Refinement of Strategy and Technology Domains
STOPE View on ISO 27001

Heru Susanto¹,², Fahad Bin Muhaya¹, Mohammad Nabil Almunawar³, Yong Chee Tuan³

¹ Prince Muqrin Chair - PMC for IT Security Technologies
King Saud University
hsusanto@ksu.edu.sa

² The Indonesian Institute of Sciences
Information Security & IT Governance Research Group
heru.susanto@lipi.go.id

³ University of Brunei
Information System Group
Susanto.net@gmail.com

Abstract – It is imperative for organizations to use Information Security Management System (ISMS) to effectively manage their information assets. ISMS starts with a set of policies that dictate the usage of computer resources. It starts with the “21 essential security controls” of ISO 27001, which give the basic standard requirements of information security management. Our research is concerned with the assessment of the application of these controls to organizations. STOPE (Strategy, Technology, Organization, People and Environment) methodologies were used to integrated domains as a framework for this assessment. The controls are mapped on these domains and subsequently refined into “246 simple and easily comprehended elements”.

Keywords – ISO 27001, STOPE, ISMS, Essential Security Controls

I. INTRODUCTION

Information systems are becoming more complex as systems and the information processed, this has a huge effect on interfacing requirements, information storage and presentation formats and security. Along with the entry of the information age in every aspect of our life, such as organizations activities, business activities, transactional activities, the need for a standard set of information, especially concerning information security is eminent to ensure that the information delivered will be accepted or utilized as intended and to make sure the confidentiality and integrity of the information. Nowadays information is considered as an essential asset of any organization. As such, any security threat such as information theft, computer-assisted fraud, vandalism and computer hacking [5] must be seriously dealt with. Consequently, it is necessary to secure the interconnected business environments to protect information resource from potentials security threats. International Organization for Standardization (ISO) has issued an information security management system standard (ISMS) to bring information security under explicit management control [3]. Security management systems contain set of policies put place by an organization to maintain the security of their computer and network resources. These policies are based on the types of resources that need to be secured, depending on the organization. Some groups of policies can be applied to entire industries; others are specific to an individual organization [9]. To give organizations a starting point to develop their own security management systems, ISO and the IEC have developed a family of standards known as the Information Security Management System 27000 Family of Standards. This group of standards, starting with ISO 27001, provides organizations with the ability to certify their security management systems [9].

The paper is organized as follows. In the next section, we discuss the concept of STOPE methodology approach in information security. This is followed by a description, overview and refine of the research model and its hypotheses. The research method is then presented, followed by a discussion of the analysis and results. Finally, we discuss our finding and suggest future research.
II. RELATED WORK

STOPE methodology schemes have been widely deployed to verify an information distributed activities on organization base on information security issues. In [2], Alfantookh proposed an approach for the assessment of the application of ISO 27001 essential information security controls. On STOPE point of view, Saleh et al [11] presented a novel approach methodology by introduced A STOPE model for the investigation of compliance with information security management standard ISO 17799-2005. It methodology makes it easy to implemented, measurable, and understandable. Bakry [5] also implemented STOPE by development of e-government.

III. SECURITY MANAGEMENT STANDARD

ISO 27001 is designed to assure the confidentiality, integrity and availability of information assets, is exclusive to information security, and only addresses that issue [4]. The key areas identified by ISO 27001 for the implementation of an information security management system are:

- An information security policy
- Allocation of information security responsibilities within the organisation
- Asset classification and control
- Personnel security, responsibilities and training
- Physical and environmental security
- Communications and operational systems security
- Access controls

The decision as to what is appropriate depends upon understanding the risks and costs involved. Since risk appraisal includes all organizations and all departments, areas, staff and activities, the rationality and conformity of the appraisal is still a topic for research [7], [8]. Understanding the risk means knowing what the assets are, what the possible threats to those assets are, and the likelihood and possible impact of a security breach on the business. The goal of information security is to suitably protect this asset in order to ensure business continuity, minimize business damage, and maximize return on investments [6], [10], [12]. As defined by ISO 27001, information security is characterized as the preservation of CIA (Confidentiality, Integrity and Availability) [5]:

- **Confidentiality** – ensuring that information is accessible only to those authorized to have access.
- **Integrity** – safeguarding the accuracy and completeness of information and processing methods.
- **Availability** – ensuring that authorized users have access to information and associated assets when required.

The ISO 27001 standard contains 11 security control clauses, which are [3]:

- Security Policy (contains of; 1 objective and 1 essential control);
- Organizing information security (contains of; 2 objectives and 1 essential control);
- Asset Management security (contains of; 2 objectives);
- Human Resources Security security (contains of; 3 objectives and 3 essential controls);
- Physical and Environmental security (contains of; 2 objectives);
- Communication and Operations Management (contains of; 10 objectives);
- Access Control (contains of; 7 objectives);
- Information Systems Acquisition, Development and Maintenance (contains of; 6 objectives and 5 essential controls);
- Information Security Incident Management (contains of; 2 objectives and 3 essential controls);
• Business continuity Management *(contains of: 1 objectives and 5 essential controls)*;
• Compliance *(contains of: 3 objectives and 3 essential controls)*;

STOPE is the abbreviation of the Strategy, Technology, Organization, People and Technology [5]. These five issues / STOPE called by domain of information security management systems. Every domain has several clauses, objectives, controls including the essential ones [2].

IV. STOPE METHODOLOGY

Bakry [4] introduced the basic elements of development in his STOPE profile as illustrated in figure 2. These elements are identified in the following:
• **Strategy**: the strategy of the country with regards to the future development of the industry or the service concerned.
• **Technology**: the technology upon which the industry or the service concerned is based.
• **Organization**: the organizations associated with or related to, the industry or the service concerned.
• **People**: the people concerned with the target industry or service.
• **Environment**: the environment surrounding the target industry or service.

STOPE methodology separate analysis of the issue into five domains in the top. The separation is intended to better focus the analysis of existing problems with perspective Strategy, Technology, Organization, People and Environment. Table 1 illustrates structuring the ISO 27001 clauses and their “132” controls, including the “essential ones: 21 controls”, over the five STOPE domains. The essential controls, which are concerned with the first security level of Figure 1, have been refined into 246 simple elements for the purpose of easing their assessment and application [1].

V. RE-REFINED ISO 27001

Refined is a deterministic process, which is ubiquitously present in the world. We verified and refined on standards existing; in order to determine the degree of clarity of each essential control over the parameters ISO 27001. Most organizations have a number of information security controls. Without a refined however, the controls tend to be somewhat disorganized and disjointed, having been implemented often as point solutions to specific situations or simply as a matter of convention. Sometimes a few essential controls are very difficult to understand, immeasurable and difficult to implemented, by organizations and stakeholders. Therefore we conducted a survey of respondents regarding the degree of clarity on the essential control. Refined perform by practitioners and experts of ISO 27001 information security field. We present refined in two domains of ISO 27001, namely Strategy and Technology domain. The results of our research, is seen in the explanation table below.
VI. STRATEGY DOMAIN

Strategy domain comes from clause number 5 and section 5.1.1. of ISO 27001. It contains 1 objective and 2 controls, with 1 essential control on it, namely *Information security policy: document*, is a Single essential. In this strategy domain, respondents gave the feedback and agreed to all essential controls are carried by the ISO 27001, *table 1*. Clarity on the question and the type of answer each question did not lead to multiple interpretations. The table contains controls and questions that have been made refined from its original form in the manual books of ISO 27001. All respondents agreed with the refined alfantookh has done, that control, assessment issues and the question was quite reasonable and easily understood by stakeholders.

Control	Refined Question	Status	Answer
Existence	Is the information security policy document available?	approve	Y or N
Approval	Is the information security policy document approved by the management?	approve	Y or N
Publication	Is the information security policy document published?	approve	Levels
Internal communication	Is the information security policy document communicated to all ICT users?	approve	Levels
External communication	Is the information security policy document communicated to relevant external parties?	approve	Levels
Documentation	Is the reporting of the above exists?	approve	Levels

Table 1: Assessing the control concerned with "strategy: information security policy: document"

VII. TECHNOLOGY DOMAIN

Technology domain comes from clause number 10, 11 and 12. It also ingredients of section number 12.2.1, 12.2.2, 12.2.3, 12.2.4, and 12.2.6.1 of ISO 27001. It contains 23 objectives and 73 controls, with 5 essential control on it, namely:

1. Input data validation (*table 2*)
2. Control of internal processing (*table 4*)
3. Message integrity (*table 5*)
4. Output data validation (*table 3*)
5. Control technical vulnerabilities (*table 6*)

Two refined and one additional question has been produced in this study, the addition of control (existence) and control of validation question. A question and grading system of answer that already exist can lead to multiple interpretations and ambiguous, added and refined question shown in the shaded tables.

Control	Refined Question	Status	Answer
Existence	Plausibility checks exist to test the output data reasonability?	added	Y or N
Validation	Is the examination for the input business transaction, standing data and parameter tables exist?	modified	Levels
Is the automatic examination exists?	approved	Y or N	
Is the periodic review and inspection available?	modified	Levels	
Is the response of procedures to validation exist?	approved	Y or N	
Management	Is the logging of events exists?	approved	Y or N
Accountability	Are the responsibilities defined?	approved	Levels
Documentation	Is the reporting of the above exists?	approved	Levels

Table 2: Assessing the control concerned with "technology: information systems acquisition, development and maintenance: correct processing in applications: input data validation"
Control Data output from an application should be validated to ensure that the processing of stored information is correct and appropriate to the circumstances.

Assessment Issue	Refined Question	Status	Answer
Existence	Plausibility checks exist to test the output data reasonability?	added	Y or N
Validation	Is the provided information for a reader or subsequent processing system sufficient to determine the accuracy, completeness, precision and classification of the information?	modified	Levels
Validation	Is the periodic inspection exists?	approved	Levels
	Are the responding procedures validation test exist?	added	Y or N
Practice	Is the checking that programs are run in order exists?	approved	Y or N
	Is the checking that programs are run at the correct time exists?	approved	Y or N
Accountability	Are the responsibilities defined?	approved	Y or N
Documentation	Is the reporting of the above exists?	approved	Levels

Table 3: Assessing the control concerned with “technology: information systems acquisition, development and maintenance: output data validation”

Internal control processing, message integrity and Control technical vulnerabilities, the respondents agreed that has been done alfantoookh refined. no improvement and rebuttal to control, the table 4, table 5, table 6. Thus alfantoookh refined enough to be accepted by stakeholders ISO 27001.

Control Validation checks should be incorporated into applications to detect any corruption of information through processing errors or deliberate acts.

Assessment Issue	Refined Question	Status	Answer
Validation	Is the validation of generated data, or software, exists?	approved	Y or N
	Is the validation of downloaded data, or software, exists?	approved	Y or N
	Is the validation of the uploaded data, or software, exists?	approved	Y or N
Protection	Is the use of programs that provide recovery from failure exists?	approved	Y or N

Table 4: Assessing the control concerned with “technology: information systems acquisition, development and maintenance: control of internal processing”

Control	Requirements for ensuring authenticity and protecting message integrity in applications should be identified, and appropriate controls identified and implemented.		
Assessment Issue	Refined Question	Status	Answer
Requirements	Are message integrity requirements specified?	approved	Levels
Protection	Are message integrity protection measures implemented?	approved	Levels
	Implemented protection measures are suitable to message integrity requirements	approved	Levels
Practice	Is the logging of events exists?	approved	Y or N
Accountability	Are the responsibilities defined?	approved	Y or N
Documentation	Is the reporting of the above exists?	approved	Levels

Table 5: Assessing the control concerned with “technology: information systems acquisition, development and maintenance: message integrity”
Control

Timely information about technical vulnerabilities of information systems being used should be obtained, the organization exposure to such vulnerabilities evaluated and appropriate measures taken to address the associated risk.

Assessment Issue	Refined Question	Status	Answer
Inventory of technical assets	Are the technical specifications of systems and their components exist?	approved	Y or N
Vulnerability	Are the vulnerabilities of technical assets identified?	Levels	
	Are the risks associated with vulnerabilities identified?	Levels	
Protection	Protection measures that respond to risks are identified	Levels	
	Are the protection tools evaluated before use?	Levels	
	Is the awareness on potential vulnerabilities among the right people exists?	Levels	
Practice	Does the monitoring to manage problems exist?	Y or N	
	Are logging of events exist?	approved	Levels
Accountability	Do the defined responsibilities exist?	Y or N	
Documentation	Is the reporting of the approved above exists?	Levels	

Table 3: Assessing the control concerned with "technology: information systems acquisition, development and maintenance: control of technical vulnerabilities"

A computer tool which eases the assessment process, as a assessment tool, was developed simultaneously. However by computer tool mentioned, assessment process of the organization is automated. The final result of calculation might be easily analyses, shorter and precision, done with the developed computer tool.

VIII. CONCLUSION REMARKS

The work presented in this report included refining the ISO/IEC 27001 21 essential controls using STOPE approach. The refinements were based on previous work, but it has been validated by experts from Prince Muqrin Chair (PMC) for information security. In addition, our designed computer tools, which ease the process of assessment of the implementation of security standards, are also assessed. Next step after our work is to refine and validate the other controls for the ISO 27001 (special and extended) and integrate them in the computer tool, to complete the whole information security standards for assessment according to ISO 27001.

IX. ACKNOWLEDGEMENT

This project is under supported of Prince Muqrin Chair (PMC) for Information Technologies Security, Information Security Management Systems Research Group. King Saud University. Thanks to Prof. Dr. Saad Hajj Bakry for supervised us during project.

X. REFERENCES

[1] A. Da Veiga & J.H.P. Eloff. 2009. A Framework and assessment instrument for information security culture. Computer & Security XXX (2009) 1-12. Elsevier Science Ltd.
[2] Abdulkader Alfantookh. An Approach for the Assessment of The Application of ISO 27001 Essential Information Security Controls. Computer Sciences, King Saud University. 2009.
[3] Andrew Ren-Wei Fung, Kwo-Jean Farn & Abe C. Lin. Paper: a study on the certification of the information security management system. Computer Standards & Interfaces 25 (2003) 447-461. Elsevier Science Ltd.
[4] Bakry, S.H. Development of security policies for private networks. International Journal of Network Management, Wiley, Vol. 13, Issue 1, pp 203-210, 2003.
[5] Bakry, S.H. “Development of e-government: a STOPE view”. International Journal of Network Management, Vol. 14 No. 5, pp. 339-50, 2004.
[6] Bakry, S.H. and Bakry, F.H. “A strategic view for the development of e-business”. International Journal of Network Management, Vol. 11 No. 2, pp. 103-12. 2001.
[7] Basie Von Solms. 2001. Information Security – A Multidimensional Discipline. Computer & Security 20(2001) 504-508. Elsevier Science Ltd.
[8] Basie von Solms & Rossovou von Solms. 2004. The 10 deadly sins of Information Security Management.
[9] Joel Weise. Public Key Infrastructure Overview. Sun Microsystems, Inc. 2001.

[10] Rao A, Carr LP, Dambolena I, Kopp RJ, Martin J, Raffi F, Schlesinger PF. Total Quality Management: A Cross Functional Perspective. Wiley: New York, 1996.

[11] Saleh M.S., Alrahiah A., and Bakry S.H. A STOPE model for the investigation of compliance with ISO 17799-2005 Journal of Information Management & Computer Security, Emerald, 15(4): 283-294. 2007.

[12] Tudor JK. 2000. Information Security Architecture. Proceedings of the 26th International Conference on Software Engineering (ICSE'04) 0270-5257/04 $20.00 © 2004 IEEE.