Ethnomedicinal Plants Traditionally Used for the Treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya—A Review

Disha Raghuvanshi 1, Rajni Dhalaria 1*, Anjali Sharma 1, Dinesh Kumar 2*, Harsh Kumar 2*, Martin Valis 3, Kamil Kuča 4,5,* *, Rachna Verma 1,* * and Sunil Puri 1

1 School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; disha.raghuvanshi786@gmail.com (D.R.);
rajindhalaria86@gmail.com (R.D.); anjalisharmaas8749347@gmail.com (A.S.); spuri56@yahoo.com (S.P.)
2 School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; dkchatanta@gmail.com (D.K.); microharshs@gmail.com (H.K.)
3 Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; martin.valis@fnhk.cz
4 Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
5 Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
* Correspondence: kamil.kuca@uhk.cz (K.K.); rachnac83@gmail.com (R.V.); Tel.: +420-603-289-166 (K.K.)

Abstract: Ethnomedicinal plants have a significant role in the lives of people of rural and tribal areas. Thousands of medicinal plant species are used to treat various diseases, including jaundice, and are considered an important therapeutic resource to minimize these diseases. Jaundice (icterus) is a chronic disease that occurs when the amount of bilirubin in the blood increases. This review describes different ethnomedicinal plants used for curing jaundice by tribal and rural people of Himachal Pradesh. The study reveals 87 ethnomedicinal plant species belonging to 51 different families, which are used for treating jaundice in Himachal Pradesh. These plants are arranged in a systematic way, which includes a description of their common name, botanical name, along with its family, plant parts used, region, and mode of use in tabulated form. Some of the plant extracts have already been explored for their phytochemical and pharmacological significance and proved their potential in the preparation of new medicines or drugs against the treatment of jaundice. This review is an attempt to highlight the indigenous knowledge of medicinal plants, which are specifically used for the treatment of jaundice. The data mentioned in the present review is compiled from various sources like existing literature, books, Google Scholar, and Scopus publications. Among all the observed plant species, most used medicinal plants for the treatment of jaundice include Justicia adhatoda, Emblica officinalis, Ricinus communis, Saccharum officinarum, Terminalia chebula, Berberis aristata, Cuscuta reflexa, and Tinospora cordifolia. Plants that are mostly utilized for the treatment of jaundice need to be scientifically validated by pharmacological analysis and should be subsequently used for the preparation of new drugs, which may prove far more beneficial than the existing one.

Keywords: jaundice; bilirubin; ethnomedicinal plants; phytoconstituents; hepatoprotective

1. Introduction

Himachal Pradesh is one of the Himalayan states of India, which has been regarded as the richest resource of biodiversity. The area is rich in medicinal plants, which are widely used by the people of different tribal and rural areas. The state is divided into 12 districts and 169 tehsils and sub-tehsils, covering a total area of 55,673 km² with altitude variation from 200–7000 m above sea level [1]. Geographically, the state shows three different zones or regions, known as the outer Himalaya, mid-hills, and the greater Himalaya. The outer
Himalaya, also known as the Shiwalik hills, ranges from 350 m to 1500 m above sea level and includes districts, such as Bilaspur, Sirmour, Kangra, Una, Chamba, Mandi, Hamirpur, and some parts of Solan. Mid-hills (1500 to 3500 m above sea level) cover the area of Mandi, Kangra, Chamba, Solan, Shimla, Lahaul-Spiti, Kinnaur, and Kullu districts. The Greater Himalaya (ranges 3500 and above) covers the area of Lahaul-Spiti, Kullu, and Pangi tehsil of Chamba district, which is also known as the high-altitude alpine area [2,3]. Himachal Pradesh in the lap of western Himalaya is well-known for its floral diversity, including medicinal plants, which are used since ancient times for the treatment of jaundice. The dependency of human beings on plants is an age-old relationship, which is described as ‘ethnobotany’. Ethnobotany comes from the term ethnology, which means the study of culture, so ethnobotany or ethnobiology is a scientific study of plants and human relationship, which shows plants as a primary source of need. Ethnobotany deals with various aspects in which one of the most popular and common aspect is the study and use of ethnomedicines. Ethnomedicine involves the study of indigenous beliefs, concepts, knowledge, and practices among the ethnic groups of tribal and rural people for preventing, curing, and treating jaundice. For human existence, since ancient times, especially, the ethnic or tribal community has a great dependence on local flora for medicinal and other purposes [1,4]. The traditional medicine system represents the indigenous beliefs, skills, and practices of rural and tribal communities based on their experiences to maintain their health [5]. Traditional medicines play an efficient role in the preparation of herbal drugs for the betterment of people [6]. This system of medicines is used for curing diseases through the employment of agencies and forces of nature. Tribal people have their own system of medicines, which are age-old, and some of which are not documented in the literature. This tradition has been passed on from one generation to the other for treating jaundice. The information on medicinal and various other plants comes from the ancient people when they started learning and making use of these traditional plants for various purposes [7,8].

Medicinal plants are regarded as the gift of nature to humans. Various parts of medicinal plants, including herbs, shrubs, and trees, are used for curing jaundice and diseases like neurodegenerative, inflammatory, anthelmintic, diaphoretic, diuretic, etc. According to WHO (World Health Organization), “medicinal plant is a plant, within which one or more of its part contains the substances, which can be further used for various therapeutic purposes, and serves as a precursor for chemo-pharmaceutical semi-synthesis” [9]. Various bioactive compounds of plants called the secondary metabolites are the reason for their medicinal value and include glycosides, tannins, steroids, alkaloids, terpenoids, essential oils, etc. [10]. Himachal Pradesh is endowed with a rich diversity of plants, which includes 3500 higher plants, and of these, 1500 plants are identified with medicinal and aromatic properties [11]. Because of the geographical position and difficult means of transport and communication, people of some major tribes of Himachal Pradesh (Gaddi, Gujjar, Kinniura, Lahula, and Pangwals) mostly live in villages and rural areas and belongs to diverse cultures. These people, with their specific traditional knowledge, make use of different medicinal plants for curing jaundice [1]. Medicinal and ethnobotanical uses of different plant species are documented by various researchers or scientists from different areas of Himachal Pradesh based upon the information provided by the local ethnic people [12]. Ethnomedicines have made good contributions in the health care system in traditional medicines for the treatment of jaundice since ancient times. There are two broad categories for the use of medicinal plants; firstly, plants are used traditionally only by local physicians for getting relief from illness, and secondly, the plants are used by pharmaceutical companies for their active ingredients [13]. According to WHO, due to poverty and lack of modern medicines among different rural and tribal areas, it is estimated that about 70–80% of the world’s total population is totally dependent on the local medicinal plants for their primary healthcare system [8].

Ethnomedicinal plants are generally used for curing various ailments like diabetes, dysentery, typhoid, and jaundice. Different parts of the plant, including roots, leaves, fruits, and flowers, are used for the treatment of jaundice. Furthermore, jaundice is not just a
Ethnomedicinal plants are generally used for curing various ailments like diabetes, dysentery, typhoid, and jaundice. Different parts of the plant, including roots, leaves, fruits, and flowers, are used for the treatment of jaundice. Furthermore, jaundice is not just a disease rather a sign of a disease that occurs in the liver, which indicates impairment of the liver functioning [14,15]. The foremost ancient literature says that “icter” is a Latin word that was previously used to describe the term liver [16]. Basically, the term jaundice is taken from the French word “jaune”, which means “yellowness” and is characterized by yellow pigmentation [17]. Pigmentation is generally shown by the skin and eyes. It occurs due to the exceeding level of bilirubin. Bilirubin is synthesized in the body and is a natural product that is produced because of hemolysis through the action of liver cells, which further in the presence of biliverdin reductase leads to the production of bilirubin or unconjugated bilirubin. The metabolism of bilirubin describes the pathophysiology of jaundice, as shown in Figure 1.

![Figure 1. Bilirubin metabolism or pathophysiology of jaundice [15].](image)

Under normal circumstances, unconjugated bilirubin (lipid-soluble) in the presence of glucuronic acid gets converted into conjugated bilirubin (water-soluble), which is released in the small intestine. Removal of glucuronic acid in the presence of bacterial protease takes place in the small intestine, which further passes through the large intestine in the form of feces, and the remaining enters the kidney by the portal vein and passes out as urine, as shown in Figure 1 [15]. When this bilirubin accumulates in the blood, skin, sclera, and mucous membrane, it turns yellow in color. This yellowness of skin and other parts is generally called jaundice or icterus and is usually seen when the amount of plasma bilirubin is greater than its normal value, i.e., 2 mg/dL [18].

According to the pathophysiology of jaundice, it is mainly caused due to increased level of bilirubin and its overproduction in the liver, which may occur due to many reasons like acute or minor liver inflammation, obstruction of the bile duct, Gilbert’s syndrome, cholestasis, and hemolytic anemia [15]. Jaundice is usually found much more effective and serious in adults rather than in new-born children (neonates), and sometimes it causes even death of the adult individual [19].

Jaundice shows three different stages or types based on its pathophysiology: pre-hepatic jaundice that is caused due to the hemolysis of red blood cells, also called erythrocytes. Hepatic jaundice occurs due to the abnormal metabolism of the liver or dysfunction of the liver, and post-hepatic jaundice is caused due to less liver functioning or any obstruction in the bile duct, as described in Figure 2.

Jaundice can also be a viral disease, which can spread through contaminated water and food-related items or due to poor sanitization conditions or through several other diseases, such as hepatitis A, hepatitis B, hepatitis C, hepatitis D, liver cancer, and hemolytic
anemia, etc., which damage liver [14]. It has been estimated that more than two billion people worldwide are infected annually with the hepatitis B virus [20]. The history of jaundice is very long and shown in ancient Ayurveda and the Indian traditional system of medicines [21]. Jaundice is also known as Harimana disease in Rigveda (8000 BC). Herbal treatment is prescribed for jaundice because medicinal plants show a faster rate of reduction in cases when compared with western medicines [22]. This disease shows different kinds of symptoms like weakness, high fever, nausea, loss of appetite, vomiting, and the main symptom shown by this disease is the dark urine color. Sometimes, it also leads to serious conditions like coma, a sudden attack of illness or epileptic fits, psychosis (like having a severe mental disorder), and finally, death of the patient. Precautions or prevention for jaundice generally requires a low-fat diet, high water intake as much body requires, and mainly a healthy diet routine and proper nutrition [15].
Botanical Name	Local Name	Family	Region	Data Source
Justicia adhatoda L.	Basuti, Arusha	Acanthaceae	Kangra, Hamirpur	[23,24]
Adiantum capillus-veneris L.	Dooman tuli	Adiantaceae	Hamirpur	[24]
Pistacia integerrima J. L. Stewart ex Brandis	Kakar Singh	Anacardiaceae	Hamirpur	[24]
Carissa opaca Stapf. ex Haines	Karnaunda, Garmu	Apocynaceae	Kangra, Mandi, and Una	[25]
Calotropis procera (Aiton) Dryand.	Aak	Apocynaceae	Kangra and Chamba	[26]
Colocasia antiquorum Schott	Ghandiale, Arbi	Araceae	Kangra	[23]
Colocasia esculanata (L.) Schott	Arbi kuchawari	Araceae	Hamirpur	[24]
Hedera helix L.	Kannauri (Bail)	Araliaceae	Shimla	[27]
Ajania tibetica (Hook.f. and Thomson) Tzvelev	Tibetan Tansy	Asteraceae	Lahul and Spiti	[28]
Crepis flexuosa (Ledeb.) Benth. ex C.B. Clarke	Homa-silli	Asteraceae	Lahul and Spiti	[28]
Crepis flexuosa (Ledeb.) Benth. ex C.B. Clarke	Gaadi	Asteraceae	Lahul and Spiti	[28]
Colocasia antiquorum Schott	Ghandiale, Arbi	Araceae	Kullu (Solang Valley)	[29]
Picris hieracioides subsp. japonica (Thunb.) Hand-Mazz.	Cherakpa	Asteraceae	Lahul and Spiti	[30]
Scorzonera dioica var. Turcz.	Himalayan viper grass	Asteraceae	Lahul and Spiti	[31]
Taraxacum officinale (L.) Weber ex F.H. Wigg.	Dudhli, Dulal	Asteraceae	Kangra	[23,24]
Youngia tenuifolia (Willd.) Bacc. and Stebbins	Seeritik	Asteraceae	Kangra	[34]
Vernonias anthelmintica (L.) Wild.	Kaliziri	Asteraceae	Shimla	[27]
Berberis aristata DC.	Kashmir, Chunchhari	Berberidaceae	Kangra, Mandi, Shimla, Chamba	[23,27,32,33]
Berberis ceratophylla G. Don	Kashmir	Berberidaceae	Kangra	[34]
Berberis lycium Royle	Kashmir, Dauhaldi	Berberidaceae	Kangra, Hamirpur, Shimla, Chamba	[23,24,27,32,35]
Berberis chitria Buch. -Ham. ex Lindl.	Bhoipatra	Berberidaceae	Shimla	[27]
Betula utilis D. Don	Muli	Betulaceae	Kangra and Chamba	[23,32]
Capsella bursa-pastoris (L.) Medik.	Jangli sarson	Brassicaceae	Kullu (Solang Valley)	[29]
Raphanus sativus L.	Muli	Brassicaceae	Kangra	[23,24]
Oroxyllum indicum (L.) Kurz	Tappalanga	Bignoniaceae	Kangra	[23]
Cassia fistula L.	Kinar, Alsi ki tat	Caesalpinaceae	Kangra	[34]
Tamarindus indica L.	Imli	Caesalpinaceae	Hamirpur	[24]
Capparis spinosa L.	Kabra findus rose	Capparaceae	Lahul and Spiti	[31]
Carica papaya L.	Pump, Papita	Caricaceae	Kangra	[23]
Terminalia bellirica (Gaertn.) Roxb.	Behada	Combretaceae	Solan, Kangra	[23,36]
Terminalia chebula Retz.	Harad	Combretaceae	Kangra, Solan (Kunihar forest division), and Shimla	[23,27,36]
Cuscuta reflexa Roxb.	Akash bel	Convolvulaceae	Hamirpur, Bilaspur, Solan (Kunihar forest division)	[24,27,37]
Cuscuta sativus L.	Kheera	Convolvulaceae	Hamirpur	[24]
Elseagnus rhomboides (L.) A. Nelson	Sea-buck thorn	Elaeagnaceae	Lahul and Spiti	[31]
Hippophae tibetana Schldl.	Star bn	Elaeagnaceae	Lahul and Spiti	[31]
Emblica officinalis Gaertn.	Amla, Amlika	Euphorbiaceae	Kangra, Shimla, Bilaspur, Chamba, Hamirpur, Sirmour, Solan, Una	[23–25,32,37,38]
Euphorbia hirta L.	Doodhli	Euphorbiaceae	Hamirpur	[24]
Botanical Name	Local Name	Family	Region	Data Source
-----------------------------	-------------------------	------------------	-------------------------	-------------
Euphorbia tirucalli L.	Tohar	Euphorbiaceae	Una, Hamirpur	[39]
Mallotus philippinensis Mull.Arg.	Kamla tree, Kumkum	Euphorbiaceae	Kunihar forest division, Solan	[36]
Phyllanthus fraternus G.L. Webster	Chota amla, Bhoomi ambla	Euphorbiaceae	Kangra	[23]
Ricinus communis L.	Erand	Euphorbiaceae	Kangra	[23]
Equisetum arvense L.	Girthan	Equisetaceae	Kangra	[23]
Bauhinia variegata L.	Karale, Kachnar	Fabaceae	Kangra	[23]
Cajanus cajan (L.) Millsp.	Arhar, Pigeonpea	Fabaceae	Chamba	[40]
Cicer microphyllum Benth.	Chana, Cowpea	Fabaceae	Lahul and Spiti	[28]
Trigonella emodi Benth.	Methi, Fenugreek	Fabaceae	Lahul and Spiti	[31]
Flacourtia ramontchi L.	Governor’s plum, Bilangra	Flacouriaceae	Bilaspur, Chamba, Kangra, Hamirpur, Sirmour	[25]
Gentiana kurroo Royle	Kanauri (Bail)	Gentianaceae	Shimla	[27]
Gentiana tubiflora (G. Don) Griseb.	Tikta anupo Mensa	Gentianaceae	Lahul and Spiti	[30]
Gentiana leucomeleana Maxim.	Buksuk shipo	Gentianaceae	Lahul and Spiti	[30]
Gentianopsis detonsa (Rottb.) Ma	Chatreek	Gentianaceae	Lahul and Spiti	[30,31]
Gentianopsis paludosa (Hook.f.) Ma	Gyartheek	Gentianaceae	Lahul and Spiti	[30,31]
Gentianella moorcroftiana (Wall. ex Griseb.)	Airy shaw	Gentianaceae	Lahul and Spiti	[31]
Geranium nepalense Sw.	Tirahi	Geraniaceae	Manali	[26]
Mentha spicata L.	Pudina	Lamiaeceae	Kangra	[23]
Aloe vera (L.) Burm.f.	Kware, Ghrukumar, Gavrapatha	Liliaceae	Kangra, Shimla	[23,38]
Asparagus adscendens Roxb.	Sanspan	Liliaceae	Kangra	[23]
Woodfordia fruticosa (L.) Kurz	Dhoaishen, Dhai	Lythraceae	Kangra, Shimla	[23,24]
Tinospora cordifolia (Willd.) Miers	Gilo, Giloen, Guljae	Menispermaceae	Kangra, Chamba	[23,32]
Morus alba L.	Chitta toot	Moraceae	Hamirpur, Bilaspur	[24,37]
Morus nigra L.	Kala toot	Moraceae	Hamirpur	[24]
Leucas cephalotes (Roth) Spreng.	Punarnava	Lamiaeceae	Kangra	[23]
Berhavia diffusa L.	Punarnava	Nyctaginaceae	Una and Hamirpur	[39]
Argemone mexicana L.	Kantili, Pili Kantili, Bharbhand	Papaveraceae	Kangra, Hamirpur, and Sirmour	[23,24,35]
Sesamum indicum L.	Til	Pedaliaceae	Hamirpur	[24]
Polygonum tortuosum D. Don	Agel davaj	Polygonaceae	Lahul and Spiti	[30]
Persicaria amplexicaulis (D. Don) Ronse Decr.	Aml/el/kutrya	Polygonaceae	Chamba and Kangra	[26]
Hordeum vulgare L.	Jou, Joui	Poaceae	Hamirpur, Bilaspur	[24,37]
Saccharum officinarum L.	Ganna, Kamandi	Poaceae	Kangra, Bilaspur, and Hamirpur	[23,24,37]
Podophyllum hexandrum Royle	Bankakdi	Podophyllaceae	Manali	[41]
Punica granatum L.	Daran	Punicaceae	Hamirpur	[24]
Aquilegia fragrans Benth.	Zadul	Rannunculaceae	Kangra	[34]
Botanical Name	Local Name	Family	Region	Data Source
--	--------------------------------	---------------------	-------------------	-------------
Aconitum rotundifolium Kar. and Kir.	Atish, Patish	Rannunculaceae	Lahul and Spiti	[31]
Thalictrum foliosum DC.	Pili jar, Chabra	Rannunculaceae	Shimla	[27]
Geum elatum Wall. ex G. Don	Gyampar mendok, Turu Silva Mensa	Rosaceae	Lahul and Spiti	[30]
Prunus domestica L.	alubhukhara, Palam	Rosaceae	Hamirpur	[24]
Rosa webbiana Wall. ex Royle	Seba, Webb’s rose	Rosaceae	Lahul and Spiti	[31]
Rubia manjith Roxb. ex Fleming	Jamithi, Manjit	Rosaceae	Manali	[42]
Aegle marmelos (L.) Correa	Bil, Bil patri	Rutaceae	Hamirpur, Bilaspur	[24, 37]
Saxifraga flagellaris Willd.	Spider plant	Saxifragaceae	Lahul and Spiti	[28]
Picrorhiza kurroa Royl ex. Benth.	Karru, Kutki	Scrophulariaceae	Hamirpur, Manali, Chamba	[24, 32, 41]
Capsicum annum L.	Mircha, Pippali	Solanaceae	Kangra	[23]
Datura stramonium L.	Datura	Solanaceae	Manali	[42]
Solanum nigrum L.	Choote tamatter, Makoi	Solanaceae	Kangra, Hamirpur	[24, 24]
Solanum surattense Burm. f.	Kantkari	Solanaceae	Hamirpur	[24]
Centella asiatica (L.) Urb.	Brahmi, Minki	Umbellifereae	Kangra	[23]
Urtica dioica L.	Bichu butti	Urticaceae	Manali	[42]
Viola serpens Wall. ex Ging.	Bhanaksha	Violaceae	Hamirpur	[24]
The study revealed that these 87 ethnomedicinal plants show variations among them and represent 51 different families of plants used for the treatment of jaundice in Himachal Pradesh. Most of these plant species used for treating jaundice were observed in different areas of Himachal Pradesh, including different districts, such as Kangra, Hamirpur, and Lahul and Spiti, as shown below in Figure 3. Among all these plant species, common medicinal plants belong to six major families, i.e., Asteraceae, Fabaceae, Euphorbiaceae, Gentianaceae, Lamiaceae, and Solanaceae.

The plant species most frequently used for the treatment of jaundice include Justicia adhatoda, Emblica officinalis, Ricinus communis, Saccharum officinarum, Terminalia chebula, Berberis aristata, Cuscuta reflexa, and Tinospora cordifolia, and this shows the richness of information regarding medicinal plants used by the people of Himachal Pradesh. Medicinal plants like Aloe vera contains many bioactive compounds, which are responsible for many medicinal properties, such as antibacterial, antioxidants, and immunity-boosting property [18]. Various plant parts have been used for curing jaundice, including stem, leaves, roots, bark, fruits, flowers, seeds, and sometimes even whole plant (described in Table 2). This also strengthens the use of these plants by local people. All ethnomedicinal plants contain some phytochemical constituents, which may be effective in showing an impact on the disease and its cure. The ethnomedicinal significance of plants has been proved by a reassessment of their efficiency potential in different regions. In all the reported plants, there is variation in the usage of plant parts for treating jaundice, which is also shown in Figure 4. This is similar to the work performed in south-western Nigeria, which shows the data analysis of different plant parts used for the treatment of various ailments, including jaundice [8, 43, 44].

Figure 3. Map of India, showing districts of Himachal Pradesh (district names are added in red font where maximum number of medicinal plants were reported for jaundice treatment).

Table 2. Mode of use of ethnomedicinal plants for treating jaundice.

Botanical Name	Plant Part Used	Mode of Use	Reference
Aconitum rotundifolium	Whole plant	Plant juice is taken orally along with an equal volume of water for five to seven days to cure jaundice.	[31]
Adiantum capillus	Leaves	A decoction of fresh leaves is taken two times for seven days to cure jaundice.	[24]
Aegle marmelos	Leaves and fruit	A decoction of leaves and unripe fruit is used to treat jaundice.	[24]
Ajania tibetica	Leaves and flower	Leaves and flowers are used to cure jaundice.	[28]
Table 2. Cont.

Botanical Name	Plant Part Used	Mode of Use	Reference
Aloe vera	Fleshy leaves	The pulp of the leaves is directly consumed by the patient for two weeks to cure jaundice.	[23]
Argemone mexicana	Whole plant	Yellow sap of the plant is used to treat jaundice.	[24]
Asparagus adscendens	Roots	A decoction of roots (10–15 mL) is given for eight to ten days to cure jaundice.	[23]
Aquilegia fragrans	Seeds	A decoction of seeds is used to treat jaundice.	[34]
Bauhinia variegata	Leaves	Leaves juice is taken for seven days for the treatment of jaundice.	[23]
Berberis aristata	New leaves (twigs) and roots	New leaves are directly consumed, and a decoction of ground roots (100 mL) is taken to cure jaundice. Fresh roots are cut into small pieces and further “Kujja-Mishri” with water to cure jaundice.	[23]
Berberis ceratophylla	Roots	shade-dried to make pills. These pills are consumed with “Kujja-Mishri” with water to cure jaundice.	[34]
Berberis chitria	Roots	A decoction of roots is used to treat jaundice.	[27]
Berberis lyrucium	Roots	A decoction of roots (80–100 mL) is given to cure jaundice.	[23]
Betula utilis	Papery bark	A decoction of the bark is given to the patient for ten to twelve days to cure jaundice.	[23]
Boerhaavia diffusa	Whole plant	The whole plant is used to cure jaundice.	[39]
Cajanus cajan	Leaves	Leaf juice or leaf decoction is given with sugar (regularly in the morning) for about one month to cure jaundice. Flowers and betel leaf are taken with honey to treat jaundice.	[40]
Calotropis procera	Flowers	Stem powder is taken with water at least for five to six days.	[31]
Capparis spinosa	Shoot	The stem is used for the treatment of jaundice.	[29]
Capsella bursa-pastoris	Leaves	Boiled leaves are used as a vegetable (saag) and given for two to three days to cure jaundice.	[23]
Capsicum annuum	Shoot	Boiled vegetable of raw fruit is given to the patient to cure jaundice.	[23]
Carica papaya	Raw fruit	Roots are used for the treatment of jaundice.	[25]
Carissa opaca	Roots	A decoction of seeds is consumed empty stomach for a week, daily in the morning.	[34]
Cassia fistula	Seeds	The dried herb is crushed with kali mirch, and its paste (5–10 g) is taken for seven days to cure jaundice. Seeds are used for the treatment of jaundice.	[23]
Centella asiatica	Whole plant (entire herb)	The dried bulb in the powder form is used for the treatment of jaundice.	[24]
Cicer microphyllum	Seeds	Corn (cooked or peeled) is kept in open places overnight.	[28]
Colocasia antiquorum	Corm	In the morning, chopped pieces are given with honey to the patient for five days.	[23]
Colocasia esculenta	Bulb	The dried bulb in the powder form is used for the treatment of jaundice.	[24]
Conyza japonica	Leaves	Leaf paste is used to cure jaundice.	[29]
Cucumis sativus	Fruit	Fresh fruit is cut into small pieces and taken thrice a day for three weeks to cure jaundice.	[24]
Cuscuta reflexa	Whole plant	A decoction of the whole plant is used to treat jaundice.	[24]
Crepis flexuosa	Whole plant	Whole plant juice is mixed with water in equal proportion and taken once a day to cure jaundice.	[31]
Datura stramonium	Leaves and fruit	Fruits and leaves are used to cure jaundice.	[42]
Emblica officinalis	Roots	A decoction of roots is recommended for two weeks to cure jaundice.	[24]
Elaeagnus rhamnoides	Fruit	Fruit juice is used to cure jaundice.	[31]
Euphorbia hirta	Stem and leaves	Stem and leaf extract is used to cure jaundice.	[24]
Euphorbia tirucalli	Leaves	A decoction of leaves is used for the treatment of jaundice.	[39]
Equisetum arvense	Young branch	Young branches are dipped in the water overnight, and juice is (mix a small quantity of Kujja-Mishri and two and a half kali mirch seeds) taken daily empty stomach at least for seven days to cure jaundice.	[23]
Flacourtia ramontchi	Bark, fruits, and roots	Bark, fruits, and roots are used to treat jaundice.	[25]
Gentiana kurroo	Roots	The root powder is used for treating jaundice.	[27]
Botanical Name	Plant Part Used	Mode of Use	Reference
------------------------	-----------------	--	-----------
Gentiana tubiflora	Whole plant	The whole plant is ground with lazi (salted curd) to form a paste and given for forty to forty-five days to cure jaundice.	[30]
Gentiana leucomelaena	Whole plant	Plants are crushed with a small proportion of petals of *Polemonium caeruleum*, and this mixture is given with curd or cow milk empty stomach for fifteen to twenty-two days to cure jaundice.	[30]
Gentianopsis detonsa	Whole plant	Juice of fresh extracted aerial plant part is taken empty stomach to cure jaundice.	[31]
Gentianella moorcroftiana	Aerial plant part	Root powder (2 g) is administered thrice a day to cure jaundice.	[42]
Gernaium nepalenses	Roots	Leaves extract, mixed with cow milk or curd, is given for fifteen to twenty-two days to cure jaundice.	[30]
Geum elatum Wallich	Leaves	Fresh leaf juice is taken with Kujja-Mishri and given twice a day for two or more weeks.	[23]
Hedera helix	Leaves	Crushed leaves’ juice is used to cure jaundice.	[27]
Hippophae tibetana	Fruit	A decoction of the fruit is taken to cure jaundice.	[31]
Hordeum vulgare	Seeds	Dried seed powder is mixed with a sugar solution to cure jaundice.	[37]
Justicia adhatoda	Roots	A decoction of its roots is given to the patient for one month to cure jaundice.	[24]
Leucas cephalotes	Entire herb	Juice of the entire herb (10–15 mL) is given to the patient for eight to ten days.	[23,36]
Mallotus philippinensis	Seeds	Seed powder is given for the treatment of jaundice.	[36]
Mentha spicata	Leaves	Fresh leaf juice is used for treating jaundice.	[23]
Morus alba	Fruit	Fruit juice is used for treating jaundice.	[24]
Morus nigra	Fruit	Fresh fruit juice is given to the patients twice a day for two weeks.	[24]
Oroxylum indicum	Bark of the stem	Crushed bark is soaked in water overnight and given with a small amount of kapoor to cure jaundice. A decoction of the bark is also used for treating jaundice.	[23]
Persicaria amplexicaulis	Whole plant	A decoction of the whole plant is given orally to treat jaundice.	[26]
Picris hieracioides	Whole plant	Plant extract with salted curd is given to the patient for twenty to thirty days.	[30]
Pistacia integerrima	Fruit	Fresh fruit juice is given daily for seven days to curing jaundice.	[24]
Phyllanthus fraternus	Whole plant, roots	A decoction of the entire herb and juice of fresh roots is given for seven days to cure jaundice.	[23]
Picrorhiza kurroa	Rhizome	Rhizome powder is used to cure jaundice.	[24]
Polygonum tortuosum	Whole plant	A paste of the whole plant is mixed with curd (prepared from goat’s milk) and given an empty stomach for fifteen to twenty-two days.	[30]
Podophyllum hexandrum	Flower and leaves	The juice of flowers and leaves is mixed with butter and taken orally to cure jaundice.	[41]
Prunus domestica	Fruit	The fruit extract is used for the treatment of jaundice.	[24]
Punica granatum	Fruit and seeds	Seeds and fruit powder is taken with water and sugar solution to cure jaundice.	[24]
Raphanus sativus	Root and fleshy part	A decoction of roots and juice of fleshy part is given to cure jaundice.	[24]
Ricinus communis	Leaves	Leaf juice is given with cow’s milk early in the morning for seven days to treat jaundice.	[23]
Rosa webbiana	Fruit	Fruit powder is mixed with little quantity of water and taken daily to cure jaundice.	[31]
Rubia manjith	Roots and stem	Roots and stem paste is given to cure jaundice.	[42]
Saccharum officinarum	Stem	Stem juice is used to cure jaundice.	[24]
Saxifraga flagellaris	Leaves and stem	Leaves and stems are used to cure jaundice.	[28]
Scorzonera divaricata	Leaves and shoot	A decoction of leaves and shoots is taken orally to cure jaundice.	[31]
Table 2. Cont.

Botanical Name	Plant Part Used	Mode of Use	Reference
Sesamum indicum	Leaves	Powder made from fresh leaves is used to cure jaundice.	[24]
Solanum nigrum	Leaves	Tablets are made from crushed leaves and taken with imli (tamarind) or curd for treating jaundice.	[23]
Solanum surattense	Fruit	The fruit is directly consumed for the treatment of jaundice.	[24]
Tamarindus indica	Fruit and root	A decoction of its roots is used to treat jaundice.	[24]
Taraxacum officinale	Root and leaves and whole herb	The entire herb in the crushed form (10 gm) is given to the patient for ten days to curing jaundice.	[23]
Terminalia bellirica	Leaves	A decoction of leaf powder is taken to cure jaundice.	[36]
Terminalia chebula	Fruit and rind	Fruit powder is mixed with rock salt and taken with warm water for eight to ten days to cure jaundice.	[23]
Thalictrum foliolosum	Roots	A decoction of roots is used to treat jaundice.	[27]
Tinospora cordifolia	Fresh stem	The dried stem of the giloe is crushed with punarnava mool, and its juice is taken for seven to ten days.	[23]
Trigonella emodi	Leaves and flower	Leaves and flower powder is taken with water twice a day for seven to ten days.	[31]
Urtica dioica	Whole plant	The whole plant is used to treat jaundice.	[42]
Vernonia anthelmintica	Seeds and leaves	A decoction of seeds and leaves is given to cure jaundice.	[27]
Viola serpens	Whole plant	A decoction of dried plant is taken with sugar for more than fifteen days.	[24]
Woodfortia fruticosa	Flowers	Flower extract is used to cure jaundice.	[24]
Youngia tenuifolia	Leaves	Leaves are used to treat jaundice.	[28]

Figure 4. Analysis of the data showing a total estimation of plant parts used for the treatment of jaundice [8,44].

2.2. Mode of Plant Used for the Treatment of Jaundice in Himachal Pradesh

Traditionally, people of Himachal Pradesh use these plant species in appropriate dosages or amounts for curing jaundice. There are different methods of usage of these medicinal plants, like in district Hamirpur, bulb of Colocasia esculenta is cooked as a vegetable, the dried bulb is cut into pieces and then crushed to make powder and given orally to treat jaundice, and juice of fresh Pistacia integerrima is given daily to cure jaundice [24]. Uses of other ethnomedicinal plants are described in Table 2, which includes the plant’s botanical name, plant part used, and mode of use (route of administration) of these plants for treating jaundice. In most cases, these plants are taken alone as a decoction or with a combination of the talmishri or kali mirch. On the other hand, some plants are also taken in combination with other plants, e.g., Emblica officinalis fruit is taken along with
the *Terminalia chebula* and *Terminalia bellirica* fruits, grounded into powder form, and taken orally to cure jaundice [25].

The above pie-chart highlights the different plant parts commonly used for the treatment of jaundice, as analyzed from data in Table 2. It was observed that for jaundice treatment, leaves are highly utilized (31.03%), followed by fruits (20.68%), roots (19.54%), whole plant (19.54%), seeds (8.04%), stem (10.34%), flowers (5.74%), and bark (3.44%); the same pattern is also shown in Figure 3. This indicates that in most cases, the leaves of medicinal plants have more significance than any other plant part. Hence, it can be concluded that leaves are highly effective for curing jaundice, which may be due to more phytochemical accumulation in the plant leaves. However, fruits are the second most used to treat jaundice, root belongs to the third position for treating jaundice, and bark is utilized in the least cases.

Intake of these ethnomedicinal plant parts is suggested to be continued for a definite period or until full recovery. Thus, plants are suggested to be taken in the form of paste, decoction, extract, and dried powder form. Different plant parts contain various organic compounds within them, called secondary metabolites, which may be the reason behind the effectiveness of plant-based treatments and show various chemical and physiological actions against jaundice. These phytoconstituents include proteins, carbohydrates, steroids, terpenoids, alkaloids, phenols, flavonoids, vitamins, tannins, and essential oils, which show an inhibitory effect against hepatoprotective diseases, mainly against jaundice [45,46]. *T. chebula* contains a significant amount of phenolic and flavonoid compounds. The main constituents of the plant include 2,4-chebuloyl-β-D-glucopyranose, ellagic acid, gallic acid, and chebulic ellagitannins. *T. chebula* is one of the main components of the important Ayurvedic formulation “Triphala” (infusion of three fruits, i.e., *T. chebula*, *T. bellirica*, and *Emblica officinalis*). Ayurveda prescribes this formulation to cure kidney and liver dysfunctions. *T. chebula* extract ensures hepatoprotection against liver diseases, such as jaundice, due to its antioxidant activity and bilirubin level lowering effect. The reduction in serum bilirubin level is the most important evidence, which supports the traditional use of the plant against jaundice [47].

2.3. Phytochemical Constituents Present in the Ethnomedicinal Plants

The medicinal property of plants is mainly because of the formation or stimulation of various chemical compounds that occur naturally in the plants and hence used to cure jaundice and various other diseases. So, this review describes various phytochemical constituents present in the ethnomedicinal plants used by people of Himachal Pradesh for curing jaundice, and the data is taken from different sources. The plants are further used for the development of antimicrobial and antioxidant drugs [48], thus proving their medicinal worth. Plant like *Justicia adhatoda* consists of various organic [49] and bioactive compounds [50], which possess numerous biological activities, such as antitussive, abortifacient, cardiovascular protection, anti-inflammatory, and antimicrobial. *Berberis lycium* plant shows the presence of tannins, terpenoids, fats, resins, and many active alkaloids. The roots are the foremost important part of the *Berberis* species as they contain a variety of alkaloids, and the most prominent one is berberine. It has been found that the inhibitory activity of *Berberis lycium* is shown by the components present in its root extract [51]. Like this, many other plants are used in the treatment of jaundice, possessing various phytochemical constituents, out of which some predominant phytochemicals are described in Table 3.

Plant Name	Phytochemical Constituent	Data Source
Aconitum rotundifolium	Diterpenoid alkaloids (isoatisine, atisine chloride)	[52]
Adiantum capillus-veneris	Flavonoids, phenolic acids (sulfate esters of hydroxycinnamic acid), alkaloids, terpenoids (triterpenes), steroids, tannins, saponins	[53]
Aegle marmelos	Phenolic compounds (coumarins, such as marmelosin, marmesin, imperatorin, scopoletin, and esculetin), alkaloids (aeglin, aegelenine, skimmianine), tannins	[54]
Plant Name	Phytochemical Constituent	Data Source
---------------------	--	-------------
Ajania tibetica	Terpenoids (bornyl acetate 60.7%, β-caryophyllene 9.1%, β-eudesmol 5.3%, methyl thymol 4.3% and bornol 2.2%)	[55]
Aloe vera	Fatty acids (such as n-hexadecanoic acid 20.47%, oleic acid 14.53%, tetradecanoic acid 1.04%, 1,2-benzenedicarboxylic acid, diisooctyl ester 13.60%, squalene 6.60%, butyl octyl ester 2.30%) Alkaloids (argemexicaine A, argemexicaine B, protoamine, columbamin, muramine, cryptopine, isocorydine), carbohydrates (arabinose, lactose), steroids (β-sitosterol, stigmaster-4-en-3,β-dione), terpenoids (β-amyrin, trans-phytol), flavonoids (eriodictyol, luteolin, quercetin, rutin), tannins, phenolic acids (vanillic acid)	[56]
Argemone mexicana	Alkaloids (argemexicaine A, argemexicaine B, protoamine, columbamin, muramine, cryptopine, isocorydine), carbohydrates (arabinose, lactose), steroids (β-sitosterol, stigmaster-4-en-3,β-dione), terpenoids (β-amyrin, trans-phytol), flavonoids (eriodictyol, luteolin, quercetin, rutin), tannins, phenolic acids (vanillic acid)	[57]
Asparagus adscendens	Saponins and steroids (stigmasterol glycosides)	[26]
Aquilegia fragrans	Steroids (β-sitosterol), 2,4-dihydroxyphenylacetic acid methyl ester, aquilegiolide, glocidione lactone-A, and alkaloids (magnoflorine)	[58]
Bauhinia variegata	Terpenoids, flavonoids, tannins, saponins, steroids, and cardiac glycosides	[26]
Berberis aristata	Phenolic acids (e-caffeic acid, chlorogenic acid), flavonoids (quercetin, rutin), and alkaloids (berberine, berbamine, palmatine, colubamine, jatrohhrizine, oxyacanthine)	[59]
Berberis lycium	Terpenoids (bornyl acetate 60.7%, β-caryophyllene 9.1%, β-eudesmol 5.3%, methyl thymol 4.3% and bornol 2.2%)	[26]
Betula utilis	Flavonoids (rotenoids, quercetin, kaempferol, borhaavone), lignans, steroids, phenolic glycosides, phenolic compounds (trans-caftaric acid, xanthones), fatty acids, and hydrocarbons	[61]
Boerhavia diffusa	Flavonoids, saponins, sterols, carbohydrates (pentosans), and saponin	[31]
Capsella bursa-pastoris	Fatty acids (dodecanoic acid 5.66 ± 1.17, tetradecanoic acid 29.63 ± 5.79, pentadecanoic acid 18.05 ± 3.06, hexadecanoic acid 284.48 ± 41.06, heptadecanoic acid 7.11 ± 1.60, octadecanoic acid 53.20 ± 0.68, eicosanoic acid 2.52 ± 0.33), steroids (phytosterol, cholesterol, campesterol, stigmasterol, β-sitosterol), amino acids (glycine, histidine), and flavonoids (tricin, kaempferol, quercetin)	[63]
Capsicum annum	Cardiac glycosides (digoxigenin-3-O-β-d-digitoxoside), phenolic compounds, lignans, terpenoids (17-hydroxy-11-oxo-nor-β-amyrone, urs-12-ene-3β, 22β-diol-17-carboxylic acid), steroids (stigmasterol, campesterol, β-sitosterol), flavonoids (rutin, quercetin), essential oils (hydroxyacetophenone 89.5%, benzyl salicylate 6.0%, benzyl benzoate 4.6%, (E,E)-α-farnesene 3.5%), protein (1.3%), and carbohydrates (17.39%)	[64]
Cassia fistula	Terpenoids (lupeol), steroids (β-sitosterol), fatty acid alcohols (hexacosanol), flavonoids (kaempferol, leucopelargonidin, rhamnatin-3-O-gentiobioside), phenolic acids (rhein, 3-formyl-1-hydroxy-8-methoxy anthaquinone), and alkaloids	[26]
Centella asiatica	Alkaloids, glycosides, terpenoids, steroids, flavonoids, tannins, and reducing sugars	[66]
Cicer microphyllum	Steroids (phytosterols), flavonoids, phenolic compounds, tannins, carbohydrates, proteins, and amino acids	[68]
Colocasia esculenta	Flavonoids (flavones, apigenin, luteolin, anthocyanins), carbohydrate (starch 0.23–0.52%, and lipids 0.017–0.025%)	[69]
Conyza japonica	Terpenoids (sesquiterpenoids, conyterpenols A–D, strictic acids), flavonoids, and their glycosides	[70]
Crepis flexuosa	Phenolic acids (p-hydroxybenzoic acid, ethyl p-hydroxybenzoate, esculetin), terpenoids (taraxast-20(30)-ene-3β, 21a-diol, ursolic acid, oleanolic acid), flavonoids (apigenin, luteolin, luteolin-7-O-β-D-glucoside), fatty acids (octacosanoic acid, 2,3-dihydroxypropyl pentacosanoate), and steroids (daucosterol)	[71]
Table 3. Cont.

Plant Name	Phytochemical Constituent	Data Source
Cuscuta reflexa	Flavonoids (aromandendrin), glycosides, carotenoids (lutein-10–22%, lycopene), alkaldoids, steroids (campesterol, stigmasterol, stigmast-5-en-3-O-β-D-glucopyranoside), lignin (sesamin), and terpenoids (lupeol, maragagen)	[72]
Cucumis sativus	Steroids, glycosides, flavonoids, alkaloids, saponins, and tannins (except gums and reducing sugars)	[73]
Datura stramonium	Alkaloids (atropine, hyoscyamine, scopolamine), glycosides, saponins, and tannins	[74]
Elaeagnus rhamnoides	Alkaloids (carboline), terpenoids (ursolic acid, uvaol, amyrin), flavonoids (quercetin, myricetin, isorhamnetin, glucosides, rutin), carotenoids, fatty oil, and steroids (sitosterol, citrostandienol)	[31]
Emblica officinalis	Phenolic acids (propyl 3,4,5-trihydroxybezonate, 2,3,7,8-tetrahydroxy chromeno[5,4,3-cde]chromene-5,10-dione, chlorogenic acid, ellagic acid), flavonoids (rutin, quercetin), tannins, amino acids, fixed oils	[75]
Euphorbia hirta	Terpenoids (diterpenes, triterpenes), phenolic acids (coumarins), and lignans	[76]
Euphorbia tirucalli	Fatty acids (palmitic acid, linoleic acid), steroids (sitosterol, stigmasterol, campesterol), flavonoids (anthocyanin, cyanidin glycoside)	[77]
Equisetum arvense	Phenolic acids 0.6–0.9% (such as apigenin-5-O-glocuside, genknvain-5-O-glocuside, kaempferol-3,7-d-O-glocuside, kaempferol-3-O-(6′-O-malonylglucosidose)-7-O-glocuside), terpenoids (cis-geranyl acetone 13.74%, thymol 12.09%, trans-phytol 10.06%, triterpenes), alkaloids, carbohydrates, proteins, amino acids, steroids (phytosterols), saponins, and tannins	[78]
Flacourtia ramontchi	Saponins, steroids, sugar, lignans, and terpenoids (triterpenes)	[79]
Geranium nepalenses	Steroids (β-sitosterol, β-sitosterol-glactoside, stigmasterol) and terpenoids (ursolic acid)	[80]
Gentiana kurroo	Terpenoids (iridoids, triterpenoids), flavonoids, alkaloids	[81]
Gentianopsis paludosa	Phenolics-1-hydroxy-3,7,8-trimethoxyxanthone), terpenoids (ursolic acid), dicarboxylic acid–succinic acid	[31]
Gentianopsis detonsa	Flavonoids (luteolin), dicarboxylic acid–succinic acid, xanthones (gentiacaulene, 1-hydroxy-3,7,8-trimethoxyxanthone), terpenoids (ursolic acid)	[31]
Geum elatum	Fatty acid alcohols (hentriacontanol, hentriacontanone), sterols (β-sitosterol), phenolic acids (teta-O-methyl ellagic acid, ellagic acid), and flavonoids (isouqueretin)	[82]
Hedera helix	Phenolic acids (gallic acid 131.25 ± 1.54), flavonoids (quercetin 18.61 ± 0.37), alkaloids (emetine), amino acids, and saponins (hederacoside C, α-hederin, hederagenin)	[83]
Hippophae tibetana	Flavonoids (isorhamnetin, quercetin, kaempferol, rhamnetin, quercetin-3-O-rutinoside, quercetin-3-O-galactoside), fatty acids (2-hydroxydecanoic acid, nona-7-enolic acid, undec-9-en-7-ynolic acid, 13-phenyl tridecanoic acid, 5,9,21-nonacosatrienoic acid, 1,3-dicarboxyl-2-linoleoylglycerol, oleic, linoleic, linolenic acids and fats 3.5–4.8%)	[84]
Hordeum vulgare	Flavonoids, phenolic acids, terpenoids, glycosides, and saponins	[85]
Justicia adhatoda	Alkaloids (vasicine, vasicol, vasicinone, peganine, adhatonine, vasicinol, vasicinolone), flavonoids (kaempferol, quercetin), and steroids (β-sitosterol)	[26,86]
Leucas cephalotes	Phenolic acids (gallic acid, protocatechuc acid, chlorogenic acid, caffeic acid, and ferulic acid)	[26]
Mentha spicata	Fatty acids (methyl esters, methyl acetate 2–11%), terpenoids (menthol 33–60%, menthone 15–32%, isomenthone 2–8%, 1,8 cineole eucalyptol 5–13%, menthofoaran 1–10%, limonene 1–7%), flavonoids, alkaloids, and sugars	[87]
Morus alba	Phenolic acids (coumarins, benzofurans), flavonoids (chalcones, flavones, flavane derivative, (2S)-4′-hydroxy-7-methoxy-8-prenylflavan)	[88]
Morus nigra	Phenolic acids, alkaloids, terpenoids (oleanolic acid), and flavonoids (quercetin, luteolin, apigenin, kuwanon, kaempferol)	[89]
Oroxylum indicum	Steroids, tannins, alkaloids, glycosides, and flavonoids	[90]
Plant Name	Phytochemical Constituent	Data Source
----------------------------	--	-------------
Persicaria amplexicaulis	Flavonoids (quercetin), steroids (β-sitosterol), phenolic compounds (methyl-4-hydroxy cinnamate, gallic acid, protocatechuic acid, methyl gallate, vanicoside A, vanicoside B), terpenoids (arborinone), 25-hydroxycholesterol-5-en-3β-yl acetate	[91]
Phyllanthus niruri	Alkaloids, terpenoids (triterpenes), phenols, flavonoids (quercetin, kaempferol), lignin glycoside, tannins, and fatty acids	[92]
Picrorhiza kurroa	Terpenoids (iridoid glycoside, triterpenoids, kutkin, picotroside 1 3.66 ± 0.11%, kutsolide 4.44 ± 0.02%), steroids, tannins, and saponins	[93]
Pistacia integerrima	Phenolic acids, carotenoids, terpenoids (monoterpens 91%, triterpenes), flavonoids (catechins), saponins, tannins, and steroids	[94]
Podophyllum hexandrum	Terpenoids, steroids, flavonoids, saponins, tannins, glycosides, and amino acids	[95]
Punica granatum	Flavonoids, saponins, tannins, phenolic acids, glycosides, steroids (phytosterols), terpenoids, carbohydrates, and proteins	[96]
Prunus domestica	Flavonoids, phenylpropanoid esters, phenolic acids (caffeoylquinic acids), steroids, and terpenoids	[97]
Raphanus sativus	Tannins (phlobatannins), saponins, flavonoids, phenolic acids (anthraquinones), steroids (phytosterol), alkaloids, terpenoids, cardiac glycosides, glucosinolates, isothiocyanates, protein 28.57%, carbohydrates 39.82% and fats 27.76%	[98]
Ricinus communis	Alkaloids, steroids, glycosides, flavonoids (quercetin, vitexin, rutin, kaempferol), epicatechin, terpenoids, phenolic acids (gentisic acid, ellagic acid, gallic acid, coumarins), and essential oils 37%	[99]
Rosa webbiana	Phenolic acids (quinoines like glycosides, including rubiadin,1-hydroxy,2-methoxy anthraquinone, 3-dimethoxy 2 carboxy anthraquinone, monjistin, purpurin, pseudopurpurin, mollenin, fumomollenin), fatty acids (rubiprasin A,B,C), ruiearbons, and terpenoids (aborane, triterpenes)	[100]
Rubia manjith	Steroids (phytosterols), terpenoids, flavonoids, -O- and -C-glycosides, phenolic acids, fatty acid alcohols (policosanoles 2.5–80%, octacosanol 50–80% of the total policosanoles)	[101]
Saccharum officinarum	Phenolic acids (anthraquinone) and tannins	[102]
Sesamum indicum	Flavonoids (catechin, epicatechin, rutin), phenolic acids (caffeic acid, gallic acid, protocatechuic acid), fatty acids (linoic acid 67.9%), carbohydrates (polysaccharides), and proteins content 17%	[103]
Solanum nigrum	Alkaloids, tannins, saponins, phenolic acids (phenolic methyl caffeate, caffeic acid, coumarins like imperatorin, scopoletin and esculetin), steroids (β-sitosterol), tri-terpenoids, and other major constituents like solasonine, solamargine, solasurine, torvoside K and L, hiasianine, aculeatiside A, and solamargine	[104]
Solanum surattense	Free amino acids, terpenoids (germacranolide, taraxacin, taraxacetoxy, diester of taraxanthin, lactupicrin, triterpenes), carbohydrates (glucans, manann), phenolic acids (scopoletin, esculetin), steroids (phytosterols, taraxasterol, homotaraxasterol), eudesmanolic-tetrahydrodridentin B, eudesmanolide-d-glucopyranoside, and proteins	[105]
Taraxacum officinale	Fatty acids (n-heptadecanoate 13.00%, n-octadecanoic 6.1%, methyl-n-pentacosanoic 4.45%, nonanoic acid 1.92%, nonadecanoic acid 9.2%, 10-octadecenoicacid 7.8%, heptadecanoate 3.3%, n-pentacosenoic acid 2.54%, hexacosioic acid 0.7%) and proteins 7.5–6.6%	[106]
Tamarindus indica	Fatty acids (stearic acid 14.93%, myristic acid 17.70%, palmitic acid 21.6%, oleic acid 45.67%), proteins, carbohydrates, steroids (β-sitosterol), tannins (chebulanic acid, galloyl glucose), phenolic acids (gallic, ellagic acid, ethyl gallate), alkaloids, flavonoids, saponins, and terpenoids	[107]
Terminalia bellirica	Tannins (chebulic acid, chebulagic acid, corilagin), phenolic acids (gallic acid, ellagic acid), steroids (β-sitosterol), terpenoids (triterpenes), and flavonoids (flavonol glycosides)	[108]
Terminalia chebula	Alkaloids (berberine, jatrohhizine, palmitate, thalrugosidine, thalrusosaminine, thalilopine thaligosine, thalirugidine, thalirugine, 8-oxyoxyberine, berlambine, noroxyhydrastinine, N, O, O-trimethylsarsiflorine, thalicarpine, thalidamine, thalifoliosamines A, and thalifoliosamines B)	[109]
Table 3. Cont.

Plant Name	Phytochemical Constituent	Data Source
Tinospora cordifolia	Phenolic acids, flavonoids, glycosides, saponins, and alkaloids	[111]
Trigonella emodi Ben	Flavonoids (quercetin, luteolin, vitexin, orientin, isoorientin, vicenin-1, vicenin-2, naringenin, kaempferol, 7,4′-dimethoxyflavanone), protein, and carbohydrates, Alkaloids (betaine, choline), amino acids, carbohydrates, protein polymer (neutral and acidic), carotenoids (carotenes), and saponins	[112]
Urtica dioica	Alkaloids (betaine, choline), amino acids, carbohydrates, protein polymer (neutral and acidic), carotenoids (carotenes), and saponins	[31]
Vernonia anthelmintica	Fatty acids (vernolic acid) and terpenoids (vernodalin, vernodalol)	[113]
Viola serpens	Tannins, amino acids, reducing sugars, flavonoids (rutin), organic ester (methyl salicylate), glycosides (quercitrin), alkaloids (violin), terpenoids (monoterpenes, sesquiterpenes), saponin, bis (2-ethylhexyl) maleate 15.62%, 2,4,4,6-tetramethyl-2-heptene 11.52%, hexen-3-ol 6.56% and cis verbenol 4.77%	[114,115]
Woodfordia fruticosa	Phenolic acids, tannins (hydrolyzable tannins, such as woodfordsins A, B, C), flavonoids (quercetin glycosides, naringenin 7-glucoside, kaempferol flavonoids (quercetin glycosides, naringenin 7-glucoside, kaempferol, and terpenoids (lupeol, betulin, ursolic acid, oleanolic acid)	[116]

Ethnomedicinal documentation combined with the screening of various biological properties of plants is one of the convincing ways of discovering new drugs against drug-resistant pathogens in the modern era or against the diseases related to oxidative stress, including jaundice. The effectiveness of these phytochemicals used in treating jaundice and other diseases has been seen in their biological activities, such as antimicrobial, antibacterial, antitumor, antiviral, or antioxidant activity. The oxidative stress of free radicals is directly associated with the presence of pathogenic organisms or due to disease-causing mechanisms of different ailments like cancer, diabetes, and inflammatory diseases [117].

2.4. Ethnopharmacological Evidence of Some Plant Species Used for the Treatment of Jaundice

As described in Table 3, the beneficial effects of medicinal plants are due to the presence of different bioactive compounds that are responsible for the treatment of jaundice. Ethnomedicinal studies combined with phytochemicals are one of the convincing approaches for ethnopharmacological studies [118]. The medicinal effect of different plant parts shows various hepatoprotective activities, including the curing of various liver diseases in which one of the major diseases is jaundice. Various ethnomedicinal plants are traditionally used for the treatment of jaundice, while some plants promote the discovery of active compounds, which further aids in the development of synthetic drugs against jaundice. Although some epidemiological studies are required for the practical implementation of the plants for jaundice treatment [47]. To assess the ethnomedicinal significance of the hepatoprotective plants used, particularly for treating jaundice, different plant species have been reported to be used in various in vivo experiments (Table 4). Table 4 includes various plant species, plant parts used/extracts taken, toxicant and its dose, experimental model (the animal model used for study), constituents that may be responsible for hepatoprotective activities, and their effectiveness against jaundice [15].

In vivo experimental studies with these plants (Table 4) have shown effective results in the treatment of jaundice and confer scientific evidence regarding plant use in the same. In most of the in vivo studies, hepatotoxicity is introduced with CCl$_4$ or with paracetamol; however, in few cases, gentamycin, thioacetamide, t-BHP, and ethanol are also used for the same. Phytochemicals observed for curing hepatotoxicity are phenolic and flavonoid compounds as a major factor in curing hepatotoxicity in most of the in vivo studies. In some cases, hepatotoxicity is reduced by the decrease in serum bilirubin level and an increase in the antioxidant defense system.
Table 4. In vivo evidence of ethnomedicinal plants used for the treatment of jaundice/hepatoprotective activity.

Plant Species	Plant Part Used (Extract Taken/Total Amount or Dose Required)	Test Dose/Experimental Model	Constituents Responsible for (May/May Not Be Present)	Data Source
Aegle marmelos	Pulp/seeds (aq. extract/NA)	CCl\(_4\)-induced hepatotoxicity/albino Wistar rat	NA	[15]
	Powdered fruit pulp	Gentamicin-induced liver injury/oral/Wistar albino rats	NA	
	Leaves/powder	Ethanol-induced liver toxicity/orally/male albino Wistar rat	NA	
Aloe vera	Aerial part (aq. extract/500 mg/kg bw)	CCl\(_4\) (1 mL/kg)/albino Wistar rat	NA	[5]
Argemone mexicana	Stem (aq. extract/250 and 150 mg/kg bw)	CCl\(_4\)-induced hepatotoxicity (2 mL/kg bw)/albino Wistar rat	NA	[5]
Bauhinia variegata	Stem/bark extract (100 and 200 mg/kg)	CCl\(_4\) (1 mL/kg)/Sprague-Dawley rats	NA	[119]
Berberis aristata	Root extract/NA	CCl\(_4\) (1 mL/kg)/albino rats	Berberine	[120]
Berberis chitria	Bark, stem extract/80 mg Livshis sample (450 mg)	CCl\(_4\) (1 mL/kg)/male Wistar albino rats	NA	[121]
Boerhavia diffusa	Root (aq. extract/2 mL/kg and 150 mg/kg bw)	Thioacetamide (100 mg/kg bw)/albino Wistar rat	Ursolic acids	[5]
Cajanus cajan	Leaves (methanolic extract/100 mg/kg bw)	Acetaminophen and D-galactosamine-induced hepatotoxicity/albino Wistar rat	Alkaloids and flavonoids	[15]
Calotropis prosera	Flowers (hydro-ethanolic extract/200 mg/kg and 400 mg/kg)	Paracetamol (2 g/kg)/Wistar rats	Quercetin-3-rutinoside and other flavonoids	[122]
Capparis spinosa	Root bark (ethanolic extract/100, 200, and 400 mg/kg)	CCl\(_4\) (0.2 mg/kg)/mice	NA	[123]
Carica papaya	Seeds (aq. extract/400 mg/kg)	CCl\(_4\) (1.5 mL/kg)/male Wistar rat	NA	[124]
Carissa opaca	Leaves (methanolic extract/200 mg/kg bw)	CCl\(_4\) (0.5 mL/kg)/Sprague-Dawley rats	Isoquercetin, hyperoside, vitexin, myricetin, and kaempferol	[125]
Cassia fistula	Fruit pulp (aq. extract 2000 mg/kg bw)	CCl\(_4\) (1 mL/kg bw)/albino Wistar rat	Lupenol	[5]
Centella asiatica	Whole plant (aq. extract/0.7 g/kg bw))	CCl\(_4\) (0.7 mL/kg bw)/albino Wistar rat	NA	[5]
Cuscuta reflexa	Whole plant (hydro-alcoholic extract/400 mg/kg bw)	Paracetamol (200 mg/kg bw)/albino Wistar rat	Phenolic compounds	[5]
Colocasia antiquorum	Corms (petroleum ether extract/NA)	Paracetamol-induced hepatotoxicity (100 mg/kg bw)/albino mice	Anthocyanins	[126]
Euphorbia birta	Whole plant (aq. extract/100–300 mg/kg bw)	CCl\(_4\)-induced hepatotoxicity (NA)/adult male Wistar rat	Flavonoids	[127]
Euphorbia tirucalli	Aerial parts (aq. extract/125–200 mg/kg bw)	CCl\(_4\) intoxicated (NA)/albino Wistar rat	Flavonoids	[128]
Hedera helix	Leaf (aq. extract/150 mg/kg bw)	CCl\(_4\)-induced hepatotoxicity (5 mL/kg)/ethanol-induced liver damage (3.76 g/kg/day)/Wistar albino rat	NA	[129]
Hordeum vulgare	Seeds (methanolic extract/300–500 mg/kg)	CCl\(_4\)-induced hepatotoxicity (1 mL/kg of body bw)/Swiss albino mice	Phenolic compounds	[85]
Justicia adhatoda	Leaves and flowers (methanolic extract/200 mg/kg bw)	CCl\(_4\)-induced hepatotoxicity (1 mL/kg of body bw)/Swiss albino mice	NA	[130]
Flacourtia ramontchi	Leaf (aq. extract/250 and 500 mg/kg bw)	CCl\(_4\) (1.5 mL/kg bw)/albino Wistar rat	Phenolic compounds	[5]
Leucas cephalotes	Whole plant (methanolic extract/400 mg/kg bw)	CCl\(_4\)-induced liver toxicity (NA)/male albino Wistar rat	Flavonoid	[15]
Plant Species	Plant Part Used (Extract Taken/Total Amount or Dose Required)	Test Dose/Experimental Model	Constituents Responsible for (May/May Not Be Present)	Data Source
---------------------	--	---	--	-------------
Morus alba	Leaves (petroleum ether chloroform alcoholic and water extract 200–500 mg/kg)	CCl₄-induced hepatotoxicity (1 mL/kg)/Swiss albino mice	Alkaloids, carbohydrates, flavonoids, tannins, steroid Quercetin, luteolin, and isorhamnetin	[131]
Morus nigra	Leaves (aq. methanolic extract/200 and 500 mg/kg)	Paracetamol-induced hepatotoxicity (NA)/mice		
Oroxylum indicum	Leaves (ethanol, water, chloroform, and petroleum ether/300 mg/kg)	CCl₄ hepatoprotective activity (0.7 mL/kg)/adult albino rats	Flavonoids and phenolics	[133]
Phyllanthus emblica	Fruit (ethanol extract/75 mg/kg/day bw)	Ethanol induced (4 g/kg/day bw)/albino Wistar rat	Phyllanthin and hypophyllanthin	[5]
Phyllanthus niruri	Leaves (aq. extract/100 mg/kg bw)	CCl₄-induced hepatotoxicity (1 mL/kg body weight))/male adult rats	Phenolic compounds, Phyllanthin, and hypophyllanthin	[134]
Podophyllum hexandrum	(Hexane extract/50 mg/kg)	CCl₄-induced hepatotoxicity (NA)/male albino rats	Polyphenols	[135]
Prunus domestica	Fruit (methanolic and ethanolic extract/20–100 mg/kg)	Paracetamol-induced hepatotoxicity (2 g/kg)/albino rats	NA	[136]
Punica granatum	Leaf (aq. extract/NA)	CCl₄-induced cytotoxicity/male rats	NA	[15]
Raphanus sativus	Leaves (methanolic extract/300 mg/kg bw)	Paracetamol-induced cholestasis (2 g/kg)/adult Druckrey rats	Ricinine and n-demethyl-ricinine	[138]
Ricinus communis	Leaves (ethanolic extract/800 mg/kg)	CCl₄-induced hepatotoxicity (0.2 mg/kg)/Wistar albino rat	NA	[139]
Solanum nigrum	Whole plant (water or methanolic extract 500 mg/kg)	Hepatic damage induced (100 to 200 mg/kg bw)/female SD rats	NA	[140]
Tamarindus indica	Stem bark (ethanolic extract/NA)	t-BHP-induced hepatotoxicity/(NA)/mice	Phenolic compounds	[47]
Terminalia chebula	Fruit (aq. extract/NA)	Paracetamol-induced hepatotoxicity (2 g/kg bw)/Wistar rat and male albino mice	NA	[141]
Tithlacrum foliosum	Roots (ethanolic extract (200 to 1000 mg/kg bw))	CCl₄-induced liver toxicity/albino Wistar rat	Flavoroids, alkaloids, and phenolics	[15]
Tinospora cordifolia	Root, stem (petroleum ether/ethanol and aq. extract/400 mg/kg bw)	CCl₄-induced hepatotoxicity (150 to 200 g/kg)/male Wistar albino rat	Phenolics	[142]
Urtica dioica	Seeds (polar extract/NA)	NA		
Woodfordia fruticosa	Flower (petroleum ether, chloroform, ethanolic/250 mg/kg bw)	CCl₄ (1%)/albino Wistar rat		[5]
As few plants are evaluated with their experimental studies, so this study needs to be intensified more on those plant extracts, which are used extensively for jaundice treatment. Further, nano-formulation of plant extracts enhances their medicinal significance [143,144], so nano-formulation of herbal plants can also be used as an alternative for curing jaundice in the future. At the same time, farmers should be encouraged for the commercial production of important medicinal plants and should further have support from industry and government.

3. Conclusions

Ethnomedicinal knowledge is respected by rural people and has been shown to be useful in the treatment of various diseases and the production of medicines in the Western Himalaya from time to time. Traditional or folk-based plant medicines have shown great potential to form the basis of jaundice-curing drugs. The purpose of the present study was to record the ethnomedicinal knowledge of plants used for the treatment of jaundice by the rural and tribal communities of Himachal Pradesh in western Himalaya. The other aims of this research were to discuss the different important phytochemicals and active compounds present in these plants and to discuss the different in vivo studies performed in support of their medicinal uses, with specific reference to the treatment of jaundice. The outcome of this research showed that the rural people of Himachal Pradesh used 87 different plant species with 51 different families to treat jaundice and contribute to healthcare. These plants demonstrated the presence of several phytochemicals in them and displayed phenolic and flavonoid compounds with hepatoprotective properties in most of the experimental studies (in vivo) performed with these plants. With antioxidant potential, the phenolic and flavonoid compounds are recognized, and due to this property, these plants have been shown to be important in curing jaundice. Aloe vera, Bauhinia variegata, Berberis aristata, Emblica officinalis, and Terminalia chebula are some of these herbs, which suggest the ethnopharmacological approach to treating jaundice with the hepatoprotective operation.

There is a lot of knowledge in the latest literature on the use of various plants for treating jaundice. Nevertheless, very few studies are carried out on the scientific validation of medicinal plants by means of biochemical, clinical, and pharmacological screening to validate the jaundice healing folklore medicine. In the future, it is, therefore, very important to pursue steps that do not deviate from shifting the view of tribal people toward their indigenous belief in the treatment of jaundice to develop successful drugs or to discover new potential sources of drugs. In addition, nano-formulation of plant extracts also improves their therapeutic significance [143,144], and it is also possible to use nano-formulation of herbal plants as an alternative and refining conventional knowledge for the potential cure of jaundice.

Author Contributions: D.R., R.D. and A.S. wrote the first draft of the manuscript. R.D. and H.K. contributed to making the figures and providing the literature. R.V., D.K., M.V., K.K. and S.P. revised and improved the first draft. All authors have seen and agreed on the final submitted version of the manuscript.

Funding: It was supported by the UHK project VT2019-2021. This study was also partially supported by grants from the Ministry of Health of the Czech Republic (FN HK 00179906) and the Charles University in Prague, Czech Republic (PROGRES Q40).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thakur, K.; Bassi, K.; Sood, K. *Textbook of Ethnobotany*; S. Dinesh & Co.: Jalandhar, India, 2015; pp. 1–70.
2. Aswal, B.S.; Mehrotra, B.N. *Flora of Lahaul-Spiti*; Bishen Singh Mahendra Pal Singh: Dehradun, India, 1994; pp. 10–15.
3. Joshi, K.L. *Geography of Himalachal Pradesh*; National Book Trust: New Delhi, India, 1987; pp. 220–222.
4. Abu-Rabia, A. Urinary diseases and ethnobotany among pastoral nomads in the Middle East. *J. Ethnobiol.* 2005, 1, 1–3.
5. Sharma, J.; Gairola, S.; Gaur, R.D.; Painuli, R.M. The treatment of jaundice with medicinal plants in indigenous communities of the sub-Himalayan region of Uttarakhand, India. *J. Ethnopharmacol.* 2012, 143, 262–291. [CrossRef] [PubMed]
6. Negi, P.S.; Subramani, S.P. Ethnobotanical study in the village Chhitkul of Sangla valley, district Kinnaur, Himachal Pradesh. *J. Non-Timber For. Prod.* **2002**, *9*, 113–120.

7. Birhane, E.; Aynekulu, E.; Mekuria, W.; Endale, D. Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia. *J. Med. Plants Res.* **2011**, *5*, 308–319.

8. Mesfin, K.; Tekle, G.; Tesfay, T. Ethnobotanical study of traditional medicinal plants used by indigenous people of Gemad district, Northern Ethiopia. *J. Med. Plants* **2013**, *1*, 32–37.

9. Suriyavathana, M.; Jeevitha, M.; Aranganathan, J. In vitro antioxidant profile of *Justicia tranquebariensis*. *Int. J. Pharm. Sci.* **2011**, *4*, 4259–4261.

10. Yadav, R.S.; Agarwala, M. Phytochemical analysis of some medicinal plants. *J. Phytol.* **2011**, *3*, 10–14.

11. Chauhan, N.S. Important medicinal and aromatic plants of Himachal Pradesh. *Indian For.* **2003**, *129*, 979–998.

12. Verma, R.; Parkash, V.; Kumar, D. Ethno-medicinal uses of some plants of Kanag hill in Shimla, Himachal Pradesh, India. *Int. J. Res. Ayurveda Pharm.* **2012**, *3*, 319–322.

13. Baqar, S.R. *Text Book of Economic Botany*; Ferozsons Ltd.: Rawalpindi, Pakistan, 2001; pp. 23–100.

14. Abbas, A.M.; Khan, M.A.; Ahmad, M.; Zafar, M.; Khan, H.; Muhammad, N.; Sultana, S. Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. *Afr. J. Biotechnol.* **2009**, *8*, 1644–1650.

15. Janghel, V.; Patel, P.; Chandel, S.S. Plants used for the treatment of icterus (jaundice) in central India: A review. *Ann. Hepatol.* **2019**, *18*, 658–672. [CrossRef]

16. Riva, M.A.; Riva, E.; Spicci, M.; Strazzabosco, M.; Giovannini, M.; Cesana, G. “The city of Hepar”: Rituals, gastronomy, and politics at the origins of the modern names for the liver. *J. Hepatol.* **2011**, *55*, 1132–1136. [CrossRef]

17. Gao, B.; Bataller, R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. *Gastroenterology* **2011**, *141*, 1572–1585. [CrossRef] [PubMed]

18. Rahim, Z.B.; Rahman, M.M.; Saha, D.; Hosen, S.Z.; Paul, S.; Kader, S. Ethnomedicinal plants used against jaundice in Bangladesh and its economical prospects. *Bull. Pharma. Res.* **2012**, *2*, 91–105.

19. Feldman, A.G.; Sokol, R.J. Neonatal cholestasis. *Neuroreviews* **2013**, *14*, e63–e73. [CrossRef] [PubMed]

20. Sarkhel, S. Ethnomedical uses of some plants in treatment of jaundice by tribal communities of Paschim Medinipur district, West Bengal, India. *Open Access J. Med. Arom. Plants.* **2015**, *6*, 43–48.

21. Poduri, C.D. Jaundice: A brief historical perspective. *Ann. Intern. Med.* **2016**, *113*, 76–79. [CrossRef]

22. Ebrahimimd, S.; Ashkani-Esfahani, S.; Poormahmudibs, A. Investigating the efficacy of *Zizyphus jujuba* on neonatal jaundice. *Iran J. Pediatr.* **2011**, *21*, 320–324.

23. Kumar, S.; Paul, R. Ethnomedicinal plants used for jaundice in Kangra district (Himachal Pradesh). *J. Plant Dev. Sci.* **2009**, *1*, 35–39.

24. Kumar, N.; Choyal, R. Traditional use of some plants of Hamirpur district of Himachal Pradesh for the treatment of jaundice, hepatitis and other liver disorders. *Int. J. Theor. Appl. Sci.* **2012**, *4*, 201–205.

25. Bharadwaj, J.; Seth, M.K. Medicinal plant resources of Bilaspur, Hamirpur and Una districts of Himachal Pradesh: An ethnobotanical enumeration. *J. Med. Plants Stud.* **2017**, *5*, 99–110.

26. Thakur, M.; Asrani, R.K.; Thakur, S.; Sharma, P.K.; Patil, R.D.; Lal, B.; Parkash, O. Observations on traditional usage of ethnomedical plants in humans and animals of Kangra and Chamba districts of Himachal Pradesh in north-western Himalaya, India. *J. Ethnopharmacol.* **2016**, *191*, 280–300. [CrossRef]

27. Singh, J.; Singh, J.; Sharma, D. Traditional wisdom to treat the most common ailments in Chopal region of Shimla District, Himachal Pradesh, India. *Plant Arch.* **2018**, *18*, 2759–2769.

28. Kala, C.P. Medicinal plants of the high-altitude cold desert in India: Diversity, distribution and traditional uses. *Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.* **2006**, *2*, 43–56. [CrossRef]

29. Kaur, M.; Singhal, V.K.; Singh, J. Use of some ethnomedicinal herbs by the natives of Solang Valley, Kullu District, Himachal Pradesh. *Int. J. Pharm. Sci.* **2017**, *9*, 222–227. [CrossRef]

30. Sekar, K.C.; Srivastava, S.K. Traditional uses of plants in curing jaundice in the Pin Valley National Park, Himachal Pradesh. *Indian J. Tradit. Know.* **2005**, *4*, 314–316.

31. Singh, K.N.; Lal, B. Ethnomedicines used against four common ailments by the tribal communities of Lahaul-Spiti in western Himalaya. *J. Ethnopharmacol.* **2008**, *115*, 147–159. [CrossRef] [PubMed]

32. Rani, S.; Rana, J.C.; Rana, P.K. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. *J. Med. Plants Res.* **2013**, *7*, 3147–3157.

33. Kaur, I.; Sharma, S.; Lal, S. Ethnobotanical survey of medicinal plants used for different diseases in Mandi district, Himachal Pradesh. *Int. J. Res. Pharm. Chem.* **2011**, *1*, 1167–1171.

34. Rani, S.; Rana, J.C.; Jeelani, S.M.; Gupta, R.C.; Kumari, S. Ethnobotanical notes on 30 medicinal polypetalous plants of district Kangra of Himachal Pradesh. *J. Med. Plants Res.* **2013**, *7*, 1362–1369.

35. Thakur, S. Medicinal plants used by tribal inhabitants of Sirmour district, Himachal Pradesh. *Indian J. Sci. Res.* **2011**, *2*, 125–127.

36. Verma, S.; Chauhan, N.S. Indigenous medicinal plants knowledge of Kunihar forest division, district Solan. *J. Tradit. Know.* **2007**, *6*, 494–497.

37. Kumar, G.; Kumar, V.; Thakur, K. Some overlooked Ethno-medicinal plants of district Bilaspur, Himachal Pradesh (India). *CPUH Res. J.* **2018**, *3*, 116–123.
38. Singh, K.J.; Thakur, A.K. Medicinal plants of the Shimla hills, Himachal Pradesh: A survey. *Int. J. Herbal Med.* 2014, 2, 118–127.

39. Chand, R.; Kaur, R.; Kaur, A.; Kumar, V.; Nirmala, C.; Singh, A.N. Assessment of ethnomedicinal plant diversity of Una and Hamirpur district of Himachal Pradesh, India: An ethno-ecological approach. *Ann. Plant Sci.* 2016, 5, 1475–1490. [CrossRef]

40. Rani, S.; Rana, J.C. Ethnobotanical uses of some plants of Bhittiyat block in district Chamba, Himachal Pradesh (Western Himalaya). *Ethnobot. Res. Appl.* 2014, 12, 407–414. [CrossRef]

41. Boktapa, N.R.; Sharma, A.K. Wild medicinal plants used by local communities of Manali, Himachal Pradesh, India. *Ethnobot. Leaflets.* 2010, 4, 259–267.

42. Rana, M.S.; Samant, S.S. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya. *J. Tradit. Know.* 2011, 10, 439–459.

43. Rahman, A.M. Ethno-medical practices for the treatment of asthma, diuretic, jaundice, piles, rheumatism and vomiting at the village Abdullahpur under Akkelpur Upazilla of Joypurhat district, Bangladesh. *J. Ethn. Appl. Sci.* 2014, 1, 4–8.

44. Amiri, M.S.; Jabbarzadeh, P.; Akhondi, M. An ethnobotanical survey of medicinal plants used by indigenous people in Zangelando district, Northeast Iran. *J. Med. Plants Res.* 2012, 6, 749–753.

45. Njoku, V.O.; Obi, C.; Onyema, O.M. Phytochemical constituents of some selected medicinal plants. *Afr. J. Biotechnol.* 2005, 4, 668–668. [CrossRef]

46. Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. *J. Ethnopharmacol.* 2003, 5, 541–542. [CrossRef]

47. Joshi, H.; Saxena, G.K.; Singh, V.; Arya, E.; Singh, R.P. Phytochemical investigation, isolation and characterization of betulin from bark of Betula utilis. *J. Ethnopharmacol.* 2011, 12, 247–249. [CrossRef]

48. Nascimento, G.G.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. *Braz. J. Microbiol.* 2000, 31, 247–256. [CrossRef]

49. Bhat, V.S.; Nasavatil, D.V.; Mardikar, B.R. *Adhatoda vasica*-an ayurvedic medicinal plant. *Drug Dev. Res.* 1978, 15, 6–10.

50. Pathak, R.R. *Therapeutic Guide to Ayurvedic Medicine: A Hand Book of Ayurvedic Medicine*; Shree Baidyanath Ayurved Bhawan Pvt. Ltd.: Patna, India, 1970; pp. 25–30.

51. Mathela, C.S.; Padalia, R.C.; Joshi, R.K. Variability in fragrance constituents of Himalayan *Tanacetum* species: Commercial potential. *J. Essent. Oil Bear. Plants* 2011, 10, 502–507. [CrossRef]

52. Brahmacarini, G.; Gorai, D.; Roy, R. *Argemone mexicana*: Chemical and pharmacological aspects. *Rev. Bras. Farmacogn.* 2013, 23, 559–567. [CrossRef]

53. Mustaq, S.; Aga, M.A.; Qazi, P.H.; Ali, M.N.; Shah, A.M.; Lone, S.; Hussain, A.; Shah, Z.H. Isolation, characterization and HPLC quantification of compounds from *Aquilegia fragrans* Benth: Their in vitro antibacterial activities against bovine mastitis pathogens. *J. Ethnopharmacol.* 2016, 178, 9–12. [CrossRef] [PubMed]

54. Bhardwaj, D.; Kaushik, N. Phytochemical and pharmaceutical studies in genus *Berberis*. *Phytochem. Res.* 2012, 11, 523–542. [CrossRef]

55. Al-Snafi, A.E. The chemical constituents and pharmaceutical effects of *Capsella bursa-pastoris*-a review. *Int. J. Pharmacol. Toxicol.* 2015, 5, 76–81.

56. Alorkpa, E.J.; Boadi, N.O.; Badu, M.; Saah, S.A. Phytochemical screening, antimicrobial and antioxidant properties of assorted *Carica papaya* leaves in Ghana. *J. Med. Plant Res.* 2016, 4, 193–198.

57. Izhari, S.; Ahmed, D. *Carissa opaca*: A plant with great potential for drug development for degenerative and infectious diseases. *Chem. Select.* 2016, 1, 3005–3011. [CrossRef]
67. Sekar, T.; Arumugam, T.; Ayyanar, M.; Pillai, J. Phytochemical screening and antibacterial activity of leaf and callus extracts of Centella asiatica. Bangladesh J. Pharmacol. 2011, 6, 55–60. [CrossRef]

68. Arora, M.; Singh, S.; Kaur, P. Pharmacognostic and phytochemical evaluation of selected seeds of ‘Cicer arietinum’ Linn. seeds from Roopnagar, Punjab. Int. J. Pharm. Sci. Invent. 2015, 2, 18–29.

69. Prajarpati, R.; Kalariya, M.; Umbarkar, R.; Parmar, S.; Sheth, N. Colocasia esculenta: A potent indigenous plant. Int. J. Nutr. Pharmacol. 2011, 1, 90–96. [CrossRef]

70. Xiao, L.G.; Zhang, S.C.; Zhang, Y.; Liu, L.; Zhang, H.L.; Yu, Q.; An, L.K. Sesquiterpenoids from the aerial parts of Conyza japonica and their inhibitory activity against the nitric oxide production. Fitoterapia 2020, 142, 104473. [CrossRef] [PubMed]

71. Zhang, Y.; Zhang, W.; Zhang, J.; Chen, S.; Lin, X. Chemical constituents of Crepis flexuosa. Chin. J. Appl. Environ. Biol. 2011, 4, 509–511.

72. Ahmad, A.; Tandon, S.; Xuan, T.D.; Nooren, Z. A review on phytoconstituents and biological activities of Cuscuta species. Biomed. Pharmacother. 2017, 92, 772–795. [CrossRef]

73. Das, J.; Chowdhury, A.; Biswas, K.; Karmakar, K.U.; Sharif, R.S.; Raihan, Z.S.; Muihit, A.M. Cytotoxicity and antimicrobial activities of ethanolic and chloroform extracts of Cucumis sativus Linn (Cucurbitaceae) leaves and stems. Res. J. Phytochem. 2012, 6, 25–30.

74. Soni, P.; Siddiqui, A.A.; Dwivedi, J.; Soni, V. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview. Asian Pac. J. Trop. Biomed. 2012, 2, 1002–1008. [CrossRef]

75. Variya, C.B.; Bakrania, K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016, 1, 180–200. [CrossRef]

76. Li, E.T.; Liu, K.H.; Zang, M.H.; Zhang, X.L.; Jiang, H.Q.; Zhou, H.L.; Wu, Y. Chemical constituents from Euphorbia hirta. Biochem. Syst. Ecol. 2015, 62, 204–207. [CrossRef]

77. Yamamoto, Y.; Mizuguchi, R.; Yamada, Y. Chemical constituents of cultured cells of Euphorbia tirucalli and E. millii. Plant Cell Rep. 1981, 1, 29–30. [CrossRef] [PubMed]

78. Al-Snafi, A.E. The pharmacology of Equisetum arvense-A review. IOSR J. Pharm. 2017, 7, 31–42. [CrossRef]

79. Lalsare, S.; Verma, P.K.; Khatak, M.; Ranjan, S.; Rajurakar, S.; Gurav, S.S. Anti-inflammatory and antimicrobial activity of Flacourtia ramontchi leaves. Drug Dev. Res. 2011, 3, 308–313.

80. Ismail, M.; Hussain, J.; Khan, A.U.; Khan, A.L.; Ali, L.; Khan, F.U.; Khan, Z.A.; Niaz, U.; Lee, I.J. Antibacterial, antifungal, cytotoxic, phytotoxic, insecticidal, and enzyme inhibitory activities of Geranium wallichianum. J. Ethnopharmacol. 2015, 62, 204–207. [CrossRef]

81. Shabir, M.; Agnihotri, P.; Husain, D.; Tiwari, J.K.; Husain, T. On the current status of the genus Gentiana (Gentianaceae) in India. Pleione 2017, 11, 16–24.

82. Painuly, P.; Varma, N.; Tandon, J.S. Constituents of Geum elatum. J. Nat. Prod. 1984, 47, 181–189. [CrossRef]

83. Al-Snafi, A.E. Pharmacological and therapeutic activities of Hedera helix-a review. IOSR J. Pharm. 2018, 8, 41–53.

84. Kapoor, D.N.; Singh, G.; Kaur, T. A review on pharmacobiotic, phytochemical and pharmacological data of various species of Hippophae (Sea buckthorn). Int. J. Green Pharm. 2017, 11, S62–S74.

85. Ismail, M.; Hussain, J.; Khan, A.U.; Khan, A.L.; Ali, L.; Khan, F.U.; Khan, Z.A.; Niaz, U.; Lee, I.J. Antibacterial, antifungal, cytotoxic, phytotoxic, insecticidal, and enzyme inhibitory activities of Geranium wallichianum. J. Ethnopharmacol. 2015, 62, 204–207. [CrossRef]

86. Singh, T.; Singh, O.; Singh, H. Adhatoda vasica Nees: Phytochemical and pharmacological profile. J. Nat. Prod. 2011, 1, 29–39. [CrossRef]

87. Naidu, J.R.; Ismail, R.B.; Yeng, C.; Sasidharan, S.; Kumar, P. Chemical composition and antioxidant activity of the crude methanolic extracts of Mentha spicata. J. Phytol. 2012, 4, 13–18.

88. Yang, Y.; Yang, X.; Xu, B.; Zeng, G.; Tan, J.; He, X.; Zhou, Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia 2014, 98, 222–227. [CrossRef] [PubMed]

89. Mallhi, T.H.; Qadir, M.I.; Khan, Y.H. Determination of phytoconstituents of n-hexane extract of leaves of Morus nigra and evaluation of their effects on biochemical and histopathological parameters in paracetamol intoxicated mice liver. Braz. J. Pharm. Sci. 2018, 54, 1–9. [CrossRef]

90. Dev, L.R.; Ranjeeta, P.; Anurag, M.; Rajiv, G. Pharmacognostic and phytochemical studies of bark of Oxyryctium indicum. Rev. Bras. Farmacogn. 2010, 20, 297–303. [CrossRef]

91. Sahidin, I.; Bahrun, A.; Taufik, M.; Mahatva Yodha, A.W.; Sabandar, C.W.; Imran, I.; Kadidae, L.O.; Diantini, A. Chemical constituents of Persicaria sagittata (L.) H. gross: Antioxidant activity and chemotaxonomy significance. Jundishapur J. Nat. Pharm. Sci. 2013, 6, 55–60. [CrossRef] [PubMed]

92. Samali, A.; Florence, D.T.; Odeniran, O.A.; Cordelia, O.N. Evaluation of chemical constituents of Phyllanthus niruri. Afr. J. Pharm. Pharmacol. 2012, 6, 125–128. [CrossRef]

93. Rathee, D.; Rathee, P.; Rathee, S.; Rathee, D. Phytochemical screening and antimicrobial activity of Picrorrhiza kurroa, an Indian traditional plant used to treat chronic diarrhoea. Arab. J. Chem. 2016, 9, 1307–1313. [CrossRef]

94. Shiojima, K.; Masuda, K.; Oishi, Y.; Suzuki, H.; Ageta, H. Composite constituents: New migrated gammacerane triterpenoids from roots of Picris hieracioides subsp. japonica. Tetrahedron Lett. 1989, 30, 6873–6874. [CrossRef]

95. Bibi, Y.; Zia, M.; Qayyum, A. An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry. Pak. J. Pharm. Sci. 2015, 28, 1009–1013.
124. Adeneye, A.A.; Olagunju, J.A.; Banjo, A.A.; Abdul, S.F.; Sanusi, O.A.; Sanni, O.O.; Osarodion, B.A.; Shonoiki, O.E. The aqueous seed extract of *Carica papaya* Linn. prevents carbon tetrachloride induced hepatotoxicity in rats. *Int. J. Appl. Res. Nat. Prod.* 2009, 2, 19–32.

125. Sahreen, S.; Khan, M.R.; Khan, R.A. Hepatoprotective effects of methanol extract of *Carissa opaca* leaves on CCl₄-induced damage in rat. *BMC Comp. Alt. Med.* 2011, 11, 48. [CrossRef]

126. Tuse, T.A.; Harle, U.N.; Bore, V.V. Hepatoprotective activity of *Colocasia antiquorum* against experimentally induced liver injury in rats. *Malays. J. Pharma. Sci.* 2009, 7, 99–112.

127. Dubey, S.; Mehta, S. Hepatoprotective activity of *Ricinus communis* leaves. *Int. J. Vet. Med. Anim. Health* 2008, 1, 8–11.

128. Soni, M.; Tanwar, Y.S. Hepatoprotective activity of *Nicotiana tabacum* L. against carbon tetrachloride induced hepatotoxicity in rats. *Afr. J. Pharma. Pharmacogn.* 2010, 4, 731–734.

129. Afzal, U.; Gulfraz, M.; Hussain, S.; Malik, F.; Maqsood, S.; Shah, I.; Mahmood, S. Hepatoprotective effects of *Justicia adhatoda* L. against carbon tetrachloride (CCL₄) induced liver injury in Swiss albino mice. *Afr. J. Pharm. Pharmacogn.* 2013, 7, 8–14. [CrossRef]

130. Adil, A.; Khan, S.S.; Naeem, S.; Ikram, R.; Jaffer, N. Evaluation of acute and chronic hepatoprotective activity of *Hedera helix* L. Aqueous leaf extract on carbon tetrachloride-induced hepatotoxicity in rat model. *Pak. J. Phytopathol.* 2017, 34, 1–15.

131. Hogade, M.G.; Patil, K.S.; Wadkar, G.H.; Mathapati, S.S.; Dhumal, P.B. Hepatoprotective activity of *Morus alba* (Linn.) leaves extract against carbon tetrachloride induced hepatotoxicity in rats. *Afr. J. Pharma. Pharmacogn.* 2010, 4, 60–66. [CrossRef]

132. Kanter, M.; Coskun, O.; Budancamanak, M. Hepatoprotective effects of *Nigella sativa* L and *Urtica dioica* L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats. *World J. Gastroenterol.* 2005, 11, 6684–6688. [CrossRef]

133. Kumar, H.; Bhardwaj, K.; Dhanjal, D.S.; Nepovimova, E.; Sen, F.; Regassa, H.; Singh, R.; Verma, R.; Kumar, V.; Kumar, D.; et al. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. *Int. J. Mol. Sci.* 2020, 21, 8458. [CrossRef]

134. Marslin, G.; Prakash, J. Hepatoprotective Activity of *Thalictrum foliolosum* (Ranunculaceae) Root Ethanol extract. *Int. J. Life Sci. Pharma. Res.* 2020, 10, 8–11.

135. Kalida, M.; Baldeo, R.; Dhawan, B.N. Hepatoprotective activity of *Carica papaya* Linn. prevents carbon tetrachloride induced hepatotoxicity in rats. *Int. J. Appl. Res. Nat. Prod.* 2009, 2, 19–32.

136. Sahreen, S.; Khan, M.R.; Khan, R.A. Hepatoprotective effects of methanol extract of *Carissa opaca* leaves on CCl₄-induced damage in rat. *BMC Comp. Alt. Med.* 2011, 11, 48. [CrossRef]

137. Tuse, T.A.; Harle, U.N.; Bore, V.V. Hepatoprotective activity of *Colocasia antiquorum* against experimentally induced liver injury in rats. *Malays. J. Pharma. Sci.* 2009, 7, 99–112.