Role of metabolite transporters in source–sink carbon allocation

Frank Ludewig* and Ulf-Ingo Flügge
Botanical Institute II, University of Cologne, Cologne, Germany

LIMITATIONS FOR PLANT YIELD AND GENERAL CONSIDERATIONS

Humans often exploit plant organs that serve plants for their persistence. Organs such as seeds, roots, tubers, or fruits contain considerable energy stored as oil, protein, sugar, or starch that the plant can use in transport or storage. When carbon reserves of storage organs are used up by the newly emerging seedling, photosynthesis begins and atmospheric CO₂ is assimilated. Given an otherwise optimal supply with water, nutrients, and CO₂, the harvest index, i.e., weight of the grain (or other harvestable organs) divided by the total plant weight, and/or sink capacities were created which were either impaired (e.g., Riesmeier et al., 1994) or improved in yield (e.g., Jonik et al., 2012), demonstrating the feasibility and putative impact of such approaches on yield increase.

In general, the yield of a given cultivar is limited by several factors, and yield can only be improved by unrestricting these limitations. The challenge therefore is to know the limiting factor(s) of the respective crop. This view, however, should be extended by referring to what is known about the cross-talk between source- and sink activities. When carbon reserves of storage organs are used up by the newly emerging seedling, photosynthesis begins and atmospheric CO₂ is assimilated. Given an otherwise optimal supply with water, nutrients, and other nutrients, only the rate of CO₂ fixation determines plant growth during the vegetative phase. During further development toward maturation, storage organs are produced. The total of all sink organs then additionally determines the photosynthetic rate, as decreasing demand of the sink tissues for carbon ultimately engineered in their source- and/or sink capacity. These features are closely linked to the harvest index, i.e., weight of the grain (or other harvestable organs) divided by the total plant weight.

Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves and net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole.

In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.

Keywords: source–sink, carbon allocation, metabolite transporters, yield, storage

*Correspondence: Frank Ludewig, Botanical Institute II, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany. e-mail: frank.ludewig@uni-koeln.de

View this article at Frontiers in Plant Science: https://www.frontiersin.org/articles/10.3389/fpls.2013.00231

Published: 02 July 2013
Review Editor: Bob Creelman, Mendel Sciences, China
Edited by: Frank Ludewig, Botanical Institute II, University of Cologne, Cologne, Germany
Reviewed by: Frank Ludewig, Botanical Institute II, University of Cologne, Cologne, Germany

Keywords: source–sink, carbon allocation, metabolite transporters, yield, storage
limits photosynthesis, a phenomenon known as "sink limitation of photosynthesis" (Stritt, 1991; Paul and Foyer, 2001; Paul and Pellny, 2003; Ainsworth and Bush, 2011). Therefore, retention of the sink tissues to draw photosynthetic carbon would maintain photosynthesis (McCormick et al., 2006, 2008).

Here, we describe the allocation of carbon from source- to sink tissues and focus on the metabolite transporters known to be involved. We will also focus on C3 plants as the majority of these transporters have been described from these plant species.

ALLOCATION OF CARBON WITHIN SOURCE LEAVES

Production of carbon compounds occurs during photosynthesis in the chloroplasts. When the assimilated carbon exceeds the local need, carbon can then be exported. Net photosynthetic exporting leaves are defined as "source" (Turgon, 1989). However, assimilated carbon can either be transiently stored as starch in chloroplasts or transported to the cytosol. From there, it can be directly exported from the leaf or transported into and transiently stored in the vacuole. From both compartments, chloroplasts and the vacuole, carbon can be exported when sink demand exceeds the actual production via photosynthesis, e.g., and of course during the diurnal cycle (starch release from the chloroplast at night). Transient storage of assimilated carbon in source leaves during the day could be regarded as a valve for excess carbon production and might be important for maintaining a high photosynthesis rate. At the same time, plants need this transiently stored carbon pool during the night to maintain sucrose formation for metabolic processes.

CHLOROPLAST TRANSPORTERS

During photosynthesis CO2 is assimilated in a series of reactions known as the Calvin–Benson cycle. One of six triose phosphates produced can either be used for starch production or can be exported from chloroplasts to the cytosol for sucrose synthesis or respiration. This export is accomplished by the triose phosphate/phosphate translocator (TPT; “1” in Figure 1; Flügge et al., 1978; Flügge et al., 1989) which exports triose phosphates in counter-exchange with orthophosphate (day path of carbon). Knock-out and -down tpt mutants and transgenic plants produce high amounts of starch during the day which are then partially degraded again during the day (Arabidopsis, tobacco; Häusler et al., 1998, 2000; Schneider et al., 2002; Walters et al., 2004; Schmitz et al., 2012) or the following night period (potato; Riesmeier et al., 1993a; Heineke et al., 1994). By this, tpt mutants and antisense plants manage to grow normally without any aberrant phenotype. Overexpression of the TPT was performed in tobacco using the Flaveria trinervia TPT gene (Häusler et al., 2000) and in Arabidopsis using the endogenous gene (Cho et al., 2012) with only minor effects. When a cytosolic fructose 1,6-bisphosphatase (cFBPase) was simultaneously overexpressed, Arabidopsis plants were larger.
and exhibited a higher photosynthetic capacity (Chao et al., 2012). Unfortunately, no information on seed yield was provided. Thus, from this approach it cannot be deduced whether Arabidopsis yield could possibly be source-limited.

During the night, carbon export from the chloroplast starts with the breakdown of transitory starch and then export of the resulting products maltose and glucose. Weise et al. (2004) found evidence for maltose as the main product exported from chloroplasts at night and proposed a maltose transporter in addition to the plastid glucose transporter (pGLCT2) (‘2’ in Figure 1; Weber et al., 2000). Export of maltose is mediated by the maltose transporter MEX1 (‘3’ in Figure 1; Niittylä et al., 2004). The loss-of-function “maltose excess” mutant mex1 was impaired in growth, had a light green yellowish appearance and accumulated maltose and starch. Overexpression of the endogenous transporter (Niittylä et al., 2004) as well as the apple (Malus domestica) transporter (Reidel et al., 2008) complemented the mutant phenotype. None of the lines that rescued the mex1 phenotype displayed any additional aberrant phenotype indicating that MEX1 overexpression would not lead to increased growth or increased source capacity. Double mex1/tpt-2 or mex1/pGLCT2 but not pGLCT2/pT2 mutants displayed an even more severe growth phenotype than mex1 (Cho et al., 2011) as well as a combination of starch synthesis (adg1-1) or degradation (starch-excess 1-3, sex1-3) mutants with pt mutants (Schneider et al., 2002). The severity of the respective phenotypes differed and the underlying reason is not yet fully understood, however, this might include retrograde signals from the chloroplasts to the nucleus (Stentzl et al., 2009; Schmitz et al., 2012).

VACUOLAR TRANSPORTERS

In source leaves, sugar can be temporarily stored in vacuoles, e.g., when sucrose export via the phloem is saturated (Martinoia et al., 2000). The designation of sugar storage as “temporary” implies the existence of vacuolar sugar importers and exporters. The types of putative sugar importers known to date have been characterized from Arabidopsis thaliana, tonoplast monosaccharide transporters (TMTs; ‘4’ in Figure 1; Wörmit et al., 2006) and vacuolar glucose transporters (VGTs; ‘5’ in Figure 1; Aluri and Buttner, 2007). Both types of transporters belong to the monosaccharide transporter (-like) gene family, form a sub-clade each (Buttner, 2007, 2010) and mediate an energy-dependent transport driven by V-type H+ -ATPases and vacuolar H+ -PPases. The transport direction by patch clamp technique has been shown to be sugar import into vacuoles for the TMTs (Wingenter et al., 2010; Schulte et al., 2011), while the function of VGT1 in seed germination and flowering as revealed by analyzing vgt1 mutant plants also indicated glucose import into vacuoles (Aluri and Buttner, 2007). TMTs have been shown to import sugar in a proton antiport manner (Wingenter et al., 2010; Schulte et al., 2011), and putative VGT1-mediated glucose import is likely to be also coupled to proton antiport (Aluri and Buttner, 2007). Whereas initially and in accordance with their name TMTs were thought to transport monosaccharides across the tonoplast membrane (Wörmit et al., 2006; Wingenter et al., 2010) recently it has been shown that also sucrose is transported by TMTs (Schulte et al., 2011). The Arabidopsis genome contains three TMT genes indicating possible redundancy for TMT function. Indeed, when analyzing loss-of-function tmt mutants, only

**Sucrose transporters of type IV (SUC4/SUT4; ‘5’ in Figure 1; Sauer, 2007; Kühn and Grof, 2010; Payyavula et al., 2011) of several species have been found to localize to the vacuolar membrane (Endler et al., 2006; Reinders et al., 2008; Eom et al., 2011; Payyavula et al., 2011; Schneider et al., 2012). The same clade has been designated “type III” by Reinders et al. (2012). Some of these sucrose transporters have been reported to localize to the plasma membrane (Weise et al., 2000; Weschke et al., 2000; Chincinska et al., 2008; Kühn and Grof, 2010). Although still under debate, we only discuss the function of this group of sucrose transporters as vacuolar transporters here. Schulze et al. (2011) were able to measure sucrose-driven proton import into the vacuole under an inverted pH gradient when overexpressing a functional AtSUC4–GFP (green fluorescent protein) construct in the background of the quadruple tmt1/tmt2/vgt2/vgt2 mutant – to overcome sugar/H+ -antiport activities – using the patch clamp technique. This result can only be interpreted as sucrose/H+ -co-export from vacuoles mediated by SUC4 in vivo. An Arabidopsis suc4 loss-of-function mutant did not display any aberrant phenotype whereas constitutive SUC4 overexpressed seedlings had slightly less sucrose than wild-type (Schneider et al., 2012). The possible impact of SUC4 under- or overexpressing plants on seed yield was not reported by the authors. In contrast, sst2 mutants of rice (OsSUT2 belonging to clade IV) had a reduced sugar export ability and accumulated sugars in source leaves which led to several aberrant phenotypes, among them growth retardation, reduction in tiller number and decreased grain weight (Eom et al., 2011). These findings are in line with the interpretation that SUT2-mediated export of sucrose from vacuoles is important to sustain flow to sinks and thus increase sink strength.
Glucose transport across the membrane could be measured using 14C-glucose. Addition of high concentrations of unlabeled hexoses inhibited 14C-glucose transport to different extents depending on the sugar used for inhibition. The transport was found to be independent of a proton gradient, and determination of the

mK

in the reduced size of lower stalks and slightly reduced seed yield (Chardon et al., 2013).

PHLOEM LOADING, LEAKAGE, AND RETRIEVAL

When sucrose is exported from source leaves, it has to enter the phloem. Several strategies for the loading of sucrose (and other sugars and sugar alcohols) have been described (for a review; see Binnemans and Turgeon, 2009). We have restricted ourselves here to apoplastic sucrose loading when describing the route sucrose takes from source leaves to sinks.

SWEET-FACILITATED SUCROSE EFFLUX INTO THE APOPLAST

For many years it remained unknown how sucrose is released from mesophyll cells or phloem parenchyma cells into the apoplast prior to loading into the companion cell/sieve element complex. It was recently demonstrated that this release is facilitated by members of the SWEET transporter family, i.e., SWEET11 and -12 from Arabidopsis and SWEET11 and -14 from rice ("7" in Figure 1; Chen et al., 2012). Facilitation of sucrose efflux without energy consumption can occur due to the concentration gradient between the mesophyll cell/phloem parenchyma cell symplastic continuum and the apoplast has been described to be steep (40-, 150-, and 750-fold in spinach, barley (Lohaus et al., 1995), and sugar beet (Fondy and Geiger, 1977; Lohaus et al., 1994), respectively). Closing of this gap in source sink carbon allocation was of great importance and accordingly was effusively acclaimed (Baker et al., 2012; Braun, 2012) not only because of the completion of a pathway but also due to enabling new perspectives with respect to genetic engineering of the SWEET proteins. Before sucrose transporters SWEET had been discovered, other members of the family were found to facilitate efflux of glucose into the apoplast fulfilling a potential role in feeding pathogens residing in the cell wall (Chen et al., 2010) with maybe even higher potential for the agricultural industry (Sonnewald, 2011; Baker et al., 2012).

Whereas, single knock-out mutants of AtSWEET11 and -12 did not display any obvious altered phenotype, Arabidopsis sweet11/sweet12 double mutants did display an expected phenotype of blocked phloem loading, i.e., smaller plants, elevated levels of leaf starch and sucrose, a reduced export of fixed 14C from leaves and reduced growth of sinks (e.g., roots; Chen et al., 2012). Rice SWEET11 and -14 were transcriptionally induced upon infection with Xanthomonas oryzae pv. oryzae. This induction is mediated through pathogen-borne effectors binding to SWEET11 and -14 promoters. Mutations in the binding sites led to resistance against the pathogen (Antony et al., 2010). This finding indicated that increasing SWEET activity would lead to more sucrose in the apoplast on which pathogens could feed and spread. Thus, an overexpression of SWEETs in non-infected plants would most likely also lead to an increase in apoplastic sucrose content. Whether or not SWEET overexpression could enhance source capacity would depend on the plasticity of SUC2/SUT1 transporter ("8" in Figure 1) activity importing sucrose from the apoplast into phloem companion cells in a sufficient capacity.
PHLOEM LOADING OF SUCROSE

Sucrose is loaded into phloem companion cells and is transported in sieve elements along a hydrostatic pressure gradient driven by active sucrose loading. This enables a mass flow to sink organs with higher pressure in the source leaves and lower pressure in the sinks where sucrose is then unloaded from the phloem (Münch, 1930).

Because of the extreme difference in sucrose concentration between apoplastic and phloem, sucrose loading against this gradient (630-, 700-, and 15,000-fold in spinach, barley (Lohaus et al., 1995), and sugar beet (Fongli and Geiger, 1977; Sauer and Stohl, 1994)). Expression of these transporters was confined to the phloem (Riesmeier et al., 1993b; Gahrtz et al., 1994; Truermit and Sauer, 1995), and more precisely to companion cells (Stadler et al., 1995; Stadler and Sauer, 1996; Schmitt et al., 2008). Functional proof was established by antisense down-regulation of the SUT1 proteins from potato (Riesmeier et al., 1994; Kühn et al., 1996) and tobacco (Bürkle et al., 1998). Knock-out mutants Arabidopsis (Gottwald et al., 2000) and mutant maize (Slesinskas et al., 2009, 2010) plants were characterized and displayed a similar phenotype to that found for the Solanaceae: carbohydrate accumulation in leaves, impaired growth and generally poor development of sinks. Over expression of a modified spinach SUT1 in potato did not lead to increased tuber starch content and yield (Leggewie et al., 2003). This could either be due to the use of a constitutive promoter to drive expression of the SUT1 gene in mesophyll and phloem parenchyma cells that might have led to an unwanted re-uptake of sucrose from the apoplast into these cells and thus partial prevention of phloem loading. On the other hand, SUT activity might not be limiting for sucrose delivery to sink tissues or that potato tuber yield is not source-limited. Arabidopsis suc2 mutants have been successfully complemented with the Arabidopsis SUC1 gene expressed under control of the AS1/SUC2 promoter. Some of these complemented lines displayed decreased leaf sucrose content indicative of more effective sucrose loading into the phloem (Wippel and Sauer, 2012). However, a possible impact on source capacity remains ambiguous since neither carbon export nor seed yield was comparatively analyzed in these plants. By over- and underexpressing the vacuolar TMT in Arabidopsis leaves, Wingenter et al. (2010) posited an indirect effect on SUC2 transcripts, sucrose export from leaves and seed yield which have been found to positively correlate with TMT activity. However, it has to be elucidated whether or not TMT or other factors affect SUC2 activity which would in turn be accountable for altered source capacity.

LEAKAGE FROM AND RETRIEVAL OF SUCROSE TRANSPORTED IN THE PHLOEM

Sucrose in the phloem is transported to the sink tissues from the leaves and partially leaks out of the phloem to nourish the surrounding tissue (Minchin et al., 1984; Minchin and Thorpe, 1987). Whereas the above-ground tissues are green and might be able to support themselves to a certain extent by photosynthesis, the below-ground tissues clearly depend on sucrose leakage out of the phloem. How and where sucrose leaks out of the phloem has not been analyzed in detail. The sieve element/companion cell complex seems to be sympathetically isolated (Kempers et al., 1998) along the whole path of sucrose movement indicating that unloading from the sieve elements and/or companion cells into the apoplast has to be facilitated. It remains to be elucidated whether SWEETs (“7” in Figure 1) are expressed in sieve elements or companion cells along the phloem and are responsible for this function.

Having entered the apoplast, sucrose then has to be taken up into the symplasm again to reach the sink cells that depend on sucrose import. On the other hand, a great proportion of the sucrose that leaked out is retrieved into the sieve element/companion cell complex (Halko et al., 2005). In both directions, uptake must be energized (Ayre, 2011), and thus sucrose/H+-cotransporters are likely to fulfill this function. In Arabidopsis, the role of SUC2 (“8” in Figure 1) in retrieval of sucrose from the apoplast has been described by complementing the suc2 mutant with a construct that restored SUC2 function in phloem loading (see above) but not in retrieval. The corresponding plants were smaller and exuded less 14C label from cut petioles when leaves photosynthesized in the presence of 14CO2. These findings are consistent with a role of SUC2 (“9” in Figure 1) in retrieval of sucrose from the apoplast along the phloem (Strivastava et al., 2008). Analyses using 12C tracer studies support this role for AS1/SUC2 (Gould et al., 2012). In addition, localization in the sieve elements of Arabidopsis stems argues for a putative role of SUC3 in retrieval (“9” in Figure 1; Meyer et al., 2000, 2004). This is in addition to SUC2 which seems to retrieve sucrose back into companion cells. However, it remains unclear which sucrose/H+-cotransporters function in taking up sucrose to nourish the tissue surrounding the vasculature.

CARBON UNLOADING AND STORAGE IN SINK ORGANS

Unloading of sucrose from the phloem can occur symplectically or apoplastically, depending not only on the plant species but also on tissue type and developmental stages.

OIL STORAGE IN PLANTS

Most of the research on plants that store oil in their seed was performed on Arabidopsis thaliana. The important seed oil crop canola with cultivars of rapeseed (Brassica napus) or field mustard (Brassica rapa) belongs to the same family as Arabidopsis, the Brassicaceae. However, other plants with oil-storing seeds belong to the Asteraceae family, e.g., sunflower (Helianthus annuus), to
the Fabaceae family, e.g., soybean (Glycine max), or the Areccaceae family, e.g., oil palms (Elaeis guineensis, Elaeis oleifera, Attalea maripa). Oil palms not only store oil in their seeds but also in their fruits.

However, sucrose delivered from source leaves via the phloem has to reach the terminal storage sinks, i.e., seeds and/or fruits, thereby crossing several membranes. Once there, sucrose undergoes a series of metabolic reactions to be stored as triacylglycerol (TAG) in the embryo again including several transport steps of intermediates across membranes. We will focus on Arabidopsis to describe the path of carbon from sucrose to TAG in the following paragraphs.

To define the symplastic domains, mobile and immobile versions of the GFP under the control of a variety of promoters as well as low molecular weight fluorescent dyes were used (Schneider et al., 2003; Stadler et al., 2005b).

Having reached the funicular end of the phloem, sucrose is unloaded into an unloading domain near the funiculus, and post-phloem transport occurs symplastically into the seed coat (Jüll et al., 1999), or more precisely – into the outer integument (Stadler et al., 2005b). Before anthesis, phloem unloading of sucrose switches from symplastic in ovule primordia cells to apoplastic in mature ovules and upon anthesis back to a symplastic mode (Werner et al., 2011). To progress into the inner integument, sucrose must reach the apoplast which is potentially facilitated by SWEET transporters. A sucrose/H+ symporter could also potentially transport sucrose into the inner integument. SUC3 has been discussed as a likely candidate (Stadler et al., 2005b), since it might facilitate transport sucrose into the inner integument. SUC3 has been expressed in the root epidermis which forms a symplast (Stadler et al., 2005a).

SUC3 is expressed in the root epidermis which forms a symplast (Stadler et al., 2005a) and 40% (Periappuram et al., 2000) less reduction of ADP-glucose pyrophosphorylase (AGPase) activity, lipid content, respectively. In oilseed rape, the embryo-specific partitioning of Glc6P into the different pathways is dependent on the developmental stage of the embryos (Eastmond and Rawsthorne, 2000). Moreover, imported Glc6P is also used for starch synthesis or as a substrate of the OPPP which is necessary for the production of NADPH required for fatty acid synthesis. Furthermore, partitioning of Glc6P into the different pathways is dependent on the developmental stage of the embryos (Eastmond and Rawsthorne, 2000). Seeds of Arabidopsis and oilseed rape transiently accumulate starch but completely degrade it until they reach maturity (da Silva et al., 1997; Baud et al., 2005b; Andriotis et al., 2010a). Starch does not accumulate because of photosynthetic activity of the embryos and/or the seed coat, since seeds developing in darkened siliques also show transient starch accumulation (Da Silva et al., 1997). It might be assumed that transient starch accumulation of seeds could be important for final TAG yield of embryos since Arabidopsis mutants defective in starch degradation (sexf; Yu et al., 2001) or biosynthesis (phosphoglucomutase 1, pgm1; Caspar et al., 1985) were found to contain 30% (Andriotis et al., 2010a) and 40% (Periappuram et al., 2000) less lipid content, respectively. In oilseed rape, the embryo-specific reduction of ADP-glucose pyrophosphorylase (AGPase) activity,
down-regulation of starch synthesis, led to a delay in oil accumulation of developing seeds. However, mature seeds had wild-type seed oil content (Vigeolas et al., 2004). Andriotis et al. (2012) were able to show that starch turnover of the maternal plant is important for Arabidopsis seed TAG yield, and not starch turnover of the embryo itself, i.e., they found a reduction in (mainly nocturnal) source capacity causative for compromised seed TAG content. Nonetheless, Glc6P uptake and partitioning into fatty acid and the OPPP seems to be of major importance since restricting GPT activity by seed-specific antisense expression or RNA interference (RNAi) led to an arrest of embryo development despite the redundancy of carbon skeleton uptake systems of plastids. As mentioned above, pyruvate as a direct substrate for fatty acid synthesis can also be taken up by plastids. The plastid sodium-dependent pyruvate transporter BASS2 was found to import pyruvate into plastids ("11" in Figure 2; Furumoto et al., 2011) or imported by the PEP/phosphate translocator (PPT; "12" in Figure 2; Fischer et al., 1997). Moreover, malate can also serve as a precursor for stromal pyruvate. NADP malic enzyme produces pyruvate, CO2 and reduction power from malate that could be imported into plastids by the dicarboxylate transporter DiT2 ("13" in Figure 2; René et al., 2003). However, none of these substrates can fuel the OPPP. Therefore, compromised generation of sufficient reduction power might explain the severity of the GPT antisense or RNAi plant phenotype (Andriotis et al., 2010b). Whereas, in bass2 mutants there was no aberrant phenotype under normal growth conditions, though these were not analyzed for fatty acid or seed TAG content (Furumoto et al., 2011), ppt1 (ucd1; Li et al., 1995) mutants display a reticulate phenotype that spoils meaningful yield analyses. The supposed reason for the apparent phenotype is that PPT1 is not only involved in substrate supply for fatty acid synthesis but also important in secondary metabolite production (Stratfield et al., 1999; Voll et al., 2003). INT2 is essential for photorespiration, in that, int2 (act; Somerville and Ogren, 1983; Somerville and Somerville, 1985) mutants do not re-assimilate ammonium released during photorespiration due to a lack of glutamate export from plastids and do not survive when grown under ambient CO2 concentrations.

As mentioned above, energy has to be imported into heterotrophic plastids to drive – amongst other processes – transient starch synthesis and optimal fatty acid synthesis. Plastids import ATP via adenylate translocators (NTTs; "14" in Figure 2; Furumoto et al., 2011). Transport steps in sieve elements and sink cells are depicted according to their respective mode of action. Squares represent antiporters, circles describe facilitators, pentagons depict symporters, hexagons represent ABC transporters, and triangles H+ -ATPases/PPases.
Kampfenkel et al., 1995) in counter-exchange with ADP and orthophosphate (Trentmann et al., 2008). Arabidopsis contains two NTTs and indeed ntt1/ntt2 double mutants are impaired in seed protein and lipid contents and in seed yield (Reiser et al., 2004).

Fatty acids up to a length of 18 carbon atoms are produced in plastids. Incorporation of acylated fatty acids into TAG occurs in the ER (Li-Beisson et al., 2013). Hence, fatty acids have to be exported from plastids presumably by the recently identified fatty acid exporter FAX1 (K. Philipp, personal communication), and imported into the ER, and prior to incorporation into TAG have to be acylated by LACS proteins at the plastid outer envelope membrane (Shockey et al., 2002). To prevent inhibition of plastid metabolite transporters and thus fatty acid synthesis by cytosolic acyl-CoAs (Fox et al., 2001) and to assure efficient TAG production from acyl-CoAs, uptake into the ER should be rapid. Often reported spatial proximity of plastids or plastid stromules overexpression of ABCA9 increased total seed oil per plant (Kim et al., 2008). The ABC transporter ABCA9 (“15” in Figure 2) has been found to localize to the ER, abca9 mutants had decreased seed weight, total lipid and TAG and were defective in effectively taking up 14C-labeled oleoyl-CoA and oleic acid. Moreover, constitutive overexpression of ABCA9 driven by a constitutive promoter led to enlarged seeds with increased dry weight. The TAG content per seed was increased by 60% compared to wild-type. Since siliqua number per plant and seed number per siliqua were similar, overexpression of ABCA9 increased total seed oil per plant (Kim et al., 2013). This finding strongly argues for Arabidopsis yield to be sink-limited as it seems unlikely that the present expression of ABCA9 in leaves has a positive effect on source capacity. Moreover, it demonstrates that TAG production in the embryo cells is limited by the supply with fatty acids rather than the Gly3P moiety of TAG. Nonetheless, Gly3P has to be imported into or present in the ER for TAG synthesis. This might be achieved by a member of the Gly3P permease family (“16” in Figure 2), Ramaiah et al. (2011), by phosphorylation of glycerol and/or by reduction of dihydroyacetone phosphate. After having passed through the Kennedy pathway, synthesized TAG is stored in oil bodies (Hush and Huang, 2004; He and Wu, 2009) and can be used to fuel seedling establishment upon germination.

SUGAR STORAGE IN PLANTS
Some crop plants store sugars in tap roots, stems, and fruits, among them are sugar beet (Beta vulgaris), a member of the Amanthaceae family, sugarcane (Saccharum hybrids) belonging to the Poaceae, grape (Vitis vinifera), a member of the Vitaceae family, and tomato (Solanum lycopersicum) belonging to the Solanaceae family. The former two species store sucrose whereas the latter two mainly store hexoses in vacuoles of roots, storage parenchyma, and fruit cells. Sucrose unloaded from the phloem has to reach these cells, and upon presence of an apoplastic step has to be imported into the cells either as sucrose or, when cleaved by an apoplastic invertase, as hexoses. Moreover, tonoplast transporters have to import sugars into the vacuole.

In young sugar beet tap roots growing with a rapid relative growth rate, sucrose unloaded from the phloem is cleaved by extra-cellular invertases indicating an apoplastic step in post-phloem transport. In older tap roots, invertase activities decrease and sucrose synthase activity increases (Klotz and Finger, 2002; Godt and Rottich, 2006). Moreover, in experiments with 14C-labeled sucrose fed to mature tap root tissue, there was little evidence for a hydrolytic step preceding sucrose uptake. Furthermore, the uptake of sucrose occurs against a concentration gradient, and thus requires metabolic energy (Giaquinta, 1979; Wyse, 1979). Vacular ATPase inhibitors prevented uptake of sucrose whereas plasma membrane ATPase inhibitors did not (Saffner et al., 1983) indicating that post-phloem sucrose transport into storage cells of mature tap roots occurs symbiotically whereas import into the vacuole is energized by a V-type H+-ATPase. This view is supported by analyses of tonoplast vesicles prepared from red beet root vacuoles which were found to hydrolyze ATP during sucrose transport (Getz, 1991). Sucrose-induced proton export occurred in a 1:1 stoichiometry (Getz and Klein, 1995) consistent with the idea of a sucrose/H+ antiporter mediating the import of sucrose into storage vacuoles of sugar beet tap roots. Chien and Bush (1996) described a tonoplast-localized transport protein expressed in leaves and tap roots. However, this transporter turned out to be a homolog of ERH1, a vacuolar glucose exporter described above (Figure 2, Poschet et al., 2011).

In sugarcane, repeated sucrose breakdown and re-synthesis before storage in stem parenchyma cells has been described (Whitaker and Botha, 1997; Zhu et al., 1997). This “futile cycling” decreases with tissue maturity (Bindon and Botha, 2002; Uys et al., 2007). In mature internodes of stems sucrose seems to be symplastically unloaded since stem parenchyma cells are separated from the phloem by lignified and suberized cells preventing apoplastic unloading. Movement of the fluorescent tracer dye carboxylfluorescein from phloem to stem parenchyma cells indeed indicates symplastic connections. In younger internodes, a SUC2 ortholog is expressed in cells that are destined to be lignified (Rae et al., 2005) indicating an apoplastic step of sucrose unloading at this developmental stage. In mature internodes, sucrose was modeled to accumulate in vacuoles against a concentration gradient (Uys et al., 2007). This view was further substantiated by the detection of specialized acidic vacuoles with V-type H+-ATPases in the stem (Rae et al., 2009), presumably maintaining the proton gradient that might be necessary to accumulate sucrose (against a concentration gradient) in a suggested proton antiport manner (“4” in Figure 2; Godf and Campbell, 2001). Both sugar beet and sugarcane have not been functionally analyzed regarding yield limitation, probably partially due to their resistance to be efficiently transformed.

Grape berries also undergo a developmental switch in unload- ing and post-phloem transport of sucrose. In contrast to sucrose-storing sugar beet and sugarcane, they shift from symplastic to apoplastic sucrose unloading upon onset of ripening as revealed by fluorescent dye analyses. Cell wall invertase activity increases at the onset of ripening, further substantiating apoplastic unloading at this developmental stage (Zhang et al., 2008). Moreover, Fillion et al. (1999) found that the STP-type hexose transporter VvHT1 (“17” in Figure 2) is expressed during ripening indicating
that some of the sucrose might be apoplastically cleaved by cell wall invertases before being taken up into the cytosol. Sugars accumulate mainly as hexoses in vacuoles of berry cells upon onset of ripening (Davies and Robinson, 1996). In a comprehensive approach, Aboua-Bastien et al. (2010) gave a phylogenetic overview on sugar transporters and also analyzed their expression. Upon the onset of ripening, several hexose transporters, TMTs and SUC1/12 were expressed in berries. SUC1/12 expression in ripening berries was also found in an independent study (Man- ning et al., 2001), and VvDMT2 (“14” in Figure 2) expression has also been identified as ripening-related by Caix and Giacino (2012). Taken together, expression analyses of several transporters support the finding that vacuolar storage of hexoses occurs by a switch to apoplastic unloading of sucrose upon onset of berry ripening. However, whether source- or sink capacity determines yield of grape berries remains elusive.

Tomato fruits and grape berries behave similarly with respect to sucrose unloading and post-phloem transport. In young tomato fruits, when starch content is built up in plastids of the columnella and inner pericarp region of the fruit (Robinson et al., 1988; Schaf- fer and Petreikov, 1997), unloading is mainly symplastic. Upon the developmental shift to rapid hexose accumulation, also in the outer pericarp region, an apoplastic step is likely to occur (Ruan and Patrick, 1995) and is linked to an energized uptake of hexoses (“17” in Figure 2; Damon et al., 1988, Ruan et al., 1997) and sucrose (“18” in Figure 2; Damon et al., 1988). Similar to sugarcane, “futile cycles” involving invertase, sucrose synthase and starch syn- thesis and degradation seem to be abundant in tomato fruits to sustain sink capacity (Nguyen-Quoc and Foyer, 2001). The import- ance of transient starch accumulation for yield – unlike the above mentioned Brassicaceae seeds – was demonstrated by Baxter et al. (2005) who analyzed an introgression line with a fruit apoplas- tic invertase from the wild species Solanum pennelli introgressed into Solanum lycopersicum. Here, a dramatic increase in starch accumulation in early developmental stages was observed pointing toward partial apoplastic unloading already at younger develop- mental stages. Introgres- sion lines had higher total soluble solids (TSS), a major determinant of fruit quality for processing (Baxter et al., 2005). More direct evidence for the importance of transient starch accumulation has been obtained by Petreikov et al. (2009) who developed and characterized introgression lines of Solanum lycopersicum harboring a wild species Solanum luteohastides allele for the regulatory large subunit of AGPase. This led to a large tran- sient increase in starch which accounted for the enhanced amount of TSS and also an increase in fruit size. However, when hex- ose transporter- (STP-type) mediated uptake of hexoses from the apoplast was impaired by antisense expression of tomato HT1, HT2, and HT3 (“17” in Figure 2; McCurdy et al., 2010), yield was decreased. Taken together, these findings point toward tomato yield being limited by sink capacity that can be increased when limitations of photosynthetic import into fruits are abolished.

STARCH STORAGE IN PLANTS
Apart from soybean and sugarcane, the most important crops store starch, among them the grasses corn (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) belonging to the Poaceae family, and potato (Solanum tuberosum), a member of the Solanaceae family. Other starch-storing staple foods are yams (Dioscorea sp.), belonging to the Dioscoreaceae, or cassava (Mani- hot esculenta), a member of the Euphorbiaceae. Grasses store starch in the endosperm of their caryopses, popularly called the “grain.” Potato, yams, and cassava store starch in tubers, the for- mer tuber is derived from the sprout, the two latter tubers from roots.

In grasses, sucrose released from the phloem in grains symplas- tically reaches the maternal side of the maternal/filial interface, in wheat described as mucellar projection (Fisher and Cash-Chlark, 2000; Patrick and Offler, 2001; Krishnan and Dayanandan, 2003). At the interface which appears as an endosperm cavity in wheat grains, cells can specialize on the maternal, as well as, on the fil- ial side to transfer cells (characterized by cell wall in growths) to maximize plasma membrane size for release and uptake of sug- ars. In corn missing such an endosperm cavity, the filial cells can undergo specialization to transfer cells (Patrick and Offler, 2001; Gómez et al., 2002; Krishnan and Dayanandan, 2003). It can be hypothesized that sugar unloading is mediated by SWEETs (“7” in Figure 2). To enter the filial tissue, sugars have to be taken up from the apoplast, likely to be mediated by sucrose- or hexose/H + symporters (Figure 2). In the endosperm, symplastic connections between uptake and storage cells exist (Patrick and Offler, 2001).

In cereal endosperm, starch synthesis differs from other starch- storing organs in that most of the AGPase activity is extraplasmatic, i.e., cytosolic (Denny et al., 1996; Thorbjørsen et al., 1996; Beck- les et al., 2001; James et al., 2003), requiring an additional uptake system for carbon skeletons into plastids supplementary to the GPT (“10” in Figure 2; Kammerer et al., 1998). Externally sup- plied ADP-glucose (ADP-G) was found to drive starch synthesis in isolated maize endosperm amyloplasts (Mohllmann et al., 1997) while Shannon et al. (1998) found Brittle-1 (BT-1; “18” in Figure 2; Sullivan and Kaneko, 1995) to be responsible for the uptake of ADP-G into maize endosperm amyloplasts by including the bt-1 mutant in the analyses. Direct uptake measurements with the BT-1 from maize endosperm heterologously expressed in Escherichia coli cells revealed ADP-G uptake in counter-exchange with ADP (Kirchberger et al., 2007). Several approaches to increase starch yield of wheat and corn grains were successful when cytosolic AGPase activity was increased (Smidansky et al., 2002; Wang et al., 2007; Li et al., 2011), indicating that ADP-G import and thus BT-1 activity might not be limiting for starch yield. However, in con- trast to the notion that photosynthesis is the limiting factor for increased yield (e.g., Long et al., 2006; Makino, 2011), these results suggest that sink - rather than source capacity limits grain starch yield in cereals.

In potato, starch is stored in tubers from which the plant can vegetatively, i.e., clonally propagate without a filial generation. Tubers are formed from stolons, below-ground lateral shoots. Upon induction of tuberization (Rodriguez-Falcón et al., 2006), stolons start to swell at their apical hook. In non-tuberized stolons, TUBERS are formed from stolons, below-ground lateral shoots. Upon induction of tuberization (Rodriguez-Falcón et al., 2006), stolons start to swell at their apical hook. In non-tuberized stolons, starch accumulation has been obtained by Petreikov et al. (2009) who developed and characterized introgression lines of Solanum lycopersicum harboring a wild species Solanum luteohastides allele for the regulatory large subunit of AGPase. This led to a large tran- sient increase in starch which accounted for the enhanced amount of TSS and also an increase in fruit size. However, when hex- ose transporter- (STP-type) mediated uptake of hexoses from the apoplast was impaired by antisense expression of tomato HT1, HT2, and HT3 (“17” in Figure 2; McCurdy et al., 2010), yield was decreased. Taken together, these findings point toward tomato yield being limited by sink capacity that can be increased when limitations of photosynthetic import into fruits are abolished.

www.frontiersin.org
July 2013 | Volume 4 | Article 231 | 3

"fpls-04-00231" — 2013/6/29 — 12:27 — page 9 — #9
stolen, indicative for symplastic unloading. Taken together, tuberization involves a switch from apoplastic to symplastic phloem unloading (Viola et al., 2001). However, this switch is likely to be incomplete because otherwise an impact of apoplastically localized yeast invertase expressed under control of a tuber-specific promoter on metabolism could not be explained (Somewald et al., 1997; Haijrzaei et al., 2000). Alternatively, symplastically unloaded sucrose might leak out of sink cells. Again, a yet to be identified member of the SWEET family transporter ("7" in Figure 2) may be discussed as the facilitator of apoplastic phloem unloading or as the transporter mediating leakage of sucrose. Whether mainly sucrose or hexoses – produced from sucrose by cell wall invertases – are imported into sink cells probably by sucrose- or hexose/H+-symporters (Figure 2) remains to be elucidated. It is also unknown which transporters are engaged in this process. Sucrose entering sink cells via the apoplasm or plasmodesmata might be further metabolized by sucrose synthase, since invertase activity is gradually reduced, while sucrose synthesis activity yielding UPG-glucose and fructose increased during development (Hajirezai et al., 2000). A part of the imported sucrose is further used to drive energy production indispensable for anabolic processes such as starch synthesis in heterotrophic tuber tissue. To synthesize starch, carbon skeletons and energy are imported into amyloplasts. Glc6P is imported by a GPT ("10" in Figure 2) in counter-exchange with orthophosphate or triose phosphate, and ATP generated in mitochondria is imported by the adenylate translocator NTT ("14" in Figure 2) in counter-exchange with ADP and orthophosphate. Shortage of energy import into amyloplasts as revealed by antiseNSE repression of the adenylate transportor, led to compromised tuber starch content and yield (Tijaden et al., 1998). Overexpression, however, had no impact on starch yield, irrespective of the promoter, constitutive (Tijaden et al., 1998) or tuber-specific (Zhang et al., 2008), that drove expression of the transgene. Tuber-specific overexpression of a pea GPT also had no impact on tuber starch yield. Only when both carbon and energy supply to plastids was increased simultaneously, mediated by overexpression of GPT and NTT, tuber starch content and yield increased (Zhang et al., 2008). This indicated that import of carbon and energy co-limit starch yield which appears sink- rather than source-limited under these growth conditions. Moreover, a combined enhancement of sink- and source capacities led to even higher starch yield of triple-transgenic potato plants. The overexpression of GPT and NTT in tubers and additionally either overexpression of an Esherichia coli pyrophosphatase in mesophyll cytosol or reduced AGPase activity in leaves increased sucrose synthesis in source tissues (Jonik et al., 2012). Without simultaneously increasing sink capacity, neither leaf-specific antiseNSE repression of AGPaSe (Lindreiter et al., 1995) nor mesophyll-specific cytosolic overexpression of pyrophosphatase (Jonik et al., 2012) – the latter analyzed in field trials and in the greenhouse – led to an increase in tuber starch yield indicating once more that potato tuber starch yield is sink-limited.

PROTEIN STORAGE IN PLANTS

Members of the Fabaceae family store protein in their seeds, which represent the main plant source for human nitrogen nutrition. However, soybean (G. max) is primarily grown to provide oil from seeds, and pea (Pisum sativum) seeds contain more starch than protein. Other crop members of the family are bean (Phaseolus vulgaris), chickpea (Cicer arietinum), and peanut (Arachis hypogaea). There are species of families other than Fabaceae which contain reasonable amounts of storage protein in their harvested organs. However, these are mainly grown for their starch (e.g., potato, corn) or oil (e.g., canola). In order to store protein ample nitrogen must be available. Consistently, members of the Fabaceae family living in symbiosis with rhizobial bacteria store protein in seeds as the symbiotic bacteria fix atmospheric molecular nitrogen and supply the host plant with sufficient reduced nitrogen.

In legumes, protein is stored in the embryo in structures known as protein storage vacuoles. Storage proteins are translated at the ribosomes of the rough ER and are co-translationally imported into the ER. The main route from the ER to protein storage vacuoles is via the Golgi (Herman and Larkins, 1999). However, the alternative pathway, protein bodies budding off the ER and either remaining in the cytosol or fusing with the protein storage vacuole (as previously described in cereals) also seems to exist in legumes (Figure 2; Herman and Larkins, 1999; Vitale and Ceriotti, 2004; Abracht-Darmency et al., 2012).

Sucrose (and amino acid) unloading from the phloem in legume seeds occurs symplastically. Analyses with fluorescent dyes indicate that sucrose is symplastically transported to the maternal release site, the ground- or thin-walled parenchyma (Tegeder et al., 1999; van Dongen et al., 2003). Sucrose is either simply or through specialized transfer cells released into the apoplasm dependent on the legume species (Patrick and Otter, 2001; van Dongen et al., 2003). At the younger stages, legume seeds contain a liquid endosperm which acts as a buffer for sucrose and glutamine for the developing embryo (Melkus et al., 2009). At the expense of embryo growth, the endosperm is substantially degraded during development (Patrick and Otter, 2001). At later developmental stages, sucrose is released from maternal tissue to the apoplasm and is taken up by embryo epidermal transfer cells (Weber et al., 1997; Tegeder et al., 1999). With the discovery of a new class of sucrose transporters from pea and bean, called SU Ts, expressed at the maternal release site, sucrose release into the apoplasm is probably mediated by these transporters ("19" in Figure 2; Zhou et al., 2007). In these same cells, the sucrose/H+-symporter SUT1 was found to be expressed and believed to likely function in seed coat sucrose retrieval (Tegeder et al., 1999; Zhou et al., 2007). At the filial side, uptake of sucrose by the embryo epidermis is mediated by SUT1 (Figure 2), and uptake is energized by P-type H+-ATPases which are both co-expressed in embryo transfer cells (Tegeder et al., 1999). The embryo communicates the demand for sucrose uptake from the apoplasm by the internal sugar level. Sucrose uptake fluxes have been found to be negatively correlated with pool sizes of intracellular sugars, while SUT1 transcripts were sensitive to sugar levels (i.e., when the embryo contains sufficient sugars, SUT1 is transcriptionally down-regulated), which in turn led to decreased sucrose uptake (Zhou et al., 2009). To increase the uptake of sucrose into pea embryos, potato SUT1 was overexpressed using a storage parenchyma-specific promoter which resulted in increased sucrose uptake and accelerated growth rates of the embryo. However, final seed weight of transgenic plants was...
similar to the wild-type. The authors speculate that overexpression at the primary site of sucrose uptake, the epidermal transfer cells, might have led to more significant results (Bouche et al., 2002). In a different transgenic approach, seed protein content in mature seeds was increased. Rolletschek et al. (2007) antisense inhibited the Vicia narbonensis GPT1 increased expression of the amino acid permease to be decreased. A simultaneous increase in seed protein, how-
tetids and thus into starch and (mainly structural) lipids was found in mature seeds was increased. Rolletschek et al. (2007) antisense inhibition at the primary site of sucrose uptake, the epidermal transfer similar to the wild-type. The authors speculate that overexpres-
REFERENCES

ACKNOWLEDGMENT

We are grateful to Dr. Karl Pioch for critically reading the manuscript.

FIGURE 4

SWEET transporter SWEET17 in Arabidopsis.

SWEET17

SWEET17

SWEET17

SWEET17

SWEET17
and cytosolic fructose-1,6-
biophosphatases, the key components in photosynthetic sucrose synthe-
sis, enhance the source capacity of transgenic Arabidopsis plants. Plant Physiol. 111, 261–268. doi: 10.1104/pp.111.12.9702
Chu, M.-H., Lim, H., Shin, D. H., Juon, J.-S., Bho, S. H., Park, Y.-I., et al. (2015). Role of plastidic glucose transporters in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol. 190, 101–112. doi: 10.1111/nph.13710.0350A
Dannon, S., Hewitt, J., Nielsen, M., and Bennett, A. B. (1988). Sink metabolism in tomato fruit. II. Phloem unloading and sugar uptake. Plant Physiol. 87, 731–736. doi: 10.1104/pp.87.2.731
da Silva, P. M. F. R., Eastmond, P. J., and Bennett, S. (1997). Sink metabolism in developing embryos of oilseed rape. Plant 203, 480–485. doi: 10.1007/3-540-62000-2
Davis, R., and Robinson, S. P. (1988). Sugar accumulation in grape berries. Involvement of protons as a sub-
strate for sucro-phosphate transporters. Plant Physiol. 87, 275–283. doi: 10.1104/pp.87.2.275
Davies, C., and Robinson, S. P. (1996). The major form of ADP-lea-
tes. doi: 10.1104/pp.67.3.560
Endler, A., Meyer, S., Schelbert, S., Eastmond, P. J., and Rawsthorne, S. (1997). Starch metabolism during the develop-
ment of transgenic Arabidopsis thaliana seeds and embryos. New Phytol. 135, 109–119. doi: 10.1111/j.1469-8137.1997.00799.x
Fondy, B. R., and Geiger, D. R. (2001). Fatty acid synthesis in pea root plastids is inhibited by the action of the triose phosphate/phosphate translocator from spinach chloroplasts. Planta 210, 232–247.
Foschi, U.-L., Foschi, K., Fox, S. R., Rawsthorne, S., and Hills, M. R. (2000). Genetic evi-
dence for molecular manipulation. Aust. J. Plant Physiol. 27, 779–789. doi: 10.1071/pp0019409
Franz, H. P. (1991). Sugar trans-
port in tonoplast vesicles of red beet roots is linked to ATP hydrolysis. Plant 185, 261–268. doi: 10.1104/pp.185.1.216
Gaquin, R. (1977). Phloem loading of sugar, pH dependence and selec-
tivity. Plant Physiol. 59, 750–755. doi: 10.1104/pp.59.4.750
Gaquin, R. (1978). Possible role of pH gradient and membrane ATPase in the loading of sucrose into the sieve tubes. Naturwiss. 65, 389–390. doi: 10.1007/bf00194069
Götz, H. F., and Klein, M. (1993). Characteristics of sucrose transport and sucrose-induced H+ transport on the tonoplast of red beet (Beta vef-
gata L.) storage tissue. Plant Physiol. 107, 470–477.
Götzig, E., Roy, J., Guo, Y., Thomp-
som, M. R., and Hütsch, R. (2004). The developmental and organ spec-
ific expression of sucrose clearing enzymes in sugar beet suggests a transition between apoplastic and symplasmic phloem unloading in the tap roots. Plant Physiol. 138, 828–832. doi: 10.1104/pp.104.5.828
Gök, D., and Betzschke, T. (2004). Establishment of cereal endosperm expression domain: identification and properties of a maize trans-
ferric secretory transferrin factor. ZMMPL-1. Plant Cell 16, 509–615.
Gottwald, J. R., Krysan, P. J., Young, J. C., Evert, R. F., and Suss-
man, M. E. (2000). Genetic evi-
dence for the in planta role of phloem-specific plants membrane sucrose transporters. Proc. Natl. Acad. Sci. U. S. A. 97, 13979–13984. doi: 10.1073/pnas.97.25.13979
Guo, Y., Fox, S. R., et al. (1991). ATTICUS has a role for sucrose retrieval along the phloem pathway: evidence from carbon-11 tracer studies. Plant Sci. 108–109, 97–101. doi: 10.1016/1385-8577(96)00154-8
Guehl, J.-B., van Amerongen, J.-K., Kelling, F., Furch, A. C. U., Gou-
yro, E., and van Bol, A. J. E. (2005). Thermodynamic battle for photo-
synthetic acquisition between sucrose tuber and adjusting parenchyma in transport phloem. Plant Physiol. 136, 1572–1577. doi: 10.1104/pp.104.067198
Hagemann, M.-B., Takahata, Y., Toshioy, R. N., Whittaker, L., and Somorval, U. (2003). Impact of derived cytosolic and plastidial invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 51, 439–445. doi: 10.1038/jcb. 51.suppl.1.639
Häuser, R. E., Scholten, N. H., Nico-
lay, P., Fischer, K., Fischer, S., and Flügge, U.-I. (2006). Impaired function of plastidic phosphate translocator from spinach chloroplasts in tobacco. Plant Physiol. 141, 371–382. doi: 10.1073/pnas.1511001103
Häusler, R. E., Scholten, N. H., Schulz, B., and Flügge, U.-I. (2005). Compensation of decreased translocase phos-
phate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco. Plants 204, 366–370.
He, Y.-Q., and Wu, Y. (2009). Oil body biogenesis during Brassica napus embryogenesis. J. Exp. Bot. 60, 792–799. doi: 10.1093/jxb/erx111
Heineke, D., Krase, A., Flügge, U.-I., Frommer, W. B., Riesmeier, J. W., Willmitzer, L., et al. (1994). Effect of antisense repression of the chloroplastic fructose-phosphate translocator on photosynthetic metabolism in transgenic potato plants. Plant 190, 174–180.
Heineke, D., Sonnewald, U., Brun, D., Gärter, G., Lübken, K. Wilke, L., et al. (1992). Apoplastic expres-
sion of yeast-derived invertase in potato effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 100, 501–508.
Hermans, E. M., and Larkins, B. A. (1999). Protein storage bodies and vacuoles. Plant Cell 11, 601–613.

“fps-04-00231” — 2013/6/29 — 12:27 — page 12 — #12
Paul, M. J., and Joyer, C. H. (2011). Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1390. doi: 10.1093/jxb/err052
Paul, M. J., and Pellny, T. K. (2003). Carbon metabolism feedforward regulation of leaf photosynthesis and development. J. Exp. Bot. 54, 539–547. doi: 10.1093/jxb/erg072
Periyuravu, B. S., Tay, K. C. H., Tsai, C.-J., and Harding, S. A. (2011). The sucrose transporter family in Apocynum: the importance of a tonopetal PDfUT4 to biomass and carbon partitioning. Planta 234, 775–787. doi: 10.1007/s00425-010-1191-9
Periappuram, C., Steinhauer, L., Barton, D. L., Taylor, D. C., Chaton, B., and Zote, J. (2008). The plastidic phosphoglucomutase from Arabidopsis: a reversible enzyme reaction with an important role in metabolic control. Plant Physiol. 146, 1193–1199. doi: 10.1104/pp.107.113451
Petrovskii, M., Yousef, L., Shen, S., Lerea, J., Schaffer, A. A., Elfran, A., et al. (2009). Carbon-hydrogen balance and accumulation during development of leaf-mosaic tomato lines differing in the AGPase-L-like J. Am. Soc. Hortic. Sci. 134, 154–160.
Possmarquken, B., Pope, J., Haidm, M., Schuhmacher, S., Soedel, K., Schmitt, R., et al. (2013). SUCROSE TRANSPORTER 5’s supply: Arabidopsis embryos with binon and affects A’ and S’ accumulations. Plant J. 75, 392–404. doi: 10.1111/tpj.12057
Poschet, G., Hannich, B., Raab, S., Jungkunz, I., Klemens, P. A. W., Krüger, S., et al. (2011). A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the content of seed storage compounds. Plant Cell Physiol. 52, 1064–1076.
Rac, A. L., Jackson, M. A., Nguyen, C. P., and Geoff, C. P. F. (2005). Sucrose partitioning between vascular bundles and storage parenchyma in developing sugar beet stems: a potential role for the IRON5 sucrose transporter. Planta 220, 817–825. doi: 10.1007/s00425-004-1306-3
Ramsak, I., Jang, A., Bohlen, J. C., Kraliky, A. S., and Raghothama, K. G. (2011). Characterization of the phosphate starvation-induced glucose-3-phosphate permease gene family in Arabidopsis. Planta 187, 279–291. doi: 10.1007/s00425-004-1159-4
Rathnayake, S. (2002). Carbon flux and fatty acid synthesis in plants. Physiol. Zool. 75, 189–196. doi: 10.1086/pzi.2002.3
Reid, E. J., Trojan, R., and Chong, L. (2008). A malse transporters from apple is expressed in source and sink tissues and complements the Arabidopsis male- sterile defective mutant. Plant Cell Physiol. 49, 1607–1613. doi: 10.1093/pcp/pcn134
Reinders, A., Streit, A. B., Starkes, C. G., Hartl, U., and Németh, M. (2007). Functional analysis of LjSUT1, a vacuolar sucrose transporter from Lotus japonicus. Plant Cell Physiol. 48, 289–299. doi: 10.1093/pcp/pkl015
Reinders, A., Streit, A. B., and Ward, J. M. (2012). De novo evolution of plant sucrose uptake transporters. Plant Sci. 182, 69–78. doi: 10.1016/j.plantsci.2012.02.002
Roño, J., Lienka, M., Lemlik, L., Ishikawa, W., and Nishimura, H. (2004). Molecular physiological analyses of the two plastidic SUTA/SUAD transporters from Arabidopsis. Plant Physiol. 136, 2524–2536. doi: 10.1104/pp.104.049052
Roffes, P., Dresson, I., Hobbelt, U., Hidaka, H., Masuda, A., Wallach, P., et al. (2005). The Arabidopsis mutant det is deficient in the plastidic glucose/maltose transporter DET2. Plant J. 41, 136–151.
Rohlena, D., Trojan, R., and Tangor, E. A. (2008). A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. U.S.A. 105, 14164–14167. doi: 10.1073/pnas.0802979105
Römer, J., Wollherr, U., Schuler, B., Heinike, D., Hidaka, H., and Hidaka, H. (1997). Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc. Natl. Acad. Sci. U.S.A. 94, 6400–6404.
Roemer, W., Härner, B., and Frommer, M. W. (1998). Potato sucrose transporter expression in minor veins induces a role in phloem loading. Plant Cell 10, 1381–1398.
Roemer, W. J., Willmitzer, L., and Frommer, M. W. (1992). Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713.
Roemer, W. J., Willmitzer, L., and Frommer, M. W. (1994). Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 13, 1–7.
Rohms, N. L., Hovott, I. D., and Bennett, A. B. (1998). Sucrose metabolism in tomato fruit. I. Developmental changes in carbohydrate metabolizing enzymes. Plant Physiol. 117, 727–730. doi: 10.1104/pp.117.4.727
Rodriguez-Falcon, M., Fou, J., and Po, S. (2006). Seasonal control of invertase-concentrated cells with the flowering regulator. Annu. Rev. Plant Biol. 57, 151–188.
Rolletschek, H., Hovott, F., Miranda, M., Hein, U., Gne, K.-F., Schlotter, A., et al. (2005). Estrogen expression of an amino acid transporter (VXAAP1) in seeds of Vicia faba and pea increase storage protein. Plant Physiol. 137, 1226–1249.
Rolletschek, H., Nguyen, T. H., Hauser, B. E., Poten, T., Gehl, C., Foran, L., et al. (2007). Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage. Plant J. 51, 468–484.
Rosche, E., Blackmore, D., Toljander, M., Richardson, T., Schröder, H., Haggard, T. J. V., et al. (2012). Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J. 73, 165–175. doi: 10.1111/j.1365-313X.2012.05128.x
Ruan, Y.-L., and Patrick, J. W. (1999). The cellular pathway of phosphatid sugar transport in developing tomato fruit. Plant Physiol. 118, 438–444. doi: 10.1104/pp.109.038441
Ruan, Y.-L., Patrick, J. W., and Brady, C. (1997). Protoplast hexose carrier activity is a determinant of gestose difference in bean storage protein isoforms. Plant Cell Enviro. 20, 341–348. doi: 10.1046/j.1365-3040.1997.0073-a
Sahner, R., Alai, D., and Wyse, R. E. (1981). Sucrose uptake and compartmentation in sugar beet root tissues. Plant Physiol. 68, 1400–1406.
Sauer, N. (2007). Molecular physiology of Arabidopsis thaliana. BMC Plant Biol. 7, 352. doi: 10.1186/1471-2229-7-352
Schneider, A., Hauser, R. E., Kolakowska, U., Kanne, K., van der Graaff, E., Schnecke, K., et al. (2002). An Arabidopsis dulas1 knockout-dil phosphatases sucrose-phosphate sucrose-phosphate transporter is severely compromised only when starch synthesis, but not starch mobilization is abolished. Plant J. 32, 685–699.
Schneider, S., Hulène, P., Schaer, A., Yaron, J., Hölz, I., Imira, A., et al. (2002). Vacular maltose release via tonopetal-localized SUC4-type transporters. Plant Physiol. 113, 523–536. doi: 10.1104/pp.113.018677.2002.00090.x
Schmidt, A., Scholze-Stark, I., and Böttger, M. (2003). Functional characterization and expression analysis of the glucose-specific AtSTP5 monosaccharide transporter in polycarbohydrate Arabidopsis. Plant Physiol. 132, 182–190.
Schuch, A., Behl, D., Marten, I., Wor- mit, A., Nishimura, E., Poschet, G., et al. (2011). Plant-driven sucrose export and import are provided by the vascular transporters SUC4 and TMEF12. Plant Physiol. 156, 129–136. doi: 10.1104/pp.110.183513.2010.06722a
Shannon, J. C., Pain, F. M., Cao, H. P., and Liu, K. C. (1998). Brittle1, an adenosine translocasere, facilitates transfer of extraplasmic conserved ADP-glucose into
Incised potato tuber size resulting from apoplastic expression of a yeast invertase. Nat. Biotechnol. 15, 794–797. doi: 10.1038/nb1097

Srivastava, A. C., Gaamul, S., Ismail, I. O., and Ayye, B. G. (2008). Functional characterization of the Arabidopsis AtSUC2 sucrose/H\(^+\) symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol. 148, 200–211. doi: 10.1104/pp.108.131448

Stadel, R., Brandtner, J., Schall, A., Gaertli, M., and Sauer, N. (1995). Phloem loading by the PreSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell 7, 1545–1554. doi: 10.1105/tpc.7.10.1545

Stadler, R., and Sauer, N. (1994). The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Plant Cell 10, 199–206. doi: 10.1105/tpc.10.2.199

Strasser, R., Wright, K. M., Laute-bach, C., Amore, G., Gaertli, M., Feuston, A., et al. (2003a). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Planta 214, 339–351. doi: 10.1007/s00425-003-1051-8

Stadler, R., Lautebach, C., and Sauer, N. (2006). Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer phloem transit of starch breakdown in the light. Plant Physiol. 139, 701–712. doi: 10.1104/pp.105.070807

Steinle, M., Ecke, S., Merker, T., Kofler, H., Hille, D., Gröner, F., et al. (2003). Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol. Plant-Microbe Interact. 16, 1225–1234. doi: 10.1094/mpmi.2003.16.12.1225

Stadler, R., Lautebach, C., and Sauer, N. (2006). Call-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer phloem transit of starch breakdown in the light. Plant Physiol. 139, 701–712. doi: 10.1104/pp.105.070807

Steinle, M., Ecke, S., Merker, T., Kofler, H., Hille, D., Gröner, F., et al. (2003). Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol. Plant-Microbe Interact. 16, 1225–1234. doi: 10.1094/mpmi.2003.16.12.1225

Strackfeld, S. J., Wolfr, A., Kimmam, E. A., Hänzel, R. B., Li, J., Post-Brüntzelmann, D., et al. (2008). The phosphoenolpyruvate/phosphate translocator (Pht1;1) localizes to the amyloplast membrane polypeptide, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell 11, 1069–1072.
Ludewig and Flügge
Transporters in source-sink interaction

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2013 Ludewig and Flügge. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Frontiers in Plant Science | Plant Physiology
July 2013 | Volume 4 | Article 231 | 16

“fpls-04-00231” — 2013/6/29 — 12:27 — page 16 — #16

Wingenter, K., Schulz, A., Wörmit, A., Whittaker, A., and Botha, F. C. (2011). A dual switch in phloem unloading during ovule development in Arabidopsis. *Plant Sci.* 182, 195–205. doi: 10.1016/j.plantsci.2011.02.022

Wierum, D., Gerlitz, N., and Stauffer, R. (2011). A dual switch in phloem unloading during ovule development in *Arabidopsis*.* Perspectives* 4, 225–235. doi: 10.1007/0035-011-1128-8

Wuschke, W., Panitz, R., Sauer, N., Werner, D., Gerlitz, N., and Stadler, S. E., Weber, A. P. M., and Ludewig and Flügge (2013)**.** Transporters in source-sink interaction. Frontiers in Plant Science. 4:231. doi: 10.3389/fpls.2013.00231

Wang, Q., Neubohn, B., Weber, R., and Flügge, U.-I., et al. (2010). Increased sucrose accumulation in sugar beet tap root tissue. *Plant Cell* 22, 455–467. doi: 10.1105/tpc.106.047390

Wyse, R. (1979). Sucrose uptake by sugar beet tap root tissue. *Plant Physiol.* 64, 837–841. doi: 10.1104/pp.64.4.837

Yamada, K., Osakabe, Y., Mizoi, J., et al. (2006). A shift of phloem unloading from symplastic to apoplastic pathway is involved in developmental onset of ripening in grapes berry. *Plant Physiol.* 142, 226–232. doi: 10.1104/pp.105.074190

Zhang, X.-Y., Wang, X.-L., Wang, X.-F., Xia, G.-H., Pan, Q.-H., Fan, R.-C., et al. (2006). A shift of phloem unloading from symplastic to apoplastic pathway is involved in developmental onset of ripening in grapes berry. *Plant Physiol.* 142, 226–232. doi: 10.1104/pp.105.074190

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science. Copyright © 2013 Ludewig and Flügge. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.