Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity

Fengge Zhang,1,* Jia-Xi Feng,1,† and Xian Gao1,‡

1School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519088, China

Abstract

We investigate the scalar induced gravitational waves (SIGWs) in the Chern-Simons (CS) modified gravity during the radiation dominated era. The SIGWs are circularly polarized, which provide us a tool to test the possible parity violation in the early universe. We derive the semianalytic expressions to evaluate the fractional energy density of the SIGWs, \(\Omega_{GW} \), which receives contributions from the general relativity (GR) and the correction due to the parity-violating term, respectively. We find that the degree of the circular polarization of the SIGWs can be as large as of order unity, although the contribution to \(\Omega_{GW} \) from the CS term is at most of the same order as that from the GR.

* zhangfg5@mail.sysu.edu.cn
† fengjx57@mail2.sysu.edu.cn
‡ gaoxian@mail.sysu.edu.cn (corresponding author)
I. INTRODUCTION

The detection of the gravitational waves (GWs) by the Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific collaboration and Virgo collaboration [1–10] opens a new window to probe the nature of gravity. Although a variety of information in understanding the early universe and fundamental physics is encoded in the primordial GWs, the primordial GWs have not been detected on the cosmic microwave background (CMB) scale up to now [11, 12]. On the other hand, the scalar induced gravitational waves (SIGWs) [13–31], which are sourced by the first order scalar perturbations due to the non-linearity of gravity, have attracted much attention recently. The SIGWs can be large enough to be detected by the space-based GW observatories such as Laser Interferometer Space Antenna (LISA) [32, 33], TianQin [34] and Taiji [35], as well as by the Pulsar Timing Array (PTA) [36–39] and the Square Kilometer Array (SKA) [40] in the future. This is due to the fact that the amplitude of the power spectrum of the primordial curvature perturbation is $\mathcal{A}_\zeta \sim \mathcal{O}(10^{-2})$ on small scales [41–43], which can be seven orders of magnitude larger than the constraint from the CMB, that is, $\mathcal{A}_\zeta \sim \mathcal{O}(10^{-9})$ on large scales [11]. Recently, North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5 yrs data also indicates that we may have captured the SIGW signals [44–47].

In light of these progresses, in this work we use the SIGWs to test the possible parity violation in the early universe. Such parity-violating (PV) terms are generally predicted in quantum gravity theories such as the superstring theory and M-theory [48, 49]. One of the PV terms is the Chern-Simons (CS) modified gravity, which was first proposed in four-dimensional space-time in [50], and then has been studied extensively in cosmology and GWs [51–63]. The non-Gaussianity in CS gravity is also studied in [64, 65]. Moreover, the CS gravity propagates Ostrogradsky ghosts due to the existence of higher-derivate field equation, it can only be treated as a low-energy truncation of a fundamental theory. Since the cosmological background breaks the Lorentz symmetry, the PV gravity models with Lorentz breaking, such as Hořava gravity [66], the PV higher derivative gravity [67] and the PV spatially covariant gravity [68–70] have also been proposed. The chiral GWs in such Lorentz breaking PV gravity models have been studied in [71–81]. When torsion is turned on, the simplest term that corresponds to the CS term is the so-called Nieh-Yan term [82]. The chiral GWs have also been extensively studied with NY term and its extensions [83–
as well as in more general models with non-vanishing torsion and/or non-metricity tensors [93–99]. To our knowledge, the previous studies with the PV modes dealt with only the primordial/linear GWs, which exhibit interesting features such as the velocity and amplitude birefringence phenomenons of GWs [55, 71, 73, 100], see also [101–104]. The PV effects on the SIGWs have been less investigated.

In this work we make the first step to use the SIGWs to test such PV phenomena. Usually the behaviour of matter contents of the universe on cosmological scales is mimicked by either perfect fluid or scalar condensation. In this paper we focus on the simplest CS gravity coupled with a dynamical scalar field, which effectively describes the matter contents of the universe. In particular, we assume the equation of state of the scalar field to be the form of the radiation, which enables us to investigate the implications to the SIGWs during the radiation dominated era. Moreover, we choose the coupling function to be the exponential form, so that we can obtain an analytic expression for the Green’s function that is used to solve the equation of motion of the SIGWs. We give the semianalytic expression used to calculate the power spectrum of SIGWs from the CS modified gravity, which contains the contributions from the general relativity (GR), I_{GR} and from the PV term, I_{PV}, respectively. In order to study the features of SIGWs from CS modified gravity, we evaluate the fractional energy density Ω_{GW} and the degree of the circular polarization of SIGWs with the monochromatic and lognormal power spectra of primordial curvature perturbation, respectively.

This paper is organized as follows. In section II, we briefly introduce the CS modified gravity model and the equations of motion. In section III, we first derive the equations of motion for the SIGWs from CS gravity, and then give the semianalytic expressions used to compute the power spectrum of the SIGWs. In section IV, we compute the fractional energy density and the degree of the circular polarization of SIGWs from CS modified gravity with some phenomenological examples to study the features of SIGWs. Our main conclusions are summarized in section V. We give the detailed calculations and the tedious semianalytic expressions in appendix A.
II. CHERN-SIMONS MODIFIED GRAVITY

In this work, we consider the simplest Chern-Simons (CS) gravity coupled with a dynamical scalar field, of which the action is given by

\[S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + \frac{1}{4} \partial(\varphi)^* RR \right] - \int d^4x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \nabla_\mu \varphi \nabla_\nu \varphi + V(\varphi) \right), \tag{1} \]

where \(\kappa^2 = 8\pi G \), and \(*RR \) is the CS term

\[*RR = *R^{\mu\nu\rho\gamma} R_{\mu\nu\rho\gamma}. \tag{2} \]

The dual Riemann tensor is defined by

\[*R^{\mu\nu\rho\gamma} = \frac{1}{2} \varepsilon^{\rho\alpha\beta} R_{\mu\nu}^{\alpha\beta}, \tag{3} \]

with \(\varepsilon^{\rho\alpha\beta} \) the Levi-Civita tensor.

By varying the action with respect to the metric tensor \(g_{\mu\nu} \) and scalar field \(\varphi \), we obtain the equations of motion (EoMs) of CS modified gravity, which are

\[G_{\mu\nu} + C_{\mu\nu} = \kappa^2 T_{\mu\nu}, \tag{4} \]

\[g^{\mu\nu} \nabla_\mu \nabla_\nu \varphi - V_\varphi(\varphi) + \frac{\partial \varphi}{8\kappa^2} *RR = 0, \tag{5} \]

where \(\partial \varphi = d\varphi/d\varphi \), \(V_\varphi = dV/d\varphi \), and

\[G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R, \tag{6} \]

\[C_{\mu\nu} = \nabla_\alpha \partial(\varphi) \varepsilon^{\alpha\beta\gamma(\mu} R_{\nu)\beta} + \nabla_\alpha \nabla_\beta \varphi *R_{(\mu\nu)}^{\alpha}, \tag{7} \]

\[T_{\mu\nu} = \nabla_\mu \varphi \nabla_\nu \varphi - g_{\mu\nu} \left(\frac{1}{2} g^{\alpha\beta} \nabla_\alpha \varphi \nabla_\beta \varphi + V(\varphi) \right). \tag{8} \]

In the above, \(G_{\mu\nu} \) is the Einstein tensor, \(C_{\mu\nu} \) encodes the contribution from the CS term. The energy-momentum tensor \(T_{\mu\nu} \) can be recast to be in the form of the perfect fluid

\[T_{\mu\nu} = (\rho + P) U_\mu U_\nu + g_{\mu\nu} P, \tag{9} \]

with

\[U_\mu = \frac{\nabla_\mu \varphi}{\sqrt{-g^{\mu\nu} \nabla_\mu \varphi \nabla_\nu \varphi}}, \tag{10} \]

\[\rho = -\frac{1}{2} g^{\mu\nu} \nabla_\mu \varphi \nabla_\nu \varphi + V(\varphi), \tag{11} \]

\[P = -\frac{1}{2} g^{\mu\nu} \nabla_\mu \varphi \nabla_\nu \varphi - V(\varphi). \tag{12} \]
III. SCALAR INDUCED GRAVITATIONAL WAVES

In this section, we first derive the EoMs of the first order scalar perturbations, which are necessary to evaluate the SIGWs. The perturbed metric under the Newtonian gauge is

\[
\mathrm{d}s^2 = a^2 \left[-(1 + 2\phi)\mathrm{d}\eta^2 + \left(1 - 2\psi\right)\delta_{ij} + \frac{1}{2}h_{ij}\right] \mathrm{d}x^i \mathrm{d}x^j,
\]

where \(\phi, \psi\) are the first order scalar perturbations. The tensor perturbations \(h_{ij}\) are assumed to be of the second order, which are transverse and trace-free, \(\partial_i h_{ij} = h_{ii} = 0\). Here we do not consider the first order tensor perturbations, namely the primordial or linear GWs, which are irrelevant to this paper.

Expanding Eqs. (4) and (5) to the zeroth order, we obtain the background EoMs as follows,

\[
3\mathcal{H}^2 = \kappa^2 a^2 \bar{\rho},
\]

\[
-(\mathcal{H}^2 + 2\mathcal{H}') = \kappa^2 a^2 \bar{P},
\]

\[
\varphi'' + 2\mathcal{H}\varphi' + a^2V_\varphi(\varphi) = 0,
\]

where \(\mathcal{H} = a'/a\), \(\bar{\rho}\) and \(\bar{P}\) represent the background energy density and pressure, respectively. The prime denotes derivative with respect to the conformal time \(\eta\) defined as \(\mathrm{d}\eta = \mathrm{d}t/a\). These background EoMs are exactly the same as those in GR, since the PV terms have no contribution at the background level.

During the radiation dominated era, the equation of state is

\[
w = \frac{\bar{P}}{\bar{\rho}} = \frac{1}{3}.
\]

Combining Eqs. (11), (12), (17) and the background equations, we yield the evolution of the background quantities as

\[
\bar{\rho} = \rho_0a^{-4}, \quad a = \sqrt{\frac{\kappa^2}{3}\rho_0\eta} = a_0\eta, \quad \varphi' = \pm \frac{2}{\kappa}\eta^{-1}.
\]

\footnote{On the gauge dependence of SIGWs, please refer to [105–114].}
At the first order, we get the EoMs of linear scalar perturbations,

\[3\mathcal{H}(\psi' + \mathcal{H}\phi) - \nabla^2 \psi = -\frac{k^2}{2}a^2 \delta \rho, \quad (19) \]

\[\psi' + \mathcal{H}\phi = -\frac{k^2}{2}a^2(\bar{\rho} + \bar{P})\delta U, \quad (20) \]

\[\psi - \phi = 0, \quad (21) \]

\[\psi'' + 2\mathcal{H}\psi' + \mathcal{H}\phi' + (2\mathcal{H}' + \mathcal{H}^2)\phi = \frac{k^2}{2}a^2 \delta P, \quad (22) \]

where

\[\delta \rho = -a^{-2}\varphi'(\phi\varphi' - \delta \varphi') + V_\varphi \delta \varphi, \quad (23) \]

\[\delta P = -V_\varphi \delta \varphi + a^{-2}\varphi'(\delta \varphi' - \phi \varphi'), \quad (24) \]

\[\delta U = -\frac{\delta \varphi}{\varphi'}. \quad (25) \]

Combining the background EoMs, Eqs. (20) and (25), we obtain the perturbation of scalar field in terms of the scalar metric perturbations

\[\delta \varphi = \frac{\psi' + \mathcal{H}\phi}{\mathcal{H}^2 - \mathcal{H}'\varphi'}. \quad (26) \]

From the above equations, we can see that the linear scalar perturbations are unaffected by PV terms either.

Expanding Eq. (4) to the second order and extracting its transverse and trace-free part, we obtain the EoMs for the SIGWs,

\[h''_{ij} + 2\mathcal{H}h'_{ij} - \nabla^2 h_{ij} + \left[\frac{\epsilon_{ijk}}{2a^2}(\varphi''h''_{jk} + \varphi'\varphi'h''_{kj} - \varphi'\varphi'\nabla^2 h_{jk}) + i \leftrightarrow j \right] = 4\mathcal{T}_{lm}^{\text{tm}} s_{ij}, \quad (27) \]

where \(\mathcal{T}_{ij}^{\text{tm}} \) is the projection tensor used to extract the transverse and trace-free part of a tensor, and \(s_{ij} \) is the source of SIGWs, which consists of the scalar perturbations at the second order. As expected, \(s_{ij} \) can be split into two parts,

\[s_{ij} = s_{ij}^{\text{scalar}} + s_{ij}^{\text{PV}}, \quad (28) \]

where the contribution from the parity-preserving part is the same as in the GR,

\[s_{ij}^{\text{scalar}} = -\partial_i\phi\partial_j\phi + \partial_i\psi\partial_j\phi + \partial_i\phi\partial_j\psi - 3\partial_i\psi\partial_j\psi \]

\[-2\phi\partial_i\partial_j\phi - 2\psi\partial_i\partial_j\psi + 8\pi Ga^2(\bar{\rho} + \bar{P})\partial_i\delta U\partial_j\delta U, \quad (29) \]
with $\delta \mathcal{U}$ given in Eq. (25), and the contribution from the PV term is

$$s_{ij}^{\text{PV}} = \frac{1}{2a^2} \left\{ \epsilon_{ik} \left[\partial_\varphi \partial^k \delta \varphi' \partial_\varphi \partial_j \phi + \partial_\varphi \partial^k \delta \varphi' \partial_j \phi' + \partial_\varphi' \partial^k \delta \varphi \partial_\varphi \partial_j \phi + i \leftrightarrow j \right] + (\phi \rightarrow \psi) \right\}. \quad (30)$$

We decompose h_{ij} into circularly polarized modes as

$$h_{ij}(x, \eta) = \sum_{A=R,L} \int \frac{d^3k}{(2\pi)^{3/2}} e^{ik \cdot x} p^A_{ij} h^A_k(\eta), \quad (31)$$

where the circular polarization tensors are

$$p^R_{ij} = \frac{1}{\sqrt{2}} (e^+_{ij} + i e^x_{ij}), \quad p^L_{ij} = \frac{1}{\sqrt{2}} (e^+_{ij} - i e^x_{ij}). \quad (32)$$

The plus and cross polarization tensors can be expressed as

$$e^+_{ij} = \frac{1}{\sqrt{2}} (e_i e_j - \bar{e}_i \bar{e}_j), \quad e^x_{ij} = \frac{1}{\sqrt{2}} (e_i e_j + \bar{e}_i \bar{e}_j), \quad (33)$$

where $e_i(k)$ and $\bar{e}_i(k)$ are two basis vectors which are orthogonal to each other and perpendicular to the wave vector k, i.e., satisfying $k \cdot e = k \cdot \bar{e} = e \cdot \bar{e} = 0$ and $|e| = |\bar{e}| = 1$.

The definition of the projection tensor is

$$T^{lm}_{ij} s_{lm}(x, \eta) = \sum_{A=R,L} \int \frac{d^3k}{(2\pi)^{3/2}} e^{ik \cdot x} p^A_{ij} h^{A*}_{km}(k, \eta), \quad (34)$$

where \tilde{s}_{ij} is the Fourier transformation of the source s_{ij}.

The EoM’s for the circularly polarized modes of the SIGWs in the Fourier space are

$$u^{A''}_k(\eta) + \left(k^2 - \frac{B^{A''}}{B^A} \right) u^A_k(\eta) = 4 a S^{A*}(\eta) \frac{a S^A_k(\eta)}{\sqrt{z^A}}, \quad (35)$$

where $u^A_k = B^A h^A_k$,

$$z^A(k, \eta) = 1 - \frac{k \lambda^A \partial(\varphi')}{a^2(\eta)}, \quad (36)$$

with

$$\lambda^A = \begin{cases}
1 & A = R, \\
-1 & A = L.
\end{cases} \quad (37)$$

It is also required $z^A(k, \eta) > 0$ to avoid the ghost field [115]. In (35) we define

$$B^A(k, \eta) = a(\eta) \sqrt{z^A(k, \eta)}, \quad (38)$$
and the source is
\[S^A_k = p^{Aij} \tilde{s}_{ij}(k). \] (39)

Eq. (35) can be solved by the method of the Green’s function,
\[h^A_k(\eta) = \frac{4}{B^A(k,\eta)} \int^{\eta}_{\eta_0} d\bar{\eta} G^A_k(\eta, \bar{\eta}) \frac{a(\bar{\eta}) S^A_k(\bar{\eta})}{\sqrt{z^A(k,\eta)}}, \] (40)
where the Green’s function \(G^A_k(\eta, \bar{\eta}) \) satisfies the equation
\[G^A_k''(\eta, \bar{\eta}) + \left(k^2 - \frac{B^A'}{B^A} \right) G^A_k(\eta, \bar{\eta}) = \delta(\eta - \bar{\eta}). \] (41)

For a general coupling function \(\vartheta(\varphi) \), it is difficult to find the analytic solution to Eq. (41). For our purpose, it is possible to get an analytic solution if the coupling function takes the exponential form
\[\vartheta(\varphi) = \vartheta_0 \exp^{\kappa \alpha \varphi}, \] (42)
where \(\alpha \) is constant. With Eq. (18), we can obtain
\[\varphi = \frac{2\epsilon^S}{\kappa} \ln(\eta/\eta_0) + \varphi_0, \] (43)
where \(\varphi_0 \) is the value of \(\varphi \) at \(\eta_0 \) and \(\epsilon^S = \pm 1 \), which corresponds to \(\varphi' = \pm 2/(\kappa \eta) \), respectively.

Combining the above two equations, \(z^A \) can be expressed as
\[z^A(k,\eta) = 1 - \frac{k\lambda^A 2\alpha \epsilon^S \vartheta_0 \exp^{k \alpha \varphi_0}}{a_0^2 \eta_0^{2\alpha S}} \eta^{2\alpha S - 3}. \] (44)

Generally, \(z^A(k,\eta) \) depends on both \(\eta \) and \(k \), which makes the analysis involved. Nevertheless, if \(2\alpha \epsilon^S - 3 = 0 \), \(z^A \) is independent of \(\eta \),
\[z^A(k) = 1 - z_0 k \lambda^A, \] (45)
with \(z_0 = 3\vartheta_0 \exp^{k \alpha \varphi_0}/(a_0^2 \eta_0^3) \), which enables us to solve Eq. (41) analytically. In the following, we choose the value of \(\alpha \) such that \(2\alpha \epsilon^S - 3 = 0 \). Moreover, there is a constraint on \(z_0 \) to keep \(z^A \) positive, that is
\[z_0 k < 1. \] (46)

We will see that this constraint makes the contribution to \(\Omega_{GW} \) from the CS term is at most of the same order as that from GR, but never dominates. With the above settings, the Green’s function is exactly the same as that in the standard GR,
\[G^A_k(\eta, \bar{\eta}) = \frac{\sin[k(\eta - \bar{\eta})]}{k} \Theta(\eta - \bar{\eta}), \] (47)
where Θ is the Heaviside theta function, and

$$h_k^A(\eta) = \frac{4}{a(\eta)z^A(k)} \int_0^\eta d\tilde{\eta} \; G_k^A(\eta, \tilde{\eta}) a(\tilde{\eta}) S_k^A(\tilde{\eta}),$$ \hspace{1cm} (48)

The source term S_k^A can be expressed as

$$S_k^A = S_k^{A(\text{scalar})} + S_k^{A(\text{PV})},$$ \hspace{1cm} (49)

where

$$S_k^{A(\text{scalar})} = \int \frac{d^3k'}{(2\pi)^3/2} p^A_{ij}k'_i k'_j \zeta(k') \zeta(k - k') f_{\text{scalar}}(u, v, x),$$ \hspace{1cm} (50)

with

$$p^A_{ij}k'_i k'_j = k'^2 \sin^2(\theta)e^{2i\lambda A},$$ \hspace{1cm} (51)

where θ is the angle between k' and k, ℓ is the azimuthal angle of k', and

$$f_{\text{scalar}}(u, v, x) = \frac{4}{9} \{ 2T_\psi(vx)T_\psi(ux) + [T_\psi(vx) + vxT_\psi^*(vx)][T_\psi(ux) + uxT_\psi^*(ux)] \},$$ \hspace{1cm} (52)

where $u = k'/k$, $v = |k - k'|/k$, $x = k\eta$, and the “*” denotes the derivative with respect to the argument. In deriving Eq. (52), we have used the relation Eq. (21), $\phi = \psi$. For later convenience, we have also symmetrized $f_{\text{scalar}}(u, v, x)$ with respect to $u \leftrightarrow v$. Here, the scalar perturbations have been split into contributions from the primordial curvature perturbation and the transfer function,

$$\delta \varphi(k, \eta) = \frac{2}{3} \zeta(k) k T_\varphi(x),$$ \hspace{1cm} (53)

$$\psi(k, \eta) = \frac{2}{3} \zeta(k) T_\psi(x),$$ \hspace{1cm} (54)

where $\zeta(k)$ is the primordial curvature perturbation. Since the evolution of linear scalar perturbations is unaffected by PV, the transfer function for ψ during the radiation-dominated era is the same as that is in GR,

$$T_\psi(x) = \frac{9}{x^2} \left(\frac{\sin(x/\sqrt{3})}{x/\sqrt{3}} - \cos(x/\sqrt{3}) \right).$$ \hspace{1cm} (55)

Similarly, for the PV contribution to the source,

$$S_k^{A(\text{PV})} = \int \frac{d^3k'}{(2\pi)^3/2} p^A_{ij}k'_i k'_j \zeta(k') \zeta(k - k') f^A_{\text{PV}}(k, u, v, x),$$ \hspace{1cm} (56)

where

$$f^A_{\text{PV}}(k, u, v, x) = -\frac{\lambda^A k^3 4}{a^2} \frac{4}{9} \partial_x [\varphi(vT_\delta\varphi(ux)T_\psi(vx) + vT_\delta\varphi(vx)T_\psi(ux))],$$ \hspace{1cm} (57)
and we have symmetrized \(f_{PV}(u, v, x) \) under \(u \leftrightarrow v \). With the expression of \(\vartheta(\varphi) \), the above equation becomes

\[
f_{PV}^A(k, u, v, x) = -z_0 \frac{4 \kappa k^2 \Lambda e^S}{9} \left[3 (uT_{\delta \varphi}(ux)T_{\psi}(vx) + vT_{\delta \varphi}(vx)T_{\psi}(ux)) + \nu \left(uT_{\delta \varphi}(ux)T_{\psi}(vx) + vT_{\delta \varphi}(vx)T_{\psi}(ux) \right) \right].
\]

(58)

With Eqs. (26), (18) and (55), we obtain the transfer function for \(\delta \varphi \) to be

\[
T_{\delta \varphi}(x) = \kappa^{-1} k^{-1} \epsilon^S \left(xT_{\psi}(x) + T_{\psi}(x) \right) = \kappa^{-1} k^{-1} \epsilon^S \frac{3}{x^3} \left(6 \cos(x/\sqrt{3}) + \sqrt{3}(-6 + x^2) \sin(x/\sqrt{3}) \right).
\]

(59)

By plugging Eqs. (50) and (56) in Eq. (48), the solutions of the circularly polarized modes can be written in a compact form

\[
h_k^A(\eta) = \frac{4}{z^A(k)} \int \frac{d^3k'}{(2\pi)^{3/2}} p^{Aij} k'_i k'_j (k' - k') \frac{1}{k^2} I^A(k, u, v, x),
\]

(60)

where

\[
I^A(k, u, v, x) = \int_0^x d\bar{x} \frac{a(\bar{\eta})}{a(\eta)} kG^A_k(\eta, \bar{\eta}) \left(f_{\text{scalar}}(u, v, \bar{x}) + f_{PV}^A(k, u, v, \bar{x}) \right)
\]

\[
= I_{GR}(u, v, x) + I_{PV}^A(k, u, v, x).
\]

(61)

In the above

\[
I_{GR}(u, v, x) = \int_0^x d\bar{x} \frac{a(\bar{\eta})}{a(\eta)} kG^A_k(\eta, \bar{\eta}) f_{\text{scalar}}(u, v, \bar{x}),
\]

(62)

is the same as that in GR [19], and

\[
I_{PV}^A(k, u, v, x) = \int_0^x d\bar{x} \frac{a(\bar{\eta})}{a(\eta)} kG^A_k(\eta, \bar{\eta}) f_{PV}^A(k, u, v, \bar{x}),
\]

(63)

is the contribution from the PV terms, of which the concrete expression can be found in appendix A.

The power spectrum of the SIGWs \(\mathcal{P}_h^A \) is defined by

\[
\langle h_k^A h_{k'}^C \rangle = \frac{2\pi^2}{k^3} \delta^3(\mathbf{k} + \mathbf{k}') \delta^{AC} \mathcal{P}_h^A(k).
\]

(64)

With the solution to Eq. (48) and the definition of \(\mathcal{P}_h^A \), we can obtain the power spectra of the SIGWs from the CS modified gravity

\[
\mathcal{P}_h^A(k, x) = 4 \int_0^\infty du \int_{|1-u|}^{1+u} dv \mathcal{I}(u, v) \frac{I^A(k, u, v, x)^2}{(z^A(k))^2} \mathcal{P}_{\zeta}(uk)\mathcal{P}_{\zeta}(vk),
\]

(65)
where
\[J(u,v) = \left[\frac{4u^2 - (1 + u^2 - v^2)^2}{4uv} \right]^2, \] (66)
and \(\mathcal{P}_\zeta \) is the power spectrum of primordial curvature perturbation.

The fractional energy density of the SIGWs is
\[\Omega_{GW}(k, x) = \frac{1}{48} \left(\frac{k}{H} \right)^2 \sum_{A=R,L} \mathcal{P}^A_h(k, x) = \frac{x^2}{48} \sum_{A=R,L} \mathcal{P}^A_h(k, x) \]
(67)
\[= \frac{1}{12} \int_0^\infty du \int_{\mid 1-u \mid}^{1+u} dv J(u,v) \sum_{A=R,L} \frac{I^A(k,u,v,x)^2}{(z^A(k))^2} \mathcal{P}_\zeta(uk)\mathcal{P}_\zeta(vk), \]
where the overline represents the time average, and \(\bar{I}^A(k,u,v,x) = I^A(k,u,v,x)^2 x^2 \).

The GWs behave as free radiation, thus the fractional energy density of the SIGWs at the present time \(\Omega_{GW,0} \) can be expressed as [20]
\[\Omega_{GW,0}(k) = \Omega_{GW}(k, \eta \to \infty) \Omega_{r,0}, \] (68)
where \(\Omega_{r,0} \) is the current fractional energy density of the radiation.

For later convenience, in the following we show the explicit expression for the averaged kernel \(\overline{(I^A)^2} \), of which the detailed derivation can be found in appendix A. Since we are interested in the SIGWs at the present time, we can take \(x \gg 1 \). In this limit, we have
\[\bar{I}^A(k,u,v,x \to \infty)^2 = \frac{1}{2x^2} \left((I_{GRs} + I^A_{PVs})^2 + (I_{GRc} + I^A_{PVc})^2 \right) \]
\[= \frac{1}{2x^2} \left((6(u^2 + v^2 - 3) + 3z_0 \lambda^A k(u + v)(3 + (u - v)^2))^2 \right) \]
\[\times \left[-4uv + (u^2 + v^2 - 3) \ln \left| \frac{3 - (u + v)^2}{3 - (u - v)^2} \right| \right] \]
\[+ (u^2 + v^2 - 3)^2 \pi^2 \Theta \left(u + v - \sqrt{3} \right), \] (69)
with \(z_0 k < 1 \). From the above expression, the magnitude of the contribution from the PV term can be at most of the same order as that from the GR.

The degree of the circular polarization is defined as [53, 56]
\[\Pi = \frac{\bar{P}_h^R - \bar{P}_h^L}{\bar{P}_h^R + \bar{P}_h^L}, \] (70)
where again an overline denotes the time average. Combining Eqs. (70) and (A15), we obtain
\[\Pi = \frac{\int_0^\infty du \int_{\mid 1-u \mid}^{1+u} dv J(u,v) N(k,u,v) \mathcal{P}_\zeta(uk)\mathcal{P}_\zeta(vk)}{\int_0^\infty du \int_{\mid 1-u \mid}^{1+u} dv J(u,v) M(k,u,v) \mathcal{P}_\zeta(uk)\mathcal{P}_\zeta(vk)}. \] (71)
where
\[\mathcal{N}(k, u, v) = \frac{I_R(k, u, v, x \to \infty)^2}{(z_R(k))^2} - \frac{I_L(k, u, v, x \to \infty)^2}{(z_L(k))^2}, \] (72)
and
\[\mathcal{N}(k, u, v) = \frac{I_R(k, u, v, x \to \infty)^2}{(z_R(k))^2} + \frac{I_L(k, u, v, x \to \infty)^2}{(z_L(k))^2}, \] (73)
with \(I^A = I_{GR} + I_{PV}^A \). According to Eq. (69) and the fact that \(I_{PV}^R = -I_{PV}^L \), the degree of the circular polarization can be large only if \(\mathcal{O}(I_{GR}) \sim \mathcal{O}(I_{PV}^A) \), which is possible as long as \(\mathcal{O}(2(u^2 + v^2 - 3)) \sim \mathcal{O}(z_0k(u + v)(3 + (u - v)^2)) \).

IV. EXAMPLES WITH CONCRETE FORMS FOR THE POWER SPECTRUM OF THE CURVATURE PERTURBATION

The expressions derived in the above section are quite general, which in fact can be applied to more general gravity theories that are different from GR. In order to investigate the features of SIGWs from the CS modified gravity, in this section we consider some phenomenological forms for the power spectrum of the curvature perturbation that are commonly used to study the SIGWs.

A. The monochromatic power spectrum

First we consider the curvature perturbation with the \(\delta \)-function-type power spectrum [13, 116]
\[P_\zeta(k) = A_\zeta \delta(\ln(k/k_p)). \] (74)
After some straightforward calculations, we obtain the fractional energy density of the SIGWs
\[\Omega_{GW}(k) = \frac{A_\zeta^2 \bar{k}^{-2}}{12} \left(\frac{4 - \bar{k}^2}{4} \right)^2 \sum_{A=R,L} \frac{IA(k, \bar{k}^{-1}, \bar{k}^{-1}, x \to \infty)^2}{(1 - z_0\lambda^A k)^2} \Theta(2 - \bar{k}), \] (75)
where \(\bar{k} = k/k_p \).

With the expression of \((IA)^2 \), i.e., Eqs. (68) and (75), we plot the fractional energy density of the SIGWs from GR and CS modified gravity in the left panel of Fig. 1, respectively.

From Fig. 1, there is a divergence at the frequency \(\bar{f} = f/f_p = 2/\sqrt{3} \) due to the resonant amplification [13, 19]. We can also see that from the expression of \(I^A \), the divergence comes
from the cosine integral Ci. There is a term in I_A that is $\propto (2\bar{f}^2 - 3)^2\text{Ci}(|1 - 2\bar{f}^{-1}/\sqrt{3}|)$, which is divergent when $\bar{f} = 2/\sqrt{3}$. From Fig. 1, we can see that as k increases, the contribution from the PV term to Ω_{GW} becomes comparable with the contribution from GR, but the former never dominates due to the constraint (45), i.e., $z_0k < 1$.

After some manipulations, we obtain

$$\Pi = \frac{N(k, \bar{k}^{-1}, \bar{k}^{-1})}{M(k, \bar{k}^{-1}, \bar{k}^{-1})} \Theta(2 - \bar{k}). \quad (76)$$

The degree of the circular polarization of the SIGWs is tiny, i.e., $|\Pi| \ll 1$, when the deviation from GR is negligible, i.e., when the contribution from the CS term I_{PV}^A is subdominant. Only in the case that the contribution to Ω_{GW} attributed to the CS term is about the same order as that from GR, namely $O(I_{GR}) \sim O(I_{PV}^A)$, we may obtain a large Π.

At lower frequencies, the contribution to the degree of the circular polarization Π from the CS term is negligible, i.e., $|\Pi| \ll 1$, which is mainly because the extra term $z_0k \ll 1$ in I_{PV}^A. As the frequency increases, the contribution to Ω_{GW} attributed to the CS term becomes comparable with that from GR gradually, and thus $|\Pi|$ becomes large. When $z_0k \sim O(1)$, i.e., at frequency $f \simeq 10^{-3}\text{Hz}$, we obtain the maximum of the degree of the circular polarization, $|\Pi| \simeq 1$, as shown in Fig. 1.

![Graph](image)

FIG. 1. The energy density of SIGWs from GR and CS gravity (left panel) and the degree of the circular polarization of SIGWs from CS term (right panel). The peak amplitude and the peak scale are fixed to be $A_\zeta = 10^{-2}$ and $k_p = 10^{12}\text{Mpc}^{-1}$, respectively, which corresponds to the maximum sensitivity of TianQin and LISA.
B. The lognormal peak

We consider another power spectrum for the curvature perturbation with Gaussian form [117, 118]

\[
P_\zeta(k) = \frac{A_\zeta}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\ln^2(k/k_p)}{2\sigma^2}\right)
\]

(77)

The above power spectrum becomes monochromatic Eq. (74) when \(\sigma \to 0\). Unlike the monochromatic power spectrum, the SIGWs generated by this power spectrum shows no divergence as long as \(\sigma\) is not very small. We have numerically evaluated the fractional energy density and the degree of the circular polarization of the SIGWs from the CS modified gravity generated by the above lognormal peak. The results are shown in Fig. 2 and Fig. 3 for \(\sigma = 0.2\) and \(\sigma = 0.5\), respectively.

It is clear that from Fig. 2 and Fig. 3, the resonant divergence disappears since more modes with a wider range of wavenumbers contribute to the integration Eq. (65). Similar to the previous subsection, the degree of the circular polarization can be large only if the magnitude of the energy density attributed to the CS term is about the same order as that from GR, namely \(O(I_{GR}) \sim O(I_{PV}^A)\). From Figs. 2 and 3, we can obtain a large degree of circular polarization \(|\Pi| \simeq 1\), although the correction to \(\Omega_{GW}\) from the parity violating term is at most of the same order as that from the GR. The reason is the same as what we have explained in the above subsection.

FIG. 2. The SIGWs induced by the lognormal peak with \(\sigma = 0.2\). We plot the contributions to the energy density of SIGWs from the GR and the CS term (left panel) and the degree of the circular polarization of SIGWs from the CS gravity (right panel). The parameters \(A_\zeta\) and \(k_p\) are the same as those in the case of monochromatic power spectrum.
FIG. 3. The SIGWs induced by the lognormal peak with $\sigma = 0.5$. We plot the contributions to the energy density of SIGWs from the GR and the CS term (left panel) and the degree of the circular polarization of SIGWs from the CS gravity (right panel). The parameters A_ζ and k_p are the same as those in the case of monochromatic power spectrum.

V. CONCLUSION

In this paper, we made the first step to use SIGWs to test the possible parity violation in the early universe and/or in the gravitational interactions. We took the simplest CS modified gravity with a dynamical scalar field Eq. (1) as the example. We derived the EoMs for the SIGWs, and by taking the coupling to be $\vartheta(\varphi) = \vartheta_0 \exp^{\kappa_\alpha \varphi}$, we gave the semianalytic expressions that can be used to evaluate the effects on the SIGWs from the CS gravity. The general equations for the circular polarization modes of the SIGWs are given in Eq. (35). Generally, the SIGWs receive contributions from two parts, one is the same as in the case of GR Eq. (50), the other is the correction due to the presence of CS term Eq. (56). Interestingly, we found that the contribution to Ω_{GW} from the PV term is at most of the same order as that from GR, and thus will never dominate. On the contrary, the degree of circular polarization of SIGWs can be as large as $|\Pi| \simeq 1$. This fact implies that even the contribution to the energy density of the SIGWs from the PV term is a small correction, the signal of the SIGWs can be significantly polarized.

In order to illustrate the features of the SIGWs due to the CS term, in Sec. IV we evaluate the fractional energy density Ω_{GW} with the monochromatic and lognormal power spectra of primordial curvature perturbation. We also evaluate the degree of the circular polarization of SIGWs, Π defined in Eq. (70). We found that Π becomes large only when the contributions to Ω_{GW} from the GR and the CS term are comparable to each other.
The results present in this paper indicate that SIGWs may provide us a new tool to test cosmological models with parity violation.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural Science Foundation of China (NSFC) under the grant No. 11975020. The equations of motion for the SIGWs from CS gravity are derived with the help of the Mathematica package xPand [119].

Appendix A: The integral kernel

For the sake of clarity, we split \(I^A \) defined in Eq. (61) into two parts as follows

\[
I^A(k, u, v, x) = \frac{\sin(x)}{x} \left(I_{GRs} + I_{PVs}^A \right) + \frac{\cos(x)}{x} \left(I_{GRc} + I_{PVc}^A \right),
\]

where the subscript “s” and “c” stand for contributions involving the sine and cosine functions, respectively. We also write

\[
I_{PVs}^A(k, u, v, x) = I_{PVs}^A(k, u, v, x) - I_{PVs}^A(k, u, v, 0),
\]

\[
I_{PVc}^A(k, u, v, x) = I_{PVc}^A(k, u, v, x) - I_{PVc}^A(k, u, v, 0),
\]

where \(I_{PVs}^A \) and \(I_{PVc}^A \) are defined by

\[
I_{PVs}^A(k, u, v, y) = \int dy \cos y f_{PV}(k, u, v, y) y,
\]

\[
I_{PVc}^A(k, u, v, y) = -\int dy \sin y f_{PV}(k, u, v, y) y.
\]

After tedious manipulations, the concrete expressions of \(I_{PVs}^A \) and \(I_{PVc}^A \) are found to be

\[
I_{PVs}^A(k, u, v, y) = \frac{3z_0 \lambda^A k(u + v)}{8u^3 v^3 y^4} \left\{ 72uvy^2 \cos y \cos \frac{uy}{\sqrt{3}} \cos \frac{vy}{\sqrt{3}} - 24uvy^3 \cos \frac{uy}{\sqrt{3}} \cos \frac{vy}{\sqrt{3}} \sin y \\
+ 4\sqrt{3}vy (-18 + (3 + 3u^2 - 2uv + v^2)y^2) \cos y \cos \frac{uy}{\sqrt{3}} \sin \frac{uy}{\sqrt{3}} \\
+ 4\sqrt{3}uy (-18 + (3 + 3v^2 - 2uv + u^2)y^2) \cos y \cos \frac{uy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}} \\
+ 24\sqrt{3}vy^2 \cos \frac{vy}{\sqrt{3}} \sin y \sin \frac{uy}{\sqrt{3}} + 24\sqrt{3}uy^2 \cos \frac{uy}{\sqrt{3}} \sin y \sin \frac{vy}{\sqrt{3}} \\
- 12 \left(-18 + (3 + 3u^2 - 2uv + 3v^2)y^2\right) \cos y \sin \frac{uy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}} \right\}
\]
With the above expressions, we can obtain \(I^A \)

\[
I^A_{PV_c}(k, u, v, y) = \frac{3z_0\lambda^A k(u + v)}{8u^3v^3} \left\{ -72uvy^2 \cos \frac{uy}{\sqrt{3}} \cos \frac{vy}{\sqrt{3}} \sin y - 24uv^3 \cos y \cos \frac{uy}{\sqrt{3}} \cos \frac{vy}{\sqrt{3}}
+ 24\sqrt{3}vy^2 \cos y \cos \frac{vy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}} + 24\sqrt{3}uy^2 \cos y \cos \frac{uy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}}
- 4\sqrt{3}uy \left(-18 + (3 + 3u^2 - 2uv + v^2)y^2 \right) \cos \frac{vy}{\sqrt{3}} \sin y \sin \frac{vy}{\sqrt{3}}
- 4\sqrt{3}uy \left(-18 + (3 + 3v^2 - 2uv + u^2)y^2 \right) \cos \frac{uy}{\sqrt{3}} \sin y \sin \frac{vy}{\sqrt{3}}
+ 12 \left(-18 + (3 + 3u^2 - 2uv + 3v^2)y^2 \right) \sin y \sin \frac{uy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}}
+ 12y \left(-6 + (3 + u^2 - 2uv + v^2)y^2 \right) \cos y \sin \frac{uy}{\sqrt{3}} \sin \frac{vy}{\sqrt{3}} \right\}
+ \frac{3z_0\lambda^A k(u + v)}{8u^3v^3} \left(-9 + u^4 - 2u^2v + 2u^2v^2 + v^4 + 6uv - 2uv^3 \right)
\left(\text{Si} \left[\left(1 + \frac{u + v}{\sqrt{3}} \right) y \right] + \text{Si} \left[\left(1 - \frac{u + v}{\sqrt{3}} \right) y \right]
- \text{Si} \left[\left(1 + \frac{u - v}{\sqrt{3}} \right) y \right] - \text{Si} \left[\left(1 - \frac{u - v}{\sqrt{3}} \right) y \right] \right),
\]

where

\[
\text{Si}(x) = \int_0^x dy \sin \frac{y}{y}, \quad \text{Ci}(x) = -\int_x^\infty dy \cos \frac{y}{y}.
\]

With the above expressions, we can obtain \(I^A \)

\[
I^A_{GR}(k, u, v, x)|_{x \to \infty} = (I^A_{GR}(u, v, x) + I^A_{PV_s}(k, u, v, x))|_{x \to \infty}, \quad (A7)
\]

\[
I^A_{c}(k, u, v, x)|_{x \to \infty} = (I^A_{c}(u, v, x) + I^A_{PV_v}(k, u, v, x))|_{x \to \infty}. \quad (A8)
\]

where

\[
I^A_{PV_s}(k, u, v, x)|_{x \to \infty} = z_0\lambda^A k \frac{3(u + v)(3 + (u - v)^2)}{8u^3v^3} \left(-4uv + (u^2 + v^2 - 3) \ln \left| \frac{3 - (u + v)^2}{3 - (u - v)^2} \right| \right),
\]

\[
I^A_{PV_v}(k, u, v, x)|_{x \to \infty} = -z_0\lambda^A k \frac{3(u + v)(3 + (u - v)^2)}{8u^3v^3} \left(u^2 + v^2 - 3 \right) \pi \Theta(u + v - \sqrt{3}),
\]

\[
(A9)
\]
and \[I_{GR_s}(k, u, v, x)|_{x \to \infty} = \frac{3(u^2 + v^2 - 3)}{4u^3v^3} \left(-4uv + (u^2 + v^2 - 3) \ln \left| \frac{3 - (u + v)^2}{3 - (u - v)^2} \right| \right), \] \hspace{1cm} (A11)

\[I_{GR_c}(k, u, v, x)|_{x \to \infty} = -\frac{3(u^2 + v^2 - 3)^2}{4u^3v^3} \pi \Theta(u + v - \sqrt{3}). \] \hspace{1cm} (A12)

Combining Eqs. (A9) and (A11), we get the following results

\[I^A_s(k, u, v, x)|_{x \to \infty} = \frac{6(u^2 + v^2 - 3) + 3z_0 \lambda^A k(u + v)(3 + (u - v)^2)}{8u^3v^3} \]
\[\times \left(-4uv + (u^2 + v^2 - 3) \ln \left| \frac{3 - (u + v)^2}{3 - (u - v)^2} \right| \right), \] \hspace{1cm} (A13)

\[I^A_c(k, u, v, x)|_{x \to \infty} = -\frac{6(u^2 + v^2 - 3) + 3z_0 \lambda^A k(u + v)(3 + (u - v)^2)}{8u^3v^3} \]
\[\times (u^2 + v^2 - 3) \pi \Theta(u + v - \sqrt{3}). \] \hspace{1cm} (A14)

As a result, the time average

\[\overline{I^A(k, u, v, x \to \infty)}^2 = \frac{1}{2x^2} \left(I^A_s(k, u, v, x \to \infty)^2 + I^A_c(k, u, v, x \to \infty)^2 \right). \] \hspace{1cm} (A15)

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016).

[2] B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[3] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence, Astrophys. J. Lett. 851, L35 (2017).

[4] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017).

[5] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101 (2017).

[6] B. P. Abbott et al. (LIGO Scientific, VIRGO), GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017), [Erratum: Phys.Rev.Lett. 121, 129901 (2018)].
[7] B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019).

[8] R. Abbott et al. (LIGO Scientific, Virgo), GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object, Astrophys. J. Lett. 896, L44 (2020).

[9] B. P. Abbott et al. (LIGO Scientific, Virgo), GW190425: Observation of a Compact Binary Coalescence with Total Mass \(\sim 3.4M_\odot \), Astrophys. J. Lett. 892, L3 (2020).

[10] R. Abbott et al. (LIGO Scientific, Virgo), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020).

[11] Y. Akrami et al. (Planck), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020).

[12] P. A. R. Ade et al. (BICEP, Keck), Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127, 151301 (2021).

[13] K. N. Ananda, C. Clarkson, and D. Wands, The Cosmological gravitational wave background from primordial density perturbations, Phys. Rev. D 75, 123518 (2007).

[14] R. Saito and J. Yokoyama, Gravitational wave background as a probe of the primordial black hole abundance, Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys.Rev.Lett. 107, 069901 (2011)].

[15] N. Orlofsky, A. Pierce, and J. D. Wells, Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves, Phys. Rev. D 95, 063518 (2017).

[16] T. Nakama, J. Silk, and M. Kamionkowski, Stochastic gravitational waves associated with the formation of primordial black holes, Phys. Rev. D 95, 043511 (2017).

[17] S. Wang, Y.-F. Wang, Q.-G. Huang, and T. G. F. Li, Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 120, 191102 (2018).

[18] R.-g. Cai, S. Pi, and M. Sasaki, Gravitational Waves Induced by non-Gaussian Scalar Perturbations, Phys. Rev. Lett. 122, 201101 (2019).

[19] K. Kohri and T. Terada, Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations, Phys. Rev. D 97, 123532 (2018).
[20] J. R. Espinosa, D. Racco, and A. Riotto, A Cosmological Signature of the SM Higgs Instability: Gravitational Waves, J. Cosmol. Astropart. Phys. 09 (2018) 012.

[21] S. Kuroyanagi, T. Chiba, and T. Takahashi, Probing the Universe through the Stochastic Gravitational Wave Background, J. Cosmol. Astropart. Phys. 11 (2018) 038.

[22] G. Domènech, Induced gravitational waves in a general cosmological background, Int. J. Mod. Phys. D 29, 2050028 (2020).

[23] J. Fumagalli, S. Renaux-Petel, and L. T. Witkowski, Oscillations in the stochastic gravitational wave background from sharp features and particle production during inflation, J. Cosmol. Astropart. Phys. 08 (2021) 030.

[24] J. Lin, Q. Gao, Y. Gong, Y. Lu, C. Zhang, and F. Zhang, Primordial black holes and secondary gravitational waves from \(k \) and \(G \) inflation, Phys. Rev. D 101, 103515 (2020).

[25] G. Domènech, S. Pi, and M. Sasaki, Induced gravitational waves as a probe of thermal history of the universe, J. Cosmol. Astropart. Phys. 08 (2020) 017.

[26] G. Domènech, Scalar Induced Gravitational Waves Review, Universe 7, 398 (2021).

[27] F. Zhang, J. Lin, and Y. Lu, Double-peaked inflation model: Scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity, Phys. Rev. D 104, 063515 (2021), [Erratum: Phys.Rev.D 104, 129902 (2021)].

[28] S. Wang, K. Kohri, and V. Vardanyan, Probing Primordial Black Holes with Anisotropies in Stochastic Gravitational-Wave Background, arXiv:2107.01935.

[29] P. Adshead, K. D. Lozanov, and Z. J. Weiner, Non-Gaussianity and the induced gravitational wave background, J. Cosmol. Astropart. Phys. 10 (2021) 080.

[30] W. Ahmed, M. Junaid, and U. Zubair, Primordial Black Holes and Gravitational Waves in Hybrid Inflation with Chaotic Potentials, arXiv:2109.14838.

[31] F. Zhang, Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term, Phys. Rev. D 105, 063539 (2022).

[32] K. Danzmann, LISA: An ESA cornerstone mission for a gravitational wave observatory, Classical Quantum Gravity 14, 1399 (1997).

[33] P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, arXiv:1702.00786.

[34] J. Luo et al. (TianQin), TianQin: a space-borne gravitational wave detector, Classical Quantum Gravity 33, 035010 (2016).

[35] W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the
nature of gravity, Natl. Sci. Rev. 4, 685 (2017).

[36] M. Kramer and D. J. Champion, The European Pulsar Timing Array and the Large European Array for Pulsars, Classical Quantum Gravity 30, 224009 (2013).

[37] G. Hobbs et al., The international pulsar timing array project: using pulsars as a gravitational wave detector, Classical Quantum Gravity 27, 084013 (2010).

[38] M. A. McLaughlin, The North American Nanohertz Observatory for Gravitational Waves, Classical Quantum Gravity 30, 224008 (2013).

[39] G. Hobbs, The Parkes Pulsar Timing Array, Classical Quantum Gravity 30, 224007 (2013).

[40] C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-wave sensitivity curves, Classical Quantum Gravity 32, 015014 (2015).

[41] G. Sato-Polito, E. D. Kovetz, and M. Kamionkowski, Constraints on the primordial curvature power spectrum from primordial black holes, Phys. Rev. D 100, 063521 (2019).

[42] Y. Lu, Y. Gong, Z. Yi, and F. Zhang, Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves, J. Cosmol. Astropart. Phys. 12 (2019) 031.

[43] M. Y. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10, 495 (2010).

[44] V. De Luca, G. Franciolini, and A. Riotto, NANOGrav Data Hints at Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 126, 041303 (2021).

[45] V. Vaskonen and H. Veermäe, Did NANOGrav see a signal from primordial black hole formation?, Phys. Rev. Lett. 126, 051303 (2021).

[46] K. Kohri and T. Terada, Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves, Phys. Lett. B 813, 136040 (2021).

[47] G. Domènech and S. Pi, NANOGrav hints on planet-mass primordial black holes, Sci. China Phys. Mech. Astron. 65, 230411 (2022).

[48] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory, Phys. Lett. B 149, 117 (1984).

[49] E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149, 351 (1984).

[50] R. Jackiw and S. Y. Pi, Chern-Simons modification of general relativity, Phys. Rev. D 68, 104012 (2003).

[51] A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett. 83, 1506 (1999).
[52] M. Satoh, S. Kanno, and J. Soda, Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology, Phys. Rev. D 77, 023526 (2008).

[53] S. Saito, K. Ichiki, and A. Taruya, Probing polarization states of primordial gravitational waves with CMB anisotropies, J. Cosmol. Astropart. Phys. 09 (2007) 002.

[54] S. Alexander and N. Yunes, Chern-Simons Modified General Relativity, Phys. Rep. 480, 1 (2009).

[55] N. Yunes, R. O'Shaughnessy, B. J. Owen, and S. Alexander, Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts, Phys. Rev. D 82, 064017 (2010).

[56] V. Gluscevic and M. Kamionkowski, Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments, Phys. Rev. D 81, 123529 (2010).

[57] Y. S. Myung and T. Moon, Primordial massive gravitational waves from Einstein-Chern-Simons-Weyl gravity, J. Cosmol. Astropart. Phys. 08 (2014) 061.

[58] S. Kawai and J. Kim, Gauss–Bonnet Chern–Simons gravitational wave leptogenesis, Phys. Lett. B 789, 145 (2019).

[59] R. Nair, S. Perkins, H. O. Silva, and N. Yunes, Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1, Phys. Rev. Lett. 123, 191101 (2019).

[60] A. Nishizawa and T. Kobayashi, Parity-violating gravity and GW170817, Phys. Rev. D 98, 124018 (2018).

[61] S. D. Odintsov and V. K. Oikonomou, $f(R)$ Gravity Inflation with String-Corrected Axion Dark Matter, Phys. Rev. D 99, 064049 (2019).

[62] S. D. Odintsov and V. K. Oikonomou, Chirality of gravitational waves in Chern-Simons $f(R)$ gravity cosmology, Phys. Rev. D 105, 104054 (2022).

[63] S. D. Odintsov, V. K. Oikonomou, and R. Myrzakulov, Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview, Symmetry 14, 729 (2022).

[64] N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves, J. Cosmol. Astropart. Phys. 07 (2017) 034.

[65] N. Bartolo, G. Orlando, and M. Shiraishi, Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra, J. Cosmol. Astropart. Phys. 01 (2019) 050.
[66] P. Horava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79, 084008 (2009).
[67] M. Crisostomi, K. Noui, C. Charmousis, and D. Langlois, Beyond Lovelock gravity: Higher derivative metric theories, Phys. Rev. D 97, 044034 (2018).
[68] X. Gao and X.-Y. Hong, Propagation of gravitational waves in a cosmological background, Phys. Rev. D 101, 064057 (2020).
[69] Y.-M. Hu and X. Gao, Covariant 3+1 correspondence of the spatially covariant gravity and the degeneracy conditions, Phys. Rev. D 105, 044023 (2022).
[70] Y.-M. Hu and X. Gao, Spatially covariant gravity with 2 degrees of freedom: Perturbative analysis, Phys. Rev. D 104, 104007 (2021).
[71] T. Takahashi and J. Soda, Chiral Primordial Gravitational Waves from a Lifshitz Point, Phys. Rev. Lett. 102, 231301 (2009).
[72] Y. S. Myung, Chiral gravitational waves from z=2 Hořava-Lifshitz gravity, Phys. Lett. B 684, 1 (2010).
[73] A. Wang, Q. Wu, W. Zhao, and T. Zhu, Polarizing primordial gravitational waves by parity violation, Phys. Rev. D 87, 103512 (2013).
[74] T. Zhu, W. Zhao, Y. Huang, A. Wang, and Q. Wu, Effects of parity violation on non-gaussianity of primordial gravitational waves in Hořava-Lifshitz gravity, Phys. Rev. D 88, 063508 (2013).
[75] D. Cannone, J.-O. Gong, and G. Tasinato, Breaking discrete symmetries in the effective field theory of inflation, J. Cosmol. Astropart. Phys. 08 (2015) 003.
[76] W. Zhao, T. Liu, L. Wen, T. Zhu, A. Wang, Q. Hu, and C. Zhou, Model-independent test of the parity symmetry of gravity with gravitational waves, Eur. Phys. J. C 80, 630 (2020).
[77] W. Zhao, T. Zhu, J. Qiao, and A. Wang, Waveform of gravitational waves in the general parity-violating gravities, Phys. Rev. D 101, 024002 (2020).
[78] J. Qiao, T. Zhu, W. Zhao, and A. Wang, Polarized primordial gravitational waves in the ghost-free parity-violating gravity, Phys. Rev. D 101, 043528 (2020).
[79] J. Qiao, T. Zhu, W. Zhao, and A. Wang, Waveform of gravitational waves in the ghost-free parity-violating gravities, Phys. Rev. D 100, 124058 (2019).
[80] J. Qiao, T. Zhu, G. Li, and W. Zhao, Post-Newtonian parameters of ghost-free parity-violating gravities, J. Cosmol. Astropart. Phys. 04 (2022) 054.
[81] C. Gong, T. Zhu, R. Niu, Q. Wu, J.-L. Cui, X. Zhang, W. Zhao, and A. Wang, Gravitational
wave constraints on Lorentz and parity violations in gravity: High-order spatial derivative cases, Phys. Rev. D 105, 044034 (2022).

[82] H. T. Nieh and M. L. Yan, An Identity in Riemann-cartan Geometry, J. Math. Phys. (N.Y.) 23, 373 (1982).

[83] A. Chatzistavrakidis, G. Karagiannis, and P. Schupp, Torsion-induced gravitational θ term and gravitoelectromagnetism, Eur. Phys. J. C 80, 1034 (2020).

[84] R.-G. Cai, C. Fu, and W.-W. Yu, Parity violation in stochastic gravitational wave background from inflation in Nieh-Yan modified teleparallel gravity, Phys. Rev. D 105, 103520 (2022).

[85] Q. Wu, T. Zhu, R. Niu, W. Zhao, and A. Wang, Constraints on the Nieh-Yan modified teleparallel gravity with gravitational waves, Phys. Rev. D 105, 024035 (2022).

[86] M. Långvik, J.-M. Ojanperä, S. Raatikainen, and S. Rasanen, Higgs inflation with the Holst and the Nieh–Yan term, Phys. Rev. D 103, 083514 (2021).

[87] M. Li, H. Rao, and D. Zhao, A simple parity violating gravity model without ghost instability, J. Cosmol. Astropart. Phys. 11 (2020) 023.

[88] M. Li, H. Rao, and Y. Tong, Revisiting a parity violating gravity model without ghost instability: Local Lorentz covariance, Phys. Rev. D 104, 084077 (2021).

[89] H. Rao, Parametrized post-Newtonian limit of the Nieh-Yan modified teleparallel gravity, Phys. Rev. D 104, 124084 (2021).

[90] M. Li and D. Zhao, A simple parity violating model in the symmetric teleparallel gravity and its cosmological perturbations, Phys. Lett. B 827, 136968 (2022).

[91] M. Li, Z. Li, and H. Rao, Ghost instability in the teleparallel gravity model with parity violations, Phys. Lett. B 834, 137395 (2022).

[92] M. Li, Y. Tong, and D. Zhao, Possible consistent model of parity violations in the symmetric teleparallel gravity, Phys. Rev. D 105, 104002 (2022).

[93] M. Hohmann and C. Pfeifer, Teleparallel axions and cosmology, Eur. Phys. J. C 81, 376 (2021).

[94] F. Bombacigno, S. Boudet, G. J. Olmo, and G. Montani, Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case, Phys. Rev. D 103, 124031 (2021).

[95] D. Iosifidis and L. Ravera, Parity Violating Metric-Affine Gravity Theories, Classical Quantum Gravity 38, 115003 (2021).
[96] M. Hohmann and C. Pfeifer, Gravitational wave birefringence in spatially curved teleparallel cosmology, arXiv:2203.01856.

[97] A. Conroy and T. Koivisto, Parity-Violating Gravity and GW170817 in Non-Riemannian Cosmology, J. Cosmol. Astropart. Phys. 12 (2019) 016.

[98] D. Iosifidis, The full quadratic metric-affine gravity (including parity odd terms): exact solutions for the affine-connection, Classical Quantum Gravity 39, 095002 (2022).

[99] C. Pagani and R. Percacci, Quantum gravity with torsion and non-metricity, Classical Quantum Gravity 32, 195019 (2015).

[100] S. Alexander and J. Martin, Birefringent gravitational waves and the consistency check of inflation, Phys. Rev. D 71, 063526 (2005).

[101] S. Wang and Z.-C. Zhao, Tests of CPT invariance in gravitational waves with LIGO-Virgo catalog GWTC-1, Eur. Phys. J. C 80, 1032 (2020).

[102] Y.-F. Wang, S. M. Brown, L. Shao, and W. Zhao, Tests of Gravitational-Wave Birefringence with the Open Gravitational-Wave Catalog, arXiv:2109.09718.

[103] Y.-F. Wang, R. Niu, T. Zhu, and W. Zhao, Gravitational Wave Implications for the Parity Symmetry of Gravity in the High Energy Region, Astrophys. J. 908, 58 (2021).

[104] Z.-C. Zhao, Z. Cao, and S. Wang, Search for the Birefringence of Gravitational Waves with the Third Observing Run of Advanced LIGO-Virgo, Astrophys. J. 930, 139 (2022).

[105] Y. Lu, A. Ali, Y. Gong, J. Lin, and F. Zhang, Gauge transformation of scalar induced gravitational waves, Phys. Rev. D 102, 083503 (2020).

[106] A. Ali, Y. Gong, and Y. Lu, Gauge transformation of scalar induced tensor perturbation during matter domination, Phys. Rev. D 103, 043516 (2021).

[107] Z. Chang, S. Wang, and Q.-H. Zhu, Note on gauge invariance of second order cosmological perturbations, Chin. Phys. C 45, 095101 (2021).

[108] Z. Chang, S. Wang, and Q.-H. Zhu, Gauge Invariant Second Order Gravitational Waves, arXiv:2009.11994.

[109] Z. Chang, S. Wang, and Q.-H. Zhu, On the Gauge Invariance of Scalar Induced Gravitational Waves: Gauge Fixings Considered, arXiv:2010.01487.

[110] G. Domènech and M. Sasaki, Approximate gauge independence of the induced gravitational wave spectrum, Phys. Rev. D 103, 063531 (2021).

[111] K. Inomata and T. Terada, Gauge Independence of Induced Gravitational Waves, Phys. Rev.
[112] K. Tomikawa and T. Kobayashi, Gauge dependence of gravitational waves generated at second order from scalar perturbations, Phys. Rev. D 101, 083529 (2020).

[113] C. Yuan, Z.-C. Chen, and Q.-G. Huang, Scalar induced gravitational waves in different gauges, Phys. Rev. D 101, 063018 (2020).

[114] V. De Luca, G. Franciolini, A. Kehagias, and A. Riotto, On the Gauge Invariance of Cosmological Gravitational Waves, J. Cosmol. Astropart. Phys. 03 (2020) 014.

[115] S. Dyda, E. E. Flanagan, and M. Kamionkowski, Vacuum Instability in Chern-Simons Gravity, Phys. Rev. D 86, 124031 (2012).

[116] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments, Phys. Rev. D 95, 123510 (2017).

[117] K. Inomata and T. Nakama, Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum, Phys. Rev. D 99, 043511 (2019).

[118] S. Pi and M. Sasaki, Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak, J. Cosmol. Astropart. Phys. 09 (2020) 037.

[119] C. Pitrou, X. Roy, and O. Umeh, xPand: An algorithm for perturbing homogeneous cosmologies, Classical Quantum Gravity 30, 165002 (2013).