Latent Tri-lineage Potential of Human Menstrual Blood–Derived Mesenchymal Stromal Cells Revealed by Specific In Vitro Culture Conditions

Diana Quintero-Espinosa1 · Viviana Soto-Mercado1 · Catherine Quintero-Quinchia1 · Miguel Mendivil-Perez1 · Carlos Velez-Pardo1 · Marlene Jimenez-Del-Rio

Received: 2 March 2021 / Accepted: 3 June 2021 / Published online: 16 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Human menstrual blood–derived mesenchymal stromal cells (MenSCs) have become not only an important source of stromal cells for cell therapy but also a cellular source for neurologic disorders in vitro modeling. By using culture protocols originally developed in our laboratory, we show that MenSCs can be converted into floating neurospheres (NSs) using the Fast-N-Spheres medium for 24–72 h and can be transdifferentiated into functional dopaminergic-like (DALNs, ~26% TH+/DAT+ flow cytometry) and cholinergic-like neurons (ChLNs, ~46% ChAT+/VChT flow cytometry) which responded to dopamine- and acetylcholine-triggered neuronal Ca2+ inward stimuli when cultured with the NeuroForsk and the Cholinergic-N-Run medium, respectively in a timely fashion (i.e., 4–7 days). Here, we also report a direct transdifferentiation method to induce MenSCs into functional astrocyte-like cells (ALCs) by incubation of MenSCs in commercial Gibco® Astrocyte medium in 7 days. The MSC-derived ALCs (~59% GFAP+/S100β+) were found to respond to glutamate-induced Ca2+ inward stimuli. Altogether, these results show that MenSCs are a reliable source to obtain functional neurogenic cells to further investigate the neurobiology of neurologic disorders.

Keywords Menstrual blood · Stromal · Cholinergic · Dopaminergic · Astrocyte · Calcium · Neurogenic

Introduction
Mesenchymal stromal cells (MSCs) are multipotent cells with self-renewal ability and differentiating potential [1, 2]. Because of these meaningful features, MSCs hold great promise for the treatment and modeling of neurological disorders such as Alzheimer’s (AD) and Parkinson’s diseases (PD), and for testing potential therapeutic approaches (e.g., [3, 4]). Since MSCs can be obtained from fetal (e.g., umbilical cord Wharton’s jelly (UC-WJ), umbilical cord blood, placenta) and adult sources (e.g., dental pulp, gingival tissue, adipocyte tissue, menstrual blood) with minimal technical limitations, minor ethical issues, and/or reduced tumorigenic risk, they have emerged as a useful strategy for regenerative medicine [5]. Accordingly, menstrual blood stromal cells (hereafter named as MenSCs) have become not only an important source of stromal cells for cell therapy (e.g., [6, 7]) but also as a cellular source for neurologic disorders in vitro modeling. Indeed, it has been shown that MenSCs can be converted into clonogenic neurosphere-like cells (NSCs) in 10–20 days, which can be transdifferentiated into glial-like and neural-like cells in 12–16 days [8, 9]. However, no further data are available to determine whether MenSCs can transdifferentiate into other neuronal lineages such as dopaminergic, cholinergic, or astrocytic neuronal cells [10].

Recently, we have derived MSCs from UC-WJ to obtain neurospheres (NSs), i.e., free-floating spherical cell aggregates, also named as neural precursor cells, in 24 h, and NS-derived nerve-like cells (NLCs) in 4 days [11]. Moreover, MSCs have also been transdifferentiated into functional
cholinergic-like neurons (ChLNs) in 7 days [12]. While UC-WJ-derived MSCs are available for only a minority of individuals who have their samples banked at birth, MenSCs can be isolated with minimal invasiveness and risk to the donor and can be obtained in sufficient numbers to enable expansion in culture. Therefore, MenMSC might represent a fast, safe, and efficient way of generating neural-like cells [4].

The present study aimed to investigate whether MenSCs can transdifferentiate into NSs and neuronal lineages with culture protocols originally developed in our laboratory including three culture media such as the Fast-N-Spheres [11], the NeuroForsk [11], and the Cholinergic-N-Run medium [12]. Similar to UC-WJ-MSCs, we show that MenSCs can be converted into floating NSs using the Fast-N-Spheres medium for 24–72 h and can be transdifferentiated into functional dopaminergic-like neurons (DALNs) and ChLNs which responded to dopamine- and acetylcholine-triggered neuronal Ca2+ inward stimuli when cultured with the NeuroForsk and the Cholinergic-N-Run medium, respectively, in 4–7 days of culture. We also report a direct transdifferentiation method to induce MenSCs into functional astrocyte-like cells (ALCs) by incubation of MenSCs in commercial Gibco® Astrocyte Medium in 7 days. Accordingly, MenSC-derived ALCs (~59% GFAP+/S100β+) were found to respond to glutamate-induced Ca2+ inward stimuli. Altogether these results show that MenSCs are a reliable source to obtain functional neurogenic cells to further investigate the neurobiology of AD and PD neurologic disorders.

Material and Methods

Isolation and Characterization of Mesenchymal Stromal Cells Derived from Human Menstrual Blood (MenSCs)

The menstrual blood samples were collected from three healthy females aged between 18 and 30 years. Donors provided a signed informed consent approved by the ethics committee of the Sede de Investigación Universitaria (SIU), University of Antioquia, Medellín, Colombia. Menstrual blood (MenB) was collected by cup collection (10–15 mL) during the first 3 days of menses. Briefly, menstrual blood samples were delivered into the laboratory and mixed with an equal volume of phosphate-buffered saline (PBS) containing 1 mM ethylenediamine tetra-acetic acid (EDTA), with 100 U/mL penicillin/streptomycin 0.25 mg/mL amphotericin B, and subject to cell lysis or standard Ficoll procedures within 24 h as previously described in ref. [13]. After centrifugation, the cells were suspended in a buffy coat (6.7 × 10⁶ ± 3 × 10⁶ cells, n = 3), were transferred into a new tube, washed in PBS twice, re-suspended in growth medium (low-glucose DMEM medium supplemented with 10% FBS (Gibco, USA), 100 U/mL penicillin/streptomycin, and 0.25 mg/mL amphotericin B), and seeded into 25-cm² plastic cell culture flasks at 37 °C with 5% humidified CO₂. The medium was replaced every 3 days leaving behind the adherent cells that were growing as fibroblastic cells in clusters. When the cells reached 80–90% confluence (P0), the cells were detached by 0.25% trypsin/1 mM EDTA and sub-cultured to new flasks by the ratio of 1:3. The isolated MenSCs were evaluated for the following characteristics: colony formation capacity (i.e., colonies with a typical adherent growth, colony-forming unit fibroblast activity, and spindle-shaped and fibroblast-like morphology); positivity for the mesenchymal-associated surface markers CD90, CD9, and CD73 (99% positive); and karyotype with normal shape, number, and distribution. The differentiation capacity in an osteoblast, chondrocyte, and adipocyte lineage of MenSCs, as well as the presence of neuronal precursors and astrocyte markers (e.g., NFL, β-TUB III, GFAP, S100β, TH, ChAT), was assessed according to refs. [12, 14].

Karyotyping

Karyotype analysis was performed by Genetica Lab, S.A.S., using standard cytogenetic protocols. Briefly, at 60–70% confluence, MenSCs cells were incubated with 0.1 mg/mL Colcemid (Sigma) for 90 min at 37 °C. Then, the cells were detached with 0.25% trypsin and centrifuged at 591 × g for 20 min. The medium was removed, and the hypotonic solution (0.075 M KCl, 0.017 M Na-citrate) was added and incubated for 20 min at 37 °C. After a new centrifugation, cells were fixed with freshly prepared Carnoy’s solution. Metaphase spreads were analyzed after staining with quinacrine (Sigma) for karyotyping. Analysis was performed on three different primary cultures counting 20 metaphases for each sample.

Cell Differentiation

Neurosphere (NS) Formation

MenSCs were seeded at a density of 2.5 × 10⁴ cells/cm² in a multi-well plate (Greinner-Bio-one, cat. no. 662102) using Fast-N-spheres medium (DMEN F-12 Gibco® (cat. no. 11330-032), supplemented with 2% B27® GIBCO® (cat. no. 17504-044), 20 ng/mL basic fibroblast growth factor (bFGF, R&D Systems, Inc., MN), 20 ng/mL epidermal growth factor (EGF, Sigma cat. no. E9644), 1 µg/mL heparin sodium salt®, and 100 U/mL penicillin/streptomycin) for 0, 1, and 3 days according to ref. [11].
Astrocyte-Like Cell (ALC) Differentiation

For astrocyte differentiation, 1×10^4 MenSCs/cm2 were seeded in 25-cm2 culture flasks in regular culture medium (RCm, DMEM low-glucose media (Sigma cat. no. D6046) supplemented with 10% FBS) until reach 40% of confluence. Then, the medium was replaced and cells were incubated either in DMEM low-glucose media supplemented with 2% FBS (minimal culture medium, thereafter MCm) or Astrocyte medium® (GIBCO®, cat. no. A1261301) for 0, 4, and 7 days.

Dopaminergic-Like Neuron (DALN) Differentiation

The MenSCs were seeded at 1×10^4 MenSCs/cm2 in 25 cm2 culture flasks for 24 h in a regular culture medium (DMEM low-glucose media supplemented with 10% FBS). Then, the medium was removed and cells were incubated either in MCm or dopaminergic differentiation medium (NeuroForsk medium, DMEM low-glucose media supplemented with 2% FBS Forskolin (Sigma cat. no. F6886) 1-μM final concentration) for 0, 4, and 7 days according to ref. [11].

Cholinergic-Like Neuron (ChLN) Differentiation

The MenSCs were seeded at 1.6–2 $\times 10^4$ cells/cm2 in 25-cm2 culture flasks for 24 h in regular culture medium. Then, the medium was removed and cells were incubated either in MCm or cholinergic differentiation medium (Cholinergic-N-Run medium containing DMEM/F-12 media 1:1 Nutrient Mixture Gibco (cat. no. 10565018, 10 ng/mL), basic fibroblast growth factor (bFGF) recombinant human protein (Gibco cat. no. 13256029), 50 μg/mL sodium heparin (Sigma-Aldrich cat. no. H3393), 0.5 μM all-trans retinoic acid, 50 ng/mL sonic hedgehog peptide (SHH, Sigma cat. no. SRP3156), and 1% FBS) at 37 °C for 0, 4, and 7 days.

Western Blotting (WB) Analysis

Cells treated with DALNs, ChLNs, NSs, and ALCs differentiation medium for 0, 4, and 7 days were detached with 0.25% trypsin and lysed in 50 mM Tris–HCl, pH 8.0, with 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), and 0.1% sodium dodecyl sulfate and a protease inhibitor cocktail (Sigma-Aldrich). All lysates were (quantified with the bicinchoninic acid assay; Thermo Scientific cat. no. SRP3156) and 30 μg of proteins were loaded onto 12% electrophoresis gels and transferred onto nitrocellulose membranes (Hybond-ECL, Amersham Biosciences) at 270 mA for 90 min using an electrophoretic transfer system (BIO-RAD). The membranes were incubated overnight at 4 °C with monoclonal/polyclonal antibodies against sex-determining region Y-box 2 (SOX2 cat. no. PA1-094, Thermo), anti-Nestin (Thermo, cat. no. MA1 5841), dopamine transporter (DAT cat. no. PA1-4656), tyrosine hydroxylase (TH, cat. no. AB152, Millipore), glial fibrillary acidic protein (GFAP, cat. no. sc6170, Santa Cruz), SI00β (cat. no. 676604, Biolegend), β-tubulin III (β-TUB III cat. no. G712A, Promega), microtubule-associated protein 2 (MAP2, MA1-25044, Invitrogen), Neurofilament-L (NF-L, cat. no. 125044, Thermo), vesicular acetylcholine transporter (VACHT, cat. no. SAB4200559, Sigma-Aldrich), and choline acetyltransferase (ChAT, cat. no. AB144P, Millipore) primary antibodies (1:5000). Anti-actin antibody (cat. no. MAB1501, Millipore; 1:1000) was used as expression control. Secondary infrared antibodies (goat anti-rabbit IRDye® 680RD, cat. no. 926-68071; donkey anti-goat IRDye® 680RD, cat. no. 926-68074; and goat anti-mouse IRDye® 800CW, cat. no. 926-32270; LICORBiosciences) 1:1000 was used for Western blotting analysis and data were acquired by using Odyssey software.

Immunofluorescence (IMF) Analysis

For immunofluorescence analysis of neural and astrocytes markers, cells treated with MCm, NeuroForsk, Gibco® Astrocyte Medium [15–17] or Ch–N-Rm medium for 0, 4, and 7 days and Neurospheres Fast medium for 0, 24, and 72 h were fixed with paraformaldehyde for 20 min, followed by Triton X-100 (0.1%) permeabilization and 5% bovine serum albumin (BSA) blockage. Cells were then incubated overnight with primary antibodies against DAT, TH, GFAP, S100β, β-TUB III, MAP2, NFL, VACHT, and ChAT proteins (1:500). After exhaustive rinsing, we incubated the cells with secondary fluorescent antibodies (DyLight 488 and 595 donkey anti-rabbit, -goat, and -mouse, Cat DI 2488 and DI 1094, respectively) 1:50. The nuclei were stained with Hoechst 33342 (1 μM, life technologies) and images were acquired on a Floyd Cells Imaging Station microscope. Imaging processing data for further statistical analysis were gathered by ImageJ software (http://imagej.nih.gov/ij/). The figures were transformed into 8-bit images and the background was subtracted. The cellular measurement regions of interest (ROI $n = 7$ from three different experiments) were drawn around nuclear or over all cells (for cytoplasmic probes) and the fluorescence intensity was subsequently determined applying the same threshold. For mean fluorescence intensity (MFI) was obtained by normalizing total fluorescence to the number of nuclei.

Flow Cytometry (FC) Analysis of Astrocytic, Dopaminergic, and Cholinergic Markers

Flow cytometry acquisition was used to determine the percentage of GFAP/S100β, DAT/TH, and ChAT/VACHT double-positive cells, according to previous reports [18–20].
Cells treated with MCm, NeuroForsk, astrocyte, or Ch–N-Rm medium at days 0, 4, and 7 were detached with 0.25% trypsin–EDTA 1 mM and fixed in suspension with paraformaldehyde (overnight). After washing, cells were simultaneously incubated with GFAP, S100β, DAT, TH, ChAT, and VACHT primary antibodies (1:500) at 4 °C overnight. Cell suspensions were washed and incubated with DyeLight 594 donkey anti-goat and DyeLight 488 donkey anti-rabbit antibodies (1:500). Finally, cells were washed and re-suspended in PBS for analysis on a Canto cytometer (Beckman Coulter). Ten thousand events were acquired and the acquisition analysis was performed using FlowJo 7.6.2 Data Analysis Software. Positive staining was defined as the fluorescence emission that exceeded levels of the population stained with the negative control (only secondary antibodies staining).

Intracellular Calcium Imaging

The cytoplasmic Ca²⁺ concentration ([Ca²⁺]ᵢ) was measured. Briefly, DALNs, ChLNs, and ALCs cultured in NeuroForsk, Ch–N-Rm, and Astrocyte medium respectively for 0, 4, and 7 days were transferred to a bath solution (NBS; in mM: 137 NaCl, 5 KCl, 2.5 CaCl₂, 1 MgCl₂, 10 HEPES, pH 7.3, and 22 glucose) containing a Ca²⁺ sensitive indicator (2 μM Fluo3-AM, an acetoxymethyl ester form of the fluorescent 2-μM Ca²⁺-related fluorescence transients were expressed relative to the resting fluorescence (ΔF/F₁) and were calculated by the formula ΔF/F₁=(Fₘₐₓ−F₉₀)/(F₉₀−F_bg) according to ref. [21]. The Image J program (https://imagej.net/) was used for the calculation of the fluorescence intensities as previously published in refs. [11, 12].

Data Analysis

Statistical analyses were conducted using the Student t analysis or one-way ANOVA followed by Bonferroni post hoc comparison calculated with the GraphPad Prism 6 Scientific Software (GraphPad, Software, Inc. La Jolla, CA, U.S.A.). Statistical significance was accepted at *p < 0.05, **p < 0.01, and ***p < 0.001.

Results

Characterization of MenSCs

We first cultured and characterized the morphological, karyotype, immuno-phenotypic features, and differentiation capabilities of MenSCs. Complying with the International Society for Cellular Therapy (ISCT) MSCs criteria [1, 2], MenSCs displayed the typical colony-forming units (Fig. 1A), adherent growth, and fibroblast-like cellular morphology (Fig. 1B). Karyotype analysis showed no chromosomal alterations (Fig. 1C). Flow cytometry analysis showed that MenSCs were positive (> 95% of positive cells) for mesenchymal-associated markers CD73, CD90, and CD9 (Fig. 1D) but negative (< 5% of positive cells) for hematopoietic cell surface antigens CD34/CD45. Likewise, MenSCs cultured in osteogenic, adipogenic, or chondrogenic induction medium differentiated into osteoblasts (Fig. 1F), adipocytes (Fig. 1H), and chondrocytes (Fig. 1J), respectively, while MenSCs cultured in regular culture medium were undifferentiated (Fig. 1E, G, I).

Next, we wanted to evaluate the presence of neural and astrocyte-associated molecules in MenSCs under in minimal culture medium (MCm). Analysis of protein expression by Western blotting showed a basal level of NFL (Fig. 2A, B), β-TUB III (Fig. 2A, C), GFAP (Fig. 2A, D), S100β (Fig. 2A, E), ChAT (Fig. 2A, F), and TH (Fig. 2A, G) proteins in MenSCs culture in MCm at days 0, 4, and 7. Similar observations were found in those cells on day 7 assessed by immunofluorescent microscopy (IFM, Fig. 2H–J).

In Vitro Transdifferentiation of MenSCs into Dopaminergic-Like Neurons (DALNs) Involves the Upregulation of Specific Neural and Dopaminergic Proteins

To assess the ability of MenSCs to transdifferentiate into DALNs, MSCs were cultured with NeuroForsk medium for 4 or 7 days [14]. Figure 3 shows a statistically significant increase in the expression level of protein β-TUB III (~ 0.5 and ~0.6 f.i., Fig. 3A, D), TH (~1.0 and ~1.4 f.i., Fig. 3A, F), and DAT (~2.0 and ~1.0 f.i., Fig. 3A, G) but protein expression dramatically decreased in GFAP (~0.5 and ~0.2 f.d., Fig. 3A, E) as determined by WB assay and IFM analysis (e.g., β-TUB III Fig. 3N, T, TH/DAT Fig. 3Q, V and W). Whereas the expression level of protein NFL (Fig. 3A, B, F’–K’) and MAP2 (Fig. 3C, I’–K”) is unaffected by the NeuroForsk medium, the GFAP protein is significantly diminished (Fig. 3A, E, L’–N’). Remarkably, the expression level of protein VChAT increased (~1.5 and ~1.4 f.i., Fig. 3A, H) on days 4 and 7.

To further confirm the dopaminergic lineage of MenSC-induced DALNs, we analyzed TH and DAT double staining. As shown in Fig. 4, flow cytometry (FC) analysis shows a statistically significant increase in the percentage of TH/DAT expressing cells at day 4 (~14%) and 7 (~26%) of cell-cultured in NeuroForsk medium compared to MenSCs at day 0 (~8%, Fig. 4A, B). We found no statistical difference
Fig. 1 Characterization of MenSCs. (A) Representative images showing the colony-forming units; (B) adherent growth and fibroblast-like morphology typical of MenSCs. (C) Karyotype analysis performed at passage 2 showing chromosomal normality (46XX). (D) Flow cytometry analyses showing the percentage of double-positive CD9/CD73/CD90/CD34 and CD45 MenSCs. (E) Von Kossa negatively stained undifferentiated MenSCs grown on a regular culture medium. (F) Von Kossa positively stained osteoblasts differentiated from MenSCs showing silver intracellular precipitates. (G) Oil-Red-O negatively stained undifferentiated MenSCs grown on regular culture medium. (H) Oil-Red-O positively stained adipocytes differentiated from MenSCs showing intracellular red lipidic vacuoles. (I) Toluidine blue negatively stained undifferentiated MenSCs grown on regular culture medium. (J) Toluidine blue positively stained chondrocytes differentiated from MenSCs showing extracellular glycoprotein matrix. The images represent 1 out of 3 independent experiments.
Dopamine Triggers Intracellular Ca\(^{2+}\) Accumulation in MenSC-Derived DALNs

Based on the significant increase of dopaminergic cellular populations in MenSCs exposed to the NeuroForsk medium, we evaluated the functional response of DALNs under a dopamine stimulus. Therefore, the cytoplasmic Ca\(^{2+}\) accumulation in DALNs was evaluated with Fluo-3-mediated Ca\(^{2+}\) imaging. While DALNs were unaffected by dopamine at day 0, dopamine-induced a transient intracellular Ca\(^{2+}\) elevation at days 4 and 7 (Fig. 4C, D) under the same experimental conditions. Furthermore, the maximal fluorescence change (ΔF/F) at day 4 was 0.75 ± 0.05-fold after 10 s of dopamine exposure compared to cells at day 0 (p < 0.05), whereas the maximal ΔF/F at day 7 was 0.25 ± 0.2-fold after 20 s of dopamine addition (p < 0.05) and it remains stable until the 50 s (Fig. 4D).

In Vitro Transdifferentiation of MenSCs Into Cholinergic-Like Neurons (ChLNs) Involves the Upregulation of Specific Neural and Cholinergic Proteins

To determine whether MenSCs transdifferentiated into ChLNs, we determined the expression of several molecules associated with neural differentiation in cells treated with Cholinergic-N-Run medium after 0, 4, and 7 days of incubation. Western blot analysis revealed that the MenSCs at day 0 expressed basal level of protein NFL (Fig. 5A, B), MAP2 (Fig. 5A, C), β-TUB III (Fig. 5A, D), GFAP (Fig. 5A, E), TH (Fig. 5A, F), ChAT (Fig. 5A, G), and VAChT (Fig. 5A, H). Interestingly, when the cells were exposed to Cholinergic-N-Run medium for 4 and 7 days, they significantly increased the levels of NFL (~1.3 and ~1.4 f.i., Fig. 5B), ChAT (~1.5 and ~1.6 f.i., Fig. 5G), and VAChT (~2.2 and ~2.5 f.i., Fig. 5H), while they retained a basal and stable expression of protein MAP2 and β-TUB III (Fig. 5C, D). However, we found the expression level of protein GFAP (~0.9 and ~0.5 f.r., Fig. 5E) and TH (~0.7 and ~0.7 f.r., Fig. 5F) reduced after 4 and 7 days of incubation with the differentiation medium. Similar results were obtained by immunofluorescence analyses (Fig. 5I–W).

Since the choline acetyltransferase (ChAT) enzyme and vesicular acetylcholine transporter (VAChT) protein are specific cholinergic cell lineage markers [22, 23], we wanted to confirm whether the MenSCs transdifferentiated into ChLNs simultaneously expressed ChAT and VAChT. Accordingly, we establish the percentage of MenSCs derived ChLNs with Cholinergic-N-Run medium and we assessed the proportion (%) of ChAT/VAChT immunopositive neurons after the cholinergic induction. Flow cytometry analysis shows a statistically significant increase in the percentage of ChAT/VAChT expressing cells at day 4 (~39%) and day 7 (~46%).

(p < 0.05) in the level of double expression of TH/DAT in DALNs at 4 and 7 days of culture.
of culture exposure compared to MenSCs at day 0 (~28%) (Fig. 6A, B). We found no statistical difference ($p < 0.05$) in the level of double expression of ChAT/VAChT in ChLN at 4 and 7 days of culture.

Acetylcholine Triggers Intracellular Ca$^{2+}$ Accumulation in MenSC-Derived ChLNs

The above findings encouraged us to evaluate the response of ChLN cells to acetylcholine in Cholinergic-N-Run medium. Therefore, the cytoplasmatic Ca$^{2+}$ accumulation in ChLN was evaluated with Fluo-3-mediated Ca$^{2+}$ imaging. While ChLN were unaffected by ACh at day 0 of Cholinergic-N-Run medium culture, ACh induced a transient intracellular Ca$^{2+}$ elevation at day 4 and day 7 (Fig. 6C, D) under the same experimental conditions. Furthermore, the maximal fluorescence change ($\Delta F/F$) at day 4 was 6.14 ± 1.5-fold and the maximal $\Delta F/F$ at day 7 was 5.57 ± 1.2-fold after 10-s ACh exposure compared to cells at day 0 ($p < 0.05$, Fig. 6D).

Transdifferentiation of MenSCs into Astrocyte-Like Cells (ALCs) Involves the Upregulation of Specific Glial Proteins

The transdifferentiation of MenSCs into astrocytes was evaluated after 0, 4, and 7 days of incubation with astrocyte medium®. As shown in Fig. 7, MenSC-derived ALCs express statistically significant increased expression level of S100β (e.g., ~1.2 f.i., Fig. 7A, C) and GFAP (~0.8 and ~0.6 f.i., ~1.2 f.i., Fig. 7A, C) and GFAP (~0.8 and ~0.6 f.i., ~1.2 f.i., Fig. 7A, C).
Fig. 7A, D) proteins cultured for 4 and 7 days compared to levels of expression protein of cells cultured at day 0 (Fig. 7C, D). Western blotting analysis shows that MenSC-derived ALCs express almost basal level of protein NFL (Fig. 7A, E) and β-TUB III (Fig. 7A, F). Similar results were obtained by IMF analyses (Fig. 7G–P). Since GFAP is the gold standard marker to identify astrocytes and S100β indicates a mature stage of astrocytes, we evaluate those markers in the MenSC-derived ALC population. Accordingly, FC analysis shows a statistically significant increase in GFAP/S100β double-positive cells in ALCs at day 4 (~25%) and 7 (~59%) of culture compared to cells cultured at day 0 (Fig. 8A, B).

Glutamate Triggers Intracellular Ca²⁺ Accumulation in ALCs

Intracellular astrocyte calcium signaling is triggered by multiple factors, including glutamate at the synaptic cleft, which stimulates G protein-coupled receptors on the membrane, leading to the production of IP3. IP3 activates IP3R2 receptors on the endoplasmic reticulum (ER), resulting in intracellular calcium release and subsequent exocytosis [24]. Therefore, the cytoplasmic Ca²⁺ accumulation in ALCs was evaluated with Fluo-3-mediated Ca²⁺ imaging. While ALCs were unaffected by glutamate at day 0 of Astrocyte medium culture, glutamate-induced a transient intracellular Ca²⁺ elevation at day 4 and day 7 (Fig. 8C, D) under the same experimental conditions. Furthermore, the maximal fluorescence change (ΔF/F) at day 4 was 0.10 ± 0.05-fold after 120 s of glutamate exposure compared to cells at day 0 (p < 0.05), whereas the maximal ΔF/F at day 7 was 0.50 ± 0.2-fold after 240 s of glutamine addition (p < 0.05) and decline slowly.
In Vitro Transdifferentiation of MenSCs into Neurospheres/Spheroids

To determine whether MenSCs transdifferentiate into NSs, we initially determined the morphology and the presence of molecules associated with NSs formation in cells treated with Fast-N-Spheres medium after 0, 1, and 3 days of incubation according to a previous report [11]. As shown in Fig. 9, MenSCs cultured with this specific medium display the typical morphology of NSs as early as 1 day and formed large NSs at 3 days when compared to 0 days of incubation. Interestingly, both the MenSCs (0 days) and the formed NSs (at 1 or 3 days) expressed high levels of SOX2 and NESTIN proteins according to Western blot analysis (Fig. 9A–C). These results were confirmed by IMF analysis (Fig. 9D–K).

Next, we wanted to investigate whether large NSs expressed broad (β-TUB III) and specific (TH; ChAT) neural and astrocytic proteins (GFAP). According to Western blot analysis, after 3 days of incubation with Fast-N-Spheres medium, NSs significantly increased the expression level of GFAP (Fig. 9L, M). TH (~1.2 f.i., Fig. 9L, N), ChAT (~1.2 f.i., Fig. 9L, O), and β-TUB III (~1.3 f.i., Fig. 9L, O) protein compared to cells at 0 days of incubation. These results were also confirmed by IMF analysis (Fig. 9Q–X).

Fig. 5 Western blot and immunofluorescence analysis of Cholinergic-like differentiation of MenSCs. MenSCs were cultured in Ch–N-Rm as described in the Materials and Methods section for 0, 4, and 7 days. After this time, the proteins in the extracts were blotted with primary antibodies against NFL, MAP2, β-TUB III, GFAP, TH, ChAT, VACHT, and actin proteins. The intensities of the Western blot bands shown in (A) were measured (B, C, D, E, F, G, and H) by an infrared imaging system (Odyssey, LI-COR), and the intensity was normalized to that of actin. (I–Q) Cells were double-stained as indicated in the figure with primary antibodies against MAP2 (green; I″–K″) and NFL (red; I‘–K‘); β-TUB III (green; L″–N″) and GFAP (red; L‘–N‘); or ChAT (green; O″–Q″) and VACHT (red; O‘–Q‘). The nuclei are stained with Hoechst 33,342 (blue; I″–Q″). (R–W) Mean fluorescence intensity (MFI) quantification of images obtained by immunofluorescence analysis. The blots and figures represent 1 out of 3 independent experiments. One-way ANOVA, post hoc test Bonferroni. Data are presented as mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001)
Discussion

The stromal cell-based disease model provides a platform for a better understanding of human neurodegenerative disease mechanisms (e.g., [25]) and the potential discovery of innovative therapeutics (e.g., [26]). As primary human neurons from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human neurons which allows modeling of neurodegeneration in vitro. Therefore, optimal cell culture conditions and timing are critical for experimental success. Recently, our laboratory has developed three original culture media known as NeuroForsk, Cholinergic-N-Run, and Fast-N-Spheres media to obtain dopaminergic-like (DALNs), cholinergic-like (ChLNs) neurons, and neurospheres (NSs) from UC-WJ-MSCs [11, 12]. By using those culture media, which seems more efficient compared to the already used protocol in developing neural-like cells, we have successfully transdifferentiated MenSCs into functional DALNs, ChLNs, and NSs in 4–7 days of cell culture. Likewise, by using a commercial culture media (e.g., Astrocyte media®), we also obtained functional astrocyte-like cells (ALCs) in a similar time frame (i.e., 4–7 days). Also, MenSCs can differentiate into various mesoderm cell lineages, such as adipocyte (this work), chondrocytes [27], and osteocytes [28, 29] comparable to MSCs obtained from several tissue sources, including perinatal (e.g., WJ-MSCs [30, 31]), bone marrow, adipocyte, dental pulp, and human efflux (e.g., MenSCs [7, 10]), among others. Furthermore, naïve MenSCs (day 0) express basal protein levels of neuronal markers NFL, β-TUB III, TH, DAT, ChAT, VACHt, and MAP2. In contrast to Azedi et al., 2014 [9], we found that MenSCs express GFAP. Moreover, the expression of S100β protein confirms that MenSCs are primed to display glial-specific

![Fig. 6](image_url) ChAT and VACHt percentage expression and acetylcholine (ACh) upregulation of cytoplasmic Ca²⁺ concentration in MenSCs differentiated into Cholinergic-like cells. MenSCs were cultured in Ch–N-Rm as described in the Materials and Methods section for 0, 4, and 7 days. Representative density plot figures showing the ChAT/ VACHt double-positive population of Ch–N-Rm cultured MenSCs at day 0, 4, and 7 (A). (B) Percentage of ChAT/VACHt double-positive cells. (C) Time-lapse images (0, 10, 20, 30, and 40 s) of Ca²⁺ fluorescence in differentiating MenSC at days 0, 4, and 7 (n = 30 cells imaged, N=3 dishes) as a response to ACh treatment. ACh was puffed into the culture at 0 s (arrow). Then, the Ca²⁺ fluorescence of cells was monitored at indicated times. Color contrast indicates fluorescence intensity: dark blue < light blue < green < yellow < red. (D) Normalized mean fluorescence signal (ΔF/F) over time, indicating temporal cytoplasmic Ca²⁺ elevation in response to ACh treatment. One-way ANOVA, post hoc test Bonferroni. Data are presented as mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001)
lineage markers. Differential experimental procedures might explain those divergent results. Taken together, these observations suggest that not only MenSCs differentiate in mesoderm lineages, but also express neuronal precursors typical of ectoderm lineages (i.e., neural lineage). These cellular features together with the fact that MenSCs have no ethical concerns, are easily recovering from women, are inexpensive and time-saving, and make MenSCs ideal for disease modeling.

We report for the first time that MenSCs can transdifferentiate into DALNs (~26%) cultured in NeuroForsk media for 7 days. Three observations support these findings. First, transdifferentiated DALNs expressed high levels of specific dopaminergic lineage markers TH—the enzyme necessary for the dopamine production from its precursor L-tyrosine—and DAT—a dopamine transporter plasma membrane glycoprotein, as well as expressed high levels of neuronal-specific protein markers NFL, MAP2, and β-TUB III. Both DAT and TH expression identifies bona fide dopaminergic neurons to that of actin. (G-L) Cells were double-stained as indicated in the figure with primary antibodies against S100 β (green; G”–I” and GFAP (red; G’–I’); β-TUB III (green; J”–L”) and NFL (red; J’–L’). The nuclei were stained with Hoechst 33,342 (blue; G”’–L”’). (M–P) mean fluorescence intensity (MFI) quantification of images obtained by immunofluorescence analysis. One-way ANOVA, post hoc test Bonferroni. Data are presented as mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001)
Dopaminergic neurons display an increase of dopaminergic receptors that are linked to synaptogenesis processes and Ca\(^{2+}\) influx [34]. Here, we also report for the first time that MenSCs transdifferentiate into ChLNs in 4–7 days. Effectively, MenSC-derived ChLNs significantly express cholinergic markers ChAT—the enzyme that catalyzes the biosynthesis of ACh [35]—and VACHT—the ACh neurotransmitter transporter [22], two unique markers for cholinergic neurons according to WB, IMF, and FC analysis. In agreement with others, who have demonstrated that MSCs from dental pulp [36], adipose tissue [37], and UC-WJ [12] can transdifferentiate into ChNs/ChLNs, we show that MenSCs readily transdifferentiated into functional ChLNs. Similar to UC-WJ-MSC-derived ChLNs [12], the MenSC-derived ChLNs are responsive to ACh stimuli on days 4 and 7. Interestingly, although naïve MenSCs express both cholinergic ChAT/VACHT and ACh receptors [38], they are unresponsive to ACh at day 0, 4, and 7 (n = 30 cells imaged, N = 3 dishes) as a response to glutamate treatment. Glutamate was puffed into the culture at 0 s (arrow). Then, Ca\(^{2+}\) fluorescence of cells was monitored at indicated times. Color contrast indicates fluorescence intensity: dark blue < light blue < green < yellow < red. (D) Normalized mean fluorescence signal (ΔF/F) over time, indicating temporal cytoplasmatic Ca\(^{2+}\) elevation in response to glutamate treatment. One-way ANOVA, post hoc test Bonferroni. Data are presented as mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001).

These observations suggest that the presence/expression of cholinergic markers in undifferentiated MenSCs (i.e., ChAT/VACHT/AChRs) is not yet functional indicating a cellular immature state that necessitates an adequate micro-environmental stimulus, as provided by Cholinergic-N-Run media, to express functional (responsive) AChRs [39]. Interestingly, ChLNs maintained the expression of general neural lineage markers (e.g., NFL, β-TUB III) whereas other specific cell lineages markers diminished (e.g., GFAP, TH) at day 7 of transdifferentiating. Therefore, we conclude that MenSC-derived ChLNs are mature neural cells obtained timelessly. In contrast to Mendivil-Perez and co-workers [12], who reported that MSCs from WJ-MSCs generated ~76% ChLNs according to double ChAT/VACHT analysis, we found that under similar experimental conditions, MenSCs derived from MenB produced ~46% ChLNs, a much less percentage yield when compared to WJ-MSC-derived ChLNs (i.e., ~40% reduction). These observations suggest that

[Fig. 8] GFAP and S100β percentage expression glutamate upregulation of cytoplasmic Ca\(^{2+}\) concentration in MenSCs differentiated into Astrocyte-like cells. MenSCs were cultured in Astrocyte medium as described in the Materials and Methods section for 0, 4, and 7 days. Representative density plot figures showing the GFAP/S100 β double-positive population of Astrocyte medium cultured MenSCs at day 0, 4, and 7 (A). (B) Percentage of GFAP/S100 β double-positive cells. (C) Time-lapse images (0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 s) of Ca\(^{2+}\) fluorescence in differentiating MenSC at days 0, 4, and 7 (n = 30 cells imaged, N = 3 dishes) as a response to glutamate treatment. Glutamate was puffed into the culture at 0 s (arrow). Then, Ca\(^{2+}\) fluorescence of cells was monitored at indicated times. Color contrast indicates fluorescence intensity: dark blue < light blue < green < yellow < red. (D) Normalized mean fluorescence signal (ΔF/F) over time, indicating temporal cytoplasmatic Ca\(^{2+}\) elevation in response to glutamate treatment. One-way ANOVA, post hoc test Bonferroni. Data are presented as mean ± SD (*p < 0.05; **p < 0.01; ***p < 0.001).
MSCs from UC are more efficient to produce ChLNs than MenSCs derived from MenB. However, MenSC-derived ChLNs responded faster to ACh stimulus (maximal (ΔF/F) cytoplasmic (Ca²⁺) elevation at day 7 after 10 s) than WJ-MSC-derived ChLNs (maximal (ΔF/F) cytoplasmic (Ca²⁺) elevation at day 7 after 40 s). Despite these, both derived ChLNs responded almost 100% to ACh. Therefore, MenSCs are suitable for pharmacological studies.

Astrocytes are specialized glial cells of the central nervous system that play essential roles in the maintenance, metabolism, and immune response and assistance of neuronal cells in the brain [40–42]. Therefore, astrocytes are deeply implicated in the neuropathology of neurodegenerative disorders [43]. We confirm that MenSCs transdifferentiate into glial cells [9]. Specifically, we report for the first time that MenSC-derived astrocyte-like cells (ALCs) are obtained in 7 days of culture in Astrocyte medium®. As expected, ALCs expressed high expression levels of protein GFAP—uniquely found in astrocytes [44] and S100β [45]—according to WB, FC, and IMF assays. Interestingly, the expression of β-TUB and NFL in ALCs were not affected by cultural conditions. Given that β-TUB is constitutively co-expressed with GFAP in midgestational human fetal astrocytes [46] and astrocyte in culture [47], it is not surprising that we detect β-TUB and NFL—two specific neuronal markers in ALCs. These observations suggest that the expression of β-TUB, NFL, and NESTIN [46] in ALCs is a common feature with neuronal cells.

Although the commercial Astrocyte medium® is regularly used to support the growth and maintenance of primary human astrocytes (https://www.thermofisher.com/order/catalog/product/A1261301#/A1261301), we found that it can be used for the transdifferentiation of MenSCs into ALCs in 7 days of culture (59% GFAP+/S100β+). This is a fast, direct, economical, and time-saving protocol for the obtention of ALCs. Furthermore, ALCs tested at days 4 and 7 but not at day 3.
day 0 were responsive to GLUT stimulus (Fig. 8). We conclude that ALCs represent functional glial cells.

Neurospheres (NSs) are 3D structures composed of free-floating conglomerates of neural progenitor cells (NPCs) derived from either isolated primary tissue (e.g., embryonic tissue) or from induced pluripotent stem cells (iPSCs) and grown for limited periods. Therefore, NSs provide an unmatched platform to evaluate the stem-/stromal-cell-like behavior of neurogenic tissue and can be used in a variety of in vitro experiments to delineate the molecular and cellular characteristics of neuronal cells for in vivo transplantation in neurodegenerative disorders (e.g., [48]). We have reported a fast and easy method to obtain NSs from UC-MSCs in 24 h by using the Fast-N-Spheres medium [11]. Under similar experimental conditions, we have been able to transdifferentiate MenSCs into NSs phenotypically similar to MSC-derived NSs. However, while the MenSC-derived NSs were NESTIN- and SOX-2-positive—a key transcription factor in the regulation of pluripotency and neural differentiation [49]—the MSC-derived NSs were NESTIN-positive but SOX-2-negative [11]. These observations suggest that NSs derived from MenB conserved those specific markers similar to those observed in NSs from neurogenic niches in cerebral tissue [50]. Therefore, MenSC-derived NSs are a more reliable 3D cellular source for neurodevelopmental studies. Moreover, in agreement with previous data [8], the MenSC-derived NSs cultured for 3 days significantly increased the expression of neuronal (e.g., β-TUB III) as well astrocytic (e.g., GFAP) markers. We report for the first time that MenSC-derived NSs also express the specific neuronal lineage dopaminergic marker TH and cholinergic marker ChAT. Taken together, these results suggest that MenSC-derived NSs can highly regulate tri-neuronal lineage proteins typical of the dopaminergic, cholinergic, and glial neuronal cells, which might represent an excellent strategy not only to studying the tissular pathology of AD and PD but also to be used as starting material for the development of more complex structures such as organoids [51]. Therefore, as depicted in Fig. 10, MenSCs are a unique and reliable biological source for derivation of the most important neural cells such as dopaminergic, cholinergic, and astrocytic neuronal cells implicated in neurodegeneration (e.g., Alzheimer’s and Parkinson’s diseases).

Acknowledgements This work was supported by MinCiencias (grant no. 1115-807-62912, contract no. 749-2018).

Author Contribution DQ-E, VS-M, CQ-Q, and MM-P performed MenSC-derived dopaminergic, cholinergic, astrocytic, and neurospheres in vitro experiments, respectively. All performed in vitro data analysis and wrote the first draft. MJdeR/CV-P conceived the in vitro

Fig. 10 Human menstrual blood–derived mesenchymal stromal cells (MenSCs) readily transdifferentiate into functional dopaminergic-, cholinergic-, and astrocytic-like neuronal lineages and in neurospheres under specific in vitro culture conditions
experiments, contributed with reagents, data analysis, wrote, reviewed, and edited the paper. All authors read and approved the final version of the paper.

Funding Q-D-E and VS-M are doctoral students and CQ-Q is a master’s student from the Neuroscience Study Program at the Basic Biomedical Sciences Academic Corporation, UdA. MM-P is an associated researcher (contract no. 749–2018). Q-D-E is funded by the Committee for Development and Research (CODI-UdeA) (grant no. 2017–15829). VS-M is funded by the 2019 Bicentennial Doctoral Excellence Scholarship, MinCiencias-Colombia. CQ-Q is funded by the Young Research Award Program from MinCiencias (grant no. 111580762912).

Availability of Data and Material All datasets generated for this study are included in the manuscript.

Declarations

Ethics Approval Menstrual specimen donors provided a signed informed consent approved by the ethics committee of the Sede de Investigación Universitaria (SIU), University of Antioquia, Medellín, Colombia (act 2020-10854).

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317
2. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, Nolta J, Punney DG et al (2019) Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy 21(10):1019–1024
3. Staff NP, Jones DT, Singer W (2019) Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc 94(5):892–905
4. Choudhary P, Gupta A, Singh S (2020) Therapeutic advancement in neuronal transdifferentiation of mesenchymal stromal cells for neurological disorders. J Mol Neurosci 71:889–90
5. Shariati A, Nemati R, Sadeghipour Y, Yaghoubi Y, Baghbani R, Javidi K, Zamani H, Hassanzadeh A (2020) Mesenchymal stromal cells (MSCs) for neurodegenerative disease: a promising frontier. Eur J Cell Biol 99(6):151097
6. Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C (2018) Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer’s disease-like pathology in APP/PS1 transgenic mice. Front Mol Neurosci 11:140
7. Chen L, Qu J, Cheng T, Chen X, Xiang C (2019) Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Res Ther 10(1):406
8. Azedi F, Kazemnejad S, Zarnani AH, Soleimani M, Shojaei A, Arasteh S (2017) Comparative capability of menstrual blood versus bone marrow derived stem cells in neural differentiation. Mol Biol Rep 44(1):169–182
9. Azedi F, Kazemnejad S, Zarnani AH, Behzadi G, Vasei M, Khanmohammadi M, Khajani S, Edalatkhah H et al (2014) Differentiation potential of menstrual blood- versus bone marrow-stem cells into glial-like cells. Cell Biol Int 38(5):615–624
10. Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani A-H, Gargett CE (2020) Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev Biol 8:497
11. Bonilla-Porras AR, Velez-Pardo C, Jimenez-Del-Rio M (2017) Fast transdifferentiation of human Wharton’s jelly mesenchymal stem cells into neuropheres and nerve-like cells. J Neurosci Methods 312:126–138
12. Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2019) Direct transdifferentiation of human Wharton’s jelly mesenchymal stromal cells into cholinergic-like neurons. J Neurosci Methods 312:126–138
13. Liu Y, Niu R, Yang F, Yan Y, Liang S, Sun Y, Shen P, Lin J (2018) Biological characteristics of human menstrual blood-derived endometrial stem cells. J Cell Mol Med 22(3):1627–1639
14. Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2016) Neuroprotective effect of the LRRK2 kinase inhibitor PF-06447475 in human nerve-like differentiated cells exposed to oxidative stress stimuli: implications for Parkinson’s disease. Neurochem Res 41(10):2675–2692
15. Liao Z-Q, Ye M, Yu P-G, Xiao C, Lin F-Y (2016) Glioma-associated oncogene homolog I (Gli1)-Aquaporin1 pathway promotes glioma cell metastasis. BMB Rep 49(7):394–399
16. Mtych J, Lewinska A, Zehrowski J, Wnuk M (2015) Gold nanoparticles promote oxidant-mediated activation of NF-xB and 53BP1 recruitment-based adaptive response in human astrocytes. BioMed Res Int 2015:304575
17. Rao S, Morales AA, Peer D (2015) The comparative utility of viromer RED and lipofectamine for transient gene introduction into glial cells. Biomed Res Int 2015:458624
18. Moghadam SA, Yousefi B, Sanooghi D, Faghihi F, Roodbari NH, Bana N, Joghataei MT, Poonay P et al (2017) Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro. J Chem Neuroanat 86:35–40
19. Tcw J, Wang M, Pimenova AA, Bowles KR, Hartley BJ, Lacin EM, Machlوفي SI, Abdelaal R et al (2017) An Efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Rep 9(2):600–614
20. Fathi A, Mirzaei M, Dolatyar B, Sharifitabar M, Bayat M, Shahbazi E, Javan M et al (2018) Discovery of novel cell surface markers for purification of embryonic dopamine progenitors for transplantation in Parkinson’s disease animal models. Mol Cell Proteomics 17(9):1670–1684
21. Pap P, Kőszeghy Á, Szűcs G, Rusznák Z (2009) Cytoplasmatic Ca(2+) concentration changes evoked by cholinergic stimulation in primary astrocyte cultures prepared from the rat cochlear nucleus. Hear Res 255(1–2):73–83
22. Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAcHT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 387(4):315–317
23. Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49(11):921–937
24. Jones JR, Kong L, Hanna MG, Hoffman B, Krencik R, Bradley R, Hagemann T, Choi J et al (2018) Mutations in GFAP disrupt the distribution and function of organelles in human astrocytes. Cell Rep 25(4):947–958.e4
25. Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Lopera F, Jimenez-Del-Rio M (2020) Cholinergic-like neurons carrying
PSEN1 E280A mutation from familial Alzheimer’s disease reveal intraneuronal sAPPβ fragments accumulation, hyperphosphorylation of Tau, oxidative stress, apoptosis and Ca2+ dysregulation: therapeutic implications. PLoS One 15(5):e0221669

26. Soto-Mercado V, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C (2021) Multi-target effects of the cannabinoid CP55940 on familial Alzheimer’s disease PSEN1 E280A cholinergic-like neurons: role of CB1 receptor. J Alzheimers Dis 82(1):5359–5378

27. Kazemnejad S, Akhondi M-M, Soleimani M, Zarnani AH, Khamohammadi M, Darzi S, Ali moghadam K (2012) Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanotubous scaffold. Int J Artif Organs 35(1):55–66

28. Darzi S, Zarnani AH, Jeddidi-Tehrani M, Entezami K, Mirzadegan E, Mehdi Akhondi M, Talebi S, Khamohammadi M et al (2012) Osteogenic differentiation of stem cells derived from menstrual blood versus bone marrow in the presence of human platelet releasate. Tissue Eng Part A 18(15–16):1720–1728

29. Karadas O, Yucel D, Kenar H, Kose GT, Hasirci V (2014) Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton’s jelly and menstrual blood stem cells. J Tissue Eng Regen Med 8(7):534–545

30. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599

31. Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6(7):1620–1630

32. Lammel S, Steinberg EE, Földy C, Wall NR, Beier K, Luo L, Malenka RC (2015) Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85(2):429–438

33. Singh M, Vaishnav PK, Dinda AK, Mohanty S (2020) Evaluation of priming efficiency of forskolin in tissue-specific human mesenchymal stem cells into dopaminergic neurons: an in vitro comparative study. Cells 9(9):2058

34. Catoni C, Cali T, Brini M (2019) Calcium, dopamine and neuronal calcium sensor 1: a contribution to Parkinson’s disease. Front Mol Neurosci 12:55

35. Deutch A, Roth R (2014) Pharmacology and biochemistry of synaptic transmission: classical transmitters. In: Byrne RHJ, Waxham MN (eds) From molecules to networks: an introduction to cellular and molecular network in neuroscience, 3rd edn. Academic Press, Cambridge, Massachusetts, pp 207–237

36. Kang Y-H, Shivakumar SB, Son Y-B, Bharti D, Jang S-J, Heo K-S, Park W-U, Byun J-H et al (2019) Comparative analysis of three different protocols for cholinergic neuron differentiation in vitro using mesenchymal stem cells from human dental pulp. Anim Cells Syst (Seoul) 23(4):275–287

37. Marei HES, El-Gamal A, Althani A, Afifi N, Abd-Elmaksoud A, Farag A, Cenciarelli C, Thomas C et al (2018) Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells. J Cell Physiol 233(2):936–945

38. Hoogduijn MJ, Cheng A, Genever PG (2009) Functional nicotinic and muscarinic receptors on mesenchymal stem cells. Stem Cells Dev 18(1):103–112

39. Castell X, Cheviron N, Barnier J-V, Diebler M-F (2003) Exploring the regulation of the expression of ChAT and VACHT genes in NG108-15 cells: implication of PKA and PI3K signaling pathways. Neurochem Res 28(3–4):557–564

40. Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222(5):2017–2029

41. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967

42. Diene EL, Rothman DL (2020) Reevaluation of astrocyte-neuron energy metabolism with astrocyte volume fraction correction: impact on cellular glucose oxidation rates, glutamate-glutamine cycle energetics, glycogen levels and utilization rates vs. exercising muscle, and Na. Neurochem Res 45(11):2607–2630

43. Acioglu C, Li L, Elkabes S (2021) Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 1758:147291

44. Yang Z, Wang KK (2015) Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 38(6):364–374

45. Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC (2019) The S100B story: from biomarker to active factor in neural injury. J Neurochem 148(2):168–187

46. Dráberová E, Del Valle L, Gordon J, Marková V, Šmejkalová B, Bertrand L, de Chadarevian J-P, Agamanolis DP et al (2008) Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354

47. Knight VB, Serrano EE (2017) Post-translational tubulin modifications in human astrocyte cultures. Neurochem Res 42(9):2566–2576

48. Wang SS, Jia J, Wang Z (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice. J Alzheimers Dis 61(3):1005–1013

49. Zhang S, Cui W (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 6(3):305–311

50. Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Morais VA, Kapell S (2020) Isolation and expansion of neurospheres from postnatal (P1–3) mouse neurogenic niches. J Vis Exp (159):e60822

51. Watanabe F, Schoeffler A, Fair SR, Hester ME, Fedorko J,IMITOLA J (2021) Generation of neurosphere-derived organoid-like aggregates (NEDAS) from neural stem cells. Curr Protoc 1(2):e15

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.