Explanation of the Stern-Gerlach splitting of spinor condensates based on symmetry

Zhibing Li and Chengguang Bao

The State Key Laboratory of Optoelectronic Materials and Technologies
School of Physics and Engineering
Sun Yat-Sen University, Guangzhou, 510275, P.R. China
and
Center of Theoretical Nuclear Physics,
National Laboratory of Heavy Ion Collisions,
Lanzhou 730000, P. R. China

The Stern-Gerlach splitting of spinor condensates is explained based on the total spin-states with specified SU(2) and permutation symmetries.

PACS numbers: 03.75.Fi, 03.65.Fd

The experimental realization of the spinor Bose-Einstein condensation in optical traps [1,2,3] is a great step in probing the microscopic world. In the experiment by Stenger, et al.,[2] after the atoms had been trapped sufficiently long by the optical trap, the trap was suddenly switched off and the atoms are allow to expand, and a magnetic field gradient was applied to yield a Stern-Gerlach splitting. Then the expanding cloud was observed via the absorption imaging where the atoms are condensing into the same spatial state, the spatially normalized total spin-states are good quantum numbers for all the eigenstates. Thus, to understand the orientation of the hyperfine state can be evaluated. We found that there is a strong symmetry background governing the splitting, this is reported as follows.

After a sufficient long time of evolution, the system of condensed atoms would arrive at a state of equilibrium, and would be distributed among the low-lying eigen-states, the probability \(P(E_i) \) of staying at a particular eigen-state \(\Psi_i \) is determined by thermodynamics, namely, \(P(E_i) \propto e^{-E_i/kT} \), where \(T \) is the temperature. Let \(M \) be the \(Z \)-component of the total spin. During the evolution \(M \) remains unchanged. Furthermore, when all \(N \) atoms condense into the same spatial state, the spatial wave function must be completely symmetric with respect to particle interchanges, accordingly the total spin-state must also be completely symmetric. Furthermore, due to the property of the imaging, the total spin \(S \) together with \(M \) are good quantum numbers for all the eigenstates. Thus, to understand the orientation of the spins, it is crucial to understand the completely symmetric normalized total spin-states \(\vartheta_{S,M}^{[N]} \), where \(S \) is ranged from \(N, N-2, \ldots \) to \(M \) (or \(M+1 \)) if \(N-M \) is even (or odd) [4,3].

When \(N \) is small, \(\vartheta_{S,M}^{[N]} \) is simple, e.g., for \(N=3 \),

\[
\vartheta_{1,M}^{[3]} = \frac{\sqrt{5}}{3} [(\chi(1)\chi(2))_{0}\chi(3)]_{1,M} + \frac{2}{3}[(\chi(1)\chi(2))_{2}\chi(3)]_{1,M}
\]

(1)

where \(\chi(i) \) is the spin-state of the \(i \)-th particle, particles 1 and 2 are first coupled to spin zero and two, respectively, then all three particles are coupled to \(S=1 \). However, when \(N \) is larger, \(\vartheta_{S,M}^{[N]} \) becomes very complicated. Fortunately, the expression of \(\vartheta_{S,M}^{[N]} \) itself is not really necessary. Making use of the fractional parentage coefficients \(a_S^{[N]} \) and \(b_S^{[N]} \) derived in our previous papers [6], we can extract anyone of the particles (say, particle 1) from \(\vartheta_{S,M}^{[N]} \) as

\[
\vartheta_{S,M}^{[N]} = a_S^{[N]} \chi(1)\vartheta_{S+1,M}^{[N-1]} + b_S^{[N]} \chi(1)\vartheta_{S-1,M-1}^{[N-1]}
\]

(2)

\[
= a_S^{[N]} \sum_{\mu} C_{1\mu,S+1,M-\mu}^{S,M} \chi(1)\vartheta_{S+1,M-\mu}^{[N-1]} + b_S^{[N]} \sum_{\mu} C_{1\mu,S-1,M-\mu}^{S,M} \chi(1)\vartheta_{S-1,M-\mu}^{[N-1]}
\]

where

\[
a_S^{[N]} = \frac{1}{(2N(2S+1))^1/2} (1 + (-1)^{N-S}) (N-S)(S+1)
\]

(3)

\[
b_S^{[N]} = \frac{1}{(2N(2S+1))^1/2} (1 + (-1)^{N-S}) S(S+1)
\]

(4)

and \(C_{1\mu,S+1,M-\mu}^{S,M} \) are the Clebesh-Gorden coefficients. It is clear from (3) and (4) that \(N-S \) must be even.

For the state \(\vartheta_{S,M}^{[N]} \) from (2), the probability of a spin at \(\mu \) is

\[
P_{\mu} = a_S^{[N]} C_{1\mu,S+1,M-\mu}^{S,M} + b_S^{[N]} C_{1\mu,S-1,M-\mu}^{S,M}
\]

(5)

Not only the fractional parentage coefficients, the related Clebesh-Gorden coefficients in [5] have also analytical

*corresponding author: stsbcg@zsu.edu.cn
Thus $P_{S,M}^\mu$ has an analytical form as

$$P_{1}^{S,M} = \frac{1}{2(2S+1)} \left(\frac{1}{2S+3} + \frac{1}{2S-1} \right)$$

$$P_{0}^{S,M} = \frac{1}{(2S+1)} \left(\frac{1}{2S+3} + \frac{1}{2S-1} \right)$$

and in general

$$P_{S,-M}^{\mu} = P_{-\mu}^{S,M}$$

It is recalled that $\vartheta_i^{N,S,M}$ are completely symmetric, therefore the spin of each particle has exactly the same probability $P_{S,M}^\mu$. From (12-14) we have

$$P_{1}^{S,M} + P_{0}^{S,M} + P_{-1}^{S,M} \equiv 1$$

$$N (P_{1}^{S,M} - P_{-1}^{S,M}) \equiv M$$

and

$$\sum_{M=-S}^{S} p_{S,M}^{\mu} = \frac{1}{3}$$

Eq. (16) is a basic requirement because μ has only three choices. (17) implies that N $P_{S,M}^{\mu}$ is the number of bosons at μ. Eq. (18) implies that, for a nonpolarized system, the probability of a particle staying at a given μ is $1/3$. In particular, when $M = 0$, we have

$$P_{1}^{S,0} = P_{0}^{S,0} = \frac{(1-1/2N)S(S+1)-1}{(2S+3)(2S-1)}$$

$$P_{-1}^{S,0} = \frac{(1+1/2N)S(S+1)-1}{(2S+3)(2S-1)}$$

Since N is usually large, we can neglect the term $1/N$. Then we found both $P_{1}^{S,0}$ and $P_{-1}^{S,0}$ are close to $1/4$ and

$$P_{0}^{S,0}$$

is close to $1/2$ (unless S is very small). This is a crucial point to explain the splitting experiment in Ref. [2].

When $M = N$ (in this case $S = N$ is the only choice) we have $P_{1}^{N,N} = 1$, $P_{0}^{N,N} = P_{-1}^{N,N} = 0$ as expected.

The $P_{S,M}^{\mu}$ with $N = 10000$, $M = N/4$, $N/2$, and $3N/4$ are plotted in Fig. 1; the curves are not sensitive to N, as it appears in (12-14). For excited states, the total spin-states are not necessary to be completely symmetric (e.g., for the first excited band, both the spatial states and total spin-states have the $\{N - 1, 1\}$ symmetry. However, if the temperature is sufficiently low, only low-lying states are concerned, where only a very small part of particles are excited. It implies that most particles are condensed, and the spin-states of these majority must be completely symmetric, while the effect of the excited particles on the average spin-orientation is very small.

This probability $P_{S,M}^{\mu}$ holds, in good approximation, for all low-lying states.

When the final state is a thermodynamical distribution over the eigen-states with the same M, the probability of a particle at μ is

$$P(M, \mu) = \Theta \sum_i e^{-E_i/T} p_{S_i, M}^{\mu}$$

where i is the label of the levels, E_i and S_i are the corresponding energy and total spin, Θ is a constant just for the normalization.

From our previous study [5, 6, 8], the low-lying states of spinor condensates are divided into bands, the states in a band have similar spatial wave functions but they are different in S. The energy splitting inside the band is caused by the spin-dependent atom-atom interaction. However, for realistic case, the spin-dependence is weak. It was found from our calculation that the splitting of energy levels in a band is very small. Hence, for the levels of a band the factor $e^{-E_i/kT}$ can be roughly considered.
µ condensate starts with the account, the normalized probability appears as \(P_{\text{equilibrium}} \). It is found that \(\Theta_j \) as a constant, \([9]\) thus the contribution of the curve.

\[
(\gamma) = 0 \quad (1) \quad \text{if } N - M \text{ is even (odd).} \quad P(M, \mu) \text{ is plotted in Fig.2, which is the probability of a boson at } \mu \text{ if the condensate starts with } M \text{ and finally arrives at thermal-equilibrium. It is found that } P(M, \mu) \text{ depends only on } M/N \text{ as shown in Fig.2.}
\]

Obviously, due to \([12,13,14] \), \(P(-M, \mu) = P(M, -\mu) \). There are the following features.

(i) The Stern-Gerlach splitting of spinor condensates is described by \(P(M, \mu) \), which is system-independent, i.e., it does not depend on the species and the details of interactions, but is essentially determined by symmetry.

(ii) Let \(N_\mu \) be the number of particles at \(\mu \) in the initial state. \(P(M, \mu) \) also does not depend on the details of \(N_{mn} \) but only on \(N_1 - N_{-1} = M \). This coincides with the experiment by Stenger, et al (Fig.2 of Ref. [2]).

(iii) \(P(M, \mu) \) depends on \(M/N \) nearly linearly.

(iv) When \(M = 0 \), \(P(M, \mu) = 1/4 \), and \(1/4 \) when \(\mu = 1, 0, \) and \(-1 \). This is also supported by the above experiment.

(v) When \(M = N \), \(P(M, \mu) = 1/0,0 \) and 0 if \(\mu = 1, 0, \) and \(-1 \) as expected.

(vi) When \(M = N/2 \), \(P(M, 1) = 5/8 \), \(P(M, 0) = 2/8 \), and \(P(M, -1) = 1/8 \). This is supported by the experiment as shown in Fig.5 of Ref. [10].

In fact, disregarding any set of initial \(N_1, N_0, \) and \(N_{-1} \), the Stern-Gerlach splitting can be predicted based on (22) or Fig.2.

In summary, it is recalled that, in explaining the Stern-Gerlach splitting, the details of dynamics is not involved. Instead, the assumption of arriving at thermal-equilibrium together with a strict symmetry consideration play the role. Nonetheless, in the above derivation, the total spin-state is assumed to be completely symmetric. This is exactly true for the ground band and therefore the above theory is rigorously valid at the low-temperature limit. When the temperature is nonzero but is still low (say, \(T \approx 100 \nu k \)) so that the number of excited particles is still small, the above theory remains qualitatively valid.

Symmetry is well known to be crucial for various few-body systems. This paper gives an example that many-body systems are also governed by symmetry.

\[
P(M, \mu) = \frac{2}{N - M + 2 - \gamma} \sum_{S} P_{\mu}^{S, M}
\]

where \(\gamma = 0 \) (1) if \(N - M \) is even (odd). \(P(M, \mu) \) is plotted in Fig.2, which is the probability of a boson at \(\mu \) if the condensate starts with \(M \) and finally arrives at thermal-equilibrium. It is found that \(P(M, \mu) \) depends only on \(M/N \) as shown in Fig.2. Obviously, due to \([12,13,14]\), \(P(-M, \mu) = P(M, -\mu) \). There are the following features.

(i) The Stern-Gerlach splitting of spinor condensates is described by \(P(M, \mu) \), which is system-independent, i.e., it does not depend on the species and the details of interactions, but is essentially determined by symmetry.

(ii) Let \(N_\mu \) be the number of particles at \(\mu \) in the initial state. \(P(M, \mu) \) also does not depend on the details of \(N_{mn} \) but only on \(N_1 - N_{-1} = M \). This coincides with the experiment by Stenger, et al (Fig.2 of Ref. [2]).

(iii) \(P(M, \mu) \) depends on \(M/N \) nearly linearly.

(iv) When \(M = 0 \), \(P(M, \mu) = 1/4 \), and \(1/4 \) when \(\mu = 1, 0, \) and \(-1 \). This is also supported by the above experiment.

(v) When \(M = N \), \(P(M, \mu) = 1/0,0 \) and 0 if \(\mu = 1, 0, \) and \(-1 \) as expected.

(vi) When \(M = N/2 \), \(P(M, 1) = 5/8 \), \(P(M, 0) = 2/8 \), and \(P(M, -1) = 1/8 \). This is supported by the experiment as shown in Fig.5 of Ref. [10].

In fact, disregarding any set of initial \(N_1, N_0, \) and \(N_{-1} \), the Stern-Gerlach splitting can be predicted based on (22) or Fig.2.

In summary, it is recalled that, in explaining the Stern-Gerlach splitting, the details of dynamics is not involved. Instead, the assumption of arriving at thermal-equilibrium together with a strict symmetry consideration play the role. Nonetheless, in the above derivation, the total spin-state is assumed to be completely symmetric. This is exactly true for the ground band and therefore the above theory is rigorously valid at the low-temperature limit. When the temperature is nonzero but is still low (say, \(T \approx 100 \nu k \)) so that the number of excited particles is still small, the above theory remains qualitatively valid.

Symmetry is well known to be crucial for various few-body systems. This paper gives an example that many-body systems are also governed by symmetry.

\[
P(M, \mu) = \frac{2}{N - M + 2 - \gamma} \sum_{S} P_{\mu}^{S, M}
\]

where \(\gamma = 0 \) (1) if \(N - M \) is even (odd). \(P(M, \mu) \) is plotted in Fig.2, which is the probability of a boson at \(\mu \) if the condensate starts with \(M \) and finally arrives at thermal-equilibrium. It is found that \(P(M, \mu) \) depends only on \(M/N \) as shown in Fig.2. Obviously, due to \([12,13,14]\), \(P(-M, \mu) = P(M, -\mu) \). There are the following features.

(i) The Stern-Gerlach splitting of spinor condensates is described by \(P(M, \mu) \), which is system-independent, i.e., it does not depend on the species and the details of interactions, but is essentially determined by symmetry.

(ii) Let \(N_\mu \) be the number of particles at \(\mu \) in the initial state. \(P(M, \mu) \) also does not depend on the details of \(N_{mn} \) but only on \(N_1 - N_{-1} = M \). This coincides with the experiment by Stenger, et al (Fig.2 of Ref. [2]).

(iii) \(P(M, \mu) \) depends on \(M/N \) nearly linearly.

(iv) When \(M = 0 \), \(P(M, \mu) = 1/4 \), and \(1/4 \) when \(\mu = 1, 0, \) and \(-1 \). This is also supported by the above experiment.

(v) When \(M = N \), \(P(M, \mu) = 1/0,0 \) and 0 if \(\mu = 1, 0, \) and \(-1 \) as expected.

(vi) When \(M = N/2 \), \(P(M, 1) = 5/8 \), \(P(M, 0) = 2/8 \), and \(P(M, -1) = 1/8 \). This is supported by the experiment as shown in Fig.5 of Ref. [10].

In fact, disregarding any set of initial \(N_1, N_0, \) and \(N_{-1} \), the Stern-Gerlach splitting can be predicted based on (22) or Fig.2.

In summary, it is recalled that, in explaining the Stern-Gerlach splitting, the details of dynamics is not involved. Instead, the assumption of arriving at thermal-equilibrium together with a strict symmetry consideration play the role. Nonetheless, in the above derivation, the total spin-state is assumed to be completely symmetric. This is exactly true for the ground band and therefore the above theory is rigorously valid at the low-temperature limit. When the temperature is nonzero but is still low (say, \(T \approx 100 \nu k \)) so that the number of excited particles is still small, the above theory remains qualitatively valid.

Symmetry is well known to be crucial for various few-body systems. This paper gives an example that many-body systems are also governed by symmetry.