Assessing the compliance of systematic review articles published in leading dermatology journals with the PRISMA statement guidelines: A systematic review

Buket Gundogan, BSc(Hons), MBBS,a Naeem Dowlut, BSc(Hons), MBBS,b Shivanchan Rajmohan, BSc(Hons), MBBS,c Mimi R. Borrelli, MBBS, MSc, d Mirabel Millip, MBBS,b Christos Iosifidis, BSc(Hons), MBBS, c Yagazie Z. Udeaja, BSc(Hons), MBBS, c Ginimol Mathew, BSc(Hons), MBBS, f Alexander Fowler, BSc(Hons), MBBS, g and Riaz Agha, BSc(Hons), MBBS, MSc (Oxon), DPhil (Oxon), FHEA, FRSA, FRSPH, FRCS (Ed), FRCS (Plast) h
London, Oxford, Middlesex, and Luton, United Kingdom; and Stanford, California

Background: Reporting quality of systematic reviews and meta-analyses is of critical importance in dermatology because of their key role in informing health care decisions.

Objective: To assess the compliance of systematic reviews and meta-analyses in leading dermatology journals with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement guidelines.

Methods: This review was carried out in accordance with PRISMA guidelines. Included studies were reviews published across 6 years in the top 4 highest-impact-factor dermatology journals of 2017. Records and full texts were screened independently. Data analysis was conducted with univariate multivariable linear regression. The primary outcome was to assess the compliance of systematic reviews and meta-analyses in leading dermatology journals with the PRISMA statement.

Results: A total of 166 studies were included and mean PRISMA compliance across all articles was 73%. Compliance significantly improved over time (β = .016; P < .001). The worst reported checklist item was item 5 (reporting on protocol existence), with a compliance of 15% of articles.

Conclusion: PRISMA compliance within leading dermatology journals could be improved; however, it is steadily improving. (JAAD Int 2020;1:157-74.)

Key words: compliance; dermatology; PRISMA; reporting; systematic review.

INTRODUCTION

Systematic reviews and meta-analyses are methodologically rigorous studies that form the reference standard for creating evidence in health care.1 They are an important part of dermatologic research because they guide health care decision within...
clinical dermatology and also work to minimize bias. It is critical now more than ever to ensure reviews are sufficiently reported, given the continual increase in systematic reviews within dermatology. Reviews that are well reported allow clinicians and policy makers alike to make transparent and informed judgments to guide decisions within dermatology. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement is a 27-item checklist that ensures reporting transparency of a review.

Previous work has demonstrated that systematic reviews and meta-analyses within dermatology are less likely to evaluate publication bias, which is one of the 27 items in the PRISMA reporting guidelines. Further work published by the Cochrane Skin Group assessed 38 reviews on selected dermatologic topics and demonstrated a higher methodological quality in their reviews as compared to non-Cochrane Skin Group reviews. A recent systematic review assessing the adherence of 136 dermatology reviews to the PRISMA guidelines highlighted that reporting quality of dermatology articles is often inadequate, but has been improving. To our knowledge, our review represents the largest study assessing reporting quality of systematic reviews and meta-analyses published within dermatology to date and the largest assessment comparing reporting quality of Cochrane versus non-Cochrane reviews within dermatology.

METHODS

Our systematic review was carried out in accordance with PRISMA guidelines; the Cochrane Handbook for Systematic Reviews and Interventions and a search technique similar to that of previous work were used. The protocol for this review was published a priori and also registered with the international prospective register of systematic reviews, Research Registry.

The top 4 highest-impact-factor dermatology journals of 2017 were identified with the Thomson Reuters InCites Journal Citation Reports. In order of impact factor (from highest to lowest), these were identified as JAMA Dermatology, Journal of the American Academy of Dermatology, Journal of Investigative Dermatology, and the British Journal of Dermatology. MEDLINE PubMed was searched on August 26, 2018, for reviews for the following years: 2017, 2016, 2012, 2011, 2007, and 2006. These years were chosen because 2016/2017 was the most contemporaneous 2-year period at the start of the search, and 5-year periods preceding these years were chosen to allow for comparators.

The search strategy was developed in line with an information search specialist. It included the use of Boolean logical operators such as “OR” to improve sensitivity of the search. The search terms were “systematic review” OR “meta-analysis” OR “meta-analyses” AND “JOURNAL NAME” (Fig 1). The search was performed on August 26, 2018. PubMed’s search filters for systematic reviews and meta-analyses were also used to refine the search.

Inclusion criteria were systematic reviews and meta-analyses within dermatology, reviews only published within the top 4 highest-impact-factor journals in 2017, reviews published in 2016/2017, 2011/2012, and 2006/2007, and English-language studies. Exclusion criteria were articles that were not systematic reviews and meta analyses, articles outside of the dates and journals previously mentioned, historical reviews, narrative literature reviews, unpublished reviews, and gray literature.

Seven independent researchers (N.D., S.R., M.R.B., M.M., C.I., Y.Z.U., and G.M.) screened the titles and abstracts against inclusion and exclusion criteria. After this, the full text was assessed for inclusion and exclusion criteria. Any discrepancies between articles were resolved by discussion or senior author decision (B.G.) and the reasons for exclusion were noted. Articles that passed both stages of screening were included for data extraction.

Data extraction took place with a standard extraction database created on Google Forms (Alphabet Inc, Mountain View, CA). Duplicates were removed before extraction. A training session took place before data extraction, focusing on accurate marking of included studies against the PRISMA guidelines to ensure consistency. This training session was conducted by senior researchers in our group and it involved “practice” marking of dermatology systematic reviews against the PRISMA checklist. Any discrepancies between researchers were reported.
to the team and discussed in training among the whole research team.

The following data items were extracted: compliance of each article with the 27-item PRISMA checklist, study authors, date of publication, journal name, dermatology subtopic assessed by the review, country where the review took place as assessed by first author, commercial or non-commercial funding, protocol existence, whether it was a Cochrane review, and whether it was registered. Dermatology subtopics were divided by using the Cochrane Skin Group titles categorized by the British Association of Dermatologists Diagnostic Index. The following 2 subtopics were also added for this review: educational and meta-research. Overall outcome of the review was assessed according to whether the review showed a positive, equivocal, or negative outcome with respect to the intervention being studied.

Articles were scored for compliance with the 27-item PRISMA checklist. A score of 1, or “adequate,” was given for an article that met all the criteria for a particular item. A score of zero was given for those that did not meet or partially met the item requirements. Some items were not applicable for the article in question; in such cases, a maximum possible PRISMA score was calculated per article to avoid articles being penalized for not reporting irrelevant items. To give a richer analysis for PRISMA items deemed to have more than 1 component, in addition to a score of zero, a score of either inadequate or not described was given. If an item did not meet all components within the PRISMA item, it was deemed not described. If an item partially met the requirements of all components of the item, then it was deemed inadequate. A compliance score expressed as a percentage was calculated for each article.

The data were analyzed with Microsoft Excel (Microsoft Corporation, Albuquerque, NM). Continuous variables are presented as a mean and range. Categoric variables are presented as percentage values. Summary measures were used to calculate the mean number of PRISMA items adequately reported for all studies and the percentage of studies compliant with each element of the PRISMA guidelines. Univariate multivariable linear regression was used to assess the associations between PRISMA compliance against the publication year, Cochrane versus non-Cochrane studies, studies with protocols versus those without them, and registered studies versus those that were not registered. Associations are reported as β coefficients with 95% confidence intervals.

The primary outcome was to assess the compliance of systematic reviews and meta-analyses in leading dermatology journals with the PRISMA statement. Secondary outcomes were conducted to assess whether reporting quality improved over time, there was a difference in compliance between Cochrane and non-Cochrane reviews, certain items were consistently poorly reported, and studies were registered and whether they had a protocol.

The PRISMA score across all articles was compared according to the following factors: year published, subtopics, presence of a protocol, and a priori registration status.

The examination of bias was limited to the assessment of whether each systematic review had remained compliant with PRISMA items 12 (assessment of risk of bias in individual studies), 15 (assessment of risk of bias across studies), 19 (present data on the risk of bias within studies), and 22 (present data on the risk of bias across studies).

RESULTS

A total of 575 records were identified in the initial literature search. After the removal of duplicates and full-text screening, a total of 166 systematic reviews and meta-analyses were included for data extraction. Fig 2 shows record selection.

The study characteristics are shown in Table I, including journal, year of publication, theme of article, country of first author, registration status, whether it was Cochrane, protocol existence, funding type, and study outcome. The journal with the most studies was the British Journal of Dermatology, with 49% of the total articles, followed by Journal of the American Academy of Dermatology (39%), Journal of the American Medical Association Dermatology (9%), and Journal of Investigative Dermatology (3%). The number of articles increased each year, with 2017 accounting for 40% of all articles. “Psoriasis and other keratinizing disorders” was the most-studied subtopic, at 15% of all articles. The United States contributed 30% of all studies, with the United Kingdom contributing 17% of articles. Only 19% of studies were registered, 24% had a protocol, and 8% were Cochrane articles. The majority of studies (72%) were not funded. The majority of funded studies received non-commercial funding. In regard to outcome of the study, this was not applicable in most cases (48%) and there were positive outcomes in 32%.
Each item in the PRISMA checklist from item 1 to 27 was assessed for overall compliance across all studies (Table II). These were marked as adequate, inadequate, not described, and not applicable, as described earlier. A number of items were not applicable for the study; for example, item 23 (presenting the results of any additional analyses conducted) was not applicable in 67% of studies. The items of highest compliance, at 100%, were item 3 (describing the rationale for the review) and item 26 (providing a conclusion). Items with the poorest compliance were item 5 (reporting protocol and registration), at 15% reporting, and item 12 (reporting the risk of bias in individual studies), at 23% reporting.

The compliance of all 166 studies against the PRISMA statement was assessed (Table III). The number of items that were adequately reported of the theoretic maximum number of relevant, applicable items gave a percentage PRISMA score for each systematic review. The mean compliance of all articles was 73%. The maximum compliance was 100% and minimum compliance was 23%, demonstrating a 77% range in compliance between studies. The average compliance of the journals to PRISMA was also calculated, with *Journal of Investigative Dermatology* at 85%, *British Journal of Dermatology* at 76%, *JAMA Dermatology* at 76%, and *Journal of the American Academy of Dermatology* at 68%.

The average PRISMA compliance tended to increase with each year across all articles (Table IV). The lowest compliance was the earliest year assessed, which was 2006, with an average compliance of 53%. Multivariate regression analysis demonstrated that PRISMA compliance significantly improved over time ($\beta = .016; P < .001$).
Cochrane studies had an average compliance of 83% versus non-Cochrane studies of 73% (Table IV). Analysis showed Cochrane reviews were significantly more compliant than non-Cochrane studies ($\beta = .10; P = .03$). Studies with protocols had a much higher average compliance than those without them (86% versus 69%, respectively), with the difference being significant on comparison ($\beta = .17; P < .001$). Furthermore, there was a significant difference in PRISMA compliance between registered studies (86%) versus nonregistered ones (71%), with $\beta = .15 (P < .001$).

Studies were then grouped according to subtopic, year of publication, Cochrane versus non-Cochrane, protocol existence, and registration. In regard to the dermatology subtopic, “psoriasis and other keratinizing disorders” demonstrated the most compliance with PRISMA, at 81% (Table V).

DISCUSSION

This review assessed 166 systematic reviews and meta-analyses published in 4 leading dermatology journals against the PRISMA statement. To our knowledge, this is the largest review assessing PRISMA compliance of articles published in leading dermatology journals to date. We found that although compliance with PRISMA guidelines improved over time, there remain large gaps in reporting. In 2017, the mean compliance with the PRISMA statement was 73%. We found a wide range in the levels of compliance with the PRISMA statement, ranging from 23% to 100% between individual studies, and we compared compliance with the PRISMA statement in relation to several variables.

The PRISMA compliance of systematic reviews and meta-analyses published in dermatologic journals assessed here compares favorably to that reported in other studies. The quality of reporting of systematic reviews and meta-analyses in other fields has also indicated room for improvement. An assessment of systematic reviews published between 2012 and 2013 in leading otolaryngology journals found that a median 54% of items of the PRISMA statement were adequately reported.177 Another systematic review assessing the compliance with the PRISMA statement relating to articles published

![PRISMA flow diagram showing article selection process.](image-url)

Fig 2. PRISMA flow diagram showing article selection process.
between 2010 to 2015 in 5 major ophthalmology journals found the median compliance per article to be 56%. Furthermore, in 2016, Pidgeon et al reviewed systematic reviews published in 3 major craniofacial surgery journals within a 5-year period ending in 2015 and found a mean PRISMA score of 72.5%. As such, subtotal PRISMA compliance is not limited to dermatology and is observed across several medical and surgical specialties.

Within the field of dermatology itself, Croitoru et al reviewed systematic reviews published between 2013 and 2017 in 5 major dermatology journals. The table provided gives an overview of the study characteristics:

Table I. Study characteristics	No of studies	% of studies
Journal		
British Journal of Dermatology	82	49
Journal of the American Academy of Dermatology	64	39
JAMA Dermatology	15	9
Journal of Investigative Dermatology	5	3
Date of publication		
2017	67	40
2016	47	28
2012	20	12
2011	16	10
2007	8	5
2006	8	5
Theme		
Psoriasis and other keratinizing disorders	25	15
Dermatitis and eczema	22	13
Tumors and cysts of the skin and appendages	18	11
Disorders of skin appendages (hair, nails, sweat glands)	13	8
Skin disease resulting from drugs or treatment	13	8
Connective tissue and immunobul- lous and related infectious diseases affecting the skin	12	7
Other	9	5
Disorders of skin color	7	4
Benign and malignant infiltrations of the skin	7	4
Meta-research (e.g., reporting quality)	6	4
Urticaria and other inflammatory skin disorders	5	3
Skin conditions caused by environmental or physical injury	4	2
Psychologic, psychiatric, and related disorders of the skin	4	2
Disorders involving the skin’s blood and lymphatic vessels	3	2
Disorders of the dermis and subcutaneous tissue	3	2
Education	3	2
Papulosquamous disorders	2	1
including lichen planus		
Genetic and chromosomal disor- ders affecting the skin	1	1
Metabolic and nutritional disorders affecting the skin	0	N/A
Birthmarks and developmental abnormalities of the skin	0	N/A
Country		
US	50	30
UK	28	17

The table continues with additional information on themes, dates of publication, and countries, along with details on registration, Cochrane, protocol, funding, and outcome. The study characteristics are presented in a structured format, allowing for easy comparison and analysis of the systematic reviews' adherence to the PRISMA guidelines.
journals, including the same 4 journals investigated here. As we did, the authors reported room for greater compliance with the PRISMA statement, but noted an increase in the proportion of PRISMA items that are fully reported yearly. The authors found that in 2017, 65% of evaluated PRISMA items were fully reported compared with 53% in 2013.

Similar items appear to be underreported across dermatology, as well as other fields. In our study, the most underreported items were item 5 (protocol and registration), item 12 (risk of bias in individual studies), and item 22 (risk of bias across studies). The same items were also similarly poorly reported by other studies; for example, across otolaryngology journals, craniofacial journals, and other larger-scale studies of reporting quality.8,177,179 The reporting of protocols, publishing protocols, and registering studies is an important step in robust medical research.180 They not only allow independent peer review of the study at hand, which allows improvements in study methodology, but also ensure complete transparency in differences between the protocol and the final study.180 Moreover, protocol registration may help prevent study duplication, in which researchers are able to access databases to ascertain whether there are similar studies in progress.181 Assessments of risk of bias within individual studies and across studies such as missing studies (known as publication bias) and missing data in included studies (known as selective reporting bias) are also important because if results are missed, it can lead to overestimation or underestimation of treatment effects.182

There are a number of limitations to this study. First, our analysis is limited to 4 major dermatology journals. Although these journals represent a large proportion of dermatology-related research output, critical systematic reviews and meta-analyses published in other dermatologic journals were not included. Our analysis is also limited by the

PRISMA item	Adequate	Adequate, %	Inadequate	Inadequate, %	Not described	Not described, %	N/A	N/A, %	Total possible minus N/A	Studies adequately reporting each item when applicable, %
3	166	100	0	0	0	0	0	0	166	100
26	166	100	0	0	0	0	0	0	166	100
14	69	42	0	0	3	2	94	57	72	96
6	154	93	0	0	12	7	0	0	166	93
9	153	92	0	0	13	8	0	0	166	92
1	150	90	0	0	16	10	0	0	166	90
25	150	90	0	0	16	10	0	0	166	90
11	149	90	0	0	17	10	0	0	166	90
20	148	89	9	5	9	5	0	0	166	89
27	147	89	0	0	18	11	1	1	165	89
23	48	29	0	0	6	4	112	67	54	89
2	147	89	0	0	19	11	0	0	166	89
7	147	89	0	0	19	11	0	0	166	89
21	64	39	0	0	9	5	93	56	73	88
17	140	84	0	0	26	16	0	0	166	84
13	114	69	0	0	29	17	23	14	143	80
4	130	78	36	22	0	0	0	0	166	78
18	129	78	0	0	37	22	0	0	166	78
10	126	76	0	0	40	24	0	0	166	76
8	111	67	0	0	55	33	0	0	166	67
15	45	27	0	0	27	16	94	57	72	63
16	44	27	0	0	28	17	94	57	72	61
24	88	53	78	47	0	0	0	0	166	53
19	54	33	0	0	112	67	0	0	166	33
22	44	27	58	35	63	38	1	1	165	27
12	39	23	28	17	99	60	0	0	166	23
5	25	15	21	13	120	72	0	0	166	15

PRISMA items 3 and 26 had 100% compliance, whereas PRISMA items 5 and 12 had the least compliance. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analyses.
Table III. Compliance of each article with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guideline

Author	Adequate	Adequate, %	Inadequate	Inadequate, %	Not described	Not described, %	N/A	N/A, %	Total no. applicable	Total no. applicable, %	Adequately reported, %	
Adil A 11	18	67	2	7	6	22	1	4	26	96	69	
Adler BL 12	16	59	1	4	5	19	5	19	22	81	73	
Agbai O 13	13	48	2	7	7	26	5	19	22	81	59	
Ali FM 14	18	67	1	4	3	11	5	19	22	81	82	
Atwan A 15	23	85	2	7	0	0	2	7	25	93	92	
Atzmony L 16	25	93	1	4	1	4	0	0	27	100	93	
Bae JM 17	24	89	0	0	2	7	1	4	26	96	92	
Bae JM 18	21	78	2	7	4	15	0	0	27	100	78	
Baillie L 19	16	59	2	7	4	15	5	19	22	81	73	
Balak DM 20	18	67	2	7	2	7	5	19	22	81	82	
Barbarot S 21	16	59	2	7	3	11	6	22	21	78	76	
Bath-Hextall F 22	19	70	1	4	2	7	5	19	22	81	86	
Bauer A 23	21	78	1	4	4	15	1	4	26	96	81	
Bertolotti A 24	19	70	2	7	5	19	1	4	26	96	73	
Bjerre RD 25	18	67	1	4	2	7	6	22	21	78	86	
Bobotsis R 26	18	67	2	7	2	7	5	19	22	81	82	
Brewer JD 27	23	85	1	4	3	11	0	0	27	100	85	
Broeder JA 28	23	85	2	7	1	4	1	4	26	96	88	
Brown G 29	15	56	2	7	5	19	5	19	22	81	68	
Brunssen A 30	20	74	0	0	0	1	4	6	22	21	78	95
Burden-Teh E 31	14	52	2	7	6	22	5	19	22	81	64	
Callander J 32	14	52	2	7	6	22	5	19	22	81	64	
Callen J 33	10	37	1	4	11	41	5	19	22	81	45	
Chahoud J 34	25	93	0	0	2	7	0	0	27	100	93	
Chang YS 35	22	81	1	4	4	15	0	0	27	100	81	
Charrow A 36	14	52	2	7	6	22	5	19	22	81	64	
Charrow A 37	14	52	1	4	8	30	4	15	23	85	61	
Chasset F 38	25	93	2	7	0	0	0	0	27	100	93	
Chen X 39	21	78	4	15	2	7	0	0	27	100	78	
Chi CC 40	17	63	4	15	4	15	2	7	25	93	68	
Connolly KL 41	5	19	1	4	4	16	59	5	19	22	81	23
Courtenay M 42	9	33	2	7	10	37	6	22	21	78	43	
Crijs H 43	12	44	1	4	9	33	5	19	22	81	55	
Dai J 44	18	67	2	7	6	22	1	4	26	96	69	
Delaplace M 45	13	48	2	7	7	26	5	19	22	81	59	
Devillers AC 46	7	26	1	4	14	52	5	19	22	81	32	
Dommasch ED 47	23	85	1	4	3	11	0	0	27	100	85	
Durbec F 48	15	56	1	4	4	22	5	19	22	81	68	
Name	Page	Unit	Origin	Gender	Age	Start	Duration	Year	Duration	Year	Duration	Year
---------------------	------	-------	--------	--------	------	--------	----------	-------	----------	-------	----------	-------
Eady, EA	17	63	0	0	5	19	5	19	22	81	77	
Eleftheriadou	10	37	2	7	9	33	6	22	21	78	48	
Eminovic N	11	41	2	7	9	33	5	19	22	81	50	
Ernst E	17	63	2	7	3	11	5	19	22	81	77	
Falagas ME	7	26	3	11	14	52	3	11	24	89	29	
Finnane A	18	67	1	4	3	11	5	19	22	81	82	
Frew JW	16	59	2	7	3	11	6	22	21	78	76	
Futamura M	14	52	1	4	6	22	6	22	21	78	67	
Gantz M	13	48	1	4	7	26	6	22	21	78	62	
Garden BC	18	67	2	7	6	22	1	4	26	96	69	
Gerami P	17	63	1	4	5	19	4	15	23	85	74	
Gerami P	13	48	1	4	7	26	6	22	21	78	62	
Gerbens LA	17	63	1	4	4	15	5	19	22	81	77	
Glick ZR	19	70	1	4	7	26	0	0	27	100	70	
Gomez-Garcia F	24	89	1	4	1	4	1	4	26	96	92	
Gomez-Garcia F	24	89	0	0	3	11	0	0	27	100	89	
Gonzalez-Lopez G	24	89	1	4	2	7	0	0	27	100	89	
Guillen-Aguinaga S	26	96	1	4	0	0	0	0	27	100	96	
Gunaratne DA	14	52	2	7	6	22	5	19	22	81	64	
Gupta AK	12	44	2	7	8	30	5	19	22	81	55	
Gupta AS	13	48	2	7	6	22	6	22	21	78	62	
Haddad C	15	56	3	11	4	15	5	19	22	81	68	
Hadley G	18	67	1	4	7	26	1	4	26	96	69	
Haedersdal M	14	52	2	7	6	22	5	19	22	81	64	
Hague A	15	56	4	15	3	11	5	19	22	81	68	
Halling-Overgaard AS	15	56	3	11	4	15	5	19	22	81	68	
Hamann CR	22	81	1	4	4	15	0	0	27	100	81	
Harfmann KL	13	48	1	4	8	30	5	19	22	81	59	
Heinl D	19	70	0	0	3	11	5	19	22	81	86	
Hill MK	15	56	2	7	4	15	6	22	21	78	71	
Hoorens I	7	26	2	7	12	44	6	22	21	78	33	
Huang YC	23	85	1	4	3	11	0	0	27	100	85	
Huang YC	20	74	3	11	4	15	0	0	27	100	74	
Ingram JR	16	59	1	4	5	19	5	19	22	81	73	
Ingram JR	22	81	2	7	2	7	1	4	26	96	85	
Jabbar-Lopez Zarif K	27	100	0	0	0	0	0	0	27	100	100	
Jacobsen Audrey A	18	67	1	4	4	15	4	15	23	85	78	
Jang YH	9	33	3	11	10	37	5	19	22	81	41	
Jascholt R	12	44	2	7	8	30	5	19	22	81	55	
Kantor R	24	89	0	0	3	11	0	0	27	100	89	
Karia Pritesh S	17	63	0	0	5	19	5	19	22	81	77	
Author	Adequate	Adequate, %	Inadequate	Inadequate, %	Not described	Not described, %	N/A	N/A, %	Total no. applicable	Total no. applicable, %	Adequately reported, %	
--------------	----------	-------------	------------	---------------	---------------	------------------	-----	-------	---------------------	------------------------	------------------------	
Katugampola RP	10	37	2	7	10	37	5	19	22	81	45	
Khatami A	18	67	2	7	6	22	1	4	26	96	69	
Kim A	18	67	2	7	6	22	1	4	26	96	69	
Kim JP	17	63	4	15	6	22	0	0	27	100	63	
Kouwenhoven TA	16	59	2	7	3	11	6	22	21	78	76	
Kramer ON	12	44	2	7	7	26	6	22	21	78	57	
Krengel S	14	52	2	7	6	22	5	19	22	81	64	
Kwok CS	20	74	1	4	5	19	1	4	26	96	77	
Lai YC	25	93	0	0	2	7	0	0	27	100	93	
Langan SM	13	48	3	11	6	22	5	19	22	81	59	
Lavda AC	22	81	0	0	5	19	0	0	27	100	81	
Lebrun-Vignes B	22	81	0	0	5	19	0	0	27	100	81	
Lee YH	18	67	2	7	7	26	0	0	27	100	67	
Li AW	14	52	3	11	5	19	5	19	22	81	64	
Liu LY	15	56	1	4	6	22	5	19	22	81	68	
Lodi G	23	85	0	0	2	7	2	7	25	93	92	
Lomas A	17	63	0	0	2	7	5	19	22	81	77	
Lowe GC	13	48	1	4	7	26	6	22	21	78	62	
Lubeek SF	18	67	2	7	2	7	5	19	22	81	82	
Lubeek SF	16	59	2	7	4	15	5	19	22	81	73	
Martin LK	19	70	2	7	6	22	0	0	27	100	70	
Mazaud C	26	96	1	4	0	0	0	0	27	100	96	
Muranushi C	24	89	1	4	2	7	0	0	27	100	89	
Nankervis H	20	74	2	7	0	0	5	19	22	81	91	
Ng CV	24	89	2	7	1	4	0	0	27	100	89	
Nguyen J	12	44	0	0	10	37	5	19	22	81	55	
Nilsen LT	18	67	1	4	3	11	5	19	22	81	82	
Ogunsanya ME	16	59	1	4	4	15	6	22	21	78	76	
Olsen JR	20	74	2	7	4	15	1	4	26	96	77	
Opel D	18	67	1	4	2	7	6	22	21	78	86	
Pampena R	24	89	1	4	2	7	0	0	27	100	89	
Patterson AT	6	22	3	11	13	48	5	19	22	81	27	
Petrelli F	26	96	0	0	1	4	0	0	27	100	96	
Pickett K	20	74	1	4	1	4	5	19	22	81	91	
Plasmeijer EI	17	63	2	7	3	11	5	19	22	81	77	
Pope V	13	48	1	4	7	26	6	22	21	78	62	
Quirke M	23	85	2	7	0	0	2	7	25	93	92	
Reich K	20	74	1	4	6	22	0	0	27	100	74	
Name	Age	Gender	Race	Ethnicity	Socioeconomic Status	Education Level	Occupation	Salary	Years of Experience	Total Experience	Top 10 Skills	Other Skills
-------------------	-----	--------	--------	-----------	----------------------	-----------------	------------	--------	---------------------	-----------------	--------------	-------------
Rencz F'128	20	74	0	0	0	6	22	1	4	26	96	77
Ridd MJ'129	20	74	1	4	1	4	5	19	22	82	81	91
Riemer CA'130	18	67	1	4	3	11	5	19	22	82	81	82
Robinson A'131	13	48	3	11	7	26	4	15	23	85	85	57
Rodriguez-Zuniga MJM'132	27	100	0	0	0	0	0	0	27	100	100	93
Roozeboom MH'133	25	93	0	0	2	7	0	0	27	100	100	93
Rotta I'134	23	85	1	4	3	11	0	0	27	100	85	85
Rungapiromnan W'135	25	93	1	4	1	4	0	0	27	100	100	93
Saleem MD'136	18	67	2	7	2	7	5	19	22	82	81	82
Schiller M'137	13	48	1	4	9	33	4	15	23	85	85	57
Schlager JC'138	25	93	1	4	0	0	1	4	26	96	96	96
Schmitt J'139	24	89	1	4	2	7	0	0	27	100	89	89
Schoch D'140	14	52	1	4	7	26	5	19	22	81	81	64
Seidler EM'141	7	26	3	11	15	56	2	7	25	93	93	28
Shahwan KT'142	11	41	1	4	12	44	3	11	24	89	89	46
Shapiro S'143	16	59	4	15	6	22	1	4	26	96	96	62
Shaw J'144	15	56	1	4	8	30	3	11	24	89	89	63
Shreberk-Hassidim R'145	12	44	1	4	9	33	5	19	22	81	81	55
Shreberk-Hassidim R'146	8	30	2	7	12	44	5	19	22	81	81	36
Simonart T'147	15	56	0	0	8	30	4	15	23	85	85	65
Simonson AB'148	18	67	0	0	8	30	1	4	26	96	96	69
Singh S'149	25	93	0	0	2	7	0	0	27	100	93	93
Snast I'150	18	67	1	4	3	11	5	19	22	81	81	82
Snoswell C'151	17	63	2	7	3	11	5	19	22	81	81	77
Stranzenbach R'152	10	37	2	7	11	41	4	15	23	85	85	43
Tang H'153	25	93	0	0	2	7	0	0	27	100	93	93
Thandar Y'154	17	63	3	11	3	11	4	15	23	85	85	74
Thompson AK'155	22	81	1	4	3	11	1	4	26	96	96	85
Totté JEE'156	25	93	0	0	2	7	0	0	27	100	93	93
van Zuuren EJ'157	17	63	3	11	6	22	1	4	26	96	96	65
van Zuuren EJ'158	26	96	1	4	0	0	0	0	27	100	96	96
van Zuuren EJ'159	20	74	1	4	2	7	4	15	23	85	85	87
van Zuuren EJ'160	20	74	1	4	3	11	3	11	24	89	89	83
van Zuuren EJ'161	21	78	1	4	4	15	1	4	26	96	96	81
Vrijman C'162	20	74	1	4	1	4	5	19	22	81	91	91
Vrijman C'163	18	67	0	0	5	19	4	15	23	85	85	78
Wan MT'164	8	30	4	15	9	33	6	22	21	78	38	38
Warshaw EM'165	19	70	1	4	3	11	4	15	23	85	85	83
Whitting M'166	23	85	1	4	3	11	0	0	27	100	85	85
Williams K'167	11	41	1	4	9	33	6	22	21	78	52	52
Wu SZ'168	17	63	0	0	5	19	5	19	22	81	81	77
subjectivity of assessing compliance with individual PRISMA items. We attempted to minimize this bias by training data collectors, using independent duplicate scoring, and using independent review of differences by another author, as detailed in our protocol. Our assessment of registration and protocol entirely depended on whether this detail was included by authors within the articles; we did not conduct searches of registries for this information. Finally, we acknowledge that in some instances failure to report compliance with individual PRISMA items within the article does not necessarily mean noncompliance; for example, word count limits may result in curtailing of detail, which in turn may underreport actual PRISMA compliance. Moreover, it is possible that certain items were not reported simply because the assessment was not carried out; for example, risk of bias was not assessed and hence not reported or protocols were not carried out and therefore not reported.

CONCLUSIONS

The reporting of systematic reviews and meta-analyses in the top 5 dermatologic journals is currently suboptimal, with scope for improvement in compliance with the PRISMA statement, most notably in relation to protocol and registration, as well as the assessment of bias. We demonstrate here that overall compliance with the PRISMA statement has improved, but more vigilance is required to improve compliance further. Researchers should attempt to familiarize themselves with the PRISMA statement both before conducting research and at article creation. Journals may encourage reporting in accordance with PRISMA guidelines through a
Table V. Average compliance of each subtopic with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines

Subtopic	Compliance, %
Psoriasis and other keratinizing disorders	81
Papulosquamous disorders including lichen planus	80
Skin conditions caused by environmental or physical injury	78
Disorders of skin color	78
Benign and malignant infiltrations of the skin	78
Infectious diseases affecting the skin	77
Psychologic, psychiatric, and related disorders of the skin	77
Education	76
Disorders involving the skin’s blood and lymphatic vessels	75
Meta-research (eg, reporting quality)	75
Dermatitis and eczema	73
Urticaria and other inflammatory skin disorders	73
Skin disease resulting from drugs or treatment	71
Connective tissue, immunobullous and related	70
Disorders of the dermis and subcutaneous tissue	70
Tumors and cysts of the skin and appendages	69
Disorders of skin appendages (hair, nails, sweat glands)	66
Genetic and chromosomal disorders affecting the skin	62
Other	66

variety of means (eg, a mandatory completed PRISMA checklist that is provided at submission, the provision of software to “screen for compliance”). Future work may also include investigation into the reasons behind incomplete reporting, aiming to identify barriers that authors may face in producing articles that are maximally compliant, and providing assistance to overcome such barriers.

REFERENCES
1. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
2. Williams HC, Dellavalle RP. The growth of clinical trials and systematic reviews in informing dermatological patient care. J Invest Dermatol. 2012;132:1008-1017.
3. Manriquez J, Andino-Navarrete R, Cataldo-Cerda K, Harz-Fresno I. Bibliometric characteristics of systematic reviews in dermatology: a cross-sectional study through Web of Science and Scopus. Dermatol Sin. 2015;33:154-156.
4. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-269. W64.
5. Atakpo P, Vassar M. Publication bias in dermatology systematic reviews and meta-analyses. J Dermatol Sci. 2016;82:69-74.
6. Collier A, Heilig L, Schilling L, Williams H, Dellavalle RP. Cochrane skin group systematic reviews are more methodologically rigorous than other systematic reviews in dermatology. Br J Dermatol. 2006;155:1230-1235.
7. Crotoru DO, Huang Y, Kurdina A, Chan A-W, Drucker A-M. Quality of reporting in systematic reviews published in dermatology journals. Br J Dermatol. 2020;182(6):1469-1476.
8. Pidgeon TE, Wellstead G, Sagoo H, Jafree DJ, Fowler AJ, Agha R. An assessment of the compliance of systematic review articles published in craniofacial surgery with the PRISMA statement guidelines: a systematic review. J Cranio-maxillofac Surg. 2016;44:1522-1530.
9. Gundogan B, Fowler A, Agha R. Assessing the compliance of systematic review articles published in leading dermatology journals with the PRISMA statement guidelines: a systematic review protocol. Int J Surg Protoc. 2018;10:12-1-4.
10. Cochrane Skin Group titles categorised by the British Association of Dermatologists (BAD) diagnostic index, see under sub-topics of the following. Available at: https://skin.cochrane.org/csg-titles-categorised-british-association-dermatologists-stds-bad-diagnostic-index; 2018. Accessed August 24, 2020.
11. Adl A, Godwin M. The effectiveness of treatments for androgenetic alopecia: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(1):136-141.e5.
12. Adler BL, Krausz AE, Minuti A, Silverberg Ji, Lev-Tov H. Epidemiology and treatment of angiolymphoid hyperplasia with eosinophilia (ALHE): a systematic review. J Am Acad Dermatol. 2016;74(3):506-512.e11.
13. Agbai O, Hamzavi I, Jagdeo J. Laser treatments for post-inflammatory hyperpigmentation: a systematic review. JAMA Dermatol. 2017;153(2):199-206.
14. Ali FM, Cueva AC, Vyas J, et al. A systematic review of the use of quality-of-life instruments in randomized controlled trials for psoriasis. Br J Dermatol. 2017;176(3):577-593.
15. Atwan A, Ingram JR, Abbott R, et al. Oral fumaric acid esters for psoriasis: abridged cochrane systematic review including GRADE assessments. Br J Dermatol. 2016;175(6):873-881.
16. Atzmony L, Mimouni I, Reiter O, et al. Association of bullous pemphigoid with malignancy: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(4):691-699.
17. Bae JM, Hong BY, Lee JH, et al. The efficacy of 308-nm excimer laser/light (EL) and topical agent combination therapy versus EL monotherapy for vitiligo: a systematic review and meta-analysis of randomized controlled trials (RCTs). J Am Acad Dermatol. 2016;74(5):907-915.
18. Bae JM, Jung HM, Hong BY, et al. Phototherapy for vitiligo: a systematic review and meta-analysis. JAMA Dermatol. 2017;153(7):666-674.
19. Baillie L, Askew D, Douglas N, Soyer HP. Strategies for assessing the degree of photodamage to skin: a systematic review of the literature. Br J Dermatol. 2011;165(4):735-742.
20. Balak DM, Fallah Arani S, Hajдарbegovic E, et al. Efficacy, effectiveness and safety of fumaric acid esters in the treatment of psoriasis: a systematic review of randomized and observational studies. Br J Dermatol. 2016;175(2):250-262.
21. Barbarot S, Rogers NK, Abuabara K, et al. Strategies used for measuring long-term control in atopic dermatitis trials: a
systematic review. J Am Acad Dermatol. 2016;75(5):1038-1044.

22. Bath-Hextall F, Nalubega S, Evans C. The needs and experiences of patients with skin cancer: a qualitative systematic review with metasynthesis. Br J Dermatol. 2017;177(3):666-687.

23. Bauer A, Diepgen TL, Schmitt J. Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol. 2011;165(3):612-625.

24. Bertolotti A, Dupin N, Bouscarat F, Milipied B, Derancourt C. Cryotherapy to treat anogenital warts in immunocompromised adults: systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(3):518-526.

25. Bjerre RD, Bandier J, Skov L, Engstrand L, Johansen JD. The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol. 2017;177(5):1272-1278.

26. Bobotsis R, Gulliver WP, Monaghan K, Lynde C, Fleming P. Psoriasis and adverse pregnancy outcomes: a systematic review of observational studies. Br J Dermatol. 2016;175(3):464-472.

27. Brewer JD, Gonzalez AB, Baum CL, et al. Comparison of sterile vs nonsterile gloves in cutaneous surgery and common outpatient dental procedures: a systematic review and meta-analysis. JAMA Dermatol. 2016;152(9):1008-1014.

28. Broeders JA, Ahmed Ali U, Fischer G. Systematic review and meta-analysis of randomized clinical trials (RCTs) comparing topical calcineurin inhibitors with topical corticosteroids for atopic dermatitis: a 15-year experience. J Am Acad Dermatol. 2016;75(2):410-419.e3.

29. Brown G, Wang E, Leon A, et al. Tumor necrosis factor-alpha inhibitor-induced psoriasis: systematic review of clinical features, histopathological findings, and management experience. J Am Acad Dermatol. 2017;76(2):334-341.

30. Brunssen A, Waldmann A, Eismann N, Katalinic A. Impact of skin cancer screening and secondary prevention campaigns on skin cancer incidence and mortality: a systematic review. J Am Acad Dermatol. 2017;76(1):129-139.e10.

31. Burden-Teh E, Thomas KS, Ratib S, Grindlay D, Adaji E, Murphy R. The epidemiology of childhood psoriasis: a scoping review. Br J Dermatol. 2016;174(6):1242-1257.

32. Callander J, Robson Y, Ingram J, Piguet V. Treatment of clinically amyopathic dermatomyositis in adults: a systematic review. Br J Dermatol. 2018;179(6):1248-1255.

33. Callen J, Chalmín S, Eichenfield LF, et al. A systematic review of the safety of topical therapies for atopic dermatitis. Br J Dermatol. 2007;156(2):203-221.

34. Chahoud J, Semaan A, Chen Y, et al. Association between beta-genus human papillomavirus and cutaneous squamous cell carcinoma in immunocompetent individuals—a meta-analysis. JAMA Dermatol. 2016;152(12):1354-1364.

35. Chang YS, Huang YC. Role of Dermodex mite infestation in rosacea: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(3):441-447.e6.

36. Charrow A, Imadojemu S, Stephen S, Ogunleye T, Takeshita J, Lipoff JB. Cutaneous manifestations of IgG4-related disease (RD): a systematic review. J Am Acad Dermatol. 2016;75(1):197-202.

37. Charrow A, Xia FD, Joyce C, Mostaghimi A. Diversity in dermatology clinical trials: a systematic review. JAMA Dermatol. 2017;153(2):193-198.

38. Chasset F, Bouaziz JD, Cbestodato-Chalumeau N, Frances C, Arnaud L. Efficacy and comparison of antimalarials in cutaneous lupus erythematosus subtypes: a systematic review and meta-analysis. Br J Dermatol. 2017;177(1):188-196.

39. Chen X, Jiang X, Yang M, et al. Systemic antifungal therapy for tinea capitis in children: an abridged Cochrane review. J Am Acad Dermatol. 2017;76(2):368-374.

40. Chi CC, Kirtschig G, Baldo M, Lewis F, Wang SH, Wojnarowska F. Systematic review and meta-analysis of randomized controlled trials on topical interventions for genital lichen sclerosus. J Am Acad Dermatol. 2012;67(2):305-312.

41. Connolly KL, Jeong JM, Barker CA, Hernandez M, Lee EH. A systematic review of comorbidity indices used in the non-melanoma skin cancer population. J Am Acad Dermatol. 2017;76(2):344-346.e2.

42. Courtenay M, Carey N. Nurse-led care in dermatology: a review of the literature. Br J Dermatol. 2006;154(1):1-6.

43. Crijs HJ, Straus SM, Gispen-de Wied C, de Jong-van den Berg LT. Compliance with pregnancy prevention programmes of isotretinoin in Europe: a systematic review. Br J Dermatol. 2011;164(2):238-244.

44. Dai J, Belum VR, Wu S, Sibaud V, Lacouture ME. Pigmentary changes in patients treated with targeted anticancer agents: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(5):902-910.e2.

45. Delaplace M, Lhomme C, de Pinieux G, Vergier B, de Muret A, Machet L. Primary cutaneous Ewing sarcoma: a systematic review focused on treatment and outcome. Br J Dermatol. 2012;166(4):721-726.

46. Devillers AC, Oranje AP. Efficacy and safety of ‘’wet-wrap’’ dressings as an intervention treatment in children with severe and/or refractory atopic dermatitis: a critical review of the literature. Br J Dermatol. 2006;154(4):579-585.

47. Dommasch AD, Abubara K, Shin DB, Nguyen J, Troxel AB, Gelfand JM. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Dermatol. 2011;64(6):1035-1050.

48. Durbec F, Martin L, Derancourt C, Grange F. Melanoma of the hand and foot: epidemiological, prognostic and genetic features. A systematic review. Br J Dermatol. 2012;166(4):727-739.

49. Eady EA, Layton AM, Sprakel J, Arents BWM, Fedorowicz Z, van Zuuren EJ. AGREE II assessments of recent acne treatment guidelines: how well do they reveal trustworthiness as defined by the U.S. Institute of Medicine criteria? Br J Dermatol. 2017;177(6):1716-1725.

50. Eleftheriadou V, Thomas KS, Whitton ME, Batchelor JM, Ravenscroft JC. Which outcomes should we measure in vitiligo trials. Br J Dermatol. 2017;177(3):518-526.

51. Eminovic N, de Keijser NF, Bindels PJ, Hasman A. Maturity of teledermatology evaluation research: a systematic literature review. J Am Acad Dermatol. 2017;76(2):334-352.

52. Frew JW, Vekic DA, Woods J, Calns GD. A systematic review and critical evaluation of reported pathogenic sequence...
variants in hidradenitis suppurativa. Br J Dermatol. 2017;177(4):987-998.

56. Futamura M, Leshem YA, Thomas KS, Nankervis H, Williams HC, Simpson EL. A systematic review of Investigator Global Assessment (IGA) in atopic dermatitis (AD) trials: many options, no standards. J Am Acad Dermatol. 2016;74(2):288-294.

57. Gantz M, Butler D, Goldberg M, Ryu J, McAlmont T, Shinkai K. Atypical features and systemic associations in extensive cases of Grover disease: a systematic review. J Am Acad Dermatol. 2017;77(5):952-957.e1.

58. Garden BC, Wu S, Lacouture ME. The risk of nail changes with epidermal growth factor receptor inhibitors: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2012;67(3):400-408.

59. Gerami P, Schope JM, McDonal D, Walling HW, Sontheimer RD. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis sine myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol. 2006;54(4):597-613.

60. Gerami P, Walling HW, Lewis J, Doughty L, Sontheimer RD. A systematic review of juvenile-onset clinically amyopathic dermatomyositis. Br J Dermatol. 2007;157(4):637-644.

61. Gerbens LA, Chalmers JR, Rogers NK, Nankervis H, Spuls PI. Reporting of symptoms in randomized controlled trials of atopic eczema treatments: a systematic review. Br J Dermatol. 2012;167(4):678-686.

62. Glick ZR, Frieden IJ, Garzon MC, Mully TW, Drolet BA. Diffuse neonatal hemangiomatosis: an evidence-based review of case reports in the literature. J Am Acad Dermatol. 2012;67(5):898-903.

63. Gomez-Garcia F, Epstein D, Isla-Tejera B, Lorente A, Velez Garcia-Nieto A, Ruano J. Short-term efficacy and safety of new biological agents targeting the interleukin-23-T helper 17 pathway for moderate-to-severe plaque psoriasis: a systematic review and network meta-analysis. Br J Dermatol. 2017;176(3):594-603.

64. Gomez-Garcia F, Ruano J, Aguilar-Luque M, et al. Systematic reviews and meta-analyses on psoriasis: role of funding sources, conflict of interest and bibliometric indices as predictors of methodological quality. Br J Dermatol. 2017;176(6):1633-1644.

65. Gonzalez-Lopez G, Ceballos-Rodriguez RM, Gonzalez-Lopez JJ, Felto Rodriguez M, Herranz-Pinto P. Efficacy and safety of wet wrap therapy for patients with atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2017;177(3):688-695.

66. Guillen-Aquinaga S, Jauregui Presa I, Aquinaga-Ontoso E, Guillen-Grima F, Ferrer M. Updosing nonsedating antihistamines in patients with chronic spontaneous urticaria: a systematic review and meta-analysis. Br J Dermatol. 2016;175(6):1153-1165.

67. Gunaratne DA, Howle JR, Veness MJ. Definitive radiotherapy for Merkel cell carcinoma confers clinically meaningful in-field locoregional control: a review and analysis of the literature. J Am Acad Dermatol. 2017;77(1):142-148.e1.

68. Gupta AK, Drummond-Main C, Cooper EA, Britnell W, Piraccini BM, Tosti A. Systematic review of nondermatophyte mold onychomycosis: diagnosis, clinical types, epidemiology, and treatment. J Am Acad Dermatol. 2012;66(3):494-502.

69. Gupta AS, Ortega-Loyaza AG. Ocular pyoderma gangrenosum: a systematic review. J Am Acad Dermatol. 2017;76(3):512-518.

70. Haddad C, Sigha OB, Lebrun-Vignes B, Chosidow O, Fardet L. Reporting of harm and safety results in randomized controlled trials published in 5 dermatology journals. J Am Acad Dermatol. 2017;77(1):98-104.e1.
86. Jang YH, Jung HJ, Moon SY, et al. Systematic review and quality analysis of studies on the efficacy of topical diphenycyropenone treatment for alopecia areata. *J Am Acad Dermatol*. 2017;77(1):170-172.e1.

87. Jascholt I, Lai O, Zillikens D, Kasperkiewicz M. Periodontitis in oral pemphigus and pemphigoid: a systematic review of published studies. *J Am Acad Dermatol*. 2017;76(5):975-978.e3.

88. Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: a systematic review and meta-analysis. *J Am Acad Dermatol*. 2016;75(6):1119-1125.e1.

89. Karia PS, Morgan FC, Ruiz ES, Schmults CD. Clinical and incidental perineural invasion of cutaneous squamous cell carcinoma. *JAMA Dermatol*. 2017;153(8):781-788.

90. Katugampola RP, Lewis VJ, Finlay AY. The Dermatology Life Quality Index: assessing the efficacy of biological therapies for psoriasis. *Br J Dermatol*. 2007;156(5):945-950.

91. Khatami A, Firooz A, Gorouhi F, Dowlati Y. Treatment of acute Old World cutaneous leishmaniasis: a systematic review of the randomized controlled trials. *J Am Acad Dermatol*. 2007;57(2):335.e1-335.e29.

92. Kim A, Silverberg JI. A systematic review of vigorous physical activity in eczema. *Br J Dermatol*. 2016;174(3):660-662.

93. Kim JP, Chao LX, Simpson EL, Silverberg JI. Persistence of atopic dermatitis (AD): a systematic review and meta-analysis. *J Am Acad Dermatol*. 2016;75(4):681-687.e11.

94. Kouwenhoven TA, van de Kerkhof PCM, Kamsteeg M. Use of oral antidepressants in patients with chronic pruritus: a systematic review. *J Am Acad Dermatol*. 2017;77(6):1068-1073.e7.

95. Kramer ON, Albrecht J. Clinical presentation of terbinafine-induced severe liver injury and the value of laboratory monitoring: a critically appraised topic. *Br J Dermatol*. 2017;177(5):1279-1284.

96. Krengel S, Hauschild A, Schafer T. Melanoma risk in congenital melanocytic naevi: a systematic review. *Br J Dermatol*. 2006;155(1):1-8.

97. Kwok CS, Holland R, Gibbs S. Efficacy of topical treatments for cutaneous warts: a meta-analysis and pooled analysis of randomized controlled trials. *Br J Dermatol*. 2011;165(2):233-246.

98. Lai YC, Yew YW, Kennedy C, Schwartz RA. Vitiligo and depression: a systematic review and meta-analysis of observational studies. *Br J Dermatol*. 2017;177(3):708-716.

99. Langan SM, Williams HC. What causes worsening of eczema? a systematic review. *Br J Dermatol*. 2006;155(3):504-514.

100. Lavoia AC, Webb TL, Thompson AR. A meta-analysis of the effectiveness of psychological interventions for adults with skin conditions. *Br J Dermatol*. 2012;167(5):970-979.

101. Lebrun-Vignes B, Bouzamdou A, Dupuy A, Guillaum JC, Lechat P, Chosidow O. A meta-analysis to assess the efficacy of oral antiviral treatment to prevent genital herpes outbreaks. *J Am Acad Dermatol*. 2007;57(2):238-246.

102. Lee YH, Scharnitz TP, Muscat J, Chen A, Gupta-Elera G, Kirby JS. Laboratory monitoring during isotretinoin therapy for acne: a systematic review and meta-analysis. *JAMA Dermatol*. 2016;152(1):35-44.

103. Li AW, Yin ES, Antaya RJ. Topical corticosteroid phobia in atopic dermatitis: a systematic review. *JAMA Dermatol*. 2017;153(10):1036-1042.

104. Liu LY, King BA, Craiglow BG. Health-related quality of life (HRQoL) among patients with alopecia areata (AA): a systematic review. *J Am Acad Dermatol*. 2016;75(4):806-812.e3.

105. Lodi G, Carrozzo M, Furness S, Thongprasom K. Interventions for treating oral lichen planus: a systematic review. *Br J Dermatol*. 2012;166(5):938-947.

106. Lomas A, Leonard-Bej B, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. *Br J Dermatol*. 2012;166(5):1069-1080.

107. Lowe GC, Henderson CL, Grau RH, Hansen CB, Sontheimer RD. A systematic review of drug-induced subacute cutaneous lupus erythematosus. *Br J Dermatol*. 2011;164(3):465-472.

108. Lubeek SF, van Vugt LJ, Aben KK, van de Kerkhof PC, Gerritsen MP. The epidemiology and clinicopathological features of basal cell carcinoma in patients 80 years and older: a systematic review. *JAMA Dermatol*. 2017;153(1):71-78.

109. Lubeek SF, Borgenjen RJ, van Vugt LJ, Olde Rikkert MG, van de Kerkhof PC, Gerritsen MJ. Improving the applicability of guidelines on nonmelanoma skin cancer in frail older adults: a multidisciplinary expert consensus and systematic review of current guidelines. *Br J Dermatol*. 2016;175(5):1003-1010.

110. Martin LK, Werth VP, Villanueva EV, Murrell DF. A systematic review of randomized controlled trials for pemphigus vulgaris and pemphigus foliaceus. *J Am Acad Dermatol*. 2011;64(5):903-908.

111. Mazaud C, Fardet L. Relative risk of and determinants for adverse events of methotrexate prescribed at a low dose: a systematic review and meta-analysis of randomized placebo-controlled trials. *Br J Dermatol*. 2017;177(4):978-986.

112. Muranushi C, Olsen CM, Green AC, Pandeya N. Can oral nonsteroidal antiinflammatory drugs play a role in the prevention of basal cell carcinoma? a systematic review and metaanalysis. *J Am Acad Dermatol*. 2016;74(1):108-119.e1.

113. Nankervis H, Baibergenova A, Williams HC, Thomas KS. Prospective registration and outcome-reporting bias in randomized controlled trials of eczema treatments: a systematic review. *J Invest Dermatol*. 2012;132(12):2727-2734.

114. Ng CY, Huang YH, Chu CF, Wu TC, Liu SH. Risks for *Staphylococcus aureus* colonization in patients with psoriasis: a systematic review and meta-analysis. *Br J Dermatol*. 2017;177(4):967-977.

115. Nguyen J, Korta DZ, Chapman LW, Kelly KM. Laser treatment of nongenital verrucae: a systematic review. *JAMA Dermatol*. 2016;152(9):1025-1034.

116. Nilsen LT, Hannevik M, Veierod MB. Ultraviolet exposure from indoor tanning devices: a systematic review. *Br J Dermatol*. 2017;174(4):730-740.

117. Ogunsanya ME, Kalb SJ, Kabaria A, Chen S. A systematic review of patient-reported outcomes in patients with cutaneous lupus erythematosus. *Br J Dermatol*. 2017;174(6):853-861.

118. Olsen JR, Gallacher J, Finlay AY, Piguet V, Francis NC. Quality of life impact of childhood skin conditions measured using the Children’s Dermatology Life Quality Index (CDLQI): a meta-analysis. *Br J Dermatol*. 2016;174(4):853-861.

119. Opel D, Kramer ON, Chevalier M, Bigby M, Albrecht J. Not every patient needs a triglyceride check, but all can get pancreatitis: a systematic review and clinical characterization of isoretinoin-associated pancreatitis. *Br J Dermatol*. 2017;177(4):960-966.

120. Pampena R, Kyrgidis A, Lallas A, Moscarella E, Argenziano G, Longo C. A meta-analysis of nevus-associate melanoma: prevalence and practical implications. *J Am Acad Dermatol*. 2017;77(5):938-945.e4.

121. Patterson AT, Kaffenberger BH, Keller RA, Elston DM. Skin diseases associated with Agent Orange and other
organochlorine exposures. *J Am Acad Dermatol*. 2016;74(1):143-170.

122. Petrelli F, Borgenovo K, Cabiddu M, et al. Antibiotic prophylaxis for skin toxicity induced by antiepidermal growth factor receptor agents: a systematic review and meta-analysis. *Br J Dermatol*. 2016;175(6):1166-1174.

123. Pickett K, Frampton G, Loveman E. Education to improve quality of life of people with chronic inflammatory skin conditions: a systematic review of the evidence. *Br J Dermatol*. 2016;174(6):1228-1241.

124. Plasmeijer EI, Nguyen TM, Olsen CM, Janda M, Soyer HP, Green AC. The natural history of common melanocytic nevi: a systematic review of longitudinal studies in the general population. *J Invest Dermatol*. 2017;137(9):2017-2018.

125. Pope V, Dupuis L, Kannu P, et al. Buschke-Ollendorf syndrome: a novel case series and systematic review. *Br J Dermatol*. 2016;174(4):723-729.

126. Quirke M, Ayoub F, McCabe A, et al. Risk factors for nonpurulent leg cellulitis: a systematic review and meta-analysis. *Br J Dermatol*. 2017;177(2):392-394.

127. Reich K, Burden AD, Eaton JN, Hawkins NS. Efficacy of biologics in the treatment of moderate to severe psoriasis: a network meta-analysis of randomized controlled trials. *Br J Dermatol*. 2012;166(1):179-188.

128. Rencz F, Gulacsi L, Pentek M, Wikonkal N, Baji P, Brodzsky V. Overall treatment success after treatment of calciphylaxis: a systematic review. *Br J Dermatol*. 2016;177(3):719-734.

129. Rieder CA, El-Azhary RA, Wu KL, Strand JJ, Lehman JS. Underreported use of palliative care and patient-reported outcome measures to address reduced quality of life in patients with calpoxilysis: a systematic review. *Br J Dermatol*. 2017;177(6):1510-1518.

130. Robinson A, Kardos M, Kimball AB. Physician Global Assessment (PGA) and Psoriasis Area and Severity Index (PASI): why do both? a systematic analysis of randomized controlled trials of biologic agents for moderate to severe plaque psoriasis. *J Am Acad Dermatol*. 2012;66(3):369-375.

131. Rodriguez-Zuniga MJM, Garcia-Perdomo HA. Systematic review and meta-analysis of the association between psoriasis and metabolic syndrome. *J Am Acad Dermatol*. 2017;77(4):657-666.e8.

132. Rozeeboom MH, Aits AH, Nelemans PJ, Kelleners-Smeets NW. Overall treatment success after treatment of primary superficial basal cell carcinoma: a systematic review and meta-analysis of randomized and nonrandomized trials. *Br J Dermatol*. 2012;167(4):733-756.

133. Rotta I, Sanchez A, Goncalves PR, Otufo MK, Correr CJ. EFfacy and safety of topical antifungals in the treatment of dermatomycosis: a systematic review. *Br J Dermatol*. 2012;166(5):927-933.

134. Rungapirormnan W, Yiu ZZN, Warren RB, Griffiths CEM, Ashcroft DM. Impact of biologic therapies on risk of major adverse cardiovascular events in patients with psoriasis: systematic review and meta-analysis of randomized controlled trials. *Br J Dermatol*. 2017;176(4):890-901.

135. Saleem MD, Kesty C, Feldman SR. Relative versus absolute risk of comorbidities in patients with psoriasis. *J Am Acad Dermatol*. 2017;76(3):531-537.

136. Schiller JG, Rosumeck S, Werner RN, et al. Topical treatments for scalp psoriasis: summary of a Cochrane systematic review. *Br J Dermatol*. 2017;176(3):604-614.

137. Schmitt J, Seidler A, Diepgen TL, Bauer A. Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. *Br J Dermatol*. 2011;164(2):291-307.

138. Schoch D, Sommer R, Augustin M, Stinder S, Blome C. Patient-reported outcome measures in pruritus: a systematic review of measurement properties. *J Invest Dermatol*. 2017;137(10):2069-2077.

139. Seidler EM, Kimball AB. Meta-analysis of randomized controlled trials using 5% benzyol peroxide and clindamycin versus 2.5% benzyol peroxide and clindamycin topical treatments in acne. *J Am Acad Dermatol*. 2011;65(4):e117-e119.

140. Shahwan KT, Kimball AB. Itch intensity in moderate-to-severe plaque psoriasis versus atopic dermatitis: a meta-analysis. *J Am Acad Dermatol*. 2017;76(6):1198-1200.e1.

141. Shapiro S, Heremans A, Mays DA, Martin AL, Hernandez-Medina M, Lanes S. Use of topical tretinoin and the development of noncutaneous adverse events: evidence from a systematic review of the literature. *J Am Acad Dermatol*. 2011;65(6):1194-1201.

142. Shaw J, Hughes CM, Lagan KM, Bell PM. The clinical effect of topical phenytoin on wound healing: a systematic review. *Br J Dermatol*. 2007;157(5):997-1004.

143. Shreiber-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: a systematic review. *J Am Acad Dermatol*. 2017;76(4):745-753.e19.

144. Shreiber-Hassidim R, Ramot Y, Gilula Z, Zlotogorski A. A systematic review of pulse steroid therapy for alopecia areata. *J Am Acad Dermatol*. 2016;74(2):372-375.

145. Simonart T, Kabagabo C, De Maertelaer V. Homoeopathic remedies in dermatology: a systematic review of controlled clinical trials. *Br J Dermatol*. 2011;165(4):897-905.

146. Simonsen AB, Johansen JD, Deleuran M, Mortz CG, Sommerlund M. Contact allergy in children with atopic dermatitis: a systematic review. *Br J Dermatol*. 2017;177(2):395-405.

147. Singh S, Taylor C, Kommez H, Armstrong AW. Psoriasis and suicidality: a systematic review and meta-analysis. *J Am Acad Dermatol*. 2017;77(3):425-440.e2.

148. Snast I, Atzmony L, Braun M, Hodak E, Pavlovsky L. Risk for hepatitis B and C virus reactivation in patients with psoriasis from a systematic review of the literature. *J Am Acad Dermatol*. 2017;77(1):88-97.e5.

149. Snoswell C, Finnane A, Janda M, Soyer HP, Whitty JA. Cost-effectiveness of store-and-forward teledermatology a systematic review. *JAMA Dermatol*. 2016;152(6):702-708.

150. Stranzenbach R, Dippel E, Schlaak M, Stadler R. Brentuximab vedotin in CD30+ cutaneous lymphoma: how shall we treat, cutaneous lymphoma–a marker of poor prognosis? *J Am Acad Dermatol*. 2006;54(2):221-226.
