COVID-19

Teaching genomics to life science undergraduates using cloud computing platforms with open datasets

Toryn M. Poolman | Andrea Townsend-Nicholson | Amanda Cain

Abstract

The final year of a biochemistry degree is usually a time to experience research. However, laboratory-based research projects were not possible during COVID-19. Instead, we used open datasets to provide computational research projects in metagenomics to biochemistry undergraduates (80 students with limited computing experience). We aimed to give the students a chance to explore any dataset, rather than use a small number of artificial datasets (~60 published datasets were used). To achieve this, we utilized Google Colaboratory (Colab), a virtual computing environment. Colab was used as a framework to retrieve raw sequencing data (analyzed with QIIME2) and generate visualizations. Setting up the environment requires no prior experience; all students have the same drive structure and notebooks can be shared (for synchronous sessions). We also used the platform to combine multiple datasets, perform a meta-analysis, and allowed the students to analyze large datasets with 1000s of subjects and factors. Projects that required increased computational resources were integrated with Google Cloud Compute. In future, all research projects can include some aspects of reanalyzing public data, providing students with data science experience. Colab is also an excellent environment in which to develop data skills in multiple languages (e.g., Perl, Python, Julia).

KEYWORDS

Bioinformatics, Google Colab, Microbiome, QIIME2

The research project is an essential component of a life science degree, providing an experience of the entire research process, acquiring new skills, and testing a hypothesis. The students also gain subject matter to present and discuss at interviews for jobs and postgraduate studies. COVID-19 heavily disrupted life science research, closing laboratories and causing global shortages of key laboratory materials. Undergraduate students who had previously performed an integrated experimental/computational research project were now unable to perform the experimental component.

To overcome this challenge, we conducted computational research projects remotely with a cohort of 80 students by reanalyzing publicly available 16S rRNA amplicon microbiome data obtained from published studies. 16S rRNA amplicon sequencing datasets are of manageable size and excellent analysis pipelines exist,

Received: 16 July 2021 | Revised: 8 March 2022 | Accepted: 30 June 2022

DOI: 10.1002/bmb.21646

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
including QIIME2 (Quantitative Insights Into Microbial Ecology)\(^5\)-\(^7\) (Supplemental files 1–3, and on https://github.com/). The students were encouraged to search for microbiome data in an area of interest to them (e.g., microbiome and cancer) and microbiome data from over 60 studies covering a wide range of topics were identified.

To retrieve the data, we utilized Google Colaboratory (Colab)—a virtual computing environment that can be used with multiple programming languages and is linked to Google Drive (all available in supplemental files 1–3, and on https://github.com/ see data availability). This data science platform gave each student a readily accessed virtual machine that needed very little configuration. Having all students use the same drive structure was useful for live teaching sessions. We accessed public databases using Colab and saved the files to shared Google Drive folders (Supplemental file 1). Our workflow is described in Figure 1 with examples for the Colab QIIME2 pipeline given in Supplemental files 1–3.

The computational pipelines were virtually complete when shared, to ensure that students with less familiarity with computational biology were not disadvantaged. As students were required to understand the experimental design and sequencing method (e.g., 16S rRNA primers), assess sequence data quality, perform statistical decision making, and produce a final presentation, many essential components of experimental student research projects were maintained, including problem-solving and critical thinking skills.\(^13\) We used Colab for both data analysis exercises and tutorials (see Supplemental file 3), closely aligned with published QIIME2 tutorials.\(^14\) To visualize the output file, a standardized R markdown (see Figure 2) was provided. Rstudio Cloud was used to give students with limited computing resources access to the files.

The use of the Colab platform as a framework for students to reanalyze public data made it possible to complete research projects remotely and gave students the chance to write their research paper as if the data were their own. Using this approach, they explored the scientific method and relationships between data and knowledge.\(^13\) Moreover, some of the students combined multiple datasets, performed meta-analyses, and used datasets with 1000s samples.\(^25\) We did not seek to check the validity of the published data and the students were encouraged to make their own decisions from the analysis. Using this framework, all students were able to complete a research project using published data, a useful data science skill that should be incorporated in future projects.

ACKNOWLEDGMENTS
The authors thank the QIIME2 developers for providing a platform to analyze microbiome data and also providing many highly detailed examples in the QIIME2

FIGURE 1 A computational framework to reanalyze public data using Google Colab. (a) Each student was given a Colab notebook with access to the microbiome study of their choice. Browser toolkits were installed to Colab, including Sequence read archive (SRA),\(^8\) European Nucleotide Archive (ENA),\(^9\) QIITA,\(^10\) DNA databank of Japan (DDBJ)\(^11\) and European Genome-Phenome Archive (EGA).\(^12\) (b) Google buckets were used for the larger studies (10GB+). The SRA database can transfer data directly to the bucket and then to Google Cloud compute or Colab. (c) FASTQ files were stored to Google Drive; both students and instructors had access to the files. Files from the SRA were converted to FASTQ files, using fastq-dump. (d) Analysis with QIIME2 was completed in Colab, any parts that required more extensive computational resource could be transferred back to Google Cloud compute. Finally, QIIME2 outputs were visualized with R and R Studio and a standardized R markdown document was generated for each of the projects.
documentation. The authors also acknowledge the Google Cloud Platform for their Education Grant for Students.

DATA AVAILABILITY STATEMENT
All code and the QIIME2 outputs for the examples will be available at https://github.com/toryn13

ORCID
Toryn M. Poolman https://orcid.org/0000-0002-7427-6603
Andrea Townsend-Nicholson https://orcid.org/0000-0002-7250-2208

REFERENCES
1. Parker J. Undergraduate research, learning gain and equity: the impact of final year research projects. Higher Educ Pedagog. 2018;3:145–57.
2. Laursen S, Hunter A-B, Seymour E, Thiry H, Melton G. Undergraduate research in the sciences: engaging students in real science. John Wiley & Sons; 2010. https://www.wiley.com/en-us/Undergraduate+Research+in+the+Sciences%3A+Engaging+Students+-+in+Real+Science-p-9780470227572
3. Woolston C. ‘Does anyone have any of these?’: Lab-supply shortages strike amid global pandemic. Nature. 2021.
4. Townsend-Nicholson A. Educating and engaging new communities of practice with high performance computing through the integration of teaching and research. Interface Focus. 2020;10:20200003.
5. Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Koscielak T, et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinformatics. 2020;70:e100.
6. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
7. Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E. Comparing bioinformatic pipelines for
microbial 16S rRNA amplicon sequencing. PLoS One. 2020;15:e0227434.
8. SRA-Tools. https://academic.oup.com/nar/article/39/suppl_1/D19/2505848. Accessed 2 July 2021.
9. enaBrowserTools. Github.
10. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y, Ackermann G, et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods. 2018;15:796–8.
11. Mashima J, Kodama Y, Kosuge T, Fujisawa T, Katayama T, Nagasaki H, et al. DNA data bank of Japan (DDBJ) progress report. Nucleic Acids Res. 2015;44:D51–7.
12. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, ur-Rehman S, et al. The European genome-phenome archive of human data consented for biomedical research. Nat Genet. 2015;47:692–5.
13. Ryder J. What can students learn from final year research projects? Biosci Educ. 2004;4:1–8.
14. Tutorials—QIIME 2 2021.4.0 documentation. https://docs.qiime2.org/2021.4/tutorials/. Accessed 2 July 2021.
15. tidyverse. Github. https://doi.org/10.21105/joss.01686
16. VEGAN PD. A package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
17. McMurdie PJ, Holmes S. Phylloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
18. Wickham H. A layered grammar of graphics. J Comput Graph Stat. 2010;19:3–28.
19. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-Z, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90.
20. Guo H, Chou W-C, Lai Y, Liang K, Tam JW, Brickey WJ, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 2020;370.
21. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.
22. Stanislawski MA, Lozupone CA, Wagner BD, Eggesbo M, Sontag MK, Nusbacher NM, et al. Gut microbiota in adolescents and the association with fatty liver: the EPOCH study. Pediatr Res. 2018;84:219–27.
23. Gloor GB, Wong RG, Allen-Vercoe E, Dinculescu V, Pignanelli M, Bogiatzi C, et al. Data on the gut and saliva microbiota from a cohort of atherosclerosis patients determined by 16S rRNA gene sequencing. Data Brief. 2018;19:481–5.
24. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
25. Marotz C, Belda-Ferre P, Ali F, Das P, Huang S, Cantrell K, et al. SARS-CoV-2 detection status associates with bacterial community composition in patients and the hospital environment. Microbiome. 2021;9:132.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Poolman TM, Townsend-Nicholson A, Cain A. Teaching genomics to life science undergraduates using cloud computing platforms with open datasets. Biochem Mol Biol Educ. 2022;50(5):446–9. https://doi.org/10.1002/bmb.21646