Animal models of pancreatitis: Can it be translated to human pain study?

Jing-Bo Zhao, Dong-Hua Liao, Thomas Dahl Nissen

Abstract

Chronic pancreatitis affects many individuals around the world, and the study of the underlying mechanisms leading to better treatment possibilities are important tasks. Therefore, animal models are needed to illustrate the basic study of pancreatitis. Recently, animal models of acute and chronic pancreatitis have been thoroughly reviewed, but few reviews address the important aspect on the translation of animal studies to human studies. It is well known that pancreatitis is associated with epigastric pain, but the understanding regarding to mechanisms and appropriate treatment of this pain is still unclear. Using animal models to study pancreatitis associated visceral pain is difficult, however, these types of models are a unique way to reveal the mechanisms behind pancreatitis associated visceral pain. In this review, the animal models of acute, chronic and un-common pancreatitis are briefly outlined and animal models related to pancreatitis associated visceral pain are also addressed.

INTRODUCTION

Pancreatitis represents a common disorder of the gastrointestinal tract. Acute pancreatitis (AP) has an incidence ranged from 4.9 to 35 per 100000 populations[1], whereas chronic pancreatitis (CP) has an incidence from 2.4 to 4.4 per 100000 populations[2]. The etiology of this disease is complex and so far a variety of environmental factors including alcohol abuse, nicotine habits, hereditary factors, efferent duct obstructions, immunological factors and rare metabolic factors have all been described. However,
the pathophysiology of AP and CP remains poorly defined[6,7]. As a result appropriate therapies are still limited, and prognosis has not improved to date, which is mainly due to the lack of a satisfactory animal model of pancreatitis[8,9]. It is well known that pancreatitis is associated with visceral pain, however, the understanding of pain signaling related to pancreatitis is poor[10]. In order to facilitate the development of new pharmaceutical treatments for AP and CP, characterization of the mediators and receptors or ion channels on the sensory nerve terminals and the pathways of the pain signaling are needed. Therefore, in this aspect, the animal models of pancreatitis are needed in parallel in order to explore the mechanism behind pancreatitis associated visceral pain, as this is difficult to study in humans.

In this review, we briefly outline the animal models of acute, chronic and uncommon pancreatitis as well as animal models related to pancreatitis associated visceral pain.

ANIMAL MODELS OF ACUTE PANCREATITIS

AP is an inflammatory condition of the pancreas characterized clinically by abdominal pain and elevated levels of pancreatic enzymes in the blood[11]. Other characteristics of AP include edema, acinar cell necrosis, hemorrhage, and severe inflammation of the pancreas. Severe AP may lead to systemic inflammatory response syndrome and multi-organ dysfunction syndrome, which account for the high mortality rates of AP[8,9]. As it is difficult to study AP in the clinic, animal studies are important in order to understand the pathogenesis of AP, however an AP model which is strictly comparable to human AP is still needed. The current animal models of AP have contributed to our knowledge of mechanisms involved in early cellular events, pathogenesis and pathophysiology of AP[12-15]. We have illustrated the summary of existing AP animal models in Table 1[12-59]. Details of different AP animal models including advantages, disadvantages and clinical relevance can be found in a recently published review[4]. From a methodological aspect, selecting the appropriate AP animal model depends on the objectives of each study as different animal models are targeted to different AP features. For developing the effective treatment for AP in the clinic, continued investigation of AP animal models are needed.

ANIMAL MODELS OF CHRONIC PANCREATITIS

A recently published review[3] has described the most frequently used and best established models for CP in animals. The majority of the animal models are rodent models, since mice and rats are easy to handle and there is a steadily increasing number of genetic models obtained by gene deletion or transgenic expression of genetic variants. In the same way for animal models of CP, the models of CP can be classified into noninvasive or nonsurgical models and invasive or surgical models. Table 2 summarizes different animal models of CP[60-100]. In the non-invasive models, repetitive caerulein injections are amongst the most widely used models. Firstly, caerulein injections are relatively easy to perform and show a high reliability and reproducibility. Secondly, other compounds mediating injury such as lipopolysaccharides or cyclosporin A can easily be added to the design. Thirdly, serial caerulein injections can be performed in transgenic or knockout animals. It is likely that there are dose and frequency dependency for caerulein. The most translational models include repetitive injections of L-arginine, which appears to produce CP similar to that in humans[17-20,121-123]. In this model, fibrotic tissues are progressively treated.

Table 1 Different animal models of acute pancreatitis

Methods	Models and examples
Non-invasive	Hormone-induced
	Acute caerulein pancreatitis of rats[22], mice[65], dogs[66], and Syrian hamsters[67]
	Trinadadian scorpion toxin induced acute pancreatitis in dogs[68]
	Alcohol-induced: rats[101-104], cats[105] and dogs[69]
	Immune-mediated
	Ovalbumin in rabbit[70]
	Foreign serum in mice[71] and rats[72]
	Spontaneous model of autoimmune acute pancreatitis mice[73]
Diet-induced: Fed a choline-deficient diet containing ethionine in mice[74]	
Gene knockout: Interleukin (IL)-1 and tumor necrosis factor-alpha[75], IL-6[76], IL-10[77], chemokine receptor-1[78], neurokinin-1 receptor[79], intercellular adhesion molecule 1 (ICAM-1)[80], metallothionein-1[81], cathepsin b[82], mouse a2-macroglobulin and muzingoglobulina[83], complement factor C3[84], granulocyte-macrophage colony-stimulating factor[85] and phospholipase A2[86]	
	L-arginine-induced: Administration of a large dose of L-arginine in rats[87]
Invasive	Closed duodenal loop (CDL): Dog[88] and rat[89]
	Antegrade pancreatic duct perfusion: Cat[90] and rat[91]
	Various compounds infusion into the pancreatic duct: Rat[92] and dog[93]
	Combined intraductal glycodeoxycholic acid with intravenous caerulein: Rat[94] and dog[95]
	Vascular-induced
	Impairment of pancreatic circulation in dogs[96]
	To occlude pancreatic arteries in rats[97]
	Oclusion of pancreatic veins in dogs[98] and in rats[99]
	Complete but reversible ischaemia of the pancreas by occluding different arteries using microvascular clips: Rat[100] and canine[101]
	Duct ligation
	Ligating the distal bile duct at the level of the duodenum[102]
	Combined pancreatic duct ligation with the secretory stimulation, secretin in dogs[103]
	Combining duct ligation with both secretory stimulation and minimal arterial blood[104]
	Duct-ligated opossum models[105]
	Transient obstruction of the sphincter of Oddi (SO) in Australian brush tailed possums[106]
replaced with adipose tissue. Due to the high impact of alcohol consumption as a risk factor on the pathogenesis in human pancreatic diseases, alcohol has frequently been used to trigger CP in animal models[73,74]. However, it is still being considered whether a model for CP induced by alcohol alone is feasible or satisfactory. The combination of alcohol feeding with caerulein injections exacerbates the course of pancreatitis and consequently increases pancreatic fibrosis and the loss of parenchyma.

Genetic animal models of CP are suitable for different studies. It is well known that activation of trypsinogen is one of the key events in the early phase of pancreatitis, and therefore genetic abnormalities found in the trypsinogen gene and in its inhibitors might be of particular importance of which R122H transgenic mice[80] are a good example. Transgenic expression of the R122H mutation of murine trypsin 4 in the pancreas of mice led to progressive fibrosis and chronic inflammation of the pancreas. Repetitive inductions of experimental pancreatitis with supramaximal doses of cerulein resulted in extensive deposition of collagen in periacinar and perilobular spaces of this transgenic animal. However other genetic models might also help us to understand how CP develops[77,79,81,83,84,101].

Invasive animal models can also be used to induce CP. As an example, retrograde infusion of sodium taurocholate (NaTc) into the pancreatic duct[106] or intraductal infusion of NaTc[72] can generate pancreatitis, however the structure of the pancreatic tissue will return to an almost normal state after 14 d. Retrograde infusion of oleic acid[72,88-91], viscous solution of zein[90], a mixture of zein-oleic acid or a viscous solution consisting of zein-oleic acid-linoleic acid[93,94] into rat pancreatic duct will cause severe pancreatic atrophy with irregular fibrosis and fat replacement over a period of 6 mo. However, models of pancreatitis appear quite distinct from CP in humans. As one factor alone is inadequate to cause persistent pancreatic injury, a combination of transient stasis of pancreatic juice flow and mild pancreatic duct injury is a well established and reliable method to generate CP in animal models[90]. It is well known that pancreatic ductal hypertension contributes to the pathogenesis of CP; therefore animal models can also be generated by complete obstruction of the pancreatic duct[95-98], incomplete pancreatic duct ligation[99] and occlusion with different tissue glues[100]. Yamamoto et al[102] developed an animal model with pancreatic ductal hypertension and demonstrated that this plays an important role in the onset and development of CP in rats. However, models for CP based on duct obstruction are not common and there is only a minority of studies examining the morphological and biochemical changes of the pancreas after duct ligation[41,103,104].

Table 2 Different animal models of chronic pancreatitis

Methods	Models and examples	
Non-invasive	Serial caerulein injections in mice[44] and rats[45]	
	Combination of repetitive caerulein injections with toxins and other agents such as	
	lipopolysaccharides[85], cyclosporin A[46], dibutylin dichloride[46] and Alcohol	
	[46-47] Intraportal caerulein injections are administered in genetically transformed	
	mice such as TRX-1 transgenic mice[48], Arginine-induced	
	A single L-arginine injection in rat[90]	
	Alcohol feeding-induced: Lieber-DeCarli formula[73,74]	
	Genetic models: Wistar Bonn/Kobori (WBN/Kob) rats[75,76]; R122H transgenic mice[80];	
	SPINK3-deficient (SPINK3/-/-) mice[80], CFTR-deficient (cftrm1UNC) mice[91] and CFTR-	
	(-/-) mice[92]; Kif3a-deficient mice[93]; PERK-deficient (PERK/-/-) mice[94]; Interleukin	
	1-β transgenic mice[81]	
Invasive	Sodium taurocholate-induced: Retrograde infusion of sodium taurocholate (NaTc) into	
	the pancreatic duct system of the rat[90]	
	Oleic acid-induced: Retrograde infusion of oleic acid[72,88-91], viscous solution	
	of zein[90], mixture of zein-oleic acid, or viscous solution consisting of zein-oleic	
	acid-linoleic acid[93,94] into rat pancreatic duct	
	Congestion of pancreatic fluid flow: Combination of transient stasis of pancreatic	
	juice flow and mild pancreatic duct injury[90]	
	Duct ligation model	
	Ligation of the common bile duct close to the duodenum	
	pancreatic tissue in dogs[95-96], mouse[97] and pig[98]	
	Incomplete pancreatic duct ligation in canine[97]	
	Occlusion with two different tissue glues in the rat[90]	

ANIMAL MODELS OF UN-COMMON PANCREATITIS

Un-common types of pancreatitis can include autoimmune pancreatitis (AIP), hereditary pancreatitis[105], groove pancreatitis[106], tropical pancreatitis, pancreatitis in ectopic or heterotopic pancreatic tissue, ascaris-induced pancreatitis, pancreatitis in cystic fibrosis, pancreas divi-sum, annular pancreas, pancreatic cancer manifesting as AP, and duodenal villous adenoma with pancreatitis. With exception of AIP and hereditary pancreatitis, no relevant animal models were found for other un-common pancreatitis. Furthermore, hereditary pancreatitis animal models were mentioned in the genetic animal models of CP above. Therefore only animal models of AIP are briefly introduced in this section.

To date, several animal models of AIP have been described. The first model involves the adoptive transfer of anylase-specific (an antigen mainly located in acinar cells) CD4⁺ T cells and results in pancreatitis in naive syngenic recipient animals[107]. Notably, the histological lesions of this model mimic the lobulocentric inflammatory reaction in type 1 AIP. A model developed by immunization of neonatally thymectomized mice with CA (an antigen mainly located on the pancreatic epithelium) and later transfer of CD4⁺ lymphocytes resulted in a duct-centric pattern of pancreatitis resembling type 2 AIP[108]. In another model, NTx-NFS/sld mice spontaneously developed sialoadenitis in which a-fodrin was involved as an autoantigen, as reported in some patients with Sjogren syndrome and AIP[109]. Transforming growth factor-β
(TGFβ) appears to be an important regulatory factor in maintaining immune homeostasis. Loss of TGFβ signaling contributes to AIP in TGFβ dominant negative mutant mice. [10]

Recently two animal models for AIP were proposed. The WBN/Kob rat model, associated with congenital decreased peripheral Tregs spontaneously develops sialoadenitis, thyroiditis, sclerosing cholangitis and tubulo-interstitial nephritis. [11] Although the target antigens remain unclear, CD8+ cells may be the effector cell in this rat model. [12] Another recently described animal model of AIP is the Treg-deficient NOD mouse. [13] CD28KO mice spontaneously develop AIP that closely resembles the human disease. [13] More recently, Haruta et al. [14] investigated the possible involvement of chronic, persistent exposure to avirulent bacteria in the pathogenesis of AIP using C57BL/6 mice.

Existing animal models for AIP have several limitations. In most models the disease is induced by adoptive transfer of autoreactive cells and/or antibodies rather than spontaneous development of the disease with identical antigen specificity. The distribution of lesions produced in animal models for AIP is also variable. This may be attributed to the diversity of target antigens, different methods of immune staining and different mouse strains. In addition, typical histopathological findings of AIP (e.g., lymphoplasmacytic infiltration with fibrosis, obliterator phlebitis and GEs) are rarely observed in animal models. Thus, there is a need to develop spontaneous animal models with identical autoantigens and typical histopathological findings for AIP.

VISCERAL PAIN IN ANIMAL MODELS OF CHRONIC PANCREATITIS

One of the main clinical symptoms of CP in humans is pain, occurring either in episodes or as a constant disabling pain. [11,15] Hence, an important goal of treatment for CP is to relieve the pain. The analgesic treatment is often inadequate as the pathophysiology of CP is poorly understood, but within recent years, animal experiments have suggested some mechanisms that might be involved. The transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) have been shown to be contributing factors to pain in CP. [16] It has been shown that CP is accompanied by an increased level of NGF which caused an up-regulation of TRPV1 expression and sensitivity, resulting in hyperalgesia and allodynia. TRPA1 is important in both inflammation and pain in CP and can be sensitized through activation of PAR2. [10,12,13]

The mechanisms mentioned above could be used as targets for the development of novel therapeutics, aiming at treating the chronic pain accompanying CP. Neutralizing antibodies against neurotransmitters such as BDNF and NGF or receptor specific antagonists has proven to reverse the characteristic nociceptive behavioral changes induced by CP in several of the experimental models. Furthermore, inhibition of trypsin or inhibition of microglia activation has also abrogated the pain related behavior seen in response to CP. All these different mechanisms of pain treatment in CP models could have a potential as targets for novel pharmacological treatment of the chronic pain associated with CP in human patients. Also established analgesic drugs such as gaba-

TRANSLATION OF PANCREATITIS-ASSOCIATED VISCERAL PAIN STUDY FROM ANIMAL TO HUMAN

It may be difficult to use animal models to study pancreatitis associated visceral pain as pain is a subjective experience. However animal models are needed to explore the molecular mechanisms behind pancreatitis associated visceral pain as this is difficult to study in humans. The molecular mechanisms behind the chronic pain associated with CP are poorly understood, but within recent years, animal experiments have suggested some mechanisms that might be involved. The transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) have been shown to be contributing factors to pain in CP. [16] It has been shown that CP is accompanied by an increased level of NGF which caused an up-regulation of TRPV1 expression and sensitivity, resulting in hyperalgesia and allodynia. TRPA1 is important in both inflammation and pain in CP and can be sensitized through activation of PAR2.

The mechanisms mentioned above could be used as targets for the development of novel therapeutics, aiming at treating the chronic pain accompanying CP. Neutralizing antibodies against neurotransmitters such as BDNF and NGF or receptor specific antagonists has proven to reverse the characteristic nociceptive behavioral changes induced by CP in several of the experimental models. Furthermore, inhibition of trypsin or inhibition of microglia activation has also abrogated the pain related behavior seen in response to CP. All these different mechanisms of pain treatment in CP models could have a potential as targets for novel pharmacological treatment of the chronic pain associated with CP in human patients. Also established analgesic drugs such as gaba-
pentin, buprenorphine, and morphine have been tested in animal models of CP\(^{11,12,13}\), and shown to have analgesic effect. However, many of these therapeutic approaches need to be tested in humans, before their true potential analgesic treatment of CP pain in humans can be established. It is known that some of these analgesic mechanisms are species specific and specific to the different models of induced CP.

CONCLUSION

Choosing the right model of pancreatitis is difficult and the scientific rationale needs to be carefully considered. Furthermore, no model of pancreatitis parallels all classical symptoms and the question under investigation is of importance when choosing a model. One of the main symptoms of CP is visceral pain and in order to improve the pain treatment and obtain more knowledge about the physiology behind the pancreatitis associated visceral pain, animal models of pancreatitis associated visceral pain are needed.

REFERENCES

1 Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, Gangarosa LM, Thin MT, Stitzenberg K, Morgan DR, Ringel Y, Kim HF, Dibonaventura MD, Carroll CF, Allen JK, Cook SF, Sandler RS, Kappelman MD, Shaheen NJ. Burden of gastrointestinal disease in the United States: 2012 update. *Gastroenterology* 2012; 143: 1179-87.e1-3 [PMID: 22885531 DOI: 10.1053/j.gastro.2012.08.002]

2 DiMagno MJ, DiMagno EP. Chronic pancreatitis. *Curr Opin Gastroenterol* 2012; 28: 523-531 [PMID: 22782018 DOI: 10.1097/MOG.0b013e3283576eda]

3 Khokhar AS, Seidner DL. The pathophysiology of pancreatitis. *Nutr Clin Pract* 2004; 19: 5-15 [PMID: 16215091 DOI: 10.1177/088453360401900105]

4 Su KH, Cuthbertson C, Christophi C. Review of experimental animal models of acute pancreatitis. *HPB (Oxford)* 2006; 8: 264-286 [PMID: 18331307 DOI: 10.1080/13651820500467358]

5 Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. *Fibrogenesis Tissue Repair* 2011; 4: 26 [PMID: 22133269 DOI: 10.1186/1755-1536-4-26]

6 Barreto SG, Saccone GT. Pancreatic nociception revisiting the physiology and pathophysiology. *Pancreatology* 2012; 12: 104-112 [PMID: 22487519 DOI: 10.1016/j.pan.2012.02.010]

7 Vege SS. Pathogenesis of acute pancreatitis. Available from: URL: http://www.uptodate.com/contents/pathogenesis-of-acute-pancreatitis#H2 (15.04.2013)

8 Chan YC, Leung PS. Acute pancreatitis: animal models and recent advances in basic research. *Pancreatology* 2007; 34: 1-14 [PMID: 17198179 DOI: 10.1097/01.mpa.0000246588.38375.04]

9 Steer ML, Saluja A. Experimental acute pancreatitis: studies of the early events that lead to cell injury. In: Go VLW, Gardner JD, Brooks FP, Lebenthal E, DiMagno EP, Scheele GA, editors. The Pancreas, Biology, Pathobiology and Disease. 2nd ed. New York: Raven Press, 1993: 489-499

10 Féraud V, Frossard JL, Farina A, Pastor CM, Bühlker L, Dumonceau JM, Hadengue A, Hochstrasser DF, Lescuyer P. Proteomic profiling in an animal model of acute pancreatitis. *Proteomics* 2008; 8: 3621-3631 [PMID: 18686302 DOI: 10.1002/ppmic.200800066]

11 Pini M, Rhodes DH, Castellanos KJ, Hall AR, Cabay RJ, Chemnini R, Grady EF, Fantuzzi G. Role of IL-6 in the resolution of pancreatitis in obese mice. *J Leukoc Biol* 2012; 91: 957-966 [PMID: 22427681 DOI: 10.1189/jlb.1211627]

12 Watanabe O, Baccino FM, Steer ML, Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. *Am J Physiol* 1984; 246: G457-G467 [PMID: 672095]

13 Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. *Gastroenterology* 1985; 88: 1192-1204 [PMID: 2984880]

14 Renner IG, Wisner JR. Exogenous secretin ameliorates cerulein-induced acute pancreatitis in the dog. *Dig Dis Sci* 1983; 28: 946 (abstract)

15 Adler G, Kern HF, Scheele GA. Experimental models and concepts in acute pancreatitis. In: Go VLW, Gardner JD, Brooks FP, Lebenthal E, Di Magno EP, Scheele GA, editors. The exocrine pancreas: biology, pathobiology, diseases. New York: Raven, 1986

16 Pantoja JA, Renner IG, Abramson SB, Edmondson HA. Production of acute hemorrhagic pancreatitis in the dog using venom of the scorpion, Buthus quinquestriatus. *Dig Dis Sci* 1983; 28: 429-439 [PMID: 689906 DOI: 10.1007/BF02430532]

17 Siech M, Heinrich P, Letko G. Development of acute pancreatitis in rats after single ethanol administration and induction of a pancreatic juice edema. *Int J Pancreatol* 1991; 8: 169-175 [PMID: 2053327]

18 Weber H, Merkord J, Jonas L, Wagner A, Schröder H, Käding U, Werner A, Dumbillner W. Oxygen radical generation and acute pancreatitis: effects of dibutyltin dichloride/ethanol and ethanol on rat pancreas. *Pancreas* 1995; 11: 382-388 [PMID: 8532655]

19 Werner J, Laposata M, Fernández-del Castillo C, Saghir M, Izzo RV, Lewandrowski KB, Warshaw AL. Pancreatic injury in rats induced by fatty acid ethyl ester, a nonoxidative metabolite of alcohol. *Gastroenterology* 1997; 113: 286-294 [PMID: 9207289 DOI: 10.1016/S0016-5085(97)70106-9]

20 Wedgwood KR, Adler G, Kern H, Reber HA. Effects of oral agents on pancreatic duct permeability. A model of acute alcoholic pancreatitis. *Dig Dis Sci* 1986; 31: 1081-1088 [PMID: 3757722 DOI: 10.1007/BF01300261]

21 Friedman HS, Lowery R, Shaughnessy E, Scorrza J. The effects of ethanol on pancreatic blood flow in awake and anesthetized dogs. *Proc Soc Exp Biol Med* 1983; 174: 377-382 [PMID: 6420795]

22 THAL A. Studies on pancreatitis. II. Acute pancreatic necrosis produced experimentally by the arthus sensitization reaction. *Surgery* 1955; 37: 911-917 [PMID: 14573312]

23 Janigan DT, Nevalainen TJ, MacAulay MA, Vethamany VG. Foreign serum-induced pancreatitis in mice. I. A new model of acute pancreatitis. *Lab Invest* 1975; 33: 591-607 [PMID: 1202281]

24 Nevalainen TJ. Pancreatic injury caused by intraduodenal injection of foreign serum in rat. *Virchows Arch B Cell Pathol* 1978; 27: 89-98 [PMID: 417460]

25 Kanno H, Nose M, Itoh J, Taniguchi Y, Kyogoku M. Spontaneous development of pancreatitis in the MRL/Mp strain of mice in autoimmune mechanism. *Clin Exp Immunol* 1992; 89: 68-73 [PMID: 1352748 DOI: 10.1111/j.1365-2249.1992.tb06879.x]

26 Lombardi B, Estes LW, Longnecker DS. Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. *Am J Pathol* 1975; 79: 465-480 [PMID: 1094837]

27 Denham W, Yang J, Fink G, Denham D, Carter G, Ward K, Norman J. Gene targeting demonstrates additive detrimental effects of interleukin 1 and tumour necrosis factor during pancreatitis. *Gastroenterology* 1997; 113: 1741-1746 [PMID: 9352880 DOI: 10.1016/j.gastro.1997.v113.pm9352880]

28 Suzuki S, Miyasaki K, Jimi A, Funakoshi A. Induction of...
November 14, 2015 | Volume 19 | Issue 42 | WJG | www.wjgnet.com

Zhao JB et al. Animal models of pancreatitis and visceral pain

acute pancreatitis by cerulein in human IL-6 gene transgenic mice. *Pancreas* 2000; 21: 86-92 [PMID: 10881937 DOI: 10.1097/00006676-200007000-00056]

Gloor B, Todd KE, Lane JS, Rigberg DA, Reber HA. Mechanism of increased lung injury after acute pancreatitis in IL-10 knockout mice. *J Surg Res* 1998; 80: 110-114 [PMID: 9790823 DOI: 10.1006/jsre.1997.5289]

Gerard C, Frossard JL, Bhatia M, Saluja A, Gerard NP, Lu B, Steer M. Targeted disruption of the beta-chemokine receptor CCR1 protects against pancreatitis-associated lung injury. *J Clin Invest* 1997; 100: 2022-2027 [PMID: 9329966]

Grady EF, Yoshimi SK, Maa J, Valeroso D, Vartanian RK, Rahim S, Kim EH, Gerard C, Gerard N, Bunnell NW, Kirkwood KS. Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice. *Br J Pharmacol* 2000; 130: 505-512 [PMID: 10821777]

Frossard JL, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, Steer ML. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. *Gastroenterology* 1999; 116: 694-701 [PMID: 10029629]

Fu K, Tomita T, Sarras MP, De Lisle RC, Andrews GK. Metallothionein protects against cerulein-induced acute pancreatitis: analysis using transgenic mice. *Pancreas* 1998; 17: 238-246 [PMID: 9788536 DOI: 10.1097/00006676-199810000-00003]

Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenberger M, Reinheckel T, Domschke W, Lippert H, Peters C, Deussing J, Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. *J Clin Invest* 2000; 106: 773-781 [PMID: 10995788 DOI: 10.1172/JCI9411]

Uman S, Sermels L, Overbergh L, Stas L, Van Leuven F, alpha2-macroglobulin- and muringoglobin-1- deficient mice. *A mouse model for acute pancreatitis. Am J Pathol* 1999; 153: 1541-1549 [PMID: 12106937]

Mizuma K, Schröder T, Kaarne M, Korpela H, Lempinen M. Serum phospholipase A2 in diet-induced pancreatitis. *Eur Surg Res* 1984; 16: 156-161 [PMID: 6202520]

Hegyi P, Rakonczay Z, Sári R, Góg C, Lonovics J, Takács T, Czakó L. L-arginine-induced experimental pancreatitis. *World J Gastroenterol* 2004; 10: 2003-2009 [PMID: 15257423]

Varga IS, Matkovics B, Czako L, Hai DQ, Kotorman M, Takacs T, Szavarni M. Oxidative stress changes in L-arginine induced pancreatitis in rats. *Pancreas* 1997; 14: 355-359 [PMID: 9163781 DOI: 10.1097/00006676-199705000-00005]

Pfeffer RB, Staisor O, Hinton JW. The morphological changes of the pancreas in hypovolemic shock and the effect of pretreatment with steroids. *Int J Pancreatol* 1987; 2: 23-32 [PMID: 3681033]

Reda F, Uhlischmid G, Ammann RW, Freiburghausen AU. Injection of microspheres into pancreatic arteries causes acute hemorrhagic pancreatitis in the rat: a new animal model. *Pancreas* 1990; 5: 188-193 [PMID: 2315295 DOI: 10.1007/00006676-199005000-00011]

Pfeiffer RB, Lazzarini-Robertson A, Saalafi D, Mixter G, Secoy CF, Hinton JW. Gradations of pancreatitis, edematous, through hemorrhagic, experimentally produced by controlled injection of microspheres into blood vessels in dogs. *Surgery* 1962; 51: 764-769 [PMID: 14486114]

Sjövall S, Holmin T, Evander A, Stenram U. Splenic and gastro-duodenal vein occlusion–influence on the pancreatic gland and on the outcome of experimental pancreatitis. *Int J Pancreatol* 1988; 3: 143-149 [PMID: 2452221]

Hoffmann TF, Leiderer R, Waldner H, Arbogast S, Messmer K. Ischemia reperfusion of the pancreas: a new in vivo model for acute pancreatitis. *Res Exp Med (Berl)* 1995; 195: 125-144 [PMID: 8570908 DOI: 10.1007/BF02576782]

Broe PJ, Zuidema GD, Cameron JL. The role of ischemia in acute pancreatitis: studies with an isolated perfused canine pancreas. *Surgery* 1982; 91: 377-382 [PMID: 6175032]

Baxter JN, Jenkins SA, Day DW, Roberts NB, Cowell DC, Mackie CR, Shields R. Effects of somatostatin and a long-acting somatostatin analogue on the prevention and treatment of experimentally induced acute pancreatitis in the rat. *Br J Surg* 1985; 72: 382-385 [PMID: 2581647 DOI: 10.1002/bjs.1800720516]

Popper HL, Necheles H. Edema of the pancreas. *Surg Gynecol Obstet* 1942; 74: 123

Popper HL, Necheles H, Russell KC. Transition of pancreatic edema into pancreatic necrosis. *Surg Gynecol Obstet* 1948; 87: 79-82 [PMID: 18860330]

Schnaidering N, Woody, PG, Cecilho JC, Van Buren DH. The role of biliary obstruction in the pathogenesis of acute pancreatitis in the opossum. *Surgery* 1986; 99: 688-693 [PMID: 2424109]

Chen JW, Thomas A, Woods CM, Schliothe AC, Toulou J, Saccone GT. Sphincter of Oddi dysfunction produces acute pancreatitis in the possum. *Gut* 2000; 47: 539-545 [PMID: 10986215 DOI: 10.1136/gut.47.4.539]

Neuwander-Tenti BA, Burton FR, Presti ME, Britton RS, Janney CG, Garvin PR, Brunnt EM, Galvin NJ, Poulos JE. Reputitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. *Dig Dis Sci* 2000; 45: 665-674 [PMID: 10759232]

Elsässer HP, Haake T, Grimmig M, Adler G, Kern HF. Reputitive cerulein-induced pancreatitis and pancreatic fibrosis in the rat. *Pancreas* 1992; 7: 385-390 [PMID: 1594561 DOI: 10.1097/00006676-199205000-00007]
Zhao JB et al. Animal models of pancreatitis and visceral pain

Segervård R, Sylvan M, Lempinen M, Larsson J, Permert J. Impact of chronic and acute high-fat feeding on acute experimental pancreatitis complicated by endotoxinaemia. *Scand J Gastroenterol* 2004; 39: 74-80 [PMID: 14992565 DOI: 10.1080/003655204100072733]

Vaquero E, Molero X, Tian X, Salas A, Malagelada JR. Myofibroblast proliferation, fibrosis, and defective pancreatic repair induced by cyclosporin in rats. *Gut* 1999; 49: 269-277 [PMID: 10403741 DOI: 10.1136/gut.49.5.269]

Sparrmann G, Merkord J, Jäschke A, Nizzo H, Jonas L, Lühr M, Liebe S, Emmrich J. Pancreatic fibrosis in experimental pancreatitis induced by dibutylin dichloride. *Gastroenterology* 1997; 112: 1644-1672 [PMID: 9136846 DOI: 10.1016/S0016-5085(97)00494-0]

Gukovsky I, Lugea A, Shahsahabi M, Cheng JH, Hong PP, Jung YJ, Deng QG, French BA, Lungo W, French SW, Tsukamoto H, Pandol SJ. A rat model reproducing key pathological responses of alcoholic chronic pancreatitis. *Am J Physiol Gastrointest Liver Physiol* 2008; 294: G68-G79 [PMID: 17884979 DOI: 10.1152/ajpgi.00006.2007]

Deng X, Wang L, Elm MS, Gabazadeh D, Diorio GJ, Eagon PK, Whitcomb DC. Chronic alcoholic consumption accelerates fibrosis in response to cerulein-induced pancreatitis in rats. *Am J Pathol* 2005; 166: 93-106 [PMID: 15632003 DOI: 10.1016/S0002-9440(05)62235-3]

Perides G, Tao X, West N, Sharma A, Steer ML. A mouse model of ethanol dependent pancreatic fibrosis. *Gut* 2005; 54: 1461-1467 [PMID: 15707229 DOI: 10.1136/gut.2004.042919]

Ohashi S, Nishio A, Nakamura H, Asada M, Tamaki H, Kawasaki K, Fukui T, Yodó J, Chiba T. Overexpression of redox-active protein thioredoxin-1 prevents development of chronic pancreatitis in mice. *Antioxid Redox Signal* 2006; 8: 1835-1845 [PMID: 16987036 DOI: 10.1089/ars.2006.8.1835]

Leung PS, Chan YC. Role of oxidative stress in pancreatic inflammation. *Antioxid Redox Signal* 2009; 11: 135-165 [PMID: 18837654 DOI: 10.1089/ars.2008.2109]

Delaney CP, McGeehan KE, Devrain P, Fitzpatrick JM. Pancreatic atrophy: a new model using serial intra-portaline injections of L-arginine. *Scand J Gastroenterol* 1993; 28: 1086-1090 [PMID: 8303212 DOI: 10.3199/03655529050983814]

Weaver C, Bishop AE, Polak JM. Pancreatic changes elicited by chronic administration of excess L-arginine. *Am J Physiol* 1994; 266: 71-87 [PMID: 700543 DOI: 10.1016/expm.1994.1007]

Yamaguchi T, Kihara Y, Taguchi M, Nagashio Y, Tashiro M, Nakamura H, Otsuki M. Persistent destruction of the basal membrane of the pancreatic duct contributes to progressive acinar atrophy in rats with experimentally induced pancreatitis. *Pancreas* 2005; 31: 369-372 [PMID: 16258372 DOI: 10.1097/01.mpaa.0000177929.61457.e5]

Lieber CS, DeCarli LM. Alcoholic liver injury: experimental models in rats and baboons. *Adv Exp Med Biol* 1975; 39: 579-593 [PMID: 1237225]

Lieber CS, DeCarli LM. Animal models of ethanol dependence and liver injury in rats and baboons. *Fed Proc* 1976; 35: 1232-1236 [PMID: 944146]

Sarles H, Lebrequil G, Tasso F, Figarella C, Clemente F, Devaux MA, Fagonde B, Payan H. A comparison of alcoholic pancreatitis in rat and man. *Gut* 1971; 12: 377-388 [PMID: 4329553 DOI: 10.1136/gut.12.5.377]

Tsukamoto H, Towner SJ, Yu CS, French SW. Potentiation of ethanol-induced pancreatic injury by dietary fat. Induction of chronic pancreatitis by alcohol in rats. *Am J Pathol* 1988; 131: 246-257 [PMID: 3358454]

Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K. WBN/Kob rats. A new spontaneously occurring model of chronic pancreatitis. *Int J Pancreatol* 1990; 6: 231-247 [PMID: 1698983]
Proteinase-activated receptor 2 mediates thermal hyperalgesia and is upregulated in a rat model of chronic pancreatitis. *Pancreas* 2011; 40: 300-307 [PMID: 21311307 DOI: 10.1097/MPA.0b013e318201cb1]

124 **Hughes MS**, Shenoy M, Liu L, Colak T, Mehta K, Pasricha PJ. Brain-derived neurotrophic factor is upregulated in rats with chronic pancreatitis and mediates pain behavior. *Pancreas* 2011; 40: 551-556 [PMID: 21499209 DOI: 10.1097/MPA.0b013e318214fb77]

125 **Friess H**, Shrikhande S, Shrikhande M, Martignoni M, Kulli C, Zimmermann A, Kappeler A, Ramesh H, Büchler M. Neural alterations in surgical stage chronic pancreatitis are independent of the underlying aetiology. *Gut* 2002; 50: 682-686 [PMID: 11950816 DOI: 10.1136/gut.50.5.682]

126 **Büchler M**, Weihe E, Friess H, Malfertheiner P, Bockman E, Müller S, Nohr D, Beger HG. Changes in peptidergic innervation in chronic pancreatitis. *Pancreas* 1992; 7: 183-192 [PMID: 1372738 DOI: 10.1097/00006676-199203000-00009]

127 **Zhu ZW**, Friess H, Wang L, Zimmermann A, Büchler MW. Brain-derived neurotrophic factor (BDNF) is upregulated and associated with pain in chronic pancreatitis. *Dig Dis Sci* 2001; 46: 1633-1639 [PMID: 11508661]

128 **Vera-Portocarrero LP**, Xie JY, Kowal J, Ossipov MH, King T, Porreca F. Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. *Gastroenterology* 2006; 130: 2155-2164 [PMID: 16762636 DOI: 10.1053/j.gastro.2006.03.025]

129 **Liu PY**, Lu CL, Wang CC, Lee IH, Hsieh JC, Chen CC, Lee HF, Lin HC, Chang FY, Lee SD. Spinal microglia initiate and maintain hyperalgesia in a rat model of chronic pancreatitis. *Gastroenterology* 2012; 142: 165-173.e2 [PMID: 21963786 DOI: 10.1053/j.gastro.2011.09.041]

130 **Zhu Y**, Colak T, Shenoy M, Liu L, Pai R, Li C, Mehta K, Pasricha PJ. Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis. *Gastroenterology* 2011; 141: 370-377 [PMID: 21473865 DOI: 10.1053/j.gastro.2011.03.046]

131 **Cattaruzza F**, Johnson C, Leggit A, Grady E, Schenk AK, Cevikbas F, Cedron W, Bondada S, Kirkwood R, Malone B, Steinhoff M, Bunnett N, Kirkwood KS. Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice. *Am J Physiol Gastrointest Liver Physiol* 2013; 304: G1002-G1012 [PMID: 23558809 DOI: 10.1152/ajpgi.00005.2013]

132 **Liao XZ**, Zhou MT, Mao YF, Xu H, Chen H, Sun JH, Xiong YC. Analogic effects of gabapentin on mechanical hypersensitivity in a rat model of chronic pancreatitis. *Brain Res* 2010; 1337: 104-112 [PMID: 20417627 DOI: 10.1016/j.brainres.2010.04.035]

P- Reviewer: Chow WK **S- Editor:** Gou SX **L- Editor:** A **E- Editor:** Zhang DN
