Breakdown of the Hund’s Rule in CuFeAs

Ze-Yi Song,1,† Xiu-Cai Jiang,1,† Xiao-Fang Ouyang,2 and Yu-Zhong Zhang1,‡

1Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and engineering, Tongji University, Shanghai 200092, P. R. China
2School of Electronic and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China

(Dated: July 5, 2021)

The ground-state properties of CuFeAs were investigated by applying density functional theory calculations within generalized gradient approximation (GGA) and GGA+U. We find that the bicollinear antiferromagnetic state with antiparallel orbital magnetic moments on each iron which violates the Hund’s rule is favored by the on-site Coulomb interaction, which is further stabilized by Cu vacancy. The magnetic ground state can be used to understand weak antiferromagnetism in CuFeAs observed experimentally. We argue that breakdown of the Hund’s rule may be the possible origin for reduced magnetism in iron pnictides, rather than magnetic fluctuations induced by electronic correlations.

I. INTRODUCTION

The discovery of the high-temperature superconductivity in iron-based compounds with transition temperature Tc up to 55 K has attracted tremendous research interest for the last decade [1–4]. Similar to the phase diagram in cuprate [5], the superconductivity in iron-based superconductors always emerges in close proximity to a state with antiferromagnetism [6–9]. Since previous theoretical studies have ruled out the phonon-mediated pairing [10], it is widely believed that the superconductivity in iron-based superconductors is unconventional and has a magnetic origin.

Therefore, many efforts have been spent on revealing the origin of magnetism in iron-based superconductors. As continuous debates between itinerant scenario [11–13] and localized picture [14, 15] remain unsettled, a compromising explanation was proposed where coupling of itinerant electrons and localized spins is taken into account [16, 17]. In spite of the above open discussions, two consensuses have been reached. One is that density functional theory (DFT) calculations can qualitatively describe the magnetic properties of parent states in both iron pnictides and iron chalcogenides, although the magnetic moments are always overestimated due to the fact that the intermediate strength of electronic correlations in open d shell of iron atom can not be properly captured in the approximation of the functionals. The other is that, in contrast to the cuprates, the effect of electronic correlations is adopted to come from the Hund’s rule coupling [18–20], rather than on-site Coulomb repulsion. And the metallic states of iron-based superconductors are called Hund’s metal where the Hund’s rule of maximum multiplicity is supposed to be valid [21].

However, above consensuses have been seriously challenged since the discovery of CuFeAs. The magnetic susceptibility measurements showed that it is antiferromagnetic with Néel temperature TN of around 9 K [22, 23]. The antiferromagnetism was further demonstrated by neutron diffraction experiments [24, 25], where either an unusual G-type antiferromagnetic order or proximity to an antiferromagnetic instability was proposed. Though ferromagnetism was also reported in the literature [26, 27], it was pointed out that the weak ferromagnetism probably comes from a ferromagnetic component of a canted antiferromagnetic state [24, 26]. Therefore, while the type of antiferromagnetic order is still unclear, it seems conclusive that the ground state of CuFeAs is antiferromagnetic experimentally. Nonetheless, an early theoretical study based on DFT calculations suggested that this compound is a ferromagnet [28], in stark contrast to the experimental observations [22–25], which casts doubts on the existing consensus. Obviously, further studies based on DFT calculations are required to resolve the contradiction, and to clarify the magnetic structure in CuFeAs, as well as to verify the role of Hund’s coupling.

Here, the nature of magnetism of CuFeAs is investigated by applying DFT calculations. We find that the ground-state magnetic structure of CuFeAs are controlled by As height hAs from iron plane, similar to other iron-based superconductor parent compounds, and the critical height hC of 1.612 Å is identified. If hAs < hC, the ground state is in a collinear antiferromagnetic (CAF) state. On the contrary, when As height is larger than hC, the on-site Coulomb interaction is crucial to involve in order to correctly account for observed antiferromagnetic state. It is found that bicollinear antiferromagnetic (BAFM) order gives lowest total energy among the states we studied, which becomes even more favorable in the intermediate value of on-site Coulomb interaction after introducing Cu vacancy and shows weak ferrimagnetism where total magnetic moment turns out to be nonzero. The small magnetic moment per iron is ascribed to the violation of Hund’s rule [29] where antiparallel orbital magnetic moments on each iron are present. Our results can be applied to fully understand the experimental results [22–26].

CuFeAs is isostructural to 111-type iron-pnictide superconductor parent compounds LiFeAs [30] and NaFeAs [31]. It is characterized by large hAs in comparison to other iron pnictides, varying from hAs=1.53 Å [25] to hAs=1.57 Å [23] and hAs=1.74 Å [22], finally to hAs=1.80 Å [26]. Moreover, it was reported to be nonstoichiometric [22–26], namely the Cu vacancies are always present. Finally, like other iron-based superconductor compounds, CuFeAs is a material with large Sommerfeld coefficient, indicating that electronic interactions

† These authors contribute equally to the paper
‡ Corresponding author. Email: yzzhang@tongji.edu.cn
are not negligible [26].

II. METHOD

The DFT calculations were performed using full-potential linearized augmented plane wave method as implemented in the Wien2k code [32]. We adopted generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof [33] for the exchange-correlation potentials. In order to determine the magnetic ground state, we have studied nonmagnetic (NM), ferromagnetic (FM), and three distinct antiferromagnetic configurations, including Néel antiferromagnetic (NAFM), CAFM, and BAFM orders [34, 35]. We employed $\sqrt{2} \times \sqrt{2} \times 1$ and $2 \times 1 \times 1$ unit cells for CAFM and BAFM states, and primitive cell for the other states, respectively. The Brillouin zone integration is carried out with a k mesh of $24 \times 24 \times 18$ for NM, FM, and NAFM states, and $24 \times 24 \times 20$ for CAFM phase as well as $16 \times 32 \times 20$ for BAFM phase, respectively. Furthermore, the influence of on-site Coulomb interaction on magnetic stabilities of CuFeAs was investigated by GGA+U approach [36]. The around mean-field double counting [37] is employed as CuFeAs is a correlated metal. Unless specified otherwise, the Hund’s coupling $J = U/10$ [38] was used throughout all our GGA+U calculations [39]. The conclusions remain valid if J is fixed at $U/4$. Here, the experimental lattice constants reported by Thakur et al. [22] was used and also, the conclusions will not be altered when other experimental lattice constants are used. The x (y) of local coordinate system for each iron is along the closest Fe-Fe bond direction.

III. RESULTS

Since it is well known that the magnetic properties of parent states of iron-based superconductors are sensitive to As height h_{As} measured from iron plane [40, 41], we first investigated the effect of h_{As} on ground-state magnetic structure by only varying the As z positions and leaving all the other internal coordinates unchanged. Fig. 1 (a) shows the calculated total energies of different magnetic configurations as a function of As height within GGA. The energies of the NM state were set to zero. Starting from As height h_{Kam} of 1.53 Å, CAFM state gives lowest total energy. When h_{As} exceeds critical height h_c of 1.612 Å, FM state, rather than any AFM states, becomes stable. The appearance of phase transition from a CAFM state to a FM one suggests that the magnetism is strongly dependent on h_{As} in CuFeAs, similar to the other parent compounds of iron-based superconductors [40–42].

However, remarkable conflict can be found between the calculated results and the experimental data. As can be seen in Fig. 1 (a) where various As heights reported in different experiments are shown, at h_{As} less than h_c, our theoretical calculations point to a CAFM ground state, which is mainly consistent with the experimental results where either long-range [23] or short-range [25] AF order was observed, though the magnetic structure has not been determined experimentally yet. But, in the cases of h_{As} greater than h_c, while the theoretical ground state is strongly FM, it was inferred from experiments [22, 24, 26] that CuFeAs should be an antiferromagnet probably with ferromagnetic components. The contradiction raises a great challenge to the existing theory [34, 42], which seems valid for the whole family of iron-based superconductors including both iron pnictides and iron chalcogenides, where various magnetic ground states can be correctly accounted for after different anion height is considered. In fact, the theory of anion height is also true for a sister compound of CuFeAs, so called CuFeSb, where DFT calculations [28] and experiments [43, 44] both obtained a FM ground state, which can be attributed to a very high anion height of > 1.84 Å. Therefore, it is urgent to understand why CuFeAs with intermediate value of anion height is so extraordinary that DFT calculations can not agree with experimental findings even qualitatively.
Till now the magnetism of iron pnictides can be explained by both the local moment picture [14, 15] and the weak-coupling scenario [11–13]. From local moment picture, the magnetic ground state can be effectively described by the frustrated Heisenberg model $H = \sum_{ij} J_{ij} S_i S_j$, where J_{ij} is the superexchange interactions between local Fe moments with spin S_i. From above data based on the DFT calculations within GGA, the nearest, next-nearest, and next-next-nearest neighbor exchange couplings J_1, J_2, and J_3 can be derived from the energy differences among various magnetic states and are summarized in Fig. 1 (b). As can be seen, J_1 remains FM, thus favors a FM order. It is strongly enhanced as a function of increased h_{As}. While J_2 is AFM and plays a dominant role at small h_{As}, it drastically reduced in the vicinity of h_c and eventually turns into FM nature at larger h_{As}. J_3 is also AFM and barely dependent on h_{As}. If only FM, NAFM, CAFM, and BAFM states are taken into account in the classic limit of Heisenberg $J_1 - J_2 - J_3$ model, CAFM is energetically favorable over other magnetic configurations when $J_2 > -J_1/2$ and $J_2 > 2J_3$. The conditions are satisfied when h_{As} is smaller than h_c, resulting in an agreement between our first-principles results and recent experimental observations [23, 25]. However, when h_{As} is greater than h_c, the FM state becomes the ground state owing to $J_1 < -2J_2$ and $J_1 < -2J_2 - 2J_3$. Since antiferromagnetism was observed in experiments [22, 24, 26] when $h_c < h_{\text{As}} < 1.84$ Å, it indicates that local moment picture fails to account for the magnetic ground state of CuFeAs in the intermediate region of anion height.

In order to know if the magnetism can be understood from the weak-coupling limit where the Fermi surface nesting plays roles, we have calculated the orbitally resolved Pauli susceptibility $\chi^{\tau\tau}_\Gamma (q)$, as defined in Ref. [45, 46], to quantify the nesting property. Owing to the fact that the magnetism is mainly controlled by intraorbital particle-hole excitations, we only show in Fig. 2 the intraorbital components of the Pauli susceptibility along the path of $\Gamma - X - M - \Gamma$ in the Brillouin zone. It is found that the susceptibility of $d_{x^2-y^2}$ and d_{xz} orbitals are much smaller than those of d_{xy} and d_{yz}/xz orbitals, suggesting that the magnetic instabilities in CuFeAs are mainly contributed from the latter three orbitals. As is well known, a prominent peak present in the Pauli susceptibility denotes a tendency towards a certain long-range magnetic ordered state whose magnetic configuration is determined by the position of the peak in the momentum space. However, in the intermediate region of anion height, for instance, $h_{\text{Thakur}} = 1.74$ Å as shown in Fig. 2 (a), neither the susceptibilities of d_{xy} orbital nor those of d_{xz}/xz orbitals show any pronounced peaks. On the contrary, the plateau appearing in the susceptibilities of d_{xy} orbital along the X – M path may indicate that CuFeAs is highly magnetically frustrated due to the competitions among enormous instabilities.

For comparison, we have calculated the Pauli susceptibility at low As height of 1.53 Å, as shown in Fig. 2 (b). In contrast to the featureless orbital-resolved susceptibilities at $h_{\text{As}} = 1.74$ Å, the counterpart at low As height shows pronounced instabilities in d_{xy} orbital around wave vector (π, π), indicating a strong tendency towards a antiferromagnetic state. This is consistent with our total-energies calculations and previous experimental observations [23, 25]. It suggests that the magnetism in CuFeAs for $h_{\text{As}} < h_c$ case can be explained by both the Fermi surface nesting scenario [11–13] and the local moment picture [14, 15], similar to all the other iron pnictides. However, if $h_c < h_{\text{As}} < 1.84$ Å, neither the local moment picture nor the Fermi surface nesting scenario could be applied to understand the magnetism in CuFeAs.

Considering the orbital degrees of freedom existing in CuFeAs, inclusion of on-site Coulomb interactions may strongly change the spin and charge populations among different orbitals. Therefore, in the following, we will apply GGA+U [37] to allow for multi-orbital effects and unravel the truth for magnetic ground state in CuFeAs. Fig. 3 (a) shows the evolution of total energies of different magnetic configurations as a function of U. At small U, the FM state gives the lowest total energy. As U becomes large, the BAFM state becomes stabler than other magnetic states. The FM-BAFM phase transition takes place at critical point U_c of around 4.1 eV, which is slightly smaller than the on-site Coulomb interaction $U \approx 4.5$ eV estimated from constrained local density approximation which is comparable to those in other iron pnictides [38]. This implies that the material is in the BAFM state and close to the phase boundary between FM and BAFM states.

Furthermore, as was observed in experiments [24, 26], CuFeAs is nonstoichiometric with Cu sites being partially va-
FIG. 3. (Color online) The effect of on-site Coulomb interaction U on the magnetic ordering in CuFeAs (a) and Cu$_{0.5}$FeAs (b). As U increases, the phase transition from FM state to BAFM state occurs at around 4.1 eV for CuFeAs (a) and at about 3.5 eV for Cu$_{0.5}$FeAs (b), respectively.

significant. Cu vacancy will cause heavy hole doping and may alter crystal field splitting due to the deficiency of cations in certain positions. Here, the effect of Cu vacancy on the magnetic properties of ground state was considered by simply removing one Cu from the primitive cell, leading to chemical formula of Cu$_{0.5}$FeAs. The total energies of various magnetic configurations as a function of U are displayed in Fig. 3 (b). Similar results are obtained as those for the stoichiometric case, except that the critical value of U is considerably suppressed from around 4.1 eV to about 3.5 eV, suggesting that the BAFM state is further stabilized when Cu vacancies are introduced.

To gain deep insight into the effect of on-site Coulomb interaction and Cu vacancies on the ground state, we have calculated total and averaged magnetic moments on iron as well as orbitally resolved magnetic moments of $3d$ orbitals on iron for both CuFeAs and Cu$_{0.5}$FeAs. Fig. 4 (a) displays the averaged Fe moments. It is found that the averaged Fe moment decreases as U increases and at critical point U_c, a sharp drop appears. The presence of Cu vacancy gives rise to a decrease of the averaged Fe moments in the FM state while an increase in the BAFM state, indicating that the Cu vacancy energetically stabilizes the BAFM state and enhances the spin polarizations in the BAFM state. In addition, if Cu vacancy is present, the total magnetic moments of Fe are finite in the BAFM state, as depicted in the inset of Fig. 4 (a) which is consistent with the nonzero spontaneous magnetic moment observed by experiments [22, 26].

Fig. 4 (b) and (c) shows the averaged magnetic moments of Fe $3d$ orbitals for CuFeAs and Cu$_{0.5}$FeAs, respectively. The orbitally-resolved magnetic moments are obtained by constructing atomic projectors as implemented in Wien2k code [32]. It is found that, while the magnetic moments of d_{xy} and $d_{yz/zx}$ orbitals which dominate the states close to the Fermi level are changed slightly in FM state, those of d_{x^2} and d_{y^2} decrease remarkably and finally become antiparallel to the magnetic moments of d_{xy} and $d_{yz/zx}$ orbitals. Such kind of breakdown of the Hund’s rule was proposed to be a possible origin for the low magnetization in LaFeAsO [47–49], where DFT calculations [47] suggested that opposite magnetization among different orbitals is stabilized against the Hund’s rule by the formation of large multipoles of the spin density, while model calculations based on a five-band Hubbard model [48] and a two-orbital Heisenberg model [49] found that interorbital exchange interaction overrides the Hund's rule. From our DFT calculations and corresponding derivations of tight-binding model parameters by Wannier90 [50], we conclude that both magnetic multipoles [47] and interorbital hoppings [48] which induce interorbital exchanges as the Hubbard interaction U is involved play roles in the formation of antiparallel magnetic moments among five $3d$ orbitals on each iron in CuFeAs. Further increasing U, a phase transition from the FM state to a BAFM state occurs with a significant reduction of magnetic moment in each orbital. However, the breakdown of the Hund’s rule remains. The weak antiferromagnetism agrees well with experimental results [22–25]. Note in the presence of Cu vacancy, the orbital magnetic moments on different magnetic sublattices are strongly deviated from each other (Fig. 4 (c)), leading to a finite total magnetic moment as shown in the inset of Fig. 4 (a).

IV. DISCUSSIONS

From above investigations, it was shown that the magnetic properties of CuFeAs vary from a CAFM state to a BAFM phase as a function of the experimental As height measured from iron plane, where the critical height for the CAFM-BAFM transition is $h_c \approx 1.612$ Å. At the As height of $h_{As} > 1.84$ Å, the pnictogen-height driven FM phase is expected to be stabilities [43, 44]. This can account for various experimental observations in CuFeAs, where all magnetic susceptibility measurements at low external magnetic fields [22, 23, 26] suggest this material is in an antiferromagnetic state for $1.57 \leq h_{As} \leq 1.80$ Å. At $h_{As} = 1.53$ Å, the short-range CAFM
order was observed by the Mössbauer spectroscopy and muon spin resonance experiments [25], which is also qualitatively consistent with our results (shown in Fig. 1 (a)) since the quantum fluctuations are completely frozen in the DFT calculations. Aware of a fact that the interlayer spin exchange hardly affects the magnetic structure in the Fe$_2$As$_2$ plane for CuFeAs, the G-type antiferromagnetic state, a three dimensional NAFM state proposed in recent study [24], can not become the ground-state magnetic ordering because the energy of NAFM state is much lower than that of the other antiferromagnetic states we considered, as displayed in Fig. 1 (a) and Fig. 3. Besides, the agreement between our results and experiments indicates that the Coulomb interaction plays a key role in the description of magnetism of the multi-orbital system CuFeAs, especially at the intermediate As height.

Moreover, the antiferromagnetic state with nonvanishing total magnetic moments is found to be energetically stabilized when Cu vacancies are present, which explains the spontaneous magnetization in nonstoichiometric CuFeAs [22, 26]. Considering the weak ferrimagnetism, CuFeAs should be susceptible to external magnetic field. It is the reason why the magnetization exhibits the AFM-like behavior with the decrease of temperature at low magnetic fields, but shows the FM-like behavior at magnetic field of >500 Oe due to the field-induced ferromagnetic component [22, 23, 26].

Finally, we found that CuFeAs is an unique compound in the family of iron pnictides which may be used to unveil the origin of weak magnetism present commonly in the pnictides. In contrast to the CAFM state at lower As height and the FM state at higher As height, both of which can be understood from the itinerant electron picture [11–13] and the localized spin scenario [14, 15], the BAFM phase which can account for various experimental observations in CuFeAs [22, 24, 26] can only be explained by breakdown of the Hund’s rule. The antiparallel arrangement of magnetic moments in different orbitals on each iron atom has been proposed as the possible origin for weak magnetism in LaFeAsO [47, 48], which unfortunately was not prevalent since it was just an alternative theory to the widely accepted ones based on itinerant or localized spin scenario [11–15]. However, CuFeAs may be the first counterexample which casts doubts on the applicabilities of the well accepted theories and supports breakdown of the Hund’s rule as a unified picture for the weak magnetism observed experimentally in iron pnictides. It should be noted that violation of the first Hund’s rule appears in the presence of two partly filled shells like cerium [51], while there is only one partly filled shell in CuFeAs. Moreover, Hund’s coupling is always believed to dominate the correlated metallic behavior in iron pnictides [18–21] as was frequently pointed out by dynamical mean field theory (DMFT) [52] or LDA+DMFT [53] studies where nonlocal correlations are totally ignored. If breakdown of the Hund’s rule were dominant, the intersite interorbital hybridizations and multipole interactions become important, which brings the concept of Hund’s metal into question and requires further investigations beyond local approximation and Hubbard interactions. And breakdown of the Hund’s rule may provide a new route to form singlet cooper pairs locally [54].

Note that the CuFeAs is unique among iron pnictides due to the fact that it possesses the highest arsenic height in comparison to other iron arsenic compounds, for example; $h_{\text{As}} \sim 1.51$ Å for LiFeAs [55], 1.31 Å for LaFeAsO [6], 1.35 Å for BaFe$_2$As$_2$ [56]. And it is even higher than that of Fe$_{1.01}$Se where $h_{\text{Se}} \sim 1.47$ Å [57]. The height is comparable to $h_{\text{Te}} \sim 1.75$ Å for Fe$_{1.06}$Te which also shows bicollinear antiferromagnetic order [58]. However, it is smaller than $h_{\text{Sb}} \sim 1.84$ Å of CuFeSb where ferromagnetism is observed [43, 44].

V. CONCLUSION

In conclusion, we have investigated the magnetism of CuFeAs by applying DFT calculations. It is found that breakdown of Hund’s rule occurs and is responsible for the exotic BAFM state in CuFeAs at the height of As atom of 1.612 Å $< h_{\text{As}} < 1.84$ Å. The novel phase intersects between a CAFM state at $h < 1.612$ Å and an FM state at $h > 1.84$ Å. The pres-
ence of Cu vacancy favors the BAFM state and induce weak ferrimagnetism due to the symmetry breaking between magnetic sublattices. The interaction is indispensible to correctly capture the ground state of CuFeAs. Our results can be applied to fully understand experimental observations and have important implication that breakdown of Hund’s rule may be a unified theory for weak magnetism in iron pnictides.

ACKNOWLEDGMENTS

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 11774258, 12004283) and Postgraduate Education Reform Project of Tongji University (Grant No. GH1905). Z. Y. Song acknowledges the financial support by China Postdoctoral Science Foundation (Grant No. 2019M651563).

Appendix A: Crystal structure of CuFeAs and antiferromagnetic structures studied in the work

![Crystal structure](image)

FIG. 5. (color online) (a) Crystal structure of CuFeAs used in this work, where the blue, brown and green atoms denote Cu, Fe and As, respectively. The topview cartoons for Néel antiferromagnetic state (NAFM) (b), collinear antiferromagnetic state (CAFM) (c), and bicollinear antiferromagnetic state (BAFM) (d), where the red and black arrows represent two different spin species on Fe atoms which form a square lattice.

[1] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono, “Iron-Based Layered Superconductor LaO₁₋ₓFₓFeAs (x = 0.05-0.12) with T_c=26 K,” J. Am. Chem. Soc. 130, 3296 (2008).

[2] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, “Superconductivity at 38 K in the Iron Arsenide (Ba₁₋ₓKₓ)Fe₂As₂,” Phys. Rev. Lett. 101, 107006 (2008).
K. Haule and G. Kotliar, “Coherence-incoherence crossover in 55K in iron-based F-doped layered quaternary compound Sm(\text{O}_{1-x}\text{F}_x)\text{FeAs},” Chin. Phys. Lett. 25, 2215 (2008).

G. R. Stewart, “Superconductivity in iron compounds,” Rev. Mod. Phys. 83, 1589 (2011).

B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, “From quantum matter to high-temperature superconductivity in copper oxides,” Nature 518, 179 (2015).

Clarina de la Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff, II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and Pengcheng Dai, “Magnetic order close to superconductivity in the iron-based layered LaO_{1-x}F_xFeAs systems,” Nature 453, 899 (2008).

D. N. Basov and Andrey V. Chubukov, “Magnetism and superconducting instabilities in a hybrid model of iron pnictides,” Phys. Rev. B 79, 054510 (2009).

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.

Due to the presence of tetragonal crystal field in iron-based compounds, together with the negligible strength of spin-orbit coupling in iron, the orbital angular momentum of 3d orbitals is completely quenched in CuFeAs. Therefore, the second and the third Hund’s rules are irrelevant in CuFeAs, and throughout the paper, the Hund’s rule refers to the first one.
small magnetic moment.

[40] T. Yildirim, “Strong Coupling of the Fe-Spin State and the As-As Hybridization in Iron-Pnictide Superconductors from First-Principle Calculations,” Phys. Rev. Lett. 102, 037003 (2009).

[41] Z. P. Yin, S. Lebègue, M. J. Han, B. P. Neal, S. Y. Savrasov, and W. E. Pickett, “Electron-Hole Symmetry and Magnetic Coupling in Antiferromagnetic LaFeAsO,” Phys. Rev. Lett. 101, 047001 (2008).

[42] Chang-Youn Moon and Hyoung Joon Choi, “Chalcogen-Height Dependent Magnetic Interactions and Magnetic Order Switching in FeSe$_{1-x}$Te$_{1-x}$,” Phys. Rev. B 85, 144427 (2012).

[43] S. Graser, T. A. Maier, P. J. Hirschfeld, and D J Scalapino, “Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides,” New J. Phys. 11, 025016 (2009).

[44] Ming-Cui Ding, Hai-Qing Lin, and Yu-Zhong Zhang, “Hidden $(\pi, 0)$ instability as an itinerant origin of bicollinear antiferromagnetism in Fe$_{1+y}$Te,” Phys. Rev. B 87, 125129 (2013).

[45] Shintaro Hoshino and Philipp Werner, “Spontaneous Orbital-Selective Mott Transitions and the Jahn-Teller Metal of A_3C_60,” Phys. Rev. Lett. 118, 177002 (2017).

[46] Shiliang Li, Clarina de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, Jiangping Hu, Yi-Lin Huang, Fong-Chi Hsu, Kuo-Wei Yeh, Maw-Kuen Wu, and Pengcheng Dai, “First-order magnetic and structural phase transitions in Fe$_{1+y}$Se$_x$Te$_{1-x}$,” Phys. Rev. B 79, 054503 (2009).