Flavor Mixing, Quark Masses, Neutrino Masses and Neutrino Oscillations

H. Fritzsch
University of Munich, Physics Department
Munich, Germany

June 5, 2009

Abstract

We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mixing angles and can predict the masses of the neutrinos. We find a normal hierarchy - the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and the neutrinos. We find about 40°, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is predicted to be 0.05. This prediction can soon be checked by the Daya Bay experiment.

We observe three lepton-quark families in nature. The first family consists of the electron, its neutrino and the u- and d-quarks. The members of the second family are the muon, its neutrino and the c- and s-quarks. The third family consists of the tauon, its neutrino and the t- and b-quarks. It is unknown, whether there is a connection between the number of families and the number of colors in quantum chromodynamics.

In the Standard Model 28 fundamental constants have to be introduced. Their values cannot be calculated - they have to be measured in the experiments. Theses constants are:

- the constant of gravity G,
- the fine structure constant,
- the coupling constant of the weak interactions,
- the coupling constant of the strong interactions or the scale of QCD,
- the mass of the W-boson,
- the mass of the “Higgs”-boson,
- the masses of the three charged leptons,
• the masses of the three neutrinos,
• the masses of the six quarks,
• the four parameters, describing the flavour mixing of the quarks and
• the six parameters, describing the flavour mixing of the leptons.

For the masses of the quarks we assume the following values:

\[u : 5.3 \text{ MeV}, \quad d : 7.8 \text{ MeV}, \]
\[s : 146 \text{ MeV}, \quad c : 1050 \text{ MeV}, \]
\[b : 4600 \text{ MeV}, \quad t : 174000 \text{ MeV}. \]

The quark masses are scale dependent. The values given above, except the
one for the t-mass, are normalized at an energy scale of 1 GeV. The experimental
errors are not given, but are at least 10 %, except for the t-mass, which is known
to about 1 %.

The quarks of the same charge do mix. If the u-quark interacts with a W-
boson, a mixture of d, s and b appears. These mixtures are described by the
CKM matrix\[1\]. I prefer a description, which we introduced some time ago\[2\]:

\[
V = \begin{pmatrix}
 c_u & s_u & 0 \\
 -s_u & c_u & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 e^{-i\phi} & 0 & 0 \\
 0 & c & s \\
 0 & -s & c
\end{pmatrix}
\begin{pmatrix}
 c_d & -s_d & 0 \\
 s_d & c_d & 0 \\
 0 & 0 & 1
\end{pmatrix}
\] (1)

In the case of three families there are three mixing angles and one phase pa-
parameter. The latter describes the CP-violation. The angles with the index u or
d describe the mixing in the u − c sector or the d − s sector, the angle with no
index describes the mixing between the (t, c)-system and the (b, s)-system.

I proposed years ago a simple texture 0 mass matrix for the qua rks, given
by the following matrix, valid both for the (u, c, t)-system and the (d, s, b)-
system\[3\]:

\[
M = \begin{pmatrix}
 0 & A & 0 \\
 A^* & C & B \\
 0 & B^* & D
\end{pmatrix}
\] (2)

Such mass matrices are obtained, if in the electroweak theory special symmetries
are present, either discrete reflection symmetries or continuous symmetries\[3\].
In the Standard Model such symmetries cannot be introduced, but if the elec-
troweak gauge group contains besides the lefthanded group also a righthanded
group, such symmetries can easily be obtained. A left-right symmetric gauge
group arises, for example, if one uses the group SO(10) to describe the grand
unification.

After diagonalization one finds the following relations for the mixing angles\[4\]:

\[
\theta_d = \tan^{-1} \sqrt{m_d/m_s}, \quad \theta_u = \tan^{-1} \sqrt{m_u/m_c}
\] (3)

For the angle \(\theta_d \) we find from the ratio of the quark masses \(13 \pm 0.4^\circ \), the
experimental value is \(11.7 \pm 2.6^\circ \). The angle \(\theta_u \) is calculated to \(5.0 \pm 0.7^\circ \), the
The experimental value is $5.4 \pm 1.1^\circ$. Thus these angles agree very well with the experimental data on flavor mixing, if the phase angle is assumed to be close to 90°. The experiments give for the phase angle $86 \ldots 95^\circ$. Note that in this case the flavor mixing matrix is very simple - instead of the arbitrary phase the matrix element is just given by $-i$.

Analogously we can describe the flavor mixing in the lepton sector, which can be studied in the neutrino oscillations. The experiments, carried out in Japan (Kamiokande detector\[5\]) and in Canada (SNO detector, ref. 6), give the following results for the mass-squared differences of the three neutrino mass eigenstates:

$$\Delta m_{21}^2 \simeq 8 \times 10^{-5} eV^2 \quad , \quad \Delta m_{32}^2 \simeq 2.5 \times 10^{-3} eV^2 \quad (4)$$

In neutrino oscillations only mass squared differences can be measured. No information can be obtained for the absolute magnitude of the neutrino masses. There is the possibility that the neutrino masses are nearly degenerate, e.g. masses like $m_1 = 0.94eV$, $m_2 = 0.95eV$, $m_3 = 1eV$ are possible. If one neutrino remains massless, one would have the masses $m_1 = 0eV, m_2 = 0.009eV$, $m_3 = 0.05eV$. In the latter case a hierarchy of the masses is present, but this hierarchy is much weaker than the mass hierarchy for the charged leptons.

Below we shall calculate the neutrino masses. Neutrino oscillations arise, since the neutrinos, produced by the weak interactions, are not mass eigenstates, but mixtures of mass eigenstates. Like for the quarks one has a 3×3 mixing matrix, which can be written as a product of three simple matrices, and a phase matrix, which is present only, if neutrinos are Majorana particles:

$$V = U \cdot P$$

$$U = \begin{bmatrix} c_l & s_l & 0 \\ -s_l & c_l & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{-i\phi} & 0 & 0 \\ 0 & c & s \\ 0 & -s & c \end{bmatrix} \begin{bmatrix} c_\nu & -s_\nu & 0 \\ s_\nu & c_\nu & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (5)$$

$$P = \begin{bmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Here s_ν stands for $\sin \theta_\nu$ ($\theta_\nu :$ solar mixing angle), s stands for $\sin \theta$ ($\theta :$ atmospheric mixing angle), and s_l stands for $\sin \theta_l$ ($\theta_l :$ reactor mixing angle). The latter has not been measured. The Chooz experiment gives an upper limit of 13° for this angle.

The experimental results for the solar and the atmospheric mixing angles are\[5, 6\]:

$$30^\circ \leq \theta_\nu \leq 39^\circ \quad , \quad 37^\circ \leq \theta \leq 53^\circ \quad (6)$$

We assume for the lepton mass matrices the same texture 0 pattern as for the quarks\[7\]. Thus we obtain the same relations between the mixing angles and the mass eigenvalues:

$$\tan \theta_l = \sqrt{m_e/m_\mu} \simeq 0.07 \quad , \quad \tan \theta_\nu = \sqrt{m_1/m_2} \quad (7)$$
Since the solar angle has been measured (we take 33°), we find for the mass ratio of the first two neutrinos:

$$m_1/m_2 \approx 0.42$$ \hspace{1cm} (8)$$

The oscillation experiments provide us with the mass squared differences. The new relation \[9\] allows us to determine the neutrino masses. We find (in eV):

$$m_1 \approx 0.0036...0.0059 \ , \ m_2 \approx 0.0085...0.0140 \ , \ m_3 \approx 0.0444...0.058 \hspace{1cm} (9)$$

These neutrino masses are very small. We observe also that the masses show a rather weak hierarchy, but the mass spectrum is not inverted. The first neutrino has the smallest mass.

The atmospheric mixing angle is consistent with 45°. The parameter C in eq. (2) might be zero, as originally assumed \[8\]. But the high mass of the t-quark does not allow this possibility for the quarks. It might work for the leptons. In this case the atmospheric mixing angle is related to the two angles, which are given by the corresponding mass ratios:

$$\tan \theta_1 = \sqrt{m_\mu/m_\tau} \ , \ \tan \theta_2 = \sqrt{m_2/m_3}$$

$$\theta_1 \approx 14^\circ \ , \ \theta_2 \approx 24^\circ$$

(10)

The atmospheric mixing angle is given by the absolute value of the sum of the two angles, including a relative phase between the two terms. In order to get the direct sum, this phase must be 180°. In this case we have for the atmospheric mixing angle:

$$\theta = \theta_1 + \theta_2 \approx 38^\circ$$

(11)

We cannot obtain a maximal mixing (45°), but our result is consistent with the experiment.

We can predict the matrix element V_{3e} of the mixing matrix V:

$$V_{3e} = \sin \theta \sin \theta_1 \approx 0.707 \sqrt{m_e/m_\mu} \approx 0.05$$

(12)

A matrix element of this magnitude could be observed in the upcoming reactor neutrino experiments.

If the neutrino masses are Majorana masses, one expects a neutrinoless double beta decay. The present limit on the Majorana mass is about 0.23 eV \[8\], if mixing angles are disregarded. We can estimate the effect. Only the third neutrino would play a role, however it couples to the electron with a magnitude, given by V_{3e}. Thus we find an upper limit for the effect of the order of $0.05 \times 0.05 = 0.0025$, which is a factor 100 smaller than the observed limit. The experiments on double beta decay must be improved by a factor 100 in order to see an effect. This seems extremely difficult.
References

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[2] H. Fritzsch and Z. Xing, Phys. Letters B413, 396 (1997); H. Fritzsch and Z. Xing, Phys. Rev. D57, 594 (1998).

[3] H. Fritzsch, Nucl. Phys. B155, 189 (1979).

[4] H. Fritzsch and Z. Xing, Nucl. Phys. B556, 49 (1999).

[5] J. P. Cravans et al., arXiv: 0803.4312.

[6] B. Aharmim et al., Phys. Rev. C72, 055502 (2005)

[7] H. Fritzsch and Z. Xing, Phys. Lett. B634, 514 (2006)

[8] C. Amaboldi et al. arXiv: 0802.3439