Asymmetric Additions to Dienes Catalyzed by a Dithiophosphoric Acid

Nathan D. Shapiro, Vivek Rauniyar, Gregory L. Hamilton, Jeffrey Wu & F. Dean Toste

Department of Chemistry, University of California, Berkeley, California 94720

Supplementary Methods

Preparation of catalysts. The general scheme for synthesis of the dithiophosphoric acid catalysts is illustrated with the preparation of 3h (Supplementary Figure 1).

Supplementary Figure 1. Preparation of catalyst 3h.

S1: A 100 mL flame-dried round-bottom flask was charged with 9-bromoanthracene (3.81 g, 15 mmol, 1.0 equiv), 2,4,6-trimethylphenylboronic acid (3.69 g, 22.5 mmol, 1.5 equiv), Pd(OAc)_2 (101.02 mg, 0.45 mmol, 0.03 equiv), SPhos (369.5 mg, 0.90 mmol, 0.06 equiv), K_3PO_4 (7.96 g, 37.5 mmol, 2.5 equiv), and anhydrous toluene (120 mL). The resulting mixture was subjected to
freeze-pump-thaw cycles (3x) and heated at 105 °C for 18 h. After this time, the reaction mixture was cooled to room temperature and poured over water (50 mL). The organic layer was separated, and the aqueous layer was extracted with CH$_2$Cl$_2$ (2 x 50 mL). The organic extracts were combined and dried over anhydrous MgSO$_4$, filtered, and concentrated in vacuo. The resulting dark reddish-brown semi-solid was dissolved in minimal amount of CH$_2$Cl$_2$ and triturated with MeOH. The desired product S1 precipitated as a reddish-brown solid, and was filtered and washed with ice-cold MeOH. The solid mass was dried under high vacuum for 2 h until a constant mass of 4.22 g (96% yield) was obtained. 1H NMR (300 MHz, CDCl$_3$): δ 8.48 (s, 1H), 8.06 (d, 2H, $J = 8.4$ Hz), 7.50-7.43 (m, 4H), 7.35-7.30 (m, 2H), 7.10 (s, 2H), 2.46 (s, 3H), 1.71 (6H, s). 13C NMR (100 MHz, CDCl$_3$): δ 137.6, 137.1, 135.7, 134.5, 131.6, 129.7, 128.6, 128.2, 126.0, 126.0, 125.5, 125.1, 21.2, 20.0.

S2: To a flame-dried 250 mL flask was added 9-(2,4,6-trimethylphenyl)-anthracene (S1) (3.20 g, 10.8 mmol, 1.0 equiv) and CCl$_4$ (40 mL). To the resulting solution was added dropwise over 5 minutes Br$_2$ (612 µL, 11.9 mmol, 1.1 equiv). The reaction mixture was allowed to stir for 15 min at room temperature and quenched with saturated Na$_2$SO$_3$ (30 mL). The biphasic mixture was extracted with CH$_2$Cl$_2$ (2 x 50 mL) and the combined organic layers were dried over anhydrous MgSO$_4$, filtered and concentrated in vacuo. The product S2 (3.24 g, 73% yield) was obtained by recrystallization from CH$_2$Cl$_2$/MeOH as a dark green solid. 1H NMR (300 MHz, CDCl$_3$): δ 8.63 (d, 2H, $J = 9.0$ Hz), 7.63-7.58 (m, 2H), 7.51 (2H, d, $J = 8.7$ Hz), 7.40-7.35 (m, 2H), 7.11 (s, 2H), 2.47 (s, 3H), 1.71 (s, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 137.4, 137.4, 136.6, 134.1, 130.5, 130.5, 128.3, 128.1, 127.0, 126.4, 125.9, 122.2, 21.2, 20.0.
S4: A 100 mL flame-dried round-bottom flask was charged with (R)-3,3'-diiodo-5,5',6,6',7,7',8,8'-octahydro-2,2'-bis(ethoxymethyloxy)-1,1'-binaphthyl\(^{31}\) (818 mg, 1.24 mmol, 1.0 equiv), 9-(2,4,6-trimethylphenyl)10-anthracenylboronic acid (S3, 6.0 equiv, prepared by metallation of the bromide precursor (7.41 mmol) using nBuLi (18.5 mmol, 2.5 equiv), THF 250 mL, B(O-iPr)\(_3\) (22.2 mmol, 3.0 equiv) and used as crude material), Pd(OAc)\(_2\) (27.8 mg, 0.124 mmol, 0.1 equiv), SPhos (101.5 mg, 0.25 mmol, 0.2 equiv), K\(_3\)PO\(_4\) (1.31 g, 6.18 mmol, 2.5 equiv), and anhydrous toluene (25 mL). The resulting mixture was subjected to 3 freeze-pump-thaw cycles and heated at 105 ºC for 18 h. After this time, the reaction mixture was brought to room temperature and poured over water (25 mL). The organic layer was separated and the aqueous layer was extracted with CH\(_2\)Cl\(_2\) (2 X 50 mL). The organic extracts were combined and dried over anhydrous MgSO\(_4\), filtered, and concentrated in vacuo and the crude product was purified by flash chromatography (5-40% CH\(_2\)Cl\(_2\)/hexanes) to yield 950.5 mg of S4 in 77% yield as faint yellow solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 8.10 (d, 2H, \(J = 8.7\) Hz), 8.00-7.96 (m, 2H), 7.68-7.60 (m, 4H), 7.57-7.52 (m, 2H), 7.46-7.33 (m, 8H), 7.29 (s, 2H), 7.22 (s, 4H), 4.54-4.50 (m, 4H), 2.99 (br, 6H), 2.62-2.45 (m, 12H), 2.01 (m, 8H), 1.90 (s, 6H), 1.87 (s, 6H), 0.70 (t, 6H, \(J = 7.2\) Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 151.2, 137.6, 137.3, 137.1, 137.0, 135.6, 134.8, 133.9, 133.1, 131.6, 130.4, 129.4, 129.3, 129.3, 129.3, 128.2, 127.7, 127.5, 126.0, 125.8, 125.3, 125.1, 96.5, 77.2, 63.8, 29.5, 27.9, 23.4, 23.0, 21.2, 20.1, 20.0, 14.5.

S5: Compound S4 (840 mg, 0.84 mmol) was suspended in dioxane (50 mL). To the mixture was added conc. HCl (5 mL) and the mixture was heated to 70 ºC for 2 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. The resulting semi-solid was dissolved in CH\(_2\)Cl\(_2\) (70 mL) and washed with water (25 mL) and saturated NaHCO\(_3\) (25 mL) and dried
over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by recrystallization from CH₂Cl₂/hexanes to yield 789 mg (94% yield) of the desired product F as a faint yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, 2H, J = 8.8 Hz), 7.80-7.78 (m, 2H), 7.53-7.46 (m, 6H), 7.40-7.36 (m, 2H), 7.32-7.27 (m, 4H), 7.21 (s, 2H), 7.13 (brs, 4H), 4.70 (s, 2H), 3.72 (s, 2H), 2.90 (m, 4H), 2.80-2.62 (m, 4H), 2.48 (s, 6H), 1.95-1.89 (m, 8H), 1.80 (s, 6H), 1.75 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 137.7, 137.6, 137.1, 136.4, 134.7, 133.2, 131.4, 130.6, 130.5, 129.9, 129.6, 128.3, 126.9, 126.4, 126.2, 125.7, 125.5, 125.4, 122.5, 121.0, 67.1, 29.3, 27.5, 23.4, 23.1, 21.3, 20.1, 20.1. HRMS (ESI) calc. for [M+H]+ (C₆₆H₅₉O₂) 883.4510, found 883.4493.

3h: The following procedure is representative for all the dithioacid catalysts used in this study. A flame dried flask was charged with diol S₅ (650 mg, 0.74 mmol, 1.0 equiv), P₂S₅ (81.9 mg, 0.37 mmol, 0.5 equiv), and anhydrous m-xylene (10 mL). The flask was equipped with a condenser and placed in an oil-bath preheated to 150 ºC. The progress of the reaction was monitored by disappearance of the phenolic protons (¹H NMR). After 2 h, the reaction was judged complete and allowed to cool to room temperature. The solution was decanted into a flame-dried 100 mL flask and the solvent was evaporated in vacuo. The crude product was dissolved in anhydrous CH₂Cl₂ (5 mL) and treated with hexanes (50 mL). At this point, a fine precipitate was observed. The solvent was then partially evaporated until about 2 to 3 mL solvent was left. The precipitate was then collected by filtration and washed with ice-cold hexanes. Following this procedure, the product 3h (617 mg) was obtained as a faint-yellow powder in 85% yield. ¹H NMR (300 MHz, CDCl₃): δ 8.09 (d, 2H, J = 8.8 Hz), 7.77 (d, 2H, J = 8.8 Hz), 7.51-6.99 (m, 18H), 3.13-3.05 (m, 6H), 2.77-2.72 (m, 2H), 2.46 (s, 6H), 2.07-2.01 (m,
8H), 1.83 (s, 6H), 1.60 (s, 6H). 13C NMR (100 MHz, CDCl$_3$): δ 137.3, 137.0, 136.7, 135.7, 134.9, 134.3, 131.0, 130.7, 129.9, 129.6, 129.1, 128.3, 128.1, 128.0, 126.8, 126.1, 126.0, 125.9, 125.6, 125.1, 125.0, 124.5, 29.4, 28.4, 22.8, 22.8, 21.3, 21.2, 20.1, 19.8. 31P NMR (162 MHz, CDCl$_3$): δ 89.7. HRMS (ESI) calc. for [M+H]$^+$ (C$_{66}$H$_{58}$O$_2$PS$_2$) 977.3610, found 977.3617.

Characterization data for other catalysts

3a: NMR analysis of this and related compounds (3c and 3d) is complicated by the presence of multiple conformers due to slow rotation around the 3,3'-biaryl bonds and the unsymmetrical nature of the 1-naphthyl substituent. 1H NMR (400 MHz, CDCl$_3$): δ 8.12-7.33 (m, 24H). 31P NMR (162 MHz, CDCl$_3$): δ 93.4, 93.2, 93.1.

3c: Prepared by the method of Cheon and Yamamoto32. 1H NMR (400 MHz, CDCl$_3$): δ 8.24-7.31 (m, 24H). 31P NMR (162 MHz, CDCl$_3$): δ 53.4 (br). 19F NMR (377 MHz, CDCl$_3$): δ –75.2,
HRMS (ESI, negative mode) calc. for [M−H]− (C_{41}H_{24}O_{4}NF_{3}PS_{2}) 746.0842, found 746.0822.

3d: Prepared by the method of Nakashima and Yamamoto.33 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.09-7.31 (m, 24H). 31P NMR (162 MHz, CDCl\textsubscript{3}): δ 4.2, 3.9, 3.2, 2.9. 19F NMR (377 MHz, CDCl\textsubscript{3}): δ −79.6, −79.7, −80.0. HRMS (ESI) calc. for [M+H]+ (C_{41}H_{26}O_{5}NF_{3}PS) 732.1216, found 732.1203.

3e: 1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.47 (s, 2H), 8.04-7.97 (m, 6H), 7.68 (d, 2H, J = 8.8 Hz), 7.49-7.27 (m, 10H), 3.13-2.68 (m, 6H), 2.05-1.78 (m, 10H). 31P NMR (162 MHz, CDCl\textsubscript{3}): δ 90.9. HRMS (ESI) calc. for [M+H]+ (C_{48}H_{38}O_{2}PS_{2}) 741.2045, found 741.2057.
3f: 1H NMR (400 MHz, CDCl$_3$): δ 8.11 (d, 2H, $J = 8.8$ Hz), 7.75 (d, 2H, $J = 8.8$ Hz), 7.71-7.24 (m, 24H), 3.14-2.96 (m, 6H), 2.76-2.69 (m, 2H), 2.11-1.89 (m, 6H), 1.77-1.64 (m, 2H), 1.63-1.47 (m, 2H). 31P NMR (162 MHz, CDCl$_3$): δ 91.2. HRMS (ESI) calc. for [M+H]$^+$ (C$_{60}$H$_{46}$O$_2$PS$_2$) 893.2671, found 893.2684.

3g: 1H NMR (400 MHz, CDCl$_3$): δ 8.11 (d, 2H, $J = 9.2$ Hz), 7.76-7.72 (m, 4H), 7.68 (d, 2H, $J = 8.0$ Hz), 7.56 (s, 2H), 7.46 (s, 2H) 7.37 (t, 2H, $J = 8.8$ Hz), 7.29-7.14 (m, 10H), 3.15-2.96 (m, 6H), 2.78-2.68 (m, 2H), 2.15-1.73 (m, 8H), 1.41 (s, 18H), 1.38 (s, 18H). 31P NMR (162 MHz, CDCl$_3$): δ 91.5. HRMS (ESI) calc. for [M+H]$^+$ (C$_{76}$H$_{78}$O$_2$PS$_2$) 1117.5175, found 1117.5185.
9: 1H NMR (300 MHz, CDCl$_3$): δ 7.41 (s, 2H), 2.89-2.75 (m, 4H), 2.57-2.46 (m, 2H), 2.23-2.12 (m, 2H), 1.85-1.70 (m, 6H), 1.63-1.47 (m, 2H). 31P NMR (162 MHz, CDCl$_3$): δ 92.4.

Characterization of substrates

Substrates were prepared by the methods of Widenhoefer and coworkers34 according to the general scheme shown in Supplementary Figure 2. Dienyl bromides were prepared by the method of Ollis and coworkers35.

Supplementary Figure 2. Preparation of substrates.
1: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.76 (d, 2H, \(J = 7.2\) Hz), 7.30 (d, 2H, \(J = 7.2\) Hz), 6.09 (d, 1H, \(J = 15.2\) Hz), 5.53 (dt, 1H, \(J = 15.2, 7.8\) Hz), 5.03 (t, 1H, \(J = 6.8\) Hz), 4.88 (s, 1H), 4.86 (s, 1H), 2.66 (d, 2H, \(J = 6.8\) Hz), 2.00 (d, 2H, \(J = 7.8\) Hz), 1.78 (s, 3H), 0.86 (s, 6H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 162.7, 141.8, 135.9, 131.4, 129.2, 125.8, 115.0, 114.2, 55.6, 52.8, 42.7, 34.6, 25.0, 18.7.

1a: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.50 (s, 2H), 7.17 (s, 1H), 6.09 (d, 1H, \(J = 15.3\) Hz), 5.55 (dt, 1H, \(J = 15.3, 7.8\) Hz), 5.22 (t, 1H, \(J = 6.8\) Hz), 4.87 (s, 1H), 4.85 (s, 1H), 2.67 (d, 2H, \(J = 6.8\) Hz), 2.36 (s, 3H), 2.01 (d, 2H, \(J = 7.8\) Hz), 1.78 (s, 3H), 0.87 (s, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 142.1, 139.9, 139.3, 136.2, 134.5, 126.2, 124.8, 115.3, 53.1, 43.0, 35.0, 25.2, 21.5, 19.0. HRMS (ESI) calc. for \([\text{M+H}]^+ (\text{C}_{18}\text{H}_{28}\text{NO}_2\text{S})\) 322.1835, found 322.1832.

1b: \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.80 (d, 2H, \(J = 8.7\) Hz), 7.46 (d, 2H, \(J = 8.7\) Hz), 6.08 (d, 1H, \(J = 15.6\) Hz), 5.51 (dt, 1H, \(J = 15.6, 7.8\) Hz), 5.21 (t, 1H, \(J = 6.8\) Hz), 4.87 (s, 1H), 4.85 (s, 1H), 2.66 (d, 2H, \(J = 6.8\) Hz), 1.98 (d, 2H, \(J = 7.8\) Hz), 1.76 (s, 3H), 0.85 (s,
1H NMR (300 MHz, CDCl$_3$) δ 7.74 (d, 2H, J = 8.1 Hz), 7.27 (d, 2H, J = 8.1 Hz), 5.94 (d, 1H, J = 15.6 Hz), 5.59 (bs, 1H), 5.37 (dt, 1H, J = 15.6, 7.5 Hz), 5.09 (t, 1H, J = 6.9 Hz), 2.63 (d, 2H, J = 6.9 Hz), 2.40 (s, 3H), 2.12-1.98 (m, 4H), 1.94 (d, 2H, J = 7.5 Hz), 1.68-1.50 (m, 4H), 0.82 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 143.1, 136.8, 136.5, 135.3, 129.5, 127.8, 127.0, 121.3, 52.7, 42.7, 34.5, 25.6, 24.9, 24.5, 22.5, 22.4, 21.4. HRMS (ESI) calc. for [M+H]$^+$ (C$_{18}$H$_{28}$NO$_2$S) 322.1835, found 322.1831.
4e: Isolated as about a 6:1 mixture of \(E \) and \(Z \) olefin isomers. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.75 (d, 2H, \(J = 8.1 \) Hz), 7.30 (d, 2H, \(J = 8.1 \) Hz), 6.03 (d, 1H, \(J = 15.9 \) Hz), 5.63-5.53 (m, 1H), 4.96-4.86 (m, 2H), 2.66 (d, 2H, \(J = 6.9 \) Hz), 2.42 (s, 3H), 2.16 (q, 2H, \(J = 7.5 \) Hz) 1.98 (d, 2H, \(J = 7.5 \) Hz), 1.05 (t, 3H, \(J = 7.5 \) Hz), 0.89 (s, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 147.4, 143.2, 136.8, 135.2, 129.6, 127.0, 124.8, 112.9, 52.8, 42.8, 34.6, 24.9, 24.8, 21.5, 12.6.

4f: \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.76 (d, 2H, \(J = 8.1 \) Hz), 7.31 (d, 2H, \(J = 8.1 \) Hz), 6.02 (d, 1H, \(J = 15.6 \) Hz), 5.62 (dt, 1H, \(J = 15.6, 7.8 \) Hz), 4.96 (T, 1H, \(J = 6.8 \) Hz), 4.90 (app s, 2H), 3.63 (t, 2H, \(J = 6.3 \) Hz), 2.67 (d, 2H, \(J = 6.8 \) Hz), 2.43 (s, 3H), 2.22 (t, 2H, \(J = 7.7 \) Hz), 2.00 (d, 2H, \(J = 7.8 \) Hz), 1.67 (app quintet, 2H, \(J = 6.9 \) Hz), 0.90 (s, 9H), 0.87 (s, 6H), 0.06 (s, 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 145.9, 143.5, 137.2, 135.4, 130.0, 127.3, 125.5, 114.4, 63.0, 53.7, 53.2, 43.1, 35.0, 31.7, 28.6, 26.2, 25.2, 21.8, 18.6, -5.0. HRMS (ESI) calc. for [M-H]+ (C\(_{25}\)H\(_{42}\)NO\(_3\)SSi) 464.2649, found 464.2650.

4g: \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 7.74 (d, 2H, \(J = 8.1 \) Hz), 7.27 (d, 2H, \(J = 8.1 \) Hz), 6.09 (d, 1H, \(J = 15.6 \) Hz), 5.46 (dt, 1H, \(J = 15.6, 7.5 \) Hz), 5.06 (t, 1H, \(J = 6.7 \) Hz), 4.85 (s, 1H), 4.83 (s, 1H), 2.70 (d, 2H, \(J = 6.8 \) Hz), 2.39 (s, 3H), 2.09 (d, 2H, \(J = 7.5 \) Hz), 1.72 (s, 3H), 1.60-1.45 (m, 4H), 1.45-1.30 (m, 4H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 145.5, 142.1, 137.0, 136.0,
130.0, 127.4, 126.7, 115.3, 50.5, 46.3, 40.8, 35.5, 25.1, 21.8, 18.9. HRMS (ESI) calc. for [M+H]+
(C_{19}H_{28}NO_{2}S) 334.1835, found 334.1834.

4h: 1H NMR (300 MHz, CDCl$_3$) δ 7.73 (d, 2H, $J = 8.1$ Hz), 7.27 (d, 2H, $J = 8.1$ Hz), 6.09 (d, 1H, $J = 15.6$ Hz), 5.47 (dt, 1H, $J = 15.6, 7.8$ Hz), 5.89-5.78 (m, 3H), 2.70 (d, 2H, $J = 6.9$ Hz), 2.40 (s, 3H), 2.05 (d, 2H, $J = 7.8$ Hz), 1.73 (s, 3H), 1.42-1.20 (m, 10H). 13C NMR (75 MHz, CDCl$_3$) δ 143.5, 142.1, 137.0, 136.1, 129.9, 127.4, 125.7, 115.4, 53.7, 49.5, 39.4, 37.1, 33.7, 26.3, 21.8, 21.6, 18.9. HRMS (ESI) calc. for [M+H]+ (C$_{20}$H$_{30}$NO$_2$S) 348.1992, found 348.1987.

4i: 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (d, 2H, $J = 7.7$ Hz), 7.29 (d, 2H, $J = 7.7$ Hz), 4.81 (m, 1H), 4.60 (t, 1H, $J = 7.1$ Hz), 2.71 (d, 2H, $J = 7.1$ Hz), 2.42 (s, 3H), 1.83 (d, 2H, $J = 8.1$ Hz), 1.61 (s, 3H), 1.60 (s, 3H), 0.86 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 203.3, 143.3, 137.2, 129.7, 127.1, 94.2, 84.2, 52.5, 39.8, 34.5, 24.8, 21.5, 20.5. HRMS (ESI) calc. for [M+H]+
(C$_{17}$H$_{36}$NO$_2$S) 308.1679, found 308.1685.
4j: 1H NMR (300 MHz, CDCl$_3$) δ 8.13-8.07 (m, 1H), 7.88-7.82 (m, 1H), 7.76-7.71 (m, 2H), 5.31 (t, 1H, $J = 6.9$ Hz), 4.88-4.79 (m, 1H), 2.88 (d, 2H, $J = 6.9$ Hz), 1.88 (d, 2H, $J = 7.8$ Hz), 1.63 (s, 3H), 1.62 (s, 3H), 0.90 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 203.4, 147.9, 133.5, 132.7, 131.0, 125.2, 94.2, 83.7, 52.9, 39.6, 34.6, 24.6, 20.4. HRMS (ESI) calc. for [M+H]$^+$ (C$_{16}$H$_{23}$N$_2$O$_4$S) 339.1373, found 339.1377.

4k: 1H NMR (300 MHz, CDCl$_3$) δ 7.93-7.86 (m, 4H), 7.52-7.40 (m, 6H), 4.88-4.79 (m, 1H), 2.88 (br, 1H), 2.76 (t, 2H, $J = 6.9$ Hz), 1.88 (d, 2H, $J = 8.1$ Hz), 1.59 (s, 3H), 1.58 (s, 3H), 0.90 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 203.1, 133.4, 132.1, 132.0, 131.7, 128.5, 128.3, 94.0, 84.3, 50.4, 39.9, 34.9, 34.8, 24.7, 20.4. HRMS (ESI) calc. for [M+H]$^+$ (C$_{22}$H$_{29}$NOP) 354.1981, found 354.1988.
\[
\text{MeO} \quad \text{SO}_2 \quad \text{NH}
\]

4l: 1H NMR (300 MHz, CDCl$_3$) δ 7.79 (d, 2H, $J = 8.7$ Hz), 6.96 (d, 2H, $J = 8.7$ Hz), 4.90-4.81 (m, 2H), 3.85 (s, 3H), 2.68 (d, 2H, $J = 6.9$ Hz), 2.04-1.98 (m, 4H), 1.84 (d, 2H, $J = 8.1$ Hz), 1.57-1.43 (m, 6H), 0.86 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 199.8, 162.6, 131.6, 129.0, 114.1, 101.3, 83.9, 55.5, 52.3, 40.1, 34.4, 31.4, 27.2, 25.9, 24.6. HRMS (ESI) calc. for [M+H]$^+$ (C$_{20}$H$_{30}$NO$_3$S) 364.1941, found 364.1950.

\[
\text{O}^+\text{NHTs}
\]

4m: 1H NMR (300 MHz, CDCl$_3$) δ 7.81 (d, 2H, $J = 8.4$ Hz), 7.33 (d, 2H, $J = 8.4$ Hz), 7.07 (s, 1H), 4.87 (app septet, 1H, $J = 3.0$ Hz), 3.79 (s, 2H), 2.49 (s, 3H), 1.65 (s, 3H), 1.64 (s, 3H), 0.97 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 200.0, 144.7, 133.7, 129.6, 128.6, 97.3, 96.5, 86.1, 35.8, 25.0, 21.6, 20.6. HRMS (ESI) calc. for [M+H]$^+$ (C$_{16}$H$_{24}$NO$_3$S) 310.1471, found 310.1478.

\[
\text{O}^+\text{NHTs}
\]

4n: 1H NMR (300 MHz, CDCl$_3$) δ 7.81 (d, 2H, $J = 8.1$ Hz), 7.33 (d, 2H, $J = 8.1$ Hz), 7.03 (s, 1H), 4.92-4.86 (m, 1H), 4.01 (t, 2H, $J = 6.9$ Hz), 2.44 (s, 3H), 2.25 (q, 2H, $J = 6.9$ Hz), 2.08-2.02 (m, 4H), 1.60-1.46 (m, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 199.0, 144.7, 133.5, 129.6, 128.5, 103.0, 84.1, 31.5, 28.2, 27.3, 26.0, 21.6.
S6: 1H NMR (400 MHz, CDCl$_3$) δ 7.14 (d, 1H, $J = 8.8$ Hz), 7.03 (d, 1H, $J = 2.4$ Hz), 6.84 (m, 2H), 4.96 (m, 1H), 3.85 (s, 3H), 3.70 (s, 3H), 3.66 (s, 3H), 3.44 (s, 2H), 2.65 (d, 2H, $J = 7.6$ Hz), 2.13 (m, 4H), 1.60 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 200.5, 171.6, 153.8, 132.0, 128.8, 111.7, 109.8, 107.8, 102.4, 100.9, 83.1, 58.8, 55.9, 52.3, 32.8, 32.7, 31.5, 27.4, 27.1, 26.0. HRMS (ESI) calc. for [M+H]$^+$ (C$_{25}$H$_{32}$NO$_5$) 426.2275, found 425.2278.

S7: 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (s, 1H), 7.25 (d, 1H, $J = 8.4$ Hz), 7.11 (d, 1H, $J = 8.4$ Hz), 6.90 (s, 1H), 4.90 (m, 1H), 3.71 (s, 3H), 3.68 (s, 6H), 3.41 (s, 2H), 2.62 (d, 2H, $J = 7.6$ Hz), 2.15 (m, 4H), 1.60 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 200.7, 171.3, 135.2, 130.1, 129.5, 124.2, 121.5, 112.4, 110.7, 108.0, 102.5, 82.9, 58.5, 52.4, 32.9, 32.7, 31.6, 27.2, 27.1, 26.0. HRMS (ESI) calc. for [M+H]$^+$ (C$_{24}$H$_{29}$BrNO$_4$) 474.1274, found 474.1284.
S8: 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (d, 1H, $J = 8.0$ Hz), 7.27 (m, 1H), 7.19 (dt, 1H, $J = 7.2$, 0.8 Hz), 7.09 (dt, 1H, $J = 8.0$, 0.8 Hz), 6.86 (s, 1H), 4.96 (m, 1H), 3.73 (s, 3H), 3.67 (s, 6H), 3.48 (s, 2H), 2.63 (d, 2H, $J = 7.6$ Hz), 1.73 (s, 3H), 1.73 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 203.8, 171.5, 136.6, 128.6, 128.1, 121.4, 118.9, 118.8, 109.1, 108.4, 95.2, 83.4, 58.9, 52.2, 32.6, 32.6, 27.6, 20.6. HRMS (ESI) calc. for [M+H]$^+$ (C$_{21}$H$_{26}$NO$_4$) 356.1856, found 356.1862.

Characterization of the products

2: 1H NMR (300 MHz, CDCl$_3$) δ 7.65 (d, 2H, $J = 8.4$ Hz), 7.26 (d, 2H, $J = 8.4$ Hz), 5.00 (d, 1H, $J = 8.5$ Hz), 4.34 (app q, 1H, $J = 8.5$ Hz), 3.20 (d, 1H, $J = 9.9$ Hz), 3.10 (d, 1H, $J = 9.9$ Hz), 2.40 (s, 3H), 1.74 (dd, 1H, $J = 12.6$, 7.2 Hz), 1.66 (s, 3H), 1.61 (s, 3H), 1.40 (dd, 1H, $J = 12.6$, 8.5 Hz), 1.03 (s, 3H), 0.77 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 143.1, 136.8, 133.1, 129.5, 127.7, 126.8, 61.2, 58.0, 48.1, 37.7, 26.7, 26.3, 26.0, 21.8, 18.2. HRMS (ESI) calc. for [M+H]$^+$ (C$_{17}$H$_{26}$NO$_2$S) 308.1679, found 308.1675. Enantiopurity was determined by HPLC analysis (Chiralpak AD-H column, 98:2 hexanes/ethanol, 1 mL/min) t_R 8.9 min (minor), 11.6 min (major). Absolute configuration was assigned by comparison with a previous report, and the rest of the products were assigned by analogy.36
5a: 1H NMR (300 MHz, CDCl$_3$) δ 7.38 (s, 2H), 7.15 (s, 1H), 5.01 (d, 1H, $J = 9$ Hz), 4.36 (dd, 1H, $J = 16.2, 9$ Hz), 3.24 (d, 1H, $J = 9.9$ Hz), 3.10 (d, 1H, $J = 9.9$ Hz), 2.36 (s, 6H), 1.75 (dd, 1H, $J = 12.3, 7.2$ Hz), 1.68 (s, 3H), 1.64 (s, 3H), 1.41 (dd, 1H, $J = 12.3, 9$ Hz), 1.04 (s, 3H), 0.81 (s, 3H). NMR (75 MHz, CDCl$_3$) δ 139.1, 138.4, 133.8, 132.8, 126.4, 124.9, 60.8, 57.7, 47.8, 37.3, 26.4, 25.9, 25.6, 21.2, 17.9. HRMS (ESI) calc. for [M+H]$^+$ (C$_{18}$H$_{28}$NO$_2$S)$_3$ 322.1835, found 322.1830. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 99.5:0.5 hexanes/ethanol, 1 mL/min) t_R 11.5 min (minor), 14.5 min (major).

5b: 1H NMR (300 MHz, CDCl$_3$) δ 7.72 (dt, 2H, $J = 8.7, 2.1$ Hz), 7.45 (dt, 2H, $J = 8.7, 2.1$ Hz), 4.91 (doublet of septets, 1H, $J = 9.3, 1.2$ Hz), 4.43 (ddd, 1H, $J = 9.3, 8.7, 7.5$ Hz), 3.29 (dd, 1H, $J = 9.9, 1.2$ Hz), 3.09 (d, 1H, $J = 9.9$ Hz), 1.80 (ddd, 1H, $J = 12.6, 7.5, 1.2$ Hz), 1.68 (d, 3H, $J = 1.2$ Hz), 1.62 (d, 3H, $J = 1.2$ Hz), 1.42 (dd, 1H, $J = 12.6, 8.7$ Hz), 1.06 (s, 3H), 0.88 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 138.9, 138.8, 133.9, 129.1, 129.0, 126.2, 61.1, 58.1, 48.1, 37.8, 26.5, 26.3, 25.9, 18.2. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 99:1 hexanes/ethanol, 1 mL/min) t_R 14.1 min (minor), 15.5 min (major).
Using 4d as starting material, 5d was isolated as a 4.7:1 mixture of olefin isomers favoring the E isomer. Using 4e as starting material, the product was isolated as a 2:1 mixture of isomers favoring the Z isomer. NMR data are reported for the 4.7:1 mixture. The E and Z isomers were assigned on the basis of a 2D 1H-1H NOESY experiment. 1H NMR (300 MHz, CDCl$_3$) δ 7.67 (d, 2H, $J = 8.4$ Hz), 7.30-7.25 (m, 2H), 5.02-4.96 (m, 1H), 4.45-4.35 (m, 1H), 3.30-3.20 (m, 1H), 3.17-3.09 (m, 1H), 2.41 (s, 3H), 2.24-2.14 (m, 0.18H), 2.07-1.87 (m, 0.18H), 1.91 (q, 1.48H, $J = 7.4$ Hz), 1.76 (ddd, 0.82H, $J = 12.6, 8.4, 1.2$ Hz), 1.80-1.70 (m, 0.18H), 1.67 (d, 2.46H, $J = 0.9$ Hz), 1.62 (d, 0.54H, $J = 1.2$ Hz), 1.47-1.35 (m, 1H), 1.06 (s, 2.46H), 1.05 (s, 0.54H), 1.01 (t, 0.54H, $J = 7.5$ Hz), 0.91 (t, 2.46H, $J = 7.4$ Hz), 0.82 (s, 2.46H), 0.80 (s, 0.54H). 13C NMR (75 MHz, CDCl$_3$) δ 142.8, 137.9, 136.7, 129.2, 127.3, 124.8, 60.9, 57.6, 47.9, 37.4, 32.0, 26.4, 26.0, 21.5, 16.3, 12.0. HRMS (ESI) calc. for [M+H]$^+$ (C$_{18}$H$_{28}$NO$_2$S) 322.1835, found 322.1832. Enantiopurity was determined by HPLC analysis (Chiralpak AD-H
column, 99.5:0.5 hexanes/ethanol, 1 mL/min) \(t_R \) 15.5 min (Z diastereomer, minor enantiomer), 17.0 min (\(E \) diastereomer, minor enantiomer), 18.5 min (Z diastereomer, major enantiomer), 26.4 min (\(E \) diastereomer, major enantiomer).

5f: Isolated as a 78:22 mixture of olefin isomers. \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.68-7.64 (m, 2H), 7.28-7.26 (m, 2H), 5.05-5.02 (m, 1H), 5.04 (m, 0.22H), 4.41-4.35 (m, 1H), 3.60 (t, 0.44H, \(J = 6.3 \) Hz), 3.57 (t, 1.56H, \(J = 6.6 \) Hz), 3.25-3.20 (m, 1H), 3.14-3.10 (m, 1H), 2.41 (s, 3H), 2.32-2.25 (m, 0.22H), 1.97-1.92 (m, 1.77H), 1.78-1.73 (m, 1.23H), 1.67 (d, 2.34H, \(J = 0.6 \) Hz), 1.63 (d, 0.66H, \(J = 0.6 \) Hz), 1.61-1.47 (m, 2H), 1.45-1.39 (m, 1H), 1.05 (s, 2.34H), 1.04 (s, 0.66H), 0.892 (s, 7.02H), 0.888 (s, 1.98H), 0.80 (s, 2.34H), 0.79 (s, 0.66H), 0.06 (s, 4.68H), 0.06 (s, 1.32H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 162.3, 142.8, 136.5, 136.1, 129.2, 127.4, 127.2, 62.9, 60.8, 57.3, 48.2, 37.4, 31.4, 28.3, 26.4, 25.9, 23.2, 21.5, 18.3, -5.3. HRMS (ESI) calc. for \([M+H]^+ \) (C\(_{25}\)H\(_{44}\)NO\(_3\)Si) 466.2806, found 466.2805. Enantiopurity was determined by HPLC analysis after deprotection of the alcohol with tetrabutylammonium fluoride (Regis Technologies Whelk-O1 column, 97:3 hexanes/ethanol, 1 mL/min) \(t_R \) 51.4 min (Z diastereomer, minor enantiomer), 57.1 min (Z diastereomer, major enantiomer), 73.1 min (\(E \) diastereomer, minor enantiomer), 83.3 min (\(E \) diastereomer, major enantiomer).
5g: 1H NMR (300 MHz, CDCl$_3$) δ 7.67 (d, 2H, $J = 8.1$ Hz), 7.28 (d, 2H, $J = 8.1$ Hz), 5.06 (d, 1H, $J = 8.3$ Hz), 4.30 (app q, 1H, $J = 8.3$ Hz), 3.26 (d, 1H, $J = 9.9$ Hz), 3.20 (d, 1H, $J = 9.9$ Hz), 2.42 (s, 3H), 1.84 (dd, 1H, $J = 12.3$, 7.2 Hz), 1.68 (s, 3H), 1.64 (s, 3H), 1.63-1.45 (m, 7H), 1.25-1.15 (m, 2H). 13C NMR (75 MHz, CDCl$_3$) δ 143.1, 136.6, 133.0, 129.5, 127.7, 126.9, 59.8, 58.3, 48.9, 46.4, 37.2, 36.7, 26.0, 24.9, 24.8, 21.8, 18.3. HRMS (ESI) calc. for [M+H]$^+$ (C$_{19}$H$_{28}$NO$_2$S) 334.1835, found 334.1832. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 99:1 hexanes/ethanol, 1 mL/min) t_R 20.7 min (minor), 28.1 min (major).

5h: 1H NMR (300 MHz, CDCl$_3$) δ 7.67 (d, 2H, $J = 8.4$ Hz), 7.28 (d, 2H, $J = 8.4$ Hz), 5.06 (d, 1H, $J = 8.5$ Hz), 4.30 (app q, 1H, $J = 8.5$ Hz), 3.36 (d, 1H, $J = 10.2$ Hz), 3.10 (d, 1H, $J = 10.2$ Hz), 2.42 (s, 3H), 1.83 (dd, 1H, $J = 12.63$, 7.2 Hz), 1.67 (s, 3H), 1.64 (s, 3H), 1.48-1.22 (m, 9H), 1.10-1.00 (m, 2H). 13C NMR (75 MHz, CDCl$_3$) δ 143.1, 136.4, 132.9, 129.5, 127.7, 126.9, 58.7, 57.3, 46.1, 41.4, 36.8, 34.7, 26.2, 26.0, 24.0, 23.2, 23.2, 21.8, 18.3. HRMS (ESI) calc. for [M+H]$^+$ (C$_{19}$H$_{28}$NO$_2$S) 334.1992, found 334.1990. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 99:1 hexanes/ethanol, 1 mL/min) t_R 22.1 min (minor), 28.5 min (major).
5j: 1H NMR (300 MHz, CDCl$_3$) δ 7.93-7.87 (m, 1H), 7.63-7.55 (m, 3H), 4.72-4.62 (m, 2H), 3.57 (dd, 1H, J = 10.5, 0.6 Hz), 3.16 (d, 1H, J = 10.2 Hz), 1.89-1.82 (m, 1H), 1.64 (s, 3H), 1.48-1.44 (m, 1H), 1.39 (s, 3H), 1.09 (s, 3H), 1.07 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 147.7, 135.4, 135.2, 132.8, 131.0, 130.8, 124.5, 123.7, 61.3, 57.8, 47.8, 44.4, 37.5, 25.5, 25.4, 17.7. HRMS (ESI) calc. for [M+H]$^+$ (C$_{16}$H$_{23}$N$_2$O$_4$S) 339.1373, found 339.1376. Enantiopurity was determined by HPLC analysis (Chiralpak IA column, 98:2 hexanes/isopropanol, 1 mL/min) t_R 11.7 min (major), 12.6 min (minor).

5k: 1H NMR (300 MHz, CDCl$_3$) δ 7.95-7.81 (m, 4H), 7.44-7.31 (m, 6H), 5.08 (d, 1H, J = 9.3 Hz), 4.39 (app quintet, 1H, J = 8.4 Hz), 3.05-2.88 (m, 2H), 3.16 (d, 1H, J = 10.2 Hz), 1.82 (dd, 1H, J = 12.3, 7.5 Hz), 1.42 (dd, 1H, J = 12.6, 8.7 Hz), 1.36 (s, 3H), 1.17 (s, 3H), 1.04 (s, 3H), 0.92 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 134.3, 133.6, 132.8, 132.6, 132.3, 131.9, 131.5, 131.1, 131.0, 128.3, 128.2, 127.9, 127.7, 60.1, 56.3, 48.6, 38.8, 26.1, 25.2, 16.7. HRMS (ESI) calc. for [M+H]$^+$ (C$_{22}$H$_{29}$NOP) 354.1981, found 354.1988. Enantiopurity was determined by HPLC analysis (Chiralpak IA column, 98:2 hexanes/isopropanol, 1 mL/min) t_R 34.5 min (major), 42.4 min (minor).
1H NMR (300 MHz, CDCl₃) δ 7.79-7.71 (m, 2H), 7.00-6.92 (m, 2H), 5.00 (d, 9H), 4.39 (dd, 1H, J = 16.2, 9 Hz), 3.87 (s, 3H), 3.23 (d, 1H, J = 9.9 Hz), 3.13 (d, 1H, J = 9.9 Hz), 2.30-1.96 (m, 4H), 1.80-1.33 (m, 8 H), 1.05 (s, 3H), 0.79 (s, 3H). 13C NMR (75 MHz, CDCl₃) δ 162.5, 140.4, 131.3, 129.4, 123.3, 113.7, 61.0, 56.8, 55.5, 48.4, 37.3, 36.9, 29.0, 28.2, 27.5, 26.7, 26.4, 26.0. HRMS (ESI) calc. for [M+H]⁺ (C₂₀H₃₀NO₃S) 364.1941, found 364.1934.

Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 98:2 hexanes/ethanol, 1 mL/min) tᵣ 25.0 min (minor), 30.1 min (major).

5m: 1H NMR (300 MHz, CDCl₃) δ 7.88 (d, 2H, J = 8.1 Hz), 7.37 (d, 2H, J = 8.1 Hz), 5.21 (d, 1H, J = 9.6 Hz), 4.17 (d, 1H, J = 9.6 Hz), 3.57 (d, 1H, J = 8.1 Hz), 3.42 (d, 1H, J = 8.1 Hz), 2.46 (s, 3H), 1.83 (s, 3H), 1.76 (s, 3H), 1.08 (s, 3H), 0.94 (s, 3H). 13C NMR (75 MHz, CDCl₃) δ 144.8, 137.4, 132.3, 129.6, 129.4, 119.2, 80.3, 66.4, 47.7, 26.3, 21.7, 21.1, 18.3. HRMS (ESI) calc. for [M+H]⁺ (C₁₆H₂₄NO₃S) 310.1471, found 310.1468. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 99:1 hexanes/ethanol, 1 mL/min) tᵣ 16.3 min (minor), 19.1 min (major).
5n: 1H NMR (300 MHz, CDCl$_3$) δ 7.85 (d, 2H, $J = 8.1$ Hz), 7.34 (d, 2H, $J = 8.1$ Hz), 5.13 (d, 1H, $J = 8.7$ Hz), 5.05-4.97 (m, 1H), 4.08-3.96 (m, 2H), 2.44 (s, 3H), 2.41-1.96 (m, 6H), 1.63-1.55 (m, 6H). 13C NMR (75 MHz, CDCl$_3$) δ 144.9, 144.0, 133.4, 129.7, 129.3, 120.4, 70.1, 56.7, 37.0, 36.7, 29.3, 28.4, 27.7, 26.7, 21.8. Enantiopurity was determined by HPLC analysis (Chiralpak AS-H column, 98:2 hexanes/ethanol, 1 mL/min) t_R 14.2 min (minor), 29.7 min (major).

S9: 1H NMR (400 MHz, CDCl$_3$) δ 7.11 (d, 1H, $J = 8.8$ Hz), 6.97 (d, 1H, $J = 2.4$ Hz), 6.83 (dd, 1H, $J = 8.8$, 2.4 Hz), 5.06 (d, 1H, $J = 9.2$ Hz), 4.11 (q, 1H, $J = 8.8$ Hz), 3.86 (s, 3H), 3.78 (s, 3H), 3.65 (s, 3H), 3.55 (s, 3H), 3.45 (d, 1H, $J = 15.6$ Hz), 3.23 (dd, 1H, $J = 15.2$, 1.6 Hz), 2.66 (ddd, 1H, $J = 13.6$, 6.4, 1.6 Hz), 2.35 (m, 2H), 2.14 (m, 2H), 1.98 (dd, 1H, $J = 13.6$, 9.2 Hz), 1.61 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 172.2, 171.4, 153.7, 141.1, 136.9, 133.0, 126.7, 123.1, 110.8, 109.2, 105.8, 100.3, 56.0, 54.3, 52.7, 52.6, 37.0, 36.8, 30.3, 28.9, 28.5, 27.7, 27.6, 26.8. HRMS (ESI) calc. for [M+H]$^+$ (C$_{25}$H$_{32}$NO$_5$) 426.2275, found 425.2279. Enantiopurity was determined by HPLC analysis (Chiralpak IA column, 98:2 hexanes/isopropanol, 1 mL/min) t_R 19.7 min (minor), 27.2 min (major).
S10: 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, 1H, $J = 2.0$ Hz), 7.23 (dd, 1H, $J = 8.8$, 2.0 Hz), 7.08 (d, 1H, $J = 8.8$ Hz), 5.04 (d, 1H, $J = 9.2$ Hz), 4.11 (q, 1H, $J = 9.6$ Hz), 3.77 (s, 3H), 3.65 (s, 3H), 3.56 (s, 3H), 3.41 (d, 1H, $J = 15.2$ Hz), 3.19 (dd, 1H, $J = 15.6$, 2.0 Hz), 2.65 (dd, 1H, $J = 11.6$, 4.8 Hz), 2.34 (m, 2H), 2.13 (m, 2H), 1.97 (dd, 1H, $J = 13.6$, 9.2 Hz), 1.61 (m, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 172.0, 171.2, 141.7, 137.6, 136.3, 128.1, 123.7, 122.5, 120.6, 112.0, 110.0, 106.0, 54.1, 52.8, 52.7, 37.0, 36.8, 30.4, 30.3, 28.9, 28.4, 27.7, 27.4, 26.7. HRMS (ESI) calc. for [M+H]$^+$ ($C_{24}H_{29}BrNO_4$) 474.1274, found 474.1280. Enantiopurity was determined by HPLC analysis (Chiralpak IA column, 98:2 hexanes/isopropanol, 1 mL/min) t_R 11.4 min (minor), 21.5 min (major).

S11: 1H NMR (400 MHz, CDCl$_3$) δ 7.54 (d, 1H, $J = 7.6$ Hz), 7.29 (d, 1H, $J = 8.0$ Hz), 7.22 (t, 1H, $J = 7.2$ Hz), 7.13 (t, 1H, $J = 7.6$ Hz), 5.16 (d, 1H, $J = 9.2$ Hz), 4.11 (q, 1H, $J = 8.8$ Hz), 3.81 (s, 3H), 3.69 (s, 3H), 3.59 (s, 3H), 3.51 (d, 1H, $J = 8.4$ Hz), 3.30 (dd, 1H, $J = 15.6$, 2.0 Hz), 2.73 (ddd, 1H, $J = 13.6$, 6.4, 1.6 Hz), 2.02 (dd, 1H, $J = 13.2$ Hz, 9.2 Hz), 1.88 (s, 3H, 1.81 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 172.3, 171.3, 137.1, 136.2, 133.3, 126.5, 126.4, 121.0, 118.8, 118.0, 108.6, 106.3, 54.2, 52.7, 52.6, 36.3, 31.2, 30.0, 27.5, 25.6, 17.8. HRMS (ESI) calc. for [M+H]$^+$ ($C_{21}H_{26}NO_4$) 356.1856, found 356.1862. Enantiopurity was determined
by HPLC analysis (Chiralpak AS-H column, 99:1 hexanes/isopropanol, 1 mL/min) tₚ 8.4 min (major), 9.7 min (minor).

Supplementary Figure 3. Reaction analyzed by mass spectrometry.

Studies of reaction intermediate by TOF-MS

A one-dram screw cap vial was charged with catalyst S6 (0.01 mmol), substrate 1 (0.1 mmol), and fluorobenzene (0.2 mL). The mixture was stirred for 14 h. 0.1 mL of the mixture was diluted with 1 mL CH₃CN, and this solution was analyzed by TOFMS⁻ (negative mode). A peak fully consistent with the proposed intermediate was observed at 1198.43. The peak had an isotopic distribution in excellent agreement with the theoretical pattern (Supplementary Figure 4). This species was then subjected to further ionization (TOFMSMS⁻), which revealed a fragment corresponding to the regenerated catalyst as the sole negative ion with mass of 892.26 (Supplementary Figure 5).
Supplementary Figure 4. Comparison of measured and theoretical isotopic mass distributions for the observed intermediate.
Supplementary Figure 5. MS/MS of the intermediate ion yields a fragmentation peak corresponding to reformed catalyst.

Details of deuterium labeling experiments

Supplementary Figure 6. Addition of an achiral dithiophosphinic acid across an olefin proceeds with syn stereoselectivity.
A mixture of acenapthylene (tech. grade, 75%, 30 mg, 0.2 mmol) and diphenyldithiophosphinic acid (25 mg, 0.1 mmol) was dissolved in a 1:1 mixture of CDCl$_3$/D$_2$O (1.5 mL total). The mixture was shaken for about 5 mins then was allowed to stand without stirring at rt for 48 h. The CDCl$_3$ layer was removed and loaded directly onto a silica gel column. The product was eluted with 20:1 hexanes/EtOAc to afford 8 mg of a white solid (20% yield). An experiment without D$_2$O was also performed to obtain a protiated reference compound. Dithiodiphenylphosphinic acid was chosen because it is an achiral dithioacid that avoids complications arising from the generation of diastereomers when using a chiral catalyst; it is also commercially available in high purity (Alfa Aesar). Alternative achiral catalysts such as diphenyl dithiophosphate ((PhO)$_2$PSSH) or diethyl dithiophosphate ((EtO)$_2$PSSH) are much more hydrolytically labile and were not suitable for the D$_2$O conditions.

Protiated compound 7: 1H NMR (300 MHz, CDCl$_3$) δ 8.10-7.98 (m, 4H), 7.67-7.35 (m, 10H), 7.20 (d, 1H, $J = 6.9$ Hz), 5.42 (ddd, 1H, $J = 12.9$ (H-31P coupling), 7.8 (cis coupling), 3.0 (trans coupling) Hz), 3.82 (dd, 1H, $J = 18.0$ (geminal coupling), 8.1 (cis coupling) Hz, proton trans to dithiophosphinate), 3.40 (dd, 1H, $J = 18.0$, 3.0 (trans coupling) Hz, proton cis to dithiophosphinate).

Deuterated compound 7: 1H NMR (400 MHz, CDCl$_3$) δ 8.10-7.98 (m, 4H), 7.67-7.35 (m, 10H), 7.20 (d, 1H, $J = 6.9$ Hz), 5.42 (dd, 1H, $J = 12.8$, 8.0 Hz), 3.82 (d, 1H, $J = 18.0$, 8.4 Hz, trans to dithiophosphinate). 13C NMR (100 MHz, CDCl$_3$) δ 132.0, 132.0, 131.8, 131.7, 131.6, 131.5, 131.2, 128.8, 128.7, 128.7, 128.6, 128.2, 128.2, 128.1, 77.2, 47.4. 31P NMR (162 MHz, CDCl$_3$) δ 63.0. The cis and trans protons were assigned based on the well-established coupling constant ranges of monosubstituted acenaphthenes that arise from the rigidity of the system:
protons in a \textit{cis} relationship have large vicinal coupling constants (6–8 Hz), while \textit{trans} protons have small vicinal coupling constants (2–3 Hz)37–39.

\begin{center}
\includegraphics[width=0.8\textwidth]{reaction_diagram}
\end{center}

Supplementary Figure 7. Dithiophosphoric acid-promoted reaction of a cyclic substrate proceeds with predominant \textit{cis}-1,4-stereoselectivity.

Cyclic substrate \textbf{8} (3.2 mg, 0.01 mmol) was reacted with racemic dithiophosphoric acid \textbf{9} (5.5 mg, 0.01 mmol) in 1.5 mL of 1:1 CDCl\textsubscript{3}/D\textsubscript{2}O. The mixture was shaken for about 5 mins then was allowed to stand without stirring at 50 °C for 48 h. The CDCl\textsubscript{3} layer was removed and loaded directly onto a silica gel column. The product was eluted with 20:1 hexanes/EtOAc to afford 2.0 mg of a colorless oil (63% yield). An experiment without D\textsubscript{2}O was also performed to obtain a protiated reference compound.

\begin{center}
\includegraphics[width=0.8\textwidth]{protiated_compound}
\end{center}

Protiated compound 10: 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 7.80-7.77 (m, 2H, H\textsubscript{D}), 6.96-6.93 (m, 2H), 5.66-5.63 (m, 1H), 5.53-5.50 (m, 1H), 3.87 (s, 3H), 3.15 (d, 1H, J = 8.5 Hz), 3.04 (d, 1H, J = 9.0 Hz), 2.62-2.57 (m, 1H, H\textsubscript{C}), 2.17-2.08 (m, 1H, H\textsubscript{A}), 1.95-1.89 (m, 1H, H\textsubscript{B}), 1.87-1.73 (m, 4H), 1.57-1.47 (m, 1H), 1.09 (s, 3H), 1.00 (s, 3H). 13C NMR (125 MHz, CDCl\textsubscript{3}) δ 162.6, 133.5,
Specific protons were assigned on the basis of 2D COSY, HMQC, and NOESY experiments. The NOESY spectrum revealed correlations between H_d and H_c and between H_c and H_a, and it lacked correlations between H_d and any other protons on the cyclohexene ring or between H_c and H_b.

Deuterated compound 10: ^1^H NMR (500 MHz, CDCl₃) δ 7.80-7.77 (m, 2H, H_D), 6.96-6.93 (m, 2H), 5.66-5.63 (m, 1H), 5.53-5.50 (m, 1H), 3.87 (s, 3H), 3.15 (d, 1H, J = 8.5 Hz), 3.04 (d, 1H, J = 9.0 Hz), 2.62-2.57 (m, 0.93H, H_C), 2.17-2.08 (m, 0.19H, H_A), 1.91-1.70 (m, 5H, H_B was no longer well enough resolved from the rest of the multiplet), 1.57-1.47 (m, 1H), 1.09 (s, 3H), 1.00 (s, 3H). HRMS (ESI) calc. for [M+H]^+ (C₁₈H₂₅²H N O₃ S) 337.1691, found 337.1692.

Removal of the nosyl group from product 5j

To a 1-dram screw cap vial equipped with a magnetic stir bar was added sequentially sulfonamide 5j (30.0 mg, 0.088 mmol, 1.0 equiv), thiophenol (25.3 mg, 0.27 mmol, 3.0 equiv), anhydrous K₂CO₃ (49.0 mg, 0.35 mmol, 4.0 equiv), 1,3,5-trimethoxybenzene (internal NMR standard) and CD₃CN (1.0 mL). A t = 0 ^1^H NMR spectrum was recorded for calibration of the internal standard. The mixture was heated to 50 ºC and allowed to stir for 2 h. After the elapsed time, TLC indicated complete consumption of the starting material. ^1^H NMR indicated that the yield of desired product was 86%. The reaction mixture was diluted with Et₂O (10 mL) and washed with water (2 × 20 mL). The organic layer was then extracted with 3N HCl (2 × 20 mL).
The combined acidic aqueous layer was made basic by the addition of 10% NaOH until pH = 11. The product was subsequently extracted with Et₂O (2 × 10 mL) and the combined ethereal extracts was dried over anhydrous MgSO₄, filtered and concentrated in vacuo to give 6.9 mg (51 % isolated yield) of the desired product S7 as a yellow oil (Rf = 0.1 in 5% MeOH/CH₂Cl₂). The product was found to be somewhat volatile.

1H NMR (400 MHz, CDCl₃) δ 5.13 (d, 1H, $J = 8.4$ Hz), 3.92 (q, 1H, $J = 8.4$ Hz), 2.75 (d, 1H, $J = 10.4$ Hz), 2.62 (d, 1H, $J = 10.0$ Hz), 1.70 (s, 3H), 1.67 (s, 3H), 1.08 (s, 3H), 1.08 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 133.2, 128.6, 60.7, 56.4, 48.4, 39.5, 28.6, 27.8, 25.7, 18.1.

Supplementary Figure 9. Mass spectrometry analysis of hydroarylation reaction mixture.
Supplementary Figure 10. Comparison of measured and theoretical isotopic mass distributions for the observed intermediate of hydroarylation reaction.

Supplementary Figure 11. X-ray crystal structure of compound S10.
Experimental details for X-ray structural determination

A colorless plate 0.12 x 0.08 x 0.04 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 96.8% complete to 67.00° in θ. A total of 17687 reflections were collected covering the indices, -10<=h<=9, -13<=k<=13, -15<=l<=15. 3881 reflections were found to be symmetry independent, with an R_int of 0.0312. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be P-1 (No. 2). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SIR-97) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-97.
| **Supplementary Table 1. Crystal data and structure refinement for compound S10.** |
|----------------------------------|----------------------------------|
| X-ray ID | toste34 |
| Sample/notebook ID | JW-04-146SC |
| Empirical formula | C24 H28 Br N O4 |
| Formula weight | 474.38 |
| Temperature | 100(2) K |
| Wavelength | 1.54178 Å |
| Crystal system | Triclinic |
| Space group | P-1 |
| Unit cell dimensions | $a = 8.5353(7)$ Å, $\alpha = 65.561(4)^\circ$.
| | $b = 11.5050(8)$ Å, $\beta = 78.907(5)^\circ$.
| | $c = 12.9696(10)$ Å, $\gamma = 76.104(5)^\circ$.
Volume	1119.30(15) Å³
Z	2
Density (calculated)	1.408 Mg/m³
Absorption coefficient	2.745 mm$^{-1}$
F(000)	492
Crystal size	0.12 x 0.08 x 0.04 mm3
Crystal color/habit	colorless plate
Theta range for data collection	3.76 to 67.57°
Index ranges	$-10 \leq h \leq 9, -13 \leq k \leq 13, -15 \leq l \leq 15$
Reflections collected	17687
Independent reflections	3881 [R(int) = 0.0312]
Completeness to theta = 67.00°	96.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8981 and 0.7341
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	3881 / 0 / 274
Goodness-of-fit on F2	1.084
Final R indices [I>2sigma(I)]	R1 = 0.0378, wR2 = 0.0953
R indices (all data)	R1 = 0.0412, wR2 = 0.0980
Largest diff. peak and hole	0.918 and -0.266 e.Å$^{-3}$
31. Sattely, E. S., Meek, S. J., Malcolmson, S. J., Schrock, R. R. & Hoveyda, A. H. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis. *J. Am. Chem. Soc.* **131**, 943–953 (2009).

32. Cheon, C. H. & Yamamoto, H. A Brønsted acid catalyst for the enantioselective protonation reaction. *J. Am. Chem. Soc.* **130**, 9246–9247 (2008).

33. Nakashima, D. & Yamamoto, H. Design of chiral N-triflyl phosphoramidate as a strong chiral Brønsted acid and its application to asymmetric Diels–Alder reaction. *J. Am. Chem. Soc.* **128**, 9626–9627 (2006).

34. Zhang, Z., Bender, C. F. & Widenhoefer, R. A. Gold(I)-catalyzed dynamic kinetic enantioselective intramolecular hydroamination of allenes *J. Am. Chem. Soc.* **129**, 14148–14149 (2007).

35. Laird, T., Ollis, W. D. & Sutherland, I. O. Base catalysed rearrangements involving ylide intermediates. Part 7. The rearrangements of allyl(pentadienyl)- and propynyl(pentadienyl)ammonium cations. The [5,4] sigmatropic rearrangement. *J. Chem. Soc., Perkin Trans. 1*, 2033–2048 (1980).

36. LaLonde, R. L., Sherry, B. D., Kang, E. J. & Toste, F. D. Gold(I)-catalyzed enantioselective intramolecular hydroamination of allenes. *J. Am. Chem. Soc.* **129**, 2452–2453 (2007).

37. Eisch, J. J. & Fichter, K. C. Organometallic compounds of Group III. 40. Kinetic control and locoselectivity in the electrophilic cleavage of allylic aluminum compounds:
reactions of acenaphthenylaluminum reagents with carbonyl substrates. J. Org. Chem. 49, 4631–4639 (1984).

38. Hunter, D. H., Lin, Y. T., McIntyre, A. L., Shearing, D. J. & Zvagulis, M. Elcb reaction of 1-methoxyacenaphthene. I. Nature of the carbanion-forming step. J. Am. Chem. Soc. 95, 8327–8333 (1973).

39. Gironès, J., Duran, J., Polo, A. & Real, J. Enantioselectivity in the catalytic hydroesterification of acenaphthylene: direct evidence of the racemization of PdII-alkyl species by a degenerate substitution equilibrium with Pd0L\textsubscript{n}. Chem. Commun. 1776 (2003).

Supplementary Data: Copies of NMR and HPLC spectra.
AV-400 QNP 31P Starting parameters. Trimethyl phosphate.
Dual C-H probe proton starting parameters 7/23

![NMR Spectrum]

NAME: VHI-1-95-diene-substrate

PROCNO: 1

Date: 20100223

Time: 15:58

INSTRON: nvr-500

PROPHOS: 9 mm Dual 13C

PULPROG: gg10

TD: 65336

SOVVENT: CDCl3

NI: 8

DS:

SNR: 6172.839 Hz

FIDRES: 0.094190 Hz

AQ: 5.3986500 sec

DI: 81.000 usec

DE: 6.80 usec

TE: 293.8 K

GCL: 0.200000000 sec

TD0: 1

**--------- CHANNEL F1 ---------

MUSIC: 1H

F1: 31.00 usec

PUL1: -1.00 dB

FLW: 25.9953241 W

SPW1: 205.111853 Hz

SI: 32768

SV: 300.1300003 Hz

WRW: 0

S2B: 0

LB: 0.30 Hz

GB: 0

PC: 0.00
AV-300 Dual C-H probe proton starting parameters 7/23/03 RN.

NAME: VRT-1-124B
EXPNO: 1
PROCNO: 1
Data: 20100120
Time: 10:02
INSTRUM: av-300
PROBHD: 5 mm Dual 13C/1H
PULPROG: 2030
TD: 65236
SOLVENT: CDCl3
NS: 10
DS: 0
SNR: 6172.839 Hz
FIDRES: 0.094190 Hz
AQ: 5.3084660 sec
AX: 6
DN: 81.000 us
DE: 6.00 us
TB: 294.3 K
D1: 0.2000000 sec
D2D: 4

Channel: 1
NUC1: 1H
PI: 11.00 us
PL1: -3.00 dB
PL1W: 25.55555555 MHz
SP1: 300.13318663 MHz
SI: 12768
SP: 300.13318663 MHz
W1W: 50 MHz
SSB: 0
LB: 0.30 Hz
GR: 0
PC: 4.00

ppm
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-124B-13C
EXNO 1
PROCNO 1
Date 20100120
Time 10.03
INSTRUM av-300
PROBHD 5 mm Dual 13C/
FUPROR sspp30
TD 65536
SOLVENT CDC33
NS 23
DS 0
SNR 17985.61 Hz
FIDRES 0.294410 Hz
AQ 1.8298908 sec
RG 32.9638
DN 29.800 usec
DE 6.00 usec
TD 294.3 K
DD 1.00000000 sec
DD1 0.03000000 sec
TD0 40

======== CHANNEL f1 ========
NUC1 13C
F1 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SF01 75 4760505 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz
NUC2 1H
FCPD2 120.00 usec
PL2 -3.00 dB
PL12 17.76 dB
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-124C-13C
EXPRC 1
PROCNO 1
Date_ 20100220
Time 10:06
INSTRUM av-300
PROBND 5 mm Dual 13C/
PULPROG zgq30
TD 50.534
SOLVENT CDC13
NS 14
DS 0
GAM 17985.61 Hz
FMRES 0.274438 Hz
AQ 1.8219508 sec
RG 32768
DW 27.800 usec
DE 6.00 usec
TF 294.3 K
D1 1.00000000 sec
D11 0.03000000 sec
TD0 20

======== CHANNEL f1 ========
NUC1 13C
FLJ 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SP01 75.4760505 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 120.00 usec
PL2 -3.00 dB
PLL2 17.76 dB
AV-300 Dual C-H probe proton starting parameters 7/23/03 RN.
NAME: VRT-1-105C-13C
EXPH0: 1
PROCNO: 1
Date: 20091222
Time: 19:07
INSTRUM: av-300
PROBHD: 5 mm Dual 13C/
PULPROG: zgpg30
TD: 65536
G0: 0
G0: 0
SMH: 17985.611 Hz
FIDRES: 0.276439 Hz
AQ: 1.8219508 sec
BG: 32768
DW: 27.800 usec
DE: 6.00 usec
TZ: 294.3 us
DI: 1.00000000 sec
D1L: 0.03000000 sec
TD0: 10

======== CHANNEL f1 ========
 NUC1: 13C
 FL1: 10.50 usec
 FL1W: 3265452194
 SP01: 75.4760505 MHz

======== CHANNEL f2 ========
 CPDPRG2: waltz16
 NUC2: 1H
 rCPD2: 120.00 usec
 FL2: -3.00 dB
 FL2: 17.76 dB
AV-300 Dual C-H probe proton starting parameters 7/23/03 RN.

NAME: VRT-1-998
EXPMOD: 1
PROCNO: 1
Date: 20091216
Time: 18:14
INSTRUM: av-300
PROBHLD: 5 mm Dual 13C
PULPROG: zg20
TD: 65536
SOLVENT: CDCl3
NS: 1f
DS: 0
SNR: 6372.839 Hz
FIDRES: 0.094190 Hz
AQ: 5.3084660 sec
RG: 75.0
lw: 81.000 usec
DE: 6.00 usec
TE: 29.4 K
DI: 0.20000000 sec
TD0: 4

====== CHANNEL f1 ======
NECl: 1H
Pl: 11.00 usec
PL: -3.00 dB
PLIM: 25.05936241 w
SP1: 300.131853 MHz
SI: 32768
sp: 300.130000 MHz
NWI: 1
USB: 0
LB: 0.30 Hz
GB: 0
PC: 4.00

--- Chart ---
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-99B-13C
EXPNO 1
PROCNO 1
Date 20051216
Time 18:16
INSTRUM av-300
PROBID 5 mm Dual 13C/
PULPROG zgpg10
TD 65536
SOLVENT CDC13
NS 47
DS 0
SWH 17985.611 Hz
PTDRRS 0.274439 Hz
AQ 1.8219508 sec
RG 32768
DW 27.800 usec
DE 6.00 usec
TE 294.1 K
D1 1.0000000 sec
D11 0.03000000 sec
TDO 40

======== CHANNEL f1 ========
NUC1 13C
F1 10.50 usec
FL1 0.00 dB
FL1W 32.65452194 W
SF01 75.4760505 MHz

======== CHANNEL f2 ========
CPDPRG2 wait16
NUC2 1H
ECPD2 120.00 usec
PL2 -3.00 dB
PL12 17.76 dB
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-103F-Feb-2
EXPNUM 1
PROCNO 1
Date_ 20100202
Time 15.25
INSTRUM av-300
PROBMD 5 mm Dual 13C/
PULPROC zg30
TD 65516
SOLVENT CDC13
NS 7
DS D
S1W 6172.839 Hz
S1FS 0.094130 Hz
AQ 5.306660 sec
RG 45.3
DW 0.000000 sec
DE 0.000000 sec
TR 293.9 K
DI 0.2000000 sec
TDG 4

======== CHANNEL f1 ========
NUCL 1H
FI 21.00 usec
FL1 -2.00 dB
FL1W 25.05936241 W
FPO1 300.1318533 MHz
ST 32766
SF 300.1300000 MHz
WOW EM
SSB 0
LB 1.50 Hz
GB 0
FC 1.40
NAME VRT-1-105F-Feb-2-13C
EXPRO 1
PROENO 1
Date_ 20100202
Time 15.28
INSTRUM av-300
PROINO 5 mm Dual 13C/
PULPROM zgpg30
TD 65536
SOLVENT circl3
NS 46
DS 0
SN 17985.61 Hz
FIDRES 0.274439 Hz
AQ 1.8219508 sec
E5 32768
DW 27.800 usec
DE 6.00 usec
TE 294.1 K
D1 1.0000000 sec
D11 0.03000000 sec
TD0 60

======= CHANNEL f1 =======
NUC1 13C
P1 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SF01 75.476000 MHz

======= CHANNEL f2 =======
CPDPRG2 walter16
NUC2 1H
FCPD2 120.00 usec
PL2 -3.00 dB
PL12 17.76 dB
AV-300 Dual C-H probe carbon starting parameters 7/23/03

NAME VRT-1-122A-cyclopentyl-tosyl

EXPNR 1
PROCNO 1
Date_ 20100115
Time 19.4
INSTRUM av-300
FREQMD 5 mm Dual 13C
PULPROG smpg30
TD 65536
SOLVENT CDC13
NS 31
DS 0
SWH 17395.611 Hz
FIDRES 0.274439 Hz
AQ 1.0219508 sec
B1 32768
DW 27.800 ussec
SE 6.00 ussec
TE 294.4 #
D1 1.00000000 sec
D11 0.03000000 sec
TD0 20

======== CHANNEL f1 ========
NUC1 1H
P1 10.50 usec
PL1 0.00 dB
PL1W 32.6552194 W
SFC1 75.4760505 MHz

======== CHANNEL f2 ========
CPUPRD2 waltz16
NUC2 1H
PCTD2 120.00 usec
PL2 -3.00 dB
PL12 17.76 dB

ppm
-300 Dual C-H probe proton starting parameters 7/23/03 RN.

NHTs

4h

NHTs

4h

9 8 7 6 5 4 3 2 1 0 ppm

2.159 2.240 1.000 1.018 3.073 2.149 3.270 2.045 3.232 1.369
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-122B-cyclohexyl-tosyla
EXPNO 1
PROCNO 1
Date_ 20100115
Time 13.42
INSTRUM av-300
PROBND 5 mm Dual 13C/
PULPROG zpg30
TD 62336
SOLVENT CCl3
NS 32
DS 0
SWX 17985.611 Hz
P1DRES 0.274439 Hz
AG 1.8219508 sec
NG 32768
DW 27.890 usec
DE 6.00 usec
TD 294.4 K
T1 1.00000000 sec
TD1 0.03000000 sec
TD0 20

======== CHANNEL f1 ========
NUC1 13C
FL 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SPQ1 75.4760505 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCP2 120.30 usec
PL2 -3.00 dB
PL2 17.76 dB

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm
Dual C-H probe proton starting parameters 7/23

NAME: VRT-15-119
EXPMO: 1
PROCNO: 1
Date: 20100220
Time: 15:54
INSTRUM av-300
PROHBD 5 mm Dual 1H-
PULPROG zg30
TC: 65536
SOLVENT: CDC13
NS: 4
DS: 0
SNH: 6172.839 Hz
PDRES 0.594190 Hz
AQ: 5.3084660sec
RG: 8
DW: 61.000 usec
DR: 6.000 usec
TR: 293.8 K
DI: 0.20000000 sec
TD0: 1

=*=*=*=*= CHANNEL f1 =*=*=*=*==

NUCL: 1H
FI: 11.000 usec
PL: -3.00 dB
PL1W 25.05936241 W
SFOL: 300.1318533 MHz
SI: 32768
SF: 300.1300030 MHz
WAV: EM
S2B: 0
LS: 0.30 Hz
GB: 0
PC: 4.00

[Chemical structure image]
MeO

S

NH

41

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

AV-300 Dual C-H probe Carbon starting parameters 7/23/03
Dual C-H probe proton starting parameters 7/23

NAME	VRT-15-157
EXPNO	1
PROCNO	1
Date	20100220
Time	16:00
INSTRUM	AV-520
PROBND	5 mm Dual 1H/13C
PULPROG	zg50
TD	65316
SOLVENT	CDCl3
NS	4
DS	0
SWH	6172.839 Hz
FIDRES	0.094150 Hz
AQ	5.3084600 sec
TRG	8
DM	81.000 usec
TE	293.8 K.
D1	0.20000000 usec
TDO	1

-------- CHANNEL 'f1' --------

NUC1	1H
P1	11.00 usec
PL1	-3.00 dB
PLW	21.05936241 W
SPFO1	300.1319533 MHz
SI	32768
SP	300.1305032 MHz
NDM	0
SSB	0
LB	0.30 Hz
Gp	0
PC	4.00

![Chemical structure diagram](image)
AV-300 Dual C-H probe proton starting parameters 7/23/03 RN.

NMPD VRT-1-456_SM-1H
PFXNO 1
PROCNO 1
Date... 20100125
Time... 15:00
INSTRUN av-300
PRORNO 5 mM Dual 13C/
PULPROC zg10
TD 65536
SOLVENT CCl4
NS 7
DS 0
SWH 6172.839 Hz
FIDRES 0.094190 Hz
AQ 5.3084660 sec
RG 8
DW 81.000 usec
DE 6.00 usec
TE 283.8 K
EI 0:200000000 sec
TD0 4

= CHANNEL f1 =
Nuc1 1H
Fl 11.00 usec
PLL -3.00 dB
PL1W 25.05936241 w
SP01 300.1318533 MHz
SI 32768
SF 300.000035 MHz
KOW BB
SSB 0
LR 0.30 Hz
GB 0
FC 4.00

ppm
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-145B_SM-13C
EXPRO 1
PROCNO 1
Date_ 20100325
Time_ 15:01
INSTRUM av-300
PROBND 5 mm Dual 13C/
PULPROG zzpg30
TD 55536
SOLVENT CDC13
NS 17
DS 0
SNR 17985.61 Hz
FIDRES 0.274439 Hz
AQ 1.8219508 sec
RG 38768
DW 27.800 usec
DE 6.00 usec
TS 293.8 K
D1 1.00000000 sec
D11 0.03000000 sec
TD0 444

====== CHANNEL F1 ======
NOC1 13C
P1 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SPD1 75.4760505 MHz

====== CHANNEL F2 ======
CPDPRM2 watt:16
NOC2 1 Hz
PCFD2 120.00 usec
PL2 -3.00 dB
PL22 17.76 dB
AV-300 Dual C-H probe proton starting parameters 7/23/03 kW.

NAME: VRT-1-134A
EXPN: 1
PROCNO: 1
Date: 20100204
Time: 11:20
INSTRUM: av-300
PROBID: 5 mm Dual 13C/
PULPROG: zg30
TD: 65536
SOLEVENT: CDC13
NS: 9
DS: 0
SMR: 6172.833 Hz
D1RRES: 0.004190 Hz
AQ: 0.3084660 sec
MO: 114
DW: 81,000 usec
DE: 6.00 usec
TE: 293.9 K
DI: 0.0000000 sec
TD0: 4

====== CHANNEL f1 ======
NUC1: 1H
FH: 11.00 usec
FL: -3.00 dB
FLIN: 25.05932421 kHz
SFO1: 300.1318533 MHz
CI: 32768
SF: 300.1300000 MHz
WD: 0.1 kHz
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 4.00

ppm

2.05 2.50 1.00 1.02 2.06 3.10 7.49 1.18 3.15 3.13
AV-300 Dual C-H probe Carbon starting parameters 7/23/08

NAMES VXT-1-134A-13C
EXPN0 1
PROCNO 1
Date_ 20100204
Time 11.22
INSTRUM av-300
PROBID 5 mm Dual 13C/
PULPROG spg930
TD 695.34
SOLVENT CDCl3
Nq 35
DS 0
SNR 17985.61 Hz
FIDRES 4.276439 Hz
AQ 1.8219508 sec
BG 32768
KW 27.800 usec
DE 6.00 usec
TE 293.9 K
D1 1.00000000 sec
D11 0.03000000 sec
TD0 1000

============= CHANNEL f1 =============
NUC1 13C
P1 10.50 usec
PL1 0.00 dB
PL1W 32 6545194 W
SF01 75.4760505 MHz

============= CHANNEL f2 =============
CPDPROG waltz16
NUC2 1H
Pc02 120.00 usec
PL2 -3.00 dB
PL12 17.76 dB
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME: VRT-1-139-3
EXPNO: 1
PROCNO: 1
Date: 20100215
Time: 14:29
INSTROM: av-300
PRLID: 5 mm Dual 13C/
PULPROC: zg30
TD: 65516
SOLVENT: CCl4
MS: 7
DS: 0
SNW: 6172.839 Hz
FIDRES: 0.094190 Hz
AQ: 5.3084660 sec
RG: 8
DW: 81.000 usec
ME: 6.000 usec
TE: 293.9 K
TD: 0.20000000 sec
TTD: 4

------------ CHANNEL f1 ------------
NUC1: 1H
P1: 11.70 usec
PL1: -3.00 dH
FLW1: 25.05936241 W
SF1: 300.1318533 MHz
SI: 32768
SF: 300.1300064 MHz
WEDW: 8M
SSB: 0
LB: 1.50 Hz
GB: 0
RC: 1.40

ppm
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME: 13C
EXNO: 1
PROCNO: 1
Date: 20100015
Time: 14.30
INSTRUM: AV-300
PROBE: 1 mm Dual 13C
FULLPRED: zgpe10
TD: 65516
SOLVENT: CDCl3
NS: 45
DS: 0
SNH: 17995.411 Hz
FDMRBS: 0.27443 Hz
AQ: 1.8215905 sec
RG: 32768
DW: 27.800 usec
DE: 6.60 usec
TS: 293.9 K
D1: 1.080000000 sec
D11: 0.030000000 sec
TD0: 4444

======== CHANNEL f1 ========
NUC1: 13C
PL: 10.50 usec
PL1: 0.00 dB
PL1W: 32.65452194 W
SFO1: 75.4760505 MHz

======== CHANNEL f2 ========
CPD2: waltz16
NUC2: 1H
PCPD2: 120.60 usec
PL2: -3.00 dB
PL12: 17.76 dB
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

Parameter	Value
NAME	VRT-1-132A-13C
EXPNO	1
PROCNO	1
December	20100204
Time	13.52
INSTRUM	av-300
PROBED	5 mm Dual 13C/
PULPROG	zgpg30
TD	655.34
SOLVENT	CMC13
NS	21
DS	0
SWH	17985.611 Hz
FIDRES	0.274439 Hz
AQ	1.8219088 sec
RG	32769
DW	27.800 usec
DS	6.00 usec
TE	294.0 K
DI	1.00000000 usec
D11	0.030000000 usec
TDO	44

====== CHANNEL f1 ======

Parameter	Value
NUC1	13C
PL	10.50 usec
PL1	0.00 da
PL1W	32.65452194 M
SP01	75.4765055 MHz

====== CHANNEL f2 ======

Parameter	Value
Chympg2	waltz16
NUC2	1H
PCYD2	120.60 usec
PL2	-3.60 da
PL12	17.76 da

ppm

![NMR spectrum](image)
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-137E-13C
EXPNO 1
PROCNO 1
Date_ 20100218
Time 15.19
INSTRUM av-300
PROBID 5 mm Dual 13C/
PULPROG zppp30
TU 65536
SOLVENT CDCl3
NS 73
DS 0
SW1 17985.611 Hz
FIDRES 0.278439 Hz
AQ 1.62192508 sec
AG 32768
DW 27.800 usec
DE 6.00 usec
TS 293.8 K
P1 1.00000000 sec
P1L 0.00000000 sec
TDO 444

==== CHANNEL f1 ======
NUC1 13C
P1 10.50 usec
PL1 0.00 db
PL1W 32.65452194 W
SFQ1 75.4760505 MHz

==== CHANNEL f2 ======
CPDPRG2 waltz16
NUC2 1H
PCPD2 120.00 usec
PL2 -3.00 db
PL12 17.76 db
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NMR
- VRT-1-139-10
- EXPRO 1
- PROCNO 1
- Date 20100215
- Time 14:16
- INSTRUM av-300
- PROBID 5 mm Dual 13C/
- PULPROG b250
- TD 65536
- SOLVENT CDCl3
- NS 16
- DS 0
- SNH 6172.829 Hz
- FIDRES 0.994190 Hz
- AQ 5.3084660 sec
- RG 8
- DW 31.000 usec
- DE 5.00 usec
- TE 293.9 K
- DI 0.20000000 sec
- TOO 4

=CHANNEL f1===
- NUC1 1H
- P1 11.00 usec
- FL1 -3.00 dB
- FL1W 25.0556241 W
- SPO1 300.1318533 MHz
- SL 32768
- SF 300.1300030 MHz
- WWN 8M
- SSB 0
- LB 1.50 Hz
- CB 0
- FC 1.40

ppm
0.22 0.99 1.99 2.03 2.99 3.09 5.86
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME: VRT-1-133B-13C
EXPMNO: 1
PROCNO: 1
DATE: 20100204
TIME: 19:30
INSTRUM: av-300
PROBND: 5 mm Dual 13C/
FURPBD: zpgpq3D
TD: 65536
SOLVENT: CDC13
NS: 44
DS: 0
SNH: 17985.611 Hz
PDRES: 0.274439 Hz
AQ: 1.8319508 sec
BG: 32768
DM: 27.800 usec
DR: 6.00 usec
TE: 294.0 K
DI: 1.0000000 sec
D11: 0.0300000 sec
TD0: 4444

======== CHANNEL f1 ========
NDC1: 13C
F1: 10.50 usec
PL1: 0.00 dB
PL1W: 32.65452194 W
SPOL: 75.4760195 MHz

======== CHANNEL f2 ========
CPEP2Z: wait1e6
NDC2: 1H
CP2D2: 120.00 usec
PL2: 3.00 dB
PLL2: 17.76 dB

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VRT-1-133A-13C
EXPNO 1
PROCNO 1
Date 20100204
Time 19.24
INSTRUM av-300
PROBHD 5 mm Dual 15°/
PULPROG zpg316
TD 65536
SOLVENT CDCl3
NS 43
DS 0
SNR 17985.61 Hz
FIDSNR 0.274459 Hz
AQ 1.8219508 sec
PG 30768
DW 27.800 ussec
DE 6.00 usec
TE 296.0 K
DI 1.00000000 sec
D11 0.03000000 sec
TDD 444

---------- CHANNEL f1 ----------
NDEC1 3C
P1 10.50 usec
PL1 0.00 db
PL1W 32.6542194 W
SPOL 75.4760505 MHz

---------- CHANNEL f2 ----------
CPDFO2 wait16
NDC2 1H
PCPD2 120.00 usec
PL2 -3.50 db
PL12 17.76 db

ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
Dual C-H probe proton starting parameters 7/23

NAME WRT-1-52H
EXPID 1
PROCNO 1
Date 20180323
Time 11.01
INSTRUM av-300
PROBID 5 mm Dual 1H/13C/
PULPROD zg30
TD 65536
SOVIENT cDCl3
NS 9
DS 0
SNR 6172.839 Hz
FIDRES 0.094190 Hz
AQ 5.3984660 sec
RG 8
DW 81.000 ussec
TE 6.000 ussec
TB 293.9 K
DI 0.20000000 sec
TD0 444

-------- CHANNEL 1 --------
NUC1 1H
DI1 11.00 ussec
PL1 -3.00 ussec
PL1W 23.05936241°
SPG1 300.1318933 MHz
SI 32768
SF 300.1300009 MHz
WDM EM
SSB 0
LB 0.30 Hz
UM 0
PC 4.00
NAME VRT-1-152H-13C
EXPNO 1
PROCNO 1
Date_ 20100333
Time 11.02
INSTROM av-300
PROBND 5 mm Dual 13C/
PULPROG zppp30
TD 65536
SOLVENT CDCl3
NS 44
DG 0
SNH 17985.611 Hz
P1DRES 0.274439 Hz
AQ 1.8219528 sec
RG 32768
DW 27.800 usec
DE 6.00 usec
TB 293.9 K
D1 1.00000000 sec
D11 0.00000000 sec
TDO 44

====== CHANNEL f1 ======
NUC1 13C
P1 10.50 usec
PL1 0.00 dB
PL1W 32.65452194 W
SP01 75.4762905 MHz

====== CHANNEL f2 ======
CP2PROG waltz16
NUC2 1H
PCPD2 120.00 usec
PL2 -1.00 dB
PL2D 17.76 dB
Dual C-H probe proton starting parameters 7/23

NAME	VRT-1-1533
EXPCNO	1
Date	20100320
Time	14:05
INSTRUM	av-300
PULPROG	5 mm Dual TC/FG30
TD	65516
SOLVENT	CDCl3
NS	13
DS	0
SW	6172.83Hz
FIDRES	0.094190Hz
AQC	5.3084660 sec
DG	88.0000sec
DE	6.0000sec
TE	294.3K
D1	0.20000000sec
T2D	444

====== CHANNEL 1 ======
NUM1	11.0000sec
P1	0.0000utm
PL1	3.0000ns
PL1W	25.05936241w
SF01	300.1318533MHz
SI	30768
SF	300.1300036MHz
WDW	EM
NEN	0
LB	0.300Hz
GB	0
PC	4.00

Diagram of chemical structure:

```
\text{O} \text{Ph}_2
\text{N}
```

Diagram of NMR spectrum with peaks at various ppm values.
AV-300 Dual C-H probe Carbon starting parameters 7/23/03

NAME VR-1-139-13-13C
EXPNO 1
PROCNO 1
Date 20100215
Time 13:33
INSTRUM av-300
PROBHLD 5 mm Dual 13C/
PULPROG zgpg30
TD 65536
SOLVENT CDC13
Rel 37
SNM 4
FIDRES 17995.61 Hz
AQ 0.274439 Hz
BQ 1.8219508 sec
BQ 297.68
DW 27.800 usec
DE 6.00 usec
TE 293.8 K
DI 1.00000000 sec
DL 0.03000000 sec
TD0 10000

======== CHANNEL #1 ========

NUC1 13C
Pl 10.50 usec
PL1 0.00 dB
PL1W 32.65652194 W
SP01 75.4760505 MHz

======== CHANNEL #2 ========

CPDPRG2 waltz16

NUC2 13C
PCPD2 120.00 usec
PL2 -3.00 dB
PL2W 17.76 dB
AVB-400 ZBO Carbon Starting parameters 6/11/03 RN

NAME VRT-2-103-13C
EXENO 1
PROCNO 1
Date 20100928
Time 17.08
INSTRUM AVB-400
PROBHD 5 mm PANBO BB-
FULPROG zggp30
TD 65536
SOLVENT CDC13
NS 35
DS 0
SNH 23980.814 Hz
FIDRES 0.365918 Hz
AQ 1.364756 sec
RG 16384
DW 20.850 usec
DE 6.00 usec
TR 302.5 K
D1 1.50000000 sec
D11 0.03000000 sec
TD0 444

===== CHANNEL f1 =====
NUC1 13C
F1 8.50 usec
FL1 -2.00 dB
F1LW 47.77286148 W
SP1 100.6226298 MHz

===== CHANNEL f2 =====
CP/PRG2 waltz16
NUC2 1H
PCF2 70.00 usec
PL2 -3.00 dB
PL2 16.00 dB
AVQ-400 QNP Proton starting parameters. 7/16/03. Revised 7/22/03 RN

Diagram:

A diagram of a molecular structure with labels indicating various chemical shifts and peaks.

Textual Information:

- **NAME:** 91b-7-102-1
- **RTNO** 1
- **PROCNO** 1
- **Date:** 20100207
- **Time:** 16:56
- **INSTDRUMM:** AVQ-400
- **PROBDN:** 5 mm QNP In/13
- **PULPROG:** zg50
- **TD:** 65336
- **SOLVENT:** CDC13
- **NS:** 8
- **DS:** 0
- **SNR:** 8012.820 Hz
- **FIDRES:** 0.122166 Hz
- **AQ:** 4.0895586 sec
- **RG:** 512
- **CW:** 62.400 use
- **OE:** 6.00 use
- **TE:** 292.7 K
- **D1:** 1.0000000 sec
- **TD0:** 1

CHANNEL f1 =====

- **MNU1:** 1M
- **P1:** 12.80 use
- **PL1:** 0.20 db
- **PL1W:** 9.545158888 W
- **SP01:** 400.1324700 MHz
- **SL:** 65576
- **SP:** 400.1300142 MHz
- **WCM:** 0
- **SGB:** 0
- **LB:** 0.30 Hz
- **GB:** 0
- **FC:** 4.00

Chemical Shifts:

- 9.99 ppm
- 8.99 ppm
- 8.10 ppm
- 7.99 ppm
- 7.69 ppm
- 7.65 ppm
- 7.61 ppm
- 7.57 ppm
- 7.53 ppm
- 7.49 ppm
- 7.45 ppm
- 7.41 ppm
- 7.37 ppm
- 7.33 ppm
- 7.29 ppm
- 7.25 ppm
- 7.21 ppm
- 7.17 ppm
- 7.13 ppm
- 7.09 ppm
- 7.05 ppm
- 7.01 ppm
- 6.97 ppm
- 6.93 ppm
- 6.89 ppm
- 6.85 ppm
- 6.81 ppm
- 6.77 ppm
- 6.73 ppm
- 6.69 ppm
- 6.65 ppm
- 6.61 ppm
- 6.57 ppm
- 6.53 ppm
- 6.49 ppm
- 6.45 ppm
- 6.41 ppm
- 6.37 ppm
- 6.33 ppm
- 6.29 ppm
- 6.25 ppm
- 6.21 ppm
- 6.17 ppm
- 6.13 ppm
- 6.09 ppm
- 6.05 ppm
- 6.01 ppm
- 5.97 ppm
- 5.93 ppm
- 5.89 ppm
- 5.85 ppm
- 5.81 ppm
- 5.77 ppm
- 5.73 ppm
- 5.69 ppm
- 5.65 ppm
- 5.61 ppm
- 5.57 ppm
- 5.53 ppm
- 5.49 ppm
- 5.45 ppm
- 5.41 ppm
- 5.37 ppm
- 5.33 ppm
- 5.29 ppm
- 5.25 ppm
- 5.21 ppm
- 5.17 ppm
- 5.13 ppm
- 5.09 ppm
- 5.05 ppm
- 5.01 ppm
- 4.97 ppm
- 4.93 ppm
- 4.89 ppm
- 4.85 ppm
- 4.81 ppm
- 4.77 ppm
- 4.73 ppm
- 4.69 ppm
- 4.65 ppm
- 4.61 ppm
- 4.57 ppm
- 4.53 ppm
- 4.49 ppm
- 4.45 ppm
- 4.41 ppm
- 4.37 ppm
- 4.33 ppm
- 4.29 ppm
- 4.25 ppm
- 4.21 ppm
- 4.17 ppm
- 4.13 ppm
- 4.09 ppm
- 4.05 ppm
- 4.01 ppm
- 3.97 ppm
- 3.93 ppm
- 3.89 ppm
- 3.85 ppm
- 3.81 ppm
- 3.77 ppm
- 3.73 ppm
- 3.69 ppm
- 3.65 ppm
- 3.61 ppm
- 3.57 ppm
- 3.53 ppm
- 3.49 ppm
- 3.45 ppm
- 3.41 ppm
- 3.37 ppm
- 3.33 ppm
- 3.29 ppm
- 3.25 ppm
- 3.21 ppm
- 3.17 ppm
- 3.13 ppm
- 3.09 ppm
- 3.05 ppm
- 3.01 ppm
- 2.97 ppm
- 2.93 ppm
- 2.89 ppm
- 2.85 ppm
- 2.81 ppm
- 2.77 ppm
- 2.73 ppm
- 2.69 ppm
- 2.65 ppm
- 2.61 ppm
- 2.57 ppm
- 2.53 ppm
- 2.49 ppm
- 2.45 ppm
- 2.41 ppm
- 2.37 ppm
- 2.33 ppm
- 2.29 ppm
- 2.25 ppm
- 2.21 ppm
- 2.17 ppm
- 2.13 ppm
- 2.09 ppm
- 2.05 ppm
- 2.01 ppm
- 1.97 ppm
- 1.93 ppm
- 1.89 ppm
- 1.85 ppm
- 1.81 ppm
- 1.77 ppm
- 1.73 ppm
- 1.69 ppm
- 1.65 ppm
- 1.61 ppm
- 1.57 ppm
- 1.53 ppm
- 1.49 ppm
- 1.45 ppm
- 1.41 ppm
- 1.37 ppm
- 1.33 ppm
- 1.29 ppm
- 1.25 ppm
- 1.21 ppm
- 1.17 ppm
- 1.13 ppm
- 1.09 ppm
- 1.05 ppm
- 1.01 ppm
- 0.97 ppm
- 0.93 ppm
- 0.89 ppm
- 0.85 ppm
- 0.81 ppm
- 0.77 ppm
- 0.73 ppm
- 0.69 ppm
- 0.65 ppm
- 0.61 ppm
- 0.57 ppm
- 0.53 ppm
- 0.49 ppm
- 0.45 ppm
- 0.41 ppm
- 0.37 ppm
- 0.33 ppm
- 0.29 ppm
- 0.25 ppm
- 0.21 ppm
- 0.17 ppm
- 0.13 ppm
- 0.09 ppm
- 0.05 ppm
- 0.01 ppm

Dual C-H probe proton starting parameters 7/23

NAME g1h-7-127-2
EXPNO 1
PROCNO 0
Date 20100503
Time 11.54
INSTRUM ESE-300
PROBMD 5 mm Dual 13C/
FULTRIG zg30
TD 65336
SOLVENT CDCl3
NS 32
DS 0
SNH 6172.839 Hz
FIDRES 0.0794190 Hz
AQ 5.3084666 sec
RG 362
DW 61.000 usec
DE 6.000 usec
TE 294.2 K
DI 0.20000000 sec
TDO 0

======== CHANNEL f1 ========
NUCL 1H
P1 11.000 usec
PLL -2.000 dB
FLW 22.05936241 MHz
SPQ 300.133863 MHz
SI 32768
ST 300.130689 MHz
MDW EM
SSB 0
LB 0.30 Hz
GB 0
FC 4.00
noesy; δS = 1.2; NS = 2
Sample ID: JW-03-107B
Filename:
C:\EZStart\Projects\Default\Data\JWu\JW-03-107B_AS9901ET_40min.met3-15-2010
11-20-55 PM.dat
Method:
C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 µL

Description: [Data Description]

![Graph with retention times and areas for peaks]

2: 254 nm, 4 nm Results

Retention Time	Area	Area Percent
19.035	948215	51.478
22.624	893783	48.522

![Graph with retention times and areas for another set of peaks]

Retention Time	Area	Area Percent
19.035	948215	51.478
22.624	893783	48.522
Sample ID: JW-03-107Bchiral
Filename:
C:\EZStart\Projects\Default\Data\JWu\JW-03-107Bchiral_AS9901BT_30min.meet3-16-2010 12-16-41 PM.dat
Method:
C:\EZStart\Projects\Default\Method\Vivek\AS9901Et-30min.meet
Injection volume: 5 uL

Description: {Data Description}

![Graph 1]

Retention Time	Area	Area Percent
19.483	591399	2.547
22.757	2262378	97.453

![Graph 2]

Retention Time	Area	Area Percent
19.477	573395	2.642
22.757	21131911	97.358
Sample ID: VRT-1-152D-Rac
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-152D_Rac-AS99505-30min.met?
Method: C:\EZStart\Projects\Default\Method\Vivek\AS99505ET-30min.met
Injection volume: 1 uL

Description: {Data Description}

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
11.829	2417646	49.976
14.400	2419995	50.024

Page 1 of 2
3/19/2010 4:17:24 PM
Sample ID: VRT-1-152D

File names:
C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-152DAS99505-30min.met
Method:
C:\EZStart\Projects\Default\Method\Vivek\AS99505ET-30min.met
Injection volume: 2 uL

Description: {Data Description}

4: 220 nm, 4 nm Results

Retention Time	Area	Area Percent
11.541	408348	4.370
14.512	8936979	95.630

Retention Time | Area | Area Percent

Page 1 of 2

3/19/2010 4:38:14 PM
Sample ID: JW-03-107D
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-107D_AS9901ET_40min.met3-16-2010 12-34-05 AM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 uL

Description: (Data Description)

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
13.883	4987608	50.023
15.504	4982970	49.977

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
13.877	5376123	50.035
15.504	5368638	49.965
Sample ID: JW-03-107Dchiral
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-107Dchiral_A9901ET_30min.met3-16-2010 1-19-42 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\A9901ET-30min.met
Injection volume: 5 uL

Description: {Data Description}

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
14.059	454706	2.420
15.552	18335038	97.580

\[95.2\]

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
14.064	490737	2.420
15.552	19789677	97.580
Sample ID: VRT-1-139-7-rac
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-139-7-racAS9901E t-30min.met2-15-2010 7-40-36 PM.dat Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901Et-30min.met Injection volume: 5 uL

Description: {Data Description}

![Graph](Image)

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
17.584	7213123	55.650
19.691	5748433	44.350

![Graph](Image)

Retention Time	Area	Area Percent
Sample ID: VRT-1-139-7
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-139-7AS9901Et-30 min_met2-15-2010 8-12-29 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901Et-30min_met
Injection volume: 5 uL

Description: {Data Description}

![Graph with peaks and data points]

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
17.184	724444	2.884
18.997	24397158	97.116

![Graph with retention time and area]
Sample ID: 15-174A
Filename: C:\EZStart\Projects\Default\Data\Nathan\ns15-174A-12-19-2009 1-19-37
PM-AD995005ET.met.dat Method: C:\EZStart\Projects\Default\Method\Nathan\AD995005ET 45min.met
Injection Volume: 4 μL

Description: {Data Description}

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
14.821	443995	8.802
15.808	206784	40.980
16.885	494466	9.803
22.096	2638556	40.415

2: 254 nm, 4 nm Results

Retention Time	Area	Area Percent
14.805	98102	8.817
15.819	454600	40.356
16.880	112536	10.114
22.107	447454	40.214
Sample ID: VRT-1-137E

Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-137EVRT-1-136D.met2-11-2010 7:29:21 AM.dat Method: C:\EZStart\Projects\Default\Method\Vivek\VRT-1-136D.met
Injection volume: 2 µL

Description: [Data Description]

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
15.579	39375	0.781
17.077	107920	2.139
18.437	803826	15.935
26.421	4093302	81.145

Page 1 of 2 2/11/2010 7:30:57 AM
Sample ID: VRT-1-133C-Racemic

Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-133C-RacemicWH9703ET-90min.met 20-2010 3-50-04 PM.dat

Method: C:\EZStart\Projects\Default\Method\Vivek\WH9703ET-90min.met

Injection volume: 1 μL

Description: [Data Description]

![Graph](image)

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
51.648	475163	12.333
57.611	487115	12.644
73.504	1420619	36.874
83.488	1469762	38.149

![Graph](image)

Retention Time	Area	Area Percent

Page 1 of 2

J/20/2010 3:51:44 PM
Sample ID: VRT-1-152F
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-152F\WH9703ET-90min.met
Method: C:\EZStart\Projects\Default\Method\Vivek\WH9703ET-90min.met
Injection volume: 1 μL

Description: (Data Description)

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
51.429	35226	0.505
57.104	5525286	79.170
73.056	1279889	18.339
83.264	138592	1.986

2: 220 nm, 4 nm Results

Retention Time	Area	Area Percent
51.536	31969	0.516
57.099	4876875	78.795
73.008	1152092	18.614
83.264	128446	2.075
Sample ID: JW-03-108A
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-108A_AS9901ET_40min.met3-16-2010
7-57-01 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 uL

Description: {Data Description}

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
20.219	5234845	48.972
27.984	5454555	51.028

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
20.219	5102514	48.828
27.984	5347560	51.172
Sample ID: VRT-1-152B
Filename:
C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-152BAS901ET-40m
in.met 3-20-2010 10:10:04 PM.dat Method:
C:\EZStart\Projects\Default\Method\Vivek\AS901ET-40min.met
Injection volume: 5 μL

Description: {Data Description}

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
20.677	314407	2.202
28.091	13964418	97.798
Sample ID: JW-03-1088
Filename:
C:\EZStart\Projects\Default\Data\JW\JW-03-107B_AS9901ET_40min.met3-16-2010
9-10-05 PM.dat Method:
C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 uL

Description: {Data Description}

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
21.392	5735548	50.661
28.197	5585924	49.339

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
0.288	712	0.006
0.848	2899	0.024
1.461	39	0.000
2.139	68	0.001
2.224	72	0.001
2.299	93	0.001
2.469	115	0.001
2.512	48	0.000
2.560	105	0.001
2.656	97	0.001
3.269	21	0.000
3.755	297966	2.476
4.528	89069	0.740
Sample ID: VRT-1-152A
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-152AAS9901ET-40m in.met 3-10-2010 9-28-10 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 μL

Description: {Data Description}

Retention Time	Area	Area Percent
22.123 | 250463 | 1.455
28.528 | 16363043 | 98.545
Results

Pk #	Retention Time	Area Percent	Lambda Max
1	11.868	48.997	200
2	12.648	51.003	201
1: 255 nm, 4 nm

Results

Pk #	Retention Time	Area Percent	Lambda Max
1	11.732	94.922	202
2	12.520	5.078	205

Pk #	Retention Time	Area Percent

P1
1: 195 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
35.224	4058715	52.359	206
42.404	3692945	47.641	205

2: 205 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
0.432	115	0.001	395
0.680	3670	0.023	198
0.760	3751	0.024	462
0.904	1655	0.011	319
1.240	19575	0.125	491
1.436	20984	0.134	669
2.136	187	0.001	416
2.996	192734	1.234	205
3.216	97385	0.623	205
3.412	1162283	7.439	205
4.184	2430752	15.558	205
5.120	101369	0.649	213
5.296	23850	0.153	210
5.436	49458	0.317	211
5.836	33462	0.214	238
5.984	20728	0.133	226
6.208	13053	0.084	796
6.436	33632	0.215	253
JW-03-107Chiral
C: \EZStart\Projects\Default\Method\wataru\IC 100%D 1ml min 60min.met
3/17/2010 2:59:32 PM
C: \EZStart\Projects\Default\Data\Jeff\JW-03-107Chiral.dat

1: 195 nm, 4 nm Results
Retention Time Area Area Percent Lambda Max
34.896 5426707 91.713 206
42.360 490326 8.287 205

2: 205 nm, 4 nm Results
Retention Time Area Area Percent Lambda Max
34.888 7742417 91.596 206
42.380 710341 8.404 205

3: 225 nm, 4 nm Results
Sample ID: VRT-1-154C-Racemic
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-154C-RacemicAS98 02-40min.met3-19-2010 1-35-31 FM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9802-40min.met
Injection volume: 2 µL

Description: {Data Description}

![Graph showing retention times](image)

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
24.875	20418087	50.126
30.736	20315717	49.874

![Graph showing retention times](image)

Retention Time	Area	Area Percent

Page 1 of 2
Sample ID: VRT-1-154C
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-154C-AS9802-40min.met3-19-2010 2-17-34 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9802-40min.met
Injection volume: 2 µL

Description: [Data Description]

1: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
25.003	759114	1.467
30.112	5096378	98.533

Page 1 of 2

3/19/2010 2:19:16 PM
Sample ID: JW-03-108C
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-108c_AS9901ET_40min.met3-16-2010 10-23-08 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 uL

Description: {Data Description}

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
15.947	14518430	50.435
19.237	14268032	49.565

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
15.947	11244006	50.367
19.237	11080327	49.633
Sample ID: JW-03-108Cchiral
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-108cChiral_AS9901ET_40min.met3-16-2010 11:36-11 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9901ET-40min.met
Injection volume: 5 uL

Description: {Data Description}

![Graph](image_url)

1: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
16.315	2249590	4.827
19.104	44353893	95.173

2: 230 nm, 4 nm Results

Retention Time	Area	Area Percent
16.309	1694672	4.751
19.109	33976702	95.249

Page 1 of 2

3/16/2010 11:37:48 PM
Sample ID: VRT-1-145B-Rac
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-1-145B-Rac\9802-30min.met
Method: C:\EZStart\Projects\Default\Method\Vivek\9802-30min.met
Injection volume: 5 uL

Description: {Data Description}

4: 210 nm, 4 nm Results

Retention Time	Area	Area Percent
14.053	4325748	50.024
28.469	4321597	49.976

Retention Time Area Area Percent

Page 1 of 2 2/25/2010 2:56:50 PM
Sample ID: JW-03-102
Filename: C:\EZStart\Projects\Default\Data\JWu\JW-03-102_9802ET_35min.met 3-8-2010 6:41-09 PM.dat
Method: C:\EZStart\Projects\Default\Method\Vivek\AS9802ET-35min.met
Injection volume: 5 μL

Description: {Data Description}

![Graph 1: 210 nm, 4 nm Results](image1)

Retention Time	Area	Area Percent
14.325	685817	4.008
29.744	16425704	95.992

![Graph 2: 220 nm, 4 nm Results](image2)

Retention Time	Area	Area Percent
14.325	750475	4.006
29.744	18222910	95.994

Page 1 of 2 3/8/2010 6:42:45 PM
3: 309 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.268	695041	49.344	206
27.312	713517	50.656	230

4: 296 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.268	1058948	49.902	206
27.324	1063118	50.098	230

5: 241 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.268	2129011	49.601	206
27.320	2163247	50.399	230
3: 309 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.664	24025	4.328	205
27.180	531135	95.672	205

4: 296 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.648	43303	5.108	205
27.176	804492	94.892	205

5: 241 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
19.656	80809	4.724	205
27.180	1629788	95.276	205
1: 225 nm, 4

Retention Time	Area	Area Percent	Lambda Max
12.448	5127896	49.906	234
21.200	5147158	50.094	234

2: 300 nm, 4

Retention Time	Area	Area Percent	Lambda Max
12.448	1221545	49.602	234
21.204	1241156	50.398	234
4: 207 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
11.448	573334	6.490	235
21.520	8260898	93.510	235

5: 228 nm, 4 nm Results

Retention Time	Area	Area Percent	Lambda Max
11.452	747593	6.568	235
21.516	10634883	93.432	235
Sample ID: VRT-2-109-Rac
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-2-109-Rac-AS9901IP.met 9-24-2010 10-40-59 AM.dat
Method: C:\EZStart\Projects\Default\Method\AS\AS9901IP.met
Injection volume: 1 µL

Description: [Data Description]

3: 277 nm, 4 nm Results

Retention Time	Area	Area Percent
8.368	1580236	50.323
9.771	1559957	49.677

Page 1 of 2

9/24/2010 10:42:36 AM
Sample ID: VRT-2-109
Filename: C:\EZStart\Projects\Default\Data\Vivek\Hydroamination\VRT-2-109-AS9901IP.met
9-24-2010 10:27-39 AM.dat
Method: C:\EZStart\Projects\Default\Method\AS\AS9901IP.met
Injection volume: 1 uL

3: 277 nm, 4 nm Results

Retention Time	Area	Area Percent
8.368	1534917	90.022
9.701	170135	9.978

S11

MeO₂C

CO₂Me

Me

Me

Me
Reaction mixture

QT16298 3 (0.050) Sb (80,70.00); Sm (SG, 3x3.00); Cm (3:178)

Chemical Formula: C_{23}H_{29}NO_{4}
Exact Mass: 383.21

15-Sep-2010
TOF MSMS 1360.00ES+
2.10e3
Reaction mixture, high m/z ions
QT16295 (0.017) Is (0.08,0.05) C89H85NO6PS2

15-Sep-2010
TOF MS ES+
3.29e12

Calculated

QT16295 11 (0.185) Sb (80,70.00); Sm (SG, 3x3.00); Cm (1:297)

TOF MS ES+
4.03e3

Measured