Critical independent sets and König–Egerváry graphs

Vadim E. Levit
Ariel University Center of Samaria, Israel
levtv@ariel.ac.il
Eugen Mandrescu
Holon Institute of Technology, Israel
eugen@hit.ac.il

Abstract

A set S of vertices is independent in a graph G, and we write $S \in \text{Ind}(G)$, if no two vertices from S are adjacent, and $\alpha(G)$ is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets 1. G is called a König–Egerváry graph if its order equals $\alpha(G) + \mu(G)$, where $\mu(G)$ denotes the size of a maximum matching. The number $\text{def}(G) = |V(G)| - 2\mu(G)$ is the deficiency of G 2.

The number $d(G) = \max\{|S| - |N(S)| : S \in \text{Ind}(G)\}$ is the critical difference of G. An independent set A is critical if $|A| - |N(A)| = d(G)$, where $N(S)$ is the neighborhood of S, and $\alpha_c(G)$ denotes the maximum size of a critical independent set 3.

In 1 it was shown that G is König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., $\alpha_c(G) = \alpha(G)$.

In this paper we prove that:
(i) $d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G) = \text{def}(G)$ hold for every König–Egerváry graph G;
(ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.

Keywords: independent set, maximum matching, critical difference, critical independent set, deficiency, core.

1 Introduction

Throughout this paper $G = (V, E)$ is a finite, undirected, loopless and without multiple edges graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $X \subset V$, then $G[X]$ is the subgraph of G spanned by X. By $G - W$ we mean the subgraph $G[V - W]$ if $W \subset V(G)$. For $F \subset E(G)$, by $G - F$ we denote the partial subgraph of G obtained by deleting the edges of F, and we use $G - e$, if $W = \{e\}$. The neighborhood of a vertex $v \in V$ is the set $N(v) = \{w : w \in V \ and \ vw \in E\}$, while $N(A) = \cup\{N(v) : v \in A\}$ and $N[A] = A \cup N(A)$ for $A \subset V$.

1
A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the set of all the independent sets of G. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G is $\alpha(G) = \max\{|S| : S \in \text{Ind}(G)\}$.

Let us denote the set $\{S : S$ is a maximum independent set of $G\}$ by $\Omega(G)$, and let $\text{core}(G) = \cap\{S : S \in \Omega(G)\}$. A set $A \subseteq V(G)$ is a local maximum independent set of G if $A \in \Omega(G[N[A]])$.

Theorem 1.1 [22] Every local maximum independent set of a graph is a subset of a maximum independent set.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality $\mu(G)$ is a maximum matching, and a perfect matching is one covering all vertices of G.

It is well-known that
\[
|V|/2 + 1 \leq \alpha(G) + \mu(G) \leq |V|
\]
hold for any graph $G = (V, E)$. If $\alpha(G) + \mu(G) = |V|$, then G is called a König-Egerváry graph. We attribute this definition to Deming [6], and Sterboul [25]. These graphs were studied in [3, 11, 15, 18, 19, 20, 21, 24], and generalized in [2, 23].

According to a well-known result of König [10], and Egerváry [8], any bipartite graph is a König-Egerváry graph. This class includes non-bipartite graphs as well (see, for instance, the graphs H_1 and H_2 in Figure 1).

![Figure 1: Only H_3 is not a König–Egerváry graph, as $\alpha(H_3) + \mu(H_3) = 4 < 5 = |V(H_3)|$.](image)

It is easy to see that if G is a König-Egerváry graph, then $\alpha(G) \geq \mu(G)$, and that a graph G having a perfect matching is a König-Egerváry graph if and only if $\alpha(G) = \mu(G)$.

The number $d(G) = \max\{|S| - |N(S)| : S \in \text{Ind}(G)\}$ is called the critical difference of G. An independent set A is critical if $|A| - |N(A)| = d(G)$, and the critical independence number $\alpha_c(G)$ is the cardinality of a maximum critical independent set [20]. Clearly, $\alpha_c(G) \leq \alpha(G)$ holds for any graph G. It is known that the problem of finding a critical independent set is polynomially solvable [1, 26].

Proposition 1.2 [13] If S is a critical independent set, then there is a matching from $N(S)$ into S.

If S is an independent set of a graph G and $H = G - S$, then we write $G = S \ast H$. Evidently, any graph admits such representations. For instance, if $E(H) = \emptyset$, then $G = S \ast H$ is bipartite; if H is complete, then $G = S \ast H$ is a split graph [9].

Proposition 1.3 [18] G is a König-Egerváry graph if and only if $G = H_1 \ast H_2$, where $V(H_1) \in \Omega(G)$ and $|V(H_1)| \geq \mu(G) = |V(H_2)|$.

2
Let M be a maximum matching of a graph G. To adopt Edmonds’s terminology [7], we recall the following terms for G relative to M. An alternating path from a vertex x to a vertex y is a x,y-path whose edges are alternating in and not in M. A vertex x is exposed relative to M if x is not the endpoint of a heavy edge. An odd cycle C with $V(C) = \{x_0, x_1, ..., x_{2k}\}$ and $E(C) = \{x_i x_{i+1} \mid 0 \leq i \leq 2k - 1\} \cup \{x_{2k}, x_0\}$, such that $x_1x_2, x_3x_4, ..., x_{2k-1}x_{2k} \in M$ is a blossom relative to M. The vertex x_0 is the base of the blossom. The stem is an even length alternating path joining the base of a blossom and an exposed vertex for M. The base is the only common vertex to the blossom and the stem. A flower is a blossom and its stem. A posy consists of two (not necessarily disjoint) blossoms joined by an odd length alternating path whose first and last edges belong to M. The endpoints of the path are exactly the bases of the two blossoms. The following result of Sterboul, characterizes König-Egerváry graphs in terms of forbidden configurations.

Theorem 1.4 [25] For a graph G, the following properties are equivalent:

(i) G is a König-Egerváry graph;

(ii) there exist no flower and no posy relative to some maximum matching M;

(iii) there exist no flower and no posy relative to any maximum matching M.

In [20] is given a characterization of König-Egerváry graphs having a perfect matching, in terms of certain forbidden subgraphs with respect to a specific perfect matching of the graph. In [12] is given the following characterization of König-Egerváry graphs in terms of excluded structures.

Theorem 1.5 [12] Let M be a maximum matching in a graph G. Then G is a König-Egerváry graph if and only if G does not contain one of the forbidden configurations, depicted in Figure 2, with respect to M.

![Forbidden configurations](image)

Figure 2: Forbidden configurations. The vertex v is not adjacent to the matching edges (namely, dashed edges).

In [14] it was shown that G is a König-Egerváry graph if and only if $\alpha_c(G) = \alpha(G)$, thus giving a positive answer to the Graffiti.pc 329 conjecture [5].

The deficiency of G, denoted by $def(G)$, is defined as the number of exposed vertices relative to a maximum matching [21]. In other words, $def(G) = |V(G)| - 2\mu(G)$.

3
In this paper we prove that the critical difference for a König-Egerváry graph G is given by
$$d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G) = \text{def}(G),$$
and using this finding, we show that G is a König-Egerváry graph if and only if each of its maximum independent sets is critical.

2 Results

Proposition 2.1 Every critical independent set is a local maximum independent set.

Proof. Suppose, on the contrary, that there is a critical independent set S such that $S \notin \Psi(G)$, i.e., there exists some independent set $A \subseteq N[S]$, larger than S. It follows that $|A \cap N(S)| > |S - S \cap A|$, and this contradicts the fact that, according to Proposition 1.2 there is a matching from $A \cap N(S)$ to S, in fact, from $A \cap N(S)$ to $S - S \cap A$. \quad \blacksquare

The converse of Proposition 2.1 is not true; e.g., the set $\{d, h\}$ is a local maximum independent set of the graph G_1 from Figure 3 but it is not critical.

Using Theorem 1.1 we easily deduce the following result.

Corollary 2.2 Every critical independent set is contained in some maximum independent set.

Theorem 2.3 If G is a König-Egerváry graph, then

(i) $|S| = |V(G) - S : S \in \Omega(G)|$;

(ii) $\alpha(G) + |\{V(G) - S : S \in \Omega(G)\}| = \mu(G) + |\{S : S \in \Omega(G)\}|$;

(iii) $G - N[\text{core}(G)]$ has a perfect matching and it is also a König-Egerváry graph.

Let us notice that for non-König-Egerváry graphs every relation between $\alpha(G) - \mu(G)$ and $|\text{core}(G)| - |N(\text{core}(G))|$ is possible.

![Figure 3: $\alpha(G_1) = 6$, $\mu(G_1) = 3$, core$(G_1) = \{a, b, d, g\}$ and $N[\text{core}(G_1)] = \{c, e\}$, while $\alpha(G_2) = 4$, $\mu(G_2) = 3$, core$(G_2) = \{x, y, z\}$, and $N[\text{core}(G_2)] = \{v\}$.](image)

The non-König-Egerváry graphs from Figure 3 satisfy:

$$\alpha(G_1) - \mu(G_1) = 3 = |\text{core}(G_1)| - |N(\text{core}(G_1))|$$

and

$$\alpha(G_2) - \mu(G_2) = 1 < 2 = |\text{core}(G_2)| - |N(\text{core}(G_2))|.$$
Theorem 2.4 If G is König-Egerváry graph, then the following equalities hold

$$d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G) = \text{def}(G).$$

Proof. Firstly, let us prove that $\alpha(G) - \mu(G) \geq |S| - |N(S)|$ holds for every $S \in \text{Ind}(G)$, i.e., $d(G) \leq \alpha(G) - \mu(G)$. If $\alpha(G) = \mu(G)$, then G has a perfect matching and

$$|S| - |N(S)| \leq 0 = \alpha(G) - \mu(G)$$

holds for every $S \in \text{Ind}(G)$.

Suppose that $\alpha(G) > \mu(G)$. Let $S_0 \in \Omega(G)$ and M be a maximum matching, i.e., $|M| = |V(G) - S_0| = \mu(G)$. Assume that $S \in \text{Ind}(G)$ satisfies $|S| - |N(S)| > 0$. Then one can write $S = S_1 \cup S_2 \cup S_3$, where $S_3 \subseteq V(G) - S_0$, $S_1 \cup S_2 \subseteq S_0$, $S_1 \cap S_2 = \emptyset$, and S_2 contains every $v \in S$ matched by M with some vertex of $V(G) - S_0$. Since M is a maximum matching, we obtain that $|S_2| - |N(S_2)| \leq 0$ and $|S_3| - |N(S_3)| \leq 0$. Consequently, we infer that

$$\alpha(G) - \mu(G) = |S_0| - |V(G) - S_0| \geq |S_1| \geq |S| - |N(S)|,$$

as required (see Figure 4 for various examples of S).

Figure 4: $S_0 = \{x_i : 1 \leq i \leq 8\}, M = \{y_1x_4, y_2x_5, y_3x_6, y_4x_7, y_5x_8\}$, $S = S_1 \cup S_2 \cup S_3$, where $S_2 = \{x_5\}$, $S_3 = \{y_4, y_5\}$, while S_1 belongs to $\{\{x_1, x_2\}, \{x_1x_3\}, \{x_3\}\}$.

The fact that core(G) is an independent set of G ensures that

$$\alpha(G) - \mu(G) \geq |\text{core}(G)| - |N(\text{core}(G))|.$$

Since G is a König-Egerváry graph, we get that

$$\alpha(G) + \mu(G) = |V(G)| = |\text{core}(G)| + |N(\text{core}(G))| + |V(G - N(\text{core}(G)))|.$$

Assuming that

$$\alpha(G) - \mu(G) > |\text{core}(G)| - |N(\text{core}(G))|,$$

we obtain the following contradiction

$$2\alpha(G) > 2|\text{core}(G)| + |V(G - N(\text{core}(G)))|$$

$$= 2|\text{core}(G)| + 2\alpha(G - N(\text{core}(G))) = 2\alpha(G),$$

because $|V(G - N(\text{core}(G)))| = 2\alpha(G - N(\text{core}(G)))$ by Theorem 2.3(iii).

Therefore, we get that $\alpha(G) - \mu(G) = |\text{core}(G)| - |N(\text{core}(G))|$. Actually, this equality immediately follows from Theorem 2.3(i), (ii), but the current way of proof exploits different aspects of $\text{Ind}(G)$.

Further, using the inequality \(d(G) \leq \alpha(G) - \mu(G) \) and the equality
\[
\alpha(G) - \mu(G) = |\text{core}(G)| - |N(\text{core}(G))|,
\]
we finally deduce that
\[
|\text{core}(G)| - |N(\text{core}(G))| \leq \max\{|S| - |N(S)| : S \in \text{Ind}(G)\} = d(G)
\]
\[
\leq \alpha(G) - \mu(G) = |\text{core}(G)| - |N(\text{core}(G))|,
\]
i.e.,
\[
\alpha(G) - \mu(G) = |\text{core}(G)| - |N(\text{core}(G))| = d(G).
\]

Since \(G \) is a Kőnig-Egerváry graph, we infer that
\[
\alpha(G) - \mu(G) = \alpha(G) + \mu(G) - 2\mu(G) = |V(G)| - 2\mu(G) = \text{def}(G),
\]
and this completes the proof.

Corollary 2.5 If \(G \) is a Kőnig-Egerváry graph, then \(d(G) = 0 \) if and only if \(G \) has a perfect matching.

Remark 2.6 There exist non-Kőnig-Egerváry graphs enjoying the equalities
\[
d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G),
\]
see, for instance, the graph \(G \) from Figure 5.

Figure 5: \(G \) has \(\alpha(G) = 4, \mu(G) = 3 \), \(\text{core}(G) = \{a, h\} \) and \(N(\text{core}(G)) = \{b\} \).

Theorem 2.7 The following assertions are equivalent:
(i) \(G \) is a Kőnig-Egerváry graph;
(ii) there is \(S \in \Omega(G) \), such that \(S \) is critical, i.e., \(\alpha_c(G) = \alpha(G) \);
(iii) every \(S \in \Omega(G) \) is critical.

Proof.
(i) \(\Rightarrow \) (iii) Let \(S \in \Omega(G) \), \(A = S - \text{core}(G) \) and \(B = V(G) - S - N(\text{core}(G)) \). By Theorem 2.3 (iii), we infer that \(|A| = |B| \), since \(G - N[\text{core}(G)] \) has a perfect matching. Hence, we obtain that
\[
|S| - |N(S)| = |A| + |\text{core}(G)| - (|B| + |N(\text{core}(G))|)
= |\text{core}(G)| - |N(\text{core}(G))|.
\]

In other words, according to Theorem 2.3, the equality \(|S| - |N(S)| = d(G) \) is true for every \(S \in \Omega(G) \).

(iii) \(\Rightarrow \) (i) It is clear.

(iii) \(\Rightarrow \) (ii) This was done in [14]. For the sake of completeness we add the proof.

There is a critical independent set \(S \) with \(|S| = \alpha_c(G) = \alpha(G) \). By Proposition 1.2, there exists a matching \(M \) from \(N(S) \) into \(S \), and clearly, \(|M| = |N(S)| = \mu(G) \). Hence, we finally obtain that \(|V(G)| = |S| + |N(S)| = \alpha(G) + \mu(G) \), i.e., \(G \) is a Kőnig-Egerváry graph.

3 Conclusions

In this paper we give a new characterization of König-Egerváry graphs. On the one hand, it is similar in form to Sterboul's theorem [25]. On the other hand it extends Larson's finding [14]. We found that the critical difference of a König-Egerváry graph G is given by

$$d(G) = |\text{core}(G)| - |N(\text{core}(G))| = \alpha(G) - \mu(G) = \text{def}(G).$$

It seems interesting to find other families of graphs satisfying these equalities.

References

[1] A. A. Ageev, On finding critical independent and vertex sets, SIAM J. Discrete Mathematics 7 (1994) 293–295.

[2] J. - M. Bourjolly, P. L. Hammer, B. Simeone, Node weighted graphs having König-Egerváry property, Math. Programming Study 22 (1984) 44-63.

[3] J. M. Bourjolly, W. R. Pulleyblank, König-Egerváry graphs, 2-bicritical graphs and fractional matchings, Discrete Applied Mathematics 24 (1989) 63–82.

[4] S. Butenko, S. Trukhanov, Using Critical Sets to Solve the Maximum Independent Set Problem, Operations Research Letters 35 (2007) 519-524.

[5] E. DeLaVina, Written on the Wall II, Conjectures of Graffiti.pc, http://cms.dt.uh.edu/faculty/delavinae/research/wowII/

[6] R. W. Deming, Independence numbers of graphs - an extension of the König-Egerváry theorem, Discrete Mathematics 27 (1979) 23–33.

[7] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics 17 (1965) 449-467.

[8] E. Egerváry, On combinatorial properties of matrices, Matematikai Lapok 38 (1931) 16–28.

[9] S. Földes, P. L. Hammer, Split graphs, Proceedings of 8th Southeastern Conference on Combinatorics, Graph Theory and Computing (F. Hoffman et al. eds), Louisiana State University, Baton Rouge, Louisiana, 311–315.

[10] D. König, Graphen und Matrizen, Matematikai Lapok 38 (1931) 116–119.

[11] E. Korach, On dual integrality, min-max equalities and algorithms in combinatorial programming, University of Waterloo, Department of Combinatorics and Optimization, Ph.D. Thesis, 1982.

[12] E. Korach, T. Nguyen, B. Peis, Subgraph characterization of Red/Blue-Split Graph and König-Egerváry graphs, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Press (2006) 842-850.
[13] C. E. Larson, *A note on critical independence reductions*, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.

[14] C. E. Larson, *A new characterization of König-Egerváry graphs*, The 2nd Canadian Discrete and Algorithmic Mathematics Conference, May 25-28, 2009, CRM Montreal (Canada).

[15] V. E. Levit, E. Mandrescu, *Well-covered and König-Egerváry graphs*, Congressus Numerantium 130 (1998) 209–218.

[16] V. E. Levit, E. Mandrescu, *A new greedoid: the family of local maximum stable sets of a forest*, Discrete Applied Mathematics 124 (2002) 91-101.

[17] V. E. Levit, E. Mandrescu, *Combinatorial properties of the family of maximum stable sets of a graph*, Discrete Applied Mathematics 117 (2002) 149-161.

[18] V. E. Levit, E. Mandrescu, *On α+-stable König-Egerváry graphs*, Discrete Mathematics 263 (2003) 179–190.

[19] V. E. Levit, E. Mandrescu, *On α-critical edges in König-Egerváry graphs*, Discrete Mathematics 306 (2006) 1684-1693.

[20] L. Lovász, *Ear decomposition of matching covered graphs*, Combinatorica 3 (1983) 105-117.

[21] L. Lovász, M. D. Plummer, *Matching Theory*, Annals of Discrete Mathematics 29 (1986) North-Holland.

[22] G. L. Nemhauser and L. E. Trotter, Jr., *Vertex packings: structural properties and algorithms*, Mathematical Programming 8 (1975) 232-248.

[23] V. T. Paschos, M. Demange, *A generalization of König-Egerváry graphs and heuristics for the maximum independent set problem with improved approximation ratios*, European Journal of Operational Research 97 (1997) 580–592.

[24] W. R. Pulleyblank, *Matchings and Extensions*, in: *Handbook of Combinatorics, Volume 1* (eds. R. L. Graham, M. Grotschel and L. Lovász), MIT Press and North-Holland, Amsterdam (1995) 179-232.

[25] F. Sterboul, *A characterization of the graphs in which the transversal number equals the matching number*, Journal of Combinatorial Theory Series B 27 (1979) 228–229.

[26] C. Q. Zhang, *Finding critical independent sets and critical vertex subsets are polynomial problems*, SIAM J. Discrete Mathematics 3 (1990) 431-438.