Consensus statement AIGO/SICCR diagnosis and treatment of chronic constipation and obstructed defecation (Part II: Treatment)

Antonio Bove, Massimo Bellini, Edda Battaglia, Renato Bocchini, Dario Gambaccini, Vincenzo Bove, Filippo Pucciani, Donato Francesco Altomare, Giuseppe Dodi, Guido Sciaudone, Ezio Falletto, Vittorio Piloni

Antonio Bove, Vincenzo Bove, Gastroenterology and Endoscopy Unit, Department of Gastroenterology, AORN “A. Cardarelli”, 80131 Naples, Italy
Massimo Bellini, Dario Gambaccini, Gastrointestinal Unit, Department of Gastroenterology, University of Pisa, 56100 Pisa, Italy
Edda Battaglia, Gastroenterology and Endoscopy Unit, Cardinal Massaja Hospital, 14100 Asti, Italy
Renato Bocchini, Gastroenterology Unit, M. Bufalini Hospital, 47023 Cesena, Italy
Filippo Pucciani, Department of Medical and Surgical Critical Care, University of Florence, 50141 Florence, Italy
Donato Francesco Altomare, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
Giuseppe Dodi, Department of Oncological and Surgical Sciences, University of Padua, 35126 Padua, Italy
Guido Sciaudone, Division of General and Geriatric Surgery, Second University of Naples, 80131 Naples, Italy
Ezio Falletto, Sixth Division of University Surgery, Department of General Surgery, San Giovanni Battista Hospital, 10126 Turin, Italy
Vittorio Piloni, Diagnostic Imaging Centre “N. Aliotta”, Villa Silvia - Senigallia, I-60100 Ancona, Italy

Author contributions: Bove A, Bellini M and Pucciani F contributed to the study concept and design; Battaglia E, Bocchini R, Altomare DF, Dodi G, Sciaudone G, Falletto E and Piloni V collected data and wrote the manuscript; all authors read and approved the paper; and Gambaccini D and Bove V revised the manuscript.

Supported by Associazione Italiana Gastroenterologi e Endoscopisti Digestivi Ospedalieri, Via N Colajanni, 4, 00191 Roma, Italy; and Società Italiana di Chirurgia Colo-rettale, Via Medici, 23, 10143 Torino, Italy

Correspondence to: Antonio Bove, MD, Gastroenterology and Endoscopy Unit, Department of Gastroenterology, AORN “A. Cardarelli”, Via Cardarelli, 9, 80131 Naples, Italy. 3392982380@fastwebnet.it
Telephone: +39-81-7474034 Fax: +39-81-7474034
Received: July 31, 2011 Revised: November 17, 2011 Accepted: August 15, 2012
Published online: September 28, 2012

Abstract

The second part of the Consensus Statement of the Italian Association of Hospital Gastroenterologists and Italian Society of Colo-Rectal Surgery reports on the treatment of chronic constipation and obstructed defecation. There is no evidence that increasing fluid intake and physical activity can relieve the symptoms of chronic constipation. Patients with normal-transit constipation should increase their fibre intake through their diet or with commercial fibre. Osmotic laxatives may be effective in patients who do not respond to fibre supplements. Stimulant laxatives should be reserved for patients who do not respond to osmotic laxatives. Controlled trials have shown that serotoninergic enterokinetic agents, such as prucalopride, and prosecretory agents, such as lubiprostone, are effective in the treatment of patients with chronic constipation. Surgery is sometimes necessary. Total colectomy with ileorectostomy may be considered in patients with slow-transit constipation and inertia coli who are resistant to medical therapy and who do not have defecatory disorders, generalised motility disorders or psychological disorders. Randomised controlled trials have established the efficacy of rehabilitative treatment in dys-synergic defecation. Many surgical procedures may be used to treat obstructed defecation in patients with acquired anatomical defects, but none is considered to be the gold standard. Surgery should be reserved for selected patients with an impaired quality of life. Obstructed defecation is often associated with pelvic organ prolapse. Surgery with the placement of prostheses is replacing fascial surgery in the treatment of pelvic organ prolapse, but the efficacy and safety of such procedures have not yet been established.

© 2012 Baishideng. All rights reserved.
Increased fluid intake: It is generally believed that increased fluid intake improves constipation. In one trial, healthy volunteers were given increasing amounts of liquids, up to 2 L/d. The volume of urine increased, but the stool frequency did not\(^5\). This finding is not surprising because the absorption capacity of the small intestine is 7-10 L/d. Trials evaluating the effect of increased liquid intake in constipated patients are lacking, and there is no evidence that constipation can be improved by increasing oral fluid intake, unless the patient is dehydrated\(^6\). Suggestions for behavioural changes are not always helpful. These recommendations are supported by Level V evidence, Grade C recommendation.

**Medical and rehabilitative treatment**

Behavioural modification is considered to be the first-line treatment in patients with symptomatic chronic constipation. If the behavioural modification proves unsuccessful, various pharmacological approaches are available.

**Behavioural modification**

Recommendations for lifestyle changes in patients with chronic constipation are based on the widespread belief that constipation is associated with low physical activity, reluctance to defecate whenever the need is felt, and poor fluid intake.

**Can behavioural changes help the patient with chronic constipation?**

**Physical exercise:** Epidemiological studies report that constipation is more frequent in subjects with a sedentary lifestyle\(^3\). Physical activity can increase colonic transit time\(^29\) and reduce other symptoms of constipation in elderly subjects\(^9\). Trials evaluating the effect of exercise in constipated patients are lacking. Increased physical activity is often recommended for patients with chronic constipation, but there is no evidence that constipation can be improved by increased physical activity.

**Defecation habits:** Patients with chronic constipation are often instructed to defecate when the need is felt and to try to defecate at the same time every day, ideally upon awakening and after meals, when the colonic motor activity is highest. This recommendation is based on the observation that many people with normal colonic activity routinely defecate at the same time each day\(^9\). Trials evaluating this recommendation in constipated patients are also lacking.

**Increased fluid intake:** It is generally believed that increased fluid intake improves constipation. In one trial, healthy volunteers were given increasing amounts of liquids, up to 2 L/d. The volume of urine increased, but the stool frequency did not\(^5\). This finding is not surprising because the absorption capacity of the small intestine is 7-10 L/d. Trials evaluating the effect of increased liquid intake in constipated patients are lacking, and there is no evidence that constipation can be improved by increasing oral fluid intake, unless the patient is dehydrated\(^6\). Suggestions for behavioural changes are not usually helpful. These recommendations are supported by Level V evidence, Grade C recommendation.

**Pharmacological therapy**

Various drugs are available to treat chronic constipation (Table 1). Laxatives generally can resolve the symptoms of constipation, but few rigorous studies on their effectiveness have been conducted\(^3\). Placebo-controlled trials conducted over a sufficient period of time are needed to demonstrate the actual efficacy of an agent. Many trials have been of short duration (4 wk), which limits the validity of their conclusions because cognitive studies have shown that half of all patients become dissatisfied with their therapy over time\(^8\). Furthermore, the results of different studies are not always comparable; the definition of constipation may not be sufficiently specific, and the therapeutic end-point may simply be stool frequency, without taking other symptoms into account.

The resolution of constipation-related symptoms is an important therapeutic target because constipation is a complex condition, with hard stool, straining, incomplete evacuation, bloating, and abdominal discomfort. Infrequent bowel movements are not always present, and infrequent bowel movements are certainly not the most unpleasant symptom of constipation. Additionally, investigators have only recently begun to address the important problem of quality of life in patients with constipation, which has been shown to worsen as constipation increases\(^7\). Placebo-controlled trials are often conducted over a sufficient period of time are needed to demonstrate the actual efficacy of an agent. Many trials have been of short duration (4 wk), which limits the validity of their conclusions because cognitive studies have shown that half of all patients become dissatisfied with their therapy over time\(^8\). Furthermore, the results of different studies are not always comparable; the definition of constipation may not be sufficiently specific, and the therapeutic end-point may simply be stool frequency, without taking other symptoms into account.

**Bulking laxatives**

Bulking laxatives consist of fibre. These agents must be ingested with sufficient amounts of water to increase the weight of the faeces. Their action begins within 12 to 72 h, but their effectiveness should be assessed after a period of some weeks. There are two types of fibre: in-
Table 1  Classes of drugs used to treat chronic constipation

| Type of medication | Drugs |
|--------------------|-------|
| Laxatives          |       |
| Bulking (insoluble and soluble fibres) | Bran, methylcellulose, psyllium |
| Osmotic            | Lactulose, sorbitol, magnesium hydroxide, magnesium salts, polyethylene glycol |
| Stimulant          | Anthraquinone derivatives: senna, aloe, cascara |
|                    | Diphenylmethane derivatives: bisacodyl, sodium picosulfate |
| Softening          | Liquid paraffin (vaseline oil), docusate, glycerine |
| Serotonergic enterokinetic agents | Tegaserod, prucalopride, renzapride |
| Prosecretory agents | Lubiprostone, linaclotide |
| Gastrointestinal μ-opioid antagonists | Methylnaltrexone, alvimopan |
| Probiotics         | Bifidobacterium, lactobacillus |
| Colchicine         |       |

soluble and soluble. Insoluble fibre consists of bran containing cellulose, hemicellulose and lignin. Galactomannan, pectin, gum and mucilage are types of soluble fibre that can be found in fruits and in some vegetables. Most types of soluble fibre are completely fermented in the colon, except psyllium, which is only partially fermented. Fermentation increases the production of short-chain fats and gas; therefore, one side effect of bulking laxatives is bloating.

What evidence is there for the effectiveness of added fibre intake?

Current guidelines recommend the use of fibre in both dietary and supplement form for the first-line treatment of chronic constipation[17], but a recent review showed that there is little evidence to support this approach[18].

Trials of insoluble fibre

There have been only two well-conducted placebo-controlled trials of insoluble fibre[18]; the first used bran and the second used rye bread. The first trial was a crossover study that enrolled 24 patients. In this study, the effectiveness of bran was documented only if the placebo was given before the bran[19]. The second trial studied 29 patients and compared a diet rich in rye bread to a diet containing low-fibre bread. The bowel movement frequency and difficulty in defecation significantly improved with a diet rich in rye bread[20].

In a randomised trial, 117 constipated patients were treated with bran plus water: one group was told to drink water as desired, whereas the other group was instructed to consume 2 L of water per day. The ingestion of bran plus 2 L of water increased the stool frequency (P < 0.001) and reduced the use of rescue laxatives[21]. Fibre supplementation may lead to the increased use of enemas and suppositories[22]. The data regarding insoluble fibre are conflicting[18]. Treating constipation with bran is supported by Level III evidence, Grade C recommendation.

Trial of soluble fibre

Placebo-controlled trials of psyllium: Psyllium fibre is partially soluble and is the most studied type of fibre. Three placebo-controlled trials on the efficacy of psyllium have been published[23-25]. Two found that psyllium was superior to a placebo in increasing the frequency of defecation (P < 0.05) and improving the consistency of the stool (P < 0.05)[23,24]. Ashraf et al[25] conducted a well-designed study, but it only lasted 8 wk and only enrolled 22 patients. The third study reported no significant difference between psyllium and a placebo[26].

Studies comparing psyllium with other laxatives: One trial reported no difference in the stool frequency between a regimen of senna plus psyllium and psyllium alone[26]. A study comparing psyllium and laxatives (lactulose, bisacodyl, docusate, senna and magnesium salts) found that psyllium was more effective in increasing the stool frequency and improving the stool’s consistency[27]. The use of psyllium is supported by Level II evidence, Grade B recommendation.

Osmotic laxatives

Osmotic laxatives attract water into the colon by osmosis. Sugar-based laxatives and polyethylene glycol (PEG) are effective after 24 to 48 h. Magnesium hydroxide and magnesium salts are effective after 6-8 h.

How effective are osmotic laxatives?

Placebo-controlled trials of lactulose: Three trials have shown the effectiveness of lactulose[26-28] in increasing the stool frequency (P < 0.05). These trials may be biased, however, because of the number of patients enrolled and their age; furthermore, the sex distribution and treatment duration were not specified. The side effects of lactulose include bloating, nausea and abdominal cramps.

Trials of lactulose vs other laxatives: Several trials have compared lactulose with other laxatives. Lactulose was shown to be less effective than PEG[21,22]. Psyllium plus senna was shown to be more effective than lactulose, but this combination could cause incontinence[23-25]. No difference was found between lactulose and psyllium[24] or lactulose and sorbitol[26], but nausea was reported more frequently in patients treated with lactulose (P < 0.05)[27]. The recommendation regarding sorbitol could not be graded because of insufficient data; the trial only enrolled men, and the randomisation procedure was not described[27]. The use of lactulose is supported by Level II evidence, Grade B recommendation.

Magnesium hydroxide and magnesium salts: There is only one study in the literature that compares magnesium hydroxide to bulking laxatives[26]. Published in 1987 and focusing on elderly patients, this study has various drawbacks. However, in patients receiving magnesium hydroxide, the stool frequency was higher (P < 0.001), and the use of rescue laxatives was lower (P < 0.01).
The possible risk of hypermagnesemia with these agents must be mentioned[30]. Hypermagnesemia was not reported in this study but can occur in patients suffering from renal disease[30].

No clinical trials using magnesium salts (Epsom salts, English salt) have been published in the last 40 years. The use of magnesium hydroxide is supported by Level V evidence, Grade C recommendation.

**Placebo-controlled trial of PEG:** PEG is an organic polymer that is not degraded by the intestinal flora. The effectiveness of PEG has been documented in numerous trials[38-44]. PEG increased the stool frequency (P < 0.01) while improving the stool consistency[50-52] and reducing other symptoms of constipation[41,43]. Iso-osmotic or hypo-osmotic solutions of PEG consistently improved the frequency of bowel movements compared with the frequency before treatment (P < 0.001)[49]. PEG was well tolerated, and side effects (abdominal cramps, flatulence, nausea) were rare.

**Trials of PEG vs other laxatives:** PEG is more effective than lactulose[33,34] in increasing the stool frequency and improving the stool’s consistency. In patients treated with PEG, there are also lower rates of rescue medication use and flatulence. One trial showed that PEG was more effective than Tegaserod[46]. PEG is a pillar in the treatment of chronic idiopathic constipation because of its high efficacy. There is evidence that PEG provides significant benefits compared with placebos and other laxatives. Furthermore, retrospective studies show that PEG remains effective for up two years of treatment[46,47]. The use of PEG is supported by Level I evidence, Grade A recommendation.

**Stimulant laxatives**

Stimulant laxatives are not absorbed and have a prokinetic effect in the colon; they stimulate the production of secretions and reduce the absorption of water and electrolytes. Stimulant laxatives begin to take effect 6 to 12 h after administration. Bisacodyl and sodium picosulfate (SPS) are prodrugs[48].

**How effective are the stimulant laxatives?**

**Placebo-controlled trial of stimulant laxatives:** Although stimulant laxatives have been used for many years to treat patients with constipation and are often used as rescue medications in clinical trials of other laxatives, only recently have placebo-controlled trials of stimulant laxatives been conducted. SPS[55] and oral bisacodyl[56] increase the stool frequency (P < 0.0001) while improving the stool consistency and decreasing the symptoms of constipation and the use of rescue medications (P < 0.01). These drugs are well tolerated and appear to generally improve the patient’s quality of life.

**Comparison of stimulant laxatives and other laxatives**

Senna plus a bulk laxative[33,34] is more effective than lactulose (P < 0.05) but less effective than psyllium alone[55]. The faeces are softer with lactulose than with stimulant laxatives (P < 0.001)[51].

Adverse effects of stimulant laxatives include abdominal cramps and diarrhoea. Experimental studies have shown that stimulant laxatives do not damage the colonic epithelium[55]. Hepatotoxicity has been reported with some products; anthraquinone derivatives can cause melanosis of the colon.

Some physicians fear that the prolonged use of stimulant laxatives can induce dependency. The classical concept of dependency to a drug is characterised by specific features such as lack of control over intake, compulsive use and craving for the drug. The addiction to drugs usually occurs via the activation of dopaminergic systems after passage through the blood-brain barrier. Stimulant laxatives are not absorbed and do not pass the blood-brain barrier, so there is no pharmacologic basis for dependency. Moreover, the existence of “rebound constipation” after the laxatives are stopped has not been definitively established[46]. However, many constipated patients require a constant intake of laxatives to achieve normal (or what they believe to be “normal”) bowel movements. Additionally, the abuse of laxatives has been reported in some patients; these cases of laxative misuse are often the result of psychological/psychiatric problems[35]. The use of SPS and bisacodyl is supported by Level I evidence, Grade B recommendation. It is not possible to provide graded recommendations for the other stimulant laxatives because placebo-controlled trials are lacking.

**Softening laxatives**

Softening laxatives make the stool softer by forming an emulsion of the faeces with lipids and water. Olive oil and sweet almond oil can function as softeners if their intake exceeds the absorptive capacity of the small intestine.

**What evidence is there for the effectiveness of softening laxatives?**

**Docusate:** Docusate is an anionic detergent that mixes aqueous and fatty components, thereby softening the stool; it may be administered orally or rectally through enemas or micro-enemas. When administered per rectum, docusate acts within 30 min.

**Placebo-controlled trial of docusate:** Two trials testing orally administered docusate yielded conflicting results. In the first trial, there was no difference in the stool frequency[55], but in the other study, a significant difference in stool frequency was observed (P < 0.01)[56].

**Comparison of docusate with other laxatives:** Psyllium was more effective than docusate for stool softening (P < 0.04)[56]. Therapy with docusate is supported by Level V evidence, Grade C recommendation.

**Liquid paraffin (vaseline oil):** Liquid paraffin is taken
orally and begins to take effect 6-12 h after administration. It acts by reducing the absorption of water and electrolytes. Its chronic use can damage the mucosal epithelium and lead to malabsorption of fat-soluble vitamins; aspiration can cause lipoid pneumonia. We did not find any randomised clinical trials in the literature on this product.

**Glycerine:** Glycerine, used as a suppository and mixed into enemas, is classified as a softening laxative, but its mechanism of action is unclear. It is assumed that, applied locally, glycerine produces tissue dehydration and irritation that in turn stimulate contractions of the rectum and defecation.

### Serotoninergic enterokinetic agents

Serotonin (5-HT) is a critical component in the regulation of gut motility, visceral sensitivity, and intestinal secretion. Serotonin acts mainly on the 5-HT3 and 5-HT4 receptors expressed by enteric nervous system interneurons. Stimulation of the 5-HT4 receptor is responsible for excitatory effects such as the peristaltic reflex.

The 5-HT4 receptor agonists belong to several different classes of drugs. Cisapride is a substituted benzamide that acts as a partial 5-HT4 receptor agonist. Renzapride is a benzamide hydrochloride that is a full agonist of the 5-HT4 receptor, an antagonist of the 5-HT3 receptor, and a weak partial antagonist of the 5-HT2b receptor. Tegaserod is an aminoguanidineindole that is a 5-HT4/5-HT1 receptor partial agonist and a 5-HT2 receptor antagonist. It also has been shown to inhibit dopamine and noradrenaline transporters. Prucalopride is a dihydrobenzofurancarboxamide that is a selective 5-HT4 receptor agonist.

#### What evidence is there for the effectiveness of these drugs?

**Placebo-controlled trials of serotoninergic enterokinetic agents:** A recent systematic review of available controlled trials[57] showed that cisapride was more effective than a placebo in improving the gastrointestinal transit time. However, there was no evidence that cisapride use resulted in a global improvement of constipation-related symptoms compared to the placebo. It was concluded that cisapride use had no clear benefit and that the use of this drug could not be justified because of its cardiotoxic side effects. Indeed, in 2000, cisapride was withdrawn from the market because it had been associated with rare dose-dependent cardiac events, including lengthening of the QT interval, syncope, and ventricular arrhythmia in patients with predisposing conditions. These effects may be caused by the interaction of cisapride with the cardiac hER potassium channel. Although cisapride was withdrawn from the market, it can still be purchased online.

In a placebo-controlled trial, renzapride[58] was only marginally superior to a placebo in reducing the symptoms of constipation and did not improve the quality of life. This drug can cause ischemic colitis.

Large studies of tegaserod[60-64] and prucalopride[62-65] have been conducted that enrolled over 2500 and 2000 patients, respectively. Both drugs improved the stool frequency ($P < 0.001$), improved stool consistency, decreased the need for rescue medications, and reduced the symptoms of constipation. Tegaserod was previously approved in the United States but was not approved in Europe, except in Switzerland. It was withdrawn from the market in March 2007 because of an increased risk of cardiovascular adverse events (including myocardial infarction, unstable angina, and stroke) and is now only available for emergency use. The cardiovascular side effects may be related to vasoconstriction mediated by 5-HT1B receptors in the vascular wall[66].

Drugs with a higher selectivity for 5-HT4 receptors (e.g., prucalopride) may be able to minimise the incidence of cardiac side effects. In a small trial of patients with chronic noncancer pain suffering from opioid-induced constipation, prucalopride was found to be effective and safe[67]. The European Medicines Agency (EMA) approved the use of prucalopride in July 2009. The use of prucalopride is supported by Level I evidence, Grade A recommendation.

### Prosecretory agents

Prosecretory agents stimulate the secretion of fluid into the intestinal lumen by activating intestinal chloride channels (lubiprostone) or the guanylate-cyclase receptors of enterocytes (linaclotide).

#### What evidence is there for the effectiveness of the prosecretory agents?

**Placebo-controlled trials using lubiprostone:** Two trials[68,69] showed that lubiprostone significantly increased the stool frequency, improved the stool consistency and reduced straining. Nausea was reported as a side effect. The Food and Drug Administration approved the use of lubiprostone for the treatment of adult patients with chronic idiopathic constipation in 2006. The EMA has not yet approved its use in Europe. The use of lubiprostone is supported by Level I evidence, Grade B recommendation.

**Linaclotide:** This drug has been reported to be effective in irritable bowel syndrome (IBS)[70]. In patients with chronic constipation[71,72], linaclotide significantly increased the stool frequency, improved the stool consistency and reduced straining. The health-related quality of life improved. Diarrhoea can be a side effect. The drug is currently being tested in a phase II study.

### Gastrointestinal μ-opioid receptor antagonists

Constipation is a side effect of opioid treatment that results from interference with the gastrointestinal μ-opioid receptors. Methylaltrexone and alvimopan can increase the intestinal motility in patients taking opioid medications ($P < 0.001$) without neutralising the analgesic effect.
of opioids\(^\text{[73-78]}\). One trial showed these drugs to be ineffective in patients with constipation-predominant IBS\(^\text{[79]}\). It therefore appears that gastrointestinal \(\mu\)-opioid receptor antagonists are only effective against opioid-induced constipation. Level I evidence, Grade A recommendation regarding the ineffectiveness of this drug in patients with functional constipation.

**Probiotics**
Probiotics are orally administered living microorganisms that can reach and colonise the bowel. They are mainly prescribed to reduce the bloating and abdominal pain that accompany IBS.

**How effective are probiotics in the treatment of chronic constipation?**
Milk fermented with *Bifidobacterium lactis* reduced the symptoms of IBS but not constipation in 41 female IBS patients\(^\text{[7]}.\) In women with “self-reported” constipation, probiotics reduced the severity of constipation \((P = 0.003)\). *Bifidobacterium animalis* increased the stool frequency \((P < 0.01)\) and improved the stool consistency in both healthy and constipated women\(^\text{[70]}\). A study involving 28 subjects reported that *Lactobacillus rhamnosus* + *Propiobacterium freudenreichii* improved the stool frequency but did not decrease the consumption of laxatives\(^\text{[81]}\).

Placebo-controlled trials of probiotics in chronic idiopathic constipation are lacking. Probiotics can be considered for use in conjunction with other drugs in the treatment of chronic constipation. The use of probiotics to treat chronic constipation is supported by Level V evidence, Grade C recommendation.

**Colchicine**
Colchicine is effective in the treatment of a variety of inflammatory syndromes. In two controlled trials that enrolled a total of 72 patients, colchicine increased the stool frequency and reduced the consumption of laxatives\(^\text{[82]}\). The use of colchicine is supported by Level III evidence, Grade C recommendation.

**Procedures to empty the rectum and sigmoid colon**
There is no controlled randomised trial in the literature addressing the chronic use of suppositories or enemas, which are commonly used for relief from occasional constipation and to empty the rectum in bedridden patients or those with impacted faeces. Suppositories act by making the stool softer and by generating a foreign body stimulus that leads to the defecation reflex. The precise mechanism of action of transanal irrigation is unknown. Its efficacy may be related to a wash-out effect, and large volumes of liquid generate mass movements\(^\text{[83]}\). Irrigation volumes of less than 100 mL do not produce distension of the rectum. Without evacuation, the liquid and its solutes are absorbed from the rectum.

Hyperphosphatemia has been reported as a serious adverse event following the misuse of sodium phosphate enemas. A trial recently showed that transient mild hyperphosphatemia following the use of sodium phosphate enemas correlates with retention time but not with dose\(^\text{[84]}\).

Transanal irrigation of the colon, with or without a rectal balloon catheter (Peristeen\(^\text{®}\)), is a useful approach in patients with neurogenic bowel dysfunction secondary to spinal injury\(^\text{[85]}\).

**What is the evidence confirming the effectiveness of transanal irrigation in chronic constipation?**
Based on the rate of colonic emptying, transanal irrigation appears to be more effective in patients with spinal cord damage than in those with chronic constipation\(^\text{[86]}\).

Retrospective studies report the benefits of transanal irrigation for constipated patients. In one study of 16 patients, symptoms were reduced in 19\% of patients suffering from constipation or obstructed defecation\(^\text{[87]}\). In another study of 37 patients, with a mean observation period of 4.5 years and a maximum observation period of 13 years, transanal irrigation was beneficial in 45\% of patients with defecation disturbances\(^\text{[88]}\). Cazemier et al\(^\text{[89]}\) consulted the database of enterostomal therapists for 12 patients for constipation and reported that after a mean observation period of 8.5 years, 42\% of patients routinely used transanal irrigation, and 60\% were satisfied with this method.

In patients with obstructed defecation, Gosselink et al\(^\text{[83]}\) and Gardiner et al\(^\text{[90]}\), with colonic irrigation, an effectiveness of 65\% and 57\%, respectively. Recently, Christensen et al\(^\text{[91]}\) presented the results of a long-term study on Peristeen\(^\text{®}\) and reported positive effects in 31\% of patients with slow transit constipation, in 43\% of patients with obstructed defecation, and in no patients with indeterminate constipation. Retrograde irrigation for the treatment of chronic constipation is supported by Level V evidence, Grade C recommendation. Table 2 summarises the levels of evidence and the recommendation grade for various drugs.

**At what point and on what grounds should we judge a treatment to be ineffective?**
Generally accepted criteria to define the response to medical therapy have not yet been developed. To date, every clinical trial has defined its own endpoints in terms of the response to therapy.

A medical treatment should be considered unsatisfactory when a patient with good compliance does not report an appreciable improvement in the symptoms and quality of life after at least 4 wk of treatment at the full dose. To assess the therapeutic response, patients should be encouraged to keep a daily diary of their symptoms\(^\text{[91]}\).

**REHABILITATIVE TREATMENT**
Dys-synergic defecation can be effectively treated by rehabilitative treatment (RT). Protocols vary among dif-
different centres, but all RT programs aim to improve defecation-related behaviour and restore a normal pattern of defecation with both instruments and educational devices.

Electrostimulation, kinesitherapy, biofeedback and volumetric rehabilitation can be used in various combinations to correct the dys-synergic behaviour of abdominal, rectal, and anal sphincter muscles and to improve rectal sensory perception.

RT requires a highly trained therapist and is time-consuming both for the therapist and the patient. Patients must therefore be strongly motivated.

When should RT be prescribed for obstructed defecation?

Functional obstructed defecation is the main indication for RT. Biofeedback is the treatment of choice for patients affected by pelvic floor dys-synergia. Three randomised controlled trials\(^{[102-104]}\) have shown a success rate of approximately 70%\(^{[79]}\) and a long-term success rate of approximately 50%\(^{[94]}\). Level I evidence, Grade A recommendation.

RT is also an effective therapy for organic diseases such as descending perineum syndrome, rectocele, recto-anal intussusception, rectal mucosal prolapse, rectal solitary ulcer syndrome not related to rectal prolapse, and second-degree sigmoidocele\(^{[95,96]}\). Level IV evidence, Grade C recommendation.

What is the recommended RT for obstructed defecation?

There are no universally accepted recommendations for RT, and there are no specific criteria to evaluate the efficacy of this intervention. The methods used such as biofeedback, kinesitherapy, electrostimulation and volumetric rehabilitation can differ greatly, resulting in a considerable variation in rehabilitation programmes among centres\(^{[97]}\). For this reason, the results of different studies may not be comparable\(^{[98-104]}\).

Biofeedback is a technique based on the use of instruments to provide an information loop whose aim is to achieve operant conditioning\(^{[105]}\). Information on a physiological function (such as muscle contraction/relaxation) is translated into a visual or audio signal. When the execution of a muscle movement is correct, a signal is activated. Thus, erroneous functioning can be immediately corrected and the subject is conditionized to perform the correct contraction or relaxation movement. Some authors have studied the use of biofeedback combined with kinesitherapy for the pelvic and perineal muscles. The aim of this setting is to teach the patient the correct sequence of contraction and relaxation of the striated muscles that is required for defecation\(^{[106]}\).

It must be noted that these rehabilitative techniques have not been codified; they vary widely from one country to another, and they are supported by only one randomised trial\(^{[98]}\). Level II evidence, Grade B recommendation.

RT may be useful for improving rectal sensation when anorectal manovolumetry demonstrates rectal hyposensitivity in patients with obstructed defecation\(^{[106]}\).

Such RT may be performed through biofeedback (“sensory retraining”)\(^{[107]}\) or volumetric rehabilitation using an inflated balloon or water enemas of decreasing volume and a probe to monitor muscle movement\(^{[108]}\). Neither biofeedback nor volumetric rehabilitation is supported by randomised controlled trials. Level IV evidence, Grade C recommendation.

Is RT the first therapeutic option?

Biofeedback, either alone or in combination with other rehabilitative techniques\(^{[102,103]}\), is generally attempted only after pharmacological therapy has failed\(^{[99]}\). After drugs, however, rehabilitation is the treatment of choice in patients affected by obstructed defecation because there are no side effects. Even if RT fails, it will not have a deleterious effect on the patient’s condition, and its results will not affect future decisions regarding therapy, including surgery\(^{[106,108,109]}\).

Is RT more effective than drug therapy?

One randomised trial showed that biofeedback was su-
There are no randomised trials focusing instead will require surgery, the generally accepted pros-

What factors may influence the efficacy of RT?

There is no general agreement as to what factors may predict or influence the outcome of RT. In one study, no correlation was found between specific conditions (rectocele, ano-rectal intussusception, descending perineum and sigmoidocele) and the efficacy of biofeedback in patients with dys-synergic defecation. Level IV evidence, Grade B recommendation. In a more recent study, harder stools, shorter duration of laxative use, higher rectal pressure while straining and prolonged balloon expulsion independently predicted a positive outcome for RT. Level III evidence, Grade C recommendation.

Nevertheless, significant anatomic damage, severe psychiatric or neurologic disease, poor patient compliance, and poor patient-physiotherapist interactions could pose major obstacles to the success of RT. Level III evidence, Grade C recommendation.

What are the medium- and long-term effects of RT?

No, the experience suggests that RT, even if it does not achieve satisfactory function, can improve pelvic floor muscle tone and coordination and can contribute significantly to a positive outcome in ano-rectal surgery. Level V evidence, Grade C recommendation.

SURGICAL TREATMENT FOR SLOW-TRANSIT CONSTIPATION

Colectomy

What are the conditions and selection criteria for colectomy?: There are no randomised trials focusing on the selection of constipated patients for surgery. The most commonly described selection criteria for segmental, subtotal or total colectomy are (Level V evidence, Grade C recommendation): (1) ≤ 2 weekly defecations; (2) duration of symptoms (mean 5-17 years); (3) the presence of symptoms such as abdominal bloating or pain, nausea, and vomiting that have a significant impact on the patient's quality of life; (4) failure of dietary, dietary, pharmacological and RTs to improve the symptoms; (5) radiological evidence of slow-transit constipation; (6) exclusion of organic or functional pelvic floor disorders (obstructed defecation, Hirschsprung's disease) based on defecography and ano-rectal manometry; (7) exclusion of upper gastrointestinal tract dysmotility based on functional (manometric, scintigraphic) examinations, if dyspeptic symptoms are present; and (8) normal results of psychological evaluation (patients with psychological disorders tend to show poor results after surgery for constipation).

Total or subtotal colectomy with ileorectal anastomosis

What are the levels of evidence and grades of recommendation for this procedure?: No randomised or controlled studies have been published on this proce-
dure. Level V evidence, Grade C recommendation.

What is the success or satisfaction rate following surgery?: Definitive conclusions regarding the effectiveness of surgery cannot be drawn. The methods used to assess the outcome of surgery and patient satisfaction vary greatly. Among 39 published studies, 6 did not define the criteria used, in 17 the assessment was based solely on patient feedback, and in 8 the conclusions were based on the results of post-operative functional tests. Only in 8 studies was the success of surgery determined from functional results and the patient’s evaluation. The data collection methods also differ between the studies; they were not defined in 15 of the 39 studies reviewed, whereas a questionnaire was used in 15 studies; only in 9 studies was a post-operative interview conducted. The overall rate of success or satisfaction documented in 39 studies involving 1423 patients was 86% (39%-100%)\(^\text{[125,129,130,133,136,146-149]}\).

What are the post-operative morbidity and mortality rates?: The overall post-operative morbidity in 25 series was 20% (2%-71%)\(^\text{[125,130,134,149]}\), and the mortality documented in 26 studies was 2.6% (0%-15%)\(^\text{[125,130,134,149]}\).

Post-operative complications

What is the incidence of small bowel obstruction, diarrhoea, faecal incontinence and abdominal pain, and what is the re-operation rate?: The complication rates were (mean and range): (1) small bowel obstruction, evaluated in 26 series with 913 patients: 18% (2%-71%)\(^\text{[125,129,133,146]}\); (2) chronic diarrhoea, in 19 series with 843 patients: 14% (0%-46%)\(^\text{[130,136,146]}\); (3) faecal incontinence, in 21 series with 913 patients: 15% (0%-52%)\(^\text{[125,129,130,136,146]}\); (4) abdominal pain, in 19 series with 839 patients: 35% (0%-90%)\(^\text{[125,129,130,136,146]}\); and (5) re-operation rate, evaluated in 5 studies with 965 patients: 14% (0%-50%)\(^\text{[125,130,134,149]}\).

What are the functional results after surgery, in terms of daily bowel movement rates and recurrent constipation?: In 26 studies\(^\text{[125,129,130,133,146,148]}\) involving 1047 patients and with a mean follow-up period of 44.8 (12-180) mo, the rate of bowel movements reported by the patients was 2.8 times per day, whereas recurrent constipation was reported by 9% (0%-33%) of 683 patients in 17 series\(^\text{[125,136]}\).

How often is a permanent stoma the only solution for a patient?: The incidence of permanent stoma placement as a therapy of last resort was 5% (0%-28%) in 27 studies involving 930 patients\(^\text{[125,130,150]}\).

What prognostic factors have been identified?: Preservation of the ileocaecal valve and caecum during isoperistaltic anastomosis resulted in a higher rate of persistent or recurrent constipation\(^\text{[145,146,150,151]}\). One controlled study\(^\text{[146]}\) reported better results in 45 patients who underwent ileosigmoid anastomosis compared with 34 patients who underwent isoperistaltic caecorectal anastomosis (93% vs 73%). Level III evidence, Grade C recommendation. (1) Negative prognostic factors described in the literature include the onset of constipation in adulthood or after pelvic or intestinal surgery\(^\text{[151-153]}\). (2) Positive prognostic factors include childhood onset and “lifelong” duration of symptoms\(^\text{[154,155]}\).

Is autonomic neuropathy an indication for surgery?: A higher rate of post-operative complications (especially small bowel obstruction) and the persistence of pre-operative symptoms (abdominal pain and bloating) have been reported in patients with autonomic neuropathy\(^\text{[141]}\). Therefore, some authors consider autonomic neuropathy to be a contraindication to surgery\(^\text{[136]}\). Level V evidence, Grade C recommendation.

Can laparoscopy yield better results than surgery?: Four studies without controls and one evaluating a “hand-assisted” technique have been published, but these were primarily feasibility studies\(^\text{[129,134,136,158,157]}\).

Segmental colectomy

Can segmental colectomy lead to better functioning?: It appears that if the decision to undertake segmental colectomy is based on radiologically demonstrated segmental colonic slow transit, good results can be achieved in 82%-96% of patients\(^\text{[126,158,159]}\). Without this evaluation, the failure rate is 100%\(^\text{[151,160]}\). Level V evidence, Grade C recommendation.

Subtotal colectomy with antiperistaltic caecoproctostomy (Sarli’s procedure)

Can this procedure lead to better results than conventional total or subtotal colectomy?: In the literature, 3 series\(^\text{[126,157,161]}\) have reported on a total of 43 patients in whom a subtotal colectomy with caecal preservation and antiperistaltic caecorectal anastomosis was performed. These were non-randomised but controlled studies, with subjects undergoing ileorectal anastomosis. Level III evidence, Grade C recommendation. Patients reported less faecal incontinence (documented by the Wexner score), less use of anti-diarrhoeal drugs, fewer defecations per day, more consistent faeces and a better quality of life after surgery. After 4.5 years (range 2-7) of follow-up, the mean daily number of bowel movements was 2.5, and the success rate of the surgical procedure was 88% (65% in patients with ileoanal anastomosis).

Does this procedure have a lower incidence of complications?: The cumulative post-operative complication rate was 9% (in 22 patients); 2 (1%) patients experienced small bowel obstruction, but none complained of diarrhoea\(^\text{[126,157,161]}\).

Malone antegrade continence enema

What patients are candidates for this procedure?: Although good results have been reported recently in
adults, Malone antegrade continence enema (MACE) is most successful in paediatric patients[162,163] or in patients with neurological diseases such as myelomeningocele, cerebral or spinal cord injuries, or Hirschsprung’s disease[163-169]. The greatest improvement in the quality of life was observed in patients with concomitant faecal incontinence[168]. Level V evidence, Grade C recommendation.

What is the level of evidence and recommendation grade for this procedure?: The level of evidence and recommendation grade cannot be determined because there are no randomised or controlled studies on MACE in the literature[162-173].

What is the success or satisfaction rate with the Malone procedure?: The methods of assessing the overall success or satisfaction rate vary widely among studies. Among 7 studies, the criteria were not clearly defined in one, success/satisfaction was based on the patient’s judgement in another, and in 5 the outcome was evaluated based on functional results and the patient’s judgement. The data collection methods also varied; they were based on a questionnaire and interview in 4 studies, whereas an interview was conducted in only 3 studies. With a mean follow-up period of 44 (range 12-78) mo, the overall success or satisfaction rate, documented in 7 studies on 67 patients, was 74% (50%-100%)[164,166,169-172], but within 3 years, the MACE procedure was replaced by other therapies in 50%-75% of cases[165,170].

What complications have been observed?: The main complication of this procedure is stenosis of the stoma (8%-50%)[163,165,166,169-172].

Sacral nerve stimulation

What is the level of evidence and the recommendation grade for this procedure in patients with constipation?: One double-blinded, placebo-controlled crossover study in 2 patients[173] and 7 non-randomised studies[116,174-176] have been published, but 3 of these studies[173,175] probably used the same patients. One of these trials was presented only in the form of an abstract at Digestive Diseases Week in 2007[177] and for this reason was not taken into consideration in the calculation of the mean success rate. In this report by Kamm et al[177], the success rate of a temporary implant was 66% (n = 67), and all patients with a permanent implant continued to show good results after 12 mo of follow-up.

In a recent prospective study at five European sites, sacral nerve stimulation (SNS) was effective among patients with idiopathic slow and normal transit constipation resistant to conservative treatment. The primary end points were increased defecation frequency, decreased straining and decreased sensation of incomplete evacuation (P < 0.001)[179] (Level III evidence, Grade C recommendation).

What is the mean success rate of percutaneous nerve evaluation followed, if indicated, by the insertion of a permanent pacemaker?: The overall success rate of percutaneous nerve evaluation, as documented in 4 studies involving 86 patients, was 60% (25%-75%)[174,176,177,179]. In 2 studies[116,175] involving a total of 12 patients who received permanent pacemakers, the reported success rates were 100% and 75% after a median follow-up of 11 and 8 mo, respectively. Finally, the multicentre prospective study coordinated by Kamm et al[179] reported that after a median of 28 mo (range 1-55), the frequency of defecations increased from a baseline of 2.3 evacuations per week to 6.6 evacuations per week.

SURGERY FOR OBSTRUCTED DEFECATION

The management of patients affected by obstructed defecation can be challenging because of the frequent association of anatomical and functional anomalies, which makes it difficult to distinguish between the causes and consequences of excessive strain[180,181]. The complexity of the syndrome and the range of available treatments make the outcome of the therapy unpredictable[182]. Surgery is usually considered for patients with reparable anatomical defects, concomitant pathologies, or symptoms that severely impact their quality of life[183].

Indications for surgery in constipation arising from obstructed defecation

Surgical treatment is indicated in cases of reparable anatomical defects, severe symptoms, symptoms leading to a poorer quality of life, or concomitant pathologies[183,184]. Level V evidence, Grade C recommendation.

What criteria are there for evaluating treatment efficacy (severity score, defecography, quality of life)?

The obstructed defecation syndrome (ODS) score is a tool designed to evaluate patients suffering from pure outlet obstruction without slow transit or mixed forms of constipation. The ODS provides an index of the disease severity and can be used to monitor the efficacy of therapy[182]. Level III evidence, Grade C recommendation. Other tools, such as the Constipation Scoring System[185] and the KESS Score[186], are not specific for ODS but can be employed to study other forms of constipation; some items in these scores are not influenced by the therapy[185].

There are two approaches - abdominal (rectopexy) and trans-anal (STARR or Delorme transrectal excision) - to surgically correct internal intussusception: Which is recommended on the basis of the clinical evidence?

The results of rectopexy are uncertain. Some studies report the persistence or worsening of constipation and difficulty in emptying the rectum in approximately 50% of cases, although the prolapse is corrected in almost all patients[187]. Other studies report that resection and rec-
Can obstructed defecation resulting from rectocele/intussusception also be associated with slow-transit constipation?

Slow colonic transit is often observed in patients with a symptomatic rectocele\(^{[196,199]}\). The obstructed defecation in these patients does not appear to exclusively result from the rectocele (Level V evidence). Although improved rectal emptying may be observed after surgical correction, this effect is not likely to affect colonic function. It has been demonstrated that patients with poor functioning after repair of the rectocele still have a prolonged colonic transit time\(^{[200]}\). Furthermore, patients with a slow transit time before the operation show little improvement after surgery\(^{[199]}\) (Level V evidence).

Can STARR be effective in the treatment of patients with ODS who fail to respond to medical and RT?

The efficacy and safety of STARR has been demonstrated in ODS patients in whom 5-10 sessions of biofeedback therapy (BF) failed\(^{[113]}\). Level II evidence, Grade B recommendation. This study showed a reduction of the ODS score in 81.5% of patients after STARR (one-year follow-up) compared with a reduction of 13% after BF (difference between the two groups: 48.1%, \(P < 0.0001\), 95% CI: 30.1%-66.2%). This study had several drawbacks, however, including the small number of participants enrolled, a 50% dropout rate in the BF group, and the fact that a surgical approach was compared with a non-surgical one.

Can STARR improve the quality of life in patients with rectal intussusception or a rectocele?

The STARR procedure can significantly improve the quality of life in patients suffering from ODS arising from rectal intussusception or a rectocele compared with biofeedback (\(P < 0.0001\))\(^{[113]}\). However, other options, such as pelvic floor rehabilitation or the internal Delorme procedure\(^{[201]}\), could be considered instead to prevent any potential risk associated with the stapling procedure. Level II evidence, Grade B recommendation.

In cases of ODS arising from rectal intussusception or rectocele, can stapled trans-anal prolapsectomy with perineal levatorplasty alleviate the symptoms?

Boccasanta et al\(^{[202]}\) compared the stapled trans-anal prolapsectomy with perineal levatorplasty (STAPL) and STARR procedures in a randomised trial. All of the symptoms relating to obstructed defecation improved following both procedures. After a 20-mo follow-up, the
results were still good in 76% of the STAPL patients and in 88% of the STARR patients. The authors nonetheless concluded that STARR is preferable because of the lower post-operative pain \((P < 0.001)\), reduced rectal sensitivity \((P < 0.017)\), absence of dyspareunia \((P < 0.018)\), and a more marked reduction in the rectocele. Level I evidence, Grade B recommendation.

**What procedure should be performed in cases of complete rectal prolapse?**
Abdominal rectopexy with sigmoidectomy and plain rectopexy with mesh are safe and effective procedures for the treatment of complete rectal prolapse\(^{[202]}\). Level II evidence, Grade B recommendation. Only one prospective randomised trial has compared abdominal rectopexy and sigmoidectomy (group I) with rectopexy and a polyglycolic acid mesh (group II). After correction of the prolapse, \(8/11\) patients in group I suffering from incontinence and \(10/12\) in group II who had incontinence improved. Six months after surgery, the constipation had disappeared in \(3\) and \(7\) patients from groups I and II, respectively, but only \(5\) other patients from group II required a colectomy within one year after the operation because of severe constipation\(^{[205]}\).

Is abdominal rectopexy with sigmoidectomy associated with higher rates of morbidity than simple rectopexy in patients with complete rectal prolapse? Should this procedure be performed in cases of slow transit constipation or only in patients with dolicoocolon?

Sigmoid resection with rectopexy is effective in reducing post-operative constipation arising from outlet obstruction without increasing the rate of morbidity\(^{[200]}\). Level II evidence, Grade B recommendation. Rectopexy with sigmoid resection can improve the colonic transit \((P < 0.001)\)\(^{[206]}\), even in the presence of dolicoocolon (Level V evidence, Grade C recommendation).

**Is SNS effective for the treatment of patients with ODS constipation?**
SNS may be effective in the treatment of chronic constipation when other approaches have failed\(^{[204]}\). In a recent prospective study at five European sites, SNS was effective in patients with idiopathic slow and normal transit constipation who failed conservative treatment. In this study, the primary end points were increased defecation frequency, decreased straining and decreased sensation of incomplete evacuation \((P < 0.001)\)\(^{[179]}\) (Level III evidence, Grade C recommendation).

**When surgery is indicated for solitary rectal ulcer syndrome, what procedure should be adopted?**
Solitary rectal ulcer may be associated with paradoxical contraction of the puborectal muscle, recto-anal intussusception, rectal prolapse and descending perineum syndrome. Treatment of this condition must be conservative. Surgery can be considered for patients with full-thickness rectal prolapse or intractable haemorrhage, but the degree of continence and constipation and the risks of surgery must be carefully assessed in each individual patient, and the patient’s preferences regarding treatment should be taken into account. The procedure selected must be safe and balance the risk of morbidity with an acceptable recurrence rate\(^{[183,205,206]}\). Level V evidence, Grade C recommendation. The surgical options include repair of the rectal prolapse with or without resection of the lesion, although the long-term results of this procedure were found to be uncertain. Anterior resection and proctocolectomy have shown satisfactory long-term results\(^{[207]}\).

**When is surgery indicated for sigmoidocele?**
Surgery is indicated for symptomatic patients with third-degree sigmoidocele (below the ischiococcygeal line) or patients who require other pelvic surgery with an abdominal or vaginal approach (hysterectomy, rectal prolapse, rectocele repair). The surgery consists of sigmoid resection and rectopexy with obliteration of the Douglas pouch. Jorge et al\(^{[218]}\) documented an improvement of the symptoms in 100% of patients undergoing this procedure, compared with 33% of patients who were treated conservatively, after a mean follow-up of 33 mo. Level V evidence, Grade C recommendation.

**What is the best surgical treatment for megarectum with or without megacolon?**
There has been considerable debate regarding the surgical treatment for megarectum. In megarectum with megacolon, colectomy and ileo-rectal anastomosis is the procedure with the best functional results and the lowest morbidity\(^{[200]}\). In patients who do not experience satisfactory results, total proctocolectomy and ileo-pouch-anal anastomosis is the treatment of choice to avoid permanent ileostomy\(^{[210,211]}\) (Level V evidence). In idiopathic megarectum, proctectomy and colo-anal anastomosis with or without colonic reservoir has shown good results; defecation and faecal continence were satisfactory in 72% of patients\(^{[212,213]}\) (Level V evidence). The Duhamel procedure is less successful for the treatment of idiopathic megarectum than for Hirschsprung’s disease\(^{[214]}\). In idiopathic megarectum, this procedure is associated with the persistence of symptoms and often with the need for a repeat operation\(^{[215]}\). It has been reported that rectoplasty with vertical reduction of the rectum and sigmoid resection results in a significant improvement in the frequency of defecation, a reduced consumption of laxatives or enemas, and satisfaction with surgery in 83% of the patients\(^{[216]}\) (Level V evidence, Grade C recommendation).

### SURGERY FOR OBSTRUCTED DEFECATION WITH ASSOCIATED PELVIC DISEASES

#### How often is obstructed defecation associated with pelvic organ prolapse?
A posterior colpocele in pelvic organ prolapse (POP)
may be linked to anatomical conditions such as a rectocele, enterocele or sigmoidocele\(^{[217]}\). Of POP patients, 24%-52% complain of difficulties in defecation\(^{[218]}\). Straining is more common in women with prolapse (61% vs 4%; \(P < 0.001\))\(^{[219]}\).

**Is there a correlation between POP and chronic constipation?**

The literature is sparse on this point. In a study of 302 patients with urinary incontinence and/or POP, Jelovsek et al\(^{[220]}\) concluded that chronic constipation plays no significant role in the etiology of the prolapse (Level II evidence). Soligo et al\(^{[221]}\) found that the prevalence of constipation was 33% (95% with obstructed defecation) in 786 women suffering from uro-gynecologic dysfunctions. A significant correlation was noted between constipation and posterior genital prolapse (Level IV evidence). Similar data have been reported by other authors\(^{[222-224]}\).

**How does the physiopathologic correlation between POP and obstructed defecation contribute to posterior colpocele and rectocele?**

At present we do not know whether constipation is a symptom caused by anatomic functional defects of the pelvic floor\(^{[225]}\), or whether it is the cause of static and dynamic changes in the pelvis. Pudendal neuropathy arising from stretching of the pudendal nerve while straining in patients with chronic constipation\(^{[225]}\) (Level III evidence) may explain the prolapse of the posterior wall and the overall weakening of the pelvic floor\(^{[225,226]}\) (Level IV evidence). According to DeLancey\(^{[226]}\), the tonic contraction of the levator ani, the perineal membrane and the endopelvic fascia provide the main support for the posterior vaginal wall. Under physiologic conditions, the levator ani has a double vector. The muscle exerts forward force (closing the vaginal walls) and then extends downward to the perineal body, supported by the perineal membrane, which anteriorly is anchored to the ischiopubic branches. This compensating balance eliminates any traction on the endopelvic fascia (corresponding to the middle third of the vagina or DeLancey level II). Pudendal neuropathy reduces the strength of the levator ani, and the downward vector will tend to be toward the posterior vaginal wall rather than the perineal body. A weak endopelvic fascia leads to posterior vaginal wall prolapsed, which may explain both the high and low rectoceles involving the middle vagina and the perineal body, respectively.

**What are the most recent anatomical and functional developments in pelvic reconstructive surgery?**

Increasingly, prostheses are replacing fascial surgery in the treatment of POP. The synthetic prosthesis is set in a tension-free position and connected to structures such as the obturator membrane, the arcus tendineus of the pelvic fascia, the sacrospinous ligaments or the perineal body. The use of a synthetic mesh has resulted in a marked decrease in recurrence (from 29% in fascial reconstructions to 9% with synthetic mesh), and a significant increase in erosion from 0.7% with the re-absorbable mesh to 10.2% with the synthetic mesh\(^{[228]}\) has been observed. Level II evidence, Grade B recommendation. However, the efficacy and safety of the prostheses used for the posterior vaginal wall have not yet been established\(^{[228]}\) (Level II evidence).

Surgical treatment for rectocele has been evaluated in 4 randomised studies (Gochrane Review, 2007\(^{[229-233]}\). The transvaginal approach was associated with the lowest number of recurrences, the use of biologic prostheses did not reduce the recurrence rate, and there was no significant difference between trans-anal and transvaginal procedures in terms of effects on defecation. Level I evidence, Grade A recommendation.

**Does obstructed defecation improve after the correction of a posterior colpocele with mesh?**

Few studies have considered the effect of surgery for posterior colpocele on posterior compartment dysfunction. The improvement reported in 24%-28%\(^{[224,225,233]}\) of cases in two studies was not based on an adequate scoring system (Level V evidence). The presumption that a dysfunction such as constipation can be treated simply by correcting an anatomic defect is probably incorrect. Approximately 30% of patients with obstructed defecation also complain of slow-transit constipation\(^{[226]}\) (Level V evidence). We do not yet understand the pathophysiology of these conditions, particularly with respect to the role of the CNS and ENS. The severity of the obstructed defecation is also not correlated with the results of the pelvic organ prolapse quantification\(^{[227-229]}\) or to the anatomic-functional data provided by defecography\(^{[222]}\) (Level V evidence, Grade C recommendation).

**What is the recommended surgical procedure for post-hysterectomy voltocele?**

Voltocele affects 18.2% of women with genital prolapse after hysterectomy. In 72% of these patients, there is also an anterior (cystocele) or posterior colpocele (rectocele or enterocele)\(^{[240,241]}\). The incidence of enteroceles after hysterectomy is between 0.1% and 16%\(^{[242]}\). Voltocele is caused by damage to the supporting uterosacral and cardinal ligaments. Enterocele, a herniation of the Douglas pouch between the vagina and the rectum, is caused by damage to the perineal membrane, which supports the posterior vaginal wall and connects the ischiopubic branches to the perineal body (Level V evidence)\(^{[243,244]}\). The levator ani muscle is also important because it is connected to the middle of the vagina by the endopelvic fascia. Three procedures designed to prevent enterocoele and posterior colpocele after hysterectomy, i.e., the Moschowitz method, the McCall method, and simple closure of the Douglas pouch, were compared in a prospective randomised study with 3 years of follow-up, and the best results were obtained with the McCall operation\(^{[243]}\) (Level II evidence, Grade B recommendation).

Many techniques have been proposed to correct a
voltoce associated with an enterocoele. The abdominal approach with mesh sacrocolpopexy and Douglas obliteration repairs the anatomic defect in 90% of cases. In a Cochrane review of 22 controlled randomised studies, abdominal sacrocolpopexy appeared to be superior to the transvaginal approach (vault sacrospinous fixation), with fewer recurrences and less dyspareunia, but it is a longer and more painful procedure that involves a longer hospital stay and higher costs. Level I evidence, Grade A recommendation. No data are available on the effects of these procedures on constipation.

APPENDIX

This paper is the second part of the consensus statement of the AIGO/SICCR regarding the diagnosis and treatment of chronic constipation and obstructed defecation. This section will focus on the treatment of this condition.

The first part of the paper was published in the World Journal of Gastroenterology 2012 April 14 (ISSN 1007-9327) and describes the materials and methods used to generate these recommendations. Similar to that paper, this article presents the results in a “question-and-answer” format.

REFERENCES

1 Whitehead WE, Drinkwater D, Cheskin LJ, Heller BR, Schuster MM. Constipation in the elderly living at home. Definition, prevalence, and relationship to lifestyle and health status. J Am Geriatr Soc 1989; 37: 423-429
2 Rao SS, Beaty J, Chamberlain M, Lambert PG, Gisolfi C. Effects of acute graded exercise on human colonic motility. Am J Physiol 1999; 276: G1221-G1226
3 De Schyver AM, Keulemans YC, Peters HP, Akkermans LM, Smout AJ, De Vries WR, van Berge-Henegouwen GP. Effects of regular physical activity on defecation pattern in middle-aged patients complaining of chronic constipation. Scand J Gastroenterol 2005; 40: 422-429
4 Heaton KW, Wood N, Cripps HA, Philipp R. The call to stool and its relationship to constipation: a community study. Eur J Gastro Hepat 1994; 6: 145-150
5 Chung BD, Parekh U, Sellin JH. Effect of increased fluid intake on stool output in normal healthy volunteers. J Clin Gastroenterol 1999; 28: 29-32
6 Müller-Lissner SA, Kamm MA, Scarpignato C, Wald A. Myths and misconceptions about chronic constipation. Am J Gastroenterol 2005; 100: 232-242
7 Brandt LJ, Prather CM, Quigley EM, Schiller LR, Schoenfeld P, Talley NJ. Systematic review on the management of chronic constipation in North America. Am J Gastroenterol 2005; 100 Suppl 1: S5-S21
8 Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther 2007; 25: 599-608
9 Glia A, Lindberg G. Quality of life in patients with different types of functional constipation. Scand J Gastroenterol 1997; 32: 1083-1089
10 Irvine EJ, Ferrazzi S, Pare P, Thompson WG, Rance L. Health-related quality of life in functional GI disorders: focus on constipation and resource utilization. Am J Gastroenterol 2002; 97: 1986-1993
11 Wald A. Chronic constipation: advances in management. Neurogastroenterol Motil 2007; 19: 4-10
12 Dodi G, Stocco E, Petros P. Why is it so difficult to define constipation? Peltoperineology 2011; 30: 101-102
13 Herz MJ, Kahn E, Zalesvik S, Aframian R, Kuznitz D, Reichman S. Constipation: a different entity for patients and doctors. Fam Pract 1996; 13: 156-159
14 Rao SS, Ozturk R, Laine L. Clinical utility of diagnostic tests for constipation in adults: a systematic review. Am J Gastroenterol 2005; 100: 1605-1615
15 Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology 2006; 130: 1480-1491
16 Bharucha AE, Wald A, Enck P, Rao S. Functional anorectal disorders. Gastroenterology 2006; 130: 1510-1518
17 Lindberg G, Hamid SS, Malfertheiner P, Thomsen OO, Fernandez LB, Garisch J, Thomson A, Goh KL, Tandon R, Fedail S, Wong BC, Khan AG, Krabshuis JH, LeMair A. World Gastroenterology Organisation global guideline: Constipation—a global perspective. J Clin Gastroenterol 2011; 45: 483-487
18 Suarez NC, Ford AC. Systematic review: the effects of fibre in the management of chronic idiopathic constipation. Aliment Pharmacol Ther 2011; 33: 895-901
19 Badioli D, Corazziari E, Habib FI, Tomei E, Bausano G, Magrini P, Anzini F, Torsoli A. Effect of wheat bran in treatment of chronic nonorganic constipation. A double-blind controlled trial. Dig Dis Sci 1995; 40: 349-356
20 Hongisto SM, Paajanen L, Saxelin M, Korpela R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur J Clin Nutr 2006; 60: 319-324
21 Anti M, Pignataro G, Armuzzi A, Valenti I, Lascone E, Marmo R, Lamazza A, Pretaroli AR, Pace V, Leo P, Castelli A, Gasbarrini G. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998; 45: 727-732
22 Mantle J. Research and serendipitous secondary findings. Can Nurse 1992; 88: 13-18
23 Ashraf W, Park F, Lof J, Quigley EM. Effects of psyllium therapy on stool characteristics, colon transit and anorectal function in chronic idiopathic constipation. Aliment Pharmacol Ther 1995; 9: 639-647
24 Fenn GC, Wilkinson PD, Lee CE, Akbar FA. A general practice study of the efficacy of Regulax in functional constipation. Br J Clin Pract 1986; 40: 192-197
25 Cheskin LJ, Kamal N, Crowell MD, Schuster MM, Whitehead WE. Mechanisms of constipation in older persons and effects of fiber compared with placebo. J Am Geriatr Soc 1995; 43: 666-669
26 Marlett JA, Li BU, Patrow CJ, Bass P. Comparative laxation of psyllium with and without senna in an ambulatory constipated population. Am J Gastroenterol 1987; 82: 333-337
27 Dettmar PW, Sykes J. A multi-centre, general practice comparison of ispaghula husk with lactulose and other laxatives in the treatment of simple constipation. Curr Med Res Opin 1998; 14: 227-233
28 Bass P, Dennis S. The laxative effects of lactulose in normal and constipated subjects. J Clin Gastroenterol 1981; 3 Suppl 1: 23-28
29 Wesseling-De Casparis A, Braadbaart S, Bergh-Bohlken GE, Mimica M. Treatment of chronic constipation with lactulose syrup: results of a double-blind study. Gut 1968; 9: 84-86
30 Sanders JF. Lactulose syrup assessed in a double-blind study of elderly constipated patients. J Am Geriatr Soc 1978; 26: 236-239
31 Altar A, Léman M, Ferguson A, Halphen M, Boutron MC, Flourié B, Alis E, Salmeron M, Guillemot F, Chassade S, Ménard AM, Moreau J, Naudin G, Barthet M. Comparison of a low dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation. Gut 1999; 44.
noncancer pain suffering from opioid-induced constipation. *Dig Dis Sci* 2010; 55: 2912-2921

68 **Johnson JF**, Morton D, Geenen J, Ueno R. Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of lubiprostone, a locally-acting type-2 chloride channel activator, in patients with chronic constipation. *Am J Gastroenterol* 2008; 103: 170-177

69 **Barish CF**, Drossman D, Johnson JF, Ueno R. Efficacy and safety of lubiprostone in patients with chronic constipation. *Dig Dis Sci* 2010; 55: 1090-1097

70 **Andresen V**, Camilleri M, Busciglio IA, Grudell A, Burton D, McKinzie S, Foxx-Orenstein A, Kurtz CB, Sharma V, Johnston JM, Currie MG, Zinsmeister AR. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. *Gastroenterology* 2007; 133: 761-768

71 **Johnston JM**, Kurtz CB, Drossman DA, Lembo AJ, Jeglinski BI, MacDouggall JE, Antonelli SM, Currie MG. Pilot study on the effect of linaclotide in patients with chronic constipation. *Am J Gastroenterol* 2009; 104: 125-132

72 **Lembo AJ**, Kurtz CB, MacDouggall JE, Lavins BJ, Currie MG, Fitch DA, Jeglinski BI, Johnston JM. Efficacy of linaclotide for patients with chronic constipation. *Gastroenterology* 2010; 138: 886-895.e1

73 **Yuan CS**, Wei G, Foss JF, O’Connor M, Karrson T, Osinski J. Effects of subcutaneous methylsalatrexate on morphine-induced peripherally mediated side effects: a double-blind randomized placebo-controlled trial. *J Pharmacol Exp Ther* 2002; 300: 118-123

74 **Thomas J**, Karver S, Cooney GA, Chamberlain BH, Watt CK, Slatkin NE, Stambler N, Kremer AB, Israel RJ. Methylnaltrexone for opioid-induced constipation in advanced illness. *N Engl J Med* 2008; 358: 2332-2343

75 **Webster L**, Janssen JP, Peppin J, Lasko B, Irving G, Morlion B, Barish CF, Seaton K, Miller M, Brown K, Nygaard I, Stumbo PJ, Bellini M, et al. Treatment of chronic constipation and obstructed defecation. *Can J Gastroenterol* 2007; 21: 638-646

76 **Koebnick C**, Wagner I, Leitzmann P, Stern U, Zunft HJ. Probiotic beverage containing Lactobacillus casei Shirota improves gastrointestinal symptoms in patients with chronic constipation. *Acta Gastroenterol Latinoam* 2008; 38: 16-25

77 **De Paula JA**, Carmuega E, Weill R. Effect of the ingestion of a symbiotic yogurt on the bowel habits of women with functional constipation. *Acta Gastroenterol Latinoam* 2008; 38: 389-394

78 **Ouwehand AC**, Lagström H, Suomalainen T, Salminen S. Effect of probiotics on constipation, fecal azoreductase activity and fecal mucin content in the elderly. *Aust Nutr Metab* 2002; 16: 159-162

79 **Verne GN**, Davis RH, Robinson ME, Gordon JM, Eaker EY, Sninsky CA. Treatment of chronic constipation with colchicine: randomized, double-blind, placebo-controlled, crossover trial. *Am J Gastroenterol* 2003; 98: 1112-1116

80 **Taghavi SA**, Shabani S, Mehramiri A, Eshraghian A, Kazemi SM, Moeini M, Hosseini-Asl SM, Saberifiroozii M, Alizade-Naeeni M, Mostaghami AA. Colchicine is effective for short-term treatment of slow transit constipation: a double-blind placebo-controlled clinical trial. *Int J Colorectal Dis* 2010; 25: 389-394

81 **Gattoo JM**, Kamm MA, Myers C, Saunders B, Roy A. Effect of different infusion regimens on colonic motility and efficacy of colostomy irrigation. *Br J Surg* 1996; 83: 1459-1462

82 **Jacobson RM**, Peery J, Thompson WO, Kanapka JA, Caswell M. Serum electrolyte shifts following administration of sodium phosphates enema. *Gastroenterol Nats* 2010; 33: 191-201

83 **Christensen P**, Olsen N, Krogh K, Bacher T, Laurberg S. Scintigraphic assessment of retrograde colonic washout in fecal incontinence and constipation. *Dis Colon Rectum* 2003; 46: 68-76

84 **Krogh K**, Kvitzaub C, Børgensen TM, Laurberg S. Treatment of anal incontinence and constipation with transanal irrigation. *Ugeskr Laeger* 1999; 161: 253-256

85 **Gosselink MP**, Darby M, Zimmerman DD, Smits AA, van Kessel J, Hop WC, Brief JW, Schouten WR. Long-term follow-up of retrograde colonic irrigation for defaecation disturbances. *Colorectal Dis* 2005; 7: 65-69

86 **Cazemier M**, Felt-Bersma RJ, Mulder CJ. Anal plugs and retrograde colonic irrigation are helpful in fecal incontinence or constipation. *World J Gastroenterol* 2007; 13: 3101-3105

87 **Gardiner A**, Marshall J, Duthie G. Rectal irrigation for relief of functional bowel disorders. *Nurs Stand* 2004; 19: 39-42

88 **Christensen P**, Krogh K, Bunten S, Payandeh F, Laurberg S. Long-term outcome and safety of transanal irrigation for constipation and fecal incontinence. *Dis Colon Rectum* 2009; 52: 286-292

89 **Bellini M**, Bove A, Sormani MP, Battaglia E, Bocchini R, Aiupezi P, Bassott G, Bruzzzi P, Pucciani F. The daily diary and the questionnaire are not equivalent for the evaluation of bowel habits. *Dig Liver Dis* 2010; 42: 99-102

90 **Chiarioni G**, Whitehead WE, Pezza V, Morelli A, Bassotti G. Biofeedback is superior to laxatives for normal transit constipation due to pelvic floor dyssynergia. *Gastroenterology* 2006; 130: 657-664

91 **Heymen S**, Scarlett Y, Jones K, Ringel Y, Drossman D, Whitehead WE. Randomized, controlled trial shows biofeedback to be superior to alternative treatments for patients with pelvic floor dyssynergia-type constipation. *Dis Colon Rectum* 2007; 50: 428-441

92 **Rao SS**, Seaton K, Miller M, Brown K, Nygaard I, Stumbo P, Zimmerman B, Schulze K. Randomized controlled trial of biofeedback, sham feedback, and standard therapy for dyssynergic defecation. *Clin Gastroenterol Hepatol* 2007; 5: 331-338

93 **Khairin M**, Wexner S. Treatment strategies in obstructed defecation and fecal incontinence. *World J Gastroenterol* 2006; 12: 3168-3173

94 **Andromakos N**, Skandalakis P, Troupis T, Filippou D. Constipation of anorectal outlet obstruction: pathophysiology, evaluation and management. *J Gastroenterol Hepatol* 2006; 21: 638-646

95 **Chiaroni G**, Heymen S, Whitehead WE. Biofeedback therapy for dyssynergic defecation. *World J Gastroenterol* 2006; 12: 7069-7074

96 **Heymen S**, Jones KB, Scarlett Y, Whitehead WE. Biofeedback treatment of constipation: a critical review. *Dis Colon Rectum* 2003; 46: 1208-1217

97 **Palsson OS**, Heymen S, Whitehead WE. Biofeedback treatment for functional anorectal disorders: a comprehensive efficacy review. *Appl Psychophysiol Biofeedback* 2004; 29: 153-174

98 **Koh CE**, Young CJ, Young JM, Solomon MJ. Systematic review of randomized controlled trials of the effectiveness of biofeedback for pelvic floor dysfunction. *Br J Surg* 2008; 95;
Bove A et al. Treatment of constipation and obstructed defecation

1079-1087

109 Engbl BT, NikoOmanesh P, Schuster MM. Operant conditioning of rectosphincteric responses in the treatment of fecal incontinence. N Engl J Med 1974; 290: 646-649

110 Puccinelli F, Battaglia L, Bolognesi C, Giacchi F, Forconi S, Cuttell M, Cortesini C. Pelvic floor dysynergia and bimodal rehabilitation: results of combined pelviperineal kinesitherapy and biofeedback training. Int J Colorectal Dis 1998; 13: 124-130

111 Battaglia L, Serra AM, Buonaéde G, Dughera L, Chistofari F, Morelli A, Emanuelli G, Bassotti G. Long-term study on the effects of visual biofeedback and muscle training as a therapeutic modality in pelvic floor dysynergia and slow-transit constipation. Dis Colon Rectum 2004; 47: 90-95

112 Koutsosmanis D, Lennard-Jones JE, Roy AJ, Kamm MA. Controlled randomised trial of visual biofeedback versus muscle training without a visual display for intractable constipation. Gut 1995; 37: 95-99

113 Bruscano I, LImongelli P, Del Genio G, Sansone S, Rossetti G, Maffettone V, Napolitano V, Sagnelli C, Amoroso A, Russo G, Piza F, Del Genio A. Useful parameters helping proctologists to identify patients with defaecatory disorders that may be treated with pelvic floor rehabilitation. Tech Coloproctol 2007; 11: 45-50

114 Rao SS. Biofeedback therapy for constipation in adults. Best Pract Res Clin Gastroenterol 2011; 25: 159-166

115 Gladman MA, Lunniss PJ, Scott SM, Swash M. Rectal hypersensitivity. Am J Gastroenterol 2006; 101: 1140-1151

116 Puccinelli F, Iozzi L, Masi A, Chistofari C, Cortesini C. Multimodal rehabilitation for faecal incontinence: experience of an Italian centre devoted to faecal disorder rehabilitation. Tech Coloproctol 2003; 7: 139-147; discussion 147

117 Sanniguel CP, Soffer EE. Constipation caused by functional outlet obstruction. Curr Gastroenterol Rep 2003; 5: 414-418

118 Shin JK, Cheon JH, Kim ES, Yoon JY, Lee JH, Jeon SM, Bok HJ, Park JJ, Moon CM, Hong SP, Lee YC, Kim WH. Predictive capability of anorectal physiologic tests for unfavorable outcomes following biofeedback therapy in dysynergic defecation. J Kor Med Sci 2010; 26: 1060-1065

119 Lau CW, Heymen S, Alabaz O, Iroatumal AJ, Wexner SD. Prognostic significance of rectocele, intussusception, and abnormal perineal descent in biofeedback treatment for constipated patients with paradoxical puborectalis contraction. Dis Colon Rectum 2000; 43: 478-482

120 Shim LS, Jones M, Pratt GM, Morris LL, Kellow JE, Malcolm A. Predictors of outcome of anorectal biofeedback therapy in patients with constipation. Aliment Pharmacol Ther 2011; 35: 1245-1251

121 Bassotti G, Chistofari F, Siehtjing-Nzepe F, de Roberto G, Morelli A, Chiarioni G. Biofeedback for pelvic floor dysfunction in constipation. BMJ 2004; 328: 393-396

122 Bove A, Ciamarra P. The corner of the coloproctologist: what to ask to radiologist. Eur J Radiol 2007; 61: 449-453

123 Lebhar P, Soto A, Fantoli M, Villani RD, Queralto M, Lazortes F, Hershman, Carriero A, Barberis A, Mistrangelo M. Treatment of functional diseases after rectal anastomur surgery: effectiveness of rehabilitation of the pelvic pavement. Minerva Chir 2009; 64: 197-203

124 Wiesel PH, Dorta G, Cuypers P, Herranz M, Kreis ME, Schnegg JF, Jornod P. Patient satisfaction after biofeedback for constipation and pelvic floor dysynergia. Swiss Med Wkly 2001; 131: 152-156

125 Bellini M, Alidzini P, Mammini C, Rappelli L, Costa F, Murolo MG, Giacchi G, Stasi C, Galli R, Maltinti G, Marchi S. Bimodal rehabilitation of the pelvic floor dysynergia: fact or fiction? Dig Liver Dis 2003; 35: S45

126 Rao SS, Valestein J, Brown CK, Schulze K. Long-term efficacy of biofeedback therapy for dysynergic defecation: randomized controlled trial. Am J Gastroenterol 2010; 105: 890-896

127 Nylund G, Oresland T, Fasth S, Nordgren S. Chronic idiopathic slow transit constipation: treatment and biofeedback training. Dis Colon Rectum 2011; 23: 1251-1256. Int J Colorectal Dis 2009; 24: 1117-1118

128 Wong SW, Lubowski DZ. Slow-transit constipation: evaluation and treatment. ANZ J Surg 2007; 77: 320-328

129 Lubowski DZ, Chen FC, Kennedy ML, King DW. Results of colectomy for severe slow transit constipation. Dis Colon Rectum 1996; 39: 25-29

130 Zutshi M, Hull TL, Trzcinski R, Arvelakis A, Xu M. Surgery for slow transit constipation: are we helping patients? Int J Colorectal Dis 2007; 22: 265-269

131 Knowles CH, Scott M, Lunniss PJ. Outcome of colectomy for slow transit constipation. Ann Surg 1999; 230: 627-638

132 Christiansen J, Rasmussen D. Colectomy for severe slow-transit constipation in strictly selected patients. Scand J Gastroenterol 1996; 31: 770-773

133 Lundin E, Karlborn U, Pihlman L, Graf W. Outcome of segmental colonic resection for slow-transit constipation. Br J Surg 2002; 89: 1270-1274

134 Hassan I, Pemberton JH, Young-Fadok TM, You YN, Drelichman ER, Rath-Harvey D, Schleck CD, Larson DR. ileorectal anastomosis for slow transit constipation: long-term functional and quality of life results. J Gastrointest Surg 2006; 10: 1330-1336; discussion 1336-1337

135 Riss S, Herbst F, Birsan T, Stift A. Postoperative course and long term follow up after colectomy for slow transit constipation—is surgery an appropriate approach? Colorectal Dis 2009; 11: 302-307

136 Pikarsky AJ, Singh JJ, Weiss EG, Naguera JJ, Wexner SD. Long-term follow-up of patients undergoing colectomy for colonic inertia. Dis Colon Rectum 2001; 44: 179-183

137 Ripetti V, Caputo D, Greco S, Alloni R, Coppola R. Is total colectomy the right choice in intractable slow-transit constipation? Surgery 2006; 140: 443-450

138 El-Tawil AM. Persistence of abdominal symptoms after successful surgery for idiopathic slow transit constipation. South Med J 2002; 95: 1042-1046

139 El-Salhy M. Chronic idiopathic slow transit constipation: pathophysiology and management. Colorectal Dis 2003; 5: 288-296

140 Kuijpers HC. Application of the colorectal laboratory in diagnosis and treatment of functional constipation. Dis Colon Rectum 2007; 50: 288-296
Bove A et al. Treatment of constipation and obstructed defecation

Rectum 1990; 33: 35-39

Redmond JM, Smith GW, Barofsky I, Ratych RE, Goldsborough DC, Schuster MM. Physiological tests to predict long-term outcome of total abdominal colectomy for intractable constipation. Am J Gastroenterol 1995; 90: 748-753

Ghosh S, Papachrysostomou M, Batool M, Eastwood MA. Long-term results of subtotal colectomy and evidence of noncolonic involvement in patients with idiopathic slow-transit constipation. Scand J Gastroenterol 1996; 31: 1083-1091

Kamm MA, Hawley PR, Lennard-Jones JE. Outcome of colectomy for severe idiopathic constipation. Gut 1988; 29: 969-973

Pluta H, Bowes KL, Jewell LD. Long-term results of total abdominal colectomy for chronic idiopathic constipation. Value of preoperative assessment. Dis Colon Rectum 1996; 39: 160-166

Hasegawa H, Radley S, Keighley MRB. Long-term results of colorectal resection for chronic constipation (abstract). Association of Coloproctology of Great Britain and Ireland, conference proceedings. Oxford: Blackwell Science, 1998: 1998-2003

Yoshioka K, Keighley MR. Clinical results of colectomy for severe constipation. Br J Surg 1989; 76: 600-604

Feng Y, Jianjiang L. Functional outcomes of two types of subtotal colectomy for slow-transit constipation: ileosigmoidal anastomosis and cecectomy anastomosis. Am J Surg 2008; 195: 73-77

Nyan DC, Pemberton JH, Istrup DM, Roth DM. Long-term results of surgery for chronic constipation. Dis Colon Rectum 1997; 40: 273-279

FitzHarris GP, Garcia-Aguilar J, Parker SC, Bullard KM, Madoff RD, Goldberg SM, Lowry A. Quality of life after subtotal colectomy for slow-transit constipation: both quality and quantity count. Dis Colon Rectum 2003; 46: 433-440

Hsiao KC, Jao SW, Wu CC, Lee TY, Lai HJ, Kang JC. Hand-assisted laparoscopic total colectomy for slow transit constipation. Int J Colorectal Dis 2008; 23: 419-424

Fasth S, Hedlund L, Svaninger G, Oresland T, Hultén L. Functional results after subtotal colectomy and caecorectal anastomosis. Acta Chir Scand 1983; 149: 623-627

Preston DM, Lennard-Jones JE. Severe chronic constipation of young women: ‘idiopathic slow transit constipation’. Gut 1986; 27: 41-48

Ackervall S, Fasth S, Nordgren S, Oresland T, Hultén L. The functional results after colectomy and ileorectal anastomosis for severe constipation (Arbuthnott’s disease) as related to rectal sensory function. Int J Colorectal Dis 1988; 3: 96-101

Walsh PV, Peebles-Brown DA, Watkinson G. Colectomy for slow transit constipation. Ann R Coll Surg Engl 1987; 69: 71-75

Beck DE, Fazio VW, Jagelman DG, Lavery IC. Surgical management of colonic inertia. South Med J 1989; 82: 305-309

Sunderland GT, Poon FW, Lauder J, Finlay IG. Videoproc- tography in selecting patients with constipation for colectomy. Dis Colon Rectum 1992; 35: 235-237

Pinedo G, Leon F, Molina ME, Soto G, Lopez F, Zúñiga A. A novel surgical approach to slow-transmission constipation: report of two cases. Dis Colon Rectum 2008; 51: 139-141

Iannelli A, Fabiani P, Moule J, Gugenheim J. Laparoscopic subtotal colectomy with cecectomy anastomosis for slow-transit constipation. Surg Endosc 2006; 20: 171-173

de Graaf EJ, Gilberts EC, Schouten WR. Role of segmental colonic transit time studies to select patients with slow transit constipation for partial left-sided or subtotal colectomy. Br J Surg 1996; 83: 648-651

You YT, Wang JY, Changhien CR, Chen JS, Hsu KC, Tang R, Chiang JM, Chen HH. Segmental colectomy in the management of colonic inertia. Am J Surg 1998; 64: 775-777

Gray EJ, Martinsson BT. Dolichocolon: indications for operation. Am Surg 1971; 37: 509-511

Marchesi F, Sarli L, Percalli L, Sansebastiano GE, Veronesi L, Di Mauro D, Porrini C, Ferro M, Roncoroni L. Subtotal colectomy with antiperistaltic cecectomy anastomosis in the treatment of slow-transit constipation: long-term impact on quality of life. World J Surg 2007; 31: 1658-1664

Hutson JM, McNamara J, Gibb S, Shin YM. Slow transit constipation in children. J Pediatr Child Health 2001; 37: 426-430

King SK, Sutcliffe JR, Southwell BR, Chait PG, Hutson JM. The antegrade continence enema successfully treats idiopathic slow-transit constipation. J Pediatr Surg 2005; 40: 1935-1940

Krogh K, Laurberg S. Malone antegrade continence enema for faecal incontinence and constipation in adults. Br J Surg 1998; 85: 974-977

Gerharz EW, Vik V, Webb G, Leaver R, Shah PJ, Woodhouse CR. The value of the MACE (Malone antegrade colonic enema) procedure in adult patients. J Am Coll Surg 1997; 185: 544-547

Teichman JM, Zabili N, Kraus SR, Harris JM, Barber DB. Long-term results for Malone antegrade colonic continence enema for adults with neurogenic bowel disease. Urology 2003; 61: 502-506

Graf JL, Strear C, Bratton B, Housley HT, Jennings RW, Harrison MR, Albanese CT. The antegrade continence enema procedure: a review of the literature. J Pediatr Surg 1998; 33: 1294-1296

Rongen MJ, van der Hoop AG, Baeten CG. Cecal access for antegrade colonic enemas in medically refractory slow-transit constipation: a prospective study. Dis Colon Rectum 2001; 44: 1644-1649

Yerkes EB, Cain MP, King S, Brei T, Kaefer M, Casale AJ, Rink RC. The Malone antegrade continence enema procedure: quality of life and family perspective. J Urol 2003; 169: 320-323

Poirier M, Abcarian H, Nelson R. Malone antegrade continen- enema: an alternative to resection in severe defecation disorders. Dis Colon Rectum 2007; 50: 22-28

Altomare DF, Rinaldi M, Rubini D, Rubini G, Portincasa P, Vacca M, Artor NA, Romano G, Memeo V. Long-term func- tional assessment of antegrade colonic enema for combined incontinence and constipation using a modified Marsh and Kiff technique. Dis Colon Rectum 2007; 50: 1023-1031

Hill J, Stott S, MacLennan I. Antegrade enemas for the treatment of severe idiopathic constipation. Br J Surg 1994; 81: 1490-1495

Kenneck NJ, Vayez CJ, Cohen CR, Nichols RJ, Kamm MA. Double-blind placebo-controlled crossover study of sacral nerve stimulation for idiopathic constipation. Br J Surg 2002; 89: 1570-1571

Kenneck NJ, Nichols RJ, Cohen RG, Kamm MA. Perman- ent sacral nerve stimulation for treatment of idiopathic constipation. Br J Surg 2002; 89: 882-888

Malouf AJ, Wiesel PH, Nicholls T, Nicholls RJ, Kamm MA. Short-term effects of sacral nerve stimulation for idiopathic slow transit constipation. World J Surg 2002; 26: 166-170

Dinning PG, Fuentebalba SE, Kennedy ML, Lubowski DZ, Cook IJ. Sacral nerve stimulation induces pan-colonic propagating pressure waves and increases defecation frequency in patients with slow-transit constipation. Colorectal Dis 2007; 9: 123-132

Kamm MA, Dudding TC, Melenhorst J. Sacral nerve stimu- lation for constipation: an international multi-centre study. Gastroenterology 2007; 132: A40

Mowatt G, Glazener C, Jarrett M. Sacral nerve stimulation for faecal incontinence and constipation in adults. Cochrane Database Syst Rev 2007; (3): CD004464

Kamm MA, Dudding TC, Melenhorst J, Jarrett M, Wang Z, Bunten S, Johansson C, Laurberg S, Rosen H, Vaiyee CJ, Matzel K, Baeten C. Sacral nerve stimulation for intractable...
constipation. Gut 2010; 59: 333-340

180 Fucini C, Ronchi O, Elberti C. Electromyography of the pelvic floor musculature in the assessment of obstructed defecation symptoms. Dis Colon Rectum 2001; 44: 1168-1175

181 Mellgren A, Bremner S, Johansson C, Dolk A, Uldén R, Ahlbäck SO, Holmström B. Defecography. Results of investigations in 2,816 patients. Dis Colon Rectum 1994; 37: 1133-1141

182 Altmare DF, Spazzafumo L, Rinaldi M, Dodi G, Ghiselli R, Piloni V. Set-up and statistical validation of a new scoring system for obstructed defecation syndrome. Colorectal Dis 2008; 10: 84-88

183 Khakin M, Wexner SD. Treatment strategies in obstructed defecation and fecal incontinence. World J Gastroenterol 2006; 12: 3168-3173

184 American College of Gastroenterology Chronic Constipation Task Force. An evidence-based approach to the management of chronic constipation in North America. Am J Gastroenterol 2005; 100 Suppl 1: S1-54

185 Agachan F, Chen T, Pfeifer J, Reissman P, Wexner SD. A constipation scoring system to simplify evaluation and management of constipated patients. Dis Colon Rectum 1996; 39: 681-685

186 Knowles CH, Eccersley AJ, Scott SM, Walker SM, Reeves B, Lunniss PJ. Linear discriminant analysis of symptoms in patients with chronic constipation: validation of a new scoring system (KESS). Dis Colon Rectum 2000; 43: 1419-1426

187 Choi JS, Hwang YH, Salum MR, Weiss EG, Pikarsky AJ, Nogueras JJ, Wexner SD. Outcome and management of patients with large rectoanal intussusception. Ann J Gastroenterol 2001; 96: 740-744

188 Tsiaoussis J, Chrysos E, Athanasakis E, Pechlivanides G, Tzortzinis A, Zoras O, Xynos E. Rectoanal intussusception: presentation of the disorder and late results of resection rectopexy. Dis Colon Rectum 2005; 48: 838-844

189 Kasas Jr, Uraunes S, Altmare DF, Sokmen S, Krivokapic Z, Hoch J, Barthà I, Bergamaschi R. No rectopexy versus rectopexy following rectal mobilization for full-thickness rectal prolapse: a randomized controlled trial. Dis Colon Rectum 2011; 54: 29-34

190 Samaranayake CB, Luo C, Plank AW, Merrie AE, Plank LD, Bissett IP. Systematic review on ventral rectopexy for rectal prolapse and intussusception. Colorectal Dis 2010; 12: 504-512

191 Boons P, Collinson R, Cunningham C, Lindsey I. Laparoscopic ventral rectopexy for external rectal prolapse improves constipation and avoids de novo constipation. Colorectal Dis 2010; 12: 552-556

192 van den Eschert JW, van Geloven AA, Vermulst N, Groenedijk AG, de Wit LT, Gerhards MF. Laparoscopic ventral rectopexy for obstructed defecation syndrome. Surg Endosc 2008; 22: 2728-2732

193 Wong M, Meurette G, Abet E, Podevin J, Lehur PA. Safety and efficacy of laparoscopic ventral mesh rectopexy for complex rectocele. Colorectal Dis 2011; 13: 1019-1023

194 Boccasanta P, Venturi M, Calabrò G, Trompetto M, Ganio E, Tessera G, Bottini C, Pulvirenti D’Ursio A, Ayabaca S, Pesatori M. Which surgical approach for rectoceles? A multicentric report from Italian coloproctologists. Tech Coloproctol 2001; 5: 149-156

195 Arnold MW, Stewart WR, Aguilar PS. Rectocele repair. Four years’ experience. Dis Colon Rectum 1990; 33: 684-689

196 Van Laarhoven CJ, Kamm MA, Bartram CJ, Halligan S, Hawley PR, Phillips RK. Relationship between anatomic and symptomatic long-term results after rectocele repair for impaired defecation. Dis Colon Rectum 1999; 42: 204-210; discussion 210-211

197 Kahn MA, Stanton SL. Posterior colporrhaphy: its effects on bowel and sexual function. Br J Obstet Gynaecol 1997; 104: 82-86

198 Mellgren A, Azén B, Nilsson BY, Johansson C, Dolk A, Gillgren P, Bremner S, Holmström B. Results of rectocelectomy repair. A prospective study. Dis Colon Rectum 1995; 38: 7-13

199 Johansson C, Nilsson BY, Holmström B, Dolk A, Mellgren A. Association between rectocele and paradoxical sphincter response. Dis Colon Rectum 1995; 38: 503-509

200 Karlbom U, Graf W, Nilsson S, Pålman L. Does surgical repair of a rectocele improve rectal emptying? Dis Colon Rectum 1996; 39: 1296-1302

201 Liberman H, Hughes C, Dippolito A. Evaluation and outcome of the deorange procedure in the treatment of rectal outlet obstruction. Dis Colon Rectum 2000; 43: 188-192

202 Boccasanta P, Venturi M, Salamina G, Cesana BM, Bernasconi F, Roviaro G. New trends in the surgical treatment of outlet obstruction: clinical and functional results of two novel transanal stapled techniques from a randomised controlled trial. Int J Colorectal Dis 2004; 19: 359-369

203 Luukkonen P, Mikkonen U, Järvinen H. Abdominal rectocele. Dis Colon Rectum 2002; 45: 884

204 Kenefick NJ, Sacral nerve neuromodulation for the treatment of lower bowel motility disorders. Ann R Coll Surg Engl 2006; 88: 617-623

205 Felt-Bersma RJ, Tiersma ES, Cuesta MA. Rectal prolapse, rectal intussusception, rectocele, solitary rectal ulcer syndrome, and enterocele. Gastroenterol Clin North Am 2008; 37: 645-668, ix

206 Binnie NR, Papachrysostomou M, Clare N, Smith AN. Solitary rectal ulcer: the place of biofeedback and surgery in the treatment of the syndrome. World J Surg 1992; 16: 836-840

207 Torres C, Khakin M, Bracho J, Luo CH, Weiss EG, Sands DR, Cera S, Nogueras JJ, Wexner SD. Solitary rectal ulcer syndrome: clinical findings, surgical treatment, and outcomes. Int J Colorectal Dis 2007; 22: 1389-1393

208 Jorge JM, Yang YK, Wexner SD. Incidence and clinical significance of sigmoidoceles as determined by a new classification system. Dis Colon Rectum 1994; 37: 1112-1117

209 Stabile G, Kamm MA, Hawley PR, Lennard-Jones JE. Colecotomy for idiopathic megarectum and megacolon. Gut 1991; 32: 1538-1540

210 Nicholls RJ, Kamm MA. Proctocolectomy with restorative ileoanal reservoir for severe idiopathic constipation. Report of two cases. Dis Colon Rectum 1985; 31: 968-969

211 Hosie KB, Kniót WA, Keighley MR. Constipation: another indication for restorative proctocolectomy. Br J Surg 1990; 77: 801-802

212 Stewart J, Kumar D, Keighley MR. Results of anal or low rectal anastomosis and pouch construction for megarectum and megacolon. Br J Surg 1994; 81: 1051-1053

213 Gladman MA, Scott SM, Lunniss PJ, Williams NS. Systematic review of surgical options for idiopathic megarectum and megacolon. Ann Surg 2005; 241: 562-574

214 Elliot MS, Todd IP. Adult Hirschsprung’s disease: results of the Duhamel procedure. Br J Surg 1985; 72: 884-885

215 Stabile G, Kamm MA, Hawley PR, Lennard-Jones JE. Results of the Duhamel operation in the treatment of idiopathic megarectum and megacolon. Br J Surg 1991; 78: 661-663

216 Williams NS, Fajobi OA, Lunniss PJ, Scott SM, Eccersley AJ, Ogunbiyi OA. Vertical reduction rectoplasty: a new treatment for idiopathic megarectum. Br J Surg 2000; 87: 1203-1208

217 Jelovsek JE, Maher C, Barber MD. Pelvic organ prolapse. Lancet 2007; 369: 1027-1038

218 Ellerkmann RM, Cundiff GW, Melick CF, Nihira MA, Lefler K, Bent AE. Correlation of symptoms with location and severity of pelvic organ prolapse. Am J Obstet Gynecol 2001; 185: 1337-1337; discussion 1337-1338

219 Spence-Jones C, Kamm MA, Henry MM, Hudson CN. Bowel dysfunction: a pathogenic factor in utoevaginal prolapse and urinary stress incontinence. Br J Obstet Gynaecol
220 Jelovsek JE, Barber MD, Paraizo MF, Walters MD. Functional bowel and anorectal disorders in patients with pelvic organ prolapse and incontinence. *Am J Obstet Gynecol* 1999; 180: 815-822

221 Soligo M, Salvatore S, Emmanuel AV, De Ponti E, Zoccatelli M, Cortese M, Milani R. Patterns of constipation in urogynecology: clinical importance and pathophysiologic insights. *Am J Obstet Gynecol* 2006; 195: 50-55

222 Weber AM, Walters MD, Ballard LA, Booher DL, Piedmonte MR. Posterior vaginal prolapse and bowel function. *Am J Obstet Gynecol* 1998; 179: 1446-1449; discussion 1449-1450

223 Klingele CJ, Bharucha AE, Fletcher JG, Gebhart JB, Riederer SG, Zinsmeister AR. Pelvic organ prolapse in defecatory disorders. *Am J Obstet Gynecol* 2005; 192: 315-320

224 Soares FA, Regadas FS, Murad-Regadas SM, Rodrigues LV, Silva FR, Escalante RD, Bozza RA. Role of age, bowel function and parity on anorectocele pathogenesis according to cinedefecography and anal manometry evaluation. *Colorectal Dis* 2009; 11: 947-950

225 Snooks SJ, Barnes PR, Swash M, Henry MM. Damage to the innervation of the pelvic floor musculature in chronic constipation. *Gastroenterology* 1985; 89: 977-981

226 DeLancey JO. Structural anatomy of the posterior pelvic compartment as it relates to rectocele. *Am J Obstet Gynecol* 1999; 180: 815-822

227 Ashton-Miller JA, DeLancey JO. Functional anatomy of the female pelvic floor. *Ann N Y Acad Sci* 2007; 1101: 266-296

228 Jia X, Glazener C, Mowatt G, MacLennan G, Bain C, Fraser C, Burj J. Efficacy and safety of using mesh or grafts in surgery for anterior and/or posterior vaginal wall prolapse: systematic review and meta-analysis. *BJOG* 2008; 115: 1350-1361

229 Maher C, Baessler K, Glazener CM, Adams EJ, Hagen S. Surgical management of pelvic organ prolapse in women. *Cochrane Database Syst Rev* 2007; (3): CD004014

230 Kahn MA, Kumar D, Stanton SL. Posterior colporrhaphy vs transanal repair of the rectocele: an initial follow up of a prospective randomized controlled trial. *BJOG* 1998; 105 Suppl 17: 57

231 Nieminen K, Hillunen KM, Laitinen J, Oksala J, Heinonen PK. Transanal or vaginal approach to rectocele repair: a prospective, randomized pilot study. *Dis Colon Rectum* 2004; 47: 1636-1642

232 Sand PK, Koduri S, Lobel RW, Winkler HA, Tomezsko J, Culligan PJ, Goldberg R. Prospective randomized trial of polyglyactin 910 mesh to prevent recurrence of cystocele and rectoceles. *Am J Obstet Gynecol* 2001; 184: 1357-1362, discussion 1362-1364

233 Paraizo MF, Barber MD, Muir TW, Walters MD. Rectocele repair: a randomized trial of three surgical techniques including graft augmentation. *Am J Obstet Gynecol* 2006; 195: 1762-1771

234 Gauruder-Burmester A, Koutouzidou P, Rohne J, Gronewald M, Tunn R. Follow-up after polypropylene mesh repair of anterior and posterior compartments in patients with recurrent prolapse. *Int Urogynecol J Pelvic Floor Dysfunct* 2007; 18: 1059-1064

235 Milani R, Salvatore S, Soligo M, Pifarotti P, Meschia M, Cortese M. Functional and anatomical outcome of anterior and posterior vaginal prolapse repair with prolene mesh. *BJOG* 2005; 112: 107-111

236 Lembo A, Camilleri M. Chronic constipation. *N Engl J Med* 2003; 349: 1360-1368

237 Bump RC, Mattiasson A, Bo K, Brubaker LP, DeLancey JO, Klarskov P, Shull BL, Smith AR. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. *Am J Obstet Gynecol* 1996; 175: 10-17

238 Davila GW, Ghoniem GM, Kapoor DS, Conterras-Ortiz O. Pelvic floor dysfunction management practice patterns: a survey of members of the International Urogynecological Association. *Int Urogynecol J Pelvic Floor Dysfunct* 2002; 13: 319-325

239 Visco AG, Wei JT, McClure LA, Handa VL, Nygaard IE. Effects of examination technique modifications on pelvic organ prolapse quantification (POP-Q) results. *Int Urogynecol J Pelvic Floor Dysfunct* 2003; 14: 136-140

240 Duton CJ, Mikuta JJ. Post-hysterectomy vaginal vault prolapse. *Postgrad Obstet Gynecol* 1988; 8: 1-6

241 Richter K. Massive eversion of the vagina: pathogenesis, diagnosis, and therapy of the “true” prolapse of the vaginal stump. *Clin Obstet Gynecol* 1982; 25: 897-912

242 Ranney B. Enterocele, vaginal prolapse, pelvic hernia: recognition and treatment. *Am J Obstet Gynecol* 1981; 140: 53-61

243 Aigner F, Zbar AP, Ludwikowski B, Krezzy A, Kovacs P, Fritsch H. The rectogenital septum: morphology, function, and clinical relevance. *Dis Colon Rectum* 2004; 47: 131-140

244 Smith AR, Hosker GL, Warrell DW. The role of pudendal nerve damage in the aetiology of genuine stress incontinence in women. *Br J Obstet Gynaecol* 1989; 96: 29-32

245 Cruikshank SH, Kovac SR. Randomized comparison of three surgical methods used at the time of vaginal hysterectomy to prevent posterior enterocele. *Am J Obstet Gynecol* 1999; 180: 859-865

246 Woodruff AJ, Roth CC, Winters JC. Abdominal sacral colpopexy: surgical pearls and outcomes. *Curr Urol Rep* 2007; 8: 399-404

247 Culligan PJ, Murphy M, Blackwell L, Hammons G, Graham C, Heit MH. Long-term success of abdominal sacral colpopexy using synthetic mesh. *Am J Obstet Gynecol* 2002; 187: 1473-1480; discussion 1481-1482

248 Timmons MC, Addison WA, Addison SB, Cavenar MG. Abdominal sacral colpopexy in 163 women with posthysterectomy vaginal vault prolapse and enterocele. Evolution of operative techniques. *J Reprod Med* 1992; 37: 323-327

249 Rao SS. Constipation: evaluation and treatment of colonic and anorectal motility disorders. *Gastrointest Endosc Clin N Am* 2009; 19: 117-139, vii

S- Editor Shi ZF  L- Editor A  E- Editor LJ Y