Research of Non-contact Compensation AC Voltage Regulator Based on Fuzzy Strategy

Weibo Li*, Qi Li, Jiajun Gao, Xueting Zhao and Junfeng Pan

School of Automation, Wuhan University of Technology, Wuhan, China

*Corresponding author email: liweibo@whut.edu.cn

Abstract. The non-contact compensation type AC voltage regulator possesses the advantages of small size, high efficiency, low cost, etc. due to its simple structure and convenient control, and is widely used in the field of AC voltage regulation technology field. However, the non-contact compensation type AC voltage regulator belongs to the class of voltage regulation. And the characteristics of the discontinuous system has the disadvantages of low control precision and weak system reliability. Fuzzy control strategy, through fuzzification and approximate reasoning, can solve the problem of such discontinuous control systems. Some research work shows that using the fuzzy membership strategy to optimize the switching rules of the control system can greatly improve the control precision of the voltage regulation, that is, can improve the regulation accuracy of the AC voltage regulator. The experiment results verify that the regulation accuracy of the system after optimizing the switching rule is 5-10 times pre-set, which proves the effectiveness of the improvement.

1. Introduction

Since the founding of cybernetics by mathematician Norbert Wiener (1894-1964), control science has been developing rapidly and continuously under the research of various scholars and institutions. Discontinuous control system is one of the earliest control methods. Although the development of discontinuous control system is not mature due to its complexity and diversity of control methods, its universality, discontinuous control is still used in many occasions. Non-contact compensated AC regulator is a switching system utilizing discontinuous control system. The device switches the subsystem, namely, gears according to the state variables to complete the function of voltage regulation and stability. But most of the research on Non-contact compensated AC regulator is only about the optimization of its structure and components [1-3], such as the optimization of AC switching devices and structures, the optimization of isolation measures between power grid and compensation circuit. Part of the research which involves the design of switching system is only lists the switching rules of switching system according to the input and output voltage state of the device and the ability of compensating voltage [4,5]. Such considerations can improve the voltage stabilization effect and reliability of the device, but its optimization is often accompanied by the increase of cost, and the accuracy of voltage control is still unsatisfactory. In this paper, the working principle of a non-contact compensated AC regulator is studied and analysed, and its switching rules are deduced. The switching rules are optimized by using the fuzzy membership function. Finally, the effectiveness of the optimization design is verified by simulation experiments.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd
2. Overview of the Working Principle of Voltage Regulator

2.1. Analysis of Compensation Principle

The topology of the non-contact compensated AC regulator is shown by Figure 1.

![Figure 1. Topology of Non-contact compensation AC voltage regulator.](image)

The device is a three-phase regulated power supply, which regulates the three-phase voltage separately, and the principle of each phase is identical. Three-phase voltage regulators are E_A, E_B and E_C respectively. Each phase is composed of small medium and large, three different ratio voltage regulator transformers T_1, T_2, T_3 and their respective thyristor components TH_{SCR1}, TH_{SCR2} and TH_{SCR3}, the device main switch K_S, bypass switch K_{BP}, high voltage side fuse FU of voltage regulator and device monitoring system. The thyristor components are composed of reverse parallel thyristor TH_1, TH_2, TH_3, TH_4 and the H bridge composed of their resistance-capacitance absorption module RC_1, RC_2, RC_3, RC_4, high-voltage side short-circuit thyristor TH_S, and its resistance-capacitance absorption module RC_S as well as short-circuit resistance RS.

Set the total compensation rate of the device is X, the highest total compensation rate for the device is A times of compensation loop input voltage U_{BP} (A is positive), the lowest total compensation rate is B times of U_{BP} (B is negative), compensation circuit generated compensation voltage is ΔU, system input voltage is U_i, output voltage is U_o. According to the different energy taking position of the device, that is, whether the bypass switch K_{BP} operates or not, its compensation effect on voltage can be divided into the following two situations:

Step 1: taken energy from the input end of the device, bypass switch K_{BP} does not operate. Since the compensation loop takes energy from the input end of the device, there is:

$$\frac{\Delta U = U_{BP} \times X}{U_{BP} = U_i}$$

In this case, the output voltage U'_o of the device can be shown as follows:

$$U'_o = U_i + \Delta U = U_i \times (1 + X)$$

(2)

When the system input voltage U_i is at the lowest point U_{imin}, the U_{BP} value is U_{imin}, the device compensates the highest voltage, the value of X is A, and the output voltage U'_{omin} is expressed as:

$$U'_{omin} = U_{imin} \times (1 + A)$$

(3)

When the input voltage of the system is at the highest point U_{imax}, the U_{BP} value is U_{imax}, the value of X is B, the output voltage U'_{omax} of the device can be calculated by:

$$U'_{omax} = U_{imax} \times (1 + B)$$

(4)
Step 2: take energy from the output end of the device and bypass switch K_{BP} action. Since the compensation loop takes energy from the output end of the device, the value of U_{BP} will be superimposed with the compensation voltage in the link after the device's voltage compensation. U_{BP} value changes, and will change the device compensation voltage, to carry out cyclic superposition, set its superposition times for n (n for positive integer), the new compensation voltage delta $\Delta U(n)$ generated by the device each cycle is:

$$\begin{align*}
\Delta U(0) &= U_{BP}(0) \times X \\
\Delta U(1) &= U_{BP}(0) \times X^2 \\
& \quad \ldots \\
\Delta U(n) &= U_{BP}(0) \times X^{n+1}
\end{align*}$$

(5)

For U_{BP}, there are:

$$\begin{align*}
U_{BP}(1) &= U_{BP}(0) + \Delta U(0) \\
U_{BP}(2) &= U_{BP}(1) + \Delta U(1) \\
& \quad \ldots \\
U_{BP}(n) &= U_{BP}(n-1) + \Delta U(n-1)
\end{align*}$$

(6)

where the value of $U_{BP}(0)$ is depended on the value of the system input voltage. Combining equations (5) and (6), an important equation can be derived as follows:

$$U_o' = U_{BP}(0) \times \sum_{i=0}^{n-1} X^i$$

(7)

Because the compensation circuit takes energy from the output end of the device, the output voltage U_o of the device should be the same value as the iterative U_{BP}, the iterative process of the voltage is endless, so there are:

$$U_o = U_{BP}(0) \times \lim_{n \to \infty} \frac{1 - X^{n+1}}{1 - X}$$

(8)

When the input voltage U_i of the system is at the lowest point of U_{imin}, the value of $U_{BP}(0)$ is U_{imin}, the device carries out the highest compensation for the voltage, the value of X is A, and the output voltage U_{omin} of the device is expressed as:

$$U_{\text{omin}} = U_{\text{imin}} \times \lim_{n \to \infty} \frac{1 - A^{n+1}}{1 - A}$$

(9)

When the input voltage of the system is at the highest point of U_{imax}, the U_{BP} value is U_{imax}, the device carries out the lowest compensation, and the value of X is B. Currently, the output voltage U_{omax} of the device is derived as:

$$U_{\text{omax}} = U_{\text{imax}} \times \lim_{n \to \infty} \frac{1 - B^{n+1}}{1 - B}$$

(10)

The voltage compensated by the compensation device will not be greater than its rated voltage value, the absolute value of the total compensation rate A, B is less than 1, that is:

$$\begin{align*}
0 & \leq A < 1 \\
-1 & < B \leq 0
\end{align*}$$

(11)

2.2. Switching System Design

Taken the nominal value of the output voltage, i.e., U_N, as the reference value, the rated working voltage of the device is 1pu. It is known that its working range is 0.6pu~1.4pu, the allowable range of output
voltage is 0.95pu~1.05pu, the variation ratios of the three compensation transformers are 0.015, 0.045 and 0.135 respectively. The voltage and voltage control strategy of the device is as follows: the input voltage and output voltage of the voltage stabilizing power supply are detected in the whole process, when the input voltage u_{IN} is in the range of voltage regulation and voltage stabilization (0.6pu−0.95pu or 1.05pu−1.4pu), the device begins to adjust the voltage. According to the value of u_{IN}, the energy position of the device compensation loop is determined, and then a compensation rate which can compensate the output voltage u_L to the nominal value U_N (0.95pu~1.05pu) is determined by calculation, and then the device is controlled to adjust the corresponding switching action or reverse parallel thyristor switching, so as to change the energy position and compensation rate of the device compensation circuit. If the u_{IN} changes and the calculated u_L cannot be stable within the nominal value U_N under this compensation scheme, then redetermine another Compensation scheme and implement it.

The switching system is designed as follows:

$$y(x) = a_{\sigma(x)}x \quad (12)$$

where $y \in R$ is the output of the system, that is, the output voltage of the device u_L; $x \in R$ is the input of the system, that is, the input voltage of the device u_{IN}; $\sigma(\cdot): R \rightarrow \{1, 2, ..., 27\}$ is a piecewise constant switching signal based on u_{IN}, the change of σ value represents the switching of device compensation scheme, and a_i is the system parameter of the i^{th} subsystem, that is, the ratio of output voltage to input voltage under each compensation rule. When $u_{IN} <0.95pu$, positive compensation is carried out, and the device compensation loop takes energy from the output end of the system, there is:

$$L_{IN}1_{1}ua uX = \frac{1}{1-X} \quad (13)$$

When $u_{IN} <1.05pu$, negative compensation is carried out, and the device compensation loop takes energy from the input end of the system, there is:

$$L_{IN}1_{1}uaX u = 1 + X \quad (14)$$

All value of a_i can be obtained. The device requires that the output voltage u_L of the system be stabilized within the range of the nominal value U_N, that is:

$$0.95U_N \leq a_{\sigma(x)}u_{IN} <1.05U_N \quad (15)$$

3. Overview of Optimal Strategy of Switching System

Fuzzy control strategy is a kind of theory which is caused by the conflict between practical problems and data analysis. It can transform the practical problems into concrete values, to realize quantitative control.

When a specific value of σ is calculated by the nominal value U_N according to the allowable range of output voltage of the device, there is obvious overlap in the range of input voltage u_{IN}. Under the condition that the range of values overlaps greatly, the switching system will not be able to determine the specific adjustment coefficient, which will lead to the failure of the system. So here, according to the concept of membership degree of fuzzy set, in addition, the domain $\Psi=[0.6, 1.4]$, use Z_σ to represent 27 fuzzy sets, and the compensation effect is the best in each region, that is, the u_{IN} can make the system output value 1pu is the centre, where u_{IN} can be shown as:

$$a_{\sigma(x)}u_{IN} = 1 \quad (16)$$

Then design the “triangle” membership function $\mu_{Z_\sigma}(x)$ of the switching signal. When $\sigma=1$, there are:
\[
\mu_{Z_1}(x) = \begin{cases}
0, & 0 \leq x < u_{IN1\text{min}} \\
\frac{x - u_{IN1\text{min}}}{u_{IN1\text{max}} - u_{IN1\text{min}}}, & u_{IN1\text{min}} < x \leq u_{IN1} \\
\frac{x - u_{IN1}}{u_{IN1\text{max}} - u_{IN1}}, & u_{IN1} < x \leq u_{IN2\text{max}} \\
1, & u_{IN2\text{max}} \leq x \leq 1.4
\end{cases}
\]

When \(1 < \sigma < 27\), there are:

\[
\mu_{Z_\sigma}(x) = \begin{cases}
0, & 0 \leq x < u_{IN\sigma\text{min}} \text{ and } u_{IN\sigma\text{max}} \leq x \\
\frac{x - u_{IN\sigma\text{min}}}{u_{IN\sigma\text{max}} - u_{IN\sigma\text{min}}}, & u_{IN\sigma\text{min}} \leq x < u_{IN\sigma} \\
\frac{x - u_{IN\sigma}}{u_{IN\sigma\text{max}} - u_{IN\sigma}}, & u_{IN\sigma} < x \leq u_{IN\sigma\text{max}}
\end{cases}
\]

The relational expression covers all domains and has a maximum value, i.e., 1. It is a standard “triangle” membership function and belongs to a normal fuzzy set. The selection rule of designing \(\sigma\) is as follows: for the input quantity \(x\), select the \(\sigma\) that maximizes the degree of membership value \(\mu_{Z_\sigma}(x)\). Namely:

\[
\sigma(x) = \text{arg}_{\sigma} \left(\mu_{Z_\sigma}(x) \right)
\]

4. Experiment

The key parameters of the simulation are listed in Table 1. The power supply is selected as variable AC power supply, and set the power supply increases linearly from 132Vrms to 308Vrms within 8s. The reference value is set to 220Vrms, so the range of allowable output voltage, i.e. nominal value \(U_N\), should be 209Vrms~231Vrms.

Device label	Device parameters
T1	220Vrms: 30Vrms
T2	220Vrms: 10Vrms
T3	220Vrms: 3Vrms
AC	50Hz
R_S1	1\(\Omega\)
R_S2	1\(\Omega\)
R_S3	1\(\Omega\)
R_L	20\(\Omega\)

The experimental conditions are now described as follows: a 30kVA three-phase isolation transformer is used to connect to the mains to provide the input voltage of the device. Adjust the transformer so that its output voltage is increased from 240Vrms to 540Vrms, one gear per 20Vrms, each gear is kept for 1min, the input voltage and output voltage of the device are monitored, and the output of the device is star-connected in parallel. A 50\(\Omega\)/2kW power resistor acts as a load. The experimental results are shown in Table 2.

During the experimental process, the device is connected to 240Vrms voltage, the main switch KS, the bypass switch KBP and the power-off switch KGP act, and the device starts to compensate. When the voltage rises to 540Vrms, the main switch KS is disconnected, and the output of the device is returned zero. The allowable input voltage range of the device is 361Vrms~399Vrms. It can be seen from Table 2 the device is performing voltage compensation when the input voltage is between 240Vrms and 520Vrms. When the input voltage is between 320V and 500Vrms, the output voltage is average. It is in
the allowable output range; when the voltage rises to 540Vrms, the device is powered off due to input overvoltage. The compensation effect on the voltage fully satisfies the design request.

Table 2. Experimental result.

Input voltage / Vrms	Output voltage / Vrms
240	296.6
260	317.8
280	339.1
300	360.3
320	374.6
340	375.2
360	375.7
380	374.6
400	375.2
420	374.5
440	373.2
460	375.6
480	377.4
500	395.5
520	435.4
540	0

5. Conclusion

Based on the concept of membership degree in fuzzy mathematics, the control system of a non-contact compensated AC regulator is optimized. The membership function is used to optimize the switching rules of the device switching system, which not only ensures that there is no interference between the subsystems of the optimized switching system, but also improves the overall control accuracy of the device, which provides an idea for the later researchers to optimize the control system.

Of course, there is still a lot of follow-up work to be completed, need to consider the other inputs of the device, and fuzzified, integrated into the switching system, aiming at the stability of the switching system optimization design. Further optimize the voltage stabilization accuracy and reliability of the device.

References

[1] Zhang Jianhui, Xu Yingying, Li Yunfeng. Research on negative sequence current complete compensation strategy of railway power regulator under unbalanced ac power grid [J]. Proceedings of the CSEE, 2020, 40(10):3144-3154.

[2] Housseyni W, Mosbahi O, Khalgui M, et al. Multi-agent Architecture for Distributed Adaptive Scheduling of Reconfigurable Real-Time Tasks with Energy Harvesting Constraints. IEEE Access, vol.6, 2018, pp. 2068-2084.

[3] Li Wenhua, Meng Zhe, Hu Qi, Zhang Linlin. Research on AC Voltage Regulating Sources under single cycle Control [J]. Electric Drive, 2016, 48(02):61-64.

[4] Fu Dongxue, Zhao Ximei. Adaptive non-singular fast terminal sliding mode control for permanent magnet linear synchronous motor [J]. Transactions of China Electrotechnical Society, 2020, 35(04):717-723.

[5] Diao Xingchun, Liu Yi, Cao Jianjun, et al. Reviews of Multi objective Ant Colony Optimization. Computer Science, vol.44, no.10, 2017, pp. 7-13+25.