Direct Evidence for Solid-Like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures

Valeska P. Ting *, Anibal J. Ramirez-Cuesta §, Nuno Bimbo †, Jessica E. Sharpe †, Antonio Noguera-Diaz †, Volker Presser †‡, Svemir Rudic †, Timothy J. Mays †

† Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
§ Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States of America
‡ INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

Abstract: Here we report direct physical evidence that confinement of molecular hydrogen (H2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H2 at temperatures up to 67 K above the liquid-vapour critical temperature of bulk H2. This extreme densification is attributed to confinement of H2 molecules in the optimally-sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H2 increased with pressure and were directly evaluated using in-situ inelastic neutron scattering and confirmed by analysis of gas sorption isotherms. The demonstration of the existence of solid-like H2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.

Molecular hydrogen (H2) has excellent potential as a sustainable, low-carbon and non-polluting energy vector. However, above its bulk liquid-vapour critical temperature of 33 K, hydrogen exists as a gas, and will not form a higher-density bulk liquid or a solid, except under extreme conditions of high pressure (e.g., > 5 GPa).1,2 Subsequently, the efficient and economic storage of molecular H2 remains a major technological challenge.1,2 One option for increasing storage densities is via adsorption of H2 into microporous materials, that is, materials with pore diameters < 2 nm. In such materials, densification of H2 is promoted via the enhancement of the attractive van der Waals interactions between adsorbed H2 molecules and the solid substrate, arising from overlapping potentials from opposite pore walls. Evaluation of gas storage capacities of promising nanoporous materials generally involves measurement of the Gibbs excess uptake via isothermal gas sorption, with the subsequent conversion of the excess to absolute H2 uptake requiring an estimate of the adsorbed hydrogen density.3 As the density of H2 inside the micropores is difficult to probe experimentally, the maximum (limiting) density of H2 is generally approximated to be the same as liquid hydrogen (i.e., a uniform density of ~77 kg m⁻³ at the triple point), despite temperatures of adsorptive storage typically exceeding the bulk critical temperature.4 One of the few experimental techniques that can directly access information on the state of the adsorbed H2 inside a porous material and potentially validate the assumption of liquid-like adsorbed phase densities is neutron scattering. Neutrons are highly sensitive to ¹H due to its large incoherent neutron scattering cross section. While there have been numerous neutron diffraction studies investigating the binding of hydrogen to strong adsorption sites in metal-organic frameworks (MOFs),5,6,7 due to the magnitude of the incoherent scattering background, ¹H is almost always substituted by D. The differences in molecular weights may introduce isotope effects that will affect bond distances, vibrational energies and packing densities. To avoid the need for deuteration and to allow investigation of non-crystalline materials, in this study we used inelastic neutron scattering (INS), a technique that is not hampered by the ¹H incoherent

Keywords: nanoporous materials, hydrogen storage, carbon, neutron scattering
scattering and which measures vibrational motions and thus the binding strength of atoms and molecules. While INS measurements are typically performed at temperatures below 25 K to maximize resolution of the vibrational spectra, here we combined INS measurements with volumetric gas sorption experiments to probe the phase behaviour of supercritical hydrogen at 77 K (a temperature that is more practically relevant for H₂ storage applications) in a nanoporous carbon material and show direct physical evidence for an accumulation of solid-like H₂ in the pores. The INS measurements were only possible due to modifications to the TOSCA instrument at the ISIS neutron facility, which enabled measurement at high resolution (ΔE/E < 1.25 %, where E is the energy lost by the incoming neutron) over the widest range of energy transfer of any INS instrument in the world. The improved high resolution at low energies allowed quantitative analysis of the elastic region of a scattering spectrum (where little or no energy is transferred between the incident neutron and the target H₂ molecule) as a function of gas pressure, with simultaneous monitoring of the inelastic regions, to provide information on the state (gaseous, liquid or solid) of the H₂ in the pores. INS spectra were collected on H₂ dosed onto a standard reference material of TE7 activated carbon beads (from MAST Carbon International, UK) at eight gas pressures (0.016, 0.070, 0.160, 0.301, 0.630, 0.998, 2.070, and 3.500 MPa), with ~12 h data collection periods. This material was selected as it presents a reasonably chemically-homogeneous adsorbing surface, allowing unambiguous analysis of INS spectra, and has a modal nanopore diameter within the pore size range for maximizing interactions with H₂⁻¹⁶ (~0.7 nm as determined via N₂ sorption at 77 K – see Figure S1 in Supplementary Information). The chemical and structural properties of the TE7 carbon were thoroughly characterized and the excess H₂ sorption isotherm for this material was measured at 77 K to a maximum pressure of 17 MPa (see Figure S2 in Supplementary Information). For the INS experiment, a room-temperature equilibrium mixture of para-H₂ (J = 0, where J is the rotational quantum number) and ortho-H₂ (J = 1) was used for the in-situ gas dosing at 77 K (see Figure 1a). The use of so-called “normal hydrogen”, which includes the para and ortho nuclear spin isomers of molecular hydrogen resulted in distinct characteristic features in both the elastic and inelastic regions of the neutron scattering spectrum. Due to the paramagnetic nature of activated carbons, the statistical population of para-H₂: ortho-H₂ at 77 K rapidly equilibrated to a 1:1 mixture in the sample.¹⁶

RESULTS AND DISCUSSION

The INS energy loss spectra of the H₂ in the pores at 77 K (Figure 1b) showed two important and remarkable features at each H₂ loading pressure measured. First, the intense, sharp peak at ~0 meV due to elastic scattering by ortho-H₂ indicated the presence of dense liquid- or solid-like hydrogen. While both condensed phases will show a sharp elastic scattering peak due to far higher densities of ortho-H₂ molecules than in the gas phase, the elastic peak from the more mobile liquid phase will typically be broadened relative to the same peak from solid H₂, as a result of quasielastic interactions. The full-width at half-maximum (FWHM) of the elastic peak of ~0.3 meV at the lowest adsorption pressure measured here (0.016 MPa H₂) remained approximately equal to TOSCA’s instrumental peak resolution (indicated by the horizontal bar of width 0.3 meV in Figure 1c), taking into account the significant contributions from multiple-scattering and self-shielding from the >20 cm³ sample size, suggesting that the H₂ contributing to this peak had limited mobility. A full analysis of the FWHM of the elastic line is provided in the Supplementary Information (see Figures S3 and S4). The second prominent feature present in all of the spectra was a well-resolved peak at ~14.7 meV (Figure 1d), which is only present for the para-to-ortho transition in immobilized H₂.¹²,¹³,¹⁶ This peak (commonly referred to as the “rotor line”, as it corresponds to the free, unperturbed rotation of molecular H₂) denotes the presence of H₂ that is strongly pinned in all three dimensions and lacks translational freedom to recoil. It is not present in the INS spectra for either bulk liquid or gaseous para-H₂ (see Figure S5 in Supplementary Information), and indicates a population of solid-like H₂ which systematically increases with increasing H₂ loading pressure. A full analysis of the FWHM of the rotor line is provided in the Supplementary Information (see Figure S6 and S7). The 14.7 meV rotor line was also confirmed to be present in the INS spectrum of the same material dosed with H₂ at a temperature of 100 K (see Figure S8 in Supplementary Information).
show the dependence of the integrated intensity of the rotor line with pressure matches that of the elastic peak within the uncertainty margins resulting from the lower count statistics of the lower-intensity rotor line. The closely mirrored profiles of the integrated intensities of the two independent peaks suggested strongly that the densification of both the ortho- and para-H$_2$ were a result of the same phenomenon and were due to the presence of the solid-like hydrogen. The pressure dependence of the H$_2$ accumulation measured by INS was compared to amounts measured by volumetric gas sorption using a Sieverts-type apparatus at 77 K (Figure 3). The integrated intensity over the elastic region of the spectrum (chosen for comparison due to the superior count statistics) in arbitrary units was scaled to result in a least-squares best fit to the calculated weight percent of H$_2$ in the adsorbed phase from volumetric gas sorption measurements. The scaled INS integrated intensities were found to be strongly correlated to the calculated total amount of adsorbed H$_2$, expressed in weight percent relative to the dry, evacuated carbon sample (see Figure 3 and Tables S1 and S2 in Supplementary Information), with the concurrence of the onset of the plateau region in the INS intensities and the gas sorption data indicating that the accumulation of the solid hydrogen has an effective upper limit, which may signify the point at which the nanopores are completely filled with adsorbed H$_2$. The original and scaled data are in Tables S1 and S2 in Supplementary Information, along with details of the modelling.

Theoretical predictions of the density of the adsorbed H$_2$ (termed the “adsorbate”) in the pores, using a development of earlier analysis applied to the experimental high-pressure Gibbs excess isotherm (to 17 MPa) for H$_2$ adsorbed on the TE7 carbon beads at 77 K, was also consistent with the evidence from INS for the formation of solid-like H$_2$. The excess data was modelled using the Töth equation for adsorbate filling of the pore space, to yield an estimate of the density of the adsorbed H$_2$ phase (assumed constant) of 1012±2 kg m$^{-3}$ (see Figure S2 in Supplementary Information). This is significantly higher than the maximum density of liquid H$_2$, 77 kg m$^{-3}$ at the liquid-solid-vapour triple point (13.96 K and 0.00736 MPa) and is closer to the density of bulk solid H$_2$, which is a highly compressible solid with densities >87 kg m$^{-3}$. The powerful combination of INS measurements and gas sorption analysis points to a bulk densification phenomenon that, while consistent with modelling (see, for example, the prediction of a “solid-like phase with densities higher than bulk solid hydrogen” from Dundar et al.’s modelling of supercritical hydrogen sorption on MOFs) had not been previously observed experimentally. Past experimental observations consistent with localized regions of solid-like densities of adsorbed H$_2$ at elevated temperatures have generally been attributed to the strength of specific adsorption sites in MOFs and zeolites. For example, refinements of neutron diffraction data at 4 K indicate that some crystalline MOF materials support D$_2$-D$_2$ intermolecular separation distances that are shorter than the 0.36 nm found in solid H$_2$. In these studies, the local surface densification of H$_2$ was ascribed to the strong interactions between the H$_2$ and the unsaturated metal centres in the frameworks. Similarly, H$_2$ rotor lines previously reported in INS spectra of zeolite

Figure 2. (a) The high pressure cryogenic cell used in the INS experiments. (b) SEM image of the morphology of the TE7 nanoporous carbon beads. (c) The total inelastic signal (integrated intensity from 2 meV to 500 meV) (d) Integrated intensity under the elastic peak from -2 meV to +2 meV. (e) Integrated intensity under the 14.7 meV rotor line which indicates the amount of solid-like H$_2$ present. Standard errors from the fit are shown, with standard errors for (c) and (d) within the size of the data markers. The data points are joined by straight lines as guides to the eye.
samples at temperatures up to 70 K show a shift in energy, due to the influence of the strong binding of H₂ on specific adsorption sites. Short range order and liquid-like behaviour of D₂ has also been predicted to exist in areas between metal sites in zeolites and MOFs at 50 K, to explain broadening effects in neutron diffraction patterns. Carbon surfaces, however, are known to only have very weak interactions with H₂. The phenolic resin-derived TE₇ carbons, in particular, have been shown via temperature programmed desorption to have only small proportions of surface oxygen groups, meaning that they are likely to have limited surface functionality. This indicates that the pseudo-condensation of supercritical gas seen here at 77 K is instead due to confinement effects in optimally-sized nanoparticles.

Comparative, single pressure (1 bar) H₂ dosing INS measurements on onion-like carbon nanomaterials (OLC-1750) having negligible proportions of nanopores less than 10 Å in diameter show no such peak in the 14.7 meV region, supporting the hypothesis that the pore dimension is a critical factor. Similarly, while other activated carbon materials (TE₇-20 and TE₃ from MAST carbon) and AX-21 (Anderson Development Co) show small rotor peak contributions (see Supplementary Figure S9), the integrated intensity is not proportional to the total micropore volume, indicating that only a fraction of the micropores contribute to this effect and that a very narrow pore size distribution is required. This has been shown experimentally in the case of carbide-derived carbons, for which higher than liquid H₂ densities were calculated from 77 K sorption isotherms for ~0.6 nm diameter pores.

Molecular simulation and modelling of hydrogen in carbon nanomaterials seems to support the possibility of densification of adsorbed hydrogen to greater than liquid densities. For example, there have been estimates of adsorptive capacities from Grand Canonical Monte Carlo molecular simulations (with quantum effects estimated using the Feynman-Hibbs effective potential) and density functional theory (without the dispersion correction) that predicted elevated levels of densification for H₂ in 0.3 nm carbon slit pores and carbon nanotubes, equating to densities in the region of 80 kg m⁻³ at 0.1 MPa and 77 K, while theoretical modelling of supercritical adsorption isotherms has predicted a transition to a solid-like phase of H₂ in activated carbon at 40 K. Experimental room-temperature small-angle neutron studies of 0.9 nm pores in carbon have also estimated greater than liquid densities of H₂ at pressures of 20 MPa.

Confinement effects are known to induce shifts in the phase transition temperatures for sub-critical adsorbed phases and, thus, the pseudo-condensation of supercritical gas reported here could be a general phenomenon. It is, therefore, possible that the presence of the ~14.7 meV rotor line in INS studies of other highly nanoporous carbons at supercritical temperatures is likely to be similarly indicative of the presence of densified solid-like H₂ (Supplementary Information, Figure S9). This is, however, the first time that the observation of this phenomenon has been correlated to gas sorption measurements and shown to be consistent with accumulation of solid-like H₂ with pressure.

CONCLUSION

Experimental evidence for a solid-like H₂ in the pores of TE₇ carbon at 77 K clearly demonstrates the potential for further development of adsorptive hydrogen storage materials containing micropores of an optimum size. Due to its relatively low micropore volume (< 0.5 cm³ g⁻¹, see Supplementary Information) the 3 wt% H₂ uptake of the TE₇ material at 77 K and 17 MPa (which is ~80% of the estimated maximum uptake at this temperature) remains low compared with the current US Department of Energy targets for onboard H₂ storage systems for vehicles (7.5 wt% of useable H₂ based on the weight of the entire hydrogen storage system, including the tank, cooling and delivery systems). However, a material with a much higher, and not unreasonable, micropore volume of 1.5 cm³ g⁻¹, which is 80% filled with H₂ adsorbate of density 100 kg m⁻³, will display an impressive uptake of 12 wt%. This compares favourably with the high observed H₂ uptake of 10 wt% in MOF NU-100 at 5.6 MPa and 77 K. This work also counters the widely-held assumption of an upper limit of liquid-like adsorbed phase density, and, thus, will aid in advancing models for the evaluation of gas storage capacities in nanoporous materials, and could lead to the design of higher-capacity nanoporous adsorbents.

METHODS

The reference sample of TE₇ activated carbon beads (sourced from MAST Carbon International, UK) was produced from a carbonized phenolic resin-based material activated at high temperature (750 °C) in a steam atmosphere. The BET nitrogen specific surface area at 77 K was measured to be 960±50 m² g⁻¹ obtained from low pressure (up to 0.1 MPa) nitrogen sorption measurements at 77 K with a 60 min equilibration time. The micropore volume, evaluated from the Dubinin–Radushkevich method, is 0.43±0.03 cm³ g⁻¹. The skeletal density of the sample was measured using a He pycnometer (Micromeritics AccuPyc3300) and was established as being 1.90±0.03 g cm⁻³. The OLC-1750 carbon onions where synthesized by vacuum annealing of detonation nanodiamond powder (Ray Tech-
nologies Ltd., Israel). Placed in a graphite crucible, the nanodiamond powder was annealed in vacuum (10^{-4} to 10^{-5} mbar) for 3 h at 1750 °C in a water-cooled high temperature furnace with tungsten heaters (Thermal Technology, USA).^{29,30}

High-pressure (up to 20 MPa) hydrogen adsorption/desorption measurements were performed on a Hiden HTP-4 Sieverts-type volumetric gas sorption analyser with ultra-high purity (Air Products BIP-Plus, 99.99996%) hydrogen at 77 K using a liquid nitrogen bath for temperature control. Prior to hydrogen uptake measurements the ~150 mg samples were degassed at 623 K for 8 h under a vacuum of 0.1 mPa prior to each isothermal measurement in order to remove moisture and desorbed gases from the surface. All isotherms were fully reversible and repeat isotherms for different samples were reproducible to within 0.3% of measured amounts adsorbed.

The INS spectra were collected on the TOSCA inelastic neutron scattering beamline at the Rutherford Appleton laboratories in the UK, which has an energy window from -3 meV to +500 meV. The full-width at half-maximum instrumental resolution is 300 μeV over the range -3 meV to +3 meV (i.e., in the elastic region) and in the range 3 to 500 meV the energy resolution is ΔE / E < 1.25%. A ~10 g sample of carbon was degassed via heating ex-situ at 623 K for 8 h under high vacuum (0.1 mPa), then loaded in an Ar glovebox into a high pressure (7 MPa) stainless steel sample can. Temperature control was supplied by a standard cryofurnace ancillary. Normal hydrogen gas (Air Liquide, 99.99% purity) was dosed into the sample and thermally equilibrated at 77 K before the pressure was recorded using a baratron and a high-pressure transducer. The data were corrected for the presence of terminal H atoms in the carbon by subtraction of 12 h background scans of the degassed sample under dynamic vacuum at the measurement temperature (77 K). Note that the spectra for the degassed carbon sample did not show a peak at ~14.7 meV. Data were accumulated for 700 μA h, with up to three spectra being collected at each pressure over collection periods of 8-12 h (pressures = 0.016, 0.070, 0.160, 0.301, 0.630, 0.998, 2.070, and 3.500 MPa). The data processing and peak integration was performed using the Mantid software (available from http://www.mantidproject.org).

ASSOCIATED CONTENT

Supporting Information
Details of the materials characterization, experimental methods, raw data, analysis and modelling are available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
V.Ting@bath.ac.uk

ACKNOWLEDGMENTS

This work was supported via an EPSRC Development Fund grant and a University of Bath Prize Research Fellowship (VPT), the EPSRC DTC in Sustainable Chemical Technologies at Bath (JES), EP/K02109/1 for NB and the EPSRC SUPERGEN (UK-SHEC, EP/J006545/i) and the H$_2$FC, EP/E040071/1) (VPT, NB, AND, and TJM). We also thank Chris Goodway and Mark Kibble (STFC) for user support at ISIS, Jemma Rowlandson for PSD data on the OLC, Andrew Physick for attending later neutron experiments and the STFC for providing the ISIS beamtime (RB210041, RB1400602). The authors thank MAST Carbon International for the TE7 and TE3 carbon beads and Dr. Eugene Mamontov (Oak Ridge National Laboratory), Dr. Jakec Jagiello (Micromeritics Instrument Corporation) and Prof. Steve Tenison (MAST Carbon) for useful discussions. VP thanks Dr. Mesut Aslan (INM) for his help with the synthesis of the carbon onions and Prof. Eduard Arzt (INM) for his continuing support.

REFERENCES

1. Leachman, J. W.; Jacobsen, R. T.; Penoncello, S. G.; Lemmon, E. W., Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen. J. Phys. Chem. Ref. Data 2009, 38, 721-748.
2. Datchi, F.; Loubeyre, P.; Letoullec, R., Extended and Accurate Determination of the Melting Curves of Argon, Helium, Ice (H$_2$O) and Hydrogen (H$_2$). Phys. Rev. B 2000, 61, 6535-6546.
3. Deemyad, S.; Silvera, I. F., Melting Line of Hydrogen at High Pressures. Phys. Rev. Lett. 2008, 100, 155701.
4. Schlabach, L.; Zuttel, A., Hydrogen-Storage Materials for Mobile Applications. Nature 2001, 414, 353-358.
5. Van Den Berg, A. W. C.; Arean, C. O., Materials for Hydrogen Storage: Current Research Trends and Perspectives. Chem. Commun. 2008, 668-681.
6. Rouquerol, J.; Avnin, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pericone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K., Recommendations for the Characterization of Porous Solids. Pure Appl. Chem. 1994, 66, 1739-1758.
7. Broom, D. P., Hydrogen Storage Materials: the Characterisation of their Storage Properties. Springer Science & Business Media: 2011.
8. Zuttel, A.; Sudan, P.; Mauron, P.; Wenger, P., Model for the Hydrogen Adsorption on Carbon Nanostructures. Appl. Phys. A-Mater. 2004, 78, 941-946.
9. Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M., Characterization of H$_2$ Binding Sites in Prototypical Metal-Organic Frameworks by Inelastic Neutron Scattering. J. Am. Chem. Soc. 2005, 127, 14904-14910.
10. Brown, C. M.; Liu, Y.; Neumann, D. A., Neutron Powder Diffraction of Metal-Organic Frameworks for Hydrogen Storage. Pramana J. Phys. 2008, 71, 755-760.
11. Lee, H.; Choi, Y. N.; Choi, S. B.; Kim, J.; Kim, D.; Jung, D. H.; Park, Y. S.; Yoon, K. B., Liquid-Like Hydrogen Stored in Nanoporous Materials at 50 K Observed by in Situ Neutron Diffraction Experiments. J. Phys. Chem. C 2013, 117, 3177-3184.
12. Ramirez-Cuesta, A. J.; Jones, M. O.; David, W. I. F., Neutron Scattering and Hydrogen Storage. Mater. Today 2009, 12, 54-61.
13. Mitchell, P. C. H.; Parker, S. F.; Ramirez-Cuesta, A.; Tomkinson, J., Vibrational Spectroscopy With Neutrons : With Applications in Chemistry, Biology, Materials Science and Catalysis. World Scientific: Hackensack, NJ, 2005; P Xxvi, 642 P.
14. Gogotsi, Y.; Portet, C.; Osswald, S.; Simmons, J. M.; Yidirim, T.; Laudisi, G.; Fischer, J. E., Importance of Pore Size in High-Pressure Hydrogen Storage by Porous Carbons. Int. J. Hydrogen Energ. 2009, 34, 6314-6319.
15. Hruzewicz-Kołodziejczyk, A.; Ting, V. P.; Bimbo, N.; Mays, T. J., Improving Comparability of Hydrogen Storage Capacities of
Nanoporous Materials. Int. J. Hydrogen Energ. 2011, 37, 2728-2736.

16. Silvera, I. F., the Solid Molecular Hydrogens in the Condensed Phase - Fundamentals and Static Properties. Rev. Mod. Phys. 1980, 52, 393-452.

17. Young, J. A.; Koppel, J. U., Slow Neutron Scattering by Molecular Hydrogen + Deuterium. Phys Rev. A-Gen. Phys. 1964, 135, A603

18. Colognesi, D.; Celli, M.; Ramirez-Cuesta, A. J.; Zoppi, M., Lattice Vibrations of Para-Hydrogen Impurities in a Solid Deuterium Matrix: An Inelastic Neutron Scattering Study. Phys. Rev. B 2007, 76, 174304.

19. Bimbo, N.; Ting, V. P.; Hruzewicz-Kolodziejczyk, A.; Mays, T. J., Analysis of Hydrogen Storage in Nanoporous Materials for Low Carbon Energy Applications. Faraday Discuss. 2011, 151, 59-74.

20. Sharpe, J. E.; Bimbo, N.; Ting, V. P.; Burrows, A. D.; Jiang, D.; Mays, T. J., Supercritical Hydrogen Adsorption in Nanostructured Solids With Hydrogen Density Variation in Pores. Adsorption 2013, 19, 643-652.

21. Tóth, J., Gas-(Dampf-) Adsorption An Festen Oberflachen Inhomogener Aktivitat. 1. Acta Chim. Hung. 1962, 30, 415.

22. Dundar, E.; Zacharia, R.; Chahine, R.; Benard, P., Performance Comparison of Adsorption Isotherm Models for Supercritical Hydrogen Sorption on MOFs. Fluid Phase Equilib. 2014, 363, 74-85.

23. Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C., Increasing the Density of Adsorbed Hydrogen With Coordinationally Unsaturated Metal Centers in Metal–Organic Frameworks. Langmuir 2008, 24, 4772-4777.

24. Yildirim, T.; Hartman, M. R., Direct Observation of Hydrogen Adsorption Sites and Nanocage Formation in Metal-Organic Frameworks. Phys. Rev. Lett. 2005, 95.

25. Luo, J.; Xu, H.; Liu, Y.; Zhao, Y.; Daemen, L. L.; Brown, C.; Timofeeva, T. V.; Ma, S.; Zhou, H.-C., Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework: Sorption Properties and Neutron Diffraction Studies. J. Am. Chem. Soc. 2008, 130, 9626-9327.

26. Ramirez-Cuesta, A. J.; Mitchell, P. C. H. Hydrogen Adsorption in a Copper ZSM5 Zeolite: An Inelastic Neutron Scattering Study Catal. Today 2007, 120, 368-373

27. Pigamo, A.; Besson, M.; Blanc, B.; Gallezot, P.; Blackburn, A.; Kozynchenko, O.; Tennyson, S.; Crezee, E.; Kapteijn, F., Effect of Oxygen Functional Groups on Synthetic Carbons on Liquid Phase Oxidation of Cyclohexane. Carbon 2002, 40, 1267–1278

28. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Orfao J. J. M., Modification of the Surface Chemistry of Activated Carbons. Carbon 1999, 37,1379–1389

29. Zeiger, M.; Jäckel, N.; Aslan, M.; Weingarth, D.; Presser, V., Understanding Structure and Porosity of Nanodiamond-Derived Carbon Onions. Carbon 2015, 84, 584-598.

30. McDonough, J. K.; Frolov, A. I.; Presser, V.; Niu, J.; Miller, C. H.; Ubieto, T.; Fedorov, M. V.; Gogotsi, Y., Influence of the Structure of Carbon Onions on their Electrochemical Performance in Supercapacitor Electrodes. Carbon 2012, 50, 3298-3309.

31. Gogotsi, Y.; Dash, R. K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer, J. E., Tailoring of Nanoscale Porosity in Carbon-Derived Carbons for Hydrogen Storage. J. Am. Chem. Soc. 2005, 127, 16006-16007.

32. Yushin, G.; Dash, R.; Jagliello, J.; Fischer, J. E.; Gogotsi, Y., Carbide-Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption. Adv. Funct. Mater. 2006, 16, 2288-2293.

33. Jagliello, J.; Anson, A.; Martinez, M. T., DFT-Based Prediction of High-Pressure H2 Adsorption on Porous Carbons at Ambient Temperatures From Low-Pressure Adsorption Data Measured at 77 K. J. Phys. Chem B 2006, 110, 4531-4534.

34. Wang, Q. Y.; Johnson, K. J., Molecular Simulation of Hydrogen Adsorption in Single-Walled Carbon Nanotubes and Idealized Carbon Silt Pores. J. Chem. Phys. 1999, 110, 577-586.

35. Dundar, E.; Zacharia, R.; Chahine, R.; Bénard, P., Modified Potential Theory for Modeling Supercritical Gas Adsorption. Int. J. Hydrogen Energ. 2012, 37, 9137-9147.

36. Gallego, N. C.; He, L. L.; Saha, D.; Contescu, C. I.; Melnichenko, Y. B., Hydrogen Confinement in Carbon Nanopores: Extreme Densification at Ambient Temperature. J. Am. Chem. Soc. 2011, 133, 13794-13797.

37. Peterson, B. K.; Walton, J. P. R. B.; Gubbins, K. E., Fluid Behavior in Narrow Pores. J. Chem. Soc. Farad. T. 2 1986, 82, 1789-1800.

38. Brown, C. M.; Yildirim, T.; Neumann, D. A.; Heben, M. J.; Gennett, T.; Dillon, A. C.; Alleman, J. L.; Fischer, J. E., Quantum Rotation of Hydrogen in Single-Wall Carbon Nanotubes. Chem. Phys. Lett. 2000, 329, 311-316.

39. Ren, Y.; Price, D. L., Neutron Scattering Study of H2 Adsorption in Single-Walled Carbon Nanotubes. Appl. Phys. Lett. 2001, 79, 3684-3686.

40. US Department of Energy, Explanations of Freedomcar/DOE Hydrogen Storage Technical Targets, Available From http://www1.eere.energy.gov/hydrogenandfuelcells//pdfs/freedomcar_targets_explanations.pdf.

41. Farha, O. K.; Yazynin, A. O.; Eychazi, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T., De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat. Chem. 2010, 2, 944-948.
