Multiple Ferromagnetic Structures in an Off-Center Rattling System Eu$_8$Ga$_{16}$Ge$_{30}$

Takahiro Onimaru1, Shuhei Yamamoto1, Marcos A. Avila2, Koichiro Suekuni1 and Toshiro Takabatake1,3

1AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre-SP 09210-170, Brazil
3IAMR, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

E-mail: onimaru@hiroshima-u.ac.jp

Abstract. We performed electrical resistivity ρ, magnetization M and specific heat C measurements on single crystals of a type-I clathrate compound Eu$_8$Ga$_{16}$Ge$_{30}$, where the guest magnetic ions of Eu$^{2+}$ in the tetrakaidecahedral cages are rattling among off-center positions. The jump of C at the Curie temperature T_C is only one third of the value expected for a uniform ferromagnet with $S=\frac{7}{2}$ from the mean-field theory. Both $\rho(T)$ and $dM(T)/dT$ show broad humps at $T^*=20-24$ K, where $C(T)$ has no anomaly. With increasing magnetic fields to 5 T, the T^* in $\rho(T)$ shifts to 40 K. These observations indicate a crossover from a modulated structure to a uniform one on cooling through T^*.

Eu$_8$Ga$_{16}$Ge$_{30}$ is the only clathrate compound where magnetic ions fully occupy the guest positions in cages. This compound adopts two types of crystal structures, type-I and type-VIII. In the type-I, the Eu guest ions are encapsulated in two kinds of polyhedral cages of E_{20} pentagonal dodecahedra and E_{24} tetrakaidecahedra. On the other hand, the Eu guests in the type-VIII have one site in distorted polyhedral cages E_{20+3}. The type-I and type-VIII compounds exhibit ferromagnetic (FM) transitions at $T_C=36$ K and 10.5 K, respectively.[1, 2, 3] The divalent state of the Eu ions was indicated by the Curie-Weiss type temperature dependence of the magnetic susceptibility with the effective moment of 7.9 μ_B/Eu and the saturated magnetization of 7 μ_B/Eu. In the specific heat measurements of type-I samples, the jump at T_C depends on samples, the reason of which has been unclear yet. The magnetic and transport properties of the type-I and type-VIII have been studied in detail on Eu$_8$Ga$_{16-x}$Ge$_{30+x}$ system.[3, 4, 5] In this system, the thermal and transport properties depend on the carrier density. The higher T_C in the type I than in type-VIII was attributed to the enhanced effective mass of the conduction electrons in the type-I. By neutron diffraction experiments with single crystalline samples of type-I, magnetic peaks were observed below T_C.[2, 6] Sales et al. interpreted that the magnetic moments are directed along the [100] direction.[2] Chakoumakos et al. also reported that the preferred direction of the moments is along [100] and the projected saturation value of the Eu moments is 7 μ_B.[6] By Mössbauer measurements, Hermann et al gave direct evidence for tunneling of Eu ions even in the ferromagnetically ordered state.[7]

On the other hand, there are several experimental facts which are at variance with the three dimensional Heisenberg-model. Srinath et al. evaluated magnetic entropy, ΔS_{mag}, as a function of temperature from the magnetization $M(H,T)$ by adopting the thermodynamic...
Maxwell relation. In the case of a ferromagnetic transition of the three-dimensional Heisenberg system, the maximum of ΔS_{mag} should appear at T_C. The ΔS_{mag} of type-I shows its maximum value at 9 K far below $T_C=36$ K, whereas, in the type-VIII, ΔS_{mag} shows the maximum at 15 K close to T_C.\cite{8} In the optical reflectivity measurements, no difference was observed below and above T_C in the type-I in contrast to the clear change in the type-VIII.\cite{9,10} The larger carrier density in type-I would smear out the possible change in the electronic structure. Furthermore, the guest magnetic ions of Eu$^{2+}$ in the tetrakaidecahedral cages in the type-I are rattling among off-center positions even within the FM state below T_C.\cite{2,11} Therefore, we expect that the FM state is modified by the rattling motion of the Eu$^{2+}$ ions.

Keeping this in mind, we have measured electrical resistivity ρ, magnetization M and specific heat C of several single crystals of Eu$_8$Ga$_{16}$Ge$_{30}$. We have found broad humps in both $\rho(T)$ and $dM(T)/dT$ at temperatures far below T_C. The jump of C at T_C is smaller than one third of that expected for a three dimensional Heisenberg system. These facts strongly suggest the existence of multiple ferromagnetic structures below T_C.

Single crystalline samples of Eu$_8$Ga$_{16}$Ge$_{30}$ were obtained using a Ga self flux method.\cite{12} High-purity elements of 4N Eu prepared by Ames Laboratory, 6N Ga and 5N Ge were sealed in an evacuated quartz ampoule with a composition of Eu:Ga:Ge=8:32:30. They were soaked above 1150°C for 2h in a box furnace, cooled over 6h to 720°C and slowly cooled over 100h to 620°C. The ampoule was quickly removed from the furnace and the remaining molten Ga flux was separated by centrifuging. Typical dimension of a single crystal with polyhedral surface facets is $10 \times 10 \times 5$ mm3. The absence of secondary phase and the chemical homogeneity were confirmed by a scanning electron microscope. The atomic compositions were determined by electron-probe microanalysis (EPMA) by averaging over 10 different regions. The composition of Eu$_8$Ga$_{15.0}$Ge$_{29.5}$Vac$_{1.5}$ (Vac denotes a vacancy) was obtained by assuming the composition of Eu to be 8. Hereafter, this sample is denoted as Eu$_8$Ga$_{16}$Ge$_{30}$ for simplicity. The Ge compositions of 30±0.5 are close the ideal value, but the Ga compositions of 15.0-15.3 are less than the ideal value of 16. Therefore, defects should present in the Ga sites. The powder X-ray diffraction patterns were recorded at room temperature with Cu $K_{\alpha 1}$ radiation using Rigaku Ultima IV. The lattice parameter refined by the Rietveld analysis using RIETAN2000\cite{13} is 10.706(1) Å, which agrees with the reported value.\cite{3}

Magnetization was measured using a commercial SQUID magnetometer (Quantum Design MPMS) for 1.9-350 K in magnetic fields up to 5 T. Electrical resistance was measured by a standard four-probe AC method in a home-built system with a Gifford-McMahon type refrigerator. The resistance was also measured in various fixed magnetic fields up to 14 T in a longitudinal configuration, using a commercial Quantum Design PPMS. Specific heat was measured by a relaxation method at temperatures between 1.9 K and 300 K.

Figure 1 shows the temperature dependence of the electrical resistivity ρ of Eu$_8$Ga$_{16}$Ge$_{30}$ in various magnetic fields up to 14 T. The data are vertically shifted for clarity. In zero field, the sharp and broad peaks appear at $T_C=36$ K and $T^*=25$ K, respectively, as indicated by the arrows. The sharp peak at T_C is suppressed by the application of a low magnetic field of 0.5 T, whereas the broad peak at T^* shifts to 40 K as the field is increased to 5 T. This fact strongly suggests that the anomaly at T^* has a magnetic origin. Similar anomalies at T^* are present in the data of $\rho(T)$ reported by Paschen et al.\cite{3} and Bentien et al.\cite{5}, although no attention was paid to the anomalies. We note that a broad hump or shoulder was observed in their samples with relatively high resistivity with the charge carrier concentration $n<0.633$ e$^-$/u.c. at 2 K. Actually, ρ for the present sample is 0.8 mΩ cm at 2 K, which is comparable to that for their low carrier sample with $n=0.431$ e$^-$/u.c. at 2 K.\cite{5} Our magnetization measurements have revealed the presence of an anomaly in the vicinity of T^*. Figure 2 shows the temperature dependence of the magnetization M and its temperature differentiation, dM/dT, in magnetic fields of $B=0.05$, 0.1, 0.5 and 1 T. As is common to a ferromagnetic transition, M increases sharply below T_C.

The dM/dT has a shoulder at T^* far below T_C. The increase of T^* with increasing magnetic fields is consistent with the field dependence of the resistivity shown in Fig. 1. The anomaly at T^* is therefore attributed not to a structural transition but to some magnetic origin.

In order to examine whether a phase transition occurs at T^*, we measured the specific heat. Figure 3 shows the temperature dependence of C. A jump of C is observed at T_C, whereas no anomaly appears below T_C. This fact means that the anomaly observed at T^* both in $\rho(T)$ and $dM(T)/dT$ could not result from a phase transition. The jump of C at T_C, $8\Delta C$, was estimated by extrapolating the data below and above T_C, as indicated by the lines on the data in the inset of Fig. 3. The estimated value of ΔC is 7.3 J/K Eu-mol, being only one third of 20.1 J/K Eu-mol expected by the mean-field calculation for a ferromagnetic transition of the spin $S=\frac{7}{2}$ system.[14, 15] This suggests that the magnetic structure below T_C is probably a modulated one, and it approaches to a uniform one with decreasing temperatures through T^*. Therefore, the anomaly at T^* is the manifestation of the cross-over of the multiple ferromagnetic structures. Recently, we have grown single crystalline samples of Eu$_8$Ga$_{16}$(Ge,Si)$_{30}$ in aiming at investigating possible relationships between the off-center rattling and their FM transitions.[16] With substituting Si for Ge in the cage, we have found that the cage size decreases and the jump of C at T_C becomes more distinct. Moreover, the anomaly at T^* disappears once Si is partially substituted for Ge in the cages. It should be recalled that the off-center rattling in Sr$_8$Ga$_{16}$Ge$_{30}$ changes to on-center one as Si is substituted for Ge.[17, 18] By the analogy, we propose that the modulated structure in Eu$_8$Ga$_{16}$Ge$_{30}$ is stabilized by the off-center rattling of Eu ions.

In summary, we performed electrical resistivity ρ in magnetic fields, magnetization M and specific heat C measurements on Eu$_8$Ga$_{16}$Ge$_{30}$. The jump of C at the FM transition temperature $T_C=36$ K is only one third of the value calculated by the mean-field model for the three dimensional Heisenberg system. In $\rho(T)$ and $dM(T)/dT$, we observed anomalies not only at

Figure 1. Temperature dependence of the electrical resistivity of Eu$_8$Ga$_{16}$Ge$_{30}$ in magnetic fields up to 14 T. The data are vertically shifted for clarity.

Figure 2. Temperature dependence of the magnetization M (top) and dM/dT (bottom) of Eu$_8$Ga$_{16}$Ge$_{30}$ in magnetic fields of $B=0.05$, 0.1, 0.5 and 1 T.
Figure 3. Temperature dependence of the specific heat C of Eu$_8$Ga$_{16}$Ge$_{30}$. The jump of C at T_C, $8\Delta C$, was estimated by extrapolating the data below and above T_C, as indicated by lines in the inset.

T_C=36 K but also T^*=20-24 K. With increasing magnetic field to 5 T, the T^* at the anomaly in $\rho(T)$ shifts to 40 K, indicating a magnetic origin for the anomalies at T^*. These results suggest that a magnetically ordered state with modulated moments appears at T_C, and it gradually changes to a uniform one through T^*. It should be examined whether the modulated structure results from the off-center rattling of the guest Eu-ions in the tetrakaidecahedral cage.

We thank F. Iga, K. Umeo, S. Tsutsui and C. H. Lee for fruitful discussions, and Y. Shibata for the EPMA analysis. This work was supported by Grants-in-Aid from MEXT of Japan, Nos. 18204032, 19051011, and 20102004, and by The Mazda Foundation Research Grant, Japan. One of the authors (T. O.) was supported in part by Motizuki Fund.

References

[1] Nolas G S, Weakley T J R, Cohn J L and Sharma R 2000 Phys. Rev. B 61 3845.
[2] Sales B C, Chakoumakos B C, Jin R, Thompson J R and Mandrus D 2001 Phys. Rev. B 63 245113.
[3] Paschen S, Carrillo-Cabrera W, Bentien A, Tran V H, Baenitz M, Grin Yu and Steglich F 2001 Phys. Rev. B 64 214404.
[4] Pacheco V, Bentien A, Carrillo-Cabrera W, Paschen S, Steglich F and Grin Yu 2005 Phys. Rev. B 71 165205.
[5] Bentien A, Pacheco V, Paschen S, Grin Yu and Steglich F 2005 Phys. Rev. B 71 165206.
[6] Chakoumakos B C, Sales B C and Mandrus D G 2001 J. Alloys Comp. 332 127.
[7] Hermann R P, Keppens V, Bonville P, Nolas G S, Grandjean F, Long G J, Christen H M, Chakoumakos B C, Sales B C and Mandrus D 2006 Phys. Rev. Lett. 97 017401.
[8] Srinath S, Gass J, Rebar D J, Woods G T, Srikanth H and Nolas G S 2006 J. Appl. Phys. 99 08K902.
[9] Schelschmidt J, Voevodin V, Pacheco V, Grin Yu, Steglich F, Nishi T and Kimura S 2005 Eur. Phys. J. B 46 363.
[10] Sakurai Y, Nishi T, Kimura S, Kwon Y S, Avila M A and Takabatake T 2006 Physica B 383 122.
[11] Takasu Y, Hasegawa T, Ogita N, Udagawa M, Avila M A, Suekuni K, Ishii I, Suzuki T and Takabatake T 2008 Phys. Rev. B 74 174303.
[12] Avila M A, Suekuni K, Umeo K and Takabatake T 2006 Physica B 383 124.
[13] Izumi F and Ikeda T 2000 Mater. Sci. Forum 321-324 198.
[14] Blanco J A, Gignoux D and Schmitt D 1991 Phys. Rev. B 43 13145.
[15] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford).
[16] Onimaru T, unpublished.
[17] Suekuni K, Avila M A, Umeo K and Takabatake T 2007 Phys. Rev. B 75 195210.
[18] Takasu Y, Hasegawa T, Ogita N, Udagawa M, Avila M A, Suekuni K and Takabatake T 2008 Phys. Rev. Lett. 100 165503.