Extensively Drug-resistant *Acinetobacter baumannii* Belonging to International Clone II from A Pet Cat with Urinary Tract Infection; The First Report from Pakistan

ZEESHAN TAJ1,2, MUHAMMAD HIDAYAT RASOOL1, AHMAD ALMATROUDI1, MUHAMMAD SAQALEIN1,2 and MOHSIN KHURSHID1*

1 Department of Microbiology, Government College University Faisalabad, Pakistan
2 Pet Care Clinic, Faisalabad, Pakistan
3 Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia

Submitted 30 December 2019, revised 26 March 2020, accepted 29 March 2020

Abstract

The carbapenem-resistant *Acinetobacter baumannii* (CRAB) has got global attention as a notorious nosocomial pathogen. This study describes a case of urinary tract infection in a 2-years old pet female cat infected with A. baumannii. The susceptibility profiling, screening for the resistance determinants, and the multilocus sequence typing was performed. The *A. baumannii* isolate was found to harbor the blaOXA23-like gene and corresponded to International clone II that has been widely reported to be involved in human infections. The study proposes that the pets may contribute towards the spread of clinically relevant antimicrobial-resistant pathogens.

Key words: MLST, sequence types, carbapenemases, *Acinetobacter baumannii*, companion animals

Acinetobacter baumannii is the most prevalent species of genus *Acinetobacter* that caused various nosocomial infections in clinical settings. *A. baumannii* is quite ubiquitous and has been found in water, air, and soil. Although the studies related to the animal infections caused by *A. baumannii* are limited, the reports have highlighted the involvement of *Acinetobacter* species in respiratory, urinary, bloodstream, and wound infections with an attributable mortality of 47% in pets (Pomba et al. 2017). The therapeutic management of carbapenem-resistant *A. baumannii* (CRAB) is challenging in clinical medicine (Sohail et al. 2016; Khurshid et al. 2017). The emergence of multidrug-resistant CRAB isolates has been increasingly reported and is mainly associated with the acquisition of the *blaNDM* gene and overexpression of the *blaOXA-23* gene in bovines and equines (Poirel et al. 2012; Smet et al. 2012; Zhang et al. 2013). However, the majority of carbapenem-resistant phenotypes in *A. baumannii* isolates from the pets are mainly linked with the increased expression of the intrinsic genes (Ewers et al. 2017).

The data regarding the mechanisms underlying the antimicrobial resistance and molecular epidemiology of *Acinetobacter* species from the veterinary origin are limited compared to the *A. baumannii* strains from humans. However, the studies have revealed that the *A. baumannii* isolates from veterinary sources may harbor identical antimicrobial resistant determinants as well as share the identical clonal lineages as human strains suggesting a common source of infection (Zordan et al. 2011; Puntener-Simmen et al. 2019). Here, we have described a CRAB isolate harboring the *blaOXA-23* gene from a pet cat suffering from urinary tract infection.

A two-years-old pet cat was brought to our pet clinic with dysuria and hematuria. The urine sample was aseptically collected, which showed significant bacteriuria, and *A. baumannii* was solely obtained. The cat was having a history of persistent fever, pyuria, anorexia, weight loss, postural changes, and mood disorders from the last three months, which were previously attempted to treat with multiple courses of antimicrobial agents empirically. Initially, the oral amoxicillin-clavulanate...
Resistance associated gene
Mechanism
Resistance phenotypes

Aminoglycosides
16S rRNA methyltransferase genes
armA
Amikacin\(^1\), Gentamicin\(^1\), Tobramycin\(^1\)

Aminoglycoside modifying enzymes
aphA6, aadB, and aacC1

Carbapenems
Oxacillinas
blaOXA-23
Imipenem\(^1\), Meropenem\(^2\), Ceftazidime\(^3\), Cefotaxime\(^4\), Ceftriaxone\(^5\), Piperacillin-tazobactam\(^6\), Ampicillin-sulbactam\(^7\)

Fluoroquinolones
Quinolones Resistance Determining Region (QRDR)
gyrA gene mutation (Ser83Leu)
Ciprofloxacin\(^1\)

Sulfonamides
Dihydropteroate synthase
Sul2
Sulfamethoxazole-Trimethoprim\(^1\)

Tetracyclines
Tetracycline efflux MFS transporter
tetB
Doxycycline\(^4\)

\(^1\) MIC 1024 µg/ml, \(^2\) MIC 512 µg/ml, \(^3\) MIC 16 µg/ml, \(^4\) MIC 32 µg/ml, \(^5\) MIC 64 µg/ml, \(^6\) MIC 32 µg/ml, \(^7\) MIC 128/4 µg/ml, \(^8\) MIC 64/32 µg/ml, \(^9\) MIC 16 µg/ml, \(^10\) MIC 16/304 µg/ml, \(^11\) MIC 128 µg/ml

Table I
Resistance genes detected in the A. baumannii strain isolated in a urine sample from the urinary tract infection suffering cat.

A suspension was administered at a dose rate of 62.5 mg/cat PO twice daily for 14 days, followed by ciprofloxacin at a dose rate of 6 mg/kg PO q12h for 10 days.

The A. baumannii isolate was identified by amplification of the recA gene and ITS region in a multiplex PCR as described previously, as well as the amplification of the blaOXA-51 gene (Khurshid et al. 2017; Khurshid et al. 2020). The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) according to the CLSI guidelines (CLSI 2015). The genes encoding the carbapenem resistance and the presence of insertion element i.e., ISAba1, were detected using PCR as described previously using specific primers (Khurshid et al. 2017). The PCR was performed to detect the presence of 16S rRNA methyltransferase genes (armA, rmtA, rmtB, rmtC, rmtD, and rmtE) and aminoglycoside modifying enzymes (AMEs) i.e., aphA1, aphA6, aadB, aadA1, and aacC1 and tetracycline and sulfonamide resistant genes including tetA, tetB, sul1, sul2, and sul3 genes (Khurshid et al. 2019). The isolates were also screened for plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS) as well as mutations in the quinolone resistance-determining region by sequencing gyrA and parC gene (Gu et al. 2015). The multi-locus sequence typing (MLST) was performed using primers recommended by the MLST database for A. baumannii following the Pasteur scheme.

The strain was susceptible only to colistin (MIC 0.5 µg/ml), and tigecycline (MIC 1 µg/ml). The higher MICs of imipenem (MIC 16 µg/ml), meropenem (MIC 32 µg/ml), ceftazidime, cefotaxime, ceftriaxone (MIC 64 µg/ml), cefepime (MIC 32 µg/ml), piperacillin-tazobactam (MIC 128/4 µg/ml), and ampicillin-sulbactam (MIC 64/32 µg/ml) were linked with the production of blaOXA-23 (Opazo et al. 2012; Khurshid et al. 2017). The resistance to aminoglycoside i.e., MICs of amikacin (MIC 1024 µg/ml), gentamicin, and tobramycin (MIC 512 µg/ml) was attributed to the presence of 16S rRNA methyltransferase genes i.e., the armA gene as well as AMEs i.e., aphA6, aadB, and aacC1. Moreover, the MIC of trimethoprim-sulfamethoxazole was 16/304 µg/ml attributed to the presence of the sul2 gene. The A. baumannii isolates showed resistance to tetracycline/doxycycline with a doxycycline MIC equal to 128 µg/ml, and it was related to the presence of the tetB gene. The strain was found resistant to ciprofloxacin (MIC 16 µg/ml), which was attributed to the mutation (Ser83Leu) in the gyrA gene. The genes conferring resistance to different antimicrobial agents that were found in the A. baumannii strain are summarized in Table I. The ISAba1 was found upstream to the blaOXA-51 and blaOXA-23 genes.

The concerns related to the possible threats of the blaOXA-23 harboring CRAB among the pets and other farm animals have been increasing (Ewers et al. 2017). The information on A. baumannii in veterinary settings is, however, limited, and data related to the comparison of strains isolated from the humans and veterinary sources are quite inadequate (van der Kolk et al. 2019). From Pakistan, this is the very first report of extensive drug-resistant (XDR) CRAB isolates harboring the acquired the bla-OXA-23 and armA genes from an infected pet cat, which drives the attention towards the possible transmission of these XDR pathogens from the companion animals to humans.

The blaOXA-23 gene is a major cause of carbapenem resistance throughout the world; therefore, it can be considered a virulence marker and is located on the chromosome as well as on the plasmids. Moreover, the studies have found a strong correlation between the occurrence of the blaOXA-23 gene and multidrug-resistant phenotypes (Pomba et al. 2014; Zowawi et al. 2015; Khurshid et al. 2017).

The MLST has shown that the A. baumannii strain belonged to the sequence type 2 (ST2), and the eBURST analysis has revealed that it corresponded to the inter-
national clonal lineage 2. The study conducted by Tada and his colleagues concluded that there is worldwide dissemination of this clone also harboring the blaOXA-23 and armA genes but does not suggest the human-to-animal transmission (Tada et al. 2015). Notably, the A. baumannii ST2 has been extensively isolated from humans, while some of the recent reports have also indicated the presence of ST2 in pets (Punteener-Simmen et al. 2019). The carbapenem-resistant isolates in these studies were found to possess the intrinsic blaOXA-51 gene solely or accompanied by the acquired blaOXA-23-like genes. Interestingly, the A. baumannii isolates were reported among the pets living in the community (Lupo et al. 2017). Although the data is quite limited regarding the carriage of Acinetobacter species beyond the veterinary clinical settings, more than a few studies during the recent few years have detected the A. baumannii isolates in the community among domestic birds, dogs, livestock, and other large animals. These studies specify that the incidence of A. baumannii infections among animals is increasing and these animals may serve as a reservoir for A. baumannii, particularly carbapenem-resistant strains, due to their selective advantage compared to the susceptible strains (Pomba et al. 2014; van der Kolk et al. 2019).

This study has reported an extensively drug-resistant A. baumannii, harboring the blaOXA-23 gene and other resistant associated genes isolated from a companion animal previously treated with multiple empirical antimicrobial courses. The infected pets may contribute to the pool of multidrug-resistant clinically relevant bacteria and their interaction with the human may transmit these pathogens to humans. The extensive epidemiological studies are essential for a better understanding of the extent of distribution, risk factors, and the directions of transmission of these multidrug-resistant strains.

ORCID
Mohsin Khurshid https://orcid.org/0000-0002-3196-2857

Funding
This work was supported by the Higher Education Commission (HEC), Pakistan grant number 5679/Punjab/NRPU/R&D/HEC/2016.

Conflict of interest
The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Literature

CLSI. Performance standards for antimicrobial susceptibility testing. Twenty-Fifth Informational Supplement. Wayne (USA): Clinical and Laboratory Standard Institute; 2015.

Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, Semmler T, Scheufens S. OXA-23 and IS Aba1 – OXA-66 class β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents. 2017 Jan;49(1):37–44. https://doi.org/10.1016/j.ijantimicag.2016.09.033

Gu D, Hu Y, Zhou H, Zhang R, Chen GX. Substitutions of Ser83Leu in GyrA and Ser80Leu in ParC associated with quinolone resistance in Acinetobacter pittii. Microb Drug Resist. 2015 Jun;21(3):345–351. https://doi.org/10.1089/mdr.2014.0057

Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M, Xu Q, Zhang X, Guo Q, & Wang M. Dissemination of blaOXA-51 harboring carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J Glob Antimicrob Resist. 2020;82213-7165(2220):30002–30003.

Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M. Emergence of IS Aba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. Future Microbiol. 2017 Nov;12(14):1261–1269. https://doi.org/10.2217/fmb-2017-0080

Khurshid M, Rasool MH, Siddiqui MH, Azeem F, Naeem M, Sohail M, Sarfraz M, Saqaleen M, Taj Z, Nisar MA, et al. Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. J Infect Dev Ctries. 2019 Oct 31;13(10):899–905. https://doi.org/10.3855/jidc.11410

Lupo A, Châtire P, Ponsin C, Saras E, Boulois HJ, Keck N, Haenni M, Madec JY. Clonal spread of Acinetobacter baumannii sequence type 25 carrying blaOXA-23 in companion animals in France. Antimicrob Agents Chemother. 2017 Jan;61(1):e01881–16. https://doi.org/10.1128/AAC.01881-16

Opazo A, Dominguez M, Bello H, Amyes SGB, González-Rocha G. OXA-type carbapenemases in Acinetobacter baumannii in South America. J Infect Dev Ctries. 2011 Dec 24;5(04):311–316. https://doi.org/10.3855/jidc.2310

Poirel L, Berçon B, Millemann Y, Bonnin RA, Pannaux G, Nordmann P. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg Infect Dis. 2012 Mar;18(3):523–525. https://doi.org/10.3201/eid1803.11133

Pomba C, Endimiani A, Rossano A, Saial D, Couto N, Perreten V. First report of OXA-23-mediated carbapenem resistance in sequence type 2 multidrug-resistant Acinetobacter baumannii associated with urinary tract infection in a cat. Antimicrob Agents Chemother. 2014 Feb;58(2):1267–1268. https://doi.org/10.1128/AAC.01881-16

Pomba C, Rantala M, Greco C, Baptiste KE, Catry B, van Duijkeveld M, Mateus A, Moreno MA, Pyörälä S, Ružauskas M, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017 Apr 1;72(4):957–968. https://doi.org/10.1093/jac/dkw290

Punteener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Ewermann Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, Semmler T, Scheufens S. Phenotypic and genotypic characterization of Acinetobacter baumannii clinical isolates and emerging antibiotic trends for nosocomial infection management. Rev Soc Bras Med Trop. 2016 Jun;49(3):300–304. https://doi.org/10.1590/0037-8682-0111-2016

Tada T, Miyoshi-Akiyama T, Shimada K, Nga TTT, Thu LTA, Son NT, Ohmagari N, Kirikae T. Dissemination of clonal complex 2 Acinetobacter baumannii strains co-producing carbapenemases
and 16S rRNA methylase ArmA in Vietnam. BMC Infect Dis. 2015 Dec;15(1):433. https://doi.org/10.1186/s12879-015-1171-x

van der Kolk JH, Endimiani A, Graubner C, Gerber V, Perreten V. Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist. 2019 Mar;16:59–71. https://doi.org/10.1016/j.jgar.2018.08.011

Zhang WJ, Lu Z, Schwarz S, Zhang RM, Wang XM, Si W, Yu S, Chen L, Liu S. Complete sequence of the bla\textsubscript{NDM-1}-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother. 2013 Jul;68(7):1681–1682. https://doi.org/10.1093/jac/dkt066

Zordan S, Prenger-Berninghoff E, Weiss R, van der Reijden T, van den Broek P, Baljer G, Dijkshoorn L. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg Infect Dis. 2011 Sep;17(9):1751–1754. https://doi.org/10.3201/eid1709.101931

Zowawi HM, Sartor AL, Sidjabat HE, Balkhy HH, Walsh TR, Al Johani SM, AlJindan RY, Alfaresi M, Ibrahim E, Al-Jardani A, et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates in the Gulf Cooperation Council States: dominance of OXA-23-type producers. J Clin Microbiol. 2015 Mar;53(3):896–903. https://doi.org/10.1128/JCM.02784-14