Dose-dependent effects of anthocyanin supplementation on platelet function in subjects with dyslipidemia: A randomized clinical trial

Zezhong Tian, Kongyao Li, Die Fan, Yimin Zhao, Xiaoli Gao, Xilin Ma, Lin Xu, Yilin Shi, Fuli Ya, Jinchao Zou, Ping Wang, Yuheng Mao, Wenhua Ling, Yan Yang

School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China

Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province 510080, PR China

Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province 510080, PR China

Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province 510080, PR China

Clinical Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province 518107, PR China

The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province 518033, PR China

Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan 671000, PR China

ABSTRACT

Background: Dyslipidemia induces platelet hyperactivation and hyper-aggregation, which are linked to thrombosis. Anthocyanins could inhibit platelet function in vitro and in mice fed high-fat diets with their effects on platelet function in subjects with dyslipidemia remained unknown. This study aimed to investigate the effects of different doses of anthocyanins on platelet function in individuals with dyslipidemia.

Methods: A double-blind, randomized, controlled trial was conducted. Ninety-three individuals who were initially diagnosed with dyslipidemia were randomly assigned to placebo or 40, 80, 160 or 320 mg/day anthocyanin groups. The supplementations were anthocyanin capsules (Medox, Norway). Platelet aggregation by light aggregometry of platelet-rich plasma, P-selectin, activated GPIIb/IIIa, reactive oxygen species (ROS), and mitochondrial membrane potential were tested at baseline, 6 weeks and 12 weeks.

Findings: Compared to placebo group, anthocyanins at 80 mg/day for 12 weeks reduced collagen-induced platelet aggregation (-7.14 ± 2.38%) and activated GPIIb/IIIa (8.25 ± 2.45%) (P < 0.05). Moreover, compared to placebo group, anthocyanins at 320 mg/day inhibited collagen-induced platelet aggregation (7.05 ± 2.38%), ADP-induced platelet aggregation (7.14 ± 2.00%), platelet ROS levels (14.55 ± 1.86%), and mitochondrial membrane potential (7.40 ± 1.56%) (P < 0.05). There were dose-response relationships between anthocyanins and the attenuation of platelet aggregation, mitochondrial membrane potential and ROS levels (P for trend < 0.05). Furthermore, significantly positive correlations were observed between changes in collagen-induced (r = 0.473) or ADP-induced (r = 0.551) platelet aggregation and ROS levels in subjects with dyslipidemia after the 12-week intervention (P < 0.05).

Interpretation: Anthocyanin supplementation dose-dependently attenuates platelet function, and 12-week supplementation with 80 mg/day or more of anthocyanins can reduce platelet function in individuals with dyslipidemia.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abbreviations: ROS, reactive oxygen species; ASCVD, atherosclerotic cardiovascular disease; IPAQ, International Physical Activity Questionnaire; BW, body weight; BH, body height; NC, neck circumference; WC, waist circumference; WHR, waist-hip ratio; HC, hip circumference; HR, heart rate; BP, blood pressure; EDTA, ethylene diamine tetraacetic acid; FRG, fasting blood glucose; FINS, fasting insulin; UA, uric acid; HOMA-IR, insulin resistance; PT, prothrombin time; APTT, activated partial thromboplastin time; TT, thrombin clotting time; Fib, fibrinogen; MDA, malondialdehyde; TSOD, total superoxide dismutase; 8-iso-PGF2α, 8-iso-prostaglandin F2α; ANOVA, analysis of variance; SEM, standard error of the mean; ACN, anthocyanin

Data described in the manuscript, code book, and analytic code will be made available upon reasonable request.

* Corresponding author at: School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, PR China.

E-mail address: yangyan3@mail.sysu.edu.cn (Y. Yang).

https://doi.org/10.1016/j.ebiom.2021.103533

2352-3964/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) is a major cause of death in individuals with dyslipidemia [1]. Dyslipidemia, a lipid metabolism disorder, is an independent risk factor for atherosclerotic plaque and thrombotic events [2,3]. Early treatment and prevention of ASCVD in individuals with dyslipidemia is of considerable importance.

Platelet hyperreactivity is a strong and independent predictor of thrombotic events [4–6]. In dyslipidemia, blood platelets exhibit hyperreactivity, increased expression of activated GPIIb/IIIa and P-selectin and enhanced aggregation which are involved in the development of atherosclerotic plaques and thrombotic events [7–11]. Some studies mechanistically revealed that reactive oxygen species (ROS) in platelets and elevated oxidation reactions also led to platelet hyperactivation and hyper-aggregation in patients with dyslipidemia [7,10,12]. Hence, attenuating platelet activation, aggregation and oxidative stress in patients with dyslipidemia have not been investigated, and the efficacy and dose of anthocyanins in this respect are unknown yet. Therefore, this double-blind, randomized, controlled trial aimed to study the effects of anthocyanins on platelet function and explore dose responses in individuals with dyslipidemia.

2. Materials & methods

2.1. Study population

All the subjects were recruited from local communities in Guangzhou, China, through flyers, medical record reviews, or clinicians’ recommendations at community health centers. In 2018, we recruited 176 eligible subjects to complete a randomized controlled trial and found that anthocyanins could improve antioxidative and anti-inflammatory effects in a dose-dependent manner in individuals with dyslipidemia [21,22]. Due to limited laboratory conditions at that time, we cannot perform platelet function tests as these tests need to be completed within two hours after blood collection. To determine the effects of anthocyanins on platelet activation, aggregation and oxidative stress in individuals with dyslipidemia, we later recruited additional 104 eligible subjects from the Dadong Street Community Health Service Center and conducted this trial in 2019. A total of 93 subjects completed this trial. The enrollment and intervention were conducted in accordance with the Declaration of Helsinki guidelines. The Ethics Committee of Sun Yat-sen University approved the study protocol. All participants signed written informed consent forms prior to enrollment. The trial was registered at ClinicalTrials.gov (NCT03415503).

The inclusion criteria were as follows: [1] aged 35 to 70 years; [2] dyslipidemia comprising any two or more of the following four criteria: fasting serum triglyceride (TG) ≥ 150 mg/dL (1.70 mmol/L), total cholesterol (TC) ≥ 200 mg/dL (5.20 mmol/L), low-density lipoprotein cholesterol (LDL-C) ≥ 120 mg/dL (3.12 mmol/L), or high-density lipoprotein cholesterol (HDL-C) ≤ 35 mg/dL (0.91 mmol/L); [3] less eating out of home; [4] and having stable body weight in the past 3 months [28,29].

The exclusion criteria included: [1] taking any medications known to affect platelet or lipid metabolism, currently or within the past 6 months; [2] taking any anthocyanin supplements or anthocyanin-rich foods currently or within the past 2 months; [3] lactating or pregnant women; [4] or suffering from severe acute or chronic illness.

2.2. Study design

This was a 12-week randomized, double-blind, placebo-controlled trial. To evaluate the dose-response relationship of anthocyanins on platelet function, we set five doses of anthocyanins according to the results of previous clinical trials [21,22,27].
First, a total of 104 eligible subjects were stratified by gender and then randomly assigned to one of the five groups: placebo (n = 20) or anthocyanin at 40 mg/day (n = 20), 80 mg/day (n = 20), 160 mg/day (n = 22), or 320 mg/day (n = 22) by random numbers generated by SPSS v22.0 (SPSS Inc., Chicago, IL, USA) (Fig. 1).

Blinding was performed according to our previous research [21,22]. Briefly, a technician who did not participate in the experiments, data collection or analysis was responsible for randomization and the management of the packaged supplements. Participants, investigators, and laboratory technicians were blinded to the treatment assignments.

During the intervention period, three types of oral capsules with the same weight, appearance, taste, and packaging were used: 40 or 80 mg anthocyanins (Medox) and placebo capsules. In detail, subjects in placebo group consumed four placebo capsules, subjects in the 40 mg anthocyanins group consumed one 40 mg anthocyanins and three placebo capsules, subjects in the 80 mg anthocyanins group consumed one 80 mg anthocyanins and three placebo capsules, subjects in the 160 mg anthocyanins group consumed two 80 mg anthocyanins and two placebo capsules and subjects in the 320 mg anthocyanins group consumed four 80 mg anthocyanins capsules per day. Subjects were asked to take two capsules in the morning and two in the evening after meals. Subject compliance was assessed by counting the number of returned capsules when they received their supplements once every 2 weeks.

2.3. Study supplements

Anthocyanin (Medox) and placebo capsules were provided by Medpalett AS (Sandnes, Norway). The Medox capsules contain 80 or 40 mg anthocyanins, both of which comprise 17 different natural anthocyanins purified from bilberry (Vaccinium myrtillus) and blackcurrant (Ribes nigrum; refer to Supplemental Tables 1, 2, and 3 for the ingredients of the anthocyanin capsules). The Medox capsules also contained 4% pullulan, maltodextrin and citric acid to maintain stability, whereas the placebo capsules contained only pullulan and maltodextrin.

The subjects were asked to maintain their usual dietary intake and physical activities. The 24 h dietary recall data were recorded on 3 consecutive days, and international physical activity questionnaire (IPAQ) scores were collected by the trained staff via face-to-face interviews at baseline and after 12 weeks, as described in our previous studies [21,22].

2.4. Anthropometric analyses

Anthropometric measurements were performed by a trained examiner as previously described [21,22]. Body weight (BW), body height (BH), neck circumference (NC), waist circumference (WC), waist-hip ratio (WHR), hip circumference (HC), heart rate (HR), and blood pressure (BP) were measured according to standard protocols.

2.5. Biological samples collection and assessment of biochemical biomarkers

At baseline, and after 6 and 12 weeks, overnight fasting venous blood samples were collected in tubes containing sodium citrate anticoagulation, separation gel coagulation, or ethylene diamine tetraacetic acid (EDTA) between 8:00 and 9:00. Samples were separately

![Fig. 1. The participant flowchart of the study.](image-url)
centrifuged to prepare serum or platelet-rich plasma (PRP) as described in a previous study [24]. PRP was immediately used to assay platelet aggregation and activation or other related parameters. Serum samples and first-morning urine samples were stored at -80°C until subsequent analyses.

Fasting blood samples were subjected to lipid profile analysis, including LDL-C, HDL-C, serum TG, serum TC, apolipoprotein A-1 (ApoA-1), and apolipoprotein B (ApoB). Lipid profile analyses were performed on the Cobas c311 automated assay analyzer (c311, Roche Diagnostics, Switzerland). Enzymatic methods were used to determine the concentrations of HDL-C, LDL-C, TC, and TG. The concentrations of ApoA-1 and ApoB were determined by immunonephelometry. Other biochemical analyses included fasting blood glucose (FBG), insulin (FINS), and uric acid (UA) concentrations that were measured using the Cobas c311 automated assay analyzer. The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated based on FBG and FINS: HOMA-IR = FINS (μmol/L) × FBG (mmol/L)/22.5. Prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin clotting time (TT), and plasma fibrinogen (Fib) were performed on a Sysmex5100 system (Siemens Healthineers, Malvern, USA).

To assess the changes in platelet mitochondrial membrane potential and ROS, freshly isolated PRP was separately stained with 40 nmol/L tetramethylrhodamine methyl ester (TMRM, Abcam, MA, UK) or 20 μmol/L 2,7'- dichlorofluorescin diacetate (DCFDA, Abcam, UK) for 30 min at 37 °C, and was analyzed via a calibrated CytoFLEX flow cytometer (Beckman Coulter, CA, USA) [7]. Serum malondialdehyde (MDA) was determined using a commercial ELISA kit (catalog no. A001-1-2, Jiancheng, Nanjing, China). The serum total superoxide dismutase (T-SOD) was measured using a T-SOD assay kit (catalog no. A001-1-2, Jiancheng, Nanjing, China). Urine 8-iso-prostaglandin F2α (8-iso-PGF2α) was determined by a competitive enzyme immunoassay kit (catalog no.516351, Cayman Chemical Company, Ann Arbor, MI, USA) in spot urine samples. Helmersson and Basu have reported that urinary F2-isoprostane isomer concentrations in spot urine showed no significant variation from those measured in 24 h urine samples in the same individuals by radioimmunoassay [30].

2.6. Flow cytometric analysis of platelet activation

Analysis of platelet activation was performed on a flow cytometer as previously described [24,31]. Briefly, freshly isolated PRP was separately incubated with different fluorescent-labeled antibodies activated GPIb/IIIa (FITC-conjugated mouse anti-human PAC-1, BD Biosciences, San Jose, CA, USA) or P-selectin (FITC-conjugated mouse anti-human CD62p, BD Biosciences, San Jose, CA, USA) at room temperature for 30 min. Platelets were initiated by adding 100 μmol/L adenosine diphosphate (ADP) at room temperature, followed by fixation with 1% paraformaldehyde (pH = 7.2) before analysis. All samples were analyzed via a calibrated CytoFLEX flow cytometer.

2.7. Assessment of platelet aggregation

Platelet aggregation was performed on a Chronolog aggregometer (Chrono-Log Corp., PA, USA) as previously described [31,32]. Briefly, fresh PRP prepared from subjects was stimulated by ADP or collagen at baseline, at 6 weeks, and at 12 weeks. Platelet aggregation was evaluated on a Chronolog aggregometer (Chrono-Log Corp., PA, USA) in PRP (3.0 × 10^8 platelets/mL) at 37 °C with a sample stir speed of 1000 rpm, and the change in light transmission was monitored and recorded for at least 6 minutes.

2.8. Sample size estimation

The sample size was calculated via PASS software (version 11.0, NCSS Inc.). In our previous randomized controlled trial, supplementation with 320 mg/day anthocyanin resulted in an 8.4% change in blood levels of platelet-derived Regulated on Activation Normal T cell Expressed and Secreted (RANTES) compared to those in the placebo group [27]. Based on the conventional assumption of a two-tailed α level of 0.05 and β level of 0.10, it was determined that 15 subjects should be recruited per group. Taking into account a 10% loss to follow-up rate, at least 17 individuals were needed in each group. We also performed a post hoc power analysis to extrapolate the sample size according to the effect of 40 mg/day anthocyanin on P-selectin-positive platelets in our current study. This sample size was approximately equal to the sample size in our current study.

2.9. Statistical analysis

All statistical analyses were two-tailed and performed using SPSS v22.0 (SPSS Inc., Chicago, IL, USA). Statistical significance was defined as P < 0.05. The data are expressed as the mean ± standard error of the mean (SEM) unless otherwise stated. For categorical variables, analysis was performed using the chi-square test. For continuous variables, variables were checked for normal distribution and were natural log-transformed if they were not normally distributed. The mean substitution method was used to handle missing values. We also performed sensitivity analysis in which the missing values were not imputed. The changes after 6 weeks and 12 weeks were calculated as values after intervention deducted from the values at baseline. The comparability of the five groups at baseline was assessed by one-way analysis of variance (ANOVA) with the post hoc Dunnett's test. Repeated-measures ANOVA was used to analyze the main effect on groups over time. To compare the effect of anthocyanins at different weeks, Student’s t tests for paired data were used to assess changes within the group at baseline and after 6 or 12 weeks, and differences in the change in biomarkers between the intervention groups were analyzed by ANOVA with the post hoc Dunnett's test. We also analyzed the dose-related effects of anthocyanins supplementation on metabolic changes via linear trend analysis. Stratified analyses were performed with ANOVA and the post hoc Dunnett's test to compare the changes of platelet function and oxidative stress after 12-week treatment stratified by lipid levels. Pearson correlation coefficients (r) were calculated to assess the associations between changes in oxidative stress and changes in platelet aggregation over the 12-week study period.

2.10. Role of funding source

The funders of the present study (namely National Natural Science Foundation of China, Guangzhou Science, Technology, and Innovation Commission, and Shenzhen Science, Technology, and Innovation Commission) only provided financial support and did not participate in the study design, data collection, data analysis, interpretation and writing of the report.

3. Results

3.1. Characteristics, diet monitoring and coagulation function

A total of 104 eligible subjects were randomly assigned to one of the five groups (Fig. 1). The characteristics of all 104 eligible subjects with dyslipidemia are shown in Table 1. Participants were predominantly females (74.0%) with ages ranging from 36 to 70 years. Participants in the five groups were comparable in age, sex, smoking status, BW, BMI, WC, WHR, HR, BP, lipid profiles, FBG, FINS, and HOMA-IR at baseline (Table 1). A total of 93 subjects completed the trial and were included in the analysis (Fig. 1). The characteristics of 93 subjects with dyslipidemia are shown in Supplemental Table 4. At baseline, 93 subjects in the five groups were comparable in terms of age, sex, smoking status, BW, BMI, NC, WC, WHR, HR, BP, lipid profile,
### Table 1: Baseline characteristics of subjects with dyslipidemia.

|                     | Placebo (n=20) | 40 mg ACN (n=20) | 80 mg ACN (n=20) | 160 mg ACN (n=22) | 320 mg ACN (n=22) | P-valuea |
|---------------------|---------------|------------------|------------------|-------------------|------------------|---------|
| Age, y              | 56.20±1.56b   | 56.55±1.99       | 61.05±1.07       | 58.77±1.59        | 58.45±1.77       | 0.247   |
| Gender (M/F)        | 6/14          | 6/14             | 5/15             | 5/17              | 5/17             | 0.964   |
| Weight (kg)         | 61.14±2.11    | 62.06±3.19       | 59.86±2.01       | 62.37±2.63        | 0.676           |
| Smoking (%)         | (5/0)         | (1/0.0)          | (0/0)            | (1/4.5)           | (0/0)            | 0.570   |
| BMI (kg/m²)         | 24.76±0.4     | 23.65±0.78       | 23.81±0.68       | 23.53±0.52        | 24.75±0.8       | 0.486   |
| NC (cm)             | 33.91±0.8     | 33.89±0.81       | 33.37±0.71       | 33.00±0.65        | 33.86±0.81      | 0.882   |
| WC (cm)             | 84.29±1.86    | 83.52±2.38       | 83.75±1.74       | 84.06±1.41        | 85.49±2.03      | 0.954   |
| WHR                 | 0.89±0.01     | 0.88±0.01        | 0.89±0.01        | 0.89±0.01         | 0.940           |
| SBP (mmHg)          | 122.81±3.64   | 117.82±3.3       | 114.02±3.24      | 119.81±2.59       | 118.39±2.13     | 0.359   |
| DBP (mmHg)          | 78.99±1.91    | 73.53±1.83       | 72.45±2.26       | 73.73±1.57        | 73.75±1.74      | 0.126   |
| HR (beats/min)      | 79.77±1.59    | 77.32±2.54       | 76.74±2.10       | 75.1±1.54         | 74.75±2.34      | 0.426   |
| TC (mmol/L)         | 6.24±0.23     | 6.37±0.18        | 6.06±0.12        | 6.13±0.14         | 6.53±0.17       | 0.284   |
| HDL-C (mmol/L)      | 1.39±0.06     | 1.52±0.09        | 1.44±0.10        | 1.51±0.08         | 1.48±0.06       | 0.675   |
| LDL-C (mmol/L)      | 4.41±0.21     | 4.65±0.18        | 4.16±0.16        | 4.21±0.14         | 4.56±0.17       | 0.191   |
| TG (mmol/L)         | 2.06±0.20     | 1.56±0.16        | 2.17±0.23        | 1.81±0.18         | 1.70±0.17       | 0.156   |
| ApoA-I (g/L)        | 1.45±0.04     | 1.44±0.06        | 1.44±0.05        | 1.49±0.05         | 1.45±0.03       | 0.935   |
| ApoB (g/L)          | 1.36±0.05     | 1.39±0.05        | 1.25±0.04        | 1.26±0.04         | 1.35±0.05       | 0.109   |
| FGF (mmol/L)        | 5.38±0.21     | 5.23±0.16        | 5.19±0.12        | 5.30±0.13         | 5.46±0.22       | 0.800   |
| FINs (mmol/L)       | 11.39±1.04    | 10.32±1.32       | 9.5±0.95         | 9.1±0.95          | 10.30±1.04      | 0.611   |
| HOMA-IR             | 2.75±0.27     | 2.48±0.34        | 2.21±0.23        | 2.21±0.26         | 2.56±0.34       | 0.662   |

a Data are presented as mean ± SEM or n (%).

b P-values are for comparison among the five groups (either a one-way analysis of variance or chi-square test for independent data).

Supplemental Tables 6, 7 and 8.

3.2. Effects of anthocyanins on platelet activation and aggregation

Anthocyanin supplementation at different doses for 6 weeks did not cause significant changes in platelet functions. After 12 weeks, 80 mg/day, 160 mg/day, and 320 mg/day of anthocyanins significantly reduced the percentage of activated GPⅠbⅡa positive platelets, with baseline levels of 54.77±2.23%, 59.57±2.22%, and 55.07±1.36%, respectively (P < 0.05, Table 2). Twelve weeks of 320 mg/day anthocyanins significantly decreased the percentage of P-selectin positive platelets, with baseline values of 53.17±1.75% and a post-intervention value of 43.63±1.42% (P < 0.05, Table 2). Similarly, after 12 weeks, 80 mg/day, 160 mg/day, and 320 mg/day anthocyanins resulted in a moderately significant reduction in platelet aggregation stimulated by collagen, with baseline values of 73.67±3.44%, 79.37±1.97% and 77.67±2.12% and post-intervention values of 70.28±3.73%, 72.84±2.15% and 70.62±3.03%, respectively (P < 0.05, Table 2). In addition, 12 weeks of anthocyanins at dosages of 160 mg/day and 320 mg/day significantly decreased ADP-induced platelet aggregation, with baseline values of 69.74±2.78% and 69.24±2.81% and post-intervention values of 63.32±3.12% and 62.18±3.13%, respectively (P < 0.05, Table 2).

The percentage of activated GPⅠbⅡa positive platelets from baseline to 12 weeks significantly decreased in the 80 mg/day (-8.25±2.45%, P < 0.01), 160 mg/day (-13.99±2.56%, P < 0.01) and 320 mg/day anthocyanin (-14.78±2.01%, P < 0.01) groups (Table 2). Similarly, the percentage of P-selectin-positive platelets from baseline to 12 weeks was reduced in the 320 mg/day anthocyanin group (-9.53±1.54%, P < 0.05) (Table 2). In addition, there were significant decreases in collagen-induced platelet aggregation from baseline to 12 weeks in the 80 mg/day anthocyanin (-3.39±2.36%, P < 0.05), 160 mg/day anthocyanin (-6.53±1.72%, P < 0.01), and 320 mg/day anthocyanin (-7.05±2.38%, P < 0.01) groups. The change in ADP-induced platelet aggregation from baseline to 12 weeks in the 160 mg/day anthocyanin (-6.42±1.76%, P < 0.01) and 320 mg/day anthocyanin groups (-7.14±2.00%, P < 0.01) was different from the change in the placebo group (6.38±2.08%) (Table 2).

Further analysis showed that the reductions in P-selectin positive platelets (P for trend < 0.001), activated GPⅠbⅡa positive platelets (P for trend < 0.001), ADP-induced platelet aggregation (P for trend < 0.001), and collagen-induced platelet aggregation (P for trend < 0.001) were significantly dependent on the dose of anthocyanins (Table 2).

3.3. Effects of anthocyanins on oxidative stress

After 12 weeks, 160 mg/day and 320 mg/day anthocyanins significantly reduced urinary 8-iso-PGF2α from baseline values of 1.25±0.15 pg/mg creatinine and 1.40±0.14 pg/mg creatinine to post-
intervention values of 0.76±0.14 pg/mg creatinine and 0.74±0.16 pg/mg creatinine (P < 0.05, Table 3). Twelve weeks of anthocyanins at 160 mg/day and 320 mg/day significantly decreased serum MDA, with baseline values of 4.24±0.31 μmol/L and 3.53±0.21 μmol/L and post-intervention values of 3.52±0.2 μmol/L and 2.78±0.16 μmol/L, respectively (P < 0.05, Table 3). In addition, 12 weeks of anthocyanins at 320 mg/day yielded a further reduction in the percentage of ROS-positive platelets and TMRM-positive platelets compared with those observed in the 160 mg/day and 80 mg/day groups, with baseline values of 30.60±2.28% and 57.40±2.53% and post-treatment values of 16.05±1.22% and 64.80±1.65%, respectively (P < 0.05, Table 3).

The urinary 8-iso-PGF2α from baseline to 12 weeks significantly decreased in the 80 mg/day anthocyanin (-0.36±0.20 pg/mg creatinine, P < 0.05), 160 mg/day anthocyanin (-0.50±0.16 pg/mg creatinine, P < 0.01) and 320 mg/day anthocyanin (-0.65±0.12 pg/mg creatinine, P < 0.01) groups (Table 3). The decrease in serum MDA from baseline to 12 weeks in the 160 mg/day anthocyanin group (-0.73±0.34 μmol/L, P < 0.01) and 320 mg/day anthocyanin group (-0.75±0.25 μmol/L, P < 0.01) was different from the change in the placebo group (0.49±0.29 μmol/L) (Table 3). In addition, the percentage of ROS-positive platelets from baseline to 12 weeks was significantly reduced in the 160 mg/day anthocyanin group (-14.34±2.88%, P < 0.01) and 320 mg/day anthocyanin group (-14.55±1.86%, P < 0.01) (Table 3). Stratified analyses (Supplementary Table 10) showed that among subjects with high TC, T-SOD, urinary 8-iso-PGF2α, MDA, percentage of TMRM-positive platelets, percentage of ROS-positive platelets have robust dose-response relationship among five groups.

The decrease in urinary 8-iso-PGF2α (P for trend < 0.001), serum MDA (P for trend < 0.05) and percentage of ROS-positive platelets (P for trend < 0.01) was significantly dependent on the dose of anthocyanin supplementation (Table 3). The improvement in the percentage of TMRM-positive platelets (P for trend < 0.001) and T-SOD (P for trend < 0.05) was significantly dependent on the anthocyanin dose (Table 3).

3.4. Association between changes in platelet oxidative stress and platelet aggregation

After the 12-week intervention, the decrease in urinary 8-iso-PGF2α (r = 0.341, P < 0.01), serum MDA level (r = 0.251, P = 0.015) and platelet ROS level (r = 0.473, P < 0.01) exhibited positive associations with the alteration in collagen-induced platelet aggregation (Fig. 2). Positive correlations were also found between the change in urinary 8-iso-PGF2α (r = 0.386, P < 0.01), serum MDA level (r = 0.320, P < 0.01) or platelet ROS level (r = 0.531, P < 0.01) and the change in ADP-induced platelet aggregation (Fig. 2).
and this was consistent with our previous studies [21]. In addition for the attenuation of platelet activation, aggregation and oxidative stress after anthocyanin supplementation in subjects with dyslipidemia.

4. Discussion

In the present study, we found a linear dose-response association for the attenuation of platelet activation, aggregation and oxidative stress after anthocyanin supplementation in subjects with dyslipidemia. After 12-week anthocyanin intervention, anthocyanin supplementation at 80 mg/day partially reduced platelet activation, aggregation and oxidative stress biomarkers. Individuals who received 160 or 320 mg/day anthocyanins for 12 weeks showed further improvement in platelet activation, aggregation, and oxidative stress biomarkers. Anthocyanins at 320 mg/day for 12 weeks also increased serum HDL-C and ApoA-1 levels, and this was consistent with our previous studies [21]. In addition, 6 weeks of anthocyanin supplementation did not significantly improve platelet activation, aggregation, oxidative stress or lipid levels. These findings suggested that anthocyanins could inhibit platelet activation, aggregation and oxidative stress in a dose-response manner and that receiving 80 mg or more of anthocyanins per day could help attenuate platelet function in individuals with dyslipidemia.

Anthocyanin-rich foods and anthocyanin extracts could result in beneficial outcomes in the context of metabolic diseases [21,22,33,34]. Many studies have investigated their impact on thrombosis risk, such as platelet oxidative stress, activation, and aggregation. However, most studies were conducted only in vitro or in animals to observe the effect of anthocyanins on platelet activation and aggregation. For example, in vitro experiments have shown that polyphenol-rich extracts from black chokeberry could reduce platelet adhesion, aggregation and generation of ROS in blood platelets [35]. Besides, anthocyanin-rich extracts from black chokeberry were found to be more effective in inhibiting platelet function than other polyphenols in an animal model of hyperhomocysteinemia [36]. Similarly, our previous study revealed that anthocyanin could inhibit human platelet activation, aggregation and secretion in vitro [24,25]. Kiara Thompson et al. found that anthocyanin supplementation had the potential to alleviate platelet activation and aggregation in healthy sedentary population [23]. In addition, our previous human studies have also shown its inhibitory effects on platelet granule release and chemokines in patients with hypercholesterolemia [27]. However, there is no clinical evidence about the effects of anthocyanin...
supplementation on platelet activation, aggregation and oxidative stress in individuals with dyslipidemia. The present study first demonstrated that anthocyanins could attenuate platelet function in subjects with dyslipidemia.

Most studies used only a single dose to investigate the effects of anthocyanins, and the dosage at which anthocyanins produces protective functions has not been well investigated. Our recent studies found that supplementation of anthocyanins for 12 weeks led to antioxidative and anti-inflammatory effects in a dose-response manner in a way that anthocyanin supplementation at a dosage over 80 mg/day could produce beneficial effects in individuals with dyslipidemia [21,22]. As discussed before, most studies were conducted only in vitro, in animals or in healthy individuals to explore the effects of anthocyanins on platelet function [23,36], and few studies have investigated the effect of anthocyanins on platelet function in individuals with dyslipidemia. The present study first indicated that anthocyanins at a dosage of >80 mg/day could effectively inhibit platelet activation, aggregation and oxidative stress in subjects with dyslipidemia, whereas anthocyanins at a dosage of more than 80 mg/day would result in more beneficial effects on platelet activation, aggregation and oxidative stress. In addition, no significant differences were found in coagulation function and adverse events among the five groups after intervention. This evidence indicated that daily intake of anthocyanins at 80 mg or higher is safe and could have the potential to reduce platelet activation, aggregation and oxidative stress in individuals with dyslipidemia.

The protective function of anthocyanins on platelet activation, aggregation and oxidative stress was significantly obvious after 12 weeks of supplementation but not after 6 weeks of supplementation. Therefore, the duration of anthocyanin supplementation may have an essential impact on the improvement in platelet function. Similarly, in our previous randomized clinical trials in hypercholesterolemic individuals and other randomized clinical trials in patients with hyperlipidemia and patients after myocardial infarction, it was indicated that anthocyanin supplementation for over 12 weeks could exert protective effects, such as improving lipid profiles and inhibiting platelet granule release in plasma [21,22,27,37-39]. One underlying mechanism of anthocyanin may be related to its improvement on the composition of intestinal flora, which needs time to be gradually changed [40-43]. In addition, animal experiments have shown that after long-term administration of anthocyanins to animals, total anthocyanin concentrations were detected in animal tissues, then these may be released from tissues to make the effects time-dependent [44]. In summary, an increased duration of anthocyanin supplementation may result in greater potential clinical benefits on platelet function and oxidative stress, especially in light of the modest efficacy of anthocyanins.

Platelets from patients with dyslipidemia show hyperreactivity, increased surface expression of activated GPIIb/IIIa and P-selectin, higher responsiveness of platelet aggregation to stimulus [9,10,45]. Dyslipidemia is associated with elevated levels of oxidative stress [46-48]. Moreover, it has been reported that oxidative stress is one of the major causes of platelet hyperreactivity in individuals with dyslipidemia [7,12]. Our previous study showed that supplementation with anthocyanins for 12 weeks improved antioxidative capacity in a dose-response manner in individuals with dyslipidemia [22]. In the present study, we found that anthocyanins inhibited platelet ROS and improved platelet mitochondrial membrane potential after 12 weeks of treatment. Anthocyanins could reduce platelet ROS levels and urinary 8-iso-PGF2α and MDA levels, which were positively correlated with the change in platelet aggregation after the 12-week treatment. In addition, our findings indicate that the attenuation of platelet hyperreactivity after anthocyanin
intervention was linked to the improvement in oxidative stress among individuals with dyslipidemia.

Some cross-sectional studies conducted in various countries indicated that anthocyanin intake in daily diets was relatively low, ranging from 11.48 to 47.0 mg/day [40]. The daily intake of anthocyanins in participants from our current study was less than 6 mg/day. Overall, anthocyanin intake from the daily diet might not reach 80 mg/day. Thus, the intake of food with adequate anthocyanins is necessary. A previous study has reported that the total anthocyanin contents in fresh bilberry and blackcurrant were approximately 516.3 mg/100 g and 201.0 mg/100 g, respectively [50]. In addition, 100 g of blackberries, black elderberries and black chokeberries contain 85.21–190.62 mg, 295.48–1266.00 mg, and 125.63–989.70 mg of anthocyanins, respectively [51–53]. Therefore, anthocyanin intake of over 80 mg/day can be obtained through daily food intake of anthocyanin-rich foods or nutritional supplements.

There are some strengths and limitations in our present study. The double-blind, randomized, placebo-controlled, dose-response trial design is the major strength of this study. We also maintained the 24 h dietary recall data and IPAQ during the trial to monitor the dietary habits and physical activity of all participants, thus minimizing the chance that our results are attributed to confounding bias. Besides, we tested platelet function assays at baseline, 6 weeks and 12 weeks, respectively, which is difficult to be completed in the intervention trial, due to that platelet function are required to be detected within two hours right after blood collection. Meanwhile, some limitations also existed in the study. The sample size of this study was relatively small as in most other randomized controlled trials which focused on platelet function [19,20,23], because of the difficulty of platelet function assays. But the sample size of this study was calculated via a previous trial [27] and a post hoc power analysis, and is adequate to obtain sufficient statistical power. In addition, another limitation of this work was that we did not detect anthocyanins or their metabolites in serum samples as a measure of compliance as in most other randomized controlled trials using anthocyanins as a supplement, mainly because of the short half-life of anthocyanins [54]. The findings of our study which focused on individuals with dyslipidemia can just indicate a potential benefit for individuals with other metabolic diseases, and the improvement effect of anthocyanins on individuals at advanced stages of other metabolic diseases is worthy of further clinical study.

5. Conclusion

Supplementation with anthocyanins could effectively inhibit platelet activation, aggregation and oxidative stress in a dose-dependent manner in subjects with dyslipidemia. Taking 80 mg or more of anthocyanins per day is recommended to reduce platelet activation, aggregation and oxidative stress based on our studies. Our results also add to the evidence that there are relationships between changes in platelet aggregation and changes in oxidative stress among individuals with dyslipidemia after anthocyanin supplementation.

Authors' names for pubmed indexing

Z Tian, K Li, D Fan, Y Zhao, X Gao, X Ma, L Xu, Y Shi, F Ya, J Zou, P Wang, Y Mao, W Ling, Y Yang

Contributors

Z.T. and Y.Y. designed the research. Z.T. performed the data analysis and wrote the initial draft of the manuscript. Z.T., W.L. and Y.Y. critically revised the manuscript. Z.T., K.L., D.F., Y.Z., X.G., X.M., L.X., Y.S., F.Y., J.Z., P.W. and Y.M. conducted the research. W.L. and Y.Y. have primary responsibility for final content, and along with all other authors contributed to critically reviewing the manuscript.

Data sharing

Due to the principles of ethics and data privacy security, we have uploaded all deidentified participant data, study protocol, statistical analysis plan and informed consent form to OneDrive, https://onetrive.live.com/. After publication, deidentified participant data, described in the manuscript, study protocol, statistical analysis plan and informed consent form will be made available upon reasonable request via email to corresponding author.

Clinical trial registration

The trial was registered at ClinicalTrials.gov (NCT03415503).

Declaration of Competing Interest

The authors report no conflicts of interest in this work.

Acknowledgment

The authors would like to acknowledge the assistance of Xu Wang being responsible for randomization and blinding, all volunteers for their participation, and American Journal Experts for editing this manuscript.

This work was supported by the Key Project of National Natural Science Foundation of China (No. 82030098 and 81730090), the National Natural Science Foundation of China (No. 81876217), the Guangzhou Science, Technology, and Innovation Commission (No. 201804020045), and Shenzhen Science, Technology, and Innovation Commission (No. JCYJ20180307153228190)

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ebiom.2021.103533.

References

[1] von Eynatten M, Hannan A, Twardella D, Nawroth PP, Brenner H, Rothenbacher D. Relationship of adiponectin with markers of systemic inflammation, atherogenic dyslipidemia, and heart failure in patients with coronary heart disease. Clin Chem 2006;52(5):853–9.
[2] Murphy AJ, Tall AR. Disordered haematoapoiesis and athero-thrombosis. Eur Heart J 2016;37(14):1113–21.
[3] Klopf B, Ette JW, Cabezaz MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013;5(4):1218–40.
[4] Combescure C, Fontana P, Malouf N, Berdague P, Labruyere C, Barazer I, et al. Clinical implications of clopidogrel non-response in cardiovascular patients: a systematic review and meta-analysis. J Thromb Haemost 2010;8(5):923–33.
[5] Sofi F, Marcucci R, Gori AM, Giusti B, Abbate R, Gensini GF. Clopidogrel nonresponsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost 2010;103(4):841–8.
[6] Stone GW, Witzenbichler B, Weisz G, Rinaldi MJ, Neumann FJ, Metzger DC, et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet 2013;382(9892):614–23.
[7] Tang WH, Stitham J, Jin Y, Liu R, Lee SH, Di J, et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation 2014;129(15):1598–609.
[8] Biswas S, Zimman A, Gao D, Byzova TV, Podrez EA. TLR2 plays a key role in platelet hyperreactivity and accelerated thrombosis associated with hyperlipidemia. Circ Res 2013;112(1):951–62.
[9] Barale C, Frascricari C, Selenkew C, Cavelot F, Russo L. Simvastatin effects on inflammation and platelet activation markers in hypercholesterolemia. Biomed Res Int 2018;2018:6507909.
[10] Barale C, Bonomo K, Frascricari C, Morotti A, Guerrasio A, Cavelot F, et al. Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr Metab Cardiovas Dis NMD 2020;30(2):282–9.
[11] Guardamagna O, Abello F, Saracco P, Baracco V, Rollo E, Pirro M. Endothelial activation, inflammation and premature atherosclerosis in children with familial dyslipidemia. Atherosclerosis 2009;207(2):471–5.
[12] Santilli F, Simeone P, Liano R, Davi G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat 2015;120:28–39.
Yao Y, Chen Y, Adili R, McKeown T, Chen P, Zhu G, et al. Plant-based food cyananin supplementation: ex vivo and in vitro comparisons of prusugrel, clopidogrel and ticagrelor. J Thromb Haemost 2018;16(6):1089–98.

Orenelas A, Zachariah-Millward N, Menter DG, Davis JS, Lichtenberger L, Hawke D, et al. Beyond COX-1: the effects of aspirin on platelet biology and potential mechan-isms of chemoprevention. Cancer Metastasis Rev 2017;36(2):289–303.

Hao Q, Tampi M, O'Donnell M, Forouzan F, Siemieniuk RA, Guyatt G. Clopidogrel plus aspirin versus aspirin alone for acute minor ischaemic stroke or high risk transient ischaemic attack: systematic review and meta-analysis. BMJ 2018;363:k5108.

Zheng SL, Roodick AJ. Association of aspirin use with primary prevention for cardiov-ausal diseases and bleeding events a systematic review and meta-analysis. JAMA 2019;321(3):277–87.

Nyakudya TT, Tshabalala T, Dangarembizi R, Erlwanger KH, Ndhlala AR. The protective therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020;25(11):2669.

Dutta-Roy AK, Crosbie L, Gordon MJ. Effects of tomato extract on human platelet aggregation in vitro. Platelets 2001;12(4):218–27.

O’Kennedy N, Crosbie L, van Lieshout M, Broom JJ, Webb DJ, Duttaroy AK. Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans. Am J Clin Nutr 2006;84(3):570–9.

O’Kennedy N, Crosbie L, Whelan S, Luther V, Horgan G, Broom JJ, et al. Effects of tomato extract on platelet function: a double-blinded crossover study in healthy humans. Am J Clin Nutr 2006;84(3):561–9.

Xu ZL, Xie JW, Zhang HY, Pang JI, Li Q, Wang X, et al. Anthocyanin supplementation at different doses improves cholesterol ester capacity in subjects with dyslipide-mia—a randomized controlled trial. Eur J Clin Nutr 2021;75(2):345–54.

Zhang H, Xu Z, Zhao H, Wang X, Pang J, Li Q, et al. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response man-ner in subjects with dyslipidemia. Redox Biol 2020;32:101474.

Thompson K, Hosking H, Pederick W, Singh I, Santahakumar AB. The effect of anthocyanin supplementation in modulating platelet function in sedentary popu-lation: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 2017;118(5):368–74.

Yang Y, Shi ZY, Reheman A, Jin JW, Li CL, Wang YM, et al. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: novel pro-ective roles against cardiovascular diseases. PLOS ONE 2012;7(5):e37323.

Yao Y, Chen Y, Adili R, McKown T, Chen P, Zhu G, et al. Plant-based food cyananin-3-glucosides modulates human platelet glycoprotein vi signaling and inhibits platelet activation and thrombus formation. J Nutr 2017;147(10):1915–25.

Zhou FH, Deng XJ, Chen YQ, Yu LX, Zhang XD, Song F, et al. Anthocyanin cyananin-3-glucosides attenuates platelet granule release in mice fed high-fat diets. J Nutr Sci Vitaminol (Tokyo) 2017;63(4):237–43.

Song FL, Zhu YN, Shi ZY, Tian JJ, Deng XJ, Ren J, et al. Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: involving the signal-ing pathway of P38Akt. Thromb Haemost 2014;112(5):981–91.

Adams J, Goffe L, Brown T, Lake AA, Summerbell C, formulation of the effects of vaccinium arctostaphylos L. Fruit extract on serum lipids and hs-CRP levels and oxidative stress in adult patients with hyperlipidemia: a randomized, double-blind, placebo-controlled clinical trial. Evid Based Complement Alternat Med 2014;2014:217451.

Wanghade UD, Zong Y, Lazarenko OP, Chinatalli PV, Piccolo BD, Chen JR, et al. Sex-specific changes in gut microbiome composition following blueberry con-sumption in C57BL/6j mice. Nutrients 2019;11(2):313.

Lee S, Kersyes KI, Kirkland R, Grunewald ZL, Fischer JG, de La Serre CB. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resist ance in high-fat-fed rats. J Nutr 2018;148(2):209–19.

Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract promotes from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. popula-tion in the gut microbiota of mice. Gut 2015;64(6):872–83.

Jayaratne S, Stull AJ, Park OH, Kim JH, Thompson L, Mountou-Moussa N, Protec-tive effects of anthocyanins in obesity-associated inflammation and changes in gut microbiome. Mol Nutr Food Res 2019;63(26):e1900149.