A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles

Quy Ho Quang1 · Thanh Thai Doan1 · Kien Bui Xuan3 · Thang Nguyen Manh2

Received: 17 March 2021 / Accepted: 20 June 2021 / Published online: 22 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particles which response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequently self-trapping can appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.

Keywords Nonlinear optical tweezers · Kerr effect · Self-focusing · Self-trapping · Organic dye

1 Introduction
Ashkin has shown that a dielectric particle having refractive index larger than that of its embedding fluid will be trapped in the focus of laser Gaussian beam (Ashkin 2002). The particle’s optical trap efficiency Q is higher when the refractive index of embedding fluid is lower (Kim et al. 2003; Quy Ho Quang 2018a, b; MacDonald et al. 2002), or the refractive index of trapped particle is higher. Consequently, the optical tweezers are efficient to trap Kerr particles (Couris et al. 2003; Wilkes et al. 2009; Quy and Nam 2012; Quy 2019). This is easily resolved for a single particle in the thin fluid where having no influence of nonlinear particle solution on the laser beam. However, if the nonlinear particle solution is thick enough, the density of the trapped nonlinear particle will become more and more
increasing in the trapping region along the laser axis due to action of transverse optical forces, so called the trapping cylinder (Quy et al. 2010). Therefore, not only does nonlinear particle solution’s mass refractive index increase in the trapping cylinder (Quy et al. 2010) but also its nonlinearity. Consequently, the nonlinear particle solution will become the graded index (GRIN) medium. The Gaussian laser beam propagating through GRIN medium will be self-focused (Nam et al. 2013), and then self-trapped in the small trapping cylinder (Devi and De 2016). This phenomenon is similar to that the laser beam propagating through a self-written optical waveguide in a solid photopolymer material volume (Li et al. 2015), Alkaline-earth atoms (Cooper 2018), and thermophoresis (Lamhot et al. 2010). Specially, the self-trapping has been experimentally observed in the human red blood cells suspension by the propagation of laser beam, seen as nonlinear medium (Lamhot et al. 2010). Lamhot and his co-workers also investigated the optical soliton beam in nanoparticle suspension by virtue of thermophoresis (Gautam 2019). In this paper, we proposed the model of optical tweezers by using the thick nonlinear particle solution. The expressions of the reshaped laser beam and effective refractive index of nonlinear particle solution are also derived. The self-focusing and self-trapping of laser beam in the trapping region are numerically calculated by using the iteration method. Finally, the guide properties of trapping region in optical tweezers, guiding condition are analyzed and discussed.

2 Principle model for simulation

Assuming that the optical tweezers for our investigation model is illustrated in Fig. 1. An incoming laser Gaussian beam (ILGB) with peak intensity I_0 and radius of beam waist of W_0 propagates through the thick chamber of nonlinear particle solution. The nonlinear particle has radius a, linear index n_p, nonlinear refractive coefficient n_2 embedded in the fluid of lower refractive index n_f. Under the action of optical transverse gradient force F_{ρ}, nonlinear particles are pulled to the laser axis and hold in the trapping region with radius $W_0/2$ (Quy et al. 2010). This makes the mass density m_p of nonlinear particles in the trapping region and the effective refractive index of nonlinear particle solution n_{eff} increase. The refractive index of nonlinear particle is directly proportional to ILGB’s intensity. The effective refractive index of nonlinear particle solution in the trapping region is graded and reduced from laser axis, i.e., the trapping region becomes a GRIN one.

Every differential GRIN cylinder with the thickness of $d = 2a$ (Fig. 1) will operate as the nonlinear thin lens (NTL) and in contrast, NTL also reshape the ILGB. The self-focusing

![Fig. 1](image-url)
appears continuously through NTL. Consequently, the beam waist of the reshaped laser Gaussian beam (RLGB) decreases, the mass density of nonlinear particles in the differential trapping cylinder increases, and the effective refractive index of nonlinear particle solution increases. The self-focusing and increasing of divergence angle $\theta_0 = \lambda/\pi W_0$ of RLGB are simultaneously occurred by the beam waist’s decrease. If both processes are in balance, the spatial optical soliton will appear (Li et al. 2015; Lamhot et al. 2010; Quy et al. 2004), means that the RLGB will be self-trapped in the center of the trapped region.

3 Theoretical background

3.1 Effective refractive index in nonlinear particle solution

Consider a solution of nonlinear particles embedded in the fluid with certain mass density. Under the optical tweezers, a number of the nonlinear particles m is trapped in the differential trapping cylinder with thickness $d = 2na$, where n is the number of differential GRIN cylinders, the mass densities of particles m_p and fluid m_f in the differential trapping cylinder (DTC) can be derived as:

$$m_p = \frac{V_p}{V_{DTC}} \text{ and } m_f = \frac{V_f}{V_{DTC}} = \frac{V_{DTC} - V_p}{V_{DTC}}$$ \hspace{1cm} (1)

where

$$V_p = \frac{m4\pi a^3}{3}, \quad V_f = V_{DTC} - V_p \quad \text{and} \quad V_{DTC} = \frac{n\alpha W_0^2}{2}$$ \hspace{1cm} (2)

are total volume of particles, fluid and the differential trapping cylinder, respectively. Using approximation of mass refractive index for the multi-component mixtures ϕ, the effective refractive index n_{eff} of nonlinear particle solution in the differential trapping cylinder can be derived as:

$$n_{eff} = \sum_i m_i n_i = \frac{V_p}{V_{DTC}} n_p + \frac{V_{DTC} - V_p}{V_{DTC}} n_f = \frac{8m_\alpha W_0^2}{3nW_0^2} + \frac{(3nW_0^2 - 8m_\alpha W_0^2)n_f}{3nW_0^2}$$ \hspace{1cm} (3)

Consider the intensity distribution of ILGB is (Saleh and Teich 1998):

$$I(\rho, z) = \frac{I_0}{\sqrt{1 + \frac{\rho^2}{\rho_0^2}} \exp \left(- \frac{2\rho^2}{W_0^2 \left(1 + \frac{z}{z_0} \right)} \right)}$$ \hspace{1cm} (4)

When nonlinear particle solution is irradiated by ILGB, its effective refractive index contribution will be radial-graded and Eq. (3) will be modified as:
where \(n_2 \) is the nonlinear reflective index coefficient of nonlinear particle. We consider the laser wavelength to be shorter than the radius of beam waist.

The mass density of particles in the trapping region will increase if all of particles are trapped and directly pulled to laser beam’s axis, which is called the trapping condition of optical tweezers. This condition will be always satisfied if these particles on the edge of beam’s waist \(W_0 \) (see Fig. 1) (where the laser intensity and its gradient are the smallest) are trapped. That means that the optical force acting these particles must be larger than 1pN (Ashkin 2002).

Using Eq. (4) and Eq. (5) and Eq. 6 in Refs. 3, 4 we obtained the trapped condition as follows:

\[
F_{gr,p}(W_0, 0) = -\frac{8\pi n_f I_0 a^3}{W_0 \exp(2)} \left[\left(\frac{n_{\text{eff}, p}}{n_p} \right)^2 - 1 \right] > 1 \text{pN} \tag{6}
\]

where

\[
n_{\text{eff}, p} = n_p + \frac{n_2 I_0}{\exp(2)} \tag{7}
\]

Considering the trapped particles are pulled in the region near laser beam’s axis. This means that their positions are approximately \(\rho << W_0 \). Assuming that the differential trapping cylinder is placed at the waist of ILGB and \(d << z_0 \) (see Fig. 1), the function of intensity radial distribution in the input surface of differential trapping cylinder can be simplified as follows (Thai Dinh et al. 2016; Nguyen et al. 2015; Ho Quang et al. 2020):

\[
I(\rho) = I_0 \exp \left(-\frac{2\rho^2}{W_0^2} \right) \approx I_0 \left(1 - \frac{2\rho^2}{W_0^2} \right) \tag{8}
\]

Substituting Eq. (8) into Eq. (5) and we have

\[
n_{\text{eff}}(\rho) = \frac{(3nW_0^2 - 8ma^2)n_f + 8ma^2(n_p + n_2 I_0)}{3nW_0^2} - \frac{16ma^2 n_2 I_0}{3nW_0^4} \rho^2 \tag{9}
\]

where \(n_{\text{eff}} \) describes the radial distribution of the effective refractive index in differential trapping cylinder and to be a function of radial radius \(\rho \), beam waist \(W_0 \), i.e. particle’s mass density \(m_p \). Therefore, it is similar to the index change of thermophoresis irradiated by laser beam in work (Couris et al. 2003) as the function of temperature and particle concentration. Consequently, we can substitute \(n_{\text{eff}} \) into nonlinear paraxial wave equation in work (Lamhot et al. 2010) to calculate the optical spatial soliton beam. In this paper, we consider the trapping region of optical tweezers as a consecutive series of NTLs and use iteration method to calculate the change of each NTL’s focal length of and laser beam’s waist. The intensity distribution and self-trapping of RLGB is also shown and discussed.
3.2 The focal of NTL and intensity distribution of RLGB

The effective refractive index in Eq. (9) can be simplified as follows:

\[n_{\text{eff}}(\rho) = N_0 \left(1 - \frac{\alpha^2}{2} \rho^2 \right) \]

(10)

where

\[N_0 = \frac{3nW_0^2n_f + 8ma^2(n_p - n_f + n_2I_0)}{3nW_0^2} \]

(11)

\[\alpha^2 = \frac{32ma^2 n_2 I_0}{\{3nW_0^2n_f + 8ma^2(n_p - n_f + n_2I_0)\}nW_0^2} \]

(12)

With refractive index given in Eq. (10), the differential trapping cylinder will become NTL with focal length given as follows (Saleh and Teich 1998; Ho Quang et al. 2020):

\[f_{nl} = \frac{1}{2N_0 \alpha^2 a} = \frac{3W_0^4}{64ma^3 n_2 I_0} \]

(13)

which is inversely proportional to the peak laser intensity \(I_0 \), nonlinear coefficient of refractive index \(n_2 \), and radius \(a \) and number \(m \) of nonlinear particles, and directly proportional to beam waist of \(W_0 \).

The ILGB will be reshaped to RLGB when it propagates through the NTL (Saleh and Teich 1998; Ho Quang et al. 2020). Its intensity distribution is given by:

\[I_{RLGB}(\rho, z) = I_0 \frac{W_0}{W_{RLGB}(z)} \exp \left(-\frac{2\rho^2}{W_{RLGB}(z)} \right) \]

(14)

where

\[W_{RLGB}(z) = W_{0RLGB} \sqrt{1 + \left(\frac{z}{z_{0RLGB}} \right)^2} \]

(15)

is the radius of laser beam at \(z \);

\[W_{0RLGB} = \frac{W_0}{\sqrt{1 + \left(\frac{z_{0RLGB}}{f_{nl}} \right)^2}} \]

(16)

is the radius of reshaped beam waist placed at the output surface of differential trapping cylinder given by:

\[z_{RLGB} = \frac{f_{nl}}{1 + \left(\frac{f_{nl}}{z_0} \right)^2} \]

(17)

and
$$z_0 = \frac{\pi W_0^2}{\lambda}$$ \hspace{1cm} (18)

is the Rayleigh range.

3.3 Simulation procedure

Firstly, we check the trapping condition using Eqs. 6, 7 with an collection of parameters. The self-trapping process will be numerically observed if this trapping condition is satisfied. To observe the self-trapping process in optical tweezers, we use the solution of non-linear particles embedded in fluid, the simulation scheme given in Fig. 2 above. The self-trapping is related to the change of beam waist W_{0RLGB}, focal length of NTL f_{nl} in z. We simulated in a self-consistent manner: we use an initial prediction to find f_{nl} in Eq. 13, from which we have the beam waist of W_{0RLGB} in Eq. 16 after the distance $z = in 2a$, where i is the order of simulation step. Using f_{nl} and W_{0RLGB} obtained, we find the divergence angle $\theta_d = \lambda/\pi W_{0RLGB}$ and the focusing angle $\theta_{sf} = \tan^{-1}(W_{0RLGB}/f_{nl})$, then substituting again to Eqs. 13, 16 to find the next ones. The calculating process is iterated until the divergence

![Simulation scheme for self-trapping](image)
and focusing angles are close one to each other. The simulation procedure is given in Fig. 2.

4 Results and discussion

We consider an optical tweezers using ILGB with $\lambda = 0.532 \mu m$ (second harmonic of Nd$^{3+}$ YAG laser) $I_0 = 1 \times 10^5 W/cm^2$, $W_0 = 10^{-4} cm$ to trap nanoparticle of polyacrylamide gel doped Orange G with $a = 5 \times 10^{-7} cm$, $n_p = 1.456$, $n_2 = 1 \times 10^{-6} cm^2/W$ (Badran et al. 2011; Nguyen 2014) embedded in water with $n_f = 1.333$ (Volpe and Volpe 2013). The thickness of the differential trapping cylinder is optimally chosen $d = 20a = 1 \times 10^{-5} cm$.

Firstly, substituting given parameters into Eqs. 6, 7, we found: $F_{gr}(W_0, 0) \approx 2.4 \times 10^{-11} N = 24 pN \gg 1 pN$, that means the trapping condition of optical tweezers to be satisfied and all particles locating inside the beam waist W_0 are also trapped and pulled in beam’s axis. These make the mass density of particles inside beam waist increase and the self-focusing appears. Trapping and self-focusing make the mass density of particles increase and the self-focusing more powerfully. Consequently, the laser beam will be trapped inside the cylinder of solution with nonlinear particles.

Secondly, we numerically calculate the laser self-trapping process. Simulation process was done until $i = 16$ at which $\theta_{sf} = 22.56^\circ \approx \theta_d = 22.31^\circ$ (Fig. 4) by using the Maple software. The obtained results are presented in Table 1.

The self-trapping simulation in nonlinear particle solution are shown in Fig. 3. We see that the ILGB (Fig. 3a) is self-trapped (Fig. 3b) in trapping region at $z = 1.5 \mu m$ where its divergence and focusing (angles) effects are in balance (see Fig. 4). When the balance of divergence and focusing effects occurs, the longitudinal gradient of laser intensity reduces, and then the distribution of the longitudinal gradient force also reduces, that has been shown in works (Quy Ho Quang 2018b; Quy 2019; Devi and De 2016; Jiang et al. 2010). Moreover, the spatial optical soliton appears and propagates continuously. Our result in Fig. 3 is similar to that obtained by (Li et al. 2015) for the self-trapping of optical beam in the self-written optical waveguide in a solid photopolymer material.

Figure 5 shows RLGB’s beam waist shortening along the trapping region. Since the particle mass density increases, the effective refractive index in nonlinear particle solution also increases (Fig. 6).

Due to trapping and focusing effects, the trapping region is seem as the optical fiber with increasing of its refractive index change $\Delta = (n_{eff} - n_f)/n_{eff}$ (Fig. 7). The $\Delta(\rho = 0)$

i	1	2	3	4	5	6	7	8
z (10$^{-5}$ cm)	0	1	2	3	4	5	6	7
W_{0RLGB} (10$^{-6}$ cm)	100	98	96.2	94.2	92	89.7	87.2	84.5
f_{eff} (10$^{-4}$ cm)	30.4	28.3	26.1	24	21.8	19.7	17.6	15.5
i	9	10	11	12	13	14	15	16
z (10$^{-5}$ cm)	8	9	10	11	12	13	14	15
W_{0RLGB} (10$^{-6}$ cm)	81.6	78.3	74.7	70.6	65.8	60.1	53	43.7
f_{eff} (10$^{-4}$ cm)	13.5	11.5	9.5	7.5	5.7	3.9	2.4	1.1
and $\Delta (\rho = W_{0RLGB}/2)$ increases from 0.002 to 0.0095 and from 0.00095 to 0.0068, respectively, and larger than a predicted low limit $\Delta_{\text{min}} = 0.001$ (Saleh and Teich 1998) or measurement limit $\Delta_{\text{min}} = 0.000475$ (Ahmed et al. 2019) for conventional optical fiber. This means that the deeper the laser beam propagates into trapping region, the
more effectively it guides. This consideration can be explained and proved by increasing of the critical angle \(\theta_c = \cos^{-1}(n_f/n_{\text{eff}}(W_{\text{0RLGB}}/2)) \) at boundary between trapping region and fluid, and acceptance angle \(\theta_a = \sin^{-1}(n_{\text{eff}}(0)\sqrt{2\Delta(0)}) \) at boundary among differential trapping cylinders shown in Figs. 8, 9, respectively.
5 Conclusion

We have theoretically shown that the Gaussian laser beam used for optical tweezers can be self-trapped in trapping region by Kerr effect in nonlinear particle solution. The self-trapping of Gaussian beam in nonlinear particle solution has been numerically calculated, the guide properties of the trapping region in optical tweezers is also analyzed and discussed. These results show that the Gaussian beam for optical tweezers not only traps nonlinear particles, but also be reshaped and self-trapped. Finally, our results may hint a new study for increasing and stabilizing the density of nonlinear biomedical cells in experimental observation (Quy et al. 2004).

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03–2018.342.

Author contributions The idea was proposed by Quy Ho Quang, and Thang Nguyen Manh, the results were done and analysed by Thang Nguyen Manh, Quy Ho Quang. The paper was written by all authors.

References

Ahmed, F., Ahsani, V., Jo, S., Bredley, C., Toyserkani, E., G, M.B.: Measurement of in-fiber refractive index change using a mach-zehnder interferometer. IEEE Photon. Technol. Lett. 31, 74–77 (2019)
Ashkin, A.: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61(2), 569–582 (2002)
Badran, H.A., Hassan, Q.M.A., Al-Ahmad, A.Y., Emshary, C.A.: Laser-induced optical nonlinearities in orange G dye: polyacrylamide gel. Can. J. Phys. 89(12), 1219–1224 (2011)
Cooper, A. et al.: Alkaline-Earth Atoms in Optical Tweezers. Phys. Rev. X 8 (2018) 041055
Couris, S., Renard, M., Faucher, O., Lavorel, B., Chaux, R., Koudoumas, E., Michaut, X.: An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 369, 318–324 (2003)
Devi, A., De, A.K.: Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation. Opt. Exp. 24(19), 21485–21496 (2016)
Gautam, R., et al.: Optical force-induced nonlinearity and self guiding of light in human red blood cell suspensions. Light Sci. Appl. 8, 1–9 (2019)
Ho Q., Quang, Th. Thai Doan, T. Doan Quoc, V. Do Thanh, K. Bui Xuan, L. Ly Nguyen, and T. Nguyen Manh, (2020) Nonlinear microscope objective using thin layer of organic dye for optical tweezers, Eur. Phys. J. D 74:52.
A model of Gaussian laser beam self-trapping in optical tweezers

Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)
Kim, H. K., Joo, I-J., Song, S. H., Kim, P-S., Im, K-B. and Oh, C-H., Dependence of the Optical Trapping Efficiency on the Ratio of the Beam Radius-to-the Aperture Radius, J. Korean Phys. Soc. 43 (3) (2003) 348-351

Lamhot, Y., Barak, A., Peleg, O. and Segev, M. (2010) Self-trapping of optical beam through thermophoresis, Phys. Rev. Lett. 105 163906
Li, H., Qi, Y., Malallah, R., Ryle, J.P., Sheridan, J.T.: Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material. Proc. of SPIE 9508, 95080F (2015)
MacDonald, M.P., Peterson, I., Sibbett, W., Dholakia, K.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)
Nam, H.V., Le, C.T., Quy, H.Q.: The influence of the self-focusing effect on the optical force acting on dielectric particle embedded in Kerr medium. Commun. Phys., ISSN 0868–3166(23), 155–161 (2013)
Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Optic. Phys. Mat. 23, 1450020 (2014)

Quy, H.Q.: Nonlinear optical tweezers as an optical method for control particles with high trap efficiency. Commun.phys. 29, 197–214 (2019)
Quy H. Q. and Nam H. V., (2012) Influence of the Kerr effect on the optical force acting on the dielectric particle. Journal of Physical Science and Application, ISSN 2159 5348, 2(10): 414- 419
Quy H. Q., Thang, N. M., and Sau, V. N. (2004) Creating free spatial soliton from Gaussian beam by Kerr Medium, Commun. Phys. Supplement pag.91–95.

Quy H.Q., Hai H.D., Luu M.V., The Influence of Parameters on Stable-time “Pillar” in Optical Tweezer using Counter-propagating Pulsed Laser Beams, Computational methods for Science and Technology, Special Issue 2 (Poland) (2010) 61–66.
Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)
Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Enhance of optical trapping efficiency by nonlinear optical tweezers. Opt. Commun. 427, 341–347 (2018)

Saleh, B.E., Teich, M.C.: Fundamentals of photonics: ray optics, pp. 1–40. John Wiley & Sons, INC., New York (1998)

Thai Dinh, T., Doan Quoc, K., Bui Xuan, K., Ho Quang, Q.: 3D controlling the bead linking to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant Electron. 48, 1–15 (2016)
Van Nguyen, T., Ho Quang, Q., Van Chu, L.: Ultrasonic-controlled microlens arrays in germanium for optical tweezers to sieve the micro-particles. Commun. Phys. 25, 157–163 (2015)
Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.