Can lean reduce infections? A systematic review and meta-analysis of prospective studies

Carlotta Patrone
Ente Ospedaliero Ospedali Galliera - Dept. Directorate, office innovation, development and Lean Application

Maria Luisa Cristina
https://orcid.org/0000-0002-7926-7108

Anna Maria Spagnolo
Ente Ospedaliero Ospedali Galliera - SSDUO Hospital Hygiene

Elisa Schinca
Ente Ospedaliero Ospedali Galliera - SSDUO Hospital Hygiene

Gianluca Ottria
Ente Ospedaliero Ospedali Galliera - SSDUO Hospital Hygiene

Chiara Dupont
Universita degli Studi di Genova - Dept. Health Sciences

Mattia Alessio-Mazzola
Universita degli Studi di Genova - Dept. Surgical Sciences

Marina Sartini
https://orcid.org/0000-0002-7127-2893

Research article

Keywords: Lean management, Nosocomial infections, Six Sigma, Healthcare quality improvement

DOI: https://doi.org/10.21203/rs.3.rs-30832/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Lean is largely applied to the health sector and on the healthcare-associated infections (HAI). The latter are a plague for our society. However, a few results on the improvement of the outcome have been reported in literature. The purpose of this study is to analyze if the lean application can reduce the healthcare-associated infections rate.

Methods: A comprehensive search was performed on PubMed/Medline, Scopus, CINAHL, Cochrane, Embase, and Google Scholar databases using various combinations of the following keywords: "lean" and "infection" from August to December 2019. Inclusion criteria were: 1) research articles with quantitative data and relevant information on lean methodology and its impact on healthcare infections; 2) prospective studies. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines has been used.

Results: 22 studies were included in the present meta-analysis. Lean application demonstrated a significant protective role on healthcare-associated infections rate (RR 0.50 [0.38-0.66]) with significant impact on central line-associated bloodstream infections (CLABSIs) (RR 0.47 [0.28-0.82]). There was a significant correlation between lean application and healthcare worker satisfaction and compliance, but no significant decrease of mortality has been reported.

Conclusions: Lean has a positive impact on the decreasing of HAIs and on the improvement of compliance and satisfaction of the staff.

Contributions To The Literature

- Lean method has several purposes and there is a growing interest on its application in healthcare processes.
- Healthcare associated infections (HAIs) are the most common adverse events affecting millions of patients annually worldwide and recent evidences suggest that lean application may decrease HAIs incidence.
- Although several research articles support the Lean applications to decrease healthcare-associated infections rate, no literature review with analytic purpose of the efficacy aspect is available.
- This study provides high level evidence that critically analyse the impact of lean on HAIs.
- The direct consequence of lean application could be a direct improve in compliance and staff satisfaction.

Background

“Lean thinking” words appeared for the first time in 1988 after a MIT comparative research of the automotive industry.[1, 2] This term is based on the innovative production model called Toyota Production System (TPS).[1, 2]. TPS focused the attention of the entire production on the value for the
“Just in time” and “jidoka” are the two main pillars of TPS. The first one ensures to produce “what is needed, when it is needed, and in the amount needed” whereas the latter is “the automation with a human touch”. These principles help the organization to detect, prevent and consequently solve problems. Liker highlighted that the lean enterprise is simply “the end result of applying the Toyota Production System to all areas of your business”.

In other words, Radnor et al. defined the “Lean as a management practice based on the philosophy of continuously improving processes by either increasing customer value or reducing non-value adding activities (muda), process variation (mura), and poor work conditions (muri)”.

Ohno identified seven kinds of muda categorized in transportation, inventory, motion, waiting, overproduction, overprocessing and defects. These muda are present also in the healthcare sector. Subsequently, Lean management has been exported to this sector. This application has been described in so many different ways such as strategy, philosophy or way of working and several efficiency results (i.e. time saving or cost reduction) have been achieved over time. However, few results on the improvement of the outcome have been published.

Although, a protocol for a Cochrane Review on the effect of lean on the patient outcomes has been reported, the specific impact of LEAN application on healthcare-associated infections (HAIs) has not still extensively investigated.

Lean and Six Sigma can be applied to several aspects of health care including finance, inventory management, information processing, outpatient clinics, and inpatient setting.

HAIs are recognized worldwide as an important public health problem, and they are of increasing interest to politicians, patients, and the public.

Up to 2,609,911 new cases of HAIs occur every year in the European Union and European Economic Area (EU/EEA). Multiple research studies report that in Europe hospital-wide prevalence rates of HAIs range from 4.6–9.3%. In particular HAIs have impact on critically ill patients with around 0.5 million episodes of HAIs being diagnosed every year in intensive care units (ICUs) alone, including central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), and ventilator-associated pneumonia (VAP).

The problem of nosocomial infection is increased by the spread of multiresistant microorganisms. Since the 1970s, the selective pressure exerted by antibiotics has given rise to bacterial species that are increasingly resistant, and the last 20 years have seen a dramatic rise in the number of multi-resistant pathogenic strains; the attributable deaths in the EU due to antimicrobial resistant microorganisms were estimated to be 33,110 per year.

At present, the monitoring and prevention of HAIs is a priority for the healthcare sector, and reducing the incidence of HAIs is used as an indicator of the quality of service provided.
Several identified causes of HAIs have been identified30 such as the lack of standardized procedures31–34 or inadequate sanitation procedures that can contribute to the spread of cross-infections.35

Some estimate that 20–30\% of HAIs are preventable through an extensive infection prevention and control programme.36

The reduction of HAIs is considered a quality indicator of the healthcare provided.37 Lean and six sigma supported by change management are important tools, renamed Robust Process Improvement (RPI), to address those problems by the Joint Commission Center for Transforming Healthcare.38 In fact, The Joint Commission reported one example of reduction or Surgical Site Infection through RPI.38 In 2012 a review of the literature focused on the quality improvement in the surgical healthcare showed how different tools (lean, six sigma and statistical process control or PDCA) can decrease the infection rate.39

Several lean applications have been described over the years with the purpose of improving healthcare quality,8, 40–43 nonetheless, to the best of our knowledge, no systematic reviews and meta-analysis have been selectively focused on the lean application for reduction of HAIs.

The aim of this systematic review and meta-analysis of prospective studies is to provide high-level evidences about the lean application for HAIs reduction. The purpose of this study is to analyze if the lean application can reduce the healthcare-associated infections rate.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines44 has been used as a guide to ensure that the current standard for meta-analysis methodology were met (PRISMA Checklist Additional file 1).

A comprehensive search on PubMed/Medline, Scopus, CINAHL, Cochrane, Embase, and Google Scholar databases was performed using various combinations of the following keywords: "lean" and "infection" from August to December 2019 using Medical Subject Headings (MeSH) terms as vocabulary.

Inclusion criteria were: 1) research articles with quantitative data and relevant information on lean methodology and its impact on healthcare infections 2) prospective design studies. Exclusion criteria were: 1) articles not strictly related to the research query; 2) items without enough information on the sample size or on the population; 3) research works not matching the PICOS criteria (Table 1 Additional file 2); all those articles were therefore excluded. No time filter or language filter was applied.
outcome	HAI SUBGROUP	RR [IC95%]	p
HAI ASSOCIATED INFECTION	HAI (NO CLABSI)	0.51 [0.36–0.71]	<0.001
	CLABSI	0.47 [0.28–0.82]	<0.01
	ALL	0.50 [0.38–0.66]	<0.001
UNEXPECTED DEATH		0.71 [0.42–1.18]	n.s.
HEALTHCARE WORKERS SATISFACTION		1.24 [1.08–1.42]	<0.001
HAND HYGIENE AND ALL COMPLIANCE	HAND HYGIENE COMPLIANCE	1.42 [1.15–1.76]	<0.01
	COMPLIANCE (NO HAND HYGIENE)	1.98 [1.50–2.63]	<0.001
	ALL	1.86 [1.47–2.34]	<0.001

Two authors (C.P. and M.S.) were involved during the screening of the literature. One of them were an industrial engineer and a black belt in lean and six sigma while the other one was a biologist with a postgraduate course on Systematic review and meta-analysis Cochrane. A complete consensus was achieved through discussion for the texts included in this study.

Articles were firstly selected based on title and abstract. The full text of relevant researches was then acquired and assessed. Each reference of the selected articles was checked in order not to miss any relevant article. The authors independently read all the papers and they implemented a database for the meta-analysis including the surname of the first author, the year and country of publication, the site of infection and the pre- and post-intervention outcome measure. Studies have been classified depending on the used method within the following six categories: “LEAN”, “LEAN/PDSA (Plan, Do, Study, Act)”, “LEAN/TPS (Toyota Production System)”, “LSS (Lean Six Sigma)”, “RPI (Robust Process Improvement)”
and “TPS” (Table 2 Additional file 2). “LEAN/TPS” included all the paper where lean and TPS were used as synonymous. Any disagreement was solved by meeting consensus.

Table 2
RR and 95% CI of all outcome measures stratified for each lean method. The table should be placed at Page 10 line 202

METHODS	HEALTHCARE ASSOCIATED INFECTION	UNEXPECTED DEATH	HEALTHCARE WORKERS SATISFACTION	COMPLIANCE (without HAND HYGIENE)	HAND HYGIENE COMPLIANCE
LEAN	0.80 [0.36–1.74]	1.17 [0.66–2.05]	1.24 [1.08–1.42]**	8.75 [4.45–17.22]	-
	4	1	3	1	
LEAN/PDSA	0.50 [0.09–2.72]	0.53 [0.36–0.77]	-	1.34 [0.92–1.94]	-
	1	1	3		
LEAN/TPS	0.30 [0.11–0.86]**	0.31 [0.19–0.51]	-	1.99 [1.43–2.76]***	1.35 [0.85–2.14]
	4	1	3	10	1
LSS	0.46 [0.23–0.93]*	1.17 [0.77–1.79]	-	-	1.26 [1.06–1.50]
	5	1			
RPI	0.75 [0.43–1.34]	0.81 [0.41–1.60]	-	-	1.69 [1.35–2.11]
	2	1			
TPS	0.49 [0.23–1.07]	-	-	-	-
	7				
OVERALL	0.55 [0.41–0.74]***	0.71 [0.42–1.17]	1.24 [1.08–1.42]**	1.98 [1.50–2.63]***	1.42 [1.15–1.77]***
	23	5	3	14	3

The following subgroups of HAIs have been identified among the included studies: central line associated blood stream infections (CLABSI), surgical site infections (SSI), Methicillin-resistant Staphylococcus Aureus (MRSA) infections, Clostridium difficile (CD) infections, Ventilator-associated pneumonia (VAP), catheter associated urinary tract infections (CAUTI).
The infection rate before and after Lean application was considered as the effect size (ES) of primary outcome measure. The ES of the secondary outcome measures was considered as the percentage of satisfied healthcare workers, the healthcare workers’ compliance to procedures, the hand hygiene compliance and the unexpected death.

A meta-regression was conducted to verify the effect of different infection sub-categories on relative risk (RR). As no significant impact was detected, all the infection categories were considered for primary analysis followed by a secondary sub-group (CLABSI) analysis.

The risk of bias and the study quality was independently assessed by two researchers using the “Quality assessment tool for before-after studies with no control group”. Results were matched and disagree were solved by meeting consensus. Fifteen studies were classified as “good”,[19, 47, 49–50, 52–55, 57–61, 63–64] 5 as “fair”[38, 46, 51, 62, 65] and 2 as “poor”. Statistical heterogeneity was evaluated with I^2 statistics and Heterogeneity chi-square test. Heterogeneity was supposed to be significant with P values (χ^2) < 0.1. The values of 25%, 50% and 75% in the I^2 test corresponded to low, moderate and high levels of heterogeneity, respectively. In case of moderate or high heterogeneity among the studies, a random-effects model was used for the meta-analysis. The RR was calculated as effect estimates, with their 95% confidence intervals (CIs). The RR of the meta-analyses were supposed to be significant if the confidence intervals did not enclose the value “1”. If the confidence interval enclosed the value “1”, the absence of an association between exposure and disease cannot be excluded. A smaller confidence interval than value of the individual studies indicated less inaccuracy.

The meta-analysis was performed by means of the STATA SE14® (StataCorp LP, College Station, TX, USA) software and the funnel plot was used to assess the risk of bias. If asymmetry was detected by visual assessment, exploratory analyses using trim and/or fill analysis were performed with investigating and adjusting purpose. The probability of publication bias was tested by means of Egger’s linear regression and a value of p < 0.05 was considered as indicative of publication bias.

Further stratification was performed with respect to study quality to identify sources of variation. Finally, the stability of the pooled estimate regarding each study was assessed in the setting of sensitivity analyses with exclusion of individual studies from the analysis.

Results

Concerning the systematic review, our initial query resulted in 648 hits (specifically, 600 articles from PubMed/MEDLINE and Scopus, and 48 from other sources); after removal of duplicated items, the resulting list comprised 615 non-redundant articles. Forty-six studies were retained in the qualitative synthesis, and 22 were finally considered in our systematic review and meta-analysis (544 articles were discarded as not being directly pertinent to the topic under investigation and 25 as not meeting the inclusion criteria). Six studies reported more data inherent to infections and were all considered for the meta-analysis. Further details are reported within the Fig. 1 Additional file 3.
The full list of studies included[19, 38, 46–65] and their main characteristics are shown in Table 2 Additional file 2.

Three studies were performed in European countries, 1 in UK and the others in America (1 in Canada and 17 in USA).

Among 22 studies finally included for meta-analysis fourteen studies[19, 38, 46, 47, 49, 54–57, 60, 61, 63–65] measured the HAI as primary outcome measure and 8 studies[50–53, 57–59, 64] the healthcare worker compliance. Five studies[38, 47, 52, 60, 62] included relevant data on unexpected mortality and 2 studies [48, 59] on healthcare workers satisfaction”.

Meta-analysis on 14 prospective studies measuring the reduction of healthcare-associated infections rate showed that lean have a significant protective role (RR 0.50 [0.38–0.66]). Moreover, meta-analysis showed that lean application significantly decreased incidence of CLABSI (RR 0.47 [0.28–0.82]). The results showed a positive effect of lean application on healthcare worker satisfaction and compliance, but no significant decrease of mortality has been reported (Table 1).

The adjusted rank correction test (Begger test) and the regression asymmetry test (Egger test) were used to evaluate the risk of bias. The studies evaluating the compliance had high risk of biases (p < 0.001).

A stratified meta-analysis for different lean methods has been conduct to assess for the impact of each method to the final outcome measure (Table 2).

Healthcare associated infections

The meta-analysis showed that application of LEAN/TPS (RR 0.30 [0.11–0.86]) and LSS (RR 0.46 [0.23–0.93]) had significant impact on HAIs. The application of LEAN, LEAN/PDSA, RPI and TPS showed no significant impact on HAIs (Fig. 1).

More than 30% of included studies were focused on sub-group of CLABSI with overall significant data for all applied methods (RR 0.54 [0.31–0.95]) (Fig. 2). However, no significant data have been obtained with analysis of each method applied, due to few studies for each method. Data on other HAIs confirmed that LEAN/TPS and LSS had significant results on other HAIs (Table 3).
Table 3
RR and 95% CI for HAI stratified for LEAN methods. The table should be placed at Page 10 line 211

HEALTHCARE ASSOCIATED INFECTION	OTHER HAIs	ONLY CLABSI
METHODS		
LEAN	0.77 [0.34–1.77]	1.00 [0.06–15.96]
	3	1
LEAN/PDSA	-	0.50 [0.09–2.72]
		1
LEAN/TPS	0.14 [0.04–0.47]	0.53 [0.23–1.06]
	1	3
LSS	0.45 [0.22–0.95]*	0.50 [0.04–5.51]
	4	1
RPI	0.75 [0.43–1.34]	-
	2	
TPS	0.49 [0.21–1.17]	0.50 [0.09–2.72]
	6	1
OVERALL	0.55 [0.39–0.78]**	0.54 [0.31–0.95]*
	16	7

Unexpected death

Only one study demonstrated that the application of LEAN/PDSA had significant influence on unexpected death (RR 0.53 [0.36–0.77]). One other study showed that LEAN/TPS significantly decreased the unexpected death (RR 0.31 [0.19–0.51]).

Healthcare workers satisfaction

All studies evaluated the LEAN application impact on healthcare workers satisfaction with significant results (RR 1.24 [1.08–1.42]).

Compliance

Only one study measured the compliance with application of the LEAN method with a significant influence (RR 8.75 [4.45–17.22]).
Three studies, reporting a total of ten outcomes, used the lean and the TPS and measured the pre- and post-intervention compliance. The stratified analysis showed that “LEAN/TPS” significantly increased the compliance of healthcare workers (RR 1.99 [1.43–2.76]). Nonetheless, two studies including three outcomes used the lean and PDSA. The application of “LEAN/PDSA” method showed no significant influence on compliance of healthcare workers.

Hand Hygiene Compliance

Only one study measured the hand hygiene compliance with application of the LEAN/TPS, one study measured the hand hygiene compliance with application of the LSS and one with application of RPI.

The overall analysis highlighted a significant correlation between LEAN (all methodologies) and hand hygiene compliance (Table 2).

Discussion

The most important finding of this study is the significant protective impact of lean strategies on HAIs, compliance and staff satisfaction.

Healthcare associated infections (HAIs) are the most common adverse events that afflict millions of patients annually around the world.[21] The reduction of HAIs is considered a quality indicator of the healthcare provided.[37] Over the years different strategies and preventions measures have been applied against infections.[39]

Several studies described the lean as affective method to prevent infections, however literature is surprising lacking of quantitative and measurable results on outcome measures. Johnson et al[66] proposed an example of lean method to reduce the readmission for patients with community acquired pneumonia without providing data of outcome. Simons et al[67] proposed the lean method to decrease the SSI rate through the reduction of the door movement. Nonetheless authors measured only the number of door movement without assess the SSI rate in their research.

To the best of our knowledge, this is the first systematic review and meta-analysis of prospective studies focused on lean application and their relative impact on HAIs.

Due to lack of high-quality evidence data Vest et al[68] raised doubts about the efficacy of the application of lean method on several clinical outcomes. Moraros et al[69] in a systematic review of the literature reported conflicting results on reduction of MRSA infection and lean application with significant data in only three out on twenty-two included studies.

In the present meta-analysis, the overall lean application demonstrated a significant impact on HAIs reduction. The subgroup analysis showed that LEAN/TPS and LSS had significant impact on HAIs reduction on nine studies. Moreover, the lean application showed significant impact on CLABSI and all subcategories of HAIs.
There is uncertain evidence of statistical reduction of mortality with the lean application. Mason et al[70] reported only one study with significant reduction of mortality in patients with proximal femoral fractures with lean application. This finding could be explained considering the lack of data of other factors influencing death. In the present meta-analysis, the lean application seems to have a protective role on unexpected death although with inconclusive data. Only two studies showed a significant reduction of mortality with “LEAN/PDSA”[52] and “LEAN/TPS”[47] methods. Certainly, further studies are required to definitively ascertain this aspect.

The purpose of this research is to answer to a very actual question: “Is lean efficacy in the healthcare sector?”. Several studies are available without measurable data supporting this affirmation.[69]

The strength of this work is the detailed meta-analysis on prospective studies. However, this study presents some limitations: there are several independent factors influencing the healthcare-associated infections rate that were not measured in the included studies. Patients and pathogens features were not detailed reported and precluded a detailed analysis of potential confounding factors. Data of infection reduction were calculated measuring the infection rate before and after a period of Lean application in the same hospital ward and assume that the characteristics of patients don't substantially change. Nevertheless, no detailed population analysis before and after the intervention has been reported. Further potential weakness of this research is the limited number of available articles as consequence of novelty of the research area. Finally, there was high heterogeneity of HAIs spectrum among the published studies.

Conclusions

HAIs are a plague for the healthcare sector. Lean seems to be an important method to decrease infection rate and to achieve improvement in compliance and staff satisfaction. However, little is known about the unexpected death and lean. Furthermore, given the above-mentioned limitations, further research in the field is warranted.

List Of Abbreviations

CD: Clostridium difficile

CI: Confidence Intervals

CLABSI: Central Line-Associated Bloodstream Infection

ES: Effect Size

HAI: Healthcare-Associated Infections

ICU: Intensive Care Unit

LSS: Lean Six Sigma
Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Available of data and materials: The dataset used and analysed during the current study are available from corresponding author on reasonable request.

Competing of Interest: The authors declare that they have no competing interests.

Funding: This research received no external funding.

Authors’ contribution: Data curation, AMS, ES and GO; Formal analysis, MS; Investigation, MS, MLC and CP; Methodology, MS and CP; Project administration, MS and MLC; Software, ES, GO and CD; Writing – original draft, MS, CP and MLC; Writing – review & editing, MS, AMS, ES, GO, CD, MAM, CP and MLC.

References

1. Womack JP, Jones DT, Roos D. The Machine That Changed the World: Based on the Massachusetts Institute of Technology 5-Million Dollar 5-Year Study on the Future of the Automobile. New York: Rawson Associates 1990.

2. Womack JP, Jones DT. Lean thinking: banish waste and create wealth in your corporation. New York: Simon & Schuster 1996.
3. Ohno T. Toyota production system: beyond large-scale production. New York: Productivity Press 1988.

4. Fujimoto T. The Evolution of a Manufacturing System at Toyota. New York: Oxford University Press 1999.

5. Liker JK. The Toyota Way. New York: McGraw-Hill 2004.

6. Radnor ZJ, Holweg M, Waring J. Lean in healthcare: the unfilled promise? Soc Sci Med. 2012;74:364-71.

7. Goff SL, Kleppel R, Lindenauer PK, Rothberg MB. Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation. BMJ Qual Saf. 2013;22:826-35.

8. Mazzocato P, Savage C, Brommels M, Aronsson H, Thor J. Lean thinking in healthcare: a realist review of the literature. Qual Saf Health Care. 2010;19:376-82.

9. Terra JDR, Berssaneti FT. Application of lean healthcare in hospital services: a review of the literature (2007 to 2017). Production 2018;28:e20180009.

10. Antony J, Sunder MV, Sreedharan R, Chakraborty A, Gunasekaran A. A systematic review of Lean in healthcare: a global prospective. Int J Qual Reliab Management. 2018:36:1370-91.

11. Ankrum AL, Neogi S, Morckel MA, Wilhite AW, Li Z, Schaffzin JK. Reduced isolation room turnover time using Lean methodology. Infect Control Hosp Epidemiol. 2019:40:1151-56.

12. Joubert B, Bam W. Review and classification of Lean project aims in hospitals. IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). 2019:P1-11.

13. Farrokhi FR, Gunther M, Williams B, Blackmore CC. Application of Lean Methodology for Improved Quality and Efficiency in Operating Room Instrument Availability. J Healthc Qual. 2015;37:277-86.

14. Halm MA, Alway A, Bunn S, Dunn N, Hirschkorn M, Ramos B, et al. Intersecting Evidence-Based Practice With a Lean Improvement Model. J Nurs Care Qual. 2018;33:309-15.

15. Mazzocato P, Holden RJ, Brommels M, Aronsson H, Bäckman U, Elg M, et al. How does lean work in emergency care? A case study of a lean-inspired intervention at the Astrid Lindgren Children's hospital, Stockholm, Sweden. BMC Health Serv Res. 2012;12:28.

16. van Vliet EJ, Sermeus W, van Gaalen CM, Sol JC, Vissers JM. Efficacy and efficiency of a lean cataract pathway: a comparative study. Qual Saf Health Care. 2010;19:e13.

17. Lawal AK, Rotter T, Kinsman L, Sari N, Harrison L, Jeffery C, et al. Lean management in health care: definition, concepts, methodology and effects reported (systematic review protocol). Syst Rev. 2014;3:103.

18. Cima RR, Brown MJ, Hebl JR, Moore R, Rogers JC, Kollengode A, et al. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center. J Am Coll Surg. 2011;213:83-92.

19. Improta G, Cesarelli M, Montuori P, Santillo LC, Triassi M. Reducing the risk of healthcare-associated infections through Lean Six Sigma: The case of the medicine areas at the Federico II University Hospital in Naples (Italy). J Eval Clin Pract. 2018;24:338-46.
20. Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP, Ducomble T, et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016;13:e1002150.

21. Haque M, Sartelli M, McKimm J, Abu Bakar M. Health care-associated infections - an overview. Infect Drug Resist. 2018;11:2321-33.

22. Sticchi C, Alberti M, Artioli S, Assensi M, Baldelli I, Battistini A, et al. Regional point prevalence study of healthcare-associated infections and antimicrobial use in acute care hospitals in Liguria, Italy. J Hosp Infect. 2018;99: 8–16.

23. Cristina ML, Alicino C, Sartini M, Faccio V, Spagnolo AM, Bono VD, et al. Epidemiology, management, and outcome of carbapenem-resistant Klebsiella pneumoniae bloodstream infections in hospitals within the same endemic metropolitan area. J Infect Public Health. 2018;11:171–7.

24. Cristina ML, Sartini M, Ottria G, Schinca E, Cenderello N, Crisalli MP, et al. Epidemiology and biomolecular characterization of carbapenem-resistant Klebsiella pneumoniae in an Italian hospital. J Prev Med Hyg. 2016;57:E149–E156.

25. Spagnolo AM, Orlando P, Panatto D, Perdelli F, Cristina ML. An overview of carbapenem-resistant Klebsiella pneumoniae. Epidemiology and control measures. Rev Med Microbiol. 2014;25:7–14.

26. Cristina ML, Spagnolo AM, Cenderello N, Fabbri P, Sartini M, Ottria G, et al. Multidrug-resistant Acinetobacter baumannii outbreak: An investigation of the possible routes of transmission. Public Health. 2013;127:386–91.

27. Cristina ML, Spagnolo AM, Ottria G, Sartini M, Orlando P, Perdelli F. Spread of multidrug carbapenem-resistant Acinetobacter baumannii in different wards of an Italian hospital. Am J Infect Control. 2011;39:790–4.

28. Spagnolo AM, Orlando P, Panatto D, Amicizia D, Perdelli F, Cristina ML. Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings. J Prev Med Hyg. 2014;55:137–44.

29. Perdelli F, Dallera M, Cristina ML, Sartini M, Ottria G, Spagnolo AM, et al. A new microbiological problem in intensive care units: environmental contamination by MRSA with reduced susceptibility to glycopeptides. Int J Hyg Environ Health. 2008;211:213-8.

30. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355:2725-32.

31. World Health Organization. Health care-associated infections fact sheet. 2013. http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf. Accessed 10 February 2020.

32. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Email Author, Pollock DA, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29:996-1011.

33. Pratt RJ, Pellowe CM, Wilson JA, Loveday HP, Harper PJ, Jones SRLJ, et al. epic2: National evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J
34. Creedon SA. Infection control: behavioural issues for healthcare workers. Clin Govern Int J. 2006;11:316-25.

35. Orlando P, Cristina ML, Dallera M, Ottria G, Vitale A, Badolati G. Surface disinfection: evaluation of the efficacy of a nebulization system spraying hydrogen peroxide. J Prev Med Hyg. 2008;49:116-9.

36. McHugh SM, Hill AD, Humphreys H. Preventing healthcare-associated infection through education: have surgeons been overlooked? 2010;8:96-100.

37. Haley RW, Culver DH, White JW, Morgan WM, Emori TG, Munn VP, et al. The efficacy of infection surveillance and control programs in preventing nosocomial infections in us hospitals. Am J Epidemiol. 1985;121:182-205.

38. Chassin MR, Loeb JM. High-reliability health care: getting there from here. Milbank Q. 2013;91:459-90.

39. Nicolay CR, Purkayastha S, Greenhalgh A, Benn J, Chaturvedi S, Phillips N et al. Systematic review of the application of quality improvement methodologies from the manufacturing industry to surgical healthcare. Br J Surg. 2012;99:324-35.

40. Coughlin K, Posencheg MA. Quality improvement methods - Part II. J Perinatol. 2019;39:1000-7.

41. Mazur L, Baker Stokes SB, McCreery J. Lean-Thinking: Implementation and Measurement in Healthcare Settings. Engineering Management Journal. 2019;31:193-206.

42. Leggat SG, Bartram T, Stanton P, Bamber GJ, Sohal A. Have process redesign methods, such as Lean, been successful in changing care delivery in hospitals? A systematic review. Public Money & Management. 2015;35:161-168.

43. Parkhi SS. Lean management practices in healthcare sector: a literature review. Benchmarking: An International Journal. 2019. DOI 10.1108/BIJ-06-2018-0166

44. Moher D, Liberati A, Tetzlaff, Altman DG, PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097.

45. NIH National Heart, Lung and Blood Institute. Study quality assessment tool. Available from: https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools

46. Spear SJ. Fixing health care from the inside, today. Harv Bus Rev 2005 https://hbr.org/2005/09/fixing-health-care-from-the-inside-today. Accessed 10 February 2020.

47. Shannon RP, Frndak D, Grunden N, Lloyd JC, Herbert C, Patel B, et al. Using real-time problem solving to eliminate central line infections. Jt Comm J Qual Patient Saf. 2006;32:479-87.

48. Shepler M. Process Improvements Based on Lean Principles Reduce Operating Room Foot Traffic, Leading to Reduced Risk of Infection and Enhanced Staff Productivity and Satisfaction. https://www.innovations.ahrq.gov/profiles/process-improvements-based-lean-principles-reduce-operating-room-foot-traffic-leading. Accessed 10 February 2020

49. Muder RR, Cunningham C, McCray E, Squier C, Perreiah P, Jain R, et al. Implementation of an industrial systems-engineering approach to reduce the incidence of methicillin-resistant
50. Burkitt KH, Mor MK, Jain R, Kruszewski MS, McCray EE, Moreland ME, et al. Toyota production system quality improvement initiative improves perioperative antibiotic therapy. Am J Manag Care. 2009;15:633-42.

51. Carboneau C, Benge E, Jaco MT, Robinson M. A lean Six Sigma team increases hand hygiene compliance and reduces hospital-acquired MRSA infections by 51%. J Healthc Qual. 2010;32:61-70.

52. MacRedmond R, Hollohan K, Stenstrom R, Nebre R, Jaswal D, Dodek P, et al. Introduction of a comprehensive management protocol for severe sepsis is associated with sustained improvements in timeliness of care and survival. Qual Saf Health Care. 2010;19:5.

53. McCulloch P, Krecker S, New S, Sheena Y, Handa A, Catchpole K. Effect of a "Lean" intervention to improve safety processes and outcomes on a surgical emergency unit. BMJ (Online). 2010;341:1043-46.

54. Ellingson K, Muder RR, Jain R, Kleinbaum D, Feng PJ, Cunningham C, et al. Sustained reduction in the clinical incidence of methicillin-resistant \textit{Staphylococcus aureus} colonization or infection associated with a multifaceted infection control intervention. Infect Control Hosp Epidemiol. 2011;32:1-8.

55. Cima R, Dankbar E, Lovely J, Pendlimari R, Aronhalt K, Nehring S, et al. Colorectal surgery surgical site infection reduction program: a national surgical quality improvement program–driven multidisciplinary single-institution experience. J Am Coll Surg. 2013;216:23-33.

56. Dickson AD. Utilizing a Lean Six Sigma Approach to Reduce Total Joint Arthroplasty Surgical Site Infections in a Community Hospital. Am J Infect Control. 2013;41:S131-2.

57. Martin LD, Rampersad SE, Geiduschek JM, Zerr DM, Weiss GK, Martin LD. Modification of anesthesia practice reduces catheter-associated bloodstream infections: a quality improvement initiative. Paediatr Anaesth. 2013;23:588-96.

58. Chassin MR, Mayer C, Nether K. Improving hand hygiene at eight hospitals in the United States by targeting specific causes of noncompliance. Jt Comm J Qual Patient Saf. 2015;41:4-12.

59. O’Reilly K, Ruokis S, Russell K, Teves T, DiLibero J, Yassa D, et al. Standard work for room entry: Linking lean, hand hygiene, and patient-centeredness. Healthc. 2016;4:45-51.

60. Sirvent JM, Gil M, Alvarez T, Martin S, Vila N, Colomer M, et al. Lean techniques to improve the flow of critically ill patients in a health region with its epicenter in the intensive care unit of a reference hospital. Med Intensiva. 2016;40:266-72.

61. Montella E, Di Cicco MV, Ferraro A, Centobelli P, Raiola E, Triassi M, et al. The application of Lean Six Sigma methodology to reduce the risk of healthcare-associated infections in surgery departments. J Eval Clin Pract. 2017;23:530-9.

62. Horng M, Brunsman AC, Smoot T, Starosta K, Smith ZR. Using lean methodology to optimize time to antibiotic administration in patients with sepsis. Am J Health Syst Pharm. 2018;75:S13-S23.

63. Ferrari S, Taylor K. Effect of a Systemwide Approach to a Reduction in Central Line-Associated Bloodstream Infections. J Nurs Care Qual. 2020;35:40-4.
64. Russell TA, Fritschel E, Do J, Donovan M, Keckeisen M, Agopian VG, et al. Minimizing central line-associated bloodstream infections in a high-acuity liver transplant intensive care unit. Am J Infect Control. 2019;47:305-12.

65. Wolak E, Overman A, Willis B, Hedges C, Spivak GF. Maximizing the Benefit of Quality Improvement Activities: A Spread of Innovations Model. J Nurs Care Qual. 2019. doi: 10.1097/NCQ.0000000000000438

66. Johnson PM, Patterson CJ, O'Connell MP. Lean methodology: an evidence-based practice approach for healthcare improvement. Nurse Pract. 2013;38:1-7.

67. Simons FE, Aij KH, Widdershoven GAM, Visse M. Patient safety in the operating theatre: how A3 thinking can help reduce door movement. Int J Qual Health Care. 2014;26:366-71.

68. Vest JR, Gamm LD. A critical review of the research literature on Six Sigma, Lean and StuderGroup's Hardwiring Excellence in the United States: the need to demonstrate and communicate the effectiveness of transformation strategies in healthcare. Implementation Science. 2009;4:35.

69. Moraros J, Lemstra M, Nwankwo C. Lean interventions in healthcare: do they actually work? A systematic literature review. Int J Qual Health Care. 2016;28:150-65.

70. Mason SE, Nicolay CR, Darzi A. The use of Lean and Six Sigma methodologies in surgery: A systematic review. Surgeon. 2015;13:91-100.

Additional File Legend

Additional file 1 – PRISMA Checklist

Additional file 2 – Supplementary materials – in this file there are 2 tables: 1. Search strategy; 2. List and features of studies included

Additional file 3 - FIGURE 1 SUPPLEMENTARY MATERIAL – This file reports the PRISMA 2009 Flow Diagram

Figures
Impact of different Lean methodology on HAI

![Forest plot of Impact of different Lean methodology on HAI](image)

Figure 1

Forest plot of Impact of different Lean methodology on HAI
Figure 2

Forest plot of Impact of different Lean methodology on HAI (without CLABSI)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1PRISMA2009Checklist.docx
• Additionalfile2Supplementarymaterials.docx
• Additionalfile3FIGURE1SUPPLEMENTARYMATERIAL.tif