Identifying Cheating Anchor Nodes using Maximum Likelihood and Mahalanobis Distance

Jeril KuriakoseA, Amruth VB Swathy NandhiniC Abhilash VD

ASchool of Computing and Information Technology (SCIT), Manipal University Jaipur, Jaipur, India, Contact: jeril@muj.manipal.edu

BDepartment of Information Science and Engineering, Bearys Institute of Technology, Mangalore, India.

CDepartment of Information Technology, Jayam College of Engineering and Technology, Dharmapuri, India.

DFreelancer.

Malicious anchor nodes will constantly hinder genuine and appropriate localization. Discovering the malicious or vulnerable anchor node is an essential problem in Wireless Sensor Networks (WSNs). In wireless sensor networks, anchor nodes are the nodes that know its current location. Neighbouring nodes or non-anchor nodes calculate its location (or its location reference) with the help of anchor nodes. Ingenious localization is not possible in the presence of a cheating anchor node or a cheating node. Nowadays, it's a challenging task to identify the cheating anchor node or cheating node in a network. Even after finding out the location of the cheating anchor node, there is no assurance, that the identified node is legitimate or not.

This paper aims to localize the cheating anchor nodes using trilateration algorithm and later associate it with maximum likelihood expectation technique (MLE), and Mahalanobis distance to obtain maximum accuracy in identifying malicious or cheating anchor nodes during localization. We were able to attain a considerable reduction in the error achieved during localization. For implementation purpose we simulated our scheme using ns-3 network simulator.

Keywords: Anchor Node, Distance-based Localization, Mahalanobis Distance, Maximum Likelihood Expectation, Security, Trilateration, Wireless Sensor Networks.

1. INTRODUCTION

Wireless Adhoc and sensor networks are on a steady rise in the recent decade. This is because of their reduced cost in deployment and maintenance. Advancements in radio frequency spectrum also paved way for the improvement in the data rate for communication. Many devices belong to wireless ad hoc and sensor networks, one among them is anchor node [1-8]. Anchor nodes are the nodes that know its current location. Neighbouring nodes or non-anchor nodes calculate its location (or location reference) with the help of anchor nodes, and its working is quite referable to Light House.

The location of the nodes plays a significant role in many areas as routing, surveillance and monitoring, military etc. The sensor nodes must know their location reference to carry-out location-based routing (LR) [9-12]. To find out the shortest route, the location aided routing (LAR) [13-15] makes use of the locality reference of the sensor nodes. In some industries the sensor nodes are used to identify minute changes as pressure, temperature and gas leak, and in military, robots are used to detect land-mine where in both the cases location information plays a key part.

Anchor nodes can also be used to find the current location of any device (mobile phones, ob-
jects and people). It does that by transmitting anchor frames periodically or at regular intervals. Usually anchor frames are used to advertise the occurrence of a wireless modem or an Access Point (AP). Each anchor frame carries some details about the configuration of AP and a little security information for the clients.

When the technologies are on a massive upswing, the need for security of the relevant technologies arises. There can be several occasions where the anchor nodes can be vulnerable to security breach. Because of the security breach the anchor node starts cheating by providing false information. In the presence of cheating anchor nodes the chances of localization drastically decreases. Many papers [16-19] discuss about the localization of cheating anchor nodes, but with inconsistent accuracy. So, to overcome this, we localize the cheating or vulnerable anchor node using trilateration technique, and associate the results with maximum likelihood expectation technique [20-33] and Mahalanobis distance [34]. No such scheme has been used till now to identify the malicious anchor nodes.

Organization of the paper: Section 2 provides the localization using trilateration algorithm and Section 3 and Section 4 studies the maximum likelihood expectation and Mahalanobis distance, respectively. Simulation and results are covered in Section 5, Section 6 explains few future events and Section 7 concludes the paper.

2. LOCALIZATION USING TRILATERATION ALGORITHM

Anchor nodes are widely used for tacking and localization; whereas now-a-days it is also used for navigation and route-identification. With the help of anchor nodes, a user can find out his current location. Consider a scenario like a hotel or museum, there may be many occasions where people go out of track. This can be flabbergasted by installing anchor nodes installed in various locations, so that people can trace out there location very easily and it is possible only when the anchor nodes are authentic. Now-a-days hackers are on a rise; anybody can easily get into any system and change its settings. Similarly, they can hack any anchor nodes and change its location reference to some other false location reference, making people lose their track; thus leading to a bad imprint about the system (i.e., hotel, museum).

An attack is exemplified in Figure 1 and Figure 2. Figure 1 shows the initial deployment of anchor nodes A1, A2, A3; with location reference (x1, y1), (x2, y2), (x3, y3); and distance L1, L2, L3; respectively, from the trilateration point T, having location reference (xt, yt). Figure 2 demonstrates the logical deployment of anchor nodes after the attack i.e., multiple changes in location reference of anchor node A2.

The three dimensional location coordinate of any device or node can be estimated using trilateration calculations. Trilateration technique uses distance measurements rather than angular measurements; latter technique is also used in many localization techniques [21-23]. Using some iterative schemes like least square, least median square [17], least trimmed square [24] and gradient descent [25], can equitably increase the accuracy of trilateration technique.

Trilateration techniques use the distance measurement between the nodes to calculate the location reference. The distances between

Figure 1. Initial Set-up of Anchor Nodes.
the nodes are identified using Received Signal Strength (RSSI) [26, 33] or Time of Arrival (ToA) [27, 28, 33] or Time Difference of Arrival (TDoA) [29, 30, 33]. When a node (requesting node) wants to identify its location information using trilateration technique, it does with the help of three or more neighbouring anchor nodes. The exemplification of trilateration techniques is as follows:

1. A node that wants to find its location reference (or location coordinate) sends a localization request to any of its neighbouring anchor nodes. The anchor node sends a reply with its current location reference and its RSSI measurement with respect to the node that wants to localize. Based on this information, we put up a virtual wireless ring (VWR) (or logical ring) [31] as shown in Figure 3. The assumption of the logical ring is made with the anchor node as centre. The requesting node can be located anywhere on the circumference of the logical ring, and thus making it difficult to guess its exact location.

2. Next the same requesting node sends another localization request to a different neighbouring anchor node. The an-chor node follows the same process as discussed in the previous step. Again another logical ring is updated to the previous one, shown in Figure 4. From the logical observation we can analyse that the location of the requesting node could be present in any one of the intersecting point of the two logical rings.

3. Finally to ease the muddle, the same requesting node sends another localization request to a different neighbouring anchor node other than the previous two anchor nodes. The same process is repeated with the new neighbouring anchor node. When the final virtual wireless ring is drawn, we would be able to extract the exact location of the requesting node. Figure 5 shows the localization of a node using trilateration technique.

The three dimensional location coordinate of any device or node can be estimated using trilateration calculations. Trilateration technique
uses distance measurements rather than angular measurements; the latter technique is also used in many localization techniques. Using some iterative schemes like least square, least median square, least trimmed square and gradient descent, can equitably increase the accuracy of trilateration technique.

Trilateration techniques use the distance measurement between the nodes to calculate the location reference. The distances between the nodes are identified using Received Signal Strength (RSSI) or Time of Arrival (ToA) or Time Difference of Arrival (TDoA). When a node (requesting node) wants to identify its location information using trilateration technique, it does with the help of three or more neighbouring anchor nodes.

The mathematical computation of trilateration is as follows:

Consider three circles or spheres with centre C_1, C_2 and C_3, radius L_1, L_2 and L_3 from points A_1, A_2 and A_3 (anchor node location), refer Figure 6.

The general equation of the sphere is

$$\sum_{k=1}^{3} (A_k - C_k)^2 = L_k^2$$

Figure 5. Virtual Wireless Ring with Three Anchor Node.

Figure 6. Trilateration Measurements.

This can be modified as follows,

$$L_1^2 = A_1^2 + A_2^2 + A_3^2$$
$$L_2^2 = (A_1 - D)^2 + A_2^2 + A_3^2$$
$$L_3^2 = (A_1 - i)^2 + (A_2 - j)^2 + A_3^2$$

Subtracting Eq. (2) from Eq. (1), we get

$$L_2^2 - L_1^2 = (A_1 - D)^2 + A_2^2 + A_3^2 - A_1^2 - A_2^2 - A_3^2$$

Substituting we get,

$$A_1 = \frac{L_2^2 - L_1^2 - D^2}{2D}$$

From the first two circles we can find out that the two circles intersect at two different points, that is

$$D - A_1 < A_2 < D + A_1$$

Substituting Eq. (5) in Eq.(1), we can procure

$$L_1 = \frac{2}{2D} + A_2 + A_3$$

Substituting we get the solution of the intersection of two circles

$$s = \frac{(L_1^2 - L_2^2 + D^2)^2}{4D^2}$$

Substituting Eq. (1) with Eqs. (3) and (8), we get

$$s = L_1^2 - A_1^2 - A_2^2$$
Identifying Cheating Anchor Nodes using Maximum Likelihood and Mahalanobis Distance

\[L_3^2 = (A_1 - i)^2 + (A_2 - j)^2 + s \]
\[L_2^2 - L_2^2 - A_1^2 + (A_1^2 - i)^2 + j^2 \]
\[A_2 = \frac{L_2^2 - L_1^2 + i^2 + j^2}{2j} \]
\[A_2 = \sqrt{L_1} \]

Data: Deployment of anchor nodes
Result: Successfully deploying anchor nodes and exchanging trilateration information

Start initialization; Deploy the anchor nodes;

Set the initial coordinates (lat & long) for each anchor node;
Cluster anchor nodes into a set of three or more;
while not at end of deployment do

Trilaterate a group of anchor nodes to a centre point (or trilateration point) and save the location reference in \(M_1^* \);
Individually trilaterate all the anchor nodes with the neighbouring group and save the location references in \(M_2^*, M_3^*, etc. \);
Pass trilateration information to its immediate neighbours;
end
Stop deploying anchor nodes;

Data: Location coordinate of nodes
Result: Finding out the malicious anchor nodes Start;

Trilaterate each group of anchor nodes to a centre point and save that location;
Compare the obtained location with location reference \(M_1^* \);
while comparison not satisfied do

Trilaterate all anchor nodes (individually) of the particular group (which does not satisfy the above comparison) with the neighbouring group (using the trilateration information obtained during deployment);
Compare the obtained results with the location references \((M_2^*, M_3^*, etc.) \);
if a node is suspected to be malicious then
Separate the mismatched anchors node location and save the new location in \(M_N \);
end
If comparison satisfied, no cheating nodes occur;
Stop;

Algorithm 1: Setting up anchor node

Algorithm 2: Finding out the malicious anchor nodes
3. CORRELATING WITH MAHA-LANOBIS DISTANCE

Mahalanobis distance applies posterior probability to identify the outliers. When two anchor nodes in space are demarcated by two or more associated location coordinates, Mahalanobis distance can be used to find the distance measure between the two anchor nodes. Mahalanobis distance identifies the malicious cheating nodes by comparing the location coordinates with respect to a centroid value. In our case the centroid value is the location coordinate of the trilateration point. The Mahalanobis distance function to identify the distance measure between two anchor nodes are as follows:

\[d_{(mahalanobis)} = q \left[([x_j, y_j] - [x_i, y_i])^T \cdot C^{-1} \cdot ([x_j, y_j] - [x_i, y_i]) \right] \]

where:
- \(d_{(mahalanobis)} \) is the distance between two anchor nodes,
- \([x_i, y_i] \) and \([x_j, y_j]\) are the location coordinates of the two anchor nodes,
- \(C \) is the sample covariance matrix.

The variance-covariance matrix \(C \) is constructed in order to gauge Mahalanobis distance,

\[C = \frac{1}{(n-1)} (x, y)^T (x, y) \]

where:
- \((x, y)\) is the matrix containing the location coordinates,
- \(n \) is the number of nodes.

In the instance of multiple location references the variance-covariance \(C \) will become as follows:

\[\sigma^2(x, y) \quad \rho_{12} \sigma_1 \sigma_2 \]

\[\rho_{12} \sigma_1 \sigma_2 \quad \sigma_2^2 \]

where:
- \(\sigma^2 \) and \(\rho \) are the variances of the multiple location references,
- \(\rho_{12} \) is the covariance be-
The transformation of the location coordinates to matrix form is shown in Figure 7 and Figure 8. The Mahalanobis distance function can be modified to identify the distances from multiple location coordinates to a centroid, as follows: $d(\delta) = q \cdot [(x_i, y_i)^T - C^{-1} \cdot [(x_i, y_i) - (x_c, y_c)]]$ for $i = 1, 2, 3, ..., n$ where:

- $d(\delta)$ is the distance between centroid and i^{th} anchor node,
- (x_i, y_i) is the location coordinate of the i^{th} anchor node,
- (x_c, y_c) is the location coordinate of the centroid or trilateration point.

The new distances obtained using Mahalanobis distance, are compared using posterior probability; leading to the confirmation of the anchor nodes adversity.

4. ASSOCIATING WITH MAXIMUM LIKELIHOOD EXPECTATION

One of the most broadly and commonly used classification technique is maximum likelihood expectation / classification. It has a good acceptable result and is extensively employed and demanding algorithm.

The localization error obtained during the above mentioned algorithm is discussed in our next section. And the obtained results are compared with maximum likelihood expectation method. In wireless sensor networks, all the sensor data or the sensed data are sent to a central server or aggregation point. In our scheme, the central server is made available with the location references of all the nodes in the network and MLE method is carried out with the location references available in the aggregation point or the central server.

Maximum likelihood Expectation is a technique that is used in statistics to find the maximum probable value from previously obtained results. The results obtained from maximum likelihood expectation can be used as the parametric values for further experiments or simulations.

4.1. Probability density function

Probability density function (pdf) sorts out the required area for the random variable to occur. Consider a random sample $(x_1, x_2, ..., x_n)$ from an unknown population has data vector $x = (x_1, x_2, ..., x_n)$. The probability density function $f(x|w)$ is $f(x = (x_1, x_2, ..., x_n)|w) = f(x_1|x|w) \cdot f(x_2|x|w) \cdot ... \cdot f(x_n|x|w)$ where: x is a random sample, w is the parameter value.

Consider a scenario where n (number of trials) = 10, $w = 0.4$ and $x = (0, 1, ..., 10)$, then the probability density function will be $f(x|n = 10, w = 0.4) = \frac{10!}{x!(10 - x)!} (0.4)^x (0.6)^{(10 - x)}$.

The parametric values have a large number of successive probabilities.

4.2. Likelihood Function

The trilateration groups are denoted as ϕ_k, $k = 1, 2, 3, ..., M$ where M is the number of trilateration groups. To determine the group, to which an anchor node with the current location z belongs, the conditional probabilities $p(\phi_k|z)$, $k = 1, 2, 3, ..., M$ play a crucial role. The probability $p(\phi_k|z)$ states whether ϕ_k is the correct trilateration group of the anchor node with the given location z. We can categorize the anchor nodes, if we know the complete set of $p(\phi_k|z)$ from decision rule $z \in \phi_k$ if $p(\phi_k|z) > p(\phi_k|z)$ for all $n = 6 k$ (11)

This explains that the anchor node with location z is the member of group ϕ_k if $p(\phi_k|z)$ is the largest probability of the set. The desired $p(\phi_k|z)$ from the above equation and the available $p(z|\phi_k)$ from the projected training data, are correlated by Bayes theorem

$$p(\phi_k|z) = \frac{p(z|\phi_k)p(\phi_k)}{p(z)}$$ (12)
where:
\[p(\phi_k) \] is the probability that anchor nodes from group \(\phi_k \) can move its location,
\[p(z) \] is the probability of finalizing an anchor node with location reference \(z \).

\[
p(z) = \prod_{k=1}^{M} p(z|\phi_k)p(\phi_k)
\]

Replacing equation (12) in (11), reduces the decision rule to

\[z \in \phi_k \text{ if } p(z|\phi_k) > p(z|\phi_n) \text{ for all } n \neq k \quad (13) \]

In equation (13), \(p(z|\phi_k) \) has been eliminated as a shared factor, since we don’t know whether it correct location or false location. As \(p(z|\phi_k) \) can be obtained from the training data, and it is plausible that the priors \(p(\phi_k) \) can be estimated.

In order to prove mathematically, we define the discriminant function \(\kappa(z) = \ln p(z|\phi_k)p(\phi_k) \) = \ln p(z|\phi_k) + \ln p(\phi_k) \quad (14) \)

In order to get a decision rule by substituting Eq. (14) with Eq. (13), we need a monotonic function i.e., natural logarithm. We give the decision rule as

\[z \in \phi_k \text{ if } \kappa(z) > \kappa(j) \text{ for all } j \neq k \quad (15) \]

To further proceed with maximum likelihood estimation, a certain probability model is chosen for the trilateration group function \(p(z|\phi_k) \).

In our scheme, we used Gaussian distribution which is as follows: \(p(z|\phi_k) = \)

\[
(2\pi)^{-\frac{S}{2}}|C_i|^{-1/2}e^{-\frac{1}{2} (z-x_i)^T C_i^{-1}(z-x_i)}
\]

where: \(x_i \) is the mean position of the anchor node among the trilateration group \(\phi_k \), \(C_i \) is the covariance matrix of the trilateration group \(\phi_k \), \(S \) is the N dimensional space.

To obtain the categorization function, substitute Eq. (16) with (14) to get \(\kappa(z) = \)

\[
-\frac{1}{2} |C_i|^{-1/2} \ln 2\pi - \frac{1}{2} |C_i|^{1/2} c_i^{-1}(z-x_i)^T C_i (z-x_i) + \ln p(\phi_k) \]

Simplifying we get, \(\kappa(z) = \ln p(\phi_k) - \frac{1}{2} |C_i|^{-1/2} \ln |C_i| - \frac{1}{2} (z-x_i)^T C_i (z-x_i) \)

Removing the prior probability gives us the trilateration group membership of the anchor node,

\[
\kappa(z) = -\frac{1}{2} |C_i|^{-1} (z-x_i)^T C_i^{-1}(z-x_i)
\]

Eq. (17) is used to identify whether the anchor node belongs to current trilateration group and reducing the localization error. If the anchor node does not belong to the group it is consid-erated deceitful.

5. SIMULATION AND RESULTS

Our simulation was carried out in 600m x 600m two dimensional environment. Deploy-ing the anchor node accurately is very important. First three anchor nodes were placed ran-domly and the trilateration point is found for the same. An anchor node is placed on the trilateration point attained. Any one of the first three nodes is selected and it acts as the trilateration point of the newer nodes that are going to be deployed. The above process is repeated until the final node is deployed. We deployed around 117 nodes (around 1 node for every 5m x 5m), spread randomly using the above method. Figure 9 shows the deployment of the anchor nodes in our scenario.

![Figure 9. Deployment of Anchor Nodes.](image)

5.1. Experiment using trilateration technique

Few anchor nodes were compromised (making it transmit false information regarding its current location) randomly and the malicious anchor nodes were found out using trilateration technique. The localization error tran-
Identifying Cheating Anchor Nodes using Maximum Likelihood and Mahalanobis Distance

spired while localizing the malicious anchor nodes from random samples, were noted down. Each simulation was carried out for 50 times and the mean error was considered. Figure 10 shows the mean error in location discovery and Figure 11 shows the time taken to locate the malicious anchor nodes during simulation.

![Figure 10. Mean Localization Error While using Trilateration.](image)

![Figure 11. Average Time for Simulation.](image)

5.2. Comparing with Mahalanobis distance

The central server or aggregation point has a list of initial location references of the anchor nodes. The false location of the malicious anchor nodes obtained, were compared with the results obtained from Mahalanobis distance. Comparing the results obtained, reduced the error in location discovery. Figure 12 shows the mean error in locating malicious anchor nodes.

![Figure 12. Mean Error after Comparing with Mahalanobis Distance.](image)

5.3. Comparing with Maximum Likelihood Expectation

Maximum likelihood function has a list of initial location references of the anchor nodes. The false location of the malicious anchor nodes obtained, were compared with the results obtained from maximum likelihood function. Comparing the results obtained, reduced the error in location discovery. Figure 13 shows the mean error in locating malicious anchor nodes while using maximum likelihood expectation. Figure 14 shows the comparison of the three results, trilateration, trilateration with Mahalanobis Distance and trilateration with MLE. Finally the information about the malicious anchor node is conveyed to all the nodes other than the infected nodes, and the routing table is updated by confiscating the malicious anchor node.

6. DISCUSSION AND FUTURE EVENTS

Malicious anchor nodes will constantly hinder genuine and appropriate localization. Our scheme was carried out using fixed sensor nodes and the attack has a permanent consequence in the sensor node. Reducing the localization error and endorsing the malicious anchor node were implemented successfully in this paper.
We have proposed a novel scheme using maximum likelihood and trilateration technique to identify malicious anchor nodes. The error can be increased if hindrance, interferences, and attenuation caused by signal fading, and noise are additional. Our scheme can also be mod-elled to overcome such disturbances by using some statistical distributions like Rayleigh or Rician distributions [34]. Our algorithm per-formed consistently for different topologies.

Our scheme can be extended for mobile sensor node with an intermittent attack type. Our framework can be extended to acoustic and ultra-wideband (UWB) technology. Using energy efficiency as a benchmark is quite chal-lenging. Our algorithm was implemented in 2-D plane and can be extended to 3-D plane also.

7. CONCLUSIONS

For smart environments, security plays a very essential part. In this paper, we discussed about localizing malicious anchor nodes in a secured manner, using trilateration technique and comparing the results obtained with maximum likelihood expectation and Mahalanobis distance. By both the techniques way we were able to reduce the error attained during local-ization. However, maximum likelihood expectation outperformed Mahalanobis distance in perceiving cheating beacon nodes. By using maximum likelihood expectation and Mahalanobis distance we can obtain consistent and proficient results. Our results show that as the malicious anchor nodes increases, the simulatio-n time and error obtained during location discovery slightly increases. The accuracy obtained in our work can be used as assistance in some wireless applications. Some imminent events for further research have been discussed.

REFERENCES

1. R Want, A Hopper, V Falcao and J Gibbons. The Active Badge Location System, ACM Transactions on Information Systems, 10:91–102, 1992.
2. J Liu, Y Zhang and F Zhao. Robust Distributed Node Localization with Error Man-agement, In Proceedings of ACM MobiHoc, pages 250–261, 2006.
3. M W Carter, H H Jin, M A Saunders and Y Ye. SpaseLoc: An Adaptive Sub-problem Algorithm for Scalable Wireless Sensor Network Localization, SIAM Journal of Optimization, 1102–1128, 2006.
4. P Bahl and V N Padmanabhan. RADAR: An In-Building RF Based User Location and Tracking System, In Proceedings of IEEE IN-FOCOM, 2:775–784, 2000.
5. Niculescu and B Nath. DV Based Positioning in Ad Hoc Networks, Journal of Telecommuni-cation Systems, 22:267–280, 2003.
6. N Priyantha, A Chakraborty and H Balakrish-nan. The Cricket Location-Support System, In Proceedings of ACM MobiCom, pages 32–43, 2000.
7. R Stoleru and J A Stankovic. Probability Grid:
A Location Estimation Scheme for Wireless Sensor Networks, In Proceedings of First IEEE Conference on Sensor and Ad Hoc Communication and Networks (SECON 04), pages 430–438, 2004.

8. N Bulusu, J Heidemann and D Estrin. GPS-Less Low Cost Outdoor Localization for Very Small Devices, IEEE Personal Communication Magazine, 7(5):28–34, Oct. 2000.

9. Tracy Camp, Jeff Boleng, Brad Williams, Lu-cas Wilcox and William Navidi. Performance Comparison of Two Location Based Routing Protocols for Ad Hoc Networks, IEEE Transactions on Mobile Computing, 4(2):97–110, 2005.

10. Ljubica Blazevic, Jean-Yves Le Boudec and Silvia Giordano. A Location-Based Routing Method for Mobile Ad Hoc Networks, IEEE Transactions on Mobile Computing, 7(1):47–49, 2002.

11. Holger Fubler, Martin Mauve. Location Based Routing for Vehicular Ad Hoc Networks, In Proceedings of ACM MOBICOM, 10(9):1345–1358, 2011.

12. H Qu, S B Wicke. Co-designed Anchor-Free Localization and Location-based Routing Algorithm for Rapidly-deployed Wireless Sensor Networks, Information Fusion, 9(3):425–439, 2008.

13. Kuhn, R Wattenhofer and A Zollinger. Worst-case Optimal and Average-case Efficient Geometric Ad-Hoc Routing, In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 267–278, 2003.

14. Karim El Defrawy and Gene Tsudik. ALARM: Anonymous Location-Aided Routing in Suspectious MANETs, IEEE Transactions on Mobile Computing, 10(9):1345–1358, 2011.

15. Young-Bae Ko and Nithi H Vaidya. Location-Aided Routing (LAR) in Mobile Ad-Hoc Networks, Wireless Networks, pages 307–321, 2000.

16. Murtuza Jadiwala, Sheng Zhong, Shambhu Upadhyaya, Chunming Qiao and Jean-Pierre Hubaux. Secure Distance-Based Localization in the Presence of Cheating Anchor Nodes, IEEE Transactions on Mobile Computing, 9(6):810–823, 2010.

17. Z Li, W Trappe, Y Zhang and B Nath. Robust Statistical Methods for Securing Wireless Lo-cationization in Sensor Networks, In Proceedings of Fourth International Symposium on Information Processing in Sensor Networks (IPSN 05), pages 91–98, 2005.

18. Liu, P Ning and W Du. Attack-Resistant Lo-cation Estimation in Sensor Networks, In Pro-ceedings of Fourth International Symposium on Information Processing in Sensor Networks (IPSN 05), pages 13–18, 2005.

19. Liu, P Ning and W Du. Detecting Malicious Beacon Nodes for Secure Location Discovery in Wireless Sensor Networks, In Proceedings of 25th International Conference Distributed Computing Systems (ICDCS 05), pages 609–619, 2005.

20. In Jae Myung. Tutorial on Maximum Like-lihood Estimation, Journal of Mathematical Psychology, 47(1):90–100, 2003.

21. R Peng, M L Sichitiu. Angle of Arrival Lo-calization for Wireless Sensor Networks, In Proceedings of third Annual IEEE Commu-nications Society Conference on Sensor and Ad Hoc Communications and Networks, 1:374–382, 2006.

22. Niculescu and B Nath. Ad Hoc Position-ing System (APS) using AOA, In Proceed-ings of INFOCOM 2003. Twenty-Second An-nual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 3:1734–1743, 2003.

23. Nasipuri and K Li, A Directionality based Location Discovery Scheme for Wireless Sen-sor Networks, Localization, Exponent Estimation in Sensor Networks, In Proceedings of First IEEE Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 1:374–1743, 2003.

24. P Rousseeuw and K Driessen. Computing LTS Regression for Large Data Sets, Data Mining Knowledge Discovery, 12(1):29–45, 2006.

25. Ravi Garg, Avinash L Varma and Min Wu. An Efficient Gradient Descent Approach to Secure Localization in Resource Constrained Wireless Sensor Networks, IEEE Transactions on Informa-tion Forensics and Security, 7(2):717–730, April 2012.

26. Mao, B D O Anderson and B Fidan. Path Loss Exponent Estimation for Wireless Sen-sor Localization, Computer Networks, 51:2467–2483, 2007.

27. R Moses, D Krishnamurthy and R Patterson. A Self-Loca-tization Method for Wireless Sensor Networks, EURASIP Journal on Applied Signal Processing, special issue on sensor networks, pages 348–358, 2003.

28. Sariganidis. Localization for Ad Hoc Wireless Sensor Networks, MS Thesis, Technical Uni-.
29. J Xiao, L Ren and J Tan. Research of TDOA Based Self-Localization Approach in Wireless Sensor Network, In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2035–2040, 2006.

30. Jeril Kuriakose. Invalidating Vulnerable Broadcaster Nodes using Maximum Likelihood Expectation, International Journal of Research in Engineering and Technology, 3(7):129–136, 2014.

31. George Aggelou. Mobile Ad Hoc Networks from Wireless LANs to 4G Network, Tata Mc-Graw Hill Education, India, 2009.

32. Richards John A. Remote Sensing Digital Image Analysis: An Introduction, Springer, 2013.

33. Jeril Kuriakose, Sandeep Joshi, Vikram Raju R and Aravind Kilaru. A Review on Localization in Wireless Sensor Networks, Advances in Signal Processing and Intelligent Recognition System, Springer International Publishing, pages 599–610, 2014.

34. T S Rappaport. Mobile Radio Propagation: Large-Scale Path Loss, Wireless Communications: Principles and Practice, Second Edition, Pearson Education, Inc., 2003.

35. P C Mahalanobis. On the Generalised Distance in Statistics, In Proceedings of the National Institute of Science of India, pages 49–55.

Jeril Kuriakose received the B Tech degree from Jeppiaar Engineering College, India, in 2010, and M Tech degree from University of Mysore, India, in 2012, all in Information Technology. He is currently pursuing Ph.D in Manipal University Jaipur, India. His research interests include Mobile Computing, Mobile Ad Hoc Network, Network and Information Security and Scientific Computing.

Amruth V received B Tech Degree from Coorg Institute of Technology, India and MTech Degree from University of Mysore, India, in 2009 and 2012, respectively, all in Information Technology. At present he is working as assistant professor in Bearys Institute of Technology, Mangalore, India, in the Department of Information Science and Engineering. His research areas include Remote Sensing, Algorithms, Network and Information Security and Wireless Networking.

Swathy Nandhini N completed UG degree in KSR College of Engineering and PG degree in Varuvan Vadivelan Institute of Technology, Anna University, in India, in 2010 and 2012, respectively. Her area of interest includes Cryptography and Network Security, Computer Networks, Operating Systems and Web Technology.

Abhilash V is an Electrical Engineer. He completed his Bachelors from PES College of Engineering, Mandy, his research areas are Power Systems and Control Systems.