Polycystic ovary syndrome: Pathways and mechanisms for possible increased susceptibility to COVID-19

Ioannis Ilias, Spyridon Goulas, Lina Zabuliene

Abstract
In 75% of women with polycystic ovary syndrome (PCOS), insulin action is impaired. In obesity, visceral adipose tissue becomes dysfunctional: Chronic inflammation is favored over storage, contributing to the development of metabolic complications. PCOS, metabolic syndrome (MetSy) and non-alcoholic fatty liver disease (NAFLD) apparently share common pathogenic factors; these include abdominal adiposity, excess body weight and insulin resistance. Alterations in the gut microbiome have been noted in women with PCOS compared to controls; these may lead to deterioration of the intestinal barrier, increased gut mucosal permeability and immune system activation, hyperinsulinemia and glucose intolerance, which hamper normal ovarian function and follicular development (all being hallmarks of PCOS). It has been proposed that PCOS may entail higher susceptibility to coronavirus disease 2019 (COVID-19) via its associated comorbidities (NAFLD, obesity, MetSy and alterations in the gut microbiome). Studies have found an association between acute respiratory distress syndrome (seen in severe cases of COVID-19) and the intestinal microbiome. Furthermore, apparently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can gain entry to the gastrointestinal tract via locally-expressed angiotensin converting enzyme type 2 receptors. Excess body weight is associated with more severe COVID-19 and increased mortality. Although robust links between SARS-CoV-2 infection and PCOS/NAFLD/gut microbiome/metabolic consequences are yet to be confirmed, it seems that strategies for adapting the intestinal microbiome could help reduce the severity of COVID-19 in women with PCOS with or without NAFLD, MetSy or obesity.
INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common and heterogeneous endocrine disorder that becomes symptomatic in adolescence and occurs in 5%-10% of women of reproductive age\(^1\); it is frequently associated with metabolic abnormalities. It is the most common cause of androgen hypersecretion and accounts for more than a third of menstrual disorders. PCOS is also the most common hormonal disorder that leads to hair loss, appearance of acne, seborrhea and male pattern baldness (symptoms may be absent in patients with moderate hyperandrogenemia, as in most cases of PCOS\(^9\)).

The definition of PCOS has shifted over the years, according to different diagnostic criteria, which define an array of disease phenotypes (Figure 1), taking into account signs of hyperandrogenemia and ovarian dysfunction and of ovarian morphology\(^1\).-\(^4\). Currently, experts suggest the use of the Rotterdam criteria, as refined in 2018\(^1\).-\(^3\).

The current understanding of the pathogenesis of PCOS suggests that it is a complex polygenic disorder\(^8\). Various studies have studied candidate genes that can regulate the hypothalamic-pituitary-ovary axis as well as genes responsible for insulin resistance\(^4\). There is a familial predisposition for high levels of dehydroepiandrosterone sulphate in siblings of women with PCOS, suggesting that this is a genetic characteristic\(^4\). Additionally, first-degree relatives of patients with PCOS carry an increased risk of cardiovascular disease, as do patients with PCOS\(^1\).-\(^4\). Whether the molecules involved in low-grade inflammation are involved in the pathogenesis of hyperandrogenemia or, conversely, if excess androgens may-in some way-lead to the promotion of inflammation, is still a controversial issue. Although direct involvement of androgens in low-grade inflammation has not been shown, available evidence suggests that androgens may be indirectly involved in the development of low-grade inflammation, \(\text{via}\) an effect on adipose tissue and on resistance to insulin\(^8\).-\(^9\). In fact, androgens stimulate adipocyte hypertrophy, affecting the expression of enzymes and proteins involved in lipid and carbohydrate metabolism, oxidative stress and differentiation of pre-adipocytes into mature adipocytes. Androgen excess can impair insulin action, either directly at the insulin receptor level or indirectly \(\text{via}\) changes effected at various tissues. In addition, androgens increase lipolysis, resulting in increased release of free fatty acids\(^8\).-\(^9\).

Research on the relationship between adiponectin and testosterone has given conflicting results. Similar results have been found for leptin. A strong negative relationship between circulating levels of ghrelin with androgens, especially androstenedione, has been found in women with PCOS\(^9\). The production of the latter steroid results from endogenously malfunctioning ovaries and adrenal glands. The high intra-ovarian concentration of androgens inhibits follicular maturation, leading to the appearance of polycystic ovaries. The usual source of excess androgens is due to

Key Words: Adipose tissue; Obesity; Polycystic ovaries; SARS-CoV-2; COVID-19; Human

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Figure 1 Criteria for defining polycystic ovary syndrome and describing its phenotypes (summarized from [5-7]). *Sine qua non for diagnosis, when excluding all similar/mimicking disorders after thorough laboratory and instrumental investigations. NIH: National Institutes of Health (United States) criteria; Rotterdam: European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine criteria; AE/PCOS S: Androgen Excess and Polycystic Ovary Syndrome Society criteria; HA: Hyperandrogenism; OD: Ovulatory dysfunction; M: Polycystic ovary morphology; A1 least one ovary with volume > 10 cm3 or at least 12-20 antral follicles (with a diameter of 5-9 mm) per ovary; Dx: Diagnosis.

Functional ovarian hyperandrogenism, which is characterized by increased 17-hydroxyprogesterone after stimulation with luteinizing hormone releasing hormone or human chorionic gonadotropin. Endogenous dysfunction of ovarian cells appears to contribute to 50%-75% of cases of PCOS [19].

PCOS, OBESITY AND INSULIN RESISTANCE

Obesity is present in about 50%-80% of women with PCOS, but this relationship also depends on environmental factors [20-21]. A lower prevalence of obesity in women with PCOS has been reported in populations where severe obesity is less prevalent, such as in Asians and in some Europeans [22,23]. Some argue that in the community there may not be more obese women with PCOS than obese women without PCOS [24]. With age, there is also increase in body mass index (BMI), waist circumference and of the waist to hip ratio [25,26]. The annualized conversion rate from normal glucose tolerance to impaired is higher in obese women with PCOS (16%) compared to the general obese population (1%-5%); the annualized conversion rate of obese women with PCOS from impaired glucose tolerance to diabetes at 2% is not different from the rate of the general obese population [27]. There is a synergistic effect of obesity on worsening glucose intolerance in women with PCOS. We have to note that regarding obesity, women with PCOS present a challenge for researchers, since BMI may not characterize them adequately [28,29]. Studies have evaluated the distribution of fat (subcutaneous and visceral fat) in obese women with PCOS using magnetic resonance imaging and dual energy X-ray with conflicting results. Women with PCOS have more central body fat distribution and increased waist/hip circumference compared to women without PCOS and similar BMI [11]. Central obesity is a risk factor for pre-diabetes and cardiovascular disease. It is estimated that in about 75% of normal weight and overweight women with PCOS insulin action is impaired. Hyperinsulinemia and insulin resistance can induce both the endocrine and reproductive traits of PCOS, but the mechanisms that underlie this remain elusive [30]. Furthermore, in obesity, visceral adipose tissue becomes dysfunctional (with an increase in inflammatory molecules and a decrease in the expression of lipogenic enzymes); in this way via various signaling pathways-chronic inflammation is favored over storage, contributing to the development of metabolic complications [31,32]. These obesity-associated signaling pathways and mechanisms are not fully delineated. Various adipose tissue genes are differentially expressed in subjects with obesity/insulin resistance; more in detail, in these subjects genes which are associated with lipid uptake and processing are less expressed compared to lean individuals [33,34]. Recent research indicates that in obesity, adipokine imbalance (low adiponectin and high leptin) modulates the activation of inflammasomes (receptors/sensors of the innate immune system that regulate caspase-1 activation and promote inflammation) [35]; thus the latter may be the connectors between excess adiposity and obesity-associated complications.
PCOS: NON-ALCOHOLIC FATTY LIVER DISEASE AND THE METABOLIC SYNDROME

Various definitions by different authorities have been proposed for the definition of the cluster of metabolic disturbances that comprise the metabolic syndrome (MetSy); invariably they include central obesity, dyslipidemia, insulin resistance, and hypertension\[^{[38]}\]. A diet rich in saturated fat and fructose may lead to non-alcoholic fatty liver disease\[^{[36-38]}\] (NAFLD; indicating hepatic steatosis which is not attributed to alcohol or other specific etiologies and is found in at least 25% of the world population\[^{[39-41]}\]), metabolic endotoxicemia and increased resistance to the action of insulin\[^{[42]}\]. PCOS, MetSy and NAFLD apparently share common pathogenic factors; these include abdominal adiposity, excess body weight and insulin resistance\[^{[43,44]}\]. Women with PCOS—particularly with hyperadrogenemia—have a two-fold to four-fold higher probability of having NAFLD compared to non-PCOS women\[^{[45,46]}\]; 35%-70% of women with PCOS have NAFLD\[^{[44-46]}\] and 60% have insulin resistance\[^{[47]}\]. Insulin resistance, via activation—among others—of the carbohydrate response element binding protein and sterol response element binding protein 1c (both act as transcription factors), leads to intra-hepatic lipid accumulation\[^{[48]}\].

PCOS AND THE GUT MICROBIOME

Three main mechanisms have been put forth regarding the effect of intestinal microbiome on glucose intolerance/insulin resistance and type 2 diabetes: The promotion of metabolic inflammation, the modification of incretin secretion and the modification of hydroxybutyric acid production\[^{[49-51]}\]. *Parabacteroides merdae, Bacteroides fragilis, Clostridium and Lactobacillus* genera and strains of *Escherichia* and *Shigella* are more abundant in women with PCOS compared to controls\[^{[45]}\]; the presence of specific microbes in women with PCOS is positively correlated with BMI, high serum testosterone and elevated luteinizing hormone\[^{[52,53]}\]. Women with PCOS have less hydroxybutyric acid-producing genera\[^{[54]}\]. Low levels of interleukin 22 (IL-22) are noted in women with PCOS\[^{[55]}\]. This interleukin helps to maintain the integrity of the gut epithelial barrier\[^{[56]}\]. Thus, an altered gut microbiome may lead to deterioration of the intestinal barrier, increased gut mucosal permeability and passage into the circulation of lipopolysaccharide from Gram negative colonic bacteria. Lipopolysaccharide in the circulation (attached to the glycoprotein *L. barabara polysaccharides*) binds to the CD14 toll-like receptor complex (TRL-4) on the surface of innate immune cells, leads to activation of a downstream signaling pathway and immune system activation\[^{[57]}\]. The latter impedes insulin receptor function and leads to hyper-insulinemia and glucose intolerance, which hamper normal ovarian function and follicular development (all being hallmarks of PCOS)\[^{[58,59]}\]. Modulation of the intestinal (and of the vaginal) microbiome has been put forth as holding therapeutic potential for PCOS\[^{[60]}\].

PCOS VS SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 INFECTION

To gain cell entry, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the host’s angiotensin-converting enzyme 2 (ACE2), in synergy with the host’s transmembrane protease, serine 2 (TMPRSS2); the latter’s expression is androgen-regulated\[^{[61,62]}\]. It has been proposed that PCOS, given this condition’s hyperadrogenemic environment, may entail higher susceptibility to coronavirus disease 2019 (COVID-19)\[^{[63-65]}\]. Furthermore, PCOS may also increase susceptibility to COVID-19 via its associated comorbidities (NAFLD, obesity, MetSy and alterations in the gut microbiome) (Figure 2). Obese patients with advanced NAFLD have been shown to have increased hepatic mRNA expression of ACE2 and TMPRSS2, the critical molecules for SARS-CoV-2 cellular entry (gender-specific differences may exist in the expression of these molecules)\[^{[66]}\].
Polycystic ovary syndrome may increase susceptibility to coronavirus disease 2019 via its associated comorbidities (non-alcoholic fatty liver disease, metabolic syndrome, obesity, insulin resistance and alterations in the gut microbiome); the gut-lung axis is apparently implicated. SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IL-22: Interleukin 22, IL-6: Interleukin 6; PCOS: Polycystic ovary syndrome; NAFLD: Non-alcoholic fatty liver disease; COVID-19: Coronavirus disease 2019; MetSy: Metabolic syndrome.

Figure 2

The term gut-lung axis describes the interaction between the intestinal microbiome and the lungs. This communication is, in fact, two-way. Endotoxins and metabolites produced by bacteria in the gut (due to systemic inflammation, IL-6-induced vascular damage and increased intestinal permeability that may facilitate bacterial translocation) can move through the bloodstream and reach the lungs. Similarly, pulmonary inflammation can have an effect on intestinal integrity. This raises the question of whether the SARS-CoV-2 virus can affect the intestinal microbiome. In fact, several studies have shown that respiratory infections are associated with changes in the composition of the intestinal microbiome. Some studies have found an association between acute respiratory distress syndrome (seen in severe cases of COVID-19) and the intestinal microbiome. Furthermore, apparently, SARS-CoV-2 can gain entry to the gastrointestinal tract via locally-expressed ACE2 receptors.

SARS-COV-2 AND THE GUT-LUNG AXIS

Regardless of the definition of obesity (in western countries it is defined as a BMI higher than 30.0 kg/m² or in China over 27.5 kg/m²), excess body weight is associated with more severe SARS-CoV-2 infection (COVID-19) and increased mortality. The etiology for the latter is still obscure, although it is known that obesity is a state of low-grade inflammation, which COVID-19 pushes to extremes (with a characteristic “cytokine storm”). Of note, obesity may lead not only to more adipose tissue accumulation but also to larger abdominal organ size; we have speculated that larger abdominal organs may provide a larger tissue reservoir for the pervasive SARS-CoV-2 virus, since the latter has indeed been localized in abdominal organs.

The MetSy is characterized by hyperinsulinemia, which may be associated with facets of COVID-19, particularly regarding microvascular dysfunction, systemic hypercoagulability and extensive micro- and macrovascular thrombosis. As indicated above, ACE2 offers entry to SARS-CoV-2 for cell infection. This enzyme normally shows low expression in cholangiocytes and hepatocytes, but its expression increases—at least in cholangiocytes—in chronic liver disease and experimental diet-induced NAFLD. The virus is pervasive and is localized in abdominal and extraabdominal organs, including the liver. There are conflicting reports regarding NAFLD and COVID-19. Some researchers have shown increased hospitalization, morbidity and mortality from COVID-19 in patients with NAFLD, whereas other researchers have shown that NAFLD per se in hospitalized patients was not linked with worse prognosis (but NAFLD-associated inflammatory
parameters were associated with prognosis[86].

CONCLUSION

Although robust links between SARS-CoV-2 infection and the chain of PCOS/NAFLD/gut microbiome/metabolic consequences have not been confirmed, there is evidence that merits further investigation. No research to date has been able to answer whether there is a cause-and-effect relationship. In order to determine whether the intestinal microbiome—particularly in women with PCOS with or without NAFLD, MetSy or obesity—affects the risk of COVID-19 or if SARS-CoV-2 is the factor that changes the composition of the microbiome, more research will be needed. Nevertheless, strategies for adapting the intestinal microbiome (probably in all patients) could help reduce the severity of COVID-19 in women with PCOS with or without NAFLD, MetSy or obesity.

REFERENCES

1. Mumusoglu S, Yildiz BO. Polycystic ovary syndrome phenotypes and prevalence: Differential impact of diagnostic criteria and clinical vs unselected population. Curr Opin Endocr Metab Res 2020; 12: 66-71 [DOI: 10.1016/j.coren.2020.03.004]
2. Lucidi RS. Polycystic Ovarian Syndrome. Medscape [cited 25 October 2020]. Available from: https://emedicine.medscape.com/article/256806-overview#v1
3. Neven ACH, Laven J, Teede HJ, Boyle JA. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines. Semin Reprod Med 2018; 36: 5-12 [PMID: 30189445 DOI: 10.1055/s-0038-1668085]
4. Condorelli RA, Calogero AE, Di Mauro M, Mongioi’ LM, Cannarella R, Rosta G, La Vignera S. Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index. J Endocrinol Invest 2018; 41: 383-388 [PMID: 28942551 DOI: 10.1007/s40607-018-0762-3]
5. Azziz R. Polycystic Ovary Syndrome. Obstet Gynecol 2018; 132: 321-336 [PMID: 29995717 DOI: 10.1097/AOG.0000000000002695]
6. Azziz R, Kintziger K, Li R, Laven J, Morin-Papunen L, Merkin SS, Teede H, Yildiz BO. Recommendations for epidemiologic and phenotypic research in polycystic ovary syndrome: an androgen excess and PCOS society resource. Hum Reprod 2019; 34: 2254-2265 [PMID: 31751476 DOI: 10.1093/humrep/dez185]
7. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018; 110: 364-379 [PMID: 30033227 DOI: 10.1016/j.fertnstert.2018.05.004]
8. Crespo RP, Bachega TASS, Mendonça BB, Gomes LS. An update of genetic basis of PCOS pathogenesis. Arch Endocrinol Metab 2018; 62: 352-361 [PMID: 29972435 DOI: 10.20945/2359-397000000049]
9. Gourbesville C, Kerlan V, Reznik Y. Le syndrome des ovaires polykystiques : quelles nouveautés en 2019 ? Ann Endocrinol (Paris) 2019; 80 Suppl 1: S29-S37 [PMID: 31606059 DOI: 10.1016/S0003-4266(19)30114-3]
10. Legro RS. Detection of insulin resistance and its treatment in adolescents with polycystic ovary syndrome. J Pediatr Endocrinol Metab 2002; 15 Supp 5: 1367-1378 [PMID: 12510993]
11. Yildir M, Kutluktur F, Tasiyurt T, Yelken BM, Acu B, Beyhan M, Erkorkmaz U, Yilmaz A. Insulin resistance and cardiovascular risk factors in women with PCOS who have normal glucose tolerance test. Gynecol Endocrinol 2013; 29: 148-151 [PMID: 23127112 DOI: 10.3109/09513590.2012.730573]
12. Goodarzi MO, Carmina E, Azziz R, DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145: 213-225 [PMID: 25008465 DOI: 10.1016/j.jsbmb.2014.06.003]
13. Luque-Ramírez M, Escobar-Morreale HF, Adrenal Hyperandrogenism and Polycystic Ovary Syndrome. Curr Pharm Des 2016; 22: 5588-5602 [PMID: 27510480 DOI: 10.2174/138161282266160720150625]
14. Dimitriadis GK, Kyrou I, Randeva HS. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines. Curr Pharm Des 2016; 22: 5535-5546 [PMID: 27464726 DOI: 10.2174/138161282266160720150625]
15. Ezeh U, Chen IY, Chen YH, Azziz R. Adipocyte Insulin Resistance in PCOS: Relationship With GLUT-4 Expression and Whole-Body Glucose Disposal and β-Cell Function. J Clin Endocrinol Metab 2020; 105 [PMID: 32382742 DOI: 10.1210/clinem/dgaa235]
16. Baddela VS, Sharma A, Vanselow J. Non-esterified fatty acids in the ovary: friends or foes? Reprod Biol Endocrinol 2020; 18: 60 [PMID: 32505200 DOI: 10.1186/s12958-020-00617-9]
17. Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017; 153: R133-R149 [PMID: 28113579 DOI: 10.1530/REP-16-0417]
Di Stefano JK, Shalbi GQ. The relationship between excessive dietary fructose consumption and...
paediatric fatty liver disease. Pediatr Obes 2020; e12759 [PMID: 33305889 DOI: 10.1111/jpjo.12759]

41 Softic S, Stanhope KL, Boucher J, Divanovic S, Lanasa MA, Johnson RJ, Kahn CR. Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 2020; 57: 308-322 [PMID: 31935149 DOI: 10.1080/10408563.2019.1711360]

42 Rocha AL, Oliveira FR, Azevedo RC, Silva VA, Peres TM, Candido AL, Gomes KB, Reis FM. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Res 2019; 8 [PMID: 31690057 DOI: 10.12688/f1000research.15318.1]

43 Asfari MM, Sarmini MT, Baidoun F, Al-Khadr Y, Ezzaia Y, Dasarathy S, McCullough A. Association of non-alcoholic fatty liver disease and polycystic ovarian syndrome. BMJ Open Gastroenterol 2020; 7 [PMID: 32784205 DOI: 10.1136/bmjgast-2019-000352]

44 Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int J Mol Sci 2019; 20 [PMID: 31212642 DOI: 10.3390/jims20112841]

45 Di Claudia A, Christidis G, Krawczyk M, Lammert F, Portincasa P. Impact of Endocrine Disorders on the Liver. In: Portincasa P, Fruhbeck G, Nathoe HM. Endocrinology and Systemic Diseases. Cham, Switzerland: Springer Nature Switzerland AG, 2020: 157-177

46 Di Claudia A, Wang DQH, Sommers T, Lembo A, Portincasa P. Impact of Endocrine Disorders on Gastrointestinal Diseases. In: Portincasa P, Fruhbeck G, Nathoe HM. Endocrinology and Systemic Diseases. Cham, Switzerland: Springer Nature Switzerland AG, 2020: 179-225

47 Cani PD, Delzenne NM. Intercalate between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 2009; 9: 737-743 [PMID: 19628432 DOI: 10.1016/j.coph.2009.06.016]

48 Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15: 1546-1558 [PMID: 19442172 DOI: 10.2174/138161209788168164]

49 Cani PD, LeCourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM. Gut microbiota fermentation of prebiotics increases satiogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 2009; 90: 1236-1243 [PMID: 19776140 DOI: 10.3945/ajcn.2009.28095]

50 Insenser M, Murri M, Del Campo R, Martinez-Garcia MA, Fernandez-Durán E, Escobar-Morreale HF. Gut Microbiota and the Polycystic Ovary Syndrome: Influence of Sex, Sex Hormones, and Obesity. J Clin Endocrinol Metab 2018; 103: 2552-2562 [PMID: 29897462 DOI: 10.1210/jc.2017-02799]

51 Chu W, Han Q, Xu J, Wang J, Sun Y, Li W, Chen ZJ, Du Y. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertil Steril 2020; 113: 1286-1298. e4 [PMID: 32482258 DOI: 10.1016/j.fertnstert.2020.01.027]

52 Zhou L, Ni Z, Yu J, Cheng W, Cai Z, Yu C. Correlation Between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2020; 11: 628 [PMID: 33013704 DOI: 10.3389/fendo.2020.00628]

53 Jobira B, Frank DN, Pyle L, Silveira LJ, Kelsey MM, Garcia-Reyes Y, Robertson CE, Ir D, Nadeau KJ, Cree-Green M. Obese Adolescents With PCOS Have Altered Biodiversity and Relative Abundance in Gastrointestinal Microbiota. J Clin Endocrinol Metab 2020; 105 [PMID: 31970418 DOI: 10.1210/clinendocrinology.2020-29263]

54 Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, Gorkiewicz G, Stadlbauer V, Obermayer-Pietsch B. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study. PLoS One 2017; 12: e0168390 [PMID: 28045919 DOI: 10.1371/journal.pone.0168390]

55 Liang Y, Ming Q, Liang J, Zhang Y, Zhang H, Shen T. Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity - a preliminary report. Can J Physiol Pharmacol 2020; 98: 803-809 [PMID: 32106994 DOI: 10.1139/cpp-2019-0413]

56 Qi X, Yan C, Sun L, Xia J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Gonzalez FJ, Patterson AD, Liu H, Ma L, Zhou Z, Zhao Y, Li R, Liu P, Zhong C, Pang Y, Jiang C, Qiao J. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 2019; 25: 1225-1233 [PMID: 31332392 DOI: 10.1038/s41591-019-0509-0]

57 Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 2015; 33: 747-785 [PMID: 25706998 DOI: 10.1146/annurev-immunol-032414-112123]

58 He FF, Li YM. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res 2020; 13: 73 [PMID: 32552864 DOI: 10.1186/s13048-020-06670-3]

59 Tremellen K, Pearce K. Dysbiosis of Gut Microbiota (DOGMA)—a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses 2012; 79: 104-112 [PMID: 22543078 DOI: 10.1016/j.mehy.2012.04.016]

60 Wang L, Zhou J, Gober HJ, Leung WT, Huang Z, Pan X, Li C, Zhang N, Wang L. Alterations in the intestinal microbiome associated with PCOS affect the clinical phenotype. Biomed Pharmacother 2021; 133: 110958 [PMID: 33171400 DOI: 10.1016/j.biopha.2020.110958]

61 Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, Xin Y, Zhang L. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother 2020; 131: 110678
Thrombotic Complications in Patients with COVID-19: Pathophysiological Mechanisms, Diagnosis, and Rationale for Clinical Management.

Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes.

Cytokine elevation in severe and critical COVID-19 pandemic: Is there a higher risk for these women? J Steroid Biochem Mol Biol 2021; 205: 105770

Gambir O, Tria L, De Leo V. Coronavirus Disease 2019 (SARS-CoV-2) and polycystic ovarian disease: Is there a higher risk for these women? J Steroid Biochem Mol Biol 2021; 205: 105770

Kyrö I, Karteris E, Robbins T, Chatka H, Drenos F, Randeva HS. Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic. BMC Med 2020; 18: 220 [PMID: 32664957 DOI: 10.1186/s12916-020-01697-5]

Fondevila MF, Mercado-Gómez M, Rodriguez A, Gonzalez-Rellán MJ, Inzúñiberti P, Valenti V, Escalada J, Schwaninger M, Prevot V, Dieguez C, Crespo J, Frühbeck G, Martínez-Chantar ML, Nogueiras R. Obese patients with NASH have increased hepatic expression of SARS-CoV-2 critical entry points. J Hepatol 2021; 74: 469-471 [PMID: 33096086 DOI: 10.1016/j.jhep.2020.09.027]

Pugì J, Chevrolet JC. [The intestine-liver-lung axis in septic syndrome]. Schweiz Med Wochenschr 1991; 121: 1538-1544 [PMID: 1947949]

Uzza M, Corcos O, Martin JC, Treton X, Bouhnik Y. Why is SARS-CoV-2 infection more severe in obese men? Med Hypotheses 2020; 144: 110023 [PMID: 32593832 DOI: 10.1016/j.mehy.2020.110023]

Cardinale V, Capurso G, Ianiro G, Gasbarrini A, Arcidiacono PG, Alvaro D. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Dig Liver Dis 2020; 52: 1383-1389 [PMID: 33023827 DOI: 10.1016/j.dld.2020.09.009]

Scaldaferri F, Ianiro G, Privitera G, Lopetuso LR, Vetrone LM, Petito V, Pugliese D, Neri M, Canmarotta G, Ringel Y, Costamagna G, Gasbarrini A, Boskoski I, Armuzzi A. The Thrilling Journey of SARS-CoV-2 into the Intestine: From Pathogenesis to Future Clinical Implications. Inflamm Bowel Dis 2020; 26: 1306-1314 [PMID: 32720978 DOI: 10.1093/ibd/izu181]

Galanopoulou M, Doukas A, Gazioulis M. Origin and genomic characteristics of SARS-CoV-2 and its interaction with angiotensin converting enzyme type 2 receptors, focusing on the gastrointestinal tract. World J Gastroenterol 2020; 26: 6335-6345 [PMID: 33244196 DOI: 10.3748/wjg.v26.i41.6335]

Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab Syndr 2020; 14: 469-471 [PMID: 32387864 DOI: 10.1016/j.dsx.2020.04.033]

Michalakis K, Panagiotou G, Ilias I, Paziartou-Panayiotou K. Obesity and COVID-19: A jigsaw puzzle with still missing pieces. Clin Obes 2021; 11: e12420 [PMID: 33073512 DOI: 10.1111/cob.12420]

Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfée CS, Hiroyma AV, Mastroianni F, Turtle CJ, Harhay MO, Legrand M, Deutschman CS. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med 2020; 8: 1233-1244 [PMID: 33075298 DOI: 10.1016/S2213-2600(20)30404-5]

Grant H, Zhang Y, Li L, Wang Y, Kawamoto S, Pénisson S, Fouladi DF, Shayesteh S, Blanco A, Pugin J, Chevrolet JC. [The intestine-liver-lung axis in septic syndrome]. Schweiz Med Wochenschr 1991; 121: 1538-1544 [PMID: 1947949]

Zabibi R, Ilias I. Obesity, abdominal organ size and COVID-19 severity. Med Hypotheses 2020; 144: 110279-110279 [PMID: 33254583 DOI: 10.1016/j.mehy.2020.110279]

Cooper ID, Crofts CAP, DiNicolaoutionio JJ, Malhotra A, Elliott B, Kyriakidou Y, Brookler KH. Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: rationale for clinical management. Open Heart 2020; 7 [PMID: 32938758 DOI: 10.1136/openhrt-2020-001356]

Bansal R, Gubbi S, Muniyappa R. Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology 2020; 161 [PMID: 32603424 DOI: 10.1210/endoc/bqa112]

Hayden MR. Endothelial activation and dysfunction in metabolic syndrome, type 2 diabetes and coronavirus disease 2019. J Int Med Res 2020; 48: 300060520939746 [PMID: 32722979 DOI: 10.1177/0300060520939746]

Smith M, Honce R, Schultz-Cherry S. Metabolic Syndrome and Viral Pathogenesis: Lessons from Influenza and Coronavirus. J Virol 2020; 94 [PMID: 32661141 DOI: 10.1128/jvi.00665-20]

Gásecka A, Borovac JA, Guerreiro RA, Guastozzi M, Parker W, Caldeira D, Chiva-Blanch G. Thrombotic Complications in Patients with COVID-19: Pathophysiological Mechanisms, Diagnosis, and Treatment. Cardiovasc Drugs Ther 2020 [PMID: 33074525 DOI: 10.1007/10557-020-07084-9]

Lupu L, Palmer A, Huber-Lang M. Inflammation, Thrombosis, and Destruction: The Three-Headed Cerberus of Trauma- and SARS-CoV-2-Induced ARDS. Front Immunol 2020; 11: 584514 [PMID: 33101314 DOI: 10.3389/fimmu.2020.584514]
Hammoud SH, Wehbe Z, Abdelhady S, Kobeissy F, Eid AH, El-Yazbi AF. Dysregulation of Angiotensin Converting Enzyme 2 Expression and Function in Comorbid Disease Conditions Possibly Contributes to Coronavirus Infectious Disease 2019 Complication Severity. Mol Pharmacol 2021; 99: 17-28 [PMID: 33082267 DOI: 10.1124/molpharm.120.000119]

Puelles VG, Lütgehetmann M, Lindemeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfeifferle S, Schröder AS, Edler C, Gross O, Glätzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber TB. Multorgan and Renal Tropism of SARS-CoV-2. N Engl J Med 2020; 383: 590-592 [PMID: 32402155 DOI: 10.1056/NEJMoa201400]

Valenti L, Jamialahmadi O, Romeo S. Lack of genetic evidence that fatty liver disease predisposes to COVID-19. J Hepatol 2020; 73: 709-711 [PMID: 32445883 DOI: 10.1016/j.jhep.2020.05.015]

Forlano R, Mullish BH, Mukherjee SK, Nathwani R, Harlow C, Crook P, Judge R, Soubieres A, Middleton P, Daunt A, Perez-Guzman P, Selvapatt N, Lemoine M, Dhar A, Thursz MR, Nayagam S, Manousou P. In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19. PLoS One 2020; 15: e0240400 [PMID: 33031439 DOI: 10.1371/journal.pone.0240400]

Bramante C, Tignanelli CJ, Dutta N, Jones E, Tamariz L, Clark JM, Usher M, Metlon-Meaux G, Ikramuddin S. Non-alcoholic fatty liver disease (NAFLD) and risk of hospitalization for Covid-19. medRxiv 2020 [PMID: 32909011 DOI: 10.1101/2020.09.01.20185850]

Mahamid M, Nseir W, Khoury T, Mahamid B, Nabania A, Sub-Laban K, Schiffer J, Mari A, Sleit W, Goldin E. Nonalcoholic fatty liver disease is associated with COVID-19 severity independently of metabolic syndrome: a retrospective case-control study. Eur J Gastroenterol Hepatol 2020 [PMID: 32868552 DOI: 10.1097/MEG.0000000000001902]

Portincasa P, Krawczyk M, Smyk W, Lannert F, Di Ciaula A. COVID-19 and non-alcoholic fatty liver disease: Two intersecting pandemics. Eur J Clin Invest 2020; 50: e13338 [PMID: 32589264 DOI: 10.1111/eci.13338]

Hashemi N, Viveiros K, Redd WD, Zhou JC, McCarty TR, Bazarbashi AN, Hathorn KE, Wong D, Njie C, Shen L, Chan WW. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: A multicentre United States experience. Liver Int 2020; 40: 2515-2521 [PMID: 32585065 DOI: 10.1111/liv.14583]

Sharma P, Kumar A. Metabolic dysfunction associated fatty liver disease increases risk of severe Covid-19. Diabetes Metab Syndr 2020; 14: 825-827 [PMID: 32540736 DOI: 10.1016/j.dsx.2020.06.013]

Lopez-Mendez I, Aquino-Matus J, Gall SM, Prieto-Nava JD, Juarez-Hernandez E, Uribe M, Castro-Narro G. Association of liver steatosis and fibrosis with clinical outcomes in patients with SARS-CoV-2 infection (COVID-19). Ann Hepatol 2021; 20: 100271 [PMID: 33090028 DOI: 10.1016/j.aohep.2020.09.015]
