Minireview

Oedema, solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs)

Chems Gharbi, Victor Gueutin and Hassan Izzedine

Department of Nephrology, Pitié Salpetrière Hospital, Paris, France

Correspondence and offprint requests to: Hassan Izzedine; E-mail: hassan.izzedine@psl.aphp.fr

Abstract
Mammalian target of rapamycin inhibitor (mTOR-I)/proliferation signal inhibitors (PSI) including sirolimus and everolimus represent a new class of drugs increasingly used in solid-organ transplantation as alternatives to calcineurin inhibitors for patients with renal dysfunction, transplant coronary arterial vasculopathy or malignancy. The most frequently occurring mTOR-I/PSI-related adverse events are similar to those associated with other immunosuppressive therapies, but some side effects are more characteristic of proliferation signal inhibitors (e.g. lymphocele, arthralgia, oedema and hyperlipidaemia). The present paper review incidence, clinical presentation and mechanism of oedema within the clinical experience of mTOR-I/PSI in solid organ transplantation.

Keywords: angio-oedema; oedema; everolimus; lymphoedema; proliferation signal inhibitor; sirolimus; VEGF-C

Lymphocele

Lymphocele is a well-known complication after kidney transplantation. It occurs among 0.6–22% of symptomatic patients being treated with cyclosporine (CsA)-based immunosuppression [25–31] and 49% of asymptomatic cases detected by ultrasonography during a 2- to 11-year follow-up [32]. mTOR-I/PSI are associated with an increased incidence of mild or moderate lymphocele. In clinical studies, the rates of lymphocele in renal transplant patients receiving a 6-month treatment with EVL 1.5–3.0 mg/day, or SRL 2.0–5.0 mg/day were 6.4–15.2 [33] and 12–13% [34], respectively. Post-marketing experience with SRL has demonstrated an increased incidence of lymphoceles. Factors predisposing to lymphocele formation include drainage from open lymphatics divided during surgery to dissect the host iliac vessels [29, 35], injured lymph channels in the donor kidney hilum vessels [31, 36], acute allograft rejection episode [26, 37, 38], acute tubular necrosis [26], transplant kidney biopsy [30], retransplantation [39] and adult polycystic kidney disease as the original renal disease [40]. Clinical experience shows that mild lymphocele can resolve itself, while moderate lymphocele usually responds to povidone-iodine [41]. Although some patients who receive mTOR-I/PSI may develop early massive lymphocele that requires surgery, mTOR-I/PSI dose reduction or complete withdrawal is not necessary. Surgery for lymphocele is not common [42].

Eyelid oedema

Eyelid swelling is often the herald of significant systemic or periorbital disease. The aetiological list is extensive. Many medications—topical, oral and parenteral—are well recognized to create eyelid swelling through generalized fluid retention, AE, urticaria or topical blepharoconjunctivitis. mTOR-I/PSI-related eyelid oedema in kidney transplant recipients was described in a few case reports of SRL- [18, 23] and EVL-based [43] treatments. Development of eyelid oedema was gradual, occurring over 1–5 months after starting mTOR-I/PSI. The oedema may be mild and easily managed with low-dose furosemide and reduction of SRL dose was not warranted. In some patients, discontinuation of mTOR-I/PSI was followed by delayed resolution of the swelling, with full recovery taking as long as months. The underlying mechanism is unknown.
Author	Study	Organ transplant	Follow-up (months)	EVL mean level and/or mean dosage	Oedema incidence	Control
Lehmkuhl et al. [3]	Multicentre open-label RAD2411 study	Heart transplant	12	4.1 ± 1.8 ng/mL	EVL, 91 patients	MMF, 83 patients
					Peripheral oedema, 39.6%	Pericardial effusion, 36.9%
					Pleural effusion, 24.2%	EvL+, 140 (29.3%)
					EvL−, 142 (8.5%)	
Gullestad et al. [4]	Multicentre randomized trial	Heart (n=190) and lung	12	3–8 ng/mL	EVL+, 103 (8.3%)	EVL−, 119 (8.7%)
		(n=92) transplant				
Gullestad et al. [5]	Multicentre randomized trial	Heart (n=190) and lung	24	4.5 ± 1.4 ng/mL	EVL−, 142 (8.5%)	
		(n=92) transplant				
Roman et al. [6]	Retrospective, EVERODATA lung substudy	Lung transplant	12	6.4 ± 2.8 ng/mL	5/65 (7.7%)	
De Simone et al. [7]	Randomized controlled trial, H2304 study group	Liver transplant	12	6–10 ng/mL	EVL−, 142 (8.5%)	
Alegre et al. [8]	Retrospective	Liver transplant	48	5.5 ± 2.2 ng/mL	EVL overall, 13/57 (28.8%)	
Saliba et al. [9]	Randomized controlled trial, H2304 study group	Liver transplant	24	AE	EVL− reduced TAC, 6/245 (2.4%)	TAC elimination, 42/231 (18.3%)
				Ascites	EVL− reduced TAC, 11/245 (4.5%)	TAC control, 26/243 (10.8%)
				Peripheral oedema	EVL− reduced TAC, 55/245 (22.4%)	TAC elimination, 45/231 (19.7%)
				Pleural effusion	EVL− reduced TAC, 15/245 (6.1%)	TAC control, 36/243 (14.9%)
						TAC elimination, 7/231 (3.1%)
						TAC control, 13/243 (5.4%)
Lorber et al. [10]	Randomized, multicentre Phase III study	Kidney transplant	36	EVL 1.5 mg/d	101/193 (52.3%)	MMF, 82/196 (41.8%)
Cotovio et al. [11]	Retrospective register-based study	Kidney transplant	6	EVL 3 mg/d	92/191 (47.4%)	MMF, 82/196 (41.8%)
Shihab et al. [12]	Randomized controlled trial	Kidney transplant	12	5.9 ± 2.6 ng/mL	8 (5.3%)	
				<3 ng/mL	18/29 (62.1%)	
				3–6 ng/mL	94/212 (44.3%)	
				6–8 ng/mL	55/105 (52.4%)	
				>8 ng/mL	17/26 (65.4%)	
Takahashi et al. [13]	Multicentre, open-label randomized study	Kidney transplant	12	1.5 mg/day	EVL, 20/61 (32.8%)	MMF, 8/61 (13.1%)

MMF, mycophenolate mofetil; TAC, tacrolimus.
Reference	Organ transplant	mTOR-I/PSI	Dosage	Level	Onset	Clinical features	Action	Follow-up
[14]	Heart	EVL, 0.75 mg/day	8 ng/mL	1 month	Hand and forearms	EVL dose reduction	Partial resolution	
		EVL, 0.5 mg/day	5 ng/mL	1 month	Hand and forearms	Stop	Partial resolution 2 months after	
		Switch to SRL, 1 mg/day	10 ng/mL	Few days	Increase in the oedema			
[15]	Heart	EVL, re-introduction of EVL (TCAV progression)	NA	36 months	Bilateral chylothorax	Switch EVL to MMF	Complete resolution within 8 months	
		EVL, 0.5 mg/day	5 ng/mL	1 month	Hand and forearms	Partial resolution	Complete resolution	
		Switch to SRL, 1 mg/day	10 ng/mL	Few days	Increase in the oedema	Stop	Complete resolution	
[16]	Kidney	EVL, 0.5–1 mg/day (6 patients)	>3 ng/mL	12 months	Feet oedema	No		
		EVL, 1.5 mg/day	3–8 ng/mL	2–41 days	AE	IV prednisone and clemastin	Complete resolution	
		EVL, dosage NA	NA	3 months	Mild oedema on both legs, LUE and left breast, recurrent lymphangitis	SRL discontinuation	Complete resolution within few months	
		EVL, dosage NA	NA	6 months	Mild oedema on both legs and redness of RUE and right breast, Oedema both legs, nephrotic syndrome	SRL discontinuation	Complete resolution within few months	
		EVL, dosage NA	NA	4 months			Partial resolution, 60–70% within few months	
[19]	Kidney	SRL, 9.5 mg/day	26.3 ng/mL	36 months	Severe oedema and redness of LUE and left breast, Oedema both legs, recurrent lymphangitis	Reduction of SRL dosage (trough levels of 5–10 ng/mL)	Complete resolution	
		SRL, 2 mg/day	5–10 ng/mL	6 months	Severe oedema of RUE and right breast, functioning access RUE	SRL withdrawal, conversion to CSA	Partial resolution, 70–80%	
		SRL, 2 mg/day	10–18 ng/mL	30 months		SRL withdrawal	Significant improvement	
		SRL, 3 mg/day	10–15 ng/mL	30 months		SRL withdrawal	Significant improvement within few months	
		SRL, 3 mg/day	10–18 ng/mL	24 months		SRL withdrawal	Significant improvement within few months	
[21]	Kidney	SRL, 5 mg/day	12–20 ng/mL	3 months	Generalized lymphoedema	SRL withdrawal	Complete resolution 3 months after	
		SRL, 19 mg/day	10.3 ng/mL	1 month	AE	Steroids + diphenhydramine and SRL withdrawal	Complete resolution 2 days after	
	Kidney	SRL reintroduction, 20 mg/day	3.1 ng/mL	1 day	AE	Steroids + diphenhydramine and SRL withdrawal	Complete resolution 2 days after	
		SRL, 8 mg/day	19.5 ng/mL	14 days	AE	Steroids + diphenhydramine and SRL withdrawal	Complete resolution 2 days after. However, the patient inadvertently received two more daily 4 mg doses of SRL, and AE recurred. SRL was then switched to cyclosporin A, and there has been no recurrence in the subsequent 11 months	
[23]	Kidney	SRL, 1–20 mg/day (5 patients)	5–19 ng/mL	1–5 months	Eyelid oedema of variable severity	Dose reduction, temporary or definitive SRL discontinuation	Complete resolution 6 weeks after	
		SRL, 2 mg/day	2.5 ng/mL	12 months	Facial and right arm oedema	SRL withdrawal	Complete resolution 6 weeks after	

EVL, everolimus; SRL, sirolimus; TCAV, transplant coronary arterial vasculopathy; NA, not available; LUE, left upper extremity; RUE, right upper extremity; RLE, right lower extremity; CSA, cyclosporine.
Oedema and lymphoedema

Leg swelling is an extremely frequent symptom with a broad variety of largely differing causes. The most important mechanisms behind the symptom include venous and lymphatic pathology, volume overload, increased capillary permeability and lowered oncotic pressure. Therefore, the most frequent diseases associated with leg swelling are deep vein thrombosis and chronic venous insufficiency, primary or secondary lymphoedema, cardiac failure, hypoproteinaemia, idiopathic cyclic oedema and drug-induced oedema. Lymphoedema may be primary (congenital lymphatic abnormality) or secondary, frequently related to cancer treatment. Other causes of secondary lymphoedema include obstruction by tumour, infection (filariasis), recurrent cellulitis and connective tissue disease. A less-common form of oedema is lymphoedema, which causes an abnormality in the lymphatic system. The most common cause is interruption of the axillary lymphatic system by surgery and/or radiation therapy in women with breast cancer.

Unilateral or bilateral peripheral oedema/lymphoedema is common following the initiation of mTOR-I/PSI use [24, 43] and frequently sufficiently severe enough to require medication discontinuation. However, it may be less frequent with EVL with a retrospective series reporting 4- to 5-fold less oedema when compared with matched SRL-treated patients (14 versus 64%), respectively [14]. It has been mentioned that a preponderance in any specific gender is unlikely and it develops 7 months to 2 years after the start of SRL (mean SRL levels ranging from 10 to 20 ng/mL) [20] or a few days to 36 months after the start of EVL (mean EVL levels ranging from 3 to 26 ng/mL) in an arm- or leg-localized lymphoedema form of varying severity (Table 2). Usually, peripheral oedema/lymphoedema was controlled with low doses of furosemide accompanied by reduction of the immunosuppressant [43]. mTOR-I/PSI-related lymphoedema is not dependent on its cumulative dosage and exposure duration. [20] Early discontinuation of the drug may prevent permanent disfigurement [44]. Moreover, the occurrence of limb lymphoedema in renal transplant recipients under SRL treatment, especially if on the same side as the haemodialysis access, should alert the transplant physician to the need for rapid SRL reduction or withdrawal, before complete obstruction occurs, further complicating an already disabling condition. [19] Close monitoring of this side effect is warranted. Recognizing this association may prevent many unnecessary, costly and invasive investigations. The pathophysiology seems to be due to altered lymphatic drainage [18, 19]. The lymphatic vasculature transports extravasated tissue fluid, macromolecules and cells back into the blood circulation. One pathway of regulation of cell growth and proliferation is mediated by the regulatory associated protein of mTOR (raptor)—G protein β-subunit-like protein (GjL)—and mTOR complex, which is a target of rapamycin. Important downstream effectors of the mTOR system are the translation regulators p70S6 kinase and eukaryotic initiation factor 4E-binding protein [45]. The mTOR pathway is regulated by the PI3K/AKT kinase system, which is upregulated in tumours. Activation of PI3K/AKT causes activation of mTOR and promotes cell growth and proliferation. Lymphatic endothelium expresses VEGF receptor-3 (VEGFR-3), which is activated after binding to VEGF-C, and VEGF-D plays an important role in lymphangiogenesis. The gene that encodes VEGFR-3 (FLT4) is defective in most families with congenital hereditary lymphoedema [46] and impaired lymphangiogenesis and lymphoedema is observed in soluble VEGFR-3 (VEGF-C/VEGFD signaling inhibitor) expressing transgenic mice [47]. Missense mutations of VEGFR-3 prevent normal lymphatic growth in humans [46]. Huber et al. [48] demonstrate that rapamycin interferes with the intracellular VEGF-C-activated pathway of lymphatic endothelial cells. In rapamycin-treated animals, the anti-lymphangiogenic effect during tissue regeneration occurs with prolonged lymphoedema, emphasizing the clinical relevance of this effect of the mTOR inhibition in solid organ transplant recipients.

Effusions

An increased incidence of pleural and pericardial effusions has been described in mTOR-I/PSI-treated renal and cardiac transplant patients. The frequency of pericardial effusions following cardiac transplant is 3-fold greater in SRL-treated patients often requiring interventions such as drainage with or without SRL dose reductions [49–51]. The prevalence of effusions, pleural and pericardial, is similar between mycophenolate mofetil-(MMF) and EVL-treated patients, suggesting that this side effect may be PSI specific with greater frequency seen in SRL- versus EVL-treated patients [3]. Cases of pericardial tamponade have been described following the initiation of SRL both in de novo cardiac and late conversion heart transplant patients as well as non-cardiac transplants patients [50, 51].

Angio-oedema

AE is a self-limiting swelling that occurs in the deeper cutaneous and mucous membrane layers. Most cases of AE result from a reaction to food or drugs, but some episodes have no identifiable trigger.

Drug-induced AE is well documented in patients taking angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor antagonists (AIIRRA), fibrinolytic agents, oestrogens and nonsteroidal anti-inflammatory drugs [52]. In addition, the frequency of ACEI-induced AE is high in transplant recipients, estimated at 1–5% versus 0.1–0.5% in the general population [53, 54]. Abbosh et al. [54] reported a 24- and 5-fold higher incidence of AE in cardiac and renal transplant recipients, respectively, who were maintained on cyclosporin A, azathioprine and prednisone when compared with the general population. Several reports focused on the putative role of mTOR-I/PSI (SRL and EVL) in the pathogenesis of AE in organ transplant recipients [17, 22, 55–58]. In previous reports, AE associated with SRL occurred in 2.2–15% of patients [57, 59]. The associated risk factors were ACEI therapy or African-American patients taking metoprolol [55, 57], which are known to be associated with a higher frequency of AE [60–62]. Fuchs et al. [17] reported that 6 out of their 114 patients (5.3%) experienced for the first time in their lives the occurrence of lingual AE after switching them over to EVL. The time period from starting mTOR-I/PSI to the occurrence of AE ranged from 1 to 41 days. In all six patients, the AE was associated with petechial bleeding and with lingual bullae on the lateral part of the tongue and required hospitalization. At the time when the AE occurred, the following concomitant medications were used: acetyl-salicylic acid (ASS), ACE inhibitors or angiotensin-1-receptor inhibitors. Because the symptoms ceased after
discontinuation of ASS in five out of the six patients, it may well be that ASS has triggered the occurrence of EVL-associated side effects. However, the time course after initiation of the immunosuppressive drug, the recurrence in one patient, and the favourable outcome after stopping the drug provide an argument for the pathogenic link between EVL and tongue AE [17]. Lingual oedema seems to occur predominantly within the first weeks after initiation of mTOR-I/PSI therapy. Drug trough level at presentation is variable within or below the target level or in the toxic range [17]. A lack of C1-esterase inhibitor could initiate of mTOR-I/PSI therapy. Drug trough level at presentation after adequate therapy of the symptoms. The recurrence after adequate therapy of the symptoms. The responsibility of mTOR-I/PSI in the pathogenesis of AE is suggested either as the sole oetiological factor or more probably as a cofactor [17, 22, 56, 57]. Several hypotheses can be advanced to explain the potential triggering role of mTOR-I/PSI: cytochrome p450 3A4 metabolism pathway interaction [63–65], experimental interaction between mTOR-I/PSI and the bradykinin pathway [66] and autoimmune diseases induced by mTOR-I/PSI introduction [67]. The absence of urticaria with AE suggests that mTOR-I/PSI-associated AEs are not IgE mediated [17, 22, 56, 57].

In conclusion, mTOR-I/PSI may facilitate the occurrence of oedema. This specific adverse event can be easily managed without discontinuation of the drug. It is important to be aware of this phenomenon to avoid burdensome and cost-intensive investigations for patients showing this symptom during treatment with mTOR-I/PSI.

Conflict of interest statement. None declared.

References

1. Valentine H, Zuckermann A. From clinical trials to clinical practice: an overview of Cetirizine (everolimus) in heart transplantation. J Heart Lung Transplant 2005; 24(Suppl 4): S185–190
2. Rostaing L, Kamar N. mTOR inhibitor/proliferation signal inhibitors: entering or leaving the field? J Nephrol 2010; 23: 133
3. Lehmkuhl H, Ross H, Arizon J et al. Comparability of pattern of occurrence of pericardial effusions between everolimus- and MMF-based regimen in de novo cardiac transplant recipients. J Heart Lung Transplant 2009; 28(2 Suppl 1): S170
4. Gullesstad L, Iversen M, Mortensen SA et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation 2010; 89: 864–872
5. Gullesstad L, Mortensen SA, Eiskjaer H et al. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial. Transplantation 2010; 90: 1381–1389
6. Roman A, Ussetti P, Zurbono F et al. A retrospective 12-month study of conversion to everolimus in lung transplant recipients. Transplant Proc 2011; 43: 2693–2698
7. De Simone P, Metselaar HJ, Fischer L et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial. Liver Transpl 2009; 15: 1262–1269
8. Alegre C, Jiménez C, Manrique A et al. Everolimus monotherapy or combined therapy in liver transplantation: indications and results. Transplant Proc 2013; 45: 1971–1974
9. Saliba F, De Simone P, Neves F et al.; H2304 Study Group. Renal function at two years in liver transplant patients receiving everolimus: results of a randomized, multicenter study. Am J Transplant 2013; 13: 1734–1745
10. Loher MI, Mulgaonkar S, LeRoy KM et al.; B251 Study Group. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation 2005; 80: 244–252
11. Cotovio P, Neves M, Santos L et al. Conversion to everolimus in kidney transplant recipients: to believe or not to believe? Transplant Proc 2012; 44: 2966–2970
12. Shihab FS, Cabik D, Chan L et al. Association of clinical events with everolimus exposure in kidney transplant patients receiving reduced cyclosporine. Clin Transplant 2013; 27: 217–226
13. Takahashi K, Uchida K, Yoshimura N et al. Efficacy and safety of concentration-controlled everolimus with reduced-dose cyclosporine in Japanese de novo renal transplant patients: 12-month results. Transplant Res 2013; 2: 14
14. Moro JA, Almenar L, Martinez-Dolz L et al. mTOR inhibitors and unilateral edema. Rev Esp Cardiol 2008; 61: 987–988
15. Fukushima N, Saito S, Sakata Y et al. A case of everolimus-associated chylouretorax in a cardiac transplant recipient. Transplant Proc 2013; 45: 3144–3146
16. Ersoy A, Koca N. Everolimus-induced lymphedema in a renal transplant recipient: a case report. Exp Clin Transplant 2012; 10: 296–298
17. Fuchs U, Zittermann A, Berthold HK et al. Immunosuppressive therapy with everolimus can be associated with potentially life-threatening lingual angioedema. Transplantation 2005; 79: 981–983
18. Aboujoude W, Milgrom ML, Govani MV. Lymphedema associated with sirolimus in renal transplant recipients. Transplantation 2004; 77: 1094–1096
19. Romagnoli J, Citterio F, Nanni G et al. Severe limb lymphedema in sirolimus-treated patients. Transplantation Proc 2005; 37: 834–836
20. Al-Otaibi T, Ahammer N, Nampoori MR et al. Lymphedema: an unusual complication of sirolimus therapy. Transplant Proc 2007; 39: 1207–1210
21. De Bartolomeis C, Collini A, Rumberger B et al. Generalized lymphedema in a sirolimus-treated renal transplant patient. Clin Transplant 2008; 22: 254–257
22. Wadi H, Gruber SA, El-Amr JM et al. Sirolimus-induced angioedema. Am J Transplant 2004; 4: 1002–1005
23. Mohaupt MG, Vogt B, Frey FJ. Sirolimus-associated eyelid edema in kidney transplant recipients. Transplantation 2001; 72: 162–164
24. Papali A, Giannetti N, Cantarovich M. Unilateral upper extremity edema associated with sirolimus in a heart transplant patient. Transplantation 2007; 83: 240–241
25. Amante AJ, Kahan BD. Technical complications of renal transplantation. Surg Clin North Am 1994; 74: 1117
26. Khaili RB, Stoff JS, Lovewell T et al. Post-transplant lymphoedema: a critical look into the risk factors, pathophysiology and management. J Urol 1993; 150: 22
27. Malovrh M, Kandus A, Buturovic-Ponikvar J et al. Sirolimus-induced lymphedema associated with sirolimus in a renal transplant recipient: a case report. Transplant Res 2011; 988
28. Popali A, Giannetti N, Cantarovich M. Unilateral upper extremity edema associated with sirolimus in a heart transplant patient. Transplantation 2007; 83: 240–241
29. Amante AJ, Kahan BD. Technical complications of renal transplantation. Surg Clin North Am 1994; 74: 1117
30. Khaili RB, Stoff JS, Lovewell T et al. Post-transplant lymphoedema: a critical look into the risk factors, pathophysiology and management. J Urol 1993; 150: 22
31. Malovrh M, Kandus A, Buturovic-Ponikvar J et al. Sirolimus-induced lymphedema associated with sirolimus in a heart transplant recipient. Transplantation 2011; 988
32. Popali A, Giannetti N, Cantarovich M. Unilateral upper extremity edema associated with sirolimus in a heart transplant patient. Transplantation 2007; 83: 240–241
33. Amante AJ, Kahan BD. Technical complications of renal transplantation. Surg Clin North Am 1994; 74: 1117
34. Khaili RB, Stoff JS, Lovewell T et al. Post-transplant lymphoedema: a critical look into the risk factors, pathophysiology and management. J Urol 1993; 150: 22
35. Malovrh M, Kandus A, Buturovic-Ponikvar J et al. Sirolimus-induced lymphedema associated with sirolimus in a heart transplant recipient. Transplantation 2011; 988
36. Popali A, Giannetti N, Cantarovich M. Unilateral upper extremity edema associated with sirolimus in a heart transplant patient. Transplantation 2007; 83: 240–241
37. Amante AJ, Kahan BD. Technical complications of renal transplantation. Surg Clin North Am 1994; 74: 1117
38. Khaili RB, Stoff JS, Lovewell T et al. Post-transplant lymphoedema: a critical look into the risk factors, pathophysiology and management. J Urol 1993; 150: 22
39. Malovrh M, Kandus A, Buturovic-Ponikvar J et al. Sirolimus-induced lymphedema associated with sirolimus in a heart transplant recipient. Transplantation 2011; 988
40. Popali A, Giannetti N, Cantarovich M. Unilateral upper extremity edema associated with sirolimus in a heart transplant patient. Transplantation 2007; 83: 240–241
41. Amante AJ, Kahan BD. Technical complications of renal transplantation. Surg Clin North Am 1994; 74: 1117
42. Khaili RB, Stoff JS, Lovewell T et al. Post-transplant lymphoedema: a critical look into the risk factors, pathophysiology and management. J Urol 1993; 150: 22
32. Pollak R, Veremis SA, Maddux MS et al. The natural history of and therapy for perirenal fluid collections following renal transplantation. J Urol 1988; 140: 716
33. Vítko S, Tedesco H, Eris J et al. Everolimus with optimized cyclosporine dosing in renal transplant recipients: 6-month safety and efficacy results of two randomized studies. Am J Transplant 2004; 4: 626
34. Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute allograft rejection: a randomized multicentre study. The Rapamune US Study Group. Lancet 2000; 356: 194–202
35. Sansalone CV, Aseni P, Minetti E et al. Is lymphocele in renal transplantation an avoidable complication? Am J Surg 2000; 179: 382
36. Kay R, Fuchs E, Barry JM. Management of postoperative pelvic lymphoceles. Urology 1980; 15: 345
37. Rashid A, Posen G, Couture R et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphocele. Transplantation 2005; 79(Suppl): S80–S84
38. Bischof G, Rockenschaub S, Berlakovich G et al. Retransplantation as a risk factor for lymphocele formation. Transplantation 1992; 53: 676
39. Martinez-Ocana JC, Lauzurica R, Castellote E et al. Adult polycystic kidney disease: a risk factor for lymphocele formation after renal transplantation? Transplant Proc 1995; 27: 2246
40. Teruel JL, Escobar EM, Quereda C et al. A simple and safe method for management of lymphocele after renal transplantation. J Urol 1983; 130: 1058
41. Longer RM, Kahan BD. Incidence, therapy, and consequences of lymphocele after sirolimus-cyclosporine-prednisone immunosuppression in renal transplant recipients. Transplantation 2002; 27: 804
42. Pascual J, Marcén R, Ortúñaro J. Clinical experience with everolimus (Certican): optimizing dose and tolerability. Transplantation 2005; 79(Suppl): S80–S84
43. Greager MA, Dzay VJ. Vascular disease of the extremities. In: Fauci AS, Braunwald E, Isselbacher KJ et al. (eds). Harrison’s Principles of Internal Medicine. New York: McGraw Hill 1998, 1405 pp
44. Stoeltzing O, Meric-Bernstam F, Ellis LM. Intracellular signalling in tumor and endothelial cells: the expected and, yet again, the unexpected. Cancer Cell 2006; 10: 89–91
45. Karkkainen MJ, Ferrell RE, Lawrence EC et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000; 25: 153–159
46. Mäkinen T, Jussila L, Veikkola T et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001; 7: 199–205
47. Huber S, Bruns CJ, Schmid G et al. Inhibition of the mammary target of rapamycin impedes lymphangiogenesis. Kidney Int 2007; 71: 771–777
48. Keogh A, Richardson M, Ruygrok P et al. Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years: a randomized clinical trial. Circulation 2004; 110: 2694–2700
49. Steele GH, Adamkovic AB, Demopoulos LA et al. Pericardial effusion coincident with sirolimus therapy: a review of Wyeth’s safety database. Transplantation 2008; 85: 645–647
50. Bouzas-Mosquera A, Crespo-Leiro MG, Paniagua MJ et al. Adverse effects of mammalian target of rapamycin inhibitors during the postoperative period after cardiac transplantation. Transplant Proc 2008; 40: 3027–3030
51. Agostini A, Cicardi M. Drug-induced angioedema without urticaria. Drug Saf 2001; 24: 599–606
52. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 1992; 117: 234–242
53. Abbosh J, Anderson JA, Levine AB et al. Angiotensin converting enzyme inhibitor-induced angioedema more prevalent in transplant patients. Ann Allergy Asthma Immunol 1999; 82: 473–476
54. Lykavieris P, Frauger E, Habes D et al. Angioedema in pediatric liver transplant recipients under tacrolimus immunosuppression. Transplantation 2003; 75: 152–155
55. Burdese M, Rossetti M, Guarena C et al. Sirolimus and ACE-inhibitors: a note of caution. Transplantation 2005; 79: 251–252
56. Stallone G, Infante B, Di Paolo S et al. Sirolimus and angiotensin-converting enzyme inhibitors together induce tongue oedema in renal transplant recipients. Nephrol Dial Transplant 2004; 19: 2906–2908
57. Montalbano M, Neff GW, Yamashiki N et al. A retrospective review of liver transplant patients treated with sirolimus from a single center: an analysis of sirolimus-related complications. Transplantation 2004; 78: 264–268
58. Mahé E, Morelon E, Lechaton S et al. Angioedema in renal transplant recipients on sirolimus. Dermatology 2007; 214: 205–209
59. Krikorian RK, Quick A, Tal A. Angioedema following the intravenous administration of metoprolol. Chest 1994; 106: 1922–1923
60. Gainer JV, Nadeau JH, Ryder D et al. Increased sensitivity to bradykinin among African Americans. J Allergy Clin Immunol 1996; 98: 283–287
61. Morimoto T, Gandhi TK, Fiskio JM et al. An evaluation of risk factors for adverse drug events associated with angiotensin-converting enzyme inhibitors. J Eval Clin Pract 2004; 10: 499–509
62. Flockhart DA, Tonus-Santos JE. Implications of cytochrome P450 interactions when prescribing medication for hypertension. Arch Intern Med 2002; 162: 405–412
63. Lemahieu WP, Maes BD, Verbeke K et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs tacrolimus vs sirolimus. Am J Transplant 2004; 4: 1514–1522
64. Burschels NR, Goodpastor SE, Goss JA. Sirolimus-atorvastatin drug interaction in the pancreatic islet transplant recipient. Transplantation 2003; 76: 1649–1650
65. Jeannart H, Malo O, Carrier M et al. Comparative study of cyclosporine and tacrolimus vs newer immunosuppressants mycophenolate mofetil and rapamycin on coronary endothelial function. J Heart Lung Transplant 2002; 21: 990–998
66. Mahé E, Morelon E, Lechaton S et al. Cutaneous adverse events in renal transplant recipients on sirolimus-based therapy. Transplantation 2005; 79: 476–482

Received for publication: 4.1.14; Accepted in revised form: 16.1.14