Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: a review

M A Kareem¹, I T Bello¹,², H A Shittu¹, M K Awodele¹,³, O Adedokun*¹,³ and Y K Sanusi¹,³

¹Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
²Department of Physics, CSET, University of South Africa, Johannesburg 1710, South Africa
³Nanotechnology Research Group (NANO⁺), Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*Email: oadedokun@lautech.edu.ng

Abstract

Nano-sized particles of silver (Ag) whose diameter falls within 1-100 nm range possess an exceptional physico-chemical, biological and antimicrobial properties. As a result of their unique properties, silver nanoparticles (AgNPs) have been vigorously investigated. In the last decade, several trials have been made to heighten the green methods of formulating AgNPs to reduce the danger of the by-products from chemical methods. A clear understanding of AgNPs properties is absolutely necessary in order to make the best use of these nanoparticles in various fields, while their effect on man and environment is reduced to the least achievable. This review aims to discuss the green methods of preparing AgNPs and its numerous applications in the area of opto-electronics and environmental remediation. Many natural biomolecules in plants and microorganism were involved in formation, stabilization and bio-reduction of AgNPs. Over the years, several discoveries have reiterated that the catalytic and optical properties of AgNPs are dependent on the size, size-distribution and shape, which show variation by differing their synthetic approaches, stabilizers and reducing agents. In this review, silver nanoparticles have been reported to produce a desired result as a promising photocatalytic material and with a viable application in opto-electronic device. Thus silver nanoparticles are considered useful for having diverse range of applications for the benefits of man.

Keywords: Silver Nanoparticles, Photocatalytic, Degradation, Green synthesis, Stabilizers, Reducing agents
1. Introduction

Nanotechnology is a very swift growing field that has been used worldwide probably in a large number of different economic product by producing nanoparticles (NPs) and nano products with novel and size-related physico-chemical characteristics that are significantly different from bulk matter [1]. In the last few years, the scientific community has recorded an outstanding progress in the area of nanoscience and nanotechnology [2]. Nanoparticles possess enhanced properties considering particular characteristics, that is, shape, size (1-100 nm) and structure. NPs are of two broad categories, organic and inorganic nanoparticles. Inorganic nanoparticles are semi-conductor nanoparticles (ZnO, ZnS, CdS), metallic NPs (Au, Ag, Cu, Al), and magnetic NPs (Co, Fe, Ni), while organic NPs are carbon nanoparticles such as quantum dots, fullerenes and carbon nanotubes. Several interests for gold (Au) and silver (Ag) NPs increase rapidly as a result of their superior characteristics and flexible properties [3]. In this review, AgNPs is of interest because of its unique and distinctive superior physico-chemical properties which include high thermal and electrical conductivity, surface-enhanced Raman scattering, catalytic activity, chemical stability, biological properties [4] and non-linear optical behaviour [5]. Their superiority is as a result of their shape, size, crystallinity, composition and structure compared to the bulk forms [6, 7]. These novelties have been utilized in a large scope of potential applications such as biomedical devices, medicine, renewable energies, cosmetics, environmental remediation, food, consumer, and industrial purposes [8, 9].

The metal nanoparticles exhibit Surface Plasmon Resonance (SPR) whose strong observation of light is used for producing the optical devices [10]. The SPR is dependent on the free electrons oscillation of the particles and the medium surrounding it and form the conduction band as a result of the electromagnetic field [11]. The spectral and geometrical attributes of silver nanoparticle, such as shape, size, environment and the inter-particle spacing provide important control over the linear and nonlinear optical properties [12], and these properties make them useful in medical imaging, microelectronics, and inks [13]. Besides, silver nanoparticles possess a broad spectrum of bactericidal and fungicidal activities [14] which made them more common in a various order of consumer products such as soaps, plastics, food, pastes and textiles, thereby magnifying their market quality [15, 16].

In other to achieve a desired AgNPs, several methods of synthesis have been improvised including physical, biological and chemical as illustrated in Figures 1 and 2. Generally, a conventional physical and chemical method of synthesis has been shown to be very costly and toxic [17]. There is possibility to achieve desired particle characteristics, nevertheless the
use of reducing and stabilizing agents which are expensive and toxic in physical and chemical methods of synthesis, makes them unlikely to bring about a favourable result [18, 19]. Among the numerous methods that have been adopted to synthesise nanoparticles, the biologically prepared AgNPs shows a high yield, high stability and solubility. Stable nanoparticles are achieved by reducing silver ions into silver elements by the use of reducing agents and then by nucleation and growing processes [20]. Biological method of production is a very simple, harmless, reliable, and a green approach capable of producing a specified size, morphology under more desirable conditions for translational research in short time. In this regard, green synthesis method of nanoparticles has drawn significant attention of researchers in recent years; extracts from microorganisms, plants and enzymes have been discovered to be a good replacement for reagents used in the synthesis of nanoparticles [21]. The use of green materials has numerous advantages such as low consumption of energy and moderate operation conditions (e.g. temperature and pressure) beyond the use of hazardous chemicals [22]. Therefore, the green method of synthesis utilizing biological organisms such as bacteria, yeast, algae, moulds and extracts from plant have been designed for synthesising nanoparticles [23]. The small size nature and surface configuration of AgNPs increases their surface to volume ratio and make them to exhibit amazing antimicrobial and physico-chemical properties [24]. In comparison with other methods, biosynthesis of nanoparticles using extracts of plant is cost effective, eco-friendly and makes the intended nanoparticles suitable for therapeutic use [25] and as economic and valuable alternative for the mass production of silver nanoparticles.
Figure 1. General methods of synthesis of silver nanoparticles

2. Silver nanoparticles (AgNPs)
AgNPs among several other metal nanoparticles have drawn attention as a result of their unique properties which include chemical stability, electrical conductivity, antimicrobial and catalytic activities [26]. Nanosilver portrays properties that are totally different from bulk material as a result of high surface to volume ratio [27].

AgNPs are produced from various chemical, physical and biological approaches that results in different sizes and shapes employed in numerous applications. Hence, the syntheses methods are grouped into two main categories; bottom-up and top-down approaches. In the top-down approach, as shown in Figure 2, the bulk size of silver metal is reduced by mechanical means to nano-scale through the use of sophisticated procedures such as laser ablation and lithography. Bottom-up approach otherwise called self-assembly technique involves dissolution of silver salt into a solvent and reduction of Ag\(^+\) to their element by adding reducing agent and stabilizing agents to stabilize the forming AgNPs to avoid agglomeration [28]. The bottom-up approach produces nanostructures with little or low defects, better long and short range ordering and chemical composition that are more homogenous [29]. AgNPs of desired morphology, size, and shape can be produced by the several physical and chemical methods (such as arc discharge, surface deposition, plasma...
polymerization, emulsion polymerization, laser CVD (Chemical Vapour Deposition), and thermal decomposition in organic solvents, chemical reduction and photo reduction in reverse micelles [30].

Figure 2. Diverse synthesis approaches of silver nanoparticles (AgNPs) [31]

3. **Green synthesis of silver nanoparticles**

The conventional synthetic methods of synthesizing NPs are costly, toxic, and not friendly to the environment. In an attempt to bypass these challenges, researchers have found green routes in which natural sources and their outcomes can be employed for synthesising NPs. Figure 3 shows the green synthesis approach of silver nanoparticle utilizing microorganisms (such as yeasts, fungi, actinomycetes and bacteria) and the use of plants and its extracts [32]. It was reported that microorganisms (bacteria and fungi) are used to reform the toxicity of materials by reduction of metal ions, the molecules produced by living organisms are replaced by stabilizer and the reducing agent [33].
3.1 Synthesis of AgNPs by using bacteria

The production of inorganic materials using bacteria by extracellular or intracellular makes them a potential bio-factory for producing noble metal NPs whether Au or Ag. Silver nanoparticles have been shown to be biocompatible whereas some bacteria are resistant to silver [34]. Since these bacteria are capable of gathering Ag on the cell walls, they are then recommended industrially for use in recovery of Ag from ore material [35]. There are many bacteria that have been used for synthesising AgNPs (Table 1).

Klaus et al. [36] worked on the AgNPs synthesis by the use of *Pseudomonas stutzeri* AG259, Ag resistant bacteria strains. It was reported that the cells accumulate AgNPs in large quantity up to 200 nm [36]. In 2008, the production of AgNPs was also investigated using *Bacillus licheniformis* [37]. From the study, AgNO₃ solution was imparted into the biomass of *B. licheniformis*, and appearance of a brownish colour confirmed the formation of AgNPs within the range of 50 nm on the average and stabilized by the use of nitrate enzyme. Nanda and Saravanan [38] also reported AgNPs produced by utilizing culture supernatants from *Staphylococcus aureus*. It was revealed from their study that culture supernatants of any form of bacteria from Enterobacteriaceae make synthesis of AgNPs to be fast [38].

Suresh et al. [39] biosynthesized silver nanoparticles by exploiting a bacterium (*Shewanella oneidensis*) capable of reducing metals and incorporated with a solution of silver nitrate. The study revealed a nearly mono-dispersed spherical AgNPs whose size ranges between 2 to 11
nm and possesses important properties such as being stable, hydrophilic and having a large surface area [39].

In another study [40], stable AgNPs were synthesized by the use of *Bacillus* sp., an airborne bacterium and silver nitrate. The biogenic NP was investigated between the outer and inner cell membranes of the bacterial cells and the obtained diameter was found between 5-15 nm. According to report [41], AgNPs is produced by reducing aqueous Ag⁺ via different culture supernatants of bacteria (*Klebsiella pneumoniae*, *Enterobacter cloacae*, and *Escherichia coli*). It was concluded that the synthesis rate is much faster, as AgNPs forms within 5 minutes after adding Ag ions to the cell filtrate.

Also, Sintubin et al. [42] utilized *Lactobacillus* spp. as capping and reducing agent in the production of AgNPs. The study was conducted with varieties of *Lactobacillus* spp to gather and afterwards reduces Ag⁺. The analysis confirmed the lactic acid bacteria to have the ability to produce Ag. It was concluded that, particle localization and distribution relied on *Lactobacillus* species inside the cell and a mean diameter (11.2 nm) of the AgNPs produced.

3.2 Synthesis of AgNPs by using fungi

Fungi possess a unique ability for synthesizing metallic NPs; this is because of their high binding capacity, metal bioaccumulation ability, intracellular uptake and tolerance [43]. Fungi can be used to synthesis NPs whereby it secretes enough enzymes capable of reducing AgNO₃ solution through various methods [44]. Kumar et al. [45] investigated a rationale of an *in vitro* enzymatic scheme for synthesizing AgNPs. NADPH (nicotinamide adenine dinucleotide phosphate) subjected to phytochelatin and nitrate reductase [45]. The purified nitrate reductase obtained from the fungus, *Fusarium oxysporum* was employed *in vitro* with NADPH. Their study revealed that hydroxyquinoline acts as an electron shuttle to enable Ag formation and a stable silver hydrosol with size range of 10 to 25 nm was produced and stabilized using capping peptide.
Table 1. Green synthesis of AgNPs using bacteria

Bacteria	Intracellular/Extracellular	Precursor	Size (nm)	Morphology	Reference
Marine Ochrobactrum spp.	Intracellular	AgNO₃	38–85	Spherical	[46]
Exiguobacterium mexicanum	Extracellular	AgNO₃	5–40	Spherical and cubic	[47]
Shewanella oneidensis	Extracellular	AgNO₃	4.15	Spherical	[48]
Lactobacillus spp.	Extracellular and intracellular	AgNO₃	2–20	Spherical	[49]
Lactobacillus HG-C3 sp.	Extracellular	AgNO₃	8–25	Crystalline and spherical	[50]
Serratia nematodiphila	Extracellular	AgNO₃	10–31	Spherical and crystalline	[51]
Pseudomonas putida NCIM 2650	Extracellular	AgNO₃	70	Spherical	[52]
Bacillus methylotrophicus	Extracellular	AgNO₃	10–30	Spherical	[53]
Rhodococcus spp.	Intracellular	AgNO₃	5–50	Spherical	[54]
Vibrio alginolyticus	Extracellular and intracellular	AgNO₃	50–100	Spherical	[55]

Also, Trichoderma viride was extracellularly utilised for the synthesis of AgNPs from aqueous AgNO₃. It was reported that T. viride has a biological component that is useful for extracellular biosynthesis of Ag and the micrographs revealed that the AgNPs produced have varying morphology with rod-like and spherical NPs; the NPs obtained are in the range of 5–40 nm [56]. In another study, Naqviet al., [57] produced AgNPs and reported the use of A. flavus incorporated with antibiotics so as to improve the biocidal efficacy against multidrug-resistant bacteria [57]. Also, Ahmad et al. [58] in their studies reported that when aqueous Ag⁺ ions are in contact with Fusarium oxysporum, they are reduced in solution through an
enzymatic process leading to highly stable Ag hydrosol formation. The formed NPs are stabilized in solution by protein-secreted fungus and are found in the range of 5 to 15 nm [58]. Mono-dispersed AgNPs are accomplished by extracellular synthesis from Aspergillus fumigatus and the synthesis was reported to be very fast [59]. Furthermore, Li et al. [60] synthesized spherical AgNPs from Aspergillus terreus, and an average diameter of 1-20 nm was reported [60]. Also, the extracellular production of AgNPs by the use of F. oxysporum and the antibacterial effect on textile fabrics was investigated [61]. Vigneshwaran et al. [62] reported that mono-disperse AgNPs was achievable using fungus Aspergillus flavus. In their study, transmission electron microscopy (TEM) revealed the NPs size to be in the range of 8.92 ± 1.61nm [62]. In addition, the extracellular production of AgNPs by utilizing Cladosporium cladosporioides was studied by Balaji et al. [63]; the size of the synthesised NPs as measured using TEM are found in the range of 10-100 nm [63].

Summarily, the cell walls of microorganism employed in the biological synthesis plays a vital role in the intracellular production of NPs. Interaction between the positive charged metal ions and negative charged cell wall electrostatically bio-reduces metal ions to NPs [64]. There are numerous fungi that are usable in the synthesis of AgNPs as presented in Table 2.

3.3 Synthesis of AgNPs using plant extracts

Bar et al. [65] studied the use of seed extract of Jatropha curcas in their attempt to produce AgNPs. The concentration of AgNO₃ used varied from 10⁻³ to 10⁻²M and the solutions become reddish after a continuous heating for 15 min at 80 °C temperature. The study revealed the size of AgNPs in the range 15-50 nm at different concentrations with spherical shape. It was concluded that by varying the concentration of AgNO₃, AgNPs of any size is achievable [65]. AgNPs synthesis using leaf extract of Acalypha indica was investigated by Krishnaraj et al. [66] in Erlenmeyer flask, 100 mL of AgNO₃ and 12 ml of the extract in aqueous form was combined and the synthesis process was performed under stable conditions in the dark at a temperature of 37°C. The synthesised AgNPs was reported to exhibit a spherical shape of 20-30 nm diameter [66].
Table 2. Green synthesis of AgNPs using Fungi

Fungi	Intracellular/Extracellular	Precursor	Size (nm)	Morphology	Reference
Aspergillus niger	Extracellular	AgNO$_3$	1-20	Spherical and Polydispersed	[67]
Trichoderma harzianum	Extracellular	AgNO$_3$	34.77	Ellipsoid and Spherical	[68]
Fusarium acuminatum	Extracellular	AgNO$_3$	13	Spherical	[69]
Penicillium fellutanum	Extracellular	AgNO$_3$	5-25	Spherical	[70]
Aspergillus clavatus	Extracellular and intracellular	AgNO$_3$	10-25	Polydispersed and Spherical	[71]
Fusarium oxysporum	Extracellular	AgNO$_3$	10-25	Not reported	[72]
Aspergillus flavus	Extracellular	AgNO$_3$	8.92 ±1.61	Monodispersed	[73]
Schizophyllum commune	Extracellular and intracellular	AgNO$_3$	51-93	Spherical	[74]

Raveendran and colleagues also synthesized AgNPs in a gently heated system using D-glucose as a reducing agent and starch as capping agent. The study discovered that starch and AgNPs have weak binding interactions which can be reversed at a high temperature to allow separation of the particles synthesized [75, 76]. Alternatively, AgNPs produced in a biosynthetic approach using Mentha piperita as a bioreducing agent for chloroauric acid (HAuCl$_4$) and silver nitrate. The plant extract (1.5 ml) was mixed with 30 ml of AgNO$_3$ per 1 mM/ml solution. The process was carried out at 28 °C for 24 h and the solution was then centrifuged at 6000 rpm for 10 min. The outcome of the investigation is a spherical AgNPs of about 90 nm [77].

Also, Rumex hymenosepalus was used by Rodríguez-Leónto et al. [78] as reducing agent to synthesize AgNPs using ethanol as stabilizer and AgNO$_3$ as precursor. The research analysis revealed the obtained diameters of the synthesized AgNPs to be 2-40 nm range [78].
Recently, Dhand et al. [79] synthesized AgNPs using tea or coffee extract. In their work, spherical nanoparticles ranging from 20 to 60 nm was formulated and extracts from black tea was reported to possess the ability to break AgNO$_3$ to spherical shaped AgNPs, nano prisms, nanorods and other morphologies in the 20 nm size range [79, 80]. More recently, the green and Arabica coffee beans were investigated [81]; the coffees were found to have the characteristics of reducing and stabilizing agents. Both study concluded that the green coffee beans produced spherical AgNPs of 10 to 30 nm range, while the ellipsoidal nanoparticles ranging from 20 to 30 nm were produced by Arabica coffee. Also, a biological approach of synthesizing Ag nanoparticles was verified in a study by Ali et al. [82]. In their method, silver nitrate of different concentrations from 20 to 0.62 mM was mixed with extract from plant with concentration ranging from 100 to 0.79 mg/ml. Their study confirmed the irregularity in the shapes of Ag particles produced in the range of 5-20 nm and concluded that plant extract with higher concentration will yield larger silver particles [82].

Another researcher synthesized AgNPs by using leaf extract of Polyalthia longifolia as reducing agent alongside D-s orbital to improve the stability of nanoparticles [83]. Also, AgNPs produced by Maqdoom and associates [84] through the Papaya fruit extract were characterized by FTIR and Absorption spectroscopy. Rout and colleagues [85], also synthesized AgNPs from leaf extract of Ocimum sanctum. In their study, it was reported that a spherical-shaped AgNPs was revealed from XRD, UV-vis spectroscopy and SEM analysis. Awwad et al.[86] reported that 5 to 40 nm spherical AgNPs was achieved in their study using carob leaf extract and characterized by the use of UV-vis spectroscopy, XRD, SEM and FTIR. The SPR analysis for AgNPs is at 420 nm and XRD showed FCC geometry with crystalline shape [86].

Furthermore, Kasthuri et al. [87] synthesized AgNPs from phyllantin as reducing and capping agent. The TEM investigation showed that the AgNPs have an average diameter of 21-39 nm [87]. In 2012, Awwad and Salem discovered mono-dispersed spherical AgNPs as produced by utilizing Mulberry leaves extract to have adiameter of about 20 nm. It is concluded that the SEM history revealed the effective antibacterial activity of silver nanoparticles towards Shigella sp and Staphylococcus aureus [88].

Moreover, Khalil et al. [89] produced AgNPs by the reducing solution of AgNO$_3$ through olive leaf extract. The characterization was done by employing XRD, UV-vis spectroscopy, SEM and TGA. The analysis confirmed that the NPs are almost spherical with size of 20-25 nm in range and exhibits effective antibacterial activity against drug-resistant bacteria isolates [89].
Table 3. Green synthesis of AgNPs using Plant Extracts

Plant Extracts	Reducing/Capping Agent	Precursor	Size (nm)	Morphology	Reference
Catharanthus roseus	Root extract	AgNO$_3$	35-55	Spherical, FCC and crystalline	[90]
Trilobata	Leaf extract	AgNO$_3$	70	Spherical and FCC	[91]
Aloe vera	Leaf extract	AgNO$_3$	70	Spherical, cubical and triangular	[92]
Lens culinarl	Seed exudate	AgNO$_3$	13	Crystalline and spherical	[93]
Banana	Peel	AgNO$_3$	23.7	Crystalline and spherical	[94]
Macrotyloma uniflorum	Seed extract	AgNO$_3$	12	FCC and nearly spherical	[95]
Achillea bieberstennii	Flower extract	AgNO$_3$	12 ± 2	Spherical and pentagonal	[96]
Terminalia arjuna	Bark extract	AgNO$_3$	2-100	Spherical	[97]
Ziziphora tenuior	Leaves extract	----	8-40	Spherical	[98]
Trachy spermumammi	Seed extract	AgNO$_3$	87-99.8	----	[99]
Solanum lycopersicum	Fruit	----	10	Spherical	[100]
Honey	honey solution	----	4	Crystalline and spherical	[101]
Catharanthus roseus	Leaf extract	AgNO$_3$	20	Spherical	[102]
4. **Applications of silver nanoparticles**

As a result of the unique properties of silver nanoparticles, they have become vigorously investigated and used extensively in various fields for different application as shown in Figure 4.

![Figure 4. Schematic diagram representing various applications of AgNPs](image)

Figure 4. Schematic diagram representing various applications of AgNPs

4.1 **Optoelectronic Application**

Xie *et al.* [103] worked on substrates of homogeneous silver-coated nanoparticles for enhancement of fluorescence detection. In their study, a monolayer of fluorescein isothiocyanate (FITC)-conjugated Human Serum Albumin (FITC-HSA) was used to investigate the degree of the fluorescence enhancement and it was tested by the help of laser scanning microscopy at excitation wavelength of 488 nm. The factor for the enhancement was obtained from the spectrofluorometer spectra and it was reported that Au Core-Ag shell nanostructures on the surface of the glass are good substrates with outstanding macroscopic homogeneity when it comes to fluorescence enhancement [103]. Also, Tagad and co-workers investigated the green method of synthesising silver nanoparticles for the fabrication of optical fibre based on hydrogen peroxide sensor (H_2O_2). The characterization of AgNPs was done with UV-vis spectroscopy and atomic force microscopy (AFM). The size of AgNPs was found to vary from 18-51 nm based on LBG and AgNO$_3$ concentration. It was concluded that the fabrication of a sensor based on optical fiber for detection of H_2O_2 was successful through the use of stabilized AgNPs and that the fabricated sensor is a simple, portable and cost effective sensor which is usable in various industrial applications [104].
In another study, biomediated silver nanoparticles were applied in highly selective copper (II) ion sensor [105]. The consequence of temperature and pH on silver nanoparticles formation was verified and checked by surface plasmon spectra with the help of UV-vis spectrophotometer. The sample characterization was done by TEM and XRD techniques. It was reported from the investigation that the produced AgNPs having no surface modification were successfully utilized in detection of even smallest possible amount of heavy metal copper (II) ion and with efficient specific metal ion detection [105].

4.2 Photocatalytic Application

The effective use of silver nanoparticles in catalytic media depends on the magnitude of the surface energy as well as the surface area. Several researches have established that smaller silver particles are more active catalysts compared with stable colloidal particles. The reduction rate in organic dyes catalysed by growing AgNPs compared to stable and bulk AgNPs is faster [106]. In a study, the results of the photocatalytic investigation of ZnO:Ag composite revealed that the AgNPs and their composites exhibit high catalytic performance in degrading and removing dye [107]. Yao et al. [107] in another study formed a visible light photocatalyst Ag₃PO₄/TiO₂ composite by depositing AgNPs onto TiO₂ surface. It was reported that the Ag₃PO₄/TiO₂ hetero-structured photocatalyst have an enhanced activity and is more stable than unsupported Ag₃PO₄. The enhanced activity was ascribed to the effective separation of electron hole and the larger surface area of Ag₃PO₄/TiO₂ composite and also the stability is due to the chemical adsorption of O⁻ anions and Ag⁺ cations in TiO₂ and Ag₃PO₄ respectively [108].

Bi and colleagues reported AgX/Ag₃PO₄ (X=Cl, Br, I) heterocrystals, prepared by in-situ ion-exchange method to have some advantages over the single Ag₃PO₄ and was reported to be more hopeful and captivating visible-light-determined photocatalyst than pure Ag₃PO₄ [109]. As reported by Roy et al. [110], the photocatalytic reduction of methylene blue dye by biogenic silver nanoparticles produced from yeast (Saccharomyces cerevisiae) extract showed that the produced silver nanoparticles were almost spherical in shape with diameter of 10 nm on the average. Also, the photocatalytic study revealed that the biogenic AgNPs exhibit the potential to reduce methylene blue in the presence of solar irradiation and are considered applicable in environmental remediation and textile industry [110].

In addition, Hosseini et al. [111] studied the effects of Ag doping on optical, photocatalytic, and structural properties of ZnO nanoparticles. The photocatalytic properties of the samples were examined by decomposing methyl violet in solution and exposed to UV light. It was
concluded that the XPS analysis showed that the photocatalytic activity of zinc oxide nanoparticles was enhanced by doping ZnO with Ag and also, decolourisation extent of methyl violet is based on the quantity of silver [111]. Recently, the photocatalytic and antibacterial degradation efficacy of nanosilver synthesized from leaf extracts of *Cordia dichotoma* studied by Kumar *et al.* [112], showed that a solution containing methylene blue (MB) was exposed for 6 h and the UV-vis spectra for photocatalytic degradation of MB have a significant reduction in the peak intensity and makes them capable of degrading methylene blue dye and congo red. It was concluded that AgNPs formed from leaf extract of *Cordia dichotoma* have the ability to degrade dye under sunlight [112].

More recently, Guiwei *et al.* [113] developed an easy and green hydrothermal method for the production of Ag₃PO₄ with different morphologies by the use of Ag₃PO₄ as a sacrificial precursor. The analyses of the prepared catalyst were done and the photo-catalytic oxygen production tests showed that a rough-spherical Ag₃PO₄ particles embedded with small particles has the best performance of all the photo-catalytic samples analysed [113]. Moreover, Lateef *et al.* [114] worked on phytosynthesis of silver nanoparticles (AgNPs) utilizing *Synsepalum dulcificum* (miracle fruit plant) for thrombolytic, catalytic, antimicrobial, and anticoagulant applications, the catalytic analysis showed that the malachite green was degraded by approximately 80% in 24 h by the use of silver nanoparticles [114].

5. Conclusion

Naturally occurring sources are capable of converting silver ions (AgNO₃) into AgNPs. It is evident from this review that the various compounds which are naturally embedded in plant extracts can be used as reducing as well as stabilizing agents during the synthesis of silver nanoparticles. Green synthesised AgNPs are stable because they possess natural capping agents that do not allow the particles to agglomerate. Green approach of producing AgNPs involving the use of plant extracts have numerous importance such as producing stable products in less time, reduced wastage, serene working environment, ecological friendly and low cost. It is therefore concluded that the possession of these unique characteristics make silver nanoparticles an important factor in advancing nanotechnology processes.

References

[1] Nam J Y and Lead J R 2008 Manufactured nanoparticles: an overview of their chemistry interactions and potential environmental implications. *Sci. Total Environ.* **400** (1-3) pp 396-414.
[2] Rajput K, Raghuvanshi S, Bhatt A, Rai SK and Agrawal PK 2017 A review on synthesis silver nano-particles. *Int. J. Curr. Microbiol. App. Sci.* 6 (7) 1513-28.

[3] Vadlapudi V and Kaladhar D 2014 Review: Green synthesis of silver and gold nanoparticles. *Middle East J. Sci. Res.* 19 (6) pp 834-842.

[4] Gurunathan S, Park J H, Han J W and Kim J H 2015 Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by *Bacillus tequilensis* and *Calocybe indica* in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. *Int. J. Nanomed.* 10 pp 4203-4222.

[5] Krutyakov Y A, Kudrynskiy A A, Olenin A Y and Lisichkin G V 2008 Synthesis and properties of silver nanoparticles: advances and prospects. *Russ. Chem. Rev.* 77 (3) pp 233-257.

[6] Syafiuddin A, Salim M R., Kueh A B, Hadibarata T, and Nur H 2017 A Review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future Challenges. *J. Chin. Chem. Soc.* 64 (7) pp 732-756.

[7] Atwater H A and Polman A 2010 Plasmonics for improved photovoltaic devices. *Mat. Sustain. Energ.* https://doi.org/10.1142/9789814317665_0001.

[8] De M, Ghosh P S and Rotello V M 2008 Applications of nanoparticles in biology. *Adv. Mater.* 20 (22) pp 4225-4241.

[9] Ghosh C R and Paria S 2012 Core/shell nanoparticles: classes, properties, synthesis mechanism, characterization and applications. *Chem. Rev.* 112 (4) pp 2373-2433.

[10] Toudert J, Fernandez H D, Babonneaue S, Camelio T, Girardeau and Solis J 2009 Linear and third order non-linear optical responses of multilayered Ag:Si$_3$N$_4$ nanocomposites. *Nanotechnol.* 20 (47) 475705. https://doi.org/10.1088/0957-4484/20/47/475705.

[11] Rao C, Kulkarni G, Thomas P and Edwards P 2002 Size dependent chemistry; properties of nanocrystals. *Chem.: Eur. J.* 8 (1) pp 28-35.

[12] Bruzzone M, Malvaldi G, Arrighini and Guiditti C 2005 Theoretical study of electromagnetic scattering by metal nanoparticles. *J. Phys. Chem. B.* 109 (9) pp 3807-3812.

[13] Monteiro D R, Gorup L F, Takamiya A S, Ruvollo-Filho A C, de Camargo E R and Barbosa D B 2009 The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. *Int. J. Antimicrob. Agents* 34 (2) pp 103-110.
Ahamed M, Alsalhi M S and Siddiqui M K 2010 Silver nanoparticle applications and human health. *Clin. Chim. Acta* **411** (23-24) pp 1841-1848.

Fabrega J, Luoma S N, Tyler C R, Galloway T S and Lead J R 2011 Silver nanoparticles: behaviour and effects in the aquatic environment. *Environ. Int.* **37** (2) pp 517-531.

Garcia-Barrasa J, Lopez-de-luzuriaga J M and Monge M 2011 Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. *Cent. Eur. J. Chem.* **9** (1) pp 7-19.

Gurunathan S, Park J H, Han J W and Kim J H 2015 Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by *Bacillus tequilensis* and *Calocybe indica* in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. *Int. J. Nanomed.* **10** pp 4203-4222.

Sharma V K, Yngard R A and Lin Y 2009 Silver nanoparticles: green synthesis and their antimicrobial activities. *Adv. Colloid Interf. Sci.* **145** (1-2) pp 83-96.

Geoprincy G, Srri B V, Poonguzhali U, Gandhi N N and Renganathan S 2013 A review on green synthesis of silver nanoparticles. *Asian J. Pharmaceut. Clin. Res.* **6** (1) pp 8-12.

Chen Y and Yeh C 2002 Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. *Colloids Surf. A: Physicochem. Eng. Aspects* **197** (1-3) pp 133-139.

Makarov V, Love A, Sinitsyna O, Yaminsky S M, Taliansky M and Kalinina N 2014 Green nanotechnologies: Synthesis of metal nanoparticles using plants. *Acta Naturae* **6** (1) pp 35-44.

Mie R, Samsudin M W, Din L B, Ahmad A, Ibrahim N and Adnan S N 2014 Synthesis of silver nanoparticles with antibacterial activity using the lichen *Parmotrema praesorediosum*. *Int. J. Nanomed.* **9** pp 121-127.

Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J and Srinivasan K 2011 Biosynthesis of silver nanoparticles using *Citrus sinensis* peel extract and its antibacterial activity. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* **79** (3) pp 594-598.

Thirumalaiarasu V, Prabhu D and Soniya M 2010 Stable silver nanoparticle synthesizing methods and its applications. *Res. J. Biol. Sci.* **1** pp 259-270.

Velayutham K, Rahuman A A, Rajakumar G, Roopan S M, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M and Siva C 2013 Larvicidal activity of
green synthesized silver nanoparticles using bark aqueous extract of *Ficus racemosa* against *Culex quinquefasciatus* and *Culex gelidus*. Asian Pac. J. Trop. Med. **6** (2) pp 95-101.

[26] Vidhu V K and Philip D 2014 Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. *Micron* **56** pp 54-62.

[27] Thirunavoukkarasu M, Balaji U, Behera S, Panda P and Mishra B 2013 Biosynthesis of silver nanoparticle from leaf extract of *Desmodium gangeticum* (L.) DC. and its biomedical potential. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* **116** pp 424-427.

[28] Tolaymat T M, El Badawy A M, Genaidy A, Scheckel K G, Luxton T P and Suidan M 2010 An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. *Sci. Total Environ.* **408** (5) pp 999-1006.

[29] Leela A and Vivekanandan M 2008 Tapping the unexploited plant resources for the synthesis of silver nanoparticles. *Afr. J. Biotechnol.* **7** (17) pp 3162-3165.

[30] Zhang Y, Cheng X, Zhang Y, Xue X and Fu Y 2013 Biosynthesis of silver nanoparticles at room temperature using aqueous *Aloe* leaf extract and antibacterial properties. *Colloids Surf. A: Physicochem. Eng. Aspects* **423** pp 63-68.

[31] Anu M E and Saravanakumar M P 2017 A review on the classification, characterisation, synthesis of nanoparticles and their application. *IOP Conf. Series: Mater. Sci. Eng.* **263** 032019. https://doi.org/10.1088/1757-899X/263/3/032019.

[32] Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan P T and Venketesan R 2010 Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. *Nanomater: Nanotechnol. Biol. Med.* **6** (1) pp 103-109.

[33] Arokiyaraj S, Vincent S, Saravanan M, Lee Y, Oh Y K and Kim K H 2017 Green synthesis of silver nanoparticles using *Rheum palmatum* root extract and their antibacterial activity against *Staphylococcus aureus* and *Pseudomonas aeruginosa*. *Artif. Cells Nanomed. Biotechnol.* **45** (2) pp 372-379.

[34] Slawson R M, Trevors J T and Lee H 1992 Silver accumulation and resistance in *Pseudomonas stutzeri*. *Arch. Microbiol.* **158** (6) pp 398-404.

[35] Pooley F D 1982 Bacteria accumulated silver during leaching of sulphide ore minerals. *Nature* **296** (5858) pp 642-643.
[36] Klaus T, Joerger R, Olsson E and Granqvist C-G 1999 Silver-based crystalline nanoparticles, microbially fabricated. *Proc. Natl. Acad. Sci.* **96** (24) pp 13611-13614.

[37] Kalimuthu K, Babu R S, Venkataraman D, Bilal M and Gurunathan S 2008 Biosynthesis of silver nanocrystals by *Bacillus licheniformis*. *Colloids Surf. B Biointerf.* **65** (1) pp 150-153.

[38] Nanda A and Saravanan M 2009 Biosynthesis of silver nanoparticles from *Staphylococcus aureus* and its antimicrobial activity against MRSA and MRSE. *Nanomed: Nanotechnol. Biol. Med.* **5** (4) pp 452-456.

[39] Suresh A K, Pelletier D A, Wang W, Moon J W, Gu B and Mortensen N P 2010 Silver nanocrystallites: biofabrication using *Shewanella oneidensis*, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. *Environ. Sci. Technol.* **44** (13) pp 5210-5215.

[40] Pugazhenthiran N, Anandan S, Kathiravan G, Prakash N K U, Crawford S and Ashokkumar M 2009 Microbial synthesis of silver nanoparticles by *Bacillus* sp. *J Nanopart. Res.* **11** (7) pp 1811-1815.

[41] Shahverdi A R, Minaeian S, Shahverdi H R, Jamalifar H and Nohi A 2007 A rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. *Process Biochem.* **42** (5) pp 919-923.

[42] Sintubin L, De-Windt W, Dick J, Mast J, vanderHa D, Verstraete W and Boon N 2009 Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. *Appl. Microbiol. Biotechnol.* **84** (4) pp 741-749.

[43] Sastry M, Ahmad A, Islam Khan M and Kumar R 2003 Biosynthesis of metal nanoparticles using fungi and actinomycete. *Curr. Sci.* **85** (2) pp 162-170.

[44] Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G, and Mukherjee P 2006 The use of microorganisms for the formation of metal nanoparticles and their application. *Appl. Microbiol. Biotechnol.* **69** (5) pp 485-492.

[45] Kumar S A, Abyaneh M K, Gosavi S W, Kulkarni S K, Pasricha R, Ahmad A and Khan M I 2007 Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. *Biotechnol. Lett.* **29** (3) pp 439-445.

[46] Thomas R, Janardhanan A, Varghese R T, Soniya E, Mathew J and Radhakrishnan E 2014 Antibacterial properties of silver nanoparticles synthesized by marine *Ochrobactrum* sp. *Braz. J. Microbiol.* **45** (4) pp 1221-1227.
[47] Padman A J, Henderson J, Hodgson S and Rahman P K 2014 Biomediated synthesis of silver nanoparticles using *Exiguobacterium mexicanum*. *Biotechnol. Lett.* **36** (10) pp 2079-2084.

[48] Ranganath E, Rathod V and Banu A 2012 Screening of *Lactobacillus* spp. for mediating the biosynthesis of silver nanoparticles from silver nitrate. *IOSR J. Pharm.* **2**(2) pp 237-241.

[49] Ranganath E, Rathod V and Banu A 2012 Screening of *Lactobacillus* spp. for mediating the biosynthesis of silver nanoparticles from silver nitrate. *IOSR J. Pharm.* **2**(2) pp 237-241.

[50] Du J, Singh H and Yi T H 2017 Biosynthesis of silver nanoparticles by *Novosphingobium* sp. THG-C3 and their antimicrobial potential. *Artif. Cells Nanomed. Biotechnol.* **45**(2) pp 211-217

[51] Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha G D G and Annadurai G 2013 Bactericidal activity of biomediated silver nanoparticles synthesized by *Serratia nematodiphila*. *Drug Invention Today* **5**(2) pp 119-125.

[52] Thamilselvi V and Radha K 2013 Synthesis of silver nanoparticles from *Pseudomonas putida* NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology. *Digest J Nanomater. Biostruct.* **8**(3) pp 1101–1111.

[53] Wang C, Kim Y J, Singh P, Mathiyalagan R, Jin Y and Yang D C 2015 Green synthesis of silver nanoparticles by *Bacillus methylotrophicus*, and their antimicrobial activity. *Artif. Cells Nanomed. Biotechnol.* **44**(4) pp 1127-1132.

[54] Otari S, Patil R, Ghosh S, Thorat N and Pawar S 2015 Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. *Spectrochim. Acta Part A Mol. Biomol. Spectr.* **136** pp 1175-1180.

[55] Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G and Annadurai G 2013 Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria *Vibrio alginolyticus*. *Nanosci. Nanotechnol.* **3**(1) pp 21-25.

[56] Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I and Kumar R 2003 Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium oxysporum*. *Colloids Surf. B: Biointerf.* **28**(4) pp 313-318.

[57] Naqvi S Z H, Kiran U, Ali M I, Jamal A, Hameed A and Ahmed S 2013 Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. *Int. J. Nanomed.* **8** pp 3187-3195.
[58] Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I and Kumar R 2003 Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium oxysporum*. *Colloids Surf. B: Biointerf.* **28** (4) pp 313-318.

[59] Bhainsa K C and D'Souza S F 2006 Extracellular biosynthesis of silver nanoparticles using the fungus *Aspergillus fumigatus*. *Colloids Surf. B: Biointerf.* **47** (2) pp 160-164.

[60] Li G, He D, Qian Y, Guan B, Gao S and Cui Y 2011 Fungus-mediated green synthesis of silver nanoparticles using *Aspergillus terreus*. *Int J. Mol. Sci.* **13** (1) pp 466-476.

[61] Duran N, Marcarto P, De Souza G, Alves O and Esposito E J 2007 Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. *J. Biomed. Nanotechnol.* **3** (2) pp 203-208.

[62] Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K and Balasubramanya R 2007 Biological synthesis of silver nanoparticles using the fungus *Aspergillus flavus*. *Mater. Lett.* **61** (6) pp 1413-1418.

[63] Balaji D, Basavaraja S, Deshpande R, Mahesh D B, Prabhakar B and Venkataraman A 2009 Extracellular biosynthesis of functionalized silver nanoparticles by strains of *Cladosporium cladosporioides* fungus. *Colloids Surf. B Biointerf.* **68** (1) pp 88-92.

[64] Thakkar K N, Mhatre S S and Parikh R Y 2010 Biological synthesis of metallic nanoparticles. *Nanomed.: Nanotechnol. Biol. Med.* **6** (2) pp 257-262.

[65] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S. and Misra,A 2009 Green synthesis of silver nanoparticles using seed extract of *Jatropha curcas*. *Colloids Surf. A: Physicochem. Eng. Aspect* **348**(1-3) pp 212-216.

[66] Krishnaraj C, Jagan E G, Rajasekar S, Selvakumar P, Kalaichelvan P T and Mohan N 2010 Synthesis of silver nanoparticles using *Acalypha indica* leaf extracts and its antibacterial activity against water borne pathogens. *Colloids Surf. B: Biointerf.* **76** (1) pp 50-63.

[67] Sagar G, and Ashok B 2012 Green synthesis of silver nanoparticles using *Aspergillus niger* and its efficacy against human pathogens. *Eur. J. Exp. Biol.* **2** (5) pp 1654-1658.

[68] Shelar G B and Chavan A M 2015 Myco-synthesis of silver nanoparticles from *Trichoderma harzianum* and its impact on germination status of oil seed. *Biolife* **3** (1) pp 109-113.
[69] Ingle A, Gade A, Pierrat S, Sonnichsen C and Rai M 2008 Mycosynthesis of silver nanoparticles using the fungus *Fusarium acuminatum* and its activity against some human pathogenic bacteria. *Curr Nanosci*. 4 (2) pp 141-144.

[70] Kathiresan K, Manivannan S, Nabeel M A and Dhivya B 2009 Studies on silver nanoparticles synthesized by a marine fungus, *Penicillium fellutanum* isolated from coastal mangrove sediment. *Colloids Surf. B Biointerf*. 71 (1) pp 133-137.

[71] Verma V C, Kharwar R N and Gange A C 2010. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus *Aspergillus clavatus*. *Nanomed*. 5 (1) pp 33-40.

[72] Kumar S A, Abyaneh M K, Gosavi S W, Kulkarni S K, Pasricha R, Ahmad A and Khan M I 2007 Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO₃. *Biotechnol. Lett.* 29 (3) pp 439-445.

[73] Vigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K and Balasubramanya R 2007 Biological synthesis of silver nanoparticles using the fungus *Aspergillus flavus*. *Mater. Lett.* 61 (6) pp 1413-1418.

[74] Arun G, Eyini M and Gunasekaran P 2014 Green synthesis of silver nanoparticles using the mushroom fungus *Schizophyllum commune* and its biomedical applications. *Biotechnol. Bioprocess Eng*. 19 (6) pp 1083-1090.

[75] Raveendran P, Fu J and Wallen S J 2003 Completely ‘‘green synthesis’’ and stabilization of metal nanoparticles. *J. Am. Chem. Soc.* 125 (46) pp 13940-13941.

[76] Amanullah M and Yu L 2005 Environmental friendly fluid loss additives to protect the marine environment from detrimental effect of mud additives. *J. Petrol. Sci. Eng*. 48 (3-4) pp 199-208.

[77] Mubarak AD, Thajuddin N, Jeganathan K and Gunasekaran M 2011 Plant extracts mediated synthesis of silver and gold nanoparticle and its antibacterial activities against clinically associated pathogens. *Colloids Surf. B: Biointerf*. 85 (2) pp 360-365.

[78] Rodríguez-León E, Iñiguez-Palomares R, Navarro R E, Herrera-Urbina R, Tánori J, Iñiguez-Palomares C and Maldonado A 2013 Synthesis of silver nanoparticles using reducing agents obtained from natural sources (*Rumex hymenosepalus* extracts). *Nanoscale Res. Lett*. 8 (1) 318. https://doi.org/10.1186/1556-276X-8-318.

[79] Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D and Sreedhar B 2016 Green synthesis of silver nanoparticles using *Coffea arabica* seed extract and its antibacterial activity. *Mater. Sci. Eng. C* 58 pp 36-43.
[80] Begum N A, Mondal S, Basu S, Laskar S A and Mandal D 2009 Biogenic synthesis of Au and Ag nanoparticles using aqueous solution of black tea leaf extracts. Colloids Surf. B: Biointerf. 7 (1) pp 113-118.

[81] Wang M, Zhang W, Zheng X and Zhu P 2017 Antibacterial and catalytic activities of biosynthesized silver nanoparticles prepared using an aqueous extract of green coffee as a reducing agent. RSC Adv. 7 (20) pp 12144-12149.

[82] Ali M, Kim B, Belfield K D, Norman D, Brennan M and Ali GS 2016 Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-a comprehensive study. Mater. Sci. Eng. C 58 pp 359-565.

[83] Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J and Srinivasan K 2011 Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 79 (3) pp 594-598.

[84] Maqdoom F, Sabeen H and Zarina S 2013 Papaya fruit extract: a potent source for synthesis of bionanoparticle. J. Environ. Res. Dev. 7 (4A) pp 1518-1522.

[85] Rout Y, Behera S, Ojha A K and Nayak P 2012 Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob. 4 (6) pp 103-109.

[86] Awwad A M, Salem N M and Abdeen A O 2013 Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4 (1) 29. https://doi.org/10.1186/2228-5547-4-29.

[87] Kasthuri J, Kathiravan K and Rajendiran N 2009 Phyllanthin assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J. Nanopart. Res. 11 (5) pp 1075-1085.

[88] Awwad A M, and Salem N M 2012. Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci. Nanotechnol. 2 (4) pp 125-128.

[89] Khalil M M, Ismail E H, El-Baghdady K Z and Mohamed D 2014 Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J. Chem. 7 (6) pp 1131-1139.

[90] Rajagopal T, Jemimah I A, Ponmanickam P and Ayyanar M 2015 Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. J. Environ. Biol. 36 (6) 1283-1289.
[91] Raja S, Ramesh V and Thivaharan V 2017 Green biosynthesis of silver nanoparticles using *Calliandra haematocephala* leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. *Arab J. Chem.* 10 (2) pp 253-261.

[92] Medda S, Hajra A, Dey U, Bose P and Mondal N K 2015 Biosynthesis of silver nanoparticles from *Aloe vera* leaf extract and antifungal activity against *Rhizopus* sp. and *Aspergillus* sp. *Appl. Nanosci.* 5 (7) pp 875-880.

[93] Shams S, Pourseyedi S and Raisi M 2013 Green synthesis of Ag nanoparticles in the present of *Lens culinaris* seed exudates. *Int. J. Agric. Crop Sci.* 5 (23) pp 2812-2815.

[94] Ibrahim H M 2015 Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. *J. Radiat. Res. Appl. Sci.* 8 (3) pp 265-275.

[95] Vidhu V, Aromal S A and Philip D 2011 Green synthesis of silver nanoparticles using *Macrotyloma uniflorum*. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* 83 (1) pp 392-397.

[96] Baharara J, Namvar F, Ramezani T, Hosseini N and Mohamad R 2014 Green synthesis of silver nanoparticles using *Achillea biebersteinii* flower extract and its anti-angiogenic properties in the rat aortic ring model. *Mol.* 19 (4) pp 4624-4634.

[97] Ahmed Q, Gupta N, Kumar A and Nimesh S 2016 Antibacterial efficacy of silver nanoparticles synthesized employing *Terminalia arjuna* bark extract. *Artif. Cells Nanomed. Biotechnol.* 45 (6) pp 1192-1200.

[98] Sadeghi B and Gholamhoseinpoor F 2015 A study on the stability and green synthesis of silver nanoparticles using *Ziziphora tenuior* (Zt) extract at room temperature. *Spectrochim. Acta Part A: Mol. Biomol. Spectr.* 134 pp 310-315.

[99] Vijayaraghavan K, Nalini S K, Prakash N U and Madhankumar D 2012 One step green synthesis of silver nano/microparticles using extracts of *Trachy spermumammi* and *Papaver somniferum*. *Colloids Surf. B Biointerf.* 94 pp 114-117.

[100] Umadevi M, Bindhu M and Sathe V 2013 A novel synthesis of malic acid capped silver nanoparticles using *Solanum lycopersicum* fruit extract. *J. Mater. Sci. Technol.* 29 (4) pp 317-322.

[101] Philip D 2010 Honey mediated green synthesis of silver nanoparticles. *Spectrochim. Acta A: Mol. Biomol. Spectr.* 75 (3) pp 1078-1081.

[102] Al-Shmgani HS, Mohammed W H, Sulaiman G M and Saadoon A H 2016 Biosynthesis of silver nanoparticles from *Catharanthus roseus* leaf extract and
assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol. 45 (6) pp 1234-1240.

[103] Fang Xie, Mark S. Baker and Ewa M. Goldys 2006 Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J. Phys. Chem. B 110 pp 23085-23091.

[104] Chandrakant KT, Sreekanth R D, Rohini A, Sungha P, Atul K and Sushima S 2013 Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens. Actuat. B: Chem. 183 pp 144-149.

[105] Kirubaharan CJ, Kalpana D, Lee YS, Kim AR, Yoo DJ, Nahm KS, Kumar GG. Biomediated silver nanoparticles for the highly selective copper (II) ion sensor applications. Ind. Eng. Chem. Res. 51 (21) pp 7441-7446.

[106] Sharma P and Bhargava M 2013 Applications and characteristics of nanomaterials in industrial environment. Res. Dev. (IJCSEIERD) 3 (4) pp 63-72.

[107] Sharma K, Singh G, Singh G, Kumar M and Bhalla V 2015 Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Adv. 5 (33) pp 25781-25788.

[108] Yao W F, Zhang B, Huang C P, Ma C, Song X L and Xu Q 2012 Synthesis and characterization of high efficiency and stable Ag₃PO₄/TiO₂ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. 22 (9) pp 4050-4055.

[109] Bi Y P, Ouyang S X, Cao J Y and Ye J H 2011 Facile synthesis of rhombic dodecahedral AgX/Ag₃PO₄ (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 13 (21) pp 10071-10075.

[110] Kaushik R, Sarkar C K and Ghosh C K 2015 Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl. Nanosci. 5 (8) pp 953-959.

[111] Hosseini SM, Abdolhosseini I S, Kameli P and Salamati H 2015. Effect of Ag doping on structural, optical and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640 pp 408-415.

[112] Mankamna K, Nikita T, Nidhi G, Kumar A and Surendra N 2016. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using
Cordia dichotoma leaf extract. *Adv. Nat. Sci.: Nanosci. Nanotechnol.* 7 (4) 045009. https://doi.org/10.1088/2043-6262/7/4/045009.

[113] Guiwei H, Wanliang Y, Wei Z, Li G, Wang X, Yan A and Mengkui T 2019 Facile controlled synthesis of Ag₃PO₄ with various morphologies for enhanced photocatalytic oxygen evolution from water splitting. *RSC Adv.* 9 (32) pp 18222-18231.

[114] Lateef A, Akande MA, Azeez MA, Ojo SA, Folarin BI, Gueguim-Kana EB and Beukes LS 2016 Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (*Synsepalum dulcificum*) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. *Nanotechnol Rev.* 5 (6) pp 507-520.