Effects of Garlic Extract (allicin) on Proliferation of Endothelial Progenitor Cells (EPC) in Patients with Stable Coronary Artery Disease

A Y Putri¹, B S Pikir¹,²*, Y H Oktaviono¹,², and F Alzahra¹
¹Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
²Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia

*Corresponding author: fatimah.alzahra.dr@gmail.com; bsp49@fk.unair.ac.id

Abstract. The reduced number and function of Endothelial Progenitor Cells (EPC) in stable coronary artery disease (SCAD) patients aggravate endothelial dysfunction and inhibit neovascularization, thus leading to atherosclerosis. Garlic is currently believed to increase the number and function of EPCs. Therefore, this in vitro study was conducted to analyse the effect of garlic extract (Allicin) on the proliferation of EPCs in patients with SCAD. Mononuclear cells were isolated from peripheral blood of eight SCAD patients and cultured on CFU-Hill media for three days. Samples were divided into 2 groups: a group treated with Allicin and a control group. The treatment group was then divided into 3 subgroups which received 10, 50, and 100 mg/ml of doses and incubated for 48 hours. EPC proliferation was assessed using MTT Cell Proliferation Assay. Immunohistochemical method of CD34+ were performed for EPC identification. Data was analysed using an independent T test and ANOVA. MTT Assay showed significant increase in EPC proliferation in Allicin group compared to control group (0.2811±0.008 vs 0.194±0.151, p<0.05) and significant improvements were observed in each dose increment. CFU-Hill quantification shows the addition of EPC colony in high-dose Allicin. Immunohistochemical method shows positive CD34+ expression. Allicin increases EPC proliferation dose-dependently from peripheral blood of SCAD patients.

1. Introduction
Coronary artery disease (CAD) is still a major health problem throughout the world. This disease causes a decrease in the quality of life of sufferers and is the most common cause of death from heart disease. Until now, based on The Global Burden of Disease Study, an estimated 7.2 million people worldwide die every year due to CHD [1].

Endothelial progenitor cells (EPC) have a role in the process of atherosclerosis at each stage where this process is the pathogenesis of CAD. A decrease in the number and function of EPC begins when various kinds of classic risk factors for atherosclerosis appear. This reduced amount and function of EPC will aggravate existing conditions of endothelial dysfunction, inhibit the collateral formation, and fail to compensate for severe stenosis. This is probably due to the cause of high rates of major cardiovascular events in patients with low EPC numbers and functions regardless of the severity of coronary artery disease [2]. EPC also plays an important role in the angioplasty process. Patients with intracoronary stents need a rapid re-endothelialization process to prevent the occurrence of in-stent
thrombosis and the development of neo-intima. This is proven by the occurrence of restenosis in patients with low EPC levels [3].

Various trials have been conducted to increase the number and function of EPCs. Garlic is a natural component that is currently believed to prevent and treat cardiovascular disease. Garlic works as an antioxidant that increases the production of nitric oxide (NO) and hydrogen sulfide (H2S) which can cause vasodilation and improve endothelial function [4]. Garlic also has the ability to inhibit the activity of angiotensin converting enzymes (ACE) so that it can reduce blood pressure [5]. The organosulfur component contained in garlic is also able to prevent oxidation of LDL (low-density lipoprotein) which is responsible for the process of atherosclerosis, which can reduce the number and function of EPCs. In some literature, it is said that garlic can inhibit abnormal cell growth that has the potential for malignancy. But in cells which have properties as precursors, it is said that garlic can increase the number of these cells either through increased proliferation or through inhibition of apoptosis. However, it is still unknown whether the nature of the trigger for apoptosis or cell proliferation from garlic is related to the size of the dose or not, hence the need for further investigation [6]. Therefore, we conducted this study to prove the beneficial effect of garlic which can improve neovascularization process in ischemic tissue through its influence on the number and function of EPCs.

2. Methods
This study was an in vitro exploratory laboratory experimental study by giving garlic extract (Allicin) to the peripheral blood of eight patients with stable coronary artery disease (SCAD) using a "posttest-only control group design" design. This laboratory research was conducted at the Stem Cell Laboratory, Institute of Tropical Disease (ITD) Airlangga University for a four month period (January 2017-April 2017). The sample was peripheral blood EPCs isolated from eight stable SCAD patients taken by purposive sampling. The inclusion criteria of the subjects were male who showed stable symptoms of angina pectoris, aged 40-59 years, and had stenotic lesions ≥50% left main coronary arteries and ≥70% in one or more other major coronary arteries based on angiography. Subjects with a history of stenting, acute myocardial infarction, diabetes mellitus, smoking, critical limb ischemia, CABG history, and anemia were excluded from the criteria of the study subjects.

Subjects were grouped into a control group which did not get treatment and the group given Allicin, which was divided into three subgroups and received 10, 50, and 100 mg/ml of doses each. Mononuclear cells were isolated from peripheral blood using Ficoll histopatoque and then cultured in the media for three days. The treatment was given on the fourth day in the form of adding Allicin. Observations of cell responses were carried out two days after treatment. The examination includes immunofluorescence using CD34, assessment of EPC proliferation using MTT proliferation assay, and quantification of the number of colonies formed. The data obtained was analyzed using SPSS 20 with inferential statistical analysis and ANOVA statistical tests.

3. Results
3.1 Patients characteristics
The subjects of this study were eight blood samples, whose basic characteristics are shown in table 1. The average age of subjects was 54.5 ± 4.31 years with the youngest age of 48 years, and the oldest age of 59 years. Cardiovascular risk factors obtained in the study subjects were dyslipidemia and hypertension, where all subjects received anti-hypertensive drugs and anti-lipid statins.

Variable	Mean ± SDa
Age (years)	54.5 ± 4.31
Systolic blood pressure (mmHg)	137.5 ± 24.35
Diastolic blood pressure (mmHg)	80 ± 7.56
Heart rate (beat/minute)	86 ± 8.68

Medical Parameter	Value
Body mass index (kg/m²)	25.39 ± 2.13
Total cholesterol (mg/dL)	200.5 ± 74.75
LDLb (mg/dL)	145 ± 61.11
Triglycerides (mg/dL)	97 ± 11.64
HDLc (mg/dL)	35 ± 7.64
Ejection fraction left ventricle (%)	53.5 ± 4.11

—aStandard deviation
—bLow-density lipoprotein
—cHigh-density lipoprotein

3.2 Comparison of EPC proliferation between Allicin and control groups

EPC proliferation was calculated using the MTT method and the cell absorbance results in optical density (OD). Then the data normality test was carried out from the effects of EPC proliferation calculations in all treatment and control groups using the Kolmogorov-Smirnov statistical test with the results of all data being distributed normally. The data were then analyzed to determine the differences between the Allicin group with a dose of 50 μg/ml (X2) and the control group (C) using the two samples t-test.

EPC proliferation in the group that received Allicin was higher than the control group, which was 0.2811 ± 0.008 compared to 0.194 ± 0.151. This result shows an increase in EPC proliferation with the administration of Allicin. Statistical data analysis using the two-sample independent t-tests was used to observe differences in the two groups. There was a significant difference in the EPC proliferation between Allicin groups and control groups (P 0.000).

3.3 Differences in EPC proliferation in Allicin with low, medium and high doses

The differences in EPC proliferation between groups given low-dose Allicin (X1), medium (X2), and high (X3) extract can be seen in Figure 1.

Based on data analysis, there was a difference in EPC proliferation between groups given low, medium, and high Allicin. Statistical tests were performed using ANOVA for EPC proliferation data between groups and was then followed by a significance test using the LSD test. Obtained EPC proliferation results increased significantly when were given Allicin a dose of 50 μg/ml compared with a dose of 10 μg/ml (p = 0.005). EPC proliferation also had significant increase by administering Allicin dose of 100 μg/ml compared to 50 μg/ml (p = 0.000). The proliferation difference between Allicin dose of 100 μg/ml was also significant compared to Allicin extract with a dose of 10 μg/ml (p = 0.000).

![Figure 1. Differences in EPC proliferation in the Allicin extract of various doses.](image)

Based on data analysis, there was a difference in EPC proliferation between groups given low, medium, and high Allicin. Statistical tests were performed using ANOVA for EPC proliferation data
between groups and then followed by a significance test using the LSD test. Obtained EPC proliferation results increased significantly by giving Allicin a dose of 50 μg/ml compared with a dose of 10 μg/ml (p = 0.005). EPC proliferation also had significant increase by administering Allicin dose of 100 μg/ml compared to 50 μg/ml (p = 0.000). The proliferation difference between Allicin dose of 100 μg/ml was also significant compared to Allicin extract with a dose of 10 μg/ml (p = 0.000).

3.4 Examination of CFU in Allicin and control groups
Observation and calculation of CFU were done to observe and assess the function of the living EPCs. After proliferating, EPCs tend to form colonies which will later differentiate into endothelial cells. Observations were made in the low-dose, high-dose, and control group of Allicin on the 6th day. Figures 2 to 5 show microscopic images of the control group CFU and Allicin.

Figure 2. Microscopic picture of the control group CFU.

Figure 3. CFU microscopic picture of Allicin dose of 10 μg/ml.
Figure 4. CFU microscopic picture of *Allcin* dose of 100 μg/ml.

Figure 5. Microscopic picture of EPC colonies at CFU.

The number of colonies formed in the control group, the low, medium, and high *Allcin* were different, as listed in table 2. The number of colonies formed in the low-dose garlic extract group was lower than the control group. But at high doses, the number of colonies is higher than the control group.

Group	CFU 10 μg/ml	CFU 100 μg/ml
Control	9	7
Allcin	7	14

3.5 *Immunofluorescence examination*

One positive marker for EPC is CD34. This CD34 marker will be expressed on young EPCs that are more mature. The examination was carried out on one of the wells used to grow CFU. After calculating the colony, the preparation was washed using PBS solution and prepared for immunofluorescence examination using CD34. From observations using fluorescence microscopy, CD34 expressions were obtained, which were indicated by the presence of EPC cells that had green fluorescent colors, such as figure 6.
4. Discussion
In this study, analyses indicated that there was a significant difference in EPC proliferation with the administration of Allicin, shown by an increase in proliferation in the treatment group compared to the control group. These results were in accordance with previous studies by Zhang and colleagues who reported that administration of Allicin could increase EPC proliferation activities through regulation of VEGF and SDF-1 expression [7]. Another in vitro study from Li and colleagues also showed the same results, which found an increase in proliferation of cells by administering Allicin at doses of 10 to 40 μg/ml, but at higher doses proliferation activity decreased. It is said that this increase in proliferation is caused by Allicin being able to accelerate the cell cycle towards the S phase or synthesis phase [8].

The organosulfur component contained in Allicin can activate the Akt and ERK signal transduction pathways 1/2. Allicin will increase the expression and activity of cyclin D1 so that it will accelerate EPC to enter the S cycle of the cell and increase EPC proliferation. The increase in Akt can activate mTOR receptors found on EPC to increase its proliferation. In vivo, Allicin can activate eNOS and increase NO bioavailability through the PI3K / Akt pathway so that it will inhibit the EPC apoptosis pathway and increase the amount [8,9].

In Allicin, there are various genes and are categorized based on their biological processes. The up-regulated gene in Allicin will produce a cellular response in the form of increased synthesis of adhesion molecules, increased expression of anti-apoptosis, and repair of damaged cell surface receptors. But if a cell has the potential to proliferate without control, then the down-regulation gene in Allicin will inhibit the cell's signal transduction. Up-regulated genes in Allicin include GCLM; HO-1; Thioredoxin reductase 1 and 2; SLC7A11 (xCT); and DUSP1 (MKP1). Allicin can easily penetrate and enter through the cell membrane from EPCs by diffusion towards the intracellular and conjugate with the thiol group from glutathione (GSH) to form GSSA. The formation of GSSA together with the GCLM gene will increase intracellular GSH levels to 8 to 15-fold [10,11]. Increased GSH levels will also increase telomerase activity, so cell proliferation will also increase. Aging and apoptosis in EPCs leads to rapid progression of atherothrombosis occur when GSH levels are low due to inactivation of telomerase [12]. The results of this study reinforce the notion that Allicin can directly influence EPC proliferation in vitro.

Previous research from Oommen et al. and Li et al. explained that Allicin's ability to increase EPC proliferation turned out to be in line with increasing dose, concentration, and time. EPC proliferation will be optimal by giving Allicin a dose of 40-50 μg/ml but at doses above 50 μg/ml it will cause condensation from the cell nucleus and form apoptotic bodies which are characteristic of apoptosis [8,13]. In this study, we had similar results in which low, moderate, and high doses can increase EPC proliferation.

EPCs have the ability to migrate to form a colony. Colony counts describe the cumulative characteristics of EPC quantities and functions including differentiation, proliferation, aging, and migration activities [14]. Interestingly in this study, there were fewer colonization results compared to

Figure 6. Immunofluorescence in CD34 expression.
controls in low-dose *Allicin*, but the number of colonies increased in the administration of high-dose *Allicin*. Until now, there have been no studies explaining the effects of giving *Allicin* to the formation of EPC colonies. It is known that the EPC migration process to approach each other and form colonies is influenced by many factors. Various kinds of mediators such as eNOS and NO and chemokine-chemokine which are chemo-active such as SDF-1, lipid mediators (sphingosine-1 phosphate), and MCP-1 or interleukin can increase EPC migration [14,15]. Because *Allicin* works in a dose, concentration, and time-dependent manner, it is possible that at high doses it can increase the ability of EPC migration through increasing VEGF expression. However, the CFU examination in this study was only done once as a confirmation that cultured EPCs can grow well without directly assessing whether EPCs have a good function for differentiation.

Increased EPC proliferation with *Allicin* administration has been proven in this study. The effects of *Allicin* both directly and indirectly through the mechanism of cytokine activation can increase the amount and proliferation of EPCs. It is this *Allicin* effect on EPC proliferation that might explain the effects of improvement in cardiovascular disease.

This research still has many limitations. The mechanism of the influence of *Allicin* on EPC proliferation was not examined in this study. This study only proves the existence of a direct effect of *Allicin* on the proliferation of EPC regardless of all processes of balance in the body. Further research on the mechanism of EPC proliferation through the ERK 1/2, Akt, and GSH and telomerase activities still need to be done. This research is still carried out in vitro. To confirm the effect of *Allicin* in patients with SCAD, it still requires research in vivo. The slight difference in results with previous studies also needs to be confirmed by further research with bigger sample sizes. In addition, further research is needed regarding the dose of lethal *Allicin* so that it can be used to find out at what dosage *Allicin* can increase proliferation or even pro-apoptosis.

5. Conclusion
Administration of *Allicin* is proven to increase EPC proliferation in peripheral blood of SCAD patients. There is a significant difference in EPC proliferation in patients with SCAD where the increase in EPC proliferation is in line with increasing doses that show the dose-dependent effect of *Allicin*. However, further research is needed by using a larger number of samples to confirm the effect of *Allicin* administration on proliferation and apoptosis of EPC. Further research on signal transduction pathways which causes EPC proliferation is also needed.

References
[1] Tardif J C 2010 Coronary artery disease in 2010 *Eur. Hear. Journal, Suppl.* 12
[2] Shantsila E, Watson T and Lip G Y H 2007 Endothelial Progenitor Cells in Cardiovascular Disorders *J. Am. Coll. Cardiol.* 49 741–52
[3] Khakoo A Y and Finkel T 2005 Endothelial Progenitor Cells *Annu. Rev. Med.* 56 79–101
[4] Ginter E and Simko V 2010 Garlic (Allium sativum L.) and cardiovascular diseases. Bratisl. Lek. Listy 111 452–6
[5] Hosseini M, Shafiee S M and Baluchnejadmojarad T 2007 Garlic extract reduces serum angiotensin converting enzyme (ACE) activity in nondiabetic and streptozotocin-diabetic rats *Pathophysiology* 14 109–12
[6] Ding G, Zhao J and Jiang D 2016 Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells *Exp. Ther. Med.* 11 2553–60
[7] Zhang and Guo 2014 Effect of allicin on proliferation activity and migration ability of human peripheral blood endothelial progenitor cells *Chinese J. Biol.* 27 202–206
[8] Li T, Shi H Y, Hua Y X, Gao C, Xia Q, Yang G and Li B 2015 Effects of allicin on the proliferation and cell cycle of chondrocytes *Int. J. Clin. Exp. Pathol.* 8 12525–12532
[9] Chiang E-P I, Chiu S-C, Pai M-H, Wang Y-C, Wang F-Y, Kuo Y-H and Tang F-Y 2013 Organosulfur Garlic Compounds Induce Neovasculogenesis in Human Endothelial Progenitor
Cells through a Modulation of MicroRNA 221 and the PI3-K/Akt Signaling Pathways J. Agric. Food Chem. 61 4839–49

[10] Horev-Azaria L, Eliav S, Izigov N, Pri-Chen S, Mirelman D, Miron T, Rabinkov A, Wilchek M, Jacob-Hirsch J, Amariglio N and Savion N 2009 Allicin up-regulates cellular glutathione level in vascular endothelial cells Eur. J. Nutr. 48 67–74

[11] Miron T, Rabinkov A, Mirelman D, Wilchek M and Weiner L 2000 The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity Biochim. Biophys. Acta - Biomembr. 1463 20–30

[12] Pallardó F V., Markovic J, García J L and Viña J 2009 Role of nuclear glutathione as a key regulator of cell proliferation Mol. Aspects Med. 30 77–85

[13] Oommen S, Anto R J, Srinivas G and Karunagaran D 2004 Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells Eur. J. Pharmacol. 485 97–103

[14] Isner J M and Asahara T 1999 Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization J. Clin. Invest. 103 1231–6

[15] Urbich C and Dimmeler S 2004 Endothelial Progenitor Cells Circ. Res. 95 343–53