GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple

Satish Kumar1,2, Claire Molloy1, Martin Hunt3, Cecilia Hong Deng2, Claudia Wiedow3, Christelle Andre2, Andrew Dare2, and Tony McGhie3

1The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, Havelock North 4130, New Zealand
2The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
3The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand

Abstract
Understanding the genetic architecture of apple phytochemicals, and their interplay with conventional selection traits, is critical for the development of new apple cultivars with enhanced health benefits. Apple accessions (n = 344) used for this genome-wide association study (GWAS) represented the wide diversity of metabolic profiles in the domesticated and wild Malus genepools. Fruit samples were phenotyped for 34 metabolites, including a stable vitamin C glycoside “ascorbic acid 2-glucoside” (AA-2G), and the accessions were genotyped using the Apple 20 K SNP Array. Several fruit quality traits, including red skin over-colour (OCOL), were also assessed. Wild Malus accessions showed at least 2-fold higher average content of several metabolites (e.g. ascorbic acid, chlorogenic acid, phloridzin, and trilobatin) than Malus domestica accessions. Several new genomic regions and potential candidate genes underpinning the genetic diversity of apple phytochemicals were identified. The percentage of phenotypic variance explained by the best SNP ranged between 3% and 21% for the different metabolites. Novel association signals for OCOL in the syntenic regions on chromosomes 13 and 16 suggested that whole genome duplication has played a role in the evolution of apple red skin colour. Genetic correlations between phytochemicals and sensory traits were moderate. This study will assist in the selection of Malus accessions with specific phytochemical profiles to establish innovative genomics-based breeding strategies for the development of apple cultivars with enhanced nutritional value.

Introduction
Apples are among the most consumed fruit worldwide, and studies have shown a clear trend for higher polyphenol content in whole apples leading to greater overall health benefits [1]. Apple polyphenols can be extracted and used as functional food materials that aid in weight management, satiety and obesity prevention. Consumption of apple polyphenol extract was found to have an inhibitory effect on the accumulation of visceral fat in humans [1]. The apple phytochemicals are widely recognised for their antioxidant activity, suggesting that apple or constituents of apple may contribute to increased total antioxidant capacity in human plasma. Various flavonoids compounds are found in apple, and studies in humans using flavonoid-containing extracts showed enhanced cognitive function and memory performance [2]. The phenolic content in cultivated apples was 68% lower than in their wild progenitors (Malus sieversii), and suggested that selection against internal flesh browning and bitterness could have contributed to the lower phenolic content in commercial cultivars. There is an opportunity to utilise the diversity of wild apples to enhance the nutritional content of future cultivars.

QTL mapping studies, using relatively small bi-parental populations (ca. 150) of M. domestica, have identified the upper region of chromosome 16 as a potential hotspot for apple phytochemicals [7, 8]. In a genome-wide association study (GWAS) on fruit samples of 136 M. domestica accessions, McClure et al. [9] reported that the concentrations of polyphenols varied by multiple folds across cultivars, and that most polyphenols could be predicted using DNA markers. In order to capture genetic diversity across species, a recent GWAS using 124 accessions of M. domestica and Malus spp. identified marker-trait associations for phytochemicals on each linkage group [10]. Apples with higher ascorbic acid (AsA) content would not only provide additional health benefits, but would also enhance the storage and shelf-life of the fruit. The recent discovery of a more stable glycosylated version of AsA, “ascorbic acid 2-β-glucoside” (AA-2βG), in wild Malus species offers opportunities to develop new cultivars with all the associated health benefits of vitamin C [5]. Several studies have been conducted to identify QTL...
for the AsA biosynthesis [6], but apparently there are no published reports on the genetic control of AA-2βG in fruit crops.

Studies on apple phytochemicals have reported on the genetic variation [3, 11] and marker-trait associations [9], but the genetic relationships between apple fruit quality traits (especially sensory traits) and flavonoids have not been reported. The complex quantitative nature of fruit quality traits and phytochemicals can be affected by genetic and non-genetic factors, hence an understanding of the genetic interplay between these two groups of traits would be vital for parental selection and apple cultivar breeding. In the present GWAS, we used by far the largest sample set (ca. 350) of M. domestica and wild Malus species accessions to assess the diversity and genetic architecture of main bioactive compounds of apple fruit. Marker-trait association analyses were conducted, and the relationships between sensory traits and phytochemicals were also investigated to guide the development of bio-fortified apple cultivars.

Results
Variation of phytochemicals in apple germplasm

The targeted LC–MS analyses of fruit samples revealed the presence of 34 compounds in the accessions of M. domestica and wild species. Seasonal variation was observed for most phytochemicals for the 15 accessions assessed in both years, with between-year correlations ranging from 0.22 for fatty acids to 0.96 for dihydrochalcones, with an average of 0.65 across all 34 compounds.

While most of the 34 compounds showed substantial variation among the 344 accessions (Supplementary Figure S1), only 14 were significantly (p < 0.01) different between Malus spp. and M. domestica accessions (Table 1). The concentrations of AsA, chlorogenic acid, epicatechin, phloretin, phloridzin, procyanidins B2, B7 and C1 were significantly higher in Malus spp. accessions by two to three fold (Table 1). The maximum phloridzin content assessed in wild Malus spp. accessions was 430 μg/g FW compared with a maximum of 115 μg/g FW in M. domestica. Similarly, the highest chlorogenic acid (CGA) content (2746 μg/g FW) in Malus spp. accessions was about two-fold higher than the maximum of 1104 μg/g FW in cultivated apples. The average content of triterpenoids (e.g. maslinic, betulinic, ursolic and corosolic acid) in M. domestica accessions was 11, 8, 60 and 21 μg/g FW, respectively, which did not differ significantly from the wild species (Table 1).

AA-2βG was detected in two-thirds of wild species accessions, with an average of 927 μg/g FW. On the other hand, only about 2% of M. domestica accessions displayed AA-2βG with a very small average content (< 1 μg/g FW). The average content of malic acid (MA) in M. domestica accessions was 8682 μg/g FW, which was significantly lower compared with wild accessions (11504.3 μg/g FW) (Table 1). Trilobatin was detected in the fruit of 9 out of 31 Malus species accessions, and the content in "Malus floribunda" 821 (33.1 μg/g FW) and Malus sieboldii "Snowbright" (29.9 μg/g FW) was about four times higher than in the M. trilobata accession (7.93 μg/g FW). Trilobatin was not considered for GWA analysis due to the low detection frequency. The phytochemicals-based clustering (Fig. 1A) of domesticated and wild species accessions overlapped as many of the compounds were not significantly different between the two gene pools. The PCA loadings plot (Fig 1B) suggested that the accessions of wild species were characterised by a higher content of various compounds, including procyanidin B2, procyanidin B7, procyanidin C1, phloretin, epicatechin, and chlorogenic acid – supporting the results described in Table 1.

Genomic heritability (h^2) estimates suggested that most of the phytochemicals in this study have high heritability (Supplementary Figure S2). Pomaceic acid, t5CouQA, ursolic acid and 3-hydroxychloridizin were the least heritable (h^2 < 0.20) traits, while quercetin glycosides, chlorogenic acid, phloridzin and epicatechin were among the highly heritable (h^2 > 0.50) traits. AA-2βG was more heritable than AsA (0.43 versus 0.20). Flavour intensity (FINT) was the least heritable (h^2 = 0.14) and the OCOL was the most heritable (h^2 = 0.82) trait among the fruit quality traits (Supplementary Figure S2).

Genetic correlations among phytochemicals and fruit quality traits

The degree of the correlations among all pairs of phytochemicals are illustrated in Fig. 2 and Supplementary Figure S3. Significant (p < 0.001) positive correlations among epicatechin and the procyanidins were observed. The correlations among the six quercetin compounds varied between 0.40 and 0.90 (p < 0.001). Although several pairs of compounds were negatively correlated, only few pairs (e.g. corosolic acid and MA, trans-5-p-coumaroyl quinic acid and pomaceic acid) were found to be significant (p < 0.001). Maslinic and corosolic acids showed strong positive correlation with several other compounds (e.g. annurcoic acid and 3-oxo-hydroxy-urs-12-en-28-oic acid). The correlation (ca. 0.40) between AsA and AA-2βG was significant, and both of these compounds were also significantly correlated with MA (Fig 2). The clusters displayed by the dendogram showed that the flavonols (procyanidins, catechin, and epicatechin) and flavonoids (quercetin compounds) clustered separately. Similarly, several triterpene acids, such as pomaceic, annurcoic, euscaphic, pomoic, maslinic, betulinic and ursolic acids also clustered together (Fig. 2).

The magnitude of correlation between phytochemicals and fruit quality traits ranged between −0.35 and 0.35 (Supplementary Figure S4), and most of these were non-significant. Noteworthy relationships included a significant negative correlation between AsA and fruit browning disorder (FBD; r = −0.30, p = 8.6E-09), and between trans-4-p-coumaroyl quinic acid and eating quality (EQUA; r = −0.34, p = 5.4E-11). Not surprisingly, MA content was positively correlated with sourness (SOUR; r = 0.32, p = 1.2E-09) and flavour intensity (FINT; r = 0.25, p = 2.6E-06). Fruit skin colour (OCOL) was significantly positively correlated with ursolic acid content (r = 0.36, p = 2.6E-12). Among all the phytochemicals assessed in this study, corosolic acid showed the highest positive correlation with the fruit texture traits (FIRM: 0.29, p = 6.8E-08, CRISP: 0.31, p = 2.7E-09) (Supplementary Figure S4).

Genetic structure and linkage disequilibrium

The first principal component (PC1) distinguishes the accessions belonging to wild Malus species and M. domestica, while the PC2 revealed the variability within each of the two gene pools (Fig 3A). Further analysis using the Neighbour Joining (NJ) tree revealed several sub-clusters among M. domestica accessions (Supplementary Figure S5), which highlighted the extent of cryptic genetic relatedness among the accessions of this study. Using the admixture model, as implemented in the STRUCTURE software, the mean estimated membership of M. domestica individuals to the two gene pools, namely M. domestica and Malus spp., was 0.76 and 0.24, respectively. Almost all accessions of M. domestica showed varying degree of introgression from the
Table 1. Distribution of the content of phytochemicals in the fruits from *Malus* germplasm

Trait Code	Mean	Maximum	Detected (%)	Mean	Maximum	Detected (%)
ascorbic acid AsA*	32.5	220.5	73	76.4	325.0	87
ascorbyl 2-beta-glucoside AA-2βG*	0.6	49.0	2	926.9	5765.0	67
3-hydroxyphlorizin 3-OH-Phlz*	1.1	7.2	69	6.4	54.4	93
3-oxo-hydroxy-urs-12-en-28-oic acid_1 3-oxo-OH*	21.9	146.4	100	12.8	56.3	100
annurcoic acid AnnA*	75.9	437.9	100	42.6	153.8	100
betulenic acid BetaA	8.1	31.3	99	7.6	26.4	100
catechin Catechin	28.2	210.9	92	20.9	131.8	67
chlorogenic acid CGA*	186.9	1104.0	100	434.8	2745.9	97
cis-4-p-coumaroyl quinic acid c4pCouQA	1.5	19.4	44	1.3	17.5	13
corosolic acid CoroA	21.2	97.5	100	16.5	56.0	100
epiCatechin epiCat*	120.1	960.4	100	278.2	1567.6	100
euscaphic acid EscaA	25.7	234.3	100	31.6	171.3	100
linoleic acid LinoA	11.3	83.4	97	17.6	126.4	100
malic acid MA*	8682.0	17718.1	100	11504.3	19901.1	100
malicic acid MasA	11.9	87.4	100	11.6	49.2	100
oleic acid OA	12.4	80.5	88	12.5	181.8	43
phloretin-2'-O-xyloglucoside phloretin*	22.2	156.9	100	95.3	303.1	97
phlorizin phlorizin*	19.2	115.5	100	60.6	430.4	100
pomolic acid PomaA*	21.3	79.7	100	15.2	36.0	100
pomaceic acid PomaA	5.1	260.8	66	2.0	22.7	60
procyanidin B1 ProCy_B1	38.4	202.0	92	42.0	140.2	87
procyanidin B2 ProCy_B2*	155.7	895.3	100	536.8	2284.4	100
procyanidin B5 ProCy_B5	6.4	41.0	83	10.9	45.0	60
procyanidin B7 ProCy_B7*	14.4	70.1	96	39.3	167.7	93
procyanidin C1 ProCy_C1*	80.7	514.0	99	226.7	1047.7	93
querectin 3-arabinopyranoside Q-arapy	35.6	193.4	100	35.9	153.6	100
querectin 3-galactoside Q-gal	57.8	408.4	100	60.6	224.2	100
querectin 3-glucoside Q-glu	20.0	116.9	100	30.0	107.9	100
querectin 3-rhamnoside Q-rha	32.9	152.5	100	34.9	290.1	100
querectin 3-rutinoside Q-rut	8.3	58.4	95	11.2	60.6	93
querectin 3-xylloside Q-xyl	18.7	120.5	100	18.9	110.9	100
trans-4-p-coumaroyl quinic acid t4pCouQA	47.5	571.9	100	48.2	287.6	83
trans-5-p-coumaroyl quinic acid t5pCouQA	8.5	141.3	68	6.3	37.6	47
ursolic acid UA	59.6	92.7	99	58.1	114.1	100

*Significantly (p < 0.01) different between the two gene pools

Figure 2. Heat map showing genetic correlations among all pairs of 34 metabolites measured across 344 apple accessions.
SNPs significantly associated with the three DHC compounds (3-hydroxyphloridzin, phloridzin, and phloretin-2’-O-xyloglucoside) were located on almost all chromosomes (Supplementary Figure S7; Supplementary Data Table S3). The glycosyltransferase protein MD01G1073400 is within 220 kb upstream of the SNP (chr1:18116719) associated with 3-hydroxyphloridzin and phloretin, while UDP-glycosyltransferase protein MdGT1 (MD01G1077200) is within 260 kb downstream. Along with a cluster of NB-ARC domain-containing disease resistance proteins (MD01G1186500, MD01G1186600, etc.), 1-amino-cyclopropane-1-carboxylate synthase 12 (MDACS12: MD01G1186400; MD01G1186700, MD01G1186900), and glycosyltransferase gene (MD01G1187600) also occurred close to the SNP (chr1:28379456) associated with 3-hydroxyphloridzin and phloridzin.

The most prominent association signal (chr2:10212596) for 3-hydroxyphloridzin and phloretin was about 18 kb from the 3-dehydroquinate synthase (DHQS) gene (MD02G1126200). A MYB protein (MdMYB52: MD06G1235300) is within 100 kb of the second most significant SNP (chr6: 36724459) associated with phloridzin. A SNP associated with 3-hydroxyphloridzin and phloridzin on chromosome 15 (chr15:24335063) is surrounded by a cluster of CC-NBS-LRR disease resistance proteins (MD15G1276900; MD15G1277500 etc.). A SNP at the distal end of chromosome 15 (chr15:51077031) associated with phloridzin is within 20 kb of MYB protein 3 (MdMYB3: MD15G1411200). A GWAS signal for 3-hydroxyphloridzin on chromosome 16 (chr16:8480114) occurred about 80 kb downstream of a caffeoyl-CoA 3-O-methyltransferase (CCOAMT) gene (MD16G1118200). Another significant signal for this phenotype in the upper region of chromosome 17 (chr17:2146770) occurred slightly more than 200 kb upstream of MYB24 (MD17G1032300; MD17G1032500). An association for 3-hydroxyphloridzin on chromosome 17 (chr17:10280548) is within 100 kb of a cluster of cinnamyl-alcohol dehydrogenase (CAD) genes (MD17G1119700, MD17G1119800, etc.).

A hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT/HQT) gene (MD17G1225100) resided about 250 kb upstream of a SNP (chr17:27602614) associated with 3-hydroxyphloridzin, and a 4-coumarate:CoA ligase (4CL) gene (MD17G1229400) was located about 140 kb downstream. In addition, at about 300 kb downstream of this SNP, there is a cluster of senescence-associated gene 12 (MD17G1231600 - MD17G1231800; MD17G1232200 - MD17G1232400).

Flavanols

Seven compounds including flavanol monomers (catechin and epicatechin) and flavanol polymers (procyanidins B1, B2, B5, B7 and C1) were observed in this study, and the GWA signals were observed on almost all chromosomes, but the most prominent association signals were detected on chromosome 9 (Supplementary Figure S7; Supplementary Data Table S3). A SNP (chr9: 2151903) associated with all seven flavanol compounds was about 280 kb from MYB24 (MD09G1030700), while another significant SNP (chr9:3712942) was located less than 150 kb from MYB16 (MD09G1054000). MYB101 (MD09G1109900) resided within 600 kb of the SNP (chr9:8726075) associated with 3-hydroxyphloridzin and phloretin. Another significant signal for this phenotype in the central region of chromosome 9 (chr9:14903419) was located less than 30 kb from 2-oxoglutarate-dependent dioxygenase (2ODDS) family protein MD09G1177300, while a significant region at the distal end of chromosome 9 was within 10 kb of a cluster of HCT/HQT genes (MD09G1230000, MD09G1230100, etc.).
SNPs associated with one or more flavanol compounds in the upper region of chromosome 10 (Chr10:7887052 and Chr10:9437064) were flanked by a B-box zinc finger protein (MD10G1066000). A SNP (Chr2:10212596) associated with four of the seven flavanol compounds was within 20 kb of the DHQS gene MD02G1126200, and a signal in the upper region of chromosome 17 (chr17:109495) was within 18 kb of a WRKY transcription factor (WRKY75: MD17G1001500).

Flavonols

A SNP (chr3:32741919) associated with quercetin 3-O-glucoside and quercetin 3-O-rutinoside was within 200 kb of several UGT proteins (MD03G1239700, MD03G1241300 and MD03G1241400) (Supplementary Figure S7; Supplementary Data Table S3). For quercetin 3-O-glucoside, a significant association on chromosome 9 (chr9:30552256) is flanked by genes involved in regulating senescence (MD09G1239100) and acyl-CoA oxidase (ACOX) (MD09G1241300). There is a polyketide synthase protein (MD17G1158100) in the vicinity of the signal on chromosome 17 (chr17:15775967). Polyketide synthase genes refer to a more general description for the CHS and CHS-like genes involved in flavonol biosynthesis.

The most significant SNPs associated with quercetin 3-O-rhamnoside were on chromosome 1 (chr1:26506469 and chr1:27465802), which flanked several gene functions including, a chalcone-flavanone isomerase (CHI) gene (MD01G1167300), laccase proteins (MD01G1158900 and MD01G1159400), and a cluster of disease resistance LRR family proteins (MD01G1172100; MD01G1172300; MD01G1172800). The third significant SNP for quercetin 3-O-rhamnoside (chr1:22717183) is within 500 kb of a chalcone-flavanone isomerase (CHI) gene cluster (MD01G1118000, MD01G1118100, etc.).

Another association signal for quercetin 3-O-rhamnoside in the upper region of chromosome 16 (chr16:8480114) is about 80 kb from a cluster of caffeoyl-CoA 3-O-methyltransferase (CCOAOMT) genes (MD16G1118200; MD16G1119200; MD16G1119300).

Figure 3. Principal components (PC) plot of 344 accessions based on their SNP profiles (A), and the plot of linkage disequilibrium (LD) decay (B).

Figure 4. The locations of single nucleotide polymorphisms (SNPs) found to have a significant association with at least one phytochemical.
Hydroxycinnamic acids

The two significant SNPs (chr12:16706831 and chr12:18670719) associated with CGA flanked the 1-aminocyclopropane-1-carboxylate synthase (ACS) gene (MD02G1190900), while the signal on chromosome 9 (chr9:17335476) is within 650 kb of a MYB domain protein 26 (MYB26: MD09G1191100) (Supplementary Figure S7; Supplementary Data Table S3). The association signals on chromosome 15 (chr15:22495262) is within 3 kb of a cluster of CC-NBS-LRR disease resistance proteins (MD15G1263100 - MD15G1263300). A CGA-associated SNP in the upper region of chromosome 16 (chr16:6141995) is flanked upstream by two UGT 74B1 proteins (MD16G1086200 and MD16G1086300) and downstream by a MYB protein (MYB66: MD16G1093200). The association signal for both hydroxycinnamic compounds (CGA and t4pCouQA) on chromosome (chr15:51077031) is within 20 kb of MYB genes in the syntenic regions on chromosome 13 and 16 (B).

Organic acids

An association signal for MA on chromosome2 (chr2:7978884) is within 2 kb of a SAUR-like protein (MD02G1100200) and about 18 kb from pectin methylesterase 2 protein (MdPME2: MD02G1100400). Methionine sulfoxide reductase (MSR) B5 genes (MD13G1177800; MD13G1178200) were located about 80 kb downstream from a SNP (chr13:14686218) is marginally associated with AsA (Supplementary Figure S7).

Fruit quality traits

Significant marker-trait associations were detected for five (OCOL, FBD, FIRM, CRISP, JUJC) out of 11 fruit quality traits in this study (Fig 5; Supplementary Figure S8; Supplementary Data Table S3). There were also two chalcone synthase (CHS) genes (MD02G1218400 and MD02G1218500) within 500 kb of the SNP (chr2: 25886126) associated with flesh browning disorder (FBD). The MYB domain protein 6 (MYB6: MD09G1261200) was located about 40 kb downstream from the SNP (chr9:33373385) associated with fruit texture traits (crispness, firmness and juiciness), while a senescence-associated protein (MD09G1263800) and an S-adenosyl-L-methionine-dependent methyltransferase (SAM-MTase) protein (MD09G1258900) also resided within 300 kb. In addition, a dehydroascorbate reductase (DHAR) protein (MD09G1264700) was also located within 400 kb of this texture-associated SNP.

Three main genomic regions associated with OCOL were identified on chromosomes 13, 16 and 17 (Fig. 5). The two significant SNPs on chromosome 13 (chr13:20118800 and chr13:20390094) flanked MYB15 (MD13G1213900), while the ethylene response factor 1 (ERF1B: MD13G1213100) also resided within 150 kb upstream. Paralogs of MYB15 and ERF1B (MD16G1218000 and MD16G1218900) and ERF1B (MD16G1216900) underpinned the significant signal for OCOL on chromosome 16 (chr16:2157281). An association signal for OCOL in the middle region of chromosome 17 (chr17:12697927) resided within 300 kb of WRKY28 (MD17G1138100) and about 650 kb from NAC domain protein 42 (MdNAC42: MD17G1134400). SNPs significantly associated with OCOL in the upper region of chromosome 17 (285862-286 154 bp) occurred 3 kb from the acetyl-CoA synthase gene (MD17G1003300) and about 200 kb from WRKY75 (MD17G1001500).
Marker-trait associations and potential candidate genes for phytochemicals

Several ripening and senescence-associated gene functions (e.g., MdEIN3: MD15G1441000, MdERF1: MD01G1177000, ACS12: MD01G1186400, MD09G1239100, MD17G1231600) were located close to the significant SNPs, supporting earlier studies showing linkage between the ripening and phytochemical biosynthesis pathways [15, 16]. The EIN3-like protein was also reported to be involved in terpene synthases in kiwifruit [15], and studies on winegrape [17] revealed a potential crosstalk between flavonol and terpenoid metabolism. This would support the occurrence of a terpenoid cyclase protein (MD11G1284300) about 75 kb from the quercetin-linked SNP.

The occurrence of several UGT proteins in close proximity to the DHC-associated regions in this study is in agreement with earlier reports on the role of UGTs that convert phloretin to the DHC-associated regions in this study is in agreement with quercetin-linked SNP.

A terpenoid cyclase protein (MD11G1284300) about 75 kb from (MD02G1126200) are potential candidates underpinning DHC-associated genomic regions. These gene functions were also proposed as candidate genes for the biosynthesis of hydroxycinnamic acids (CGA) [9], which is supported by the high genetic correlation (ca. 0.65) between phloridzin and CGA in this study. The CCOAMT enzyme was reported to play a key role in the synthesis of quercetin in citrus [31], which gives support to the occurrence of a cluster of CCOAMT genes in the vicinity of a quercetin-associated SNP in the upper region of chromosome 16 (chr16:8480114) in this study.

Overexpression of B-box (BBX) genes in apple callus led to the higher expression of anthocyanin biosynthesis-related genes (MdMYB1, MdANS and flavonoid pathway genes (MdCHS, MdF3H and MdDFR) [32], which support the presence of a BBX protein (MD10G10660000) in the flavanol-associated region on Chr10 in our study. A significant signal for flavanol compounds in the central region of chromosome 9 was upregulated by 2ODDS gene (MD09G1177300), and this family of gene systems was shown to be involved in the flavonoid biosynthesis pathway in tobacco [33]. Clusters of 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase proteins occurred within the flavonols-linked regions on Chr1 and Chr6. 2OG genes are involved in the synthesis of anthocyanin in crabapples [34], and it was shown that overexpression of anthocyanin biosynthesis genes promoted transcription of some flavonoid biosynthetic genes and induced quercetin accumulation in crabapples [21].

Putative candidate genes for fruit quality traits

We identified a novel texture-associated signal on Chr9 in this study, and the MYB6 (MD09G1261200), located within 50 kb of the significant SNP, has been shown to play a role in ripening and storability of strawberry [37]. Some other gene functions residing in this region include a senescence-associated protein (MD09G1263800), the S-adenosyl-L-methionine-dependent methyltransferases (SAM-MTase) protein (MD09G1258900), and this family of gene systems was shown to lead to flavonoid biosynthesis in Lotus japonicus [25] and Rosa rugosa [26].

The occurrence of MYB52 (MD04G1235300) and MYB3 (MD15G1411200) within genomic hotspots for phloridzin and CGA is supported by previous reports. For example, overexpression of MdMYB3 in tobacco resulted in upregulation of several flavonoid pathway genes, including CHI, UFGT and FLS [27].

The expression of MYB52 was reported higher, along with the content of phloridzin, in russeted apples, suggesting a potential indirect role of this drought-stress response gene in phloridzin biosynthesis [22]. MYB62 (MD09G1191100), underpinning the GWAS signals for CGA on chromosome 9, was shown to be involved in the regulation of phenylpropanoid production in pea [28].

The HCT/HQT and 4CL genes (MD17G1225100 and MD17G1229400) resided in the DHC (3-hydroxyphloridzin) associated genomic regions, and these gene functions were hypothesised to play a role in the regulation of CGA [9] and phloridzin [29]. HCT/HQT are also reportedly linked to chalcone and flavonoid synthesis in plants [30], and a cluster of HCT/HQT proteins flanked a flavanol-associated signal at the distal end of Chr9 which is paralogous to the DHC-associated region on Chr17.

Our GWA results suggest that a CCOAMT gene (MD16G1118200), CAD genes (MD17G1119700, MD17G1119800) and DHQS genes (MD02G1126200) are potential candidates underpinning DHC-associated genomic regions. These gene functions were also proposed as candidate genes for the biosynthesis of hydroxycinnamic acids (CGA) [9], which is supported by the high genetic correlation (ca. 0.65) between phloridzin and CGA in this study. The CCOAMT enzyme was reported to play a key role in the synthesis of quercetin in citrus [31], which gives support to the occurrence of a cluster of CCOAMT genes in the vicinity of a quercetin-associated SNP in the upper region of chromosome 16 (chr16:8480114) in this study.

Overexpression of B-box (BBX) genes in apple callus led to the higher expression of anthocyanin biosynthesis-related genes (MdMYB1, MdANS and flavonoid pathway genes (MdCHS, MdF3H and MdDFR) [32], which support the presence of a BBX protein (MD10G10660000) in the flavanol-associated region on Chr10 in our study. A significant signal for flavanol compounds in the central region of chromosome 9 was upregulated by 2ODDS gene (MD09G1177300), and this family of gene systems was shown to be involved in the flavonoid biosynthesis pathway in tobacco [33]. Clusters of 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase proteins occurred within the flavonols-linked regions on Chr1 and Chr6. 2OG genes are involved in the synthesis of anthocyanin in crabapples [34], and it was shown that overexpression of anthocyanin biosynthesis genes promoted transcription of some flavonoid biosynthetic genes and induced quercetin accumulation in crabapples [21]. A study on Arabidopsis thaliana also reported that flavonol synthase requires 2OG and ferrous iron (Fe) for catalytic function [35]. The concentration of flavonols was reported negatively correlated with laccase activity in apple cultivars [36], and interestingly the flavonols-associated hotspot on Chr1 harbours two laccase proteins (MD01G1158900 and MD01G1159400) in our study.
different stresses [44], which supports the occurrence of the acetyl-CoA synthase gene (MD17G1003300) within 3 kb of the OCOL-associated SNPs in the upper region of Chr17. NAC42, supporting the OCOL-associated region in the middle of Chr17, regulates anthocyanin accumulation in apple by interacting with MYB10 [45]. Our results suggest that the genetic regulation of apple red skin is complex and potentially controlled by the interplay between several gene families.

Breeding for phytochemicals

The content of several key phytochemicals was significantly higher in wild apple accessions, suggesting that these accessions could be used as parents for introgression breeding to develop phytonutrient-rich apple cultivars. In this germplasm study, the correlations between eating quality traits and phytochemicals were moderate, which suggested that it would be feasible to develop tailored breeding strategies for the simultaneous improvement of these two groups of traits. Studies using segregating populations would be helpful to further understand the genetic correlations between eating quality and phytochemicals, which would guide future cultivar development strategies. The complex polygenic architecture of most metabolites in this study suggested that genomic selection would be a better option to reduce the generation interval for introgression breeding [46].

Materials and methods

Plant material

The ex situ Malus germplasm collection maintained at the Hawke’s Bay site (39°40’S 176°53’E) of The New Zealand Institute for Plant and Food Research Limited was established as grafted trees in late 1950s when budwood from heritage cultivars and crab-apples was imported mainly from the United Kingdom. In 2013, each accession was re-propagated onto “M9” rootstock for Plant and Food Research Limited was established as grafted trees. Metabolite phenotyping was conducted over a period of two fruiting seasons. Of the 344 accessions, 165 and 179 were assessed in 2019 and 2020, respectively. There were 15 accessions common to both years. There were 15 accessions common between the two years to estimate seasonal effect and obtain seasonally adjusted phenotypes of all accessions.

Metabolite phenotyping

Metabolite phenotyping was conducted over a period of two fruiting seasons. Of the 344 accessions, 165 and 179 were assessed in 2019 and 2020, respectively. There were 15 accessions common between the two years to estimate seasonal effect and obtain seasonally adjusted phenotypes of all accessions.

Sample preparation

We followed fruit harvesting and storage protocols as reported earlier by Kumar et al. [47]. Briefly, the fruit were stored for four weeks at 0.5°C, then a further 1 day at 20°C before evaluation. For each accession, a total of 16 cores were cut from four apples at four positions around the equatorial circumference of each apple using a #5 corer (9 mm internal diameter). Each core contained apple skin and cortex (but no apple core or seeds) and was trimmed to approximately 1 cm if required. The total weight of the 16 cores was approximately 10 g and the actual weight was recorded (two decimal places). The 16 apple cores were added to a 250 mL Schott bottle containing 100 mL solvent (ethanol:water:formic acid 80:20:2 with the internal standard naringenin at 1.05 mg/L) and homogenized using the Omni General Laboratory Homogenizer (GLH850, Kennesaw, GA, USA). Samples were left overnight at 4°C to extract and then an aliquot was transferred to a centrifuge tube for analysis.

Analysis of ascorbic acid (AsA) and ascorbic acid 2-β-glucoside (AA-2βG) by UHPLC

Immediately after extraction, a portion of the extract was diluted 1:1 with 2 mM tris(2-carboxyethyl) phosphine hydrochloride (TCEP-HCl) (Sigma-Aldrich, Sydney, Australia) in MeCN/formic acid/water (90:5:5) to preserve the AsA. The actual volume used was 200 μL extract +200 μL 2 mM TCEP in MeCN/formic acid/water (90:5:5) directly into LC vials. The UHPLC system Dionex Ultimate® 3000 Rapid Separation LC was composed of a pump, autosampler, column oven, and Photodiode Array (PDA) detector. The LC column was a Luna HILIC 150 mm x 4.6 mm, 3 μm (Phenomenex) and was maintained at 40°C. The flow was 1000 μL min⁻¹. The solvents were A = 20 mM HCOONH₄, pH = 5.0 and B = 100% acetonitrile. The solvent composition was isocratic at 20% A and 80% B. The run time for each analysis was 10 min. The injection volume for samples and standards was 3 μL. Data were processed using Chromeleon (ThermoScientific). The response was calibrated using AsA and AA-2G, therefore AA-2G was quantified as AA-2G equivalents. It is noteworthy that asA is unstable and can degrade during the analytical process. The sample preparation methods were not optimised specifically for AsA, so the measurements of AsA in this study are estimates only. In contrast, AA-2G is a very stable form of Vitamin C [5], and reliable quantititative results were obtained.

Analysis of polyphenolic metabolites by LC-HRAM-MS

Each sample extract was diluted 1:1 with methanol (actual volumes: 200 μL extract +200 μL methanol) and then analysed for polyphenols by Liquid Chromatography – High Resolution Accurate Mass – Mass Spectrometry (LC-HRAM-MS) as described earlier [5]. LC–MS grade acetonitrile (Supelco, Bellefonte, PA, USA), ethanol, methanol and formic acid were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Ultrapure water was obtained from a Milli-Q Integral3 system (Millipore, Burlington, MA, USA). The LC column was a Luna Omega C18 100x2 1 mm, 1.6 μm (Phenomenex, Torrance, CA, USA) and was maintained at 40°C. The flow was 400 μL min⁻¹. The solvents were A = 0.2% formic acid and B = 100% acetonitrile. The solvent gradient was: initial composition 90% A 10% B, 0–0.5 min; linear gradient to 60% A 40% B, 0.5–7 min; linear gradient to 5% A 95% B, 7–12 min; composition held at 5% A 95% B, 12–15 min; linear gradient to 90% A 10% B, 15–15.2 min; to return to the initial conditions before another sample injection at 18 min. The injection volume for samples and standards was 1 μL. The micrOTOF QII parameters were same as those described earlier [5]. Data were processed using TASQ (Bruker Daltonics, Bremen, Germany). The chemical data for the metabolites measured in this study are presented in Supplementary Table S2.

Fruit quality traits

Thin wedges of cortical tissue were cut from each of the two apples from each accession for sensory evaluation by one trained assessor. Following Kumar et al. [47], several sensory traits including firmness (FIRM), crispness (CRISP), juiciness (JUIC), sweetness (SWET), sourness (SOUR), astringency (ASTR), flavour intensity (FINT) and overall eating quality (EQUA) were assessed on a scale from 0 (= lowest) to 9 (= highest). Red skin over-colour (OCOL) coverage was scored visually on a scale 0 (no red colour) to 9 (completely red). Average fruit weight (AVFW) was measured as the average weight (g) of the six fruits per accession. The flesh browning disorder (FBD) was also recorded as reported earlier by Kumar et al. [51]. As fruit of some Malus species accessions were
very small and/or had an unpleasant taste, such accessions were assessed only for AVFW and OCOL.

SNP array genotyping and quality control
Leaf DNA from all 344 accessions were genotyped using the 20 K Infinium SNP array [48], and SNP calling was conducted using Genome Studio (Illumina Inc., San Diego, CA, USA). SNPs with minor allele frequency (MAF) <0.02, and missing data frequency >10% were discarded, and the missing genotypes at the retained SNPs were imputed using k-nearest neighbour method. The coordinates of the filtered SNPs were identified on the GDDH13 genome assembly [49] by blasting their flanking sequences to the GDDH13 genome and retaining the best hits with minor allele frequency (MAF) using Genome Studio (Illumina Inc., San Diego, CA, USA). SNPs and lab data; CW coordinated DNA extraction and SNP array genotyping and quality control.

Data analysis
Exploratory analyses, including trait distribution, correlation between traits, and principal component analysis (PCA) were conducted using the R software (R Core Team, 2019). The two-sample t-test was used to test whether the population means of two groups (M. domestica and Malus spp.) are equal or not. The genetic structure of the 344 accessions was estimated using PCA, Neighbour Joining (NJ) tree, and model-based Bayesian clustering using ADMIXTURE software. Estimates of linkage disequilibrium (LD: r^2) were calculated between SNPs located on the same linkage group (LG) using R package “LDcorSV”. The estimates of pair-wise LD between SNPs were averaged in the increments of one kilobase (kb) distance, and the LD decay curve was fitted using a standard logarithmic function.

The best linear unbiased estimates (BLUEs), adjusted for year effect, were used as phenotypes for GWAS. A mixed linear model (MLM) approach, accounting for cryptic relatedness (K-matrix) and population stratification (Q-matrix), implemented in R package GAPIT [50], was used for genotype–phenotype association analyses. A genome-wide significance threshold of $\alpha = 0.01$ was used to identify significant genotype–phenotype associations. The putative candidate genes within 500 kb upstream and downstream of the most significant SNPs were retrieved using GDDH13 genome v1.1 jbrowse (https://www.rosaceae.org/jbrowse/). Genomic best linear unbiased prediction (GBLUP) of the additive genetic value of all accessions were obtained for each trait, and then the product–moment correlations between GBLUP and multiplatform metabolomics enables metabolite quantitative trait loci detection in breeding-relevant apple germplasm. New Phytol. 2021;232:1944–58.

Acknowledgements
This Research was supported by The New Zealand Institute for Plant and Food Research Limited’s Strategic Science Investment Fund (SSIF) from the New Zealand Ministry of Business, Innovation and Employment (MBIE). SNP Array genotyping was conducted by AgResearch New Zealand. Constructive feedback from Richard Volz and Ross Atkinson is thankfully acknowledged.

Author contributions
SK, TM designed the project; CM, MH, TM collected the field and lab data; CW coordinated DNA extraction and SNP array genotyping; CHD conducted bioinformatics; SK analysed the data, and prepared the first draft with input from AD and CA. All authors edited and approved the final manuscript.

Data availability
The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of interests
The authors declare no conflicts of interest.

Supplementary data
Supplementary data is available at Horticulture Research online.

References
1. Nagasako-Akazome Y, Kanda T, Ohtake Y et al. Apple polyphenols influence cholesterol metabolism in healthy subjects with relatively high body mass index. J Oleo Sci. 2007;56:417–28.
2. Rendeiro C, Vauzour D, Rattray M et al. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One. 2013;8:e53355.
3. Farneti B, Masuero D, Costa F et al. Is there room for improving the nutraceutical composition of apple? J Agric Food Chem. 2019;63:2750–9.
4. Davies T, Watts S, McClure K et al. Phenotypic divergence between the cultivated apple (Malus domestica) and its primary wild progenitor (Malus sieversii). PLoS One. 2022;17:e0250751.
5. Richardson AT, Cho J, McGhie TK et al. Discovery of a stable vitamine C glycoside in crab apples (Malus sylvestris). Phytochemistry. 2020;173:112297.
6. Mellidou I, Chagné D, Laing WA et al. Allicic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol. 2012;160:1613–29.
7. Chagné D, Krieger C, Rassam M et al. QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol. 2012;12:12.
8. Verdu CF, Guyot S, Childsbrand N et al. QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS One. 2014;9:e107103.
9. McClure KA, Gong Y, Song J et al. Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res. 2019;6:107.
10. Bilbrey EA, Williamson K, Hatzakis E et al. Integrating genomics and multiploplatform metabolomics enables metabolite quantitative trait loci detection in breeding-relevant apple germplasm. New Phytol. 2021;232:1944–58.
11. Volz RK, McGhie TK. Kumar S. Variation and genetic parameters of fruit colour and polyphenol composition in an apple seedling population segregating for red leaf. Tree Genet Genomes. 2014;10:953–64.
12. Volz RK, McGhie TK. Genetic variability in apple fruit polyphenol composition in Malus domestica and Malus sieversii germplasm grown in New Zealand. J Agric Food Chem. 2011;59:11509–21.
13. He M, Zhai Y, Zhang Y et al. Inhibition of α-glucosidase by trilobatin and its mechanism: kinetics, interaction mechanism and molecular docking. Food Funct. 2022;13:857–66.
14. Wang JW, Xia ZH, Chu HJ et al. Simultaneous production of anthocyanin and triterpenoids in suspension cultures of Perilla frutescens. Enzym Microb Technol. 2004;34:651–6.
15. Nieuwenhuizen NJ, Chen X, Wang MY et al. Natural variation in monoterpene synthesis in kiwifruit: transcriptional...
regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. *Plant Physiol.* 2015; **167**: 1243–58.

16. Espley RV, Leif D, Plunkett B et al. Red to brown: an elevated anthocyanic response in apple drives ethylene to advance maturity and fruit flesh browning. *Front Plant Sci.* 2019; **10** 15.

17. Friedel M, Frotscher J, Nitsch M et al. Light promotes expression of monoterpenoid and flavonol metabolic genes and enhances flavour of wine grape berries (*Vitis vinifera L.* cv. Riesling). *Aust J Grape Wine Res.* 2016; **22**: 409–21.

18. Zhou K, Hu L, Li P et al. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in *Malus* species. *Plant Sci.* 2017; **265**: 131–45.

19. Dare AP, Tomes S, Jones M et al. Overexpression of chalcone isomerase in apple reduces phloridzin accumulation and increases susceptibility to herbivory by two-spotted mites. *Plant J.* 2020; **103**: 293–307.

20. Lin-Wang KU, Micheletti D, Palmer J et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. *Plant Cell Environ.* 2011; **34**: 1176–90.

21. Lu Y, Bu Y, Hao S et al. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. *J Photochem Photobiol B Biol.* 2017; **168**: 40–9.

22. Falginella L, Andre CM, Legay S et al. Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple. *Hortic Res.* 2021; **8**: 1–5.

23. Zhang X, He Y, Li L et al. Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in *Arabidopsis stamen*. *J Exp Bot.* 2021; **72**: 4319–32.

24. Lu S, Wang J, Zhuge Y et al. Integrative analyses of metabolomes and transcriptomes provide insights into flavonoid variation in grape berries. *J Agric Food Chem.* 2021; **69**: 12354–67.

25. Miyake K, Ito T, Senda M et al. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. *Plant Mol Biol.* 2003; **53**: 237–45.

26. Feng D, Zhang H, Qiu X et al. Comparative transcriptomic and metabolomic analysis revealed the relationships between biosynthesis of volatiles and flavonoid metabolites in *Rosa rugosa*. *Ornamental Plant Res.* 2021; **1**: 1–10.

27. Vimalmangkang S, Han Y, Wei G et al. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. *BMC Plant Biol.* 2013; **13**: 176.

28. Uimari A, Strommer J. *MYB26*: a MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. *Plant J.* 1997; **12**: 1273–84.

29. Gutierrez BL, Arro J, Zhong GY et al. Linkage and association analysis of dihydroalcones phloridzin, sieboldin, and trilobatin in malus. *Tree Genet Genomes*. 2018; **14**: 91.

30. Jaganath IB, Crozier A. Dietary flavonoids and phenolic compounds. In: Fraga CG, Hoboken NJ, eds. *Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology*. John Wiley and Sons: Hoboken, NJ, USA, 2010,1–50.

31. Liu X, Zhao C, Gong Q et al. Characterization of a caffeoyl-CoA O-methyltransferase-like enzyme involved in biosynthesis of polyoxylated flavones in *Citrus reticulata*. *J Exp Bot.* 2020; **71**: 3066–79.

32. Plunkett BJ, Henry-Kirk R, Friend A et al. Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes. *Sci Rep.* 2019; **9**: 17762.