Arbuscular Mycorrhizal and Root Colonizing Dark Septate Endophytic Fungal Associations in Urginea indica and Urginea wightii Accessions

B. Mohana*, Shiva Kameshwari and Hanumanth Rao

Department of Botany, Bangalore University, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author BM designed the study, managed the literature searches, performed the statistical analysis and wrote the final draft of the manuscript. Author SK wrote the protocol, managed the analysis of the study and approved the final manuscript. Author HR managed the pictures and helped in statistical analysis. All the authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2020/v31i130200

Editor(s):
(1) Dr. Paola Angelini, Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
(2) Prof. Marcello Iriti, Professor, Plant Biology and Pathology, Department of Agricultural and Environmental Sciences, Milan State University, Italy.

Reviewers:
(1) Ana-Maria Andrei, Research Development Institute for Plant Protection, Romania.
(2) Aba-Toumou Lucie, University of Bangui, Central African Republic.

Complete Peer review History: http://www.sdiarticle4.com/review-history/54620

Original Research Article

ABSTRACT

Urginea indica belongs to Hyacinthaceae family. It is also known as Indian squill, commonly called as wild Onions. The over exploitation and habitat degradation has resulted in the loss of habitat and it has caused genetic depletion and loss of genetic diversity. Immediate Measures have to be undertaken for conservation, to save this economically important medicinal plant. The present investigation is an attempt to highlight the occurrence of arbuscular mycorrhizal (AM) and Dark Septate Endophyte (DSE) fungal association found in the root bulbs of Urginea indica. 8 Accessions of Urginea was examined in Urginea indica kunth and Urginea wightii accessions, collected from various regions of Karnataka and South India. Fungal Symbiosis was present in all the accessions, with 100% root infection. Urginea has DSE fungal association and AM Association. This is the first report on the DSE fungal association in Urginea indica kunth. In addition to the prevalence of AM fungal symbiosis. The role of DSE is still in infancy. Though nuclear relationship

*Corresponding author: E-mail: monabalaguru@yahoo.com;
1. INTRODUCTION

Urginea indica belongs to Hyacinthaceae family. It is also known as Indian squill, commonly called as wild Onions, (vernacular names Van Pyaz, Kadu erulli). It is a perennial bulbous plant with roots measuring about 8-10 inches in length. It is endemic to India, Africa and Mediterranean regions [1]. The Genus *Urginea* (Syn. Drimia). Ethno-medicinally bulbs of *U. indica* has proved to be antiulcerous, antinematodal, antilumterous, antihelmintheic, antiarthritis properties and is used to cure skin diseases like warts, abscesses, boils, cardiac diseases, antidote to sorpion sting [2]. The bulbs contain many compounds that defend cells against free radicals by blocking the development of heart diseases, cancer, dropsy, edema, Dog bites, cut, wounds, infertility in man and numerous other ailments. Due to these many medicinal properties of *Urginea indica* bulbs has found its place in British and European Pharmacopeias [1]. As per IUCN criteria, the threat status of *Urginea indica* is VULNERABLE for Chattisgharh and Madhya Pradesh [3]. Hence conservation through germ plasm and awarness is necessary for the sustainable utilization of this medicinally important plant. It has been established that the presence of mycorrhriza (AM) fungi is important for coastal sand dune vegetation [4].

There are a number of studies carried on VAM Fungi they have shown that vesicular-arbuscular mycorrhizal (VAM) infection can significantly improve the phosphorus nutrition and yield of plants grown in soils of low fertility [5,6,7,8]. Recently, there has been an increasing awareness on another group of anamorphic Ascomycetous fungi, which also frequently colonize roots of plants growing in various habitats [9]. These fungi termed as dark septate endophyte (DSE) fungi produce dark septate or hyaline hyphae and microsclerotia. The DSE fungi often coexist with different types of mycorrhizal fungi, including the AM fungi. It is therefore essential to understand the interaction of these fungi as they inhabit the same niche within plant roots [10]. As part of an experimental study on the ecological role of VAM, a quantitative analysis was carried out to study the infection level in *Urginea indica* and *Urginea whitii* species growing in semi-natural, dry arid and wet soil [11,12]. The other most studied groups of fungal root endophytes, the so-called Dark Septate Endophytes (DSE), are a polyphyletic aggregate of fungi belonging to Class 4 of non-clavicipitaceous endophytes [13] which is broadly defined by the endophytic life strategy and presence of intraradical dark septate hyphae. Dark septate endophytes are an ubiquitous group of hyaline or darkly pigmented, sterile, septate endophytic fungi that colonize living plant organs, especially roots without causing any apparent or negative effects to the host plant [14]. These fungi usually form in root cortical cells clusters of inflated, rounded, thick-walled cells called microsclerotia [14]. There associations have been found in different plant species, suggesting the lack of host specificity [14]. Dark septate endophyte (DSE) fungi often contain melanin, which is helpful under unfavourable or stressful conditions like extreme temperature, drought, etc. [14]. The role played by DSE fungi is currently unresolved, recent studies indicate their potential to function as plant growth promoters both under favourable and unfavourable conditions [13].

2. MATERIALS AND METHODS

The intensity of vesicular-arbuscular mycorrhizal infection was assessed in over 10 Accessions of *Urginea indica* collected from various parts of Karnataka and across South India. From 2014 to 2017 *Urginea indica* accessions were collected from Udupi, Sithampundi, Kerala, Shimoga, Karwar, Magadi. In *Urginea whitii* 4 accessions collected from Nagarhole, Yediyur, Gulbarga, and Bidadi. The study was carried in two parts. In the first, a general survey
of the infection and the percentage of infection were done number of vegetation and in 3 soil samples. In the second, *Urginea* grown as experimental plant in Sterilized soil grown in green house for a year and the infection levels in roots were analysed for AM and DSE fungal colonization.

2.1 Evaluation of AM Fungal Colonization

Freshly collected root samples were washed gently and made free from soil particles and cut into small segments of approximately 0.5 cm. varying from 5 to 10 pieces, depending on the size of the sample. The roots were fixed in FAA for 24 hours. Roots were then cleared in 10% KOH and autoclaved (heated), once cooled they were acidified with (1N) HCL for 10 to 15 minutes. Later they were and stained in Trypan blue (Phillips and Hayman, 1970) the concentration of Trypan blue was reduced to (0.2% in lacto glycerol) prepared in Lactoglycerol and the stained roots were again heated /autoclaved 15 minutes under 60 pressure (lbs). The stained roots were mounted on a glass on slides and examined under Magnus compound microscope for the AM and DSE fungal structures. The presence of characteristic darkly

Fig. 1. Dark septate endophytic fungi inhabiting the same roots of *Urginea indica* and *Urginea wightii* accessions. a) and d) clustered intracellular microsclerotia. b), c) and e) dark septae hyphae. f), g) and h) aggregation of vesicles
Fig. 2. Arbuscular mycorrhizal associations found in the roots of *Urginea indica* and *Urginea wightii* species. j) and k) Terminal vesicles. l) and m) Intraradical hyphae and terminal vesicles. n) Distribution of vesicles. p), n) and q) Arbuscules pigmented or hyaline septate hyphae, and, when present, microsclerotia or moniliform cells were used to characterize DSE fungal colonization. Only root samples possessing arbuscules or arbusculate coils were considered to be arbuscular mycorrhizal.

2.2 Root Colonization

The percentage of total root length colonization and root length with different fungal structures for AM fungi (aseptate hyphae, hyphal structures) The percentage of AM infection was estimated by the root-slide technique of Nicolson [15]. All infected and uninfected segments were counted. The percentage of infection was calculated using the formula

\[
\text{Per cent of mycorrhizal colonization} = \frac{\text{Number of root segments colonized}}{\text{Total number of root segments examined}} \times 100
\]

3. RESULTS AND DISCUSSION

3.1 Occurrence of AM and DSE Fungal Association

Fungal endophytes are defined as mycobionts which live inside living plant tissues, lack localized interfaces or specialized hyphae for
4. CONCLUSION

The beneficial effect of indigenous AM fungi on the nutrition of agricultural plants depends on the abundance and type of fungi present in the soil [18]. The presence of any mycorrhizal associations found the roots of vascular plants plays an important role on sustainable agriculture its management. But the potential for employing AM fungi and the role of Dark septate mycorrhizae in agriculture and protection of its habitat requires more attention [16,19,20]. In the present study indigenous AM fungi and dark septae mycorrhizal association present in different 8 accesses were studied. From our studies we would like to conclude that DSE are prevalent in various habitat, not much understanding has been achived on DSE fungus, it cannot be overlooked as it has been stated to be multifunctional, such as drought resistance, environmental tolerance. The production of melanin tissues may deter mamalians and other pathogen root infections [9]. The dynamics of this plant community, its host response under natural conditions may be difficult to determine. in a simple and controlled preliminary experiment. Urginea being a xerophyte, subjected to unfavourable, arid and dry environment, it can be clearly drawn to conclusion that the presence of the fungal associations is necessary to sustain itself. Exactly how it does, associations are symbiotic or not, still investigation has to be done, if so the role of each component is still yet to be confirmed. Our experiment suggests that DSE are abundant and their ecological significance, in relation to AM fungi and other ectomycorrizae has to be significantly understood. This is a one small step before a giant leap.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

The author conveys sincere thanks to UGC for providing funding through Rajiv Ghandhi National Fellowship, Department of Botany, Bangalore University, Bangalore.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Shiva Kameshwari MN, Lakshman AB, Paramasivam G. Biosystematics studies on medicinal plant Urginea indica Kunth. liliaceae - A review. Int. J. of Pharm. & Life Sci. 2012;3(1):1394-1406.
2. Chittoor MS, Roger Binny AJ, Yadlapalli S, Cheruku A, Dandu C, Nimmanapalli Y. Anthelmintic and antimicrobial studies of Drimia indica (Roxb.) Jessop. bulb aqueous extracts. Journal of Pharmacy Research. 2012;5(5):3677-3686.
3. Joshi KC, Negi MS, Tiple AD. Achanaikmar-Amarkantak biosphere reserve. Biosphere Reserve Information Series (BRIS), 2(1-2). Tropical Forest Research Institute Jabalpur. 2010;1-158.
4. Beena KR, Raviraja NS, Arun AB, Sridhar KR. Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of west coast of India. Current Science. 2000;79:1459-1466.

5. Vesicular-arbuscular (VA) mycorrhizal status of some aquatic and marshy plants. Acta Botanica Indica. 1993;21:161–171.

6. Muthukumar T, Prabha K. Arbuscular mycorrhizal and septate endophyte fungal associations in lycophytes and ferns of South India. Symbiosis. 2013;59(1):15–33.

7. Muthukumar T, Udaiyan K. Seasonality of vesicular-arbuscular mycorrhizas in sedges in a semi-arid tropical grassland. Acta Oecologica. 2002;23(5):337–347. Muthukumar T, Udaiyan K, Shanmughavel P. Mycorrhiza in sedges— an overview. Mycorrhiza. 2004;14(2):65–77.

8. Gokhale MV, Shaikh SS, Chavan NS. Floral survey of wet coastal and associated ecosystems of Maharashtra. Indian Journal of Geo Marine Sciences. 2011;40(5):725-730.

9. Dickson S, Smith FA, Smith SE. Structural differences in arbuscular mycorrhizal symbioses: More than 100 years after Gallaud, where next? Mycorrhiza. 2007;17(5):375–393.

10. Muthukumar T, Udaiyan K. Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza S, Dharmarajan K, Kannan, Lakshminarasimhan C. 2000;15:297–313.

11. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963;46:235-244.

12. Shiva Kameshwari MN. Biosystematics studies on Urginea indica Kunth. Liliaceae. (Abs) Nat. Conf. on Forest Biodiversity Resources: Exploitation Conservation & Management, 21-22 March CBFS, Madurai Kamaraj University: Madurai. 2006;24-25.

13. Gerdemann JW. Vesicular-arbuscular mycorrhizae formed on maize and tuliptree by Endogone fasciculate. Mycologia. 1965;57:562–575.

14. Jumpponen A, Trappe JM. Dark-septate root endophytes: A review with special reference to facultative biotrophic symbiosis. New Phytol. 1998;140:295–310.

15. Nicolson TH. The mycotrophic habit in grasses. Ph.D. Thesis. University of Nottinghana; 1955.

16. Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil. 2009;320(1-2):37–77.

17. Lukešová T, Kohout P, Větrovský T, Vohník M. The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One. 2015;10(4).

18. Abbott LK, Robson AD. The role of VAM fungi in agriculture and the selection of fungi for inoculation. Aust. J. Agric. Res. 1982;33:389–408.

19. Radhika KP, Rodrigues BF. Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquatic Botany. 2007;86(3):291–294.

20. Dickson S. The Arum-Paris continuum of mycorrhizal symbioses. New Phytologist. 2004;163(1):187–200.

© 2020 Mohana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.