A REFLECTION TYPE PROBLEM FOR THE STOCHASTIC 2-D NAVIER-STOKES EQUATIONS WITH PERIODIC CONDITIONS

VIOREL BARBU1
University Al. I. Cuza and Institute of Mathematics Octav Mayer, Iași, Romania
email: vbarbu41@gmail.com

GIUSEPPE DA PRATO2
Scuola Normale Superiore, Pisa, Italy
email: daprato@sns.it

LUCIANO TUBARO2
Department of Mathematics, University of Trento, Italy
e-mail: tubaro@science.unitn.it

Submitted 22 February 2011, accepted in final form 15 May 2011

AMS 2000 Subject classification: 76D05, 60H15, 76B03, 76M35
Keywords: 2-D stochastic Navier-Stokes equations, Gibbs measures, Kolmogorov operator.

Abstract
We prove the existence of a solution for the Kolmogorov equation associated with a reflection problem for 2-D stochastic Navier-Stokes equations with periodic spatial conditions and the corresponding stream flow in a closed ball of a Sobolev space of the torus \mathbb{T}^2.

1 Introduction

We consider here the 2-D stochastic Navier-Stokes equation for an incompressible non-viscous fluid

\[
\begin{cases}
\frac{dX}{dt} = -\nu \Delta X dt + (X \cdot \nabla)X dt = \nabla p dt + dW_t \\
\nabla \cdot X = 0
\end{cases}
\]

This equation is considered on a 2-D torus, that we identify with the square $\mathbb{T}^2 = [0, 2\pi] \times [0, 2\pi]$ and with periodic boundary conditions.

Here ν is the viscosity of the fluid, X is the velocity field, p is the pressure and W is a cylindrical Wiener process.

If we denote by $\phi : \mathbb{T}^2 \to \mathbb{R}$ the corresponding stream function, that is

\[
X = \nabla^\perp \phi, \quad -\Delta \phi = \text{curl } X, \quad \phi(\xi + 2\pi) \equiv \phi(\xi)
\]

1THIS WORK IS SUPPORTED BY CNCSIS PROJECT PN II IDEI ID-70/2008.
2PARTIALLY SUPPORTED BY THE ITALIAN NATIONAL PROJECT MURST “EQUAZIONI DI KOLMOGOROV”
where $\nabla^\perp = (-D_2, D_1)$, curl $X = D_2X_1 - D_1X_2$, $X = (X_1, X_2)$ we may rewrite (1) in terms of the stream function ϕ (see [1], [2])

$$d(\nabla^\perp \phi) - \nu \Delta \nabla^\perp \phi \, dt + (\nabla^\perp \phi \cdot \nabla) \nabla^\perp \phi \, dt = \nabla p \, dt + dW_t$$

(3)

and formulate for (1) the corresponding reflection problem on the set

$$K = \{ \phi \in H^{1-a}(T; \mathbb{R}^2) : \|\phi\|_{1-a} \leq \ell \}$$

(4)

where H^{1-a} is the Sobolev space of order $1 - \alpha$ with $\alpha > \frac{3}{2}$, with respect to the natural Gibbs measure μ given by enstrophy (see Section 2 below.)

More precisely, we shall prove that the Kolmogorov equation associated with (1), (2) and (4) has at least one solution $\varphi : T^2 \to \mathbb{R}$. In terms of coordinates $u_j = \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{ij\cdot\xi} \phi(\xi) \, d\xi$ this equation has the form

$$\left\{ \begin{array}{l}
\lambda \varphi - L \varphi = f \quad \text{in } \mathcal{K} \\
\frac{\partial \varphi}{\partial n} = 0 \quad \text{on } \partial \mathcal{K}.
\end{array} \right.$$

(5)

where L is the Kolmogorov operator

$$L \varphi(u) = \sum_{k \in \mathbb{Z}^2} \left[\frac{1}{2k^2} D^2_k \varphi(u) - \nu k^2 u_k D_k \varphi(u) - B_k(u) D_k \varphi(u) \right],$$

(6)

defined on a space $\mathcal{F}C^2_b$ of cylindrical smooth functions. (The function B_k is defined in (10).)

The main result of this work, Theorem 1 below, amounts to saying that the Neumann problem (5) has at least one weak solution φ, but the uniqueness of this solution remains open. It should be said that the uniqueness is still an open problem in the case $K = H^{1-a}$ and it is equivalent in the later case with the unique extension of operator L from $\mathcal{F}C^2_b$ to an m-dissipative operator in $L^2(\mu)$ see [3]. We mention, however, that L is essentially m-dissipative in $L^1(\mu)$ when the viscosity ν is sufficiently large (Stannat [11]). It should mention also that in this way the study of stochastic process $X = X_1$, reduces to a linear infinite dimensional equation in the space H^{1-a} associated to the operator L.

There is a large number of works devoted to infinite dimensional stochastic reflection problems but most of them are, except a few notable works, concerned with Wiener processes W with finite covariance. So the existence theory for (13) is still open.

Here following the way developed in [5], [6], we will treat instead of (1) its associated Kolmogorov equation which as noted in Introduction will lead to an infinite dimensional Neumann problem on the convex K. (The Kolmogorov equation [6] in the special case $K = H^{1-a}$ was previously studied by Flandoli and Gozzi [9].)

Previous results on infinite dimensional reflection problems, starting from [10] are essentially concerned with reversible systems. We believe that the present paper is the first attempt to study non symmetric infinite dimensional Kolmogorov operators with Neumann boundary conditions.

2 The functional setting

Consider the Sobolev space of order $p \in \mathbb{R}$ defined by

$$H^p = \left\{ y(\xi) = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}^2} u_j e^{ij\cdot\xi} : \sum_{j \in \mathbb{Z}^2} j^{2p} |u_j|^2 < +\infty \right\}.$$
where \(j = (j_1, j_2) \) and \(Z_+^2 = \{ j \in Z^2 : j_1 > 0 \text{ or } j_1 = 0, j_2 > 0 \} \). We set also \(Z_0^2 = Z^2 \setminus \{(0,0)\} \), \(j^2 = j_1^2 + j_2^2 \) and set \(u = \{u_j\}_{j \in Z_0^2} \), \(u_j = \bar{u} - j \) for \(j \in Z_0^2 \setminus Z_+^2 \). The space \(H^p \) is a complex Hilbert space with the scalar product

\[
\langle y_1, y_2 \rangle_p = \sum_{j \in Z_+^2} j^{2p} \langle y_1(j), \bar{y}_2 \rangle, \quad y_j = \frac{1}{2\pi} \int_{T^2} y(\xi) e^{ij \xi} \, d\xi.
\]

Consider the Gibbs measure \(\mu = \mu_\nu \) given by the enstrophy, that is

\[
d\mu(u) = \prod_{j \in Z_+^2} d\mu^j(u_j), d\mu^j(z) = \nu_j^4 \exp\left(-\frac{1}{2} \nu_j^4 |z|^2 \right) \, dx \, dy, z = x + i \, y.
\]

We recall (see [1], [3]) that for \(\alpha > 0 \) we have

\[
\int_H |u|^{2-\alpha} \, d\mu(u) < \infty,
\]

and so the probability measure \(\mu \) is supported by \(H^p \), \(p < 1 \). For each \(q \geq 1 \) we denote the space \(L^q(\Lambda, \mu) \) by \(L^q_\mu \).

We denote by \(H^{1,2}(H^\delta, \mu) \) the completion of the space \(\mathcal{F}C^2_\delta \) in the norm

\[
\| \varphi \|_{L^{1,2}(H^\delta, \mu)}^2 = \sum_{j \in Z_0^2} |j|^{2\delta} \int_K |D_j \varphi|^2 \, d\mu + \int_K |\varphi|^2 \, d\mu.
\]

Given a closed convex subset \(K \subset H^\delta \) with smooth boundary we denote by \(H^{1,2}(K, \mu) \) the space \(\{ \varphi \mid \varphi \in H^{1,2}(H^\delta, \mu) \} \) with the norm

\[
\| \varphi \|_{H^{1,2}(K, \mu)}^2 = \sum_{j \in Z_0^2} |j|^{2\delta} \int_K |D_j \varphi|^2 \, d\mu + \int_K |\varphi|^2 \, d\mu.
\]

There is a standard way (see [1], [2]) to reduce equation (1) to a differential equation in \(H^{1-\alpha} \) we briefly present below. Namely applying the curl operator into (3) we get for \(\psi = \text{curl} \, X \) the equation

\[
d\psi - \nu \Delta \psi \, dt + \text{curl} \, \left[(\nabla^+ \phi \cdot \nabla^\bot \phi) \right] \, dt = d \, \text{curl} \, W_t.
\]

Now, we expand \(\phi \) in Fourier series

\[
\phi(t, \xi) = \frac{1}{2\pi} \sum_{j \in Z_0^2} u_j(t) e^{ij \cdot \xi}
\]

and take \(W \) to be the cylindrical Wiener process

\[
W_t = \frac{1}{2\pi} \sum_{j \in Z_0^2} |j|^{-1} \nabla^\bot (e^{ij \cdot \xi}) W_j(t)
\]

where \(\{W_j\}_{j \in Z_0^2} \) are independent Brownian motions in a probability space \(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \geq 0} \). We note that

\[
\text{curl} \, W_t = -\frac{1}{2\pi} \sum_{j \in Z_0^2} |j| e^{ij \cdot \xi} W_j(t)
\]
By (7) we have
\[\psi(t, \xi) = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}_2} j^2 u_j(t) e^{ij \cdot \xi}, \quad \Delta \psi(t, \xi) = -\frac{1}{2\pi} \sum_{j \in \mathbb{Z}_2} (j^2)^2 u_j(t) e^{ij \cdot \xi} \]
and (see [2])
\[\text{curl } (\nabla \phi \cdot \nabla \phi) = \sum_{j \in \mathbb{Z}_2} j^2 B_j(u). \]

Then (1) reduces to
\[du_j(t) + \nu j^2 u_j(t) dt - B_j(u(t)) dt = |j|^{-1} dW_j(t). \]

Equation (9) can be written in
\[H = \{k^{1-a} u_k\}_{k \in \mathbb{Z}_2^d}, \quad W_l = \{|j|^{-1} W_j(t)\}_{j \in \mathbb{Z}_2^d}, \quad Qv = \{k^{3+a} v_k\}_{k \in \mathbb{Z}_2^d}. \]

Moreover, the measure \(\mu \) is infinitesimally invariant for \(B \) (see [1], [7].)

Equation (9) can be written in \(H^{1-a} \) as
\[du + \nu QAu dt - Bu dt = dW, \]

where
\[Au = \{k^{-(1+a)} u_k\}_{k \in \mathbb{Z}_2^d}, \quad W_l = \{|j|^{-1} W_j(t)\}_{j \in \mathbb{Z}_2^d}, \quad Qv = \{k^{3+a} v_k\}_{k \in \mathbb{Z}_2^d}. \]

We recall (see [1]) that \(A \) is a Hilbert-Schmidt operator on \(H^2 \) and \(\|Au\|_2 = \|u\|_{1-a}. \)

Now, we associate with (12) the stochastic variational inequality
\[du + \nu QAu dt - B(u) dt + R \partial I_K(u) dt \ni dW_t \]

where \(Rv = \{k^{-2a} v_k\}_{k \in \mathbb{Z}_2^d}, K \) is a smooth closed and convex subset of \(H = H^{1-a} \) and \(\partial I_K : K \to 2^H \) is the normal cone to \(K \). Formally (13) can be written as
\[
\begin{cases}
 du(t) + \nu QAu(t) dt - Bu(t) dt = dW_t & \text{in } \{t \mid u(t) \in \hat{K}\} \\
 du(t) + \nu QAu(t) dt - Bu(t) dt + \lambda(t) n_K(u(t)) = dW_t & \text{in } \{t \mid u(t) \in \partial K\} \\
 u(t) \in K & \forall t \geq 0
\end{cases}
\]

where \(\lambda(t) \geq 0 \) and \(n_K(u) \) is the unit exterior normal to \(\partial K \).
Coming back to equation (1) and taking into account (2) the variational inequality (13) can be rewritten in terms of the velocity field \(X \) under the form

\[
\begin{cases}
 dX - \nu \Delta X \, dt + (X \cdot \nabla)X \, dt + N_{\mathcal{K}}(X) \, dt \ni \nabla p \, dt + dW_t \\
 \nabla \cdot X = 0, X = 0 \text{ on } \partial \Omega
\end{cases}
\]

(14)

where \(N_{\mathcal{K}}(X) \) is the normal cone to the closed convex set \(\mathcal{K} \) of \(\{X \in (L^2(0, 2\pi))^2; \nabla \cdot X = 0, X(0) = X(2\pi)\} \) defined by,

\[
\mathcal{K} = \{X : \{(\phi, e^{-ij \cdot \xi})_{(j \in \mathbb{Z}^2)}\}_{j \in \mathbb{Z}^2} \in \mathcal{K}, \ \phi = (-\Delta)^{-1} \text{curl } X \}.
\]

This is the reflection problem to the boundary of \(\mathcal{K} \) on the oblique normal direction \(N_{\mathcal{K}}(x) \). In the special case of \(K \) given by (4) its meaning is that the stream value \(\phi \) of the fluid is constrained to the set \(\|\phi\|_{1-\alpha} \leq \ell \) and when \(\phi \) reaches the boundary \(\partial K \) in the dynamic of fluid arises a convective acceleration oriented toward interior of \(K \) along an oblique direction. Indeed we have by definition of the normal cone \(N_{\mathcal{K}}(X) \),

\[
N_{\mathcal{K}}(X) = \left\{ \eta \in (L^2(0, 2\pi))^2; \int_0^{2\pi} \int_0^{2\pi} \eta(\xi) (X(\xi) - Y(\xi)) d\xi \geq 0 \ \forall Y \in \mathcal{K} \right\}
\]

Recalling that by (2), (7),

\[
X = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}^2} j^i u_j e^{ij \cdot \xi}
\]

and setting

\[
\eta = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}^2} j^i \eta_j e^{ij \cdot \xi}, \quad Y = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}^2} j^i v_j e^{ij \cdot \xi}
\]

where \(\{\eta_j\}, \{v_j\} \in H^{1-\alpha} \), we see that

\[
N_{\mathcal{K}}(X) = \left\{ \eta; \sum_{j \in \mathbb{Z}^2} |j|^2 \eta_j (\tilde{u}_j - \tilde{v}_j) \geq 0, \forall \{v_j\} \in K \right\}
\]

On the other hand, the normal cone \(N_{\mathcal{K}}(u) \) to \(K \) in \(H^{1-\alpha} \) is given by

\[
N_{\mathcal{K}}(u) = \left\{ \tilde{\eta} = \{\tilde{\eta}_j\}; \sum_{j \in \mathbb{Z}^2} j^{2(1-\alpha)} \tilde{\eta}_j (\tilde{u}_j - \tilde{v}_j) \geq 0, \forall \tilde{u} = \{u_j\} \in K \right\}
\]

Hence

\[
N_{\mathcal{K}}(X) = \left\{ \eta; (\eta, e^{ij \cdot \xi})_{(j \in \mathbb{Z}^2)} = \eta_j = j^{-2\alpha} \tilde{\eta}_j; \{\tilde{\eta}_j\} \in N_{\mathcal{K}}(u) \right\}
\]

and taking into account (13) and definition of \(\mathcal{K} \) this yields (14) as claimed.

3 The Kolmogorov equation

Consider the Kolmogorov operator \(L \) corresponding to (9) which is defined by (6) on the space \(\mathcal{F}_{2} C^2_b \) of cylindrical \(C^2 \)-functions

\[
\mathcal{F}_{2} C^2_b = \{\varphi = \varphi(u_{j_1}, u_{j_2}, \ldots, u_{j_n}) : n \geq 1, j_1, j_2, \ldots, j_n \in \mathbb{Z}^2_0, \varphi \in C^2_b(C^n)\}.
\]
We recall (see e.g., [1], [2], [3]) that the measure μ is invariant for operator L. As noticed earlier the essential m-dissipativity of L in the space $L^2(\mu)$ is still an open problem.

Our aim here is to study the Neumann problem

$$\begin{aligned}
\begin{cases}
\lambda \varphi - L \varphi = f & \text{in } K \\
\frac{\partial \varphi}{\partial n} = 0 & \text{on } \partial K =: \Sigma
\end{cases}
\end{aligned}
$$

considered in some generalized sense to be precised below.

Definition 1. The function $\varphi : K \to \mathbb{R}$ is said to be weak solution to (15) if

$$\int_K |\varphi|^2 \, d\mu < \infty, \quad \sum_{j \in \mathbb{Z}^2} j^{-2} \int_K |D_j \varphi|^2 \, d\mu < \infty,$$

and

$$\lambda \int_K \varphi \psi \, d\mu + \frac{1}{2} \sum_{j \in \mathbb{Z}^2} j^{-2} \int_K D_j \varphi D_j \psi \, d\mu - \sum_{j \in \mathbb{Z}^2} \int_K B_j(u) D_j \psi(u) \varphi(u) \, d\mu(u) = \int_K f \psi \, d\mu$$

for all real valued $\psi \in \mathcal{F}C^2_b$.

It is readily seen by (11) that (14) makes sense for all $\psi \in \mathcal{F}C^2_b$.

Theorem 1. Assume that $\alpha > \frac{3}{2}$ and

$$K = \{u \in H^{1-\alpha} : |u|_{1-\alpha} \leq \ell\}$$

then for each real valued $f \in L^2(K, \mu)$ problem (5) has at least one weak solution $\varphi \in H^{1,2}_{-\alpha}(K, \mu)$ and the following estimates hold

$$\lambda \int_K |\varphi|^2 \, d\mu + \frac{1}{2} \sum_{j \in \mathbb{Z}^2} j^{-2} \int_K |D_j \varphi|^2 \, d\mu \leq C \int_K |f|^2 \, d\mu$$

and

$$\int_K |\varphi|^2 \, d\mu \leq \frac{1}{\lambda^2} \int_K |f|^2 \, d\mu.$$
4 Proof of Theorem 1

To prove Theorem 1 we consider the approximating equation

$$\lambda \varphi_\epsilon - L \varphi_\epsilon + \sum_{j \in \mathbb{Z}^2_0} j^{-4} \beta_j^\epsilon D_j \varphi_\epsilon = f,$$

where L is given by (6) and

$$\beta^\epsilon(u) = \frac{1}{\epsilon} (u - \Pi_K u) = \frac{u}{\epsilon} \left(1 - \frac{\ell}{|u|_{1-\alpha}}\right), \quad u \in H.$$

(Here Π_K is the projection on K.) We introduce also the measure

$$d\mu_\epsilon(u) = \prod_k e^{-\frac{\epsilon |u_k|^2}{2}} d\mu_k(u)$$

and note that

$$D_j \left(e^{-\frac{\epsilon |u_k|^2}{2}} \right) = - j^4 \beta_j^\epsilon(u) e^{-\frac{\epsilon |u_k|^2}{2}}.$$

It should be mentioned that equation (21) in spite of its apparent simplicity is still unsolvable for all $f \in L^2(\mu)$ and the reason is that as mentioned earlier we don’t know whether the operator L is essentially m-dissipative. In order to circumvent this we shall define just a weak solution concept for (21) and prove the existence of such a solution.

Definition 2. The function $\varphi_\epsilon : H = H^{1-\alpha} \rightarrow \mathbb{R}$ is said to be weak solution to equation (21) if the following conditions hold,

$$\int \varphi_\epsilon^2 d\mu_\epsilon < \infty, \quad \sum_{k \in \mathbb{Z}^2_0} k^{-2} \int |D\varphi_\epsilon|^2 d\mu_\epsilon < \infty$$

and

$$\lambda \int \varphi_\epsilon \psi d\mu_\epsilon + \sum_{k \in \mathbb{Z}^2_0} k^{-2} \int_H D_k \varphi_\epsilon D_k \psi d\mu_\epsilon +$$

$$+ \sum_{k \in \mathbb{Z}^2_0} \int B_k(u) D_k \varphi_\epsilon \psi d\mu_\epsilon = \int f \psi d\mu_\epsilon$$

for all real valued cylindrical functions $\psi \in \mathcal{F}C^2_h$.

We note that Definition 2 is in the spirit of Definition 1 and that if φ_ϵ is a smooth solution to (21) then we see by (21) via integration by parts that φ_ϵ satisfies also (23). We note that

$$\sum_{k \in \mathbb{Z}^2_0} \int B_k(u) D_k \varphi_\epsilon \psi d\mu_\epsilon =$$

$$- \sum_{k \in \mathbb{Z}^2_0} \int B_k(u) D_k \psi \varphi_\epsilon d\mu_\epsilon - \sum_{k \in \mathbb{Z}^2_0} \int \psi \varphi_\epsilon [D_k B_k(u) + k^4 B_k(u) \beta_k^\epsilon] d\mu_\epsilon =$$

$$- \sum_{k \in \mathbb{Z}^2_0} \int B_k(u) \varphi_\epsilon D_k \psi d\mu_\epsilon$$
because by enstrophy invariance we have (see e.g., [1], [2])
\[\sum_{k \in \mathbb{Z}^2} k^4 \tilde{u}_k B_k(u) \equiv 0, \quad D_k B_k(u) \equiv 0, \quad \forall k \in \mathbb{Z}^2_0, \]
(25)
and
\[\beta^\epsilon_k(u) = \frac{u_k}{\epsilon} \left(1 - \frac{\ell}{|u|_{1-a}} \right), \quad \forall k \in \mathbb{Z}^2_0. \]
(26)

Proposition 1. For each \(f \in L^2(\mu) \), \(\lambda > 0 \) equation (19) has at least one weak solution \(\varphi_\epsilon \) which satisfies the estimates
\[\int |\varphi_\epsilon|^2 d\mu_\epsilon \leq \frac{1}{\lambda^2} \int |f|^2 d\mu, \quad \forall \epsilon > 0, \]
(27)
\[\sum_{k \in \mathbb{Z}^2_0} k^{-2} \int |D_k \varphi_\epsilon|^2 d\mu_\epsilon \leq C \int |f|^2 d\mu, \quad \forall \epsilon > 0. \]
(28)

Proof. We shall use the Galerkin scheme for equation (21). Namely, we introduce the finite dimensional approximation \(B^n_k \) of \(B_k \) (see [1])
\[B^n_k(u) = \sum_{j,k \in I_n} \left[\frac{1}{k^4} (k^4 \cdot j)(k \cdot j) - \frac{1}{2} k^4 \cdot j \right] u_k u_{j-k} \]
and \(I_n = \{ m \in \mathbb{Z}^2_0 : 0 < |m| \leq n \} \).
Then \(B^n = \{ B^n_k(u) \}_{k \in I_n} \), like \(B \), has the properties (25) and the operator
\[L_n \varphi = \sum_{j \in I_n} \left[\frac{1}{2j^2} D_j^2 \varphi - \nu j^2 u_j D_j \varphi \right], \]
defined on the space of smooth functions \(\varphi = \varphi(u_1, u_2, \ldots, u_n) \) has the invariant measure \(\mu^n = \prod_{j \leq n} \mu_j \).
Then we consider the equation
\[\lambda \varphi^n_\epsilon - L_n \varphi^n_\epsilon + \sum_{k \in I_n} B^n_k D_k \varphi^n_\epsilon + \sum_{k \in I_n} k^{-4}(\beta^n_k)^\epsilon D_k \varphi^n_\epsilon = f, \quad \text{in } H_n \]
(29)
where \((\beta^n_k)^\epsilon = \frac{1}{\epsilon} \left(1 - \frac{\ell}{|u|_{1-a}} \right) u_k \) and \(H_n = \{ u_j : j \in I_n \} \).
By standard existence theory for Kolmogorov equations associated with stochastic differential equations, the equation (29) has a unique solution \(\varphi^n_\epsilon \) which is precisely the function
\[\varphi^n_\epsilon(u^0) = \mathbb{E} \int_0^\infty e^{-\lambda t} f(X^n_\epsilon(t, u^0)) dt, \]
and \(X^n_\epsilon = \{ u^n_j : j \in I_n \} \) is the solution to stochastic equation (see [3])
\[du^n_j + \nu j^2 u^n_j dt - B^n_j(u^n) dt = \frac{1}{|I|} dW_j, \quad j \in I_n, \]
\[u^n_j(0) = u^0_j, \quad j \in I_n. \]
We may assume therefore that \(\varphi_\epsilon \) is smooth and so multiplying (29) by \(\varphi^n_\epsilon \) and integrating with respect to the measure
\[\mu^n_\epsilon = \prod_{k \in I_n} e^{-\frac{k^4}{\epsilon}} \mu_k, \]
we obtain that
\[
\lambda \int |\varphi^n_\varepsilon|^2 d\mu_\varepsilon + \frac{1}{2} \sum_{k \in I_n} k^{-2} \int |D_k \varphi^n_\varepsilon|^2 d\mu_\varepsilon + \frac{1}{2} \sum_{k \in I_n} B^n_k(\bar{u}_k) |\varphi^n_\varepsilon|^2 d\mu_\varepsilon = \int f \varphi^n_\varepsilon d\mu_\varepsilon. \tag{30}
\]

On the other hand, taking into account that by (25) we have
\[
\sum_{k \in I_n} k^4 B^n_k \bar{u}_k \equiv 0, \quad D_k B^n_k \equiv 0, \quad \forall k \in Z_0^2,
\]
and it follows as in (24) that
\[
\sum_{k \in I_n} \int B^n_k(\bar{u}) D^n_\varepsilon |\varphi^n_\varepsilon|^2 d\mu_\varepsilon = 0
\]
and so by (30) we have that
\[
\lambda \int |\varphi^n_\varepsilon|^2 d\mu_\varepsilon + \frac{1}{2} \sum_{k \in I_n} k^{-2} \int |D_k \varphi^n_\varepsilon|^2 d\mu_\varepsilon = 0
\]
and letting \(n \) tend to infinity into the weak form of (29), that is
\[
\lambda \int \varphi^n_\varepsilon \psi d\mu_\varepsilon + \frac{1}{2} \sum_{k \in I_n} k^{-2} \int D_k \varphi^n_\varepsilon D_k \psi d\mu_\varepsilon = \int f \psi d\mu_\varepsilon \tag{31}
\]
Hence, on a subsequence, again denoted by \(\{n\} \) we have for \(n \to \infty \)
\[
\varphi^n_\varepsilon \to \varphi_\varepsilon \quad \text{weakly in } L^2(\mu_\varepsilon) \quad \tag{32}
\]
\[
\{D_k \varphi^n_\varepsilon\} \to \{D_k \varphi_\varepsilon\} \quad \text{weakly in } L^2(\mu_\varepsilon) \tag{33}
\]
and letting \(n \) tend to infinity into the weak form of (29), that is
\[
\lambda \int \varphi^n_\varepsilon \psi d\mu_\varepsilon + \frac{1}{2} \sum_{k \in I_n} k^{-2} \int D_k \varphi^n_\varepsilon D_k \psi d\mu_\varepsilon = \int f \psi d\mu_\varepsilon \tag{34}
\]
and recalling that \(\{B^n_k\} \) is strongly convergent to \(\{B_k\} \) in \(L^2(\mu) \) (see Lemma 1.3.2 in [7]) we infer that \(\varphi_\varepsilon \) is solution to (21) as claimed. Estimates (27), (28) follow by (31), (32), (33). This complete the proof of Proposition 1.

Proof of Theorem 1 (continued). Let \(\varphi_\varepsilon \) be a solution to (19). By estimates (27), (28) we have for \(\varepsilon \to 0 \)
\[
\varphi^n_\varepsilon \to \varphi \quad \text{weakly in } L^2(K, \mu),
\]
\[
\{D_k \varphi^n_\varepsilon\} \to \{D_k \varphi\} \quad \text{weakly in } L^2(K, \mu; H^2).
\]
Then, letting \(\varepsilon \) tend to zero into (23) we see that \(\varphi \) satisfies (17) for all \(\psi \in \mathcal{P}C^2_b \). Estimates (19), (20) follow by (27), (28). This completes the proof. □
Remark 2. Letting ϵ tend to zero into (29) it follows via integration by parts formula by a similar argument as in [5] that $\varphi^n_\epsilon \to \varphi^n$, $D_j \varphi^n_\epsilon \to D_j \varphi^n$ in $L^2(H_n, \mu)$ where φ^n is the solution to Neumann boundary value problem

$$\begin{cases}
\lambda \varphi^n - \nu \Delta \varphi^n + B^n(u_n) \cdot D \varphi^n = f & \text{in } \hat{K}_n \\
\frac{\partial \varphi^n}{\partial n_x} = 0 & \text{on } \partial K_n.
\end{cases}$$

where $K_n = K \cup H_n$. Moreover, by elliptic regularity, $\varphi^n \in H^2(\hat{K}_n)$. On the other hand, it is clear by the above energetic estimates in $H^{1-\alpha}$ that for $n \to \infty \{\varphi^n\}$ is convergent to a weak solution φ to (15). However, this solution is not necessarily that given by approximating process φ_ϵ.

References

[1] S. Albeverio, A.B. Cruzeiro, Global flows with invariant (Gibbs) measure for Euler and Navier-Stokes two dimensional fluids, Comm. Math. Phys. 129 (1990), 431-444. MR1051499

[2] S. Albeverio, M. Ribeiro De Faria, R. Hoegh-Krohn, Stationary measures for the periodic Euler flows in two dimensions, J. Stat. Phys. 20 (1979), 584-595. MR0537263

[3] S. Albeverio, B. Ferrario, Uniqueness results for the generators of the two dimensional Euler and Navier-Stokes flows, J. Funct. Anal. 193 (2002), 73-93. MR1923629

[4] S. Albeverio, V. Barbu, B. Ferrario, Uniqueness of the generators of the 2-D Euler and Navier-Stokes flows, Stoch. Processes and their Appl. 118 (2008), 2071-2084. MR2462289

[5] V. Barbu, G. Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space, Ann. Probab, 37, n.4, 1427-1458, 2009. MR2546750

[6] V. Barbu, G. Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II, Ann. Inst. Poincaré (to appear).

[7] F. Cipriano, The two dimensional Euler equations: a statistical study, Comm. Math. Phys. 201 (1999), 139-154. MR1669421

[8] G. Da Prato, A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), 180-210. MR1941997

[9] F. Flandoli, F. Gozzi, Kolmogorov equation associated to a stochastic Navier-Stokes equation, J. Funct. Anal. 160 (1998), 312-336. MR1658680

[10] D. Nualart, E. Pardoux, White noise driven quasilinear SPDE’s with reflection, Prob. Th. and Related Fields 93, 77-89, 1992. MR1172940

[11] W. Stannat, A new apriori estimates for the Kolmogorov operator of a 2-D stochastic Navier-Stokes equation, Infinite Dimensional Anal. Quantum Probab. Related Topics, 10 4 (2007), 483-497. MR2376438

Acknowledgement. This work was done during the visit of V. Barbu and G. Da Prato to the Mathematics Department of University of Trento.