Protocol for a systematic review to identify and weight the indicators of risk of asthma exacerbations in children aged 5–12 years

Nara Tagiyeva1, Susannah McLean1, Aziz Sheikh1, Steven Julious2, Mike Thomas3, James Paton4, Hilary Pinnock1 and on behalf of the At-risk asthma in Children (ARC) group5

npj Primary Care Respiratory Medicine (2017) 27, 16088; doi:10.1038/npjpcrm.2016.88; published online 5 January 2017

BACKGROUND
Asthma is the commonest long-term condition in children, affecting an estimated five million schoolchildren in Europe.1 The condition is responsible for substantial morbidity with 11% of children in the United Kingdom describing recurrent episodes of wheeze,2 and resulting in days lost from school and time lost from work for their parents/careers.3 Although in the United Kingdom, most school-age children with asthma are managed in primary care, each year there are in excess of 25,000 hospital admissions for children under the age of 14 years.4 Of the 195 asthma deaths investigated by the National Review of Asthma Deaths, 10 were in children under the age of 10 years.4

The American Thoracic Society/European Respiratory Society Task Force defines exacerbations (or asthma ‘attacks’) as events characterised by a change from the patient’s previous status, which may be severe (necessitating urgent action such as a course of steroids and/or hospitalisation) or moderate (prompting a temporary change of treatment).5 Many definitions include a fall in peak flow (e.g., to 50% or 75% of the patient’s best) though this may not be helpful in younger children or those unfamiliar with undertaking the manoeuvre,6 and may be indicative of poor asthma control rather than exacerbation.7 Frequent exacerbations in children not only have an impact on quality of life and school attendance but are also associated with an accelerated loss of lung function.8,9

Guidelines highlight that monitoring should not only include objective assessment of symptomatic asthma control with validated questionnaires (e.g., Asthma Control Questionnaire10,11 or Asthma Control Test12,13) or morbidity scores (e.g., Royal College of Physicians three questions14) but also include an assessment of the future risk of an exacerbation. Although recent work has devised a risk score for use in adults16 with an area under the receiver operating characteristic curve for prednisolone use of 0.83,15 no such score exists for children aged 5–12 years.17

A recent previous history of exacerbations, in particular, severe exacerbations,6–21 and persistent poor control20,21 are strongly associated with an increased risk of severe exacerbations, but many other predictors have been described in children and young people. Allergic sensitisation,16,18,22–24 seasonal variability,17,19 exposure to environmental tobacco smoke,18,25 no inhaled steroids,17,20,21 regimes with multiple inhalers,26 impaired lung function16,20 and poor adherence to preventer medication27 have all been associated with increased risk of exacerbations. Other factors described in adults and teenagers (such as socioeconomic status,28 ethnicity,29 upper airways disease,30 blood eosinophilia,31 obesity32,33 and non-attendance for review appointments34) may also be relevant as predictors of exacerbations in young children. There is thus a need to identify and weight risk factors in children aged 5–12 years from factors identified in a systematic review, which can be further tested and validated in this population group.

The focus of this systematic review will be factors that increase a child’s propensity to asthma exacerbations, rather than immediate triggers for exacerbations, e.g., respiratory tract infections, exposure to airborne pollutants or allergens, physical or emotional exertion.

AIMS
To undertake a systematic review of the literature to:

1. Identify factors associated with the risk of asthma exacerbations in children aged 5–12 years.
2. Quantify their importance to inform the assessment of risk in children.

METHODS
We will follow the systematic review procedures described in the Cochrane Handbook for Systematic Reviews of Interventions.34

‘PICOS’ criteria
The PICOS criteria and study designs of interest are given in Table 1. We will include both controlled trials of interventions that aim to reduce exacerbation risk and observational studies, which seek to identify risk factors. We are interested in factors that contribute to future risk as opposed to immediate triggers (such as contracting an upper respiratory tract infection, or events such as thunderstorms). We will not include trials of pharmacological efficacy, or studies of unusual events or factors that cannot be routinely measured/tested or those that are not routinely available. Studies investigating risk factors for incidence/prevalence of asthma, asthma symptoms or objective measures of asthma activity (lung function, symptom scores, medication usage, health care utilisation) will not be included.

1Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK; 2Medical Statistics Group, School of Health and Related Research, University of Sheffield, Sheffield, UK; 3Medicine, University of Southampton, Southampton, UK and 4School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Correspondence: H Pinnock (hilary.pinnock@ed.ac.uk)

2Members of the ARC group are listed above references.

Received 26 May 2016; revised 13 October 2016; accepted 16 October 2016
Assessment of the methodological quality

Two reviewers (AB and SMcL) will independently assess the methodological quality of the included papers. Using the Cochrane Risk of Bias Tool, 34 randomised trials will be assessed for bias. Each individual domain (selection, performance, detection, attrition, reporting and other bias) will independently be judged by two reviewers (AB and SMcL) to be at low, unclear or high risk of bias. A summary assessment will include the overall risk of bias. Non-randomised studies will be assessed using the Newcastle-Ottawa checklist, 37 which covers selection, comparability and outcome domains and is customised for cross-sectional, case–control and cohort studies. Authors will be contacted for unpublished information. 38

Data analysis and synthesis

We will provide a descriptive summary of the factors associated with a significant risk of exacerbation of asthma in children aged 5–12 years in detailed tables, and undertake a narrative synthesis of the data. We anticipate substantial heterogeneity of the studies and so do not plan to undertake a formal quantitative meta-
analysis, but will weight identified factors as conferring slightly, moderately or greatly increased risk, based on the observed effect size and confidence intervals and the quality of the included papers, which will be interpreted in the light of biological plausibility. The weighting will be done independently by two raters. Disagreements will be resolved by discussion with a third rater arbitrating if necessary.

The results across studies will be explored graphically and through summary measures to investigate whether the heterogeneity of effect can be accounted for by known factors. Severity of asthma and co-morbid rhinitis are part of the causal pathway for the outcome and are likely to be predictors in the final model and so will be investigated in an exploratory way.

The protocol is registered with PROSPERO International Prospective Register of Systematic Reviews (CRD42016037464), and the findings will be summarised and published in a peer-reviewed journal.

DISCUSSION

The key aim of the management of asthma in children (and all ages) is to reduce the burden of disease both by achieving good control of day-to-day symptoms and by reducing the risk of troublesome, and potentially serious asthma attacks. Targeting those at risk, has the potential to facilitate care commensurate with need and improve outcomes for those at highest risk. Likely risk factors include markers of severe disease and historical poor control (including previous exacerbations), as well as allergic sensitisation, exposure to environmental factors (including parental smoking), especially, the combination of infection and allergen exposure in sensitised children,24 and poor adherence to preventer medication and non-attendance for review appointments. Identification and weighting of these features of children and their family/environment will allow clinicians to identify ‘at-risk’ children, and inform discussions with parents about the need for regular ‘preventer’ treatment.

The vision is that risk assessment will have application both clinically for assessing individual children’s asthma control and thus focussing additional care on those at high risk, as well as for assessing control within populations and targeting care at high-risk populations.

FUNDING
Asthma UK, Ref: AUK-SR-2015-01.

ACKNOWLEDGEMENTS

We thank Marshall Dozier for her support with the search strategy.

COMPETING INTERESTS

A5 is joint Editor-in-Chief of npjPCRM. He was not involved in the editorial decision making with respect to this protocol. The remaining authors declare no conflict of interest.

MEMBERS OF THE ARC GROUP

Hilary Pinnock, Aziz Sheikh, Steven Julious, Mike Thomas, James Paton, Nara Tagiyeva, Susannah McLean, Audrey Bello, Melissa Goodbourn, Andrew Bush, Steve Cunningham, Jonathan Grigg, John Henderson, Jurgen Schwarze, Michael D Shields, Gwyn Davies, Andrew Wilson.

REFERENCES

1. Gibson, G. J., Loddenkemper, R., Sibille, Y., Lundback, B. & Fletcher, M. The European Lung White Book: Respiratory health and disease in Europe (European Respiratory Society, 2013).
2. Lai, C. K. et al. Global variation in the prevalence and severity of asthma symptoms: phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 64, 476–483 (2009).
3. Bahadori, K. et al. Economic burden of asthma: a systematic review. BMC Pulm. Med. 9, 24 (2009).
4. Royal College of Physicians. Why asthma still kills: the National Review of Asthma Deaths (NRAE) Confidential Enquiry report (London Royal College of Physicians, 2014).
5. Redd H. K. et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am. J. Respir. Crit. Care Med. 180, 59–99 (2009).
6. British Thoracic Society/Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax 69(Suppl 1): 1–192 (2014).
7. Redd H. et al. Differences between asthma exacerbations and poor asthma control. Lancet 353, 364–369 (1999).
8. Strunk, R. C. et al. Mild to moderate asthma affects lung growth in children and adolescents. J. Allergy Clin. Immunol. 118, 1040–1047 (2006).
9. Bai, T. R., vonk, J. M., Postma, D. S. & Boezen, H. M. Severe exacerbations predict excess lung function decline in asthma. Eur. Respir. J. 30, 452–456 (2007).
10. Juniper, E. F., O’Byrne, P. M., Guyatt, G. H., Ferrie, P. J. & King, D. R. Development and validation of a questionnaire to measure asthma control. Eur. Respir. J. 14, 902–907 (1999).
11. Juniper, E. F., Gruffydd-Jones, K., Ward, S. & Svensson, K. Asthma Control Questionnaire in children: validation, measurement properties, interpretation. Eur. Respir. J. 36, 1410–1416 (2010).
12. Nathan, R. A. et al. Development of the asthma control test: a survey for assessing asthma control. J. Allergy Clin. Immunol. 113, 59–65 (2004).
13. Liu, A. H. et al. Development and cross-sectional validation of the Childhood Asthma Control Test. J. Allergy Clin. Immunol. 119, 817–825 (2007).
14. Pinnock, H. et al. Clinical implications of the Royal College of Physicians three questions in routine asthma care: a real-life validation study. Prim. Care Respir. J 21, 288–294 (2012).
15. Obiedat, M., Pogson, Z., Sayers, I., Hall, I. P. & Blakey, J. D. A Simple Asthma Severity Score Predicts Exacerbations. Am J Respir Crit Care Med. 183, A2248 (2011).
16. Covar, R. A. et al. Predictors of remitting, periodic, and persistent childhood asthma. J. Allergy Clin. Immunol. 125, 359–366 (2010).
17. Covar, R. A. et al. Factors associated with asthma exacerbations during a long-term clinical trial of controller medications in children. J. Allergy Clin. Immunol. 122, 741–747 (2008).
18. Haselkorn, T. et al. Recent asthma exacerbations predict future exacerbations in children with severe or difficult-to-treat asthma. J. Allergy Clin. Immunol. 124, 921–927 (2009).
19. Teach, S. J. et al. Seasonal risk factors for asthma exacerbations among inner-city children. J. Allergy Clin. Immunol. 135, 1465–1473 (2015).
20. Wu, A. C. et al. Predictors of symptoms are different from predictors of severe exacerbations from asthma. Chest 140, 100–107 (2011).
21. Johnston, N. W. et al. The September epidemic of asthma exacerbations in children: a search for etiology. J. Allergy Clin. Immunol. 115, 132–138 (2005).
22. Haselkorn, T. et al. Consistently very poorly controlled asthma, as defined by the impairment domain of the Expert Panel Report 3 guidelines, increases risk for future severe asthma exacerbations in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. J. Allergy Clin. Immunol. 124, 895–902 (2009).
23. Erbas, B. et al. Do human rhinovirus infections and food allergy modify grass pollen-induced asthma hospital admissions in children? J. Allergy Clin. Immunol. 136, 1118–1120 (2015).
24. Murray, C. S. et al. Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 61, 376–382 (2006).
25. Chilmonczyk, B. A. et al. Association between exposure to environmental tobacco smoke and exacerbations of asthma in children. N. Engl. J. Med. 328, 1655–1669 (1993).
26. Ellouët, H., McLay, J. S., Simpson, C. R. & Helms, P. J. A retrospective observational study comparing rescue medication use in children on combined versus separate long-acting beta-agonists and corticosteroids. Arch. Dis. Child. 95, 817–821 (2010).
27. Williams, L. K. et al. Quantifying the proportion of severe asthma exacerbations attributable to inhaled corticosteroid nonadherence. J. Allergy Clin. Immunol. 128, 1185–1191 (2011).
28. Bacon, S. L., Bouchard, A., Loucks, E. B. & Lavoie, K. L. Individual-level socioeconomic status is associated with worse asthma morbidity in patients with asthma. Respir. Res. 10, 125 (2009).
29. Moudgil, H., Marshall, T. & Honeybourne, D. Asthma education and quality of life in the community: a randomised controlled study to evaluate the impact on...
APPENDIX 1

Ovid MEDLINE(R) 1946 to present with daily update—executed 10 May 2016

#	Search statement	Results
1	exp Asthma/ or Bronchial Spasm/ or exp Bronchocstriction/ or (asthma* or wheez* or bronchoconstrict* or bronchial constrict* or bronch* constrict* or bronchial spasm or bronchospas*or bronch* spasm)*.tw.	150958
2	Bronchial Hyperreactivity/ or Respiratory Hypersensitivity/	15662
3	1 or 2	157160
4	(exacerb* or deterior* or aggravate* or acute* or status* or severe* or work* or attack* or crisis or critical or hospital* or relapse or uncontrolled or poor* controlled)*.tw. or or exp Recurrence/ or exp Disease Progression/ or exp Mortality/ or exp Death/	4817967
5	exp Emergency Service, Hospital/ or exp Emergency Medical Services/ or exp Hospitalisation/ or exp Hospitals/ or exp Intensive Care Units/ or exp Emergencies/ or (emergency* or acute care or intensive care or intensive treatment unit* or hospital*).tw.	1291812
6	(admission* or admit* or attend* or visit* or present* or utility* or use* or using).tw.	8649008
7	5 and 6	708396
8	exp Primary Health Care/ or exp General Practice/ or exp Family Practice/ or exp Physicians/ or (physician* or doctor* or health care professional or general practice or asthma nurse or specialist nurse or GP).tw.	574496
9	exp 'Appointments and Schedules' or appointment*tw. or visit*tw.	165155
10	(unscheduled or additional or increase*).tw.	3829910
11	8 and 9 and 10	9990
12	exp Medicines/ or exp Therapeutics/ or exp Anti-Asthmatic Agents/ or exp Bronchodilator Agents/ or exp Adrenergic beta-Agonists/ or exp Cholinergic Antagonists/ or exp Steroids/ or exp Glucocorticoids/ or (medicin* or treatment or medication or steroid* or corticosteroid* or glucocorticosteroid* or inhaler* or beta agonist* or beta-2-agonist* or SABA or anticholinergic* or CFC).tw.	7354258
13	(rescue or supplement* or (step* adj up) or adjuvant or additional or increase* or augment*).tw.	849246
14	12 and 13	379948
15	exp Steroids/ or exp Glucocorticoids/ or (steroid* or corticosteroid* or glucocorticoid)*.tw.	923905
16	(systemic or oral or intravenous or intramuscular or injectable or parenteral or N or IM).tw. or exp Injections, Intravenous/ or exp Administration, Intravenous/ or exp Injections, Intramuscular/ or exp Infusions, Parenteral/ or resusc*tw.	1384151
17	15 and 16	120669
18	((nocturnal or night* or sleep*) adj2 (symptom* or wheez* or asthma or wakening or woken or disturb*)) or ((daily or daytime) adj2 (activit* adj2 disturb*)).tw.	15029
19	exp Oxygen Inhalation Therapy/ or exp Intubation, Intratracheal/ or nebul*tw.	63956
20	((increase* or wors* or aggravate*) and (frequency* or severe* or symptom* or wheez* or breath* or dysp*n*)).tw.	870900
21	4 or 7 or 11 or 14 or 17 or 18 or 19 or 20	5466020
22	22 and 21	67554
23	Risk Factors/ or Risk/ or (risk adj3 factor*).tw. or predict*tw. or (risk* adj2 exacerb*).tw.	1719001
24	23 and 22	12770
25	Animal* or not Humans/	4196538
26	24 not 25	12662
27	Adult/ or not Child/	3672244
28	26 not 27	6379
29	(COPD.tw. or Pulmonary Disease, Chronic Obstructive/) or not Asthma/	31916
30	28 not 29	8099
31	Comment/ or Letter/ or Editorial/ or Autobiography/ or Biography/ or Bibliography/ or Dictionar/ or Directory/ or Interactive Tutorial/ or Lectures/	1578832
32	30 not 31	7989

The work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/