir (Hubei Tianyao Pharmaceutical, Xianfeng, China) against a measles virus laboratory strain (Edmonston strain) and a SSPE virus clinical isolate (SSPE Yamagata-1 strain) (7) was examined by conducting the viral plaque reduction assay using African green monkey (Vero) cells in vitro (8). Vero/SLAM cells, in which human SLAM is expressed (9), were used for virus propagation. Vero cells were grown in minimum essential
medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 50 μg/mL gentamicin, 100 IU/mL penicillin, 1 μg/mL amphotericin B, and 0.3 mg/mL L-glutamine (10% FBS-MEM). Vero/SLAM cells were grown in 10% FBS-MEM supplemented with 0.4 mg/mL Geneticin for selection. The Edmonston strain of measles virus was used to inoculate Vero/SLAM cells, and harvested after freeze thawing the infected cells. The SSPE Yamagata-1 strain was propagated in Vero/SLAM cells, harvested by trypsinization, prepared as an infected cell suspension in Vero/SLAM cell medium supplemented with 10% dimethyl sulfoxide, and stored at −80°C until use. The plaque reduction assay was performed as follows. After discarding the cell culture medium from monolayers of Vero cell in a 12-well microplate, 50 μL of virus in 10% FBS-MEM were added to each well and shaken at room temperature for 1 h to adsorb the virus to the cells. The Edmonston strain was used to produce cell-free virions. This yielded a reproducible number of syncytia (generally 200–300 plaque-forming units) in the control wells. The Yamagata-1 strain was also used to yield a reproducible number of syncytia (generally 70–150 plaque-forming units) in control wells. Then, 1 mL of 0.75% methylcellulose-10% FBS-MEM containing serially diluted drugs was overlaid on each well, and the cells were cultured at 35°C in 5% CO₂. After incubation for an appropriate number of days, the plates were fixed in 10% formalin and the number of typical plaques was counted. The 50% effective concentration (EC50) (i.e., the concentration required to inhibit viral plaque formation by 50%) was determined on day 5 or 6, and day 3
or 4, post inoculation for the Edmonston and Ymagata-1 strains, respectively. The 50% cytotoxic concentration (CC$_{50}$), defined as the concentration required to reduce cell viability by 50% relative to that of untreated control cells, was determined by the WST-1 assay (Cell Proliferation Reagent WST-1, Sigma-Aldrich, Tokyo, Japan). The selectivity index (SI) was defined as the ratio of the CC$_{50}$ relative to the EC$_{50}$ value. Ribavirin (Adooq Bioscience, Irvine, CA, USA) and interferon-α (IFN-α) (Sumiferon Injection®, Sumitomo Dainippon Pharma, Osaka, Japan) were used as reference drugs. EC$_{50}$s of favipiravir for the Edmonston and Yamagata-1 strains were 108.7 ± 2.0 μM (17.1 ± 0.3 μg/mL) and 38.6 ± 6.0 μM (6.1 ± 0.9 μg/mL), respectively. EC$_{50}$s of ribavirin for each virus were 172 ± 49.5 μM (42.0 ± 12.1 μg/mL) and 38.1 ± 1.6 μM (9.3 ± 0.4 μg/mL), respectively. The CC$_{50}$s and SIs of both drugs were similar. Moreover, IFN-α showed high antiviral activity and SI against both viruses (Table 1). The antiviral activity of favipiravir against the SSPE virus was demonstrated, for the first time, in this study, Jochmans et al. (6) analyzed the antiviral activity of favipiravir against a broad range of paramyxoviruses and reported EC$_{90}$s of 9 ± 2 μM, 10 ± 3 μM, and 13 ± 7 μM for the Edmonston strain of the measles virus when favipiravir was added 24 h before inoculation, simultaneously with inoculation, and 24 h after inoculation, respectively. However, they did not analyze the effect of favipiravir against SSPE. The different antiviral activity of favipiravir that we found against the Edmonston strain may be partly due to differences in the assays, cells, and viruses used for the evaluation, but not the timing of cell
treatment with favipiravir relative to virus inoculation. For example, they performed a virus yield reduction assay and used a GFP-expressing Edmonston strain (MeV-Edm-GFP) and Vero/SLAM cells(6), while we performed a plaque reduction assay and used the Edmonston strain and Vero cells. In addition, the antiviral activity of favipiravir against the severe fever with thrombocytopenia syndrome virus was confirmed previously in *in vitro* and *in vivo* studies, and the antiviral effect was reported to be higher than that of ribavirin (10).

The SSPE virus has gene mutations compared with the wild-type measles virus genome. The M gene, which encodes matrix proteins, is more frequently mutated than other genes in human clinical cases, but not genes related to the mRNA elongation reaction (11). Therefore, an effect of favipiravir against the SSPE virus *in vivo* is expected. Despite this potential *in vivo* effectiveness, there is a key point that must be resolved before favipiravir can be used clinically. Favipiravir is only administered orally, but this route may not achieve a sufficient drug concentration in the cerebrospinal fluid (CSF) to treat SSPE. Because SSPE is caused by proliferation of the SSPE virus in the central nervous system, antiviral effects cannot be expected unless orally ingested favipiravir crosses the blood-brain barrier and maintains a sufficient drug concentration in the central nervous system. For ribavirin, because the oral route did not increase its concentration in the CSF sufficiently to provide antiviral activity against the SSPE virus, a liquid formulation was administered intracerebroventricularly (1). Therefore, it is necessary to investigate whether oral administration of favipiravir reaches a
sufficient concentration in the CSF. If not, it will be necessary to develop a liquid formulation and perform intravenous or intracerebroventricular administration. The measles epidemic continues in developing countries (12), and sporadic cases of measles occur in developed countries including Japan (13). The development of new SSPE drugs is an urgent task because there are no drugs that show sufficient clinical effects on SSPE.

Acknowledgments:

We thank Mr. Ken Honzumi for technical assistance. This work was supported by a KAKENHI Grant-in-Aid for Young Scientists (no. 18K15721) and a Grant-in-Aid from the Research Committee of Molecular Pathogenesis and Therapies for Prion Disease and Slow Virus Infection, Agency for Medical Research and Development (AMED) (JP16ek0109044).

Conflict of interest:

The authors have no financial relationships relevant to this article to disclose. The authors have no other conflicts of interest to disclose. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
References

1) Hosoya M, Mori S, Tomoda A, et al. Pharmacokinetics and effects of ribavirin Following intraventricular administration for treatment of subacute sclerosing panencephalitis. Antimicrob Agents Chemother. 2004; 48:4631-5.

2) Miyazaki K, Hashimoto K, Suyama K, et al. Maintaining concentration of ribavirin in cerebrospinal fluid by a new dosage method; 3 cases of subacute sclerosing panencephalitis treated using a subcutaneous continuous infusion pump. Pediatr Infect Dis J. 2019; 38:496-9.

3) Sangawa H, Komeno T, Nishikawa H, et al. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob Agents Chemother. 2013; 57:5202-8.

4) Furuta Y, Takahashi K, Shiraki K, et al. T-705 (favipiravir) and related compounds: ovel broad-spectrum inhibitors of RNA viral infections. Antiviral Res. 2009; 82:95-102.

5) Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93:449-63.

6) Jochmans D, van Nieuwkoop S, Smits SL, et al. Antiviral activity of favipiravir (T-705) against a broad range of paramyxoviruses in vitro and against human metapneumovirus in hamsters. Antimicrob Agents Chemother. 2016; 60:4620-9.

7) Homma M, Tashiro M, Konno H, et al. Isolation and characterization of subacute
sclerosing panencephalitis virus (Yamagata-1 Strain) from a brain autopsy. Microbiol Immunol. 1982; 26:1195-202.

8) Watanabe M, Hashimoto K, Abe Y, et al. A novel peptide derived from the fusion protein heptad repeat inhibits replication of subacute sclerosing panencephalitis virus in vitro and in vivo. PLoS One. 2016; 11:e0162823.

9) Ono N, Tatsuo H, Hidaka Y, et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol. 2001; 75:4399-401.

10) Tani H, Fukuma A, Fukushima S, et al. Efficacy of T-705 (favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus. mSphere. 2016; 1:e00061-15.

11) Griffin DE. 2007. Measles virus. In: Knipe DM, Howley PM, editors. Fields virology, 6th ed. Philadelphia, PA; Wolters Kluwer/Lippincott Williams & Wilkins; 2013. p. 1042–69.

12) World Health Organization. Immunization, vaccines and biologicals. Measles. Available at <https://www.who.int/immunization/diseases/measles/en/> Accessed May 22, 2020.

13) National Institute of Infectious Diseases, Japan. Measles in Japan from 1st to 7th epidemiological week, 2019 (as of February 20, 2019). Available at <https://www.niid.go.jp/niid/en/survei/2292-idwr/idwr-article-en/8654-idwrc-1907.html>
> Accessed May 22, 2020.
Table 1. *In vitro* activity of T-705 against measles and SSPE viruses

Compounds	EC$_{50}$	CC$_{50}$	SI	EC$_{50}$	CC$_{50}$	SI
Favipiravir	108.7 ± 2.0 μM	> 1000 μM	> 9.1	38.6 ± 6.0 μM	> 1000 μM	> 25.9
Ribavirin	172.3 ± 49.5 μM	> 1000 μM	> 5.8	38.1 ± 1.6 μM	> 1000 μM	> 26.2
IFN-α	69.7 ± 60.3 IU/mL	> 100,000 IU/mL	> 1434.7	64.9 ± 6.7 U/mL	> 10,000 IU/mL	> 1540.8

EC$_{50}$, 50% effective concentration; CC$_{50}$, 50% cytotoxic concentration, SI, selectivity index. EC$_{50}$s and CC$_{50}$s are presented as means ± SD.