Objective. The aim of this study was to investigate the changes of regulatory T cells (Treg), interleukin-6 (IL-6), IL-10, transforming growth factor-β (TGF-β), and tumor necrosis factor-alpha (TNF-α) in patients with type 2 diabetes mellitus (T2DM). We performed a comprehensive search up to July 2016 for all clinical studies about the changes of Treg, IL-6, IL-10, IL-17, TGF-β, and TNF-α in T2DM patients versus healthy controls. A total of 91 articles (5642 cases and 7378 controls) were included for this meta-analysis. Compared with the controls (all p < 0.001), the patients had increased serum levels of IL-6, TGF-β, and TNF-α but decreased the percentage of peripheral CD4+CD25hiFoxp3+ Treg and serum IL-10 level. Furthermore, the percentage of peripheral CD4+CD25hiFoxp3+ Treg (p < 0.001) and serum IL-10 level (p = 0.033) were significantly lower in the patients with complication and in the patients without complication, respectively. No significant changes about the percentage of CD4+CD25hiFoxp3+ Treg (p = 0.360) and serum IL-17 level (p = 0.459) were found in T2DM patients. Conclusions. T2DM patients have decreased the percentage of peripheral CD4+CD25hiFoxp3+ Treg and levels of serum IL-10 but elevated serum levels of IL-6, TGF-β, and TNF-α. Presence of diabetic complications further lowers the peripheral CD4+CD25hiFoxp3+ Treg number.

1. Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common noncommunicable diseases characterized by insulin resistance and impaired insulin secretion [1, 2]. Metabolic proinflammatory disorder including chronic hyperglycemia and increased levels of circulating cytokines suggests immunological disturbances [3–7], which seriously affects the quality of life of the patients and imposes a large economic burden on the national health care system [8]. Genetic and environmental factors are blamed for T2DM and up to 25% of first-degree relatives of T2DM patients may develop this disease [9]. The origin and development of T2DM were involved in multiple risk factors [10]. Regulatory T cells (Treg) and cytokines play important roles in the development of T2DM.

Treg is a subset of CD4+ T cells that maintain peripheral tolerance and suppress antigen specific immune responses by secreting transforming growth factor-β (TGF-β), interleukin-10 (IL-10), and IL-4 to inhibit autoimmunity [11]. It was found that the ratios of CD4+CD25hiTreg/Th17 cells and CD4+CD25hiTreg/Th1 cells were significantly decreased in T2DM patients [12]. Expression of Foxp3, a key player for the development and function of Treg, correlates well with regulatory activity and number of Treg. Indeed, Foxp3 is exclusively expressed in CD4+CD25hiTreg [13–16]. A positive correlation between CD4+CD25hiFoxp3+Treg
and the enhanced expression of IL-6 on CD4+ T cells was observed in T2DM patients [17]. IL-10, as a multifunctional cytokine and secretion of Treg, plays a key role in the inflammatory response that is associated with insulin resistant states and T2DM [18]. Increased levels of IL-17 were found to protect against autoimmune mediated T1DM in nonobese diabetic mice [19]. On the other hand, loss of IL-17 has been associated with disease susceptibility in part because it has been suggested that the absence of IL-17 results in enhanced production of other proinflammatory cytokines [20]. TGF-β is also a multifunctional cytokine circulating as a biologically inactive form in human plasma [21, 22]. The TGF-β family includes multifunctional molecules that exert specific effects on cell proliferation, differentiation, migration, development, tissue remodeling, and repair [23]. TNF-α inhibits the insulin signaling cascade through regulating several pivotal regulatory proteins, such as the insulin receptor substrate (IRS) and Akt substrate 160 in human skeletal muscle in vitro [24] and in vivo [25]. It has reported that polymorphism of immune genes such as TNF-α [26] and TGF-β [27] was associated with the development of T2DM. Intriguingly, increased renal production of TGF-β was a distinct feature of diabetes [28–31].

Within the past few years, many clinical studies have been focusing on the association of Treg with proinflammatory and immunosuppressive cytokines in T2DM. Despite intensive research efforts, results of these studies have been inconsis tent. Therefore, we performed this meta-analysis synthesizing the data from case-control studies to evaluate changes of Treg, IL-6, IL-10, IL-17, TGF-β, and TNF-α in T2DM patients.

2. Materials and Methods

2.1. Study Identification and Search Strategy. Our study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria [32]. We identified relevant studies of Treg, IL-6, IL-10, IL-17, TGF-β, and TNF-α in T2DM patients by systematically searching PubMed, Wanfang database, Chinese-Cqvip, and CNKI databases from February 1, 1991, to July 15, 2016. The search terms used were as follows: (“interleukin-6” or “IL-6”) or (“interleukin-10” or “IL-10”) or (“interleukin-17” or “IL-17”) or (“transforming growth factor beta” or “TGF-β”) or (“tumor necrosis factor alpha” or “TNF-α”) or (“regulatory T cells” or “Treg” or “CD4+CD25+ T cell” or “CD4+CD25+Foxp3+ T cell”) and (“type 2 diabetes mellitus” or “type 2 diabetes” or “diabetes mellitus” or “diabetic patients” or “T2DM” or “DM”). In addition, we also conducted an extensive literature search and articles were further identified in reference lists. Data published in either English or Chinese were included.

2.2. Inclusion Criteria. We reviewed all relevant articles using the following inclusion criteria: (1) the study should evaluate the relationship of CD4+CD25+Foxp3+ Treg, CD4+CD25+ Treg, IL-6, IL-10, IL-17, TGF-β, or TNF-α with T2DM patients; (2) the design had to be a case-control study; (3) original data were displayed or could be converted to as mean ± SD; and (4) original report showed no duplicated data.

2.3. Quality Assessment and Data Extraction. The data were extracted independently by two reviewers (Yong-chao Qiao and Jian Shen) by using predefined data extraction forms and the quality of all eligible studies was evaluated according to the Newcastle-Ottawa Scale (NOS) [33]. The following information was extracted: (1) name of the first author; (2) date of publication; (3) country of the study; (4) study design; (5) sample size of patients and controls; (6) mean age of the sample; and (7) mean ± SD of patients and controls. In case of disagreement, a third investigator (Hai-lu Zhao) was invited to assess such articles and the disagreements were resolved through discussion.

2.4. Statistical Analysis. We presented the data (sample size, mean ± SD) to illustrate the changes of Treg, IL-6, IL-10, IL-17, TGF-β, and TNF-α in T2DM patients versus healthy controls, and Chi-squared Q test and I² statistics were used to assess heterogeneity. When I² < 50%, the heterogeneity was considered significant and a random effect model was used; otherwise, a fixed-effect model was used. Considering the influence of diabetic complications, patients were divided into two groups (T2DM with complication and T2DM without complication) for subgroup analysis. Regression analysis is also an important method for exploring sources of heterogeneity. We performed sensitivity analysis by limiting the studies of NOS score ≥ 7 or excluding studies with a high risk of bias. Publication bias was examined graphically by constructing Egger’s test and p < 0.05 was considered to be representative of statistically significant publication bias. Stata 12.0 software was performed in this meta-analysis.

3. Results

3.1. The Process and Results of Selection. The flow chart of the article search and inclusion process was displayed in Figure 1. Based on the search strategy, a total of 5,064 articles were collected and 332 were removed after our initial screening. Furthermore, 3,954 articles were excluded because they were not DM relevant, have no controls, or were animal studies or review articles. Then, we excluded 687 studies because of duplicated data, no original data, or original data expressed with figures. Eventually, this meta-analysis included 91 articles involving 138 case-control studies of 5642 T2DM patients and 7378 healthy controls: 13 for IL-6 [34–46], 22 for TGF-β [23, 47–67], 7 for TNF-α [34–36, 45, 68, 69], 6 for CD4+CD25+Foxp3+ Treg [70–75], 15 for IL-10 [76–90], 18 for CD4+CD25+Foxp3+ Treg [70, 72, 74, 75, 91–104], and 10 for IL-17 [105–114]. Main characteristics of the 91 included studies were listed in Tables 1–7. The case-control study of T2DM with complication was labelled with “*”. NOS results showed high methodological quality.

3.2. Results of Meta-Analysis. Compared with the controls, T2DM patients had significantly increased levels of serum IL-6 (SMD, 1.28; 95% CI, 0.73 to 1.83; p < 0.001) (Figure 2),
Table 1: Characteristics of studies about IL-6 (pg/mL) included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Plomgaard	2007	Denmark	96	103	7
Volpe	2014	Brazil	29	5/11	8
Yeo	2010	Korea	55	257/231	8
Kado*	1999	Japan	57	0.784	7
Lukic	2014	Serbia	30	3.48	8
Lukic*	2014	Serbia	30	3.48	8
Hansen*	2012	Denmark	8	1.4	7
Andriankaja	2009	USA	30	NR	8
Andriankaja*	2009	USA	50	NR	8
Guzel	2013	Turkey	28	NR	8
Guzel*	2013	Turkey	17	NR	8
Aso	2003	Japan	42	3.15	7
Lim*	2004	England	56	21/18	8
Lim*	2004	England	41	21/18	7
Hui*	2015	China	48	13/7	8
Daniele	2014	USA	17	7/8	8
Glowińska	2003	Polish	28	2.3	7

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *T2DM with complication and *data (mean ± SD) converted from mean (95% CI).

Figure 1: A flow chart of the article search and inclusion process.

TGF-β (SMD, 2.88; 95% CI, 2.37 to 3.40; p < 0.001) (Figure 3), and TNF-α (SMD, 1.56; 95% CI, 1.10 to 2.02; p < 0.001) (Figure 4) but significantly decreased the percentage of CD4⁺CD25⁺Foxp3⁺Treg (SMD, −0.47; 95% CI, −0.72 to −0.23; p < 0.001) (Figure 5) and the level of serum IL-10 (SMD, −1.37; 95% CI, −2.32 to −0.42; p = 0.005) (Figure 6). Changes in the percentage of CD4⁺CD25⁺Treg (SMD, −0.24; 95% CI, −0.76 to 0.28; p = 0.360) (Figure 7) and IL-17 (SMD, −0.51; 95% CI, −1.87 to 0.84; p = 0.459) (Figure 8) were not significant. Some but not all the results of the meta-analysis displayed significant heterogeneity.

3.3. Subgroup Analysis and Regression Analysis. Subgroup analysis was performed to explore the impact of diabetic complication on the changes in Treg and cytokines. As shown in Figures 2–8, both T2DM patients with complication and the patients without complication had significantly increased levels of serum IL-6 (Figure 2), TGF-β (Figure 3),
Table 2: Characteristics of studies about TGF-β (μg/L) included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score	DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *T2DM with different complication; **T2DM with different duration limited.	
Azar[47]	1999	Lebanon	26	8/18	0.558	0.107 27	10/17 0.593 0.064 8
Azar[48]	2000	Lebanon	8	3/5	10.8	2.3 15	9/6 4.1 0.5 8
Azar[48]	2000	Lebanon	9	2/7	9.9	2.8 15	9/6 4.1 0.5 8
Azar[48]	2000	Lebanon	8	5/3	10.7	2.2 15	9/6 4.1 0.5 8
Jun-Wen[49]	2007	China	61	35/26	315.9	224.5 19	10/9 68.47 31.75 7
Chi[50]	2013	China	20	11/9	18.55	2.67 18	10/8 8.97 4.087 8
Chi[50]	2013	China	20	9/11	19.04	2.87 18	10/8 8.97 4.087 8
Chi[50]	2013	China	21	13/8	18.12	3.17 18	10/8 8.97 4.087 8
Azar[a][48]	2000	Lebanon	8	3/5	10.8	2.3 35	10/9 68.47 31.75 7
Azar[b][48]	2000	Lebanon	9	2/7	9.9	2.8 35	9/6 4.1 0.5 8
Azar[c][48]	2000	Lebanon	8	5/3	10.7	2.2 35	9/6 4.1 0.5 8
Jun-Wen[49]	2007	China	8	3/5	10.8	2.3 35	10/9 68.47 31.75 7
Chi[50]	2013	China	20	11/9	18.55	2.67 18	10/8 8.97 4.087 8
Chi[50]	2013	China	20	9/11	19.04	2.87 18	10/8 8.97 4.087 8
Chi[50]	2013	China	21	13/8	18.12	3.17 18	10/8 8.97 4.087 8
Azar[48]	2000	Lebanon	8	3/5	10.8	2.3 35	10/9 68.47 31.75 7
Azar[48]	2000	Lebanon	9	2/7	9.9	2.8 35	9/6 4.1 0.5 8
Azar[48]	2000	Lebanon	8	5/3	10.7	2.2 35	9/6 4.1 0.5 8
Jun-Wen[49]	2007	China	8	3/5	10.8	2.3 35	10/9 68.47 31.75 7
Chi[50]	2013	China	20	11/9	18.55	2.67 18	10/8 8.97 4.087 8
Chi[50]	2013	China	20	9/11	19.04	2.87 18	10/8 8.97 4.087 8
Chi[50]	2013	China	21	13/8	18.12	3.17 18	10/8 8.97 4.087 8
Azar[48]	2000	Lebanon	8	3/5	10.8	2.3 35	10/9 68.47 31.75 7
Azar[48]	2000	Lebanon	9	2/7	9.9	2.8 35	9/6 4.1 0.5 8
Azar[48]	2000	Lebanon	8	5/3	10.7	2.2 35	9/6 4.1 0.5 8

Table 3: Characteristics of studies about TNF-α (pg/mL) included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Plomgaard	2007	Denmark	96 72/24	103 70/33	8
Yaturu	2008	USA	50 NR	59 NR	7
Lin	2015	China	42 20/22	30 14/16	8
Lin	2015	China	45 25/20	30 14/16	8
Volpe	2014	Brazil	29 10/39	16 5/11	7
Yeo	2010	Korea	55 27/28	488 257/231	
Lin	2015	China	42 20/22	30 14/16	8
Lukic	2014	Serbia	30 NR	15 NR	8
Daniele	2014	USA	17 13/4	15 7/8	7

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *T2DM with complication and *data (mean ± SD) converted from mean (95% CI).

Table 4: Characteristics of studies about the percentage of CD4+CD25+Foxp3+Tregs (%) in the CD4+ lymphocyte included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Haseda	2013	Japan	20 8/12	30 10/20	8
Li	2011	China	18 14/4	18 12/6	7
Li	2014	China	15 NR	21 13/8	9
Li	2014	China	23 NR	21 13/8	9
Jing	2009	China	60 33/27	15 8/7	9
Zhang	2009	China	17 9/8	15 8/7	7
Zhang	2012	China	16 11/5	19 7/12	6

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. **T2DM with different complication.

Table 5: Characteristics of studies about IL-10 (pg/mL) included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Acharya	2015	India	15 NR	15 NR	8
Dworacka	2015	Poland	30 17/13	30 12/3	9
You-fei	2009	China	30 14/16	30 13/17	9
Ling-Xia	2013	China	20 10/10	20 10/10	9
Li	2014	China	63 4/6	57 5/5	7
Chen	2014	China	24 NR	25 19/11	7
Lu	2014	China	22 NR	25 19/11	7
Hong	2007	China	46 22/24	39 19/20	7
Al-Shukaili	2013	Oman	57 28/29	30 20/10	8
Xiaojing	2008	China	42 27/15	40 25/15	7
Yue-Ying	2010	China	34 19/15	50 22/28	8
Yue-Ying	2010	China	50 24/26	50 22/28	8
Wei	2013	China	39 NR	40 NR	7
Wei	2013	China	39 NR	40 NR	7
Jing	2013	China	20 11/9	30 NR	7
Jing	2013	China	30 19/11	30 NR	8
Yaghini	2011	Iran	131 NR	120 NR	8
Hu	2015	China	61 NR	40 NR	8
Hu	2015	China	52 NR	40 NR	8
Zhao-Hui	2014	China	50 26/24	50 24/26	8
Zhao-Hui	2014	China	50 28/22	50 24/26	8

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *T2DM with complication.
Table 6: Characteristics of studies about the percentage of CD4\(^{+}\)CD25\(^{+}\)Tregs (%) in the CD4\(^{+}\) lymphocyte included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Afzal [91]	2014	Pakistan	30	21/9	4.84
Afzal* [91]	2014	Pakistan	152	21/9	4.84
Chi [92]	2011	China	52	20/20	2.07
Chi* [92]	2011	China	68	20/20	2.07
Haseda [70]	2013	Japan	20	10/20	6.5
Ling [93]	2006	China	25	13/14	0.4
Ling [93]	2006	China	20	10/11	3.14
Kukreja [94]	2002	USA	15	12/14	0.4
Hong [95]	2011	China	20	15/10	1.39
Hong* [95]	2011	China	18	15/10	1.39
Ling* [96]	2006	China	20	13/7	12.98
Li [72]	2014	Pakistan	15	12/14	0.7
Li* [72]	2014	Pakistan	152	21/9	756.55
Arababadi [108]	2010	Iran	100	40/60	0.43
Arababadi* [108]	2010	Iran	100	40/60	0.43
Liu [109]	2016	China	19	8/12	7.84
Roohi [110]	2015	India	38	21/9	4.24
Zhang [102]	2013	China	36	11/9	12.4
Zhang* [104]	2013	China	30	11/9	12.4

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *: T2DM with different complication.

Table 7: Characteristics of studies about IL-17 (pg/mL) included in this meta-analysis.

Author	Year	Country	Case	Control	NOS score
Pernet Hara [105]	2016	Brazil	15	0/10	4.39
Suzuki [106]	2011	Japan	56	2/28	117.99
Afzal [107]	2014	Pakistan	30	21/9	756.55
Afzal* [107]	2014	Pakistan	152	21/9	756.55
Arababadi [108]	2010	Iran	100	40/60	4.43
Arababadi* [108]	2010	Iran	100	40/60	4.43
Liu [109]	2016	China	19	8/12	7.84
Roohi [110]	2015	India	38	21/9	4.24
Zhang* [111]	2015	China	30	11/9	12.4
Kologrivova* [112]	2014	Russia	35	24/10	4.24
Bilir [111]	2016	Turkey	33	15/18	54.85
Bilir* [112]	2016	Turkey	37	17/20	67.25
Vasanthakumar [114]	2015	India	65	35/53	12.75
Vasanthakumar* [114]	2015	India	97	35/53	12.75

DM: diabetes mellitus; SZ: sample size; M/F: man/female; SD: standard deviation; NR: not reported. *: T2DM with complication; a: data converted from median (interquartile); b: data converted from median (range); c: data converted from geometrical mean (range).
Study ID	SMD (95% CI)	Weight (%)
T2DM without complication		
Plomgaard et al., 2007	0.32 (0.04, 0.60)	6.25
Volpe et al., 2014	1.05 (0.40, 1.70)	5.83
Yeo et al., 2010	3.29 (2.95, 3.63)	6.20
Lukic et al., 2014	1.63 (0.92, 2.34)	5.74
Andriankaja et al., 2009	−0.13 (−0.51, 0.24)	6.17
Guzel et al., 2013	1.36 (0.78, 1.93)	5.94
Aso et al., 2003	1.67 (1.19, 2.16)	6.05
Lim et al., 2004	0.14 (−0.27, 0.55)	6.13
Daniele et al., 2014	1.00 (0.26, 1.74)	5.69
Glowinska and Urban, 2003	2.39 (1.57, 3.20)	5.57
Subtotal (I² = 96.7%, p = 0.000)		
T2DM with complication		
Kado et al.*, 1999	0.91 (0.32, 1.50)	5.92
Lukic et al.*, 2014	2.78 (1.92, 3.63)	5.50
Hansen et al.*, 2012	0.85 (−0.18, 1.88)	5.19
Andriankaja et al.*, 2009	0.45 (0.15, 0.75)	6.23
Guzel et al.*, 2013	2.81 (1.98, 3.64)	5.54
Lim et al.*, 2004	0.08 (−0.36, 0.52)	6.10
Hui et al.*, 2015	1.54 (0.95, 2.12)	5.92
Subtotal (I² = 90.7%, p = 0.000)		
Overall (I² = 95.3%, p = 0.000)		
Note: weights are from random effects analysis		

Figure 2: Forest plots for serum IL-6 in T2DM patients and controls with random effects model (T2DM without complication, p = 0.002; T2DM with complication, p < 0.001; overall, p < 0.001). *T2DM with complication.

and TNF-α (Figure 4), while not significant changes were found in the percentage of peripheral CD4⁺CD25⁺Treg (Figure 7) and IL-17 (Figure 8). Intriguingly, T2DM patients with complication showed lower percentage of peripheral CD4⁺CD25⁺Foxp3⁺Treg (p < 0.001) (Figure 5), whereas patients without complication had decreased levels of serum IL-10 (p = 0.033) (Figure 6).

The high heterogeneity existed in some subgroup analysis. In order to explore the source of heterogeneity, we further conducted regression analysis according to the complication as covariate. The results were as follows: TGF-β (t = 4.08; p < 0.001; 95% CI, 1.23 to 3.65), IL-6 (t = 0.09; p = 0.929; 95% CI, −1.09 to 1.18), TNF-α (t = 0.34; p = 0.740; 95% CI, −1.23 to 1.67), CD4⁺CD25⁺Foxp3⁺Treg (t = −2.04; p = 0.097; 95% CI, −1.55 to 0.18), IL-10 (t = −0.36; p = 0.723; 95% CI, −5.33 to 3.77), CD4⁺CD25⁺Treg (t = 0.63; p = 0.534; 95% CI, −0.96 to 1.81), and IL-17 (t = −0.56; p = 0.586; 95% CI, −4.84 to 2.86). Therefore, diabetic complication was a key influencing factor for the high heterogeneity in the meta-analysis of TGF-β but not the others.

3.4. Sensitivity Analysis. Sensitivity analysis was used to assess the stability of the results by excluding studies with high risk of bias and no significant changes in the results were found. We further conducted sensitivity analysis by including studies with high NOS score (≥7) and found that all the results remained consistent.

3.5. Publication Bias. Egger’s test showed significant publication bias in the meta-analysis of TNF-α but not the others (Figure 9).
Study ID SMD (95% CI) Weight (%)

T2DM without complication

Study ID	SMD (95% CI)	Weight (%)
Azar et al., 1999	-0.40 (-0.94, 0.15)	2.40
Azar et al., 2000	4.82 (3.13, 6.51)	1.95
Azar et al., 2000	3.34 (2.06, 4.63)	2.14
Azar et al., 2000	4.95 (3.22, 6.67)	1.93
Jun-Wen et al., 2007	1.25 (0.70, 1.80)	2.40
Chi, 2013	2.81 (1.90, 3.72)	2.29
Ehnert et al., 2015	-2.12 (-3.07, -1.16)	2.27
Changxin, 2007	0.21 (-0.26, 0.69)	2.41
Hellmich et al., 2000	5.07 (3.84, 6.31)	2.16
Herder et al., 2009	3.06 (2.91, 3.20)	2.46
Hai-bing et al., 2001	1.49 (0.66, 2.32)	2.32
Zhen-zuo et al., 2005	2.46 (1.67, 3.26)	2.33
Rui-li and Lan-Ji, 2011	2.00 (1.32, 2.68)	2.36
Pfeiffer et al., 1996	5.84 (4.76, 6.91)	2.23
Yan-Jun et al., 2002	0.32 (-0.15, 0.80)	2.41
Yaping, 2008	0.42 (-0.03, 0.86)	2.42
Ye-Sheng et al., 2005	1.30 (0.99, 1.61)	2.44
Ming-bin et al., 2002	0.76 (0.02, 1.50)	2.34
Chun-Yan et al., 2005	1.02 (0.52, 1.53)	2.41
Yener, 2008	3.11 (2.40, 3.82)	2.35
Yuan, 2011	-0.71 (-1.11, -0.32)	2.43
Wei-jie and Bai, 2007	0.81 (0.34, 1.28)	2.42
Zhou et al., 2005	0.15 (-0.36, 0.66)	2.41

Subtotal (I² = 97.6%, p = 0.000) 1.74 (1.05, 2.42) 53.28

T2DM with complication

Study ID	SMD (95% CI)	Weight (%)
Chi*, 2013	2.88 (1.96, 3.80)	2.29
Chi**, 2013	2.53 (1.67, 3.38)	2.31
Changxin*, 2007	3.30 (2.55, 4.05)	2.34
Hellmich et al.*, 2000	6.16 (4.52, 7.80)	1.97
Hai-bing et al.*, 2001	3.95 (2.65, 5.26)	2.13
Hai-bing et al.*, 2001	2.30 (1.41, 3.19)	2.30
Zhen-zuo et al.*, 2005	4.67 (3.25, 6.10)	2.07
Zhen-zuo et al.*, 2005	3.70 (2.61, 4.80)	2.22
Rui-li and Lan-Ji*, 2011	6.98 (5.49, 8.48)	2.04
Rui-li and Lan-Ji**, 2011	5.14 (3.99, 6.29)	2.20
Da-wei et al.*, 2013	9.03 (7.29, 10.78)	1.92
Da-wei et al.*, 2013	5.50 (4.51, 6.49)	2.26
Yan-Jun et al.*, 2002	1.10 (0.58, 1.62)	2.40
Yaping*, 2008	3.59 (2.81, 4.38)	2.33
Ye-Sheng et al.*, 2005	1.75 (1.42, 2.08)	2.44
Ming-bin et al.*, 2002	3.58 (2.45, 4.70)	2.21
Ming-bin et al.*, 2002	2.10 (1.21, 2.98)	2.30
Wei-jie and Bai, 2007	6.28 (5.23, 7.32)	2.24
Wei-jie and Bai**, 2007	5.20 (4.30, 6.10)	2.29
Zhou et al.*, 2005	6.33 (5.08, 7.59)	2.15
Zhou et al.*, 2005	3.71 (2.86, 4.55)	2.31

Subtotal (I² = 94.2%, p = 0.000) 4.19 (3.40, 4.97) 46.72

Overall (I² = 96.9%, p = 0.000) 2.88 (2.37, 3.40) 100.00

Note: weights are from random effects analysis.

Figure 3: Forest plots for serum TGF-β in T2DM patients and controls with random effects model (T2DM without complication, p < 0.001; T2DM with complication, p < 0.001; overall, p < 0.001). *T2DM with complication. **T2DM with different complication.
4. Discussion

In this study, we found that the patients with T2DM had increased serum levels of IL-6, TGF-β, and TNF-α but decreased percentage of peripheral CD4⁺CD25⁺Foxp3⁻Treg and serum IL-10 level. Furthermore, the percentage of peripheral CD4⁺CD25⁺Foxp3⁻Treg and serum IL-10 level were influenced by diabetic complication.

The expression of inflammatory and proinflammatory cytokines from peripheral blood T lymphocyte plays an important role in the development of diabetes and diabetic complications [17]. Many studies have proved the maintenance of immunological self-tolerance by CD4⁺CD25⁺Foxp3⁻Foxp3⁻Treg and CD4⁺CD25⁺Foxp3⁻Foxp3⁻Treg [115]. Treg could suppress inflammatory response through contact inhibition [116]. In this study, the finding of decreased percentage of peripheral CD4⁺CD25⁺Foxp3⁻Treg in T2DM patients indicates that Foxp3 might be a key player for the development and function of Treg. CD4⁺CD25⁺Foxp3⁻Foxp3⁻Treg differs from CD4⁺CD25⁺Foxp3⁻Treg. CD4⁺CD25⁺Foxp3⁻Treg might not sufficiently represent the negative regulatory Treg. Some researchers also considered that the differentiation and function maintenance of Treg were dependent on the expression of the Foxp3, and, consequently, Foxp3 is considered as the key transcriptional factor in Treg cells [117–119].

IL-10 and TGF-β secreted by Treg [116, 120] are the biomarkers in T2DM patients [2, 116]. Previous studies suggested that IL-10 could suppress the proliferation of T leukomonocyte and the secretion of cytokines [121], whereas TGF-β may sustain the expression of Foxp3 in CD4⁺CD25⁺Foxp3⁻Treg to enhance immunosuppressive function [122, 123]. Consistent with our findings, several studies have shown a significantly decreased level of serum IL-10 in T2DM patients [88, 124]. Correlation of T2DM with Treg cells and TGF-β is generally negative [116].

IL-6 can be released from macrophages and adipocytes in adipose tissue [125–127]. Adipose tissue also produces TNF-α to stimulate IL-6 gene expression [128]. A recent investigation has showed that IL-6 could enhance Treg in mice [129]. In the present meta-analysis of T2DM patients,
increased levels of serum IL-6, TGF-β, and TNF-α coexisted with decreased levels of IL-10 and decreased percentage of CD4⁺CD25⁺Foxp₃⁺Treg. This finding highlights that the cytokines and growth factors may originate from multiple sources such as macrophages, T cells, and other tissue cells rather than Treg alone. Furthermore, chronic persistent activation of innate immunity and IL-6 secretion occurring in T2DM might inhibit the development of inducible Treg cells.

Th17 cells could produce IL-17, TNF-α, and IL-6 and induce inflammation in the pathogenesis of autoimmune diseases [130]. Th17 cells are a major T cell subset implicated in the pathogenesis of multiple sclerosis, rheumatoid arthritis, and psoriasis [131]. A previous study has revealed that not only Th1/Th2 imbalance but also Th17/Treg imbalance can contribute to the pathogenesis of autoimmune diseases such as T1DM as well as proinflammatory disorders and such as T2DM [2]. T2DM patients have elevated serum levels of IL-6, IL-1β, and TGF-β, the cytokines known to induce Th17 differentiation [131]. Enhanced production of IL-6 and TNF-α and decreased levels of serum IL-10 that occurred in T2DM patients may suppress Treg cells and ratios of Treg to Th17 and Th1 cells [132, 133]. The immunocompromised effects on macrophages and lymphocytes likely drive an inflammatory state to contribute to the occurrence of diabetic complications [12]. Here, in this study, no significant changes of Foxp₃⁺Treg cells and serum IL-17 levels were found in T2DM subjects without complication. In contrast, decreased Foxp₃⁺Treg cells were evident in T2DM subjects with complication. These findings indicate a close correlation of CD4⁺CD25⁺Foxp₃⁺Treg and diabetic complication in T2DM.

There is an intimate relationship of the differentiation of Th17 cells with the relative abundance of peripheral CD4⁺CD25⁺Foxp₃⁺Treg cells and the serum levels of IL-6, IL-10, and TGF-β. Although changes of serum levels of IL-17 were not significant in this meta-analysis of T2DM patients versus controls, IL-17 may be a clue to the possible involvement of Th17 cells in T2DM pathogenesis. Firstly, a decrease of Treg cells might be accompanied by an increase of Th17 cells. The study by Guan et al. has indicated the existence of a developmental switch between Th1/Th17 cells, on one hand, and Th2/Treg cells, on the other hand [134]. Secondly, in the presence of high serum levels of IL-6 and
TGF-β, as we reported here, differentiation of Th17 cells might be favoured. Lastly, Th17 cells might be, together with innate cells, a primary source of the increased IL-6 levels and might be actively orchestrating the immunity-driven, chronic inflammation of target tissues and organs in T2DM. In this systematic review, the studies examining the number of Th17 cells in T2DM were too scarce for being included in the meta-analysis. Future studies are required to focus on the role of Th17/Treg and products of the Th17 cells in the pathogenesis of T2DM and associated complications.

Diabetic complications such as retinopathy, nephropathy, and cardiovascular disease affect immune cells and cytokines in type 2 diabetes [135,136]. Actually, urinary TGF-β levels are elevated in the presence of microalbuminuria and overt proteinuria [137]. Additionally, elevated plasma TGF-β may reflect the state of hyperglycemia in T2DM patients [48]. Systemic inflammation in T2DM is linked to the development of diabetic complications [138,139]. Yet, the mechanism of immune alteration in T2DM and diabetic complication remains unclear. In this meta-analysis, diabetic complication indeed has an impact on the percentage of peripheral CD4+CD25+Foxp3+ Treg and level of serum IL-10. The percentage of Treg cells and levels of cytokines in T2DM may also depend on ethnicity, sex, weight, age, and disease duration.

Publication bias might influence the interpretation of our final results. The results of Egger's tests explain that no publication bias existed in all comparisons except for TNF-α. The publication bias in this meta-analysis might be attributed

Study ID	SMD (95% CI)	Weight (%)
T2DM without complication		
You-fei et al., 2009	4.37 (3.42, 5.31)	4.73
Ling-Xia, 2013	-7.78 (-9.64, -5.93)	4.17
Li, 2014	-3.05 (-3.57, -2.52)	4.88
Chen et al., 2014	-1.26 (-1.88, -0.65)	4.86
Hong et al., 2007	0.24 (0.19, 0.67)	4.91
Al-Shukaili et al., 2013	0.71 (0.25, 1.16)	4.90
Xiaoqing, 2008	0.25 (-0.19, 0.68)	4.91
Yue-Ying et al., 2010	-0.33 (-0.77, 0.11)	4.91
Wei et al., 2013	0.42 (-0.02, 0.87)	4.90
Jing et al., 2013	-0.04 (-0.61, 0.52)	4.87
Yaghini et al., 2011	-2.90 (-3.25, -2.54)	4.92
Hua et al., 2015	0.48 (0.08, 0.89)	4.91
Zhao-Hui et al., 2014	-7.70 (-8.85, -6.55)	4.63
Subtotal (I² = 98.2%, p = 0.000)	-1.17 (-2.24, -0.10)	62.51

T2DM with complication		
Acharya et al.*, 2015	-2.35 (-3.29, -1.40)	4.73
Dworacka et al.*, 2015	0.24 (-0.27, 0.75)	4.89
Chen et al.*, 2014	-3.98 (-4.98, -2.98)	4.70
Yue-Ying et al.*, 2010	-1.39 (-1.82, -0.95)	4.91
Wei et al.*, 2013	3.09 (2.43, 3.74)	4.84
Jing et al.*, 2013	1.19 (0.64, 1.74)	4.88
Hua et al.*, 2015	3.53 (2.87, 4.19)	4.84
Zhao-Hui et al.*, 2014	-17.65 (-20.15, -15.14)	3.70
Subtotal (I² = 98.7%, p = 0.000)	-1.86 (-3.91, 0.20)	37.49
Overall (I² = 98.4%, p = 0.000)	-1.37 (-2.32, -0.42)	100.00

Note: weights are from random effects analysis.
to studies of small samples and positive results published more easily than negative reports.

There are some limitations in this meta-analysis when interpreting the findings. Firstly, we have selected random effect model to synthesize SMD because of the high heterogeneity existing in some comparisons, but this selection may affect the accuracy of outcome. Secondly, we could not conduct further subgroup analysis of gender, weight, and disease duration because most of the included studies lack sufficient original data. Thirdly, articles published in Chinese or English are included, while unpublished data and papers published in other languages are unknown.

5. Conclusions

In summary, T2DM patients and the patients with diabetic complication have decreased immunosuppressive CD4⁺CD25⁺Foxp3⁺Treg cells and increased proinflammato-
Study ID	SMD (95% CI)	Weight (%)
T2DM without complication		
Pernet Hara et al., 2016	−3.20 (−4.43, −1.98)	6.85
Afzal et al., 2014	−0.48 (−0.99, 0.04)	7.18
Arababadi et al., 2010	5.46 (4.85, 6.06)	7.15
Roohi et al., 2014	0.08 (−0.36, 0.53)	7.20
Bilir et al., 2016	1.89 (1.31, 2.47)	7.16
Vasanthakumar et al., 2015	−3.54 (−4.06, −3.03)	7.18
Subtotal (I² = 99.1%, p = 0.000)	0.05 (−2.44, 2.54)	42.70
T2DM with complication		
Suzuki et al.*, 2011	−0.06 (−0.51, 0.38)	7.20
Afzal et al.*, 2014	−0.65 (−1.05, −0.25)	7.21
Arababadi et al.*, 2010	−8.05 (−8.89, −7.21)	7.06
Liu et al.*, 2016	0.68 (0.03, 1.32)	7.13
Zhan and Jiang*, 2015	0.68 (0.16, 1.20)	7.17
Kologrivova et al.*, 2014	1.16 (0.60, 1.72)	7.16
Bilir et al.*, 2016	1.71 (1.16, 2.26)	7.17
Vasanthakumar et al.*, 2015	−3.05 (−3.48, −2.63)	7.20
Subtotal (I² = 98.8%, p = 0.000)	−0.93 (−2.59, 0.72)	57.30
Overall (I² = 98.9%, p = 0.000)	−0.51 (−1.87, 0.84)	100.00

Note: weights are from random effects analysis

Figure 8: Forest plots for serum IL-17 in T2DM patients and controls with random effects model (T2DM without complication, \(p = 0.969 \); T2DM with complication, \(p = 0.269 \); overall, \(p = 0.459 \)). *T2DM with complication.

Abbreviations

T2DM: Type 2 diabetes mellitus
Treg: Regulatory T cells
IL-6: Interleukin-6
IL-10: Interleukin-10
IL-17: Interleukin-17
TGF-β: Transforming growth factor-beta
TNF-α: Tumor necrosis factor-alpha.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

Yong-chao Qiao designed the study, implemented the study protocol, collected and analyzed data, and wrote the first draft. Jian Shen directed statistical analyses of the data and designed the study. Lan He, Xue-zhi Hong, Fang Tian, Yan-hong Pan, Ling Liang, and Xiao-xi Zhang analyzed and interpreted the data. Hai-lu Zhao designed the study, wrote the manuscript, and revised the submission. All authors contributed to the discussion and approved the submission of the final manuscript. Yong-chao Qiao and Jian Shen contributed equally to this paper.

Acknowledgments

The authors would like to thank Mr. Golden Wilson for his English proofing. Funding for this work was provided by the National Natural Science Foundation of China (81471054).
Figure 9: Egger’s test about the Treg and cytokines for publication bias ((a) IL-6, $t = 1.31$, $p = 0.209$, CI, -2.46 to 10.33; (b) TGF-β, $t = 1.20$, $p = 0.238$, CI, -1.20 to 4.69; (c) TNF-α, $t = 3.98$, $p = 0.004$, CI, 2.52 to 9.49; (d) CD4$^+$CD25$^+$Foxp3$^+$Treg, $t = -1.22$, $p = 0.277$, CI, -22.58 to 8.05; (e) IL-10, $t = -1.26$, $p = 0.223$, CI, -15.80 to 3.93; (f) CD4$^+$CD25$^+$Treg, $t = -0.95$, $p = 0.351$, CI, -11.97 to 4.43; (g) IL-17, $t = -0.20$, $p = 0.845$, CI, -26.99 to 22.44).
and the Innovation Project of Guangxi Graduate Education (JGY2015128).

References

[1] J.-D. Lin, T.-L. Hsia, C.-Z. Wu et al., “The first and second phase of insulin secretion in naive Chinese type 2 diabetes mellitus,” *Metabolism: Clinical and Experimental*, vol. 59, no. 6, pp. 780–786, 2010.

[2] C. Zhang, C. Xiao, P. Wang et al., “The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: relationship with diabetic nephropathy,” *Human Immunology*, vol. 75, no. 4, pp. 289–296, 2014.

[3] M. Saxena, N. Srivastava, and M. Banerjee, “Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus,” *Molecular Biology Reports*, vol. 40, no. 11, pp. 6271–6279, 2013.

[4] J. C. Pickup, M. B. Mattock, G. D. Chusney, and D. Burt, “NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X,” *Diabetologia*, vol. 40, no. 11, pp. 1286–1292, 1997.

[5] A. Festa, R. D’Agostino Jr., G. Howard, L. Mykkänen, R. P. Tracy, and S. M. Haffner, “Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS),” *Circulation*, vol. 102, no. 1, pp. 42–47, 2000.

[6] J. M. Fernández-Real and W. Ricart, “Insulin resistance and chronic cardiovascular inflammatory syndrome,” *Endocrine Reviews*, vol. 24, no. 3, pp. 278–301, 2003.

[7] Y. Quan, A. Huang, M. Ye et al., “Efficacy of laparoscopic mini gastric bypass for obesity and type 2 diabetes mellitus: a systematic review and meta-analysis,” *Gastroenterology Research and Practice*, vol. 2015, Article ID 152852, 13 pages, 2015.

[8] A. P. de Sá Borges, C. M. Guidoni, O. de Freitas, and L. R. L. Pereira, “Economic evaluation of outpatients with type 2 diabetes mellitus assisted by a pharmaceutical care service,” *Arquivos Brasileiros de Endocrinologia e Metabologia*, vol. 55, no. 9, pp. 686–691, 2011.

[9] G. V. Z. Dedoussis, A. C. Kalliorda, and D. B. Panagiotaos, “Genes, diet and type 2 diabetes mellitus: a review,” *Review of Diabetic Studies*, vol. 4, no. 1, pp. 13–24, 2007.

[10] R. A. Mathias, M. Deepa, R. Deepa, A. F. Wilson, and V. Mohan, “Heritability of quantitative traits associated with type 2 diabetes mellitus in large multiplex families from South India,” *Metabolism: Clinical and Experimental*, vol. 58, no. 10, pp. 1439–1445, 2009.

[11] L. T. Madakamutil, I. Maricic, E. Sercarz, and V. Kumar, “Regulatory T cells control autoimmunity in vivo by inducing apoptotic depletion of activated pathogenic lymphocytes,” *Journal of Immunology*, vol. 170, no. 6, pp. 2985–2992, 2003.

[12] C. Zeng, X. Shi, B. Zhang et al., “The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications,” *Journal of Molecular Medicine*, vol. 90, no. 2, pp. 175–186, 2012.

[13] M. R. Walker, D. J. Kasprówicz, V. H. Gersuk et al., “Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25+T cells,” *The Journal of Clinical Investigation*, vol. 112, no. 9, pp. 1437–1443, 2003.

[14] H. Yi, Y. Zhen, L. Jiang, J. Zheng, and Y. Zhao, “The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells,” *Cellular & Molecular Immunology*, vol. 3, no. 3, pp. 189–195, 2006.

[15] A. H. Banham, F. M. Powrie, and E. Suri-Payer, “FOXP3+ regulatory T cells: current controversies and future perspectives,” *European Journal of Immunology*, vol. 36, no. 11, pp. 2832–2836, 2006.

[16] H. Yagi, T. Nomura, K. Nakamura et al., “Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells,” *International Immunology*, vol. 16, no. 11, pp. 1643–1656, 2004.

[17] F. Mahmoud and E. Al-Ozairi, “Inflammatory cytokines and the risk of cardiovascular complications in type 2 diabetes,” *Disease Markers*, vol. 35, no. 4, pp. 235–241, 2013.

[18] E. van Exel, J. Gusskeko, A. J. M. de Craen, M. Frölich, A. B.-V. D. Wiel, and R. G. J. Westendorp, “Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-plus study,” *Diabetes*, vol. 51, no. 4, pp. 1088–1092, 2002.

[19] G. Kuriya, T. Uchida, S. Akazawa et al., “Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse,” *Diabetologia*, vol. 56, no. 8, pp. 1773–1780, 2013.

[20] N. Nakajima, T. Kanda, M. Takaishi et al., “Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model,” *The Journal of Immunology*, vol. 186, no. 7, pp. 4481–4489, 2011.

[21] R. Derynck, A. B. Roberts, M. E. Winkler, E. Y. Chen, and D. V. Goeddel, “Human transforming growth factor-α: precursor structure and expression in *E. coli*,” *Cell*, vol. 38, no. 1, pp. 287–297, 1984.

[22] W. A. Border and E. Rusolahti, “Transforming growth factor-beta in disease: the dark side of tissue repair,” *The Journal of Clinical Investigation*, vol. 90, no. 1, pp. 1–7, 1992.

[23] S. Yener, A. Comlekci, B. Akinci et al., “Serum transforming growth factor-beta 1 levels in normalalbuminuric and nonalbuminuric patients with type 2 diabetes. Effect of metformin and rosiglitazone,” *Hormones*, vol. 7, no. 1, pp. 70–76, 2008.

[24] K. Bouzakri and J. R. Zierath, “MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-α induced insulin resistance,” *The Journal of Biological Chemistry*, vol. 282, no. 11, pp. 7783–7789, 2007.

[25] P. Plomgaard, K. Bouzakri, R. Krogh-Madsen, B. Mittendorfer, J. R. Zierath, and B. K. Pedersen, “Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation,” *Diabetes*, vol. 54, no. 10, pp. 2939–2945, 2005.

[26] J. M. Fernández-Real, C. Gutierrez, W. Ricart et al., “The TNF-α gene Nco I polymorphism influences the relationship among insulin resistance, percent body fat, and increased serum leptin levels,” *Diabetes*, vol. 46, no. 9, pp. 1468–1472, 1997.

[27] R. Rosmond, M. Chagnon, C. Bouchard, and P. Björntorp, “Increased abdominal obesity, insulin and glucose levels in nondiabetic subjects with a T29C polymorphism of the trans-4, pp. 191–194, 2003.

[28] K. Sharma and F. N. Ziyadeh, “Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-β as a key mediator,” *Diabetes*, vol. 44, no. 10, pp. 1139–1146, 1995.

[29] E. Korpinen, A.-M. Teppo, L. Hukkanen, H. K. Åkerblom, C. Grönhagen-Riska, and O. Vaarala, “Urinary transforming growthfactor-β1 and α1-microglobulin in children and adolescents with type 1 diabetes,” *Diabetes Care*, vol. 23, no. 5, pp. 664–668, 2000.
[30] D. Ellis, K. Y.-Z. Forrest, J. Erbey, and T. J. Orchard, “Urinary measurement of transforming growth factor-β and type IV collagen as new markers of renal injury: application in diabetic nephropathy,” *Clinical Chemistry*, vol. 44, no. 5, pp. 950–956, 1998.

[31] K. Sharma, F. N. Ziyadeh, B. Alzahabi et al., “Increased renal production of transforming growth factor-β1 in patients with type II diabetes,” *Diabetes*, vol. 46, no. 5, pp. 854–859, 1997.

[32] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” *Journal of Clinical Epidemiology*, vol. 62, no. 10, pp. 1006–1012, 2009.

[33] G. Wells, B. Shea, D. O’Connell et al., *The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses*, 2011, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

[34] P. Plomgaard, A. R. Nielsen, C. P. Fischer et al., “Associations between insulin resistance and TNF-α in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes,” *Diabetologia*, vol. 50, no. 12, pp. 2562–2571, 2007.

[35] C. M. O. Volpe, P. F. Abreu, P. S. Gomes, R. M. Gonçaga, C. A. Veloso, and J. A. Nogueira-Machado, “The production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMCs is enhanced through hyperglycemia in diabetes,” *Oxidative Medicine and Cellular Longevity*, vol. 2014, Article ID 479587, 12 pages, 2014.

[36] E. S. Yeo, J. Y. Hwang, J. E. Park, Y. J. Choi, K. B. Huh, and W. Y. Kim, “Tumor necrosis factor (TNF-α) and c-reactive protein (CRP) are positively associated with the risk of chronic kidney disease in patients with type 2 diabetes,” *Yonsei Medical Journal*, vol. 51, no. 4, pp. 519–525, 2010.

[37] S. Kado, T. Nagase, and N. Nagata, “Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus,” *Acta Diabetologica*, vol. 36, no. 1-2, pp. 67–72, 1999.

[38] L. Lukic, N. M. Lalic, N. Rajkovic et al., “Hypertension in type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention,” *International Journal of Environmental Research and Public Health*, vol. 11, no. 4, pp. 3586–3598, 2014.

[39] M. Hansen, A. R. Nielsen, T. Vilsbøll et al., “Increased levels of YKL-40 and interleukin 6 in patients with chronic pancreatitis and secondary diabetes,” *Pancreas*, vol. 41, no. 8, pp. 1316–1318, 2012.

[40] O. M. Andrianikaja, S. P. Barros, K. Moss et al., “Levels of serum interleukin (IL-6) and gingival crevicular fluid of IL-1β and prostaglandin E2 among non-smoking subjects with gingivitis and type 2 diabetes,” *Journal of Periodontology*, vol. 80, no. 2, pp. 307–316, 2009.

[41] S. Guzel, A. Seven, A. Kocaoglu et al., “Osteoprotegerin, leptin and IL-6: association with silent myocardial ischemia in type 2 diabetes mellitus,” *Diabetes and Vascular Disease Research*, vol. 10, no. 1, pp. 25–31, 2013.

[42] Y. Aso, K. Okumura, N. Yoshida et al., “Plasma interleukin-6 is associated with coagulation in poorly controlled patients with Type 2 diabetes,” *Diabetic Medicine*, vol. 20, no. 11, pp. 930–934, 2003.

[43] H. S. Lim, A. D. Blann, and G. Y. H. Lip, “Soluble CD40 ligand, soluble P-selectin, interleukin-6, and tissue factor in diabetes mellitus: relationships to cardiovascular disease and risk factor intervention,” *Circulation*, vol. 109, no. 21, pp. 2524–2528, 2004.

[44] P. Hui, S. Jia, W. Ma et al., “The changes and significance of IL-6 levels in patients with OSAHS associated Type 2 diabetes Mellitus,” *Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi*, vol. 29, no. 19, pp. 1726–1728, 2015.

[45] G. Daniele, R. Guardado Mendoza, D. Winnier et al., “The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus,” *Acta Diabetologica*, vol. 51, no. 1, pp. 123–131, 2014.

[46] B. Glowinski and M. Urban, “Selected cytokines (IL-6, IL-8, IL-10, MCP-1, TNF-alpha) in children and adolescents with atherosclerosis risk factors: obesity, hypertension, diabetes,” *Wiadomosci Lekarskie*, vol. 56, no. 3–4, pp. 109–116, 2003.

[47] S. T. Azar, S. C. Major, and B. Safieh-Garabedian, “Altered plasma levels of nerve growth factor and transforming growth factor-β1 in type 1 diabetes mellitus,” *Brain, Behavior, and Immunity*, vol. 13, no. 4, pp. 361–366, 1999.

[48] S. T. Azar, I. Salti, M. S. Zantout, and S. Major, “Alterations in plasma transforming growth factor beta in normoalbuminuric type 1 and type 2 diabetic patients,” *Journal of Clinical Endocrinology and Metabolism*, vol. 85, no. 12, pp. 4680–4682, 2000.

[49] D. Jun-Wen, W. Tao, and N. Guo-Zhen, “The level about TGF-β1 and proto-oncogene proteins c-sis in peripheral blood of T2DM patients with nephropathy and the clinical applications,” *Clinical Focus*, vol. 22, no. 11, pp. 793–794, 2007 (Chinese).

[50] D. Z. Chi, “Association of serum transforming growth factor-(TGF-β1) type IV collagen and laminin with diabetic nephropathy in type 2 diabetic patients,” *Heilongjiang Medicine Journal*, vol. 26, no. 3, pp. 402–407, 2013 (Chinese).

[51] S. Ehrent, T. Freude, C. Ihle et al., “Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation—description of a novel in vitro model,” *Experimental Cell Research*, vol. 332, no. 2, pp. 247–258, 2015.

[52] F. Changxin, “Clinical significance of determination of serum cystatin C, transforming growth factor betal(TGF-β1) and urine microalbumin levels in patients with DM2 nephropathy,” *Journal of Radioimmunology*, vol. 20, no. 5, pp. 471–474, 2007 (Chinese).

[53] B. Hellmich, M. Schellner, H. Schatz, and A. Pfeiffer, “Activation of transforming growth factor-β in diabetic kidney disease,” *Metabolism*, vol. 49, no. 3, pp. 353–359, 2000.

[54] C. Herder, A. Zierer, W. Koenig, M. Roden, C. Meisinger, and C. Meisinger, “The level of transforming growth factor-β1 in type 2 diabetes mellitus in patients with nephropathy and the clinical applications,” *Diabetes Care*, vol. 32, no. 10, pp. 1921–1923, 2009.

[55] J. Hai-bing, G. Pei-zhen, and L. Jing, “Changes in serum TGF-β1 in type 2 diabetic patients,” *Chinese Journal of Pathophysiology*, vol. 17, no. 11, pp. 1085–1087, 2001 (Chinese).

[56] L. Zhen-zuo, L. Lin, and X. Rui-yan, “Clinical study of serum TGF-β1 in type 2 diabetic patients with nephropathy,” *Heilongjiang Medical Journal*, vol. 20, no. 6, pp. 530–534, 2005 (Chinese).

[57] L. Rui-ji and L. Lan-jia, “The level about the HGF and TGF-β in peripheral blood of T2DM patients with nephropathy and the clinical applications,” *Hebei Medical Journal*, vol. 33, no. 12, pp. 1806–1808, 2011 (Chinese).

[58] L. Da-wei, Z. Zhi, and L. Kun, “Serum transforming growth factor-β levels in patients with diabetic retinopathy,” *Journal of Diabetes Research*, vol. 16, no. 10, Article ID 479587, 2013.
[90] Z. Zhao-Hui, J. Xiao-Jun, and B. Su-Yu, “The level of IL-10 and IL-18 in peripheral blood of T2DM with chronic obstructive pulmonary diseases and the correlational research about lung function,” *Journal of Community Medicine*, vol. 12, no. 20, pp. 19–20, 2014 (Chinese).

[91] N. Afzal, K. Javid, S. Zaman, A. Zafar, and A. H. Nagi, “Enumeration of CD4+CD25+T regulatory cells in Type-II diabetes retinopathy,” *Pakistan Journal of Pharmaceutical Sciences*, vol. 27, no. 5, pp. 1191–1197, 2014.

[92] L. Chi, H.-M. Wu, and X.-F. Xu, “The detection about the subgroup of regulatory cells in peripheral blood of T2DM patients and its clinical applications,” *Shandong Medical Journal*, vol. 51, no. 40, pp. 87–90, 2011 (Chinese).

[93] H. Ling, Z. Zhiguang, and L. Jianhua, “Changes of CD4+CD25+ T cell subsets in LADA patients,” *Chinese Journal of Diabetes*, vol. 13, no. 6, pp. 428–431, 2006 (Chinese).

[94] A. Kukreja, G. Cost, J. Marker et al., “Multiple immunoregulatory defects in type-1 diabetes,” *The Journal of Clinical Investigation*, vol. 109, no. 1, pp. 131–140, 2002.

[95] L. Hong, L. Jia-Xuan, and Z. Zhi-Zhe, “Changes of CD4+CD25+ regulatory T cells in peripheral blood of diabetes mellitus complicated with pulmonary infection and its significance,” *Guangxi Medical Journal*, vol. 33, no. 2, pp. 162–164, 2011 (Chinese).

[96] H. Li, Z.-Z. Zhang, and S.-P. Li, “The changes and significances of CD4+CD25+ regulatory T cells in peripheral blood of diabetes patients with angiopathy,” *Internal Medicine of China*, vol. 7, no. 2, pp. 104–107, 2012 (Chinese).

[97] T. Ye-Hai, D. Yu-Yun, and C. Jiang-Nan, “The decision of CD4+CD25+ regulatory cells in peripheral blood of diabetes mellitus patients with pulmonary tuberculosis,” *Chinese Journal of Health Laboratory Technology*, vol. 21, no. 11, pp. 2703–2704, 2011 (Chinese).

[98] W.-Y. Wu, L.-S. Tang, and F. Li, “Changes and significance of CD4+CD25+T cells and expression of FOXP3 mRNA in peripheral blood mononuclear cell from patients with PDR,” *International Eye Science*, vol. 15, no. 3, pp. 398–504, 2015 (Chinese).

[99] Z. Yang, Z. Zhou, G. Huang et al., “The CD4+ regulatory T-cells is decreased in adults with latent autoimmunity diabetes,” *Diabetes Research and Clinical Practice*, vol. 76, no. 1, pp. 126–131, 2007.

[100] X. Yang, “The quantity about CD4+CD25+ regulatory cells in peripheral blood of T1DM patients and its influence with insulin therapy,” *Shandong Medical Journal*, vol. 54, no. 10, pp. 78–79, 2014 (Chinese).

[101] Y. Xue-he, Q. Jin-yao, and L. Shen, “Study on the level of CD4+CD25+ and CD8+CD28− regulatory T cell in the peripheral blood of patients with type 1 diabetes mellitus,” *Chinese Journal of Diabetes Mellitus*, vol. 17, no. 6, pp. 473–476, 2009 (Chinese).

[102] Q. Zhang, H. Xiao, and B. Su, “Clinical significance of CD4+CD25+high T cells in patients with pulmonary tuberculosis complicated by type 2 diabetes mellitus,” *The Chinese Medical Association of TB Academic*, pp. 195–199, 2010 (Chinese).

[103] Z. Tao, Z. Shirong, and Z. Jing, “Relationships of latent autoimmune diabetes in adults with regulatory T cells and Foxp3 expression,” *Immunological Journal*, vol. 27, no. 12, pp. 1063–1067, 2011 (Chinese).

[104] R. Zhang and S. Bi-Wen, “Changes and significance of CD4+CD28+T cells, CD4+CD25+T cells in type 2 diabetes and its macrovascular complications,” *Clinical Journal of Chinese Medicine*, vol. 5, no. 18, pp. 110–111, 2013 (Chinese).

[105] C. D. C. Pernet Hará, E. L. Franca, D. L. Gomes et al., “Characterization of natural killer cells and cytokines in maternal placenta and fetus of diabetic mothers,” *Journal of Immunology Research*, vol. 2016, Article ID 7154524, 8 pages, 2016.

[106] Y. Suzuki, M. Nakazawa, K. Suzuki, H. Yamazaki, and Y. Miyagawa, “Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion,” *Japanese Journal of Ophthalmology*, vol. 55, no. 3, pp. 256–263, 2011.

[107] N. Afzal, S. Zaman, A. Asghar et al., “Negative association of serum IL-6 and IL-17 with type-II diabetes retinopathy,” *Iranian Journal of Immunology*, vol. 11, no. 1, pp. 40–48, 2014.

[108] M. K. Arababadi, R. Nosratabadi, G. Hassanshahi et al., “Nephropathic complication of type-2 diabetes is following pattern of autoimmune diseases?” *Diabetes Research and Clinical Practice*, vol. 87, no. 1, pp. 33–37, 2010.

[109] S. Liu, Y. U. Lin, and X. Liu, “Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression,” *Experimental and Therapeutic Medicine*, vol. 11, no. 1, pp. 257–262, 2016.

[110] A. Roohi, M. Tabrizi, F. Abbasi et al., “Serum IL-17, IL-23, and TGF-β levels in type 1 and type 2 diabetic patients and age-matched healthy controls,” *BioMed Research International*, vol. 2014, Article ID 718946, 7 pages, 2014.

[111] Y. Zhan and L. Jiang, “Status of vitamin D, antimicrobial peptide cathelicidin and T helper-associated cytokines in patients with diabetes mellitus and pulmonary tuberculosis,” *Experimental and Therapeutic Medicine*, vol. 9, no. 1, pp. II–16, 2015.

[112] I. V. Kologrivova, T. E. Suslova, O. A. Koshel’Skaya, I. V. Vinnitskaya, and O. A. Trubacheva, “System of matrix metalloproteinases and cytokine secretion in type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension,” *Bulletin of Experimental Biology and Medicine*, vol. 156, no. 5, pp. 635–638, 2014.

[113] B. Bilir, F. Tulubas, B. E. Bilir et al., “The association of vitamin D with inflammatory cytokines in diabetic peripheral neuropathy,” *Journal of Physical Therapy Science*, vol. 28, no. 7, pp. 2159–2163, 2016.

[114] R. Vasanthakumar, V. Mohan, G. Anand, M. Deepa, S. Babu, and V. Aravindhan, “Serum IL-9, IL-17, and TGF-β levels in subjects with diabetic kidney disease (CURES-134),” *Cytokine*, vol. 72, no. 1, pp. 109–112, 2015.

[115] S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” *Science*, vol. 299, no. 5609, pp. 1057–1061, 2003.

[116] T. T. Yang, S. J. Song, H. B. Xue, D. F. Shi, C. M. Liu, and H. Liu, “Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by mir-155,” *European Review for Medical and Pharmacological Sciences*, vol. 19, no. 11, pp. 2010–2015, 2015.

[117] S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” *Cell*, vol. 133, no. 5, pp. 775–787, 2008.

[118] F. X.-F. Qin, “Dynamic behavior and function of Foxp3+ regulatory T cells in tumor bearing host,” *Cellular & Molecular Immunology*, vol. 6, no. 1, pp. 3–13, 2009.

[119] J. Huehn, J. K. Polansky, and A. Hamann, “Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?” *Nature Reviews Immunology*, vol. 9, no. 2, pp. 83–89, 2009.
S. G. Zheng, J. H. Wang, J. D. Gray et al., “Natural and induced CD4+CD25+ cells educate CD4+CD25− cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10,” *The Journal of Immunology*, vol. 172, no. 9, pp. 5213–5221, 2004.

D. F. Fiorentino, M. W. Bond, and T. R. Mosmann, “Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones,” *The Journal of Experimental Medicine*, vol. 170, no. 6, pp. 2081–2095, 1989.

J. C. Marie, J. J. Letterio, M. Gavin, and A. Y. Rudensky, “TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells,” *The Journal of Experimental Medicine*, vol. 201, no. 7, pp. 1061–1067, 2005.

E. M. Shevach, T. S. Davidson, E. N. Huter, R. A. DiPaolo, and J. Andersson, “Role of TGF-β in the induction of Foxp3 expression and T regulatory cell function,” *Journal of Clinical Immunology*, vol. 28, no. 6, pp. 640–646, 2008.

H. Wu, Y. Nie, H. Xiong et al., “P2X7 receptor expression in peripheral blood monocytes is correlated with plasma C-reactive protein and cytokine levels in patients with type 2 diabetes mellitus: a preliminary report,” *Inflammation*, vol. 38, no. 6, pp. 2076–2081, 2015.

M. A. Febbraio and B. K. Pedersen, “Muscle-derived interleukin-6: mechanisms for activation and possible biological roles,” *The FASEB Journal*, vol. 16, no. 11, pp. 1335–1347, 2002.

V. Mohamed-Ali, S. Goodrick, A. Rawesh et al., “Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo,” *Journal of Clinical Endocrinology and Metabolism*, vol. 82, no. 12, pp. 4196–4200, 1997.

R. L. Starkie, M. J. Arkinzlag, J. A. Hawley, and M. A. Febbraio, “Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans,” *The Journal of Physiology*, vol. 533, no. 2, pp. 585–591, 2001.

B. K. Pedersen, A. Steensberg, and P. Schjerling, “Muscle-derived interleukin-6: possible biological effects,” *Journal of Physiology*, vol. 536, no. 2, pp. 329–337, 2001.

M. Fujimoto, M. Nakano, F. Terabe et al., “The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells,” *Journal of Immunology*, vol. 186, no. 1, pp. 32–40, 2011.

E. Bettelli, M. Oukka, and V. K. Kuchroo, “Th17 cells in the circle of immunity and autoimmunity,” *Nature Immunology*, vol. 8, no. 4, pp. 345–350, 2007.

M. Jagannathan-Bogdan, M. E. McDonnell, H. Shin et al., “Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes,” *Journal of Immunology*, vol. 186, no. 2, pp. 1162–1172, 2011.

P. Dandona, A. Aljada, and A. Bandyopadhyay, “Inflammation: the link between insulin resistance, obesity and diabetes,” *Trends in Immunology*, vol. 25, no. 1, pp. 4–7, 2004.

J. C. Pickup, “Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes,” *Diabetes Care*, vol. 27, no. 3, pp. 813–823, 2004.

H. Guan, P. S. Nagarkatti, and M. Nagarkatti, “CD44 reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis,” *The Journal of Immunology*, vol. 186, no. 12, pp. 6955–6964, 2011.