Total dominator chromatic number of specific graphs

Saeid Alikhani and Nima Ghanbari

Department of Mathematics, Yazd University
89195-741, Yazd, Iran

Abstract
Let G be a simple graph. A total dominator coloring of G is a proper coloring of the vertices of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number $\chi_d^t(G)$ of G is the minimum number of colors among all total dominator coloring of G. In this paper, we study the total dominator chromatic number of some specific graphs.

Mathematics Subject Classification: 05C15, 05C69.
Keywords: Total dominator chromatic number; Corona product; Graph.

1 Introduction

In this paper, we are concerned with simple finite graphs, without directed, multiple, or weighted edges, and without self-loops. Let $G = (V,E)$ be such a graph and $\lambda \in \mathbb{N}$. A mapping $f : V(G) \rightarrow \{1, 2, ..., \lambda\}$ is called a λ-proper coloring of G if $f(u) \neq f(v)$ whenever the vertices u and v are adjacent in G. A color class of this coloring is a set consisting of all those vertices assigned the same color. If f is a proper coloring of G with the coloring classes $V_1, V_2, ..., V_\lambda$ such that every vertex in V_i has color i, sometimes write simply $f = (V_1, V_2, ..., V_\lambda)$. The chromatic number $\chi(G)$ of G is the minimum number of colors needed in a proper coloring of a graph. The concept of a graph coloring and chromatic number is very well-studied in graph theory.

A dominator coloring of G is a proper coloring of G such that every vertex of G dominates all vertices of at least one color class (possibly its own class), i.e., every vertex of G is adjacent to all vertices of at least one color class. The dominator chromatic number $\chi_d(G)$ of G is the minimum number of color classes in a dominator coloring of G. The concept of dominator coloring was introduced and studied by Gera, Horton and Rasmussen [3].

1 Corresponding author. E-mail: alikhani@yazd.ac.ir
Kazemi [6,7] studied the total dominator coloring, abbreviated TD-coloring. Let G be a graph with no isolated vertex, the total dominator coloring is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some (other) color class. The total dominator chromatic number, abbreviated TD-chromatic number, $\chi^t_d(G)$ of G is the minimum number of color classes in a TD-coloring of G. The TD-chromatic number of a graph is related to its total domination number. A total dominating set of G is a set $S \subseteq V(G)$ such that every vertex in $V(G)$ is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. A total dominating set of G of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$-set. The literature on the subject on total domination in graphs has been surveyed and detailed in the book [4]. It is not hard to see that for every graph G with no isolated vertex, $\gamma_t(G) \leq \chi^t_d(G)$. Computation of the TD-chromatic number is NP-complete ([4]). The TD-chromatic number of some graphs, such as paths, cycles, wheels and the complement of paths and cycles has computed in [6]. Also Henning in [5] established the lower and upper bounds on the TD-chromatic number of a graph in terms of its total domination number. He has shown that, for every graph G with no isolated vertex satisfies $\gamma_t(G) \leq \chi^t_d(G) \leq \gamma_t(G) + \chi(G)$. The properties of TD-colorings in trees has studied in [5,6]. Trees T with $\gamma_t(T) = \chi^t_d(T)$ has characterized in [5].

The join $G = G_1 + G_2$ of two graph G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2$ together with all the edges joining V_1 and V_2. For two graphs $G = (V, E)$ and $H = (W, F)$, the corona $G \circ H$ is the graph arising from the disjoint union of G with $|V|$ copies of H, by adding edges between the ith vertex of G and all vertices of ith copy of H.

In this paper, we continue the study of TD-colorings in graphs. We compute the TD-chromatic number of corona and join of graphs, in Section 2. In Section 3, we compute TD-chromatic number of some specific graphs.
2 TD-chromatic number of corona and join of graphs

In this section, first we compute the TD-chromatic number of corona and join of two graphs. First we state the following results:

Theorem 1. (1)

(i) Let P_n be a path of order $n \geq 2$. Then
\[
\chi_t^d(P_n) = \begin{cases}
2 \left\lceil \frac{n}{3} \right\rceil - 1 & \text{if } n \equiv 1 \pmod{3}, \\
2 \left\lceil \frac{n}{3} \right\rceil & \text{otherwise}.
\end{cases}
\]

(ii) Let C_n be a cycle of order $n \geq 5$. Then
\[
\chi_t^d(C_n) = \begin{cases}
4 \left\lfloor \frac{n}{6} \right\rfloor + r & \text{if } n \equiv r \pmod{6}, \ r = 0, 1, 2, 4, \\
4 \left\lfloor \frac{n}{6} \right\rfloor + r - 1 & \text{if } n \equiv r \pmod{6}, \ r = 3, 5.
\end{cases}
\]

Here, we consider the corona of P_n and C_n with K_1. The following theorem gives the TD-chromatic number of these kind of graphs:

Theorem 2.

(i) For every $n \geq 2$, $\chi_t^d(P_n \circ K_1) = n + 1$.

(ii) For every $n \geq 3$, $\chi_t^d(C_n \circ K_1) = n + 1$.

Proof.

(i) We color the $P_n \circ K_1$ with numbers $1, 2, ..., n + 1$, as shown in the Figure 4. Observe that, we need $n + 1$ color for TD-coloring. We shall show that we are not able to have TD-coloring with less colors. Suppose that the i-th vertex of P_n has colored with color $i - 1$. If we change the color of this vertex by color 1, and give the vertex pendant to this vertex, the color $i - 1$, then obviously this new coloring cannot be a TD-coloring. Therefore, we have the result.
Figure 1: Total dominator coloring of $P_n \circ K_1$ and $C_n \circ K_1$, respectively.

(ii) The proof is similar to Part (i). \qed

The following theorem is easy to obtain:

Theorem 3. For every $n \geq 2$, $\chi_d(P_n \circ K_m) = n + 1$.

In the following theorem, we consider graphs of the form $G \circ H$:

Theorem 4.

(i) For every connected graph G, $\chi_d^t(G \circ K_1) = |V(G)| + 1$,

(ii) For every two connected graphs G and H,

$$\chi_d^t(G \circ H) \leq \chi_d^t(G) + |V(G)| \chi_d^t(H).$$

(iii) For every two connected graphs G and H,

$$\chi_d^t(G \circ H) \leq |V(G)| + |V(H)|.$$

Proof.
(i) We color all vertices of graph G with numbers $\{1, 2, ..., |V(G)|\}$ and all pendant vertices with another color, say, $|V(G)| + 1$. It is easy to check that we are not able to have TD-color of $G \circ K_1$ with less color. Therefore we have the result.

(ii) For TD-coloring of G and H, we need $\chi_d^t(G)$ and $\chi_d^t(H)$ colors. We observe that if we use $\chi_d^t(G) + |V(G)|\chi_d^t(H)$ colors, then we have a TD-coloring of $G \circ H$. So $\chi_d^t(G \circ H) \leq \chi_d^t(G) + |V(G)|\chi_d^t(H)$.

(iii) We color the vertices of G, by $|V(G)|$ colors and for every copy of H, we use $|V(H)|$ another colors. We observe that this coloring gives a TD-coloring of $G \circ H$. So $\chi_d^t(G \circ H) \leq |V(G)| + |V(H)|$. □

Remark 1. The upper bound for $\chi_d^t(G \circ H)$ in Theorem 4(iii) is a sharp bound. As an example, for the graph $C_4 \circ K_2$ and $K_2 \circ K_3$ we have the equality (Figure 2).

![Figure 2: Total dominator coloring of $C_4 \circ K_2$ and $K_2 \circ K_3$, respectively.](image)

Here, we state and prove a formula for the TD-chromatic number of join of two graphs:

Theorem 5. Let G and H be two connected graphs, then

$$\chi_d^t(G + H) = \chi_d^t(G) + \chi_d^t(H).$$

Proof. For the TD-coloring of $G + H$, the colors of vertices of G cannot be used for the coloring of vertices of H, and the colors of the vertices of H cannot use for coloring of the vertices of G, so

$$\chi_d^t(G + H) \geq \chi_d^t(G) + \chi_d^t(H).$$
Figure 3: Friendship graphs F_2, F_3, F_4 and F_n, respectively.

Now, it suffices to consider the coloring of G and the coloring of H in the TD-coloring of $G + H$. Therefore, we have the result.

3 Total dominator chromatic number of specific graphs

In this section, we consider the specific graphs and compute their TD-chromatic numbers.

The friendship (or Dutch-Windmill) graph F_n is a graph that can be constructed by coalescence n copies of the cycle graph C_3 of length 3 with a common vertex. The Friendship Theorem of Paul Erdős, Alfred Rényi and Vera T. Sós \cite{2}, states that graphs with the property that every two vertices have exactly one neighbour in common are exactly the friendship graphs. Figure 3 shows some examples of friendship graphs.

The generalized friendship graph D_q^n is a collection of n cycles (all of order q), meeting at a common vertex. The generalized friendship graph may also be referred to as a flower \cite{8}.

By Figure 4, we have the following result for the TD-chromatic number of these kind of graphs:

Theorem 6.

(i) For every $n \geq 2$, $\chi_d^t(F_n) = 3$.

(ii) For every $n \geq 2$, $\chi_d^t(D_q^n) = n + 2$.

(iii) For every $n \geq 2$, $\chi_d^t(D_5^n) = 2n + 2$.

6
Here, we shall consider the ladder graph. We need the definition of Cartesian product of two graphs. Given any two graphs G and H, we define the Cartesian product, denoted $G \square H$, to be the graph with vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) if and only if either $u_1 = u_2$ and $v_1 v_2 \in E(H)$ or $u_1 u_2 \in E(G)$ and $v_1 = v_2$.

The n-ladder graph can be defined as $P_2 \square P_n$ and denoted by L_n. Figure 5 shows a TD-coloring of ladder graphs.

Theorem 7. For every $n \geq 2$,

$$\chi_{td}(L_n) = \begin{cases}
 n + 1 & \text{if } n \text{ is odd}, \\
 n & \text{if } n \text{ is even}.
\end{cases}$$

Proof. It follows from a TD-coloring which has shown if Figure 5.

Here, we generalize the ladder graph $P_2 \square P_n$ to grid graphs $P_n \square P_m$. The following theorem gives the TD-chromatic number of grid graphs:

![Figure 4: Total dominator coloring of F_n, D_4^n and D_5^n, respectively.](image-url)

![Figure 5: Total dominator coloring of L_{2k+1} and L_{2k+2}, respectively.](image-url)
Theorem 8. Let $m, n \geq 2$. The TD-chromatic number of grid graphs $P_n \square P_m$ is,

$$\chi_d^t(P_n \square P_m) = \begin{cases}
 k\chi_d^t(L_n) & \text{if } m = 2k \text{ and } n = 2s, \\
 k\chi_d^t(L_n) + \chi_d^t(P_n) & \text{if } m = 2k + 1 \text{ and } n = 2s, \\
 s\chi_d^t(L_m) + \chi_d^t(P_m) & \text{if } m = 2k \text{ and } n = 2s + 1, \\
 \chi_d^t(P_{n-1} \square P_{m-1}) + \chi_d^t(P_{m+n-1}) & \text{if } m = 2k + 1 \text{ and } n = 2s + 1.
\end{cases}$$

Proof. We prove two first cases. The proof of another cases are similar. Suppose that for some k and s, we have $m = 2k$ and $n = 2s$. We use induction on m.

Case 1. If $m = 2$ and $n = 2s$, then we have a ladder and the result follows from Theorem 7. For $m = 2$, as you see in Figure 6 we have two L_n. Since in TD-coloring of $4 \times n$ grid graph, we cannot use the colors of vertices in the first ladder, for the second ladder, so we need $2\chi_d^t(L_n)$ colors. Since in the $P_n \square P_{2k}$, there are exactly k ladder L_n, we have the result by induction hypothesis.

Case 2. Now suppose that $n = 2s$ and $m = 2k + 1$. First for TD-coloring of $P_n \square P_{2k}$, we need $k\chi_d^t(L_n)$ colors, by Case 1. It remains to color a path P_n. Therefore we need $k\chi_d^t(L_n) + \chi_d^t(P_n)$ colors to obtain a TD-coloring of $P_n \square P_m$. \qed

Now, we consider cactus graphs. A cactus graph is a connected graph in which no edge lies in more than one cycle. Consequently, each block of a cactus graph is either an edge or a cycle.
If all blocks of a cactus G are cycles of the same size i, the cactus is i-uniform. A triangular cactus is a graph whose blocks are triangles, i.e., a 3-uniform cactus. A vertex shared by two or more triangles is called a cut-vertex. If each triangle of a triangular cactus G has at most two cut-vertices, and each cut-vertex is shared by exactly two triangles, we say that G is a chain triangular cactus. We call the number of triangles in G, the length of the chain. An example of a chain triangular cactus is shown in Figure 7. Obviously, all chain triangular cacti of the same length are isomorphic. Hence, we denote the chain triangular cactus of length n by T_n. See [1].

Figure 7: Total dominator coloring of T_{2k-1} and T_{2k}, respectively.

Using the TD-coloring in Figure 7 we have the following theorem for the TD-chromatic number of T_n.

Theorem 9. For every $k \in \mathbb{N}$, $\chi_{td}(T_{2k-1}) = \chi_{td}(T_{2k}) = 2k + 1$.

By replacing triangles in the definitions of triangular cactus, by cycles of length 4 we obtain cacti whose every block is C_4. We call such cacti, square cacti. We see that the internal squares may differ in the way they connect to their neighbors. If their cut-vertices are adjacent, we say that such a square is an ortho-square; if the cut-vertices are not adjacent, we call the square a para-square. We consider an ortho-chain of length n, O_n.

Using the TD-coloring in Figure 8 we have the following theorem for the TD-chromatic number of O_n.

Figure 8: Total dominator coloring of O_n.

9
Theorem 10. For every $n \in \mathbb{N}$, $\chi^d_t(O_n) = 2n$.

References

[1] S. Alikhani, S. Jahari, M. Mehryar, R. Hasni, *Counting the number of dominating sets of cactus chains*, Opto. Advanc. Mater. Rapid Comm. Vol. 8, No. 9-10 (2014) 955-960.

[2] P. Erdős, A. Rényi, V.T. Sós, *On a problem of graph theory*, Studia Sci. Math. Hungar., 1 (1966) 215–235.

[3] R. Gera, S. Horton and C. Rasmussen, *Dominator colorings and safe clique partitions*, Proceedings of the Thirty Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 181 (2006) 19–32.

[4] M.A. Henning, A. Yeo, *Total domination in graphs* (Springer Monographs in Mathematics). (2013, ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)).

[5] M.A. Henning, *Total dominator colorings and total domination in graphs*, Graphs Combin. (2015) 31:953-974.

[6] A.P. Kazemi, *Total dominator chromatic number of a graph*, Trans. Combin. Vol. 4 No. 2 (2015), pp. 57–68.

[7] A.P. Kazemi, *Total dominator coloring in product graphs*, Utilatas Math., 94 (2014) 329–345.

[8] Z. Ryjáček, I. Schiermeyer, *The flower conjecture in special classes of graphs*, Discuss. Math. Graph Theory 15 (1995) 179-184.