Introduction

Some arthropods pose serious threats to human and animal health as well as to agriculture. Such threats may be direct, as in the case of agricultural pests, or indirect, as with vectors for disease-causing organisms. Because currently deployed approaches appear to have been ineffective in controlling some arthropods, genetically-based approaches have been increasingly investigated as an alternative route to the control or eradication of arthropod threats [1].

The homing endonuclease (HEG) gene drive system is one proposed genetic strategy [2]. Homing endonucleases differ functionally from the more well-known restriction endonucleases in that they possess longer recognition sequences of 18–22 base pairs in length. When a HEG is integrated into its recognition sequence in the genome, its protein product acts to cleave its cognate site on the homologous chromosome and gene conversion or homologous recombination can result in a new copy of the HEG being inserted. Techniques for engineering HEG target specificity have recently been developed for gene therapy [3,4]. Burt proposed that such methods could be applied to engineer HEGs that recognise and cleave sequences within coding sequences of genes in insect genomes, with the subsequent invasion of these HEGs into a population leading to the inactivation of target genes and the subsequent decline in fitness of the targeted population [2]. In particular, HEG gene drive could be particularly effective if activity was restricted to the male germline to target genes required for female fertility/viability or engineered to destroy the X-chromosome by cutting at multiple X-specific sites [5,6].

Natural homing endonucleases are restricted to fungal genomes and have not been identified in any metazoans to date, thus it is possible that metazoans are inherently refractory to HEG spread. Recently, the spread of HEGs in vivo has been demonstrated experimentally in both Anopheles and Drosophila using the model HEG, I-SceI [7,8]. However, the ease with which efficient homing was achieved in Anopheles was in sharp contrast to the difficulty in establishing homing in Drosophila. In particular, the homologous
recombination activity in the *Drosophila* testis necessary for efficient homing was shown to be restricted to the spermatogonia [8]. In this paper, we describe how improvements in homing performance, on which the HEG gene drive depends, can be achieved. We also investigated the role of 3′-UTR choice, the use of spermatogonially-directed promoters, and the relationship between homing and HEG activity. We investigated factors that could potentially influence HEG drive performance, including genome context and ambient temperature and show that the latter, but not the former, has a strong influence on gene drive performance. While we initially developed the HEG system in *Drosophila* as a model for its use in the malaria mosquito, the increasing importance of controlling more closely related pest species such as *Drosophila suzukii* or the Mediterranean fruit fly *Ceratitis capitata*, suggest the development of more efficient HEG-based homing strategies could be more widely applicable in pest control [9,10].

Methods

Constructs

All genomic coordinates are from Flybase Release 5.46 [11].

Only constructs novel to this work are described here. Earlier constructs are described in [8].

Promoter fragments were chosen such that they extended to and abutted the start codon with the intent of including any upstream translational-regulatory sequences that may modulate expression. The *hogen* promoter used was an 817 bp fragment extending upstream of the start codon (2R:19747036,19746220). The *Red1-r* (CG9573) promoter was a 937 bp fragment extending upstream of the start codon (2L:9014859,9013923). The *bann* 3′-UTR was a 545 bp fragment extending from *bann* into the neighbouring overlapping 3′-end of the CG11854 transcribed region (3R:21069230,21068866). The *vus* 3′-UTR was a 318 bp fragment extending across the stop codon and beyond the end of the transcribed region (2L:15074153,15074470). The *hogen* 3′-UTR used was a 387 bp fragment spanning the entire *hogen* 3′-UTR and part of the *gbb* 3′-UTR (2R:19741086,19740700).

The *Red1-r-K227M-βTub56D* nickase construct was created by mutating I-SceI K227codon in *Red1-r-HEG-2-βTub56D* to encode methionine instead.

Homing Assay

Our homing assay has previously been described in detail [8]. A summary is shown in figure 1.

Both target and donor constructs were inserted into specific attP locations within the *Drosophila* genome using the *φC31* integrase method such that they could be homologously juxtaposed in *vivo* [12,13]. The donor and target constructs were differentiated by the use of linked chromosomal marker(s) (principally *cu*) and/or the presence of the eye colouration conferred by the presence of a functional mini-white marker on donor but not target constructs.

We elected to report the majority of results in terms of the directly observed metrics, GFP loss (fraction of all targets where GFP fluorescence is lost) and homed fraction (fraction of GFP-negative targets repaired *via* homologous recombination), using these as proxies for the fraction of total targets modified by DNA repair and the fraction of modified events attributable to homologous recombination (HR). A discrepancy arises between these measures because while HR invariably results in loss of GFP reporter fluorescence, non-homologous end-joining (NHEJ) repair can lead to in-frame lesions that are GFP-positive. This, in turn, results in the fraction of targets modified by repair being underestimated and the fraction of repaired targets arising from HR being correspondingly overestimated. In the case of pure NHEJ in-frame events constituting a third of all repair events, the GFP loss would be a third lower than the true fraction of targets cleaved and repaired. While NHEJ in-frame lesions can be unambiguously identified by molecular biology, cost and labour constraints precluded its use with the large number of assays performed in this work. It is possible to estimate the number in-frame NHEJ events as a proportion of the number of out-of-frame NHEJ events but the accuracy of these estimates is doubtful. Since we are primarily interested in comparing related homing constructs, we reason that this caveat is of relatively low importance. When comparing the effect of 3′-UTRs on performance, the promoter and consequently the propensity to generate in-frame NHEJ events is unchanged and GFP loss is then a valid proxy for HEG activity. Similarly, when comparing the effect of genome location, the constructs are identical and NHEJ propensity remains fairly similar at the different locations. For constructs with radically different NHEJ propensities, e.g. when comparing *Red1-r* and *Mst87F*-driven constructs, meaningful comparisons of HEG activity are impossible since precise religation dominates in the

Figure 1. Homing assay. In this assay, donor and target constructs were placed at the same *φC31* insertion site on homologous chromosomes (the donor and target chromosomes marked black and blue respectively). The target construct contains a GFP open reading frame (ORF) driven by an eye-specific promoter where the GFP ORF is split with an in-frame homing endonuclease recognition site (represented by adjacent green boxes). Transgenesis bearing an intact target construct therefore exhibit GFP fluorescence in the eye. The donor construct has a homing endonuclease transcription unit is inserted into the HEG recognition site disrupting the GFP ORF and abolishing GFP fluorescence in the eye (loss of fluorescence represented by the GFP ORF being filled in white). Most constructs also include an RFP marker to allow the HEG insert to be tracked. Expression of the HEG in the germline causes cleavage of its recognition site in the target construct and subsequent repair leads to a number of different outcomes that can be differentiated by fluorescence and phenotypic markers as shown in the figure. The donor and target chromosomes are distinguished either with the linked *cu* marker (applicable with males only because of recombination) or a very closely linked mini-white marker within the donor construct (which is applicable to both sexes). It should be noted that NHEJ repair results in loss of GFP fluorescence in approximately two-thirds of cases only. The remaining third of NHEJ lesions can only be distinguished from unmodified targets by PCR and cleavage with I-SceI.

doi:10.1371/journal.pone.0054130.g001
mitotic stages while double-strand break repair is greatly reduced at the later stages of spermatogenesis when NHEJ events appear to dominate [8,14,15]. A lower HEG activity is therefore required to generate a scorable repair lesion late in spermatogenesis than in the spermatogenic cells where HR occurs. Finally, the metric of greatest importance when comparing construct performance in HEG gene drive is the fraction of total targets homed which has the advantage of being directly measurable and immediately relevant.

To ensure comparability, all of the results in Table 1 were obtained with integrants at the attP2 site [12]. Crosses unique to this work presented in this table are:

Table 1. Summary of results of various promoter/3'-UTR combinations for transgenes at attP2.

Promoter	3'-UTR	Construct	GFP loss	Homing fraction	Fraction of targets homed
βTub85D	βTub85D-HEG-1	70% (668/958)	1% (1/94)	<1%	
Mts187F	Mts187F-HEG-1	61% (638/1041)	0% (0/94)	Nil	
Hsp70ab	Hsp70ab-HEG1	26% (78/296)	78% (225/287)	20%	
bam	bam-HEG-1	0% (0/55)	ND²	ND²	
Native 3'-UTR	bam-HEG-2-bam	2.8% (66/2326)	64% (42/66)	1.8%	
βTub56D	βTub56D-2βTub56D	9.1% (357/3910)	69% (245/357)	6.3%	
vas	vas-HEG1	1.9% (7/361)	ND²	ND²	
SV40 early	vas-HEG2-SV40	11% (210/1873)	52% (110/210)	5.9%	
Native 3'-UTR	vas-HEG2-vas	36% (328/911)	48% (157/328)	17%	
βTub56D	βTub56D-2βTub56D	33% (1234/3764)	42% (523/1234)	14%	
ActSC-P (males)	ActSC-P-HEG-1	5.5% (44/793)	34% (15/44)	1.9%	
βTub56D	ActSC-P-HEG-2-βTub56D	53% (671/1272)	38% (252/671)	20%	
ActSC-P (males), 18°C	βTub56D	ActSC-P-HEG-2-βTub56D	19.0% (609/3198)	31.5% (192/609)	6.0%
aly	aly-HEG-1	38% (417/1094)	2% (2/94)	1.8%	
βTub56D	βTub56D-2βTub56D	70% (754/1083)	6.2% (47/754)	4.3%	
bgcn	bgcn-HEG-1	58% (676/1162)	0.3% (1/282)	~0.1%	
βTub56D	βTub56D-2βTub56D	62% (1486/2385)	0.3% (4/1486)	0.2%	
Red-1r	Red-1r-HEG2-βTub56D	65% (642/992)	0.5% (3/642)	0.3%	
Red-1r, 18°C	βTub56D	Red-1r-HEG2-βTub56D	37% (1273/3422)	61% (782/1273)	23%
CG9576	CG9576-HEG2-βTub56D	14% (232/1812)	12% (27/232)	1.7%	

1 previously reported in [8].
2 ND: not done.
doi:10.1371/journal.pone.0054130.t001

The twin transgene cross presented in Table 2 was:

Table 2. The twin transgene cross presented in Table 2 was:

Promoter	3'-UTR	Construct	GFP loss	Homing fraction	Fraction of targets homed
w; attP2{Red-1r-HEG2-2βTub56D}	w; attP2{Red-1r-HEG2-2βTub56D}	70% (754/1083)	6.2% (47/754)	4.3%	
w; attP2{βTub56D-2βTub56D}	w; attP2{βTub56D-2βTub56D}	58% (676/1162)	0.3% (1/282)	~0.1%	
w; attP2{βTub56D-2βTub56D}	w; attP2{βTub56D-2βTub56D}	62% (1486/2385)	0.3% (4/1486)	0.2%	
w; attP2{βTub56D-2βTub56D}	w; attP2{βTub56D-2βTub56D}	65% (642/992)	0.5% (3/642)	0.3%	
w; attP2{βTub56D-2βTub56D}	w; attP2{βTub56D-2βTub56D}	37% (1273/3422)	61% (782/1273)	23%	
w; attP2{βTub56D-2βTub56D}	w; attP2{βTub56D-2βTub56D}	14% (232/1812)	12% (27/232)	1.7%	

Optimising Homing Endonuclease Gene Drive
HEG expression mutating the I-SceI GFP-negative progeny (could be readily distinguished by an anomalously high proportion this, the transheterozygotes were evaluated in single male crosses a difficult procedure and potentially error-prone. To control for further analysis.

Table 2. Homing performance is expression-limited.

Transgene copy number	GFP loss	Home/GFP-	Fraction of targets homed
1 copy	37% (1273/3422)	61% (782/1273)	23%
2 copies	77% (901/1170)	71% (636/901)	54%

1 attP2(Rcd-1r-HEG-2-βTub56D) ;
2 attP40(Rcd-1r-HEG-2-βTub56D) ; attP2(Rcd-1r-HEG-2-βTub56D); attP2(wDarkLime).

doi:10.1371/journal.pone.0054130.t002

doii:10.1371/journal.pone.0054130.t003

HEG expression mutating the I-SceI GPA insertion in the female line to avoid HEG expression mutating the I-SceI GPA target prior to creating the transheterozygote. Scoring for increased GFP fluorescence was a difficult procedure and potentially error-prone. To control for this, the transheterozygotes were evaluated in single male crosses so those involving a transheterozygote hemizygous for wDarkLime could be readily distinguished by an anomalously high proportion of GFP-negative progeny (>50% GFP loss). The observed GFP losses for each of the 42 crosses showed all but one result yielding GFP losses scattered around the average GFP loss of 21% with one well-separated outlier at 60%. That outlier was excluded from further analysis.

Fluorescence Microscopy

Flies were scored for their fluorescence status with a MZ16F microscope (Leica) using the GFP2 and TXR filter sets.

in situ Hybridisation

I-SceI transcripts were detected with a PCR-generated anti-sense probe against a part of the I-SceI GPA coding region using the protocol described in [16]. A sense probe to the same region was used as control. Details of this probeset were previously published in [8].

Results

The 3’-UTR Strongly Influences Level of HEG Expression

Our original HEG-1-based constructs used the Hsp70Ab 3’-UTR derived from the 70I-Soa construct [8,17]. We observed that while this vector yielded high levels of HEG activity with promoters expressing later in spermatogenesis (e.g. aly, βTub85D, Mtd87F), there was little or no activity when used with promoters targeted to the early germline stem cell and spermatogonial stages (i.e. bam, vas) (see Table 1). Other 3’-UTRs were therefore investigated as a means of improving expression.

The vas promoter was chosen because it has small but detectable homing activity with the Hsp70Ab 3’-UTR and it was coupled to several other 3’-UTRs to investigate the impact of 3’-UTR choice on testis HEG activity. These UTRs included the SV40 early intron/3’-UTR combination deployed in the extensively-used pUAST vectors [18], the vas native 3’-UTR and the βTub56D 3’-UTR. The first was selected because it contained an intron and splicing has previously been reported to be required for strong transgene expression in Drosophila [19]. The latter was chosen because βTub56D is known to be expressed at high levels at the early stages of spermatogenesis [20].

From Table 1, it is evident that when coupled with promoters active during early stages of spermatogenesis (bam, vas, Act5C-P), the Hsp70Ab 3’-UTR performed particularly poorly in comparison to the other 3’-UTRs (Hsp70Ab<SV40<vas ∼ βTub56D). In contrast, for promoters driving expression during later stages (aly, bcn), the Hsp70Ab 3’-UTR-mediated activity was only modestly reduced with the aly promoter and approached the βTub56D 3’-UTR in performance with the bcn promoter. While the 3’-UTRs of genes known to be expressed in the testis performed equally well, it was surprising that the popular SV40 early intron/3’-UTR combination only yielded HEG activity at 30% of that observed with the former 3’-UTRs. Since the results showed no notable advantage in using vas native 3’-UTR, we based our subsequent HEG-2 design around the βTub56D 3’-UTR [8].

We also investigated whether native 3’-UTRs raised expression. The original bam promoter-driven transgene with the Hsp70Ab 3’-UTR had negligible HEG activity. When it was coupled with the bam 3’-UTR HEG activity, as expressed by the loss of GFP at the target site, rose to 5% but this was considerably lower than the 9% achieved with the βTub56D 3’-UTR without appreciable change in homing efficiency (Table 1). In the ovary, RBP9 acts to downregulate bam transcripts via sites within the bam 3’-UTR [21]. It is possible that the reduced expression with the bam 3’-UTR may also arise from this mechanism: according to the Spermexpress microarray data RBP9 is expressed in the mitotic cell population of the testis (see below) [22].

Table 3. Genome location and Rcd-1r-HEG-2-βTub56D transgene performance.

Chromosomal band	GFP loss	Homing (as fraction of HEG-negative targets)	Homing (as fraction of all targets)	Nearest genes
2L; 25C6 (attP40)	39% (1467/3733)	58% (846/1467)	23%	Msp-300: ubiquitous
2R; 51D (attP51D)	53% (1541/2884)	71% (1094/1541)	38%	CTR43622, CG33467: male-specific
3L; 68A4 (attP2)	37% (1273/3422)	61% (782/1273)	23%	CGG6310, Mocs: ubiquitous
3R; 86Fb (attP86Fb)	58% (2671/4573)	58% (1538/2671)	34%	Clc: ubiquitous

1 extracted from Table 1.
doi:10.1371/journal.pone.0054130.t003
Identification of Promoters that can Mediate HEG Drive Efficiently

We previously reported that efficient homing in the testis requires HEG expression at the spermatogonial stage [8]. Although large increases in HEG activity as evidenced by GFP loss were secured by the use of the \(\beta \text{Tub56D} \) 3'-UTR, the highest levels of HEG activity did not correlate with similarly high rates of homing (Table 1). Promoters that had the potential to raise spermatogonial expression further were therefore sought.

Genetic evidence indicates that \(bgcn \) is functional in the germline stem cell and during spermatogonial stages of spermatogenesis [23]. While previous workers fused the 2 kb upstream of the \(bgcn \) cDNA/GFP fusion to achieve expression and phenotypic rescue, such a fragment would have extended deep into the neighbouring \(TBPH \) coding region [24]. Instead, we used a 817 bp fragment as the promoter sequence since that extended upstream from the \(bgcn \) start codon and included all intergenic space between \(bgcn \) and \(TBPH \) as well as the entire 3'-UTR of \(TBPH \). However, the homing results we obtained were contrary to our expectations. Although high levels of HEG activity were achieved with the \(Hsp70 \) promoter (21%), both with and without homologous recombination. It was therefore surprising to find that the \(bgcn \) promoter resulted in fourfold more HEG activity (37%) than the \(bam \) promoter (9%) that it was intended to replace. Although GFP loss achieved with \(Rcd-1r \) (37%) was lower than that of the \(Act5C \) promoter/P-intron combination (37%), it combined with a much higher homing fraction (61% vs 38%) resulting in a comparable fraction of total target chromosomes repaired via homing. In situ hybridisation showed that the \(Rcd-1r \) promoter-driven transgene expressed specifically in spermatogonia (see figure 2). This promoter, in combination with the \(\beta \text{Tub56D} \) 3'-UTR, was therefore chosen for our subsequent constructs.

Performance is Expression-limited

The fraction of total targets repaired as homing events is dependent on both the fraction of targets cut by the HEG and the homing fraction, that is, the proportion of events repaired via homologous recombination. It was therefore surprising to find that the fraction of total targets homed with the \(Act5C \) promoter (20%) was lower than that of the \(Rcd-1r \) promoter (23%) and the \(Hsp70 \) promoter (21%) that it was intended to replace. Although GFP loss achieved with \(Rcd-1r \) (37%) was lower than that of the \(Act5C \) promoter/P-intron combination (37%), it combined with a much higher homing fraction (61% vs 38%) resulting in a comparable fraction of total target chromosomes repaired via homing. In situ hybridisation showed that the \(Rcd-1r \) promoter-driven transgene expressed specifically in spermatogonia (see figure 2). This promoter, in combination with the \(\beta \text{Tub56D} \) 3'-UTR, was therefore chosen for our subsequent constructs.

Table 5. Ectopic homing.

Construct	Target class	Donor	Acceptor	GFP loss 1	Homed events
\(\text{vas-HEG-2-}\beta\text{Tub56D} \) 2	Unpaired	attP1 (5SC4)	attP2 (68A4)	29% (302/1057)	5
\(\text{Act5C-P-HEG-2-}\beta\text{Tub56D} \) 2	Unpaired	attP1 (5SC4)	attP2 (68A4)	55% (181/327)	3
\(\text{Rcd-1r-HEG-2-}\beta\text{Tub56D} \)	Unpaired	attP40 (25C6)	attP2 (68A4)	67% (1810/2685)	20
\(\text{Rcd-1r-HEG-2-}\beta\text{Tub56D} \)	Paired	attP40 (25C6)	attP2 (68A4)	21% (628/3011)	21 (10 of 41 crosses)

1 as fraction of all targets. Figures for actual GFP-negative and total target counts follows.

1 previously reported in [8] and included here for ease of comparison.
doi:10.1371/journal.pone.0054130.t005
Previous studies establishing the feasibility of HEG-based gene drive in Diptera indicated that the process was more efficient in...
Anopheles gambiae than in Drosophila melanogaster. In this study, we have shown that homing in Drosophila scales with the level of HEG expression raising the question of whether poor performance relative to Anopheles is solely due to lower expression or is also affected by other constraints. First, unlike Anopheles, Drosophila spermatogenesis proceeds via an achaete-scoropodite mechanism and crossovers are absent from the male germline. We speculate that this has the effect of restricting homologous recombination to the transist-amplifying mitotic spermatogonial stage. In contrast, with Anopheles, HR may still be operational during the early spermatocyte stage prior to the first meiotic division since it mediates crossover events in the germline. The longer period during which HR is available is expected to allow higher rates of homing for a given level of HEG activity.

We have also shown that optimisation of promoter and 3′-UTR choice can raise HEG activity levels very substantially. We were initially surprised that 3′-UTR choice had such a pronounced effect in our homing assays. Even though the Hp70 3′-UTR has been used in a number of Drosophila constructs, there is experimental evidence that it contributes toward Hp70 induction by destabilising its mRNA in the absence of heat stress [30]. However, mRNA destabilisation does not fully explain our observations: our previously described Hp26 promoter-driven HEG construct achieved modest levels of homing (11% homing fraction) when combined with the Hp7007 Ab 3′-UTR under unstressed conditions. One may speculate that this promoter may have the ability to override the destabilising effect of the Hp7007 Ab 3′-UTR, perhaps through stabilising factors bound to the polymerase complex being transferred to the nascent transcript. We also observed that the widely-used SV40 early intron/3′-UTR sequence performed poorly in our assays, consequently its use in constructs where high levels of expression during early stages of spermatogenesis is not recommended. Our current study suggests that the βTub56D 3′-UTR is able to support robust expression in the male germline.

We identified and tested the promoter region from CG9573 as a potentially suitable spermatogonial promoter prior to the identification of the gene as Red-1r [31]. Drosophila melanogaster has three paralogues of Red-1r, related to a regulator of differentiation in yeast. We speculate that Red-1r is a regulator of spermatogonial differentiation and is expected to have a male-sterile phenotype. Indeed, the nearest male-sterile, nsh(2)29F, was originally associated with a P-element insertion, Rcd-1r. We speculate that Rcd-1r is a regulator of spermatogenesis proceeds via an achaete-scoropodite mechanism and crossovers are absent from the male germline. We speculate that this has the effect of restricting homologous recombination to the transist-amplifying mitotic spermatogonial stage. In contrast, with Anopheles, HR may still be operational during the early spermatocyte stage prior to the first meiotic division since it mediates crossover events in the germline. The longer period during which HR is available is expected to allow higher rates of homing for a given level of HEG activity.

We have also shown that optimisation of promoter and 3′-UTR choice can raise HEG activity levels very substantially. We were initially surprised that 3′-UTR choice had such a pronounced effect in our homing assays. Even though the Hp70 3′-UTR has been used in a number of Drosophila constructs, there is experimental evidence that it contributes toward Hp70 induction by destabilising its mRNA in the absence of heat stress [30]. However, mRNA destabilisation does not fully explain our observations: our previously described Hp26 promoter-driven HEG construct achieved modest levels of homing (11% homing fraction) when combined with the Hp7007 Ab 3′-UTR under unstressed conditions. One may speculate that this promoter may have the ability to override the destabilising effect of the Hp7007 Ab 3′-UTR, perhaps through stabilising factors bound to the polymerase complex being transferred to the nascent transcript. We also observed that the widely-used SV40 early intron/3′-UTR sequence performed poorly in our assays, consequently its use in constructs where high levels of expression during early stages of spermatogenesis is not recommended. Our current study suggests that the βTub56D 3′-UTR is able to support robust expression in the male germline.

We identified and tested the promoter region from CG9573 as a potentially suitable spermatogonial promoter prior to the identification of the gene as Red-1r [31]. Drosophila melanogaster has three paralogues of Red-1r, related to a regulator of differentiation in yeast. We speculate that Red-1r is a regulator of spermatogonial differentiation and is expected to have a male-sterile phenotype. Indeed, the nearest male-sterile, nsh(2)29F, was originally associated with a P-element insertion, Red-1r [31], however this association has since been excluded and the location of Red-1r, within 3′UTR region of the overlapping gene CG13102 makes further study of the gene difficult [31].

We were surprised that the bgcn promoter constructs resulted in very low levels of HEG activity during early stages of spermatogenesis but high activity during post-spermatogonial stages. We believe this is most likely due to the loss of distal control elements in the truncated promoter fragment we used or be due to an unanticipated interaction between the bgcn control elements and other elements within our constructs. Since our bgcn fragment includes the entire region between bgcn and its upstream neighbour, TBPH, as well as the entire bgcn 5′-UTR, we expected it would contain all key regulatory sites. bgcn intronic enhancers can be excluded since it is a genomic fragment containing the bgcn 5′ region and a substantial portion of the 3′ end of the adjacent TBPH gene was able to drive a bgcn cDNA to rescue bgcn mutants [17]. Therefore if the apparent low expression level of our bgcn driven HEG is the result of loss of regulatory elements necessary for gonial cell expression, these elements must reside within the TBPH gene or within the bgcn coding region. We note that evidence has been recently advanced to suggest that exonic enhancers are not uncommon [32]. In addition, if post-spermatogonial expression is a natural feature of the promoter, it suggests that bgcn may have further uncharacterised roles during later stages of spermatogenesis that are currently masked by its mutant phenotype at the spermatogonial stage.

The absence of homing associated with the expression of the I-SoI nicking mutant is consistent with previous work showing that HR occurs less frequently when induced by nicks rather than DSBs, presumably because nick repair is rapid [27,28,33,34]. The reduction was particularly pronounced when insertions are desired and homing unavoidably requires a large insert in the template [27]. In our experiment, we would expect approximately 96 homing events from the 418 chromosomes surveyed if wild type I-SoI were used; the absence of any homing with the I-SoI nickase suggests that nicks are at least two orders of magnitude less efficient in inducing HR in the Drosophila testis. While nickases do have the advantage of much lower NHEJ rates, and with that potentially slower development of HEG resistance due to the accumulation of NHEJ-induced sequence changes to the target site, the loss in homing activity is an excessive price to pay in the context of a HEG-based gene drive system.

The ability of an ectopic template to compete against a template at the homologous site was initially unexpected. However, since homing is restricted to fast-cycling transit-amplifying spermatogonia in these experiments, a large fraction of the genome will be in a post-replicative state regularly and sister chromatid repair is thereby enabled. Indeed, a large proportion of repair events may occur at this stage since HEG access to DNA, and consequently HEG cleavage, is restricted by chromosome condensation during M phase. From this perspective, an ectopic template will be frequently competing against a homologously-located template even in the unpaired case. This observation suggests that, at least in Drosophila, it could be relatively easy to generate a stock with the correctly-homed transgene via normal transposon-mediated transgenesis followed by ectopic homing rather than requiring a sophisticated targeted insertion system that is unlikely to be easily accessible in non-laboratory pest species.

The reduced homing performance at low temperatures observed in our experiments could have arisen from any of a variety of causes, including lower enzyme activity, lower expression of the HEG or reduced propensity towards HR. However, the strong dependence of I-SoI-driven homing activity on temperature suggests that the temperature-activity profile of deployed HEGs is a relevant factor when modelling HEG spread. Habitats where a HEG-based control strategy could be envisaged may exhibit significant seasonal temperature variation. Where a cold-sensitive HEG insert exerts a fitness cost, its population frequency may be adversely affected in an environment where, for example, the peak breeding season coincides with a wet, cool season.

It was observed that efficient HEG drive was readily achieved in Anopheles gambiae but rather less so in Drosophila melanogaster, and this variation in response may suggest that HEG drive is an insect control strategy applicable only to a limited number of species [7,8]. It appears likely that the difference arises from achiasmy in Drosophila males: since crossovers are absent in this species, the HR machinery is no longer required during meiotic stages and homing is consequently restricted to earlier, transit amplifying cells [8]. Achiasmy is widespread in higher Diptera [35], an order to which many insect pests belong, and the utility of HEG drive will depend on it being usable even in these less favourable circumstances.

We have shown here that even a semi-refractory species such as Drosophila is not inherently inferior in its ability to support homing: with sufficient HEG activity in the correct cell type, high levels of
homing can be achieved. We also demonstrate that appropriate HEG activity can be achieved with judicious choices of 3′-UTRs and promoters. Moreover, chromosomal sites do not appear to vary much in their ability to support homologous recombination; rather, they act indirectly by influencing the expression of the HEG transgenes. HEG drive could therefore be potentially extended to genes that exhibit repressive chromatin in the testis by the use of insulator elements in transgene constructs [26]. The combination of these measures could allow HEG drive to be applied even in the most recalcitrant species.

Author Contributions
Conceived and designed the experiments: DSH SR. Performed the experiments: YC DSH RG EW. Analyzed the data: DSH SR. Contributed reagents/materials/analysis tools: YC EW DSH SR. Wrote the paper: DSH SR.

References
1. Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2008) Insect population control using a dominant, repressible, lethal genetic system. Science 327: 2474–2476.
2. Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc Lond B Biol Sci 270: 921–928.
3. Takeuchi R, Lambert AR, Mak AN-S, Jacoby K, Dickson RJ, et al. (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108: 13077–13082.
4. Ulge UY, Baker DA, Hediger M, Karch F, Basler K (2004) Construction of transgenic Drosophila melanogaster. Genetics 188: 33–44.
5. Groth A, Fish M, Nusse R, Calos M (2004) Construction of transgenic Drosophila melanogaster. Genetics 188: 33–44.
6. Windbichler N, Menichelli M, Papathanos PA, Papathanos PA, Russell S (2011) Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in Drosophila melanogaster. Genetics 188: 33-44.
7. Chan Y, Huen D, Russell S (2011) Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in Drosophila melanogaster. Genetics 188: 33-44.
8. Windbichler N, Menichelli M, Papathanos PA, Papathanos PA, Russell S (2011) Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in Drosophila melanogaster. Genetics 188: 33-44.
9. Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, et al. (2011) The Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108: 13077–13082.
10. Burt A, Godfray HCJ, Burt A (2011) Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci U S A 108: E870–E880.
11. Ulge UY, Baker DA, Hediger M, Karch F, Basler K (2004) Construction of transgenic Drosophila melanogaster. Genetics 188: 33–44.
12. Margaretke P, St Pierre SE, Thurmond J (2011) FlyBase 101 - the basics of navigating FlyBase. Nucleic Acids Res 40: 1–9.
13. Groth A, Fish M, Nusse R, Calos M (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage βC11. Genetics 166: 1775–1782.
14. Bishoff J, Maela RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific βC11 integrases. Proc Natl Acad Sci U S A 104: 3312–3317.
15. Uteng O, Tenney K, Li H, Gimble FS (2008) Engineering variants of the I-SoI homing endonuclease with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 36: 936–943.
16. Uteng O, Tenney K, Li H, Gimble FS (2008) Engineering variants of the I-SoI homing endonuclease with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 36: 936–943.
17. Mitchell D, Pless S, Villalba C, Celikner SE, Perrimon N (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40: 476–483.
18. Kim-Ha J, Kim J, Kim Y-J (1999) Requirement of RBP9, a general transcription factor, for Regulation of Cystocyte Differentiation and Oocyte Determination during Oogenesis. Mol. Cell. Biol. 19: 2355–2359.
19. Duncker BP, Davies PL, Walker VK (1997) Introns boost transgene expression in Drosophila melanogaster. Mol Gen Genet 254: 291–296.
20. Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila melanogaster. Nat Genet 24: 161–168.
21. Kim-Ha J, Kim J, Kim Y-J (1999) Requirement of RBP9, a general transcription factor, for Regulation of Cystocyte Differentiation and Oocyte Determination during Oogenesis. Mol. Cell. Biol. 19: 2355–2359.
22. Vibranovski MD, Lopes HF, Karr TL, Long M (2009) Stage-Specific Expression Profiling of Drosophila Spermatogenesis Suggests that Meiotic Sex Chromosome Inactivation Drives Genomic Relocation of Testis-Expressed Genes. PLoS Genet 5: 13–13.
23. Gongcy P, Matsumi K, DiNardo S (1997) Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in Drosophila melanogaster. Genetics 188: 33-44.
24. Rørth P, McLean C, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function experiments: YC DSH RG EW. Analyzed the data: DSH SR. Contributed reagents/materials/analysis tools: YC EW DSH SR. Wrote the paper: DSH SR.
25. Niu N, Tenney K, Li H, Gimble FS (2008) Engineering variants of the I-SoI homing endonuclease with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 36: 936–943.
26. Michalke P, St Pierre SE, Thurmond J (2011) FlyBase 101 - the basics of navigating FlyBase. Nucleic Acids Res 40: 1–9.