Antioxidant responses of wheat plants under stress

Andréia Caverzan1, Alice Casassola2 and Sandra Patussi Brammer3

1Programa Nacional de Pós-Doutorado (PNPD/CNPq), Empresa Brasileira de Pesquisa Agropecuária, Embrapa Trigo, Passo Fundo, RS, Brazil.
2Programa de Pós-Graduação em Agronomia, Faculdade de Agronomia e Medicina Veterinária (FAMV), Universidade de Passo Fundo, Passo Fundo, RS, Brazil.
3Empresa Brasileira de Pesquisa Agropecuária, Embrapa Trigo, Passo Fundo, RS, Brazil.

Abstract

Currently, food security depends on the increased production of cereals such as wheat (*Triticum aestivum* L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (*H*₂*O*₂) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, *H*₂*O*₂ signaling is an important factor contributing to stress tolerance in cereals.

Keywords: abiotic stress, antioxidant enzymes, hydrogen peroxide signaling, wheat, *Triticum aestivum*.

Introduction

In addition to environmental adversities, the world’s agriculture faces serious challenges to meet demand, including increased consumption, allocation of land for other uses and the use of chemical products with implications for health safety (Curtis and Halford, 2014). Currently, food security depends on the increased production of mainly three cereals: wheat (*Triticum aestivum* L.), rice (*Oryza sativa* L.) and maize (*Zea mays* L.).

Wheat is one of the major cereals in the world and is one of the main sources of calories and protein. Approximately 85% and 82% of the global population depends on wheat for basic calories and protein, respectively (Chaves *et al.*, 2013). Moreover, this cereal is used in the production of a variety of wheat products, such as leavened bread, flat and steamed breads, cakes, pasta, biscuits, noodles, couscous and beer (Curtis and Halford, 2014). Beyond its use for human consumption, wheat is also used for the development of non-food products such as fuel. Because of its high level of adaptation, wheat is cultivated in tropical and subtropical regions and under both rain-fed and irrigated cultivation. However, crop production is severely affected by adverse environmental stresses (Rahaie *et al.*, 2013).

The main stresses include salt, drought, water excess, UV-B radiation, cold, heat, pathogens, insects, chemicals, ozone, and oil nutrient deprivation (Mahajan and Tuteja, 2005; Cançado, 2011). Under stress plant development and reproduction may be affected at different severity levels, furthermore, the stress is maximized when it occurs in combination.

Environmental stress induces the accumulation of reactive oxygen species (ROS) in the cells, which can cause severe oxidative damage to the plants, thus inhibiting growth and grain yield. The equilibrium between the production and scavenging of ROS is commonly known as redox homeostasis. However, when ROS production overwhelms the cellular scavenging capacity, thus unbalancing the cellular redox homeostasis, the result is a rapid and transient excess of ROS, known as oxidative stress (Mullineaux and Baker, 2010; Sharma *et al.*, 2012). Plants have antioxidant mechanisms for scavenging the ROS excess and prevent damages to cells.

Therefore, this review will address oxidative stress. An overview of the principal antioxidant enzymes involved in wheat plants in ROS detoxification under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, will be presented. Furthermore, signaling by ROS in wheat improving stress tolerance will also be covered.
Antioxidant responses

To avoid potential damage caused by ROS to cellular components, as well as to maintain growth, metabolism, development, and overall productivity, the balance between production and elimination of ROS at the intra-cellular level must be tightly regulated and/or efficiently metabolized. This equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants (Mittler, 2002; Mittler et al., 2004).

The enzymatic components comprise several antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), guaiacol peroxidase (POX) peroxiredoxins (Prxs), and enzymes of the ascorbate-glutathione (AsAGSH) cycle, such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) (Asada, 1999; Mittler, 2002, 2004). Nonenzymatic components include the major cellular redox buffers ascorbate (AsA) and glutathione (GSH) as well as tocopherol, carotenoids and phenolic compounds (Mittler et al., 2004; Gratão et al., 2005; Scandalios, 2005).

In wheat, several studies have reported changes in the activity of many enzymes of the antioxidant defense system in plants to control oxidative stress induced by environmental stresses. Alterations in the activity of SOD, APX, CAT, GR and POX and in the ROS concentration were reported in wheat plants in field and laboratory conditions (Srivalli and Khanna-Chopra, 2001; Koosy et al., 2002; Spundová et al., 2005; Varga et al., 2012; Mishra et al., 2013; Rao et al., 2013; Huseynova et al., 2014, Kong et al., 2014; Talaat and Shawky, 2014, Wang et al., 2008). These studies demonstrated that, in wheat, the mechanisms of ROS detoxification are positively activated. Several studies showed that, in an attempt to defend itself against oxidative damage, wheat plants under different abiotic stresses alter the activity of antioxidant enzymes such as SOD, CAT, APX, POX and GR (Table 1).

Excess ROS is harmful to the plant; thereby, to restore the cellular redox balance, both enzymatic and nonenzymatic systems are activated to detoxify the toxic levels of ROS. In response to the major abiotic stresses faced by wheat plants, most antioxidant enzymes increased their activity (Table 1). Furthermore, many reports demonstrated that the effect of abiotic stress in wheat is genotype-specific, where some genotypes showed different responses in the same stress condition. Tolerant genotypes generally maintained a higher antioxidant capacity resulting in lower oxidative damage. This property likely depends on the genetic potential of the genotype. Wheat responses also depend on the tissue type, length and intensity of the stress as well as on developmental stage proving the complexity of the mechanisms of production and detoxification of ROS and the effect of ROS (oxidative stress) on antioxidant sys-

Table 1 - Summary of the antioxidant enzyme changes in different wheat genotypes and different tissues type under different tested abiotic-stress conditions.

Abiotic stress	SOD	CAT	APX	POX	GR	References
Drought	↓	-	-	↓		Alexieva et al. (2001)
	↑					Luna et al. (2005)
	-	↑	↑	↑	↑	Devi et al. (2012)
	↑	↑	↑	↑	↑	Wang et al. (2008)
Salinity	↑	↑	↑	↓	↓	Barakat (2011)
		↑				Heidari (2009)
	↑					Esfandiaris et al. (2007)
	↑					Sairam et al. (2002)
Cold	↑	↑	↑	↑	↑	Janmohammadi et al. (2012)
	↑	-	↑	↑	↑	Turk et al. (2014)
Heat	↑	↑	↑		↑	Badawi et al. (2007)
		↑			↑	Ibrahim et al. (2013)
		↑			↑	Gupta et al. (2013)
	↓↑	↓			↓↑	Wang et al. (2014)
UV-B	↑	↑			↑	Ibrahim et al. (2013)
	↑				↑	Alexieva et al. (2001)
	↓				↑	Barabás et al. (1998)

Superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX) and glutathione reductase (GR). (↑) increase, (↓) decline and (-) unchanged.
tems. Many studies have reported an increase in the concentration of hydrogen peroxide (H$_2$O$_2$) after exposure to a stress, and its production is dependent on the intensity and duration of the stress. Furthermore, the H$_2$O$_2$ level differs between various cellular compartments and is related to the type of stress (Slesak et al., 2007).

The observed increase in enzymatic activities and decrease in oxidative damage are closely related. The expression of many antioxidant enzymes is positively correlated with higher tolerance levels against abiotic stresses. The activation of some enzymes leads to plant protection against oxidative damage. In rice plants, an important cereal model, increased expression levels of antioxidant enzymes and genes have been related to the response to stress factors (Rosa et al., 2010; Bonifacio et al., 2011; Ribeiro et al., 2012; Caverzan et al., 2014; Passaia et al., 2013, 2014). In another model plant, Arabidopsis, the involvement of at least 152 genes was observed in the regulation of the ROS level under stress (Mittler, 2004). Thereby, a complex enzymatic system has evolved in plants to scavenge excess ROS and to protect the plants from oxidative stress.

For example, in wheat, an increase in the SOD transcript was observed in response to differential heat shock treatment (Kumar et al., 2013), which indicates an enhanced tolerance to environmental stresses. Superoxide dismutases constitute a frontline in the defense against ROS, they catalyze the dismutation of O$_2^*$ (superoxide radical) to H$_2$O$_2$. These enzymes are classified according to their subcellular location and metal cofactor (Cu/Zn, Mn, Fe and Ni), and are present in plants, bacteria, yeast and animals. In plants, the SOD genes are regulated by development, tissue-specific and environmental signals (Scandalios, 1997; 2005; Menezes-Benavante et al., 2004).

The wheat Cat gene expressed in transgenic rice improves tolerance against low-temperature stress when compared to non-transgenic plants (Matsumura et al., 2002). Catalases remove the H$_2$O$_2$, reducing H$_2$O$_2$ to 2H$_2$O. These proteins are abundantly, but not exclusively, localized to peroxisomes. The CATs genes respond differentially to various stresses conditions (Scandalios, 2002; 2005).

In wheat, a mutant line with reduced thylakoid APX activity leads to impaired photosynthesis (Danna et al., 2003). Rice mutants double silenced for cytosolic APXs exhibit high guaiacol peroxidase activity, which can contribute to the cytosolic H$_2$O$_2$ scavenging that occurs in the vacuoles or apoplast (Bonifacio et al., 2011). Ascorbate peroxidases catalyze the conversion of H$_2$O$_2$ into H$_2$O and use ascorbate as a specific electron donor. APX proteins are distributed in chloroplasts, mitochondria, peroxisomes and the cytosol. The APX genes show differential modulation by several abiotic stresses in plants (Rosa et al., 2010; Caverzan et al., 2012; Caverzan et al., 2014). The balance between SODs, CATs and APXs is important for determining the intracellular level of ROS, besides changes in the balance of these appear to induce compensatory mechanisms (Apel and Hirt, 2004; Scandalios, 2002; 2005).

Recently, it was demonstrated that knockdown of the wheat monodehydroascorbate reductase gene resulted in improved wheat resistance to stripe rust by inhibiting sporulation in the compatible interaction. Moreover, silenced wheat plants increased the proportion of necrotic area at the infection sites and suppressed Puccinia striiformis f. sp. tritici hypha elongation (Feng et al., 2014). Monodehydroascorbate reductase catalyze the regeneration of AsA from the monodehydroascorbate radical using NAD(P)H as an electron donor. Thereby, MDHAR in the plant antioxidant system maintains the AsA pool (Hossain and Asada, 1985). Isoforms of MDHAR are present in chloroplasts, cytosol, peroxisomes and mitochondria (Jiménez et al., 1997; Leterrier et al., 2005).

The expression of wheat GPX genes was altered when wheat plants were submitted to salt, H$_2$O$_2$ and abscisic acid treatment. Moreover, other findings suggest that GPX genes not only act as scavengers of H$_2$O$_2$ to control abiotic stress responses but also play important roles in salt and ABA-signaling cascades (Zhai et al., 2013). In addition, glutathione peroxidases studies have demonstrated that GPX genes are essential for redox homeostasis in rice (Passaia et al., 2013, 2014). Glutathione peroxidases catalyze the reduction of H$_2$O$_2$ or organic hydroperoxides to water. The GPXs proteins are present in many life species (Margis et al., 2008). In plants, the GPX proteins are distributed in mitochondria, chloroplasts and the cytosol.

Signaling by H$_2$O$_2$

ROS are well recognized for playing a dual role, both as deleterious as well as beneficial, depending on their concentration in plants. The role of ROS as signaling molecules involved in processes such as growth, cell cycle, development, senescence, programmed cell death, stomatal conductance, hormonal signaling, and regulation of gene expression has been widely explored (Kovtun et al., 2000; Neill et al., 2002; Slesak et al., 2007; Inze et al., 2012). The intensity and duration of ROS signaling also depends on the pool that results due to the production of ROS by oxidants and their removal by antioxidants (Sharma et al., 2012). Among the various ROS, H$_2$O$_2$ is one of the most abundant in aerobic biological systems in higher plants, being highly reactive and toxic. Hydrogen peroxide is considered a signaling molecule in plants that mediates responses to various biotic and abiotic stresses. The biological effect of H$_2$O$_2$ is related to several factors, such as the site of production, the developmental stage of the plant, and previous exposures to different kinds of stress, however the strongest effect on plants is the relationship with its concentration (Petrov and Breusegem, 2012).

Hydrogen peroxide can diffuse across cell membranes and be transported to other compartments, where it can act as a signaling molecule or be eliminated (Neill et
Thus, due the property that in low concentrations the H$_2$O$_2$ acts as stress signal, many studies have demonstrated that its application can induce stress tolerance in plants. Low H$_2$O$_2$ treatments improve seed germination, seedling growth and resistance to abiotic stresses.

In wheat, it was observed that seed pretreatment with H$_2$O$_2$ enhances drought tolerance of seedlings (He et al., 2009). Moreover, H$_2$O$_2$ pretreatment improved wheat aluminum acclimation during subsequent aluminum exposure, thereby reducing ROS accumulation (Xu et al., 2011). The exogenous H$_2$O$_2$ treatment also protected wheat seedlings from damage by salt stress (Li et al., 2011), and the pretreatment of seeds enhanced salt tolerance of wheat seedlings, decreasing the oxidative damage (Wahid et al., 2007). Maize plants originated from H$_2$O$_2$ pretreated seeds showed increased tolerance to salt stress (Gondim et al., 2010). In rice plants, H$_2$O$_2$ not only acts as a toxic molecule but also as a signaling molecule associated with salinity, cadmium and abscisic acid stresses (Kao, 2014).

Considerable evidence suggests that H$_2$O$_2$ and other ROS may act as important signal molecules mediating response to stress tolerance in plants (Neill et al., 2002). Although, recent studies have demonstrated that in wheat and others plant species the H$_2$O$_2$ treatment enhances tolerance to different stresses, these responses are poorly explored in later stages of growth and even adult plants. Physiological responses of the plant can vary according with the stage of development. Besides, in wheat it was demonstrated that H$_2$O$_2$ plays two important roles, one as a signal molecule and other as a harmful chemical, when wheat seedlings were grown under H$_2$O$_2$ stress (Ge et al., 2013). Thus, the H$_2$O$_2$ concentration, low or high, will determine whether the effect will be deleterious or beneficial in plants.

Petrov and Breusegem (2012) showed the major signaling components in the H$_2$O$_2$-transduction network, their interactions and different outcomes in the plant cell. These include transcription factors, miRNAs, MAP-kinases and the interaction of the some effects. In addition, the H$_2$O$_2$ concentration, site of H$_2$O$_2$ synthesis, interaction with other active signaling pathways, previous exposure to stress, etc, are also important.

Thus, the mechanism by which a ROS treatment may protect against different stresses needs to be further investigated because other pathways (biochemical, molecular and genetic) can be involved and contribute to tolerance. Importantly, each plant species responds differently to stress condition and under field conditions, and oftentimes the plants suffer combined stresses. However, ROS signaling mechanisms is potentially significant to any program aimed at improving crop tolerance to environmental stresses.

Final considerations

In the present review we list evidence that wheat plants activate antioxidant defense mechanisms under abiotic stresses, which helps in maintaining the structural integrity of the cell components and presumably alleviates oxidative damage. Moreover, H$_2$O$_2$ signaling can contribute to wheat plant tolerance to environmental stresses. However, this route must be further explored, as many enzymes and isoforms can be involved, and ROS is only one of the potential parameters of plant biological tolerance against environmental variations.

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

References

Alexieva V, Sergiev I, Mapelli S and Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337-1344.

Apache K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biotechnol 55:373-399.

Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601-639.

Badawi GH, Tahir ISA, Nakata N and Tanaka K (2007) Induction of some antioxidant enzymes in selected wheat genotypes. African Crop Science Conference Proceedings 8:841-848.

Barabás KN, Szegletes Z, Pestenacz A, Fulop K and Erdei U (1998) Effects of excess UV-8 irradiation on the antioxidant defence mechanisms in wheat (Triticum aestivum L.) Seedlings. Plant Physiol 153:146-153.

Barakat NAM (2011) Oxidative stress markers and antioxidant potential of wheat treated with phytohormones under salinity stress. J Stress Physiol Biochem 7:250-267.

Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FE, Margis-Pinheiro M and Silveira JA (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705-1722.

Cançado GMA (2011) The importance of genetic diversity to manage abiotic stress. In: Shanker A (ed) Abiotic Stress in Plants - Mechanisms and Adaptations. InTech, Rijeka, Croatia, pp 351-366.

Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F and Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011-1019.

Caverzan C, Bonifacio A, Carvalho FEL, Andrade CMB, Passaia G, Schünemann M, Maraschin FS, Martins MO, Teixeira FK, Rauber R, et al. (2014) The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci 214:74-87.

Chaves MS, Martinelli JA, Wesp-Güterres C, Graichen FAS, Brammer S, Scaglioni SM, Da Silva PR, Wiethöltel P, Torres GAM, Lau EY, et al. (2013) The importance for food security of maintaining rust resistance in wheat. Food Security 5:157-176.
Antioxidant responses of wheat plants

Curtis T and Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354-372.

Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-Maria GE, Guiamet JJ and Ugalde RA (2003) Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol 132:2116-2125.

Devi R, Kaur N and Gupta AK (2012) Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Indian J Biochem Biophys 49:257-265.

Esfandiari E, Shekari F, Shekari F and Esfandiari M (2007) The effect of salt stress on antioxidant enzymes’ activity and lipid peroxidation on the wheat seedling. Not Bot Hort Agrobot Cluj 35:48-56.

Feng H, Liu W, Zhang Q, Wang X, Wang X, Duan X, Li F, Huang L and Kang Z (2014). TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striformis f. sp. triticici. Plant Physiol Biochem 76:7-16.

Ge P, Hao P, Cao M, Guo G, Lv D, Subburaj S, Li X, Yan X, Xiao J, Ma W and Yan Y (2013) iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Proteomics 13:3046-3058.

Gondim FA, Gomes-Filho E, Lacerda CF, Frisico JT, Azevedo Neto AD and Marques EC (2010) Pretreatment with H2O2 in maize seeds: effects on germination and seedling acclimation to salt stress. Braz J Plant Physiol 22:103-112.

Gupta NK, Agarwal S, Agarwal VP, Nathawat NS, Gupta S and Singh G (2013) Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol Plant 35:1837-1842.

Gratão PL, Polle A, Lea PJ and Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481-494.

He L, Gao Z and Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8:6151-6157.

Heidari M (2009) Antioxidant activity and osmolyte concentra-

Jiménez A, Hernández JA, Del Rio LA and Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275-284.

Kao CH (2014) Role of hydrogen peroxide in rice plants. Crop Environ Bioinform 11:1-10.

Kocsy G, Szalai G and Galiba G (2002) Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat. Sci World J 2:1726-1732.

Kong L, Wang F, Si J, Feng B, Zhang B, Li S and Wang Z (2014) Increasing in ROS levels and callose deposition in peduncle vascular bundles of wheat (Triticum aestivum L.) grown under nitrogen deficiency. J Plant Interact 8:109-116.

Kovtun Y, Chiu WL, Tena G and Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940-2945.

Kumar RR, Sharma SK, Goswami S, Singh K, Gadpayle KA, Singh GP, Pathak H and Rai RD (2013) Transcript profiling and biochemical characterization of mitochondrial superoxide dismutase (mtSOD) in wheat (Triticum aestivum) under different exogenous stresses. Aust J Crop Sci 7:414-424.

Leterrier M, Corpas FJ, Barroso JB, Sandalio LM and Del Rio LA (2005) Peroxisomal monodehydroascorbate reductase. Genome clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111-2123.

Luna C, Pastori, GM, Driscoll S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417-423.

Li JT, Qiu ZB, Zhang XW and Wang LS (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835-842.

Mahajan S and Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biochem 444:139-158.

Margis R, Dunand C, Teixeira FK and Margis-Pinheiro M (2008) Glutathione peroxidase family - an evolutionary overview. FEBS J 275:3959-3970.

Matsumura T, Tabayashi N, Kamagata Y, Souma C and Saruya-ma H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol plantarum 116:317-327.

Menezes-Benavente L, Teixeira FK, Kamei CLA and Margis-Pinheiro M (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323-331.

Mishra AK, Rai R and Agrawal SB (2013) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defense system. Indian J Biochem Biophys 50:139-149.

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410.

Mittler R, Vendralawera S, Gollery M and Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498.

Mullineaux PM and Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521-525.

Neill S, Desikan R and Hancock J (2002) Hydrogen peroxide signa

Neil S, Desikan R and Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388-395.
Passaia G, Caverzan A, Fonini LS, Carvalho FEL, Silveira JAG and Margis-Pinheiro M (2014) Chloroplastic and mitochondrial GPX genes play a critical role in rice development. Biol Plantarum 58:375-378.

Passaia G, Fonini LS, Caverzan A, Jardim-Messeder D, Christoff AP, Gaeta ML, Mariath JEA, Margis R and Margis-Pinheiro M (2013) The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208:93-101.

Petrov VD and Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB PLANTS 2012: pls014.

Rahaie M, Xue GP and Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K and Leslie C (eds) Abiotic Stress - Plant Responses and Applications in Agriculture. InTech, Rijeka, Croatia, pp 367-385.

Rao A, Ahmad SD, Sabir SM, Awan SI, Shah AH, Abbas SR, Shafique S, Khan F and Chaudhary A (2013) Potential antioxidant activities improve salt tolerance in ten varieties of wheat (Triticum aestivum L.). Am J Plant Sci 4:69-76.

Ribeiro CW, Carvalho FEL, Rosa SB, Alves-Ferreira M, Andrade CMB, Ribeiro-Alves M, Silveira JAG, Margis R and Margis-Pinheiro M (2012) Modulation of genes related to specific metabolic pathways in response to cytosolic ascorbate peroxidase knockdown in rice plants. Plant Biol 14:944-955.

Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JA, Ferreira-Silva SL, Abreu-Neto J, Margis R and Margis-Pinheiro M (2010) Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemistry 71:548-558.

Sairam RK, Rao KV and Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037-1046.

Scandalios JG (1997) Molecular genetics of superoxide dismutase in plants. In: Scandalios JG (ed) Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory. Press, Cold Spring Harbor, NY, pp 527-568.

Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483-486.

Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38: 995-1014.

Sharma P, Jha AB, Dubey RS and Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2013:e217037.

Slesak I, Libík M, Karpínská B, Karpinski S and Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 5:39-50.

Spundová M, Slouková K, Hunková M and Nauš J (2005) Plant shading increases lipid peroxidation and intensifies senescence-induced changes in photosynthesis and activities of ascorbate peroxidase and glutathione reductase in wheat. Photosynthetica 43:403-409.

Srivali B and Khanna-Chopra R (2001) Induction of new isoforms of superoxide dismutase and catalase enzymes in the flag leaf of wheat during monocarpic senescence. Biochem Biophys Res Commun 288:1037-1042.

Talaat NB and Shawky BT (2014) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177:199-207.

Turk H, Erdal S, Genisel M, Atici O, Demir Y and Yannis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139-152.

Varga B, Janda T, Laszlo E and Veisz O (2012) Influence of abiotic stresses on the antioxidant enzyme activity of cereals. Acta Physiol Plant 34:849-858.

Wahid A, Perveen M, Gelani S and Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283-294.

Wang C, Wen D, Sun A, Han X, Zhang J, Wang Z and Yin Y (2014) Changes in antioxidant enzyme activity and gene expression in response to high temperature stress in wheat seedlings. J Cereal Sci 60:653-659.

Wang ZY, Li FM, Xiong YC and Xu BC (2008) Soil-water threshold range of chemical signals and drought tolerance was mediated by ROS homeostasis in winter wheat during progressive soil drying. J Plant Growth Regul 27:309-319.

Xu FJ, Jin CW, Liu WJ, Zhang YS and Lin XY (2011) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44-53.

Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu ZS and Ma YZ (2013) Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS ONE 8:e73989.

License Information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.