Nontrivial Solutions for a System of Second-Order Discrete Boundary Value Problems

Hua Su, Yongqing Wang, and Jiafa Xu

1School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Jinan, Shandong 250014, China
2School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

Correspondence should be addressed to Yongqing Wang: wyqing9801@163.com

Received 17 July 2020; Accepted 10 August 2020; Published 24 August 2020

Guest Editor: Chuanjun Chen

Copyright © 2020 Hua Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we shall study the existence of nontrivial solutions for a system of second-order discrete boundary value problems. Under some conditions concerning the eigenvalues of relevant linear operator, we use the topological degree theory to obtain our main results.

1. Introduction

Nonlinear discrete problems appear in many mathematical models, such as computer science, mechanical engineering, control systems, economics, and fluid mechanics (see [1–4]). Owing to the wide applications, in recent years, there are a large number of researchers paying special attention in this direction (we refer to some results [5–15] and the references therein). For example, in [5], the authors used the Guo–Krasnosel’skii fixed point theorem to study the existence of positive solutions for the following second-order discrete boundary value problem:

\[
\begin{align*}
\Delta^2 x_{i-1} + f(x_i) &= 0, \quad i \in [1, n], \\
x_0 &= 0 = x_{n+1},
\end{align*}
\]

(1)

and the following discrete second-order system:

\[
\begin{align*}
\Delta^2 x_{i-1} + f(x_i, y_i) &= 0, \quad i \in [1, n], \\
\Delta^2 y_{i+1} + g(x_i, y_i) &= 0, \quad i \in [1, n], \\
x_0 &= x_{n+1} = y_0 = y_{n+1} = 0,
\end{align*}
\]

(2)

where \(n\) is a positive integer, \([1, n] = \{1, 2, \ldots, n\}\), \(\Delta\) is the forward difference operator, i.e., \(\Delta x_{i-1} = x_i - x_{i-1}\), and \(\Delta^2 x_{i-1} = \Delta (\Delta x_{i-1})\).

In [6], the authors used the monotone iterative technique to investigate the existence and uniqueness of positive solutions for the following discrete \(p\)-Laplacian fractional boundary value problem:

\[
\begin{align*}
\Delta^\nu_{\tau-1} \left(\phi_p \left(\Delta^\nu_{\tau-1} y(t) \right) \right) &= f(y(t + \nu - 1)), \quad t \in [0, T]_\tau, \\
y(\nu - 1) &= y(\nu + T), \quad \Delta^\nu_{\tau-1} y(\nu - 1) = \Delta^\nu_{\tau-1} y(\nu + T),
\end{align*}
\]

(3)

where \(\nu \in (0, 1)\) is a real number, \(\Delta^\nu_{\tau-1}\) is a discrete fractional operator, and \(\phi_p(s) = |s|^{p-2}s\) is the \(p\)-Laplacian with \(s \in \mathbb{R}, p > 1\).

Coupled systems of discrete problems have also been investigated by many authors; some results can be found in a series of papers [11–15] and the references cited therein (also see some results on differential systems [16–24]). For example, in [11], the authors used the Guo–Krasnosel’skii fixed point theorem to study the following systems of three-point discrete boundary value problems:

\[
\begin{align*}
\Delta^2 u(n - 1) + \lambda a(n) f(u(n), v(n)) &= 0, \quad n \in \{1, 2, \ldots, N - 1\}, \\
\Delta^2 v(n - 1) + \mu b(n) g(u(n), v(n)) &= 0, \\
u(0) &= \beta u(\eta), \quad u(N) = au(\eta), \quad v(0) = \beta v(\eta), \quad v(N) = av(\eta),
\end{align*}
\]

(4)
where $N \geq 4$, $\eta \in \{1, 2, \ldots, N-1\}$, $a > 0, \beta > 0, \lambda, \mu > 0$. They offered some values for the parameters λ, μ to yield a positive solution for the above system.

In [12], the authors used the fixed point index to study the positive solutions for the following system of first-order discrete fractional boundary value problems:

$$
\begin{align*}
\Delta^\gamma_+x(t) &= f_1(t + v_1 - 1, y(t + v_1 - 1)), \quad t \in [0, T],
\Delta^\gamma_+y(t) &= f_2(t + v_2 - 1, x(t + v_2 - 1)), \quad t \in [0, T],
x(v_1 - 1) &= x(v + T), \quad y(v_1 - 1) = y(v + T).
\end{align*}
$$

(5)

By discrete Jensen’s inequality, the authors adopted some appropriate nonconcave and convex functions to characterize the coupling behavior of the nonlinearities $f_i (i = 1, 2)$.

Motivated by the aforementioned works, in this paper, by means of the topological degree theory, we study the existence of nontrivial solutions for the following system of second-order discrete boundary value problems:

$$
\begin{align*}
\Delta^\gamma u(k - 1) + f(k, u(k)) &= 0, \quad k \in \{1, 2, \ldots, T\},
\Delta^\gamma u(k - 1) + g(k, u(k)) &= 0, \\
u(0) &= u(T + 1) = v(0) = v(T + 1) = 0,
\end{align*}
$$

(6)

where $T > 2$ is a fixed positive integer number, $\Delta u(k) = (u(k + 1) - u(k))$, $\Delta^\gamma u(k) = \Delta (\Delta u(k))$, and $f, g: \{1, 2, \ldots, T\} \times \mathbb{R} \to \mathbb{R} (R = (-\infty, +\infty))$ are continuous and satisfy the following conditions:

(H1) There exist three nonnegative functions $a_i(k), b_i(k)(b_i(k) \neq 0, k \in \mathbb{T})$ and $\beta_i(i = 1, 2)$ on \mathbb{R}^+ such that

$$
f(k, v) \geq -a_1(k) - b_1(k)\beta_1(v), \quad g(k, u) \geq -a_2(k) - b_2(k)\beta_2(u), \quad \forall u, v, t \in \mathbb{T},
$$

(7)

where $\mathbb{T} := \{1, 2, \ldots, T\}$.

(H2) $\lim_{|v| \to \infty} \beta_1(v)/|v| = 0$, $\lim_{|u| \to \infty} \beta_2(u)/|u| = 0$.

(H3) $\lim_{|v| \to \infty} f(k, v)/|v| > \lambda_1$, $\lim_{|u| \to \infty} g(k, u)/|u| > \lambda_1$ uniformly on $k \in \mathbb{T}$, where $\lambda_1 = 4\sin^2(\pi/(2T + 2))$.

(H4) $\limsup_{|v| \to 0} f(k, v)/|v| < \lambda_1$, $\limsup_{|u| \to 0} g(k, u)/|u| < \lambda_1$ uniformly on $k \in \mathbb{T}$.

Now, we state our main result here.

Theorem 1. Suppose that (H1)–(H4) hold. Then, (6) has at least one nontrivial solution.

2. Preliminaries

Let E be the Banach space of real valued functions defined on the discrete interval \mathbb{T} with the norm $\|u\| = \max_{k \in \mathbb{T}} |u(k)|$, where $\mathbb{T} := \{0, 1, 2, \ldots, T + 1\}$. Define the following sets:

$$
P = \{u \in E: u(k) \geq 0, \quad \forall k \in \mathbb{T}\},$$

$$
P_0 = \{u \in E: \min_{k \in \mathbb{T}} u(k) \geq \frac{1}{T} \|u\|\},$$

and $B_r = \{x \in E: \|x\| < r\}$ for $r > 0$. Then, P, P_0 are cones on E, and B_r is an open ball in E.

Lemma 1 (see [11, 15]). Let $h(k) \in \mathcal{C}(\mathbb{T})$. Then, the discrete boundary value problem

$$
\begin{align*}
\Delta^2 u(k - 1) + h(k) &= 0, \quad k \in \mathbb{T},
u(0) &= u(T + 1) = 0,
\end{align*}
$$

(9)

has a solution with the form

$$
u(k) = \sum_{l=1}^{T} G(k, l) h(l), \quad k \in \mathbb{T},
$$

(10)

where

$$
G(k, l) = \frac{1}{T + 1} \left\{ \begin{array}{ll}
I(T + 1 - k), & 1 \leq l \leq k - 1 \leq T, \\
k(T + 1 - k), & 0 \leq k \leq l \leq T.
\end{array} \right.
$$

(11)

Furthermore, $G(k, l)$ has the following properties (see [13, 15]):

(i) $G(k, l) > 0$ and $G(k, l) = G(l, k)$, for $(k, l) \in \mathbb{T} \times \mathbb{T}$.

(ii) $G(l, l)/T \leq G(k, l) \leq G(l, l)$, for $(k, l) \in \mathbb{T} \times \mathbb{T}$.

By Lemma 1, system (6) is equivalent to

$$
\begin{align*}
u(k) &= \sum_{l=1}^{T} G(k, l) f(l, v(l)), \quad k \in \mathbb{T},
\end{align*}
$$

(12)

Then, we can define operators $\mathcal{T}, \mathcal{D}: E \to E$ by

$$
\begin{align*}
(\mathcal{T} v)(k) &= \sum_{l=1}^{T} G(k, l) f(l, v(l)),
(\mathcal{D} u)(k) &= \sum_{l=1}^{T} G(k, l) g(l, u(l)),
\end{align*}
$$

(13)

and operator $\mathcal{A}: E \times E \to E \times E$ by

$$
\mathcal{A}(u, v)(k) = ((\mathcal{T} v)(k), (\mathcal{D} u)(k)).
$$

(14)

Note that $\mathcal{T}, \mathcal{D}, \mathcal{A}$ are completely continuous operators (see [11]), and (u, v) solves (6) if and only if (u, v) is a fixed point of the operator \mathcal{A}.

Lemma 2 (see [7, 15]). Let $\phi(k) = \sin(\pi k)/(T + 1), k \in \mathbb{T}$. Then, $\lambda_1 \sum_{l=1}^{T} G(k, l) \phi(l) = \phi(k), \quad \forall k \in \mathbb{T}$.

Define a linear operator as follows:

$$
(Lx)(k) = \sum_{l=1}^{T} G(k, l) x(l), \quad \forall k \in \mathbb{T}.
$$

(15)
Lemma 6. Then, we have
\[(L\phi)(k) = \frac{1}{\lambda_1} \phi(k),\]
(16)
and we have the following lemma.

Lemma 3. If \(x \in P\), then \(Lx \in P_0\).

This is a direct result by Lemma 1 (ii), so we omit the proof.

Remark 1. \(\phi \in P_0\) in Lemma 2.

Lemma 4 (see [25, Theorem A.3.3]). Let \(\Omega\) be a bounded open set in a Banach space \(E\) and \(T : \Omega \to E\) be a continuous compact operator. If there exist \(x_0 \in E \setminus \{0\}\) such that
\[x - Tx \neq \mu x_0, \quad \forall x \in \partial \Omega, \quad \mu \geq 0,\]
(17)
then the topological degree \(\text{deg}(I - T, \Omega, 0) = 0\).

Lemma 5 (see [25, Lemma 2.5.1]). Let \(\Omega\) be a bounded open set in a Banach space \(E\) with \(0 \in \Omega\) and \(T : \Omega \to E\) be a continuous compact operator. If
\[Tx \neq \mu x, \quad \forall x \in \partial \Omega, \quad \mu \geq 1,\]
(18)
then the topological degree \(\text{deg}(I - T, \Omega, 0) = 1\).

3. Main Results

In order to obtain the proof of Theorem 1, we first provide a lemma.

Lemma 6. There exists a sufficiently large \(R > 0\) such that
\[\text{deg}(I - \sigma f, B_R, 0) = 0.\]
(19)

Proof. By (H3), there exist \(\varepsilon_1 > 0\) and \(X_1 > 0\) such that
\[f(k, v) \geq (\lambda_1 + \varepsilon_1)|v|, \quad g(k, u) \geq (\lambda_1 + \varepsilon_1)|u|, \quad \forall k \in \mathbb{T}_1, |u|, |v| > X_1.\]
(20)

Note that when \(k \in \mathbb{T}_1, |u|, |v| \leq X_1\), the functions \(|f(k, v)|\) and \(|g(k, u)|\) are bounded, so we can choose some appropriate positive numbers \(M_1, M_2\) such that
\[f(k, v) \geq (\lambda_1 + \varepsilon_1)|v| - M_1, \quad g(k, u) \geq (\lambda_1 + \varepsilon_1)|u| - M_2, \quad \forall k \in \mathbb{T}_1, u, v \in \mathbb{R},\]
(21)

where
\[M_1 = \max_{k \in \mathbb{T}_1, |u|, |v| \leq X_1} |f(k, v)| + (\lambda_1 + \varepsilon_1)X_1,\]
(22)
\[M_2 = \max_{k \in \mathbb{T}_1, |u|, |v| \leq X_1} |g(k, u)| + (\lambda_1 + \varepsilon_1)X_1.\]
(22)

From (H2), for any given \(\varepsilon, \bar{\varepsilon} > 0\) with \(\varepsilon_1 - \varepsilon\|b_1\| > 0, \varepsilon_1 - \bar{\varepsilon}\|b_2\| > 0\), there is \(X_2 > X_1\) such that
\[\beta_1^*(v) \leq \varepsilon|v|, \quad \beta_2^*(u) \leq \varepsilon|u|, \quad \forall |u|, |v| > X_2.\]
(23)

Let \(\beta_1^* = \max_{|x| \leq X} \beta_1(x)\) and \(\beta_2^* = \max_{|x| \leq X} \beta_2(x)\). Then, \(\beta_1(v) \leq \varepsilon|v| + \beta_1^*, \quad \beta_2(u) \leq \varepsilon|u| + \beta_2^*, \quad u, v \in \mathbb{R}.\)
(24)

Thus, we have
\[f(k, v) \geq (\lambda_1 + \varepsilon_1)|v| - a_1(k) - b_1(k)\beta_1(v) - M_1 \geq (\lambda_1 + \varepsilon_1)|v| - a_1(k) - b_1(k)[|v| + \beta_1^*] - M_1 \geq (\lambda_1 + \varepsilon_1 - \varepsilon\|b_1\|)|v| - a_1(k) - b_1^* b_1(k) - M_1, \quad \forall k \in \mathbb{T}_1, u \in \mathbb{R},\]
(25)
\[g(k, u) \geq (\lambda_1 + \varepsilon_1 - \bar{\varepsilon}\|b_2\|)|u| - a_2(k) - b_2^* b_2(k) - M_2, \quad \forall k \in \mathbb{T}_1, u \in \mathbb{R}.\]
(26)

Note that \(\varepsilon, \bar{\varepsilon}\) can be chosen arbitrarily small, so we can let
\[R > \max\{N_1, N_2, N_3, N_4\},\]
(27)
where
\begin{align*}
N_1 &= \frac{2 \sum_{l=1}^{T} G(l, l)[a_1(l) + \beta_1^* b_1(l) + M_1]}{1 - 2\varepsilon \sum_{l=1}^{T} G(l, l)b_1(l)}, \\
N_2 &= \frac{2 \sum_{l=1}^{T} G(l, l)[a_2(l) + \beta_2^* b_2(l) + M_2]}{1 - 2\bar{\varepsilon} \sum_{l=1}^{T} G(l, l)b_2(l)}, \\
N_3 &= \frac{(\lambda_1 T + (1 + T)(\varepsilon_1 - \varepsilon\|b_1\|)) \sum_{l=1}^{T} G(l, l)[a_1(l) + a_2(l) + \beta_1^* b_1(l) + \beta_2^* b_2(l) + M_1 + M_2]}{(\varepsilon_1 - \varepsilon\|b_1\|) - (\lambda_1 T + (1 + T)(\varepsilon_1 - \varepsilon\|b_1\|))(\varepsilon \sum_{l=1}^{T} G(l, l)b_1(l) + \bar{\varepsilon} \sum_{l=1}^{T} G(l, l)b_2(l))}, \\
N_4 &= \frac{(\lambda_1 T + (1 + T)(\varepsilon_1 - \bar{\varepsilon}\|b_2\|)) \sum_{l=1}^{T} G(l, l)[a_1(l) + a_2(l) + \beta_1^* b_1(l) + \beta_2^* b_2(l) + M_1 + M_2]}{(\varepsilon_1 - \bar{\varepsilon}\|b_2\|) - (\lambda_1 T + (1 + T)(\varepsilon_1 - \bar{\varepsilon}\|b_2\|))(\varepsilon \sum_{l=1}^{T} G(l, l)b_1(l) + \bar{\varepsilon} \sum_{l=1}^{T} G(l, l)b_2(l))}. \\
\end{align*}
(28)
Now, we prove
\[(u, v) - \mathcal{A}(u, v) \neq \mu(\phi, \phi), \quad \forall u, v \in \partial B_R, \mu \geq 0, \quad (29) \]
where \(\phi(k) = \sin(k\pi/(T + 1)), k \in T_2. \) We argue this claim by induction. Suppose that there exist \(u, v \in \partial B_R, \mu \geq 0 \) such that
\[(u, v) - \mathcal{A}(u, v) = \mu(\phi, \phi). \quad (30) \]

\[u(k) = (\mathcal{T}v)(k) + \mu\phi(k) = \sum_{l=1}^{T} G(k, l)f(l, v(l)) + \mu\phi(k), \quad (31) \]
\[v(k) = (\mathcal{S}u)(k) + \mu\phi(k) = \sum_{l=1}^{T} G(k, l)g(l, u(l)) + \mu\phi(k). \quad (32) \]
\[\bar{v}(k) = \sum_{l=1}^{T} G(k, l)[a_1(l) + b_1(l)\beta_1(v(l)) + M_1], \quad (33) \]
\[\bar{u}(k) = \sum_{l=1}^{T} G(k, l)[a_2(l) + b_2(l)\beta_2(u(l)) + M_2]. \]

Then by Lemma 3, \(\bar{u}, \bar{v} \in P_0, \) and we also have
\[u(k) + \bar{v}(k) = \sum_{l=1}^{T} G(k, l)[f(l, v(l)) + a_1(l) + b_1(l)\beta_1(v(l)) + M_1] + \mu\phi(k), \quad (34) \]
\[v(k) + \bar{u}(k) = \sum_{l=1}^{T} G(k, l)[g(l, u(l)) + a_2(l) + b_2(l)\beta_2(u(l)) + M_2] + \mu\phi(k). \]

Using (24) and (25), we have
\[f(l, v(l)) + a_1(l) + b_1(l)\beta_1(v(l)) + M_1 \in P, \]
\[g(l, u(l)) + a_2(l) + b_2(l)\beta_2(u(l)) + M_2 \in P. \quad (35) \]

So, from Lemma 3 and Remark 1, we have
\[v + \bar{u}, u + \bar{v} \in P_0. \quad (36) \]

Note that \(u, v \in \partial B_R, \) and using (24), \(R > N_1, \) and \(R > N_2, \) we have
\[\|v\| \leq \sum_{l=1}^{T} G(l, l)[a_1(l) + b_1(l)\beta_1(v(l)) + M_1] \leq \sum_{l=1}^{T} G(l, l)[a_1(l) + b_1(l)(\|v\| + \beta_1^*) + M_1] < \frac{R}{2} \]
\[\|\bar{u}\| \leq \sum_{l=1}^{T} G(l, l)[a_2(l) + b_2(l)(\|u\| + \beta_2^*) + M_2] < \frac{R}{2}. \quad (37) \]

It is noted that \(\|u\| = \|v\| = R, u + \bar{u} + \bar{v} \in P_0, \) and \(v + \bar{u} + \bar{v} \in P_0. \) Therefore, we get
\[u(k) + \bar{u}(k) + \bar{v}(k) \geq \frac{1}{2} \|u + \bar{u} + \bar{v}\| \geq \frac{1}{2} \left(\|u\| - \|\bar{u} + \bar{v}\| \right), \]
\[v(k) + \bar{u}(k) + \bar{v}(k) \geq \frac{1}{2} \|v + \bar{u} + \bar{v}\| \geq \frac{1}{2} \left(\|v\| - \|\bar{u} + \bar{v}\| \right). \quad (38) \]

Using \(R > N_3, \) we have
\[\frac{\epsilon_1 - \epsilon\|b_1\|}{T} \sum_{l=1}^{T} G(k, l)[v(l) + \bar{u}(l) + \bar{v}(l)] - \left(\lambda_1 + \epsilon_1 - \epsilon\|b_1\| \right) \sum_{l=1}^{T} G(k, l)[\bar{u}(l) + \bar{v}(l)] \]
\[\geq \frac{\epsilon_1 - \epsilon\|b_1\|}{T} \sum_{l=1}^{T} G(k, l)[R - (\|\bar{u}\| + \|\bar{v}\|)] - \left(\lambda_1 + \epsilon_1 - \epsilon\|b_1\| \right) \sum_{l=1}^{T} G(k, l)[(\|\bar{u}\| + \|\bar{v}\|)] \geq 0, \quad (39) \]
and \(R > N_4 \) implies that
\[\frac{\epsilon_1 - \epsilon\|b_2\|}{T} \sum_{l=1}^{T} G(k, l)[u(l) + \bar{u}(l) + \bar{v}(l)] - \left(\lambda_1 + \epsilon_1 - \epsilon\|b_2\| \right) \sum_{l=1}^{T} G(k, l)[\bar{u}(l) + \bar{v}(l)] \geq 0. \quad (40) \]
Consequently, we obtain

\[
(\mathcal{F} v)(k) + \mathcal{V}(k) = \sum_{l=1}^{T} G(k, l) [f(l, v(l)) + a_1(l) + b_1(l)\beta_1(v(l)) + M_1]
\]

\[
\geq \sum_{l=1}^{T} G(k, l) [\left(\lambda_1 + \epsilon_1 - \epsilon\|b_2\|\right)\|v(l)\| - a_2(l) - \beta_2 b_2(l) - M_2 + a_2(l) + b_2(l)\beta_2(u(l)) + M_2]
\]

\[
\geq \left(\lambda_1 + \epsilon_1 - \epsilon\|b_2\|\right) \sum_{l=1}^{T} G(k, l)\|u(l)\|
\]

\[
\geq \left(\lambda_1 + \epsilon_1 - \epsilon\|b_2\|\right) \sum_{l=1}^{T} G(k, l)\|u(l)\| + \mathcal{V}(l) - \left(\lambda_1 + \epsilon_1 - \epsilon\|b_2\|\right) \sum_{l=1}^{T} G(k, l)\|u(l)\| + \mathcal{V}(l)
\]

\[
\geq \lambda_1 \sum_{l=1}^{T} G(k, l)\|u(l)\| + \mathcal{V}(l)
\]

As a result, we get

\[
(\mathcal{F} v)(k) + (\mathcal{S} u)(k) + \mathcal{U}(k) + \mathcal{V}(k) \geq \lambda_1 (L(u + v + \bar{u} + \bar{v}))(k).
\]

(42)

In view of (31) and (32), we see

\[
u(k) + v(k) + \bar{u}(k) + \bar{v}(k) = (\mathcal{F} v)(k) + (\mathcal{S} u)(k) + \bar{u}(k) + \bar{v}(k) \geq \lambda_1 (L(u + v + \bar{u} + \bar{v}))(k) + 2\mu\phi(k)
\]

\[
\geq \lambda_1 (L(u + v + \bar{u} + \bar{v}))(k) + 2\mu\phi(k).
\]

(43)

Define \(\mu^* = \sup S_\epsilon = \sup\{\mu > 0 : u + v + \bar{u} + \bar{v} \geq 2\mu\phi\}\). Then, \(S_\epsilon \neq \emptyset\), \(\mu^* \geq \mu\) and \(u + v + \bar{u} + \bar{v} \geq 2\mu^* \phi\). From \(\phi = \lambda_1 L\phi\), we obtain

\[
\lambda_1 L(u + v + \bar{u} + \bar{v}) \geq \lambda_1 L(2\mu^* \phi) = 2\mu^* \lambda_1 L\phi = 2\mu^* \phi.
\]

(44)

Hence,

\[
\lambda_1 L(u + v + \bar{u} + \bar{v}) \geq \lambda_1 L(u + v + \bar{u} + \bar{v}) + 2\mu\phi \geq 2(\mu^* + \mu)\phi,
\]

(45)

which contradicts the definition of \(\mu^*\). Therefore, (29) holds, and from Lemma 4, we obtain

\[
\text{deg}(I - \mathcal{A}, B_R, 0) = 0.
\]

(46)

This completes the proof. \(\square\)

Proof of Theorem 1. From (H4), there exist \(\epsilon_2 \in (0, \lambda_1)\) and \(r \in (0, R)\) such that

\[
|f(k, v)| \leq (\lambda_1 - \epsilon_2)|v|, \quad |g(k, u)| \leq (\lambda_1 - \epsilon_2)|u|,
\]

\[
\forall k \in \mathbb{T}_1, u, v \in \mathbb{R} \text{ with } |u|, |v| \leq r.
\]

(47)

This implies that

\begin{equation}
|\mathcal{T}(v)(k)| = \sum_{l=1}^{T} G(k,l)f(l,v(l)) \leq \sum_{l=1}^{T} G(k,l)|f(l,v(l))| \leq (\lambda_1 - \epsilon_2) \sum_{l=1}^{T} G(k,l)|v(l)|,
\end{equation}

\begin{equation}
|\mathcal{S}(u)(k)| = \sum_{l=1}^{T} G(k,l)g(l,u(l)) \leq \sum_{l=1}^{T} G(k,l)|g(l,u(l))| \leq (\lambda_1 - \epsilon_2) \sum_{l=1}^{T} G(k,l)|u(l)|.
\end{equation}

Consequently, we have

\begin{equation}
|\mathcal{T}(v)(k)| + |\mathcal{S}(u)(k)| \leq (\lambda_1 - \epsilon_2) \sum_{l=1}^{T} G(k,l)[|u(l)| + |v(l)|].
\end{equation}

Now, we prove that

\begin{equation}
(u,v) \neq \mu \mathcal{A}(u,v),
\end{equation}

for all \(u, v \in \partial B_{r} \) and \(\mu \in [0,1] \). We argue by contradiction. Suppose that there exist \(u, v \in \partial B_{r} \) and \(\mu \in [0,1] \) such that

\begin{equation}
(u,v) = \mu \mathcal{A}(u,v).
\end{equation}

Therefore,

\begin{equation}
\sum_{k=1}^{T} [|u(k)| + |v(k)|] \frac{\sin(k\pi)}{(T+1)} \leq (\lambda_1 - \epsilon_2) \sum_{k=1}^{T} \frac{\sin(k\pi)}{(T+1)} \sum_{l=1}^{T} G(k,l)[|u(l)| + |v(l)|] = \lambda_1 - \epsilon_2 \sum_{l=1}^{T} [u(l)] + |v(l)| \frac{\sin(l\pi)}{(T+1)}.
\end{equation}

This implies that

\begin{equation}
\sum_{k=1}^{T} [|u(k)| + |v(k)|] \frac{\sin(k\pi)}{(T+1)} = 0.
\end{equation}

Because \(\frac{\sin(k\pi)}{(T+1)} \geq 0 (\neq 0) \) for \(k \in \mathbb{T}_1 \), we have

\begin{equation}
|u(k)| + |v(k)| \equiv 0, \quad k \in \mathbb{T}_1.
\end{equation}

This contradicts \(u,v \in \partial B_{r} \). Therefore, (50) holds, and Lemma 5 implies that

\begin{equation}
\deg(I - \mathcal{A}, B_{r}, 0) = 1.
\end{equation}

Combining this with Lemma 6, we have

\begin{equation}
\deg(I - \mathcal{A}, B_{R}, 0) = \deg(I - \mathcal{A}, B_{r}, 0) - \deg(I - \mathcal{A}, B_{r}, 0) = -1.
\end{equation}

Therefore, the operator \(\mathcal{A} \) has at least one fixed point in \(B_{R}/\mathbb{B}_{r} \), and (6) has at least one nontrivial solution. This completes the proof. \(\Box \)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

This study was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Acknowledgments

This study was supported by the project of National Social Science Fund of China (NSSFC) (18BTY015) and Shandong Province Higher Educational Science and Technology Program (J16L01).

References

[1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, Marcel Dekker Incorporated, New York, NY, USA, 2000.
[2] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
[3] S. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, NY, USA, 3rd edition, 2011.
[4] W. G. Kelly and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, CA, USA, 1991.
[5] G. Zhang and S. Ge, "Existence of positive solutions for a class of discrete Dirichlet boundary value problems," Applied Mathematics Letters, vol. 48, pp. 1–7, 2015.
[6] W. Cheng, J. Xu, D. O’Regan, and Y. Cui, "Positive solutions for a nonlinear discrete fractional boundary value problems
with a p-Laplacian operator,” *Journal of Analysis Applications and Computational*, vol. 9, no. 5, pp. 1959–1972, 2019.

[7] H. Lu, D. O’Regan, and R. Agarwal, “A positive solution for singular discrete boundary value problems with sign-changing nonlinearities,” *Journal of Applied Mathematics and Stochastic Analysis*, vol. 2006, pp. 1–14, 2006.

[8] K. Zhang, D. O’Regan, and Z. Fu, “Nontrivial solutions for boundary value problems of a fourth order difference equation with sign-changing nonlinearity,” *Advances in Difference Equations*, vol. 2018, no. 1, p. 370, 2018.

[9] T. Sitthiwirattham, “Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions,” *Mathematical Methods in the Applied Sciences*, vol. 38, no. 13, pp. 2809–2815, 2015.

[10] C. S. Goodrich, “On semipositone discrete fractional boundary value problems with non-local boundary conditions,” *Journal of Difference Equations and Applications*, vol. 19, no. 11, pp. 1758–1780, 2013.

[11] J. Henderson, S. K. Ntouyas, and I. K. Purnaras, "Positive solutions for systems of nonlinear discrete boundary value problems," *Journal of Difference Equations and Applications*, vol. 15, no. 10, pp. 895–912, 2009.

[12] J. Xu, C. S. Goodrich, and Y. Cui, "Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities," *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, vol. 113, no. 2, pp. 1343–1358, 2019.

[13] J.-P. Sun and W.-T. Li, “Multiple positive solutions of a discrete difference system,” *Applied Mathematics and Computation*, vol. 143, no. 2-3, pp. 213–221, 2003.

[14] W. Cheng, J. Xu, Y. Cui, and Q. Ge, "Positive solutions for a class of fractional difference systems with coupled boundary conditions," *Advances in Difference Equations*, vol. 2019, no. 1, p. 249, 2019.

[15] Y. Ding, J. Xu, and Z. Wei, "Positive solutions for a system of discrete boundary value problem," *Bulletin of the Malaysian Mathematical Sciences Society*, vol. 38, no. 3, pp. 1207–1221, 2015.

[16] Y. Li, J. Liu, D. O’Regan, and J. Xu, "Nontrivial solutions for a system of fractional q-difference equations involving q-integral boundary conditions," *Mathematics*, vol. 8, no. 5, p. 828, 2020.

[17] H. Zhang, Y. Li, and J. Xu, "Positive solutions for a system of fractional integral boundary value problems involving Hadamard-type fractional derivatives," *Complexity*, vol. 2019, p. 204, 2019.

[18] T. Qi, Y. Liu, and Y. Zou, "Existence result for a class of coupled fractional differential systems with integral boundary value conditions," *The Journal of Nonlinear Sciences and Applications*, vol. 10, no. 7, pp. 4034–4045, 2017.

[19] T. Qi, Y. Liu, and Y. Cui, "Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions," *Journal of Function Spaces*, vol. 2017, pp. 1–9, 2017.

[20] J. Jiang, D. O’Regan, J. Xu, and Z. Fu, "Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions," *Journal of Inequalities and Applications*, vol. 2019, no. 1, p. 204, 2019.

[21] W. Yang, "Positive solutions for nonlinear semipositone fractional q-difference system with coupled integral boundary conditions," *Applied Mathematics and Computation*, vol. 244, pp. 702–725, 2014.

[22] X. Zhang, Y. Wu, and L. Caccetta, "Nonlocal fractional order differential equations with changing-sign singular perturbation," *Applied Mathematical Modelling*, vol. 39, no. 21, pp. 6543–6552, 2015.

[23] X. Zhang, L. Liu, and Y. Wu, "Multiple positive solutions of a singular fractional differential equation with negatively perturbed term," *Mathematical and Computer Modelling*, vol. 55, no. 3–4, pp. 1263–1274, 2012.

[24] C. Chen, X. Zhang, G. Zhang, and Y. Zhang, "A two-grid finite element method for nonlinear parabolic integro-differential equations," *International Journal of Computer Mathematics*, vol. 96, no. 10, pp. 2010–2023, 2019.

[25] D. Guo and V. Lakshmikantham, *Nonlinear Problems in Abstract Cones*, Academic Press, Orlando, FL, USA, 1988.