소아 면역성혈소판감소증의 진단적 접근

김지윤
경북대학교 의과대학 소아과학교실

Diagnostic Approach of Childhood Immune Thrombocytopenia

Ji Yoon Kim, M.D.
Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea

Immune thrombocytopenia (ITP) is the most common cause of thrombocytopenia in children and can be defined as an autoimmune disorder of isolated thrombocytopenia without other causes of thrombocytopenia. This review will focus on the diagnostic approach of ITP, especially regarding the differential diagnosis. The practice of differential diagnosis has the goal of distinguishing primary ITP from secondary ITP and nonimmune thrombocytopenia requiring different treatments and showing different prognoses.

Key Words: Children, Diagnosis, Immune thrombocytopenia, Nonimmune thrombocytopenia, Secondary ITP

Introduction

Immune thrombocytopenia (ITP) is the most common cause of thrombocytopenia in children and can be defined as an autoimmune disorder of isolated thrombocytopenia without other causes or disorders causing thrombocytopenia. In thrombocytopenia, ITP is a default diagnosis [1-6].

The platelet threshold for the diagnosis of ITP has changed over the years. The ITP working group defined thrombocytopenia as a condition characterized by platelet count lower than 100,000 platelets per microliter [5,7]. The incidence of ITP is 4-9 cases out of 100,000 cases a year, and about half of the pediatric cases are occurring in children who used to be healthy [8,9].

This review will focus on the diagnostic approach of ITP, especially regarding the differential diagnosis. The practice of differential diagnosis has the goal of distinguishing primary ITP from secondary ITP and nonimmune thrombocytopenia requiring different treatments and showing different prognoses.
Platelet

The platelet is round and flat disk shape with a diameter of 1-2 micrometer in the stabilized state and change to function with irregular spherical shape giving out pseudopod in the activated state. Platelet is produced in the megakaryocytes of the bone marrow. It will survive for about 7-9 days and are removed from the reticuloendothelial system of spleen or liver. The main function is hemostatic action, and it is also involved in wound recovery and vascular remodeling. Traditionally, the normal range of platelet count has been 150,000-450,000/µL. Decreased platelets can lead to various degrees and types of hemorrhage, ranging from petechiae to severe hemorrhage, as well as delayed hemostasis [10-12].

In the case of hemostatic disorder, there is no ideal precise test for accurate diagnosis. With the patient’s medical history and physical examination, blood tests such as complete blood count (CBC), prothrombin time, activated partial thromboplastin time, peripheral blood, automated platelet function test (PFA-100) can be investigated at the bedside. When blood tests are performed in pediatric patients, a relatively large amount of blood is required, and some test results have limitations that are not valid from pediatric patients. Attention should be paid to interpretation in many cases such as accompanying infection condition, concomitant medication or blood collection inappropriately. In many cases, reexamination is necessary [4,13-15].

Classification

The categories of ITP can be classified according to etiology, disease evolution, refractoriness and age of onset. The terms, definitions and criteria of ITP were summarized in 2009 by international working group. ITP was used as the acronym for immune thrombocytopenia [4,5].

Etiologic classification is divided into primary ITP and secondary ITP. The primary ITP, classically defined “idiopathic,” is often seen in childhood after non-specific viral infections, Secondary ITP has a more complex etiology, as specific infections, drugs or vaccinations and immunologic abnormalities,

According to the evolution of disease, it is possible to identify three categories of ITP: newly diagnosed ITP; persistent ITP, still exists 3 months after diagnosis; and chronic ITP, lasting more than 12 months after diagnosis. In practice, acute ITP can be used as a concept against chronic ITP for convenience. Chronic ITP accounts for about 20% of the total cases of childhood ITP [16].

Refractory ITP is a condition of severe ITP which has considerable risk of bleeding requiring therapy after splenectomy or relapse after splenectomy. However, splenectomy should be delayed as long as possible expecting spontaneous remission and benign courses in children. Therefore, when non-splenectomized children with ITP do not respond to conventional medical therapy, the term “unresponsive to the specified therapy” would be used instead of “refractory” [5].

By age of onset, ITP can be divided into three categories: childhood-onset ITP, adolescents-onset ITP, and adult-onset ITP. ITP in young children is typically acute and self-remitting, and primary forms are the most common. ITP in adolescents shows a higher rate of chronicity and a greater percentage of secondary ITP [17,18].

Diagnosis

ITP is diagnosed by excluding other diseases presenting with thrombocytopenia through careful history consideration, physical examination, and laboratory evaluation [19,20],

1) Symptoms

The characteristic history is that a healthy child show sudden systemic petechiae or purpura without any trauma. Clinical findings are usually normal except petechiae and purpura. Immune thrombocytopenia may be asymptomatic, just checked by routine laboratory evaluations. In symptomatic cases, the number of platelets is very low (below 10,000/µL) and gum or mucous membranes bleeding is usually seen, and patients may also have nosebleeds, excessive menstruation, or intestinal bleeding. The most severe bleeding complication is intracranial hemorrhage (ICH)
Table 1. Diagnostic elements of ITP in children

History taking	Present and past history of bleeding symptoms (petechiae to severe hemorrhage)
	Systemic symptoms (fever, weight loss, etc.)
	Infection history (CMV, EBV, VZV, H. pylori, etc.)
	Risk factors for HIV, Hepatitis B or C
	Drug (heparin, alcohol, quinidine, sulfonamides, aspirin) and herbal medicines history
	Transfusion history
	Autoimmune disease history (arthritis, skin rash, alopecia, venous thrombosis, etc.)
	Family history
	Vaccination history (MMR, Hepatitis A, Hepatitis B, Influenza, DTaP, Varicella, Pneumococcus, etc.)
	Alcohol history^a
	Pregnancy status^a
	Comorbid conditions (GI/CNS/GU disease, etc.)^a
Physical examination	Bleeding sign
	Lymphadenopathy/hepatomegaly/splenomegaly
	Symptoms of infection (HIV, other viral infection, etc.)
	Symptoms of autoimmune disease (arthritis, goiter, nephritis, vasculitis, etc.)
	Skeletal anomalies (inherited/congenital thrombocytopenia, etc.)
	Symptoms of thrombosis^a
Laboratory test	Complete blood count (including re-test with citrate bottle)
	Reticulocyte count
	Peripheral blood smear
	Coagulation and platelet function screening test
	Immunoglobulin level
	Autoimmune profile
	Direct antiglobulin test
	HIV, hepatitis B and hepatitis C screening
	Blood type
	Bone marrow examination (in selected case)^a
	H. pylori (in selected case)^a
Test of potential utility	Glycoprotein-specific antibody
	Antiphospholipid syndrome screening
	Antithyroid antibodies and thyroid function test
	Viral PCR for parvovirus and CMV
	Pregnancy test (in women of childbearing potential)^a
Test of unproven benefit	Antinuclear antibodies (in suspecting autoimmune disease)^a
	Thrombopoietin
	Reticulated platelets
	Platelet-associated immunoglobulin G
	Bleeding time
	Platelet survival study
	Serum complement

^aAdapted from Provan et al. [26] and George et al. [28].

EBV, Epstein-Barr virus; CNS, central nervous system; CMV, cytomegalovirus; DTaP, a vaccine for diphtheria, pertussis, and tetanus; GI, gastrointestinal; GU, genitourinary; HIV, human immunodeficiency virus; MMR, measles-mumps-rubella combined vaccine; PCR, polymerase chain reaction; VZV, varicella zoster virus.

^aTest in selected cases.
2) Laboratory

In CBC, it is observed as isolated thrombocytopenia. At the beginning of the invention, patients had moderate to severe thrombocytopenia, usually less than 20,000/µL. The mean platelet volume and platelet distribution width may tend to increase from accelerated turnover of platelets. Hemoglobin, leukocyte count, and leukocyte differential count should be normal, but anemia can occur when there are severe nosebleeds or menorrhagia. In PT and aPTT, they are within normal range. In PFA-100 or bleeding Time, it is extended beyond the normal range due to thrombocytopenia [14,23,25].

Bone marrow examination is usually performed prior to therapy (e.g., administration of thrombopoietin-receptor agonists [TPO-RAs]), to ensure that bone marrow is normal. However, according to the recent guidelines, bone marrow examination is not necessary in children with typical ITP or even after failure to intravenous immunoglobulin therapy [4,19]. Regarding anti-platelet antibody and anti-nuclear antibody, they are not helpful for either exclusion or confirmation of the diagnosis of ITP and not necessary in children with suspected ITP [4,19,26-28].

Table 1 shows the diagnostic elements of ITP in children.

Table 2. Causes of secondary ITP and nonimmune thrombocytopenia in children

Secondary ITP	Causes
Infection	CMV, EBV, VZV, HBV, HCV, HIV, parvovirus
	H. pylori, tuberculosis
Therapy with certain drugs	Drug (NSAIDS, antibiotics, antivirals, etc.) and Herbal medication
	Vaccination (MMR, Hepatitis A, Hepatitis B, Influenza, DTaP, Varicella, Pneumococcus, etc.)
	Transfusion
Autoimmune	Autoimmune thrombocytopenia (Evans syndrome, etc.)
	Antiphospholipid syndrome
	Systemic lupus erythematosus
	Sjogren’s syndrome
	Autoimmune lymphoproliferative syndrome
	Autoimmune thyroiditis (Hashimoto’s diseases, etc.)
Immunodeficiency	Common variable immune deficiency
	IgA deficiency
	DiGeorge’s syndrome
	Wiskott-Aldrich syndrome
Others	Neonatal alloimmune thrombocytopenia
Nonimmune thrombocytopenia	Congenital agemakaryocytic thrombocytopenia (CAMT)
	Thrombocytopenia-absent radius (TAR) syndrome
	May-Hegglin anomaly
	Wiskott-Aldrich syndrome (X-linked)
Bone marrow failure syndrome	Fanconi anemia, Myelodysplastic syndrome
Lisosomal storage disorders	Gaucher’s disease
	Niemann-Pick’s disease
Platelet-type von Willebrand disease	Bernard-Soulier syndrome, Velocardiofacial syndrome
Chromosome 22q syndrome	Hypersplenism
Others	Bone marrow transplantation, chemotherapy
	Disseminated intravascular coagulation
	Thrombotic microangiopathy

Adapted from Neunert et al. [4] and Consolini et al. [17].

EBV, Epstein-Barr virus; CMV, cytomegalovirus; DTaP, a vaccine for diphtheria, pertussis, and tetanus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; MMR, measles-mumps-rubella combined vaccine; VZV, varicella zoster virus.
1) Pseudothrombocytopenia

In cases of clotting occurs as a result of inappropriate management during the blood test process or as a result of difficult blood sampling or in cases of technical problems and lack of blood collection volume.

In this cases, the results are reported to thrombocytopenia even though the patient’s platelet count is normal. If there is no symptom of bleeding, review the patients and carry out retest. In some patients, EDTA-dependent platelet clumping can occur, so the peripheral blood smear should be checked for clumping and retest using citrate tube instead of EDTA tube should be conducted [16,29,30].

2) Infections

Thrombocytopenia may occur secondary to infection with viruses such as infectious mononucleosis (CMV, EBV, VZV), hepatitis virus (HCV), HIV, or H. pylori infection. In this case, treatment and prognostic course may follow the causative infection, usually with chronic course through different mechanisms [16,31-35].

3) Drugs

Thrombocytopenia may associated with therapeutic medicines (some antibiotics, some anticonvulsants, etc.) or alternative medicines (such as vitamins, nutritional supplements, herbs, etc.) taken in the past month. It is often not recognized, developing recurrent unexplained thrombocytopenia. It can be diagnosed when thrombocytopenia develops repeatedly associated with a specific medicine and exhibits complete recovery after cessation of the same drug. Heparin-induced thrombocytopenia is possible to observe in childhood but rarely [36-40].

4) Autoimmune disease

Thrombocytopenia of chronic course can be seen in various systemic autoimmune disease such as systemic lupus erythematosus (SLE), Sjogren’s syndrome, Evans syndrome (autoimmune hemolytic anemia and thrombocytopenia), anti-phospholipid antibody syndrome (APS), autoimmune lymphoproliferative syndrome (ALPS), and autoimmune thyroiditis. In adolescent patients, antinuclear antibody (ANA) tests are more likely to be positive. When accompanied by anemia, coombs test should be screened for Evans syndrome [41-46].

5) Immunodeficiency

Some immunodeficiency such as common variable immunodeficiency (CVID), selective IgA deficiency, and DiGeorge’s syndrome may have immune thrombocytopenia as manifestations [16,23,47,48].

6) Genetic/congenital thrombocytopenia

Congenital thrombocytopenia, such as congenital amegakaryocytic thrombocytopenia (CMT), thrombocytopenia-absent radius (TAR) syndrome, May-Hegglin anomaly, often misdiagnosed as ITP and commonly present with altered platelet size. Wiskott–Aldrich syndrome usually comprehends the association of thrombocytopenia with small platelets, eczema, and frequent infections. In acute leukemia, inherited bone marrow failure syndrome such as Fanconi anemia, thrombocytopenia can occurs but associated with other cytopenias, Lysosomal storage disorders, such as Gaucher’s and Niemann-Pick’s disease, may present thrombocytopenia at clinical onset, usually combined with splenomegaly. Platelet-type von Willebrand disease or chromosome 22q syndrome such as Bernard-Soulier syndrome or velocardiofacial syndrome may present thrombocytopenia associated symptoms [25,49-57].

7) Age-associated considerations

In neonatal age, common form of ITP is the alloimmune due to the production of maternal antibodies directed against neonatal platelet alloantigens. In adolescent females, the possibility of ITP secondary to pregnancy should be considered [58,59].

In vaccination periods, providing protective immune responses, vaccines may promote autoimmune diseases, such as ITP. Vaccine-associated autoimmunity can be caused either by antigen-mediated immune mechanisms or by vaccine constituents or adjuvants. However, most vaccine-associated ITP is mild and well-responsive to therapy. In contrast, because infections may trigger ITP causing severe consequences, it would be thoughtful to vaccinate children
with previous history of ITP [36,60,61].

Table 2 lists the possible causes of secondary ITP and non-immune thrombocytopenia in childhood and adolescence.

Conclusion

Over the past several decades, the diagnosis and management of ITP has evolved. This report focused on the diagnosis of ITP. As differential diagnosis is important in practicing ITP disease, physicians should keep in mind the importance of distinguishing whether it is primary ITP or secondary ITP or nonimmune thrombocytopenia.

References

1. Jang JH, Kim JY, Mun YC, et al. Management of immune thrombocytopenia: Korean experts recommendation in 2017. Blood Res 2017;52:254-63.
2. Cines DB, Blanchette VS. Immune thrombocytopenic purpura, N Engl J Med 2002;346:995-1008.
3. Barsam SJ, Psaila B, Forestier M, et al. Platelet production and platelet destruction: assessing mechanisms of treatment effect in immune thrombocytopenia, Blood 2011;117:5723-32.
4. Neunert C, Lim W, Crowther M, et al, The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia, Blood 2011;117:4590-207.
5. Rodeghiero F, Stasi R, Gernsheimer T, et al, Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group, Blood 2009;113:2386-93.
6. Choi EJ, Lee SM, Lee KS, et al, Childhood acute immune thrombocytopenic purpura in Korea--Multicenter Study of Korean Society of Pediatric Hematology/Oncology, Korean J Pediatr Hematol Oncol 2003;10:14-21.
7. Ruggeri M, Fortuna S, Rodeghiero F, Heterogeneity of terminology and clinical definitions in adult idiopathic thrombocytopenic purpura: a critical appraisal from a systematic review of the literature, Haematologica 2008;93:98-103.
8. Higashigawa M, Maeyama T, Yoshino A, et al, Incidence of childhood primary immune thrombocytopenic purpura, Pediatr Int 2015;57:1041-3.
9. Kistangari G, McCrae KR, Immune thrombocytopenia, Hematol Oncol Clin North Am 2013;27:495-520.
10. Broos K, Feyes HB, De Meyer SF, Vanhoorelbeke K, Declerck H, Platelets at work in primary hemostasis, Blood Rev 2011;25:155-67.
11. George JN, Platelets, Lancet 2000;355:1531-9.
12. Xu XR, Zhang D, Oswald BE, et al, Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond, Crit Rev Clin Lab Sci 2016;53:409-30.
13. Rodeghiero F, Michel M, Gernsheimer T, et al, Standardization of bleeding assessment in immune thrombocytopenia: report from the International Working Group, Blood 2013;121:2596-606.
14. Isseels SJ, Kahr WH, Blanchette VS, Luban NL, Rivard GE, Rand ML, Platelet disorders in children: a diagnostic approach, Pediatr Blood Cancer 2011;56:975-83.
15. Smock KJ, Perkins SI, Thrombocytopenia: an update, Int J Lab Hematol 2014;36:269-78.
16. British Committee for Standards in Haematology General Haematology Task Force, Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy, Br J Haematol 2003;120:574-96.
17. Consolino R, Costagliola G, Spatropa D, The century of immune thrombocytopenia-part 2: revising diagnostic and therapeutic approach, Front Pediatr 2017;5:179.
18. Lowe EJ, Buchanan GR, Idiopathic thrombocytopenic purpura diagnosed during the second decade of life, J Pediatr 2002;141:253-8.
19. Cooper N, A review of the management of childhood immune thrombocytopenia: how can we provide an evidence-based approach? Br J Haematol 2014;165:756-67.
20. Cines DB, Bussel JB, How I treat idiopathic thrombocytopenic purpura (ITP), Blood 2005;106:2244-51.
21. Labarque V, Van Geet C, Clinical practice: immune thrombocytopenia in paediatrics, Eur J Pediatr 2014;173:163-72.
22. Neunert C, Norozzi N, Norman G, et al, Severe bleeding events in adults and children with primary immune thrombocytopenia: a systematic review, J Thromb Haemost 2015;13:457-64.
23. Teachey DT, Lambert MP, Diagnosis and management of autoimmune cytopenias in childhood, Pediatr Clin North Am 2013;60:1489-511.
24. Del Vecchio GC, De Santis A, Accettura L, De Mattia D, Giordano P, Chronic immune thrombocytopenia in childhood, Blood Coagul Fibrinolysis 2014;25:297-9.
25. Balduini CL, Noris P, Mean platelet volume for distinguishing between inherited thrombocytopenias and immune thrombocytopenia--response to Beyan, Br J Haematol 2013;163:413-4.
26. Provan D, Stasi R, Newland AC, et al, International consensus report on the investigation and management of primary immune thrombocytopenia, Blood 2010;115:168-86.
27. Hilaro MO, Len CA, Roja SC, Terrier MT, Almeida G, Andrade LF, Frequency of antinuclear antibodies in healthy children and adolescents, Clin Pediatr (Phila) 2004;43:537-42.
28. George JN, Woolf SH, Raskob GE, et al, Idiopathic thrombocytopenic purpura: a practice guideline developed by explicit
methods for the American Society of Hematology, Blood 1996;88:3-40.
29. Shin HY. Immune thrombocytopenic purpura (ITP). Korean J Pediatr 2006;49:830-2.
30. Blanchette V, Bolton-Maggs P. Childhood immune thrombocytopenic purpura: diagnosis and management, Hematol Oncol Clin North Am 2010;24:249-73.
31. Yenicesu I, Yetgin S, Ozyürek E, Aslan D. Virus-associated immune thrombocytopenic purpura in childhood, Pediatr Hematol Oncol 2002;19:433-7.
32. Smalisz-Skrzypczyk K, Romiszewski M, Matysiak M, Demkow U, Pawelec K. The influence of primary cytomegalovirus or Epstein-Barr virus infection on the course of idiopathic thrombocytopenic purpura, Adv Exp Med Biol 2016;878:83-8.
33. Shah I. Immune thrombocytopenic purpura: a presentation of primary immune deficiency disease, Pediatrics 2014;133:370-9.
34. Pacifico L, Osborn JF, Tromba V, Romaggioli S, Bascetta S, Girolami A, Fabris F. Autoimmune thrombocytopenia (AITP) and thyroid autoimmune disease (TAD): overlapping syndromes? Clin Exp Immunol 1998;113:373-8.
35. Sakuraya M, Murakami H, Uchiumi H, et al. Chronic idiopathic thrombocytopenic purpura associated with hepatitis C virus infection, Eur J Haematol 2002;68:49-53.
36. Stasi R. Immune thrombocytopenia: pathophysiology of clinical presentation, Semin Thromb Hemost 2012;38:545-62.
37. Chong BH, Choi PY, Khachigian L, Perdomo J. Drug-induced immune thrombocytopenia, Hematol Oncol Clin North Am 2013;27:521-40.
38. Reese JA, Nguyen LP, Buchana GR, et al. Drug-induced thrombocytopenia in children, Pediatr Blood Cancer 2015;60:1975-81.
39. Kam T, Alexander M. Drug-induced immune thrombocytopenia, J Pharm Pract 2014;27:430-9.
40. Takemoto CM, Streiff MB. Heparin-induced thrombocytopenia screening and management in pediatric patients, Hematology Am Soc Hematol Educ Program 2011:162-9.
41. Ward MM, Prun E, Studded K, Mortality associated with specific clinical manifestations of systemic lupus erythematosus, Arch Intern Med 1999;159:337-44.
42. Altintas A, Ozol A, Okur N, et al. Prevalence and clinical significance of elevated antinuclear antibody test in children and adult patients with idiopathic thrombocytopenic purpura, J Thromb Thrombolysis 2007;24:163-8.
43. Hepburn AL, Narat S, Mason JC. The management of peripheral blood cytopenia in systemic lupus erythematosus, Rheumatology (Oxford) 2010;49:2243-54.
44. Cheung E, Liebman H. Thyroid disease in patients with immune thrombocytopenia, Hematol Oncol Clin North Am 2009;23:1251-60.
45. Cordiano I, Betterle C, Spadaccino SA, Soini B, Girolami A, Fabris F. Autoimmune thrombocytopenia (AITP) and thyroid autoimmune disease (TAD): overlapping syndromes? Clin Exp Immunol 1998;113:373-8.
46. Li P, Huang P, Yang Y, Hao M, Peng H, Li F. Updated understanding of autoimmune lymphoproliferative syndrome (ALPS), Clin Rev Allergy Immunol 2016;50:55-63.
47. Notarangelo LD. Primary immunodeficiencies (PIDs) presenting with cytopenias, Hematology Am Soc Hematol Educ Program 2009;139-43.
48. Patuzzo G, Barbieri A, Tinazzi E, et al. Autoimmunity and infection in common variable immunodeficiency (CVID), Autoimmun Rev 2016;15:877-82.
49. Baldini CL, Savoia A, Seri M. Inherited thrombocytopenias frequently diagnosed in adults, J Thromb Haemost 2013;11:1006-19.
50. Drachman JG. Inherited thrombocytopenia: when a low platelet count does not mean ITP, Blood 2004;103:390-8.
51. Pecci A. Diagnosis and treatment of inherited thrombocytopenias, Clin Genet 2016;89:141-53.
52. Bader-Meunier B, Proulle V, Trichet C, et al. Misdiagnosis of chronic thrombocytopenia in childhood, J Pediatr Hematol Oncol 2003;25:548-52.
53. Bucchiinder D, Nagent DJ, Filippovich AH, Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments, Appl Clin Genet 2014;7:556-66.
54. Thomas AS, Mehta AB, Hughes DA. Diagnosing Gaucher disease: an on-going need for increased awareness amongst haematologists, Blood Cells Mol Dis 2013;50:212-7.
55. Wasserstein MP, Desnick RJ, Schuchman EH, et al. The natural history of type B Niemann-Pick disease: results from a 10-year longitudinal study, Pediatrics 2004;114:e672-7.
56. Savoia A, Pastore A, De Rocco D, et al. Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations, Haematologica 2011;96:417-23.
57. Kim JY, Lee KH, Lee SC, Lee JY. Monosomy 22 mosaicism infection in common variable immunodeficiency (CVID), Blood Cells Mol Dis 2013;50:212-7.
58. Lassiter HA, Babb KW, Bertolone SJ, Patel CC, Stoneck DF. Neonatal immune neutropenia following the administration of intravenous immune globulin, Am J Pediatr Hematol Oncol 1993;15:120-3.
59. Curtis BR. Recent progress in understanding the pathogenesis of fetal and neonatal alloimmune thrombocytopenia, Br J Haematol 2015;171:671-82.
60. Rinaldi M, Perricone C, Ortega-Hernandez OD, Perricone R, Shoenfeld Y. Immune thrombocytopenic purpura: an autoimmune cross-link between infections and vaccines, Lupus 2014;23:554-67.
61. Ellsby NS, Nugent D. Viruses, anti-viral therapy, and viral vaccines in children with immune thrombocytopenia, Semin Hematol 2016;53 Suppl 1:S70-2.