Geometric quantization for proper moment maps: the Vergne conjecture
Xiaonan Ma, Weiping Zhang

To cite this version:
Xiaonan Ma, Weiping Zhang. Geometric quantization for proper moment maps: the Vergne conjecture. 2012. hal-00348681v2

HAL Id: hal-00348681
https://hal.science/hal-00348681v2
Preprint submitted on 19 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS: THE VERGNE CONJECTURE

XIAONAN MA AND WEIPING ZHANG

Abstract. We establish a geometric quantization formula for a Hamiltonian action of a compact Lie group acting on a noncompact symplectic manifold with proper moment map.

Contents

0. Introduction 1
 0.1. Notation 6
1. Transversal index and APS index 7
 1.1. Transversal index 7
 1.2. The Atiyah-Patodi-Singer (APS) index 8
 1.3. An invariance property of the APS index 10
 1.4. Transversal index and APS index 11
2. Quantization for proper moment maps: proof of Theorem 0.1 16
 3. A vanishing result for the APS index 20
 3.1. A vanishing theorem for the APS index 20
 3.2. Proof of Theorem 3.2 21
 3.3. Proof of Theorem 3.7 24
 3.4. Proof of Lemma 3.9 (I): uniform estimates on functions 28
 3.5. Proof of Lemma 3.9 (II): evaluation of I_A over zero(ψ^M_A) 33
 3.6. Proof of Lemma 3.9 (III): final step 36
4. Functoriality of quantization 37
 4.1. Proof of Theorem 0.4 37
 4.2. Restriction commutes with quantization 39
References 39

0. Introduction

The purpose of this paper is to establish a geometric quantization formula for a Hamiltonian action of a compact Lie group acting on a noncompact symplectic manifold with proper moment map. Our results provide a solution to a conjecture of Michèle Vergne in her ICM 2006 plenary lecture [25].

Let (M, ω) be a symplectic manifold with symplectic form ω, and $\dim M = n$. We assume that (M, ω) is prequantizable, that is, there exists a complex line bundle L (called a prequantum line bundle) carrying a Hermitian metric h^L and a Hermitian connection
\[\nabla^L \] such that the associated curvature \(R^L = (\nabla^L)^2 \) verifies
\[
\frac{\sqrt{-1}}{2\pi} R^L = \omega.
\]

Let \(TM \) be the tangent vector bundle of \(M \). Let \(J^M \) be an almost complex structure on \(TM \) such that
\[
g^{TM}(u, v) = \omega(u, J^M v), \quad u, v \in TM,
\]
defines a \(J^M \)-invariant Riemannian metric \(g^{TM} \) on \(TM \).

Let \(G \) be a compact connected Lie group. Let \(\mathfrak{g} \) denote the Lie algebra of \(G \) and \(\mathfrak{g}^* \) denote the dual of \(\mathfrak{g} \). Let \(G \) act on \(\mathfrak{g}^* \) by the coadjoint action.

We assume that \(G \) acts on the left on \(M \), that this action lifts to an action on \(L \), and that \(G \) preserves \(g^{TM}, J^M, h^L \) and \(\nabla^L \).

For \(K \in \mathfrak{g} \), let \(K^M \in \mathcal{C}(M, TM) \) denote the vector field generated by \(K \) over \(M \). The moment map \(\mu : M \to \mathfrak{g}^* \) is defined by the Kostant formula [8],
\[
2\pi \sqrt{-1} \mu(K) := \nabla^L_{K^M} - L_K, \quad K \in \mathfrak{g}.
\]

Then, for any \(K \in \mathfrak{g} \), we have
\[
d\mu(K) = i_{K^M} \omega.
\]

From now on, we make the following assumption.

Fundamental Assumption. The moment map \(\mu : M \to \mathfrak{g}^* \) is proper, i.e., for any compact subset \(B \subset \mathfrak{g}^* \), the subset \(\mu^{-1}(B) \subset M \) is compact.

Let \(T \) be a maximal torus of \(G \), let \(\mathfrak{t} \) be its Lie algebra and \(\mathfrak{t}^* \) the dual of \(\mathfrak{t} \). The integral lattice \(\Lambda \subset \mathfrak{t} \) is defined as the kernel of the exponential map \(\exp : \mathfrak{t} \to T \), and the real weight lattice \(\Lambda^* \subset \mathfrak{t}^* \) is defined by \(\Lambda^* := \text{Hom}(\Lambda, 2\pi \mathbb{Z}) \). We fix a positive Weyl chamber \(\mathfrak{t}_+^* \subset \mathfrak{t}^* \). Then the set of finite dimensional \(G \)-irreducible representations is parametrized by \(\Lambda^*_+ := \Lambda^* \cap \mathfrak{t}_+^* \).

Recall that \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{r} \), with \(\mathfrak{r} = [\mathfrak{t}, \mathfrak{g}] \), and so \(\mathfrak{g}^* = \mathfrak{t}^* \oplus \mathfrak{r}^* \). So we identify \(\Lambda^*_+ \) to a subset of \(\mathfrak{g}^* \). For \(\gamma \in \Lambda^*_+ \), we denote by \(V^G_\gamma \) the irreducible \(G \)-representation with highest weight \(\gamma \). The \(V^G_\gamma \), \(\gamma \in \Lambda^*_+ \), form a \(\mathbb{Z} \)-basis of the representation ring \(R(G) \). Let \(R[G] \) be the formal representation ring of \(G \). For \(W \in R[G] \), we denote by \(W_\gamma \in \mathbb{Z} \) the multiplicity of \(V^G_\gamma \) in \(W \).

Take \(\gamma \in \Lambda^*_+ \). If \(\gamma \) is a regular value of the moment map \(\mu \), then one can construct the Marsden-Weinstein symplectic reduction \((M_\gamma, \omega_\gamma)\), with \(M_\gamma = G \setminus \mu^{-1}(G \cdot \gamma) \) a compact orbifold (since \(\mu \) is proper). Moreover, the line bundle \(L \) (resp. the almost complex structure \(J^L \)) induces a prequantum line bundle \(L_\gamma \) (resp. an almost complex structure \(J_\gamma \)) over \((M_\gamma, \omega_\gamma)\). One can then construct the associated Spin\(^c\)-Dirac operator (twisted by \(L_\gamma \)), \(D^{L_\gamma^c} : \Omega^{0, \text{even}}(M_\gamma, L_\gamma) \to \Omega^{0, \text{odd}}(M_\gamma, L_\gamma) \) (cf. (1.5), Section 2) on \(M_\gamma \), of which the index is defined by
\[
Q(L_\gamma) = \text{Ind}\left(D^{L_\gamma^c}_+ \right) := \dim \ker\left(D^{L_\gamma^c}_+ \right) - \dim \coker\left(D^{L_\gamma^c}_+ \right) \in \mathbb{Z}.
\]
If $\gamma \in \Lambda^*_+\Gamma$ is not a regular value of μ, then by a perturbation argument (cf. [16], [17, §7.4]), one still gets a well-defined quantization number $Q(L_\gamma)$ extending the above definition.

We equip \mathfrak{g} with an Ad_G-invariant scalar product. We will identify \mathfrak{g} and \mathfrak{g}^* by this scalar product. Let $\pi : TM \to M$ denote the projection from TM to M. We identify T^*M with TM by the scalar product g^{TM}.

Set $\mathcal{H} = |\mu|^2$. Let $X^\mathcal{H} = -J^M(d\mathcal{H})$ be the Hamiltonian vector field associated with \mathcal{H}. Then (see (2.5))

$$X^\mathcal{H} = 2\mu^M,$$

where $\mu^M \in C^\infty(M, TM)$ is the vector field on M generated by $\mu : M \to \mathfrak{g}$, i.e., for any $x \in M$, $\mu^M(x) = (\mu(x))^M(x)$.

For $a \geq 0$, set $M_a := \mathcal{H}^{-1}([0, a]) = \{x \in M : \mathcal{H}(x) \leq a\}$. For any regular value $a > 0$ of \mathcal{H}, by (0.6), μ^M does not vanish on $\partial M_a = \mathcal{H}^{-1}(a)$, the boundary of the compact G-manifold M_a. According to Atiyah [1, §1, §3] and Paradan [17, §3] (cf. also Vergne [23]), the triple (M_a, μ^M, L) defines a transversally elliptic symbol

$$\sigma_{L,\mu}^{M_a} := \pi^* \left(\sqrt{-1}c(\cdot + \mu^M) \otimes \text{Id}_L \right) : \pi^* (\Lambda(T^{(0,1)}M_a) \otimes L) \to \pi^* (\Lambda(T^{(0,1)}M_a) \otimes L),$$

where $c(\cdot)$ is the Clifford action on $\Lambda(T^{(0,1)}M)$ (cf. (2.3)).

Let $\text{Ind}(\sigma_{L,\mu}^{M_a}) \in R[G]$ denote the corresponding transversal index in the sense of Atiyah [1, §1].

Theorem 0.1. a) For $\gamma \in \Lambda^*_+\Gamma$, there exists $a_\gamma \geq 0$ such that $\text{Ind}(\sigma_{L,\mu}^{M_a})_\gamma \in \mathbb{Z}$ does not depend on the regular value $a > a_\gamma$ of \mathcal{H}.

b) $\text{Ind}(\sigma_{L,\mu}^{M_a})$ does not depend on the regular value $a > 0$ of \mathcal{H}.

By Theorem 0.1, for $\gamma \in \Lambda^*_+\Gamma$, we can associate an integer $Q(L)_\gamma$, that is equal to $\text{Ind}(\sigma_{L,\mu}^{M_a})_\gamma$ for large enough regular value $a > 0$ of \mathcal{H}.

We can now state the main result of this paper.

Theorem 0.2. For $\gamma \in \Lambda^*_+\Gamma$, the following identity holds:

$$(0.7) \quad Q(L)_\gamma = Q(L_\gamma).$$

Remark 0.3. When M is compact, Theorem 0.2 is the Guillemin-Sternberg geometric quantization conjecture [7] which was first proved by Meinrenken [14] and Vergne [23] in the case where G is abelian, and by Meinrenken [15] and Meinrenken-Sjamaar [16] in the general case. We refer to [24] for a survey on the Guillemin-Sternberg geometric quantization conjecture.

If M is noncompact but the zero set of $X^\mathcal{H}$ is compact, then Theorem 0.1 is already contained in [18] and [25], while Theorem 0.2 was conjectured by Michèle Vergne in her ICM 2006 plenary lecture [25, §4.3]. Special cases of this conjecture, related to the discrete series of semi-simple Lie groups, have been proved by Paradan [18], [20].

Theorem 0.2 provides a solution to Michèle Vergne’s conjecture even when the zero set of $X^\mathcal{H}$ is noncompact.

1. The symbol $\sigma_{L,\mu}^{M_a}$ is the (semi-classical) symbol of Tian-Zhang’s [21], [22] deformed Dirac operator (2.11) in their approach to the Guillemin-Sternberg geometric quantization conjecture [7]. The associated symbol was used by Paradan [17], [18] in his approach to the same conjecture.

2. In view of Theorem 2.1, we can take $a_\gamma = \frac{c_\gamma}{4\pi}$ with c_γ being defined in (2.8).
Theorem 0.2 is a consequence of a more general result that we will now describe.

Let \((N, \omega^N, J^N)\) be a compact symplectic manifold with compatible almost complex structure \(J^N\). Let \((F, h^F, \nabla^F)\) be the prequantum line bundle over \(N\) carrying a Hermitian metric \(h^F\) and a Hermitian connection \(\nabla^F\) verifying \(\frac{i}{2\pi}(\nabla^F)^2 = \omega^N\). We assume that \(G\) acts on \(N, F\) as above. Let \(\eta : N \to g^*\) be the associated moment map.

Let \(D_+^F : \Omega^{0, \text{even}}(N, F) \to \Omega^{0, \text{odd}}(N, F)\) be the associated \(\text{Spin}^c\) Dirac operator on \(N\). Then as a virtual representation of \(G\), we have

\[
(0.8) \quad \text{Ind} \left(\sigma^N_{F, \eta} \right) = \text{Ind} \left(D_+^F \right) := \text{Ker} \left(D_+^F \right) - \text{Coker} \left(D_+^F \right) \in R(G).
\]

For \(\gamma \in \Lambda^*_+\), let \(Q \left(F \right)_{\gamma, \nu} \) be the multiplicity of the \(G\)-irreducible representation \((V^{G\gamma})^*\) in \(\text{Ind} \left(D_+^F \right) \in R(G)\).

Let \(L \otimes F\) be the prequantum line bundle over \(M \times N\) obtained by the tensor product of the natural lifts of \(L\) and \(F\) to \(M \times N\).

Theorem 0.4. For the induced action of \(G\) on \((M \times N, \omega \oplus \omega^N)\) and \(L \otimes F\), the following identity holds:

\[
(0.9) \quad Q \left(\left(L \otimes F \right)_{\gamma = 0} \right) = \sum_{\gamma \in \Lambda^*_+} Q(L)_\gamma \cdot Q \left(F \right)_{\gamma, \nu}.
\]

For \(\gamma \in \Lambda^*_+\), denote by \(\mathcal{O}_\gamma = G \cdot \gamma\) the orbit of the coadjoint action of \(G\) on \(g^*\). Let \(L^\gamma\) be the canonical prequantum holomorphic line bundle on \(\mathcal{O}_\gamma\), such that the associated moment map is the inclusion \(\mathcal{O}_\gamma \hookrightarrow g^*\). By the Borel-Weil-Bott theorem and the solution of the Guillemin-Sternberg geometric quantization conjecture for the compact manifold \(\mathcal{O}_{\nu_1} \times \mathcal{O}_{\nu_2}\), one has that \(\text{Hom}_G(V^G_{\nu_1}, V^G_{\nu_1} \otimes V^G_{\nu_2}) \neq 0\) if and only if \(\nu_3 \in G : \nu_1 + G : \nu_2\). In particular, one has \(|\nu_1| \leq |\nu_3| + |\nu_2|\). For \(\nu_1, \nu_2 \in \Lambda^*_+\), set

\[
(0.10) \quad C^\gamma_{\nu_1, \nu_2} = \dim \text{Hom}_G(V^G_{\nu_1}, V^G_{\nu_1} \otimes V^G_{\nu_2}).
\]

By taking \(N, F\) to be \(\mathcal{O}_\gamma, (L^\gamma)^*\), we recover Theorem 0.2 from Theorem 0.4 by using the Borel-Weil-Bott theorem.

By applying Theorems 0.2, 0.4 to \(M \times N \times \mathcal{O}_\gamma\), we get the following result which is trivial in the compact case.

Corollary 0.5. For any \(\gamma \in \Lambda^*_+\), the following identity holds:

\[
(0.11) \quad Q \left(L \otimes F \right)_\gamma = \sum_{\nu_1, \nu_2 \in \Lambda^*_+} C^\gamma_{\nu_1, \nu_2} Q \left(L \right)_{\nu_1} \cdot Q \left(F \right)_{\nu_2},
\]

where there are only finitely many non-vanishing terms in the right-hand side.

We now explain briefly the main ideas of the proof of Theorems 0.1 and 0.4.

The first observation is that in the case when \(\gamma = 0\), both Theorems 0.1 and 0.2 are relatively easy to prove. On the other hand, in the case when \(\gamma \neq 0\), one needs to establish the more general Theorem 0.4, in order to prove (0.7).

In fact, it is relatively easy to see that (cf. (4.1) and (4.2))

\[
(0.12) \quad Q \left(L \otimes F \right)_\gamma = Q \left((L \otimes F)_{\gamma = 0} \right).
\]
Thus Theorem 0.4 is a consequence of (0.12) and the following identity,

\[(0.13) \quad Q(L \otimes F)_{\gamma=0} = \sum_{\gamma \in \Lambda^*_1} Q(L)\gamma \cdot Q(F)_{\gamma,*}.\]

Assume that \(M\) is compact. Then (0.13) is trivial and this is why one only needs to prove (0.7) for \(\gamma = 0\), in order to establish (0.7).

However, if \(M\) is noncompact, although the geometric data on \(M \times N\) have product structure, and the associated moment map is \(\theta(x, y) = \mu(x) + \eta(y)\), the vector field \(\theta^{M\times N}\) on \(M \times N\) induced by \(\theta\) is not a sum of two vector fields lifted from \(M\) and \(N\) (cf. (3.7)). Thus one cannot compute directly \(Q(L \otimes F)_{\gamma=0}\) as the right hand side of (0.13).

To be more precise, let \(a > 0\) be a regular value of \(\mathcal{H}\) so that \(\mu^M\) does not vanish on \(\partial M_a\). By the multiplicativity of the transversal index,

\[(0.14) \quad \sum_{\gamma \in \Lambda^*_1} \text{Ind}(\sigma_{L^\theta,\mu}^{M_{a,b}}) \gamma \cdot Q(F)_{\gamma,*} = \text{Ind}(\sigma_{L^\theta,\mu}^{M \times N})_{\gamma=0}.\]

Let \(b > 0\) be a regular value of \(\mathcal{H}' = |\theta|^2\). Then \(\theta^{M \times N} \in T(M \times N)\) does not vanish on the boundary \(\partial(M \times N)_b\) of \((M \times N)_b = \{(x, y) \in M \times N, |\theta(x, y)|^2 \leq b\}\). By Theorem 0.1b), we have

\[(0.15) \quad Q(L \otimes F)_{\gamma=0} = \text{Ind}(\sigma_{L^\theta,\mu}^{(M \times N)_b})_{\gamma=0}.\]

We take \(b > 0\) large enough so that \(M_a \times N \subset (M \times N)_b\) and that \((\partial(M \times N)_b) \cap (\partial((M_a \times N))) = \emptyset\). Denote by \(\mathcal{M}_{a,b}\) the closure of \((M \times N)_b \setminus M_a \times N\). Then \(\mathcal{M}_{a,b}\) is a manifold with boundary \(\partial \mathcal{M}_{a,b} = (\partial(M \times N)_b) \cup (\partial(M_a \times N))\).

Let \(\Psi_{a,b} : \mathcal{M}_{a,b} \to g\) be a \(G\)-equivariant map such that \(\Psi_{a,b}|_{\partial(M_a \times N)} = \mu\), while \(\Psi_{a,b}|_{\partial(M \times N)_b} = \theta\). From the additivity of the transversal index, we get

\[(0.16) \quad \text{Ind}(\sigma_{L^\theta,\mu}^{\mathcal{M}_{a,b}})_{\gamma=0} = \text{Ind}(\sigma_{L^\theta,\mu}^{(M \times N)_b})_{\gamma=0} - \text{Ind}(\sigma_{L^\theta,\mu}^{M \times N})_{\gamma=0}.\]

We infer from (0.13)-(0.16) that Theorem 0.4 is equivalent to

\[(0.17) \quad \text{Ind}(\sigma_{L^\theta,\mu}^{\mathcal{M}_{a,b}})_{\gamma=0} = 0.\]

Let \(a_1 > 0\) be another large enough regular value of \(\mathcal{H}\). By the additivity and the homotopy invariance of the transversal index, we have,

\[(0.18) \quad \text{Ind}(\sigma_{L^\theta,\mu}^{\mathcal{M}_{a,b}})_{\gamma=0} - \text{Ind}(\sigma_{L^\theta,\mu}^{\mathcal{M}_{a_1,b}})_{\gamma=0} = \text{Ind}(\sigma_{L^\theta,\mu}^{M \times N})_{\gamma=0} - \text{Ind}(\sigma_{L^\theta,\mu}^{M \times N})_{\gamma=0}.\]

By (0.14), (0.18), and by taking \(N, F\) to be \(O_{\gamma}, (L^\gamma)^*\) for \(\gamma \in \Lambda^*_1\), we find that Theorem 0.1a) is a consequence of the vanishing result (0.17).

Note that in the situations considered in [18], [20], for \(a, b > 0\) large enough, one is able to find \(\Psi_{a,b} : \mathcal{M}_{a,b} \to g\) such that \(\Psi_{a,b}^{\mathcal{M}_{a,b}} \in T \mathcal{M}_{a,b}\) does not vanish on \(\mathcal{M}_{a,b}\). From this, (0.17) follows tautologically. However, there is no canonical way to construct \(\Psi_{a,b}\) such that \(\Psi_{a,b}^{\mathcal{M}_{a,b}} \in T \mathcal{M}_{a,b}\) does not vanish on \(\mathcal{M}_{a,b}\) in the general situation considered here.
Our proof of (0.17) consists of two steps. In a first step, we express the transversal index as an Atiyah-Patodi-Singer (APS) type index on corresponding manifolds with boundary. Then in a second step, we construct a specific deformation map $\Psi_{a,b}$, when $a, b > 0$ are large enough, so that we can apply the analytic localization techniques developed in [3], [21] and [22] to the current problem. This allows us to show that the APS type index corresponding to the left-hand side of (0.17) vanishes3.

This paper is organized as follows. In Section 1, we express the transversal index as an APS type index. In Section 2, we establish Theorem 0.1, by applying the identification of the transversal index to an APS index that was established in Section 1, as well as the analytic localization techniques developed in [3], [21] and [22]. In Section 3, we present our proof of (0.17). Finally, in Section 4, we provide details of the proofs of (0.12) and (0.14), thus completing the proof of Theorem 0.4. We explain also the compatibility of quantization and its restriction to a subgroup.

The results contained in this paper have been announced in [12] (cf. also [10, §4]).

0.1. Notation. In the whole paper, G is a compact connected Lie group with Lie algebra \mathfrak{g}. Let $\text{Ad}_G(g)$ denote the adjoint action of $g \in G$ on \mathfrak{g}. We equip \mathfrak{g} with an Ad_G-invariant scalar product, and we identify \mathfrak{g} and \mathfrak{g}^* by this scalar product. Let $V_1, \cdots, V_{\dim G}$ be an orthonormal basis of \mathfrak{g}.

If a Hilbert space H is a G-unitary representation space, by the Peter-Weyl theorem, one has the orthogonal decomposition of Hilbert spaces
\begin{equation}
H = \bigoplus_{\gamma \in \Lambda^*_+} H^\gamma, \quad \text{with } H^\gamma = \text{Hom}_G(V^G_\gamma, H) \otimes V^G_\gamma.
\end{equation}
We will call H^γ the γ-component of H. Moreover, if $W \subset H$ is a G-invariant linear subspace, for $\gamma \in \Lambda^*_+$, we denote by
\begin{equation}
W^\gamma = W \cap H^\gamma
\end{equation}
and call it the γ-component of W. If $D : \text{Dom}(D) \subset H \to H$ is a G-equivariant linear operator, where $\text{Dom}(D)$ is a dense G-invariant subspace of H, for $\gamma \in \Lambda^*_+$, we denote by $D(\gamma)$ the restriction of D to $\text{Dom}(D)^\gamma$ which is dense in H^γ.

If G acts on the left on a manifold M, for $K \in \mathfrak{g}$, we denote by $K^M(x) = \frac{\partial}{\partial t} e^{tK} x |_{t=0}$ the corresponding vector field on M.

For any $\Phi \in C^\infty(M, \mathfrak{g})$, we denote $\Phi_i, 1 \leq i \leq \dim G$, the smooth functions on M defined by
\begin{equation}
\Phi(x) = \sum_{i=1}^{\dim G} \Phi_i(x) V_i \quad \text{for } x \in M.
\end{equation}
Let Φ^M denote the vector field over M such that for any $x \in M$,
\begin{equation}
\Phi^M(x) = (\Phi(x))^M(x) = \sum_{i=1}^{\dim G} \Phi_i(x) V_i^M(x),
\end{equation}

3In fact, the corresponding vanishing result for the APS index, in the case of $N = \text{point}$ and $\eta = 0$, has already been proved in [22, Theorems 2.6, 4.3]
where \((\Phi(x))^M\) is the vector field over \(M\) generated by \(\Phi(x) \in g\).

Finally, when a subscript index appears two times in a formula, we sum up with this index unless other notification is given.

Acknowledgments. We would like to thank Professor Jean-Michel Bismut for many helpful discussions, as well as for kindly helping us to revise an earlier version of our manuscript. X. M. thanks Institut Universitaire de France for support. The work of W. Z. was partially supported by MOEC and NNSFC. Part of the paper was written while W. Z. was visiting the School of Mathematics of Fudan University during November and December of 2008. He would like to thank Professor Jiaxing Hong and other members of the School for hospitality. We are also indebted to George Marinescu for his critical comments. Last but not least, we would like to thank the referees of this paper for their critical reading and very helpful comments and suggestions.

1. **Transversal index and APS index**

In this section we express the transversal index as an Atiyah-Patodi-Singer\(^4\) type index which have been studied in [22] for \(\gamma = 0\) component.

This section is organized as follows. In Section 1.1, we recall the definition of the transversal index in the sense of Atiyah [1] for manifolds with boundary. In Section 1.2, we consider instead an index problem on a manifold with boundary for a Dirac operator with APS boundary conditions. In Section 1.3, we prove the corresponding Dirac operator on the boundary is invertible. This guarantees that the APS index of the Dirac operator is invariant under deformation. In Section 1.4, we show that the transversal index can be identified with the APS index using a result by Braverman [4].

We use the same notation as in the Introduction.

1.1. **Transversal index.** Let \(M\) be an even dimensional compact oriented Spin\(^c\)-manifold with non-empty boundary \(\partial M\), and \(\dim M = n\). In the following, the boundary \(\partial M\) carries the induced orientation. Let \(g^{TM}\) be a Riemannian metric on the tangent vector bundle \(\pi: TM \to M\). Let \(E\) be a complex vector bundle over \(M\).

We assume that the compact connected Lie group \(G\) acts isometrically on the left on \(M\), and that this action lifts to an action of \(G\) on the Spin\(^c\)-principal bundle of \(TM\) and on \(E\). Then the \(G\)-action also preserves \(\partial M\).

We identify \(TM\) and \(T^*M\) by the \(G\)-invariant metric \(g^{TM}\). Following [1, p. 7] (cf. [17, §3]), set

\[
T_G M = \{(x,v) \in T_x M : x \in M \text{ and } \langle v, K^M(x) \rangle = 0 \text{ for all } K \in g\}.
\]

Let \(S(TM) = S_+(TM) \oplus S_-(TM)\) be the vector bundle of spinors associated with the spin\(^c\)-structure on \(TM\) and \(g^{TM}\). For any \(V \in TM\), the Clifford action \(c(V)\) exchanges \(S_\pm(TM)\).

Let \(\Psi : M \to g\) be a \(G\)-equivariant smooth map. Assume that \(\Psi^M\) does not vanish on \(\partial M\), i.e., for any \(x \in \partial M\), \(\Psi^M(x) \neq 0\).

\(^4\)In the sequel, Atiyah-Patodi-Singer will be abbreviated to APS.
Let $\sigma^M_{E, \psi} \in \text{Hom}(\pi^*(S_+(TM) \otimes E), \pi^*(S_-(TM) \otimes E))$ be the symbol
\begin{equation}
\sigma^M_{E, \psi}(x, v) = \pi^* \left(\sqrt{-1}c(v + \Psi^M) \otimes \text{Id}_E \right)|_{(x, v)} \quad \text{for } x \in M, \ v \in T_xM.
\end{equation}

Since Ψ^M does not vanish on ∂M, the set $\{(x, v) \in T_G M : \sigma^M_{E, \psi}(x, v) \text{ is non-invertible}\}$ is a compact subset of $T_G \hat{M}$ (where $\hat{M} = M \setminus \partial M$ is the interior of M), so that $\sigma^M_{E, \psi}$ is a G-transversally elliptic symbol on $T_G \hat{M}$ in the sense of Atiyah [1, §1, §3] and Paradan [17, §3], [18, §3]. The associated transversal index can be written in the form
\begin{equation}
\text{Ind} \left(\sigma^M_{E, \psi} \right) = \bigoplus_{\gamma \in \Lambda^*_+} \text{Ind} \left(\sigma^M_{E, \psi} \right)_{\gamma} \cdot V^G_\gamma \in R[G],
\end{equation}
with each $\text{Ind} \left(\sigma^M_{E, \psi} \right)_{\gamma} \in \mathbb{Z}$. Moreover, $\text{Ind} \left(\sigma^M_{E, \psi} \right)$ only depends on the homotopy class of Ψ as long as Ψ^M does not vanish on ∂M, but not on g^{TM}. Note that the number of $\gamma \in \Lambda^*_+$ such that $\text{Ind}(\sigma^M_{E, \psi})_{\gamma} \neq 0$ could be infinite.

1.2. The Atiyah-Patodi-Singer (APS) index. We make the same assumptions and use the same notation as in Section 1.1.

Let h^E be a G-invariant Hermitian metric on E, ∇^E a G-invariant Hermitian connection on E with respect to h^E. Let $h^{S(TM)}$ be the G-invariant Hermitian metric on $S(TM)$ induced by g^{TM} and a G-invariant metric on the line bundle defining the spinc structure (cf. [9, Appendix D]). Let $h^{S(TM)\otimes E}$ be the metric on $S(TM) \otimes E$ induced by the metrics on $S(TM)$ and E.

Let $\nabla^{S(TM)}$ be the Clifford connection on $S(TM)$ induced by the Levi-Civita connection ∇^{TM} of g^{TM} and a G-invariant Hermitian connection on the line bundle defining the spinc structure (cf. [9, Appendix D]). Let $\nabla^{S(TM)\otimes E}$ be the Hermitian connection on $S(TM) \otimes E$ induced by $\nabla^{S(TM)}$ and ∇^E.

Let $dt_{M,S}$ denote the Riemannian volume form on (M, g^{TM}). For $s \in \mathcal{C}^\infty(M, S(TM) \otimes E)$, its L^2-norm $\|s\|_0$ is defined by
\begin{equation}
\|s\|_0^2 = \int_M |s(x)|^2 dt_{M,S}(x).
\end{equation}
Let (\cdot, \cdot) denote the Hermitian product on $\mathcal{C}^\infty(M, S(TM) \otimes E)$ corresponding to $\| \cdot \|_0^2$, and let $L^2(M, S(TM) \otimes E)$ be the space of L^2-sections of $S(TM) \otimes E$ on M.

Let D^E_M be the Spinc-Dirac operator defined by (cf. [9, Appendix D])
\begin{equation}
D^E_M = \sum_{i=1}^{n} c(e_i) \nabla^{S(TM)\otimes E}_{e_i} : \mathcal{C}^\infty(M, S(TM) \otimes E) \rightarrow \mathcal{C}^\infty(M, S(TM) \otimes E),
\end{equation}
where $\{e_i\}$ is an oriented orthonormal frame of TM.

Let $\varepsilon > 0$ be less than the injectivity radius of g^{TM}. We use the inward geodesic flow to identify a neighborhood of the boundary ∂M with the collar $\partial M \times [0, \varepsilon]$, and we identify $\partial M \times \{0\}$ to the boundary ∂M.

Let e_n be the inward unit normal vector field perpendicular to ∂M. Let e_1, \ldots, e_{n-1} be an oriented orthonormal frame of $T\partial M$ so that $e_1, \ldots, e_{n-1}, e_n$ is an oriented orthonormal frame of $TM|_{\partial M}$. By using parallel transport with respect to ∇^{TM} along the unit
speed geodesics perpendicular to ∂M, e_1, \ldots, e_n give rise to an oriented orthonormal frame of TM over $\partial M \times [0, \varepsilon]$.

The operator D^E_M induces a Dirac operator on ∂M, $D^E_{\partial M} : C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M}) \to C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M})$ defined by (cf. [6, p. 142])

\[(1.6) \quad D^E_{\partial M} = -\sum_{i=1}^{n-1} c(e_i) c(e_i) \nabla_{e_i}^{S(TM) \otimes E} + \frac{1}{2} \sum_{i=1}^{n-1} \pi_{ij},\]

where

\[(1.7) \quad \pi_{ij} = \langle \nabla_{e_i}^{TM} e_j, e_n \rangle|_{\partial M}, \quad 1 \leq i, j \leq n - 1,\]

is the second fundamental form of the isometric embedding $\nu_M : \partial M \hookrightarrow M$. Let $D^E_{\partial M, \pm}$ be the restrictions of $D^E_{\partial M}$ to $C^\infty(\partial M, (S_{\pm}(TM) \otimes E)|_{\partial M})$.

As in (1.4), we define the Riemannian volume form $dv_{\partial M}$ on ∂M, the Hermitian product $(\cdot, \cdot)_{\partial M}$ and the L^2-norm $\| \cdot \|_{\partial M, 0}$ on $C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M})$.

By [6, Lemma 2.2], $D^E_{\partial M}$ is a self-adjoint first order elliptic differential operator defined on ∂M. Moreover, the following identity holds on ∂M:

\[(1.8) \quad D^E_{\partial M, \pm} = c(e_n)^{-1} (-D^E_{\partial M, \mp}) c(e_n).\]

Since the G-action preserves ∂M, the restriction of Ψ^M to ∂M is a section of $T\partial M$, i.e.,

\[(1.9) \quad \Psi^M|_{\partial M} \in C^\infty(\partial M, T\partial M).\]

For $T \in \mathbb{R}$, set

\[(1.10) \quad D^E_{M,T} = D^E_M + \sqrt{-1} T c(\Psi^M), \quad D^E_{M,\pm,T} = D^E_{M,T}|_{C^\infty(M, S_{\pm}(TM) \otimes E)},\]

and

\[(1.11) \quad D^E_{\partial M,T} = D^E_{\partial M} - \sqrt{-1} T c(e_n) c(\Psi^M), \quad D^E_{\partial M,\pm,T} = D^E_{\partial M,T}|_{C^\infty(\partial M, (S_{\pm}(TM) \otimes E))}.\]

Then $D^E_{M,T}$ exchanges the spaces associated with $S_{\pm}(TM) \otimes E$, and by (1.9), $D^E_{\partial M,T}$ is self-adjoint and preserves $C^\infty(\partial M, (S_{\pm}(TM) \otimes E)|_{\partial M})$. Let Spec($D^E_{\partial M,\pm,T}$) be the spectrum of $D^E_{\partial M,\pm,T}$. For $\lambda \in \text{Spec}(D^E_{\partial M,\pm,T})$, let $E_{\lambda,\pm,T}$ be the corresponding eigenspace. Let $P_{\geq 0,\pm,T}$ (resp. $P_{> 0,\pm,T}$) be the orthogonal projection from $L^2(\partial M, (S_{\pm}(TM) \otimes E)|_{\partial M})$ onto $\oplus_{\lambda \geq 0} E_{\lambda,\pm,T}$ (resp. $\oplus_{\lambda > 0} E_{\lambda,\pm,T}$). We will call $P_{\geq 0,+,T}$ (resp. $P_{> 0,-,T}$) the APS projection associated with $D^E_{\partial M,+,T}$ (resp. $D^E_{\partial M,-,T}$).

For $T \in \mathbb{R}$, let $(D^E_{M,+,T}, P_{\geq 0,+,T})$ (resp. $(D^E_{M,-,T}, P_{> 0,-,T})$) denote the corresponding operator with the the APS boundary condition [2]. More precisely, the boundary condition of $D^E_{M,+,T}$ is $P_{\geq 0,+,T}(s|_{\partial M}) = 0$ for $s \in C^\infty(M, S_{+}(TM) \otimes E)$ (resp. of $D^E_{M,-,T}$ is $P_{> 0,-,T}(s|_{\partial M}) = 0$ for $s \in C^\infty(M, S_{-}(TM) \otimes E)$).

Both $(D^E_{M,+,T}, P_{\geq 0,+,T})$ and $(D^E_{M,-,T}, P_{> 0,-,T})$ are elliptic, and $(D^E_{M,-,T}, P_{> 0,-,T})$ is the adjoint of $(D^E_{M,+,T}, P_{\geq 0,+,T})$ (cf. (1.8), [6, Theorem 2.3]). In particular, they are Fredholm operators and they commute with the G-action.
Let $Q^M_{APS,T}(E,\Psi)_\gamma \in \mathbb{Z}$, $\gamma \in \Lambda^*_+$, be defined by

\begin{equation}
\bigoplus_{\gamma \in \Lambda^*_+} Q^M_{APS,T}(E,\Psi)_\gamma \cdot V^G = \text{Ind} \left(D^E_{M,+\cdot T}, P_{>0,+\cdot T} \right)
\end{equation}

\[
:= \text{Ker} \left(D^E_{M,+\cdot T}, P_{>0,+\cdot T} \right) - \text{Ker} \left(D^E_{M,-\cdot T}, P_{>0,-\cdot T} \right) \in R(G).
\]

1.3. An invariance property of the APS index.

Proposition 1.1. For $\gamma \in \Lambda^*_+$, there exist $C_\gamma > 0$, $T_\gamma \geq 0$ such that for $T > T_\gamma$, $s \in C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M})^\gamma$, we have

\begin{equation}
\left\| D^{E}_{\partial M,T} s \right\|^2_{\partial M,0} \geq \left\| D^{E}_{\partial M} s \right\|^2_{\partial M,0} + C_\gamma T^2 \|s\|^2_{\partial M,0},
\end{equation}

in particular, $D^{E}_{\partial M,T}(\gamma)$ is invertible.

Proof. From (1.6), (1.9) and (1.11), we get

\begin{equation}
\left(D^{E}_{\partial M,T} \right)^2 = \left(D^{E}_{\partial M} \right)^2 - \sqrt{-1} T \sum_{i=1}^{n-1} \pi_{ii} c(e_n) c(\Psi^M)
\end{equation}

\[
+ \sqrt{-1} T \sum_{i=1}^{n-1} c(e_n) c(e_i) \left(\nabla_{e_i}^{S(TM)\otimes E} (c(e_n) c(\Psi^M)) - 2\sqrt{-1} T \nabla_{\Psi^M}^{S(TM)\otimes E} + T^2 \|\Psi^M\|^2 \right).
\]

For any $K \in \mathfrak{g}$, let L_K denote the Lie derivative of K acting on $C^\infty(M, S(TM) \otimes E)$ and thus also on $C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M})$. Then

\begin{equation}
\mu^{S(TM)\otimes E}(K) := \nabla_{K_M}^{S(TM)\otimes E} - L_K \in C^\infty(M, \text{End}(S(TM) \otimes E)).
\end{equation}

By (0.21) and (0.22), we have

\begin{equation}
\nabla_{\Psi^M}^{S(TM)\otimes E} = \sum_{i=1}^{\dim G} \Psi_i L_{V_i} + \sum_{i=1}^{\dim G} \Psi_i \left(\nabla_{V_{iM}}^{S(TM)\otimes E} - L_{V_i} \right).
\end{equation}

In view of (0.19), it is clear that each L_{V_i}, $1 \leq i \leq \dim G$, acts as a bounded operator on $L^2(\partial M, (S(TM) \otimes E)|_{\partial M})^\gamma$.

On the other hand, since Ψ^M does not vanish on ∂M, there exists $C > 0$ such that

\begin{equation}
\|\Psi^M\|^2 \geq 4C \text{ on } \partial M.
\end{equation}

We deduce from (1.14)-(1.17) that there exists $C'_\gamma > 0$ such that for any $s \in C^\infty(\partial M, (S(TM) \otimes E)|_{\partial M})^\gamma$, we have

\begin{equation}
\left\| D^{E}_{\partial M,T} s \right\|^2_{\partial M,0} \geq \left\| D^{E}_{\partial M} s \right\|^2_{\partial M,0} - TC'_\gamma \|s\|^2_{\partial M,0} + 4T^2 C \|s\|^2_{\partial M,0}.
\end{equation}

The (1.18) implies that Proposition 1.1 holds with $T_\gamma = 2C'_\gamma/C$. \qed

Proposition 1.2. For $\gamma \in \Lambda^*_+$, there exists $T_\gamma \geq 0$ such that $Q^M_{APS,T}(E,\Psi)_\gamma$ does not depend on $T > T_\gamma$.
Thus, the restrictions of \((D_{M,+}^E, P_{\geq 0,+}(\gamma)) \) denote the corresponding operator with the APS boundary condition \([2]\), which is just the restriction of \((D_{M,+}^E, P_{\geq 0,+})\) to the corresponding \(\gamma \) component. Thus, \((D_{M,+}^E, P_{\geq 0,+}(\gamma))\) is elliptic and defines a Fredholm operator, the index of which is given by \((1.12)\),

\[
\text{Ind} \left(D_{M,+}^E(\gamma), P_{\geq 0,+}(\gamma) \right) = Q_{APS,T}^M (E, \Psi_\gamma) \cdot V_G^G.
\]

By Proposition 1.1, there exists \(T_\gamma > 0 \) such that \((D_{M,+}^E(\gamma), P_{\geq 0,+}(\gamma))\) forms a continuous family of Fredholm operators for \(T > T_\gamma \). Therefore, \(\text{Ind}(D_{M,+}^E(\gamma), P_{\geq 0,+}(\gamma)) \) does not depend on \(T > T_\gamma \). By \((1.19)\), this completes the proof of our proposition. \(\square \)

Definition 1.3. By Proposition 1.2, for \(\gamma \in \Lambda^*_+ \), we can associate an integer \(Q_{APS}^M (E, \Psi_\gamma) \) that is equal to \(Q_{APS,T}^M (E, \Psi_\gamma) \) for \(T > T_\gamma \).

Remark 1.4. The same argument shows that the APS type index \(Q_{APS}^M (E, \Psi_\gamma) \) does not depend on the given metrics and connections. It only depends on the homotopy class of \(\Psi \) as long as \(\Psi^M|_{\partial M} \) does not vanish over \(\partial M \).

1.4. Transversal index and APS index.

Theorem 1.5. For \(\gamma \in \Lambda^*_+ \), the following identity holds:

\[
\text{Ind} \left(\sigma_{E,\gamma}^M \right) = Q_{APS}^M (E, \Psi_\gamma).
\]

The proof of Theorem 1.5 consists of two steps. In a first step, by applying a result of Braverman \([4, \text{Theorem 5.5}]\), we express \(\text{Ind} \left(\sigma_{E,\gamma}^M \right) \) as the \(L^2 \)-index of a Dirac operator on \(\tilde{M} = M \cup (\partial M \times (-\infty, 0]) \), and we show that the difference of the above \(L^2 \)-index and \(Q_{APS}^M (E, \Psi_\gamma) \) is equal to an index on the cylindrical end. In a second step, we prove that the index on the cylindrical end is zero.

We start by deforming our geometric data to those on a manifold with cylindrical end.

Recall that \(g^\partial M \) is the Riemannian metric on \(\partial M \) induced by \(g^TM \). We use the inward geodesic flow to identify a neighborhood of \(\partial M \) with the collar \(\partial M \times [0, \varepsilon] \). As \(g^TM \) is \(G \)-invariant, the \(G \)-action on \(\partial M \times [0, \varepsilon] \) is induced by the \(G \)-action on \(\partial M \), and there exists a family of metrics \(g^\partial M(x_n) \) on \(\partial M \) verifying

\[
g^{\partial M}_y(x_n) = g^{\partial M}_y(x_n) + (dx_n)^2, \quad (y, x_n) \in \partial M \times [0, \varepsilon].
\]

For \((y, x_n) \in \partial M \times [0, \varepsilon] \), we identify \(S(TM)(y, x_n), E(y, x_n) \) to \(S(TM)(y, 0), E(y, 0) \) by using the parallel transport with respect to \(\nabla^{S(TM)}, \nabla^E \) along the geodesic \([0, 1] \ni t \to (y, tx_n) \). Thus, the restrictions of \((S(TM), h^{S(TM)}), (E, h^E)\) to \(\partial M \times [0, \varepsilon] \) are the pull-back of their restrictions \((S(TM)|_{\partial M}, h^{S(TM)}|_{\partial M}), (E|_{\partial M}, h^E|_{\partial M})\) to \(\partial M \). Moreover, the \(G \)-actions on \(S(TM), E \) on \(\partial M \times [0, \varepsilon] \) are induced by the \(G \)-actions on \(S(TM)|_{\partial M}, E|_{\partial M} \) under this identification.

By the homotopy invariance of the transversal index \(\text{Ind}(\sigma_{E,\gamma}^M) \) (cf. \((1.3)\)) and of the APS index \(Q_{APS}^M (E, \Psi_\gamma) \) (cf. Remark 1.4), to establish Theorem 1.5, we may and we will assume that \(\varepsilon = 2 \) and that \(g^TM, h^{S(TM)}, \nabla^{S(TM)}, \nabla^E, \Psi \) have product structures on \(\partial M \times [0, 2] \), and that the \(G \)-actions on objects such as \(E, S(TM) \) on \(\partial M \times [0, 2] \) are the product of the \(G \)-actions on their restrictions to \(\partial M \) and the identity in the direction \([0, 2] \).
We attach now an infinite cylinder $\partial M \times (-\infty, 0]$ to M along the boundary ∂M and extend trivially all objects on M to $\tilde{M} = M \cup (\partial M \times (-\infty, 0])$. We decorate the extended objects on \tilde{M} by a "\tilde{\ }". Thus for $(y, x_n) \in \partial M \times (-\infty, 2]$, we have

$$
\tilde{P}(y, x_n) = P(y, 0) \in g, \quad g_{y,x_n}^{TM} = g_y^{\partial M} + (dx_n)^2,
$$

(1.22)

$$(S(T\tilde{M}), h^{S(T\tilde{M})}, \nabla^{S(T\tilde{M})})|_{\partial M \times (-\infty, 2]} = \pi_1^*(S(TM)|_{\partial M}, h^S(TM)|_{\partial M}, \nabla^S(TM)|_{\partial M}),
$$

$$(\tilde{E}, h^{\tilde{E}}, \nabla^{\tilde{E}})|_{\partial M \times (-\infty, 2]} = \pi_1^*(E|_{\partial M}, h^{E}|_{\partial M}, \nabla^E|_{\partial M}),
$$

with $\pi_1 : \partial M \times (-\infty, 2] \to \partial M$ the natural projection.

Let $D_{\tilde{M}}^E$ be the Spinc Dirac operator on $\mathcal{C}_0^\infty(\tilde{M}, S(T\tilde{M}) \otimes \tilde{E})$ defined as in (1.5). By (1.5), (1.6) and (1.22), we have on $\partial M \times (-\infty, 2]$,

$$
D_{\tilde{M}}^E = c(e_n)D_{\partial M}^E + c(e_n)\frac{\partial}{\partial x_n}.
$$

For any $h \in \mathcal{C}^\infty(\tilde{M})$, let $D_{\tilde{M},h}^E$ be the operator on $\mathcal{C}_0^\infty(\tilde{M}, S(T\tilde{M}) \otimes \tilde{E})$ defined by

$$
D_{\tilde{M},h}^E = D_{\tilde{M}}^E + \sqrt{-1}h \tilde{P}.
$$

(1.24)

Let $H^1_{\pm,h}(\tilde{M})$ be the Sobolev space obtained by completion of $\mathcal{C}_0^\infty(\tilde{M}, S_\pm(T\tilde{M}) \otimes \tilde{E})$ under the norm $\| \cdot \|_{h,1}$ defined by

$$
\| s \|_{h,1}^2 = \| s \|_0^2 + \left\| D_{\tilde{M},h}^E s \right\|_0^2.
$$

(1.25)

Let f be a strictly positive G-invariant smooth function on \tilde{M} such that $f|_M \equiv 1$, and such that for $(y, x_n) \in \partial M \times (-\infty, 0]$, $f(y, x_n)$ does not depend on y and $f(y, x_n) = e^{-x_n}$ if $x_n \leq -1$.

(1.26)

For $T > 0$, Tf is an admissible function on \tilde{M} for the triple $(S(T\tilde{M}) \otimes \tilde{E}, \nabla^{S(T\tilde{M})} \otimes \tilde{E}, \tilde{P})$ in the sense of Braverman [4, Definition 2.6] as we are in the product case.

By a result of Braverman [4, Theorem 5.5] (cf. also [13]), for $T > 0, \gamma \in \Lambda^*_+, D_{\tilde{M},Tf}^E(\gamma), D_{\tilde{M},\pm,Tf}^E(\gamma)$ extend to bounded Fredholm operators, for which we keep the same notation,

$$
D_{\tilde{M},\pm,Tf}^E(\gamma) : H^1_{\pm,Tf}(\tilde{M})^\gamma \to L^2 \left(\tilde{M}, S_\pm(T\tilde{M}) \otimes \tilde{E} \right)^\gamma,
$$

(1.27)

and the following identity holds:

$$
\text{Ind} \left(D_{\tilde{M},\pm,Tf}^E(\gamma) \right) = \text{Ind} \left(\sigma^M_{E,h} \right) \cdot \Gamma_G^\gamma.
$$

(1.28)

Set

$$
\tilde{M}_1 = \partial M \times (-\infty, 1] \subset \tilde{M}, \quad \tilde{M}_2 = \partial M \times (-\infty, 2] \subset \tilde{M},
$$

(1.29)

$$
Z = \partial M \times [0, 2] \subset \tilde{M}.
$$

Let $\xi \in \mathcal{C}^\infty([0, 2])$ be such that

$$
\xi|_{[0,1/2]} = 1, \quad 0 \leq \xi|_{[1/2,3/2]} \leq 1, \quad \xi|_{[3/2, 2]} = 0,
$$

(1.30)
and such that
\begin{equation}
\varphi = (1 - \xi^2)^{1/2}
\end{equation}
is smooth. Clearly, \(\xi \) extends to \(\widetilde{M}_2 \) by setting \(\xi = 1 \) on \(\widetilde{M}_0 = \widetilde{M}_1 \setminus (\partial M \times (0,1)) \). It also extends to \(M \) by setting \(\xi = 0 \) on \(M \setminus (\partial M \times [0,2]) \). Thus \(\varphi \) also extends to \(\widetilde{M}_0 \) and \(M \setminus (\partial M \times [0,2]) \). Set
\begin{equation} \label{1.32}
H = L^2(\widetilde{M}, (S(T\widetilde{M}) \otimes \widetilde{E}) \oplus L^2(Z, (S(TM) \otimes E)|_Z), \end{equation}

\begin{equation} \label{1.33}
H' = L^2(\widetilde{M}_2, (S(T\widetilde{M}) \otimes \widetilde{E})|_{\widetilde{M}_2}) \oplus L^2(M, S(TM) \otimes E). \end{equation}

Let \(U : H \to H' \) be defined by:
\begin{equation} \label{1.34}
(s_1, s_2) \in H \longrightarrow (\xi s_1 - \varphi s_2, \varphi s_1 + \xi s_2) \in H'.
\end{equation}

Let \(\gamma)^* : H' \to H \) be the adjoint of \(U \). By (1.33), \(\gamma)^*(s_1, s_2) = (\xi s_1 + \varphi s_2, -\varphi s_1 + \xi s_2) \in H \). On sees easily that \(U \) is unitary (cf. [5, §3.2]), that is,
\begin{equation} \label{1.35}
\gamma)^* U = U^* = Id_H.
\end{equation}

We fix \(\gamma)^* \in \Lambda^*_+ \) and let \(T > 0 \). If \(W \) is one of \(\widetilde{M}_2 \), \(M \) and \(Z \), let \((D_{W,+,Tf}^E(\gamma), P_{\geq 0,+}^W,Tf(\gamma)) \) be the operator with the APS boundary condition:
\begin{equation} \label{1.36}
H_{+,Tf}^1(W, P_{\geq 0,+}^W,Tf(\gamma) \gamma)^* = \{ u \in H_{+,Tf}^1(W) \gamma , \quad P_{\geq 0,+}^W,Tf(\gamma) (u|_\partial W) = 0 \} \longrightarrow L^2(W, \left(S_-(T\widetilde{M}) \otimes \widetilde{E} \right)|_W) \gamma .
\end{equation}

Since \(f = 1 \) on \(M \) and \(Z \), we know that for \(W = M \) or \(Z \),
\begin{equation} \label{1.37}
(D_{W,+,Tf}^E(\gamma), P_{\geq 0,+}^W,Tf(\gamma)) = (D_{W,+,Tf}^E(\gamma), P_{\geq 0,+}^W,Tf(\gamma)),
\end{equation}

and they are Fredholm as explained in Section 1.2.

By (1.27), (1.34) and (1.36), we see that
\begin{equation} \label{1.38}
U \left\{ D_{M,+,Tf}^E(\gamma) + (D_{\geq 0,+}^E,T(\gamma), P_{\geq 0,+}^M,Tf(\gamma)) \right\} U^* : \end{equation}
\begin{equation} \label{1.39}
H_{+,Tf}^1(\widetilde{M}_2, P_{\geq 0,+}^{\widetilde{M}_2}) \gamma)^* \oplus H_{+,Tf}^1(M, P_{\geq 0,+}^M,Tf(\gamma)) \gamma ^* \longrightarrow L^2(\widetilde{M}_2, \left(S_-(T\widetilde{M}) \otimes \widetilde{E} \right)|_{\widetilde{M}_2}) \gamma)^* \oplus L^2(M, S_-(TM) \otimes E) \gamma ^* \end{equation}
is Fredholm.

By the construction of \(U \), it is clear that \(U \) preserves the APS boundary conditions on the corresponding boundary components. Moreover, the difference
\begin{equation} \label{1.40}
U \left\{ D_{M,+,Tf}^E(\gamma) + (D_{\geq 0,+}^E,T(\gamma), P_{\geq 0,+}^M,Tf(\gamma)) \right\} U^* - (D_{\geq 0,+}^E,T(\gamma), P_{\geq 0,+}^M,Tf(\gamma)) = (D_{\geq 0,+}^E,T(\gamma), P_{\geq 0,+}^M,Tf(\gamma))
\end{equation}
is a zero-order differential operator with compact support\(^5\), which implies that it is a compact operator. Thus,

\[
(D^E_{\mathcal{M}_2,+Tf}(\gamma), P^\mathcal{M}_2_{\geq 0,+Tf}(\gamma)) + (D^E_{\mathcal{M},+T}(\gamma), P_{\geq 0,+T}(\gamma))
\]

is Fredholm. In particular, \((D^E_{\mathcal{M}_2,+Tf}, P^\mathcal{M}_2_{\geq 0,+Tf}(\gamma))\) is Fredholm. Moreover, we have

\[
(1.39) \quad \text{Ind} \left(D^E_{\mathcal{M}_2,+Tf}(\gamma), P^\mathcal{M}_2_{\geq 0,+Tf}(\gamma)\right) = \text{Ind} \left(D^E_{\mathcal{M},+T}(\gamma), P_{\geq 0,+T}(\gamma)\right).
\]

Note that \(\partial Z = (\partial M \times \{0\}) \cup (\partial M \times \{2\})\). By (1.22) and (1.23), \(P_{\geq 0,+T}|_{\partial M \times \{0\}} = P_{\geq 0,+T}|_{\partial M \times \{2\}}\), and \(P_{\geq 0,+T}|_{\partial M \times \{0\}} = P_{\geq 0,+T}|_{\partial M \times \{2\}}\) (resp. \(P_{\geq 0,+T}|_{\partial M \times \{0\}}\)) is the orthogonal projection from \(L^2(\partial M, (S_+(TM) \otimes E)|_{\partial M})\) onto \(\oplus_{\lambda < 0} E_{\lambda, +T}\) (resp. \(L^2(\partial M, (S_-(TM) \otimes E)|_{\partial M})\) onto \(\oplus_{\lambda < 0} E_{\lambda, -T}\)), thus from the product structure on \(Z\), we get

\[
(1.40) \quad \text{Ker} \left(D^E_{\mathcal{M},+T}(\gamma), P_{\geq 0,+T}(\gamma)\right) = 0,
\]

\[
\text{Ker} \left(D^E_{\mathcal{M},-T}(\gamma), P_{\geq 0,-T}(\gamma)\right) = \text{Ker} \left(D^E_{\mathcal{M},-T}(\gamma)\right).
\]

Combining (1.40) with Proposition 1.1, for \(T > T_\gamma\), we get

\[
(1.41) \quad \text{Ind} \left(D^E_{\mathcal{M},+T}(\gamma), P_{\geq 0,+T}(\gamma)\right) = 0.
\]

By Definition 1.3, (1.19), (1.28), (1.39) and (1.41), for any \(T > T_\gamma\),

\[
(1.42) \quad \text{Ind} \left(D^E_{\mathcal{M}_2,+Tf}(\gamma), P^\mathcal{M}_2_{\geq 0,+Tf}(\gamma)\right) = \left(\text{Ind} \left(\sigma^M_{E,\Psi}(\gamma) - Q^M_{APS}(E, \Psi)(\gamma)\right) \cdot V_1^G\right).
\]

For a second step, we need to prove the following Lemma.

Lemma 1.6. For \(\gamma \in \Lambda_+^\infty\), there exists \(T_2 > T_\gamma\) such that for \(T > T_2\), we have

\[
(1.43) \quad \text{Ind} \left(D^E_{\mathcal{M}_2,+Tf}(\gamma), P^\mathcal{M}_2_{\geq 0,+Tf}(\gamma)\right) = 0.
\]

Proof. Following Bismut-Lebeau [3, pp. 115-116], let \(U_1 = \partial M \times (-\infty, 1), U_2 = \partial M \times (0, 2)\) be an open covering of \(\mathcal{M}_2\). Let \(h_1, h_2\) be two smooth \(G\)-invariant functions on \(\mathcal{M}_2\) such that \(h_1^2, h_2^2\) form a partition of unity associated with the covering \(\{U_i\}_{i=1}^2\).

By (0.22), (1.5), (1.15), (1.16) and (1.24), we deduce that

\[
(1.44) \quad \left(D^E_{\mathcal{M},+Tf}(\gamma)\right)^2 = \left(D^E_{\mathcal{M}}\right)^2 + \sqrt{-1}T \sum_{i=1}^n e(e_i) e \left(\nabla_{e_i}^{\mathcal{M}} \left(f^\mathcal{M}\right)\right) - 2\sqrt{-1} T f \sum_{i=1}^{\dim G} \tilde{\Psi}_i L_{V_i} - 2\sqrt{-1} T f \sum_{i=1}^{\dim G} \tilde{\Psi}_i \mu^{S(\mathcal{M}) \otimes \mathcal{E}}(V_i) + T^2 \left|f^\mathcal{M}\right|^2.
\]

\(^5\)Indeed, for any \(s \in C_0^\infty(\mathcal{M}_2, (S_+(TM) \otimes E)|_{\mathcal{M}_2}) \cup C_0^\infty(M, (S_+(TM) \otimes E)|_M)\) which is supported in \(\mathcal{M}_2 \setminus (\partial M \times [0, 2])\), the difference operator in (1.38) acts on \(s\) as a zero operator.
By (1.22), $\tilde{\Psi}_i, \mu^{s(T\tilde{M})\otimes\tilde{E}}(V_i)$ are constant on x_n on \tilde{M}_2, thus from (0.21), there exists $C_1 > 0$ such that the following inequality holds:

$$\sum_{i=1}^{\dim G} \tilde{\Psi}_i L_{V_i} + \sum_{i=1}^{\dim G} \tilde{\Psi}_i \mu^{s(T\tilde{M})\otimes\tilde{E}}(V_i) \leq C_1,$$

(1.45)

(where the norm in (1.45) refers to operators acting on $L^2(M, S(T\tilde{M}) \otimes \tilde{E})$).

By (1.26), (1.44) and (1.45), there exists $C > 0$ such that for $T > 0$, $s \in \mathcal{C}_0^\infty(U_1, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})$, we have

$$\left\| D_{M_2,T_1}^E s \right\|_0^2 = \left\langle (D_{M_2,T_1}^E)^2 s, s \right\rangle \geq \left\| D_{\tilde{M}}^E s \right\|_0^2 + T^2 \left\| f|\tilde{\Psi}|_s \right\|_0^2 - CT \|fs\|_0 \|s\|_0.$$

(1.46)

Thus from (1.17), (1.22), (1.26) and (1.46), we see that there exist $T_1 > T_1, C_2 > 0$ such that for any $T > T_1, s \in \mathcal{C}_0^\infty(U_1, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})$, we have

$$\left\| D_{M_2,T_1}^E s \right\|_0^2 \geq \left\| D_{\tilde{M}}^E s \right\|_0^2 + C_2 T^2 \|s\|_0^2.$$

(1.47)

By Green’s formula, (1.23) and (1.24) imply that for $s \in \mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})$, we have

$$\left\| D_{M_2,T_1}^E s \right\|_0^2 = \int_{\tilde{M}_2} \left\langle s, (D_{M_2,T_1}^E)^2 s \right\rangle dv_{\tilde{M}_2} + \int_{\partial\tilde{M}_2} \left\langle s, c(-e_n)D_{M_2,T_1}^E s \right\rangle dv_{\partial\tilde{M}_2}$$

$$= \int_{\tilde{M}_2} \left\langle s, (D_{M_2,T_1}^E)^2 s \right\rangle dv_{\tilde{M}_2} - \int_{\partial\tilde{M}_2} \left\langle s, \nabla^{S(T\tilde{M})\otimes\tilde{E}} s \right\rangle dv_{\partial\tilde{M}_2} - \int_{\partial\tilde{M}_2} \left\langle s, D_{\partial\tilde{M}_2,T_1}^E s \right\rangle dv_{\partial\tilde{M}_2}.$$

(1.48)

By the Lichnerowicz formula (cf. [9, Appendix D]), we have

$$\left(D_{\tilde{M}}^E \right)^2 = -\Delta_{\tilde{E}} + O(1),$$

(1.49)

where $\Delta_{\tilde{E}}$ is the Bochner Laplacian, and $O(1)$ is an endomorphism of $S(T\tilde{M}) \otimes \tilde{E}$. By (1.22), the fiberwise norm of this endomorphism has an uniform upper bound over \tilde{M}.

By Green’s formula, we have, for any $s \in \mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})$,

$$\int_{\tilde{M}_2} \left\langle -\Delta_{\tilde{E}} s, s \right\rangle dv_{\tilde{M}_2} - \int_{\partial\tilde{M}_2} \left\langle s, \nabla^{S(T\tilde{M})\otimes\tilde{E}} s \right\rangle dv_{\partial\tilde{M}_2} = \left\| \nabla^{S(T\tilde{M})\otimes\tilde{E}} s \right\|_0^2.$$

(1.50)

Note that $f = 1$ on $\partial\tilde{M}_2$. By (1.13), for any $T > T_1, s \in \mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})$, with $P_{M_2,\partial M_2}(s|_{\partial\tilde{M}_2}) = 0$, we have

$$\int_{\partial\tilde{M}_2} \left\langle s, D_{\partial\tilde{M}_2,T_1}^E s \right\rangle dv_{\partial\tilde{M}_2} \leq -\sqrt{C_1} T \left\| s|_{\partial\tilde{M}_2} \right\|_0^2 \leq 0.$$

(1.51)

As h_2 has compact support in $\partial M \times (0, 2] \subset \tilde{M}_2$, on which $f \equiv 1$, by (1.17), (1.22), (1.44), (1.45), (1.48)-(1.51), there exist $C_3, C_4, C_5 > 0$ such that for $T > 1$ and $s \in$
$\mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})^\gamma$ with $P^\tilde{M}_2_{\geq 0, \pm, T_f}(s|_{\partial\tilde{M}_2}) = 0$, we have

\begin{equation}
\left\{ D^E_{M_2, T_f}(h_2 s) \right\}_0^2 \geq C_3 \left\| D^E_{M_2}(h_2 s) \right\|_0^2 - C_4 T \| h_2 s \|_0^2 + C_5 T^2 \| h_2 s \|_0^2.
\end{equation}

Since $h_1^2 + h_2^2 \equiv 1$, for any $s \in \mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})^\gamma$ with $P^\tilde{M}_2_{\geq 0, \pm, T_f}(s|_{\partial\tilde{M}_2}) = 0$, we obtain

\begin{equation}
\left\{ D^E_{M_2, T_f}(h_1 s) \right\}_0^2 \geq \frac{1}{2} \left\| D^E_{M_2, T_f}(h_1 s) \right\|_0^2 + \frac{C_3}{2} \left\| D^E_{M_2}(h_2 s) \right\|_0^2 - C_6 T \| s \|_0^2 + C_7 T^2 \| s \|_0^2.
\end{equation}

By Proposition 1.1, (1.19) and (1.55), we get Lemma 1.6.

By (1.47), (1.52) and (1.53), there exist $C_6, C_7 > 0$ such that for any $T > T_1 > T_\gamma$ and $s \in \mathcal{C}_0^\infty(\tilde{M}_2, (S(T\tilde{M}) \otimes \tilde{E})|_{\tilde{M}_2})^\gamma$ with $P^\tilde{M}_2_{\geq 0, \pm, T_f}(s|_{\partial\tilde{M}_2}) = 0$, we have

\begin{equation}
\left\{ D^E_{M_2, T_f}(s) \right\}_0^2 \geq \frac{1}{2} \left\| D^E_{M_2}(s) \right\|_0^2 + \frac{C_3}{2} \left\| D^E_{M_2}(s) \right\|_0^2 - C_6 T \| s \|_0^2 + C_7 T^2 \| s \|_0^2.
\end{equation}

By Proposition 1.1, (1.19) and (1.55), we get Lemma 1.6.

By (1.42) and Lemma 1.6, the proof of Theorem 1.5 is completed.

2. Quantization for Proper Moment Maps: Proof of Theorem 0.1

The purpose of this section is to give a proof of Theorem 0.1. This proof consists of two steps. In a first step, we reduce Theorem 0.1 to a vanishing result for the transversal index and then use Theorem 1.5 to interpret the later as a vanishing result for the APS type index. In a second step, we apply the analytic localization method developed in [3], [21] and [22] to prove the vanishing of this APS type index.

We use the assumptions and the notation in the Introduction. Also, for any real one form ν on a Riemannian manifold, we denote by ν^* the corresponding vector field on this manifold.

Recall that (M, ω, J^M) is a noncompact symplectic manifold with a compatible almost-complex structure J^M, and $g^{TM} = \omega(\cdot, J^M \cdot)$ is the associated Riemannian metric on M. We have the canonical splitting $TM \otimes \mathbb{R} \mathbb{C} = T^{(1,0)}M \oplus T^{(0,1)}M$, for the complexification of TM, with

\begin{equation}
T^{(1,0)}M = \{ u \in TM \otimes \mathbb{R} \mathbb{C} : J^M u = -\sqrt{-1} u \},
\end{equation}

\begin{equation}
T^{(0,1)}M = \{ u \in TM \otimes \mathbb{R} \mathbb{C} : J^M u = \sqrt{-1} u \}.
\end{equation}

Let $T^{* (0,1)}M$ be the dual of $T^{(0,1)}M$.

The almost complex structure J^M on TM determines a canonical spinc-structure on TM with the associated Hermitian line bundle $\det(T^{(1,0)}M)$. Moreover, we have

$$S(TM) = \Lambda(T^{*,(0,1)}M), \quad S_\pm(TM) = \Lambda^{\pm \infty}(T^{*,(0,1)}M).$$

For any $W \in TM$, we write $W = w + \mathbf{w} \in T^{(1,0)}M \oplus T^{(0,1)}M$. Let $w^* \in T^{*,(0,1)}M$ correspond to w so that $(w^*, \mathbf{w}) = g^{TM}(w, \mathbf{w})$ for any $\mathbf{w} \in T^{(0,1)}M$. Then

$$c(W) = \sqrt{2}(w^* \wedge -i\mathbf{w})$$

defines the Clifford action of W on $\Lambda(T^{*,(0,1)}M)$. It interchanges $\Lambda^{\text{even}}(T^{*,(0,1)}M)$ and $\Lambda^{\text{odd}}(T^{*,(0,1)}M)$. The Levi-Civita connection ∇^TM together with the almost complex structure J induces by projection a canonical Hermitian connection $\nabla^{T^{(1,0)}M}$ on $T^{(1,0)}M$. This induces a Hermitian connection ∇^\det on $\det(T^{(1,0)}M)$. The Clifford connection $\nabla^A(T^{*,(1,0)}M)$ on $\Lambda(T^{*,(0,1)}M)$ is induced by the Levi-Civita connection ∇^TM and the connection ∇^\det (cf. [9, Appendix D], [11, §1.3] and [21, §1a]).

We take $E = L$, with L the prequantum line bundle on M in the Introduction, and denote by $\Omega^0(M, L) = \mathcal{C}^\infty(M, \Lambda(T^{*,(0,1)}M) \otimes L)$. Let D^M_L be the corresponding Dirac operator defined as in (1.5).

Recall that the moment map $\mu : M \to \mathfrak{g}^*$ is assumed to be proper. Let X^H be the Hamiltonian vector field of $\mathcal{H} = |\mu|^2$; i.e.,

$$i_{X^H}\omega = d\mathcal{H}.$$

By (0.2), (0.4), (0.21) and (2.4), we find (cf. [21, (1.19)]),

$$X^H = -J^M(d\mathcal{H})^* = -2J^M \sum_{i=1}^{\dim G} \mu_i (d\mu_i)^* = 2 \sum_{i=1}^{\dim G} \mu_i V_i^M = 2 \mu^M.$$

For any regular value $a > 0$ of $\mathcal{H} = |\mu|^2$, denote by M_a the compact G-manifold with boundary defined by

$$M_a = \{x \in M : \mathcal{H}(x) \leq a\}.$$

By (2.5), μ^M does not vanish on the boundary $\partial M_a = \mathcal{H}^{-1}(a)$ of M_a.

Let $a' > a > 0$ be two regular values of \mathcal{H}. Let $M_{a,a'}$ denote the compact G-manifold with boundary $M_{a,a'} = M_a \setminus M_{a'}$. By the additivity of the transversal index (cf. [1, Theorem 3.7, §6] and [17, Prop. 4.1]), we have for $\gamma \in \Lambda_+^*$,

$$\text{Ind} \left(\sigma_{L,\mu}^{M_a} \right)_\gamma - \text{Ind} \left(\sigma_{L,\mu}^{M_{a,a'}} \right)_\gamma = \text{Ind} \left(\sigma_{L,\mu}^{M_{a,a'}} \right)_\gamma.$$

Let $\text{Cas}_G = -\sum_i V_i V_i$ be the Casimir operator associated with G. Let $c_\gamma \geq 0$ be defined by the following formula,

$$\text{Cas}_G|_{V^G} = c_\gamma \text{Id}_{V^G}.$$

Clearly, $c_{\gamma=0} = 0$. As $\text{Cas}_G|_{V^G} = -\sum_i L_i(\gamma)^2$, from (1.45) and (2.8), we get

$$c_\gamma = \left\| \sum_{i=1}^{\dim G} L_i(\gamma)^2 \right\|.$$
By Theorem 1.5, (2.7) and (2.9), the following result is a reformulation of Theorem 0.1, with a more precise form of the bound \(a_\gamma \).

Theorem 2.1. Fix \(\gamma \in \Lambda_+^* \). Then for any regular values \(a', a \) of \(\mathcal{H} \) with \(a' > a > \frac{c_\gamma}{4\pi} \), the following identity holds:

\[
Q_{\text{APS}}^{M_{a,a'}}(L, \mu) = 0.
\]

Proof. If \(\gamma = 0 \), (2.10) has been proved in [22, Theorems 2.6, 4.3]. The proof for general \(\gamma \in \Lambda_+^* \) is a modification of the proof of [22, Theorem 2.6] where it is assumed that \(\gamma = 0 \). Let \(\gamma \in \Lambda_+^* \) and \(a' > a > \frac{c_\gamma}{4\pi} \) be fixed.

By (2.5), (1.10) becomes in the current situation (cf. [21, (1.20)] and [22, (1.19)]),

\[
D_{M,T}^L = D_M^L + \frac{\sqrt{-1T}}{2} c\left(X^\mathcal{H}\right): \Omega^{0 \bullet}(M_{a,a'}, L) \to \Omega^{0 \bullet}(M_{a,a'}, L).
\]

Let \(e_1, \ldots, e_n \) be an oriented orthonormal frame of \(TM_{a,a'} \). By [21, Theorem 1.6], the following formula holds:

\[
(D_{M,T}^L)^2 = (D_M^L)^2 + \frac{\sqrt{-1T}}{4} \sum_{j=1}^n c(e_j) c\left(\nabla_{e_j} X^\mathcal{H}\right)
\]

\[
- \frac{\sqrt{-1T}}{2} \text{Tr} \left[\nabla TM X^\mathcal{H}|_{T(1,0)_M}\right] + \frac{T}{2} \sum_{i=1}^{\dim G} \left(\sqrt{-1c\left(J^M V_i^M\right) c(V_i^M) + |V_i^M|^2}\right)
\]

\[
+ 4\pi T \mathcal{H} - 2\sqrt{-1T} \sum_{i=1}^{\dim G} \mu_i \Lambda(V_i) + \frac{T^2}{4} |X^\mathcal{H}|^2.
\]

Let \(\mathcal{U} \) be a \(G \)-invariant open neighborhood of \(\partial M_{a,a'} \) in \(M_{a,a'} \) such that \(X^\mathcal{H} \) does not vanish on \(\overline{\mathcal{U}} \). Since \(X^\mathcal{H} \) does not vanish on \(\partial M_{a,a'} \), the existence of \(\mathcal{U} \) is clear. Let \(\mathcal{U}' \) be a \(G \)-invariant open subset of \(M_{a,a'} \) such that \(\overline{\mathcal{U}'} \cap (\partial M_{a,a'}) = \emptyset \), \(\mathcal{U} \cup \mathcal{U}' = M_{a,a'} \).

By using that \(L_{V_i} \) acts as a bounded operator on \(L^2(M_{a,a'}, \Lambda(T^{(0,1)} M) \otimes L)^\gamma \) and (1.13) instead of [22, Theorem 2.1], then by proceeding in exactly the same way as in [22, Proof of Proposition 2.4], we know that there exist \(T_1 > 0 \), \(C_1 > 0 \) (depending on \(\mathcal{U} \) and \(\gamma \)) such that for any \(T > T_1 \) and \(s \in \Omega^{0 \bullet}(M_{a,a'}, L)^\gamma \) with \(\text{supp}(s) \subset \mathcal{U} \) and \(P_{0,\pm,T}(s|_{\partial M_{a,a'}}) = 0 \), the following inequality holds:

\[
\left\| D_{M,T}^L s \right\|_0^2 \geq C_1 \left(\left\| D_M^L s \right\|_0^2 + T^2 \left\| s \right\|_0^2 \right).
\]

For any \(\varepsilon > 0 \), set

\[
G_{T,\varepsilon}^L = (D_{M,T}^L)^2 - (4\pi - \varepsilon) T \mathcal{H} + 2\sqrt{-1T} \sum_{i=1}^{\dim G} \mu_i \Lambda(V_i).
\]

Clearly, \(G_{T,\varepsilon}^L \) is of the same form as \(F_T^L \) in [21, (2.6)], with \(4\pi T \mathcal{H} \) in [21, (2.6)] being replaced by \(\varepsilon T \mathcal{H} \).

By replacing \(4\pi \mathcal{H} \) in [21, (2.26)] by \(\varepsilon \mathcal{H} \) in the proof of [21, Proposition 2.2, Case 2], from (2.12) and (2.14), we know the analogue of [21, Proposition 2.2] holds for the operator \(G_{T,\varepsilon}^L \): for any \(x \in M_{a,a'} \setminus \partial M_{a,a'} \), there exist an open neighborhood \(U_x \subset \).
Proof. From (2.20), we obtain for any 0
\[\langle G_{T,x}^s, s \rangle \geq C_2 \left(\| D_M^L s \|_0^2 + (T - b_1) \| s \|_0^2 \right). \]

Lemma 2.2. There exists 0 < \(\varepsilon < 4\pi \) such that for any \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \), one has
\[\left((4\pi - \varepsilon) \mathcal{H} - 2\sqrt{-1} \sum_{i=1}^{\dim G} \mu_i L_{V_i} \right) s, s \geq 0. \]

Proof. Since \(a' > a > \frac{c_\gamma}{4\pi} \), there exists \(\varepsilon \in (0, 4\pi) \) such that the following inequality holds on \(M_{a,a'} \):
\[\mathcal{H} \geq \frac{4c_\gamma}{(4\pi - \varepsilon)^2}. \]
By the Cauchy inequality and (2.9), we have that for any \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \),
\[\left| \left\langle \sum_{i=1}^{\dim G} \mu_i L_{V_i} s, s \right\rangle \right| \leq \frac{1}{2} \sum_{i=1}^{\dim G} \left(\frac{4\pi - \varepsilon}{2} \| \mu_i s \|_0^2 + \frac{2}{4\pi - \varepsilon} \| L_{V_i} s \|_0^2 \right) = \frac{4\pi - \varepsilon}{4} \langle \mathcal{H}s, s \rangle + \frac{c_\gamma}{4\pi - \varepsilon} \| s \|_0^2. \]

From (2.18) and (2.19), we obtain for any \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \),
\[\left((4\pi - \varepsilon) \mathcal{H} - 2\sqrt{-1} \sum_{i=1}^{\dim G} \mu_i L_{V_i} \right) s, s \geq \left(\frac{4\pi - \varepsilon}{2} \mathcal{H} - \frac{2c_\gamma}{4\pi - \varepsilon} \right) s, s \geq 0. \]

The proof of Lemma 2.2 is completed. \(\square \)

Let \(\varepsilon > 0 \) be fixed as in Lemma 2.2. By Lemma 2.2, (2.14) and (2.16), we have that for any \(T > 1 \) and \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \) with \(\text{supp}(s) \subset U' \),
\[\| D_{M,T}^L s \|_0^2 = \left(\langle D_{M,T}^L s, s \rangle \geq \langle G_{T,x}^s, s \rangle \geq C_2 \left(\| D_M^L s \|_0^2 + (T - b_1) \| s \|_0^2 \right) \right). \]

Let \(h_1, h_2 \) be two smooth \(G \)-invariant functions on \(M_{a,a'} \) such that \(h_1^2, h_2^2 \) forms a partition of unity associated with the \(G \)-invariant open covering \(U' \) of \(M_{a,a'} \).

Let \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \) with \(P_{>0,\pm,T}(s|_{\partial M_{a,a'}}) = 0 \). Clearly, \(h_1 s, h_2 s \) still belong to \(\Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \) with \(\text{supp}(h_2 s) \subset U \) and \(P_{>0,\pm,T}(h_2 s|_{\partial M_{a,a'}}) = 0 \), while \(\text{supp}(h_1 s) \subset U' \). By applying (2.13) to \(h_2 s \), (2.21) to \(h_1 s \), and by proceeding as in (1.53)-(1.55) (cf. [3, pp. 115-116]), we obtain constants \(C_3 > 0 \), \(b_2 > 0 \) such that for any \(T > T_1 \) and \(s \in \Omega^{0,\bullet}(M_{a,a'}, L)^\gamma \) with \(P_{>0,\pm,T}(s|_{\partial M_{a,a'}}) = 0 \), the following inequality holds:
\[\left(\langle D_{M,T}^L s, s \rangle \geq C_3 \left(\| D_M^L s \|_0^2 + (T - b_2) \| s \|_0^2 \right) \right). \]

\(^{6}\)We can take \(h_2 \) a radical function with respect to \(|\mu|^2 \) near \(\partial M_{a,a'} \) as in (1.30), then \(h_1, h_2 \) are automatically \(G \)-invariant.
By Proposition 1.1, (2.5), (2.11) and (2.22), we have $Q_{\text{APS},T}^{M,N}(L,\mu) = 0$ for $T > 0$ large enough. Combining this with Definition 1.3, we get Theorem 2.1.

By Theorems 1.5, 2.1 and (2.8), we get Theorem 0.1. □

3. A vanishing result for the APS index

In this section, we prove the vanishing result (0.17).

This section is organized as follows. In Section 3.1, we state (0.17) as a vanishing theorem on the APS index, Theorem 3.2. In Section 3.2, we construct a suitable function $\psi : M \times N \to g$ which is homotopy to the function Y in Theorem 3.2 such that the associated operator with the APS boundary condition is invertible. In Section 3.3, we prove the invertibility of the operator associated to ψ, Theorem 3.7 up to a pointwise estimate, Lemma 3.9. In Sections 3.4-3.6, we prove Lemma 3.9.

We make the same assumptions and we use the same notation as in the Introduction and in Section 2.

3.1. A vanishing theorem for the APS index

For convenience, we recall the basic setting. Let (M,ω), (N,ω^N) be two symplectic manifolds with symplectic forms ω, ω^N, and dim $M = n$. We assume that M is noncompact and that N is compact.

Let J^M, J^N be almost complex structures on TM, TN such that $\omega(\cdot, J^M \cdot)$ defines a metric g^M on TM, and $\omega^N(\cdot, J^N \cdot)$ defines a metric g^N on TN. Let (L, h^L, ∇^L) be a prequantum line bundle on (M,ω), and let (F, h^F, ∇^F) be a prequantum line bundle on (N,ω^N) (cf. (0.1)).

Suppose that G acts (on the left) on M, N and its actions on M, N lift to L and F. Moreover, we assume that these G-actions preserve the above metrics and the connections on TM, TN, L, F and J^M, J^N.

Let the moment map $\mu : M \to g$ be defined as in (0.3). Let $\eta : N \to g$ be the moment map defined in the same way for (N,ω^N) and (F, h^F, ∇^F).

We will keep the same notation for the natural lifts of the objects on M, N to $M \times N$. In particular, $L \otimes F$ is the Hermitian line bundle on $M \times N$ induced by L and F with the Hermitian connection $\nabla^{L\otimes F}$ induced by ∇^L, ∇^F.

The G-action on $M \times N$ is defined by $g \cdot (x, y) = (gx, gy)$ for $(x, y) \in M \times N$. We define the symplectic form Ω and the almost complex structure J on $M \times N$ by

$$\Omega(x,y) = \omega(x) + \omega^N(y), \quad J = (J^M, J^N).$$

The induced moment map $\theta : M \times N \to g$ is given by

$$\theta(x,y) = \mu(x) + \eta(y).$$

Since $\mu : M \to g$ is proper, $\theta : M \times N \to g$ is also proper.

For $A > 0$, set

$$\mathcal{M}_1 = \{(x, y) \in M \times N : |\mu(x)|^2 = A\} = \partial M_A \times N,$$

$$\mathcal{M}_2 = \{(x, y) \in M \times N : |\theta(x,y)|^2 = 2A\},$$

$$\mathcal{M} = \{(x, y) \in M \times N : |\mu(x)|^2 \geq A, |\theta(x,y)|^2 \leq 2A\} \subset M \times N,$$
where ∂M_A is the boundary of M_A defined in (2.6). As μ, θ are proper and M is non-compact, $|\mu(M)|^2$, $|\theta(M \times N)|^2$ contain a half line of \mathbb{R}, thus for A large enough, \mathcal{M}_1, \mathcal{M}_2 are nonempty.

Remark 3.1. Since N is a compact manifold, there exists $C_0 > 0$ such that

\begin{equation}
|\eta| \leq C_0 \quad \text{on } N.
\end{equation}

By (3.2) and (3.4), we have $|\theta| \leq |\mu| + C_0$. Set $A_0 = \left(\frac{C_0}{\sqrt{2-A/3}} \right)^2$. By (3.3), for $A > A_0$, we have

\begin{equation}
|\mu| \geq \sqrt{2A - C_0} \geq \sqrt{5A/3} \quad \text{on } \mathcal{M}_2.
\end{equation}

Thus for any $A > A_0$, we have $\mathcal{M}_1 \cap \mathcal{M}_2 = \emptyset$.

By Sard’s theorem, given $C > 0$, there exists $C' > C$ which is a regular value of the functions $|\mu|^2$ and $\frac{1}{2}|\theta|^2$ on $M \times N$.

From now on, let $A > A_0$ be a regular value of $|\mu|^2$ and $\frac{1}{2}|\theta|^2$. By Remark 3.1 and (3.3), \mathcal{M} is a smooth G-manifold with boundary $\partial \mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2$.

From (0.4), (0.21) and (3.2), for any $1 \leq i \leq \dim G$, we have

\begin{equation}
V_i^{M \times N} = V_i^M + V_i^N, \quad \theta_i = \mu_i + \eta_i,
\end{equation}

\begin{equation}
(d\mu_i)^* = J^M V_i^M, \quad (d\eta_i)^* = J^N V_i^N.
\end{equation}

By (0.22) and the first equation of (3.6), we get

\begin{equation}
\mu^{M \times N} = \mu^M + \mu^N, \quad \theta^{M \times N} = \theta^M + \theta^N.
\end{equation}

By (2.5), μ^M does not vanish on \mathcal{M}_1, so that $\mu^{M \times N}$ also does not vanish on \mathcal{M}_1. Similarly, $\theta^{M \times N}$ does not vanish on \mathcal{M}_2.

Let $Y : \mathcal{M} \to \mathfrak{g}$ be a G-equivariant smooth map such that

\begin{equation}
Y|_{\mathcal{M}_1} = \mu|_{\mathcal{M}_1}, \quad Y|_{\mathcal{M}_2} = \theta|_{\mathcal{M}_2}.
\end{equation}

Then $Y^M \in \mathcal{C}^\infty(\mathcal{M}, \mathcal{T}\mathcal{M})$ does not vanish on $\partial \mathcal{M}$.

The main result of this section can be stated as follows.

Theorem 3.2. There exists $A_1 \geq A_0$ such that for any regular value $A > A_1$ of $|\mu|^2$ and $\frac{1}{2}|\theta|^2$, the following identity holds:

\begin{equation}
Q_{APS}(L \otimes F, Y)_{\gamma=0} = 0.
\end{equation}

Remark 3.3. By Theorem 1.5, (3.9) is equivalent to (0.17) with $a = \frac{1}{2}b = A$.

3.2. Proof of Theorem 3.2.

Lemma 3.4. There exist two real smooth functions $\bar{\alpha}, \bar{\phi} \in \mathcal{C}^\infty(\mathbb{R})$ verifying the following properties,

\begin{equation}
\bar{\alpha}(t) = \begin{cases}
t^2, & \text{for } t \leq \frac{1}{3}, \\
1, & \text{for } t \geq \frac{2}{3},
\end{cases} \quad \bar{\phi}(t) = \begin{cases}
1 - t^3, & \text{for } t \leq \frac{4}{9}, \\
2(1-t), & \text{for } t \geq \frac{2}{3},
\end{cases}
\end{equation}

\begin{equation}
\bar{\alpha}(t) + \bar{\phi}(t) \geq \frac{29}{27} \quad \text{for } \frac{1}{3} \leq t \leq \frac{2}{3}; \quad \bar{\phi}'(t) < 0 \quad \text{for } 0 < t \leq 1.
\end{equation}
Proof. We may set $\tilde{a}_0(t) = t^2$, $\tilde{\phi}_0(t) = 1 - t^3$ on $t \leq \frac{3}{8}$; $\tilde{a}_0(t) = 1$, $\tilde{\phi}_0(t) = 2(1-t)$ on $t \geq \frac{5}{8}$; and assume that \tilde{a}_0, $\tilde{\phi}_0$ are linear on $\frac{3}{8} \leq t \leq \frac{5}{8}$. By smoothing out the linear interpolation, starting from \tilde{a}_0, $\tilde{\phi}_0$, we get α, $\tilde{\phi}$ verifying (3.10).

Let $A > A_0$ be a regular value of $|\mu|^2$ and $\frac{1}{2}|\theta|^2$. Set
\begin{equation}
\alpha_A(t) = A \tilde{\alpha} \left(\frac{t}{A} - 1 \right), \quad \phi_A(t) = \tilde{\phi} \left(\frac{t}{A} - 1 \right).
\end{equation}

The following identities hold:
\begin{equation}
\alpha'_A(t) = \frac{1}{A} \tilde{\alpha}' \left(\frac{t}{A} - 1 \right), \quad \phi'_A(t) = \frac{1}{A} \tilde{\phi}' \left(\frac{t}{A} - 1 \right).
\end{equation}

Let $\beta_A \in \mathcal{C}^\infty(M \times N)$ be defined by
\begin{equation}
\beta_A = |\mu|^2 + \alpha_A \left(|\mu|^2 \right) \left(|\theta|^2 - |\mu|^2 \right).
\end{equation}

Let $\rho_A, \gamma_A, \psi_A : M \times N \to \mathfrak{g}$ be the G-equivariant smooth maps defined by
\begin{enumerate}
\item[(3.14a)] $\rho_A = \theta - \phi_A(\beta_A) \eta,
\item[(3.14b)] $\gamma_A = 2 \left[1 + \alpha'_A \left(|\mu|^2 \right) \left(|\theta|^2 - |\mu|^2 \right) \right] \mu + 2 \alpha_A(\mu^2) \eta,
\item[(3.14c)] $\psi_A = \rho_A - \phi'_A(\beta_A) \langle \rho_A, \eta \rangle \gamma_A$.
\end{enumerate}

For any function f on $M \times N$, we denote by $d^M f$, $d^N f$ its differentials along M, N respectively.

The following lemma partly motivates our choice of ψ_A (compare with (2.5)).

Lemma 3.5. The following identity holds:
\begin{equation}
2 \psi_A^M = -J^M \left(d^M |\rho_A|^2 \right)^*.
\end{equation}

Proof. By (0.21), (3.2) and (3.13)-(3.14b), we have
\begin{equation}
d\beta_A = 2 \left[1 + \alpha'_A \left(|\mu|^2 \right) \left(|\theta|^2 - |\mu|^2 \right) \right] \mu d^M \mu_j + 2 \alpha_A(\mu^2) \theta_j d \theta_j
\end{equation}
\begin{align}
&= \gamma_A d^M \mu_j + 2 \alpha_A(\mu^2) \theta_j d^N \eta_j, \\
&= d\rho_{\beta_j} = d\theta_j - \phi'_A(\beta_A) \eta_j d\beta_A - \phi_A(\beta_A) d^N \eta_j.
\end{align}

From (3.6) and (3.16), we get
\begin{align}
(d\theta_j)^* &= J^M V_j^M + J^N V_j^N, \\
(d\beta_j)^* &= J^M \gamma_A^M + 2 \alpha_A(\mu^2) J^N \theta^N, \\
(d\rho_{A_j})^* &= J^M V_j^M - \phi'_A(\beta_A) \eta_j J^M \gamma_A^M \\
&\quad + \left(1 - \phi_A(\beta_A) \right) J^N V_j^N - 2 \phi'_A(\beta_A) \alpha_A(\mu^2) \eta_j J^N \theta^N.
\end{align}

From (0.22), (3.14c) and the third equality in (3.17), we get
\begin{equation}
2 \psi_A^M = 2 \rho_{A_j} \left[V_j^M - \phi'_A(\beta_A) \eta_j \gamma_A^M \right] = -2 J^M \rho_{A_j} (d^M \rho_{A_j})^* = -J^M \left(d^M |\rho_A|^2 \right)^*.
\end{equation}

The proof of Lemma 3.5 is completed. \qed
Lemma 3.6. There exists $A_2 \geq A_0$ such that for any regular value $A > A_2$ of $|\mu|^2$ and $\frac{1}{2} |\theta|^2$, the following identities hold:

\begin{equation}
\psi_A|_{\mathcal{M}_1} = \mu, \quad \beta_A|_{\mathcal{M}_1} = A,
\end{equation}
\begin{equation}
\psi_A|_{\mathcal{M}_2} = \left(1 + \frac{4}{A} \langle \theta, \eta \rangle \right) \theta, \quad \beta_A|_{\mathcal{M}_2} = 2A.
\end{equation}

Moreover, the following inequality holds:

\begin{equation}
1 + \frac{4}{A} \langle \theta, \eta \rangle \geq \frac{1}{2} \quad \text{on } \mathcal{M}_2.
\end{equation}

In particular, ψ^M_A does not vanish on $\partial \mathcal{M}$.

Proof. On \mathcal{M}_1, we have $|\mu|^2 = A$. By (3.10)-(3.14a), we deduce that on \mathcal{M}_1,\n
\begin{equation}
\beta_A = A, \quad \phi_A(\beta_A) = 1, \quad \phi'_A(\beta_A) = \alpha_A (|\mu|^2) = 0, \quad \rho_A = \mu.
\end{equation}

The first two equalities in (3.19) follow from (3.14c) and (3.21).

From (3.5) and (3.10)-(3.14b), for $A > A_0$, we have on $\mathcal{M}_2 = (|\theta|^2)^{-1}(2A)$:

\begin{equation}
\alpha_A (|\mu|^2) = 1, \quad \alpha'_A (|\mu|^2) = 0, \quad \gamma_A = 2\theta,
\end{equation}
\begin{equation}
\beta_A = 2A, \quad \phi_A (\beta_A) = 0, \quad \rho_A = \theta, \quad \phi'_A (\beta_A) = -\frac{2}{A}.
\end{equation}

By (3.14c) and (3.22), the last two identities in (3.19) hold. Since $|\theta| = \sqrt{2A}$ on \mathcal{M}_2, (3.4) implies that there exists $A_2 \geq A_0$ such that (3.20) holds on \mathcal{M}_2 for $A > A_2$.

We have seen just after (3.7) that μ^M and θ^M do not vanish on \mathcal{M}_1, \mathcal{M}_2 respectively. Hence by (0.22), (3.19) and (3.20), ψ^M_A does not vanish on $\partial \mathcal{M}$ when $A > A_2$.

The proof of Lemma 3.6 is completed. \qed

Let $D^{L \otimes F} : \Omega^0(\mathcal{M} \times N, L \otimes F) \to \Omega^0(\mathcal{M} \times N, L \otimes F)$ be the Spinc Dirac operator on $\mathcal{M} \times N$ (cf. (1.5) and Section 2). Following (1.10), let $D_{\mathcal{M},T}$ be the operator defined for $T \in \mathbb{R}$, by

\begin{equation}
D_{\mathcal{M},T} = D^{L \otimes F} + \sqrt{-1} T c (\psi^M_A) : \Omega^0(\mathcal{M}, L \otimes F) \to \Omega^0(\mathcal{M}, L \otimes F).
\end{equation}

Let $P_{>0, \pm, T}$ be the APS projections associated with $D_{\mathcal{M}, \pm, T}$ induced by $D_{\mathcal{M}, T}$ (cf. (1.11)).

Theorem 3.7. There exists $A_1 \geq A_2$ such that if $A > A_1$ is a regular value of $|\mu|^2$ and $\frac{1}{2} |\theta|^2$, then there exist $C > 0$, $T_0 > 0$ such that for any $T > T_0$ and G-invariant element s of $\Omega^0(\mathcal{M}, L \otimes F)$ with $P_{>0, \pm, T}(s|_{\partial \mathcal{M}}) = 0$, the following inequality holds:

\begin{equation}
\|D_{\mathcal{M},T}s\|_0^2 \geq C \left(\|D^{L \otimes F}s\|_0^2 + T \|s\|_0^2\right).
\end{equation}

Proof of Theorem 3.2. Let $A > A_1$ be a regular value of $|\mu|^2$ and $\frac{1}{2} |\theta|^2$. Then by Theorem 3.7, $(D_{\mathcal{M}, \pm, T}(\gamma = 0), P_{>0, \pm, T}(\gamma = 0))$ is invertible for $T > T_0$. By Propositions 1.1, 1.2 and Definition 1.3, this implies

\begin{equation}
Q^M_{\text{APS}} (L \otimes F, \psi_A)|_{\gamma = 0} = 0.
\end{equation}

We connect the map Y defined in (3.8) and ψ_A via $\psi_A = (1-t)Y + t \psi_A$, $0 \leq t \leq 1$. Lemma 3.6 shows that $\psi^M_A \in \mathcal{C}^\infty(\mathcal{M}, T\mathcal{M})$ generated by ψ_A via (0.22) does not vanish.
on ∂M for any $0 \leq t \leq 1$. By the homotopy invariance of the APS index (cf. Remark 1.4) and (3.25), we get (3.9).

The rest of the section is devoted to the proof of Theorem 3.7.

3.3. Proof of Theorem 3.7. Let $\{e_k\}_{k=1}^n$ (resp. $\{f_i\}_{i=1}^{\dim N}$) be an oriented orthonormal frame of TM (resp. TN). Then $\{e_a\}_{a=1}^{\dim M} = \{e_k\} \cup \{f_i\}$ is an oriented orthonormal frame of TM. Set

$$I_{A_1} = \frac{1}{2} c \left((d^M \psi_{A_j})^* \right) c \left(V_j^M + 2V_j^N \right) + c \left((d^N \psi_{A_j})^* \right) c \left(V_j^M \right),$$

(3.26)

$$I_{A_2} = \frac{1}{2} \left(1 + \frac{JM}{\sqrt{-1}} \right) V_j^M, \left(d^M \psi_{A_j} \right)^* = \text{Tr} \left[\left(d^M \psi_{A_j} \right) |_{T(1,0)M} \otimes V_j^M \right],$$

$$I_{A_3} = c \left((d^N \psi_{A_j})^* \right) c \left(V_j^N \right).$$

Theorem 3.8. The following formula holds:

(3.27) $D_{M,T}^2 = D^{L \otimes F,2} + \sqrt{-1}T \left\{ \frac{1}{2} \sum_{k=1}^n c(e_k) c \left(\nabla_{e_k}^{TM, \psi_A^M} \right) - \text{Tr} \left[\left(\nabla^{TM, \psi_A^M} \right) |_{T(1,0)M} \right] \right\}$

$$+ \frac{J M}{\sqrt{-1}} \left\{ \frac{1}{2} \sum_{i=1}^{\dim N} c(f_i) c \left(\nabla_{f_i}^{TN, V_j^N} \right) - \text{Tr} \left[\left(\nabla^{TN, V_j^N} \right) |_{T(1,0)N} \right] \right\} \psi_{A_j}$$

$$+ 4\pi T \langle \psi_{A_j}, \theta \rangle + \sqrt{-1}T \left(I_{A_1} + I_{A_2} + I_{A_3} \right) - 2\sqrt{-1}T \psi_{A_j} V_j + T^2 |\psi_A^M|^2.$$

Proof. Let $\nabla^{\Lambda_0,*}$ be a brief notation for $\nabla^{(T^{*(0,1)}M) \otimes L \otimes F}$. By (3.23), we deduce as in (1.14) and (1.44) that

(3.28) $D_{M,T}^2 = D^{L \otimes F,2} + \sqrt{-1}T \sum_{a=1}^{\dim M} c(e_a) c \left(\nabla_{e_a}^{TM, \psi_A^M} \right) - 2\sqrt{-1}T \nabla_{\psi_A^M}^{\Lambda_0,*} + T^2 |\psi_A^M|^2.$

From (3.6), the definition of the moment map, and $L_K X = \nabla_{K M}^{TM} X - \nabla_{X}^{TM} K M$ for $K \in g, X \in \mathcal{C}^{\infty}(M, TM)$, we get (cf. [21, Lemma 1.5], (2.12))

(3.29) $\nabla_{\psi_A^M}^{\Lambda_0,*} = \psi_{A_j} \nabla_{V_j^M}^{\Lambda_0,*} = \psi_{A_j} V_j + 2\pi \sqrt{-1} \langle \psi_{A_j}, \theta \rangle$

$$+ \frac{1}{4} \sum_{k=1}^n c(e_k) c \left(\nabla_{e_k}^{TM, V_j^M} \right) \psi_{A_j} + \frac{1}{4} \sum_{i=1}^{\dim N} c(f_i) c \left(\nabla_{f_i}^{TN, V_j^N} \right) \psi_{A_j}$$

$$+ \frac{1}{2} \psi_{A_j} \text{Tr} \left[\left(\nabla^{TM, V_j^M} \right) |_{T(1,0)M} \right] + \frac{1}{2} \psi_{A_j} \text{Tr} \left[\left(\nabla^{TN, V_j^N} \right) |_{T(1,0)N} \right].$$

By (3.26), we get

(3.30) $\frac{1}{2} \sum_{k=1}^n c(e_k) c \left(\nabla_{e_k}^{TM, V_j^M} \right) \psi_{A_j} = \frac{1}{2} \sum_{k=1}^n c(e_k) c \left(\nabla_{e_k}^{TM, \psi_A^M} \right) - \frac{1}{2} c \left((d^M \psi_{A_j})^* \right) c \left(V_j^M \right),$

$$\psi_{A_j} \text{Tr} \left[\left(\nabla^{TM, \psi_A^M} \right) |_{T(1,0)M} \right] = \text{Tr} \left[\left(\nabla^{TM, \psi_A^M} \right) |_{T(1,0)M} \right] - I_{A_2}.$$
Also by (0.21) and (3.6), we have

$$
\sum_{a=1}^{\dim M} c(e_a)c\left(\nabla_{e_a}^{TM}\psi_A^M\right) = \sum_{k=1}^{n} c(e_k)c\left(\nabla_{e_k}^{TM}\psi_A^M\right) + c\left((d^M\psi_A^M)^*\right) c\left(V_j^N\right)
$$

$$
+ \sum_{i=1}^{\dim N} c(f_i)c\left(\nabla_{f_i}^{TN}V_j^N\right) \psi_A^M + c\left((d^N\psi_A^M)^*\right) c\left(V_j^M + V_j^N\right).
$$

By (3.26), (3.28)–(3.31), we get (3.27). The proof of Theorem 3.8 is completed. \qed

Lemma 3.9. There exists $A_1 \geq A_2$ such that if $A > A_1$ is a regular value for $|\mu|^2$ and $\frac{1}{2}|\theta|^2$, then for any $z \in M$ with $\psi_A^M(z) = 0$, and any $f \in \Lambda(T^*(0,1)M) \otimes (L \otimes F)|_M|_z$, the following inequality holds at z:

$$
\text{Re} \left(\sqrt{-1} \left\{ \frac{1}{2} \sum_{i=1}^{\dim N} c(f_i)c\left(\nabla_{f_i}^{TN}V_j^N\right) - \text{Tr} \left[\left(\nabla^{TN}V_j^N\right)|_{T(0,0)}^N \right] \right\} \psi_A^M f, f \right) + \text{Re} \left(\left(4\pi \langle \psi_A^M, \theta \rangle + \sqrt{-1}(I_{A1} + I_{A2} + I_{A3}) \right) f, f \right) \geq \pi |f|^2.
$$

Lemma 3.9 will be proved in Sections 3.4-3.6.

Let $F_{M,T}: \Omega^{0,\bullet}(M, L \otimes F) \to \Omega^{0,\bullet}(M, L \otimes F)$ be defined by

$$
(3.33) \quad F_{M,T} = D_{M,T}^2 + 2\sqrt{-1}T\psi_A^M L V_j.
$$

Proposition 3.10. Let $A_1 > 0$ be as in Lemma 3.9. If $A > A_1$ is a regular value for $|\mu|^2$ and $\frac{1}{2}|\theta|^2$, then for any $z \in M \setminus \partial M$, there exist an open neighborhood U_z of z in M, with $U_z \cap \partial M = \emptyset$, and $C_z > 0$, $b_z > 0$ such that for any $T \geq 1$ and $s \in \Omega^{0,\bullet}(M, L \otimes F)$ with $\text{supp}(s) \subset U_z$, we have

$$
(3.34) \quad \text{Re} \left(F_{M,T}s, s \right) \geq C_z \left(\|D^{L \otimes F}s\|_0^2 + (T - b_z)\|s\|_0^2 \right).
$$

Proof. Let $A > A_1$ be a fixed regular value for $|\mu|^2$ and $\frac{1}{2}|\theta|^2$, and we fix $z \in M \setminus \partial M$.

If $\psi_A^M(z) \neq 0$, then by (3.27) and (3.33), we see that Proposition 3.10 holds.

From now on we assume that $\psi_A^M(z) = 0$. We write $z = (x_0, y_0)$ with $x_0 \in M$, $y_0 \in N$. From (0.22), $\psi_A^M(z) = \psi_A^M(z) + \psi_A^N(z)$ and $\psi_A^M(z) \in TM, \psi_A^N(z) \in TN$, thus

$$
(3.35) \quad \psi_A^M(z) = 0 \quad \text{if and only if} \quad \psi_A^M(z) = 0 \quad \text{and} \quad \psi_A^N(z) = 0.
$$

Let $x' = (x_1, \ldots, x_n)$ be the normal coordinate system with respect to $\{e_j|_{x_0}\}_{j=1}^n$ near $x_0 \in M$. Let $y' = (y_1, \ldots, y_{\dim N})$ be the normal coordinate system near $y_0 \in N$ associated with $\{f_i|_{y_0}\}_{i=1}^{\dim N}$.

By (3.15), $\psi_A^M(z) = 0$ implies that $(d^M|\rho_A|^2)(z) = 0$. Thus we can choose the orthonormal frame $\{e_i|_{x_0}\}_{i=1}^n$ so that the function $|\rho_A(\cdot, y_0)|^2$ has the following expression near x_0,

$$
|\rho_A(x', y_0)|^2 = |\rho_A(x_0, y_0)|^2 + \sum_{j=1}^{n} a_j x_j^2 + O(|x'|^3).
$$

The following Lemma is an analogue of [21, Lemma 2.3].
Lemma 3.11. The following inequality holds at the point \((x_0, y_0)\),

\[
\frac{\sqrt{-1}}{2} \sum_{k=1}^{n} c(e_k) c \left(\nabla_{e_k}^T M \psi_A^M \right) - \sqrt{-1} \text{Tr} \left[(\nabla_{e_k}^T M \psi_A^M) |_{T(1,0)_M} \right] \geq - \sum_{j=1}^{n} |a_j|,
\]

and the inequality is strict if at least one of the \(a_j\)'s is negative.

Proof. Set

\[
\psi_A^M (x', y') = - \sum_{k=1}^{n} t_k(x', y') J^M e_k.
\]

Then Lemma 3.5 and (3.36) imply that

\[
t_k(x', y_0) = a_k x_k + \mathcal{O}(|x'|^2).
\]

Let \(e_j = e_j^{1,0} + e_j^{0,1} \in T^{(1,0)} M \oplus T^{(0,1)} M\). By (2.3), (3.38) and (3.39), we deduce that at the point \((x_0, y_0)\),

\[
\frac{\sqrt{-1}}{2} \sum_{k=1}^{n} c(e_k) c \left(\nabla_{e_k}^T M \psi_A^M \right) - \sqrt{-1} \text{Tr} \left[(\nabla_{e_k}^T M \psi_A^M) |_{T(1,0)_M} \right]
\]

\[
= - \frac{\sqrt{-1}}{2} \sum_{j=1}^{n} a_j c(e_j) c(J^M e_j) - \sqrt{-1} \sum_{j=1}^{n} \left(1 + \frac{J^M}{\sqrt{-1}} \right) (-a_j J^M e_j), e_j \right)
\]

\[
= -2 \sum_{j=1}^{n} a_j e_j^{1,0} \wedge - \sum_{j=1}^{n} |a_j|,
\]

where the last inequality is strict if at least one of the \(a_j\)'s is negative. \(\square\)

Let \(\Delta^M, \Delta^N\) be the Bochner Laplacians on \(M, N\) acting on \(\Omega^{0,\bullet}(M, L), \Omega^{0,\bullet}(N, F)\), respectively. We still denote by \(\Delta^M, \Delta^N\) the induced operators acting on \(\Omega^{0,\bullet}(M \times N, L \otimes F)\), then \(\Delta^M \times N = \Delta^M + \Delta^N\) is the Bochner Laplacian on \(M \times N\). Clearly, they are nonpositive operators acting on \(\Omega^{0,\bullet}(M \times N, L \otimes F)\). From the Lichnerowicz formula for \(D^{L \otimes F, 2}\) (cf. [9, Appendix D] and [11, Theorem 1.3.5]), we get on \(\mathcal{M}\),

\[
D^{L \otimes F, 2} = -\Delta^M \times N + \mathcal{O}(1),
\]

and where \(\mathcal{O}(1)\) is an endomorphism of \(\Lambda(T^{*,(0,1)} \mathcal{M}) \otimes L \otimes F\).

Let \(F_{\mathcal{M},T}\) be the formal adjoint of \(F_{\mathcal{M},T}\). Note that \(|\psi_A^M|^2 = |\psi_A^M|^2 + |\psi_A^N|^2\). From (3.27), (3.32), (3.33), (3.37), (3.38) and (3.41), we find that \(\frac{1}{2} (F_{\mathcal{M},T} + F_{\mathcal{M},T}^*) + \Delta^M \times N\) is an operator of order 0, and near \(z = (x_0, y_0)\),

\[
\frac{1}{2} \left(F_{\mathcal{M},T} + F_{\mathcal{M},T}^* \right) + \Delta^M \times N \geq - T \sum_{j=1}^{n} |a_j| + T^2 \sum_{j=1}^{n} t_j(x', y')^2
\]

\[
+ T^2 |\psi_A^N (x', y')|^2 + \pi TA + \mathcal{O} \left(1 + T |x'| + T |y'| \right).
\]

Let \(\varepsilon_0 > 0\) be sufficiently small so that the orthonormal frame \(\{e_j\}_{j=1}^{n}\) is well defined over the ball \(B_{\varepsilon_0}^M(x_0) = \{x' \in M : d(x', x_0) < \varepsilon_0\}\), and \(B_{\varepsilon_0}^M(x_0) \times B_{\varepsilon_0}^N(y_0) \cap \partial \mathcal{M} = \emptyset\). For
any \(1 \leq j \leq n \), let \((\nabla_{e_j})^*\) be the formal adjoint of \(\nabla_{e_j}^{\alpha*}\). We have (cf. [11, (1.2.9)])

\[(\nabla_{e_j})^* = -\nabla_{e_j}^{\alpha*} + \langle e_j, \nabla^{TM} e_i \rangle.\]

Set

\[-\Delta^M_T = \sum_{j=1}^n \left((\nabla_{e_j})^* + T(\text{sgn} a_j) t_j(x', y') \right) \left(\nabla_{e_j}^{\alpha*} + T(\text{sgn} a_j) t_j(x', y') \right).\]

Clearly, \(-\Delta^M_T\) is nonnegative near \(z = (x_0, y_0)\). We verify using (3.39) that

\[-\Delta^M_T = -\Delta^M - T \sum_{j=1}^n |a_j| + T^2 \sum_{j=1}^n t_j(x', y')^2 + \mathcal{O}(1 + T |x'| + T |y'|).\]

By (3.42), (3.44) and (3.45), the following identity holds for any \(k > 1\), when both sides act on sections with compact support in \(B^M_{\varepsilon_0}(x_0) \times B^N_{\varepsilon_0}(y_0)\),

\[\frac{1}{2} \left(F_{M,T} + F_{M,T}^* \right) \geq -\Delta^N - \Delta^M + \pi TA + \mathcal{O}(1 + T |x'| + T |y'|)\]

\[-\frac{1}{k} \Delta^N - \frac{1}{k} \Delta^M - T \sum_{j=1}^n |a_j| + \pi TA + \mathcal{O}(1 + T |x'| + T |y'|).\]

By (3.41) and (3.46), there exist \(C_2, C_3 > 0\) such that for any \(0 < \varepsilon < \varepsilon_0\), \(s \in \Omega^{0,*}(\mathcal{M}, L \otimes F)\) with \(\text{supp}(s) \subset B^M_{\varepsilon}(x_0) \times B^N_{\varepsilon}(y_0)\), we have

\[\text{Re} \left< F_{M,T}s, s \right> \geq \frac{1}{k} \|D^{L \otimes F}s\|_0^2 + \left[T \left(\pi A - \frac{1}{k} \sum_{j=1}^n |a_j| - C_3 \varepsilon \right) - \left(\frac{C_2}{k} + C_3 \right) \right] \|s\|_0^2.\]

We take \(k\) large enough and choose \(\varepsilon\) small enough so that

\[\frac{A}{2} - \frac{1}{k} \sum_{j=1}^n |a_j| > 0, \quad \frac{A}{2} - C_3 \varepsilon > 0.\]

With \(\varepsilon\) chosen as in (3.48), the conclusion of Proposition 3.10 follows from (3.47) in the case where \(\psi^M(x) = 0\). The proof of Proposition 3.10 is completed. \(\square\)

By Proposition 3.10 and the gluing trick due to Bismut-Lebeau [3, pp. 115-117] (which has been used in the proof of (2.16)), we obtain the following: for any open subset \(U' \subset \mathcal{M}\) with \(\overline{U'} \cap \partial \mathcal{M} = \emptyset\), there exist \(C_6 > 0, b_1 > 0\) such that for any \(s \in \Omega^{0,*}(\mathcal{M}, L \otimes F)\) with \(\text{supp}(s) \subset U'\), we have

\[\text{Re} \left< F_{M,T}s, s \right> \geq C_6 \left(\|D^{L \otimes F}s\|_0^2 + (T - b_1) \|s\|_0^2 \right).\]

Let \(\mathcal{U}\) be a \(G\)-invariant open neighborhood of \(\partial \mathcal{M}\) in \(\mathcal{M}\) such that \(\psi^M\) does not vanish on \(\overline{U}\). As \(\psi^M\) does not vanish on \(\partial \mathcal{M}\), the existence of \(\mathcal{U}\) is clear. Then one can proceed in exactly the same way as in the proof of (1.52) (or [22, Proposition 2.4]), to see that there exist \(T_2 > 0, C_7 > 0\) such that for any \(T > T_2\) and \(s \in \Omega^{0,*}(\mathcal{M}, L \otimes F)\) with \(\text{supp}(s) \subset \mathcal{U}\) and \(P_{\geq 0, T}(s|_{\partial \mathcal{M}}) = 0\), we have

\[\|D_{M,T}s\|_0^2 \geq C_7 \left(\|D^{L \otimes F}s\|_0^2 + T^2 \|s\|_0^2 \right).\]
In view of (3.33), (3.49) and (3.50), one can then proceed as in the proof of (2.22), which goes back to [3, pp. 115-117], to see that Theorem 3.7 holds.

3.4. Proof of Lemma 3.9 (I): uniform estimates on functions. We give first uniform estimates for some functions appeared in the definition of γ_A, ψ_A when $A \to \infty$.

Recall that $A_2 > 0$ was determined in Lemma 3.6. Let $A > A_2$ be a regular value for $|\mu|^2$ and $\frac{1}{2}|\theta|^2$. Set

$$
\tau_{A1} = 1 + \alpha_A'(|\mu|^2)(|\theta|^2 - |\mu|^2),
\tau_{A2} = 1 - 2\phi_A'(|\mu|^2)(|\mu|^2)\tau_{A1},
\tau_{A4} = 1 - \phi_A(|\mu|^2) - 2\phi_A'(|\mu|^2)\alpha_A(|\mu|^2)\langle\rho_A, \eta\rangle,
\tau_{A5} = \left[1 - \phi_A(|\mu|^2)\right]\tau_{A1} - \alpha_A(|\mu|^2)
= 1 - \phi_A(|\mu|^2) - \alpha_A(|\mu|^2) + \left[1 - \phi_A(|\mu|^2)\right]\alpha_A'(|\mu|^2)(|\theta|^2 - |\mu|^2).
\tag{3.51}
$$

Then

$$
\tau_{A5} = \tau_{A1} \tau_{A4} - \alpha_A(|\mu|^2) \tau_{A2}.
\tag{3.52}
$$

From (3.14b), (3.51), we obtain

$$
\gamma_A = 2\tau_{A1}\mu + 2\alpha_A(|\mu|^2)\eta.
\tag{3.53}
$$

From (3.2), (3.14a), (3.14c), (3.51) and (3.53), we get

$$
\psi_A = \mu + \left[1 - \phi_A(|\mu|^2)\right]\eta - \phi_A'(|\mu|^2)\langle\rho_A, \eta\rangle\left[2\tau_{A1}\mu + 2\alpha_A(|\mu|^2)\eta\right]
= \tau_{A2}\mu + \tau_{A4}\eta.
\tag{3.54}
$$

In the following, for $s \in \mathbb{R}$ and a function f_A on M, we write $f_A = \mathcal{O}_0(A^s)$ if there exists $C > 0$ (independent on A) such that its C^0-norm on M can be controlled by CA^s.

The following lemma contains basic asymptotic estimates for these τ functions.

Lemma 3.12. There exists $A_6 \geq A_2$ such that for $A > A_6$, we have

$$
A < \beta_A < 2A, \quad \text{on } M \setminus \partial M.
\tag{3.55}
$$

Thus

$$
0 < \phi_A(|\mu|^2) < 1 \quad \text{on } M \setminus \partial M.
\tag{3.56}
$$

Moreover,

$$
\tau_{A1} = 1 + \mathcal{O}_0(A^{-1/2}), \quad \tau_{A2} = 1 + \mathcal{O}_0(A^{-1/2}),
\tag{3.57a}
$$

$$
\tau_{A4} = \left[1 - \phi_A(|\mu|^2)\right]\left(1 + \mathcal{O}_0(A^{-1/2})\right),
\tag{3.57b}
$$

$$
\tau_{A5} = \left[1 - \phi_A(|\mu|^2) - \alpha_A(|\mu|^2)\right]\left(1 + \mathcal{O}_0(A^{-1/2})\right).
\tag{3.57c}
$$

Finally, for any $A > A_6$, we have

$$
1 - \phi_A(|\mu|^2) - \alpha_A(|\mu|^2) < 0 \quad \text{if } (x, y) \in M \setminus \partial M,
= 0 \quad \text{if } (x, y) \in \partial M.
\tag{3.58}
$$
Proof. From (3.2), (3.3) and (3.4), for $A > A_2 \geq A_0$, we have on \mathcal{M},

\begin{equation}
A^{1/2} |\mu| \leq |\theta| + |\eta| \leq \sqrt{2} A^{1/2} + |C_0| \leq \left(2\sqrt{2} - \sqrt{5/3}\right) A^{1/2},
\end{equation}

\begin{equation}
|\theta|^2 - |\mu|^2 = 2 \langle \mu, \eta \rangle + |\eta|^2 = O(1).
\end{equation}

From (3.10)-(3.13) and (3.59), for $A > A_2$, we have on \mathcal{M},

\begin{equation}
(\text{3.60}) \quad A = |\mu|^2 = O(1), \quad \beta_A = |\mu|^2 + O(1), \quad \alpha'_A(|\mu|^2) = \phi'_A(\beta_A) = O(1).
\end{equation}

If $|\mu|^2 < \frac{4A}{7}$, then (3.10), (3.11), (3.13) and (3.59) yield

\begin{equation}
\begin{aligned}
\beta_A - 1 &= \left(\frac{|\mu|^2}{A} - 1\right)
\left[1 + A \left(\frac{|\mu|^2}{A} - 1\right) \left(|\theta|^2 - |\mu|^2\right)\right]
\left(\frac{|\mu|^2}{A} - 1\right)
\left(1 + O(A^{-1/2})\right).
\end{aligned}
\end{equation}

If $|\mu|^2 > \frac{4A}{7}$, then by (3.60), we have for $A > A_2$ large enough,

\begin{equation}
(\text{3.62}) \quad \beta_A \geq \frac{4}{3} A + O(A^{1/2}) > \frac{6A}{5}.
\end{equation}

By (3.3), (3.61) and (3.62), we have $\beta_A > A$ on $\mathcal{M} \setminus \partial \mathcal{M}$ for $A > A_2$ large enough.

On the other hand, if $|\mu|^2 \leq \frac{4A}{7}$, then by (3.60), for $A > A_2$ large enough, $\beta_A < 2A$.

By (3.10), (3.11) and (3.13), if $|\mu|^2 \geq \frac{4A}{7}$,

\begin{equation}
(\text{3.63}) \quad \alpha_A(|\mu|^2) = 1, \quad \alpha'_A(|\mu|^2) = 0, \quad \beta_A = |\theta|^2.
\end{equation}

Combining with (3.3) we have $\beta_A < 2A$ on $\mathcal{M} \setminus \partial \mathcal{M}$ for $A > A_2$ large enough. Thus there exists $A_7 \geq A_2$ such that (3.55) holds for $A > A_7$. Note that $\tilde{\phi}(0) = 1, \tilde{\phi}(1) = 0$ and $\tilde{\phi}' < 0$ on $(0, 1]$. Thus (3.11) and (3.55) imply (3.56).

The first identity in (3.57a) follows immediately from (3.51), (3.59) and (3.60).

From (3.14a), (3.56) and (3.59), we obtain for $A > A_7$,

\begin{equation}
(\text{3.64}) \quad |\rho_A| \leq |\theta| + |\eta| < 2A^{1/2} \quad \text{on } \mathcal{M}.
\end{equation}

From (3.4), (3.51), the first identity in (3.57a), (3.60) and (3.64), we get the second identity in (3.57a). Hence the proof of (3.57a) is completed.

We prove now (3.57b). If $|\mu|^2 \leq \frac{4A}{7}$, then by (3.60), we have $\beta_A < \frac{5A}{11}$ for $A > A_7$ large enough. Then (3.10), (3.11) and (3.61) imply

\begin{equation}
\begin{aligned}
\alpha_A(|\mu|^2) &= \left(\frac{|\mu|^2}{A} - 1\right)^2, \\
1 - \phi_A(\beta_A) &= \left(\frac{\beta_A}{A} - 1\right)^3 = \left(\frac{|\mu|^2}{A} - 1\right)^3 \left(1 + O(A^{-1/2})\right), \\
\phi'_A(\beta_A) &= -\frac{3}{A} \left(\frac{\beta_A}{A} - 1\right)^2.
\end{aligned}
\end{equation}
From (3.4), (3.51), (3.61), (3.64) and (3.65), we deduce that
\[
\tau_{A_t} = \left(1 - \phi_A(\beta_A)\right) \left[1 + \frac{6}{A} \cdot \left(\frac{|\mu|^2}{A} - 1\right)\left(1 + O_0\left(A^{-1/2}\right)\right)\right] (\rho_A, \eta) \\
= \left(1 - \phi_A(\beta_A)\right) \left(1 + O_0\left(A^{-1/2}\right)\right).
\]

If $|\mu|^2 \geq \frac{44}{3}$, by (3.10), (3.11) and (3.62), we have $1 - \phi_A(\beta_A) \geq 1 - \phi_A(\frac{64}{3}) = 5^{-3} > 0$, from which (3.57b) holds, since in view of (3.4), (3.60) and (3.64), $\phi_A(\beta_A)\alpha_A(|\mu|^2) \langle \rho_A, \eta \rangle = O_0(A^{-1/2})$ holds. Together with (3.66), this implies (3.57b).

For the proof of (3.57c) and (3.58), we first consider the region $|\mu|^2 \geq \frac{54}{3}$ in \mathcal{M}. By (3.51) and (3.63), we get
\[
\tau_{A_5} = 1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2) = -\phi_A(\beta_A).
\]
Thus (3.57c) holds. From (3.22), (3.56) and (3.67), we get (3.58).

By (3.10), (3.12) and (3.60), we find that for $A > A_7$,
\[
\phi_A(\beta_A) = \phi_A(|\mu|^2) + O_0\left(A^{-1/2}\right) \quad \text{on } \mathcal{M}.
\]
If $\frac{44}{3} \leq |\mu|^2 \leq \frac{54}{3}$, then from (3.10) and (3.68), we have for A large enough,
\[
1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2) \leq -\frac{1}{27}.
\]
By (3.51), (3.59), (3.60) and (3.69), we get (3.57c) and (3.58).

Finally, if $|\mu|^2 \leq \frac{44}{3}$, by (3.51), the first equation of (3.57a) and (3.65), the following identities hold for $A > A_7$ large enough:
\[
1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2) = -\left(\frac{|\mu|^2}{A} - 1\right)^2 \left[1 - \left(\frac{|\mu|^2}{A} - 1\right)\left(1 + O_0(A^{-1/2})\right)\right],
\]
\[
\tau_{A_5} = \left[1 - \phi_A(\beta_A)\right] \left(1 + O_0\left(A^{-1/2}\right)\right) - \alpha_A(|\mu|^2) \\
= \left[1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2)\right] \left(1 + O_0\left(A^{-1/2}\right)\right).
\]
From (3.21) and the first identity in (3.70), we get (3.58) in this case.

Combining the three cases discussed above, we conclude that there exists $A_6 \geq A_7$ such that (3.57c) and (3.58) hold for $A > A_6$. The proof of Lemma 3.12 is completed. \(\square\)

The following Lemma will also be used in the proof of Lemma 3.9.

Lemma 3.13. There exists $A_8 \geq A_6$ such that for any $A > A_8$,
\[
1 < \frac{(1 - \phi_A(\beta_A))^2 - \alpha_A(|\mu|^2)}{1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2)} < 12 \quad \text{on } \mathcal{M} \setminus \partial \mathcal{M}.
\]

Proof. By (3.56) and (3.58), we have
\[
(1 - \phi_A(\beta_A))^2 - \alpha_A(|\mu|^2) < 1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2) < 0 \quad \text{on } \mathcal{M} \setminus \partial \mathcal{M}.
\]
To complete the proof of (3.71), we have to show that

\[11 - 10\phi_A(\beta_A) - 11\alpha_A(\|\mu\|^2) - \phi_A(\beta_A)^2 < 0 \quad \text{on } \mathcal{M} \setminus \partial \mathcal{M}. \]

We examine three cases. First, if \(\|\mu\|^2 \geq \frac{5A}{3} \), then (3.73) follows from (3.56) and (3.63). Secondly, if \(\|\mu\|^2 \leq \frac{4A}{3} \), then by (3.65), we get

\[11 - 10\phi_A(\beta_A) - 11\alpha_A(\|\mu\|^2) - \phi_A(\beta_A)^2 \leq -11\alpha_A(\|\mu\|^2) + 12\left(1 - \phi_A(\beta_A)\right) \leq \left(\frac{\|\mu\|^2}{A} - 1\right)^2 \left[-7 + O_0\left(A^{-1/2}\right)\right]. \]

By (3.74), we see that (3.73) holds for \(A \) large enough.

Thirdly, let \(\frac{4A}{3} \leq \|\mu\|^2 \leq \frac{5A}{3} \), from (3.69) for \(A > 0 \) large enough, we have

\[11 - 10\phi_A(\beta_A) - 11\alpha_A(\|\mu\|^2) - \phi_A(\beta_A)^2 \leq -\frac{11}{27} + \phi_A(\beta_A) - \phi_A(\beta_A)^2 \leq -\frac{17}{108}. \]

This completes the proof of Lemma 3.13. \(\square \)

By (3.57a), we may and we will assume that \(A \) is large enough so that \(\tau_{A2} > 1/2 \). Set

\[\tau_{A6} = -2\phi'_A(\beta_A)\alpha''_A(\|\mu\|^2)\langle \rho_A, \eta \rangle \left(|\theta|^2 - |\mu|^2\right) \left(\frac{\tau_{A4}}{\tau_{A2}}\right)^2 \]

\[+ 4\phi'_A(\beta_A)\alpha'_A(\|\mu\|^2)\langle \rho_A, \eta \rangle \frac{\tau_{A4}}{\tau_{A2}} \]

\[+ 2\left[-\phi''_A(\beta_A)\langle \rho_A, \eta \rangle + (\phi'_A(\beta_A))^2|\eta|^2\right] \left(\frac{\tau_{A5}}{\tau_{A2}}\right)^2 + 2\phi'_A(\beta_A)\frac{\tau_{A5}}{\tau_{A2}}. \]

(3.76)

\[\tau_{A7} = 2\phi'_A(\beta_A)\alpha'_A(\|\mu\|^2)\langle \rho_A, \eta \rangle \left(\frac{\tau_{A2} - \tau_{A4}}{\tau_{A2}}\right)\alpha_A(\|\mu\|^2) \left(\frac{\tau_{A2} - \tau_{A4}}{\tau_{A2}}\right) \]

\[- 2\left[-\phi''_A(\beta_A)\langle \rho_A, \eta \rangle + (\phi'_A(\beta_A))^2|\eta|^2\right] \alpha_A(\|\mu\|^2) \left(\frac{\tau_{A2} - \tau_{A4}}{\tau_{A2}}\right) \]

\[+ \phi'_A(\beta_A) \left[\left(\frac{\tau_{A2} - \tau_{A4}}{\tau_{A2}} + 1 - 2\phi_A(\beta_A)\right)\frac{\tau_{A5}}{\tau_{A2}} - \alpha_A(\|\mu\|^2)\frac{\tau_{A2} - \tau_{A4}}{\tau_{A2}}\right]. \]

Lemma 3.14. For \(A > 0 \) large enough, the following identities hold on \(\mathcal{M} \):

\[\tau_{A6} = 2\phi'_A(\beta_A) \left[1 - \phi_A(\beta_A) - \alpha_A(\|\mu\|^2)\right] \left(1 + O_0\left(A^{-1/2}\right)\right), \]

(3.77)

\[\tau_{A7} = \phi'_A(\beta_A) \left[\left(1 - \phi_A(\beta_A)\right)^2 - \alpha_A(\|\mu\|^2)\right] \left(1 + O_0\left(A^{-1/2}\right)\right). \]

In particular,

\[\tau_{A6} > 0, \quad \tau_{A7} > 0 \quad \text{if } (x, y) \in \mathcal{M} \setminus \partial \mathcal{M}, \]

(3.78)

\[\tau_{A6} = 0, \quad \tau_{A7} = 0 \quad \text{if } (x, y) \in \partial \mathcal{M} = \mathcal{M}_1 \cup \mathcal{M}_2, \]

and

\[\tau_{A7} \leq 6\tau_{A6} \left[1 + O_0\left(A^{-1/2}\right)\right]. \]

(3.79)
\[\phi'(\beta_A) < 0 \quad \text{on } \mathcal{M} \setminus \partial \mathcal{M}, \]
\[|\phi'(\beta_A)| \geq \frac{C}{A} \quad \text{if } |\mu|^2 \geq \frac{4A}{3}. \]

By Lemma 3.12, (3.59), (3.76) and (3.80), we get
\begin{equation}
\tau_{A6} = \phi'(\beta_A)\mathcal{O}_0 \left(A^{-1} \right) \left[1 - \phi_A(\beta_A) \right]^2 + \phi'(\beta_A)\mathcal{O}_0 \left(A^{-1/2} \right) \left[1 - \phi_A(\beta_A) \right] \\
\quad + \mathcal{O}_0(A^{-3/2}) \left[1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right]^2 \\
\quad + 2\phi'(\beta_A) \left[1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right] \left(1 + \mathcal{O}_0 \left(A^{-1/2} \right) \right).
\end{equation}

By (3.61), (3.65) and the first equation of (3.70), there exists \(C > 0 \) such that for \(A > 0 \) large enough, if \(|\mu|^2 \leq \frac{4A}{3} \), then
\begin{equation}
0 \leq 1 - \phi_A(\beta_A) \leq C \left| 1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right| , \\
\left| 1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right| \leq C |\phi'(\beta_A)|.
\end{equation}

Due to (3.56), (3.60), (3.69) and (3.81), if \(\frac{4A}{3} \leq |\mu|^2 \leq \frac{5A}{3} \), (3.83) still holds for some constant \(C > 0 \). By (3.83), the first three terms in (3.82) can be controlled by \(|\phi'(\beta_A)| \)
\begin{equation}
\left[1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right] \mathcal{O}_0 \left(A^{-1/2} \right) \text{ if } |\mu|^2 \leq \frac{5A}{3}.
\end{equation}

Thus from (3.82), the first identity in (3.77) holds when \(|\mu|^2 \leq \frac{5A}{3} \).

For \(|\mu|^2 \geq \frac{5A}{3} \), by (3.63), \(\alpha_A''(|\mu|^2) = \alpha_A'(|\mu|^2) = 0 \), thus the first two terms of \(\tau_{A6} \) are zero. By (3.57a)-(3.57c), (3.67), (3.76) and the third equation in (3.80), we have
\begin{equation}
\tau_{A6} = \mathcal{O}_0 \left(A^{-3/2} \right) \phi_A(\beta_A)^2 - 2\phi'(\beta_A)\phi_A(\beta_A) \left(1 + \mathcal{O}_0 \left(A^{-1/2} \right) \right).
\end{equation}

From (3.56), (3.67), (3.81) and (3.84), the first identity in (3.77) holds when \(|\mu|^2 \geq \frac{5A}{3} \).

From (3.58), the first identity in (3.77) and (3.81), we get (3.78) for \(\tau_{A6} \).

For the second identity in (3.77), by Lemma 3.12 and (3.80), we obtain the asymptotics of the terms of \(\tau_{A7} \) in (3.76) in order as follows:
\begin{equation}
\tau_{A7} = \phi'(\beta_A) \left[1 - \phi_A(\beta_A) \right] \mathcal{O}_0 \left(A^{-1/2} \right) \\
\quad + \alpha_A (|\mu|^2) \left[1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right] \mathcal{O}_0(A^{-3/2}) \\
\quad + \phi'(\beta_A) \left\{ \left(1 - \phi_A(\beta_A) + \mathcal{O}_0 \left(A^{-1/2} \right) \right) \left[1 - \phi_A(\beta_A) - \alpha_A (|\mu|^2) \right] \\
\quad - \alpha_A (|\mu|^2) \left(\phi_A(\beta_A) + \mathcal{O}_0 \left(A^{-1/2} \right) \right) \right\}.
\end{equation}
here the factor $1 - \phi_A(\beta_A)$ in the first term of (3.85) is from τ_{A4} and the factor $1 - \phi_A(\beta_A) - \alpha_A(|\mu|^2)$ is from τ_{A5}.

If $|\mu|^2 \leqslant \frac{5A}{3}$, by (3.72), the first equation of (3.83) (which holds for $|\mu|^2 \leqslant \frac{5A}{3}$ as explained after (3.83)), we get for $A > 0$ large enough,

$$\tau_{A1} = 1, \quad \tau_{A2} - \tau_{A4} = \phi_A(\beta_A), \quad \tau_{A5} = -\phi_A(\beta_A).$$

By (3.57a), (3.63), (3.76), (3.80) and (3.87), we have

$$\tau_{A7} = \phi_A(\beta_A)^2 O_0(A^{-3/2}) + \phi_A'(\beta_A) \left(1 + O_0(A^{-1/2})\right)$$

$$- \left[1 - 2\phi_A(\beta_A)\right]\phi_A(\beta_A) \left(1 + O_0(A^{-1/2})\right) \phi_A(\beta_A) \left(1 + O_0(A^{-1/2})\right).$$

From (3.6), (3.81) and (3.88), we get that if $|\mu|^2 \geqslant \frac{5A}{3}$,

$$\tau_{A7} = -\phi_A'(\beta_A) \phi_A(\beta_A) \left(2 - \phi_A(\beta_A)\right) \left(1 + O_0(A^{-1/2})\right).$$

Now (3.63) and (3.89) imply the second identity in (3.77) for $|\mu|^2 \geqslant \frac{5A}{3}$. By (3.58), (3.71) and (3.81), we get (3.78) for τ_{A7}. From Lemma 3.13, (3.77) and (3.78), we get (3.79). This concludes the proof of Lemma 3.14. □

3.5. Proof of Lemma 3.9 (II): evaluation of I_A over $\text{zero}(\psi_A^M)$. In this subsection, we evaluate the terms I_A in (3.26) on zero(ψ_A^M), the zero set of ψ_A^M. The main point is that we use η^N (resp. η^M) to replace μ^N, θ^N, γ_A^N (resp. μ^M, γ_A^M) which are difficult to control over \mathcal{M}.

Lemma 3.15. On $\{z \in \mathcal{M} : \psi_A^M(z) = 0\}$, the following identities hold:

$$\tau_{A2} \mu^M = -\tau_{A4} \eta^M, \quad \tau_{A2} \gamma_A^M = -2\tau_{A5} \eta^M,$$

and

$$\tau_{A2} \mu^N = -\tau_{A4} \eta^N, \quad \tau_{A2} \gamma_A^N = -2\tau_{A5} \eta^N.$$

Proof. Let $z \in \mathcal{M}$ be such that $\psi_A^M(z) = 0$. In view of (3.54) the equation $\psi_A^M(z) = 0$ in (3.35) is equivalent to the first equation of (3.90). Similarly, the equation $\psi_A^N(z) = 0$ in (3.35) is equivalent to the first equation of (3.91). By (3.51), (3.52), (3.53) and the first equation of (3.90), we get at z:

$$\tau_{A2} \gamma_A^M = 2\tau_{A1} \tau_{A2} \mu^M + 2\alpha_A(|\mu|^2) \tau_{A2} \eta^M$$

$$\quad = -2\tau_{A1} \tau_{A4} \eta^M + 2\alpha_A(|\mu|^2) \tau_{A2} \eta^M = -2\tau_{A5} \eta^M.$$
For any \(x \in M, \; y \in N, \; W \in T_x M, \; V \in T_y N \), let \(B(W) \in \text{End}(\Lambda(T^*(0,1)(M \times N)))_{(x,y)} \) be defined by

\[
B(W) = \sqrt{-1} c(J^M W) c(W) + |W|^2.
\]

(3.93)

Clearly, the endomorphisms \(B(W), \sqrt{-1} c(W)c(V) \) of \(\Lambda(T^*(0,1)(M \times N))_{(x,y)} \) are self-adjoint and \(B(J^M W) = B(W) = B(-W) \).

Lemma 3.16. On \(\{ z \in M : \psi^M_A(z) = 0 \} \), the following identities hold for \(I_A \) in (3.26):

\[
\sqrt{-1}(I_{A1} + I_{A2}) = \frac{\tau_{A2}}{2} \sum_{j=1}^{\dim G} B(V_j^M) + \tau_{A6} B(\eta^M)
\]

(3.94)

\[
\sqrt{-1} \tau_{A2} c \left(J^M V_j^M \right) c(V_j^N) + 2\sqrt{-1} \tau_{A6} c \left(J^M \eta^M \right) c(\eta^N)
\]

\[
+ \sqrt{-1} \tau_{A4} c \left(J^N V_j^N \right) c(V_j^M) + 2\sqrt{-1} \tau_{A7} c \left(J^N \eta^N \right) c(\eta^M),
\]

\[
I_{A3} = \tau_{A4} c \left(J^N V_j^N \right) c(V_j^N) + 2\tau_{A7} c \left(J^N \eta^N \right) c(\eta^N).
\]

Proof. Let \(z \in M \) be such that \(\psi^M_A(z) = 0 \). By (3.6) and (3.51), we get

\[
(d^M \tau_{A1})^* = 2\alpha_A'(\langle |\mu|^2 \rangle \langle |\eta|^2 - |\mu|^2 \rangle) J^M \mu^M + 2\alpha_A'(\langle |\mu|^2 \rangle J^M \eta^M,
\]

(3.95)

\[
(d^N \tau_{A1})^* = 2\alpha_A'(\langle |\mu|^2 \rangle J^N \eta^N.
\]

Using (3.6), (3.17) and (3.90), we infer at \(z \),

\[
(d^M \beta_A)^* = J^M \gamma_A^M = -\frac{2\tau A_5}{\tau A_2} J^M \eta^M,
\]

(3.96)

\[
(d^M \langle \rho_A, \eta \rangle)^* = J^M \eta^M + 2\alpha_A'(\beta_A) |\eta|^2 \frac{\tau A_5}{\tau A_2} J^M \eta^M.
\]

By (3.6), (3.51), (3.90), (3.95) and (3.96), at \(z \), we get

\[
(d^M \tau_{A1})^* = -2\phi_A'(\beta_A) \langle \rho_A, \eta \rangle (d^M \tau_{A1})^* - 2\phi_A'(\beta_A) \tau_{A1} (d^M \langle \rho_A, \eta \rangle)^* - 2\phi_A'(\beta_A) \tau_{A1} (d^M (\rho_A, \eta))^* - 4 \left(\phi_A'(\beta_A) \langle \rho_A, \eta \rangle + (\phi_A'(\beta_A))^2 \langle \eta \rangle^2 \right) \frac{\tau A_5}{\tau A_2} \tau_{A1} - 2\phi_A'(\beta_A) \tau_{A1} \right)
\]

\[
J^M \eta^M,
\]

and

\[
(d^M \tau_{A2})^* = -2\phi_A'(\beta_A) \langle \rho_A, \eta \rangle \alpha_A'(\langle |\mu|^2 \rangle) 2J^M \mu^M
\]

\[
+ \left[\phi_A'(\beta_A) - 2\phi_A'(\beta_A) \langle \rho_A, \eta \rangle \alpha_A(\langle |\mu|^2 \rangle) \right] (d^M \beta_A)^* - 2\phi_A'(\beta_A) \alpha_A(\langle |\mu|^2 \rangle) (d^M \langle \rho_A, \eta \rangle)^*
\]

\[
= \left\{ 4\phi_A'(\beta_A) \alpha_A'(\langle |\mu|^2 \rangle) \langle \rho_A, \eta \rangle \frac{\tau A_4}{\tau A_2} + 2\phi_A'(\beta_A) \frac{\tau A_5}{\tau A_2}
\]

\[
- 4 \left[\phi_A'(\beta_A) \langle \rho_A, \eta \rangle + (\phi_A'(\beta_A))^2 \langle |\mu|^2 \rangle \right] \alpha_A(\langle |\mu|^2 \rangle \frac{\tau A_5}{\tau A_2} - 2\phi_A'(\beta_A) \alpha_A(\langle |\mu|^2 \rangle) \right\} J^M \eta^M.
\]

(3.98)
From (3.6) and (3.54), we get

\[(d^M \psi_{A_j})^* = (d^M \tau_{A_2})^* \mu_j + (d^M \tau_{A_4})^* \eta_j + \tau_{A_2} J^M V_j^M,
\]

\[(d^N \psi_{A_j})^* = (d^N \tau_{A_2})^* \mu_j + (d^N \tau_{A_4})^* \eta_j + \tau_{A_4} J^N V_j^N.\]

From (3.52), (3.76), the first equation of (3.90) and (3.97)-(3.99), we get at \(z\),

\[c((d^M \psi_{A_j})^* c(V_j^M) = \tau_{A_2} c(J^M V_j^M) c(V_j^M) + 2 \tau_{A_6} c(J^M \eta^M) c(\eta^M),\]

\[\langle 1 + \frac{J^N}{\sqrt{-1}} \rangle V_j^M, (d^M \psi_{A_j})^* \rangle = \frac{1}{\sqrt{-1}} \left(\tau_{A_2} \sum_j \left| V_j^M \right|^2 + 2 \tau_{A_6} \left| \eta^M \right|^2 \right).\]

Using (3.76), the first equation of (3.91) and (3.97)-(3.99), we get at \(z\),

\[c((d^M \psi_{A_j})^* c(V_j^N) = \tau_{A_2} c(J^M V_j^M) c(V_j^N) + 2 \tau_{A_6} c(J^M \eta^M) c(\eta^N).\]

By (3.17), (3.91) and (3.95), it follows that at \(z\),

\[(d^N \beta_A)^* \rangle = 2 \alpha_A (\left| \mu \right|^2)^{t A_2 - t A_4} J^N \eta^N,\]

\[(d^N \tau_{A_1})^* \rangle = 2 \alpha_A' (\left| \mu \right|^2)^{t A_2 - t A_4} J^N \eta^N,\]

\[(d^N \rho_{A_j})^* \rangle = \left(1 - \phi_A(\beta_A) \right) J^N V_j^N - 2 \phi_A'(\beta_A) \alpha_A (\left| \mu \right|^2) \eta_j \frac{t A_2 - t A_4}{t A_2} J^N \eta^N.\]

From (3.6), (3.14a), (3.91) and (3.102c), we have

\[(d^N \langle \rho_A, \eta \rangle)^* = \left(\theta_j - \phi_A(\beta_A) \eta_j \right) (d^N \eta_j)^* + \eta_j (d^N \rho_{A_j})^* \]

\[= \left[1 - 2 \phi_A(\beta_A) + \left(1 - 2 \phi_A'(\beta_A) \alpha_A (\left| \mu \right|^2) \eta_j \right) \frac{t A_2 - t A_4}{t A_2} \right] J^N \eta^N.\]

By (3.51), (3.90), (3.95) and (3.102a)-(3.103), we get at \(z\),

\[(d^N \tau_{A_2})^* = -2 \phi_A'(\beta_A) \langle \rho_A, \eta \rangle (d^N \tau_{A_1})^* \]

\[- 2 \phi_A''(\beta_A) \langle \rho_A, \eta \rangle \tau_{A_1} (d^N \beta_A)^* - 2 \phi_A'(\beta_A) \tau_{A_1} (d^N \rho_A, \eta)^* \]

\[= \left\{ -4 \phi_A'(\beta_A) \langle \rho_A, \eta \rangle \alpha_A (\left| \mu \right|^2) \frac{t A_2 - t A_4}{t A_2} \right\} \]

\[+ \left[- \phi_A'(\beta_A) \langle \rho_A, \eta \rangle + \left(\phi_A'(\beta_A) \right)^2 \eta_j^2 \right] \alpha_A (\left| \mu \right|^2) \frac{t A_2 - t A_4}{t A_2} \tau_{A_1} \]

\[- 2 \phi_A'(\beta_A) \tau_{A_1} \left(1 - 2 \phi_A(\beta_A) + \frac{t A_2 - t A_4}{t A_2} \right) \right\} J^M \eta^N,\]
From (3.52), (3.76), (3.91), (3.99), (3.104) and (3.105), we get at z

\begin{equation}
(3.107)
\end{equation}

By Lemma 3.17.

For any $k > 0$, the following inequalities hold for $W \in TM, V \in TN$:

\begin{equation}
B(W) \geq 0,
\end{equation}

\begin{equation}
(3.107)
\end{equation}

\begin{equation}
\sqrt{-1}c(W)c(V) \geq -\frac{1}{2k}B(W) - k|V|^2.
\end{equation}

Proof. It is enough to prove it for $V = v + \bar{v}, W = w + \bar{w}$, and $\{v, w\}$ an orthonormal basis of \mathbb{C}^2 with the standard Hermitian product. Using (2.3) and (3.93), we find

\begin{equation}
B(W) = -2(w^* \wedge +i\eta) (w^* \wedge i\eta) + 2 = 4w^* \wedge i\eta.
\end{equation}

Thus the first inequality in (3.107) holds (cf. [21, (2.9), (2.13)]).

For any $\sigma \in \Lambda^{\mathbb{C}^2}$, we write $\sigma = \sigma_1 w^* \wedge v^* + \sigma_2 w^* + \sigma_3 v^* + \sigma_4$, where $\sigma_i \in \mathbb{C}$ for $i = 1, 2, 3, 4$. By (2.3), we get

\begin{equation}
\sqrt{-1}c(W)c(V)\sigma = 2\sqrt{-1}(-\sigma_1 + \sigma_2 v^* - \sigma_3 w^* + \sigma_4 w^* \wedge v^*).
\end{equation}

From (3.108) and (3.109), we find that for any $k > 0$,

\begin{equation}
\langle \sqrt{-1}c(W)c(V)\sigma, \sigma \rangle = 4 \text{Im} (\sigma_1 \overline{\sigma_3} - \sigma_2 \overline{\sigma_4})
\end{equation}

\begin{equation}
\geq -\frac{2}{k} (|\sigma_1|^2 + |\sigma_2|^2) - 2k|\sigma|^2 = -\frac{1}{2k}(B(W)\sigma, \sigma) - 2k|\sigma|^2.
\end{equation}

From (3.110), we get the second inequality of (3.107). \hfill \Box

3.6. Proof of Lemma 3.9 (III): final step. Recall that $z \in \mathcal{M}$ satisfies $\psi^A_M(z) = 0$. By Lemma 3.6, $z \in \mathcal{M} \setminus \partial \mathcal{M}$.

By Lemma 3.12, $\tau_{A2}, \tau_{A4} > 0$ on \mathcal{M} for A large enough. Thus by (3.78), (3.94) and the second equation in (3.107) with $k = 8$, we get

\begin{equation}
(3.111)
\sqrt{-1}(I_{A1} + I_{A2}) \geq \frac{1}{2} \left(\frac{7}{8} \tau_{A2} - \frac{1}{8} \tau_{A4} \right) \sum_{j=1}^{\dim G} B(V_j^M) - \left(8 \tau_{A2} + 8 \tau_{A4} \right) \sum_{j=1}^{\dim G} |V_j^N|^2 \right.
\end{equation}
By Lemma 3.12, we obtain for $A > 0$ large enough,

\[(3.112)\]
\[\frac{7}{8} \tau A_2 - \frac{1}{8} \tau A_4 = \frac{3}{4} + \frac{1}{8} \phi_A(\beta_A) + \mathcal{O}_0 \left(A^{-1/2} \right) \geq \frac{1}{2}.\]

By Lemma 3.14, for $A > 0$ large enough, as $z \in \mathcal{M} \setminus \partial \mathcal{M},$

\[(3.113)\]
\[\frac{7}{8} \tau A_6 - \frac{1}{8} \tau A_7 \geq \frac{1}{8} \tau A_6 \left(1 + \mathcal{O}_0 \left(A^{-1/2} \right) \right) > 0.\]

Recall that $V_{N_k}^N, \eta$ are defined on the compact manifold $N.$ By Lemmas 3.12, (3.77), (3.107) and (3.111)-(3.113), there exists $C' > 0$ such that for $A > 0$ large enough, the following inequality holds:

\[(3.114)\]
\[\sqrt{-1} \left(I_{A_1} + I_{A_2} \right) \geq -C' \text{ Id on } \{ z \in \mathcal{M}, \psi_M^A(z) = 0 \}.\]

By (3.57b), (3.77) and (3.94), there exists $C'' > 0$ such that for $A > 0$ large enough, we have

\[(3.115)\]
\[|I_{A_3}| \leq C'' \text{ on } \{ z \in \mathcal{M}, \psi_M^A(z) = 0 \}.\]

By Lemma 3.12, (3.4), (3.54) and (3.59), for $A > 0$ large enough, we get over $\mathcal{M}:

\[(3.116)\]
\[2 \langle \psi_A, \theta \rangle = 2\tau A_1|\mu|^2 + 2\tau A_4|\eta|^2 + 2 (\tau A_2 + \tau A_4) \langle \mu, \eta \rangle \geq 2A + \mathcal{O}_0 \left(A^{1/2} \right) \geq A, \]
\[|\psi_A| = \mathcal{O}_0 \left(A^{1/2} \right).\]

By (3.114)-(3.116), we get (3.32). This completes the proof of Lemma 3.9.

4. Functoriality of quantization

This section is organized as follows. In Section 4.1, we establish the product formula for quantization, Theorem 0.4. In Section 4.2, we explain the compatibility of quantization and its restriction to a subgroup.

We will use the assumptions and notation in the Introduction and in Section 3.1.

4.1. Proof of Theorem 0.4. Let $c > 0$ be a regular value of $|\theta|^2.$ By [22, Theorem 4.3], [17, Prop. 7.10] (cf. also Theorems 1.5, 2.1), the following identity holds:

\[(4.1)\]
\[\text{Ind} \left(\sigma^{(M \times N)_c}_{L \otimes F, \theta} \right) \gamma = 0 = Q \left((L \otimes F)_{\gamma = 0} \right).\]

Here 0 need not to be a regular value of $\theta.$

On the other hand, by Theorem 0.1b), we have

\[(4.2)\]
\[\text{Ind} \left(\sigma^{(M \times N)_c}_{L \otimes F, \theta} \right) \gamma = 0 = Q \left(L \otimes F \right)_{\gamma = 0}.\]

Therefore, by (4.1) and (4.2), we get (0.12). Thus, to prove Theorem 0.4, we only need to prove the following identity, which has been stated in (0.13),

\[(4.3)\]
\[Q \left(L \otimes F \right)_{\gamma = 0} = \sum_{\gamma \in \Lambda_L} Q(L)_{\gamma} \cdot Q(F)_{\gamma, \ast}.\]

We first establish the following lemma, which has been stated in (0.14).
Lemma 4.1. There exists \(a' \geq 0 \) such that for any regular value \(a > a' \) of \(|\mu|^2 : M \to \mathbb{R}\), the following identity holds:

\[
\sum_{\gamma \in \Lambda_*^a} Q(L)_\gamma \cdot Q(F)_{\gamma,*} = \text{Ind} \left(\sigma_{L \otimes F,\mu}^{M \times N} \right)_{\gamma=0}.
\]

Proof. We denote the finite set \(\{ \gamma \in \Lambda_*^a : Q(F)_{\gamma,*} \neq 0 \} \) by \(\Lambda_*^a(F) \). By Theorem 0.1, there exists \(a_1 \geq 0 \) such that for any regular value \(a > a_1 \) of \(|\mu|^2\), we have

\[
Q(L)_\gamma = \text{Ind} \left(\sigma_{L,\mu}^{M_a \times N} \right)_\gamma \quad \text{for any } \gamma \in \Lambda_*^a(F).
\]

Let \(a > a_1 \) be a regular value of \(|\mu|^2\). For \(0 \leq t \leq 1 \), let \(\sigma_t \) be the symbol on \(M_a \times N \) defined to be a deformation of \(\sigma_{L,\mu}^{M_a \times N} \) as follows,

\[
\sigma_t = \sigma_{L,\mu}^{M_a \times N} - (1-t)\sqrt{-1}\pi_*c(\mu^N)
\]

where \(\pi : T(M_a \times N) \to M_a \times N \) is the canonical projection (cf. (1.2)).

By (1.2) and (3.7), when \(t = 0 \), \(\sigma_0 \) is the external product of \(\sigma_{L,\mu}^{M_a} \) and \(\sigma_{F,\mu}^N \) in the sense of [1] (cf. [17, (3.11)]). Then by the multiplicativity of the transversal index ([1, Theorem 3.5], [17, (3.12)]) and by (4.5), we get

\[
\sum_{\gamma \in \Lambda_*^a} Q(L)_\gamma \cdot Q(F)_{\gamma,*} = \text{Ind} \left(\sigma_0 \right)_{\gamma=0}.
\]

For \(0 \leq t \leq 1 \), set

\[
V_t = \mu^{M_a \times N} - (1-t)\mu^N.
\]

Then by (3.6), (3.7) and (4.8), we have

\[
V_t = \mu^M + t\mu^N.
\]

As \(a > a_1 \) is a regular value of \(|\mu|^2\), \(\mu^M \) does not vanish on \(\partial M_a \). From (4.9), \(\mu^{M_a \times N}, V_t \) do not vanish on \(\partial (M_a \times N) = (\partial M_a) \times N \) for \(0 \leq t \leq 1 \).

By (1.2), (4.6), (4.8) and (4.9), the set \(\{(z,v) \in T_G(M_a \times N) : \text{there exists } 0 \leq t \leq 1 \text{ such that } \sigma_t(z,v) \text{ is non-invertible} \} \subset \{(x,y,0) \in T_G(M_a \times N) : \mu^M(x) = 0, x \in M_a, y \in N \} \) is a compact subset of \(T_G(M_a \times N) \). Thus \(\sigma_t \) forms a continuous family of transversally elliptic symbols in the sense of [1] and [17, §3]. Hence by (4.6), (4.7) and the homotopy invariance of the transversal index (cf. [1, Theorems 2.6, 3.7], [17, §3]), we get (4.4). The proof of Lemma 4.1 is completed. \(\square \)

Let \(A > 0 \) be a regular value of both \(|\mu|^2\) and \(\frac{1}{2}|\theta|^2 \). We may and we will assume that \(A > 0 \) is large enough so that both Theorem 3.2 and Lemma 4.1 hold.

Let \(Y : \mathcal{M} \to \mathfrak{g} \) be a \(G \)-equivariant map such that (3.8) holds. By the additivity of the transversal index (cf. [1, Theorem 3.7, §6] and [17, Prop. 4.1]), we have

\[
\text{Ind} \left(\sigma_{L \otimes F,\mu}^{(M \times N)_a} \right)_{\gamma=0} = \text{Ind} \left(\sigma_{L \otimes F,Y}^M \right)_{\gamma=0} + \text{Ind} \left(\sigma_{L \otimes F,\mu}^{M_a \times N} \right)_{\gamma=0}.
\]

By Theorems 1.5 and 3.2, we find

\[
\text{Ind} \left(\sigma_{L \otimes F,Y}^M \right)_{\gamma=0} = 0.
\]

By Theorem 0.1b), (4.4), (4.10) and (4.11), we get (4.3). The proof of Theorem 0.4 is completed.
4.2. Restriction commutes with quantization. Set

\[(4.12) \quad Q_G(L)^{-\infty} = \bigoplus_{\gamma \in \Lambda^*_+} Q(L)_\gamma \cdot V^G_{\gamma} \in R[G].\]

By Theorem 0.2, \(Q_G(L)^{-\infty}\) is equal to the formal geometric quantization in the sense of Weitsman [26, Definition 4.1] (where the fundamental properness assumption of the moment map was introduced into the framework of geometric quantization) and Paradan [19, Definition 1.2].

On the other hand, let \(H\) be a compact connected subgroup of \(G\) such that the moment map of the induced action of \(H\) on \(M\) is also proper. By combining Theorem 0.2, (4.12) with [19, Theorem 1.3], one gets the following relation between \(Q_G(L)^{-\infty}\) and \(Q_H(L)^{-\infty}\).

Theorem 4.2. Any irreducible representation of \(H\) has a finite multiplicity in \(Q_G(L)^{-\infty}\). Moreover, when both sides are viewed as virtual representation spaces of \(H\), the following identity holds:

\[(4.13) \quad Q_G(L)^{-\infty} \mid_H = Q_H(L)^{-\infty}.\]

It would be interesting to give a direct proof of Theorem 4.2.

References

[1] M. F. Atiyah, *Elliptic operators and compact groups*, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin, 1974.

[2] M. F. Atiyah, V. K. Patodi and I. M. Singer, *Spectral asymmetry and Riemannian geometry I*. Proc. Camb. Philos. Soc. **77** (1975), 43-69.

[3] J.-M. Bismut and G. Lebeau, *Complex immersions and Quillen metrics*, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp.

[4] M. Braverman, *Index theorem for equivariant Dirac operators on non-compact manifolds*, K-Theory **27** (2002), no. 1, 61–101.

[5] U. Bunke, *On the gluing problem for the \(\eta\)-invariant*, J. Diff. Geom. **41** (1995), 397-448.

[6] P. Gilkey, *On the index of geometrical operators for Riemannian manifolds with boundary*. Adv. Math. **102** (1993), no. 2, 129–183.

[7] V. Guillemin and S. Sternberg, *Geometric quantization and multiplicities of group representations*, Invent. Math. **67** (1982), no. 3, 515–538.

[8] B. Kostant, *Quantization and unitary representations*, Lect. Notes in Math. **170** (1970), 87-207.

[9] H. B. Lawson and M.-L. Michelsohn, *Spin geometry*, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.

[10] X. Ma, *Geometric quantization on Kähler and symplectic manifolds*, Proceedings of the International Congress of Mathematicians. Volume II, 785–810, Hindustan Book Agency, New Delhi, 2010.

[11] X. Ma and G. Marinescu, *Holomorphic Morse inequalities and Bergman kernels*, Progress in Mathematics **254**, Birkhäuser Boston, Inc., Boston, MA 2007, 422 pp.

[12] X. Ma and W. Zhang, *Geometric quantization for proper moment maps*, C. R. Math. Acad. Sci. Paris **347** (2009), 389-394.

[13] , *Transversal index and \(L^2\)-index for manifolds with boundary*, Metric and Differential Geometry, a volume in honor of Jeff Cheeger for his 65th birthday. Edited by X. Dai and X. Rong. Progress in Mathematics **297**, Birkhäuser Boston, Inc., Boston, MA 2012, 299-316.

[14] E. Meinrenken, *On Riemann-Roch formulas for multiplicities*, J. Amer. Math. Soc. **9** (1996), no. 2, 373–389.

[15] , *Symplectic surgery and the Spin’-Dirac operator*, Adv. Math. **134** (1998), no. 2, 240–277.
[16] E. Meinrenken and R. Sjamaar, *Singular reduction and quantization*. Topology **38** (1999), 699-762.

[17] P.-É. Paradan, *Localization of the Riemann-Roch character*. J. Funct. Anal. **187** (2001), no. 2, 442–509.

[18] ______, *Spin\(^c\)-quantization and the K-multiplicities of the discrete series*. Ann. Sci. Ecole Norm. Sup. (4) **36** (2003), no. 5, 805–845.

[19] ______, *Formal geometric quantization*, Ann. Inst. Fourier **59** (2009), 199-238.

[20] ______, *Multiplicities of the discrete series*. arXiv:0812.0059, 38 pp.

[21] Y. Tian and W. Zhang, *An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg*. Invent. Math. **132** (1998), no. 2, 229–259.

[22] ______, *Quantization formula for symplectic manifolds with boundary*, Geom. Funct. Anal. **9** (1999), no. 3, 596–640.

[23] M. Vergne, *Multiplicities formula for geometric quantization I, II*, Duke Math. J. **82** (1996), 143–179, 181–194.

[24] ______, *Quantification géométrique et réduction symplectique*. Séminaire Bourbaki, Vol. 2000/2001. Astérisque No. 282 (2002), Exp. No. 888, viii, 249–278.

[25] ______, *Applications of equivariant cohomology*, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635–664.

[26] J. Weitsman, *Non-abelian symplectic cuts and the geometric quantization of non-compact manifolds*. Lett. Math. Phys. **56** (2001), no. 1, 31-40.

Université Paris Diderot - Paris 7, UFR de Mathématiques, Case 7012, Site Chevaleret, 75205 Paris Cedex 13, France

E-mail address: ma@math.jussieu.fr

Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R. China

E-mail address: weiping@nankai.edu.cn