Small Angle J/ψ Production in $p\bar{p}$ Collisions at $\sqrt{s}=1.8$ TeV

B. Abbott, M. Abolins, V. Abramov, B.S. Acharya, I. Adam, D.L. Adams, M. Adams, S. Ahn, H. Aihara, G.A. Alves, N. Amos, E.W. Anderson, R. Astur, M.M. Baarmand, V.V. Babintsev, L. Babukhada, A. Baden, V. Balamurali, B. Baldin, S. Banerjee, J. Bautty, E. Barberis, P. Baringer, J.F. Bartlett, B. Belyaev, S.B. Beni, I. Bertram, V.A. Bezzubov, P.C. Bhat, V. Bhatnagar, M. Bhattacharjee, N. Biswas, G. Blayze, S. Blessing, P. Bloom, A. Boehler, N.I. Bojko, F. Bordonner, C. Boswell, A. Brandt, R. Breedon, R. Brock, A. Bross, D. Buchholz, V.S. Burtovoi, J.M. Butler, W. Carvalho, D. Casey, Z. Casilum, H. Castillo-Valdez, D. Chakraborty, S.-M. Chang, S.V. Chekulaev, L.-P. Chen, W. Choi, S. Chopra, B.C. Choudhary, J.H. Christensen, M. Chung, D. Claes, A.R. Clark, W.G. Coban, J. Cochran, L. Coney, W.E. Cooper, C. Cretser, D. Cullen-Vidal, M.A.C. Cummings, D. Cutts, O.I. Dahl, K. Davis, K. De, K. Del Signore, M. Demarest, D. Denisov, S.P. Denisov, H.T. Diefel, M. Dilesburg, G. Di Loreto, P. Draper, Y. Ducros, L.V. Dudko, S.R. Dugad, A. Dyshkant, D. Edmunds, J. Ellison, V.D. Elvira, R. Engelmann, S. Eno, G. Epple, P. Ermolov, O.V. Eroshin, V.N. Evdokimov, F. Fahlund, M.K. Fatyga, S. Feher, D. Fein, T. Ferbel, G. Finocchiaro, H.E. Fisk, Y. Fisyak, E. Flattum, G.E. Forden, M. Fornier, K.C. Frame, S. Fuss, E. Gallas, A.N. Galyaev, P. Gartung, V. Gavrilov, T.L. Gold, R.J. Genik, K. Genser, C.E. Gerber, Y. Gershtein, B. Gibbard, B. Gobbi, B. Gomez, G. Gomez, P.I. Goncharov, J.L. Gonzalez Solis, L.T. Goss, K. Gounder, A. Goussiu, N. Graf, P.D. Grannis, D.R. Green, H. Greenlee, S. Grinstein, P. Grudberg, S. Grunendahl, G. Guglielmo, J.M. Guida, G. Gupta, S.N. Gurzhiy, G. Gutierrez, P. Gutierrez, N.J. Hadley, H. Haggerty, S. Hagopian, V. Hagopian, K.S. Hahn, R.E. Hall, P. Hamlet, S. Hansen, J.M. Hauptman, D. Hedin, A.P. Heinson, U. Heintz, R. Hernandez-Montoya, T. Heuring, R. Hirosky, J.D. Hobbs, B. Holstein, V. Holstein, J.S. Hoflund, F. Hsieh, T. Hu, T. Huen, A.S. Ito, E. James, J. Jaques, S.A. Jerger, R. Jesik, T. Joffe-Minor, K. Johns, M. Johnson, A. Jonchee, M. Jones, H. Jostlein, S.Y. Jun, C.K. Jung, S. Kahn, G. Kalbfleisch, D. Karmanov, D. Karmgard, R. Kehoe, M.L. Kelly, S.K. Kim, B. Klima, C. Klophein, W. Ko, J.M. Kohli, D. Koltick, A.V. Kostritskii, J. Kotcher, A.V. Kotwal, A.V. Kozlov, E.A. Kozlovsky, J. Krane, M.R. Krishnaswamy, S. Krzywdzinski, S. Kuleshov, S. Kunori, F. Landay, G. Landsberg, B. Lauer, A. Leflat, J. Li, Q.Z. Li-Demarteau, J.G.R. Lima, D. Lincoln, S.L. Linn, J. Linnemann, R. Lipton, F. Lobkowicz, S.C. Loken, A. Lucotte, L. Lueking, A.L. Lyon, J.A.K. Maciel, R.J. Madaras, R. Madden, L. Maganua-Mendoza, V. Manakov, S. Mani, H.S. Mao, R. Markeloff, T. Marshall, M.I. Martin, K.M. Mauritz, B. May, A.A. Mayorov, R. McCarthy, J. McDonald, T. McKibben, J. McKinley, T. McMahon, H.L. Melanson, M. Merkin, K.W. Merritt, C. Miao, H. Mitternich, A. Minc, C.S. Mishra, N. Mokhov, N.K. Mondal, H.E. Montgomery, S. Moore, M. Mostafa, H. da Motta, C. Murphy, F. Nang, M. Naraian, S. Narasimham, A. Narayananan, H.A. Neal, J.P. Negret, P. Nemethy, D. Norman, L. Oesch, V. Oguri, E. Oliveira, E. Oltman, N. Oshima, D. Owen, A. Padley, A. Para, Y.M. Park, R. Partridge, N. Parua, M. Paterno, B. Pawlik, J. Perkins, M. Peters, P. Pleiagia, H. Piekarczuk, Y. Pischalnikov, B.G. Pope, J.H. Prosper, S. Protopopescu, J. Qian, P.Z. Quintas, R. Raja, S. Rajagopalan, R. Ramirez, S. Reucroft, M. Rijsenbeek, T. Rockwell, M. Roco, P. Rubinov, R. Ruchti, J. Rutherfoord, A. Sanchez-Hernandez, A. Santoro, L. Sawyer, R.D. Schamberger, H. Schellman, J. Sculli, E. Shabalina, C. Shaffer, H.C. Shankar, R.K. Shrivpuri, M. Shupe, H. Singh, J.B. Singh, V. Sironen, E. Smith, R.P. Smith, R. Siulhur, G.R. Snow, J. Snow, S. Snyder, J. Solomon, M. Sosebee, N. Sotnikova, M. Souza, G. Steinbrueck, R.V. Stephens, M.L. Stevenson, D. Stewart, F. Stichelbaut, D. Stoker, V. Stolin, D.A. Stoyanova, M. Strauss, K. Streets, M. Strovink, A. Szajfer, P. Tamburello, J. Tarazi, M. Tartaglia, T.L.T. Thomas, J. Thompson, T.G. Tippe, P.M. Tuts, V. Vaniev, N. Varelas, E.W. Varness, V. Vitto, A.A. Volkov, A.P. Vorobiev, H.D. Wahl, G. Wang, J. Warchol, G. Watts, M. Wayne, H. Weerts, A. White, J.T. White, J.A. Wightman, S. Willis, S.J. Wimpenny, J.V.D. Wirjawan, T. Womersley, T. Won, D.R. Wood, Z. Wu, H. Xu, R. Yamada, P. Yamin, T. Yasuda, Y. Yepes, K. Yip, T. Yoshikawa, S. Youssouf, J. Yu, Y. Yu, B. Zhang, Y. Zhou, Z. Zhou, Z.H. Zhu, M. Zielinski, D. Zieminska, A. Zylerstein

(DO Collaboration)
This paper presents the first measurement of the inclusive J/ψ production cross section in the forward pseudorapidity region $2.5 \leq |\eta_{J/\psi}| \leq 3.7$ in pp collisions at $\sqrt{s} = 1.8$ TeV. The results are based on 9.8 pb$^{-1}$ of data collected using the DØ detector at the Fermilab Tevatron Collider. The inclusive J/ψ cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.

PACS numbers: 13.20.Gd, 13.25.Gv, 13.85.Qk, 12.38.Qk
In high energy $p\overline{p}$ collisions J/ψ's are produced directly, from decays of higher mass charmonium states $[\chi$ and $\psi(2S)]$, and from b quark decays. Existing experimental results in the central rapidity region from UA1 at $\sqrt{s} = 0.63$ TeV, and from CDF \cite{2} and DO \cite{3} at $\sqrt{s} = 1.8$ TeV demonstrate that then measured inclusive J/ψ transverse momentum distribution cannot be described solely by contributions from b quark decays and prompt production predicted by the color singlet model \cite{4}. In the color singlet model the charmonium meson retains the quantum numbers of the produced $c\overline{c}$ pair and thus each J/ψ state can only be directly produced via the corresponding hard scattering color singlet subprocess. The model predicts direct J/ψ and $\psi(2S)$ production rates fifty times smaller than those observed by CDF \cite{2}. To explain this discrepancy, a color octet model was introduced \cite{5–7}. The color octet mechanism extends the color singlet approach by taking into account the production of $c\overline{c}$ pairs in a color octet configuration accompanied by a gluon. The color octet state evolves into a color singlet state via emission of a soft gluon. The parameters of the model were derived from a fit to CDF data for direct J/ψ and $\psi(2S)$ production at central rapidity. In this article we utilize the large rapidity coverage of the DØ muon system to study the process $p\overline{p} \rightarrow J/\psi + X \rightarrow \mu^+\mu^- + X$ in previously unexplored kinematical regions of small J/ψ transverse momenta and large rapidities. We compare our results with theoretical predictions extended into this kinematic domain.

The DØ detector \cite{8} consists of three main systems: central and forward drift chambers, used to identify charged tracks for pseudorapidity $|\eta| \leq 3.2$; the uranium-liquid argon calorimeter with nearly hermetic coverage for $|\eta| \leq 4$; and the muon system. The detector component most relevant to this analysis is the Small Angle MUnon Spectrometer (SAMUS) \cite{9-10} consisting of magnetized iron toroids and drift tube stations on each side of the interaction region with pseudorapidity coverage of 2.2 < $|\eta^\mu|$ < 3.3 for a single muon.

The SAMUS stations, three in each arm, consist of three planes of 29 mm diameter drift tubes: vertical, horizontal, and inclined at 45°. The list of tubes containing hits is sent to the trigger system and drift times are used for offline track reconstruction. Muon track reconstruction is based on a Kalman fit \cite{11} to the three-dimensional coordinates of muons passing through the SAMUS stations, one before the toroidal magnet and two after, and the coordinates of the event vertex. The muon momentum resolution σ_p/p is about 20%, limited by SAMUS coordinate resolution and by Coulomb scattering in the calorimeter and muon toroid.

The data were collected using the multilevel trigger system. The Level 0 trigger \cite{12} is used to select single interaction events with hits in scintillator hodoscopes situated on both sides of the interaction region. At the Level 1 \cite{13}, signals from individual SAMUS tubes are OR’ed to provide 12 cm wide hodoscopic elements. The trigger requires a pattern of hits in the trigger elements consistent with at least one muon with transverse momentum $p_T^\mu > 3$ GeV/c coming from the interaction region. Due to high tube occupancy (≈ 4%) by soft electrons and positrons, we implement a “multiplicity cut” at the Level 1 trigger. This cut rejects an event if the number of hit trigger elements in a vertically oriented tube plane exceeds a fixed threshold.

The logic of the Level 1.5 trigger is similar to that of the Level 1 trigger, but is based on better spatial segmentation (1.5 cm vs. 12 cm). Events which pass the Level 1.5 trigger are digitized and sent to the Level 2 software trigger implemented on a farm of VAX stations, where reconstruction of muon tracks without using drift times is performed. The calorimeter information is used in the Level 2 trigger to confirm the muon through its energy deposition.

Even with the multiplicity cut, the counting rates of the Level 1 and Level 1.5 triggers are high in comparison with the allocated trigger bandwidth. To further reduce counting rates, we use prescales up to 10 for the dimuon trigger.

In the offline analysis, we select events with one interaction vertex, a single muon or dimuon trigger, and at least two reconstructed muon tracks. Each muon candidate is required to have at least 15 hits on a track out of an average of 18. The energy deposition in the cells of the hadronic calorimeter along the muon track is required to exceed 1.5 GeV, and to be spread contiguously among all five calorimeter layers. To ensure a good momentum measurement, we require $p^\mu \leq 150$ GeV/c and a minimum transverse magnetic field integral of 1.2 T·m. In total, 1779 events with opposite sign muon pairs and 281 events with same sign muon pairs are selected from the data sample with integrated luminosity of 9.8 ± 0.5 pb$^{-1}$ \cite{14}. The estimated fraction of background tracks from accidental hit combinations in the final data sample is below 1%.

The opposite sign dimuon invariant mass distribution $M_{\mu\overline{\mu}}$ for events with transverse momentum in the range $1.0 \leq p_T^{\mu\overline{\mu}} \leq 16$ GeV/c and pseudorapidity $2.5 \leq |\eta^{\mu\overline{\mu}}| \leq 3.7$ is shown in Fig. 1. In addition to the J/ψ signal, other contributions to the dimuon spectrum with $M_{\mu\overline{\mu}} < 9$ GeV/c2 are expected to come from $b\overline{b}$ and $c\overline{c}$ production (jointly denoted as $q\overline{q}$) with the heavy quarks decaying semileptonically or via sequential semileptonic decays, Drell-Yan production (DY), decay of light mesons (e.g. ρ, ϕ, η), and π or K decays.

To estimate the background and simulate the J/ψ detection efficiency, we use a sample of Monte Carlo (MC) events from the PYTHIA 5.7 \cite{15} and JETSET \cite{16} MC generators for each of the dimuon processes mentioned above, except π and K decays. The J/ψ events are generated (assuming no J/ψ polarization) with $p_T^{J/\psi}$ from
1 GeV/c to 20 GeV/c and $|\eta^{J/\psi}|$ between 2.0 and 4.0. Generated dimuon events are simulated using DØ GEANT [7] and mixed with minimum bias events from the data to simulate the combinatoric background. These simulated dimuon events are then subjected to a full trigger simulation and processed with the standard DØ reconstruction program.

Based on MC studies we approximate the J/ψ signal by a Gaussian function of $1/M_{\mu\mu}$ to account for limited muon momentum resolution. The mass spectrum in Fig. 1 is fit by the sum of the J/ψ signal (with the width and mean value as free parameters) and MC mass distributions for background processes (with free normalization). The number of events due to π and K decays is estimated from the data using like-sign dimuon events. The fit yields 691 ± 41 J/ψ events with mean mass $M_{\mu\mu} = 3.03 \pm 0.03$ GeV/c2, and standard deviation $\sigma_M = 0.56 \pm 0.03$ GeV/c2.

The dimuon mass resolution does not allow a clear separation of the J/ψ and $\psi(2S)$ states. The fit of the invariant mass distribution yields a 90% C.L. upper limit of the $\psi(2S)$ fraction in the signal associated with the J/ψ of 15%. A direct measurement of inclusive $\psi(2S)$ production for $|\eta^{\psi}| < 0.6$ performed by CDF [2] shows that the J/ψ differential cross section is approximately 13 times larger than that of the $\psi(2S)$.

The inclusive differential cross section of J/ψ production is calculated from:

$$\frac{d^2\sigma}{dp_T^2 d\eta} = \frac{N_{ij}}{L \varepsilon_{ij} \Delta p_T^2 \Delta \eta^2},$$

where L is the total integrated luminosity, ε_{ij} is the J/ψ detection efficiency, and N_{ij} is the number of J/ψ events in the $\Delta p_T^2, \Delta \eta^2$ interval.

To calculate the number of J/ψ events, the fit to the mass spectrum is performed in five $\eta^{\mu\mu}$ and nine $p_T^{\mu\mu}$ intervals. To reduce the errors of the fit in the high $p_T^{\mu\mu}$ bins, the $p_T^{\mu\mu}$ dependence of the fraction of events attributed to J/ψ is fit to a linear function and the results of this fit are used to obtain the number of J/ψ events.

The efficiency of J/ψ detection includes acceptance, trigger efficiency, reconstruction efficiency, and offline cuts and is given by

$$\varepsilon_{ij} = \frac{N(p_T^i, \eta^i)}{N_{\text{tot}}(p_T^i, \eta^i)} \cdot \varepsilon_{\text{cor}},$$

where $N(p_T^i, \eta^i)$ is the number of events in a given p_T, η bin which passed all selection criteria, $N_{\text{tot}}(p_T^i, \eta^i)$ is the total number of generated events in a bin, and ε_{cor} is the correction factor for effects not simulated in MC. The ε_{cor} includes efficiencies for the Level 2 trigger calorimeter confirmation of (91 ± 2)% for the dimuon trigger and (95 ± 1)% for the single muon trigger, and
for offline cuts not simulated by the MC of (79 ± 4)%. Efficiencies for those cuts are obtained from the data and include (88 ± 1)% for the single vertex cut, (94 ± 3)% for the energy deposition cut, and (96 ± 2)% for the cut on the number of hits on a track.

The measured J/ψ spectrum is unfolded to correct for the momentum and pseudorapidity smearing using the technique of Ref. [19]. The correction factors vary from 1.7 at low p_τ J/ψ to 0.4 for p_τ J/ψ > 8 GeV/c.

The calculated differential cross section is fit to an exponential function. The results are used for interpolation of the cross sections from average values of ⟨p_τ⟩ and ⟨|η|⟩ to the centers of the selected intervals. The inclusive differential J/ψ cross section averaged over a rapidity range of 2.5 ≤ |η J/ψ| ≤ 3.7 is shown in Fig. 2. Results for finer rapidity bins are collected in Table I. The uncertainties quoted there are statistical only.

TABLE I. Systematic errors of the J/ψ cross sections.

Source	Systematic Error		
J/ψ background determination	±7.2% - 30%		
J/ψ detection efficiency	±7%		
Level 1 multiplicity cut	±6%		
Total integrated luminosity	±5.4%		
ψ(2S) contamination	±5%		
d²σ/dp_T dη total	±20% - 36%		
Averaging over 2.5 <	η J/ψ	< 3.7	±5% - 30%
dσ/dp_T dη total	±21% - 47%		

The largest (>2%) systematic uncertainties are summarized in Table I. The contribution from the unfolding is derived from comparison with the bin-by-bin unfolding technique [13]. The uncertainties in the determination of the background and averaging cross section over the SMUS pseudorapidity acceptance vary for different p_τ J/ψ and are caused by uncertainties in the parameterization of the data. The difference in the parameters of measured and generated J/ψ mass distributions as well as the accuracy of the spectrometer description in the detector simulation are used to estimate the J/ψ detection efficiency uncertainty. The uncertainty due to the Level 1 multiplicity cut was determined by varying the threshold of this cut by one trigger element. The results in Table I are obtained for the case of zero J/ψ polarization. The additional uncertainty up to +40% due to possible J/ψ polarization is shown in Fig. 2 along with the p_τ J/ψ dependence of the total systematic error.

In Fig. 2 we compare the J/ψ cross section with current models of charmonium production. For J/ψ from b quarks we use the NLO QCD predictions [20] with the renormalization/factorization scale \(\mu = \frac{1}{3} \sqrt{m_b^2 + p_T^b} \), where \(m_b \) and \(p_T^b \) are the parent b quark mass and transverse momentum, respectively. The scale is chosen to match theory predictions to the published DO b quark...
cross sections in the central rapidity region \([3]\). We use ISAJET \([21]\) to fragment \(b\) quarks into \(J/\psi\). The color octet and color singlet contributions to the direct \(J/\psi\) production and radiative \(\chi\) decays are taken from Ref. \([7]\). The term representing the direct \(J/\psi\) production is increased by 12\% to account for the contribution from \(\psi(2S)\) decays \([2]\).

Fig. 3 shows the pseudorapidity dependence of the measured \(J/\psi\) cross section for \(p_T^{J/\psi} > 5\) and 8 GeV/c along with the corresponding central rapidity measurements of DØ \([3]\) and CDF \([2]\). Within uncertainties, the color octet model plus \(b\) quark decays describe the \(\eta\) dependence of the inclusive \(J/\psi\) production in the full rapidity region.

In conclusion, we have made the first measurement of inclusive \(J/\psi\) production in the forward rapidity region \(2.5 < |\eta^{J/\psi}| < 3.7\) in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. The data show good agreement with the theoretical predictions based on \(b\) quark decays and the color octet model of direct charmonium production.

We thank the staffs at Fermilab and collaborating institutions for their contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à L’Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).

\[\text{* Visitor from Universidad San Francisco de Quito, Quito, Ecuador.}\]
\[\text{† Visitor from IHEP, Beijing, China.}\]

[1] C. Albajar et al. (UA1 Collaboration), Phys. Lett. B 256, 112 (1991).
[2] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 69, 3704 (1992); ibid 79, 572 (1997); ibid 79, 578 (1997).
[3] S. Abachi et al. (DØ Collaboration), Phys. Lett. B 370, 239 (1996).
[4] R. Baier and R. Ruckl, Z. Phys. C 19, 251 (1983).
[5] E. Braaten and S. Fleming, Phys. Rev. Lett. 74, 3327 (1995); P. Cho and M. Wise, Phys. Lett. B 346, 129 (1995).
[6] M. Cacciari et al., Phys. Lett. B 356, 553 (1995).
[7] P. Cho and A.K. Leibovich, Phys. Rev. D 53, 6203 (1996). The expected cross section for direct \(J/\psi\) production and the contribution from \(\chi\) decays were calculated using code provided by P. Cho.
[8] S. Abachi et al. (DØ Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 338, 185 (1994).
[9] C. Brown et al., Nucl. Instrum. Methods Phys. Res., Sect. A 279, 331 (1989).
[10] Yu. Antipov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 297, 121 (1990).
[11] P. Billoir, Nucl. Instrum. Methods Phys. Res., Sect. A 225, 352 (1984).
[12] J. Bantly et al., IEEE Trans on Nucl. Sci. 41, 1274, (1994).
[13] M. Abolins et al., Nucl. Instrum. Methods Phys. Res., Sect. A 289, 543 (1990); M. Fortner et al., IEEE Transactions on Nuclear Science 38, 480 (1991).
[14] J. Bantly et al., Fermilab Technical Memo FNAL-TM-1995, 1997 (unpublished).
[15] T. Sjöstrand, Computer Physics Commun. 39, 347 (1986); T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43, 367 (1987).
[16] M. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46, 43 (1987).
[17] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished); we use GEANT v3.15.
[18] G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).
[19] V.B. Anikeev, A.A. Spiridonov, and V.P. Zhigunov, Nucl. Instrum. Methods Phys. Res., Sect. A 322, 280 (1992).
[20] The expected inclusive \(b\) quark cross section was calculated using the MNR code, provided by M. Mangano.
[21] P. Paige and S. Protopopescu, BNL Report No. 38304, 1986 (unpublished).