Young planets under extreme UV irradiation: Upper atmosphere modelling of the young exoplanet K2-33b

Daria Kubyshkina (1), Monika Lendl (1,2), Luca Fossati (1), Patricio Cubillos (1), Helmut Lammer (1), Nikolay Erkaev (3,4), and Colin Johnstone (5)

(1) Space Research Institute, Graz, Austria (kubyshkina.darya@gmail.com), (2) Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany, (3) Institute of Computational Modelling, FRC "Krasnoyarsk Science Center” SB RAS, 660036, Krasnoyarsk, Russian Federation, (4) Siberian Federal University, 660041, Krasnoyarsk, Russian Federation, (5) University of Vienna, Department of Astrophysics, Türkenschanzstrasse 17, 1180, Vienna, Austria

The K2-33 b is a planet of ~5 Earth radii orbiting the young M-type host star, recently emerged from the interplanetary disc. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. Since the planetary mass remains unknown (the estimated upper limit is 5.4 Jupiter mass), we perform a series of 1D hydrodynamic simulations of the planet’s upper atmosphere considering a range of most probable possible planetary masses in the range from super-Earth to the twice of Neptune. To account for internal heating as a result of contraction, we set the temperature range from the black body temperature of the planet of 850 K to 1300 K. As the result, we obtain temperature profiles mostly controlled by the planet’s mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 Earth mass, the atmosphere is exposed to extremely high escape rates, driven by the planet’s weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 Earth masses.