World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

The WHO CVD Risk Chart Working Group*

Summary

Background To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions.

Methods In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40–80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance.

Findings Our risk model derivation involved 376177 individuals from 85 cohorts, and 19333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1096061 individuals, 25950 cardiovascular disease events), with Harrell’s C indices ranging from 0.685 (95% CI 0.629–0.741) to 0.833 (0.783–0.882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40–64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt.

Interpretation We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide.

Funding World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research.

Introduction By the year 2030, the UN Sustainable Development Goals aim to reduce premature mortality from non-communicable diseases by a third. Cardiovascular diseases (which include coronary heart disease and stroke) are the most common non-communicable diseases globally, responsible for an estimated 17.8 million deaths in 2017, of which more than three quarters were in low-income and middle-income countries. To help reduce the global burden of cardiovascular disease, WHO member states have committed to provide counselling and drug treatments for at least 50% of eligible people (defined as aged 40 years or older and at high risk of cardiovascular disease) by 2025. To support such expansion of cardiovascular disease prevention and control efforts, WHO has developed tools and guidance, including risk prediction charts. Risk prediction models can be a component of cardiovascular disease prevention and control efforts, because they can help to identify people at high risk of cardiovascular disease who should benefit the most from preventive interventions. Many such risk prediction models have been developed, usually estimating individual risk over a 10-year period by use of measured levels of conventional risk factors for cardiovascular disease. However, available models have limitations for use in low-income and middle-income countries. Most models were derived and validated with use of a narrow
set of studies, might be directly applicable only to specific populations (mainly in high-income countries), and might not predict the correct risk in the target population being screened (ie, poor calibration).8,13,15–18

Here, we provide derivation, validation, and illustration of updated WHO models for cardiovascular disease risk prediction. To enhance targeting of efforts to reduce the burden of cardiovascular disease, we have statistically adapted (ie, recalibrated)14,19 models to the contemporary circumstances of many different global regions using routinely available information. The aim of recalibration was to ensure that risk prediction models estimate risk for individuals in each region more accurately. To help make this approach more sustainable, we developed and describe here a method that can be used to regularly update risk prediction models using information about epidemiological trends in cardiovascular disease within different global regions. The WHO CVD Risk Chart Working Group, a cross-sectoral collaboration of academics, policy makers, and end users of risk scores, was convened to facilitate this development of revised models for prediction of cardiovascular disease risk more tailored to the needs of low-income and middle-income countries.

Methods

Study design

In our model revision initiative, several interrelated components were involved (figure 1). First, we derived risk prediction models using individual participant data from 85 prospective cohorts in the Emerging Risk Factors Collaboration (ERFC). Second, we adjusted models to the contemporary circumstances of multiple global regions, recalibrating models using age-specific and sex-specific incidences and risk factor values obtained from the Global Burden of Disease (GBD) studies20,21 and the Non-Communicable Disease Risk Factor Collaboration (NCD-RisC).22–24 Third, we completed external validation using individual participant data from a further 19 prospective cohorts that did not contribute to the model derivation. Fourth, models were applied to individual participant data from 79 countries collected with the WHO STEPwise Approach to Surveillance (STEPS).25 Fifth, we used this sequence of analyses to assess the potential value of pragmatic risk models (eg, those that include information on body-mass index [BMI] instead of serum lipid values), because laboratory measurements are not widely available in many low-income and middle-income countries.5,15,26

Data sources and procedures

The ERFC was selected for model derivation because it has collated and harmonised individual participant data from many long-term prospective cohort studies of cardiovascular disease risk factors and outcomes.26,27 Prospective studies in the ERFC were included in our analysis if they met all the following criteria: had recorded baseline information on risk factors necessary to derive risk prediction models (ie, age, sex, smoking status [current vs other], history of diabetes, systolic blood
pressure, and total cholesterol or BMI), were approximately population-based (ie, did not select participants on the basis of having previous disease), had recorded cause-specific deaths and non-fatal cardiovascular disease events (ie, non-fatal myocardial infarction or stroke) with well defined criteria, and had at least 1 year of follow-up after baseline (which was deemed to be sufficient for estimation of risk factor–disease associations in the absence of non-proportional hazards). We did not use prospective cohort studies analysed as nested case-control studies. Details of the contributing studies are described in appendix 1 (pp 3–5, 37–38).

For the recalibration of models, we obtained age-specific and sex-specific incidences of myocardial infarction and stroke from the 2017 update of the GBD study for each of 21 global regions defined by GBD to maximise between-region variability and minimise heterogeneity within each region in mortality and major drivers of health outcomes (appendix 1 p 39). Age-specific and sex-specific risk factor values for each of these regions were estimated by averaging country-specific risk factor values provided by the NCD-RisC.20,22–24,30

We included prospective cohort studies in the external validation analysis if they met the following criteria: did not contribute to the model derivation stage, met the same methodological criteria as those described for the cohorts selected from the ERFC for the model derivation stage, and made individual participant data accessible for analysis to investigators in our working group. Studies used for external validation included the following: the Asia Pacific Cohort Studies Collaboration (APCSC), the New Zealand primary care-based PREDICT cardiovascular disease cohort (PREDICT-CVD), the Chinese Multi-Provincial Cohort Study, the Health Checks Ubon Ratchathani Study in Thailand, the Tehran Lipids and Glucose Study, and UK Biobank (appendix 1 p 6).

To mirror the populations typically targeted in primary prevention efforts for cardiovascular disease, risk model derivation included participants aged 40–80 years without a known baseline history of cardiovascular disease. Follow-up was until the first myocardial infarction, fatal coronary heart disease, or stroke event; outcomes were censored if a participant was lost to follow-up, died from non-cardiovascular disease causes, or reached 10 years of follow-up. Conventional cardiovascular disease risk factors were considered for selection as variables in risk models if they were known to be predictive of cardiovascular disease in different populations, were recorded in available survey data to allow systematic recalibration within each global region, and had been shown to be measurable at low cost in low-income and middle-income countries.

We derived two types of new WHO risk prediction models for cardiovascular disease: a laboratory-based model including age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol; and a non-laboratory-based model including age, smoking status, systolic blood pressure, and total cholesterol or BMI. Sex-specific models were derived separately for coronary heart disease (defined in the ERFC dataset as non-fatal myocardial infarction or fatal coronary heart disease), and stroke (any fatal or non-fatal cerebrovascular event) outcomes. Details of these endpoint definitions are shown in appendix 1 (p 7). Outcomes were modelled separately for coronary heart disease and stroke to allow separate recalibration to the disease-specific incidence in the target populations before combination in a single estimation equation for cardiovascular disease risk (appendix 1 pp 40–41). The assumption of independence between coronary heart disease and stroke risk was checked with data from ERFC cohorts (appendix 1 p 15).

Statistical analysis

We estimated hazard ratios (HRs) using Cox proportional hazards models, stratified by study and with duration (ie, time from entry into the study) as the
Articles

Study-level characteristics

	Men	Women
Number of studies	80	62
Year of recruitment*	1960-2008	1960-2013

Baseline characteristics

	Men	Women
Total participants	202 962	173 215
Age at baseline survey (years)	53 (48-60)	55 (49-63)
Systolic blood pressure (mm Hg)	132 (120-146)	130 (118-145)
Total cholesterol (mmol/L)	5.7 (5.0-6.5)	5.9 (5.2-6.7)
Current smoking status	76 943 (37.9%)	38 170 (22.0%)
History of diabetes	99 399 (4.9%)	800 808 (4.6%)
BMI (kg/m²)†	25.6 (23.5-28.0)	25.3 (22.8-28.6)

Cardiovascular outcomes¶

	Men	Women
Fatal or non-fatal MI or CHD death§	18 987	7226
Fatal or non-fatal stroke¶	8870	6682
Follow-up to first cardiovascular disease event (years; median [5-95th percentile range])	10.3 (3.4–30.4)	13.1 (4.4–27.0)

Data are n (%) or median (25-75th percentile range), unless otherwise specified. Data are from a total of 85 cohorts with 376 177 participants. BMI = body-mass index. MI = myocardial infarction. CHD = coronary heart disease.

*41 cohorts (including 47% of total participants) had the median year of study baseline before 1990; 44 cohorts (including 53% of total participants) had the median year of study baseline of 1990 or after. †Percentage of individuals in WHO-defined BMI categories were the following (in kg/m²): 1·3% with BMI lower than 18·5, 43·2% with BMI 18·5–24·9, 40·5% with BMI 25·0–29·9, 11·6% with BMI 30·0–34·9, 2·6% with BMI 35·0–40·0, and 0·8% with BMI higher than 40. §Specific International Classification of Diseases codes are given for each endpoint in the appendix (p 7). ¶Number of fatal or non-fatal MI or CHD deaths occurring during the first 10 years of follow-up: 9 456 in men and 3 351 in women. ‡Number of fatal or non-fatal stroke events during the first 10 years of follow-up: 3 722 in men and 3 304 in women.

Table 1: Summary of available data from the Emerging Risk Factors Collaboration used in WHO risk model derivation

Timescale (in subsidiary analyses, models were also fitted with age as the timescale). Interactions between baseline age and other predictors were included because outcome associations commonly vary with age. Continuous variables were centred to aid interpretation of regression model estimates and facilitate recalibration of the models to new populations, with age centred at 60 years (the midpoint of the defined 40–80 years age range), total cholesterol at 6 mmol/L, BMI at 25 kg/m², and systolic blood pressure at 120 mm Hg. Deviation from the proportional hazards assumption was either minimal or non-existent, assessed by fitting models including time-varying covariates. Between-study heterogeneity was assessed using the I² statistic. 39 We used meta-regression to assess heterogeneity by geographical region and period of cohort enrolment. 40

For internal validation, we assessed risk discrimination using Harrell’s C index. This index estimates the probability of the model correctly predicting who will have a cardiovascular disease event first in a randomly selected pair of participants. 41 To avoid optimism that might result from assessing risk discrimination in the data from which the model was derived, we used an internal–external validation approach in which each study was, in turn, left out of the model derivation and used to calculate a validation C index. 42 The calibration of each model within studies with at least 10 years of follow-up in the derivation dataset was checked by comparing observed and predicted risk across deciles of predicted risk and by calculating a χ² statistic to quantify any evidence of lack of agreement or fit (appendix 1 p 40). 43

Recalibration was done separately for men and women (description in appendix 1 pp 16, 40–41). 44 This process involved the use of age-specific and sex-specific mean risk factor levels and annual incidence estimates of fatal or non-fatal myocardial infarction and stroke events in each of 21 global regions (appendix 1 p 43). Calibration of the new WHO models was assessed by comparing the predicted 10-year cardiovascular disease risk with the expected 10-year risk estimated from the 2017 GBD annual incidence estimates, across 5-year age groups. An additional external calibration assessment was completed in the PREDICT-CVD cohort (the only nationally representative validation cohort available to us). Because fewer than 10 years of follow-up were available in this cohort, we recalibrated models to estimate 5-year risk. We assessed discrimination using all external validation cohorts by calculating study-specific C indices before pooling by country, weighting by number of events. 45 Additionally, we compared C indices for the same prediction models derived within datasets used for external validation with those calculated for the new WHO models. To compare the proportion of the population at different levels of cardiovascular disease risk, with the WHO models, across multiple countries, we applied the risk models to WHO STEPS surveys data. To allow comparison across countries, we restricted analysis to the latest survey year available for each country and to individuals aged 40–64 years, with total cholesterol between 2·6–10·3 mmol/L, and complete data on relevant variables (appendix 1 pp 8–9). These data were also used to compare risk estimates obtained with non-laboratory-based models with those obtained with laboratory-based models.

Our approach to model development and validation complies with the guideline for Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (appendix 1 pp 44–45). Analyses were done with Stata, version 14, two-sided p values, and 95% CIs. The study was designed and done by the WHO CVD Risk Chart Working Group in collaboration with the ERFC academic coordinating centre and was approved by the Cambridgeshire Ethics Review Committee.

Role of the funding source

The academic investigators and representatives of WHO participated in the design and oversight of the project. The academic investigators at the coordinating centre had full access to all the data and had final responsibility for the decision to submit for publication. All authors gave approval to submit for publication.
Results

Our risk model derivation involved 376,177 participants without preceding cardiovascular disease, recruited between 1960 and 2013 (table 1, appendix 1 pp 3–5,10). Mean age was 54 years (SD 9) among men and 56 years (9) among women. 247,699 (66%) of 376,177 participants were recruited in European countries, 85,098 (23%) in North America, and the remainder mostly in Japan and Australia. During the initial 10 years of follow-up (3·2 million person-years at risk) 19,333 cardiovascular disease events were observed (table 1, appendix 1 pp 3–5).

HRs for myocardial infarction or fatal coronary heart disease diminished with age, particularly in women, among whom HRs for myocardial infarction or fatal coronary heart disease were reduced from 4·65 (95% CI 3·46–6·24) for history of diabetes and 5·58 (4·58–6·81) for smoking status at age 40 years to 2·31 (2·04–2·62) for history of diabetes and 2·05 (1·85–2·29) for smoking status at age 70 years (appendix 1 p 17).

We found little to moderate heterogeneity in HRs across studies and no evidence to suggest differences in HRs according to geographical regions or period of cohort enrolment (appendix 1 p 11). Calibration and goodness of fit for the prediction models were good within the ERFC dataset, both overall (appendix 1 p 18) and within specific regions and recruitment time periods (appendix 1 p 19). Internally validated C indices ranged from 0·666 (95% CI 0·661–0·672) in men with the non-laboratory-based model to 0·757 (0·749–0·765) in women with the laboratory-based model (appendix 1 p 12).

According to 2017 GBD estimates, the relative contribution of myocardial infarction and stroke differed...
substantially by region and sex (appendix 1 pp 20–22), reinforcing the need for separate recalibration of individual models for each endpoint. Myocardial infarction incidence was greater for men than for women in all regions, but the incidence of stroke was more similar between sexes (appendix 1 pp 23–24). The age-specific and sex-specific mean risk factor levels used for recalibration are presented by region in appendix 1.
The revised WHO charts for cardiovascular disease risk estimation in 21 global regions are shown in appendix 2 for the laboratory-based and non-laboratory-based models. The predicted 10-year cardiovascular disease risk estimated with the WHO models was within the expected 95% CI ranges, on the basis of uncertainty in GBD estimates (appendix 1 pp 30–31). Additionally, we observed a good agreement between 5-year predicted and observed risk in the PREDICT-CVD cohort (appendix 1 p 32). The estimated absolute risk for a given age and combination of risk factors differed substantially across regions (figure 2).

For example, the estimated 10-year cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. Similarly, the 10-year risk for a 60-year-old woman with the same risk factor profile ranged from 9% in Andean Latin America to 23% in eastern Europe, north Africa, and the Middle East.

External validation of risk models involved calculation of C indices with use of data from 1096 061 participants with no previous cardiovascular disease, recruited into 19 prospective cohorts (25950 cardiovascular disease events observed; appendix 1 p 6). C indices indicated good discrimination, with values for the WHO laboratory-based risk model ranging from 0.685 (95% CI 0.629–0.741) to 0.833 (0.783–0.882; figure 3). Furthermore, deriving individual models of myocardial infarction or fatal coronary heart disease and stroke risk directly in the APCSC gave broadly similar HRs to those found in ERFC (appendix 1 p 13); C indices with use of data from the Health Checks Ubon Ratchathani Study. *Calculated with data from studies from the APCSC and the China Multi-Provincial Cohort Study. †Calculated with data from the Tehran Lipids and Glucose Study. ¶Calculated with data from studies from the APCSC and the PREDICT-CVD cohort. §§Calculated with data from the WHO HEARTS package.4 These models have been systematically recalibrated to contemporary risk factor levels and disease incidences across 21 global regions, thereby enabling more accurate identification of individuals at high risk of cardiovascular disease in different settings. Because the approach to recalibration that we used allows rapid revision of cardiovascular disease models, it should enable flexible updating of models as relevant new epidemiological data emerge about cardiovascular disease trends in particular geographical areas.

The risk models described here involve several existing tools.8,9,13,47–49 First, these models are underpinned by powerful, extensive, and complementary datasets of global relevance, used in a series of interrelated analyses for model derivation, recalibration, validation, and illustration of cardiovascular disease risk.10–34 In particular, the scale and geographical resolution of the datasets analysed have enhanced the validity and generalisability of risk models for each sex-specific and disease-specific (myocardial infarction and stroke) endpoint reported here.
Figure 4: Distribution of 10-year cardiovascular disease risk according to recalibrated laboratory-based WHO risk prediction models for individuals aged 40–64 years from example countries.

Data from all countries are from adults aged 40–64 years with total cholesterol concentrations of 2.6–10.3 mmol/L and from samples representative of the national population, unless otherwise specified as subnational (S) or community based (C).
A second feature is the simplicity of the recalibration approach we have developed. This approach entails fewer modelling steps and avoids reliance on sparse cohort or country-level data, providing recalibrated calculators tailored to the sex-specific cardiovascular disease rates and risk factor levels of each region.26,31,32 Because the approach can be used with aggregate (ie, group level) data on cardiovascular disease incidences and with average risk factor values for any target population to be screened, this means that descriptive epidemiological data can be readily incorporated to revise models according to country-specific cardiovascular disease incidence to reflect changes in disease incidences and risk factor profiles. To support periodic revisions, we have made openly accessible the statistical code needed to calculate, validate, and recalibrate these models using updated population data.

A third feature is that the risk models reported here provide estimates for the combined outcome of fatal and non-fatal events, thereby improving on risk calculators that predict fatal events alone.8 Although information on fatal event rates is often easier to obtain at a country-specific level, the use of mortality risk models might underestimate total cardiovascular disease risk, particularly for individuals in populations where the case-fatality rate is low (as is typically observed among younger individuals).11 Because the models reported here have been specifically derived for and recalibrated to the sex-specific and age-specific rates of myocardial infarction and stroke in each region, they should avoid inaccuracies that could arise from recalibration to overall cardiovascular disease rates,35 including inconsistencies in reporting softer endpoints (such as angina) across regions.

A fourth feature is the assessment of pragmatic models that do not assume availability of laboratory measurements (eg, serum lipid concentrations). Such simplified approaches could be used in resource-constrained settings as part of stepwise approaches to help target laboratory testing in people most likely to benefit from therapies (eg, statins or anti-hypertensive medication).26 and used even when values for some risk factors are unavailable for individuals (when mean values from the relevant population can be used as crude surrogates).36 However, we found that an important limitation of such pragmatic scores was their poor performance among people with diabetes.

A fifth feature was that, because we could illustrate the performance of the new models with reference to surveillance data from 79 countries, our data have shown that the proportion of individuals across different risk categories is strikingly different across global regions. This finding suggests that our risk estimates should assist policy makers to make more appropriate and locally informed decisions about the allocation of prevention resources.

Finally, we have presented revised risk charts in an analogous manner to previous WHO–International Society of Hypertension (ISH) versions to help facilitate continuity of use. Nevertheless, the colour code has been revised to reflect the general lower estimated absolute risk levels compared with those of previous WHO–ISH models.6 Orange sections now indicate 10-year risk greater than 10%, whereas red sections indicate a risk greater than 20% (as opposed to >20% indicated in orange and >30% indicated in red previously).

The potential limitations of our study merit consideration. We derived risk prediction models from 85 cohorts mostly from high-income countries in the ERFC. Ideally, however, the derivation of risk models for low-income and middle-income countries would involve nationally representative, large-scale prospective cohort data from several of these countries, each cohort with long-term follow-up and validated fatal and non-fatal endpoints. Unfortunately, however, such data do not yet exist for most low-income and middle-income countries.21,29,52 Therefore, to inform recalibration, we used data from the GBD study and the NCD-RisC, acknowledging that these sources frequently do not have country-specific disease risk estimates because of the paucity or absence of such data.21,29,52

To provide external validation, we analysed data from 19 cohorts distinct from those used in model derivation. However, only one of them (PREDICT-CVD cohort) was nationally representative, whereas some of the other cohorts might have inadequately represented the epidemiology of cardiovascular disease in contemporary national populations of interest.44 Our risk models might have overestimated cardiovascular disease risk for primary prevention purposes because incidences from global regions used to recalibrate models were likely to include some recurrent events (although the extent of such overestimation is difficult to quantify).25 Conversely, our risk models might have underestimated cardiovascular disease risk because population data used to estimate incidences were likely to include some people already on cardiovascular disease prevention therapies (eg, statins or anti-hypertensive medication). However, data available to us were insufficient to explore this issue in detail. We could not compare the performance of our new risk models with risk equations already developed for use in specific high-income countries or regions because these equations typically contain some variables that are not available (or cannot be practically measured) in low-income and middle-income countries.5,12,13,16,14 Models were derived on participants with complete risk factor information, which, in principle, could cause a loss in efficiency and bias results. However, our analyses were well powered and should be unbiased under the reasonable assumption that the probability of an individual having complete risk factor information is independent of cardiovascular disease, given the variables included in the prediction model.71

For the statistical code see http://www.phpc.cam.ac.uk/eur/erfc/programs/
In conclusion, we have derived, validated, and illustrated new WHO risk prediction models to estimate cardiovascular disease risk in 21 GBD regions. Because the risk prediction models reported here have been adapted to the contemporary circumstances of many different global regions and can be readily updated with routinely available information, their widespread use could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide.
Articles

(A M Ibañez); Medical University of South Carolina, Charleston, SC, USA (P J Nietert); Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (T Ninomiya); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

(B G Nordestgaard); Boston Veteran’s Affairs Healthcare System, Boston, MA, USA (C O’Donnell); George Institute for Global Health (A Patel, M Woodward); Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Centre for Global Chronic Conditions, London School of Hygiene and Tropical Medicine, London, UK (P Perez); Molecular Epidemiology Research Group, Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK (J F Price); Department of Geriatric Medicine, University of Hawaii and Tecnologico de Monterrey, Honolulu, HI, USA (B Rodriguez); Sahlgrenska University Hospital and Ostra Hospital, Göteborg, Sweden (A Rosengren); INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Université Paris Diderot, Sorbonne Paris Cité, UFR de Médecine, and Assistance Publique Hôpitaux de Paris, Hôpital Bichat, Département Hospitalo-Universitaire FIRE, Service de Diabétologie, Endocrinologie et Nutrition, Paris, France (R Rousseil); Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada, Japan (M Sakurai); National Institute for Health and Welfare, Helsinki, Finland (N Salomaa); Chiba Prefectural Institute of Public Health, Chiba, Japan (S Satoh); Department of Biostatistics and Bioinformatics, MedStar Health Research Institute, Hyattsville, MD, USA (N Shara); Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (J E Shaw); USA Centers for Disease Control and Prevention, Hyattsville, MD, USA (H-C Shin); Department of Medical Sciences, Uppsala University, Uppsala, Sweden (J Sundstrom); Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland (H Tolonen); Shiga University of Medical Science, Shiga, Japan (H Ueshima); Institute for Community Medicine, University Medicine Greifswald, University of Greifswald, Greifswald, Germany (H Völzke); German Centre for Cardiovascular Disease (DZHK), Partner Site Greifswald, and German Centre for Cardiovascular Disease (DZDZ), Site Greifswald, Greifswald, Germany (H Völzke); Department of Epidemiology, University of Iowa College of Public Health, IA, USA (R A Wallace); Department of Neurology & Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria (P Willich); National Heart & Lung Institute (D Wood) and School of Public Health, IA, USA (R B Wallace); Department of Neurology & Steel Company: X G Wu; CISCH: J Zhou, X H Yu; Civil Service Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing, China (D Zhao); Department of Medicine, Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA (G Roth); Geneva Learning Foundation, Geneva, Switzerland (S Mendis); School of Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland (I Graham).

Investigators of the Emerging Risk Factors Collaboration

Atherosclerosis Risk in Communities Study: Yiğit Namib, Kunihiro Matsushita, David Couper; Australian Diabetes, Obesity and Nutrition, Paris, France (R Rousseil); Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada, Japan (M Sakurai); National Institute for Health and Welfare, Helsinki, Finland (N Salomaa); Chiba Prefectural Institute of Public Health, Chiba, Japan (S Satoh); Department of Biostatistics and Bioinformatics, MedStar Health Research Institute, Hyattsville, MD, USA (N Shara); Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (J E Shaw); USA Centers for Disease Control and Prevention, Hyattsville, MD, USA (H-C Shin); Department of Medical Sciences, Uppsala University, Uppsala, Sweden (J Sundstrom); Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland (H Tolonen); Shiga University of Medical Science, Shiga, Japan (H Ueshima); Institute for Community Medicine, University Medicine Greifswald, University of Greifswald, Greifswald, Germany (H Völzke); German Centre for Cardiovascular Disease (DZHK), Partner Site Greifswald, and German Centre for Cardiovascular Disease (DZDZ), Site Greifswald, Greifswald, Germany (H Völzke); Department of Epidemiology, University of Iowa College of Public Health, IA, USA (R A Wallace); Department of Neurology & Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria (P Willich); National Heart & Lung Institute (D Wood) and School of Public Health, IA, USA (R B Wallace); Department of Neurology & Steel Company: X G Wu; CISCH: J Zhou, X H Yu; Civil Service
Investigators of additional studies used in external validation

Chinese Multi- Provincial Cohort Study: Miao Wang, Jing Liu, Xingguang Zhang; Health Checks U Kentucky; Bhatia: H Tanaka, Shigakari Town: Y Kita, A Nozaki, H Ueshima; Shirakawa: H Horibe, Y Matsutani, M Kagaya; Singapore Heart: K Hughes, J Lee; Singapore NHS92: D Heng, S K Chew; Six Cohorts: B F Zhou, H Y Zhang; Tanno/Soubetsu: K Shimamoto, S Saitoh; Tianjin: Z Z Li, H Y Zhang; Western Australia AAA Screeners: P Norman, T Jamrozik; Xi’an: Y He; T H Lam: Yumna: S X Yao.

References

1. United Nations. Transforming our world: the 2030 agenda for sustainable development. 2015. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed July 26, 2019).
2. Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1736–88.
3. WHO. Global action plan for the prevention and control of NCDs 2013–2020. Geneva: World Health Organization, 2013.
4. WHO. HEARTS technical package. 2018. https://www.who.int/ publications-detail/heart-technical-package (accessed July 26, 2019).
5. WHO. Package of essential noncommunicable disease interventions in primary health care. https://www.who.int/nchdrc/management/pn_tool/en/ (accessed July 26, 2019).
6. Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol 2009; 54: 1209–27.

Acknowledgments

This work was commissioned to the coordinating center (Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK) by WHO to revise the 2007 WHO–International Society of Hypertension cardiovascular disease risk prediction charts and was done through an informal technical working group convened by WHO. The coordinating centre was supported by underpinning funding from the British Heart Foundation (BHF; SP/09/002, RG/13/13/30194, and RG/18/13/33946), BHF Cambridge Centre for Research Excellence (RF/13/16/30830), UK Medical Research Council (MR/130012/1), and the National Institute for Health Research (NIHR; Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust). This work was also supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), BHF, and Wellcome. JD is supported by a BHF Cambridge Centre for Research Excellence; non-financial support from Merck Sharp & Dohme and Novartis; and non-financial support from Merck Sharp & Dohme and Novartis, outside the submitted work. EDA reports grants from BHF and Transplant, British Heart Foundation, UK Medical Research Council, and NIHR, outside the submitted work. All other members of the writing committee declare no competing interests.
Articles

7 Karmali KN, Penrell SD, Perel P, Lloyd-Jones DM, Berendse MA, Huffman MD. Risk scoring for the primary prevention of cardiovascular disease. Circulation Database 2017; 8: C006887.

8 Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24: 987–1003.

9 D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117: 743–53.

10 US Preventive Services Task Force. Statin use for the primary prevention of cardiovascular disease in adults: Us Preventive Services Task Force recommendation statement. JAMA 2016; 316: 1997–2007.

11 Piepoli MF, Hoes AW, Agewall S, et al. European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention and Rehabilitation (EACPR). Eur Heart J 2016; 37: 2315–81.

12 Pylypchuk R, Wells S, Kerr A, et al. Cardiovascular disease risk prediction equations in 400,000 primary care patients in New Zealand: a derivation and validation study. Lancet 2018; 391: 1897–902.

13 Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 2017; 357: i2099.

14 D’Agostino RB Sr, Pencina MJ, Massaro JM, Cuddy S. Cardiovascular disease risk assessment: insights from Framingham. Glob Heart 2013; 8: 11–23.

15 Ueda P, Woodward M, Lu Y, et al. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys. Lancet Diabetes Endocrinol 2017; 5: 196–213.

16 Assmann G, Schulte H, Cullen P, Seedorf U. Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Munster (PROCAM) study. Eur J Clin Invest 2007; 37: 925–32.

17 Cooney MT, Dudina A, D’Agostino R, Graham JM. Cardiovascular risk-estimation systems in primary prevention: do they differ? Do they make a difference? Can we see the future? Circulation 2010; 122: 300–10.

18 Mortensen MB, Nordestgaard BG. Comparison of five major guidelines for statin use in primary prevention in a contemporary general population. Ann Intern Med 2018; 168: 85–92.

19 van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Stat Med 2000; 19: 3401–15.

20 Farzadfar F, Finucane MM, Danaei G, et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3·0 million participants. Lancet 2011; 377: 578–86.

21 James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392: 1742–859.

22 NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390: 209–262.

23 NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389: 17–55.

24 NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016; 387: 1513–30.

25 WHO. STEPeWise approach to surveillance (STEPS). 2017. https://www.who.int/nmh/surveillance/steps/en/ (accessed July 26, 2019).

26 Gaziano TA, Abraham-Gessels S, Alam S, et al. Comparison of non-blood-based and blood-based total CV risk scores in global populations. Glob Heart 2016; 11: S7–46.

27 Danesh J, Esra S, Walker M, et al. The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1·1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol 2007; 22: 839–69.

28 Di Angelantonio E, Kaptoge S, Wormser D, et al. Association of cardiometabolic multimorbidity with mortality. JAMA 2015; 314: 52–60.

29 Murray CJ, Ezzati M, Flaxman AD, et al. GBD 2010: design, definitions, and metrics. Lancet 2012; 380: 2063–66.

30 GBD Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1145–422.

31 Woodward M, Huxley R, Shemshina H, Fang X, Kim HC, Lam T-H. The Asia Pacific Cohort Studies Collaboration: a decade of achievements. Glob Heart 2012; 7: 343–51.

32 Wang Y, Liu J, Wang W, et al. Lifetime risk for cardiovascular disease in a Chinese population: the Chinese Multi–Province Cohort Study. Eur J Prev Cardiol 2015; 22: 380–88.

33 Suesmansan P, Choonchoopoon H, Rojanasakothorn S, Loiha S, Chamanan P. Association between alcohol consumption and pre-diabetes among 383,462 Thai population aged 15 years and older in Ubon Ratchathani: analytical cross-sectional study. J Med Assoc Thai 2016; 99 (suppl 1): S15–42.

34 Khalil D, Hadaegh F, Soori H, Steyerberg EW, Bozorgmanesh M, Azizi F. Clinical usefulness of the Framingham cardiovascular risk profile beyond its statistical performance: the Tehran Lipid and Glucose Study. Am J Epidemiol 2012; 176: 177–86.

35 Sudlow C, Gallagher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12: e1001779.

36 Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302: 1993–2000.

37 Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215–22.

38 Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.

39 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–58.

40 Thompson S, Kaptoge S, White I, et al. Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies. Int J Epidemiol 2010; 39: 1345–59.

41 Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–87.

42 Rosyton P, Parmar MK, Sylverton R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat Med 2004; 23: 907–26.

43 Parzen M, Liptitz SR. A global goodness-of-fit statistic for Cox regression models. Biometrics 1999; 55: 580–84.

44 Pennell S, Kaptoge S, Wood A, et al. Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. Eur Heart J 2019; 40: 621–11.

45 Pennell S, Kaptoge S, White IR, Thompson SG, Wood AM. Assessing risk prediction models using individual participant data from multiple studies. Am J Epidemiol 2014; 179: 621–32.

46 Ogutuyo D, Oum S, Buckley BS, Bonita R. Assessment of total cardiovascular risk using WHO/ISH risk prediction charts in three low and middle income countries in Asia. BMC Public Health 2013; 13: 519.

47 Mendis S, Lindholm LH, Mancia G, et al. World Health Organization (WHO) and International Society of Hypertension (ISH) risk prediction charts: assessment of cardiovascular risk for prevention and control of cardiovascular disease in low and middle-income countries. J Hypertens 2007; 25: 1578–82.
48 Hajifathalian K, Ueda P, Lu Y, et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. *Lancet Diabetes Endocrinol* 2015; 3: 319–55.

49 Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. *JAMA* 2007; 297: 611–19.

50 Liu J, Hong Y, D'Agostino RB Sr, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. *JAMA* 2004; 291: 1591–99.

51 Panagiotakos DB, Fitzgerald AP, Pitsavos C, Pipilis A, Graham I, Stefanadis C. Statistical modelling of 10-year fatal cardiovascular disease risk in Greece: the HellenicSCORE (a calibration of the ESC SCORE project). *Hellenic J Cardiol* 2007; 48: 55–63.

52 Murray CJL, Lopez AD. Measuring global health: motivation and evolution of the Global Burden of Disease Study. *Lancet* 2017; 390: 1460–64.

53 Grey C, Jackson R, Wells S, et al. First and recurrent ischaemic heart disease events continue to decline in New Zealand, 2005–2015. *Heart* 2018; 104: 51–57.

54 Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA Guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. *Circulation* 2014; 129 (suppl 2): S49–73.

55 White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. *Stat Med* 2010; 29: 2920–31.