QSAN: A Quantum-probability based Signed Attention Network for Explainable False Information Detection

Tian Tian, Yudong Liu, Xiaoyu Yang, Yuefei Lyu, Xi Zhang∗
Binxing Fang

[tiantian_96727,yudong.liu,littlehaes,lvyoufei,zhangx,fangbx]@bupt.edu.cn
Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, China

ABSTRACT
False information detection on social media is challenging as it commonly requires tedious evidence-collecting but lacks available comparative information. Clues mined from user comments, as the wisdom of crowds, could be of considerable benefit to this task. However, it is non-trivial to capture the complex semantics from the contents and comments in consideration of their implicit correlations. Although deep neural networks have good expressive power, one major drawback is the lack of explainability. In this paper, we focus on how to learn from the post contents and related comments in social media to understand and detect the false information more effectively, with explainability. We thus propose a Quantum-probability based Signed Attention Network (QSAN) that integrates the quantum-driven text encoding and a novel signed attention mechanism in a unified framework. QSAN is not only able to distinguish important comments from the others, but also can exploit the conflicting social viewpoints in the comments to facilitate the detection. Moreover, QSAN is advantageous with its explainability in terms of transparency due to quantum features and the attention weights. Extensive experiments on real-world datasets show that our approach outperforms state-of-the-art baselines and can provide different kinds of user comments to explain why a piece of information is detected as false.

ACM Reference Format:
Tian Tian, Yudong Liu, Xiaoyu Yang, Yuefei Lyu, Xi Zhang and Binxing Fang. 2020. QSAN: A Quantum-probability based Signed Attention Network for Explainable False Information Detection. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3340531.3411890

1 INTRODUCTION
The openness and convenience of social media have revolutionized the way of information dissemination. Meanwhile, it also reduces the cost of creating and sharing false information, which can be used by conspirators or cheaters to achieve their goals. For example, during the 2016 U.S. presidential election, fake news accounted for nearly 6% of all news consumption [14]. Furthermore, it has affected stock markets [5], slowed responses during disasters [16], and terrorist attacks [12]. With the ever-increasing amounts of false information, it is of prominent importance to develop automatic detectors to mitigate the serious negative effects.

Thus far, various approaches, including both traditional learning [25, 46] and deep neural network-based (DNN) models [27, 39], have been proposed to detect false information on social media. DNN models have achieved performance improvement over traditional ones due to their superior expressive power. However, the lack of explanations of “how the system works” and “why this decision is made”, limit the faithfulness and practical utility of these models. Interpretable Machine Learning [11] would be an effective tool to mitigate these problems, but most of the explainable methods only provide one type of explainability. How to simultaneously ensure the transparency of the decision-making process in the model designing phase and provide meaningful explanations after a decision is made is a challenging task. Although [36] has made an initial attempt for explainable fake news detection with the co-attention mechanism, the diversity of the explanations is limited.

Existing models typically learn from text content for detecting false information [17, 25], and thus the effectiveness of these models highly depends on the quality of text features or representations. Previous studies have shown that human language understanding [7, 43] exhibits certain non-classical phenomena (i.e. quantum-like phenomena), e.g., semantic contradictions and ambiguities [6]. For example, the claim "two cars were reported stolen by the Groveton police yesterday" can be interpreted in different ways, that is, the police either reported or stole the two cars [2]. As the false information is commonly written with the intent to confuse or
mislead readers, it is more likely to have such complex characteristics [45], which may not be fully captured by traditional text representation methods. Quantum-probability based framework can serve as a promising method to formulate the quantum-like phenomena and to better capture different levels and aspects of semantic units, which would be of considerable benefit for the task of false information detection.

Moreover, detection merely with text content may suffer from the lack of available comparative information. To address this issue, detection models can take advantage of the user comments to learn richer discriminative features. However, this poses a technical challenge to explore various relationships between a post and its comments. Figure 1 illustrates a case where a piece of false information is more likely to be detected with the help of comments. Contributions of these comments can be explored from two perspectives, one is "importance" and the other is "stance". For example, comments in green and red express supporting and opposing viewpoints respectively, which indicate the stance of the comment, while comments in blue boxes provide more informative clues than the others indicating they may be more important. Therefore, it is of considerable benefit if these meaningful comments are captured from noisy voices to enable better detection performance. However, prior studies either only account for the importance of comments with attention mechanism [36], or merely extract stances of comments with topic model [17] or Recurrent Neural Network [28]. How to jointly consider the importance and stance of comments in one framework to enjoy the best of both worlds is less explored. Moreover, it would be a promising benefit if the model can provide these informative comments as explanations to help end-users understand the detection process and result.

In this work, we investigate how to identify a piece of false information with its related comments. We aim to optimize the accuracy and explainability in a joint and unified framework. To this end, we propose a Quantum-based Signed Attention Network (QSAN), where the text semantics can be modeled with a quantum-inspired text representation mechanism, and the post-comment relationships can be captured with a novel signed attention mechanism. Specifically, we first follow the quantum probability and adopt a complex-valued network to encode post contents and user comments. Compared to traditional vector-based text representation methods, complex-valued networks have a richer representational capacity [23] and could facilitate in learning complex semantics from the false information. In addition, the network is transparent for that it is designed in alignment with quantum physics. We then devise a novel complex-valued signed attention mechanism, which can capture two types of relationships between the comments and post contents. One is whether a specific comment is important to the post, and the other is the viewpoint of a comment towards the post. With the help of the signed attention, important and opposing user comments can be selected to explain why a post is detected as fake. Therefore, QSAN is superior in explainability as it not only passes transparency in the decision-making process, but also provides helpful explanations after a decision is making.

To summarize, we make the following contributions:

• An effective quantum-based false information detection framework which provides explainability not only in presenting transparency in the decision-making process, but also giving meaningful explanations to the final detection results.
• A quantum-based signed attention mechanism is devised to jointly learn different kinds of relationships between comments and posts.
• Extensive experiments on real-world datasets demonstrate our proposal can outperform state-of-the-art baselines in terms of detection performance and model explainability.

2 RELATED WORK

We briefly review the related works in three categories.

2.1 False Information Detection

False information detection on social media aims at using relevant cues of suspected false information (such as text content, visual content, publisher’s personal information, et.al) for identification [22]. The early models were mainly based on text content, where statistical information [25] or hidden information (such as emotion or attitude) [17] of the text content are extracted for classification. More recent deep learning methods have achieved better performance over traditional learning models. RNN-based methods [27, 29] and CNN-based methods [51] are proposed to capture high-level text semantics. In addition to text features, multimodal features [18, 19] and social features [48] are also exploited by recent studies. Besides, a few works study some new related tasks such as false event detection [30], false picture detection [33], and how to detect the false information [15] at an early stage. However, these methods mostly lack the property of explainability. [36] proposes an explainable fake news detection method with co-attention mechanism to select important comments. There are also some studies aiming to exploit the conflicting viewpoints to facilitate the detection [17, 28], but it lacks works that jointly consider the importance and the stance of the comments, which is the main contribution of our work.

2.2 Complex-valued Text Representation

Complex-valued text representation has shown promising performance in NLP tasks such as text classification [42], information retrieval [31] and question answering [23]. Complex embeddings are also integrated into NN-architectures such as Transformer [47], convolutional feed-forward networks and convolutional LSTMs [40], but they don’t follow the quantum operations such as mixture and measurement. The emerging field of quantum cognition points out that human cognition [1], especially language understanding [43], exhibits certain quantum-like phenomena, such as the uncertainty embodied in semantic contradictions and ambiguities. [35] shows that quantum mechanics theory has advantages in semantic representation. [7] proposes a mathematical framework for modeling semantic feature spaces using quantum mechanics, and verifies that implicit semantic analysis and HAL (Hyperspace Analog to Language) models are essentially standardized Hilbert spaces. [42] applies quantum theory to text representation learning tasks. [23] implements a quantum probability-based model for the QA problem. However, to the best of our knowledge, no previous work has applied the quantum-inspired complex network for false information detection. Moreover, prior studies are unable to explicitly capture different kinds of correlations between texts for explainability.
Probabilistic data-based methods can also model the data uncertainty but are commonly used for the uncertainty of whether a record (or an attribute of a record) is correct or exists in the database [3, 9]. On the contrary, quantum-probability based methods have a wider application range such as text semantic modeling. In addition, the quantum probability is guided by quantum theory and uses complex-valued representations, which is also different from the probabilistic data which adopts real-valued representations.

2.3 Attention Mechanism

The attention mechanism in deep learning is essentially similar to the human biological systems [8]. The core goal is to select the information that is more critical to the current task. Since the attention mechanism is proposed, it has been widely used in various tasks such as machine translation [4], text representation [20], recommendation system [50], etc. [4] applies attention mechanisms for tasks such as machine translation, text representation, recommendation system, etc. [26] proposes co-attention mechanism for visual applications that require capturing richer semantic relationships.

A word composition (bags of words, sentences, etc.) is considered as a mixed system of words, based on the concept of the quantum mixture, represented by a density matrix ρ:

$$\rho = \sum_{i} p_i |w_i\rangle\langle w_i|$$ \hspace{1cm} (2)

where $|w_i\rangle$ denotes the state of i-th word and p_i is the classical probability of the state $|w_i\rangle$ with $\sum_i p_i = 1$. It determines the contribution of the word w_i to the overall semantics.

As a non-classical probability distribution, a density matrix carries rich information of a sequence of words. Its diagonal elements are real and form a classical distribution of sememes, while its off-diagonal elements are complex-valued and encode interactions between sememes, thereby forming interference between words. To capture the high-level features, a set of measurements can be built, associated with the measurement projectors $\{P_i\}_{i=1}^{Z}$. Given a density matrix ρ and a measurement projector P_i, the measurement results can be obtained through:

$$q_i = tr(P_i\rho)$$ \hspace{1cm} (3)

Here, measurement states are only considered as pure states, i.e. $P_i = |v_i\rangle\langle v_i|$, where $|v_i\rangle$ could be any pure state (not limited to a specific word w). For a specific task, $\{|v_i\rangle\}_Z$ would serve as trainable parameters so that the most suitable measurements can be determined automatically by the training data. And these measurement operators collapse the mixed system into Z different states. For example, a density matrix ρ is measured by a measurement factor P_i to obtain a real value q_i, which represents the probability that the density matrix collapses to the i-th state. So given a set of measurement factors, a set of q_i can be obtained, which are then connected to obtain a real-valued vector as the output of measurement operations, where each dimension of the vector represents the probability of being in a certain state.

Our framework requires multiplication between two matrices W and A in the complex field, whose result B can be obtained as:

$$B^{re} = W^{re}A^{re} - W^{im}A^{im}$$
$$B^{im} = W^{re}A^{im} + W^{im}A^{re}$$ \hspace{1cm} (4)

where X^{re}, X^{im} ($X = W$, A, or B) represent the real and imaginary parts of the matrix respectively, that is, $X = X^{re} + iX^{im}$.

4 PROBLEM STATEMENT

We study the problem of detecting false information by using the contents of the post and its related comments. We assume that a post I contains N sentences S_i, $I = \{S_i\}^{N}_{i=1}$, and its comment set is denoted as R, consisting of T comments, $R = \{C_i\}^{T}_{i=1}$. We treat the false information detection problem as a binary classification task. By learning the semantic representations of the post and comments texts and capturing the semantic relationships between them, we aim to get the label of the post $y \in \{0, 1\}$, where $y = 1$ indicates the post is false, otherwise $y = 0$. Therefore, the problem can be abstracted as learning a mapping function $f : f(I, R) \rightarrow y$, from the content of the posts and comments to the labels to maximize prediction accuracy.
5 QSAN: A QUANTUM-PROBABILITY BASED SIGNED ATTENTION NETWORK

5.1 Overview

Our framework QSAN is designed based on quantum probability and attention mechanism over Semantic Hilbert Space. QSAN mainly consists of three components (see Figure 1): (1) a quantum probability-driven sentence and comment encoder (complex embedding and mixture component); (2) a quantum-based signed attention component; (3) a semantic measurement component.

The data flows in QSAN as follows. We first feed the post contents (denoted as \(\{S_i\}_{i=1}^N\) indicating sentences) and user comments (denoted as \(\{C_i\}_{i=1}^N\)) to the quantum-probability-driven encoder to obtain their complex-valued density matrices. They can be seen as the encoded representations of the sentences and comments in Semantic Hilbert Space, which are then served as inputs to the quantum-based signed attention component (Sec. 5.2). The quantum-based signed attention module is equipped with two-channel softmax functions, with the same input but different outputs. Then for each comment, its importance in supporting the post is learned as the attention weight in one channel (named as “+softmax”), and similarly, the importance in opposing the post is learned in the other channel (named as “-softmax”). In this way, the signed attention mechanism can capture the importance and stances of comments at the same level of the semantic unit (sememe, word or word composition). In the Semantic Hilbert Space, modules to extract the semantic relationship between them.

In the Semantic Hilbert Space, \(\{\rho_i\}_{i=1}^N\) is not static but initialized randomly and adaptively by a pre-trained dictionary (Glove for English and the embedding in [24][34] for Chinese) to obtain the embedding of the word and, at the same time, randomly generate the phase embedding. They are fed into GRU to capture the contextual relevance of the word in the sentence to obtain the initial amplitude embedding \([r_1, r_2, ..., r_d]^T\) and the initial phase embedding \([\phi_1, \phi_2, ..., \phi_d]^T\) of the word complex-valued vector. Here \(d\) represents the dimension of the word vector, which is fixed for all words, and can also be understood as the number of basis states or sememes to build the word. Finally, complex-valued representation of each word is expressed as:

\[
[w] = [r_1 e^{i\phi_1}, r_2 e^{i\phi_2}, ..., r_d e^{i\phi_d}]^T.
\]

5.2 Quantum Probability-Driven Sentences and Comments Encoder

Inspired by [42], we develop the quantum probability-driven encoder over the Semantic Hilbert Space, aiming to capture the non-linear representation of each sentence and comment. Thus, the semantics of sentences and comments are expressed more comprehensively, and better prerequisites are provided for signed attention modules to extract the semantic relationship between them.

5.2.1 Complex Embedding for Words. In the Semantic Hilbert Space, each level of the semantic unit (sememe, word or word composition) is represented as complex-valued vector. For each word \(w\) in a sentence (or in a comment, processed in the same way as in a sentence, thus omitted in the remainder), it is regarded as the superposition state of sememes, \(|e_j\rangle = [e^{i\phi_1}, e^{i\phi_2}, ..., e^{i\phi_d}]^T\). The complex-valued representation allows a non-linear combination of amplitude \(r_j\) and phase \(\phi_j\), thereby indicating a non-linear combination of semantics. Suppose two words \(w_1\) and \(w_2\) are with weights \(r_1 e^{i\phi_1}\) and \(r_2 e^{i\phi_2}\) for the \(j^{th}\) dimension (i.e., the \(j^{th}\) sememe \(e_j\)), the composition of the two words for \(e_j\) is computed as:

\[
r_j e^{i\phi_j} = r_1 e^{i\phi_1} + r_2 e^{i\phi_2} \tag{5}
\]

where

\[
\begin{align*}
\rho_j &= \sqrt{r_j^{(1)}}^2 + |r_j^{(2)}|^2 + 2r_j^{(1)} r_j^{(2)} \cos(\phi_j^{(1)} - \phi_j^{(2)}) \\
\phi_j &= \arctan \left(\frac{r_j^{(1)} \sin(\phi_j^{(1)}) + r_j^{(2)} \sin(\phi_j^{(2)})}{r_j^{(1)} \cos(\phi_j^{(1)}) + r_j^{(2)} \cos(\phi_j^{(2)})} \right) \tag{6}
\end{align*}
\]

Following the embedding initialization method in [42], we use a pre-trained dictionary (Glove for English and the embedding in [24][34] for Chinese) to obtain the embedding of the word amplitude and, at the same time, randomly generate the phase embedding. They are fed into GRU to capture the contextual relevance of the word in the sentence to obtain the initial amplitude embedding \([r_1, r_2, ..., r_d]^T\) and the initial phase embedding \([\phi_1, \phi_2, ..., \phi_d]^T\) of the word complex-valued vector. Here \(d\) represents the dimension of the word vector, which is fixed for all words, and can also be understood as the number of basis states or sememes to build the word. Finally, complex-valued representation of each word is expressed as:

\[
[w] = [r_1 e^{i\phi_1}, r_2 e^{i\phi_2}, ..., r_d e^{i\phi_d}]^T.
\]

5.2.2 Mixture Component for Sentences and Comments. Based on the concept of the quantum mixture, a sentence is considered as a mixed system of words, represented by a complex-valued quantum density matrix. The words in a sentence are mixed according to the mixture probability to obtain a mixture density matrix. With the mixture probability of word \(w_i\), denoted as \(p(w_i)\), which is a real number, the sentence mixture density matrix is obtained as:

\[
\rho = \sum_{i=1}^m p(w_i) |w_i\rangle \langle w_i| \tag{7}
\]

where \(m\) represents the number of words in the sentence, and the summation operation is similar to Eq. (5).

Note that we have \(\sum_{i=1}^m p(w_i) = 1\) to guarantee the unit trace length for a density matrix. We can enforce this property with a softmax operation to normalize word-dependent weights. The probability \(p_i\) is not static but initialized randomly and adaptively updated in our framework. With the mixture component, sentences \(\{S_i\}_{i=1}^N\) and comments \(\{C_i\}_{i=1}^N\) are expressed as two sets of mixture density matrices: \(\{\rho_i^s\}_{i=1}^N, \{\rho_i^c\}_{i=1}^N\) with complex values respectively, where \(\rho_i^s \in \mathbb{C}^{d \times d}\), \(\rho_i^c \in \mathbb{C}^{d \times d}\). We thus obtain the complex representations of sentences and comments and would feed them into the signed attention module described in the next subsection.

5.3 Quantum-based Signed Attention Component

In this work, we assume that each comment may present two views towards the post, i.e., supporting and opposing, at the same time. The role of the signed attention module is to capture the importance of the comment in each view, aiming to facilitate the false information detection task and provide meaningful explanations simultaneously. We argue that traditional attention mechanisms such as co-attention [36] may not be sufficient to model such complex relationships among comments and posts, e.g., the comment opposing a post. Specifically, according to [41], an attention function can be described as mapping a query and a set of key-value pairs to an output. The output is computed as a weighted sum of the values, where the weight is computed by a compatibility function
with the keys, and apply a softmax function to obtain the weights. The limitation is that the softmax function would treat the negative correlation between query and key as insignificance, which may not hold in many applications.

For example, with the compatibility function, the resulting compatibility vector among a query and four corresponding keys (before softmax) is [0.8, 0.2, −0.1, −0.6]. Feeding it into softmax, the normalized weighting vector would be [0.45, 0.25, 0.18, 0.11]. It can be observed that the value associated with “−0.6” in the compatibility vector would make the least contribution to the output. However, as the negative correlation, “−0.6” may indicate the two vectors pointing opposing directions, which can be understood as the comment opposing the post. It should be taken into account in our task.

5.3.1 Signed Attention with Real Values. From the perspective of the “opposing” relationship, in the above example, the importance order should be reversed, i.e., “−0.6” and “0.8” would be the most and least important factors respectively. To achieve this goal, we take the opposite values, then feed [−0.8, −0.2, 0.1, 0.6] into a softmax function, and output the opposite of resulting weights. The output is [−0.11, 0.20, −0.26, −0.43]. We name this operation as “softmax”.

To make a distinct difference, the traditional softmax operation is called “+softmax”. To fully capture relationships from different perspectives, we utilize the weights from “+softmax” and “−softmax” respectively to obtain the weighted sum of the values. We then feed the concatenation of the two vectors into the fully-connected layer for classification. We implement this signed attention idea in real values to replace the co-attention component, and achieve significant performance improvements (see the experimental Sec. 6.4). The complex-valued version of the signed attention mechanism designed for our QSAN is described as follows.

5.3.2 Signed Attention in Semantic Hilbert Space. Following the above intuition, we first obtain the affinity matrix and attention maps (concepts borrowed from co-attention [26]) from representations of sentences and comments, and then apply “+softmax” and “−softmax” to obtain the weights from different perspectives. All the operations are in complex values.

Since each sentence and comment is denoted as a mixed state of words, i.e., the density matrix, we obtain the affinity matrix in Semantic Hilbert Space by applying the operation like the quantum measurement in Eq. (3). Inspired by co-attention, this operation can be understood as calculating the similarity between the mixed states, which is similar to the measurement operation over Semantic Hilbert Space. Therefore, in this paper, the density matrices of sentences and comments are regarded as each other’s measurement projectors to obtain the affinity matrix L:

$$M_{ij} = \text{tr}(\rho_s^i \rho_c^j)$$ \hspace{1cm} (8)

$$L = \text{tanh}(M)$$ \hspace{1cm} (9)

where $\rho_s \in \mathbb{C}^{N \times d \times d}$, $\rho_c \in \mathbb{C}^{T \times d \times d}$. Since the result of the quantum measurement is a real value, $L, M \in \mathbb{R}^{N \times T}$.

Similar to co-attention, the affinity matrix L is considered as a feature and used to produce sentence and comment attention maps:

$$H^s = c \text{tanh}(\rho_s W^s + L(\rho_c W^c))$$

$$H^c = c \text{tanh}(\rho_c W^c + L(\rho_s W^s))$$ \hspace{1cm} (10)

where $W^s, W^c \in \mathbb{C}^{d \times d \times k}$, $H^s \in \mathbb{C}^{N \times k}$, $H^c \in \mathbb{C}^{T \times k}$. The tanh is the activation function for complex values: $\text{tanh}(a) = \text{tanh}(a^r) + i \cdot \text{tanh}(a^i)$, so is the softmax.

We then feed the attention maps H^s, H^c into both “+softmax” and “−softmax” functions to obtain the corresponding weights in two views. The calculation process is:
We then describe how to fuse the feature matrices of sentences and comments obtained from the signed-attention module to produce informative comments for explanations. We would motivate this idea with a real case and describe it in detail in Sec. 6.5.

5.4 Semantic Measurement Component

We then describe how to fuse the feature matrices of sentences and comments obtained from the signed-attention module to produce the final output. Each feature density matrix contains the semantic possibility of the post (or the comments) under the false information detection task. We apply the measurement operation proposed in Eq. (3) to automatically learn a set of measurement operators through the labels, to make the semantics in the feature density matrix collapse to some certain states with probability, and the most suitable state is selected by the fully connected layer to get the final output. Specifically, a set of rank-one measurement projectors \{\vert v_i \rangle \langle v_i \vert \}_{i=1}^{T} are used to measure the semantic of the feature matrices. After each measurement, we can obtain the probability of the post (or the comments) under the false information detection task.

Then all the \(q \) of \(\rho_{pos}, \rho_{neg}, \rho_{pos}, \) and \(\rho_{neg} \) are concatenated to form a real-valued vector and get the final output \(\hat{y} \) through a fully connected layer, where \(\hat{y} \) is \([1, 0]\) when it is a piece of false information and \([0, 1]\) otherwise. We adopt the cross-entropy loss function which is widely used in binary classification problems.

\[
a^\text{apos} = \text{csoftmax}(W^\text{apos}(H^s)^\top) \\
a^{\text{apos}} = \text{csoftmax}(W^{\text{apos}}(H^c)^\top) \\
a^{\text{neg}} = -\text{csoftmax}(-W^\text{neg}(H^s)^\top) \\
a^{\text{neg}} = -\text{csoftmax}(-W^{\text{neg}}(H^c)^\top)
\]

where \(W^{\text{apos}}, W^\text{neg}, W^{\text{apos}}, W^{\text{neg}} \in \mathbb{C}^{1 \times k} \), and we thus obtain \(a^{\text{apos}}, a^{\text{neg}} \in \mathbb{C}^{1 \times N} \) and \(a^{\text{apos}}, a^{\text{neg}} \in \mathbb{C}^{1 \times T} \).

Based on the weights, complex-valued feature matrices of sentences and comments can be computed as:

\[
\rho_{pos} = \sum_{i=1}^{N} a_{i}^{pos} \rho_{i}^{s}, \quad \rho_{neg} = \sum_{i=1}^{N} a_{i}^{neg} \rho_{i}^{s} \\
\rho_{pos} = \sum_{i=1}^{T} a_{i}^{pos} \rho_{i}^{c}, \quad \rho_{neg} = \sum_{i=1}^{T} a_{i}^{neg} \rho_{i}^{c}
\]

where \(\rho_{pos}, \rho_{neg}, \rho_{pos}, \rho_{neg} \in \mathbb{C}^{N \times N \times d} \).

With the help of the signed attention mechanism, the obtained complex feature matrices of sentences and comments have taken their correlations into account. Different from the traditional co-attention mechanism that only considers the positive correlations, the signed attention module is added with a new channel called "softmax" to capture the negative correlations as well. Each channel would produce a distinct feature matrix in the complex field, which would be fused to obtain a high-level representation in the real field for classification, which would be described in the next subsection.

Besides the feature matrices, the attention weight \(a^{pos} \) (resp. \(a^{neg} \)) in the signed attention module would indicate the importance of a comment in supporting (resp. opposing) the post, providing informative comments for explanations. We would motivate this idea with a real case and describe it in detail in Sec. 6.5.

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed QSAN framework.

6.1 Datasets

We utilize two real-world false information datasets with both posts and comments. One is a fake news dataset in English called FakeNewsNet (i.e., FNews for short) [37] collected from two fact-checking platforms: GossipCop and PolitiFact, which includes the related retweets crawled on Twitter. The other is a rumor dataset in Chinese called CED [38], which is collected from Weibo. As our model attempts to explore different kinds of relationships between the comments and the post, for preprocessing, we filter out the posts with less than 3 comments. We also delete the short comments with less than 10 characters and the duplicate comments. The statistics of the datasets are shown in Table 1.

Table 1: The Statistics of Datasets

Datasets	# Posts	# False Posts	# True Posts	# Comments
FNews	1901	1199	702	81385
CED	3382	1538	1844	161977

6.2 Baselines

We compare with the following baselines:

- **LIWC** [32] is a widely used text analysis method to extract lexicons falling into psycho-linguistic categories. The features are fed into different machine learning algorithms (Decision Tree, Logistic Regression, Random Forest and Naive Bayes) to achieve the best classification performance.
- **TextCNN** [21] utilizes convolutional neural networks to classify the posts.
- **LSTM** [27] capture the variation of contextual information of relevant posts over time for identifying rumors.
- **HAN** [49] utilizes a hierarchical attention NN-framework, which encodes the post with word-level attention on each sentence and sentence-level attention on each document.
- **BERT** [10] is a pre-trained language model based on deep bidirectional transformers, and it can be used to get the representation of the post text.
- **Transformer** [41] uses the self-attention mechanism to extract text context information and uses position encoding to determine the position of word vectors in the text. Transformer is a sequence to sequence model, which is not entirely suitable for our task, thus we only use its encoder here.
- **EANN** [44] is a GAN-based model that can extract event-invariant features and thus benefit the detection of newly arrived events. Note that different from the original EANN, we don’t use pictures due to the lack of pictures in our dataset.
- **RumorGAN** [30] generates uncertain or conflicting voices, aiming to enhance the discriminator to learn stronger rumor representations from the augmented examples.
- **dEFEND** [36] adopts a deep hierarchical co-attention network to learn feature representations for both post contents and user comments.
Table 2: The performance of baselines and QSAN

Datasets	Metric	LIWC	TextCNN	LSTM	BERT	HAN	Transformer	dEFEND	EANN	RumorGAN	RVNN$_{BU}$	RVNN$_{TD}$	QSAN
CED	Acc.	0.643	0.802	0.781	0.913	0.865	0.896	0.915	0.866	0.868	0.914	0.848	0.957
	Prec.	0.688	0.818	0.817	0.913	0.850	0.893	0.920	0.867	0.867	0.912	0.844	0.968
	Rec.	0.680	0.721	0.667	0.905	0.836	0.893	0.891	0.866	0.867	0.912	0.847	0.938
	F_1	0.683	0.766	0.746	0.909	0.832	0.893	0.905	0.866	0.867	0.912	0.845	0.953
FNews	Acc.	0.722	0.758	0.686	0.765	0.750	0.738	0.794	0.706	0.737	0.747	0.713	0.805
	Prec.	0.726	0.753	0.704	0.786	0.782	0.741	0.810	0.693	0.721	0.744	0.704	0.833
	Rec.	0.900	0.917	0.833	0.734	0.838	0.795	0.880	0.706	0.723	0.717	0.683	0.863
	F_1	0.804	0.827	0.763	0.759	0.809	0.767	0.843	0.697	0.722	0.723	0.684	0.848

6.3 Detection Performance

We use the accuracy, precision, recall, and F1-score as evaluation metrics, and randomly choose 75% of the instances for training and the remaining 25% for testing.

Table 2 demonstrates the performance of all the compared models based on two datasets. The results show QSAN outperforms all the baselines, which confirms the advantage of the complex network and signed attention mechanism. On the CED dataset, deep learning-based methods outperform the traditional feature extraction methods. The methods incorporating comments, i.e., dEFEND, RVNN, and our QSAN, are generally better than the other solutions, indicating that comments are beneficial for detection. With the same input information, HAN, BERT, Transformer outperform generally their counterparts TextCNN and LSTM, and QSAN and dEFEND outperform RVNN, indicating the effectiveness of the attention mechanism.

Similar trends are observed on FakeNews dataset, and the attention mechanism is even more effective. HAN, Bert, Transformer, dEFEND, and QSAN are generally better than the other competitors.

6.4 Ablation Test

Here we evaluate the effectiveness of QSAN network components in improving the performance. To this end, several simplified variations of QSAN are implemented by replacing certain components:

- **QSAN-R-Co**: uses the real-valued word embeddings as inputs, and replaces signed attention with the traditional real-valued co-attention.
- **QSAN-R**: uses the real-valued word embeddings as inputs, with the remaining structure unchanged.
- **QSAN-Co**: adopts a complex-valued co-attention module instead of the signed attention module of QSAN.

The results of the ablation test are reported in Figure 3. When comparing co-attention with signed-attention, we can observe that signed-attention achieves a consistent improvement over co-attention in both real and complex embeddings. On the CED dataset, the performance improvements are 0.7% and 0.8% in terms of F_1 and accuracy metrics respectively in real embeddings, and are 1.1% and 1.2% in complex embeddings. We can see similar trends on the FNews. It indicates the effectiveness of the signed-attention in capturing the comment semantics from different perspectives. Compared to the real-valued embeddings, the complex embeddings can provide better performance as they can better model the texts. E.g., on the CED dataset, the performance improves are 0.9% and 1.0% in terms of F_1 and accuracy with co-attention, and are 1.3% and 1.4% with signed-attention. On FNews, the trends are similar. QSAN outperforms QSAN-R, QSAN-Co, demonstrating that both the complex network and the signed attention mechanism are able to contribute to the superior performance of QSAN.

6.5 Post-Comment Relationship Analysis

We evaluate the effectiveness and explainability of the signed attention from two perspectives: (1) whether the captured comments can show "supporting" and "opposing" views; (2) whether the "important" comments can be distinguished from those "unimportant". We first illustrate how QSAN captures post-comment relationships and provide meaningful comments in this subsection, and evaluate the meaningful comments with human judgment in the next.

With the help of QSAN, we can investigate different relationships between the comments and the post, which is enabled by the attention weights in Eq. (11) and Eq. (12). To better understand how to use such attention weights, we start from the unnormalized weights before the "+softmax" and "-softmax" functions. The reason why we look at the unnormalized weights is that we need to retain the plus and minus signs of the weights to show they indicate positive and negative correlations between comments and posts respectively. For the sake of simplicity, the unnormalized weights of comments are represented as $(r^+, i^+|r^-, i^-)$, where (r^+, i^+)...
In 1939, the Ministry of Education of the Republic of China decided to take the birthday of Confucius as Teacher’s Day. The UNESCO World Teacher’s Day, California Teacher’s Day, Malaysia Teacher’s Day, and Taiwan’s and Hong Kong Teacher’s Day are all scheduled for Confucius’ birthday on September 28. In 1985, approved by the sixth meeting of the Standing Committee of the Sixth National People’s Congress, September 10th was fixed as the Teachers’ Day of China.

The World Teacher’s Day seems to be in October. The post is wrong. Please check. (0.325, 0.298) QSAN (important vs. unimportant)
Why is it? [Thinking] (0.817, 0.336) - 0.786) dEFEND (important vs. unimportant)

The UNESCO made Oct. 5th as the International Teachers’ Day. In 1986, which the UNESCO, Nov. 28th - (0.343, 0.336 | 0.786) - 0.786) dEFEND (important vs. unimportant)

It is possible that the birthday of Confucius on 9.28 has been used as the Teacher’s Day in Taiwan... (0.660, 1.107 | 0.777, 0.323)

Figure 4: The user comments are related to specific sentences in the post, and red, green and yellow text boxes contain opposing, supporting and neutral comments respectively. The darker the color of unnormalized weights is, the more important the comment is in its corresponding view (supporting or opposing).

and \((re^-, im^-)\) denote the real and imaginary parts of the unnormalized weights. That is, \((re^+, im^+)\) denotes the real and imaginary parts of \((W^{pos}(H^i))(W^{neg}(H^i))\) presented in Eq. (11) and Eq. (12).

For ease of interpretation, we give a real example from our training instances in Figure 4 to illustrate the meanings of the unnormalized weights. It can be observed that the comments are categorized into three types: supporting (in the green text box), opposing (in the red text box), and neutral (in the yellow text box), whose weights have the following characteristics.

(1) For the supporting comment (e.g., Comment 2 and 6), it typically has positive values for both \(re^+\) and \(im^+\), indicating the comment is positively correlated to the post content.

(2) For the opposing comment (e.g., Comment 1, 3, 5), it typically has negative values for both \(re^-\) and \(im^-\), indicating the comment is negatively correlated to the post content.

(3) For a comment that satisfies both condition (1) and (2) (e.g., Comment 8), to decide whether it is supporting or opposing, we would further account for its importance in two views. The supporting importance and opposing importance are defined as the modulus \(s^+\) and \(s^-\) respectively. We then rank \(s^+\) of a specific comment with those of the other comments in the positive view, and rank \(s^-\) of a specific comment with those of all other comments in the negative view. A larger modulus indicates a higher rank. If \(s^-\) ranked higher than \(s^+\), it indicates the negative correlation dominates the comment, and thus it is opposing, such as Comment 8.

(4) For the remaining cases that there are both positive and negative values for \(re^+\) and \(im^+\) and for \(re^-\) and \(im^-\) (e.g., Comment 4, 7), the comment is generally neutral.

The above real example confirms the motivation of the signed attention described in Sec. 5.3, and gives hints on how to determine the stance of a comment. The comment with a larger \(s^+\) (resp. \(s^-\)) indicates that it is more likely to be a supporting (resp. opposing) one than those with smaller \(s^+\) (resp. \(s^-\)). We will evaluate this argument with human judgment in the next subsection.

There are both supporting and opposing importance for each comment, which can be understood as a comment may present multiple views at the same time. It would be interesting to evaluate the overall importance of a comment by comprehensively considering its importance in both views. However, \(s^-\) and \(s^+\) are obtained based on unnormalized weights and thus cannot be directly compared. To address this issue, we use their normalized weights \(a^{pos}\) and \(a^{neg}\) introduced in Eq. (11) and Eq. (12) instead. Then the amplitude of the positive attentions is obtained through

\[s^+_n = \sqrt{re(a^{pos})^2 + im(a^{pos})^2} \]

while the amplitude of the negative attentions is obtained through

\[s^-_n = \sqrt{re(a^{neg})^2 + im(a^{neg})^2} \]

Given \(s^+_n\) and \(s^-_n\) of a comment, we propose to use \(imp = |s^+_n - s^-_n|\) for measuring the overall importance of this comment. The larger the value is, the more important the comment is. The intuition behind is that if a comment has very close \(s^+_n\) and \(s^-_n\), it may be ambiguous and not able to provide very discriminative features. On the contrary, if \(s^+_n\) and \(s^-_n\) are far, it tends to provide a very clear voice for false information detection. We will evaluate the importance of comments in the following subsection.

6.6 Explainability Evaluation

Inspired by the explainability evaluation methods in [36], we conduct more comprehensive and detailed list-wise and item-wise human evaluations. In addition, as dEFEND [36] is also able to extract the important comments for explanations, we will compare the characteristics of the important comments captured by QSAN and dEFEND, which would demonstrate the differences between these two models. For human evaluations, we recruited 3 undergraduates who majored in Computer Science and Mathematics as annotators. As their native language is Chinese, we ask them to annotate a total of 100 pieces of false information with comments in the CED dataset. The informative comments captured by QSAN and dEFEND will be evaluated by all annotators with a three-person voting approach.

6.6.1 List-wise Evaluation. To demonstrate the coarse-grained explainability performance of the model, we conduct a list-wise evaluation from the following two perspectives.

Evaluation for “Supporting” or “Opposing”. For each of the 100 pieces of information, we conduct an explainability experiment
different. We find that dEFEND are more likely to choose comments with emojis while QSAN tends to choose comments with facts. We thus label and count these two types of comments captured by QSAN and dEFEND, and the results are shown in Figure 6. Note that here we omit the important comments that don’t fall into these two categories. We have the following observations. (1) According to Figure 6(a), QSAN is more likely to choose comments which tell facts than dEFEND (i.e., 158>35), while dEFEND selects a larger number of comments that contain nothing but emojis (i.e., 41<135). (2) Figure 6(b) shows the distribution of important comments with a varied number of emojis. And it shows that dEFEND is more likely to regard emojis as important clues to distinguish true and false posts than QSAN (i.e., for one emoji: 140>62, for two: 44<23, for three: 51>27, for more than 3: 59<14).

To summarize, compared to dEFEND, the important comments produced by QSAN can tell more facts for the task, and thus may be better in line with human judgments. It implies that QSAN is good at capturing the complex semantics and relationships from the post and comments due to the complex networks and signed attention. This may also explain why QSAN receives more votes in Figure 5(b) for getting better important comment lists.

6.6.2 Item-wise Evaluation

In addition to list-wise evaluations, we also conduct fine-grained item-wise experiments.

Supporting or **Opposing** Evaluation Setting. For each piece of information, we mix and shuffle the order of the captured top 5 supporting comments and top 5 opposing comments. Then a list of “mixed” 10 comments is presented to all three annotators. Each annotator is required to assign a score from (-2, -1, 0, 1, 2) to each comment, where 0 means “strong opposing”, -1 means “opposing”, 0 means “neutral”, 1 means “supporting”, and 2 means “strong supporting”. We then sum the scores for each comment. The sum is positive (resp. negative) indicates the comment is supporting (resp. opposing). If the sum is equal to 0, we ask a fourth person to make a judgment. Finally, all the comments are labeled as supporting or opposing, and we use the labels as ground truth.

Method	Class	Acc.	Prec.	Rec.	F1
QSAN	Supporting	0.727	0.704	0.784	0.742
	Opposing	0.704	0.784	0.742	0.723
dEFEND	Important	0.712	0.729	0.674	0.701
	Unimportant	0.692	0.676	0.768	0.714

Table 3: Explainability Evaluation for Item-wise Comments
the effectiveness of QSAN in capturing the stances. (2) In terms of importance distinction, QSAN outperforms DEFEND in almost all the metrics except the recall of “unimportant”. It confirms that QSAN can better capture the important comments than DEFEND.

7 CONCLUSION

In this work, we propose a Quantum-probability based Signed Attention Network (QSAN) to capture the complex semantic relationships between the post and the comments. In particular, a novel signed attention mechanism is devised to take into account both the importance and the stance of comments to improve the detection performance. In addition, QSAN can provide the benefits of explainability from two aspects, model transparency and informative comments as explanations. Extensive experiments on English and Chinese datasets demonstrate the effectiveness and explainability of QSAN. For future directions, it would be promising to introduce hierarchical social attention network. In this work, we propose a Quantum-probability based Signed Attention Network (QSAN) to capture the complex semantic relationships between the post and the comments. In particular, a novel signed attention mechanism is devised to take into account both the importance and the stance of comments to improve the detection performance. In addition, QSAN can provide the benefits of explainability from two aspects, model transparency and informative comments as explanations. Extensive experiments on English and Chinese datasets demonstrate the effectiveness and explainability of QSAN.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (No.2017YFB0803301) and Natural Science Foundation of China (No.61976026, No.U1836215) and 111 Project (B18008).

REFERENCES

[1] Diederik Aerts and Sandro Sozzo. 2014. Quantum entanglement in concept combinations. International Journal of Theoretical Physics 53, 10 (2014).

[2] Hameed M Al Janaby and Ammar A Abed. 2011. Syntactic Ambiguity in Newspaper Headlines. Journal of the Faculty of Collective Knowledge (2011).

[3] Lyublена Antova, Christoph Koch, and Dan Olteanu. 2009. 10^{16} worlds and beyond: efficient representation and processing of incomplete information. The VLDB Journal 18, 5 (2009), 1021.

[4] Dmitriy Bahdanau, Kyungyoon Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In ICLR.

[5] Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011. Twitter mood predicts the stock market. Journal of computational science 2, 1 (2011), 1–8.

[6] Peter Brusa, Kirsty Kito, and Doug McEvoy. 2008. Entangling words and meaning. In Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium (QI-2008). College Publications, 118–124.

[7] Peter Brusa, Kirsty Kito, Douglas Nelson, and Cathy McEvoy. 2009. Is there something quantum-like about the human mental lexicon? Journal of Mathematical Psychology 53, 5 (2009), 362–377.

[8] Snejana Chaudhari, Gungor Polatkan, Rohan Ramanath, and Varun Mithal. 2019. An attentive survey of attention models. arXiv preprint arXiv:1904.02874 (2019).

[9] Nilesh Dalvi, Christopher Ré, and Dan Suciu. 2009. Probabilistic databases: diamonds in the dirt. Commun. ACM 52, 7 (2009), 86–94.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL-HLT. 4171–4186.

[11] Mengnan Du, Ninghao Liu, and Xia Hu. 2020. Techniques for interpretable and explainable fake news detection. In IPvF.

[12] Massimo Melucci. 2015. Introduction to Information Retrieval and Quantum Mechanics. The Information Retrieval Series, Vol. 35. Springer.

[13] Andrea Wenzel. 2019. To verify or to disengage: Coping with “fake news” in social media. In NIPS.

[14] James W Pennebaker, Ryan L Boyd, Kayla Jordan, and Kate Blackburn. 2015. The development and psychometric properties of LIWC2015. Technical Report.

[15] Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J. Jansen, Kam-Fai Wong, and MeeYoung Cha. 2016. Detecting Rumors from Microblogs with Recurrent Neural Networks. In IJCAI.

[16] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Detect Rumor and Stance Jointly by Neural Multi-task Learning. In WWW. 585–593.

[17] Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Rumor Detection on Twitter with Tree-structured Recursive Neural Networks. In ACL.

[18] Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. 2019. DEFEND: Explainable Fake News Detection. In KDD. 395–405.

[19] Changhe Song, ChunTao Fu, Cheng Yang, Zhiyuan Liu, and Maosong Sun. 2019. CED: Credible Early Detection of Social Media Rumors. IEEE Transactions on Knowledge and Data Engineering (2019).

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS. 5998–6008.

[21] Benjamin Wang, Peng Zhang, Jingfei Li, Dawei Song, Yuexian Hou, and Zhen- gao Shan. 2016. Exploration of quantum interference in document relevance judgement discrepancy. Entropy 18, 4 (2016), 144.

[22] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha, Lu Su, and Jing Gao. 2018. EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. In KDD. 849–857.

[23] Andrea Wenzel. 2019. To verify or to disengage: Coping with “fake news” on social media and ambiguity. International Journal of Communication 13 (2019), 19.

[24] Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. 2018. Fakenewsnet: A dataset with repository news content, social context and dynamic information for studying fake news on social media. arXiv preprint arXiv:1809.01286 (2018).

[25] Chiheb Trabelsi, Oleksa Bilaniuk, Zhang Yin, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe Santos, Marco I. Della Vedova, Yoshua Bengio, and Christopher J. Pal. 2018. Deep Complex Networks. In ICLR.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In NIPS. 5998–6008.

[27] Benjamin Wang, Qiu Chi Li, Massimo Melucci, and Dawei Song. 2019. Semantic Hilbert Space for Text Representation Learning. In WWW. 3293–3299.

[28] Kai Shu, Deepak Mahudeswaran, Suhang Wang, Dongwon Lee, and Huan Liu. 2018. Fakenewsnet: A dataset with repository news content, social context and dynamic information for studying fake news on social media. arXiv preprint arXiv:1809.01286 (2018).

[29] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor Detection on Twitter by Exploiting Conflicting Social Viewpoints in Microblogs. In WWW.

[30] Peng Qi, Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J. Jansen, Kam-Fai Wong, and MeeYoung Cha. 2016. Detecting Rumors from Microblogs with Recurrent Neural Networks. In IJCAI.

[31] Peng Qi, Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect Rumors on Twitter by Exploiting Information Campaigns with Generative Adversarial Learning. In WWW. 3049–3055.

[32] Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor Detection on Twitter with Tree-structured Recursive Neural Networks. In ACL.

[33] Peng Qi, Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect Rumors on Twitter by Exploiting Information Campaigns with Generative Adversarial Learning. In WWW. 3049–3055.

[34] Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect Rumors on Twitter by Exploiting Information Campaigns with Generative Adversarial Learning. In WWW. 3049–3055.

[35] Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect Rumors on Twitter by Exploiting Information Campaigns with Generative Adversarial Learning. In WWW. 3049–3055.
[49] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Edward H. Hovy. 2016. Hierarchical Attention Networks for Document Classification. In NAACL-HLT. 1480–1489.

[50] Haochao Ying, Fuzhen Zhuang, Fuzheng Zhang, Yanchi Liu, Guangdong Xu, Xing Xie, Hui Xiong, and Jian Wu. 2018. Sequential recommender system based on hierarchical attention network. In IJCAI.

[51] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2017. A Convolutional Approach for Misinformation Identification. In IJCAI.