Risk factors for late-onset generalized anxiety disorder: results from a 12-year prospective cohort (The ESPRIT study)

X. Zhang, J Norton, I. Carriere, K Ritchie, I. Chaudieu, M-L Ancelin

To cite this version:

X. Zhang, J Norton, I. Carriere, K Ritchie, I. Chaudieu, et al.. Risk factors for late-onset generalized anxiety disorder: results from a 12-year prospective cohort (The ESPRIT study). Translational Psychiatry, Nature Pub. Group, 2015, 5, pp.e536. 10.1038/tp.2015.31 . hal-02400494

HAL Id: hal-02400494
https://hal.umontpellier.fr/hal-02400494
Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Generalized anxiety disorder (GAD) is a chronic and highly prevalent disorder associated with increased disability and mortality in the elderly. Treatment is difficult with low rate of full remission, thus highlighting the need to identify early predictors for prevention in elderly people. The aim of this study is to identify and characterize incident GAD predictors in elderly people. A total of 1711 individuals aged 65 years and above and free of GAD at baseline were randomly recruited from electoral rolls between 1999 and 2001 (the prospective ESPRIT study). The participants were examined at baseline and five times over 12 years. GAD and psychiatric comorbidity were diagnosed with a standardized psychiatric examination, the Mini-International Neuropsychiatric Interview on the basis of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, fourth edition) criteria and validated by a clinical panel. During the follow-up, 8.4% (95% confidence interval = 7.1–9.7%) of the participants experienced incident GAD, 80% being first episodes; the incident rate being 10 per 1000 person-years. The principal predictors of late-onset incident GAD over 12 years derived from a multivariate Cox model were being female, recent adverse life events, having chronic physical (respiratory disorders, arrhythmia and heart failure, dyslipidemia, cognitive impairment) and mental (depression, phobia and past GAD) health disorders. Poverty, parental loss or separation and low affective support during childhood, as well as history of mental problems in parents were also significantly and independently associated with incident GAD. GAD appears as a multifactorial stress-related affective disorder resulting from both proximal and distal risk factors, some of them being potentially modifiable by health care intervention.
MATERIALS AND METHODS

Participants

Community dwelling persons 65 years and over were recruited by random selection from the 15 electoral rolls of the Montpellier district between March 1999 and February 2001 as part of the prospective cohort ESPRIT study of late-life psychiatric disorder. Of the persons contacted, 72.7% accepted. Refusers were replaced by another subject drawn at random from the same electoral division such that each division is equally represented. Subjects refusing were slightly older and more likely to live alone than non-refusers. Each participant attended a half-day examination at inclusion and was re-examined with a detailed psychiatric interview on five further occasions at intervals of 2, 4, 7, 10 and 12 years. A flow chart is given as Supplementary Figure S1. Persons with dementia at baseline (n = 70) were excluded from the present study. Dementia was diagnosed by a neurologist as part of a standardized examination and validated by a panel of independent neurologists, as described previously. Of the 2189 dementia-free participants included in the ESPRIT study, 215 were excluded because of missing data on GAD at baseline and 91 because of prevalent GAD. Of this sample, 172 participants were missing all follow-up examinations (33 died; 55 were lost to follow-up and 84 had no GAD data). The population incidence rate was evaluated on 1711 participants with data available for at least one of the five follow-ups. A further 245 subjects with missing data on covariates (for example, waist-to-hip ratio (7.8%) and visual impairment (6.7%), see Table 1) were excluded from the multivariate analyses leaving 1466 subjects in the final sample. The study protocol was approved by the Ethics Committee of the University Hospital of Kremlin-Bicêtre and written informed consent was obtained from each participant.

Psychiatric disorder assessment

The diagnosis of lifetime anxiety disorder (GAD, social phobia, specific phobia and agoraphobia, panic disorder, obsessive compulsive disorder and PTSD) and major depression were performed by psychologists and psychiatric nurses according to DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, fourth edition) criteria and using the MINI (Mini-International Neuropsychiatric Interview; French version 5.00), as described previously. The interviewers were initially trained for a 3-month period under the supervision of psychiatrists from the Department of Adult Psychiatry at Montpellier University Hospital. The MINI is a standardized and structured diagnostic examination validated within the general population setting, which uses a nonhierarchical case-identification procedure, thus permitting the diagnosis of psychiatric comorbidities. GAD was established using the current definition implying the presence of symptoms for at least 6 months. During the follow-up, MINI questions referred to the period since the previous examination, 2 or 3 years before. The positive cases were reviewed by a panel of independent psychiatrists as described previously.

Baseline socio-demographic, lifestyle, biological and clinical variables

The standardized interview included questions on socio-demographic characteristics (age, sex, education level (≥5 years)), smoking (current versus ever), alcohol consumption (≥12 g per day), diabetes (glycemia ≥ 7 mmol/l or treated), hypercholesterolemia (cholesterol ≥ 6.2 mmol/l or treated), hypertension (resting blood pressure ≥ 160/95 mm Hg or treated), measures of weight, height, waist and hip, as well as binary clinical variables, for example, respiratory disorders, osteoporosis, thyroid disorder, cancer, physical activity. Body mass index (expressed as kg/m²) and waist-to-hip ratio were calculated. Detailed medical questionnaires (with additional information from general practitioners) provided information on history of ischemic pathologies (angina, myocardial infarction, stroke, cardiovascular surgery and arteritis) and nonischemic cardiac pathologies (arrhythmia and heart failure). The participants were asked to show medical prescriptions, drug packages and any other relevant information to record all past-month somatic and psychotropic medications taken. Exposure to adverse life events in the past year was assessed using the TOSCA questionnaire. Mobility limitation, visual field impairments and other psychiatric disorders were determined as described. Venous blood samples were taken at baseline after 12-h fasting and lipid levels were measured. Global cognitive function was measured using the Mini-Mental State Examination and a score < 26 was considered to be indicative of cognitive impairment. Verbal fluency and visual memory were assessed by reference to Isaacs’ Set and the Benton Visual Retention Test, respectively. The Trail Making Tests A and B assessed psychomotor speed and executive function. Low cognitive performance was defined as scoring in the lowest tertile except for the timed Trail Making Test (highest).

Early environment

A self-report questionnaire (with binary yes/no response categories) examining traumatic experiences during childhood and adolescence was completed by 1365 of the 1604 participants (85.1%) at the second follow-up assessment by which time the study interviewers had established close relationships, facilitating the request for sensitive information. The subjects having not completed this questionnaire were more likely to have cognitive impairment and mobility limitation (P < 0.01) but did not differ regarding all the other characteristics including past GAD, incident GAD and other psychiatric disorders. It covered adverse exposure to severe abuse (physical, verbal or sexual abuse, neglect or excessive punishment), parental loss or separation, parents with mental disorder, alcohol or drugs problems, conflict at home, financial difficulties, excessive sharing of parental problems, war and natural catastrophe. Protective factors included parental affection, availability of an adult friend, having had a happy childhood or a normal education, parents perceived as doing their best, feeling happy at school and raised by both parents. Low affective support was defined as having reported less than six protective factors.

Statistical analysis

Prevalent GAD cases were excluded to avoid a methodological bias related to reverse causality (impossibility of separating cause and effect over time). Chi-square tests compared the characteristics of participants included in the analyses with those excluded. The incidence rate over the 12-year follow-up was calculated for 1711 participants with no prevalent GAD at baseline and with data available for at least one of the five follow-ups. For the calculation of the incidence rate, a participant is counted only once as a case, irrespective of the number of successive episodes (events) he/she may have experienced during the follow-up, and the date of onset corresponded to the first episode. The exact date of onset during the follow-up period being potentially imprecise or not known, onset was therefore considered to have occurred midway between the two examinations. Population incidence was estimated by dividing the number of new cases that occurred during the follow-up by the total number of GAD-free years lived by the cohort from baseline, expressed as number of new cases per 1000 person-years. A Cox model with delayed entry was used in the longitudinal analysis of incident GAD. The proportional-hazards assumptions were tested using Martingale residuals. Multivariate models included baseline covariates meeting Martingale residual criteria for proportionality of risk and associated with incident GAD in Cox models adjusted for sex (P < 0.15) and were reduced using a backward selection procedure keeping in the final model all the covariates significant at P < 0.15 (model 1). Model 2 was further adjusted for past GAD. These models were performed with the subjects having no missing data on any covariates included in the most complete model. Additional analyses were performed with the participants without a history of past GAD (‘first-onset cases’) as well as, separately in those termed as ‘recurrent’ that is with past GAD. SAS (version 9.3, SAS Institute, Cary, NC, USA) was used for the statistical analysis and all tests were two-tailed, and the significance level was P < 0.05.

RESULTS

Baseline characteristics of the sample

Of the 2189 non-demented participants in the ESPRIT study, 215 were excluded because of missing data on GAD at baseline, as well as 91 participants with prevalent GAD, and a further 172 (9.1%) had missing data for follow-up (see Supplementary Figure S1). Compared with the 1711 participants included in the longitudinal analysis, the 478 excluded participants were significantly older with a lower education level and more frequently having ischemic pathologies (P = 0.02), respiratory disorders (P = 0.004), thyroid disorder (P = 0.01), as well as cognitive impairment, depression, anxiety disorder and more frequent psychotropic medication use (P < 0.0001).
Table 1. Incident cases of GAD over 12-year follow-up according to baseline variables

Characteristic	Total N	No GAD, N = 1568	Incident GAD, N = 143	P*
Age, years (mean, s.d.)	1711	72.6 (mean)	5.1 (s.d.)	
Socio-demographic characteristics				
Sex (female)	1711	885	56.44	
Living aloneb	1708	412	26.33	
Childless	1624	151	10.15	
Education level (≥5 years)	1710	777	49.59	
Lifestyle				
Alcohol consumption (≥12 g per day)	1681	623	40.45	
Smoking (current or ever)	1710	667	42.57	
Physical activity	1513	563	40.62	
BMI (≥25 kg/m²)	1701	724	46.41	
WHR (≥0.94)	1578	313	21.72	
Lifetime adverse events				
Recent adverse events (≥1)	1667	872	57.11	
Parental loss or separation	1365	154	12.33	
Parents with mental problems	1365	225	18.01	
Parents had problems with alcohol or drugs	1365	92	7.37	
Conflict, nervous stress at homeb	1365	195	15.61	
Poverty, financial difficulties	1365	275	22.02	
Parents too often sharing their problems with children	1365	164	13.13	
Parent or adult friend affection	1365	1026	82.15	
Biological and clinical variables				
LDL-cholesterol (≥4.01 mmol l⁻¹)	1688	500	32.30	
HDL-cholesterol (≥1.73 mmol l⁻¹)	1698	1042	66.92	
TG (≥0.95 mmol l⁻¹)	1698	1050	67.44	
Hypercholesterolemia (cholesterol ≥ 6.2 mmol l⁻¹ or treated)	1702	863	55.32	
Hypertension (resting blood pressure ≥160/95 mm Hg or treated)	1711	695	44.32	
Diabetes (glycemia ≥ 7 mmol l⁻¹ or treated)	1697	134	8.61	
Ischemic pathologies (≥1)	1711	220	14.03	
Arrhythmia and heart failure	1705	198	12.67	
Respiratory disorders (dyspnea, asthma, or bronchitis)	1711	73	4.66	
Osteoporosis	1696	273	17.54	
Thyroid disorder	1700	111	7.13	
At least one chronic disorder	1711	973	62.05	
MMSE (<26)#	1703	196	12.56	
Iscaas Set test score (lowest tertile)	1682	394	25.52	
Benton Visual Retention Test score (lowest tertile)	1695	312	20.09	
Trail Making Test A score (highest tertile)	1686	419	27.12	
Trail Making Test B score (highest tertile)	1641	421	27.97	
Visual impairment	1597	88	6.02	
Hearing impairment	1703	64	4.10	
Mobility limitation	1705	59	3.78	
Number of somatic medications ≥4	1711	698	44.52	

Mental health

- Use of psychotropic medication
 - 1711 186 11.86 26 18.18 0.03
- Major depression
 - 1698 24 1.54 10 7.04 0.0001
- Anxiety disorder (without GAD)
 - 1701 141 9.04 29 20.42 0.0003
- Phobia
 - 1702 133 8.53 27 18.88 0.001
- Posttraumatic stress disorder
 - 1711 2 0.13 1 0.70 NA¹
- Panic disorder
 - 1710 3 0.19 0 0.00 NA¹
- Obsessive compulsive disorder
 - 1711 6 0.38 1 0.70 NA¹
- Past GAD
 - 1711 85 5.42 29 20.28 0.0001

Abbreviations: BMI, body mass index; GAD, generalized anxiety disorder; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MMSE, Mini-Mental State Examination; TG, triglycerides; WHR, waist-to-hip ratio. *Cox model with delayed entry adjusted for age as time scale and sex (except when sex was examined). Variables not meeting Martingale residual criteria for proportionality of risk. At least one recent adverse event during the past year. Chronic disorders correspond to hypercholesterolemia, hypertension, diabetes, asthma, osteoporosis, thyroid disorder and recent cancer. Not applicable (NA) due to the low number of cases.
The baseline characteristics of the participants included in the analyses are shown in Table 1. The mean (s.d.) age was 72.6 (5.1) years with 58.4% women. The prevalence of major depression at baseline in the sample was 2.0% and that of phobia was 9.4%. PTSD and panic disorder each accounted for 0.2% and obsessive compulsive disorder for 0.4%. Psychotropic medication was taken by 12.4% of the participants, antidepressant for 7.2%; obsessive compulsive disorder for 0.4%; and antipsychotics for 0.4%. Psychotropic medication, were significantly associated with incident GAD, whereas high low-density lipoprotein (LDL)-cholesterol decreased the risk (Table 2). A marginal positive association was also observed with high waist-to-hip ratio. The same results were found when restricting the analyses to non-demented participants having completed the baseline examination (n=1173, 84.4% (95% CI=7.1–9.7%) of the participants without GAD at baseline developed GAD over 12 years; the incident rate being 10 per 1000 person-years. Multivariate Cox models included baseline covariates meeting Martingale residual criteria for proportionality of risk and associated with incident GAD in Cox models adjusted for age and sex (P<0.15) and were used. The same results were found when restricting the analyses to non-demented participants having completed the baseline examination (n=1173, 84.4% (95% CI=7.1–9.7%) of the participants without GAD at baseline developed GAD over 12 years; the incident rate being 10 per 1000 person-years. Multivariate Cox models included baseline covariates meeting Martingale residual criteria for proportionality of risk and associated with incident GAD in Cox models adjusted for age and sex (P<0.15) and were used. The same results were found when restricting the analyses to non-demented participants having completed the baseline examination (n=1173, 84.4% (95% CI=7.1–9.7%) of the participants without GAD at baseline developed GAD over 12 years; the incident rate being 10 per 1000 person-years. Multivariate Cox models included baseline covariates meeting Martingale residual criteria for proportionality of risk and associated with incident GAD in Cox models adjusted for age and sex (P<0.15) and were used.
the AMSTEL study. 3.9% of the participants without baseline psychopathology developed GAD over 3 years (estimated incident rate was 12 per 1000 person-years) and only a personal history of depression and/or anxiety was significantly associated with incident GAD symptoms, and decline in incapacity for activities of daily living was specific to GAD comorbid with depression.6 In the NESARC study, 1.6% were new cases of GAD over 3 years (estimated incident rate was 5 per 1000 person-years) and the predictors were being female, narcissistic personality, and PTSD, whereas no significant associations were found with major depression or phobia.7 Both of these studies were limited by only one follow-up examination over 3 years with thus a lower number of incident cases and statistical power. None of them examined psychotropic medication, early environment and chronic or metabolic disorders nor did they differentiate recurrent from first-episode GAD.

In our study, major depression, phobia and past GAD were independent risk factors for incident GAD. Depression and female gender were observed to be risk factors for both first-onset and recurrent GAD, whereas phobia was a significant risk factor for first-onset GAD only, however, the low number of recurrent cases precludes drawing definite conclusions. Taking psychotropic medication was associated with recurrent GAD but not with first-onset GAD despite a > 3-fold higher number of cases, which may reflect a low efficacy of medications in preventing GAD relapse. However, the lack of information regarding medication indication and prescription precluded definite conclusions. The number of cases of other anxiety disorders, especially PTSD and panic disorder, was very low in this elderly sample (n = 3; cf. Table 1) and they were thus not examined. Their low prevalence suggests that they are unlikely to be significant risk factors.

A key finding from this study is that first episodes of GAD in late life are more common than previously believed and are related to specific risk factors, including environmental, intrinsic as well as extrinsic factors, notably age-related chronic disorders (respiratory disorders, arrhythmia and heart failure), lipid levels, adiposity and cognitive impairment. Stress has a significant role in the etiology of these disorders, and they are also known in themselves to generate chronic stress. Conversely, dysfunction of the autonomic nervous system and hypothalamic–pituitary–adrenal (HPA) axis has been reported in GAD.20,21 Reduced lung function, asthma and chronic obstructive pulmonary disease have been associated with prevalent GAD22,23 and clinical studies on pulmonary rehabilitation treatments have been shown to reduce anxiety symptoms.24 There is some evidence of shared neural substrates for HPA and the respiratory control system with bidirectional connections having been reported for dyspnea.25 Heart failure and arrhythmia are also considered as stress-related diseases associated with dysregulation of autonomic nervous system and HPA axes.26,27 A recent case–control study in young adults reported an association between worry, the cardinal symptom of GAD, and a diminished heart rate stress response independent of GAD, with a possible suppression of adrenergic sympathetic stress responses in GAD specifically.28

In response to chronic stress, the de-regulation of the autonomic nervous system and HPA axis could lead to metabolic alterations.29 In our study, lipid levels and adiposity were associated with GAD differently. The fact that higher abdominal obesity but not general body mass was a risk factor for incident GAD is consistent with an over-reactivity of the HPA axis. On the other hand, high LDL-cholesterol but not ischemic or vascular pathologies were associated with decreased GAD incidence, which may be consistent with neural mechanisms. Controversial findings have been found in cross-sectional studies with nonsignificant, positive or negative associations with cholesterol.30 A few small studies showed an inverse association between anxiety and LDL-cholesterol in young adults.31,32 LDL-cholesterol is the major carrier of cholesterol, notably required for the regulation of cell membrane viscosity. Increase in serum LDL-cholesterol could be associated with increased brain cell membrane cholesterol, and changes in density and functioning of neurotransmitter transporters or receptors.33 We have already reported a negative association and interaction with serotonin transporter for late-life depression34 and experimental studies suggested that cholesterol may influence cholecystokinin and GABA receptors.35

Cognitive function was previously examined using Mini-Mental State Examination in two prospective studies, the AMSTEL study on GAD3 and the Longitudinal Aging Study Amsterdam on anxiety symptoms,36,37 showing no significant associations. A few small case–control studies supported an association between GAD and deficits in cognitive control (that is, inhibitory control in interference task, processing speed and shifting of attention in the Trail Making Test, verbal fluency).38 In our study, performance on the Trail Making Test and Mini-Mental State Examination were also associated with incident GAD in the Cox model only adjusted for sex (cf. Table 1) but not in multivariate models. Verbal fluency gave the most significant and robust data, and was the only task specifically associated with cases of GAD occurring after 50 years of age.39 The directionality between anxiety and cognitive control is currently uncertain; our results indicating that pre-existing cognitive deficits, notably tests depending on prefrontal processing, increase the risk of late-onset GAD.

A final noteworthy finding from our study is that in contrast with the AMSTEL study, lifetime stress exposure to adverse events, both recent and distal (more than 50 years before), were independently associated with incident GAD. Lifetime threatening events have been associated with the onset of GAD in young adults.5 Two cross-sectional studies did not find significant associations between prevalent GAD in elderly people and recent or early adverse events, for example, sexual and physical abuse, parental loss and neglect.38,39 In our study, poverty, parental loss or separation and low affective support were significantly associated with incident GAD. Negative parenting behavior and insecure attachment have already been associated with GAD in children and young adults.40,41 Exposure to stressful events has been associated with CNS dysfunction and marked long-term changes in brain circuitry regulating stress reactivity involving the HPA axis.42 We have already reported in this cohort that lifetime GAD was associated with increased secretion of cortisol under stress conditions.21 We also found an association between early adverse events and worse verbal fluency,43 as well as between cortisol levels and verbal fluency.44 Interestingly, in randomized controlled trials, SSRI antidepressants have been reported to improve both GAD symptomatology and also neuropsychological functioning, associated with a decline in cortisol and cognitive improvement.45–47 Whether the HPA axis could act as a mediating factor between stressful events and GAD remains to be examined. In the present study, we also found that a history of mental disorder in parents increased the risk of incident GAD as well reported in younger cohorts.5 This could reflect both early shared environment and genetic vulnerability to anxiety disorder, considering the 30% heritability of GAD and familial link between subtypes of anxiety disorders.48

Limitations to this study should be considered when interpreting the results. Selection bias concerned the recruitment from electoral rolls, the response rate, and the exclusion of institutionalized elderly people, which limits the extent to which these findings can be generalized to the wider community of older adults as study volunteers tend to be younger, better educated and healthier than the overall population. The exclusion of some participants with missing data is also a potential source of bias, these people being older with lower educational level and worse physical and mental health, and thus more likely to be diagnosed with GAD. Although the loss during the 12-year follow-up period was low for an epidemiological study in elderly people and
physical illness well represented in this sample, we could not exclude bias due to loss to follow-up of a more disabled group, which may have led to an underestimation of the actual number of cases and also reduced the overall power of the study. This may also limit the generalizability of our results, and associations may have thus been underestimated. A further limitation was that some of the covariates were self-reported and retrospective (notably for life events especially during childhood) and may have been subject to recall bias with GAD participants responding more negatively about their health. However, similar associations were generally seen in the unadjusted and adjusted analysis, suggesting this is to be unlikely. Participants diagnosed with probable/possible dementia at inclusion were excluded from this analysis to minimize recall bias. However, as such individuals may also have higher rates of anxiety symptoms this could decrease the overall power of the study, possibly underestimating the associations found. Despite extensive adjustments, the possibility remains that unmeasured factors such as other social environment and personality traits may also be involved and confound the associations. Finally, since multiple analyses have been performed we cannot exclude that some associations were due to chance. However, many of the associations reaching traditional significance levels remained significant even after applying overly conservative multiple testing correction.

Conversely, this prospective study is based on a large sample representative of community-dwelling elderly people with five follow-up waves over 12 years, which enhances the accuracy and provides sufficient stability of incidence rate estimates. Extensive information was obtained on clinical status and medication (notably psychotropic medication), which was verified by examining prescription and medications, thus minimizing exposure misclassification. We were able to obtain differential diagnosis of specific anxiety disorders using a standardized psychiatric examination on the basis of DSM-IV criteria with clinical validation of the cases, thus minimizing false positive. Diagnosis was assessed by trained staff (psychologists and psychiatric nurses), which also allowed minimizing false negative. The exact date of GAD event was not always known and the onset was considered to have occurred midway between two assessments to minimize potential recall bias. In contrast with previous studies, we controlled for a large number of potential confounders, particularly lifestyle, early and recent adverse events, measures of physical and mental comorbidities and history of GAD (with a possible risk of over-adjustment), and we could also evaluate predictors of first-onset of DSM-IV mood, anxiety, and substance use disorders in older adults: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2011; 72:144–155.

Ritchie K, Artero S, Beluche I, Ancelin ML, Mann A, Dupuy AM et al. Prevalence of DSM-IV psychiatric disorder in the French elderly population. Br J Psychiatry 2004; 184:147–152.

Ancelin ML, Ripoche E, Dupuy AM, Barberger-Gateau P, Auriacombe S, Rouaud O et al. Sex differences in the associations between lipid levels and incident dementia. J Alzheimers Dis 2013; 34:519–528.

Ritchie K, Norton J, Mann A, Carrierie I, Ancelin ML. Late-onset agoraphobia: general population incidence and evidence for a clinical subtype. Am J Psychiatry 2013; 170:790–798.

Lecrubier Y, Sheehan D, Weiller E, Amorim P, Bonora I, Sheehan K et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CID. Eur Psychiatry 1997; 12:224–231.

Harwood RH, Prince MJ, Mann AH, Ebrahim S. The prevalence of diagnoses, impairments, disabilities and handicaps in a population of elderly people living in a defined geographical area: the Gospel Oak project. Age Ageing 1998; 27:707–714.

Norton J, Ancelin ML, Stewart R, Beer C, Ritchie K, Carrierie I. Anxiety symptoms and disorder predict activity limitations in the elderly. J Affect Disord 2012; 141:276–285.

Ancelin ML, Carrierie I, Boulenger JP, Malafosse A, Stewart R, Cristol JP et al. Gender and genotype modulation of the association between lipid levels and depressive symptomatology in community-dwelling elderly (the ESPIRIT study). Biol Psychiatry 2010; 68:125–132.

Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12:189–198.

Isacs B, Kennes AT. The Set test as an aid to the detection of dementia in old people. Br J Psychiatry 1973; 123:467–470.

Benton A. Manuel pour l’Application du Test de Rétention Visuelle: Applications Cliniques et Expérimentales. Centre de Psychologie Appliquée: Paris, France, 1965.

Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958; 8:271–276.

Ritchie K, Jaussent I, Stewart R, Dupuy AM, Courert P, Ancelin ML et al. Association of adverse childhood environment and 5-HTTLPR Genotype with late-life depression. J Clin Psychiatry 2009; 70:1281–1288.

Hoehn-Saric R, McLeod DR, Funderburk F, Kowalski P. Somatic symptoms and physiologic responses in generalized anxiety disorder and panic disorder: an ambulatory monitor study. Arch Gen Psychiatry 2004; 61:913–921.

Chaudieu I, Beluche I, Norton J, Boulenger JP, Ritchie K, Ancelin ML. Abnormal reactions to environmental stress in elderly persons with anxiety disorders:

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
The ESPIRIT project is financed by the Agence Nationale de la Recherche (ANR) Project 07 LIVF 004, and an unconditional grant from Novartis. XZ is the holder of a doctoral fellowship from the Chinese Government (China Scholarship Council n° 201206940015). The funders had no role in the design and conduct of the study; in data collection, management, analysis, interpretation of the data; or writing the report preparation, review or approval of the manuscript.

REFERENCES
1 Kessler RC, Keller MB, Wittchen HU. The epidemiology of generalized anxiety disorder. Psychiatr Clin North Am 2001; 24:19–39.
2 Hoge EA, Ikvovic A, Fricchione GL. Generalized anxiety disorder: diagnosis and treatment. Br Med J 2012; 345:37–42.
3 Parmentier H, Garcia-Campayo J, Prieto R. Comprehensive review of generalized anxiety disorder in primary care in Europe. Curr Med Res Opin 2013; 29:355–367.
4 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). American Psychiatric Press: Washington, DC, USA, 1994.
5 Moreno-Peral P, Conejo-Ceron S, Motrico E, Rodriguez-Morejon A, Fernandez A, Garcia-Campayo J et al. Risk factors for the onset of panic and generalized anxiety disorders in the general adult population: a systematic review of cohort studies. J Affect Disord 2014; 168C:337–348.
6 Schoevers RA, Deeg DJ, van Tilburg W, Beeckman AT. Depression and generalized anxiety disorder: co-occurrence and longitudinal patterns in elderly patients. Am J Geriatr Psychiatry 2005; 13:31–39.
7 Chou RL, Mackenzie CS, Liang K, Sareen J. Three-year incidence and predictors of first-onset of DSM-IV mood, anxiety, and substance use disorders in older adults: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2011; 72:144–155.
8 Ritchie K, Artero S, Beluche I, Ancelin ML, Mann A, Dupuy AM et al. Prevalence of DSM-IV psychiatric disorder in the French elderly population. Br J Psychiatry 2004; 184:147–152.
9 Ancelin ML, Ripoche E, Dupuy AM, Barberger-Gateau P, Auriacombe S, Rouaud O et al. Sex differences in the associations between lipid levels and incident dementia. J Alzheimers Dis 2013; 34:519–528.
10 Ritchie K, Norton J, Mann A, Carrierie I, Ancelin ML. Late-onset agoraphobia: general population incidence and evidence for a clinical subtype. Am J Psychiatry 2013; 170:790–798.
11 Lecrubier Y, Sheehan D, Weiller E, Amorim P, Bonora I, Sheehan K et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CID. Eur Psychiatry 1997; 12:224–231.
12 Harwood RH, Prince MJ, Mann AH, Ebrahim S. The prevalence of diagnoses, impairments, disabilities and handicaps in a population of elderly people living in a defined geographical area: the Gospel Oak project. Age Ageing 1998; 27:707–714.
13 Norton J, Ancelin ML, Stewart R, Beer C, Ritchie K, Carrierie I. Anxiety symptoms and disorder predict activity limitations in the elderly. J Affect Disord 2012; 141:276–285.
14 Ancelin ML, Carrierie I, Boulenger JP, Malafosse A, Stewart R, Cristol JP et al. Gender and genotype modulation of the association between lipid levels and depressive symptomatology in community-dwelling elderly (the ESPIRIT study). Biol Psychiatry 2010; 68:125–132.
15 Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12:189–198.
16 Isaacs B, Kennes AT. The Set test as an aid to the detection of dementia in old people. Br J Psychiatry 1973; 123:467–470.
17 Benton A. Manuel pour l’Application du Test de Rétention Visuelle: Applications Cliniques et Expérimentales. Centre de Psychologie Appliquée: Paris, France, 1965.
18 Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958; 8:271–276.
19 Ritchie K, Jaussent I, Stewart R, Dupuy AM, Courert P, Ancelin ML et al. Association of adverse childhood environment and 5-HTTLPR Genotype with late-life depression. J Clin Psychiatry 2009; 70:1281–1288.
20 Hoehn-Saric R, McLeod DR, Funderburk F, Kowalski P. Somatic symptoms and physiologic responses in generalized anxiety disorder and panic disorder: an ambulatory monitor study. Arch Gen Psychiatry 2004; 61:913–921.
21 Chaudieu I, Beluche I, Norton J, Boulenger JP, Ritchie K, Ancelin ML. Abnormal reactions to environmental stress in elderly persons with anxiety disorders:
Late-onset generalized anxiety disorder predictors

X Zhang et al

37 Zhang X, Norton J, Carriére I, Ritchie K, Chaudieu I, Ancelin ML. Generalized anxiety in community-dwelling elderly: prevalence and clinical characteristics. J Affect Disord 2014; 172C: 24–29.

38 Goncalves DC, Pachana NA, Byrne GJ. Prevalence and correlates of generalized anxiety disorder among older adults in the Australian National Survey of Mental Health and Well-Being. J Affect Disord 2011; 132: 223–230.

39 Beekman AT, de Beurs E, van Balkom AJ, Deeg DJ, van Dyck R, van Tilburg W. Anxiety and depression in later life: co-occurrence and complexity of risk factors. Am J Psychiatry 2000; 157: 89–95.

40 Newman MG, Llera SJ, Erickson TM, Przeworski A, Castonguay LG. Worry and generalized anxiety disorder: a review and theoretical synthesis of evidence on nature, etiology, mechanisms, and treatment. Ann Rev Clin Psychol 2013; 9: 275–297.

41 Beesdo K, Pine DS, Lieb R, Wittchen HJ. Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Arch Gen Psychiatry 2010; 67: 47–57.

42 Faravelli C, Lo Sauro C, Lelli P, Pietrini F, Lazzaretto L, Godini L et al. The role of life events and HPA axis in anxiety disorders: a review. Curr Pharm Des 2012; 18: 5663–5674.

43 Ritchie K, Jausset I, Stewart R, Dupuy AM, Courert P, Malafosse A et al. Adverse childhood environment and late-life cognitive functioning. Int J Geriatr Psychiatry 2011; 26: 503–510.

44 Beluche I, Carriere I, Ritchie K, Ancelin ML. A prospective study of diurnal cortisol and cognitive function in community-dwelling elderly people. Psychol Med 2010; 40: 1039–1049.

45 Blay SL, Marinho V. Anxiety disorders in old age. Curr Opin Psychiatry 2012; 25: 462–467.

46 Butters MA, Bhalla RK, Andreouss C, Wetherell JL, Mantella R, Begley AE et al. Changes in neuropsychological functioning following treatment for late-life generalised anxiety disorder. Br J Psychiatry 2011; 199: 211–218.

47 Lenze EJ, Mantella RC, Shi P, Goate AM, Nowotny P, Butters MA et al. Elevated cortisol in older adults with generalized anxiety disorder is reduced by treatment: a placebo-controlled evaluation of escitalopram. Am J Geriatr Psychiatry 2011; 19: 482–490.

48 Domshiche K, Deckert J. Genetics of anxiety disorders—status quo and quo vadis. Curr Pharm Des 2012; 18: 5691–5698.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)
Baseline characteristics:

Cohort participants, n=2259

- EXCLUDED: 70 with dementia at baseline

Non demented participants, n=2189

- 215 with missing data on GAD at baseline, 91 with prevalent GAD

Participants free of dementia and GAD at baseline, n=1883

- 172 without follow-up (33 D, 55 no follow-up, 84 follow-up without GAD data)

Participants with at least one follow-up examination, n=1711, 173 events, 143 cases

- 245 with missing data on covariates

Participants included in the longitudinal analysis, n=1466, 154 events, 125 cases

- 293 having not completed the childhood questionnaire

Participants having completed the childhood questionnaire, n=1173, 130 events, 104 cases

Incidence rate

FOLLOW-UP: Participants after

- **2 years**: 1.70 (0.14)*
 - n=1685, 71 events, 26 W
 - 41 D
 - 17 D
 - 79 D
 - 128 D
 - n=1445, 64 events, 21 W
 - 33 D
 - 90 D
 - 60 D
 - 108 D

- **4 years**: 3.75 (0.17)*
 - n=1604, 56 events, 42 L, 24 W
 - 117 D
 - 79 D
 - n=1374, 51 events, 37 L, 22 W
 - 90 D
 - 60 D
 - n=1013, 16 events, 241 L, 89 W
 - 108 D

- **7 years**: 7.59 (0.22)*
 - n=1174, 21 events, 280 L, 99 W
 - 79 D
 - n=1013, 16 events, 241 L, 89 W
 - 108 D
 - n=935, 16 events, 307 L, 41 W
 - 128 D

- **10 years**: 9.0 (0.30)*
 - n=1077, 17 events, 351 L, 46 W
 - 79 D
 - n=1013, 16 events, 241 L, 89 W
 - 108 D
 - n=803, 13 events, 229 L, 34 W
 - 128 D

- **12 years**: 11.8 (0.43)*
 - n=841, 8 events, 505 L
 - 128 D
 - n=935, 16 events, 307 L, 41 W
 - 128 D
 - n=803, 13 events, 229 L, 34 W
 - 128 D
 - n=738, 7 events, 437 L
 - 128 D

Fig. S1: Study flow chart

D: died, L: lost all follow-ups, W: temporary withdrawal from follow-up; * Median (IQR) duration of each follow-up (expressed as years).