Expression of Ki67 and CD105 as Proliferation and Angiogenesis Markers in Salivary Gland Tumors

Azadeh Andisheh Tadbir1*, Soheil Pardis1, Zohreh Jafari Ashkavandi1, Ali Dehghani Najvani1, Mohammad Javad Ashraf2, Ali Taheri3, Maryam Asad Zadeh3, Yasaman Sardari3,4

Abstract

Objective: To investigate the association between CD105 and tumor cell proliferation in salivary gland tumors.

Methods: In this study, 59 samples of salivary tumors from Khalili Hospital archive, including 20 cases of pleomorphic adenoma (PA), 20 cases of mucoepidermoid carcinoma (MEC) and 19 cases of adenoid cystic carcinoma, as well as 10 cases of normal salivary gland tissue, were reviewed by immunohistochemistry (IHC) for CD105 and Ki67 staining.

Results: CD105 positive vessels were absent in normal salivary gland tissue in the vicinity of tumors (51.6% of all tumors were positive). There was a statistically significant difference in frequency of CD105 staining between PA and malignant tumors and between four groups of different lesions (p<0.000) being highest in MEC. Intratumoral microvessel density was also elevated in malignant neoplasms (2.61±3.1) as compared to PA (0.46±0.6). Normal salivary glands did not express Ki67. There was a statistically significant difference in frequency and percentage of Ki67 immunoreactivity in malignant neoplasms (86.5% and 10.7±10.8 respectively) compared to PA (50% and 0.78±0.2) and among the four groups values were highest in MEC (p<0.000).

Conclusion: In this study, it was observed a higher rate of angiogenesis and cellular proliferation was noted in malignant tumors compared to benign tumors, but no correlation was observed between these two markers.

Keywords: Ki67 - CD105 - salivary gland tumor - proliferation - angiogenesis

Introduction

Angiogenesis, development of new blood vessels from previous blood vessels, is necessary for tumor growth and metastasis. During recent years, a lot of effort has been put into identifying markers of angiogenesis (Meng et al., 2012). CD105 is not only a marker that has an important role in angiogenesis (Nassiri et al., 2011) but also it is essential for proliferation of endothelial cells and stimulates active phase of angiogenesis (Goumans et al., 2003). CD105 is a membranous homodimer protein with a molecular weight of 180 KDa, and the gene for this protein is located on chromosome 9 which is expressed on the cell surface (Dallas et al., 2008). There are two isoforms of protein with the capacity of binding to Transforming Growth Factor β (TGF-β) that differ in the cytoplasmic amino acid composition. Most of CD105 functions are likely to be associated with TGF-β signaling, however in some processes it is independent of TGF-β signaling (Levi et al., 2011).

Endothelial cells of blood vessels are the main source of CD105 (Duff et al., 2003). Other cells including vascular smooth muscle cells, fibroblasts, macrophages, can also express CD105 to a lesser extent (Zijlmans et al., 2009). In addition, expression of CD105 is a prominent feature of newly formed blood vessels, and minimally expressed in preexisting ones (Fonsatti et al., 2003). Expression of CD105 in blood vessels around the tumor has been shown previously (Fonsatti et al., 2003), suggesting that the role of CD105 in tumor angiogenesis.

Diagnostic use of CD105 has an important role in controlling the clinical signs of the disease. Moreover, it may be used in the field of diagnostic follow-up, determining the response to treatment and prognosis of the disease (Ali et al., 2011).

Microvessel density (MVD), is an independent factor to determine prognosis in many human malignancies. With increased MVD, survival decreases. Several studies have shown that compared with other endothelial markers such as von Willbrand and CD34, CD105 antibodies are more specific to tumor vessels and therefore, are more suitable for determining the MVD (Brewer et al., 2000).

Ki67 is a nuclear protein that is encoded by the gene MKI67 (Bullwinkel et al., 2006). This protein is associated with cell proliferation and is associated with transcription of ribosomal RNA (Bullwinkel et al., 2006).
Inactivation of Ki-67 leads to inhibition of rRNA synthesis (Rahmanzadeh et al., 2007).

The Ki-67 is used as a marker for cell proliferation. During inter-phase, the Ki-67 protein is found specifically in the cell nucleus, whereas in mitosis most of the protein is transported to the surface of the chromosomes. This protein is present in all active phases of the cell cycle (G2, S, G1 and mitosis) but is absent in resting cells (G0) (Scholzen et al., 2000).

Ki-67 is very important for determining prognosis of tumors and determine the recurrence rate after radiotherapy in patients with adenocarcinoma (Scalzo et al., 1998).

In various studies the relationship between MVD (by using CD105 marker) and factors such as metastasis, Stage of tumor, proliferation rate of tumor cells and survival has been investigated (Liu et al., 2012), but in salivary gland tumors, the association between this factor and tumor cell proliferation rate has not been studied, therefore this study was based on investigating the relationship between these two factors.

Materials and Methods

In this study, 59 samples of salivary tumors from Khalili Hospital archive included 20 cases of pleomorphic adenoma, 20 cases of mucoepidermoid carcinoma and 19 cases of Adenoid cystic carcinoma were reviewed. The control group was consisted of 10 cases of normal salivary gland tissue.

Firstly, H and E slides of available blocks were reviewed and then cases with definite diagnosis and adequate cellular tissue were selected for immunohistochemical staining (IHC). IHC staining was performed by using Envision Labeled Peroxides System (DAKO, Carpentaria, CA, USA). All the samples have been fixed in 10% buffered formalin and have been embedded in paraffin. Sections with 4μ thickness were prepared, deparaffinized in xylene, rehydrated in graded alcohol and were washed with distilled water. Antigen retrieval was performed by using DAKO cytomation target retrieval solution with P=9, for 20 minutes. Internal peroxidase activity was inhibited by 3% H₂O₂.

Tissue sections were then incubated for 30 minutes with the anti-CD105 monoclonal antibody (mouse, Dako Corporation, Denmark) at a 1/10 dilution and 1 hour with the anti-Ki67 monoclonal antibody (mouse anti-human Ki60, Clone Mib-1, Dako, Denmark) at a 1/50 dilution.

Normal samples were stained with the same amount of antibody used for staining tumor tissues. Omission of primary antibody was employed as negative control, while tonsil tissue and liver were used as positive control for Ki67 and CD105 respectively.

Brown nuclear staining for Ki-67 and brown cytoplasmic staining for CD105 was considered as positive. Immunohistochemical results were interpreted by two pathologists. Immunoreactivity was expressed by determining the percentage or positive tumor cells. Briefly, of least 1000 neoplastic nuclei in the area with the highest Ki-67 positivity of scanning magnification (X40) were counted at X400 magnification intensity of staining.
Expression of Ki67 and CD105 in Salivary Gland Tumors

was not considered for evaluation.

Intratumoral microvessel density (IMD) was quantified according to a recent consensus statement (Cardoso et al., 2009). Briefly, in an optical microscope hot-spot areas for CD105 expression in discrete blood vessels were initially identified by scanning the entire tumor of low power (X40). The number of CD105 high ligted vessels in 10 of these areas was then counted in high power magnification (X400).

Mann-Whitney, Chi square and Kruskalwalisis tests were used to compare test results between the two markers and Spearmanscorrelattia was used to assess the relationship between two markers.

Results

Gender of patients with salivary gland tumors included 34 females (57.6%) and 25 males (42.4%) with a mean age of 49.1 years.

CD105 positive vessels were absent in normal salivary gland tissue in the vicinity of the tumors (51.6% of all tumors were positive). Frequency of CD105 staining in each group is shown in Figure 1. There was a statistically significant difference in frequency of CD105 staining between PA and malignant tumors and between four groups of different lesions(p<0.000). Among malignant neoplasms, positivity for CD105 being the highest in MEC (83%).

IMD was also elevated in malignant neoplasm (2.61±3.1) compared to PA (0.46±0.6)(P=0.01). IMD was similar in PA and normal salivary gland and also in MEC and ACC (respectively P=0.08 and P=0.2) as shown in Figure 2. Normal salivary gland didn’t express Ki67. There was a statistically significant difference in frequency and percentage of Ki67 immunoreactivity in malignant neoplasm (86.5% and 10.74±10.8 respectively) compared to PA (50% and 0.78±0.2) and between four groups (p<0.000) (Figure 3).

The relation between the two markers, CD105 and Ki67 was evaluated by Mann-Whitney test and Spearman’s correlation coefficient and no correlation was found between two markers (P=0.07).

Discussion

Tumor growth is limited by the balance between the need for oxygen and nutrients and diffusion of these substances from vessels around tumors and therefore the formation of new blood vessels (angiogenesis) is a necessary step in tumor progression (Kubota, 2012). Counting blood vessels in tumors by IHC is a common method for assessing angiogenesis. However, due to the use of endothelial markers, which may not be able to determine the angiogenic activity of endothelial cells, different results have been reported in tumors (Sharma et al., 2005).

CD105 is not only a marker that has an important role in angiogenesis (Nassiri et al., 2011) but also it is essential for proliferation of endothelial cells and stimulates active phase of angiogenesis (Goumans et al., 2003). In addition, expression of CD105 is a prominent feature of newly formed blood vessels, and minimally expressed in preexisting ones. (Fonsatti et al., 2003). Expression of this marker can be also observed in non-neoplastic tissue with increased angiogenic activity such as embryonic development and wound healing (Hillen and Griffioen, 2007).

In previous studies, the higher accuracy of these markers in showing new blood vessels in comparison with other factors such as CD34 and factor VIII has been shown (Minhajat et al., 2006).

In this study, expression of these markers was not found in the blood vessels of normal salivary glands. Moreover, not being expressionin approximately half of tumors shows the specificity of this marker in detecting new blood vessels. This is also indicative of this fact that development of neoplastic angiogenesis may not always require a clear and noticeable angiogenesis and tumor metabolic activity may be carried out through the non oxygen-dependent process.

In this study, in comparison with benign tumors, a significant increase of blood vessels in malignant tumors has been observed which indicates that development of blood vessels reflects invasiveness of salivary gland tumors.

These findings are consistent with reports of multiple-step tumorigenesis model tumors. It has been reported in this study that angiogenesis was found to be activated in midstage lesions before the appearance of full-blown tumors suggesting that the formation of new blood vessels is essential for Clonal Expansion and formation of macroscopic tumors (Hanahan and Weinberg, 2000). But in the macroscopic tumor, the main factor affecting the density of blood vessels is the metabolic needs of tumor cells which usually increase with tumor progression (Sharma et al., 2005). Thus, in malignant tumors with severe invasiveness and progression, metabolic needs and consequently the development of blood vessels increases (Romani et al., 2006).

In the study conducted by Cardoso and others, which was similar to our study, it was detected that there is a higher increase in development of blood vessels within the malignant tumors compared to benign tumors (Cardoso et al., 2009).

In this study, a statistically significant was found in the frequency of CD105 expression between ACC and MEC, so that a higher percentage of MEC express this marker. However, there was not a significant difference in IMD among MEC and ACC.

Numerous studies have shown that tumors with a phenotype of myoepithelial cells, have specific nature (Barsky and Karlin, 2005). Myoepithelial cells, produce high levels of proteinase inhibitors and angiogenesis inhibitors and low amounts of proteinase angiogenic factors (Nguyen et al., 2000). With respect to this evidence, Barsky and Karlin stated that myoepithelial cells are angiogenesis inhibitors (Barsky and Karlin, 2005).

MEC is the most common malignant salivary tumor which lacks myoepithelial cells. Due to lack of these cells, a higher percentage of these tumors show this marker.

In the same study conducted by Costa and Cardoso, it was evidenced that there is an increased incidence of
between Ki-67 marker and factors associated with prognosis. Despite the increase of both markers in malignant tumors in comparison with benign tumors, and in MEC in comparison with ACC, there was not a significant relationship between them, indicating that CD105 expression levels are not affected by the rate of cellular proliferation. This finding may suggest that these tumors maintain their metabolic activities predominantly through oxygen-independent pathways such as glycolysis.

In conclusion, in this study, it was observed that there is a higher rate of angiogenesis and cellular proliferation in malignant tumors compared to benign tumors, indicating their role in the malignancy and aggressive behavior of these tumors, but no correlation was observed between these two markers. Moreover, the role of myo-pithelial cells was detected in the control of angiogenesis.

Acknowledgements

The authors would like to thank the Vice-Chancellor for Research of Shiraz University of Medical Sciences for providing financial support for this study (Grant#90-5562). This manuscript is relevant to the post graduate thesis of Dr. Ali Taheri.

References

Ali AM, Ueno T, Tanaka S, et al (2011). Determining circulating endothelial cells using CellSearch system during preoperative systemic chemotherapy in breast cancer patients. 
*Eur J Cancer*, 47, 2265-72.

Alves F, Fries F, de Almedia O, Lopes M, Kowalski L (2004). 
PCNA, Ki-67 and p53 expressions in submandibular salivary gland tumours. *Int J Oral Maxillofac Surg*, 33, 593-7.

Barsky SH, Karlin NJ (2005). Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. *J Mammary Gland BiolNeoplasia*, 10, 249-260.

Brewer CA, Setterdahl JJ, Li MJ, et al (2000). Endoglin expression as a measure of microvessel density in cervical cancer. *Obstet gynecol*, 96, 224-8.

Bullwinkel J, Baron-Lühr B, Lüdemann A, Wohlenberg C, Gerdes J, Scholzen T (2006). Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. *J Cell Physiol*, 206, 624-35.

Cardoso S, Souza K, Faria P, Eisenberg A, Dias F (2009). Assessment of angiogenesis by CD105 antigen in epithelial salivary gland neoplasms with diverse metastatic behavior. *BMC Cancer*, 9, 391-400.

Costa A, Demasi A, Bonritto V, et al (2008). Angiogenesis in salivary carcinomas with and without myoepithelial differentiation. *Virchows Arch*, 453, 359-67.

Dallas NA, Samuel S, Xia L, et al (2008). Endoglin(CD105): a marker of tumor vasculature and potential target for therapy. *Clin Cancer Res*, 14, 3593-1.

Duff SE, Li C, Garland JM, Kumar S (2003). CD105 is important for angiogenesis: evidence and potential applications. *The FASEB J*, 17, 984-91.

Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M (2003). Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenic blood vessels. *Oncogene*, 22, 6557-63.

Fonseca I, Felix A, Soares J (1997). Cell proliferation in salivary gland adenocarcinomas with myoepithelial participation. *Austral J Cancer Res*, 430, 227-32.

Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the
angiogenic switch (2003). Controlling the angiogenic switch: a balance between two distinct TGF-β receptor signaling pathways. *Trends Cardiovasc Med.*, 13, 301-7.

Hanahan D, Weinberg RA (2000). The hallmarks of cancer. *Cell*, 100, 57-70.

Hillen F, Griffioen AW (2007). Tumour vascularization: sprouting angiogenesis and beyond. *Cancer Metastasis Rev.*, 26, 489-502.

Hollstein M, Sidransky D, Vogelstein B, Harris C (1991). p53 mutations in human cancers. *Science*, 253, 49-53.

Kubota Y (2012). Tumor Angiogenesis and Anti-angiogenic Therapy. *Keio J Med.*, 61, 47-56.

Lazzaro B, Cleveland D (2000). p53 and Ki-67 antigen expression in small oral biopsy specimens of salivary gland tumours. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod.*, 89, 613-617.

Levi B, Wan DC, Glotzbach JP, et al (2011). CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. *J Biol Chem.*, 286, 39497-509.

Liu P, Sun YL, Du J, Hou XS, Meng H (2012). CD105/Ki67 coexpression correlates with tumor progression and poor prognosis in epithelial ovarian cancer. *Int J Gynecol Cancer*, 22, 586-92.

MacCallum DE, Hall PA (2000). The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. *J Pathol.*, 190, 537-44.

Meng CD, Zhu DD, Jiang XD, et al (2012). Overexpression of interleukin-17 in tumor-associated macrophages is correlated with the differentiation and angiogenesis of laryngeal squamous cell carcinoma. *Chin Med J (Engl)*, 125, 1603-7.

Minhajat R, Mori D, Yamasaki F, et al (2006). Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. *Pathol Int.*, 56, 717-23.

Nassiri F, Cusimano MD, Scheithauer BW, et al (2011). Endoglin(CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. *Anticancer Res.*, 31, 2283-90.

Nguyen M, Lee MC, Wang JL, et al (2000). The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. *Oncogene*, 19, 3449-59.

Nordgard S, Franzén G, Boysen M, Halvorsen TB (1997). Ki-67 as a prognostic marker in adenoid cystic carcinoma assessed with the monoclonal antibody MIB 1 in paraffin sections. *Laryngoscope*, 107, 531-6.

Rahmanzadeh R, Hüttmann G, Gerdes J, Scholzen T (2007). Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis”. *Cell Prolif.*, 40, 422-3.

Romani AA, Borchetti AF, Del Rio P, Sianesi M, Soliani P (2006). The risk of developing metastatic disease in colorectal cancer is related to CD105-positive count. *J Surg Oncol.*, 93, 446-55.

Scalzo DA, Kallakury BV, Gaddipati RV, et al (1998). Cell proliferation rate by MIB-1 immunohistochemistry predicts postradiation recurrence in prostatic adenocarcinomas. *Am J Clin Pathol.*, 109, 163-8.

Scholzen T, Gerdes J (2000). The Ki-67 protein: from the known and the unknown”. *J Cell Physiol.*, 182, 311-22.

Sharma S, Sharma MC, Sarkar C (2005). Morphology of angiogenesis in human cancer: a conceptual overview, histoprogenic perspective and significance of neoangiogenesis. *Histopathology*, 46, 481-9.

Zijlmans HJ, Fleuren GJ, Hazelbag S, Sier CF, Dreef EJ, Kenter GG, Gorrier A (2009). Expression of endoglin (CD105) in cervical cancer. *Br J Cancer*, 100, 1617-26.