The modification of dry season cropping pattern with the maximum net income possibility in Lam Pao operation and maintenance project, Kalasin province

S Luangcharoenlarp\(^1\) and A Changjan\(^1\)

\(^1\)Department of Environmental Technology for Agriculture, Faculty of Science and Technology, Pathumwan Institute of Technology, 833 Rama 1 Road, Wangmai, Pathumwan, Bangkok 10330, Thailand.
Email: stc257@gmail.com

Abstract. This research aims to find the solution for the dry season irrigation problem in Lam Pao operation and maintenance project, Kalasin province. The modification of dry season cropping pattern was a process when the irrigation water was shortage. The long-term data records from 1987 to 2020, a total of 33 years, the maximum cultivated area was in 2020. The total area of 300,353 rai were 295,304 rai of dry season rice, 97 rai of field crops, 100 rai of vegetables, 1,496 rai of fish ponds and 3,356 rai of shrimp ponds. The minimum cultivated area was in 1994. The total area of of 3,419 rai were 209 rai of dry season rice, 2,552 rai of field crops, 488 rai of vegetables. 35 rai of fishponds and 135 rai of shrimp ponds. The dry season area in 2020, 10 crop varieties, were glutinous rice, rice, sweet corn, watermelon seeds, seed, cantaloupe seeds, tomato seeds, asparagus, fishpond and shrimp pond. The crop with maximum net income was cantaloupe seeds, 446,000 baht/rai of net profit. The other crops with lower net income in descending order were tomato seeds 363,600 baht/rai, zucchini seeds 76,450 baht/rai, shrimp pond 49,000 baht/rai, watermelon seeds 18,500 baht/rai, asparagus 16,000 baht/rai, fishpond 12,000 baht/rai, glutinous rice 4,904 baht/rai, rice 1,514 baht/rai and sweet corn 1,200 baht/rai. However, the modification of dry season cropping pattern concerned not only the maximum net income but also the farming skill, market demand and farmer lifestyle.

Keywords: Cropping Pattern, Lam Pao operation and maintenance project, Dry season, Maximize net income

1. Introduction

Since Lam Pao Reservoir had been increased its capacity in 2010, [1], the dry season area was increased from 180,000 rai to 236,500 rai. The water management planning for Lam Pao in dry season was prepared following the water availability at the end of wet season in November. The planning was done by using the Reservoir Operation Study which was developed by RID. The application proceed in Microsoft Excel which was usable by RID staff. The input data were crop water requirement, effective rainfall, reservoir inflow and reservoir water balance. The result was the target dry season area for the water availability which was in the dry season period from the end of wet season in November to May. The crop plan activity was done by Lam Pao staff and farmers in cooperation. [2,3]

Some year, Lam Pao reservoir had limited water availability due to the drought period occurred in rainy season. The modification of dry season cropping pattern had been used. [4] The process was simple and save cost rather than e.g., building reservoir [5], irrigation system improvement or building pumping...
station. The guideline was for the appropriate reservoir water management and for the maximum benefit. It was corresponded to reservoir inflow and downstream water requirements as well as the reduction of risk for water shortage. Therefore, it was necessary to study the modification of dry season cropping pattern. The study was for the maximum benefit to farmers by the maximum return per rai of each crop in dry season. It would be the guideline for water management in Lam Pao operation and maintenance project, Kalasin province and response to Thailand economic, social and environmental. Decision making should be planned for each activity [3] so that the amount of water allocation is appropriate and balanced, and also in line with the economic, social and environmental conditions of Thailand. As from the above reasons, it is necessary to study the relationship between the water storage and the cultivated area in the dry season in the Lam Pao operation and maintenance project, Kalasin province, in order to plan the dry season crop and response to the economic and social needs of farmers with the least impact on the environmental structure.

2. Research Methodology

2.1. In-depth interviews: The officers responsible for water management of the Lam Pao operation and maintenance project are the Project Director and Head of Water Management and Irrigation Improvement. The interview items are the general condition, cropping pattern, water delivery in rainy and dry seasons, agricultural farming and project problems.

2.2. Collecting data from the Lam Pao operation and maintenance project: The long-term data records from 1987 to 2020, a total of 33 years, are the amount of water in the Lam Pao reservoir, water delivery in the dry season and planted area in the dry season.

2.3. Study the agriculture data in dry season 2020: The data acquired from the sampling of farmer and was interviewed by Lam Pao staff. The data were type of crop, yield per rai, cost of production and sale price. The calculation result was net income per rai.

2.4. Compare and sort the type of dry season crop according to the net income.

2.5. Suggest the appropriate dry season cropping pattern which could maximize the net income to farmer.

3. Results

Cropping pattern of Lam Pao operation and maintenance project [4] is shown in Figure 1. The wet season is from June to November and dry season is from December to May. Including in the cropping pattern is rice, field-vegetable crops, fish farming and shrimp farming. Dry season area is shown in Tab.1. The maximum area was in 2020, 300,353 rai. The minimum area was in 1994, 3,419 rai.

![Figure 1. Cropping Pattern of Lam Pao Operation and Maintenance Project](image_url)
By using the Multiple Regression Analysis, it was found that the factor of the amount of water delivery in the dry season and the factor of the dry season area had a statistically significant change in the water storage. The level of confidence of 95% (Level of Confident) indicates that the Lam Pao operation and maintenance project should consider the effective water management and farmland management in the dry season. As a result, farmers in irrigated areas will have more incomes.

Table 1. Agriculture in dry season area in Lam Pao operation and maintenance project between 1987-2020

Year	Rice	Field crops	Vegetable crops	Fish farming	Shrimp farming	Sum
1988	15,827	22,726	5,097	2,538	662	46,850
1989	43,497	34,589	3,668	2,228	55	84,531
1990	108,007	29,513	4,138	1,988	106	143,752
1991	91,735	25,356	3,668	2,047	55	123,042
1992	113,940	20,199	3,439	2,047	55	138,659
1993	132,795	17,083	2,557	1,836	107	154,378
1994	209	2,552	488	35	135	3,419
1995	65,597	14,278	2,525	2,466	209	85,075
1996	107,194	29,513	4,138	1,988	106	143,752
1997	108,666	8,922	2,177	2,392	2,336	124,493
1998	2,055	2,863	1,284	1,576	8,353	
2000	157,543	6,277	3,900	2,704	1,954	172,378
2001	178,736	6,277	1,750	2,704	1,877	191,254
2002	160,746	8,700	2,051	2,906	2,508	176,911
2003	201,330	6,038	1,524	2,587	3,887	215,366
2004	216,299	5,209	1,613	2,252	5,198	230,571
2005	224,826	5,686	1,521	2,201	5,474	239,708
2006	227,228	7,056	2,128	2,383	2,088	173,010
2007	235,978	1,545	937	2,104	5,749	246,048
2008	251,911	750	742	2,619	5,562	260,784
2009	252,222	1,401	845	1,712	5,483	261,663
2010	262,541	1,349	725	1,642	5,620	271,877
2011	270,543	1,062	509	2,138	5,361	279,613
2012	266,186	425	343	2,069	5,369	274,392
2013	0	0	0	0	0	
2014	278,014	457	53	1,627	3,752	283,903
2015	271,207	169	160	1,603	2,834	275,973
2016	264,517	400	445	1,557	2,916	269,835
2017	263,378	450	646	1,577	2,922	268,973
2018	281,532	604	188	1,518	3,136	286,978
2019	270,500	100	262	1,481	3,217	275,560
2020	295,304	97	100	1,496	3,356	300,353

The detail data of Lam Pao operation and maintenance project were yield, crop input and price in dry season 2020 [6] as shown in Table 2. Total 10 crops were glutinous rice, rice, sweet corn, watermelon seeds, seed, cantaloupe seeds, tomato seeds, asparagus, fish pond and shrimp pond. The maximum net income was from cantaloupe seeds which the revenue was 450,000 baht/rai. The secondary revenue was from tomato seeds, 444,000 baht/rai. The minimum revenue was from sweet corn, 2,400 baht/rai.
Table 2. Cost and profit from agriculture (Dry season 2019/2020)

Types of plants	Average yield (kg/rai)	Selling price (baht/kg)	Revenue (baht/rai)	Cost/Rai (baht)	Net Profit (baht/rai)
Glutinous rice	725	12	8,454	3,550	4,904
Rice	633	8	5,064	3,550	1,514
Sweet corn	120	20	2,400	1,200	1,200
Watermelon seeds	15	1,500	22,500	4,000	18,500
Zucchini seeds	80	1,000	80,000	3,550	76,450
Cantaloupe seeds	25	18,000	450,000	4,000	446,000
Tomato seeds	37	12,000	444,000	80,400	363,600
Asparagus	600	35	21,000	5,000	16,000
Fish pond	500	50	25,000	13,000	12,000
Shrimp pond	300	230	69,000	20,000	49,000

As from revenue and cost of production, the calculation result was the net profit. The net profit was from cantaloupe seeds which was 446,000 (baht/rai). The other crops with lower net income in descending order were tomato seeds 363,600 baht/rai, zucchini seeds 76,450 baht/rai, shrimp pond 49,000 baht/rai, watermelon seeds 18,500 baht/rai, asparagus 16,000 baht/rai, fish pond 12,000 baht/rai, glutinous rice 4,904 baht/rai, rice 1,514 baht/rai and sweet corn 1,200 baht/rai.

4. Discussion & Conclusion

The study result showed that the modification of dry season cropping pattern was necessary to solve the problem of dry season water limited in Lam Pao operation and maintenance project. The farmer could have revenue not less than before, they should reduce the cropping area for sweet corn and rice. The cantaloupe seeds, tomato seeds, zucchini seeds, shrimp pond, watermelon seeds, asparagus and fishpond should be superseded respectively.

Factor supporting the modification of dry season cropping pattern, in addition to revenue, farmers are mainly familiar with traditional crop. They do not want to learn the new crop or the risk for not skilled especially for seed crop which needs intensive care [7], otherwise it will be easy to lost.

The reduction of water use according to the water availability in dry season, for the rice crop, dry and wet planting method may be alternatively used. Sufficiency economy may be adopted to promote the crop with little water use [8].

In addition to farming skill, other factors should be concerned i.e. the provision of market for production [9] and the crop for consumption [10]. Kalasin province in NE Thailand is in particular, the glutinous rice is for consumption prior to sale in market.

The further study of water use for each crop and comparison of net income per unit of irrigation water will be useful for better decision making. And if the water fee is applied in the future, the study result can be used for reference. Farmer may decide for such water fee.

References
[1] Sanchai K 2007 Lam Pao Dam and its development towards sustainability Kon Sang Kheun 228-260
[2] Witchukorn S and Supaluck S 2019 Water management: A case study of Lam Pao dam's project operation and maintenance Santapol College Academic Journal 5(1) 25-28
[3] Sukittiya B and Siwach S 2017 Guideline of water management development for sustainable agriculture system: A case study of Tha Khraserm sub-district, NamPhong district, Khon Kaen province Veridian E-Journal, Silpakorn University 10(2) 1771-1784
[4] Lam Pao operation and maintenance project 2021 Statistics of cropping, rainy season and dry season in the irrigated zone in 1987 to 2020
[5] Chalong K and Thanorm K 1988 A study of the use of water from the Lam Pao dam reservoir for maximum benefit *Annual academic conference Engineering 26th Kasetsart University* 4-8

[6] Lam Pao operation and maintenance project (2020) *Crop yield in dry season 2020* (Kalasin)

[7] Chantana V 2006 *Selection and production of vegetable seeds for own use* (Chiang Mai: Maejo University)

[8] Wande S 2010 *Promotion of learning process: Using alternative agricultural production methods to ensure career stability of poor farmers in Namnoa watershed areas Pechaboon province.* (Bangkok: Kasetsart University)

[9] Pramote Y 2017 *Plant modification instead of out-of-season rice to solve the drought problem sustainably in the Chao Phraya river basin* (Bangkok: Thailand National Defence College (TNDC))

[10] Suriya P, Uthai K, Leklai C and Sumran P 2013 The paradigm shift traditional agriculture to community: case study at Bo Noi Village, Muang District, Maha Sarakham Province. *Kaset Pravarun* 10(2) 183-192