Distribution of maximum velocities in avalanches near the depinning transition

Michael LeBlanc¹, Luiza Angheluta¹,², Karin Dahmen¹ and Nigel Goldenfeld¹
¹Department of Physics, University of Illinois at Urbana-Champaign,
Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080
²Physics of Geological Processes, Department of Physics, University of Oslo, Norway

We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities \(v_m \) in the mean field theory of the interface depinning transition. We derive the extreme value distribution \(P(v_m|T) \) for the maximum velocities in avalanches of fixed duration \(T \), and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, \(v_m \), scales as \(P(v_m) \sim v_m^{-2} \) for large \(v_m \). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity, and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

PACS numbers: 64.60.av, 05.40.-a, 05.10.Gg, 61.72.Ff

Avalanche phenomena have been observed in a wide variety of disordered systems that exhibit cracking noise near a depinning transition. Examples include Barkhausen noise in soft magnetic materials [1,2], elastic depinning of charge density waves [3,4], dynamics of superconductors [5], seismic activity in earthquakes [6], acoustic emission in mesoscopic crystal plasticity [7], and fracture propagation [8]. Although these varying materials/systems have different microscopic details, on long length scales, the statistical scaling behavior of avalanches appears to be universal. For example, the distributions of avalanche sizes in sheared crystals and in slowly magnetized soft magnets are both captured by the mean field theory of a slowly driven elastic interface in a disordered medium [4,6,9,12].

Recent experimental studies of slip avalanches in mesoscopic crystal plasticity have reported that the distribution of the maximum amplitude \(A_m \) of the acoustic emission (AE) signal from each avalanche follows a power law \(P(A_m) \sim A_m^{-\mu} \), where the exponent \(\mu \approx 2 \) [7,13,17]. Since each avalanche contributes with only one maximum amplitude to the histogram, many events are required to obtain good statistics for \(P(A_m) \). Thus the variations in the experimental values of \(\mu \) depend on the experimental statistics. Owing to the proportionality between the AE amplitude \(A_m \) and the collective velocity \(v_{m} \) of dislocations [14], the distributions \(P(A_m) \) and \(P(v_m) \) should be characterized by the same scaling exponents and scaling functions. So far, a theoretical prediction for the value of the exponent \(\mu \) has been lacking.

In this Letter, we present the first theoretical calculation of the maximum velocity distribution, establishing a connection to the known classes of extreme value statistics of correlated variables. In particular, we derive the distribution of maximum velocities \(P(v_m) \) from a mean field interface depinning model. We first show that the probability distribution function (PDF) of the maximum velocity for avalanches of fixed duration \(T \) follows a universal scaling form \(P(v_m|T) = (2v_mT)^{-1/2}F(\sqrt{2v_m/T}) \), with a scaling function \(F(x) \) that can be derived exactly by a mapping to an equivalent problem of random excursions of Brownian motion in a logarithmic potential. Although a general theory of extremal statistics for strongly correlated variables is not known, much progress has been made already for several classes of power-law correlated noise with an \(1/\omega^\alpha \) (where \(\omega \) is the frequency) power spectrum. Brownian noise corresponds to the particular case where \(\alpha = 2 \) [18,19]. The extreme value statistics of power-law correlated noise typically have a robust scaling form, but the scaling function depends on boundary conditions, the value from which the maximum is measured, as well as other constraints on the time evolution. For example, different scaling functions are obtained for the maximum heights of periodic Gaussian interfaces: if the maximum is measured relative to the spatially averaged height, the corresponding EVS is determined by the so-called Airy distribution function [18,20,22], whereas measuring the maximum relative to the boundary value leads to the Rayleigh distribution [19,23]. Here we demonstrate that our problem of maximum heights of amplitudes of mean field avalanches is equivalent to a related problem whose exact solution obeys the same scaling form with a distinct function. Finally, we show that the overall distribution scales like \(P(v_m) \sim v_m^{-2} \) by integrating \(P(v_m|T) \) against the duration PDF \(F(T) \). The results of this study are expected to be broadly applicable to plasticity, earthquakes, Barkhausen noise in soft magnets and many other systems in the mean field interface depinning universality class.

Our starting point is a zero-dimensional model of a slowly driven elastic interface in a disordered medium, also known as the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model [24], corresponding to the dynamics of a particle pulled by an elastic spring and an external field through a random force landscape. The position of the particle \(u(t) \) corresponds to the center-of-mass displace-
The mean field scaling law

\[F_{\text{f}}(t) \] is a rate-dependent exponent \([1, 24, 25]\), and such that, for duration:

\[\text{the dynamics of domain walls in ferromagnets}[28]. \]

The power-law exponent depends where \(\Gamma(\xi)\) which has a steady state solution given by Eq. (1) transforms to an additive-noise Langevin equation

\[\frac{dt}{dt} = -k v + c + \sqrt{\epsilon} \xi(t), \]

where \(c\) is the constant drift velocity, \(k\) is the elastic coupling constant and \(\xi(t)\) is Gaussian white noise with autocorrelation \(\langle \xi(t)\xi(t') \rangle = 2D\delta(t-t')\) where \(D\) is a constant measure of disorder. In numerous studies, this scaling law for the size and duration distributions near quasi-static depinning for systems with long-range interactions \([1, 10, 24–26]\). It is relevant for the calculations of avalanche durations \([1, 10, 24–26]\). It is relevant for the calculations before the rescaling. In panel (b), we show \(\langle v_m|T\rangle\) as a function of \(T\), with the solid line representing the analytical solution from Eq. (8) with \(D = 1/2\).

\[\Gamma(z) \] is the Gamma function, \(\hat{c} = c/D\) and \(\hat{k} = k/D\) \([1, 24, 25, 26]\). The power-law exponent depends linearly on the driving rate \(c\), such that in the adiabatic limit \(c \rightarrow 0\), the distribution approaches the well-known \(v^{-1}\) scaling, which has been verified by experiments on the dynamics of domain walls in ferromagnets \([25]\).

Maximum velocity distribution for avalanches of fixed duration.- By a change of variables to \(x = 2\sqrt{\epsilon}\), Eq. (1) transforms to an additive-noise Langevin equation

\[dx/dt = -kx/2 + (2c - D)x + \xi(t). \]

The additional \(1/x\) term comes from the Ito interpretation of the multiplicative noise in Eq. (1). This choice yields the correct Eq. (2). Thus, in the adiabatic limit, near depinning, where \(c \rightarrow 0\) and \(k \rightarrow 0\), the velocity evolution can be mapped onto a one-dimensional (1D) Brownian motion in a logarithmic trap. An avalanche of duration \(T\) corresponds to an excursion, i.e. a path \(x(t)\) with \(x(0) = x(T) = 0\) and \(x(t) > 0\) for \(0 < t < T\). The extreme displacement distribution for Brownian excursions can be derived using the path integral formalism found in Refs. [21, 25]. We adapt this method to our problem, and determine the cumulative distribution \(C_{\text{RW}}(x_m|T)\) of the maximum displacement during excursions for a Brownian motion in a logarithmic trap. The cumulative distribution can be defined as \(C_{\text{RW}}(x_m|T) = \)

\[\lim_{\epsilon \to 0} \frac{\int_{x(0) = 0}^{x(T) = x} \mathcal{L}_{\mathcal{E}} - \int_{x(0) = 0}^{x(T) = x} dt \epsilon I(x(t)) \Theta(x_m - x(t))}{\int_{x(0) = 0}^{x(T) = x} \mathcal{L}_{\mathcal{E}} - \int_{x(0) = 0}^{x(T) = x} dt \epsilon I(x(t)) \Theta(x(t))} \]

where the Lagrangian is given by \(\mathcal{L}_{\mathcal{E}} = \frac{1}{2T}(\dot{x}^2 + \frac{1}{2})^2\). The theta function products in the numerator indicate that only paths that stay positive-valued between \(t = 0\) and \(t = T\) and have a maximum distance from the origin not greater than \(x_m\) are counted. The denominator is a normalization factor, counting any excursion of
The first moment of avalanche of duration PDF of the instantaneous velocity that the reported elsewhere [29]. The results will be explored for the scaling function to converge to the one predicted by our continuum derivation, but the results are in accord with predictions. We obtained improved statistical results for data collapse to the same scaling function using the computationally-efficient discrete velocity shell model [30,31], which obtains its scaling regime at smaller durations. These results will be reported elsewhere [29].

Although our analytical calculation was performed exactly only for \(c = 0 \), the scaling form in Eq. (7) gives a good collapse of simulation data away from criticality as well, even when including durations \(T \sim T^* \) [29]. Therefore the dependence of the scaling function on \(c \) is likely to be weak. Since the driving rate parameter \(\hat{c} \) is dimensionless, one might anticipate that nonzero values of the driving rate \(c \) modify the scaling function, but not the scaling form. Indeed, the exact form of the modification can be calculated analytically with a slight generalization of the above calculation [29].

Maximum and instantaneous velocity statistics: We now investigate the maximum velocity distribution integrated over all durations. This distribution is equivalent to the
$P(A)$ of the maximum AE amplitude, A, deduced from the time series in AE experiments on crystal plasticity. From Eq. [9], we can determine the PDF of the maximum avalanche velocity $P(v_m)$ by integrating $P(v_m|T)$ over avalanche durations T weighted by their distribution $F_T(T) \sim T^{-2+\varepsilon}$, for $T \ll T^*$. Our numerics indicate that $P(v_m|T)$ satisfies Eq. [7] at least for durations $T < T^*$. Thus, the distribution of $P(v_m)$ is

$$P(v_m) \sim \int_0^{T^*} \frac{dT}{T^{2-\varepsilon}} P(v_m|T),$$

and near depinning, where $T^* \to \infty$, we have

$$P(v_m) \sim v_m^{-2+\varepsilon}.$$

Similarly, we obtain the PDF $P(v)$ for the instantaneous velocity v at an arbitrary time by integrating $P(v, t|T)$ over the time spent in an avalanche of duration T and then over the distribution of durations, giving

$$P(v) = \int_0^{T^*} dT \int_0^T dt P(v, t|T) F(T)$$

$$\sim v \int_0^{T^*} \frac{dT}{T^{3-\varepsilon}} G(v/DT),$$

where $G(x) = \int_0^1 du (u(1-u))^{-2} \exp(-x(u(1-u))^{-1})$. $G(x) \sim x^{-1}$ for $x \ll 1$ and decays exponentially for $x \gg 1$, so in the limit $T^* \to \infty$, we recover the $P(v) \sim v^{-1+\varepsilon}$ scaling predicted by the steady state equation for $\varepsilon < 1$ [10, 23, 25, 27]. In Fig. 2, we show numerically calculated PDFs $P(v_m)$ and $P(v)$ for various values of ε. The distributions agree with the predictions of Eqs. [11] and [3].

In addition to the exponents, it would be interesting to measure the predicted scaling form of the $P(v_m|T)$ over fixed durations from AE experiments, in the corresponding regime where the distribution of maximum amplitudes $P(A_m) \sim A_m^{-2}$ was observed [7, 13, 17]. The distribution $P(v_m|T)$ was calculated exactly only at the depinning transition with $k = c = 0$, but numerical evidence strongly suggests that an indistinguishable scaling form occurs away from the transition, whose dependence on the elastic coupling constant and the driving rate still needs to be studied in more detail. Finally, what happens beyond mean field theory remains an open question, despite the apparently good agreement of our calculations with available experimental data. For instance, it is unclear to us whether the exponent μ in $P(v_m) \sim v_m^{-\mu}$ is expressible in terms of the other avalanche exponents (τ, α, ν, Σ, etc.) or if it is independent.

Acknowledgments: L.A. is grateful for support from the Center of Excellence for Physics of Geological Processes. This work was partially supported by the National Science Foundation through grants DMR-1005209, and DMS-1069224.

[1] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Physical Review B, 58, 6353 (1998).
[2] J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature, 410, 242 (2001).
[3] P. A. Lee and T. M. Rice, Physical Review B, 19, 3970 (1979).
[4] S. Brazovskii and T. Nattermann, Advances in Physics, 53, 177 (2004).
[5] S. Field, J. Witt, F. Nori, and X. Ling, Physical Review Letters, 74, 1206 (1995).
[6] D. S. Fisher, Physics Reports, 301, 113 (1998).
[7] M. C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, and J. R. Grasso, Nature, 410, 667 (2001).
[8] S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Physical Review E, 59, 5049 (1999).
[9] M. C. Miguel, A. Vespignani, M. Zaiser, and S. Zapperi, Physical review letters, 80, 165501 (2002).
[10] P. Le Doussal and K. J. Wiese, Physical Review E, 79, 051105 (2009).
[11] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Physical Review Letters, 102, 175501 (2009).
[12] G. Tsakiris, N. Goldenfeld, and K. A. Dahmen, Physical Review Letters, 106, 105501 (2011).
[13] J. Weiss and J. R. Grasso, The Journal of Physical Chemistry B, 101, 6113 (1997).
[14] J. Weiss, F. Lahaire, and J. R. Grasso, Journal of Geophysical Research, 105, 433 (2000).
[15] T. Richeton, J. Weiss, and F. Louchet, Acta Materialia, 53, 4463 (2005).
[16] J. Weiss, T. Richeton, F. Louchet, F. Chmelik, P. Dobron, D. Entemeyer, M. Lebyodkin, T. Lebedkina, C. Fressengeas, and R. J. McDonald, Physical Review B, 76, 224110 (2007).
[17] C. Fressengeas, A. J. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, and V. Taupin, Physical Review B, 79, 014108 (2009).
[18] G. Györgyi, N. R. Moloney, K. Ozogány, and Z. Rác, Physical Review E, 75, 021123 (2007).
[19] T. Burkhardt, G. Györgyi, N. R. Moloney, and Z. Rác, Physical Review B, 76, 041119 (2007).
[20] S. N. Majumdar and A. Comtet, Physical Review Letters, 92, 225501 (2004).
[21] S. N. Majumdar and A. Comtet, Journal of Statistical Physics, 119, 777 (2005).
[22] J. Rambeau, S. Bustingorry, A. B. Kolton, and G. Schehr, Physical Review E, 84, 041131 (2011).
[23] J. Rambeau and G. Schehr, Journal of Statistical Mechanics: Theory and Experiment, 2009, P09004 (2009).
[24] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Journal of Applied Physics, 68, 2901 (1990).
[25] F. Colaiori, Advances in Physics, 57, 287 (2008).
[26] S. Papanikolaou, F. Bohn, R. Sommer, G. Durin, S. Zapperi, and J. P. Sethna, Nature Physics, 7, 316 (2011).
[27] P. Le Doussal and K. J. Wiese, Arxiv preprint arXiv:1104.2629 (2011).
[28] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Journal of Applied Physics, 68, 2908 (1990).
[29] M. LeBlanc, L. Angheluta, N. Goldenfeld, and K. Dahmen, Unpublished.
[30] A. P. Mehta, A. C. Mills, K. A. Dahmen, and J. P. Sethna, Physical Review E, 65, 046139 (2002).
[31] M. C. Kuntz and J. Sethna, Physical Review B, 62, 11699 (2000).