Structural Basis for Hemoglobin Capture by *Staphylococcus aureus* Cell-surface Protein, IsdH

Kaavya Krishna Kumar, David A. Jacques, Gleb Pishchany, Tom Caradoc-Davies, Thomas Spirig, G. Reza Malmirchegini, David B. Langley, Claire F. Dickson, Joel P. Mackay, Robert T. Clubb, Eric P. Skaar, J. Mitchell Guss, and David A. Gell

From the From the School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia, the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical School, Nashville, Tennessee 37232, the Australian Synchrotron, Clayton, Victoria 3168, Australia, the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, and the Menzies Research Institute, University of Tasmania, Tasmania 7000, Australia

Background:
Bacteria need iron from the host to establish infection.

Results:
We report the first structure of hemoglobin bound to a bacterial protein and show that targeted disruption of this interaction can reduce *Staphylococcus aureus* growth when hemoglobin is the sole iron source.

Conclusion:
Physical capture of hemoglobin is important for iron uptake by *S. aureus*.

Significance:
Hemoglobin receptors may be targets for new antibacterial agents.

Bacteria that cause human disease must acquire iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, *Staphylococcus aureus*, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of *S. aureus* to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.

Pathogens must steal iron from their hosts to establish infection. In mammals, hemoglobin (Hb) represents the largest reservoir of iron, and pathogens express Hb-binding proteins to access this source. Here, we show how one of the commonest and most significant human pathogens, *Staphylococcus aureus*, captures Hb as the first step of an iron-scavenging pathway. The x-ray crystal structure of Hb bound to a domain from the Isd (iron-regulated surface determinant) protein, IsdH, is the first structure of a Hb capture complex to be determined. Surface mutations in Hb that reduce binding to the Hb-receptor limit the capacity of *S. aureus* to utilize Hb as an iron source, suggesting that Hb sequence is a factor in host susceptibility to infection. The demonstration that pathogens make highly specific recognition complexes with Hb raises the possibility of developing inhibitors of Hb binding as antibacterial agents.

Bacteria that cause human disease must acquire iron from their host to establish infection (1). Host strategies to restrict iron availability therefore constitute a form of innate immunity. Most iron is sequestered within cells, and serum iron is kept at an extremely low concentration (10^{-24} M) by the iron transport protein transferrin (2). A related protein, lactoferrin, is present in exocrine solutions such as tears and milk and is also released from neutrophils at sites of infection (3). Iron uptake and homeostasis are even tuned toward anemia in chronic infection by the hormone hepcidin (4). In cases where serum iron levels are either artificially or genetically elevated, there are dramatic increases in levels of bacteremia (5).

Bacteria in all iron-restricted environments, including the human body, employ a variety of generic mechanisms to scavenge this essential element. These mechanisms include the production of siderophores, small (typically <1000 Da) soluble factors that bind with very high affinity (10^{-22}–10^{-50} M) to Fe(III). Siderophores are subsequently reabsorbed by the bacteria in the iron-charged form (6). Alternatively, iron-reducing compounds can be released into the environment to generate soluble Fe(II) that is absorbed through the Fenton permease, escaping the requirement for metabolically expensive siderophore production (7).

Naturally, the rich iron reservoirs found in mammals and other animals have driven evolution of iron-scavenging mechanisms that are specific to the pathogen-host relationship. Perhaps the most distinguishing feature of the mammalian iron profile is that ~75% of the total body iron is locked up in heme, a cyclic organic compound (porphyrin) with central square-planar Fe(II/III) ion coordinated by four nitrogen atoms. This iron pool is considered largely inaccessible to siderophores (6), and pathogens have therefore evolved specialized pathways dedicated to heme uptake. As with all forms of iron, heme is retained tightly sequestered into host proteins at all times. Hb is the most abundant heme protein in humans, accounting for ~70% of total body iron, making it a particularly attractive iron source for invading microbes.

Highly pathogenic species such as *Staphylococcus aureus* secrete hemolysins (8) to release Hb into the serum where it is accessible to the bacteria. *S. aureus* displays a preference for heme as an iron source (9) and can grow on Hb as the sole source of iron (10, 11). Utilization of Hb in *S. aureus* is mediated by Isd proteins (12, 13), which are also found in a large number of other Gram-positive pathogens (14, 15). The Isd pathway in *S. aureus* comprises nine proteins IsdA-I (12). Of these, the four
proteins IsdA, IsdB, IsdC, and IsdH are expressed on the bacterial cell-surface, anchored through a C-terminal covalent linkage to the peptidoglycan cell wall. Notably, the surface exposed Isd proteins are the most highly up-regulated genes in response to iron starvation in *S. aureus* (16) and *Bacillus anthracis* (17). IsdB and IsdH are Hb-binding proteins (10, 11). IsdA and IsdC are heme-binding proteins that cooperate with IsdB/H through an unknown mechanism to transfer heme in a unidirectional manner to the membrane-associated lipoprotein IsdE (18–20). A dedicated ABC transporter complex (IsdD and IsdF) transfers heme from IsdE into the *S. aureus* cytoplasm, where the porphyrin macrocycle is cleaved by a heme oxygenase complex (IsdG and Isdl), releasing its iron (21).

Genetic inactivation of IsdA (22), IsdB (11, 22, 23), IsdH (24–25), IsdG, or Isdl (26) reduces the ability of *S. aureus* to cause infections in mice, confirming the Isd system as an important virulence mechanism. It has been demonstrated that immunization with IsdA, IsdB or IsdH antigens (24, 25, 27–29) or administration of purified antibodies to IsdA, IsdB, IsdC, and IsdH (22) confers some protection from infection in various animal models. These studies suggest that blocking the Isd pathway of heme/iron uptake could have therapeutic benefit in human infections.

To transfer the heme group from Hb to the bacterial membrane, the cell wall-anchored proteins IsdA, IsdB, IsdC, and IsdH each possess one ~130-residue NEAT (near iron transporter) domain that binds to heme (30–34). Extraction of heme from Hb relies upon a physical interaction of Hb with the Hb receptors IsdB and IsdH (20). IsdB and IsdH contain, respectively, one or two variant NEAT domains that possess Hb-binding activity but do not bind to heme (see Fig. 1A) (10, 35–37). The structural basis for heme binding by NEAT domains is comparatively well understood (30–34), but the molecular mechanism of Hb recognition has remained elusive and is the subject of the current investigation.

Many pathogens express Hb-binding proteins, but the molecular details underlying Hb recognition are unknown in every case. Here, we show that the first NEAT domain from IsdH (IsdH$_{N1}$) binds to a site on the a-chain of Hb (aHb) and determine the x-ray crystal structure of the IsdH$_{N1}$-Hb complex. Using mutant forms of Hb that are defective in IsdH$_{N1}$ binding, we demonstrate that physical capture of Hb by *S. aureus* is important for the utilization of this iron source.

EXPERIMENTAL PROCEDURES

Protein Preparation—The DNA sequence encoding the IsdH$_{N1}$ (IsdH residues 86–229) and IsdH$_{N2}$ (residues 321–467) domains from *S. aureus* strain TCH1516 were cloned into pET15b (Novagen) for expression with an N-terminal His$_6$ tag. The proteins were expressed and purified as described previously (35) to yield a final product with the additional N-terminal sequence MGSSHSHHSSHGLVPGRGSHM. Native human Hb A was prepared and separated into its constituent aHb and βHb chains as described previously (38). Hb, aHb, and βHb were maintained in the carbonmonoxy-ligated state during purification and subsequent analysis, unless otherwise specified.

Recombinant human Hb (rHb)5 was produced in *Escherichia coli* strain BL21(DE3) from the pHb0.0 plasmid, a gift of Dr. John Olson (39). pHUG21 (a gift of Dr. Doug Henderson) harboring the *Plesiomonas shigelloides* heme transport system was co-transformed to enhance Hb expression (40). The heme transport system was induced by iron restriction with 50 μg/ml of the iron chelator ethylenediamine-di-(α-hydroxyphenyl acetic acid) (EDDA, LGC Standards GmbH). rHb expression was performed at 16 °C overnight, and bacteria were lysed by passage through a French press twice at 1200 psi. Hb was purified in a single step over nickel-nitritriacetic acid beads (Qiagen) by virtue of interactions with naturally occurring His residues on the surface of Hb and dialyzed twice against PBS. Substitution mutations within the Hb genes were generated using PCR-based mutagenesis and confirmed by sequencing.

For protein crystallography, native Hb purified in the carbonmonoxy-ligated state was converted to the oxygenated form by passing a pure stream of oxygen over a protein solution held on ice and illuminated with a focused beam from a 50-watt halogen lamp. The oxy-Hb was converted to met-Hb by addition of excess potassium ferricyanide in 20 mM sodium phosphate, pH 7.0. The reaction was monitored to completion by UV-visible spectroscopy, at which point the Hb protein was isolated over Sephadex G-25. Met-Hb was combined with purified IsdH$_{N1}$ in a 1:1 molar ratio (with respect to αHb-βHb dimers) for crystallization.

Light Scattering—Samples were separated on a Superose 12 column (GE Healthcare) equilibrated in 20 mM sodium phosphate, 150 mM sodium chloride, pH 7.0, with in-line MALS (mini-DAWN; Wyatt Technology Corp., Santa Barbara, CA) and refractive index (Optilab differential refractometer, Wyatt Technology Corp.) measurements. The refractive index increment with respect to mass concentration (dn/dc) was taken to be 0.19 ml g$^{-1}$ for all proteins/complexes.

Isothermal Titration Calorimetry (ITC)—ITC was carried out on a MicroCal iTC200 instrument. All components were dialyzed into 20 mM sodium phosphate, pH 7.5, 150 mM sodium chloride. Multiple injections of 1.1 μl were performed at 150-s intervals, with continuous stirring at 20 °C. The volume of the reaction cell was 350 μl. Heats of dilution were determined from injections of protein solution into buffer and subtracted from the experimental data.

UV-visible Spectroscopy—Changes in heme coordination of αHb (20 μM) were measured by UV-visible absorption spectroscopy (Shimadzu UV1800) at 30 °C in the presence/absence of NEAT domains in 20 mM sodium phosphate, 10 μM diethylthreitol, pH 7.0.

Structure Determination—Crystals were prepared by hanging-drop vapor diffusion at 293 K in which 2 μl protein solution (10.9 mg/ml) was mixed with 2 μl of precipitant (0.2 M potassium thiocyanate, 0.1 M Bis-tris propane, pH 7.5, 20% PEG). Crystals of 150–200 μm appeared within 2 days. Seeding was done to grow diffraction quality crystals. The crystals were

5The abbreviations used are: rHb, recombinant human Hb; Hb, recombinant Hb; ITC, isothermal titration calorimetry; PDB, Protein Data Bank; EDDHA, ethylenediamine-di-(α-hydroxyphenyl acetic acid); SEC, size exclusion chromatography.
cryoprotected with 30% glycerol and flash-cooled in a cold nitrogen stream (100 K). X-ray diffraction data were collected in-house using copper Kα x-ray produced by a Rigaku 007HF rotating-anode generator with Osnic Varimax optics and recorded on a MAR345 image plate (Marresearch GmbH).

Data were collected over a phi-range of 180° and were indexed and scaled using MOSFLM (41) and Scalepack (42). Structure was solved by molecular replacement using PHASER (43), which gave a unique solution when using αHb or βHb (PDB code 1HRD) as independent search models. The structure was refined using REFMAC5 (44), with manual map inspection and model building performed in COOT (45). The quality of the model was regularly checked for steric clashes, incorrect stereochemistry, and rotamer outliers using MolProbity (46).

Bacterial Strains and Growth Conditions—All experiments were carried out with S. aureus strain Newman (47) or with mutants generated in its background. All cultures were inoculated from a single colony and grown overnight (1:100) into 1 ml of RPMI medium (Thermo) supplemented with 1% casamino acids in 15-ml conical tubes at 37 °C with shaking at 180 rotations per minute (rpm). The isogenic variant in which the Hb receptors IsdB and IsdH have been deleted (ΔisdBH) has been described previously (11).

S. aureus Growth Curves—Single colonies of S. aureus were inoculated into RPMI medium plus casamino acids, supplemented with 0.5 mM EDDHA and grown overnight. One ml of overnight cultures was normalized to A500 of 3.0, and bacteria were sedimented (9000 ⋅ g, 3 min) and resuspended in 1 ml of NRPMI with 0.5 mM EDDHA and rHb at 2.5 mg/ml. One-ml cultures were incubated at 37 °C in 15-ml conical tubes with shaking at 180 rpm. A500 measurements were taken at the indicated time points by mixing 20-μl aliquots of the culture with 180 μl of PBS in 96-well plates. The graphs represent a mean of three independent experiments. Error bars represent S.D.; asterisks denote values upon mutant rHb supplementation significantly different from values upon wild type rHb supplementation at the same time point (Student’s two-tailed t test, p < 0.05).

RESULTS

First and Second NEAT Domains of IsdH Bind to αHb Chain of Hb—To investigate the molecular mechanism of Hb recognition by S. aureus, we produced the Hb-binding domains, IsdH110 or IsdH122 (Fig. 1A), in an E. coli expression system. Recombinant IsdH110 and IsdH122 are pure monomers as determined by SEC (Fig. 1B) and Rayleigh light scattering (supplemental Table 1). Both NEAT domains bind to native adult Hb A, shifting the SEC elution peak to an earlier elution time (Fig. 1C, solid line). Formation of a protein complex was confirmed by light scattering measurements (supplemental Fig. 1). To determine the binding sites on Hb, we first separated the constituent αHb and βHb chains. Mixing of IsdH110 or IsdH122 with purified αHb, at a 1:1 molar ratio, lead to the formation of a distinct protein complex (Fig. 1D), with a molecular weight close to that expected for a heterodimer (supplemental Fig. 1). The binding affinity for the IsdH110:αHb was 100 nM, determined by isothermal titration calorimetry (ITC, supplemental Fig. 2). Interaction between IsdH110 and βHb could not be detected using SEC (Fig. 1E), light scattering or ITC (supplemental Figs. 1 and 2). Some evidence of complex formation was detected upon mixing equimolar quantities of IsdH122 and βHb, but the mixture retained a substantial proportion of free monomers suggesting a weaker interaction (Fig. 1E). Thus, the IsdH110/αHb alone (dashed lines) or mixed with an equimolar quantity of IsdH122 (solid lines, equimolar with respect to tetrameric HbA). A shift in the SEC elution peak to smaller elution volume indicates the formation of a protein complex. D and E, SEC traces for αHb/βHb alone (dashed lines) or mixed with an equimolar quantity of IsdH110, or IsdH122 (solid lines, equimolar with respect to αHb or βHb monomers). Refractometer voltage is proportional to protein concentration. Light scattering data accompanying B–E are shown in supplemental Fig. 1.

Hemoglobin Capture by Staphylococcus aureus

FIGURE 1. The N-terminal NEAT domains of IsdH bind to Hb through the αHb chain. A, the S. aureus Hb receptors IsdH and IsdD possess NEAT domains that bind to Hb (stipped) or heme (gray). Amino acid sequence identity is indicated for the pairs of NEAT domains joined by dashed lines. C-terminal sortase cleavage sites are indicated. B, elution profiles of purified IsdH110 and IsdH122 on SEC. C, SEC traces for free Hb A (dashed lines) or Hb A mixed with an equimolar quantity of IsdH110, or IsdH122 (solid lines, equimolar with respect to tetrameric HbA).
copy as a sensitive probe of heme coordination chemistry. These studies revealed that IsdH1/N2 had no substantial effect on αHb heme pocket structure or heme release over a period of 8 h (Fig. 2A). Small absorbance changes were observed in all samples consistent with slow autoxidation. After 48 h the spectrum of IsdH1/αHb contained peaks at 405, 500, and 630 nm, characteristic of met-αHb.

Crystal Structure of IsdH1/N2-Hb Complex—To reveal the molecular mechanism of Hb binding, IsdH1 was crystallized in complex with met-Hb, and x-ray diffraction data were collected to a resolution of 3.0 Å (Table 1). Initial phases were obtained by molecular replacement using αHb or βHb (PDB code 1IRD) as independent search models. In the crystal structure, IsdH1 binds to one αHb/βHb dimer through a site on the heme acceptor domain of IsdH.

FIGURE 2. Spectral analysis of the IsdH1/N2-αHb complexes. A, oxygenated αHb was incubated with or without IsdH1/N2 at 30 °C, and visible absorption spectra were recorded at 0, 0.5, 1, 1.5, 2, 2.5, 3.5, 5.0, and 8.0 h. Arrows indicate the direction of spectral change. B, after 48 h, the spectrum of IsdH1/αHb contained peaks at 405, 500, and 630 nm, characteristic of met-αHb.
in IsdH recognition, we produced recombinant Hb (rHb) carrying a Lys-11 to Thr mutation in the Hb chain (rHb(\(K_{11}T\))). A second mutant (rHb(\(K_{11}T, A_{18}E\))) was produced to test the effect of removing the binding site for one of the IsdH_{N1} loop 2 aromatic residues (Tyr-125) by shortening the linker between \(\alpha\)Hb helices A and B. Thirdly, rHb(\(A_{5}E\)) was generated in response to the natural variation in this position across \(\alpha\)Hb sequences from different

TABLE 1	Crystallographic data collection and refinement statistics
Data collection	P2,2,2, \(a = 65.880, b = 123.206, c = 143.933 \) Å; \(\alpha\beta\), and \(\gamma = 90^\circ\)
Resolution (Å)	50.00–3.01 (3.16–3.01)
\(R_{merge}\)	0.244 (0.785)
Completeness (%)	98.9 (92.8)
Redundancy	6.9 (6.5)
Refrinement	3.01
No. of reflections	21,420
\(R_{work}/R_{free}\)	0.245/0.275
No. of atoms	Protein 6434, Ligand/ion 172
B-factors	Protein 22.7, Ligand/ion 22.5
Root mean square deviations	Bond lengths (Å) 0.005
	Bond angles 0.698°
Ramachandran plot	Favored (%) 95.2, Disallowed (%) 0.0
	PDB code 3SZK

FIGURE 3. The structure of the IsdH_{N1}-Hb complex. A, IsdH_{N1} (yellow) binds to the \(\alpha\)Hb subunit (orange) of the \(\alpha\)Hb:\(\beta\)Hb dimer. B, stereo view of the 2\(F_o - F_c\) electron density map contoured at 1\(\sigma\) (mesh) for portions of IsdH_{N1}, loop 2 (green), IsdH_{N1}, loop 4 (cyan), and helix A of \(\alpha\)Hb (orange). C, aromatic residues from IsdH_{N1}, loop 2 (green) pack against \(\alpha\)Hb. Loops 4 and 6 of IsdH_{N1} (cyan) account for the majority of polar and H-bonding interactions (dashed lines). D, the \(\alpha\)Hb-contacting surface of IsdH_{N1} colored by electrostatic potential (positive, blue; negative, red; supplemental "Experimental Procedures") showing the binding pocket for \(\alpha\)Hb Lys-11.
Hemoglobin Capture by Staphylococcus aureus

FIGURE 4. The ligand-interaction sites in Hb-binding and heme-binding NEAT domains share some common features. A, the NMR structure of free IsdH$_{N_1}$ (PDB code 2H3K) contains a disordered loop 2 (36), B, when bound to Hb, loop 2 of IsdH$_{N_1}$ adopts an α-helical conformation. C, in the α-helical conformation, loop 2 makes H-bonding interactions with the underlying β-sheet. D, NEAT domains have evolved to bind Hb or heme ligands using a similar face of the NEAT domain fold. Shown here, for comparison with IsdH$_{N_1}$, is the heme-binding NEAT domain from IsdC in complex with Zn protoporphyrin IX (PDB 2K78) (33). Green shading indicates regions that are affected by conformational exchange in the ligand-free states of IsdH$_{N_1}$ and IsdC.

Reciprocal mutations were also introduced into the βHb chains (Fig. 5C). Wild type and mutant rHb samples were purified and converted to the stable cyanomet form (50). All proteins had normal UV-visible spectra (data not shown) and eluted in one major peak from SEC, at the expected mobility (supplemental Fig. 5), indicating no substantial defect in folding or αHb-βHb subunit interactions. The individual SEC traces for rHb and IsdH$_{N_1}$ are overlaid in Fig. 5D, upper panel. Mixing of these components lead to formation of the expected IsdH$_{N_1}$-Hb complex (Fig. 5D, lower panel, black). Strikingly, rHb(αK11T) showed no detectable interaction with IsdH$_{N_1}$, yielding two separate elution peaks (Fig. 5D, blue). Similarly, rHb(αK11T) failed to interact significantly with IsdH$_{N_2}$ (Fig. 5E, blue), strongly suggesting that IsdH$_{N_1}$ and IsdH$_{N_2}$ bind a common site on Hb. The reverse mutation in βHb, rHb(βT12K), had no detectable effect on IsdH$_{N_1}$ binding (Fig. 5D, red). However, rHb(βT12K) experienced a larger than normal shift in SEC retention time when mixed with IsdH$_{N_2}$ (Fig. 5E, red), suggesting that the intrinsic weak binding to wild type βHb subunits might be enhanced by the βT12K mutation. The αA5E mutation partially inhibited binding to IsdH$_{N_1}$ but not IsdH$_{N_2}$ and rHb(αA5E) also displayed reduced binding to IsdH$_{N_1}$ but was not tested against IsdH$_{N_2}$ (Fig. 5F and supplemental Fig. 5). In summary, both IsdH$_{N_1}$ and IsdH$_{N_2}$ are likely to bind Hb through the same site on αHb but display some differences in sequence specificity that could potentially provide greater tolerance to species variation in the Hb sequence.

IsdH$_{N_1}$-αHb Interaction Is Important for S. aureus Growth on Hb as Sole Iron Source—To investigate the importance of NEAT-Hb interactions for iron uptake from Hb, we grew S. aureus strain Newman on medium containing Hb as the sole iron source. When supplemented with rHb, a culture of S. aureus grew over an incubation time of 40 h as shown in Fig. 5G (black). In contrast Hb carrying αHb mutations that inhibit IsdH$_{N_1}$ and/or IsdH$_{N_2}$ binding supported a significantly slower rate of culture growth. An S. aureus strain carrying deletions of both Hb receptors, IsdB and IsdH (ΔisdBH), failed to replicate on wild type or mutant Hb (Fig. 5H), confirming that the IsdB/H Hb receptors are required for iron uptake from Hb in this assay. Compared with isdBH, the residual growth of S. aureus Newman on mutant Hb suggested that our individual αHb mutations are not sufficient to completely abrogate interactions with intact IsdH and/or IsdB. This could be due to avidity effects arising from the multidomain structure of IsdB/H, binding of Hb through βHb chains, or because the mutations that inhibit binding to IsdH have more limited effects on the IsdB-Hb interaction. In any case, our results demonstrate that capture of Hb through NEAT domain receptors is an important step that allows S. aureus to utilize iron from Hb.

DISCUSSION

Direct binding of host iron proteins to bacterial cell-surface receptors is a widespread strategy to capture iron, but despite their importance, these interactions are still poorly understood at the molecular level. For example, the structures of transferrin receptors present on the surface of pathogenic species from the genera Neisseria and Pasteurella have only recently been determined (51, 52) and only then in the absence of the transferrin ligand. The importance of Hb-binding proteins is emphasized by their widespread distribution across bacterial and protozoan pathogens. In Gram-negative bacteria, TonB-dependent heme transporters in the bacterial outer membrane act as Hb receptors in Haemophilus (53), Neisseria (54), Pasteurella (55), Porphyromonas (56), and Helicobacter (57) species. In Gram-positive bacteria, the IsdB/H proteins from S. aureus are the most well documented Hb receptors, but cell-surface proteins from Streptococcus pyogenes (58) Streptococcus equi (59) Bacillus cereus (60), and Corynebacterium diphtheriae (61) are reported to bind Hb. In addition to the surface-bound receptors, secreted hemoporphs produced by Gram-negative (62) and Gram-positive (63, 64) bacteria may transiently interact with Hb to facilitate heme transfer. The IsdH$_{N_1}$-met-Hb complex is the first Hb receptor complex for which the structure has been determined. It reveals a highly specific protein-protein interaction, raising the possibility that inhibitors to this interaction might be developed. If this is so, the diversity of Hb-binding functions described above may provide restriction points through which to inhibit colonization of the host by a range of pathogens.

Loops 2 and 4 account for the majority of IsdH$_{N_2}$-Hb interactions and are largely conserved in IsdH$_{N_2}$ and IsdBN$_{N_2}$ (supplemental Fig. 6), suggesting that all three NEAT domains bind HbA in a similar way. In each case, loop 2 contains an aromatic-
rich sequence and is predicted to adopt a similar α-helical structure, with conserved Gln and His residues interacting with the underlying β-sheet (supplemental Fig. 6). In IsdH_N1, Tyr-126 and Ser-130 form part of the binding pocket for αHb Lys-11, and these residues are conserved in IsdH_N2 and IsdB_N1. Similarly, side chains from IsdH_N1 loop 2 involved in H-bonding to Lys-11 are conserved in IsdH_N2 and IsdB_N1. Thus, it is likely that the preference for binding to αHb observed for IsdH_N1 and IsdH_N2 will also hold true for IsdB. This, along with the fact that Lys-11 is highly conserved in αHb sequences from many mammalian species, argues that targeting the αHb subunit is of mechanistic importance.

The transfer of heme from met-Hb to the isolated heme acceptor domains of IsdH/B is governed by the simple dissociation of heme from met-Hb (20, 35) and is 2–3 orders of magnitude slower than heme transfer to the full-length Hb receptor (20). Thus, physical interaction between Hb and the Hb receptors is crucial for activating heme transfer. Structural and UV-visible spectroscopy data obtained for IsdH_N1/N2 argue that this enhancement in heme transfer rate does not arise from a con-
Hemoglobin Capture by Staphylococcus aureus

Formational change in Hb that promotes heme release. Instead, we favor an alternative model whereby binding to Hb through the IsdH \(_{N1,N2}\) or IsdB \(_{N1}\) domains enhances the rate of productive encounters between Hb chains and the IsdH \(_{N3}\) or IsdB \(_{N2}\) heme acceptor domains. One potential role for the specific binding of IsdB/H to \(\alpha\)Hb subunits might be to control the sequential release of heme from the \(\beta\)Hb and \(\alpha\)Hb chains by orienting the heme acceptor domains in a particular way. \(\alpha\)Hb-\(\beta\)Hb dimers can lose heme from one subunit (semi-Hb) and retain much of their native structure (65), potentially allowing them to remain associated with the Hb receptor until all the heme is removed. IsdH \(_{N1}\) does not bind to free apo-\(\alpha\)Hb, suggesting that the IsdH-Hb complex would dissociate following complete heme removal from Hb.

NEAT domains with the characteristic aromatic loop 2 sequence of IsdH \(_{N1}\) are restricted to the genomes of \(S.\) aureus and the related \(Staphylococcus\) \(ludoguenensis\), suggesting that the Hb-binding mechanism described here is restricted to these organisms. However, Hb-binding function has been reported for other NEAT domain containing proteins, including IlsA from \(B.\) cereus (60), IsdX1 from \(Bacillus\) \(anthrasis\) (63) and Shr from \(S.\) pyogenes (66), suggesting that NEAT domains have adapted to make different interactions with Hb or that sequences outside the NEAT domains are responsible for the Hb-binding activity of these proteins.

Concerted folding and binding is proposed to allow recognition of diverse molecular targets by a single protein (67), and it is possible that, being an opportunistic pathogen, folding and binding of IsdH might help \(S.\) aureus to accommodate some of the natural sequence variation present in Hbs from different host species. IsdH also binds directly to haptoglobin, a mammalian protein that is unrelated in sequence or structure to Hb (10, 25, 35). Aromatic residues in IsdH \(_{N1}\) loop 2 are required for binding to Hb or haptoglobin (35), and it will now be interesting to establish whether folding and binding has a role in accommodating these different ligands. The function of haptoglobin is to sequester Hb that is released by continuous physiological levels of hemolysis, hence the Hb-haptoglobin complex represents an alternative route through which \(S.\) aureus might capture Hb.

Among Isd proteins, folding and binding is not limited to IsdH. An NMR study of the heme-binding NEAT domain from IsdC revealed that loop 2 (Fig. 4D) undergoes significant conformational dynamics in the absence of ligand (33) consistent with a folding-and-binding event. Here, loop flexibility may facilitate insertion of the hydrophobic heme molecule “under” loop 2. In contrast, loop 2 from the heme-binding NEAT domain of IsdA adopts a helical conformation in crystal structures of the heme-free and heme-bound forms. The structure of IsdA has not been determined in solution, and it is conceivable that a folded loop 2 conformation might be stabilized during crystallization. Although a more extensive study into the general role of conformational dynamics in NEAT-ligand interactions is required, it is tempting to speculate that structural flexibility in an ancestral NEAT domain may have played a role in the remarkable adaptation of this domain to binding such vastly different molecular targets as heme and Hb protein.

The IsdH \(_{N1}\)-Hb structure reveals a highly specific recognition interface that allows \(S.\) aureus to capture heme directly from the richest iron source in the mammalian host. The Hb receptor mechanism establishes a direct conduit for the transfer of heme groups from host Hb into the bacterial cytoplasm. In this regard, it contrasts with strategies such as siderophore or protease secretion, which mobilize iron from the extracellular milieu where it can be intercepted by competing bacterial populations. The highly specific nature of the IsdH-Hb interaction suggests that sequence variation in the IsdB/H-binding face of Hb could influence susceptibility to \(S.\) aureus infection, as described recently for mice and humans (68). Determining the structure of an Hb-capture complex now raises the exciting possibility of mimicking the NEAT-interacting face of \(\alpha\)Hb as a strategy for developing new anti-virulence treatments for \(S.\) aureus infection.

Acknowledgment—Data supporting this project, but not included in the final manuscript, were collected the MX2 beamline at the Australian Synchrotron.

REFERENCES

1. Naiz, M., Schroll, A., Sonnweber, T., and Weiss, G. (2010) Cell Microbiol. 12, 1691–1702
2. Raymond, K. N., Dertz, E. A., and Kim, S. S. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 3584–3588
3. Legrand, D., and Mazauric, J. (2010) Biometals 23, 365–376
4. Ganz, T. (2011) Blood 117, 4425–4433
5. Sawatzki, G., Hoffmann, F. A., and Kubanek, B. (1983) Infect Immun. 39, 659–665
6. Ratledge, C., and Dover, L. G. (2000) Annu. Rev. Microbiol. 54, 881–941
7. Wang, Y., Wilks, J. C., Danhorn, T., Ramos, L., Croal, L., and Newman, D. K. (2011) J. Bacteriol. 193, 3666–3617
8. Nilsson, I. M., Hartford, O., Foster, T., and Tarkowski, A. (1999) Infect. Immun. 67, 1045–1049
9. Skaar, E. P., Humayun, M., Bae, T., DeBord, K. L., and Schneewind, O. (2004) Science 305, 1626–1628
10. Dryla, A., Gelbmann, D., von Gabain, A., and Nagy, E. (2003) Mol. Microbiol. 49, 37–53
11. Torres, V. I., Pishchany, G., Humayun, M., Schneewind, O., and Skaar, E. P. (2006) J. Bacteriol. 188, 8421–8429
12. Mazmanian, S. K., Skaar, E. P., Gaspar, A. H., Humayun, M., Gornicki, P., Jelenska, J., Joachimiak, A., Missiakas, D. M., and Schneewind, O. (2003) Science 299, 906–909
13. Morrissey, J. A., Cockayne, A., Hammacott, J., Bishop, K., Denman-Johnson, A., Hill, P. J., and Williams, P. (2002) Infect. Immun. 70, 2399–2407
14. Andrade, M. A., Ciccarelli, F. D., Perez-Iratxeta, C., and Bork, P. (2002) Genome Biol. 3, RESEARCH0047
15. Skaar, E. P., and Schneewind, O. (2004) Microbes Infect. 6, 390–397
16. Hempel, K., Herbst, F. A., Moche, M., Hecker, M., and Becher, D. (2011) J. Proteome Res. 10, 1657–1666
17. Carlson, P. E., Jr., Carr, K. A., Janes, B. K., Anderson, E. C., and Hanna, P. C. (2009) PLoS One 4, e6988
18. Liu, M., Tanaka, W. N., Zhu, H., Xie, G., Dooley, D. M., and Lei, B. (2008) J. Biol. Chem. 283, 6666–6676
19. Muroy, N., Tiedemann, M. T., Pluym, M., Cheung, J., Heinrichs, D. E., and Stillman, M. J. (2008) J. Biol. Chem. 283, 28125–28136
20. Zhu, H., Xie, G., Liu, M., Olson, J. S., Fabian, M., Dooley, D. M., and Lei, B. (2008) J. Biol. Chem. 283, 18450–18460
21. Skaar, E. P., Gaspar, A. H., and Schneewind, O. (2004) J. Biol. Chem. 279, 436–443
22. Kim, H. K., DeDent, A., Cheng, A. G., McAdow, M., Bagnoli, F., Missiakas, D. M., and Schneewind, O. (2010) Vaccine 28, 6382–6392
