Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts

Yonghua Zheng a, b, #, Miaomiao Zhang c, #, Mengjia Qian c, #, Lingyan Wang c, †, V. B. Cismasiu d, e, †, Chunxue Bai a, b, L. M. Popescu d, e, *, Xiangdong Wang a, b, c, *

a Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
b Shanghai Respiratory Research Institute, Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
c Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
d Division of Advanced Studies, “Victor Babes” National Institute of Pathology, Bucharest, Romania
e Department of Cellular and Molecular Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania

Received: October 4, 2012; Accepted: December 20, 2012

Abstract

Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically (www.telocytes.com). Telocytes are distributed through organ stroma forming a three-dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro-angiogenic and stromal-specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up- or down-regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis.

Keywords: telocytes • mesenchymal stem cells • fibroblasts • gene expression profile • interstitial cells • stroma
• connective tissue • lung

Introduction

Recent electron microscopic studies have identified telocytes (TCs), a distinct type of interstitial cells, in many cavity and non-cavity organs [1–20]. Telocytes are defined by their very long prolongations – called telopodes (Tps; generally, 2–3/cell; length of up to hundreds of μm) – which emerge from a relatively small cellular body. It has been shown that TCs form a 3D network through the organ interstitium surrounding organ-specific structures, blood capillaries, immune cells and nerve endings. As a specific functional property, TCs are key players in intercellular signalling, at both short and long distance. Thus, the long Tps establish direct contacts (junctions) with neighbouring cells and contribute to the (directional) transport of long-range signals driven by TCs [21]. Local (paracrine) signalling of TCs is achieved by shedding vesicles [8, 20, 22].

The ultrastructural portrait of TCs was recently complemented with the immunophenotypical and electrophysiological characterization and the specific microRNA expression signature [20, 22, 23]. However, the gene expression profile for this type of cells has not been reported yet. Prompted by these studies, we sought to compare

© 2013 The Authors
Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

doi: 10.1111/jcmm.12052
Compared pairs/fold up-regulated	>2	>10	>30	>100
TCs vs. MSCs	2921	500	174	44
TCs vs. Fbs	3173	661	295	85

(A) Genes up-regulated more than 100-folds in telocytes (TCs) as compared with mesenchymal stem cells (MSCs) and fibroblasts (Fbs)

Genes vs. Fbs	Genes	Folds	Genes	Folds	Genes	Folds
Ctgf	6151	Tm4sf1	217	Sprr1a	2971	
Sprr1a	2593	Sulf1	212	Cck	1242	
Myl9	1668	Chi3l3	204	Wtcd2	551	
Tagln	1545	Vopp1	198	Serinc2	527	
Cck	1206	Mfas1	198	Chi3l3	369	
Nid1	1143	Myh14	194	Gipr1	355	
Sdpr	1004	Gpn	185	Gppk1	284	
Crlf1	942	Dsp	182	Trf	259	
Anxa8	799	Mmp10	177	Myh14	246	
Cdc9	718	Khdrbs3	175	Gsta3	244	
Wtcd2	660	Atp1b1	174	Gpr56	222	
Sox4	501	Papss2	171	Cyp61	210	
Dhcr24	496	Gprc5c	168	Gprc5c	204	
Timp3	445	Prt2c1	165	Tjp2	202	
Trim44	410	Gas6	165	Atp1b1	194	
Serpine1	376	Rbp1	161	Lz1	181	
Marcksl1	356	Foxq1	156	Aldh1a2	167	
Hs6st2	335	Cbic	149	Gpx2	152	
Gpr56	331	Aldh1a2	149	Dsp	150	
Nrg1	327	Cdh2	136	Khdrbs3	146	
Trf	306	Crc1	133	Acp5	143	
Bmp4	298	Mmp3	131	Rbp1	141	
Cyba	293	Gpx2	126	Gprc5c	137	
Thy1	280	Gprc5c	125	Clu	131	
Lnc32	278	Fstl1	125	Tmc4	128	
Rab34	269	Lama2	120	Acp5	114	
Dpysl3	263	Tjp2	117	Epb4.114b	114	
Decr1	256	Igfl9	116	Mfsd6	109	
Table 1. Continued

TCs vs. Fbs

Gene	Folds	Gene	Folds	Gene	Folds
Gsta3	240	Bcr	110	Cblc	107
Evl	237	Lce1i	108	Acta1	105
Tmem45a	233	Rnf128	107	F11r	101
Aldh1a1	225	Klh13	106		
Fzd1	223	Echdc2	103		
Cryab	219	Trim16	101		
Lyz1	217				

(B) Genes up-regulated between 30- and 100-folds in telocytes (TCs) as compared with mesenchymal stem cells (MSCs) and fibroblasts (Fbs)

TCs vs. Fbs

Gene	Folds	Gene	Folds	Gene	Folds	Gene	Folds
Wnt11	100	Letmd1	47	Pdgfb	97	Pcgf5	36
F3	98	Rpgrpi1	46	Aldh1a1	93	Fxyd3	36
Pdgfb	97	Trp53i11	46	Itpa	90	Ctsk	35
Fxyd6	94	Hebp2	46	Fxyd6	87	Ctgf	35
Fhl2	94	Dkk3	45	Tns1	79	Ctb	35
Nox4	93	Cryab	45	St14	78	Lama5	35
Ptprf	93	Pvr13	44	Lce1i	78	Evpl	34
Tgfbi11	93	P2rx2	44	Grip1	77	Col4a6	34
Ddah1	92	A2bp1	43	S100a16	76	Chst4	34
Cd99	92	Cyba	43	Klh13	74	Apoe	33
Irx1	87	Cyrb1	42	Tnk1	74	Pik3r6	33
Pdlim1	86	Cobl	42	Mmrn2	74	Panx1	33
Epb4.113	86	Pdlim3	41	Rpgrpi1	72	Rnu1b6	33
Tuft1	86	Map3k9	41	Gsta3	71	Nppb	33
Msln	83	Tlr13	41	Endod1	71	Sema6a	33
Panx1	83	Tjp3	41	Scrm1a	69	Serpinb6b	33
Clic5	83	Grh12	41	Tcstd2	69	Apoc2	32
Ggh	83	Sdcbp2	41	Mboat1	68	Villa	32
Bst1	79	Cd14	41	Gas6	67	Irx1	31
Mansc1	79	Krt17	41	Dapk2	66	Isyna1	30
Sico3a1	78	Loxl2	40	Gpsf3l	65	Map3k9	30
Gene	Folds						
------------	-------						
Tnfsf15	78						
Il6	78						
Saa3	77						
Fgd3	77						
Ecndc2	77						
Mapk13	75						
Tnfrsf11b	75						
Basp1	70						
Slc4a11	70						
Bst1	69						
F3	69						
Ubqin2	69						
Adam8	68						
Parp8	67						
Sox4	67						
Egfl7	66						
Gsta3	64						
Tnk1	64						
Fzd2	64						
Gpm6b	63						
Cgn	62						
Unc13b	61						
Celsr1	61						
Mmrm2	61						
Dok2	61						
Tpm2	60						
Ppfibp2	60						
Npr3	60						
Cpsf3I	59						
Peg13	59						
Arhgef16	59						
Lass3	58						

Table 1. Continued

Gene	Folds
Cald1	40
Brsk1	40
Ppp1r9a	40
Stxbp2	39
Rab25	39
Stfa3	39
Cald1	39
Brsk1	39
Lmo7	38
Timp1	38
Id1	38
Rnf130	37
Serping1	37
Csf2rb	37
Olfr1383	37
Sulf2	37
Nhs1l	37
Itm2a	37
Slamf9	37
Caznb3	36
Spint1	36
Tubal1a	36
Rgs17	36
Col4a6	36
Tpm1	36
Scmn1a	35
Sirpb1a	35
Col4a6	36
Tpm1	36
Scmn1a	35
Sirpb1a	35
Tja3	35
Clic3	35
Klf13	35
Lrc33	35
Gprc5a	35
Abcc3	35

© 2013 The Authors
Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
Gene	Folds	Gene	Folds	Gene	Folds	Gene	Folds
Dapk2	58	Sgk1	35	Psmg2	47		
Plac9	58	Ankrd1	34	Col4a4	46		
Msrb2	58	Mid1ip1	34	Csf2rb2	45		
Ckb	57	Coro1a	34	Tmem88	45		
Fam83h	57	Cd248	34	Cd97	45		
Vcan	56	Acta1	34	Ppl	45		
Acp5	56	Inadl	33	P2rx2	44		
Csf1r	56	Sesn3	33	A2bp1	43		
Ap1s3	56	Evpl	33	Akr1c13	43		
Ptx3	56	C3	33	St6gal1	42		
Trmc4	56	Tpm2	33	Efnb1	41		
Rpgrip1	55	Pila	33	Dok2	41		
Ctsw	55	H19	33	Adam8	41		
Wwec1	54	Ptkb3	32	Clic5	41		
Glip1	54	Zfhx3	32	Sh3bgr	40		
Hes6	54	Fcer1g	32	Fgd3	39		
Tacstd2	54	Stab1	32	Csf2rb	39		
Nsd1	54	Col1a2	32	Olfr1383	39		
Cyb561	53	Igfbp2	31	H19	39		
Fcgr2b	53	Vcam1	31	Sirp1b1a	39		
Cdc42ep5	53	Chpfl2	31	Fcer1g	38		
Mdfi	52	Npnb	31	Sdc39a4	38		
Gaintl4	52	Ccl27a	31	Fcgr4	38		
Anxa8	52	Ccl2	31	Sh3bgr	38		
Plcg2	52	Tnafip3	31	Sdc22a18	38		
Col4a4	51	Fnbp11	31	Alcam	38		
Acp5	50	Marveld3	31	Stfa3	38		
Btg3	49	Spin2	30	Pfibbp2	37		
Ltbp2	48	Sh3bgr	30	Clic3	37		
Cd93	47	Adams9	30	Csf1r	37		
Gadd45b	47	Abcc3	30	Spin2	36		
Afap112	47	Lcp1	30	Lamc2	36		
murine lung TCs with mesenchymal stem cells (MSCs) and fibroblasts (Fbs) to identify the genes which are specifically regulated in TCs. We choose lung TCs as these are well-characterized ultrastructurally and immunohistochemically in situ and in vitro [4, 5, 11, 16, 17].

Method and Materials

Cell lines and tissue sampling

Mouse colonies were maintained in Animal Research Center of Fudan University, Shanghai, China. Lung samples were obtained from 20 to 25 g male BABL/c mice, 4–6 weeks of age. The mice were killed with an overdose of anaesthetic and the lungs were harvested for the isolation of TCs. The animal study was approved by the Ethic Committee for Animal Care and Use, Fudan University. Mesenchymal stem cells and fibroblast cell lines were obtained from Sciencell Research Laboratories (Cat. no. M7500-57, Carlsbad, CA, USA) and from Chinese Academy of Science (Cat. no. GNM28, Shanghai, China) respectively.

Isolation and primary culture of telocytes from lung tissues

Lung tissues were cut into small pieces and harvested under sterile conditions and collected into sterile tubes containing Dulbecco’s Modified

Table 2. Summary of genes less expressed in TCs, as compared with mesenchymal stem cells (MSCs) and fibroblasts (Fbs)

Compared pairs/fold down-regulated	>2	>10	>30	>100
TCs vs. MSCs	4365	175	32	5
TCs vs. Fbs	5451	326	63	16

(A) Genes down-regulated more than 100-folds in telocytes (TCs) as compared with mesenchymal stem cells (MSCs) and fibroblasts (Fbs)

Table 2. Continued

Gene	Folds	Gene	Folds	Gene	Folds
Acacb	68	Slx	37	Odz4	58
Angpt1	67	Gchfr	35	Elf2s1	58
Csprs	67	Hc	35	Pde8b	54
Gm4951	67	Ptgir	33	Ebf3	46
Mtapl1b	65	Accn2	32	Angpt1	46
Serpin9b	59	Masp2	32	Rsf2d	45
Cx6a2	59	Cbr2	31	Ifi202b	45
Matn2	57	Col5a3	30	Fbln1	37
Pla2g2e	54	Ifi204	35		
Nrxn3	49	Thbs2	35		
Cbr2	49	Mx2	34		
Ebf3	48	Ndufa4l2	34		
Olm15	47	Tgfbr3	31		
Pparc1a	45	Car6	31		

Table 2. Continued

(B) Genes down-regulated between 30- and 100-folds in telocytes (TCs) as compared with mesenchymal stem cells (MSCs) and fibroblasts (Fbs)

Table 2.

Gene	Folds	Gene	Folds	Gene	Folds
Car6	323	Ccl5	282		
Odz4	275	Hoxc6	146		
Tenn4	269	Cdsn	159		
Pla2g2e	253	Ifi203	63		
Cdsn	229	Gdpd2	85		
Gld5	209				
Rarres2	180				
Hoxc6	152				
Ndufa4l2	150				
Hoxc10	133				
Rhd	122				
Plin4	113				
Gm2022	105				
Car9	102				

Table 2. Continued

Gene	Folds	Gene	Folds	Gene	Folds
Serpinb9f	95	Tbx15	44	Tbx15	93
Foxg1	94	Dmrc1c2	42	Hoxc10	92
Mst1	88	Igt2bp3	41	Nrk2-5	84
Ifi203	82	Ifk	41	Gbp3	72
Avil	75	Paip1	38	Lpar4	67
Hsd17b14	69	Rps3a	38	Hoxb9	66

murine lung TCs with mesenchymal stem cells (MSCs) and fibroblasts to identify the genes which are specifically regulated in TCs. We choose lung TCs as these are well-characterized ultrastructurally and immunohistochemically in situ and in vitro [4, 5, 11, 16, 17].
Eagle’s Medium (DMEM, Gibco, NY, USA), supplemented with 100 UI/ml penicillin and 0.1 mg/ml streptomycin (Sigma Chemical, St. Louis, MO, USA), and the samples were brought to the cell culture room immediately. Samples were further rinsed with sterile DMEM and minced into fragments about 1 mm³, which were then incubated at 37°C for 4 hrs on an orbital shaker, with 1 mg/ml type II collagenase (Sigma-Aldrich, St. Louis, MO, USA) in PBS without Ca²⁺ and Mg²⁺. Dispersed cells were separated from non-digested tissue by the filtration through a 40-µm diameter cell strainer (BD Falcon, Franklin, NJ, USA), harvested by centrifugation, and resuspended in DMEM supplemented with 10% foetal calf serum (Gibco, NY, USA), 100 UI/ml penicillin and 0.1 mg/ml streptomycin. Cell density was counted in a haemocytometer and viability was assessed using the Trypan blue. Cells were distributed in 25 cm² culture flasks at a density of 1×10^5 cells/cm² and maintained at 37°C in a humidified atmosphere (5% CO₂) until becoming semiconfluent (usually 4 days after plating). Culture medium was changed every 48 hrs. Cultured cells were examined by phase contrast microscope, under an inverted Olympus phase contrast microscope (1×51).

RNA isolation and preparation

Mouse lung telocytes were isolated after 5 days of culture. Mouse MSCs and fibroblasts were cultured and collected on days 5 and 10 respectively. RNA preparation was performed using TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) and the RNeasy kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions, including a DNase digestion treatment. The amount and quality of RNA were measured by NanoDrop-1000 spectrophotometer and with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Fig. 1 Hierarchical cluster analysis of the differentially expressed genes among telocytes (TCs), mesenchymal stem cells (MSCs) and fibroblasts (Fbs).

Fig. 2 Gene ontology of the genes with at least twofolds difference among telocytes (TCs), mesenchymal stem cells (MSCs) and fibroblasts (Fbs), analysed under following categories: Biological Processes (A), Cellular Components (B) and Molecular Function (C). ($P \leq 0.01$).
RNA labelling, array hybridization and DNA microarray

The Mouse 4 × 44K Gene Expression Array (Agilent, Shanghai, China) with about 39,000 mouse genes and transcripts represented with public domain annotations was applied for the analysis of gene profiles of mouse lung telocytes, MSCs and fibroblasts. Sample labelling and array hybridization were performed according to the protocol of One-Color Microarray-Based Gene Expression Analysis (Agilent Technology). Briefly, 1 μg of total RNA from each sample was linearly amplified and labelled with Cy3-dCTP. The labelled cRNAs were purified by RNAeasy Mini Kit (Qiagen). The concentration and specific activity of the labelled cRNAs (pmol Cy3/μg cRNA) were measured by NanoDrop ND-1000. One microgram of each labelled cRNA was fragmented by adding 11 μl 10 × Blocking Agent and 2.2 μl of 25 × Fragmentation Buffer, and heated at 60°C for 30 min. 55 μl 2 × GE Hybridization buffer was added to dilute the labelled cRNA. Hundred microlitre of hybridization solution was dispensed into the gasket slide and assembled to the gene expression microarray slide. The slides were incubated for 17 hrs at 65°C in an Agilent Hybridization Oven. The hybridized arrays were washed, fixed and scanned with the Agilent DNA Microarray Scanner (part number G2505B).

Fig. 3 String Network of the proteins that are differentially expressed among telocytes (TCs), mesenchymal stem cells (MSCs) and fibroblast (Fbs). A group of 46 genes are found connected functionally. Strong associations are represented by thick lines.
Data analysis

The acquired array images were analysed with Agilent Feature Extraction software (version 10.7.3.1). Quality normalization and subsequent data processing were performed with the GeneSpring GX v11.5.1 software package. The genes detected in all samples were chosen for further data analysis. Differentially expressed genes were identified through Fold Change filtering and hierarchically clustered by the Agilent GeneSpring GX software (version 11.5.1). Gene ontology and String Network analyses were performed with the standard enrichment computation method to study the relation among variant proteins expressed by variant genes. Fisher’s exact test was used to find more overlaps between the descriptive list and the GO annotation list than would be expected by chance. The P-value denoted the significance of GO terms enrichment in the descriptive genes.

Results and discussions

The quality of gene data after filtering and the distribution of data sets were assessed and visualized by Box-Plot. There was no significant difference in distributions of log2 ratios among TCs, MSCs and fibroblasts (Figure S1).

Gene expression analysis

Gene expression array data show that more than 500 genes are at least 10 times higher expressed in TCs comparing with either MSCs or fibroblasts (Table 1). Several genes are found 100 times up-regulated in TCs versus fibroblasts (Cdh2, Cyba, Rnf128, Dyps3, Fst1, Rbp1, Gm12892, Cdh2, Aldh1a1, Gm5864) or MSCs (Rbp1 and Glipr1; Table 1A). Additional genes are significantly overexpressed in TCs comparing with MSCs or fibroblasts (Table 1B). Table 2 is a summary of genes found to be down-regulated in TCs. Although many genes are less expressed in TCs comparing with MSCs or fibroblasts, very few are found at least 100 times down-regulated in TCs. Table 2A and B show the genes with known functions that are found at least 30 times down-regulated specifically in TCs comparing with MSCs and fibroblasts.

Hierarchical cluster and gene ontology analyses

The hierarchical cluster of the genes with more than twofold changes among telocytes, MSCs and fibroblasts is shown in Figure 1. Remarkably, the MCSs and fibroblast gene expression profiles relate each other to higher extent than to TCs supporting the view that TCs have a distinct gene expression pattern. In fact this is an important additional proof that TCs and fibroblasts are different cells. The GO analysis indicates that the genes differentially expressed in TCs are mainly involved in development, in tissue and organ morphogenesis and in transport and maintenance of a biological compound to a specific location (Fig. 2A). In addition, many of the differentially expressed genes likely function in extracellular compartments (Fig. 2B) and may play roles in cell survival, growth and differentiation through autocrine and paracrine activity (Fig. 2C). The relationships, including direct (physical) and indirect (functional) associations, of those genes were analysed by String Network analysis (www.string-db.org). Among the 156 co-expressed genes, 46 genes were found to have certain interactions (Fig. 3).

Table 3	Genes up- or down-regulated in telocytes (TCs) relative to both mesenchymal stem cells (MSCs) and fibroblasts (Fbs)			
Gene name	TCS vs. Fbs	TCS vs. MSCs		
	Fold change	Reg	Fold change	Reg
Ctgf	6150	Up	35	Up
Mmp10	177	Up	56	Up
Mmp3	131	Up	25	Up
Col4a4	46	Up	51	Up
Col4a6	34	Up	36	Up
Col4a5	8	Up	32	Up
Unc13b	61	Up	7	Up
Mapk13	75	Up	13	Up
Igsf9	115	Up	3	Up
Glipr1	54	Up	355	Up
Clic5	83	Up	41	Up
Myh14	194	Up	245	Up
Aldh1a1	225	Up	92	Up
Aldh1a2	148	Up	167	Up
Rbp1	161	Up	141	Up
Gpro5c	125	Up	136	Up
Gsta3	64	Up	70	Up
Plac9	57	Up	63	Up
Fgd3	77	Up	39	Up
Dok2	60	Up	41	Up
Scnn1a	35	Up	68	Up
Car6	323	Down	31	Down
Osd4	275	Down	59	Down
Oz/ten-m	269	Down	56	Down
Cdsn	229	Down	153	Down
Hoxc6	152	Down	207	Down
Ili203	82	Down	150	Down
TCs are potentially involved in tissue remodelling and basement membrane homeostasis

A set of genes are specifically up- or down-regulated in TCs comparing with both fibroblasts and MSC (Table 3). As last two cell types are developmentally and functionally quite different, one being progenitors and the other differentiated, specialized cells, this set of genes should connect to the specific biological activities of TCs among the other stromal cells. Thus, we have found that several genes with roles in tissue remodelling and repair are significantly up-regulated in TCs (Tables 1A and 3): connective tissue growth factor (CTGF) [24, 25], Transgelin (Tagln) [26], Nidogen 1 (Nid1) [27, 28], tissue inhibitor of metalloproteinase 3 (TIMP3) [29], collagen type IV, alpha 1 (Col4a1), alpha 2 (Col4a2), alpha 3 (Col4a3), alpha 4 (Col4a4), alpha 5 (Col4a5) [28, 30], Matrix Metalloproteinase 10 (Mmp10) [31–33], Matrix Metalloproteinase 3 (Mmp3) [31–33] and Retinol-binding protein 1 (RBP1). RBP1 (also known as CRABP-I, CRBP, CRBP1, CRBP1, RBPP, RBPC) is required in tissue remodelling [34]. Regarding the molecular mechanisms, RBP1 delivers vitamin A to other cells through the plasma membrane protein STRA6 involved in JAK/STAT signalling and the intracellular metabolism of the vitamin [35]. Remarkably, two main components of basement membrane, Collagen type IV and Nidogen 1 are up-regulated in the cultured TCs comparing with both MSCs and fibroblasts. Moreover, TIMP3 is an extracellular matrix-anchored metalloproteinase inhibitor that acts specifically to increase vascular (endothelial) basement membrane stability [36, 37]. As TCs express Matrix Metalloproteinases Mmp3 and Mmp10 also, it is likely that TCs are involved in both basement membrane assembly (stability) and surrounding extracellular matrix remodelling.

Concluding remarks

Overall, the data indicate that TCs are clearly distinct from both MSCs and fibroblasts, and the gene signature of TCs suggests specific biological functions in (a) development and tissue morphogenesis, (b) biological compound transport and (c) extracellular matrix remodelling. It has been proposed that TCs play essential roles in angiogenesis given that TCs are frequently found in close vicinity of small vessels and express angiogenesis-related factors (VEGF, NO) and pro-angiogenic microRNAs [22]. The data presented here bring additional support to this view suggesting that TCs may also regulate vascular basement membrane remodelling as key step in vascular branching and de novo vessel formation.

Acknowledgements

The authors would like to thank Hongjian Gao, Department of Electronic Microscopy, Shanghai Medical College, Fudan University, for the technical assistance in TEM; Biomedical Research Center of Fudan University Zhongshan Hospital for technical supports and facility supplies. The work was supported by Shanghai Leading Academic Discipline Project (Project Number: B115), Fudan University (Distinguished Professor Grant), Shanghai Science & Technology Committee Grants for International Collaboration (11410708600), Project of Science and Technology Innovation Plan in Biomedicine, National Natural Science foundation of China (H0108) and National Natural Key Science foundation of China: ‘Lung injury of ischemic reperfusion’ (30930090). This study is partially supported by the Sectoral Operational Programme Human Resources Development (SOPHRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/64153 (to V.B.C) and by grant 350/2012 PN-II-ID-PCE-2011-3-0134 of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI (to L.M.P).

Conflict of interest

The authors confirm that there are no conflicts of interest.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Figure S1 Box-Plot of Quality assessment of gene data after filtering. After normalization, the distributions of log2 ratios among all samples are nearly the same.

References

1. Popescu LM, Faussone-Pellegrini MS. Telocytes - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TECYTES. J Cell Mol Med. 2010; 14: 729-40.
2. Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010; 14: 871–7.
3. Suciu L, Popescu LM, Gherghiceanu M, et al. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010; 192: 325–339.
4. Popescu LM, Gherghiceanu M, Suciu LC, et al. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011; 345: 391–403.
5. Hinescu ME, Gherghiceanu M, Suciu L, et al. Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy. Cell Tissue Res. 2011; 343: 389–397.
6. Popescu LM, Manole E, Serboiu CS, et al. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011; 15: 1379–1392.
7. Gevaert T, De Vos R, Van Der Auwera F, et al. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2011; 16: 2085–93.
8. Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012; 41: 949–56.
9. Cretin V, Cretin SM, Simionescu AA, et al. Telocytes, a distinct type of cell among...
the stromal cells in the lamina propia of jejunum. Histol Histopathol. 2012; 27: 1067–1078.
10. Cantarero I, Luesma MJ, Junquera C. The primary cilium of telocytes in the vascular-
etic properties: electron microscope imaging. J Cell Mol Med. 2011; 15: 2594–2600.
11. Zheng Y, Manole CG, Bai C, et al. Telocytes in
the commerce. J Cell Mol Med. 2011; 15: 2262–2268.
12. Popescu LM, Nicolescu MI. Telocytes
and hybrid morphologies. Cell Biol Int. 2012; 36: 1079–88.
13. Popescu BO, Gherghiceanu M, Kostin S, et al. Telocytes in meninges and choroid
plexus. Neurosci Lett. 2012; 516: 265–269.
14. Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Anat Rec. 2012; 295: 378–385.
15. Ceafalan L, Gherghiceanu M, Popescu LM, et al. Telocytes in human skin; are they
involved in skin regeneration. J Cell Mol Med. 2012; 16: 1405–20.
16. Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012; 6: 45–59.
17. Zheng Y, Bai C, Wang X. Telocyte morphology and potential roles in diseases. J Cell Physiol. 2012; 227: 2311–7.
18. Cretoiu SM, Cretoiu D, Popescu LM. Human
myometrium - the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012; 16: 2844–9.
19. Cretoiu SM, Cretoiu D, Marin A, et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013; doi: 10.1530/REP-12-0369.
20. Gherghiceanu M, Popescu LM. Cardiac
telocytes - their junctions and functional implications. Cell Tissue Res. 2012; 348: 265–79.
21. Popescu LM, Nicolescu MI. Telocytes and stem cells. In: Goldenberg RCD, Campos de Carvalho AC, editors. Resident stem cells and regenerative therapy. Oxford: Academic Press/Elsevier; 2012. pp. 205–31.
22. Manole CG, Cismasiu V, Gherghiceanu M, et al. Experimental acute myocardial infarction: telocytes involvement in neoangiogenesis. J Cell Mol Med. 2012; 15: 2286–96.
23. Cismasui VB, Radu E, Popescu LM. MiR-
193 expression differentiates telocytes from other stromal cells. J Cell Mol Med. 2011; 15: 1071–4.
24. Sonnay S, Shi-Wen X, Leoni P, et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 2010; 62: 1523–32.
25. Lipson KE, Wong C, Teng Y, et al. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012; 5: S24.
26. Nair RR, Solway J, Boyd DD. Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kD type IV collagenase (MMP-9) expression. J Biol Chem. 2006; 281: 26424–36.
27. Marionnet C, Pierard C, Vieux-Chagnoleau C, et al. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Invest Dermatol. 2006; 126: 971–9.
28. Stratman AN, Malotte KM, Mahan RD, et al. Pericyte recruitment during vasculo-
genic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 2009; 114: 5091–101.
29. Limana F, Esposito G, D’Arcangelo D, et al. HMG1 attenuates cardiac remodeling in the failing heart via enhanced cardiac
regeneration and miR-206-mediated inhibition of TIMP-3. PLoS ONE. 2011; 6: e19845.
30. Abreu-Velez AM, Howard MS. Collagen IV in normal skin and in pathological processes. J Am Med Sci. 2012; 4: 1–8.
31. Girard MT, Matsubara M, Kublin C, et al. Stromal fibroblasts synthesize collagenase and stromelysin during long-term tissue remodeling. J Cell Sci. 1993; 104: 1001–11.
32. Rodgers WH, Matrisian LM, Giudice LC, et al. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest. 1994; 94: 946–53.
33. Turner NA, Warburton P, O’Regan DJ, et al. Modulatory effect of interleukin-1α on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p38 MAP kinase. Matrix Biol. 2010; 29: 613–20.
34. Yu M, Ishibashi-Ueda H, Ohta-Ogo K, et al. Transient expression of cellular retinol-bind-
ing protein-1 during cardiac repair after myocardial infarction. Pathol Int. 2012; 62: 246–53.
35. Berry DC, O’Byrne SM, Vreeland AC, et al. Cross talk between signaling and vitamin A transport by the retinol-binding protein receptor STRA6. Mol Cell Biol. 2012; 32: 3164–75.
36. Baker AH, Edwards DR, Murphy G. Metallo-
proteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002; 115: 3719–27.
37. Ma DH, Chen JI, Zhang F, et al. Inhibition of fibroblast-induced angiogenic phenotype of cultured endothelial cells by the overexpression of tissue inhibitor of metalloproteinase (TIMP)-3. J Biomed Sci. 2003; 10: 526–34.