IGF-1 facilitates extinction of conditioned fear

José A. Noriega-Prieto¹,²#; Laura E. Maglio¹,³#*; Irene B. Maroto¹,⁴; Jesús Martín-Cortecero¹,⁵; Antonio Muñoz-Callejas¹; Marta Callejo-Móstoles¹ and David Fernández de Sevilla¹,*

¹Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
²Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
³Departamento de Ciencias Médicas Básicas (Fisiología) and Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38071 Tenerife, Spain
⁴Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
⁵Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany

These authors contributed equally
*Corresponding authors

Correspondence should be addressed to:

David Fernández de Sevilla, PhD Laura Eva Maglio, PhD
Departamento de Anatomía, Departamento de Ciencias Médicas
Histología y Neurociencia, Facultad Básicas (Fisiología), Facultad de
de Medicina, Universidad Medicina, Universidad de La Laguna,
Autónoma de Madrid, c/ Arzobispo Campus de Ofra s/n, 38071 San
Morcillo, 4, 28029, Madrid, Spain. Cristóbal de La Laguna, Tenerife, Spain.
david.fernandezdesevilla@uam.es lamaglio@ull.edu.es

Running title: IGF-1 and conditioned fear

Impact Statement: IGF-1 modulates the neuronal firing and synaptic plasticity in infralimbic cortex, favoring the extinction memory

Keywords: IGF-1; Extinction of condition fear; afterhyperpolarization; synaptic plasticity; infralimbic cortex.
IGF-1 facilitates fear extinction memory

SUMMARY

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, degenerative diseases, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates neuronal activity in many areas of the brain, its effect on synaptic plasticity and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the infralimbic cortex. Besides, IGF-1 mediates a long-term depression of both inhibitory and excitatory synaptic transmission that results in a long-term potentiation of the postsynaptic potentials. We demonstrate that these synaptic and intrinsic regulatory processes mediated by IGF-1 favor the fear extinction memory. These results show novel functional consequences of IGF-1 signaling on animal behavior tasks dependent on the prefrontal cortex, revealing IGF-1 as a key element in the control of the fear extinction memory.
IGF-1 facilitates fear extinction memory

INTRODUCTION

Conditioned fear is an associative form of learning and memory in which a previous neutral stimulus (called “conditioned stimulus” [CS]; e.g., a tone) comes to elicit a fear response when is associated with an aversive stimulus (called “unconditioned stimulus” [US]; e.g., an electric shock (Ledoux, 2000; Maren, 2001; Pape and Pare, 2010). Extinction of conditioned fear is an active learning process involving inhibition of fear expression. It is a decline in conditioned fear responses (CRs) following non-reinforced exposure to the CS. However, fear extinction memory does not erase the initial association between the CS-US but forms a new association (CS-No US) that inhibits expression of the previous conditioned memory (Quirk and Mueller, 2008). Fear extinction depends on specific structures such as the amygdala, the hippocampus, and the prefrontal cortex (PFC) (Milad and Quirk, 2012; Orsini and Maren, 2012). Dysfunctions in the neuronal circuits responsible for fear cause the development of anxiety disorders, including specific phobias and post-traumatic stress (Pavlov, 1927; Quirk and Mueller, 2008).

The consolidation of the extinction memory has been related to long-term synaptic plasticity and increases in the excitability of pyramidal neurons (PNs) from the infralimbic cortex (IL) (Kaczorowski et al., 2012; Koppensteiner et al., 2019; Moyer et al., 1996). The mechanisms of this synaptic plasticity involve NMDA receptors (Burgos-Robles et al., 2007), mitogen-activated protein (MAP) kinases (Hugues et al., 2004), protein kinase A (Mueller et al., 2008), insertion of Ca\(^{2+}\)-permeable AMPA receptors (Sepulveda-Orengo et al., 2013), and protein synthesis (Mueller et al., 2008; Santini et al., 2004). Moreover, the excitability of PN from IL is a key determinant for both the acquisition and the extinction of fear, being reduced by fear acquisition and
IGF-1 facilitates fear extinction memory

increased by fear extinction (Santini et al., 2008). Indeed, IL layer 5 pyramidal neurons (L5PN) of conditioned fear animals show a higher slow post-spike afterhyperpolarization (sAHP) amplitude and lower firing frequency relative to non-conditioned or extinguished animals (Santini et al., 2008).

Insulin-like growth factor-1 (IGF-1) is an endogenous polypeptide with plenty of trophic functions, which can be locally synthesized and released by neurons and astrocytes (Fernandez and Torres-Alemán, 2012). Similarly, its receptor (IGF-1R) is widely expressed among all brain cell type (Quesada, et al., 2007; Rodriguez-Perez et al., 2016). IGF-1 increases neuronal firing (Gazit et al., 2016; Nuñez et al., 2003) and modulates excitatory and inhibitory synaptic transmission in the central nervous system (Castro-alamancos and Torres-aleman, 1993; Nilsson et al., 1988; Noriega-prieto et al., 2020; Seto et al., 2002). Furthermore, IGF-1 regulates different ion channels, such as A-type K$^+$ channels (Xing et al., 2006) and P/Q-, L-, and N-type voltage-gated Ca$^{2+}$ channels (Blair and Marshall, 1997; Shan et al., 2003), as well as neurotransmitter receptors activity (Gonzalez de la Vega et al., 2001; Savchenko et al., 2001). However, the role of IGF-1 on the modulation of L5PN of the IL activity and its consequences in the fear extinction memory remains to be clarified.

Here, we have examined the effects of IGF-1 in excitability and synaptic transmission in L5PN from IL. Our results reveal that IGF-1 induces a long-lasting reduction of the sAHP amplitude and increases the firing frequency of L5PNs. Furthermore, IGF-1 induces a presynaptic long-term depression (LTD) of both excitatory and inhibitory postsynaptic currents (EPSC and IPSCs, respectively) that results in a long-term potentiation (LTP) of the postsynaptic potentials (PSPs). Moreover, we show that IGF-1 facilitates the recall of extinction of fear conditioning when applied intracranially.
IGF-1 facilitates fear extinction memory

min before the extinction task. In these animals with the favored extinction, the sAHP is
reduced and the excitatory synaptic transmission is depressed. Therefore, we
demonstrate for the first time that IGF-1 facilitates the extinction of fear conditioning,
increasing the excitability and potentiating the synaptic transmission in L5PN from IL.

MATERIALS AND METHODS

Animals. Male Sprague Dawley rats were group-housed in transparent
polyethylene cages. Rats were maintained on a 12:12 h light/dark scheduled cycle with
free access to food and water. All animal procedures were approved by the Universidad
Autónoma of Madrid Ethical Committee on Animal Welfare and conform to Spanish
and European guidelines for the protection of experimental animals (Directive
2010/63/EU). Effort was made to minimize animal suffering and number.

Electrophysiology. Prefrontal cortical slices were obtained from rats at postnatal day
(P20 to P30) age. Rats were decapitated and the brain removed and submerged in
artificial cerebrospinal fluid (ACSF). Coronal slices (400 µm thick) were obtained with
a Vibratome (Leica VT 1200S). To reduce swelling and damage in superficial layers
(epecially after the behavior tests), brain slices were obtained using a modified ACSF,
containing (in mM): 75 NaCl, 2.69 KCl, 1.25 KH₂PO₄, 2 MgSO₄, 26 NaHCO₃, 2 CaCl₂,
10 glucose, 100 sucrose, 1 sodium ascorbate, and 3 sodium pyruvate. After that, brain
slices were transferred to regular ACSF (in mM: 124 NaCl, 2.69 KCl, 1.25 KH₂PO₄, 2
MgSO₄, 26 NaHCO₃, 2 CaCl₂, and 10 glucose, 0.4 sodium ascorbate, bubbled with
carbogen [95% O₂, 5% CO₂]) and incubated for >1h at room temperature (22–24°C).
Slices were then transferred to an immersion recording chamber and superfused with
carbogen-bubbled ACSF. Cells were visualized under an Olympus BX50WI
microscope. Patch-clamp recordings were obtained from the soma of pyramidal neurons
IGF-1 facilitates fear extinction memory located at the layer 5 of IL (IL-L5PNs) using patch pipettes (4–8 MΩ) filled with an internal solution that contained (in mM): 130 KMeSO₄, 10 HEPES-K, 4 Na₂ATP, 0.3 Na₃GTP, 0.2 EGTA, 10 KCl (buffered to pH 7.2–7.3 with KOH). Recordings were performed in current- or voltage-clamp modes using a Cornerstone PC-ONE amplifier (Dagan Corporation). Pipettes were placed with a micromanipulator (Narishige). The holding potential was adjusted to −60 mV and the series resistance was compensated to ~80%. Recordings were accepted only when series and input resistances did not change >20% during the experiment. Data were low-pass filtered at 3 kHz and sampled at 10 kHz, through a Digidata 1440 (Molecular Devices). The pClamp software (Molecular Devices) was used to acquire the data. Chemicals were purchased from Sigma-Aldrich Quimica and Tocris Bioscience (Ellisville; distributed by Biogen Científica) and R&D Systems, Inc. (distributed by Bio-Techne). In current-clamp mode, we examined the afterhyperpolarizing potentials (AHPs) in IL-L5PNs. We injected 0.4 nA depolarizing current pulses of 10, 200, and 800 ms in duration to record fAHPs, mAHPs, and sAHPs, respectively. We measured the amplitude of afterhyperpolarizing potentials as the average of the maximum peak value, after the end of each depolarized pulse. The temporal window of each one was 5-10 ms for fAHPs, 5-100 ms for mAHPs, and 0.1-3 s for sAHPs, measured in ACSF and in the presence of 10 nM IGF-1. We applied the same protocol but in the voltage-clamp mode to record the currents that underlie these potentials. We fixed the membrane potential at −60 mV and then we depolarized the cell at 0 mV during 10, 200, and 800 ms for 40 min to measure the amplitude of Iₐ₁₅, mIₐ₁₅, and sIₐ₁₅, respectively, at the end of each depolarized pulse in control conditions (ACSF) and after IGF-1 addition to the bath. The number of action potentials (spike frequency) elicited in response to a series of long (1 s) depolarizing current steps (25–
IGF-1 facilitates fear extinction memory

200 pA for basal condition and 25-350 pA for neurons recorded after the behavioral tests; 25 pA increments) were used to assess excitability of IL-L5PNs.

Bipolar stimulation was applied through a Pt/Ir concentric electrode (OP: 200 μm, IP: 50 μm; FHC) connected by 2 silver-chloride wires to a stimulator and a stimulus isolation unit (ISU-165 Cibertec). The stimulating electrode was placed at 100 μm below the soma of the recorded neuron (at the level of layer 6), close to the basal dendrites of the recorded IL-L5PNs. Paired pulses (100 μs in duration and 20–100 μA and 50 ms interval) were continuously delivered at 0.33 Hz. Excitatory postsynaptic currents (EPSCs) were isolated in the presence of GABA_AR (50 μM picrotoxin; PiTX) and GABA_BR (5 μM CGP-55845) antagonists. Inhibitory postsynaptic currents (IPSCs) were isolated adding AMPAR (20 μM CNQX) and NMDAR (50 μM D-AP5) antagonists.

In both cases, after 5 minutes of stable baseline, we superfused IGF-1 for 35 min to check for long-term synaptic plasticity by analyzing the EPSCs and IPSCs peak amplitudes. In current-clamp mode, after a stable baseline of postsynaptic potentials (PSPs), the stimulation intensity was increased until suprathreshold responses reached were ≈21% for 5 min. Next, we applied IGF-1 for 15 min and measured the number of APs; afterward, we returned to initial stimulation intensity and measured the amplitude of PSPs to study the effect of IGF-1 on synaptic transmission. Miniature EPSCs (mEPSCs) were recorded at -60 mV in ACSF in the presence of 1 μM TTX, 20 μM PiTX, and 5 μM CGP-55845 to isolate excitatory synaptic transmission.

Conditioned fear. Rats were anesthetized with ketamine (70 mg/kg i.p.; Ketolar[™]), xylazine (5 mg/kg i.p.; Rompum[™]), and atropine (0.05 mg/kg i.p.; B. Braun Medical S.A) and maintained with isoflurane (2-3% in oxygen). Animals were positioned in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA, USA) and
IGF-1 facilitates fear extinction memory

placed on a water-heated pad at 37°C. The midline of the scalp was sectioned and
retracted, and small holes were drilled in the skull. Rats were implanted with a single 26
gauge stainless-steel guide cannula (Plastics One) in the mPFC. Stereotaxic coordinates
aiming toward the IL were (AP: 2.8 mm, LM: 1.0 mm, and DV: 4.1 mm) from bregma
according to rat brain atlas (Paxinos and Watson, 2007), with the cannula angled 11°
toward the midline in the coronal plane as described previously (Santini et al., 2004). A
33 gauge dummy cannula was inserted into the guide cannula to prevent clogging.
Guide cannulas were cemented to the skull with dental acrylic (Grip Cement) and the
incision was sutured. Buprenorphine hydrochloride (75 mg/kg s.c.; Buprex™) was
administered for post-surgical analgesia. Rats were allowed at least 7 days for surgery
recovery. Trace fear conditioning was conducted in a chamber of 25x31x25 cm with
aluminum and Plexiglas walls (Coulbourn, Allentown, PA). The floor consisted of
stainless-steel bars (26 parallel steel rods 5 mm diameter, 6 mm spacing) that can be
electrified to deliver a mild shock. A speaker was mounted on the outside wall, and
illumination was provided by a single overhead light (miniature incandescent white
lamp 28 V). The rectangular chamber was situated inside a sound-attenuating box (Med
Associates, Burlington, VT) with a ventilating fan, which produced an ambient noise
level of 58 dB. The CS was a 4 kHz tone with a duration of 30 s and an intensity of 80
dB. The US was a 0.4 mA scrambled footshock, 0.5 s in duration, which co-terminated
with the tone during the conditioning phase. Between sessions, floor trays and shock
bars were cleaned with soapy water and the chamber walls were wiped with a damp
cloth. An additional Plexiglas chamber served as a novel context for the auditory cue
test. This chamber, which was a triangle with a black smooth Plexiglas floor, was
physically distinct from the fear conditioning chamber. All the environmental
IGF-1 facilitates fear extinction memory

conditions were completely different regarding the fear conditioning test (the intensity of light was lower, 10 V), except for the ventilating fan. Before placing rats into this chamber, chamber floor and walls were wiped with 30% vanilla solution to provide a background odor distinctive from that used during fear conditioning. The activity of each rat was recorded with a digital video camera mounted on top of each behavioral chambers. 30 min before extinction training, saline (NaCl 0.9%), IGF-1 (10 μM; Preprotech), or the IGF-1R antagonist 7-[cis-3-(1-azetidinylmethyl)cyclobutyl]-5-[3-(phenylmethoxy)phenyl]-7H-pyrrolo[2,3-]pyrimidin-4-amine (NVP-AEW 541, 40 μM; Cayman Chemicals) plus IGF-1 were infused into the IL. For the infusions, cannula dummies were removed from guide cannulas and replaced with 33 gauge injectors, which were connected by polyethylene tubing (PE-20; Small Parts) to 100 μl syringes mounted in an infusion pump (Harvard Apparatus). Drugs were infused at a rate of 0.5 μl/min for 1 min as described previously (Fontanez-Nuin et al., 2011).

Non-cannulated animals. Animals were divided into two groups, the conditioned group (COND) and the extinguished group (EXT). On day 1, rats received three habituation trials (tone-no shock; habituation phase) into two different contexts (context 1: square shock box and context 2: triangle box with soft floor). On day 2, rats received three conditioning trials (tone paired with shock; context 1; condition phase). On day 3, rats of COND group remained in their home cage, whereas rats of EXT group received twenty tone-alone trials (context 2; extinction phase). On day 4, both groups of rats received five tone-alone trials to test for recall of conditioning or extinction (test phase) (Figure supplement 3A).

Cannulated animals. Animals were divided into the saline group (SAL) and the different drug groups (IGF-1 or NVP+IGF-1). On day 1, rats received three habituation
trials into the two contexts aforementioned. On day 2, rats received three conditioning trials. On day 3, rats were infused with saline or drug 30 min before the beginning of the extinction phase. On day 4, all groups of rats received five tone-alone trials in the same chamber (context 2) to test for recall of extinction (Figure supplement 3A). In all phases of the experiment, the interval between successive tones was variable, with an average of 2 min. All groups were tested on the same day to determine the long-term changes occurring in the mPFC that gate subsequent memory retrieval.

Data analysis. Data were analyzed using pClamp (Molecular Devices), Excel (Microsoft), and GraphPad Prism 8.3 software. Twenty responses were averaged except when otherwise indicated. The magnitude of the change in peak EPSCs, IPSCs, and PSPs amplitude was expressed as a percentage (%) of the baseline control amplitude and plotted as a function of time. The presynaptic or postsynaptic origin of the observed regulation of EPSCs and IPSCs amplitudes was tested by estimating the paired-pulse ratio (PPR) changes, which were considered to be of presynaptic origin (Clark et al., 1994; Creager et al., 1980; Kuhnt and Voronin, 1994) and were quantified by calculating a PPR index (R2/R1), where R1 and R2 were the peak amplitudes of the first and second synaptic currents, respectively. To estimate the modifications in the synaptic current variance, we first calculated the noise-free coefficient of variation (CVNF) for the synaptic responses before and 40 min after applying IGF-1 in the bath with the formula CVNF = √((δXPSC² − δnoise²)/m; δXPSC² and δnoise² (X= E excitatory or X= I inhibitory) are the variance of the peak EPSC or IPSC and baseline, respectively, and m is the mean EPSC or IPSC peak amplitude. The ratio of the CV measured before and 40 min after applying IGF-1 (CVr) was obtained for each neuron as CV after IGF-1 responses/CV control (Clements, 1990). Finally, we constructed plots
IGF-1 facilitates fear extinction memory

comparing variation in M (m after IGF-1 responses over m at control conditions) against the changes in response variance of the EPSC or IPSC amplitude (1/CVr2) for each cell. In these plots, values were expected to follow the diagonal if the EPSC or IPSC depression had a presynaptic origin. Results are given as mean ± SEM (N = numbers of cells). There were no gender differences in our experiments. MiniAnalysis software (SynaptoSoft Inc) and pCLAMP software were used for the analysis of the frequency and amplitude of mEPSCs. See Supplementary Table 1 for a detailed description of the statistical analyses performed in these experiments.

The total freezing time during the 30 s tone was measured and converted to percentage of freezing. Freezing was defined as the cessation of all movements except respiration. The percentage of freezing time was used as a measure of conditioned fear (Blanchard DC, 1972). The behavioral data were analyzed by manual evaluation of the videos and/or using the image J free software with the pulgging developed for this purpose (Shoji et al., 2014). No differences were observed with both methods. Values are reported as the means ± SEM. See Supplementary Table 1 for a detailed description of the statistical analyses performed in these experiments.

Blind experiments were not performed in the study but the same criteria were applied to all allocated groups for comparisons. Randomization was not employed. The sample size in whole-cell recording experiments was based on the values previously found sufficient to detect significant changes in past studies from the lab.

RESULTS

IGF-1 increases the excitability of IL-L5PNs.
IGF-1 facilitates fear extinction memory

Ca\(^{2+}\)-activated K\(^+\) currents that mediate the post-spike medium and slow afterhyperpolarization (mAHP and sAHP, respectively) are crucial in the regulation of neuronal excitability (Alger and Nicoll, 1980; Madison and Nicoll, 1984). We first tested the effect of IGF-1 on different components of afterhyperpolarizing potentials of IL L5PNs. In the current-clamp mode, we recorded mAHPs or sAHPs before and during bath application of IGF-1 (10 nM). IGF-1 reduced mAHP (Figure 1A,B) and sAHPs (Figure 1C,D), whereas the fast AHP (fAHP) was unaffected (Figure supplement 1A-B). We also checked the effect on neuronal excitability by analyzing the number of actions potentials evoked by increasing current injection steps. We observed that the number of action potentials evoked by these protocols was higher during IGF-1 perfusion, indicating an increase in neuronal excitability mediated by IGF-1 (Figure 1E, F).

We next performed voltage-clamp recordings to analyze the effect of IGF-1 on the currents that underlie the mAHP and sAHP (Alger and Nicoll, 1980; Storm, 1990) (\(m_{\text{IAHP}}\) and \(s_{\text{IAHP}}\), respectively). IGF-1 also decreased \(m_{\text{IAHP}}\) (Figure 2A,B) and \(s_{\text{IAHP}}\) (Figure 2D,E), while the fast afterhyperpolarization current remained unaltered (Figure supplement 1C-D). We observed a gradual current reduction that reached a plateau 20 min after IGF-1 application in both the \(m_{\text{IAHP}}\) and \(s_{\text{IAHP}}\) (Figure 2 C and F). However, in the absence of IGF-1, the neuronal depolarization did not modify the AHP currents (Figure supplement 2A). Interestingly, we observed a long-lasting reduction of \(s_{\text{IAHP}}\) that remained after the wash-out of IGF-1 (Figure supplement 2B) and required the activation of the AHPs by the depolarizing protocol (Figure supplement 2C). Moreover, the IGF-1-dependent modulation of the \(m_{\text{IAHP}}\) and \(s_{\text{IAHP}}\) was prevented by the IGF-1R antagonist NVP-AEW541 (400 nM, Figure 2A-F), indicating that these effects...
IGF-1 facilitates fear extinction memory

were mediated by the activation of the IGF-1R. Taken together, these results demonstrate that IGF-1 induced a long-term decrease of \(I_{AHP} \) leading to an increase of neuronal firing frequency.

IGF-1 induces long-term potentiation of the synaptic transmission of IL-L5PNs

We next examined whether IGF-1 modulates the EPSCs. After isolating the EPSCs (see materials and methods), we measured their amplitude and analyzed the paired-pulse ratio and coefficient of variance. We found that IGF-1 induced long-term depression of EPSC peak amplitude (72.63% of baseline, Figure 3A) that was prevented in the presence of NVP-AEW541 (97.72% of baseline, Figure 3A). The IGF-1-mediated depression of the EPSCs was associated with changes in the paired-pulse ratio (PPR) (Figure 3B) and coefficient of variation (1/CV\(^2\)) (Figure 3C), indicating a presynaptic mechanism. Additionally, this modulation was not observed when the synaptic stimulation was absent (Figure 3D), suggesting that the evoked synaptic responses were required for this LTD of the EPSCs.

We also analyzed whether IGF-1 regulates the IPSCs. We isolated the IPSC (see materials and methods) and after 35 minutes of IGF-1, we observed a long-term depression of IPSCs (41.99% of baseline, Figure 3E) that were dependent of IGF-1R activation, since this effect was prevented by NVP-AEW541 (99.0% of baseline, Figure 3E). The IGF-1-mediated depression of the IPSCs was associated with changes in the paired-pulse ratio (PPR) (Figure 3F) and coefficient of variation (1/CV\(^2\)) (Figure 3G), pointing to a presynaptic mechanism. Nevertheless, the LTD of the IPSC did not require the evoked IPSCs since IGF-1 was able to induce it when the synaptic stimulation was absent (Figure 3H).
IGF-1 facilitates fear extinction memory

Finally, we studied the effect of IGF-1 on the postsynaptic potentials (PSPs). After recording a stable baseline of PSPs, we increased the intensity of stimulus until that ≈21% of the responses recorded during 5 min were suprathreshold and then we added IGF-1 (Figure 3I and J). IGF-1 induced a significant increase in the number of AP during 5 min of recording (Figure 3J). When we returned to the basal intensity of stimulation, we observed a long-term potentiation (LTP) of the PSPs (Figure 3I). Together, our results reveal that IGF-1 induces a presynaptic depression of both EPSCs and IPSCs, which triggers a LTP of PSPs.

IGF-1 facilitates fear extinction.

Since a reduction of the sAHP was previously shown to favor recall of extinction (Santini et al., 2008), we next analyzed whether IGF-1 was able to facilitate it. First, we performed a set of experiments to determine the number of sessions required to induced fear conditioning and extinction as previously described (Fontanez-Nuin et al., 2011) (Figure supplement 3). On day 2, the different groups of rats acquired similar levels of conditioned freezing (COND, 74%; EXT, 77%) with three sessions of association (CS-US, fear conditioning). On day 3, rats from the EXT group showed gradual within-session extinction across twenty trials to a final freezing level of 12% (CS-No US), while rats from the COND group remained in their home cage. On day 4, rats from COND group showed high levels of freezing (77-95%) on the test tones, whereas rats from EXT group showed low levels of freezing (50-35%), indicating good recall of extinction during five sessions (Figure supplement 3A-B).

To study the effect of IGF-1 on fear extinction memory, we infused saline or IGF-1 or NVP+IGF-1 through a cannula guide previously implanted into the IL (Figure 4A).
IGF-1 facilitates fear extinction memory

min before the extinction training (Figure 4B). Although the level of freezing reached on day 2 was comparable in the three groups (Saline, 89%; IGF-1, 79%; NVP+IGF-1 81%), the rats from IGF-1 group showed less freezing in the last session on day 3 (Saline, 51%; IGF-1, 14%; NVP+IGF-1 59%). On day 4, IGF-1-treated rats exhibited less freezing than the saline and NVP+IGF-1 rats (Figure 4B). This result demonstrates that IGF-1 induces the facilitation of extinction memory dependent on the IGF-1Rs activation.

IGF-1 induces an increase in neuronal excitability and a reduction in mEPSCs in rats exposed to the extinction memory task.

Fear extinction is paralleled by an increase in the excitability of pyramidal neurons from layers 2/3 and 5 from IL (Santini et al., 2008). Therefore, we tested whether a change in the excitability of IL-L5PNs occurs in the animals in which IGF-1 facilitated the extinction memory. For this purpose, we recorded IL-L5PNs from all behavioral groups after the last extinction session on day 4. We observed that the λ_{AHP} amplitude of the IGF-1 group was smaller than the λ_{AHP} amplitude of the saline group (Figure 4C-D). Importantly, this λ_{AHP} amplitude difference was not present when comparing the saline group with the group treated with NVP+IGF-1 (Figure 4C-D). Moreover, the firing frequency of IL-L5PNs from the IGF-1-treated group was significantly increased compared with saline or NVP+IGF-1 groups. These results support that IGF-1 induces the facilitation of extinction through the reduction of λ_{AHP} and the increase of IL-L5PNs firing frequency.

Since we have demonstrated that IGF-1 induces a presynaptic LTD of the EPSCs (see Figure 3), we tested whether the excitatory synaptic transmission was depressed by
IGF-1 facilitates fear extinction memory

IGF-1 in animals in which IGF-1 facilitated the extinction. For this purpose, we recorded miniature EPSCs (mEPSCs) in IL-L5PNs from all behavioral groups after the last extinction session on day 4. We observed that the mEPSCs frequency of the IGF-1 group was lower than in saline and NVP+IGF-1 groups (Figure 5A-C), with no changes in the amplitude among groups (Figure 5A,D,E). Taken together, these results demonstrate that IGF-1 facilitates the establishment of fear extinction memory, generating synaptic and intrinsic plasticity at IL-L5PN.

DISCUSSION

Interactions among the amygdala, the hippocampus, and the IL prefrontal cortex are important for the extinction of conditioned fear memory (Milad and Quirk, 2012; Orsini and Maren, 2012; Pape and Pare, 2010; Quirk and Mueller, 2008). Although the effects of IGF-1 on the amygdala (Stern et al., 2014) and the hippocampus (Chen et al., 2011; Stern et al., 2014) have been previously studied, there is no evidence about its possible actions on the IL. Our results demonstrate for the first time that IGF-1 applied to IL favors the extinction of conditioned fear memory causing an increase in L5PN excitability, by reducing the sAHP, and synaptic plasticity through the activation of the IGF-1R. We present new evidence showing that IGF-1 induced a long-lasting increase in excitability and LTP of the synaptic potentials at IL-L5PNs. The former is mediated by a significant reduction in the mAHP and sAHP, whereas the latter results from the interaction between presynaptic LTD of the EPSCs and IPSCs. Therefore, our results show a novel functional consequence of IGF-1 signaling on animal behavior in the mPFC. From this point of view, IGF-1 appears as a key endogenous molecule in the modulation of the extinction of conditioned fear memory, supporting the role of IGF-1 as a crucial piece in behavioral tasks.
There is a growing body of evidencesupporting that fear extinction memory is encoded by IL neurons (Quirk and Beer, 2006) that show enhanced responses to extinguished cues during extinction recall (Milad and Quirk, 2002). Pharmacological (Hugues et al., 2004; Laurent and Westbrook, 2009; Sierra-Mercado et al., 2011; Sotres-Bayon et al., 2007), electrical (Milad et al., 2004), or optogenetic (Do-Monte et al., 2015) manipulations of IL have been described to modulate the acquisition of fear extinction. In addition, IL is involved in the recall of this memory since lesions of the IL produce deficits in its retention (Morgan and LeDoux, 1995; Quirk et al., 2000). In the present study, we infused IGF-1 into IL before the extinction protocol and found that the action of IGF-1 in these neurons induced a significant improvement of fear extinction memory compared to the groups treated with saline or NVP+IGF-1. Consistent with that fact, IGF-1 (LLorens-Martín et al., 2010; Trejo et al., 2008), and most recently also IGF-2 (Chen et al., 2011), have been related to cognitive function. Injections of IGF-1, IGF-2, or insulin into the amygdala did not affect memories critically engaging this region. However, bilateral injection of insulin into the dorsal hippocampus transiently enhances hippocampal-dependent memory whereas injection of IGF-1 has no effect (Stern et al., 2014). IGF-2 produces the most potent and persistent effect as a memory enhancer on hippocampal-dependent memories (Chen et al., 2011). Like insulin, IGF-2 did not affect amygdala-dependent memories when delivered into the BLA. Contextual fear extinction is facilitated when IGF-2 is injected into the dentate gyrus whereas inhibition of physiological IGF-1 signaling, via intrahippocampal injection of an IGF-1 blocking antibody, did not affect fear extinction (Chen et al., 2011). However, a single intravenous injection of IGF-1 before the training of contextual fear extinction increases the density of mature dendritic spines in the hippocampus and mPFC, favoring the
IGF-1 facilitates fear extinction memory

memory of extinction (Burgdorf et al., 2017). All these reports are consistent with the idea that IGF-2 would have a specific role in the hippocampus while IGF-1 could have a selective role in the IL.

IGF-1 produces a strong potentiation of Ca\(^{2+}\) channel currents and the inhibition of A-type K\(^+\) channels in hippocampal and somatosensory neurons in the dorsal column nuclei, respectively (Blair and Marshall, 1997; Nuñez et al., 2003; Shan et al., 2003; Xing et al., 2006). Interestingly, our recordings from IL-L5PNs of animals treated with IGF-1 showed a long-term decrease of sAHP current, which is highly related to behavioral recall (Moyer et al., 1996; Santini et al., 2008), suggesting that IGF-1 also modulates the channels responsible for this current, at least in IL-L5PNs. Reduction in the amplitude and the duration of AHPs from IL-L5PNs caused by IGF-1 resulted in a significant increase in their excitability, as reflected in the increase of their firing frequency, a phenomenon that has been previously associated with fear extinction memory (Santini and Porter, 2010). Moreover, our results also suggest that IGF-1 could modulate the M-type K\(^+\) channels since the current generated by these channels mediate partially the sI\(_{AHP}\) and enhance the bursting of the IL during the acquisition of fear extinction (Santini and Porter, 2010). Since increases in excitability favors the induction of synaptic plasticity (Sepulveda-Orengo et al., 2013), our results suggest that IGF-1 would enhanced IL excitability, facilitating the induction of synaptic plasticity and improving the extinction memory (Santini and Porter, 2010).

Previous studies have demonstrated that the activation of metabotropic glutamate receptor type 5 (mGluR5) increase IL-L5PN excitability and favors the LTP of glutamatergic synaptic transmission, effects that are crucial in the recall of extinction (Fontanez-Nuin et al., 2011; Sepulveda-Orengo et al., 2013). Additionally, the
IGF-1 facilitates fear extinction memory

administration of IGF-1 was reported to enhance synaptic plasticity in the hippocampus and the mPFC (Burgdorf et al., 2017; Ramsey et al., 2005). Therefore, we cannot rule out that an IGF-1-mediated increase in glutamatergic signaling could mediate both effects through the activation of mGluR5.

In conclusion, the present findings reveal novel mechanisms and functional consequences of IGF-1 signaling in IL. On the one hand, IGF-1 induces a reduction in sI_{AHP} and increases the excitability of layer 5 pyramidal neurons of IL. On the other hand, IGF-1 modulates the excitatory and inhibitory synaptic transmission resulting in a long-lasting enhancement of the synaptic efficacy. Both the synaptic and intrinsic plasticity regulate the neuronal connectivity, which leads to the facilitation of consolidation of fear extinction memory. Altogether, these results strongly support the potential role of IGF-1 as a new therapeutic target for the treatment of anxiety and mood disorders.
IGF-1 facilitates fear extinction memory

ACKNOWLEDGMENTS

This work was supported by the following Grants: BFU2013-43668-P and BFU2016-80802-P AEI/FEDER, UE (MINECO) to D. Fernández de Sevilla.

AUTHOR CONTRIBUTIONS

Conceptualization, J.A.N-P., L.E.M., and D.FdeS.; Methodology, J.A.N-P., L.E.M., and D.FdeS.; Formal analysis, J.A.N-P., L.E.M., I.B.M., J.M-C., and A.M-C.; Investigation, J.A.N-P., L.E.M., I.B.M., J.M-C., A.M-C., and M.C.; Writing-Original Draft, L.E.M., and D.FdeS.; Writing-Review & Editing, J.A.N-P., L.E.M., I.B.M., and D.FdeS.; Funding Acquisition, D.FdeS.
IGF-1 facilitates fear extinction memory

FIGURE LEGENDS

Figure 1. IGF-1 increases the excitability of IL-L5PNs. A. Representative recordings from IL-L5PNs of hyperpolarizing potentials elicited by a 200 ms depolarizing pulse to study medium AHP, in control conditions (ACSF, left) and in the presence of NVP-AEW541 (40 nM, right), before (black) and after of IGF-1 (10 nM, red) (spikes are truncated). B. Bar diagram summarizing mAHP amplitudes (n=5-9) ** p< 0.01, ns (non-significant) Student paired t-test. C. Same as A., but applying an 800 ms depolarizing pulse to study slow AHP. D. Bar diagram summarizing sAHP amplitudes (n=5-9) ** p< 0.01, ns (non-significant) Student paired t-test. E. Representative traces recorded from IL-L5PNs after 100pA current injection in ACSF (gray) and after IGF-1 application (red). F. Frequency-injected current relationships for IL-L5PNs in ACSF (gray) and after IGF-1 application (red) (n=8) * p < 0.05, Multiple t-test (Holm-Sidak methods). See also Figure 1—Figure supplement 1.

Figure 2. IGF-1 reduces mI_{AHP} and sI_{AHP} in IL neurons. A. Representative current traces recorded from IL-L5PNs in response to a 200ms depolarizing pulse from -60 mV to 0 mV in control condition (ACSF, left) and in the presence of (400 nM) NVP-AEW541 (right), before (black) and after addition of 10 nM IGF-1 (red). B. Normalized current amplitude of mI_{AHP} (n=5-8). ** p< 0.01, ns (non-significant) paired t-test. C. Time curse of mI_{AHP} in ACSF (red) and in presence of NVP-AEW541 (n=6-4) ***p<0.001 Student paired t-test. D. Same as A, but a 800ms depolarizing pulse was evoked. E. Same as B, but for sI_{AHP} (n=5-8) ** p< 0.01, ns (non-significant) paried t-test. F. Same as C, but for sI_{AHP} (n=6-5). See also Figure 2—Figure supplement 2.
IGF-1 facilitates fear extinction memory

Figure 3. IGF-1 induces long-term potentiation in IL-PNL5. A and E. Time course of EPSCs (n=5) or IPSCs (n=5) were recorded from IL-L5PNs in whole-cell voltage-clamp mode. After a stable (~5-min) baseline, the IGF-1 was bath applied at zero time for 35 min. Student paired t-test *p>0.05. B and F. Representative traces, which correspond to the numbers in the time-course plot, are shown on the top. Bar diagrams summarizing the paired-pulse ratio (PPR) before and after IGF-1, on the bottom. Student paired t-test *p>0.05; (n=5). C and G. Representative traces are showed before and after IGF-1 on the top. Plot of the variance (1/CVr2) as a function of the mean EPSC or IPSC peak amplitude (M) 30 min after IGF-1 and normalized to control condition (ACSF) (n=5). D and H. Time course of EPSCs or IPSCs showing long-term depression effect of IGF-1 in the absence of synaptic stimulus for 15 min. Student paired t-test *p>0.05 ***p>0.001 (n=6). I. Time course of PSP were recorded from IL-L5PNs in whole-cell current-clamp mode. After a stable (~5-min) baseline, the IGF-1 was bath applied at zero time for 35 min. Student paired t-test ***p>0.001 (n=6). J. Bar diagrams summarizing the number of action potential in ACSF and after IGF-1 bath applied * p< 0.05 vs basal levels Student paired t-test (n=6).

Figure 4. IGF-1 facilitates the memory of extinction by reducing the sIAMP and increasing the firing frequency. A. (upper) Image adapted to atlas of brain rats showing infralimbic cortex (IL) localization. (bottom) Nissl-stained coronal section of rat infralimbic cortex, orange arrow indicates the tip of cannula implanted on the IL. B. Time course of the percentage of freezing during the extinction protocol for the three groups studied. Saline (n=11), IGF-1 (n=14), and NVP-AEW541+IGF-1 (n=12) were
IGF-1 facilitates fear extinction memory directly applied into the IL through an implanted cannula 30 min before extinction training (day 3). The black arrow indicates the time of infusion. (*p<0.05 **p>0.01 Saline vs IGF-1 and NPV+IGF-1 #p>0.05; ##p>0.01; ###p>0.001 IGF-1 vs NPV+IGF-1; One-way ANOVA; Tukey’s multiple comparisons test). C. Representative sI_{AHP} current traces recorded from IL-L5PNs from animals that showed fear extinction D. Bar diagrams summarizing the sI_{AHP} for all the groups studied (n=6-10). Recordings were performed in day 4 (test) after finishing the extinction protocol; *p<0.05 Saline vs IGF-1 ##p>0.01 IGF-1 vs NPV+IGF-1 One-way ANOVA; Tukey’s multiple comparisons test. E. Representative traces recorded from IL-L5PNs from animals that showed fear extinction after 200 pA (left) current injection in Saline (black); IGF-1 (red) and NVP+IGF-1 (gray). Frequency-injected current relationships for IL-L5PNs in Saline (black) IGF-1 (red) and NVP+IGF-1 (gray). (*) IGF-1 vs. Saline and (#) IGF-1 vs. NVP+IGF-1; n=6-10; One-way ANOVA; Tukey’s multiple comparisons test). See also Figure 5.

Figure 5. IGF-1 decreases the frequency of mEPSC. A. Representative currents traces recorded at -60 mV in IL-L5PNs from animals that showed fear extinction, in the presence of 1 µM TTX, 50 µM PiTX, and 5 µM CPG-55845 to isolate mEPSCs. Asterisks denote mEPSC events. Note the decreased mEPSCs frequency induced by IGF-1. B. Summary data (n=4-6) showing mean mEPSCs frequency from Ext-Saline (black); Ext-IGF1 (red) and Ext-NVP+IGF-1 (gray). One-way ANOVA; Tukey’s multiple comparisons test. C. Cumulative probability plots of mean inter-mEPSC interval in Ext-Saline (black); Ext-IGF1 (red) and Ext-NVP+IGF-1 (gray). Note that IGF-1 increased the mean inter-mEPSC interval (p < 0.05; Kolmogorov–Smirnov test).
IGF-1 facilitates fear extinction memory

D. Summary data (n=4-6) showing mean mEPSCs amplitude. **E.** Cumulative probability plots of mean amplitude-mEPSC in Ext-Saline (black); Ext-IGF1 (red) and Ext-NVP+IGF-1 (gray). Note that IGF-1 does not change the mean mEPSCs amplitude (same cells as in C).

Figure supplement 1 (referred to Figure 1). IGF-1 has no effect on fAHP and J_AHP

A. Representative recordings from IL-L5PNs of hyperpolarizing potentials elicited by a 10-ms depolarizing pulse to study the fast components of the AHP, in control conditions (ACSF, left) and in the presence of NVP-AEW541 (right), before (black) and after addition of IGF-1 (red) (spikes are truncated). **B.** Bar diagram summarizing fAHP (n=5-8) ns (non-significant), Student paired t-test. **C.** Representative current traces recorded from IL-L5PNs in response to a 10 ms depolarizing pulse from -60 mV to 0 mV in control condition (ACSF, left) and in the presence of (400 nM) NVP-AEW541 (right), before (black) and after addition of 10 nM IGF-1 (red). **D.** Normalized current amplitude of J_AHP (n=5-8) ns (non-significant) Student paired t-test.

Figure supplement 2 (referred to Figure 2). Time curse of mI_AHP and J_AHP. **A.** Time curse of mI_AHP (left) and J_AHP (right) in control conditions (ACSF) after applying 200 and 800 ms depolarizing pulses, respectively (n=4 in each group). Note the protocol applied no change the currents **B.** Extended time curse of J_AHP showing the persistent effect of IGF-1 after washout (n=8) *** p<0.001 vs basal levels; Student paired t-test. **C.** Time curse of J_AHP showing long term depression effect of IGF-1 in the absence of the 800-ms depolarizing protocol (n=6) *** p<0.001 vs basal levels; Student paired t-test.
IGF-1 facilitates fear extinction memory

Figure supplement 3 (referred to Figure 4). Protocol of behavior. A. Experimental design. B. Time curse of the percentage of freezing during the experiment for the two groups studied: conditioned (COND; n=7) and extinction (EXT; n=11) groups. As expected, animals in the COND group showed higher levels of freezing to the test tones compared with the EXT groups (**p<0.01; ***p<0.001; One-way ANOVA, Tukey’s multiple comparisons test).
IGF-1 facilitates fear extinction memory

References

554 Alger BE, Nicoll RA. 1980. Epileptiform burst afterhyperpolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science (80-) 210:1122–1124. doi:10.1126/science.7444438

555 Blair LAC, Marshall J. 1997. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429. doi:10.1016/S0896-6273(00)80950-2

556 Blanchard DC BR. 1972. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 81:281–290.

557 Burgdorf J, Colechio EM, Ghoreishi-Haack N, Gross AL, Rex CS, Zhang XL, Stanton PK, Kroes RA, Moskal JR. 2017. IGFBP2 Produces Rapid-Acting and Long-Lasting Effects in Rat Models of Posttraumatic Stress Disorder via a Novel Mechanism Associated with Structural Plasticity. Int J Neuropsychopharmacol 20:476–484. doi:10.1093/ijnp/pyx007

558 Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. 2007. Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex. Neuron 53:871–880. doi:10.1016/j.neuron.2007.02.021

559 Castro-alamancos MA, Torres-aleman I. 1993. Long-term depression of glutamate-induced y-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci 90:7386–7390.

560 Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM. 2011. A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–499. doi:10.1038/nature09667
Clark KA, Randall AD, Collingridge GL. 1994. A comparison of paired-pulse facilitation of AMPA and NMDA receptor-mediated excitatory postsynaptic currents in the hippocampus. *Exp Brain Res* **101**:272–278. doi:10.1007/BF00228747

Clements JD. 1990. A statistical test for demonstrating a presynaptic site of action for a modulator of synaptic amplitude. *J Neurosci Methods* **31**:75–88. doi:10.1016/0165-0270(90)90012-5

Creager R, Dunwiddie T, Lynch G. 1980. Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. *J Physiol* **299**:409–424. doi:10.1113/jphysiol.1980.sp013133

Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ. 2015. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. *J Neurosci* **35**:3607–3615. doi:10.1523/JNEUROSCI.3137-14.2015

Fernandez AM, Torres-Aleman I. 2012. The many faces of insulin-like peptide signalling in the brain. *Nat Rev Neurosci* **13**:225–239. doi:10.1038/nrn3209

Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT. 2011. Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. *Cereb Cortex* **21**:727–735. doi:10.1093/cercor/bhq147

Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, Mor Y, Rizzoli S, Slutsky I. 2016. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. *Neuron* **89**:583–597. doi:10.1016/j.neuron.2015.12.034

Gonzalez de la Vega A, Buño W, Pons S, Garcia-Calderat MS, Garcia-Galloway E, Torres-Aleman I. 2001. Insulin-like growth factor I potentiates kainate receptors
IGF-1 facilitates fear extinction memory through a phosphatidylinositol 3-kinase dependent pathway. *Neuroreport* **12**:1293–1296. doi:10.1097/00001756-200105080-00047

Hugues S, Deschaux O, Garcia R. 2004. Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. *Learn Mem* **11**:540–543. doi:10.1101/lm.77704

Kaczorowski CC, Davis SJ, Moyer JR. 2012. Aging redistributes medial prefrontal neuronal excitability and impedes extinction of trace fear conditioning. *Neurobiol Aging* **33**:1744–1757. doi:10.1016/j.neurobiolaging.2011.03.020

Koppensteiner P, Galvin C, Ninan I. 2019. Lack of experience-dependent intrinsic plasticity in the adolescent infralimbic medial prefrontal cortex. *Synapse* **73**:0–1. doi:10.1002/syn.22090

Kuhnt U, Voronin LL. 1994. Interaction between paired-pulse facilitation and long-term potentiation in area ca1 of guinea-pig hippocampal slices: Application of quantal analysis. *Neuroscience* **62**:391–397. doi:10.1016/0306-4522(94)90374-3

Laurent V, Westbrook RF. 2009. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. *Learn Mem* **16**:520–529. doi:10.1101/lm.1474609

Ledoux JE. 2000. Emotion circuits in the brain. *Annu Rev Neurosci* **23**:155–184.

LLorens-Martín M, Torres-Alemán I, Trejo JL. 2010. Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. *Mol Cell Neurosci* **44**:109–117. doi:10.1016/j.mcn.2010.02.006

Madison BYD V, Nicoll RA. 1984. CONTROL OF THE REPETITIVE DISCHARGE OF RAT CA 1 PYRAMIDAL NEURONES IN VITRO. *jPhysiol* **354**:319–331.
IGF-1 facilitates fear extinction memory

Maren S. 2001. Neurobiology of Pavlovian Fear Conditioning. *Annu Rev Neurosci* **24**:897–931. doi:10.1146/annurev.psych.55.090902.141409

Milad MR, Quirk GJ. 2012. Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. *Annu Rev Psychol* **63**:129–151. doi:10.1146/annurev.psych.121208.131631

Milad MR, Quirk GJ. 2002. Neurons in medial prefrontal cortex signal memory for fear extinction. *Nature* **420**:70–74. doi:10.1038/nature01138

Milad MR, Vidal-Gonzalez I, Quirk GJ. 2004. Electrical Stimulation of Medial Prefrontal Cortex Reduces Conditioned Fear in a Temporally Specific Manner. *Behav Neurosci* **118**:389–394. doi:10.1037/0735-7044.118.2.389

Morgan MA, LeDoux JE. 1995. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. *Behav Neurosci* **109**:681–688. doi:10.1037/0735-7044.109.4.681

Moyer JR, Thompson LT, Disterhoft JF. 1996. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. *J Neurosci* **16**:5536–5546. doi:10.1523/jneurosci.16-17-05536.1996

Mueller D, Porter JT, Quirk GJ. 2008. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. *J Neurosci* **28**:369–375. doi:10.1523/JNEUROSCI.3248-07.2008

Nilsson L, Sara VR, Nordberg A. 1988. Insulin-like growth factor 1 stimulates the release of acetylcholine from rat cortical slices. *Neurosci Lett* **88**:221–226. doi:10.1016/0304-3940(88)90130-9

Noriega-prieto J et al. IGF-I governs cortical inhibitory synaptic plasticity by astrocyte activation. BioRxiv, 2020 https://doi:10.1101/2020.02.11.942532.
IGF-1 facilitates fear extinction memory

Nuñez A, Carro E, Torres-Aleman I. 2003. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. *J Neurophysiol* **89**:3008–3017. doi:10.1152/jn.00089.2003

Orsini CA, Maren S. 2012. Neural and cellular mechanisms of fear and extinction memory formation. *Neurosci Biobehav Rev* **36**:1773–1802. doi:10.1016/j.neubiorev.2011.12.014

Pape HC, Pare D. 2010. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. *Physiol Rev* **90**:419–463. doi:10.1152/physrev.00037.2009

Pavlov I. 1927. Conditioned Reflexes. *London Oxford Univ Press*.

Paxinos G, Watson C. 2007. The rat brain in stereotaxic coordinates.

Quesada, A., Romeo, H. and Micevych P. 2007. Distribution and localization Patterns of Estrogen Receptor-β and Insulin-Like Growth Factor-1 Receptors in Neurons and Glial Cells of the Female Rat Substantia Nigra. *J Comp Neurol* **503**:198–208. doi:10.1038/jid.2014.371

Quirk GJ, Beer JS. 2006. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. *Curr Opin Neurobiol* **16**:723–727. doi:10.1016/j.conb.2006.07.004

Quirk GJ, Mueller D. 2008. Neural mechanisms of extinction learning and retrieval. *Neuropsychopharmacology* **33**:56–72. doi:10.1038/sj.npp.1301555

Quirk GJ, Russo GK, Barron JL, Lebron K. 2000. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. *J Neurosci* **20**:6225–6231. doi:10.1523/jneurosci.20-16-06225.2000

Ramsey MM, Adams MM, Ariwodola OJ, Sonntag WE, Weiner JL. 2005. Functional
IGF-1 facilitates fear extinction memory

characterization of Des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. *J Neurophysiol* **94**:247–254. doi:10.1152/jn.00768.2004

Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P, Labandeira-Garcia JL. 2016. Crosstalk between insulin-like growth factor-I and angiotensin-II in dopaminergic neurons and glial cells: Role in neuroinflammation and aging. *Oncotarget* **7**:30049–30067. doi:10.18632/oncotarget.9174

Santini E, Ge H, Ren K, Peña De Ortiz S, Quirk GJ. 2004. Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. *J Neurosci* **24**:5704–5710. doi:10.1523/JNEUROSCI.0786-04.2004

Santini E, Porter JT. 2010. M-type potassium channels modulate the intrinsic excitability of infralimbic neurons and regulate fear expression and extinction. *J Neurosci* **30**:12379–12386. doi:10.1523/JNEUROSCI.1295-10.2010

Santini E, Quirk GJ, Porter JT. 2008. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. *J Neurosci* **28**:4028–4036. doi:10.1523/JNEUROSCI.2623-07.2008

Savchenko A, Kraft TW, Molokanova E, Kramer RH. 2001. Growth factors regulate phototransduction in retinal rods by modulating cyclic nucleotide-gated channels through dephosphorylation of a specific tyrosine residue. *Proc Natl Acad Sci U S A* **98**:5880–5885. doi:10.1073/pnas.101524998

Sepulveda-Orengo MT, Lopez A V., Soler-Cedeño O, Porter JT. 2013. Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons. *J Neurosci* **33**:7184–7193. doi:10.1523/JNEUROSCI.5198-12.2013

Seto D, Zheng WH, McNicoll A, Collier B, Quirion R, Kar S. 2002. Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal
IGF-1 facilitates fear extinction memory

formation: Possible involvement of GABA in mediating the effects. Neuroscience 2003;115:603–612. doi:10.1016/S0306-4522(02)00450-5

Shan H, Messi ML, Zheng Z, Wang ZM, Delbono O. 2003. Preservation of motor neuron Ca2+ channel sensitivity to insulin-like growth-1 in brain motor cortex from senescent rat. J Physiol 2003;553:49–63. doi:10.1113/jphysiol.2003.047746

Shoji H, Takao K, Hattori S, Miyakawa T. 2014. Contextual and cued fear conditioning test using a video analyzing system in mice. J Vis Exp 2014;1–13. doi:10.3791/50871

Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. 2011. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 2011;36:529–538. doi:10.1038/npp.2010.184

Sotres-Bayon F, Bush DEA, LeDoux JE. 2007. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 2007;32:1929–1940. doi:10.1038/sj.npp.1301316

Stern SA, Chen DY, Alberini CM. 2014. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. Learn Mem 2014;21:556–563. doi:10.1101/lm.029348.112

Storm JF. 1990. Understanding the Brain Through the Hippocampus the Hippocampal Region as a Model for Studying Brain Structure and Function. Prog Brain Res 1990;83:161–187. doi:10.1016/S0079-6123(08)61248-0

Trejo JL, Llorens-Martín M V., Torres-Alemán I. 2008. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 2008;37:402–411. doi:10.1016/j.mcn.2007.10.016

32
IGF-1 facilitates fear extinction memory

Xing C, Yin Y, He X, Xie Z. 2006. Effects of insulin-like growth factor 1 on voltage-gated ion channels in cultured rat hippocampal neurons. *Brain Res* **1072**:30–35.
doi:10.1016/j.brainres.2005.10.091
Figure 1

A

ACSF IGF-1 NVP NVP+IGF-1

mAHP

200 ms
0.4 nA

B

mAHP (mV)

ACSF
IGF-1
NVP AEW
NVP+IGF-1

**
ns

C

ACSF IGF-1 NVP NVP+IGF-1

sAHP

800 ms
0.4 nA

D

sAHP (mV)

ACSF
IGF-1
NVP AEW
NVP+IGF-1

**
ns

E

ACSF IGF-1

25 mV
200 ms
100 pA

F

Current injection (pA)

Frequency (Hz)

ACSF IGF-1

**

**
*
Figure 5

A. mEPSC

B. mEPSC frequency (Hz)

C. Cumulative probability (%) vs. Inter event interval (s)

D. mEPSC amplitude (pA)

E. Cumulative probability (%) vs. Amplitude (pA)

Ext-Saline
Ext-IGF-1
Ext-NVP+IGF-1

* ns

mEPSC amplitude (pA)
0 4 8 12

mEPSC frequency (Hz)
0 1 2 3 4

Cumulative probability (%)
0 20 40 60 80 100

Inter event interval (s)
0 3 6 9 12 15

Ext-Saline
Ext-IGF-1
Ext-NVP+IGF1

0 10 pA 500 ms
Figure_Supplement_3

A

Group COND

Day 1 Habituation
Context A
No stimulation

Day 2 Conditioning
Context B
CS
30s
US
0.5s

Day 3 Extinction
HOME CAGE
CS
30s

Day 4 Test

Group EXT

Day 1 Habituation
Context A
No stimulation

Day 2 Conditioning
Context B
CS
30s
US
0.5s

Day 3 Extinction

Day 4 Test

B

% Freezing

Day 1
Day 2
Day 3
Day 4

0 20 40 60 80 100

COND
EXT

COND
EXT

Habituation
Conditioning
Extinction
Test

0**

CC-BY 4.0 International license made available under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is The copyright holder for this preprint this version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.042788 doi: bioRxiv preprint
