Efficacy of Some Antibiotics and Essential Oils Against Acinetobacter baumannii: An in Vitro Study

Mazen Safi, Laila Al-Hallab, Rasha Al-Abras, Marwa Khawajkiah, Heba Kherbik, Ayman AL-Mariri

Molecular Biology and Biotechnology Department, Atomic Energy Commission of Syria, Damascus, Syria

Abstract

Background and Objective: Acinetobacter baumannii is considered as a main opportunistic pathogen in hospitals and exhibit high resistance against most antibiotic groups. The aim of this study was to evaluate the efficacy of some antibiotics and essential oils against this bacterium, *in vitro*.

Materials and Methods: Two hundred and one clinical samples were collected from the Children's Hospital of Damascus. The polymerase chain reaction was conducted to identify the genus and type of bacteria. Finally, the minimum inhibitory concentrations of several antibiotics and essential oils, including Thymus syriacus, Organum synicum, Citrus aurantium, Cinnamonum verum, Syzygium aromaticum, Cupressus macrocarpa, Mynistica fragrans, Biota orientalis, and Zingiber officinale, were investigated on Luria-Bertani broth agar.

Results: Fifty-nine isolates of *A. baumannii* were identified and the results showed that the DNA fragments of 16S rRNA and the *bla* OXA-51-like gene were approximately equal to 280 bp and 350 bp, respectively. In addition, most effective antibiotics against 50% of bacteria in each isolate of *A. baumannii* were rifampicin, linezolid, and levofloxacin whereas most effective essential oils included Cupressus macrocarpa, Citrus aurantium, Mynistica fragrans, and Biota orientalis.

Keywords: Acinetobacter baumannii, Essential oils, Fluoroquinolones, Drug therapy, Drug resistance

Background

Acinetobacter baumannii (*A. baumannii*) is a bacterium that is classified as opportunistic pathogens in hospitals, especially in immunocompromised patients and children. Regarding their role as pathogens, some studies in the last two decades have shown their involvement in many human infections, especially in intensive care units (1,2). *A. baumannii* colonizes the skin and upper respiratory tracts. It is isolated from urine, sputum, blood, and feces. In addition, it is usually found in hospitals on different surfaces. In other words, they are isolated from different locations within the hospitals (e.g., air, water faucets, bedsides, gloves, and catheters). Historically, this type of infection is associated with war-wounded due to the direct contamination of wounds in the surrounding environment. For example, it was the most isolated Gram-negative bacterium from the wounds of those wounded in the Vietnam War, as well as the case with those wounded in the US war in Iraq. Recent reports indicate an increased incidence of septicemia in military hospital patients (2). *A. baumannii* exhibits high resistance against most antibiotic groups because it owns genes that encode inhibitory enzymes (3). For example, carbapenem-resistant *A. baumannii* strains show high resistance to most antibiotics, particularly beta-lactamase groups (4), because these strains own *bla* OXA-51-like and *bla* OXA-23-like genes which encode enzymes that inhibit the action of these antibiotics (5). Further, other studies demonstrated that most clinical isolates of *A. baumannii* were resistant to most cephalosporins (6), and this bacterium was also completely resistant to aztreonam, cefotaxime in addition to amoxicillin-clavulanic acid combination (7).

Essential oils and plant extracts are used as new sources of antibacterial and antimicrobial agents in many fields (8), which include food preservation (9), pharmaceuticals, alternative medicine, and natural treatments (10-11).

Furthermore, many plant extracts and oils are commonly used as medicinal plants in Syria for several purposes, especially for respiratory and gastrointestinal disorders. Considering the above-mentioned explanations, this study aimed to conduct a survey on the antibacterial activity of several antibiotics and essential oils, *in vitro*, against the isolates of *A. baumannii* obtained from children.

Materials and Methods

Identification of Bacteria

Two hundred and one samples were collected from Children’s Hospital of Damascus, Damascus, Syria from different sources (e.g., skin abscesses, bronchial secretions, urine, pharyngeal smears, and blood) during...
May-December 2016.

First, the samples were cultured on peptone water for 3 hours at 37 °C. Then, 10 µL of the primary culture were taken and added to 5 mL of Luria-Bertani (LB) broth culture medium for bacterial multiplication, followed by incubating the bacterial fluid at 37 °C for 18 hours. Subsequently, according to (12), a swab of the bacterial fluid was transplanted on the solid culture medium LB agar and selective media (Herellea Agar and Leeds Acinetobacter Agar). All used media were purchased from Himedia, India.

DNA Isolation and Amplification by Polymerase Chain Reaction (PCR)
The isolation of DNA was carried out using the method of cetyltrimethylammonium bromide (13). The final extracted DNA was re-suspended in the Tris-EDTA (TE) buffer and the concentration was read using 2 µL of each sample and stored at -20 °C until use. Next, specific primers were used to amplify the 16S rRNA with a pair of primers including the 17 nucleotide forward primer of F16S (5'-TTTAAGCGAGGAGGAGG-3') and the 18-nucleotide reverse primer of R16S (5'-ATTCTACCATCTCCCTCC-3') (14). The primers of 16S rRNA yielded PCR products equal to 280 bp. According to (15), the blaOXA-51-like gene was amplified with a pair of specific primers encompassing the 20-nucleotide forward primer of Fbla (5'-TAATGCTTTGATCGGCCTTG-3') and the 20-nucleotide reverse primer of Rbla: (5'-TGGATTGCACTTCATCTTGG-3'). The primers of the blaOXA-51-like gene gave a PCR product equal to 350 bp. The following reaction mixture contained 200 ng of bacterial DNA, 10 µmol of each forward and reverse primers, and the PCR mixture (3 mM of magnesium sulfate, 1X binding buffer, 0.2 mM dNTPs, and 1UTaq polymerase) taking into account the mixing of the reaction tube content well after the addition of each one of these substances. Finally, distilled water was supplemented until reaching a final volume of 25 µL. The essential steps of PCR are scheduled in Table 1.

PCR products were loaded on the 1.5% agarose gel and a 100 bp molecular weight DNA ladder was used for the validation of the length of the amplified products (Bio-Rad, USA; UV Tec GmbH, Germany).

Essential Oil Extraction
The samples of 100 g of wild thyme (Thymus syriacus), Origanum syriacum, Citrus aurantium, cinnamon (Cinnamomum verum), Syzygium aromaticum, Cupressus macrocarpa, Myristica fragrans, Biota orientalis, and ginger (Zingiber officinale) were collected during the flowering season from different regions in Syria or purchased from local markets (Table 2). Then, they were air-dried (hydrosteam distillation) away from sunlight, and finally, grinded by an electrical mill. Moreover, the essential oils were extracted using a Clevenger-type apparatus according to the European pharmaceutical instruction method. The Clevenger-type apparatus was connected to a condenser and a cold water recycling device. Next, distilled water was added by the 1/10 volume to volume, and each sample was distilled for 2 hours. The floating essential oil was filtered through anhydrous sodium sulphate to dry the yielded essential oils, which were approximately about 1.6% for T. syriacus, O. syriacum, C. Macrocarpa, and B. orientalis, and about 0.6% for C. aurantium, C. verum.

Scientific Name	Plant Family	Collection Site	Altitude (m)	Extracted Part
Thymus syriacus Boiss.	Lamiaceae	Alsoja mountain	840	Aerial parts
Citrus aurantium L.	Rutaceae	Latakia	300	Peels
Cinnamomum verum L.	Lauraceae	Market		Barks
Origanum syriacum L.	Lamiaceae	Alsoja mountain	840	Aerial parts
Cupressus macrocarpa L.	Cupressaceae	Market		Leaves
Syzygium aromaticum L.	Myrtaceae	Market		Leaves
Myristica fragrans Haultt.	Myristicaceae	Market		Leaves
Biota orientalis L.	Cupressaceae	Market		Seeds
Zingiber officinale Rasc.	Zingiberaceae	Market		Rhizomes

Note: DNA: Deoxyribonucleic acid.
S. aromaticum, M. fragrans, and Z. officinale. Eventually, the essential oils were collected in sealed dark glass bottles and kept in the fridge until use (16). For the antimicrobial activity test, several dilutions of the oils were done using dimethyl sulfoxide.

Antibiotic Susceptibility Determination by Disk Diffusion

The isolates were grown in LB medium at 37 °C for 22 hours. Final inoculum bacterial numbers were adjusted to 1.5*10^8 CFU/mL. A total of 0.1 mL of bacterial suspension was poured on each plate containing LB agar. Then, the lawn culture was prepared by sterile cotton swab and allowed to remain in contact for 1 minute. Additionally, the sterile antibiotic disks were placed on lawn cultures, followed by incubating Petri dishes at 37 °C for 24 hours and measuring the inhibition zone around each disk. All antibiotic disks were purchased from Himedia, India and contained imipenem (10 µg), meropenem (10 µg), cefprozil (30 µg), cefotaxime (30 µg), cefazidime (30 µg), ciprofloxacin (5 µg), ofloxacin (5 µg), levofloxacin (5 µg), doxycycline (30 µg), amoxicillin + clavulanic acid (30 µg), tobramycin (10 µg), oxacillin (1 µg), rifampicin (5 µg), linezolid (30 µg), and azithromycin (15 µg).

Essential Oil MIC Test

Based on the results (Table 4), all the applied essential oils were able, within the range of used concentrations, to inhibit 90% of the bacteria in each isolate. However, only some of these oils, especially those of C. macrocarpa, C. aurantium, M. fragrans, and B. orientalis were able to inhibit 90% of the bacteria in each isolate.

Discussion

Diseases caused by A. baumannii demonstrate a real threat to human health in developing countries, especially in children and in places of armed conflicts. The unacceptably high rates of infection or a significant increase in the
number of cases of any epidemic disease strongly led to greater efforts to prevent it, either by following health guidelines or conducting vaccination campaigns. The previous research has long focused on the importance of infectious disease occurrence data (19). Nonetheless, standards adopted in the diagnosis of infectious diseases in developing countries still largely depend on clinical symptoms and signs more than laboratory analysis or pathological anatomy (20-21). Thus, the determination of the incidence rate of any disease, in which clinical symptoms are not specific, represents a major challenge in the chase of effective control and infectious disease prevention in developing countries. Despite the significant development in recent years, developing countries are still suffering from many problems in terms of infrastructure, funding sources, and trained personnel that are capable of executing a rapid detection of such diseases (22-23).

The antimicrobial resistance of \textit{A. baumannii} against some antibiotics is related to the secretion of genes encoding enzymes which have the ability to inhibit the activity of several antibiotics (4). This property is mainly responsible for the emergence of resistance to several types of drugs such as tobramycin and fluoroquinolones (i.e., ciprofloxacin, levofloxacin, and ofloxacin). In this study, the resistance rates against these antibiotics were elevated and several ratios were recorded (i.e., 92%, 90%, 90%, and 80%, respectively) by using the minimum inhibitory concentration (MIC) method. Othman et al (24) revealed the presence of moderate resistance against tobramycin and ciprofloxacin in isolates from Tunisian hospitals (45% and 36%, respectively). On the other hand, the MIC of ciprofloxacin and levofloxacin in this study was significantly higher compared to the other studies (25-26).

Fonseca et al (5) showed that the emergence of carbapenem-resistant isolates is responsible for the emergence of carbapenem- (imipenem and meropenem)
In Vitro susceptibility of Acinetobacter baumannii and rifampicin-resistant bacteria. In our study, the percentage of rifampicin-resistant isolates was very low (4%) by using the MIC method with the MIC\textsubscript{90} of less than 8 µg/mL. On the contrary, the percentage of imipenem- and meropenem-resistant isolates was 92% against both antibiotics. Considering international publications, in this study, the MIC of rifampicin was higher compared with the study of Aranda et al (25). However, a relatively lower MIC of imipenem was reported in several previous studies as 2 µg/mL (27), 8 µg/mL (28), and 16 µg/mL (29) compared to this study.

Beta-lactamase enzymes produced by the \textit{A. baumannii} strains are responsible for the emergence of penicillin and cephalosporin resistance. In our study, it was clear that almost all studied isolates were resistant to these two groups. Accordingly, significant resistance was observed to all cephalosporins used in this work with a value of MIC\textsubscript{90} exceeding 128 µg/mL, which is consistent with the results of previous studies using cefuroxime (27, 29) while it contradicts the values revealed by other studies using cefazolin (27-28).

Drugs such as sulbactam, colistin, imipenem, and rifampicin have been used in the treatment of \textit{A. baumannii} (30-32). The combination of several drug groups such as colistin-rifampicin, colistin-imipenem, imipenem-rifampicin, and cefoperazone/sulbactam-imipenem showed better efficacy against these bacteria (33-35). Thus, it is clear that the combination of several types of antibiotic groups may be the appropriate alternative treatment for these bacteria. In this context, Tunyapanit et al (36) found that the proportion of isolates resistant to cefoperazone/sulbactam combination did not exceed 3% with the MIC\textsubscript{90} of less than 2 µg/mL, which is absolutely inconsistent with the results of our study where the proportion of isolates resistant to this combination was 86% with the MIC\textsubscript{90} of more than 64 µg/mL. Conversely, our finding concurs with that of this study which proved that cefoperazone/sulbactam-rifampicin combination is the best pharmacological combination in terms of both sensitivity and the MIC value. Finally, although linezolid is normally used against Gram-positive bacteria, it showed a good synergistic effect against \textit{A. baumannii} in combination with colistin (37-38). The present study evaluated the effect of linezolid against \textit{A. baumannii} and revealed good results in this regard.

Recently, plant extracts have been developed and used in several fields such as natural antioxidants or antimicrobial agents (39-40). The antibacterial mechanisms of natural compounds found in herbs and spices were discussed as well (41).

Most applied plants in this study are used in traditional medicine in all Syrian regions in order to treat many disorders, especially respiratory and gastrointestinal diseases. Therefore, it was possible to investigate the efficacy of these plants against \textit{A. baumannii}. All studied essential oils were able to inhibit 50% of the bacteria in each isolate. However, only some of these essential oils had the ability to inhibit 90% of bacteria, especially the essential oils of \textit{Cupressus macrocarpa}, \textit{Citrus aurantium}, \textit{Myristica fragrans}, and \textit{Biota orientalis} and the MIC\textsubscript{90} values for these essential oils were 0.32, 0.64, 0.64, and 0.64 µg/mL, respectively.

There are only a few studies concerning the role of essential oils and plant extracts in the treatment of antibiotic-resistant \textit{A. baumannii}. For instance, Miyasaki et al (42) showed that most of the de-tanninized parts of the \textit{Scutellaria baicalensis} have a good effect against these bacteria (MIC\textsubscript{90}= 128 µg/mL). Karaman et al (43) also demonstrated that the methanolic extract of \textit{Juniperus oxycedrus L.} has a good effect against \textit{A. Baumannii}.

Figure 2. Disk Diffusion Susceptibility of Different Antibiotics Against \textit{A. baumannii}. A-C = Amoxicillin + Clavulanic Acid
many other bacteria. In addition, Intorsoot et al (44) found that the extracts of Cinnamomum verum, Syzygium aromaticum, and Ocimum basilicum Linn. volatile oils had an effective minimum bactericidal concentration against A. baumannii (MBC_{90} = 0.5, 1, and 2 µg/mL, respectively). Furthermore, Kumar et al (45) reported the essential oils of Citrus maxima and Citrus aurantifolia showed potential antimicrobial properties against A. baumannii. However, Kumari Pushpa et al (45) concluded that the secondary metabolites of Myristica fragrans Hout can be an indispensable source of antimicrobial compounds against A. baumannii. In addition, Ehretia microphylla and Piper betle L leaf extracts showed a good inhibitory effect against A. baumannii (47-48). On the other hand, according to Duraipandiyan et al (49), the ethyl acetate extract of Toddalia asiatica represented high efficacy against these bacteria (MIC = 125 µg/mL). Finally, Saghie et al (50) found good efficacy of Origanum syriacum, Thymus syriacus, and Satureja extracts against A. baumannii (MIC = 2.6, 0.44, and 0.3 µg/mL, respectively).

Conclusion

In general, A. baumannii strains were resistant to most antibiotic groups and alternative therapies. Rifampicin, linezolid, and levofloxacin were the most effective antibiotics against these bacteria using the minimum inhibitory concentration method whereas cefoperazone/sulbactam-rifampicin was the best antibiotic combination. Eventually, all essential oils used in this study were able to inhibit 50% of these bacteria while only some of these oils showed the ability to inhibit 90% of these bacteria.

Conflict of Interest

The authors declare no conflict of interests.

Acknowledgments

The authors would like to thank the Director General of the Atomic Energy Commission of Syria and the Head of the Molecular Biology and Biotechnology Department for their support.

Ethical Statement

Ethical permission was obtained from the Ethical Committee of Damascus Children Hospital.

Authors’ Contribution

We confirm that the manuscript, as well as the order of authors listed in the manuscript, has been contributed, reviewed and approved by all named authors.

Funding/Support

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Informed Consent

The verbally informed consent was obtained from the children’s parents.

References

1. Tiwari V, Vashistt J, Kapil A, et al. Comparative Proteomics of inner membrane fraction from carbapenem-resistant Acinetobacter baumannii with a Reference Strain. PLoS One 2012; 7(6):e39451. PMID: 22761799. PMCID: PMC338706. DOI: 10.1371/journal.pone.0039451.

2. Kempf M, Rolain JM, Diatta G, et al. Carbapenem Resistance and Acinetobacter baumannii in Senegal: The Paradigm of a Common Phenomenon in Natural Reservoirs. PLoS One 2012; 7(6):e39495. PMCID: PMC3830006. PMID: 22745768. doi: 10.1371/journal.pone.0039495.

3. Eveillard M, Kempf M, Belmonte O, et al. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int J Infect Dis 2013; 17(10): e802-805.

4. Revathi G, Siu JK, Huang LY. first report of NDM-1-producing Acinetobacter baumannii in East Africa. Int J Infect Dis 2013; 17(12):e1255-1258.

5. Fonseca EL, Scheiddegger E, Freitas FS, et al. Carbapenem-resistant Acinetobacter baumannii from Brazil: role of carbA alleles expression and bla OXA-23 gene. BMC Microbiol 2013; 13: 245. PMCID: PMC4228306. PMID: 24195496. doi: 10.1186/1471-2180-13-245.

6. Rezaee MA, Rajand O, Naabae MR, et al. Prevalence of Ambler class A beta-lactamas and ampC expression in cephaplosin-resistant isolates of Acinetobacter baumannii. DiagnMicrobiol Infect Dis 2013; 76(3):330-334.

7. Al-Agamy MH, Khalaf NG, Tawfick MM, et al. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int J Infect Dis 2014; 22:49-54.

8. Mitscher LA, Drake S, Gallapudi SR, et al. A modern look at folkloric use of anti-infective agents. J Nat Prod 1987; 50:1025-1040.

9. Faid M, Bakhy K, Anchad M, et al. Physicochemical and microbiological characterizations and preservation with sorbic acid and cinnamon. J Food Prod 1995; 58:547-550.

10. Lis-Balchin M, Deans SG. Bioactivity of selected plant essential oils against Listeria monocytogenes. J ApplBacteriol 1997; 82:759-762.

11. Milhau G, Valentin A, Benoit F, et al. In vitro antimicrobial activity of eight essential oils. J Essent Oil Res 1997; 9:329-333.

12. Jawad A, Hawkey PM, Heritage J. et al. Description of Leids Acinetobacter Medium, a New Selective and Differental Medium for Isolation of Clinically Important Acinetobacter spp., and Comparison with Herellea Agar and Holton’s Agar. J ClinMicrobiol 1994;32 (10): 2353-2358.

13. Rajeh A, Al-Achkar K, Al-Mariri A, et al. Role of Polymerase Chain Reaction (PCR) in the detection of antibiotic-resistant Staphylococcus aureus. The Egyptian journal of Medical Human Genetics 2014; 15(3): 293-298.

14. Vanbroekhoven K, Ryngaert A, Wattiau P, et al. Acinetobacter diversity in environmental samples assessed by 16s RNA gene PCR-DGGE fingerprinting, FEMS MicrobiolEcol 2004; 50(1): 37-50.

15. Woodford NMJ, Ellington JM, Coelho JF, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 2006; 27:351–353.

16. Al-Mariri A. Safi M. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria. IJMS 2014; 39(1): 36-43.

17. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A6. 6th ed. Wayne: National Committee for Clinical Laboratory Standards; 2003.
activities between carbapenems and other antimicrobial agents

Comparative activities of colistin, rifampicin, imipenem

Tripodi MF, Durante-Mangoni E, Fortunato R, et al. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone and in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacterbaumannii. J Antimicrob Chemother 2009; 64(3):552-555.

Koeleman JG, Stoof J, Van Der Bijl MW, et al. Identification of multidrug- and carbapenem-resistant Acinetobacterbaumannii in Canada: results from CANWARD 2007. J AntimicrobChemother 2009; 64(3):522-555.

Sevillano E, Fernandez E, Bustamante Z, et al. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacterbaumannii isolates in Bolivia. J Med Microbiol 2012; 61(pt. 1):80-84.

Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacterbaumannii. J Bacteriol 2008; 190(24):8053-8064.

Jamulitrat S, Thongpiyapoom S, Suwalak N. An outbreak of imipenem-resistant Acinetobacterbaumannii at Songklanagarind Hospital: the risk factors and patient prognosis. J Med Assoc Thai 2007; 90:2181-2191.

Li J, Nation RL, Owen RJ, et al. Antibiotics of multidrug-resistant clinical Acinetobacterbaumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Cli Infect Dis 2007; 45:594-598.

Peleg AV, Seifert H, Paterson DL. Acinetobacterbaumannii: emergence of a successful pathogen. ClinMicrobiol Rev 2008; 21:538-582.

Timurkaynak F, Can F, Azap OK, et al. In vitro activities of non-traditional antimicrobials alone and in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacterbaumannii isolated from intensive care units. Int J Antimicrob Agents 2006; 27:224-228.

Tripodi MF, Durante-Mangoni E, Fortunato R, et al. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone and in combination against epidemic multidrug-resistant Acinetobacterbaumannii strains producing OXA-58 carbapenemases. Int J Antimicrob Agents 2007; 30:537-540.

Krizutin P, Apisarnthanarak A, Kaewdaeng S. Synergistic activities between carbapenems and other antimicrobial agents against Acinetobacterbaumannii including multidrug-resistant and extensively drug-resistant isolates. Int J Antimicrob Agents 2010; 36:243-246.

Tunyapanit W, Pruekprasert P, Laoprasopwattana K, et al. Antimicrobial susceptibility of Acinetobacterbaumannii isolated from hospital patients. Science Asia 2014; 40:28-34.

Armgold E, Asuncion T, Vinas M, et al. When Combined with Colistin, an Otherwise Ineffective Rifampicin–Linezolid Combination Becomes Active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacterbaumannii. Microorganisms 2020; 8(1): 86-93.

Bin L, Youning L, Xiuzhen D, et al. Colistin and anti-Gram-positive bacterial agents against Acinetobacterbaumannii. Rev Soc Bras Med Trop 2014; 47(4):451-456.

Basaga H, Tekkaya C, Aickel F. Antioxidative and free radical scavenging properties of rosemary extract. LebensmWissTechnol 1997; 30:134-142.

Hsieh PC, Mau JL, Huang SH. Antimicrobial effect of various combinations of plant extracts. Food Microbiol 2001; 18:35-43.

Brul B, Coote P. Preservative agents in foods mode of action and microbial resistance mechanisms. Int J Food Microbiol 1999; 50: 1-17.

Miyasaki y, Rabenstein JD, Rhea J, et al. Isolation and Characterization of Antimicrobial Compounds in Plant Extracts against Multidrug-Resistant Acinetobacterbaumannii. Plos One 2013; 8(4):1594-1601.

Karaman İ, ŞahinF, Gullüce M, et al. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. Journal of Ethnopharmacology 2003; 85(2-3): 231-235.

Intorasaot Chornchoem P, Sookkhee S, et al. Bacilciderial activity of hotan volatile oil extracts against multidrug-resistant Acinetobacterbaumannii. Journal of Intercultural Ethnopharmacology 2017; 6(2):218-222.

Anil Kumar C, Aruna Lakshmi K, Venkata Kumar C, et al. Comparative study of antimicrobial activity of essential oils of selected plants of Rutaceae and TLC bioautographic studies for detection of bioactive compounds. The Journal of essential oil research 2015; 27(1): 9-16.

Kumari Pushpa Rani TP, Sundar SK, Vijayalakshmi BA. GC MS analysis and antibacterial activity of Myristicacafgrans seed extracts against lower respiratory tract pathogen acinetobacterbaumannii. Asian Journal of Pharmaceutical and Clinical Research 2014; 7(3):126-129.

Valle DL jr, Andrade JL, Puzon JIM, et al. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pacific Journal of Tropical Biomedicine 2015; 5(7): 532-540.

Valle DL jr, Cabrera EC, Puzon JIM, et al. Antimicrobial activities of methanol, ethanol and supercritical CO2 extracts of Philippine Piper betle L on clinical isolates of Gram Positive and Gram Negative bacteria with transferable multiple drug resistance. PLoS ONE 2016 Jan 7; 11(1):e0146349. PMID: 26741962. PMCID: PMC4704777. DOI: 10.1371/journal. pone.0146349.

Duraipandiyan V, Ignacimuthu S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddaliaasiatica (L.) Lam. Journal of Ethnopharmacology 2003; 85(2-3): 231-235.