Proteomic analysis on \(N, N'\)-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma 6-10B cells

Yuejin Li1, Na Liu2\dagger, Damao Huang2\dagger, Zhenlin Zhang1, Zhengke Peng1, Chaojun Duan2, Xiaowei Tang3, Gongjun Tan1, Guangrong Yan4, Wenhua Mei1 and Faqing Tang1,2*

Abstract

Background: Nasopharyngeal carcinoma (NPC) has a high metastatic feature. \(N, N'\)-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study was to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis.

Results: 6-10B cells were grown in DMEM containing \(^2\text{H}_4\)-L-lysine and \(^13\text{C}_6\)^15\text{N}_4\)-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 - 18 \(\mu\)M to establish the non-cytotoxic concentration (NCC) range. NCC was 0 - 10 \(\mu\)M. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways.

Conclusion: DNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, was involved NPC metastasis.

Keywords: Dinitrosopiperazine, Carcinogen, Nasopharyngeal carcinoma, Metastasis, Quantitative proteomics

Background

Nasopharyngeal carcinoma (NPC) is a common malignant cancer in southern China [1]. Epidemiological investigations have revealed that the incidence of NPC has remained high in endemic regions, particularly in southern China with an incidence of 30 - 80 per 100,000 people per year [2]. NPC has the feature of high invasion and metastasis, and cervical lymphadenopathy is often the only clinical manifestation at initial diagnosis of NPC patients [3]. Therapeutic failure in advanced NPC has resulted from both high rates of local recurrence and distant metastasis.

In Chinese populations in high-incidence regions, the relative risk of NPC is related to their eating habits of the region, particularly with dietary intake of salt-preserved fish [2,4-6]. The process of salt preservation is inefficient and foods can become partially putrefied, consequently, these foods accumulate significant levels of nitrosamines [7,8],
which are known carcinogens [7,9,10]. N,N′-Dinitrosopiperazine (DNP) is a predominant volatile nitrosamine in salted fish [11,12]. The carcinogenic potential of DNP in salt-preserved fish is supported by experiments in rats, which develop malignant nasal and NPC [13-15]. Furthermore, DNP can induce malignant transformation of human embryonic nasopharyngeal epithelial cells [16]. Our previous works have shown that DNP induces rat NPC and shows organ specificity for nasopharyngeal epithelium, and found that DNP triggers over-expression of hot shock protein 70 and mucin 5B [17]. Additionally, DNP induces ezrin phosphorylation at Thr567 through activating Rho kinase and protein kinase C, and increases motility and invasion of NPC cells [18]. In the present study, to fully understand the mechanism of DNP-mediated NPC invasion and metastasis, we used a stable isotope labeling with amino acids in cell culture (SILAC) to further analyze the proteomic changes caused by DNP. We found that 371 proteins were regulated by DNP, most of which were not previously reported to be involved in NPC metastasis. Analysis of this vast information provides us with better understanding of the complex regulatory mechanism of NPC high metastasis. Using bioinformatics analysis, we detected many novel signaling components in DNP-regulated signaling pathways.

Methods

Cell culture and stable isotope labeling

NPC cell line 6-10B was derived from a cell line SUNE-1, and has a low metastatic ability [1]. Thus, 6-10B cells were used in the present study to investigate DNP-mediated NPC metastasis. DNP was a carcinogens specially for NPC and its chemical structure is shown in Figure 2A. Additionally, heavy lysine and arginine (\(^{2}\)H\(_4\)-L-lysine and \(^{13}\)C\(_6\)-\(^{15}\)N\(_2\)-L-arginine) were purchased from Sigma-Aldrich. 6-10B cells were grown in DMEM containing \(^{2}\)H\(_4\)-L-lysine and \(^{13}\)C\(_6\)-\(^{15}\)N\(_2\)-L-arginine ("heavy") or conventional L-lysine and L-arginine ("light") supplemented with albumin, fetal bovine serum. After six cell doublings, we assayed the labeled amino acids in cells, and then identified whether cells were completely incorporated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an Autoflex (MALDI-TOF-MS instrument (Bruker Dalton). Mass spectra were searched against a database of human proteins and subsequently quantified using Mascot Server (www.matrixscience.com).

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme-thoxyphenyl)-2-(4-ufophenyl) -2H-tetrazolium assay

To determine the non-cytotoxic concentration of DNP, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme-thoxyphe-nyl)-2-(4-ufophenyl) -2H-tetrazolium (MTT) assay was performed to determine the viability of “heavy” labeled 6-10B cells. Briefly, “heavy” labeled 6-10B cells were seeded in 96-well plates at a density of 5 x 10\(^3\) cells / well and treated with DNP at a concentration between 0 and 18 \(\mu\)M at 37°C for 24 h. Thereafter, 20 \(\mu\)l MTT (5 mg/ml, 0.5% MTT) was added per well for 4 h. The viable cell number per dish is directly proportional to formazan production, which can be measured spectrophotometrically at 492 nm following solubilization with isopropanol.

Lactate dehydrogenase assay

To further evaluate the non-cytotoxic concentration of DNP in “heavy” labeled 6-10B cells, lactate dehydrogenase (LDH) activity in cell culture media was detected after DNP treatment. Briefly, “heavy” labeled 6-10B cells were seeded in 6-well plates at a density of 2 x 10\(^4\) cells/well and treated with DNP at a concentration between 0 and 18 \(\mu\)M at 37°C for 24 h. After the exposure period, media were collected for LDH activity measurement using the LDH assay kit (Roche Diagnostica).

DNP treatment and protein preparation

DNP crystals were dissolved in DMSO. Appropriate amounts of the DNP stock solution were added into the culture medium to achieve the indicated concentrations (DMSO concentration, 0.1%) and then incubated with cells for the indicated time periods. At approximately 80% confluence, the “heavy” labeled 6-10B cells were treated with 10 \(\mu\)M DNP for 24 h according to MTT assay data, while the “light” labeled 6-10B cells were treated with only 0.1% DMSO, served as the control. The treated cells were then harvested and suspended with lysis buffer. Lysate was centrifuged at 13,200 rpm at 4°C for 30 min. Supernatant fractions were collected and protein concentrations were determined using BCA assay kit (Pierce).

Cell invasion and motility assay

Cell invasion and motility were assayed according to methods described previously with minor modifications [18]. For the invasion assay, “heavy” labeled 6-10B cells were treated with the indicated concentrations of DNP for the indicated times. The treated cells were seeded into Boyden chamber with Matrigel (Neuro Probe, Cabin John, MD) at the upper part at a density of 1.5 x 10\(^4\) cells/well in 50 \(\mu\)l serum-free medium and incubated for 12 h at 37°C. The bottom chamber also contained standard medium with 20% fetal bovine serum. The cells invaded to the lower surface of chamber membrane were fixed with methanol and stained with hematoxylin and eosin. The invaded cell numbers were counted under a light microscope. The motility assay was performed as described in the invasion assay without Matrigel coating.
Evaluation of the effect of DNP on NPC metastasis in nude mice

Nude mice experiments were performed as previously described [18]. Twenty BABL/c nude mice (approximately 5–6 weeks old) were purchased from the Animal Center of Central South University. All animal studies were conducted according to the standards established by the Guidelines for the Care and Use of Laboratory Animals of Central South University. Additionally, the present study protocols were approved by the ethical committee at Central South University. Briefly, 100-μl aliquots of 6-10B cell suspensions (1 × 10^4 cells) were mixed with Matrigel and injected respectively into the tail veins of the 20 nude mice. They were then randomly divided into two groups, DNP-treated and control groups, containing 10 mice per group. The DNP-treated group was abdominally injected with DNP at a dose of 40 mg/kg (body weight) twice a week for 60 days using a 1-ml sterile syringe. The control group was treated with 0.1% DMSO. After DNP treatment, the metastasis of 6-10B cells to the lung, liver, and lymph nodes was observed. Their metastatic abilities were evaluated by counting tumor metastatic foci on day 60 after the injection.

Electrophoresis and in-gel trypsin digestion

Prior to gel electrophoresis, equal amounts of DNP-treated and untreated cell proteins were mixed, separated using 10% SDS-PAGE (4 – 12% Bis-Tris Novex minigel, Invitrogen), and stained silver solution to visualize the gel bands. The entire protein gel lanes were horizontally excised and cut into 48 slices each, and then destained, reduced, alkylated and digested with gold-trypsin at 37°C overnight as described previously [20]. The resulting tryptic peptides were extracted by 90% acetonitrile (Fisher) and 2.5% trifluoroacetic acid (Promega), lyophilized in a SpeedVac, and dissolved in 1% formic acid and 2% acetonitrile before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis

The peptide mixtures were separated using Finnigan Surveyor high-performance liquid chromatography system (Thermo Electron, San Jose, CA) on a C18 reverse phase column, which was coupled online to a linear ion trap/Orbitrap (LTQ-Orbitrap) mass spectrometer (Thermo Electron, San Jose, CA). Briefly, the peptide mixtures were first loaded onto a C18-reversed phase column (100-μm inner diameter, 10-cm long, 3-μm resin from Michrom Bioresources, Auburn, CA), and then separated at a maximal flow rate of 300 nl/min controlled by IntelliFlow technology. The peptide mixtures were separated using the following parameters: 1) mobile phase A: 0.1% formic acid, 2% the acetonitrile, Dissolved in water;
2) mobile phase B: 0.1% formic acid, dissolved in acetonitrile; 3) flow rate: 300nl/min; 4) gradient: B-phase increased from 5% to 35%, 120min. Next, the eluate was online analyzed online in LTQ-Orbitrap mass spectrometer operated in a data-dependent mode, the temperature of the heated capillary was set to 200°C, and the spray voltage was set to 1.85 kV. Full-scan MS survey spectra (m/z 400–2,000) in the profile mode were acquired in Orbitrap with a resolution of 60,000 at m/z 400 after the accumulation of 1,000,000 ions, and followed by five MS/MS scans in LTQ with the following Dynamic Exclusion settings: a repeat count of 2, a repeat duration of 30 s, and an exclusion duration of 90 s. The lock mass option was enabled for survey scans to improve mass accuracy [21]. The data were acquired using Xcalibur (Thermo Electron, version 2.0.7).

Protein identification, quantification and bioinformatics analysis

Protein identification and quantification were performed as previously described with minor modifications [22,23]. Briefly, the mass spectrometric raw data were analyzed using MaxQuant 1.0.13.13 software and the derived peptide lists were searched using the Mascot search engine (Matrix Science, version 2.2.04, London, UK) against a concatenated real and false International Protein Index human protein database (V3.52). Mascot search results were further processed by MaxQuant 1.0.13.3 at the false discovery rate of 1% at both the protein and peptide level. The final reported protein ratio represents a normalized ratio of H/L SILAC obtained in all technological repeats where the same protein was quantified. International Protein Index numbers of 12 significantly regulated proteins and some unaltered proteins were imported into the Ingenuity Pathway Analysis software tool (www.ingenuity.com) for bioinformatics analysis based on published reports and databases such as Gene Ontology, Uniport, and TrEMBL.

Western blotting analysis

Western blotting was used to validate the expression levels of eight dysregulated proteins in DNP-treated and untreated 6-10B cells as described above. 6-10B cells were treated with 5, 10, 20 μM for dose-course and treated with 10 μM for 6, 12, 18, 24, 36, 48 h for time-course. After treatment, supernatants were centrifuged at 300 × g for 4 min and 2000 × g for 8 min to remove dead cells and cell fragments, and proteins were concentrated by centrifugal ultrafiltration using Microcon YM-3 Centrifugal filters (Millipore, Billerica, MA, USA). The treated cells were disrupted with 0.6 ml lysis buffer [1 × PBS, 1% Nonidet P-40, 0.1% SDS, and freshly added 100 μg/ml PMSF, 10 μg/ml aprotinin, 1 mM sodium orthovanadate]. Cell lysates were then subjected to centrifugation of 10000 × g for 10 min at 4°C. Equal protein amounts of cell lysates and culture supernatants were separated by 10% polyacrylamide gel electrophoresis, and transferred onto nitrocellulose membranes (Bio-Rad). The membranes were subsequently incubated with 5% non-fat milk in Tris-buffered saline containing 0.05% Tween-20 for 1 h to block non-specific binding and then overnight with antibodies against aldo-keto reductase (AKR) 1B10, S100P, cathepsin E, cathepsin D, ferritin, α-E-catenin (Cell Signaling Technologies), or clusterin, AGR2, and GAPDH (Santa Cruz), then incubated with the secondary antibody for 1 h at room temperature. The band signal was developed using 4-chloro-1-napthol/3,3-o-diaminobenzidine, and relative photographic density was quantitated using image gel documentation and analysis system (Pierce, Rockford, USA).

Gene transfect and wound-healing assays

Wound-healing assay was performed as previously described with minor modifications [24]. 6-10B cells (2 × 10⁶) were seeded in 10-mm plates at 37°C for 24 h, and transiently transfected with si-AGR2 or si-mock (Dharmacon) [25] using Lipofectamine 2000 reagent (Life Technologies, Inc.) following the manufacturer’s suggested protocol, and then confluent monolayer of the transfected cell was wounded using a plastic tip. Cells were treated with DNP at 10 μM, and then photographed after 48 h. The cells moving cross the boundaries lines were counted. The transfected cell samples were harvested, and total proteins were extracted. These protein samples were subjected to Western blotting analysis.

Results and discussion

In this study, quantitative proteomics with SILAC were used to identify the different protein of 6-10B cells with or without DNP treatment. As the first step 6-10B cells were labeled with amino acid, and then we assessed the incorporation efficiency of ²H₄-L-lysine and ¹³C₆¹⁵N₄-L-arginine in 6-10B cells for full incorporation in all proteins after six cell doublings. Three peptides, VEVTEFEDIK (Figure 1A), GHYTEGAELVDSVLDVVR (Figure 1B) and LRQPFFQK (Figure 1C) were separated by 4 Da, 10 Da, and 14 Da corresponding to the mass difference between the above light and heavy isotopes. The entire signal corresponded to the high peptide, indicating that incorporation of ²H₄-L-lysine and ¹³C₆¹⁵N₄-L-arginine was complete. To illustrate the quality of the protein identifications reported, we present MS and MS/MS spectra of clusterin and AKR1B10 from the data obtained from the LTQ-Orbitrap mass spectrometer (Figure 1D, E).
DNP is a carcinogenic N-nitroso compound, and its chemical structure is shown in Figure 2A. Although it is known that the non-cytotoxic concentration of DNP to 6-10B cells is 0–4 μM, even up to 6 μM [18], we determined the non-cytotoxic concentration of DNP in stable isotope-labeled 6-10B cells, cell viability was not significantly altered at 0–10 μM DNP compared with control cells (0.1% DMSO; Figure 2B, *, p < 0.05). To further confirm that 0–10 μM DNP was non-cytotoxic, LDH activity in the cell culture media was detected after DNP treatment. The data revealed that LDH activity was not significantly altered by treatment with DNP concentrations between 0 and 10 μM (Figure 2C, *, p < 0.05). Thus, in all subsequent experiments, the concentration of 10 μM DNP was used.

Although previous work has shown that DNP is involved in NPC metastasis, we first confirmed here that DNP mediated NPC metastasis. A Matrigel-coated Boyden chamber was used to measure invasion. 6-10B cells were treated with DNP at 0, 2, 4, 6, 8, and 10 μM for 24 h and then seeded into the Boyden chamber. The cells that invaded the lower chamber were counted. The invaded cells increased dose-dependently after DNP treatment (Figure 3A-c, lanes 4 to 6 vs lane 1; *, p < 0.05). Compared with the control, the increase was 4.1-fold with 8 μM DNP (Figure 3A-c, lane 5). For detecting 6-10B cell motility with DNP treatment, the treated cells were seeded into a Boyden Chamber uncoated with Matrigel, and motile cells were counted. A similar effect was observed for the motility of DNP-treated cells (Figure 3B-c, lanes 4 to 6 vs lane 1; *, p < 0.05). The cell motility increased by 5.6-fold after treatment with 8 μM DNP (Figure 3B-c, lane 5). To further confirm DNP–involved metastasis in vivo, the treated 6-10B cells were mixed with Matrigel, and then were injected into the tail veins of BABL/c mice. Tumor metastatic nodes of 6-10B cells in the
lungs, livers and lymph nodes were detected. Metastatic foci in mice lungs were significantly observed in nude the mice with DNP treatment (Figure 3C, left panel vs right upper line), and pathologically confirmed under microscope (Figure 3C, left panel vs right down line). These data indicated that DNP mediates NPC metastasis in vitro and in vivo.

To fully investigate the mechanism of DNP-mediated NPC metastasis, SILAC coupled with LC-MS/MS was used to identify and quantify the proteomic differences. A total 2853 proteins were detected, and 2698 (94.57%) proteins could be quantified. Of these 2698 protein, 172 were calculated to be highly up-regulated, and 199 were significantly down-regulated at a ratio H/L >2.0 or ratio H/L <0.5 and p < 0.05 (Figure 4A). To gain functional insight into the cellular proteome, the 172 up-regulated and 199 down-regulated proteins were respectively assigned to different molecular functional classes and subcellular annotations according to the underlying biological evidence from the Gene Ontology database (false discovery rate < 0.05). Because some proteins generally have more than one component annotation or function annotation, the sum of each category may be higher than 100%. The 15 most abundant terms are shown in Figure 4B, C, with additional data shown in Additional file 1: Table S1. Mitochondrion proteins and proteins related to junctional mechanisms were highlighted in up-regulated and down-regulated...
proteins individually (Figure 4D), suggesting that further exploration at subcellular levels is necessary. Functional analysis of these differential proteins showed that DNP-treated high metastatic 6-10B cells demonstrated significant changes in oxidoreductase activity, cofactor binding, and cytoskeletal protein binding (Figure 4E).

Proteins that changed significantly in DNP-treated cells were mapped to 15 specific functional networks with each network containing 11 or more “focus” members (Figure 5A, Additional file 2: Table S2). The four networks of interest correspond to the following: (A) Cancer, Renal and Urological Disease, Cell Death (Figure 5B); (B) Cancer, Reproductive System Disease, Cell Death (Figure 5C); (C) Cellular Movement, Lipid Metabolism, Molecular Transport (Figure 5D), and (D) Protein Synthesis, Cell Death, Cellular Growth and Proliferation (Figure 5E). Proteins that are present in these pathways and that were identified in our analysis as up-regulated are depicted in red, and proteins that were identified as down-regulated are shown in green. Proteins known to be in the network but that were not identified in our study are depicted in white. The shade of the color indicates the magnitude of the change in protein expression level.

Figure 4 Proteome quantitation, significance, and classification analysis. A, signal intensities of all quantified proteins after DNP treatment are shown as a function of their fold change. Most of the proteins distributed around 1.0 (Log10 (ratio) = 0), indicating that whole proteins of the two groups of cells were mixed equally and 6-10B cells were fully labeled. The spread of the cloud was lower at high abundance, indicating that quantification is more precise, and the fold change level is indicated in blue, red, and green, respectively. To reduce test error, proteins at more than 2.0-fold or less than 0.5-fold and p < 0.05 were deemed to indicate significantly changed proteins induced by DNP treatment. Together, this gives quantified results for 271 proteins being significantly altered upon DNP, with 172 and 199 proteins being up- and down-regulated, respectively. The 15 most abundant terms of component (B) and function annotation in disregulated proteins (C) are shown. As each protein is generally assigned to more than one term, the percentage of proteins in each term is shown instead of the total number to avoid redundancy. Number distribution of the 15 most abundant terms for up-regulated or down-regulated proteins (D). Oxidoreductase activity-1, 2, 3, and 4 represent respectively oxidoreductase activity, oxidoreductase activity acting on NADH or NADPH, oxidoreductase activity acting on the CH-CH group of donors, and oxidoreductase activity acting on the CH-CH group of donors, NAD or NADP as acceptor (E).
Figure 5 (See legend on next page.)
To confirm the SILAC results, eight proteins with different fold changes, AKR1B10, clusterin, cathepsin B, cathepsin D, ferritin, α-E-catenin, AGR2, and S100P were chosen to validate SILAC results. Western blotting results showed that the ratios of eight representative proteins between treated and untreated cells showed either close-degrees or similar fold changes consistent with those obtained from SILAC (Figure 6A). Quantification results by SILAC of the eight proteins are shown in Additional file 3: Table S3. Some of them are secretory proteins, to determine whether DNP also induces these secretory proteins, AKR1B10, cathepsin B and clusterin were detected. The results showed that AKR1B10, cathepsin B and clusterin in the culture supernatants of DNP treated 6-10B cells were detected. The results showed that AKR1B10, cathepsin B and clusterin dramatically increased in the culture supernatants after DNP treatment (Figure 6B). These findings imply that DNP may induce 6-10B cells to secrete AKR1B10, cathepsin B and clusterin drastically.

To further confirm whether the different proteins involved in DNP-mediated NPC metastasis, we chose high-expressed protein AGR2 as target. DNP induced AGR2 expression at dose- and time-course (Figure 7A). As a metastasis-associated protein, AGR2 may play an important role in DNP-mediated metastasis. The next step is to observe DNP-mediated metastasis when AGR2 blocked. We used si-AGR2 to knockdown AGR2 (Figure 7B), and then used wound-healing assay to detect the cell motility of 6-10B-siAGR2 with DNP treatment. Following si-AGR2 transfect, DNP-mediated motility decreased, and consequently the cells were unable to migrate into the wound (Figure 7C, panel d vs. d and Figure 7D, lane 2 vs. 4). Hence, we concluded that AGR2 plays an important role in DNP-mediated metastasis.

Conclusion

In clinic, NPC has the features of high invasion and metastasis, but its mechanism has been unclear. As one of three carcinogen factors for NPC, the Epstein–Barr virus (EBV) has been proven to be involved in NPC metastasis through latent membrane protein 2A inducing epithelial-mesenchymal transition (EMT), however latent membrane protein is positive at only a 56.7% rate [26]. Recently, another important carcinogen factor, DNP was also found to be involved in NPC metastasis [18]. In the present study, using SILAC and a systematic data analysis method, we obtained unbiased interpretation of NPC cell metastasis induced by DNP. Approximately 2698 proteins were quantified and 371 of these proteins showed apparent alterations in expression levels after DNP treatment, involving the regulation of biosynthesis and energy metabolism, as well as cell adhesion or invasion. We speculated that biosynthesis, energy metabolism and invasion are associated with NPC metastasis mediated by DNP. Based on subcellular and biological function analysis, many differential proteins in the present study were located in mitochondrion, such as mitochondrial membrane part, and mitochondrial respiratory chain. Additionally, tumor cells with mitochondria damage or dysfunction were reported to enhance anti-apoptosis ability and invasion [27,28]. This suggests that mitochondrial dysfunction may be linked to metastasis of DNP-treated 6-10B cells.

In the differential proteins mediated by DNP, oxidoreductase activity and oxidoreductase activity acting on NADH or NADPH, the CH-CH group of donors, and...
the CH-CH group of donors, NAD or NADP as the acceptor related to proteins accounted for a large proportion. Peroxiredoxins 3, NADH-dehydrogenase ubiquinone iron-sulfur protein 3 (NDUFS3), NADH-dehydrogenase ubiquinone 1 beta subcomplex subunit 8 (NDUFB8), pirin, ferritin heavy chain, and AKR1 were significantly up-regulated in the high metastatic 6-10B cells with DNP treatment. Oxidative stress have been shown to play important roles in tumorigenesis and progression of tumors [29], in which there is aberrant or improper regulation of the redox status. The balance of redox state affects many physiological and pathological processes of cells, its mechanisms include gene transcription, cell signal transduction, activity of...
enzymes and biological macromolecules, cell proliferation, adhesion, and apoptosis. These findings suggest that the significant change of oxidoreductase activity in high metastatic 6-10B cells with DNP treatment is correlated with the status of oxidative stress and imbalance of the redox state.

Cytoskeleton has been identified as a major target for destruction during apoptosis and is important under pathological conditions such as cancers [30]. The differential proteins were distributed in the cytoskeleton, including N-myc downstream-regulated gene 1 protein, paxillin, and syntenin-1. Conversely, some proteins associated with the cytoskeleton were up-regulated, such as catenin alpha-1, radixin, macrophage-capping protein, integrin beta-5, tubulin-specific chaperone D, tubulin beta 2C (TUBB2C), tubulin beta 2A, and tubulin 5 beta. And subcellular localization of these differential proteins is related to junctional mechanisms. Based on these data, we speculate that in high metastatic 6-10B cells with DNP treatment, dynamic modifications and remodeling in the cytoskeleton exist, and the dynamic alteration affects endocytosis, cell shape, cell motility, cell adhesion and invasion.

Additionally, some important proteins directly related to metastasis were discovered in our study, such as, annexin A6, S100P, S100A4, hot shock protein 90B1, ferritin heavy chain, TUBB2A, and anterior gradient-2 (AGR2, Additional file 3: Table S3). Cathepsin B, AKR1B10 and custerin were not only up-regulated in 6-10B cells with DNP treatment, but also in the cell culture supernatant. Cathepins, initially described as intracellular peptide hydrolases, play a role in invasion and metastasis of cancer [31]. In the present study, cathepsins B and D were respectively up-regulated 7.9-fold (Additional file 3: Table S3) and 4.6-fold (Additional file 3: Table S3), respectively. Cathepin B is a key enzyme in invasion and metastasis of malignant tumors. It is up-regulated in laryngeal cancer [32], cervical cancer [33,34], and bladder cancer [35], and its expression level is correlated with metastatic potential. Cathepin D, a lysosomal aspartate proteolytic enzyme that is similar to cathepin B, also plays an important role in invasion and metastasis of cancer. It is up-regulated in metastasis of some malignant tumors, including primary laryngeal cancers correlated with neck lymph node involvement [36], gastric cancer with lymphatic and/or blood vessel invasion [37], and breast cancer. Furthermore, Cheng et al. [38] found that significant cathepin D expression occurred in lymph node metastasis versus primary NPC and was significantly correlated with advanced clinical stage, recurrence, and lymph node and distant metastasis. AGR2 was reported to be linked with several human cancers and induced metastasis [39]. Additionally, Dumartin, et al. [25] found that cathepsins B and D are downstream functional molecules of the proinvasive AGR2 in vitro, and AGR2, cathepsin B and D were considered to be essential for dissemination of pancreatic cancer cells in vivo. High expressed-cathepsins B and D in DNP-treated 6-10B may be mediated by AGR2, but it is also possible that DNP directly mediated cathepsins B and D. Additionally, DNP-induced 6-10B motility decreased when AGR2 blocked (Figure 7). We speculated that cathepsins B, D and AGR2 expression mediated by DNP and AGR2 regulating cathepsins B, D are involved in NPC metastasis.

Significantly, AKR1 proteins were predominantly up-regulated in high metastatic DNP-treated 6-10B cells, including AKR1C1, AKR1B10, AKR1B15, and AKR1B1 (Additional file 3: Table S3). Family members of AKR1C play a pivotal role in maintaining steroid homeostasis and catalyzing reductive detoxification of reactive aldehydes and ketones, which are produced as a result of oxidative stress [40]. AKR1B10 is also correlated positively with tumor size and lymph node metastasis [42]. These findings suggest that DNP would affect oxidative stress and steroid homeostasis in 6-10B cells through the above aldo-keto reductase family 1 proteins, thereby magnifying 6-10B cell metastasis.

Higher clusterin levels were expressed in various malignant tumors with metastasis including ovarian [43], breast [44], and gastric cancers [45]. An emerging query, clusterin enhances cell invasion and metastasis of tumors through EMT. Lee, et al. [46] found that clusterin was involved in Smad2/3 stability at the protein level, and believed that clusterin regulates transforming growth factor-beta signaling pathway by modulating the stability of Smad2/3 proteins and mediates EMT. Lenferink et al. [47] also found that clusterin gene expression was highly up-regulated throughout transforming growth factor-beta, and speculated that secreted clusterin served as an important extracellular promoter of EMT. In the present study, proteins related to EMT and cell adhesion were also dysregulated, including clusterin myosin-VI, catenin alpha-1 (CTNNA1), fibronectin type III domain-containing protein 3B (FNDC3B, 2.1-fold), L1 cell adhesion molecule (L1CAM), desmplakin, plakophilin-3 (Additional file 3: Table S3), implying that the mobility of DNP-induced 6-10B cells is probably related to EMT and cell adhesion.

The SILAC technique was used to conduct a comparison of the proteomes of 6-10B cell metastasis induced by DNP. A cooperative response, including many proteins, and a group of pathways were identified and some interesting clues were provided. DNP may induce a change in abundance of mitochondrial proteins, mediate the status of oxidative stress and the imbalance of the redox state, and increase cytoskeletal protein, cathepsin, AGR2, and clusterin expression, and finally promote cell metastasis. DNP may be involved in NPC metastasis through regulation of...
cancer protein synthesis, cellular movement, lipid metabolism, molecular transport, cell death, and cellular growth and proliferation signaling pathways. DNP may also induce 6-10B8 cells to secrete AKR1B10, cathepsin B and clusterin. These dataset provide important clues for investigation on high metastatic NPC.

Additional files

Additional file 1: Table S1. Gene Ontology analysis.

Additional file 2: Table S2. Ingenuity Pathways analysis.

Additional file 3: Table S3. Information for up- and down-regulated proteins identified in DNP-induced cell.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

YJL performed cell culture, stable isotope labeling, Gel electrophoresis, bioinformatics analysis, and wrote the paper. NL performed MTT, LDH, cell invasion and motility assay, and metastasis in nude mice. DMH performed cell invasion and motility assay. LZX performed cell culture, 6-10B8 cells labeling. ZKP performed Western-blotting. CJD designed experiments and revised the manuscript. XWT performed nude mice breeding and DNP preparation. GJT performed protein preparation. GRY performed Gel electrophoresis and bioinformatics analysis. WHM revised the paper. FQT coordinated the study and revised the paper. All authors read and approved the final manuscript.

Acknowledgments

This work was in part supported by the National Natural Science Foundation of China (81071818, 10101081, 30873100), Foundation of State Key Laboratory of Oncology in South China (HN2011-04), Fundamental Research Funds for the Central Universities (21611612).

Author details

1. Medical Research Center and Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China. 2. Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. 3. Metallurgical Science and Engineering, Central South University, Changsha 410008, People’s Republic of China. 4. Institute of Life and Health Engineering, and National Engineer Research Center for Genetic Medicine, Jinan University, Guangzhou 510632, China.

Received: 5 November 2011 Accepted: 16 November 2012 Published: 19 November 2012

References

1. Wei W, Wang JT: Nasopharyngeal carcinoma. Lancet 2005, 365(9441):2051–2054.
2. Cao SM, Simons MJ, Qian CN: The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer 2011, 30(3):114–119.
3. Cao SM, Qian CN, Wang DP: Focus on nasopharyngeal carcinoma. Cancer Cell 2005, 5(5):325–328.
4. Li et al: Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res 1986, 46(2):956–961.
5. Hui WT, Luo YY, Feng BJ, Ruan HL, Bei JX, Liu WS, Qin HD, Feng QS, Chen LZ, Yao SY, et al: Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 2010, 10:446.
6. Simons MJ: Nasopharyngeal carcinoma as a paradigm of cancer genetics. Chin J Cancer 2011, 30(3):79–86.
7. Zou XN, Lu SH, Liu B: Volatile N-nitrosoamines and their precursors in Chinese salted fish—a possible etiologic factor for NPC in China. Int J Cancer 1994, 59(2):115–118.
8. Poiter S, Hubert A, de-The G, Osahima H, Bourgade MC, Bartsch H: Occurrence of volatile nitrosoamines in food samples collected in three high-risk areas for nasopharyngeal carcinoma. IARC Sci Publ 1987, 84:115–149.
9. Lijinsky W, Kovath RM: Carcinogenic effects in rats of nitroso-piperazines administered intravenously: possible implications for the use of piperazine. Cancer Lett 1993, 74(1–2):201–203.
10. Jaksun P, Gonzalez CA: Nitrosoamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World journal of gastroenterology: WJG 2006, 12(27):4296–4303.
11. Yuan JX, Wang XL, Xiang YB, Gao YT, Ross RK, Yu MC: Preserved foods in relation to risk of nasopharyngeal carcinoma in Shantung, China. Int J Cancer 2000, 88(3):338–343.
12. Gallitello L, Maratoski G, Tao XG, Chen L, Lant T, Boyd A, Robingten KA, Balick L, Mickelson S, Caulfield LE, et al: Adult food consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer 2006, 118(9):1125–1135.
13. Huang DP, Ho, JH, Saw D, Teoh T: Tumor necrosis in nasal and paranasal regions in rats fed Cantonese-style salted fish. Jpn J Cancer Res 1978, 69:315–328.
14. Yu MC, Nichols PW, Zou XN, Li MC, Henderson BE: Induction of malignant nasal cavity tumours in Wistar-inbred Chinese salted fish. Br J Cancer 1989, 60(2):198–204.
15. Zheng X, Luo Y, Christensson B, Dretnner B: Induction of nasal and nasopharyngeal carcinomas in Sprague-Dawley rats fed with Chinese salted fish. Acta Orthop Scand 1994, 114(1):98–104.
16. Tang F, Foth H, Duan Z, Chen B, Jeng Z, Wu S: [Profile of telomerase and telomere length expression in nasopharyngeal carcinogenesis of rats induced by N, N’-dinitrosopiperazine (DNP)]. Zhonghua Bing Li Xue Za Zhi 2001, 30(2):125–129.
17. Feng FQ, Duan CJ, Huang DM, Wang WW, Xie CL, Meng J, Wang L, Jiang DF, Wu WH, et al: HSP70 and muscin 58: novel protein targets of N,N’-dinitrosopiperazine-induced nasopharyngeal tumorgenesis. Cancer Sci 2009, 100(2):216–224.
18. Tang F, Zou F, Peng Z, Huang D, Wu Y, Chen Y, Duan C, Cao Y, Mei W, Tang X, et al: N-N-Dinitrosopiperazine-mediated Ezrin Protein Phosphorylation via Activation of Rho Kinase and Protein Kinase C is Involved in Metastasis of Nasopharyngeal Carcinoma 6–10B8 Cells. J Biol Chem 2011, 286(42):36956–36967.
19. Yang XY, Ren CP, Wang L, Li H, Jiang CJ, Zhang HB, Zhao M, Yao KT: Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol 2005, 27(4):215–223.
20. Stechenko A, Wilm M, Vorm Q, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68(3):850–858.
21. Olsen JV, de Godoy LM, Li G, Macke B, Mortensen P, Pesch R, Makarov A, Langel O, Hornung S, Mann M: Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005, 4(12):2010–2021.
22. Cox J, Mann M, Hober M, Nagaraj N, Selbach M, Olsen JV, Mann M: A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 2009, 4(5):698–705.
23. Yan GR, Xu SH, Tan ZL, Liu L, He QY: Global identification of mrT-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 2011, 11(19):2912–2920.
24. Wu B, Li J, Huang D, Wang W, Chen Y, Liao Y, Tang X, Xie H, Tang F: Bicalutamide mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells. BMC Cancer 2011, 11:5257.
25. Dumartin L, Whiteman HJ, Weeks ME, Harharian D, Dmitrovic B, Iacobuzio-Donahue CA, Brentnall TA, Bronner MP, Feakins RM, Timms JF, et al: AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer Res 2011, 71(22):7091–7110.
26. Kong QL, Hu LJ, Cao JY, Huang YJ, Xu LH, Liang Y, Xiong D, Guan S, Guo BH, et al: Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 2010, 6(6):e1000940.
27. Dey R, Moesas CT: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis
and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. *J Biol Chem* 2000, 275(10):7087–7094.

28. Armutlu G, Biswas G, Anandadheerthavarada HK, Vijayasrathy C, Shepherd HM, Avadhani NG: Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. *OncoGene* 2002, 21(13):1789–1799.

29. Khandrika L, Kumar B, Koul S, Maconi P, Koul HK: Oxidative stress in prostate cancer. *Cancer Lett* 2009, 282(2):125–136.

30. Louzao MC, Ares IR, Cagide E, Espina B, Vilarino N, Alfonso A, Veytes MR, Botana LM: Polytoxins and cytoskeleton: An overview. *Toxicol: official journal of the International Society on Toxicology* 2011, 57(3):466–469.

31. Nomura T, Katunuma N: Involvement of cathepsins in the invasion, metastasis and proliferation of cancer cells. *The journal of medical investigation* 2005, 52(1–2):61–9.

32. Li C, Chen L, Wang J, Zhang L, Tang P, Zhai S, Guo W, Yu N, Zhao L, Liu M, et al: Expression and clinical significance of cathepsin B and stefin A in laryngeal cancer. *Oncol Rep* 2011, 26(4):869–875.

33. Wu D, Wang H, Li Z, Wang L, Zheng F, Jiang J, Gao Y, Zhong H, Huang Y, Suo Z: Cathepsin B may be a potential biomarker in cervical cancer. *Histol Histopathol* 2012, 27(1):79–87.

34. Wu D, Li ZN, Xu Y, Wang LH, Ding L, Wu JH, Huang Y: [Clinical significance of cathepsin B expressions in cervical cancer in tissues]. *Nan fang yi ke da xue xue bao = J South Med Univ* 2010, 30(8):1330–1332.

35. Lodillinsky R, Rodriguez V, Vauthay L, Sandoz E, Casabe A, Fijian AM: Novel invasive orthotopic bladder cancer model with high cathepsin B activity resembling human bladder cancer. *J Urol* 2009, 182(2):749–755.

36. Paksoy M, Hardal U, Caglar C: Expression of cathepsin D and E-cadherin in primary laryngeal cancers correlation with neck lymph node involvement. *J Cancer Res Clin Oncol* 2011, 137(9):1371–1377.

37. del Casar JM, Corte MO, Alvarez A, Garcia I, Borgera M, Gonzalez LO, Garcia-Muniz JL, Allende MT, Astudillo A, Vizoso FJ: Lymphatic and/or blood vessel invasion in gastric cancer: relationship with clinicopathological parameters, biological factors and prognostic significance. *J Cancer Res Clin Oncol* 2008, 134(2):153–161.

38. Cheng AL, Huang WG, Chen ZC, Zhang PF, Li MY, Li F, Li JL, Li J, Peng F, et al: Identifying cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser-capture microdissection and proteomic analysis. *J Proteome Res* 2008, 7(6):2415–2426.

39. Brychtova V, Vojtesek B, Hrstka R: Anterior gradient 2: a novel player in tumor cell biology. *Cancer Lett* 2011, 304(1):1–7.

40. Ellis EH: Reactive carbonyls and oxidative stress as potential for therapeutic intervention. *Pharmacol Ther* 2007, 115(1):13–24.

41. Lee YY, Lee GJ, Baek BJ, Heo SH, Won SY, Kim H, Cho KN, Nam HS, Lee SH: Cadmium-induced up-regulation of aldose-6-phosphate 1C3 expression in human nasal septum carcinoma RPMI-2650 cells: Involvement of reactive oxygen species and phosphatidylinositol 3-kinase/Akt. *Environ Toxicol Pharmacol* 2011, 31:123–129.

42. Ma J, Luo DX, Huang G, Zhang X, Luo JW, Xiao H, Yang X, Xiao W, Gao J, Liu J, Zu X, Cao Z, et al: AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. *Cancer* 2012, 131(6):E862–E871.

43. Wei L, Xue T, Wang J, Chen B, Lei Y, Huang Y, Wang H, Xin X: Roles of clusterin overexpression in gastric cancer: association with tumor size, lymph node metastasis and patient survival. *Cancer* 2009, 125(4):871–880.

44. Suppan van der R, Chatterjee N, Tenniswood M: Effects of clusterin overexpression in metastatic progression and therapy in breast cancer. *BMC Cancer* 2011, 11:1017.

45. Xu T, Guo AL, Lai YR, Li B, Zhong JM, Wu HQ, Xie Z, He YL, Lv ZL, Lau SH, et al: Overexpression of clusterin correlates with tumor progression, metastasis in gastric cancer: A study on tissue microarrays. *Neoplasma* 2010, 57(3):191–197.