Regurgitação Paravalvar: Análise de Desfechos Clínicos no Tratamento Cirúrgico e Percutâneo

Paravalvular Regurgitation: Clinical Outcomes in Surgical and Percutaneous Treatments

Carlos Passos Pinheiro, Daniele Rezek, Eduardo Paiva Costa, Edvagner Sergio Leite de Carvalho, Freddy Antonio Brito Moscoso, Percy Richard Chavez Taborga, Andreia Dias Jeronimo, Alexandre Antonio Cunha Abizaid, Auristela Isabel de Oliveira Ramos

Instituto Dante Pazzanese de Cardiologia, São Paulo, SP – Brasil

Resumo

Fundamento: Regurgitação ou escape paravalvar é uma complicação grave e incomum associada ao implante de prótese valvar. Estudos mostram incidência de 3% a 6% com repercussão hemodinâmica. Existem poucos estudos na literatura que comparam as abordagens cirúrgica e percutânea para sua correção.

Objetivos: Comparar as abordagens cirúrgica e percutânea de correção da regurgitação paravalvar quanto a desfechos clínicos durante a internação e após 1 ano do procedimento.

Métodos: Este é um estudo retrospectivo, descritivo e observacional, que incluiu 35 pacientes com escape paravalvar acompanhados no Instituto Dante Pazzanese de Cardiologia entre janeiro de 2011 e dezembro de 2013 e que necessitaram de correção. Os pacientes foram divididos de acordo com o tratamento estabelecido e acompanhados por um período 1 ano após o procedimento.

Resultados: O grupo submetido ao tratamento percutâneo foi considerado como de maior risco para complicações por apresentar pacientes mais idosos, com maior prevalência de diabetes, maior quantidade de cirurgias valvares prévias e menor valor médio de clearance de creatinina. Durante a evolução intra-hospitalar, observou-se grande número de complicações nos dois grupos (74,3% dos casos), sem diferença estatística nos desfechos analisados. Após 1 ano, o grupo percutâneo teve maior número de reintervenções (8,7% vs. 20%, p = 0,57) e mortalidade maior (0% vs. 20%, p = 0,08). Uma alta incidência de escape residual mitral foi verificada após procedimento percutâneo (8,7% vs. 50%, p = 0,08).

Conclusão: A cirurgia é o tratamento de escolha da regurgitação paravalvar. A abordagem percutânea pode ser uma alternativa para os pacientes com risco cirúrgico elevado. (Arq Bras Cardiol. 2016; 107(1):55-62)

Palavras-chave: Doenças das Valvas Cardíacas / cirurgia; Insuficiência da Valva Aórtica / cirurgia; Insuficiência da Valva Mitral / cirurgia; Próteses Valvulares Cardíacas; Ecocardiografia Transesofágiana.

Abstract

Background: Paravalvular regurgitation (paravalvular leak) is a serious and rare complication associated with valve replacement surgery. Studies have shown a 3% to 6% incidence of paravalvular regurgitation with hemodynamic repercussion. Few studies have compared surgical and percutaneous approaches for repair.

Objectives: To compare the surgical and percutaneous approaches for paravalvular regurgitation repair regarding clinical outcomes during hospitalization and one year after the procedure.

Methods: This is a retrospective, descriptive and observational study that included 35 patients with paravalvular leak, requiring repair, and followed up at the Dante Pazzanese Institute of Cardiology between January 2011 and December 2013. Patients were divided into groups according to the established treatment and followed up for 1 year after the procedure.

Results: The group submitted to percutaneous treatment was considered to be at higher risk for complications because of the older age of patients, higher prevalence of diabetes, greater number of previous valve surgeries and lower mean creatinine clearance value. During hospitalization, both groups had a large number of complications (74.3% of cases), with no statistical difference in the analyzed outcomes. After 1 year, the percutaneous group had a greater number of re-interventions (8.7% vs 20%, p = 0.57) and a higher mortality rate (0% vs. 20%, p = 0.08). A high incidence of residual mitral leak was observed after percutaneous procedure (8.7% vs. 50%, p = 0.08).

Conclusion: Surgery is the treatment of choice for paravalvular regurgitation. The percutaneous approach can be an alternative for patients at high surgical risk. (Arq Bras Cardiol. 2016; 107(1):55-62)

Keywords: Heart Valve Diseases / surgery; Aortic Valve Insufficiency / surgery; Mitral Valve Insufficiency / surgery; Heart Valve Prosthesis; Echocardiography; Transesophageal.

Correspondência: Carlos Passos Pinheiro • Instituto Dante Pazzanese de Cardiologia Rua Capote Valente, N° 234. CEP 05409000, Pinheiros, São Paulo, SP – Brasil E-mail: cppinheiro@cardiol.br; cppinheiro@hotmail.com Artigo recebido em 18/07/15; revisado em 17/08/15; aceito em 05/02/16.

DOI: 10.5935/abc.20160086
Introdução

Regurgitação ou escape paravalvar é uma complicaçãograve e incomum associada ao implante de prótese valvar. Consiste em uma comunicação anormal entre a estrutura da prótese implantada e o tecido cardíaco, gerando um fluxo turbulento de sangue com repercussões clínicas variadas.

Em estudos com ecocardiografia transesofágica (ETE) após cirurgias de troca valvar, a incidência de refluxo paravalvar com repercussão hemodinâmica variou de 3% a 6% e sem repercussão foi cerca de 20%,2-4 sendo mais verificado em próteses mecânicas na posição mitral.5-8

Os principais fatores determinantes de sua ocorrência são: calcificação ou fragilidade do anel valvar, endocardite infeciosa (EI), dificuldade técnica na sutura, tamanho e forma da prótese, regurgitação mitral prévia, infarto agudo do miocárdio e síndrome de Marfan.9

O escape pode aparecer precocemente quando relacionado a aspectos técnicos da cirurgia ou tardiamente, ocasionado por desíncias dos pontos de sutura ou infecção.10 A apresentação clínica é variável. Cerca de 5% dos pacientes são sintomáticos, manifestando sinais e sintomas de insuficiência cardíaca (IC), anemia hemolítica ou EI.11,12

A ecocardiografia transtorácica (ETT) muitas vezes não consegue diferenciar escape paraprotético da regurgitação secundária às alterações degenerativas da bioprótese. A ETE 3D é o método mais indicado para avaliar detalhadamente a posição, o grau e a repercussão hemodinâmica.13,14 Além disso, contribui para o planejamento estratégico da oclusão percutânea ou do tratamento cirúrgico.15-18

O tratamento cirúrgico das regurgitações paravalvares constitui em grande parte medida paliativa para controle de sintomas.19-21 A intervenção cirúrgica é o procedimento de escolha na existência de EI, disfunção significativa, ou instabilidade mecânica da prótese. Contudo, é notório o aumento significativo da mortalidade com cirurgias subsequentes. Quando a indicação para nova abordagem é o escape paravalvar, a mortalidade da primeira re-operação chega a 30%.22-23 No contexto atual de existência de pacientes com risco operatório proibitivo ou com múltiplas cirurgias prévias, o fechamento percutâneo com implante de dispositivos ocluisivos surge como uma estratégia de tratamento factível, promissora e menos invasiva.

Em frente ao exposto, explorar esse tema é relevante tendo em vista o pequeno número de estudos que abordam comparativamente os tratamentos cirúrgico e percutâneo dos refluxos e seus resultados a longo prazo.

O objetivo do presente estudo é comparar as abordagens cirúrgica e percutânea de correção da regurgitação paravalvar quan_o a de esfe_chos clínicos durante a internação e após 1 ano do procedimento.

Métodos

Este é um trabalho retrospectivo, descritivo e observacional que incluiu pacientes com diagnóstico de regurgitação paravalvar com repercussão clínica (IC, hemólise ou EI) e necessidade de correção (cirúrgica ou percutânea), acompanhados no Instituto Dante Pazzanese de Cardiologia no período de janeiro de 2011 a dezembro de 2013. Durante o período citado, 35 pacientes com diagnóstico de escape paraprotético e necessidade de correção foram avaliados na seção Médica de Valvopatias. Todos os diagnósticos foram confirmados com ETE. A decisão sobre o tipo de abordagem (cirúrgica ou percutânea) foi baseada no risco cirúrgico do paciente, levando-se em consideração a idade, o número de cirurgias prévias e as comorbidades associadas. O Valve Clinic do hospital foi responsável pela decisão e, posteriormente, os casos considerados de alto risco cirúrgico foram levados para o Heart Team objetivando a oclusão do refluxo por meio de correção percutânea. Pacientes com defeito paravalvar acometendo pelo menos um terço da circunferência do anel protético foram considerados inelegíveis para o procedimento percutâneo.

Os casos referenciados para correção percutânea foram realizados sob anestesia geral e guiados por ETE e radioscopia. O fechamento do refluxo de posição mitral se deu por via anterógra da (acesso pela veia femoral e punção transeptal), retrógrada (acesso através da artéria femoral) ou transapical (punição direta), a depender da anatomia do paciente e do local do defeito. A correção de regurgitações aórticas foi realizada por abordagem retrógrada (via aorta). Em todos os casos, o dispositivo de fechamento utilizado foi o Amplatzer Vascular Plug III (AVP III). Os casos referenciados para correção cirúrgica foram realizados com base nas técnicas cirúrgicas descritas na literatura.

Foram estudados os dados epidemiológicos, clínicos e os fatores de risco possivelmente envolvidos na fisiopatologia do escape em toda a população do estudo. Posteriormente, os pacientes foram divididos de acordo com o tratamento estabelecido (cirúrgico ou percutâneo), objetivando a comparação de desfechos clínicos.

Os dois grupos foram comparados quanto à evolução intra-hospitalar e à evolução durante o primeiro ano após o procedimento. Os desfechos intra-hospitalares elencados foram: óbito, complicações cardiovasculares (choque cardiogênico, IC, acidente vascular cerebral (AVC), arritmia, sangramento, reoperação), complicações não cardíacas (insuficiência renal aguda (IRA) e infecção) e dias de internação. Sangramento foi definido como necessidade de transfusão de dois ou mais concentrados de hemácias. Aumento persistente de creatinina maior que 0,5 mg/dl foi considerado IRA. Infecção foi considerada de acordo com parâmetros clínicos e laboratoriais, cujos sinais relacionados foram pulmonar, febre operatoria, urina e corrente sanguínea. Os desfechos tardios (após 1 ano do procedimento) elencados foram: óbito, reinternação, reoperação, dados clínicos e ecocardiográficos.

Os dados foram submetidos à análise estatística. Os resultados foram considerados com significância estatística se o valor de p fosse menor que 0,05. Para a análise das variáveis qualitativas utilizou-se o teste de Fisher e o teste do qui-quadrado, e para as quantitativas foi usado o teste não paramétrico de Mann-Whitney. Para a análise de sobrevida durante o 1º ano do procedimento de correção valeu-se da metodologia de Kaplan-Meier e do teste de log rank para comparação entre os grupos. Todas as análises estatísticas foram realizadas com o programa SPSS (SPSS™ 13.0 for Windows™, SPSS Inc., Chicago, IL, EUA).
O projeto foi aprovado pelo Comitê de Ética em Pesquisa do Instituto Dante Pazzanese de Cardiologia.

Resultados

Características da população

A média de idade dos 35 pacientes submetidos à intervenção foi de 54 ± 14 anos, sendo 71,4% deles do sexo masculino (Tabela 1). A maior incidência de regurgitação ocorreu em próteses na posição mitral (60% dos casos) e em próteses biológicas (51,4%). De acordo com a análise ecocardiográfica, observou-se que 60% dos escapes foram classificados como refluxos graves, 28,6% como moderados e 11,4% como leves (Tabela 3).

A insuficiência mitral moderada a grave pré-operatória foi diagnosticada em 31,4% dos casos, seguida da calcificação do anel valvar em 25,7%. A EI prévia foi encontrada em 14,3% dos pacientes e o infarto agudo do miocárdio em 8,6%. Não tivemos pacientes com síndrome de Marfan ou com revascularização prévia do miocárdio.

Após a divisão dos grupos de acordo com o tipo de tratamento escolhido, foram alocados 10 pacientes (28,6%) no grupo percutâneo e 25 (71,4%) para cirurgia de troca valvar. No grupo submetido a tratamento percutâneo, os pacientes eram mais idosos, com média de 63 ± 13 anos versus (vs.) 50 ± 13 anos, com significância estatística (p = 0,011).

Os dois grupos foram semelhantes quanto aos antecedentes de hipertensão arterial sistêmica (64% vs. 70%, p = 0,99), dislipidemia (40% vs. 30%, p = 0,70), AVC pré-operatório (12% vs. 10%, p = 0,99), fração de ejeção (FE) menor que 50% (24% vs. 20%, p = 0,99), e fibrilação ou flutter atriais (44% vs. 30%, p = 0,70). O clearance de creatinina médio (em ml/min) foi de 90 ± 38 no grupo cirúrgico e 72 ± 38 no grupo percutâneo (p = 0,07). Somente três pacientes eram diabéticos e todos pertenciam ao grupo percutâneo (8,6%), com p de 0,018 (Tabela 1). A quantidade de cirurgias valvares prévias foi maior nos pacientes indicados ao tratamento percutâneo (1,7 ± 0,7 vs. 2,6 ± 1) com diferença estatística (p = 0,041).

Apresentação clínica no diagnóstico

A maioria dos pacientes apresentava dispneia e classe funcional (CF) III da New York Heart Association (NYHA) (CF I: 25,7%, CF II: 25,7%, CF III: 40%, CF IV: 8,6%). Sinais clínicos e laboratoriais de hemólise foram identificados em 42% dos pacientes, sendo 32% do grupo cirúrgico e 70% do percutâneo, com p de 0,04 (Tabela 2). Somente dois pacientes tiveram o diagnóstico de EI ou abscesso e pertenciam ao grupo cirúrgico (8% vs. 0%, p = 0,99).

Quanto aos dados laboratoriais, ambos os grupos tinham algum grau de anemia hemolítica, caracterizada por queda da hemoglobina, elevação das bilirrubinas e desidrogenase lática (DHL). O grupo submetido ao tratamento percutâneo apresentou maior grau de anemia (média de 9,7 ± 1,7 vs. 12 ± 2, p = 0,010) (Tabela 2).

Não houve diferença entre os grupos quanto ao tamanho do átrio esquerdo (53 ± 14 vs. 54 ± 14 mm, p = 0,81), diâmetro diastólico (60 ± 10 vs. 62 ± 9 mm, p = 0,70), diâmetro sistólico (41 ± 11 vs. 39 ± 11 mm, p = 0,67) e FE (58% ± 13 vs. 59% ± 16, p = 0,41) do ventrículo esquerdo. Observou-se que os pacientes do grupo percutâneo tinham a média da pressão arterial pulmonar mais elevada (56 ± 17 vs. 73 ± 13 mmHg, p = 0,013) (Tabela 3).

Considerando os escapes identificados no grupo percutâneo, 70% acometeram próteses metálicas, 80% acometeram próteses em posição mitral, 70% foram classificados como refluxo grave pela avaliação ecocardiográfica e 30% como refluxo moderado.

Tabela 1 – Características dos pacientes

Variáveis	Grupo cirúrgico n = 25 (71,4%)	Grupo percutâneo n = 10 (28,6%)	Total n = 35	p
Idade	50 ± 13	63 ± 13	54 ± 14	0,011
Sexo				
Masculino	17 (68%)	8 (80%)	25 (71,4%)	0,68
Feminino	8 (32%)	2 (20%)	10 (28,6%)	
Antecedentes				
IMC	26,8 ± 6	23,1 ± 7	25 ± 5	0,13
Hipertensão arterial	16 (64%)	7 (70%)	23 (65,7%)	0,99
Diabetes mellitus	0 (0%)	3 (30%)	3 (8,6%)	0,018
Dislipidemia	10 (40%)	3 (30%)	13 (37,1%)	0,70
AVC	3 (12%)	1 (10%)	4 (11,4%)	0,99
FE < 50%	6 (24%)	2 (20%)	8 (22,9%)	0,99
FA/Flutter	11 (44%)	3 (30%)	14 (40%)	0,70
Clearance de creatinina	90 ± 38	72 ± 38	85 ± 39	0,070
Cirurgias valvares prévias	1,72 ± 0,7	2,6 ± 1	1,97 ± 0,92	0,041

IMC: índice de massa corporal; AVC: acidente vascular cerebral; FE: fração de ejeção; FA: fibrilação atrial.
Tabela 2 – Apresentação clínica e laboratorial

Variáveis	Grupo Cirúrgico n = 25 (71,4%)	Grupo percutâneo n = 10 (28,6%)	Total n = 35	p
IC				0,60
CF I	8 (32%)	1 (10%)	9 (25,7%)	
CF II	6 (24%)	3 (30%)	9 (25,7%)	
CF III	9 (36%)	5 (50%)	14 (40%)	
CF IV	2 (8%)	1 (10%)	3 (8,6%)	
Hemólise	8 (32%)	7 (70%)	15 (42%)	0,04
EI / Abscesso	2 (8%)	0 (0%)	2 (5,7%)	0,99
Dados laboratoriais				
Hemoglobina	12 ± 2	9,7 ± 1,7	11,44 ± 2,36	0,01
DHL	1327 ± 1665	1286 ± 849	1314 ± 1435	0,40
BI	0,81 ± 0,68	1,07 ± 0,99	0,89 ± 0,78	0,39
Creatinina	1,23 ± 1,46	1,11 ± 0,41	1,19 ± 1,25	0,30
BNP	12566 ± 17872	1694 ± 1412	7130 ± 12807	0,40

IC: insuficiência cardíaca; CF: classe funcional; DHL: desidrogenase lática; BI: bilírubina indireta; BNP: peptídeo natriurético cerebral.

Tabela 3 – Dados ecocardiográficos

Variáveis	Grupo cirúrgico n = 25 (71,4%)	Grupo percutâneo n = 10 (28,6%)	Total n = 35	p
Medidas do ecocardiograma				
AE	53 ± 14	54 ± 14	53 ± 13	0,81
DDVE	60 ± 10	62 ± 9	60 ± 10	0,70
DSVE	41 ± 11	39 ± 11	41 ± 11	0,67
FE	58 ± 13	59 ± 16	58 ± 14	0,41
PSAP	56 ± 17	73 ± 13	61 ± 17	0,013
Escape				0,46
Mitral	13 (52%)	8 (80%)	21 (60%)	
Aoórtico	11 (44%)	2 (20%)	13 (37%)	
Mitral+Aórtico	1 (4%)	0 (0%)	1 (3%)	
Tipo de prótese				0,14
Mecânica	10 (40%)	7 (70%)	17 (48,6%)	
Biológica	15 (60%)	3 (30%)	18 (51,4%)	
Grau do refluxo				0,39
Discreto	4 (16%)	0 (0%)	4 (11,4%)	
Moderado	7 (28%)	3 (30%)	10 (28,6%)	
Grave	14 (56%)	7 (70%)	21 (60%)	

AE: diâmetro do átrio esquerdo; DDVE: diâmetro diastólico do ventrículo esquerdo; DSVE: diâmetro sistólico do ventrículo esquerdo; FE: fração de ejeção; PSAP: pressão sistólica da artéria pulmonar.

Evolução intra-hospitalar

Durante a evolução intra-hospitalar, observou-se um grande número de complicações em ambos os grupos. Não houve diferença estatística entre os dois grupos na análise dos seguintes desfechos compostos: complicações intra-hospitalares (grupo cirúrgico vs. percutâneo, 72% vs. 80%), complicações cardíacas (52% vs. 50%) e não cardíacas (44% vs. 70%). Ocorreram dois óbitos nos pacientes operados e nenhum no grupo percutâneo (8% vs. 0%, p = 0,99). O tempo de internação médio foi de 31 dias (30 ± 23 vs. 32 ± 34,
p = 0,84). Em relação aos exames laboratoriais prévios, houve redução da hemólise em ambos os grupos após procedimento no período intra-hospitalar (62% vs. 29% de redução).

A Tabela 4 detalha as complicações intra-hospitalares nos diferentes grupos. Os pacientes do grupo percutâneo apresentaram maior incidência de IC descompensada (30% vs. 4%, p = 0,061).

Evolução em 1 ano

Após 1 ano de seguimento, constatou-se melhora da CF da amostra estudada, com 70,4% dos pacientes apresentando-se em CF I. Os pacientes do grupo percutâneo necessitaram de mais reoperações (8,7% vs. 20%, p = 0,57) devido a IC e a disfunção de prótese. Dois pacientes do grupo percutâneo morreram. A curva de sobrevida em 1 ano foi menor nos pacientes do grupo percutâneo, como demonstrado no gráfico da Figura 1 (p = 0,397).

Aproximadamente 40% de todos os pacientes apresentaram refluxo paravalvar residual após 1 ano do procedimento. Dos pacientes submetidos ao tratamento percutâneo, 60% permaneceram com refluxo residual, em comparação a 30% do grupo cirúrgico (Tabela 5). No entanto, a maioria dos escapes pós-intervenção foi considerada discreta (46%) e nenhum possuía repercussão clínica.

Importante destacar a alta incidência de regurgitação residual na posição mitral após procedimento percutâneo comparado ao grupo cirúrgico, embora sem significância estatística (8,7% vs. 50%, p = 0,08).

Discussão

A regurgitação paravalvar com repercussão clínica é uma complicação pouco frequente estimada em 3% a 6% dos pacientes submetidos a troca valvar.\(^4\)\(^7\) Registros epidemiológicos são escassos em relação ao assunto.

Na população do estudo, o diagnóstico do escape paraprotético foi confirmado por meio da ETE, método disponível mais adequado para avaliação da posição, do grau e da repercussão hemodinâmica do defeito, e útil para o planejamento estratégico da correção.\(^3\)\(^5\)\(^6\)

Os autores observaram uma maior incidência de refluxo em posição mitral, correspondendo a 60% dos casos, semelhante ao valor de 68% exposto por Akins et al.\(^24\) Quanto ao tipo da prótese, 51,4% eram biológicas, diferentemente do relatado por Jindani et al.\(^8\) que encontraram 62,5% dos escapes em próteses metálicas. No entanto, em nosso meio há uma maior prevalência de pacientes com bioprótese, o que justificaria o achado.

O principal sintoma foi de IC decorrente de sobrecarga volumétrica. Esteve presente em 74% dos pacientes, com predomínio de dispneia e CF III em 40% dos casos. Ruiz et al.\(^12\) obtiveram resultados equiparáveis, verificando a presença da IC em 90% de sua amostra, com maioria em CF III. Da mesma forma, Genomi et al.\(^23\) demonstraram que 38% apresentavam-se com dispneia e CF III ou IV por ocasião do diagnóstico de regurgitação paravalvar. É importante notar que 11% dos escapes, apesar de discretos, foram capazes de causar sintomatologia, necessitando de intervenção. O aumento do BNP (valor médio encontrado de 7130) reflete o estado de descompensação cardiovascular, estando diretamente relacionado ao volume de regurgitação, à dilatação das câmaras esquerdas e à disfunção ventricular.

Até recentemente, a cirurgia era a única opção terapêutica disponível, apesar da alta mortalidade associada com a reoperação.\(^9\)\(^10\) O fechamento da regurgitação por meio de procedimento hemodinâmico vem ganhando espaço nos últimos anos.\(^20\)\(^21\) Quando bem sucedido, os resultados clínicos são razoáveis, sem as taxas significativas de mortalidade

Tabela 4 – Evolução intra-hospitalar

Variáveis	Grupo cirúrgico n = 25 (71,4%)	Grupo percutâneo n = 10 (28,6%)	Total n = 35	p
Complicações intra-hospitalares	18 (72%)	8 (80%)	26 (74,3%)	0,99
Óbito	2 (8%)	0 (0%)	2 (5,1%)	0,99
Complicações cardíacas	13 (52%)	5 (50%)	18 (51,4%)	0,99
Choque cardiogênico	2 (8%)	3 (30%)	5 (14,3%)	0,12
IC	1 (4%)	3 (30%)	4 (11,4%)	0,061
Arritmia	12 (48%)	3 (30%)	15 (42,9%)	0,45
AVC	1 (4%)	0 (0%)	1 (2,9%)	0,99
Sangramento	12 (48%)	3 (30%)	15 (42,9%)	0,45
Reoperação valvar	1 (4%)	2 (20%)	3 (8,6%)	0,56
Complicações não cardíacas	11 (44%)	7 (70%)	18 (51,4%)	0,26
IRA	6 (24%)	3 (30%)	9 (25,7%)	0,69
Infecção	9 (36%)	1 (10%)	10 (28,6%)	0,21
Dias de internação	30 ± 23	32 ± 34	31,06 ± 26,57	0,84
Hemólise após procedimento	3 (12%)	5 (50%)	8 (22,9%)	0,04

IC: insuficiência cardíaca; AVC: acidente vascular cerebral; IRA: insuficiência renal aguda.
Tabela 5 – Evolução em 1 ano

Variáveis	Grupo cirúrgico n = 23 (69,7%)	Grupo percutâneo n = 10 (30,3%)	Total n = 33	p
IC				0,30
CF I	16 (72,7%)	3 (60%)	19 (70,4%)	
CF II	3 (13,6%)	0 (0%)	3 (11,1%)	
CF III	2 (9,1%)	2 (40%)	4 (13,6%)	
CF IV	1 (4,5%)	0 (0%)	1 (3,7%)	
Reintervenção	3 (13%)	2 (20%)	5 (15,2%)	0,63
Reoperação	2 (8,7%)	2 (20%)	4 (12,1%)	0,57
Óbito	0 (0%)	2 (20%)	2 (6,1%)	0,08
Medidas do ecocardiograma				
AE	51 ± 14	56 ± 20	51 ± 14	0,74
DDVE	59 ± 10	59 ± 10	58 ± 10	0,55
DSVE	37 ± 8,6	40 ± 12	37 ± 8,6	0,49
FE	55 ± 13	55 ± 14	55 ± 13	0,91
PSAP	52 ± 20	66,5 ± 16	52 ± 20	0,11
Regurgitação residual	7 (30,4%)	6 (60%)	13 (39,9%)	0,14
Mitral	2 (8,7%)	5 (50%)	7 (53,8%)	0,08
Áórtica	4 (17,3%)	1 (10%)	5 (38,5%)	0,99
Mitral-áórtica	1 (4,4%)	0 (0%)	1 (7,7%)	0,99
Grau do refluxo				
Discreto	3 (13%)	3 (30%)	6 (18,2%)	0,34
Moderado	2 (8,7%)	1 (10%)	3 (9,1%)	0,99
Grave	2 (8,7%)	2 (20%)	4 (12,1%)	0,57

IC: insuficiência cardíaca; CF: classe funcional; AE: diâmetro do átrio esquerdo; DDVE: diâmetro diastólico do ventrículo esquerdo; DSVE: diâmetro sistólico do ventrículo esquerdo; FE: fração de ejeção; PSAP: pressão sistólica da artéria pulmonar.

Figura 1 – Curva de sobrevida dos pacientes submetidos à correção da regurgitação durante o primeiro ano após o procedimento.
Artigo Original

operatória associada à reoperação. É indicada para pacientes sintomáticos de alto risco cirúrgico como terapia alternativa. Os pacientes do estudo tratados por via percutânea eram mais graves, motivo pelo qual possuíam maior risco de complicações.

A evolução intra-hospitalar confirma a grande morbimortalidade em ambos os tipos de tratamento. Occorreu um grande número de complicações cardíacas (51,4%) e não cardíacas (51,4%), sem divergência estatística entre os grupos, como detalhado na Tabela 4. Uma mortalidade intra-hospitalar de 5,1% foi encontrada sendo que todos os óbitos hospitalares pertenciam ao grupo cirúrgico. Diferentemente de Genoni et al., que publicaram uma elevada mortalidade pós-operatória de 12%. O tempo médio de 31 dias de internação reflete a gravidade da população em estudo.

Após um ano de seguimento, foi verificada melhora da sintomatologia dos pacientes, com 70,4% dos mesmos mantidos em CF I. Constatou-se alta morbidade (15,2% reinternaram e 12,1% foram submetidos a nova re-intervenção) e uma taxa de mortalidade de 6,1% no primeiro ano, com predomínio do grupo percutâneo.

O comportamento da mortalidade sugere que os óbitos do grupo cirúrgico estariam relacionados às complicações relacionadas a reoperação. Já no grupo percutâneo, os óbitos ocorreram após a alta hospitalar, podendo estar relacionados à gravidade desses doentes. As curvas de sobrevida da Figura 1 não evidenciam diferença estatística durante o primeiro ano, porém nota-se uma tendência a maior mortalidade nos pacientes tratados com a técnica percutânese, provavelmente por serem pacientes mais graves.

Na ecocardiografia de rotina do primeiro ano após intervenção, notou-se a presença de escape residual em aproximadamente 40% dos casos. A taxa de insucesso, segundo a literatura, em ambas as possibilidades terapêuticas varia entre 12% e 35%. A recorrência do refluxo é comum, uma vez que o processo patológico subjacente permanece inalterado.

O presente estudo teve como limitação a pequena quantidade de pacientes em cada grupo, bem como a diferença nas características clínicas de cada grupo. A amostra diminuta também prejudicou a análise separada das diversas situações clínicas envolvidas com o diagnóstico de regurgitação paravalvar (hemólise, IC e endocardite). O objetivo do trabalho foi apresentar as características dos grupos e sua evolução após o procedimento. Os resultados alcançados permitem apontar tendências, gerar hipóteses e sugerir estudos complementares futuros sobre o tema.

Conclusão

A regurgitação paravalvar é uma doença rara que acomete principalmente próteses mitrais e biológicas. A intervenção cirúrgica é atualmente o tratamento de escolha. No presente estudo, a estratégia de oclusão percutânea do refluxo, representando ainda uma experiência inicial, foi efetiva na melhora da CF e da hemólise na amostra estudada. Os autores acreditam que, com o aprimoramento da técnica percutânea, este procedimento poderá ser indicado em pacientes com maior risco cirúrgico.

Contribuição dos autores

Concepcio e desenho da pesquisa: Pinheiro CP, Rezek D, Costa EP, Carvalho ESL, Moscoso FAB, Jeronimo AD, Ramos AIO; Obtenção de dados: Pinheiro CP, Rezek D, Costa EP, Carvalho ESL, Moscoso FAB, Taborga PRC, Abízaid AAC; Análise e interpretação dos dados: Pinheiro CP, Rezek D, Costa EP, Carvalho ESL, Moscoso FAB; Análise estatística e Redação do manuscrito: Pinheiro CP, Rezek D, Costa EP, Carvalho ESL, Moscoso FAB; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Pinheiro CP, Rezek D, Costa EP, Carvalho ESL, Moscoso FAB, Jeronimo AD, Ramos AIO.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Referências

1. Sampaio RO, Silva FC Jr, Oliveira IS, Padovesi CM, Soares JA, Silva WM, et al. Postoperative outcome of patients with prosthetic valve leak. Arq Bras Cardiol. 2009;93(3):283-9.
2. Smolka G, Wojakowski W. Paravalvular leak – important complication after implantation of prosthetic valve. E-Journal of Cardiology Practice. 2010;9(8).
3. Kliger C, Eiros R, Isasti G, Einhorn B, Jelnin V, Cohen H, et al. Review of surgical prosthetic paravalvular leaks: diagnosis and catheter-based closure. Eur Heart J. 2013;34(9):638-48.
4. O’Rourke DJ, Palac RT, Malenka DJ, Marin CA, Arbuckle BE, Mehn JF. Outcome of mild periprosthetic regurgitation detected by intraoperative transesophageal echocardiography. J Am Coll Cardiol. 2001;38(1):163-6.
5. Movsovitz HD, Shah SI, Ioli A, Kotler MN, Jacobs LE. Long-term follow-up of mitral paraprosthetic regurgitation by transesophageal echocardiography. J Am Soc Echocardiogr. 1994;7(5):488-92.
6. Rallidis L, Moyssakis IE, Ikonomidis I, Nihoyannopoulos P. Natural history of early paraprosthetic regurgitation: a five-year follow-up. Am Heart J. 1999;138(2 Pt 1):335-1.
7. Dávila-Roman VG, Waggoner AD, Kennard ED, Holubkov R, Jamieson WR, Engblom L, et al; Artificial Valve Endocarditis Reduction Trial echocardiography study. Prevalence and severity of paravalvular regurgitation in the Artificial Valve Endocarditis Reduction Trial (AVERT) echocardiographic study. J Am Coll Cardiol. 2004;44(7):1467-72.
8. Jindani A, Neville EM, Venn G, Williams BT. Paraprosthetic leak: a complication of cardiac valve replacement. J Cardiovasc Surg (Torino). 1991;32(4):503-8.

9. Echevarria JR, Bernal JM, Rabasa JM, Morales D, Revilla Y, Revuelt J. Reoperation for bioprosthetic valve dysfunction: a decade of clinical experience. Eur J Cardiothorac Surg. 1991;5(10):523-6.

10. Emery RW, Krogh CC, McAdams S, Emery AM, Holter AR. Long-term follow up of patients undergoing reoperative surgery with aortic or mitral valve replacement using a St Jude medical prosthesis. J Heart Valve Dis. 2010;19(4):473-84.

11. Fukuda S, Miura S, Kitamura T, Kigawa I, Miyairi T. Evaluation of paravalvular leakage occurring after the 3rd mitral valve replacement. Kyobu Geka. 2008;61(2):89-94.

12. Ruiz CE, Jelnin V, Kronzon I, Dudiy Y, Del Valle-Fernandez R, Einhorn BN, et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks. J Am Coll Cardiol. 2011;58(21):2210-7.

13. Sorajja P, Cabalka AK, Hagler DJ, Rihal CS. Percutaneous repair of paravalvular prosthetic regurgitation: acute and 30-day outcomes in 115 patients. Circ Cardiovasc Imaging. 2011;4(4):314-21.

14. Kumar R, Jelnin V, Kliger C, Ruiz CE. Percutaneous paravalvular leak closure. Cardiol Clin. 2013;31(3):431-40.

15. Kronzon I, Sugeng L, Perk C, Hirs D, Weinert L, Garcia Fernandez MA, et al. Real-time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol. 2009;53(17):1543-7.

16. García-Fernandez MA, Cortes M, García-Robles JA, Gomez de Diego JJ, Perez-David E, García E. Utility of real-time three-dimensional transesophageal echocardiography in evaluating the success of percutaneous transcatheter closure of mitral paravalvular leaks. J Am Soc Echocardiogr. 2010;23(1):26-32.

17. Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gott diener JS, Grayburn PA, et al; American Society of Echocardiography’s Guidelines and Standards Committee; Task Force on Prosthetic Valves; American College of Cardiology Cardiovascular Imaging Committee; Cardiac Imaging Committee of the American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography; American College of Cardiology Foundation; American Heart Association; European Association of Echocardiography; European Society of Cardiology; Japanese Society of Echocardiography; Canadian Society of Echocardiography. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report from the American Society of echocardiography’s guidelines and standards committee and the task force on prosthetic valves. J Am Soc Echocardiogr. 2009;22(9):975-1014.

18. Jelnin V, CoJ, Munee B, Swaminathan B, Toska S, Ruiz CE. Three-dimensional CT angiography for patients with congenital heart disease: scanning protocol for pediatric patients. Catheter Cardiovasc Interv. 2006;67(1):120-6.

19. Jelnin V, Dudiy Y, Einhorn BN, Kronzon I, Cohen HA, Ruiz CE. Clinical experience with percutaneous left ventricular transapical access for interventions in structural heart defects a safe access and secure exit. JACC Cardiovasc Interv. 2011;4(8):868-74.

20. Alonso-Biales JH, Muñoz-García AJ, Jiménez-Nava ao ME, Domínguez-Franco AJ, Melero-Tejedor JM, Rodriguez-Balíon I, et al. Closure of perivalvular leaks using an Amplatzer occluder. Rev Esp Cardiol. 2009;62(4):442-6.

21. Cortes M, García E, García-Fernandez MA, Gomez JJ, Perez-David E, Fernández-Avilés F. Usefulness of transesophageal echocardiography in percutaneous transcatheter repairs of paravalvular mitral regurgitation. Am J Cardiol. 2008;101(3):382-6.

22. Shapira Y, Babey O, Vatury M, Magen-Nativ H, Prokocimer M, Sage A. Erythropoietin can obviate the need for repeated heart valve replacement in high-risk patients with severe mechanical hemolytic anemia: case reports and literature review. J Heart Valve Dis. 2001;10(4):431-5.

23. Genomi M, Franzen D, Vatury M, Künzli A, Prokocimer M, Swaminathan B, Toska S, Ruiz CE. Three-dimensional CT angiography for patients with congenital heart disease: scanning protocol for pediatric patients. Catheter Cardiovasc Interv. 2006;67(1):120-6.

24. Akin CW, Bitondo JM, Hilgenberg AD, Vlahakes GJ, Madsen JC, MacGillivray TE, et al. Early and late results of the surgical correction of cardiac prosthetic paravalvular leaks. J Heart Valve Dis. 2005;14(6):792-9.