Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in \(pp \) and \(p + Pb \) Collisions at the LHC

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 26 September 2017; revised manuscript received 6 December 2017; published 26 February 2018)

The azimuthal anisotropy Fourier coefficients \((v_n) \) in 8.16 TeV \(p + Pb \) data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in \(pp \) and PbPb collisions. Using a four-particle cumulant technique, \(v_n \) correlations are measured for the first time in \(pp \) and \(p + Pb \) collisions. The \(v_2 \) and \(v_4 \) coefficients are found to be positively correlated in all collision systems. For high-multiplicity \(p + Pb \) collisions, an anticorrelation of \(v_2 \) and \(v_3 \) is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in \(p + Pb \) and PbPb collisions in the measured multiplicity range.

DOI: 10.1103/PhysRevLett.120.092301

Studies of multiparticle correlations provide important insights into the underlying mechanism of particle production in high-energy collisions of both protons and nuclei. A key feature of such correlations in ultrarelativistic nucleus-nucleus (AA) collisions is the observation of a pronounced structure on the near side (relative azimuthal pseudorapidity \(\Delta \eta \)) that extends over a large range in relative pseudorapidity \((|\Delta \eta| \) up to four units or more). This feature, known as the “ridge,” has been found over a wide range of AA center-of-mass energies and system sizes at both the RHIC [1–5] and the LHC [6–10]. It is interpreted as arising primarily from the collective hydrodynamic flow of a strongly interacting, expanding medium [11,12]. The azimuthal correlations of emitted particle pairs are frequently assessed via their Fourier decomposition

\[
\frac{dN_{\text{pair}}}{d\Delta \phi} \propto 1 + \sum_{n=2}^{\infty} 2 V_{n\Delta} \cos(n \Delta \phi),
\]

where \(V_{n\Delta} \) are the two-particle Fourier coefficients. The single-particle azimuthal anisotropy Fourier coefficients \(v_n \) can be extracted as \(v_n = \sqrt{V_{n\Delta}} \) if factorization is assumed [13]. The second \((v_2) \) and third \((v_3) \) coefficients are known as elliptic and triangular flow, respectively [12]. In hydrodynamic models, \(v_3 \) and \(v_5 \) are directly related to the initial collision geometry and its fluctuations, which influence the medium evolution [14–16]. These Fourier components provide insights into the fundamental transport properties of the medium.

The correlations of different orders of \(v_n \) coefficients have been studied in PbPb collisions at the LHC using the event-shape engineering technique [17] and the symmetric cumulant (SC) method [18–20]. It is found that the \(v_2 \) coefficient exhibits a negative correlation with the \(v_3 \) coefficient, while the correlation is positive between the \(v_2 \) and \(v_4 \) coefficients, across the full PbPb centrality range. These correlations have been shown to be sensitive probes of initial-state fluctuations \((v_2 \text{ vs } v_3)\) and medium transport coefficients \((v_2 \text{ vs } v_4)\) [18,20,21].

Strong collective azimuthal final-state anisotropies have been observed in high-multiplicity \(pp \) and \(p + Pb \) collisions, similar to those in AA collisions [22–34]. The origin of collectivity in these small systems is still under debate; see, for example, Ref. [35]. Measurements of the correlations between \(v_n \) coefficients in small systems will provide new insights on the origin and properties of the observed long-range collectivity. Quantitative hydrodynamic predictions of azimuthal correlations in \(pp \) and \(p + Pb \) systems still have large uncertainties, mainly due to a limited knowledge of initial-state fluctuations of energy deposition at subnucleonic scales [35–37]. Detailed modeling of initial-state fluctuations in \(pp \) and \(p + Pb \) collisions [38] can be further constrained by the study of \(v_n \) coefficient correlations. For example, a positive correlation between \(v_2 \) and \(v_3 \) is predicted in \(pp \) collisions over the full multiplicity range [38], the opposite to what is observed in PbPb collisions [18]. Measuring \(v_n \) correlations in small colliding systems will help to understand if a common paradigm to describe collectivity in all hadronic systems can be found.

This Letter presents high-precision measurements of anisotropy coefficients \(v_4 \) in \(pp \) at \(\sqrt{s} = 13 \text{ TeV} \), \(p + Pb \) at \(\sqrt{s_{NN}} = 8.16 \text{ TeV} \), and PbPb at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) using data from the CMS experiment. The 8.16 TeV

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end cap sections. The silicon tracker measures charged particles within the range $|\eta| < 2.5$. For charged particles with transverse momentum $1 < p_T < 10 \text{ GeV}/c$ and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [39]. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range $2.9 < |\eta| < 5.2$. A detailed description of the CMS detector can be found in Ref. [40]. The detailed Monte Carlo simulation of the CMS detector response is based on Geant 4 [41].

The measurements presented in this Letter use data sets of 13 TeV pp, 5.02 and 8.16 TeV $p + Pb$, and 5.02 TeV PbPb collisions with integrated luminosities of about 2 nb$^{-1}$, 35 nb$^{-1}$, 186 nb$^{-1}$, and 1.2 μb$^{-1}$, respectively. When measuring the v_n coefficients in pp and $p + Pb$ collisions, the same event may contain multiple independent interactions (pileup), which constitutes a background for the analysis of high-multiplicity events. The average number of collisions per bunch crossing in pp and $p + Pb$ data varied between 0.1–1.3 and 0.1–0.25, respectively. A procedure similar to that described in Ref. [32] is used for identifying and rejecting events with pileup. To further suppress this contamination in the 8.16 TeV $p + Pb$ data, where the pileup was more common, data from the highest luminosity periods are excluded, resulting in an integrated luminosity of about 140 nb$^{-1}$. The SC analysis is found to be insensitive to pileup within the quoted experimental uncertainties, and, therefore, the $p + Pb$ data sample of full recorded integrated luminosity is used. The 5.02 TeV PbPb data sample used for comparison is made of about 300 million peripheral (30%–100% central) events, where 100% means no overlap between the two colliding nuclei [42]. The same reconstruction algorithm is applied to the pp, $p + Pb$, and PbPb events, in order to directly compare the three systems at similar track multiplicities.

Minimum bias 8.16 TeV $p + Pb$ events are triggered by energy deposits in at least one of the two HF calorimeters above a threshold of approximately 1 GeV and the presence of at least one track with $p_T > 0.4 \text{ GeV}/c$ in the pixel tracker. In order to collect a large sample of high-multiplicity $p + Pb$ collisions, a dedicated trigger was implemented using the CMS level-1 (L1) and high-level trigger (HLT) systems. At L1, the total number of ECAL + HCAL energy towers above a threshold of 0.5 GeV in transverse energy (E_T) is required to be greater than a given threshold (120 and 150). Track reconstruction is performed online as part of the HLT trigger with the identical reconstruction algorithm used offline [39]. For each event, the reconstructed vertex with the highest number of associated tracks is selected as the primary vertex. The number of tracks with $|\eta| < 2.4$, $p_T > 0.4 \text{ GeV}/c$, and a distance of closest approach less than 0.12 cm to the primary vertex is determined for each event and is required to exceed a certain threshold to enrich the sample with high-multiplicity events. In addition, events are also required to contain a primary vertex within 15 cm of the nominal interaction point along the beam axis and 0.2 cm in the transverse direction. The trigger, event reconstruction, and selections used in 13 TeV pp and 5.02 TeV $p + Pb$ or PbPb collisions are similar to those in 8.16 TeV $p + Pb$ collisions and are described in previous correlation analyses [22,25,32,43].

For all data sets analyzed, primary tracks, i.e., tracks that originate at the primary vertex and satisfy the high-purity criteria of Ref. [39], are used to perform the correlation measurements as well as to define event categories based on the charged-particle multiplicity ($N_{\text{trk}}^{\text{offline}}$). In addition, the impact parameter significance of the tracks with respect to the primary vertex in the longitudinal and the transverse direction are required to be less than 3 standard deviations. The relative p_T uncertainty must be less than 10%. To ensure high tracking efficiency, only tracks with $|\eta| < 2.4$ and $p_T > 0.3 \text{ GeV}/c$ are used in this analysis [39].

The pp, $p + Pb$, and PbPb data are compared in classes of $N_{\text{trk}}^{\text{offline}}$, where $N_{\text{trk}}^{\text{offline}}$ is the number of primary tracks with $|\eta| < 2.4$ and $p_T > 0.4 \text{ GeV}/c$. The event classes are the same as in Refs. [24,25].

The analysis techniques for two-particle correlations, averaged over $0.3 < p_T < 3.0 \text{ GeV}/c$, are identical to those used in Refs. [6,7,24,26,30,32,34]. The results are compared to published 5.02 TeV $p + Pb$ [24] data. The v_4 coefficient in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ is also measured, while the v_2 and v_3 coefficients have been obtained from Ref. [25]. The SC technique was first introduced by the ALICE Collaboration [18] and is based on four-particle correlations using cumulants. The main difference between the standard cumulant calculation and SC lies in the fact that the former is used to compute diagonal v_n terms and the latter is used for correlations between different coefficient orders. The framework for the calculation is the same as the one used in standard cumulant
To study the correlation between the Fourier coefficients \(n \) and \(m \), one can build two- and four-particle correlators with

\[
\langle 2 \rangle_n = \langle e^{i(n \phi_1 - m \phi_2)} \rangle,
\]

\[
\langle 4 \rangle_{n,m} = \langle e^{i(n \phi_1 + m \phi_2 - n \phi_3 - m \phi_4)} \rangle,
\]

where \(\langle \ldots \rangle \) denotes the average correlations over all events. The final observable, the SC, is defined as follows:

\[
SC(n, m) = \langle 4 \rangle_{n,m} - \langle 2 \rangle_n \langle 2 \rangle_m.
\]

Expressed as a function of \(v_n \), the symmetric cumulant SC\((n, m)\) measures correlations of Fourier coefficients between the order of \(m \) and \(n \):

\[
SC(n, m) = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle,
\]

where \(\langle \ldots \rangle \) denotes the average over all events. In this analysis, we compute a SC for events belonging to the same event multiplicity class \((N_{\text{trk}}) \) and with the same number of tracks entering in the calculation (i.e., \(N_{\text{ref}} \) with \(0.3 < p_T < 3.0 \text{ GeV/c} \)). Then, the different SCs are combined into larger bins by using the total number of four-particle combinations as a weight; i.e., in an event with track multiplicity \(M \), this weight equals \(M(M-1)(M-2)(M-3) \). This weighting procedure is necessary to reduce the impact of multiplicity fluctuations, which are particularly relevant at low multiplicity [24,25].

The systematic uncertainties of the experimental procedure are evaluated as a function of \(N_{\text{trk}} \) by varying the conditions in extracting \(v_n \) coefficients and SCs for both 8.16 TeV \(p + \text{Pb} \) and 5.02 TeV PbPb samples. For 13 TeV \(pp \) and 5.02 TeV \(p + \text{Pb} \), the systematic uncertainties are taken from Refs. [25,34]. Systematic uncertainties due to tracking inefficiency and a misreconstructed track rate are studied by varying the track quality requirements. The selection thresholds on the significance of the transverse and longitudinal track impact parameter divided by their uncertainties are varied from 2 to 5 standard deviations.

The resulting systematic uncertainty is found to be 1%–2% for \(v_n \) and SCs depending on the multiplicity in both colliding systems. The sensitivity of the results to the primary vertex position along the beam axis \((z_{\text{vtx}}) \) is quantified by comparing events with different \(z_{\text{vtx}} \) locations from \(-15 \) to \(+15 \) cm. The magnitude of this systematic effect is estimated to be 1%–2%, depending on the multiplicity, and is independent of the colliding system and method \((v_n \text{ or } SC)\). For the 8.16 TeV \(p + \text{Pb} \) sample, two additional sources of systematic uncertainties are investigated. To study potential trigger biases, a comparison to high-multiplicity \(p + \text{Pb} \) data for a given multiplicity range that have been collected by a lower threshold trigger with 100% efficiency is performed. This uncertainty is found to be less than 1%. The possible contamination by residual pileup interactions is also studied by varying the pileup selection of events in the performed analysis, from no pileup rejection at all to selecting events with only one reconstructed vertex. For \(v_n \) results, this effect is more important at high multiplicities (3%) than at low ones (0.1%). For the SC method, it is independent of multiplicity and estimated to be 1%. The total systematic uncertainty is estimated to be 1.7%–4.1% for \(v_n \) depending on the multiplicity and 1.8% for SCs.

Measurements of \(v_2 \), \(v_3 \), and \(v_4 \) coefficients for \(0.3 < p_T < 3 \text{ GeV/c} \) extracted from long-range two-particle correlations are shown in Fig. 1, as a function of multiplicity in 13 TeV \(pp \), 5.02 and 8.16 TeV \(p + \text{Pb} \), and 5.02 TeV PbPb collisions. The contribution to \(v_n \) coefficients from back-to-back jet correlations are corrected by subtracting correlations from very low-multiplicity events \((v_{n}^{\text{sub}})\), as done in Refs. [25,32]. The \(v_n \) results before

![FIG. 1. The \(v_2 \), \(v_3 \) [25], and \(v_4 \) coefficients from long-range two-particle correlations as a function of \(N_{\text{trk}} \) in 13 TeV \(pp \) (a), 5.02 [32] and 8.16 TeV \(p + \text{Pb} \) (b), and 5.02 TeV PbPb collisions (c). The results corrected by low-multiplicity subtraction are denoted as \(v_{n}^{\text{sub}} \). The lines show the \(v_n \) results before the subtraction of low-multiplicity correlations. The gray boxes represent systematic uncertainties.](image)
subtraction are also shown as lines in Fig. 1. For \(N_{\text{offline}}^{\text{trk}} > 200\), the low-multiplicity subtraction has a very small effect in \(p + \text{Pb}\) and \(\text{PbPb}\) collisions. At a low multiplicity, this correction plays a larger role, in particular, for \(pp\) collisions where dijet correlations are expected to be the main source of correlations.

By comparison with 5.02 TeV \(p + \text{Pb}\) data, the new 8.16 TeV \(p + \text{Pb}\) results extend the measurements of \(v_n\) coefficients to a higher-multiplicity region, due to the higher collision energy and integrated luminosity. The \(v_2\) coefficient increases with \(N_{\text{offline}}^{\text{trk}}\), saturating for \(N_{\text{offline}}^{\text{trk}} > 200\). Finite \(v_4\), which are about 50% smaller than the \(v_3\) coefficients for \(N_{\text{offline}}^{\text{trk}} > 100\), are also observed in all three systems.

Measurements of symmetric cumulants \(\text{SC}(2,3)\) and \(\text{SC}(2,4)\) for \(0.3 < p_T < 3\) GeV/c from four-particle correlations are shown in Fig. 2, as a function of the multiplicity in 13 TeV \(pp\), 5.02 and 8.16 TeV \(p + \text{Pb}\) and 5.02 TeV \(\text{PbPb}\), to further study the correlations of different \(v_n\) coefficients.

In \(pp\) collisions, both \(\text{SC}(2,3)\) and \(\text{SC}(2,4)\) decrease as \(N_{\text{offline}}^{\text{trk}}\) increases. The \(\text{SC}(2,4)\) values always remain positive, while there is an indication of a transition to negative values for \(\text{SC}(2,3)\) at \(N_{\text{offline}}^{\text{trk}} > 110\), but the measurement is not precise enough to draw a firm conclusion. For \(p + \text{Pb}\) and \(\text{PbPb}\) data at sufficiently high multiplicities (e.g., \(N_{\text{offline}}^{\text{trk}} > 60\)), clear negative values of \(\text{SC}(2,3)\) are observed, while \(\text{SC}(2,4)\) values are positive. The \(\text{PbPb}\) data are consistent with results reported at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV [18].

In hydrodynamic models, correlations of \(v_2\) and \(v_3\) can be directly related to the initial eccentricity correlations [18,20,21]. Theoretical studies of \(v_n\) correlations in small colliding systems were performed based on purely eccentricity correlations [38]. An anticorrelation of \(v_2\) and \(v_3\) in \(p + \text{Pb}\) collisions has been predicted at high multiplicities [38], which is consistent with the experimental observation. A positive correlation of \(v_2\) and \(v_3\) is predicted over the full multiplicity range in \(pp\) collisions [38], while a hint of anticorrelation is seen in the data at a high multiplicity. However, larger \(pp\) data samples are needed to draw a definitive conclusion. At low \(N_{\text{offline}}^{\text{trk}}\) ranges (\(N_{\text{offline}}^{\text{trk}} < 100\)) for all three systems, both \(\text{SC}(2,3)\) and \(\text{SC}(2,4)\) have positive values, which increase as \(N_{\text{offline}}^{\text{trk}}\) decreases. It should be noted that, in the low-multiplicity region, short-range few-body correlations such as jets are likely to have a dominant contribution, which needs to be properly accounted for before comparing to models of long-range collective correlations. Indeed, the jet contribution at low \(N_{\text{offline}}^{\text{trk}}\) might be different in \(pp\), \(p + \text{Pb}\), and \(\text{PbPb}\) and lead to slightly different behaviors of the SCs in this multiplicity range as observed in the data. Finally, calculations from initial state gluon correlations in the color-glass condensate framework have also been shown to capture the signs of the \(v_n\) correlation data [45,46], although it remains to be seen if the magnitude of correlations in the measured multiplicity region can be quantitatively reproduced. Recently, new methods have been proposed to suppress the contribution from jets down to low multiplicities by introducing sub-events in the cumulant calculation [47,48]. Future studies using these methods will be of high interest to better understand the short-range correlation contribution to correlation measurements at a low multiplicity.

The absolute magnitudes of \(\text{SC}(2,3)\) and \(\text{SC}(2,4)\) are found to be larger in \(\text{PbPb}\) than in the \(p + \text{Pb}\) system at high multiplicities. This may be related to the different magnitude of \(v_n\) coefficients as indicated in Fig. 1. To investigate the intrinsic correlation between \(v_n\) coefficients and compare across different collision systems in a more quantitative way, \(\text{SC}(2,3)\) and \(\text{SC}(2,4)\) are normalized by \(\langle (v_2^{\text{sub}})^2 \rangle \langle (v_3^{\text{sub}})^2 \rangle\) and \(\langle (v_2^{\text{sub}})^2 \rangle \langle (v_4^{\text{sub}})^2 \rangle\), respectively, based on the \(v_n\) values from two-particle correlations in Fig. 1. As the two-particle correlation \(v_n^{\text{sub}}\) with a rapidity gap is used for the normalization, the results might be affected by the event-plane decorrelation measured in Ref. [49] at the level of a few percent. Nevertheless, all systems would be affected consistently such that the

![FIG. 2.](image-url) The SCs for the second and third coefficients (red points) and the second and fourth coefficients (blue points) as a function of \(N_{\text{offline}}^{\text{trk}}\) in 13 TeV \(pp\) (a), 5.02 and 8.16 TeV \(p + \text{Pb}\) (b), and 5.02 TeV \(\text{PbPb}\) collisions (c). The gray boxes represent systematic uncertainties.
conclusions from the results would not be modified. In addition, the short-range correlation contribution is suppressed with different approaches in the numerator (SC) and the denominator \(\langle v_i^2 \rangle \langle v_j^2 \rangle \). The impact of the short-range correlation was investigated by using the unsubtracted values in the normalization. As expected, at a high multiplicity, the results remain unchanged. The resulting normalized SCs in all three colliding systems are shown in Fig. 3.

The normalized SC(2,3) values are found to be very similar between \(p + Pb \) and PbPb systems at high multiplicities. Together with the \(v_2 \) results in Fig. 1, these measurements strongly suggest a unified paradigm to explain the collective behavior observed in large and small hadronic collisions. In the context of hydrodynamic models, the SC(2,3) data in \(p + Pb \) and PbPb collisions suggest similar fluctuations of the initial-state energy density of the collective medium [18]. This common behavior may even apply to \(pp \) collisions for \(N_{\text{trk}}^\text{offline} > 120 \), where SC(2,3) tends to converge to a unified value for all three systems, although statistical uncertainties are still too large to draw a firm conclusion. The SC(2,4), on the other hand, shows a clear dependence on the system size with a larger value for smaller systems. The observed difference between SC(2,4) values in \(p + Pb \) and PbPb collisions may point to a different contribution of initial-state fluctuations or transport properties of the medium such as the shear viscosity to entropy ratio [18]. Further calculations of SC(2,3) and SC(2,4) with a full hydrodynamic evolution would be needed for a quantitative comparison to the small system data.

In summary, the first measurements of azimuthal anisotropy Fourier coefficients and correlations of different coefficients in 8.16 TeV \(p + Pb \) collisions are presented based on data collected by the CMS experiment at the LHC. The \(v_2, v_3, \) and \(v_4 \) Fourier coefficients are extracted from long-range two-particle correlations in classes of event multiplicity and are found to be consistent with 5.02 TeV \(p + Pb \) data. The \(p + Pb \) results are compared to those in 13 TeV \(pp \) and 5.02 TeV PbPb. Using a four-particle cumulant technique, correlations of different coefficient orders are obtained, where a negative (positive) correlation is observed between \(v_2 \) and \(v_3 \) (\(v_4 \)) in \(p + Pb \) collisions. This behavior is similar to what is observed in the PbPb system, where the result is attributed to the hydrodynamic flow of a strongly interacting medium. Normalized correlation coefficients for \(v_2 \) and \(v_3 \) are found to be quantitatively similar between \(p + Pb \) and PbPb, while for \(v_2 \) and \(v_4 \) the results are larger in \(p + Pb \) than in PbPb. The corresponding result in \(pp \) collisions shows a similar trend at a high multiplicity, but the statistical uncertainties are too large to make a quantitative statement. The results presented in this Letter provide further evidence of a similar origin of the collectivity observed in small and large hadronic systems and impose constraints on theoretical model calculations.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSI and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, SCTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] J. Adams et al. (STAR Collaboration), Distributions of Charged Hadrons Associated with High Transverse Momentum Particles in pp and Au + Au Collisions at \(\sqrt{s_{NN}} = 200 \) GeV, Phys. Rev. Lett. 95, 152301 (2005).
[2] B.I. Abelev et al. (STAR Collaboration), Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C 80, 064912 (2009).
[3] B. Alver et al. (PHOBOS Collaboration), System size dependence of cluster properties from two-particle angular correlations in Cu + Cu and Au + Au collisions at √sNN = 200 GeV, Phys. Rev. C 81, 024904 (2010).

[4] B. Alver et al. (PHOBOS Collaboration), High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au + Au Collisions at √sNN = 200 GeV, Phys. Rev. Lett. 104, 062301 (2010).

[5] B. I. Abelev et al. (STAR Collaboration), Three-Particle Coincidence of the Long Range Pseudorapidity Correlation in High Energy Nucleus-Nucleus Collisions, Phys. Rev. Lett. 105, 022301 (2010).

[6] CMS Collaboration, Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV, J. High Energy Phys. 07 (2011) 076.

[7] CMS Collaboration, Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at √sNN = 2.76 TeV, Eur. Phys. J. C 72, 2012 (2012).

[8] ALICE Collaboration, Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 708, 249 (2012).

[9] ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in Pb-Pb lead-lead collisions with the ATLAS detector, Phys. Rev. C 86, 014907 (2012).

[10] CMS Collaboration, Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at √sNN = 2.76 TeV, J. High Energy Phys. 02 (2014) 088.

[11] J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46, 229 (1992).

[12] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905 (2010); Erratum, Phys. Rev. C 82, 039903(E) (2010).

[13] S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70, 665 (1996).

[14] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82, 034913 (2010).

[15] B. Schenke, S. Jeon, and C. Gale, Elliptic and Triangular Flow in Event-by-Event D = 3 + 1 Viscous Hydrodynamics, Phys. Rev. Lett. 106, 042301 (2011).

[16] Z. Qiu, C. Shen, and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 707, 151 (2012).

[17] ATLAS Collaboration, Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector, Phys. Rev. C 92, 034903 (2015).

[18] ALICE Collaboration, Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at √sNN = 2.76 TeV, Phys. Rev. Lett. 117, 182301 (2016).

[19] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89, 064904 (2014).

[20] X. Zhu, Y. Zhou, H. Xu, and H. Song, Correlations of flow harmonics in 2.76A TeV Pb-Pb collisions, Phys. Rev. C 95, 044902 (2017).

[21] G. Giacalone, L. Yan, J. Noronha-Hostler, and J.-Y. Ollitrault, Symmetric cumulants and event-plane correlations in Pb + Pb collisions, Phys. Rev. C 94, 014906 (2016).

[22] CMS Collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, J. High Energy Phys. 09 (2010) 091.

[23] ATLAS Collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in √s = 13 and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116, 172301 (2016).

[24] CMS Collaboration, Measurement of Long-Range Near-Side Two-Particle Angular Correlations in pp Collisions at √s = 13 TeV, Phys. Rev. Lett. 116, 172302 (2016).

[25] CMS Collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765, 193 (2017).

[26] CMS Collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718, 795 (2013).

[27] ALICE Collaboration, Long-range angular correlations on the near and away side in p + Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 719, 29 (2013).

[28] ATLAS Collaboration, Observation of Associated Near-Side and Away-Side Long-Range Correlations in √s = 5.02 TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110, 182302 (2013).

[29] LHCb Collaboration, Measurements of long-range near-side angular correlations in 5 TeV proton-lead collisions in the forward region, Phys. Lett. B 762, 473 (2016).

[30] CMS Collaboration, Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies, Phys. Lett. B 742, 200 (2015).

[31] ALICE Collaboration, Long-range angular correlations of π, K and p in p-Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 726, 164 (2013).

[32] S. Chatrchyan et al. (CMS Collaboration), Multiplicity and transverse momentum dependence of two- and four-particle correlations in p + Pb and PbPb collisions, Phys. Lett. B 724, 213 (2013).

[33] ATLAS Collaboration, Measurement of long-range pseudorapidity correlations and azimuthal harmonics in √s = 5.02 TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C 90, 044906 (2014).

[34] CMS Collaboration, Evidence for Collective Multiparticle Correlations in pPb Collisions, Phys. Rev. Lett. 115, 012301 (2015).

[35] K. Dusling, W. Li, and B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions, Int. J. Mod. Phys. E 25, 1630002 (2016).

[36] S. Schlichting and B. Schenke, The shape of the proton at high energies, Phys. Lett. B 739, 313 (2014).

[37] P. Bozek, W. Broniowski, and M. Rybczynski, Wounded quarks in A + A, p + A, and p + p collisions, Phys. Rev. C 94, 014902 (2016).

[38] K. Welsh, J. Singer, and U. W. Heinz, Initial state fluctuations in collisions between light and heavy ions, Phys. Rev. C 94, 024919 (2016).
[39] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).
[40] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
[41] S. Agostinelli et al. (GEANT4 Collaboration), Geant4—A simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[42] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
[43] CMS Collaboration, Observation of Charge-Dependent Azimuthal Correlations in pPb Collisions and Its Implication for the Search for the Chiral Magnetic Effect, Phys. Rev. Lett. 118, 122301 (2017).
[44] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011).
[45] K. Dusling, M. Mace, and R. Venugopalan, Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions, Phys. Rev. Lett. 120, 042002 (2018).
[46] K. Dusling, M. Mace, and R. Venugopalan, Parton model description of multiparticle azimuthal correlations in pA collisions, Phys. Rev. D 97, 016014 (2018).
[47] P. Di Francesco, M. Guilbaud, M. Luzum, and J.-Y. Ollitrault, Systematic procedure for analyzing cumulants at any order, Phys. Rev. C 95, 044911 (2017).
[48] J. Jia, M. Zhou, and A. Trzupek, Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants, Phys. Rev. C 96, 034906 (2017).
[49] CMS Collaboration, Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92, 034911 (2015).
0 Also at Tbilisi State University, Tbilisi, Georgia.
1 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
2 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
3 Also at University of Hamburg, Hamburg, Germany.
4 Also at Brandenburg University of Technology, Cottbus, Germany.
5 Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
6 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
7 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
8 Also at IIT Bhubaneswar, Bhubaneswar, India.
9 Also at Institute of Physics, Bhubaneswar, India.
10 Also at University of Visva-Bharati, Santiniketan, India.
11 Also at University of Ruhuna, Matara, Sri Lanka.
a Also at Isfahan University of Technology, Isfahan, Iran.
b Also at Yazd University, Yazd, Iran.
c Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
d Also at Università degli Studi di Siena, Siena, Italy.
e Also at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy.
f Also at Purdue University, West Lafayette, USA.
g Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
h Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
i Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
j Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
k Also at Institute for Nuclear Research, Moscow, Russia.
l Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
m Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
n Also at University of Florida, Gainesville, USA.
o Also at P.N. Lebedev Physical Institute, Moscow, Russia.
p Also at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy.
q Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
r Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
s Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
t Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
u Also at National and Kapodistrian University of Athens, Athens, Greece.
v Also at Riga Technical University, Riga, Latvia.
w Also at Universität Zürich, Zurich, Switzerland.
x Also at Stefan Meyer Institute for Subatomic Physics.
y Also at Adiyaman University, Adiyaman, Turkey.
z Also at Istanbul Aydin University, Istanbul, Turkey.
a Also at Mersin University, Mersin, Turkey.
b Also at Cag University, Mersin, Turkey.
c Also at Piri Reis University, Istanbul, Turkey.
d Also at Izmir Institute of Technology, Izmir, Turkey.
e Also at Necmettin Erbakan University, Konya, Turkey.
f Also at Marmara University, Istanbul, Turkey.
g Also at Kafkas University, Kars, Turkey.
h Also at Istanbul Bilgi University, Istanbul, Turkey.
i Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
j Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
k Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
l Also at Utah Valley University, Orem, USA.
m Also at Beykent University.
n Also at Bingol University, Bingol, Turkey.
o Also at Erzincan University, Erzincan, Turkey.
p Also at Sinop University, Sinop, Turkey.
q Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
r Also at Texas A&M University at Qatar, Doha, Qatar.
s Also at Kyungpook National University, Daegu, Korea.