Near surface shear wave velocity in Bucharest, Romania

M. von Steht, B. Jaskolla, and J. R. R. Ritter
Geophysical Institute, Universität Karlsruhe (TH), Hertzstr. 16, 76187 Karlsruhe, Germany

Received: 12 August 2008 – Revised: 13 October 2008 – Accepted: 13 October 2008 – Published: 1 December 2008

Abstract. Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity (V_s) structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow V_s structure is determined along five profiles, and the compressional-wave velocity (V_p) structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The V_p model along profile 1 can be correlated with the known near surface sedimentary layers. V_p increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The V_s models along all five profiles are characterized by low V_s (< 350 m/s) in the upper 60 m depth and a maximum V_s of about 1000 m/s below this depth. In the upper 30 m the average V_s varies from 210 m/s to 290 m/s. The V_p-V_s relations lead to a high Poisson’s ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.

1 Introduction

The shallow seismic velocity structure of the uppermost subsurface is crucial in estimating the amplification of earthquake-induced ground motion. Thus the knowledge about the seismic velocity in the uppermost layers is a key input for quantitative earthquake hazard assessment. It is well known that variations of the elastic properties at shallow depths (upper 50 m) can map directly into the earthquake damage pattern, due to local site effects (e.g. Borcherdt, 1970; Meremonte et al., 1996). Of special importance is the knowledge of the V_s structure, because of its correlation with high ground motions and earthquake damage. Information about these parameters is especially valuable in cities which are situated in the vicinity of major earthquake focal regions. This information can provide city planers with useful information regarding possible damage pattern in the future (e.g. Heiken et al., 2003).

Active seismic measurements are quite challenging in a noisy urban environment. Explosive seismic sources are mostly prohibited, even in small amounts. Coupling of seismometers with the sealed ground may be poor. Long seismic profiles (0.5–2 km) cannot be easily realised, as too many landowners are involved which makes obtaining permission nearly impossible. Furthermore, there is a high level of cultural noise due to traffic, industry and supply lines camouflaging seismic signals, especially close to major streets. Safety of the equipment is of another concern.

Bucharest, the capital of Romania, is at a very high seismic risk (Wenzel et al., 2002; Dilley et al., 2005). In the nearby Vrancea seismic zone (Fig. 1), at the bend of the Carpathian Mountains, the Tisia Dacia block thrusts over the Moesian plate which delaminates and pushes into the mantle. This steeply hanging lithospheric slab generates up to 10 earthquakes with moment magnitude (M_w) larger than 6.5 and up to 4 earthquakes with M_w larger than 7 in a century. The related seismic moment release rate is comparable to that
For seismic site classification the average V_s in the upper 30 m (V_{s30}) is determined according to the International Building Code (ICC, 2003) and the Eurocode 8. The existing maps of V_{s30} for Bucharest are highly interpolated due to sparse data (Aldea et al., 2004; Kienzle et al., 2004; Bala et al., 2007). As it is observed in numerous boreholes across the city, the main stratigraphic sequence comprises of more or less cohesionless, unconsolidated Quaternary deposits in the upper 160–360 m (for a recent summary see Mandrescu et al., 2004; Ciugudean-Toma and Stefanescu, 2006). Few boreholes were geophysically logged and only twelve vertical seismic profiles (VSP) were so far conducted to measure the seismic velocities (V_p, V_s) and other seismic hazard-related parameters such as density, porosity, fluid content and compaction. Bala et al. (2005) report V_p and V_s from VSP and downhole measurements at two boreholes, 700 m apart, 80 m and 62 m deep (C1 and C2) in eastern Bucharest (Fig. 1). They find low V_s values (200–600 m/s) in the upper 80 m where V_p reaches 1450–2600 m/s. Their study revealed that there is a high V_p/V_s ratio (2.3–8.8) below the water table down to 80 m depth. This corresponds to a Poisson’s ratio of 0.44–0.49. Such conditions may contribute to increased shaking during earthquakes.

To understand and mitigate the earthquake risk for Bucharest, a major effort was made over the last 12 years by the Collaborative Research Centre 461 at the Universität Karlsruhe (TH), Germany and the Romanian Group for Strong Earthquakes (Wenzel, 1997). Within this framework we chose two locations in the city of Bucharest to measure V_s along five seismic refraction profiles. Although seismic refraction is an old technique used routinely in many parts of the world, yet considering the limited available resources and time, we have used this approach to obtain shallow seismic velocity information which is so far sparse and poorly documented for Bucharest. We also admit that the amount of data used in this study is rather limited, and does not provide results which are representative of the whole city. However, given the fact that available microzonation maps for Bucharest are based on poor and undocumented data, the seismic velocity information of this study will certainly be useful. This paper describes seismic refraction data acquisition and determination of the seismic velocity models. We find low V_s values which agree with results of prior, independent observations. We correlate our results with the lithological properties.

2 Data acquisition

The aim of our seismic refraction measurements was the determination of the V_s structure in the uppermost 20–30 m in the densely populated city of Bucharest. The initial target of making profiles of 200–400 m length proved to be difficult, because much of the ground was inaccessible or belonged to different private parties or companies. Therefore, we decided to measure in two public parks with enough space to deploy crossing profiles (Fig. 2). Site A is located at Parcul Tineretului and site B is located at Parcul Bazilescu (Fig. 2). At site A we deployed three crossing profiles, 1 (SE-NW, 300 m), 2 (S-N, 320 m) and 3 (SW-NE, 290 m) using most of the available space and approaching the busy streets as close as possible (Fig. 2a). At site B we were able to deploy two
Fig. 2. Layout of the seismic profiles. (a) Parcul Tineretului with profiles 1–3 (b) Parcul Bazilescu with profiles 4 and 5. S denotes shot point in the beginning, GS shot point at the end. Note the nearby major streets which cause an increase in the noise level.

Fig. 3. Measurement in Parcul Tineretului; in the hole at the bottom of the right image the inclined steel plate for the generation of the shear waves is visible.

perpendicular lines: profile 4 (SW-NE, 350 m) and profile 5 (SE-NW, 250 m). Figure 3 shows the measurement environment at site A during August 2005. The geophone spacing along all profiles started from 0.5 m close to the source points and increased up to 10 m at the middle and end of the profiles. Only a few geophone points were missing due to pavement. The data acquisition was accomplished with a 24-channel Geometrics Geode recording unit which recorded for 1.5 s for distances up to 150 m and 3 s for larger distances. As receivers we used 14 Hz horizontal geophones. Vertical receivers were used only in profile 1. Because the P-wave signals were very weak and vanishing in high noise level at distances of only 50 m, the time schedule forced us to concentrate on the more important S-wave measurements. Our
P-wave source was a 5 kg hammer that hit near-vertically an iron plate on the ground. For S-wave generation the hammer strike was against a steeply inclined iron plate pressed into the ground (Fig. 3). Previous tests with different sources had demonstrated that this approach was efficient to produce shear waves. Hitting from two opposite sides and subsequent subtraction of traces enhanced the horizontally polarised shear waves against compressional waves. In order to improve the signal-to-noise ratio (S/N) 30 hammer blows were stacked for each side. The dominant frequency of the recorded shear waves is about 20–25 Hz.

3 Data analysis

The recorded traces were converted to the SeismicUnix format, and then filtered and plotted. In Figs. 4–9 we present the record sections filtered at 20–60 Hz, as well as the travel-time curves for first P- and S-wave arrivals. Picking of arrival times was done from unfiltered waveforms. Solid lines indicate clearly identified seismic phases, dashed lines correspond to tentative picks. Figure 4a displays the P-wave data for the shot at SE end of profile 1; Fig. 4b shows the shot gather from the reverse direction from the NW end of profile 1. In Figs. 5–9 shot gathers from two opposite ends are presented, with their orientation indicated in the figure captions. The P-wave arrivals in Fig. 4 can be identified clearly up to ~ 70 m distance from the source on the vertical component. For larger distances the S/N of the P-phase is quite low (dashed line in Fig. 4).
Fig. 6. S-wave data from profile 2 at Parcul Tineretului. (a) Shot at S end of the profile, (b) shot at the N end, (c) S-wave first arrivals and the determined travel-time curves with their intercept times.

Fig. 7. S-wave data from profile 3 at Parcul Tineretului. (a) Shot at SW end of the profile, (b) shot at the NE end, (c) S-wave first arrivals and the determined travel-time curves with their intercept times.

Particularly, the third P-wave traveltime branch is questionable and interpreted from a slight change in the frequency content of several arrivals. Even extensive stacking of hammer blows failed to improve the S/N. The mainly traffic-related, high background noise from the surrounding streets (including trams, cobblestone pavement and potholes) was responsible for this. Following the P phase there is an S phase excited by vertical hammer blows visible at distances of up to 100 m on the vertical component. Going from shallow to deep, the apparent \(V_p \) along profile 1 is about 300 m/s, 1100–1500 m/s and arguably 3000 m/s, for the top three layers identified below Parcul Tineretului (Fig. 4c). These layers are slightly inclined as estimated from the intercept-time differences between forward and reverse shots. The arrival time picks fall reasonably on a straight line, indicating relative lateral homogeneity or relatively undisturbed layer interfaces.

The horizontal component data with the first-arrival picks for profile 1 are shown in Fig. 5.

The first arrivals are clear up to 250 m distance, much further than the P-waves. The apparent \(V_s \) is quite low and does not exceed 350–380 m/s even at the deepest part. The other two profiles (Figs. 6 and 7) at site A show similar \(V_s \) in the shallow part; however, \(V_s \) up to 500–680 m/s is estimated there at the deepest part. The maximum distance for clear S wave first arrivals depends mainly on noise conditions, especially the traffic load, around the parks at sites A and B. For example, at profile 3 clear arrivals are seen up to 350 m towards the southwestern end of the profile (Fig. 7b), whereas S/N is much lower towards the northeastern end where a major road is located (Fig. 7a). The observation that the S wave arrivals in this noisy environment have a better S/N than the P-wave data can be used for future measurements in urban areas. At site B (Parcul Bazilescu) clear S-wave first arrivals can be picked up to more than 200 m distance (Figs. 8 and 9). The apparent \(V_s \) in the shallow layers here are low (\(V_s \sim 150–350 \) m/s), comparable to site A. At greater depth, the \(V_s \) reaches 900–1050 m/s.
4 Estimating seismic velocity models

We determine homogeneous layered models at first, using the intercept-time method (Palmer, 1986) and the Plotrefa time term inversion technique (SeisImager/2-D manual, 2005). In a second step, the measured deviations of the arrival times from the linear travel-time fits are inverted to produce models with lateral seismic velocity variations or undulated interfaces. The data coverage is not high enough to differentiate between these two possibilities. Later arrivals like reflections do not have sufficiently good S/N. Model uncertainties are, therefore, judged only from the uncertainties in the first-arrival picks.

The seismic velocity models for the 5 profiles are shown in Figs. 10 (site A) and 12 (site B).

Deep structure directly below the shot point is hatched, because this point is not covered by refracted waves but is simply extrapolated. The Vp structure along profile 1 contains three layers. There is a 2–5 m thick uppermost layer with $V_p \approx 320 \pm 20$ m/s. Below 5–8 m depth V_p reaches 1280±150 m/s. Then at 55–65 m depth V_p possibly jumps to nearly 3000±300 m/s. We admit that there is a considerable uncertainty about the deepest layer as the data are very noisy at far offset. In the uppermost 50 m V_s does not exceed 360 m/s. Along profile 1 the average V_p/V_s ratio is 1.6–1.7 in the first 5 m (presumably above the water table), but then V_p/V_s increases to a maximum of 6.4. The V_p/V_s ratio decreases to nearly 4 at 20 m depth and nearly 3.5 at 50 m depth, which correspond to a Poisson’s ratio close to 0.5. Along profiles 2 and 3 at site A (Parcul Tineretului) also low V_s values are observed (Fig. 10). Clearly V_s does not exceed 350 m/s in the upper 50 m. Below 50 m depth, V_s is about 460–490±40 m/s. At the intersection of the three profiles at site A (point M in Fig. 2a and arrow in Fig. 10), the derived
Fig. 10. Seismic velocity models for Parcul Tineretului: (a) V_p below profile 1, (b) V_s below profile 1, (c) V_s below profile 2, and (d) V_s below profile 3. The arrow at 160 m distance indicates the location where the profiles cross.

V_s values and layer depths are consistent, especially for profiles 2 and 3. The seismic velocity and thickness of the first layer in profile 1 corresponds to the upper two layers in profiles 2 and 3. Seismic velocities close to our estimates and a Poisson’s ratio of 0.42–0.47 were also determined in a recent borehole measurement in Parcul Tineretului (Fig. 11).

The V_s-depth distribution is nearly identical, whereas the V_p-depth distribution is more detailed in the VSP log. Our results appear to be representative of this part of the city. The average V_s in the upper 30 m (V_s^{30}) varies from 210 m/s to 245 m/s at site A. These V_s^{30} values fall within the range of V_s^{30} observed at other sites in Bucharest (Aldea et al., 2004; Kienzle et al., 2004; Bala et al., 2007).

The V_s structure at site B (Parcul Bazilescu) is shown in Fig. 12. The V_s values vary in the range 140–175 m/s in the uppermost layer which has a thickness of 2–3 m. Below this, there is a layer with V_s of 275–280±40 m/s extending to 20–30 m depth. A third layer with V_s~315–350±40 m/s reaches down to 50–70 m depth. The deepest interpreted layer is characterized by V_s 665–950 m/s, but is not well resolved. We cannot identify any layer with V_s higher than 350 m/s at depths less than 50–70 m. At site B V_s^{30} varies between 270 m/s and 290 m/s, and is about 25% higher than that at site A.

5 Interpretation and discussion

We find very low V_s values along profiles 1–5 for sedimentary rocks and relatively high V_p values compared to V_p along profile 1. In profile 1 the layering does not coincide between our obtained V_p and V_s models (Figs. 10 and 11). This mismatch can be explained by different sensitivities of V_p and V_s to local geological conditions which are influenced by the shallow water table (Hötzl et al., 2004, Bala et al., 2005), as well as by the composition and porosity of the sedimentary rocks. The V_p structure at site A can be correlated with the sedimentary stratigraphy proposed by Mandrescu et al. (2004) or Ciugudean-Toma and Stefanescu (2006). According to these authors the thin uppermost layer (2–5 m depth) with V_p~320 m/s consists of unconsolidated debris and possibly loess. Below this top layer, there is a ~60 m
According to the Romanian Code for seismic design for buildings (P100-1/2006) the \(V_{s30} \) values of 210–245 m/s (site A) and 270–290 m/s (site B) correspond to class C type of material which is intermediate soil. Our results on \(V_{s30} \) will be used for future \(V_{s30} \) mapping of Bucharest. The extremely low \(V_s \) values are crucial for evaluation of seismic hazard in Bucharest. Seismic waves generated in the Vrancea slab and travelling almost vertically upward can be amplified severely in the low \(V_s \) zone below Bucharest. This might be the reason for the damage that occurred in the past during the intermediate depth Vrancea earthquakes, despite the fact that the hypocenters are located about 200 km afar.

Acknowledgements. We thank our colleagues at the National Institute for Earth Physics (NIEP) at Bucharest and D. Hannich at Karlsruhe for helping with the field measurements. A. Bala and S. Balan at NIEP provided the borehole data. The Institute for Geophysics at the University of Clausthal provided the horizontal geophones. Financial support was provided by the Deutsche Forschungsgemeinschaft through grant SFB461 for the seismic measurements and by NATO Science for Peace Project SIPI981882 for the borehole measurements. We are grateful for constructive reviews by A. Bala and H.-M. Rumpel.

Edited by: M. Contadakis
Reviewed by: H.-M. Rumpel and A. Bala

References

Aldea, A., Lungu, D., and Arion, C.: GIS mapping of seismic microzonation and site effects in Bucharest based on existing seismic and geophysical evidence, in: Earthquake loss estimation and risk reduction, edited by: Lungu, D., Wenzel., F., Mouroux, P., and Tojo, I., 1, 237–249, 2004.

Bala, A., Raileanu, V., Zihan, I., and Dananau, E.: Physical properties of the Quaternary sedimentary rocks in the eastern Bucharest area, Rom. Rep. in Phys., 57, 151–163, 2005.

Bala, A., Mandrescu, N., Zihan, I., and Dananau, E.: Physical and dynamic properties of the shallow sedimentary rocks in the Bucharest metropolitan area, Rom. Rep. in Phys., 58, 221–250, 2006.

Bala, A., Grecu, B., Hannich, D., Ehref, D., and Raileanu, V.: Methods to assess the site effects based on in situ measurements in Bucharest city, Proceedings Int. Sympoum on Strong Vrancea Earthquakes and Risk Mitigation 4–6 October 2007, Matrix Rom. Bucharest, 248–252, 2007.

Borcherdt, R. D.: Effects of local geology on ground motion near San Francisco Bay, Bull. Seism. Soc. Am., 60, 29–61, 1970.

Ciugudean-Toma, V. and Stefanescu, I.: Engineering geology of the Bucharest city area, Romania, , IAEG –2006 Proceedings, Engineering Geology for Tomorrow’s Cities, paper no. 235, 2006.

Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., and Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Bradford Lyon, B., and Yetman, G.: Natural disaster hotspots: A global risk analysis, synthesis report, 29 pp., 2005.

Heiken, G., Fakundiny, R., and Sutter, J.: Earth science in the city, American Geophysical Union, Washington, 440 pp., 2003.
Hötzl, H., Hannich, D., Bretotean, M., Ciugudean, V., Zamfirescu, F., and Danchiv, A.: Influence of hydrogeology on site effects, in: Earthquake loss estimation and risk reduction, edited by: Lungu, D., Wenzel, F., Mouroux, P., and Tojo, I., 1, 261–270, 2004.

ICC, International Code Council Inc.: International Building Code. Falls Church, Virginia, 656 pp., 2003.

Kienzle, A., Hannich, D., Wirth, W., Ciugudean, V., Rohn, J., and Czurda, K.: Seismic microzonation of Bucharest, in: Earthquake loss estimation and risk reduction, edited by: Lungu, D., Wenzel, F., Mouroux, P. and Tojo, I., 1, 251–259, 2004.

Mandrescu, N., Radulian, M., and Marmureanu, G.: Site conditions and predominant period of ground motion in the Bucharest urban area, Rev. Roum. Geophys., 48, 37–48, 2004.

Mavko, G., Mukerji, T., and Dvorkin, J.: The rock physics handbook – Tool for seismic analysis in porous media. Cambridge University Press, Cambridge, 1998.

Meremonte, M., Frankel, A., Cranswick, E., Carver, C., and Worley, D.: Urban seismology – Northridge aftershocks recorded by multi-scale arrays of portable digital seismographs, Bull. Seis. Soc. Am., 86, 1350–1363, 1996.

Palmer, D.: Refraction seismics, the lateral resolution of structure and seismic velocity, Geophysical Press, Handbook of Geophys. Explor., 11, 269 pp., London, 1986.

SeisImager/2-D Manual, version 3.1., Geometrics, San Jose, 249 pp., 2005.

Wenzel, F.: Strong earthquakes: A challenge for geosciences and civil engineering – a new collaborative research center in Germany, Seism. Res. Lett., 68, 438–443, 1997.

Wenzel, F., Lungu, D., and Novak, O.: Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer Academic Publishers, Dordrecht, 374 pp., 1999.

Wenzel, F., Sperner, B., Lorenz, F., and Mocanu, V.: Geodynamics, tomographic images and seismicity of the Vrancea region (SE-Carpathians, Romania), EGU S. Mueller Spec. Publ. Ser. 3, 95–104, 2002.

Wirth, W., Wenzel, F., Sokolov, V. Y., and Bonjer, K.-P.: A uniform approach to seismic site effect analysis in Bucharest, Romania. Soil Dynam. Earthq. Engineer., 23, 737–758, 2003.