Abstract We give a necessary and sufficient mean condition for the quotient of two Jensen functionals and define a new class \(\Lambda_{f,g}(a,b) \) of mean values where \(f, g \) are continuously differentiable convex functions satisfying the relation \(f''(t) = tg''(t), t \in \mathbb{R}^+ \). Then we asked for a characterization of \(f, g \) such that the inequalities \(H(a,b) \leq \Lambda_{f,g}(a,b) \leq A(a,b) \) or \(L(a,b) \leq \Lambda_{f,g}(a,b) \leq I(a,b) \) hold for each positive \(a, b \), where \(H, A, L, I \) are the harmonic, arithmetic, logarithmic and identric means, respectively. For a subclass of \(\Lambda \) with \(g''(t) = t^s, s \in \mathbb{R}, \) this problem is thoroughly solved.

1. Introduction

1.1 It is said that the mean \(P \) is intermediate relating to the means \(M \) and \(N \), \(M \leq N \) if the relation

\[
M(a,b) \leq P(a,b) \leq N(a,b),
\]

holds for each two positive numbers \(a, b \).

It is also well known that

\[
\min\{a,b\} \leq H(a,b) \leq G(a,b) \leq L(a,b) \leq I(a,b) \leq A(a,b) \leq S(a,b) \leq \max\{a,b\},
\]

(1)

where

\[
H = H(a,b) := 2(1/a + 1/b)^{-1}; \quad G = G(a,b) := \sqrt{ab}; \quad L = L(a,b) := \frac{b-a}{\log b - \log a};
\]

\[
I = I(a,b) := (b^b/a^a)^{1/(b-a)}/e; \quad A = A(a,b) := \frac{a+b}{2}; \quad S = S(a,b) := a^{a/b}b^{b/a},
\]

are the harmonic, geometric, logarithmic, identric, arithmetic and Gini mean, respectively.

An easy task is to construct intermediate means related to two given means \(M \) and \(N \) with \(M \leq N \). For instance, for an arbitrary mean \(P \), we have that

\[
M(a,b) \leq P(M(a,b), N(a,b)) \leq N(a,b).
\]

The problem is more difficult if we have to decide whether the given mean is intermediate or not. For example, the relation

\[
L(a,b) \leq S_s(a,b) \leq I(a,b),
\]

1
holds for each positive \(a\) and \(b\) if and only if \(0 \leq s \leq 1\), where the Stolarsky mean \(S_s\) is defined by (cf [4])

\[
S_s(a, b) := \left(\frac{b^s - a^s}{s(b - a)} \right)^{1/(s-1)}.
\]

Also,

\[
G(a, b) \leq A_s(a, b) \leq A(a, b),
\]

holds if and only if \(0 \leq s \leq 1\), where the Hölder mean of order \(s\) is defined by

\[
A_s(a, b) := \left(\frac{a^s + b^s}{2} \right)^{1/s}.
\]

An inverse problem is to find best possible approximation of a given mean \(P\) by elements of an ordered class of means \(S\). A good example for this topic is comparison between the logarithmic mean and the class \(A_s\) of Hölder means of order \(s\). Namely, since \(A_0 = \lim_{s \to 0} A_s = G\) and \(A_1 = A\), it follows from (1) that

\[
A_0 \leq L \leq A_1.
\]

Since \(A_s\) is monotone increasing in \(s\), an improving of the above is given by Carlson [2]:

\[
A_0 \leq L \leq A_{1/2}.
\]

Finally, Lin shoved in [3] that

\[
A_0 \leq L \leq A_{1/3},
\]

is the best possible approximation of the logarithmic mean by the means from the class \(A_s\).

Numerous similar results have been obtained recently. For example, an approximation of Seiffert’s mean by the class \(A_s\) is given in [6], [8].

In this article we shall give best possible approximations for a whole variety of elementary means (1) by the class \(\lambda_s\) defined below (see Thm 3.).

1. 2. Let \(f, g\) be twice continuously differentiable (strictly) convex functions on \(\mathbb{R}^+\). By definition (cf [1], p. 5),

\[
\bar{f}(a, b) := f(a) + f(b) - 2f\left(\frac{a + b}{2} \right) > 0, \quad a \neq b,
\]

and

\[
\bar{f}(a, b) = 0,
\]

if and only if \(a = b\).

It turns out that the expression

\[
\Lambda_{f,g}(a, b) := \frac{\bar{f}(a, b)}{g(a, b)} = \frac{f(a) + f(b) - 2f\left(\frac{a + b}{2} \right)}{g(a) + g(b) - 2g\left(\frac{a + b}{2} \right)},
\]

represents a mean of two positive numbers \(a, b\); that is, the relation

\[
\min\{a, b\} \leq \Lambda_{f,g}(a, b) \leq \max\{a, b\},
\]

(2)
holds for each $a, b \in \mathbb{R}^+$, if and only if the relation
\[f''(t) = tg''(t), \quad \text{(3)} \]
holds for each $t \in \mathbb{R}^+$.

Let $f, g \in C^\infty(0, \infty)$ and denote by Λ the set \{(f, g)\} of convex functions satisfying the relation (3). There is a natural question how to improve the bounds in (2); in this sense we come upon the following intermediate mean problem:

Open question Under what additional conditions on $f, g \in \Lambda$, the inequalities
\[H(a, b) \leq \Lambda_{f,g}(a, b) \leq A(a, b), \]
or, more tightly,
\[L(a, b) \leq \Lambda_{f,g}(a, b) \leq I(a, b), \]
hold for each $a, b \in \mathbb{R}^+$?

As an illustration, consider the function $f_s(t)$ defined to be
\[f_s(t) = \begin{cases}
(t^s - st + s - 1)/s(s - 1), & s(s - 1) \neq 0; \\
t - \log t - 1, & s = 0; \\
t \log t - t + 1, & s = 1.
\end{cases} \]

Since
\[f'_s(t) = \begin{cases}
\frac{t^{s-1} - 1}{s-1}, & s(s - 1) \neq 0; \\
1 - \frac{1}{t}, & s = 0; \\
\log t, & s = 1,
\end{cases} \]
and
\[f''_s(t) = t^{s-2}, \quad s \in \mathbb{R}, \quad t > 0, \]
it follows that $f_s(t)$ is a twice continuously differentiable convex function for $s \in \mathbb{R}, \quad t \in \mathbb{R}^+$.

Moreover, it is evident that $(f_{s+1}, f_s) \in \Lambda$.

We shall give in the sequel a complete answer to the above question concerning the means
\[\tilde{f}_{s+1}(a, b)/\tilde{f}_s(a, b) := \lambda_s(a, b) \]
defined by
\[\lambda_s(a, b) = \begin{cases}
\frac{a^{s+1} + b^{s+1} - 2(\frac{a+b}{a+b})^{s+1}}{s+1} & s \in \mathbb{R}/\{-1, 0, 1\}; \\
2 \log \frac{a+b}{a-b} - \log a - \log b & s = -1; \\
a \log a + b \log b - (a+b) \log \frac{a+b}{a-b} & s = 0; \\
2 \log \frac{a+b}{a-b} - \log a - \log b & s = 0; \\
(b-a)^2 & s = 1.
\end{cases} \]

Those means are obviously symmetric and homogeneous of order one.
As a consequence we obtain some new intermediate mean values; for instance, we show that the inequalities
\[H(a, b) \leq \lambda_{-1}(a, b) \leq G(a, b) \leq \lambda_0(a, b) \leq L(a, b) \leq \lambda_1(a, b) \leq I(a, b), \]
hold for arbitrary \(a, b \in \mathbb{R}^+ \).

Note that
\[\lambda_{-1} = \frac{2G^2 \log(A/G)}{A - H}; \quad \lambda_0 = A \frac{\log(S/A)}{\log(A/G)}; \quad \lambda_1 = \frac{1}{2} A - H \frac{\log(S/A)}{2 \log(S/A)}. \]

2. Results

We prove firstly the following

Theorem 1 Let \(f, g \in C^2(I) \) with \(g'' > 0 \). The expression \(\Lambda_{f,g}(a, b) \) represents a mean of arbitrary numbers \(a, b \in I \) if and only if the relation
\[f''(t) = tg''(t) \] (3)
holds for \(t \in I \).

Remark 1 In the same way, for arbitrary \(p, q > 0, p + q = 1 \), it can be deduced that the quotient
\[\Lambda_{f,g}(p, q; a, b) := \frac{pf(a) + qf(b) - f(pa + qb)}{pg(a) + qg(b) - g(pa + qb)} \]
represents a mean value of numbers \(a, b \) if and only if (3) holds.

A generalization of the above assertion is the next

Theorem 2 Let \(f, g : I \to \mathbb{R} \) be twice continuously differentiable functions with \(g'' > 0 \) on \(I \) and let \(p = \{p_i\}, i = 1, 2, \ldots, \sum p_i = 1 \) be an arbitrary positive weight sequence. Then the quotient of two Jensen functionals
\[\Lambda_{f,g}(p, x) := \frac{\sum_{i=1}^n p_i f(x_i) - f(\sum_{i=1}^n p_i x_i)}{\sum_{i=1}^n p_i g(x_i) - g(\sum_{i=1}^n p_i x_i)}, \quad n \geq 2, \]
represents a mean of an arbitrary set of real numbers \(x_1, x_2, \ldots, x_n \in I \) if and only if the relation
\[f''(t) = tg''(t) \]
holds for each \(t \in I \).

Remark 2 It should be noted that the relation \(f''(t) = tg''(t) \) determines \(f \) in terms of \(g \) in an easy way. Precisely,
\[f(t) = tg(t) - 2G(t) + ct + d, \]
where \(G(t) := \int_1^t g(u)du \) and \(c \) and \(d \) are constants.

Our results concerning the means \(\lambda_s(a, b), s \in \mathbb{R} \) are included in the following

Theorem 3 For the class of means \(\lambda_s(a, b) \) defined above, the following assertions hold for each \(a, b \in \mathbb{R}^+ \).
1. The means $\lambda_s(a, b)$ are monotone increasing in s;
2. $\lambda_s(a, b) \leq H(a, b)$ for each $s \leq -4$;
3. $H(a, b) \leq \lambda_s(a, b) \leq G(a, b)$ for $-3 \leq s \leq -1$;
4. $G(a, b) \leq \lambda_s(a, b) \leq L(a, b)$ for $-1/2 \leq s \leq 0$;
5. there is a number $s_0 \in (1/12, 1/11)$ such that $L(a, b) \leq \lambda_s(a, b) \leq I(a, b)$ for $s_0 \leq s \leq 1$;
6. there is a number $s_1 \in (1.03, 1.04)$ such that $I(a, b) \leq \lambda_s(a, b) \leq A(a, b)$ for $s_1 \leq s \leq 2$;
7. $A(a, b) \leq \lambda_s(a, b) \leq S(a, b)$ for each $2 \leq s \leq 5$;
8. there is no finite s such that the inequality $S(a, b) \leq \lambda_s(a, b)$ holds for each $a, b \in \mathbb{R}^+$.

The above estimations are best possible.

3. Proofs

Proof of Theorem 1 We prove firstly the necessity of the condition (3).

Since $\Lambda_{f,g}(a, b)$ is a mean value for arbitrary $a, b \in I; \ a \neq b$, we have

$$\min\{a, b\} \leq \Lambda_{f,g}(a, b) \leq \max\{a, b\}.$$

Hence

$$\lim_{{b \to a}} \Lambda_{f,g}(a, b) = a. \quad (4)$$

From the other hand, due to l’Hospital’s rule we obtain

$$\lim_{{b \to a}} \Lambda_{f,g}(a, b) = \lim_{{b \to a}} \left(\frac{f'(b) - f'(\frac{a+b}{2})}{g'(b) - g'(\frac{a+b}{2})} \right) = \lim_{{b \to a}} \left(\frac{2f''(b) - f''(\frac{a+b}{2})}{2g''(b) - g''(\frac{a+b}{2})} \right)$$

$$= \frac{f''(a)}{g''(a)}. \quad (5)$$

Comparing (4) and (5) the desired result follows.

Suppose now that (3) holds and let $a < b$. Since $g''(t) > 0$ for $t \in [a, b]$ by the Cauchy mean value theorem there exists $\xi \in (\frac{a+t}{2}, t)$ such that

$$\frac{f'(t) - f'(\frac{a+t}{2})}{g'(t) - g'(\frac{a+t}{2})} = \frac{f''(\xi)}{g''(\xi)} = \xi. \quad (6)$$

But,

$$a \leq \frac{a+t}{2} < \xi < t \leq b,$$

and, since g' is strictly increasing, $g'(t) - g'(\frac{a+t}{2}) > 0$, $t \in [a, b]$.

Therefore, by (6) we get
\[a(g'(t) - g'(\frac{a + t}{2})) \leq f'(t) - f'(\frac{a + t}{2}) \leq b(g'(t) - g'(\frac{a + t}{2})). \] \hspace{1cm} (7)

Finally, integrating (7) over \(t \in [a, b] \) we obtain the assertion from Theorem 1.

Proof of Theorem 2 We shall give a proof of this assertion by induction on \(n \).

By Remark 1, it holds for \(n = 2 \).

Next, it is not difficult to check the identity
\[
\sum_{i=1}^{n} p_i f(x_i) - f(\sum_{i=1}^{n} p_i x_i) = (1 - p_n)(\sum_{i=1}^{n-1} p'_i f(x_i) - f(\sum_{i=1}^{n-1} p'_i x_i)) \\
+ [(1 - p_n)f(T) + p_n f(x_n) - f((1 - p_n)T + p_n x_n)],
\]
where
\[
T := \sum_{i=1}^{n-1} p'_i x_i; \quad p'_i := p_i/(1 - p_n), \quad i = 1, 2, \ldots, n - 1; \quad \sum_{i=1}^{n-1} p'_i = 1.
\]

Therefore, by induction hypothesis and Remark 1, we get
\[
\sum_{i=1}^{n} p_i f(x_i) - f(\sum_{i=1}^{n} p_i x_i) \leq \max\{x_1, x_2, \ldots, x_{n-1}\}(1 - p_n)(\sum_{i=1}^{n-1} p'_i f(x_i) - f(\sum_{i=1}^{n-1} p'_i x_i)) \\
+ \max\{T, x_n\}[(1 - p_n)g(T) + p_n g(x_n) - g((1 - p_n)T + p_n x_n)] \\
\leq \max\{x_1, x_2, \ldots, x_n\}((1 - p_n)(\sum_{i=1}^{n-1} p'_i g(x_i) - g(\sum_{i=1}^{n-1} p'_i x_i)) \\
+ [(1 - p_n)g(T) + p_n g(x_n) - g((1 - p_n)T + p_n x_n))] \\
= \max\{x_1, x_2, \ldots, x_n\}(\sum_{i=1}^{n} p_i g(x_i) - g(\sum_{i=1}^{n} p_i x_i)).
\]

The inequality
\[
\min\{x_1, x_2, \ldots, x_n\} \leq A_{f,g}(p, x),
\]
can be proved analogously.

For the proof of necessity, put \(x_2 = x_3 = \cdots = x_n \) and proceed as in Theorem 1.

Remark It is evident from (3) that if \(I \subseteq \mathbb{R}^+ \) then \(f \) has to be also convex on \(I \). Otherwise, it shouldn't be the case. For example, the conditions of Theorem 2 are satisfied with \(f(t) = t^3/3, g(t) = t^2, t \in \mathbb{R} \).

Hence, for an arbitrary sequence \(\{x_i\}_1^n \) of real numbers, we obtain
\[
\min\{x_1, x_2, \ldots, x_n\} \leq \frac{\sum_{i=1}^{n} p_i x_i^3 - (\sum_{i=1}^{n} p_i x_i)^3}{3(\sum_{i=1}^{n} p_i x_i^2 - (\sum_{i=1}^{n} p_i x_i)^2)} \leq \max\{x_1, x_2, \ldots, x_n\}.
\]
Because the above inequality does not depend on \(n \), a probabilistic interpretation of the above result is contained in the following.

Theorem 4. For an arbitrary probability law \(F \) of random variable \(X \) with support on \((-\infty, +\infty)\), we have

\[
(EX)^3 + 3(\min X) \sigma_X^2 \leq EX^3 \leq (EX)^3 + 3(\max X) \sigma_X^2.
\]

Proof of Theorem 3, part 1 We shall prove a general assertion of this type. Namely, for an arbitrary positive sequence \(x = \{x_i\} \) and an associated weight sequence \(p = \{p_i\}, i = 1, 2, \ldots \), denote

\[
\chi_s(p, x) := \begin{cases}
\frac{\sum p_i x_i - (\sum p_i x_i)^s}{s^{s-1}}, & s \in \mathbb{R}/\{0, 1\}; \\
\log(\sum p_i x_i) - \sum p_i \log x_i, & s = 0; \\
\sum p_i x_i \log x_i - (\sum p_i x_i) \log(\sum p_i x_i), & s = 1.
\end{cases}
\]

For \(s \in \mathbb{R}, r > 0 \) we have

\[
\chi_s(p, x) \chi_{s+r+1}(p, x) \geq \chi_{s+1}(p, x) \chi_{s+r}(p, x),
\]

which is equivalent to

Theorem 3a The sequence \(\{\chi_{s+1}(p, x)/\chi_s(p, x)\} \) is monotone increasing in \(s, s \in \mathbb{R} \).

This assertion follows applying the result from ([5], Theorem 2) which states that

Lemma 1 For \(-\infty < a < b < c < +\infty\), the inequality

\[
(\chi_b(p, x))^{c-a} \leq (\chi_a(p, x))^{c-b} (\chi_c(p, x))^{b-a},
\]

holds for arbitrary sequences \(p, x \).

Putting there \(a = s, b = s + 1, c = s + r + 1 \) and \(a = s, b = s + r, c = s + r + 1 \), we successively obtain

\[
(\chi_{s+1}(p, x))^{r+1} \leq (\chi_s(p, x))^r \chi_{s+r+1}(p, x),
\]

and

\[
(\chi_{s+r}(p, x))^{r+1} \leq \chi_s(p, x) (\chi_{s+r+1}(p, x))^r.
\]

Since \(r > 0 \), multiplying those inequalities we get the relation (4) i.e. the proof of Theorem 3a.

The part 1. of Theorem 3 follows for \(p_1 = p_2 = 1/2 \).

A general way to prove the rest of Theorem 3 is to use an easy-checkable identity

\[
\frac{\lambda_s(a, b)}{A(a, b)} = \lambda_s(1 + t, 1 - t),
\]

with \(t := \frac{b-a}{b+r-a} \).
Since $0 < a < b$, we get $0 < t < 1$. Also,

$$
\frac{H(a, b)}{A(a, b)} = 1 - t^2; \quad \frac{G(a, b)}{A(a, b)} = \sqrt{1 - t^2}; \quad \frac{L(a, b)}{A(a, b)} = \frac{2t}{\log(1 + t) - \log(1 - t)}; \quad (5)
$$

$$
\frac{I(a, b)}{A(a, b)} = \exp\left(\frac{(1 + t) \log(1 + t) - (1 - t) \log(1 - t)}{2t}\right); \quad \frac{S(a, b)}{A(a, b)} = \exp\left(\frac{1}{2}((1 + t) \log(1 + t) + (1 - t) \log(1 - t))\right).
$$

Therefore, we have to compare some one-variable inequalities and to check their validness for each $t \in (0, 1)$.

For example, we shall prove that the inequality

$$
\lambda_s(a, b) \leq L(a, b)
$$

holds for each positive a, b if and only if $s \leq 0$.

Since $\lambda_s(a, b)$ is monotone increasing in s, it is enough to prove that

$$
\frac{\lambda_0(a, b)}{L(a, b)} \leq 1.
$$

By the above formulae, this is equivalent to the assertion that the inequality

$$
\phi(t) \leq 0 \quad (6)
$$

holds for each $t \in (0, 1)$, with

$$
\phi(t) := \frac{\log(1 + t) - \log(1 - t)}{2t}((1 + t) \log(1 + t) + (1 - t) \log(1 - t)) + \log(1 + t) + \log(1 - t).
$$

We shall prove that the power series expansion of $\phi(t)$ have non-positive coefficients. Thus the relation (6) will be proved.

Since

$$
\frac{\log(1 + t) - \log(1 - t)}{2t} = \sum_{k=0}^{\infty} \frac{t^{2k}}{2k + 1}; \quad \log(1 + t) + \log(1 - t) = -t^2 \sum_{k=0}^{\infty} \frac{t^{2k}}{k + 1};
$$

$$
(1 + t) \log(1 + t) + (1 - t) \log(1 - t) = t^2 \sum_{k=0}^{\infty} \frac{t^{2k}}{(k + 1)(2k + 1)},
$$

we get

$$
\phi(t)/t^2 = \sum_{n=0}^{\infty} \left(- \frac{1}{n + 1} + \sum_{k=0}^{n} \frac{1}{(2n - 2k + 1)(k + 1)(2k + 1)}\right) t^{2n} = \sum_{0}^{\infty} c_n t^{2n}.
$$

Hence,

$$
c_0 = c_1 = 0; \quad c_2 = -1/90,
$$
and, after some calculation, we get
\[c_n = \frac{2}{(n+1)(2n+3)} \left((n+2) \sum_{k=1}^{n} \frac{1}{2k+1} - (n+1) \sum_{k=1}^{n} \frac{1}{2k} \right), \quad n > 1. \]

Now, one can easily prove (by induction, for example) that
\[d_n := (n+2) \sum_{k=1}^{n} \frac{1}{2k+1} - (n+1) \sum_{k=1}^{n} \frac{1}{2k} \]
is a negative real number for \(n \geq 2 \). Therefore \(c_n \leq 0 \), and the proof of the first part is done.

For \(0 < s < 1 \) we have
\[\frac{\lambda_s(a,b)}{L(a,b)} - 1 = \frac{(1-s)((1+t)^{s+1} + (1-t)^{s+1} - 2) \log \frac{1+t}{1-t}}{2t(1+s)(2 - (1+t)^s - (1-t)^s)} - 1 = \frac{1}{6} st^2 + O(t^4) \quad (t \to 0). \]

Therefore, \(\lambda_s(a,b) > L(a,b) \) for \(s > 0 \) and sufficiently small \(t := (b-a)/(b+a) \).

Similarly, we shall prove that the inequality
\[\lambda_s(a,b) \leq I(a,b), \]
holds for each \(a, b; 0 < a < b \) if and only if \(s \leq 1 \).

As before, it is enough to consider the expression
\[\frac{I(a,b)}{\lambda_1(a,b)} = e^{\mu(t)} \nu(t) := \psi(t), \]
with
\[\mu(t) = \frac{(1+t) \log(1+t) - (1-t) \log(1-t)}{2t} - 1; \quad \nu(t) = \frac{(1+t) \log(1+t) + (1-t) \log(1-t)}{t^2}. \]

It is not difficult to check the identity
\[\psi'(t) = -e^{\mu(t)} \phi(t)/t^3. \]

Hence by (6), we get \(\psi'(t) > 0 \) i. e. \(\psi(t) \) is monotone increasing for \(t \in (0, 1) \).

Therefore
\[\frac{I(a,b)}{\lambda_1(a,b)} \geq \lim_{t \to 0^+} \psi(t) = 1. \]

By monotonicity it follows that \(\lambda_s(a,b) \leq I(a,b) \) for \(s \leq 1 \).

For \(s > 1 \), \(\frac{b-a}{b+a} = t \), we have
\[\lambda_s(a,b) - I(a,b) = \left(\frac{1}{6} (s-1)t^2 + O(t^4) \right) A(a,b) \quad (t \to 0^+). \]
Hence, $\lambda_s(a, b) > I(a, b)$ for $s > 1$ and t sufficiently small.

From the other hand,

$$\lim_{t \to 1^-} \left[\frac{\lambda_s(a, b)}{I(a, b)} - 1 \right] = \frac{e(s - 1)(2^{s+1} - 2)}{2(s + 1)(2^s - 2)} - 1 := \tau(s).$$

Examining the function $\tau(s)$, we find out that it has the only real zero at $s_0 \approx 1.0376$ and is negative for $s \in (1, s_0)$.

Remark 2 Since $\psi(t)$ is monotone increasing, we also get

$$\frac{I(a, b)}{\lambda_1(a, b)} \leq \lim_{t \to 1^-} \psi(t) = \frac{4\log 2}{e}.$$

Hence

$$1 \leq \frac{I(a, b)}{\lambda_1(a, b)} \leq \frac{4\log 2}{e}.$$

A calculation gives $\frac{4\log 2}{e} \approx 1.0200$.

Note also that

$\lambda_2(a, b) \equiv A(a, b)$.

Therefore, applying the assertion from the part 1., we get

$\lambda_s(a, b) \leq A(a, b)$, $s \leq 2$; $\lambda_s(a, b) \geq A(a, b)$, $s \geq 2$.

Finally, we give a detailed proof of the part 7.

We have to prove that $\lambda_s(a, b) \leq S(a, b)$ for $s \leq 5$. Since $\lambda_s(a, b)$ is monotone increasing in s, it is sufficient to prove that the inequality

$\lambda_5(a, b) \leq S(a, b)$

holds for each $a, b \in \mathbb{R}^+$.

Therefore, by the transformation given above, we get

$$\log \frac{\lambda_2}{A} = \log \left[\frac{2(1 + t)^6 + (1 - t)^6 - 2}{3(1 + t)^5 + (1 - t)^5 - 2} \right] = \log \left[\frac{2 + 15t^2 + t^4}{15} \right] \leq \log \left[\frac{1 + t^2 + t^4/4}{1 + t^2/2} \right] = \log(1 + t^2/2) = t^2/2 - t^4/8 + t^6/24 - \cdots \leq t^2/2 + t^4/12 + t^6/30 + \cdots = \frac{1}{2}((1 + t) \log(1 + t) + (1 - t) \log(1 - t)) = \log S/A,$$

and the proof is done.

Further, we have to show that $\lambda_s(a, b) > S(a, b)$ for some positive a, b whenever $s > 5$.
Indeed, since
\[(1 + t)^s + (1 - t)^s - 2 = \left(\frac{s}{2}\right)t^2 + \left(\frac{s}{4}\right)t^4 + O(t^6),\]
for \(s > 5\) and sufficiently small \(t\), we get
\[
\frac{\lambda_s}{A} = \frac{s - 1}{s + 1} \left(\frac{s + 1}{2}\right)t^2 + \left(\frac{s - 1}{4}\right)t^4 + O(t^6)
\]
\[
\left.\quad = 1 + (s - 1)(s - 2)t^2/12 + O(t^4)\right|_{\text{for } s > 5} = 1 + (\frac{s - 1}{6})t^2 + O(t^4).
\]

Similarly,
\[
\frac{S}{A} = \exp\left(\frac{1}{2}((1 + t) \log(1 + t) + (1 - t) \log(1 - t))\right) = \exp(t^2/2 + O(t^4)) = 1 + t^2/2 + O(t^4).
\]

Hence,
\[
\frac{1}{A}(\lambda_s - S) = \frac{1}{6}(s - 5)t^2 + O(t^4),
\]
and this expression is positive for \(s > 5\) and \(t\) sufficiently small, i.e. \(a\) sufficiently close to \(b\).

As for the part 8., applying the above transformation we obtain
\[
\frac{\lambda_s(a,b)}{S(a,b)} = \frac{s - 1}{s + 1} \left(\frac{s + 1}{2}\right)t^2 + \left(\frac{s - 1}{4}\right)t^4 - 2 \exp\left(-\frac{1}{2}((1 + t) \log(1 + t) + (1 - t) \log(1 - t))\right),
\]
where \(0 < a < b\), \(t = \frac{b - a}{b + a}\).

Since for \(s > 5\),
\[
\lim_{t \to 1^-} \frac{\lambda_s}{S} = \frac{s - 1}{s + 1} \frac{2^s - 1}{2^s - 2^s}
\]
and the last expression is less than one, it follows that the inequality \(S(a,b) < \lambda_s(a,b)\) cannot hold whenever \(\frac{b}{a}\) is sufficiently large.

The rest of the proof is straightforward.

Acknowledgment. The author is indebted to the referees for valuable suggestions.

References

[1] Hardy, G.H., Littlewood, J. E., Pólya, G.: Inequalities, Camb. Univ. Press, Cambridge (1978).

[2] Carlson, B. C.: The logarithmic mean, Amer. Math. Monthly, 79 (1972), pp. 615-618.

[3] Lin, T. P.: The power mean and the logarithmic mean, Amer. Math. Monthly, 81 (1974), pp. 879-883.
[4] Stolarsky, K.: Generalizations of the logarithmic mean, Math. Mag. 48 (1975), pp. 87-92.

[5] Simic, S.: On logarithmic convexity for differences of power means, J. Inequal. Appl. Article ID 37359 (2007).

[6] Hasto, P.A.: Optimal inequalities between Seiffert’s mean and power means, Math. Inequal. Appl. Vol. 7, No. 1 (2004), pp. 47-53.

[7] Simic, S.: An extension of Stolarsky means to the multivariable case, Int. J. Math. Math. Sci. Article ID 432857 (2009).

[8] Yang, Z.-H.: Sharp bounds for the second Seiffert mean in terms of power mean, arXiv: 1206.5494v1 [math. CA] (2012).