Electronic Supplementary Information (ESI)

Influence of Hidden Halogen Mobility on Local Structure of CsSn(Cl_{1-x}Br_x)_3 Mixed-Halide Perovskites by Solid-State NMR

Abhoy Karmakar, Amit Bhattacharya, Diganta Sarkar, Guy M. Bernard, Arthur Mar and Vladimir K. Michaelis*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

*Corresponding Author: vladimir.michaelis@ualberta.ca
Table of Contents

Table S1. Elemental analysis of CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials measured by EDS.	S3-S5
Table S2. Unit cell constants (a) and direct bandgap values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. | S5
Table S3. Room temperature solid-state 113Cs NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. | S6
Table S4. Room temperature solid-state 119Sn NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. | S6
Table S5. Room temperature solid-state 119Sn NMR experimental parameters ($B_0 = 11.75$ T), chemical shifts, fwhm and spin-lattice relaxation (T_1) for CsSnBr$_3$ materials prepared by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. | S7
Table S6. Variable temperature 119Sn NMR parameters for CsSnBr$_3$ (SS) at 11.75 T acquired under non-spinning sample conditions. | S7

Supplementary note 1 | S7
Table S7. Solid-state 133Cs NMR acquisition parameters and experimental conditions used for the CsSnBr$_3$ areal degradation study. | S8
Table S8. Solid-state 119Sn NMR acquisition parameters and experimental conditions used for the CsSnBr$_3$ areal degradation study. | S8
Figure S1. Room temperature solid-state 133Cs NMR spectra of CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials at 11.75 T with a magic-angle spinning frequency of 13 kHz. | S9
Figure S2. Room temperature PXRD (a) and 133Cs NMR spectra (b) of CsSnCl$_3$ materials prepared by the high-temperature sealed-tube method followed by slow-cooling (5 K/min). PXRD patterns were collected within 24 h of synthesis and 133Cs NMR were acquired at 11.75 T after six days of synthesis. Plot of 133Cs NMR peak area for the cubic CsSnCl$_3$ phase as a function of time (up to 72 days) (c). | S9
Figure S3. FESEM image and the corresponding EDS elemental mapping for Cs, Sn, Cl and Br for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. | S10
Figure S4. Room temperature experimental and fitted PXRD diagram for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ series. All the diffraction data are fitted to a cubic (Pm-3m) space group symmetry. | S11
Figure S5. Tauc plots showing direct bandgaps of the cubic phases of CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. | S12
Figure S6. Solid-state 119Sn NMR spectra of CsSnBr$_3$ at 7.05 and 11.75 T under non-spinning sample conditions. | S13
Figure S7. Solid-state 119Sn NMR spectra of c-CsSnCl$_3$ (a), CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$ (b) and CsSnBr$_3$ (c) at 11.75 T acquired with spinning frequencies of 0 and 10 kHz. | S13
Figure S8. Solid-state 119Sn NMR spectra of CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$ at 11.75 T acquired with spinning frequencies between 0 to 13 kHz with the Hahn-echo pulse sequence and with various echo-delays. | S14
Figure S9. Solid-state 119Sn NMR chemical shifts vs the inverse of direct bandgap values for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ series. | S14
Figure S10. Room temperature PXRD patterns for the CsSnBr$_3$ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. | S15
Figure S11. UV-Vis absorption spectra (a) and Tauc plots showing direct bandgaps (b-d) for the CsSnBr$_3$ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. | S15
Figure S12. Variable temperature (230-418 K) 119Sn T_2^* relaxation time as a function of absolute temperature for the CsSnBr$_3$ (SS) material. | S16
Figure S13. UV-Vis absorption spectra for CsSnBr$_3$ that was stored under ambient laboratory conditions over 300 days, pristine CsSnBr$_3$ and Cs$_2$SnBr$_6$. | S16
Figure S14. Solid-state 119Sn NMR spectra of for degraded CsSnBr$_3$ parent and SnBr$_2$ starting precursor at 11.75 T acquired with spinning frequencies of 12 kHz with 2,000,000 scans each. | S17

References | S17
EXPERIMENTAL

Materials

Starting materials were purchased from the following commercial sources and were used without further modification: CsCl (Terochem Laboratories Ltd. 99.7%), CsBr (Sigma, 99.99%), SnCl₂ (Alfa Aesar, >99%), SnBr₂ (Alfa Aesar, 99.2%), SnBr₄ (Sigma, 99%), HBr (Anachemia, 48%), and H₃PO₄ (Sigma, 50 wt.% in H₂O).

High-Temperature Synthesis of CsSn(Cl₁–ₓBrₓ)₃ (0 ≤ x ≤ 1): Various members of the solid solution CsSn(Cl₁–ₓBrₓ)₃ were prepared by reactions at high temperature. CsX and SnX₂ (X = Cl, Br) were combined in stoichiometric ratios on a 0.5-g scale, finely ground using an agate mortar and pestle, pressed into pellets, and loaded into fused-silica tubes which were evacuated under a pressure of 10⁻³ mbar and sealed. The tubes were heated at 1.5 K/min to either 673 or 723 K (depending on composition), held at that temperature for 15 h, and then cooled to room temperature at 5 K/min. The samples were stored in glass vials and further characterized under ambient conditions.

Cubic CsSnCl₃ was obtained as a metastable phase at room temperature as follows: a sample of CsSnCl₃ prepared as described above was heated to 673 K, kept at this temperature for 15 h, cooled to 573 K at 5 K/min, and then quenched in an ice-water bath.

Mechanochemical Synthesis of CsSnBr₃: A mixture of 1.5 mmol each of CsBr and SnBr₂ was ground using an agate mortar and pestle for 10 min. Within an argon-filled glove box, the mixture was transferred to a 50-mL zirconia grinding vessel (containing ca. 50 g of zirconia balls with 3–8 mm diameter), which was sealed with parafilm to minimize exposure to air. The sample was ground in a Changsha Deco DECO-PBM-V-0.4L electric planetary ball mill at a rotation frequency of 550 rpm for 0.5 h. The vessel was opened to scratch its inner wall by using a clean spatula and sealed again under an inert atmosphere (Ar glove box). This process was repeated four times for a total of 2.5 h of grinding time.

Solvent Synthesis of CsSnBr₃: A mixture of 1 mmol each of CsBr and SnBr₂ was placed in a 40-mL glass vial to which 4.5 mL of concentrated HBr and 0.5 mL of H₃PO₄ were added. The mixture was heated under a nitrogen atmosphere to 120 °C on a hot plate, with continuous stirring by a magnetic stir bar. A black precipitate formed immediately. After the mixture was heated for 0.5 h, it was cooled over 1 h to room temperature. The precipitate was filtered under reduced pressure, washed with isopropyl alcohol, dried for 0.5 h, and quickly packed into a 4-mm o.d. ZrO₂ rotor for the solid-state NMR experiments.

Solvent Synthesis of Cs₂SnBr₆: A mixture of CsBr (2 mmol) and SnBr₄ (1 mmol) was placed in a 10-mL glass vial to which 5 mL of concentrated HBr was added. The mixture was heated to 120 °C on a hot plate, with continuous stirring by a magnetic stir bar. A white precipitate formed immediately. After the mixture was heated for 1 h, it was cooled over 1 h to room temperature. The precipitate was filtered using a Buchner funnel, washed with 95% ethanol, dried overnight, and stored in a vial under ambient conditions.
Powder X-ray Diffraction: Powder XRD patterns were collected on a Rigaku Ultima IV diffractometer equipped with a Co Kα radiation source (Kα1, 1.78900 Å; Kα2, 1.79283 Å) operated at 38 kV and 38 mA, and a D/Tex Ultra detector with a Fe filter to eliminate Kβ radiation (1.62083 Å). The samples were placed on zero background plates. Data were collected in continuous scan mode between 5 and 90° in 2θ with a step size of 0.0200°. Profile fitting was performed using the FullProf suite of software and unit cell parameters were refined.

Energy-dispersive X-ray Spectroscopy and Field Emission Scanning Electron Microscopy: Samples were examined on Zeiss Sigma 300 VP field emission scanning electron microscope equipped with dual silicon drift detectors for energy-dispersive X-ray spectroscopy to determine chemical compositions.

UV-Visible Diffuse Reflectance Spectroscopy: Diffuse reflectance spectra were collected on a Cary 5000 UV-vis-NIR spectrophotometer between 200 and 800 nm and calibrated with a Spectralon (>99%) reflectance standard. The diffuse reflectance spectra were converted to absorption spectra using the Kubelka-Munk function, \(\alpha/S = (1-R)^2/2R \), where \(\alpha \) is the Kubelka-Munk absorption coefficient, \(S \) is the scattering coefficient, and \(R \) is the reflectance. Direct bandgaps were extrapolated from the intercepts in Tauc plots of \((\alpha hv)^2 \) vs \(E \) (eV).

Solid-State Nuclear Magnetic Resonance (NMR) Spectroscopy:

I. Cesium-133 NMR Spectroscopy: Solid-state \(^{133}\)Cs NMR measurements were performed at 11.75 T (1H, 500 MHz) on a Bruker Avance NEO 500 spectrometer, under magic angle spinning (MAS) conditions using a 4 mm H/X MAS Bruker probe with \(\omega_c/2\pi(^{133}\text{Cs}) = 65.6 \text{ MHz} \). All samples were packed into 4 mm o.d. ZrO\(_2\) rotors and NMR data were acquired using a Bloch decay pulse sequence using a short tip angle pulse of 1.38 µs \((\pi/2 \text{ pulse} = 5.5 \mu s) \), solution \(\gamma_B/2\pi = 45.5 \text{ kHz} \) with an acquisition time of 100 ms and an optimized recycle delay of 10 to 1800 s. The nuclear spin-lattice relaxation time \((T_1) \) values of \(^{133}\)Cs nuclei for all samples were measured using an inversion recovery pulse sequence. The \(T_1 \) values were calculated by fitting the peak intensity values using a three-parameter exponential decay function: \(I(t) = I(\infty) + A e^{-t/T_1} \), where \(I(0) \) and \(I(\infty) \) are the NMR signal intensities measured at time \(t \) and at \(t \) infinity, respectively, and \(T_1 \) are \(A \) the spin-lattice relaxation time and pre-exponential constant, respectively. All \(^{133}\)Cs NMR spectra discussed here were referenced by setting a 0.1 M CsNO\(_3\) (aq.) solution at \((^{133}\text{Cs}) = 0.00 \text{ ppm} \).

I. Tin-119 NMR Spectroscopy: Solid-state \(^{119}\)Sn NMR measurements were performed at 11.75 T (1H, 500 MHz) on a Bruker Avance NEO 500 spectrometer under both MAS and non-spinning conditions using a 4 mm H/X MAS Bruker probe with \(\omega_c/2\pi(^{119}\text{Sn}) = 186.5 \text{ MHz} \). All samples were packed into 4 mm o.d. ZrO\(_2\) rotors and NMR data were acquired using a 4.0 µs \(\pi/2 \) \((\gamma_B/2\pi = 62.5 \text{ kHz}) \) either with a Hahn-echo pulse sequence \((\pi/2)_k - t_1 - (\pi)_y - t_2 - ACQ \), where \(t \) represents the interpulse and refocusing delays) or with a Bloch pulse sequence with an acquisition time of 4-5 ms and an optimized recycle delay of 0.01-200 s.
Variable temperature (VT) 119Sn NMR spectra were acquired between 230 and 418 K with the same instrument under non-spinning conditions using a Bruker VT unit and calibrated using the 207Pb chemical shifts of MAPbCl$_3$. Dry N$_2$(g) was used as the VT gas and gas flow rates were adjusted to reach the target temperatures. The 119Sn T_1 values were measured using an inversion recovery pulse sequence as discussed in the 133Cs NMR experimental section. All 119Sn NMR spectra were referenced by setting the 119Sn signal of a tetracyclohexyl-tin(IV) powder to $\delta(^{119}\text{Sn}) = -97.35$ ppm, a secondary reference with respect to Sn(CH$_3$)$_4$ at $\delta(^{119}\text{Sn}) = 0.00$ ppm.

Table S1. Elemental analysis of CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials measured by EDS.

Sample (Nominal composition)	Elemental atomic %	%Cl : %Br
CsSnCl$_3$	Cs 19.3, Sn 19.4, Cl 61.3, Br -	100 : 0
CsSn(Cl$_{0.90}$Br$_{0.10}$)$_3$	Cs 18.9, Sn 19.5, Cl 54.6, Br 7.0	89 : 11
CsSn(Cl$_{0.67}$Br$_{0.33}$)$_3$	Cs 18.8, Sn 19.4, Cl 39.6, Br 22.2	64 : 36
CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$	Cs 18.8, Sn 18.6, Cl 29.4, Br 33.2	47 : 53
CsSn(Cl$_{0.33}$Br$_{0.67}$)$_3$	Cs 18.3, Sn 19.1, Cl 19.0, Br 43.6	30 : 70
CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$	Cs 19.4, Sn 18.7, Cl 6.0, Br 55.9	10 : 90
CsSnBr$_3$	Cs 17.3, Sn 18.0, Br -	64.7

Table S2. Unit cell constants (a) and direct bandgap values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials.

Sample	Unit cell constant, a (Å)	Direct bandgap (eV)
CsSnCl$_3$ (cubic)	5.5894(5)	2.83
CsSn(Cl$_{0.90}$Br$_{0.10}$)$_3$	5.6108(3)	2.71
CsSn(Cl$_{0.67}$Br$_{0.33}$)$_3$	5.6642(3)	2.42
CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$	5.6991(6)	2.26
CsSn(Cl$_{0.33}$Br$_{0.67}$)$_3$	5.7353(7)	2.10
CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$	5.7830(2)	1.87
CsSnBr$_3$	5.8031(3)	1.79
Table S3. Room temperature solid-state 133Cs NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. The 133Cs NMR spectra were acquired at 11.75 T using a Bloch pulse sequence.

Sample	ν_{rot} (kHz)	Recycle delay (s)	133Cs fwhm (Hz ± 5)	δ (133Cs) (ppm ± 0.1)	T_1 (133Cs) (s)
CsSnCl$_3$ (cubic)					
CsSn(Cl$_{0.90}$Br$_{0.10}$)$_3$					
CsSn(Cl$_{0.67}$Br$_{0.33}$)$_3$					
CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$					
CsSn(Cl$_{0.33}$Br$_{0.67}$)$_3$					
CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$					
CsSnBr$_3$					

Table S4. Room temperature solid-state 119Sn NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials. The 119Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($\nu_{rf} = 62.5$ kHz).

Sample	ν_{rot} (kHz)	Recycle delay (s)	δ (119Sn) (ppm)	119Sn fwhm (kHz ± 0.1)	T_1 (119Sn) (s)
CsSnCl$_3$ (cubic)					
CsSn(Cl$_{0.90}$Br$_{0.10}$)$_3$					
CsSn(Cl$_{0.67}$Br$_{0.33}$)$_3$					
CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$					
CsSn(Cl$_{0.33}$Br$_{0.67}$)$_3$					
CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$					
CsSnBr$_3$					
Table S5. Room temperature solid-state 119Sn NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) for CsSnBr$_3$ materials prepared by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. The 119Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($\nu_{rf} = 62.5$ kHz).

Sample	v_{rot} (kHz)	Recycle delay (s)	$\delta^{(119)Sn}$ (ppm)	119Sn fwhm (kHz)	$T_1^{(119)Sn}$ (s)
CsSnBr$_3$ (SS)	0.0	0.05	-386 ± 2	7.5 ± 0.2	0.025 ± 0.001
CsSnBr$_3$ (HT)	0.2	2.84	-284 ± 5	21.0 ± 0.5	0.007 ± 0.001
CsSnBr$_3$ (MCS)	0.2	295 ± 10	34.0 ± 1.0	0.003 ± 0.001	

Table S6. Variable-temperature 119Sn NMR parameters for CsSnBr$_3$ (SS) acquired under non-spinning sample conditions at 11.75 T using a 4.0 µs $\pi/2$ Bloch pulse sequence.

T(set) (K)	T(calibrated) (±2) (K)	δ_{iso} 119Sn (ppm)	Ω (ppm)	κ †	119Sn fwhm (kHz) ± 0.1	119Sn T_2^* (ms)	119Sn T_1 (ms)
233	229.5	−393	85	−0.1	14.7	0.068	635(200)
253	250.9	−393	75	−0.1	13.6	0.074	390(85)
273	273.6	−390	75	−0.25	10.6	0.094	123(12)
292.4	295.4	−386	35	−1.0	7.2	0.139	25(1)
313	318.7	−371	0	NA	6.5	0.154	14(1)
333	341.5	−364	0	NA	6.1	0.164	8.8(5)
353	366.4	−350	0	NA	5.7	0.175	4.12(15)
373	385.5	−334	0	NA	6.0	0.167	2.16(9)
393	407.6	−319.6	0	NA	5.4	0.185	1.14(5)
403	417.9	−317.7	0	NA	4.5	0.222	0.92(2)

NA – not applicable; † - δ_{iso}, Ω and κ are isotropic chemical shift, span and skew, respectively, where $\delta_{iso} = \frac{\delta_{11} + \delta_{22} + \delta_{33}}{3}$, $\Omega = (\delta_{11} - \delta_{33})$ and $\kappa = 3\left(\frac{\delta_{22} - \delta_{iso}}{\Omega}\right)$

Supplementary note 1:

The variable temperature 119Sn spin-lattice relaxation time (T_1) is related to the absolute temperature values for CsSnBr$_3$ (SS) as shown in Table S6. $\log_{10}[T_1/s]$ linearly depends on [1000/T(K)] (i.e., an Arrhenius relationship) within the temperature range of 230 to 418 K. The slope of the Arrhenius fit is related to the activation energy as $E_a = (2303 \cdot R)$ (slope), where $R = 8.314$ J/(mol·K). A slope value of 1.51 ± 0.06 K was obtained from the least-squares Arrhenius fit; hence $E_a = 28.9 \pm 1.2$ kJ/mol or 0.30 ± 0.01 eV
Table S7. Solid-state 133Cs NMR acquisition parameters and experimental conditions used for the CsSnBr$_3$ areal degradation study (see Figure 9b in the manuscript). The 133Cs NMR spectra were acquired at 11.75 T using a Bloch pulse sequence.

Material	T_1 (s)	ν_{rot} (kHz)	Recycle delay (s)	# of scans	Acquisition time (min)
CsSnBr$_3$ (degraded)	-	5 kHz	1800	4	120
CsSnBr$_3$	34.9				4
Cs$_2$SnBr$_6$	170			4	33
CsBr	631			4	20

Table S8. Solid-state 119Sn NMR acquisition parameters and experimental conditions used for the CsSnBr$_3$ areal degradation study (see Figure 9c in the manuscript). The 119Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($\nu_{\text{rf}} = 62.5$ kHz).

Material	T_1 (s)	ν_{rot} (kHz)	Recycle delay (s)	# of scans	Acquisition time (min)
CsSnBr$_3$ (degraded)	region-1	-	0	512	1.7
	region-1	10	0.2	512	1.7
	region-2	-	10	512	853
	region-3	-	10	512	853
	region-4	-	12	2,000,000	736
CsSnBr$_3$	0.006	10	0.2	1024	3.4
Cs$_2$SnBr$_6$	12.3	10	100	32	53
SnO$_2$	3.1$^{\text{ref.3}}$	10	30	32	15
SnBr$_4$	1.95$^{\text{ref.4}}$	0	3	512	25.6
SnBr$_2$	1.12$^{\text{ref.4}}$	13	1.5	512	12.8
(trace metal grade)	β-Sn region	0.00012$^{\text{ref.4}}$	12	2,000,000	537
Figure S1. Room temperature solid-state 133Cs NMR spectra of CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials at 11.75 T with a magic angle spinning frequency of 13 kHz. Expansion shows the corresponding spinning side band.

Figure S2. Room temperature PXRD (a) and 133Cs NMR spectra (b) of CsSnCl$_3$ materials prepared by the high-temperature sealed-tube method followed by slow-cooling (5 K/min). PXRD patterns were collected within 24 h of synthesis and 133Cs NMR spectra were acquired at 11.75 T after six days of synthesis. The asterisks (*) in (b) indicate spinning sidebands for monoclinic CsSnCl$_3$. Plot of 133Cs NMR peak area for the cubic CsSnCl$_3$ phase as a function of time (up to 72 days) showing mono-exponential like decay kinetics for the cubic to monoclinic phase transition in CsSnCl$_3$ (c). The data points between 10 to 72 days are missing because of the sudden institutional lockdown (~ 60 days) during the first wave of COVID-19 pandemic in early 2020.
Material	Cs	Sn	Cl	Br
CsSnCl$_3$				
CsSn(Cl$_{0.90}$Br$_{0.10}$)$_3$				
CsSn(Cl$_{0.67}$Br$_{0.33}$)$_3$				
CsSn(Cl$_{0.33}$Br$_{0.67}$)$_3$				
CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$				
CsSnBr$_3$				

Figure S3. FESEM images and the corresponding EDS elemental mapping for Cs, Sn, Cl and Br for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ materials (top to bottom: $x = 0.00, 0.10, 0.33, 0.67$ and 1.00).
Figure S4. Room temperature experimental and fitted PXRD diagrams for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ series. All the diffraction data are fitted assuming a cubic (Pm-3m) space group symmetry.
Figure S5. Tauc plots showing direct bandgaps of the cubic phases of CsSn(Cl\textsubscript{1−x}Br\textsubscript{x})\textsubscript{3} materials; c-CsSnCl\textsubscript{3} (a), CsSn(Cl\textsubscript{0.90}Br\textsubscript{0.10})\textsubscript{3} (b), CsSn(Cl\textsubscript{0.67}Br\textsubscript{0.33})\textsubscript{3} (c), CsSn(Cl\textsubscript{0.50}Br\textsubscript{0.50})\textsubscript{3} (d), CsSn(Cl\textsubscript{0.33}Br\textsubscript{0.67})\textsubscript{3} (e), CsSn(Cl\textsubscript{0.10}Br\textsubscript{0.90})\textsubscript{3} (f) and CsSnBr\textsubscript{3} (g).
Figure S6. Solid-state 119Sn NMR spectra of CsSnBr$_3$ at 7.05 and 11.75 T under non-spinning sample conditions. The scales are vertically normalized.

Figure S7. Solid-state 119Sn NMR spectra of c-CsSnCl$_3$ (a), CsSn(Cl$_{0.50}$Br$_{0.50}$)$_3$ (b) and CsSnBr$_3$ (c) at 11.75 T acquired with spinning frequencies of 0 and 10 kHz. The scales are vertically normalized.
Figure S8. Solid-state ^{119}Sn NMR spectra of CsSn(Cl$_{0.10}$Br$_{0.90}$)$_3$ at 11.75 T acquired with spinning frequencies between 0 to 13 kHz with the Hahn-echo pulse sequence and with various echo-delays as indicated. The scales are vertically normalized.

Figure S9. Solid-state ^{119}Sn NMR chemical shifts vs the inverse of direct bandgap values for the CsSn(Cl$_{1-x}$Br$_x$)$_3$ series.
Figure S10. Room temperature PXRD patterns for the CsSnBr$_3$ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. The dagger (†) indicates signal from Cs$_2$SnBr$_6$.

Figure S11. UV-Vis absorption spectra (a) and Tauc plots showing direct bandgaps (b-d) for the CsSnBr$_3$ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods.
Figure S12. $^{119}\text{Sn} T_2^*$ (i.e., $\frac{1}{\text{fwhm}}$) relaxation time as a function of absolute temperature (230-418 K) for the CsSnBr$_3$ (SS) material. ^{119}Sn NMR spectra were acquired at 11.75 T under non-spinning sample conditions. The data were fit by a least-squares method with the following equation: $T_2^*/ms = -0.09756(0.02587) + 7.35516(0.77322) \times 10^{-4} \cdot T/K$

Figure S13. UV-Vis absorption spectra for a CsSnBr$_3$ sample that was stored under ambient laboratory conditions over 300 days (degraded CsSnBr$_3$), pristine CsSnBr$_3$ and Cs$_2$SnBr$_6$.
Figure S14. Solid-state ^{119}Sn NMR spectra of the degraded CsSnBr$_3$ parent and SnBr$_2$ starting precursor at 11.75 T acquired with spinning frequencies of 12 kHz with 2,000,000 scans each.

References:

1. Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche. Z.Tech. Phys. (Leipzig) 1931, 12, 593–601.

2. Bernard, G. M.; Goyal, A.; Miskolzie, M.; McKay, R.; Wu, Q.; Wasylishen, R. E.; Michaelis, V. K. Methylammonium Lead Chloride: A Sensitive Sample for an Accurate NMR Thermometer. J. Magn. Reson. 2017, 283, 14–21.

3. Cossement, C.; Darville, J.; Gilles, J. -M; Nagy, J. B.; Fernandez, C.; Amoureux, J. -P. Chemical Shift Anisotropy and Indirect Coupling in SnO$_2$ and SnO. Magn. Reson. Chem. 1992, 30 (3), 263–270.

4. Kubicki, D. J.; Prochowicz, D.; Salager, E.; Rakhmatullin, A.; Grey, C. P.; Emsley, L.; Stranks, S. D. Local Structure and Dynamics in Methylammonium, Formamidinium and Cesium Tin(II) Mixed–halide Perovskites from ^{119}Sn Solid–State NMR. J. Am. Chem. Soc. 2020, 142, 7813–7826.