Identification of Novel Methylation Markers in Hepatocellular Carcinoma using a Methylation Array

So Hyun Shin1, Baek-hui Kim2, Ja-June Jang3, Kyung Suk Suh4, and Gyeong Hoon Kang1,3

Laboratory of Epigenetics1, Cancer Research Institute and Brain Korea 2nd Stage, Seoul National University, Seoul; Department of Pathology2, Korea University Medical School, Seoul; Departments of Pathology3, and Surgery4, Seoul National University College of Medicine, Seoul, Korea

Received: 9 November 2009
Accepted: 19 January 2010

Address for Correspondence:
Gyeong Hoon Kang, M.D.
Department of Pathology, Seoul National University College of Medicine, 101 Daehang-ro, Jongno-gu, Seoul 110-744, Korea
Tel: +82.2-2072-3312, Fax: +82.2-743-5530
E-mail: ghkang@snu.ac.kr

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A090126).

INTRODUCTION

A CpG island is an approximately 1-kb DNA sequence with a high density of CpG dinucleotides. About 70% of human genes are known to harbor CpG islands in their promoter sequences (1, 2). In normal cells, promoter CpG islands are usually protected from aberrant hypermethylation, except for those on imprinting genes or genes of inactivated X chromosomes (3, 4). However, in association with carcinogenesis, hundreds of promoter CpG islands undergo aberrant hypermethylation, which represses gene transcription of active genes or enforces suppression of already inactive genes (5). Promoter CpG island hypermethylation has become recognized as an important mechanism for inactivating tumor suppressor genes or tumor-related genes in human cancers of various tissues. Gene inactivation in association with promoter CpG island hypermethylation has been reported to be four times more frequent than genetic changes in human colorectal cancers. Hepatocellular carcinoma is also one of the human cancer types in which aberrant promoter CpG island hypermethylation is frequently found. However, the number of genes identified to date as hypermethylated for hepatocellular carcinoma (HCC) is fewer than that for colorectal cancer or gastric cancer, which can be attributed to fewer attempts to perform genome-wide methylation profiling for HCC. In the present study, we used bead-array technology and coupled methylation-specific PCR to identify new genes showing cancer-specific methylation in HCC. Twenty-four new genes have been identified as hypermethylated at their promoter CpG island loci in a cancer-specific manner. Of these, TNFRSF10C, HOXA9, NPY, and IRF5 were frequently hypermethylated in hepatocellular carcinoma tissue samples and their methylation was found to be closely associated with inactivation of gene expression. Further study will be required to elucidate the clinicopathological implications of these newly found DNA methylation markers in hepatocellular carcinoma.

Key Words: Bead Array; CpG Islands; DNA Methylation; Carcinoma, Hepatocellular
MATERIALS AND METHODS

Cell lines and 5-aza-dC treatment
We used eight different human HCC cell lines (SNU398, SNU475, SNU739, SNU761, SNU878, SNU886, HepG2, and Huh7) obtained from the Korean Cell Line Bank (Seoul, Korea). All of the cell lines except Huh7 were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum. Huh7 was grown in DMEM medium supplemented with 10% fetal bovine serum. All cell lines were cultured in a humidified 37°C, 5% CO2 incubator. The cell lines were seeded at 3×10^5/mL in their respective culture media and treated with 1 µM and 5 µM 5-aza-dC (Sigma Chemical Co., St. Louis, MO, USA) for 96 hr; media and drugs were replaced every 24 hr. As a control, cell lines were mock-treated in parallel with the addition of an equal volume of PBS without the drug. We prepared total RNA using the RNeasy Mini kit (Qiagen, Valencia, CA, USA).

Table 1. Primers for methylation-specific polymerase chain reaction

Gene	Forward primer	Reverse primer	Tm (°C)	Product (bp)
ADAMTS12	TTTATTTTATATTTCGTCGAAAGCG	ACGACTCAAAAACTACCGCG	61	135
ADCAP1	GGGTTGTTATTGATTTGCGTCG	CCCCCAATAACACTACCGAACAACG	59	118
CTSL	TTTGCGATATGAATATATCTGCACTGC	AACCTTACCTTAAACCTGCGTTTACGC	57	115
DST	TTTTTATGATGATGGTTTTTGCATGAC	CCAGAATCCCAAAAAAGGACG	59	103
F2R	TTTTTATTTTAGAGGGGTTTTCGAGAC	TTCTCTCATAACCGTTACTTCG	60	124
FG3	GGGATGTTCGGTCTGGTTTTCG	CCGCCGCGTAAACTTTACCG	59	116
FLT3	GGAGTTGCGGGTGTCGC	CCCCAAAACAAAAAGGACGACCGAAACG	59	134
FLT4	CGATTGTGGCCGGTATGCAGGC	AAACCGAACCGGAAAAAGGACG	59	105
FZD9	CGGCGGGATTATTTTATTTCGAGTGTCG	CCCCCGAACGGAAACTCTCG	60	123
GP1BB	TAGCGGCGTTGCGAGTGTC	CTTCAACAAAAATACCGGAAAAACG	59	138
HIC2	GGGTTGTGTTGGCTGGTTTTTTCG	CGGAGCTGAAAGGAGGACG	59	115
HOXA9	GGGCGGTTTGGCGTTTTATTCG	AAACCTCGCGAAAAAGGACG	60	122
HS3ST2	GGAGGGTTCGATGATTTTCGC	CATCACTACAAAAATACCGGAAAAACG	59	117
ID1A	GCTGATGCGCTGGTCGCG	ACSTCGAATGAGCAACCGAAG	59	130
IG2AS	CGGGGTTGCTGGCTGGTCG	TAAACGGCGCGCAAACGACG	59	131
IHH	TTATGATGCATGTTGATGTC	GAACGGAAAAAATACCGGAAAAACG	59	111
IRAK3	CGGTTTTTGGCTTTGTTTGTGC	CGGAGCAGCTCTAAGCTTACAAG	60	116
IRF5	AATTGAGTATTGAGCGGGCAGATC	CTCAAAAAAAATACGCAAAAGAAG	59	108
MCM2	TTTGAGTTGTGCTTTTGTTCG	CGGAGCAGCCTCTAAGCTTACAAG	58	139
MLF1	TTATGATGCATGTTGATGTC	GAACGGAAAAAATACCGGAAAAACG	60	113
NF1	TTAGGATACCGCGAGGTCG	CTGATTGCTCAACCTGACGATGC	60	109
NOTCH3	GTGAGGGTTGGGGGAGGTCG	GCAAACTCTGGCAGAAAGGACG	59	120
NPY	AAAAGAAGAGAGAGAGAGAGGACG	CTAACGCTGAAAGGAGGACG	59	120
PDGFBR	TTAATGATGCAGGCTGGGCCG	AAACGAAAAAATACCGGTTAC	62	139
PFG	CGGGCGGTTGCTGGCTGGTCG	CGGAGCAGCCTCTAAGCTTACAAG	61	103
PLASL1	GCCGGCGTTGATAGAGAGTTCGCG	GACCGCGAATGCGCGCG	61	107
PTCH2	GTATTTGCTGATATACTGGGCG	GCCATGCAAACGCGGAA	59	134
RBB1	GATTATTTGCTGATATTTTGTCG	AGGATATAGCTGGAAATACGAAAGAAG	59	114
SH3BP2	TTTAGGTTGTTTCGCGGC	CCCGCGGAAATGCGGAA	59	108
TAL1	ATTTGAGGAGGGGATACG	GCAGAAAAATACCTAAAGGCTT	62	108
TESK2	TAGGGCATTGTTTTCGCGGTCG	TACCATAGCCTAAGCACG	62	134
TIAM1	TTTTTAGGTTGTTTCGCGGC	GACGCGTATTGCTAAGC	59	110
TNFRSF10C	TAAAGGGTGAAGAGGCGGTTTATTCG	ACGCGCGTCCTAAAGTATG	59	104
WNT2	TTGAGGTTGATTTTTTTCGCGGTCG	CCAATTCCAAAACGCAGGAAAG	59	115
ZP3	GGGTTGCTGCTGGTCTGTTAC	TCAACTGAACTGAAAGCCACATC	59	106
bisulfite-converted genomic DNA. Bisulfite modification of genomic DNA was performed using the EZ DNA methylation kit (Zymo Research, Orange, CA, USA). Similar to methylation-specific PCR, two primer sets are designed for each CpG target; one primer set corresponds to the unmethylated, bisulfite-converted sequence (uracil) while the other corresponds to the unconverted sequence (5-methyl cytosine). The methylation level (beta value) is determined by the ratio of the fluorescent signals from methylated and unmethylated alleles. The beta value identifies the level of DNA methylation at a CpG site, ranging from 0 in the case of almost all unmethylated sites to 1 for completely methylated sites (12). Of 1,505 CpG sites (selected from 807 genes) included in GoldenGate Methylation Cancer Panel I, 1,044 of the CpG sites are located within CpG islands, and 461 are located outside of CpG islands. Comparing the average beta values for the 1,044 CpG sites between HCC and non-neoplastic liver tissues, cancer-specific hypermethylation was determined to be present when the average beta value for a CpG site was significantly greater ($P<0.05$) for the HCC samples (n=5) than for the non-neoplastic liver tissues (n=5).

Methylation-specific polymerase (MSP) chain reaction

For MSP analysis, DNA was extracted following a standard phenol-chloroform extraction method. Bisulfite modification of genomic DNA was carried out using the EZ DNA methylation Kit (Zymo Research). Primers were designed using two web sites, MSPPrimer (http://www.mspprimer.org) and MethPrimer (http://www.urogene.org/methprimer). Primer sequences and PCR conditions are shown in Table 1. MSP was performed as previously described (13).

Quantitative RT-PCR

Total RNA was prepared using the RNeasy (Qiagen) kit according to the manufacturer’s protocols. A total of 5 μg of RNA was reverse transcribed using Oligo dT and Superscript III (Invitrogen, Carlsbad, CA, USA). Quantitative RT-PCR amplification reactions were performed using the SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) with a 7300 Real-Time PCR System (Applied Biosystems). The expression levels of the genes were normalized to the expression of GAPDH. Primer sequences and PCR conditions are shown in Table 2.

RESULTS

Microarray analysis of methylated genes

The methylation profiles of five pairs of HCC and non-neoplastic liver tissues were analyzed for 807 genes using the Illumina GoldenGate Methylation Solution. In total, 72 annotated genes (81 CpG sites) were found to be hypermethylated in tumor tissues. After excluding genes without a CpG island in the promoter (18 genes), imprinted genes (2 genes), and genes for which methylation of their promoter CpG island loci has already been reported for HCC (17 genes), we explored DNA hypermethylation for the remaining 36 genes using MSP. These 36 genes were consid-

Table 2. Primers for quantitative RT-PCR

Gene	Forward primer	Reverse primer	Tm (°C)	Product (bp)
ADAMTS12	TGCAATCCACATTGTGTGG	GTGAGGCTGACACATTCTG	59	253
ADCAIP1	GATCCCTACAGGAACTCAAG	GTTTGAGATBAAACACAGGAC	60	226
D2T	AGCAAGAGACGCATCTGAC	AATTGGCTACTCTCGGAC	56	270
F9G3	TGTGGATAGCTGCTCCAGTA	CCAGATCTGCGGAGCTTCC	56	448
FLT3	AGACTGTAGTTCCTCAAGC	TCCCAAGTAATTCCTCATG	55	308
F2D9	TGGCCCTCTTCGCTGATCT	GGGCCAGCTGCTAGAGAGT	62	164
GAPDH	CAATGGCCCTCATTGACCC	TGGAAGATGGTGATGGGATT	55	135
H2F	TGGCGAAGAGACCTCAAGGA	AGGTGGACCTCTGAAATTT	59	251
HDX9	GGCGCCTCTCTGAAACAT	CCAAGATCTGCTGCTTCT	60	242
HSSST2	GGATCCCTCCTGGTGAAAAA	TGGCAACTCAAGGTGGAAA	59	302
IRF5	TTTGAAATGCAAGGAGTCGTA	GCAATGGCTTATGGAAGCAA	59	365
MLF1	CAGGGAGCTTCCTCCTGAGG	AAGATCTCCACTCCTGCTT	68	237
NOTCH3	GSGCTTCAAGGCTCCTATCG	AATGTCACCTGGGAAATG	64	245
NPY	AACCTCTATTACAGGAGAGA	CTGAATGGCTGATGAGATG	60	220
PDGFRB	GGGCTAGACGGGAGGATA	GATCATAGGCGAGAGAGA	59	250
PTOH2	GTGGAAAGTGGCCTCTTCGG	TCCCAAGACTCTCTATGAG	55	301
RBP1	GTGGGAAGAGGGTTGGGAGA	GCTCAGACACTGGTCGATT	59	258
SH3BP2	ATCCACATCAGGAAAGGCAA	GAATGCTCATCCCTGCTT	68	251
T1L	AAGGAGAGACCTCCCTCCA	CCTCCCTCCCTGCTGCTT	66	247
T1AM1	AAGGAGCTCTACGGCCATGCC	GACCCAAATGTCGCACTG	61	252
TNRRI10C	GTATCACCAACCGCTTCAA	TGGCAGAAATCTCCTTAC	59	248
WNT2	CAGAGGCAAGGAGGTTTATA	CAAACATGCTGCTGCTG	61	202
ZP3	CAGAATGGCCCTCCCATGCA	ATCGGGCTCTGGTCAAGCT	61	210
Validation of the methylation status of candidate genes in the HCC cell lines using MSP
For MSP analysis, we attempted to design primers for the 36 genes using both MSPPrimer (http://www.mspprimer.org) and MethPrimer (http://www.urogene.org/methprimer). However, for one gene (HOXA9), neither tool was able to design primers, because it has a short CpG island in the promoter. Therefore, we examined the methylation status of the remaining 35 genes in the 8 HCC cell lines. It was found that 26 of the genes (HOXA9, TNFRSF10C, NPY, TIAM1, PDGFRB, IRAK3, SH3BP2, IRF5, HIC2, TAL1, HS3ST2, MLF1, IGF2AS, ADCYAP1, FGFR3, WNT2, ADAMTS12, FLT3, PTCH2, GP1BB, RBP1, FZD9, DST, NOTCH3, PLAGL1, and ZP3) were methylated in at least one HCC cell line (26 of 35; 74.3%). The remaining 9 genes (TESK2, IHH, MCM2, CTSL, F2R, PGF, NGFR, FLT4, and ICA1) were not found to be methylated in the HCC cell lines using the MSP assay (Figs. 2, 3).

Confirmation of hypermethylation of newly developed candidate genes in liver tissues
To determine whether the genes that were hypermethylated in the HCC cell lines were hypermethylated in a cancer-specific manner, we analyzed the methylation status of the 26 genes in 18 normal liver samples and 50 primary HCC samples using methylation-specific PCR. Of the candidate 26 genes that showed methylation in the cell lines, promoter methylation was detected in 25 of the genes in primary tumor tissues. In contrast, only five genes (5 of 26; 19.2%) were methylated in normal tissues. Moreover, all but one of these genes (IGF2AS) were methylated at low frequencies in the non-neoplastic liver tissues (Fig. 4).

Fig. 1. Flow chart for selection of candidate methylation markers. We used 5 paired hepatocellular carcinoma/normal tissue samples to screen for candidate methylation markers using a methylation array. We obtained 72 candidates that showed significant hypermethylation in hepatocellular carcinoma tissues. We removed genes with no CpG island loci in their promoters, imprinted genes, and genes for which methylation status was already known for hepatocellular carcinoma. Thus, we selected 36 genes to further examine for methylation analysis using methylation-specific PCR.

Fig. 2. Representative examples of MSP analysis of DST, FLT3, PTCH2 and TIAM1 in 8 HCC cell lines. DNA extracted from 8 HCC cell lines were amplified with primers specific to the methylated (M) or unmethylated (UM) CpG islands of each gene after modification with sodium bisulfite. +, positive control; DW, distilled water. Positive controls for methylated MSP and unmethylated DNA are M.SssI-treated placental DNA and whole-genome amplified DNA, respectively.

Fig. 3. Summary of methylation-specific PCR for hepatocellular carcinoma (HCC) cell lines. We examined eight HCC cell lines for methylation status of the 35 genes and found that 26 of the genes (HOXA9, TNFRSF10C, NPY, TIAM1, PDGFRB, IRAK3, SH3BP2, IRF5, HIC2, TAL1, HS3ST2, MLF1, IGF2AS, ADCYAP1, FGFR3, WNT2, ADAMTS12, FLT3, PTCH2, GP1BB, RBP1, FZD9, DST, NOTCH3, PLAGL1, and ZP3) were methylated in at least one HCC cell line. Data are color-coded as follows: gray fill indicates the presence of methylation, whereas white fill indicates the absence of methylation.

Fig. 4. Summary of methylation-specific PCR results in hepatocellular carcinoma (n=50) and non-neoplastic liver tissue samples (n=18). Out of 26 genes showing methylation in HCC cell lines, promoter methylation was detected in 25 genes in primary tumor tissues. Data are color-coded as follows: gray fill indicates the presence of methylation, while white fill indicates absence of methylation.
Thus, the vast majority of the genes were found to show cancer-specific methylation at frequencies of 6%–98% (Fig. 5). Thus, 24 new cancer-specific CpG island loci were identified through our approach (Table 3).

Gene expression and induction after 5-aza-dC treatment in HCC cell lines

For hypermethylated and transcriptionally silenced genes, the DNA demethylating agent 5-aza-dC is known to induce gene re-expression (14, 15). To identify whether promoter CpG island hypermethylation was closely associated with gene expression in the 24 newly identified cancer-specific methylated genes, we treated the 8 HCC cell lines with 5-aza-dC (1 and 5 µM for 96 hr) and performed quantitative RT-PCR of the mock-treated and 5-aza-dC treated cell lines.

Table 3. New cancer-specific methylated genes

Genes	Gene name	Loci	Function
ADAMTS12	ADAM metallopeptidase with thrombospondin type 1 motif, 12	5q35	Metal ion binding, metalloendopeptidase activity, zinc ion binding
ADCYAP1	Adenylate cyclase activating polypeptide 1	18p11	Hormone activity, neuropeptide hormone activity
DST	Dystonin isoform 1B	6p12−p11	Actin binding, calcium ion binding, integrin binding, protein binding
FGFR3	Fibroblast growth factor 3	11q13	Growth factor activity, protein binding
FLT3	Fms-related tyrosine kinase 3	13q12	ATP binding, nucleotide binding, receptor activity
FZD9	Frizzled 9	7q11.23	G-protein coupled receptor activity, Wnt receptor activity
GP1BB	Glycoprotein Ib (platelet), beta polypeptide	22q11.21	Protein binding, transmembrane receptor activity
HIC2	Hypermethylated in cancer 2	22q11.21	DNA binding, metal ion binding
HDX9	Homeobox protein A9 isomor b	7p15–p14	Protein binding, sequence-specific DNA binding, transcription factor activity
HS3ST2	Heparan sulfate D-glucosaminyl 3-O-sulfotransferase 2	16p12	Sulfotransferase activity, transferase activity
IRAK3	Interleukin-1 receptor-associated kinase 3	12q14.3	ATP binding, identical protein binding, magnesium ion binding
IRF5	Interferon regulatory factor 5 isomor b	7q32	RNA polymerase III transcription factor activity
MLF1	Myeloid leukemia factor 1	3q25.1	Protein binding, protein domain specific binding
NOTCH3	Notch homolog 3	19p13.2–p13.1	Calcium ion binding, receptor activity
PDGFRB	Platelet-derived growth factor receptor beta	5q31−q32	ATP binding, nucleotide binding, platelet activating factor receptor activity; protein binding;
PTCH2	Patched 2	1p33–p34	Hedgehog receptor activity
RBP1	Retinol binding protein 1	3q23	Lipid binding, retinal binding, retinol binding
SH3BP2	SH3-domain binding protein 2	4p16.3	SH3/SH2 adaptor activity
TAL1	T-cell acute lymphocytic leukemia 1	1p32	DNA binding, transcription regulator activity
TIAM1	T-cell lymphoma invasion and metastasis 1	21q22.11	Rho guanyl-nucleotide exchange factor activity
TNFRSF10C	Tumor necrosis factor receptor superfamily, member 10c	8p22–p21	GPI anchor binding, transmembrane receptor activity
WNT2	Wingless-type MMTV integration site family member 2	7q31	Extracellular matrix structural constituent, signal transducer activity
ZP3	Similar to Zona pellucida sperm-binding protein 3	7q11.23	Acrosin binding, receptor activity

Fig. 5. Comparison of hypermethylation frequencies for 26 genes. Hepatocellular carcinoma (HCC) cell lines (white column), HCC tissue samples (gray column), and non-neoplastic liver tissue samples (HCN, black column).
down-regulated by 5-aza-dC. In addition, HepG2 and SNU-761 in WNT2, HepG2 in ADAMTS12, and SNU-878 in FLT3 were not re-expressed (Fig. 6). In such cases, histone modification may be related to transcription suppression (16, 17).

DISCUSSION

Although many studies have reported aberrant hypermethylation of genes in HCC, for example, identifying E-cadherin, RASSF1A, GSTP, SOCS1, SFRP1, and PTEN as tumor suppressor gene silenced by hypermethylation, most of these studies were limited to analysis of a single or a few specific genes (8-10). Therefore, the true extent of promoter CpG island hypermethylation in HCC remains largely unknown. With advancements in microarray technology, the number of genes found to be hypermethylated in HCC in a cancer-specific manner is expected to increase exponentially, leading to a better understanding of epigenetic modulation of tumor-related genes in hepatocarcinogenesis. The GoldenGate bead-array technology incorporates a strong analytical methylation platform and provides reliable and highly reproducible data (12). Here, we present identification of new genes demonstrating cancer-specific methylation in HCC through the use of bead-array technology. The fidelity of the bead-array results was confirmed using methylation-specific PCR for genes selected according to our criteria (Fig. 1). As a result of the present approach, 24 genes were newly identified as cancer-specific methylation loci for HCC.

Table 3 summarizes the functions of the genes that were newly identified to be hypermethylated in a cancer-specific manner in HCC. TNFRSF10C, HOXA9, NPY, and IRF5 were frequently methylated in our panel of cell lines and HCC tissues and their methylation was correlated with low expression levels or silencing.
ing. These genes were re-expressed in the majority of the cell lines after 5-aza-dC treatment. Therefore, these genes are considered to be repressed by DNA hypermethylation in their promoter CpG islands. Although it is unclear whether TNFRSF10C plays a pro-apoptotic role or an anti-apoptotic role in tumors, hypermethylation of TNFRSF10C has been reported in various human cancers, including breast, lung, prostate, and neuroblastomas (18). HOXA9 encodes a DNA-binding transcription factor that may regulate gene expression, morphogenesis, and differentiation. Expression of HOXA9 proteins is spatially and temporally regulated during embryonic development (19). HOXA9 promoter CpG island methylation has been reported in ovary and lung cancer (20, 21). NPY is involved in cell motion and cell proliferation as well as neuropeptide hormone activity (22, 23).

In prostate cancer, low NPY expression is closely associated with aggressive clinical behavior (24). In another recent study, NPY was shown to be frequently methylated in neuroblastomas (25). IRF5, a member of the interferon regulatory factor family, is known to be related to innate immune system activity and is also a critical regulator of DNA damage-induced apoptosis (26). Because IRF5 is critical for induction of apoptosis, IRF5 deficiency predisposes cells to tumorigenic transformation (27). However, methylation of IRF5 in cancer has rarely been reported.

Recently, the role of chromatin structure and epigenetic alterations in controlling gene transcriptional activity during embryonic stem (ES) cell self-renewal and differentiation has been intensively investigated (28, 29). Recent studies have attempted to identify the relationships between DNA methylation, histone modifications, and promoter occupancy of pluripotent regulators such as Pcg in regulation gene expression in ES cells (30). Gene promoter chromatin patterns, including Pcg-mediated repressive histone modifications, may render certain genes vulnerable to DNA hypermethylation. These changes may enhance the likelihood of tumor initiation and progression from cell transformation (30). To identify whether polycomb repressive complex 2 (PRC2) occupancy information obtained from embryonic stem cells may predict the vulnerability of individual CpG island loci to hypermethylation, we compared the average methylation level (beta value) of each CpG island locus between normal tissues and tumor tissues and correlated it with PRC2 occupancy. In PRC2-positive CpG islands, the methylation level of the tumor group was higher than the methylation level of the normal group. In addition, the differences between the two groups were larger when the CpG island loci were occupied by two or more components of the PRC2 complex. However, there were no differences among PRC2-negative CpG islands (Supplementary Table 1). Thus, PRC2 may indicate that these genes are preferred substrates for targeted methylation.

In addition to hypermethylation of promoter CpG island loci, some hypomethylated CpG sites were also identified through comparison of methylation levels (bead array-determined beta values) of CpG sites in HCC. CpG sites showing hypomethylation in a cancer-related manner appear to be different from those that were hypermethylated with respect to their relationships with CpG island loci. In the present study, we found that 69 genes (83 CpG sites) were significantly hypomethylated in tumor tissues. Of these 83 CpG sites, only 23 sites (27.7%) were located in promoter CpG island loci, in contrast with the 63 of 81 (77.8%) hypermethylated CpG sites that were located in CpG island loci (Supplementary Table 2). The identified hypomethylated genes tend to be involved in biological processes of immunity, neuronal activity, lipid metabolism, and transport, whereas the hypermethylated genes tend to be involved in nucleic acid metabolism, cell proliferation, differentiation, and the cell cycle. For example, IL16, involved in chemokine-mediated immunity, was significantly hypomethylated in HCC compared to non-neoplastic liver tissues (P<0.003). GABRA5, with neurotransmitter receptor activity, was hypomethylated (P<0.001). APOC1, which processes lipid metabolism and transport, was hypomethylated (P<0.001). In addition, certain oncogenes, including HGF, BLK, and PGR, were hypomethylated in HCC. Interestingly, hypomethylation of histone deacetylase 1 (HDAC1), which plays a key role in the regulation of eukaryotic gene repression, was prominent and had the largest significant difference in methylation levels between HCC and non-neoplastic liver tissues (P<0.001).

Supplementary Table 2. The summarization of the number of CpG sites undergoing hypermethylation or hypomethylation in association with cancerization according to their genomic location. CpG sites located in CpG island loci tend to undergo hypermethylation in association with cancerization whereas CpG sites located in non-CpG island tend to become hypomethylated

	Hypermethylation	Hypomethylation
Promoter		
CpG island	39	19
Non-CpG island	15	38
First exon		
CpG island	17	4
Non-CpG island	3	17
Second or distal exon or intron		
CpG island	7	0
Non-CpG island	0	5
Total CpG sites	81 (72 genes)	83 (69 genes)
In summary, we have identified 24 novel cancer-specific methylation markers for HCC using array-based methylation profiling and coupled MSP. Of these, TNRFSF10C, HOXA9, NPY, and IRF5 were frequently hypermethylated in HCC tissues and their promoter hypermethylation was correlated with inactivation of gene expression in cell lines. The clinicopathologic implications of these newly identified DNA methylation markers will need to be further investigated in large-scale studies of HCC samples.

REFERENCES

1. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103: 1412-7.
2. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007; 39: 457-66.
3. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362-5.
4. Panning B, Jaenisch R. RNA and the epigenetic regulation of X chromosome inactivation. Cell 1998; 93: 305-8.
5. Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007; 16 Spec No 1: R50-9.
6. Baylin SB, Chen WY. Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 2005; 70: 427-33.
7. Teodoridis JM, Strathdee G, Brown R. DNA methylation in hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-22.
8. Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Schübeler D. CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat 2004; 7: 267-78.
9. Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-22.
10. Tschoff I, Tannapfel A. DNA methylation in hepatocellular carcinoma. World J Gastroenterol 2008; 14: 1741-8.
11. Lou C, Yang B, Gao YT, Wang YL, Nie FH, Yuan Q, Zhang CL, Du Z. Aberrant methylation of multiple genes and its clinical implication in hepatocellular carcinoma. Zhonghua Zhong Liu Za Zhi 2008; 30: 831-6.
12. Schuebel KE, Chen W, Cope L, Gloeckner SC, Suzuki H, Yi JM, Chan TA, Van Neste L, Van Criekinge W, van den Bosch S, van Engeland M, Ting AH, Jair K, Yu W, Toyota M, Imai K, Ahuja N, Herman JG, Baylin SB. Comparing the DNA hypermethylation with gene mutations in human colorectal cancer. PLoS Genet 2007; 3: e1709.
13. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, Goldmann T, Seiffart C, Jiang W, Barker DL, Chee MS, Floros J, Fan JB. High-throughput DNA methylation profiling using universal bead arrays. Genome Res 2006; 16: 383-93.
14. Cho NY, Kim BH, Choi M, Yoo EJ, Moon KC, Cho YM, Kim D, Kang GH. Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 2007; 211: 269-77.
15. Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483-95.
16. Jones PA. Altering gene expression with 5-azacytidine. Cell 1985; 40: 485-6.
17. Yan C, Boyd DD. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transcription expression. Mol Cell Biol 2006; 26: 6357-71.
18. Shimapurkar N, Toyooka S, Toyooka KO, Reddy J, Miyajima K, Suzuki M, Shiogematsu H, Takahashi T, Parikh G, Pass HI, Chaudhary PM, Gazdar AF. Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 2004; 109: 786-92.
19. Gehring WJ, Affolter M, Burglin T. Homeodomain proteins. Annu Rev Biochem 1994; 63: 487-526.
20. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Bau SK, Kernstine KH, Riggs AD, Pfeifer GP. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007; 104: 5527-32.
21. Wu Q, Lothe RA, Ahlquist T, Stilins I, Trope CG, Miccì F, Nesland JM, Suo Z, Lind GE. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SGC831A1, and CRABPI as novel targets. Mol Cancer 2007; 6: 45.
22. Halfdén G, Hadi M, Hong HT, Aponte GW. Y receptor-mediated induction of CD63 transcripts, a tetraspanin determined to be necessary for differentiation of the intestinal epithelial cell line, hBREE 380i cells. J Biol Chem 1999; 274: 27914-24.
23. Minth CD, Andrews PC, Dixon JE. Characterization, sequence, and expression of the cloned human neuropeptide Y gene. J Biol Chem 1986; 261: 11974-9.
24. Liu AJ, Furusato B, Ravindranath L, Chen YM, Srikantan V, McLeod DG, Petrovics G, Srivastava S. Quantitative analysis of a panel of gene expression in prostate cancer—with emphasis on NPY expression analysis. J Zhejiang Univ Sci B 2007; 8: 853-9.
25. Abe M, Watanabe N, McDonnell N, Takato T, Ohira M, Nakagawa A, Ushijima T. Identification of genes targeted by CpG island methylator phenotype in neuroblastomas, and their possible integrative involvement in poor prognosis. Oncology 2008; 74: 50-60.
26. Pitha PM, Au WC, Lowther W, Jiang YT, Schafer SL, Bursucel Y, Hiscott J, Moore PA. Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth. Biochimie 1998; 80: 651-8.
27. Yanai H, Chen HM, Inuzuka T, Konno S, Mak TW, Takaoka A, Honda K, Taniguchi T. Role of IFN regulatory factor 5 transcription factor in antiviral immunity and tumor suppression. Proc Natl Acad Sci USA 2007; 104: 34027.
28. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007; 130: 77-88.
29. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128: 669-81.
30. Ohm JE, Mcgarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Moham mad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237-42.

DOI: 10.3346/jkms.2010.25.8.1152