TITLE:
Stoichiometric analysis of oligomerization of membrane proteins using coiled-coil labeling and in-cell spectroscopy

AUTHOR(S):
Kawano, Kenichi

CITATION:
Kawano, Kenichi. Stoichiometric analysis of oligomerization of membrane proteins using coiled-coil labeling and in-cell spectroscopy. 京都大学, 2014, 博士(薬学)

ISSUE DATE:
2014-03-24

URL:
https://doi.org/10.14989/doctor.k18208

RIGHT:
学位規則第9条第2項により要約公開; 許諾条件により要約は2015-03-23に公開; 許諾条件により要旨は2014-06-15に公開
京都大学 博士（薬学） 氏名 河野 健一

論文題目 Stoichiometric analysis of oligomerization of membrane proteins using coiled-coil labeling and in-cell spectroscopy
（新規小分子ラベル法とin-cell 蛍光分光法を用いた膜タンパク質の会合状態の定量的解析）

（論文内容の要旨）
近年、膜タンパク質の機能の構造変化だけでなく、会合状態によっても調節されることが示唆されており、会合状態を明らかにすることは重要課題となっている。しかしながら、既存手法では標的膜タンパク質に匹敵する大きさの蛍光・発光タンパク質の融合体を用いて、定量性に欠けていた。本研究では、当研究室で開発した小分子蛍光コイルドコイルラベル法を用いて、生細胞膜上に膜タンパク質を特異的に蛍光標識し、蛍光共鳴エネルギー移動（FRET）を用いて会合状態の定量的解析法を確立するとともに、現在会合状態に関して論争のあるβ2アドレナリン受容体（β2AR）や、安定な四量体と考えられているA型インフルエンザウイルスM2プロトンチャネルの解析を試みた。

第一章 生細胞膜中における膜タンパク質の会合状態の定量的解析法の確立
単量体（グリコフォリンA変異体）、二量体（代謝型グルタミン酸受容体）、四量体（M2タンパク質）の3つのスタンダード膜タンパク質を用い、各膜タンパク質のN末端にE3タグ（EIAALEK）を遺伝子導入し、生細胞に発現した。FRET donor-acceptorペア（Alexa Fluor 568-647）を用い、各色素で標識したK4プローブ（KIAALKE）で膜タンパク質を共染色した。スペクトル検出器を備えた共焦点顕微鏡で観察して、得られた細胞膜部分のスペクトルデータから、見かけ上のFRET効率であるE_{app}を算出した。E_{app}のdonorモル分率（X_D）と会合状態の定量的解析の評価を行ったところ、各理論曲線と対応する結果が得られたことから、この手法を用いて膜タンパク質の会合状態を正しく解析可能なことが明らかになった。

第二章 β2アドレナリン受容体の会合状態
β2ARは、Gタンパク質共役型受容体の典型例であり、その会合状態については研究グループ間で論争が続いている。本研究では、E3タグが付いたβ2ARが正しくフォールディングし、なおかつ野生型と同じcAMP応答性を有していることを最初に確認して、2種類の細胞株でβ2ARの会合状態について調べた。チャイニーズハムスター卵巣細胞で会合状態を解析したところ、様々な条件下（温度やレガド刺激、発現方法）において、全くFRETシグナルが検出されなかった。また、ヒト胎児腎細胞でもほとんどの条件下においてFRETシグナルが検出されなかったが、イソプロテレノール（β2ARのアゴニスト）
で刺激した時にのみ、細胞膜上でわずかなE_{app}の上昇が見られた。しかしながら、多量体形成(E_{app})とシグナル伝達(cAMP応答)の経時的変化を調べた実験では、多量体形成(10分以降)よりもシグナル伝達(5分以内)の方が早く起きたことから、$\beta_2\text{AR}$は定常的にホモオリゴマーを形成しておらずシグナル伝達に多量体形成は必要ではないことが分かった。

第三章　A型インフルエンザウイルスM2プロトンチャネルの会合状態

第一節　野生型M2プロトンチャネルの会合状態

M2は既存モデルで安定な四量体を形成すると提唱されているが、本研究の解析結果では、pHに応じて会合状態が可逆的に変化して二量体(pH 6.0)と四量体(pH 4.9)を取り得ることが明らかになった。pH感受性色素SNARF-4Fを細胞内にローディングし、細胞外液を酸性溶液に交換してM2のプロトンチャネル活性を調べた結果、二量体・四量体共にチャネル活性を有することが明らかになった。2種類のコレステロール除去剤(MβCD、mevastatin)を作用させたところ、どちらでも二量体のチャネル活性が顕著に低下したのに対して四量体では変化が見られなかったことから、二量体と四量体では異なる活性メカニズムを有しており、コレステロールは二量体の機能に必要不可欠であると考えられた。最後に、抗ウイルス薬アマンタジン塩酸塩(Am)の影響を調べたところ、四量体形成が阻害されて不活性型の二量体でしか存在できなくなった。以上の結果により、M2チャネルの機能的最小単位は二量体であることが示唆された。

第二節　アマンタジン耐性変異型M2(S31N)プロトンチャネルの会合状態

2003年以降、世界規模で急増したAm耐性株のほとんどがS31N変異体であった。S31N変異体の会合状態を解析した結果、pHに拘らず常時二量体であった。31番目のアミノ酸変異が会合状態に及ぼす影響について調べたところ、Asnとほぼ同じ長さの側鎖をもつS31Lは常時二量体であったのに対して、Asnと異なる成長の側鎖をもつS31AとS31QはpH 4.9で四量体を形成した。このことから、定常的な四量体形成には31番目のアミノ酸の長さが重要であると考えられた。S31Nの会合状態とチャネル活性はAmの影響を受けなかったことから、Am耐性と符合した。

膜タンパク質のもつ本質的な働きを明らかにするためには、本来あるべき生体膜環境下で調べることが非常に重要であるが、これまででは定量的解析手法の確立が困難であった。本研究では、新規小分子ラベル法とin-cell 蛍光分光法を組み合わせて、生細胞膜中における膜タンパク質の会合状態を定量的に解析することに成功した。さらに、本手法を用いて、長年論争の続いた$\beta_2\text{AR}$の会合状態の真相を究明し、M2チャネルの機能的最小単位やS31N変異体に関する新たな知見を得ることが出来た。
生細胞膜中での膜タンパク質の会合状態を定量的に解析できる簡便な手法はこれまでなかった。申請者は、コイルドコイル蛍光ラベル法とin-cell蛍光分光法を組み合わせることによって、この問題を解決した。すなわち、FRETのドナーとアクセプターになる2種の蛍光色素で目的タンパク質をラベルし、細胞膜部分の蛍光スペクトルを取得し、アクセプターの増感蛍光から得られる見かけのFRET効率を理論値と比較することにより会合状態を推定するものである。まず、先行研究にて確からしい会合状態が明らかとなっている標準膜タンパク質を用いて、本手法の妥当性を検証した。

次にこれまで会合状態に関して議論の多かったβ2アドレナリン受容体について検討し、本受容体は基本的にモノマーでシグナリングを行うことを示した。さらにA型インフルエンザM2タンパク質について会合状態を調べたところ、常時テトラマーで存在するという従来説とは異なり、pH5.5以下ではダイマーとして存在すること、ダイマーもコレステロール依存的にプロトンチャネル活性を示すという新知見を得た。抗インフルエンザ薬アマンタジンはダイマーに結合して活性を喪失させ、酸性におけるテトラマー化を阻害することを見いだした。

アマンタジン耐性株S31N変異体について同様の検討を行ったところ、本変異体はpHやアマンタジンの有無に関わらず、常時ダイマーとして存在し、チャネル活性を示すことを示した。以上の研究成果は、生命科学の発展や創薬に大いに貢献するものである。

要旨公表可能日：2014年6月15日以降