Green highway evaluation based on Big Data GIS and BIM technology

Zhenwu Shi 1 · Kuncheng Lv 2

Received: 11 March 2021 / Accepted: 1 May 2021 / Published online: 29 May 2021 © Saudi Society for Geosciences 2021

Abstract

The construction of a green road that has no negative impacts and can develop in harmony with the natural environment and ecological construction has become the inevitable development direction of our national road construction. For some construction projects with relatively high difficulty, relatively high technical requirements, and relatively complex engineering framework, the use of BIM technology can improve the management ability and management level of the construction of the project, thereby improving the development of quality engineering construction. GIS technology can accurately locate the natural environment and geographic information surrounding the construction project. So as to make the BIM model more complete. Therefore, in the process of highway project construction, GIS data and BIM model are used to combine, so that the two can cooperate with each other to achieve the degree of complementary advantages. The two can effectively communicate and exchange data, so that the model data can be combined more accurately when modeling. Under the guidance of the concept of sustainable development, the design, construction and maintenance of green highways are carried out, so as to provide a theoretical basis and scientific basis for the evaluation of green highways.

Keywords Big data GIS · BIM technology · Green highway · Evaluation research

Introduction

As the saying goes, if you want to get rich before you build roads, with the rapid development of our country’s economic construction, our country’s roads are also very smooth and developed, especially highway construction. Now our country’s highways can be said to extend in all directions. The construction of national highways, provincial highways, and expressways has enabled our country to achieve rapid development. While the highway brings convenience to people’s traffic, it also inevitably brings some negative effects to the natural environment and ecological construction (Gardenas 2000). Therefore, the construction of a green road that has no negative impacts and can develop in harmony with the natural environment and ecological construction has become the inevitable development direction of our national road construction (Norby and Luo 2004). During the construction of highway facilities with the goal of green highways and quality projects, the construction of information technology based on transportation is gradually applied and widely developed. Our country’s relevant authorities have also issued a number of policies in recent years to encourage the use and promotion of BIM technology. In this case, BIM technology has been greatly developed (Köster et al. 2018). For some construction projects with relatively high difficulty, relatively high technical requirements, and relatively complex engineering framework, the use of BIM technology can improve the management ability and management level of the construction of the project, thereby improving the development of quality engineering construction (Abaimov et al. 2000). The BIM technology model is based on WebGL technology. The use of BIM technology in various management platforms has been applied in the design, implementation, and operation of traffic construction projects. The organic integration of GIS technology and BIM technology can enable the construction project to take into account both the macro- and microlevels and enable the transportation construction project to make significant progress in realizing information construction (Laganière et al. 2012).
Application of GIS and BIM technology based on big data in the process of green highway construction

GIS technology

Geographic information system technology is what we usually call GIS technology. Geographical information system refers to the information technology and information system in a certain specific space. Geographic information system refers to an information technology system that collects, organizes, summarizes, and analyzes the relevant geographic data on the surface of our earth through some software and hardware information technologies (Kuzmichev et al. 2005). Through hardware facilities such as remote sensors, cameras, and computers, software systems such as photography and image processing are applied to the hardware facilities to obtain GIS data. Now in the development of various industries such as smart cities and smart transportation advocated in our country, GIS technology has been widely used. And as the scope of my country’s Wisdom+ becomes wider and wider, the role of GIS technology will become greater and greater (O’Neill et al. 2003).

BIM lightweight technology

BIM lightweight technology

Among the BIM models, the model has various high-quality features such as visibility, information, and integration. Due to the existence of these characteristics and advantages, the BIM model is widely used in the construction of engineering projects. But at the same time, in the application process, various software facilities and software system settings are needed to realize it together (Gaüzère et al. 2018). The system of BIM software is different, which will lead to different data requirements. BIM lightweight technology generally refers to the data analysis of the BIM model, the geometric data in the model is analyzed, and these data are optimized at the same time, so that the data information of the BIM model is reduced, and this data information converted into WEB data format (Parazoo et al. 2018). Then watch the BIM model on the computer through the browser. Because the browser is also limited by computer memory, etc., when the browser views the model, the browser data should be adjusted appropriately. The main purpose is to convert the BIM model to a certain extent and load it lightly (Maier and Kress 2000). Only in this way can the model be better viewed by the browser. In the process of viewing from the BIM model to the browser, several conversions are required to achieve this. The application situation in the conversion process directly affects the lightweight effect. Therefore, the BIM model is transformed and further developed and applied by loading, so that the model can adapt to more management system platforms. It can effectively improve the use efficiency of the BIM model, and it can also solve the problem that the model is affected by related software.

System architecture

In the system framework associated with the lightweight BIM model, there are mainly two parts to constitute: one is the C/S client side, and the other is the B/S browser side (Osawa et al. 2010). Each of these two parts has its own advantages and disadvantages. It can be used for many types of management platforms. In the C/S architecture, because the architecture system needs to be installed on the client side, the model and system program must be installed in the computer. The systems that need to be placed are the client system and the background management system. The main purpose of putting in the client system is to display it in the function interface (Abbott and Jones 2015). The main purpose of putting it in the background manager is to realize data sharing and data maintenance. In the C/S architecture, because the BIM system model has more operation interfaces, data security is easier to guarantee.

![Fig. 1: Basic structure of B/S system](image-url)
And under the effect of a layer of interaction, the speed of the model can become very fast. The same problem is that the framework has relatively few adaptability, and it must be implanted in the location of the project. And after the system is installed, when the model or data changes, it is more difficult to adjust and the cost is higher. The B/S architecture refers to the abbreviation of browser and server. See Fig. 1 for details.

The BIM system does not need to be specially installed and implanted in the platform, and it can be viewed in the WEB browser of the Internet. Therefore, the BIM model is usually used as the main method in the real society. The B/S architecture is mainly through the interaction between the user and the background and the background manager, after logical analysis and various operations on the BIM model, viewing and browsing through the WEB terminal (Gentsch et al. 2018).

The feature of this architecture is that users do not need to perform special installation and only need to use a web browser to operate, and because the data and programs of the BIM system are in the background manager, when the data changes or the program is updated, it can be completed by upgrading the server, and the operation is relatively simple (Pleshkov 2002). The same problem is that if certain customization requirements arise, special development is required, and the model will be limited and affected by speeds such as network speed. When the data or the program changes, the browsing interface needs to be refreshed before it can be displayed.

Combination of GIS data and BIM model

The BIM model enables the entire process of construction projects to realize information transmission,
information sharing, and information collaboration. Therefore, the BIM model is widely used in transportation construction projects. At the same time, the area spanned by highway construction is relatively large. It has a very close relationship with the geographic location information of different regions (Makhnykina et al. 2020). Therefore, the disadvantage of the BIM system is that it cannot accurately grasp the geographic information and geographic positioning in the road construction. If the BIM technology is used alone, it will make the project construction process encounter many difficulties and uncertainties. GIS technology can accurately locate the natural environment and geographic information surrounding the construction project, so as to make the BIM model more complete (Komulainen et al. 1999). Therefore, in the process of highway project construction, GIS data and BIM model are used to combine, so that the two can cooperate with each other to achieve the degree of complementary advantages. The two can effectively communicate and exchange data, so that the model data can be combined more accurately when modeling.

The concept of green highway

Green roads refer to roads with sustainable development concepts established on the basis of protecting the ecological environment and natural resources (Shugalei 2005). In simple terms, green roads refer to those that have long-term development potential and can save

Table 1 Index system in planning and design stage

Indicator type	First level indicator	Secondary indicators	Indicator attributes
Pressure layer	**Rational design**	Rationalization of highway curves	Qualitative
		Rationalization of pavement quality	Qualitative
		Rationalization of various indicators	Qualitative
		Rationalization of related facilities	Qualitative
State layer	**Social environment**	Land use	Qualitative
		Impact of infrastructure	Qualitative
		Security design situation	Qualitative
		Demolition and resettlement situation	Qualitative
	The problems caused by the ecological environment	The impact of organisms and surrounding environment	Qualitative
		The impact of natural resources such as water	Qualitative
Response layer	**Environmental pollution design**	Air pollution prevention and control	Qualitative
		Water pollution prevention and control	Qualitative
	Ecological protection design	The area occupied by green space	Fixed oxygen
		Animal condition per unit area	Quantitative

Index system of planning and design stage

![Index system of planning and design stage](image)

© Springer
energy, improve the environment, and prevent pollution to the greatest extent within the scope of the road. At the same time, people who have walked on the road can have a feeling of comfort, safety, and beauty. The high-way can be harmoniously integrated with natural resources (Bhupinderpal-Singh et al. 2003). The concept of green highway mainly includes five aspects. One is the concept of sustainable development. In other words, it cannot only meet the needs of people today, but will not pose any threat to our children and grandchildren and can continue to develop for a long time. The second is that in the design, construction, construction, and

Indicator type	First level indicator	Secondary indicators	Indicator attributes
Pressure layer	According to the construction plan	Rationalization of temporary land use during construction	Qualitative
		Rationalization of mechanical equipment in construction	Qualitative
		Rationalization of construction technology	Qualitative
For workers		Environmental protection awareness of operators	Qualitative
		Garbage disposal status of operators	Qualitative
		The impact of operators on the surrounding biological environment	Qualitative
State layer	the effect on the environment	Impact on land environment	Qualitative
		Impact on soil erosion per unit area	Quantitative
		Impact on vegetation per unit area	Qualitative
Use of resources		Improve the use of various resources	Quantitative
		Saving raw materials	Quantitative
		Reuse of various resources	Quantitative
		Use of local materials	Quantitative
Response layer	Prevention and treatment of environmental pollution	Control of noise	Qualitative
		Disposal of construction waste	Quantitative
		Treatment of water pollution	Fixed body
Protection of the ecological environment	Restoration of surrounding vegetation	Quantitative	
		Protection of surrounding species	Qualitative
		Protection of surrounding ancient trees and cultural relics	Qualitative

Fig. 5 Construction index system

Index system of construction stage
use of the highway, the concept of green must be emphasized and environmental pollution and waste of resources must be avoided. The third is in the entire process of design, construction, and use of the highway to achieve the purpose of saving energy and protecting the environment. The fourth is to make people feel safe, comfortable, and beautiful when passing on the highway (Sulzman et al. 2005). Fifth, the construction of green roads enables the road and the surrounding environment to be organically and harmoniously integrated and to achieve the common integration of people, nature, and roads.

Table 3 Operation and maintenance stage indicator system

Indicator type	First level indicator	Secondary indicators	Indicator attributes
Pressure layer	Daily use of highways	Situation of various types of vehicles passing	Quantitative
		Damage to the highway by large and medium trucks	Quantitative
		Safety of vehicle traffic	Qualitative
Usage of service area in highway		Sewage treatment in the service area	Quantitative
		Water saving in the service area	Qualitative
		The impact of service area personnel on the surrounding environment	Qualitative
State layer	Pollution to the surrounding environment	Air pollution	Quantitative
		Noise pollution	Quantitative
Impact on the surrounding environment		Soil erosion in surrounding unit area	Qualitative
		Coordination of the road and surrounding scenery	Qualitative
		The surrounding animals are affected	Qualitative
Response layer	Prevention and treatment of environmental pollution	Prevention and control of dust in the road	Qualitative
		Installation of sound barriers on highway	Quantitative
Protection of the ecological environment		The passage of animals per unit area	Quantitative
		Compensation for damaged ecology	Quantitative
Installation of traffic safety facilities		Details of the installation of traffic safety facilities	Quantitative

Index system of operation and maintenance stage

Fig. 6 Operation and maintenance stage indicator system
Construction of the evaluation system of green highways

Framework model of sustainable development indicator system

The framework model of the sustainable development indicator system mainly has the following three models. Through the research and analysis of these three models, it is believed that under the state of exerting pressure on the surrounding environment, the quality of the environment is improved and the state of the environment is improved to get better (Makhnykina et al. 2016). The state and society have made various aspects of society respond by issuing environmental protection policies and policies for coordinated economic and environmental development. This approach is consistent with the development of green highways.

PSR (pressure-state-response) framework model

The pressure-state-response model is also the PSR model. It is a model framework commonly used in society. He was a model framework for sustainable development proposed in the West in 1989. In this model framework, sustainable development is used as a basic viewpoint and dominant idea (Abaimov et al. 2004). This model is properly expressed by analyzing the various impacts of people’s activities on the surrounding environment and the relationships between man and nature. Pressure means that people’s production and business activities will put a certain pressure on the surrounding environment (Zobitz et al. 2008). State refers to a state between the environment and natural resources and people’s activities in order to achieve sustainable development when environmental pressure increases (Tang et al. 2020). Response refers to a series of measures taken by people to improve and protect the environment based on the current situation of environmental pollution and environmental damage guided by the idea of sustainable development. The specific model is shown in the figure below (Fig. 2):

Grade standard	Level 1	Level 2	Level 3	Level 4	Level 5
Score range	90-100	80-89	70-79	60-69	0-59
Type of pressure	Very light pressure	Less pressure	General pressure	Heavier pressure	Extreme stress
State type	Minimal impact	Minor impact	General impact	More serious impact	Very severe impact
Response type	Great response	Larger response	General response	Smaller response	Minimal response

Index grade standard

![Index grade standard](image-url)
Stage	Grade	Level 1	Level 2	Level 3	Level 4	Level 5	
Planning and Design	Score range	90–100	80–89	70–79	60–69	0–59	
Stress situation	Very light pressure	Less pressure	General pressure	Heavier pressure	Extreme stress		
Reasonable situation along the road	Very reasonable along the highway	Reasonable along the highway	Unreasonable along the highway	Very unreasonable along the highway			
Road design rationalization situation	The road design is very reasonable	Road design is more reasonable	Unreasonable road design	The road design is very unreasonable			
Rationalization of design standards	The design standards are reasonable	Design standards are reasonable	Unreasonable design standards	The design standards are very unreasonable			
Rationalization of related supporting equipment	Related supporting equipment is very reasonable	Related supporting equipment is more reasonable	Related supporting equipment is reasonable	Related supporting equipment is very unreasonable			
Construction	Selected temporary construction situation	The selection of temporary construction is very reasonable	Selection of temporary construction is more reasonable	Reasonable selection of temporary construction	Unreasonable selection of temporary construction	The selection of temporary construction is very unreasonable	
Usage of construction equipment	Construction equipment is very easy to use	Construction equipment is more easy to use	Easy to use construction equipment	Construction equipment is not easy to use	Construction equipment is very difficult to use		
Environmental awareness of operators	Operators have very good environmental awareness	Operators have good environmental awareness	Operators have a general impact on the biological habitat around the highway	Operators have a greater impact on the biological habitat around the highway			
The impact of operators on living things around the highway	Operators have minimal impact on the biological habitat around the highway	Operators have little impact on the biological habitat around the highway	Operators have a general impact on the biological habitat around the highway	Operators have a great impact on the biological habitat around the highway			
Operation and maintenance	Vehicle traffic safety	Vehicle traffic is extremely safe	Higher vehicle traffic safety	High vehicle traffic safety	Low vehicle traffic safety	Very low vehicle traffic safety	
Energy and water conservation in the service area	The energy and water conservation in the service area is very good	Good energy and water conservation in the service area	General energy and water conservation in the service area	Poor energy and water conservation in the service area	The energy and water conservation situation in the service area is very bad		
The impact of service area personnel on the surrounding environment	Service area personnel have minimal impact on the surrounding environment	Service area personnel have little impact on the surrounding environment	Service area personnel have a general impact on the surrounding environment	Service area personnel have a greater impact on the surrounding environment	Service area personnel have a great impact on the surrounding environment		
Table 6	Classification table of status indicators						
---	---						
Stage	**Grade**	**Score range**	**Level 1**	**Level 2**	**Level 3**	**Level 4**	**Level 5**
Stress situation	Minimal pressure	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
Planning and Design	Less pressure	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	General pressure	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Greater pressure	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Great pressure	0 – 59	Great biological and environmental impact				
Biological and environmental impact	Minimal biological and environmental impact	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	Less biological and environmental impact	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	General biological and environmental impact	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Greater biological and environmental impact	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Great biological and environmental impact	0 – 59	Great biological and environmental impact				
Impact on environmental protection water resources	Minimal impact on environmental protection and water resources	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	Less impact on environmental protection and water resources	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	General impact on environmental protection and water resources	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Great impact on environmental protection and water resources	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Great impact on environmental protection and water resources	0 – 59	Great biological and environmental impact				
Construction	Minimal impact on the land environment	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	Less impact on the land environment	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	General impact on land environment	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Great impact on land environment	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Great impact on the land environment	0 – 59	Great biological and environmental impact				
Degree of energy reuse	Extremely high degree of energy reuse	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	High degree of energy reuse	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	Moderate degree of energy reuse	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Low energy reuse	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Very low degree of energy reuse	0 – 59	Great biological and environmental impact				
Operation and maintenance	Highly integrated with the surrounding environment	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	High integration with the surrounding environment	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	Moderate integration with the surrounding environment	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Low integration with the surrounding environment	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Very low integration with the surrounding environment	0 – 59	Great biological and environmental impact				
Biological impact	Minimal biological impact	90 – 100	Infrastructure impact is average	Infrastructure has a huge impact			
	Less biologically affected	80 – 89	General driving safety guarantee	General driving safety guarantee	General driving safety guarantee	Greater driving safety guarantee	Great driving safety guarantee
	Biologically affected	70 – 79	General biological and environmental impact	General biological and environmental impact	General biological and environmental impact	Great biological and environmental impact	Great biological and environmental impact
	Biologically affected	60 – 69	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources	Great impact on environmental protection and water resources
	Biologically affected	0 – 59	Great biological and environmental impact				
development ideas and concepts. The PS R model of the green highway is shown in the figure below (Fig. 3):

Establishment of green highway evaluation index system

Design the PSR framework model of the green highway. In the process, design the pressure layer, the state layer, and the response layer (Maljanen et al. 2001). Through expert argumentation, specific indicators for preventing environmental pollution and protecting the environment are proposed. The details are shown in the table below (Table 1):

The graphic description of the index system in the planning and design stage is shown in Fig. 4.

The land occupied along the highway is preferably barren and deserted land, and try not to occupy arable land and wetland (Tarnocai et al. 2009). In terms of highway protection facilities, these facilities should also reduce the encroachment on surrounding land. Therefore, the calculation formula for the use of land:

\[
\text{Land use ratio} = \frac{\text{Area of cultivated land occupied}}{\text{Total area of highway}} \times 100\% \quad (1)
\]

The possible calculation formula for the demolition and resettlement of the surrounding residents is as follows:

\[
\text{Demolition and resettlement rate} = \frac{\text{Demolition building area}}{\text{Total area of construction project}} \times 100\% \quad (2)
\]

The area occupied by the green area is the ratio of the area of the green area to the area of the road, namely:

\[
\text{Green coverage} = \frac{\text{afforested area}}{\text{Total area of highway}} \times 100\% \quad (3)
\]

Use the green highway PSR framework model to analyze the construction of the green highway, and set various indicators from the perspective of natural ecological environment. The specific indicators are shown in Table 2:

The image description of the index system during the construction phase is shown in Fig. 5.

The control of water and soil erosion by green highways is mainly expressed by the amount of water and soil erosion per unit area:

\[
Q = \frac{S}{S \times L} \quad (4)
\]

The protection of surrounding vegetation by green roads is mainly calculated by the loss rate of vegetation per unit area. Calculated as follows:

\[
P = \frac{(S_q - S_h)}{S_q} \quad (5)
\]
The sewage treatment rate is calculated as the ratio of the treated sewage to the total sewage. The calculation formula is as follows:

\[
\text{Sewage treatment rate} = \frac{\text{The amount of sewage meeting the discharge standard after treatment}}{\text{Total amount of sewage}} \times 100\%
\]

(6)

Restoration of surrounding vegetation:

\[
\text{Slope vegetation recovery rate} = \frac{\text{Area of vegetation restoration within the scope of slope control}}{\text{Total vegetation restoration area within the scope of slope control}} \times 100\%
\]

(7)

Use the green highway PSR framework model to analyze the maintenance of the green highway, and set the pressure layer, the state layer, and the corresponding layer three indicators; the specific indicators are shown in Table 3:

The image description of the index system in the operation and maintenance phase is shown in Fig. 6.

The purpose of installing sound barriers on highways is to reduce the noise impact of vehicles passing on the highway on the surrounding environment (Trefilova et al. 2009). The calculation formula of the sound barrier setting rate is as follows:

\[
\text{Setting rate of sound barrier} = \frac{\text{The sound screen length has been set}}{\text{The length of sound barrier should be set}} \times 100\%
\]

(8)

The road construction will affect the surrounding vegetation and organisms, which will be compensated after the completion of the project, so the calculation formula for the ecological compensation rate is as follows:

\[
\text{Ecological compensation rate} = \frac{\text{Ecological restoration}}{\text{Ecological loss}} \times 100\%
\]

(9)

Traffic safety facilities include traffic signs and protective facilities. Accidents can be reduced, so the calculation formula for the amount of safety facilities is:

\[
\text{Arrangement rate of safety facilities} = \frac{\text{Safety quantity arranged}}{\text{The quantity of safety facilities should be arranged}} \times 100\%
\]

(10)

Quantification of green highway evaluation indicators

The evaluation index of green highway is set to four types and five grades (Table 4). Because some types cannot be accurately defined by numerical values, only general descriptions can be made (Kudeyarov and Kurganova 2005). The specific standards and corresponding scores are shown in the following table:

The image description of the index level standard is shown in Fig. 7.

It can be seen in detail from Table 5 that the green company has graded and refined the scores in the initial design, intermediate construction, and final maintenance, as shown in Table 5 (Tables 6, 7, 8, and 9)

Empirical analysis of green highway evaluation

Establishment of comment collection for a green highway renovation project

The road greenness evaluation set refers to the evaluation of possible results through a variety of factors, where V represents the possible results, and the research results are divided into 5 levels, as shown in the following table:

The image descriptions of pressure, status and response index levels are shown in Fig. 8.

The greeness of the highway is divided into 5 grades. The specific evaluation standards and conditions are shown in the following table:

The image description of the green level standard is shown in Fig. 9.

Determination of the evaluation index weight of a green highway renovation project

Through the weight calculation method and method, the following weight values are obtained, as shown in Table 10:
The image description of the indicator weights is shown in Fig. 10.

Analysis of fuzzy comprehensive evaluation results of a green highway renovation project

The analysis of the comprehensive evaluation results of the fuzzy transformation of green highways shows that in the process of design, construction, and maintenance of green highways, energy-saving and environmentally friendly products are used, noise and waste treatment are reduced, and water resources are reasonably protected (Bond-Lambert and Thompson 2010). The road landscape and the surrounding scenery can be well integrated.

Comparative analysis of evaluation results before and after a certain green highway reconstruction

Comparative analysis of evaluation results in the planning and design stage

Through comparison and analysis, it can be seen that the pressure is relatively small in the planning and design stage, and it is bright green at this time (Kumpu et al. 2018). In the engineering transformation stage, it is generally green.

Comparative analysis of evaluation results during construction stage

It is generally bright green during the construction phase. In the process of the renovation project, it gradually changed from bright green to green.

Comparative analysis of evaluation results in the operation and maintenance phase

In the maintenance phase, the degree of bright green is relatively high. In the transformation process, the degree of green is obviously greater than that of bright green (Widén 2002).

Countermeasures and suggestions for green highway construction

Environmental protection measures in the early decision-making stage of green highways

Environmental protection in the early decision-making stage of green highways should pay attention to the sensitivity of the surrounding environment and divide

Pressure, state and response index grade standard

Table 9 Green level standard

Grade	V1	V2	V3	V4	V5
Greenness Points	90-100	80-89	70-79	60-69	0-59
Rating	Level 1 Dark green	Level 2 Dark green	Level 3 Green	Level 4 Bright green	Level 5 Light green

Fig. 8 Pressure, status, and response index level standards
different regions into several sensitive areas (Eliasson et al. 2005). For areas with high sensitivity, the sensitivity is reduced by reducing noise and pollution, so as to provide the protective factors required for environmental investigations for the construction of green roads.

Green highway environmental protection design

The environmental protection of green roads requires the establishment of comfortable, safe, and beautiful green roads under the general direction of sustainable development (Morishita et al. 2010). At the same time, energy-saving and environmentally friendly materials are used to construct roads.

Table 10 Index weight

Indicator type	First level indicator	First-level indicator weight	Secondary indicators	Secondary indicator weight	Comprehensive weight
Pressure layer	Design rationality	0.455	Reasonability of Highway Route Selection	0.257	0.257
			Long-life pavement design	0.184	0.184
			Design index rationality	0.408	0.408
			Rationality of supporting facilities along the line	0.153	0.153
	Social environmental impact	0.455	Ten places to use	0.258	0.119
	Infrastructure impact		0.236	0.108	
	Degree of travel and security	0.182	0.182		
	Demolition and resettlement rate	0.326	0.149		
	Biological environmental impact	0.545	The impact of organisms and their habitats	0.438	0.239
	Water resources, natural water flow suit	0.564	0.308		
	Environmental pollution prevention	0.587	Acoustic pollution prevention design	0.412	0.242
	Water pollution prevention design	0.588	0.346		
	Ecological Protection	0.415	Green coverage	0.617	0.256
	Animal passage corridor per kilometer	0.385	0.158		

In terms of road protection, attention should be paid to reducing noise and waste water pollution in terms of aspects makes the highway environment and the surrounding environment well integrated.

Environmental protection measures during construction of green highway

During the construction process, temporary land should be used for various building materials in the highway. Try to avoid occupying basic farmland and at the same time in lots of earthwork (Gao et al. 2018). During the rainy season, attention should be paid to drainage to avoid the phenomenon of rainwater accumulation.

Environmental protection measures during the operation and maintenance period of green highways

During highway maintenance, attention should be paid to the use of noise barriers to reduce the pollution caused by traffic noise to the surrounding environment (Yanagihara et al. 2000). At the same time, the road surface should be cleaned and cleaned regularly to ensure the safety and smoothness of the road surface. In places with more serious pollution, scientific planting should be carried out to increase the green area and reduce air pollution.
Conclusion

Under the guidance of the concept of sustainable development, the design, construction, and maintenance of green roads are carried out, in order to provide a theoretical basis and scientific basis for the evaluation of green roads and to put forward certain reference opinions for the construction of green roads in the future.

Acknowledgements

Evaluation of green highway in Heilongjiang Province Based on BIM Technology, Science and technology project of Heilongjiang Transportation Department, Project Number: J-20181215.

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

Abaimov AP, Zyryanova OA, Prokushkin SG, Koike T, Matsuura V (2000) Forest ecosystems of the cryolithic zone of Siberia: regional features, mechanisms of stability and pyrogenic changes. Eurasian J For Res 1:1–10
Abaimov AP, Prokushkin SG, Sukhovol'skii VG, Ovchinnikova TM (2004) Evaluation and prediction of postfire condition of Gmelin larch on permafrost soils in Middle Siberia. Lesovedenie 2:3–11 (In Russian)
Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 21:4570–4587
Bhupinderpal-Singh NA, Lofvenius MO, Högberg MN, Mellander PE, Högb erg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296
Boden TA, Marland G, Andres RJ (2009) Global, regional and national fossil-fuel CO2 emissions, TN: Carbon Dioxide Information Analysis Center, ORNL, Oak Ridge. http://cdiac.ornl.gov/trends/emis/overview 2006.html
Gao D, Peng B, Fan Z, Pei G, Bai E (2018) Different winter soil respiration between two mid-taumperate plantation forests. For Ecol Manag 409:390–398. https://doi.org/10.1016/j.foreco.2017.11.029

Gardenas AI (2000) Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand in south Sweden (Skogaby). Plant Soil 221:273–280

Gaüzère P, Iversen LL, Barnagaud J-Y, Svenning J-C, Blonder B (2018) Empirical Predictability of Community Responses to Climate Change. Front Ecol Evol 6:186. https://doi.org/10.3389/fevo.2018.00186

Gentsch N, Wild B, Mikutta R, Čapek P, Diáková K, Schrumpf M, Turner S, Minnhich C, Schaarschmidt F, Shibistova O, Schnecker J, Urih T, Gittel A, Šnattráková H, Báta J, Lashchinskiy N, Fuß R, Richter A, Guggenberger G (2018) Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob Chang Biol 24:3401–3415

Komulainen V-M, Tuittila E-S, Vasander H, Laine J (1999) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. J Appl Ecol 36:634–648

Köster E, Köster K, Berninger F, Prokushkin A, Aalenon H, Zhou X, Pumpanen J (2018) Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J Environ Manag 228:405–415. https://doi.org/10.1016/j.jenvman.2018.09.051

Kudelayarov VN, Kurganova IN (2005) Respiration of Russian soils: database analysis, long-term monitoring, and general estimates. Eurasian Soil Sci 38:983–992

Kumpu A, Mäkelä A, Pumpainen J, Saarinen J, Berninger F (2018) Soil CO2 efflux in uneven-aged and even-aged Norway spruce stands in southern Finland. iForest 11:705–712. https://doi.org/10.3832/ifor2658-011

Kuzmichev VP, Pshenichnikova LS, Tretjakova VA (2009) Productivity of six tree species plantations for three decades in the Siberian taiga forest experiment. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 269–279

Laganière J, Paré D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27. https://doi.org/10.1016/j.soilbio.2012.04.024

Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11-year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359

Makhnykina AV, Prokushkin AS, Vaganov EA, Verkhovets SV, Abaimov AP (2008) Soil respiration rate on the contrasting northern and southern-facing slopes of a larch forest in central Siberia. Eurasian J For Res 1:19–29

Makhnykina AV, Prokushkin AS, Menyailo OV, Verkhovets SV, Pumpanen J, Urban AV, Rubtsov AV, Koshurnikova NN, Vaganov EA (2020) The impact of climatic factors on CO2 emissions from soils of Middle-Taiga forests in Central Siberia: emission as a function of soil temperature and moisture. Russ J Ecol 51:46–56. https://doi.org/10.1134/s1067413620010063

Maljanen M, Hytönen J, Martikainen PJ (2001) Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant Soil 231:113–121

Morishita T, Masyagina OV, Koike T, Matsuura Y (2010) Soil respiration in larch forests. In: Osaka A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian Larch Forests. Ecological Studies. Vol. 209, Springer Science+Business Media B.V., pp 165–182

Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293. https://doi.org/10.1111/j.1469-8137.2004.01047.x

O’Neill KP, Kaschikche ES, Richter DD (2003) Seasonal and interannual patterns of soil carbon uptake and emission using an age sequence of burned black spruce stands in interior Alaskan Geophys Res-Atmos 108

Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (2010) Permafrost ecosystems: Siberian larch forests. Ecol Stud 209. https://doi.org/10.1007/978-3-642-10699-5_1

Parzazo NC, Koven CD, Lawrence DM, Romanovsky V, Miller CE (2018) Detecting the permafrost carbon feedback: talk formation and increased cold-season respiration as precursors to sink-source transition. Cryosphere 12:123–144. https://doi.org/10.5194/tc-12-123-2018

Pleshkov FI (ed) (2004) Ecosystems of the Yenisei River meridian. Nauka SB RAS, Novosibirsk (in Russian)

Shugulei L (2005) The Siberian afforestation experiment: history, methodology, and problems. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Netherlands, pp 257–268

Sultan EEW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256

Tan X, Fan S, Du M, Zhang W, Gao S, Liu S, Chen G, Yu Z, Yang W (2020) Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems. Earth Syst Sci Data 12:1037–1051. https://doi.org/10.5194/essd-12-1037-2020

Tarnocai C, Canadel JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2035. https://doi.org/10.1029/2008gb003327

Trefilova OV, Vedrova EF, Oskarbin PA (2009) The stock and structure of large woody debris in the pine forests of the Yenisei plain. Lesovedenie 4:16–23 (in Russian)

Widén B (2002) Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agric For Meteorol 111:283–297

Yangahhara Y, Koike T, Matsuura Y, Mori S, Shibata H, Sato F, Masuyagina OV, Zyryanova OA, Prokushkin AS, Prokushkin SG, Abaimov AP (2000) Soil respiration rate on the contrasting northern and southern-facing slopes of a larch forest in central Siberia. Eurasian J For Res 1:19–29

Zobitz JM, Moore DJP, Sacks WJ, Monson RK, Bowling DR, Schimel DS (2008) Integration of process-based soil respiration models with whole-ecosystem CO2 measurements. Ecosystems 11:250–269. https://doi.org/10.1007/s10021-007-9120-1