Evaluation of benzaldehyde derivatives from *Morinda officinalis* as anti-mite agents with dual function as acaricide and mite indicator

Ji-Yeon Yang¹, Min-Gi Kim¹, Jun-Hwan Park¹, Seong-Tshool Hong² & Hoi-Seon Lee¹

¹Department of Bioenvironmental Chemistry and Institute of Agricultural Science and Technology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 561–756, Republic of Korea, ²Department of Biomedical Sciences and Institute of Medical Science, Chonbuk National University, Chonju, Chonbuk 561–712, Republic of Korea.

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus with 12–30% fatality rate. Despite severity of the disease, any medication or treatment for SFTS has not developed yet. One approach to prevent SFTS spreading is to control the arthropod vector carrying SFTS virus. We report that 2–methylbenzaldehyde analogues from *M. officinalis* have a dual function as acaricide against *Dermatophagoides* spp. and *Haemaphysalis longicornis* and indicator (color change) against *Dermatophagoides* spp. Based on the LD₅₀ values, 2,4,5–trimethylbenzaldehyde (0.21, 0.19, and 0.68 μg/cm³) had the highest fumigant activity against *D. farinae*, *D. pteronyssinus*, and *H. longicornis*, followed by 2,3–dimethylbenzaldehyde (0.46, 0.44, and 0.79 μg/cm³), 2,4–dimethylbenzaldehyde (0.66, 0.59, and 0.95 μg/cm³), 2,5–dimethylbenzaldehyde (0.65, 0.68, and 0.88 μg/cm³), 2–methylbenzaldehyde (0.95, 0.87, and 1.28 μg/cm³), 3–methylbenzaldehyde (0.99, 0.93, and 1.38 μg/cm³), 4–methylbenzaldehyde (1.17, 1.15, and 3.67 μg/cm³), and *M. officinalis* oil (7.05, 7.00, and 19.70 μg/cm³). Furthermore, color alteration of *Dermatophagoides* spp. was shown to be induced, from colorless to dark brown, by the treatment of 2,3–dihydroxybenzaldehyde. These findings indicated that 2–methylbenzaldehyde analogues could be developed as functional agent associated with the arthropod vector of SFTS virus and allergen.

Appearance of new infectious diseases creates serious health threat to the world. Ebola and Severe fever with thrombocytopenia syndrome are the typical example of new infectious diseases, which were recently discovered in West Africa and Northeast Asia¹. The SFTS is characterized by fever, leukocytopenia, respiratory problems, gastrointestinal symptoms, and thrombocytopenia¹. The etiological agent of SFTS is SFTS virus, a novel bunyavirus, which is carried by a tick, *Haemaphysalis longicornis*. Although the prevalence of SFTS is rare, the disease is a serious disease in which fatality rate range from 12 to 30%². However, there has not been developed any medication or treatment for SFTS yet. More seriously, the population of *H. longicornis* is increasing because of global warming², suggesting that SFTS could threaten the world near future.

House dust mites, such as *Dermatophagoides pteronyssinus* and *Dermatophagoides farinae*, play directly as a strong allergen to cause a number of allergic diseases, of which atopic dermatitis and allergic rhinitis are the most prevalent diseases¹. Although changes in housing environments with local heating, repeated ventilation, and limited use of fitted carpets are a solution to control acari, which are the subclass of ticks and mites, the control of acari by improvement of house conditions has a definite limitation³. Therefore, there is urgent demand for development of an agent controlling acari effectively to prevent allergic diseases and diseases spread by acari including SFTS.

Traditional control methods have been performed using many approaches, such as the following: (1) implementation of exceptional cleaning standards; (2) improvement of habitat of mites and ticks; and (3) use of synthetic acaricides, such as avermectin, γ–benzene hexachloride, chlorpyrifos–methyl, DEET, fenitrothion, pirimiphos–methyl, etc⁴. In spite of the outstanding effects of these synthetic acaricides against mites and ticks, their repeated treatment has resulted in the occurrence of resistance, environmental impact, and side effects in non–target organisms⁵. For example, Van Leeuwen et al.⁶ had reported that avermectin in mites acts on glutamate–gated chloride channels and γ-aminobutyric acid (GABA). Resistance of avermectin causes an increase of...
excretion and decreases of absorption with conjugated compound. In light of these problems, there is a need for the development of alternatives for the control of mites and ticks, such as more efficient and safer chemicals of natural origin.

Plants have been found as prospective alternatives to a number of chemicals because of the abundance of materials designated as traditional herbal medicine. Morinda officinalis How (family Rubiaceae), cultivated in subtropical and tropical regions, has been used in traditional herbal medicines and nutrient supplements for more than 2,000 years. To date, various biological activities of M. officinalis roots have been reported, including antiosteoporosis, antifatigue, antioxidant, hypoglycemic, and antidepressant agents. In addition, various chemicals have been found in M. officinalis roots, including anthraquinone, carbohydrate, and iridoid glucosides assessed in the present study.

Results and Discussion

Essential oil was extracted from M. officinalis roots with a yield of 0.03%. To determine the acaricidal potential, the acaricidal activity of M. officinalis oil was evaluated using the contact and the fumigant bioassays against Dermatophagoides spp. and H. longicornis. Compared with the LD$_{50}$ values of DEET, the acaricidal activity of M. officinalis oil (7.05, 7.00, and 19.70 µg/cm³) proved to be more toxic than that of DEET (36.50, 34.23, and 52.03 µg/cm³) against D. farinae, D. pteronyssinus, and H. longicornis in the fumigant assay, respectively (Table 1). In case of the contact bioassay, the acaricidal effect of M. officinalis oil (5.57, 5.00, and 15.48 µg/cm³) was also more potent than that of DEET (19.64, 14.12, and 47.77 µg/cm³) against D. farinae, D. pteronyssinus, and H. longicornis, respectively (Table 1). The negative treatment, injection of acetone alone, did not result in the death of dust mites and ticks in the fumigant and the contact bioassays. The acaricidal potential of M. officinalis oil depends on the species of mites, chemicals, and biological conditions. Thus, M. officinalis oil has the potential ability as a natural acaricide against Dermatophagoides spp. and H. longicornis.

The M. officinalis oil was analyzed by GC–MS, and the retention index, retention time, and mass spectra of each compound were compared to those reported in the literature. A list of the constituents from M. officinalis oil is provided in Table 2. The relative composition (%) of the constituents of M. officinalis oil was 1–allyl–4–methoxybenzene (2.42%), 1,2–benzenedicarboxylic acid (4.54%), γ–butyrolactone (2.74%), hexadeconoic acid (6.47%), hexanoic acid (2.42%), 2–methylbutylbenzylaldehyde (31.97%), 8–methylundecene (2.94%), myristaldehyde (2.63%), 1,3–didecanecarboxylic acid (4.47%), 9,17–octadecadienal (2.09%), and γ–stearolactone (2.20%). The constituents of M. officinalis oil were grouped as acids (1,2–benzenedicarboxylic acid, hexadeconoic acid, hexanoic acid, and nonanoic acid), aldehydes (2–methylbenzaldehyde and myristaldehyde), alkenes (8–methyleneadecene, 1,3–didecanecarboxylic acid, and 9,17–octadecadienal), benzenes (1–allyl–4–methoxybenzene), lactones (γ–butyrolactone and γ–stearolactone), phenols (paeonol), and quinones (2–methylanthraquinone). According to Yong–tao (2009), the volatile components of M. officinalis oil were borneol, disobutyl phthalate, linoleic acid, 3–methylbenzylaldehyde, and oleic acid. In the present and previous studies, the constituents of M. officinalis oil were influenced by the environmental conditions, including the handling method, harvest time, intraspecific variability, storage period, and the experimental conditions, which included the method of extraction and the parts of the plant extracted.

To isolate the active constituent of M. officinalis oil, various chromatographic analyses were conducted using column chromatography and liquid chromatography. The MO322 fraction was finally isolated from M. officinalis oil, and the structure was identified by spectroscopic analyses including H–NMR, 13C–NMR, and DEPT–NMR spectra. The isolated MO322 fraction was characterized as 2–methylbenzaldehyde (Figure 1) (C$_8$H$_8$O); EI–MS (70 eV) m/z M$^+$ 202.06; 1H–NMR (CDCl$_3$, 400 MHz) δ 2.48 (s, 3H), 7.26–7.44 (d, J = 7.2 Hz, 1H), 7.45–7.59 (t, J = 5.6 Hz, 1H), 7.61–7.75 (t, J = 5.6 Hz, 1H), 7.77–7.80 (d, J = 5.2 Hz, 1H), and 8.36 (s, 1H). In C–NMR and DEPT–NMR (CDCl$_3$, 100 MHz) δ 18.6 (CH$_3$), 191.0 (CH), 126.2 (CH), 131.9 (CH), 131.9 (CH), 134.4 (C), 134.4 (CH), 139.6 (C). The findings of 2–methylbenzaldehyde were compared with those of a previous study. The acaricidal activity of 2–methylbenzaldehyde isolated from M. officinalis oil was evaluated using the contact and the fumigant bioassays against Dermatophagoides spp. and H. longicornis and compared with that of DEET. The LD$_{50}$ values of 2–methylbenzaldehyde in the fumigant bioassay were 0.95, 0.87, and 1.28 µg/cm³ against D. farinae, D. pteronyssinus, and H. longicornis, respectively (Table 3). In the contact bioassay, the LD$_{50}$ values of 2–methylbenzaldehyde were observed to be 0.51, 0.47, and 0.94 µg/cm³ against D. farinae, D. pteronyssinus, and H. longicornis, respectively (Table 4). In comparison with the LD$_{50}$ values of DEET in the fumigant bioassay, 2–methylbenzaldehyde was approximately 38.58, 39.30, and 40.58 times more effective than DEET (36.50, 34.23, and 52.03 µg/cm³) against D. farinae, D. pteronyssinus, and H. longicornis (Table 3). In the contact bioassay, it was about 38.48, 30.04, and 50.60 times more toxic than DEET (19.64, 14.12, and 47.77 µg/cm³) against D. farinae, D. pteronyssinus, and H. longicornis (Table 4). In this regard, the acaricidal activity of 2–methylbenzaldehyde was much more potent than that of DEET.

Table 1 | Acaricidal activities of M. officinalis oil and acaricide against Dermatophagoides spp. and H. longicornis

Samples	Bioassay	Species	LD$_{50}$ ± SE	95% CL	RTf
M. officinalis oil	Fumigant (µg/cm³)	D. farinae	7.05 ± 0.11	6.84–7.24	5.18
		D. pteronyssinus	7.00 ± 0.04	6.87–7.13	4.89
		H. longicornis	19.70 ± 0.11	19.63–19.77	2.64
	Contact (µg/cm³)	D. farinae	5.57 ± 0.04	5.50–5.64	3.53
		D. pteronyssinus	5.00 ± 0.06	4.95–5.06	2.82
		H. longicornis	15.48 ± 0.12	15.42–15.55	3.09
DEET	Fumigant (µg/cm³)	D. farinae	36.50 ± 0.12	36.44–36.55	1.00
		D. pteronyssinus	34.23 ± 0.03	34.18–34.29	1.00
		H. longicornis	52.03 ± 0.07	51.99–52.07	1.00
	Contact (µg/cm³)	D. farinae	19.64 ± 0.05	19.63–19.66	1.00
		D. pteronyssinus	14.12 ± 0.16	14.11–14.13	1.00
		H. longicornis	47.77 ± 0.04	47.72–47.82	1.00

aExposed for 24 h. fRT, Relative toxicity = LD$_{50}$ value of DEET/LD$_{50}$ value of each compound.
commercial acaricide, against *D. farinae*, *D. pteronyssinus*, and *H. longicornis*.

To establish the structural relationships between 2–methylbenzaldehyde analogues and acaricidal activities against *Dermatophagoides* spp. and *H. longicornis*, 2,3-dihydroxybenzaldehyde, 2,5-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,3-dimethylbenzaldehyde, 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 2,4,5-trihydroxybenzaldehyde, and 2,4,5-trimethylbenzaldehyde were selected as 2-methylbenzaldehyde analogues for testing (Figure 1). The acaricidal activities of 2-methylbenzaldehyde analogues were evaluated using the contact and the fumigant bioassays against *D. farinae*, *D. pteronyssinus*, and *H. longicornis*. In the fumigant bioassay (Table 3), the acaricidal activities of 2,4,5-trimethylbenzaldehyde (0.21, 0.19, and 0.68 μg/cm²) were approximately 178.02, 178.30, and 52.03 times more toxic than those of structural analogues containing a hydroxyl (OH) functional group (2,3-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5-dimethylbenzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 2,4,5-trihydroxybenzaldehyde, and 2,4,5-trimethylbenzaldehyde) were more potent than those of structural analogues containing a methyl (CH₃) functional group (2,3-dimethylbenzaldehyde, 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, and 2,4,5-trimethylbenzaldehyde). In particular, the number of methyl functional groups influenced the acaricidal activity against *D. farinae*, *D. pteronyssinus*, or *H. longicornis* in the contact and the fumigant bioassays. Comparison of the LD₅₀ values from the contact and the fumigant bioassays against *D. farinae*, *D. pteronyssinus*, and *H. longicornis* revealed that the acaricidal activities of the structural analogues containing a methyl (CH₃) functional group (2,3-dimethylbenzaldehyde, 2,4-dimethylbenzaldehyde, 2,5-dimethylbenzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, and 2,4,5-trimethylbenzaldehyde) were more potent than those of structural analogues containing a hydroxyl (OH) functional group (2,3-dihydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2,5-dimethylbenzaldehyde, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, and 2,4,5-trihydroxybenzaldehyde). In particular, the number of methyl functional groups influenced the acaricidal activity against *D. farinae*, *D. pteronyssinus*, and *H. longicornis*. These observations are similar with the results in the study by Oh et al., in which 2’-methylacetophenone, 3’-methylacetophenone, and 4’-methylacetophenone were
observed to have potent activities while 2’,4’-dihydroxyacetophenone and 2’,6’-dihydroxyacetophenone possessed no activities against *D. farinae* and *D. pteronyssinus*. According to Lee and Lee\(^2\), the acaricidal effects of 2-methyl-1,4-naphthoquinone, which has a methyl functional group added onto 1,4-naphthoquinone, were more toxic against *D. farinae* and *D. pteronyssinus* than those of 2-hydroxy-1,4-naphthoquinone, containing a hydroxyl functional group on 1,4-naphthoquinone.

Color alterations of *Dermatophagoides* spp. were observed through an optical microscope when before and after treatment with *M. officinalis* oil and 2-methylbenzaldehyde structural analogues. In particular, *Dermatophagoides* spp. treated with *M. officinalis* oil and 2,3-dihydroxybenzaldehyde presented with skin discoloration to a dark brown color in the body, while the untreated mites were colorless (Figure 2). The color change of the mites treated with *M. officinalis* oil and 2,3-dihydroxybenzaldehyde allowed *D. farinae* and *D. pteronyssinus* to be distinguish with the naked eye. According to a previous study, complete elimination is actually impossible due to residual mite excrement and dead mites\(^24\). In addition, a vicious cycle of the treatments of the commercial acaricides was continued. These problems have emphasized the demand for the development of new technologies to control the allergens caused by *Dermatophagoides* spp. In this regard, the mite indicator in this study is valuable because of the color alteration of *Dermatophagoides* spp. induced by *M. officinalis* and 2,3-dihydroxybenzaldehyde. For these reasons, a new concept for natural acaricides was found in the present study, involving both the acaricidal activity and the mite indicator against *Dermatophagoides* spp.

Table 3 | Acaricidal activities of 2-methylbenzaldehyde analogues and commercial acaricide against *Dermatophagoides* spp. and *H. longicornis*, using a fumigant bioassay\(^4\)

Compounds	Species	LD\(_{50}\) ± SE (μg/cm\(^2\))	95% CL	RT*
2-Methylbenzaldehyde	*D. farinae*	0.95 ± 0.04	0.89–1.01	38.58
	D. pteronyssinus	0.87 ± 0.02	0.84–0.90	39.30
	H. longicornis	1.28 ± 0.12	1.19–1.38	40.58
3-Methylbenzaldehyde	*D. farinae*	0.99 ± 0.06	0.91–1.07	36.86
	D. pteronyssinus	0.93 ± 0.02	0.90–0.97	36.69
	H. longicornis	1.38 ± 0.15	1.33–1.43	37.62
4-Methylbenzaldehyde	*D. farinae*	1.17 ± 0.07	1.07–1.27	31.19
	D. pteronyssinus	1.15 ± 0.02	1.12–1.18	29.79
	H. longicornis	3.67 ± 0.05	3.62–3.71	14.19
2-Hydroxybenzaldehyde	*D. farinae*	1.32 ± 0.14	1.12–1.52	27.63
	D. pteronyssinus	1.27 ± 0.07	1.17–1.37	26.98
	H. longicornis	–	–	–
3-Hydroxybenzaldehyde	*D. farinae*	–	–	–
	D. pteronyssinus	–	–	–
	H. longicornis	–	–	–
4-Hydroxybenzaldehyde	*D. farinae*	–	–	–
	D. pteronyssinus	–	–	–
	H. longicornis	–	–	–
2,3-Dimethylbenzaldehyde	*D. farinae*	0.46 ± 0.02	0.45–0.48	78.99
	D. pteronyssinus	0.44 ± 0.02	0.41–0.47	77.80
	H. longicornis	0.79 ± 0.15	0.73–0.85	65.78
2,4-Dimethylbenzaldehyde	*D. farinae*	0.66 ± 0.08	0.56–0.76	55.30
	D. pteronyssinus	0.59 ± 0.03	0.55–0.63	58.02
	H. longicornis	0.95 ± 0.05	0.87–1.02	55.00
2,5-Dimethylbenzaldehyde	*D. farinae*	0.65 ± 0.05	0.58–0.71	56.58
	D. pteronyssinus	0.68 ± 0.10	0.54–0.82	50.34
	H. longicornis	0.88 ± 0.12	0.83–0.93	58.92
2,3-Dihydroxybenzaldehyde	*D. farinae*	7.53 ± 0.30	7.11–7.95	4.85
	D. pteronyssinus	6.69 ± 0.59	6.57–7.51	5.12
	H. longicornis	–	–	–
2,4-Dihydroxybenzaldehyde	*D. farinae*	–	–	–
	D. pteronyssinus	–	–	–
	H. longicornis	–	–	–
2,5-Dihydroxybenzaldehyde	*D. farinae*	–	–	–
	D. pteronyssinus	–	–	–
	H. longicornis	–	–	–
2,4,5-Trimethylbenzaldehyde	*D. farinae*	0.21 ± 0.02	0.18–0.23	178.02
	D. pteronyssinus	0.19 ± 0.01	0.18–0.20	178.30
	H. longicornis	0.68 ± 0.09	0.64–0.73	76.07
2,4,5-Trihydroxybenzaldehyde	*D. farinae*	–	–	–
	D. pteronyssinus	–	–	–
	H. longicornis	–	–	–

Compounds	Species	LD\(_{50}\) ± SE (μg/cm\(^2\))	95% CL	RT*
DEET	*D. farinae*	36.50 ± 0.12	36.44–36.55	1.00
	D. pteronyssinus	34.23 ± 0.03	34.18–34.29	1.00
	H. longicornis	52.03 ± 0.06	51.99–52.07	1.00

\(\text{LD}_{50}\) \(\text{SE (μg/cm}^2\) \(\text{95% CL}\) \(\text{RT*}\)

\(1^\text{Exposed for 24 h.}\)

\(2^\text{RT, Relative toxicity}\)

\(3^\text{LD}_{50}\) value of DEET/LD\(_{50}\) value of each compound.

\(9^\text{No activity.}\)
oxidation in the benzene ring metabolism\(^2\). In addition, disease resistance in both insects and mites occurred due to the existence of polyphenol oxidase\(^2\).

In the present study, acaricidal effects of \textit{M. officinalis} oil and 2-methylbenzaldehyde structural analogues were found against \textit{Dermatophagoides} spp. and \textit{H. longicornis}. In particular, 2,3,5-trimethylbenzaldehyde had potent activity against \textit{D. pteronyssinus} and 2,3-dihydroxybenzaldehyde structural analogues were found against \textit{D. farinae}. 2,4,5-trimethylbenzaldehyde are the most promising because of the high resistance in both insects and mites occurred due to the existence of polyphenol oxidase\(^2\).

Interestingly, skin color alteration of \textit{D. farinae} exhibited, changing from colorless to dark brown through the treatment with 2,3-dihydroxybenzaldehyde. In this regard, 2,3-dihydroxybenzaldehyde could be very useful to observe and remove the allergens.

In conclusion, this work showed that 2-methylbenzaldehyde analogues from \textit{M. officinalis} oil have a dual function as acaricide and acari indicator, meaning that these compounds could be developed as acaricidal agents. Especially, we believe that 2,3-dihydroxybenzaldehyde have a strong potential as an ideal acaricidal agent to control \textit{Dermatophagoides} spp. and \textit{H. longicornis} which are the vector of SFTS virus and allergen. In the registration process, considering the fact that \textit{Morinda officinalis} is a very cheap plant which can be easily cultivated, the cost would not be a barrier for the commercial development of 2-methylbenzaldehyde isolated from \textit{Morinda officinalis}.

Methods

Compounds

2,3-Dihydroxybenzaldehyde (97%, Cat No. 189839), 2,4-dihydroxybenzaldehyde (98%, Cat No. 168637), 2,5-dihydroxybenzaldehyde (99%, Cat No. 151068), 2,3,5-trimethylbenzaldehyde (99%, Cat No. 151041), 2,3-dimethylbenzaldehyde (99%, Cat No. 151068), 2-hydroxybenzaldehyde (98%, Cat No. W300403), 3-hydroxybenzaldehyde (97%, Cat No. H19808), 4-hydroxybenzaldehyde (97%, Cat No. W398403), 3-methylbenzaldehyde (90%, Cat No. 151041), 2,5-dimethylbenzaldehyde (99%, Cat No. 151068), 2-hydroxybenzaldehyde (98%, Cat No. W300403), 3-hydroxybenzaldehyde (97%, Cat No. H19808), 4-hydroxybenzaldehyde (97%, Cat No. W398403), 3-methylbenzaldehyde (90%, Cat No. 151041), 2,5-dimethylbenzaldehyde (99%, Cat No. 151068), 2-hydroxybenzaldehyde (98%, Cat No. W300403), 3-hydroxybenzaldehyde (97%, Cat No. H19808), 4-hydroxybenzaldehyde (97%, Cat No. W398403), 3-methylbenzaldehyde (90%, Cat No. T35505), 4-

Table 4: Acaricidal activities of 2-methylbenzaldehyde analogues and commercial acaricide against \textit{Dermatophagoides} spp. and \textit{H. longicornis}, using a contact bioassay\(^1\)

Compounds	Species	LD\(_{50}\) ± SE (\(\mu g/cm^2\))	95% CL	RT\(^2\)
2-Methylbenzaldehyde	\textit{D. farinae}	0.51 ± 0.02	0.48–0.54	38.48
	\textit{D. pteronyssinus}	0.47 ± 0.01	0.45–0.49	30.04
	\textit{H. longicornis}	0.94 ± 0.12	0.92–0.97	50.60
3-Methylbenzaldehyde	\textit{D. farinae}	0.53 ± 0.03	0.49–0.57	37.03
	\textit{D. pteronyssinus}	0.50 ± 0.01	0.49–0.52	28.07
	\textit{H. longicornis}	1.02 ± 0.14	0.96–1.09	46.69
4-Methylbenzaldehyde	\textit{D. farinae}	0.63 ± 0.04	0.58–0.68	31.13
	\textit{D. pteronyssinus}	0.61 ± 0.01	0.60–0.62	23.26
	\textit{H. longicornis}	1.84 ± 0.06	1.80–1.89	25.90
2-Hydroxybenzaldehyde	\textit{D. farinae}	0.70 ± 0.06	0.62–0.78	28.13
	\textit{D. pteronyssinus}	0.71 ± 0.08	0.61–0.82	19.80
	\textit{H. longicornis}	—	—	—
3-Hydroxybenzaldehyde	\textit{D. farinae}	—	—	—
	\textit{D. pteronyssinus}	—	—	—
	\textit{H. longicornis}	—	—	—
4-Hydroxybenzaldehyde	\textit{D. farinae}	—	—	—
	\textit{D. pteronyssinus}	—	—	—
	\textit{H. longicornis}	—	—	—
2,3-Dimethylbenzaldehyde	\textit{D. farinae}	0.25 ± 0.01	0.24–0.26	78.03
	\textit{D. pteronyssinus}	0.24 ± 0.01	0.22–0.26	59.07
	\textit{H. longicornis}	0.56 ± 0.15	0.50–0.63	84.69
2,4-Dimethylbenzaldehyde	\textit{D. farinae}	0.32 ± 0.01	0.30–0.34	61.07
	\textit{D. pteronyssinus}	0.32 ± 0.01	0.30–0.34	44.26
	\textit{H. longicornis}	0.62 ± 0.09	0.57–0.67	76.79
2,5-Dimethylbenzaldehyde	\textit{D. farinae}	0.35 ± 0.02	0.31–0.38	56.83
	\textit{D. pteronyssinus}	0.36 ± 0.05	0.30–0.43	39.00
	\textit{H. longicornis}	0.74 ± 0.05	0.69–0.80	64.22
2,3-Dihydroxybenzaldehyde	\textit{D. farinae}	3.79 ± 0.10	3.65–3.93	5.19
	\textit{D. pteronyssinus}	3.45 ± 0.09	3.33–3.57	4.09
	\textit{H. longicornis}	—	—	—
2,4-Dihydroxybenzaldehyde	\textit{D. farinae}	—	—	—
	\textit{D. pteronyssinus}	—	—	—
	\textit{H. longicornis}	—	—	—
2,5-Dihydroxybenzaldehyde	\textit{D. farinae}	—	—	—
	\textit{D. pteronyssinus}	—	—	—
	\textit{H. longicornis}	—	—	—
2,4,5-Trimethylbenzaldehyde	\textit{D. farinae}	0.12 ± 0.01	0.10–0.13	170.99
	\textit{D. pteronyssinus}	0.19 ± 0.02	0.18–0.20	73.53
	\textit{H. longicornis}	0.46 ± 0.07	0.43–0.50	103.61
2,4,5-Trihydroxybenzaldehyde	\textit{D. farinae}	—	—	—
	\textit{D. pteronyssinus}	—	—	—
	\textit{H. longicornis}	—	—	—
DEET	\textit{D. farinae}	19.64 ± 0.05	19.63–19.66	1.00
	\textit{D. pteronyssinus}	14.12 ± 0.16	14.11–14.13	1.00
	\textit{H. longicornis}	47.77 ± 0.04	47.72–47.82	1.00

\(^1\)Exposed for 24 h.
\(^2\)RT, Relative toxicity = LD\(_{50}\) value of DEET/LD\(_{50}\) value of each compound.

\(^*\)no activity.
The mites were reared without exposure to any synthetic acaricides. The essential oil (1.2 g, yield 0.03%) of Melissa officinalis was concentrated by an evaporator (model name: NAJ–100, EYELA, Tokyo, Japan) at 27 °C and stored at 4 °C to prevent loss of the volatile constituents.

Gas chromatography–mass spectrometer. The volatile components of Melissa officinalis were analyzed by GC–MS (6890 and 5973 series, Agilent, USA) and were separated using DB–5 and HP–Innowax capillary columns (0.25 mm i.d. × 3.00 cm L. × 0.25 μm thickness)7. The initial temperature of the GC column was 50 °C, which was gradually increased up to 210 °C. The ion source temperature was 230 °C. Helium gas as the carrier gas was flowed at a rate of 0.85 mL/min7. Effluents from GC column were introduced into the mass spectrometer. Mass spectra (m/z) were obtained in electron ionization (70 eV) set to scan a range of 50–600 amu for 2 seconds. The relative composition (%) of volatile components was calculated by the standard of the internal amount.

Isolation and identification. Silica gel (70–230 mesh) was purchased from Merck (Rahway, NJ, USA). Melissa officinalis oil (12 g) was loaded onto a silica gel column (8 cm L. × 70 cm L.) and eluted gradually using a mixed organic solvent (hexane/methyl ethyl acetate, gradient, v/v). The eluted fractions were separated by thin–layer chromatography and a UV lamp (at 264 nm) to obtain eight fractions (MO1–MO8). The acaricidal activities of the eight fractions were evaluated using the fumigant bioassay against Dermentophagoides spp. and H. longicornis at a concentration of 59.0 μg/cm². Fraction MO2 was found to possess potent activity against Dermentophagoides spp. and H. longicornis, and was chromatographed on a silica gel column using a mixed organic solvent (ethyl acetate : hexane = 1: 9, v/v) to separate further into five fractions (MO21–MO25). Fraction MO23 (887 mg, yield 44.8%) was identified as the toxic fraction. Next, preparative high performance liquid chromatography (model name: LC–908, JAI Ltd., Tokyo, Japan) was performed. Fraction MO32 was separated into three fractions (MO321–MO323) using a GS column (model name: GS 310, 2 cm i.d. × 50 cm L.) with methanol solvent as the mobile phase at a flow rate of 4.8 mL/min. Finally, the active compound (MO322, m ρ 3,000 cm L. 3) was identified by spectroscopic analyses.

The chemical structure of MO322 fraction isolated from Melissa officinalis oil was determined using nuclear magnetic resonance (NMR). To confirm the number of carbons (C) and protons (H), 13C–, 1H–, and DEPT–NMR (model name: JNM–ECA600 spectrometer, JEOL Ltd., Tokyo, Japan) were implemented at 400 and 100 MHz. The MO322 was melted in CDCl3, and tetramethylethane was used as the internal standard. In addition, the molecular weight of the MO322 fraction was investigated using EI–MS (model name: JEOL GSX 400 mass spectrometer, JEOL Ltd., Tokyo, Japan) spectra.

Target. The rearing method of D. farinae and D. pteronyssinus modified by Yang and Lee was utilized5. The mites were reared without exposure to any synthetic acaricides. The feed consisted of fry powder and dried yeast (Korea special feed meal Co. Ltd., Jeonju, Republic of Korea) given in a rearing case (15 × 12 × 6 cm) at 25 °C and 75% relative humidity (RH) in a dark area. The protein content of the fry powder was maintained above 49%. For experiments, the Dermentophagoides spp. mites were placed in a petri dish (9 cm i.d. × 1.5 cm L.). H. longicornis ticks were collected around Jeonju River and were identified morphologically and genetically. However, the H. longicornis ticks were not maintained in our laboratory.

Acaricidal activity. The acaricidal effects of the oil, 2–methylbenzaldehyde, and its analogues were evaluated using the contact and the fumigant bioassays against Dermatophagoides spp. and H. longicornis through the method modified by Yang and Lee5. The experimental concentrations in the study were set to scan a range of 60.0–0.10 μg/cm². Each sample was dissolved in 50 μL acetone and then applied to filter paper (5.5 cm i.d. × 25 mm thickness, Whatman, UK). Acetone alone was applied as the negative control, and DEET was designated as the positive control. The residual solvent of each filter paper was dried under the fume hood for 14 min. In the contact bioassay, each piece was placed on the bottom of a petri dish (6 cm i.d. × 1.5 cm L.). In the case of the fumigant bioassay, a piece of filter paper was put in the lid of a petri dish (6 cm i.d. × 1.5 cm L.) and a thin cotton fabric was inserted to prevent contact of the inoculated mites with the applied filter paper. Each twenty experimental mites (Dermatophagoides spp. and H. longicornis), which included a mixture of males and females, were inoculated in each petri dish, and the lids were sealed. All treatments were repeated four times and incubated for 24 h at 25 °C in the dark. Mortality was measured by the number of dead ticks and mites, which did not move when prodded with a pin, under an optical microscope (20X, Olympus, Japan).

Color alteration of mites. Color alterations to D. farinae and D. pteronyssinus exposed to 2–methylbenzaldehyde analogues were evaluated using a light microscope (100X), as described by Lee et al.5. Color alteration of the mites before and after treatment was compared.

Statistics. Mortalities in all the treatments were measured under an optical microscope (20X, Olympus, Japan). D. farinae and D. pteronyssinus were regarded to be dead when they did not move when touched with a pin. The LD₅₀ values were determined by probit analysis14. Relative toxicity (RT) was calculated by the ratio of the commercial acaricide LD₅₀ value to the LD₅₀ value observed for each compound.

1. Li, S. et al. Sporadic case infected by severe fever with thrombocytopenia syndrome bunyavirus in a non–epidemic region of China. Biosci. Trends. 5, 273–276 (2011).
2. Yu, X. J. et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 364, 1523–1532 (2011).
3. Yang, J. Y. & Lee, H. S. Acaricidal activities of the active component of Lycopodium lucidum oil and its derivatives against house dust and stored food mites (Arachnida: Acari). Pest Manag. Sci. 68, 567–572 (2012).
4. Stara, J., Stejskal, V., Nesvorna, M., Plachy, J. & Hubert, J. Efficacy of selected pesticides against synanthropic mites under laboratory assay. Pest Manag. Sci. 67, 446–457 (2011).
5. Yang, J. Y. & Lee, H. S. Changes in acaricidal potency by introducing functional radicals and an acaricidal constituent isolated from Schizonepeta tenuifolia. J. Agric. Food Chem. 61, 11511–11516 (2013).
6. Fernandez-Calda, E., Puerta, L. & Caraballo, L. Mites and allergy. Chem. Immunol. Allergy. 100, 234–242 (2014).
7. Macchioni, F. et al. Acaricidal activity of pine essential oils and their main analogues against Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 40, 563–572 (2010).
9. Yang, J. Y. et al. Constituents of volatile compounds derived from Melaleuca alternifolia leaf oil and acaricidal toxicities against house dust mites. J. Korean Soc. Appl. Biol. Chem. 56, 91–94 (2013).
10. Lee, H. S. Tyrosinase inhibitors of Pulsatilla cernua root–derived materials. J. Agric. Food Chem. 50, 1400–1403 (2002).
11. Yang, Y. C. et al. A piperidine amide extracted from Piper longum L. fruits shows activity against Aedes aegypti mosquito larvae. J. Agric. Food Chem. 50, 3765–3767 (2002).
12. Yang, Z. et al. Isolation of inulin–type oligosaccharides from Chinese traditional medicine: Morinda officinalis How and their characterization using ESI–MS/MS. J. Sep. Sci. 33, 120–125 (2010).
13. Yang, Y. J., Shu, H. Y. & Min, Z. D. Anthraquinones isolated from Morinda officinalis and Damnacanthus indicus. Acta Pharm. Sinica. 27, 358–364 (1992).
14. Wu, Y. B. et al. Antiestrogenic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts. Molecules. 14, 573–583 (2009).
15. Zhang, H. L. et al. Structural characterization and anti–fatigue activity polysaccharides from the roots of Morinda officinalis. Int. J. Biol. Macromol. 44, 257–261 (2009).
16. Soon, Y. Y. & Tan, B. K. H. Evaluation of the hypoglycemic and antioxidant activities of Morinda officinalis in streptozotocin–induced diabetic rats. Singap. Med. J. 43, 77–85 (2002).
17. Zhang, Z. Q., Yuan, L., Yang, M., Luo, Z. P. & Zhao, Y. M. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72–s schedule in rats and the forced swimming test in mice. Pharmacol. Biochem. Be. 72, 39–43 (2002).
18. Yoshikawa, M., Yamaguchi, S., Nishisaka, H., Yanahara, J. & Murakami, N. Chemical how: Structures of morindolida and morofficinaloside. Chem. Pharm. Bull. 43, 1462–1465 (1995).
19. Oh, M. S., Yang, J. Y. & Lee, H. S. Acaricidal toxicity of 2′–hydroxy–4′–methylacetophenone isolated from Angelica koreana roots and structure–activity relationships of its derivatives. J. Agric. Food Chem. 60, 3606–3611 (2012).
20. Hendriks, M. M. W. B., Juarez, L. C., Bont, D. D. & Hall, R. D. Preprocessing and exploratory analysis of chromatographic profiles of plant extracts. Anal. Chim. Acta. 545, 53–64 (2005).
21. Yong–tao, Y. J. Study on extraction of volatile components from Morinda officinalis How by different methods. J. Anhui Agr. Sci. 24, 85 (2009).
22. Lee, C. H. & Lee, H. S. Color alternation and acaricidal activity of juglone isolated from Caesalpinia sappan heartwoods against Dermatophagoides spp. J. Microbiol. Biotechnol. 16, 1591–1596 (2006).
23. Khan, N. H. et al. Easily recyclable polymeric salen complex for the enantioselective O–acetyl cyanation of aldehydes. J. Mol. Catal. A–Chem. 264, 140–145 (2007).
24. Hong, C. S. House dust mite and clinique allergy. J. Kor. Soc. Allergol. 11, 297–308 (1991).
25. Lee, C. H., Kim, H. W. & Lee, H. S. Acaricidal properties of piperazine and its derivatives against house–dust and stored food–mites. Pest Manag. Sci. 65, 704–710 (2009).
26. Dilek, T. & Atüz, E. Phenolic compounds in pear juice from different cultivars. Food Chem. 93, 89–93 (2005).
27. Routekedijret, C., Bentahar, F., Belabbes, R. & Bessiere, J. M. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Frag. J. 18, 481–484 (2003).
28. Sadler Research Laboratories. The Sadler Standard Gas Chromatography Retention Index Library (Sadler Research Laboratories, USA, 1984).
29. Song, H. Y., Yang, J. Y., Suh, J. W. & Lee, H. S. Acaricidal activities of apiole and its derivatives from Petroselinum sativum seeds against Dermatophagoides farinosus, Dermatophagoides farinae, and Tyrophagus putrescentiae. J. Agric. Food Chem. 59, 7759–7764 (2011).

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2013R1A2A2A01067945).

Author contributions

J.-Y.Y. designed and carried out the experiments, prepared most of the data, and wrote the paper; M.-G.K. designed and carried out the experiments, prepared most of the data, and wrote the paper; J.-H.P. carried out the experiments for the bioassay and assisted in paper–writing; S.-T.H. wrote the paper; H.-S.L. proposed the key idea of this paper, designed the experiments, carried out color alteration by introduction of functional radicals, managed the research process, and wrote the paper.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yang, J.-Y., Kim, M.-G., Park, J.-H., Hong, S.-T. & Lee, H.-S. Evaluation of benzaldehyde derivatives from Morinda officinalis as anti–mite agents with dual function as acaricide and mite indicator. Sci. Rep. 4, 7149; DOI:10.1038/srep07149 (2014).

This work is licensed under a Creative Commons Attribution–NonCommercial–NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/