Disseminating warning information by Vehicular Ad hoc Networks (VANETs) is of great significance to alleviate traffic problems in time critical applications in future Intelligent Transportation Systems (ITS). In the urban express environment, it is critically challenging to design efficient dissemination mechanisms with strict Quality of Service (QoS) requirements due to complex road structures, severe channel contention, message redundancy etc. In this paper, the Backbone Source and Positional Broadcast Routing (BSPBR) protocol has been proposed to lower message transmission delay and increase reliability. It employs dynamically generated backbone nodes as source nodes based on movement and link quality between vehicles based on a fuzzy logic. Novel forwarding node selection scheme is followed in all propagating directions using iterative partition, mini-slot and black-burst exchange. A single node is successfully chosen using the backbone ranking. Bi-directional broadcast, multi-directional broadcast and directional broadcast are designed on the basis of the position of senders to enable emergency messages to cover the target area seamlessly. Theoretical analysis and simulation results are used to show significant improvement in throughput with
marginal effects on end-to-end delay and packet delivery fraction by the proposed protocol over other existing alternatives.

References

1. Taleb, T., Sakhae, E., Jamalipour, A., Hashimoto, K., Kato, N., and Nemoto, Y. 2007, “A Stable Routing Protocol to Support ITS Services in VANET Networks”, IEEE Transactions on Vehicular Technology, 56 (Nov. 2007), 3337-3347
2. He, J., Cai, L., Cheng, P., and Pan, J. 2016, “Delay Minimization for Data Dissemination in Large-scale VANETs with Buses and Taxis”, IEEE Transactions on Mobile Computing, 15 (Aug. 2016), 1939-1950
3. Akabane, A., Madeira, E., and Villas, L. 2015, “A Suitable Broadcast Protocol under Different Traffic Patterns for Urban Scenario”, IEEE Latin America Transactions, 13 (Jan. 2015), 222-227
4. Ros, F., Ruiz, P., and Stojmenovic, I. 2009, “Reliable and efficient broadcasting in vehicular ad hoc networks”, Proc. IEEE VTC Spring, 1-5
5. Hayat, U., Iqbal, R., and Diab, J. 2016, “Eliminating Broadcast Storming in Vehicular Ad-hoc Networks”, International Journal of Advanced Computer Science and Applications (IJACSA), 7 (Jan. 2016), 348-354
6. Wisitpongphan, N., Tonguz, O., Parikh, J., Mudalige, P., Bai, F., and Sadear, V. 2007, “Broadcast storm mitigation techniques in vehicular ad hoc networks”, IEEE Wireless Communications, 14 (Dec. 2007), 84-94
7. Bi, Y., Liu, K., Cai, L., Shen, X., and Zhao, H. 2009, “A multi-channel token ring protocol for QoS provisioning in inter-vehicle communication”, IEEE Transactions Wireless Communications, 8 (Nov. 2009), 5621-5631
8. Yang, C., and Lo, S. 2010, “Street broadcast with smart relay for emergency messages in VANET”, Proc. IEEE 24th International Conference on Advance Information and Network Applications Workshops, 323-328
9. Ma, X., Zhang, Z., Yin, X., and Trivedi, K. 2012, “Design and analysis of a robust broadcast scheme for VANET safety related services”, IEEE Transactions on Vehicular Technology, 61 (Jan, 2012), 46-61
10. Suthaputchakun, C., Dianati, M., and Sun, Z. 2014, “Trinary partitioned black-burst based broadcast protocol for time-critical emergency message dissemination in VANETs”, IEEE Transactions on Vehicular Technology, 63 (Jul. 2014), 2926-2940
11. Bi, Y., Cai, L., Shen, X., and Zhao, H. 2010, “Efficient and reliable broadcast in intervehicle communications networks: A cross-layer approach”, IEEE Transactions on Vehicular Technology, 59 (Jun. 2010), 2404-2417
12. Mylonas, Y., Lestas, M., Pistilliides, A., Ioannou, P., and Papadopoulou, V. 2015, “Speed Adaptive Probabilistic Flooding for Vehicular Ad Hoc Networks”, IEEE Transactions on Vehicular Technology, 64 (May 2015), 1973-1990
13. Wu, L., Nie, L., Fan, J., He, Y., Liu, Q., and Wu, D. 2017, “An Efficient Multi-hop Broadcast Protocol for Emergency Messages Dissemination in VANETs”, 26 (Mar. 2017), 614-623
14. Martinez, F., Fogue, M., Coll, M., Cano, J., Calafate, C., and Manzoni, P. 2010, “Evaluating the Impact of a Novel Warning Message Dissemination Scheme for VANETs Using Real City Maps”, Proc. IFIP Networking, 265-276
15. Fogue, M., Garrido, P., Martinez, F., Cano, J., Calafete, C., and Manzomi, P. 2013, “An Adaptive System Based on Roadmap Profiling to Enhance Warning Message Dissemination in VANETs”, IEEE/ACM Transactions on Networking, 21 (Jun. 2013), 883-895

16. Korkmaz, G., Ekici, E., and Ozguner, F. 2007, “Black-burst based multihop broadcast protocols for vehicular networks”, IEEE Transactions on Vehicular Technology, 56 (Sept. 2007), 3159-316

17. Sahoo, J., Wu, E., Sahu, P., and Gerla, M. 2011, “Binary-partition-assisted MAC-layer broadcast for emergency message dissemination in VANETs”, IEEE J. Sel. Areas Communications, 12 (Sept. 2011), 757-770

18. Zhu, W., Gao, D., Foh, C., Zhang, H., and Chao, H. 2017, “Reliable emergency message dissemination protocol for urban internet of vehicles”, IET Communications, 11 (Jun. 2017), 1275-1281

19. Cheng, X., Yang, L., and Shen, X. 2015, “D2D for intelligent transportation systems: A feasibility study”, IEEE Transactions on Intelligent Transportation System, 16 (Aug. 2015), 1784-1793

20. Forouzan, B., and Fegan, S. 2006, Data Communication and Networking

21. Yng, Q., Xing, S., Xia, W., and Shen, L. 2015, “Modelling and performance analysis of dynamic contention window scheme for periodic broadcast in vehicular ad hoc networks”, IET Communications, 9 (Jul. 2015), 1347-1354

22. Klr, G., Clair, U., and BO. Y. 1995, Fuzzy set theory: foundations and applications, Prentice-Hall

23. Wang, M., Shan, H., Luan, T., Lu, N., Zhang, R., Shen, X., and Bai, F. 2015, “Asymptotic Throughput Capacity Analysis of VANETs Exploiting Mobility Diversity”, IEEE Transactions on Vehicular Technology, 64 (Sept. 2015), 4187-4202

24. He, J., Cai, L., Cheng, P., and Pan, J. 2017, “Delay Analysis and Routing for Two-Dimensional VANETs Using Carry-and Forward Mechanism”, IEEE Transactions on Mobile Computing, 16 (Jul. 2017), 1830-1841

25. The Network Simulator-ns 2.35 [Online], Available: http://www.isi.edu/nsnam/ns/

Index Terms

Computer Science Biomedical

Keywords

Backbone node, data dissemination, directional broadcast, emergency message, QoS, VANETs
