Serum calcium and phosphorus levels in patients undergoing maintenance hemodialysis: A multicentre study in Korea

Gheun-Ho Kim 1,*, Bum Soon Choi 2, Dae Ryong Cha 3, Dong Hyun Chee 4, Eunah Hwang 5, Hyung Wook Kim 6, Jae Hyun Chang 7, Joong-Kyung Kim 8, Jung Woo Noh 9, Kwon Wook Joo 10, Sang Choe Lee 11, Sang-Woong Han 12, Sejoong Kim 13, Soo Wan Kim 14, Sug-Kyun Shin 15, Wondo Park 16, Won Kim 17, Wooseong Huh 18, Young Joo Kwon 19, Young Sun Kang 3

1 Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
2 Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
3 Department of Nephrology, Korea University Medical College, Ansan, Korea
4 AbbVie Ltd., Seoul, Korea
5 Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
6 Department of Internal Medicine, St. Vincents Hospital, The Catholic University of Korea College of Medicine, Suwon, Korea
7 Department of Internal Medicine, Gachon University of Medicine and Science, Incheon, Korea
8 Department of Internal Medicine, Bong Seng Memorial Hospital, Busan, Korea
9 Department of Internal Medicine, Hallym Kidney Research Institute, Hallym University College of Medicine, Goyang, Korea
10 Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
11 Department of Internal Medicine, Goodmorning Hospital, Pyeongtaek, Korea
12 Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
13 Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
14 Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
15 Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
16 Department of Internal Medicine, Chungbuk National University Medical School, Jeonju, Korea
17 Department of Internal Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
18 Division of Nephrology, College of Medicine, Korea University, Guro Hospital, Seoul, Korea
19 Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea

Article history:
Received 26 June 2013
Received in revised form 8 December 2013
Accepted 25 December 2013
Available online 21 February 2014

Keywords:
Calcium
Hemodialysis
Intact parathyroid hormone
Phosphorus
Secondary hyperparathyroidism

Abstract
Background: In many countries, nephrologists follow clinical practice guidelines for mineral bone disorders to control secondary hyperparathyroidism (SHPT) associated with abnormal serum calcium (Ca) and phosphorus (P) levels in patients undergoing maintenance hemodialysis (MHD). The Kidney Disease Outcomes Quality Initiative (KDOQI) Guidelines have long been used in Korea, and this study was undertaken to investigate the current status of serum Ca and P control in MHD patients.

Methods: Data were collected from a total of 1,018 patients undergoing MHD without intercurrent illness, in 17 hemodialysis centers throughout the country. Serum levels of Ca, P, and intact parathyroid hormone (iPTH) were measured over 1 year, and the average values were retrospectively analyzed.

Results: Serum levels of Ca, P, and the Ca x P product were 9.1 ± 0.7 mg/dL, 5.3 ± 1.4 mg/dL, and 48.0 ± 13.6 mg²/dL², respectively. However, the percentages of patients with Ca, P, and Ca x P product levels within the KDOQI guideline ranges were 58.7%, 51.0%, and 70.7%, respectively. Of the 1,018 patients, 270 (26.5%) had iPTH > 300 pg/mL (uncontrolled SHPT), whereas 435 patients (42.7%) showed iPTH
< 150 pg/mL. Patients with uncontrolled SHPT had significantly higher values of serum Ca, P, and Ca × P product than those with iPTH ≤ 300 pg/mL.

Conclusion: Despite the current clinical practice guidelines, SHPT seems to be inadequately controlled in many MHD patients. Uncontrolled SHPT was associated with higher levels of serum Ca, P, and Ca × P product, suggestive of the importance of SHPT management.

© 2014. The Korean Society of Nephrology. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Secondary hyperparathyroidism (SHPT) is a common complication of chronic kidney disease (CKD). In addition, hyperphosphatemia has emerged as an important clinical issue in dialysis patients over the past decade because higher levels of serum phosphorus (P) and calcium–phosphorus (Ca × P) product have now been associated with increased vascular calcification and cardiovascular mortality [1-6]. Similar to other countries, the number of patients with end-stage renal disease (ESRD) has been increasing in Korea. According to 2010 registry data from the Korean Society of Nephrology, hemodialysis was the most frequently used renal replacement therapy (in 39,509 patients) among the total 58,860 patients with ESRD. Diabetes mellitus was the leading cause of ESRD (45.2%), and cardiovascular disease was the major cause of death (45%) in patients undergoing dialysis [7].

To improve the quality of care in patients undergoing maintenance hemodialysis, clinical practice guidelines have been developed and used in many countries. Globally, including Korea, the Kidney Disease Outcome Quality Initiative (KDOQI) and Kidney Disease: Improving Global Outcomes (KDIGO) guidelines are popular [8,9]. In the Asia-Pacific area, Australia and Japan have their own guidelines for CKD-mineral bone disorder (MBD) management (Caring for Australasians with Renal Impairment [CARI] and Japanese Society for Dialysis Therapy [JSDT] guidelines, respectively) [10,11]. In these guidelines, target ranges for serum minerals have been recommended for the optimal management of patients undergoing MHD.

In Europe, America, and Japan, epidemiologic studies have been conducted in patients with MHD and demonstrated associations between abnormal mineral metabolism, based on patient serum mineral levels and patient outcomes [12-14]. We aimed to evaluate serum mineral levels in Korean patients undergoing MHD to determine their relationship with parathyroid hormone control. These results may provide insight into the status of current practice in the era of such guidelines.

Methods

Between January 1, 2009 and June 30, 2009, clinical data were collected from patients undergoing MHD in 17 centers (10 university hospitals and 7 secondary-care general hospitals) in Korea. Enrollment criteria included (1) patient age ≥ 18 years, (2) chronic hemodialysis for ≥ 6 months, and (3) multiple measurements of serum Ca, P, and intact parathyroid hormone (iPTH) during the preceding 12 months. Patients with intercurrent illnesses requiring hospitalization were excluded. As a result, 1,018 patients were found to be eligible among the 1,060 enrolled MHD patients. Patient consent was obtained, as required by the institutional review boards of the participating medical facilities.

Patient demographic and laboratory data were obtained by reviewing medical records from 2008 to 2009. The laboratory values were averaged because most centers measured serum Ca and P monthly, and measured iPTH quarterly. Albumin-corrected calcium (mg/dL) was calculated as [4 – albumin (g/dL)] × 0.8 + total serum calcium (mg/dL) when the serum albumin level was less than 4.0 g/dL. The iPTH concentration was measured by second-generation PTH assays using four different assay kits: Elecsys PTH (Roche Diagnostics; Meylan, France), Immulite 2000 intact PTH (DPC; Los Angeles, USA), ELISA-PTH (Schering-Cis Bio; Gil-sur-Yvette, France), and Architect intact PTH (Abbott; Wiesbaden, Germany). Among different second-generation PTH assays, our methods had a relatively small interassay variability [15]. After data collection, the distributions of serum mineral levels were examined, based on the KDOQI guidelines.

Continuous data are presented as means ± standard deviation, and categorical variables are expressed as frequency counts and percentages. Box plots are used for a visual presentation of continuous variables; median, 75th, and 25th percentiles, and ranges between the 10th to 90th percentile are shown. The Kruskal-Wallis test was used to compare continuous variables among three or more groups, and the Mann-Whitney U test was used for comparisons between two groups. The chi-square test and Pearson correlation efficiency test were used to evaluate associations between categorical and continuous variables, respectively. Statistical significance was defined as $P < 0.05$.

Results

General patient characteristics

Table 1 shows the general characteristics of the 1,018 patients. The mean age was 54 years, with an equal distribution by sex. In most patients, hemodialysis was performed three times a week, in 4-hour sessions. Interestingly, 87.2% of patients reported adherence to dietary phosphorus restrictions. Phosphorus binders were used by 72.3% of the study participants and vitamin D receptor agonists were used by 45.9% of the participants. The former covered both calcium-based and calcium-free phosphate binders (Table 2), and the latter included calcitriol, paricalcitol, and alfalcalcidol, in order of the frequency of their use. Nevertheless, 270 patients (26.5%) had iPTH > 300 pg/mL. Most of the patients used a dialysate calcium concentration of 3.0 mEq/L. Fig. 1 illustrates the distribution of dialysate calcium concentrations.
Serum levels of Ca, P, and Ca × P product

The mean values of serum Ca, P, and Ca × P product were 9.1 ± 0.7 mg/dL, 5.3 ± 1.4 mg/dL, and 48.0 ± 13.6 mg²/dL², respectively. The mean iPTH level was 262.1 ± 298.8 pg/mL. Fig. 2 illustrates the distributions of serum Ca, P, Ca × P product, and iPTH levels, based on the recommended KDQI guideline ranges. Only approximately half of the patients were considered within the guideline range for serum Ca (8.4–9.5 mg/dL) and P (3.5–5.5 mg/dL). Uncontrolled hyperphosphatemia and elevated Ca × P product levels (≥ 55 mg²/dL²) were observed in 40.7% and 29.3% of the patients, respectively. Only a third of the patients were within the guideline range for iPTH (150–300 pg/mL). Among patients outside the guideline range for iPTH, more patients were considered to be in the low (< 150 pg/mL, 42.7%) than the high (＞ 300 pg/mL, 26.5%) range.

Serum levels of Ca, P, and Ca × P product by iPTH levels

Serum Ca, P, and Ca × P product levels were compared by iPTH levels (< 150, 150–300, and > 300 pg/mL). As shown in Fig. 3, serum Ca, P, and Ca × P product levels were significantly increased in patients with iPTH > 300 pg/mL, compared with the other two groups. Patients with iPTH < 150 pg/mL had significantly lower P and Ca × P product values than those with iPTH levels in the 150–300 pg/mL range, although serum Ca was not significantly different between the two groups.

Table 1. General patient characteristics (n = 1,018)

Characteristics	Values
Demographics	
Age (y)	54.0 ± 13.3
Female, n (%)	507 (49.8)
Height (cm)	162.2 ± 8.9
Weight (kg)	57.7 ± 10.6
BMI (kg/m²)	21.9 ± 3.2
Hemodialysis	
Vintage (y)	5.4 ± 5.2
Frequency (times/wk)	3.0 ± 0.2
Session length (h/wk)	11.9 ± 0.6
Comorbidity	
Diabetes mellitus, n (%)	378 (37.1)
Hypertension, n (%)	618 (60.7)
Management for SHPT	
Dietary phosphorus restriction, n (%)	888 (87.2)
Phosphate binders, n (%)	736 (72.3)
Vitamin D receptor agonists, n (%)	429 (42.1)

Continuous variables are expressed as means ± standard deviation. BMI, body mass index; SHPT, secondary hyperparathyroidism.

Table 2. Serum mineral levels according to the current use of phosphate binders

Serum parameters	Phosphate binders	P			
	Combined use (n = 306)	Calcium-based agents (n = 329)	Calcium-free agents (n = 101)	No use (n = 282)	
Calcium (mg/dL)	9.0 ± 0.6	9.0 ± 0.6	9.6 ± 0.9	9.2 ± 0.9	<0.0001*
Phosphorus (mg/dL)	5.9 ± 1.1	4.7 ± 1.1	6.2 ± 1.2	5.0 ± 1.5	<0.0001*
Calcium-phosphorus product (mg²/dL²)	262.6 ± 247.9	203.0 ± 226.6	370.9 ± 315.5	291.3 ± 389.7	<0.0001*
iPTH (pg/mL)					

Data are described as mean ± standard deviation.

Combined use, calcium-based phosphate binders + calcium-free phosphate binders; iPTH, intact-parathyroid hormone.

* Comparisons were made using analysis of variance.

† Comparisons were made using the Kruskal-Wallis test.
among patients taking the different vitamin D receptor agonists. Although the serum P level did not differ among the groups, serum Ca, Ca × P product, and iPTH levels showed significant differences, according to the use of the different vitamin D receptor agonists. Paricalcitol was prescribed in the patients with higher Ca and iPTH levels.

Discussion

The current study showed that relatively large percentages of patients undergoing MHD were outside of the KDOQI guideline target ranges for serum Ca, P, Ca × P product, and iPTH levels. Thus, the percentages of our patients who were within the KDOQI guideline ranges were relatively modest: Ca, 58.7%; P, 51.0%; Ca × P product, 70.7%, and iPTH, 30.8%. These data may represent the current status of serum mineral control in Korea because our patients had demographic characteristics comparable to the overall Korean patient population undergoing MHD [7].

In this study, the percentage of patients who were within the guideline ranges was a little larger than that observed in the Dialysis Outcomes and Practice Patterns Studies (DOPPS I) that was performed between 1996 and 2001, before the KDOQI guidelines were published [8]. In DOPPS I, the percentages of patients within the KDOQI guideline ranges were relatively modest: Ca, 58.7%; P, 51.0%; Ca × P product, 70.7%, and iPTH, 30.8%. These data may represent the current status of serum mineral control in Korea because our patients had demographic characteristics comparable to the overall Korean patient population undergoing MHD [7].

In a similar context, the patients in the current study showed better serum mineral profiles compared with individuals in other DOPPS countries. A multicenter study from Italy reported that serum P was > 5.5 mg/dL in 51.6% and the Ca × P product was > 55 mg²/dL² in 35.5% of the patients [14]. In a cohort study in Japan (J-DOPPS), the mean values of serum Ca, P, Ca × P

Table 3. The current use of vitamin D receptor agonists by different levels of intact parathyroid hormone

Vitamin D receptor agonists	iPTH (pg/mL)		
	< 150	150–300	> 300
Alfacalcidol	19 (1.9)	28 (2.8)	10 (1.0)
Calcitriol	55 (5.4)	138 (13.6)	99 (9.7)
Paricalcitol	1 (0.1)	7 (0.7)	30 (3.0)
Alfacalcidol + calcitriol	0 (0.0)	5 (0.5)	6 (0.6)
Paricalcitol + others	0 (0.0)	13 (1.3)	56 (5.5)
No treatment	360 (35.4)	122 (12.0)	69 (6.8)

* Value are presented as n (%). The association between the iPTH levels and vitamin D receptor agonist types were significant (P < 0.0001 by chi-square test).
product, and iPTH were 9.4 ± 1.0 mg/dL, 5.7 ± 1.6 mg/dL, 52.8 ± 15.9 mg²/dL², and 194 ± 263 pg/mL, respectively [16]. The percentages of patients with laboratory values within the KDOQI guideline ranges were 44.2% for Ca, 43.1% for P, 58.9% for Ca × P product, and 24.4% for iPTH in the J-DOPPS report.

Interestingly, in the current study, more patients had low iPTH levels (<150 pg/mL, 42.7%) than high iPTH levels (>300 pg/mL, 26.5%). This finding appears to be similar to those from Western countries [12–14] and to correlate with changes in the histological spectrum of uremic bone disease over the past decades [17,18]; adynamic bone disease is emerging as a major mineral disorder in patients undergoing MHD [19]. Because oversuppression of PTH and excessive calcium intake can induce adynamic bone disease [8], careful use of vitamin D receptor agonists is required. Notably, the new standard target range for iPTH in JSDT is between 60 and 240 pg/mL [11].

A high iPTH level was also found to be significant because it was associated with increased serum mineral levels. Serum Ca, P, and the Ca × P product values correlated with iPTH and significantly increased in patients with iPTH levels >300 pg/mL. The positive correlation between serum P and iPTH may be linked to increased mortality [19], emphasizing the importance of SHPT control.

Management of SHPT includes dietary phosphorus restriction, use of phosphate binders, and adequate dialysis. The use of vitamin D receptor agonists is another important tool for suppressing PTH secretion. Consistent with this finding, the current cross-sectional data showed that patients taking vitamin D receptor agonists had lower serum P and Ca × P product values. Serum mineral values were also compared among patients taking three different vitamin D receptor agonists. The observation that serum Ca and Ca × P product values were lower in calcitriol users than in paricalcitol users was unexpected because hypercalcemia and hyperphosphatemia—side effects associated with these types of drugs—have been more common in those taking calcitriol, according to previous studies [20–22]. This paradoxical finding may result from the cross-sectional design of the current study. Hypercalcemia may have been more frequent in patients medicated with paricalcitol because paricalcitol is a second-line treatment that is only allowed after calcitriol has been attempted, according to the Korean National Health Insurance Service guidelines.

In summary, this study demonstrated the current status of serum Ca, P, Ca × P product, and parathyroid hormone control in MHD patients. As international practice guidelines were introduced, serum mineral profiles appeared to improve. However, relatively modest percentages of the patients remain outside of the guideline’s target ranges. Because uncontrolled secondary hyperparathyroidism (SHPT) was associated with higher serum Ca, P, and Ca × P product levels, adequate treatment of SHPT may lead to reduced cardiovascular mortality and improved patient outcomes.

Conflicts of interest

GH Kim has received speaker fees from and has been a consultant for AbbVie. GH Kim, BS Choi, DR Cha, EA Hwang, HW Kim, JH Chang, JK Kim, JW Noh, KW Joo, SC Lee, SW Han, SW Kim, SK Shin, WD Park, W Kim, WS Huh, and YJ Kwon have received research funding from AbbVie. DH Chee is an employee of AbbVie, and owns AbbVie Stocks. SJ Kim and YS Kang have nothing to disclose.

Acknowledgments

This study was funded by AbbVie. AbbVie led development of the study design in collaboration with academic investigators and analysed the primary data. All authors contributed to design, analysis, and interpretation of these data, and reviewed, approved, and decided to publish the manuscript. The authors thank Dr Mi Kyung Kim (NaeClear Inc.) and Dr Ji Ho Kang (AbbVie) for their efforts to prepare the manuscript and Dr Joo-Hark Yi (Hanyang University Guri Hospital) and Dr Tai Yeon Koo (Seoul National University Hospital) for collecting the data for this study.

References

[1] Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB: Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483, 2000

[2] Ishimura E, Taniwaki H, Tabata T, Tsuchimoto Y, Jono S, Emoto M, Shoji T, Inaba M, Inoue T, Nishizawa Y: Cross-sectional association of serum phosphate with carotid intima-media thickness in hemodialysis patients. Am J Kidney Dis 45:859–865, 2005

[3] Braun J, Oldendorf M, Moshage W, Heidler R, Zeitel E, Luft FC: Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 27:394–401, 1996
[4] Block GA, Hulbert-Shearon TE, Levin NW, Port FK: Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. *Am J Kidney Dis* 31:607–617, 1998

[5] Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK: Association of elevated serum PO4, Ca x PO4 product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. *J Am Soc Nephrol* 12:2131–2138, 2001

[6] Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, Sherrard DJ, Andress DL: Serum phosphate levels and mortality risk among people with chronic kidney disease. *J Am Soc Nephrol* 16:520–528, 2005

[7] Jin DC, Ha IS, Kim NH, Lee SW, Lee JS, Yoon SR, Kim BS: Brief report: renal replacement therapy in Korea, 2010. *Kidney Res Clin Pract* 31:62–71, 2012

[8] National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. *Am J Kidney Dis* 42:S1–S201, 2000

[9] Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Guideline Working Group. KDIGO clinical practice guideline for the management of mineral and bone disorder. *Kidney Int* 11:S230, 2009

[10] Elder G, Faull R, Branley C: Caring for Australasians with Renal Impairment (CARI). The CARI guidelines. Management of bone disease, calcium, phosphate and parathyroid hormone. *Nephrology (Carlton)* 11:S230–S261, 2006

[11] Fukagawa M, Yokoyama K, Koiwa F, Taniguchi M, Shoji T, Kazama JJ, Komaba H, Ando R, Kakuta T, Fujiy H, Nakayama M, Shibagaki Y, Fukumoto S, Fujii N, Hattori M, Ashida A, Iseki K, Shigematsu T, Tsukamoto Y, Tsubakiha Y, Tomo T, Hirakata H, Akizawa T, KDIGO MBD Guideline Working Group. Japanese Society for Dialysis Therapy. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorder. *Ther Apher Dial* 17:247–288, 2013

[12] Young EW, Akiba T, Albert JM, McCarthy JT, Kerr PG, Mendelsohn DC, Jadoul M: Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). *Am J Kidney Dis* 44:34–38, 2004

[13] Tentori F, Blayney MJ, Albert JM, Gillespie BW, Kerr PG, Bommer J, Young EW, Akizawa T, Akiba T, Pisoni RL, Robinson BM, Port FK: Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). *Am J Kidney Dis* 52:519–530, 2008

[14] Gallieni M, Cucinelli E, D’Amaro E, Fatuzzo P, Gaggiotti A, Maringhini S, Rotulo U, Brancaccio D, Collaborating nephrologists of the CARDIALISI Study Group. Calcium, phosphate, and PTH levels in the hemodialysis population: a multicenter study. *J Nephrol* 15:165–170, 2002

[15] Souberbielle JC, Boutten A, Carlier MC, Chevenne D, Coumaros G, Lawson Body E, Massart C, Monge M, Myara J, Parent X, Plouvier E, Houllier P: Inter-method variability in PTH measurement: implication for the care of CKD patients. *Kidney Int* 70:345–350, 2006

[16] Kimata N, Albert JM, Akiba T, Yamazaki S, Kawaguchi S, Akizawa T, Saito A, Asano Y, Kurokawa K, Pisoni RL, Port FK: Association of mineral metabolism factors with all-cause and cardiovascular mortality in hemodialysis patients: the Japan dialysis outcomes and practice patterns study. *Hemodial Int* 11:340–348, 2007

[17] Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood C, Manuel A, Saipour C, Fenton SS, Segre GV: The spectrum of bone disease in end-stage renal failure-an evolving disorder. *Kidney Int* 43:436–442, 1993

[18] Monier-Faugere MC, Malluche HH: Trends in renal osteodystrophy: a survey from 1983 to 1995 in a total of 2248 patients. *Clin Nephrol* 54:309–317, 2000

[19] Mulluche HH, Monier-Faugere MC: Hyperphosphatemia: pharmacologic intervention yesterday, today and tomorrow. *Clin Nephrol* 63:1483–1490, 2003

[20] Sprague SM, Llach F, Amdahl M, Taccetta C, Battle D: Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. *Kidney Int* 63:1483–1490, 2003

[21] Sprague SM, Lerma E, McCormick D, Abraham M, Battle D: Suppression of parathyroid hormone secretion in hemodialysis patients: comparison of paricalcitol with calcitriol. *Am J Kidney Dis* 38:S51–S56, 2001

[22] Llach F, Yu M: Paricalcitol in dialysis patients with calcitrol-resistant secondary hyperparathyroidism. *Am J Kidney Dis* 38:545–550, 2001