Gribov Ambiguity and Degenerate Systems

Patricio Salgado Rebolledo

Universidad Adolfo Ibanez, Santiago de Chile

Quarks 2018, Valday
Outline

1. Gribov Ambiguity
2. Degenerate Systems
3. Gribov Ambiguity as Degeneracy
4. FLPR Model
5. Conclusions
6. Future Directions
Gribov Ambiguity

- Generating functional for Yang-Mills Theory

\[Z = \int DA \, e^{-iS} \]

- Action

\[S = -\frac{1}{4} \int d^4 x \, \text{tr} \left[F^{\mu \nu} F_{\mu \nu} \right] \]

where \(F^{\mu \nu} \) the field strength associated to \(A_\mu = A^a_\mu T_a \)

- To avoid overcounting we must fix the gauge \(G^a [A_\mu] = 0 \)
The restriction is carried out using the Fadeev-Popov method

\[Z = \int DA \delta(G^a [A_\mu]) \det\mathcal{M} e^{iS}, \quad \mathcal{M}^a_b(x, y) = \frac{\delta G^a [A^g_\mu (x)]}{\delta \alpha^b (y)} \]

Coulomb gauge does not fix the gauge completely \(\implies\) Gribov copies \([\text{Gribov (1978)}]\)

Same for all gauge fixing conditions \([\text{Singer(1978)}]\).
The condition for this to happen is

\[G^a \left[g^{-1} A_\mu g + g^{-1} \partial_\mu g \right] = 0, \quad g \neq 1 \]

Infinitesimal gauge transformations, \(\delta A_\mu = D_\mu \alpha \)

\[G^a \left[\left(A_\mu + D_\mu \alpha \right) \right] = 0 \]

\[\implies \int d^4y M^a_{\mu \nu} (x, y) \alpha^b (y) = 0 \]

Infinitesimal Gribov copies \(\rightarrow \) zero modes of the Faddeev-Popov operator

The functional integral \(Z \) is ill-defined
Gribov proposed to restrict the path integral to the Gribov region

\[C_0 \equiv \{ A_\mu, G^a[A_\mu] = 0 \mid \det \mathcal{M} > 0 \} \]

\(C_0 \) is bounded and convex \([\text{van Baal (1992)}]\)

All orbits intersect the Gribov region \([\text{Dell’Antonio, Zwanziger (1991)}]\)
Gribov Ambiguity

- The restriction can be implemented in the form

\[Z_G = \mathcal{N} \int DA \delta (\partial^\mu A_\mu) \det (\mathcal{M}) \exp (-S_{YM}) \mathcal{V} (C_0) \]

- The factor \(\mathcal{V} (C_0) \) ensures integration only over \(C_0 \).

- Gluon propagator is modified: \(D^{ab}_{\mu\nu} (q) = \delta^{ab} g_0^2 \frac{q^2}{q^4 + \gamma^4} \left(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) \).

 [Gribov (1978)]

- Imaginary poles \(\rightarrow \) gluons are not in the spectrum \(\rightarrow \) Confinement

- Studies at finite temperature show a critical \(T \) for which imaginary poles disappear [Canfora, Pais, Salgado-Rebolledo (2014)]

- Restriction to the Gribov horizon can be properly implemented to match with lattice results [Sorella et al (2008)]
Degenerate Systems

- Hamiltonian Systems \rightarrow Symplectic geometry
- Symplectic manifold $= (M, \Omega)$
 \[\Omega = dA \]
- First order action
 \[L = A_A \dot{z}^A - H \]
- Poisson Bracket $= \text{Inverse of } \Omega$
 \[\{ z^A, z^B \} = \Omega^{AB} \]
- Euler-Lagrange equations
 \[\Omega_{AB} \dot{z}^A = \partial_B H \]
- $\det \Omega \neq 0 \Longrightarrow \text{Regular systems}$
Degenerate Systems

- \(\text{det} \Omega = 0 \) with fixed rank \(\implies \) Local Symmetries
- \(\text{det} \Omega = 0 \) and non-constant rank \(\implies \) Degenerate systems.

\[\Omega_{AB} \dot{z}^A = \partial_B H \]

- Degeneracy surfaces \(\Sigma = \{ z \in \Gamma / \text{det} \Omega = 0 \} \)

- Divide phase space into dynamical disconnected regions [Saavedra, Troncoso, Zanelli (2001)]

- The measure for the Hilbert space vanishes at the degeneracy surfaces [de Michelli, Zanelli (2012)]
Gribov Ambiguity as Degeneracy

- Consider a system with a finite number of degrees of freedom and a local symmetry.

\[S = \int dt \, L(x) \]
\[\delta S = 0 \quad \text{for some } \delta x \]

- Local symmetry \(\rightarrow\) constraints.
- In the Hamiltonian formalism there are primary constraints

\[\varphi_m(x) \approx 0 \]

- Dirac Formalism: Preservation in time of these can lead to secondary constraints, tertiary constraints, etc.
Gribov Ambiguity as Degeneracy

- They can be classified in first and second class

 \[\varphi_M = (\phi_i, \gamma_\alpha) \]

- First class constraints = generators of the local symmetries
- Second class constraints can be eliminated by implementing Dirac brackets

 \[\{ F, G \}^* = \{ F, G \} - \{ F, \gamma_\alpha \} C^{\alpha\beta} \{ \gamma_\beta, G \} \]
 where

 \[C^{\alpha\beta} = \{ \gamma_\alpha, \gamma_\beta \} \]

- Quantization \(\rightarrow\) fix the gauge \(\rightarrow\) extra constraints \(G_i\) such that first class constraints become second class.

 \[\gamma_I = (\phi_i, G_j) \]

- Defining Dirac brackets we can set all the constraints to zero strongly.
Proper gauge fixing:

1. Accessibility
2. Complete gauge fixation [Henneaux, Teitelboim (1992)]

Dirac brackets \longrightarrow Symplectic structure of the reduced phase space.

$$\{ y^a, y^b \}^* = \Omega_{red}^{ab}$$

$$\Omega_{red} = \frac{1}{2} \Omega_{red}^{ab} dy^a \wedge dy^b$$

We can redefine the Dirac matrix by defining $\gamma_I \rightarrow \tilde{\gamma}_I = V_{IJ} \gamma_J$

$$\tilde{C} = V^T CV = \begin{pmatrix} & & & & 1 \\ & & & \cdots & \\ & & 1 & & \\ & \cdots & & & \\ -1 & & & & \end{pmatrix}$$
In other words we use new coordinates $z^A = (\bar{\gamma}_I, y^a)$.

Implementing the constraints strongly, the path integral in Hamiltonian form is

$$Z = \int D\gamma e^{iS} = \int D\gamma \prod I \delta (\bar{\gamma}_I) e^{iS}$$

Turning back to the old variables

$$Z = N \int Dx \prod I \delta (\gamma_I) \det \{ G_i, \phi_j \} e^{iS}$$

$\det \{ G_i, \phi_j \}$ is identified with the Faddeev-Popov determinant and

$$\mathcal{M}_{ij} = \{ G_i, \phi_j \}$$

If the system has Gribov ambiguity then

$$\det \{ G_i, \phi_j \} = 0 \text{ at the Gribov horizon}$$
Gribov Ambiguity as Degeneracy

- Dirac matrix

\[C_{IJ} = \{\gamma_I, \gamma_J\} = \begin{pmatrix} \{G_i, G_j\} & M_{ij} \\ -M_{ij} & \{\phi_i, \phi_j\} \end{pmatrix}. \]

- Therefore \(\det C \approx (\det M)^2 \)

- In the new coordinates

\[\{z^A, z^B\} = \begin{pmatrix} \{y^a, y^b\} \\ 0 \\ 0 \end{pmatrix} C_{IJ} \]

\[\det \Omega^{-1} = \det \Omega_{red}^{-1} (\det M)^2 \]

- \(\Omega \) regular \(\implies \det \Omega_{red}^{-1} \) blows up at the Gribov horizon

\[\implies \det \Omega_{red} = 0 \] at the Gribov horizon

- **Theorem:** In the presence of Gribov ambiguity the reduced system is degenerate [Canfora, de Michelli, Salgado-Rebolledo, Zanelli (2015)].
FLPR Model

- Solvable model [Friedberg, Lee, Pang, Ren (1995)].

\[L = \frac{1}{2} \left((\dot{x} + \alpha yq)^2 + (\dot{y} - \alpha xq)^2 + (\dot{z} - q)^2 \right) - V(\rho) \]

- Canonical momenta

\[
\begin{align*}
p_x &= \frac{\partial L}{\partial \dot{x}} = \dot{x} + \alpha yq, \\
p_y &= \frac{\partial L}{\partial \dot{y}} = \dot{y} - \alpha xq, \\
p_z &= \frac{\partial L}{\partial \dot{z}} = \dot{z} - q, \\
p_q &= \frac{\partial L}{\partial \dot{q}} = 0
\end{align*}
\]

- First class constraints

\[\varphi = p_q \approx 0 \]

\[\phi = p_z + \alpha (xp_y - yp_x) \approx 0 \]
\(\phi \) generates helicoidal orbits
\[\delta_\phi(x, y, z, q) = \epsilon(t)(-\alpha y, \alpha x, 1, 0) \]

- Gauge condition

\[G = z - \lambda x \approx 0 \]

- \(G \) presents Gribov Ambiguity
\[\mathcal{M} = \{ G, \phi \} = 1 + \alpha \lambda y \]
The pair G, ϕ is second class everywhere, except at the Gribov horizon

$$\Xi = \{(x, p_x, y, p_y, z, p_z) \in \Gamma | M = 0\}$$
FLPR Model

- Second class constraints \(\{G, \phi\} \)

\[
\begin{align*}
\gamma_I : \quad & \gamma_1 = G = z - \lambda x, \\
& \gamma_2 = \phi = p_z + \alpha (xp_y - yp_x)
\end{align*}
\]

- Setting constraints strongly equal to zero \(\rightarrow z \) and \(p_z \) eliminated from phase space

- Dirac matrix

\[
C_{ij} = \begin{pmatrix}
0 & M \\
-M & 0
\end{pmatrix}
\]

- Dirac brackets

\[
\begin{align*}
[x, p_x]^{*} &= \frac{1}{M}, \\
[x, y]^{*} &= 0, \\
[x, p_y]^{*} &= 0, \\
[y, p_y]^{*} &= 1, \\
[y, p_x]^{*} &= \frac{\alpha \lambda x}{M}, \\
[p_x, p_y]^{*} &= -\frac{\alpha \lambda p_x}{M}
\end{align*}
\]
FLPR Model

- Reduced symplectic form is

\[
\omega_{ab} = \begin{pmatrix}
0 & -\mathcal{M} & -\alpha \lambda p_x & \alpha \lambda x \\
-\mathcal{M} & 0 & 0 & 0 \\
\alpha \lambda p_x & 0 & 0 & -1 \\
-\alpha \lambda x & 0 & 1 & 0
\end{pmatrix}.
\]

- Closed but degenerates precisely at the Gribov horizon

\[
\text{det}[\omega_{ab}] = \mathcal{M}^2
\]

\[
\Sigma = \{(x, p_x, y, p_y) \in \Gamma_0|\, \Upsilon(u) \equiv \mathcal{M} = 0\}
\]
The degeneracy surface divides phase space into dynamically disconnected regions

\[C_+ := \{(x, y, z) \mid z - \lambda x = 0, 1 + \alpha \lambda y > 0\} , \]
\[C_- := \{(x, y, z) \mid z - \lambda x = 0, 1 + \alpha \lambda y < 0\} . \]
Conclusions

- We have studied Gribov ambiguity from a Hamiltonian point of view.
- It has been shown that, for finite dimensional systems, the presence of Gribov copies implies a degeneracy for the reduced phase space.
- We have studied the FLPR model and found the degenerate reduced symplectic form in the presence of a Gribov horizon.
- The degeneracy surface divides phase space into dynamically disconnected regions.
- This suggests that the restriction to the Gribov horizon in QCD is natural.
Future Directions

- To look for explicit degeneracies in the symplectic form for Yang-Mills theories after gauge fixing [WORK IN PROGRESS]
- In Yang-Mills theory the canonical momenta associated to the gauge field A^a_{μ} is
 \[
 \Pi^\mu_a = \frac{\partial L}{\partial \left(\dot{A}^a_{\mu} \right)} = F^\mu_0.
 \]
- There is a primary constraint
 \[
 \phi^0_0 = \Pi^0_a \approx 0
 \]
- The canonical Hamiltonian is given by
 \[
 H = \int d^3x \left(\dot{A}^a_i \Pi^i_a - L \right) = \int d^3x \left(\mathcal{H}_0 + A^a_i (D_i)_a^b \Pi^i_b \right)
 \]
 where
 \[
 \mathcal{H}_0 = \frac{1}{2} \Pi^i_a \Pi^a_i + \frac{1}{4} F^a_{ij} F^i_a
 \]
Future Directions

- Total hamiltonian
 \[H_T = H + \int d^3x \mu^a \phi^0_a \]

- Preservation in time of the primary constraint leads to
 \[\phi_a = - (D_i)_a^b \Pi^i_b \approx 0 \]

- The set \(\{ \phi^0_a, \phi_a \} \) is first class.

- Eliminating \(\phi^0_a \) and \(A^a_0 \) the extended action
 \[S_E = \int dx^0 \int d^3x (\dot{A}^i_a \Pi^a_i - \mathcal{H}_0 - \lambda^a \phi_a) \]
 is invariant only under the transformations generated by \(\phi_a \)
 \[\delta A^a_i (x) = \int d^3y \epsilon^b (y) \{ A^a_i (x), \phi_b (y) \} = (D_i)_a^b \epsilon^b (x) \]
The first class constraints satisfy \(\{ \phi_a, \phi_b \} = f^c_{ab} \phi_c \)

To fix the gauge we choose the Coulomb condition \(G^a = \partial^i A^a_i \approx 0 \)

Now the set \(\gamma_A = (\phi_a, G^b) \) is second class

Dirac matrix

\[
C_{AB}(x, y) = \begin{pmatrix}
0 & -\partial^i (D_i)^a_b \delta^3 (x - y) \\
\partial^i (D_i)^a_b \delta^3 (x - y) & 0
\end{pmatrix}
\]

Eigenvalue equation

\[
-\partial^i (\delta^a_b \partial_i + if^a_{cb} A^c_i) \alpha^b = \epsilon (A_i) \alpha^a.
\]
Future Directions

- For vanishing gauge potentials \(-\partial^i \partial_i \alpha^a = \epsilon \alpha^a\) has positive eigenvalues \(\epsilon = p^2\)
- For small enough gauge fields \(A^a_i\) there are only positive eigenvalues
- For sufficiently large gauge fields, a zero mode \(\epsilon = 0\) can appear
- This will be a zero mode of the Dirac Matrix and of the reduced symplectic form
- Set the constraints strongly to zero and evaluate Dirac brackets
- Compute the reduced phase space symplectic form and look for degeneracies
- Generalization for the theory at finite temperature
- In the finite temperature case the degeneracy should disappear at some critical temperature
Thank You!