Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms

Ni Cui and Mihai A Macovei
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
E-mail: ni.cui@mpi-hd.mpg.de and mihai.macovei@mpi-hd.mpg.de

New Journal of Physics 14 (2012) 093031 (11pp)
Received 20 June 2012
Published 17 September 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/9/093031

Abstract. We focus on the propagation properties of a single-cycle laser pulse through a two-level medium by numerically solving the full-wave Maxwell–Bloch equations. The counter-rotating terms in the spontaneous emission damping are included such that the equations of motion are slightly different from the conventional Bloch equations. The counter-rotating terms can considerably suppress the broadening of the pulse envelope and the decrease of the group velocity rooted from dispersion. Furthermore, for incident single-cycle pulses with envelope area 4π, the time delay of the generated soliton pulse from the main pulse depends crucially on the carrier-envelope phase of the incident pulse. This can be utilized to determine the carrier-envelope phase of the single-cycle laser pulse.
1. Introduction

Modern technological progress in ultra-fast optics makes it possible to produce few-cycle laser pulses [1–4]. Recently, a single-cycle pulse with a duration of 4.3 fs was generated experimentally [5]. Furthermore, great effort toward the generation of extremely short pulses via few-cycle laser pulses has been made [6–9], particularly, single-cycle gap solitons [10] and unipolar half-cycle optical pulses [11], respectively, generated in dense media with a sub-wavelength structure. If the pulse duration approaches the optical cycle, the strong-field–matter interaction enters the extreme nonlinear optics [12–14], and standard approximations of the slowly varying envelope approximation (SVEA) and the rotating-wave approximation (RWA) are invalid [15–19]. When the Rabi frequency of the few-cycle laser pulse becomes comparable to the light frequency, the electric-field time-derivative effects will lead to carrier-wave Rabi flopping (CWRF) [20], which was observed experimentally in the semiconductor GaAs sample [21]. In this extreme pumping regime, the simple two-level system can still serve as a reference point [12–14, 22, 23].

For the few-cycle laser pulses, the absolute carrier-envelope phase (CEP) strongly affects the temporal variation of the electric field. These effects give rise to many CEP-dependent dynamics, such as high-harmonic generation [24–28], optical field ionization [29–31], atomic coherence and population transfer [32, 33], etc. CEP-dependent strong interactions also provide routines to determine the CEP of few-cycle ultra-short laser pulses [34–40]. In particular, strong-field photoionization provides a very efficient tool to measure the CEP of powerful few-cycle femtosecond laser pulses for the first time [34]. Another promising approach to determine the CEP is introduced by the detection of the THz emission by down-conversion from the few-cycle strong laser pulse [35]. Recently, the angular distribution of the photons emitted by an ultra-relativistic accelerated electron also provided a direct way of determining the CEP of the driving laser field [36]. However, all these measurements of CEP are based on light amplification in the strong-field regime. An alternative way of measuring the CEP of a pulse is by monitoring the frequency spectrum resulting from a temporally delayed pair of pulses. A frequency beating in the spectrum is related to the CEP of the pulse [37].

Therefore, it is very meaningful to explore routines for determining the CEP of a few-cycle laser pulse at relative lower intensities without light amplification. The nonperturbative resonant extreme nonlinear optics effects would be good candidates for measuring the CEP of few-cycle laser pulses.
laser pulses with moderate intensities [22, 23]. However, the period of these CEP-dependent effects is π due to the inversion symmetry of light–matter interaction in two-level systems. Thus, the sign of the few-cycle laser pulse still cannot be determined. In order to remove the π-shift phase ambiguity, the violation of inversion symmetry should be considered [41, 42]. In the presence of an electrical bias, the phase-dependent signal of ultra-fast optical rectification in a direct-gap semiconductor film implies a possible technique to extract the CEP [43]. Moreover, the inversion-asymmetry media, such as polar molecules [44] and the asymmetric quantum well [45], could also be utilized to determine the CEP of few-cycle laser pulses.

In this paper, we introduce the counter-rotating terms (CRT) in the spontaneous emission damping, and investigate the influence of CRT on the propagation dynamics of nonamplified single-cycle laser pulses in a two-level medium. The CRT should be considered for such ultra-short pulses interacting with the medium with strong relaxation processes, because the CRT can notably suppress the broadening of the pulse envelope and the decrease of the group velocity arising from dispersion. Furthermore, when the incident single-cycle pulse with envelope area $\Theta = 4\pi$ propagates through the two-level medium, it splits into two pulses. The stronger main pulse moves faster than the weaker generated soliton pulse, and the pulse time delay between them shows a pronounced CEP dependence. Therefore, in the presence of a static electric field, we present a simpler approach for measuring the CEP of the few-cycle laser pulses, by detecting the time delay of the generated soliton pulse. Finally, the CEP dependence found here is due to CRT in the atom–laser interaction as well as in the spontaneous emission damping. These terms are also present in a few-level system. Thus, the described effect does not depend on a specific model used, i.e. a two-level sample. The atom–field dynamics is ultra-short and the ionization can be small during these time intervals.

2. The approach

2.1. Maxwell equations

We consider the propagation of a few-cycle laser pulse in a resonant two-level medium along the z-axis, as shown in figure 1. The pulse initially moves in the free-space region, then it penetrates the medium on an input interface at $z = 0$ and propagates through the medium, and finally, it exits again into the free space through the output interface at $z = L$. With the following relation for the electric displacement for the linear polarization along the x-axis, $D_x = \varepsilon_0 E_x + P_x$, the
full-wave Maxwell equations for the medium take the form

$$\begin{align*}
\frac{\partial H_x}{\partial t} &= -\frac{1}{\mu_0} \frac{\partial E_x}{\partial z}, \\
\frac{\partial E_x}{\partial t} &= -\frac{1}{\epsilon_0} \frac{\partial H_x}{\partial z} - \frac{1}{\epsilon_0} \frac{\partial P_x}{\partial t},
\end{align*}$$

(1)

where E_x and H_x are the electric and magnetic fields, respectively. μ_0 and ϵ_0 are the magnetic permeability and the electric permittivity in the vacuum, respectively. The macroscopic nonlinear polarization $P_x = -N d_{21} u$ is connected with the off-diagonal density matrix element $\rho_{12} = \frac{1}{2} (u + iv)$ and the population inversion $w = \rho_{22} - \rho_{11}$, which are determined by the Bloch equations below. Here, u and v are the real part and the imaginary part of the off-diagonal density matrix element ρ_{12}, respectively, which are related to dispersion and absorption of the medium.

2.2. Master equation

The Hamiltonian of the two-level system we considered can be described as [46]

$$H = \sum_k \hbar \omega_k a_k^\dagger a_k + \hbar \omega_0 S_z + \hbar \Omega(t)(S^+ + S^-) + i \sum_k (\vec{g}_k \cdot \vec{d}_{21}) [a_k^\dagger (S^+ + S^-) - \text{h.c.}],$$

(2)

where ω_0 is the transition frequency, and \vec{d}_{21} is the electric dipole moment of the transition between the upper state $|2\rangle$ and the lower state $|1\rangle$. a_k^\dagger (a_k) is the creation (annihilation) operator for photons with momentum $\hbar k$ and energy $\hbar \omega_k$, while $\vec{g}_k = \sqrt{2\pi \hbar \omega_k / \omega_0^2} \vec{e}_k$ describes the vacuum–atom coupling and \vec{e}_k represents the unit polarization vector with $\lambda \in \{1, 2\}$. $S^+ = |2\rangle \langle 1|$ ($S^- = |1\rangle \langle 2|$) is the dipole raising (lowering) operator of the two-level system and $S_z = (|2\rangle \langle 2| - |1\rangle \langle 1|)/2$ is the inversion operator. $\Omega(t) = d_{12} E_x / \hbar$ is the Rabi frequency of the incident laser field.

In the usual Born–Markov and mean-field approximation, but without the RWA, the master equation of the system is determined by

$$\dot{\rho}(t) + i[\omega_0 S_z + \Omega(t)(S^+ + S^-), \rho] = -\gamma [S^+, (S^+ + S^-) \rho] + \text{h.c.},$$

(3)

where the overdot denotes differentiation with respect to time. Here, $[S^+, S^+ \rho(t)]$ and its Hermitian conjugate term represent the CRT for the spontaneous emission damping, which are neglected under the RWA when the duration of the laser field pulse τ_p is much larger than ω_0^{-1} and the evolution time satisfies the condition $t \gg \omega_0^{-1}$. However, for ultra-short dynamics and few-cycle pulses, even for a single-cycle or a sub-cycle pulse, the CRT become indispensable and cannot be neglected.

The validity of the two-level approximation in the interaction of few-cycle light pulses with atoms was investigated in [47]. There, certain ranges of the parameters that ensure the validity of the two-level approximation are shown. In particular, if the frequency of the additional third level ω_3, which the laser may couple, is at least twice as high as frequency of the two-level model ω_0 and the corresponding transition dipole element d_3 is smaller than the two-level dipole d_{21}, i.e. $d_3 / d_{21} \ll 1$, then the two-level approximation still applies. The incident envelope pulse area in this case should be less than or equal to 4π, i.e. $\Theta \leq 4\pi$. Therefore, in the following, we will investigate the effects of the CRT on the propagation dynamics of the single-cycle laser pulse in a two-level medium.
2.3. Bloch equations

Based on the master equation (3), including the CRT in the spontaneous emission damping, the Bloch equations with CRT can be easily derived as follows:

\[
\dot{u} = \omega_0 v, \\
\dot{v} = -\omega_0 u + 2\Omega(t)w - 2\gamma_2 v, \\
\dot{w} = -2\Omega(t)v - \gamma_1 (w + 1),
\] (4)

where \(\gamma_1\) and \(\gamma_2\) are the spontaneous decay rates of the population and polarization, respectively.

The Bloch equations with CRT (equation (4)) are slightly different from the conventional Bloch equations (see, for instance, [6, 19]):

\[
\dot{u} = \omega_0 v - \gamma_2 u, \\
\dot{v} = -\omega_0 u + 2\Omega(t)w - \gamma_2 v, \\
\dot{w} = -2\Omega(t)v - \gamma_1 (w + 1),
\] (5)

in which the relaxation constants \(\gamma_1\) and \(\gamma_2\) are added phenomenologically.

2.4. Numerical method

The propagation properties of the few-cycle laser pulse in the two-level medium can be modeled by the full-wave Maxwell–Bloch equations beyond the SVEA and RWA, which can be solved by the iterative predictor-corrector finite-difference time-domain discretization scheme [19, 48–50]. For such an extremely short laser pulse, we define the vector potential at \(z = 0\) as

\[
A_x(t) = A_0 \text{sech}[1.76(t - t_0)/\tau_p] \sin [\omega_p(t - t_0) + \phi],
\] (6)

where \(A_0\) is the peak amplitude of the vector potential, \(\omega_p\) is the photon energy and \(\phi\) is the CEP. \(\tau_p\) is the full-width at half-maximum (FWHM) of the short pulse and \(t_0\) is the delay. The electric field can be obtained from \(E_x = -\partial A_x(t)/\partial t\). In what follows, we assume that the two-level medium is initialized in the ground state with \(u = v = 0\) and \(w = -1\). The material parameters are chosen as in [6]: \(\omega_0 = 2.3 \text{ fs}^{-1} (\lambda = 830 \text{ nm})\), \(d_{12} = 2 \times 10^{-29} \text{ Asm}\), \(\gamma_1^{-1} = 1 \text{ ps}\), \(\gamma_2^{-1} = 0.5 \text{ ps}\) and the density \(N = 4.4 \times 10^{20} \text{ cm}^{-3}\). The incident pulse has an FWHM in a single optical cycle \(\tau_p = 2.8 \text{ fs}\) and the photon energy \(\omega_p = \omega_0\). The Rabi frequency \(\Omega_0 = -A_0 \omega_p d/\hbar = 1 \text{ fs}^{-1}\) corresponds to the electric field of \(E_x = 5 \times 10^9 \text{ V m}^{-1}\) or an intensity of \(I = 6.6 \times 10^{12} \text{ W cm}^{-2}\), and the incident pulse area is defined as \(\Theta = \int_{-\infty}^{\infty} \Omega(t) \, dt\).

3. Results and discussion

Now, we focus on the effects of CRT on the propagation dynamics of single-cycle laser pulses in a two-level medium by comparing the numerical results from the Maxwell–Bloch equations with CRT (equations (1) and (4)) and without CRT (equations (1) and (5)). We use an incident single-cycle pulse with envelope area \(\Theta = 2\pi\) for these simulations with the medium zone length: \(z = 110 \mu\text{m}\).

According to the standard area theorem, the pulse with area \(\Theta = 2\pi\) can transparently propagate through the two-level medium without suffering significant lossness—the so-called self-induced transparency (SIT) [53, 54]. However, when the laser pulse envelope contains

\[\text{New Journal of Physics 14 (2012) 093031 (http://www.njp.org/)}\]
only a few optical cycles, the standard area theorem breaks down because of the occurrence of CWRF [20]. From our numerical results, for the short propagation distance, the usual SIT regime is essentially recovered. However, at a greater distance, the established conditions for SIT are destroyed due to the extreme nonlinear optical effects. Figures 2(b) and (c) present the normalized electric-field pulses and the corresponding population inversions at the distance \(z = 90 \, \mu \text{m} \) for different approaches; namely the blue solid curves depict the case obtained from the Maxwell–Bloch equations with CRT, while the red dashed curves are for the conventional approach without CRT. Compared with the incident single-cycle \(2\pi \) pulse in figure 2(a), the electric-field pulses for both cases become clearly broadened due to the dispersion and suffer a decrease in pulse amplitude. Accordingly, the population differences for both cases undergo an incomplete Rabi flopping with the CWRF (figure 2(c)).

However, there are notably different features between these two approaches. The electric-field pulse from the approach with CRT (blue solid curves in figure 2(b)) is evidently narrower than that in the case without CRT (red dashed curves in figure 2(b)). This can be easily seen from the corresponding spectra shown in figure 3. Compared with the spectrum of the incident pulse, the visible broadening in temporal pulses arising from dispersion is obviously suppressed in the spectra and even shows a clear breakup in the lower spectrum in both cases. However, the spectrum in the case with CRT is obviously more broadened than that in the case without CRT. The envelope peak from the approach with CRT is relatively larger than that in the case without CRT (figure 2(b)); hence, the former leads to more population inversion at the leading edge of

Figure 2. (a) The Rabi frequency of the incident single-cycle pulse with envelope area \(\Theta = 2\pi \). Panels (b) and (c) are the time-dependent electric fields and the corresponding population inversions at the distance \(z = 90 \, \mu \text{m} \), respectively. The length of the two-level medium is chosen as \(L = 110 \, \mu \text{m} \). The blue solid curves are for the case of the Maxwell–Bloch equations with CRT, while the red dashed curves are for the case with the conventional Maxwell–Bloch equations. The black lines represent the pulse envelope.
the electric-field pulse (figure 2(c)). Moreover, there is a notable time delay of the electric-field pulses and the corresponding population inversions between the two approaches (figures 2(b) and (c)). This means that the group velocity of the propagating pulse from the conventional approach without CRT is obviously smaller than that in the case with CRT. This difference in group velocity is rooted in the different influence of dispersion effects for these two approaches. Comparing equations (4) with equations (5), there is no damping of the real part of polarization \(u \) in the Bloch equations with CRT, which indicates that the dispersion does not suffer lossness. That is to say, the presence of CRT evidently suppresses the strong dispersion effects, which lead to a broadening of the pulse envelope and a decrease of the group velocity.

In addition, we also find that the influence of CRT on the propagation dynamics of single-cycle laser pulses is significantly enhanced with an increase of the spontaneous decay rates. Therefore, the CRT is important and indispensable for the study of the propagation properties of few-cycle laser pulses in a medium with strong relaxation processes. In the following discussion, we will use our established full-wave Maxwell–Bloch equations with CRT (equations (1) and (4)) to explore an approach for determining the CEP of the single-cycle laser pulse.

In what follows, we simulate the incident single-cycle pulses with a larger envelope area, i.e. \(\Theta = 4\pi \), propagating through the two-level medium with a length \(L = 80 \mu \text{m} \). In the course of pulse propagation, the medium absorbs and emits photons and redistributes energy in the pulse. The propagating pulses are altered in shape until they reach a stable status after some propagation distance by splitting into two pulses, a strong main pulse and an SIT soliton pulse. However, the former moves faster than the latter, which is why the generated SIT soliton pulse breaks up from the main pulse. We show the transmitted pulses of the incident single-cycle pulse with pulse envelope area \(\Theta = 4\pi \) for different CEP \(\phi = 0 \) and \(\phi = \pi/2 \) in figure 4. It can be seen that both the transmitted pulses split into two pulses. There is a time delay between the main pulse and the soliton pulse defined as \(t(\phi) \). The time delay for the incident pulse with CEP
\(\phi = \pi/2\) \([t(\phi = \pi/2)]\) is evidently larger than that in the case with CEP \(\phi = 0\) \([t(\phi = 0)]\). This demonstrates that the pulse time delay \(t(\phi)\) is sensitive to the initial CEP of the incident pulse.

For simplicity, we define the relative pulse time delay \(\Delta t = t(\phi) - t(\phi = 0)\) to indicate the CEP dependence. We present the relative pulse time delay \(\Delta t\) as a function of the initial CEP of the incident pulse in figure 5 with blue circles. It is found that the relative pulse time delay \(\Delta t\) is related to the CEP of the incident pulse with a nearly cosine-like dependence. However, the time delay \(t(\phi = \pi)\) is exactly the same as \(t(\phi = 0)\), and hence, the period of the CEP-dependent pulse time delay is only \(\pi\) because of the inversion symmetry of light–matter interaction. This means that we cannot distinguish the incident pulse from the initial CEP \(\phi \rightarrow \phi + \pi\).

In order to remove the \(\pi\)-shift phase ambiguity, we add a static electric field to break the inversion symmetry of the light–matter interaction [55–57]. As a result, the Rabi frequency terms in Bloch equations (equations (4)) should change as \(\Omega(t) \rightarrow \Omega(t) + f\), where \(f\) describes the strength of the static electric field. The presence of the static electric field gives rise to the enhancement of the CEP-dependent variation in the peak electric strength of the single-cycle pulse, which will enhance the CEP dependence of the dynamic effects. The relative pulse time delay \(\Delta t\) of the transmitted soliton pulses as a function of the initial CEP of the incident single-cycle pulses for different static electric fields is presented in figure 5. Compared with the blue circles of \(f = 0\), the influence of the static electric field on the relative pulse time delay is significant. Let us take \(f = 2\% \Omega_0\), for example green squares in figure 5, then the relative time delay \(\Delta t \neq 0\) at \(\phi = \pi\), i.e. \(t(\phi = \pi)\), is quite different from \(t(\phi = 0)\) in the presence of the static electric field. The variation with the CEP of the incident pulse also becomes much stronger. The period of the CEP-dependent pulse time delay becomes \(2\pi\) because the inversion symmetry is broken assisted by the static electric field. Moreover, with an increase of the static electric field, such as \(f = 3\% \Omega_0\) and \(f = 4\% \Omega_0\), the dependence of the relative pulse time delay on the initial CEP is further enhanced (red diamond and black circles in figure 5).

As a result, in the presence of the static electric field if the relative time delay of the generated soliton pulses is calibrated; this effect suggests an approach for determining the CEP.
Figure 5. The relative pulse delay between the transmitted soliton pulses as a function of the CEP of the incident pulses for different strengths of the static electric field. The solid lines are a guide to the eye.

of the incident single-cycle laser pulses in both the sign and the amplitude. The accuracy is determined by the precision of detecting the relative pulse delay. In the above discussion, we considered an initial single-cycle pulse with duration $\tau_p = 2.8$ fs. However, our results can also be extended to longer pulses. Furthermore, it should be pointed out that the pulse time delay might be much easier to detect compared with other features of the soliton pulse, such as the intensity and pulse duration [44]. Finally, in our discussion, the static electric field strengths, which are a few per cent of the single-cycle laser pulse strength, exceed a few MV cm$^{-1}$. In order to achieve this kind of strength of the static electric field in an experiment, we may proceed with a special case as suggested in [55–57], where an additional electric field with a much lower frequency (such as a CO$_2$ laser field, terahertz pulses or a mid-infrared optical parameter amplifier pulse) is used instead of the static electric field. The ultra-short dynamics can prevent the system from being destroyed or ionized. Concluding this section, we have explored an alternative way to determine the CEP of few-cycle laser pulses, see also [58].

4. Summary

In summary, we have investigated the propagation properties of single-cycle laser pulses in a two-level medium including the CRT in the spontaneous emission damping. We found that the CRT can efficiently suppress the broadening of the pulse envelope and the decrease of the group velocity. Thus, the CRT is important and indispensable for the study of the propagation dynamics of few-cycle laser pulses, even for single-cycle and sub-cycle pulses. Furthermore, we explored the CEP dependence of the generated soliton pulse from the single-cycle laser pulse propagating through the two-level medium. The time delay of the generated soliton pulses depends sensitively on the CEP of the single-cycle incident laser pulse. Hence, the presence of
the static electric field enhances the CEP dependence of the relative pulse time delay, which has potential applications in determining the CEP of the incident single-cycle laser pulse.

References

[1] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[3] Jones R R, You D and Bucksbaum P H 1993 Phys. Rev. Lett. 70 1236
[4] Sansone G et al 2006 Science 314 443
[5] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R and Leitenstorfer A 2010 Nature Photon. 4 33
[6] Kalosha V P and Herrmann J 1999 Phys. Rev. Lett. 83 544
[7] Leblond H, Kremer D and Mihalache D 2009 Phys. Rev. A 80 053812
[8] Leblond H and Mihalache D 2010 Phys. Rev. A 81 063815
[9] Mihalache D, Mazilu D, Lederer F, Malomed B A, Kartashov Y V, Crasovan L C and Torner L 2005 Phys. Rev. Lett. 95 023902
[10] Xie X T and Macovei M A 2010 Phys. Rev. Lett. 104 073902
[11] Song X H, Yang W F, Zeng Z N, Li R X and Xu Z Z 2010 Phys. Rev. A 82 053821
[12] Steinmeyer G, Sutter D H, Gallmann L, Matuschek N and Keller U 1999 Science 286 1507
[13] Tritschler T, Mücke O D and Wegener M 2003 Phys. Rev. A 68 033404
[14] Wegener M 2005 Extreme Nonlinear Optics: An Introduction (Berlin: Springer)
[15] Rothenberg J E 1992 Opt. Lett. 17 1340
[16] Xiao J, Wang Z Y and Xu Z Z 2002 Phys. Rev. A 65 033402
[17] Niu Y P, Xia K Y, Cui N, Gong S Q and Li R X 2008 Phys. Rev. A 78 063835
[18] Cui N, Niu Y P, Sun H and Gong S Q 2008 Phys. Rev. B 78 075323
[19] Ziolkowski R W, Arnold J M and Gogny D M 1995 Phys. Rev. A 52 3082
[20] Hughes S 1998 Phys. Rev. Lett. 81 3363
[21] Mücke O D, Tritschler T, Wegener M, Morgner U and Kärtner F X 2001 Phys. Rev. Lett. 87 057401
[22] Mücke O D, Tritschler T, Wegener M, Morgner U and Kärtner F X 2002 Phys. Rev. Lett. 89 127401
[23] Mücke O D, Tritschler T, Wegener M, Morgner U, Kärtner F X, Khitrova G and Gibbs H M 2004 Opt. Lett. 29 2160
[24] Nisoli M, Sansone G, Stagira S, Silvestri S, De Vozzi C, Pascolini M, Poletto L, Villoresi P and Tondello G 2003 Phys. Rev. Lett. 91 213905
[25] Apolonski A, Poppe A, Tempea G, Spielmann Ch, Udem Th, Holzwarth R, Hänsch T W and Krausz F 2000 Phys. Rev. Lett. 85 740
[26] Baltuška A et al 2003 Nature 421 611
[27] Huang P, Xie X T, Lü X Y, Li J H and Yang X X 2009 Phys. Rev. A 79 043806
[28] Cui N, Xiang Y, Niu Y P and Gong S Q 2010 New J. Phys. 12 013009
[29] Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E and Silvestri S De 2001 Nature 414 182
[30] Milošević D B, Paulus G G and Becker W 2002 Phys. Rev. Lett. 89 135001
[31] Martiny C P J and Madsen L B 2006 Phys. Rev. Lett. 97 093001
[32] Wu Y and Yang X 2007 Phys. Rev. A 76 013832
[33] Li H B, Sautenkov V A, Rostovtsev Y V, Kash M M, Anisimov P M, Welch G R and Scully M O 2010 Phys. Rev. Lett. 104 103001
[34] Paulus G G, Lindner F, Walther H, Baltuška A, Goulielmakis E, Lezius M and Krausz F 2003 Phys. Rev. Lett. 91 253004
[35] Kreß M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshhammer R, Morgner U, Ullrich J and Roskos H G 2006 Nature Phys. 2 327
[36] Mackenroth F, Piazza A Di and Keitel C H 2010 Phys. Rev. Lett. 105 063903
[37] Kakehata M, Takada H, Kobayashi Y, Torizuka K, Fujihira Y, Homma T and Takahashi H 2001 Opt. Lett. 26 1436
[38] Wittmann T, Horvath B, Helml W, Schäetzel M, Gu X, Cavalieri A, Paulus G and Kienberger R 2009 Nature Phys. 5 357
[39] Tzallas P, Skantzakis E and Charalambidis D 2010 Phys. Rev. A 82 061401
[40] Jha P, Li H, Sautenkov V, Rostovtsev Y and Scully M 2011 Opt. Commun. 284 2538
[41] Lemell C, Tong X M, Krausz F and Burgdörfer J 2003 Phys. Rev. Lett. 90 076403
[42] Apolonski A et al 2004 Phys. Rev. Lett. 92 073902
[43] Vlack C and Van Hughes S 2007 Phys. Rev. Lett. 98 167404
[44] Yang W F, Song X H, Gong S Q, Cheng Y and Xu Z Z 2007 Phys. Rev. Lett. 99 133602
[45] Zhang C J, Song X H, Yang W F and Xu Z Z 2008 Opt. Express 16 1487
[46] Kiffner M, Macovei M A, Evers J and Keitel C H 2010 Progress in optics Vacuum-Induced Processes in Multilevel Atoms vol 55, ed E Wolf (Amsterdam: North-Holland) chapter 3, p 85
[47] Cheng J and Zhou J 2003 Phys. Rev. A 67 041404
[48] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[49] Mur G 1981 IEEE Trans. Electromagn. Compat. EMC-23 377
[50] Taflove A and Brodwin M E 1975 IEEE Trans. Microw. Theory Tech. 23 623
[51] Liu C P and Nakajima T 2007 Phys. Rev. A 76 023416
[52] Niu Y P, Cui N, Xiang Y, Li R X, Gong S Q and Xu Z Z 2008 New J. Phys. 10 103028
[53] McCall S L and Hahn E L 1967 Phys. Rev. Lett. 18 908
[54] McCall S L and Hahn E L 1969 Phys. Rev. 183 457
[55] Borca B, Flegel A V, Frolov M V, Manakov N L, Milošević D B and Starace A F 2000 Phys. Rev. Lett. 85 732
[56] Odžak S and Milošević D B 2005 Phys. Rev. A 72 033407
[57] Zhang C J, Yang W F, Song X H and Xu Z Z 2009 Phys. Rev. A 79 043823
[58] Koke S, Grebing Ch, Manschwetus B and Steinmeyer G 2008 Opt. Lett. 33 2545