The biomarker and causal roles of homoarginine in the development of cardiometabolic diseases: an observational and Mendelian randomization analysis

Ilkka Seppälä, Niku Oksala, Antti Jula, Antti J. Kangas, Pasi Soininen, Nina Hutri-Kähönen, Winfried März, Andreas Meinitzer, Markus Juonala, Mika Kähönen, Olli T. Raitakari, Terho Lehtimäki

Supplementary Methods

The cardiovascular risk in the Young Finns Study (YFS)

Supplementary Tables

Table S1. Association of hArg related genetic variants with metabolites in the MAGNETIC NMR GWAS.
Table S2. Association of hArg related genetic variants with serum hArg in a GWAS (n=5143).
Table S3. Association of hArg related genetic variants with BMI in GIANT.
Table S4. Association of hArg related genetic variants with waist circumference adjusted for BMI in GIANT.
Table S5. Association of hArg related genetic variants with glycemic traits in MAGIC.
Table S6. Association of hArg related genetic variants with blood lipids in GLGC.
Table S7. Association of hArg related genetic variants with T2DM and CAD in DIAGRAM and CARDIoGRAMplusC4D.

Supplementary Figures

Figure S1. Serum concentrations of homoarginine (hArg) (μmol/L) by the use of different hormonal contraceptive methods.
Figure S2. Cross-sectional and longitudinal associations of baseline hArg with all 228 metabolites for both sexes separately.
Figure S3. Cross-sectional and longitudinal associations of baseline hArg with all 228 metabolites for both sexes combined.
Figure S4. Cross-sectional association of hArg with 73 metabolites adjusted for age, BMI and daily smoking.
Figure S5. Tissue-specific GATM mRNA expression and GATM rs1153858.
Figure S6. A hypothetical model of hArg metabolism in humans.
Supplementary Methods

The cardiovascular risk in the Young Finns Study (YFS)

Biochemical measurements
For hArg quantification, intraday coefficients of variation (CVs) at different concentrations (mean levels) were 4.7% (1.21 μmol/L) and 2.2% (3.53 μmol/L), and between-day CVs were 7.9% (1.25 μmol/L) and 6.8% (3.66 μmol/L), respectively [1].

Venous blood samples were drawn after a 12 h fast. Serum triglycerides, total cholesterol, high density lipoprotein (HDL)-cholesterol, were measured as described previously [2]. Low density lipoprotein (LDL)-cholesterol was calculated using the Friedewald formula for participants with triglycerides <4 mmol/l. Glucose concentrations were analyzed enzymatically with a clinical chemistry analyzer (Olympus, AU400), and serum insulin concentrations were measured by microparticle enzyme immunoassay kit (Abbott Laboratories, Diagnostic Division, Dainabot). Serum C-reactive protein (CRP) was analyzed by an automated analyzer (Olympus AU400) with a latex turbidimetric immunoassay kit (CRP-UL assay, Wako Chemicals, Neuss, Germany). The detection limit reported by the manufacturer for the assay was 0.06 mg/l. Sex hormone-binding globulin (SHBG) was measured by Spectria SHBG IRMA.

Clinical measurements and questionnaires
Height, weight and waist circumference were measured. BMI was calculated using the formula: weight [kg]/(height [m])². Blood pressure was measured using a random zero sphygmanometer with the average of three measurements used in the analyses. Participants were also asked to complete questionnaires that included questions on smoking habits and family history of premature CAD.
Table S1. Association of hArg related genetic variants with metabolites in the MAGNETIC NMR GWAS.

SNP (effect allele)	Glycine	Histidine	Creatinine	Phenylalanine
Beta (SE) N P value				
rs1047891 (C)	-0.49 (0.011) 18 730 0	-0.060 (0.011) 19 241 1.1 x 10^-7	-0.048 (0.010) 24 805 3.3 x 10^-6	0.038 (0.010) 22 657 3.1 x 10^-4
rs37369 (T)	-0.0018 (0.019) 16 507 0.93	-0.027 (0.017) 19 244 0.11	-0.0034 (0.016) 22 583 0.83	-0.0051 (0.017) 20 436 0.76
rs1153858 (T)	-0.0053 (0.011) 18 733 0.64	0.012 (0.011) 19 243 0.27	0.080 (0.010) 24 809 8.3 x 10^-15	0.020 (0.010) 22 662 0.053

Shown are the metabolites that are associated with at least one of the hArg related SNPs at P<0.001.

a. Effect allele is the hArg increasing allele.
b. Betas are in the units of 1-SD increment in metabolic measure per effect allele.

Betas and standard errors obtained from MAGNETIC NMR GWAS [5] and downloaded from http://computationalmedicine.fi/data.

Table S2. Association of hArg related genetic variants with serum hArg in a GWAS (n=5143).

SNP	Gene	Chr	Effect allele	Effect allele frequency (%)	Increase in hArg (µmol/L per effect allele)	Standard error	P value	R statistic (%)	F statistic
rs1047891	CPS1	2	C	69.8	0.16	0.020	6.5 x 10^-17	4.4	240
rs37369	AGXT2	5	T	8.6	0.22	0.030	7.9 x 10^-14	2.2	120
rs1153858	GATM	15	T	27.6	0.26	0.018	4.1 x 10^-48	6.8	370

a. Effect allele is the hArg increasing allele.
b. Formerly rs7422339.
c. Effect allele frequency in individuals of European decent of the 1000 Genomes project.
d. Combined effect estimates and standard errors in the units of 1-µmol/L increment in hArg per effect allele were calculated by fixed-effects meta-analysis from the study-specific summary statistics taken from Kleber et al. [3]
e. The proportion of variance in hArg explained by the SNP (the R^2 statistic) is approximately equal to 2β × MAF × (1 − MAF), where SNP-hArg β is given in standard deviation units and MAF is minor allele frequency. [4] To convert the βs into standard deviation units, we assume that 1-SD equals approximately 0.65 µmol/L hArg as we observe in YFS (Table 1):

\[
\beta \text{ (SD/effect allele)} = 0.65 \times \beta \text{ (µmol/L/effect allele)}.
\]

f. The F statistic can then be calculated from the R^2 statistic as \[F = \frac{N-K-1}{K} \frac{R^2}{1-R^2} \], where N is the sample size and K is the number of genetic variants (here K=1). [4]
Table S3. Association of hArg related genetic variants with BMI in GIANT.

SNP (effect allele)	Men	Women	Combined						
	Beta (SE)	N	P value	Beta (SE)	N	P value	Beta (SE)	N	P value
Any age									
rs1047891 (C)	-0.011 (0.0047)	144 456	0.020	-0.0176 (0.0046)	160 979	1.5 × 10⁻⁴	-0.014 (0.0034)	317 601	4.6 × 10⁻⁵
rs37369 (T)	-0.0039 (0.0073)	143 800	0.59	0.0013 (0.0072)	162 971	0.86	-0.0027 (0.0051)	321 131	0.60
rs1153858 (T)	0.0096 (0.0057)	104 566	0.092	0.0026 (0.0053)	129 057	0.62	0.0060 (0.0041)	233 074	0.14

a. Effect allele is the hArg increasing allele.
b. Betas are in the units of 1-SD increment per effect allele. Betas and standard errors obtained from BMI GWASs of the GIANT consortium [6,7] and downloaded from http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files.

Table S4. Association of hArg related genetic variants with waist circumference adjusted for BMI in GIANT.

SNP (effect allele)	Men	Women	Combined						
	Beta (SE)	N	P value	Beta (SE)	N	P value	Beta (SE)	N	P value
rs1047891 (C)	-0.0012 (0.0059)	83 402	0.84	0.0044 (0.0053)	102 495	0.41	0.0008 (0.004)	188 157	0.84
rs37369 (T)	-0.0055 (0.0083)	99 401	0.51	0.0038 (0.0074)	123 454	0.61	-0.0016 (0.0056)	224 888	0.77
rs1153858 (T)	-0.019 (0.0071)	61 417	0.0071	-0.0012 (0.0059)	89 868	0.84	-0.0075 (0.0047)	151 092	0.11

a. Effect allele is the hArg increasing allele.
b. Betas are in the units of 1-SD increment per effect allele. Betas and standard errors obtained from a GWAS of the GIANT consortium [8] and downloaded from http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files.
Table S5. Association of hArg related genetic variants with glycaemic traits in MAGIC.

SNP (effect allele)	Fasting glucose (mmol/L) max N = 46 186	Fasting insulin (ln-pmol/L) max N = 38 238	Hba1c (%) max N = 46 368	Fasting proinsulin (ln-pmol/L) max N = 10 701				
	Beta b (SE)	P value						
rs1047891 (C)	0.0051 (0.0044)	0.25	-0.0039 (0.0046)	0.40	0.0081 (0.0043)	0.059	-0.0004 (0.0077)	0.96
rs37369 (T)	0.0060 (0.0067)	0.37	-0.0004 (0.0069)	0.96	0.0068 (0.0062)	0.27	-0.025 (0.013)	0.054
rs1153858 (T)	0.0046 (0.0041)	0.25	-0.0026 (0.0042)	0.53	0.0006 (0.0038)	0.88	-0.017 (0.0079)	0.036

a. Effect allele is the hArg increasing allele.
b. Betas are in the units of 1-unit increment in glycaemic trait per effect allele.

Betas and standard errors obtained from the GWASs of the MAGIC consortium [9-11] and downloaded from https://www.magicinvestigators.org/downloads/.

Table S6. Association of hArg related genetic variants with blood lipids in GLGC.

SNP (effect allele)	Total cholesterol	LDL cholesterol	HDL cholesterol	Triglycerides				
	Beta b (SE)	N P value						
rs1047891 (C)	0.0046 (0.0040)	182217 0.18	-0.0079 (0.0042)	168110 0.14	0.0269 (0.0039)	182043 8.7 × 10^{-10}	0.0000 (0.0038)	172729 0.86
rs37369 (T)	0.0042 (0.0063)	182522 0.43	-0.0016 (0.0066)	168348 0.98	0.0017 (0.0061)	182347 0.63	0.0033 (0.0059)	173023 0.61
rs1153858 (T)	-0.0041 (0.0058)	91464 0.52	-0.0046 (0.0059)	86847 0.41	-0.0043 (0.0054)	91229 0.46	0.0008 (0.0053)	87882 0.70

a. Effect allele is the hArg increasing allele.
b. Betas are in 1-SD units per effect allele.

Betas and standard errors obtained from the GLGC GWAS [12] and downloaded from http://csg.sph.umich.edu//abecasis/public/lipids2013/.
Table S7. Association of hArg related genetic variants with T2DM and CAD in DIAGRAM and CARDIoGRAMplusC4D.

SNP (effect allele)	Type 2 diabetes mellitus DIAGRAM	Coronary artery disease and/or myocardial infarction 22 233 cases/64 762 controls CARDIoGRAM	Coronary artery disease and/or myocardial infarction 60 801 cases/123 504 controls CARDIoGRAMplusC4D	Myocardial infarction 43 676 cases/128 199 controls CARDIoGRAMplusC4D
rs1047891 (C)	1.01 (0.97-1.04) 0.74 0.047 (0.019) 13 386 53 366 0.013 0.025 (0.011) 0.018 0.011 (0.012) 0.34	1.01 (0.97-1.04) 0.74 0.047 (0.019) 13 386 53 366 0.013 0.025 (0.011) 0.018 0.011 (0.012) 0.34	1.01 (0.97-1.04) 0.74 0.047 (0.019) 13 386 53 366 0.013 0.025 (0.011) 0.018 0.011 (0.012) 0.34	
rs37369 (T)	1.00 (0.97-1.04) 0.86 0.053 (0.025) 20 575 58 574 0.025 0.022 (0.014) 0.11 0.014 (0.015) 0.34	1.00 (0.97-1.04) 0.86 0.053 (0.025) 20 575 58 574 0.025 0.022 (0.014) 0.11 0.014 (0.015) 0.34	1.00 (0.97-1.04) 0.86 0.053 (0.025) 20 575 58 574 0.025 0.022 (0.014) 0.11 0.014 (0.015) 0.34	
rs1153858 (T)	1.01 (0.98-1.03) 0.62 -0.039 (0.016) 21 654 61 954 0.013 -0.012 (0.010) 0.23 -0.0087 (0.011) 0.44	1.01 (0.98-1.03) 0.62 -0.039 (0.016) 21 654 61 954 0.013 -0.012 (0.010) 0.23 -0.0087 (0.011) 0.44	1.01 (0.98-1.03) 0.62 -0.039 (0.016) 21 654 61 954 0.013 -0.012 (0.010) 0.23 -0.0087 (0.011) 0.44	

a. Effect allele is the hArg increasing allele.
b. Betas are in the units of OR or log odds per effect allele.

Data on coronary artery disease / myocardial infarction have been contributed by CARDIoGRAMplusC4D investigators [13,14] and have been downloaded from www.CARDIOGRAMPLUSC4D.ORG.
Data on T2DM have been contributed by DIAGRAM investigators [15] and have been downloaded from http://diagram-consortium.org/downloads.html.
Supplementary References

1. Meinitzer A, Puchinger M, Winklhofer-Roob BM, Rock E, Ribalta J, Roob JM, et al. Reference values for plasma concentrations of asymmetrical dimethylarginine (ADMA) and other arginine metabolites in men after validation of a chromatographic method. Clin Chim Acta 2007;384:141-148.

2. Raiko JRH, Viikari JSA, Ilmanen A, Hutri-Kähönen N, Taittonen L, Jokinen E, et al. Follow-ups of the Cardiovascular Risk in Young Finns Study in 2001 and 2007: levels and 6-year changes in risk factors. J Intern Med 2010;267:370-384.

3. Kleber ME, Seppälä I, Pilz S, Hoffmann MM, Tomaszitz A, Oksala N, et al. Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet 2013;6:505-513.

4. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 2016;35:1880-1906.

5. Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 2016;7:11122.

6. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet 2015;11:e1005378.

7. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015;518:197-206.

8. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015;518:187-196.

9. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105-116.

10. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways. Diabetes 2010;59:3229-3239.

11. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 2011;60:2624-2634.

12. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013;45:1274-1283.

13. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-338.

14. Nikpay M, Goel A, Won H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015;47:1121-1130.
15. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014;46:234-244.

16. Tuma Z, Kuncova J, Mares J, Matejovic M. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clin Exp Nephrol 2016;20:39-49.

17. Davids M, Ndika JDT, Salomons GS, Blom HJ, Teerlink T. Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 2012;586:3653-3657.

18. Choe C, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, et al. Homoarginine levels are regulated by L-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 2013;128:1451-1461.

19. Rodionov RN, Oppici E, Martens-Lobenhoffer J, Jarzebska N, Brilloff S, Burdin D, et al. A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci Rep 2016;6:35277.

20. Shin S, Fauman EB, Petersen A, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet 2014;46:543-550.

21. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun 2016;7:10023.

22. Seppälä I, Kleber ME, Lyytikäinen L, Hernesniemi JA, Mäkelä K, Oksala N, et al. Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality. Eur Heart J 2014;35:524-531.
Supplementary Figures

Figure S1. Serum concentrations of homoarginine (hArg) (μmol/L) by the use of different hormonal contraceptive methods. Combined oral contraceptive pills containing oestrogen (COCPs) as well as different forms of progestin-only contraceptives (POCs) including pills and intrauterine systems (IUSs). Box plots are shown as median (black horizontal line) and 25th and 75th percentiles (represented by grey boxes, interquartile range), and the whiskers (whiskers represent the highest and lowest values still within 1.5 times the interquartile range). P-values are derived from the non-parametric Kruskall-Wallis test.
Figure S2. Cross-sectional and longitudinal associations of baseline hArg with all 228 metabolites for both sexes separately. Models are adjusted for age, BMI, daily smoking, serum SHBG and oral contraceptives use (women) as in Figure 2.

Lipoprotein subclasses – Concentration

[Graph showing associations of baseline hArg with 228 metabolites for both sexes separately, adjusted for age, BMI, daily smoking, serum SHBG and oral contraceptives use (women) as in Figure 2.]
Lipoprotein Subclasses – Composition

Comparison	YFS 2001	YFS 2007	YFS 2011
Total cholesterol to total lipids ratio in very large LDL	[Diagram]	[Diagram]	[Diagram]
Cholesterol to total lipids ratio in very large LDL	[Diagram]	[Diagram]	[Diagram]
Free cholesterol to total lipids ratio in very large LDL	[Diagram]	[Diagram]	[Diagram]
Triglycerides to total lipids ratio in very large LDL	[Diagram]	[Diagram]	[Diagram]

![Diagram](image-url)
Figure S3. Cross-sectional and longitudinal associations of baseline hArg with all 228 metabolites for both sexes combined. Models are adjusted for age, BMI, daily smoking, serum SHBG and oral contraceptives use (women) as in Figure 2.

Lipoprotein subclasses – Concentration

	YFS 2001	YFS 2007	YFS 2011
Concentration of dynamically and extremely large VLDL, particles			
Total lipids in dynamically and extremely large VLDL, particles			
Phospholipids in dynamically and extremely large VLDL, particles			
Cholesterol esters in dynamically and extremely large VLDL, particles			
Free cholesteryl esters in dynamically and extremely large VLDL, particles			
Concentration of very large LDL, particles			
Total lipids in very large LDL, particles			
Phospholipids in very large LDL, particles			
Cholesterol esters in very large LDL, particles			
Free cholesteryl esters in very large LDL, particles			
Total lipids in large LDL, particles			
Phospholipids in large LDL, particles			
Cholesterol esters in large LDL, particles			
Free cholesteryl esters in large LDL, particles			
Concentration of medium LDL, particles			
Total lipids in medium LDL, particles			
Phospholipids in medium LDL, particles			
Cholesterol esters in medium LDL, particles			
Free cholesteryl esters in medium LDL, particles			
Total lipids in small LDL, particles			
Phospholipids in small LDL, particles			
Cholesterol esters in small LDL, particles			
Free cholesteryl esters in small LDL, particles			
Triglycerides in very small LDL, particles			
Concentration of very small LDL, particles			
Total lipids in very small LDL, particles			
Phospholipids in very small LDL, particles			
Cholesterol esters in very small LDL, particles			
Free cholesteryl esters in very small LDL, particles			
Total lipids in small IDL, particles			
Phospholipids in small IDL, particles			
Cholesterol esters in small IDL, particles			
Free cholesteryl esters in small IDL, particles			
Triglycerides in median HDL, particles			
Concentration of small HDL, particles			
Total lipids in small HDL, particles			
Phospholipids in small HDL, particles			
Cholesterol esters in small HDL, particles			
Free cholesteryl esters in small HDL, particles			
Triglycerides in medium HDL, particles			
Concentration of large HDL, particles			
Total lipids in large HDL, particles			
Phospholipids in large HDL, particles			
Cholesterol esters in large HDL, particles			
Free cholesteryl esters in large HDL, particles			
Triglycerides in very large HDL, particles			
Concentration of very large HDL, particles			
Total lipids in very large HDL, particles			
Phospholipids in very large HDL, particles			
Cholesterol esters in very large HDL, particles			
Free cholesteryl esters in very large HDL, particles			
-0.6 -0.3 0.0 0.3 0.6	-0.6 -0.3 0.0 0.3 0.6	-0.6 -0.3 0.0 0.3 0.6	

SD increment in metabolic measure (95% CI) per 1-SD hArg
Lipoprotein subclasses – Composition	YFS 2001	YFS 2007	YFS 2011
Phosphatidylcholine-tail fatty acids and cholesterol and very large VLDL	-0.5	-0.5	-0.5
Total cholesterol to total triacylglycerol and intermediate large VLDL	0.0	0.0	0.0
Cholesterol esters to total phospholipids in very low HDL	0.5	0.5	0.5
Free cholesterol to total triacylglycerol and extremely large VLDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in very low HDL	-0.5	-0.5	-0.5
Phosphatidylcholine-tail fatty acids and intermediate large VLDL	0.0	0.0	0.0
Total cholesterol to total triacylglycerol in very large VLDL	0.5	0.5	0.5
Cholesterol esters to total phospholipids in very large VLDL	0.0	0.0	0.0
Free cholesterol to total triacylglycerol in very large VLDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in very large VLDL	-0.5	-0.5	-0.5
Phosphatidylcholine-tail fatty acids and small VLDL	-0.5	-0.5	-0.5
Total cholesterol to total triacylglycerol in small VLDL	0.0	0.0	0.0
Cholesterol esters to total phospholipids in small VLDL	0.5	0.5	0.5
Free cholesterol to total triacylglycerol in small VLDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in small VLDL	-0.5	-0.5	-0.5
Phosphatidylcholine-tail fatty acids and medium LDL	-0.5	-0.5	-0.5
Total cholesterol to total triacylglycerol in large LDL	0.0	0.0	0.0
Cholesterol esters to total phospholipids in large LDL	0.5	0.5	0.5
Free cholesterol to total triacylglycerol in large LDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in large LDL	-0.5	-0.5	-0.5
Phosphatidylcholine-tail fatty acids and very large HDL	-0.5	-0.5	-0.5
Total cholesterol to total triacylglycerol in very large HDL	0.0	0.0	0.0
Cholesterol esters to total phospholipids in very large HDL	0.5	0.5	0.5
Free cholesterol to total triacylglycerol in very large HDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in very large HDL	-0.5	-0.5	-0.5
Phosphatidylcholine-tail fatty acids and HDL	-0.5	-0.5	-0.5
Total cholesterol to total triacylglycerol in HDL	0.0	0.0	0.0
Cholesterol esters to total phospholipids in HDL	0.5	0.5	0.5
Free cholesterol to total triacylglycerol in HDL	-0.5	-0.5	-0.5
Triglycerides to total triacylglycerol in HDL	-0.5	-0.5	-0.5

SO increment in metabolic measure (95% CI) per 1-SD hArg
Lp(a) particle size	YFS 2001	YFS 2007	YFS 2011
Mean diameter for VLDL particles	⬤	⬤	⬤
Mean diameter for LDL particles	⬤	⬤	⬤
Mean diameter for HDL particles	⬤	⬤	⬤
Cholesterol	⬤	⬤	⬤
Serum total cholesterol	⬤	⬤	⬤
Triglycerides in VLDL	⬤	⬤	⬤
Triglycerides in LDL	⬤	⬤	⬤
Triglycerides in HDL	⬤	⬤	⬤
Triglycerides for plasma lipoproteins	⬤	⬤	⬤
Ratio of triglycerides to total cholesterol	⬤	⬤	⬤
Percent of lipids and other phospholipids	⬤	⬤	⬤
Phospholipids	⬤	⬤	⬤
Triglycerides	⬤	⬤	⬤
Apolipoproteins	⬤	⬤	⬤
Apolipoprotein A	⬤	⬤	⬤
Apolipoprotein B	⬤	⬤	⬤
Ratio of apolipoprotein B to apolipoprotein A	⬤	⬤	⬤
Fatty acids & esterification	⬤	⬤	⬤
Triglycerides	⬤	⬤	⬤
Estimated degree of unsaturation	⬤	⬤	⬤
20:5 docosapentaenoic acid	⬤	⬤	⬤
18:2 Linoleic acid	⬤	⬤	⬤
Omega 3 fatty acids	⬤	⬤	⬤
Omega 6 fatty acids	⬤	⬤	⬤
Polyunsaturated fatty acids	⬤	⬤	⬤
Monounsaturated fatty acids, 18:1 18:1	⬤	⬤	⬤
Saturated fatty acids	⬤	⬤	⬤
Ratio of 18:2 docosapentaenoic acid to total fatty acids	⬤	⬤	⬤
Ratio of 18:3 docosatetraenoic acid to total fatty acids	⬤	⬤	⬤
Ratio of 18:4 docosatetraenoic acid to total fatty acids	⬤	⬤	⬤
Ratio of 20:5 docosapentaenoic acid to total fatty acids	⬤	⬤	⬤
Ratio of 20:4 eicosatetraenoic acid to total fatty acids	⬤	⬤	⬤
Ratio of monounsaturated fatty acids to total fatty acids	⬤	⬤	⬤
Ratio of saturated fatty acids to total fatty acids	⬤	⬤	⬤
Glycolysis related metabolites	⬤	⬤	⬤
Glucose	⬤	⬤	⬤
Lactate	⬤	⬤	⬤
Pyruvate	⬤	⬤	⬤
Citrate	⬤	⬤	⬤
Glycerol	⬤	⬤	⬤
Amino acids	⬤	⬤	⬤
Alanine	⬤	⬤	⬤
Glutamine	⬤	⬤	⬤
Glucose	⬤	⬤	⬤
Histidine	⬤	⬤	⬤
Isoleucine	⬤	⬤	⬤
Leucine	⬤	⬤	⬤
Valine	⬤	⬤	⬤
Phenylalanine	⬤	⬤	⬤
Tryptophan	⬤	⬤	⬤
Kynurenine	⬤	⬤	⬤
Acetyl	⬤	⬤	⬤
Acetoacetate	⬤	⬤	⬤
2-Hydroxybutyrate	⬤	⬤	⬤
Fatty acids	⬤	⬤	⬤
Cholesterol	⬤	⬤	⬤
Albumin	⬤	⬤	⬤
Glycoprotein	⬤	⬤	⬤

SD increment in metabolic measures (95% CI) per 1-SD IqArg
Figure S4. Cross-sectional association of hArg with 73 metabolites adjusted for age, BMI and daily smoking.
Figure S5. Tissue-specific GATM mRNA expression and rs1153858. The first boxplot (A) illustrates tissue-specific GATM mRNA expression values by sex (red, women; blue, men). Expression values are shown in log10-transformed RPKM (Reads Per Kilobase of transcript per Million mapped reads), calculated from a gene model with isoforms collapsed to a single gene. The higher the log10(RPKM) the higher the mRNA expression. Box plots are shown as median and 25th and 75th percentiles; points are displayed as outliers if they are above or below 1.5 times the interquartile range. The second boxplot (B) shows GATM mRNA expression values by the GATM rs1153858 genotype groups in three selected tissues (skeletal muscle, thyroid and whole blood). All illustrations are from the Genotype-Tissue Expression (GTEx) project website: http://www.gtexportal.org/.
Figure S5. Continues from the last page. The first panel (C) shows the tissue-specific associations of GATM rs1153858 with GATM mRNA expression in all tissues in the GTEx project. The second panel (D) shows the linkage disequilibrium (LD) structure of the GATM locus. The GATM rs1153858 variant is marked with bold font. All illustrations are from the Genotype-Tissue Expression (GTEx) project website: http://www.gtexportal.org/.

C. METASOFT Results for rs1153858

All illustrations are from the Genotype-Tissue Expression (GTEx) project website: http://www.gtexportal.org/.

D. Gene eQTL Visualizer
A hypothetical model of hArg metabolism in humans. A model of hArg and creatine synthesis via the AGAT enzyme (encoded by the GATM gene) and its intra mitochondrial substrate bioavailability based on GWAS identified single-nucleotide polymorphisms associated with circulating hArg levels [3]. Although several organs and tissues are capable of the hArg and creatine biosynthesis by AGAT, the kidneys play a pivotal role in the formation and release of hArg and the creatine precursor guanidinoacetate (GAA) into the systemic circulation. Amino acids are readily filtrated in the kidneys and reabsorbed in the renal cortical proximal tubules for metabolism. AGAT and AGXT2 proteins are strongly expressed in human renal tubular cells (www.proteinatlas.org) and upregulated in the porcine isolated renal cortical mitochondria compared to those isolated from the medulla [16]. AGAT catalyses the formation of GAA and ornithine from arginine and glycine as well as the formation of hArg and ornithine from arginine and lysine [17,18]. The decreased bioavailability of glycine for the GAA synthesis due to the decreased and increased activities of AGXT2 and CPS1, respectively, may shift the production of GAA by AGAT towards hArg explaining the associations of the CPS1 and AGXT2 missense variants with circulating hArg levels. In addition, hArg is directly metabolized to 6-guanidino-2-oxocaproic acid (GOCA) by AGXT2 [19]. The direction of association of GATM rs1153858 with GATM mRNA expression is tissue-specific as illustrated in Figure S5. Directions of the effects of the CPS1, AGXT2 and GATM variants on the enzyme activities or mRNA expression are presented by arrows. Directions and p-values of associations of the hArg associated genetic variants (marked by different colours) with blood metabolites are presented by arrows and the reference additionally marked: ↑ or ↓ = P<5x10^-8; ↑ or ↓ = P<0.001; ⏬ or ⏯ = P<0.05; ↔ = P>0.05; 1 = Shin et al. [20], 2 = Kleber et al. [3], 3 = Kettunen et al. [5], 4 = Pattaro et al. [21], 5 = Seppälä et al. [22]. GATM or AGAT, glycine amidinotransferase or L-arginine:glycine amidinotransferase; AGXT2, alanine-glyoxylate aminotransferase 2; CPS1, carbamoyl-phosphate synthase 1; GCS, glycine cleavage system; GATM, guanidinoacetate N-methyltransferase; ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; DMGV, α-keto-δ-(N,N-dimethylguanidino)valeric acid; DM'GV, α-keto-δ-(N',N'-dimethylguanidino)valeric acid.

Figure S6. A hypothetical model of hArg metabolism in humans. A model of hArg and creatine synthesis via the AGAT enzyme (encoded by the GATM gene) and its intra mitochondrial substrate bioavailability based on GWAS identified single-nucleotide polymorphisms associated with circulating hArg levels [3]. Although several organs and tissues are capable of the hArg and creatine biosynthesis by AGAT, the kidneys play a pivotal role in the formation and release of hArg and the creatine precursor guanidinoacetate (GAA) into the systemic circulation. Amino acids are readily filtrated in the kidneys and reabsorbed in the renal cortical proximal tubules for metabolism. AGAT and AGXT2 proteins are strongly expressed in human renal tubular cells (www.proteinatlas.org) and upregulated in the porcine isolated renal cortical mitochondria compared to those isolated from the medulla [16]. AGAT catalyses the formation of GAA and ornithine from arginine and glycine as well as the formation of hArg and ornithine from arginine and lysine [17,18]. The decreased bioavailability of glycine for the GAA synthesis due to the decreased and increased activities of AGXT2 and CPS1, respectively, may shift the production of GAA by AGAT towards hArg explaining the associations of the CPS1 and AGXT2 missense variants with circulating hArg levels. In addition, hArg is directly metabolized to 6-guanidino-2-oxocaproic acid (GOCA) by AGXT2 [19]. The direction of association of GATM rs1153858 with GATM mRNA expression is tissue-specific as illustrated in Figure S5. Directions of the effects of the CPS1, AGXT2 and GATM variants on the enzyme activities or mRNA expression are presented by arrows. Directions and p-values of associations of the hArg associated genetic variants (marked by different colours) with blood metabolites are presented by arrows and the reference additionally marked: ↑ or ↓ = P<5x10^-8; ↑ or ↓ = P<0.001; ⏬ or ⏯ = P<0.05; ↔ = P>0.05; 1 = Shin et al. [20], 2 = Kleber et al. [3], 3 = Kettunen et al. [5], 4 = Pattaro et al. [21], 5 = Seppälä et al. [22]. GATM or AGAT, glycine amidinotransferase or L-arginine:glycine amidinotransferase; AGXT2, alanine-glyoxylate aminotransferase 2; CPS1, carbamoyl-phosphate synthase 1; GCS, glycine cleavage system; GATM, guanidinoacetate N-methyltransferase; ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; DMGV, α-keto-δ-(N,N-dimethylguanidino)valeric acid; DM'GV, α-keto-δ-(N',N'-dimethylguanidino)valeric acid.