Research Article
Metrological Analysis of Online Consumption Evaluation Influence Commodity Marketing Decision Based on Data Mining

Yun-Hua Xu, Lin-Fang Huang, Rong-Rong Guo, Xu-Yang Zhang, and Jia-Ming Zhu

1School of Business Administration, Anhui University of Finance and Economics, Bengbu 233030, China
2School of Economics, Anhui University of Finance and Economics, Bengbu 233030, China
3School of Accounting, Anhui University of Finance and Economics, Bengbu 233030, China
4School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China

Correspondence should be addressed to Jia-Ming Zhu; zhujm1973@163.com

Received 13 August 2020; Revised 12 September 2020; Accepted 6 November 2020; Published 19 November 2020

Academic Editor: Shaohui Wang

Copyright © 2020 Yun-Hua Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The data of reviews and ratings in the online market can provide guidance for company’s production and business activities. In this paper, firstly, we build a BP neural network model to help identify “useful consumer reviews.” Then, we use the fuzzy comprehensive evaluation method to identify the most successful and failing goods. Next, we achieve the time series prediction of product reputation by making use of ARIMA model. Finally, we use word segmentation and K-means clustering algorithm to determine whether stars and comments have radiation effects.

1. Introduction
Reviews system refers to the information feedback of consumers by rating and scoring the purchased goods. With the increasingly fierce competition among e-commerce platforms, it has been widely used as a tool to extract consumer emotions [1, 2]. According to the data of 2017, more than 75% of companies analyzed consumer reviews to conduct market research. It can be seen that a large amount of online consumer generated data (hereinafter referred to as “reviews”) has gradually become an important tool for producers to identify consumer demand and make sales and production decisions [3].

The most direct role of consumer reviews is to assist other consumers in their purchase decisions [4], while producers analyze consumer reviews to discover demand [5]. It is of great significance to identify the new demand created by consumers due to the fact that the earlier the manufacturer discovers the consumer demand and enters the market, the greater and more lasting market share benefit can be obtained. With the development of natural language processing technology, producers can capture the new possible general interests of each user through semantic space and semantic network analysis and then discover the potential needs of consumers [6, 7].

This paper is based on the star rating and text evaluation data of three products (hair dryer, microwave oven, and baby pacifier) of Sunshine Company. After data cleaning, we first establish a BP neural network prediction model to help identify “useful consumer reviews.” Then, we use the fuzzy comprehensive evaluation method to identify the most successful and failing goods. Next, we achieve the time series prediction of product reputation by making use of ARIMA model. Finally, we use word segmentation and K-means clustering algorithm to determine whether stars and comments have radiation effects.
network to analyze consumer emotions and then judge whether star_rating and reviews have a radiating effect. In addition, we construct ARIMA model to analyze the temporal relationship between reviews and corporate reputation. Finally, we draw the conclusions, hoping that our results can help companies identify potential consumer demand and make production and sales decisions.

2. Data Sources, Data Processing, and Assumptions

2.1. Data Sources. As a global e-commerce giant, Amazon Mall has long introduced a comment mechanism, in which buyers can express their satisfaction, recommendation, and opinions on their products through "star ratings" and "reviews." The data in this paper come from question C of the Mathematical Contest in Modeling in 2020. They are the scores and comments provided by customers of microwave ovens, baby pacifiers, and hair dryers sold in Amazon Market for a period of time [2, 8, 9]. The main concepts and definitions are shown in Table 1.

2.2. Data Processing. As we know, the amount of raw data is large and they are not processed, so we should do data processing according to the integrity and usefulness of the information by using four steps as follows:

(i) Step 1. Data screening: The original data provided have the problem of redundancy and loss. Therefore, first of all, we should filter them by removing null values and removing unreadable data.

(ii) Step 2. Data modification: There may be some unreasonable data in the raw data, which may have a significant impact on the conclusions drawn from the data, so we can modify part of the data through data processing. We calculate the ratio of helpful_votes to total_votes (the ratio of comments with zero total votes is zero) to modify the number of helpful votes, so eventually we can get the modified helpful_votes.

(iii) Step 3. Data normalization: Data normalization can provide an approach for comparison of various data and reflect the combined results of different factors. We should do the data normalization to facilitate the further analysis of the data. Firstly, we extract the length of review_headline and review_body and sum them and we get the review_length sum. Secondy, we transform both vine and verify_purchase into virtual variables by transforming sum them and we get the review_length sum.

(iv) Step 4. Finding the indicators of data: After the data processing above, we finally get 5 data indicators: star_rating, vine, verify_purchase, review_length sum, and modified helpful_votes.

2.3. Assumption. In order to simplify our model, we make some assumption in our paper. The details are as follows: (1) We assume that the explanatory variables are deterministic variables, not random variables, and they are not correlated with each other. The conditional mean value of the residual in the regression model, which is equal to 0, is independent of the explanatory variables, and each error variance is the same. (2) The average monthly evaluation data of time fragmentation of ARIMA model are not set as the break point of time series data, and seasonal and periodic changes are not considered. The expectation of irregular changes is 0. (3) In data processing, most data we use are standardized data. (4) The data we do dimension processing with or intuitively discard do not retain too much information about the whole. (5) We do not assume that these words expressing affection to products such as "great" and "like" must appear in the high level of star_reviews. (6) The analysis of different brands of the same product and different products is consistent. We only analyze the situation of one product and do not process the rest again.

3. Recognition of Helpful Reviews Based on BP Neural Network

3.1. Analysis Approach. In order to select out the valuable part of all the ratings and reviews data submitted by consumers, we set up an intelligent algorithm BP neural network which has high efficiency to fit these data. Through this model, the company can obtain any information of the products on sale based on the data on ratings and reviews.

3.2. BP Neural Model

3.2.1. Model Preparation. BP neural network, which refers to terror backpropagation neural network, is the most widely used neural network Model. BP neural network generally consists of three layers: input layer, hidden layer, and output layer. The input signal acts on the output node through the hidden layer, and the transformation of the training function produces errors. When the output signal is sent, the error is returned to the network and sent to the input layer through the network. When the network propagates in the opposite direction, the network distributes errors to the neurons in each layer, adjusts the error signals obtained from each layer, and determines the weight of each cell [10].

3.2.2. Model Establishment. There are two steps in the process of establishing BP neutral network. Firstly, we should set the network parameter k that represents the numbers of neurons. Secondly, we use existing data of input and output to triangle the network. We now drive the core formulas of the BP neural neutral network.

We set d_k as the expected output of the input layer’s k output variable, a_k as the actual output of the input layer’s k output variable, and y_k as the output of the hidden layer. Besides, w_{ik} and θ_1 are the weight and threshold of the hidden layer to the output layer, and V_{ij} and θ_2 are the sum of the weight and threshold of the hidden layer to the input layer [11].

Thus, when $\text{net}_i = \sum_{j=0}^{m} (w_{jk} - \theta_1)$ the output of the input layer is as follows:
3.3. Results Analysis. Next, we will import the data into MATLAB, select the star_rating and review_length sum as input, and use the modified helpful_votes as output to establish a neural network. Then we select 30 pieces of data randomly as the training set and 35 pieces of data as the test set and set the number of training steps as 10000, the target error as 1×10^{-5}, and the learning rate as 0.8. Besides, we express the mean square error and the coefficient of determination in the picture. We can, respectively, get the comparison charts of the actual value and the predicted value of the training set, which are shown in Figure 1. The red solid line represents the true value and the blue-dotted line represents P.

From Figure 1, we can see that the fitting effect of neural network at each point is good, and RMS (root mean square) is above 0.9 and MSE (mean square error) is controlled at about 0.01 for both series.

Therefore, Sunshine Company is able to use our model to predict the sales of the three products in online marketplace and get useful information based on ratings and reviews so as to guide future sales and production activities.

4. Fuzzy Comprehensive Evaluation of Good and Bad Products Based on Principal Component Analysis

4.1. Analysis Approach. Having obtained the valuable information in the reviews, we are concerned about whether we can use this information to analyze which products are potentially successful or failing [12]. In order to determine the potentially most successful or most failing products, we establish the fuzzy comprehensive evaluation model based on principal component analysis.

4.2. Fuzzy Comprehensive Evaluation Model

4.2.1. Model Preparation. Generally, the selection of weight of the comprehensive evaluation model is influenced by some subjective factors. Using principal component analysis can help us calculate the weight of each index objectively, avoid the randomness of weight selection, and reduce the artificial errors in the process of calculation. With advantage of fuzzy comprehensive evaluation where processing line is not clear or subordinate relations is not specific, we can get more reliable results. The principles of the model are shown as follows: (1) Set the evaluation object as set P. The various indicators related to P are determined and then the evaluation factor set, namely, the indicator set U, is established. Select the set of possible evaluation results to establish the evaluation level set V. (2) Establish membership degree relation matrix R. According to the grades in the evaluation level set V, the membership degree of each index in U is evaluated. Suppose that the subset of membership degree of corresponding subindexes in U is $R = (r_{i1}, r_{i2}, \ldots, r_{in})$, as to guide future sales and production activities.

Serial	Variable Description	Variable	Variable Description
1	Star_rating (integer)	A score used to rate a product with a number of stars between 1 and 5	
2	Helpful_vote (integer)	The number of the votes of whether a product review is valuable or not	
3	Total_vote (integer)	The total number of the votes of whether a product review is valuable or not	
4	Review_headline (string)	The headline of a review	
5	Review_body (string)	The content of a review	
6	Vine (string)	The member of Amazon Vine Voices	
7	Verify_purchase (string)	People who are defined to purchase a product	

Table 1: The main concepts and definitions of this paper.

3.2.3. Error Analysis. First, according to the formula above, function of each layer has error input in the network. Thus, by adjusting the weight and threshold, the error E can be changed. The adjustment of the weight should be proportional to the gradient of the error. When α and β are the learning rates of the network, the formula is as follows:

$$o_k = f(\text{net}_k), \quad k = 1, 2, \ldots, l. \quad (1)$$

Then, when $\text{net}_i = \sum_{i=0}^{n} (v_{ij} - \theta_j)$ the output of the hidden layer is as follows:

$$Y_j = f(\text{net}_j), \quad j = 1, 2, \ldots, m. \quad (2)$$

The error between the networks output and the expected output is as follows:

$$E = \frac{1}{2} \sum_{k=1}^{l} (d_k - o_k)^2. \quad (3)$$

It is further expanded to the input layer as follows:

$$E = \sum_{k=1}^{l} \left(d_k - f\left[\sum_{i=1}^{m} w_{ik} f(\text{net}_i) \right] \right)^2. \quad (4)$$

3.3. Results Analysis. Next, we will import the data into MATLAB, select the star_rating and review_length sum as input, and use the modified helpful_votes as output to establish a neural network. Then we select 30 pieces of data randomly as the training set and 35 pieces of data as the test set and set the number of training steps as 10000, the target error as 1×10^{-5}, and the learning rate as 0.8. Besides, we express the mean square error and the coefficient of determination in the picture. We can, respectively, get the comparison charts of the actual value and the predicted value of the training set, which are shown in Figure 1. The red solid line represents the true value and the blue-dotted line represents P.

From Figure 1, we can see that the fitting effect of neural network at each point is good, and RMS (root mean square) is above 0.9 and MSE (mean square error) is controlled at about 0.01 for both series.

Therefore, Sunshine Company is able to use our model to predict the sales of the three products in online marketplace and get useful information based on ratings and reviews so as to guide future sales and production activities.
where r_{ij} represents the membership degree of u_j to the evaluation level in set V and its corresponding value v_i, and $r_{ij} + r_{i2} + \cdots + r_{im} = 1$. The subsets of membership degree of m evaluation grades constitute the membership degree relation matrix R. The membership value is calculated by linear distribution function. (3) Establish the weight vector W. In order to reflect the importance of each subindex u_j to P, we set the weight vector as $W = (w_1, w_2, \ldots, w_m)$. (4) Establish the evaluation result vector B. The evaluation result vector B, that is, $B = WR$, is obtained by applying the synthesis operation that can fully reflect the function of membership relation matrix R and weight vector W. How to establish our model is shown in the five steps [13, 14].

(i) Step 1. Select the original data of the text and ratings. According to the actual situation, we select the data of five variables coming from 3 products: star_rating, helpful_votes, vine, verified_purchase, and review_length_sum.

(ii) Step 2. Conduct principal component analysis according to the selected data. We mainly determine the principal component with the standard of characteristic value greater than 1 or slightly less than 1 and the cumulative variance contribution rate between 70% and 85% to determine the weight of each product.

(iii) Step 3. Establish the fuzzy comprehensive evaluation model. We divide the evaluation level into three levels, which correspond to the relative quality of the product. Then, we calculate the membership matrix according to the membership degree, use MATLAB to calculate the result vector, determine the level of products through weighted processing, and make corresponding analysis.

4.2.2. Principal Component Analysis. According to the actual situation, we select the data of five variables coming from 3 products: star_rating, helpful_votes, vine, verified_purchase, and review_length_sum.

Taking the data of hair dryers as an example, we use STATA to process the principal component analysis. The results are shown in Tables 2 and 3.

According to the principle of principal component selection, we select the first three principal components and substitute the original variables with x_1, \ldots, x_5. Thus, we can get a principal component expression, and the rest of expressions can be inferred like it. The formula is as follows:

$$\text{Comp1} = -0.2143x_1 + 0.3464x_2 + 0.4442x_3 - 0.5536x_4 + 0.5747x_5.$$ \hspace{1cm} (6)

Next, we use the number of loads in factor loading matrix table to divide the variance and the square root value of the principal component characteristic in the cumulative contribution rate table; then we can get the coefficients of all the indicators in each of the main component linear combinations. Then we multiply them to the variance contribution rates of the principal component and divide them to the sum of variance contribution rates, and we can obtain the corresponding weight vector $W = (0.1987, 0.0944, 0.3048, 0.2082, 0.1940)$, which can reflect the different indicators U for evaluation objects to the importance of the hair dryer.

4.2.3. The Fuzzy Comprehensive Evaluation. We divide the degree of the evaluation object into three levels and establish the evaluation level set $V = \{1, 2, 3\}$. Then we establish the membership degree relation matrix R (membership degree function in the matrix is calculated by linear distribution function) to evaluate the membership degree of each index
in set U according to the very level in the evaluation level set V [15].

\[
R = \begin{pmatrix}
0.1 & 0.5 & 0.4 \\
0.8 & 0 & 0.2 \\
0.1 & 0.54 & 0.36 \\
0.22 & 0.14 & 0.64 \\
0.3 & 0.6 & 0.1
\end{pmatrix}
\]

(7)

4.3. Result Analysis. The fuzzy comprehensive evaluation model we select is of outstanding-principle component type. We use MATLAB to calculate the result vector $B = WR = (0.0755, 0.1646, 0.1332)$ and use the weighted average method to get that the final score is 2.1546. Similarly, we can get that the scores of microwave ovens and pacifiers are 1.6026 and 1.9255. It is obvious that the best potential products are hair dryers and the worst are microwave ovens.

5. Time Series Prediction of Products’ Reputation Based on ARIMA Model

5.1. Analysis Approach. In order to discuss the increasing or decreasing trend of products’ reputation in the online marketplace, we use the ARIMA model to identify metrics and patterns based on timeline for each piece of data [16, 17].

5.2. ARIMA Model

5.2.1. Model Preparation. Firstly, we analyze and process the data through scatter diagram. We take a hair dryer as an example. We first extract all the data of star_ratings and review_dates. Due to the large amount of data, we average the data of star_ratings on a monthly basis to obtain the average star_ratings data of 140 months from March 2002 to August 2015 (there are no data for some months in the middle). The scatter diagram is shown in Figure 2. The horizontal axis represents the month and the vertical axis represents the average star level of each month.

Therefore, we can find the following conclusions from Figure 2: Firstly, we can see that the data fluctuate greatly and the data generated are relatively regular. It is indicated that the number of people who buy the product at the beginning is small and there are no reviews in some months. Secondly, in 2003 and 2004, the data once reached the lowest level. It is indicated that the company may have taken a series of measures to save its reputation. Thirdly, from the end of 2006 to the beginning of 2007, the review data of the products began to stabilize with small fluctuation. It is indicated that the number of buyers began to increase. Finally, in the later period, the average star_rating is stable at around 4.1, and it is also the average total star_rating of the product. On the other hand, the flattening trend also reflects the fact that the correlation coefficient between the star_rating and the other two variables is nearly zero.

Next, we import the data into STATA to process time series analysis. There are mainly four different factors that play an important role in the formation and development of time series, including long-term trend factor, seasonal change factor, cyclic change factor, and irregular change factor. Besides, as the time series formed in this topic is relatively long, we cannot ignore the influence of long-term trend. The main method for determining and analyzing long-term trend is smoothing the time series. Thus, we choose the MA (moving average) method and the formula of smoothing is as follows:

\[
x'(t) = \frac{x(t-2) + x(t-1) + x(t) + x(t+1) + x(t+2) + x(t+3)}{6}
\]

(8)
5.2.2. Model Establishment. ARIMA model is a common and effective method in time series prediction. ARIMA method can find a model suitable for data investigation under the condition that the data pattern is unknown, so it has been widely used in financial and economic prediction. Its basic principle is as follows: Firstly, smooth the original time series by using MA (moving average) method. Secondly, determine the type of model, the order of model, and undetermined mined parameters by analyzing the characteristics of ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) of stationary sequence. Finally, analyze and predict the future times series [18, 19].

ARIMA model can be known as ARIMA \((p, d, q)\), where \(P\) is the autoregressive order number, \(d\) is the difference order, and \(q\) is the sliding average order number. The \(P\) value of the corresponding Q statistic is almost zero at the significance level of 0.05, so we reject the original hypothesis that the time sequence is irrelevant. Meanwhile, the \(P\) value passing the white noise test also rejects the original hypothesis that the sequence is white noise. Then, through the full test, we can get the value of \(P = 0.163 > 0.05\), which means that it also passes the stationarity test. Thus, the ARIMA model could be used and the model we selected is ARIMA \((1, 0, 1)\) [20].

5.3. Results Analysis. Through the above process, we have determined our model as ARIMA \((1, 0, 1)\). Then we can draw the prediction results by calculation, as shown in Table 4. It can be seen from the table that each coefficient of the model is significant and the standard deviation of the residual is very small, and the \(P\) value of each term is greater than the significance level; that is, the residual passes the autocorrelation test.

Above all, we can say that the model does not have autocorrelation, and the ARIMA model can be used to predict the future changes of product reputation in the market. The formula of ARIMA model can be restored to the following:

\[
\text{star}_t = 3.859 + 0.870\text{star}_{t-1} + \varepsilon_t + 0.372\varepsilon_t, \\
\hat{\varepsilon} = 0.154.
\]

According to the ARIMA model, the average product stars in the next five months are predicted to be 4.124739, 4.090306, 4.060333, 4.034242, and 4.011531, indicating that the product reputation will decline in the future.

Taking the hair dryer data as an example, we will process the sensitivity analysis of the ARIMA model. ARIMA model is the core part of the three-parameter input: the autoregressive order \(p\), difference number \(d\), and the change of the moving average order \(q\). So we change the parameters and smoothing data of the initial model ARIMA \((1, 1)\). At the same time, we make the average star_ratings prediction for the next five months. Here, we do not restore the ARIMA model expression and do not list the results of model parameters. The selected model involves constant terms. We change parameters \(p\) and \(q\), respectively; the range of change is the integers from 0 to 3. The sensitivity analysis is as follows in Figure 3.

Firstly, we find in Figure 3 that \(p = 0\) has the largest change range and the largest error, while other \(p\) and \(q\) are in good fitting with the original data. Secondly, the prediction of the red line \(p = 0\) circulates from low to high and finally is lower than the level of the original data. Finally, in the forecast of the last five years, no matter the change of \(p\) or \(q\), the ARIMA model shows a downward trend, which should be paid attention to. Therefore, we can find that the conclusion of sensitivity analysis is consistent with the conclusion above, which shows that our model has good stability and strong adaptability.

6. Exploration of Radiation Effects Based on K-Means Clustering Algorithm

6.1. Analysis Approach. In order to explore whether specific star_ratings and reviews will cause more reviews, firstly we use word segmentation to find the relationships between specific vocabularies and star_ratings; then we use K-means clustering algorithm to further explore the radiation effects.
6.2. Word Segmentation

6.2.1. Model Preparation. Word segmentation is an important concept in NLP (Natural Language Processing) [21]. It decomposes long texts such as sentences, paragraphs, and articles into data structures that regard words as their units. Such processing helps us to express complex problems in mathematical language [22–24]. The basic unit of word segmentation in English is a word. The basic steps of the model are as follows [25].

(i) Step 1. Separating the sentences into individual words according to the space, punctuation, and so forth.

(ii) Step 2. Removing the stopping words: Remove the words that appear frequently but have no practical meaning, such as “it,” “that,” “to,” “a,” and “the.”

(iii) Step 3. Lemmatization (restoring the part of speech) and stemming (extracting the stem): There are some special forms of the words in English, such as the singular and plural nouns and the -ing forms and -ed forms of verbs; we need to restore these morphed words and extract the main components from them.

(iv) Step 4. Eigenvector extraction [12, 26].

6.2.2. Model Establishment

(1) Lemmatization and stemming. Taking the hair dryer data as an example, we extract 20 words such as “recommend” and “light” from high to low frequency through Python and convert them into word vectors. If the word “recommend” which has the highest frequency appears in the ratings while the other words do not, a is a vector with 20 rows of columns and we will mark the eigenvector as

$$a = (1 \ 0 \ 0 \ \cdots \ 0)^T.$$ (10)

(2) Removing stop words. After removing these words which cannot express the actual meaning in the product ratings such as “buy” and “purchase,” we get the word frequency table, which is shown as Table 5. The number to the right of the word represents the number of occurrences of the word in the rating title and rating content.

(3) Eigenvector conversion. Finally, we convert the star_ratings into eigenvectors and calculate the Pearson correlation coefficient between these eigenvectors of words and eigenvectors of star_ratings. The calculation formula is as follows [27]:

$$r(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}$$ (11)

6.2.3. Results Analysis. Finally, the correlation coefficient matrix we get is shown as in Table 6. The rows of the matrix are the star_ratings from low to high, and the columns of the matrix are the high-frequency words we choose.

As can be seen from Table 6, the correlation coefficient between each word and the star_rating is very slight, most of which are less than 0.1 and they are almost irrelevant. However, considering the uncertainty of big data and the processing of taking things out of context (we removed negative auxiliary verbs), some of the correlations are still fairly high. On the other hand, based on some intuitive situations, the correlation coefficient between the word “great” and the five-star rating is 0.1718, and the correlation coefficient between “love” and the five-star rating is 0.2581. We can conclude that these specific descriptions are obviously closely related to the level of star_rating and some words with negative meaning of the products did not show high correlation coefficient.

Firstly, we can easily find that only “low” and “weight” in the high-frequency words are likely to be the words with negative reviews. Secondly, the average star_rating of hair dryers is as high as 4.1, whose number of negative reviews is relatively less. Finally, we cannot regard the negative meanings as negative meaning without the context directly, which makes us choose to abandon it when we are dealing with negative words.

6.3. K-Means Clustering Algorithm

6.3.1. Model Preparation. Clustering is the process of looking for similarities between a collection of figurative or abstract objects and dividing them into categories. The basic steps of K-means clustering algorithm are as follows:

(i) Step 1. Select k objects from the data as the initial clustering center.

(ii) Step 2. Calculate the distance between each cluster object and the cluster center and divide them into parts based on the distance.

(iii) Step 3. Calculate each cluster center again.

6.3.2. Model Establishment. We identify this problem as a clustering problem; that is to say, we do not assume that
these words expressing affection to products such as “great” “like” must appear in the high level of star_reviews. Instead, we first find out the similarities of all kinds of reviews by means of clustering and divide them into categories. Then, according to these categories, we in turn look for corresponding star_ratings to determine whether customers have a tendency to publish such reviews after a series of certain stars comments [28].

Firstly, we are given the reviews_text data set, where d represents the dimension of the data set, and n represents the amount of data in the data set and the number K of partition sets we want to generate. Through the K-means algorithm, we can divide the object into K different clusters C_k, $k = 1, 2, \ldots, k$. Now we select a central k in each cluster. Similar to the general optimization problem, the clustering problem is to minimize the sum of squares between the midpoint of each cluster and each center. That is, $L = \sum_{k=1}^{K} \sum_{x \in C_k} \|x_i - u_k\|^2$ to the minimum. The distance here is referring to the Euclidean metric.

K-means clustering algorithm is a classical algorithm to solve clustering problems, which is simple and fast. For processing large data sets, the algorithm keeps contractibility and high efficiency. The effect is best when the cluster is close to the normal distribution.

From Figure 4, we can see that most of the points are loosely arranged, but some of them have the potential to become the center of the cluster. Then we process on these points with K-means clustering and five cluster centers are obtained corresponding to each star.

6.3.3. Results Analysis

We do separation with five kinds of color to mark the various elements of the clusters represented with a point and the center represented with an x. We restore the principal component through the serial number of the five clusters to find these star_ratings of the reviews initially and we get the corresponding relationship of the reviews, clustering, and star_ratings (we will not duplicate recording the number of reviews). Thus, we can find 3 significant results. Firstly, blue cluster has five-star reviews with the maximum number of 212, which appears in the corresponding term vectors “how many” 132 times and “love” 89 times. Secondly, the green cluster has five-star reviews with the maximum number of 212, which appears in the corresponding term vectors “how many” 132 times and “love” 89 times. Thirdly, it can be concluded from the model that customers are most likely to

Words	Frequency						
Recommend	955	Thick	728	Fine	630	Pretty	486
Light	860	Fast	693	Low	624	Retractable	465
Powerful	856	Cool	680	Quiet	522	Worth	450
Easy	845	Heavy	664	Weight	521	Perfect	445
Nice	808	Great	660	Love	517	Work	395

Table 5: The word frequency.

Star	1 star	2 stars	3 stars	4 stars	5 stars
Recommend	-0.0334	-0.0024	-0.057	-0.0298	0.0766
Light	-0.0627	-0.0241	-0.0099	0.0406	0.0215
Powerful	-0.0712	-0.0231	0.0154	0.0052	0.0391
Easy	-0.0708	-0.0446	-0.0415	0.0492	0.047
Nice	-0.0747	-0.0329	-0.0002	0.0507	0.0191
Thick	-0.0492	-0.0295	0.0086	0.0095	0.0299
Fast	-0.0716	-0.0385	-0.0337	0.0077	0.0728
Cool	-0.0162	0.0097	0.0248	0.0221	-0.0266
Heavy	-0.015	0.014	0.0655	0.0567	-0.0798
Great	-0.1512	-0.0787	-0.0996	0.0122	0.1718
Fine	-0.0131	0.0529	0.0676	0.04	-0.0872
Low	0.0181	0.0367	0.0239	0.0118	-0.0505
Quiet	-0.0475	-0.0249	-0.004	0.0078	0.0353
Weight	-0.0494	-0.0254	-0.01	0.0217	0.0292
Love	-0.1251	-0.1016	-0.1135	-0.0935	0.2581
Pretty	-0.0248	-0.0073	0.0385	0.0752	-0.0632
Retractable	-0.0093	0.0225	0.0273	0.0192	-0.0358
Worth	0.0394	-0.0039	-0.0265	-0.0286	0.0165
Perfect	-0.0676	-0.0423	-0.0574	-0.0186	0.1064
Work	-0.1004	-0.0473	-0.0056	0.093	0.0105

Table 6: Pearson correlation coefficient between eigenvectors of words and eigenvectors of star_ratings.
directly express their love for the product or recommend others to buy it when they see five-star reviews; however, customers are also likely to directly express their dissatisfaction when they see one-star negative review [29]. So, finally, Sunshine Company should adjust its sales strategy in time according to the star_ratings of the review to increase the product production when seeing the continuous good reviews and to save the reputation of own product in time when seeing bad reviews increase.

7. Conclusion

Starting from a case analysis, this paper establishes a model suitable for any platform and any commodity to mine the potential information behind the ratings and reviews of online product, which provides certain help for companies to make online sales strategy and identify the demand of consumers. However, in order to simplify the analysis process, some assumptions made by us make the model deviate from the reality. This article uses BP neural network and other methods to establish multiple models, adopts the method of combining qualitative description and quantitative calculation, makes assumptions and demonstrations, uses clear logic to explain the principles and practical applications of various models, and uses MATLAB and other methods. Therefore, we strongly believe that our conclusions can help companies use consumer review data to explore the market deeply and make appropriate production plans and sales strategies.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the General Project of Philosophy and Social Science Planning of Anhui Province: Research on Government R&D Subsidies Promoting Green Innovation Efficiency of Anhui High-Tech Industries (no: AHSKY2019D085); Anhui University of Finance and Economics School-Level Teaching and Research Fund Project (acjyyb2020011); Key Projects of Support Program for Outstanding Young Talents in Anhui Province Colleges and Universities (no. gxyyq2018119); Key Project Funds from Anhui Education Ministry (no. 2019rcsfj089); and Student Scientific Research Fund Project of School of Economics, Anhui University of Finance and Economics (ACJJXYZD2002).

References

[1] E.-J. Lee and S. Y. Shin, "When do consumers buy online product reviews? effects of review quality, product type, and reviewer's photo," Computers in Human Behavior, vol. 31, pp. 356–366, 2014.
[2] H. Hong, D. Xu, G. A. Wang, and W. Fan, "Understanding the determinants of online review helpfulness: a meta-analytic investigation," Decision Support Systems, vol. 102, pp. 1–11, 2017.
[3] Z.-P. Fan, G.-M. Li, and Y. Liu, "Processes and methods of information fusion for ranking products based on online reviews: an overview," Information Fusion, vol. 60, pp. 87–97, 2020.
[4] K. Floyd, R. Freling, S. Alhoqail, H. Y. Cho, and T. Freling, "How online product reviews affect retail sales: a meta-analysis," Journal of Retailing, vol. 90, no. 2, pp. 217–232, 2014.
[5] R. Decker and M. Trusov, "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, vol. 27, no. 4, pp. 293–307, 2010.
[6] X. Xu, X. Wang, Y. Li, and M. Haghhighi, "Business intelligence in online customer textual reviews: understanding consumer...
perceptions and influential factors,” *International Journal of Information Management*, vol. 37, no. 6, pp. 673–683, 2017.

[7] Z.-P. Fan, Y.-J. Che, and Z.-Y. Chen, "Product sales forecasting using online reviews and historical sales data: a method combining the Bass model and sentiment analysis," *Journal of Business Research*, vol. 74, pp. 90–100, 2017.

[8] S. P. Eslami, M. Ghasemaghaei, and K. Hassanein, "Which online reviews do consumers find most helpful? a multi-method investigation," *Decision Support Systems*, vol. 113, pp. 32–42, 2018.

[9] S. Park and J. L. Nicolau, "Asymmetric effects of online consumer reviews," *Annals of Tourism Research*, vol. 50, pp. 67–83, 2015.

[10] I. A. Yagci and S. Das, "Measuring design-level information quality in online reviews," *Electronic Commerce Research and Applications*, vol. 30, pp. 102–110, 2018.

[11] Y. Wang, X. Lu, and Y. Tan, “Impact of product attributes on customer satisfaction: an analysis of online reviews for washing machines,” *Electronic Commerce Research and Applications*, vol. 29, pp. 1–11, 2018.

[12] G. Aerts, T. Smits, and P. W. J. Verlegh, "How online consumer reviews are influenced by the language and valence of prior reviews: a construal level perspective,” *Computers in Human Behavior*, vol. 75, pp. 855–864, 2017.

[13] K. Z. K. Zhang, S. J. Zhao, C. M. K. Cheung, and M. K. O. Lee, "Examining the influence of online reviews on consumers’ decision-making: a heuristic-systematic model,” *Decision Support Systems*, vol. 67, pp. 78–89, 2014.

[14] L. Jin, B. Hu, and Y. He, "The recent versus the out-dated: an experimental examination of the time-variant effects of online consumer reviews,” *Journal of Retailing*, vol. 90, no. 4, pp. 552–566, 2014.

[15] D. Yu, Y. Mu, and Y. Jin, "Rating prediction using review texts with underlying sentiments,” *Information Processing Letters*, vol. 117, pp. 10–18, 2017.

[16] P. Racherla and W. Friske, "Perceived “usefulness” of online consumer reviews: an exploratory investigation across three services categories,” *Electronic Commerce Research and Applications*, vol. 11, no. 6, pp. 548–559, 2012.

[17] S. Utz, P. Kerkhof, and J. Van Den Bos, "Consumers rule: how consumer reviews influence perceived trustworthiness of online stores,” *Electronic Commerce Research and Applications*, vol. 11, no. 1, pp. 49–58, 2012.

[18] G. Jiang, S. Jennifer, W. Liu, X. Feng, and J. Lei, "Modeling the dynamics of online review life cycle: role of social and economic moderations,” *European Journal of Operational Research*, vol. 285, no. 1, pp. 360–379, 2020.

[19] L.-C. Yu, J.-L. Wu, P.-C. Chang, and H.-S. Chu, "Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news,” *Knowledge-Based Systems*, vol. 41, pp. 89–97, 2013.

[20] E. Eryarsoy and S. Piramuthu, "Experimental evaluation of sequential bias in online customer reviews,” *Information & Management*, vol. 51, no. 8, pp. 964–971, 2014.

[21] Y.-H. Hu and K. Chen, "Predicting hotel review helpfulness: the impact of review visibility, and interaction between hotel stars and review ratings,” *International Journal of Information Management*, vol. 36, no. 6, pp. 929–944, 2016.

[22] R. K. Amplayo and M. Song, "An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews,” *Data & Knowledge Engineering*, vol. 110, pp. 54–67, 2017.

[23] R. Ireland and A. Liu, “Application of data analytics for product design: sentiment analysis of online product reviews,” *CIRP Journal of Manufacturing Science and Technology*, vol. 23, pp. 128–144, 2018.

[24] J. Chambua, Z. Niu, A. Yousif, and J. Mbelwa, "Tensor factorization method based on review text semantic similarity for rating prediction,” *Expert Systems with Applications*, vol. 114, pp. 629–638, 2018.

[25] N. Hu, I. Bose, N. S. Koh, and L. Liu, "Manipulation of online reviews: an analysis of ratings, readability, and sentiments,” *Decision Support Systems*, vol. 52, no. 3, pp. 674–684, 2012.

[26] W. M. Wang, Z. Li, Z. G. Tian, J. W. Wang, and M. N. Cheng, "Extracting and summarizing affective features and responses from online product descriptions and reviews: a Kansei text mining approach,” *Engineering Applications of Artificial Intelligence*, vol. 73, pp. 149–162, 2018.

[27] T. L. Ngo-Ye and A. P. Sinha, "The influence of reviewer engagement characteristics on online review helpfulness: a text regression model,” *Decision Support Systems*, vol. 61, pp. 47–58, 2014.

[28] T. L. Ngo-Ye, A. P. Sinha, and A. Sen, "Predicting the helpfulness of online reviews using a scripts-enriched text regression model,” *Expert Systems with Applications*, vol. 71, pp. 98–110, 2017.

[29] J.-M. Zhu, L. Wang, and J.-B. Liu, "Eradication of ebola based on dynamic programming,” *Computational and Mathematical Methods in Medicine*, vol. 2016, Article ID 1580917, 9 pages, 2016.