Concentration points on two and three dimensional modular hyperbolas and applications

J. Cilleruelo
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas
Universidad Autónoma de Madrid
Madrid-28049, Spain
franciscojavier.cilleruelo@uam.es

M. Z. Garaev
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México
garaev@matmor.unam.mx

Abstract

Let \(p \) be a large prime number, \(K, L, M, \lambda \) be integers with \(1 \leq M \leq p \) and \(\gcd(\lambda, p) = 1 \). The aim of our paper is to obtain sharp upper bound estimates for the number \(I_2(M; K, L) \) of solutions of the congruence

\[xy \equiv \lambda \pmod{p}, \quad K + 1 \leq x \leq K + M, \quad L + 1 \leq y \leq L + M \]

and for the number \(I_3(M; L) \) of solutions of the congruence

\[xyz \equiv \lambda \pmod{p}, \quad L + 1 \leq x, y, z \leq L + M. \] \hfill (1)

Using the idea of Heath-Brown from \([6]\), we obtain a bound for \(I_2(M; K, L) \), which improves several recent results of Chan and Shparlinski \([3]\). For instance, we prove that if \(M < p^{1/4} \), then \(I_2(M; K, L) \leq M^{o(1)} \).

The problem with \(I_3(M; L) \) is more difficult and requires a different approach. Here, we connect this problem with the Pell diophantine equation and prove that for \(M < p^{1/8} \) one has \(I_3(M; L) \leq M^{o(1)} \). Our results have applications to some other problems as well. For instance, it follows that if \(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3 \) are intervals in \(\mathbb{F}_p^* \) of length \(|\mathcal{I}_i| < p^{1/8} \), then

\[|\mathcal{I}_1 \cdot \mathcal{I}_2 \cdot \mathcal{I}_3| = (|\mathcal{I}_1| \cdot |\mathcal{I}_2| \cdot |\mathcal{I}_3|)^{1-o(1)}. \]

MSC Classification: 11A07, 11B75
1 Introduction

In what follows, \(p \) denotes a large prime number, \(K, L, M, \lambda \) are integers with \(1 \leq M \leq p \) and \(\gcd(\lambda, p) = 1 \). By \(x, y, z \) we denote variables that take integer values. The notation \(B^{\omega(1)} \) denotes such a quantity that for any \(\varepsilon > 0 \) there exists \(c = c(\varepsilon) > 0 \) such that \(B^{\omega(1)} < cB^{\varepsilon} \).

Let \(I_2(M; K, L) \) be the number of solutions of the congruence
\[
xy \equiv \lambda \pmod{p}, \quad K + 1 \leq x \leq K + M, \quad L + 1 \leq y \leq L + M
\]
and let \(I_3(M; L) \) be the number of solutions of the congruence
\[
xyz \equiv \lambda \pmod{p}, \quad L + 1 \leq x, y, z \leq L + M.
\]
Estimates of incomplete Kloosterman sums implies that
\[
I_2(M; K, L) = \frac{M^2}{p} + O(p^{1/2}(\log p)^2). \tag{2}
\]
In particular, if \(M/(p^{3/4}(\log p)^2) \to \infty \) as \(p \to \infty \), one gets that
\[
I_2(M; K, L) = (1 + o(1)) \frac{M^2}{p}.
\]
This asymptotic formula also holds when \(M/p^{3/4} \to \infty \) as \(p \to \infty \) (see [5]). The problem of upper bound estimates of \(I_2(M; K, L) \) for smaller values of \(M \) has been a subject of the work of Chan and Shparlinski [3]. Using Bourgain’s sum-product estimate [1], they have shown that there exists an effectively computable constant \(\eta > 0 \) such that for any positive integer \(M < p \), uniformly over arbitrary integers \(K \) and \(L \), the following bound holds:
\[
I_2(M; K, L) \ll \frac{M^2}{p} + M^{1-\eta}.
\]
In the present paper we obtain the following upper bound estimates for \(I_2(M; K, L) \).

Theorem 1. Uniformly over arbitrary integers \(K \) and \(L \), we have
\[
I_2(M; K, L) < \frac{M^{4/3+o(1)}}{p^{1/3}} + M^{o(1)}. \tag{3}
\]
When \(K = L \), we have
\[
I_2(M; L, L) < \frac{M^{3/2+o(1)}}{p^{1/2}} + M^{o(1)}. \tag{4}
\]
In particular, if \(M < p^{1/4} \) then \(I_2(M; K, L) < M^{o(1)} \).

Theorem [1] together with (2) easily implies the following consequence, which improves upon the mentioned result of Chan and Shparlinski.

Corollary 1. Uniformly over arbitrary integers \(K \) and \(L \), we have
\[
I_2(M; K, L) \ll \frac{M^2}{p} + M^{4/5+o(1)}.
\]
If \(K = L \), then
\[
I_2(M; L, L) \ll \frac{M^2}{p} + M^{3/4+o(1)}.
\]
The proof of Theorem 1 is based on an idea of Heath-Brown [6]. The problem with $I_3(M; L)$ is more difficult and requires a different approach. Here, we shall connect this problem with the Pell diophantine equation and establish the following statement.

Theorem 2. Let $M \ll p^{1/8}$. Then, uniformly over arbitrary integer L, we have

$$I_3(M; L) \ll M^{o(1)}. \quad (5)$$

From Theorem 2 we can easily derive a sharp bound for the cardinality of product of three small intervals in \mathbb{F}_p^*.

Corollary 2. Let I_1, I_2, I_3 be intervals in \mathbb{F}_p^* of length $|I_i| < p^{1/8}$. Then

$$|I_1 \cdot I_2 \cdot I_3| = (|I_1| \cdot |I_2| \cdot |I_3|)^{1-o(1)}.$$

Theorems 1 and 2 have also applications to the problem on concentration points on exponential curves as well. Let $g \geq 2$ be an integer of multiplicative order t, and let $M < t$. Denote by $J_a(M; K, L)$ the number of solutions of the congruence

$$y \equiv a g^x \pmod{p}; \quad x \in [K + 1, K + M], \ y \in [L + 1, L + M].$$

Chan and Shparlinski [3] used a sum product estimate of Bourgain and Garaev [2] to prove that

$$J_a(M; K, L) < \max\{M^{10/11+o(1)}, M^{9/8+o(1)} p^{-1/8}\}$$

as $M \to \infty$. From our Theorem 1 we shall derive the following improvement on this result.

Corollary 3. Let $M < t$. Uniformly over arbitrary integers K and L, we have

$$J_a(M; K, L) < (1 + M^{3/4} p^{-1/4}) M^{1/2+o(1)}.$$

In particular, if $M \leq p^{1/3}$, then we have $J_a(M; K, L) < M^{1/2+o(1)}$.

Theorem 2 allows to strength Corollary 3 when $M \ll p^{3/20}$.

Corollary 4. The following bound holds:

$$J_a(M; K, L) < (1 + M p^{-1/8}) M^{1/3+o(1)}.$$

In particular, if $M \ll p^{1/8}$, then we have $J_a(M; K, L) < M^{1/3+o(1)}$.

2 Proof of Theorem 1

We will need the following lemma which is a simple version of a more precise result about divisors in short intervals, see, for example, [4].

Lemma 1. For all positive integer n and $m \geq \sqrt{n}$, the interval $[m, m + n^{1/6}]$ contains at most two divisors of n.

Proof. Suppose that \(d_1, d_2, d_3 \in [m, m+L] \) are three divisors of \(n \). We claim that the number \(r = \frac{d_1d_2d_3}{(d_1, d_2)(d_1, d_3)(d_2, d_3)} \) is also a divisor of \(n \). To see this, for a given prime \(q \), let \(\alpha_1, \alpha_2, \alpha_3, \alpha \) such that \(q^{\alpha_i} | d_i \), \(i = 1, 2, 3 \) and \(q^\alpha | n \). Assume that \(\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \alpha \). The exponent of \(q \) in the rational number \(r \) is \(\alpha_1 + \alpha_2 + \alpha_3 - (\min(\alpha_1, \alpha_2) + \min(\alpha_1, \alpha_3) + \min(\alpha_2, \alpha_3)) = \alpha_3 - \alpha_1 \). Since \(0 \leq \alpha_3 - \alpha_1 \leq \alpha \) we have that \(r \) is an integer divisor of \(n \).

On the other hand, since \((d_i, d_j) \leq |d_i - d_j| \leq L \) we have

\[
n \geq r > \frac{m^3}{L^3} \geq \frac{n^{3/2}}{L^3},
\]

and the result follows. \(\square \)

Now we proceed to prove Theorem \(\text{H} \). Our approach is based on Heath-Brown’s idea from \([5] \). We can assume that \(M \) is sufficiently large number. The congruence \(xy \equiv \lambda \pmod{p} \), \(K + 1 \leq x \leq K + M \), \(L + 1 \leq y \leq L + M \) is equivalent to

\[
xy + Kx + Ly \equiv b \pmod{p}, \quad 1 \leq x, y \leq M,
\]

where \(b = \lambda - K^2 \). From the pigeon-hole principle it follows that for any positive integer \(T < p \) there exists a positive integer \(t \leq T^2 \) and integers \(u_0, v_0 \) such that

\[
tK \equiv u_0 \pmod{p}, \quad tL \equiv v_0 \pmod{p}, \quad |u_0| \leq p/T, \quad |v_0| \leq p/T.
\]

From (5) we get that

\[
txy + u_0x + v_0y \equiv b_0 \pmod{p}, \quad 1 \leq x, y \leq M,
\]

for some \(|b_0| < p/2 \). We write this congruence as an equation

\[
txy + u_0x + v_0y = b_0 + zp, \quad 1 \leq x, y \leq M, \quad z \in \mathbb{Z}.
\]

Comparing the minimum and maximum value of the left hand side we can see that

\[
|z| \leq \left| \frac{txy + u_0x + v_0y - b_0}{p} \right| < \frac{T^2M^2}{p} + \frac{2M}{T} + \frac{1}{2}.
\]

We observe that for each given \(z \) the equation (7) is equivalent to the equation

\[
(tx + u_0)(ty + v_0) = n_z, \quad 1 \leq x, y \leq M
\]

for certain integer \(n_z \). If \(n_z = 0 \), then either \(tx + u_0 = 0 \) or \(ty + v_0 = 0 \). Since \(\lambda \neq 0 \pmod{p} \), in either case \(x \) and \(y \) are both determined uniquely. So, we can only consider those \(z \) for which \(n_z \neq 0 \).

- Case \(M < p^{1/4}/4 \). In this case we take \(T = 8M \). Then \(|z| < 1 \) and we have to consider only the integer \(n_z = n_0 \) in (5). Each solution of (5) produces two divisors of \(|n_0| \), \(|tx + u_0| \) and \(|ty + v_0| \), one of them is greater than or equal to \(\sqrt{|n_0|} \). If \(|n_0| \leq 2^{36}M^{18} \) the number of solutions of (5) is bounded by the number of divisors of \(n_0 \), which is \(M^{o(1)} \). If \(|n_0| > 2^{36}M^{18} \), the positive integers \(|tx + u_0| \) and \(|ty + v_0| \) lie in two intervals \(I_1 \) and \(I_2 \) of length \(T^2M \leq 2^6M^3 < |n_0|^{1/6} \). If there were five solutions, we would have three divisors greater of equal to \(\sqrt{|n_0|} \) in an interval of length \(\leq |n_0|^{1/6} \). We apply Lemma \(\text{I} \) to conclude that there are at most four solutions. Hence, in this case we have

\[
I_2(M; K, L) < M^{o(1)}.
\]
• Case \(M \geq p^{1/4}/4 \). In this case we take \(T \approx (p/M)^{1/3} \). Thus \(|z| \ll M^{4/3}/p^{1/3} \). For each \(z \) the number of solutions of (8) is bounded by the number of divisors of \(n_z \) which is \(p^{\omega(1)} = M^{\omega(1)} \). Hence, in this case we get

\[
I_2(M; K, L) < \frac{M^{4/3+\omega(1)}}{p^{1/3}}.
\]

Thus, we have proved that

\[
I_2(M; K, L) < \frac{M^{4/3+\omega(1)}}{p^{1/3}} + M^{\omega(1)}
\]

which proves the first part of Theorem 1.

The proof of the second part of Theorem 1 (corresponding to the case \(K = L \)) is similar, with the only difference that we simply take \(t \leq T \) (instead \(t \leq T^2 \)) satisfying

\[
tK \equiv u_0 \pmod{p}, \quad |u_0| \leq p/T.
\]

3 An auxiliary statement

To prove Theorem 2 we need the following auxiliary statement.

Proposition 1. Let \(|A|, |B|, |C|, |D|, |E|, |F| \leq M^{\omega(1)} \) and assume that \(\Delta = B^2 - 4AC \) is not a perfect square (in particular, \(\Delta \neq 0 \)). Then the diophantine equation

\[
Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
\]

has at most \(M^{\omega(1)} \) solutions in integers \(x, y \) with \(1 \leq |x|, |y| \leq M^{\omega(1)} \).

We shall need several lemmas.

Lemma 2. Let \(A \) be a positive integer that is not a perfect square and let \((x_0, y_0)\) be a solution of the equation the equation \(x^2 - Ay^2 = 1 \) in positive integers with the smallest value of \(x_0 \). Then for any other integer solution \((x, y)\) there exist a positive integer \(n \) such that

\[
|x| + \sqrt{A}|y| = (x_0 + \sqrt{A}y_0)^n.
\]

Lemma 2 is well-known from the theory of Pell’s equation.

Lemma 3. Let \(A \) be a squarefree integer, \(N \) is a positive integer. Then the congruence \(z^2 \equiv A \pmod{N} \), \(0 \leq z \leq N - 1 \) has at most \(N^{\omega(1)} \) solutions.

Proof. Let \(J(N) \) be the number of solutions of the congruence in question and let \(N = p_1^{a_1} \cdots p_k^{a_k} \) be a canonical factorization of \(N \). Clearly, \(J(N) = J(p_1^{a_1}) \cdots J(p_k^{a_k}) \), where \(J(p^a) \) is the number of solutions of the congruence \(z^2 \equiv A \pmod{p^a} \), \(0 \leq z \leq p^a - 1 \). Since \(A \) is squarefree, we have \(J(2^a) \leq 4 \) and \(J(p^a) \leq 2 \) for odd primes \(p \). The result follows.

Lemma 4. Let \(A, E \) be integers with \(|A|, |E| < M^{\omega(1)} \) such that \(A \) is not a perfect square. Then the equation

\[
x^2 - Ay^2 = E, \quad 1 \leq x, y < M^{\omega(1)}
\]

has at most \(M^{\omega(1)} \) solutions.
Proof. (1) We can assume that A is also a squarefree number. Indeed, let $A = A_1B_1^2$, where A_1, B_1 are nonzero integers, A_1 is squarefree and is not a perfect square. Then our equation takes the form $x^2 - A_1(B_1y)^2 = E$, $1 \leq x, y < M^{O(1)}$. Since $B_1y < M^{O(1)}$, it follows that indeed we can assume that A is squarefree.

(2) We can assume that in our equation $\gcd(x, y) = 1$. Indeed, if $d = \gcd(x, y)$, then $d^2 \mid E$. In particular, since E has $M^{O(1)}$ divisors, we have $M^{O(1)}$ possible values for d. Besides, $(x/d)^2 + A(y/d)^2 = E/d^2$, where we have now $\gcd(x/d, y/d) = 1$. Thus, without loss of generality, we can assume that $\gcd(x, y) = 1$. In particular, it follows that $\gcd(y, E) = 1$.

(3) Since A is not a perfect square, we have, in particular, that $E \neq 0$.

(4) For any $x, y \in \mathbb{Z}_+$ with $(y, E) = 1$ there exists $1 \leq z \leq |E|$ such that $x \equiv zy \pmod{E}$.

Given $1 \leq z \leq |E|$, let K_z be the set of all pairs (x, y) with

$$x^2 - Ay^2 = E, \quad 1 \leq x, y < M^{O(1)}, \quad (x, y) = 1$$

such that $x \equiv zy \pmod{E}$.

If $(x, y) \in K_z$, then $(zy)^2 - Ay^2 \equiv 0 \pmod{E}$. Since $(y, E) = 1$, it follows that $z^2 \equiv A \pmod{E}$. Due to Lemma 2, the number of solutions of this congruence is at most $|E|^{O(1)}$. Thus, we have at most $M^{O(1)}$ possible values for z. Therefore, it suffices to show that $|K_z| = M^{O(1)}$ for any such z.

Let x_0 be the smallest positive integer such that

$$x_0^2 - Ay_0^2 = E, \quad (x_0, y_0) \in K_z.$$

Let (x, y) be any other solution from K_z. Then,

$$x_0^2 - Ay_0^2 = E, \quad x^2 - Ay^2 = E.$$

From this we derive that

$$(x_0x - Ay_0y)^2 - A(xy_0 - x_0y)^2 = (x_0^2 - Ay_0^2)(x^2 - Ay^2) = E^2. \quad (10)$$

On the other hand, from $(x_0, y_0), (x, y) \in K_z$ it follows that

$$x_0 \equiv zy_0 \pmod{E}, \quad x \equiv zy \pmod{E}.$$

Since $z^2 \equiv A \pmod{E}$, we get $xx_0 \equiv z^2 y_0y \pmod{E} \equiv Ay_0 \pmod{E}$. We also have $x_0y \equiv xy_0 \pmod{E}$, as both hand sides are $zy_0 \pmod{E}$. Therefore,

$$x_0x - Ay_0y \equiv 0 \pmod{E}, \quad xy_0 - x_0y \equiv 0 \pmod{E}. \quad (11)$$

From (11) and (11) we get that

$$
\left(\frac{x_0x - Ay_0y}{E}\right)^2 - A \left(\frac{xy_0 - x_0y}{E}\right)^2 = 1
$$

and the numbers inside of parenthesis are integers.

Now there are two cases to consider:

(1) $A > 0$. In view of Lemma 2

$$\left|\frac{x_0x - Ay_0y}{E}\right| + \sqrt{|A|}\left|\frac{xy_0 - x_0y}{E}\right| = (u_0 + \sqrt{|A|v_0})^n,$$
where \((u_0, v_0)\) is the smallest solution to \(X^2 - AY^2 = 1\) in positive integers, and \(n\) is some non-negative integer.

Since the left hand side is of the order of magnitude \(M^{O(1)}\), we have that \(n \ll \log M = M^{o(1)}\). Thus, there are \(M^{o(1)}\) possible values for \(n\) and, each given \(n\) produces at most 4 pairs \((x, y)\). This proves the statement in the first case.

(2) \(A < 0\). Then we get that

\[
\frac{x_0 x - Ay_0 y}{E} \in \{-1, 0, 1\}, \quad \frac{xy_0 - x_0 y}{E} \in \{-1, 0, 1\},
\]

and the result follows.

\[\square \]

The proof of Proposition \(7\). Now we can deduce Proposition \(1\) from Lemma \(4\). Multiplying \(9\) by \(4\), we get

\[
(2Ax + By + D)^2 - \Delta y^2 + (4EA - 2BD)y + 4AF - D^2 = 0,
\]

where \(\Delta = B^2 - 4AC\). Multiplying by \(\Delta\) we get,

\[
(\Delta y + BD - 2EA)^2 - \Delta(2x + By + D)^2 = T,
\]

where \(T = (BD - 2EA)^2 + 4AF - D^2\). Now, since \(\Delta\) is not a full square, and since \(T, \Delta \leq M^{O(1)}\), we have, by Lemma \(4\) and the condition \(|A|, |B|, |C|, |D|, |E|, |F| \leq M\), that there are at most \(M^{o(1)}\) possible pairs \((\Delta y + BD - 2EA, 2x + By + D)\). Each such pair uniquely determines \(y\) (since \(\Delta \neq 0\)) and \(x\). This finishes the proof of Proposition \(1\). \[\square \]

4 Proof of Theorem \(2\)

In what follows, by \(v^\star\) we denote the least positive integer such that \(vv^\star \equiv 1 \pmod{p}\). We rewrite our congruence in the form

\[
(L + x)(L + y)(L + z) \equiv \lambda \pmod{p}, \quad 1 \leq x, y, z \leq M
\]

which, in turn, is equivalent to the congruence

\[
L^2(x + y + z) + L(xy + xz + yz) + xyz \equiv \lambda - L^3 \pmod{p}, \quad 1 \leq x, y, z \leq M. \tag{12}
\]

Assume that \(M \ll p^{1/8}\) and that \(p\) is large enough to satisfy several inequalities through the proof. Let

\[
k = \max\{1, 2M^2/p^{1/4}\}. \tag{13}
\]

Lemma 5. If \(L = uv^\star\) for some integers \(u, v\) with \(|u| \leq M^3/k\) and \(1 \leq |v| \leq M^2/k\), then the number of solutions of the congruence \((12)\) is at most \(M^{o(1)}\).

Proof. The congruence \((12)\) is equivalent to

\[
v^2xyz + uv(xy + xz + yz) + u^2(x + y + z) \equiv \mu \pmod{p},
\]

where \(|\mu| < p/2\) and \(\mu \equiv \lambda v^2 - u^3v^\star\). The absolute value of the left hand side is bounded by

\[
(M^2/k)^2M^3 + (M^3/k)(M^2/k)(3M^2) + (M^3/k)^2(3M) \leq 7M^7/k^2 \leq 7M^7/(2M^2/p^{1/4})^2 = \frac{7}{4}M^3p^{1/2} < p/2.
\]
Hence, the congruence (12) is equivalent to the equality
\[v^2xyz + uv(xy + xz + yz) + u^2(x + y + z) = \mu. \]

Multiplying by \(v \), we get
\[(vx + u)(vy + u)(vz + u) = v\mu + u^3 \]

The absolute value of the right and the left hand sides is \(\leq M^{O(1)} \), and besides it is distinct from zero (since \(v\mu + u^3 \equiv \lambda v^3 \pmod{p} \), and \(\lambda v^3 \not\equiv 0 \pmod{p} \). Therefore, the number of solutions of the latter equation is bounded by \(M^{o(1)} \) and the lemma follows. \(\square \)

Due to this lemma, from now on we can assume that \(L \) does not satisfy the condition of Lemma 5, that is
\[L \neq uv^*, \quad |u| \leq M^3/k, \quad |v| \leq M^2/k. \] (14)

For \(0 \leq r, s \leq 3k - 1 \) and \(0 \leq t \leq k - 1 \) let \(S_{rst} \) be the set of solutions \((x, y, z)\) such that
\[
\begin{aligned}
 x + y + z &\in (rM/k, (r+1)M/k) \\
 xy + xz + yz &\in (sM^2/k, (s+1)M^2/k) \\
 xyz &\in (tM^3/k, (t+1)M^3/k)
\end{aligned}
\]

Clearly, the number of solutions \(I_3(M; L) \) of our congruence satisfies
\[I_3(M; L) \leq 9k^3 \max |S_{rst}|. \]

We fix one solution \((x_0, y_0, z_0)\) \(\in S_{rst}\). Any other solution \((x_i, y_i, z_i)\) \(\in S_{rst}\) satisfies the congruence
\[A_iL^2 + B_iL + C_i \equiv 0 \pmod{p} \] (15)

where
\[
\begin{aligned}
 A_i &= x_i + y_i + z_i - (x_0 + y_0 + z_0), \\
 B_i &= x_iy_i + x_iz_i + y_iz_i - (x_0y_0 + x_0z_0 + y_0z_0), \\
 C_i &= x_iz_i - x_0y_0z_0.
\end{aligned}
\]

We have
\[|A_i| \leq M/k, \quad |B_i| \leq M^2/k, \quad |C_i| \leq M^3/k. \] (16)

A solution \((x_i, y_i, z_i) \neq (x_0, y_0, z_0)\) we call degenerated if \(A_i = 0 \), and non-degenerated otherwise.

The set of non-degenerated solutions.

We shall show that there are at most \(M^{o(1)} \) non-degenerated solutions. So that, let us assume that there are at least several non-degenerated solutions. With this set of solutions we shall form a system of congruence with respect to \(L, L^2 \). Let us fix one solution \((A_1, B_1, C_1)\). Note that the condition \(A_i = 0 \) implies that \(A_i \not\equiv 0 \pmod{p} \).

Case (1). If \(A_1B_1 \neq A_iB_i \) for some \(i \), then in view of inequalities (16) we also have that \(A_1B_1 \neq A_1B_i \pmod{p} \). Solving the system of equations (15) corresponding to the indices \(i \) and 1, we obtain that
\[L \equiv (C_iA_1 - A_iC_1)(A_iB_1 - A_iB_i)^* \pmod{p} \equiv uv^* \pmod{p}, \]

8
where
\[u = C_iA_1 - A_iC_1, \quad v = A_iB_1 - A_1B_i, \quad u' = B_iC_1 - C_iB_1. \]

From this we derive that
\[|u| \leq 2M^4/k^2, \quad |u'| \leq 2M^5/k^2, \quad |v| \leq 2M^3/k^2 \]
and \((uv^*)^2 \equiv L^2 \pmod{p}\). Hence, \(u^2 \equiv u'v^* \pmod{p}\). By using \((17), (13)\), we get \(|u|^2, |u'v^*| \leq 4M^8/k^4 \leq p/4\), so that we actually have the equality \(u^2 = u'v^* \).

Multiplying \((12)\) by \(v\), we get
\[vxyz + u(xy + xz + yz) + u'(x + y + z) \equiv v(\lambda - L^3) \pmod{p} \] (18)

Since 1 \(\leq x, y, z \leq M\), the inequalities \((17)\) give
\[|vxyz + u(xy + xz + yz) + u'(x + y + z)| \leq \frac{14M^6}{k^2} \leq \frac{14M^6}{(2M^2p^{-1/4})^2} = \frac{7M^2p^{1/2}}{2} < p/2. \]

This converts the congruence \((18)\) into the equality
\[vxyz + u(xy + xz + yz) + u'(x + y + z) = \mu \]
for some \(\mu \preceq M^{O(1)}\) and \(\mu \equiv v(\lambda - L^3) \pmod{p}\). We multiply this equality by \(v^2\) and use \(u'v = u^2\); we get that
\[(vx + u)(vy + u)(vz + u) = \mu v^2 + u^3. \]

Since \(\mu v^2 + u^3 \neq 0\), the total number of solutions of the latter equation is \(\ll M^{o(1)}\).

Case (2). If we are not in case (1), then for any index \(i\) one has \(A_iB_i = A_iB_1\), which, in turn, implies that we also have
\[A_iC_i \equiv A_iC_1 \pmod{p}. \]

In view of inequalities \((16)\), we get that the latter congruence is also an equality, so that we have
\[A_iB_i = A_iB_1, \quad A_iC_i = A_iC_1. \]

From the first equation and the definition of \(A_i, B_i, C_i\), we get
\[z_i(A_1(x_i + y_i) - B_1) = B_1(x_i + y_i - a_0) - A_1x_iy_i + b_0A_1, \]
(21)
from the second equation we get
\[z_i(A_1x_iy_i - C_1) = C_1(x_i + y_i - a_0) + c_0A_1, \]
(22)
where
\[a_0 = x_0 + y_0 + z_0, \quad b_0 = x_0y_0 + y_0z_0 + z_0x_0, \quad c_0 = x_0y_0z_0. \]

Multiplying \((21)\) by \(A_1x_iy_i - C_1\), and \((22)\) by \(A_1(x_i + y_i) - B_1\), subtracting the resulting equalities, and making the change of variables \(x_i + y_i = u_i, \quad x_iy_i = v_i\), we obtain
\[(B_1(u_i - a_0) - A_1v_i + b_0A_1)(A_1v_i - C_1) = (C_1(u_i - a_0) + c_0A_1)(A_1u_i - B_1). \]

We rewrite this equation in the form
\[A_i v_i^2 + C_1 u_i^2 - B_1 u_i v_i - (a_0 C_1 - c_0 A_i) u_i - (b_0 A_1 - a_0 B_1 + C_1) v_i + b_0 C_1 - c_0 B_1 = 0. \]

If \(B_1^2 - 4A_1 C_1 \) is a full square (as a number), say \(R_1^2 \), then from (12) we obtain that \(L \equiv (-B_1 \pm R_1)(2A_1)^* = uv^* \) with \(|u| \leq |B_1| + |B_1| + \sqrt{|4A_1 C_1|} \leq 4M^2/k \), \(|v| \leq 2M/k \), which contradicts our condition (14).

If \(B_1^2 - 4A_1 C_1 \) is not a full square, then we are at the conditions of Proposition 4 and we can claim that the number of pairs \((u_i, v_i)\) is at most \(M^{o(1)} \). We now conclude the proof observing that each pair \(u_i, v_i \) produces at most two pairs \(x_i, y_i \), which, in turn, determines \(z_i \). Therefore, the number of non-degenerated solutions counted in \(S_{rst} \) is at most \(M^{o(1)} \).

The set of degenerated solutions.

We now consider the set of solutions for which \(A_i = 0 \). If \(B_i \neq 0 \), then \(B_i \not\equiv 0 \pmod{p} \) and thus we get \(L = -C_i B_i^* \) with \(|C_i| \leq M^3/k \), \(|B_i| \leq M^2/k \), which contradicts condition (14).

If \(B_i = 0 \) then together with \(A_i = 0 \) this implies that \(C_i = 0 \). Thus,
\[
\begin{align*}
 x_i + y_i + z_i &= a_0 = x_0 + y_0 + z_0, \\
 x_i y_i + x_i z_i + y_i z_i &= b_0 = x_0 y_0 + y_0 z_0 + z_0 x_0, \\
 x_i y_i z_i &= c_0 = x_0 y_0 z_0.
\end{align*}
\]
Hence,
\[
(L + x_i)(L + y_i)(L + z_i) = (L + x_0)(L + y_0)(L + z_0).
\]
The right hand side is not zero (since it is congruent to \(\lambda \pmod{p} \) and \(\gcd(\lambda, p) = 1 \)). Thus, the number of solutions of this equation is at most \(M^{o(1)} \). The result follows.

5 Proof of Corollaries

If \(M < p^{5/8} \) then
\[
\frac{M^{4/3+o(1)}}{p^{1/3}} + M^{o(1)} < M^{4/5+o(1)}
\]
and the statement of Corollary 4 for \(I_2(M; K, L) \) follows from Theorem 4. If \(M > p^{5/8} \) then, \(p^{1/2}(\log p)^2 < M^{4/5+o(1)} \) and the statement of Corollary 4 for \(I_2(M; K, L) \) follows from (5).

Analogously we deal with \(I_2(M; K, K) \) considering the cases \(M > p^{2/3} \) and \(M < p^{2/3} \).

In order to prove Corollary 3 let \(k = J_0(M; K, L) \) and let \((x_i, y_i), i = 1, \ldots, k\), be all solutions of the congruence \(y \equiv a g^z \pmod{p} \) with \(x_i \in [K+1, K+M] \) and \(y_i \in [L+1, L+M] \). Since \(M < t \), the numbers \(y_1, \ldots, y_k \) are distinct. Since \(y_i y_j \equiv a g^z \pmod{p} \) for some \(z \in [2K+2, 2K+2M] \), there exists a value \(\lambda \) such that for at least \(k^2/2M \) pairs \((y_i, y_j)\) we have \(y_i y_j \equiv \lambda \pmod{p} \). Hence, theorem 4 implies that
\[
\frac{k^2}{2M} < \frac{M^{3/2+o(1)}}{p^{1/2}} + M^{o(1)},
\]
and the result follows.

Corollary 4 is proved similar to Corollary 3. For any triple \((i, j, \ell)\) we have \(y_i y_j y_\ell \equiv a g^z \pmod{p} \) for some \(z \in [3K + 3, 3K + 3M] \). Hence, there exists \(\lambda \not\equiv 0 \pmod{p} \) such that the congruence \(y_i y_j y_\ell \equiv \lambda \pmod{p} \) has at least \(k^3/3M \) solutions. Thus,
\[
\frac{k^3}{3M} < M^{o(1)},
\]
and the result follows in this case. If $M > p^{1/8}$, then in the interval $[L + 1, L + M]$ we can find a subinterval of length $p^{1/8}$ which would contain at least $k/(2Mp^{-1/8})$ members from y_1, \ldots, y_k. Thus, the preceding argument gives that
\[
\left(\frac{k}{Mp^{-1/8}}\right)^3 < M^{o(1)},
\]
and the result follows.

Now we prove Corollary 2. Let W be the number of solutions of the congruence
\[xyz \equiv x'y'z' \pmod{p}, \quad (x, x', y, y', z, z') \in \mathcal{I}_1 \times \mathcal{I}_1 \times \mathcal{I}_2 \times \mathcal{I}_2 \times \mathcal{I}_3 \times \mathcal{I}_3.\]
Then,
\[W = \frac{1}{p} \sum_{x} \left| \sum_{y} \chi(x) \right|^2 \left| \sum_{z} \chi(y) \right|^2 \left| \sum_{z} \chi(z) \right|^2.
\]
Applying the Holder’s inequality, we obtain
\[W \leq \left(\frac{1}{p} \sum_{x} \left| \sum_{y} \chi(x) \right|^6 \right)^{1/3} \left(\frac{1}{p} \sum_{y} \left| \sum_{z} \chi(y) \right|^6 \right)^{1/3} \left(\frac{1}{p} \sum_{z} \left| \sum_{x} \chi(z) \right|^6 \right)^{1/3}.
\]
Thus,
\[W \leq W_1^{1/3} \cdot W_2^{1/3} \cdot W_3^{1/3},
\]
where W_j is the number of solutions of the congruence
\[xyz \equiv x'y'z' \pmod{p}, \quad x, y, z, x', y', z' \in \mathcal{I}_j.
\]
According to Theorem 2 for each given triple (x', y', z') there are at most $|\mathcal{I}_j|^{o(1)}$ possibilities for (x, y, z). Thus, we have that $W_i \leq |\mathcal{I}_j|^{3+o(1)}$. Therefore,
\[W \leq (|\mathcal{I}_1| \cdot |\mathcal{I}_2| \cdot |\mathcal{I}_3|)^{1+o(1)}.
\]
Now, using the well known relationship between the cardinality of a product set and the number of solutions of the corresponding equation, we get
\[|\mathcal{I}_1 \cdot \mathcal{I}_2 \cdot \mathcal{I}_3| \geq \frac{|\mathcal{I}_1|^2 \cdot |\mathcal{I}_2|^2 \cdot |\mathcal{I}_3|^2}{W} \geq (|\mathcal{I}_1| \cdot |\mathcal{I}_2| \cdot |\mathcal{I}_3|)^{1-o(1)}
\]
and the result follows.

6 Conjectures and Open problems

We conclude our paper with several conjectures and open problems.

Conjecture 1. For $M < p^{1/2}$ one has $I_2(M; K, L) < M^{o(1)}$

Conjecture 2. For $M < p^{1/3}$ one has $I_3(M; L) < M^{o(1)}$

Conjecture 3. For $M < p^{1/2}$ one has $J_a(M; K, L) < M^{o(1)}$.

11
Conjecture 4. Let I_1, I_2, I_3 be intervals in \mathbb{F}_p^* of length $|I_i| < p^{1/3}$. Then

$$|I_1 \cdot I_2 \cdot I_3| = (|I_1| \cdot |I_2| \cdot |I_3|)^{1-o(1)}.$$

Problem 1. From Theorem \square it follows that if if $M < p^{1/4}$, then $I_2(M; K, L) < M^{o(1)}$. Improve the exponent $1/4$ to a larger constant.

Problem 2. From Theorem \square it follows that if $M < p^{1/3}$, then $I_2(M; L, L) < M^{o(1)}$. Improve the exponent $1/3$ to a larger constant.

Problem 3. Theorem \square claims that if $M < p^{1/8}$, then $I_3(M; L) < M^{o(1)}$. Improve the exponent $1/8$ to a larger constant.

References

[1] J. Bourgain, *More on the sum-product phenomenon in prime fields and its applications*, Int. J. Number Theory 1 (2005), 1-32.

[2] J. Bourgain and M. Z. Garaev, *On a variant of sum-product estimates and explicit exponential sum bounds in prime fields*, Math. Proc. Cambridge Philos. Soc. 146 (2009), 1-21.

[3] T. H. Chan and I. Shparlinski, *On the concentration of points on modular hyperbolas and exponential curves*, Acta Arithmetica 142, no. 1 (2010) 59-66.

[4] J. Cilleruelo and J. Jiménez, *The hyperbola $xy = N$*, Journal of Théorie des Nombres of Bordeaux, vol 12, no. 1 (2000).

[5] M. Garaev, *On the logarithmic factor in error term estimates in certain additive congruence problems*, Acta Arithmetica 124, n 1 (2006) 27-39.

[6] D. R. Heath-Brown, *Almost-primes in arithmetic progressions and short intervals*, Math. Proc. Cambridge Philos. Soc. **83** (1978), no. 3, 357–375.