Retention Model of TaO/HfO$_x$ and TaO/AlO$_x$ RRAM with Self-Rectifying Switch Characteristics

Yu-De Lin1,2,*, Pang-Shiu Chen3, Heng-Yuan Lee1, Yu-Sheng Chen1, Sk. Ziaur Rahaman1, Kan-Hsueh Tsai1, Chien-Hua Hsu1, Wei-Su Chen1, Pei-Hua Wang1, Ya-Chin King2 and Chrong Jung Lin2,*

Abstract

A retention behavior model for self-rectifying TaO/HfO$_x$- and TaO/AlO$_x$-based resistive random-access memory (RRAM) is proposed. Trapping-type RRAM can have a high resistance state (HRS) and a low resistance state (LRS); the degradation in a LRS is usually more severe than that in a HRS, because the LRS during the SET process is limited by the internal resistor layer. However, if TaO/AlO$_x$ elements are stacked in layers, the LRS retention can be improved. The LRS retention time estimated by extrapolation method is more than 5 years at room temperature. Both TaO/HfO$_x$- and TaO/AlO$_x$-based RRAM structures have the same capping layer of TaO, and the activation energy levels of both types of structures are 0.38 eV. Moreover, the additional AlO$_x$ switching layer of a TaO/AlO$_x$ structure creates a higher O diffusion barrier that can substantially enhance retention, and the TaO/AlO$_x$ structure also shows a quite stable LRS under biased conditions.

Keywords: Retention, TaO/HfO$_x$, TaO/AlO$_x$, Self-rectifying, Resistive memory, Trapping-type

Background

Because NAND flash technology is facing a scaling limit, vertical resistive random-access memory (VRRAM) designs with low film stacks, high manufacturing yields, and no cross-coupling problems are promising candidates for high-density memory applications [1–3]. The 1TnR architecture with three-dimensional (3D) vertical structure helps realize ultralow bit cost for highly compact dense arrays [4–6]. Several researchers have proposed operating RRAM at low current levels by changing the resistance switching mechanism from a filamentary-type to a defect-trapping-, vacancy-modulating-, or interface-type conducting path model [7–9]. However, the questions central to retention failures and the migration of oxygen vacancies are still unsolved [3, 10]. In some filamentary-type retention studies, many different models have been proposed to explain retention losses [11–13]. The change of switching mechanism also indicates a different direction that might improve retention [11]. Our previous studies have shown that TaO/HfO$_x$ devices can show favorable nonlinearity values of approximately 40, endurance values exceeding 1000 cycles, and 85 °C data retention [6, 7]. Nevertheless, to obtain stable retention at such low operating current levels is still challenging. In this letter, a retention model is proposed to realize the retention loss in two different defect-trapping-type devices with the Arrhenius method. The extracted activation energy does not convincingly explain the retention improvement by the AlO$_x$ layer. Even though the original was ambiguous, the most likely interpretation is that dense bonding facilitates retention.

Methods

In the fabrication of TaO/HfO$_x$ and TaO/AlO$_x$ devices for the present study, the bottom electrode (BE) is composed of TiN metal deposited by physical vapor deposition (PVD) on 8-in. thermal oxide/Si substrates. Each BE was patterned and etched with a conventional lithography and etching process. After each TiN BE had been etched with chlorine-based gas, the remaining photoresist (PR) and etching residues were removed using a
remote plasma system that applied O₂ and H₂O at 180 °C. During the PR removal process, a thin oxidation layer of TiON was formed on the surface of each TiN BE. Then, resistive switching layers of HfOₓ and AlOₓ were prepared through atomic layer deposition (ALD) with HCl₄-H₂O and TMA-H₂O precursors, respectively. The two resistive elements HfOₓ and AlOₓ were deposited at 300 and 250 °C. On the top of resistive switching layers, the TaO layer was then deposited by PVD through low-temperature plasma oxidation (LTPO) [14]. This fabrication deposits Ta metal at an ultralow rate (0.2 Å/s). Stable plasma oxidation was performed with a mixture of Ar and O₂ gases. This TaO layer served as an internal self-compliance resistance, which was relatively leaky compared with prior resistive switching films [7]. The top electrode was also PVD-TiN. The cross-sectional views and thickness information of the TaO/HfOₓ and TaO/AlOₓ memory devices are illustrated in Fig. 1a, b respectively. The film thickness of TaO/HfOₓ was checked by transmission electron microscopy (not shown). After the cells had been patterned, the low-temperature oxide was deposited for passivation at 250 °C. Finally, a conventional back-end process was applied to finish the fabrication of contact and metal pad structures.

Results and Discussion

The electrical measurements were performed with a HP4156C semiconductor parameter analyzer. The set and reset current density (I) versus voltage (V–V) curves of TaO/HfOₓ and TaO/AlOₓ devices are shown in Fig. 2a, b respectively. Both initial resistance states (Rinitial) of the TaO/HfOₓ and TaO/AlOₓ devices were HRS. The virgin memory devices were programmed to LRS with positive bias and were swept back. Then, each cell was switched from LRS to HRS by applied negative voltage. Both V–V plots contain three cell sizes, namely, 0.1, 0.56, and 25 μm². In the V–V plots, all curves from devices with different areas resemble each other, which indicates both TaO/HfOₓ and TaO/AlOₓ devices had (i) the same current density in the initial state, (ii) similar set and reset voltages, and (iii) the same current density in LRS and HRS. Moreover, the constant current density property is clearly illustrated by the resistance versus area (R–A) plots in Fig. 2c, d. The strong area dependence in both Rinitial and LRS can be observed by the control of current density. Regardless of the scale of cell area and compliance current, the same on/off resistance ratio is kept in both devices. This constant current density switch characteristic implies the memory cells are uniformly programmed or erased by the electrical field. These devices are considered to have trapping-type switching properties, which strongly relate to the modulation of vacancies [8]. In the case of trapping-type RRAM, no sharp current jump has been observed during the set process, but sharp current jumps have been commonly observed for filamentary-type RRAM. In the present research, different switching voltages were observed for the different switching layers with HfOₓ or AlOₓ. The set voltage range of a TaO/AlOₓ device is 4 to 4.5 V, which is larger than that of a TaO/HfOₓ device (3 to 4 V). The reset voltage range of a TaO/AlOₓ device is −1.5 to −2.5 V, which is larger than that of a TaO/HfOₓ device (−0.5 to −1.5 V). An AlOₓ system consumes more energy to complete the set and reset switches than a HfOₓ system consumes. During the setting of switches, the switching layers HfOₓ and AlOₓ achieve soft breakdowns at voltages of approximately 3 and 3.5 V, respectively. In both types of devices, before filaments form in the switching layer, the current is limited by the internal resistance of the TaO layer. During the self-compliance process of trapping-type RRAM, excessive oxygen vacancies are generated inside the switching layer [7]. Those oxygen vacancies are recombined during the negative biasing reset process. Unlike filamentary-type RRAM, the HRS is always lower than the initial resistance state (IRS) after a reset operation [15–17]. To summarize, defect-trapping is a process that modulates vacancies through oxygen ion–vacancy recombination to control the resistance variation in the switching layer. Compared with a HfOₓ switching layer, defect-trapping causes higher voltage and power in the AlOₓ layer during both the setting and the resetting of a switch.

After the switching behavior had been investigated, the HRS and LRS retention behaviors of the trapping-type memory units were investigated. The plots of resistance variation versus time at 85 °C and 1 V for the TaO/HfOₓ and TaO/AlOₓ devices are shown in Fig. 3a, b. In both plots, the LRS variation is more pronounced than the HRS variation. The resistance stability of TaO/AlOₓ is higher than that of TaO/HfOₓ. The figures illustrate that the HRSs tended to drift toward the IRSs for both types of devices; the IRSs are marked by dashed lines in Fig. 3a, b. The trend of resistance coming back to device’s virgin state is depicted in Fig. 3c for TaO/AlOₓ and in Fig. 3d for TaO/ HfOₓ. To realize this, both types of devices were initially programmed to LRS at room temperature, as shown in the I–V sweeps (black line). Then, the TaO/AlOₓ and TaO/HfOₓ
devices were baked in ovens at 150 °C for 48 h and at 120 °C for 120 h, respectively. For both cases, the $I-V$ sweep after having been baked was similar to the initial sweep. By this procedure, the LRSs of trapping-type devices were returned to the original states after time in a high-temperature environment. Unlike filament-type devices, which feature notable movement of oxygen atoms, trapping-type devices have pairs of oxygen ions and vacancies separated by short distances. The tendency of resistance drifting to the initial state is related to its original crystallinity, which is mainly controlled by the process temperature of ALD. As a result, the LRSs in both types of devices can be reset to HRSs (or IRSs) by negative bias or thermal energy. This property is different with filamentary RRAM.

In standard retention testing for nonvolatile memory, data retention is tested at both room temperature and at high temperature; devices must be able to retain data at both room temperature and at high temperature to be useful in real applications. Activation energy (E_a) extraction by the Arrhenius method in the retention plot is a common method to evaluate data retention [18, 19]. As can be seen in Fig. 3a, the LRS variation is more
pronounced than the HRS variation. Therefore, the resistance ratio \(R_{\text{ratio}} \) of LRS versus baking time at temperatures ranging from 30 to 150 °C was analyzed. One example of retention time extraction from a TaO/AlO\(_x\) device is shown in Fig. 4a. The resistance degradation rate can be calculated by the slope of linear fitting in \(\log(R_{\text{ratio}}) - \log(\text{time}) \) scale. By considering the maximum on/off resistance ratio of approximately \(10^3 \) for a TaO/AlO\(_x\) device, as shown in Fig. 3c, a retention time with \(10^3 \) times the LRS variation can be calculated. The estimated LRS data retention at measurement temperatures ranging from 30 to 150 °C is shown in Fig. 4b. Each data point represents information from more than 18 devices for both device types. In a TaO/AlO\(_x\) device, data retention is as high as \(10^6 \) s at 150 °C and \(2 \times 10^8 \) s (approximately 5 years) at room temperature; those times are almost \(10^{1.5} \) times longer than those of a TaO/HfO\(_x\) device. The most interesting point is that both TaO/HfO\(_x\) and TaO/AlO\(_x\) devices show the same \(E_a = 0.38 \) eV, as calculated from the extracted slope. The same \(E_a \) implies that both types of devices undergo similar chemical reactions in the LRS degradation process. This \(E_a \) is involved in all thermally activated kinetic processes, including the release of oxygen ions near TaO interfaces and the oxygen diffusion processes in AlO\(_x\) and HfO\(_x\) layers. However, the oxygen self-diffusion coefficients of HfO\(_x\) and AlO\(_x\) layers are different at high temperatures (>1000 °C); exact measurements can be found in the literature [20, 21]. The oxygen diffusion coefficient at low temperature (<200 °C) also depends on the thickness of HfO\(_x\) dielectrics [22]. If the diffusion processes in switching layers dominate the chemical reaction, then the \(E_a \) values should be different due to the different diffusion coefficients in HfO\(_x\) and AlO\(_x\) layers. Both types of devices in this work exhibited the same \(E_a = 0.38 \) eV; this was related to the fact that both types of devices had the same capping layer of TaO on the top of the switching layers. LRS degradation is a process of recombination of vacancies and ions, which means the TaO layer controls this chemical reaction and most of the vacancies are crowded near the interface between the TaO and the switching layer. Those vacancies prefer to stay on the TaO/switching layer interface; this phenomenon could be supported by the thermodynamic stability point of view, as reported by Zhong et al. [23]. In their simulation of TiN/Ta/HfO\(_x\)/TiN stacks, the oxygen ions preferred to stay on the Ta/HfO\(_x\) interface because a low energy difference existed between Ta and HfO\(_x\) [23]. In their simulation, as in the present experiments, the TaO resistive layer trapped most of the oxygen ions and dominated this vacancy recombination process. LRS degradation is schematized in Fig. 4c. The oxygen ions return to the previous thermal equilibrium state during the baking process, which results in retention loss. Differences can be noted between the Ta/HfO\(_x\) device as proposed by Zhong et al. and the TaO/HfO\(_x\) device in this study, but in both studies, the TaO layer was formed by several cycles of metal Ta deposition and LTPO processes [14]. Because of the LTPO process, the metal-rich TaO/HfO\(_x\) interface can be considered as an oxygen ion reservoir. During the recombination process of oxygen ions and vacancies, the atom packing density plays an essential role. The superior LRS retention properties obtained in the AlO\(_x\) switching layer could be explained by the high atomic density of the AlO\(_x\) layer. It is well known that the bond length of Al–O is shorter than that of Hf–O [24, 25]. The short bond in the AlO\(_x\) reduces the oxygen ion mobility due to high coulomb interaction, which results in a high oxygen vacancy diffusion barrier. This barrier causes retention time to be longer in a TaO/AlO\(_x\) device than in a TaO/HfO\(_x\) one.

In addition, the retention loss model of a filamentary-type device is different from that of a defect-trapping-type device. The retention behavior for filamentary-type RRAM is related to filament rupture, and the vacancy diffusion direction is lateral [11, 19, 24]. In defect-trapping RRAM, the defect diffusion direction is

Fig. 4 **a** Resistance variation ratio versus baking time for different temperatures in TaO/AlO\(_x\) devices. The average initial resistance was 179 MOhm with a reading voltage of 2 V, and the LRS resistance degradation rate was calculated by the linear fitting method in \(\log(R_{\text{ratio}}) - \log(\text{time}) \) scale. **b** Estimated retention time \((1000x)\) versus \(1/\text{KT}\) plot. Each point contains data from 18 devices taken at a reading voltage of 2 V. The extracted activation energies were 0.38 eV in both the TaO/AlO\(_x\) and TaO/HfO\(_x\) devices. **c** Retention schematic diagram of different oxygen diffusion barriers in HfO\(_x\) or AlO\(_x\) with a TaO capping layer.
Conclusions

In summary, we compared two types of self-rectified RRAM devices through their switch characteristics and analyzed their retention behaviors. The TaO/AlO\textsubscript{x} device showed a higher switching voltage and a more robust LRS thermal stability than the TaO/HfO\textsubscript{x} device did. The benefit of robust retention from the AlO\textsubscript{x} switching layer is due to the high oxygen diffusion barrier rather than activation energy. The activation energy of retention loss is related to the ion de-trap process in the TaO resistive layer. The high atomic density of AlO\textsubscript{x} film may improve LRS retention. A retention loss schematic model has been proposed and the on-bias retention results supported this model. This model could be beneficial for the development of low-current, long-retention, self-rectifying RRAM devices for future high-density memory applications.

Acknowledgements

This manuscript was edited by the Wallace Academic Editing.
operation, nonfilamentary switching and excellent variability. VLSI Technology Symposium 59:T132–T133.

9. Prakash A, Jana D, Maikap S (2013) TaOx-based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8:418

10. Subhrethta S, Govoreanu B, Chen Y, Clima S, Meyer KD, Houdt JV, Jurczak M (2016) Extensive reliability investigation of a-VMCO nonfilamentary RRAM: relaxation, retention and key differences to filamentary switching. IEEE Int Reliab Phys Symp 8C.2.1–8C.2.5. doi:10.1109/IRPS.2016.7574568.

11. Choi S, Lee J, Kim S, Lu WD (2014) Retention failure analysis of metal-oxide based resistive memory. Appl Phys Lett 105:113510.

12. Yu S, Chen YY, Guan X, Wong HSP, Kittl JA (2012) A Monte Carlo study of low resistance state retention of HfO2-based resistive switching memory. Appl Phys Lett 100:043507.

13. Chen CY, Fantini A, Goux L, Degraeve R, Clima S, Redolfi A, Groeseneken G, Jurczak M (2015) Programming-conditions solution to suppression of retention tails of scaled oxide-based RRAM. Int Electron Devices Meet 10.6.1–10.6.4. doi:10.1109/IEDM.2015.7409671.

14. Chen YS, Lee HY, Chen PS, Lin YD, Tsai KH, Hsu CH, Chen WS, Tsai MJ, Ku TK, Wang PH (2016) Low power/self-compliance of resistive switching elements modified with a conduction Ta-oxide layer through low temperature plasma oxidation of Ta thin film. Intl Symp VLSI Tech Sys and App. doi:10.1109/VLSI-TSA.2016.7480496.

15. Nardi F, Larentis S, Balatti S, Gilmer DC, Ielmini D (2012) Resistive switching by voltage-driven ion migration in bipolar RRAM—part I: experimental study. IEEE Electron Dev Lett 39:2461–2467.

16. Maikap S, Jana D, Dutta M, Prakash A (2014) Self-compliance RRAM characteristics using a novel W-TaOx/TiN structure. Nanoscale Res Lett 9:292.

17. Jana D, Samanta S, Roy S, Lin YT, Maikap S (2015) Observation of resistive switching memory by reducing device size in a new Cr/CrOx/TiOx/TiN structure. Nanoscale Res Lett 10:392–399.

18. Ielmini D, Nardi F, Caglio C, Lacasta AL (2010) Size-dependent retention time in NIO-based resistive-switching memories. IEEE Electron Dev Lett 31:353–355.

19. Chen YY, Komura M, Degraeve R, Govoreanu B, Goux L, Fantini A, Raghavan N, Clima S, Zhang L, Belmonte A, Redolfi A, Kar GS, Groeseneken G, Wouters DJ, Jurczak M (2013) Improvement of data retention in HfO2/Hf1T1R RRAM cell under low operating current. Int Electron Devices Meet 10.1.1–10.1.4. doi:10.1109/IEDM.2013.6724598.

20. Clima S, Chen YY, Degraeve R, Mees M, Sankaran K, Govoreanu B, Jurczak M, Gendt SD, Pourtois G (2012) First-principles simulation of oxygen diffusion in HfO2; role in the resistive switching mechanism. Appl Phys Lett 100:133102.

21. Oishi Y, Kingery WD (1960) Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide. Journal of Chemical Physics 33:480.

22. Zafar S, Jagannathan H, Edge LF, Gupta D (2011) Measurement of oxygen diffusion in nanometer scale HfO2 gate dielectric films. Appl Phys Lett 98:152903.

23. Zhong X, Rungger I, Zapoli P, Nakamura H, Heinonen YAO (2016) The effect of a Ta oxygen scavenger layer on HfO2-based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport. Phys Chem Chem Phys 18:7502–7510.

24. Traoré B, Blaise P, Vanello E, Grampieux H, Jeannot S, Perniola L, Salvo BD, Nishi Y (2015) On the origin of low-resistance state retention failure in HfO2-based RRAM and impact of doping/alloying. IEEE Tran Electron Devices 62:4029–4036.

25. Traoré B, Blaise P, Vanello E, Grampieux H, Bonneville A, Jalaguier E, Molas G, Jeannot S, Perniola L, DeSalvo B, Nishi Y (2014) Microscopic understanding of the low resistance state retention in HfO2 and HfAlO based RRAM. Int Electron Devices Meet 21.5.1–21.5.4. doi:10.1109/IEDM.2014.7047097.