The L^2 decay for the 2D co-rotation FENE dumbbell model of polymeric flows

Wei Luo1 and Zhaoyang Yin1,2

1Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
2Faculty of Information Technology, Macau University of Science and Technology, Macau, China

Abstract

In this paper we mainly study the long time behaviour of solutions to the finite extensible nonlinear elastic (FENE) dumbbell model with dimension two in the co-rotation case. Firstly, we obtain the L^2 decay rate of the velocity of the 2D co-rotation FENE model is $(1 + t)^{-\frac{1}{2}}$ with small data. Then, by virtue of the Littlewood-Paley theory, we can remove the small condition. Our obtained sharp result improves considerably the recent results in [8, 14].

2010 Mathematics Subject Classification: 35Q30, 76B03, 76D05, 76D99.

Keywords: The 2D co-rotation FENE model; The Navier-Stokes equations; The L^2 decay; The Littlewood-Paley theory.

Contents

1 Introduction 2
2 Preliminaries 3
3 Main results 4
3.1 The L^2 decay with small data 5
3.2 The L^2 decay with large data 9
References 11

*E-mail: luowei23@mail2.sysu.edu.cn
†E-mail: mcsyzy@mail.sysu.edu.cn
1 Introduction

In this paper we consider the finite extensible nonlinear elastic (FENE) dumbbell model \[2, 4\]:

\[
\begin{aligned}
&u_t + (u \cdot \nabla)u - \nu \Delta u + \nabla P = \text{div } \tau, \quad \text{div } u = 0, \\
&\psi_t + (u \cdot \nabla)\psi = \text{div}_R[-\sigma(u) \cdot R\psi + \beta \nabla_R \psi + \nabla_R \mathcal{U}_R], \\
&\tau_{ij} = \int_B (R_i \nabla_j \mathcal{U}) \psi dR, \\
&u|_{t=0} = u_0, \quad \psi|_{t=0} = \psi_0, \\
&\left(\beta \nabla_R \psi + \nabla_R \mathcal{U}_R\right) \cdot n = 0 \quad \text{on} \quad \partial B(0, R_0).
\end{aligned}
\]

(1.1)

In (1.1) \((t, x, R)\) denotes the distribution function for the internal configuration and \(u(t, x)\) stands for the velocity of the polymeric liquid, where \(x \in \mathbb{R}^d\) and \(d \geq 2\) means the dimension. Here the polymer elongation \(R\) is bounded in ball \(B = B(0, R_0)\) of \(\mathbb{R}^d\) which means that the extensibility of the polymers is finite. \(\beta = \frac{2k_B T_a}{\lambda}\), where \(k_B\) is the Boltzmann constant, \(T_a\) is the absolute temperature and \(\lambda\) is the friction coefficient. \(\nu > 0\) is the viscosity of the fluid, \(\tau\) is an additional stress tensor and \(P\) is the pressure. The Reynolds number \(Re = \frac{2}{\nu}\) with \(\gamma \in (0, 1)\) and the density \(\rho = \int_B \psi dR\).

Moreover the potential \(\mathcal{U}(R) = -k \log(1 - (\frac{|R|}{|R_0|})^2)\) for some constant \(k > 0\). \(\sigma(u)\) is the drag term. In general, \(\sigma(u) = \nabla u\). For the co-rotation case, \(\sigma(u) = \frac{\nabla u - (\nabla u)^T}{2}\).

This model describes the system coupling fluids and polymers. The system is of great interest in many branches of physics, chemistry, and biology, see \[2, 4\]. In this model, a polymer is idealized as an "elastic dumbbell" consisting of two "beads" joined by a spring that can be modeled by a vector \(R\). At the level of liquid, the system couples the Navier-Stokes equation for the fluid velocity with a Fokker-Planck equation describing the evolution of the polymer density. This is a micro-macro model (For more details, one can refer to \[2, 4, 9\] and \[10\]).

In the paper we will take \(\beta = 1\), \(\nu = 1\) and \(R_0 = 1\). Notice that \((u, \psi)\) with \(u = 0\) and

\[
\psi_{\infty}(R) = \frac{e^{-\mathcal{U}(R)}}{\int_B e^{-\mathcal{U}(R)} dR} = \frac{(1 - |R|^2)^k}{\int_B (1 - |R|^2)^k dR}.
\]

is a trivial solution of (1.1). By a simple calculation, we can rewrite (1.1) for the following system:

\[
\begin{aligned}
&u_t + (u \cdot \nabla)u - \nu \Delta u + \nabla P = \text{div } \tau, \quad \text{div } u = 0, \\
&\psi_t + (u \cdot \nabla)\psi = \text{div}_R[-\sigma(u) \cdot R\psi + \psi_{\infty} \nabla_R \frac{\psi}{\psi_{\infty}}], \\
&\tau_{ij} = \int_B (R_i \nabla_j \mathcal{U}) \psi dR, \\
&u|_{t=0} = u_0, \quad \psi|_{t=0} = \psi_0, \\
&\psi_{\infty} \nabla_R \frac{\psi}{\psi_{\infty}} \cdot n = 0 \quad \text{on} \quad \partial B(0, 1).
\end{aligned}
\]

(1.2)

Remark. As in the reference \[10\], one can deduce that \(\psi = 0\) on the boundary.

There are a lot of mathematical results about the FENE dumbbell model. M. Renardy \[11\] established the local well-posedness in Sobolev spaces with potential \(\mathcal{U}(R) = (1 - |R|^2)^{1-\sigma}\) for \(\sigma > 1\). Later, B. Jourdain, T. Lelièvre, and C. Le Bris \[3\] proved local existence of a stochastic differential equation with potential \(\mathcal{U}(R) = -k \log(1 - |R|^2)\) in the case \(k > 3\) for a Couette flow. H. Zhang and P. Zhang \[15\] proved local well-posedness of (1.4) with \(d = 3\) in weighted Sobolev spaces. For the co-rotation
case, F. Lin, P. Zhang, and Z. Zhang [6] obtain a global existence results with \(d = 2 \) and \(k > 6 \). If the initial data is perturbation around equilibrium, N. Masmoudi [9] proved global well-posedness of (1.4) for \(k > 0 \). In the co-rotation case with \(d = 2 \), he [9] obtained a global result for \(k > 0 \) without any small conditions. In the co-rotation case, A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade [3] obtain a global existence result with only the small condition on \(\psi_0 \). The global existence of weak solutions in \(L^2 \) was proved recently by N. Masmoudi [10] under some entropy conditions.

Recently, M. Schonbek [14] studied the \(L^2 \) decay of the velocity for the co-rotation FENE dumbbell model, and obtained the decay rate \((1 + t)^{-\frac{d}{4} + \frac{1}{2}}\), \(d \geq 2 \) with \(u_0 \in L^1 \). Moreover, she conjectured that the sharp decay rate should be \((1 + t)^{-\frac{d}{4}}\), \(d \geq 2 \). However, she failed to get it because she could not use the bootstrap argument as in [12] due to the additional stress tensor. More recently, W. Luo and Z. Yin [8] improved Schonbek’s result and showed that the decay rate is \((1 + t)^{-\frac{d}{4}}\) with \(d \geq 3 \) and \(\ln^{-l}(1 + t) \) with \(d = 2 \) for any \(l \in \mathbb{N}^+ \). This result shows that M. Schonbek’s conjecture is true when \(d \geq 3 \). However, there is no any result to show that M. Schonbek’s conjecture is true when \(d = 2 \).

In this paper, we are going on to prove that M. Schonbek’s conjecture holds true when \(d = 2 \). Firstly, we show that the \(L^2 \) decay rate is \((1 + t)^{-\frac{d}{4}}\), \(d \geq 2 \) for the velocity with the small initial data. The main idea is that we can obtain a estimate for the \(L^3_\infty(L^2) \) norm of the initial data being small in \(L^1 \). Since we are interested in the large time behaviour of the weak solutions, we can consider the evolution system after a large time \(T_0 \). Note that the \(L^2 \) norm of the solutions will decay to zero. Thus we can remove the small \(L^2 \) norm condition of the initial data. And then the main difficult is to get the \(L^1 \)-estimate for the velocity. Since the Leray project operator is not bounded in \(L^1 \), it follows that one can not obtain the \(L^1 \)-estimate directly by the heat kernel estimate. Instead, we will use the Littlewood-Paley theory to estimate the \(B^s_{1,1} \) norm in place of the \(L^1 \) norm. Finally, we can prove that the sharp \(L^2 \) decay rate is \((1 + t)^{-\frac{d}{4}}\), \(d \geq 2 \) for the velocity with the large initial data.

The paper is organized as follows. In Section 2 we introduce some notations and give some preliminaries which will be used in the sequel. In Section 3 we study the \(L^2 \) decay of solutions to the 2D co-rotation FENE model by using the Fourier splitting method and the Littlewood-Paley theory.

2 Preliminaries

In this section we will introduce some notations and useful lemmas which will be used in the sequel.

If the function spaces are over \(\mathbb{R}^d \) and \(B \) with respect to the variable \(x \) and \(R \), for simplicity, we drop \(\mathbb{R}^d \) and \(B \) in the notation of function spaces if there is no ambiguity.

For \(p \geq 1 \), we denote by \(\mathcal{L}^p \) the space

\[
\mathcal{L}^p = \left\{ \psi \mid \| \psi \|_{\mathcal{L}^p}^p = \int_{\mathbb{R}^d} \left| \frac{\psi}{\psi \infty} \right|^p dR < \infty \right\}.
\]

We will use the notation \(L^p_x(\mathcal{L}^q) \) to denote \(L^p[\mathbb{R}^d; \mathcal{L}^q] \):

\[
L^p_x(\mathcal{L}^q) = \left\{ \psi \mid \| \psi \|_{L^p_x(\mathcal{L}^q)} = \left(\int_{\mathbb{R}^d} \left(\int_B \left| \frac{\psi}{\psi \infty} \right|^q dR \right)^\frac{p}{q} dx \right)^\frac{1}{p} < \infty \right\}.
\]

When \(p = q \), we also use the short notation \(\mathcal{L}^p \) for \(L^p_x(\mathcal{L}^p) \) if there is no ambiguity.

The symbol \(\hat{f} = \mathcal{F}(f) \) denotes the Fourier transform of \(f \).
Moreover, we denote by \dot{H}^1 the space
\[
\dot{H}^1 = \{ g \| g \|_{\dot{H}^1} = (\int_B |\nabla_R g|^2 \psi_\infty dR)^{\frac{1}{2}} \}.
\]
Sometimes we write $f \lesssim g$ instead of $f \leq Cg$, where C is a constant. We agree that ∇ stands for ∇_x and div stands for div_x.

The following lemma allows us to estimate the extra stress tensor τ.

Lemma 2.1. [9] If $\int_B \psi dR = 0$ and $\int_B \left| \nabla_R \left(\frac{\psi}{\psi_\infty} \right) \right|^2 \psi_\infty dR < \infty$ with $p \geq 2$, then there exists a constant C such that
\[
\int_B \frac{|\psi|^2}{\psi_\infty} dR \leq C \int_B \left| \nabla_R \left(\frac{\psi}{\psi_\infty} \right) \right|^2 \psi_\infty dR.
\]

Lemma 2.2. [9] For all $\varepsilon > 0$, there exists a constant C_ε such that
\[
|\tau|^2 \leq \varepsilon \int_B \psi_\infty |\nabla_R \left(\frac{\psi}{\psi_\infty} \right)|^2 dR + C_\varepsilon \int_B \frac{|\psi|^2}{\psi_\infty} dR,
\]
or
\[
|\tau|^2 \leq C \left(\int_B \frac{|\psi|^2}{\psi_\infty} dR \right)^{\frac{1}{2}} \left(\int_B \psi_\infty |\nabla_R \left(\frac{\psi}{\psi_\infty} \right)|^2 dR \right)^{\frac{1}{2}}.
\]

The following lemma is the well-known (L^p, L^q)-estimates which can be easily deduced from the properties of the heat kernel.

Lemma 2.3. [1] Let $1 \leq p \leq q \leq \infty$. For all $f \in L^p$, there exists a constant C such that
\[
\| e^{-t \Delta} f \|_{L^q} \leq C t^{-\frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right)} \| f \|_{L^p}, \quad \| e^{-t \Delta} \nabla f \|_{L^q} \leq C t^{-\frac{d}{2} \left(\frac{1}{p} - \frac{1}{q} \right) - \frac{1}{4}} \| f \|_{L^p}.
\]

Theorem 2.4. [8] Let (u, ψ) be a weak solution of (1.2) with the initial data $u_0 \in L^2 \cap L^1$ and ψ_0 satisfies $\psi_0 - \psi_\infty \in L^2_x(L^2)$ and $\int_B \psi_0 = 1$ a.e. in x. Then there exists a constant C such that
\[
(2.1) \quad \int_{\mathbb{R}^d \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} dxdR \leq C \exp(-Ct),
\]

\[
(2.2) \quad \|u\|_{L^2} \leq C(1 + t)^{-\frac{4}{d}}, \quad \text{if} \quad d \geq 3, \quad \|u\|_{L^2} \leq C l \ln^{-l}(e + t), \quad \text{if} \quad d = 2,
\]

where $l > 0$ is arbitrarily integer and C_l is a constant dependent on l.

3 Main results

This section is devoted to investigating the long time behaviour for the velocity of the co-rotation FENE dumbbell model with dimension $d = 2$. More precisely, we prove the L^2 decay for the weak solutions of the 2D co-rotation FENE dumbbell model and obtain the L^2 decay rate. The existence of the solutions in L^2 was established in [7, 14]. Then our main result can be stated as follows.
3.1. The L^2 decay with small data

Theorem 3.1. Let (u, ψ) be a weak solution of (1.2) with the initial data $u_0 \in L^2 \cap L^1$ and ψ_0 satisfies $\psi_0 - \psi_\infty \in L^2_2(C^2)$ and $\int_B \psi_0 = 1$ a.e. in x. A constant ε exists such that if

$$\|u_0\|_{L^2} + \|\psi_0 - \psi_\infty\|_{C^2} \leq \varepsilon,$$

then we have

$$\int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} \, dx \, dR \leq C \exp(-Ct),$$

(3.1)

$$\|u\|_{L^2(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{1}{2}},$$

(3.2)

where C is a constant dependent on the initial data.

Proof. By the standard density argument, we only need to prove that the conclusion holds for the smooth solution. Since $\psi_\infty = \frac{(1 - |R|^2)^k}{\int_B (1 - |R|^2)^k \, dR} = \frac{(1 - |R|^2)^k}{C_0}$, it follows that

$$\text{div}_R([\nabla u - (\nabla u)^T] \psi_\infty) = \sum_{i,j} \partial_{R_i} \left[\partial_j u - \partial_j u^i R_j \psi_\infty \right]
= \sum_{i,j} (\partial_i u^j - \partial_j u^i) \delta_{ij} \psi_\infty + \sum_{i,j} 2k (\partial_i u^j - \partial_j u^i) R_i R_j (1 - |R|^2)^{k-1} = 0.$$

(3.3)

By virtue of the second equation of (1.2), we have

$$\frac{\psi - \psi_\infty}{\psi_\infty} \frac{\psi - \psi_\infty}{\psi_\infty} = \text{div}_R \left[-\sigma(u) \cdot R (\psi - \psi_\infty) + \psi_\infty \nabla_R \frac{\psi - \psi_\infty}{\psi_\infty} \right].$$

(3.4)

Multiplying $\frac{\psi - \psi_\infty}{\psi_\infty}$ by both sides of the above equation and integrating over B with R, we obtain

$$\frac{1}{2} \frac{d}{dt} \left(\int_B \frac{|\psi - \psi_\infty|^2}{\psi_\infty} + \frac{1}{2} u \cdot \nabla_x \int_B \frac{|\psi - \psi_\infty|^2}{\psi_\infty} + \int_B \psi_\infty |\nabla_R \frac{\psi - \psi_\infty}{\psi_\infty}|^2 \right) = \int_B \sigma(u) R (\psi - \psi_\infty) \nabla_R \frac{\psi - \psi_\infty}{\psi_\infty}.$$

(3.5)

Using integration by parts and (3.3), we see that

$$\int_B \sigma(u) R (\psi - \psi_\infty) \nabla_R \frac{\psi - \psi_\infty}{\psi_\infty} = \int_B \sigma(u) R \psi_\infty \left[\frac{1}{2} \nabla_R \left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)^2 \right] = -\frac{1}{2} \int_B \text{div}_R \left([\nabla u - (\nabla u)^T] \psi_\infty \right) \left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)^2 = 0.$$

(3.6)

Plugging (3.6) into (3.5) and using the fact that $\text{div} u = 0$, we deduce that

$$\frac{1}{2} \frac{d}{dt} \left(\int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} + \int_{\mathbb{R}^2 \times B} \psi_\infty |\nabla_R \left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 \right) = 0.$$

(3.7)

By virtue of the equation (1.2), we have $\int_B \psi_0 dR = \int_B \psi_0 dR = 1$, which leads to $\int_B (\psi - \psi_\infty) dR = 0$. Taking advantage of Lemma 2.1, we infer that

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} + C \int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} \leq 0,$$

(3.8)
which leads to

\[
(3.9) \quad \frac{d}{dt} \left[\exp(Ct) \int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi\infty|^2}{\psi\infty} \right] \leq 0 \Rightarrow \int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi\infty|^2}{\psi\infty} \leq \exp(-Ct) \int_{\mathbb{R}^2 \times B} \frac{|\psi_0 - \psi\infty|^2}{\psi_\infty}.
\]

Since \(\partial_t \psi\infty = 0 \), it follows that \(\text{div}\tau = \text{div} \int_B (R \otimes \nabla R\psi) dR = \text{div} \int_B (R \otimes \nabla R\psi)(\psi - \psi\infty) dR \). Then, we may assume that \(\tau = \int_B (R \otimes \nabla R\psi)(\psi - \psi\infty) dR \). By the standard energy estimate for the Navier-Stokes equations, we get

\[
(3.10) \quad \frac{1}{2} \frac{d}{dt} \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 = - \int_{\mathbb{R}^2} \tau : \nabla u \leq \frac{1}{2} \|\nabla u\|_{L^2}^2 + \frac{1}{2} \|\tau\|_{L^2}^2.
\]

Using Lemmas 2.1, 2.2 we verify that

\[
(3.11) \quad \frac{d}{dt} \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 \leq \|\tau\|_{L^2}^2 \leq K \int_{\mathbb{R}^2 \times B} \psi\infty |\nabla R(\frac{\psi - \psi\infty}{\psi\infty})|^2.
\]

Let \(\lambda \geq 2K \) be a sufficiently large constant. From the above inequality and (3.7), we deduce that

\[
(3.12) \quad \frac{d}{dt} (\lambda \|\psi - \psi\infty\|_{L^2}^2 + \|u\|_{L^2}^2) + \lambda \int_{\mathbb{R}^2 \times B} \psi\infty |\nabla R(\frac{\psi - \psi\infty}{\psi\infty})|^2 \leq 0.
\]

Taking \(\lambda = 2K \), we have

\[
(3.13) \quad \|u\|_{L^2}^2 + \int_0^t \|\nabla u\|_{L^2}^2 ds \leq \|u_0\|_{L^2}^2 + 2K \|\psi_0 - \psi\infty\|_{L^2}^2 < \infty.
\]

From (3.12), we have

\[
(3.14) \quad \frac{d}{dt} ((1 + t)^2 \lambda \|\psi - \psi\infty\|_{L^2}^2 + (1 + t)^2 \|\tilde{u}\|_{L^2}^2) + \lambda (1 + t)^2 \int_{\mathbb{R}^2 \times B} \psi\infty |\nabla R(\frac{\psi - \psi\infty}{\psi\infty})|^2 + (1 + t)^2 \int_{\mathbb{R}^2} |\xi|^2 |\tilde{u}|^2 d\xi
\]
\[
\leq 2(1 + t) \lambda \|\psi - \psi\infty\|_{L^2}^2 + 2(1 + t) \|\tilde{u}\|_{L^2}^2.
\]

Setting \(S(t) = \{ \xi : |\xi|^2 \leq \frac{2}{1 + t} \} \), then we obtain

\[
(3.15) \quad \frac{d}{dt} ((1 + t)^2 \lambda \|\psi - \psi\infty\|_{L^2}^2 + (1 + t)^2 \|\tilde{u}\|_{L^2}^2) + \lambda (1 + t)^2 \int_{\mathbb{R}^2 \times B} \psi\infty |\nabla R(\frac{\psi - \psi\infty}{\psi\infty})|^2 + (1 + t)^2 \int_{\mathbb{R}^2} |\xi|^2 |\tilde{u}|^2 d\xi
\]
\[
\leq 2(1 + t) \lambda \|\psi - \psi\infty\|_{L^2}^2 + 2(1 + t) \int_{S(t)} |\tilde{u}|^2 d\xi.
\]

By virtue of (1.2), we get

\[
(3.16) \quad \tilde{u} = e^{-t|\xi|^2} \tilde{u}_0 + \int_0^t e^{-(t-s)|\xi|^2} \xi \mathcal{F}(\mathbb{P}(u \otimes u) + \mathbb{P}\tau) ds,
\]

where \(\mathbb{P} \) stands for Leray’s project operator. Using the fact that \(|\hat{f}| \leq \|f\|_{L^1} \), we have

\[
|\tilde{u}| \leq e^{-t|\xi|^2} |\tilde{u}_0| + |\xi| \int_0^t \|u\|_{L^2}^2 ds + |\xi| t^\frac{1}{2} (\int_0^t |\tilde{\tau}|^2 ds)^{\frac{1}{2}}
\]
\[
\leq C + |\xi| (t \int_0^t \|u\|_{L^2}^2 ds)^{\frac{1}{2}} + |\xi| t^\frac{1}{2} (\int_0^t |\tilde{\tau}|^2 ds)^{\frac{1}{2}}.
\]
Using the system (1.2), we have

\[u = e^{-t\Delta}u_0 + \int_0^t e^{-(t-s)\Delta}(\mathbb{P}(u\nabla u) + \mathbb{P} \text{div} \tau)\,ds. \]

Taking advantage of Lemma 2.3, we obtain

\[\|u\|_{L^2} \leq t^{-\frac{1}{6}}\|u_0\|_{L^\frac{6}{5}} + C \int_0^t (t-s)^{-\frac{1}{7}}\|u\nabla u\|_{L^1} + (t-s)^{-\frac{1}{6}}\|\nabla u\|_{L^2} \,ds \]

\[\leq t^{-\frac{1}{6}}\|u_0\|_{L^\frac{6}{5}} + C \int_0^t (t-s)^{-\frac{1}{7}}\|u\|_{L^2}\|\nabla u\|_{L^2} + (t-s)^{-\frac{1}{6}}\|\tau\|_{L^2} \,ds. \]

Note that \(1 + \frac{1}{3} = \frac{5}{6} + \frac{1}{2}\). Using the generalized Young inequality, we deduce that

\[\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}} \leq t^{\frac{1}{6}}\|u_0\|_{L^\frac{6}{5}} + C\|s^{-\frac{1}{7}}1_{[0,t]}\|_{L^\frac{6}{5}}\left(\int_0^t \left(\|u(s)\|_{L^2}\|\nabla u(s)\|_{L^2} + \|\tau(s)\|_{L^2}\right) \,ds \right)^{\frac{1}{3}} \]

\[\leq t^{\frac{1}{6}}\|u_0\|_{L^\frac{6}{5}} + C\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}} \left(\int_0^t \|\nabla u(s)\|_{L^2}^2 \,ds \right)^{\frac{1}{3}} + \left(\int_0^t \|\tau(s)\|_{L^2}^2 \,ds \right)^{\frac{1}{3}} \]

\[\leq t^{\frac{1}{6}}\|u_0\|_{L^\frac{6}{5}} + aC\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}} + \left(\int_0^t \|\tau(s)\|_{L^2}^2 \,ds \right)^{\frac{1}{3}}, \]

where \(a = (\|u_0\|_{L^2}^2 + 2K\|\psi_0 - \psi_\infty\|_{L^2}^2)^{\frac{1}{3}}\). Applying Lemma 2.2, we verify that

\[\left(\int_0^t \|\tau(s)\|_{L^2}^\frac{9}{2} \,ds \right)^{\frac{2}{9}} \leq \left(\int_0^t \|\psi - \psi_\infty\|_{L^2}^\frac{4}{3} \left(\int_{\mathbb{R}^2 \times B} |\nabla R(\frac{\psi - \psi_\infty}{\psi_\infty})^2 \psi_\infty \,dx \,dR \right)^{\frac{1}{2}} \,ds \right)^{\frac{2}{9}} \]

\[\leq \left(\int_0^t \|\psi - \psi_\infty\|_{L^2}^\frac{4}{3} \right)^{\frac{2}{9}} \left(\int_{\mathbb{R}^2 \times B} |\nabla R(\frac{\psi - \psi_\infty}{\psi_\infty})^2 \psi_\infty \,dx \,dR \right)^{\frac{1}{2}} \]

\[\leq \|\psi_0 - \psi_\infty\|_{L^2} \left(\int_0^t \exp(-Ct) \,ds \right)^{\frac{1}{2}} \leq C\|\psi_0 - \psi_\infty\|_{L^2}. \]

Plugging (3.21) into (3.20) yields that

\[\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}} \leq C(1+t)^{\frac{1}{6}} + aC\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}}. \]

If \(aC \leq \frac{1}{2}\), we then have

\[\left(\int_0^t \|u(s)\|_{L^2}^3 \,ds \right)^{\frac{1}{3}} \leq C(1+t)^{\frac{1}{6}}. \]

Plugging (3.23) into (3.17) yields that

\[|\tilde{u}| \leq C + |\xi|(1+t)^{\frac{1}{6}} + |\xi|t^{\frac{1}{6}} \left(\int_0^t |\tilde{\tau}|^2 \,ds \right)^{\frac{1}{2}}, \]

which leads to

\[\int_{S(t)} |\tilde{u}|^2 \,d\xi \leq \int_{S(t)} d\xi + (1+t)^{\frac{1}{6}} \int_{S(t)} |\xi|^2 \,d\xi + t \int_{S(t)} |\xi|^2 \left(\int_0^t |\tilde{\tau}|^2 \,ds \right) \,d\xi \]

\[\leq \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau + (1+t)^{\frac{1}{6}} \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau \leq \int_0^t \|\|L^2\|_{L^2}^2 \,ds \]

\[\leq \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau + (1+t)^{\frac{1}{6}} \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau \leq \int_0^t \|\|L^2\|_{L^2}^2 \,ds \]

\[\leq \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau + (1+t)^{\frac{1}{6}} \int_0^t \sqrt{\frac{2t}{1+t}} \,d\tau \leq \int_0^t \|\|L^2\|_{L^2}^2 \,ds \]
\[\lesssim (1+t)^{-\frac{1}{2}} + \int_0^t \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 ds. \]

Plugging (3.25) into (3.15) and using the fact that \(\|\psi - \psi_\infty\|_{L^2} \lesssim \exp(-Ct) \) yield that
\[(3.26) \quad \frac{d}{dt}((1+t)^2\lambda\|\psi - \psi_\infty\|_{L^2}^2 + (1+t)^2\|\hat{u}\|_{L^2}^2) + \lambda(1+t)^2 \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 \leq C(1+t)^{\frac{1}{2}} + C(1+t) \int_0^t \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 ds. \]

By taking \(\lambda \) sufficiently large, we deduce that
\[(3.27) \quad (1+t)^2\lambda\|\psi - \psi_\infty\|_{L^2}^2 + (1+t)^2\|u\|_{L^2}^2 \lesssim 1 + \int_0^t (1+t')^{\frac{1}{2}} dt' \lesssim (1+t)^{\frac{1}{2}}, \]
which implies that
\[(3.28) \quad \|u\|_{L^2}^2 \lesssim (1+t)^{-\frac{1}{2}}. \]

From (3.16) we have
\[(3.29) \quad \|\hat{u}\| \leq e^{-t|\xi|^2}|\hat{u}_0| + |\xi| \int_0^t \|u\|_{L^2}^2 ds + |\xi|t^{\frac{1}{2}} \left(\int_0^t |\hat{\tau}|^2 ds \right)^{\frac{1}{2}} \leq \|u_0\|_{L^1} + C|\xi| \int_0^t (1+s)^{-\frac{1}{2}} ds + |\xi|t^{\frac{1}{2}} \left(\int_0^t |\hat{\tau}|^2 ds \right)^{\frac{1}{2}} \leq \|u_0\|_{L^1} + C|\xi| \int_0^t (1+s)^{-\frac{1}{2}} ds + |\xi|t^{\frac{1}{2}} \left(\int_0^t |\hat{\tau}|^2 ds \right)^{\frac{1}{2}} = \|u_0\|_{L^1} + C|\xi| \sqrt{1+t} + |\xi|t^{\frac{1}{2}} \left(\int_0^t |\hat{\tau}|^2 ds \right)^{\frac{1}{2}}, \]
which leads to
\[(3.30) \quad \int_{S(t)} |\hat{u}|^2 \leq \int_{S(t)} d\xi + (1+t) \int_{S(t)} |\xi|^2 d\xi + t \int_{S(t)} |\xi|^2 \left(\int_0^t |\hat{\tau}|^2 ds \right) d\xi \leq \int_0^t \frac{t}{1+t} r dr + (1+t) \int_0^t \frac{\sqrt{t}}{1+t} r^3 dr + \frac{2t}{1+t} \int_0^t \|u\|_{L^2}^2 ds \lesssim (1+t)^{-1} + \int_0^t \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 ds. \]

Plugging (3.30) into (3.15) yields that
\[(3.31) \quad \frac{d}{dt}((1+t)^2\lambda\|\psi - \psi_\infty\|_{L^2}^2 + (1+t)^2\|\hat{u}\|_{L^2}^2) + \lambda(1+t)^2 \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 \leq C + C(1+t) \int_0^t \int_{R^d \times B} \psi_\infty |\nabla R\left(\frac{\psi - \psi_\infty}{\psi_\infty} \right)|^2 ds. \]

By taking \(\lambda \) sufficiently large, we get
\[(3.32) \quad (1+t)^2\lambda\|\psi - \psi_\infty\|_{L^2}^2 + (1+t)^2\|u\|_{L^2}^2 \lesssim 1 + \int_0^t dt' \lesssim (1+t), \]
which implies that
\[(3.33) \quad \|u\|_{L^2}^2 \lesssim (1+t)^{-1}. \]
3.2. *The L^2 decay with large data*

Theorem 3.2. Suppose that $p \in [1, \infty]$ and $pk > 1$. Let (u, ψ) be a weak solution of (1.2) with the initial data $u_0 \in L^2 \cap \dot{B}^{0}_{1,1}$ and ψ_0 satisfies $\psi_0 - \psi_\infty \in L^2_x(C^2) \cap L^1_x(L^p)$ and $\int_B \psi_0 = 1$ a.e. in x. Then there exists a constants such that

$$\int_{\mathbb{R}^2 \times B} \frac{|\psi - \psi_\infty|^2}{\psi_\infty} dx dR \leq C \exp(-Ct),$$

(3.34)

$$\|u\|_{L^2(\mathbb{R}^2)} \leq C(1 + t)^{-\frac{1}{2}}.$$

(3.35)

In order to prove the above theorem, we need to use the Littlewood-Paley decomposition and some basic lemma for the homogeneous Besov space. (see [1] for more details)

Let C be the annulus \{ $\xi \in \mathbb{R}^d | \frac{3}{4} \leq |\xi| \leq \frac{5}{4}$ \}. There exists radial function φ, valued in the interval $[0, 1]$, such that

$$\forall \xi \in \mathbb{R}^d \setminus \{0\}, \sum_{j \in \mathbb{Z}} \varphi(2^{-j} \xi) = 1,$$

(3.36)

$$|j - j'| \geq 2 \Rightarrow \text{Supp} \ \varphi(2^{-j} \xi) \cap \text{Supp} \ \varphi(2^{-j'} \xi) = \emptyset.$$

(3.37)

The homogeneous dyadic blocks $\tilde{\Delta}_j$ are defined by

$$\tilde{\Delta}_j u = \varphi(2^{-j} D) u = 2^{jd} \int_{\mathbb{R}^d} h(2^j y) u(x - y) dy,$$

(3.38)

$$\tilde{\mathcal{S}}_j u = \chi(2^{-j} D) u = \int_{\mathbb{R}^d} \tilde{h}(2^j y) u(x - y) dy.$$

(3.39)

The homogeneous Besov space is denoted by $\dot{B}^s_{p,r}$, that is

$$\dot{B}^s_{p,r} = \{ u \in S_{\delta}' \| \| u \|_{B^s_{p,r}} \equiv \| 2^{js} \| D^j u \|_{L^p_x} \| r < \infty \}.$$

The following lemmas will be useful to obtain the estimates for the solutions of the Navier-Stokes equations.

Lemma 3.3. Let C be an annulus and B a ball. A constant C exists such that for any nonnegative integer k, any couple (p, q) in $[1, \infty]^2$ with $q \geq p \geq 1$, and any function u of L^p, we have

$$\text{Supp} \ \hat{u} \subseteq \lambda B \Rightarrow \| D^k u \|_{L^q} \triangleq \sup_{|\alpha| \leq k} \| \partial^\alpha u \|_{L^q} \leq C^{k+1} \lambda^{k+d(\frac{1}{p} - \frac{1}{2})} \| u \|_{L^p},$$

$$\text{Supp} \ \hat{u} \subseteq \lambda C \Rightarrow C^{-k-1} \lambda^k \| u \|_{L^p} \leq \| D^k u \|_{L^p} \leq C^{k+1} \lambda^k \| u \|_{L^p},$$

$$\text{Supp} \ \hat{u} \subseteq \lambda C \Rightarrow \| e^{t \Delta} u \|_{L^p} \leq C e^{-ct \lambda^2} \| u \|_{L^p}.$$

Lemma 3.4. For any positive s, we have

$$\sup_{t > 0} \sum_j t^{s} 2^{2js} e^{-ct2^j} < \infty.$$

9
Lemma 3.5. Suppose that \(u_0 \in L^2 \cap \dot{B}^{0}_{1,1} \) and \(\tau \in L^2_T(L^2) \cap L^{\infty}_T(L^1) \). If \(u \in L^{\infty}_T(L^2) \cap L^{2}_T(\dot{H}^1) \) is the solution of

\[
\begin{align*}
\left\{ \begin{array}{ll}
 u_t + (u \cdot \nabla)u - \Delta u + \nabla P = \div \tau, & \div u = 0, \\
 u|_{t=0} = u_0,
\end{array} \right.
\end{align*}
\]

then we have

\[
\sup_{t \in [0, T]} \|u\|_{\dot{B}^{0}_{1,1}} \leq \|u_0\|_{\dot{B}^{0}_{1,1}} + C \sqrt{T}(\|u_0\|_{L^2}^2 + \int_0^T \|\tau\|_{L^2}^2 ds + \|\tau\|_{L^{\infty}_T(L^1)}).
\]

Proof. By the standard energy estimate, we have

\[
\|u\|_{L^2}^2 + \frac{1}{2} \int_0^T \|\nabla u\|_{L^2}^2 ds \leq \|u_0\|_{L^2}^2 + \int_0^T \|\tau\|_{L^2}^2 ds.
\]

By virtue of (3.40), we can write that

\[
u = e^{-t\Delta} u_0 + \int_0^t e^{-(t-s)\Delta}(\overline{\mathcal{P}} \div (u \otimes u + \tau)) ds.
\]

Applying \(\hat{\Delta}_j \) to the above equation and taking the \(L^1 \)-norm, we deduce from Lemma 3.3 that

\[
\|\hat{\Delta}_j u\|_{L^1} \leq \|\hat{\Delta}_j u_0\|_{L^1} + \int_0^t e^{-(t-s)2^j} 2^j (\|\hat{\Delta}_j (u \otimes u)\|_{L^1} + \|\hat{\Delta}_j \tau\|_{L^1}) ds
\]

which leads to

\[
\sum_j \|\hat{\Delta}_j u\|_{L^1} \leq \|u_0\|_{\dot{B}^{0}_{1,1}} + \int_0^t (t-s)^{-\frac{j}{2}} \sum_j (t-s)^{\frac{j}{2}} e^{-(t-s)2^j} 2^j (\|u \otimes u\|_{L^1} + \|\tau\|_{L^1}) ds
\]

\[
\leq \|u_0\|_{\dot{B}^{0}_{1,1}} + \int_0^t (t-s)^{-\frac{j}{2}} ds \sup_{t-s > 0} \sum_j (t-s)^{\frac{j}{2}} e^{-(t-s)2^j} 2^j (\|u\|_{L^{\infty}_T(L^2)} + \|\tau\|_{L^{\infty}_T(L^1)})
\]

\[
\leq \|u_0\|_{\dot{B}^{0}_{1,1}} + C \frac{2^j}{2^j} \int_0^T \|\tau\|_{L^2}^2 ds + \|\tau\|_{L^{\infty}_T(L^1)}.
\]

Proof of Theorem 3.2: Multiplying \(p |\psi - \psi|^{p-2} \psi - \psi \) by both sides of (3.3) and integrating over \(B \) with \(R \), we obtain

\[
\frac{d}{dt} \int_B |\psi - \psi|^{p} \psi \psi + u \cdot \nabla x \int_B |\psi - \psi|^{p} \psi + \frac{4(p-1)}{p} \int_B |\psi| \nabla R(\frac{\psi - \psi}{\psi})^2 = \int_B \sigma(u) R(\psi - \psi) \nabla R(\psi - \psi) p.
\]

Using integration by parts and (3.3), we see that

\[
\frac{d}{dt} \int_B |\psi - \psi|^{p} \psi + u \cdot \nabla x \int_B |\psi - \psi|^{p} \psi + \frac{4(p-1)}{p} \int_B |\psi| \nabla R(\frac{\psi - \psi}{\psi})^2 = 0,
\]
which leads to
\[
\frac{d}{dt} \int_B \frac{\psi - \psi_\infty}{\psi_\infty} |p\psi_\infty + u \cdot \nabla \phi| \leq 0.
\]

Since \(\text{div} u = 0 \), it follows that
\[
\|\psi - \psi_\infty\|_{L^1} \leq \|\psi_0 - \psi_\infty\|_{L^1}.
\]

Taking advantage of Hölder’s inequality and using the fact that \(pk > 1 \), we have
\[
|\tau| \leq \int_B \frac{|\psi - \psi_\infty|}{1 + |R|} dR \leq \int_B \frac{(\psi_\infty)^{\frac{p}{p+1}}}{(\psi_\infty)^{\frac{p}{p+1}}} dR \leq C(\int_B |\frac{\psi - \psi_\infty}{\psi_\infty}|^p \psi_\infty dR)^{\frac{1}{p}},
\]
which leads to
\[
\|\tau\|_{L^1} \leq \|\psi - \psi_\infty\|_{L^p} \leq \|\psi_0 - \psi_\infty\|_{L^p}.
\]

By virtue of Lemma 3.5, we deduce that
\[
\sup_{t \in [0,T]} \|u\|_{\dot{B}^0_{1,1}} \leq C_T,
\]
for any \(T < \infty \). By virtue of Theorem 2.4 we see that
\[
\|u\|_{L^2} \leq C \ln^{-1}(e + t), \quad \|\psi - \psi_\infty\|_{L^2} \leq \exp(1) \|u\|_{L^2} T,
\]
which implies that for any \(\varepsilon > 0 \) there exists \(T_0 \) such that
\[
\|u(T_0)\|_{L^1} + \|\psi(T_0) - \psi_\infty\|_{L^2} < \varepsilon.
\]

Since \(\dot{B}^0_{1,1} \hookrightarrow L^1 \), it follows that \(\|u(T_0)\|_{L^1} \leq C T_0 \). Let \((u(T_0), \psi(T_0)) \) be the initial data. Applying Theorem 3.1 we complete the proof.

Remark 3.6. By Theorem 3.2 together with Theorem 2.4, we see that the conjecture proposed by M. Schonbek in [14] holds true for all \(d \geq 2 \). In [13], M. Schonbek showed that \((1 + t)^{-\frac{d}{4}} \), \(d \geq 2 \) is the optimal \(L^2 \) decay rate for the Navier-Stokes equations with \(u_0 \in L^1 \). Note that if \(\psi \) is independent on \(x \), then \(\text{div} \tau = 0 \). Then, the co-rotation FENE model is reduced to the Navier-Stokes equations. Thus, the \(L^2 \) decay rate for the co-rotation FENE model which we obtained in Theorem 2.4 and Theorem 3.1 is sharp for all \(d \geq 2 \).

Acknowledgments This work was partially supported by the National Natural Science Foundation of China (No.11671407 and No.11701586), the Macao Science and Technology Development Fund (No. 098/2013/A3), and Guangdong Province of China Special Support Program (No. 8-2015), and the key project of the Natural Science Foundation of Guangdong province (No. 2016A030311004).

References

[1] H. Bahouri, J.-Y. Chemin, and R. Danchin. *Fourier analysis and nonlinear partial differential equations*, volume 343 of *Grundlehren der Mathematischen Wissenschaften*. Springer, Heidelberg, 2011.
[2] R. B. Bird, R. C. Armstrong, and O. Hassager. *Dynamics of Polymeric Liquids*, volume 1. Wiley, New York, 1977.

[3] A. V. Busuioc, I. S. Ciuperca, D. Iftimie, and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. *J. Dynam. Differential Equations*, 26(2):217–241, 2014.

[4] M. Doi and S. F. Edwards. *The Theory of Polymer Dynamics*. Oxford University Press, Oxford, 1988.

[5] B. Jourdain, T. Lelièvre, and C. Le Bris. Existence of solution for a micro-macro model of polymeric fluid: the FENE model. *J. Funct. Anal.*, 209(1):162–193, 2004.

[6] F. Lin, P. Zhang, and Z. Zhang. On the global existence of smooth solution to the 2-D FENE dumbbell model. *Comm. Math. Phys.*, 277(2):531–553, 2008.

[7] P.-L. Lions and N. Masmoudi. Global existence of weak solutions to some micro-macro models. *C. R. Math. Acad. Sci. Paris*, 345(1):15–20, 2007.

[8] W. Luo and Z. Yin. The Liouville Theorem and the L^2 Decay for the FENE Dumbbell Model of Polymeric Flows. *Arch. Ration. Mech. Anal.*, 224(1):209–231, 2017.

[9] N. Masmoudi. Well-posedness for the FENE dumbbell model of polymeric flows. *Comm. Pure Appl. Math.*, 61(12):1685–1714, 2008.

[10] N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. *Invent. Math.*, 191(2):427–500, 2013.

[11] M. Renardy. An existence theorem for model equations resulting from kinetic theories of polymer solutions. *SIAM J. Math. Anal.*, 22(2):313–327, 1991.

[12] M. E. Schonbek. L^2 decay for weak solutions of the Navier-Stokes equations. *Arch. Rational Mech. Anal.*, 88(3):209–222, 1985.

[13] M. E. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. *J. Amer. Math. Soc.*, 4(3):423–449, 1991.

[14] M. E. Schonbek. Existence and decay of polymeric flows. *SIAM J. Math. Anal.*, 41(2):564–587, 2009.

[15] H. Zhang and P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. *Arch. Ration. Mech. Anal.*, 181(2):373–400, 2006.