The high affinity receptor for immunoglobulin E (IgE) is a tetrameric structure (αβγ2) consisting of non-covalently associated subunits: one IgE-binding α chain, one 4-fold membrane spanning β chain, and two disulfide-linked γ chains. Here, we have engineered α cDNA constructs (αtrunc) encoding exclusively the leader peptide and the extracellular domain of the α subunit. Transfection of human αtrunc into COS-7 cells resulted in the secretion of soluble IgE-binding polypeptides. By contrast, the polypeptides generated from rat and mouse αtrunc transfections were sequestered in the endoplasmic reticulum and degraded even though they appeared to fold properly as judged by their capacity to bind IgE. Stable transfectants with human αtrunc were obtained from a dihydrofolate reductase-deficient Chinese hamster ovary cell line. Several clones secreted substantial amounts (0.1 μg/ml/10^6 cells) of IgE-binding polypeptides. The dissociation rate of bound IgE from this soluble truncated α (k_−1 = 4.9 × 10^-8 s^-1 at 25 °C) was characteristic of receptors on intact cells. After treatment with tunicamycin, the transfectants secreted unglycosylated 18-kDa polypeptides which could also bind IgE. These unglycosylated products had a tendency to form dimers and higher oligomers which were resistant to treatment by sodium dodecyl sulfate and reducing agents. These data demonstrate unequivocally that the extracellular domain of the α subunit is sufficient to mediate high affinity binding of IgE. Furthermore, posttranslational addition of carbohydrates is not required for proper folding and function of the receptor binding site. The truncated human α should be a suitable reagent for crystallographic analysis and for detailed analysis of the receptor binding site.

The receptor for IgE (FceRI) on mast cells and basophils

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
† Present address: Institut Pasteur, Immunologie Moleculaire, 28 rue du Dr. Roux, 75724 Paris, Cedex 15, France.
‡ Present address: Division of Molecular Immunology, Center for Neurobiology and Molecular Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 290, Japan.

EXPERIMENTAL PROCEDURES

Site-directed Mutagenesis and Subcloning—The human αtrunc construct was engineered by restricting the full length cDNA with EcoRI and Sdul (7). The resulting 672-bp fragment was purified and ligated with the complementary oligonucleotides 5'-CTCTACAT-TACTGTAAATAAAGCTTAAG-3' and 5'-GATCCTTAAGCTTTATTACAGTAATGTTGGGC-3'. The TAA stop codon is underlined. These oligonucleotides also provided a BamHI site for convenient subcloning into the pGEM-3Z vector (Promega Biotech, Madison, WI). The mutation and the integrity of the remaining sequence were assessed by completely sequencing the new construct. Sequencing was performed as before (10). The EcoRI BamHI fragment of the human αtrunc construct was excised from pGEM-3Z, filled in with Klenow enzyme (New England Biolabs, Beverly, MA) and cloned into the Smal site of the SV40 late promoter-driven pSVL vector (Pharmacia, Piscataway, NJ). The EcoRI-PstI fragment of the αtrunc construct was excised from pGEM-3Z and was subcloned into the corresponding sites of the polylinker of the SV40 early promoter-driven pKc3 vector (17).

The truncated rat and mouse α mutants were constructed using the polymerase chain reaction, as described (18). The rat α full length cDNA in pGEM-3Z (6) and mouse α in pBluescript SK (9) (Strata-
gene, La Jolla, CA) were used as templates. Mutant complementary oligonucleotides were 5'-GTAAGAATTGACTAATGTATG-3', 5'-ACTCAATTGCTAATCTTTCAT-3' for rat α and 5'-GTAAGAATTGACTAATGTATG-3', 5'-ACTCAATTGCTAATCTTTCAT-3' for mouse α. Amplified products were then reanimated into EcoRI-HindIII and cloned into the respective pGEM-3Z sites. Mouse α-amplified products were cloned into EcoRI-XhoI and cloned into the XhoI-HindIII sites of pGEM-4Z. The EcoRI-HindIII fragment of the rat α construct and the 863-bp PstI fragment of the mouse α construct were excised from their corresponding pGEM-vectors, filled in with Klenow or T4 polymerase (New England Biolabs) and cloned into the Smal site of pSVL.

**Cell Lines—** COS cells (American Type Culture Collection (ATCC), Rockville, MD; CRL 1651) were maintained in Dulbecco's modified Eagle's medium supplemented with 16% fetal bovine serum, 2 mM glutamine and 100 units/ml penicillin-streptomycin (Biofluids, Rockville, MD).

The Chinese hamster ovary mutant cell line CHO (ATCC CRL 9083) was maintained in Iscove's modified Eagle's medium containing 2 mM glutamine, 100 units/ml penicillin-streptomycin, 10% fetal bovine serum, and supplemented with hypoxanthine (10 μM), thymidine (1.6 x 10^{-5} M) supplement, (GIBCO). For the selection, hypoxanthine, thymidine supplement was omitted.

**Transfection—** Before transfection, COS-7 cells were washed twice in ice-cold phosphate-buffered saline and resuspended at 1 x 10^6 cells/ml in phosphate-buffered sucrose (272 mM sucrose, 7 mM sodium phosphate, 1 mM MgCl2, pH 7.4). 60 μg of purified DNA of truncated α-containing pSVL were incubated with 8 x 10^5 COS-7 cells in Gene Pulser cuvettes and transfected at 380 V, 25 μF. 24 h after transfection, cells were placed in selective medium without hypoxanthine, thymidine supplement. Reistant colonies were subjected to stepwise increases of methotrexate. Individual resistant colonies were subjected to stepwise increases of methotrexate. Individual clones were obtained by diluting the cell population at 0.5 cells/well in selective medium.

**Detection of Secreted α—** A cellular radioimmunoassay was used to measure the capacity of truncated α products to inhibit the binding of iodinated mouse IgE to rat basophilic leukemia cells (RBL-2H3). Supernatants from transfected cells, each in duplicate samples, were incubated with 100 ng/ml of mouse IgE for 16-24 h at 4 °C. To 1 ml of the samples, 100 μl of RBL cells at a concentration of 0.5-1 x 10^6 cells/ml were added and incubated at room temperature for 1-3 h. RBL cells were centrifuged at 200 x g for 6 min and washed once in medium. Cell pellets, supernatants, and washes were counted in a gamma counter.

**Biosynthetic Labeling and Pulse-chase Experiments—** Stable transfected (CHO) cells were grown to confluency (-4-5 x 10^6 cells) in 162-cm^2 flasks. Transient transfected (6 x 10^6 CHO cells) were kept in 2.4 x 10^6 cells after 40 h of harvest. The cells were washed twice in cysteine-free Dulbecco's modified Eagle's medium containing 2 mM glutamine, 100 units/ml penicillin-streptomycin, 3% dialyzed fetal bovine serum (GIBCO) and preincubated in cysteine-free medium. After 1 h the medium was replaced and the cells were kept for 6-18 h before biosynthetic labeling. The cysteine-free medium contained 50-150 μCi/ml of L-[35S]-cysteine (Amersham Corp.). In selected experiments 83.3 μCi/ml of [3-3H]glucosamine-HCl (ICN Biomedicals) was also added to the incubation mixture.

For pulse-chase experiments, transiently transfected COS-7 cells were preincubated in 8 mM of cysteine- and methionine-free medium before being pulse-labeled for 30 min with 3.75 μCi of a l-[35S]-methionine-l-[35S]cysteine mixture (Amersham). Following the 30 min pulse, the cells were chased for complete medium supplemented with 1.5 mM l-cysteine and l-methionine. After each time point the cells were kept chilled on ice then processed together at the end of the experiment. The supernatants were collected, the cells treated with trypsin, washed once in medium, and stored at -20 °C. Supernatants and cell pellets were assayed for 125I-mouse IgE binding.

**Immunopurification Procedures—** Cell culture supernatants were incubated with 1 μl/mg of mouse anti-dinitrophenyl (DNP)-IgE (20) for 12-16 h at 4 °C, except in the experiment with tunicamycin in which the incubation was started during the biosynthetic labeling to avoid possible degradation of unbound unlabeled truncated α. The truncated α-IgE complexes were bound to a 5-fold excess of protein A-Sepharose beads (binding capacity, 25 μg/ml) as described (21) and then thoroughly washed with PBS. After elution with 10 mM DNP-c amino-caproate (Sigma) in PBS, the eluate was immunoprecipitated as before (21) with rabbit anti-mouse IgE followed by Pansorbin (Calbiochem) or a protein G-Sepharose (Pharmacia LKB Biotechnology Inc.). Centrifuged pellets were washed twice in PBS and resuspended with sample buffer by boiling for 5 min as described previously (21).

Intracellular truncated α was recovered by incubation of cell lysates with 20 μg/ml mouse IgG anti-DNP for 12-16 h at 4 °C. The purification was performed as above except that the trinitrophenyl-lysyl-Sepharose beads were washed with PBS containing 0.1% Triton X-100 and protease inhibitors.

**Deglycosylation Studies—** A stock solution of 0.5 mg/ml tunicamycin (Fluka) (22) was prepared in phosphate-buffered saline/ethanol (1:1). Stable transfected cells were preincubated in 0.4 μg/ml tunicamycin for 6-18 h before biosynthetic labeling.

**Sodium Dodecyl Sulfate Assay—** The full length α-IgE complexes and truncated human α-IgE complexes were prepared as follows: after the binding of [125I]-mouse IgE to RBL-2H3 cells, the cells were washed extensively and full length rat α-IgE complexes were isolated by sublimation in the same lysis buffer as above; truncated human α-IgE complexes were generated by incubating the supernatant from transfected CHO 2.5 cells (see “Results”) with 100 ng/ml of [125I]-mouse IgE for 16 h at 4 °C and the formation of complexes was assessed by using the cellular radioimmunoassay (see above). The ammonium sulfate precipitation assay was performed as described (24) with minor modifications. Briefly, about 0.1-0.5 pmol of [125I]-mouse IgE or [125I]-mouse α complexes in 200-μl medium and 100 μl of normal rabbit serum (as a carrier) were added sequentially to 1 ml of BBS buffer containing (NH4)2SO4, at the desired final concentration. The mixture was mixed on a vortex shaker and incubated for 1 h at 4 °C. After centrifugation at 16,000 x g (10 min at 4 °C) the supernatant was removed. Precipitated pellets and supernatants were counted separately in a gamma counter.

**Determination of the Dissociation Rate Constant—** 2.5-5 x 10^6 CHO cells (2.5 or 2.5-33 transfected) were biosynthetically labeled with [125I]-cysteine and the culture medium was exchanged with IFN-α-DNP (1 μg/ml) at a specific activity of about 6000 cpm/μg. After the labeling period, the IgE-truncated α complexes were bound to 2 ml of trinitrophenyl-lysyl-Sepharose beads. The beads were washed thoroughly and aliquoted into 12 microcentrifuge tubes so that triplicate samples could be assayed at 5 time points. To 0.5 ml of BBS buffer containing 500 μg/ml of human IgE was added to prevent rebinding of dissociated IgE-binding polypeptide. The samples were kept at 4 or 25 °C for 0, 6, 12, and 24 h. After each time...
point the beads were washed four times with 1 ml of BBS. Specifically bound material was eluted with 10 mM DNP-e-amino caproate, immunoprecipitated, and applied to a 12.5% polyacrylamide gel under nonreducing conditions. The gel was dried, exposed to autoradiography, cut into 2-mm slices, and counted for 125I. The gel slices were then further processed for determination of 35S counts as described before (25). The 35S counts corresponding to the peak of truncated human α were normalized to the 125I-IgE counts in each lane. Dissociation rate constants were then determined as described (26).

RESULTS

Truncation of Human, Rat, and Mouse FceRIα cDNAs—The cDNA sequences of human, rat, and mouse FceRIα were mutated to generate cDNA constructs encoding exclusively the leader peptide and extracellular domain of α (αtrunc) (Fig. 1). The stop codon TAA was introduced by site-directed mutagenesis to replace the proline 173-CCG codon of human α. Similarly, the TAC codons of tyrosine 173 of both rat and mouse α were replaced by a TAG stop codon. The resulting constructs (human, rat, and mouse αtrunc) encode peptides of 172 amino acid residues after cleavage of the leader peptide. Sequencing of these constructs revealed an additional mutation in mouse αtrunc. This is commonly observed in constructs generated by polymerase chain reaction (27). However, the mutation encoded a valine residue, as in the original cDNA clone.

Analysis of the Truncated α Chains by Transient Expression—We then examined whether the transfected constructs could lead to a secreted form of the α chain which could bind IgE. The constructs were subcloned into the eucaryotic expression vector pSVL under the control of the SV40 late promoter, and the resulting plasmids were transfected into COS-7 cells. Two days after transfection, the cell supernatants were assayed for the presence of soluble IgE-binding α products. Mouse IgE (unlike human IgE) binds to both human and rodent FcεRI. Therefore, IgE-binding α chains from the three species should inhibit the binding of mouse IgE to rat basophilic leukemia (RBL) cells. Table 1 shows that supernatants of cells transfected with human αtrunc completely inhibited IgE-binding to RBL cells. As expected, preincubation of the supernatants with human IgE reversed the inhibitory effect. Surprisingly, the supernatants of cells transfected with rat and mouse αtrunc did not inhibit IgE-binding to RBL cells.

To characterize these protein products, transfected COS-7 cells were biosynthetically labeled with L-[35S]cysteine, and IgE-binding peptides were recovered from cell supernatants

![Fig. 1. Schematic representation of the structure of the α constructs.](image)

Table 1

| Transfected construct | Supernatant* | Human IgE† | % inhibition of IgE-binding to RBL cells |
|-----------------------|-------------|-----------|----------------------------------------|
| Human αtrunc          | +           | −         | 99.2 ± 0.7                              |
| Mouse αtrunc          | +           | +         | 2.8 ± 0.6                               |
| Rat αtrunc            | +           | +         | 2.9 ± 1.3                               |
| Rat γ                 | +           | −         | −0                                     |

* The cell supernatant from a 48-h culture of transfected COS-7 cells was used to inhibit the binding of 125I-mouse IgE to RBL cells.
† Supernatant was preincubated with human IgE in 500 molar excess over 125I-mouse IgE.

![Fig. 2. Analysis of the truncated α products secreted by COS-7 cells transfected with the α constructs.](image)

![Fig. 3.](image)
detected in cellular extracts. They appeared as three different products migrating at 39, 37, 33 kDa for the human αtrunc (Fig. 3A, lane 1) and 33, 29, 26 kDa for the rat αtrunc (Fig. 3B, lane 1). A similar heterogeneity (36, 32, 28 kDa) was found for the mouse αtrunc (data not shown). The difference of molecular mass between the intracellular products of human and rodent αtrunc are likely due to differences of glycosylation. Digestion of these glycopeptides with Endo H produced a single product of approximately 18 kDa which corresponds to the core polypeptide of the truncated α chains (Fig. 3, A and B, lane 2). Endo H cleaves high mannose-type oligosaccharides (28) but not complex-type oligosaccharides which are added to proteins only after they have left the endoplasmic reticulum and entered the medial Golgi complex (29). Therefore the Endo H sensitivity of the three glycopeptides is indicative of their localization in the endoplasmic reticulum or in the cis-Golgi. After a 60-min chase, differences could be seen between the truncated human and rat α chains. Whereas the human product was further processed and appeared in the cell supernatant (Fig. 3A, lane 6) the truncated rat α remained in the endoplasmic reticulum or in the cis-Golgi without being secreted (Fig. 3B, lane 6). After the 6-h chase, most of the counts were now associated with the 45-kDa secreted human α product (Fig. 3A, lane 9). By contrast, the corresponding 45-kDa product could not be purified in substantial amount from the supernatant of rat αtransfected cells. However, it is possible that the faint band observed in this region (Fig. 3B, lane 9) corresponds to a small amount of secreted rat α product which would have bypassed the “filtering system” in a way similar to what we described previously for the full length rat α chain (9). The relative amount of truncated rat α remaining after a 6-h chase was determined by scanning densitometry of the autoradiograms (data not shown). While retained in the endoplasmic reticulum compartment, the truncated rat α chains are degraded with only a portion (21%) remaining after 6 h.

Production of a Stable Cell Line Secreting the Soluble Form of Human α—Because milligrams of proteins must be obtained before attempting to produce crystals suitable for analysis, we tried to generate stable transfecteds with high level production of soluble α chains. The CHO cell line deficient for the DHFR gene was cotransfected with human αtrunc and the DHFR gene inserted into pKC3 and pSV2 vectors, respectively. This system of transfection presents two advantages: the transfecteds can be stringently selected in hypoxanthine, thymidine-deficient medium and the copy number of the transfected genes can be amplified by using increasing doses of methotrexate over a 6–8-week period. When αtrunc transfecteds grew readily in 2 μM methotrexate-containing medium, the supernatants were screened for the presence of secreted human α using the same assay as described above. Cell lines from three independent transfections were found to secrete truncated α, and the production remained stable over a period of 4 months. The 2.5 line showed the highest level of secretion and was cloned at 0.5 cell/well. Fig. 4 shows the quantitative inhibition of IgE binding to RBL cells by the 2.5 line and four of its subclones (2.5-9, 2.5-

FIG. 4. Quantitative inhibition of IgE binding to RBL cells by truncated α chains of the 2.5 line and subclones. The data show the results of one representative experiment (n = 5). The mean values ± S.D. are from duplicate samples. ○, cl.2.5; ●, cl.2.5-9; □, cl.2.5-28; ■, cl.2.5-31; △, cl.2.5-33.
Determination of the Dissociation Rate of IgE from Soluble Truncated Human α—The interaction of the IgE molecule with membrane FcεRI is characterized by a single forward association rate constant ($k_a$) of about $10^6$ M$^{-1}$ s$^{-1}$ for intact cells and a unimolecular dissociation rate constant ($k_{-1}$) of about $10^{-5}$ s$^{-1}$. Since we ultimately want to use the human αchains for crystallographic studies, it was important to examine whether the genetically engineered and expressed molecule had similar binding properties as the receptor on intact cells.

The association and dissociation rates of IgE from the α chain in detergent extracts of cells have previously been determined using an ammonium sulfate assay (24). The latter is based on a change in solubility of IgE when it becomes bound to the full length α chain. We investigated if this assay would also be suitable to study the binding characteristics of human truncated α. Fig. 5 shows a comparison between the precipitability of IgE and bound-IgE to full length α or truncated α. We confirmed that the solubility of IgE-full length α complexes and of unbound IgE can be easily distinguished. The maximum difference is seen in solutions saturated from 41 to 43% in ammonium sulfate. By contrast, the solubility of unbound IgE and of IgE-truncated α complexes is very similar. This suggests that either the transmembrane and/or the intracytoplasmic portion are critical for the change in solubility. These findings made it impractical to study the kinetics of binding of IgE to truncated α in solution.

Since it is the slow rate of dissociation which accounts for the high affinity ($K_d = 10^{10}$) of the receptor (26), we looked at the rate of dissociation of $^{35}$S-labeled soluble α from anti-hapten $^{125}$I-IgE bound to haptenated beads. After different time periods, the dissociated α was removed by washing and IgE-truncated α complexes were eluted by addition of excess hapten. After separation of the complexes on SDS gels, truncated α-associated counts ($^{35}$S) were quantified for each time point and normalized to IgE-associated counts ($^{125}$I). The fractional occupancy was then plotted as a function of time, and $k_{-1}$ values were calculated at each temperature: $k_{-1} = 3.2 \times 10^{-7}$ s$^{-1}$ at 4°C and $k_{-1} = 4.9 \times 10^{-7}$ s$^{-1}$ at 25°C (Fig. 6). These dissociation kinetics (thick lines) are within the range of previously published data (dotted lines) for FcεRIC in solution (24) or on intact cells (26, 30-32).

Studies with Unglycosylated Soluble α Chains—To analyze the ability of unglycosylated soluble α chain to bind IgE, 2.5 CHO transfectants were labeled with L-$[^35]$S-cysteine in the presence of tunicamycin. The secreted products were then recovered from the supernatant via their capacity to bind IgE and analyzed on SDS gels under nonreducing conditions (Fig. 7). Untreated cells produced soluble α chains which appeared as a broad band around 50 kDa (Fig. 7, lane 1; see also Fig. 8, lane 2). This was slightly higher than in COS cells and could be due to a difference in glycosylation between these two cell lines. By contrast, tunicamycin-treated cells secreted two major peptides around 17 and 45 kDa, which could clearly bind IgE with sufficient affinity to allow purification with the double immunospecific protocol which involves extensive washing (see "Experimental Procedures"). No difference was observed by increasing the doses of tunicamycin from 1 to 4 μg/ml (Fig. 7, lanes 2, 3, and 4). The 17-kDa peptide most

![Graph](image-url)
purified IgE-binding polypeptides were further treated with tunicamycin or the presence of O-linked sugar.

The 45-kDa IgE-binding peptide may result from the incomplete action of tunicamycin or the presence of O-linked sugar. It could also be the result of dimerization or aggregation of the unglycosylated molecules.

To address this question, labeled product purified from the supernatant of untreated and tunicamycin-treated 2.5 CHO transfectants was digested with N-glycanase and analyzed on SDS gel in the presence of reducing agents. This procedure converted the 50-kDa band of soluble α chains from untreated cells to a single band around 18 kDa (Fig. 8, lane 3). The latter is slightly higher than the lower band obtained from tunicamycin-treated cells (lane 4). This may be due to a difference in migration induced by the presence of Triton X-100. This detergent was added to the sample during N-glycanase digestion and could have been incompletely removed by the subsequent ethanol precipitation. More importantly, the 45-kDa band obtained from tunicamycin-treated cells was insensitive to reducing agents and to N-glycanase digestion (Fig. 8, lane 5). Therefore, incomplete action of tunicamycin and dimerization through disulfide linkage were unlikely factors in the formation of this 45-kDa band. To rule out the presence of O-linked sugar in the 45-kDa band, 2.5-33 cells were treated with tunicamycin after biosynthetic incorporation of D-[3H]glucosamine and [35S]cysteine (Fig. 9). In untreated cells, the [H] and [35S] patterns were indistinguishable and the [H]/[35S] molar ratio of incorporation into the 50-kDa secreted α chains was 13.6. In tunicamycin-treated cells several L-[35S]cysteine-labeled peaks of approximately 19.5, 45, 75, and 145 kDa were observed. The [H]/[35S] molar ratios of incorporation for the 45-kDa and 19.5-kDa bands were 1.18...
and 1.87, respectively. These results demonstrate that the tunicamycin-induced inhibition of ["H"]glucosamine incorporation was very effective (91.3 and 86.3\%, respectively). Therefore the 45-kDa species could not have been derived from incomplete action of tunicamycin or from residual O-glycosylation. Taken together these data strongly suggest that unglycosylated soluble \( \alpha \) tends to form dimers and probably higher oligomers (see Fig. 9B) which cannot be disrupted by treatment with sodium dodecyl sulfate. In addition, resistance to reducing agents indicates that formation of these complexes is unlikely via disulfide linkages.

In one experiment similar to those presented in Fig. 6, the dissociation of IgE from the unglycosylated 18-kDa molecule was found to be insignificant after 60 h at 4 \( \degree \)C (data not shown). These data confirm that posttranslational addition of carbohydrates is not critical for the IgE-binding function of this polypeptide.

**DISCUSSION**

The major goal of this study was to produce a soluble form of Fc\( \varepsilon \)RI with binding characteristics of receptors on intact cells in order to facilitate future analysis of the receptor binding site. Our strategy was to engineer Fc\( \varepsilon \)RI cDNA constructs (\( \alpha_{\text{trunc}} \)) encoding exclusively the leader peptide and extracellular domain of the \( \alpha \) chain. A similar strategy was used successfully (33) to produce a soluble form of mouse Fc\( \gamma \)RII, a receptor homologous to the Fc\( \varepsilon \)RI \( \alpha \) chain. However, because Fc\( \gamma \)RII is thought to be a single-chain receptor, it was not known a priori whether similar results would be obtained with the \( \alpha \) chain of Fc\( \varepsilon \)RII. In fact, only the transfection with the human \( \alpha_{\text{trunc}} \) construct resulted in secretion of a soluble form of IgE-binding \( \alpha \) chain. The truncated \( \alpha \) chains derived from mouse and rat constructs, although capable of binding IgE, were surprisingly sequestered in the endoplasmic reticulum, as reported for other membrane proteins (34). The interaction between \( \alpha \) and \( \beta \) would then “mask” this specific sequence thereby allowing further processing, assembly of the \( \alpha \beta \gamma \) complex with \( \gamma \), and surface expression of the \( \alpha \beta \gamma \) complex with \( \gamma \). This “masking” would not necessarily require a direct interaction between \( \alpha \) and \( \beta \). The absence of the retention signal in human \( \alpha \) would permit the nonassembled \( \alpha \) to be exported out of the endoplasmic reticulum and would explain why human receptors can be expressed by transfection as \( \alpha_{\text{trunc}} \) complexes on the cell surface.

We are currently testing this hypothesis by using human/rodent chimeric receptors. Hopefully, a better understanding of this interesting difference between human and rodent receptors will help us in “rescuing” the rodent truncated \( \alpha \) chains, for example, by mutating the putative retention signal. This would help us in achieving our original goal of producing soluble \( \alpha \) chains from the three species, the rationale being that it might be easier, as for other proteins, to crystallize a soluble protein from one particular species.

The data on the truncated \( \alpha \) chains demonstrate that the extracellular domain of \( \alpha \) is sufficient to mediate high affinity binding of IgE, and that the conformation of the receptor binding site is not influenced by the other domains of \( \alpha \) and the associated \( \beta \) and \( \gamma \) subunits. Our estimates of the dissociation rate constant of human IgE from the truncated \( \alpha \) at two different temperatures are within the range of the published data for Fc\( \varepsilon \)RI on intact cells. Furthermore, the experiments with tunicamycin indicate that posttranslational N-glycosylation is not required for proper folding and formation of the receptor binding site. Previous data on Fc\( \varepsilon \)RI purified from tunicamycin-treated RBL cells support our conclusions (15). In these studies, however, the unglycosylated \( \alpha \) subunit had an apparent mass of 38 kDa on polyacrylamide gels, well above the 27 kDa of the \( \alpha \) core peptide. The residual heterogeneity after tunicamycin treatment of RBL cells, together with other studies (16), indicates that Fc\( \varepsilon \)RI from RBL cells also contains \( O \)-linked sugars which could play a significant role in the receptor binding function. Our studies are more clear in this regard. The truncated \( \alpha \) from tunicamycin-treated CHO cells appears as a 17–19.5-kDa band on polyacrylamide gels, a value close to the exact molecular mass of 19,931 Da. In addition, the data from the double labeling study with [\( ^{35} \text{S} \)]cysteine and [\( ^{3} \text{H} \)]glucosamine rule out that the 18-kDa band contains any residual sugar, while still preserving its ability to bind IgE. If the heterogeneity of glycosylation appears as an obstacle for crystallization of the polypeptide, deglycosylation might be a way to overcome the problem, although the tendency of the unglycosylated truncated \( \alpha \) to form aggregates may then present another problem. In any case, the truncated human \( \alpha \) should be a suitable reagent to further characterize the receptor binding site by crystallographic analysis or nuclear magnetic resonance. Since the stable transfectants are able to secrete 100 \( \mu \)g of truncated \( \alpha \) per liter of culture, producing the several milligrams required to grow crystals should be a feasible task.

**REFERENCES**

1. Kinet, J.-P. (1990) *Curr. Opinion Immunol.* 2, 499–505
2. Kinet, J.-P., Metzger, H. (1990) *Fc Receptors and the Action Of Antibodies.* (Metzger, H., ed) pp. 239–259. American Society for Microbiology, Wash. D. C.
3. Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordan, R. P., Paul, W. E. (1988) *Nature* 339, 64–67
4. Wodnar-Filipowicz, A., Heusser, C. H., and Moroni, C. (1989) *Nature* 339, 150–152
5. Burd, P. R., Rogers, H. W., Gordon, J. R., Martin, C. A., Jayaraman, S., Wilson, S. D., Dvorak, A. M., Galli, S. J., and Dorf, M. E. (1989) *J. Exp. Med.* 170, 243–257
6. Kinet, J.-P., Metzger, H., Hakimi, J., and Kochan, J. (1987) *Biochemistry* 26, 4605–4610
7. Kochan, J., Pettine, L. F., Hakimi, J., Kishi, K., and Kinet, J.-P. (1988) *Nucleic Acids Res.* 16, 3584–3584
8. Shimizu, A., Tepler, I., Bentley, P. N., Berenstein, E. H., Siraganian, R. P., and Leder, P. (1988) *Proc. Natl. Acad. Sci. U. S. A.* 85, 1907–1911
9. Ra, C., Jouvin, M.-H. E., and Kinet, J.-P. (1989) *J. Biol. Chem.* 264, 15323–15327
10. Kinet, J.-P., Blank, U., Ra, C., Metzger, H., and Kochan, J. (1988) *Proc. Natl. Acad. Sci. U. S. A.* 85, 6483–6487
11. Blank, U., Ra, C., Miller, L., White, K., Metzger, H., and Kinet, J.-P. (1989) *Nature* 337, 187–189
12. Küster, H., Thompson, H., and Kinet, J.-P. (1990) *J. Biol. Chem.* 265, 6448–6452
13. Mendoza, G., and Metzger, H. (1976) *Nature* 264, 548–550
14. Kanellopoulos, J. M., Liu, T.-Y., Poy, G., and Metzger, H. (1980) *J. Biol. Chem.* 255, 9650–9656
15. Hempstead, B. L., Parker, C. W., and Kuczycki, A., Jr. (1981) *J. Biol. Chem.* 256, 10717–10723
16. Goetz, A., Kanellopoulos, J., Rice, D., and Metzger, H. (1981) *Biochemistry* 20, 6341–6349
17. Van Doren, K., Hanahan, D., and Gluzman, Y. (1984) *J. Virol.* 50, 606–614
18. Higuchi, R., Krummel, B., and Saiki, R. (1988) *Nucleic Acids Res.* 16, 7351–7356
2646

Truncated α Chains of FcγRI

19. Subramani, S., Mulligan, R., and Berg, P. (1981) *Mol. Cell. Biol.* **1**, 854–864
20. Liu, F. T., Bohn, J. W., Perry, E. L., Yamamoto, H., Molinaro, C. A., Sherman, L. A., Klinman, N. R., and Katz, D. H. (1980) *J. Immunol.* **124**, 2728–2737
21. Alcaraz, G., Kinet, J.-P., Liu, T. Y., Metzger, H. (1987) *Biochemistry* **26**, 2569–2575
22. Struck, D. K., and Lennarz, W. J. (1980) The *Biochemistry of Glycoproteins and Proteoglycans* (Lennarz, W. J., ed) pp. 35–83, Plenum Publishing Corp., New York
23. Chen, C., Bonifacino, J. S., Yuan, L. C., and Klausner, R. D. (1988) *J. Cell Biol.* **107**, 2149–2161
24. Rossi, G., Newman, S. A., and Metzger, H. (1977) *J. Biol. Chem.* **252**, 704–711
25. Perez-Montfort, R., Kinet, J.-P., and Metzger, H. (1983) *Biochemistry* **22**, 5722–5728
26. Kulczycki, A., Jr., and Metzger, H. (1974) *J. Exp. Med.* **140**, 1676–1695
27. Ennis, P. D., Zemmour, J., Salter, R. D., and Parham, P. (1990) *Proc. Natl. Acad. Sci. U. S. A.* **87**, 2833–2837
28. Tarentino, A. L., and Maley, F. (1974) *J. Biol. Chem.* **249**, 811–817
29. Kornfeld, R., and Kornfeld, S. (1985) *Annu. Rev. Biochem.* **54**, 631–664
30. Ishizaka, T., Dvorak, A. M., Conrad, D. H., Niebyl, J. R., Marquetter, J. P., and Ishizaka, K. (1985) *J. Immunol.* **134**, 532–540
31. Wank, S. A., DeLisa, C., and Metzger, H. (1983) *Biochemistry* **22**, 954–969
32. Miller, L., Blank, U., Metzger, H., and Kinet, J.-P. (1989) *Science* **244**, 334–337
33. Qu, Z., Odin, J., Glass, J. D., and Unkeless, J. C. (1989) *J. Exp. Med.* **167**, 1195–1210
34. Bonifacino, J. S., Suzuki, C. K., and Klausner, R. D. (1990) *Science* **247**, 79–82