In silico analysis of riboflavin carrier proteins from different Avian species

Abstract

A comparative in silico characterization of the Riboflavin carrier proteins (RCP) or Riboflavin binding proteins (RfBP) was carried out to analyze their physico-chemical, secondary structural and functional properties. The amino acid composition of Riboflavin binding/carryer proteins were obtained from biological databases. Molecular weights of all the proteins were around 27,000D. pI value of Carinama cristata was the highest when compared to all other proteins. The instability index of all the proteins was more than 50% showing that all of them are probably not stable. Amino acid composition of vitamin binding proteins obtained from biological databases. The composition of serine and glutamic acid was high while low concentrations of tryptophan, valine and glycine residues were seen when compared to other amino acids. Dominance of α-helices and random coils was observed from the secondary structural analysis of the proteins. SOSUI server analysis has shown that all the proteins are soluble in nature.

Keywords: RCP, in silico, physico chemical properties, secondary structure, sepharose column chromatography

Introduction

Vitamin binding proteins bind reversibly to vitamins with high affinity and receptor like specificity in serum of vertebrates. Riboflavin carrier proteins bind to riboflavin. RCP has been purified from many species. Vitamin binding proteins bind stoichiometrically and reversibly to vitamins with high affinity and receptor like specificity. Some of them are constitutive while some others are specific to riboflavin. These proteins supply coenzyme when there is physiological need and also regulate its supply. These binding proteins are able to scavenge nutrients and protect the embryo from infection. These specific carrier proteins like Riboflavin binding proteins from different eggs. Vitamin binding proteins from different Avian species have been isolated and purified from parrot eggs, peacock eggs, koklass pheasant eggs, Nikkhath et al., purified RibfBP for the first time from the egg white of parrot eggs using DEAE-Sephadex ion exchange chromatography followed by gel filtration on Sephadex G-100. Riboflavin binding protein (RfBP) from peacock eggs (Pavo cristatus) was purified by Rajender et al. Serum RfBP is synthesised in the liver after which complexes with riboflavin to form the holoprotein. If it is not complexed it is excreted by the kidney. The holoserum RfBP is removed from circulation by ovarian follicles and transported into the developing oocytes. Serum RfBP plays a protective role which is important in a riboflavin deficient diet. Holo-serum RfBP is transformed into holoyolk RfbP upon modification of its oligosaccharide moieties. The magnum of the oviduct synthesises all egg white proteins and removes many proteins from the plasma as a source of its amino acid pool. After which it is catabolised with the subsequent release of riboflavin. This riboflavin is then captured by egg white RCP, synthesized by secretory cells of the magnum. The protein is conserved through evolution.

Materials and methods

UniProtKB/Swiss-Prot was used to retrieve the complete sequences of the Riboflavin carrier proteins. The computation of various physical and chemical parameters of the Riboflavin carrier proteins (aminoacids, positive charged residues, molecular weights, pl, negative extinction coefficient, aliphatic index, GRAVY instability index) was done using ExPASy’s ProtParam tool. ExPASy’s ProtScale tool was used to analyse hydrophobicity and transmembrane tendency. SOPMA tool server was used to characterize the secondary structural features of Riboflavin carrier proteins. The analysis of the Riboflavin carrier proteins motifs was done with the help of Motif Scan tool. The SOSUI server prediction yielded the transmembrane regions of the Riboflavin carrier proteins.

Results and discussion

Riboflavin carrier protein primary physiological function is to store riboflavin and transfer the vitamin to the embryo. Riboflavin binding protein was purified by Kudle et al. from Hen (Gallus gallus) egg white and yolk. Agila hastate Riboflavin binding protein was purified by Kudle et al. Emu (Dromaius novaehollandiae) Riboflavin-binding protein (RfBP) was purified from egg white by Bindu et al. In the present study, a computational analysis of Riboflavin carrier proteins has been done and the results are discussed.
Table 1 Physico chemical characteristics of riboflavin binding protein sequences

Species name	No. of amino acids	Molecular weight	PI	-Ve charged residues	+Ve charged residues	Extinction coefficient	Instability index
Gallus gallus	238	27211.4	5.13	3.50E+01	23	46410	77.89
Dromaius	238	27343.9	5.25	34	25	53400	69.78
Merops nubicus	239	27390.7	5.58	32	26	54890	63.25
Charadrius vociferous	238	27346.8	5.52	33	25	53400	65.92
Cariama cristata	239	27563.2	7.37	31	32	53400	65.13
Nipponia nippon	240	27494.1	6.69	31	30	53400	64.32
Coturnix japonica	238	27237.4	5.36	34	23	44920	75.55

Table 2 Amino acid composition of Riboflavin binding protein sequences

Amino acids	Gallus gallus	Dromaius	Merops nubicus	Charadrius vociferous	Cariama cristata	Nipponia nippon
Ala	6.3	4.6	5.4	5	5	5
Arg	3.4	2.5	2.9	2.1	3.8	2.5
Asn	3.8	5.4	4.6	4.6	5.4	4.6
Asp	4.6	3.8	4.6	5.4	4.6	4.6
Cys	8	8	7.9	8	7.9	7.9
Gln	4.6	3.4	3.8	3.8	3.8	3.8
Glu	10.1	10.5	8.8	9.2	7.5	8.3
Gly	2.9	3.4	3.3	3.4	2.9	3.8
His	3.4	2.5	2.5	3.4	2.1	3.3
Ile	3.8	3.4	3.4	3.4	3.3	2.9
Leu	6.3	6.7	5.9	6.3	5.9	6.2
Lys	6.3	8	7.9	8.4	9.6	10
Met	3.4	3.8	3.3	3.8	3.8	3.8
Phe	3.4	3.4	3.3	3.4	3.3	3.3
Pro	3.4	3.4	3.3	3.4	3.3	3.3
Ser	13.4	13	13	12.2	13	13.3
Thr	4.2	4.2	4.2	4.6	4.6	5
Trp	2.5	2.9	2.9	2.9	2.9	2.9
Tyr	3.8	4.2	4.6	4.2	4.2	4.2
Val	2.5	3.8	4.2	3.4	2.9	2.9
Pyl	0	0	0	0	0	0
Sec	0	0	0	0	0	0

Table 3 Secondary structural analysis of Riboflavin binding proteins

Gallus gallus	Dromaius	Merops nubicus	Charadrius vociferous	Cariama cristata	Nipponia nippon	
Alpha helix	50	42.02	38.49	42.44	40.59	35.42
310 helix	0	0	0	0	0	0
Pi helix	0	0	0	0	0	0
Beta bridge	0	0	0	0	0	0
Extended Strand	12.18	12.61	15.48	14.29	15.9	13.75

Citation: Radarapu S, Merugu R, Upadhyay VP, et al. In silico analysis of riboflavin carrier proteins from different Avian species. MOJ Proteomics Bioinform. 2016;4(6):340–343. DOI: 10.15406/mojpb.2016.04.00141
In silico analysis of riboflavin carrier proteins from different Avian species

Table Continued....

Nature	Gallus gallus	Dromaius	Merops nubicus	Charadrius vociferous	Cariama cristata	Nipponia nippon
Soluble/ Transmembrane	Soluble	Soluble	Soluble	Soluble	Soluble	Soluble

Table 4 SOSUI server analysis of Riboflavin binding proteins

Conclusion

In this study the physicochemical properties of RCP proteins obtained from database are presented in Table 1. Negative charged aminoacids were more than positively charged aminoacids in the all the proteins compared (Table 1). Molecular weights of all the proteins were around 27,000KD. pI value of Cariama cristata was the highest when compared to all other proteins. The instability index of all the proteins was more than 40 showing that all of them are probably not stable. Amino acid composition of vitamin binding proteins obtained from biological databases is presented in Table 2. The composition of serine and glutamic acid was high while low concentrations of Tryptophan, valine and glycine residues were seen when compared to other aminoacids. From Table 3, dominance of α-helices and random coils was observed from the secondary structural analysis of the proteins. SOSUI server analysis Table 4 has shown that all the proteins are soluble in nature.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. Kanai M, Ray A, Goodman DS. Retinol–binding protein: the transport protein for vitamin A in human plasma. J Clin Invest. 1968;47(9):2025–2044.
2. Thomas WC, Morgan HG, Conner TB, et al. Studies of antirickettic activity in sera from patients with disorders of calcium metabolism and preliminary observations on the mode of transport of vitamin D in human serum. J Clin Invest. 1959;38(7):1078–1085.
3. Edelstein S, Lawson DE, Kodicke E. The transporting proteins of cholecalciferol and 25–hydroxycholecalciferol in serum of chicks and other species. Partial purification and characterization of the chick proteins. Biochem J. 1973;135(3):417–426.
4. Abe T, Muto Y, Hosoya NJ. Vitamin A transport in chicken plasma: isolation and characterization of retinol–binding protein (RBP), prealbumin (PA), and RBP–PA complex. J Lipid Res. 1975;16:200–210.
5. Rhodes MB, Bennett N, Feeney RE. The flavoprotein–apoliprotein system of egg white. J Biochem. 1959;234(8):2054–2060.
6. Ostrowski W, Skarzynski B, Zak Z. Isolation and properties of flavoprotein from the egg yolk. Biochim Biophys Acta. 1962;59:515–517.
7. Karunakar RK, Pratap RMP, Veerababu N, et al. Purification and characterization of riboflavin carrier protein from egg white of South Indian spotted owl (athene brama). International Journal of Applied Biology and Pharmaceutical Technology. 2012;3(4):2–6.
8. Madhukar RK, Prasad MSK. Purification and Characterization of riboflavin binding protein from (RfBP) Hen (Gallus gallus) DEAE–Sepharose column chromatography. Int J Appl Biol. 2011;2(1):27–29.
9. Madhukar Rao K, Prasad MSK. Int J of Pharama Sci R. 2012;3:494–496.
10. Madhukar Rao K, Prasad MSK. Isolation and Purification of Riboflavin binding protein from Eagle egg yolk (Aquila hastate). Int J Appl Biology. 2012;3:351–354.
11. Bindu MR, Prasad MSK. Iner J of Plant and Animal Scie. 2012;2:5–9.
12. Adiga PR, Visweswariah SS, Karande AA, et al. Biochemical and immunological aspects of riboflavin carrier protein. J Biosci. 1988;13(1):87–104.
13. Karande AA, Velu NK, Adiga PR. A monoclonal antibody recognizing the C–terminal region of chicken egg white riboflavin carrier protein terminates early pregnancy in mice. Mol Immunol. 1991;28(4–5):471–478.
14. Naber EC, Cravens WW, Baumann Ca, et al. The effect of thiamine analogs on embryonic development and growth of the chick. J Nutr. 1954;54(4):579–591.
15. Coates ME. In Physiology and biochemistry of the domestic fowl. In: Bell J, Freeman BM, editors. USA: Academic Press; 1971. p. 1, 373.
16. Rhodes MB, Bennett N, Feeney RE. The flavoprotein–apoliprotein system of egg white. J Biochem. 1959;234(8):2054–2060.
17. Maw AJG. Inherited Riboflavin Deficiency in Chicken Eggs. Poultry Sci. 1954;33(1):216–217.
18. Cowan JW, Boucher RU, Buss EG. Poultry Sci. 1964;45:538–541.
19. Cowan JW, Boucher RU, Buss EG. Poultry Sci. 1966;45:538–41.
20. Winter WP, Buss EG, Clagett CO, et al. Comp Biochem Physiol. 1967;22(3):897–906.
21. Apweiler, et al. Fold Dec. 1996;1(Suppl):3.
22. Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–3788.
23. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995;11(6):681–621.

Citation: Radarapu S, Merugu R, Upadhyay VP, et al. In silico analysis of riboflavin carrier proteins from different Avian species. MOJ Proteomics Bioinform. 2016;4(6):340–343. DOI: 10.15406/mojpb.2016.04.00141
24. Pagni M, Ioannidis V, Cerutti L, et al. MyHits: improvements to an interactive resource for analyzing protein sequences. *Nucleic Acids Res.* 2007;35:W433–W437.

25. Nadhira NK, Madhukar RK, Srikanth CN, et al. Scholars Research Library. *Annals of Biological Research.* 2014;5(2):92–95.

26. Rajender G, Benajee G, Prasad MSK. Purification and characterization of riboflavin binding protein in egg white of peacock (Pavo cristatus). *Curr Sci.* 2007;93:24–25.

27. Maehashi K, Matano M, Nonaka M, et al. Riboflavin–binding protein is a novel bitter inhibitor. *Chem Senses.* 2008;33(1):57–63.

Citation: Radarapu S, Merugu R, Upadhyay VP, et al. In silico analysis of riboflavin carrier proteins from different Avian species. *MOJ Proteomics Bioinform.* 2016;4(6):340–343. DOI: 10.15406/mojpb.2016.04.00141