We reproduce the result on π_P from [5] below and we want to highlight the concavity of the infection probability as a function of the vaccination coverage.

Proposition 1. [5] Given any $P \in [0, 1]$, there exists a unique π_P that is strictly decreasing and concave in P until P reaches the elimination threshold P_{crit}. Furthermore, $\pi_P = 1 - \frac{1}{R_0(1-P)}$ for any $P < P_{crit}$, and $\pi_P = 0$ for any $P \geq P_{crit}$.

We now proceed to analyzing the game. Let $\sigma_i \in [0,1]$ denote the probability that player i chooses vaccination. $\sigma = (\sigma_1, \ldots, \sigma_n)$ denotes a mixed-strategy profile. The expected payoff for player i from randomization with σ_i can be expressed as follows:

$$EU_i(\sigma_i, \sigma_{-i}) = \frac{u(R)}{\mu} - \sigma_i C - (1 - \sigma_i)d_{R_0}LE[\pi_{P(\sigma)}],$$

where $E[\pi_{P(\sigma)}]$ denotes the expected infection probability given the mixed-strategy profile σ.

Definition 1. A strategy profile $\sigma^* = (\sigma^*_1, \ldots, \sigma^*_n) \in [0,1]^n$ is a totally mixed-strategy Nash equilibrium for the game G if we have for any $i \in N$

$$\sigma_i \in (0,1),$$

and for all $\sigma^*_i \in [0,1],$

$$EU_i(\sigma^*_i, \sigma_{-i}^*) \geq EU_i(\sigma_i, \sigma_{-i}^*).$$

In what follows, we shall focus on the case in which $C \leq \pi_0d_{R_0}L$. If $C > \pi_0d_{R_0}L$, the only equilibrium outcome is zero vaccination coverage.

Characterization of all Nash equilibria

The following proposition characterizes the set of pure-strategy equilibrium outcomes.

Proposition 2. For $k = 0, 1, \ldots, \nu_{crit} - 1$, $\nu = k + 1$ is the pure strategy equilibrium outcome for $\frac{C}{d_{R_0}L} \in (\pi_{k+1}, \pi_k]$.

Proof of Proposition 2. For any $i \in V(b)$, she has no incentive to deviate because $C \leq d_{R_0}L\pi_k$; for any $i \notin V(b)$, she has no incentive to deviate because $C > d_{R_0}L\pi_{k+1}$. $\nu < k + 1$ cannot arise in pure strategy equilibrium because some $i \notin V(b)$ can always be better off by not taking the vaccination. $\nu > k + 1$ cannot arise in pure strategy equilibrium because some $i \in V(b)$ can always be better off by taking the vaccination. Lastly, note that $\nu > \nu_{crit}$ cannot arise in equilibrium because the infection probability vanishes.
We now show a general characterization of all mixed-strategy equilibria. Let \(\mathcal{M} \) be the set of players using mixed strategies, and \(|\mathcal{M}| = m \). The next proposition characterizes all the mixed-strategy equilibria for \(m > 1 \).

Proposition 3. Given \(n > R_0 \) for \(m > 1 \) and \(v \leq \min\{v_{\text{crit}} - 1, n - m\} \), \(\langle v, m \rangle \) arises as a mixed-strategy equilibrium outcome for \(\frac{C}{d_{R_0}} \in (\pi_{v+m-1}, \pi_v) \) with \(\sigma = \sigma^* \) and is uniquely determined by

\[
\frac{C}{d_{R_0}}L = \sum_{k=0}^{m-1} \pi_{v+k} \left(\frac{m-1}{k} \right) \sigma^k (1 - \sigma^*)^{m-1-k}. \tag{5}
\]

Proof of Proposition 3. A mixed-strategy Nash equilibrium requires that every player in \(\mathcal{M} \) is indifferent between vaccination and non-vaccination, i.e.,

\[
EU_i(vc, \sigma^*_i) = EU_i(nv, \sigma^*_i) \quad \text{for any } i \in \mathcal{M}. \tag{6}
\]

It follows that

\[
\frac{1}{\mu}u(R) - C = \frac{1}{\mu}u(S) - d_{R_0}L \mathbb{E}[\pi_{P(v)}].
\]

where \(\mathbb{E}[\pi_{P(v)}] \) denote the expected infection probability given \(v = k \). Note that the additional vaccination arising from mixed-strategy follows the Poisson binomial distribution with success probabilities \(\sigma^*\), we obtain

\[
\frac{C}{d_{R_0}}L = \sum_{k=0}^{m-1} \pi_{v+k} \sum_{\nu \in \mathcal{P}(M_{-i}, k)} \prod_{j \in \nu} \prod_{l \in M_{-i}} (1 - \sigma_l) \tag{7}
\]

for any \(i \in \mathcal{M} \). Consider this system of equations (characterizing the indifference conditions for the players in set \(\mathcal{M} \) where \(v \leq \min\{v_{\text{crit}} - 1, n - m\} \), we claim that for any mixed strategy equilibria with \(m > 1 \), the mixed-strategy profile \(\sigma \) is unique as shown by the following two lemmas.

Lemma 1. There exists a solution to (7) for \(\frac{C}{d_{R_0}} \in (\pi_{v+m-1}, \pi_v) \) s.t. \(\sigma_i = \sigma^* \) for any \(i \in \mathcal{M} \).

Proof of Lemma 1. The system (7) reduces to

\[
\frac{C}{d_{R_0}}L = \sum_{k=0}^{m-1} \pi_{v+k} \left(\frac{m-1}{k} \right) \sigma^k (1 - \sigma^*)^{m-1-k}. \tag{8}
\]

By intermediate value theorem, there exists \(\sigma^* \in (0, 1) \) such that the above equation holds.

Lemma 2. (7) has at most one solution.

Proof of Lemma 2. Define vector-valued function \(H : [0, 1]^n \to \mathbb{R}^n \) where every
component function

\[H_i := dR_0 r \sum_{k=0}^{m-1} \pi_{v+k} \sum_{V \in \mathcal{P}(M_{-i})} \prod_{j \in V \setminus M_{-i}} \sigma_j \prod_{l \in M_{-i} \cap V} (1 - \sigma_l). \]

It is easy to check that \(H \) is continuously differentiable on \((0, 1)^n\). The system of equations (7) is equivalent to \(\sigma_i = H_i(\sigma) \) for all \(i \in N \). Suppose there exists two solutions \(\sigma^* \) and \(\sigma' \) such that \(|\sigma^* - \sigma'| > 0 \). By mean value inequality (Rudin, 1976), we have

\[\|\sigma^* - \sigma'\| = \|H(\sigma^*) - H(\sigma')\| \leq \|DH(\xi)\| \cdot \|\sigma^* - \sigma'\| \quad (9) \]

where \(\xi \in (0, 1)^n \) and \(DH(\xi) \) is the Jacobian matrix evaluated at \(\xi \). Since the row vectors of \(DH(\xi) \) are linearly dependent, \(DH(\xi) \) is not invertible and thus \(\|DH(\xi)\| = 0 \). It follows that \(\|\sigma^* - \sigma'\| \leq 0 \). The requires a contradiction.

Combining the two lemmas, we reach the conclusion that in any mixed strategy equilibrium with \(m > 1 \), mixing probabilities must be unique and identical across players.

Now (5) implies the best response of any \(i \in M \). Any \(i \in V(b) \) has no incentive to deviate since her incentive constraint \(C < dR_0 L E[\pi_{k-1}] \) can be simplified using (5) as

\[\frac{C}{dR_0 L} < \sigma^{m-1} \pi_{v+m-2} + (1 - \sigma)^{m-1} \pi_{v-1}, \]

which holds under \(\frac{C}{dR_0 L} \in (\pi_{v+m-1}, \pi_v) \). Any \(i \notin V(b) \) has no incentive to deviate since her incentive constraint \(C > dR_0 L E[\pi_{P(i)}] \) can be simplified using (5) as

\[\frac{C}{dR_0 L} > \sigma^{m-1} \pi_{v+m} + (1 - \sigma)^{m-1} \pi_{v+1}, \]

which again holds under \(\frac{C}{dR_0 L} \in (\pi_{v+m-1}, \pi_v) \). This completes the proof.

It follows from the general proposition that there exists a unique totally mixed strategy equilibrium where \(m = n \).

Corollary 1. There exists a unique totally mixed strategy equilibrium, where \(\sigma_i^* = \sigma^* \) and is implicitly defined by

\[\frac{1}{dR_0 L} = \sum_{k=0}^{n} \binom{v}{k} \left(1 - \frac{1}{R_0} - \frac{k}{n} \right) \binom{n}{k} \sigma^*^k (1 - \sigma^*)^{n-1-k}. \quad (10) \]
Equilibrium Vaccination Coverage

Let $\mathcal{P}^*(r, R_0)$ denote the probability distribution over the vaccination coverage induced in the mixed-strategy equilibrium. The following proposition shows that an increase in the relative benefit r leads to an equilibrium distribution yielding an unambiguously higher vaccination coverage.

Proposition 4. For any $R_0 > 1$, $\mathcal{P}^*(r, R_0)$ first-order stochastically dominates (FOSD) $\mathcal{P}^*(r', R_0)$ if and only if $r > r'$.

Proof of Proposition 4. Let ν and ν' be the equilibrium number of vaccinated people given the relative benefit r and r' respectively. For future use, denote $F_\nu(x)$ as the CDF of a random variable ν. We start by working directly with σ as shown in the following lemma.

Lemma 3. ν FOSD ν' if and only if $\sigma > \sigma'$.

Proof of Lemma 3. ν FOSD ν' if and only if $F_\nu(x) \leq F_{\nu'}(x)$ for any $x \in \{1, \ldots, n\}$. Since both ν and ν' follow binomial distribution with n trials, we remain to show $\frac{dF_\nu(x)}{d\sigma} \leq 0$.

Now consider for any x, the derivative

$$
\frac{dF_\nu(x)}{d\sigma} = \sum_{k=1}^{x} \binom{n}{k} \sigma^{k-1} (1 - \sigma)^{n-k} - \sum_{k=0}^{x} \binom{n-k}{k} \sigma^{k} (1 - \sigma)^{n-k-1}
$$

$$
= n \left(\sum_{k=1}^{x} \binom{n-1}{k-1} \sigma^{k-1} (1 - \sigma)^{n-k} - \sum_{k=0}^{x} \binom{n-1}{k} \sigma^{k} (1 - \sigma)^{n-k-1} \right)
$$

$$
= n \left(F_\nu(x-1) - F_\nu(x) \right) \leq 0
$$

where $\tilde{\nu} \sim Bin(n-1, \sigma)$. $lacksquare$

It remains to show that σ^* is monotonically increasing in r. By implicit function theorem, taking partial derivative of the vaccine uptake likelihood $\sigma^*(r, R_0)$ with respect to r gives us

$$
\frac{\partial \sigma^*}{\partial r} = \frac{1}{d_{\infty} r^2} \sum_{k=0}^{\nu_{crit}} ((n-1)\sigma^* - k) \left(1 - \frac{1}{R_0} \frac{k}{n} \right) \binom{n}{k} \sigma^{k-1} (1 - \sigma)^{n-2-k},
$$

which is positive for any $r > \frac{R_0}{(K_0 - 1)d_{\infty}}$.

Therefore, ν FOSD ν' and equivalently, $P(r, R_0)$ FOSD $P(r', R_0)$ if and only if $r > r'$. $lacksquare$

The stochastic dominance presented in Proposition 4 implies that $Pr^*(P \geq P_{crit})$, the equilibrium probability for the society to achieve the vaccination coverage needed to obtain herd immunity, is monotonically increasing in r and converges to 1 as r goes to infinity. By nature of mixed-strategy equilibria, it is impossible to obtain $Pr^*(P \geq P_{crit}) = 1$ and obliterate an epidemic. However, the society can still
approximate the complete immunity via voluntary vaccination. The following corollary summarizes this discussion.

Corollary 2. $\Pr^*(P \geq P_{\text{crit}}) \to 1$ as $r \to \infty$.

Proof of Corollary 2. By Proposition 4, $\Pr^*(P > P_{\text{crit}}) = 1 - M_r(v_{\text{crit}})$ is monotonically increasing in r. Furthermore, as $r \to \infty$, $\sigma^* \to 1$, and $M_r(v_{\text{crit}}) \to 0$. □

We now investigate the role of concavity of the long-run infection probability in facilitating the elimination of an epidemic. Let $P^L(r, R_0)$ be the equilibrium vaccination coverage in the linearized environment with $\pi^L = 1 - \frac{1}{R_0} - P$ for any $P < P_{\text{crit}}$, and $\pi^L = 0$ for any $P \geq P_{\text{crit}}$. Then we have the following result.

Proposition 5. For any $r > \frac{R_0}{(R_0 - 1)d_{R_0}}$ and $R_0 > 1$, $P^*(r, R_0)$ FOSD $P^L(r, R_0)$.

Proof of Proposition 5. By Proposition 3, the totally mixed strategy equilibrium in the linearized environment $\sigma^L = \sigma^L$ is implicitly defined by

$$\frac{1}{d_{R_0}} = \sum_{k=0}^{v_{\text{crit}}} \binom{n}{k} \left(1 - \frac{1}{R_0} \right) \left(\frac{n - 1}{k} \right) \sigma^L \left(1 - \sigma^L \right)^{n-1-k}.$$ \hspace{1cm} (11)

By Pascal’s rule, $\binom{n-1}{k} \leq \binom{n}{k}$ for any $k < n$ and thus $\sigma^L \leq \sigma^*$. By lemma 3, $P^*(r, R_0)$ FOSD $P^L(r, R_0)$. □

We now address a comparative static question regarding R_0. That is, are the players more likely to reach immunity if they are faced with a more threatening epidemic? An exogenous increase in the reproduction ratio R_0 has two competing effects on how easily the society can achieve herd immunity via voluntary vaccination. On the one hand, it raises the long-run probability of infection π_P, meaning that individuals in the mixed-strategy Nash equilibrium are more likely to vaccinate. On the other hand, a higher R_0 also increases the critical level needed for herd immunity P_{crit}. Figure 4 shows that the first effect dominates the second effect so that it is easier to achieve herd immunity when R_0 is higher. This result is summarized in the following proposition.

Proposition 6. For any $r \in \left(0, \frac{R_0}{(R_0 - 1)d_{R_0}}\right]$, $P^*(r, R_0)$ FOSD $P^*(r, R_0')$ if and only if $R_0 > R_0'$.

Proof of Proposition 6. By implicit function theorem, taking partial derivative of the vaccine uptake likelihood $\sigma^*(r, R_0)$ with respect to R_0 gives us

$$\frac{\partial \sigma^*}{\partial R_0} = \frac{\sum_{k=0}^{v_{\text{crit}}} R_0^{-2} \binom{n}{k} \sigma^* \left(1 - \sigma^* \right)^{n-1-k} + \frac{d_{R_0}}{d_{R_0}}}{\sum_{k=0}^{v_{\text{crit}}} \left(n - 1 \right) \sigma^* - k \left(1 - \frac{1}{R_0} \right) \left(\binom{n}{k} \right) \sigma^* \left(1 - \sigma^* \right)^{n-2-k'}} \hspace{1cm} (12)$$

which is positive for $r > \frac{R_0}{(R_0 - 1)d_{R_0}}$. By lemma 3, $P^*(r, R_0)$ FOSD $P^*(r, R_0')$ if and only if $R_0 > R_0'$. □
This result implies that a more contagious disease is unambiguously easier to deal with. A higher R_0 encourages people to get vaccinated voluntarily. Hence, epidemics like Ebola, with substantially low R_0, are particularly difficult to control based on voluntary vaccination.