Musculoskeletal study of cebocephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution and human pathologies

Authors: Rui Diogo, Daria Razmadze, Natalia Siomava, Nora Douglas, Jose S. M. Fuentes, Andre Duerinckx

Supplementary Information 1, including SI Tab.1
Table 1: Results obtained from specimens dissected by us (R=right; L=left; anomalies in red)

Muscle Name	Normal (stage 1)	Abnormal (stage 2)	Abnormal (stage 3)	Abnormal (stage 4)
Platysma myoides	Mainly normal	Mainly normal	Mainly normal	Mainly normal
- Mainly from the neck/pectoral region to skin and muscles of mouth region				
- Mainly normal				
Platysma cervicale	Mainly normal	Mainly normal	Mainly normal	Mainly normal
- Mainly from the temporal/muscular region to skin and muscles of mouth region				
- Mainly normal				
Retractor anguli oculi medius profundus	Mainly normal	Mainly normal	Mainly normal	Mainly normal
- From fascia covering anterior portion of masuetor, plus orbicularis oculi, to fascia of lower eyelid				
- Mainly normal				
Sphincter colli profundus proprius	Mainly normal	Mainly normal	Mainly normal	Mainly normal
- Mainly deep to platysma cervicale and platysma myoides, gives rise to sphincter colli profundus pars palpebralis (note: it is not continuous with sphincter colli profundus pars palpebralis)				
- Mainly normal				
Sphincter colli profundus pars palpebralis	Mainly normal	Mainly normal	Mainly normal	Mainly normal
- Mainly from buccinatorius to lacrimal bone				

Normal (stage 1): configuration seen in 6 sides of normal newborn lamb and adult sheep specimens.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.

Normal (stage 1): primarily from skin of the neck/pectoral region to skin and muscles of mouth region.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.

Normal (stage 1): primarily from skin of the temporal/muscular region to skin and muscles of mouth region.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.

Normal (stage 1): primarily from skin of the temporal/muscular region to skin and muscles of mouth region.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.

Normal (stage 1): primarily from skin of the temporal/muscular region to skin and muscles of mouth region.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.

Normal (stage 1): primarily from skin of the temporal/muscular region to skin and muscles of mouth region.

Abnormal (stage 2): dissected by DR and 6R (dissected by RD; stage 2).

Abnormal (stage 3): dissected by RD, 6R, 5L, and 16R (dissected by ND; stage 2).

Abnormal (stage 4): dissected by RD; stage 3.
Muscle Name	Region	Attachments	Shape	Fibers	Insertions	Other Notes
Sphincter colli profundus pars auricularis (= "Parotido-auricularis" or "Auricularis inferior et depressor auriculae" sensu May 1964) (Note: the mandibulauricularis, often named "styloauricularis" in ruminants, is absent in goats/sheep)	Deep to platysma cervicale, inserts dorsally to region of the ear	Mainly normal	Mainly normal	Mainly normal	Mainly normal	Deeply involved in the area directly under the orbita. The other part lies more superficial, originate from the posterior area of the cheek from the sphincter colli profundus, and inserts onto the orbicularis oculi in the area.
Zygomaticus	From zygomatic bone to angle of mouth/upper lip	Mainly normal				
Levator labii superioris alaeque nasi (= "Levator nasolabialis" sensu	From skin if frontal and nasal regions, and from orbicularis oculi.	Mainly normal	Mainly normal	Mainly normal	Mainly normal	Seemingly absent.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.

Region of the facial tuber, which is markedly more posterior than normally, to reach the eye region, and not posterodorsally as normally; that is, basically the size and direction of the fibers changes, but the attachments are mainly normal.
Region	Description	Notes
Nasalis (= 'Dilatator naris apicalis' or 'Transversus nasii' sensu May 1964)	From premaxilla ('incisive bone') to nostril, meeting its counterpart at the midline, to nostril and upper lip	Not analyzed
Dilatator naris lateralis (= 'Caninus' sensu Getty 1975, who confused the identity of the true caninus, which he named 'depressor labii maxillaris'; see below)	From facial tuber of maxilla to nostril	Wide but short because of truncation of snout, Mainly normal, Not analyzed
Levator labii superioris (= 'Levator labii superciliis', Levator labii superciliis)	From facial tuber of maxilla to upper lip and nostril	Wide but short because of truncation of snout, Mainly normal, Not analyzed, On the left side it originated as usual from facial tuber, but on the right side it originated anteriorly to the facial tuber; on both sides it attached mainly to the 'proboscis'; moreover, it was deeply fused with the levator anguli oris facialis and with the levator labii superioris on the right side, only two of these three muscles being really seen on that right side
Muscle Name	Description	Left Side
---	---	---
Levator anguli oris \(\text{facialis} \) \(\text{(= Depressor labii maxillaris) or Depressor labii inferioris sensu May 1964)} \)	Running from the facial tuber almost completely dorsomedially to form a "constrictor" that met its counterpart at the midline just above the nose, i.e. it did not go at all to the region of the nasal proboscis	Not analyzed
Levator labii superioris proprius	Skin between nostrils, meeting its counterpart at the midline	Mainly normal
Depressor labii inferioris \(\text{(= Depressor labii mandibularis) sensu May 1964; note that the depressor anguli oris is not present as a separate, well-}} \)	From mandible to inferior lip and adjacent skin	Mainly normal
Detailed muscle	From	Mainly normal
-----------------	------	---------------
Orbicularis oris (note: the ‘incisivus mandibularis/superior’ and ‘incisivus maxillaris/superior’ sensu May 1964 are part of the orbicularis oris sensu the present work)	From superior and inferior lips to mandible and skin around mouth	Mainly normal
Buccinatorius	From the alveolar border of maxilla and mandible to the entire length of the cheek	Mainly normal
Mentalis	From body of mandible near symphysis to skin of chin region	Mainly normal
Orbicularis oculi	From palpebral ligament and lacrimal tubercle to skin of eyelid region	Mainly normal
Frontalis (note that the levator anguli oculi medialis, or ‘corrugator supercilii’, is not present in ruminants according to Getty 1975, and not in sheep according to May 1964)	From skin of frontal region to eye region and skin of the dorsal surface of forehead	Mainly normal
Zygomaticoauricularis (Zygomatico-auricularis sensu May 1964) (Note: we are not including in this study the numerous small facial muscles related to the movements of the ear, but our	From zygomatic arch to auricular cartilage	Mainly normal
Muscle Name	Origin	Insertion
-----------------------------	--	---
Zygomaticoauricularis (= 'Zygomaticoauricularis' sensu May 1964)	From zygomatic arch to auricular cartilage	Mainly normal
Levator palpebrae superioris	From pterygoid crest to palpebral fascia of superior eyelid	Mainly normal
Rectus superioris	From sphenoide bone to eye	Mainly normal
Rectus inferioris	From sphenoide bone to eye	Abnormal, fused with rectus medialis, although its attachments are as normal
Rectus lateralis	From sphenoide bone to eye	Abnormal, fused with rectus inferioris, although its attachments are
Rectus medialis	From region of optic foramen to eye	Abnormal, fused with rectus inferioris, although its attachments are

Mainly normal: The muscle was observed to be normal in most cases.
Not analyzed: The muscle was not analyzed in this study.
Seemingly missing: The muscle was not consistently observed in the analysis.
Muscles of the ear

Zygomaticoauricularis (= 'Zygomaticoauricularis' sensu May 1964) (Note: we are not including in this study the numerous small facial muscles related to the movements of the ear, but our dissections indicate that their presence, and attachments, were constant and similar to the normal phenotype in all abnormal specimens we analyzed, both the more and the less defective ones)

| Muscles of the ear | Mainly normal |
|-------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Zygomaticoauricularis from zygomatic arch to auricular cartilage | Mainly normal |

Masseter

Superficial layer from facial tuber, maxilla and zygomatic arch portion of zygomatic bone; middle and deep layers from zygomatic arch, malar bone, and maxilla; superficial layer to caudal and ventral parts and to angle of mandible; middle layer to caudal and ventral borders and angle of ramus of mandible; deep layer to neck of ramus and articular surface of mandible, coronoid process,
Muscles	Origin	Attachments									
Temporalis	From temporal bone, frontal and temporal crests and zygomatic arch to coronoid process of mandible	Mainly normal									
Pterygoideus medialis	From palatine bone, pterygoid bone and pterygoid process of basiaphenoid bone, to medial surface of mandible	Mainly normal									
Pterygoideus lateralis	Only one head; from pterygopalatine fossa and pterygoid process of basiaphenoid to medial surface of mandible and base of coronoid process	Mainly normal									
Digastricus	It is crossed by the stylohyoides, and the anterior and posterior digastic bellies are connected by thin intermediate tendon, which does not perforate the stylohyoides; the anterior head of digastricus is deeply blended with mylohyoides; digastricus as a whole runs from jugular ('paramastoid' sensu May 1964) process of	Mainly normal									
Muscle	Occipital bone to mandible										
---	--										
Mylohyoideus	Has superficial and deep bundles in sheep according to May 1964; both bundles run from										
	mylohyoid line of mandible to hyoid bone and to midline raphe										
	Mainly normal										
	Much shorter than normal, but basically same attachments										
Stylohyoideus	Has a long thin tendon of origin, from muscular angle of stylohyoid bone ('great cornu										
	of hyoid bone' sensu May 1964) to basihyoid bone ('body of hyoid bone' sensu May 1964)										
	Much shorter than normal, but basically same attachments										
Jugulohyoideus (= 'Occipitohyoideus' sensu	From jugular process of occipital bone to stylohyoid bone										
May 1964)	Mainly normal										
Geminohyoideus	Contacts with counterpart at midline, from mandible just near to stylohyoid										
	Mainly normal										
Ceratohyoideus	From ceratohyoid (and also stylohyoid according to May 1964) to stylohyoid										
	Mainly normal										
Hyoideus transversus	Connects ceratohyoid cartilages										
	Mainly normal										
Styloglossus	From stylohyoid to tongue										
	Mainly normal										
Hyoglossus	From basihyoid and lingual process of										
	Mainly normal										
Muscle	Origin	Insertion	Status								
------------------	---	---	-------------------------								
Hyoglossus	From basihyoid and lingual process of thyrohyoid (but from stylohyoid according to May 1964, what seems to be a mistake) to tongue	Mainly normal	Mainly normal								
Genioglossus	From mandible (chin) just near to symphysis, to tongue	Mainly normal	Mainly normal								
Hyoepiglotticus	Contacts its counterpart at midline; innervated by hypoglossal nerve, so seems to be hypobrachial muscle, not true laryngeal or pharyngeal muscle; runs from basihyoid to epiglottic cartilage	Not analyzed	Not analyzed								
Cricothyroideus	From posterior border and lateral surface of arch of cricoid cartilage to lateral surface of, and lateral surface of, thyroid cartilage	Mainly normal	Mainly normal								
Cricothyroideus posterior (= Cricothyroideus dorsalis)	From dorsal surface and median ridge of lamina of cricoid cartilage to arytenoid cartilage	Mainly normal	Mainly normal								
Cricothyroideus lateralis	From nostril border and lateral surface of arch of cricoid cartilage to muscular	Mainly normal	Mainly normal								
Muscle	Origin	Mainly normal									
------------------------	-------------------------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------
Arytenoideus (= Arytenoideus transversus)	Unpaired, from arytenoid cartilages to arytenoid cartilages										
Thyroarytenoideus	From thyroid cartilage to arytenoid cartilage	Mainly normal									
Musculoskeletal study of ceboccephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution and human pathologies

Authors: Rui Diogo, Daria Razmadze, Natalia Siomava, Nora Douglas, Jose S. M. Fuentes, Andre Duerinckx

Supplementary Information 1, including SITab.1
muscle	Normal (stage 1)	Abnormal specimen 6L (dissected by DR) and 6R (dissected by ND; stage 2)	Abnormal specimen 12L and 2R, 2L, 5L, 5R, and 10R and 16R (dissected by RD; stage 2)	Abnormal specimen 65L and 65R (dissected by RD; stage 2)	Abnormal specimen 122AL and 122AR (dissected by RD; stage 2)	Abnormal specimen 4L and 4R (dissected by RD; stage 3)	Abnormal specimen 9L and 9R (dissected by ND; stage 3)	Abnormal specimen 5L (dissected by ND) and 3R (dissected by RD; stage 4)	Abnormal specimen 11L (dissected by RD; stage 4)	Abnormal specimen 199R and 199L (dissected by RD; stage 4)	Abnormal specimen 993R (dissected by RD; stage 4)		
Platysma myoides	Mainly from skin of the neck/pectoral region to skin and muscles of mouth region	Mainly normal											
Platysma cervicale	Mainly from skin of temporal/mucaul region to skin and muscles of mouth region	Mainly normal											
Retractor anguli oculi medius profundus (= "Posterior portion of malaris" or "depressor palpebrar inferioris" sensu May 1964)	Mainly from deep fascia covering anterior portion of masueter, plus orbicularis oculi, to fascia of lower eyelid	Mainly normal	Abnormal: seems to be not present as a separated muscle	Mainly normal	Mainly normal	Mainly normal	Mainly normal						
Sphincter coli profundus proprius	Mainly deep to platysma cervicale and platysma myoides, gives rise to sphincter coli profundus pars palpebralis (note: it is not continuous with sphincter coli profundus pars palpebralis)	Mainly normal	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Seemingly missing	Seemingly missing				
Sphincter coli profundus pars palpebralis (= "Anterior portion of malaris" or "levator buccalis" sensu May 1964)	Mainly from buccinatorium to lacrimal bone	Mainly normal	Mainly normal	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Abnormal, because due to the truncation of the snout, it runs antero-dorsally (as it originates mainly from the)	Seemingly missing	Seemingly missing
Muscle Name	Description	Normality	Abnormality										
-------------	-------------	-----------	-------------										
Sphincter colli profundus pars auricularis (= "Parotidoauricularis" or "Auricularis inferior et depressor auriculae" sensu May 1964) (Note: the mandibuloauricular is, often named "stylauricularis" in ruminants, is absent in goats/sheep)	Deep to platysma cervicale, inserts dorsally to region of the ear	Mainly normal	Mainly normal										
Zygomaticus	From zygomatic bone to angle of mouth/upper lip	Mainly normal	Mainly normal										
levator labii superioris alaeque nasi (= "levator nasolabialis" sensu)	From skin of frontal and nasal regions, and from orbicularis oculi	Mainly normal	Mainly normal										

Note: The table format is not correctly represented in the text. The text should be formatted as a table with the following structure:

Muscle Name	Description	Normality	Abnormality
Sphincter colli profundus pars auricularis (= "Parotidoauricularis" or "Auricularis inferior et depressor auriculae" sensu May 1964) (Note: the mandibuloauricular is, often named "stylauricularis" in ruminants, is absent in goats/sheep)	Deep to platysma cervicale, inserts dorsally to region of the ear	Mainly normal	Mainly normal
Zygomaticus	From zygomatic bone to angle of mouth/upper lip	Mainly normal	Mainly normal
levator labii superioris alaeque nasi (= "levator nasolabialis" sensu)	From skin of frontal and nasal regions, and from orbicularis oculi	Mainly normal	Mainly normal
Muscle Name	Description	Details	
-------------	-------------	---------	
Nasalis \(=\) 'Dilatator naris apicalis' or 'Transversus nasi' sensu May 1964	From premaxilla ('incisive bone') to nostril, meeting its counterpart at the midline, to nostril and upper lip	Not analyzed	
Dilatator naris lateralis \(=\) 'Caninus' sensu Getty 1975, who confused the identity of the true caninus, which he named 'depressor labii maxillaris'; see below	From facial tuber of maxilla to nostril	Wide but short because of truncation of snout, Mainly normal	
Levator labii superioris \(=\) 'Levator labii	From facial tuber of maxilla to upper lip and noper	Wide but short because of truncation of snout, Mainly normal	

Note: the dilatator naris alaris is seemingly poorly developed in the ox (Getty 1975) and very reduced/absent in sheep, as it was not described as a separate muscle by May 1964, nor found by us; according to Getty 1975 in ruminants it is usually fused with the levator anguli oris facialis, levator labii superioris alaeque nasi, levator labii superioris and dilatator naris lateralis, originating from the premaxilla and lateral nasal cartilages, and inserting onto the nostril.

On the left side it originated as usual from facial tuber, but on the right side it originated anteriorly to the facial tuber; on both sides it attached mainly to the 'proboscis'; moreover, it was deeply fused with the levator anguli oris facialis and with the levator labii superioris on the right side, only two of these three muscles being really seen on that right side.

On the right side only a muscle was present where the dilatator naris lateralis and levator anguli oris facialis are usually present, while on the left side both muscles were present as distinct structures.

On the left side it originated as usual from facial tuber; on the right side only a muscle was present where the dilatator naris lateralis and levator anguli oris facialis are usually present; it was difficult to analyze these muscles on the left side.

On both the left and right there was seemingly only a muscle where normally lie the levator anguli oris facialis and the dilatator naris lateralis.
Muscle(s)	Descriptive Details
Maxillaris (or 'Levator labii superioris proprius' sensu May 1964)	skin between nostrils, meeting its counterpart at the midline
Levator anguli oris facialis (='Depressor labii maxillaris' or 'Depressor labii inferioris' sensu May 1964)	From maxilla to nostril and upper lip, mainly normal, not analyzed
Depressor labii inferioris ('Depressor labii mandibularis' sensu May 1964; note that the depressor angularis oris is not present as a separate, well-developed muscle)	From mandible to inferior lip and adjacent skin, mainly normal, not analyzed

Note: in the text above, 'snout' refers to the region of the animal's nose and upper lip, and 'proboscis' to the elongated nose and upper lip characteristic of some species. The 'dilatator naris lateralis' is a muscle involved in dilating the nostrils. The 'buccinatorius' is another muscle involved in the movement of the lips and cheeks. The 'facial tuber' is a prominence on the side of the face. The 'nasal proboscis' is the elongated nose region. The 'levator labii superioris proprius' is a muscle that helps elevate the upper lip. The 'levator anguli oris facialis' is a muscle that elevates the angle of the mouth. The 'depressor labii maxillaris' is a muscle that helps depress the upper lip. The 'depressor labii inferioris' is a muscle that helps depress the lower lip. The 'constrictor' is a muscle involved in constricting or narrowing a body part. The 'levator labii inferioris' is a muscle that helps elevate the lower lip.
Muscle	Description	Typically	Mainly normal															
Orbicularis oris	From superior and inferior lips to mandible and skin around mouth	Mainly normal																
(note: the 'incisivus mandibularis/superior' and 'incisivus maxillaris/superior' sensu May 1964 are part of the orbicularis oris sensu the present work)																		
Buccinator	From the alveolar border of maxilla and mandible to the entire length of the cheek	Mainly normal																
Mentalis	From body of mandible near symphysis to skin of chin region	Mainly normal																
Orbicularis oculi	From palpebral ligament and lacrimal tubercle to skin of eyelid region	Mainly normal																
Frontalis	From skin of frontal region to eye region and skin of the dorsal surface of forehead	Mainly normal																
Zygomaticoauricularis arteriosus (= Zygomatico-auricularis arteriosus sensu May 1964) (Note: we are not including in this study the numerous small facial muscles related to the movements of the ear, but nor)	From zygomatic arch to auricular cartilage	Mainly normal																
Muscle Name	From	Normal Observation																
------------------------------	---	--																
Zygomaticoauricularis (= 'Zygomaticoauricularis' sensu May 1964)	From zygomatic arch to auricular cartilage	(Note: we are not including in this study the numerous small facial muscles related to the movements of the ear, but our dissections indicate that their presence, and attachments, were constant and similar to the normal phenotype in all abnormal specimens we analyzed, both the more and the less defective ones)																
Levator palpebrae superioris	From pterygoid crest to palpebral fascia of superior eyelid	Mainly normal																
Rectus superioris	From sphenoid bone to eye	Mainly normal																
Rectus inferioris	From sphenoid bone to eye	Abnormal, fused with rectus medialis, although its attachments are as normal Mainly normal Not analyzed Mainly normal																
Rectus lateralis	From sphenoid bone to eye	Mainly normal Mainly normal Mainly normal Mainly normal Not analyzed Mainly normal Not analyzed Mainly normal																
Rectus medialis	From region of optic foramen to eye	Abnormal, fused with rectus inferioris, although its attachments are as normal Mainly normal Mainly normal Mainly normal Not analyzed Mainly normal Mainly normal Mainly normal Mainly normal Mainly normal Mainly normal Seemingly missing Seemingly missing Not analyzed Missing																
Muscles of the ear

Muscles of the ear	(Note: we are not including in this study the numerous small facial muscles related to the movements of the ear, but our dissections indicate that their presence, and attachments, were constant and similar to the normal phenotype in all abnormal specimens we analyzed, both the more and the less defective ones)														
Zygomaticoauricularis (= 'Zygomatico-auricularis' sensu May 1964)	From zygomatic arch to auricular cartilage														
Masseter	Superficial layer from facial tuber, maxilla and zygomatic arch portion of zygomatic bone; middle and deep layers from zygomatic arch, malar bone, and maxilla; superficial layer to caudal and ventral parts and to angle of mandible; middle layer to caudal and ventral borders and angle of ramus of mandible; deep layer to neck of ramus and articular surface of mandible, coronoid process,														
Muscles	Description	Status	Status	Status	Status	Status	Status	Status	Status	Status	Status				
------------------	---	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------				
Temporalis	From temporal bone, frontal and temporal crests and zygomatic arch to coronoid process of mandible	Mainly normal													
Pterygoideus medialis	From palatine bone, pterygoid bone and pterygoid process of basi-sphenoid bone, to medial surface of mandible	Mainly normal													
Pterygoideus lateralis	Only one head; from pterygoalatine fossa and pterygoid process of basi-sphenoid to medial surface of mandible and base of coronoid process	Mainly normal													
Digastricus	It is crossed by the stylohyoideus, and the anterior and posterior digastric bellies are connected by thin intermediate tendon, which does not perforate the stylohyoideus; the anterior head of digastricus is deeply blended with mylohyoideus; digastricus as a whole runs from jugular (‘paramastoid’ sensu May 1964) process of	Mainly normal													
Occipital bone to mandible	Mylohyoideus	Stylohyoideus	Jugulothyoideus	Geniothyoideus	Ceratothyoideus	Hyoideus transversus	Styloglossus	Hyoglossus							
---------------------------	--------------	---------------	----------------	---------------	-----------------	---------------------	--------------	-----------							
Has superficial and deep bundles in sheep according to May 1964; both bundles run from mylohyoid line of mandible to hyoid bone and to midline raphe	Mainly normal														
Has a long thin tendon of origin; from muscular angle of stylohyoid bone ("great cornu of hyoid bone" sensu May 1964) to basihyoid bone ("body of hyoid bone" sensu May 1964)	Much shorter than normal, but basically same attachments	Mainly normal													
From jugular process of occipital bone to stylohyoid bone	Mainly normal														
Contacts with counterpart at midline; from mandible just near to symphysis, to basihyoid	Mainly normal														
From ceratohyoid (and also stylohyoid according to May 1964) to stylohyoid	Mainly normal														
Connects ceratohyoid cartilages	Mainly normal														
From stylohyoid to tongue	Mainly normal														
From basihyoid and lingual process of	Mainly normal														
Muscle	Anatomical Origin	Mainly normal													
------------------------	---	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------
Hyoglossus	From basihyoid and lingual process of thyrohyoid (but from stylohyoid according to May 1964, what seems to be a mistake) to tongue														
Genioglossus	From mandible (chin) just near to symphysis, to tongue	Mainly normal													
Hyoepiglotticus	Contacts its counterpart at midline; innervated by hypoglossal nerve, so seems to be hypobrachial muscle, not true laryngeal or pharyngeal muscle; runs from basihyoid to epiglottic cartilage	Not analyzed													
Cricothyroideus	From posterior border and lateral surface of arch of cricoid cartilage; lateral surface of lamina of, and lateral surface of, thyroid cartilage	Mainly normal													
Cricothyroideus posterior (Cricothyroideus dorsalis)	From dorsal surface and median ridge of lamina of cricoid cartilage to arytenoid cartilage	Mainly normal													
Cricothyroideus lateralis	From posterior border and lateral surface of arch of cricoid cartilage to muscular	Mainly normal													
Muscles	Description	Description 1	Description 2	Description 3	Description 4	Description 5	Description 6	Description 7	Description 8	Description 9	Description 10	Description 11	Description 12	Description 13	
------------------------------	---	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	----------------	----------------	----------------	----------------	
Arytenoideus (Arytenoideus transversus)	Unpaired, from arytenoid cartilages to arytenoid cartilages	Mainly normal													
Thyroarytenoideus	From thyroid cartilage to arytenoid cartilage	Mainly normal													
Musculoskeletal study of cebocephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution and human pathologies

Authors: Rui Diogo, Daria Razmadze, Natalia Siomava, Nora Douglas, Jose S. M. Fuentes, Andre Duerinckx

Supplementary Information 2, including summarized methods, as well as results, of morphometric analysis

For the morphometric analysis of all the left and right sides of the skull of each abnormal specimen dissected by us, we first removed all the soft tissues of those specimens, and then used landmarks that are consistently used for morphometric analysis of mammalian skulls (junction of the front tooth and maxilar bone; connection between the zygomatic and temporal bones in the zygomatic arch; faci tuber; around the eye; see e.g. Bookstein 1991), in order to run our analyses, which included Procrustes ANOVA. Skull halves were photographed on a flat horizontal surface with a camera Nikon D5000 fixed in a strict vertical position. Shape of skulls was analyzed using landmark-based geometric morphometric methods (Bookstein, 1991; Rohlf, 1990). Images were digitized using tpsUtil (Rohlf, 2004) and tpsDig2 (Rohlf, 2010). Series of landmarks along the mandible and eye hole were placed equidistant along the curvature. We applied the generalized Procrustes analysis (GPA) (Dryden and Mardia, 2002; Slice, 2005) in MorphoJ 1.05f (Klingenberg, 2008, 2011) to align the landmarks. Right and left halves were analyzed separately. Shape variation was studied by performing (1) Principal Component Analysis (PCA) of the data with the allometric component included (total shape variation) and (2) PCA after the regression of the centroid size on shape (pure shape) and visualizing the shape with a scatter plot and morphological differences with thin-plate spline (TPS) deformation grids (Bookstein, 1991; James Rohlf and Marcus, 1993; Slice, 2005; Thompson, 1917). To visualize the association between size and shape, we plotted shape scores against WCS. The amount of shape variation was given as a percentage of the total variation around the sample mean. The percentage numbers were computed to shows the relative importance of allometry for shape variation in each part of the skull. A permutation test with 10,000 runs (Good, 1994; Pitman, 1937) was applied to test independence between size and shape changes. A discriminant function analysis (DFA) and canonical variate analysis (CVA) were used to distinguish between groups. Procrustes ANOVA was used to estimate the fluctuating asymmetry (FA, asymmetric variation within one individual) and directional asymmetry (DA, one side is systemically different from the other one) in both centroid size and shape.

Because the lower jaw is movable, it is difficult to always keep it exactly within the same position in the skulls: because this factor may affect the overall result we analyzed the jaw separately. The results for the lower jaw are shown in Fig. 6 of the main paper, and are also shown in the figure just below. Other parts of the skull were also have to split into regions. For example, when we analyze the snout, we cannot use true cyclops (stage 4) because they basically don't have a ossified snout. On the other hand, we can analyze the brain case in all specimens. Thus, we obtained different groupings depending on what regions were included in the various morphometric analyses. The main results are summarized below:
Lower jaw:

Fig. PCA Lower jaw. Variation of shape of mandible in animals with different degree of defects. PCA of shape scatter plot (PC1 and PC2) and associated shape changes of non-allometric shape component of eye curvature and snout. The TPS deformation grids illustrate shape changes indicating the relative shifts of landmarks along the PC1 axes with PC scale factor +/-0.1 and along the PC2 axes with PC scale factor +/-0.05. Shape of lower jaw is significantly different between degrees 2, 3 and 4. The difference between groups is clear along PC1, which is mainly a change in curvature of lower surface of mandible and position of coronoid and condylar processes relative to body of the mandible.

• Contrarily to what we found concerning soft tissue pattern (i.e. usual asymmetry between left and right sides), there is no directional asymmetry (DA, i.e. in which one side would be systemically different from the other one) in the skull in size (Centroid Size, p= 0.7863) or shape (p= 0.7141) revealed by Proctustes ANOVA (see Table Proctustes ANOVA below):

Effect	SS	MS	df	F	P (param.)
Individual	1069415.665813	1069415.665813	10	0.32	0.012
Side	14600.301372	14600.301372	1	6.00	0.003
Ind * Side	1513595.718121	1513595.718121	16	1602.80	<0.001
Error I	2458.154705	113.144763	22		

Effect	SS	MS	df	F	P (param.)
Individual	0.25472646	0.0002054239	1240	16.78	<0.001
Side	0.00217679	0.0000217679	124	0.92	0.7141
Ind * Side	0.02662667	0.00002054239	1240	0.56	<0.001
Error I	0.00010697	0.00000099901	2128		

• However, there is a strong fluctuating asymmetry (FA, asymmetric variation within one individual) in both size (Centroid Size, p<0.005) and shape (p<0.0001) (Table Proctustes ANOVA; AL PCA, specimen 199). FA
and right sides. The left and right sides develop as more or less separate copies of each other within the same genome and in *nearly* the same environment. There are a variety of random processes at the molecular and cellular levels that can affect development and therefore may produce small differences between body parts even if genetic and environmental differences are absent. The differences between left and right sides are an opportunity to measure this variation and FA can therefore be used as a measure of the ‘imprecision’ of developmental processes, or *developmental instability*.

- All analysis were performed with true landmarks (LM), no semilandmark (semiLM) as the curvature of the lower jaw is very different between individuals. Relaxation of semiLM leads to their rearrangement and does not depict the trend. Repeated measurements show that the error of LM analysis is relatively low (Table Proctustes ANOVA) and suggest that the results obtained are reliable.
- R and L sides were not averages as each of them includes important information information.
- When the allometric component were included, the Principal Component 1 (PC1) explains 84.5% of the shape variation. Other PCs explain <5% (PC2 4.2%). Transformation grids located in corners of the graph illustrate shape changes along PC1 and PC2. For the PC1, it’s mainly changing of the jaw curvature. In more defective specimens, the lower jaw is wider and bent upward; in less defective specimens, the jaw is straighter. Another shape alteration is the widening of the condylar process in cyclop specimens (stage 4).
- The allometric component is very strong and can explain 49.1% of the variation (p<0.0001). In general, most defective specimens are smaller than others. However, stages 3 and 4 significantly overlap in size, as can see in this figure showing Regression:
Fig. Regressions. Regression of centroid size on shape. A distribution of different shapes of mandible (top panel), brain case (middle panel), and face (bottom panel) across specimens with different skull sizes. There is a clear distribution of mandible shape along size of skull and degree of defect. Specimens with stage 4 have the largest and the smallest brain cases. Animals with the stage 2 tend to have larger frontal parts of the skull than animals with stage 3, but they still substantially overlap.
• Correction for size removes the difference between stages 2 and 3 (Discriminant Function Analysis, DFA and Canonical Variate Analysis, CVA) but shape changes along PC1 and PC2 remain similar (not shown). Stage 4 is always statistically different (p<0.05) from the other two (Table CVA, top: allometric component included, bottom: excluded).

| Correction for size removes the difference between stages 2 and 3 (Discriminant Function Analysis, DFA and Canonical Variate Analysis, CVA) but shape changes along PC1 and PC2 remain similar (not shown). Stage 4 is always statistically different (p<0.05) from the other two (Table CVA, top: allometric component included, bottom: excluded). |

Specimens 199 and 993 (the most defective, stage 4, specimens) are often outliers in the morphometric analyses. Specimen 993 has the jaw most bent upward. Specimen 199 has almost no brain, but the analysis shows that not only the brain case is defective but also the facial bones and the lower jaw, in particular.

Table Procrustes ANOVA	PC1 (AI)	PC2 (AI)	PC3 (AI)	Predicted Allometry	PC1 (Shape)	PC2 (Shape)	PC3 (Shape)
Lower Jaw (All)	84.462	4.225	12.109	49.0954% (p<0.0001)	72.120	8.241	
Back Skull (All)	46.178	16.432	12.109	11.7204% (p=0.0202)	48.077	16.915	10.050
St. 4: Front Skull	80.475	12.125	4.032	36.3108% (p=0.1078)	55.253	16.189	9.650
St. 2-3: Front Skull	66.318	11.203	7.166	30.8352% (p=0.0016)	55.253	16.189	9.650
PCA Brain case:

Fig. PCA Brain case. Variation of shape of brain case in animals with different degree of defects. PCA of shape scatter plot (PC1 and PC2) and associated shape change of non-allometric shape component of skulls. The TPS deformation grids illustrate shape changes indicating relative shifts of landmarks along axes with the PC scale factor +/-0.1. Specimens 993 and 199 are outliers. Other specimens do not show essential overlap in the shape of the brain case.
PCA Face Stages 2 and 3:

Fig. PCA Face (Stages 2 and 3). Variation of shape of frontal part of skull in animals with different degree of defects. PCA of shape scatter plot (PC1 and PC2) and associated shape changes of non-allometric shape component of eye and snout. The TPS deformation grids illustrate shape changes indicating the relative shifts of landmarks along the axes with PC scale factor +/-0.15. Shape of frontal part of skull is significantly different between stages 2 and 3. The difference between groups is present along PC1, which mainly concerns the length of the snout.
PCA Face Stage 4:

Fig. PCA Face (Stage 4). Variation of shape of frontal part of skull in animals with stage 4. PCA of shape scatter plot (PC1 and PC2) and associated shape changes of non-allometric shape component of the eye curvature and snout. The TPS deformation grids illustrate shape changes indicating relative shifts of landmarks along axes with PC scale factor ±0.1. Specimens 3 and 11 have similar shapes of the face; specimen 993 is rather unique as it is distant from other specimens along both PC1 and PC2.
CVA: Lower Jaw

Procrustes distances among groups:

	2	3	4
3	0.1113		
4	0.2366	0.1289	

F-values from permutation tests (10000 permutation rounds) for Procrustes distances among groups:

	2	3	4
3	0.6001		
4	0.0026	<.0001	

Procrustes distances among groups:

	2	3	4
3	0.6346		
4	0.0094	0.0020	

F-values from permutation tests (10000 permutation rounds) for Procrustes distances among groups:

	2	3	4
3	0.2526		
4	0.0026		

CVA: Back Skull

Procrustes distances among groups:

	2	3	4
3	0.0926		
4	0.1084	0.1064	

F-values from permutation tests (10000 permutation rounds) for Procrustes distances among groups:

	2	3	4
3	0.0698		
4	0.0490	0.0432	

Procrustes distances among groups:

	2	3	4
3	0.0912		
4	0.1842	0.1158	

F-values from permutation tests (10000 permutation rounds) for Procrustes distances among groups:

	2	3	4
3	0.0692		
4	0.0172	0.0123	
DFA: Non-Cyclops: Front Skull

Discriminant Function Analysis 'Discriminant function Non-Cyclops: Front Skull'

Comparison: 2 -- 3

Discriminant Function Analysis 'Discriminant function Non-Cyclops: Front Skull'
Comparison: 2 -- 3
Difference between means:
Procrustes distance: 0.1412444
Mahalanobis distance: 1.6484
T-square: 134.3768, P-value (parametric): 0.7406
P-values for permutation tests (1000 permutation runs):
Procrustes distance: <.0001
T-square: 6.0170
(Note: The permutation test using the T-square statistic is equivalent to a test using Mahalanobis distance.)

Classification/misclassification tables

Group	Group 1	Group 2	Total
Group 1	4	0	4
Group 2	0	15	15

From cross-validation:

True Allocated to
Group

Group 1
Group 2

Discriminant Function Analysis 'Discriminant function ...'

Comparison: 2 -- 3

Discriminant Function Analysis 'Discriminant function ...'
Comparison: 2 -- 3
Difference between means:
Procrustes distance: 0.1103708
Mahalanobis distance: 5.2782
T-square: 97.5701, P-value (parametric): 0.9125
P-values for permutation tests (1000 permutation runs):
Procrustes distance: <.0001
T-square: 9.9240
(Note: The permutation test using the T-square statistic is equivalent to a test using Mahalanobis distance.)

Classification/misclassification tables

Group	Group 1	Group 2	Total
Group 1	4	0	4
Group 2	0	15	15

From cross-validation:

True Allocated to
Group

Group 1
Group 2
Procrustes ANOVA: Lower Jaw

Asymmetries are computed and displayed as 'R' minus 'L'.

Classifiers used for the Procrustes ANOVA:
- Individuals: Specimen
- Sides: Side
- Error 1: Repeat

Centroid size:

Effect	SS	MS	df	F	F (param.)
Individual	15094156.659813	1509416.65981	10	24.97	<.0001
Side	1460.301372	1460.301372	1	6.23	0.0480
Ind * Side	604831.954404	604831.954404	10	354.30	<.0001
Error 1	2659.1041755	113.447643	22		

Shape, Procrustes ANOVA:

Effect	SS	MS	df	F	F (param.)
Individual	0.25472856	0.0002054827	124	10.78	<.0001
Side	0.00217879	0.0000175769	124	0.92	0.3341
Ind * Side	0.00206287	0.0000158934	124	48.85	<.0001
Error 1	0.00146665	0.0000003591	271		

Procrustes ANOVA: Back Skull

Asymmetries are computed and displayed as 'R' minus 'L'.

Classifiers used for the Procrustes ANOVA:
- Individuals: Specie
- Sides: Side
- Error 1: Repeat

Centroid size:

Effect	SS	MS	df	F	F (param.)
Individual	974126.720478	974126.720478	10	5.81	0.0581
Side	48.722141	48.722141	1	0.30	0.9961
Ind * Side	16754.449755	16754.449755	10	884.50	<.0001
Error 1	416.706218	16.942560	22		

Shape, Procrustes ANOVA:

Effect	SS	MS	df	F	F (param.)
Individual	0.65928558	0.002278783	300	4.02	<.0001
Side	0.00244470	0.0001014699	30	1.91	0.0338
Ind * Side	0.17007834	0.0005672835	300	20.57	<.0001
Error 1	0.01823820	0.0002390316	440		

Procrustes ANOVA: Cyclop: Front Skull

Asymmetries are computed and displayed as 'R' minus 'L'.

Classifiers used for the Procrustes ANOVA:
- Individuals: Species
- Sides: Side
- Error 1: Repeat

Centroid size:

Effect	SS	MS	df	F	F (param.)
Individual	832959.546507	146478.78338	2	0.77	0.6865
Side	3554.464306	3554.464306	1	0.02	0.9096
Ind * Side	431504.555046	219752.275523	2	344.69	<.0001
Error 1	975.691112	62.615185	6		

Shape, Procrustes ANOVA:

Effect	SS	MS	df	F	F (param.)
Individual	0.58672346	0.0003446910	128	12.02	<.0001
Side	0.00152207	0.0006900752	60	0.55	0.9704
Ind * Side	0.00354944	0.0002531987	128	5.00	<.0001
Error 1	0.00343196	0.0000884297	388		
Procrustes ANOVA: Non-Cyclop: Front Skull

Dataset: Non-Cyclops: Front Skull

Asymmetries are computed and displayed as 'R' minus 'L'.

Classifiers used for the Procrustes ANOVA:
- Individuals: Species
- Sides: Side
- Error 1: Repeat

Centroid size:

Effect	SS	MS	df	F	P (param.)
Individual	1113975.122071	161396.446010	7	4.58	0.0312
Side	775.704994	775.704994	1	0.02	0.8862
Ind x Side	246552.995264	35221.356466	7	569.73	<.0001
Error 1	1065.027915	62.014210	16		

Shape, Procrustes ANOVA:

Effect	SS	MS	df	F	P (param.)	Pillai tr.	F (param.)
Individual	0.20305425	0.0003537530	574	3.64	<.0001		
Side	0.00440171	0.0000538794	82	0.55	0.9594		
Ind x Side	0.05578871	0.0000971029	574	42.89	<.0001		
Error 1	0.00297283	0.0000522659	1312				
References cited in SI2

Bookstein, F.L., 1991. Morphometric tools for landmark data: geometry and biology, Reprint. ed. Cambridge Univ. Press, Cambridge.

Dryden, I.L., Mardia, K.V., 2002. Statistical shape analysis, Reprinted. ed, Wiley series in probability and statistics. Wiley, Chichester.

Good, P., 1994. Permutation Tests: a Practical Guide to Resampling Methods for Testing Hypotheses. Springer New York, New York, NY.

James Rohlf, F., Marcus, L.F., 1993. A revolution morphometrics. Trends Ecol. Evol. 8, 129–132. https://doi.org/10.1016/0169-5347(93)90024-J

Klingenberg, C., 2008. MorphoJ Software/Documentation. Version 1.00i.

Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Pitman, E.J.G., 1937. Significance Tests Which May be Applied to Samples from any Populations. II. The Correlation Coefficient Test. Suppl. J. R. Stat. Soc. 4, 225. https://doi.org/10.2307/2983647

Rohlf, F.J., 2010. tpsDig, Digitize Landmarks and Outlines, Version 2.17.

Rohlf, F.J., 2004. tpsUtil, File Utility Program, Version 1.54.

Rohlf, F.J., 1990. Morphometrics. Annu. Rev. Ecol. Syst. 21, 299–316. https://doi.org/10.1146/annurev.es.21.110190.001503

Slice, D.E., 2005. Modern Morphometrics, in: Slice, D.E. (Ed.), Modern Morphometrics in Physical Anthropology. Kluwer Academic Publishers-Plenum Publishers, New York, pp. 1–45. https://doi.org/10.1007/0-387-27614-9_1

Thompson, D.W., 1917. On growth and form. Cambridge University Press.