NEW INSTANCES FOR MAXIMUM WEIGHT INDEPENDENT
SET FROM A VEHICLE ROUTING APPLICATION

YUANYUAN DONG, ANDREW V. GOLDBERG, ALEXANDER NOE, NIKOS PAROTSIDIS,
MAURICIO G.C. RESENDE, AND QUICO SPAEN

Abstract. We present a set of new instances of the maximum weight inde-
dependent set problem. These instances are derived from a real-world vehicle
routing problem and are challenging to solve in part because of their large
size. We present instances with up to 881 thousand nodes and 3.83 million
edges.

1. Vehicle Routing Application of MWIS

Given an undirected graph $G = (V, E)$ where V is its set of nodes and E its set of
edges, a subset of nodes $S \subseteq V$ is an independent set if the elements of S are pairwise
nonadjacent in G. If $w(v)$ is the weight of node $v \in V$, the weight of independent set
S is $W(S) = \sum_{v \in S} w(v)$. In the maximum weight independent set (MWIS) problem
we seek an independent set S^* such that $W(S^*) \geq W(S)$ for all independent sets
$S \subseteq V$ in G. This optimization problem is NP-hard [Garey and Johnson 1979]
and it is often solved using heuristic algorithms.

We provide a collection of instances of an MWIS problem that appeared as
subproblems in algorithms solving real-life long-haul vehicle routing problems at
Amazon. Our goal is to enhance the set of benchmark instances available to al-
gorithm researchers working on MWIS. Our instances differ from other publicly
available instances and the new collection includes some large instances.

To gain intuition into the application, consider a stochastic heuristic for the
problem. This heuristic produces different solutions for different pseudo-random
generator seeds. Each solution consists of a set of routes. We want to recombine
routes from multiple solutions to obtain a better solution.

Each route consists of a driver and a set of loads assigned to the driver. A subset
of routes is feasible if no two routes in the subset share a driver or a load. Each route
has a weight. The objective function is the sum of route weights. The problem is
to find a feasible solution of the maximum total weight.

To state this problem as MWIS, we build a conflict graph as follows. Nodes
of the graph correspond to routes and weights correspond to route weights. We
connect two nodes by an edge if the corresponding routes have a conflict, i.e., they
share a driver or a load.

Our application has additional information that one can (optionally) use in an
algorithm. First, we have a good initial solution, the best of the solutions we

Date: May 31, 2021– Parts of this paper were written while the first, third, and fourth authors
were employed at Amazon.com.

Key words and phrases. Maximum weight independent set, Problem instances, Experimental
algorithms.
Table 1. List of VR instances in the library. For each of the 38 instances, the table lists the instance name, the number of nodes and edges in the conflict graph, the total weight of a starting solution, the linear programming (LP) upper bound, the compressed tar files of the directory with the files that define the instance, and the size (in Mbytes) of the compressed tar file.

| Instance | $|V|$ | $|E|$ | Initial Sol. | LP bound | Filename | Mbytes |
|----------|-----|-----|---------|-----------|-------------|-------|
| MT-D-01 | 979 | 3 | 841 | 228 874 404 | 238 166 485 | MT-D-01.tar.gz | 0.03 |
| MT-D-200 | 10 880 | 547 529 | 290 723 059 | 290 881 566 | MT-D-FN.tar.gz | 2.07 |
| MT-W-01 | 1 006 | 3 149 | 299 132 358 | 312 121 568 | MT-W-01.tar.gz | 0.03 |
| MT-W-200 | 12 320 | 554 288 | 383 620 215 | 384 099 118 | MT-W-200.tar.gz | 1.86 |
| MT-W-FN | 10 880 | 547 529 | 290 723 059 | 290 881 566 | MT-W-FN.tar.gz | 1.97 |
| MR-D-01 | 9 790 | 5 584 | 157 638 414 | 162 496 875 | MR-D-01.tar.gz | 0.14 |
| MR-D-03 | 21 499 | 168 504 | 1 716 544 141 | 1 739 544 141 | MR-D-03.tar.gz | 0.17 |
| MR-D-05 | 27 621 | 295 700 | 1 775 123 794 | 1 796 703 313 | MR-D-05.tar.gz | 0.15 |
| MR-D-FN | 30 467 | 367 408 | 1 794 070 793 | 1 809 854 459 | MR-D-FN.tar.gz | 0.18 |
| MR-W-FN | 15 639 | 267 908 | 1 328 552 109 | 1 334 413 294 | MR-W-FN.tar.gz | 0.14 |
| MW-D-01 | 3 988 | 19 522 | 465 730 126 | 477 563 775 | MW-D-01.tar.gz | 0.03 |
| MW-D-20 | 12 054 | 718 152 | 522 485 254 | 531 906 123 | MW-D-20.tar.gz | 1.77 |
| MW-D-40 | 33 563 | 2169 909 | 533 938 531 | 543 390 252 | MW-D-40.tar.gz | 1.86 |
| MW-D-FN | 47 504 | 4577 834 | 542 182 073 | 549 872 520 | MW-D-FN.tar.gz | 2.07 |
| MW-W-01 | 10 790 | 789 734 | 1 328 552 109 | 1 334 413 294 | MW-W-01.tar.gz | 2.49 |
| MW-W-10 | 18 023 | 2 257 068 | 1 342 415 152 | 1 360 791 627 | MW-W-10.tar.gz | 6.76 |
| MW-W-FN | 22 316 | 3 495 108 | 1 350 675 180 | 1 373 020 454 | MW-W-FN.tar.gz | 10.41 |
| CW-T-C-1 | 266 403 | 162 263 516 | 1 298 968 | 1 353 493 | CW-T-C-1.tar.gz | 547.73 |
| CW-T-C-2 | 194 413 | 125 379 039 | 933 792 | 957 291 | CW-T-C-2.tar.gz | 417.49 |
| CW-T-D-4 | 651 861 | 245 316 909 | 4 789 561 | 4 977 981 | CW-T-D-4.tar.gz | 845.85 |
| CR-T-C-1 | 863 368 | 368 431 905 | 5 548 904 | 5 768 579 | CR-T-C-1.tar.gz | 1 071.34 |
| CR-T-C-2 | 880 974 | 380 666 488 | 5 617 351 | 5 867 579 | CR-T-C-2.tar.gz | 1 071.34 |
| CR-T-D-4 | 881 910 | 383 057 545 | 5 629 351 | 5 869 439 | CR-T-D-4.tar.gz | 1 314.11 |
| CR-T-D-6 | 578 244 | 245 739 404 | 3 841 538 | 3 990 563 | CR-T-D-6.tar.gz | 845.81 |
| CR-T-D-7 | 270 067 | 108 503 583 | 1 969 254 | 2 041 822 | CR-T-D-7.tar.gz | 370.47 |

We provide initial solutions for our instances. One can use this solution to possibly warm-start a MWIS algorithm.

Second, we have information about many cliques in the conflict graph. For a fixed load (or driver), nodes corresponding to the routes containing the load (driver) form a clique: every pair of such nodes is connected. This allows us to use the well-known clique integer linear programming (ILP) formulation of the problem:

$$\max \sum_{v \in V} w_v x_v$$

subject to

$$C_2, C_3, \ldots, C_k,$$

$$x_v \in \{0, 1\}, \forall v \in V,$$
where C_2, C_3, \ldots, C_k are, respectively, the sets of 2-clique, 3-clique, \ldots, and k-clique inequalities. In general, for cliques Q of size k, we have the set of k-clique inequalities

$$\sum_{v \in Q} x_v \leq 1,$$

for all cliques Q of size k.

One can solve a linear programming (LP) relaxation of the problem, which assigns each node a value in the closed real interval $[0, 1]$. Note that the objective function of the LP relaxation provides an upper bound on the corresponding MWIS solution value. We provide both the cliques and the relaxed LP solutions with our instances.

Table 1 lists the instances we provide and includes the graph size, the initial solution value, and the relaxed LP bound.

2. Input Graph Format

We place each instance in a separate directory containing several files with instance name, graph edge set, node weights, clique information, and relaxed LP solution values. Directory names correspond to the instance names. Next we describe the file formats.

For an undirected, node-weighted graph $G = (V, E, w)$ with n nodes, m edges and integral node IDs from $[1, n]$, we give the following files:

- **instance_name.txt** – Name of the instance.
- **conflict_graph.txt** – Edges of G. The file has a total of $m + 1$ lines. The first line gives the numbers of nodes and edges: “n m”. Each of the lines 2, \ldots, $m + 1$ describes an edge $e = (u, v) \in E$ as “u v”.
- **node_weights.txt** – Node weights. The file has a total of n lines, each describing the weight of node $v \in V$ as “v $w(v)$”. The weights are integers.
- **solution.txt** – Initial solution for warm start. It contains one line per node in the initial solution, giving its node index: if a node v in the solution, the file contains a line with “v” in it.
- **cliques.txt** – Set of cliques in G. For each clique $C = \{c_1, c_2, \ldots, c_k\}$, the file contains one line as “c_1 c_2 \ldots c_k”.
- **lploads.txt** – Solution for the relaxed LP problem for the MWIS problem on the clique graph, where each node $v \in V$ has a relaxed LP value $l(v) \in [0, 1]$. The file has n lines, each with the LP value of a node $v \in V$ as “v $l(v)$”, where $l(v)$ is a floating point number.

The files **conflict_graph.txt** and **node_weights.txt** are needed by any MWIS algorithm. The other files are optional.

Note that some of our graphs are large, with the compressed tar file being over 1 Gbyte in size. 32-bit integers are insufficient to represent the total weight of a solution. An implementation needs to use 64-bit integers or doubles to represent the weight of these independent sets.

3. Downloading the Instances

The full set of 38 instances can be downloaded as gzipped tar files from the AWS OpenData site:

https://registry.opendata.aws/mwis-vr-instances/
using the AWS command line interface (CLI) [AWS 2021].

Instruction on installation of AWS CLI can be found in [AWS 2021]. As an example, installation on MacOS can be done using Terminal with the commands

curl "https://awscli.amazonaws.com/AWSCLIV2.pkg" -o "AWSCLIV2.pkg"
sudo installer -pkg AWSCLIV2.pkg -target /

To list the contents of the repository using AWS CLI, run the command

aws s3 ls s3://mwis-vr-instances/ --no-sign-request

To download an instance, say file MT-W-01.tar.gz from the repository using AWS CLI, run the command

aws s3 cp s3://mwis-vr-instances/MT-W-01.tar.gz . --no-sign-request

4. CONCLUDING REMARKS

In this paper we introduce a set of large-scale maximum weight independent set instances arising in a real-world vehicle routing application. Our goal in making these instances available to other researchers is that progress can be made in the field. Other researchers can try their existing MWIS solvers on these instances and can be motivated to develop new solvers for them.

ACKNOWLEDGMENT

On behalf of all authors, the corresponding author (MGCR) states that there is no conflict of interest, no funding, and the data is freely available.

REFERENCES

AWS. AWS Command Line Interface, 2021. URL https://docs.aws.amazon.com/cli/index.html Last visited May 27, 2021.

M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.
(Yuanyuan Dong) Dallas, TX USA. The work was done while the author was at Amazon.com
Email address: njdyy03@gmail.com

(Andrew V. Goldberg) Amazon.com, East Palo Alto, CA USA.
Email address: avg@alum.mit.edu

(Alexander Noe) University of Vienna, Vienna, Austria. The work was done while the author was at Amazon.com
Email address: alexander.noe@univie.ac.at

(Nikos Parotsidis) Google, Zurich, Switzerland. The work was done while the author was at Amazon.com
Email address: nickparol@gmail.com

(Mauricio G.C. Resende) Amazon.com and Industrial & Systems Engineering, University of Washington, Seattle, WA USA.
Email address: mgcr@berkeley.edu, mgcr@uw.edu

(Quico Spaen) Amazon.com, East Palo Alto, CA USA.
Email address: qspaen@berkeley.edu