Origin of middle Miocene leucogranites and rhyolites on the Tibetan Plateau: Constraints on the timing of crustal thickening and uplift of its northern boundary

ZHANG LiYun1,2, DING Lin1*, YANG Di1,2, XU Qiang1, CAI FuLong1 & LIU DeLiang1,2

1 Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received June 3, 2011; accepted September 2, 2011; published online November 19, 2011

Leucogranites play a significant role in understanding crustal thickening, melting within continental collisional belts, and plateau uplift. Field investigations show that Miocene igneous rocks from the Hoh Xil Lake area mainly consist of two-mica leucogranites and rhyolites. We studied the Bukadaban two-mica leucogranites and the Kekao Lake, Malanshan and Hudongliang rhyolites by zircon U-Pb, muscovite and sanidine 40Ar/39Ar geochronology, and whole-rock geochemical and Sr-Nd isotopic analysis. Results yielded crystallization and cooling ages for the Bukadaban leucogranites of 9.7±0.2 and 6.88±0.19 Ma, respectively. Extrusive ages of the Kekao Lake and Malanshan rhyolites are 14.5±0.8 and 9.37±0.30 Ma, respectively. All rocks are enriched in SiO2 (70.99%–73.59%), Al2O3 (14.39%–15.25%) and K2O (3.78%–5.50%) but depleted in Fe2O3 (0.58%–1.56%), MgO (0.11%–0.44%) and CaO (0.59%–1.19%). The rocks are strongly peraluminous (A/CNK=1.11–1.21) S-type granites characterized by negative Eu anomalies (δEu=0.18–0.39). In also considering their Sr-Nd isotopic compositions (87Sr/86Sr=0.7124 to 0.7143; εNd (9 Ma)=−5.5 to −7.1), we propose that these igneous rocks were generated through dehydration melting of muscovite in the thickened middle or lower crust of northern Tibet. Melting was probably triggered by localized E-W stretching decompression in the horse tails of Kunlun sinistral strike-slip faults. Reactivation of the Kunlun strike-slip faults, accompanied by emplacement of leucogranite and eruption of rhyolite in the Hoh Xil Lake area, indicates that large-scale crustal shortening and thickening in northern Tibet mainly occurred before 15 Ma. In addition, these findings suggest that the northern Tibetan Plateau attained its present elevation (~5000 m) at least 15 Ma ago.

Hoh Xil, zircon U-Pb dating, 40Ar/39Ar dating, leucogranite, rhyolite, crustal thickening, Tibetan Plateau uplift

Citation: Zhang L Y, Ding L, Yang D, et al. Origin of middle Miocene leucogranites and rhyolites on the Tibetan Plateau: Constraints on the timing of crustal thickening and uplift of its northern boundary. Chin Sci Bull, 2012, 57: 511–524, doi: 10.1007/s11434-011-4813-4

Leucogranites play a significant role in understanding crustal thickening, melting within continental collisional belts, and plateau uplift. The High and North Himalayan leucogranites were generated through melting of thickened crust in the Himalayan orogen [1–14] due to the India-Asia continental collision 65–50 Ma [15,16]. Petrogenetic models have investigated the effects of different factors including: fluid infiltration [1], high radioactivity [17], shear heating [18] and tectonic decompression [19]. Most models suggest that leucogranite generation is strongly related to previous large-scale crustal thickening. Recently, studies of Eocene to Oligocene leucogranites (44–27 Ma) from the belts of the northern Himalaya indicate that significant crustal thickening in southern Tibet possibly initiated before 44 Ma [10,14]. Gravity and isostasy studies of leucogranites indicate that the Himalayan area had or nearly reached its highest altitude prior to middle-late Eocene time [9,10,14]. Therefore, leucogranites are important and relevant to fully understanding the tectonics of the region. In contrast, little work on leucogranites has been performed on the northern
Tibetan Plateau except in the Ulugh Muztagh area [20,21]. Rhyolites and leucogranites from the Ulugh Muztagh area were derived from melting of metapelites in the thickened crust [21]. This study reports the geochemistry and zircon U-Pb and 40Ar/39Ar geochronology of crustally derived rocks from the Hoh Xil Lake area, including not only the leucogranites of Bukadaban but also the rhyolites of Kekao Lake, Malanshan and Hudongliang, in order to improve our understanding of leucogranite petrogenesis and middle and lower crustal thickening on the northern Tibetan Plateau.

1 Geological setting and samples

The Hoh Xil-Songpan-Ganzi (HXSG) terrane is bounded by the Anyimaqen-Kunlun-Muztagh suture zone to the north and the Jinshajiang suture zone to the south (Figure 1(a)). The HXSG terrane is dominated by strongly folded Triassic flysch deposits, most of which were unconformably overlain by Cenozoic terrestrial sediments (Figure 1(b)). Neogene potassic volcanic rocks are widespread in northern Tibet (Figure 1(a)). These rocks are dominantly felsic lavas with minor basalts, and eruptive ages range from Miocene to present (18–0 Ma) [25–37]. Previous results indicated that at least three different types of magma sources may be distinguished: (1) potassic volcanic rocks derived from low-degree melting of the pre-existing enriched mantle [34] or mixed crust-mantle layers resulting from intracontinental subduction [26,27,33]; (2) high-K calc-alkaline to adakitic volcanic rocks generated through melting of the thickened mafic lower crust [32,36]; and (3) crustally-derived igneous rocks produced by melting of metapelites at depths of 20–30 km in the thickened crust [20,21]. The occurrence of these volcanic rocks in general was spatially related to the major sinistral strike-slip Kunlun and Altyn Tagh faults or their secondary faults in the northern Tibetan Plateau [26,38]. In the Hoh Xil Lake area, volcanic rocks also were generally distributed along the South Kunlun sinistral strike-slip faults and their subordinate faults. Eruptions of volcanic rocks were associated with normal faulting in pull-apart basins or grabens along the Bukadaban-Jingyu Lake-Muztagh belts [26,31,39,40]. Both the Jingyu Lake and Kusai Lake pull-apart basins were filled with late Miocene lacustrine and fluvial sediments, suggesting that the South Kunlun sinistral strike-slip fault was reactivated during early Miocene time [39,40].

In this study, samples were collected from areas between Hoh Xil Lake and the South Kunlun sinistral strike-slip fault (Figure 1(b)). Leucogranitic plutons are located south of Bukadaban Peak and are predominantly covered by glaciers. The Bukadaban plutons intrude an area of 50 km² and are cut by the South Kunlun sinistral strike-slip fault. Rocks are coarse-grained leucogranites (Figure 2) and are mainly composed of K-feldspar (30–40 vol.%), quartz (25 vol.%) and plagioclase (25–30 vol.%) with minor muscovite (2 vol.%).
and biotite (3 vol.%). Accessory minerals consist of zircon and apatite (<1 vol.%). K-feldspar is generally euhedral or subeuhedral and some large crystals can reach 2 cm in length. Plagioclase is also euhedral or subeuhedral and polysynthetic twins are uncommon. Biotite is more abundant than muscovite by volume.

The Kekao Lake rhyolites are exposed southeast of the lake in a small-scale lava dome that is ~100 m in diameter. Rocks are porphyritic rhyolites with sanidine, quartz and tourmaline phenocrysts in a microlitic groundmass. The groundmass is dominantly composed of fine-grained quartz, plagioclase and sanidine. Northeast of these rhyolites are shoshonites with K/Ar ages of 14.5 to 7.9 Ma [27,29].

The Malanshan rhyolites consist of sheeted lavas that are located south of Malanshan Peak and cover an area of 10 km². The rocks are gray in color and are composed of quartz, sanidine and biotite phenocrysts set in an isotopic groundmass.

The Hudongliang rhyolites are located northeast of Liewudan Lake and erupted along the secondary sinistral strike-slip fault of the South Kunlun fault system. They are dark in color and are composed of sanidine, quartz and tourmaline phenocrysts set in a glassy groundmass. Whole rock K/Ar geochronology yielded an age of ~2 Ma [28].

2 Analytical methods

Zircon crystals were separated using conventional heavy liquid and magnetic techniques. The samples, including an external zircon standard TEMORA-1 (417Ma) [41], were mounted in epoxy, polished and vacuum-coated with a 50 nm layer of gold [42]. Zircons were examined in transmitted and reflected light, and cathodoluminescence (CL) images were taken for further analysis. Zircon U-Pb analyses were processed using a SHRIMP II (Sensitive High Resolution Ion Probe) at the Institute of Geology, Chinese Academy of Geological Sciences (IGCAS), and LA-ICPMS (Laser Ablation Inductively Coupled Mass Spectrometry) at the Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS). The SHRIMP II dating procedure followed details given in [43,44]. The data were processed offline using SQUID (version: 1.02) [45]. Common Pb was corrected against 207Pb rather than 206Pb because of low radioactive Pb abundances for the young samples [44,46]. Results are shown in Table 1. Based on CL image analysis, zircon cores of Bukadaban leucogranites were analyzed using LA-ICPMS following the details in [47]. LA-ICPMS data were processed using GLITTER (version: 4.0) [48] and common Pb corrections were made following the method described by Andersen [49]. Results are shown in Table 2. The data were processed using the ISOPLOT (version: 2.49) program [50].

Muscovite and sanidine grains were separated using conventional methods and purified by hand-picking under a binocular microscope. Samples (weight: 50 mg) were wrapped in aluminum foil to form wafers, and stacked in quartz vials with the standard FCT-1 sanidine (27.9 Ma) [51]. The position of every sample was recorded as the distance from the bottom of the vial. Then, the vials were sealed and put into a quart-sized canister. The canister was wrapped with cadmium foil to shield slow neutrons and thus prevent interface reactions during irradiation. Neutron irradiation was carried out in H8 of the 49–2 Nuclear Reactor, Beijing, China, with a neutron dose of 2.65×10¹³n/(cm²/s) for 24 h. The irradiated samples were transferred into a “Christmas tree” which was high vacuumed under 1–2×10⁻⁹ Pa. After a one week bake-out at 250°C, the sample wafers were dropped into a double-vacuum resistance furnace and heated at 650°C for 30 min. All samples were step-heated from 800 to 1350°C in 8–14 steps. The released gas was purified by getters and isotopic measurements were taken on the HELIX mass spectrometer at ITPCAS. K₂SO₄ and CaF₂ crystals were fused to calculated Ca and K correction factors: (36Ar/37Ar)Ca=2.398×10⁻⁴, (40Ar/39Ar)K=4.782×10⁻³, (39Ar/37Ar)Ca=8.1×10⁻⁷. Results were processed by corrections of system blanks, zero time and mass discrimination. Ages were calculated using decay constants and the formulae from [52,53]. These data
Table 1  Zircon SHRIMP U–Pb dating results for the Kekao Lake rhyolites and the Bukadaban two-mica leucogranites 

| Spot  | U (µg g⁻¹) | Th (µg g⁻¹) | ²⁰⁶Pb/²³⁸U | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁸Pb/²³⁵U | ε% | ²⁰⁶Pb/²³⁸U age (Ma) | Discordant (%) |
|-------|------------|------------|-------------|-------------|-----|-------------|-----|-------------|-----|---------------------|----------------|
| Kekao Lake: 2006K034 (GPS: N35°41.458', E91°31.25') |
| 034-1  | 2.2        | 1660       | 482         | 0.30        | 3.1 | 0.0333      | 23  | 0.0098      | 23  | 0.0021             | 2              |
| 034-2  | 0.5        | 3645       | 871         | 0.25        | 7.8 | 0.0441      | 6.5 | 0.0151      | 6.7 | 0.0025             | 1.6             |
| 034-3  | 2.7        | 993        | 354         | 0.37        | 1.9 | 0.0370      | 30  | 0.0111      | 30  | 0.0022             | 2.3             |
| 034-4  | 6.4        | 1130       | 222         | 0.20        | 2.4 | 0.0440      | 31  | 0.0138      | 31  | 0.0023             | 2.5             |
| 034-5  | 4.2        | 2091       | 815         | 0.40        | 4.1 | 0.0313      | 26  | 0.0095      | 26  | 0.0022             | 1.9             |
| 034-6  | 1.0        | 2997       | 700         | 0.24        | 6.2 | 0.0432      | 7.4 | 0.0142      | 7.6 | 0.0024             | 1.7             |
| 034-7  | 1.7        | 867        | 537         | 0.64        | 1.5 | 0.0439      | 16  | 0.0121      | 16  | 0.0020             | 2.7             |
| 034-8  | 1.1        | 1480       | 356         | 0.25        | 3.0 | 0.0444      | 14  | 0.0144      | 14  | 0.0024             | 1.9             |
| 034-9  | 0.3        | 6138       | 555         | 0.09        | 13.6| 0.0479      | 3.8 | 0.0169      | 4.1 | 0.0026             | 1.6             |
| 034-10 | 1.6        | 1006       | 599         | 0.62        | 1.8 | 0.0441      | 14  | 0.0127      | 14  | 0.0021             | 1.9             |

Bukadaban: 2006K074 (GPS: N35°58'02", E90°50'40")

| Spot  | U (µg g⁻¹) | Th (µg g⁻¹) | ²⁰⁶Pb/²³⁸U | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁸Pb/²³⁵U | ε% | ²⁰⁶Pb/²³⁸U age (Ma) | Discordant (%) |
|-------|------------|------------|-------------|-------------|-----|-------------|-----|-------------|-----|---------------------|----------------|
| 074-1  | 2.8        | 7957       | 2460        | 0.32        | 10.8| 0.0328      | 16  | 0.0069      | 17  | 0.0015             | 1.9             |
| 074-2  | 0.2        | 18027      | 259         | 0.01        | 23.4| 0.0482      | 2.3 | 0.0100      | 2.8 | 0.0015             | 1.6             |
| 074-3  | 0.5        | 7918       | 636         | 0.08        | 12.7| 0.0465      | 6.7 | 0.0119      | 6.9 | 0.0019             | 1.6             |
| 074-4  | 0.5        | 5403       | 537         | 0.10        | 9.5 | 0.0459      | 3.8 | 0.0128      | 4.1 | 0.0020             | 1.6             |
| 074-5  | 4.5        | 2392       | 228         | 0.10        | 3.1 | 0.0500      | 33  | 0.0100      | 33  | 0.0014             | 2.8             |
| 074-6  | 5.1        | 2074       | 393         | 0.20        | 2.8 | 0.0350      | 31  | 0.0071      | 31  | 0.0015             | 2.2             |
| 074-7  | 3.3        | 2856       | 100         | 0.04        | 3.1 | 0.0292      | 26  | 0.0049      | 26  | 0.0012             | 2.1             |
| 074-8  | 1.0        | 12835      | 340         | 0.03        | 17.0| 0.0433      | 7.4 | 0.0091      | 7.6 | 0.0015             | 1.6             |
| 074-9  | 1.5        | 10384      | 259         | 0.03        | 13.7| 0.0451      | 12  | 0.0094      | 13  | 0.0015             | 1.7             |
| 074-10 | 0.2        | 22014      | 345         | 0.02        | 31.6| 0.0486      | 1.8 | 0.0112      | 2.4 | 0.0017             | 1.5             |

Table 2  Zircon LA-ICPMS U–Pb dating results for cores of inherited zircons from the Bukadaban two-mica leucogranites 

| Spot  | U (µg g⁻¹) | Th (µg g⁻¹) | ²⁰⁶Pb/²³⁸U | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁷Pb/²³⁵U | ε% | ²⁰⁸Pb/²³⁵U | ε% | ²⁰⁶Pb/²³⁸U age (Ma) | Discordant (%) |
|-------|------------|------------|-------------|-------------|-----|-------------|-----|-------------|-----|---------------------|----------------|
| Bukadaban: 2006K074 | | | | | | | | | | |

a) Pb, and Pb* indicate the common and radiogenic portions, respectively.

a) Pb* represents radiogenic lead; common lead are corrected using measured ²⁰⁶Pb; ²⁰⁶Pb/²³⁸U ages were chosen.

were processed using ISOPLOT (version: 2.49) [50], and are shown in Table 3. Whole-rock major and trace element and Rb-Sr and Sm-Nd isotopic analyses were processed at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). Major element abundances (wt.%) were determined on glass pills by an X-ray fluorescence spectrometer (XRF), and yielded <5% error. Rare earth elements (REEs)
Table 3  

| $^{40}$Ar/$^{39}$Ar isotope dating results for the Bukadaban two-mica leucogranites and the Malanshan rhyolites a) |
|---|---|---|---|---|---|---|---|---|---|
| $T$ ($^\circ$C) | $^{(40}\text{Ar}/^{39}\text{Ar})_{m1}$ | $1 \sigma$ | $^{(40}\text{Ar}/^{39}\text{Ar})_{m2}$ | $1 \sigma$ | $^{(40}\text{Ar}/^{39}\text{Ar})_{m3}$ | $1 \sigma$ | Age (Ma) | $1 \sigma$ |
| 750 | 0.01424 | 0.00035 | 0.04787 | 0.02039 | 0.01050 | 0.00058 | 6.027 | 0.074 | 10.80 | 1.50 |
| 850 | 0.00861 | 0.00113 | 0.02428 | 0.00496 | 0.01398 | 0.00028 | 3.830 | 0.041 | 7.67 | 0.75 |
| 930 | 0.00466 | 0.00005 | 0.00261 | 0.00290 | 0.01302 | 0.00014 | 2.550 | 0.021 | 7.02 | 0.30 |
| 1000 | 0.00318 | 0.00003 | 0.00123 | 0.00158 | 0.01301 | 0.00009 | 2.058 | 0.012 | 6.70 | 0.16 |
| 1050 | 0.00385 | 0.00002 | 0.00250 | 0.00107 | 0.01269 | 0.00013 | 2.262 | 0.002 | 6.73 | 0.10 |
| 1100 | 0.00335 | 0.00001 | 0.00571 | 0.00156 | 0.01318 | 0.00004 | 3.830 | 0.041 | 7.67 | 0.10 |
| 1150 | 0.00188 | 0.00001 | 0.01011 | 0.00941 | 0.01352 | 0.00030 | 2.262 | 0.002 | 6.73 | 0.10 |
| 1210 | 0.00210 | 0.00013 | 0.01011 | 0.00941 | 0.01352 | 0.00030 | 2.262 | 0.002 | 6.73 | 0.10 |
| 1300 | 0.00066 | 0.00158 | 0.11313 | 0.07803 | 0.00538 | 0.00158 | 1.984 | 0.006 | 13.13 | 0.19 |

2006K129 (sanidine), J: 0.003570, weight: 11.9 mg, Malanshan, GPS: N35°45′12.6″, E90°39′57.8″

| $T$ (°C) | $^{(40}\text{Ar}/^{39}\text{Ar})_{m1}$ | $1 \sigma$ | $^{(40}\text{Ar}/^{39}\text{Ar})_{m2}$ | $1 \sigma$ | $^{(40}\text{Ar}/^{39}\text{Ar})_{m3}$ | $1 \sigma$ | Age (Ma) | $1 \sigma$ |
| 750 | 0.00097 | 0.00100 | 0.29367 | 0.06063 | 0.01298 | 0.00135 | 2.509 | 0.070 | 16.54 | 0.46 |
| 850 | 0.00089 | 0.00006 | 0.03375 | 0.00296 | 0.01277 | 0.00009 | 1.944 | 0.002 | 10.24 | 0.14 |
| 930 | 0.00019 | 0.00003 | 0.01991 | 0.00317 | 0.01268 | 0.00004 | 1.594 | 0.001 | 9.37 | 0.13 |
| 1000 | 0.00035 | 0.00005 | 0.01991 | 0.00317 | 0.01268 | 0.00004 | 1.594 | 0.001 | 9.37 | 0.13 |
| 1110 | 0.00042 | 0.00003 | 0.01991 | 0.00317 | 0.01268 | 0.00004 | 1.594 | 0.001 | 9.37 | 0.13 |
| 1160 | 0.00018 | 0.00003 | 0.01991 | 0.00317 | 0.01268 | 0.00004 | 1.594 | 0.001 | 9.37 | 0.13 |
| 1220 | 0.00006 | 0.00004 | 0.00167 | 0.00338 | 0.01250 | 0.00005 | 1.565 | 0.001 | 9.17 | 0.13 |
| 1300 | 0.00006 | 0.00001 | 0.00326 | 0.00114 | 0.01224 | 0.00006 | 1.609 | 0.004 | 9.86 | 0.14 |
| 1450 | 0.00004 | 0.00003 | 0.01019 | 0.00381 | 0.01181 | 0.00009 | 1.605 | 0.004 | 9.64 | 0.14 |

a) $m$ indicates actually measured value.

3 Results

3.1 Zircon U-Pb geochronology

Zircons of Bukadaban leucogranites were colorless to light brown, and were typically ~50–150 μm in length, with length/width ratios between 5:1 and 2:1. Most crystals in the CL images exhibited light inner cores and dark rims with high U and Th concentrations (Figure 3(a)). Eight analyses of zircon rims by SHRIMP II were plotted in or near the concordia diagram, and six analyses yielded a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 9.7±0.2 Ma (MSWD=0.88) (Figure 4(a)). We interpret the age of 9.7±0.2 Ma as the crystallization age for the Bukadaban leucogranites. In addition, five analyses for inherited or captured zircon cores yielded a cluster of older $^{206}\text{Pb}/^{238}\text{U}$ ages with a wide range (193±3 Ma; 195±2 Ma; 211±2 Ma; 248±3 Ma; 942±10 Ma) (Figures 3(a) and 4(a)). These five zircon cores showed oscillatory zoning and had high Th/U ratios ranging from 0.22 to 0.81.

Zircons of the Kekao Lake rhyolites were colorless to light brown, and were typically ~150–250 μm in length, with length/width ratios between 2:1 and 1:1. These crystals exhibited oscillatory zoning in the CL images (Figure 3(b)). These zircons with high Th/U ratios (>0.1) were typical of magmatic zircons. Ten zircon analyses were plotted in the concordia diagram within error margins, and gave a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 14.5±0.8 Ma (MSWD=13) as the eruptive age of the Kekao Lake rhyolites (Figure 4(b)).

3.2 $^{40}\text{Ar}/^{39}\text{Ar}$ dating

Muscovite $^{40}\text{Ar}/^{39}\text{Ar}$ analyses for the Bukadaban leucogranites yielded a plateau age of 6.88±0.19 Ma (Figure 5(a)), in agreement with its inverse isochron age of 6.61±0.49 Ma within error margins (Figure 5(b)). The muscovite cooling age was slightly younger than that of the zircon U-Pb crystallization age (9.7 Ma).

Sanidines from the Malanshan rhyolites were dated by $^{40}\text{Ar}/^{39}\text{Ar}$ methods to yield a plateau age of 9.37±0.30 Ma (Figure 5(c)), and an inverse isochron age of 9.29±0.48 Ma within large error margins. This cooling age of 9.37±0.30 Ma probably dates the eruption of the Malanshan rhyolitic lavas.

3.3 Whole-rock geochemistry

The leucogranites of Bukadaban were geochemically similar...
in composition to the rhyolites of Kekao Lake, Malanshan and Hudongliang. All rocks analyzed were characterized by high SiO$_2$ (70.99%–73.59%), Al$_2$O$_3$ (14.39%–15.25%) and K$_2$O (3.78%–5.21%), but low MgO (0.11%–0.44%), Fe$_2$O$_3$ (0.61%–1.90%) and CaO (0.47%–1.19%). All rocks were high-K calc-alkaline in the SiO$_2$ vs. K$_2$O diagram (Figure 6(a)), contained normal corundum of 1.5–2.6 vol. % (determined by CIPW calculations), and were highly peraluminous rocks with high A/CNK ratios of 1.11–1.21(Figure 6(b)). Differences among these units were: (1) the Kekao Lake rhyolites were relatively rich in sodium (Na$_2$O/K$_2$O >1), whereas the others were rich in potassium (Na$_2$O/K$_2$O <1); (2) the Malanshan rhyolites had higher TiO$_2$ (0.36%–0.38%) and CaO (1.14%–1.19%) than the other rocks (Table 4).

Although the rocks showed different chondrite-normalized REE fractionated patterns (Figure 6(c)), all rocks were characterized by clear negative Eu anomalies ($\delta$Eu=0.18 to 0.39). The Kekao Lake and Hudongliang rhyolites contained low Ba (27–46 ppm), Sr (16–101 ppm), Nb (12.8–17.1 ppm) and Zr (20–38 ppm) abundances, and had low total REE abundances ($\Sigma$REE=23–36 ppm) and low LREE/HREE ratios [(La/Yb)$_N$=5–11]. The Malanshan rhyolites and the Bukadaban leucogranites had higher Ba (219–315 ppm), Sr (117–128 ppm), Nb (117–128 ppm) and Zr (100–186 ppm) abundances, and exhibited higher total REE abundances ($\Sigma$REE=139–236 ppm) and higher LREE/HREE ratios [(La/Yb)$_N$=46–63]. However, all rocks were depleted in HREE (Yb=0.30 to 0.73 ppm) and Y (4.1–8.5 ppm). In the trace
Figure 5  $^{40}$Ar/$^{39}$Ar step-heating spectra and inverse isochron age for the Bukadaban two-mica leucogranites (a), (b) and the Kekao Lake rhyolites (c), (d).

Table 4  Whole-rock major (%) and trace (ppm) element and Sr-Nd isotope results for the crustally-derived igneous rocks from the Hoh Xil Lake area.

| Location      | Kekao Lake | Bukadaban | Malanshan | Hudongliang |
|---------------|------------|-----------|------------|-------------|
| Sample        | 2006K033   | 2006K033-1| 2006K033-2 | 2006K033-3 |
|               | 2006K034   | 2006K074  | 2006K074-1 | 2006K074-2 |
|               | 2006K129   | 2006K129-1| 2006K129-2 | 2006K129-3 |
| SiO$_2$       | 73.59      | 72.44     | 72.91      | 73.54       |
| TiO$_2$       | 0.06       | 0.07      | 0.06       | 0.06        |
| Al$_2$O$_3$   | 15.25      | 15.16     | 15.06      | 15.43       |
| TFe$_2$O$_3$  | 0.58       | 1.04      | 0.98       | 0.61        |
| MnO           | 0.08       | 0.09      | 0.10       | 0.09        |
| MgO           | 0.11       | 0.11      | 0.11       | 0.11        |
| CaO           | 0.62       | 0.75      | 0.65       | 0.59        |
| Na$_2$O       | 4.47       | 4.53      | 4.53       | 4.52        |
| K$_2$O        | 3.78       | 3.96      | 3.84       | 3.81        |
| LOI           | 0.75       | 0.90      | 0.80       | 0.70        |
| Total         | 99.6       | 99.3      | 99.3       | 98.8        |
| CIPW          | 33         | 30        | 31         | 31          |
| Q              | 24         | 24        | 23         | 24          |
| Or             | 39         | 40        | 39         | 39          |
| Ab             | 1.3        | 3.9       | 3.3        | 1.1         |
| An             | 2.2        | 2.0       | 2.3        | 2.3         |
| Na$_2$O/K$_2$O| 1.2        | 1.1       | 1.2        | 1.2         |
| A/CNK         | 1.21       | 1.15      | 1.17       | 1.22        |
| A/NK          | 1.33       | 1.33      | 1.34       | 1.37        |

(To be continued on the next page)
### Location

| Sample | Kekao Lake | Bukadaban | Malanshan | Hudongliang |
|--------|------------|-----------|-----------|-------------|
|        | 2006K      | 2006K     | 2006K     | 2006K       |
|        | 033        | 033-1     | 033-2     | 034         |
|        | 2006K      | 2006K     | 2006K     | 2006K       |
|        | 074        | 074-1     | 074-2     | 074-3       |
| 129    |            |           |           | HL           |
| 129-1  |            |           |           | HL-1        |
| 129-2  |            |           |           | HL-2        |
| -1     |            |           |           | -3          |
| -2     |            |           |           | -4          |

### Trace elements

| Element | Kekao Lake | Bukadaban | Malanshan | Hudongliang |
|---------|------------|-----------|-----------|-------------|
| Sr      | 53         | 54        | 41        | 101         |
| Y       | 4.4        | 4.7       | 4.1       | 4.5         |
| Nb      | 47.6       | 54.8      | 51.5      | 48.1        |
| Ni      | 1.8        | 1.2       | 0.4       | 3.9         |
| V       | 2.4        | 1.8       | 1.8       | 2.5         |
| Eu      | 0.000014   | 0.000013  | 0.000011  | 0.000012    |
| La      | 5.4        | 5.2       | 5.2       | 6.4         |
| Ce      | 9.3        | 10.2      | 9.9       | 11.9        |
| Pr      | 1.1        | 1.1       | 1.0       | 1.3         |
| Nd      | 3.5        | 3.7       | 3.4       | 4.2         |
| Sm      | 0.68       | 0.66      | 0.79      | 0.74        |
| Eu      | 0.08       | 0.06      | 0.07      | 0.34        |
| Gd      | 0.53       | 0.54      | 0.49      | 0.31        |
| Tb      | 0.10       | 0.10      | 0.08      | 0.11        |
| Dy      | 0.63       | 0.64      | 0.58      | 0.69        |
| Ho      | 0.14       | 0.13      | 0.11      | 0.14        |
| Er      | 0.44       | 0.43      | 0.40      | 0.45        |
| Tm      | 0.09       | 0.09      | 0.07      | 0.07        |
| Yb      | 0.67       | 0.73      | 0.65      | 0.67        |
| Lu      | 0.11       | 0.10      | 0.09      | 0.11        |
| Sr-Nd isotopic data |

| Isotope | δNd (9 Ma) |
|---------|------------|
| 143Nd/144Nd | 0.714255  |
| 147Sm/144Nd | 0.7132    |
| 87Sr/86Sr | 0.723029  |

### Nd/Sm ratio

| Location | Ratio |
|----------|-------|
| Kekao Lake | 0.033  |
| Bukadaban | 0.074  |
| Malanshan | 1.29  |

### Notes

- δNd = (t143Nd - t143Ndstd) × 10^6 / t143Ndstd × 10^6
- Ndstd = (143Nd/144Nd)std / (147Sm/144Nd)std × (147Sm/144Nd)std × 10^6
- (147Sm/144Nd)std = 0.118
- (143Nd/144Nd)std = 0.21357
- (143Nd/144Nd)HDL = 0.513151
- (143Nd/144Nd)HDL = 0.1967
- A/CNK = mol A12O3/(CaO+Na2O+K2O)
- N represents chondrite normalized.
element spider diagram (not shown), all rocks were enriched in LILE after normalization by primitive mantle, but were depleted in Nb, Ta, P and Ti. The REE patterns are identical to those of crustally-derived igneous rocks from the Ulugh Muztagh area, but are entirely different from shoshonitic or adakitic volcanic rocks in the Hoh Xil Lake area (Figure 6(c)).

Isotopic results are given in Table 4. Experimental results yielded a range of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios from 0.713649 to 0.723029 and $^{143}\text{Nd}/^{147}\text{Nd}$ ratios from 0.512267 to 0.512342, respectively. The initial $^{87}\text{Sr}/^{86}\text{Sr}$ isotopic ratios for these rocks were recalculated to account for post-crystallization decay due to their high Rb/Sr ratios of 8.6–68.4 [57]. After age-corrected calculations (9 Ma), initial $\varepsilon\text{Nd}$(9 Ma) values for these rocks ranged from −5.7 to −7.1, with depleted-mantle model ages ($T_{2DM}$) of 1.21–1.27 Ga.

4 Discussion

4.1 Petrogenesis

All rocks analyzed in this study were characterized by high SiO$_2$ (70.99%–73.59%), Al$_2$O$_3$ (14.39%–15.25%) and K$_2$O (3.78%–5.21%), but low MgO (0.1%–1.44%), Fe$_2$O$_3$ (0.61%–1.90%) and CaO (0.47%–1.19%) content. The rocks were composed of more than 1 vol.% corundum (Table 4) and were strongly peraluminous (Figure 5(b)), with an affinity to S-type granites [58]. These rocks are geochemically identical to those of crustally-derived igneous rocks from the Ulugh Muztagh area [21] and of leucogranites from the High Himalayan belts [1–5].

It remains theoretically possible to derive the studied rhyolitic and leucogranitic rocks from a less siliceous magma by intense fractional crystallization (FC) [27,28]. These rocks were characterized by higher initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios, but lower $\varepsilon\text{Nd}$(9 Ma) values that were distinguishable from shoshonitic or adakitic rocks nearby (Figure 6(d)). In addition, the rhyolites and leucogranites had lower Nb/Ta ratios than those of the shoshonites or adakites (Figure 7(a)). As expected, Nb/Ta ratios cannot be significantly changed by rock-forming minerals through fractional crystallization. In addition, Figure 6(d) revealed that leucogranites and rhyolites exhibited lower $\varepsilon\text{Nd}$(9 Ma) values than those of Triassic flysch wall-rocks. Thus, it seems unlikely that leucogranites and rhyolites were generated through FC or assimilation fractional crystallization (AFC) processes during mafic magma ascent and emplacement. Inherited zircons...
with older ages were probably plucked from wall-rocks during magma ascent and emplacement, and/or sourced from metasedimentary protoliths (Figure 3). Thus, we propose that the rocks were probably produced by partial melting of metasedimentary rocks because their geochemical characteristics were identical to those of crustally-derived igneous rocks of Ulugh Muztagh [21]. Also, a clay-rich source is likely based on the high Rb/Sr and Rb/Ba ratios [59] in Figure 7(b).

Leucogranitic melts can result from one of the following three potential reactions in metapelites [61–63]: (1) fluids-present melting of muscovite at <750°C, 9Ms+15Pl+7Qtz+xH2O=31Melt; (2) fluids-absent muscovite dehydration melting at 750–800°C, 22Ms+7Pl+8Qtz=5Kfs+5Als+2Bt+25Melt; and (3) biotite breakdown after muscovite exhaustion at >850°C, Bt+Als+Pl+Qtz=Grt+Kfs+Melt. The leucogranites and rhyolites from the Hoh Xil Lake area were probably generated through muscovite dehydration melting without fluid infiltration, based on the following. First, experimental results revealed that melting of metapelites at high pressures (>8×10⁸ Pa) would accelerate the breakdown of plagioclase and quartz to generate melts of trondjemitic compositions [61], which are clearly different from the Hoh Xil leucogranites and rhyolites of granitic compositions in the An-Ab-Or diagram (Figure 7(c)). Second, trace element Rb-Sr-Ba modeling suggests that melts with low Rb/Sr ratios (<1.5), in general, result from fluids-present melting [3]. Samples from the Hoh Xil Lake area exhibited high Rb/Sr ratios ranging from 3 to 52, indicating melting without fluids infiltration. Finally, the negative correlation between Rb/Sr ratios and Ba (Figure 7(d)) suggests that these rocks were probably derived from muscovite dehydration melting of metapelites [3].

Neogene shoshonitic lavas from the Hoh Xil area locally contained xenoliths and xenocrysts captured from the upper mantle or lower crust [23,27,39,64]. Siliciclastic granulites record melting of the lower crust and their protoliths were probably sourced from pelites or graywackes [64]. Unfortunately, xenoliths from volcanoes were not large enough to separate minerals for geochronology. Thus, there were no constraints on the timing of lower crust anatexis or metamorphism [27,39,64]. Based on the eruptive ages of shoshonites with xenoliths, it has been proposed that lower crustal melting began at least 15 Ma [39,64], which is consistent with the oldest age of 14.5–9.4 Ma for leucogranites and rhyolites from the Hoh Xil Lake area. Also, this indicates that lower crustal anatexis could date back to approx-
The metasedimentary granulites were dominated by (1) garnet + orthopyroxene + plagioclase + K-feldspar + quartz + biotite + sillimanite + zircon + monazite. The most aluminous sample was composed of (2) cordierite + sillimanite + orthopyroxene + quartz [64]. The group (1) metasedimentary granulites contained minerals that were identical to experimental melting work on the metapelites [61]. Leucogranites and rhyolites from the Hoh Xil Lake area were depleted in HREE and Y, probably because of garnets in the residue. Negative Eu anomalies were the result of abundant relic plagioclase and/or K-feldspar. These resultant minerals seemed to be in agreement with metasedimentary granulites [64]. The Kekao Lake rhyolites enrichment in Na may indicate more biotite in the residue [61]. The high CaO Malanshan rhyolites probably resulted from melting at deeper depths, thus incorporating more plagioclase into the melts at high pressures. The high TiO₂ Malanshan rhyolites may have contained Ti-Fe oxides, such as ilmenites or spinels captured from the residue during magma segregations. In general, REE behaviors were controlled by accessory phases, such as apatite and monazite [65, 66]. The Bukadaban leucogranites and the Malanshan rhyolites were richer in total REE and LREE abundances compared to those of the Kekao Lake and Hudongliang rhyolites, indicating more apatite and monazite dissolution during anatexis.

Previous studies have revealed that High Himalayan leucogranites result from melting of metapelites in the thickened continental crust [1–5]. Models have investigated the effects of fluid infiltration [1], high radioactivity [17], shear heating [18] and tectonic decompression [19, 61]. The high Rb/Sr ratios of the leucogranites and rhyolites preclude the possibility that crustal melting in the Hoh Xil area was accompanied by fluid infiltration (Figure 7(d)). Low conductive and high radioactive heating rates in the thickened Triassic flysch sediments have been proposed by [21] to generate crustally derived igneous rocks from the Ulugh Muztagh area by melting of metapelites. However, radioactive heating production rates may have been overestimated because abundances of heat-producing elements in Triassic flysch deposits (U<3 ppm; Th<11 ppm; K₂O<2.7 wt.%) found by [56] were significantly lower than the values used by [21] (U=10 ppm; Th=12 ppm; K₂O=3.6 wt.%). Contributions of heat into the middle and lower crust by mafic magma injections were minor because of the rarity of mafic materials near the Hoh Xil Lake area.

Considering the tectonic setting in the Hoh Xil Lake area, leucogranitic and rhyolitic melt generation was probably triggered by E-W extensional decompression. Previous studies have suggested that the reactivation of the South Kunlun sinistral strike-slip fault had begun by the Early Miocene, and resulted in generating a cluster of normal faults and pull-apart basins in its horse tails leading to E-W extension [38–40]. Reactions of muscovite breakdown triggered by extensional decompression resulted in deep melting of metapelites in the thickened middle or lower crust. Normal faulting or pull-apart basin development in the upper crust may have been critical to allow crustal melts to migrate from their sources, and to be emplaced or erupt at the surface [67]. E-W tectonic extension in the Hoh Xil area initiated at approximately 15 Ma [39], roughly coincident with N-S rifting time in southern Tibetan Plateau. A minimal age of 13.5 Ma for the onset of normal faulting was obtained by a mineral Rb/Sr isochron and ⁴₀Ar/⁴⁰Ar dating in the Shuanghu rift located in southern Qiangtang terrane [68]. Additionally, outcrops of 18–13 Ma N-S trending dikes indicated that local extension in the Lhasa terrane could date back to 18 Ma [69]. Hydrothermal mica in a normal fault of the Thakkhola rift returned an age of ~14 Ma, indicating that E-W extension began prior to 14 Ma ago in northern Nepal [70]. The N-S rifting on the southern Tibetan Plateau generally has been interpreted as a result of extensional gravitational collapse or eastern extrusions along major strike-slip faults [71].

The Tibetan Plateau crust has nearly twice the thickness of a normal continent, which provides a necessary prerequisite for leucogranite generation. Graben and rift basins developed because of extensional effects in the horse tails along the large strike-slip faults in Tibetan Plateau [68–71]. In the Hoh Xil area, the distributions of Cenozoic volcanic rocks were clearly controlled by the South Kunlun sinistral strike-slip fault and its secondary faults [27]. Pull-apart or rift basins were well-developed in the Hoh Xil area [38–40]. Rhyolite eruption and leucogranite emplacement were spatially associated with these faults in the Hoh Xil Lake area. This association further constrains the likelihood that leucogranitic and rhyolitic melts were generated through extensional decompression melting in the Hoh Xil Lake area.

### 4.2 Implications for timing of crustal anatexis and plateau uplift in northern Tibet

The ⁴₀Ar/⁴⁰Ar geochronology obtained by previous studies suggest that leucogranite cooling ages range from 10.5 to 8.4 Ma, and that rhyolites had an eruptive age of 4.0±0.1 Ma [20]. These results indicate that crustal melting occurred from 10 to 4 Ma in northern Tibet [20]. The ages of leucogranites and rhyolites in this study from the Hoh Xil Lake area ranged from 14.5 to 9.4 Ma. This suggests that crustal melting may have initiated at 15 Ma.

Prior to the 65–50 Ma India-Asia collision [15, 16], crustal thickening of the Tibetan Plateau was dominated by distributed shortening [72, 73]. Also, the Hoh Xil crust was suspected to have been affected by compressional stress, producing significant crustal shortening and thickening. Geologic investigations have shown that the shortening rate for Paleogene strata of the Fenghuoshan and Yaxicuo groups reaches 43% [74], and that the Triassic flysch sediments thrust over the Paleogene terrigenous deposits [39] (Figure 1(b)). The reactivation of the South
Kunlun sinistral strike-slip fault during the Early Miocene [39,40], and the extrusive and intrusive ages of 14.5–9.4 Ma, indicate that NE-SW compression was suddenly replaced by localized E-W extension in the Hoh Xil area [39]. Furthermore, the ages of magma emplacement and eruption indicate that large-scale crustal thickening and shortening ceased prior to –15 Ma. The N-S shortening could not have been completely accommodated by the E-W striking South Kunlun sinistral strike-slip fault. Thus, thickening was transferred to the northern Tibetan Plateau by the NE striking Altn Sandrge strike-slip fault. This resulted in the gradual development of thrust faults along the Akazishan, Danngananshan and Qilianshan belts in northern Tibetan Plateau [73,75,76].

The timing and style of plateau uplift remains poorly constrained by several factors, such as rift basins [68,70], foreland basins [73,75–77], shoshonites [69,78], apatite fission track [79], paleobotany [80] and oxygen isotopes [81]. Leucogranite formation typically lags behind crustal thickening and topographic uplift. Thus, in this study, crustal melts of 14.5–9.4 Ma from the Hoh Xil Lake area are regarded as new evidence to define the timing of uplift on the northern Tibetan Plateau. Our geochronology results indicate that the Hoh Xil and Kunlun areas may have attained or near their present elevations before at least 15 Ma. This is contemporaneous with the formation of the Miocene N-S rifts [68,70] and dikes [69] in southern Tibet. Together with the paleoelevation defined by fossil leaves [80], we propose that the entire Tibetan Plateau possibly may have reached or nearly reached its present elevation before 15 Ma.

Furthermore, the ages of 14.5–9.4 Ma for leucogranite emplacement and rhyolite eruption in the Hoh Xil area provide new constraints on the timing of plateau uplift and crustal shortening and thickening in northern Tibet. Large-scale crustal thickening and plateau uplift in northern Tibet occurred before 15 Ma, suggesting that the Hoh Xil Lake area probably attained its present high elevation before the Middle Miocene.

5 Conclusions

1. A zircon U-Pb crystallization age of 9.7±0.2 Ma was obtained for the Bukadaban leucogranites. The extrusive ages of Kekao Lake and Malanshan rhyolites are 14.5±0.8 and 9.37±0.30 Ma, respectively. Together with previous results, we propose that crustal anatexis in northern Tibet could be at least up to 15 Ma in age.

2. (1) A zircon U-Pb crystallization age of 9.7±0.2 Ma was obtained for the Bukadaban leucogranites. The extrusive ages of Kekao Lake and Malanshan rhyolites are 14.5±0.8 and 9.37±0.30 Ma, respectively. Together with previous results, we propose that crustal anatexis in northern Tibet could be at least up to 15 Ma in age.

3. Crustal melts were generated in the Hoh Xil Lake area by decompression melting, initiated by localized E-W extension developed in horse tails of Kunlun sinistral strike-slip faults.

4. (2) Crustal melts were generated in the Hoh Xil Lake area by decompression melting, initiated by localized E-W extension developed in horse tails of Kunlun sinistral strike-slip faults.

5. The timing of crustal thickening and plateau uplift are constrained by the crystallization and eruption ages of crustal melts in the Hoh Xil area. Large-scale crustal thickening and plateau uplift in northern Tibet occurred before 15 Ma, suggesting that the Tibetan Plateau attained its present altitude before 15 Ma.

We thank Dr. Lai Qingzhong and Yue Yuhai for their assistance with zircon U-Pb and 40Ar/39Ar dating, Dr. Shi Rendeng and Brendon Johnson for their helpful suggestions and two anonymous reviewers for their constructive comments. This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q09-03), the National Natural Science Foundation for Distinguished Young Scholars (40625008), and the National Basic Research Program of China (2011CB403101).

1. Forte P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134: 39–57
2. Harris N, Inger S. Trace element modeling of petelite-derived granites. Contrib Mineral Petrol, 1992, 110: 46–56
3. Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34: 345–368
4. Guilhot S, Le Fort P. Geochemical constraint on the bimodal origin of High Himalayan leucogranites. Lithos, 1995, 35: 221–234
5. Sarce M P, Parrish R R, Hodges K V, et al. Shishpa Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295–317
6. Zhang H F, Harris N, Parrish R, et al. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications. Chin Sci Bull, 2004, 49: 2087–2092
7. Zhang H, Harris N, Parrish R, et al. Geochemistry of North Himalayan leucogranites: regional comparison, petrogenesis and tectonic implications (in Chinese). Geol J Chin Univ, 2005, 30: 275–288
8. Zhang H, Harris N, Parrish R E, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228: 195–212
9. Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages. Geology, 2007, 35: 45–48
10. Aikman A B, Harrison T M, Ding L. Evidence for early (>44 Ma) Himalayan crustal thickening. Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274: 14–23
11. Qi X X, Zeng L S, Meng X J, et al. Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication (in Chinese). Acta Petrol Sin, 2008, 24: 1501–1508
12. Gao L E, Zeng L S, Liu J, et al. Early Oligocene Na-rich peraluminous leucogranites in the Yardo groupes dome, southern Tibet: formation mechanism and tectonic implications (in Chinese). Acta Petrol Sin, 2009, 25: 2289–2302
13. Zeng L S, Liu J, Gao L E, et al. Early Oligocene crustal anatexis in the Yandoi groupes dome, southern Tibet and geological implications. Chin Sci Bull, 2009, 54: 104–112
14. Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: melting thinned lower continental crust. Earth Planet Sci Lett, 2011, 303: 251–266
15. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci, 2000, 28: 211–280
16. Ding L, Kapp P, Wan X. Paleocene-Oligocene record of ophiolite obduction and initial India-Asian collision, south central Tibet. Tectonics, 2005, 24. doi:10.1029/2004TC001729 TC3001
17. Pinet C, Jaupart C. A thermal model for the distribution in space and time of the Himalayan granites. Earth Planet Sci Lett, 1987, 84: 87–99
18. Harrison T M, Lovero O M, Grove M. New insights into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25: 899–902
19. Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13: 1537–1546
20. Burchfiel B C, Molnar P, Zhao Z, et al. Geology of the Ulugh
Muztagh Area, Northern Tibet. Earth Planet Sci Lett, 1989, 94: 57–70

21 McKenna L W, Walker J D. Geochemistry of crustally-derived leucocratic igneous rocks from the Ulugh Muztagh area, Northern Tibet and their implications for the formation of the Tibetan Plateau. J Geophys Res, 1990, 95: 21483–21502

22 Ding L, Kapp F, Zhong D L, et al. Cenozoic volcanic rocks in Tibet: Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44: 1833–1865

23 Ding L, Kapp F, Yue Y, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 2007, 254: 28–38

24 Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett, 2008, 272: 158–171

25 Zhang Y, Zheng J K. Geological Overview in Kokshili, Qinghai and Adjacent Areas (in Chinese). Beijing: Seismological Press, 1994, 1–177

26 Deng W M. Cenozoic Intrataple Volcanic Rocks in the Northern Qianghai-Xizang Plateau (in Chinese). Beijing: Geological Publishing House, 1998, 1–480

27 Deng W M, Zheng X L, Yukio M. Petrological characteristics and ages of Cenozoic volcanic rocks from the Hoh Xil Mts., Qianghai Province (in Chinese). Acta Petrol Mineral, 1996, 15: 289–298

28 Zhu Y T, Jia Q X, Yi H S, et al. Two periods of Cenozoic volcanic rocks from Hoh Xil lake area, Qianghai (in Chinese). J Mineral Petrol, 2005, 25: 23–29

29 Jiang D H, Liu J Q, Ding L. Geochemistry and petrogenesis of Cenozoic potassic volcanic rocks in the Hoh Xil area, northern Tibetan plateau (in Chinese). Acta Petrol Sin, 2008, 24: 279–290

30 Zheng X S, Bian Q T, Zheng J K. On the petrochemistry and its genetic significance of the intrusives rocks from Hoh Xil district, Qianghai province, China (in Chinese). Acta Petrol Sin, 1996, 12: 530–545

31 Yang J S, Wu C L, Shi R D, et al. Miocene and Pleistocene shoal platform in northern Qinghai province, China (in Chinese). Acta Petrol Sin, 1996, 12: 530–545

32 Zheng X S, Bian Q T, Zheng J K. Geological Overview in Kokshili, Qinghai and Adjacent Areas (in Chinese). Beijing: Seismological Press, 1994. 63–114

33 Arnaud N O, Vidal P, Tapponnier P, et al. The high K-O volcanicism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet Sci Lett, 1992, 111: 351–367

34 Turner S, Arnaud N, Liu L, et al. Post-collisional shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 1996, 37: 45–71

35 Cooper K M, Reid M R, Dunbar N W, et al. Origin of mafic magmas beneath northwestern Tibet: Constraints from 230Th-238U disequilibria. Geochimica Geosystems, 2002, 3: doi: 10.1299/2002GC000332

36 Wang Q, McDermott F, Xu J, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 2005, 33: 465–468

37 Guo Z, Wilson M, Liu J, et al. Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: Constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol, 2006, 47: 1177–1220

38 Yin A, Harrison T M, Ryerson F J. Transtension along the left-slip Altyn Tagh and Kunlun faults as a mechanism for the occurrence of Late Cenozoic volcanism in the northern Tibetan Plateau. Eos Trans AGU, 1995, 567

39 Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault. Tectonics, 2003, 22: 1052–1074

40 Fu B, Awata Y. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. J Asian Earth Sci, 2007, 29: 253–265

41 Black L P. TEMORA 1: A new zircon standard for Phanerzoic U-Pb geochronology. Chem Geol, 2003, 200: 155–170

42 Song B, Zhang Y H, Wang Y S, et al. Mount making and procedure of the SHRIMP dating (in Chinese). Geol Rev, 2002, 48(Suppl): 26–30

43 Compton W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J Geophys Res, 1984, 89: 525–534

44 Williams I S. U-Th-Pb geochronology by ion microprobe. In: Mchinnen M A, Ahanks W C, Ridley W I, eds. Application of Microanalytical Techniques to Understanding Mineralizing Process. Rev Econ Geol, 1998, 7: 1–35

45 Ludwig K R. SQUID ver.: 1.02. A user’s Manual. Berkeley Geochem Center Spec Publ, 2001. 2–1

46 Wang Y S, Luo Z H, Li L, 3.8 Ma: SHRIMP U-Pb zircon dating of the younger alkali basalt in the Qianghai-Xizang (in Chinese). Geochimica, 2004, 33: 442–446

47 Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry, Geostand News, 2004, 28: 353–370

48 Griffin W L, Powell W J, Pearson N J, et al. GLITTER: data reduction software for laser ablation-ICP-MS. In: Sylvester P, ed. Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues: Mineral Assoc Canada Short Course, 2008, 40: 308–311

49 Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 2002, 192: 59–79

50 Ludwig K. Users manual for Isoplot/Ex (version: 2.49): A geochronological toolkit for Microsoft Excel. Berkeley Geochem Center Special Publication, 2001

51 Renne P R, Deino A L, Walter R C, et al. Intercalibration of astrochronological and radio isotopic time. Geology, 1994, 22: 783–786

52 Steiger R, Jäger E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett, 1977, 36: 359–362

53 Daqué A, Lee K W J, Villeneuve M. An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem Geol, 2003, 199: 111–127

54 Li C F, Chen F K, Li X H. Precise isotopic measurements of sub-nanogram Nd of standard reference material by thermal ionization mass spectrometry using the NdO⁺ technique. Int J Mass Spectrom, 2007, 266: 34–41

55 Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. 63–114

56 She Z, B, Ma C Q, Mason R, et al. Provenance of the Triassic Songpan-Ganzi flysch, west China, Chem Geol, 2006, 231: 159–175

57 Wu F Y, Li X H, Yang J H, et al. Discussions on the petrogenesis of granites (in Chinese). Acta Petrol Sin, 2007, 25: 1217–1238

58 Chappell B W, White A J R, I and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinburgh Earth Sci, 1992, 83: 1–26

59 Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45: 29–44

60 Barker F. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Developments in Petrology. Amsterdam: Elsevier, 1979, 6: 1–35

61 Patino Douce A E, Harris N. Experimental constraints on Himalayan anatexis. J Petrol, 1998, 39: 689–710

62 Le Breton N, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrology, 1988, 99: 226–237

63 Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequence for crustal differentiation. Contrib Mineral Petrology, 1988, 98: 257–276

64 Hacker B R, Gnos E, Ratschbacher L, et al. Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287: 2463–2466

65 Ayres M, Harris N. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites.
Lithos, 1997, 139: 249–269
66 Zeng L, Asimow P D, Saleeb J B. Coupling of anatctic reactions and dissolution of accessory phases and the Sr and Nd isotope systematic of anatctic melts from a metasedimentary source. Geochim Cosmochim Acta, 2005, 69: 3671–3682
67 Brown M. The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crystallly-derived granite connection in thickened orogens. Earth Sci Rev, 1994, 36: 83–130
68 Blisniuk M P, Hacker R B, Glodny J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 2001, 412: 628-632
69 Williams H M, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29: 339–342
70 Coleman M, Hodges K. Evidence for Tibetan Plateau uplifted before 14Myr ago from a new minimal age for east-west extension. Nature, 1995, 374: 49–52
71 Amijo R, Tapponnier P, Mercier J L, et al. Quaternary extension in south Tibet: Field observations and tectonic implications. J Geophys Res, 1986, 91: 13803–13872
72 England P C, Houseman G A. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J Geophys Res, 1986, 91: 3664–3676
73 Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671–1677
74 Wang C, Liu Z, Yi H, et al. Tertiary crustal shortening and penepnation in the Hoh Xil region: Implications for the tectonic history of the northern Tibetan Plateau. J Asian Earth Sci, 2002, 20: 211–223
75 Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int, 1998, 135: 1–47
76 Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 1998, 17: 823–842
77 Wang C S, Zhao X X, Lippert P C, et al. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987–4992
78 Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40 myr ago. Nature, 1998, 394: 769–773
79 Zhong D L, Ding L. Rising process of the Qinghai-Xizang (Tibet) Plateau and its mechanism. Sci China Ser D-Earth Sci, 1996, 39: 369–379
80 Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 Million years. Nature, 2003, 421: 622–624
81 Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439: 677–681

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.