A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency

To the Editor:

Stromal interaction molecule 1 (STIM1) is a transmembrane protein pivotal to store-operated calcium entry (SOCE) that localizes to either the cell or endoplasmic reticulum (ER) membranes, with the N-terminus in either the extracellular space or the ER, respectively. Plasma membrane ORAI1 calcium release–activated calcium modulator 1 (ORAI1) Ca^{2+} channels are activated by STIM1. Families previously described with recessive STIM1 mutations (MIM #612783) had life-threatening viral, bacterial, and fungal infections; developmental myopathy; hypohidrosis; and amelogenesis imperfecta (AI; generalized developmental enamel abnormalities). We investigated a consanguineous family, segregating a novel syndrome of recessive AI and hypohidrosis by using autozygosity mapping and clonal sequencing. A homozygous rare missense mutation in STIM1 (p.L74P) in the EF-hand domain was identified (see the Methods and Results sections in this article’s Online Repository at www.jacionline.org).

The family was re-evaluated, with particular attention paid to features associated with recessive STIM1 mutations (Table I and see Tables E1-E3 in this article’s Online Repository at www.jacionline.org). The 2 affected cousins (18 and 11 years old, respectively) did not have overt clinical immunodeficiency. Further evaluation of their immune systems showed a normal immunoglobulin profile with an adequate specific antibody response to both nonlive (pneumococcus, tetanus and, Hib) and live (mumps, measles, and rubella) vaccinations. In addition, both subjects had detectable IgG against varicella zoster virus after a previous uncomplicated primary infection. The younger cousin was also found to have IgG against EBV viral capsid antigen, suggesting previous exposure, but neither showed any evidence of acute infection or previous exposure to cytomegalovirus.

Lymphocyte studies showed stable CD8 T-cell depletion in the older affected subject only. Other lymphocyte subsets, including CD4 T, natural killer (NK), and B cells, were within the normal range (Table I). However, despite normal PHA and anti-CD3 simulation responses, T-lymphocyte and NK cell SOCE was grossly abnormal, which is consistent with disruption of the Ca^{2+}-binding EF-hand and in keeping with previous reports for recessive STIM1 mutations (see Fig E1, A, in this article’s Online Repository at www.jacionline.org). The defect in NK cell SOCE was associated with impaired NK cell effector function, as shown by assays of granule exocytosis and intracellular IFN-γ production in response to K562 tumor cells (see Fig E1, B). After recently published mouse studies, which confirmed the importance of STIM1 to neutrophil SOCE and associated functions, we also evaluated neutrophil function. This was found to be within normal limits.

Despite abnormal immune system SOCE, the affected subjects in this case appear to be able to compensate for this deficit and avoid overt immunodeficiency. It is possible that the relative preservation of T-cell function might compensate for NK cell dysfunction. Neither might yet have encountered a pathogen that would expose this particular immune system limitation (see Table E2). An ability to mount a partial response to viral infections was reported in a family with clinical immunodeficiency and a history of viral infections caused by a homozygous missense R429C change affecting the STIM1 cytoplasmic domain. A mouse model characterized by conditional knockout of Stim1 and Stim2 in both CD4 + and CD8 + T cells has recently provided further insight into the activity of Stim1 in immune system development and virus-specific memory and recall responses, which prevent acute viral infections from becoming chronic.

Recessive STIM1 mutations can be associated with other immune dysregulations, including autoimmune disease. The older cousin had a transient episode of idiopathic thrombocytopenic purpura when 2 years old that might have been unrelated to the STIM1 mutations. There were no other clinical or serologic markers consistent with autoimmune disease, and regulatory T-cell numbers were normal.

Both cousins were intolerant of warm environments and aware of their inability to sweat normally. This limited the older cousin’s ability to participate in sport. There was no clinical or serologic

Available online November 11, 2015. http://dx.doi.org/10.1016/j.jaci.2015.09.030

© 2015 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
evidence of myopathy. This is in contrast to other recessive
STIM1 mutations and also to dominant
STIM1 mutations affecting the
EF-hand that cause tubular aggregate myopathy (MIM
#160565). Hypomineralized AI affected the primary and
secondary dentitions of both affected cousins (see Fig E2 in
this article’s Online Repository at www.jacionline.org), which is in
keeping with reports of other recessive
STIM1 mutations. The
cousins were physically small (height, weight, and head
circumference <0.4th percentile) when assessed at 18 years and
9 years, 10 months of age, respectively. Without comparable
data from other subjects with recessive
STIM1 mutations, it is
unclear whether this is a cosegregating feature.

The L74P STIM1 change within the EF-hand domain precedes
the first Ca$^{2+}$-binding aspartate residue by 2 amino acids (see Fig
E2) and therefore might be expected to distort the Ca$^{2+}$-binding
region of the protein. Therefore we compared the response of
mutant YFP-STIM1 (L74P) with the depletion of Ca$^{2+}$ stores
after thapsigargin or cyclopiazonic acid (CPA) treatment with
that of wild-type YFP-STIM1 and the previously published
EF-hand mutant YFP-STIM1 (D76A, see Fig E3 in this article’s
Online Repository at www.jacionline.org).

Using total internal reflection fluorescence microscopy
(TIRFM), we replicated previous observations that wild-type
YFP-STIM1 relocalizes to puncta proximal to the plasma
membrane after treatment of transfected HEK293 cells with
2 μmol/L thapsigargin to deplete ER Ca$^{2+}$ stores through
sarcoplasmic/endoplasmic reticulum calcium transport ATPase
(SERCA) inhibition (see Fig E3, A). The EF-hand mutant
YFP-STIM1 (D76A) was present in these puncta before thapsi-
gargin treatment, with no observable response to thapsigargin

TABLE I. Summary of the main clinical and clinical immunologic features in subjects with either homozygous or heterozygous
STIM1 c.221T>C mutations

Feature	V:3	IV:4	IV:3	V:2	
STIM1 genotype	Homozygous c.221T>C	Heterozygous c.221T>C	Heterozygous c.221T>C	Homozygous c.221T>C	
Age at evaluation (y)	18-21	45-48	41	9-12	
Persistent infections	None	None	None	None	
Other infections	Infancy: repeated chest infections but not thereafter	No reported issues	No reported issues	Infancy: chest, urinary tract, gastrointestinal tract, ear, and eye infections but not thereafter	
Autoimmune disorder					
Lymphocytes	Total (×109/L [1.00-2.80])	1.50	2.30	2.64	2.34
CD4 (absolute; ×109/L [0.300-1.400])	0.841	1.091	1.502	0.908	
CD8 (absolute; ×109/L [0.200-0.900])	**0.055**	0.236	0.415	0.488	
CD4/CD8 (1.07-1.87)	**15.29**	**4.62**	**3.62**	1.86	
NK (absolute; ×109/L [0.090-0.600])	0.238	0.581	0.252	0.252	
Immunization history	Full schedule without adverse events	Not assessed	Not assessed	Full schedule without adverse events	
Musculoskeletal					
Muscle bulk, tone, power, and reflexes normal; hypermobility in upper and lower limbs; CK normal	No issues evident; not formally examined	No issues evident; not formally examined	Muscle bulk, tone, power, and reflexes normal; hypermobility in upper and lower limbs; CK normal		
Pupil reaction	Normal	Normal	Normal	Normal	
Sweating	Diminished sweating recognized from infancy onward; insufficient sample for sweat test analysis	No reported issues	No reported issues	Diminished sweating recognized from infancy onward; reduced sweating on starch and iodine testing	
Dental enamel	Generalized hypomineralized AI	Enamel within normal limits	Enamel within normal limits	Generalized hypomineralized AI	
Development	Global development normal	Height, 156 cm (<0.4th percentile)	Weight, 40.3 kg (<0.4th percentile)	Head circumference, 51.5 cm (<0.4th percentile)	
	Not assessed	Not assessed	Not assessed	Global development normal	
	Height, 122 cm (0.4th-2nd percentile)	Weight 24 kg (2nd-9th percentile)	Head circumference, 50 cm (0.4th percentile)		

Further details are presented in Tables E1-E3. Values in boldface are outside the reference ranges.

CK, Creatine kinase; ITP, idiopathic thrombocytopenic purpura.
(see Fig E3, A). Similarly, mutant YFP-STIM1 (L74P) showed no response to thapsigargin but also appeared to form constitutive puncta, which was less distinct in appearance than that for the D76A mutant (see Fig E3).

We compared Ca\(^{2+}\) fluctuations in HEK293 cells transfected with ORAI-CFP and either wild-type YFP-STIM1, mutant YFP-STIM1 (D76A), or mutant YFP-STIM1 (L74P; see Fig E3, B and C). Both YFP-STIM1 (D76A) and YFP-STIM1 (L74P) transfected cells had increased basal Ca\(^{2+}\) concentrations compared with wild-type YFP-STIM1 and reduced peak and integral responses to CPA-induced SERCA inhibition (see Fig E3, B and C). However, in contrast to the EF-hand mutant YFP-STIM1 (D76A), YFP-STIM1 (L74P) did not demonstrate reduced SOCE after CPA washout and Ca\(^{2+}\) restoration, suggesting that the previously reported desensitization of SOCE observed with the YFP-STIM1 (D76A) mutant does not occur with the YFP-STIM1 (L74P) mutant form. Therefore the L74P mutation appears to result in a distinct molecular phenotype compared with the loss of function observed in immunodeficient patients and the constitutive activation observed in patients with myopathy.

This study is the first to report recessive STIM1 mutations in patients presenting with AI and hypohidrosis without overt clinical immunodeficiency or myopathy. Clinical immunologic investigations were consistent with abnormal NK cell and T-lymphocyte function that might be expected to be associated with ongoing clinical immunodeficiency. However, despite severely abnormal SOCE, this was not the case in these patients. Missense mutations affecting the EF-hand can have very different clinical phenotypes with respect to the immune system, muscle, sweating, and enamel formation. This has important implications for clinical evaluation, as well as understanding the biological functions of STIM1.

We thank the family for participating in this study. We thank Dr Gareth Howell for technical assistance with cell sorting and Dr Peter Baxter, Consultant Paediatric Neurologist at Sheffield Children’s NHS Foundation Trust, for his comments. We thank the Exome Aggregation Consortium and the groups that provided exome variant data for comparison. A full list of contributing groups can be found at http://exac.broadinstitute.org/about.

REFERENCES

1. Picard C, McCarl C-A, Papulos A, Khalil S, Lüthy K, Hivroz C, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009;360:1971-80.

2. Fuchs S, Rensing-Ehl A, Speckmann C, Bengsch B, Schmitt-Graeff A, Bondzio I, et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 2012;188:1523-33.

3. Schaballie H, Rodrigues R, Martin E, Moens L, Frans G, Lenoir C, et al. A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency. J Allergy Clin Immunol 2015;136:616-9.e4.

4. Zhang H, Clemens RA, Liu F, Hu Y, Baba Y, Theodore P, et al. STIM1 calcium sensor is required for activation of the phagocyte oxidase during inflammation and host defense. Blood 2014;123:2238-49.

5. Shaw PJ, Weidinger C, Vaeth M, Luzethy K, Kaech SM, Feske S. CD4\(^+\) and CD8\(^+\) T cell-dependent antiviral immunity requires STIM1 and STIM2. J Clin Invest 2014;124:4549-63.

6. Bühm J, Chevesier F, Maues De Paula A, Koch C, Attarian S, Feger C, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013;92:271-8.

7. Lou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, et al. STIM is a Ca\(^{2+}\) sensor essential for Ca\(^{2+}\)-store-depletion-triggered Ca\(^{2+}\) influx. Curr Biol 2005;15:1235-41.

Available online November 10, 2015.
http://dx.doi.org/10.1016/j.jaci.2015.08.051

Antigen-presenting epithelial cells can play a pivotal role in airway allergy

To the Editor:

Professional antigen-presenting cells (APCs; ie, dendritic cells, macrophages, and B cells) react against exogenous antigens and initiate an adaptive immune response by presenting antigen peptides in the groove of the MHC class II molecules. During inflammation, ectopic expression of MHC class II has been reported on cells from multiple tissues, including the nasal mucosa, suggesting an antigen-presenting capacity of epithelial cells (ECs).\(^1\)\(^3\) The present investigation was designed to examine the contribution of nasal epithelial cells (NECs) to the allergic inflammatory process. The abilities of NECs to take up antigen, express MHC class II and costimulatory molecules, and stimulate antigen-specific activation and proliferation of CD4\(^+\) T cells were investigated by using a human mucosal specimen (see the Methods section in this article’s Online Repository at www.jacionline.org).

First, the cell-surface expression of MHC class II and costimulatory molecules on human and mouse nasal epithelial cells (MNECs) was confirmed (see Figs E1 and E2 in this article’s Online Repository at www.jacionline.org). Then the ability of MNECs to present the antigen ovalbumin (OVA) to naïve T cells was demonstrated. MNECs from sensitized mice displayed an enhanced MHC class II expression on coculture
METHODS

Participating family
A consanguineous family of Pakistani heritage was reviewed in the clinical genetics clinic with regard to intolerance to warm environments and generalized dental enamel defects of both dentitions. Sample collection was performed after obtaining informed consent from the patients according to the principles of the Declaration of Helsinki and after local ethics approval. Detailed clinical evaluation was undertaken in appropriate clinical settings.

Genetic mapping
DNA was extracted from blood by using standard procedures. DNA from the 2 affected subjects was genotyped with Affymetrix 6.0 SNP microarrays (Affymetrix, High Wycombe, United Kingdom), and regions of homozygosity were identified by using AutoSNPa software.\(^1\) Linkage was confirmed by means of analysis with fluorescence-labeled polymorphic microsatellite markers on a genetic analyzer (3130x/Genetic Analyzer; Applied Biosystems, Warrington, United Kingdom) using genotyping software (GeneMapper version 4.0; Applied Biosystems). Linkage analyses were performed with LINKMAP and MLINK from the FASTLINK software package.\(^2\)

Clonal and Sanger sequencing
We designed a SureSelect Target Enrichment Reagent (Agilent Technologies, Edinburgh, United Kingdom) targeting coding exons within the disease interval in parallel with the capture of disease intervals for 7 other unrelated disorders. The affected subject IV:N was sequenced with 80-nt reads on an Illumina (San Diego, Calif) GAIIx sequencer. Raw data were processed with the Illumina pipeline (version 1.3.4), and reads were aligned to the human reference sequence (hg19/GRCh37) by using Novoalign software (Novocraft Technologies, Selangor, Malaysia). Alignments were processed in the SAM/BAM format\(^3\) with Picard and the Genome Analysis Toolkit (GATK)\(^4,5\) to correct alignments around indel sites and to mark potential PCR duplicates. Variants were called in the Variant Call Format by using the Unified Genotyper function of GATK. Filtering of common variation and prediction of functional consequences of variants were performed by using in-house scripts. PCR products for STIM1 exon 2 and STK33 exon 3 were amplified and sequenced by using the primer pairs shown in Table E1. PCR product cleanup was performed with ExoSAP-IT (Affymetrix) before Sanger sequencing with the BigDye Terminator Cycle Sequencing Kit, version 3.1 (Applied Biosystems) and analysis on an ABI 3130XL DNA analyzer (Applied Biosystems).

Flow cytometric analysis of calcium flux
PBMCs were labeled with Dulbecco modified Eagle medium containing 5 μmol/L Indo-1 for 45 minutes at 37°C and then washed and cooled on ice. Cells were incubated for 20 minutes on ice with 5 μg each of conjugated CD16 (3G8) and CD3-PerCP (OKT3; BD Biosciences, San Jose, Calif) antibodies and costained for gating markers CD19 (SJ25C1) and CD56 (NCAM16.2; BD Biosciences). Cells were washed and resuspended in cold HBSS without calcium. Samples were warmed to 37°C and immediately collected on a UV laser equipped LSRII flow cytometer for 90 seconds and then spiked during collection with 1:100 goat anti-mouse antibody for a further 60 seconds (Jackson Laboratory, Bar Harbor, Me), followed by a 1:10 dilution of 200 mmol/L CaCl\(_2\) in PBS solution, and collected for a further 9 minutes. Alternatively, samples were stimulated with the calcium ionophore ionomycin at 500 ng/mL (Sigma-Aldrich, St Louis, Mo) or 1 μmol/L thapsigargin (Sigma-Aldrich) to deplete ER stores of calcium, thereby triggering SOCE and an intracellular calcium ([Ca\(^{2+}\)]\text{intracellular}) flux. Analysis was performed with FlowJo software (TreeStar, Ashland, Ore), calculating the ratio of calcium-bound to free Indo-1.

NK cell responses
PBMcs were isolated from diluted blood by means of Ficoll separation, followed by NK cell purification by means of negative selection (with immunomagnetic reagents from Miltenyi Biotec, Bergisch Gladbach, Germany). Isolated NK cells were stimulated with K562 tumor cells alone or in combination with 20 ng/mL IL-12/IL-18 (PeproTech, Rocky Hill, NJ; to maximize IFN-γ by tumor-stimulated cells) and incubated for 6 hours at 37°C with both GolgiStop and GolgiPlug (BD Biosciences). Cells were stained for the surface markers CD107a (clone; H4A3), CD56 (NCAM16.2), and CD3 (OKT3; BD Biosciences) before fixation for 15 minutes and permeabilization for 30 minutes with the AbD Serotec (Oxford, United Kingdom) intracellular staining kit. Cells were stained with anti-IFN-γ (B27) and collected on an LSR II flow cytometer and analyzed in DIVA software (BD Biosciences).

STIM1 constructs for transfection studies
YFP-STIM1 (Addgene plasmid 18857) and the EF-hand mutant YFP-STIM1 (D76A; Addgene plasmid 18859) constructs were provided by Tobias Meyer through Addgene (Cambridge, Mass). The ORAI1-CFP construct was provided by Anjana Rao (Addgene plasmid 19757). The L74P mutant YFP-STIM1 was produced by means of site-directed mutagenesis of the wild-type YFP-STIM1 plasmid by using the QuikChange II kit (Agilent Technologies, Santa Clara, Calif) per the manufacturer’s instructions. The sequences of all 4 constructs were confirmed by means of Sanger sequencing, as above.

TIRFM
HEK293 cells (LGC Standards, Middlesex, United Kingdom; ATCC no. CRL-1573) were grown on glass coverslips coated with poly-D-lysine and transfected with either wild-type YFP-STIM1, mutant YFP-STIM1 (D76A), or mutant YFP-STIM1 (L74P) by using Lipofectamine 2000 (Invitrogen, Paisley, United Kingdom). Total internal reflection fluorescence (TIRF) imaging was performed on an inverted microscope (TE-2000E; Nikon) through a 60× oil-immersion lens (ApoTIRF 60×/1.49 numeric aperture; working distance: 0.12 mm; Nikon, Tokyo, Japan). Cells were maintained at 37°C and perfused with standard bath solution; ER store depletion was induced by 2 μmol/L thapsigargin. The plasma membrane was illuminated by using TIRF with a 488-nm argon laser (Prairie Technologies, Middleton, Wis), which was projected onto the specimen through the lens. Images were collected on an electron-multiplying CCD camera (DQC-FS, Nikon) by using NIS Elements imaging software, version 3.2 (Nikon), which was also used for analysis. Fluorescence intensities were background subtracted after acquisition and normalized to the initial intensity (F\(_0\)).

Calcium measurements in overexpressing cells
HEK293 cells were doubly transfected with ORAI1-CFP and either wild-type YFP-STIM1, mutant YFP-STIM1 (D76A), or mutant YFP-STIM1 (L74P). Twenty-four hours after transfection, cells expressing both CFP and YFP constructs were selected by using a Becton Dickinson FACSAria II cell sorter (BD Biosciences) and plated on glass coverslips. In each case basal [Ca\(^{2+}\)]\text{cytosol} levels were recorded, after which Ca\(^{2+}\) was removed from the perfusate (replaced with 1 mmol/L ethylene glycol-bis-(β-aminoethylether)-N,N,N',N'-tetra-acetic acid), and new basal levels of [Ca\(^{2+}\)]\text{cytosol} were determined. Cells were then exposed to CPA (100 μmol/L), and the resultant transient increases in [Ca\(^{2+}\)]\text{cytosol} were measured for peak amplitude and integral. After washout of CPA, Ca\(^{2+}\) (2.5 mmol/L) was readmitted to the perfusate, and capacitative Ca\(^{2+}\) entry was quantified as the maximal increase in [Ca\(^{2+}\)]\text{cytosol} observed. Data are presented as representative examples (see Fig E1, B) and mean ± SEM values (see Fig E1, C) determined from 12 control recordings, 12 recordings of D76A expressing mutants, and 13 recordings of L74P expressing mutants. Statistical significance was determined by means of ANOVA.

RESULTS

Identification of a novel homozygous missense p.L74P change in STIM1
Autozygosity mapping identified a single region of homozygosity shared by both affected cousins on chromosome...
Subjects (Exome Aggregation Consortium, Cambridge, Mass) variant was not detected at all in the cohort of 60,706 STIM1 frequency of 1.49% in subjects of South Asian ancestry, the database showed that although the Subsequent interrogation of the Exome Aggregation Consortium expected for a recessively inherited disease within the family. ethnically matched control samples and found to segregate as ethnically matched control samples, whereas a missense mutation in STK33 (NM_030906: c.146G>A; p.G49D) was found in 4 of 96 ethni-
cally matched control samples, and lack of conservation of the first of these ATG codons in mammals. Of the remaining 2 changes, a missense mutation in STK33 (NM_030906: c.146G>A; p.G49D) was found in 4 of 96 ethnically matched control samples, whereas a missense mutation in STIM1 (NM_003156: c.221T>C; p.L74P) was excluded in 192 ethnically matched control samples and found to segregate as expected for a recessively inherited disease within the family. Subsequent interrogation of the Exome Aggregation Consortium database showed that although the STK33 variant was present at a frequency of 1.49% in subjects of South Asian ancestry, the STIM1 variant was not detected at all in the cohort of 60,706 subjects (Exome Aggregation Consortium, Cambridge, Mass; http://exac.broadinstitute.org; accessed February 2015).

Accordingly, the homozygous c.221T>C; p.L74P mutation identified in STIM1 was therefore considered to be the cause of the observed phenotype based on genetic data and the phenotypic overlap with previously reported recessive STIM1 and ORAI1 mutations.

REFERENCES

E1. Carr IM, Flintoff KJ, Taylor GR, Markham AF, Bonthont DT. Interactive visual analysis of SNP data for rapid autogosity mapping in consanguineous families. Hum Mutat 2006;27:1041-6.
E2. Cottingham RW, Idury RM, Schäffer AA. Faster sequential genetic linkage computations. Am J Hum Genet 1993;53:252-63.
E3. Li H, Hsu H, Lander ES, DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Marso S, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Genome Res 2010;20:1297-303.
E4. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303.
E5. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Harl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-8.
E6. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-9.
E7. Stathopulos PB, Zheng J, Li G-Y, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008;135:110-22.
E8. Picard C, McCarr C-A, Papolos A, Khalid S, Luithy K, Hivroz C, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmune disease. N Engl J Med 2009;360:1971-80.
E9. Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 2010;207:2307-12.
E10. Fuchs S, Rensing-Ehl A, Speckmann C, Bengsch B, Schmitt-Graeff A, Bondzio I, et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 2012;188:1523-33.
E11. Wang S, Choi M, Richardson AS, Reid BM, Seymen F, Yildirim M, et al. STIM1 and SLC24A4 are critical for enamel maturation. J Dent Res 2014;92:1045-1055.
E12. Schaballie H, Rodriguez R, Martin E, Moens L, Frans G, Lenoir C, et al. A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency. J Allergy Clin Immunol 2015;136:816-9.e4.
E13. Böhm J, Chevesiress F, Maues De Paula A, Koch C, Attarian S, Fefer C, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013;92:271-8.
E14. Morin G, Bruechel NO, Singh AR, Kwopp C, Jedrassak G, Elbracht M, et al. Gain-of-function mutation in STIM1 (P.R304W) is associated with stormorken syndrome. Hum Mutat 2014;35:1221-32.
E15. Markello T, Chen D, Kwan JY, Horkayne-Szakaly I, Morrison A, Simakova O, et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 2015;114:474-82.
FIG E1. Defective SOCE and impaired NK cell function in STIM1-Leu74Pro patients' cells. A, Calcium flux in lymphocytes after anti-CD3/anti-CD16, 1 μmol/L thapsigargin, or 500 nmol/L ionomycin administration. B, Granule exocytosis and IFN-γ production of purified NK cells after stimulation with K562 tumor target cells alone or with IL-12 and IL-18. Results are representative of 2 experiments performed in duplicate and corrected for unstimulated control values.
FIG E2. Hypomineralized AI as the presenting feature in a family with STIM1 L74P change. A, Pedigree of the consanguineous family investigated. The 2 affected cousins with AI and hypohidrosis are shaded black. Genotypes of the c.221T>C variant are indicated underneath each family member available for sequencing. Representative electropherograms are shown alongside the pedigree. B, The hypomineralized AI was characterized by opaque discolored enamel on clinical examination, with radiographs of unerupted teeth consistent with a near-normal volume of enamel and a clear difference in radiodensity between enamel and dentine. *Teeth that have been restored. C, Schematic illustration of STIM1 protein showing the domain structure. Positions of the AI and hypohidrosis-associated L74P mutation (red), dominant TAM or Stormorken syndrome mutations (grey), and recessive syndromic immunodeficiency mutations (black) are indicated above the protein. E-rich, Glutamate-rich region; K, lysine-rich region; MLS, microtubule tip localization signal; P, proline/serine-rich region; SAM, sterile α-motif domain; SOAR, STIM1 Orai1-activating region; TM, transmembrane domain. D, Alignment of STIM1 EF-hand orthologous protein sequences. Although p.L74 is conserved in mammals, it is not as strongly conserved as amino acids mutated in dominant TAM. E, NMR structure of STIM1. L74 is shown in red, TAM mutations are shown in dark gray, and Ca\(^{2+}\) binding residues, mutation of which cause constitutive STIM1 activation, are shown in yellow. Substitution of leucine 74 for proline is anticipated to distort the EF-hand loop, interfering with conformational changes in the presence/absence of Ca\(^{2+}\).
FIG E3. STIM1 localization and Ca2+ flux in cells transfected with STIM1 constructs. A, TIRFM of HEK293 cells transfected with either wild-type (WT), D76A mutant, or L74P mutant YFP-STIM1 after treatment with 2 μmol/L thapsigargin to deplete ER Ca2+ stores. The graph on the bottom left shows changes in TIRF fluorescence within single puncta areas indicated by white circles on the images (ROI1-3). The graph on the bottom right shows average footprint fluorescence for cells transfected with WT STIM1 (n = 39), D76A (n = 30), or L74P (n = 31) constructs. B, Representative recordings of cytosolic calcium ([Ca2+]i) made in HEK293 cells doubly transfected with ORAI1-CFP and either WT (n = 12), D76A (n = 12), or L74P (n = 13) STIM1-YFP constructs. C, Bar graphs indicating mean ± SEM [Ca2+]i relating to the presence of extracellular Ca2+ or SERCA inhibition by CPA. Top row, Mean baseline Ca2+ levels in the presence and absence of extracellular Ca2+. Bottom row, Peak responses to CPA, integral of the CPA-evoked response, and peak value of capacitative Ca2+ entry (CCE). *P < .01 compared with control with control values (ANOVA).
TABLE E1. Additional clinical features of the 2 subjects with homozygous STIM1 c.221T>C mutations

Feature	V3	V2					
Birth and neonatal period	Full-term (2.3 kg) by using forceps for fetal distress	Emergency cesarean section because of fetal decelerations at 36/40 wk					
	Birth weight, 1.94 kg (<3rd percentile)	Birth weight, 1.94 kg (<3rd percentile)					
	Apgar score, 9 at 1 and 5 minutes, respectively	Apgar score, 9 at 1 and 5 minutes, respectively					
	Special care baby unit for 1 mo, establishing feeds with nasogastric tube feeds for the first 2 wk	Special care baby unit for 1 mo, establishing feeds with nasogastric tube feeds for the first 2 wk					
	During this time, there was 1 episode of unexplained fever.	During this time, there was 1 episode of unexplained fever.					
	Unexplained neonatal hypercalcemia settled spontaneously.	Unexplained neonatal hypercalcemia settled spontaneously.					
Nails and hair	Normal	Normal					
Dysmorphic features	None	None					
Other medical history	Asthma diagnosed in infancy	Asthma diagnosed in infancy					
	Evaluated in infancy for cystic fibrosis (negative) after repeated chest infections	Evaluated in infancy for cystic fibrosis (negative) after repeated chest infections					
	At age 17 y, had a spontaneous pneumothorax of the left lung requiring pleurodesis	At age 17 y, had a spontaneous pneumothorax of the left lung requiring pleurodesis					
	Four apical bullae were found on imaging.	Four apical bullae were found on imaging.					
	Five months later, he had a right pneumothorax secondary to an apical bulla also requiring pleurodesis.	Five months later, he had a right pneumothorax secondary to an apical bulla also requiring pleurodesis.					
	At aged 18 y, V3 was evaluated with regard to macular pigmentation and bilateral drusen on both maculae, and mild congenital lens opacities were identified.	At aged 18 y, V3 was evaluated with regard to macular pigmentation and bilateral drusen on both maculae, and mild congenital lens opacities were identified.					
Allergies	Allergic to red food coloring	None					
Feature	V1:2 Homozygous c.221T>C	V1:1 Heterozygous c.221T>C	V2 Heterozygous c.221T>C	V1:3 Homozygous c.221T>C			
---------	---------------------------	---------------------------	---------------------------	---------------------------			
Year of evaluation	2011	2014	2011	2014	2011	2012	2013
Bacterial antibodies							
Pneumococcal (µg/mL)	201.0	101.0	82.2	181.0			
Tetanus (IU/mL)	0.890	5.320	0.960	0.620			
Haemophilus species (µg/mL)	0.230	0.240	<0.110	0.430			
Viral antibodies							
HSV IgG	ND	ND	–	+ve	–	–	–
VZV IgG	+ve	+ve	–	+ve	–	–	–
CMV IgM	ND	–	–	ND	–	–	–
CMV IgG	ND	ND	–	+ve	–	ND	–
EBV VCA IgM	ND	–	–	ND	–	–	–
EBV VCA IgG	ND	–	–	+ve	–	+ve	–
Measles IgG	–	+ve	–	+ve	–	–	–
Mumps IgG	–	+ve	–	+ve	–	+ve	–
Rubella IgG	–	+ve	–	+ve	–	+ve	–
Viral PCR							
EBV	–	ND	–	–	–	–	–
CMV	–	ND	–	–	–	–	–
Adenovirus	–	ND	–	–	–	–	–
Lymphocytes							
Total (×10^9/L [1.00-2.80])	1.50	1.32	2.30	2.35	2.64	2.34	2.20
CD4/CD8 (1.07-1.87)	15.29*	10.58	4.62	5.87	3.62	1.86	1.9
CD3 (absolute; ×10^9/L [0.700-2.100])	0.921	0.949	1.365	1.605	1.968	1.504	1.457
NK (absolute; ×10^9/L [0.090-0.600])	0.238	0.191	0.581	0.449	0.252	0.252	0.152
CD4 (absolute; ×10^9/L [0.300-1.400])	0.841	0.846	1.091	1.355	1.502	0.908	0.929
CD19 (absolute; ×10^9/L [0.100-0.500])	0.258	0.127	0.245	0.282	0.381	0.574	0.564
CD3+ cells (%)	71	75	64	68	75	64	66
CD4+ cells (%)	66	66	51	57	57	39	41
CD8+ cells (%)	4	6	11	10	16	21	21
CD56+CD16+ cells (%)	14	14	24	19	10	11	7
CD19+ cells (%)	15	9	10	12	14	24	26
CD4+FOXP3+ cells	Normal	Normal	–	Normal	–	Normal	–
T-cell proliferation after stimulation							
PHA	Normal	Normal	–	Normal	–	Normal	–
Anti-CD3 antibody	Normal	Normal	–	–	–	Normal	–
Immunoglobulins							
IgG (g/dL [6.0-16.0])	11.8	–	11.8	–	12.4	9.6	–
IgG1 (g/L [3.62-10.27])	7.48	–	–	–	–	–	–
IgG2 (g/L [0.81-4.72])	2.66	–	–	–	–	–	–
IgG3 (g/L [0.138-1.058])	0.420	–	–	–	–	–	–
IgG4 (g/L [0.049-1.085])	0.224	–	–	–	–	–	–
IgA (g/dL [0.80-4.00])	1.85	–	2.53	–	3.51	3.95	–
IgM (g/dL [0.25-2.00])	2.08	–	0.77	–	1.20	1.12	–
IgE (kU/L [0.5-120.0])	<2.0	–	195.0	–	24.4	157.0	–
Other antibodies							
ANA†	–ve	–ve	–ve	–ve	+ve†	+ve†	–
dsDNA (IU/mL [0-50])	–ve	–ve	–ve	–ve	–ve	–ve	–
Rheumatoid factor (IU/mL [<20])	<15	<15	<15	–	122	–	–
Complement							
C3 (g/dL [0.75-1.65])	1.14	–	1.02	–	1.34	–	–
C4 (g/dL [0.12-0.40])	0.28	–	0.31	–	0.44	–	–

*On resampling 3 months later: CD4/CD8 ratio, 14.36; CD8, 0.092.
†Positive (homogenous: weak RNP antibody positive).
‡Positive (nucleolar).
TABLE E3. Summary of key clinical findings associated with individual reported recessive STIM1 mutations and summarized key clinical findings associated with dominant STIM1 mutations

Feature	Recessive homozygous mutations	Dominant mutations
Reference	Picard et al, 2009^[8]	Bohm et al, 2013^[13]
	Byun et al, 2010^[9]	Morin et al, 2014^[14]
	Fuchs et al, 2012^[10]	
	Wang et al 2014^[11]	
	Schaballie et al, 2015^[12]	
	This study	
Individual (AR) or diagnosis (AD)	P1, P2, and P3[*]	P1, P2, and P3[*]
	P4[†]	
Predicted protein effect of mutation	No protein	No protein
	P.429 R>C	p. 146A>V
	p.165P>Q	p.74 L>P
Age at last examination (y)	1, 5, 6, and 9	1.7 and 6
	6	8 and 21
	Various	11 and 21
Immune deficiency	Life-threatening infections	Life-threatening infections
	Life-threatening infections	Life-threatening infections
	History of frequent throat infections: no immunologic evaluation performed	Life-threatening infections
	No persistent severe infection	NR
Other immune dysregulation	AIHA	AIHA
	ITP	ITP
Skeletal muscle	Developmental skeletal myopathy with hypotonia, profound	Developmental skeletal myopathy with hypotonia, mild
	NR	NR
	Developmental skeletal myopathy, profound	No abnormalities
	Clinical myopathy except with 1 mutation	Clinical myopathy Increased CK typical
	Clinical myopathy Increased CK	
Mydriasis	Yes	NR
	NR	No
	NR	No
	Yes	NC
	NC	NC
Sweat glands	NC	Anhidrosis
	NR	NR
	Abnormal	Abnormal
	Yes	NC
Dental enamel	Abnormal	Abnormal
	Normal	Abnormal
	Abnormal	Abnormal
Died	P1 died 9 y (during HSCT)	P6 died 1.7 y (sepsis)
	P4 died 2 y (Kaposi sarcoma)	NR
	P2 died 1.5 y (encephalitis)	NA
	P5 alive (HSCT)	NA
	P7 lost to follow-up at 5 y	NA
	P8 and P9 alive	V2 and V3 alive
	V3 transient	All alive
	ITP	All alive
	NR	All alive
	NC	All alive
	NA	All alive
Alive	P3 alive at 6 y (HSCT at 1.3 y)	P5 alive (HSCT)
	NA	P7 lost to follow-up at 5 y
	NC	P8 and P9 alive
	NA	V2 and V3 alive
	NC	All alive
	NA	All alive

^{AIHA}, Autoimmune hemolytic anemia; ^{AD}, autosomal dominant; ^{AR}, autosomal recessive; ^{CK}, creatine kinase; ^{HSCT}, hematopoietic stem cell transplantation; ^{ITP}, idiopathic thrombocytopenic purpura; ^{NA}, not applicable; ^{NC}, no comment made; ^{NR}, comment made but feature not recognized.

[*]Mutation confirmed in P1 and P3; no DNA sample available for P2.

[†]Mutation identified after death.

[‡]A missense change reported in tubular aggregate myopathy and the missense change reported as the cause of Stormorken syndrome have also been identified as the causes of York platelet syndrome, which is characterized by myopathy and platelet abnormalities (Markello et al, 2015^[15]).