Structural and Optical Characterization of Sprayed nanostructured Indium Doped Fe$_2$O$_3$ Thin Films

Reem S Ali1, Musaab K Mohammed2, Abdulhussain A Khadayeir3, Ziad M Abood4, Nadir F Habubi4, Sami S Chiad4*

1Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq.
2 Department of Physics College of Education for Pure Sciences, University of Babylon.
3Department of Physics College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq,
4Department of Physics, College of Education, Mustansiriyah University, Baghdad, Iraq.

*Corresponding Author. E-mail: dr.sami@uomustansiriyah.edu.iq.

Abstract: Nanostructured pure and Indium doped iron oxide thin films were deposited via spray pyrolysis technique (SPT). The effects of Indium (2 and % 4) concentration was studied. X-ray diffraction patterns disclosed that Fe$_2$O$_3$ films have a rhombohedral crystalline of α-Fe$_2$O$_3$ phase and their crystallite size was vary from (12.13 – 13.84) nm with Indium content. The strain(%) parameter decrease from 28.57 to 25.04, AFM images of films show changes in morphology with decreased in surface roughness from 2.75 nm to 1.7 nm with Indium 4% doping. The 3-D images and grain size distribution are illustrated that they exhibit spherical nano-grains ranged from 72.72 nm for pure Indium to 51.22 nm for 4% Indium doped Fe$_2$O$_3$. The transmittance decreases with increasing Indium concentration. The bandgap energy of Fe$_2$O$_3$ thin film was 2.75 eV and it decreases to 2.55 eV for Fe$_2$O$_3$:4% In.

Keywords: In-doped Fe$_2$O$_3$ thin films, spray pyrolysis technique, surface morphology, XRD, bandgap.

1-Introduction

Fe$_2$O$_3$ is a dark red material with bandgap 2.2 eV, non-toxic, high stability and low cost and The resistivity and activation energy of Fe$_2$O$_3$ at room temperature are 6.5x105 Ω.cm and 0.728 eV, respectively [1]. Fe$_2$O$_3$ was employed in many applications like thermopower, water splitting and solar cells, photoanode, and gas sensing [2-10]. Hematite was deposited for the first time via Bard and Hardee utilizing CVD technique [11-12].
The influence of substrate temperature affected structural, optical, and morphological properties of Fe$_2$O$_3$ thin film [13]. Numerous investigators were laboried on several methods for depositing Fe$_2$O$_3$ like; sol-gel [14-15], spray pyrolysis method [16, 17], thermal evaporation method [18], chemical vapor deposition [19], sputtering [20] and DC reactive magnetron sputtering [21], and pulsed laser deposition [22, 23]. This work aims to study the influence of Indium content (2, and 4%) on Structural and Optical Characterization of Fe$_2$O$_3$:In thin films deposited via SPT.

2-Materials and Methods
Fe$_2$O$_3$:In films were deposited via SPT. 0.1 M of FeCl$_3$ and InCl$_2$ resolved via deionised water with few drops of HCl. Volumetric ratio of 2% and 4% Indium was accomplished. The optimal parameters were: spray time was 8 s and time stopping period was 1 min substrate temperature was 400 °C, Air as a transporter gas was fixed at a pressure of 105 Nm$^{-2}$, and space between orifice and the substrate was 30 cm ±1 cm.

Film Thickness was estimated via gravimetric method and was 300 ± 25 nm. The structure of pure and Indium (2, 4%) doped Fe$_2$O$_3$ films were analyzed by (XRD) performed at PANalytical X-ray diffractometer in the range of 20° - 60° (2θ) at scanning rate of 0.05° /min, while the AFM was employed to obtain film topography. Transmittance spectra were achieved utilizing UV-Vis spectrophotometer.

3-Result and discussion
XRD patterns of the deposited films are shown in Figure (1), indicating that films were polycrystalline rhombohedral of α-Fe$_2$O$_3$ phase. Result agree with (ICDD No. 040-1139). The characteristic peaks (110), (113), (204), (111) and (220) corresponding to diffraction 2θ = 30.02°, 31.18°, 36.46°, 55.97° and 62.277°, From the figures, it is noticed that all the recorded membranes are polycrystallized with an ideal reflection at (113) plane at the angle of 2θ=31.26°.

The crystallite size D was determined via Scherer relation [24, 25, 26]:

$$D = \frac{\lambda k}{\beta \cos \theta}$$ \hspace{1cm} (1)

where, k is 0.9, λ is X-ray wavelength, θ is Bragg’s angle, and β is (FWHM). D calculated for Fe$_2$O$_3$, Fe$_2$O$_3$:2% Indium and Fe$_2$O$_3$:4% Indium thin films found to be 12.13 nm, 13.09 nm and 13.84 nm respectively as listed in Table. 1

Other structural parameters such as dislocation density (δ) and strain (ε) are also evaluated. δ gives number of defects in the films, the values of (δ) and (ε) listed in Table. 1 shows the structural parameters estimated from [27, 28, 29]:

$$\delta = \frac{1}{D^2}$$ \hspace{1cm} (2)

$$\varepsilon = \frac{\beta \cos \theta}{4}$$ \hspace{1cm} (3)

Figure (2) represents each of the FWHM, Grain size, δ and Strain of the deposited films.

Samples	(hkl) Plane	2θ (°)	FWHM (°)	Grain size (nm)	Optical bandgap (eV)	Dislocations density ($\times 10^4$)(lines/m2)	Strain ($\times 10^4$)
Fe$_2$O$_3$ pure	113	31.18	0.68	12.13	2.75	66.96	28.57

Table 1. Grain size, optical bandgap and structural parameters of the prepared films.
Sample	Peak	2θ	d (Å)	d (Å)	d (Å)	d (Å)	
Fe$_2$O$_3$: 2% In	113	31.00	0.63	13.09	2.65	58.36	26.48
Fe$_2$O$_3$: 2% In	113	30.70	0.59	13.84	2.55	52.20	25.04

Figure 1. XRD-patterns crystalline size of the prepared films.
Figure 2. FWHM (a) Grain size (b) Dislocation (c) Strain (d) of the prepared films.

AFM images were presented in Figure. (3), it can be seen films exhibit spherical nano-grains ranged from 87.36 nm for pure Fe₂O₃ to 65.03 nm for 4% In doped Fe₂O₃ nm respectively.

The influence of Indium doping on AFM parameters namely grain size, surface roughness (Rₘ) and root root-mean-square (Rₘᵋ) are shown in Figure. 3(a₃, b₃, and c₃) respectively. Table (2) represent the values of AFM parameters.
Figure 3. AFM images of the prepared films (a1, b1 and c1), granularly distributed (a2, b2 and c2) and variation of AFM parameters via doping (a3, b3 and c3).

Table 2. AFM parameters of the deposited films.

Samples	Average Particle size (nm)	Roughness Average (nm)	R. M. S. (nm)
Fe₂O₃ pure	72.72	2.75	3.18
Fe₂O₃: 2% In	58.57	2.11	2.47
Fe₂O₃: 2% In	51.22	1.70	2.03

Figure (4) represents the transmittance against wavelength, which decreases from 68% to 62% with the increase of doping. The absorption coefficient (α) was determined from absorbance (A) via the relation \[30, 31, 32\].

$$\alpha = \frac{2.303 A}{t}$$ (4)

Where t is the thickness. Figure 5 displays α vs. wavelength. α decreases with increasing In content, suffer an exponential increase with wavelength.

The optical bandgap E_g was evaluated from next relation \[33, 34, 35\]:
where, $h\nu$, G are photon energy and proportional constant respectively.

Figure (6) show The bandgap value of pure and Indium doped Fe$_2$O$_3$ film is be 2.75 eV, 2.65 eV and 2.55 eV respectively as displayed in Table 1. The exponential edges may be assigned to a reduction of long-range order or existence of defects [36, 37].

Figure 4. Transmittance for the prepared films.
Figure 5. α Vs $h\nu$ of the prepared thin films.

Figure 6. $(\alpha h\nu)^2$ Vs $h\nu$ of the prepared thin films.
4-Conclusions

Nanostructured of undoped and Indium doped Fe$_2$O$_3$ films were prepared using CPT. XRD results indicate that the deposited films have rhombohedral crystalline phase of a-Fe$_2$O$_3$ phase hematite. Increasing the Indium doping ratio improve the (113) preferential orientation, XRD analysis confirmed the Fe$_2$O$_3$ nanostructure for all samples. The crystallite size for pure Fe$_2$O$_3$ show an increase from 12.13 nm to 13.84 nm on doping, whereas the strain(%) parameter decrease from 28.57 to 25.04, AFM images of the films show changes in morphology with decreased in surface roughness from 2.75 nm to 1.70 nm with Indium 4% doping. The 3-D images and grain size distribution are given in, they exhibit spherical nano-grains ranged from 72.72 nm for pure Fe$_2$O$_3$ to 51.22 nm for 4% Indium doped Fe$_3$O$_5$. The transmittance decreases with increasing Indium content, The optical bandgap of the Indium-doped Fe$_2$O$_3$ films slightly changed in the range 2.75–2.55 eV.

Acknowledgments

Authors would appreciate Mustansiriyah University for their support.

References

[1] Corneille J S Jian-Wei H and Goodman D W 1995 Surface Science 338(1) 211-224.
[2] Krysa J Zlamal M, Kment S and Hubicka Z 2014 The Italian Association of Chemical Engineering 41379-484.
[3] Martinson A B F DeVries M J Libera J A Christensen S T Hupp J T Pellin M J and Elam J W 2011 The Journal of Physical Chemistry C 115 4333–4339.
[4] Cornell R M Schwertmann U 2003 Properties, Reactions Occurrences and Uses second ed. Wiley-VCH Weinheim.
[5] Park J H Kim S and Bard A J 2006 Nano Lett. 6 24.
[6] Matsuoka M Kitano M Takeuchi M Tsujimaru K Anpo M and Thomas J M., 2007 Catal. Today 122 51.
[7] Mor K G Prakasam H E Varghese O K Shankar K and Grimes C A 2007 Nano Lett. 7 2356.
[8] Wang S Wang W Wang W Jiao Z Liu J and Qian, Y 2000 Sensors and Actuators B: Chemical 69 22-27.
[9] Lee E Jang G Kim C and Yoon D 2001 Sensors and Actuators B: Chemical 77 221-227.
[10] Hao Q Li L Yin X Liu S Li Q and Wang T 2011 Materials Science and Engineering: B 176 600-605.
[11] Hardee K L and Bard A J 1977 J. Electrochem. Soc. 124 215.
[12] Hardee K L and Bard A J 1976 J. Electrochem. Soc. 123 1024.
[13] Garcia-Lobato M A et al 2010 Materials Science Forum 644 105-108.
[14] Kan-Rong L et al 2014 Int. J. Electrochem. Sci. 9 7680-7692.
[15] Park C D Magana D and Stiegem A E 2007 Chem. Mater. 19 677-683.
[16] Khademi N and Bagheri-Mohagheghi M M 2013 Thermal Energy and Power Engineering 2 89-93.
[17] Moshfegh A Z Azimirad R and Akhavan O 2005 Thin Solid Films 484 124-131.
[18] Jandow N N Habubi N F Chiad S S Al-Baidhany I A and Qaed M A 2019 International Journal of Nanoelectronics and Materials 12 (1) 1-10.
[19] Mathur S Sivakov V Shen H Barth S Cavelius C Nilsson A and Kuhn P 2006 Thin Solid Films 502 88-93.
[20] Miller E L Paluselli D Marsen B and Rocheleau R E 2005 Solar Energy Mater. And Solar Cells. 88 131-144.
[21] Glasscock J A Barnes P R F Plumb I C and Savvides N 2007 J. Phys. Chem. C 111 16477-16488.
[22] Li X W Gupta A Xiao G and Gong G Q 1998 J. Appl. Phys. 83 7049-051.
[23] Chiad S S and Mubarak T H 2020 International Journal of Nanoelectronics and Materials 13(2) 221-232.
[24] Scherrer P 1918 Nachr Ges Wiss Go¨ttingen 26 98–100.
[25] Hassan E S Mubarak T H Abass, K H Chiad S S Habubi N F Rahid M H Khadayeer A A Dawod M O and Al-Baidhany I A 2019 Journal of Physics: Conference Series 1234 (1) 012013.
[26] Habubi N F Mishjil K A and Chiad S S 2013 Indian Journal of Physics 87 (3) 235-239.
[27] Langford J I and Wilson A J C 1978 J Appl Cryst 11 102–113.
[28] Khadayeer A A Hassan E S Chiad S S Habubi N F Abass K H Rahid M H Mubarak T H Dawod M O and Al-Baidhany I A 2019 Journal of Physics: Conference Series 1234 (1) 012014.
[29] Ali R S Sharba K S Jabbar, A M Chiad S S Abass K H and Habubi N F 2020 NeuroQuantology 18 (1) 26-31.
[30] Chavhan S D Bagul S V Ahire R R Deshpande N G Sagade A A and Gudage Y G 2007 J. of Alloys and Compounds 436 400-406.
[31] Chiad S S Abass K H Mubarak T H Habubi N F Mohammed M K and Khadayeer A A Journal of Global Pharma Technology 11 (4) 369-375
[32] Khadayeer A A Abass K H Chiad S S Mohammed M K Habubi N F Hameed T K Al-Baidhany I A 2018 Journal of Engineering and Applied Sciences 13 (22) 9689-9692.
[33] Latif D M A Chiad S S Erhayief M S Abass K H Habubi N F and Hussin HA Journal of Physics: Conference Series 1003 (1) 012108.
[34] Habubi N F Abass K H Chiad S Latif D M A Nidhal J N Al and Baidhany A I Journal of Physics: Conference Series 1003 (1) 012094.
[35] Alkelaby A S Abass K H Mubarak T H Habubi N F Chiad S S and Al-Baidhany I 2019 Journal of Global Pharma Technology 11 (4) 347-352.
[36] Chowdhury F U Z and Bhuiyan A H (2000) Thin Solid Films 360 69–74.
[37] Mathai C J Saravanan S Anantharaman M R Venkitachalam S and Jayalekshmi S 2002 J Phys D Appl Phys 35 2206–2210.