Associations between dietary patterns, eating behaviours and body composition and adiposity in 3-year old children of mothers with obesity

Kathryn V Dalrymple\(^1\), Angela C Flynn\(^1\), Paul T Seed\(^1\), Annette L Briley\(^1\), Majella O’Keeffe\(^2\), Keith M Godfrey\(^3\) and Lucilla Poston\(^1\) on behalf of the UPBEAT Consortium

\(^1\) Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, UK. \(^2\) Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, London, UK. \(^3\) MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK.

Keywords: childhood obesity, dietary patterns, maternal obesity, eating behaviours

Running title: dietary intake and obesity in children

Address correspondence to: Kathryn Dalrymple: kathryn.dalrymple@kcl.ac.uk; Department of Women and Children’s Health, 10\(^{th}\) floor, North Wing, St Thomas Hospital, Westminster Bridge Road, London, UK; Telephone: +44 (0) 207 188 3639
Abbreviations:

ALSPAC: Avon Longitudinal Study of Parents and Children

BIA: bio-electrical impedance analysis

BMI: body mass index

CEBQ: Childhood Eating Behaviour Questionnaire

FFQ: Food frequency questionnaire

IOTF: International Obesity Task Force

UPBEAT: UK Pregnancy Better Eating and Activity Trial

SWS: Southampton Women’s Survey

WHO: World Health Organisation
Abstract

Background: The relationships between eating habits, behaviours and the development of obesity in pre-school children is not well established.

Objective: As children of mothers with obesity are themselves at risk of obesity, we examined these relationships in a cohort of 482 three-year-old children of mothers with obesity from the UPBEAT study.

Method: Dietary patterns were derived using factor analysis of an 85-item food frequency questionnaire (FFQ). Eating behaviours were assessed using the Children’s Eating Behaviour Questionnaire (CEBQ). Measures of body composition included age-specific BMI cut-offs, WHO z-scores, sum of skinfolds, waist and arm circumferences and body fat percentage. Using adjusted regression analysis, we examined associations between dietary patterns, eating behaviours and measures of body composition.

Results: Three distinct dietary patterns were defined; “healthy/prudent”, “African/Caribbean” and “processed/snacking”. The “processed/snacking” pattern was associated with greater odds of obesity; OR 1.53 (95%CI: 1.07 to 2.19). The “African/Caribbean” and the “healthy/prudent” patterns were associated with a lower arm circumference (\(\beta=-0.23\text{cm} \ (-0.45 \text{ to} \ -0.01)\)) and sum of skinfolds (\(\beta=-1.36\text{cm} \ (-2.88 \text{ to} \ -0.37))\), respectively. Lower enjoyment of food and food responsiveness, and greater slowness in eating and satiety, were associated with lower arm and waist circumferences, WHO z-scores and obesity (all \(p<0.05)\).

Conclusion: In children of mothers with obesity, those who had higher scores on a “processed/snacking” dietary pattern had greater odds of obesity. In contrast slowness in eating was associated with lower measures of body composition. These novel findings highlight modifiable behaviours in high-risk pre-school children which could contribute to public health strategies for prevention of childhood obesity.
Introduction: Recent figures from the National Child Measurement Programme in England suggest that nearly a quarter of pre-school children have overweight or obesity\(^1\), with one in 40 children being affected by severe obesity. Obesity in early life is a predictor for adolescent and adulthood obesity\(^2\text{-}^4\), with a recent meta-analysis of 37 studies reporting that children classified as having obesity using body mass index (BMI) were five-times more likely to have obesity as adults compared to their healthy weight counterparts\(^5\). Worldwide, there is intense focus on reducing rates of childhood obesity\(^6,7\). The UK government recommend creating healthier food environments in schools, local areas and providing parents with information on healthy food choices for their families with the aim of halving rates of childhood obesity by 2030\(^6\).

Several studies have independently suggested a relationship between eating behaviours\(^8\text{-}^11\) or dietary intake\(^12,13\) and body composition in childhood. Associations between weight status in early life and food approach eating behaviours, such as food responsiveness and emotional overeating and consumption of energy dense foods have consistently been reported. Longitudinal studies suggest that eating habits and food choices established in childhood are likely to persist into adulthood\(^14\text{-}^18\). Therefore, the early years provide a unique opportunity to develop and establish healthy eating habits and behaviours.

Since current guidelines for prevention of childhood obesity recommend identification of populations at risk and early engagement\(^6,7\), we have addressed relationships between dietary habits and behaviours and childhood adiposity in children born to mothers with obesity. As recently reported by ourselves in a contemporary cohort\(^19\), and previously in many mother-child cohort studies, children of mothers with obesity are at high-risk of developing obesity themselves\(^20\).
The primary aims of this study were to investigate 1) associations of childhood dietary patterns with measures of body composition and 2) associations between child’s eating behaviours and measures of body composition in the 3-year old children born to mothers from inner city settings and ethnically diverse backgrounds (UK Pregnancy Better Eating and Activity Trial, UPBEAT). The role of socio-economic deprivation in these relationships was also examined.
Methods: UPBEAT was a multicentre randomised controlled trial which explored the effect of an intensive 8-week antenatal diet and physical activity intervention in 1555 women with a BMI ≥30kg/m² \(^{21}\). The intervention focused on improving insulin sensitivity through reducing dietary glycaemic load, saturated fat intake, and increasing physical activity in comparison to standard antenatal care. The participants were from UK inner-city settings of ethnic diversity and high socioeconomic deprivation. Details of the intervention inclusion and exclusion criteria have been published previously \(^{21,22}\). Research Ethics Committee approval was obtained in all participating centres, UK Integrated Research Application System; reference 09/H0802/5 (South East London Research Ethics Committee). All participants provided written informed consent.

The intervention had no effect on the primary outcomes of gestational diabetes and large for gestational age infants. However, it was effective at improving maternal dietary intake, reducing gestational weight gain and sum of skinfolds and increasing self-reported physical activity by 36 weeks’ gestation (all \(p \leq 0.04\)). In the infants at 6 months of age we have reported that the intervention was associated with a reduction in a measure of adiposity \(^{23}\); as a cohort analysis in these infants, we have also shown positive associations between measures of appetite, assessed by the Baby Eating Behaviour Questionnaire, and body fat percentage, weight and growth \(^{24}\).

Between August 2014 and October 2017 participants in the UPBEAT study were invited to attend a 3-year post-delivery visit with their children. The study design and protocol of the follow-up were approved by the NHS Research Ethics Committee (UK Integrated Research Application System; reference 13/LO/1108). The children were included in this analysis if they had 1) attended the follow-up visit at 3-years of age; 2) had eating behaviour and food frequency questionnaires completed by the main caregiver; and 3) had body composition data recorded during the 3-year
Children were excluded if they were suffering from severe illness or if they were born before 34 weeks' gestation.

Child Variables

Food Frequency Questionnaire

The child’s diet was assessed using an 85-item Food Frequency Questionnaire (FFQ). The list of food and drink items were compiled from the 80-item validated Southampton Women’s Survey FFQ. In addition, three questions were extended to include culturally appropriate options, e.g. “Rice-boiled & fried” extended to “Rice-boiled & fried jollof, rice and peas”. Five extra food items were included which were culturally appropriate for the non-white ethnic subgroups in the UPBEAT cohort (Black – including Afro Caribbean and African) (Supplementary Table 1). The FFQ asked how often in the last three months the child had consumed each item with response options including: never, less than once per month, 1-3 times per month, number of times per week (1-7) or more than once per day. If the item was consumed more than once a day, the number of times was recorded. Food and drink items consumed more than once a week which were not included in the FFQ were recorded as additional items. Type of milk consumed as a drink or added to cereal and sugar added to drinks and cereal was also collected.

Dietary patterns of the children were derived using factor analysis. Food and drink items listed in the FFQ were categorised into 39 groups based on similar nutritional composition. On the basis of frequency consumption, three items recorded as additional foods were also included: porridge/shredded wheat, fast food (McDonalds, Burger King and KFC) and cereals bars (Supplementary Table 1). Factor analysis with orthogonal varimax rotation was performed to derive the patterns using the children’s weekly standardised frequency of each of the 39 food groups. The
number of factors retained was chosen using the scree plot of eigenvalues. Within each factor, food
groups with a factor loading coefficient ≥ ±0.22 were chosen (Supplementary Table 2); this cut-off
was selected so that each dietary pattern had equal distribution of food groups. Food groups with a
factor loading coefficient ≥ ±0.32 were considered to have a strong association with that factor.
Derived dietary pattern labels were selected based on foods with the highest factor loadings (≥
±0.32).

Child Eating Behaviour Questionnaire

The Child Eating Behaviour Questionnaire [126] (CEBQ) is a validated parent-reported psychometric
method to assess child's eating style and behaviour [127]. The questionnaire consists of 35 items divided
into eight eating behaviours, further sub-divided into food approach and food avoidance questions
rated on a 5-point Likert scale (Never=1, Rarely=2, Sometimes=3, Often=4, Always=5) Seven
questions were reverse scored. Food approach behaviours include food responsiveness, emotional
over-eating, enjoyment of food and desire to drink; food avoidance behaviours were satiety
responsiveness, slowness in eating, emotional under-eating, and food fussiness. Higher scores
indicate a higher level for the respective eating style.

Anthropometric measures and body fat percentage

The outcomes of interest for the offspring were measures of body composition and adiposity
assessed by sum of skinfold thicknesses (addition of triceps, bicep, subscapular, suprailiac and
abdominal skinfolds, measured in triplicate by trained research staff using children’s Holtain skinfold
callipers), mid-upper arm and waist circumferences, body fat percentage assessed by ImpediMed
Imp SFB7 bioelectrical impedance analysis (BIA) and weight, height and BMI z-scores derived using
the World Health Organisation (WHO) reference data [28]. Childhood obesity was defined by
International Obesity Task Force (IOTF) sex-specific centiles (boys obesity = 98.9th centile and girls obesity = 98.6th centile) 29.

Maternal variables

We also addressed relationships between maternal social and demographic variables (maternal age at trial entry, ethnicity, socioeconomic status, years in full-time education and early-pregnancy BMI) and offspring eating habits.

Statistical analysis

In this secondary analysis of the UPBEAT study there was no effect of the intervention on offspring eating patterns or behaviours, therefore the data was treated as a cohort. Demographic results were expressed as mean ± standard deviation, median and interquartile range or percent and number as appropriate. Depending on the outcome of interest, unadjusted and adjusted linear, logistic or quantile regression were used. Unadjusted regression (model 1) was performed to analyse the relationship between maternal social and demographic factors and dietary patterns at age 3-years, followed by adjusted regression (model 2) to investigate the relationship of the derived dietary patterns and the eight CEBQ subscale scores with the nine measures of body composition at age 3-years. For model 2 confounding variables were selected due to their association with dietary intake and body composition and included the minimisation variables from the main trial (maternal BMI at trial enrolment, parity and ethnicity), smoking status at baseline, maternal age, years spent in full time education, infant birthweight, child’s age at follow-up, sex and randomisation arm. Coefficients or odds ratios were presented with 95% confidence intervals. Data was analysed using Stata software, version 15.0 (StataCorp, College Station, Texas).
Results: Figure 1 shows a flow chart of participants through the study. 514 children (33.0% of the original UPBEAT cohort) were followed up at age 3 years (3.5±0.28 years). 490 (95%) provided complete dietary data (FFQ and CEBQ), eight children were excluded as they were either born ≤34 weeks gestation or were suffering from severe illness, therefore the study population comprised of 482 children. Data for the majority of measures of anthropometry had less than 5% missingness except for BIA (20%) and sum of skinfolds (23%). Of the 482 included children, 243 (50%) were female and 234 (49%) were born to mothers who were randomised to the UPBEAT intervention arm.

Mean maternal age was 31.2±5.2 years; 68% were White, 23% were Black African/Caribbean and 9% were from Asian or other ethnic backgrounds. 76% were from the index of multiple deprivation quintiles 4 and 5 (most deprived). 165 of the children (34%) were overweight or had obesity, and 6% were morbidly obese (defined using the IOTF sex specific centiles 29). For the WHO z-scores, the average height-for-age, weight-for-age and weight-for-height were above the mean of the reference population 0.38±1.1, 0.83±1.0 and 0.90±1.0, respectively (Table 1).

Dietary pattern analysis

Factor analysis identified three dietary patterns in the children, summarised in Supplementary Figure 1 with the full list of factor loadings shown in Supplementary Table 2. The first dietary pattern was labelled ‘healthy/prudent’ due to high loadings (≥0.32) on brown bread, boiled and baked potatoes, rice and pasta, fish, vegetables, beans and pulses, fruit (fresh, tinned and dried) and nuts. The second dietary pattern was characterised as a diet high in white bread, crisps and savoury snacks, roast potatoes (including chips), processed foods, quiche and pizza, confectionary, desserts, cakes, biscuits and low and high sugary drinks and this pattern was termed ‘processed/snacking’. The third pattern, ‘African/Caribbean’ was characterised by yam/cassava/plantain, red meat, chicken and turkey, soups (including African and Caribbean soups) and rice/pasta, fish and offal and was low in cheese, yoghurts and spreads.
Maternal demographics

In a univariate analysis (model 1) different maternal social and demographic characteristics were associated with the three childhood dietary patterns. A higher number of years in full time education and a higher maternal age were associated with the child having a higher score on a healthy/prudent dietary pattern. Fewer years in full time education, lower maternal age and having a White mother were associated with the child having a higher score on a processed/snacking dietary pattern. Having a Black mother and a greater deprivation defined by index of multi-deprivation were associated with the child having a high score on an African/Caribbean dietary pattern (Supplementary Table 3, all p<0.05).

Dietary patterns and anthropometric measures and body fat percentage

In the adjusted regression model (model 2), the healthy/prudent dietary pattern was associated with a -1.76cm (95% confidence interval -3.30 to -0.14, p=0.03) lower sum of skinfolds. The processed/snacking pattern was associated with a higher odds of obesity [(BMI \geq30kg/m²), defined using the IOTF gender-specific cut-odds [39] (OR =1.53 (1.07 to 2.19) p=0.04). The African/Caribbean pattern was associated with a lower arm circumference (-0.23cm (-0.45 to -0.01), p=0.04) (Table 2). No other dietary pattern-body composition associations were found.

Eating behaviour and body composition

There were no differences in the CEBQ scores according to gender or mode of infant feeding (Supplementary Table 4 & 5). For the food approach scales, following adjustment for confounders, lower enjoyment of food and food responsiveness were associated with lower arm and waist circumferences, weight-for-age, weight-for-height and BMI z-scores and obesity (all p<0.006, Figure
For the food avoidance scales, greater slowness in eating and satiety responsiveness were associated with a lower BMI z-score, a lower odds of obesity, weight-for-age, weight-for-height and height-for-age z-scores and arm and waist circumferences (all $p < 0.009$, Figures 2 & 3). Food fussiness was associated with a lower BMI, odds of obesity and weight-for-height z-score (all $p < 0.002$, Figures 2 & 3). Emotional under eating was not associated with any measures of body composition or adiposity; emotional overeating was only associated with weight-for-height z-score ($p = 0.02$). Body fat percentage and sum of skinfolds were not associated with any of the eating behaviour sub scales (data not shown).

Grouping the children by BMI class, an obese BMI (IOTF BMI centile cut-off equivalent to ≥ 30kg/m2) vs healthy, after adjustment for confounders, the children with obesity showed higher food approach scales scores for food responsiveness ($p = 0.001$), enjoyment of food ($p = 0.02$) and desire to drink ($p = 0.03$). In contrast, the food avoidance scale, slowness in eating, and satiety responsiveness ($p < 0.008$) were inversely associated with obesity (Table 3, Supplementary Figure 2).
Discussion: This study uniquely explores associations between dietary patterns and eating behaviours with BMI and measures of adiposity in 3-year-old children born to mothers with obesity from high social deprivation and ethnically diverse backgrounds.

Children with obesity had higher scores on a processed/snacking dietary pattern defined as a diet high in confectionary, crisps, processed foods, cakes and biscuits and greater food approach and less food avoidance eating behaviours. Dietary intake and body composition analyses in children have hitherto focused on specific food groups, such as sugar-sweetened beverages, high sugar/fat snacks or fruit and vegetable intake. However, dietary patterns reduces dietary data into fewer variables by combining highly correlated food groups, therefore they may better define an individual’s habitual diet as they attempt to describe the whole diet rather than description of specific nutrients or foods. Whilst several studies have addressed relationships between dietary patterns and obesity in older children, we are unaware of previous reports addressing dietary patterns and adiposity in three-year olds even though at this age the children may already be on a trajectory to development of later life obesity. Arguably, prevention at this age through appropriate dietary intervention may have particular gain in terms of prevention of adult obesity, as previous studies have reported that dietary patterns track from early childhood to later life. A report of dietary patterns in the UK ALSPAC cohort of children described ‘healthy’, ‘traditional’ and ‘processed’ dietary patterns in children at 3-years of age, whilst the healthy and processed patterns are similar to the present study, other differences may reflect ethnic diversity of the UPBEAT cohort. Comparison in relations to body composition is not possible as the ALSPAC study did not include measurement of adiposity, although there was no association between dietary patterns at 3-years and body mass index when measured at age 7-years.
Our findings support those from the CHASE cohort who described that UK Black/African 9-10-year-old children benefit from maintaining a traditional African/Caribbean diet. This was evident from the observed association of high scores on an African/Caribbean dietary pattern with a lower arm circumference despite the Black women having a higher index of multi-deprivation. CHASE showed that a traditional African/Caribbean diet in late childhood was associated with an improved lipid profile, and compared to a White-European diet the overall nutrient content was lower in total fats and higher in carbohydrates, and lower in processed foods, which might explain the relationship with the lower measure of adiposity.

We have previously reported the maternal dietary patterns of 1023 women obtained during the UPBEAT study in which four distinct patterns were identified, “snacks”, “processed”, “fruit and veg” and “African/Caribbean”. Whilst only three patterns were identified in this analysis of the diets of their children they were broadly similar to those of their mothers three years previously, highlighting commonality of diet within families, as reported previously in the UK Southampton Women’s Survey.

Similarly to dietary patterns, eating behaviours developed in early life track through childhood. The validated CEBQ questionnaire has greatly facilitated studies of relationships between appetite traits and body composition. Using this questionnaire, food responsiveness and enjoyment of food were associated with higher arm and waist circumferences, weight-for-age, weight-for-height and BMI z-scores and higher odds of obesity. In contrast slowness in eating and satiety responsiveness were inversely associated with the same measures of body composition, suggesting that these traits are protective against an obesogenic environment. Importantly, slower eating is a modifiable eating style which may reduce excessive weight gain in childhood. The associations between enjoyment of food and food responsiveness and increased body composition and rates of
obesity, are consistent with previous studies suggesting that children with overweight or obesity are more responsive to food cues, but amongst these the only report of children at a similar age to this study was from an Australian cohort of 2-5 year old children, although the results were based on parent reported measurements.

In agreement with BASELINE, an observational study in 1189 2-year old children from Ireland did not find associations between emotional under/over eating and desire to drink and measures of body composition. This could be because the children were too young to display emotion in relation to eating habits. Although, in older children a similar lack of an association has been found. This may imply that these three measures from the CEBQ do not have a major impact on body composition and adiposity compared to the other sub-scales.

The offspring of mothers with obesity are particularly at risk of obesity and this is the first study to address dietary patterns and eating behaviours associated with obesity in such children. As previously described by ourselves and others, there is a striking relationship between maternal obesity and offspring risk of obesity. Whether this arises from shared familial environment, shared genes or the maternal in-utero environment or a combination of all three is not established. Animal models and some of the human cohort studies however have argued for a major contribution of in-utero determinants through persistent effects on the developing fetus, including modification of the pathways of energy balance at the level of the hypothalamus. This is supported by the recent finding of an association between perinatal methylation of the SLC6A4 gene implicated in appetite regulation and obesity in later childhood. Whether the relationships between food approach and food avoidance variables with measures of childhood adiposity in these children are a direct result of the in-utero environment cannot be established from this study, although future comparisons of the strength of these relationships within cohorts of children from...
mothers of a healthy BMI, with appropriate adjustment for confounders, could shed light on the
aetiology of these relationships.

Strengths and limitations

Strengths of the study include the rich UPBEAT dataset which provides comprehensive information
on the eating habits and behavioural origins of early childhood obesity and multiple determinants of
childhood body composition and adiposity. The sample of the mothers and their offspring included
are ethnically diverse and of low socio-economic status. To our knowledge this the only study which
has combined dietary patterns and eating behaviours in the same study of childhood obesity at any
age. Limitations include loss to follow-up of the study population which may result in selection bias;
however, there were no differences in the maternal population who completed the 3-year follow-up
compared to those who did not, except for a higher proportion of white women returning for the 3-
year visit. The CEBQ is a parent reported measure and is subject to recall bias and the main care
giver’s own interpretation of eating behaviours, however the CEBQ is validated and previous trials
have reported high internal validity. The dietary patterns, derived using factor analysis, involve a
number of arbitrary decisions including consolidation of food items into groups, the number of
factors to extract, rotation method and naming of the factors. FFQs are also associated with recall
bias from the child’s main caregiver 52. The measures of body composition utilised in this study have
limitations. BMI standardised cut-offs, z-scores, BIA and sum of skinfolds which was used to define
obesity and adiposity in the children are indirect measures of fat mass; future studies should
consider validating measures of body composition with DEXA, which is widely recognised as a good
measure of adiposity 53. Lastly, our study was observational, so causality of the associations cannot
be assumed.

In summary, we found that food approach eating behaviours and a diet high in processed and
snacking foods were associated with obesity and measures of body composition at 3 years of age in
children of mothers with obesity. Conversely slower eating, a “healthy/prudent” or a traditional “African/Caribbean” diet were associated with lower rates of obesity or adiposity. This study provides evidence for potentially modifiable determinants and adds credence to the view that promoting healthy food alternatives and eating behaviours should be considered for assimilation into public health strategies in high-risk children at risk of obesity in early life.
Conflict of Interest: KMG reports other from Nestle Nutrition Institute, grants from Nestec, outside the submitted work; In addition, KMG has a patent Phenotype prediction issued, a patent Predictive use of CpG methylation issued, a patent Maternal Nutrition Composition pending, and a patent Vitamin B6 in maternal administration for the prevention of overweight or obesity in the offspring issued. LP is part of an academic consortium that has received research funding from Abbott Nutrition and Danone. The other authors declare no conflict of interest.

Authors contribution: The authors responsibilities were as follows – PTS, ALB, KMG and LP conceptualised and designed the study. KVD, ACF, MOK and PTS drafted and carried out the analyses. KVD, ACF, MOK and LP had overall responsibility for the manuscript. KVD, ACF, PTS, ALB, MOK, KMG and LP critically reviewed the manuscript, and approved the final manuscript as submitted.

Acknowledgements: We thank all staff in the UPBEAT consortium and we are most grateful to all the women and their children who took part in the UPBEAT study.

Clinical Trial Registry Name and Registration Number: The UPBEAT trial is registered with Current Controlled Trials, ISRCTN89971375.

Sources of support: This work was supported by the European Union’s 7th Framework Programme (FP7/2007–2013), project EarlyNutrition; grant agreement no. 289346 and the National Institute for Health Research (NIHR) (UK) Programme Grants for Applied Research Programme (RP-0407-10452). The views expressed in this paper are those of the authors and not necessarily those of the National Health Service, the NIHR or the Department of Health or any other listed funders. Support was also provided from the Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, the Chief Scientist Office Scotland, Guy’s and St Thomas’ Charity and Tommy’s Charity (Registered charity no. 1060508). The funders had no role in study design, data collection, data analysis, data interpretation or writing of the final report. The corresponding author had access to all the data in the study and had final responsibility for the decision to submit for
publication. LP, PTS, ACF and ALB are funded by Tommy’s Charity and KVD is supported by the British Heart Foundation FS/17/71/32953. KMG is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research (NIHR Senior Investigator (NF-SI-0515-10042) and the NIHR Southampton Biomedical Research Centre), the European Union (Erasmus+ Capacity-Building ENeASEA Project and Seventh Framework Programme (FP7/2007-2013), projects EarlyNutrition and ODIN (Grant agreements 289346 and 613977), the US National Institute On Aging of the National Institutes of Health (Award No. U24AG047867) and the UK ESRC and BBSRC (Award No. ES/M00919X/1).
References

1. National Child Measurement Programme, England - 2017/18 School Year [PAS]. NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme/2017-18-school-year. Accessed July 26, 2019.

2. Singh AS, Mulder C, Twisk JW, Van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. *Obes Rev.* 2008;9(5):474-488.

3. Druet C, Ong KK. Early childhood predictors of adult body composition. *Best Pract Res Clin Endocrinol Metab.* 2008;22(3):489-502. doi:10.1016/j.beem.2008.02.002

4. Geserick M, Vogel M, Gausche R, et al. Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. *N Engl J Med.* 2018;379(14):1303-1312. doi:10.1056/NEJMo1803527

5. Simmonds M, Llewellyn A, Owen C, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. *Obes Rev.* 2016;17(2):95-107.

6. Childhood obesity: a plan for action. GOV.UK. https://www.gov.uk/government/publications/childhood-obesity-a-plan-for-action/childhood-obesity-a-plan-for-action. Accessed April 25, 2019.

7. WHO. *Report of the Commission on Ending Childhood Obesity.* Geneva; 2016. http://www.who.int/end-childhood-obesity/en/. Accessed March 9, 2018.

8. van Jaarsveld CH, Boniface D, Llewellyn CH, Wardle J. Appetite and growth: a longitudinal sibling analysis. *JAMA Pediatr.* 2014;168(4):345-350.

9. McCarthy EK, Chaoimh C ní, Murray DM, Hourihane JO, Kenny LC, Kiely M. Eating behaviour and weight status at 2 years of age: data from the Cork BASELINE Birth Cohort Study. *Eur J Clin Nutr.* 2015;69(12):1356-1359. doi:10.1038/ejcn.2015.130

10. Spence JC, Carson V, Casey L, Boule N. Examining behavioural susceptibility to obesity among Canadian pre-school children: the role of eating behaviours. *Int J Pediatr Obes IJPO Off J Int Assoc Study Obes.* 2011;6(2-2):e501-507. doi:10.3109/17477166.2010.512087

11. Eloranta A-M, Lindi V, Schwab U, et al. Dietary factors associated with overweight and body adiposity in Finnish children aged 6-8 years: the PANIC Study. *Int J Obes 2005.* 2012;36(7):950-955. doi:10.1038/ijo.2012.89

12. Wolters M, Jostowski G, Plachta-Danielzik S, et al. Dietary Patterns in Primary School are of Prospective Relevance for the Development of Body Composition in Two German Pediatric Populations. *Nutrients.* 2018;10(10). doi:10.3390/nu10101442

13. Fernández-Alvira JM, Bammann K, Eiben G, et al. Prospective associations between dietary patterns and body composition changes in European children: the IDEFICS study. *Public Health Nutr.* 2017;20(18):3257-3265. doi:10.1017/S1368980017002361

14. Nicklaus S, Boggio V, Chabanet C, Issanchou S. A prospective study of food variety seeking in childhood, adolescence and early adult life. *Appetite.* 2005;44(3):289-297. doi:10.1016/j.appet.2005.01.006
15. Northstone K, Emmett PM. Are dietary patterns stable throughout early and mid-childhood? A birth cohort study. *Br J Nutr*. 2008;100(5):1069-1076. doi:10.1017/S0007114508968264

16. Skinner JD, Carruth BR, Bounds W, Ziegler P, Reidy K. Do food-related experiences in the first 2 years of life predict dietary variety in school-aged children? *J Nutr Educ Behav*. 2002;34(6):310-315.

17. Schwartz C, Scholtens PAMJ, Lalanne A, Weenen H, Nicklaus S. Development of healthy eating habits early in life. Review of recent evidence and selected guidelines. *Appetite*. 2011;57(3):796-807. doi:10.1016/j.appet.2011.05.316

18. Birch L, Savage JS, Ventura A. Influences on the Development of Children’s Eating Behaviours: From Infancy to Adolescence. *Can J Diet Pract Res Publ Dietit Can Rev Can Prat Rech En Diet Une Publ Diet Can*. 2007;68(1):s1-s56.

19. Dalrymple KV, Thompson JMD, Begum S, et al. Relationships of maternal body mass index and plasma biomarkers with childhood body mass index and adiposity at 6 years: The Children of SCOPE study. *Pediatr Obes*. June 2019:e12537. doi:10.1111/ijpo.12537

20. Heslehurst N, Vieira R, Akhter Z, et al. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. *PLOS Med*. 2019;16(6):e1002817. doi:10.1371/journal.pmed.1002817

21. Poston L, Bell R, Croker H, et al. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): a multicentre, randomised controlled trial. *Lancet Diabetes Endocrinol*. 2015;3(10):767-777.

22. Briley AL, Barr S, Badger S, et al. A complex intervention to improve pregnancy outcome in obese women; the UPBEAT randomised controlled trial. *BMC Pregnancy Childbirth*. 2014;14:74. doi:10.1186/1471-2393-14-74

23. Patel N, Godfrey K, Pasupathy D, et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. *Int J Obes*. 2017;41(7):1018-1026.

24. Patel N, Dalrymple KV, Briley AL, et al. Mode of infant feeding, eating behaviour and anthropometry in infants at 6-months of age born to obese women – a secondary analysis of the UPBEAT trial. *BMC Pregnancy Childbirth*. 2018;18(1):355. doi:10.1186/s12884-018-1995-7

25. Jarman M, Fisk C, Ntani G, et al. Assessing diets of 3 year old children: evaluation of a food frequency questionnaire. *Public Health Nutr*. 2014;17(5):1069-1077. doi:10.1017/S136898001300102X

26. Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the Children’s Eating Behaviour Questionnaire. *J Child Psychol Psychiatry*. 2001;42(7):963-970.

27. Carnell S, Wardle J. Measuring behavioural susceptibility to obesity: validation of the child eating behaviour questionnaire. *Appetite*. 2007;48(1):104-113. doi:10.1016/j.appet.2006.07.075

28. de Onis M. WHO Child Growth Standards based on length/height, weight and age. *Acta Paediatr*. 2006;95(S450):76-85.
29. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284-294. doi:10.1111/j.2047-6310.2012.00064.x

30. Scharf RJ, DeBoer MD. Sugar-Sweetened Beverages and Children's Health. Annu Rev Public Health. 2016;37(1):273-293. doi:10.1146/annurev-publhealth-032315-021528

31. Rollins BY, Loken E, Savage JS, Birch LL. Maternal controlling feeding practices and girls' inhibitory control interact to predict changes in BMI and eating in the absence of hunger from 5 to 7 y. Am J Clin Nutr. 2014;99(2):249-257. doi:10.3945/ajcn.113.063545

32. Kepper M, Tseng T-S, Volaufova J, Scribner R, Nuss H, Sothern M. Pre-school obesity is inversely associated with vegetable intake, grocery stores and outdoor play. Pediatr Obes. 2016;11(5):e6-e8. doi:10.1111/ijpo.12058

33. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

34. Ambrosini GL. Childhood dietary patterns and later obesity: a review of the evidence. Proc Nutr Soc. 2014;73(1):137-146. doi:10.1017/S0029665113003765

35. Ward ZI, Long MW, Resch SC, Giles CM, Cradock AL, Gortmaker SL. Simulation of Growth Trajectories of Childhood Obesity into Adulthood. N Engl J Med. 2017;377(22):2145-2153. doi:10.1056/NEJMoa1703860

36. Mikkilä V, Räsänen L, Raitakari OT, Pietinen P, Viikari J. Consistent dietary patterns identified from childhood to adulthood: the cardiovascular risk in Young Finns Study. Br J Nutr. 2005;93(6):923-931.

37. North K, Emmett P. Multivariate analysis of diet among three-year-old children and associations with socio-demographic characteristics. The Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) Study Team. Eur J Clin Nutr. 2000;54(1):73-80.

38. Reilly JJ, Armstrong J, Dorosty AR, et al. Early life risk factors for obesity in childhood: cohort study. BMJ. 2005;330(7504):1357. doi:10.1136/bmj.38470.670903.E0

39. Donin AS, Nightingale CM, Owen CG, et al. Ethnic differences in blood lipids and dietary intake between UK children of black African, black Caribbean, South Asian, and white European origin: the Child Heart and Health Study in England (CHASE). Am J Clin Nutr. 2010;92(4):776-783. doi:10.3945/ajcn.2010.29533

40. Flynn AC, Seed PT, Patel N, et al. Dietary patterns in obese pregnant women; influence of a behavioral intervention of diet and physical activity in the UPBEAT randomized controlled trial. Int J Behav Nutr Phys Act. 2016;13(1):124. doi:10.1186/s12966-016-0450-2

41. Fisk CM, Crozier SR, Inskip HM, et al. Influences on the quality of young children's diets: the importance of maternal food choices. Br J Nutr. 2011;105(2):287-296. doi:10.1017/S0007114510003302

42. Ashcroft J, Semmler C, Carnell S, van Jaarsveld CHM, Wardle J. Continuity and stability of eating behaviour traits in children. Eur J Clin Nutr. 2008;62(8):985-990. doi:10.1038/sj.ejcn.1602855
43. Sleddens EF, Kremers SP, Thijs C. The children’s eating behaviour questionnaire: factorial validity and association with Body Mass Index in Dutch children aged 6-7. *Int J Behav Nutr Phys Act.* 2008;5:49. doi:10.1186/1479-5868-5-49

44. Webber L, Hill C, Saxton J, Jaarsveld CHMV, Wardle J. Eating behaviour and weight in children. *Int J Obes.* 2009;33(1):21-28. doi:10.1038/ijo.2008.219

45. Jansen A, Theunissen N, Slechten K, et al. Overweight children overeat after exposure to food cues. *Eat Behav.* 2003;4(2):197-209. doi:10.1016/S1471-0153(03)00011-4

46. Boswell N, Byrne R, Davies PSW. Eating behavior traits associated with demographic variables and implications for obesity outcomes in early childhood. *Appetite.* 2018;120:482-490. doi:10.1016/j.appet.2017.10.012

47. Viana V, Sinde S, Saxton JC. Children’s Eating Behaviour Questionnaire: associations with BMI in Portuguese children. *Br J Nutr.* 2008;100(2):445-450. doi:10.1017/S0007114508894391

48. Catalano PM, Farrell K, Thomas A, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. *Am J Clin Nutr.* 2009;90(5):1303-1313. doi:10.3945/ajcn.2008.27416

49. Taylor PD, Poston L. Developmental programming of obesity in mammals. *Exp Physiol.* 2007;92(2):287-298. doi:10.1113/expphysi.2005.032854

50. Molle RD, Bischoff AR, Portella AK, Silveira PP. The fetal programming of food preferences: current clinical and experimental evidence. *J Dev Orig Health Dis.* 2016;7(3):222-230. doi:10.1017/S2040174415007187

51. Lillycrop KA, Garratt ES, Titcombe P, et al. Differential SLC6A4 methylation: a predictive epigenetic marker of adiposity from birth to adulthood. *Int J Obes.* 2019;43(5):974-988. doi:10.1038/s41366-018-0254-3

52. Martínez ME, Marshall JR, Sechrest L. Invited commentary: Factor analysis and the search for objectivity. *Am J Epidemiol.* 1998;148(1):17-19. doi:10.1093/oxfordjournals.aje.a009552

53. Eisenmann JC, Heelan KA, Welk GI. Assessing body composition among 3-to 8-year-old children: Anthropometry, BIA, and DXA. *Obes Res.* 2004;12(10):1633-1640.
Table and figure legends:

Table 1: Maternal and offspring demographics of the analysed sample (n=482)

Table 2: Associations between offspring dietary patterns at age 3-years and body composition

Table 3: Association between offspring dietary patterns at 3-years of age and eating behaviour

Figure 1: Consort diagram of participants enrolled in the UPBEAT trial at 3 years postpartum

Figure 2: Associations between measures of the CEBQ and waist and arm circumferences in children at 3-years of age

Figure 3: Associations between measures of the CEBQ and the WHO z-scores in children at 3-years of age

Supplementary Table 1: List of the 39 food groups derived from the 88 items in the food frequency questionnaire

Supplementary Table 2: Factor loadings of items in the three dietary patterns identified

Supplementary Table 3: Association between offspring dietary patterns at 3-years of age and maternal social and demographic factors

Supplementary Table 4: UPBEAT 3-year follow-up: Descriptive statistics for the whole sample and stratified by gender for the subscales of the Children’s Eating Behaviour Questionnaire (CEBQ)

Supplementary Table 5: UPBEAT 3-year follow up: Univariate analysis of child eating behaviour at 3 years of age stratified by mode of early feeding in offspring born to women with obesity (n=271)

Supplementary Figure 1: Radar graphs with factor loadings ≥ ±0.22 for each identified dietary pattern

Supplementary Figure 2: Associations between measures of the CEBQ and childhood obesity at 3-years of age
1555 obese pregnant women randomised

772 (49.6%) allocated to standard antenatal care

783 (50.3%) allocated to UPBEAT intervention

1 excluded after trial enrolment

757 (98.1%) infants with known birthweight
 2 lost to follow up
 3 withdrew permission to use data
 2 miscarriage
 4 fetal death in utero
 3 terminations

765 (97.7%) infants with known birthweight
 6 lost to follow up
 3 withdrew permission to use data
 6 miscarriage
 2 fetal death in utero
 1 termination

264 (35.2%) children followed up at 3 years
 - 4 partial participation
259 (34.2%) mothers followed up at 3 years postpartum
 - 20 currently pregnant
 237 not responded to follow up contact
 209 refused follow up
 47 did not attend follow-up

260 (34.3%) CEBQ questionnaires at 3 years
253 (33.5%) FFQ at 3 years
 - 5 children born ≤ 34 weeks gestation
248 (33.4%) CEBQ and FFQ at 3 years

250 (32.9%) children followed up at 3 years
 - 6 partial participation
246 (32.2%) mothers followed up at 3 years postpartum
 - 18 currently pregnant
 266 not responded to follow up contact
 213 refused follow up
 35 did not attend follow-up
 1 cot death

247 (32.3%) CEBQ questionnaires at 3 years
237 (31.0%) FFQ at 3 years
 - 1 children born ≤ 34 weeks gestation
 - 2 children suffering from major ill health
234 (31.0%) CEBQ and FFQ at 3 years

Figure 1: Consort diagram of participants enrolled in the UPBEAT trial at 3 years postpartum
Table 1: Maternal and offspring demographics of the analysed sample (n=482)

Maternal demographics	Mean (SD)/Median (IQR)/N (%)	
Pre-pregnancy		
Age (years)	31.2 (5.2)	
Ethnicity		
White	329 (68)	
Black	110 (23)	
Asian	20 (4)	
Other	23 (5)	
Years in full time education	15.0 (2.8)	
Maternal BMI (kg/m\(^2\))	34.7 (32.5 to 37.9)	
Nulliparous	229 (50)	
Index of Multiple Deprivation Quintiles		
1 (least deprived)	30 (6)	
2	31 (6)	
3	55 (12)	
4	172 (36)	
5 (most deprived)	191 (40)	
Maternal antenatal and neonatal demographics		
Mother assigned to UPBEAT Intervention	234 (49)	
Gestational diabetes mellitus \(c\)	116 (25)	
Birthweight (g)	3499 (499)	
Large for gestational age >90\(^{th}\) centile \(d\)	61 (12)	
Small for gestational age <10\(^{th}\) centile \(d\)	34 (7)	
Child 3-year follow-up demographics		
Age (years)	3.5 (0.28)	
Female	243 (50)	
Mother living with a partner	387 (80)	
Mother a current smoker	47 (9)	
Mode of infant feeding at 4 months		
Breastfed	135 (52)	
Formula fed	105 (41)	
Mixed fed	18 (7)	
BMI z-score \(d\)	472	
Height-for-age z-score \(d\)	477	
Weight-for-age z-score \(d\)	477	
Weight-for-height z-score \(d\)	472	
International Obesity Task Force gender specific cut-offs BMI categorises \(e\)	Underweight (<18.5 kg/m\(^2\))	15 (3)
	Healthy (18.5-24.9 kg/m\(^2\))	292 (62)
	Overweight (25.0-29.9 kg/m\(^2\))	125 (26)
	Obese (30.0-34.9 kg/m\(^2\))	14 (3)
	Morbidly obese (≥35.0 kg/m\(^2\))	26 (6)
Sum of skinfolds (mm) \(e, f\)	371	
Percentage body fat (%)	382	
Arm circumference (cm)	462	
Waist circumference (cm)	466	

\(a\) Median (interquartile range); \(b\) Scores were calculated for the region of residence, by fifths of the population. UK-wide scores were developed from English and Scottish data relating to employment and income domains; \(c\) Gestational diabetes diagnosed using the International Association of Diabetes in Pregnancy Group’s criteria at 24–28 weeks’ gestation; \(d\) World Health Organisation (2007) z-score; \(e\) IOTF International cut-off as BMI references \(f\) sum of triceps, biceps, subscapular, suprailiac and abdominal skinfold thicknesses (mm).
	Healthy	Processed and Snacking	African and Caribbean
	Coefficient/ Odds ratio* (95% CI)	Coefficient/ Odds ratio* (95% CI)	Coefficient/ Odds ratio* (95% CI)
BMI z-score^{a,d}	472 -0.01 (-0.12 to 0.09) P=0.82	0.06 (-0.04 to 0.16) P=0.23	-0.08 (-0.21 to 0.04) p=0.20
Body fat percentage (%)	382 -0.10 (-0.92 to 0.71) P=0.80	0.66 (-0.10 to 1.43) P=0.09	-0.64 (-1.41 to 0.48) p=0.33
Height-for-age z-score^{a,d}	477 0.02 (-0.08 to 0.13) P=0.65	0.02 (-0.08 to 0.12) P=0.69	0.07 (-0.05 to 0.21) P=0.24
Height-for-weight z-score^{a,d}	472 -0.02 (-0.12 to 0.08) P=0.72	0.08 (-0.01 to 0.18) p=0.09	-0.08 (-0.21 to 0.04) p=0.18
Weight-for-age z-score^{a,d}	477 -0.01 (-0.12 to 0.09) P=0.75	0.05 (-0.04 to 0.15) P=0.28	-0.007 (-0.13 to 0.12) p=0.91
Arm (cm)	462 -0.1 (-0.29 to 0.08) P=0.28	0.15 (-0.03 to 0.33) P=0.10	-0.23 (-0.45 to -0.01) P=0.04
Waist (cm)	466 0.06 (-0.39 to 0.51) P=0.79	0.10 (-0.33 to 0.52) P=0.66	-0.45 (-0.98 to 0.08) P=0.09
Sum of skinfolds (mm)^b	371 -1.76 (-3.30 to -0.14) P=0.03	0.63 (-1.59 to 2.86) P=0.57	-0.89 (-3.12 to 1.33) p=0.43
Obese (IOFT cut off)^{c,d}	472 1.07 (0.73 to 1.56) P=0.70	1.53 (1.07 to 2.19) P=0.002	0.61 (0.37 to 1.01) p=0.056

IOTF: International Obesity Task Force, gender specific BMI cut-offs; ^aZ-scores calculated using the WHO growth standards (2007); ^bsum of triceps, biceps, subscapular, suprailliac and abdominal skinfold thicknesses (mm); ^cOdds ratio. ^dAdjusted for maternal ethnicity, socio-economic status, smoking and BMI at baseline (15-18 weeks’ gestation), years spent in full time education, maternal age, parity, infant birthweight, age at follow-up and sex and randomisation arm. ^dwas not adjusted for infant sex or age at follow-up. Children were excluded if they were born ≤ 34 weeks gestation or suffering from major ill health.
	Underweight Coefficient (95% CI)	Overweight Coefficient (95% CI)	Obese Coefficient (95% CI)
	(n=15)	(n=125)	(n=38)
Food approach scales			
Food responsiveness	-0.25 (-0.68 to 0.18)	0.27 (0.09 to 0.44)	0.47 (0.19 to 0.74)
	P=0.25	P=0.003	P=0.001
Emotional overeating	-0.21 (-0.47 to 0.03)	0.05 (-0.04 to 0.15)	0.07 (-0.09 to 0.23)
	P=0.096	P=0.29	P=0.39
Enjoyment of food	-0.62 (-1.09 to -0.16)	0.20 (0.02 to 0.399)	0.34 (0.05 to 0.64)
	P=0.008	P=0.02	P=0.02
Desire to drink	0.20 (-0.40 to 0.81)	0.10 (-0.14 to 0.35)	0.42 (0.03 to 0.83)
	P=0.508	P=0.418	P=0.03
Food avoidance scales			
Emotional under eating	0.008 (-0.49 to 0.50)	-0.07 (-0.27 to 0.13)	-0.20 (-0.52 to 0.11)
	P=0.94	P=0.48	P=0.213
Slowness in eating	0.46 (0.005 to 0.93)	-0.08 (-0.27 to 0.09)	-0.40 (-0.70 to -0.11)
	P=0.047	P=0.36	P=0.007
Food fussiness	0.71 (0.22 to 1.21)	0.02 (-0.18 to 0.22)	-0.28 (-0.60 to 0.03)
	P=0.005	P=0.83	P=0.08
Satiety responsiveness	0.19 (-0.20 to 0.58)	-0.21 (-0.37 to -0.05)	-0.461 (-0.71 to -0.20)
	P=0.34	P=0.009	P<0.001

Adjusted for maternal ethnicity, socio-economic status, smoking and BMI at baseline (15-18 weeks’ gestation), years spent in full time education, maternal age, parity, infant birthweight, sex age at follow-up and randomisation arm. Children were excluded if they were born ≤ 34 weeks gestation and suffering from major ill health.
Figure 2: Associations between measures of the Children’s Eating Behaviour Questionnaire (CEBQ) and waist and arm circumferences in children at 3 years of age.
Figure 3: Associations between measures of the Children’s Eating Behaviour Questionnaire (CEBQ) and the WHO z scores in children at 3 years of age
Supplementary Table 1: List of the 39 food groups derived from the 88 items in the food frequency questionnaire

1.	**White bread**	White bread
Hard dough, African bread*		
2.	**Brown bread**	Brown and wholemeal bread
3.	**Crisps and savoury snacks**	Crackers, cheese biscuits and breadsticks
Crisps and savoury snacks		
4.	**Low sugar cereals**	Weetabix
-Porridge/ Shredded Wheat¥		
5.	**Medium & high sugar cereals**	>5g/100g of sugar
-cereal bars¥		
6.	**Boiled and baked potatoes**	Boiled and baked potatoes
7.	**Fried and roasted potatoes**	Chips, waffles and potatoes shapes
Roasted potatoes		
8.	**Rice and pasta**	Pasta - boiled & tinned
Rice - boiled, fried, jollof, rice and peas™		
9.	**Chicken and turkey**	Chicken and turkey - roasted in batter or breadcrumbs or fried
Chicken and turkey - casseroles, curries, African/Caribbean soup™		
10.	**Red meat**	Beef, pork, lamb and goat - roast meats
Beef burgers		
Beef, pork, lamb and goat - casseroles, curries, African/Caribbean soup™		
11.	**Offal**	Liver, kidney and faggots
12.	**Processed meat**	Bacon & gammon
Ham & processed cold meats		
Sausages		
Meat pies, sausage rolls and patties		
Including McDonalds/Burger King¥		
13.	**Fish**	Fish in batter or breadcrumbs
Oily fish - fresh and tinned		
Other white fish		
14.	**Quiche and pizza**	Quiche and savoury flans
Pizza		
15.	**Vegetarian dishes/food**	Vegetarian burgers, sausages and nuggets
16.	**Eggs**	Eggs
17.	**Yam, cassava, plantain**	Yam, cassava, fufu, kenkey, green banana and plantain*
18.	**Vegetables**	Tinned vegetables
Carrots		
Salad		
Peas and green beans		
Tomatoes		
Cabbage spring greens, spinach, kale and brussels sprouts		
Broccoli, cauliflower, courgettes and marrow		
Sweetcorn and mixed veg		
19.	**Root vegetables**	Parsnip, turnip, swede and sweet potato
20.	**Beans and pulses**	Baked beans
Other beans, lentils and pulses: e.g chickpeas, black eyed, gunga™		
21.	**Cooked and tinned fruit**	Tinned fruit
Cooked/stewed fruit

22. Fresh fruit	
Bananas	
Oranges, satsumas and grapefruit	
Plums, cherries and grapes	
strawberries, raspberries, mango, kiwi, pineapple and papaya	
peaches, nectarines and melon	
23. Dried fruit	
24. Nuts	
25. Cheese and cottage cheese	
Cottage cheese	
26. Soup	
Soup - fresh, canned, packet	
African/Caribbean vegetable soups eg. Okra, aubergine, tomatoes, spinach*	
African/Caribbean groundnut/peanut soups*	
27. Sauces and salad dressing	
Tomato pasta sauce	
Sauces and salad dressings	
28. Yoghurt	
29. Desserts and puddings	
Ice-cream	
Other puddings eg. Rice and semolina	
Ice-lollies	
Custard and sweet white sauce	
30. Cakes and biscuits	
Chocolate and digestive biscuits	
Other biscuits	
31. Confectionary	
Sweets	
32. Spreads	
Peanut butter	
Butter and margarine	
33. Sweet spreads	
34. Hot drinks	
35. Milky drinks	
36. Low sugar soft drinks	
Low calorie/diet fizzy drinks	
37. High sugar soft drinks	
Ribena, high juice blackcurrant squash	
Squash	
Fizzy drinks	
38. Fruit juice	
39. Water	

*Food items extended from the original SWS questionnaire, *additional food items included which were culturally appropriate for the UPBEAT cohort *additional items consumed more than once a week which were not included in the main FFQ and were included with the factor analysis due to frequency of consumption in the whole cohort.
Supplementary Table 2: Factor loadings (≥±0.1) of items in the three dietary patterns identified

	Factor 1	Factor 2	Factor 3
1. White bread	-0.207	0.3813	-0.1675
2. Brown bread	0.3278	0.3782	-0.1776
3. Crisps and savoury snacks	0.11	0.2178	-0.1422
4. Low sugar cereals	0.264	-0.1016	-0.1776
5. Medium & high sugar cereals	-0.2023	0.2123	0.1104
6. Boiled and baked potatoes	0.352	0.2178	-0.1422
7. Fried and roasted potatoes	0.5194	0.1203	
8. Rice and pasta	0.271	0.348	
9. Chicken and turkey	0.217	0.2482	0.4132
10. Red meat	0.2351	0.2457	0.4761
11. Offal		0.2915	
12. Processed meat		0.4992	
13. Fish	0.4234		0.3178
14. Quiche and Pizza	0.146	0.3099	
15. Vegetarian dishes/food	0.1706		
16. Eggs	0.1864	0.1312	0.1219
17. Yam, cassava, plantain			0.5508
18. Vegetables	0.6854		0.1698
19. Root vegetables	0.6555		
20. Beans and pulses	0.375	0.1225	
21. Cooked and tinned fruit	0.2346	0.1656	0.16
22. Fresh fruit	0.2803		0.1188
23. Dried fruit	0.2572		
24. Nuts	0.2321		0.1005
25. Cheese and cottage cheese	0.1859	0.1494	-0.2553
26. Soup	0.1381		0.4044
27. Sauces and salad dressing	0.3233	0.1161	
28. Yoghurt	0.2568		-0.2256
29. Desserts and puddings	0.4421		0.1775
30. Cakes and biscuits	0.4484		0.1066
31. Confectionary	-0.1073	0.5544	
32. Spreads	0.2335	0.3233	-0.2722
33. Sweet spreads	0.2096	0.1746	
34. Hot drinks			
35. Milky drinks		-0.1132	
36. Low sugar soft drinks	0.2842		-0.2094
37. High sugar soft drinks	0.2426		
38. Fruit juice	0.1462	0.1337	
39. Water	-0.1578	0.2546	
Supplementary Table 3: Association between offspring dietary patterns at 3-years of age and maternal social and demographic factors (n=482)

	Healthy pattern Coefficient/ Odds ratio (95% CI)	Processed and Snacking pattern Coefficient/ Odds ratio (95% CI)	African and Caribbean pattern Coefficient/ Odds ratio (95% CI)
Maternal BMI (kg/m²)	0.19 (-0.30 to 0.68) p=0.44	0.02 (-0.42 to 0.47) p=0.91	0.30 (-0.18 to 0.78) p=0.23
Years in full time education (years)	0.41 (0.12 to 0.70) p=0.005	-0.56 (-0.82 to -0.30) p<0.001	-0.17 (-0.46 to 0.10) p=0.22
Maternal age (years)	0.63 (0.09 to 1.17) p=0.02	-0.63 (-1.12 to -0.14) p=0.012	-0.19 (-0.72 to 0.34) p=0.48
White vs black a	1.11 (0.86 to 1.43) p=0.41	1.46 (1.14 to 1.86) p=0.002	0.13 (0.09 to 0.21) p<0.001
IMD Quintile	-0.1 (-0.22 to 0.01) P=0.07	-0.01 (-0.12 to 0.09) P=0.79	0.23 (0.11 to 0.35) p<0.001

*Odds ratio; BMI, maternal age and years in full time education recorded at 15-18 weeks gestation. IMD quintiles are calculated for the region of residence, by fifths of the population. UK wide-scores were developed by reconciling Scottish data to English norms. Children were excluded if they were born ≤ 34 weeks gestation or suffering from major ill health.
Supplementary table 4: UPBEAT 3-year follow-up: Descriptive statistics for the whole sample and stratified by gender for the subscales of the Children’s Eating Behaviour Questionnaire (CEBQ)

	All (n=507)	Female (n=259)	Male (n=248)
Mean (SD)			
Food responsiveness	2.12 (0.84)	2.12 (0.85)	2.12 (0.82)
Emotional overeating	1.41 (1.41)	1.38 (0.47)	1.43 (0.52)
Emotional undereating	2.68 (0.96)	2.62 (0.93)	2.73 (0.98)
Slowness in eating	3.13 (0.86)	3.14 (0.87)	3.13 (0.85)
Enjoyment of food	3.57 (0.90)	3.60 (0.89)	3.53 (0.91)
Desire to drink	2.79 (1.20)	2.73 (1.17)	2.85 (1.24)
Food fussiness	2.91 (0.94)	2.84 (0.95)	2.99 (0.94)
Satiety responsiveness	3.12 (0.75)	3.13 (0.79)	3.10 (0.71)

Abbreviations: SD: standard deviation

Supplementary table 5: UPBEAT 3-year follow up: Univariate analysis of child eating behaviour at 3 years of age stratified by mode of early feeding in offspring born to obese women (n=271)

	Breastfeeding n=140	Formula feeding n=111	Mixed feeding n=20	p-value
Mean (SD)				
Food responsiveness	2.18 (0.84)	2.04 (0.76)	2.12 (0.86)	0.39
Emotional overeating	1.44 (0.54)	1.42 (0.47)	1.3 (0.35)	0.53
Emotional undereating	2.78 (0.93)	2.63 (1.04)	2.86 (0.81)	0.39
Slowness in eating	3.00 (0.86)	3.14 (0.92)	3.19 (0.83)	0.26
Enjoyment of food	3.65 (0.84)	3.59 (0.86)	3.63 (0.90)	0.82
Desire to drink	2.62 (1.10)	2.70 (1.27)	2.2 (1.13)	0.22
Food fussiness	2.96 (0.90)	2.92 (1.06)	2.88 (0.89)	0.91
Satiety responsiveness	3.08 (0.70)	3.11 (0.77)	3.26 (0.66)	0.60
Supplementary Figure 1: Radar graphs with factor loadings ≥ ±0.22 for each identified dietary pattern
Supplementary Figure 2: Associations between measures of the CEBQ and childhood obesity at 3-years of age.