Efficiently expressing feasibility problems in Linear Systems, as feasibility problems in Asymptotic-Linear-Programs

Deepak Ponvel Chermakani

deepakc@pmail.ntu.edu.sg deepakc@e.ntu.edu.sg deepakc@ed-alumni.net deepakc@myfastmail.com deepakc@usa.com

Abstract: We present a polynomial-time algorithm that obtains a set of Asymptotic Linear Programs (ALPs) from a given linear system S, such that one of these ALPs admits a feasible solution if and only if S admits a feasible solution. We also show how to use the same algorithm to determine whether or not S admits a non-trivial solution for any desired subset of its variables. S is allowed to consist of linear constraints over real variables with integer coefficients, where each constraint has either a lesser-than-or-equal-to (≤), or a not-equal-to (≠) relational operator. Each constraint of the obtained ALPs has a lesser-than-or-equal-to (≤) relational operator, and the coefficients of its variables vary linearly with respect to the time parameter that tends to positive infinity.

1. Introduction

In our previous paper [1], we showed how to efficiently convert any given linear system with simultaneous constraints having lesser-than-or-equal-to (≤) and lesser-than (<) relational operators, into an Asymptotic Linear Program (ALP), such that (The ALP has a feasible solution) ↔ (The given linear system has a non-trivial feasible solution). In that paper [1], we showed that one way of modeling n Inequations (i.e. constraints with not-equal-to relational operators), was to iteratively consider the rest of the constraints with two cases (for example, for x≠0, consider x<0 and x>0), which would lead to an overall exponential complexity of \(O(2^n)\). We posed an open question, on efficiently (i.e. within polynomial-time) modeling Inequations as an ALP. In this paper, we show this is possible in \(O(n^2)\) time.

2. The foundation for efficiently modeling Inequations

Definition: Let \(\langle y_1, y_2, \ldots, y_N\rangle\), \(\langle x_1, x_2, \ldots, x_N\rangle\) and \(\langle z_1, z_2, \ldots, z_N\rangle\) be three vectors of real variables, and let \(K\) be a real variable. Let the variables of these three vectors be related as follows:

\[
y_i = (\text{Summation}(x_j, \text{over all integers } j \in [1,N], \text{and } j \neq i)), \text{ for all integers } i \in [1,N].
\]

For example, for \(N=5\):

\[
\begin{align*}
y_1 &= x_2 + x_3 + x_4 + x_5 \\
y_2 &= x_1 + x_3 + x_4 + x_5 \\
y_3 &= x_1 + x_2 + x_4 + x_5 \\
y_4 &= x_1 + x_2 + x_3 + x_5 \\
y_5 &= x_1 + x_2 + x_3 + x_4 \\
x_i &= z_j/(K+i) \\
x_2 &= z_2/(K+2) \\
x_3 &= z_3/(K+3) \\
x_4 &= z_4/(K+4) \\
x_5 &= z_5/(K+5)
\end{align*}
\]

We will conveniently assume that \(N>1\), because if there is only one not-equal-to constraint (say \(t\neq0\)) in a linear system, one can easily solve the system by considering the remaining problem with two cases (\(t<0\)) and then with (\(t>0\)).

We now state and prove two Theorems, which will form the foundation for efficiently modeling inequations as an ALP.

Theorem-1: For all real values of the elements of vector \(\langle y_1, y_2, \ldots, y_N\rangle\), the following statement is true: - (There exists a positive real \(r\), such that for all \(K > r\), there exists a real solution to the vectors \(\langle x_1, x_2, \ldots, x_N\rangle\) and \(\langle z_1, z_2, \ldots, z_N\rangle\))

Proof: For \(K>0\), it is trivial to see that \(\langle x_1, x_2, \ldots, x_N\rangle\) has a real solution) ↔ \(\langle z_1, z_2, \ldots, z_N\rangle\) has a real solution). Next, to prove that \(\langle x_1, x_2, \ldots, x_N\rangle\) has a real solution) for all real values of \(\langle y_1, y_2, \ldots, y_N\rangle\), we need to show that the determinant of square matrix \(A\) (see Figure-1) defined by \(a_{ij} = 1\) if \(i\neq j\), \(0\) if \(i=j\), for all integers \(i\) and \(j\) in \([1,N]\), is non-zero.
Figure-1: The Determinant of square-Matrix A of dimension N

To show that the determinant of Matrix A is indeed non-zero, iteratively apply the following rule to Matrix A:
Row $i = \sum_{j=i+1}^{N} \text{(Row}_j\text{)} - (N-i-1)\text{Row}_i$, for all integers $i \in [1,N]$. We then get the Matrix B defined by (for all integers $j \in [1,N]$):
$$
\begin{align*}
\{b_{i,j} \text{ (for all integers } i \text{ in } [1,N-2])\} &= \begin{cases}
(N-i) & \text{if } i=j, \\
1 & \text{if } i>j, \\
0 & \text{if } i<j
\end{cases}, \text{ and,}
\{b_{i,j} \text{ (for all integers } i \text{ in } [N-1,N])\} &= \begin{cases}
1 & \text{if } i\neq j, \\
0 & \text{if } i=j
\end{cases}.
\end{align*}
$$

This Matrix B is a left diagonal matrix, whose determinant is equal to $-(N-1)!$, which is obviously non-zero for $N>1$.

Hence Proved

Theorem-2: There exists a positive real γ, such that for all $K>\gamma$, the following statement is true:
((Atleast two elements of vector $<z_1, z_2, \ldots, z_N>$ are non-zero) \iff (All elements of vector $<y_1, y_2, \ldots, y_N>$ are non-zero))

Proof: Consider the two boolean statements within the 'if-and-only-if' in the Theorem to be P and Q. It is well known that to prove (P \iff Q), it suffices to prove two statements: (Q \implies P) and ((not Q) \implies (not P)). It is easy to see that (All the elements of $<z_1, z_2, \ldots, z_N>$ are zero) \implies (All the elements of $<y_1, y_2, \ldots, y_N>$ are zero). Also, if exactly one of the elements of $<z_1, z_2, \ldots, z_N>$ is non-zero, this would mean that exactly (N-1) elements of $<y_1, y_2, \ldots, y_N>$ are non-zero, because each variable z_i appears in the defining equations of $\{y_j \text{ for all } j \in [1,N] \text{ where } j \neq i\}$. To put it explicitly, we have:
$$
y_j = \text{(Summation}(z_j/(K+j), \text{over all integers } j \text{ between } 1 \text{ and } N \text{, and } j \neq i), \text{for all integers } i \in [1,N].$$
Thus ((not Q) \implies (not P)). Next, from Theorem-1 of paper [1], and the above defining relationship, it follows that (P \implies Q) for all $K>\gamma$, where γ is a positive real that is a function of the elements of $<y_1, y_2, \ldots, y_N>$.

Hence Proved

3. Converting Linear Feasibility Problems into an ALP

The Linear System we consider is a set of simultaneous linear constraints over a vector of real variables $<x_1, x_2, \ldots, x_N>$ (i.e. each variable is initially allowed to take the values of zero, positive Reals, or negative Reals). We shall refer to our Linear System as S_{linear}, having P linear constraints with lesser-than-or-equal-to relational operators, Q linear constraints with lesser-than relational operators, and R linear constraints with not-equal-to relational operators:
$$
\begin{align*}
a_{1,1}x_1 + a_{1,2}x_2 + & \ldots + a_{1,N}x_N \leq p_1 \\
a_{2,1}x_1 + a_{2,2}x_2 + & \ldots + a_{2,N}x_N \leq p_2 \\
& \ldots \\
a_{P,1}x_1 + a_{P,2}x_2 + & \ldots + a_{P,N}x_N \leq p_P \\
b_{1,1}x_1 + b_{1,2}x_2 + & \ldots + b_{1,N}x_N < q_1 \\
b_{2,1}x_1 + b_{2,2}x_2 + & \ldots + b_{2,N}x_N < q_2 \\
& \ldots \\
b_{Q,1}x_1 + b_{Q,2}x_2 + & \ldots + b_{Q,N}x_N < q_Q \\
c_{1,1}x_1 + c_{1,2}x_2 + & \ldots + c_{1,N}x_N \neq r_1 \\
c_{2,1}x_1 + c_{2,2}x_2 + & \ldots + c_{2,N}x_N \neq r_2 \\
& \ldots \\
c_{R,1}x_1 + c_{R,2}x_2 + & \ldots + c_{R,N}x_N \neq r_R
\end{align*}
$$
In S_{linear}, for all integers i in $\{1, N\}$, for all integers j in $\{1, P\}$, for all integers k in $\{1, Q\}$, for all integers l in $\{1, R\}$: x_i is a real variable, and the elements of $f \{a_{i,j}, p_j, b_{i,j}, q_j, c_{i,j}, r_i\}$ belong to the set of integers. S_{linear} is able to express most linear systems, except linear discrete systems (for example, if x is constrained to integer values).

Let P_{linear} be the problem of deciding whether or not S_{linear} admits a feasible solution. Our Algorithm for P_{linear} is as follows:

Step-1: Replace each constraint having a lesser-than relation operator with 2 simultaneous constraints. For example, $(x < a)$ can be replaced with a set of constraints of the form $((a-x) > 0) \text{ AND } ((Ke > 1))$, where e is a real variable introduced, and where K is the time parameter of our ALP (i.e. a real number that is assumed to tend to positive infinity).

Step-2: S_{linear} now consists of constraints with only lesser-than-or-equal-to and not-equal-to relational operators. Divide S_{linear} into two sets of constraints: - $S_{\text{linear}}_{\text{subset without inequations}}$ (that has the constraints with only the lesser-than-or-equal-to operators) and $S_{\text{linear}}_{\text{subset inequations}}$ (that has the R constraints with only the not-equal-to operators).

Step-3: Write out the R inequations as follows:

$$c_{1,1}x_1 + c_{1,2}x_2 + \ldots + c_{1,N}x_N = f_1$$
$$c_{2,1}x_1 + c_{2,2}x_2 + \ldots + c_{2,N}x_N = f_2$$
$$\ldots$$
$$c_{R,1}x_1 + c_{R,2}x_2 + \ldots + c_{R,N}x_N = f_R$$

$f_1 \neq 0$
$f_2 \neq 0$
$$\ldots$$
$f_k \neq 0$

Step-4: Write $f_i =$ (Summation(y_{ij}, over all integers j between I and R, and $j \neq i$)), for all integers i in $\{1, R\}$. Also, write $(K+i)y_i = z_i$ for all integers i in $\{1, R\}$. Here $<y_1, y_2, \ldots, y_R>$ and $<z_1, z_2, \ldots, z_R>$ are the vectors of real variables introduced.

Step-5: Write each of the constraints with equal-to relational operators obtained in Step-3 and Step-4 (and any other such constraints initially present in S_{linear}), as two simultaneous constraints with lesser-than-or-equal-to operators. For example, $(x = a)$ can be expressed as a set of two constraints $((x-a) \leq 0) \text{ AND } ((a-x) \leq 0))$. Add these constraints to $S_{\text{linear}}_{\text{subset without inequations}}$.

Step-6: Consider R^2C_2 cases ($= R(R-1)/2$ cases) by taking all possible combinations of 2 elements from the vector $<z_1, z_2, \ldots, z_R>$ to be not-equal-to-zero. For each of these $R(R-1)/2$ cases, there will be 4 separate cases, involving each of these 2 elements being > 0 and < 0. For example, if z_2 and z_3 are selected, we have 4 separate cases: - $(z_2<0, z_3<0)$, $(z_2<0, z_3>0)$, $(z_2>0, z_3<0)$ and $(z_2>0, z_3>0)$. We thus have a total of $2R(R-1)$ separate cases.

Step-7: For each of these $2R(R-1)$ separate cases, convert the 2 constraints with lesser-than operators into constraints with lesser-than-or-equal-to operators using the procedure described in Step-1.

Step-8: Write ALP as the union of $S_{\text{linear}}_{\text{subset without inequations}}$ with the constraints with lesser-than-or-equal-to operators of Case described above in Step-7, for all integers i in $\{1, 2R(R-1))\}$.

Step-9: (For at least one of the integers i in $\{1, 2R(R-1))\}$, ALP is feasible) \leftrightarrow (S_{linear} is feasible).

A Note on the Asymptotic Linear Program (ALP)

An ALP [2][3][4] is a linear program, where the coefficients of the variables in the constraints are rational Polynomials involving a single real variable called the time parameter. The author of [4] proved that as this time parameter grows beyond a certain positive value, the Linear Program gets constant (i.e. steady-state) properties of feasibility or infeasibility. In other words, as this time parameter tends to positive infinity, the Asymptotic Linear Program becomes either feasible or infeasible.

Start of Example demonstrating Algorithm for P_{linear}:

Consider S_{linear} to be defined by the following set of 7 linear constraints over the real variable vector $<x_1, x_2, x_3>$:

$$a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 \leq p_1$$
$$a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 \leq p_2$$
$$b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 \leq q_1$$
$$b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 \leq q_2$$
$$c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 \neq r_1$$
$$c_{2,1}x_1 + c_{2,2}x_2 + c_{2,3}x_3 \neq r_2$$
$$c_{3,1}x_1 + c_{3,2}x_2 + c_{3,3}x_3 \neq r_3$$

After Step-1, S_{linear} becomes the following:

$$a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 \leq p_1$$
$$a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 \leq p_2$$
$$b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 - q_1 \leq -e$$
$$b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 - q_2 \leq -e$$
$$c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 \neq r_1$$
$$c_{2,1}x_1 + c_{2,2}x_2 + c_{2,3}x_3 \neq r_2$$
$$c_{3,1}x_1 + c_{3,2}x_2 + c_{3,3}x_3 \neq r_3$$
\[c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 \neq r_3 \]

\(Ke \geq 1\), where \(e\) is the real variable introduced, and \(K\) is the large positive real.

As per Step-2, \(S_{\text{linear subset without ineqations}}\) consists of the following:

\[
\begin{align*}
a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 & \leq p_1 \\
 a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 & \leq p_2 \\
b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 - q_1 & \leq -e \\
b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 - q_2 & \leq -e \\
Ke & \geq 1,
\end{align*}
\]

and \(S_{\text{linear subset ineqations}}\) consists of the following:

\[
\begin{align*}
c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 - r_1 & \neq 0 \\
c_{2,1}x_1 + c_{2,2}x_2 + c_{2,3}x_3 - r_2 & \neq 0 \\
c_{3,1}x_1 + c_{3,2}x_2 + c_{3,3}x_3 - r_3 & \neq 0.
\end{align*}
\]

As per Step-3, we have:

\[
\begin{align*}
c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 - r_1 & = f_1 \\
c_{2,1}x_1 + c_{2,2}x_2 + c_{2,3}x_3 - r_2 & = f_2 \\
c_{3,1}x_1 + c_{3,2}x_2 + c_{3,3}x_3 - r_3 & = f_3 \\
f_1 & \neq 0 \\
f_2 & \neq 0 \\
f_3 & \neq 0.
\end{align*}
\]

As per Step-4, we have:

\[
\begin{align*}
f_1 & = y_1 + y_2 \\
f_2 & = y_1 + y_3 \\
f_3 & = y_1 + y_2 \\
(K+1)y_1 & = z_1 \\
(K+2)y_2 & = z_2 \\
(K+3)y_3 & = z_3, \text{ where } <y_1, y_2, y_3> \text{ and } <z_1, z_2, z_3> \text{ are the vectors of real variables introduced.}
\end{align*}
\]

As per Step-5, \(S_{\text{linear subset without ineqations}}\) now becomes:

\[
\begin{align*}
a_{1,1}x_1 + a_{1,2}x_2 + a_{1,3}x_3 & \leq p_1 \\
a_{2,1}x_1 + a_{2,2}x_2 + a_{2,3}x_3 & \leq p_2 \\
b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 - q_1 & \leq -e \\
b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 - q_2 & \leq -e \\
1 - Ke & \leq 0 \\
c_{1,1}x_1 + c_{1,2}x_2 + c_{1,3}x_3 - r_1 - f_1 & \leq 0 \\
c_{2,1}x_1 + c_{2,2}x_2 + c_{2,3}x_3 - r_2 - f_2 & \leq 0 \\
c_{3,1}x_1 + c_{3,2}x_2 + c_{3,3}x_3 - r_3 - f_3 & \leq 0 \\
-c_{1,1}x_1 - c_{1,2}x_2 - c_{1,3}x_3 + r_1 + f_1 & \leq 0 \\
-c_{2,1}x_1 - c_{2,2}x_2 - c_{2,3}x_3 + r_2 + f_2 & \leq 0 \\
-c_{3,1}x_1 - c_{3,2}x_2 - c_{3,3}x_3 + r_3 + f_3 & \leq 0 \\
y_2 + y_3 - f_1 & \leq 0 \\
y_1 + y_3 - f_2 & \leq 0 \\
y_1 + y_2 - f_3 & \leq 0 \\
y_2 - y_3 + f_1 & \leq 0 \\
y_1 - y_3 + f_2 & \leq 0 \\
y_1 - y_2 + f_3 & \leq 0 \\
(K+1)y_1 - z_1 & \leq 0 \\
(K+2)y_2 - z_2 & \leq 0 \\
(K+3)y_3 - z_3 & \leq 0 \\
-(K+1)y_1 + z_1 & \leq 0 \\
-(K+2)y_2 + z_2 & \leq 0 \\
-(K+3)y_3 + z_3 & \leq 0.
\end{align*}
\]

As per Step-6, we have a total of 12 cases:

Case 1: \(z_1 < 0, z_2 < 0\)
Case 2: \(z_1 < 0, z_3 < 0\)
Case 3: \(z_2 < 0, z_1 < 0\)
Case 4: \(z_3 < 0, z_2 > 0\)
Case 5: \(z_1 < 0, z_3 > 0\)
Case 6: \(z_2 < 0, z_3 > 0\)
Case 7: \(z_1 > 0, z_2 < 0\)
Case 8: \(z_3 > 0, z_1 < 0\)
Case 9: \(z_2 > 0, z_3 < 0\)
Case 10: \(z_1 > 0, z_2 > 0\)
Case 1: \(z_1 > 0, z_3 > 0 \)
Case 12: \(z_2 > 0, z_3 > 0 \)

As per Step-7, the constraints with lesser-than operators can be converted to constraints with lesser-than-or-equal-to operators. So we have:

- Case 1: \(z_1 \leq e, z_2 \leq e, l \leq Ke \)
- Case 2: \(z_1 \leq e, z_2 \leq e, l \leq Ke \)
- Case 3: \(z_1 \leq e, z_2 \geq e, l \leq Ke \)
- Case 4: \(z_1 \geq e, z_2 \leq e, l \leq Ke \)
- Case 5: \(z_1 \geq e, z_2 \geq e, l \leq Ke \)

As per Step-8, we generate a set of 12 separate ALPs. \(\{ \text{ALP}_1, \text{ALP}_2, \ldots, \text{ALP}_{11}, \text{ALP}_{12} \} \). Here \(\text{ALP}_i \) is the union of \(S_{\text{linear subset without inequations}} \) with the constraints of Case, described above in Step-7, for all integers \(i \) in \(\{1, 12\} \). For example, \(\text{ALP}_{11} \) is shown below:

\[
\begin{align*}
 a_{1,1} x_1 + a_{1,2} x_2 + a_{1,3} x_3 &\leq p_1 \\
 a_{2,1} x_1 + a_{2,2} x_2 + a_{2,3} x_3 &\leq p_2 \\
 b_{1,1} x_1 + b_{1,2} x_2 + b_{1,3} x_3 - q_1 &\leq -e \\
 b_{2,1} x_1 + b_{2,2} x_2 + b_{2,3} x_3 - q_2 &\leq -e \\
 c_{1,1} x_1 + c_{1,2} x_2 + c_{1,3} x_3 - r_1 - f_1 &\leq 0 \\
 c_{2,1} x_1 + c_{2,2} x_2 + c_{2,3} x_3 - r_2 - f_2 &\leq 0 \\
 c_{3,1} x_1 + c_{3,2} x_2 + c_{3,3} x_3 - rind - f_3 &\leq 0 \\
 -c_{1,1} x_1 - c_{1,2} x_2 - c_{1,3} x_3 + r_1 + f_1 &\leq 0 \\
 -c_{2,1} x_1 - c_{2,2} x_2 - c_{2,3} x_3 + r_2 + f_2 &\leq 0 \\
 -c_{3,1} x_1 - c_{3,2} x_2 - c_{3,3} x_3 + r_3 + f_3 &\leq 0 \\
 y_2 + y_3 - f_1 &\leq 0 \\
 y_1 + y_3 - f_2 &\leq 0 \\
 y_1 + y_2 - f_3 &\leq 0 \\
 -y_2 - y_3 + f_1 &\leq 0 \\
 -y_1 - y_3 + f_2 &\leq 0 \\
 -y_1 - y_2 + f_3 &\leq 0 \\
 (K+1)y_j - z_j &\leq 0 \\
 (K+2)y_j - z_2 &\leq 0 \\
 (K+3)y_j - z_3 &\leq 0 \\
 -(K+1)y_j + z_1 &\leq 0 \\
 -(K+2)y_j + z_2 &\leq 0 \\
 -(K+3)y_j + z_3 &\leq 0 \\
 e - z_1 &\leq 0 \\
 e - z_2 &\leq 0 \\
 l - Ke &\leq 0
\end{align*}
\]

Finally, in Step-9, we determine feasibility of the 12 ALPs. (Atleast one of \(\{ \text{ALP}_1, \text{ALP}_2, \ldots, \text{ALP}_{11}, \text{ALP}_{12} \} \) is feasible) \(\leftrightarrow \) \(S_{\text{linear is feasible}} \).

End of Example demonstrating Algorithm for \(P_{\text{linear}} \).

4. Deciding non-triviality of a subset of variables of \(S_{\text{linear}} \)

(A vector of reals \(\langle \mu_1, \mu_2, \ldots, \mu_N \rangle \) is said to be non-trivial) \(\leftrightarrow \) (For at least one integer \(i \) in \(\{1, N\} \), \(\mu_i \neq 0 \)). If it is desired to determine whether or not \(S_{\text{linear}} \) permits a non-trivial solution for a subset of the variables of the vector \(\langle x_1, x_2, \ldots, x_N \rangle \), we can introduce an additional constraint with a not-equal-to operator using Theorem-1 of the paper \([1] \). For example, if it is desired to determine whether or not \(S_{\text{linear}} \) permits a non-trivial solution for \(\langle x_3, x_5, x_{13}, x_N \rangle \), we have:

\[
(x_2 / (K+1)) + (x_3 / (K+2)) + (x_{13} / (K+3)) + (x_N / (K+4)) \neq 0,
\]

which may be expressed using the following set of 5 simultaneous constraints, where \(\langle w_2, w_3, w_{13}, w_N \rangle \) is the vector of variables introduced:

\[
\begin{align*}
 w_2 + w_3 + w_{13} + w_N &\neq 0 \\
 x_2 &\neq (K+1) w_2 \\
 x_3 &\neq (K+2) w_3 \\
 x_{13} &\neq (K+3) w_{13} \\
 x_N &\neq (K+N) w_N
\end{align*}
\]

We call the union of \(S_{\text{linear}} \) and the above set of 5 constraints, as \(\text{linear-non-trivial}_{2,5,13,N_z} \), which is shown next:
\[
\begin{align*}
& a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,N}x_N \leq p_1 \\
& a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,N}x_N \leq p_2 \\
& \ldots \\
& b_{P,1}x_1 + b_{P,2}x_2 + \ldots + b_{P,N}x_N < q_P \\
& c_{1,1}x_1 + c_{1,2}x_2 + \ldots + c_{1,N}x_N \neq r_1 \\
& c_{2,1}x_1 + c_{2,2}x_2 + \ldots + c_{2,N}x_N \neq r_2 \\
& \ldots \\
& c_{R,1}x_1 + c_{R,2}x_2 + \ldots + c_{R,N}x_N \neq r_R \\
& w_2 + w_5 + w_{13} + w_N \neq 0 \\
& x_2 = (K+1)w_2 \\
& x_5 = (K+2)w_5 \\
& x_{13} = (K+3)w_{13} \\
& x_N = (K+N)w_N
\end{align*}
\]

We now apply the algorithm for \(P_{\text{linear}} \) to \(S_{\text{linear non-trivial 2_5_13_N}} \). (\(S_{\text{linear non-trivial 2_5_13_N}} \) has a feasible solution) \(\leftrightarrow \) (\(S_{\text{linear}} \) permits a non-trivial feasible solution for \(<x_2, x_5, x_{13}, x_N> \)).

5. Conclusion

In this paper, we developed the foundations for expressing the feasibility of a set of Inequations within Linear Systems, using ALPs, within polynomial time, thus answering an open question we posed in our previous paper. We then developed a polynomial-time algorithm to express as ALP problems, the feasibility of a set of linear constraints over real variables with integer coefficients, each constraint having one of 4 types of relational operators (\(=, \leq, <, \text{and} \neq \)). The resulting ALP problems have linear constraints (with the \(\leq \) operator) over real variables with coefficients that vary linearly with the time parameter \(K \) that tends to positive infinity. We also showed how to efficiently (within polynomial-time) convert the question of whether or not the linear system allows a subset of its variables to be non-trivial, into the question of whether or not another linear system (with \(=, \leq, <, \text{and} \neq \) relational operators) has a feasible solution, thus allowing our polynomial-time algorithm to be used for determining feasibility of the non-trivial solution of the desired subset of variables of the original linear system.

6. Future Work

If it possible to express (within polynomial-time) the question of whether or not linear constraints over binary-variables (i.e. the variables are allowed to take the values of either 0 or 1), as ALPs, this would prove that Asymptotic-Linear-Programming is NP-hard. So this is an important open problem. Another open problem is whether or not a weakly-polynomial-time algorithm exists for Asymptotic-Linear-Programming (just as weakly-polynomial-time algorithms already exist for Ordinary-Linear-Programming).

References

[1] Deepak Ponvel Chermakani, A Non-Triviality Certificate for Scalars and its application to Linear Systems, arXiv:1204.1764v1, April 2012.
[2] B.F. Lamond, A generalized inverse method for asymptotic linear programming, Mathematical Programming 43, pages 71-86, 1989.
[3] B.F. Lamond, An efficient basis update for asymptotic linear programming, Linear Algebra and its Applications, Volume 184, pages 83–102, 1993.
[4] R.G. Jeroslow, Asymptotic Linear Programming, Operations Research, Volume 21, No: 5, pages 1128-1141, 1973.

About the Author

I, Deepak Ponvel Chermakani, wrote this paper out of my own interest and initiative, during my spare time. In Sep-2010, I completed a fulltime one year Master Degree in Operations Research with Computational Optimization from University of Edinburgh UK (www.ed.ac.uk). In Jul-2003, I completed a fulltime four year Bachelor Degree in Electrical and Electronic Engineering, from Nanyang Technological University Singapore (www.ntu.edu.sg). In Jul-1999, I completed fulltime high school from National Public School in Bangalore in India.