A class of logarithmically completely monotonic functions related to the q-gamma function and applications

Khaled Mehrez

Abstract In this paper, the logarithmically complete monotonicity property for a functions involving q-gamma function is investigated for $q \in (0, 1)$. As applications of this results, some new inequalities for the q-gamma function are established. Furthermore, let the sequence r_n be defined by $n! = \sqrt{2\pi n}(n/e)^n e^{r_n}$. We establish new estimates for Stirling’s formula remainder r_n.

Keywords Completely monotonic functions · Logarithmically completely monotonic functions · q-gamma function · Stirling’s formula · Inequalities

Mathematics Subject Classification 33D05 · 26D07 · 26A48

1 Introduction

A real valued function f, defined on an interval I, is called completely monotonic, if f has derivatives of all orders and satisfies

\[(-1)^n f^{(n)}(x) \geq 0, \quad n \in \mathbb{N}_0, \quad x \in I, \quad (1) \]

where \mathbb{N} the set of all positive integers.

A positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\log f$ satisfies
\((-1)^n \left(\log f(x) \right)^{(n)}(x) \geq 0,\)

for all \(x \in I\) and \(n \in \mathbb{N}\).

Completely monotonic functions have remarkable applications in different branches of mathematics. For instance, they play a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and combinatorics [see (3) and the references given therein]. The \(q\)-analogue of the gamma function is defined as

\[
\Gamma_q(x) = (1 - q)^{1-x} \prod_{j=0}^{\infty} \frac{1 - q^{j+1}}{1 - q^{j+x}}, \quad 0 < q < 1.
\]

The \(q\)-gamma function \(\Gamma_q(z)\) has the following basic properties:

\[
\lim_{q \to 1^-} \Gamma_q(z) = \lim_{q \to 1^+} \Gamma_q(z) = \Gamma(z),
\]

and

\[
\Gamma_q(z) = q^{\frac{(z-1)(z-2)}{2}} \tilde{\Gamma}_{\frac{1}{q}}(z).
\]

The \(q\)-digamma function \(\psi_q\), the \(q\)-analogue of the psi or digamma function \(\psi\) is defined for \(0 < q < 1\) by

\[
\psi_q(x) = \frac{\Gamma_q'(x)}{\Gamma_q(x)}
= -\log(1 - q) + \log q \sum_{k=0}^{\infty} \frac{q^{k+x}}{1-q^{k+x}}
= -\log(1 - q) + \log q \sum_{k=1}^{\infty} \frac{q^k x}{1-q^k}.
\]

Using the Euler-Maclaurin formula, Moak [(6), p. 409] obtained the following \(q\)-analogue of Stirling formula

\[
\log \Gamma_q(x) \sim \left(x - \frac{1}{2} \right) \log \left(\frac{1 - q^x}{1 - q} \right) + \text{Li}_2(1 - q^x) + \frac{1}{2} H(q - 1) \log q + C_{\hat{q}}
+ \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{\log \hat{q}}{\hat{q}^x - 1} \right)^{2k-1} \hat{q}^x P_{2k-3}(\hat{q}^x)
\]

as \(x \to \infty\) where \(H(.)\) denotes the Heaviside step function, \(B_k, \ k = 1, 2, \ldots\) are the Bernoulli numbers,

\[
\hat{q} = \begin{cases}
q & \text{if } 0 < q < 1 \\
1/q & \text{if } q > 1
\end{cases}
\]
Li₂(z) is the dilogarithm function defined for complex argument z as (1)

$$\text{Li}_2(z) = - \int_0^z \frac{\log(1-t)}{t} dt, \ z \notin [1, \infty)$$ \hspace{1cm} (7)

P_k is a polynomial of degree k satisfying

$$P_k(z) = (z - z^2) P_{k-1}'(z) + (kz + 1) P_{k-1}(z), \ P_0 = P_{-1} = 1, \ k = 1, 2, \ldots$$ \hspace{1cm} (8)

and

$$C_q = \frac{1}{2} \log(2\pi) + \frac{1}{2} \log \left(\frac{q-1}{\log q} \right) - \frac{1}{24} \log q + \frac{1}{\log q} \int_0^{-\log(q)} \frac{udu}{e^u - 1} + \log \left(\sum_{m=-\infty}^{\infty} r^m(6m+1) - r^{(2m+1)(3m+1)} \right),$$

where $r = \exp(4\pi^2 / \log q)$. Simple computation shows that

$$\left(\frac{\text{Li}_2(1 - q^x)}{\log(q)} \right)' = \frac{xq^x \log(q)}{1 - q^x}$$ \hspace{1cm} (9)

On the other hand, we have

$$\lim_{q \to 1} \frac{\text{Li}_2(1 - q^x)}{\log q} = -x.$$ \hspace{1cm} (10)

Indeed, let $U(q) = 1 - q^x$, by using the l’Hospital’s rule and (9) we get

$$\lim_{q \to 1} \frac{\text{Li}_2(1 - q^x)}{\log q} = \lim_{q \to 1} \left[\left(\frac{q-1}{\log q} \right) \cdot \left(\frac{\text{Li}_2(U(q)) - \text{Li}_2(U(1))}{q-1} \right) \right]$$

$$= \lim_{q \to 1} \left[\left(\frac{\partial U(q)}{\partial q} \right) \left(\frac{\partial \text{Li}_2}{\partial q} \right)(U(q)) \right]$$

$$= \lim_{q \to 1} \left(\frac{x^2 q^x \log(q)}{q(1 - q^x)} \right) = -x. \hspace{1cm} (11)$$

Stirling’s formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n, \ n \in \mathbb{N} \hspace{1cm} (12)$$

has many applications in statistical physics, probability theory and number theory. Actually, it was first discovered in 1733 by the French mathematician Abraham de Moivre (1667–1754) in the form

$$n! \sim \text{constant} \sqrt{n} \left(\frac{n}{e} \right)^n$$

when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the Scottish mathematician James Stirling (1692–1770) found the missing
constant $\sqrt{2\pi}$ when he was trying to give the normal approximation of the binomial distribution.

In 1940 Hummel (4) defined the sequence r_n by
\begin{equation}
\sqrt{2\pi} n / e^n e^{r_n},
\end{equation}
and established
\begin{equation}
\frac{11}{12} < r_n + \log \sqrt{2\pi} < 1
\end{equation}
After the inequality (14) was published, many improvements have been given. For example, Robbins [(8), p. 26] established
\begin{equation}
\frac{1}{12n + 1} < r_n < \frac{1}{12n}
\end{equation}
The main aim of this paper is to investigate the logarithmic complete monotonicity property of the function
\begin{equation}
f_{\alpha, \beta}(q; x) = \frac{\Gamma_q(x + \beta) \exp\left(-\frac{\text{Li}_2(1-qx)}{\log q}\right)}{\left(\frac{1-\log q}{1-q}\right)^{x+\beta-\alpha}}, \quad x > 0,
\end{equation}
for all reals α, β and q such that $q \in (0, 1)$. As applications of these results, sharp bounds for the q-gamma function are derived. In addition, we present new estimate for Stirling’s formula remainder r_n. Some results are shown to be a generalization of results which were obtained by Chen and Qi (2).

2 Useful lemmas

In order to study the function defined by (16) we need the following lemmas which is considered the main tool to arrive at our results.

Lemma 1 Let α, β, q be a reals numbers such that $q \in (0, 1)$. Then
\begin{equation}
(\log f_{\alpha, \beta}(q; x))'' = \sum_{k=1}^{\infty} q^{kx} \log(q) \frac{\log(q)}{1 - q^k} \Phi_{\alpha, \beta}(q^k),
\end{equation}
where
\begin{equation}
\Phi_{\alpha, \beta}(y) = y^\beta \log(y) + (1-y) + (\beta - \alpha) (1-y) \log(y), \quad y = q^k, \ k = 1, 2, \ldots
\end{equation}

Proof Taking logarithm of the function $f_{\alpha, \beta}(q; x)$ leads to
\begin{equation}
\log f_{\alpha, \beta}(q; x) = \log \Gamma_q(x + \beta) - (x + \beta - \alpha) \log \left(\frac{1-q^x}{1-q}\right) - \frac{\text{Li}_2(1-qx)}{\log(q)}
\end{equation}
Differentiation yields
\[
(\log f_{\alpha, \beta}(q; x))' = \psi_q(x + \beta) - \log \left(\frac{1 - q^x}{1 - q} \right) + (\beta - \alpha) \frac{q^x \log(q)}{1 - q^x}.
\]
Thus
\[
(\log f_{\alpha, \beta}(q; x))'' = \psi_q'(x + \beta) + \frac{q^x \log(q)}{1 - q^x} + (\beta - \alpha) \frac{q^x (\log(q))^2}{(1 - q^x)^2}. \tag{19}
\]
From the series expansion
\[
\frac{x}{(1 - x)^2} = \sum_{k=1}^{\infty} k x^k, \quad x \in (0, 1),
\]
and (19) we get
\[
(\log f_{\alpha, \beta}(q; x))'' = (\log(q))^2 \sum_{k=1}^{\infty} k q^{k(x + \beta)} \frac{k}{1 - q^k} + \log(q) \sum_{k=1}^{\infty} q^{kx} + (\beta - \alpha) \log(q) + O(q^{x \log^2(q)} (1 - q^{x^2})^2).
\]
Lemma 1 is thus proved. \hfill \Box

Lemma 2 (6) The following approximation for the q-digamma function
\[
\psi_q(x) = \log \left(\frac{1 - q^x}{1 - q} \right) + \frac{1}{2} \frac{q^x \log(q)}{1 - q^x} + O \left(\frac{q^x \log^2(q)}{(1 - q^x)^2} \right), \tag{20}
\]
holds for all \(q > 0 \) and \(x > 0 \).

Lemma 3 (9) For every \(x, q \in \mathbb{R}_+ \), there exists at least one real number \(a \in [0, 1] \) such that
\[
\psi_q(x) = \log \left(\frac{1 - q^{x+a}}{1 - q} \right) + \frac{q^x \log(q)}{1 - q^x} - \left(\frac{1}{2} - a \right) H(q - 1) \log(q) \tag{21}
\]
where \(H(.) \) is the Heaviside step function.
3 Logarithmically completely monotonic function related to the \(q \)-gamma function

Theorem 1 Let \(\alpha \) be a real number. The function \(f_{\alpha,1}(q; x) \) is logarithmically completely monotonic on \((0, \infty)\), if and only if \(2\alpha \leq 1 \).

Proof From the Lemma 1, we get

\[
\left(\log f_{\alpha,1}(q; x) \right)^{\prime\prime} = \sum_{k=1}^{\infty} \frac{q^{k} \log(q)}{1-q^{k}} \Phi_{\alpha,1}(q^{k}),
\]

where

\[
\Phi_{\alpha,1}(y) = y \log y + (1 - \alpha)(1 - y) \log y + (1 - y), \ y = q^{k}, \ k = 1, 2, \ldots
\]

In order to determine the sign of the function \(\Phi_{\alpha,1}(y) \), by again using the series expansion

\[
x(e^{x} - 1) = \sum_{k=2}^{\infty} \frac{x^{k}}{(k-1)!}, \text{ with } x = \log(1/y),
\]

we obtain

\[
\Phi_{\alpha,1}(y) = y \left(- \log(1/y) + (1 - \alpha) \log(1/y)(1 - 1/y) + 1/y - 1 \right)
\]

\[
= y \sum_{k=2}^{\infty} \frac{(\log(1/y))^{k}}{(k-1)!} \left[\alpha - 1 + \frac{1}{k} \right].
\]

Therefore, the function \(\Phi_{\alpha,1}(y) \) is less than zero if \(2\alpha \leq 1 \). Thus implies that the function \(\left(\log f_{\alpha,1}(q; x) \right)^{\prime\prime} \) is completely monotonic on \((0, \infty)\). This can be rewritten as

\[
(-1)^{n} \left(\log f_{\alpha,1}(q; x) \right)^{(n)} \geq 0, \ n \geq 2.
\]

In particular, \(\left(\log f_{\alpha,1}(q; x) \right)^{\prime\prime} \geq 0 \), so \(\left(\log f_{\alpha,1}(q; x) \right)^{\prime} \) is increasing on \((0, \infty)\), and consequently

\[
\left(\log f_{\alpha,1}(q; x) \right)^{(1)} \leq \lim_{x \to \infty} \left(\log f_{\alpha,1}(q; x) \right)^{(1)}
\]

\[
= \lim_{x \to \infty} \left(\psi_{q}(x + 1) - \log \left(\frac{1-q^{x}}{1-q} \right) + (1 - \alpha) \frac{q^{x} \log(q)}{1-q^{x}} \right)
\]

\[
= 0.
\]

So \(f_{\alpha,1} \) is logarithmically completely monotonic on \((0, \infty)\) if \(2\alpha \leq 1 \).
Conversely, if the function \(f_{\alpha,1}(q; x) \) is logarithmically completely monotonic on \((0, \infty)\), then for all real \(x > 0 \),

\[
(\log f_{\alpha,1}(q; x))^\prime = \psi_q(x + 1) - \log \left(\frac{1 - q^x}{1 - q} \right) + (1 - \alpha) \frac{q^x \log(q)}{1 - q^x} \leq 0. \tag{24}
\]

From the Eq. (24) and along with the identity

\[
\psi_q(x + 1) = \psi_q(x) - \frac{q^x \log(q)}{1 - q^x}, \tag{25}
\]

we have

\[
(\log f_{\alpha,1}(q; x))^\prime = \psi_q(x) - \log \left(\frac{1 - q^x}{1 - q} \right) - \alpha \log(q) \frac{q^x}{1 - q^x} \leq 0,
\]

which is equivalent to

\[
\psi_q(x) - \log \left(\frac{1 - q^x}{1 - q} \right) \leq \alpha \frac{q^x \log(q)}{1 - q^x}. \tag{26}
\]

According to the result obtained in Lemma 2, we see that \(\psi_q(x) \sim I(q; x) \) on \((0, \infty)\) where

\[
I(q; x) = \log \left(\frac{1 - q^x}{1 - q} \right) + \frac{1}{2} \frac{q^x \log(q)}{1 - q^x}. \tag{27}
\]

Combining (26) and (27) we have

\[
\alpha \leq \frac{1}{2}.
\]

The proof is complete. \(\square \)

Theorem 2 Let \(\alpha \) be a real number. The function \([f_{\alpha,1}(q; x)]^{-1}\) is logarithmically completely monotonic on \((0, \infty)\), if and only if \(\alpha \geq 1 \).

Proof From (23), we conclude that the function \(\Phi_{\alpha,1}(y) \geq 0 \) if \(\alpha \geq 1 \) we conclude that

\[
(-1)^n \left(\log \frac{1}{f_{\alpha,1}(q; x)} \right)^{(n)} \geq 0
\]

for all \(x > 0, \alpha \geq 1, q \in (0, 1) \) and \(n \geq 2 \). So,

\[
\left(\log \frac{1}{f_{\alpha,1}(q; x)} \right)^{(1)} = \log \left(\frac{1 - q^x}{1 - q} \right) - \psi_q(x) + \alpha \frac{q^x \log(q)}{1 - q^x},
\]
is increasing, thus
\[
\left(\log \frac{1}{f_{\alpha,1}(q;x)} \right)^{(1)} < \lim_{x \to \infty} \left(\log \frac{1}{f_{\alpha,1}(q;x)} \right)^{(1)}
= \lim_{x \to \infty} \left(\log \left(\frac{1-q^x}{1-q} \right) - \psi_q(x) + \alpha \frac{q^x \log(q)}{1-q^x} \right)
= 0.
\]

Hence, For \(\alpha \geq 1\) and \(n \in \mathbb{N}\),
\[
(-1)^n \left(\log \frac{1}{f_{\alpha,1}(q;x)} \right)^{(n)} \geq 0,
\]
on \((0, \infty)\). Now, assume that \(\frac{1}{f_{\alpha,1}(q;x)}\) is logarithmically completely monotonic on \((0, \infty)\), by definition, this give us that for all \(q \in (0, 1)\) and \(x > 0\),
\[
\left(\log \frac{1}{f_{\alpha,1}(q;x)} \right)^{(1)} = \log \left(\frac{1-q^x}{1-q} \right) - \psi_q(x) + \alpha \frac{q^x \log(q)}{1-q^x} \leq 0,
\]
which implies that
\[
\alpha \geq \frac{1-q^x}{q^x \log(q)} \left(\psi_q(x) - \log \left(\frac{1-q^x}{1-q} \right) \right). \tag{28}
\]

In view of Lemma 3 and inequality (28), we see that for all \(x > 0\) and \(q \in (0,1)\) there exists at least one real number \(a \in [0, 1]\) such that
\[
\alpha \geq \frac{1-q^x}{q^x \log(q)} \left(\log \left(\frac{1-q^{x+a}}{1-q^x} \right) + \frac{q^x \log(q)}{1-q^x} \right),
\]
and consequently
\[
\alpha \geq 1
\]
as \(x \to \infty\). This ends the proof.

Theorem 3 Let \(\alpha\) be a real number and \(\beta \geq 0\). Then, the function \(f_{\alpha,\beta}(q;x)\) is logarithmically completely monotonic function on \((0, \infty)\) if \(2\alpha \leq 1 \leq \beta\).

Proof In view of Lemma 1 we have
\[
\left(\log f_{\alpha,\beta}(q;x) \right)^{''} = \sum_{k=1}^{\infty} \frac{q^{kx} \log(q)}{1-q^x} \Phi_{\alpha,\beta}(q^k),
\]
where $\Phi_{\alpha,\beta}(y)$ defined as in Lemma 1. Thus

$$\Phi_{\alpha,\beta}(y) = y^\beta \left(\sum_{k=2}^{\infty} \frac{(\log(1/y))^k}{(k-1)!} \left[\frac{\beta^k - (\beta - 1)^k}{k} + (\beta - \alpha)(\beta - 1)^{k-1} - \beta^{k-1} \right] \right)$$

$$= y^\beta (\log(1/y))^2 \cdot \frac{2\alpha - 1}{2} + y^\beta \left(\sum_{k=3}^{\infty} \frac{(\log(1/y))^k}{(k-1)!} \left[\frac{\beta^k - (\beta - 1)^k}{k} + (\beta - \alpha)(\beta - 1)^{k-1} - \beta^{k-1} \right] \right).$$

(29)

In [(2), p. 408], the authors proved the following inequality

$$\beta^k - (\beta - 1)^k < k(\beta - \alpha)(\beta^{k-1} - (\beta - 1)^{k-1}),$$

where $k \geq 3$ and $2\alpha \leq 1 \leq \beta$. This in turn together with the (29) implies that $\Phi_{\alpha,\beta}(y) \leq 0$. So, for all $n \geq 2$ we gave

$$(-1)^n \left(\log f_{\alpha,\beta}(q; x) \right)^{(n)} \geq 0 \quad (30)$$

on $(0, \infty)$ for $2\alpha \leq 1 \leq \beta$. As $\left(\log f_{\alpha,\beta}(q; x) \right)^{(2)} \geq 0$, it follows that $\left(\log f_{\alpha,\beta}(q; x) \right)^{(1)}$ is increasing on $(0, \infty)$, and consequently

$$\left(\log f_{\alpha,\beta}(q; x) \right)^{(1)} \leq \lim_{x \to \infty} \left(\log f_{\alpha,\beta}(q; x) \right)^{(1)}$$

$$= \lim_{x \to \infty} \left(\psi_q(x + \beta) - \log \left(\frac{1-q^x}{1-q} \right) + (\beta - \alpha) \frac{q^x \log(q)}{1-q^x} \right)$$

$$= 0.$$

In conclusion, (30) is true also $n = 1$, and we conclude that the function $f_{\alpha,\beta}(q; x)$ is logarithmically completely monotonic on $(0, \infty)$ for $2\alpha \leq 1 \leq \beta$. The proof is now completed.

4 Inequalities

As applications of the logarithmic complete monotonicity properties of the function (16) which are proved in Theorems 1, 2 and 3, we can provide the following inequalities for the q-gamma functions.

Corollary 1 Let $q \in (0, 1)$, $n \in \mathbb{N}$ and $x_k > 0 \ (1 \leq k \leq n)$. Suppose that

$$\sum_{k=1}^{n} p_k = 1 \ (p_k \geq 0).$$
If \(2\alpha \leq 1 \leq \beta\), then
\[
\frac{\Gamma_q \left(\sum_{k=1}^n p_k x_k + \beta \right)}{\prod_{k=1}^n \Gamma_q (x_k + \beta)^{p_k}} \leq \left(\frac{1 - q \sum_{k=1}^n p_k x_k}{1 - q} \right) \frac{\sum_{k=1}^n p_k x_k + \beta - \alpha}{\prod_{k=1}^n (1 - q^{x_k})^{p_k x_k + \beta - \alpha}} K(q; p; x_1, \ldots, x_n)
\]
(31)
where
\[
K(q; p; x_1, \ldots, x_n) = \exp \left(\frac{Li_2 \left(1 - q \sum_{k=1}^n p_k x_k \right) - \sum_{k=1}^n p_k Li_2 \left(1 - q^{x_k} \right)}{\log q} \right),
\]
(32)
\[p = (p_1, \ldots, p_n).\]

Proof From Theorem 3, \(f_{\alpha, \beta}(q; x)\) is logarithmically completely monotonic on the interval \((0, \infty)\), which also implies that the function \(f_{\alpha, \beta}(q; x)\) is logarithmically convex. Combining this fact with Jensen’s inequality for convex functions yields
\[
\log f_{\alpha, \beta} \left(q; \sum_{k=1}^n p_k x_k \right) \leq \sum_{k=1}^n p_k \log f_{\alpha, \beta}(q; x_k).
\]
(33)
Rearranging (33) can lead to the inequality (31).

Corollary 2 Let \(q \in (0, 1)\), \(n \in \mathbb{N}\) and \(x_k > 0\) \((1 \leq k \leq n)\). Suppose that
\[
\sum_{k=1}^n p_k = 1 \ (p_k \geq 0).
\]
Then, the following inequalities holds
\[
\left(\frac{1 - q \sum_{k=1}^n p_k x_k}{1 - q} \right) \frac{\sum_{k=1}^n p_k x_k}{\prod_{k=1}^n (1 - q^{x_k})^{p_k x_k}} \leq \frac{\Gamma_q \left(\sum_{k=1}^n p_k x_k + 1 \right)}{\prod_{k=1}^n \Gamma_q (x_k + 1)^{p_k}} \frac{\sum_{k=1}^n p_k x_k + 1/2}{\prod_{k=1}^n (1 - q^{x_k})^{p_k (x_k + 1/2)}} K(q; p; x_1, \ldots, x_n)
\]
(34)
where \(K(q; p; x_1, \ldots, x_n)\) defined as in (32).
Proof The right side inequality of (34) follows by inequality (31). From Theorem 2, the function $f_{1,1}(q; x)$ is logarithmically concave. Combining this fact with Jensen’s inequality for convex functions we obtain the left side inequality of (34).

Corollary 3 Let $q \in (0, 1)$ and a, b be a reals numbers such that $0 < a < b$. Then the following inequalities

\[
\left(\frac{1-q^b}{1-q} \right)^{b-1} \frac{1-q^a}{1-q}\exp\left(\frac{Li_2(1-q^b) - Li_2(1-q^a)}{\log q} \right) \leq \Gamma_q(b) \leq \frac{1-q^b}{1-q}\exp\left(\frac{Li_2(1-q^b) - Li_2(1-q^a)}{\log q} \right)
\]

holds.

Proof From the monotonicity of the functions $f_{1,1/2}(q; x)$ and $[f_{1,1}(q; x)]^{-1}$ and the recurrence formula

\[
\Gamma_q(x + 1) = \frac{1-q^x}{1-q} \Gamma_q(x),
\]

we obtain the inequalities (35).

Corollary 4 Let $q \in (0, 1)$ the following inequalities

\[
\left(\frac{1-q^x}{1-q} \right)^x \exp\left(- \frac{Li_2(1-q)}{\log q} \right) \exp\left(\frac{Li_2(1-q^x)}{\log q} \right) \leq \Gamma_q(x + 1)
\]

\[
\leq \left(\frac{1-q^x}{1-q} \right)^{x+1/2} \exp\left(- \frac{Li_2(1-q)}{\log q} \right) \exp\left(\frac{Li_2(1-q^x)}{\log q} \right)
\]

holds for all $x \in [1, \infty)$.

Proof As the function $f_{1/2,1}(q; x)$ is logarithmically completely monotonic, $f_{1/2,1}(q; x)$ is also decreasing. The following inequality hold true for every $x \geq 1$:

\[
f_{1/2,1}(q; x) \leq f_{1/2,1}(q; 1).
\]

In addition, as $1/f_{1,1}(q; x)$ is logarithmically completely monotonic, we deduce that $f_{1,1}(q; x)$ is increasing. The following inequality hold true for all $x \geq 1$:

\[
f_{1,1}(q; x) \leq f_{1,1}(q; x).
\]

Combining inequalities (38) and (39) we obtain the inequalities (37).
In the next Corollary we present new estimates for Stirling’s formula remainder \(r_n \).

Corollary 5 The following inequalities hold true for every integer \(n \geq 1 \):

\[
e \cdot \left(\frac{n}{e} \right)^n \leq n! \leq e \cdot \sqrt{n} \left(\frac{n}{e} \right)^n,
\]

and

\[
1 - \frac{\log 2\pi n}{2} \leq r_n \leq 1 - \frac{\log 2\pi}{2}
\]

In each of the above inequalities equality hold if and only if \(n = 1 \).

Proof Letting \(q \to 1 \) in (37). Since

\[
\lim_{q \to 1} \left(\frac{1 - q^x}{1 - q} \right)^x = \lim_{q \to 1} \exp \left[x \log \left(\frac{1 - q^x}{1 - q} \right) \right] = \lim_{q \to 1} \exp \left[x \log \left(\frac{x \log(q)}{q - 1} \right) \right] = x^x,
\]

and using (3) and (10) we obtain

\[
x^x e^{1-x} \leq \Gamma(x + 1) \leq x^{x+1/2} e^{1-x}.
\]

Replacing \(x \) by \(n \geq 1 \) in (42) we get (40). Finally, from the definition of the sequence \(r_n \) we have

\[
e^{r_n} = \left(\frac{e}{n} \right)^n \cdot \frac{n!}{\sqrt{2\pi n}}
\]

Combining (40) and (43) we conclude that (41) is valid. \(\square \)

5 Concluding remarks

In this section we would like to comment the main results of this paper.

1. It is worth mentioning that the inequality (35) when letting \(q \) tends to 1, returns to the inequalities [(2), p. 407]

\[
\frac{b^{b-1}}{a^{a-1}} e^{a-b} \leq \frac{\Gamma(a)}{\Gamma(b)} < \frac{b^{b-1/2}}{a^{a-1/2}} e^{a-b},
\]

for \(b > a > 0 \).
2. Let \(n = 2 \) and \(p_k = 1/2, \ k = 1, 2 \) in inequalities (34) we obtain the lower bounds for the \(q \)-analogue for Gurland’s ratio (5) as follows

\[
\left(\frac{1-q^x}{1-q} \right)^{x+y} \leq \Gamma_q^2 \left(\frac{x+y+2}{2} \right) \frac{\Gamma_q(x+1)\Gamma_q(y+1)}{\exp \left(\text{Li}_2(1-q^x) + \text{Li}_2(1-q^y) - 2 \text{Li}_2(1-q^{x+y/2}) \right)} \log q \leq \left(\frac{1-q^x}{1-q} \right)^{x+y} \left(\frac{1-q^y}{1-q} \right)^{y+1/2} \cdot (45)
\]

where \(x, y \in (0, \infty) \). In particular, let \(q \) tends to 1 in (45) we get

\[
\left(\frac{x+y}{2} \right)^{x+y} \leq \Gamma(x+1)\Gamma(y+1) \leq \left(\frac{x+y}{2} \right)^{x+y} \cdot (46)
\]

The left hand side inequalities of (46) has proved first by Mortici [(7), p. 188] and the right hand side of inequalities (46) is new.

References

Abramowitz, M., Stegun, C.A.: Handbook of mathematical functions with formulas, graphs, mathematical tables 7th printing. In: Applied mathematics series, vol. 55. National Bureau of Standards, Washington, DC (1964)
Chen, C.-P., Qi, F.: Logarithmically completely monotonic functions relating to the gamma function. J. Math. Anal. Appl. 321, 405–411 (2006)
Chen, C.-P., Qi, F.: Logarithmically completely monotonic ratios of mean values and an application. Glob. J. Math Math. Sci. 1, 71–76 (2005)
Hummel, P.M.: A note on Stirling’s formula. Am. Math. Mon. 47, 97–99 (1940)
Merkle, M.: Gurland’s ratio for the gamma function. Comput. Math. Appl. 49, 389–406 (2005)
Moak, D.S.: The \(q \)-analogue of Stirling’s formula. Rocky Mountain J. Math. 14, 403–412 (1984)
Mortici, C.: Completely monotonic functions associated with gamma function and applications. Carpathian J. Math. 25, 186–191 (2009)
Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)
Salem, A.: Certain class of approximation for the \(q \)-digamma function. Rocky Mountain. J. Math (2016)