Marine Sponge-Derived Fungi: Fermentation and Cytotoxic Activity

Putu Oka Samirana1,2, Yosi Bayu Murti3, Riris Istighfari Jenie4, Erna Prawita Setyowati5*
1Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
2Department of Pharmacy, Faculty of Mathematics and Natural Science, Udayana University, Bali 80361, Indonesia
3Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
5Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

ARTICLE INFO
Received on: 18/09/2020
Accepted on: 26/11/2020
Available online: 05/01/2021

Key words:
Marine sponge, fungi, fermentation, cytotoxic, cancer.

ABSTRACT
Bioactive compounds from sponges are produced under the influence of several factors including enzymes, nutrients, and the result of symbiosis with other microbes like fungi. Marine sponge-derived fungi are a potential source producing new bioactive compounds for future cancer therapies. In this review, we summarize 132 components consisting of 16 extracts, 5 fractions, and 111 isolates obtained from 30 genera of marine sponge-derived fungi tested on 317 types of cell line cancers from articles published through June 2020. These components were classified as very strong, strong, and moderate cytotoxic activity based on their IC50 respectively, and 56 components of marine sponge-derived fungi were reported as very strong cytotoxic activity. Components that have very strong cytotoxic activity have been summarized, including polyketide derivatives, lipopeptides, cyclodepsipeptides, decalin derivatives, xanthone derivatives, phenol derivatives, cytochalasins, peptaibiotics, phthalides, anthraquinones, terpenes, decalin derivatives, and lactones. In producing bioactive metabolites for cytotoxic, the fermentation media play an important role. Carbon sources, nitrogen, salinity, and extracted specimens are important factors in the production of bioactive metabolites for cytotoxic from marine sponge-derived fungi. With this up-to-date review, we attempt to present new minding in the rational discovery of lead compounds for the development of cancer therapy.

INTRODUCTION
The association between sponges and sponge symbionts has potential in drug discovery. Not only are secondary metabolites produced by sponges, but also sponge symbionts may synthesize secondary metabolites. Therefore, the microbial symbionts associated with sponges can be isolated and cultured to increase the production of certain bioactive compounds derived from sponges (Lee et al., 2001). Marine sponge-derived fungi are a source of secondary metabolites that are currently being studied intensively. Although research on fungi derived from marine sponges is still less than research on terrestrial fungi, several important findings derived from fungi associated with marine sponges have added to the value of these fungi in the discovery of natural products (Butler et al., 2014), such as various kinds of secondary metabolites which have antimarial, antiviral, antibacterial, and anticancer or cytotoxic activity. It is a potential that should be explored to increase the number of medicines derived from marine life without damaging the marine biota itself (Debbab et al., 2011; Hikmawan et al., 2020; Huang et al., 2011).

The metabolites produced by fungi coming from marine sponges are the result of chemical communication between fungus and sponge which is mutually beneficial; moreover, in some cases, they can produce completely new metabolites (Pejin and Karaman, 2017). The symbiosis between fungi and sponges, among others, provides a source of nutrition, a place of defense and protection, and stabilization of the sponge structure, treats sponge waste, and produces bioactive compounds. Therefore, it is likely that the bioactive compounds are also produced by the associated fungi of these sponges (Proksch et al., 2002; Thomas et al., 2010). Data obtained from the National Cancer Institutes of the United States show that sponges are a potential source of compounds in producing cytotoxic effects (Brinkmann et al.,...
Thus, marine sponge-derived fungi also have the potential to produce bioactive compounds as cytotoxic.

To produce bioactive compounds, the associated fungi derived from marine sponges must be fermented outside the sponge’s body tissue using a fermentation media. The fermentation of microorganisms in this case is a fungus which will be influenced by physical and chemical factors. Physical factors affecting microorganisms comprise temperature, pH, and osmotic salinity, while chemical factors consist of sources of carbon, nitrogen, and nutrients in culture media (Pratiwi, 2008). The marine sponge-derived fungi depend on carbon, nitrogen, and salt (salinity) sources. Fungi associated with the marine environment based on several studies are strongly influenced by their growth in the presence of simple carbon sources, such as glucose and dextrose, and can even affect the production of secondary metabolites that affect their biological activity (Anuhya et al., 2017; Fuentes et al., 2015; Mahapatra et al., 2013; Miller et al., 1981; Ripa et al., 2009; Sguros and Simms, 1963). The increase in salt content (salinity) beyond seawater causes several species of associated fungi from the sea to decrease their growth rate, but the unavailability of salinity inhibits the growth of these associated fungi from the sea (Amon and Yei, 1982; Huang et al., 2011; Jones, 2000; Venkatachalam et al., 2019).

The objective of this review is to summarize the components extracted from the fermentation of marine sponge-derived fungi which have cytotoxic activity, identify the potential cytotoxic activity of these components based on the IC₅₀ value, and find out what influences the fermentation conditions from marine sponge-derived fungi to produce cytotoxic bioactive compounds. The advantage of this review is to determine the relationship between the cytotoxic activity of fungi derived from marine sponges and their fermentation medium in producing cytotoxic compounds which have the potential to be developed as future cancer drug candidates. In the future, this review can be used as a reference to produce potential cytotoxic compounds from fungi from marine sponges using optimal fermentation medium conditions.

METHOD

A systematic search was conducted to find all publications related to the topic up to June 2020 on PubMed and Google Scholar. The keywords used to browse the articles were “fungi, sponge-derived, cytotoxic” or “fungi, sponge-associated, cancer”. The data included in this review were primary articles in English regarding cytotoxic studies of components produced from fungi derived from marine sponges and the conditions of fermentation, as shown in Table 1. Articles were excluded from primary articles if they were review articles, conference articles, and thesis, and no data were available for retrieval. All synthetic derivatives of natural metabolites that occur in sponges are not mentioned in this review. The variables assessed in this review include sponge species/genera of sponges, fungi-associated species/genera, fermentation medium, extracted specimens from fermentation products, components of the extracted product, type of cancer, type of cell line, and the cytotoxic effect of these components.

Cytotoxic activity of marine sponge-derived fungi

The number of articles that has been searched to June 2020 was 86 primary articles (Table 1). We identified that the 30 genera of sponge and 30 genera of fungi derived from the sponge investigated were related to their cytotoxic activity. The genera of sponges that are most frequently studied are Calliypsongia, Halichondria, Phakellia, and Petrosia. The most frequently studied sponge-derived fungal genera are Aspergillus, Penicillium, Trichoderma, and Gymnascella. Figure 1 shows the number of studies that have been conducted for the cytotoxic activity of marine sponge-derived fungi, of which the number of publications is increasing from year to year. The highest number of publications published in 2019 was 14 articles, followed by 2018 and 2017 with 12 and 11 articles, respectively. The number of publications from 1997 to 2016 continued to increase, but the number of articles per year has not exceeded 2017–2019. It indicates that the focus of research in 1997–2016 was still on marine sponges explored for their bioactive components. Excessive exploration causes damage to the ecosystem of the sponge, which made the species decrease, and is not balanced with sponge growth. It creates a new trend, in which many scientists are interested in researching endophytic samples from sponges, including endophytic fungi from sponges, and it absolutely reduces the damage to sponge the habitat, which is increasingly rare in nature (Carroll et al., 2019; Thomas et al., 2010). Secondary metabolites from sea sponges have also been studied and have the potential in the medical world, including antiviral, antimutant, antimicrobial, antimalarial, and cytotoxicity (Guo et al., 2019; Hikmawan et al., 2020; Setyowati et al., 2009; Wang, 2006). Several studies have reported that the bioactive compounds obtained from sea sponges are most likely secondary metabolite compounds produced by the associated microbes in the bodies of marine sponges. It is caused by 40%–50% of the body tissue of marine sponges, which consists of microbes (Proksch et al., 2002; Thakur and Müller, 2004). The marine sponge association microbes can be fungi (Thomas et al., 2010).

Marine sponge-derived fungi produce bioactive compounds depending on the surrounding environment. The original habitat of these fungi is symbiotic in sponge tissues; thus, the production of compounds depends on the results of symbiosis with the host. When this fungus is outside its host, the active compound produced depends on the medium growth for the fungus. To be able to produce bioactive compounds similar to those produced in symbiosis with a sponge, the growth medium is made as closely as possible to the situation in its host. In addition to obtaining active compounds, it is also to reduce the occurrence of mutations that occur in fungi (Debbab et al., 2011; Huang et al., 2011; Kjer et al., 2010; Lee et al., 2001). Research on cytotoxic agents derived from marine sponges and their symbiotic microbes is still the concern of natural product researchers. More than 10% of cytotoxic activity comes from marine sponges that have been identified to date. The symbiosis of microorganisms from sponsors is proven to have an important role in bioactive compounds as cytotoxic agents. A review from 1955 to 2016 of marine sponges acting as cytotoxic agents reported that 107 new cytotoxic agents originated from marine sponges and were thought to have originated in symbiosis with the microbes present in these sponges (Zhang et al., 2017).
Table 1. Summarized data of fermentation condition and cytotoxic activity from marine sponge-derived fungi.

No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC_{50} (µg/ml)	Ref.	
1	Halichondria japonica	Gymnascella dankanliensis	Malt, glucose, peptone, and artificial seawater	Mycelia	Gymnastatin A	Mouse leukemia	P338	18.00	(Numata et al., 1997)	
					Gymnastatin B			108.00		
					Gymnastatin C			106.00		
2	H. okadai	T. harzianum	Glucose, peptone, malt, and artificial seawater	Medium	Trichodenone A	Mouse leukemia	P338	0.21	(Amagata, et al., 1998b)	
		OUPS-N 115			Trichodenone B			1.21		
					Trichodenone C			1.45		
					Harzialactone B			60.00		
3	Halichondria japonica	G. dankanliensis	Malt, glucose, peptone, and artificial seawater	Mycelia	Gymnasterones A	Mouse leukemia	P338	10.10	(Amagata, et al., 1998a)	
					Gymnasterones B			1.60		
4	Halichondria japonica	G. dankanliensis	Malt, glucose, peptone, and artificial seawater	Mycelia	Dankasterone	Mouse leukemia	P338	2.20	(Amagata et al., 1999)	
5	Zyzya sp.	Penicillium brocae	Sucrose, salt (NaNO₃, KH₂PO₄, MgSO₄, KCl, FeSO₄), and water	Mycelia and medium	Brocaenol A	Human colon cancer	HCT-116	20.00	(Bugni et al., 2003)	
					Brocaenol B			50.00		
					Brocaenol C			> 50.00		
6	Axinella damicornis Esper	Aspergillus niger	Glucose, soya peptone, malt extract, yeast extract, sea salt, and water	Mycelia and medium	Bicoumanigrin A	Human leukemia	Jurassic	> 20.00	(Hiort et al., 2004)	
						Human lymphoma	U937	> 20.00		
						Human leukemia	MV4-11	> 20.00		
						Human leukemia	NB-4	> 20.00		
7	Halichondria japonica	G. dankanliensis	Malt, glucose, peptone, and artificial seawater	Mycelia	Gymnastatin F	Mouse leukemia	P338	0.13	(Amagata et al., 2006)	
					Gymnastatin G			0.03		
8	Teichaxinella sp.	Acremonium sp.	Sucrose, salt (NaNO₃, K₂PO₄, MgSO₄, KCl, MgCl₂, FeSO₄), and seawater	Medium	Efrapeptin G	Human colon cancer	HCT-116	0.01	(Boot et al., 2006)	
9	Unidentified marine sponge	Clonostachys sp. E5NA-A009	Glucose, beef extract, yeast extract, starch, tryptone, NaCl, KCl, MgCl₂, and water	Mycelia	IB-01212	Human prostate cancer	LN-capP	0.01	(Cruz et al., 2006)	
						Human breast cancer	SK-BR3	0.01		
						Human colon cancer	HT-29	0.01		
						Human cervix cancer	HeLa	0.01		
10	Unidentified marine sponge	Aspergillus sp.	Mannitol, hydrolyzed fish soluble, Menhaden meal, kelp powder, and seawater	Mycelia	Tropolactones A	Human colon cancer	HCT-116	13.20	(Cueto et al., 2006)	
					Tropolactones B			10.90		
					Tropolactones C			13.90		
11	Halichondria japonica	G. dankanliensis	Media A: malt extract, soluble starch, peptone, artificial seawater	Mycelia	Dankasterones A (from media A)	Mouse leukemia	P338	2.20	(Amagata et al., 2007)	
					Dankasterones B (from media A)			2.80		
				Media B: malt extract, glucose, peptone, and artificial seawater	Gymnasterones A	Mouse leukemia	P338	10.10		
					(from media B)					
					Gymnasterones B (from media B)					
					Gymnasterones C (from media B)					
					Gymnasterones D (from media B)					
12	Mycale plumose	Penicillium aurantiogriseum	Sorbitol, maltose, glutamine, KH₂PO₄, MgSO₄, tryptophan, yeast extract, and seawater	Medium	Aurantiomide B	Mouse leukemia	P338	54.00	(Xin et al., 2007)	
						Human leukemia	HL-60	52.00		
						Mouse leukemia	P338	48.00		
						Human liver cancer	BEL-7402	62.00		
13	Unidentified marine sponge	Aspergillus ostianus strain	Potato, dextrose, bromine, and water	Medium	Aspergilides A	Mouse leukemia	L1210	2.10	(Kito et al., 2008)	
		01F313			Aspergilides B			71.00		
					Aspergilides C			2.00		
No.	Sponge species	Fungi species	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC\(_{50}\) (µg/ml)	Ref.	
-----	----------------	---------------	---------------------	--------------------	----------	-------------	-----------	----------------	------	
14	*Suberites domuncula*	*Aspergillus ustus*	Barley, spelt whole grain flakes, soy peptone, MnCl\(_2\), water	Mycelia and medium	Ophiobolin H	Mouse lymphoma	L5178Y	1.90	(Proksch et al., 2008)	
15	*Tethya aurantium*	*Scopulariopsis brevicadis* strain NCPF 2177	Glucose, soya peptone, malt extract, yeast extract, NaCl, and water	Mycelia	Scopularides A	Human pancreatic cancer	COLO 357	> 10.00	(Yu et al., 2008)	
16	*Petrosia sp.*	*Paecilomyces lilacinus*	Malt extract, D-glucose, peptone, and seawater	Mycelia and medium	Phomaligol A	Human lung cancer	A-549	n.a.	(Elbandy et al., 2009)	
						Human ovarian cancer	SK-OV-3	n.a.		
						Human skin cancer	SK-MEL-2	n.a.		
						Human CNS cancer	XF-498	n.a.		
						Human colon cancer	HCT-15	n.a.		
17	*Suberites domuncula*	*A. ustus*	Barley, spelt whole grain flakes, soy peptone, MnCl\(_2\), and water	Mycelia and medium	Ester of (E,E)-6-oxo-2,4-hexadienoic acid	Mouse lymphoma	L5178Y	0.60	(Liu et al., 2009)	
						Mouse pheochromocytoma	PC-12	7.20		
						Human cervix cancer	HeLa	5.90		
18	*E. perox*	*Phoma sp.*	Biomalt and artificial seawater	Mycelia and medium	Epoxysphomalin A	Human bladder cancer	BXF 1218 L	0.02	(Mohamed et al., 2009)	
						Human glioblastoma	CNXF 498NL	0.02		
						Human colon cancer	SF-268	0.35		
							HCT-116	0.33		
								0.20		
						Human gastric cancer	GXF 251 L	0.03		
						Human lung cancer	LXF 1121 L	0.38		
						Human lung cancer	LXF 289 L	0.43		
						Human lung cancer	LXF 526 L	0.43		
						Human lung cancer	LXF 529 L	0.08		
						Human lung cancer	LXF 629 L	0.04		
						Human colon cancer	NCI-H460	0.31		
						Human breast cancer	MAXF 401NL	0.01		
						Human skin cancer	MEXF 276 L	0.05		
						Human skin cancer	MEXF 394NL	0.28		
						Human skin cancer	MEXF 462NL	0.06		
						Human skin cancer	MEXF 514 L	0.38		
						Human skin cancer	MEXF 520 L	0.32		
						Human ovarian cancer	OVFX 1619 L	0.26		
						Human ovarian cancer	OVFX 899 L	0.08		
						Human ovarian cancer	OVFX OVCAR3	0.02		
						Human pancreatic cancer	PAXF 1657 L	0.03		
						Human prostate cancer	PANCl	0.33		
						Human prostate cancer	PRXF 22RV1	0.03		
						Human mesothelioma	DX145	0.75		
						Human mesothelioma	LN-encap	0.94		
						Human mesothelioma	PXF 1752 L	0.03		
						Human kidney cancer	RXF 1781 L	0.47		
No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC₅₀ (µg/ml)	Ref.	
-----	---------------	------------------	--------------------	-------------------	----------	-------------	-----------	------------------	------	
19	*Petrosia* sp.	*A. vernicolor*	Malt extract, glucose, peptone, and seawater	Mycelia and medium	Fellutamide C	Human uterus cancer	RXF 393NL	0.08		
						Human lung cancer	RXF 486 L	0.03		
						Human ovarian cancer	RXF 944 L	0.32		
						Human skin cancer		13.26	(Lee, et al., 2010a)	
						Human CNS cancer		2.84		
						Human colon cancer		2.17		
20	*Petrosia* sp.	*A. vernicolor*	Malt extract, glucose, peptone, and seawater	Mycelia and medium	Methyl averantin	Human lung cancer		0.64	(Lee, et al., 2010b)	
						Human ovarian cancer		1.17		
						Human skin cancer		1.10		
						Human CNS cancer		0.41		
						Human colon cancer		1.73		
21	*Pseudoceratina purpurea*	*Trichirachium sp.*	Brown rice, yeast extract, Na-tartrate, KH₂PO₄, and water	Mycelia and medium	JBIR-97	Human cervix cancer		6.78	(Ueda et al., 2010)	
						Human mesothelioma		19.10		
						Human cervix cancer		10.47		
						Human mesothelioma		38.82		
						Human mesothelioma		10.47		
						Human lung cancer		36.35		
						Human breast cancer		10.23	(Almeida et al., 2011)	
						Human globloblastoma		6.60		
						Human leukemia		9.54		
22	*Callyspongia* sp.	cf. C. flammae	Stachylidium sp.	Biomalt, sea salt, and water	Mycelia and medium	Marilones C	Human cervix cancer		5.00 x 10⁴	(Cohen et al., 2011)
						Human mesothelioma		10.19	(Ehada et al., 2011)	
						Human cervix cancer		1.19		
						Human ovation cancer		7.13		
						Human skin cancer		1.20		
						Human CNS cancer		0.67		
						Human colon cancer		0.14		
						Human lung cancer		0.13		
23	*Psammocinia* sp.	*Aspergillus* insuetus	Potato, dextrose, and water	Medium	Insuetolide C	Human leukemia				
						Mouse lymphoma				
						Human ovation cancer				
						Human ovation cancer				
						Human skin cancer				
						Human CNS cancer				
						Human colon cancer				
						Human lung cancer				
24	*G. cydionium*	*Arthrinium* sp.	Barley, spelt whole grain flakes, soy peptone, MnCl₂, and water	Mycelia and medium	Anomalalin A	Mouse lymphoma				
						Human ovation cancer				
						Human ovation cancer				
						Human skin cancer				
						Human CNS cancer				
						Human colon cancer				
						Human lung cancer				
25	*Petrosia* sp.	*A. versicolor*	Malt extract, glucose, peptone, and seawater	Mycelia and medium	Fellutamide F	Human cervix cancer				
						Human mesothelioma				
						Human cervix cancer				
						Human mesothelioma				
						Human lung cancer				
						Human ovarian cancer				
						Human skin cancer				
						Human CNS cancer				
						Human colon cancer				
26	*Stelletta* sp.	*Penicillium* sp. (J05B-3-F-1)	Malt extract, glucose, peptone, and seawater	Mycelia and medium	(3S)-Hexylitaconic acid	Mouse lymphoma				
						Human ovation cancer				
						Human skin cancer				
						Human CNS cancer				
						Human colon cancer				
27	*Suberites domuncula*	*A. ustus* strain	Barley, spelt whole grain flakes, soy peptone, MnCl₂, and water	Mycelia and medium	Aspergillamide A	Mouse lymphoma				
						Aspergillamide B				
28	*Xestospongia testudinaria*	*Aspergillus* sp.	Glucose, yeast extract, peptone, and seawater	Medium	Aspergiterpenoid A	Human cervix cancer				
						Human liver cancer				
						Human liver cancer				
29	*Xestospongia testudinaria*	*Aspergillus* sp.	Glucose, yeast extract, peptone, and seawater	Medium	Disydonol A	Human cervix cancer				
						Human liver cancer				
						Human liver cancer				
No.	Sponge species & Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC₅₀ (µg/ml)	Ref.		
-----	-----------------------------------	---------------------	---------------------	----------	------------	----------	----------------------	------		
30	Unidentified marine sponge CR6242 & Aspergillus unguis CR1282-03	Potato, dextrose, and seawater	Medium	Aspergillusidone C	Human bile duct cancer	HuCCA-1	22.97	(Sureram et al., 2012)		
					Human liver cancer	HepG-2	32.00			
					Human lung cancer	A-549	22.97			
					Human leukemia	MOLT-3	12.96			
					Human leukemia	MOLT-3	4.17			
31	Homaxinella sp. & G. dankaliensis	Malt extract, soluble starch, peptone, and artificial seawater	Mycelia	Gymnastatin A	Mouse leukemia	P338	0.02	(Amagata et al., 2013)		
					Dankastatin C		0.06			
32	Unidentified marine sponge & Stachybotry sp. HH1 ZDDS1F1-2	Rice, sea salt, and water	Mycelia and medium	Grisephenone A	Human lymphoma	U937	7.92	(Qin et al., 2014)		
					Human cervix cancer	HeLa	5.14			
33	Hymeniacidon perleve & A. versicolor Hmp-F48	Potato, sucrose, and water	Mycelia and medium	4,6-Dimethoxy-2,9-dimethylphenol[b.e] [1,4]dioxine-1,7-diol	Human leukemia	HL-60	1.10	(Wang et al., 2014)		
34	Niphates sp. & Hansfordia sinuosae	Rice and water	Mycelia and medium	Punctaporonin H	Human colon cancer	HCT-8	> 3.10	(Wu et al., 2014)		
					Human liver cancer	BEL-7402	> 3.10			
					Human gastric cancer	BGC-823	> 3.10			
					Human lung cancer	A-549	> 3.10			
					Human ovarian cancer	A2780	> 3.10			
35	H. okadai & T. harzianum OUPS-111D-4	Glucose, malt extract, peptone, and artificial seawater	Medium	Tandyukisin	Mouse leukemia	P338	25.19	(Yamada et al., 2014)		
					Human leukemia	HL-60	19.51			
					Mouse leukemia	L1210	19.09			
					Trichoharzin	P338	10.13			
					Human leukemia	HL-60	6.66			
					Mouse leukemia	L1210	10.53			
36	P. fusca & A. arundinis ZSDS1-F3	Sorbitol, maltose, yeast extract, MSG, KH₂PO₄, MgSO₄, and water	Mycelia and medium	Cytochalasin K	Human leukemia	K562	5.20	(Wang et al., 2015)		
					Human lung cancer	A-549	6.78			
					Human liver cancer	Hub-7	5.40			
					Human lung cancer	H1975	9.46			
					Human breast cancer	MCF-7	> 24.76			
					Human lymphoma	U937	> 24.76			
					Human gastric cancer	BGC-823	> 24.76			
					Human leukemia	HL-60	5.50			
					Human cervix cancer	HeLa	23.47			
					Human leukemia	MOLT-4	5.84			
37	Cinachyrella sp. & E. variecolor	Potato, dextrose, and water	Mycelia and medium	Varioxiranol K	Human colon cancer	HCT-116	1.44	(Wu et al., 2015)		
					Human liver cancer	HeLa	2.65			
					Human liver cancer	HepG-2	3.65			
					Human lung cancer	BGC-823	1.76			
					Human ovarian cancer	A2780	1.18			
38	Unidentified Marine Sponge & Alternaria sp. SP-32	Sorbitol, maltose, MSG, KH₂PO₄, MgSO₄, tryptophane, yeast extract, sea salt, and water	Medium	AS2-1	Human cervix cancer	HeLa	167.00	(Chen et al., 2016)		
					Human leukemia	HL-60	143.00			
					Human leukemia	K562	460.00			
39	P. fusca & Nigrospora oryzae PF18	Mannitol, maltose, glucose, MSG, yeast extract, corn syrup, KH₂PO₄, MgSO₄, artificial sea salt, and water	Mycelia	Oryzamides A	Human cervix cancer	HeLa	16.38	(Ding et al., 2016)		
					Oryzamides B		8.52			
					Oryzamides C		20.51			
No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC$_{50}$ (µg/ml)	Ref.	
-----	----------------	------------------	---------------------	-------------------	----------	-------------	-----------	-----------------	------	
40	Axinella polypoides	Clonostachys sp.	Rice and seawater	Mycelia and medium	3-(3-Chloro-2-hydroxypropyl)-8-hydroxy-6-methoxyisochromen-1-one	Mouse lymphoma	L5178Y	n.a.	(Meng et al., 2016)	
41	H. okadai	T. harzianum OUPS-111D-4	Glucose, malt extract, peptone, and artificial seawater	Medium	Tanduykisins E	Mouse leukemia	P338	2.17	(Suzue et al., 2016)	
42	Cinachyrella australielsis	Aspergillus insulicola MD10-2	Glucose, peptone, KH$_2$PO$_4$, MgSO$_4$, and artificial seawater	Mycelia	Insulicolide A	Human Lung Cancer	NCI-H460	2.97	(Zhao et al., 2016b)	
43	Unidentified Marine Sponge (XS-2009001)	Corynespora cassiicola OUPS-111D-4	Rice, sea salt, and water	Mycelia and medium	Tandyukisin E	Mouse leukemia	HL-60	2.22	(Suzue et al., 2016)	
44	Neopetrosia chaliniformis AR-01	Aspergillus nomius	Glucose, peptone, yeast extract, CaCO$_3$, and seawater	Mycelia and medium	Insulicolide A	Human Lung Cancer	NCI-H460	2.97	(Zhao et al., 2016b)	
45	P. foliacens 2016F18-1	F. lateritium	Glucose, peptone, yeast extract, CaCO$_3$, and seawater	Medium	Pyripyropene O	Human nasopharyngeal cancer	CNE1	1.27	(Cao et al., 2017)	
46	Sarcomagmus muscarum	Arthrinium sp.	Rice and water	Mycelia and medium	Spiroarthinols A	Human colon cancer	Caco-2	1.63	(Elissawy et al., 2017)	
47	Axinella cannabina	Talaromyces rugulosus	Rice, sea salt, and water	Mycelia and medium	Talarodilactone A	Human nasopharyngeal cancer	HONE1	3.26	(Küppers et al., 2017)	
48	P. fusca P. heterocornis	P. lateritium	Rice, artificial sea salt, and water	Mycelia and medium	Pestalachloride B	Human colon cancer	NCI-H460	2.77	(Lei et al., 2017)	
49	P. fusca P. heterocornis	P. lateritium	Rice, artificial sea salt, and water	Mycelia and medium	Heterocornol A	Human nasopharyngeal cancer	SUNE1	6.51	(Lei et al., 2017)	
50	Niphates recondite	Stachybotrys chartarum WGC-25C-6	Rice and water	Mycelia and medium	Chartarene C	Human colon cancer	HCT-116	0.20	(Li et al., 2017)	
51	Stelletta sp.	Aspergillus sydowi B05-7F-4	Glucose, malt extract, peptone, and seawater	Mycelia and medium	Diorecinolic acid	Human nasopharyngeal cancer	KB	3.41	(Liu et al., 2017)	
No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC$_{50}$ (µg/ml)	Ref.	
-----	----------------	-------------------	---------------------	--------------------	----------	-------------	-----------	------------------	------	
52	Stylissa flabelliformis	Trichoderma reesei	Dextrose, peptone, and seawater	Medium	Extract	Burkitt’s lymphoma	Raji	470.00	(Setyowati et al., 2017)	
53	Niphates sp.	H. sinusosae	Rice and artificial seawater	Mycelia and medium	Haplophorin A	Human colon cancer	HCT-8	270.00	(Wu et al., 2017)	
54	H. okadai	T. harzianum	Glucose, malt extract, peptone, and artificial seawater	Medium	Trichodermanin C	Mouse leukemia	P338	2.53	(Yamada et al., 2017)	
55	Epipolasis sp.	Aspergillus candidus	Rice and water	Mycelia	Preussin C	Human liver cancer	HeLa	46.52	(Buttachon et al., 2018)	
56	Petrosia sp.	Penicillium citrinum	Malt extract, glucose, peptone, ScCl$_3$, and water	Mycelia and medium	Scalusamide A	Human skin cancer	SK-MEL-2	n.a.	(Gu et al., 2018)	
57	Haliclona fascigera	Trichrophyton sp. (WR2)	Glucose, malt extract, peptone, and seawater	Mycelia and medium	Extract	Human colon cancer	WiDr	193.95	(Handayani et al., 2018)	
		Aspergillus sp. (WR4)	Glucose, malt extract, peptone, and seawater	Mycelia and medium	Extract	Human colon cancer	WiDr	38.21		
						Human breast cancer	T47D	5861.67		
						Human cervix cancer	HeLa	211.55		
						Normal cell	Vero	357.49		
		Trichrophyton sp. (WR 6)	Glucose, malt extract, peptone, and seawater	Mycelia and medium	Extract	Human colon cancer	WiDr	47.36		
						Human breast cancer	T47D	67.08		
						Human cervix cancer	HeLa	118.29		
						Normal cell	Vero	342.94		
		Penicillium sp. (WR 9)	Glucose, malt extract, peptone, and seawater	Mycelia and medium	Extract	Human colon cancer	WiDr	284.28		
						Human breast cancer	T47D	132.74		
						Human cervix cancer	HeLa	118.29		
						Normal cell	Vero	342.94		
58	Callyspongia sp.	Nocardiosis sp. UR67	Dextrose, malt extract, peptone, yeast extract, and artificial seawater	Medium	Nocardiodite A	Human myeloma	MM.1S	6.15	(Ibrahim et al., 2018)	
59	Agelas oxydes	Aspergillus carneus	Rice, sea salt, and water	Mycelia and medium	Isopropylchalcone	Mouse lymphoma	L5178Y	0.18	(Özkaya et al., 2018)	
60	Callyspongia sp.	Alternaria alternata strain SCAU091	Rice, sea salt, and water	Mycelia and medium	Altenorxin VII	Human leukemia	K562	0.10	(Pang et al., 2018)	
61	Stylissa flabelliformis	T. reesei strain TV221	Dextrose, peptone, and seawater	Medium	Extract	Human colon cancer	WiDr	88.88	(Setyowati et al., 2018)	
No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC$_{50}$ (µg/ml)	Ref.	
-----	----------------	------------------	---------------------	--------------------	----------	----------------------	-----------	-------------------	----------------	
62	*Stylissa* sp.	*Aspergillus* flocculosus	Rice, yeast extract, KH$_2$PO$_4$ and seawater	Mycelia and medium	Ochraceopone F	Human colon cancer	HCT-15	n.a.	(Shin et al., 2018)	
						Human gastric cancer	NUGC-3	n.a.		
						Human lung cancer	NCI-H23	n.a.		
						Human kidney cancer	ACHN	n.a.		
						Human prostate cancer	PC-3	n.a.		
						Human breast cancer	MDA-MB-231	n.a.		
63	*Callyspongia* sp.	*Didymellaceae* sp. SCSIO F46	Rice, sea salt, and water	Mycelia	Diorcinols L	Human leukemia	K562	12.53	(Tian, et al., 2018a)	
						Human breast cancer	K562	3.03		
						Human lung cancer	A-549	5.10		
						Human lung cancer	Huh-7	1.64		
						Human lung cancer	H1975	4.41		
						Human cervix cancer	HeLa	2.05		
						Normal cell	HL7702	19.65		
						Human leukemia	HL60	2.77		
						Human leukemia	MOLT-4	n.a.		
						Human prostate cancer	DU145	2.62		
64	*Callyspongia* sp.	*Aspergillus* sp. SCSIO XWS02F40	Rice, sea salt, and water	Mycelia	Protuboxepin C	Human lung cancer	A-549	40.72	(Tian, et al., 2018b)	
						Human cervix cancer	HeLa	24.84		
65	*P. fusca*	*Gliomastix* sp. ZSDD1-F7-2	Rice, sea salt, and water	Mycelia	Gliomasolide F	Human cervix cancer	HeLa	n.a.	(Zhang et al., 2018)	
66	Unidentified marine sponge	*Aspergillus* sp. SCSIO XWS03F03	Rice, sea salt, and water	Mycelia	Missztrine A	Human liver cancer	HepG-2	n.a.	(Zhou et al., 2018)	
						Human leukemia	HL60	1.14		
						Human cervix cancer	HeLa	n.a.		
						Human skin cancer	A375	n.a.		
						Human lung cancer	A-549	> 10.98		
						Human colon cancer	HT-29	> 10.98		
						Human breast cancer	SK-BR-3	> 10.98		
						Human prostate cancer	LN-caP	1.81		
						Human breast cancer	MCF-7	> 10.98	(Artasasta et al., 2019)	
67	*Neopetrsia* chaliniformis	*A. nomius* NC06	Rice and water	Mycelia	Fraction I	Human colon cancer	HCT-116	193.64	(Artasasta et al., 2019)	
						Fraction II		5.28		
						Fraction III		15.82		
						Fraction IV		10.27		
						Fraction V		45.27		
68	*Agelas* oroides	*P. canescens*	Rice, artificial sea salt, and water	Mycelia	Bromophilone A	Mouse lymphoma	L5178Y	9.98	(Frank et al., 2019)	
						Human ovarian cancer	A2780	1.94		
69	Unidentified marine sponge	*Aspergillus* sp. SCSIO41018	Rice, artificial sea salt, and water	Mycelia	Asterriquinones I	Human leukemia	K562	9.85	(Guo et al., 2019)	
						Human liver cancer	BEL-7042	14.20		
						Human gastric cancer	SGC-7901	16.07		
						Human lung cancer	A-549	> 10.51		
						Human cervix cancer	HeLa	> 10.51		
70	*Axinella* polypoides	*Talaromyces brunneus*	Rice, artificial sea salt, and water	Mycelia	Extract	Human colon cancer	HCT-116	165.12	(Heydari et al., 2019)	
71	*Haliclona* sp.	*Aspergillus* sp. LS45	Rice, sea salt, and water	Mycelia	Aspergilactones A	Human leukemia	CCRF-CEM	n.a.	(Huang, et al., 2019b)	
						Human leukemia	K562	n.a.		
No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC₅₀ (µg/ml)	Ref.	
-----	----------------	------------------	---------------------	--------------------	----------	-------------	-----------	----------------------	-----	
72	Hymeniacidon sp.	Aspergillus sp. NBUF87	Rice, sea salt, and water	Mycelia	Aspergilmarins A	Human leukemia	CCRF-CEM	> 13.30	(Huang, et al., 2019a)	
73	P. fusca	Pestalotiopsis sp. XWS03F09	Rice, artificial sea salt, and water	Mycelia	Heterocornols O	Human gastric cancer	BGC-823	9.17	(Lei, et al., 2019)	
74	Haliclona sp.	Aspergillus sp. LS34	Potato, dextrose, sea salt, water	Medium	Asperther A	Human leukemia	CCRF-CEM	7.46	(Li, et al., 2019)	
75	P. fusca	A. sydowii SCSIO4130	Mannitol, maltose, glucose, MSG, KH₂PO₄, MgSO₄, yeast extract, and water	Medium	Aspergilloses D	Human leukemia	K562	n.a.	(Liu, et al., 2019)	
76	Callyspongia sp.	Aspergillus terreus SCSIO 41008	Potato, mannitol, maltose, glucose, peptone, yeast extract, MSG, sea salt, and water	Mycelia and medium	Aspergillamides C	Human glioblastoma	U87	n.a.	(Luo, et al., 2019b)	
77	Callyspongia sp.	A. versicolor SCSIO 41016	Rice, artificial sea salt, and water	Mycelia and medium	Protuboxepin G	Human kidney cancer	ACHN	10.13	(Luo, et al., 2019a)	
78	Callyspongia sp.	A. versicolor SCSIO 41013	Rice, sea salt, and water	Mycelia	Versispiroketal A	Human globlastoma	SF-268	26.08	(Salendra, et al., 2019b)	
79	Callyspongia sp.	P. citrinum SCSIO 41017	Rice, sea salt, and water	Mycelia	Xerucitrinic acid A	Human globlastoma	SF-268	4.95	(Salendra, et al., 2019a)	
80	H. okadai	T. harzianum	Glucose, malt extract, peptone, and artificial seawater	Mycelia and medium	Trichodermanins F	Mouse leukemia	P338	15.67	(Yamada, et al., 2019)	
81	Haliclona fascigera	Cochliobolus goniculatus WR12	Rice and water	Mycelia	Radicinin	Human colon cancer	WiDr	47.17	(Handayani, et al., 2020b)	
82	Chelonaphysilla sp.	Aspergillus flavus	Rice and water	Mycelia	Extract	Human breast cancer	T47D	743.42	(Handayani, et al., 2020a)	
Table 1. Classification of cytotoxic activity of compound from marine sponge-derived fungi.

No.	Sponge species	Fungi association	Fermentation medium	Extraction specimen	Compound	Cancer type	Cell line	IC$_{50}$ (µg/ml)	Ref.
83	Dactylospongia sp.	Cladosporium halotolerans MN859971	Malt extract, artificial sea salt, and water	Mycelia and medium Extract (Dc03)	Human breast cancer	T47D	225.75	(Sandrawati et al., 2020)	
		P. citrinum MN859968	Malt extract, artificial sea salt, and water	Mycelia and medium Extract (Dc04)				640.12	
		A. versicolor MN859970	Malt extract, artificial sea salt, and water	Mycelia and medium Extract (Dc05)				1760.98	
		A. sydowii MN859970	Malt extract, artificial sea salt, and water	Mycelia and medium Extract (Dc08)				456.75	
84	Unidentified marine sponge Trichoderma licii 15G49-1	Rice and artificial seawater	Mycelia DC1149B	Human pancreatic cancer	PANC-1	366.36	(Tang et al., 2020)		
85	Unidentified marine sponge (No. XS-3) A. candidus OUCMDZ-1051	Mannitol, glucose, maltose, yeast extract, glutamate, corn syrup, CaCO$_3$, KH$_2$PO$_4$, MgSO$_4$, and seawater Medium	4-O-Methylcandidusin A	Human leukemia	MV4-11	0.61	(Wang et al., 2020a)		
					Human leukemia	K562	8.46		
					Human lung cancer	A-549	1.98		
					Human leukemia	HL-60	1.52		
					Human glioblastoma	U87	36.60		
					Human glioblastoma	U251	6.99		
					Human breast cancer	MCF-7	2.84		
					Human prostate cancer	DU145	0.66		
					Human breast cancer	MDA-MB-231	0.69	(Wang et al., 2020b)	
					Human leukemia	HL-60	2.59		
					Human cervix cancer	HO8910	6.99		

Figure 1. Distribution of conducted studies about cytotoxic activity of marine sponge-derived fungi. *June 2020.*

Figure 2. Classification of the component activity according to their IC$_{50}$ values.

Classification of cytotoxic activity of compound from marine sponge-derived fungi

In this review, we provide an overview of the bioactive metabolites extracted and isolated from marine sponge-derived fungi exhibiting *in vitro* cytotoxic activity in cell line cancer. By comparing the IC$_{50}$ values, the units in nM, M, and ng/ml are converted into µg/ml unit by adjusting the molecular weight of the compound. All components were classified based on the IC$_{50}$ value following the definition of Weerapreeyakul et al. (2012), which classifies the activity of cytotoxic components into “very strong cytotoxic”: IC$_{50}$ is < 10 µg/ml; “strong cytotoxic”: IC$_{50}$ is 10–100 µg/ml; and “moderate cytotoxic”: IC$_{50}$ is 100–500 µg/ml. What needs to be noted is that the test was administered with different cell line cancers, so there is a possibility that the inactive component in one cell line cancer could have a different IC$_{50}$ value in another type of cell line cancer. It would be wise to reevaluate the activity of the inactive components obtained from marine sponge-derived fungi using other cancer cell lines (Badisa et al., 2009; Sutejo et al., 2016; Weerapreeyakul et al., 2012).

The bioactive components studied were 132 components extracted and isolated from marine sponge-derived fungi. These 132 components consist of 16 extracts, 5 fractions, and 111 isolates. As shown in Figure 2, among the observed bioactive components, there are 56 components with very strong cytotoxic
activity, 31 components with strong cytotoxic activity, and 15 components with moderate cytotoxic activity against various cell line cancers. There are 16 components that cannot be classified because they have IC$_{50}$ values > 500 µg/ml and have less accurate and clear IC$_{50}$ values reported in the article. Furthermore, they cannot be included in that classification. There are 14 components reported to have no cytotoxic activity. The component is inactive only in some cell line cancers, and testing on other types of cell line cancers has not been conducted to see its cytotoxic activity (Badisa et al., 2009; Sutejo et al., 2016; Weerapreyyakul et al., 2012).

In this review, 27 types of cancer were found used in the study to determine the cytotoxic activity of marine sponge-derived fungi. The most common types of cancer are human leukemia, human colon cancer, human lung cancer, human cervix cancer, and human breast cancer. It is in line with the report by Bray et al. (2018) in which this type of cancer is reported to have a high incidence rate worldwide in humans, and even this type of cancer is included in the top 10 cancers causing death in humans. It has triggered many researchers to focus on these five types of cancer by exploring new compounds coming from the sea, especially marine sponge-derived fungi (Thomas et al., 2010). Potential compounds from marine sponge-derived fungi are expected to be used as new drugs in cancer treatment. To conduct a brief test of anticancer activity, researchers used in vitro cell line cancer to facilitate the screening of the anticancer activity of components obtained from marine sponge-derived fungi. In this review, we identified 317 types of cell line cancers used in determining the cytotoxic activity of components obtained from marine sponge-derived fungi. The most common types of cell line cancer are human cervix cancer (HeLa), human lung cancer (A-549), human leukemia (HL-60), mouse leukemia (P338), human liver cancer (HepG-2), human colon cancer (HCT-116), and human breast cancer (MCF-7). The use of this type of cell line cancer is based on the cancer incidence rates mentioned previously. Furthermore, there are factors which considered the use of this cell line cancer. These factors include easiness to handle and manipulate, high homogeneity, high degree of similarity with the initial tumor, large number and variety of cancer cell lines available, immediate accessibility to the scientific community, unlimited autoreplicative source, continuous cell lines, easy substitution of contaminated cultures for the respective frozen cell lines, and reproducibility of results in the correct conditions (Ferreira et al., 2013). Moreover, cell lines which are normal cells are also used. The use of normal cell lines aims to determine the cytotoxic strength of a sample that only damages cancer cells and does not damage normal cells of living things. The comparison of the IC$_{50}$ value between normal cell line and cancer cell line produces a value called selectivity index (SI). Compounds or extracts having a SI > 3 have high selectivity in certain cancer cells (Badisa et al., 2009; Sutejo et al., 2016). The normal cell lines that are often used in cytotoxic-related research in this review are Vero (monkey epithelial kidney) and HL7702 (human normal liver).

The components isolated from marine sponge-derived fungi classified as very strong cytotoxic are shown in Table 2. Xanthone derivatives are metabolites generally distributed in higher plants and several types of fungi. This metabolite has several biological activities, such as antimicrobial, antiviral,

No.	Compound	Cell line cancers	
1	4,6-Dimethoxy-2,9-dimethyl dibenz[c,e][1,4]-	HL-60	
	dioxine-1,7-diol		
2	4-O-Methylcandidusia A	A-549; DU145; H1975; HL-60; K562; MCF-7; MDA-	
		MB-231; MV-4-11; U251	
3	Anomalin A	A2780; A2780CsR; L5178Y	
4	Aspergilides A	L1210	
5	Aspergilides C	L1211	
6	Asperther A	CCRF-CEM	
7	Bromophiline A	A2780; L5178Y	
8	Chartarene C	A2780; HCT-116; HepG-2; NCI-H1655	
9	Corynesidone A	HeLa	
10	Corynethers A	HL-60	
11	Cyclic tetrapeptide WF-316	L5178Y	
12	Cytochalasin K	A-549; H1975; HL-60; HeLa; L5178; Huh-7;	
		K562; MOLT-4	
13	D ankastatin C	P338	
14	D ankasterone	P338	
15	D ankasterones A	P338	
16	D ankasterones B	P338	
17	Diorecinols L	A-549; DU145; H1975; HeLa; HL-60; Huh-7;	
		MCF-7	
18	Disydolon C	HeGp-2	
19	Efrapeptin G	HCT-116; HeLa; HT-29; SK-BR3	
20	Epoxyphomalin A	BXF 1218 L; BXF T24; CNXF 498NL; DU145;	
		GXF 251 L; HCT-116; HT-29; LN-cap; LXF 1121	
		L; LXF 289 L; LXF 526 L; LXF 529 L; LXF 629	
		L; MAXF 401NL; MCF-7; MEXF 276; MEXF 394NL;	
		MEXF 462NL; MEXF 514 L; MEXF 520 L; NCI-H460;	
		OVXF 1619 L; OVXF 899 L; OVXF OVCA-3; PANC1;	
		PAXF 1657 L; PRXF 22RVL; PRXF PC3M; PXF 1752	
		L; RXF 1781 L; RXF 393NL; RXF 468 L; RXF	
		944 L; SF-268; UXF 1138 L	
21	Ester of (E,E)-6-oxo-2,4-hexadienoic acid	HeLa; L5178Y; PC-12	
22	Fellutamide C	HCT-15; SK-MEL-2; XF-498	
23	Fellutamide F	A-549; HCT-15; SK-MEL-2; SK-OV-3; XF-498	
24	Fraction II	HCT-116	
25	Grisephenone A	HeLa; U937	
26	Gymnastatin A	P338	
27	Gymnastatin F	P338	
28	Gymnastatin G	P338	
29	Gymnasterones B	P338	
30	Gymnasterones C	P338	
31	Gymnasterones D	P338	
32	Hetercoronol A	BCG-823; NCI-H460; SMMMC-7721	
33	Hetercoronols O	786-0; BGC-823	
34	IB-01212	HeLa; HT-29; LN-cap; SK-BR3	
35	Insulicolide A	NCI-H460	
36	Isopropylchaetomi-nine	L5178Y	
37	Marilones C	MCF-7; SF-268	
38	Methyl averatin	A-549; HCT-15; SK-MEL-2; SK-OV-3; XF-498	
39	Nocartoidite A	CT26; HeLa; MM.15	

Table 2. List of compounds with very strong cytotoxic activity based on the IC$_{50}$ value.
antitubercular, and anticancer. Anomalin A (1) is one of the xanthones derived from the fungus Arthrinium sp. which is associated with the sponge Geodia cydonium (see Fig. 3) (Abdel-Latif et al., 2003; Ebada et al., 2011; Morel et al., 2000; Peres et al., 2000).

Bioactive polyketide derivatives include bromophilone A (2), exophyphomalin A (6), heterocornol A (9), heterocornol O (10), and oxalicumone A (14) (Fig. 3). Bromophilone A (2) is a polyketide azaphilone group with a bicyclic core and conjugated chromophore which has a bromide atom as a substituent. This metabolite is the combined result of the fungal fermentation media of Penicillium canescens with NaBr. Exophyphomalin A (6) derived from the fungus Phoma sp. associated with the sponge Ectypalia perox is a very active component in many cancer cell lines and this component has the potential to be developed for future cancer therapy. Heterocornol A (9) and heterocornol O (10) are polyketide derivatives derived from the fungi of the genera Pestalotiopsis associated with the sponge Phakellia fusca. Both these components have an IC_{50} ranging from 2 to 10 µg/ml in some cancer cells. Oxalicumone A (14) is a chromone-type bioactive polyketide derivative to be precise, dihydrothiophene-condensed chromone. This bioactive component comes from Aspergillus sp. LS34 associated with the sponge Haliclona sp. possessing very strong cytotoxic activity in the cancer cell lines CCRF-CEM and K562 (Frank et al., 2019; Gao et al., 2013; Lei et al., 2017a, 2019; Li et al., 2019; Mohamed et al., 2009; Sun et al., 2013; Wang et al., 2018).

Cytochalasins are a group of metabolites that are often found in fungi in several genera, such as Phomopsis, Chalara, Hypoxylon, Xylaria, Daldinia, Pseudocurtum, and Phoma exigua. Cytochalasin K (3) is a metabolite of the marine sponge-derived fungi Arthrinium arundinis ZSDS1-F3 (Fig. 3). This class of metabolites is unique in its structure with a macrocyclic ring with antitumor, antibacterial, and HIV-1 protease inhibition activity. The most unusual activity of this metabolite is the ability to make the cell secrete its nucleus resulting in the formation of a cell without a nucleus (Liu et al., 2006; Wang et al., 2015). Diocinols L (4) is a phenol derivative metabolite (Fig. 3). This metabolite comes from the fungus Didymellaceae sp. SC510 F46 in association with Calyspongia sp. sponge. These phenol derivatives have strong cytotoxic activity in a number of cancer cell lines, including A-549, DU145, H1975, HeLa, HL60, Huh-7, and MCF-7 (Tian et al., 2018a). Acremonium sp. associated with the Teichaxinella sp. sponge produces several types of bioactive metabolite groups from the polyketides, hydroquinones, ketide-terpenes, alkaloids, and terpene glycosides. Efrapeptin G (5) is a new bioactive metabolite from the peptidebiotic class derived from the fungus (Fig. 3). This bioactive metabolite has a very strong cytotoxic activity in several cancer cell lines, such as HCT-116, HeLa, HT-29, and SK-BR3 (Boo et al., 2006).

Fellutamide C (7) and fellutamide F (8), components belonging to the lipopeptide group, have an IC_{50} of 0.1–3 µg/ml (Fig. 3). Both are derived from the fermentation of the fungus Aspergillus versicolor which is associated with the sponge Petrosoi sp. growing on the coast of Jeju Island, Korea (Lee et al., 2010a; Lee et al., 2011). The new bioactive component IB-01212 (11) occurring from the fungus Clonostachys sp. ESNA-A009 has a very strong cytotoxic activity with an IC50 0.01 µg/ml (Fig. 3). This compound belongs to the cyclodepsipeptide group. Currently, IB-01212 (11) is being developed for biosynthetic so that it can be mass-produced without isolating it from fungi (Cruz et al., 2006).
The bioactive phthalides group has activities such as a modulation of the central nervous system, protection against brain ischemia, modulation of platelet aggregation and heart function, inhibition of smooth muscle cell proliferation, antiaggregant activity, and smooth muscle relaxation, as well as antibacterial, antifungal, antiviral, and phytotoxic activity. Phthalides are secondary metabolites produced naturally by several types of fungi that are associated with the marine ecosystems, such as Ascochyta, Aspergillus, Alternaria, Penicillium, Hericium, or Talaromyces. Stachylium sp. are associated with the sponge Callyspongia sp. cf. C. flammaea producing marilone C (12) components included in the phthalides group (Fig. 3) (Almeida et al., 2011).

Aspergillus versicolor associated with the sponge Petro西亚 sp. produces the bioactive component methyl averantin (13) (Fig. 3). This secondary metabolite is included in the anthraquinone group. Methyl averantin (13) has very strong cytotoxic activity with an IC₅₀ range 0.4–1.1 µg/ml in cancer cell lines like A-549, HCT-15, SK-MEL-2, SK-OV-3, and XF-498 (Lee et al., 2010b). As one of the most widespread genera of endophytic fungi, Pestalotiopsis produces various bioactive secondary metabolites. Pestalachloride B (15) is a metabolite of the fungal species Pestalotiopsis heterocornis associated with P. fusca which has cytotoxic activity with IC₅₀ ranging from 2 to 10 µg/ml in cancer cell lines BCG-823, NCI-H460, and SMMC-7721 (Fig. 3) (Li et al., 2017b; Li et al., 2008). Pyripyropene O (16) and trichodermann C (18) are components belonging to the terpenes group (Fig. 3). Pyripyropene O (16) is pyripyrpenes derived from sesquiterpenes conjugated with a-pyrene and pyridine moieties. Pyripyrpenes are representative metabolites of several genera of fungi, such as Aspergillus and Penicillium. The bioactive metabolite pyripyrpeno O (16) is derived from Fusarium lateritium (2016F18-1 which is associated with the sponge Phyllospongia foliascens. Trichodermann C (18) is classified as terpene with a rare fused 6-5-6-6 ring system. This bioactive metabolite comes from the fungus Trichoderma harzianum OUPS-111D-4 associated with the Halichondria okadai sponge (Cao et al., 2017; Yamada et al., 2017).

The secondary metabolites with an alkylated decaolin skeleton have various bioactivities, such as antibacterial, antifungal, and phytotoxicity. There are many decaolin derivatives including tandyukisin E (17) and trichoharzin (19) (Fig. 3). These two components are bioactive metabolites of the fungus T. harzianum OUPS-111D-4 associated with the H. okadai sponge. Tandyukisin E (17) has a unique chemical structure with a different side chain from the tandyukisin obtained so far and has cytotoxic activity in cancer cell lines HL-60, L1210, and P338 with IC₅₀ values of 2.22, 3.59, and 2.17 µg/ml, respectively. Trichoharzin (19) is a polyketide constructed with an alkylated decaolin skeleton and esterified with 3-methylglutaconic acid, a rare acyl moiety. This bioactive metabolite has cytotoxic activity in cell line HL-60 with IC₅₀ = 6.66 µg/ml (Kobayashi et al., 1993; Suzue et al., 2016; Yamada et al., 2014). Emericella variecolor associated with the sponge Cinachyrella sp. produces several metabolites of the lactones group. Varioxiranol K (20) is one of the bioactive metabolites of this fungus (Fig. 3). These bioactive metabolites have very strong cytotoxic activity in cancer cell lines like A2780, BGC-823, CHT-116, HepG-2, and NCI-H1650 with an IC₅₀ range of 1–4 µg/ml (Wu et al., 2015).

Influences of the fermentation conditions from marine sponge-derived fungi to produce cytotoxic metabolite

Metabolites produced by microbes are divided into two, primary metabolites and secondary metabolites. The production of primary metabolites is considered important, for instance, ethanol, citric acid, polysaccharides, acetone, butanol, and vitamins. Secondary metabolites produced by microbes include antibiotics, growth promoters, enzyme inhibitors, and others (Stanbury et al., 1995). Marine sponge-derived fungi produce a large number of new bioactive secondary metabolites, some of which exhibit new molecular structures that have never been previously found in nature. To be able to produce bioactive metabolites, the fungi associated with the sponge must first be isolated from the host and then fermented with a liquid medium of which composition is as close as possible to the state when it is in the host (Kjer et al., 2010).

In this review, we identified 11 types of carbon sources used in the fermentation media for marine sponge-derived fungi, including rice (38 media), glucose (33 media), malt extract (30 media), dextrose (9 media), and potato (8 media). Fungi require a greater amount of carbon than other essential elements because half of the dry weight of the fungal cell is estimated to consist of carbon which is important in the formation of the fungal cell wall (Moore-Landecker, 1996). The source of complex carbon in the medium is converted by the fungus into a simpler form that can be metabolized. Currently, rice and malt extract is widely used by researchers as a source of carbon in the medium. These two complex carbon sources, after being sterilized by heating, split into simpler carbon which could be used by fungi in their metabolism, with the result that these two carbon sources are widely used in the protocol for fermentation of marine sponge-derived fungi to produce new bioactive compounds, especially those useful for cancer (Kjer et al., 2010; Muthukumar et al., 2013).

Some of the fungal isolates associated with the marine environment include Culpicalta achraspera Meyers and Moore, Humicola alopallonella Meyers and Moore, Orbozyme spectabilis Linder, Halosphaeria mediotigerec Cribb and Cribb, Penicillium decumbens, Penicillium chrysogenum, Acremonium strictum, Fusarium fujikuroi, and Fusarium sporotrichioides, which have a dry weight of mycelia developing with increasing levels of carbon sources in the fermentation media (Fuentes et al., 2015; Sguros and Simms, 1963). Trichoderma lignorum has increased conidia and hyphae growth when the carbon source is increased, but its growth decreases when the concentration of the carbon source exceeds 10 times of the frequent use (Seto and Tazaki, 1975). The effect of various carbon sources on the growth of Trichoderma viride species shows that the maximum production of secondary metabolites resulting from the highest to lowest production is influenced by the carbon sources of sucrose, glucose, cellulose, maltose, and carboxymethyl cellulose with an optimum level of 1%–15% (Gautam et al., 2010).

There are five types of nitrogen sources that we can identify in this review including peptone (30 media), yeast extract (16 media), glutamate (6 media), NaNO₃ (2 media), and tryptophan (2 media). The nitrogen source in the marine sponge-derived fungi fermentation media does not appear to be present in the medium given its use which is not as much as the carbon source. Nitrogen sources are one of the important elements in the growth of endophytic fungi; however, nitrogen sources are not very influential in the growth of fungi and in the formation of secondary metabolites, except for metabolites containing nitrogen.
in their molecules. The use of peptone as a nitrogen source in the medium gives a high increase in mycelia dry weight compared to the use of inorganic nitrogen sources such as NaNO3 and NH4Cl (Hussain et al., 2003; Khattabi et al., 2004; Muthukumar et al., 2013).

Halophilic microorganisms can grow at high levels of salinity, for instance, in the sea with 3% NaCl. The salinity of a microorganism growth environment causes differences in osmotic pressure. Increasing levels of salinity exceeding the salinity of seawater resulted in several species of associated fungi from the sea decreasing their growth rates, but the unavailability of salinity inhibits the growth of these associated fungi from the sea. Several genera of associated fungi including Penicillium (32 strains), Aspergillus (10 strains), Mycelia sterilia (3 strains), Fusarium (1 strain), and Paeucilomyces (1 strain) were isolated from several samples, such as seaweed, underwater sediments, and mangrove roots which have optimal growth and have the widest colony diameter found in fungi grown on medium with 3%–6% NaCl. The antimicrobial activity of these associated fungi in C. albicans showed the highest activity when treated with 6%–9% NaCl (Huang et al., 2011). The use of seawater or sea salt in the marine sponge-derived fungus fermentation media is very important because when living in its host, the surrounding environment of the fungus is a sea with salinity levels adjusting to the surrounding sea conditions. In this review, we identified 70 fermentation media using conditions such as in the sea, using natural seawater and sea salt, artificial seawater, and sea salt, while 26 media do not use conditions such as the origin of the fungus. The identification results show that the medium using seawater components (natural or artificial) produces bioactive components with very strong cytotoxic activity. The addition of components such as KH2PO4, MgSO4, MnCl2, and KCl in a medium which do not use seawater components also makes the fungi produce active metabolites as cytotoxic. Several genera of Trichoderma associated with the marine environment have optimal growth and dry weight mycelial at salinity levels of 1%–2%, but salinity levels that exceed 3% reduce the growth of fungal colonies (Bheemaraya et al., 2013; Mishra et al., 2016; Sánchez-Montesinos et al., 2019).

In this review, we classify the extracted specimens to obtain bioactive components from marine sponge-derived fungi into medium part, part mycelia, and both. The extraction process using both parts of mycelia and medium is the decision that most researchers do to extract bioactive components from fermentation. It is possible because the bioactive components are not yet known whether they are in the fungal cell or excreted out of the cell; therefore, the use of the extraction process for these two parts results in an optimal extraction. Furthermore, the extraction results using these two parts on average produce bioactive components containing a very strong cytotoxic activity (Kjer et al., 2010).

CONCLUSION

The data presented in the review show the potential of marine sponge-derived fungi as producing metabolites with cytotoxic activity and can reduce exploitation of rare sponges to produce bioactive components in cancer therapy. The components have been summarized and the most promising components are polyketide derivatives, lipopeptides, cyclo depsipeptides, decalin derivatives, xanthone derivatives, phenol derivatives, cytochalasins, peptaibiotics, phthalides, anthraquinone, terpenes, decalin derivatives, and lactones. In producing bioactive metabolites for cytotoxicity, the fermentation media is essential. Carbon sources, nitrogen, salinity, and extracted specimens are factors in the production of bioactive metabolites for cytotoxic fungi from marine sponges. A comprehensive approach is needed to evaluate the specific mechanism of action of the bioactive component as an anticancer. For further large-scale development in evaluating the production of bioactive metabolites from marine sponge-derived fungi, it may be necessary to develop components of the fermentation media which are more specific to certain fungi.

ACKNOWLEDGMENTS

The author would like to acknowledge the funding support from UGM no. 2488/UN1.P.III/DIT-LIT/PT/2020.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

CONFLICTS OF INTEREST

The authors report no conflicts of interest in this work.

ETHICAL APPROVAL

This study does not involve the use of animals or human subjects.

REFERENCES

Abdel-Lateff A, Klemke C, König GM, Wright AD. Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalous. J Nat Prod, 2003; 66(5):706–8.

Almeida C, Kehraus S, Prudencio M, König GM. Marilones A–C, phthalides from the sponge-derived fungus Stachylium sp. Beilstein J Org Chem, 2011; 7:1636–42.

Amagata T, Doi M, Tohgo M, Minoura K, Numata A. Danskaterone, a new class of cytotoxic steroid produced by a Gymnascella species from a marine sponge. Chem Commun, 1999; 1321–2.

Amagata T, Minoura K, Numata A. Gymnastatins FH, Cytostatic metabolites from the sponge-derived fungus Gymnascella danksaniensis. J Nat Prod, 2006; 69(10):1384–8.

Amagata T, Minoura K, Numata A. Gymnasterones, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett, 1998a; 39:3773–4.

Amagata T, Tanaka M, Yamada T, Chen YP, Minoura K, Numata A. Additional cytotoxic substances isolated from the sponge-derived Gymnascella danksaniensis. Tetrahedron Lett, 2013; 54(45):5960–2.

Amagata T, Tanaka M, Yamada T, Doi M, Minoura K, Ohishi H, Yamori T, Numata A. Variation in cytostatic constituents of a sponge-derived Gymnascella danksaniensis by manipulating the carbon source. J Nat Prod, 2007; 70(11):1731–40.

Amagata T, Usami Y, Minoura K, Ito T, Numata A. Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot (Tokyo), 1998b; 51(1):33–40.

Amon JP, Yei S. The effect of salinity on the growth of two marine fungi in mixed culture. Mycologia, 1982; 74(1):117–22.

Anuhy G, Jyostna V, Aswani KY, Bodaiah B, Sudhakar P. Influence of physico-chemical parameters on secondary metabolite production by marine fungi. Int J Curr Pharm Res, 2017; 9(5):112–8.

Artasasta MA, Taher M, Djamaan A, Handayani D. Cytotoxic and antibacterial activities of marine sponge-derived fungus Aspergillus nomius NC06. Rasayan J Chem, 2019; 12(3):1463–9.
cytotoxic cyclic peptide from the marine sponge-associated Nocardiopsis sp. U67. Mar Drugs, 2018; 16(9):1–13.

Jones EBG. Marine fungi: some factors influencing biodiversity. Fungal Divers, 2000; 4:53–73.

Khattabi N, Ezzahrifi B, Louali L, Oihabi A. Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie, 2004; 24:281–8.

Kito K, Ookura R, Yoshida S, Namikoshi M, Ooi T, Kasumi T. New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. Org Lett, 2008; 10(2):225–8.

Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc, 2010; 5(3):479–90.

Kobayashi M, Uehara H, Matsuura K, Aoki S, Kitagawa I. Trichoharzain, a new polyketide produced by the imperfect fungus Trichoderma harzianum separated from the marine sponge Micale cecilia. Tetrahedron Lett, 1993; 34(49):7925–8.

Küppers L, Ebrahim W, El-Nekeiti M, Özkaya FC, Mándi A, Kurtán T, Orfali RS, Müller WEG, Hartmann R, Lin W. Lactones from the sponge-derived fungus Talaromyces rugulosus. Mar Drugs, 2017; 15(359):1–16.

Lee YK, Lee J, Lee HK. Minireview: microbial symbiosis in marine sponges. J Microbiol, 2001; 39(4):254–64.

Lee YM, Dang HT, Hong J, Lee CO, Bae KS, Kim DK, Jung JH. A cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. Bull Korean Chem Soc, 2010a; 31(1):205–8.

Lee YM, Dang HT, Li J, Zhang P, Hong J, Lee CO, Jung JH. A cytotoxic fellutamide analogue from the sponge-derived fungus Aspergillus versicolor. Bull Korean Chem Soc, 2011; 32(10):3817–20.

Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, Kim DK, Jung JH. Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res, 2010b; 33(2):231–5.

Lei H, Lei J, Zhou X, Hu M, Niu H, Song C, Chen S, Liu Y, Zhang D. Cytotoxic polyketides from the marine-derived fungus Pestalotiopsis heterocornis XWS03F09. Molecules, 2019; 24(2655):1–8.

Lei H, Lin X, Han L, Ma J, Dong K, Wang X, Zhong J, Mu Y, Liu Y, Huang X. Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis. Phytochemistry, 2017a; 142:51–9.

Lei H, Lin X, Han L, Ma J, Ma Q, Zhong J, Liu Y, Sun T, Wang J, Huang X. New metabolites and bioactive chlorinated benzophenone derivatives produced by a marine-derived fungus Pestalotiopsis adusta. Bioorg Med Chem, 2008; 16(17):7894–8.

Li JL, Zhang P, Lee YM, Hong J, Yoo ES, Bae KS, Jung JH. Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp. Chem Pharm Bull, 2011; 59(1):120–3.

Li W, Ding L, Wang N, Xu J, Zhang W, Zhang B, He S, Wu B, Jin H. Isolation and characterization of two new metabolites from the sponge-derived fungus Aspergillus sp. LS34 by OSMAC approach. Mar Drugs, 2019; 17(283):1–9.

Li Y, Liu D, Cheng Z, Proksch P, Lin W. Cytotoxic trichotheccene-type sesquiterpenes from the sponge-derived fungus: Stachybotrys chartarum with tyrosine kinase inhibition. RSC Adv, 2017; 7(12):7259–67.

Liu H, Edrada-Ebel R, Ebel R, Wang Y, Schulz B, Draeger S, Müller WEG, Wray V, Lin W, Proksch P. Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula. J Nat Prod, 2009; 72(9):1585–8.

Liu HB, Edrada-Ebel R, Ebel R, Wang Y, Schulz B, Draeger S, Müller WEG, Wray V, Lin W, Proksch P. Ophiobolin sesterterpenoids and pyroloidine alkaloids from the sponge-derived fungus Aspergillus ustus. Helv Chim Acta, 2011; 94(4):623–31.

Liu N, Peng S, Yang J, Cong Z, Lin X, Liao S, Yang B, Zhou X, Zhou X, Liu Y, Wang J. Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sp. SCSIO141301. Fitoterapia, 2019; 135:27–32.

Liu R, Gu Q, Zhu W, Cui C, Fan G, Fang Y, Zhu T, Liu H. 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z 9 from the marine-derived fungus Spicaria elegans. J Nat Prod, 2006; 69(6):871–5.

Liu S, Wang H, Su M, Hwang GJ, Hong J, Jung JH. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat Prod Res, 2017; 31(14):1–5.

Luo XW, Chen C, Tao H, Lin X, Yang B, Zhou X, Liu Y. Structurally diverse dikediterpene alkaloids from the marine-derived fungus Aspergillus versicolor SCSIO 41016. Org Chem Front, 2019a; 6(6):1–5.

Luo XW, Lin Y, Lu YJ, Zhou XF, Liu YH. Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO41008. Chin J Nat Med, 2019b; 17(2):149–54.

Mahapatra S, Banerjee D. Optimization of a bioactive exopoly saccharide production from endophytic Fusarium solani SD5. Carbohydr Polym, 2013; 97(2):627–34.

Meng LH, Chen HQ, Form I, Konuklugil B, Proksch P, Wang BG. New chromosome, isocoumarin, and indole alkaloid derivatives from three sponge-derived fungal strains. Nat Prod Commun, 2016; 11(9):1293–6.

Miller JD, Whitney NJ. Fungi of the bay of fundy - III. Geofungi in the marine environment. Mar Biol, 1981; 65(1):61–8.

Mishra N, Khan SS, Sundari SK. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World J Microbiol Biotechnol, 2016; 32(130):1–23.

Mohamed LE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM. Ephoxphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett, 2009; 11(21):5014–7.

Moore-Landecker E. Fundamentals of the fungi. 4th edition, Upper Saddle River, NJ: Prentice Hall, 1996.

Morel C, Séraphin D, Oger JM, Litaudon M, Sévenet T, Richomme P, Bruneton J. New xanthones from Calophyllum caudiculum. J Nat Prod, 2000; 63(11):1471–8.

Muthukumar A, Venkatesh A. Physiological studies of Sclerotium rolfsii Sacc. causing collar rot of peppermint. Afr J Biotechnol, 2013; 12(49):6837–42.

Numata A, Amagata T, Minoura K, Lto T. Gymnasterones, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett, 1997; 38(32):5675–8.

Özkaya FC, Ebrahim W, El-Nekeiti M, Tansel Tanrıkul T, Kalscheuer R, Müller WEG, Guo Z, Zou K, Liu Z, Proksch P. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia, 2018; 131(August):9–14.

Pang X, Lin X, Wang P, Zhou X, Yang B, Wang J, Liu Y. Perylenequione derivatives with antitumor activity isolated from the sponge fungal strain: Alternaria sp. J Nat Prod, 2018; 81(6):1391–4.

Pejin B, Karaman M. Antitumor natural products of marine-derived fungi. Fungal Metab, 2017; 1–28.

Peres V, Nagem TJ, de Oliveira FF. Review: tetraoxygenated naturally occurring xanthones. Phytochemistry, 2000; 55:683–710.

Pratiwi SUT. Mikrobiologi farmasi. Erlangga, Jakarta, Indonesia, 2008.

Proksch P, Ebel R, Edrada R, Riebe F, Liu H, Diesel A, Bayer M, Li X, Han Lin W, Grebenyuk V, Müller WEG, Draeger S, Zuccaro A, Schulz B. Sponge-associated fungi and their bioactive compounds: the suberites case. Bot Mar, 2008; 51(3):209–18.

Proksch P, Edrada RA, Ebel R. Drugs from the seas - current status and microbiological implications. Appl Microbiol Biotechnol, 2002; 59(2–3):125–34.
cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived *Trichoderma lixivii* on the cancer cells adapted to glucose starvation. J Nat Med, 2020; 74:153–8.

Thakur NL, Müller WEG. Biotechnological potential of marine sponges. Curr Sci, 2004; 86(11):1506–12.

Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association - a review. Mar Drugs, 2010; 8(4):1417–68.

Tian Y, Lin X, Zhou X, Liu Y. Phenol derivatives from the sponge-derived fungus *Didymellaaceae* sp. *SCSIO F46*. Front Chem, 2018a; 6(536):1–8.

Tian YQ, Lin SN, Zhou H, Lin ST, Wang SY, Liu YH. Protubexacin C and protubexin D from the sponge-derived fungus *Aspergillus sp.* *SCSIO XWS02F40*. Nat Prod Res, 2018b; 32(21):1–6.

Ueda JY, Takagi M, Shin-Ya K. New santoquindolin-like compounds, JBIR-97, 98 and-99, obtained from marine sponge-derived fungus *Tritrichromatium* sp. *SpB081112MEF2*. J Antibiot, 2010; 63(10):615–8.

Venkatachalam M, Gérard L, Milhau C, Vinéa F, Dufossé L, Fouillaud M. Salinity and temperature influence growth and pigment production in the marine-derived fungal strain *Talaromyces albobicrevicuspillus* 30548. Microorganisms, 2019; 7(10):1–19.

Wang D, Qu P, Zhou J, Wang Y, Wang L, Zhu W. p-Terphenyl alcohols from a marine sponge-derived fungus, *Aspergillus candidus* OUCMDZ-1051.pdf. Mar Life Sci Technol, 2020a; 2:262–7.

Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. *J Ind Microbiol Biotechnol*, 2006; 33(7):545–51.

Wang J, Wang Z, Ju Z, Wan J, Liao S, Lin X, Zhang T, Zhou X, Chen H, Tu Z, Liu Y. Cytotoxic cytochalasins from marine-derived fungus *Arthrinum arundinis*. Planta Med, 2015; 81(2):160–6.

Wang L, Jiao J, Liu D, Zhang X, Li J, Che Q, Zhu T, Zhang G, Li D. Cytotoxic meroterpenoids from the fungus *Alternaria sp.* JPY-32. Chem Biodivers, 2020b; 17(7):1–9.

Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, Gao M, Shao Z, Chen J, Li F. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus *Chaeotomium sp.* NA-S01-R1. Mar Drugs, 2018; 16(2):1–11.

Wang X, Mou Y, Hu J, Wang N, Zhao L, Liu L, Wang S, Meng D. Cytotoxic polyphenols from a sponge-associated fungus *Aspergillus versicolor* Hmp–48. Chem Biodivers, 2014; 11(1):133–9.

Weerapreeyakul N, Nonpunya A, Barusruxs T, Thititammarach T, Srirapiudkulchai B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin Med, 2012; 7(15):1–7.

Wu Q, Long HL, Liu D, Proksch P, Lin WH. Varioxiranols IL, New lactones from a sponge-associated *Emericella variecolor* fungus. J Asian Nat Prod Res, 2015; 17(12):1137–45.

Wu Z, Li Y, Liu D, Ma M, Chen J, Lin W. New resorcinol derivatives from a sponge-derived fungus *Hansfordia sinuosusae*. Chem Biodivers, 2017; 14(6):e1700059.

Wu Z, Liu D, Proksch P, Guo P, Lin W. Punctaporonins H-M: caryophyllene-type sesquiterpenoids from the sponge-associated fungus *Hansfordia sinuosusae*. Mar Drugs, 2014; 12(7):3904–16.

Xin ZH, Fang Y, Du L, Zhu T, Duan L, Chen J, Gu QQ, Zhu WM. Aurantiomides A-C, quinazoline alkaloids from the sponge-derived fungus *Penicillium aurantiomideum* SPO-19. J Nat Prod, 2007; 70(5):853–5.

Yamada T, Fujii A, Kikuchi T. New diterpenes with a fused 6–5–6–6 ring system isolated from the sponge-derived fungus: *Trichoderma harzianum*. Mar Drugs, 2019; 17(480):1–10.

Yamada T, Mizutani Y, Umebayashi Y, Inno N, Kawashima M, Kikuchi T, Tanaka R. Tandyukisin, a novel ketoaldehyde decalin derivative, produced by a marine sponge-derived *Trichoderma harzianum*. Tetrahedron Lett, 2014; 55(3):662–4.

Yamada T, Suzue M, Arai T, Kikuchi T, Tanaka R. Trichodermandins C-E, new diterpenes with a fused 6–5–6–6 ring system produced by a marine sponge-derived fungus. Mar Drugs, 2017; 15(169):1–7.
Yu Z, Lang G, Kajahn I, Schmaljohann R, Imhoff JF. Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, *Scopulariopsis brevicaulis*. J Nat Prod, 2008; 71(6):1052–4.

Zhang H, Zhao Z, Wang H. Cytotoxic natural products from marine sponge-derived microorganisms. Mar Drugs, 2017; 15(68):1–13.

Zhang J, Yang Z, Liang Y, Zhong L, Lin H, Zhong B, Li L, Xu S, Liu Y. Four new C9 metabolites from the sponge-associated fungus *Gliomastix* sp. ZSDS1-F7-2. Mar Drugs, 2018; 16(231):1–11.

Zhao DL, Shao CL, Wang Chao Yi, Wang M, Yang LJ, Wang CY. Naphthalenones and depsidones from a sponge-derived strain of the fungus *Corynespora cassiicola*. Molecules, 2016a; 21(2):1–6.

Zhao HY, Anbuchezzhian R, Sun W, Shao CL, Zhang FL, Yin Y, Yu ZS, Li ZY, Wang CY. Cytotoxic nitrobenzoyloxy-substitued sesquiterpen from sponge-derived endozoic fungus *Aspergillus insulicola* MD10-2. Curr Pharm Biotechnol, 2016b; 17:271–4.

Zhao R, Liao X, Li H, Li J, Feng P, Zhao BX, Xu S. Isolation and synthesis of misszrime a: a novel indole alkaloid from marine sponge-associated *Aspergillus* sp. SCSIO XWS03F03. Front Chem, 2018; 6(212):1–7.

How to cite this article:
Samirana PO, Murti YB, Jenie RI, Setyowati EP. Marine sponge-derived fungi: Fermentation and cytotoxic activity. J Appl Pharm Sci, 2021; 11(01):021–039.