Complete genome sequence of Bacteroides salanitronis type strain (BL78T)

Sabine Gronow¹, Brittany Held²,³, Susan Lucas², Alla Lapidus², Tijana Glavina Del Rio², Matt Nolan², Hope Tice³, Shweta Deshpande², Jan-Fang Cheng², Sam Pitluck⁵, Konstantinos Liolios⁷, Joanna Pagani², Natalia Ivanova¹, Konstantinos Mavromatis⁷, Amrita Pati², Roxane Tapia²,³, Cliff Han²,³, Lynne Goodwin²,³, Amy Chen⁴, Krishna Palaniappan¹, Miriam Land²,³, Loren Hauser²,³, Yun-Juan Chang²,³, Cynthia D. Jeffries²,³, Evelyn-Marie Brambilla¹, Manfred Rohde¹, Markus Göker¹, John C. Detter²,³, Tanja Woyke¹, James Bristow², Victor Markowitz⁴, Philip Hugenholtz²,⁸, Nikos C. Kyrpides², Hans-Peter Klenk¹, and Jonathan A. Eisen²,⁷*

¹ DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
² DOE Joint Genome Institute, Walnut Creek, California, USA
³ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
⁴ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
⁵ Lawrence Livermore National Laboratory, Livermore, California, USA
⁶ HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
⁷ University of California Davis Genome Center, Davis, California, USA
⁸ Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia

*Corresponding author: Jonathan A. Eisen

Keywords: strictly anaerobic, non-motile, rod-shaped, Gram-negative, mesophilic, cecum, poultry, chemoorganotrophic, Bacteroidaceae, GEBA

Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain BL78T (= DSM 18170 = CCUG 54637 = JCM 13657) is the type strain of Bacteroides salanitronis which belongs to the large genus Bacteroides [1,2]. Currently, there are 88 species placed in the genus Bacteroides. The species epithet is derived from the name of Joseph P. Salanitro, an American microbiologist. B. salanitronis strain BL78T was isolated among other Bacteroides strains from the cecum of a healthy chicken. No other strain belonging to the same species has been identified [2]. Many Bacteroides species are common inhabitants of the intestine where they help to degrade complex molecules such as polysaccharides or transform steroids [3,4]. They also play a role as beneficial protectors of the gut against pathogenic microorganisms [5]. Here we present a summary classification and a set of features for B. salanitronis BL78T, together with the description of the complete genomic sequencing and annotation.

Classification and features

A representative genomic 16S rRNA sequence of strain BL78T was compared using NCBI BLAST under default settings (e.g., considering only the highest-scoring segment pairs (HSPs) from the best 250 hits) with the most recent release of the Greengenes database [6] and the relative frequencies, weighted by BLAST scores, of taxa and keywords (reduced to their stem [7]) were determined. The single most frequent genus was Bacteroides (100.0%) (1 hit in total). Regarding the single hit to sequences from members of the species, the average identity within
Bacteroides salanitronis type strain (BL78T)

HSPs was 99.7%, whereas the average coverage by HSPs was 96.2%. No hits to sequences with (other) species names were found. The highest-scoring environmental sequence was DQ456041 ('pre-adolescent turkey cecum clone CFT112F11'), which showed an identity of 96.8% and an HSP coverage of 63.9%. The five most frequent keywords within the labels of environmental samples which yielded hits were 'fecal' (9.3%), 'microbiota' (7.5%), 'human' (7.1%), 'antibiot, effect, gut, pervas' (7.1%) and 'anim, beef, cattl, coli, escherichia, feedlot, habitat, synecolog' (2.2%) (249 hits in total).

Figure 1 shows the phylogenetic neighborhood of *B. salanitronis* in a 16S rRNA based tree. The sequences of the six 16S rRNA gene copies in the genome differ from each other by up to 26 nucleotides, and differ by up to 26 nucleotides from the previously published 16S rRNA sequence (AB253731).

The cells of *B. salanitronis* are generally rod-shaped (0.4-0.7 × 0.8-5.6 μm) with rounded ends (Figure 2). The cells are usually arranged singly or in pairs [2]. *B. salanitronis* is a Gram-negative, non-spore-forming bacterium (Table 1) that is described as non-motile, with only five genes associated with motility having been found in the genome (see below).

The temperature optimum for strain BL78T is 37°C. *B. salanitronis* is a strictly anaerobic chemoorganotroph and is able to ferment glucose, mannose, sucrose, maltose, arabinose, cellobiose, lactose, xylose and raffinose [2]. The organism hydrolyzes esculin but does not liquefy gelatin, and neither reduces nitrate nor produces indole from tryptophan [2]. *B. salanitronis* does not utilize trehalose, glycerol, mannitol, sorbitol or melezitose; rhamnose and salicin are fermented weakly [2]. Growth is possible in the presence of bile [2]. Major fermentation products from broth (1% peptone, 1% yeast extract, and 1% glucose each (w/v)) are acetic acid and succinic acid, whereas isovaleric acid is produced in small amounts [2]. *B. salanitronis* shows activity for alkaline phosphatase, α- and β-galactosidases, α- and β-glucosidases, α-arabinosidase, leucyl glycine arylamidase, alanine arylamidase and glutamyl glutamic acid arylamidase but no activity for urease, catalase, glutamic acid decarboxylase, arginine dihydrolase, β-galactosidase 6-phosphate, β-glucuronidase, N-acetyl-β-glucosaminidase, α-fucosidase and arginine, proline, leucine, phenylalanine, pyrogallic acid, tyrosine, glycine, histidine and serine arylamidase [2].

Figure 1. Phylogenetic tree highlighting the position of *B. salanitronis* relative to a selection of other type strains within the genus. The tree was inferred from 1,412 aligned characters [8,9] of the 16S rRNA gene sequence under the maximum likelihood criterion [10] and rooted in accordance with the current taxonomy. The branches are scaled in terms of the expected number of substitutions per site. Numbers to the right of bifurcations are support values from 1,000 bootstrap replicates [11] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [12] but unpublished are labeled with one asterisk, published genomes with two asterisks [13-15].
Table 1. Classification and general features of *B. salanitronis* BL78T according to the MIGS recommendations [16].

MIGS ID	Property	Term	Evidence code
		Domain *Bacteria*	TAS [17]
Current classification	Phylum *Bacteroidetes*	TAS [18]	
	Class *Bacteroidia*	TAS [19]	
	Order *Bacteroidales*	TAS [20]	
	Family *Bacteroidaceae*	TAS [21,22]	
	Genus *Bacteroides*	TAS [21,23-26]	
	Species *Bacteroides salanitronis*	TAS [2]	
	Type strain BL78T	TAS [2]	
	Gram stain	negative	TAS [2]
	Cell shape	rod-shaped	TAS [2]
	Motility	non-motile	TAS [2]
	Sporulation	none	TAS [2]
	Temperature range	mesophile	TAS [2]
	Optimum temperature	37°C	TAS [2]
	Salinity	normal	NAS
MIGS-22	Oxygen requirement	strictly anaerobic	TAS [2]
	Carbon source	carbohydrates	TAS [2]
	Energy metabolism	chemoorganotroph	TAS [2]
MIGS-6	Habitat	chicken	TAS [2]
MIGS-15	Biotic relationship	free-living	NAS
MIGS-14	Pathogenicity	none	NAS
	Biosafety level	1	TAS [27]
	Isolation	chicken cecum	TAS [2]
MIGS-4	Geographic location	Japan	TAS [2]
MIGS-5	Sample collection time	November 2005	IDA
MIGS-4.1	Latitude	not reported	
MIGS-4.2	Longitude	not reported	
MIGS-4.3	Depth	not reported	
MIGS-4.4	Altitude	not reported	

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [28]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.
Bacteroides salanitronis type strain (BL78T)

Chemotaxonomy

B. salanitronis strain BL78T contains menaquinones MK-11 and MK-12 as principal respiratory quinones (43% each), small amounts of MK-10 (5%) and MK-13 (7%) are found as minor components [2]. The major fatty acids found were anteiso-C15:0 (32%), iso-C15:0 (14%), 3-hydroxy C16:0 (12%) and 3-hydroxy iso-C17:0 (10%). Fatty acids C14:0 (4%), C15:0 (2%), C16:0 (8%), C18:1 (2%), C18:2 (2%) and iso-C14:0 (2%) were found in minor amounts [2].

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [29], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [30]. The genome project is deposited in the Genomes On Line Database [31] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Three genomic libraries: one 454 pyrosequence standard library,
		one 454 PE library (7 kb insert size), one Illumina library
MIGS-29	Sequencing platforms	Illumina GAii, 454 GS FLX Titanium
MIGS-31.2	Sequencing coverage	283.0 \times \text{Illumina}; 37.7 \times \text{pyrosequence}
MIGS-30	Assemblers	Newbler version 2.3-PreRelease-09-14-2009-bin, Velvet, phrap version SPS 4.24
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
		CP002530 (chromosome)
		CP002531 (plasmid 1)
		CP002532 (plasmid 2)
		CP002533 (plasmid 3)
INSAC ID		Gc001665
Genbank Date of Release		February 28, 2011
NCBI project ID		40066
Database: IMG-GEBA		2503754023
MIGS-13	Source material identifier	DSM 18170
	Project relevance	Tree of Life, GEA

Growth conditions and DNA isolation

B. salanitronis BL78T, DSM 18170, was grown anaerobically in DSMZ medium 104 (Peptone-Yeast extract-Glucose broth) [32] at 37°C. DNA was isolated from 0.5-1 g of cell paste using MasterPure Gram-positive DNA purification kit (Epicentre MGP04100) following the standard protocol as recommended by the manufacturer, adding 20 µL lysozyme (100mg/µL), and 10 µL mutanolysin, achochromopeptidase, and lysostaphine, each, for 40 min lysis at 37°C followed by one hour incubation on ice. DNA is available through the DNA Bank Network [33].

Genome sequencing and assembly

The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website [34]. Pyrosequencing reads were assembled using the Newbler assembler version 2.3-PreRelease-09-14-2009-bin (Roche). The initial Newbler assembly consisting of 100 contigs in two scaffolds was converted into a phrap assembly [35] by making fake reads from the consensus, to collect the read pairs in the 454 paired-end library. Illumina GAii sequencing data (920.8 Mb) was assembled with Velvet, version 0.7.63 [36] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. The 454 draft assembly was based on 109.0 Mb of 454 standard data and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20. The Phred/Phrap/Consed software package [35] was used for sequence assem-

194 Standards in Genomic Sciences
bly and quality assessment in the subsequent fin-
ishing process. After the shotgun stage, reads were
assembled with parallel phrap (High Performance
Software, LLC). Possible mis-assemblies were
corrected with gapResolution [34], Dupfinisher
[37], or sequencing cloned bridging PCR
fragments with subcloning or transposon bom-
ing (Epicentre Biotechnologies, Madison, WI).
Gaps between contigs were closed by editing in
Consed, by PCR and by Bubble PCR primer walks
(J.-F.Chang, unpublished). A total of 193 additional
reactions and four shatter libraries were neces-
sary to close gaps and to raise the quality of the
finished sequence. Illumina reads were also used
to correct potential base errors and increase con-
sensus quality using a software Polisher devel-
oped at JGI [38]. The error rate of the completed
genome sequence is less than 1 in 100,000. To-
gether, the combination of the Illumina and 454
sequencing platforms provided 320.7 × coverage
of the genome. The final assembly contained
393,135 pyrosequence and 25,576,764 Illumina
reads.

Genome annotation
Genes were identified using Prodigal [39] as part
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual
curation using the JGI GenePRIMP pipeline [40].
The predicted CDSs were translated and used to
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed
within the Integrated Microbial Genomes - Expert
Review (IMG-ER) platform [41].

Genome properties
The genome consists of a 4,242,803 bp long chromo-
some with a G+C content of 47%, as well as
three plasmids of 6,277 bp, 18,280 bp and 40,303
bp length (Table 3 and Figure 3). Of the 3,838
genes predicted, 3,737 were protein-coding genes,
and 101 RNAs; 96 pseudogenes were also identi-
fied. The majority of the protein-coding genes
(57.3%) were assigned with a putative function
while the remaining ones were annotated as hypo-
thetical proteins. The distribution of genes into
COGs functional categories is presented in Table 4.

Attribute	Value	% of Total
Genome size (bp)	4,308,663	100.00%
DNA coding region (bp)	3,759,354	87.25%
DNA G+C content (bp)	2,003,128	46.49%
Number of replicons	4	
Extrachromosomal elements	3	
Total genes	3,838	100.00%
RNA genes	101	2.63%
rRNA operons	6	
Protein-coding genes	3,737	97.37%
Pseudo genes	96	2.50%
Genes with function prediction	2,200	57.32%
Genes in paralog clusters	876	22.82%
Genes assigned to COGs	2,013	52.45%
Genes assigned Pfam domains	2,269	59.12%
Genes with signal peptides	918	23.92%
Genes with transmembrane helices	794	20.69%
CRISPR repeats	0	
Figure 3. Graphical circular map of the chromosome (plasmid maps not shown). From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	147	6.8	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	143	6.6	Transcription
L	194	9.0	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	31	1.4	Cell cycle control, cell division, chromosome partitioning
Y	0	0.0	Nuclear structure
V	63	2.9	Defense mechanisms
T	85	3.9	Signal transduction mechanisms
M	193	8.9	Cell wall/membrane/envelope biogenesis
N	5	0.2	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	61	2.8	Intracellular trafficking, secretion, and vesicular transport
O	61	2.8	Posttranslational modification, protein turnover, chaperones
C	105	4.9	Energy production and conversion
G	174	8.0	Carbohydrate transport and metabolism
E	134	6.2	Amino acid transport and metabolism
F	68	3.1	Nucleotide transport and metabolism
H	98	4.5	Coenzyme transport and metabolism
I	62	2.9	Lipid transport and metabolism
P	104	4.8	Inorganic ion transport and metabolism
Q	29	1.3	Secondary metabolites biosynthesis, transport and catabolism
R	285	13.2	General function prediction only
S	125	5.8	Function unknown
-	1,825	47.6	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Sabine Welnitz (DSMZ) for growing cultures of B. salanitronis. This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2.

References

1. Garrity G. NamesforLife. BrowserTool takes expertise out of the database and puts it right in the browser. Microbiol Today 2010; 7:1.

2. Lan PTN, Sakamoto M, Sakata S, Benno Y. Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 2006; 56:2853-2859. PubMed doi:10.1099/ijs.0.64517-0

3. Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host Microbe 2009; 5:522-526. PubMed doi:10.1016/j.chom.2009.05.010
Bacteroides salanitronis type strain (BL78T)

4. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JL. Host-bacterial mutualism in the human intestine. *Science* 2005; **307**:1915-1920. PubMed doi:10.1126/science.1104816

5. Hentges DJ. Role of the intestinal flora in host defense against infection. In *Human Intestinal Microflora in Health and Disease* 1983; pp. 311–331. Edited by D. J. Hentges. New York: Academic Press.

6. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. *Appl Environ Microbiol* 2006; **72**:5069-5072. PubMed doi:10.1128/AEM.03006-05

7. Porter MF. An algorithm for suffix stripping. *Program: electronic library and information systems* 1980; **14**:130-137.

8. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; **18**:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

9. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; **17**:540-552. PubMed

10. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. *Syst Biol* 2008; **57**:758-771. PubMed doi:10.1093/sysbio/syn052

11. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? *Lect Notes Comput Sci* 2009; **5541**:184-200. doi:10.1007/978-3-642-02008-7_13

12. Lilios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrmides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2010; **38**:D346-D354. PubMed doi:10.1093/nar/gkp848

13. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxtón I, Duerden B, Harris B, Quail MA, et al. Extensive DNA inversions in the *B. fragilis* genome control variable gene expression. *Science* 2005; **307**:1463-1465. PubMed doi:10.1126/science.1107008

14. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JL. A genomic view of the human *Bacteroides thetaiotaomicron* symbiosis. *Science* 2003; **299**:2074-2076. PubMed doi:10.1126/science.1080029

15. Land M, Held B, Gronow S, Abt B, Lucas S, Glavina Del Río T, Nolan M, Tice H, Cheng JF, Pitluck S, et al. Non-contiguous finished genome sequence of *Bacteroides coprosequ
cron* type strain (PC 139T). *Stand Genomic Sci* 2011; **4**

16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; **26**:541-547. PubMed doi:10.1038/nbt1360

17. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains *Archaea*, *Bacteria*, and *Eucarya*. *Proc Natl Acad Sci USA* 1990; **87**:5476-5479. PubMed doi:10.1073/pnas.87.12.4576

18. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

19. Ludwig W, Ezpeleta J, Whitman WG. Draft taxonomic outline of the *Bacteroidetes*, *Planctomycetes*, *Chlamydiae*, *Spirochaetes*, *Fibrobacteres*, *Fusobacteria*, *Acidobacteria*, *Verrucomicrobia*, *Dictyoglomi*, and *Gemmamimonadetes*. http://www.bergeys.org/outlines/Bergeys_Vol_4_ Outline.pdf. *Taxonomic Outline 2008*

20. Garrity GM, Holt JG. 2001. Taxonomic outline of the *Archaea* and *Bacteria*, p. 155-166. In G. M. Garrity, D. R. Boone, and R. W. Castenholz (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 1. Springer, New York.

21. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. *Int J Syst Bacteriol* 1980; **30**:225-420. doi:10.1099/00207713-30-1-225

22. Pribram E. Klassifikation der Schizomyceten. Klassifikation der Schizomyceten (Bakterien). Franz Deuticke, Leipzig, 1933, p. 1-143.

23. Castellani A, Chalmers AJ. Genus *Bacteroides* Castellani and Chalmers, 1918. Manual of Tropical Medicine, Third Edition, Williams, Wood and Co., New York, 1919, p. 959-960.

24. Holdeman LV, Moore WEC. Genus I. *Bacteroides* Castellani and Chalmers 1919, 959. In: Buchanan RE, Gibbons NE (eds), Bergey’s Manual of Determinative Bacteriology, Eighth Edition, The Wil-
25. Cato EP, Kelley RW, Moore WEC, Holdeman LV. *Bacteroides zoogloeoformans*, Weinberg, Nativelle, and Prévot 1937) corrig. comb. nov.: emended description. *Int J Syst Bacteriol* 1982; 32:271-274. doi:10.1099/00207713-32-3-271

26. Shah HN, Collins MD. Proposal to restrict the genus *Bacteroides* (Castellani and Chalmers) to *Bacteroides fragilis* and closely related species. *Int J Syst Bacteriol* 1989; 39:85-87. doi:10.1099/00207713-39-1-85

27. Classification of bacteria and archaea in risk groups. http://www.baua.de TRBA 466.

28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. *Nat Genet* 2000; 25:25-29. PubMed doi:10.1038/75556

29. Klenk HP, Göker M. En route to a genome-based classification of *Archaea* and *Bacteria? Syst Appl Microbiol* 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

30. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of *Bacteria* and *Archaea*. *Nature* 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

31. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393

32. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

33. Gemeinholzer B, Dröge G, Zetzche H, Haszprunar G, Klenk HP, Güntsch A, Berendsohn WG, Wägele JW. The DNA Bank Network: the start from a German initiative. *Biopreservation and Biobanking* 2011; 9:51-55. doi:10.1089/bio.2010.0029

34. The DOE Joint Genome Institute. http://www.jgi.doe.gov/

35. Phrap and Phred for Windows. MacOS, Linux, and Unix. www.phrap.com

36. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 2008; 18:821-829. PubMed doi:10.1101/gr.074492.107

37. Han C, Chain P. 2006. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Arabina HR, Valafar H (eds), CSREA Press. June 26-29, 2006: 141-146.

38. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltzman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

39. Hyatt D, Chen GL, LoCascio PF, Land ML, Larkin FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics* 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

40. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. Gene-PRIMP: a gene prediction improvement pipeline for prokaryotic genomes. *Nat Methods* 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

41. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393