LETTER TO THE EDITOR

Expected reduction in the number of births due to the COVID-19 pandemic and proposal for countermeasures

Jun Takeda¹, Masao Nakabayashi²

¹Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan,
²Imperial Gift Foundation, Aiiku Maternal and Child Health Center, Tokyo, Japan

To the Editor:

In recent years, Japan has faced a rapidly and continuously declining birth rate similar to or even worse than those of other developed countries. The global COVID-19 pandemic in 2020 has further exacerbated this. Our purpose for writing this letter is to raise awareness on the relationship between the COVID-19 pandemic and declining birth rate in Japan.

The COVID-19 pandemic in Japan noticeably worsened at the end of March 2020, and with the government’s declaration of a state of emergency, people voluntarily refrained from going outside unless urgently needed until June. If women became pregnant during this period, their estimated due dates would be in the first three months of 2021. Thus, we investigated the number of delivery appointments for these three months.

The number of births in 2019 was 865,239, which amounts to a 5.8% decrease compared to the year before.¹ If this decreasing trend continues this year, then the number of delivery appointments at delivery facilities should decrease by about 5%. However, in reality, the decrease is even greater (Figure). The difference of approximately 10–25% is not the result of a spontaneous decrease in the number of births, but likely due to another factor. Part of this difference might be explained by the temporary postponing of assisted reproductive technology in view of the statement set forth by the Japan Society for Reproductive Medicine (April 1, 2020).² However, the entire difference cannot be solely pinned on this.

We propose the following three measures. First, a national survey of birth appointments should be conducted. Second, trends of decreasing birth appointments should be closely and continuously monitored. Lastly, the public should be provided with accurate information regarding the relationship between maternal and neonatal COVID-19 infection.

For the first measure, the use of data limited to tertiary hospitals and urban areas paints the picture that the COVID-19 situation is worse compared to rural areas. Thus, data from rural areas and local clinics should also be examined to determine whether similar trends are observed.

For the second measure, the postponement of assisted reproductive technology was temporary and has now returned to normal after another announcement from
the Japan Society for Reproductive Medicine. Yet, the COVID-19 situation has only slightly improved with the government’s declaration of a state of emergency. Thus, it will be important to monitor how long the trend will continue and whether it will recover. If the trend to refrain from becoming pregnant persists, this could lead to a further decline in birth rate, although it could also potentially lead to a baby boom, similar to what was observed after World War II and the year of Hinoeuma in 1966 (zodiac superstitions suggesting it was bad to be born that year). However, a baby boom would occur only if the COVID-19 situation is resolved with the development of a vaccine or effective medication. In either case, measures should be planned and led at the society level.

For the last measure, if the trend to avoid pregnancy continues, obstetricians should make efforts to spread accurate information about the relationship between COVID-19 and pregnancy. Although COVID-19 is associated with a high prevalence of preeclampsia, the severity during pregnancy is less than that observed with severe acute respiratory syndrome-related coronavirus (SARS), Middle East respiratory syndrome-related coronavirus (MERS), and influenza. Moreover, women and younger patients have lower rates of severe disease than men and older patients. Thus, excessive anxiety can potentially be avoided by providing accurate information.

References

1. Summary of Vital Statistics, Ministry of Health, Labour and Welfare. URL: https://www.mhlw.go.jp/english/database/db-hw/populate/dl/E01.pdf. Accessed: 22nd Oct, 2020.
2. Statement from the Japan Society for Reproductive Medicine for the new coronavirus infection (COVID-19) (April 1, 2020 edn) (Title translated by the author). URL: http://www.jsrm.or.jp/announce/187.pdf. Accessed: 23rd Oct, 2020.
3. Notification from the Japan Society for Reproductive Medicine for the new coronavirus infection (COVID-19) (May 18, 2020 edn) (Title translated by the author). URL: http://www.jsrm.or.jp/announce/195.pdf. Accessed: 23rd Oct, 2020.
4. Ahlberg M, Neovius M, Saltvedt S, et al. Association of SARS-CoV-2 Test Status and Pregnancy Outcomes. JAMA. 2020 Sep 23;e2019124. doi:10.1001/jama.2020.19124. Online ahead of print.
5. Chen L, Li Q, Zheng D, et al. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. N Engl J Med. 2020 Jun 18;382(25):e100. doi: 10.1056/NEJMc2002226. Epub 2020 Apr 17.
6. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. doi:10.1056/NEJMo2002032.