Salinity Stress Induced Biochemical Changes during Seed Germination of Maize Cultivars

Dr. K. Krishna
Associate Professor, Department of Botany, Yuvaraja’s College, Autonomous Constituent college, University of Mysore, Mysuru, Karnataka, India.

Abstract: In the present study the two maize cultivars were selected to examine the effect of salinity and the effect of GA$_3$ on the salinity stressed seeds, the tests were conducted in different conditions with different concentrations. Germination percentage, vigour index and seedling length, chlorophyll content, protein, total free amino acids, protease activity were investigated. GA$_3$ treatment and combination of GA$_3$ and NaCl increased the germination percentage, vigour index and seedling length in SNL cultivar and in MYMH cultivar these parameters were reduced. The chlorophyll content was more in both cultivars in control and either salinity or combinations of NaCl and GA$_3$ have no effect on the synthesis of chlorophyll pigment. Free amino acids, Protein and Protease activity were more in GA$_3$ 200ppm concentration where as in other concentrations these were observed less. The GA$_3$ played salinity alleviating role and increased the chlorophyll content in the saline treated seeds. In SNL cultivars chlorophyll content was less affected when compared to the MYMH cultivar. Hence, the SNL cultivar in more tolerant compared to the MYMH cultivar.

Keywords: Maize, NaCl, GA$_3$, Germination percentage, Vigour index, Chlorophyll, Total free amino acids, protein and Protease activity.

I. INTRODUCTION

Maize, also known as corn is a large grain plant. The six major types of corn are dent corn, flint corn, pod corn, popcorn, flour corn, and sweet corn. Maize is the third most important food grain in India after wheat and rice. In India, about 28% of maize produced is used for food purpose, about 11% as livestock feed, 48% as poultry feed, 12% in wet milling industry (for example starch and oil production) and 1% as seed (AICRP on Maize, 2007). In the last one decade, it has registered the highest growth rate among all food grains including wheat and rice because of newly emerging food habits as well as enhanced industrial requirements. Maize is an important cereal in many developed and developing countries of the world. It is widely used for animal feed and industrial raw material in the developed countries where as the developing countries use it in general for feed. Among the cereal crops in India, maize with annual production of around 10 million tonnes covering 6 million hectares ranks fifth in area being next to rice, wheat, Jowar and Bajra, fourth production whereas in productivity it ranks third in position. Indian poultry sector has been growing at around 8-10 per cent annually over the last decade with broiler meat production estimated to increase from 0.8 Mt in 2000 to about 3.2 Mt in 2012 and egg production from 37 billion eggs to 66 billion eggs during the same period. Maize (Zea mays L.) is very valuable crop. Globally, it is ranked as third staple food crop after wheat and rice. Maize is a leading commercial crop of high agro-economic importance due to its use in agro-industries. Worldwide, total annual production of maize is 3.341 million tons. Maize is very sensitive to salinity (Maas, 1986) though it has been reported that maize has interspecies inconsistency of salinity resistance (Maas et al., 1983).

II. MATERIALS AND METHODS

Gibberllic acid is a plant growth regulator which influences various developmental processes in plant. 100mg and 200mg concentrations of GA$_3$ were used for the study. Sodium Chloride is also called as salt or halite. It is an ionic compound. This was used for soaking seeds and 200mM and 300mM of sodium chloride were used for the study.

A. Physiological Studies

The cultivars of maize SNL and MYMH seeds were surface sterilized using 0.01% of mercuric chloride (HgCl$_2$) for two minutes. The seeds were washed thoroughly with distilled water for several times and soaked for 6 hours. Two GA$_3$ concentrations of 100ppm and 200ppm were used to soak the seeds. Two NaCl concentrations of 200mM and 300mM were used to soak the seeds. In the third set a combination of NaCl 200mM+GA$_3$ 100ppm and NaCl 300mM+GA$_3$ 200ppm were made and the seeds were soaked.

The test was conducted by the between paper towel method recommended by ISTA (2009). Hundred seeds of each cultivar were placed on craft paper saturated with known concentrations of salt 200mM and 300mM.
Seeds germinated in distilled water served as control. Each treatment including the control was replicated four times and kept under the temperature of 28±2°C. The number of seeds germinated in each treatment was counted on 7th day of germination and total germination percentage was worked out. On the 14th day root length, shoot length and seedling length were measured and Vigour index was calculated using the germination percentage and mean seedling length.

B. Germination Percentage

Germination refers to the initial appearance of radical by visual observation. It was calculated by using the following formula according to ISTA, 2009.

\[
\text{Germination \%} = \frac{\text{Number of seeds germinated}}{\text{Total number of seeds sown}} \times 100
\]

The seedling vigour index was calculated by using the formula proposed by Abdul Baki and Anderson (1973) and expressed in whole number. Seedling Vigour Index (SVI) = % of germination X Mean seedling length. Root length, shoot length and seedling length were calculated from each seedling at different concentrations of NaCl, GA₃ and combined action of NaCl and GA₃ was measured. Each seedling values were added and divided by total number of seeds used for germination.

The chlorophyll content viz., chlorophyll-a and chlorophyll-b and the total chlorophyll were estimated as per the method of Arnon (1949). The total protein content of maize seedlings treated with different doses of NaCl and GA₃ was estimated as per the method of Lowry et al. (1951). Estimation of total free amino acids was carried out as described in Moore and Stein (1948). The activity of proteases was determined following the procedure of Kunitz (1947).

III. RESULTS

A. Germination Percentage

The percentage germination was increased in 200ppm GA₃ and decreased in 100ppm GA₃ when compared to control. The germination percentage was also increased in combination of gibberllic acid and NaCl as compared to control. The percentage germination was increased in both the cultivars under salinity stress. But MYMH cultivar showed decreased percentage of germination only under 300mM NaCl. The percentage germination in gibberllic acid as indicated by ANOVA and MYMH cultivar is more sensitive to salinity stress as shown in Table 1.

Cultivar	Control	NaCl 200mM	NaCl 300mM	GA₃ 100ppm	GA₃ 200ppm	GA₃ 100ppm +NaCl 200mM	GA₃ 200ppm +NaCl 300mM
SNL	88⁰	90.66⁰	92⁰	87.66⁰	92.66⁰	88.66⁰	91.33⁰
MYMH	83.33 ab	89.33 ab	74.66 ab	82.66 ab	83.33 ab	79.66 b	74.33 b

Means followed by the same letter within a row are not significantly different as indicated by Scheffe (P ≤ 0.05) significant at P ≤ 0.001.

B. Vigour Index

The vigour index decreased in both the cultivars under salinity stress but SNL cultivar showed increased vigour index only under 300mM NaCl. MYMH cultivar is more sensitive to salinity stress as indicated by ANOVA depicted in the Table 2.

Cultivar	Control	NaCl 200mM	NaCl 300mM	GA₃ 100ppm	GA₃ 200ppm	GA₃ 100ppm +NaCl 200mM	GA₃ 200ppm +NaCl 300mM
SNL	2415.4 cd	2357.4 cd	3061.9 cd	2805.6 bcd	2630.8 bcd	2592.4 bcd	2880.4 b
MYMH	2145.8 ab	2142.2 ab	2059.4 ab	2114.6 ab	1811.9 b	2280.9 g	1807.4 g

Means followed by the same letter within a row are not significantly different as indicated by Scheffe (P ≤ 0.05) significant at P ≤ 0.001.
C. Seedling Length

The root, shoot and seedling length were decreased in both the cultivars under NaCl 200mM concentration where as it increased a little in NaCl 300mM concentration. The root, shoot and seedling length were increased when both the cultivars were treated with GA3 compared to control. In combination of GA3 and NaCl there was an increase when compared to control as indicated by the ANOVA and Scheffe (P ≤ 0.05) as shown in the Table 3.

Table: 3. Effect of different concentrations of NaCl and GA3 and combined action of NaCl and GA3 on the Root length, shoot length and seedlings length of SNL and MYMH maize cultivars.

cultivar	Parameter	Control	NaCl 200mM	NaCl 300mM	GA3 100ppm	GA3 200ppm	GA3 100ppm +NaCl 200mM	GA3 200ppm +NaCl 300mM
SNL	RL	12.46ab	9.28bc	9.0c	11.68abc	13.98a	10.68abc	11.70abc
	SL	14.88a	16.70ab	19.39a	20.32a	19.30a	18.53ab	19.82ab
	S.L	27.34c	25.98c	28.39bc	32.00ab	33.29c	29.21bc	31.53ab
MYMH	RL	9.41ab	7.30bc	6.99b	9.03b	10.64a	10.44ab	9.48bc
	SL	16.33ab	16.70ab	14.75b	16.52ab	18.18a	16.91ab	14.85b
	S.L	25.75bc	24.24cd	21.74d	25.86bc	28.62a	27.56cd	24.33cd

Means followed by the same letter within a row are not significantly different as indicated by Scheffe (P ≤ 0.05) significant at P ≤ 0.001. (RL-Root length, SL-Shoot length. S.L- Seedling length)

D. Chlorophyll Content

Estimation of chlorophyll pigments in SNL and MYMH maize cultivars treated with different concentrations of NaCl and GA3 has been represented in Table 4. The analysis of variance (ANOVA and Scheffe) performed for these mean values shows a slight difference between the seed which was treated with different concentrations of NaCl and GA3 and combination of NaCl and GA3 compared to control.

Table: 4. Effect of different concentrations of NaCl and GA3 and combined action of NaCl and GA3 on the Chlorophyll (mg/g) content of SNL and MYMH maize cultivars.

cultivar	Parameter	Control	NaCl 200mM	NaCl 300mM	GA3 100ppm	GA3 200ppm	GA3 100ppm +NaCl 200mM	GA3 200ppm +NaCl 300mM
SNL	Chl-a	0.251*	0.188*	0.144*	0.240*	0.123*	0.135*	0.195*
	Chl-b	0.443*	0.023*	0.166*	0.368*	0.013*	0.015*	0.023*
	Tot.chl	0.611*	0.455*	0.349*	0.586*	0.297*	0.328*	0.471*
MYMH	Chl-a	0.093*	0.739*	0.018*	0.057*	0.423*	0.057*	0.094*
	Chl-b	0.016*	0.014*	0.017*	0.014*	0.013*	0.014*	0.024*
	Tot.chl	0.233*	0.183*	0.227*	0.140*	0.104*	0.140*	0.228*

Means followed by the same letter within a row are not significantly different as indicated by Scheffe (P ≤ 0.05) significant at P ≤ 0.001.

E. Protein Content

The total free Amino acids content of SNL cultivar was decreased in response to the salinity, but in MYMH cultivar the total free amino acids content was increased. The total free amino acids content was increased under GA3 treatment and also under combination of GA3 and NaCl in both the cultivars. In salt sensitive variety more proteins were broken down to amino acids, hence the amino acids content was increased, the MYMH seems to be more tolerant when compared to the SNL cultivar. GA3 showed the salinity mitigation role as shown in Table 5. The protein content of saline treated seeds was negatively affected and decrease in the protein content was observed in both the varieties. GA3 treated and combinations of GA3 and NaCl have also shown a decrease in protein in both the maize cultivars. The protease activity was decreased in both the maize cultivars under salinity. The protease content was increased under GA3 treatment and also in combination of GA3 and NaCl. Protease activity was more in SNL cultivar compared to MYMH cultivar. So the protease activity was least affected by salinity. The mean values of amino acid, protein and protease activity in both cultivars were more in control when compared to NaCl and GA3 treatments as indicated by ANOVA and Scheffe test of Table 5.
... these plant parts are in direct contact with soil particles and International Journal for Research in Applied Science & Engineering Technology (IJRASET) … GA3 enhanced the growth by forming new cells in the intercalary meristem as reported by Khadija., et al., (2013)."

... and by increased leaf abscission. In maize suppression of expansion growth by salinity is titration,., 2001). Salinity decreased final germination percentage, magnitude of reduction e inhibitory effect of NaCl of seedling length (Parvaneh,…}

... the increase in salinity might be due to mor…

... the root was affected negatively by salt stress. Salinity induced growth reduction in maize as notic ed by suppressed leaf ini…

... the gradual decrease in root length with the increase in salinity might be due to more inhibitory effect of NaCl. The root is the first organ exposed to salt stress than shoot. The root was affected negatively by salt stress. Salinity induced growth reduction in maize as noticed by suppressed leaf initiation, expansion and internode growth and by increased leaf abscission. In maize suppression of expansion growth by salinity is principally caused by reduced apoplastic acidification and activity of wall loosening enzymes (Muhammad et al., 2015). Additional input of the growth hormones like gibberellin increases the cell division and elongation of cells and helps in the increase of seedling length (Parvaneh Rahdari., et al., 2015). GA3 enhanced the growth by forming new cells in the intercalary meristem as reported by Khadija., et al., (2013).
D. Chlorophyll Pigments

The Chlorophyll a, Chlorophyll b and total chlorophyll content was decreased under salinity in the cultivars. Photosynthesis is the most important process by which green plants covert solar energy into chemical energy in the form of organic compounds synthesized by fixation of atmospheric carbon dioxide (Muhammad et al., 2015). Carbon fixation in maize is very sensitive to salt stress (Omoto et al., 2012). Reduced photosynthetic apparatus, impaired activities of carbon fixation enzymes and reduced stomatal conductance are the key factors limiting carbon fixation capacity of maize plants under salt stress (Omoto et al., 2012 and Qu et al., 2012). The total chlorophyll content of maize leaves was reduced by increased level of NaCl treatment. The salinity decreased the total chlorophyll content of two maize varieties. Reduction in photon yield in the salt stressed seedlings of maize was positively correlated to net photosynthetic rate (Pn); in which the significant drop in Pn of salt stressed seedlings resulted in considerable growth reduction (Cha-Um and Kirdmanee 2009).

In GA3 treatment and combination of GA3 and NaCl also there was a decreased photosynthetic rate in both the cultivars. Salt stress is known to cause significant degradation of chlorophyll pigments (Jamil et al., 2012b). Salinity stress resulted in a marked degradation of chlorophyll in both cultivars. The degradation of chlorophyll pigments under salt-stress could be linked with increased activity of chlorophyllase or reduced de novo synthesis of chlorophyll (Qu et al., 2012).

E. Total Amino Acids Content

Total amino acids content was decreased under salinity and GA3 treatment which lead to the qualitative and quantitative changes in free amino acids, hence an increase in total amino acids content was observed in seeds treated with GA3. Total amino acids level in tolerant variety decreased under saline condition (Saikat Paul et al 2016). In contrast, Hussein et al. (2007) observed that reduced amino acid contents such as arginine, lycine, serine, and glutamic acid, no change for glycine; and enhanced levels of proline in response to salt stress in maize. Salt stress also induced polyamine accumulation, but spermidine was absent, possibly due to its fast turnover (Erdei et al., 1996). In contrast osmoregulation helps maize plants to minimize the effects of salinity-induced osmotic stress. Proline and glycine betaine are the major osmolytes responsible for osmoregulation in maize under salt stress.

F. Protein Content

The test was conducted to study the effect of salinity, on two maize cultivars and action of GA3 on same cultivars. Both the cultivars showed decrease in the protein content under salinity and combination of NaCl and GA3. The decrease of protein content under salinity was due to breakdown of surfave protein and production of free amino acid (Parvaneh Rahdari., et al., 2015) and also Total protein contents were affected significantly by NaCl driven salt stress (Kumar, et al., 2008). A continuous decrease in protein content with increase in salt stress was observed by Sunita Danai-Tambhale (2011). Protein content decreased in most of the plant species under sodium chloride stress was reported by Misra, et al., (1997). Gibberellin treatment can lead to decreased levels of protein, during the stress condition there will be a decrease in the nitrate reductase enzyme activity in the protein surface tension, and decrease in the protein content is performed (Masroor., et al., 2006).

G. Protease Activity

The protease activity moderately decreased in both the cultivars under salinity and increased by the action of GA3 and the combination of NaCl and GA3. The protease activity was more even under the salinity. The salinity showed positive effect on the protease activity and the lyses of protein was more in the NaCl treated seeds and they could digest long chain of protein under this condition as stated by Cramer et al., (2001).

V. CONCLUSION

The exogenous application of plant hormones and osmoprotectants like gibberellins, cytokinins and others may also improve maize performance under salt stress. Application of these substances helps in osmotic adjustments, nutrient uptake and antioxidant defense system. Further studied are required to arrive at final conclusion.

REFERENCES

[1] Abdul-baki, B.A.A. and J.D. Anderson. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Sci. 13:222–226.
[2] AICRP on maize (2007). Reported maize is the third most important food grain in India after wheat and rice.
[3] Akbar, M. And F.N. Ponnamperuma, 1982. Saline soils of South and Southeast Asia as a potential rice lands. Rice Research Strategies for the Future. IRRI Los Banos, Laguna, Philippines.
[4] Almansouri, M., Kinet, M., Lutts, S. (2001), Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231, 243-254.
Sunita Danai

[5] Anbumalarnathi J & Preeti Mehta. 2013. Effect of Salt Stress on Germination of indica Rice Varieties. EJBS 6 (1): 1-6.
[6] Arnon .D.I. 1949. Copper enzymes in isolated chloroplasts. Poly phenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
[7] Cha-um S, Kirdmanee C (2009) Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (Saccharum officinarum L.). Pakistan Journal of Botany 40:2541-2552.
[8] Cramer, G.R., Alberico, G.J., Schmidt, C. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Austr. J. Plant Physiol. 21, 675-692.
[9] Djanaguiraman M, Ramadass R, Durga-Devi D (2003). Effect of salt stress on germination and seedling growth in rice genotypes. Madras. Agric. J. 90 (1-3): 50-53.
[10] Erdei L, Szegletes Z, Barabas K, Pestenacz A (1996) Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings. J Plant Physiol 147:599–603.
[11] Hakim M. A., A. S. Juraimi, M. Begum, M. M. Hanafi, Mohd R Ismail and A. Selamat. 2009. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9(13): 1911-1918.
[12] Hussein M M, Balbaj L K, Gaballah M S (2007) Salicylic acid and salinity effects on growth of maize plants. Res J Agric Biol Sci 3:321–328.
[13] ISTA.2009. International seed testing association, News Bulletin. No. 137.
[14] Jamil M Bashir S, Anwar S, Bibi S, Bangash A, Ullah F, Rha E S. 2012b. Effect of salinity on physiological and biochemical characteristics of different varieties of rice. Pak J Bot44: 7–13.
[15] Janmohammadi M, P. Moradi Dezfuli, F. Sharifzadeh. 2008. Seed Invigoration Techniques To Improve Germination And Early Growth Of Inbred Line Of Maize Under Salinity And Drought Stresses:215-266.
[16] Khadija M, Misratia, Mohd Razi Ismail, Md Abdul Hakim, Mohamed Hanafi Musa and Adam Puthe. 2013. Effect of salinity and alleviating role of gibberellic acid (GA3) for improving the morphological, physiological and yield traits of rice varieties. AJCS 7(11):1682-1692.
[17] Kumar, V., Shriram, V., Nikam, T.D., Jawali, N., Shitole, M.G. (2008) Sodium chloride induced changes in mineral elements in indica rice cultivars differing in salt tolerance. J. Plant Nutr., 31, 1999-2017.
[18] Kunitz. M. 1947. Chrystalline soybean trypsin inhibitor. II. General properties. Joll, "tll of General Physiology 30. 291-310.
[19] Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J.Biol.Chem 193: 265.
[20] Maas EV, Hoffman GI, Chabu GD, Poss JA, Shannon MC (1983) Salt sensitivity of Sorghum at various growth stages. Irrig Sci 4:45–57.
[21] Maas, E.V., Poss, J.A. & Hoffman, G.J. 1986. Salinity sensitivity of Sorghum at three growth stages. Irrig Sci. 7:1–11
[22] Masroor, M., Gautham, C., and Khan, N. 2006. Effect of Gibberellic Acid spary on performance of tomato. Turk.J. Biol., 30:11-16.
[23] Misra, A.N. Sahu, M. Misra, P. Singh, I. Meera, N. Das, M. Kar, P. Sahu. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum 39, 257–262.
[24] Mirza Hasamuzzaman, Masayuki Fujita, M.N. Islam, K.U. Ahamed, Kamrun Nahar. 2009. Performance of four irrigated rice varieties under different levels of salinity stress. International Journal of Integrative Biology: 6: 2-85.
[25] Moore, S. and Stein, W. H., J. Biol. Chem., 176, 367 (1948).
[26] Muhammad Farooq & Mubshar Hussain & AbdulWakeel & Kadambot H. M. Siddique 2015 Salt stress in maize: effects, resistance mechanisms, and management. A review: Agron. Sustain. Dev. 35:461–481.
[27] Omoto E, Taniguchi M, Miyake H (2012) Adaptation responses in C4 photosynthesis of maize under salinity. J Plant Physiol 169:469–477.
[28] Parvaneh Rahdari and Seyed Meyesam Hoseini. 2015. Evaluation of Germination Percentage and Some Physiologic Factors under Salinity Stress and Gibberellic acid Hormone (GA3) Treatments in Wheat (Triticum aestivum L.). Int. J. Adv. Res. Biol.Sci. 2(2): 122–131.
[29] Qu C, Liu C, Gong X, Li C, Hong M, Wang L, Hong F (2012) Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environ Exp Bot 75: 134–141.
[30] Saikat Paul and Araydeep Roychoudhury., 2016. Seed priming with spermine ameliorates salinity stress in the germinated seedlings of two rice cultivars differing in their level of salt tolerance. Tropical Plant Research, 3(3): 616-633.
[31] Sunita Danai-Tambhale, V. Kumar and V. Shriram. 2011. Differential response of two scented indica rice. (Oryza sativa) cultivars under salt stress. J. Stress Physio. & Biochem. 7(4):387-397.
