Comparison of the Hole Concentration determined by Transport Measurement for the Hole-doped Cuprate Superconductors

Tatsuya Honmaa, Pei Hereng Horb

aDepartment of Physics, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
bTexas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX. 77204-5002, USA.

Abstract

We have compared the hole concentration (P_{pl}) determined by hole-scale based on the thermoelectric power at RT (S^{290}) to the hole concentrations (P) determined by two popular hole-scales based on the superconducting critical temperature (T_c) and Hall coefficient (R_H). While the hole concentrations based on different hole-scales are different, we show that when the P_{pl} is divided by either the effective unit cell volume ($V_{u/euc}$) which is the unit-cell volume per one CuO$_2$ plane or the optimal hole concentration (P_{opt}) we can find some correlation between P_{pl} and P. That is, the normalized T_c (T_c/T_{max}) and the Hall number ($1/eR_H$) are well scaled with P_{pl}/P_{pl} and $P_{pl}/V_{u/euc}$, respectively. We find that the P_{pl}-scale can map to and reproduce the other two hole scales if proper dimensionality and normalization are taken into account but not vice versa.

Key words: Room-temperature thermoelectric power, hole-doping concentration, Hall number, superconducting critical temperature

1. Introduction

How to reliably measure the doped hole concentration (P) is one of the experimentally important problems for the high temperature superconductor cuprates (HTSC). A working hole scale will allow us to quantitatively compare various physical properties of many HTSC materials to identify intrinsic and universal properties of HTSC.

Based on the fact that La$_{2-x}$Sr$_x$CuO$_4$ (SrD-La214) and Y$_1$-Ca$_x$Ba$_2$Cu$_3$O$_{6+\delta}$ (CaD-Y1236) are two rare HTSC materials in which the P can be uniquely determined from the cation content alone, we have systematically studied the determination and carefully delineate the differences and the importance of the dimensionality of doped hole concentration for the HTSC [1, 2, 3]. Our analysis indicates that the thermopower at 290 K (S^{290}) can be used as a scale for hole-doping concentration per CuO$_2$ plane (P_{pl}) which is consistent with both SrD-La214 and CaD-Y1236 [1]. Further, we found that the Hall number (n_H) determined from the Hall coefficient (R_H) is well related with the hole-doping concentration for the effective unit cell volume ($P_{pl}/V_{u/euc}$), where the $V_{u/euc}$ is the unit-cell volume per one CuO$_2$ plane, in the case of single-layer HTSC [2]. Furthermore we show that hole concentration of the P_{pl}-scale is consistent with that determined by many other macroscopic and microscopic techniques, such as the titration technique, angle-resolved photoemission spectroscopy (ARPES) and near edge x-ray absorption fine structure (NEXAFS) [3].

There are other popular hole-scales proposed. For instance the hole scale based on the dome-shaped T_c behaviour of SrD-La214 was proposed and conveniently used. In this scale, the “T_c-scale” $T_c/T_{\text{max}}^{\text{max}} = 1-82.6(P-0.16)^2$ where the $T_{\text{max}}^{\text{max}}$ is a maximum in T_c for the HTSC material [4]. Also, the inverse Hall number per effective unit cell volume ($n_H/V_{u/euc}$)$^{-1}$ is proposed as the hole-scale [5]. We call it “R_H-scale”. In this report, we critically compare the differences among these three hole-scales, that is, our proposed P_{pl}-scale, T_c-scale and R_H-scale.

2. Results and Discussion

In Figure 1 we plot the Hall number per effective unit cell $n_H/V_{u/euc}$ as a function of P_{pl} for the typical HTSC. The $n_H/V_{u/euc}$ curve of the SrD-La214 comes from the refs. [5, 7, 8, 9, 10]. The $n_H/V_{u/euc}$ curve for the SrD-La214 exponentially increases with hole-doping. We also plot the data of Tl$_2$Ba$_2$CuO$_{6+\delta}$ (OD-Tl2201) [11] and Bi$_2$Sr$_2$-La$_2$CuO$_{6+\delta}$ (LaD-Bi2201) [12] as a function of P_{pl}. The $n_H/V_{u/euc}$ vs. P_{pl} for the OD-Tl2201 and LaD-Bi2201 deviates upward from the $n_H/V_{u/euc}$ curve of the SrD-La214. In the R_H-scale, the P is determined according to the inverse Hall number per effective unit cell ($n_H/V_{u/euc}$)$^{-1}$ curve of SrD-La214 [9]. That is, the $n_H/V_{u/euc}$ vs. P or ($n_H/V_{u/euc}$)$^{-1}$ vs. P is assumed to lie universally on a common curve. However, on the P_{pl}-scale there is no universal relation in $n_H/V_{u/euc}$ vs. P or ($n_H/V_{u/euc}$)$^{-1}$ vs. P. Accordingly, our P_{pl}-scale is not consistent with the R_H-scale. In stead we found that the Hall number of single-layer HTSC are well scaled by not P_{pl} but $P_{pl}/V_{u/euc}$ [2]. The inset shows the Hall number as a function of $P_{pl}/V_{u/euc}$. The Hall number vs. $P_{pl}/V_{u/euc}$ curves for the SrD-La214, OD-Tl2201 and LaD-Bi2201 are found to lie on a common curve as a function of $P_{pl}/V_{u/euc}$ [2]. This suggests that our $P_{pl}/V_{u/euc}$ can be related with not $n_H/V_{u/euc}$ but n_H. The Hall number or n_H is conventional 3D hole concentration. It is consistent with $P_{pl}/V_{u/euc}$. On the other hand, the P_{pl} or $n_H/V_{u/euc}$ is essentially 2D hole concentration, while the $P_{pl}/V_{u/euc}$ or n_H is 3D hole concentration.
If the material is homogeneous and isotropic then the P_{pl} and P_{pl}/V_{ew} or n_H/V_{ew} and n_H cannot be distinguished. Accordingly, the difference in the physical meaning between n_H/V_{ew} vs. P_{pl} and n_H vs. P_{pl}/V_{ew} is the difference in the characteristic dimensionality of the physical properties measured by thermoelectric power and Hall coefficient. So the our P_{pl}/V_{ew} is the 3D version of the P_{pl}-scale.

Figure 2 summaries the $T_c/T_{c\text{max}}$ as a function of the P_{pl} divided by the optimal hole concentration (P_{pl}^{opt}) where $T_c = T_{c\text{max}}$ [3]. The $T_c/T_{c\text{max}}$ for the SrD-La214 shows the well-known dome-shaped T_c-curve [4]. The YBa$_2$Cu$_3$O$_{6+x}$ (OD-Y123) shows a double-plateau corresponding to the 60 K and 90 K phases [5]. The other HTSC, which is almost all major HTSC except of SrD-La214 and OD-y123, follows an asymmetric half-bell-shaped T_c-curve [3]. When we plot all the data on the T_c-scale, all structure appeared on the P_{pl}-scale collapse into the dome-shaped T_c-curve as shown in the inset. Except of OD-Y123, the $T_c/T_{c\text{max}}$ curve in the underdoped side shows the similar behavior on both scales. Therefore, in the underdoped regime, the T_c-scale is same as the P_{pl}-scale which is normalized to the optimal doping concentration. Accordingly, the T_c-scale in the underdoped side is nearly identical to P_{pl}/P_{pl}^{opt} based on the proposed P_{pl}-scale, but the T_c-scale in the overdoped side is not consistent with the P_{pl}-scale. Many HTSC materials were studied and compared in the underdoped side. This is probably why the T_c-scale seems to work plausibly in many doping dependence studies where only the trend, not the absolute doping concentration, of the doping dependence was the primary concern.

In summary, we have compared our proposed hole-scale based on the S^{200} with two popular hole-scales. The hole concentrations determined by three hole-scales are not consistent among each other. However the normalized T_c ($T_c/T_{c\text{max}}(P_{pl}^{opt})$) and the Hall number ($n_H$) are well scaled with P_{pl}/P_{pl}^{opt} and P_{pl}/V_{ew}, respectively. Therefore, the P_{pl}-scale can map to and reproduce the other two hole scales if proper dimensionality and normalization are taken into account but not vice versa.

References

[1] T. Honma, P.H. Hor, H.H. Hsieh, M. Tanimoto, Phys. Rev. B 70 (2004) 214517.
[2] T. Honma, P. H. Hor, Supercond. Sci. Tech. 19 (2006) 907.
[3] T. Honma, P. H. Hor, Phys. Rev. B 77 (2008) 184520.
[4] M. R. Presland, J.L.Tallon, R.G. Buckley, R.S. Liu, N.E. Flowe, Physica C 176 (1991) 95.
[5] Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, S. Komia, Phys. Rev. B 61 (2000) R14956.
[6] T. Honma, P. H. Hor, Phys. Rev. B 75 (2007) 012508.
[7] H. Y. Hwang, B. Batlogg, H. Takagi, H.L. Kao, J. Kwo, R. Cava, J.J. Krajewski, Phys. Rev. Lett. 72 (1994) 2636.
[8] T. Nishikawa, J. Takeda, M. Sato, J. Phys. Soc. Jpn. 63 (1995) 1441.
[9] Y. Ando, A.N. Lavrov, S. Komia, K. Segawa, X. F. Sun, Phys. Rev. Lett. 87 (2001) 017001 .Y. Ando, Y. Kunita, S. Komia, S. Ono, K. Segawa, Phys. Rev. Lett. 92 (2004) 197001.
[10] K. Tamasaku, T. Ito, H. Takagi, S. Uchida, Phys. Rev. Lett. 72 (1994) 3088.
[11] M. A. Tanatar, V. S. Yefanov, V. V. Dyakin, A. I. Akimov, A.P. Chernyakova Physica C 185-189 (1991) 1247.
[12] Y. Ando, T. Murayama, S. Ono, Physica C 341-348(2000) 1913.