WEAK COMPACTNESS OF ALMOST LIMITED OPERATORS

AZIZ ELBOUR, NABIL MACHRAFI, AND MOHAMMED MOUSSA

Abstract. The paper is devoted to the relationship between almost limited operators and weakly compacts operators. We show that if F is a σ-Dedekind complete Banach lattice then, every almost limited operator $T : E \rightarrow F$ is weakly compact if and only if E is reflexive or the norm of F is order continuous. Also, we show that if E is a σ-Dedekind complete Banach lattice then the square of every positive almost limited operator $T : E \rightarrow E$ is weakly compact if and only if the norm of E is order continuous.

1. Introduction

Throughout this paper X, Y will denote real Banach spaces, and E, F will denote real Banach lattices. B_X is the closed unit ball of X and $B_X^+ := B_E \cap E^+$ is the positive part of B_E. We will use the term operator $T : X \rightarrow Y$ between two Banach spaces to mean a bounded linear mapping. We refer to [1, 5] for unexplained terminology of the Banach lattice theory and positive operators.

Let us recall that a norm bounded set A in a Banach space X is called limited, if every weak* null sequence (f_n) in X^* converges uniformly to zero on A, that is, $\sup_{x \in A}|f_n(x)| \rightarrow 0$. An operator $T : X \rightarrow Y$ is said to be limited whenever $T(B_X)$ is a limited set in Y, equivalently, whenever $||T^*(f_n)|| \rightarrow 0$ for every weak* null sequence $(f_n) \subset Y^*$.

Recently, the authors of [2] considered the disjoint version of limited sets by introducing the class of almost limited sets in Banach lattices. From [2] a norm bounded subset A of a Banach lattice E is said to be almost limited, if every disjoint weak* null sequence (f_n) in E^* converges uniformly to zero on A.

From [4], an operator $T : X \rightarrow E$ is called almost limited if $T(B_X)$ is an almost limited set in E, equivalently, $||T^*(f_n)|| \rightarrow 0$ for every disjoint weak* null sequence $(f_n) \subset E^*$. Note that an almost limited operator need not be weakly compact. In fact, the identity operator of the Banach lattice ℓ^∞ is almost limited but it is not weakly compact.

In this paper, we characterize pairs of Banach lattices E, F for which every almost limited operator $T : E \rightarrow F$ is weakly compact. More precisely, we will prove that if F is a σ-Dedekind complete Banach lattice then, every almost limited operator $T : E \rightarrow F$ is weakly compact if and only if E is reflexive or the norm of F is order continuous (Theorem 2.5). Next, we will prove that if E is a σ-Dedekind complete Banach lattice then the square of every positive almost limited operator $T : E \rightarrow E$ is weakly compact if and only if the norm of E is order continuous (Theorem 2.9). As consequences, we will give some interesting results.

2010 Mathematics Subject Classification. Primary 46B42; Secondary 46B50, 47B65.

Key words and phrases. almost limited operator, weakly compact operator, positive dual Schur property, order continuous norm, almost limited set.
2. Main results

Let us recall that a Banach lattice E is said to have the dual positive Schur property if $\|f_n\| \to 0$ for every weak* null sequence $(f_n) \subset (E^*)^\tau$, equivalently, $\|f_n\| \to 0$ for every weak* null sequence $(f_n) \subset (E^*)^\tau$ consisting of pairwise disjoint terms (Proposition 2.3 of [8]). A Banach lattice E has the property (d) whenever $|f_n| \wedge |f_n| = 0$ and $f_n \overset{w^*}{\to} 0$ in E^*. It should be noted, by Proposition 1.4 of [8], that every σ-Dedekind complete Banach lattice has the property (d) but the converse is not true in general. In fact, the Banach lattice ℓ^∞/c_0 has the property (d) but it is not σ-Dedekind complete [8, Remark 1.5].

Our first result shows that we can restrict sequences appearing in the definition of almost limited operator $T : X \to E$ to positive disjoint sequences if the Banach lattice E has the property (d).

Proposition 2.1. An operator $T : X \to E$ from a Banach space X into a Banach lattice E with the property (d), is almost limited if and only if $\|T^*(f_n)\| \to 0$ for every weak* null sequence (f_n) in E^* consisting of positive and pairwise disjoint elements.

Proof. The “only if” part is trivial. For the “if” part, let $(f_n) \subset E^*$ be a disjoint weak* null sequence. As E has the property (d), $|f_n| \overset{w^*}{\to} 0$. Using the inequalities $0 \leq f_n^+ \leq |f_n|$ and $0 \leq f_n^- \leq |f_n|$, we see that (f_n^+) and (f_n^-) are disjoint weak* null sequences of E^*. So, from our hypothesis we see that $\|T^*(f_n^+))\| \to 0$ and $\|T^*(f_n^-)\| \to 0$. This implies that $\|T^*(f_n)\| \to 0$, and hence T is almost limited. \hfill \square

The next result follows immediately from Proposition 2.3 of [8] combined with Proposition 2.1.

Corollary 2.2. A Banach lattice E with the property (d) has the dual positive Schur property if and only if the identity operator on E is almost limited.

The following result shows that if a positive almost limited operator $T : E \to F$ has its range in a Banach lattice with the property (d), then every positive operator $S : E \to F$ that dominates (i.e., $0 \leq S \leq T$) is also almost limited.

Proposition 2.3. Let E and F be two Banach lattices such that F has the property (d). If a positive operator $S : E \to F$ is dominated by an almost limited operator, then S itself is almost limited.

Proof. Let $S, T : E \to F$ be two operators such that $0 \leq S \leq T$ and T is almost limited. Let (f_n) be a disjoint sequence in $(F^*)^\tau$ such that $f_n \overset{w^*}{\to} 0$. As T is almost limited, $\|T^*(f_n)\| \to 0$. Using the inequalities $0 \leq S^*(f_n) \leq T^*(f_n)$, we see that $\|S^*(f_n)\| \leq \|T^*(f_n)\|$ for all n, from which we get $\|S^*(f_n)\| \to 0$. Now, by Proposition 2.1 S is well almost limited. \hfill \square

The next remark will be useful in further considerations.

Remark 2.4.

1. Consider the scheme of operators $X \overset{R}{\to} Y \overset{S}{\to} F$. It is easy to see that if S is an almost limited operator, then $S \circ R$ is likewise almost limited.

2. Consider the scheme of operators $X \overset{R}{\to} E \overset{S}{\to} F$.

(a) If R is an almost limited operator, then $S \circ R$ is not necessarily almost limited. In fact, by a result in [6], there exists a non regular operator $S : \ell^\infty \to c_0$, which is certainly not compact. So by Proposition 4.3 of [4], S is not almost limited. If $R : \ell^\infty \to \ell^\infty$ is the identity operator on ℓ^∞ then R is almost limited but $S \circ R = S$ is not almost limited.

(b) However, if E has the dual positive Schur property (for example, $E = \ell^\infty$) and F has the property (d), and S is positive, then $T = S \circ R$ is an almost limited operator. In fact, according to Proposition 2.1, let $(f_n) \subseteq F^*$ be a positive disjoint weak* null sequence. Clearly $0 \leq S^* f_n \overset{w^*}{\to} 0$ holds in E^*. Since E has the dual positive Schur property then $\|S^* f_n\| \to 0$, and hence $\|T^* f_n\| = \|R^* (S^* f_n)\| \to 0$, as desired.

Our next major result characterizes pairs of Banach lattices E, F for which every positive almost limited operator $T : E \to F$ is weakly compact.

Theorem 2.5. Let E and F be two Banach lattices such that F is σ-Dedekind complete. Then the following assertions are equivalent:

1. Every almost limited operator $T : E \to F$ is weakly compact.
2. Every positive almost limited operator $T : E \to F$ is weakly compact.
3. One of the following statements is valid:
 a. E is reflexive.
 b. The norm of F is order continuous.

Proof. (1) \Rightarrow (2) Obvious.

(2) \Rightarrow (3) Assume by way of contradiction that E is not reflexive and the norm of F is not order continuous. We have to construct a positive almost limited operator $T : E \to F$ which is not weakly compact.

Indeed, since the norm of F is not order continuous, then by Corollary 2.4.3 of [5] we may assume that ℓ^∞ is a closed sublattice of F. As E is not reflexive then E^* is not reflexive, and hence the closed unit ball B_{E^*} of E^* is not weakly compact. So, from $B_{E^*} \subset B_{E^*}^c - B_{E^*}^c$, we see that $B_{E^*}^c$ is not weakly compact. Then, by the Eberlein-Šmulian theorem one can find a sequence (f_n) in $B_{E^*}^c$ which does not have any weakly convergent subsequence. Consider the positive operator $T : E \to \ell^\infty \subseteq F$ defined by

$$T(x) = (f_n(x))_{n=1}^\infty$$

for all $x \in E$. By Remark 2.4(2b) T is an almost limited operator. But T is not weakly compact. In fact, if T were weakly compact then $T^* : (\ell^\infty)^* \to E^*$ would weakly compact. Note that $T^*((\lambda_n)_{n=1}^\infty) = \sum_{n=1}^\infty \lambda_n f_n$ for every $(\lambda_n)_{n=1}^\infty \in \ell^1 \subset (\ell^\infty)^*$. So, if e_n is the usual basis element in ℓ^1 then $T^* (\lambda_n) = f_n$ so that (f_n) would have a weakly convergent subsequence. This contradicts the choice of (f_n). Therefore, T is not weakly compact, as desired.

(a) \Rightarrow (1) In this case, every operator from E into F is weakly compact.

(b) \Rightarrow (1) By Theorem 4.2 of [4] we see that T is L-weakly compact, and by Theorem 5.61 of [1] T is well weakly compact.

By a similar proof as the previous theorem, we obtain the following result.

Theorem 2.6. Let X a Banach space and F a σ-Dedekind complete Banach lattice. Then the following assertions are equivalent:
(1) Every almost limited operator $T : X \to F$ is weakly compact.

(2) One of the following statements is valid:
 (a) X is reflexive.
 (b) The norm of F is order continuous.

As a consequence of Theorem 2.5, we obtain an operator characterization of order continuity of the norm of a σ-Dedekind complete Banach lattice.

Corollary 2.7. Let E be a σ-Dedekind complete Banach lattice. Then the following statements are equivalent:

1. Every almost limited operator T from E into E is weakly compact.
2. Every positive almost limited operator T from E into E is weakly compact.
3. The norm of E is order continuous.

Another consequence of Theorem 2.5 is the following result.

Corollary 2.8. For a Banach lattice E, the following statements are equivalent:

1. Every positive operator $T : E \to F$ from E to an arbitrary infinite dimensional AM-space is weakly compact.
2. Every positive operator $T : E \to \ell_\infty$ is weakly compact.
3. E is reflexive.

Proof. (1) \Rightarrow (2) and (3) \Rightarrow (1) are obvious. (2) \Rightarrow (3) Follows from Theorem 2.5. □

The following result characterize Banach lattice E for which every positive almost limited operator $T : E \to E$ has a weakly compact square.

Theorem 2.9. Let E be a σ-Dedekind complete Banach lattice. Then the following statements are equivalent:

1. Every positive almost limited operator T from E into E is weakly compact.
2. For every positive almost limited operator T from E into E, the operator T^2 is weakly compact.
3. The norm of E is order continuous.

Proof. (1) \Rightarrow (2) Obvious.

(2) \Rightarrow (3) Assume by way of contradiction that the norm of E is not order continuous. So, by Theorem 4.14 of [1] there exists a disjoint sequence $(u_n) \subset E^+$ satisfying $\|u_n\| = 1$ and $0 \leq u_n \leq u$ for all n and for some $u \in E^+$. We can now proceed analogously to the proof of Proposition 0.5.5 of [7]. Let $g_n \in E^+$ be of norm one and such that $g_n(u_n) = \|u_n\| = 1$ and let P_n be the band projection onto $\{u_n\}^{dd}$, where $\{u_n\}^{dd}$ is the band generated by $\{u_n\}$. If $f_n = g_n \circ P_n$, then $f_n \wedge f_m = 0$ for $n \neq m$, $\sup_n \|f_n\| \leq 1$ and $f_n(u_m) = \delta_{nm}$. Hence the operator $S : \ell^\infty \to E$ defined by

$$S((t_n)_{n=1}^\infty) = (\omega \sum_{n=1}^\infty t_n u_n)$$

is a lattice isomorphism from ℓ^∞ into E, where $(\omega \sum_{n=1}^\infty t_n u_n)$ denotes the order limit of the sequence of the partial sums $\sum_{n=1}^m t_n u_n$ for each $(t_n)_{n=1}^\infty \in \ell^\infty$. Also, let $R : E \to \ell^\infty$ be the positive operator defined by

$$R(x) = (f_n(x))_{n=1}^\infty.$$
So, by Remark 2.4(2b), the positive operator \(T = S \circ R : E \to F \) defined by
\[
T(x) = (o) \sum_{n=1}^{\infty} f_n(x)u_n
\]
is almost limited. But \(T \) is not weakly compact. In fact, let \(x_n = \sum_{k=1}^{n} u_k \) for each \(n \), and note that \(0 \leq x_n \uparrow u \). Clearly \(T(u_n) = u_n \), and hence \(T(x_n) = x_n \) for all \(n \). If \(x \) is a weak limit of a subsequence of \((x_n) \), then it is easy to see that \(x_n \uparrow x \) and \(x_n \overset{\omega}{\to} x \) must hold. By Theorem 3.52 of [1] we have \(\|x_n - x\| \to 0 \), and hence \(\|x_{n+1} - x_n\| \to 0 \). But this contradicts \(\|x_{n+1} - x_n\| = \|u_{n+1}\| = 1 \) for all \(n \). Thus \((x_n) \) has no weakly convergent subsequence, and hence \(T \) is not weakly compact, as desired.

\((3) \Rightarrow (1)\) Follows from Theorem 2.5. \(\square\)

Finally, note that a weakly compact operator \(T : X \to F \) need not be almost limited. In fact, the identity operator of the Banach lattice \(\ell^2 \) is weakly compact but it is not almost limited. However, if \(F \) has the positive Schur property, then the two class coincide. The details follow.

Proposition 2.10. An operator \(T : X \to F \) from a Banach space \(X \) to a Banach lattice \(F \) with the positive Schur property is weakly compact if and only if it is almost limited.

Proof. The “if” part follows from Theorem 2.6. For the “only if” part, assume that \(T : X \to F \) is weakly compact. It follows from Theorem 3.4 of [3] that \(T \) is L-weakly compact, and hence \(T \) is almost limited [4, Theorem 4.2]. \(\square\)

References

[1] Aliprantis, C.D. and Burkinshaw, O.: *Positive operators*. Reprint of the 1985 original. Springer, Dordrecht, 2006.

[2] Chen J.X., Chen Z.L., Ji G.X.: *Almost limited sets in Banach lattices*, J. Math. Anal. Appl. 412 (2014) 547–553.

[3] Chen, Z.L., Wickstead, A.W.: *L-weakly and M-weakly compact operators*. Indag. Math. 10(3), 321–336 (1999).

[4] Machrafi N., Elbour A., Moussa M.: *Some characterizations of almost limited sets and applications*. http://arxiv.org/abs/1312.2770

[5] Meyer-Nieberg P.: *Banach lattices*. Universitext. Springer-Verlag, Berlin, 1991.

[6] Wnuk W.: *A characterization of discrete Banach lattices with order continuous norms*. Proc. Amer. Math. Soc. 104, 197-200 (1988).

[7] Wnuk W.: *Banach lattices with order continuous norms*. Polish Scientific Publishers PWN, Warsaw (1999).

[8] Wnuk W.: *On the dual positive Schur property in Banach lattices*. Positivity (2013) 17:759–773.

(A. Elbour) Université Moulay Ismaïl, Faculté des Sciences et Techniques, Département de Mathématiques, B.P. 509, Errachidia, Morocco.

E-mail address: azizelbour@hotmail.com

(N. Machrafi) Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco.

E-mail address: nmachrafi@gmail.com

(M. Moussa) Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco.

E-mail address: mohammed.moussa09@gmail.com