Semi-discrete Grüss-Voronovskaya-type and Grüss-type estimates for Bernstein-Kantorovich polynomials

Sorin G. Gal
University of Oradea
Department of Mathematics and Computer Science
Str. Universitatii Nr. 1
410087 Oradea, Romania
e-mail : galso@uoradea.ro

Abstract. The aim of this note is to prove a semi-discrete Grüss-Voronovskaya-type estimate for Bernstein-Kantorovich polynomials. Also, as a consequence, a perturbed Grüss-type estimate is obtained.

Keywords. Bernstein-Kantorovich polynomials, semi-discrete Grüss-Voronovskaya-type estimate, perturbed Grüss-type estimate, modulus of continuity.

AMS 2000 Mathematics Subject Classification: 41A36, 41A25, 41A60.

1 Introduction

A classical result in approximation theory is the asymptotic qualitative result of Voronovskaya for Bernstein polynomials in [11]. It was generalized by Bernstein in [3] and then it was extended to positive and linear operators by Mamedov in [10]. Also, quantitative estimates of Mamedov’s result were obtained in terms of the least concave majorant and a K-functional by Gonska in [7] and by Gavrea-Ivan in [6].

Another classical result is the well-known Grüss inequality for positive linear functionals $L : C[0, 1] \to \mathbb{R}$. This inequality gives an upper bound for the generalized Chebyshev functional

$$T(f, g) := L(f \cdot g) - L(f) \cdot L(g), \quad f, g \in C[0, 1].$$

For positive and linear operators $H : C[0, 1] \to C[0, 1]$ reproducing constant functions, this was investigated for the first time in [2], then obtaining in [8] the estimate

$$|H(fg; x) - H(f; x) \cdot H(g; x)| \leq \frac{1}{4} \cdot \tilde{\omega}_1(f; 2 \cdot \sqrt{H(e_2; x) - H(e_1; x)^2}) \cdot \tilde{\omega}_1(g; 2 \cdot \sqrt{H(e_2; x) - H(e_1; x)^2})$$
where \(\omega_1 \) is the least concave majorant of \(\omega_1 \) and \(e_i(x) = x^i \) for \(x \in [0, 1] \).
A mixture between the above two classical results are the so-called Grüss-Voronovskaya-type results obtained for the first time in the paper [5] for Bernstein and Păltănea operators.
On the other hand, in the very recent paper [4], we generalized the asymptotic quantitative Voronovskaya-type results, by obtaining semi-discrete quantitative Voronovskaya-type results for general positive and linear operators.
The main goal of this short note is to use the result in [4] to obtain in Section 2 a semi-discrete Grüss-Voronovskaya-type results for the Bernstein-Kantorovich polynomials. Also, as a consequence, we easily obtain a perturbed Grüss-type estimate for the same polynomials.

2 Semi-discrete Grüss-Voronovskaya-type estimate

The main result is the following semi-discrete Grüss-Voronovskaya-type estimate, for the Bernstein-Kantorovich polynomials given by the formula (see [9])

\[
K_n(f)(x) = \sum_{k=0}^{n} p_{n,k}(x) \cdot (n+1) \int_{k/(n+1)}^{(k+1)/(n+1)} f(t) dt,
\]

where \(p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} \) and \(f : [0, 1] \rightarrow \mathbb{R} \) is Riemann (or Lebesgue) integrable on

\[[0, 1]. \]
Also, for \(n \in \mathbb{N} \) and \(x, y \in [0, 1] \), let us denote

\[
E_n(x, y) = \frac{1}{(n+1)^2} \cdot \left(x(1-x)(n-1) + \frac{1}{3} \right) + (x-y) \frac{1-2x}{2(n+1)}
\]

\[
F_n(x) = \frac{1}{(n+1)^2} \cdot \left(x(1-x)(n-1) + \frac{1}{3} \right).
\]

Notice that clearly we have \(|E_n(x, y)| = O \left(\frac{1}{n} \right) \) and \(|F_n(x)| = O \left(\frac{1}{n} \right) \), uniformly with respect to \(x, y \in [0, 1] \).

Theorem 2.1. For all \(f, g \in C^2[0, 1] \), \(n \in \mathbb{N} \) and \(x, y \in [0, 1] \), \(x \neq y \) we have

\[
\left| K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x) + (x-y) \cdot \frac{1-2x}{2(n+1)} (\|f\| \omega_1(x, y) + \|g\| \omega_1(x, y) - f'(x)g'(x)) \right|
\]

\[
\leq \left[\frac{1}{(n+1)^2} (x(1-x)(n-1) + 1/3) + |x-y| \cdot \frac{1}{\sqrt{3} \sqrt{n+1}} \right]
\]

\[
\cdot \omega_1 \left((fg)''; |x-y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right) + \|g\| \omega_1 \left(f''; |x-y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right)
\]

\[
+ \|f\| \omega_1 \left(g''; |x-y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right) + |K_n(f)(x) - f(x)| \cdot |K_n(g)(x) - g(x)|.
\]

2
where \([x, y; f] = \frac{f(x) - f(y)}{x - y}, \) \(\omega_1(f; \delta) := \sup\{ |f(x) - f(y)|; x, y \in [0, 1], |x - y| \leq \delta \} \) and \(\|f\| \) denotes the uniform norm of \(f \).

Proof. Supposing that \(f, g \in C^2[0, 1] \) and using Corollary 4.1 in [4], we obtain

\[
\left| K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x) + (x - y) \cdot \frac{1 - 2x}{2(n + 1)} ([x, y; f] \cdot [x, y; g] - f'(x)g'(x)) - F_n(x) \cdot f'(x) \cdot g'(x) \right|
\]

\[
= \left| \left(K_n(fg)(x) - f(x)g(x) - \frac{1 - 2x}{2(n + 1)} \cdot [x, y; fg] \right) - E_n(x, y) \cdot \frac{(f(x)g(x))''}{2} \right|
\]

\[
- g(x) \left(\left(K_n(f)(x) - f(x) - \frac{1 - 2x}{2(n + 1)} \cdot [x, y; f] \right) - E_n(x, y) \cdot \frac{f''(x)}{2} \right)
\]

\[
- f(x) \left(\left(K_n(g)(x) - g(x) - \frac{1 - 2x}{2(n + 1)} \cdot [x, y; g] \right) - E_n(x, y) \cdot \frac{g''(x)}{2} \right)
\]

\[
+ [K_n(f)(x) - f(x)] \cdot [g(x) - K_n(g)(x)]
\]

\[
\leq \left[\frac{1}{(n + 1)^2} (x(1 - x)(n - 1) + 1/3) + |x - y| \cdot \frac{1}{\sqrt{3} \sqrt{n + 1}} \right]
\]

\[
\cdot \left(\omega_1 \left((fg)'', |x - y| + \frac{2\sqrt{6}}{\sqrt{n + 1}} \right) + \|g\| \cdot \omega_1 \left(f''; |x - y| + \frac{2\sqrt{6}}{\sqrt{n + 1}} \right) \right)
\]

\[
+ \|f\| \cdot \omega_1 \left(g''; |x - y| + \frac{2\sqrt{6}}{\sqrt{n + 1}} \right) \right) + |K_n(f)(x) - f(x)| \cdot |K_n(g)(x) - g(x)|,
\]

which is exactly the estimate in the statement. \(\square \)

Remark 2.2. Let \(f, g \in C^3[0, 1]. \) Firstly, take \(y \to x, \) multiply by \(n \) both members in the estimate in Theorem 2.1 and use the estimate in [7], page 849, line 7 from below

\[
|K_n(h)(x) - h(x)| \leq \frac{1}{2n} \|h''\| + \frac{8}{9n} \|h''\|, x \in [0, 1], n \in \mathbb{N}, h \in C^2[0, 1].
\]

Then, since

\[
n \cdot F_n(x) = \frac{n(n - 1)}{(n + 1)^2} x(1 - x) + \frac{n}{3(n + 1)^2},
\]

by using the estimate in Theorem 2.1, we easily obtain

\[
\|n[K_n(fg) - K_n(f) \cdot K_n(g)] - e_1(1 - e_1)f'g'\| = O \left(\frac{1}{\sqrt{n}} \right),
\]

thus recapturing the order of approximation in the classical Grüss-Voronovskaya-type estimate given by Theorem 5.1 in [7].

Remark 2.3. Since obviously

\[
\left| K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x) + (x - y) \cdot \frac{1 - 2x}{2(n + 1)} ([x, y; f] \cdot [x, y; g] - f'(x)g'(x)) \right|
\]
\[
K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x) + (x - y) \cdot \frac{1 - 2x}{2(n + 1)} ([x, y; f] \cdot [x, y; g] - f'(x)g'(x))
\]

by Theorem 2.1, for all \(f, g \in C^2[0,1], n \in \mathbb{N}, x, y \in [0,1], x \neq y \), we immediately get the following estimate

\[
\left| K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x) + (x - y) \cdot \frac{1 - 2x}{2(n + 1)} ([x, y; f] \cdot [x, y; g] - f'(x)g'(x)) \right|
\]

\[
\leq \frac{1}{(n+1)^2} (x(1-x)(n-1) + 1/3) + |x - y| \cdot \frac{1}{\sqrt{3\sqrt{n+1}}}
\]

\[
= \left[\omega_1 \left((fg)'', |x - y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right) + \|g\| \cdot \omega_1 \left(f'', |x - y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right) + \|f\| \cdot \omega_1 \left(g'', |x - y| + \frac{2\sqrt{6}}{\sqrt{n+1}} \right) + |K_n(f)(x) - f(x)| \cdot |K_n(g)(x) - g(x)| + |F_n(x)| \cdot |f'(x)g'(x)| \right],
\]

which can be considered as a "perturbed" (discrete) Grüss-type estimate since for \(y \) sufficiently close to \(x \), the left-hand side of the above inequality, becomes sufficiently close to

\[
|K_n(fg)(x) - K_n(f)(x) \cdot K_n(g)(x)|.
\]

Now, if above we take \(y \to x \), then since \(|F_n(x)| = O \left(\frac{1}{n} \right) \), we immediately get

\[
\|K_n(fg) - K_n(f) \cdot K_n(g)\| = O \left(\frac{1}{n} \right),
\]

which is the same order which can be obtained for the classical Grüss-type estimate in terms of the least concave majorant of the modulus of continuity expressed by Theorem 4.2 in \([7]\) for \(f, g \in C^2[0,1] \).

Remark 2.4. The results in this note suggest that based on other semi-discrete Voronovskaya-type results in \([4]\), to get for the Bernstein-Kantorovich polynomials other semi-discrete estimates of Grüss-Voronovskaya-type and of Grüss-type. Also, similar results can be obtained for other positive and linear operators too.

References

[1] Acu, A.M., Gonska, H.: Classical Kantorovich operators revisited. Ukr. Math. J. **71**, 843-852 (2019)

[2] Acu, A.M., Gonska, H., Raşa, I.: Grüss-type and Ostrovski-type inequalities in approximation theory. Ukr. Math. J. **63**, 843-864 (2011)
[3] Bernstein, S.N.: Complément à l’article de E. Voronovskaya “Détermination de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein”. C. R. Acad. Sci. URSS 86-92 (1932)

[4] Gal, S.G.: Semi-discrete quantitative Voronovskaya-type theorems for positive linear operators. Result Math. 75(3), Art. 117 (2020)

[5] Gal, S.G., Gonska, H.: Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J. Approx. 7(1), 97-122 (2015)

[6] Gavrea, I., Ivan, M.: The Bernstein Voronovskaja-type theorems for positive linear approximation operators. J. Approx. Theory 192, 291-296 (2015)

[7] Gonska, H.: On the degree of approximation in Voronovskaya’s theorem. Stud. Univ. ”Babes-Bolyai” ser. math. LII (3), 103-115 (2007)

[8] Gonska, H., Raşa, I., Rusu, M.: Čebyšev-Grüss-type inequalities revisited. Mathematica Slovaca 63(5), 1007-1024 (2013)

[9] Kantorovich, L.V.: Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II. C. R. Acad. Sci. URSS 563-568, 595-600 (1930)

[10] Mamedov, R. G.: The asymptotic value of the approximation of multiply differentiable functions by positive linear operators. Dokl. Akad. Nauk SSSR 146, 1013-1016 (1962)

[11] Voronovskaja, E.: Détermination de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein. C. R. Acad. Sci. URSS 79-85 (1932)