Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (*Lolium perenne*)

Bertrand Lasseur1,†,§, Jérémy Lothier1,‡,§, Andres Wiemken2, André Van Laere3, Annette Morvan-Bertrand1, Wim Van den Ende3 and Marie-Pascale Prud'homme1,*

1 UMR INRA-UCBN 950 ECP Ecotoxicologie Végétale, Agronomie & nutrition NCS, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France
2 Department of Botany, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
3 Department of Biology, Laboratory for Molecular Plant Physiology, Botany Institute, KULeuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
† Present address: Unité de Recherche en Génomique Végétale (URGV), UMR INRA-1165/CNRS-8114/UEVE, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.
‡ Present address: Université d’Angers, UMR-462 SAGAH, 2 Bd Lavoisier, F-49045 Angers Cedex, France.
§ The first two authors contributed equally to the work.
* To whom correspondence should be addressed: E-mail: marie-pascale.prudhomme@unicaen.fr

Received 3 September 2010; Revised 29 October 2010; Accepted 29 October 2010

Abstract

The main storage compounds in *Lolium perenne* are fructans with prevailing β(2–6) linkages. A cDNA library of *L. perenne* was screened using *Poa secunda* sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length *Lp6-SFT* clone was isolated as shown by heterologous expression in *Pichia pastoris*. High levels of *Lp6-SFT* transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, *Lp6-SFT* transcription was high in mature leaf blades but with no concomitant accumulation of fructans. *In vitro* studies with the recombinant *Lp6-SFT* protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of *L. perenne* was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in *L. perenne* tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from *Hordeum vulgare*, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant *L. perenne* 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like *L. perenne* 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in *L. perenne* and *H. vulgare* can be explained by the presence of 6G-FFT activity in *L. perenne* and its absence in *H. vulgare*.

Key words: Bifurcose, fructan, gene expression, heterologous expression, *Hordeum vulgare*, levan neoseries, *Lolium perenne*, *Pichia pastoris*, sucrose:fructan 6-fructosyltransferase.
Introduction

Perennial ryegrass (*Lolium perenne* L.) is the predominant forage grass in European agriculture, where it provides the major supply of nutrients for grazing sheep and cattle. The primary source of readily available energy in this forage is water-soluble carbohydrates (WSC) composed of glucose, fructose, sucrose and fructans (fructosyl polymers) (Smith et al., 1998). Perennial ryegrass accumulates large amounts of fructans in the tiller base comprising leaf sheaths and elongating leaf bases (Marx et al., 1997; Morvan-Bertrand et al., 2001). Apart from their role as storage carbohydrates used for leaf regrowth (Yamamoto and Mino, 1989; Morvan-Bertrand et al., 2001) or for early spring growth (Pollock and Jones, 1979), fructans are believed to confer cold and drought tolerance (Hendry and Wallace, 1993; Pilon-Smits et al., 1995; De Roover et al., 2000; Amiard et al., 2003; Hisano et al., 2008; Kawakami et al., 2008), possibly by protecting membranes under such stressful conditions (Demel et al., 1998; Livingston and Henson, 1998; Hincha et al., 2000; Vereyken et al., 2003). For humans, fructans are one of the most promising ingredients for functional foods since they act as prebiotics (Rao, 1999) and have favourable effects in the prevention of cardiovascular diseases, colon cancer, and osteoporosis (Kaur and Gupta, 2002). Furthermore, the chemical and pharmaceutical industries have a growing interest in exploiting the benefits of fructans (Roberfroid, 1999; Ritsema and Smeekens, 2003). Potential applications include encapsulation for the controlled release of drugs (Poulain et al., 2003), emulsifiers in cosmetics, and additives in the textile and paper industry (Stevens et al., 2001).

Fructans are sucrose-derived fructose polymers found in ~15% of flowering plant species (Hendry and Wallace, 1993). Fructans from different sources exhibit different degrees of polymerization (DP) and different linkages between adjacent fructose residues. In *L. perenne*, fructans of DP ³ 8 have been well characterized and belong essentially to three series: (i) the inulin series with a terminal glucose residue and β(2–1)-linked fructose residues, (ii) the inulin neoseries with an internal glucose residue and β(2–1)-linked fructose residues, and (iii) the levan neoseries with an internal glucose residue and β(2–6)-linked fructose residues. High DP fructans (DP > 8) comprised 75% of the fructan molecules with an internal glucose residue and there were 70 times more β(2–6)-linked fructose residues than β(2–1)-linked ones (Pavis et al., 2001a). Based on the *L. perenne* fructan profile and on known properties of fructosyltransferases (FTs) involved in fructan synthesis in plants, it has been proposed that at least four enzyme activities are required to produce the complement of fructans in this species: a sucrose:sucrose 1-fructosyltransferase (1-SST), a fructan:fructan 1-fructosyltransferase (1-FFT), a fructan:fructan 6G-fructosyltransferase (6G-FFT), and a 6-fructofuranosyltransferase (6-FT) (Pavis et al., 2001b). The cloning of two cDNAs in perennial ryegrass corresponding to FTs and the study of their corresponding enzymatic properties have allowed a better definition of the fructan synthesis model occurring in this species. A 1-SST catalyses the initial step producing 1-kestotriose from two molecules of sucrose (Chalmers et al., 2003). In the second step, a 6G-FFT produces 6G-kestotriose, using 1-kestotriose as fructosyl donor and sucrose as fructosyl acceptor (Lasseur et al., 2006). In further steps, higher polymeric fructans would be synthesized by a 1-FFT activity through β(2–1)-linked chain elongation or by a 6-FT activity through β(2–6)-linked chain elongation. It has been demonstrated recently that the 6G-FFT isolated from *L. perenne* also had 1-FFT activity so that there might be no need for a separate 1-FFT protein (Lasseur et al., 2006). The only known protein that synthesizes β(2–6) linkages between two fructosyl residues in plants is the 6-SFT enzyme described in barley (Duchateau et al., 1995; Sprenger et al., 1995) and in wheat (Kawakami and Yoshida, 2002). In both these species, which are devoid of fructans with an internal glucosyl residue, the main product of 6-SFT is 1 and 6-kestotetraose (bifurcose), a DP 4 branched fructan. In *Lolium* species, however, because of the notable absence of bifurcose, the presence of another transferase, a fructan:fructan 6-fructosyltransferase (6-FTT), was postulated (Pavis et al., 2001a, b).

The aims of this study were (i) to identify the enzyme responsible for the biosynthesis of β(2–6) linkages in *L. perenne* fructans, (ii) to assess its enzymatic properties, and (iii) to study its regulation at the transcriptional level. To this purpose, a cDNA clone encoding 6-SFT from *L. perenne* stubble, composed of elongating leaf bases and mature leaf sheaths, was isolated and characterized by heterologous expression in *Pichia pastoris*. The enzymatic properties of the recombinant protein were examined and compared with the properties of recombinant barley 6-SFT, an enzyme that has been studied extensively in the past (Duchateau et al., 1995; Sprenger et al., 1995; Hochstrasser et al., 1998). Finally, expression of the *Lp6-SFT* gene was studied in leaf tissues of *L. perenne* leaves depending on developmental stage and carbohydrate status.

Materials and methods

Plant material

Seeds of *L. perenne* cv. Bravo were germinated in 9-l pots and grown hydroponically for 8 weeks on a nutrient solution as previously described by Prud’homme et al. (1992). The nutrient solution was aerated continuously and replaced every week. Plants were grown in a greenhouse with day/night temperatures of 22/18 °C and a photoperiod of 16 h of natural light supplemented by a photosynthetic photon flux density of 110 µmol photons m⁻² s⁻¹ (Phyto tubes, Claude, GTE, Puteaux, France).

After 8 weeks of growth, plants were harvested. Based on the presence of the ligule, mature leaves were separated from elongating leaves. Sheaths and elongating leaf bases previously enclosed by the sheaths were dissected longitudinally into five segments (four 10-mm-long segments, 0–40 mm from the leaf base, and a fifth variable length segment of ~40 mm). Blades and the emerged part of elongating leaves were divided into three equal parts (Fig. 8).

Synthesis of fructan was induced in the plants 8 weeks after sowing, according to the method used by Smouter and Simpson...
(1991). Plants were maintained under continuous light with a photosynthetic photon flux density of 150 μmol photons m⁻² s⁻¹ for up to 72 h, with roots and shoot meristems in the nutrient solution cooled at 4 °C. Control swards were grown under the original plant growth conditions, with a daylength of 16 h.

Plants were divided into three parts: sheaths of mature leaves, blades of mature leaves together with emerged parts of elongating leaves, and elongating leaf bases.

Each batch of sampling was done in triplicate. One part of the harvested tissues was used immediately for enzyme extraction whereas the remainder was frozen, stored at −80 °C for RNA extraction, or freeze-dried for soluble carbohydrate extraction.

Preparation and screening of a cDNA library of L. perenne
Leaf sheaths and elongating leaf bases (1.5 g fresh weight) of 8-week-old plants treated to accumulate fructans (Smouter and Leaf sheaths and elongating leaf bases (1.5 g fresh weight) of original plant growth conditions, with a daylength of 16 h.

obtained was used to purify poly(A⁺) RNA with Dynabeads oligo (dT)₃₄ kit (Dynal, France) following the manufacturer’s recommendation. Double-stranded cDNA was synthesized from poly(A⁺) RNA and a cDNA library was constructed using a Lambda-Zap cDNA library kit and the Gigapack III Gold Cloning Kit (Stratagene, France). The cDNA library was screened with a fragment of 621 bp of Poa secunda 6-SFT (Wei and Chatterton, 2000). This fragment was labelled with [α³²P]dCTP using the random priming method with NEBlot kit (Biolabs, France). Membranes were hybridized overnight at 42 °C and washed twice in 2xSSC, 0.5% SDS for 15 min at room temperature, then rinsed twice in the same buffer at 56 °C. After three rounds of purification, positive clones were excised and recircularized in a pBluescript vector (Stratagene, USA). Sequencing of positive clones was done by Genome Express (Meylan, France). Nucleotide sequences were compared with sequences available in the NCBI Databank.

Expression of isolated cDNA in P. pastoris
The putative coding region of mature Lp6-SFT (determined by sequence homology with the N- terminal sequence of the native 6-SFT of barley (Speangered et al., 1995)) was amplified by PCR with the primers PIC6SFT-F (5’-GTCCGAATTCGGGAGGGTGGTTCCGGTTGGAGCAGC-3’) and PIC6SFT-R (5’-GACGTGTCCTTAAACCATGACGGT-3’). EcoRI and XbaI sites are indicated in bold in the primers. PCR was performed with Pfu Proofreading Polymerase (Promega, France). PCR conditions were: 1 min at 95 °C; 5 cycles of 30 s at 95 °C, 30 s at 56 °C, 4 min at 72 °C followed by 30 cycles of 30 s at 95 °C, 30 s at 68 °C, 4 min at 72 °C; final extension for 5 min at 72 °C. PCR products and pPICZαA (expression vector) were digested with restriction enzymes corresponding to restriction sites introduced by PCR and purified with Nucleoscript Extract Kit (Macherey-Nagel, Germany). The digested vector was dephosphorylated with CIAP (Stratagene, USA), and then PCR products were cloned in-frame behind the α-factor signal of the pPICZαA vector. The plasmids were transformed into Escherichia coli competent cells as described (Van den Ende et al., 2001). Cells were plated on 2xYT medium supplemented with zeocine (Invitrogen, The Netherlands) as a selection marker. Positive clones were used for vector amplification. P. pastoris wild-type strain X33 was transformed by electroporation with 20 μg of SacI-linearized pPICZαA-Lp6SFFT. Transformants were selected on YPDS/Zeocine plates.

In order to produce recombinant Lp6-SFT enzyme for characterization, a 90-ml preculture medium (BMGY) was inoculated with a single colony and incubated overnight at 30 °C, 200 rpm. Cells were harvested by centrifugation (10 min, 1000 g), resuspended in 20 ml of induction medium (BMMY) and incubated for 4 d at 29 °C. Methanol was replenished every day to a final concentration of 2%. After incubation, the cells were harvested by centrifugation (10 min, 1000 g) and the pellet (containing the recombinant enzyme) was used for enzyme assays (Ritsema et al., 2006). Indeed, results obtained from the supernatant showed weak FT activity, suggesting that the major part of the enzyme was bound to the fungal cell wall.

To produce recombinant Hv6-SFT, P. pastoris strain X-33 transformed with barley 6-SFT cDNA was used (Hennig et al., 1998). Induction of protein expression was performed as described above, except that after incubation in BMMY, protein purification was carried out by following the protocol described by De Coninck et al. (2005).

Characterization of the P. pastoris expressed recombinant Lp6-SFT and Hv6-SFT
Sodium azide 0.02% (w/v) was added to all buffers to prevent microbial growth. Cell pellet aliquots (~25 μl) containing recombinant Lp6-SFT or cell supernatant aliquots (~25 μl) containing Hv6-SFT enzymes were incubated with substrates for different time intervals at 30 °C. All substrates were used at a final concentration of 200 mM. Reaction mixtures containing the recombinant Lp6-SFT or Hv6-SFT and different amount of the recombinant 6G-FFT/1-FFT from L. perenne (Lasseur et al., 2006) were incubated for 3 h at 30 °C. Reactions were stopped by heating for 2 min at 95 °C.

Carbohydrates of the assay mixture were analysed by high-performance anion exchange chromatography and pulsed amperometric detection (HPAEC-PAD ICS-3000; Dionex, Sunnyvale, CA, USA) equipped with a CarboPac PA100 anion-exchange column (4×250 mm). The solutions used were: A (90 mM NaOH) and B (90 mM NaOH and 500 mM NaOAc). The running profile applied to the reaction mixture containing sucrose and 6G-kestotriose was: T=4 min, 100% A; T=0 min (injection), 100% A; T=10 min, 98% A, 2% B; T=20 min, 80% A, 20% B; T=20.1 min, 100% B; T=24 min 100% B; T=24.1 min, 100% B; T=27 min, 100% A. The running profile applied to the other reaction mixtures was: T=0, 100% A; T=6 min, 98% A, 2% B; T=16 min, 80% A, 20% B; T=26 min, 65% A, 35% B; T=26.1 min, 100% B; T=31 min 100% B; T=31.1 min, 100% A; T=36 min, 100% A. Peaks were identified by comparison with known wheat carbohydrates and with a standard solution composed of commercial fructans (1-kestotriose, 1,1-kestotetraose; Megazyme, Ireland) and purified fructans (6-kestotriose, 6G,6-kestotetraose, 6G,1-kestotetraose; kind gifts of N. Shimoi, N.J. Chatterton and D.P. Livingston). 6G-Kestotriose was purified by HPLC Sugar-Pak from the supernatant of the yeast Xanthophyllomyces dendrorhous (Kritzinger et al., 2003).

RNA isolation and RT-PCR analysis
Plant tissues were ground in liquid nitrogen and suspended in a pre-warmed (80 °C) solution consisting of 750 μl of phenol and 750 μl of extraction buffer [0.1 M LiCl, 100 mM Tris-HCl, 10 mM EDTA, 1% (w/v) SDS, pH 8.0]. After shaking, 750 μl of chloroform–isoamylalcohol (24:1) were added and the solution was centrifuged for 5 min (4 °C) at 20 000 g. Total RNA was precipitated with LiCl (final concentration 2 M) overnight at 4 °C. Following centrifugation for 30 min (4 °C) at 20 000 g, the pellet was suspended in 250 μl of water treated with diethylypyrocarbonate (0.1%, v/v) and 250 μl of phenol–chloroform–isoamylalcohol (25:24:1), mixed, and centrifuged for 5 min. RNA in the supernatant was precipitated again with 1 ml of absolute ethanol and 50 μl of Na-acetate buffer (3 M; pH 5.6) and stored for 1 h at −80 °C. After centrifugation for 20 min (4 °C) at 20 000 g, the pellet was resuspended in 100 μl of RNase-free water. Then, samples were treated following the Clean-up protocol of the RNeasy Mini kit (Qiagen) coupled to a DNase treatment (RNase-free DNase; Qiagen, France). One microgram was used for retrotranscription using the i-script cDNA synthesis kit (Bio-Rad, France). cDNA was then amplified by PCR using 5’-CAGCTTCTGCAAGCAGCA-3’ and 5’-CGCTTCAGCAGCCGAGGC-3’ primers.
5'-CCTTAAACCATTGACGGTCTCG-3' as specific primers for *Lp6-SFT*, 3'-CGGATAACCCTAATTTCTAG-3' and 5'-GTTACTCATTC AATTACCAAGAC-3' as primers for 18S rRNA. Amplification was achieved in the following conditions so that for each cDNA, products were analysed during the exponential phase of the PCR curve: 5 min at 94°C; 30 cycles (Lp6-SFT) or 13 cycles (18S rRNA) of denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, and elongation at 72 °C for 1 min, and a final elongation at 72 °C for 7 min. PCR products were analysed by agarose gel electrophoresis. Three RNA extractions were performed corresponding to three biological repetitions. Each PCR was performed twice. Typical results are shown. The specificity of 6-SFT amplification was checked by sequencing the PCR product and by monitoring the dissociation curve on several samples in real-time PCR using the Chromo 4 System (Bio-Rad, France).

Results

Molecular characterization of L. perenne fructosyltransferase

A perennial ryegrass cDNA library, prepared from stubble of plants induced to accumulate fructan-related enzymes, was screened with a 32P-labelled insert of the *P. secunda* 6-SFT (Wei and Chatterton, 2000). After repeated screenings, several positive clones were picked up. The longest cDNA was fully sequenced and consisted of 2359 bp, containing an open reading frame (ORF) of 1872 bp and a poly(A) sequence at its 3' end. The ORF encoded a polypeptide of 623 amino acids (Lp6-SFT, Fig. 1) with seven potential N-glycosylation sites, a calculated pI of 5.32, and an estimated molecular weight of 60.9 kDa for the mature protein. The cDNA was first termed ‘putative 6-FT’ (Lasseur et al., 2002, accession no. AF494041) because of its high identity (70–72%) with the 6-SFT polypeptides of *P. secunda*, wheat, and barley (Fig. 1). It shares 100% identity with an FT cloned later in perennial ryegrass and called FTb (Fig. 2) (Gadegaard et al., 2008). However, the functionality of the corresponding protein has not been checked by expressing the cDNA in a heterologous system.

The cDNA shows 97% identity at the amino acid level with a sequence isolated from *Lolium temulentum* identified as a ‘putative fructan 6-fructosyltransferase’ (L6-FT, Gallagher et al., 2004) in reference to the present Lp6-SFT. It also shares 99% identity at the amino-acid level (621/623 amino acids) with a cDNA called ‘putative fructosyltransferase 1’ (pfft1) described in Hisano et al. (2008) and called previously Lp1-FFT in Chalmers et al. (2005) (Fig. 1). The newly cloned cDNA shares 63% and 62% identity with the deduced amino acid sequence of *L. perenne* 1-SST (Chalmers et al., 2003) and 6G-FFT1/1-FFT (Lasseur et al., 2006) as well as 64% and 66% identity with two other putative invertases or FTs of *L. perenne*, LpFT1 (Lidgett et al., 2002), and LpFT4 (Chalmers et al., 2005), respectively. LpFT1 harbour the WMNDPNG motif and then would correspond to an invertase according to the work realized by Ritsema et al. (2006) and Lasseur et al. (2009) whereas LpFT4 does not harbour this motif and then would be a fructosyltransferase.

When compared with other FTs and invertases, the newly cloned cDNA had greater identity with sequences from liliaceous (monocot) plants (51–56%) than with sequences for 1-SSTs, 1-FFTs, and invertases from asteraceous (dicot) plants (45–49%) (Fig. 2). Furthermore, the cDNA showed greater homology with vacuolar-type than with cell-wall-type invertases. It contains the SDPNG region and the conserved domains of Glycoside Hydrolase Family 32.

Expression of recombinant protein in P. pastoris: comparison with the recombinant 6-SFT of Hordeum vulgare

The cDNA was expressed in *P. pastoris* to investigate the enzymatic properties of the corresponding protein.

FT activity was first tested in the culture medium (supernatant) where the recombinant protein was expected to be produced (Hochstrasser et al., 1998 and references therein). Incubation of the recombinant protein with only sucrose (200 mM) led to the synthesis of 6-kestotriose, product of a sucrose:sucrose 6-fructosyltransferase (6-SST) activity, and to the release of fructose, product of invertase activity (data not shown). However, fructan production was very low and not stable, so that FT was further assessed in the pellet containing the transformed yeast cells, where FT activity has been shown to be retained sometimes (Ritsema et al., 2006). It has to be kept in mind, however, that this condition does not allow the complete release of glucose and fructose produced during fructan metabolism [SFT, fructan exohydrolase (FEH) activities] or sucrose degradation (invertase activity), in the incubation medium since hexoses can be used by the yeast cells.

Again, incubation of the recombinant protein with sucrose alone allowed the formation of 6-kestotriose (Fig. 3A). Therefore, sucrose acts as both a fructosyl donor and a fructosyl acceptor. 1-Kestotriose is not a fructosyl donor since incubation with 1-kestotriose (200 mM) alone (Fig. 3B) did not lead to the synthesis of a 6-linked fructan. Instead, 1,1-kestotetraose (nystose) was produced (1-FFT activity) together with sucrose and fructose [fructan 1-exohydrolase (1-FEH) activity]. Sucrose is not the only fructosyl acceptor. Indeed, incubation with sucrose and 1-kestotriose led to the synthesis of 1 and 6-kestotetraose (bifurcose), the first fructan of the mixed series found in wheat and barley (Fig. 3C). However, it has to be kept in mind that neither this fructan nor the subsequent mixed series is found in vivo in the tissues of *L. perenne* (Pavis et al., 2001a, b). Instead, *L. perenne* plants produce a majority of levan neoseries built on the 6G-kestotetraose backbone (Pavis et al., 2001a, b). 6G-kestotriose could then represent an ideal acceptor of fructosyl residues. Indeed, incubation with both sucrose and 6G-kestotriose allowed the synthesis of 6G,6-kestotetraose (Fig. 3D). Consequently, the recombinant protein of *L. perenne* is able to synthesize at least two fructans with β(2–6) linkages [1 and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose], 1-Kestotriose and 6G-kestotriose represent two potential fructan acceptors of fructosyl residues for Lp6-SFT. Since
sucrose is the fructosyl donor but not the sole fructosyl acceptor, the putative 6-FT of *L. perenne* corresponds therefore to a 6-SFT. The recombinant protein led also to the production of 1-kestotriose when incubated with sucrose alone (Fig. 3A) or together with 6G-kestotriose (Fig. 3D), and to the production of nystose when incubated with 1-kestotriose alone (Fig. 3B) or together with sucrose (Fig. 3C). However, the small amount of 1-kestotriose or nystose produced makes it unlikely that the recombinant protein is a genuine 1-SST or 1-FFT. The recombinant protein is probably not a genuine 1-FEH either since the amount of fructose released was...
small when the recombinant protein was incubated with 1-kestotriose alone (Fig. 3B).

As previously reported (Hochstrasser et al., 1998), the recombinant 6-SFT protein of barley produced bifurcose when incubated with both sucrose and 1-kestotriose (Fig. 4A). However, the ability of the protein to elongate the 6G-kestotriose has never been addressed (Duchateau et al., 1995). Despite the fact that 6G-kestotriose and levan neo-series do not occur in barley, Hv6-SFT also produced 6G,6-kestotetraose when incubated with sucrose and 6G-kestotriose (Fig. 4B). The discrepancy between the pattern of fructans produced in vivo and the enzymatic characteristics assessed in vitro might be explained in barley by the absence of 6G-FFT activity and consequently the absence of 6G-kestotriose. In L. perenne, the presence of 6G-FFT activity could prevent the transfer of fructose between sucrose and 1-kestotriose by the 6-SFT activity. Indeed, when the two recombinant 6-SFT proteins were incubated in the presence of increasing amounts of recombinant 6G-FFT/1-FFT from L. perenne, bifurcose ceased to be produced (Fig. 5A, B) while it did not in controls (Fig. 5C, D) in which the products of the enzymes incubated separately were combined

Fig. 2. Unrooted phylogenetic tree of protein sequences of some invertase and fructan metabolism genes including the newly cloned L. perenne 6-SFT (in bold). Their respective accession numbers are: Allium cepa invertase AJ006067, A. cepa 1-SST AJ006066, A. cepa 6G-FFT AY07838, Allium sativum 1-SST AY098442, Arabidopsis thaliana invertase AY039610, A. thaliana invertase AY046009, Asparagus officinalis invertase AF002656, A. officinalis 6G-FFT AB084283, Beta vulgaris invertase AJ277455, Brassica oleracea invertase AF274298, B. oleracea invertase AF274299, Capsicum annuum invertase P93761, Cichorium intybus invertase AJ419971, C. intybus 1-SST U81520, C. intybus 1-FFT U84398, Cynara scolymus 1-SST Y06662, C. scolymus 1-FFT AY00481, Daucus carota invertase Q42722, D. carota invertase X75352, Festuca arundinacea 1-SST AJ297369, Helianthus tuberosus 1-SST AJ09757, H. tuberosus 1-FFT AJ09757, H. vulgare 6-SFT X83233, Ipomoea batatas invertase AF017082, I. batatas invertase AY039793, Lycopersicon esculentum invertase P29000, L. perenne invertase AY082350, L. perenne 1-SST AJ245431, L. perenne 6G-FFT AF492836, L. perenne 6-SFT AF494041, L. perenne LpFT1 AF481763, L. perenne LpFT4 DQ073970, L. temulentum putative 6-FT AJ532550, Oryza sativa invertase AF276703, O. sativa invertase AF276704, Phaseolus vulgaris invertase O24509, P. secunda 6-SFT AF192394, Prunus cerasus invertase AY048579, Saccharum officinarum invertase AY302083, Taraxacum officinale 1-SST AJ250634, T. aestivum invertase AY635225, T. aestivum 6-SFT AB029887, T. aestivum 1-SST AB029888, Tulipa gesneriana invertase X97642, Vicia faba invertase Q43857, Vitis vinifera invertase Q9S943, V. vinifera invertase Q9S944, Zea mays invertase P49175.
afterwards at the same ratio as the enzymes. Instead, controls showed constant amounts of 6-kestotriose and bifurcose (Fig. 5C, D). Increasing amounts of 6G-FFT/1-FFT products (6G-kestotriose, nystose) were barely visible, probably because the extracts were too diluted. Indeed, when extracts were four times concentrated, amounts of 6G-kestotriose and nystose increased together with increasing amounts of the 6G-FFT/1-FFT recombinant protein (data not shown). A fourth fructan was produced. It might be produced by 6G-FFT/1-FFT activity (1,1 and 6G-kestopentaose and/or 1 and 1,6G-kestopentaose) or by 6-SFT activity (6G,6-kestotetraose). Since it has the same retention time as the 6G,6-kestotetraose, it might correspond to this fructan.

Absence of bifurcose in *L. perenne* might also result from a so-called bifurcosidase activity (Kawakami et al., 2005). To test this hypothesis, proteins were extracted from *L. perenne* plants in two physiological conditions in which bifurcosidase could operate, depending on its role in vivo: from plants accumulating fructans (if bifurcosidase participates to fructan synthesis) or from plants degrading fructans after defoliation (if bifurcosidase is induced after defoliation together with other FEHs to mobilize fructans for regrowth). Bifurcose is synthesized by wheat or barley (Duchateau et al., 1995; Sprenger et al., 1995). After incubation of these crude protein extracts with bifurcose
extracted from wheat, bifurcose was not degraded (data not shown). So a ‘bifurcosidase’ does not seem to operate in *L. perenne*.

Effect of leaf developmental stage on gene expression pattern of Lp6-SFT

Leaf growth in grasses is confined to the basal region, which is enclosed by the sheaths of mature leaves (Schnyder et al., 1990). Cells are displaced away from their origin as a result of continued production and elongation of new cells. The tissue that emerges from the enclosing leaf sheaths is almost fully differentiated and photosynthetically active (Wilhelm and Nelson, 1978). In order to follow the transcription of *Lp6-SFT* in these tissues, four 1-cm long segments and a fifth longer segment were cut, starting from the base of growing leaves and leaf sheaths. Leaf blades and emerged parts of growing leaves were divided into three parts of equal length (Fig. 7). From each segment, carbohydrates, proteins, and total RNA were extracted. Results obtained for sucrose, fructans, 1-SST, and 6G-FFT activities together with the corresponding transcripts have been reported previously in Lasseur et al. (2006). 6-SFT activity has not been followed because its specific substrate, the 6G-kestotriose, is not commercially available. A 311-bp fragment of *Lp6-SFT* cDNA was amplified by RT-PCR from the same samples. In elongating leaves, the transcript level of *Lp6-SFT* was highest in the basal segment (Fig. 7) mainly composed of dividing cells, where the accumulation of fructan and sucrose was maximal and where activity of 1-SST and 6G-FFT was greatest (Lasseur et al., 2006). In mature leaf sheaths, *Lp6-SFT* was expressed in the three first segments (Fig. 7) concomitant with fructan synthesis (Lasseur et al., 2006). Together with fructan levels and FT enzyme activities, *Lp6-SFT* transcription dropped subsequently along the axis of leaf sheaths and of enclosed parts of elongating leaves, so that they became barely or no longer detectable in the fifth segment of each tissue (Fig. 7). In photosynthetically active tissues, fructans were present in lower amounts than in sink tissues (Lasseur et al., 2006). *Lp6-SFT* mRNA fragments were not detected in mature leaf blades. Surprisingly, they were amplified in the last segment of the emerged part of the elongating leaves (Fig. 7).

Transcript levels of Lp6-SFT upon induction of fructan accumulation in leaves

Accumulation of large quantities of fructans can be induced in leaves of grasses by cooling the roots and continuous illumination of the shoots (Smouter and Simpson, 1991; Guerrand et al., 1996; Pavis et al., 2001a, Wei et al., 2001, Lasseur et al., 2006). After several time intervals, shoots were harvested and dissected into leaf blades, leaf sheaths, and elongating leaf bases. Fructans started to accumulate in elongating leaf bases and in leaf sheaths 6 h after the beginning of the treatment while in leaf blades, fructans increased later and only slightly (Lasseur et al., 2006). *Lp6-SFT* cDNA was amplified by RT-PCR from these same samples. *Lp6-SFT* transcription level increased in elongating leaf bases and in leaf sheaths upon induction of fructan accumulation (Fig. 8), following the curve of fructan levels (Lasseur et al., 2006). Surprisingly, *Lp6-SFT* transcripts,
which were not detected in leaf blades of control plants, became strongly induced in leaf blades of illuminated plants at between 6 h and 24 h of treatment while the fructan level slightly increased after 48 h (Lasseur et al., 2006).

Discussion

Lp6-SFT and Hv6-SFT, two similar enzymes but different fructan patterns in planta

Fructosyl residues in fructans of *Lolium* species are predominantly β(2–6) linked (Tomasic et al., 1978; Sims et al., 1992; Bonnett et al., 1994; St John et al., 1997; Pavis et al., 2001a). In this paper, we describe for the first time the isolation and the functional characterization of a fructosyltransferase able to produce β(2–6) linkages in *Lolium* species.

The cDNA was first termed ‘putative 6-FT’ (Lasseur et al., 2002, accession no. AF494041) because of its high identity (74%) to the 6-SFT polypeptide of *P. secunda*. It shares 99% identity with *prft1* described by Hisano et al. (2008). In Chalmers et al. (2005), the corresponding protein was described as an Lp1-FFT. However, the functionality of the corresponding protein could not be deeply assessed because of troubles with activity when expressing the cDNA in *P. pastoris* (Hisano et al., 2008). The two amino acids that differ between the two cDNAs (Fig. 1) are not located in the mature protein if we assume that the mature protein begins at the same position as for the 6-SFT of barley [AGGFPW motif; Sprenger et al., 1995] (Fig. 1). So it can be concluded that the two cDNAs (Lp6-SFT and Lp1-FFT) correspond to the same protein. Differences between the cDNAs could be attributed to the fact that they have been cloned from different varieties (variety Bravo in this study compared with variety Aberystwyth in Hisano et al., 2008). Gallagher et al. (2006) cloned a genomic DNA in perennial ryegrass corresponding to a ‘6-SFT like’ (Lp6-S/F-FT), and found that the corresponding cDNA shared 99% identity (621/624 amino acids) with the cDNA cloned in this work. Amongst the three amino acids that differed, two are not present in the mature protein. Again, we can assume that this cDNA and the newly cloned cDNA correspond to the same protein. In their study, Hisano et al. (2008) cloned two
other ‘6-SFT-like’ cDNAs called ‘putative fructosyltransferase 2’ (prft2) and ‘putative fructosyltransferase 6’ (prft6) sharing, respectively, 95% (599/624 amino acids) and 96% (602/624 amino acids) identity with prft1. Given the very high identity between these three cDNAs (prft1, prft2, and prft6), the authors assumed that some of these genes may be allelic.

When expressed in *P. pastoris*, the recombinant protein corresponding to the newly cloned cDNA demonstrated a 6-SFT activity. Indeed, this protein is able to use sucrose as fructosyl donor and both 1-kestotriose and 6G-kestotriose as fructosyl acceptors, producing respectively bifurcose and 6G,6-kestotetraose. Therefore, in perennial ryegrass, there is no need for a different enzyme such as a 6-FFT to produce the β2,6-fructosyl linkages. The main product of the recombinant 6-SFT protein from barley in the presence of sucrose and 6G-kestotriose is also the 6G,6-kestotetraose, despite the absence of fructans with internal glucosyl residues in this plant. Thus, the catalytic properties of *L. perenne* 6-SFT resemble those of 6-SFT from barley. When incubated with sucrose and 1-kestotriose, both enzymes produced bifurcose. When incubated with sucrose and 6G-kestotriose, both enzymes produced 6G,6-kestotetraose. In addition, both enzymes have invertase activity and both enzymes are not inhibited by 6G-kestotriose and nystose. We demonstrate therefore that 6-SFT of *L. perenne* and *H. vulgare* have close enzymatic characteristics, so that the specificity of the fructans produced in the two species depends on the 6G-FFT/1-FFT activity, present in *L. perenne* and absent in *H. vulgare*.

In *Lolium* species, bifurcose has neither been found in shoot tissues, nor been produced by incubation of protein crude extract with sucrose and 1-kestotriose (Pavis et al., 2001a, b). According to the present data, bifurcose is not produced by the 6-SFT activity when the 6G-FFT/1-FFT activity operates in vitro. Absence of bifurcose did not result
from its degradation by a bifurcosidase activity or from inhibition of its synthesis by the products of the 6G-FFT/1-FFT activity. 6-SFT and 6G-FFT/1-FFT share common substrates, sucrose and 1-kestotriose, but give different products by catalysing fructosyl transfer either from sucrose to 1-kestotriose or from 1-kestotriose to sucrose, respectively. No affinity measurements have been attempted for the two enzymes. However, since the 6-SFTs from Lolium and barley show close characteristics in vitro, as demonstrated by the present work, it is reasonable to assume that the 6-SFT from wheat might be quite similar too. Schroeven et al. (2008) derived an apparent K_m of between 300 and
by the wheat 6-SFT. Since the donor K_m for sucrose was estimated at 16 mM, it can be derived that the acceptor K_m for 1-kestotriose should be very high to explain the overall apparent K_m. On the other hand, a rough estimation of the donor K_m for 1-kestotriose of the *Lolium* 6G-FFT (Lasseur *et al.*, 2006) was ~300 mM. Therefore, absence of bifurcose in *L. perenne* tissues might be explained by a higher affinity of 6G-FFT/1-FFT for 1-kestotriose than 6-SFT for the same substrate. Moreover, from data presented in Fig. 6, it could be presumed that the affinity of perennial ryegrass 6-SFT to 1-kestotriose was lower than that of barley 6-SFT while its affinity to 6G-kestotriose was higher. Therefore, the absence of bifurcose in *L. perenne* tissues might be explained by a higher affinity of 6G-FFT/1-FFT for 1-kestotriose than that of 6-SFT for the same substrate, together with a high affinity of 6-SFT for 6G-kestotriose when it is produced.

In addition to the 6-SFT activity, the recombinant protein exhibits 1-SST, 1-FEH, and 1-FFT activities. The 1-FFT activity is probably the reason why a protein sharing 99% identity with Lp6-SFT was first called 1-FFT by Yamada (AN AB186920) (personal communication reported by Chalmers *et al.*, 2005). The associate activities might be artefactual due to differences in folding or glycosylation pattern as demonstrated for barley and wheat 6-SFT when expressed in *P. pastoris* (Hochstrasser *et al.*, 1998; Kawakami and Yoshida, 2002).

Conclusively, fructans present in *L. perenne* might be synthesized by a three-enzyme system including 1-SST, 6G-FFT together with 1-FFT, and 6-SFT (Fig. 9). Together with 1-SST, 6-SFT is responsible for diverting sucrose to fructans. In grasses, 6-SFT has therefore a prominent role in fructan synthesis, conforming to the hypothetical model suggested by Wiemken *et al.* (1995).

Regulation of 6-SFT expression is tissue specific

Fructan-synthesizing genes show different temporal and spatial patterns of expression depending on the C sink-source status in the leaves. Indeed, in sink leaf tissues of grass species, the largest amount of 6-SFT mRNA was found in the first segment of elongating leaves and leaf sheaths (Fig. 7), where large fructan stores are deposited temporarily and where fructan-synthesizing activities (1-SST and 6G-FFT) are highest (Chalmers *et al.*, 2003; Lasseur *et al.*, 2006). It declined thereafter along the leaves, together with fructan and enzymatic levels. In *L. temulentum*, the putative fructosyltransferase FT 2:2, sharing 96.4% homology with *Lp6-SFT* at the DNA level, was also predominantly expressed in tiller bases (Gallagher *et al.*, 2004). A similar result was obtained for 1-SST in the developing leaf of *Festuca arundinacea* (Lüsch *et al.*, 2000). In sink tissues of *Lolium*, transcript profiles of S-type FTs (1-SST, 6-SFT) and F type FT (6G-FFT) genes, generally consistent with both enzymatic activity measurements whenever possible [1-SST activity, 6G-FFT activity but unfortunately not 6-SFT activity since the substrate (6G-kestotriose) is not commercially available] and levels of fructan accumulation, suggest that these genes are regulated primarily at the transcriptional level.

Surprisingly, in elongating leaves, *Lp6-SFT* was expressed at the tip but not in the proximal part of the leaf that had emerged from the sheath, similarly to 1-SST in *F. arundinacea* leaves (Lüsch *et al.*, 2000). However, fructans barely accumulate at the leaf tip (Lasseur *et al.*, 2006). Interestingly, similar results have been reported for the putative fructosyltransferase FT 2:2 of *L. temulentum*. Transcripts were detected in photosynthetically active tissue but did not correlate with fructan synthesis (Gallagher *et al.*, 2004). Moreover, *Lp6-SFT* transcripts accumulated in leaf blades of plants that were continuously illuminated but where barely any fructan accumulated (Lasseur *et al.*, 2006). It could be argued that photosynthetically active tissues keep on exporting sucrose, and might not reach the sucrose threshold to allow efficient fructan accumulation despite the presence of active FTs. Unfortunately and as reported above, 6-SFT activity increase could not be assessed. However, since in the same conditions, other FT activity increase was prevented (Lasseur *et al.*, 2006), it is hypothesized that in photosynthetically active tissue, fructan metabolism genes including *Lp1-SST*, *Lp6-G-FFT*, and probably also *Lp6-SFT*, are regulated mainly at post-transcriptional level in a context of forced accumulation of fructans throughout the whole plant. As in barley leaf blades, regulation might differ according to the cell type. For example, it has been shown previously that Hv6-SFT id expressed in the mesophyll, the parenchymatous bundle sheath, and phloem parenchyma but not in epidermal cells (Pollock *et al.*, 2003). No mechanistic insights into such

Fig. 9. Model of the synthesis of the different *Lolium*-type fructans by 1-SST, 6G-FFT/1-FFT, and 6-SFT.
regulation at the post-transcriptional level have been provided so far for any FT. Thus, further research is needed to identify the factors involved in fructan synthesis regulation.

Conclusion

In conclusion, we have cloned and functionally characterized for the first time a 6-SFT cDNA in a forage grass. We have shown that the regulation of gene expression depends on the tissue according to its sink-source status. In addition, we have demonstrated (i) that 6G-FFT could compete with 6-SFT for 1-kestotriose forming 6G-kestotriose, precluding the formation of bifurcose by 6-SFT, and (ii) that 6-SFT has a preference for 6G-kestotriose over 1-kestotriose as fructosyl acceptor substrate so that the drive of fructosyl flux is directed to the synthesis of levan neoserias by the concerted action of these two enzymes. We have then provided new data that contribute to a better understanding of fructan structural diversity in the plant kingdom.

Funding

Bertrand Lasseur and Jéremy Lothier are recipients of a PhD fellowship from the MENRT (Ministère de l’Éducation Nationale, de la Recherche et de la Technologie). The K.U. Leuven authors are supported by funds from FSR, Flanders.

Acknowledgements

The authors wish to thank N. Shiomi, D. P. Livingston, for their kind gifts of 1 and 6G-kestotetraose and 6G,6-kestotetraose, and N. J. Chatterton for his kind gift of 6-kestotriose and of the 6-SFT probe of P. secunda. The authors wish to thank also R. Vergauwen for helpful advice concerning enzymatic assays, T. Ritsema for helpful advice concerning cell experiments, and André Jagendorf for English corrections and critical reading of this manuscript. They acknowledge the valuable technical help of A. Bré.

References

Amiard V, Morvan-Bertrand A, Billard JP, Huault C, Keller F, Prud’homme MP. 2003. Fructans, but not the sucrosyl-galactosides, raffinose and l Bollo, are affected by drought stress in perennial ryegrass. Plant Physiology 132, 2218–2229.

Bonnert GD, Sims IM, St John JA, Simpson RJ. 1994. Purification and characterization of fructans with β-2–1 and β-2–6-glycosidic linkages suitable for enzyme studies. New Phytologist 127, 261–269.

Chalmers J, Johnson X, Lidgett A, Spangenberg G. 2003. Isolation and characterisation of a sucrose:sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). Journal of Plant Physiology 160, 1385–1391.

Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G. 2005. Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnology Journal 3, 459–474.

De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W. 2005. Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant and Cell Environment 28, 432–443.

De Roover J, Van den Branden K, Van Laere A, Van den Ende W. 2000. Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta 210, 808–814.

Demel RA, Dorrepaal E, Ebskamp MJM, Smeerens JCM, De Kruiff B. 1998. Fructans interact strongly with model membranes. Biochimica et Biophysica Acta 1375, 36–42.

Duchateau N, Bortlik K, Simmen U, Wiemken A, Bencal P. 1995. Sucrose:fructan 6-fructosyltransferase, a key enzyme for diverting sucrose to fructan in barley leaves. Plant Physiology 107, 1249–1255.

Gadegaard G, Didion T, Folling M, Storgaard M, Claus H, Andersen CH, Nielsen KK. 2008. Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT. Journal of Plant Physiology 165, 1214–1225.

Gallagher JA, Cairns AJ, Pollock CJ. 2004. Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. Journal of Experimental Botany 55, 557–569.

Gallagher JA, Farrar K, Thomas A, Donnison I, Timms E. 2006. Isolation and characterization of a putative (sucrose/fructan) 6-fructosyltransferase (6-(S/F)FT) from a Lolium perenne L. BAC library. EMBL Database AM407403.

Guerrand D, Prud’homme MP, Boucaud J. 1996. Fructan metabolism in expanding leaves, mature leaf sheaths and mature leaf blades of Lolium perenne: fructan synthesis, fructosyltransferase and invertase activities. New Phytologist 134, 205–214.

Hendry GAF, Wallace RK. 1993. The origin, distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton NJ, eds. Science and technology of fructanes. Boca Raton, FL: CRC Press, 119–139.

Hincha DK, Hellwege EM, Heyer AG, Crowe JH. 2000. Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. European Journal of Biochemistry 267, 535–540.

Hisano H, Kanazawa A, Yoshida M, Humphreys MO, Lizuka M, Kitamura K, Yamada T. 2008. Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. New Phytologist 178, 766–780.

Hochstrasser U, Lüscher M, De Virgilio C, Boller T, Wiemken A. 1998. Expression of a functional barley sucrose-fructan 6-fructosyltransferase in the methylotrophic yeast. Pichia pastoris. FEBS Letters 440, 356–360.

Kaur N, Gupta AK. 2002. Applications of inulin and oligofructose in health and nutrition. Journal of Bioscience 27, 703–714.

Kawakami A, Sato Y, Yoshida M. 2008. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Journal of Experimental Botany 59, 793–802.
Kawakami A, Yoshida M. 2002. Molecular characterization of sucrose:sucrose 1-fructo-synterase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. BioScience, Biotechnology, and Biochemistry 66, 2297–2305.

Kawakami A, Yoshida M, Van den Ende W. 2005. Molecular cloning and functional analysis of a novel 6 and 1-FEH from wheat (Triticum aestivum L.) preferentially degrading small granimans like bifurcose. Gene 358, 93–101.

Kritzinger SM, Kilian SG, Potgieter MA, du Preez JC. 2003. The effect of production parameters on the synthesis of the prebiotic trisccharide, noekerstose, by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Enzyme and Microbial Technology 32, 728–737.

Lasseur B, Djoumad A, Prud’homme MP. 2002. Loliun perenne fructan 6-fructosytransferase (putative 6-FT) mRNA. EMBL Database AF494041.

Lasseur B, Lothier J, Djoumad A, De Coninck B, Smeekens S, Van Laere A, Morvan-Bertrand A, Van den Ende W, Prud’homme MP. 2006. Molecular and functional characterization of a cDNA encoding fructan:fructan 6-fructosyltransferase (FFT) from perennial ryegrass (Lolium perenne L.). Journal of Experimental Botany 57, 2719–2734.

Lasseur B, Schroeven L, Lammens W, Le Roy K, Spangenberg G, Manduzio H, Vergauwen R, Lothier J, Prud’homme MP, Van den Ende W. 2009. Transforming a fructan:fructan 6-fructosyltransferase from perennial ryegrass (Lolium perenne) into a suroce:sucrose 1-fructosytransferase. Plant Physiology 149, 327–339.

Lidgett A, Jennings K, Johnson X, Guthridge K, Jones E, Spangenberg G. 2002. Isolation and characterisation of a fructosytransferase gene from perennial ryegrass (Lolium perenne). Journal of Plant Physiology 159, 1037–1043.

Livingston III DP, Henson CA. 1998. Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat, responses to second-phase cold hardening. Plant Physiology 116, 403–408.

Lüscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, Boller T, Wiemken A. 2000. Cloning and functional analysis of sucrose:sucrose 1-fructosytransferase from tall fescue. Plant Physiology 124, 1217–1227.

Marx SP, Nösberger J, Frenner M. 1997. Hydrolysis of fructan in grasses: a β-(2–6)-linkage specific fructan-β-fructosidase from stubble of Loliun perenne. New Phytologist 135, 279–290.

Morvan-Bertrand A, Boucaud J, Le Saos J, Prud’homme MP. 2001. Roles of the fructan from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Loliun perenne L. Planta 213, 109–120.

Pavis N, Boucaud J, Prud’homme MP. 2001a. Fructans and fructan-metabolizing enzymes in leaves of Loliun perenne. New Phytologist 150, 97–109.

Pavis N, Chatterton NJ, Harrison PA, Baumgartner S, Praznik W, Boucaud J, Prud’homme MP. 2001b. Structure of fructans in roots and leaf tissues of Loliun perenne. New Phytologist 150, 83–95.

Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeukens MJW, Weisbeek PJ, Smeekens SCM. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology 107, 125–130.

Pollock C, Farrar J, Tomas D, Gallagher J, Lu C, Koroleva O. 2003. Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. Journal of Experimental Botany 54, 489–494.

Pollock CJ, Jones T. 1979. Seasonal patterns of fructan metabolism in forage grasses. New Phytologist 83, 9–15.

Poulin N, Dez I, Perrio C, Lasne MG, Prud’homme MP, Nakache E. 2003. Microspheres based on inulin for the controlled release of serine protease inhibitors: preparation, characterization and in vitro release. Journal of Controlled Release 92, 27–38.

Prud’homme MP, Gonzalez B, Billard JP, Boucaud J. 1992. Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of ryegrass (Lolium perenne L.) as affected by source/sink modification after cutting. Journal of Plant Physiology 140, 282–291.

Rao AV. 1999. Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. Journal of Nutrition 129, 14425–14455.

Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, Smeekens S. 2006. Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant Journal 48, 228–237.

Ritsema T, Smeekens S. 2003. Fructans: beneficial for plants and humans. Current Opinion in Plant Biology 6, 223–230.

Roberfroid MB. 1999. Concepts in functional foods: the case of inulin and oligofructose. Journal of Nutrition 129, 1398S–1401S.

Schnyder H, Seo S, Rademacher IF, Kübbauch W. 1990. Spatial distribution of growth rates and of epidermal cell lengths in the elongation zone during leaf development in Loliun perenne L. Planta 181, 423–431.

Schroeven L, Lammens W, Kawakami A, Yoshida M, Van Laere A, Van den Ende W. 2008. Creating S-type characteristics in the F-type enzyme fructan:fructan 1-fructosytransferase of Triticum aestivum L. Journal of Experimental Botany 60, 3687–3696.

Sims IM, Pollock CJ, Horgan R. 1992. Structural analysis of oligomeric fructans from excised leaves of Loliun temulentum. Phytochemistry 31, 2989–2992.

Smith K, Simpson RJ, Oram RN, Lowe KF, Kelly KB, Evans PM, Humphreys MO. 1998. Seasonal variation in the herbage yield and nutritive value of perennial ryegrass cultivars with high or normal herbage water soluble carbohydrate concentrations grown in three contrasting Australian dairy environments. Australian Journal of Experimental Agriculture 38, 821–830.

Smouter H, Simpson RJ. 1991. Fructan metabolism in leaves of Loliun rigidum Gaudin I. Synthesis of fructan. New Phytologist 119, 509–516.

Sprenger N, Bortlik K, Brandt A, Boller T, Wiemken A. 1995. Purification, cloning, and functional expression of sucrose:fructan 6-fructosytransferase, a key enzyme of fructan synthesis in barley. Proceedings of the National Academy of Sciences, USA 92, 11652–11656.
Stevens CV, Meriggi A, Booten K. 2001. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules 2, 1–16.

St John JA, Sims IM, Bonnett GD, Simpson RJ. 1997. Identification of products formed by a fructan:fructan fructosyltransferase activity from Lolium rigidum. New Phytologist 135, 249–257.

Tomasic J, Jennings HJ, Glaudemans CPJ. 1978. Evidence for a single type of linkage in a fructofuranan from Lolium perenne. Carbohydrate Research 62, 127–133.

Van den Ende W, Michiels A, Van Wonterghem D, Clerens SP, De Roover J, Van Laere AJ. 2001. Defoliation induces fructan 1-exohydrolase II in witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase Ila and fructan exohydrolase Iib. Mass fingerprint of the fructan 1-exohydrolase II enzymes. Plant Physiology 126, 1186–1195.

Verhaest M, Van den Ende W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A. 2005. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase Ila of Cichorium intybus. The Plant Journal 41, 400–411.

Vereyken IJ, Chupin V, Hoekstra FA, Smeekens SCM, De Kruijff B. 2003. The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophysical Journal 84, 3759–3766.

Wei JZ, Chatterton NJ. 2000. Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) mRNA. NCBI Database AF192394.

Wei JZ, Chatterton NJ, Larson SR. 2001. Expression of sucrose:fructan 6-fructosyltransferase (6-SFT) and myo-inositol 1-phosphate synthase (MIPS) genes in barley (Hordeum vulgare) leaves. Journal of Plant Physiology 158, 635–643.

Wiemken A, Sprenger N, Boller T. 1995. Fructan – an extension of sucrose by sucrose. In: Pontis HG, Salerno GL, Echeverria EJ, eds. International Symposium on Sucrose Metabolism. American Society of Plant Physiologists.

Wilhelm WW, Nelson CJ. 1978. Leaf growth, leaf aging and photosynthetic rate of tall fescue genotype. Crop Science 18, 769–772.

Yamamoto S, Mino Y. 1989. Mechanism of phleinase induction in the stem base of orchardgrass after defoliation. Journal of Plant Physiology 134, 258–260.