Pharmacogenetics is one of the most exciting and clinically relevant applications of the enormous strides that have been made in defining the genetic basis of human variation. Completion of the human genome project brought with it the means to catalogue such variation on a genome-wide basis, and to apply this knowledge to the clinical context. The core hypothesis underlying pharmacogenetics is that genetic factors play a major role in the well-recognized differences between individuals in response to medication and susceptibility to adverse effects. If these genetic factors can be identified and understood, they may serve as predictors to guide clinicians in tailoring medication to the individual patient. The technological tools required in order to achieve this objective are readily available in the form of high-throughput genotyping systems that allow thousands of individual genotypes to be generated at costs that are dramatically declining. At
At the same time, great progress has been made in developing the information technology that is needed in order to permit efficient access to the vast body of data that is being deposited in electronic databases on a daily basis. Psychiatry is a very important candidate area for the application of pharmacogenetics to clinical practice.1,2 Response rates to psychotropic drugs are highly variable, and this includes all the major classes such as antipsychotics, antidepressants, mood stabilizers, and anxiolytic agents. In the field of antipsychotics, a major clinical dilemma is beginning to emerge, with growing recognition of the important limitations of the second-generation (SGA) or atypical antipsychotic drugs. Except for clozapine, there is little evidence to indicate that SGAs are more effective than the classical, first-generation antipsychotics (FGAs). This impression has been borne out by the initial results of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study which showed no therapeutic advantage of the SGAs risperidone, quetiapine, and ziprasidone over the low-potency FGA, perphenazine.3 There was a limited advantage of olanzapine, but at the cost of a significantly greater incidence of weight gain and adverse metabolic effects. The advantage of SGAs is thought to lie in their superior side-effect profile, in particular the reduced incidence of extrapyramidal symptoms (EPS) such as dystonia, parkinsonism, and akathisia, and, in the long term, the substantially smaller risk of tardive dyskinesia (TD). However, a recent population-based study suggests that older individuals treated with high-dose SGAs may be at similar risk of EPS to patients treated with FGAs.4 The current trend in clinical practice is to eliminate FGAs as far as possible, and to employ SGAs as the first-line medication for the treatment of acute schizophrenic psychosis. This trend has not been implemented worldwide because of economic considerations, given the major price differences between SGAs and FGAs, and FGAs are still widely prescribed. The results of recent studies such as CATIE3 raise the important consideration that FGAs may have a place in the treatment of schizophrenia, subject to appropriate risk-benefit considerations. Predictors of susceptibility to EPS and TD, in the case of the FGAs, and to weight gain and metabolic adverse effects, in the case of SGAs, could radically alter clinical practice, allowing FGAs or SGAs to be prescribed in accordance with the risk profile of the individual patient. The availability of predictors of therapeutic response to FGAs and SGAs would further improve the risk-benefit ratio. Genetic predictors are highly feasible in this context, and are the focus of intensive research in the field of psychiatric pharmacogenetics. Genetic factors that influence drug metabolism (pharmacokinetics) and molecular targets of drug action (pharmacodynamics) may be implicated separately or interactively in the pharmacogenetic profile of a patient in relation to a particular class of drugs. Extensive research is needed in order to identify the genes involved, and the precise variants within these genes that underlie interindividual variability. In the case of pharmacokinetic factors, the underlying genetic cause is often a mutation in a single gene, such as a member of the extended cytochrome P450 family, which is pivotal in the metabolism of psychotropic drugs.5 Pharmacodynamic targets include receptors or transporters to which the drugs bind. Variants in these genes are more likely to be of small effect with several different loci being involved, each contributing to the phenotype to a small and variable degree. This type of polygenic effect is difficult to define clinically, and is sensitive to spurious influences. Most of the pharmacogenetic effects that are widely relevant are likely to be polygenic, requiring significant research efforts to generate and replicate data that will ultimately be clinically useful. In this paper, we will consider key issues that need to be taken into consideration in designing and interpreting pharmacogenetic studies of antipsychotic drugs. Examples will be given from a series of studies that has identified several genes involved in susceptibility to TD in patients treated with FGAs for an extended period.

Case-control association studies in pharmacogenetics: advantages and potential pitfalls

The classical strategies employed in the search for genes that predispose to complex phenotypes are linkage and association. Linkage studies require recruitment of fam-
ily units of varying size, and are not practically feasible in
the context of pharmacogenetics. Family-based association
studies require smaller family units, but they too are
not practical for pharmacogenetics, except for studies
conducted in pediatric populations. Case-control associ-
ation studies are the most suitable strategy for phar-
cacogenetics. Their advantages are considerable, the
most striking being the possibility of recruiting large sam-
ple that have sufficient statistical power to investigate
genetic variants of relatively small effect. Large samples
are particularly important if the effect of more than one
gene is being studied in the same sample, and interactions
among genes and between genes and the environment
are being sought. On the other hand, case-control designs
are notoriously susceptible to the effects of ethnic strat-
ification, which can lead to spurious results. These are due
to a particular allele being enriched in a particular pop-
ulation. If this population is overrepresented in the case
or control group, a spurious finding will result, in which
the allele is erroneously associated with the phenotype.
The nature of the problem is illustrated in Figure 1,6
which shows the frequency of the gly allele of the
dopamine D3 receptor gene (DRD3) ser9gly polymor-
phism in samples from several populations. These sam-
ple were included in a pooled and meta-analytic study of
the DRD3 ser9gly polymorphism as a risk factor for
TD.6 Great variability in the frequency of the 9gly allele
in the different samples included in the study is imme-
diately evident, ranging from 30% to 40% among
Caucasians from different countries, and reaching 80%
among African-Americans. If the association of the
DRD3 gly9 allele with TD were tested without controlling for ethnicity in this pooled
sample, made up of 317 patients with TD and 463
patients without TD, spurious results could easily arise.
Therefore, a stepwise logistic regression was employed
so as to allow the confounding effects of ethnicity and
also age and gender to be taken into account. TD was sig-
nificantly associated with DRD3 gly9 allele carrier status
(\(\chi^2=4.46, df=1, P=0.04\)) over and above the effect of
ethnicity. Similar positive effects were observed when
controlling for age and gender (\(\chi^2=5.02, df=1, P=0.02\)).8,9 A
meta-analysis was performed, which included all the sam-
ples in the pooled analysis, as well as data from additional
published studies. The Mantel-Haenszel pooled odds
ratio (OR) for DRD3 gly9 allele carrier status increasing
susceptibility to TD was 1.33 (95% confidence interval
[CI] 1.04-1.70, P=0.02) (Figure 2). Meta-analyses are less
sensitive to stratification and admixture (unless these are
present in the samples included in the meta-analysis),
since original data are not pooled and the unit of analy-
ysis is studies and not individuals.
The findings of our studies of the DRD3 ser9gly polymor-
phism and TD indicate that, when pooled pharmacogenetic analyses are conducted on well-characterized
samples, it is possible to control for the potentially arti-
factual effects of ethnicity. This is important, because it
is essential to gather large samples for pharmacogenetic
studies so as to have sufficient statistical power. The
same general strategy was implemented to examine the
association of the serotonin 5-HT2A receptor gene and
TD,10 and also to examine association of the 5-HT2C
receptor gene with unipolar and bipolar affective disor-
der.11 When using ostensibly homogeneous samples, the
genomic control method may be implemented to rule
out population influences on the markers being stud-
ied.12 This involves genotyping additional markers that
are putatively unrelated to the phenotype, and these are
used to determine the degree of stratification that is
present in the sample.

![Figure 1](image1.png)

Figure 1. Frequency of the gly allele of the dopamine D3 receptor
(DRD3) ser9gly polymorphism in eight samples of different
ethnic origin, which were included in a pooled meta-analysis
in which association of the DRD3 ser9gly polymorphism with
susceptibility to tardive dyskinesia (TD) was examined.5 The
samples from Bonn (n=240), Milan (n=93), Newcastle (n=69),
Nithsdale (n=100), and Vienna (n=61) were all made up of
Caucasians. The Jerusalem sample (n=113) was made up of
subjects of Jewish Ashkenazi (n=66) or non-Ashkenazi (n=47)
origin. There was no difference in gly allele frequency
between the Ashkenazi and non-Ashkenazi subjects. US-
Cauc, Caucasian subjects recruited in the US (n=81); US-AA,
US African-Americans (n=23).
Demography matters: age-related effects of genetic variants

It is often not taken into account that genetic variants may have differing functional importance depending on the stage of the life cycle. This is obvious in the case of genes that predispose to disorders of later life such as Alzheimer’s disease (although the pathophysiological effects of variations in these genes may be manifested long before the clinical threshold is crossed). Similarly, genes that influence neurodevelopment in utero may be associated with susceptibility to schizophrenia that only becomes clinically manifest in late adolescence. Age-relatedness may also be important in pharmacogenetic phenotypes. We have observed an age-related association of two serotonergic genes, the 5-HT$_{2C}$ (HTR2C) and the 5-HT$_{2A}$ receptor (HTR2A) with susceptibility to TD. Our finding with the 5-HT$_{2A}$ receptor has been replicated in a large multicenter study.

In an earlier report (Figure 3), we showed that scores on the Abnormal Involuntary Movements Scale (AIMS, the hallmark of TD) were significantly related to the ser23 allele of the cys23ser polymorphism of the 5-HT$_{2C}$ receptor gene and to the 102C allele of the T102C polymorphism in the 5-HT$_{2A}$ receptor gene, in older but not younger patients. We sought to replicate this finding the context of a multicenter study involving 635 patients, 256 of whom manifested TD and 379 of whom did not. Our initial analysis employed stepwise logistic regression as for our DRD3 study and showed an overall association of the T102C polymorphism with TD. We then analyzed the younger and older patients separately. In keeping with our finding in the Jerusalem sample alone, the T102C polymorphism was significantly associated with TD in the older patients only (Figure 4).

Figure 2. Meta-analysis of DRD3 risk allele (gly) among seven of the groups included in the pooled analysis reported by Lerer et al (the African-American group was excluded because of skewed distribution) and three other published studies. The size of each plot is proportional to the sample size of each group. The Mantel-Haenszel pooled odds ratio (OR) is 1.33 (95% confidence interval [CI] 1.04-1.70) and the associated test of OR=1 is significant ($\chi^2=5.12$, df=1, $P=0.02$), while the cumulative pooled OR is 1.52 with $z=11.78$ and $P<0.0001$. The heterogeneity $\chi^2=16.97$, df=9, $P=0.049$.

Reproduced from reference 6: Lerer B, Segman RH, Fangerau, et al. Pharmacogenetics of tardive dyskinesia: Combined analysis of 780 patients supports association with dopamine D3 receptor gene sergly polymorphism. Neupropsychopharmacology. 2001;27:109-119. Copyright © Nature Publishing Group 2001.

Figure 3. Abnormal Involuntary Movements Scale (AIMS) scores according to 5-HT$_{2C}$ (HTR2C) receptor (upper panel) and 5-HT$_{2A}$ (HTR2A) receptor (lower panel) genotype. Scores in younger patients (<47 years) are shown on the left of each panel and in older patients (>47 years) on the right of each panel. For HTR2C: Old cys-cys versus Old cys-ser, $P=0.02$; versus Old ser-ser, $P=0.001$. For HTR2A: Old 102-TT versus Old 102-TC, $P=0.01$; versus Old 102-CC, $P=0.01$. No differences were significant in the young groups.

Reproduced from reference 13: Segman RH, Lerer B. Age and the relationship of dopamine D3, serotonin 2C and serotonin 2A receptor genes to abnormal involuntary movements in chronic schizophrenia. Mol Psychiatry. 2002;7:137-139. Copyright © Nature Publishing Group 2001.
These replicated findings accentuate the importance of taking into account the possibility that pharmacogenetic effects may be age-related. Thus, an association first reported in an older sample may be missed if replication is sought in a younger sample. This was the case with our initial report of an association of the T102C polymorphism in the 5-HT2A receptor gene with TD, which was initially not replicated by Basile et al who studied a sample more than two decades younger than ours. The age range of the pooled sample studied by Lerer et al was wide enough to allow replication of the finding in the older subjects.

Additive and interactive effects of genes

Pharmacogenetic phenotypes (such as treatment outcome, onset of therapeutic effect, rapidity of response, and adverse effects) are complex traits to which background and demographic factors contribute, as well as factors related to the treatment. The genetic background is likely to be polygenic, with an as-yet unknown number of genes contributing a small proportion of the variance. These genes can be expected to act in different ways. One model is additive, the assumption being that each gene contributes cumulatively to the phenotype, and that the overall risk is a sum of these individual contributions. A second, more complex model postulates that the effects of certain genes are conditional on others, implying gene–gene interaction or epistasis. Under this model, a specific allele of gene A will confer an effect in the presence of a specific allele of gene B, but will not confer susceptibility in its absence. The situation is rendered more complex by the possibility that haplotypes made up of two or more variants may contribute additively or interactively to susceptibility. In addition, gene–environment interaction must also be taken into account. These considerations are applicable to TD, which is a complex trait related to drug treatment, to which several demographic and background factors contribute, most notably age, and with which several genes have been associated. As yet, there has been relatively little work in psychiatric pharmacogenetics on the combined effects of

Figure 4. Frequency of 102C allele carriers (TC heterozygotes and CC homozygotes) in younger patients (<47 years) with tardive dyskinesia (Y-TD) (n=96) and without TD (N-TD) (n=215) (left panel) and in older Y-TD (n=159) and N-TD patients (n=164) (right panel). Likelihood ratio test for TD status predicting T102CC allele carrier status in younger patients (<47 years): $\chi^2 = 10.16, df=1, P=0.001$. Reproduced from reference 10: Lerer B, Segman RH, Tan E-C, et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. *Int J Neuropsychopharmacol*. 2005;8:411. Copyright © Cambridge University Press 2005.
genes and on gene-gene interaction. These models have been tested on a limited basis in the context of susceptibility to TD in samples that we and other investigators have studied; the scope of such testing is constrained by the size of the samples.

The additive effects of two genetic variants on susceptibility to TD were first reported by Segman et al. Patients who carried both the gly9 allele of the DRD3 ser9gly polymorphism and the ser23 allele of the 5-HT2C cys23ser polymorphism showed evidence of an additive effect of the two risk alleles, both of which had been shown to separately increase risk for TD. As shown in the two risk alleles, both of which had been shown to separately increase risk for TD. The additive effects of two genetic variants on susceptibility to TD in samples that we and other investigators have studied; the scope of such testing is constrained by the size of the samples. Segman et al.17 found that the T→C polymorphism was not in itself associated with TD. However, there was a significant excess of DRD3 gly allele carriers among carriers of the CYP17 CC genotype with TD compared with those without TD (75.0% vs 14.3%; χ²=6.0, df=1, P=0.01). Significant differences were not observed among carriers of the CYP17 TT genotype or CYP17 TC genotypes with TD and carriers of these genotypes without TD. Two way analysis of variance (ANOVA) with age at first antipsychotic treatment as covariate showed a significant main effect of DRD3 genotype on AIMS total score (F=14.9, df=1, 106, P=0.0002). There was no main effect of CYP17 genotype on the AIMS score. There was a significant interaction between DRD3 and CYP17 genotype on AIMS total score (F=4.2, df=2, 106, P=0.02). Figure 6 shows adjusted mean AIMS scores (derived from analysis of covariance [ANCOVA]) for the patients grouped according to DRD3 and CYP17 genotype. Post-hoc Newman-Keuls tests showed that the highest AIMS total (P<0.03) was in patients carrying the DRD3 gly9 allele and the CYP17 CC genotype.

Another gene–gene interaction reported in relation to TD involved DRD3 and cytochrome P450 1A2

Figure 5. Abnormal Involuntary Movements Scale (AIMS) orofacial dyskinesia scores among patients carrying: 5-HT2C-cys and DRD3-ser alleles (both wild type); 5-HT2C-cys and DRD3-gly (wild type + mutant); 5-HT2C-ser and DRD3-ser (mutant + wild type); or, 5-HT2C-ser and DRD3-gly (mutant + mutant). *P<0.05 versus 5-HT2C-cys and DRD3-ser (both wild type); #P<0.05 versus 5-HT2C-cys and DRD3-gly (wild type + mutant).

Reproduced from reference 16: Segman RH, Heresco-Levy U, Finkel B, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia; additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology. 2000;152:408-413. Copyright © Springer 2000.

Figure 6. Interactive effect of DRD3 and CYP17 genes on Abnormal Involuntary Movements Scale (AIMS) scores according to DRD3 ser9gly and CYP17 genotype. Left: patients homozygous for the DRD3 ser allele; right: carriers of the DRD3 gly allele (homozygotes and homozygotes). There is a significant main effect of DRD3 genotype on AIMS total score (F=14.9, df=1, 106, P=0.0002) and a significant interaction between DRD3 and CYP17 genotype (F=4.2, df=2, 106, P=0.02). *P=0.03, post-hoc Newman-Keuls test.
(CYP1A2). Both genes had been found to be independently associated with schizophrenia. Basile et al further found that those patients who exhibited the risk genotype at both DRD3 (gly9/gly9) and at CYP1A2 (CC) had the most severe TD, whereas those who had only one risk genotype (gly9/gly9 or CC) demonstrated intermediate severity of TD. Those patients who did not have any risk genotypes at either locus demonstrated the lowest mean TD severity scores on the AIMS scale (P < 0.00007).

A more recent report of gene–gene interaction conferring susceptibility to TD concerns the functional ala9val polymorphism in exon 2 of the magnesium superoxide dismutase gene (MnSOD). MnSOD is one of three isoforms of superoxide dismutase (SOD) that are important as antioxidants in protecting cells from the deleterious effects of free radicals. The ala9 variant is associated with less efficient functional activity of the enzyme. Hori et al found a small but significant increase in the wild type val allele in Japanese schizophrenia patients with TD, suggesting that the ala allele may be protective against free radical damage in TD. This finding was not replicated by Zhang et al in Chinese schizophrenia patients with TD. However, in a subsequent report Zhang et al found that the val-val genotype was in fact associated with TD, but only in those patients who were carriers of the gly allele of the DRD3 ser9gly polymorphism.

We examined association of the ala9val polymorphism of MnSOD with TD in Israeli schizophrenia patients and also tested for an interaction between this polymorphism and the DRD3 ser9gly polymorphism (Segman et al, unpublished data). Patients were grouped according to whether they were carriers of the ala allele of MnSOD, the gly allele of DRD3, both, or neither. This grouping takes into account an effect of DRD3 gly to increase susceptibility and a protective effect of MnSOD ala and anticipates that patients carrying DRD3 gly and lacking MnSOD ala will be most susceptible to TD and will have the most severe abnormal involuntary movements. This is indeed the case. The MnSOD-val DRD3-gly genotype combination was the most frequent among patients with TD (64%) and the MnSOD-ala DRD3-ser genotype (24%) was the least frequent. Among patients without TD the pattern was reversed. The most frequent genotype combination was MnSOD-ala DRD3-ser (76%) and the least frequent combination was MnSOD-val DRD3-gly (38%, \(\chi^2 = 10.5, df = 3, P = 0.01 \)).

Prospets for pharmacogenetic testing in the clinic

The aim of pharmacogenetic research is to develop clinically useful tests that will allow potential responders to a particular psychotropic agent to be identified prospectively, as well as those individuals likely to develop adverse effects. This is not an easy task in the case of psychotropic drugs. Some of the reasons for this difficulty are applicable to drugs used to treat other complex disorders; others are specific to psychotropic agents. Several have been discussed in this paper.

The polygenic basis of pharmacogenetic traits is an issue of major importance. For most traits it is unclear how many genes are involved, and genes that have been implicated thus far in well-studied phenotypes such as TD are of small effect. The OR observed rarely exceed 2.0, and for the most part are less than 1.5. It requires large samples to explore such small gene effects in the definitive fashion required for their inclusion in a pharmacogenetic test. Large samples are also needed in order to tease apart gene–gene and gene–environment interactions. Recruitment of large samples inevitably increases the likelihood of stratification, which can lead to spurious results and must be taken into account. A further consideration is that background and demographic variables must be considered (as pointed out in this paper for

Genotype combination	N	AIMS total score	SD
MnSOD-ala/DRD3-ser	29	2.6	2.7
MnSOD-ala/DRD3-gly	47	5.7	5.4
MnSOD-val/DRD3-ser	9	7.0	6.6
MnSOD-val/DRD3-gly	21	9.2	7.9*

Table I. Abnormal involuntary movements assessed by the Abnormal Involuntary Movements Scale (AIMS) in patients with chronic schizophrenia, grouped according to magnesium superoxide dismutase (MnSOD) and dopamine D3 receptor (DRD3) genotype combinations. MnSOD-ala/DRD3-ser: MnSOD ala9 allele carriers (ala-ala homozygotes and ala-val heterozygotes), DRD3 ser9 homoygotes; MnSOD-ala/DRD3-gly: MnSOD ala9 allele carriers, DRD3 gly9 carriers (gly-gly heterozygotes and gly-gly homoygotes); MnSOD val/DRD3-ser: MnSOD val9 homozygotes, DRD3 ser9 homoygotes; MnSOD val/DRD3-gly: MnSOD val9 homozygotes, DRD3 gly9 carriers. By analysis of variance (ANOVA): F=6.16; df=3, 102; P=0.0007 *P=0.0004 vs MnSOD-ala/DRD3-ser; P=0.046 vs MnSOD-ala/DRD3 gly (post-hoc Newman-Keuls test) SD, standard deviation.
the role of age in the manifestation of certain gene effects in TD) as well as treatment-related variables such as medication dose, duration of treatment, and age at onset of treatment. Furthermore, treatment outcome is frequently related to severity of illness, and this must also be taken into consideration. Thus, it is clear that a model used to predict treatment outcome or susceptibility to adverse effects will be unavoidably complex, given the number of background and potential predicting variables that will need to be taken into account including gene–gene and gene–environment interactions.

Based on our previous work on the genetics of TD, we have developed a preliminary model that takes into account the various, background, clinical and genetic factors that we have studied (Segman et al, unpublished data). We employed logistic regression and entered background and clinical variables known to influence susceptibility to TD such as age, sex, cigarette-smoking, age at first antipsychotic treatment, duration of antipsychotic treatment, antipsychotic dose in chlorpromazine units, and total score on the Positive And Negative Syndrome Scale (PANSS). The genetic variables included were DRD3 gly9 allele carrier status, MsSOD ala9 allele carrier status, HTR2C ser23 allele carrier status, CYP17 genotype and HTR2A genotype. Interactions were also tested for inclusion, but none were retained in the final model. The overall model (Table II) was significant \(r^2=0.32; P=0.0005 \). The variables that significantly predicted TD within the model were age (OR=1.04, \(P=0.047 \)), PANSS total score (OR=1.02, \(P=0.014 \)), DRD3 gly9 allele carrier status (OR=4.39, \(P=0.006 \)), and HTR2A 102CC genotype (OR=4.18, \(P=0.02 \)). MsSOD ala9 allele carrier status and HTR2C ser23 allele carrier status were retained in the overall model, but were not significant. In this manner, 70.3\% of cases could be correctly classified, compared with 60.2\% prior to entry of the variables.

The model described here is not sensitive enough to have clinical utility. It is based on a single small sample of subjects, and may not be generalizable to other samples and populations. While recognizing these limitations, the model does support the concept that a combination of background, clinical, and genetic variables could potentially be used to evaluate a priori the risk for TD in patients treated with antipsychotic drugs that have the potential to induce this adverse effect. This approach could be extended to other pharmacogenetic phenotypes, and ultimately allow the development of clinically viable pharmacogenetic tests that will serve as the basis for a rational assessment of cost-benefit ratios in the choice of treatment with antipsychotics and other antipsychotic drugs.

Supported in part by grants from the Israel Ministry of Science (Indian-Israeli Human Genome Cooperation) and the Office of the Chief Scientist, Israel Ministry of Health. The authors thank Kyra Kanyas, MA, for assistance with statistical analysis.

Variable	\(\beta \)	SE	Wald	df	\(P \)	Odds ratio	95.0% CI
Background variables							
Age	0.04	0.02	3.93	1	0.047	1.04	1.00
Sex	0.20	0.49	0.16	1	0.686	1.22	0.47
Cigarette-smoking	0.14	0.46	0.09	1	0.766	1.15	0.47
Clinical variables							
PANSS total score	0.02	0.01	6.00	1	0.014	1.02	1.00
Age at first antipsychotic treatment	0.05	0.03	2.37	1	0.124	1.05	0.99
Genetic variables							
DRD3 gly9 allele	1.48	0.54	7.61	1	0.006	4.39	1.54
HTR2A 102CC genotype	8.80			2	0.012		
HTR2A 102CC genotype*	1.43	0.63	5.20	1	0.023	4.18	1.22
HTR2A 102TC genotype*	-0.20	0.54	0.14	1	0.71	0.82	0.28
MNSOD ala9 allele	-0.39	0.51	0.58	1	0.445	0.68	0.25
HTR2A ser23 allele	-0.94	0.53	3.13	1	0.077	0.39	0.14
Constant	-5.61	1.53	13.41	1	0.0	0.0	0.0

Table II. Logistic regression predicting tardive dyskinesia including background, clinical, and genetic variables. PANSS, Positive and Negative Syndrome Scale; CI, confidence interval. *102TT genotype is reference category. Significant values highlighted in bold font.
Farmacogenética de la terapia antipsicótica: temas clave de investigación y proyecciones para la implementación clínica

La hipótesis central en que se fundamenta la fármacogenética alude a que los factores genéticos tienen un papel significativo en las diferencias bien reconocidas entre los sujetos en la respuesta a los medicamentos y en la susceptibilidad a los efectos adversos. Si estos factores genéticos pueden ser identificados y comprendidos, ellos pueden servir como predictores para guiar a los clínicos en la adaptación de la medicación al paciente individual. Recientes desarrollos en el campo de la terapia antipsicótica sugieren que la farmacogenética podría tener un importante papel, permitiendo el empleo de antipsicóticos de primera generación (APG) en pacientes en quienes la utilización de antipsicóticos de segunda generación (ASG) está limitada por consideraciones acerca de la eficacia o los efectos adversos. En este artículo se discuten los temas clave que necesitan ser tomados en cuenta al diseñar e interpretar los estudios farmacogenéticos de los antipsicóticos, frente al respaldo de datos que provienen de estudios acerca de la genética de la disquinesia tardía (DT), un efecto adverso importante de los APG. Los temas considerados incluyen las ventajas y potenciales peligros de los estudios de asociación caso control de los rasgos farmacogenéticos, el papel de factores demográficos tales como edad y sexo, los efectos aditivos de los genes y las interacciones entre los genes (gen-gen) y de los genes con el ambiente. También se han considerado las proyecciones para la implementación de pruebas farmacogenéticas en la clínica, en el contexto de un modelo preliminar que ha sido probado para la predicción de susceptibilidad para la DT.

Pharmacogenétique du traitement antipsychotique : points essentiels de la recherche et perspectives pour la réalisation clinique

Le rôle essentiel joué par le facteur génétique au niveau des différences observées entre les individus en réponse au traitement et à la susceptibilité vis-à-vis des événements indésirables est la principale hypothèse de la pharmacogénétique. Si ces facteurs génétiques peuvent être identifiés et compris, ils peuvent servir de guide aux médecins pour adapter un traitement à chaque patient. Les développements récents dans le domaine du traitement antipsychotique suggèrent que la pharmacogénétique pourrait jouer un rôle important, permettant l’utilisation des antipsychotiques de première génération (APG) pour les patients chez qui l’utilisation des antipsychotiques de seconde génération (ASG) est limitée pour des raisons d’efficacité et d’événements indésirables. Dans cet article, nous parlerons des points-clés qui doivent être pris en considération pour concevoir et interpréter les études pharmacogénétiques des antipsychotiques par rapport à l’historique des données issues des études sur la génétique des dyskinésies tardives (DT), événement indésirable important des APG. Les questions étudiées comprennent les avantages et les embûches potentielles des études d’association cas-témoins des particularités pharmacogénétiques, le rôle des facteurs démographiques tels que l’âge et le sexe, les effets additifs des gènes et l’interaction gène-gène et gène-environnement. On envisage les perspectives de réalisation de l’expérimentation pharmacogénétique en clinique dans le contexte d’un modèle préliminaire déjà testé pour prévoir la susceptibilité aux DT.

REFERENCES

1. Lerer B, ed. Pharmacogenetics of Psychotropic Drugs. Cambridge, UK: Cambridge University Press; 2002.
2. Pickar D, Rubinow K. Pharmacogenomics of psychiatric disorders. Trends Pharmacol Sci. 2001;22:75-83.
3. Lieberman JA, Stroup TS, McEvoy JP, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209-1223.
4. Rochon PA, Stukel TA, Sykora K, et al. Atypical antipsychotics and parkinsonism. Arch Intern Med. 2005;165:1882-1888.
5. Poolsup N, Li Wan Po A, Knight TL. Pharmacogenetics and psychopharmacotherapy. J Clin Pharm Ther. 2000;25:197-220.
6. Lerer B, Segman RH, Fangerau, et al. Pharmacogenetics of tardive dyskinesia: Combined analysis of 780 patients supports association with dopamine D3 receptor gene ser9gly polymorphism. Neuropsychopharmacology. 2001;27:109-119.
7. Inada T, Dobashi I, Sugita T, et al. Search for a susceptibility locus to tardive dyskinesia. Hum Psychopharmacol. 1997;12:35-39.
8. Liao DL, Yeh YC, Chen HM, Chen H, Hong CJ, Tsai SJ. Association between the Ser6Gly polymorphism of the dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. *Neuropsychobiology*. 2001;44:95-98.

9. Garcia-Barcelo MM, Lam LC, Ungvari GS, Lam VK, Tang WK. Dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. *J Neural Transm*. 2001;108:671-677.

10. Lerer B, Segman RH, Tan E-C, et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. *Int J Neuropsychopharmacol*. 2005;8:411-425.

11. Lerer B, Macciardi F, Segman RH, et al. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. *Mol Psychiatry*. 2001;6:579-585.

12. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. *Am J Hum Genet*. 1999;65:220-228.

13. Segman RH, Lerer B. Age and the relationship of dopamine D2, serotonin 2C and serotonin 2A receptor genes to abnormal involuntary movements in chronic schizophrenia. *Mol Psychiatry*. 2002;7:137-139.

14. Segman RH, Heresco-Levy U, Finkel B, et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. *Mol Psychiatry*. 2001;6:225-229.

15. Basile VS, Masellis M, Potkin SG, Kennedy JL. Pharmacogenomics in schizophrenia: the quest for individualized therapy. *Hum Mol Gen*. 2002;11:2517–2530.

16. Segman RH, Heresco-Levy U, Finkel B, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia; additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. *Psychopharmacology*. 2000;152:408-413.

17. Segman RH, Heresco-Levy U, et al. Interactive effect of cytochrome P450 17α-hydroxylase and dopamine D3 receptor gene polymorphisms on abnormal involuntary movements in chronic schizophrenia. *Biol Psychiatry*. 2002;51:261-263.

18. Feigelson IS, Shames IS, Pike MC, Coerzec GA, Stanozyk PZ, Henderson BE. Cytochrome P450c17alpha gene polymorphism is associated with elevated estrogen and progesterone concentrations. *Cancer Res*. 1998;58:585-587.

19. Basile VS, Ozdemir V, Masellis M, et al. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia. *Mol Psychiatry*. 2001;6:230-234.

20. Hori H, Ohmori O, Shinkai T. Manganese superoxide dismutase cene polymorph and schizophrenia: relation to tardive dyskinesia. *Neuropsychopharmacology*. 2000;23:170-177.

21. Zhang ZJ, Zhang XB, Hou G, Sha WW, Reynolds GP. The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. *J Psychiatry Res*. 2002;36:317-324.

22. Zhang ZJ, Zhang XB, Hou G, Yao H, Reynolds GP. Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. *Psychiatr Genet*. 2003;13:187-192.