Distances and Other Parameters for 1315 Radio Pulsar

O. H. Guseinov1,2, S. K. Yerli2, S. Ozkan3, A. Sezer1, and S. O. Tagiyeva3

1 Akdeniz Universitesi, Physics Department, 07058 Antalya, Turkey
2 Orta Dogu Teknik Universitesi, Physics Department, 06531 Ankara, Turkey
3 Academy of Science, Physics Institute, Baku 370143, Azerbaijan Republic

Received date will be inserted by the editor; accepted date will be inserted by the editor

Abstract. In this work we have collected observational data for 1315 PSRs. Distances and others parameters for these PSRs were estimated. We present improved distance estimates for radio pulsars by considering importance of their physical properties and improvement of distribution of SFRs (star formation regions) in the Galaxy. For this purpose, both a list of accurate calibrators was constructed and several accurate criteria were established. The following values were calculated from PSRs observational data: luminosities at 400 MHz and 1400 MHz, characteristic times, strength of magnetic field and rate of rotation energy. This compilation of data is mainly necessary for statistical investigations and for the physical properties of neutron stars. The whole data is prepared in a publicly accessible web page: http://www.xrbc.org/pulsar/.

Key words: pulsars: general, stars: neutron, astronomical data bases: miscellaneous

1. Introduction

It is a well known fact that no relation has been found in pulsar parameters to estimate their distance. For ordinary distant stars, however, one can use the relations either between luminosity and spectral class, or luminosity and pulsation period to estimate their distance. In the early days of pulsar astronomy, since origin of pulsars, mass of their progenitor and their birth rates were not well known, homogeneous electron density distribution was assumed. However, later on pulsars distances have been estimated according to the rough model of Galactic electron distribution and some natural requirements (Manchester and Taylor 1981; Guseinov and Kasımov 1981; Johnston et al. 1992; Taylor and Cordes 1993; Gök et al. 1996). In doing this, one should also know some of the pulsar distances independent to their dispersion measure (DM). 21 cm line of neutral Hydrogen was mainly used in choosing distance calibrators. However, nowadays, calibrators are chosen from members of globular clusters (GCs) or Magellanic clouds (MC), pulsars connected to Supernova remnants (SNRs) with well known distances and from pulsars (PSRs), where their distances are known from other available data.

Irregularities were observed in the distribution of dust, molecular clouds and neutral Hydrogen (HI) in the Galaxy. It is also normal to expect irregularities in electron distribution where the degree of irregularity is (naturally) considerably small. Considerable variations in opacity and polarization can be observed for stars with the same distance in a very small region of sky (~1° square) close to the Galactic plane. This is due to a very inhomogeneous distribution of dust clouds. For Hydrogen column density along the line of sight there are two surveys where they studied large number of stars; one with 554 stars (Diplas and Savage 1994) and the other with 594 stars (Fruscione et al. 1994). They both show that irregularities in HI distribution are quite different than the dust and molecular cloud distribution (Ankay and Guseinov 1998). The dispersion measure (DM), which is connected with the electron distribution, changes also for pulsars of similar distances, and for close regions of the sky. These irregularities in electron distribution are due to contribution of both HII regions and SNRs along the line of sight, and gravitational potential and gas temperature distribution in the Galaxy. But irregularities in electron distribution is considerably smaller than the ones in other components of interstellar medium that we have mentioned above. Even though these irregularities are small, there is no simple model for Galactic electron distribution to calculate each pulsar’s distance. Moreover, constructing a complex model which requires a lot of data for interstellar medium and PSRs, (e.g. Taylor and Cordes 1993) cannot avoid large errors for individual pulsars.
In order to investigate the arm structure around the Sun within a distance of 4–5 kpc, usually objects like OB associations and open clusters (OC) are studied. For these objects the relative errors in estimating their distances could reach 30% (Humphreys 1978; Efremov 1989; Garmany and Stencel 1992; Ahumada and Lapasset 1995). There is no single good method to estimate the distance of all extended objects belonging to the arms (molecular clouds, neutral Hydrogen clouds, SNRs and HII regions). In determining distances to these objects using HI 21 cm line and Galaxy rotation models, error exceeds 30% and it increases with distance and in the vicinity of longitudes $l = 0^\circ$ and $l = 180^\circ$. However, it is the most widely used model. For distant X-ray sources, Hydrogen column density is used as another method in estimating distances. However, error in this method is also large. Since progenitors of pulsars are massive stars, their birth places are in the star formation regions (SFRs). Furthermore, even though young pulsars with characteristic age of $\tau < 5 \times 10^3$ years have high space velocities, they cannot escape from their birth places. Thus, if number of young pulsars discovered increases and distances to these pulsars are well known then farther away arm structures could be studied.

Archiving radio pulsar data, dates back to 1981. The first full catalog included 333 pulsars which covered discoveries up to 1980 (Manchester and Taylor 1981). The next catalog which plays an important role in pulsar astronomy contained 706 pulsars (Taylor et al. 1996). This one covered both old (since 1981) and new pulsars (Dewey et al. 1985; Stokes et al. 1985, 1986; Clifton et al. 1992; Johnston et al. 1992; Taylor and Cordes 1993, and some others). This last catalog has not been updated since then. However, individual pulsars can be reached through a publicly accessible web page 1. Since 1996, several pulsar surveys have been carried out (Johnston et al. 1995; Manchester et al. 1996; Sandhu et al. 1997; Lyne et al. 1998, 2000; Camilo et al. 2001; Edwards and Bailes 2001a,b; Edwards et al. 2001a,b; Manchester 2001). In addition to this, inner regions of SNRs have been scanned to search for pulsars with connections to SNRs (Gorham et al. 1996; Lorimer et al. 1998; Kaspi et al. 1996). After 1996, the following pulsars with connections to SNRs or pulsars with confirmed association connections have been found and their distances were accurately determined (see Table 1):

- J0205+64/G130.7+3.1 (Murray et al. 2002),
- J1119-6127/G292.2-0.5 (Crawford et al. 2001),
- J1244-5916/G292.0+1.8 (Camilo et al. 2002a),
- J1803-2137/G8.7-0.1 (Finley and Ogelman 1994),
- J1846-0258/G292.7-0.3 (Gotthelf et al. 2000),
- J1952+3525/G69.0+2.7 (Koo et al. 1990),
- J2229+6114/G106.6+2.9 (Halpern et al. 2001).

Furthermore, Globular Clusters (GC) have been also searched for pulsars (Lyne 1995; Kulkarni and Anderson 1996; Biggs and Lyne 1996; Camilo et al. 2000, D’Amico et al. 2001). In globular cluster NGC104 (47 Tuc) 10 pulsar up to 1996 and 10 more pulsar after 1996 have been found. For the other known globular clusters no new pulsars were found. However, in each globular clusters NGC 6266, NGC 6342, NGC 6397, NGC 6544 and NGC 6752 one pulsar has been found after 1996 (Table 1).

In early days of pulsar observations a base frequency of around 400 MHz was used in the search. Since DM values of distant pulsars are high, 1400 MHz was used in surveys and in search for PSRs in SNRs and GC. As expected, the newly discovered pulsars are generally in the direction of the Galactic center. After 1996, no new pulsars have been found in Magellanic Clouds (MC). However, number of pulsars in GCs and number of millisecond pulsars with known ages ($P < 0.1$ sec and $P < \times 10^{-16}$ sec/sec) increased about 1.5 and 1.4 times, respectively. There is an considerable increase in number of pulsars found with low fluxes due to increase in both sensitivity of instrumentation used in pulsar surveys and the number of detailed surveys. For example in Arecibo’s survey window ($40^\circ \leq l \leq 65^\circ$; $|b| \leq 2.5^\circ$) 12 new pulsars were found. In this article our aim is to combine both old and new observational pulsar data and to calculate their parameters.

2. Pulsar Distances

Between 1970 and 1980, both the number of pulsars and the number of pulsars connected with an object having a well known distance (e.g. Magellanic clouds, some globular clusters and SNRs) were less. In addition to this, since at that time there was insufficient knowledge concerning Galactic electron distribution, it was difficult to find a good distance value using the DM value of pulsars. Thus, pulsars with distances estimated using HI line are used as an extra distance calibrator. It is known that it is impossible to calculate an object’s distance using HI line at 21 cm if the object’s radial velocity component of Galactic rotational velocity is small. In addition to this, in certain directions and distances the suitable distance to the shift of 21 cm line would be 2 instead of 1. Uncertainty in calculating the distance with this method is not less than 30–50%. Thus, in recent years, in determining calibrators for pulsars, distance estimates calculated using the 21 cm line are not accepted as a rule. For this reason it was not possible to find a distance estimate independent from a DM value for pulsars in certain directions and distances.

In estimating pulsar distances, the model of Galactic electron distribution by Taylor and Cordes (1993) has been widely used in recent years. However, in estimating the pulsar distances, the approach of Gök et al. (1996) gave smaller distances than the ones calculated using the model of Taylor and Cordes (1993) for pulsars farther than 4 kpc and with Galactic latitudes greater than about 10°. To form a new model electron distribution, Gómez et al. (2001) have published a huge pulsar list which could be used for calibrators. We have decided to revise their distance values to use them as calibrators. In Table 1 we present 39 pulsars for which errors in distances should not be higher than 30%. Since distances of pulsars from the same GC are the same, only one pulsar from each GC has been included in the table. Instead of presenting a long table, the pulsar table is prepared in a publicly accessible web page (see section 3). In this table, the total number of pulsars having distances independent from the DM value is 68. In Table 1 the number of pulsars is considerably smaller

1 http://pulsar.ucolick.org/cog/pulsars/catalog/
Table 1. Pulsars for which errors in distances are not more than 30%.

Name	l	b	d	DM	\(n_e\)	Location	References
0024-7204W	305.9	-44.9	4.5	24.3	0.005	GC NGC 104 (47 Tuc)	(Harr96, Hess87)
0045-7319	303.5	-43.8	57	105.4	0.002	SMC	(Feas87)
0205+6449	130.7	3.1	3.2	140.7	0.044	SNR G130.7+3.1	(Cam02)
0455-6949	281.2	-35.2	50	91.0	0.002	LMC	(Feas87)
0502-6625	277.3	-35.5	50	65.0	0.001	LMC	(Feas87)
0529-6655	277.2	-32.8	50	100.0	0.002	LMC	(Feas87)
0534+2200	184.6	-5.8	2	56.8	0.028	SNR G184.6-5.8 (Crab)	(Trim71)
0540-6919	279.7	-31.5	50	146.0	0.003	LMC	(Tay96)
0826+2637	196.9	31.7	0.4	19.5	0.049	Parallax	(Gwin86)
0835-4510	263.6	-2.8	0.45	68.2	0.152	SNR G263.9-3.3 (Vela)	(Cha99, Legg00, Guse02)
0922+0638	225.4	36.4	1.21	27.3	0.020	Parallax	(Chat01, Foma99)
1119-6127	292.2	-0.54	7.5	707.4	0.101	SNR G292.2-0.5	(Cri99, Legg00, Guse02)
1312+1810	332.9	79.8	18.9	24.0	0.011	GC NGC 5024 (M53)	(Harr96, Hess87)
1456-6843	313.9	-8.5	0.45	8.6	0.019	Parallax	(Bail90)
1513-5908	318.9	15.9	1.8	253.2	0.060	SNR G320.4-1.2	(Tay96, Guse02, Kasp02)
1641+3627B	59.8	40.9	7.7	29.5	0.004	GC NGC 6205 (M13)	(Harr96, Palt98)
1721-30	353.6	7.3	5	114.4	0.023	GC NGC 6266 (M62)	(Harr96, Dam01, Broc96a)
1748-2021	7.7	3.8	6.6	220.0	0.033	GC NGC 6440	(Harr96, Orto94)
1910-59	336.5	25.6	4	34.0	0.021	GC NGC 6626 (M28)	(Harr96, Rees91)
2022+5154	87.9	8.4	1.1	22.6	0.021	Parallax	(Camp96)
2129+1209H	65.1	-27.3	10	67.2	0.007	GC NGC 7078 (M15)	(Tay96)

Alca87 : Alcaino et al. (1987) Alla97 : Allakhverdiyev et al. (1997) Arma88 : Armandroff (1988) Back82 : Backer and Sramek (1982) Bail90 : Bailes et al. (1990) Bris00 : Brinkmann et al. (2000) Broc96a: Brocato et al. (1996a) Broc96b: Brocato et al. (1996b) Buon86 : Buonanno et al. (1986) Cam92 : Camilo et al. (2002b) Casw92 : Caswell et al. (1992) Ch99 : Chatterjee et al. (2001) Cra91 : Crawford et al. (2001) Cudw90 : Cudworth and Rees (1990) Dami94 : Damour et al. (1994) Feas87 : Feast and Walker (1987) Foma99: Fomalont et al. (1999) Fros93 : Furst et al. (1993) Guse02 : Guseinov et al. (2002) Harr96 : Harris (1996) Heit99 : Heitsch and Richtler (1999) Hess87 : Hess et al. (1987) John94 : Johnston et al. (1994) Kaspi : Kaspi and Helfand (2002) Kas94 : Kaspi et al. (1994) Legg00 : Legg et al. (2000) Legg00 : Legg (2000) Paltr98 : Paltrinieri et al. (1998) Rees91 : Rees and Cudworth (1991) Rees96 : Rees et al. (1996) Salt79 : Saltzer et al. (1979) Sand96 : Sandquist et al. (1996) Sara94 : Sarajedini and Norris (1994) Tay96 : Taylor et al. (1996) Weis80 : Weisberg et al. (2000) Weis80 : Weisberg et al. (1998)
than the one in the calibrator list of Gómez et al. (2001). In this table, one of the most important calibrators is PSR J0835-4510 (in Vela SNR). The distance for this pulsar has been adopted as 0.45 kpc, which was given as 0.25 kpc by Gómez et al. (2001). This huge discrepancy needs some more explanation.

Recent estimates of Vela SNR are as follows. $d=0.25$ kpc (Oegelman et al. 1989), $d=0.25\pm0.03$ kpc (Cha et al. 1999), $d=0.28$ kpc (Bocchino et al. 1999) and $d=0.25\pm0.03$ kpc (Danks 2000). In estimating the distance one should also consider that Vela SNR expands in a dense environment. Its magnetic field is $B\approx6\times10^{-5}$ Gauss (de Jager et al. 1996) and its explosion energy is $(1-2)\times10^{51}$ erg (Danks 2000). Of course these values have really large errors, however, they are themselves big too. If we take into account all of these values then it is not acceptable to have Vela at the same position with SNR G327.6+14.6 in the $\Sigma-D$ diagram (remnant of the type supernova explosion at 500 pc above the Galactic plane; Hamilton et al. 1997) which expands in a dense environment of low matter density. Thus, Vela must be close to other SNRs which expand in a dense environment.

In the direction of the Vela remnant, none of the young open clusters (OC) and OB associations have distances as small as 0.25 kpc (Efremov 1989; Berdnikov and Efremov 1993; Aydin et al. 1997). The distance of OC Pismis 4 ($l=262.7$, $b=-2.4$) which belongs to the nearest Vela OB2 association and is in the direction of Vela, is 0.6 kpc (Ahumada and Lappaset 1995). Since the progenitors of SNRs (or pulsars) are massive stars, one would expect the Vela remnant to be closer to the star formation region instead of a distance value of 0.25 kpc.

If the distance value of 0.45 kpc is accepted for Vela, than the average electron density along the line of sight would be $n_e=0.153$ cm$^{-3}$. The pulsar with the second biggest n_e value (about 0.113 cm$^{-3}$) is for PSR J1302-6350 ($l=304.2$, $b=-0.9$; companion is a B9 type star; $d=1.3$ kpc; variable wind in the environment). The next biggest n_e value (0.107 cm$^{-3}$) is for PSR J1644-4569 ($l=339.2$, $b=-0.2$). Since luminosity of PSR J1644-4569 at 1400 MHz is bigger than any other known pulsar we could estimate its distance as no more than 4.5 kpc. Average value of n_e for the rest of pulsars is around 0.04. So, it is impossible to accept a value of 0.25 kpc for Vela PSR and Vela SNR. We could only reduce our initial distance estimate of 0.45 kpc to 0.4 kpc the most.

For PSR J1701-30 ($l=353.6$, $b=7.3$), D’Amico et al. (2001) and Gómez et al. (2001) adopted a distance value of 6.7 kpc and they believed that the pulsar is inside the GC 6266 (M62). If such a high distance value is adopted for the pulsar, then the electron number density along the line of sight should considerably be lower than the values for the pulsars in the same direction and approximately at the same distance. It is much more realistic to accept a distance value of 5 kpc for this pulsar. Space density of both HII regions in the direction of Galactic center and SNRs, and a higher value of n_e in the direction line of sight do not allow to have a very different n_e value for the pulsars in the same direction and approximately at the same distance. Thus a question mark is added for PSR J1701-30 while accepting it as a calibrator due to doubts concerning in its distance value. The distance values of pulsars in other GCs are within the error limits of the ones given by (Gómez et al. 2001). Distances of PSRs connected with SNRs have been studied in an another unpublished work (Guseinov et al. 2002). Thus, their accurate distance values have been listed in Table 1. Among the pulsars that were used as calibrators and were a member of GC, the ones with the most varying distances were PSR J1748-2445A and B, J1804-0735 and J1910+0004 in GCs Ter 5, NGC 6539 and NGC 6760, respectively. These variations are due to the fact that new distances of these GCs are more than two times bigger than the estimates before 1996.

It is a well known fact that dynamical equilibrium could be achieved within the old populations (both halo and disk; characteristic time is $\approx10^{10}$ years). However, these populations are not in dynamical equilibrium with each other. Total mass of stars and gas which belongs to Galactic arms is about 1% of the total mass of Galaxy and parameters of arm structure changes with time. Characteristic time of these changes is about 10^{8} years. On the other hand, SFRs which are far from dynamical stability have an order of magnitude smaller ages than the characteristic time of arm structures. Therefore, one should not expect any coincidence between the geometric plane of arms and the Galactic plane throughout the whole Galaxy. SFRs might be found either below or above the Galactic plane. Optical observations of Cepheids with high luminosities (variables with long pulse periods) and red supergiants at a distance of $\approx5-10$ kpc from the Sun in the direction of $l\approx200-330^\circ$ have shown that SFRs lie about 300 pc below the Galactic plane. Similarly at the same distance and in the direction of $l\approx70-100^\circ$ SFRs lie about 400 pc above the Galactic plane. Finally, between 3 and 5 kpc distance and in the direction of $270-320^\circ$ massive Cepheids and red supergiants have been located about 150 pc below the Galactic plane (Berdnikov 1987).

In Figure 1, we present $l-b$ distribution of pulsars with a characteristic time of $\tau\leq5\times10^{7}$ years. As can be seen from the Figure, in the direction of $l\approx260-290^\circ$, some young pulsar are located below the Galactic plane. Distance of these pulsars show that their locations coincide with the location of Cepheids and red supergiants. For pulsars with distances of $d>5$ kpc, average distance from the Galactic plane is about 135 pc. From the Figure we see a similar deviation from the Galactic plane in the direction of $l\approx50-80^\circ$. These pulsars have an average Z of about 150 pc and they probably belong to the Perseus arm. In distance estimation of pulsars we take into account all of these facts (distribution of young pulsars in the direction of $0^\circ < l < 20^\circ$ give rise to some inhomogeneity in pulsar surveys).

We discussed the fact that Galactic arms (SFRs) deviate from the Galactic plane in the outer parts of the Galaxy. However, for the inner part of the Galaxy (closer than the Sun distance i.e. about 8.5 kpc to the center) there is no evidence that the deviation from the Galactic plane is bigger than 100 pc. Therefore PSRs with the same age should have the same distance from the Galactic plane because average space velocity of pulsars do not depend on environmental conditions of a pulsar.
It is normal to neglect the influence of deviation from the Galactic plane for pulsars older than \(\approx 5 \times 10^6 \) years due to typical high space velocities of pulsars (on the average between 250 km s\(^{-1}\)) and 450 km s\(^{-1}\)) (Lyne and Lorimer 1994). On the other hand, the space velocity of some pulsars reaches 1000 km s\(^{-1}\); e.g. PSR J1801-2451 (Frail and Kulkarni 1991). But since the number of these type of pulsars are few, old pulsars with the same age must have the same average value of \(|Z| \) in all parts of the Galaxy, except the young ones.

Radio luminosity of PSRs should not depend on their birth place and should not considerably exceed luminosities of the strongest pulsars (e.g. Crab with a very well known distance and being the strongest pulsar in Magellanic clouds). Luminosity of Crab is \(\approx 2.6 \times 10^3 \text{ mJy kpc}^2 \), 56 mJy kpc\(^2\) for 400 MHz and 1400 Mhz, respectively. Luminosity of the strongest pulsar in Magellanic Clouds (PSR J0529-6655) is \(\approx 1.4 \times 10^4 \text{ mJy kpc}^2 \) at the 400 MHz (no measurement exists for 1400 MHz). Therefore the upper limit for luminosities of PSRs might be close to the value of \(1.6 \times 10^3 \text{ mJy kpc}^2 \) and \(3.5 \times 10^3 \text{ mJy kpc}^2 \) for 400 MHz and 1400 Mhz, respectively (spectral indices of PSRs have been also taken into account). In our list of 1315 PSRs the strongest one is PSR J1644-4559 with luminosities of \(6.29 \times 10^3 \text{ mJy kpc}^2 \) and \(7.58 \times 10^3 \text{ mJy kpc}^2 \) for 400 and 1400 MHz, respectively.

Since PSRs on the Galactic plane were born in the Galactic plane and surveys have scanned the Galactic plane many times, most of PSRs, especially the farthest ones, have small Galactic latitudes \((|b| < 5^\circ)\). As can be seen in our calibrator table (Table 1), for 12 PSRs \(|b| > 30^\circ\), for 10 PSRs \(30^\circ > |b| > 7^\circ\), for 6 PSRs \(7^\circ > |b| > 3^\circ\), and only for 11 PSRs \(|b| < 3^\circ\). Thus, the calibrators in Magellanic Clouds, GCs and calibrators with known trigonometric parallax’s becomes insignificant for PSRs with small \(|b|\). Only 3 from our calibrator list belong to \(|b| < 3^\circ\) and have distances greater than 5 kpc. Therefore, for the PSRs with large distance and low \(|b|\) values there are almost no calibrators. In addition to this, for such distances it is quite difficult to judge the electron density value.

Considering the reasons given above in adopting distances for PSRs, the following criteria become very important:

1. In the direction of \(40^\circ < l < 320^\circ\) we see the strongest pulsars throughout the Galaxy.
2. For all Galactic longitudes \((l)\), pulsars with equal characteristic times \((\tau)\) must have, on the average, similar \(|Z| \) values except PSRs with \(\tau \approx 5 \times 10^6 \) years in the regions where SFRs are considerably above or below the Galactic plane.
3. PSRs with \(\tau < 5 \times 10^5 \) years must still be near to their birth places i.e. in the SFRs.
4. The pulsar luminosity does not depend on \(l \) and \(d \), and it should not exceed the luminosity of known strongest pulsars at 400 and 1400 MHz.
5. Electron density in the Galaxy must be correlated with the number density of HII regions and OB associations, and it must increase as one approaches to the Galactic center.
6. PSR distances must be arranged in such a way that their value should correspond to a suitable distance value of PSRs in Table 1 (value of DM and the direction of the PSR have to be taken into account).

3. Pulsar Data

All of the collected parameters (both observational and calculated ones) for 1315 pulsars are given separately in a publicly accessible web page: http://www.xrbc.org/pulsar/. Description of each column is given in Table 2.

4. Acknowledgements

This work was supported in part by TÜBİTAK (Turkish Scientific and Research Council) under grant TBAG–ÇG4. This research has made use of NASA’s Astrophysics Data System Bibliographic Services.
References

J. Ahumada and E. Lapasset. Catalogue of blue stragglers in open clusters. A&AS, 109:375–382, February 1995.

G. Alcaino, R. Buonanno, V. Caloi, V. Castellani, C. E. Corsi, G. Iannicola, and W. Liller. The CM diagram of the nearby globular cluster NGC 6397. AJ, 94:917–947, October 1987.

A. O. Allakhverdiev, O. H. Guseinov, S. O. Tagieva, and I. M. Yusifov. Velocities of pulsars: A new approach. Astronomy Reports, 41:257–261, March 1997.

A. O. Allakhverdiev, M. A. Alpar, F. Gök, and O. H. Guseinov. Turkish J. Phys., 21:688, 1997.

A. Ankay and O. H. Guseinov. Using the Values of NHI and AN, to Improve the Distances to Some X-Ray Binaries and Supernova Remnants. Astronomical and Astrophysical Transactions, 17:301+, 1998.

T. E. Armandroff. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters. AJ, 96:588–634, August 1988.

A. Aydin, B. Albayrak, I. Gözel, and O. H. Guseinov. Turkish J. Phys., 21:875, 1997.

D. C. Backer and R. A. Sramek. Apparent proper motions of the galactic center compact radio source and PSR 1929+0. ApJ, 260:512–519, September 1982.

M. Bailes, J. E. Reynolds, R. N. Manchester, R. P. Norris, and M. J. Kesteven. The parallax and proper motion of PSR1451-68. Nat, 343:240+, January 1990.

L. N. Berdnikov. The Galactic Distribution of Cepheids. Soviet Astronomy Letters, 13:45+, January 1987.

L. N. Berdnikov and Y. N. Efremov. Isolines of Surface Density and Z-Coordinates of Cepheids. Pis ma Astronomicheskii Zhurnal, 19:957+, 1993.

J. D. Biggs and A. G. Lyne. A Search for Radio Pulsars in Globular Clusters, Supernova Remnants and Transient X-Ray Sources. MNRAS, 282:691–698, September 1996.

F. Bocchino, A. Maggio, and S. Scintiorno. ROSAT PSPC observation of the NE region of the VELA supernova remnant. III. The two-component nature of the X-ray emission and its implications on the ISM. A&A, 342:839–853, February 1999.

W. F. Brisk, J. M. Benson, A. J. Beasley, E. B. Fomalont, W. M. Goss, and S. E. Thorsett. Measurement of the Parallax of PSR B0950+08 Using the VLBA. ApJ, 541:959–962, October 2000.

E. Brocato, R. Buonanno, Y. Malakhova, and A. M. Piersimoni. Luminous stars in globular clusters: new data for nine galactic clusters. A&AS, 311:778–792, July 1996a.

E. Brocato, V. Castellani, and V. Ripepi. CCD Photometry of RR Lyrae Stars in M5 as a Test for the Pulsational Scenario. AJ, 111:809+, February 1996b.

R. Buonanno, V. Caloi, V. Castellani, C. Corsi, F. Fusi Pecci, and R. Gratton. The giant, asymptotic and horizontal branches of globular clusters. III - Photographic photometry of NGC 6752. A&AS, 66:79–109, October 1986.

F. Camilo, D. R. Lorimer, P. Freire, A. G. Lyne, and R. N. Manchester. Observations of 20 Millisecond Pulsars in 47 Tucanae at 20 Centimeters. ApJ, 535:975–990, June 2000.

F. Camilo, A. G. Lyne, R. N. Manchester, J. F. Bell, I. H. Stairs, N. D’Amico, V. M. Kaspi, A. Possenti, F. Crawford, and N. P. F. McKay. Discovery of Five Binary Radio Pulsars. ApJ, 548:L187–L191, February 2001.

F. Camilo, R. N. Manchester, B. M. Gaensler, D. R. Lorimer, and J. Sarkissian. PSR J1214-5916: Discovery of a Young Energetic Pulsar in the Supernova Remnant G292.0+1.8. ApJ, 567:L71–L75, March 2002a.

F. Camilo, I. H. Stairs, D. R. Lorimer, D. C. Backer, S. M. Ransom, B. Klein, R. Wielebinski, M. Kramer, M. A. McLaughlin, Z. Arzoumanian, and P. Müller. Discovery of Radio Pulsations from the X-Ray Pulsar J0205+6449 in Supernova Remnant 3C 58 with the Green Bank Telescope. ApJ, 571:L41–L44, May 2002b.

R. M. Campbell. Astronomical Distances Through Vlbi: Pulsars and Gravitational Lenses. Ph.D. Thesis, January 1995.

R. M. Campbell, N. Bartel, I. I. Shapiro, M. I. Ratner, R. J. Cappallo, A. R. Whitney, and N. Putnam. VLBI-Derived Trigonometric Parallax and Proper Motion of PSR B2021+51. ApJ, 461:L95–+, April 1996.

J. L. Caswell, M. J. Kesteven, R. T. Stewart, D. K. Milne, and R. F. Haynes. G308.8-0.1 - an unusual supernova remnant containing a short-period pulsar, PSR J1341-6220. ApJ, 399:L151–L153, November 1992.

A. N. Cha, K. R. Sembach, and A. C. Danks. The Distance to the VELA Supernova Remnant. ApJ, 515:L25–L28, April 1999.

S. Chatterjee, J. M. Cordes, T. J. W. Lazio, W. M. Goss, E. B. Fomalont, and J. M. Benson. Parallax and Kinematics of PSR B0919+06 from VLBA Astrometry and Interstellar Scintillometry. ApJ, 550:287–296, March 2001.

T. R. Clifton, A. G. Lyne, A. W. Jones, J. McKenna, and M. Ashworth. A high-frequency survey of the galactic plane for young and distant pulsars. MNRAS, 254:177–184, January 1992.

F. Crawford, B. M. Gaensler, V. M. Kaspi, R. N. Manchester, F. Camilo, A. G. Lyne, and M. J. Pivovaroff. A Radio Supernova Remnant Associated with the Young Pulsar J1119-6127. ApJ, 554:152–160, June 2001.

K. M. Cudworth and R. Rees. Astrometry and photometry in the globular cluster M4. AJ, 99:1491–1500, May 1990.

N. D’Amico, A. G. Lyne, R. N. Manchester, A. Possenti, and F. Camilo. Discovery of Short-Period Binary Millisecond Pulsars in Four Globular Clusters. ApJ, 548:L171–L174, February 2001.

A. C. Danks. Studies of the ISM in the Vela Supernova Remnant. ApJ, 272:127–133, 2000.

O. C. de Jager, A. K. Harding, and M. S. Strickman. OSSE Detection of Gamma Rays from the VELA Synchrotron Nebula. ApJ, 460:729+, April 1996.

R. J. Dewey, J. H. Taylor, J. M. Weisberg, and G. H. Stokes. A search for low-luminosity pulsars. ApJ, 294:L25–L29, July 1985.

A. Diplas and B. D. Savage. An IUE survey of interstellar H I LY alpha absorption. 1: Column densities. ApJS, 93: 211–228, July 1994.

R. T. Edwards and M. Bailes. Discovery of Two Relativistic Neutron Star-White Dwarf Binaries. ApJ, 547:L37–L40,
R. T. Edwards and M. Bailes. Recycled Pulsars Discovered at High Radio Frequency. ApJ, 553:801–808, June 2001b.

R. T. Edwards, M. Bailes, W. van Straten, and M. C. Britton. The Swinburne intermediate-latitude pulsar survey. MN-RAS, 326:358–374, September 2001a.

R. T. Edwards, W. van Straten, and M. Bailes. A Search for Submillisecond Pulsars. ApJ, 560:365–370, October 2001b.

I. N. Efremov. Ochagi zvezdoobrazovaniia v galaktikakh: zvezdnye kompleksy i spiral’y rukava. Moskva: "Nauka", Glav. red. fiziko-matematicheskoi litry, 1989., 1989.

M. W. Feast and A. R. Walker. Cepheids as distance indicators. ARA&A, 25:345–375, 1987.

J. P. Finley and H. Oegelman. The PSR 1800-21/G8.7-0.1. ApJ, 347:455–472, July 1990.

E. B. Fomalont, W. M. Goss, A. J. Beasley, and S. Chatterjee. R. T. Edwards, M. Bailes, W. van Straten, and M. C. Britton. A 700 Year-old Pulsar in the Supernova Remnant Kesteven 21. ApJ, 458:257+, February 1996.

E. V. Gotthelf, G. Vasisht, M. Boylan-Kolchin, and K. Torii. A 700-Year-old Pulsar in the Supernova Remnant Kesteven 75. ApJ, 542:L37–L40, October 2000.

O. H. Guseinov, A. Ankay, A. Sezer, and S. Tagieva. Unpublished work, 2002.

O. H. Guseinov and F. K. Kasumov. Distribution of electron concentration in the Galaxy. AZh, 58:996–1010, October 1981.

C. R. Gwinn, J. H. Taylor, J. M. Weisberg, and L. A. Rawley. Measurement of pulsar parallaxes by VLBI. AJ, 91:338–342, February 1986.

J. P. Halpern, F. Camilo, E. V. Gotthelf, D. J. Helfand, M. Kramer, A. G. Lyne, K. M. Leighly, and M. Eracleous. PSR J2229+6114: Discovery of an Energetic Young Pulsar in the Error Box of the EGRET Source 3EG J2227+6122. ApJ, 552:L125–L128, May 2001.

A. J. S. Hamilton, R. A. Fesen, C.-C. Wu, D. M. Crenshaw, and C. L. Sarazin. Interpretation of Ultraviolet Absorption Lines in SN 1006. ApJ, 481:838+, May 1997.

W. E. Harris. A Catalog of Parameters for Globular Clusters in the Milky Way. AJ, 112:1487+, October 1996.

F. Heitsch and T. Richtler. The metal-rich globular clusters of the Milky Way. A&A, 347:455–472, July 1999.

J. E. Hesser, W. E. Harris, D. A. Vandenberg, J. W. B. Allwright, P. Shott, and P. B. Stetson. A CCD color-magnitude study of 47 Tucanae. PASP, 99:739–808, August 1987.

R. M. Humphreys. Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way. ApJS, 38:309–350, December 1978.

S. Johnston, A. G. Lyne, R. N. Manchester, D. A. Kniffen, N. D’Amico, J. Lim, and M. Ashworth. A high-frequency survey of the southern Galactic plane for pulsars. MNRAS, 255:401–411, April 1992.

S. Johnston, R. N. Manchester, A. G. Lyne, L. Nicastro, and J. Spyromilio. Radio and Optical Observations of the PSR: B1259-63/SS: 2883 Be-Star Binary System. MN-RAS, 268:430+, May 1994.

S. Johnston, M. A. Walker, M. H. van Kerkwijk, A. G. Lyne, and N. D’Amico. A 1500-MHz survey for pulsars near the Galactic Centre. MNRAS, 274:L43–L45, May 1995.

V. M. Kaspi. Neutron Star/Supernova Remnant Associations. In ASP Conf. Proc. 202: IAU Collog. 177: Pulsar Astronomy - 2000 and Beyond, pages 485+, 2000.

V. M. Kaspi and D. J. Helfand. Constraining the Birth Events of Neutron Stars. In P. O. Slane and B. M. Gaensler, editors, ASP Conf. Proc. 271: Neutron Stars in Supernova Remnants, pages ?, 2002. astro-ph/0201183.

V. M. Kaspi, R. N. Manchester, S. Johnston, A. G. Lyne, and N. D’Amico. A Search for Radio Pulsars in Southern Supernova Remnants. AJ, 111:2028+, May 1996.

V. M. Kaspi, J. H. Taylor, and M. F. Ryba. High-precision timing of millisecond pulsars. 3: Long-term monitoring of PSRs B1855+09 and B1937+21. ApJ, 428:713–728, June 1994.

B. Koo, W. T. Reach, C. Heiles, R. A. Fesen, and J. M. Shull. Detection of an expanding H I shell in the old supernova remnant CTB 80. ApJ, 364:178–186, November 1990.

S. R. Kulkarni and S. B. Anderson. Pulsars in Globular Clusters. In IAU Symp. 174: Dynamical Evolution of Star Clusters: Confrontation of Theory and Observations, volume 174, pages 181+, 1996.

D. Legge. Astrometry of Southern Pulsars. In ASP Conf. Ser. 202: IAU Collog. 177: Pulsar Astronomy - 2000 and Beyond, pages 141+, 2000.

D. R. Lorimer, A. G. Lyne, and F. Camilo. A search for pulsars in supernova remnants. A&A, 331:1002–1010, March 1998.

A. Lyne. Radio Pulsars in Globular Clusters. In ASP Conf. Ser. 72: Millisecond Pulsars. A Decade of Surprise, pages 35+, 1995.
A. G. Lyne, F. Camilo, R. N. Manchester, J. F. Bell, V. M. Kaspi, N. D’Amico, N. P. F. McKay, F. Crawford, D. J. Morris, D. C. Sheppard, and I. H. Stairs. The Parkes Multi-beam Pulsar Survey: PSR J1811-1736, a pulsar in a highly eccentric binary system. *MNRAS*, 312:698–702, March 2000.

A. G. Lyne and D. R. Lorimer. High Birth Velocities of Radio Pulsars. *Nat*, 369:127+, May 1994.

A. G. Lyne, R. N. Manchester, D. R. Lorimer, M. Bailes, N. D’Amico, T. M. Tauris, S. Johnston, J. F. Bell, and L. Nicastro. The Parkes Southern Pulsar Survey - II. Final results and population analysis. *MNRAS*, 295:743–755, April 1998.

R. N. Manchester. Finding Pulsars at Parkes. *Publications of the Astronomical Society of Australia*, 18:1–11, 2001.

R. N. Manchester, A. G. Lyne, N. D’Amico, M. Bailes, S. Johnston, D. R. Lorimer, P. A. Harrison, L. Nicastro, and J. F. Bell. The Parkes southern pulsar survey - I. Observing and data analysis systems and initial results. *MNRAS*, 279:1235–1250, April 1996.

R. N. Manchester and J. H. Taylor. Observed and derived parameters for 330 pulsars. *AJ*, 86:1953–1973, December 1981.

S. S. Murray, P. O. Slane, F. D. Seward, S. M. Ransom, and B. M. Gaensler. Discovery of X-Ray Pulsations from the Compact Central Source in the Supernova Remnant 3C 58. *ApJ*, 568:226–231, March 2002.

H. Oegelman, L. Koch-Miramond, and M. Auriere. Measurement of the VELA pulsar’s proper motion and detection of the optical counterpart of its compact X-ray nebula. *ApJ*, 342:L83–L86, July 1989.

S. Ortolani, B. Barbuy, and E. Bica. The low galactic latitude metal-rich globular cluster NGC 6440. *A&AS*, 108:653–659, December 1994.

S. Ortolani, B. Barbuy, and E. Bica. NTT VI photometry of the metal-rich and obscured bulge globular cluster Terzan 5. *A&A*, 308:733–737, April 1996.

B. Paltrinieri, F. R. Ferraro, E. Carretta, and F. Fusi Pecci. CCD photometry of the Galactic globular cluster M13. *MNRAS*, 293:434+, February 1998.

M. J. Pivovaroff, V. M. Kaspi, F. Camilo, B. M. Gaensler, and F. Crawford. X-Ray Observations of the New Pulsar-Supernova Remnant System PSR J1119-6127 and Supernova Remnant G292.2-0.5. *ApJ*, 554:161–172, June 2001.

R. F. Rees and K. M. Cudworth. A new look at the globular cluster M28. *AJ*, 102:152–158, July 1991.

S. B. Anderson. Measurements of the trigonometric parallax of pulsars. *Nat*, 280:477+, August 1979.

J. S. Sandhu, M. Bailes, R. N. Manchester, J. Navarro, S. R. Kulkarni, and S. B. Anderson. The Proper Motion and Parallax of PSR J0437-4715. *ApJ*, 478:L95–+, April 1997.

E. L. Sandquist, M. Bolte, P. B. Stetson, and J. E. Hesser. CCD Photometry of the Globular Cluster M5. I. The Color-Magnitude Diagram and Luminosity Functions. *ApJ*, 470:910+, October 1996.

A. Sarajedini and J. E. Norris. CCD photometry for six metal-rich galactic globular clusters. *ApJS*, 93:161–185, July 1994.

G. H. Stokes, D. J. Segelstein, J. H. Taylor, and R. J. Dewey. Results of two surveys for fast pulsars. *ApJ*, 311:694–700, December 1986.

G. H. Stokes, J. H. Taylor, J. M. Welsberg, and R. J. Dewey. A survey for short-period pulsars. *Nat*, 317:787+, October 1985.

J. H. Taylor and J. M. Cordes. Pulsar distances and the galactic distribution of free electrons. *ApJ*, 411:674–684, July 1993.

J. H. Taylor, R. N. Manchester, A. G. Lyne, and F. Camilo. A Catalog of 706 PSRs. unpublished work, 1996.

V. Trimble and L. Wolter. On the Mass of the Crab Nebula. *ApJ*, 163:L97–+, February 1971.

J. M. Weisberg, J. Rankin, and V. Boriakoff. HI absorption measurements of seven low-latitude pulsars. *A&A*, 88:84–93, August 1980.