Wang, Wei; Zhi Bi, Wen; Yang, Jing; Han, Gang; Peng Jia, Jin
RECONSTRUÇÃO PÉLVICA COM ALOENXERTO ÓSSEO APÓS EXCISÃO DE TUMOR
Acta Ortopédica Brasileira, vol. 21, núm. 3, mayo-junio, 2013, pp. 150-154
Sociedade Brasileira de Ortopedia e Traumatologia
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=65727895004
RECONSTRUÇÃO PÉLVICA COM ALOENXERTO ÓSSEO APÓS EXCISÃO DE TUMOR

RESUMO

Objetivos: A reconstrução pélvica após excisão de tumor é um desafio. Métodos: Realizou-se um estudo retrospectivo para comparar os desfechos entre pacientes submetidos à cirurgia de reconstrução da pelve com aloenxerto ósseo após excisão em bloco de tumores pélvicos e pacientes submetidos apenas à excisão. Resultados: Os pacientes sem reconstrução tiveram escores funcionais significativamente menores 3 meses (10 vs. 15, P = 0,001) e 6 meses após a cirurgia (18,5 vs. 22, P = 0,0024), menor tempo de hospitalização (16 dias vs. 40 dias, P < 0,001) e menor custo hospitalar (97.500 vs. 193.000 yuan, P < 0,001) do que os que foram submetidos a reconstrução pélvica. Os escores funcionais foram similares 12 meses depois da cirurgia (21,5 vs. 23, P = 0,365) sem diferença na taxa de complicações entre os dois grupos (P > 0,05). Conclusões: A reconstrução pélvica com aloenxerto ósseo após excisão de tumores pélvicos é associada a desfechos cirúrgicos e funcionais satisfatórios. Outros estudos clínicos são necessários para explorar como selecionar o melhor método de reconstrução. Nível de Evidência IV, Séries de Casos.

Descritores: Neoplasias pélvicas. Reconstrução. Transplante homólogo. Estudos retrospectivos.

INTRODUÇÃO

O osteossarcoma, o sarcoma de Ewing e tumores ósseos de célula gigante ocorrem com frequência na pelve. Schwameis et al.1 relataram que entre 340 casos de tumores malignos primários registrados no Vienna Bone Tumor Center, 9% eram pélvicos. Os tumores pélvicos têm início oculto e, em geral, envolve uma grande área. Esses fatores, em combinação com a estrutura anatômica complexa da pelve, tornam o tratamento, especialmente o cirúrgico, complexo e desafiante. O tratamento cirúrgico dos tumores pélvicos consiste principalmente em métodos ablativos (excisão hemipélvica ou excisão hemipélvica modificada e amputação) e o procedimento de preservação de um membro com ou sem reconstrução pós-operatória.2,6 Os estudos constataram que a taxa de sobrevida aos 5 anos não é estatisticamente diferente entre a cirurgia reconstrutiva e a radioterapia e quimioterapia e a amputação não-reconstrutiva; contudo, os pacientes submetidos à cirurgia reconstrutiva com radioterapia e quimioterapia têm melhor prognóstico funcional.2,6 Portanto, os procedimentos de preservação do membro e de reconstrução funcional depois de excisão de tumores pélvicos estão sendo realizadas com mais frequência.1,6,9 Obviamente, são necessárias outras pesquisas; contudo, é melhor determinar os resultados com os procedimentos de preservação do membro.

Todos os autores declararam não haver nenhum potencial conflito de interesses referente a este artigo.

1. Departamento de Ortopedia e Reabilitação, PLA General Hospital, Pequim, China.
2. Departamento de Anestesiologia, PLA General Hospital, Pequim, China.

Citação: Wang W, Bi WZ, Yang J, Han G, Jia JP. Pelvic reconstruction with allogeneic bone graft after tumor resection. Acta Ortop Bras. [online]. 2013;21(3):150-4. Available from URL: http://www.scielo.br/aob.
A finalidade desse estudo é comparar os desfechos de pacientes que receberam cirurgia reconstrutiva pélvica com aloenxerto ósseo depois de excisão em bloco de tumores pélvicos aos desfechos de pacientes submetidos apenas à excisão em bloco.

MATERIAIS E MÉTODOS

Foram revisados retrospectivamente os dados clínicos de pacientes que tiveram diagnóstico e tratamento com o mesmo cirurgião do Departamento de Ortopedia no PLA General Hospital, (Pequim, China) e foram submetidos a excisão em bloco de tumores pélvicos com ou sem reconstrução funcional entre janeiro de 2008 e junho de 2009. Este estudo foi aprovado pelo Comitê de Ética em Pesquisa do PLA General Hospital. A obtenção do termo de esclarecimento livre e esclarecido foi obrigatória, devido à natureza retrospectiva do estudo.

Os pacientes que não puderam concluir o tratamento complementar (por exemplo, quimioradia) ou que não foram cooperativos foram excluídos. As excisões foram classificadas de acordo com o esquema de Enneking para tumores pélvicos.10,11 As excisões tipo I são as que envolvem o ilio; as tipo II, são as que envolvem o acetábulo; as tipo III envolvem o púbis e o úmero e as de tipo IV envolvem unilateralmente o sacro. Todos os pacientes foram tratados de acordo com as diretrizes internacionais reconhecidas, como as da American Academy of Orthopedic Surgeons (AAOS) para o tratamento cirúrgico de tumores de célula gigante. A remoção e reconstrução mais complexa de tumor é necessária às vezes, em situações em que o tumor causou dano excessivo ou é recorrente. Neste estudo, todos os pacientes tinham fraturas de osso cortical e, assim, não eram candidatos adequados para procedimentos intraespinais.

A faixa de excisão do tumor e o tipo de reconstrução foram determinados de acordo com os achados da ressonância magnética (RM) pré-operatórias. A osteotomia foi realizada pelo menos a 2 cm do tumor da borda do edema, conforme determinação da RM. As modalidades cirúrgicas apropriadas foram usadas de acordo com a localização do tumor. Uma excisão em arco ao longo da crista ilíaca foi usada para as excisões de tipo I; uma excisão em “chifre invertido” foi usada no tipo II; uma excisão transversal na parede abdominal foi usada para excisões do tipo III e a excisão em arco na articulação sacroilíaca foi usada para as de tipo IV. Quando necessário, foram empregadas incisões combinadas. Para a reconstrução depois de excisão do tumor que envolvia a articulação sacroilíaca, realizou-se a fixação dessa articulação com parafusos interfermentários (lag screws) transdérmicos sacrais. Todos os pacientes receberam antibioticoterapia perioperatória (cefalosporina e vancomicina).

Aloenxertos profundos de osso pélvico congelados foram fornecidos pelo banco de ósseos do Instituto de Ortopedia do PLA General Hospital. Com o consentimento dos familiares, os aloenxertos foram originalmente obtidos de doações de indivíduos mortos, que foram testados quanto a hepatite B e sífilis e foram processados de acordo com as recomendações da American Academy of Orthopedic Surgeons. Para estimar a compatibilidade do aloenxerto ósseo com o defeito, todos os pacientes foram submetidos a radiografia pré-operatória e RM para avaliar o tamanho da pelve e da possível excisão. Duas metades pélvicas completas foram pré-selecionadas para cada paciente, de acordo com as avaliações pré-operatórias e o aloenxerto mais apropriado foi selecionado durante a cirurgia, relacionado à condição de ressecção da pelve. Sistemas de fixação interna com parafusos de aço foram fornecidos pela International Association of Internal Fixation (AO/ASIF).

As próteses de quadril foram fornecidas por Waldemar Link da GmbH&Co. Tripterygium wilfordii foi prescrito rotineiramente para controlar a rejeição em todos os pacientes submetidos a reconstrução com aloenxerto. Tripterygium wilfordii melhora as funções imunológicas para reduzir a rejeição sem causar dano ao transplante de aloenxerto ósseo.

As medidas dos resultados foram sobrevida durante o período de acompanhamento e recuperação funcional segundo a avaliação do padrão de escores funcionais internacionais da Musculoskeletal Tumor Society (MSTS).12 Todos os pacientes fizeram exames de acompanhamento aos 3, 6 e 12 meses depois da cirurgia. Os dados do acompanhamento mais recente foram usados para análise estatística.

Análise estatística

Devido ao pequeno tamanho da amostra, os dados entre os grupos foram comparados pelo teste U de Mann-Whitney para variáveis contínuas e pelo teste exato de Fisher para as variáveis categóricas. Os dados são apresentados como mediana (faixa interquartil [IQR]) para dados contínuos e número (porcentagem) para os dados categóricos. Todas as avaliações estatísticas foram bilaterais e avaliadas no nível de significância de 0,05. As análises estatísticas foram realizadas com o software SPSS Inc, Chicago, IL.

RESULTADOS

Um total de 19 pacientes com tumores pélvicos primários submetidos a excisão em bloco entre janeiro de 2008 e junho de 2009 foram incluídos no estudo. Entre esses pacientes, nove foram submetidos a reconstrução com aloenxerto (oito mulheres e um homem; mediana de idade = 38 anos, IQR: 34, 44 anos). O grupo só de excisão tinha 10 pacientes (oito mulheres e dois homens), com mediana de idade de 35 anos (IQR: 26, 44 anos). As características demográficas e da doença dos pacientes são apresentadas na Tabela 1. Os dois grupos foram similares com relação a idade, sexo, diagnóstico e tipo de excisão de Enneking (todos, P > 0,05).

Tabela 1. Dados demográficos e características básicas.	Reconstrução com aloenxerto (n = 9)	Só ressecção em bloco (n = 10)	Valor de p
Idade (anos)	38 (34, 40)	35 (26, 44)	0,902
Sexo			1,000
Masculino	1 (11,1)	2 (20,0)	
Feminino	8 (88,9)	8 (80,0)	
Diagnóstico			0,717
Tumor ósseo de célula gigante	6 (66,7)	3 (30,0)	
Condrossarcoma	2 (22,2)	4 (40,0)	
Sarcoma de Ewing	1 (11,1)	1 (10,0)	
Fibrossarcoma	0 (0,0)	1 (10,0)	
Tumor neuroectodérmico primitivo	0 (0,0)	1 (10,0)	
Região de Enneking			1,000
I	4 (44,4)	4 (40,0)	
II	6 (66,7)	10 (100,0)	0,087
III	3 (33,3%)	3 (30,0)	1,000
IV	1 (11,1)	0 (0,0)	0,474

Os dados são apresentados como mediana (faixa interquartil) ou números (porcentagem). 1. Teste U de Mann-Whitney e 2. Teste exato de Fisher.
No grupo de reconstrução com aloenxerto, oito pacientes receberam transplante hemipélvio total ou parcial alogênico (ilíaco e acetabular), seis pacientes com envolvimento da região, sendo que dois receberam transplante alogênico do acetábulu e artroplastia total do quadril (uma fossa acetabular cimentada fixa foi usada para a extremitade acetabular e uma prótese biológica foi usada para a extremitade femoral). Um paciente recebeu transplante de placa cortical alogênico e dois pacientes receberam fixação transfémica da articulação sacroiliaca com parafusos interfragmentários para estabilizá-lo pélvico posterior. A embolização vascular iliaca pré-operatória não foi realizada em nenhum paciente. Dois pacientes tiveram ligação da artéria glútea superior e todos os sete pacientes com envolvimento da região dois tiveram ligação do ramo acetabular da artéria obturatória. O tempo mediano de cirurgia foi 4,9 horas (IQR: 4,1, 5,6 horas) e a perda sanguínea mediana foi 3.000 ml (IQR: 1.800, 2.600 ml). O tempo de cirurgia e a perda de sangue não foram diferentes entre os 2 grupos (ambos, P > 0,05) (Tabela 2). A extensão mediana de acompanhamento para todos os pacientes foi 12 meses (faixa: 8-15 meses).

Os escores funcionais e os dados intra e pós-operatórios dos dois grupos são apresentados na Tabela 2. Houve diferenças significativas no MSTS aos 3 e 6 meses de pós-operatório, assim como na duração da cirurgia e nos custos de hospitalização entre os dois grupos (todos, P < 0,001). Os pacientes submetidos a excisão em bloco só tiveram escores funcionais significativamente inferiores aos 3 meses (10 vs. 15, P = 0,001) e 6 meses após a cirurgia (18,5 vs. 22, P = 0,0024), menor tempo de hospitalização (16 dias vs. 40 dias, P < 0,001) e custo menor de hospitalização (97,500 vs. 193,000 yuans, P < 0,001) do que os que foram submetidos a reconstrução pélvica. Não houve diferenças no MSTS 12 meses depois da cirurgia ou na incidência de complicações entre os dois grupos (P > 0,05). Um paciente submetido a reconstrução com aloenxerto desenvolveu distensão abdominal e infecção da ferida da incisão, sendo realizado desbridamento local da ferida. Um paciente no grupo só de excisão desenvolveu infecção pós-operatória e recebeu antibióticos sistêmicos. As imagens dos casos representativos submetidos a reconstrução com aloenxerto são apresentados nas Figuras 1 e 2.

DISCUSSÃO

Devido à anatomia complexa da pelve, não existe um método ideal de reconstrução depois de excisão de tumor. Nos últimos 20 anos, foram descritos muitos métodos de reconstrução, inclusive fusão articular, prótese em sela, haste óssea alogênica, agulha para condrossarcoma. A) A radiografia mostrou regiões desiguais com baixa densidade no ilíaco e acetabular direito, contendo sinais pontilhados de calcificação. B) A ressonância magnética (RM) ponderada em T2 mostrou sinais altos dispersos no ilíaco e acetábulu direito e uma massa de tecido mole no interior da pelve. A biópsia por agulha foi compatível com condrossarcoma. A) A radiografia mostrou regiões desiguais com baixa densidade no ilíaco e acetábulu direito, contendo sinais pontilhados de calcificação. B) A ressonância magnética (RM) ponderada em T2 mostrou sinais altos dispersos no ilíaco e acetábulu direito e uma massa de tecido mole no interior da pelve. A biópsia por agulha foi compatível com condrossarcoma. C) A baixa de excisão do tumor estendeu-se no mínimo 2 cm além da margem do edema, como mostra a RM (esquerda, amostra do tumor, direita, aloenxerto de osso pélvico usado para a reconstrução). D) Radiografia depois de cirurgia de reconstrução pélvica e artroplastia total do quadril. A articulação do quadril foi reconstruída com ilíaco e pélvico alogênicos, fixados com placas e parafusos e a artroplastia total do quadril foi realizada simultaneamente.

Tabela 2. Escores funcionais e dados intra e pós-operatórios.

	Reconstrução com aloenxerto (n = 9)	Só reseccão em bloco (n = 10)	Valor de p
MSTS1			0,001*
3 meses de pós-operatório	15 (13, 22)	10 (9, 11)	0,024*
6 meses de pós-operatório	22 (18, 27)	18,5 (16, 21)	
12 meses de pós-operatório	23 (20, 25)	21,5 (20, 23)	0,093
Tempo de cirurgia (h)1	4,9 (4, 5, 6)	4,0 (3, 3, 4, 4)	0,086
Perda de sangue (ml)1	3000 (2500, 3200)	2300 (1800, 2600)	0,093
Duração da hospitalização			<0,001*
(dias)	40 (30, 46)	16 (14, 17)	
Custo da hospitalização	193 (164, 201)	97,5 (95, 103)	<0,001*
Complicações**			1,000
Infeção	1 (11,1)	1 (10,0)	
Distensão abdominal	1 (11,1)	0 (0,0)	0,474

Os dados são apresentados como mediana (faixa interquartil) ou números (porcentagem).

*Diferença significante entre os 2 grupos, P < 0,05. **Teste U de Mann-Whitney. ***Teste exato de Fisher.
A extensão da estadia hospitalar e os custos de hospitalização para avaliar os desfechos e as complicações a longo prazo. É necessário acompanhamento maior e pós-cirúrgico, uso de sonda de drenagem por pelo menos cinco dias, antibióticos profiláticos, técnica cirúrgica precoce e pequena duração da cirurgia.

O tempo de cirurgia não foi estatisticamente diferente entre os dois grupos, mas foi claramente maior no grupo de reconstrução com aloenxerto (4,9 horas [4,1, 5,6]) em comparação com o grupo de ressecção em bloco (4,0 horas [3,3,4,4]). Em ambos os procedimentos, as etapas de ressecção do tumor são semelhantes. Na reconstrução com aloenxerto, o aloenxerto e as placas de fixação são preparados antes da cirurgia e, assim, na maioria dos casos, o processo de reconstrução é regular e sem complicações. O motivo mais provável da diferença dos tempos de ressecção do tumor em dois grupos foi o número menor de casos no grupo de reconstrução com aloenxerto (4,9 horas [4,1, 5,6]) em comparação com o grupo de ressecção em bloco (4,0 horas [3,3,4,4]).

As possíveis complicações para a baixa taxa de infecções incluem a preparação de osso alogênico (eliminação dos antígenos e bactérias alogênicos), desinfeção pré-operatória apropriada e cuidados com a ferida no pós-cirúrgico. O tecido ósseo alogênico usado em nossa coorte foi processado à 130 °C com 6,8 kg de pressão por 3 a 5 minutos. Esse tecido ósseo tinha alta segurança, baixa imunogenicidade, estrutura natural e era fácil de aplicar. Entre os nove pacientes, apenas um desenvolveu infecção local na incisão (11%). A taxa de infecção foi inferior a que relatada na literatura. As possíveis razões para a baixa taxa de infecções incluem a preparação de osso alogênico (eliminação dos antígenos e bactérias alogênicos), desinfeção pré-operatória apropriada e cuidados com a ferida no pós-cirúrgico, uso de sonda de drenagem por pelo menos cinco a sete dias, antibióticos profiláticos, técnica cirúrgica proficiente e pequena duração da cirurgia. O tempo de cirurgia não foi estatisticamente diferente entre os dois grupos, mas foi claramente maior no grupo de reconstrução com aloenxerto (4,9 horas [4,1, 5,6]) em comparação com o grupo de ressecção em bloco (4,0 horas [3,3,4,4]). Em ambos os procedimentos, as etapas de ressecção do tumor são semelhantes. Na reconstrução com aloenxerto, o aloenxerto e as placas de fixação são preparados antes da cirurgia e, assim, na maioria dos casos, o processo de reconstrução é regular e sem complicações. O motivo mais provável da diferença dos tempos cirúrgicos não foi estatisticamente diferente e foi considerado um pequeno número de casos. Também observamos que a taxa de complicações foi semelhante entre os grupos, enquanto a reconstrução é tipicamente associada a taxa superior de complicações do que a ressecção. Neste estudo, todas as cirurgias foram realizadas pelo mesmo cirurgião e, assim, a técnica cirúrgica que inclui hemostasia rígida e colocação de drenos foi a mesma para todos os pacientes em ambos os grupos. Além disso, foram
empregados protocolos rigorosos na preparação e manipulação dos enxertos. Os problemas de afrouxamento podem ocorrer com qualquer prótese, embora não tenhamos encontrado nenhum neste estudo até os 12 meses. Como ocorre com a diferença dos tempos de cirurgia, é provável que a taxa similar de complicações seja resultado do número relativamente pequeno de pacientes. Contudo, os resultados indicam que há benefícios em termos de função e aparência com a reconstrução, assim como uma vantagem psicológica. Ainda que a taxa de complicações tenha sido similar aos 12 meses, não podemos concluir que ambos os procedimentos têm a mesma taxa simplesmente porque o número de pacientes era pequeno. Nosso estudo tem algumas limitações. Incluem a natureza retrospectiva e o fato de que todos os procedimentos foram realizados em uma única instituição pelo mesmo cirurgião. O mais importante é o pequeno número de pacientes e o acompanhamento de apenas 12 meses. As diferenças dos desfechos podem tornar-se evidentes em acompanhamento mais prolongado.

CONCLUSÕES

Verificamos que a reconstrução com aleno eixo depois de remoção de tumores pélvicos foi associada a resultados cirúrgicos satisfatórios, poucas complicações e bons desfechos funcionais. São necessários outros estudos clínicos para explorar como selecionar o método de reconstrução mais apropriado. O transplante de ossos alógenos combinado com arthroplasty total do quadril é extremamente difícil e requer osso alógeno de alta qualidade, experiência cirúrgica e alto nível de atendimento hospitalar.

REFERÊNCIAS

1. Schwameis E, Dominkus M, Krepler P, Dorotka R, Lang S, Windhager R, et al. Reconstruction of the pelvis after tumor resection in children and adolescents. Clin Orthop Relat Res. 2002;(402):220-35

2. Abdeen A, Healey JH. Allograft-prosthesis composite reconstruction of the proximal part of the humerus: surgical technique. J Bone Joint Surg Am. 2010;92(Suppl 1 Pt 2):188-96.

3. Dominkus M, Darwish E, Funovics P. Reconstruction of the pelvis after resection of malignant bone tumors in children and adolescents. Recent Results Cancer Res. 2009;179:85-111.

4. Guo W, Li D, Tang X, Yang Y, Ji T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Res. 2007;461:180-8.

5. Satcher Jr RL, O’Donnell RJ, Johnston JO. Reconstruction of the pelvis after resection of tumors about the acetabulum. Clin Orthop Relat Res. 2003;(409):209-17.

6. Wedemeyer C, Kauther MD. Hemipelvectomy only a salvage therapy? Orthop Ver (Pavia). 2011;3(1):e4.

7. Han I, Lee YM, Cho HS, Oh JH, Lee SH, Kim HS. Outcome after surgical treatment of pelvic sarcomas. Clin Orthop Surg. 2010;2(3):160-6.

8. Hoffmann C, Goshgeher G, Gebert C, Jürgens H, Winkelmann W. Functional results and quality of life after treatment of pelvic sarcomas involving the acetabulum. J Bone Joint Surg Am. 2008;88(3):575-82.

9. Kitagawa Y, Ek ET, Choong PF. Pelvic reconstruction using saddle prosthesis following limb salvage operation for periacetabular tumor. J Orth Surg (Hong Kong). 2006;14(2):155-62.

10. Enneking WF. Local resection of malignant lesions of the hip and pelvis. 1966. Clin Orthop Relat Res. 2002;(397):3-11

11. Enneking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg Am. 1978;60(6):731-46.

12. Enneking WF, Dunham W, Gebhardt MC, Malawar M, Pritchard DJ. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;(286):241-6.

13. Hugate R Jr, Sim FH. Pelvic reconstruction techniques. Orthop Clin North Am. 2006;37(1):85-97.

14. Harrington KD. The use of hemipelvic allografts or autoclaved grafts for reconstruction after wide resections of malignant tumors of the pelvis. J Bone Joint Surg Am. 1992;74(3):331-41.

15. Aved YY, Beltrami G, Campagnacci DA, Innocenti M, Scocciante G, Capanna R. Biological reconstruction after resection of bone tumors around the knee: long-term follow-up. J Bone Joint Surg Br. 2009;91(10):1366-72.

16. Abdeen A, Hoang BH, Athanasian EA, Morris CD, Boland PJ, Healey JH. Allograft-prosthesis composite reconstruction of the proximal part of the humerus: functional outcome and survivorship. J Bone Joint Surg Am. 2009;91(10):2406-15.

17. Biau DJ, Larousse F, Thevenin F, Piperno-Neumann S, Arrant P. Results of 32 allograft-prosthesis composite reconstructions of the proximal femur. Clin Orthop Relat Res. 2010;468(3):834-45.

18. Friedrich JB, Moran SL, Bishop AT, Shin AY. Free vascularized fibula grafts for salvage of failed oncologic long bone reconstruction and pathologic fractures. Microsurgery. 2009;29(5):385-92.

19. Ogilvie CM, Crawford EA, Hosalkar HS, King JJ, Lackman RD. Long-term results for limb salvage with osteoarticular allograft reconstruction. Clin Orthop Relat Res. 2009;467(10):2685-90.

20. Salom EM, Penalver MA. Pelvic exenteration and reconstruction. Cancer J. 2003;9(5):415-24.

21. Nazemi TM, Kobashi KC. Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion. Indian J Urol. 2007;23(2):153-60.

22. Ozaki T, Hillaireau A, Betin D, Wulfsman P, Winkelmann W. High complication rates with pelvic allografts. Experience of 22 sarcoma resections. Acta Orthop Scand. 1996;67(4):333-8.