THE MAXIMAL EXCESS CHARGE IN REDUCED HARTREE-FOCK MOLECULE

YUKIMI GOTO

Abstract. We consider a molecule described by the Hartree-Fock model without the exchange term. We prove that nucleuses of total charge Z can bind at most $Z + C$ electrons, where C is a constant independent of Z.

1. Introduction

We denote by $N > 0$ and $K > 0$ the total number of electrons and nucleuses, respectively. Our model is described by an energy functional defined on one-body density matrices. An one-body density matrix γ is a self-adjoint operator on $L^2(\mathbb{R}^3)$ satisfying $0 \leq \gamma \leq 1$ and $\text{tr} \gamma < \infty$. The kernel can be written as $\gamma(x, y) = \sum_{i \geq 1} n_i \varphi_i(x) \varphi_i^*(y)$, with the eigenfunctions φ_i, such that $\gamma \varphi_i = n_i \varphi_i$. Then we define the one-particle electron density ρ_γ by $\rho_\gamma(x) = \gamma(x, x)$. The reduced Hartree-Fock (RHF) functional is given by the functional

$$E_{\text{RHF}}(\gamma) = \text{tr} \left[\left(-\frac{1}{2} \Delta - V_Z \right) \gamma \right] + D[\rho_\gamma],$$

where

$$D[\rho_\gamma] = D(\rho_\gamma, \rho_\gamma) = \frac{1}{2} \int \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\rho_\gamma(x) \rho_\gamma(y)}{|x - y|} dx dy.$$

Here V_Z is the Coulomb potential

$$V_Z(x) = \sum_{i=1}^{K} \frac{z_i}{|x - R_i|}, \quad Z = \sum_{i=1}^{K} z_i,$$

where $z_1, \ldots, z_K > 0$ are the charges of fixed nuclei located at $R_1, \ldots, R_K \in \mathbb{R}^3$. For all $N > 0$ and $z_i > 0$, we define the energy by

$$E_{\text{RHF}}(N, Z) = \inf \{ E_{\text{RHF}}(\gamma) : \gamma \in \mathcal{P}, \text{tr} \gamma = N \}$$

where $\mathcal{P} = \{ \gamma : \gamma = \gamma^\dagger, 0 \leq \gamma \leq 1, (-\Delta + 1)^{1/2} \gamma (-\Delta + 1)^{1/2} \in \mathcal{S}^1 \}$, and \mathcal{S}^1 is the set of trace-class operators.

Our interest is to investigate the maximum ionization $N - Z$. It is believed (see [7 Chapter 12]) that real atoms in nature can only bind one, or possibly two extra electrons. This ionization conjecture has only been showed for the atomic case ($K = 1$) in the reduced Hartree-Fock model [11] and full Hartree-Fock model [12]. Recently, Frank et.al proved this conjecture also in the Thomas-Fermi-Dirac-von Weizsäcker model [1] and the Müller model [2]. However, they only dealt with the atomic case.
In this article, we will prove

Theorem 1.1 (Maximal ionization). *We assume \(z_{\min} := \min_{1 \leq j \leq K} z_j \geq \delta z_{\max} := \max_{1 \leq j \leq K} z_j \), and \(R_{\min} = \min_{i \neq j} |R_i - R_j| \geq c_0 \) with some \(c_0, \delta > 0 \) independent of \(Z \). There is a constant \(C_K > 0 \) depending on \(K \) such that for all \(Z > 0 \), if reduced Hartree-Fock functional has a minimizer, then \(N \leq Z + C_K \) holds true.

Remark 1.2. Presumably, the true \(C_K \) behaves linearly on \(K \) but this is still open.

This article is organized as follows. In Section 2 we derive the exterior estimate for the number of electrons in \(A_r \). For the proof, we combine the Lieb’s argument in [5] and the moving plane method [1, 2]. In section 3 we compare our minimizer with the minimizer of an effective exterior functional. In Section 4 we study TF theory for molecules, in particular we prove Sommerfeld bounds. The proof of Theorem 1.1 is given in Section 7 by using Solovej’s argument relying on an initial step given in Section 5 and an iteration step in Section 6.

Acknowledgement: The author would like to thank Shu Nakamura for the warm encouragements and helpful comments, and thank Heinz Siedentop for many fruitful discussions. This work was supported by Research Fellow of the JSPS KAKENHI Grant Number 18J13709.

2. \(L^1 \) exterior estimate

First, we choose smooth localizing functions \(\theta_j \in C^\infty(\mathbb{R}^3), \ j = 0, 1, \ldots, K \) with the following properties:

Definition 2.1. Let \(\lambda \in (0, 1/2] \).

(i) For \(j \geq 1 \) we have \(\theta_j(x) = \theta(|x - R_j|/R_0) \), with smooth \(\theta \) satisfying \(0 \leq \theta \leq 1 \) and \(\theta(t) = 1 \) if \(t < 1 \) and \(\theta(t) = 0 \) if \(t > 1 + \lambda \).

(ii) \(\sum_{j=0}^{K} \theta_j(x)^2 = 1 \) (which defines \(\theta_0 \)).

These properties imply

(iii) \(|\nabla \theta_j(x)| \leq CR_0^{-1} \) for all \(j \).

In the reminder of this article we will use \(\gamma^{RHF} \) to mean a minimizer for reduced Hartree-Fock functional. We put \(\rho^{RHF} := \rho_{\gamma^{RHF}}, \ \gamma_j := \theta_j \gamma^{RHF} \theta_j \), and \(\rho_j := \rho_{\gamma_j}, \ j = 0, 1 \ldots, K \). For any \(r > 0 \), we denote \(A_r := \{ x \in \mathbb{R}^3 : |x - R_j| > r, \ \forall j = 1, \ldots, K \} \).

We introduce here the screened potential defined by

\[
\Phi_r^{RHF}(x) := V_Z(x) - \int_{A_r^c} \frac{\rho^{RHF}(y)}{|x - y|} \, dy,
\]

where \(A_r^c \) stands for the complement of \(A_r \). Our first goal is to control the integral \(\int_{A_{R_0}} \rho^{RHF} \), where \(R_0 := \min(1, R_{\min}/4) \). Namely, we will show
Theorem 2.2. Let
\[
\varphi(x) := \sum_{j=1}^{K} \mu_j |x - R_j|^{-1}, \quad \mu_j = \frac{z_j}{Z}.
\]

Then it holds that
\[
\left(\int_{A_{R_0}} \rho_{\text{RHF}}(x) dx \right)^2 \leq C \left(\frac{1}{R_0^2} + \sup_{x \in A_{R_0/3}} \varphi(x)^{-1} \Phi_{R_0/3}(x) \right) \int_{A_{R_0/3}} \rho_{\text{RHF}}.
\]

Proof. The reduced Hartree-Fock minimizer \(\gamma_{\text{RHF}} = \sum_{i=1}^{\infty} \lambda_i \langle u_i \rangle \) satisfies the RHF equation \(H_{\gamma_{\text{RHF}}} u_i = \varepsilon_i u_i \) with \(\varepsilon_i \leq 0 \) (see [11, Theorem 1]). Here \(H_{\gamma} \) is defined by
\[
H_{\gamma} = -\frac{1}{2} \Delta - V(x) + \rho_{\gamma_{\text{RHF}}} \ast |x|^{-1}.
\]

Now we use the Lieb’s method in [5]. By the RHF equation, we have
\[
0 \geq \sum_{i=1}^{\infty} \varepsilon_i \int |u_i(x)|^2 \varphi(x)^{-1} \theta_0(x)^2 \, dx
\]
\[
= \sum_{i=1}^{\infty} \frac{1}{2} \int \nabla (u_i(x)^* \varphi(x)^{-1} \theta_0(x)^2) \cdot \nabla u_i(x) \, dx - \int \rho_0 V \varphi^{-1}
\]
\[
+ \iint \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y) \frac{\varphi(x)^{-1} \theta_0(x)^2}{|x - y|} \, dx \, dy.
\]

Next, we use the

Proposition 2.3 (IMS formula). For \(u \in H^1(\mathbb{R}^3) \) and \(\eta \in C^1(\mathbb{R}^3) \) satisfying \(\|\nabla \eta\|_{\infty} \leq C \) we have
\[
\text{Re} \int \nabla (\eta^2 u^*) \cdot \nabla u = \int |\nabla u|^2 - \int |\nabla \eta|^2 |u|^2.
\]

Then we deduce that
\[
\text{Re} \int \nabla (u_i(x)^* \varphi(x)^{-1} \theta_0(x)^2) \cdot \nabla u_i(x) \, dx = \int |\nabla (u_i(x) \varphi(x)^{-1/2} \theta_0(x)^2)|^2 \, dx - \int |\nabla (\theta_0 \varphi^{-1/2})|^2 |u_i|^2.
\]

By definition, \(|\nabla \theta_0 \varphi^{-1/2}|^2 \leq C R_0^{-2} \) holds. Hence
\[
\int \nabla (u_i(x)^* \varphi(x)^{-1} \theta_0(x)^2) \cdot \nabla u_i(x) \, dx \geq - \frac{C}{R_0^2} \int |u_i(x)|^2 \, dx.
\]

We note from the triangle inequality that
\[
\varphi(x)^{-1} + \varphi(y)^{-1} = \sum_{j=1}^{K} \mu_j \frac{|x - R_j| + |y - R_j|}{\varphi(x) \varphi(y) |x - R_j||y - R_j|} \geq \sum_{j=1}^{K} \frac{\mu_j |x - y|}{\varphi(x) \varphi(y) |x - R_j||y - R_j|}.
\]
Then it holds that
\[
\int \int \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|} \varphi(x)^{-1}\theta_0(x)^2 \, dx \, dy
= \int \int \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|} \varphi(x)^{-1}(1 - \theta_0(y)^2)\theta_0(x)^2 \, dx \, dy
+ \frac{1}{2} \int \int \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|}(\varphi(x)^{-1} + \varphi(y)^{-1})\theta_0(y)^2\theta_0(x)^2 \, dx \, dy
\geq \int \int \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|} \varphi(x)^{-1}(1 - \theta_0(y)^2)\theta_0(x)^2 \, dx \, dy
+ \frac{1}{2} \sum_{j=1}^{K} \mu_j \left(\int \frac{\rho_0(x)dx}{\varphi(x)|x-R_j|} \right)^2.
\]

Furthermore, we may estimate
\[
\int \int \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|} \varphi(x)^{-1}(1 - \theta_0(y)^2)\theta_0(x)^2 \, dx \, dy
\geq \sum_{j=1}^{K} \int \int_{|y-R_j|<R_0/2} \frac{\rho_{\text{RHF}}(x)\rho_{\text{RHF}}(y)}{|x-y|} \varphi(x)^{-1}\theta_0(x)^2 \, dx \, dy.
\]

These estimates lead that
\[
0 \geq -\frac{C}{R_0^2} \int_{A_{R_0}} \rho_{\text{RHF}} \, dx - C \int \rho_{\text{RHF}}(x)\varphi^{-1}(x)\Phi_{R_0/2}(x) \, dx
+ \frac{1}{2} \sum_{j=1}^{K} \mu_j \left(\int \frac{\rho_0(x)dx}{\varphi(x)|x-R_j|} \right)^2.
\]

Furthermore, by the convexity, we deduce from \(\sum_{j=1}^{K} \mu_j (\varphi(x)|x-R_j|)^{-1} = 1 \) that
\[
\sum_{j=1}^{K} \mu_j \left(\int \frac{\rho_0(x)dx}{\varphi(x)|x-R_j|} \right)^2 \geq \left(\int \rho_0(x)dx \right)^2.
\]

Together with these estimates, we have
\[
\left(\int_{A_{R_0}} \rho_0^{\text{RHF}}(x) dx \right)^2 \leq \frac{C}{R_0^2} \int_{A_{R_0}} \rho_{\text{RHF}} \, dx
+ C \int_{A_{R_0}} \rho_{\text{RHF}}(x)\varphi^{-1}(x)\Phi_{R_0/2}(x) \, dx.
\]
Hence we arrive at
\[
\frac{1}{2} \left(\int_{A_{(1+\lambda)R_0}} \rho_{\text{RHF}}(x) \, dx \right)^2 \leq \frac{C}{R_0^2} \int_{A_{R_0}} \rho_{\text{RHF}} \, dx \\
+ C \sup_{x \in A_{R_0/2}} \varphi(x)^{-1} \left[\Phi_{R_0/2}^{\text{RHF}}(x) \right]_+ + \int_{A_{R_0}} \rho_{\text{RHF}}.
\]
Replacing R_0 to $(1 + \lambda)^{-1} R_0$ and choosing $\lambda = 1/2$, we have the claim. \qed

Following, we will use the cut-off functions
\[
\chi^+_r = 1_{A_r}
\]
and a smooth function $\eta_r : \mathbb{R}^3 \to [0, 1]$ satisfying
\[
\chi^+_r \geq \eta_r \geq \chi^+_r(1+\lambda)r, \quad |\nabla \eta_r| \leq C(\lambda r)^{-1}.
\]
The next lemma is a modification of \cite[Lemma 7]{2} and \cite[Lemma 5]{3}.

Lemma 2.4. For all $r \in (0, R_0]$, $s > 0$, and for all $\lambda \in (0, 1/2]$ we have
\[
\int_{A_r} \rho_{\text{RHF}}(x) \, dx \leq C \sum_{j=1}^{K} \int_{r \leq |x-R_j| < (1+\lambda)r} \rho_{\text{RHF}}(x) \, dx \\
+ C \left(\sup_{x \in A_r} \varphi(x)^{-1} \left[\Phi_r^{\text{RHF}}(x) \right]_+ + s + (\lambda^2 s)^{-1} + \lambda^{-1} + \frac{1}{R_0^3} \right) \\
+ C \left(s^2 \text{tr}(-\Delta \eta_r \gamma_{\text{RHF}} \eta_r) \right)^{3/5}.
\]

Proof. As \cite[Corollary 1]{3}, we can obtain the binding inequality
\[
E_{\text{RHF}}(N, Z) \leq E_{\text{RHF}}(N - M, Z) + E_{\text{RHF}}(M, 0) \quad \forall M > 0.
\]
For fixed $\lambda \in (0, 1/2]$, and any $s, l > 0, \nu \in S^2$ we choose
\[
\chi_{j}^{(i)}(x) = g_i \left(\frac{\nu \cdot h_j(x) - l}{s} \right), \quad i = 1, 2,
\]
where $g_i : \mathbb{R} \to \mathbb{R}$ and $\theta : \mathbb{R}^3 \to \mathbb{R}^3$ satisfy
\[
g_1^2 + g_2^2 = 1, \quad g_1(t) = 1 \text{ if } t \leq 0, \quad \text{supp } g_1 \subset \{ t \leq 1 \}, \quad |\nabla g_1| + |\nabla g_2| \leq C.
\]
Here $h_j : \mathbb{R}^3 \to \mathbb{R}^3$ is the function satisfying $|h_j(x)| \leq |x-R_j|, h_j(x) = 0$ if $|x-R_j| \leq r$; $h_j(x) = x - R_j$ if $|x-R_j| \geq (1+\lambda)r$, and $|\nabla h_j(x)| \leq C\lambda^{-1}$. We denote $\gamma_j := \chi_j^i \gamma_j \chi_j^i$ for $j = 1, \ldots, K$ and $i = 1, 2$, where γ_j is as in Definition 2.1. We note that the supports of γ_j, $i = 1, \ldots, K$, are mutually disjoint by definitions. Then, by using the
IMS formula, we have

\[
\mathcal{E}^{\text{RHF}}(\gamma) \leq \mathcal{E}^{\text{RHF}}\left(\sum_{j=1}^{K} \gamma_{j}^{(1)}\right) + \mathcal{E}^{\text{RHF}}_{V_{\gamma_{0}}=0}(\gamma_{0}) + \sum_{j=1}^{K} \mathcal{E}^{\text{RHF}}_{V_{\gamma_{0}}=0}(\gamma_{j}^{(2)})
\]

\[
= \sum_{j=1}^{K} \sum_{i=1,2} \mathcal{E}^{\text{RHF}}(\gamma_{j}^{(i)}) + \mathcal{E}^{\text{RHF}}_{\gamma_{0}} + \sum_{1 \leq i < j \leq K} 2D(\rho_{\gamma_{i}^{(1)}}, \rho_{\gamma_{j}^{(1)}})
\]

\[
+ \sum_{j=1}^{K} \text{tr}(V \gamma_{j}^{(2)}) + \text{tr}(V \gamma_{0})
\]

\[
= \sum_{j=0}^{K} \mathcal{E}^{\text{RHF}}(\gamma_{j}) + \sum_{1 \leq i < j \leq K} 2D(\rho_{\gamma_{i}^{(1)}}, \rho_{\gamma_{j}^{(1)}}) + \sum_{j=1}^{K} \text{tr}(V \gamma_{j}^{(2)}) + \text{tr}(V \gamma_{0})
\]

\[
+ \sum_{j=1}^{K} \left(\sum_{i=1,2} \int |\nabla \chi_{j}^{(i)}|^2 \rho_{j} - \int \int \frac{\chi_{j}^{(2)}(x)^2 \rho_{j}(x) \rho_{j}(y) \chi_{j}^{(1)}(y)^2}{|x-y|} dxdy \right)
\]

Again by the IMS formula, we arrive at

\[
0 \leq \sum_{1 \leq i < j \leq K} 2D(\rho_{\gamma_{i}^{(1)}}, \rho_{\gamma_{j}^{(1)}}) + \sum_{j=1}^{K} \text{tr}(V \gamma_{j}^{(2)}) + \text{tr}(V \gamma_{0})
\]

\[
+ \sum_{j=1}^{K} \left(\sum_{i=1,2} \int |\nabla \chi_{j}^{(i)}|^2 \rho_{j} - \int \int \frac{\chi_{j}^{(2)}(x)^2 \rho_{j}(x) \rho_{j}(y) \chi_{j}^{(1)}(y)^2}{|x-y|} dxdy \right)
\]

\[
+ \sum_{j=0}^{K} \text{tr}(V \gamma_{0}) - \sum_{j=1}^{K} 2D(\rho_{0}, \rho_{j}) - \sum_{1 \leq i < j \leq K} 2D(\rho_{i}, \rho_{j}).
\]

By constructions, we obtain

\[
2D(\rho_{\gamma_{i}^{(1)}}, \rho_{\gamma_{j}^{(1)}}) - 2D(\rho_{i}, \rho_{j}) \leq -4D(\rho_{\gamma_{i}^{(1)}}, \rho_{\gamma_{j}^{(2)}}),
\]

and

\[
\sum_{i=1,2} \int |\nabla \chi_{j}^{(i)}|^2 \rho_{j} \leq C(1 + (\lambda s)^{-2}) \int_{\nu \cdot h_{j}(x) - \lambda s \leq t \leq \nu \cdot h_{j}(x)} \rho_{j}(x) dx.
\]

We note that

\[
\text{tr}(V \gamma_{0}) - \sum_{j=1}^{K} 2D(\rho_{0}, \rho_{j}) \leq \int_{\mathbb{R}^3} \rho_{0}(x) \Phi^{\text{RHF}}_{\mu_{0}}(x) dx.
\]
Then it follows that for all j

$$
\int V(x) \chi_j^{(2)}(x)^2 \rho_j(x) \, dx - \sum_{i=1}^{K} \int \int \frac{\chi_j^{(2)}(x)^2 \rho_j(x) \rho_i(y) \chi_i^{(1)}(y)^2}{|x - y|} \, dxdy \\
\leq \int \chi_j^{(2)}(x)^2 \rho_j(x) \Phi_{RHF}^{RHF}(x) \, dx - \int \int_{|y - R_j| \geq r} \frac{\chi_j^{(2)}(x)^2 \rho_j(x) \rho_j(y) \chi_j^{(1)}(y)^2}{|x - y|} \, dxdy \\
\leq \int_{l \leq \nu \cdot h_j(x)} \rho_j(x) |\Phi_{RHF}^{RHF}(x)|_+ \, dx - \int \int_{\nu \cdot h_j(y) \leq l \leq \nu \cdot h_j(x) - s} \chi_j^+(y) \rho_j(x) \rho_j(y) \frac{\rho_j(x) \rho_j(y)}{|x - y|} \, dxdy.
$$

Since $h_j(x) = x - R_j$ when $|x - R_j| > (1 + \lambda)r$, we get

$$
\int \int_{\nu \cdot h_j(y) \leq l \leq \nu \cdot h_j(x) - s} \chi_j^+(y) \rho_j(x) \rho_j(y) \frac{\rho_j(x) \rho_j(y)}{|x - y|} \, dxdy
\geq \int \int_{\nu \cdot h_j(y) \leq l \leq \nu \cdot h_j(x) - s} \chi_j^+(1+\lambda)r(y) \chi_j^+(1+\lambda)r(x) \frac{\rho_j(x) \rho_j(y)}{|x - y|} \, dxdy.
$$

With these inequality, we have that

$$
\sum_{j=1}^{K} \int \int_{\nu \cdot h_j(y) \leq l \leq \nu \cdot h_j(x) - s} \chi_j^+(1+\lambda)r(y) \chi_j^+(1+\lambda)r(x) \frac{\rho_j(x) \rho_j(y)}{|x - y|} \, dxdy
\leq C \sum_{j=1}^{K} \left[(1 + (\lambda s)^{-2}) \int_{\nu \cdot h_j(x) - s \leq l \leq \nu \cdot h_j(x)} \rho_j(x) \, dx + \int_{l \leq \nu \cdot h_j(x)} \rho_j(x) |\Phi_{RHF}^{RHF}(x)|_+ \, dx \\
+ \frac{1}{R_0^2} \int_{R_0 \leq |x - R_j| \leq (1 + \lambda)R_0} \rho_j \right] + \int_{\mathbb{R}^3} \rho_0(x) |\Phi_{RHF}^{RHF}(x)|_+ \, dx. \tag{2.1}
$$

for all $s, l > 0$ and $\nu \in S^2$. Now we integrate (2.1) over $R_0 > l > 0$, then average over $\nu \in S^2$ and use

$$
\int_{S^2} \nu \cdot x \, d\nu = \frac{|x|}{4}, \text{ for all } x \in \mathbb{R}^3.
$$

For the left side, we also use Fubini’s theorem and

$$
\int_{0}^{\infty} \left(1(b \leq l \leq a - s) + 1(-a \leq l \leq -b - s) \right) \, dl \geq [(a - b)_+ - 2s]_+ \quad
$$

with $a = \nu \cdot (x - R_j), b = \nu \cdot (y - R_j)$. For the right side, we use the fact that \{x : \nu \cdot h_j(x) \geq l\} \subset \{x : |x - R_j| \geq r\} by construction. We note that $|x - R_j| \leq \varphi(x)^{-1}$ on $r \leq |x - R_j| \leq (1 + \lambda)R_0$ and $R_0 \leq \varphi(x)^{-1}$ in A_{R_0}. Together with these facts, we
find that
\[
\frac{1}{8} \sum_{j=1}^{K} \left(\int_{(1+\lambda)\rho \leq |x-R_j| \leq R_0} \rho_{\text{RHF}} \right)^2 \\
\leq C \left(\sup_{x \in A_r} \phi(x)^{-1} \Phi_{\text{RHF}}(x) \right) + s + (\lambda^2 s)^{-1} + \frac{1}{R_0} \int_{A_r} \rho_{\text{RHF}}(x) dx \\
+ C s D \left(\chi_r^+ \rho_{\text{RHF}} \right).
\]

For the left side, we use
\[
\left(\int_{(1+\lambda)\rho \leq |x-R_j| \leq R_0} \rho_{\text{RHF}} \right)^2 \geq \frac{1}{2} \left(\int_{r \leq |x-R_j| \leq R_0} \rho_{\text{RHF}} \right)^2 - \left(\int_{r \leq |x-R_j| \leq (1+\lambda)\rho} \rho_{\text{RHF}} \right)^2.
\]

For the right side, by the Lieb-Thirring inequality,
\[
D(\chi_r^+ \rho_{\text{RHF}}) \leq C \|\chi_r^+ \rho_{\text{RHF}}\|_{L^{6/5}}^2 \\
\leq C \|\chi_r^+ \rho_{\text{RHF}}\|_{L^1} \|\chi_r^+ \rho_{\text{RHF}}\|_{L^{5/3}}^2 \\
\leq C \|\chi_r^+ \rho_{\text{RHF}}\|_{L^1} \left(\text{tr}(-\Delta \eta \gamma_{\text{RHF}} \eta_{\text{RHF}}) \right)^{1/2}.
\]

Hence, by Lemma 2.2, we have
\[
\left(\sum_{j=1}^{K} \int_{r \leq |x-R_j| \leq R_0} \rho_{\text{RHF}} \right)^2 + \left(\int_{A_r} \rho_{\text{RHF}}(x) dx \right)^2 \\
\leq C \sum_{j=1}^{K} \left(\int_{r \leq |x-R_j| \leq (1+\lambda)\rho} \rho_{\text{RHF}} \right)^2 \\
+ C \left(\sup_{x \in A_r} \phi(x)^{-1} \Phi_{\text{RHF}}(x) \right) + s + (\lambda^2 s)^{-1} + \lambda^{-1} + R_0^{-2} \int_{A_r} \rho_{\text{RHF}} \\
+ C s \|\chi_r^+ \rho_{\text{RHF}}\|_{L^1} \left(\text{tr}(-\Delta \eta \gamma_{\text{RHF}} \eta_{\text{RHF}}) \right)^{1/2}.
\]

Consequently, we arrive at
\[
\left(\int_{A_r} \rho_{\text{RHF}}(x) dx \right)^2 \\
\leq C \sum_{j=1}^{K} \left(\int_{r \leq |x-R_j| \leq (1+\lambda)\rho} \rho_{\text{RHF}} \right)^2 \\
+ C \left(\sup_{x \in A_r} \phi(x)^{-1} \Phi_{\text{RHF}}(x) \right) + s + (\lambda^2 s)^{-1} + \lambda^{-1} + \frac{1}{R_0^2} \int_{A_r} \rho_{\text{RHF}} \\
+ C s \|\chi_r^+ \rho_{\text{RHF}}\|_{L^1} \left(\text{tr}(-\Delta \eta \gamma_{\text{RHF}} \eta_{\text{RHF}}) \right)^{1/2}.
\]

We now use the fact that for any \(a, c_i, p_i > 0\) if \(na^2 \leq \sum_{i=1}^{n} c_i a^{2-p_i}\) then it follows that \(a \leq \sum_{i=1}^{n} c_i\) (see the last line in the proof of [2, Lemma 7]). Then the proof of Lemma 2.4 is complete. \(\square\)
3. Splitting Outside from Inside

Our next task is to extend the conclusion of [2, Section 4]. We may choose
\[\eta_-^2 + \eta_+^2 + \eta_r^2 = 1 \]
with
\[\text{supp } \eta_- \subset A_r^c, \quad \text{supp } \eta_+ \subset A_{(1-\lambda)r} \cap A_{(1+\lambda)r}^c, \]
\[\eta_-(x) = 1 \text{ if } x \in A_{(1-\lambda)r}, \]
\[\sum_{\# = +, -, r} |\nabla \eta_{\#}|^2 \leq C(\lambda r)^{-2}. \]

Next, we introduce the screened RHF functional by
\[E_{\text{RHF}}^r(\gamma) := \text{tr} \left(-\frac{\Delta}{2} - \Phi_{\text{RHF}}^r \right) \gamma + D(\rho). \]

In this section, we will prove

Lemma 3.1. For all \(r \in (0, R_0], \lambda \in (0, 1/2] \), and for any \(0 \leq \gamma \leq 1 \) satisfying
\[\text{supp } \rho_\gamma \subset A_r, \quad \text{tr } \gamma \leq \int_{A_r} \rho_{\text{RHF}}^r, \]

it holds that
\[E_{\text{RHF}}^r(\eta_\gamma^r \eta_\gamma) \leq E_{\text{RHF}}^r(\gamma) + R, \]
where
\[R \leq C \left(1 + (\lambda r)^{-2} \right) \int_{A_{(1-\lambda)r} \cap A_{(1+\lambda)r}^c} \rho_{\text{RHF}}^r + C\lambda r^3 \sup_{x \in A_{(1-\lambda)r}} [\Phi_{\text{RHF}}^r(1-\lambda)(x)]_{5/2}^+. \] (3.1)

Proof. It suffices to show that
\[E_{\text{RHF}}^r(\eta_-^r \eta_-^\gamma) + E_{\text{RHF}}^r(\eta_+^r \eta_\gamma) - R \leq E_{\text{RHF}}^r(\gamma) \]
\[\leq E_{\text{RHF}}^r(\eta_-^r \eta_-^\gamma) + E_{\text{RHF}}^r(\gamma). \]

Upper bound. From the minimizing property and the fact that \(N \mapsto E_{\text{RHF}}^r(N, Z) \) is non-increasing, we have
\[E_{\text{RHF}}^r(\gamma^r) \leq E_{\text{RHF}}^r(\gamma + \eta_-^r \eta_-^\gamma). \]

By direct computation, we have
\[E_{\text{RHF}}^r(\gamma + \eta_-^r \eta_-^\gamma) = E_{\text{RHF}}^r(\eta_-^r \eta_-^\gamma) + E_{\text{RHF}}^r(\gamma) + \int \int \frac{\eta_-^r(x)^2 \rho_{\text{RHF}}^r(x) \rho_\gamma(y)}{|x - y|} dxdy \]
\[\leq E_{\text{RHF}}^r(\eta_-^r \eta_-^\gamma) + E_{\text{RHF}}^r(\gamma) + \int \int \frac{\rho_{\text{RHF}}^r(x) \rho_\gamma(y)}{|x - y|} dxdy \]
\[= E_{\text{RHF}}^r(\eta_-^r \eta_-^\gamma) + E_{\text{RHF}}^r(\gamma). \]
Lower bound. By the IMS formula, we have

\[
\mathcal{E}_{\text{RHF}}(\gamma_{\text{RHF}}) \geq \mathcal{E}_{\text{RHF}}(\eta_-\gamma_{\text{RHF}}\eta_-) + \mathcal{E}_{\text{RHF}}(\eta_+\gamma_{\text{RHF}}\eta_+)
\]

\[
+ \mathcal{E}_{\text{RHF}}(\eta_r\gamma_{\text{RHF}}\eta_r) - \sum_{\#=-,+,r} \int |\nabla \eta_\#|^2 \rho_{\text{RHF}}
\]

\[
+ \int \int \frac{\eta_r(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)(\eta_-(y)^2 + \eta_+(y)^2)}{|x-y|} \, dx \, dy
\]

\[
+ \int \int \frac{\eta_+(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)(\eta_-(y)^2)}{|x-y|} \, dx \, dy.
\]

By construction, we see that

\[
- \sum_{\#=-,+,r} \int |\nabla \eta_\#|^2 \rho_{\text{RHF}} \geq -C(\lambda r)^{-2} \int_{A_{(1-\lambda)r}^c \cap A_{(1+\lambda)r}^c} \rho_{\text{RHF}}.
\]

Moreover, we get

\[
\mathcal{E}_{\text{RHF}}(\eta_r\gamma_{\text{RHF}}\eta_r) + \int \int \frac{\eta_r(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)(\eta_-(y)^2 + \eta_+(y)^2)}{|x-y|} \, dx \, dy
\]

\[
\geq \mathcal{E}_{\text{RHF}}(\eta_r\gamma_{\text{RHF}}\eta_r) + \int \int \frac{\eta_r(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)(1+\chi_+^c)}{|x-y|} \, dx \, dy
\]

\[
\geq \mathcal{E}_{\text{RHF}}(\eta_r\gamma_{\text{RHF}}\eta_r).
\]

Similarly, it follows that

\[
\mathcal{E}_{\text{RHF}}(\eta_+\gamma_{\text{RHF}}\eta_+) + \int \int \frac{\eta_+(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)(\eta_-(y)^2)}{|x-y|} \, dx \, dy
\]

\[
\geq \mathcal{E}_{\text{RHF}}(\eta_+\gamma_{\text{RHF}}\eta_+) + \int \int \frac{\eta_+(x)^2 \rho_{\text{RHF}}(x) \rho_{\text{RHF}}(y)1_{A_{(1-\lambda)r}^c}(y)}{|x-y|} \, dx \, dy
\]

\[
\geq \mathcal{E}_{\text{RHF}}(\eta_+\gamma_{\text{RHF}}\eta_+)
\]

\[
\geq \text{tr} \left(-\Delta - \Phi_{(1-\lambda)r}\right) \eta_+\gamma_{\text{RHF}}\eta_+.
\]

Applying Lieb-Thirring inequality with \(V = \Phi_{(1-\lambda)r} \mathbb{1}_{\text{supp} \eta_+} \), we see that

\[
\text{tr} \left(-\Delta - \Phi_{(1-\lambda)r}\right) \eta_+\gamma_{\text{RHF}}\eta_+ \geq \text{tr} \left(-\Delta - V\right)_-
\]

\[
\geq -C \sum_{j=1}^{K} \int_{(1-\lambda)r \leq |x-R_j| \leq (1+\lambda)r} \left[\Phi_{(1-\lambda)r}\right]^{5/2}_+
\]

\[
\geq -C\lambda r^3 \sup_{x \in A_{(1-\lambda)r}} \left[\Phi_{(1-\lambda)r}(x)\right]^{5/2}_+.
\]
Hence
\[E_{\text{RHF}}(\gamma_{\text{RHF}}) \geq E_{\text{RHF}}(\eta^{-\gamma_{\text{RHF}}}\eta^{-}) + E_{\text{RHF}}(\eta^{-\gamma_{\text{RHF}}}) \]
\[- C(1 + \lambda r)^{-2} \int_{A^{(1-\lambda)r}\cap A^{(1+\lambda)r}} \rho_{\text{RHF}} \]
\[- C\lambda r^3 \sup_{x \in A^{(1-\lambda)r}} [\Phi_{\text{RHF}}(x)]^{5/2}_+. \]

This completes the proof.

By pursuing the above reasoning, one can show Lemma 3.2. For any \(r \in (0, R_0] \) and any \(\lambda \in (0, 1/2] \) we have
\[\text{tr} \left(-\frac{\Delta}{2} \eta^{-\gamma_{\text{RHF}}} \eta^{-} \right) \leq C(1 + (\lambda r)^{-2}) \int_{A^{(1-\lambda)r}} \rho_{\text{RHF}} + C\lambda r^3 \sup_{x \in A^{(1-\lambda)r}} [\Phi_{\text{RHF}}(x)]^{5/2}_+ \]
\[+ C \sup_{x \in A_r} [\varphi(x)^{-1}\Phi_{\text{RHF}}(x)]^{7/3}_+. \] (3.2)

Proof. We apply Lemma 3.1 with \(\gamma = 0 \) and obtain \(E_{\text{RHF}}(\eta^{-\gamma_{\text{RHF}}}\eta^{-}) \leq R \). On the other hand, by the kinetic Lieb-Thirring inequality and the fact that the ground state energy in Thomas-Fermi theory is \(-\text{const.} \sum_{j=1}^K z_j^{7/3} \) [4, 6], we have
\[E_{\text{RHF}}(\eta^{-\gamma_{\text{RHF}}}) \geq \text{tr} \left(-\frac{\Delta}{4} \eta^{-\gamma_{\text{RHF}}} \right) - C \sup_{x \in A_r} [\varphi(x)^{-1}\Phi_{\text{RHF}}(x)]^{7/3}_+. \]

Therefore,
\[\text{tr} \left(-\frac{\Delta}{2} \eta^{-\gamma_{\text{RHF}}} \right) \leq C R + C \sup_{x \in A_r} [\varphi(x)^{-1}\Phi_{\text{RHF}}(x)]^{7/3}_+ \]

which implies the conclusion.

4. Sommerfeld estimates

In this section, we will show the Sommerfeld asymptotics for molecules. Let \(\Gamma_j \) be the Voronoi cell \(\Gamma_j := \{ x \in \mathbb{R}^3 : |x - R_j| < |x - R_i| \text{ for all } i \neq j \} \). The following theorem has been essentially proven in [12, Theorem 4.6] and [9, Lemma 3.11]

Theorem 4.1 (Sommerfeld asymptotics). Let \(r \in (0, R_0] \) and \(\varphi \) be the TF potential satisfying \(\Delta \varphi = 4\pi c_{\text{TF}}^{-3/2} [\varphi - \mu]^{3/2}_+ \) in \(A_r \), where \(c_{\text{TF}} = 2^{-1}(3\pi^2)^{2/3} \). We assume
$\lim_{s \to +r} \inf_{\partial A_s} \varphi > \mu$. Then for any $x \in A_r$ it follows that

$$\max \left\{ \max_{1 \leq j \leq K} \omega_a^-(x - R_j), \max_{1 \leq j \leq K} \frac{\nu_j(\mu, r)}{|x - R_j|} \right\} \leq \varphi(x) \leq \sum_{j=1}^{K} \omega_a^+(x - R_j) + \mu,$$

where $\nu_j(\mu, r) := \inf_{|x - R_j| = r} \max\{\mu|x - R_j|, \omega_a^-(x - R_j)|x - R_j|\}$ and

$$a(r) := \liminf_{s \to +r} \inf_{\partial A_s} \left(c_s r^{-4} \varphi^{-1} - 1 \right)^{1/2}, \quad \omega_a^-(x) := c_s |x|^{-4} \left(1 + a(r) \frac{|x|^{-1}}{\xi} \right)^{-2},$$

$$A(r) := \liminf_{s \to +r} \inf_{\partial A_s} \left(c_s^{-1} s^4 (\varphi - \mu) - 1 \right), \quad \omega_a^+(x) := c_s |x|^{-4} \left(1 + A(r) \frac{|x|^{-1}}{\xi} \right).$$

Here $\xi = (-7 + \sqrt{73})/2 \sim 0.77$ and $c_s = 3^4 2^{-3} \pi^2$.

Proof. **Step 1** By assumption, there is a $r_0 \in (r, R_0)$ such that $\inf_{\partial A_r} \varphi > \mu \geq 0$ for any $s \in (r, r_0)$. Hence $a(r)$ is well-defined for any $s \in (r, r_0)$. We prove the claim with r replaced by arbitrary $s \in (r, r_0)$ and take the limit $s \to r$.

Step 2 (Lower bound) We consider $f(x) := \max\{\max_{1 \leq j \leq K} \omega_a^-(x - R_j), \max_{1 \leq j \leq K} \nu_j|x - R_j| \}$ on A_r. Since $\inf_{\partial A_s} \varphi > \mu$, we have $a(s) > -1$. By definition, we have

(a) $\omega_a^-(x - R_j)|x - R_j|$ is positive and radial for $|x - R_j| \geq s$.

(b) $\omega_a^-(x - R_j) = \inf_{\partial A_s} \varphi > \mu$ for any $|x - R_j| = s$.

(c) $\Delta \omega_a^-(x - R_j) \geq 4 \pi c_{TF}^{-3/2} (\omega_a^-(x - R_j))^{3/2}$ for any $|x - R_j| > s$.

Indeed, (a) and (b) are followed from the definition. (c) is obtained in [12], Eq. (38)]. From (a) and (b), and $\mu|x - R_j|$ is increasing, there is a $R \in (s, \infty)$ so that $\omega_a^-(|x - R_j| = R) = \mu$ and

$$\nu_j = \inf_{|x - R_j| = R} \max\{\mu|x - R_j|, \omega_a^-(x - R_j)|x - R_j| \} = \mu R.$$ \hfill (4.1)

Moreover, for any $x \in A_s$

$$f(x) = \begin{cases} \max_{1 \leq j \leq K} \omega_a^-(x - R_j) & \text{if } f(x) > \mu \\ \max_{1 \leq j \leq K} \nu_j|x - R_j| & \text{if } f(x) \leq \mu. \end{cases}$$

Thus, by (b) we have $f|_{\partial A_s} = \omega_a^-(x - R_j)|_{|x - R_j| = s} = \inf_{\partial A_s} \varphi$. Let $u := f - \varphi$. It suffices to show that $\Delta u \geq 0$ in $A_s \cap \{u > 0\}$. From $\Delta u = \Delta f - 4 \pi c_{TF}^{-3/2} (\varphi - \mu)^{3/2}$ we will show that

$$\Delta f \geq 4 \pi c_{TF}^{-3/2} (f - \mu)^{3/2}$$

in A_r.

For any nonnegative function $\psi \in C^\infty_c (A_r \cap \{f > \mu\})$ we may compute

$$\int_{\mathbb{R}^3} f \Delta \psi = \sum_{j=1}^{K} \int_{\Gamma_j} \text{div}(\omega_a^-(x - R_j) \nabla \psi(x)) \, dx - \sum_{j=1}^{K} \int_{\Gamma_j} \nabla \omega_a^-(x - R_j) \cdot \nabla \psi(x) \, dx$$

$$= \sum_{j=1}^{K} \int_{\partial \Gamma_j} \omega_a^-(x - R_j) \nu_j \cdot \nabla \psi(x) \, dS - \sum_{j=1}^{K} \int_{\Gamma_j} \nabla \omega_a^-(x - R_j) \cdot \nabla \psi(x) \, dx$$
by Gauss’s theorem. Here n_j is the outward normal of $\partial \Gamma_j$. We note that the first integral is zero by the fact that $n_j = -n_k$ on $\partial \Gamma_j \cap \partial \Gamma_k$. Similarly,

$$- \sum_{j=1}^{K} \int_{\Gamma_j} \nabla \omega_a^-(x - R_j) \cdot \nabla \psi(x) \, dx$$

$$= - \sum_{j=1}^{K} \int_{\Gamma_j} \text{div}(\psi(x) \nabla \omega_a^-(x - R_j)) \, dx + \sum_{j=1}^{K} \int_{\Gamma_j} \psi(x) \Delta \omega_a^-(x - R_j) \, dx$$

$$\geq - \sum_{j=1}^{K} \int_{\partial \Gamma_j} (\psi(x) n_j \cdot \nabla \omega_a^-(x - R_j)) \, dS + 4\pi c_{\text{TF}}^{-3/2} \int \psi f(x)^{3/2} \, dx.$$

From the fact that $n_j \cdot \nabla \omega_a^-(x - R_j) \leq 0$ on $\partial \Gamma_j$ (because Γ_j is convex), we have

$$\int_{\mathbb{R}^3} f \Delta \psi \geq 4\pi c_{\text{TF}}^{-3/2} \int \psi [f - \mu]_+^{3/2},$$

and thus $\Delta f \geq 4\pi c_{\text{TF}}^{-3/2} [f - \mu]_+^{3/2}$ in $A_r \cap \{f > \mu\}$. We note ω_a^- is subharmonic and $|x - R_j|^{-1}$ is harmonic on A_r. Thus $\Delta u \geq 0$ in A_r. We pick any nonnegative function $\psi \in C^\infty_c(A_r)$ and a $0 \leq \xi_n \in C_c^\infty(\{f > \mu\})$ so that $\xi_n \rightarrow -\mathds{1}_{\{f > \mu\}}$ pointwise in $\text{supp} \psi$. Then, with the above results, we find

$$\int f \Delta \psi = \int f \Delta (\xi_n \psi) + \int f \Delta (1 - \xi_n) \psi \geq 4\pi c_{\text{TF}}^{-3/2} \int [f - \mu]_+^{3/2} \xi_n \psi \rightarrow 4\pi c_{\text{TF}}^{-3/2} \int [f - \mu]_+^{3/2} \psi$$

by monotone convergence theorem. Hence $\Delta u \geq 0$ in $A_r \cap \{u > 0\}$ holds. From the maximum principle, $A_r \cap \{u > 0\}$ is empty. Hence $f \leq \varphi$ follows.

Step 3 (upper bound) We consider $g(x) := \sum_{j=1}^{K} \omega_A^+(x - R_j) + \mu$. Since $\Delta \omega_A^+ \leq 4\pi c_{\text{TF}}^{-3/2} (\omega_A^+)_{3/2}$ in A_r it satisfies, by $\omega_A^+|_{\partial A_r} = \sup_{\partial A_r} \varphi - \mu$, that $\Delta g \leq 4\pi c_{\text{TF}}^{-3/2} [g - \mu]_+^{3/2}$ in A_r. Thus for any $x \in \partial A_r$ we have $g(x) \geq \omega_A^+(x) + \mu = \sup_{\partial A_r} \varphi(x)$. Let $u := \varphi - g$. Then we have, on $g < \varphi$,

$$\Delta u \geq 4\pi c_{\text{TF}}^{-3/2} ([g - \mu]_+^{3/2} - [\varphi - \mu]_+^{3/2}) \leq 0.$$

Hence we learn $\varphi \leq g$ on A_r by the maximum principle. \square

Next, we improve the upper bound. Namely, we will show

Theorem 4.2 (Refined upper bound). Let $r \in (0, R_0]$, $\mu \geq 0$, and φ is continuous on A_r and vanish at infinity. We assume $\Delta \varphi = 4\pi c_{\text{TF}}^{-3/2} [\varphi - \mu]_+^{3/2}$ in A_r. Then it holds that

$$\varphi(x) \leq \omega_{A_1, A_2}^j (x - R_j) + \mu \quad \text{for } x \in A_r \cap \Gamma_j,$$
Proof. We prove the upper bound with r replaced by any $s \in (r, R_0)$. Then $A_i^j(s) = B_i^j(s)$ for $i = 1, 2$. Our strategy is to apply the maximum principle to the function

$$u(x) := \varphi(x) - \left(\sum_{j=1}^K \omega_{B_1,B_2}^j(x - R_j) \mathbb{1}_{\Gamma_j}(x) + \mu \right).$$

By definition, we have $u(x) \leq 0$ on ∂A_r. Hence it suffices to show that $-\Delta u \leq 0$ in $A_r \cap \{u > 0\}$.

For any nonnegative function $\psi \in C^\infty_c(A_r \cap \{u > 0\})$ we may compute

$$\int_{\mathbb{R}^3} u(x)\Delta \psi(x) \, dx = \int_{\mathbb{R}^3} \varphi(x)\Delta \psi(x) \, dx - \sum_{j=1}^K \int_{\Gamma_j} \omega_{B_1,B_2}^j(x - R_j) \Delta \psi(x) \, dx.$$

The second integral is

$$\sum_{j=1}^K \int_{\Gamma_j} \omega_{B_1,B_2}^j(x - R_j) \Delta \psi(x) \, dx = \sum_{j=1}^K \int_{\partial \Gamma_j} \omega_{B_1,B_2}^j(x - R_j) n_j \cdot \nabla \psi(x) \, dx - \sum_{j=1}^K \int_{\Gamma_j} \nabla \omega_{B_1,B_2}^j(x - R_j) \cdot \nabla \psi(x) \, dx,$$

by Gauss's theorem. The first integral is vanish from the continuity. We note that $\Delta \omega_{B_1,B_2}^j \leq 4\pi c_T^{-3/2} (\omega_{B_1,B_2}^j)^{3/2}$ for $|x| \neq 0$. Then we have

$$\int_{\mathbb{R}^3} u(x)\Delta \psi(x) \, dx \geq \sum_{j=1}^K \int_{\partial \Gamma_j} \psi(x) n_j \cdot \nabla \omega_{B_1,B_2}^j(x - R_j) \, dx.$$

By direct computation, we see

$$\nabla \omega_{B_1,B_2}^j(x) = c_s \frac{x}{|x|^6} \left(B_1^j(\eta - 4) \left(\frac{|x|}{R_j} \right)^\eta - B_2^j(4 + \xi) \left(\frac{r}{|x|} \right)^\xi - 4 \right).$$
From the convexity of Γ_j, we learn $n_j \cdot (x - R_j) \geq 0$ on $\partial \Gamma_j$. Hence $n_j \cdot \nabla \omega^j_{B_1, B_2}(x - R_j) \geq 0$. This shows $\Delta u \geq 0$. \hfill \Box

5. INITIAL STEP

From now on, we assume $N \geq Z \geq 1$. In this section our goal is

Lemma 5.1 (initial step). There is a universal constant $C_1 > 0$ so that

$$\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho^{RHF}(y) - \rho^{TF}(y)}{|x - y|} \, dy \right| \leq C_1 Z^{49/36 - a} r^{1/12}, \quad (5.1)$$

for all $r \in (0, R_0]$ with $a = 1/198$.

Proof. The strategy is to bound $\mathcal{E}^{RHF}(\gamma^{RHF})$ from above and below using the semi-classical estimates.

Upper bound. We will show that

$$\mathcal{E}^{RHF}(\gamma^{RHF}) \leq \mathcal{E}^{TF}(\rho^{TF}) + C Z^{25/11}. \quad (5.2)$$

Since $E^{RHF}(N, Z)$ is non-increasing in N we have

$$\mathcal{E}^{RHF}(\gamma^{RHF}) \leq \inf \{ \mathcal{E}^{RHF}(\gamma) : 0 \leq \gamma \leq 1, \, \text{tr} \, \gamma \leq N \}.$$

We now use the following lemma as in [2, Lemma 11] and [12, Lemma 8.2].

Lemma 5.2. For fixed $s > 0$ and smooth $g : \mathbb{R}^3 \to [0, 1]$ satisfying $\text{supp} \, g \subset \{|x| < s\}$, $\int g^2 = 1$, $\int |\nabla g|^2 \leq C s^{-2}$ it follows that

(i) For any $V : \mathbb{R}^3 \to \mathbb{R}$ with $[V]_+, [V - V * g^2]_+ \in L^{5/2}$ and for any $0 \leq \gamma \leq 1$

$$\text{tr} \left(-\frac{\Delta}{2} - V \right) \gamma \geq -2^{5/2}(15\pi^2)^{-1} \int [V]_+^{5/2} - C s^{-2} \text{tr} \, \gamma$$

$$\quad \quad \quad - C \left(\int [V]_+^{5/2} \right)^{3/5} \left(\int [V - V * g^2]_+^{5/2} \right)^{2/5}.$$

(ii) If $[V]_+ \in L^{5/2} \cap L^{3/2}$, then there is a density-matrix γ so that $\rho_\gamma = 2^{5/2}(6\pi^2)^{-1}[V]_+^{3/2} * g^2$.

$$\text{tr} \left(-\frac{\Delta}{2} \right) \leq 2^{3/2}(5\pi^2)^{-1} \int [V]_+^{5/2} + C s^{-2} \int [V]_+^{3/2}.$$

We introduce the Thomas-Fermi potential (ρ^{TF} is the minimizer for the neutral TF molecule)

$$\varphi^{TF}(x) = V_Z(x) - \rho^{TF} * |x|^{-1}$$

and apply Lemma 5.2 (2) with $V = \varphi^{TF}$ and a spherically symmetric g to obtain a density matrix γ'. Because of the Thomas-Fermi equation we have

$$\rho_{\gamma'} = 2^{5/2}(6\pi^2)^{-1}(\varphi^{TF})^{3/2} * g^2 = \rho^{TF} * g^2.$$

Since

$$\text{tr} \, \gamma' = \int \rho_{\gamma'} = \int \rho^{TF} = Z \leq N,$$
we obtain
\[
\inf \{ \mathcal{E}^{\text{RHF}}(\gamma) : 0 \leq \gamma \leq 1, \ \text{tr} \gamma \leq N \} \leq \mathcal{E}^{\text{RHF}}(\gamma').
\]
Again, by Lemma 5.2 (2),
\[
\mathcal{E}^{\text{RHF}}(\gamma') \leq 2^{3/2}(5\pi^2)^{-1} \int [V]^{5/2}_+ + C_0^{-2} \int [V]^{3/2}_+ \int V_Z(\rho^{\text{TF}} \ast g^2) + D(\rho^{\text{TF}} \ast g^2)
\]
\[
\leq \frac{3}{10} C_0 \int_{\mathbb{R}^3} \rho^{\text{TF}}(x)^{5/3} dx - \int V_Z \rho^{\text{TF}} + D(\rho^{\text{TF}})
\]
\[
+ C s^{-2} \int \rho^{\text{TF}} + \int (V_Z - V_Z \ast g^2) \rho^{\text{TF}}
\]
\[
= \mathcal{E}^{\text{TF}}(\rho^{\text{TF}}) + C s^{-2} \int \rho^{\text{TF}} + \int (V_Z - V_Z \ast g^2) \rho^{\text{TF}}.
\]
In the second inequality, we have used \([g^2 \ast |x|^{-1} \ast g^2](x - y) \leq |x - y|^{-1}\). This fact follows from Fourier transform. By Newton’s theorem,
\[
V_Z - V_Z \ast g^2 = \sum_{j=1}^K z_j (|x - R_j|^{-1} \mathbf{1}(|x - R_j| \leq s)). \tag{5.3}
\]
Then, by the H"older inequality,
\[
\int (V_Z - V_Z \ast g^2) \rho^{\text{TF}} \leq \left(\int_{\mathbb{R}^3} \rho^{\text{TF}}(x)^{5/3} dx \right)^{3/5} \left(\int (V_Z - V_Z \ast g^2)^{5/2} dx \right)^{2/5}
\]
\[
\leq C Z^{12/5} \left(\sum_{i=1}^K z_i / Z \int_{|x - R_i| \leq s} |x - R_i|^{-5/2} dx \right)^{2/5}
\]
\[
\leq C Z^{12/5} s^{1/5},
\]
where we have used (5.3) and the convexity of \(x^{5/2}\). Thus, after optimization in \(s\), we get
\[
\mathcal{E}^{\text{RHF}}(\gamma') \leq \mathcal{E}^{\text{TF}}(\rho^{\text{TF}}) + C Z^{25/11}.
\]
This shows the desired upper bound.

Lower bound. We will show that
\[
\mathcal{E}^{\text{RHF}}(\gamma^{\text{RHF}}) \geq \mathcal{E}^{\text{TF}}(\rho^{\text{TF}}) + D(\rho^{\text{RHF}} - \rho^{\text{TF}}) - C Z^{25/11}. \tag{5.4}
\]
We can write
\[
\mathcal{E}^{\text{RHF}}(\gamma^{\text{RHF}}) = \text{tr} \left(-\frac{\Delta}{2} - \varphi^{\text{TF}} \right) \gamma^{\text{RHF}} + D(\rho^{\text{RHF}} - \rho^{\text{TF}}) D(\rho^{\text{TF}}).
\]
Then, from Lemma 5.2 (1) we have
\[
\text{tr} \left(-\frac{\Delta}{2} - \varphi^{\text{TF}} \right) \gamma^{\text{RHF}} \geq -2^{5/2}(15\pi^2)^{-1} \int \varphi^{\text{TF}}(x)^{5/2} dx - C s^{-2} \text{tr} \gamma^{\text{RHF}}
\]
\[
- C \left(\int \varphi^{\text{TF}}(x)^{5/2} dx \right) \left(\int [\varphi^{\text{TF}} - \varphi^{\text{TF}} \ast g^2]_+^{5/2} \right)^{2/5}.
\]
By the TF equation, we see that
\[\int_{\mathbb{R}^3} \varphi_{TF}^{5/2} dx = C \int_{\mathbb{R}^3} \rho_{TF}^{5/3} \leq C Z^{7/3}. \]
Since \(V - V \ast g^2 \geq 0 \), because \(V \) is superharmonic, we obtain
\[\int [\varphi_{TF} - \varphi_{TF} \ast g]^2 dx \leq \int [V - V \ast g]^2 dx \leq C Z^{5/2} s^{1/2}. \]
Hence we see that
\[\text{tr} \left(- \frac{\Delta}{2} - \varphi_{TF} \right) \gamma_{RHF} \geq -2^{5/2} (15 \pi^2)^{-1} \int \varphi_{TF}^{5/2} dx - Cs^{-2} Z - C Z^{12/5} s^{1/5}. \]
Optimizing over \(s > 0 \), we get
\[\text{tr} \left(- \frac{\Delta}{2} - \varphi_{TF} \right) \gamma_{RHF} \geq -2^{5/2} (15 \pi^2)^{-1} \int \varphi_{TF}^{5/2} dx - C Z^{25/11}. \]
Using the relation from the TF equation
\[-2^{5/2} (15 \pi^2)^{-1} \int \varphi_{TF}^{5/2} dx - D(\rho_{TF}) = E(\rho_{TF}), \]
we arrive at the lower bound (5.4).

Conclusion. Combining (5.2) and 5.4 we infer that
\[D(\rho_{RHF} - \rho_{TF}) \leq C Z^{25/11}. \] (5.5)

The following lemma is taken from [12, Cor. 9.3] and [2, Lemma 12].

Lemma 5.3 (Coulomb estimate). For every \(f \in L^{5/3}(\mathbb{R}^3) \cap L^{6/5}(\mathbb{R}^3) \) and \(x \in \mathbb{R}^3 \), we have
\[\left| \int_{|y| < |x|} \frac{f(y)}{|x-y|^3} dy \right| \leq C \| f \|_{L^{5/3}}^{5/6} (|x| D(f))^{1/12}. \]

Using this Coulomb estimate with \(f(y) = (\rho_{RHF} - \rho_{TF})(y + R_j) \), we find that, for \(r \in (0, R_0) \),
\[|\Phi_{r}^{RHF}(x) - \Phi_{r}^{TF}(x)| \leq \sum_{j=1}^{K} \left| \int_{|y| < r} \frac{\rho_{RHF}^{5/3} - \rho_{TF}^{5/3}}{|x - R_j - y|^{1/2}} dy \right| \leq C \| \rho_{RHF}^{5/3} - \rho_{TF}^{5/3} \|_{L^{5/3}}^{5/6} (r D(\rho_{RHF} - \rho_{TF}))^{1/12} \leq C \| \rho_{RHF}^{5/3} - \rho_{TF}^{5/3} \|_{L^{5/3}}^{5/6} r^{1/12} Z^{25/132}, \] (5.6)
where we have used the harmonicity. Combining this with the kinetic energy estimates
\[\int (\rho_{RHF}^{5/3})^{7/3} \leq C Z^{7/3}, \quad \int (\rho_{TF}^{5/3})^{7/3} \leq C Z^{7/3}, \]
we find that
\[\sup_{x \in \partial A_r} |\Phi_{r}^{RHF}(x) - \Phi_{r}^{TF}(x)| \leq C Z^{179/132} r^{1/12}, \]
for all \(r \in (0, R_0) \). Since \(179/132 = 49/36 - 1/198 \), this implies the desired bound (5.1). \(\square \)
6. **Iterative Step**

In this section, we will prove

Theorem 6.1 (iterative step). There are universal constants $C_2, \beta, \delta, \varepsilon > 0$ such that, if

$$
\sup_{x \in \partial A_s} \left| \int_{A_s} \frac{\rho \text{RHF}(y) - \rho \text{TF}(y)}{|x - y|} \, dy \right| \leq \beta s^{-4}, \quad \forall s \leq D,
$$

(6.1)

for some $D \in [Z^{-1/3}, R_0]$, then, for $r := D^{1+\delta}$, it follows that

$$
\sup_{x \in \partial A_s} \left| \int_{A_s} \frac{\rho \text{RHF}(y) - \rho \text{TF}(y)}{|x - y|} \, dy \right| \leq C_2 s^{-4+\varepsilon}, \quad \forall s \in \left[r^{1+\delta}, \min\{r^{1+\delta}, \tilde{r}\} \right],
$$

(6.2)

where $\tilde{r} := (2R_0)^{-1} r^{1+\delta} R_{\min}^{\varepsilon}$.

Step 1 We collect some consequences of (6.1).

Lemma 6.2. We assume that (6.1) holds true for some $\beta, D \in (0, R_0]$. Then, if $r \in (0, D]$, we have

$$
\sup_{x \in A_r} \varphi(x)^{-1} [\Phi_{\text{RHF}}^r(x)]_+ \leq \frac{C}{r^3},
$$

(6.3)

$$
\left| \sum_{j=1}^K \int_{|x - R_j| < r} (\rho \text{RHF} - \rho \text{TF}) \right| \leq \frac{\delta^{-1} \beta}{r^3},
$$

(6.4)

$$
\int_{A_r} \rho \text{RHF} \leq \frac{C}{r^3},
$$

(6.5)

$$
\int_{A_r} (\rho \text{RHF})^{5/3} \leq \frac{C}{r^7},
$$

(6.6)

$$
\text{tr}(-\Delta \eta_r^{\alpha \text{RHF}} \eta_r) \leq C \left(\frac{1}{r^7} + \frac{1}{\lambda^2 r^5} \right), \quad \forall \lambda \in (0, 1/2].
$$

(6.7)

Proof. First, we split

$$
\Phi_{\text{RHF}}^r(x) = \Phi_{\text{RHF}}^r(x) - \Phi_{\text{TF}}^r(x) + \Phi_{\text{TF}}^r(x).
$$

Moreover, we may write

$$
\Phi_{\text{TF}}^r(x) = \varphi_{\text{TF}}(x) + \int \frac{\rho_{\text{TF}}(y)}{|x - y|} \, dy - \sum_{j=1}^K \int_{|y - R_j| < r} \frac{\rho_{\text{TF}}(y)}{|x - y|} \, dy
$$

$$
= \varphi_{\text{TF}}(x) + \int_{A_r} \frac{\rho_{\text{TF}}(y)}{|x - y|} \, dy.
$$
Using the Sommerfeld bound $\varphi^{\text{TF}}(x) \leq c|x - R_j|^{-4}$ on $A_r \cap \Gamma_j$ and the TF equation $c_{\text{TF}}\rho^{\text{TF}}(x)^{2/3} = \varphi^{\text{TF}}(x)$, we have

$$\varphi^{\text{TF}}(x) + \int_{A_r} \frac{\rho^{\text{TF}}(y)}{|x-y|} \, dy \leq C \sum_{j=1}^{K} \left(|x-R_j|^{-4} + \int_{|y|>s} \frac{dy}{|x-R_j-y| |y|^6} \right) \leq Cr^{-4},$$

for $x \in A_r$, where we have used Newton’s theorem. Hence, by assumption (6.1), it holds that $|\Phi^{\text{RHF}}_r(x)| \leq Cr^{-4}$ for any $x \in \partial A_r$. We note that $-\Delta \Phi^{\text{RHF}}_s(x) = 4\pi \mathbb{1}_{A_r}(x)\rho^{\text{HF}}(x)$ in the distributional sense, and hence Φ^{RHF}_s is harmonic in A_r. As in [1, Lemma 6.5], we need the following lemma.

Lemma 6.3. Let $f : A_r \to \mathbb{R}$ and $g : A_r \to \mathbb{R}_+$. We assume that f, g are harmonic and continuous in A_r and vanishing at infinity. If $g(x) \geq C_0^{-1} r^{-1}$ on ∂A_r, then it holds that

$$\sup_{x \in A_r} g(x)^{-1} f(x) \leq C_0 r \sup_{x \in \partial A_r} f(x).$$

Proof of Lemma. Let $h(x) := f(x) - F_r g(x)$ with $F_r = C_0 r \sup_{x \in \partial A_r} f(z)$. Since f, g are harmonic in A_r, by the maximum principle, we have

$$\sup_{x \in A_r} h(x) = \max \left\{ \sup_{x \in \partial A_r} (f(x) - F_r g(x)), 0 \right\} = 0$$

Therefore, for any $x \in A_r$ we learn

$$f(x)g(x)^{-1} = h(x)g(x)^{-1} + F_r \leq F_r,$$

and thus the lemma follows. \qed

Now we apply this lemma with $f = [\Phi^{\text{RHF}}_r]_+$ and $g(x) = \varphi(x)$. We note that $\varphi(x) \geq \delta r^{-1}$ on ∂A_r, where δ is independent of Z (recall our assumption of Theorem 1.1). Then we have

$$\sup_{x \in A_r} \varphi(x)^{-1} [\Phi^{\text{RHF}}_r(x)]_+ \leq \delta^{-1} r \sup_{x \in \partial A_r} [\Phi^{\text{RHF}}_r(x)]_+ \leq Cr^{-3},$$

which proves (6.3).

Next, we note that

$$\sum_{j=1}^{K} \int_{|y-R_j|<r} \left(\rho^{\text{TF}}(y) - \rho^{\text{RHF}}(y) \right) \, dy = \lim_{|x| \to \infty} \varphi(x)^{-1} \left(\int_{A_r^c} \rho^{\text{RHF}}(y) - \rho^{\text{TF}}(y) \, dy \right).$$

Then (6.4) follows from Lemma 6.3 and (6.1).

Now we prove (6.5) and (6.7). By (6.4), we have

$$\int_{A_r \cap \partial A_r^c} \rho^{\text{RHF}}(x) \, dx = \int_{A_r^c} (\rho^{\text{RHF}}(x) - \rho^{\text{TF}}(x)) \, dx - \int_{A_r^c} (\rho^{\text{RHF}}(x) - \rho^{\text{TF}}(x)) \, dx$$

$$+ \sum_{j=1}^{K} \int_{3/5 \leq |x-R_j| \leq r} \rho^{\text{TF}}(x) \, dx$$

$$\leq Cr^{-3},$$
where we have used the Sommerfeld asymptotics $\rho^{\text{TF}}(x) \leq C|x - R_j|^{-6}$ on $A_r \cap \Gamma_j$. Inserting this and the bound (6.3) into the bound from Lemma 3.2, we obtain

$$\text{tr} \left(-\frac{\Delta}{2} \eta_r \gamma^{\text{RHF}} \eta_r \right) \leq C \left((\lambda r)^{-2} \int_{A_r} \rho^{\text{RHF}} + \lambda^{-2} r^{-5} + r^{-7} \right). \quad (6.8)$$

Replacing r by $r/3$ in the above estimate, we get

$$\text{tr} \left(-\frac{\Delta}{2} \eta_{r/3} \gamma^{\text{RHF}} \eta_{r/3} \right) \leq C \left((\lambda r)^{-2} \int_{A_r} \rho^{\text{RHF}} + \lambda^{-2} r^{-5} + r^{-7} \right). \quad (6.9)$$

From Lemma 2.4, replacing r by $r/3$ and choosing $r = s$, we find that

$$\int_{A_r/3} \rho^{\text{RHF}}(x) dx \leq C \sum_{j=1}^{K} \int_{r/3 \leq |x - R_j| < r} \rho^{\text{RHF}}(x) dx + C \sum_{j=1}^{K} \left[(r^2 \text{tr}(-\Delta \eta_{r/3} \gamma^{\text{RHF}} \eta_{r/3}))^{3/5} \right]$$

$$+ C \left(\sup_{x \in A_r/3} [\varphi(x)^{-1} \Phi^{\text{RHF}}(x)] + r + (\lambda^2 r)^{-1} + \frac{1}{R_0^2} + \frac{1}{\lambda} \right).$$

Inserting (6.3) and (6.8) into the latter estimate leads to

$$\int_{A_r} \rho^{\text{RHF}}(x) dx \leq \int_{A_r/3} \rho^{\text{RHF}}(x) dx \leq C \left(\frac{1}{r^3} + \frac{1}{\lambda^2 r} \right)$$

$$+ C \left(\frac{1}{\lambda^2} \int_{A_r} \rho^{\text{RHF}}(x) dx + \frac{1}{\lambda^2 r^3} + \frac{1}{r^5} \right)^{3/5},$$

which implies (6.5) immediately. Here we have chosen $\lambda = 1/2$. Inserting (6.3) into (6.8), we obtain (6.4).

Finally, from (6.7) and the kinetic Lieb-Thirring inequality, we have

$$\int_{A_r} (\rho^{\text{RHF}})^{5/3} \leq \int (\eta_{r/3}^{2} \rho^{\text{RHF}})^{5/3} \leq C \text{tr} \left(-\frac{\Delta}{2} \eta_{r/3} \gamma^{\text{RHF}} \eta_{r/3} \right) \leq C \left(\frac{1}{r^7} + \frac{1}{r^5} \right),$$

which implies (6.6).

Step 2 We introduce the exterior Thomas-Fermi energy functional

$$\mathcal{E}_r^{\text{TF}}(\rho) = \frac{3}{10} c_{\text{TF}} \int \rho^{5/3} - \int V_r \rho + D(\rho), \quad V_r(x) = \chi^+_r \Phi^{\text{RHF}}(x)$$

Lemma 6.4. The TF functional $\mathcal{E}_r^{\text{TF}}(\rho)$ has a unique minimizer ρ_r^{TF} over

$$0 \leq \rho \in L^{5/3}(\mathbb{R}^3) \cap L^1(\mathbb{R}^3), \quad \int \rho \leq Z - \int_{A_r^c} \rho^{\text{RHF}}(y) dy.$$

This minimizer is supported on A_r and satisfies the TF equation

$$c_{\text{TF}} \rho_r^{\text{TF}}(x)^{2/3} = [\varphi_r^{\text{TF}}(x) - \mu_r^{\text{TF}}]_+$$

with $\varphi_r^{\text{TF}}(x) = V_r(x) - \rho_r^{\text{TF}} \star |x|^{-1}$ and a constant $\mu_r^{\text{TF}} \geq 0$. Moreover,
(i) If $\mu_{TF}^r > 0$, then

$$\int \rho_{TF}^r = Z - \int_{A_{\varepsilon}} \rho_{RHF}^r(y) dy.$$

(ii) If (6.1) holds true for some $\beta, D \in (0, 1]$, then

$$\int (\rho_{TF}^r)^{5/3} \leq C r^{-7}, \forall r \in (0, D].$$

Proof. The existence of ρ_{TF}^r, the TF equation, and (i) follow from [1][Theorem 4.1 (i)]. From the TF equation and the fact that $\varphi_{TF}^r \leq V_r = 0$ on A_r, we learn $\text{supp} \rho_{TF}^r \subset A_r$.

Moreover, by the minimizing property of ρ_{TF}^r and (6.3) we obtain

$$0 \geq \mathcal{E}^r_{TF}(\rho_{TF}^r) \geq \frac{3}{10} c_{TF} \int (\rho_{TF}^r)^{5/3} - C r^{-3} \sum_{j=1}^{K} \frac{z_j}{Z} \int \left[\frac{\rho_{TF}^r(x)}{|x - R_j|} \right] dx + D(\rho_{TF}^r)$$

$$\geq \frac{3c_{TF}}{20} \int (\rho_{TF}^r)^{5/3} - C (r^{-3})^{7/3},$$

where we have used $\inf_{\rho \geq 0} \mathcal{E}^r(\rho) \geq C \sum_{j=1}^{K} \frac{z_j^{7/3}}{z_j}$. Thus the conclusion holds true. \Box

We will use the next lemma.

Lemma 6.5 (Chemical potential estimate). If $\mu_{TF}^r < \inf_{x \in A_r} \varphi_{TF}^r$, then we have $\mu_{TF}^r = 0$.

Proof. We suppose contrary $\mu_{TF}^r > 0$. Then it holds that

$$\int_{\mathbb{R}^3} \rho_{TF}^r(y) dy = Z - \int_{A_{\varepsilon}} \rho_{RHF}^r(y) dy. \quad (6.10)$$

By Theorem 4.2 on some $|x - R_j| \geq r$, we have

$$\nu_j(\mu_{TF}^r, r) \leq |x - R_j| \varphi_{TF}^r(x).$$

By definition, for large $|x - R_j|$ we have

$$\nu_j(\mu_{TF}^r, r) \geq \mu_{TF}^r \inf_{|x - R_j| = r} \max \left\{ \frac{c_S |x - R_j|^{-3}}{\mu_{TF}^r(1 + a(r))} \right\}$$

$$\geq (\mu_{TF}^r)^{3/4} c_S^{1/4} (1 + a(r))^{-1/2}.$$

Moreover, we can estimate that, on some $x \in \Gamma_j$,

$$\lim_{x \in \Gamma_j, |x - R_j| \to \infty} |x - R_j| \varphi_{TF}^r(x) \leq Z - \int_{A_{\varepsilon}} \rho_{RHF}^r(y) dy - \int_{\mathbb{R}^3} \rho_{TF}^r(y) dy.$$

Hence, we have

$$0 < (\mu_{TF}^r)^{3/4} \leq C \left(Z - \int_{A_{\varepsilon}} \rho_{RHF}^r(y) dy - \int_{\mathbb{R}^3} \rho_{TF}^r(y) dy \right).$$
Thus, it follows that
\[
\int_{\mathbb{R}^3} \rho_r^{\text{TF}}(y) \, dy < Z - \int_{A_r^c} \rho^{\text{RHF}}(y) \, dy.
\]
This contradicts to (6.10).

Step 3 Now we compare \(\rho_r^{\text{TF}} \) with \(1_{A_r} \rho_r^{\text{TF}} \).

Lemma 6.6. Let \(\bar{r} = (2R_0)^{-1} \frac{\xi}{\epsilon_0} R_{\text{min}}^{\frac{3}{2}} \). We can choose a universal constant \(\beta > 0 \) small enough such that, if (6.1) holds true for some \(D \in [Z^{-1/3}, R_0] \), and if \(r \in [Z^{-1/3}, D] \) then \(\mu_r^{\text{TF}} = 0 \) and for any \(s \in [r, \bar{r}] \)

\[
\begin{align*}
\sup_{x \in \partial A_s} |\varphi_r^{\text{TF}}(x) - \varphi^{\text{TF}}(x)| & \leq C(r/s)^{\xi}s^{-4}, \\
\sup_{x \in \partial A_s} |\rho_r^{\text{TF}}(x) - \rho^{\text{TF}}(x)| & \leq C(r/s)^{\xi}s^{-6}.
\end{align*}
\]

Here \(\xi = (\sqrt{73} - 7)/2 \sim 0.77 \).

Proof. We recall Theorem 4.1, that is, in \(A_r \cap \Gamma_j \)

\[
K \left(1 + A(r) \left(\frac{r}{|x - R_j|} \right) \xi \right) \geq \frac{\varphi^{\text{TF}}(x)}{c_s|x - R_j|^{-4}} \geq \left(1 + a(r) \left(\frac{r}{|x - R_j|} \right) \xi \right)^{-2},
\]

\[
K^{3/2} \left(1 + A(r) \left(\frac{r}{|x - R_j|} \right) \xi \right)^{3/2} \geq \frac{\rho^{\text{TF}}(x)}{(c_s/\epsilon_0)^{3/2} |x - R_j|^{-6}} \geq \left(1 + a(r) \left(\frac{r}{|x - R_j|} \right) \xi \right)^{-3}.
\]

From this, we have \(C|x - R_j|^{-6} \geq \rho^{\text{TF}}(x) \geq C^{-1}|x - R_j|^{-6} \) for \(x \in A_r \cap \Gamma_j \), and hence

\[
Cr^{-3} \geq \int_{A_r} \rho^{\text{TF}}(x) \geq C^{-1}r^{-3}
\]

for any \(r \in [Z^{-1/3}, R_0] \).

Lemma 6.7. For every \(r \in (0, R_0] \), we have

\[
\tilde{\mathcal{E}}_r(\chi_r^{+} \rho^{\text{TF}}) \leq \tilde{\mathcal{E}}_r(\rho)
\]

for all \(0 \leq \rho \in L^{5/3}(\mathbb{R}^3) \cap L^1(\mathbb{R}^3) \) with \(\text{supp} \rho \subset A_r \), where

\[
\tilde{\mathcal{E}}_r(\rho) = \frac{3}{10} \epsilon_0 \int \rho^{5/3} - \int \Phi_r^{\text{TF}} \rho + D(\rho).
\]

Proof. For all \(0 \leq \rho \in L^{5/3}(\mathbb{R}^3) \cap L^1(\mathbb{R}^3) \) with \(\text{supp} \rho \subset A_r \), by the minimality of \(\rho^{\text{TF}} \) we have

\[
\mathcal{E}^{\text{TF}}(\rho^{\text{TF}}) \leq \mathcal{E}^{\text{TF}}(1_{A_r} \rho^{\text{TF}} + \rho).
\]
Since $\mathbf{1}_{A_r} \rho_{\text{TF}}$ and ρ have disjoint supports, we can write
\[E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}} + \rho) = E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}}) + E_{\text{TF}}(\rho) + \iint_{A_r} \rho(x) \rho_{\text{TF}}(y) \frac{dxdy}{|x-y|} \]
\[= E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}}) + \widetilde{E}_r(\rho). \]

In particular, we can apply the latter equality with $\rho = \chi_r^+ \rho_{\text{TF}}$ and obtain
\[E_{\text{TF}}(\rho_{\text{TF}}) = E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}} + \chi_r^+ \rho_{\text{TF}}) \]
\[= E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}}) + \widetilde{E}_r(\chi_r^+ \rho_{\text{TF}}). \]

Thus
\[0 \leq E_{\text{TF}}(\mathbf{1}_{A_r} \rho_{\text{TF}} + \rho) - E_{\text{TF}}(\rho_{\text{TF}}) = \widetilde{E}_r(\rho) - \widetilde{E}_r(\chi_r^+ \rho_{\text{TF}}). \]
This completes the proof. \qed

Now using this Lemma with $\rho = \rho_{r_{\text{TF}}}$ and the identity
\[\widetilde{E}_r(\rho) = E_r(\rho_{\text{TF}}) + \int (\Phi_{\text{RHF}}^r - \Phi_{\text{TF}}^r) \rho, \]
we find that
\[E^r_r(\chi_r^+ \rho_{\text{TF}}) \leq E_r(\rho_{\text{TF}}) - \int (\Phi_{\text{RHF}}^r - \Phi_{\text{TF}}^r)(\chi_r^+ \rho_{\text{TF}} - \rho_{r_{\text{TF}}}). \tag{6.15} \]

Since $\Phi_{r_{\text{RHF}}}(x) - \Phi_{r_{\text{TF}}}(x)$ is harmonic in A_r, we deduce from (6.1) that
\[\sup_{x \in A_r} |\Phi_{r_{\text{RHF}}}(x) - \Phi_{r_{\text{TF}}}(x)| = \sup_{x \in \partial A_r} |\Phi_{r_{\text{RHF}}}(x) - \Phi_{r_{\text{TF}}}(x)| \leq \beta r^{-4}. \]

Therefore, we get
\[\int (\Phi_{r_{\text{RHF}}}(x) - \Phi_{r_{\text{TF}}}(x))(\chi_r^+ \rho_{\text{TF}} - \rho_{r_{\text{TF}}}) \leq \beta r^{-4} \int (\chi_r^+ \rho_{\text{TF}} + \rho_{r_{\text{TF}}}) \]
\[\leq C \beta r^{-7}, \]
where we have used the upper bound in (6.14), and by (6.3),
\[\int \rho_{r_{\text{TF}}} \leq Z - \int A_{r_{\text{TF}}} \rho_{r_{\text{TF}}} \leq \int A_r \rho_{\text{RHF}} \leq C r^{-3}. \]

Here we have used the assumption $N \geq Z$. Hence (6.15) reduces to
\[E^r_r(\chi_r^+ \rho_{\text{TF}}) \leq E_r(\rho_{\text{TF}}) + C \beta r^{-7}. \tag{6.16} \]

We want to compare $\chi_r^+ \rho_{\text{TF}}$ with $\rho_{r_{\text{TF}}}$ using the minimality property of the latter as [1] Proof of Lemma 6.8]. Using (6.4), (6.14), we have
\[\int A_r \rho_{\text{TF}}(x) dx - \left(Z - \int A_{r_{\text{TF}}} \rho_{r_{\text{TF}}}(y) dy \right) \leq \int A_r (\rho_{\text{RHF}} - \rho_{\text{TF}}) \leq C \beta \int A_r \rho_{\text{TF}}. \]
This can be rewritten as
\[\int A_r (1 - C \beta) \rho_{\text{TF}} \leq \left(Z - \int A_{r_{\text{TF}}} \rho_{r_{\text{TF}}}(y) dy \right). \tag{6.17} \]
In the following, we choose \(\beta > 0 \) small enough such that \(C\beta \leq 1/2 \). Since \(\int (C\rho)^{5/3} + D(C\rho) \leq \int \rho^{5/3} + D[\rho] \) for \(C \leq 1 \), using (6.3) and (6.4) we may estimate

\[
\mathcal{E}_r^{\text{TF}}((1 - C\beta)\chi_r^+ \rho^{\text{TF}}) - \mathcal{E}_r^{\text{TF}}(\chi_r^+ \rho^{\text{TF}}) \leq C\beta \int_{A_r} \Phi_r^{\text{RHF}} \rho^{\text{TF}} \leq C\beta r^{-7}.
\]

Therefore, from (6.16) we derive that

\[
\mathcal{E}_r^{\text{TF}}((1 - C\beta)\chi_r^+ \rho^{\text{TF}}) \leq \mathcal{E}_r^{\text{TF}}(\rho^{\text{TF}}) + C\beta r^{-7}.
\]

Combining with (6.17) and the minimality of \(\rho_r^{\text{TF}} \), we obtain

\[
\mathcal{E}_r^{\text{TF}}((1 - C\beta)\chi_r^+ \rho^{\text{TF}}) + \mathcal{E}_r^{\text{TF}}(\rho_r^{\text{TF}}) - 2\mathcal{E}_r^{\text{TF}}(\frac{(1 - C\beta)\chi_r^+ \rho^{\text{TF}} + \rho_r^{\text{TF}}}{2}) \leq C\beta r^{-7}.
\]

By the convexity of \(\rho^{5/3} \) and \(D[\rho] \), we have

\[
D[(1 - C\beta)\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}] \leq C\beta r^{-7}.
\]

(6.18)

We also derive that

\[
\int \left[\left((1 - C\beta)\chi_r^+ \rho^{\text{TF}}(x)\right)^{5/3} + \rho_r^{\text{TF}}(x)^{5/3}
- 2 \left(\frac{(1 - C\beta)\chi_r^+ \rho^{\text{TF}}(x) + \rho_r^{\text{TF}}(x)}{2}\right)^{5/3}\right] dx \leq C\beta r^{-7}.
\]

(6.19)

From (6.18) and the convexity of Coulomb term \(D[\cdot] \), we learn that

\[
D(\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}) \leq 2D[\chi_r^+ \rho^{\text{TF}} - (1 - C\beta)\chi_r^+ \rho^{\text{TF}}] + 2D[(1 - C\beta)\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}]
\leq (C\beta)^2 D(\chi_r^+ \rho^{\text{TF}}) + C\beta r^{-7}
\leq C\beta r^{-7},
\]

(6.20)

where the last inequality follows from choosing \(C\beta \leq 1 \).

Now we apply the fact that \(f \star |x|^{-1} \leq C\|f\|_{L^5}D[f]^{1/7} \) (see (6.3)) with \(f = \pm(\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}) \). Then using (6.4) and \(\int_{A_r}(\rho^{\text{TF}})^{5/3} \leq Cr^{-7} \), we have

\[
|(\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}) \star |x|^{-1}| \leq C\beta^{1/7} r^{-4}.
\]

Combining this with assumption (6.11), we get

\[
|\varphi_r^{\text{TF}}(x) - \varphi_r^{\text{TF}}(x)| = |\Phi_r^{\text{RHF}}(x) - \Phi_r^{\text{TF}}(x) + (\chi_r^+ \rho^{\text{TF}} - \rho_r^{\text{TF}}) \star |x|^{-1}|
\leq C(\beta + \beta^{1/7})r^{-4}, \quad \forall x \in A_r.
\]

We note that \(Cr^{-4} \geq \varphi_r^{\text{TF}}(x) \geq C^{-1}r^{-4} \) for \(x \in A_r \) by the Sommerfeld bound. Therefore, if \(\beta > 0 \) is sufficiently small, we deduce that

\[
Cr^{-4} \geq \varphi_r^{\text{TF}}(x) \geq C^{-1}r^{-4} \quad \forall x \in A_r.
\]

(6.21)
In order to obtain a refined version of this, we need to show that $\mu_r^{\text{TF}} = 0$. Thus we apply Lemma 6.8 and thus conclude $\mu_r^{\text{TF}} = 0$ if

$$\mu_r^{\text{TF}} < \inf_{x \in \partial A_r} \varphi_r^{\text{TF}}(x).$$

We now suppose that (6.22) fails. Then from (6.21) we find that

$$\mu_r^{\text{TF}} \geq \inf_{x \in A_r} \varphi_r^{\text{TF}}(x) \geq C^{-1}r^{-4}.$$

On the other hand, $\varphi_r^{\text{TF}}(x) \leq \Phi_r^{\text{RHF}}(x) \leq Cr^{-3}\varphi(x)$ by (6.3). Therefore, from the TF equation

$$c_r^\text{TF} \rho_r^{\text{TF}}(x)^{2/3} = [\varphi_r^{\text{TF}}(x) - \mu_r^{\text{TF}}]_+ \leq [Cr^{-3}\varphi(x) - C^{-1}r^{-4}]_+,$$

we find that $\rho_r^{\text{TF}}(x) = 0$ on $A_{C^{-2}}$. Since the integrand in (6.19) is pointwise nonnegative, we can restrict the integral on $A_{C^{-2}}$. Then using $\rho_r^{\text{TF}}(x) = 0$ on $A_{C^{-2}}$, we derive from (6.19) that

$$C\beta r^{-7} \geq \int_{A_{C^{-2}}} ((1 - C\beta) \rho_r^{\text{TF}}(x))^{5/3} \, dx \geq C^{-1}(1 - C\beta)^{5/3} r^{-7}.$$

Thus we get $C^{-1}(1 - C\beta)^{5/3} r^{-7} \leq C\beta r^{-7}$ and a contradiction if $\beta > 0$ is sufficiently small. Then we can choose $\beta > 0$ small enough such that $\mu_r^{\text{TF}} = 0$. Hence we can use Theorem 4.1 and Theorem 4.2 for φ_r^{TF} and φ_r^{TF}, and therefore we arrive at, for $x \in A_r \cap \Gamma_j$,

$$|\varphi_r^{\text{TF}}(x) - \varphi_r^{\text{TF}}(x)| \leq c_4|\phi(x) - r_j|^{-4} \left(A_1^2(r) \left(\frac{|x - R_j|}{r_j}\right)^{\eta} + (A_2^3(r) + 2a(r) \left(\frac{r}{|x - R_j|}\right)^{\xi})\right),$$

where we have used the fact that $(1 + t)^{-2} \geq 1 - 2t$ for $t \in (-1, \infty)$. Since $r \leq s \leq \bar{r}$, it holds that $(s/R_j)^{\eta} \leq (R_0)^{-(\xi + \eta)}(r/s)^{\xi}$. If we note that $A_1^2(r) \leq C$ and $a(r) \leq C$ by (6.21), then (6.11) follows. Proceeding this way one can arrive at (6.12) from the fact that, for any $t \in (0, T]$, $(1 + t)^{3/2} \leq 1 + t((1 + T)^{3/2} - 1)T^{-1}$. Then the proof is complete.

Step 4 In this step, we compare ρ_r^{TF} with $1_{A_r}\rho_r^{\text{RHF}}$.

Lemma 6.8. Let $\beta > 0$ be as in Lemma 6.6. We assume that (6.1) holds for some $D \in [Z^{-1/3}, R_0]$. Then, if $r \leq [Z^{-1/3}, D]$, we have

$$D(\rho_r^{\text{TF}} - 1_{A_r}\rho_r^{\text{RHF}}) \leq C^{-7+1/3}.$$

Proof. **Upper Bound.** We will prove that

$$\mathcal{E}_r^{\text{RHF}}(\rho_r^{\text{RHF}})^{\eta_r} \leq \mathcal{E}_r^{\text{TF}}(\rho_r^{\text{TF}}) + C^{-7}(r^{2/3} + \lambda^2r^2 + \lambda).$$

(6.23)

We use Lemma 5.2 (2) with $V_r := 1_{A_r}\varphi_r^{\text{RHF}}$, $s \leq r$ to be chosen later and g spherically symmetric to obtain a density matrix $\tilde{\gamma}$ as in the statement. Since $\mu_r^{\text{TF}} = 0$ by Lemma 6.6 we deduce from the TF equation in Lemma 6.4 that

$$\rho_{\tilde{\gamma}} = 2^{5/2}(6\pi^2)^{-1} (1_{A_r}(\varphi_r^{\text{TF}})^{3/2}) \ast g^2 = (1_{A_r}\rho_r^{\text{TF}}) \ast g^2.$$
Since $\rho_{\tilde{\gamma}}$ is supported in A_r and
\[
\text{tr} \tilde{\gamma} = \int \rho_{\tilde{\gamma}} = \int_{A_r} \rho_{r}^{\text{TF}} \leq \int_{A_r} \rho_{r}^{\text{RHF}},
\]
we may apply Lemma 3.1 and obtain $\mathcal{E}_{r}^{\text{RHF}}(\eta_{r}^{\text{RHF}} \gamma_r \eta_r) \leq \mathcal{E}_{r}^{\text{RHF}}(\tilde{\gamma}) + \mathcal{R}$. Next, we bound $\mathcal{E}_{r}^{\text{RHF}}(\tilde{\gamma})$. By the semiclassical estimate from Lemma 5.2 (2), we have
\[
\mathcal{E}_{r}^{\text{RHF}}(\tilde{\gamma}) \leq \frac{2^{3/2}(5\pi^2)^{-1}}{} \int [V_{r}]_{+}^{5/2} + C \cdot S^{-2} \int [V_{r}]_{+}^{3/2} + D(\rho_{r}^{\text{TF}} \ast g^2) - \int \Phi_{r}^{\text{RHF}}(1_{A_r} \rho_{r}^{\text{TF}} \ast g^2) \\
\leq \frac{2^{3/2}(5\pi^2)^{-1}}{} \int [\varphi_{r}^{\text{TF}}]_{+}^{5/2} + C \cdot S^{-2} \int \rho_{r}^{\text{TF}} - \int A_r \Phi_{r}^{\text{RHF}} \rho_{r}^{\text{TF}} \\
+ D(\rho_{r}^{\text{TF}}) + \int_{A_r} (\Phi_{r}^{\text{RHF}} - \Phi_{r}^{\text{RHF}} \ast g^2) \rho_{r}^{\text{TF}} + \int_{A_r \cap A_r^{c} \ast s} \Phi_{r}^{\text{RHF}} \rho_{r}^{\text{TF}} \\
\leq \mathcal{E}_{r}^{\text{TF}}(\rho_{r}^{\text{TF}}) + C \cdot S^{-2} \int \rho_{r}^{\text{TF}} + \int_{A_r \cap A_r^{c} \ast s} \Phi_{r}^{\text{RHF}} \rho_{r}^{\text{TF}},
\]
(6.24)
where we have used $\Phi_{r}^{\text{RHF}} \ast g^2 \geq \Phi_{r}^{\text{RHF}}$ on A_r in the second inequality. This fact follows from Newton’s theorem and the assumption $s \leq r$. According to (6.5), we get
\[
\int \rho_{r}^{\text{TF}} \leq \int A_r \rho_{r}^{\text{RHF}} \leq Cr^{-3}.
\]
We note that $\rho_{r}^{\text{TF}}(x) \leq C|x - R_j|^{-6}$ on $A_r \cap \Gamma_j$, and if $r \leq |x - R_j| < r + s$ then $x \in \Gamma_j$,
\[
\int_{A_r \cap A_r^{c} \ast s} \Phi_{r}^{\text{RHF}} \rho_{r}^{\text{TF}} \leq Cr^{-3} \sum_{j=1}^{K} \int_{r \leq |x - R_j| \leq r + s} |x - R_j|^{-7} dx \leq Csr^{-8}.
\]
We choose $s = r^{5/3}$ and get
\[
\mathcal{E}_{r}^{\text{RHF}}(\tilde{\gamma}) \leq \mathcal{E}_{r}^{\text{TF}}(\rho_{r}^{\text{TF}}) + Cr^{-7+2/3}.
\]
Finally, since $\lambda \leq 1/2$, we have
\[
\mathcal{R} \leq C(\lambda^{-2}r^{-5} + \lambda r^{-7}).
\]
Hence we obtain the desired upper bound.

Lower bound. We will prove
\[
\mathcal{E}_{r}^{\text{RHF}}(\eta_{r}^{\text{RHF}} \gamma_r \eta_r) \geq \mathcal{E}_{r}^{\text{TF}}(\rho_{r}^{\text{TF}}) + D(\eta_{r}^{2} \rho_{r}^{\text{RHF}} - \rho_{r}^{\text{TF}}) - Cr^{-7+1/3}.
\]
We can estimate
\[E_r^{\text{RHF}}(\eta r^{\text{RHF}}) = \text{tr} \left(-\frac{\Delta}{2} - \varphi_r^{\text{TF}} \eta r^{\text{RHF}} \right) + D(\eta r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}) + D(\rho_r^{\text{TF}}) \]
\[\geq -2^{5/2}(15\pi^2)^{-1} \int |\varphi_r^{\text{TF}}|^{5/2} - C_{s^{-2}} \int \eta r^2 \rho^{\text{RHF}} \]
\[C \left(\int |\varphi_r^{\text{TF}}|^{5/2} \right)^{3/5} \left(\int |\varphi_r^{\text{TF}} - \varphi_r^{\text{TF}} \ast g|^2 \right)^{2/5} \]
\[+ D(\eta r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}) - D(\rho_r^{\text{TF}}) \]
\[= E_r^{\text{TF}}(\rho_r^{\text{TF}}) + D(\eta r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}) - C_{s^{-2}} \int \eta r^2 \rho^{\text{RHF}} \]
\[- C \left(\int |\varphi_r^{\text{TF}}|^{5/2} \right)^{3/5} \left(\int |\varphi_r^{\text{TF}} - \varphi_r^{\text{TF}} \ast g|^2 \right)^{2/5} . \]

We note
\[\int \eta r^2 \rho^{\text{RHF}} \leq Cr^{-3}, \]
\[\int |\varphi_r^{\text{TF}}|^{5/2} = C \int (\rho_r^{\text{TF}})^{5/3} \leq Cr^{-7}. \]

We know \(|x|^{-1} - |x|^{-1} \ast g^2 \geq 0\) and thus \(\rho_r^{\text{TF}} \ast (|x|^{-1} - |x|^{-1} \ast g^2) \geq 0\). Since the TF equation \(\varphi_r^{\text{TF}} = \chi_r^{+} \phi_r^{\text{RHF}} - \rho_r^{\text{TF}} \ast |x|^{-1}\), we have
\[\varphi_r^{\text{TF}} - \varphi_r^{\text{TF}} \ast g^2 \leq \chi_r^{+} \phi_r^{\text{RHF}} - (\chi_r^{+} \phi_r^{\text{RHF}}) \ast g^2 =: f. \]

By Newton’s theorem, we infer that \(\text{supp} f \subset \bigcup_{j=1}^{K} \{x: r - s \leq |x - R_j| \leq r + s\}\).

Hence, by \(|f(x)| \leq Cr^{-4}\), we have
\[|\varphi_r^{\text{TF}} - \varphi_r^{\text{TF}} \ast g^2|_+ \leq Cr^{-4} \sum_{j=1}^{K} 1(r - s \leq |x - R_j| \leq r + s). \]

Together with these facts, we learn
\[\int |\varphi_r^{\text{TF}} - \varphi_r^{\text{TF}} \ast g^2|^{5/2} \leq Cr^{-8}s. \]

We conclude that
\[E_r^{\text{RHF}}(\eta r^{\text{RHF}}) \geq E_r^{\text{TF}}(\rho_r^{\text{TF}}) + D(\eta r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}) - C(s^{-2}r^{-3} + r^{-37/5}s^{2/5}). \]

Then we choose \(s = r^{11/6}\) and arrive at the desired lower bound.

Conclusion Combining the upper and lower bound, we learn
\[D[\eta r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}] \leq Cr^{-7}(r^{1/3} + \lambda^{-2}r^2 + \lambda). \]
Using the Hardy-Littlewood-Sobolev inequality, we have
\[
D[\chi_r^+ \rho^{\text{RHF}} - \eta_r^2 \rho^{\text{RHF}}] \leq C \| \mathbf{1}_{A_r \cap \Lambda^* (1 + \lambda r)} \rho^{\text{RHF}} \|_{L^{6/5}}^2
\]
\[
\leq C \left(\int_{A_r} \rho^{\text{RHF}}(x)^{5/3} \, dx \right)^{6/5} \left(\sum_{j=1}^{K} \int_{r \leq |x-R_j| \leq (1+\lambda)r} \rho^{\text{RHF}}(x) \, dx \right)^{7/15}
\]
\[
= C \lambda^{7/15} r^{-7}.
\]

By convexity of the Coulomb energy,
\[
D[\chi_r^+ \rho^{\text{RHF}} - \rho_r^{\text{TF}}] \leq 2D[\chi_r^+ \rho^{\text{RHF}} - \eta_r^2 \rho^{\text{RHF}}] + 2D[\eta_r^2 \rho^{\text{RHF}} - \rho_r^{\text{TF}}]
\]
\[
\leq Cr^{-7}(\lambda^{7/15} + r^{1/3} + \lambda^{-2} r^2),
\]
for any \(\lambda \in (0, 1/2) \). We choose \(\lambda = r^{30/37} \) and get
\[
D[\chi_r^+ \rho^{\text{RHF}} - \rho_r^{\text{TF}}] \leq Cr^{-7+1/3}.
\]

This completes the proof.

Step 5

We now prove Theorem 6.1. Let \(r \in [Z^{-1/3}, D] \), \(s \in [r, \bar{r}] \) and \(x \in \partial A_s \). We may split
\[
\Phi^{\text{RHF}}_s(x) - \Phi^{\text{TF}}_s(x) = \varphi^{\text{TF}}_s(x) - \varphi^{\text{TF}}_s(x) + \int_{A_s} \frac{\rho^{\text{TF}}_r(y) - \rho^{\text{TF}}_r(y)}{|x-y|} \, dy
\]
\[
+ \sum_{i=1}^{K} \int_{|y-R_i| < s} \frac{\rho^{\text{TF}}_r(y) - \chi_r^+ \rho^{\text{RHF}}(y)}{|x-y|} \, dy.
\]

We know
\[
|\varphi^{\text{TF}}_r(x) - \varphi^{\text{TF}}_r(x)| \leq C \left(\frac{r}{s} \right)^{\xi} s^{-4}
\]
and
\[
\int_{A_r} \frac{\rho^{\text{TF}}_r(y) - \rho^{\text{TF}}_r(y)}{|x-y|} \, dy \leq C \left(\frac{r}{s} \right)^{\xi} s^{-4}.
\]

We note that \(\mathbf{1}_{|y-R_i| < s}(\rho^{\text{TF}}_r - \chi_r^+ \rho^{\text{RHF}}) \ast |x|^{-1} \) is harmonic in \(|x-R_i| \geq s \) for any \(i = 1, \ldots, K \). Hence we get from the Coulomb estimate that
\[
\left| \int_{|y-R_i| < s} \frac{\rho^{\text{TF}}_r(y) - \chi_r^+ \rho^{\text{RHF}}(y)}{|x-y|} \, dy \right| \leq \sup_{|x-R_i| = s} \left| \int_{|y-R_i| < s} \frac{\rho^{\text{TF}}_r(y) - \chi_r^+ \rho^{\text{RHF}}(y)}{|x-y|} \, dy \right|
\]
\[
\leq C \| \rho^{\text{TF}}_r - \chi_r^+ \rho^{\text{RHF}} \|_{L^{5/3}} (sD(\rho^{\text{TF}}_r - \chi_r^+ \rho^{\text{RHF}}))^{1/12}
\]
\[
\leq C s^{-7/2} (r^{-7+1/3} s)^{1/12}
\]
\[
= C s^{-4+1/36} \left(\frac{s}{r} \right)^{4+1/12 - 1/36}.
\]

In conclusion,
\[
\sup_{x \in \partial A_s} |\Phi^{\text{RHF}}_s(x) - \Phi^{\text{TF}}_s(x)| \leq C \left(\frac{r}{s} \right)^{\xi} s^{-4} + C \left(\frac{s}{r} \right)^{5} s^{-4+1/36}.
\]
(6.25)
Now we choose a constant \(\delta \in (0,1) \) such that
\[
\frac{1 + \delta}{1 - \delta} \left(\frac{49}{36} - a \right) < \frac{49}{36}, \quad \frac{1}{36} - \frac{10\delta}{1 - \delta} > 0.
\]

Case 1 \(D^{1+\delta} \leq Z^{-1/3} \).

Let \(r = D^{1+\delta} \). By the initial step, for any \(s \leq r^{1+\delta} \leq (Z^{-1/3})(1-\delta)/(1+\delta) \), we have
\[
|\Phi_{s}^{\text{RHF}}(x) - \Phi_{s}^{\text{TF}}(x)| \leq CZ^{49/36-a} s^{1/12} \leq Cs^{1/12-3(1-\delta)/(1+\delta)(49/36-a)} = Cs^{-4+\epsilon_1}.
\]

Case 2 \(D^{1+\delta} \geq Z^{-1/3} \).

In this case, we use (6.25) with \(r = D^{1+\delta} \). For any \(D \leq s \leq D^{1-\delta} \) we learn
\[
s^{2\delta/(1-\delta)} \leq r/s \leq s^{\delta}.
\]

Thus we deduce from (6.25) that
\[
|\Phi_{s}^{\text{RHF}}(x) - \Phi_{s}^{\text{TF}}(x)| \leq Cs^{-4+\epsilon_2} + Cs^{-4+1/36-10\delta/(1-\delta)} \leq Cs^{-4+\epsilon_2}.
\]

Hence we conclude that in both cases
\[
|\Phi_{s}^{\text{RHF}}(x) - \Phi_{s}^{\text{TF}}(x)| \leq Cs^{-4+\epsilon}, \quad \forall s \in \left[r^{1+\delta}, \min\{r^{1+\delta}, r^*\} \right].
\]

This completes the proof. \(\square \)

7. Screened Potential Estimate

Now we can prove the following theorem.

Theorem 7.1 (screened potential estimate). There are universal constants \(C, \epsilon, D > 0 \) such that
\[
\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho_{\text{RHF}}(y) - \rho_{\text{TF}}(y)}{|x - y|} dy \right| \leq Cr^{-4+\epsilon} \quad \forall r \leq D.
\]

Proof. The proof is essentially same as [9, Theorem 5.1]. Let \(\sigma = \max\{C_1, C_2\} \). We may assume \(\beta < \sigma \). We put \(D_0 = Z^{-1/3} \). From Lemma 5.1 we learn
\[
\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho_{\text{RHF}}(y) - \rho_{\text{TF}}(y)}{|x - y|} dy \right| \leq \sigma r^{-4+\epsilon} \quad \forall r \leq D_0 = Z^{-1/3}.
\]

Now we define
\[
M := \sup \left\{ r \in \mathbb{R} : \sup_{x \in \partial A_s} \left| \int_{A_r^c} \frac{\rho_{\text{RHF}}(y) - \rho_{\text{TF}}(y)}{|x - y|} dy \right| \leq \sigma s^{-4+\epsilon}, \forall s \leq r^{1+\delta} \right\}.
\]

Next, we suppose that

1. \(M < R_0 \)

and
(2) \(M_1 \), \(\min \{ M_1 , \tilde{M} \} \neq \emptyset \).

If \(D_0 < M \), then there is a sequence such that \(D_n \to M \) and \(D_0 \leq D_n \leq M \) for large \(n \). From this and Lemma 6.1, we see

\[
\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho^{RHF}(y) - \rho^{TF}(y)}{|x - y|} \, dy \right| \leq \sigma r^{-4+\varepsilon}, \quad \forall r \in \left[D_n \frac{1}{1+\delta}, \min \left\{ D_n \frac{1}{1+\delta}, \tilde{D}_n \right\} \right].
\]

From (2), we have

\[
M_1 \frac{1}{1+\delta} \in \left(D_n \frac{1}{1+\delta}, \min \left\{ D_n \frac{1}{1+\delta}, \tilde{D}_n \right\} \right) \neq \emptyset
\]

for large \(n \). This contradicts to the definition of \(M \). If \(D_0 = M \), then \(D_0 \leq R_0 \) and

\[
\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho^{RHF}(y) - \rho^{TF}(y)}{|x - y|} \, dy \right| \leq \sigma r^{-4+\varepsilon}, \quad \forall r \leq \min \{ M, \tilde{M} \}
\]

This together with (2) again contradicts to the definition of \(M \). Finally, if \(D_0 > M \) then we choose \(M' \in (M, \min \{ 1, D_0 \}) \). This contradicts to (7.1). Hence at least one of (1) and (2) cannot hold. If (1) is true, then \(M \geq c R_0 \eta (1+\delta) \). Therefore we arrive at

\[
M \geq \min \left\{ R_0, c R_0 \eta (1+\delta) \right\} \geq D^{1+\delta},
\]

where \(D \) is the universal constant. Then the theorem follows.

Proof of Theorem 1.1 Since \(N \leq 2Z + K \) \(\left[5 \right] \), it remain to consider the case \(N \geq Z \geq 1 \). By Theorem 7.1, we can find universal constants \(C, \varepsilon, D > 0 \) such that,

\[
\sup_{x \in \partial A_r} \left| \int_{A_r^c} \frac{\rho^{RHF}(y) - \rho^{TF}(y)}{|x - y|} \, dy \right| \leq C r^{-4+\varepsilon}, \quad \forall r \leq D.
\]

In particular, (6.1) holds true with a universal constant \(\beta = CD^\varepsilon \). We can choose \(D \) sufficiently small so that \(D \leq 1 \) and \(\beta \leq 1 \), which allow us to apply Lemma 6.2. Then using (6.4) and (6.5) with \(r = D \), we find that

\[
\int_{A_D} \rho^{RHF} + \sum_{j=1}^{K} \int_{|x-R_j| < D} (\rho^{RHF} - \rho^{TF}) \leq C.
\]

Combining with \(\int \rho^{TF} = Z \), we obtain the ionization bound

\[
N = \int \rho^{RHF} = \int_{A_D} \rho^{RHF} + \sum_{j=1}^{K} \int_{|x-R_j| < D} (\rho^{RHF} - \rho^{TF}) + \sum_{j=1}^{K} \int_{|x-R_j| < D} \rho^{TF} \leq C + Z.
\]

This completes the proof.
THE MAXIMAL EXCESS CHARGE IN REDUCED HARTREE-FOCK MOLECULE

References

[1] R. L. Frank, P. T. Nam, H. V. D. Bosch, The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory, Comm. Pure Appl. Math. 71 577–614 (2018).
[2] R. L. Frank, P. T. Nam, H. V. D. Bosch, The maximal excess charge in Müller density-matrix-functional theory, Ann. Henri Poincaré 19 2839–2867 (2018).
[3] C. Kehle, The maximal excess charge for a family of density-matrix-functional theories including Hartree-Fock and Muller theories, J. Math. Phys 58 011901 (2017)
[4] E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 603–641 (1981).
[5] E. H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29 3018–3028 (1984).
[6] E. H. Lieb, B. Simon, The Thomas-Fermi. Theory of Atoms., Molecules and Solids, Adv. Math. 23 22–116 (1977).
[7] E. H. Lieb and R. Seiringer, The stability of matter in quantum mechanics, Cambridge University Press, Cambridge 2010.
[8] M. B. Ruskai and J. P. Solovej, Asymptotic neutrality of polyatomic molecules, Schrödinger Operators The Quantum Mechanical Many-Body Problem Springer, Berlin, Heidelberg, 153–174 (1992).
[9] A. Samojlow, Universality of Born-Oppenheimer curves, Ph.D thesis, University of Copenhagen (2018).
[10] J. P. Solovej, Asymptotic Neutrality of Diatomic Molecules, Commun. Math. Phys., 130 185–204 (1990).
[11] J. P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model Invent. Math., 104 291–311(1991).
[12] J. P. Solovej, The Ionization Conjecture in Hartree-Fock Theory, Ann. of Math., 158 509–576 (2003).

Department of Mathematics, Gakushuin University, 1-5-1 Mejiro Toshima-ku Tokyo 171-0031, Japan
E-mail address: yukimi@math.gakushuin.ac.jp