Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces

Arup Chattopadhyaya, Soma Dasa, Chandan Pradhana and Srijan Sarkarb

aDepartment of Mathematics, Indian Institute of Technology Guwahati, Guwahati, India; bDepartment of Mathematics, Indian Institute of Science, Bangalore, India

\textbf{ABSTRACT}

In this article, we introduce a new class of conjugations in the scalar-valued Hardy space $H^2_{\mathbb{C}}(\mathbb{D})$ and provide a characterization of a complex symmetric Toeplitz operator T_ϕ with respect to these newly introduced conjugations in various cases. Moreover, we obtain a characterization of a complex symmetric block Toeplitz operator T_{Φ_1} on the vector-valued Hardy space $H^2_{\mathbb{C}^2}(\mathbb{D})$ with respect to certain conjugations introduced in [Câmara MC, Kliś-Garlicka K, Ptak M. Complex symmetric completions of partial operator matrices. Linear and Multilinear Algebra. 2019; DOI: 10.1080/03081087.2019.1631246], [Kang D, Ko E, Lee JE. Remarks on complex symmetric Toeplitz operators. Linear Multilinear Algebra. 2020; DOI: 10.1080/03081087.2020.1842847], [Ko E, Lee JE. Remark on complex symmetric operator matrices. Linear Multilinear Algebra. 2019;67(6):1198–1216].

\textbf{ARTICLE HISTORY}

Received 8 December 2021
Accepted 22 March 2022

\textbf{COMMUNICATED BY}

N.-C. Wong

\textbf{KEYWORDS}

Conjugation; Toeplitz operator; Hardy space; complex symmetric operator

\textbf{MATHS}

47B35; 47A15; 47A05; 47B15; 47B32

1. Introduction and preliminaries

Complex symmetric operators on Hilbert spaces are natural generalizations of complex symmetric matrices, and the study of complex symmetric (in short C-symmetric) operators was initiated by Garcia, Putinar and Wogen in [1–4]. A well-known class of operators, namely all normal operators, Hankel operators and truncated Toeplitz operators are included in the class of complex symmetric operators. For more materials on complex symmetric operators and related topics including historical comments we refer the reader to [1–10] and the references cited therein.

The following concept is a straightforward generalization of the conjugate-linear map $z \rightarrow \bar{z}$ on the one-dimensional Hilbert space \mathbb{C}.

\textbf{Definition 1.1 ([2])}: A conjugation on a complex Hilbert space \mathcal{H} is a function $C: \mathcal{H} \rightarrow \mathcal{H}$ which satisfies the following three properties:

(i) conjugate linear: $C(\alpha x + \beta y) = \bar{\alpha}Cx + \bar{\beta}Cy$, for all $x, y \in \mathcal{H}$ and $\forall \alpha, \beta \in \mathbb{C}$,
(ii) involutive: $C^2 = I$,

\textbf{CONTACT} Arup Chattopadhyay a arupchatt@iitg.ac.in; 2003arupchattopadhyay@gmail.com a Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India

© 2022 Informa UK Limited, trading as Taylor & Francis Group
In this connection it is worth mentioning that Garcia and Putinar have shown in [1] that for any given conjugation C on a separable Hilbert space \mathcal{H} there exists an orthonormal basis $\{e_n : n \in \mathbb{N}_0\}$ such that $Ce_n = e_n$, where \mathbb{N}_0 denotes the set of all non-negative integers. Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H}.

Definition 1.2: An operator $T \in \mathcal{B}(\mathcal{H})$ is called C-symmetric if there exists a conjugation C on \mathcal{H} such that $CTC = T^*$. If T is C-symmetric for some conjugation C, then T is called complex symmetric.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the unit disc in the complex plane and $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle. Let $L^2(\mathbb{T})$ be the Lebesgue (Hilbert) space on \mathbb{T} and let $L^\infty(\mathbb{T})$ be the Banach space of all essentially bounded functions on \mathbb{T}. Now it is well known that $\{e_n(z) = z^n : n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\mathbb{T})$, where \mathbb{Z} is the set of all integers. Therefore, if $f \in L^2(\mathbb{T})$, then the function f can be expressed as

$$f(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n)z^n,$$

where $\hat{f}(n)$ denotes the nth Fourier coefficient of f and $\sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 < \infty$. Recall that \mathcal{H}-valued Hardy space over the unit disc \mathbb{D} in \mathbb{C} is denoted by $H^2_\mathcal{H}(\mathbb{D})$ and defined by

$$H^2_\mathcal{H}(\mathbb{D}) := \left\{ f(z) = \sum_{n=0}^{\infty} a_nz^n : \|f\|^2_{H^2_\mathcal{H}(\mathbb{D})} := \sum_{n=0}^{\infty} \|a_n\|^2_{\mathcal{H}}, \; z \in \mathbb{D}, \; a_n \in \mathcal{H} \right\}.$$

In this article, we mainly focus on two particular vector-valued Hardy spaces, namely the classical Hardy spaces $H^2_\mathbb{C}(\mathbb{D})$ and $H^2_\mathbb{C}^2(\mathbb{D})$ corresponding to $\mathcal{H} = \mathbb{C}$ and $\mathcal{H} = \mathbb{C}^2$, respectively. For any $\phi \in L^\infty(\mathbb{T})$, the Toeplitz operator $T_\phi : H^2_\mathbb{C}(\mathbb{D}) \rightarrow H^2_\mathbb{C}(\mathbb{D})$ is defined by the formula

$$T_\phi(f) = P(\phi f), \; f \in H^2_\mathbb{C}(\mathbb{D}),$$

where P denotes the orthogonal projection of $L^2(\mathbb{T})$ onto $H^2_\mathbb{C}(\mathbb{D})$. It is well known that T_ϕ is bounded if and only if $\phi \in L^\infty(\mathbb{T})$, and moreover, $\|T_\phi\| = \|\phi\|_{\infty}$. Note that we can also identify the Hardy space $H^2_\mathcal{H}(\mathbb{D})$ as a Hilbert space tensor product between $H^2_\mathbb{C}(\mathbb{D})$ and \mathcal{H}, that is $H^2_\mathcal{H}(\mathbb{D}) = H^2_\mathbb{C}(\mathbb{D}) \otimes \mathcal{H}$.

Let $L^2_\mathbb{C}^2(\mathbb{T}) = L^2(\mathbb{T}) \otimes \mathbb{C}^2$, and let $L^\infty_{M_2}(\mathbb{T}) = L^\infty(\mathbb{T}) \otimes M_2$, where M_2 is the set of all 2×2 complex matrices. Now for $\Phi \in L^\infty_{M_2}(\mathbb{T})$, the block Toeplitz operator with symbol Φ is the operator T_Φ on the vector-valued Hardy space $H^2_\mathbb{C}^2(\mathbb{D})$ defined by

$$T_\Phi(f) = \tilde{P}(\Phi f), \; f \in H^2_\mathbb{C}^2(\mathbb{D}),$$

where \tilde{P} is the orthogonal projection of $L^2_\mathbb{C}^2(\mathbb{T})$ onto $H^2_\mathbb{C}^2(\mathbb{D})$. In particular, if $\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix}$ where $\phi_i \in L^\infty(\mathbb{T})$ for $1 \leq i \leq 4$, then the block Toeplitz operator has the following
representation:

\[T_\Phi = \begin{bmatrix} T_{\Phi_1} & T_{\Phi_2} \\ T_{\Phi_3} & T_{\Phi_4} \end{bmatrix}. \]

For more materials on block Toeplitz operator and related topics we refer the reader to [11].

The study of complex symmetric operators, Toeplitz operators and block Toeplitz operators provides important connections with various problems in the field of physics and most importantly in the field of mechanics [7, 12–14]. Normal operators are examples of complex symmetric operators and the characterization of normal Toeplitz operators was given by Brown and Halmos in [15]. In other words, they proved that \(T_\phi \) is normal if and only if \(\phi = \alpha + \beta \rho \) for some real-valued function \(\rho \in L^\infty(\mathbb{T}) \) and \(\alpha, \beta \in \mathbb{C} \). Note that, if \(\phi \in L^\infty(\mathbb{T}) \), then \(T_\phi \) may not be a complex symmetric operator. Therefore, in general, it is a difficult problem to describe when a Toeplitz operator is complex symmetric. In this direction, recently, Guo and Zhu [16] have raised the following interesting question:

Characterize a complex symmetric Toeplitz operator on the Hardy space \(H^2_C(\mathbb{D}) \). This question has motivated researchers to identify special classes of conjugations on Hardy spaces. More precisely, for certain conjugations \(C \) with explicit forms, it is an interesting question to characterize \(C \)-symmetric Toeplitz operators. Recently, Ko and Lee in [9] gave a characterization of a complex symmetric Toeplitz operator \(T_\phi \) on \(H^2_C(\mathbb{D}) \) with respect to some special conjugations. More precisely, they considered the family of conjugations \(C_{\mu, \lambda} \) on \(H^2_C(\mathbb{D}) \) defined by

\[C_{\mu, \lambda}f(z) = \mu \overline{f}(\lambda z) \]

for \(\mu, \lambda \in \mathbb{T} \), and proved the following theorem:

Theorem 1.3: If \(\phi \in L^\infty(\mathbb{T}) \), then \(T_\phi \) is \(C_{\mu, \lambda} \)-symmetric if and only if \(\hat{\phi}(-n) = \hat{\phi}(n)\lambda^n \) for all \(n \in \mathbb{Z} \), where \(\hat{\phi}(n) \) is the \(n \)th Fourier coefficient of \(\phi \).

In this context, a recent result by Waleed Noor [17] proves that: if \(T_\phi \) is complex symmetric on \(H^2_C(\mathbb{D}) \) with continuous symbol \(\phi \) on \(\mathbb{T} \), then \(\phi(\mathbb{T}) \) is a nowhere winding curve. We refer the reader to articles [18, 19] for important results in the study of complex symmetric Toeplitz operators on Bergman spaces and Dirichlet spaces. Moreover, very recently, Kang, Ko and Lee have provided a characterization of complex symmetric block Toeplitz operator \(T_\Phi \) with respect to some special conjugations on the vector-valued Hardy space \(H^2_{C^2}(\mathbb{D}) \).

Motivated by all these works (most importantly, [8–10]), our principle aim in this article is to obtain characterizations of complex symmetric Toeplitz operators \(T_\phi \) and \(T_\Phi \) on the Hardy spaces \(H^2_C(\mathbb{D}) \) and \(H^2_{C^2}(\mathbb{D}) \), respectively, with respect to certain new conjugations defined as follows. Let \(p \in \mathbb{N} \) and let \(S_p \) denote the symmetric group defined over a finite set of \(p \) symbols. Thus, \(S_p \) consists of the permutations that can be performed on the \(p \) symbols. For \(\sigma \in S_p \), we denote \(O(\sigma) \) as the order of the permutation \(\sigma \). Now for any \(\sigma \in S_p \) with \(O(\sigma) = 2 \), let \(C_\sigma : H^2_C(\mathbb{D}) \mapsto H^2_C(\mathbb{D}) \) be defined by

\[
C_\sigma \left(\sum_{k=0}^{\infty} \sum_{m=0}^{p-1} a_{m+pk} z^{m+pk} \right) = \sum_{k=0}^{\infty} \sum_{m=0}^{p-1} \sigma(a_{m+pk}) z^{m+pk},
\]

(1)
where for fixed p and k, σ is a permutation on the set $\{a_{pk}, a_{1+p+k}, \ldots, a_{(p-1)+pk}\}$. Then, it is easy to verify from the definition that C_σ is a conjugation on $H^2_C(\mathbb{D})$.

This paper is organized as follows. In Section 2, we provide a characterization of complex symmetric Toeplitz operators T_ϕ with respect to a special case of (1), that is, the conjugation $C_{i,j}^p$ for some fixed $p \in \mathbb{N}$ and $i, j \in \mathbb{N}$ such that $i \neq j$ (see Theorem 2.2). Section 3 deals with the characterization of Toeplitz operators T_ϕ with respect to a conjugation C_n on $H^2_C(\mathbb{D})$ which is again a special case of (1). In Section 4, we give a characterization of block Toeplitz operators T_ϕ with respect to the conjugations C (see (50)) and \overline{C} (see (58)) on $H^2_C(\mathbb{D})$, respectively (see Theorems 4.1, 4.2 and 4.4) that were introduced earlier in [5, 8, 10].

2. Transpositions type of conjugations

In this section, we study the complex symmetry of Toeplitz operators T_ϕ on $H^2_C(\mathbb{D})$ with respect to a class of conjugations, which are special cases of (1). For a fixed integer $p \in \mathbb{N}$, let us choose $i, j \in \mathbb{N}$ such that $0 \leq i < j < p$ and define the map $C_{i,j}^p : H^2_C(\mathbb{D}) \mapsto H^2_C(\mathbb{D})$,

$$C_{i,j}^p \left(\sum_{k=0}^{\infty} a_k z^k \right) \mapsto \sum_{k=0}^{\infty} \tilde{a}_{j+p} z^{i+p+k} + \sum_{k=0}^{\infty} \tilde{a}_{i+p} z^{j+p+k} + \sum_{k=0}^{p-1} \sum_{m=0}^{\infty} \tilde{a}_{m+p} z^{m+p+k}. \quad (2)$$

It follows from the definition above that $C_{i,j}^p$ is a conjugation on $H^2_C(\mathbb{D})$. The following lemma shows that this class of conjugations are unitarily equivalent to each other.

Lemma 2.1: The conjugation $C_{i,j}^p$ is unitarily equivalent to $C_{i',j'}^p$.

Proof: For $k \in \mathbb{N}$, let $U : H^2_C(\mathbb{D}) \rightarrow H^2_C(\mathbb{D})$ be a unitary defined by

$$U(z^{i+p}) = z^{i'} + p; \quad U(z^{j+p}) = z^{j'} + p; \quad U(z^{i'+p}) = z^{i'+p}; \quad U(z^{j'+p}) = z^{j'+p},$$

and for $m \neq i, j, i', j'$, $U(z^{m+p}) = z^{m+p}$. Let us consider the case where $\{i, j\} \cap \{i', j'\} = \emptyset$. Then

$$C_{i,j}^p UC_{i',j'}^p (z^{i+p}) = C_{i,j}^p U(z^{i+p}) = C_{i,j}^p (z^{i'+p}) = z^{i'+p} = U(z^{i+p}).$$

Similarly,

$$C_{i,j}^p UC_{i',j'}^p (z^{j+p}) = C_{i,j}^p U(z^{j+p}) = C_{i,j}^p (z^{i'+p}) = z^{i'+p} = U(z^{j+p}),$$

$$C_{i,j}^p UC_{i',j'}^p (z^{i'+p}) = C_{i,j}^p U(z^{i'+p}) = C_{i,j}^p (z^{i'+p}) = z^{i'+p} = U(z^{i'+p})$$

and

$$C_{i,j}^p UC_{i',j'}^p (z^{j'+p}) = C_{i,j}^p U(z^{j'+p}) = C_{i,j}^p (z^{j'+p}) = z^{j'+p} = U(z^{j'+p}).$$

On the other hand for $m \neq i, j, i', j'$, we have

$$C_{i,j}^p UC_{i',j'}^p (z^{m+p}) = C_{i,j}^p U(z^{m+p}) = C_{i,j}^p (z^{m+p}) = z^{m+p} = U(z^{m+p}).$$
Combining the above relations we get $U = C_{i}^{j} U C_{p}^{j} C_{i}^{j}$, which further implies $U^{*} C_{p}^{j} U = C_{p}^{j}$. The remaining cases $\{i = i'; j \neq j\}$ and $\{i \neq i'; j = j\}$ can be proved in a similar manner.

Our next aim is to identify necessary and sufficient conditions on the symbol $\phi \in L^{\infty}(\mathbb{T})$, for which the Toeplitz operator T_{ϕ} is complex symmetric with respect to the conjugation $C_{p}^{i} C_{p}^{j}$. Let $\phi(z) = \sum_{k=-\infty}^{\infty} \hat{\phi}(k) z^{k} \in L^{\infty}(\mathbb{T})$ be the Fourier expansion of $\phi(z)$. Let us begin by assuming that T_{ϕ} is complex symmetric with respect to the conjugation $C_{p}^{i} C_{p}^{j}$, that is,

$$T_{\phi} C_{p}^{i} C_{p}^{j} = C_{p}^{i} C_{p}^{j} T_{\phi}.$$

(3)

Now, it is well known that the set $\{z^{r} p^{k} : k \geq 0, 0 \leq r \leq p - 1\}$ forms an orthonormal basis of $H_{o}^{2}(\mathbb{D})$ and therefore, corresponding to $r = j$ we have

$$T_{\phi} C_{p}^{i} j (z^{r} p^{k}) = T_{\phi} (z^{i} p^{k}) = \sum_{m=0}^{\infty} \hat{\phi} (m - i p - k) z^{m}$$

and

$$C_{p}^{i} j (z^{r} p^{k}) = \sum_{m=0}^{\infty} \hat{\phi} (-(m - j - p k)) z^{m}$$

$$= \sum_{m=0}^{\infty} \hat{\phi} (-i m - j p - k) z^{m} + \sum_{m=0}^{\infty} \hat{\phi} (-j m - k) z^{j m} + \sum_{m=0}^{\infty} \sum_{t=0}^{p-1} \hat{\phi} (-t m - j p - k) z^{j t m}.$$

(5)

Thus, by substituting $m - k = l \in \mathbb{Z}$ in (4) and (5), and using (3) we get

$$\hat{\phi}(pm) = \hat{\phi}(-pm), \quad \hat{\phi}(j i - p) = \hat{\phi}(j - i - p), \quad \hat{\phi}(t - i p) = \hat{\phi}(j - i - p).$$

(6)

Moreover, for $r = i$, by repeating the above calculations and using the relation $T_{\phi} C_{p}^{i} (z^{r} p^{k}) = C_{p}^{i} j (z^{i} p^{k})$ we conclude for $l \in \mathbb{Z}$ that

$$\hat{\phi}(i - j + p l) = \hat{\phi}(i - j - p l), \quad \hat{\phi}(p l) = \hat{\phi}(-p l), \quad \hat{\phi}(j - t + p l) = \hat{\phi}(j - t - p l).$$

(7)

Now for $0 \leq r \leq p - 1$ such that $r \neq i, j$ we have

$$T_{\phi} C_{p}^{i} j (z^{r} p^{k}) = \sum_{m=0}^{\infty} \hat{\phi} (m - r p - k) z^{m}$$

(8)
and

\[
\begin{align*}
C_{lp} T_\phi(z^{r+pk}) &= C_{lp} \left(\sum_{m=0}^{\infty} \hat{\phi} \left(-(m - r - pk) \right) z^m \right) \\
&= \sum_{m=0}^{\infty} \hat{\phi} \left(-(j + pm - r - pk) \right) z^{j+pm} \\
&+ \sum_{m=0}^{\infty} \hat{\phi} \left(-(i + pm - r - pk) \right) z^{i+pm} \\
&+ \sum_{m=0}^{\infty} \hat{\phi} \left(-(r + pm - r - pk) \right) z^{r+pm} \\
&+ \sum_{m=0}^{p-1} \sum_{s=0}^{p-1} \hat{\phi} \left(-(s + pm - r - pk) \right) z^{s+pm}.
\end{align*}
\]

Finally, by using (3) we obtain the following conditions:

\[
\begin{align*}
\hat{\phi}(i - r + pl) &= \hat{\phi}(r - j - pl), \\
\hat{\phi}(j - r + pl) &= \hat{\phi}(r - i - pl), \\
\hat{\phi}(s - r + pl) &= \hat{\phi}(r - s - pl), \\
\hat{\phi}(pl) &= \hat{\phi}(-pl),
\end{align*}
\]

(8)

where \(m - k = l \in \mathbb{Z}\) and \(0 \leq s \leq p - 1\) such that \(s \neq i, j, r\). All the conditions obtained in (8) are enlisted in the following table:

Condition	Description
\(\phi(pl) = \phi(-pl)\)	\(0 \leq a \leq p - 1\) such that \(a \neq i, j\), and \(0 \leq b \leq p - 1\) such that \(b \neq a, i, j\), then
\(\phi(j - i + pl) = \phi(j - i - pl), \quad \phi(i - j + pl) = \phi(i - j - pl),\)	
\(\phi(a - i + pl) = \phi(a - i - pl), \quad \phi(a - j + pl) = \phi(a - j - pl),\)	
\(\phi(i - a + pl) = \phi(a - j - pl), \quad \phi(j - a + pl) = \phi(a - i - pl),\)	
\(\phi(b - a + pl) = \phi(a - b - pl).\)	

(9)

Our next aim is to simplify the above relations between the Fourier coefficients of \(\phi\) obtained in (9) by assuming some more restrictions on \(i, j\) and \(p\).

Case I: First we assume that \(p\) is even and \(|i - j| = \frac{p}{2}\). That is, \(j - i = \frac{p}{2}\) and \(i - j = -\frac{p}{2}\). Therefore, \(j = \frac{p}{2} + i\) and hence the above conditions mentioned in (9) become

Condition	Description
\(\hat{\phi}(\frac{p}{2} + pl) = \hat{\phi}(\frac{p}{2} - pl), \quad \hat{\phi}(-\frac{p}{2} + pl) = \hat{\phi}(-\frac{p}{2} - pl),\)	\(0 \leq a \leq p - 1\) such that \(a \neq i, j\), and \(0 \leq b \leq p - 1\) such that \(b \neq a, i, j\), then
\(\hat{\phi}(a - i + pl) = \hat{\phi}(\frac{p}{2} + i - a - pl), \quad \hat{\phi}(a - \frac{p}{2} - i + pl) = \hat{\phi}(i - a - pl),\)	
\(\hat{\phi}(i - a + pl) = \hat{\phi}(a - \frac{p}{2} - i - pl), \quad \hat{\phi}(\frac{p}{2} + i - a + pl) = \hat{\phi}(a - i - pl),\)	
\(\hat{\phi}(b - a + pl) = \hat{\phi}(a - b - pl).\)	

(10)
The following two tables consist of different values of a that are essential in the sequel:

a	0	1	\cdots	$i-1$	$i+1$	$i+2$	\cdots	$\frac{p}{2} + i - 1$
$a-i$	$-i$	$1-i$	\cdots	-1	1	2	\cdots	$\frac{p}{2} - 1$
$i-a$	i	$i-1$	\cdots	1	-1	-2	\cdots	$1 - \frac{p}{2}$
$\frac{p}{2} + i - a$	$\frac{p}{2} + i$	$\frac{p}{2} + i - 1$	\cdots	$\frac{p}{2} + 1$	$\frac{p}{2} - 1$	$\frac{p}{2} - 2$	\cdots	1
$a - \frac{p}{2} - i$	$-\frac{p}{2} - i$	$1 - \frac{p}{2} - i$	\cdots	$-\frac{p}{2} - 1$	$1 - \frac{p}{2}$	$2 - \frac{p}{2}$	\cdots	-1

(11)

Sub-case I: Suppose $\frac{p}{2}$ is even. Then, we have the following $\frac{p}{4}$ many pairs:

$$(1, \frac{p}{2} - 1), (2, \frac{p}{2} - 2), \ldots, (\frac{p}{4} - 1, \frac{p}{4} + 1), (\frac{p}{4}, \frac{p}{4}).$$

(13)

For proceeding further, we need the following conditions as mentioned in the fourth row of the table (10), that is for $l \in \mathbb{Z}$, and for $0 \leq a \leq p - 1$ such that $a \neq i, \frac{p}{2} + i$, we have

$$\hat{\phi}(a - i + pl) = \hat{\phi}\left(\frac{p}{2} + i - a - pl\right), \quad \hat{\phi}(a - \frac{p}{2} - i + pl) = \hat{\phi}(i - a - pl).$$

(14)

Therefore, using the column corresponding to $a = i + 1$ in (11) and using (14) we get

$$\hat{\phi}(1 + pl) = \hat{\phi}\left(\frac{p}{2} - 1 - pl\right) = \hat{\phi}\left(-\frac{p}{2} + 1 - p(l - 1)\right) = \hat{\phi}(1 + p(l - 1)) \quad \forall \ l \in \mathbb{Z},$$

where, in the last equality, we have used the column corresponding to $a = \frac{p}{2} + i + 1$ in (12). Again, using (14) and using the columns corresponding to $a = i + 2$ and $a = \frac{p}{2} + i + 2$ in (11) and (12), respectively, we obtain

$$\hat{\phi}(2 + pl) = \hat{\phi}\left(\frac{p}{2} - 2 - pl\right) = \hat{\phi}\left(-\frac{p}{2} + 2 - p(l - 1)\right) = \hat{\phi}(2 + p(l - 1)) \quad \forall \ l \in \mathbb{Z}.$$

Therefore, by repeating the same argument as above and using (11), (12) and (14) we conclude

$$\hat{\phi}(r + pl) = \hat{\phi}(r + p(l - 1)) \quad \forall \ l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq \frac{p}{4}.$$

(15)

Since $\phi \in L^\infty(\mathbb{T}) \subset L^2(\mathbb{T})$ and hence $\sum_{k=-\infty}^{\infty} |\hat{\phi}(k)|^2 < \infty$, then Equation (15) yields

$$\hat{\phi}(r + pl) = 0 \quad \forall \ l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq \frac{p}{4}.$$

(16)

By observing the symmetricity of the pair in (18) and using Equations (14) and (16) we conclude

$$\hat{\phi}\left(\frac{p}{4} + s + pl\right) = \hat{\phi}\left(\frac{p}{4} - s - pl\right) = 0 \quad \forall \ l \in \mathbb{Z} \quad \text{and} \quad 1 \leq s \leq \frac{p}{4} - 1.$$

(17)
Furthermore, using the third row of the table (10) we get
\[\hat{\phi} \left(\frac{P}{2} + pl \right) = \hat{\phi} \left(\frac{P}{2} - pl \right) = \hat{\phi} \left(\frac{P}{2} - p - p(l - 1) \right) \]
\[= \hat{\phi} \left(-\frac{P}{2} - p(l - 1) \right) = \hat{\phi} \left(-\frac{P}{2} + p(l - 1) \right) = \hat{\phi} \left(\frac{P}{2} + p(l - 2) \right) \quad \forall \ l \in \mathbb{Z}, \]
and hence by the similar argument as in (16) we conclude
\[\hat{\phi} \left(\frac{P}{2} + pl \right) = 0 \quad \forall \ l \in \mathbb{Z}. \quad (18) \]

Next, we need the following conditions as mentioned in the fifth row of the table (10), that is for \(l \in \mathbb{Z} \), and for \(0 \leq a \leq p - 1 \) such that \(a \neq i, \frac{p}{2} + i \), we have
\[\hat{\phi} \left(i - a + pl \right) = \hat{\phi} \left(a - \frac{P}{2} + i - pl \right), \quad \hat{\phi} \left(\frac{P}{2} + i - a + pl \right) = \hat{\phi} \left(a - i - pl \right). \quad (19) \]

Again, by using the columns corresponding to \(a = i + 1, i + 2 \) in (11) and using (19) we get
\[\hat{\phi} \left(-1 + pl \right) = \hat{\phi} \left(-\frac{P}{2} + 1 - pl \right) = \hat{\phi} \left(\frac{P}{2} + 1 - p(l + 1) \right) = \hat{\phi} \left(-1 + p(l + 1) \right) \quad \forall \ l \in \mathbb{Z}, \]
\[\hat{\phi} \left(-2 + pl \right) = \hat{\phi} \left(-\frac{P}{2} + 2 - pl \right) = \hat{\phi} \left(\frac{P}{2} + 2 - p(l + 1) \right) = \hat{\phi} \left(-2 + p(l + 1) \right) \quad \forall \ l \in \mathbb{Z}. \]

Therefore, by repeating the same argument as above and using (11), (12) and (19) we conclude
\[\hat{\phi} \left(-r + pl \right) = \hat{\phi} \left(-r + p(l + 1) \right) \quad \forall \ l \in \mathbb{Z} \text{ and } 1 \leq r \leq \frac{P}{4}. \]

Thus, by the similar argument as in (16) we conclude
\[\hat{\phi} \left(-r + pl \right) = 0 \quad \forall \ l \in \mathbb{Z} \text{ and } 1 \leq r \leq \frac{P}{4}. \quad (20) \]

Consequently, by using Equations (19) and (20) we get
\[\hat{\phi} \left(\frac{P}{2} + r + pl \right) = \hat{\phi} \left(-r - pl \right) = 0 \quad \forall \ l \in \mathbb{Z} \text{ and } 1 \leq r \leq \frac{P}{4}. \quad (21) \]

Furthermore, using (20) we also conclude
\[\hat{\phi} \left(\frac{P}{2} + \frac{P}{4} + s + pl \right) = \hat{\phi} \left(-(\frac{P}{4} - s) + p(l + 1) \right) = 0 \quad \forall \ l \in \mathbb{Z} \text{ and } 1 \leq s \leq \frac{P}{4} - 1. \quad (22) \]

Thus, by combining all the conditions obtained in (16), (17), (18), (21) and (22) we get
\[\hat{\phi}(r + pl) = 0 \quad \forall \ l \in \mathbb{Z} \text{ and } 1 \leq r \leq p - 1. \]

Sub-case II: Suppose \(\frac{p}{2} \) is odd. Then, we have the following \(\frac{p/2-1}{2} \) many pairs:
\[\left(1, \frac{p}{2} - 1 \right), \left(2, \frac{p}{2} - 2 \right), \ldots, \left(\frac{p/2-1}{2}, \frac{p/2-1}{2} + 1 \right). \]
Therefore, by proceeding with the similar arguments as in Sub-case I we conclude,

\[\hat{\phi}(r + pl) = 0 \quad \forall l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq p - 1. \]

Case II: Here we assume that \(p = mq + 1 \) for some natural number \(m \geq 2, i = q - 1, \) and \(j = p - 1. \) Now by rewriting the relations obtained in the table (9), we have the following.

- **Interchange Rule:** (Intc)
 \[
 \hat{\phi}(c + pl) = \hat{\phi}(d - pl) \quad \text{for} \quad \begin{cases} |c|, |d| \in \{1, \ldots, p - 1\} \setminus \{p - q\} \quad \text{such that} |c + d| = p - q, \\ c = d = \pm (p - q). \end{cases}
 \]
 (23)

- **Sign Rule:** (Sgn)
 \[
 \hat{\phi}(c + pl) = \hat{\phi}(-c - pl) \quad \text{for} \quad \begin{cases} c \in \{1, \ldots, p - 3\} \quad \text{if} \quad q = 1, \\ c \in \{1, \ldots, p - 2\} \quad \text{if} \quad q \geq 2. \end{cases}
 \]
 (24)

Our next aim is to show that \(\hat{\phi}(k + pl) = 0 \) for all \(k \in \{1, 2, \ldots, p - 1\} \) and for all \(l \in \mathbb{Z}. \) Suppose \(q = 1 \) and \(p = m + 1 \) is odd (that is, \(m \) is even). Now for \(m = 2, \) we have

\[
\hat{\phi}(1 + pl) = \hat{\phi}(1 + 3l) \overset{(\text{Intc})}{=} \hat{\phi}(1 - 3l) \overset{(\text{Adj})}{=} \hat{\phi}(-2 - 3(l - 1)) \overset{(\text{Intc})}{=} \hat{\phi}(3 + 3(l - 1)) \quad \forall l \in \mathbb{Z},
\]
(25)

where we have used Equation (23) and the symbol (Adj) stands for the adjustment of the Fourier coefficients. Furthermore, by using Equation (23) we have for \(m > 2 \) (\(m \) is even) that

\[
\hat{\phi}(1 + pl) \overset{(\text{Intc})}{=} \hat{\phi}((p - 2) - pl) \overset{(\text{Adj})}{=} \hat{\phi}(-2 - p(l - 1)) \overset{(\text{Intc})}{=} \hat{\phi}(3 - p)
\]

\[+ p(l - 1) \overset{(\text{Adj})}{=} \hat{\phi}(3 + p(l - 2))
\]

\[= \cdots \overset{(\text{Adj})}{=} \hat{\phi}((p - 2) + p(l - (p - 3))) \overset{(\text{Intc})}{=} \hat{\phi}(1 - p(l - (p - 3)))
\]

\[\overset{(\text{Adj})}{=} \hat{\phi}((-1 - p) - p(l - (p - 2)))
\]

\[\overset{(\text{Intc})}{=} \hat{\phi}((1 - p) + p(l - (p - 2))) \overset{(\text{Adj})}{=} \hat{\phi}(1 + p(l - (p - 1))) \quad \forall l \in \mathbb{Z}. \quad (26)
\]

Now if \(q = 1 \) and \(p = m + 1 \) is even (that is, \(m \) is odd), then again by using Equations (23) and (24) we get

\[
\hat{\phi}(1 + pl) \overset{(\text{Intc})}{=} \hat{\phi}((p - 2) - pl) \overset{(\text{Adj})}{=} \hat{\phi}(-2 - p(l - 1))
\]

\[= \cdots \overset{(\text{Adj})}{=} \hat{\phi}((-p - 2) - p(l - (p - 3)))
\]

\[\overset{(\text{Intc})}{=} \hat{\phi}(-1 + p(l - (p - 3))) \overset{(\text{Adj})}{=} \hat{\phi}((p - 1) + p(l - (p - 2)))
\]
\[
\begin{align*}
\text{(Intc)} & \quad \hat{\phi}\left((p - 1) - p(l - (p - 2))\right) \quad \text{(Adj)} \quad \hat{\phi}\left(-1 - p(l - (p - 1))\right) \\
\text{(Sgn)} & \quad \hat{\phi}(1 + p(l - (p - 1))) \quad \forall \quad l \in \mathbb{Z}.
\end{align*}
\]

Therefore, by the similar argument as in (16), Equations (25), (26) and (27) yield that

\[
\hat{\phi}(k + pl) = 0 \quad \forall \quad l \in \mathbb{Z} \quad \text{and} \quad k \in \{1, 2, \ldots, p - 1\}.
\]

Next we consider \(q \geq 2 \), then by using (23) we get

\[
\hat{\phi}(1 + pl) \overset{\text{(Intc)}}{=} \hat{\phi}\left((p - q) - 1 - pl\right) \overset{\text{(Adj)}}{=} \hat{\phi}\left(-(q + 1) - p(l - 1)\right) \\
\overset{\text{(Intc)}}{=} \hat{\phi}\left(-p + (2q + 1) + p(l - 1)\right) \overset{\text{(Adj)}}{=} \hat{\phi}\left((2q + 1) + p(l - 2)\right) \\
\vdots \\
\overset{\text{(Adj)}}{=} \hat{\phi}\left((-1)^{(m - 1)}((m - 1)q + 1) + (-1)^{(m - 1)}p(1 - (m - 1))\right) \quad \forall \quad l \in \mathbb{Z}.
\]

To proceed further, let us denote \(l^{(k)} = l - k(m - 1), \quad k \in \mathbb{N}, \quad l \in \mathbb{Z}, \quad m \geq 2.\)

Sub-case I: Suppose \(p = mq + 1 \) such that \(m \) is odd. Then, Equation (29) yields

\[
\hat{\phi}(1 + pl) = \hat{\phi}\left(((m - 1)q + 1) + p(1 - (m - 1))\right) = \hat{\phi}\left((p - q) + pl^{(1)}\right) \overset{\text{(Intc)}}{=} \hat{\phi}\left((p - q) - pl^{(1)}\right) \\
\overset{\text{(Adj)}}{=} \hat{\phi}\left(-q - pl^{(1)} - 1\right) \overset{\text{(Intc)}}{=} \hat{\phi}\left((2q - p) + p(l^{(1)} - 1)\right) \overset{\text{(Adj)}}{=} \hat{\phi}\left(2q + p(l^{(1)} - 2)\right) \\
\overset{\text{(Intc)} \ldots \text{(Adj)}}{=} \hat{\phi}\left(-mq - p(l^{(1)} - m)\right) = \hat{\phi}\left(-(p - 1) - p(l^{(1)} - m)\right) \\
\overset{\text{(Adj)}}{=} \hat{\phi}\left(1 - p \left(l^{(1)} - (m - 1)\right)\right) = \hat{\phi}\left(1 - pl^{(2)}\right) \quad \forall \quad l \in \mathbb{Z},
\]

where we have used Equation (23). Moreover, again by using Equation (23) we get

\[
\hat{\phi}\left(1 - pl^{(2)}\right) \overset{\text{(Intc)}}{=} \hat{\phi}\left((q - p) - 1 + pl^{(2)}\right) \overset{\text{(Adj)}}{=} \hat{\phi}\left((q - 1) + p(l^{(2)} - 1)\right) \\
\overset{\text{(Intc)}}{=} \hat{\phi}\left(p - (2q - 1) - p(l^{(2)} - 1)\right) \overset{\text{(Adj)}}{=} \hat{\phi}\left(-(2q - 1) - p(l^{(2)} - 2)\right) \\
\overset{\text{(Intc)} \ldots \text{(Adj)}}{=} \hat{\phi}\left((-1)^{(m - 1)}(mq - 1) + (-1)^{m - 1}p(l^{(2)} - m)\right) = \hat{\phi}\left(p - 2 + p(l^{(2)} - m)\right) \\
\overset{\text{(Adj)}}{=} \hat{\phi}\left(-2 + p \left(l^{(2)} - (m - 1)\right)\right) = \hat{\phi}(-2 + pl^{(3)}) \quad \forall \quad l \in \mathbb{Z}.
\]
Therefore, by repeating the similar arguments as in (30) and (31) we conclude

\[
\hat{\phi}(1 + pl) = \hat{\phi}(1 - pl^{(2)}) = \hat{\phi}(-2 + pl^{(3)}) = \cdots = \begin{cases}
\hat{\phi}(-(q - 1) + pl^{(q)}) & \text{if } q \text{ is odd,} \\
\hat{\phi}((q - 1) - pl^{(q)}) & \text{if } q \text{ is even,}
\end{cases}
\]

(Adj) \begin{align*}
\hat{\phi}((p - q) + 1 + p (l^{(q)} - 1)) & \text{if } q \text{ is odd,} \\
\hat{\phi}((q - p) - 1 - p (l^{(q)} - 1)) & \text{if } q \text{ is even,}
\end{align*}

(Intc) \begin{align*}
\hat{\phi}(-1 - p(l^{(q)} - 1)) & \text{if } q \text{ is odd,} \\
\hat{\phi}(1 + p(l^{(q)} - 1)) & \text{if } q \text{ is even,}
\end{align*}

(Sgn) \phi \left(1 + p(l^{(q)} - 1)\right) \forall l \in \mathbb{Z}. \quad (32)

Therefore, by combining all the conditions obtained in (30), (31) and (32) we have the following chain of relations:

\[
\hat{\phi}(1 + pl) = \hat{\phi}(-(q + 1) - p(l - 1)) = \hat{\phi}((2q + 1) + p(l - 2)) = \cdots = \hat{\phi} ((p - q) + pl^{(1)}) \\
= \hat{\phi}(-q + p(l^{(1)} - 1)) = \hat{\phi}(2q + p(l^{(1)} - 2)) = \cdots = \hat{\phi}(-mq - p(l^{(1)} - m)) \\
= \hat{\phi} (1 - pl^{(2)}) = \hat{\phi}(-2 + pl^{(3)}) = \cdots = \begin{cases}
\hat{\phi}(-(q - 1) + pl^{(q)}) & \text{if } q \text{ is odd,} \\
\hat{\phi}((q - 1) - pl^{(q)}) & \text{if } q \text{ is even,}
\end{cases}
\]

\[= \hat{\phi} (1 + p(l^{(q)} - 1)) \forall l \in \mathbb{Z}. \quad (33)\]

Sub-case II: Suppose \(p = mq + 1 \) such that \(m \) is even. Then, by applying (23), Equation (29) becomes

\[
\hat{\phi}(1 + pl) = \hat{\phi}(-(m - 1)q + 1) - p(l - (m - 1))) = \hat{\phi}(-(p - q) - pl^{(1)}) \\
\overset{\text{(Intc)}}{=} \hat{\phi}(-(p - q) + pl^{(1)}) \\
\overset{\text{(Adj)}}{=} \hat{\phi}(q + p(l^{(1)} - 1)) \overset{\text{(Intc)}}{=} \hat{\phi}((p - 2q) - p(l^{(1)} - 1)) \overset{\text{(Adj)}}{=} \hat{\phi}(-2q - p(l^{(1)} - 2)) \\
\overset{\text{(Intc)}}{=} \cdots \overset{\text{(Adj)}}{=} \hat{\phi}(-mq - p(l^{(1)} - m)) \overset{\text{(Intc)}}{=} \hat{\phi}(-(p - 1) - p(l^{(1)} - m) \\
\overset{\text{(Adj)}}{=} \hat{\phi} (1 - p(l^{(1)} - (m - 1))) \\
= \hat{\phi} (1 - pl^{(2)}) \overset{\text{(Intc)}}{=} \hat{\phi} ((q - p) - 1 + pl^{(2)}) \overset{\text{(Adj)}}{=} \hat{\phi} (q - 1 + p(l^{(2)} - 1)) \\
\overset{\text{(Intc)}}{=} \hat{\phi} (p - (2q - 1) - p(l^{(2)} - 1)) \overset{\text{(Adj)}}{=} \hat{\phi} (-2q - 1 - p(l^{(2)} - 2)) \\
\overset{\text{(Intc)}}{=} \cdots \overset{\text{(Adj)}}{=} \hat{\phi} ((-1)^{m-1}(mq - 1) + (-1)^{m-1}p(l^{(2)} - m)) \\
= \hat{\phi} (2 - p - p(l^{(2)} - m)) \\
\overset{\text{(Adj)}}{=} \hat{\phi} (2 - p(l^{(2)} - (m - 1))) = \hat{\phi}(2 - pl^{(3)}) = \cdots = \hat{\phi} (q - 1 - pl^{(q)}) \\
\overset{\text{(Adj)}}{=} \hat{\phi} ((q - p) - 1 - p(l^{(q)} - 1)) \overset{\text{(Intc)}}{=} \hat{\phi} (1 + p(l^{(q)} - 1)) \forall l \in \mathbb{Z}. \quad (34)
Therefore, by the similar argument as in (16) and by applying Sign Rule, Equations (33) and (34) yield that

\[
\forall l \in \mathbb{Z}, \quad \begin{cases}
\hat{\phi}(\pm 1 + pl) = \hat{\phi}(\pm 2 + pl) = \cdots = \hat{\phi}(\pm (q - 1) + pl) = 0, \\
\hat{\phi}(\pm q + pl) = \hat{\phi}(\pm 2q + pl) = \cdots = \hat{\phi}(\pm mq + pl) = 0, \\
\hat{\phi}(\pm (q + 1) + pl) = \hat{\phi}(\pm (2q + 1) + pl) = \cdots = \hat{\phi}(\pm ((m - 1)q + 1) + pl) = 0.
\end{cases}
\] (35)

Now for the remaining terms, by using (23) and (35) we have

\[
\forall l \in \mathbb{Z}, \quad \begin{cases}
\hat{\phi}(q + 2 + pl) & \overset{(Adj)}{=} \hat{\phi}((q - p + 2) + p(l + 1)) & \overset{(Intc)}{=} \hat{\phi}(-2 - p(l + 1)) = 0, \\
\vdots \\
\hat{\phi}(q + (q - 1) + pl) & \overset{(Adj)}{=} \hat{\phi}((q - p + (q - 1)) + p(l + 1)) \\
& \overset{(Intc)}{=} \hat{\phi}(-(q - 1) - p(l + 1)) = 0.
\end{cases}
\] (36)

Similarly, by employing the similar argument as in (36) we conclude

\[
\forall l \in \mathbb{Z}, \quad \begin{cases}
\hat{\phi}(2q + 2 + pl) = \hat{\phi}(2q + 3 + pl) = \cdots = \hat{\phi}(3q - 1 + pl) = 0, \\
\vdots \\
\hat{\phi}((m - 2)q + 2 + pl) = \hat{\phi}((m - 2)q + 3 + pl) = \cdots = \hat{\phi}((m - 1)q - 1 + pl).
\end{cases}
\] (37)

Moreover, again by applying (23) and (35) we conclude

\[
\forall l \in \mathbb{Z}, \quad \begin{cases}
\hat{\phi}((m - 1)q + 1 + 1 + pl) = \hat{\phi}((p - q) + 1 + pl) & \overset{(Intc)}{=} \hat{\phi}(-1 - pl) = 0, \\
\vdots \\
\hat{\phi}((m - 1)q + 1 + (q - 1) + pl) = \hat{\phi}((p - q) + (q - 1) + pl) \\
& \overset{(Intc)}{=} \hat{\phi}(-(q - 1) - pl) = 0.
\end{cases}
\] (38)

Finally, combining all the conditions obtained in (35), (36), (37) and (38) we get

\[\hat{\phi}(r + pl) = 0 \quad \forall l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq p - 1.\]

Summing up we have the following result.

Theorem 2.2: Let \(\phi(z) = \sum_{k=0}^{\infty} \hat{\phi}(z)z^k \in L^\infty(\mathbb{T}) \), and let \(T_\phi \) be the Toeplitz operator corresponding to the symbol \(\phi \). Let \(p, i, j \in \mathbb{N} \) be such that \(0 \leq i < j < p \), and let \(C_p^{ij} \) be the corresponding conjugation defined as in (2) on \(H^2_{\mathbb{C}}(\mathbb{D}) \). If either

(i) \(p \) is even and \(|i - j| = \frac{p}{2} \), or

(ii) \(p = mq + 1 \) for some natural number \(m \geq 2 \) such that \(i = q - 1 \) and \(j = p - 1 \),

then \(T_\phi \) is \(C_p^{ij} \)-symmetric if and only if

\[\hat{\phi}(pl) = \hat{\phi}(-pl), \quad \text{and} \quad \hat{\phi}(r + pl) = 0 \quad \forall l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq p - 1.\]
Remark 2.3: We expect that Theorem 2.2 is also valid for any $0 \leq i < j < p$ and we leave the general case for future investigation.

3. Conjugation related to model spaces

In this section, we consider a special type of conjugation on $H^2_\mathbb{C}(\mathbb{D})$ different from those discussed in the previous section which essentially arose from the study of natural conjugation in model spaces. Let $p = n \in \mathbb{N}$ and consider the special permutation

$$
\sigma : \begin{pmatrix}
 a_{nk} & a_{nk+1} & \cdots & a_{nk+m} & \cdots & a_{nk+(n-1)} \\
 a_{nk+(n-1)} & a_{nk+(n-2)} & \cdots & a_{nk+(n-m-1)} & \cdots & a_{nk}
\end{pmatrix}
$$

on the set \{a_{nk}, a_{nk+1}, \ldots, a_{nk+(n-1)}\} for $k \in \mathbb{N} \cup \{0\}$, and $0 \leq m \leq n - 1$. Then, from (1) it follows that

$$
C_n = C_\sigma \left(\sum_{k=0}^{\infty} \sum_{m=0}^{n-1} a_{nk+m}z^{nk+m} \right) = \sum_{k=0}^{\infty} \sum_{m=0}^{n-1} \bar{\hat{a}}_{nk+(n-m-1)}z^{nk+m}, \tag{39}
$$

where $\sum_{k=0}^{\infty} \sum_{m=0}^{n-1} a_{nk+m}z^{nk+m} \in H^2_\mathbb{C}(\mathbb{D})$. As earlier, it is easy to verify that C_n is a conjugation on $H^2_\mathbb{C}(\mathbb{D})$. Our main aim in this section is to provide a necessary and sufficient conditions on the symbol $\phi \in L^\infty(\mathbb{T})$ whenever the Toeplitz operator T_ϕ is complex symmetric with respect to the conjugation C_n. Let $\phi \in L^\infty(\mathbb{T})$ and let $\hat{\phi}(z) = \sum_{k=-\infty}^{\infty} \hat{\phi}(k)z^k$. Now we assume that the Toeplitz operator T_ϕ is complex symmetric with respect to this conjugation C_n. Therefore,

$$
C_n T_\phi C_n = T_\phi^* \quad \text{that is} \quad T_\phi C_n = C_n T_\phi. \tag{40}
$$

It is well known that \{z^{nk+a} : 0 \leq a \leq n-1, k \geq 0\} is an orthonormal basis of the Hardy space $H^2_\mathbb{C}(\mathbb{D})$. Now applying the definition of C_n (see (39)) it follows that

$$
C_n T_\phi (z^{nk+a}) = C_n \left(\sum_{j=0}^{\infty} \hat{\phi}(nk + a - j)z^j \right) = \sum_{j=0}^{\infty} \sum_{m=0}^{n-1} \hat{\phi} \left(nk - nj - ((n-1) - a) + m \right) z^{nj+m} \tag{41}
$$

and

$$
T_\phi C_n (z^{nk+a}) = T_\phi \left(z^{nk+(n-1)-a} \right) = \sum_{j=0}^{\infty} \sum_{m=0}^{n-1} \hat{\phi} \left(nj - nk - ((n-1) - a) + m \right) z^{nj+m}. \tag{42}
$$

Therefore, by substituting $k - j = l \in \mathbb{Z}$ in (41) and (42), and using (40) we obtain

$$
\hat{\phi} \left(nl - ((n-1) - a) + m \right) = \hat{\phi} \left(-nl - ((n-1) - a) + m \right), \tag{43}
$$
where \(0 \leq a \leq n-1\) and \(0 \leq m \leq n-1\). In particular if \(a = n-1\) and \(m = 0\), then Equation (43) yields
\[
\hat{\phi}(nl) = \hat{\phi}(-nl) \quad \forall l \in \mathbb{Z}.
\] (44)
The following table is essential in the sequel consisting of two different values of \(a\), namely \(a = 0\) and \(a = n-1\):

\(a = 0\)	\(a = n-1\)
\(\phi(nl - (n-1)) = \phi(-nl - (n-1))\)	\(\phi(nl) = \phi(-nl)\)
\(\hat{\phi}(nl - (n-2)) = \hat{\phi}(-nl - (n-2))\)	\(\hat{\phi}(nl + 1) = \hat{\phi}(-nl + 1)\)
\(\vdots\)	\(\vdots\)
\(\hat{\phi}(nl - (n-r)) = \hat{\phi}(-nl - (n-r))\)	\(\hat{\phi}(nl + r) = \hat{\phi}(-nl + r)\)
\(\vdots\)	\(\vdots\)
\(\hat{\phi}(nl - 1) = \hat{\phi}(-nl - 1)\)	\(\hat{\phi}(nl + (n-2)) = \hat{\phi}(-nl + (n-2))\)
\(\phi(nl) = \phi(-nl)\)	\(\hat{\phi}(nl + (n-1)) = \hat{\phi}(-nl + (n-1))\),

where \(0 \leq r \leq n-1\) and \(l \in \mathbb{Z}\). Therefore, by using the above table (45) we conclude
\[
\hat{\phi}(r + nl) = \hat{\phi}(r - nl) = \hat{\phi}(r - n - n(l - 1)) = \hat{\phi}(r - n + n(l - 1)) = \hat{\phi}(r + n(l - 2)) \quad \forall l \in \mathbb{Z},
\] (46)
where \(1 \leq r \leq n-1\). On the other hand, note that \(\phi \in L^\infty(\mathbb{T}) \subset L^2(\mathbb{T})\) and hence \(\sum_{k=\infty}^{\infty} |\hat{\phi}(k)|^2 < \infty\). As a result Equation (46) yields
\[
\hat{\phi}(r + nl) = 0 \quad \forall l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq n-1.
\]
So, if we assume that \(T_\phi\) is \(C_n\) symmetric, then as a necessary condition of this fact we obtain
\[
\hat{\phi}(nl) = \hat{\phi}(-nl) \quad \text{and} \quad \hat{\phi}(r + nl) = 0 \quad \text{for any} \ l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq n-1.
\]
Now conversely, if we assume \(\phi \in L^\infty(\mathbb{T})\) be such that \(\hat{\phi}(nl) = \hat{\phi}(-nl)\) and \(\hat{\phi}(r + nl) = 0\) for any \(l \in \mathbb{Z}\) and \(1 \leq r \leq n-1\). Then, using the definition of the conjugation \(C_n\) (see (39)) one can easily check that
\[
\left(C_n T_\phi - T_\phi C_n \right) (z^{nk+a})
= \sum_{j=0}^{\infty} \sum_{m=0}^{n-1} \left(\hat{\phi}(nk - nj - (n-1) - a) + m \right)
- \hat{\phi}(nj - nk - (n-1) - a) + m \right) z^{nj+m} = 0,
\]
for any \(0 \leq a \leq n-1\) and \(k \geq 0\). Combining all the above observations, we have the following main result in this section.

Theorem 3.1: Let \(\phi(z) = \sum_{k=\infty}^{\infty} \hat{\phi}(k)z^k \in L^\infty(\mathbb{T})\), and let \(T_\phi\) be the Toeplitz operator on \(H_2^\infty(\mathbb{T})\) corresponding to the symbol \(\phi\). Then, \(T_\phi\) is complex symmetric with respect to the
conjugation C_n if and only if $\hat{\phi}(nl) = \hat{\phi}(-nl)$ and $\hat{\phi}(r + nl) = 0$, for any $l \in \mathbb{Z}$ and $1 \leq r \leq n - 1$.

The following two corollaries provide a characterization on the symbol ϕ whenever the Toeplitz operator T_ϕ is normal and unitary.

Corollary 3.2: Let $\phi \in L^\infty$. If T_ϕ is complex symmetric with respect to the conjugation C_n, then T_ϕ is normal if and only if $\phi(z) = \hat{\phi}(0) + 2e^{-i\theta/2}\mathfrak{R}(\sum_{l=1}^{\infty} e^{i\theta/2} \hat{\phi}(nl) \mathfrak{R}(zn^l))$, where $\mathfrak{R}(z)$ denotes the real part of z.

Proof: Let T_ϕ be complex symmetric with respect to the conjugation C_n, then by Theorem 3.1, we have

$\hat{\phi}(nl) = \hat{\phi}(-nl)$ and $\hat{\phi}(r + nl) = 0$ for any $l \in \mathbb{Z}$ and $1 \leq r \leq n - 1$.

It is well known that T_ϕ is a normal operator if and only if there exists a unit modular constant α such that $\hat{\phi}(n) = \alpha \hat{\phi}(-n)$ (for more details see [9, 15, 20, 21]). So if T_ϕ is a normal, C_n-symmetric Toeplitz operator then

$\hat{\phi}(nl) = \alpha \hat{\phi}(nl)$ and $\hat{\phi}(r + nl) = 0$ for any $l \in \mathbb{Z}$ and $1 \leq r \leq n - 1$.

Therefore, the Fourier series representation of the symbol ϕ is given by

$\phi(z) = \hat{\phi}(0) + 2\sum_{l=1}^{\infty} \hat{\phi}(nl) \mathfrak{R}\left(z^{nl}\right) = \hat{\phi}(0) + \sum_{l=1}^{\infty} \hat{\phi}(nl) \mathfrak{R}\left(z^{nl}\right) + \sum_{l=1}^{\infty} \hat{\phi}(nl) \mathfrak{R}\left(z^{nl}\right)$

$= \hat{\phi}(0) + \sum_{l=1}^{\infty} \hat{\phi}(nl) \mathfrak{R}\left(z^{nl}\right) + \sum_{l=1}^{\infty} e^{i\theta} \hat{\phi}(nl) \mathfrak{R}\left(z^{nl}\right)$ [taking $\alpha = e^{-i\theta}$]

$= \hat{\phi}(0) + 2e^{-i\theta/2}\mathfrak{R}\left(\sum_{l=1}^{\infty} e^{i\theta/2} \hat{\phi}(nl) \mathfrak{R}(zn^l)\right)$. ■

Corollary 3.3: Let $\phi \in L^\infty$ and let T_ϕ be complex symmetric with respect to the conjugation C_n, then T_ϕ is unitary if and only if $\phi = \alpha$, where α is a complex number such that $|\alpha| = 1$.

Proof: Let $\phi \in L^\infty$ and let T_ϕ be complex symmetric with respect to the conjugation C_n. It is trivially true that if $\phi = \alpha$ with $|\alpha| = 1$, then T_ϕ is unitary. For the converse part, note that if T_ϕ is an unitary operator then for every non-negative integer k, we have

$1 = \langle T_\phi z^k, T_\phi z^k \rangle = \langle \hat{T_\phi} z^k, T_\phi z^k \rangle$

$= \left(\sum_{m=-k}^{\infty} \hat{\phi}(m) z^{m+k}, \sum_{q=-k}^{\infty} \hat{\phi}(q) z^{q+k} \right) = \sum_{m=-k}^{\infty} |\hat{\phi}(m)|^2$, (47)

which furthermore gives that

$\hat{\phi}(k) = 0$ for $k < 0$. (48)
Moreover, since \(T_\phi \) is complex symmetric with respect to the conjugation \(C_n \), so by Theorem 3.1, we have

\[
\dot{\phi}(nl) = \dot{\phi}(-nl) \quad \text{and} \quad \dot{\phi}(r + nl) = 0 \quad \forall \ l \in \mathbb{Z} \quad \text{and} \quad 1 \leq r \leq n - 1.
\]

(49)

Therefore, from the above relations (49) together with (48), we conclude that \(\dot{\phi}(k) = 0 \) for all non-zero integer \(k \), and from (47), we have \(|\dot{\phi}(0)| = 1 \). Thus, \(\phi = \dot{\phi}(0) \), with \(|\dot{\phi}(0)| = 1 \).

4. Conjugations in \(H^2_{\mathbb{C}^2} (\mathbb{D}) \)

In this section, we study complex symmetric block Toeplitz operators on \(H^2_{\mathbb{C}^2} (\mathbb{D}) \) with respect to some special conjugations on \(H^2_{\mathbb{C}^2} (\mathbb{D}) \) introduced earlier in [5, 8, 10]. Let \(C_2 \) be a conjugation on \(H^2_{\mathbb{C}^2} (\mathbb{D}) \) defined as in (39) corresponding to \(n = 2 \). Next we define a map \(C : H^2_{\mathbb{C}^2} (\mathbb{D}) \rightarrow H^2_{\mathbb{C}^2} (\mathbb{D}) \) whose block matrix representation is the following:

\[
C = \frac{1}{\sqrt{2}} \begin{bmatrix} C_2 & C_2 \\ C_2 & -C_2 \end{bmatrix}.
\]

(50)

Then, it is important to observe that \(C \) is a conjugation on \(H^2_{\mathbb{C}^2} (\mathbb{D}) \) (see [10, Corollary 2.8]). For more on \(2 \times 2 \) conjugation matrices on \(\mathcal{H} \oplus \mathcal{H} \) we refer to [10], where \(\mathcal{H} \) is any complex Hilbert space. Let \(\Phi \in L^\infty_{\mathcal{M}_2} (\mathbb{T}) \) be such that \(\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \), where \(\phi_i \in L^\infty (\mathbb{T}) \) for \(1 \leq i \leq 4 \), and let \(T_\Phi = \begin{bmatrix} T_{\phi_1} & T_{\phi_2} \\ T_{\phi_3} & T_{\phi_4} \end{bmatrix} \) be corresponding block Toeplitz operator on \(H^2_{\mathbb{C}^2} (\mathbb{D}) \).

First we assume that the Toeplitz operator \(T_\Phi \) is complex symmetric with respect to the conjugation \(C \), that is

\[
T_\Phi C = CT_\Phi^*.
\]

which implies

\[
C_2 (T_{\phi_1} + T_{\phi_2}) C_2 = T_{\bar{\phi}_1} + T_{\bar{\phi}_2}, \quad (T_{\phi_3} - T_{\phi_4}) C_2 = C_2 (T_{\bar{\phi}_3} - T_{\bar{\phi}_4})
\]

(51)

and

\[
C_2 (T_{\phi_3} + T_{\phi_4}) C_2 = C_2 (T_{\bar{\phi}_1} - T_{\bar{\phi}_2}), \quad C_2 (T_{\phi_3} - T_{\phi_4}) C_2 = T_{\bar{\phi}_3} - T_{\bar{\phi}_4}.
\]

(52)

Thus, by applying Theorem 3.1 for \(n = 2 \) and using Equations (51) and (52) we conclude

(i) \(T_{\phi_1 + \phi_2} \) is \(C_2 \) symmetric, that is \(\phi_1 + \phi_2(2l) = \phi_1 + \phi_2(-2l) \) and \(\phi_1 + \phi_2(2l + 1) = 0 \), for all \(l \in \mathbb{Z} \),

(ii) \(T_{\phi_3 - \phi_4} \) is \(C_2 \) symmetric, that is \(\phi_3 - \phi_4(2l) = \phi_3 - \phi_4(-2l) \) and \(\phi_3 - \phi_4(2l + 1) = 0 \), for all \(l \in \mathbb{Z} \),

(iii) \(C_2 (T_{\phi_3} - T_{\phi_4}) C_2 = T_{\bar{\phi}_3} + T_{\bar{\phi}_4} \).
Suppose $\phi_1 - \phi_2 = \psi_1$ and $\phi_3 + \phi_4 = \psi_2$, and let $\psi_1(z) = \sum_{n=-\infty}^{\infty} \hat{\psi}_1(n)z^n$ and $\psi_2(z) = \sum_{n=-\infty}^{\infty} \hat{\psi}_2(n)z^n$. Then, the above condition (iii) becomes

$$T_{\psi_1} C_2 = C_2 T_{\psi_2}. \quad (53)$$

Next by applying the definition of C_2 and using (53) we get for any $m \geq 0$ that

$$T_{\psi_1} C_2 (z^{2m}) = C_2 T_{\psi_2} (z^{2m})$$

$$\Rightarrow T_{\psi_1} (z^{2m+1}) = C_2 \left(\sum_{n=0}^{\infty} \hat{\psi}_2(-(n-2m))z^n \right)$$

$$\Rightarrow \sum_{n=0}^{\infty} \hat{\psi}_1(n-2m-1)z^n = \sum_{k=0}^{\infty} \hat{\psi}_2(-(2k-2m))z^{2k+1}$$

$$+ \sum_{k=0}^{\infty} \hat{\psi}_2(-(2k+1-2m))z^{2k},$$

which by equating the Fourier coefficient yields the following conditions:

$$\forall k, m \geq 0, \quad \left\{ \begin{array}{l} \hat{\psi}_1(2k-2m-1) = \hat{\psi}_2(-(2k+1-2m)), \\ \hat{\psi}_1(2k+2m) = \hat{\psi}_2(-(2k-2m)). \end{array} \right. \quad (54)$$

Similarly, for any $m \geq 0$ we also get

$$T_{\psi_1} C_2 (z^{2m+1}) = C_2 T_{\psi_2} (z^{2m+1})$$

$$\Rightarrow T_{\psi_1} (z^{2m}) = C_2 \left(\sum_{n=0}^{\infty} \hat{\psi}_2(-(n-2m-1))z^n \right)$$

$$\Rightarrow \sum_{n=0}^{\infty} \hat{\psi}_1(n-2m)z^n = \sum_{k=0}^{\infty} \hat{\psi}_2(-(2k-2m-1))z^{2k+1}$$

$$+ \sum_{k=0}^{\infty} \hat{\psi}_2(-(2k+1-2m-1))z^{2k},$$

which leads to the following conditions:

$$\forall k, m \geq 0, \quad \left\{ \begin{array}{l} \hat{\psi}_1(2k-2m+1) = \hat{\psi}_2(-(2k-2m-1)), \\ \hat{\psi}_1(2k-2m) = \hat{\psi}_2(-(2k-2m)). \end{array} \right. \quad (55)$$

Substituting $k - m = l \in \mathbb{Z}$ in (54) and (55) we have the following set of conditions:

$$\forall l \in \mathbb{Z}, \quad \left\{ \begin{array}{l} \phi_1 - \phi_2(2l) = \phi_3 + \phi_4(-2l), \\ \phi_1 - \phi_2(2l-1) = \phi_3 + \phi_4(-2l-1), \\ \phi_1 - \phi_2(2l+1) = \phi_3 + \phi_4(-2l+1). \end{array} \right. \quad (56)$$
Moreover, using the above mentioned conditions in (56) we conclude
\[
\hat{\phi}_1 - \phi_2(2l + 1) = \phi_3 + \phi_4(-2l + 1) = \phi_3 + \phi_4(-2(l - 1) - 1) \\
= \hat{\phi}_1 - \phi_2(2(l - 1) - 1) = \hat{\phi}_1 - \phi_2(2(l - 2) + 1) \quad \forall \ l \in \mathbb{Z},
\]
and hence \(\hat{\phi}_1 - \phi_2(2l + 1) = 0\), for all \(l \in \mathbb{Z}\) since \(\phi_1 - \phi_2 \in L^\infty(\mathbb{T}) \subseteq L^2(\mathbb{T})\). Similarly, we also conclude \(\phi_3 + \phi_4(2l + 1) = 0\), for all \(l \in \mathbb{Z}\). Consequently, combining all the above obtained conditions we get
\[
\forall \ l \in \mathbb{Z}, \ \left\{ \begin{array}{l}
\hat{\phi}_1 + \phi_2(2l) = \phi_1 + \phi_2(-2l), \quad \hat{\phi}_1 + \phi_2(2l + 1) = 0, \\
\phi_3 - \phi_4(2l) = \phi_3 - \phi_4(-2l), \quad \phi_3 - \phi_4(2l + 1) = 0, \\
\hat{\phi}_1 - \phi_2(2l) = \phi_3 + \phi_4(-2l), \quad \hat{\phi}_1 - \phi_2(2l + 1) = 0, \quad \phi_3 + \phi_4(2l + 1) = 0,
\end{array} \right.
\]
which after slight modifications reduces to
\[
\forall \ l \in \mathbb{Z}, \ \left\{ \begin{array}{l}
\hat{\phi}_1 + \phi_2(2l) = \phi_1 + \phi_2(-2l), \quad \phi_3 - \phi_4(2l) = \phi_3 - \phi_4(-2l), \\
\hat{\phi}_1 - \phi_2(2l) = \phi_3 + \phi_4(-2l), \quad \hat{\phi}_1(2l + 1) = 0 \quad \text{for } 1 \leq i \leq 4.
\end{array} \right. \quad (57)
\]
Summing up, we have the following theorem.

Theorem 4.1: Let \(\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \in L^\infty_{M_2}(\mathbb{T})\), and let \(C : H^2_{C_2}(\mathbb{D}) \rightarrow H^2_{C_2}(\mathbb{D})\) be a conjugation on \(H^2_{C_2}(\mathbb{D})\) whose block matrix representation is \(\frac{1}{\sqrt{2}} \begin{bmatrix} C_2 & C_2 \\ C_2 & -C_2 \end{bmatrix}\), where \(C_2\) is conjugation on \(H^2_{C_2}(\mathbb{D})\) defined as in (39). Then, the Toeplitz operator \(T_\Phi\) is complex symmetric with respect to the conjugation \(C\) if and only if
\[
\hat{\phi}_1 + \phi_2(2l) = \phi_1 + \phi_2(-2l), \quad \phi_3 - \phi_4(2l) = \phi_3 - \phi_4(-2l), \\
\hat{\phi}_1 - \phi_2(2l) = \phi_3 + \phi_4(-2l), \quad \hat{\phi}_1(2l + 1) = 0, \quad \text{for all } l \in \mathbb{Z} \quad \text{and} \quad 1 \leq i \leq 4.
\]

Alternatively, by adding and subtracting the conditions obtained in (57) we have the following theorem.

Theorem 4.2: Let \(\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \in L^\infty_{M_2}(\mathbb{T})\), and let \(C : H^2_{C_2}(\mathbb{D}) \rightarrow H^2_{C_2}(\mathbb{D})\) be a conjugation on \(H^2_{C_2}(\mathbb{D})\) whose block matrix representation is \(\frac{1}{\sqrt{2}} \begin{bmatrix} C_2 & C_2 \\ C_2 & -C_2 \end{bmatrix}\), where \(C_2\) is conjugation on \(H^2_{C_2}(\mathbb{D})\) defined as in (39). Then, the Toeplitz operator \(T_\Phi\) is complex symmetric with respect to the conjugation \(C\) if and only if
\[
\hat{\phi}_1 + \phi_2(2l) = \phi_1 + \phi_2(-2l), \quad \phi_1 + \phi_3(2l) = \phi_1 + \phi_3(-2l), \\
\phi_1 + \phi_4(2l) = \phi_1 + \phi_4(-2l), \quad \hat{\phi}_i(2l + 1) = 0 \quad \text{for all } l \in \mathbb{Z} \quad \text{and} \quad 1 \leq i \leq 4.
\]
Remark 4.3: Let \(\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \in L_{\infty}^2(\mathbb{T}) \), and let \(T\Phi = \begin{bmatrix} T_{\phi_1} & T_{\phi_2} \\ T_{\phi_3} & T_{\phi_4} \end{bmatrix} \) be the corresponding block Toeplitz operator on \(H_{C_2}^2(\mathbb{D}) \). Then, using Theorems 4.2 and 3.1 we conclude the following: If \(T_{\phi_i} \) is complex symmetric with respect to the conjugation \(C_2 \) on \(H_{C_2}^2(\mathbb{D}) \) for all \(1 \leq i \leq 4 \), then \(T\Phi \) is complex symmetric with respect to the conjugation \(C \) on \(H_{C_2}^2(\mathbb{D}) \). Conversely, if \(T\Phi \) is complex symmetric with respect to the conjugation \(C \) on \(H_{C_2}^2(\mathbb{D}) \) and if one of \(T_{\phi_i} \) is complex symmetric with respect to the conjugation \(C_2 \) on \(H_{C_2}^2(\mathbb{D}) \), then rest of \(T_{\phi_i} \) is also complex symmetric with respect to the conjugation \(C_2 \) on \(H_{C_2}^2(\mathbb{D}) \).

Next, let \(C_1 \) and \(C_2 \) be two conjugations on \(H_{C_2}^2(\mathbb{D}) \) defined as in (39) corresponding to \(n = 1 \) and \(n = 2 \) respectively. Then, it is easy to verify that \(C_1 \) commutes with \(C_2 \), that is \(C_1 C_2 = C_2 C_1 \). Let \(\tilde{C} : H_{C_2}^2(\mathbb{D}) \rightarrow H_{C_2}^2(\mathbb{D}) \) be a conjugation on \(H_{C_2}^2(\mathbb{D}) \) defined in [10, Corollary 2.8] whose block matrix representation is the following:

\[
\tilde{C} = \frac{1}{\sqrt{2}} \begin{bmatrix} C_2 & C_1 \\ C_1 & -C_2 \end{bmatrix}.
\]

Our next aim is to investigate the complex symmetry of the Toeplitz operator \(T\Phi : H_{C_2}^2(\mathbb{D}) \rightarrow H_{C_2}^2(\mathbb{D}) \) having symbol \(\Phi = \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_3 & \phi_4 \end{bmatrix} \in L_{\infty}^2(\mathbb{T}) \) with respect to the conjugation \(\tilde{C} \). As earlier, we first assume \(T\Phi \) is complex symmetric with respect to \(\tilde{C} \), that is

\[
T\Phi \tilde{C} = \tilde{C} T^* \Phi
\]

\[
\iff \begin{bmatrix} T_{\phi_1} & T_{\phi_2} \\ T_{\phi_3} & T_{\phi_4} \end{bmatrix} \begin{bmatrix} C_2 & C_1 \\ C_1 & -C_2 \end{bmatrix} = \begin{bmatrix} C_2 & C_1 \\ C_1 & -C_2 \end{bmatrix} \begin{bmatrix} T_{\phi_1} & T_{\phi_3} \\ T_{\phi_2} & T_{\phi_4} \end{bmatrix},
\]

which yields the following set of conditions:

\[
\begin{align*}
T_{\phi_1} C_2 + T_{\phi_2} C_1 &= C_2 T_{\phi_1} + C_1 T_{\phi_2}, \\
T_{\phi_1} C_1 - T_{\phi_2} C_2 &= C_2 T_{\phi_3} + C_1 T_{\phi_4},
\end{align*}
\]

\[
T_{\phi_3} C_2 + T_{\phi_4} C_1 = C_1 T_{\phi_3} - C_2 T_{\phi_4},
\]

\[
T_{\phi_3} C_1 - T_{\phi_4} C_2 = C_1 T_{\phi_3} - C_2 T_{\phi_4}.
\]

(59)

Therefore, as earlier using the definition of \(C_1, C_2 \) and using (59), we get for any \(m \geq 0 \) that

\[
(T_{\phi_1} C_2 + T_{\phi_2} C_1) (z^{2m}) = (C_2 T_{\phi_1} + C_1 T_{\phi_2}) (z^{2m})
\]

\[
\Longrightarrow \sum_{n=0}^{\infty} \hat{\phi}_1 (n-2m-1) z^n + \sum_{n=0}^{\infty} \hat{\phi}_2 (n-2m) z^n
\]

\[
= C_2 \left(\sum_{n=0}^{\infty} \hat{\phi}_1 ((n-2m)) z^n \right)
\]
which by substituting the index $k - m = l \in \mathbb{Z}$ and equating the Fourier coefficient leads to the following conditions:

\[
\begin{align*}
\phi_1(2l) + \phi_2(2l + 1) &= \phi_1(-2l) + \phi_2(-2l - 1), \\
\phi_1(2l - 1) + \phi_2(2l) &= \phi_1(-2l - 1) + \phi_2(-2l).
\end{align*}
\]

Similarly, by repeating the above similar calculations and using the equation \((T_{\phi_1} C_2 + T_{\phi_2} C_1)(z^{2m+1}) = (C_2 T_{\phi_1} + C_1 T_{\phi_2})(z^{2m+1})\) for any \(m \geq 0\) we get the following conditions:

\[
\forall l \in \mathbb{Z}, \quad \begin{align*}
\phi_1(2l) + \phi_2(2l - 1) &= \phi_1(-2l) + \phi_2(-2l + 1), \\
\phi_1(2l + 1) + \phi_2(2l) &= \phi_1(-2l + 1) + \phi_2(-2l).
\end{align*}
\]

Therefore, continuing the above process, the equation \(T_{\phi_1} C_1 - T_{\phi_2} C_2 = C_2 T_{\phi_3} - C_1 T_{\phi_4}\) yields

\[
\forall l \in \mathbb{Z}, \quad \begin{align*}
\phi_1(2l) - \phi_2(2l - 1) &= \phi_4(-2l) + \phi_3(-2l - 1), \\
\phi_1(2l + 1) - \phi_2(2l) &= \phi_4(-2l - 1) + \phi_3(-2l), \\
\phi_1(2l - 1) - \phi_2(2l) &= \phi_4(-2l + 1) + \phi_3(-2l), \\
\phi_1(2l) - \phi_2(2l + 1) &= \phi_4(-2l) + \phi_3(-2l + 1).
\end{align*}
\] \hfill (60)

Similarly, the equation \(T_{\phi_3} C_2 + T_{\phi_4} C_1 = C_1 T_{\phi_1} - C_2 T_{\phi_2}\) leads to the following set of conditions:

\[
\forall l \in \mathbb{Z}, \quad \begin{align*}
\phi_4(2l) + \phi_3(2l - 1) &= \phi_1(-2l) - \phi_2(-2l - 1), \\
\phi_4(2l + 1) + \phi_3(2l) &= \phi_1(-2l - 1) - \phi_2(-2l), \\
\phi_4(2l - 1) + \phi_3(2l) &= \phi_1(-2l + 1) - \phi_2(-2l), \\
\phi_4(2l) + \phi_3(2l + 1) &= \phi_1(-2l) - \phi_2(-2l + 1).
\end{align*}
\] \hfill (61)
Furthermore, the equation $T_{\phi_3}C_1 - T_{\phi_4}C_2 = C_1 T_{\phi_3} - C_2 T_{\phi_4}$ gives the following set of conditions:

$$
\forall l \in \mathbb{Z},
\begin{align*}
\hat{\phi}_3(2l) - \hat{\phi}_4(2l - 1) &= \hat{\phi}_3(-2l) - \hat{\phi}_4(-2l - 1), \\
\hat{\phi}_3(2l + 1) - \hat{\phi}_4(2l) &= \hat{\phi}_3(-2l - 1) - \hat{\phi}_4(-2l), \\
\hat{\phi}_3(2l - 1) - \hat{\phi}_4(2l) &= \hat{\phi}_3(-2l + 1) - \hat{\phi}_4(-2l), \\
\hat{\phi}_3(2l) - \hat{\phi}_4(2l + 1) &= \hat{\phi}_3(-2l) - \hat{\phi}_4(-2l + 1).
\end{align*}
$$

It is important to observe that some repetition is there in the set of conditions obtained in (60) and (61). Thus, by removing those repetition we get the following complete list of conditions:

$$
\forall l \in \mathbb{Z},
\begin{align*}
\hat{\phi}_1(2l) + \hat{\phi}_2(2l + 1) &= \hat{\phi}_1(-2l) + \hat{\phi}_2(-2l - 1), \\
\hat{\phi}_1(2l - 1) + \hat{\phi}_2(2l) &= \hat{\phi}_1(-2l - 1) + \hat{\phi}_2(-2l), \\
\hat{\phi}_1(2l) + \hat{\phi}_2(2l - 1) &= \hat{\phi}_1(-2l - 1) + \hat{\phi}_2(-2l + 1), \\
\hat{\phi}_1(2l + 1) + \hat{\phi}_2(2l) &= \hat{\phi}_1(-2l + 1) + \hat{\phi}_2(-2l), \\
\hat{\phi}_1(2l) - \hat{\phi}_2(2l - 1) &= \hat{\phi}_4(-2l - 1) - \hat{\phi}_3(-2l - 1), \\
\hat{\phi}_1(2l - 1) - \hat{\phi}_2(2l) &= \hat{\phi}_4(-2l + 1) - \hat{\phi}_3(-2l), \\
\hat{\phi}_1(2l) - \hat{\phi}_2(2l + 1) &= \hat{\phi}_4(-2l - 1) - \hat{\phi}_3(-2l), \\
\hat{\phi}_1(2l + 1) - \hat{\phi}_2(2l) &= \hat{\phi}_3(-2l - 1) - \hat{\phi}_4(-2l), \\
\hat{\phi}_3(2l - 1) - \hat{\phi}_4(2l) &= \hat{\phi}_3(-2l + 1) - \hat{\phi}_4(-2l), \\
\hat{\phi}_3(2l) - \hat{\phi}_4(2l + 1) &= \hat{\phi}_3(-2l) - \hat{\phi}_4(-2l + 1),
\end{align*}
$$

which after simplifying again we obtain the following set of minimal conditions:

$$
\forall l \in \mathbb{Z},
\begin{align*}
\hat{\phi}_1 + \hat{\phi}_4(2l + 1) &= 0, \\
\hat{\phi}_2 - \hat{\phi}_3(2l + 1) &= 0, \\
\hat{\phi}_1(2l) - \hat{\phi}_1(2l + 2) &= \hat{\phi}_1(-2l) - \hat{\phi}_1(-2l - 2), \\
\hat{\phi}_2(2l) - \hat{\phi}_1(2l - 2) &= \hat{\phi}_2(-2l) - \hat{\phi}_2(-2l + 2), \\
\hat{\phi}_3(2l) - \hat{\phi}_1(2l - 2) &= \hat{\phi}_3(-2l) - \hat{\phi}_3(-2l + 2), \\
\hat{\phi}_4(2l) - \hat{\phi}_1(2l + 2) &= \hat{\phi}_4(-2l) - \hat{\phi}_4(-2l - 2), \\
\hat{\phi}_2 + \phi_3(2l) + \hat{\phi}_1(2l - 1) &= \phi_2 + \phi_3(-2l) + \phi_1(2l + 1), \\
\phi_1 + \phi_4(2l) + \phi_2 + \phi_3(2l + 1) &= \phi_1 - \phi_4(-2l) + \phi_2 + \phi_3(-2l - 1).
\end{align*}
$$

Summing up, we have the following theorem in this section.

Theorem 4.4: Let $\Phi = \left[\begin{array}{c} \phi_1 \\ \phi_3 \\ \phi_4 \end{array} \right] \in L^\infty_{M_2}(\mathbb{T})$, and let $\tilde{\mathcal{C}} : H^2_\mathcal{C}(\mathbb{D}) \rightarrow H^2_\mathcal{C}(\mathbb{D})$ be a conjugation on $H^2_\mathcal{C}(\mathbb{D})$ whose block matrix representation is $\frac{1}{\sqrt{2}} \begin{bmatrix} C_2 & C_1 \\ C_1 & -C_2 \end{bmatrix}$, where C_1 and C_2 are conjugations on $H^2_\mathcal{C}(\mathbb{D})$ defined as in (39). Now if the Toeplitz operator T_Φ is complex
symmetric with respect to the conjugation \tilde{C}, then for any $l \in \mathbb{Z}$ we get

\[
\begin{align*}
\hat{\phi}_1 + \phi_4 (2l + 1) &= 0, \quad \hat{\phi}_2 - \phi_3 (2l + 1) = 0, \\
\hat{\phi}_1 (2l) - \hat{\phi}_1 (2l + 2) &= \phi_1 (-2l) - \phi_1 (-2l - 2), \\
\hat{\phi}_2 (2l) - \hat{\phi}_1 (2l - 2) &= \phi_2 (-2l) - \phi_2 (-2l + 2), \\
\hat{\phi}_3 (2l) - \hat{\phi}_1 (2l - 2) &= \phi_3 (-2l) - \phi_3 (-2l + 2), \\
\hat{\phi}_4 (2l) - \hat{\phi}_1 (2l + 2) &= \phi_4 (-2l) - \phi_4 (-2l - 2),
\end{align*}
\]

\[
\begin{align*}
\phi_2 + \phi_3 (2l) + \phi_1 - \phi_4 (2l - 1) &= \phi_2 + \phi_3 (-2l) + \phi_1 - \phi_4 (-2l - 1), \\
\phi_1 - \phi_4 (2l) + \phi_2 + \phi_3 (2l + 1) &= \phi_1 - \phi_4 (-2l) + \phi_2 + \phi_3 (-2l - 1).
\end{align*}
\]

5. Concluding remarks

It is important to observe that in Sections 2 and 3, we gave a characterization of complex symmetric Toeplitz operators T_ϕ on $H^2_C(D)$ with respect to conjugations that are special cases of C_σ (as defined in (1)). Hence, it is natural to ask the following question:

Question: Characterize complex symmetric Toeplitz operators T_ϕ on $H^2_C(D)$ with respect to the conjugation C_σ defined in (1).

We expect to have similar type of characterizations as obtained in Theorems 2.2 and 3.1 and leave this as a subject for future investigation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The research of the first named author is supported by the Mathematical Research Impact Centric Support (MATRICS) Grant, File No. MTR/2019/000640, by the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India. The second and the third named author gratefully acknowledge the support provided by IIT Guwahati, Government of India. The research of the fourth named author is supported by DST–INSPIRE Faculty Fellowship No. DST/INSPIRE/04/2019/000769.

References

[1] Garcia SR, Putinar M. Complex symmetric operators and applications. Trans Amer Math Soc. 2006;358:1285–1315.
[2] Garcia SR, Putinar M. Complex symmetric operators and applications II. Trans Amer Math Soc. 2007;359:3913–3931.
[3] Garcia SR, Wogen WR. Complex symmetric partial isometries. J Funct Anal. 2009;257:1251–1260.
[4] Garcia SR, Wogen WR. Some new classes of complex symmetric operators. Trans Amer Math Soc. 2010;362:6065–6077.
[5] Câmara MC, Kliś-Garlicka K, Ptak M. Complex symmetric completions of partial operator matrices. Linear and Multilinear Algebra. 2019; DOI: 10.1080/03081087.2019.1631246.

[6] Garcia SR. Conjugation and Clark operators. Contemp Math. 2006;393:67–112.

[7] Garcia SR, Prodan E, Putinar M. Mathematical and physical aspects of complex symmetric operators. J Phys A. 2014;47:1–51.

[8] Kang D, Ko E, Lee JE. Remarks on complex symmetric Toeplitz operators. Linear Multilinear Algebra. 2020; DOI: 10.1080/03081087.2020.1842847.

[9] Ko E, Lee JE. On complex symmetric Toeplitz operators. J Math Anal Appl. 2016;434:20–34.

[10] Ko E, Lee JE. Remark on complex symmetric operator matrices. Linear Multilinear Algebra. 2019;67(6):1198–1216.

[11] Curto RE, Hwang IS, Lee WY. Which subnormal Toeplitz operators are either normal or analytic. J Func Anal. 2012;263:2333–2354.

[12] Basor EL, Ehrhardt T. Torsten asymptotic of block Toeplitz determinants and the classical Dimer model. Comm Math Phys. 2007;274:427–455.

[13] Bender C, Fring A, Günther U, et al. Quantum physics with non-Hermitian operators. J Phys A. 2012;45:440301.

[14] de Prunelé E. Conditions for bound states in a periodic linear chain, and the spectra of a class of Toeplitz operators in terms of polylogarithm functions. J Phys A. 2003;36:8797–8815.

[15] Brown A, Halmos PR. Algebraic properties of Toeplitz operators. J Reine Angew Math. 1963–1964;213:89–102.

[16] Guo K, Zhu S. A canonical decomposition of complex symmetric operators. J Oper Theo. 2014;72:529–547.

[17] Waleed Noor S. Complex symmetry of Toeplitz operators with continuous symbols. Arch Math. 2017;109:455–460.

[18] Li A, Liu Y, Chen Y. Complex symmetric Toeplitz operators on the Dirichlet space. J Math Anal Appl. 2020;487:123998.

[19] Li R, Yang Y, Lu Y. A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces. J Math Anal Appl. 2020;489:124173.

[20] Itô T, Wong TK. Subnormality and quasinormality of Toeplitz operators. Proc Amer Math Soc. 1972;34:157–164.

[21] Farenick DR, Lee WY. Hyponormality and spectra of Toeplitz operators. Trans Amer Math Soc. 1996;384:4153–4174.