The Quantum Wasserstein Distance of Order 1

Giacomo De Palma

GdP, Cambyse Rouzé
Annales Henri Poincaré 23, 3391 (2022)

GdP, Milad Marvian, Cambyse Rouzé, Daniel Stilck França
PRX Quantum 4, 010309 (2023)

GdP, Dario Trevisan
Annales Henri Poincaré 24, 4237 (2023)
Quantum spin systems

• Finite set of spins Λ endowed with distance
• Associate to each spin $x \in \Lambda$ the local Hilbert space $\mathcal{H}_x = \mathbb{C}^d$
• Hamiltonian with finite-range interactions
• Gibbs state
$$\omega = \frac{e^{-\beta H}}{\text{Tr} \, e^{-\beta H}}$$
• If correlations decay sufficiently fast, ω satisfies TCI

$$\frac{1}{n} \| \rho - \omega \|_{W_1} \leq \sqrt{\frac{O(1)}{n}} \cdot S(\rho \| \omega)$$

• Holds at high enough temperature for any finite-range commuting Hamiltonian [see also Onorati, Rouzé, França, Watson, arXiv:2301.12946]
Equivalence of ensembles

- Canonical ensemble: Gibbs states
- Microcanonical ensemble: uniform convex combination of all states in energy shell
- Assume that Gibbs state satisfies TCI

\[\frac{1}{n} \| \rho - \omega \|_{W_1} \leq \sqrt{\frac{c}{n} S(\rho \| \omega)} \]

- Then, any \(\rho \) with same average energy as \(\omega \) and approximately same entropy as \(\omega \) is close to \(\omega \)

\[\text{Tr} [\rho H] = \text{Tr} [\omega H] \implies \frac{1}{n} \| \rho - \omega \|_{W_1} \leq \sqrt{\frac{c}{n} (S(\omega) - S(\rho))} \]

- Ok if fraction of states in shell is \(e^{-o(n)} \)
Quantum spin systems on \mathbb{Z}^D

- Associate to each $x \in \mathbb{Z}^d$ local Hilbert space $\mathcal{H}_x = \mathbb{C}^d$
- Associate to each $\Lambda \subset \subset \mathbb{Z}^D$ the Hilbert space
 $$\mathcal{H}_\Lambda = \bigotimes_{x \in \Lambda} \mathcal{H}_x$$
- Algebra of operators acting on Λ: \mathcal{U}_Λ
- Local algebra
 $$\mathcal{U}_{\mathbb{Z}^D} = \bigcup_{\Lambda \subset \subset \mathbb{Z}^D} \mathcal{U}_\Lambda$$
- Quantum state: Positive unital linear functional on $\mathcal{U}_{\mathbb{Z}^D}$
- We consider translation-invariant states
- Marginal states $\rho_\Lambda \in \mathcal{S}_\Lambda : \text{Tr}_{\mathcal{H}_\Lambda} [\rho_\Lambda A] = \rho(A)$ $\forall A \in \mathcal{U}_\Lambda$
Interactions

- Interaction: collection of observables \(\{ h_\Lambda \in \mathcal{O}_\Lambda \}_{\Lambda \subseteq \mathbb{Z}^D} \)
- Hamiltonian of region \(\Lambda \):
 \[
 H^h_\Lambda = \sum_{X \subseteq \Lambda} h_X
 \]

- We consider translation-invariant interactions with finite local norm

 \[
 \| h \|_r = \sum_{0 \in \Lambda \subseteq \mathbb{Z}^D} e^{r(|\Lambda|^{-1})} \| h_\Lambda \|_\infty < \infty \quad r > 0
 \]

- Specific energy of TI state

 \[
 E_h(\rho) = \lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{\rho(H^h_\Lambda)}{|\Lambda|}
 \]
Gibbs states

- Specific entropy of TI state
 \[s(\rho) = \lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{S(\rho_\Lambda)}{|\Lambda|} \]

- Equilibrium states of TI interaction: Maximizers of
 \[s(\rho) - E_h(\rho) \]

- Always exist but in general are not unique

- Satisfy KMS condition

- Local Gibbs states (NOT equal to marginals of equilibrium states)
 \[\omega^h_\Lambda = \frac{e^{-H^h_\Lambda}}{\text{Tr} e^{-H^h_\Lambda}} \in S_\Lambda \]

- \(\rho \) is equilibrium state iff
 \[\lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{S(\rho_\Lambda \| \omega^h_\Lambda)}{|\Lambda|} = 0 \]
The specific quantum W_1 distance

- Specific W_1 distance for TI quantum states
 \[
 w_1(\rho, \sigma) = \lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{\|\rho_\Lambda - \sigma_\Lambda\|_{W_1}}{|\Lambda|}
 \]

- Lipschitz constant for TI quantum interactions
 \[
 \|h\|_L = \partial_0 \sum_{0 \in \Lambda \subset \subset \mathbb{Z}^D} h_\Lambda
 \]

- Duality
 \[
 w_1(\rho, \sigma) = \sup_{\|h\|_L \leq 1} (E_h(\rho) - E_h(\sigma))
 \]

- Continuity of the specific entropy
 \[
 |s(\rho) - s(\sigma)| \leq h_2(w_1(\rho, \sigma)) + w_1(\rho, \sigma) \ln(d^2 - 1)
 \]
w_1-Gibbs states

- TI state ρ is w_1-Gibbs state of TI interaction h if
 \[
 \lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{\|\rho_\Lambda - \omega_\Lambda^h\|_{W_1}}{|\Lambda|} = 0
 \]

- If it exists, w_1-Gibbs state is unique and is equilibrium state!

- TI interaction h satisfies TCI with constant c if for any TI state ρ
 \[
 \limsup_{\Lambda \uparrow \mathbb{Z}^D} \frac{\|\rho_\Lambda - \omega_\Lambda^h\|_{W_1}^2}{|\Lambda|^2} \leq \frac{c}{2} \lim_{\Lambda \uparrow \mathbb{Z}^D} \frac{S(\rho_\Lambda\|\omega_\Lambda^h)}{|\Lambda|}
 \]

- In this case, h has unique equilibrium state which is also w_1-Gibbs state

- TCI satisfied above critical temperature by any finite-range commuting interaction
Shallow quantum circuits

- Expand W_1 distance by at most twice the size of the largest light-cone of a qudit

$$\| U \rho U^\dagger - U \sigma U^\dagger \|_{W_1} \leq 2B(U) \| \rho - \sigma \|_{W_1}$$
Quadratic concentration for product states

• ω product state

\[
\text{Var}_\omega H \leq n \| H \|_L^2
\]

• ρ output of quantum circuit with blow-up B

\[
\text{Var}_\rho H \leq 4n B^2 \| H \|_L^2
\]

• See [Anshu, Metger, arXiv:2209.02715] for Gaussian concentration of observables diagonal in computational basis
Combinatorial optimization

- Goal: find bit string that maximizes cost function C
- Local cost: sum of functions each depending on $O(1)$ bits
- Efficient classical algorithms usually achieve
 \[
 C = a C_{\text{max}} \quad 0 < a \leq 1
 \]
- **Example**: maximum cut problem, i.e., find the bipartition of a graph that maximizes the # of edges connecting the two parts
- Associate one bit to each vertex, set to 1 bits in second half of bipartition
- NP complete!
Variational quantum algorithms

- Associate one qubit to each bit, quantum Hamiltonian to cost function

\[H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \]

- Train parametric quantum circuit to generate high-energy states

- **Example:** Quantum Approximate Optimization Algorithm (QAOA)

- Alternate time evolution with \(H \) and mixing Hamiltonian

\[
\left(\prod_{k=1}^{P} e^{-i \gamma_k \sum_{i=1}^{n} X_i} e^{-i \beta_k H} \right) |+\rangle \otimes n
\]
Limitations of QAOA for MaxCut

• Toy model: D-regular bipartite graph ($\text{maxcut} = n \frac{D}{2}$)

• Technical assumption:

$$C(x) \geq \left(\frac{D}{2} - \sqrt{D-1} \right) \min \{|x|, n - |x|\} \quad \forall x \in \{0, 1\}^n$$

• Satisfied by Ramanujan expander graphs with $D \geq 3$ and for large n by random D-regular graphs with high probability

• Observation [Bravyi et al., PRL 125, 260505 (2020)]: QAOA circuit commutes with $X^\otimes n$

• Probability distribution of output measurement symmetric wrt flipping all bits and cannot be concentrated on single string
Limitations of QAOA for MaxCut

• Result: if

\[\text{Tr} [\rho H] \geq C_{\text{max}} \left(\frac{5}{6} + \frac{\sqrt{D - 1}}{3D} \right) \]

then the quadratic concentration inequality implies

\[P \geq \frac{1}{2 \log (D + 1)} \log \frac{n}{576} = \Omega(\log n) \]

• Holds for any circuit and initial state commuting with \(X^{\otimes n} \)

• Improves Bravyi et al.

\[P \geq \frac{1}{3(D + 1)} \log_2 \frac{n}{4096} \]
Further applications

- Quantum Wasserstein Generative Adversarial Networks
 [Kiani, GdP, Marvian, Liu, Lloyd, *Quantum Sci Technol* 7, 045002 (2022)]
- Design of quantum error correcting codes
 [Zoratti, GdP, Kiani, Nguyen, Marvian, Lloyd, Giovannetti, *Phys. Rev. A* 108, 022611 (2023)]
- Efficient learning of quantum states
 [Rouzé, França, arXiv:2107.03333]
 [Onorati, Rouzé, França, Watson, arXiv:2301.12946]
 [GdP, Klein, Pastorello, arXiv:2309.08426]
- Quantum rate-distortion theory