PPAR-γ integrates obesity and adipocyte clock through epigenetic regulation of *Bmal1*
Fig S1. Validation of two obese models. (A) H&E staining of WAT derived from ob/ob, HFD and control mice. Scale bar: 50 μm. (B) The diameter of adipocytes in WAT from ob/ob, HFD and control mice. Data are mean ± SD (n = 5). *p < 0.05 (t test). (C) Serum triglyceride and cholesterol levels in ob/ob, HFD and control mice at 6 circadian time points. Data are mean ± SD (n = 5). *p < 0.05 at individual time points as determined by two-way ANOVA and Bonferroni post hoc test.
Fig S2. Disruption of adipocyte clock in obese mice. (A and B) mRNA expression of clock genes (Clock, Per2, Cry2 and Rorα) in WAT derived from ob/ob (A), HFD (B) and control mice at 6 circadian times. Data are mean ± SD (n = 5). *p < 0.05 at individual time points as determined by two-way ANOVA and Bonferroni post hoc test.
Fig S3. Quantification data on the protein bands in Fig 1D. Data are mean ± SD (n = 5). *p < 0.05 as determined by two-way ANOVA followed by Bonferroni post hoc test.
Fig S4. mRNA expression of clock genes in SCN and liver of obese mice. mRNA expression of clock genes (*Bmal1*, *Rev-erbα*, *Dbp* and *Clock*) in SCN (upper panel) and liver (lower panel) derived from *ob/ob* and control mice at 6 circadian times. Data are mean ± SD (*n* = 5). *p < 0.05 at individual time points as determined by two-way ANOVA and Bonferroni post hoc test.
Fig S5. Free-running periods of ob/ob, HFD and control mice.
Fig S6. Protein expression of H3K9ac, H3K9me2, H3K9me3 and H3K27me3 in WAT tissues of ob/ob and control mice at CT6. Data are mean ± SD (n = 5).
Fig S7. Effects of C646 and MM-102 on the expression of Bmal1 (A), H3K27ac and H3K4me3 (B) in 3T3-L1 adipocytes. Data are mean ± SD (n = 3). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test).
Fig S8. Short-term (two weeks) treatment of glutamine or methionine enhances \textit{Bmal1} expression independent of body weight. (A) Body weight of HFD- and chow-fed mice treated with glutamine or methionine. (B) mRNA expression of \textit{Bmal1} and \textit{Rev-erba} in WAT in HFD- and chow-fed mice treated with glutamine or methionine. (C) Serum triglycerides and cholesterol in HFD- and chow-fed mice treated with glutamine or methionine. All data are mean ± SD (\(n = 5\)). *p < 0.05 (one-way ANOVA and Bonferroni post hoc test).
Fig S9. Effects of rosiglitazone (Rosi) on enrichments of H3K27ac and H3K4me3 at the Bmal1 promoter (A) and on Bmal1 expression (B) in 3T3-L1 adipocytes. Data are mean ± SD (n = 3). *p < 0.05 (two-way ANOVA and Bonferroni post hoc test).
Fig S10. Effects of rosiglitazone (Rosi) on mRNA expression of Bmal1 in 3T3-L1 adipocytes transfected with siSlc1a5 or control (siNC). Data are mean ± SD (n = 3). *p < 0.05 (t-test).
Fig S11. Schematic diagram showing a vicious circle between circadian disruption and obesity development.
Fig S12. mRNA expression of *nocturnin* (Noc) in WAT tissues in HFD-induced obese and control mice. Data are mean ± SD (*n* = 5).
Fig S13. mRNA expression of non-clock genes (Pgc-1α and Wnt-6) in WAT tissues in HFD-induced obese and control mice. Data are mean ± SD (n = 5). *p < 0.05 (t test).
Fig S14. Effects of HFD feeding for 3 days on expression of clock genes ($Bmal1$, $Rev-erb\alpha$ and Dbp) in WAT. Data are mean ± SD ($n = 5$).
Figure S15. Quantification data generated from Western blots in this study. Data are mean ± SD. *p< 0.05.
Table S1. Characteristics of obese and lean subjects.

Subjects	Obese	Lean
Number	13	10
Age	28.5 ± 5.1	35.4 ± 14.6
Gender (F/M)	10/3	6/4
BMI	40.2 ± 7.1	20.8 ± 1.8

BMI, body mass index; F, female; M, male.
Table S2. Sequences of primers for qPCR analysis

Name	Forward (5'-3' sequence)	Reverse (5'-3' sequence)
mBmal1	CTCCAGGAGGCAAGAAGATTC	ATAGTCCAGTGGAAGGAATG
mClock	CAACAGGAGGAGAACATTTCA	TGGCTCCTTTGGGTCTAT
mRev-erb	TTTTTCGCCGGGAGACTCCCAA	ATCTCGGGAAGGACATCCGGTTG
mRev-erbβ	GAAGATCGATCTTGTAGAGGT	CAGACACTTCTAAAGGGCGGCAC
mPer1	GAAAGAACAAGTGCTGTGGTTG	GCTGACGAGAGGAGCTTTTG
mPer2	CACACTTGCTCCGAAGATA	ACTGCTCCTTGAGACTGGAAGA
mCry1	CCCAGGCTTTTCCAGGAGTGGGA	CGCGGAGTGGTCTTCTATCCGGTTG
mCry2	GATGCCGATCTCAGTGAGATG	GGCAGTACAGTGGAAGGAGA
mDbp	CAATCTGGGAAACAACACCTCCTGG	AAGCTCCTAGCCGGAGGAGA
mRorα	GAGACCCCGCAGACACCGGGC	TGACTGAGATACCTCCGGCT
mSlc1a5	CATGTAAAGATACGAGATCTGTA	GACGATACGAGAGGAGGAA
mSlc38a1	ATCCTTGAGGACCACCTCTCT	TGGCATCCTCTCCCTCAGTGA
mSlc38a2	CATCCGCTCTTGCTTTCTCCCTG	AAAGAGAGACACGAGGAGAA
mBhmt	TTAGAAAGCTCTAAATGGCCGGAG	GATGAAGCTGAGAAGCTGCT
mMtr	TCCTCCCTGCGCCTATCTCTATTT	GCGGAGGATACGAGAGGAGA
mMat2a	GGCTTTGCTAGGAGATCTGGA	ACCAAATGGGCAACTAAGGGC
mGlu	AGGCAGTGGAGTACGAGATCTGGA	AACGAGGAGAGGAGGAGGAGA
mGls	GCACGGGAGGATTGACTGCA	ATCCTCGCTTGGCTCTTGGGGA
mGls2	AGTTCACGAGGCTCTGAGAAGGA	TGGCTCCTACACCTCCTCCGGTT
mPpar-γ	AACCAGACACAAATCCACAC	ATCAGGAGAGGAGGAGGAGA
mPgc-1α	GCACGGAGGCTATCTCCATTGGA	TGGGAGGAGGAGGAGGAGGAGA
mWnt-6	GCACCGAGATCCCGAGAGACAG	TGGACAGGCTGGAGATGGACC
mGapdh	CAAGGAGTAAAGAACGCTCTGGAA	CGAGTGGGAGTGGCCGCTCT
mNoc	CGCGTCTCGTGCTGGCTATCTA	GAGCGCAGTCTTGCTGGGAAGG
hBMAL1	ACTTCCCTCTCATTGCTCAA	ATCCAGGCCCCATCTTTGGG
hREV-ERB	GACCTGAGACAGCCCTGGACTC	GGTGCCATTGGAGATTGTCAC
hDBP	CCGTACGAGGCTTTTATAGGACTG	TCAAAGCGGATACCAAGACCATGA
hSLC1A5	AGGCTTTCTCTGGCTGGTAA	ACCACGCAGTTAGGGTCTCCG
hGAPDH	CATGAGAATGATGACACAGGC	ATCGCTCCACGATACCAAGG

m: mouse h: human
Table S3. Sequences of primers for ChIP assays

Name	Forward (5'-3' sequence)	Reverse (5'-3' sequence)
Bmal1_H3K27ac	GTAGGTCAAGGACGGAGGT	GCAGCCATGCGGACACTCA
Pgc-1α H3K27ac	CAAAGCTGGCTTCAGTCAC	AAAAGTGGGCTGGGCTGTCA
Bmal1_H3K4me3	AGAGATGCGGGCTTTTCTC	GTGACTGCTCCTCAGCTCTC
Wnt-6_H3K4me3	CTTCCTTCCTCCCAAAGAAAT	GTTCAACAGCTTTCCCTACCTATCT
Slc1a5_PPRE	TTCTTTCTCCAAGAAAGCCCT	GTGCTTTTCTACAGGCGCTC