The Diffuse Light Envelope of Luminous Red Galaxies

Y. Leung, 1 Y. Zhang, 2 B. Yanny, 2 K. Herner, 3 J. Annis, 2 A. Palmese, 2, 1 H. SamPAio-Santos, 3, 4 V. Strazuzzolo, 5 M. Aguen, 4, 6 S. Allam, 2 S. Avila, 7 E. Bertin, 8, 9 S. Bhargava, 10 D. Brooks, 11 D. L. Burke, 12, 13 A. Carnero Rosell, 14, 4 M. Carrasco Kind, 15, 16 J. Carretero, 17 M. Costanzi, 18, 19 L. N. da Costa, 3, 4 S. Desai, 20 H. T. Diehl, 7 P. Doel, 11 T. F. Eifler, 21, 22 S. Everett, 23 B. Flaugher, 2 J. Frieman, 1, 2 J. García-Bellido, 24, 25 D. Gruen, 22, 13, 26 R. A. Gruendl, 16, 15 J. Gschwend, 4, 3 G. Gutierrez, 2, 13 K. Honscheid, 27, 28 D. J. James, 29 A. G. Kim, 30 K. Kuehn, 31 N. Kuropatkin, 2 M. Lima, 6, 4 M. A. G. Maia, 5, 3 R. Miquel, 33, 17 R. L. C. Ogando, 4, 13 F. Paz-Chinchón, 15, 34 A. A. Plazas, 35 A. K. Romer, 10 A. Roodman, 12, 13 E. S. Rykoff, 12, 13 E. Sanchez, 39 V. Scarpine, 2 M. Schubnell, 36 S. Serrano, 24, 25 I. Sevilla-Noarbe, 14 M. Smith, 37 E. Suchyta, 38 M. E. C. Swanson, 39, 40 and T. N. Varga, 39, 40

1 Kavli Institute for Cosmicology Physics, University of Chicago, Chicago, IL 60637, USA
2 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
3 Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
4 Laboratório Interinstitucional de e-Astronomia - Lneak, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
5 Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany
6 Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil
7 Instituto de Física Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
8 Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
9 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
10 Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK
11 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
12 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
13 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
14 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
15 National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
16 Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA
17 Instituto de Física d’Altres Energies (IAFEC), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
18 INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy
19 Instituto for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
20 Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
21 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
22 Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
23 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
24 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
25 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carreer de Can Magrans, s/n, 08193 Barcelona, Spain
26 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
27 Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210, USA
28 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
29 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
30 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
31 Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia
32 Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
33 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
34 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
35 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
36 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
37 School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
38 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
39 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany
40 Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, 81679 München, Germany

This document was prepared by DES collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
ABSTRACT

We use a stacking method to study the radial light profiles of luminous red galaxies (LRGs) at redshift \(z \sim 0.62 \) and \(z \sim 0.25 \), out to a radial range of 200 kpc. We do not find noticeable evolution of the profiles at the two redshifts. The LRG profiles appear to be well approximated by a single Sersic profile, although some excess light can be seen outside 60 kpc. We quantify the excess light by measuring the integrated flux and find that the excess is about 10% – a non-dominant but still nonnegligible component.

1. INTRODUCTION

Studies have found evidence that there exists an envelope distribution of diffuse stars around both early and late type galaxies (e.g., Sackett et al. 1994; Zibetti et al. 2004; Ibata et al. 2007; Tal & van Dokkum 2011; Trujillo & Bakos 2013; D’Souza et al. 2014; Duc et al. 2015), and an excessive amount around the central galaxies of galaxy clusters (e.g., Schombert 1986; Zibetti et al. 2005; Burke et al. 2015; Zhang et al. 2019). These diffuse stellar envelopes provide clues to how frequently galaxies interact, and how the galaxy interactions affect the galaxy stellar distribution (Font et al. 2011; Cooper et al. 2013; Elias et al. 2014; Duc et al. 2015), and an excessive amount around the central galaxies of galaxy clusters (e.g., Schombert 1986; Zibetti et al. 2004; Ibata et al. 2007; Tal & van Dokkum 2011; Trujillo & Bakos 2013; D’Souza et al. 2018). Unfortunately, their faintness and the effect of the observational point-spread function (PSF) mean that it is often difficult to quantify these diffuse stellar distributions accurately (de Jong 2008; Sandin 2014, 2015; Zackrisson et al. 2012), and their detection sparked debates.

We assess the diffuse stellar extent of luminous red galaxies (LRGs) and examine its redshift evolution between redshift \(z \sim 0.25 \) and \(z \sim 0.625 \). We use a stacking method with optical images (Zhang et al. 2019) from the Dark Energy Survey (DES) to acquire high signal-to-noise LRG Surface Brightness (SB) measurements out to the radius of 200 kpc. We do not notice significant differences in the LRG profiles between redshift \(z \sim 0.25 \) and \(z \sim 0.625 \). This analysis assumes a \(\Lambda \)CDM cosmology model with the Hubble parameter \(h = 0.7 \) and the matter density parameter \(\Omega_m = 0.3 \).

2. DATA AND METHODS

The LRG sample used in the analysis is selected from DES Year 1 data by the redMagic algorithm (Rozo, E. and Rykoff, E. S. et al. 2016), which is based on comparing galaxy colors to spectroscopic LRG samples. The algorithm delivers excellent galaxy photometric redshift estimation with a median scatter of 0.017(1+z), and provides the fiducial sample for the DES galaxy clustering analysis (Elvin-Poole et al. 2018). We study the LRGs in a low redshift range with photometric redshifts between 0.24 and 0.26 (\(z \sim 0.25 \)), and in a high redshift range between 0.62 and 0.63 (\(z \sim 0.625 \)). We analyze the \(r \) band SB profile of the \(z \sim 0.25 \) LRG sample, and the \(i \) profile of the \(z \sim 0.625 \) sample. The red-shifting from \(z \sim 0.25 \) to \(z \sim 0.625 \) places the DES \(r \) band at a similar rest-frame wavelength range with the \(i \) band, and thus eliminates the need of performing K-corrections when examining redshift evolution.

Our methods of preparing LRG images from DES Year1 to 3 observations and measuring their SB profiles closely follow the procedures in Zhang et al. (2019). In total, we stack 201 LRGs at \(z \sim 0.25 \), and 1381 LRGs at \(z \sim 0.625 \). To reduce noise in the measurements, we also eliminate those LRGs close to bright stars or nearby galaxies as described in Zhang et al. (2019). The measured LRG SB profiles are fitted to Sersic models (Sérsic 1963) considering the stacked, extended DECam point spread function (PSF) averaged over DES Y3 observations. Figure 1 shows the stacked LRG \(r \)-band SB profile of \(z \sim 0.25 \) and the \(i \)-band profile of \(z \sim 0.625 \). The latter is corrected to \(z \sim 0.25 \) by the differences in luminosity distance moduli and angular-to-physical distance conversion.

3. RESULTS

We measure the LRG SB profiles with high S/N up to 200 kpc at both \(z \sim 0.25 \) and \(z \sim 0.625 \), and we do not notice significant evolution of the profiles between these redshifts, as they are consistent within \(2\sigma \). We fit a single Sersic model, although the data only seem to follow this model within \(\sim 60 \) kpc, and less well at \(z \sim 0.625 \). At \(z \sim 0.25 \), the LRG SB profile is fitted by a Sersic model with index 2.59\(^{+0.05}_{-0.04} \) and effective radius 8.8\(^{+0.1}_{-0.0} \) kpc. At \(z \sim 0.625 \), the fitted Sersic model has an index of 2.75\(^{+0.03}_{-0.04} \) and an effective radius of 11.5\(^{+0.4}_{-0.3} \) kpc. The model fitting results are not sensitive to PSF convolution. Beyond 60 kpc, both the \(z \sim 0.25 \) and \(z \sim 0.625 \) LRGs show an excess of light above the Sersic models.

We derive the integrated LRG fluxes within 200 kpc, which are similar at \(z \sim 0.25 \) and \(z \sim 0.625 \) (corrected to the observer frame at \(z \sim 0.25 \)) with values of 17.96\(^{+0.07}_{-0.03} \) mag and 17.93\(^{+0.03}_{-0.03} \) mag respectively. The integrated flux in the annulus between radius 60 and 200 kpc makes up 11.6% of the total LRG flux within 200 kpc at \(z \sim 0.25 \), or 9.7% of the total flux at \(z \sim 0.625 \). In terms of the best-fitting Sersic models, the fluxes contained in the actual measurements but not in the models make up 10.0% and 5.8% of the total flux within 200 kpc at \(z \sim 0.25 \) and \(z \sim 0.625 \) respectively. We conclude that the extended light beyond 60 kpc, or the excess light not modeled by a single Sersic model, is not dominant but nevertheless still a nonnegligible LRG component.
Figure 1. The upper panel shows the measured LRG SB profiles at redshift ~ 0.25 and ~ 0.625. The blue and red shaded regions indicate the corresponding uncertainties. The solid and dotted lines show the same best-fit Sersic models with and without including the effect of PSF. The lower panel shows the residual between the data and the best-fit models. For comparison, we also overplot the intra-cluster light and central galaxy (ICL+CG) measurements at $z \sim 0.25$ in Zhang et al. (2019) as the grey shaded region.

A similar stacking analysis of LRGs has been reported in Tal & van Dokkum (2011) using SDSS data. They find that a Sersic model with $n = 5.8$ and $r_e = 13.6$ kpc fits the LRG profile well at $z \sim 0.34$ to ~ 100 kpc, which is different from our results. We suspect that the image processing methods, especially in terms of sky background estimations (Bernstein et al. 2017; Blanton et al. 2011), may have played a role. We also consider how our LRG measurements differ from the intra-cluster light and central galaxy (ICL+CG) measurements at $z \sim 0.25$ in Zhang et al. (2019). Unsurprisingly, the ICL+CG profile is brighter and its shape is more extented than the LRGs, as anticipated by the inside-out galaxy formation scenario in which CG starts out as a luminous compact galaxy and grows by merging in its peripheral regions (e.g., Laporte et al. 2013; Ragone-Figueroa et al. 2018). We have also analyzed the LRG $g-r$ ($z \sim 0.25$) and $r-i$ ($z \sim 0.625$) colors in our analysis, but unfortunately do not have enough signal-to-noise outside 20 kpc to draw robust conclusions.

This note is prepared under the DES publication guidelines\(^1\). A standard DES acknowledgment applies.

REFERENCES

Bernstein, G. M., Abbott, T. M. C., Desai, S., et al. 2017, PASP, 129, 114502
Blanton, M. R., Kazin, E., Muna, D., Weaver, B. A., & Price-Whelan, A. 2011, AJ, 142, 31
Burke, C., Hilton, M., & Collins, C. 2015, MNRAS, 449, 2353
Cooper, A. P., D’Souza, R., Kauffmann, G., et al. 2013, MNRAS, 434, 3348

de Jong, R. S. 2008, MNRAS, 388, 1521
D’Souza, R., Kauffmann, G., Wang, J., & Vegetti, S. 2014, MNRAS, 443, 1433
Duc, P.-A., Cuillandre, J.-C., Karabal, E., et al. 2015, MNRAS, 446, 120
Elias, L. M., Sales, L. V., Creasey, P., et al. 2018, MNRAS, 479, 4004
Elvin-Poole, J., Crocce, M., Ross, A. J., et al. 2018, PhRvD, 98, 042006

\(^1\) http://dbweb5.fnal.gov:8080/DESPub/app/PB/pub/published
Font, A. S., McCarthy, I. G., Crain, R. A., et al. 2011, MNRAS, 416, 2802
Ibata, R., Martin, N. F., Irwin, M., et al. 2007, ApJ, 671, 1591
Laporte, C. F. P., White, S. D. M., Naab, T., & Gao, L. 2013, MNRAS, 435, 901
Ragone-Figueroa, C., Granato, G. L., Ferraro, M. E., et al. 2018, MNRAS, 479, 1125
Rozo, E. and Rykoff, E. S., Abate, A., Bonnett, C., et al. 2016, MNRAS, 461, 1431
Sackett, P. D., Morrisoni, H. L., Harding, P., & Boroson, T. A. 1994, Nature, 370, 441
Sandin, C. 2014, A&A, 567, A97
—. 2015, A&A, 577, A106
Schombert, J. M. 1986, ApJS, 60, 603
Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6, 41
Tal, T., & van Dokkum, P. G. 2011, Astrophysical Journal - ASTROPHYS J, 731
Trujillo, I., & Bakos, J. 2013, MNRAS, 431, 1121
Zackrisson, E., de Jong, R. S., & Micheva, G. 2012, MNRAS, 421, 190
Zhang, Y., Yanny, B., Palmese, A., et al. 2019, ApJ, 874, 165
Zibetti, S., White, S. D. M., & Brinkmann, J. 2004, MNRAS, 347, 556
Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. 2005, MNRAS, 358, 949