Systematic review

Ultrasound features of Achilles enthesitis in psoriatic arthritis: a systematic review

Aimie Patience¹, Martijn P. Steultjens¹ and Gordon J. Hendry¹

Abstract

Objectives The objectives were to evaluate the methodological and reporting quality of ultrasound (US) studies of Achilles enthesitis in people with psoriatic arthritis (PsA), to identify the definitions and scoring systems adopted and to estimate the prevalence of ultrasound features of Achilles enthesitis in this population.

Methods A systematic literature review was conducted using the AMED, CINAHL, MEDLINE, ProQuest and Web of Science databases. Eligible studies had to measure US features of Achilles enthesitis in people with PsA. Methodological quality was assessed using a modified Downs and Black Quality Index tool. US protocol reporting was assessed using a checklist informed by the European League Against Rheumatism (EULAR) recommendations for the reporting of US studies in rheumatic and musculoskeletal diseases.

Results Fifteen studies were included. One study was scored as high methodological quality, 9 as moderate and 5 as low. Significant heterogeneity was observed in the prevalence, descriptions, scoring of features and quality of US protocol reporting. Prevalence estimates (% of entheses) reported included hypoechogenicity [mean 5.9% (s.d. 0.9)], increased thickness [mean 22.1% (s.d. 12.2)], erosions [mean 3.3% (s.d. 2.5)], calcifications [mean 42.6% (s.d. 15.6)], enthesophytes [mean 41.3% (s.d. 15.6)] and Doppler signal [mean 11.8% (s.d. 10.1)].

Conclusions The review highlighted significant variations in prevalence figures that could potentially be explained by the range of definitions and scoring criteria available, but also due to the inconsistent reporting of US protocols. Uptake of the EULAR recommendations and using the latest definitions and validated scoring criteria would allow for a better understanding of the frequency and severity of individual features of pathology.

Key words: psoriatic arthritis, Achilles tendon, ultrasound, enthesitis, scoring, systematic review

Introduction

Enthesitis is a hallmark feature of psoriatic arthritis (PsA) and presents as inflammation at the site of soft tissue insertion to bone [1]. The most common site of enthesitis in PsA is the Achilles tendon insertion to the calcaneum [2, 3]. Enthesitis can significantly limit a person’s ability to carry out essential activities of daily living and can impact health-related quality of life [4]. Achilles...
enthesitis is often difficult to treat and can persist despite the initiation or escalation of pharmacological management. The current recommended first-line therapies for enthesitis in PsA are non-steroidal anti-inflammatory drugs (NSAIDs) and physiotherapy. Persistent symptoms may require escalation to biologic therapies (TNF inhibitors, IL-12/IL-23i) and/or corticosteroid injection [5].

Ultrasound (US) is highly sensitive for assessing inflammation and can detect different features of enthesitis including tendon thickening, hypoechogenicity, erosions, enthesophytes and subclinical enthesitis in people with PsA [6, 7]. Access to US imaging varies so enthesitis diagnosis is often based on clinical assessment, typically measured using the Leeds Enthesitis Index [8]. Clinical assessment may be able to detect swelling that could be indicative of moderate to severe thickening of the Achilles tendon but can be difficult to distinguish from the presence of an enlarged retrocalcaneal bursa, hindfoot joint effusion or oedema [9]. Unlike US, clinical assessment cannot measure pathology and compare it to a normative value and is unlikely to be able to assess other pathological features of enthesitis (e.g. enthesophytes and erosion). Clinical assessment of Achilles enthesitis in people with PsA has shown poor correlation with US [10]. Furthermore, it is difficult to differentiate between the pain response with US [11]. US has shown good sensitivity and specificity for detecting Achilles enthesal pathology in PsA and there are a variety of US feature definitions and scoring systems available. The Glasgow Ultrasound Enthesitis Scoring System (GUESS) [12] provides definitions of enthesopathy in lower limbs in patients with spondyloarthritis (SpA) (36 bilateral entheseal sites scored present/absent, total/36 points). The Achilles subscale of the GUESS criteria refers to Achilles tendon thickness ≥5.29 mm, retrocalcaneal bursitis, posterior pole of calcaneus erosion and posterior pole of calcaneus enthesophytes. The OMERACT US Task Force defines enthesopathy as ‘abnormally hypoechogenic loss of normal fibrillar architecture’ and/or thickened tendon or ligament at its bony attachment (may occasionally contain hyperechoic foci consistent with calcification), seen in 2 perpendicular planes that may exhibit Doppler signal and/or bony changes including enthesophytes, erosions, or irregularity’ [13]. The Madrid Sonographic Enthesitis Index (MASEI) offers both binary and semi-quantitative scoring of Achilles entheseal features and has been shown to have face validity as a diagnostic tool for patients with SpA [14]. In an attempt to provide homogeneity in assessing and reporting US enthesitis, a Delphi study elicited agreement for the inclusion of hypoechogenicity, increased tendon thickness, enthesophytes, calcifications, erosions and Doppler signal ≥2 mm from the bony insertion as features of enthesitis [15]. The OMERACT Ultrasound Task Force subsequently evaluated the reliability of the definitions and scoring for enthesitis in SpA and agreed on an accepted definition that separates US features into inflammatory (Doppler signal, hypoechogenicity, thickened enthesis) and structural (calciﬁcations/enthesophytes and erosions at the enthesis) with each component scored as either present/absent [7].

Heterogeneous definitions of US-detected pathologies and scoring systems may affect the validity and generalizability of results of US studies of enthesitis in PsA. Thus it is important that studies adopt contemporary standardized definitions, employ validated scoring systems and systematically describe US scanning protocols. The EULAR recommendations for the reporting of US studies in rheumatic and musculoskeletal diseases (RMDs) are the first to provide a checklist to aid the reporting of US imaging in rheumatology research. The checklist covers domains such as the blinding of sonographers, scanning acquisition and scoring, equipment (e.g. US machine and transducer brand and model) and equipment settings (conventional B-mode and Doppler). Until these recommendations are widely implemented, it is likely that study heterogeneity may limit the generalizability and clinical utility of findings. Evaluation of the current literature with regards to the quality of the evidence and reporting of US features of enthesitis in PsA will provide a key point of reference whereby reports of US pathology can be interpreted in the context of study heterogeneity, which may help to inform development of an optimum systematic approach to enthesitis management with US in the future.

Accordingly, the primary aims of this systematic review were to evaluate the methodological and reporting quality of US studies of enthesitis at the Achilles tendon in people with PsA, to identify the definitions and scoring systems adopted and to estimate the prevalence of US features of enthesitis in this population.

Methods

Review protocol

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) 2020 guideline were followed throughout the review process (Supplementary Table S1, available at Rheumatology Advances in Practice online) [17].

Search strategy

Five electronic databases were searched [AMED, CINAHL and MEDLINE (via EBSCO host); ProQuest (Health and Medical Collection and Nursing and Allied Health Database) and Web of Science core collection] from conception of the study to 10 March 2021 and the ‘auto-alert’ function delivered weekly updates of any subsequent publications until April 2021. Peer-reviewed studies that included a reference to at least one of the following were sought for inclusion: hypoechogenicity, increased thickness of the tendon, erosions, bursitis, calcifications, enthesophytes and Doppler signal detected on US at the Achilles tendon in patients with PsA. Key words and combinations specific to each
The database were used relating to PsA, Achilles tendon enthesitis/pathology and US scoring (Table 1). The search strategy, including a search of reference lists for further eligible texts, was conducted by one reviewer (A.P.).

Inclusion and exclusion criteria

All titles were screened and the subsequent abstracts and full-text papers were reviewed (Supplementary Fig. S1, available at Rheumatology Advances in Practice online). Selected studies had to describe original research findings, be published in the English language in a peer-reviewed journal, assess adults ≥18 years of age and describe US features of the Achilles tendon and/or the Achilles entheses in a PsA population. Pharmacological studies were included if they provided sufficient information at baseline. Studies did not have to include a healthy control group for comparison and no limit was set on the date of publication. Studies that indicate only the presence/absence of Achilles enthesitis were excluded. Review articles, case studies/reports, abstracts, research papers involving non-human subjects and non-English articles were excluded.

Assessment of methodological quality

Methodological quality was independently assessed by two reviewers (A.P. and G.H.) and a modified version of the Quality Index (QI) tool by Downs and Black was used to assess the quality of studies (Table 2) [18]. The 15 items that were included allowed for identification of methodological pitfalls including sampling methods, use of valid and reliable outcome measures and appropriate adjusting for confounding variables in the statistical analysis. A modified version of Q10 was

Table 1: Search strategy

Database	S1	S2	S3	Articles, n
AMED (EBSCO host)	152	1290	6424	3
S1 and S2 and S3				
CINAHL (EBSCO host)	9396	4409	284 805	22
S1 and S2 and S3				
MEDLINE (EBSCO host)	41 296	9143	1 033 146	67
S1 and S2 and S3				
ProQuest (Health and Medical Collection and Nursing and Allied Health Database)	16 493	2726	702 600	61
Web of Science (Core Collection)	40 194	8034	1 901 299	79
S1 and S2 and S3				
Total number of articles	232			
Total number without duplicates	146			

incorporated from MacLehose et al. [19]. A binary scoring of 1 for ‘yes’ or 0 for ‘unable to determine/no’ was applied to each item and studies were rated overall as high (>85%), moderate (≥60%) or low (<60%) based on a previous study that utilized a similarly modified Downs and Black QI criteria for assessing the risk of bias [20].

Assessment of the US reporting protocol

During the development of this review the 2021 EULAR recommendations for the reporting of US studies in RMDs [16] were published. Although the EULAR recommendations were not intended for scoring published work, we believed it was important to incorporate aspects of the new consensus-based checklist (specifically around scoring and measurement reporting) into the review design in the absence of any validated scoring criteria.

Data extraction

A standardized data extraction form was used to obtain information on the study design, participant characteristics, description of the US machine and settings, imaging techniques and the frequency and descriptions of Achilles tendon/entheses US characteristics. The use of scoring or measurement tools and validation status were reported.

Descriptive analyses

Descriptive statistics, including means, s.d.s, medians, ranges and interquartile ranges (IQRs) were used to summarize prevalence estimates of US features.

Results

The database search identified 232 records to be screened. Following the removal of duplicates and the

Table 2: Modified Downs and Black Quality Index checklist

No.	Item Description
1	Is the hypothesis/aim/objective of the study clearly described?
2	Are the main outcomes to be measured clearly described in the Introduction or Methods section?
	If the main outcomes are first mentioned in the Results section, the question should be answered no. All primary outcomes should be described for yes.
3	Are the characteristics of the patients included in the study clearly described?
	In cohort studies and trials, inclusion and/or exclusion criteria should be given. In case-control studies, a case definition and the source for controls should be given. Single case studies must state the source of the patient.
4	Are the distributions of principal confounders in each group of subjects to be compared clearly described?
	A list of principal confounders is provided. YES = age, severity.
5	Are the main findings of the study clearly described?
	Simple outcome data (including denominators and numerators) should be reported for all major findings so that the reader can check the major analyses and conclusions.
6	Does the study provide estimates of the random variability in the data for the main outcomes?
	In non-normally distributed data the IQR of results should be reported. In normally distributed data the S.E., S.D. or CI should be reported.
7	Have 95% CIs and/or actual P-values been reported for the main outcomes, except where the P-value is <0.001?
8	Were the subjects asked to participate in the study representative of the entire population from which they were recruited?
	The study must identify the source population for patients and describe how the patients were selected.
9	Were those subjects who were prepared to participate representative of the entire population from which they were recruited?
	The proportion of those asked who agreed should be stated.
10	If any of the results of the study were based on ‘data dredging’, was this made clear?
	Any analyses that had not been planned at the outset of the study should be clearly indicated. Retrospective = no, prospective = yes.
11	Were the statistical tests used to assess the main outcomes appropriate?
	The statistical techniques used must be appropriate to the data. If no tests were done, but would have been appropriate to do = no.
12	Were the main outcome measures used accurate (valid and reliable)?
	Where outcome measures are clearly yes/no/UTD described, which refer to other work or that demonstrates the outcome measures are accurate = yes. All primary outcomes valid and reliable for yes.
13	Were the patients in the cases and controls (case-control studies) recruited from the same population?
	The question should be answered UTD for cohort and case-control studies where there is no information concerning the source of patients.
14	Were the patients in the cases and controls (case-control studies) recruited over the same period of time?
	For a study that does not specify the time period over which patients were recruited, the question should be answered as UTD.
15	Were the patients in the cases and controls (case-control studies) recruited over the same period of time?
	Any analyses that had not been planned at the outset of the study should be clearly indicated. Retrospective = no, prospective = yes.
16	Were study subjects in the cases and controls (case-control studies) recruited over the same period of time?
	For a study that does not specify the time period over which patients were recruited, the question should be answered as UTD.
17	Was there adequate adjustment for confounding in the analyses from which the main findings were drawn?
	In non-randomized studies, if the effect of the main confounders was not investigated or no adjustment was made in the final analyses the question should be answered as no. If no significant difference between groups shown then yes.
Reference	Study setting
----------------------	--
Ahmed et al. [3]	Unknown
Bandinelli et al. [30]	Florence, Italy, ePsA Clinic of the Division of Rheumatology of the University of Florence
ElMallah et al. [31]	Egypt, Ain Shams University Hospitals

(continued)
Reference	Study setting	Study population	US feature of Achilles pathology	Frequency	Description of US features	Scoring of US features	Validated/non-validated
Falsetti et al. [32]	Italy Institute of Rheumatology of the University of Siena	56 erosive OA, 209 nodal OA, 125 PsA and 50 controls, PsA (Moli and Wright criteria)	PsA (/125 subjects): Achilles tendon enthesitis, Deep retrocalcaneal bursitis, Posterior calcaneal erosions	10/125 (8%)	Reference to 4 papers for definitions [23–26]: Enthesitis: heterogeneous hypoechogenicity and thickening of enthesis, possibly associated with enthesophytosis, erosions, and peritendineous oedema. Bursae: anechoic bursal space widening (interpreted as effusion), homogeneous echoic or irregularly echoic widening. Erosions: an interruption of the cortical bone profile.	Not validated	
Farouk et al. [33]	Egypt Rheumatology, Dermatology Departments and Rheumatology outpatient clinic, Ain Shams University Hospital	30 psoriasis, 30 PsA as controls (CASPAR criteria)	PsA (/30 subjects): Entheseal ‘abnormalities’	14/30 (46.7%)	Early US features of enthesitis: loss of normal fibrillar echogenicity, hypoechoic swelling of tendon insertion, effusion, increase of blood flow (PD) and retrocalcaneal bursitis [27, 28].	No scoring/grading of pathology	Not applicable
Fiorenza et al. [34]	Italy Rheumatology Department of the University Hospital of Messina	23 FM, 39 FM and PsA, 39 PsA (CASPAR criteria)	PsA only + PsA and FM (/156 AT entheses): Thickening, Bursitis, Erosions, Enthesophytes, PD signal	63 (40.3%), 13 (8.3%), 6 (3.8%), 86 (55.1%), 46 (29.4%)	Enthesal pathology defined by OMERACT (2018) [7] definitions: Enthesal thickness was measured at the point of maximal thickness 2 mm proximal to the bony insertion >5.29 mm. Bursitis: well-circumscribed, localized anechoic or hypoechogenic area at the site of an anatomical bursa that could be compressed by the transducer. Erosions: cortical interruptions with a step-down contour defect.	Scored using GUESS criteria (12)	GUESS = validated

(continued)
Reference	Study setting	US feature of Achilles pathology	Frequency	Description of US features	Scoring of US features	Validated/non-validated	
Freeston et al. [35]	Unknown	42 new-onset PsA (CASPAR criteria), 10 healthy controls	Early PsA	Enthesophytes: step-up bony prominence at the end of a normal bone profile	B-mode and PD scored	Not validated	
	Main author: UK		Retrocalfecal bursa effusion grade (/296 entheses): 0 = 189 (75%) 1 = 42 (16.7%) 2 = 18 (7.1%) 3 = 3 (1.2%)	Mention of EULAR–OMERACT Ultrasound Group but no in-text reference provided			
			Erosive changes <4%	Divided into ‘active inflammation’ and ‘structural change’	PD signal found within the tendon 2 mm proximal to the bony insertion (not in the body of the tendon or bursa)		
			Bone spurs 41	Erosions had to be identified in two planes and near tendon insertion			
Galluzzo et al. [36]	Italy	31 PsA (Moll and Wright criteria), 9 healthy controls	Foci of retrocalfecal bursa Enthesopathic foci at Achilles tendon	Enthesitis: thickening of tendon insertion, focal intra-tendinous changes, calcium deposits at insertion and periosteal changes	No scoring/grading of pathology	Not applicable	
	Rheumatology Unit of the University of Pisa		10/31	Bursitis: enlarged retrocalcaneal bursa which is oval-shaped, hypoechoic swelling			
			6/31 (11 entheses)	Tendon measured 1 cm and 2 cm from insertion			
Litinsky et al. [42]	Israel	43 PsA (CASPAR criteria). Group 1 = 19 PsA beginning MTX, group 2 = 23 PsA starting ADA	Group 1 Mean AT thickness at baseline (s.o.)	Enthesopathy defined by OMERACT (2007) definitions [7] detailed previously	0–4 semi-quantitative scoring system	Not validated	
	Departments of Rheumatology of the Tel Aviv Sourasky Medical Center (Tel Aviv, Israel) and the Rambam Medical Center (Haifa, Israel)		R 0.39 (0.10) L 0.36 (0.08)	(0 = absent; 1 = mild;			
			Group 2 Mean AT thickness at baseline (s.o.)				
			R 0.34 (0.10) L 0.37 (0.08)				
Marchesoni et al. [37]	Italy	30 fibromyalgia, 30 PsA (CASPAR criteria)	Enthesopathy (/60 AT entheses)	Enthesopathy defined by OMERACT (2007) definitions [7] detailed previously	0–4 semi-quantitative scoring system	Not validated	
	UOC Day Hospital of the University of Milan		Inflammatory lesions (/60 AT	(continued)			
Reference	Study setting	Study population	US feature of Achilles pathology	Frequency	Description of US features	Scoring of US features	Validated/non-validated
-----------	---------------	------------------	----------------------------------	-----------	-----------------------------	-----------------------	------------------------
Michelsen et al. [10]	Norway Hospital of Southern Norway Trust	141 PsA (CASPAR criteria)	No clinical enthesitis (194 AT entheses):	Inflammatory activity	Tendon hypoechogenicity at the bony insertions, tendon thickening at the bony insertions, intratendinous calcifications, enthesophytes, bony erosions, bony cortex irregularities, and the presence of a Doppler signal at the bony insertion	2 = moderate; 3 = severe	Not validated
			Inflammatory activity	Hypoechogenicity	Tendon hypoechogenicity and PD signal indicative of active inflammation	Bone erosion indicative of previous or chronic inflammation	Not validated
			Hypoechogenicity	Thickening	Tendon hypoechogenicity and PD signal indicative of active inflammation	Bone erosion indicative of previous or chronic inflammation	Not validated
			Thickening	PD	Tendon hypoechogenicity and PD signal indicative of active inflammation	Bone erosion indicative of previous or chronic inflammation	Not validated
			PD	Structural damage	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated
			Structural damage	Calcifications	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated
			Calcifications	Enthesophytes	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated
			Enthesophytes	Erosions	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated
			Erosions	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Inflammatory and/or structural damage	Clinical enthesitis (88 AT entheses):	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Hypoechogenicity	Thickening	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Thickening	PD	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			PD	Structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Structural damage	Calcifications	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Calcifications	Enthesophytes	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Enthesophytes	Erosions	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Erosions	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Inflammatory and/or structural damage	Clinical enthesitis (88 AT entheses):	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Hypoechogenicity	Thickening	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Thickening	PD	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			PD	Structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Structural damage	Calcifications	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Calcifications	Enthesophytes	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Enthesophytes	Erosions	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
			Erosions	Inflammatory and/or structural damage	Enthesis assessed in accordance with OMERACT (2005) guidelines	Not validated	
Perrotta et al. [38]	Italy Academic Rheumatology unit, University of Molise	21 early PsA (CASPAR criteria)	Entheseal alterations (% of subjects)	Active (PD+) alterations	OMERACT (2007) definitions followed for identifying enthesopathy	Enthesis classified according to D'Agostino et al. [22]	Not validated

(continued)
Reference	Study setting	Study population	US feature of Achilles pathology	Frequency	Description of US features	Scoring of US features	Validated/non-validated
-----------------	---						
Wervers et al.	The Netherlands Hospitals in the southwest of The	25 new PsA, 25 established (>2 years) PsA, 25 young healthy controls	Inactive (PD−) alterations	11 (52.3%)	Inactive: PD absent		MASEI definitions followed for identifying enthesitis [14]
	Netherlands		Bursitis	6 (28.5%)	Chronic changes: enthesophytes, calcifications and erosions		
			PD signal	3 (14.2%)			MASEI = validated
			Calcifications	13 (61.9%)			
			Enthesophytes	13 (61.9%)			
			Hypoechogenicity/thickness	7 (33.3%)			
			Erosions	4 (19.0%)			
			New PsA (/50 AT entheses)		MASEI definitions followed for identifying enthesitis [14]		
			Structural abnormalities	0%			MASEI = validated
			Thickness	8%			
			Erosion	4%			
			Calcification	70%			
			PD signal	8%			
			Bursitis	8%			
			Established PsA (/50 AT entheses)		Enthesitis defined by GUESS 2002 criteria [12]		
			Structural abnormalities	0%	Active enthesitis indicated by presence of PD signal		
			Thickness	26%			
			Erosion	8%			
			Calcification	56%			
			PD signal	10%			
			Bursitis	6%			
			Retrocalcaneal bursitis		Enthesis defined by GUESS 2002 criteria [12]		
			Erosion	4 (10%)	Active enthesitis indicated by presence of PD signal		
			Enthesophyte	23 (55%)			
			Thickening	8 (19%)			
			PD	1 (2%)			
			GUESS score	0	Enthesis defined by GUESS 2002 criteria [12]		
				1	Active enthesitis indicated by presence of PD signal		
				2			
				3			
				4			
					GUESS = validated		
Woodburn et al.	Glasgow, UK	42 PsA (CASPAR criteria), 29 healthy controls	Early PsA (/120 AT entheses)	23 (55%)	Enthesis defined by GUESS 2002 criteria [12]		
			Thickness	38 (31.67%)	GUESS = validated		
			Erosion	14 (33%)	Vascularity present/absent and semi-quantitative (no		
			Enthesophyte	17 (41%)			
			Thickening	6 (14%)			
			PD	5 (12%)			
			GUESS score	0	Enthesis defined by GUESS 2002 criteria [12]		
				1	Active enthesitis indicated by presence of PD signal		
				2			
				3			
				4			
					GUESS = validated		
Xie et al. [41]	China Peace Hospital of Changzhi	60 early (<1 year) PsA (CASPAR criteria), 100	Early PsA (/120 AT entheses)	23 (55%)	Enthesis defined by GUESS 2002 criteria [12]		
			Thickness	38 (31.67%)	GUESS = validated		
			Erosion	14 (33%)	Vascularity present/absent and semi-quantitative (no		
			Enthesophyte	17 (41%)			
			Thickening	6 (14%)			
			PD	5 (12%)			
			GUESS score	0	Enthesis defined by GUESS 2002 criteria [12]		
				1	Active enthesitis indicated by presence of PD signal		
				2			
				3			
				4			

(continued)
screening of titles and abstracts, 20 papers were deemed eligible for full-text screening (Supplementary Fig. S1, available at Rheumatology Advances in Practice online). Five papers did not meet the eligibility criteria and were removed, thus 15 papers were included (Table 3) [3, 10, 30–42]. The date of publication ranged from 2000 [36] to 2020 [31, 34], with studies from Italy [30, 32, 34, 36–38], Egypt [31, 33], the UK [35, 40], Kuwait [3], Israel [42], Norway [10], China [41] and The Netherlands [43].

A total of 832 participants with PsA (1664 Achilles entheses) were assessed using US. The diagnosis of PsA was mostly based on the 2006 Classification for Psoriatic Arthritis (CASPAR) criteria [44], two studies [32, 36] published prior to 2006 used the Moll and Wright criteria [45] and two studies did not explicitly state the diagnostic criteria [31, 39]. The sample sizes of PsA patients were relatively small, ranging from 12 [31] to 141 [10]. Of the studies that reported a healthy control group (n=7), 183 healthy control participants were included (99 females, 84 males; mean age 42.3 years) [30, 32, 35, 36, 39–41]. Two studies identified PsA patients as a ‘control’ group (one as ‘inactive’ PsA and one comparing psoriasis to PsA) [3, 33]. The majority of studies focussed exclusively on PsA [3, 10, 30, 35, 36, 38–40, 42]; however, other comparator groups included patients with psoriasis [33, 41], FM [34, 37], SpA [31] and other types of arthritis [32].

Quality assessment

One study was rated as high quality [10], nine as moderate quality [3, 32, 34, 35, 37, 39–42] and five as low quality [30, 31, 33, 36, 38] (Fig. 1). Very few studies provided sufficient information on their sampling methods, specifically the proportion of those asked who agreed to take part (Q12), the time period over which participants (and controls) were recruited (Q22) or the actual probability values for main outcome measures (Q10). The quality index scores ranged from 7/15 (47%) to 13/15 (87%) with a median score of 9 (IQR 2.5).

US protocol reporting

Further details of US protocol reporting can be found in Table 4 and Supplementary Table S2, available at Rheumatology Advances in Practice online. Measurements were performed by rheumatologists [10, 30, 34, 37, 41, 42], sonographers [35, 39] and radiologists [3, 38] and 10 studies reported blinding to the results of the clinical examination or other imaging results [30, 32–39, 41]. Levels of US proficiency described included ‘expert’ [3, 36], ‘experienced’ [10, 30, 32, 37, 38, 41] or ‘trained’ [34, 35, 39]. Patient positioning was detailed in seven studies as patients lying prone with their feet hanging off the examination table at 90° flexion [3, 10, 30, 34, 35, 39, 41]. Scanning in both longitudinal and transverse planes was reported in 8/15 studies [3, 10, 32, 33, 35, 36, 38, 39]. All studies reported details of both the brand and model of US machine and
Ultrasound features of Achilles enthesitis in psoriatic arthritis

Fig. 1 Quality assessment

Score: Y (yes) = 1, N (no) and UTD (unable to determine) = 0. Total score = 15. Green: high quality (>85%); yellow: moderate quality (≥60%); red: low quality (<60%).

TABLE 1. Modified Downs and Black Q tool questions

Study author	1	2	3	5	6	7	10	11	12	16	18	20	21	22	Score	
Micheli et al	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	UTD	UTD	Y	13	(87%)	
Fossati et al	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	UTD	N	12	(80%)		
Wevers et al	Y	Y	Y	Y	Y	N	Y	N	Y	Y	Y	UTD	N	12	(80%)	
Marchesoni et al	Y	Y	Y	Y	Y	Y	Y	UTD	Y	Y	UTD	UTD	N	11	(73%)	
Ahmed et al	Y	Y	Y	Y	Y	N	UTD	N	Y	Y	Y	UTD	N	10	(67%)	
Lilleklev et al	Y	Y	Y	N	Y	N	Y	Y	Y	UTD	N	10	(67%)			
Xie et al	Y	Y	Y	Y	Y	N	UTD	Y	Y	Y	UTD	N	10	(67%)		
Fasolati et al	Y	Y	Y	N	Y	N	Y	N	Y	Y	Y	UTD	UTD	N	9	(60%)
Friele et al	Y	Y	Y	Y	Y	N	UTD	Y	Y	Y	Y	UTD	N	9	(60%)	
Woodburn et al	Y	Y	Y	Y	N	UTD	N	Y	Y	Y	N	UTD	N	9	(60%)	
Bandini et al	Y	Y	N	N	Y	N	N	Y	Y	UTD	UTD	N	8	(53%)		
Fasolati et al	N	N	N	N	N	N	N	N	N	N	N	UTD	N	8	(53%)	
El Mahallal et al	Y	Y	Y	N	N	N	N	N	N	Y	Y	UTD	UTD	N	7	(47%)
Galluzzo et al	N	N	UTD	N	Y	N	N	Y	N	Y	UTD	UTD	UTD	N	7	(47%)
Perrotta et al	Y	Y	Y	N	N	N	UTD	UTD	Y	Y	UTD	UTD	N	7	(47%)	

The type of transducer (multifrequency linear array). Frequency settings in B-mode (greyscale) US were discussed in three studies [37, 38, 40] and colour and/or power Doppler (PD) settings (e.g. pulse repetition frequency) in nine studies [10, 30, 34, 35, 37–41]. Additional scanning procedures included adjusting the room temperature for PD scanning [30, 41] and asking patients to stop NSAIDs prior to examination [33, 34].

Prevalence and scoring of Achilles tendon/entheses US features

When describing the prevalence of Achilles tendon/enthesal pathology, 9/15 (60%) studies referred to the absolute frequency and/or percentage of Achilles entheses \((n = 1080 \text{ entheses}) \) involved [3, 10, 30, 31, 34, 35, 37, 39, 41] and 6/19 (40%) studies only referred to the absolute frequency and/or percentage of participants \((n = 292) \) affected [32, 33, 36, 38, 40, 42]. Of the studies that reported the frequency and percentage of participants affected, four of six [32, 33, 36, 38, 42] stated that the Achilles entheses were scanned bilaterally and we deduced, based on the scoring system they adopted, that the other two studies [33, 40] also scanned bilaterally. Given the heterogeneity in reporting (entheses affected vs participants affected), we have reported both separately (Table 5).

US features according to the OMERACT 2018 consensus-based definition of enthesitis [7] include the following:

- Hypoechogenicity was detected in 18/306 Achilles entheses \([\text{mean } 5.9\% \ (\text{S.D. } 0.9)] \) in two of nine studies [10, 31] and in 7/31 participants \([\text{mean } 22.1\% \ (\text{S.D. } 12.2), \text{median } 17, \text{range } 4.2–40.4, \text{IQR } 20.6] \) in seven of nine studies [3, 10, 30, 31, 34, 39, 41] and in 15/63 participants \([\text{mean } 26.2\% \ (\text{S.D. } 7.2)] \) in two of six studies [30, 40].
- Increased thickness was detected in 228/936 Achilles tendons \([\text{mean } 22.1\% \ (\text{S.D. } 12.2), \text{median } 17, \text{range } 4.2–40.4, \text{IQR } 20.6] \) in seven of nine studies [3, 10, 30, 31, 34, 39, 41] and in 15/63 participants \([\text{mean } 26.2\% \ (\text{S.D. } 7.2)] \) in two of six studies [30, 40].
- Erosions at the site of the Achilles tendon insertion at the posterior calcaneum were detected in 30/936 entheses \([\text{mean } 3.3\% \ (\text{S.D. } 2.5), \text{median } 2.9, \text{range } 0–7.5, \text{IQR } 4.6] \) in seven of nine studies [3, 10, 30, 31, 34, 39, 41] and in 14/188 participants \([\text{mean } 11.1\% \ (\text{S.D. } 5.9), \text{range } 4.8–19] \) in three of six studies [32, 38, 40].
- Calcifications were detected in 191/406 entheses \([\text{mean } 42.6\% \ (\text{S.D. } 15.6), \text{range } 25–63] \) in three of nine studies [10, 31, 39] and in 13/21 (61.9%) participants in one of six studies [38].
- Enthesophytes were detected in 343/812 entheses \([\text{mean } 41.3\% \ (\text{S.D. } 16.5), \text{median } 17, \text{range } 4.2–40.4, \text{IQR } 20.6] \) in five of nine studies [3, 10, 30, 31, 34, 39, 41] and in 36/63 participants \([\text{mean } 58.4\% \ (\text{S.D. } 7.2)] \) in two of six studies [38, 40].
- Doppler signal at the site of insertion was detected in 109/929 entheses \([\text{mean } 11.8\% \ (\text{S.D. } 10.1), \text{median } 12, \text{range } 0–29.5, \text{IQR } 18.8] \) in six of nine studies [10, 30, 31, 34, 39, 41] and in 4/63 participants \([\text{mean } 8.4\% \ (\text{S.D. } 5.9)] \) in two of six studies [38, 40].

There was significant variation in the methods of scoring US features of enthesitis. Four studies used the GUESS criteria [30, 34, 40, 41], 1 the MASEI [39] and 3 described non-validated semi-quantitative scoring [10, 35, 37] including Brown et al. [29], which was used in RA for scoring B-mode and Doppler signal [35]. Doppler signal was scored both as binary (present/absent) [30, 31, 41] and semi-quantitatively as per the five stages described by D'Agostino et al. 2003 [31, 38] and three stages outlined by D'Agostino et al. 2009 [30, 41].

US features in healthy controls

Five of the seven studies that assessed a healthy control population reported the absolute frequency and/or percentage of Achilles entheses \((N = 190 \text{ entheses}) \) [30, 35, 39, 41] and two of seven reported the absolute frequency and/or percentage of participants \((N = 88 \text{ participants}) \) [32, 36, 40]. Hypoechogenicity was not assessed in healthy control participants. Increased thickness was detected in 2/170 entheses \([\text{mean } 1.7\% \ (\text{S.D. } 2.4), \text{range } 0–2.5] \) in five of nine studies [3, 10, 30, 31, 34, 39, 41] and in 0% of participants in two studies [40]. Erosions were detected in 2/170 entheses \([\text{mean } 1.3\% \ (\text{S.D. } 1.9), \text{range } 0–4] \) in three studies [30, 39, 41] and in 0% of participants in two studies [30, 39, 41].
Table 4: US protocol reporting

Study author	Q6 Blinding	Q9 Scanning procedures	Q10 Scoring system	Q11 Validity/reliability	Q15 Equipment	Q16 US modalities and settings						
		a	b	d	a	b	c	a	b	a	b	
Ahmed et al. [3]	N	Y (prone)	Y (90° flexion)	Y (L/T)	N	N	N	N	Y	Y	N	N
Bandinelli et al. [30]	Y	Y (prone)	Y (90° flexion)	N	Semi-quantitative	Lower limb	Binary and semi-quantitative	Y	Y	Y	N	Y
El Malliah et al. [31]	N	N	N	N	N	Binary	Multiple site	a Multiple sites refers to scoring of entheseal sites in both the upper and lower limbs. Modified questions from the EULAR recommendations for the reporting of ultrasound studies in RMDs. Q6. Reporting the blinding of sonographers. Q9. Scanning acquisition: a) patient positioning (e.g. supine, prone), b) anatomical region positioning (e.g. flexion, neutral), d) transducer positioning (e.g. longitudinal, transverse). Q10. Ultrasound scoring system: a) B-mode/greyscale type (e.g. quantitative, semi-quantitative, binary), b) level (e.g. patient level, joint/anatomical region level) c) Doppler type (e.g. quantitative, semi-quantitative, binary). Q11. Ultrasound scoring system: a) references or results of previous validity and reliability studies. Q15. Equipment: a) brand and model of the ultrasound device, b) type and model of the transducer. Q16. Equipment—ultrasound modalities and settings: a) greyscale/B-mode, b) Doppler.				
Calcifications were detected in 4/50 entheses (8%) in one study [39]. Enthesophytes were reported in 3/120 entheses (mean 2.5%) in two studies [30, 41] and in 9/29 participants (31%) in one study [40]. Finally, PD signal at the Achilles enthesis was reported in 1/170 entheses [mean 0.7% (S.D. 0.9), range 0–2] in three studies [30, 39, 41] and in 0% of participants in one study [40].

Discussion

The aims of this systematic review were to describe the definitions and scoring of US features of Achilles enthesitis in PsA, including assessment of the overall quality of studies and evaluation of the quality of the reporting of US protocols. Due to the heterogeneity observed in the definitions, scoring methods and quality of studies, a narrative and descriptive approach to the analysis and synthesis of the results was adopted. All of the 15 studies referred to at least one US feature at the Achilles tendon/entheses, but the lack of generalizability arising from the variation in definition and scoring could suggest the frequency and percentage of entheses/participants affected should be interpreted with caution. The quality of reporting of US protocols and procedures was not consistent across the studies and thus contributes further to the lack of generalizability of results.

US technology has advanced considerably since the early 2000s and this may account for some of the variability noted between the studies, as image acquisition and interpretation has greatly improved. Despite the technological advancement of US, our review has highlighted the potential pitfalls of US definitions of Achilles enthesitis in PsA. For example, tendon thickening as a result of a biomechanical tendinopathy will appear the same on US as tendon thickening due to an inflammatory enthesitis, yet will be histologically different. Whether Achilles enthesitis in PsA is a biomechanical stress-induced inflammation of the entheseal tissues or an inflammatory-induced tendinopathy is still unknown [1, 46].

The majority of the studies were scored as low [30, 31, 33, 36, 38] or moderate quality [3, 32, 34, 35, 37, 39–42], with only one paper scoring high [10] based on the modified version of the Downs and Black QI criteria. Most studies were marked down based on their description of sampling methods. Additionally, very few studies adjusted for potential confounders in the analysis of results, which is now partly addressed in the EULAR recommendations under the reporting of ‘contextual factors’ (e.g. exercise, alcohol, caffeine and smoking) [16].

The identification of contextual factors was not widely reported in the studies included. Two studies [30, 41] reported adjusting the room temperature to 20°C for the assessment of Doppler US with reference to D’Agostino et al. [22], however, there is no substantial evidence to suggest there is any effect. One study asked patients to refrain from taking NSAIDs 3 weeks prior to examination [33] and another 24 hours prior to examination [34]. There is evidence to suggest that NSAID use could mask both B-mode features and PD signal and ultimately result in a better US score [47].

Scoring of US features varied between the studies with four using the GUESS scoring criteria, one using the MASEI and the rest either scoring features as

Ultrasound feature	Studies (/15), n	Point-prevalence of US feature, n/N (%)	Quantiles Mean s.d. IQR
		25% Median 75%	
Studies reporting no. of entheses (entheses assessed = 1080)	9 [3, 10, 30, 31, 34, 35, 37, 39, 41]	18/306 (5.9)	5.1 5.1 0.9
Hypoechogenicity 2 [10, 31]	228/936 (24.4)	13.1 17.0 33.7	22.1 12.2 20.6
Increased thickness 7 [3, 10, 30, 31, 34, 39, 41]	30/936 (3.2)	1.4 2.9 6	3.3 2.5 4.6
Erosion(s) 7 [3, 10, 30, 31, 34, 39, 41]	191/406 (47.0)	39.7 42.6 15.6	
Calcification(s) 3 [10, 31, 39]	343/812 (42.2)	22.9 53.8 55.9	41.3 15.6 32.9
Enthesophytes 5 [3, 10, 30, 34, 41]	106/929 (11.4)	1 12 16.3	11.8 10.1 18.8

The data in this table detail summary statistics using percentages of entheses/participants in each study.
present/absent, using non-validated semi-quantitative scoring (score 0–3) or not scoring US features at all. Doppler US was scored separately in three studies, either from 0–3 or 0–5, and they all referred to D’Agostino et al. [21, 22]. Similarly, the definitions of US features were not consistent throughout the studies (Table 3), with the GUESS, MASEI and variations of the OMERACT US Task Force recommendations being used irrespective of the date of publication. Although there are similarities between the definitions, the results are not entirely comparable. With the ever-evolving technological advances of point-of-care US and the increase in accessibility and uptake by clinicians (with varying levels of US training and experience), it is even more imperative to have clear definitions and a widely accepted validated scoring criteria that is appropriate for both clinical practice and research.

We observed substantial variation in the prevalence figures for features of enthesitis at the Achilles tendon, but due to heterogeneity, it is unclear whether the variation can be explained by protocol variations or sample characteristics such as disease duration/severity. Only 5/15 studies specifically recruited newly diagnosed (<2 years) PsA patients, and reported prevalence figures were similar between these studies and those with a longer disease duration. Prevalence estimates should be interpreted with caution, as included studies mostly adopted non-probability sampling largely involving consecutive recruiting of outpatients and so may be vulnerable to bias.

The potential implications for standardizing the use of validated definitions and scoring systems for assessing the Achilles tendon in PsA and clear US protocol reporting are significant. First, it will allow us to better understand the prevalence of US features of pathology and levels of severity of symptoms associated with Achilles enthesal and tendon disease. This information could then be used to aid the stratification of treatment, particularly non-medical management, based on the severity and/or type of pathology present. The grouping of US features into structural and inflammatory components in the most recent OMERACT guidance [8] could be used as a starting point to tailor treatment accordingly. The current provision and efficacy of non-medical management of Achilles enthesitis in PsA has not been researched, and based on this lack of evidence, care provision will likely vary considerably. Another clinical consideration for management is the overlap of a PsA disease-driven enthesitis at the Achilles and biomechanically driven Achilles tendinopathy. Although Achilles tendinopathy in healthy people is typically found at the mid-portion of the tendon, it can also be detected at the insertion [48]. The US criteria for staging Achilles tendinopathy in healthy populations (based on the continuum model of tendon pathology) has a number of similarities with the US definition of enthesitis in PsA (e.g. altered echotexture, thickening and the presence of vascularity) [49]. It is also worth noting that US features of Achilles enthesitis can also be detected in healthy individuals, particularly the presence of enthesophytes and tendon thickening [50].

This systematic review has some limitations that merit attention. The EULAR 2021 recommendations were not intended for use as a scoring checklist for published research but were used as guidance in the absence of a suitable alternative. A number of papers were excluded based on their reporting of the simple presence/absence of Achilles enthesitis only, as we specifically wanted to identify the description, scoring and prevalence of these US features. As such, the number of papers included in this study was small (n = 15) relative to the body of literature that has assessed for simple presence/absence of Achilles enthesitis in PsA.

Recommendations for future research include the development of a validated checklist or scoring system to assess the quality of US studies in rheumatology. There may be future potential for evaluating the effectiveness of tailoring medical and non-medical management approaches based on the presence and/or severity of certain US features at the Achilles tendon/entheses in PsA to improve symptoms. There is a paucity of evidence for the non-medical management of Achilles enthesitis and entheseopathy in PsA and at present the management is similar regardless of whether structural and/or inflammatory features are present [5]. There may be scope for the phenotyping of PsA-driven enthesitis based on clinical characteristics and US-detected pathologies.

Recommendations for authors of future studies reporting Achilles tendon/entheses features in PsA include using the most up-to-date, reliable definitions and scoring for US features (currently Balint et al. [7]), report both the number of entheses and the number of participants affected to allow for synthesis of results and use the 2021 EULAR recommendations [16] as a guide for reporting US protocols and procedures.

Funding: This article was published as part of the Rheumatology Advances in Practice Trainee Publishing Programme, supported by a grant from Biogen.

Disclosure statement: The authors have declared no conflicts of interest.

Data availability statement

Data are available upon reasonable request to the corresponding author. All data relevant to the study are included in the article.

Supplementary data

Supplementary data are available at Rheumatology Advances in Practice online.
Ultrasonography for assessing enthesitis in psoriatic arthritis: a systematic review and meta-analysis. Semin Arthritis Rheum 2015;45:103–14.

28 Riente L, Sedie AD, Filippucci E et al. Ultrasound evaluation of plantar fasciitis. Scand J Rheumatol 2000;29:255–9.

29 Brown AK, Quinn MA, Karim Z, Conaghan PG et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: Evidence from an imaging study may explain structural progression. Arthritis Rheum 2006;54:3761–73.

30 Bandinelli F, Prignano F, Bonciani D et al. Ultrasound detects occult entheseal involvement in early psoriatic arthritis independently of clinical features and psoriasis severity. Clin Exp Rheumatol 2013;31:219–24.
31 ElMallah R, Abd M, Mobasher S. The incremental value of ultrasound in detection of subclinical peripheral enthesis in patients with spondyloarthritis. Egypt Rheumatol 2020;42:255–60.

32 Falsetti P, Frediani B, Fioravanti A et al. Sonographic study of calcaneal enthese in erosive osteoarthritis, nodal osteoarthritis, rheumatoid arthritis and psoriatic arthritis. Scand J Rheumatol 2003;32:229–34.

33 Farouk HM, Mostafa AAA, Youssef SS et al. Value of entheseal ultrasonography and serum cartilage oligomeric matrix protein in the preclinical diagnosis of psoriatic arthritis. Clin Med Insights Arthritis Musculoskelet Disord 2010;3:7–14.

34 Fiorenza A, Bonitta G, Gerratana E et al. Assessment of enthesis in patients with psoriatic arthritis and fibromyalgia using clinical examination and ultrasound. Clin Exp Rheumatol 2020;38(Suppl 123):S31–9.

35 Freeston JE, Coates LC, Helliwell PS et al. Is there subclinical enthesis in early psoriatic arthritis? A clinical comparison with power doppler ultrasound. Arthritis Care Res 2012;64:1617–21.

36 Galluzzo E, Lischi DM, Taglione E et al. Sonographic analysis of the ankle in patients with psoriatic arthritis. Scand J Rheumatol 2000;29:52–5.

37 Marchesoni A, Orazio DL, de Rotunno L, Marco A, Manara M. Entheseal power doppler ultrasonography: a comparison of psoriatic arthritis and fibromyalgia. J Rheumatol 2012;39:29–31.

38 Perrotta FM, Astorri D, Zappia M et al. An ultrasonographic study of enthesis in early psoriatic arthritis patients naive to traditional and biologic DMARDs treatment. Rheumatol Int 2016;36:1579–83.

39 Wervers K, Vis M, Rasappu N et al. Modification of a sonographic enthesis score to differentiate between psoriatic arthritis and young healthy volunteers. Scand J Rheumatol 2018;47:291–4.

40 Woodburn J, Hyslop E, Barn R, McInnes I, Turner D. Achilles tendon biomechanics in psoriatic arthritis patients with ultrasound proven enthesis. Scand J Rheumatol 2013;42:299–302.

41 Xie D, Jiao H-Y, Yang A, Liu Z, He X-F. Imaging features and diagnosis of early psoriatic arthritis with lower limb enthese abnormalities in psoriasis patients under high frequency ultrasonography. Int J Clin Exp Med 2019;12:7701–8.

42 Litinsky I, Balbir-Gurman A, Wollman J et al. Ultrasound assessment of enthesis thickening in psoriatic arthritis patients treated with adalimumab compared to methotrexate. Clin Rheumatol 2016;35:363–70.

43 Wervers K, Herrings I, Luime JJ et al. Association of physical activity and medication with enthesis on ultrasound in psoriatic arthritis. J Rheumatol 2019;46:1290–94.

44 Taylor W, Gladman D, Helliwell P et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 2006;54:2665–73.

45 Marchesoni A, Orazio DL, de Rotunno L, Marco A, Manara M. Entheseal power doppler ultrasonography: a comparison of psoriatic arthritis and fibromyalgia. J Rheumatol 2012;39:29–31.

46 Galluzzo E, Lischi DM, Taglione E et al. Sonographic analysis of the ankle in patients with psoriatic arthritis. Scand J Rheumatol 2000;29:52–5.

47 Marchesoni A, Orazio DL, de Rotunno L, Marco A, Manara M. Entheseal power doppler ultrasonography: a comparison of psoriatic arthritis and fibromyalgia. J Rheumatol 2012;39:29–31.

48 Perrotta FM, Astorri D, Zappia M et al. An ultrasonographic study of enthesis in early psoriatic arthritis patients naive to traditional and biologic DMARDs treatment. Rheumatol Int 2016;36:1579–83.

49 Wervers K, Vis M, Rasappu N et al. Modification of a sonographic enthesis score to differentiate between psoriatic arthritis and young healthy volunteers. Scand J Rheumatol 2018;47:291–4.

50 Woodburn J, Hyslop E, Barn R, McInnes I, Turner D. Achilles tendon biomechanics in psoriatic arthritis patients with ultrasound proven enthesis. Scand J Rheumatol 2013;42:299–302.