The comparison of dexmedetomidine and ketamine for pediatric dental surgery
A meta-analysis of randomized controlled studies

Jin Qiu, MD, Zhifang Luo, MD*

Abstract

Introduction: Dexmedetomidine and ketamine are used for the sedation of pediatric dental surgery. We conduct a systematic review and meta-analysis to compare the sedation of dexmedetomidine and ketamine for pediatric dental surgery.

Methods: PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched. Randomized controlled trials (RCTs) assessing the influence of dexmedetomidine versus ketamine on pediatric dental surgery are included. Two investigators independently have searched articles, extracted data, and assessed the quality of included studies. This meta-analysis is performed using the random-effect model.

Results: Four RCTs involving 163 children are included in the meta-analysis. Compared with ketamine for pediatric dental surgery, dexmedetomidine results in comparable sedation level (very low quality, 2 RCTs, n = 40; Std. MD = –0.26; 95% CI = –0.74 to 0.23; P = .31), intraoperative analgesia scores (very low quality, 2 RCTs, n = 98; Std. MD = 0.17; 95% CI = –0.23 to 0.57; P = .40), postoperative analgesia scores (very low quality, 2 RCTs, n = 98; Std. MD = 0.23; 95% CI = –0.17 to 0.62; P = .27), DBP (very low quality, 3 RCTs, n = 123; Std. MD = –0.38; 95% CI = –1.04 to 0.27; P = .25) and SpO₂ (very low quality, 3 RCTs, n = 123; Std. MD = 0.24; 95% CI = –0.20 to 0.69; P = .28), but significantly decreases heart rate (very low quality, 3 RCTs, n = 123; Std. MD = –1.51; 95% CI = –2.75 to –0.27; P < .02) and SBP (very low quality, 3 RCTs, n = 123; Std. MD = –0.62; 95% CI = –1.16 to –0.08; P < .02), longer recovery time (very low quality, 3 RCTs, n = 138; Std. MD = 1.74; 95% CI = 0.23 to 3.25; P < .02).

Conclusions: Dexmedetomidine and ketamine have similar sedation, analgesia scores, and hemodynamic balance, but very low quality of the evidence (GRADE) is revealed in this meta-analysis.

Abbreviations: CI = confidence interval, RCTs = randomized controlled trials.

Keywords: dexmedetomidine, ketamine, meta-analysis, pediatric dental surgery, sedation

1. Introduction

Pain, fear, anxiety, and anger are the main emotional components when treating a child by a pedodontist.[1–3] Some behavioral (non-pharmacologic) management procedures (e.g., tell-show-do, positive reinforcement, and controlled expectations) should be conducted in the most fearful and uncooperative children.[4,5] Pharmacological methods have emerged as an important approach to augment child cooperativeness and provide quality dental care. Pharmacological sedation in pedodontics is performed in order to transform the patient’s behavior to a level that allows employing behavior management techniques.[5–7]

Dexmedetomidine is known as a potent, highly selective α₂ adrenergic agonist, and can inhibit sympathetic activity by activating the receptors in the central nervous system.[8,9] It results in a reduction in blood pressure and heart rate, sedation, and anxiolysis in dose-dependent way, with no respiratory depression.[10,11] Dexmedetomidine has been extensively studied in dental surgery.[12–16] Ketamine, a phencyclidine derivative can produce a state of sedation, anesthesia, immobility, analgesia, and amnesia through blocking n-methyl d-aspartate receptors.[13,14]

Although much research has been conducted on different sedation drugs in children, a “golden” sedation drug has yet to be discovered.[16] We, therefore, conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to compare the efficacy of dexmedetomidine versus ketamine for the sedation of pediatric dental surgery.

2. Materials and methods

Ethical approval and patient consent are not required since this is a systematic review and meta-analysis of previously published studies. The systematic review and meta-analysis are conducted and reported in adherence to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).[17]

2.1. Search strategy and study selection

Two investigators have independently searched the following databases (inception to June 2018): PubMed, Embase, and the Cochrane Register of Controlled Trials. The electronic search strategy is performed using the following keywords: dexmedetomidine, and ketamine, and dental. We also have checked the reference lists of the screened full-text studies to identify other potentially eligible trials.
The following inclusive selection criteria are applied:
(i) population: children undergoing dental surgery;
(ii) intervention: dexmedetomidine;
(iii) comparison: ketamine; and
(iv) study design: RCT.

2.2. Data extraction and outcome measures

We have used a piloted data-extraction sheet, which covers the following information: first author, number of patients, age, male, weight, and detail methods in 2 groups. Data are extracted independently by 2 investigators, and discrepancies are resolved by consensus. We have contacted the corresponding author to obtain the data when necessary. No simplifications and assumptions are made.

The primary outcome is sedation level. Secondary outcomes include intraoperative analgesia, postoperative analgesia, heart rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), SpO2, and recovery time.

2.3. Risk of bias in individual studies

Risk of bias was assessed by 2 authors independently via using Cochrane risk of bias tool which includes 7 criteria (rating: low, unclear, or high risk of bias): random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias. Discrepancies are rechecked with a third reviewer and consensus is obtained by discussion.\[18\]

2.4. Statistical analysis

We have estimated standard mean differences (Std. MDs) with 95% confidence intervals (CIs) for continuous outcomes (sedation level, intraoperative analgesia, postoperative analgesia, heart rate, SBP, DBP, SpO2, and recovery time) \[19,20\]. A random-effects model is used regardless of heterogeneity. Heterogeneity is reported using the \(I^2\) statistic, and \(I^2 > 50\%\) indicates significant heterogeneity.\[21\] Whenever significant heterogeneity is present, we search for potential sources of heterogeneity. Sensitivity analysis is performed to detect the influence of a single study on the overall estimate via omitting 1 study in turn when necessary. Owing to the limited number (<10) of included studies, publication bias is not assessed. Results are considered statistically significant for \(P < .05\). All statistical analyses are performed using Review Manager Version 5.3 (The Cochrane Collaboration, Software Update, Oxford, UK).

2.5. Quality of evidence

The quality of evidence for each outcome is evaluated based on the methodological quality and the confidence in the results, and it is assessed by GRADE recommendations as high quality, moderate quality, low quality, or very low quality.\[22\]

3. Results

3.1. Literature search, study characteristics, and quality assessment

A detailed flowchart of the search and selection results is shown in Figure 1. 471 potentially relevant articles are identified...
initially. Finally, 4 RCTs that meet our inclusion criteria are included in the meta-analysis.[1,5,23,24]

The main characteristics of the 4 included RCTs are presented in Table 1. The 4 studies are published between 2014 and 2016, and sample sizes range from 23 to 56 with a total of 163. There are oral and intranasal approaches for 2 drugs. The doses of dexmedetomidine range from 1 μg/kg to 5 μg/kg, and the doses of ketamine are about 2 to 8 mg/kg.

Among the 4 RCTs, 2 studies have reported sedation level[5,23] 2 studies have reported intraoperative analgesia and postoperative analgesia.[11,24] 3 studies have reported heart rate, SBP, DBP, and SpO2[1,5,24] and 3 studies have reported recovery time.[1,13,21] The details for risk of bias tool are shown in Figure 2. Randomized sequence generation, allocation concealment, blinding and outcome data are conducted adequately in most studies. GRADE evidence is represented by summary of findings tables (Table 2).

3.2. Primary outcome: sedation level

This outcome data is analyzed with the random-effects model, and the pooled estimate of the 2 included RCTs suggested that there is no statistical difference of sedation level between dexmedetomidine and ketamine for pediatric dental surgery (very low quality, 2 RCTs, n=40; Std. MD = −0.26; 95% CI = −0.74 to 0.23; P = .31), with no heterogeneity among the studies ($I^2 = 0\%$, heterogeneity $P = .31$, Fig. 3).

3.3. Sensitivity analysis

No heterogeneity is observed among the included studies for the sedation level. Thus, we do not perform sensitivity analysis by omitting 1 study in each turn to detect the source of heterogeneity.

3.4. Secondary outcomes

Compared to ketamine for pediatric dental surgery, dexmedetomidine shows no significant impact on intraoperative analgesia scores (very low quality, 2 RCTs, n=98; Std. MD = 0.26; 95% CI = −1.04 to 1.56; P = .25, Fig. 4), postoperative analgesia scores (very low quality, 2 RCTs, n=98; Std. MD = 0.23; 95% CI = −0.62 to 0.60; P = .27, Fig. 5), but is associated with remarkably decreased heart rate (very low quality, 3 RCTs, n=123; Std. MD = −1.51; 95% CI = −2.50 to −0.56; P = .02, Fig. 6) and SBP (very low quality, 3 RCTs, n=123; Std. MD = −0.62; 95% CI = −1.16 to −0.08; P = .02, Fig. 7). No significant difference is found in DBP (very low quality, 3 RCTs, n=123; Std. MD = −0.38; 95% CI = −1.04 to 0.27; P = .25, Fig. 8) and SpO2 (very low quality, 3 RCTs, n=123; Std. MD = 0.24; 95% CI = −0.20 to 0.69; P = .28, Fig. 9) between 2 groups. In addition, dexmedetomidine results in longer recovery time than ketamine for pediatric dental surgery (very low quality, 3 RCTs, n=138; Std. MD = 1.74; 95% CI = 0.23–3.23; P = .02, Fig. 10).

4. Discussion

Unlike conventional GABAergic sedative drugs (e.g., midazolam), dexmedetomidine acts in the locus coeruleus of the central nervous system and produces the electroencephalogram activity resembling natural sleep. Patients become easily orientated and cooperative.[11,25–28] One study compares the intranasal dexmedetomidine (1 μg/kg), ketamine (5 mg/kg), and placebo (saline) in
150 children between 1 and 10 years to facilitate propofol administration for a magnetic resonance imaging. The results reveal fewer children withdrew or fought against the procedure in the 2 treatment groups whose premedication has equal efficacy.\[29\] Our meta-analysis has included 4 RCTs involving 163 children, and the results demonstrate that dexmedetomidine and ketamine have comparable sedation level, intraoperative analgesia, postoperative analgesia scores, DBP, and SpO\(_2\) for pediatric dental surgery, but dexmedetomidine premedication leads to decreased heart rate, SBP and increased recovery time. The hemodynamics is well balanced in 2 groups.

Oral administration is widely accepted as efficacious, economic, and convenient among all routes of conscious sedation. Intranasal site is highly vascularized and very permeable for drug administration in order to ensure rapid absorption into systemic circulation. The administration of the drugs is well tolerated, effective, and fast acting.\[30\] Nebulized dexmedetomidine administration can provide rapid drug absorption through nasal, respiratory, and buccal mucosa, and allow bioavailability of 65% through nasal mucosa and 82% through buccal mucosa.\[31,32\]

Oral administration may be difficult in uncooperative children. An atomized spray of drug results in maximizing surface area coverage with a thin layer of drug, less drug loss to the oropharynx, higher cerebrospinal fluid levels, better patient acceptability, and improved clinical effectiveness than oral administration.\[33\] One RCT compares effects of nebulized dexmedetomidine versus nebulized ketamine and their combination on mask induction and satisfactory sedation in children undergoing dental surgeries. The results find that nebulized combination of low-dose ketamine and dexmedetomidine has more satisfactory sedation and provide a smoother induction of general anesthesia, more rapid recovery than ketamine or dexmedetomidine alone.\[23\] In addition, all included RCTs have reported no serious adverse events.\[1,5,23,24\]

This meta-analysis has several potential limitations that should be taken into account. First, our analysis is based on only 4 RCTs, and all of them have a small sample size (n < 100). Overestimation of the treatment effect is more likely in smaller trials compared with larger samples. Although there is no significant heterogeneity in this meta-analysis, different doses and approaches of drugs may have an influence on the pooling results. Next, more RCTs should be conducted to explore the combination of dexmedetomidine and ketamine on the sedation of pediatric dental surgery. Finally, some unpublished and missing data may lead bias to the pooled effect.

Table 2

Treatment Group	dexmedetomidine group	Ketamine group	Relative Effect (95% CI)	No of Participants (studies)	Quality of the evidence (GRADE)	Comments
Sedation level	0.26 ± 0.05	0.33 ± 0.04	-0.07 (95% CI)	2 (studies)	very low	
Intraoperative analgesia (score)	0.17 ± 0.02	0.20 ± 0.03	-0.03 (95% CI)	2 (studies)	very low	
Postoperative analgesia (score)	0.25 ± 0.04	0.27 ± 0.05	-0.02 (95% CI)	2 (studies)	very low	
Heart rate (beats/min)	1.90 ± 0.15	2.05 ± 0.18	-0.15 (95% CI)	2 (studies)	very low	
SBP	62.2 ± 2.1	63.0 ± 2.3	-0.8 (95% CI)	2 (studies)	very low	
DBP	82.4 ± 1.8	83.2 ± 1.9	-0.8 (95% CI)	2 (studies)	very low	
SpO\(_2\)%	94.0 ± 1.2	94.2 ± 1.3	-0.2 (95% CI)	2 (studies)	very low	
Recovery time (min)	3.25 ± 0.25	3.30 ± 0.26	-0.05 (95% CI)	2 (studies)	very low	

The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
Figure 2. Assessment for risk of bias.

Figure 3. Forest plot for the meta-analysis of sedation level.

Figure 4. Forest plot for the meta-analysis of intraoperative analgesia (score).

Figure 5. Forest plot for the meta-analysis of postoperative analgesia (score).
5. Conclusion

Dexmedetomidine and ketamine provide comparable sedation for pediatric dental surgery, but this study has very low-GRADE quality.

Author contributions

Conceptualization: Zhifang Luo.
Formal analysis: Zhifang Luo.
Methodology: Zhifang Luo.
Software: Jin Qiu.
Supervision: Jin Qiu.
Writing – original draft: Jin Qiu.
Writing – review & editing: Jin Qiu.

References

[1] Surendar MN, Pandey RK, Saksena AK, et al. A comparative evaluation of intranasal dexmedetomidine, midazolam and ketamine for their sedative and analgesic properties: a triple blind randomized study. J Clin Pediatr Dent 2014;38:255–61.
[2] Al-Sabbagh M, Okeson JP, Bertoli E, et al. Persistent pain and neurosensory disturbance after dental implant surgery: prevention and treatment. Dent Clin North Am 2015;59:143–56.
[3] Singla NK, Desjardins PJ, Chang PD. A comparison of the clinical and experimental characteristics of four acute surgical pain models: dental extraction, lumbar puncture, joint replacement, and soft tissue surgery. Pain 2014;155:441–56.
[4] Gupta A, Marya CM, Bhatia HP, et al. Behaviour management of an anxious child. Stomatologia 2014;16:3–6.
[5] Malhotra PU, Thakur S, Singhal P, et al. Comparative evaluation of dexmedetomidine and midazolam-ketamine combination as sedative agents in pediatric dentistry: A double-blind randomized controlled trial. Contemp Clin Dent 2016;7:186–92.
[6] Dealing with dental pain. The Johns Hopkins medical letter health after surgery. Pediatr Dent 2014;38:255
[7] Tomoya Y, Higuchi H, Mori M, et al. Chronic orofacial pain in dental patients: retrospective investigation over 12 years. Acta Med Okayama 2014;68:269–75.
[8] Duan X, Coburn M, Rossaint R, et al. Efﬁciency and safety of intranasal dexametomidine, midazolam and ketamine for their sedative and analgesic properties: a triple blind randomized study. J Clin Pediatr Dent 2014;38:255–61.
[9] Singh V, Thepra M, Kirti S, et al. Dexmedetomidine as an additive to midazolam for pediatric dental surgery. Anesth Prog 2018;65:124–6.
[10] Ghasemi M, Behnaz F, Hajian H. The effect of dexmedetomidine on postoperative delirium: a double-blind, randomized controlled trial. Pain Res Manag 2012;17:1–6.
[11] Kjaergard LL, Villumsen J, Grau C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 2001;135:982–9.
[12] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.
[13] Zanaty OM, El Metainy SA. A comparative evaluation of nebulized dexmedetomidine and midazolam for procedural sedation in children undergoing MRI: a double-blind, placebo-controlled trial. J Anesth 2014;28:12–8.
[14] Cortinas M, Oya B, Caparros P, et al. Oral ketamine-midazolam premedication of uncooperative patients in major outpatient surgery. Rev Esp Anestesiol Reanim 2010;57:479–85.
[15] Alcaino EA. Conscious sedation in paediatric dentistry: current philosophies and techniques. Ann Royal Australasian Coll Dent Surg 2000;15:206–10.
[16] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2533. doi: 10.1136/bmj.b2533.
[17] JPT H, SG. Cochrane Handbook for Systematic Reviews of Interventions. West Sussex UK: John Wiley & Sons; 2008.
[18] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary. Control Clin Trials 1996;17:1–2.
[19] Singh C, Pandey RK, Saksena AK, et al. A comparative evaluation of the newer aspect of dexametomidine. Drug Discov Today 2002;7:967–75.
[20] Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002;7:967–75.
[21] Reshetnikov AP, Kasatkin AA, Urakov AL, et al. Management of exaggerated gag reﬂex in dental patients using intravenous sedation with dexametomidine. Dent Res J 2017;14:356–8.
[22] Keles S, Kocaturk O. Comparison of oral dexametomidine and midazolam for premedication and emergence delirium in children after dental procedures under general anesthesia: a retrospective study. Drug Des Devel Ther 2018;12:647–53.
[23] Reshetnikov AP, Kasatkin AA, Urakov AL, et al. Management of exaggerated gag reﬂex in dental patients using intravenous sedation with dexametomidine. Dent Res J 2017;14:356–8.
[24] Gyanesh P, Haldar R, Srivastava D, et al. Comparison between intranasal dexametomidine and intranasal ketamine as premedication for procedural sedation in children undergoing MRI: a double-blind, randomized, placebo-controlled trial. J Anesth 2014;28:12–8.
[25] Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today 2002;7:967–75.
[26] Mason KP, Lerman J. Review article: dexmedetomidine in children: current knowledge and future applications. Anesth Analg 2011;113:1129–42.
[27] Anttila M, Pennilt A, Jelmin G, et al. Bioavailability of dexametomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol 2003;56:691–3.
[28] Wolfe TR, Braude DA. Intranasal medication delivery for children: a brief review and update. Pediatrics 2010;126:352–7.