**REVIEW**

**Developing food allergy: a potential immunologic pathway linking skin barrier to gut [version 1; referees: 2 approved]**

Yui-Hsi Wang  
Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45299-3026, USA

---

**Abstract**

Immunoglobulin E (IgE)-mediated food allergy is an adverse reaction to foods and is driven by uncontrolled type-2 immune responses. Current knowledge cannot explain why only some individuals among those with food allergy are prone to develop life-threatening anaphylaxis. It is increasingly evident that the immunologic mechanisms involved in developing IgE-mediated food allergy are far more complex than allergic sensitization. Clinical observations suggest that patients who develop severe allergic reactions to food are often sensitized through the skin in early infancy. Environmental insults trigger epidermal thymic stromal lymphopoietin and interleukin-33 (IL-33) production, which endows dendritic cells with the ability to induce CD4⁺TH2 cell-mediated allergic inflammation. Intestinal IL-25 propagates the allergic immune response by enhancing collaborative interactions between resident type-2 innate lymphoid cells and CD4⁺TH2 cells expanded by ingested antigens in the gastrointestinal tract. IL-4 signaling provided by CD4⁺TH2 cells induces emigrated mast cell progenitors to become multi-functional IL-9-producing mucosal mast cells, which then expand greatly after repeated food ingestions. Inflammatory cytokine IL-33 promotes the function and maturation of IL-9-producing mucosal mast cells, which amplify intestinal mastocytosis, resulting in increased clinical reactivity to ingested food allergens. These findings provide the plausible view that the combinatorial signals from atopic status, dietary allergen ingestions, and inflammatory cues may govern the perpetuation of allergic reactions from the skin to the gut and promote susceptibility to life-threatening anaphylaxis. Future in-depth studies of the molecular and cellular factors composing these stepwise pathways may facilitate the discovery of biomarkers and therapeutic targets for diagnosing, preventing, and treating food allergy.

---

**Discuss this article**

Comments (0)
**Introduction**

Food allergy has emerged as a major health problem worldwide because of the rapid increase in prevalence over the past decade. Food-induced allergic reactions can cause clinical symptoms ranging from mild mouth itching and abdominal pain to life-threatening anaphylaxis, characterized by hypotension, vascular collapse, cardiac dysrhythmias, and diarrhea. Among the 15 million people who are affected by food allergy in the US, only some individuals develop food-induced, life-threatening anaphylaxis, resulting in 30,000 emergency room visits per year. In the healthy gastrointestinal (GI) tract, the epithelial lumen and GI immunity develop active immune tolerance to dietary antigens, combat invading microbes, and limit their persistence in the mucosa. It is unclear why some individuals fail to establish oral tolerance toward innocuous food allergens and develop allergic reactions to food allergens at the mucosal sites of the GI tract. Importantly, it is perplexing why only some of the individuals with food allergy who have high levels of dietary allergen-specific serum immunoglobulin E (IgE) acquire susceptibility to developing life-threatening anaphylactic reactions. Clinically, individuals with atopy and skin sensitization in infancy often develop an allergic response to ingested food in the GI tract later in life. Although this observation has led to the “dual-allergy exposure” hypothesis, the molecular and cellular mechanisms that support this plausible hypothesis remain to be established. The focus of this review is to discuss recent advances in understanding the molecular and cellular factors that contribute to allergic disease progression and promote susceptibility to life-threatening, IgE-mediated food allergy.

**Epidermal thymic stromal lymphopoietin and interleukin-33 induce allergic sensitization**

Recent clinical studies reveal that some patients with atopic dermatitis (AD) in early life may have a higher risk of developing food allergy. Infants with atopic eczema are prone to be sensitized to egg at only 4 months of age. In the population-based study of pediatric food allergy, eczema and filaggrin gene loss-of-function mutations, which are associated with reduced skin barrier integrity, are identified as the risk factors for food sensitization. Evidence from murine studies demonstrates that epicutaneous applications of food proteins can trigger sensitization, which results in the development of IgE-mediated food allergy after repeated food ingestions. These findings support the notion that the skin barrier is an important route in initiating allergic sensitization to food antigens and evading oral tolerance.

After injury, stress, or environmental insults, the skin epithelium loses its barrier function and orchestrates inflammatory responses and tissue remodeling by producing a myriad of cytokines, chemokines, and growth factors. Indeed, the idea that skin epithelium can trigger the onset of allergic diseases is supported by the findings that thymic stromal lymphopoietin (TSLP) can endow dendritic cells (DCs) with the ability to create a type 2-permissive microenvironment and drive a T-cell-mediated allergic immune response. Strong TSLP production is associated with the accumulation of large numbers of DCs activated by DC-lysosome-associated membrane protein-positive and of CD3+ T cells in the apical layers of the epidermis of patients with AD but not in normal or non-lesional skin. Mechanistically, keratinocyte-derived TSLP can potently induce the maturation and activation of infiltrated myeloid DCs. These TSLP-activated DCs can produce large amounts of chemokines to recruit inflammatory cells, induce CD4+ T helper type 2 (TH2) cell differentiation, and maintain functional attributes of CD4+TH2 memory/effector cells. In concert with eliciting a DC-mediated TH2 immune response, a recent study showed that TSLP could also promote interleukin-3 (IL-3)-dependent basophil hematopoiesis, resulting in basophil-mediated allergic inflammation. Perhaps early exposure to food proteins accompanied by environmental insults or genetic predisposition factors that result in epithelial TSLP production may provoke DC/basophil/CD4+TH2 cell-mediated allergic sensitization via skin barrier before establishing tolerance to ingested foods during infancy.

Several factors have been demonstrated to induce epithelial TSLP production. Topical application of vitamin D3 analogs, the ligand for the vitamin D receptor, induces strong TSLP production by keratinocytes, resulting in the development of an AD-like phenotype in mice. Since the binding of vitamin D receptor and retinoid X receptor alpha (RXRα) or RXRβ heterodimers can form the transcriptional repressor of Tslp gene, the treatments of vitamin D3 analogs which alleviate the formation of such transcription repressor result in the induction of Tslp gene expression in the mouse skin keratinocytes. The activation of Toll-like receptors by viral, bacterial, and fungal ligands can also induce TSLP production in epithelial cells. Accumulating evidence from recent animal studies has further substantiated the roles of TSLP and allergic sensitization via skin barrier in the development of experimental food allergy. Mice that develop AD after repeated topical applications of ovalbumin (OVA) plus vitamin D3 analog lose tolerance to ingested OVA and eventually develop symptoms of experimental food allergy. Conversely, mice deficient in TSLP receptor specifically in DCs also fail to develop antigen-specific IgE after epicutaneous sensitization and are resistant to developing experimental food allergy. Overexpression of TSLP can activate intradermally reconstituted basophils to promote cutaneous allergic inflammation, resulting in the development of experimental food allergy. By contrast, ablation of basophils in mice that are sensitized after topical application of vitamin D3 analogs results in resistance to developing experimental food allergy. These studies underscore the pivotal role of epidermal TSLP production in orchestrating the DC/basophil-mediated TH2 immune response that initiates the allergic sensitization to food antigens in the skin barrier, leading to the propensity to develop a food allergy (Figure 1).

In addition to aberrant epidermal TSLP induction, the loss of skin barrier function due to filaggrin gene mutation or injury after repeated skin picking (excoriation) also increases the risk for peanut allergy. Indeed, direct epicutaneous applications of cashew peanut extract, not soy extract, are sufficient to trigger adjuvant-independent allergic sensitization, possibly mediated by the skin-draining DCs that express ST2, the receptor for the inflammatory cytokine IL-33, also termed alarmin. In another study, repeated tape stripping, which imitates the excoriation of skin observed in AD patients, can also trigger the production of the epithelial-derived inflammatory cytokine IL-33 and promote the development of experimental food allergy. Perhaps mechanical skin injury can induce an increase in circulating IL-33, which...
Figure 1. Schematic overview of the stepwise mechanisms involved in the development of immunoglobulin E (IgE)-mediated food allergy. In the allergic sensitization phase, environmental or mechanical triggers (or both) may induce skin keratinocytes to produce thymic stromal lymphopoietin (TSLP), which recruits and activates dendritic cells (DCs) or basophils. Injured epithelial cells may also release interleukin-33 (IL-33) to activate ST2-expressing skin DCs. TSLP-activated DCs migrate to draining lymph nodes to induce naïve CD4+ T cells to differentiate into CD4+TH2 cells and maintain CD4+TH2 effector/memory pools. In the allergy propagation phase, these CD4+TH2 cells migrate to the intestine and interact with resident type-2 innate lymphoid cells (ILC2s) to produce large amounts of IL-13 in response to intestinal IL-25 stimulation. In the amplification-of-mastocytosis phase, IL-4 signals provided by CD4+TH2 cells induce emigrated mast cell progenitors (MCPs) to become multi-functional IL-9-producing mucosal mast cells (MMC9s), which then expand greatly after ingested antigens cross-link with MMC9 surface IgE/FcεR complex. The inflammatory cytokine IL-33 enhances IL-9 production by MMC9s, resulting in MMC9 maturation and the amplification of intestinal mastocytosis in an autocrine loop. Thus, MMC9 induction may serve as a key cellular checkpoint to amplify and propagate allergic inflammation, resulting in the development of IgE-mediated food allergy. MMC, mucosal mast cell; STAT6, signal transducer and activator of transcription 6; TH2, T helper type 2 cell.

enhances IgE-mediated mucosal mast cell (MC) degranulation in the gut, resulting in the development of anaphylactic response to ingested antigens. Thus, in addition to TSLP, the epithelial-derived cytokine IL-33 and the allergenic property of certain food allergens can serve as the alternative factors to induce allergic sensitization to food antigens after skin injury occurred. These findings also broaden our understanding of the factors and immunologic pathways underlying the initiation of skin allergic sensitization that may potentiate the development of food allergy.

Interleukin-25, type-2 innate lymphoid cells, and CD4+TH2 cells perpetuate allergic reactions

In addition to allergic sensitization to food antigens via a damaged skin barrier, other factors at the mucosal site of the GI tract may confer susceptibility to food allergy later in life. After the occurrence of allergic sensitization induced by administering epicutaneous TSLP plus OVA antigen, blocking TSLP activity by using anti-TSLP antibody does not prevent skin-sensitized mice from developing experimental food allergy. This finding implies that the perpetuation and amplification of allergic reactions from skin to small intestine in the GI tract are essential for the development of IgE-mediated food allergy. Antigen sampling, processing, and presenting at the mucosal sites of the GI tract are complex processes involving intestinal epithelial cells, M cells, goblet cells, and DCs. It is postulated that tolerogenic CD103+ DCs present luminal food antigens to naïve CD4+ T cells to induce food antigen-specific regulatory CD4+ T cells, leading to a state of unresponsiveness to ingested antigens or oral tolerance. Considerable evidence demonstrates that the intestinal epithelial-derived cytokine IL-25 (IL-17E), a distinct IL-17 cytokine member, is a key factor in promoting protective type-2 immunity to parasitic infection (for example, helminth) and limits TH1- and TH17-mediated inflammation induced by commensal flora. Endogenous intestinal IL-25 produced constitutively by tuft cells, one of the five intestinal epithelial cell lineages, can sustain the homeostasis of type-2 innate lymphoid cells (ILC2s) and activate ILC2s to secrete IL-13 after helminth infection. These studies suggest that intestinal IL-25 may regulate the balance of the immune response to dietary proteins in the GI tract after the occurrence of allergic sensitization. Indeed, allergic sensitization results in the increase of intestinal IL-25 expression, which potentiates the development of allergic reactions to ingested antigens. Compared with their wild-type controls, genetically modified murine strains that produce intestinal-specific IL-25 constitutively or that lack the IL-25 receptor, IL-17RB, are more susceptible or resistant, respectively, to developing IgE-mediated experimental food allergy. Although intestinal ILC2s are the
primary TH2 cytokine producers in response to IL-25 stimulation, ILC2s alone are insufficient to drive anaphylactic reactions to ingested antigens in naïve or sensitized transgenic mice that produce IL-25 constitutively. Notably, CD4+TH2 cells that are induced after allergic sensitization and then amplified after repeated ingested antigen challenge are required for ILC2s to produce large amounts of IL-5 and IL-13 in response to IL-25 stimulation, resulting in the development of experimental food allergy. Possibly, IL-2 production by ingested antigen-induced CD4+TH2 cells promotes the capabilities of ILC2s to produce IL-5 and IL-13 in response to intestinal IL-25 stimulation. These findings may also explain the observation that IL-25-deficient mice infected with Trichuris muris, a GI parasite, fail to develop lymphocyte-dependent protective type-2 immunity to expel chronic parasitic infection. In another study using mice expressing a gain-of-function mutation of IL-4 receptor α chain (Il4raF709), ILC2s are found to produce some IL-4 in response to IL-33 stimulation in a mouse model of food allergy sensitized with staphylococcal enterotoxin B. ILC2-derived IL-4 promotes the development of experimental food allergy by dampening regulatory T cell function, which can directly suppress mucosal MC function. Together, these studies substantiate the role of IL-25 in promoting intestinal allergic reaction to ingested antigens by enhancing the concerted interactions between ILC2s, antigen-induced CD4+TH2 cells, or regulatory T cells (or a combination of these) after the occurrence of allergic sensitization. Furthermore, the findings support the view that IL-25 may bridge the crosstalk between the skin and gut by mediating cooperative interactions between ILC2s and CD4+TH2 cells to amplify the cascade of allergic reactions to ingested antigens at the effector phase of IgE-mediated food allergy (Figure 1).

**Interleukin-33 and type-2 mucosal mast cells amplify hypersensitivity reactions**

Food-induced anaphylaxis is an immediate, adverse reaction triggered predominantly by cross-linking of antigen-specific IgE bound to the high-affinity IgE receptor FceR on MCs after re-exposure to allergen. Mechanistically, FceR cross-linking activates a downstream signaling cascade that causes rapid release of vasoactive and preformed mediators, including histamine, tryptase, carboxypeptidase A, leukotrienes, and platelet-activating factor, resulting in physiological alternations that cause shock. Anaphylaxis is an extreme form of an allergic reaction, characterized by sudden onset of symptoms following exposure to an allergen. Symptoms can range from mild (e.g., rash, itching, and hives) to severe and potentially life-threatening (e.g., anaphylactic shock, asthma, and cardiovascular collapse).

**Figure 1**

This figure illustrates the role of interleukin-33 (IL-33) in the development of food allergy. IL-33 is produced by innate immune cells and can activate the mast cells (MCs) to release histamine and other mediators, leading to the development of allergic reactions. The figure highlights the role of MCs in the development of food allergy and the potential for IL-33 to modulate the allergic response.

**Conclusions**

Although our knowledge of the pathways underpinning the development of allergy has increased, current evidence does not yet fully explain why life-threatening anaphylaxis occurs in only some individuals among those who are allergic to food allergens. Over the past decade, considerable evidence has led to a plausible hypothesis that details the stepwise mechanisms involved in the development of food allergy (illustrated in Figure 1): (i) in the allergic sensitization phase, exogenous molecules (lectins, proteases, or chitins) acting as mucosal TH2 adjuvants and filaggrin as a genetic predisposing factor may initiate inflammatory reactions to induce the
production of epidermal TSLP or IL-33 (or both) that triggers allergic sensitization to contacted food allergens before the establishment of oral tolerance. TSLP endows DCs and potentiates basophil function to promote a TH2-permissive microenvironment, which induces CD4+TH2 cells to differentiate and maintain antigen-specific CD4+TH2 memory/effector cells, which migrate to a draining lymphoid node and induce antigen-specific IgE generation. In the allergy propagation phase, re-exposure to ingested food allergens activates emigrated antigen-specific CD4+TH2 memory/effector cells in the small intestine to produce IL-13, resulting in the increase of intestinal IL-25 production. In the presence of CD4+TH2 memory/effector cells and IL-25 stimulation, resident ILC2s produce large amounts of IL-13, which creates a TH2-permissive environment that prevents tolerance.

(iii) In the amplification-of-mastocytosis phase, repeated food antigen ingestion induces the increase of CD4+TH2 cells, which provide the IL-4 signaling that induces MC progenitors to develop into MMC9s, which expand greatly after ingested antigen-specific CD4+TH2 memory/effector cells cross-link with MMC9 surface IgE/FceRI complex. IL-33, a potent inflammatory cytokine, enhances IL-9 production by MMC9s, resulting in MMC9 maturation and the amplification of intestinal mastocytosis in an autocrine loop. Thus, it is possible that local accumulation of IgE-bearing MMC9s will impose the potent reactivity to ingested food antigens and is the prerequisite for developing life-threatening anaphylaxis. The proposed model provides paradigm-shifting insight into the immunologic mechanisms composing the progression of allergic reactions to food allergens from the skin to gut. Indeed, our proposed notion mirrors recent changes in the guidelines of the American Academy of Pediatrics, including the recommendation for early oral exposure to food allergens during infancy for children at risk of atopic diseases. Future in-depth studies of human MMC9 and MMC9-associated molecules involved in the clinical reactivity of food allergy will provide the basis to translate the mechanistic findings from murine studies to further our understanding of human food allergy and the clinical application of this knowledge.

Abbreviations
AD, atopic dermatitis; DC, dendritic cell; GI, gastrointestinal; IgE, immunoglobulin E; IL-, interleukin; LC2, type-2 innate lymphoid cell; MC, mast cell; MMC9, interleukin-9-producing mucosal mast cell; OVA, ovalbumin; RXX, retinoid X receptor; TH2, T helper type 2; TSLP, thymic stromal lymphopoietin.

Competing interests
The author declares that he has no competing interests.

Grant information
This work is supported by the National Institutes of Health (AI090129-1, AI112626-01, and 2U19AI070235-11), the US Department of Defense (W81XWH-15-1-0517), the Digestive Health Center (P30DK078392), and the American Partnership for Eosinophilic Disorders.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
I thank Shawna Hottinger for editorial assistance.

References

1. Sicherer SH, Sampson HA. Food allergy: recent advances in pathophysiology and treatment. Annu Rev Med. 2009; 60: 261–77. PubMed Abstract | Publisher Full Text
2. Gupta RS, Springer EE, Warner MR, et al.: The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011; 128(1): e9–17. PubMed Abstract | Publisher Full Text | F1000 Recommendation
3. Faria AMC, Weiner HL. Oral tolerance. Immunol Rev. 2005; 206(1): 232–59. PubMed Abstract | Publisher Full Text | Free Full Text
4. Vickery BP, Scourlock AM, Jones SM, et al.: Mechanisms of immune tolerance relevant to food allergy. J Allergy Clin Immunol. 2011; 127(3): 576–84; quiz 585–6. PubMed Abstract | Publisher Full Text | Free Full Text
5. Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012; 129(5): 1187–97. PubMed Abstract | Publisher Full Text
6. Calvani M, Cardinale F, Martelli A, et al.: Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr Allergy Immunol. 2011; 22(8): 813–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation
7. Koplin JJ, Wake M, Dharmage SC, et al.: Cohort Profile: The HealthNuts Study: Population prevalence and environmental/genetic predictors of food allergy. Int J Epidemiol. 2015; 44(4): 1161–71. PubMed Abstract | Publisher Full Text
8. Hill DJ, Hosking CS, de Benedictis FM, et al.: Confirmation of the association between high levels of immunoglobulin E food sensitization and eczema in infancy: an international study. Clin Exp Allergy. 2008; 38(1): 161–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation
9. Lack G, Fox D, Northstone K, et al.: Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003; 348(11): 977–85. PubMed Abstract | Publisher Full Text
10. Palmer DJ, Metcalfe J, Makrides M, et al.: Early regular egg exposure in infants with eczema: A randomized controlled trial. J Allergy Clin Immunol. 2013; 132(2): 387–92.e1. PubMed Abstract | Publisher Full Text | F1000 Recommendation
11. Noji M, Kim BS, Siracusa MC, et al.: Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 2014; 133(6): 1390–9, 1399.e1–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
12. Mathias CB, Hobson SA, Garcia-Lloret M, et al.: IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling. J Allergy Clin Immunol. 2011; 127(3): 795–805.e1–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
13. Chen CY, Lee JB, Liu B, et al.: Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity. 2015; 43(4): 478–802. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
14. Tordesillas L, Goswami R, Benedé S, et al.: Skin exposure promotes a TH2-dependent sensitization to peanut allergens. J Clin Invest. 2014; 124(11): 4965–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
15. Holgate ST: The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol. 2007; 28(6): 248–51. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
16. Liu YJ, Soumelis V, Watanabe N, et al.: TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol. 2007; 25: 193–219. PubMed Abstract | Publisher Full Text
17. Wang YH, Liu YJ: Thymic stromal lymphopoeitin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy. 2009; 39(6): 788–806. PubMed Abstract | Publisher Full Text | F1000 Recommendation
18. Wang YH, Ito T, Wang YH, et al.: Maintenance and polarization of human T2 central memory T cells by thymic stromal lymphopoeitin-activated dendritic cells. Immunity. 2006; 24(6): 627–38. PubMed Abstract | Publisher Full Text
19. Soumelis V, Reche PA, Kan切尔 H, et al.: Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002; 3(7): 673–80. PubMed Abstract | Publisher Full Text | F1000 Recommendation
20. Ifo T, Wang YH, Duramad O, et al.: TSLP-activated dendritic cells induce an inflammatory Th2 helper type 2 cell response through OX40 ligand. J Exp Med. 2005; 202(9): 1213–23. PubMed Abstract | Publisher Full Text | F1000 Recommendation
21. Sinacusa MC, Saenz SA, Hill DA, et al.: TSLP promotes interleukin-3-dependent basophil haemopoiesis and type 2 inflammation. Nature. 2011; 477(7363): 229–33. PubMed Abstract | Publisher Full Text | F1000 Recommendation
22. Lee HC, Ziegler SF: Inducible expression of the proallergic cytokine thymic stromal lymphopoeitin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci U S A. 2006; 103(11): 1736–71. PubMed Abstract | Publisher Full Text | F1000 Recommendation
23. Ifo T, Wang YH, Duramad O, et al.: TSLP-activated dendritic cells induce an inflammatory Th2 helper type 2 cell response through OX40 ligand. J Exp Med. 2005; 202(9): 1213–23. PubMed Abstract | Publisher Full Text | F1000 Recommendation
24. Mowat AM: Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003; 3(4): 331–41. PubMed Abstract | Publisher Full Text
25. McDole JR, Wheeler LW, McDonald KG, et al.: Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012; 483(7389): 345–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation
26. Brown SJ, Asai Y, Cordel HU, et al.: Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011; 127(3): 661–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
27. Galand C, Leyva-Castillo JM, Yoon J, et al.: IL-33 promotes food allergy in mice by targeting mast cells. J Allergy Clin Immunol. 2016; pii: S0091-7435(16)30369-4. PubMed Abstract | Publisher Full Text | F1000 Recommendation
28. Mowat AM: Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003; 3(4): 331–41. PubMed Abstract | Publisher Full Text
29. Falloon PG, Ballantyne SJ, Mangan NE, et al.: Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the intestinal epithelium. J Immunol. 2007; 178(4): 1535–46. PubMed Abstract | Publisher Full Text | F1000 Recommendation
30. Caffarelli C, Romanini E, Caruana P, et al.: Collagenous colitis: a disease of epithelial cells. Gastroenterology. 2012; 142(4): 740–50. PubMed Abstract | Publisher Full Text | F1000 Recommendation
31. Noval Rivas M, Burton OT, Oettgen HC, et al.: IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J Allergy Clin Immunol. 2016; 138(6): 901–911.e9. PubMed Abstract | Publisher Full Text | F1000 Recommendation
32. Gali S, Tsal M: IgE and mast cells in allergic disease. Nat Med. 2012; 18(5): 653–704. PubMed Abstract | Publisher Full Text | F1000 Recommendation
33. Ahrens R, Osterfeld H, Wu D, et al.: Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am J Pathol. 2012; 180(4): 1355–66. PubMed Abstract | Publisher Full Text | F1000 Recommendation
34. Bengtsson U, Roprum TP, Brandtsæg P, et al.: IgE-positive duodenal mast cells in patients with food-related diarrhea. Int Arch Allergy Immunol. 1991; 95(1): 86–91. PubMed Abstract | Publisher Full Text
35. Caffarelli C, Romanini E, Caruana P, et al.: Clinical food hypersensitivity: the relevance of duodenal immunoglobulin E-positive cells. Pediatr Res. 1998; 44(4): 485–90. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1 Anne Marie Singh, 1,2 1 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
   2 Department of Pediatrics, Lurie Children's Hospital of Chicago, Chicago, IL, USA
   Competing Interests: No competing interests were disclosed.

2 Cecilia Berin, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
   Competing Interests: No competing interests were disclosed.