Rigidity of K-theory under deformation quantization

Jonathan Rosenberg*

Dedicated to Calvin C. Moore on his 60th birthday

Abstract

Quantization, at least in some formulations, involves replacing some algebra of observables by a (more non-commutative) deformed algebra. In view of the fundamental role played by K-theory in non-commutative geometry and topology, it is of interest to ask to what extent K-theory remains "rigid" under this process. We show that some positive results can be obtained using ideas of Gabber, Gillet-Thomason, and Suslin. From this we derive that the algebraic K-theory with finite coefficients of a deformation quantization of the functions on a compact symplectic manifold, forgetting the topology, recovers the topological K-theory of the manifold.

Key words: deformation quantization, star-product, algebraic K-theory, K-theory with finite coefficients, power series ring.

1991 Mathematics Subject Classification: Primary: 19D50. Secondary: 46L85, 81S10, 81R50.

Notation. If A is a ring, $K(A)$ will denote its (connective) K-theory spectrum, the spectrum associated to the infinite loop space $K_0(A) \times BGL(A)^+$, where $BGL(A)^+$ is the result of applying the Quillen $+$-construction to the classifying space of the infinite general linear group over A. By definition, the (algebraic) K-groups $K_i(A)$ of A are (at least in positive degrees) the homotopy groups of $K_0(A)$, and the K-groups of A with finite coefficients $\mathbb{Z}/(m)$, $K_i(A; \mathbb{Z}/(m))$, are defined (at least in positive degrees) to be the homotopy groups of $S(\mathbb{Z}/(m)) \wedge K(A)$, where $S(\mathbb{Z}/(m))$ is the $\mathbb{Z}/(m)$ Moore spectrum. These come with universal coefficient short exact sequences

$$0 \to K_i(A) \otimes \mathbb{Z}/(m) \to K_i(A; \mathbb{Z}/(m)) \to \text{Tor}_2(K_{i-1}(A), \mathbb{Z}/(m)) \to 0.$$

(This is almost, but not quite, the definition of Browder in [1]; for an explanation of the difference between the two definitions, see [1], pp. 285–286.)

In the one case below where confusion might be possible between algebraic and topological K-groups, we denote these by K^alg_j and K^top_j, respectively.

*Partially supported by NSF grant # DMS-96-25336.
Now we begin with a very general definition of (formal) deformation quantization. Intuitively, this is a formal deformation of the multiplication on an “algebra of observables,” the deformation parameter being identified with “Planck’s constant” \hbar.

Definition 1 Let $\mathcal{A}_0 = (A_0, \cdot)$ be an algebra over a commutative ring k (with unit), where A_0 is the underlying k-module of \mathcal{A}_0 and \cdot is the multiplication in A. A (formal) deformation quantization of \mathcal{A}_0 will mean an (associative) algebra $A = (A_0[[\hbar]], \star)$ over $k[[\hbar]]$ (the commutative ring of formal power series over k in a variable \hbar) with underlying $k[[\hbar]]$-module $A_0[[\hbar]]$, where the multiplication \star in A is defined by perturbing the multiplication \cdot in A_0 to a new product \star via

$$a \star b = a \cdot b + \hbar \phi_1(a, b) + \hbar^2 \phi_2(a, b) + \cdots, \quad a, b \in A_0,$$

and then extending to series in the obvious way:

$$\left(\sum_{j=0}^{\infty} a_j \hbar^j \right) \star \left(\sum_{l=0}^{\infty} b_l \hbar^l \right) = \sum_{j, l=0}^{\infty} \hbar^{j+l} \left(a_j \cdot b_l + \sum_{p=1}^{\infty} \hbar^p \phi_p(a_j, b_l) \right).$$

Here ϕ_j, $j = 1, 2, \ldots$ are k-bilinear maps $A_0 \times A_0 \to A_0$. Note that $\mathcal{A}_0 \cong A/(\hbar)$ as algebras, so that one has a natural algebra map $e_0 : A \to \mathcal{A}_0$ (“setting \hbar to 0”). We call the map e_0 the classical limit map.

Example 2 A trivial but still important example is the case where the multiplication on \mathcal{A}_0 is undeformed. In this case $A = \mathcal{A}_0[[\hbar]]$ is simply a ring of formal power series in one variable over the ring \mathcal{A}_0. \square

Example 3 In one of the most important examples, $k = \mathbb{C}$ and $\mathcal{A}_0 = C^\infty(M)$, where M is a symplectic manifold. Then there exist non-commutative algebras A satisfying Definition 1 for which

$$\phi_1(f, g) - \phi_1(g, f) = \{f, g\},$$

where $\{\ , \ \}$ is the Poisson bracket on M. This was shown in [14] and [3]. The \star-product is obtained by a patching procedure using the Weyl quantization of $C^\infty(\mathbb{R}^{2n})$. \square

In this generality, it turns out that K_0 is preserved under deformation quantization.

Theorem 4 Let k be a commutative ring with unit, let \mathcal{A}_0 be an algebra (with unit) over k, let A be a deformation quantization of \mathcal{A}_0 in the sense of Definition 1, and let $e_0 : A \to \mathcal{A}_0$ be the associated classical limit map. Then the map $(e_0)_* : K_0(A) \to K_0(\mathcal{A}_0)$ induced by e_0 is an isomorphism.

We will need the following simple lemma.
Lemma 5 Let k be a commutative ring with unit, let A_0 be a k-algebra, and let A be a deformation quantization of \overline{A}_0 in the sense of Definition 4. Then an element $a = \sum_{j=0}^{\infty} a_j h^j$ of A ($a_j \in A_0$) is invertible if and only if $c_0(a) = a_0$ is invertible in \overline{A}_0. Similarly, an element $a = \sum_{j=0}^{n-1} a_j h^j$ of $A/\,(h^n)$ ($a_j \in A_0$) is invertible if and only if $c_0(a) = a_0$ is invertible in \overline{A}_0.

Proof. The “only if” direction is trivial, and the “if” direction in the case of $A/(h^n)$ follows from the result for A. The proof (in the case of A) for the “if” direction is the usual algorithm for inversion of power series. More specifically, suppose a_0 is invertible for the multiplication · in A_0, and let $a = \sum_{j=0}^{\infty} a_j h^j \in A$ ($a_j \in A_0$). We can construct an inverse $b = \sum_{l=0}^{\infty} b_l h^l$ for a with respect to the product \ast in A by letting $b_0 = a_0^{-1}$ (the inverse of a_0 in \overline{A}_0) and then solving for the coefficients b_l by iteration in the equation

$$1 = a \ast b = \left(\sum_{j=0}^{\infty} a_j h^j \right) \ast \left(\sum_{l=0}^{\infty} b_l h^l \right) = \sum_{j,l=0}^{\infty} h^{j+l} \left(a_j \cdot b_l + \sum_{p=1}^{\infty} h^p \phi_p(a_j,b_l) \right).$$

(2)

Equating coefficients of powers of h on the two sides of (2) gives for each $q \geq 1$ an equation (in A_0)

$$\sum_{j+l+p=q} \phi_p(a_j,b_l) = 0.$$

(3)

where for convenience we let $\phi_0(a_j,b_l) = a_j \cdot b_l$. To show these equations are (uniquely) solvable, note that assuming we have solved for b_0, \ldots, b_{q-1}, $q \geq 1$, (3) reduces to

$$a_0 \cdot b_q + \sum_{j+l+p=q, l \leq q-1} \phi_p(a_j,b_l) = 0,$$

or

$$b_q = - \sum_{j+l+p=q, l \leq q-1} a_0^{-1} \cdot \phi_p(a_j,b_l).$$

Thus, by induction on q, (3) has a unique solution which is a right \ast-inverse to a. Similarly, a has a unique left \ast-inverse. By the usual argument, these must be equal, so a is invertible in A. □

Proof of Theorem 4 For the injectivity, it is enough to show that if M and N are (left) A-modules with $M \oplus N = A^n$ for some n, and if $\overline{A}_0 \otimes_{c_0} M$ and $\overline{A}_0 \otimes_{c_0} N$ are free \overline{A}_0-modules, then M and N are free A-modules. Since the kernel (h) of c_0 is contained in the radical of A (this follows immediately from Lemma 3), the proof of Theorem 1.3.11 in [4] applies without change.

The proof of surjectivity is based on a version of Hensel’s Lemma. Since $A = \varprojlim A/(h^n)$ and we can replace A by $M_n(A)$, the $n \times n$ matrices over A, if necessary, it is enough to show that for $j \geq 1$, any idempotent $\overline{\pi}$ in $A/(h^j)$ can be lifted to an idempotent in $A/(h^{j+1})$. (Then an idempotent in $\overline{A}_0 = A/\,(h)$
Theorem 6 Let k be a field of characteristic zero, let \overline{A}_0 be an algebra (with unit) over k, let A be a deformation quantization of \overline{A}_0 in the sense of Definition 1, and let $e_0 : A \rightarrow \overline{A}_0$ be the associated classical limit map. Then e_0 induces isomorphisms $K_j(A; \mathbb{Z}/(m)) \cong K_j(\overline{A}_0; \mathbb{Z}/(m))$ on K-theory with finite coefficients for any $m > 1$, $j > 0$.

The motto of the theorem is: passage to the classical limit preserves K-theory with finite coefficients. But perhaps a few words of explanation for the peculiar formulation are in order.

1. We certainly cannot expect e_0 to induce isomorphisms of K-groups integrally, since this is false in the case of Example 2. If $\overline{A}_0 = k$, $*=\cdot$, and $A=k[[\hbar]]$, then A is a commutative local ring and thus (see for instance [11], Corollary 2.2.6) $K_1(A) = A^\times$, which is vastly bigger than $K_1(\overline{A}_0) = k^\times$, and in fact the kernel of the map induced by $(e_0)_*$ on π_1 may be identified with a k-vector space of uncountable dimension.

2. There is some subtlety in the result since A is as a k-vector space an infinite product of copies of A_0, but the K-theory groups of an infinite product of rings are in general not the products of the K-groups of the factors. For a simple counterexample, let $R_j = C(S^{2j})$ (the continuous complex-valued functions on a sphere), $j = 1, 2, \ldots$. By Bott periodicity, $K_0(R_j) \cong \mathbb{Z}$. Let $b_j \in K_0(R_j)$ have non-trivial projection into $K_0(R_j)$. Then the element (b_1, b_2, \ldots) of $\prod_j K_0(R_j)$ does not lie in the image of $K_0(\prod_j R_j)$, since realizing b_j as a formal difference of idempotent matrices requires matrices of increasing size as $j \rightarrow \infty$, so that (b_1, b_2, \ldots) cannot
come from matrices of finite size over $\prod_j R_j$. The K-theory of categories does commute with infinite products [8], but for quite non-trivial reasons. However, if $\mathcal{P}(R)$ denotes the category of finitely generated projective R-modules for a ring R (the relevant category for K-theory of rings), then $\mathcal{P}(\prod_j R_j)$ is not generally equivalent to $\prod_j \mathcal{P}(R_j)$.

Before giving the proof, we need two preliminaries.

Lemma 7 Let k be a field, let A_0 be a k-algebra, and let A be a deformation quantization of \overline{A}_0 in the sense of Definition 8. Then for any $n \geq 1$, the natural maps $GL(n, A/(h^{j+1})) \to GL(n, A/(h^j))$ ($j = 1, 2, \ldots$) are all surjective, and $GL(n, A) = \varprojlim GL(n, A/(h^j))$.

Proof. This follows immediately from Lemma 8, applied not to A but to $M_n(A)$, the $n \times n$ matrices over A. □

Proposition 8 Let k, \overline{A}_0, and A be as in Theorem 9. Then for any integers n, $j \geq 1$, $m > 1$, the natural map $GL(n, A/(h^j)) \to GL(n, \overline{A}_0)$ induces an isomorphism on homology with $\mathbb{Z}/(m)$ coefficients.

Proof. We fix n and prove this by induction on j. The statement is trivially true when $j = 1$. So assume $j \geq 1$ and the statement is true for j; we’ll prove it for $j + 1$. Consider the exact sequence of k-algebras

$$0 \to I \to A/(h^{j+1}) \to A/(h^j) \to 0,$$

where as a vector space, $I = h^j A_0$, but the multiplication on I vanishes since $2j \geq j + 1$. By the previous lemma, the induced map $GL(n, A/(h^{j+1})) \to GL(n, A/(h^j))$ is surjective, and the kernel K consists of matrices of the form $1 + x$, $x \in M_n(I)$. Since $I^2 = 0$, multiplication in K is given by $(1 + x)(1 + y) = 1 + x + y$, i.e., $K \cong M_n(I)$ with its additive group structure. Since k is of characteristic zero, K is therefore isomorphic to the underlying additive group of a \mathbb{Q}-vector space, which is uniquely divisible. Hence K is $\mathbb{Z}/(m)$-acyclic, and the Hochschild-Serre spectral sequence for

$$1 \to K \to GL(n, A/(h^{j+1})) \to GL(n, A/(h^j)) \to 1$$

collapses to give $H_\bullet(GL(n, A/(h^{j+1})); \mathbb{Z}/(m)) \cong H_\bullet(GL(n, A/(h^j)); \mathbb{Z}/(m))$. This gives the inductive step. □

Proof of Theorem 9. By Lemma 8, $GL(n, A) = \varprojlim GL(n, A/(h^j))$ (for any n). Hence the $\mathbb{Z}/(m)$-homology of $GL(n, A)$ can be computed from that of the $GL(n, A/(h^j))$ by the Milnor limit sequence. But by Proposition 9, the maps $GL(n, A/(h^{j+1})) \to GL(n, A/(h^j))$ are all $\mathbb{Z}/(m)$-homology isomorphisms. Hence the inverse system $H_\bullet(GL(n, A/(h^j)); \mathbb{Z}/(m))$ (for fixed n) satisfies the Mittag-Leffler criterion, and

$$H_\bullet(GL(n, A); \mathbb{Z}/(m)) \cong H_\bullet(GL(n, \overline{A}_0); \mathbb{Z}/(m)).$$
Now pass the to the limit as \(n \to \infty \). We deduce that the map of groups \(GL(A) \to GL(\mathcal{A}_0) \) induces a \(\mathbb{Z}/(m) \)-homology isomorphism. Applying the classifying space functor and the Quillen +-construction yields that \(BGL(A)^+ \to BGL(\mathcal{A}_0)^+ \) is a \(\mathbb{Z}/(m) \)-homology equivalence (and of course also an infinite loop map). Now the usual connective \(K \)-theory spectrum of \(A, \mathbb{K}(A) \), is just the spectrum associated to the infinite loop structure on \(K_0(A) \times BGL(A)^+ \), and \(K \)-theory with finite coefficients (in positive degrees, at least) is computed by taking the homotopy groups of \(K \) and \(\mathbb{K}(A) \). Combining the fact that \(BGL(A)^+ \to BGL(\mathcal{A}_0)^+ \) is a \(\mathbb{Z}/(m) \)-homology equivalence with the fact that \(K_0(A) \to K_0(\mathcal{A}_0) \) is an isomorphism (Theorem \(\mathbb{H} \), we see \(\mathbb{K}(A; \mathbb{Z}/(m)) \to \mathbb{K}(\mathcal{A}_0; \mathbb{Z}/(m)) \) is a homology equivalence, hence a homotopy equivalence by the Hurewicz Theorem (which applies to connective spectra). (This argument bypassed the sort of reasoning used in \(\mathbb{K} \), Proposition 1.5, but one could use that here instead.) So \(\pi_j(\mathbb{K}(A; \mathbb{Z}/(m))) \to \pi_j(\mathbb{K}(\mathcal{A}_0; \mathbb{Z}/(m))) \), i.e., \(K_j(A; \mathbb{Z}/(m)) \to K_j(\mathcal{A}_0; \mathbb{Z}/(m)) \), for \(j > 0 \). \(\square \)

Corollary 9 (Cf. \(\mathbb{H} \), Theorem 1, for the commutative case.) If \(k \) is a field of characteristic zero and if \(B \) is a \(k \)-algebra, then for \(j > 0 \) and any \(m > 1 \), \(K_j(B[[t]]; \mathbb{Z}/(m)) \to K_j(B; \mathbb{Z}/(m)) \).

Proof. Apply Theorem \(\mathbb{H} \) to Example \(\mathbb{H} \). \(\square \)

Corollary 10 Let \(M \) be a compact symplectic manifold, let \(\mathcal{A}_0 = C^\infty(M) \) with its usual Poisson structure, and let \(A \) be a deformation quantization of \(\mathcal{A}_0 \). Then for \(j > 0 \) and any \(m > 1 \), \(R_j^{alg}(A; \mathbb{Z}/(m)) \cong K_{top}^{-j}(M; \mathbb{Z}/(m)) \), the topological \(K \)-theory of \(M \) with finite coefficients.

Proof. We apply our results to Example \(\mathbb{H} \). By Theorem \(\mathbb{H} \), \(K_0(A) \times BGL(A)^+ \to K_0(\mathcal{A}_0) \times BGL(\mathcal{A}_0)^+ \) is a \(\mathbb{Z}/(m) \)-homotopy equivalence, so for \(j > 0 \),

\[
K_j^{alg}(A; \mathbb{Z}/(m)) \cong K_j^{alg}(C^\infty(M); \mathbb{Z}/(m)).
\]

The group on the right is known to coincide with \(K_{top}^{-j}(M; \mathbb{Z}/(m)) \) by \(\mathbb{H} \). This requires comment: Fischer’s theorem is stated for the algebra of continuous functions on a compact space \(X \), but since the proof is sheaf-theoretic, when \(X \) is a manifold \(M \), one can replace the sheaf of germs of continuous functions by the sheaf of germs of \(C^\infty \) functions, and all the arguments go through. The essential facts needed to make everything work are:

1. the local ring of germs of \(C^\infty \) functions at a point of a smooth manifold is Henselian;

2. for \(G \) a Lie group (in particular, for \(G = GL(n, \mathbb{C}) \)), the group \(C^\infty(M, G) \) is a “locally convex” topological group in the sense of \(\mathbb{H} \), that is, that it is a topological group in the \(C^\infty \) topology, and that functions \(M \to G \) which are close in the \(C^\infty \) topology can be joined by a smooth path; and
3. The topological K-theory of \(C^\infty(M) \) coincides with that of \(C(M) \) (a well-known consequence of \(C^\infty \) approximation).

□

Remark 11 Exactly the same statement as in Theorem 6 works when the ground ring \(k \) is a field of characteristic \(p \), except that in this case one has to assume \((m, p) = 1 \). The only difference in the proof is that in the proof of Proposition 8 one should substitute the fact that if \((m, p) = 1 \), then a \(\mathbb{Z}/(p) \)-vector space (regarded as a group under addition) is \(\mathbb{Z}/(m) \)-acyclic. In fact one can even take \(k = \mathbb{Z}[\frac{1}{m}] \) and the argument still works (see [13], Lemma 1.1). □

Remark 12 In fact the connective K-theory spectrum is the connective cover of a non-connective K-theory spectrum \(K^\text{non-conn}(A) \), whose homotopy groups in non-negative degrees are the same as those of \(K_0(A) \times BGL(A)^+ \) (in other words, the Quillen K-groups), and whose negative homotopy groups are the negative K-groups of Bass. (One of the many constructions of this spectrum may be found in [9], and a proof that it is equivalent to all the other standard definitions of this spectrum may be found in [10], §§5–6.) An optimal statement along the lines of Theorem 6—I am not sure whether this is correct or not—would thus be that

\[(e_0)_* : K^\text{non-conn}(A; \mathbb{Z}/(m)) \xrightarrow{\cong} K^\text{non-conn}(A_0; \mathbb{Z}/(m)), \]

so that one gets isomorphisms similar to those of Theorem 6 for negative K-theory as well, but we have been unable to prove this. The difficulty is that the natural way to deloop the equivalence of Theorem 6 would be to replace \(\mathcal{A}_0 \) by \(\mathcal{B}_0 = \mathcal{A}_0[t, t^{-1}] \) and define \(B \) from \(B_0 \) by the obvious formula derived from (1), keeping \(t \) central in \(B \). The problem is that the resulting \(B \) is not just \(A[t, t^{-1}] \) (which is not (\(h \))-adically complete), but rather its (\(h \))-adic completion, and it’s not clear what effect the completion process has on K-groups. Other delooping techniques run into similar problems having to do with the failure of products and coproducts to commute. □

Acknowledgement. My interest in the topic of this paper was motivated in part by a request to me from one of the editors of Mathematical Reviews to write an extended review of two papers by Nest and Tsygan ([7], [8]) on “algebraic index theorems.” The more I studied the work of Nest and Tsygan, the more I realized that it hinges on rigidity properties for cyclic homology under deformation quantization. It therefore seemed natural to search for analogous rigidity properties for K-theory.
References

[1] W. Browder, Algebraic K-theory with coefficients \mathbb{Z}/p, in Geometric Applications of Homotopy Theory I (Evanston, IL, 1977), M. G. Barratt and M. E. Mahowald, eds., Lecture Notes in Math., vol. 657, Springer-Verlag, Berlin and New York, 1978, pp. 40–84.

[2] G. Carlsson, On the K-theory of infinite product categories, K-theory 9 (1995), 305–322.

[3] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Diff. Geom. 40 (1994), 213–238.

[4] T. Fischer, K-theory of function rings, J. Pure Appl. Alg. 69 (1990), 33–50.

[5] O. Gabber, K-theory of Henselian local rings and Henselian pairs, in Algebraic K-theory, Commutative Algebra, and Algebraic Geometry (Santa Margherita Ligure, Italy, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, 59–70.

[6] H. A. Gillet and R. W. Thomason, The K-theory of strict Hensel local rings and a theorem of Suslin, J. Pure Appl. Algebra 34 (1984), 241–254.

[7] R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), 223–262.

[8] R. Nest and B. Tsygan, Algebraic index theorem for families, Adv. Math. 113 (1995), 151–205.

[9] E. K. Pedersen and C. Weibel, A nonconnective delooping of algebraic K-theory, in Algebraic and Geometric Topology (New Brunswick, NJ, 1983), A. Ranicki, N. Levitt and F. Quinn, eds., Lecture Notes in Math., vol. 1126, Springer-Verlag, Berlin and New York, 1985, pp. 166–181.

[10] E. K. Pedersen and C. Weibel, K-theory homology of spaces, in Algebraic Topology (Arcata, CA, 1986), G. Carlsson, R. L. Cohen, H. R. Miller, and D. C. Ravenel, eds., Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin and New York, 1989, pp. 346–361.

[11] J. Rosenberg, Algebraic K-theory and its Applications, Graduate Texts in Math., vol. 147, Springer-Verlag, New York and Berlin, 1994.

[12] J. Rosenberg, “Featured review” of [7] and [8], Math. Reviews, to appear.

[13] A. A. Suslin, On the K-theory of local fields, J. Pure Appl. Alg. 34 (1984), 301–318.

[14] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487–496; Existence of star-products revisited, Note Mat. 10 (1990), Suppl. 1, 205–216 (1992).
Rigidity of K-theory under deformation quantization

JONATHAN ROSENBERG
Department of Mathematics
University of Maryland
College Park, MD 20742
email: jmr@math.umd.edu