A model of persistent breaking of discrete symmetry

Noam Chai,1 Anatoly Dymarsky,2,3 and Michael Smolkin1

1The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
3Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia, 143026

(Dated: July 20, 2021)

We show there exist UV-complete field-theoretic models in general dimension, including 2+1, with the spontaneous breaking of a global symmetry, which persists to the arbitrarily high temperatures. Our example is a conformal vector model with the $O(N) \times Z_2$ symmetry at zero temperature. Using conformal perturbation theory we establish Z_2 symmetry is broken at finite temperature for $N > 17$. Similar to recent constructions of [1, 2], in the infinite N limit our model has a non-trivial conformal manifold, a moduli space of vacua, which gets deformed at finite temperature. Furthermore, in this regime the model admits a persistent breaking of $O(N)$ in 2+1 dimensions, therefore providing another example where the Coleman-Hohenberg-Mermin-Wagner theorem can be bypassed.

INTRODUCTION

The phenomenon of spontaneous symmetry breaking is ubiquitous: many real systems as well as field theoretic models exhibit spontaneous breaking of both discrete and continuous symmetries at zero or sufficiently small temperature. The conventional picture suggests the full symmetry is restored for sufficiently high temperatures. There are also situations when the low-temperature phase is symmetric but symmetry is broken as the temperature increases. In this case too one normally expects the symmetry to be eventually restored for even higher temperatures, and there are seemingly many theoretical results supporting such a conclusion. Yet as we discuss below they rely on the stringent assumptions that can be evaded. Which raises the question – is spontaneous breaking that persists to arbitrarily high temperatures possible? In this letter we answer this question by constructing UV-complete conformal field-theoretical models in diverse dimensions which exhibit persistent breaking of both discrete and continuous symmetries.

For lattice systems it is well appreciated the symmetry is restored for temperates large in comparison with the lattice spacing [3]. This suggests in effective field theory spontaneous breaking is possible up to UV scale, as illustrated by the UV-incomplete example of [4]. Yet the lattice-based arguments are not applicable to UV-complete field theoretic models, which we focus on. There is also famous Coleman-Hohenberg-Mermin-Wagner theorem [5, 6] and its generalizations, which rule out the possibility of the longer range order at $T \neq 0$ in a wide class of two-dimensional $d = 2 + 1$ systems. This seemingly prohibit spontaneous breaking of a continuous symmetry, but here too there are many assumptions and exceptions, starting from the example of [7]. Importantly to what follows, the original work [6] already notes the argument may break down if the lattice model exhibits long-range interactions. Thus, there is a phase transition in a Heisenberg magnet with suitably adjusted long-range interactions, see e.g., [8] for a recent review on the Coleman-Hohenberg-Mermin-Wagner theorem and its limitations. This suggests non-local field-theories, which may result from such lattice models in the continuous limit may be immune to various no-go results.

To better illustrate this idea we briefly mention Coleman’s no-go theorem [9], which in $d = 1 + 1$ excludes spontaneous symmetry breaking because the corresponding Goldstone bosons, being massless, would have infrared divergences. This argument works for the short-range interactions, whereas as above introduction of the long-range forces allows phase-transitions in the one dimensional systems [10–14]. The no-go results in various dimensions are related and can be evaded simultaneously: our model exhibits persistent breaking for $1 < d < 3 + 1$.

The discussion above mostly applies to continuous symmetries. For discrete symmetries even less is known. As for continuous symmetries, there is no universal theoretical argument requiring discrete symmetry to be restored at high temperatures. At the same time to the best of our knowledge there were no examples of persistent symmetry breaking in 2+1 dimensions. In higher dimensions there are CFTs in $d = 4 - \epsilon$ [11, 2, 15] and $d = 4$ [16, 17] which have some of their internal symmetries broken at arbitrary finite temperature. Yet these models are not free of criticism. In the former case ϵ can not be taken to one and therefore theories in question are not necessarily unitary [18]. And the latter case of [16] is inconclusive because of the possible impact of $1/N$ corrections. We also refer the reader to [19], where asymptotically safe theories [20] in $d = 3 + 1$ were con-
sidered in the context of persistent symmetry breaking. Another idea explored in the literature is placing the point functions of \(\sigma \) in vector and singlet representations of \(O(N) \). The main goal of this letter is to construct an example generalizations of our model exhibit persistent breaking of continuous symmetries in \(d = 2 + 1 \) and beyond \(\Delta_3 \). Our construction bypasses the Coleman-Hohenberg-Mermin-Wagner theorem due to its non-local nature. It can be viewed as two weakly interacting copies of the Long Range Ising (LRI) model \[10, 41, 42\].

THE MODEL

To begin with, we introduce our model. Consider the Gaussian action in \(1 \leq d \leq 4 \) dimensions,

\[
S_0 = N_\phi \int d^d x_1 \int d^d x_2 \frac{\bar{\phi}(x_1) \cdot \bar{\phi}(x_2)}{|x_1 - x_2|^{2(d - \Delta_\phi)}} + N_\sigma \int d^d x_1 \int d^d x_2 \frac{\sigma(x_1) \sigma(x_2)}{|x_1 - x_2|^{2(d - \Delta_\sigma)}}.
\]

The fundamental fields include scalars \(\bar{\phi} \) and \(\sigma \) transforming in vector and singlet representations of \(O(N) \). The model also admits a \(\mathbb{Z}_2 \) symmetry that flips the sign of \(\sigma \). The coefficients \(N_\phi \) and \(N_\sigma \) are fixed so that the two-point functions of \(\bar{\phi} \) and \(\sigma \) are canonically normalized. For brevity we suppress vector indices in what follows. The scaling dimensions of the generalized free fields are chosen to be

\[
\Delta_\phi = d - \frac{\epsilon_1}{4}, \quad \Delta_\sigma = d - \frac{\epsilon_3}{4},
\]

with \(\epsilon_{1,3} \ll 1 \), so that the following quartic operators become weakly relevant

\[
\mathcal{O}_1 = (\phi^2)^2, \quad \mathcal{O}_2 = \phi^2 \sigma^2, \quad \mathcal{O}_3 = \sigma^4,
\]

with scaling dimensions \(\Delta_1 = 4\Delta_\phi, \Delta_2 = 2(\Delta_\phi + \Delta_\sigma) \) and \(\Delta_3 = 4\Delta_\sigma \). This model is conformal, we list OPE coefficients \(C_{ij}^{k} \) and other technical details in Supplemental Material.

Next, we consider the following deformation

\[
S = S_0 + \frac{3}{N} \int d^d x \mathcal{O}_i(x),
\]

where \(\epsilon_i \ll 1 \). It induces an RG flow of the form

\[
\frac{dg_i}{d\mu} = -\epsilon_i g_i + \frac{\pi^{d/2}}{N Gamma(\frac{d}{2})} \sum C_{ijk} g_j g_k + \ldots
\]

As we argue below, for \(N > 5 \) there is a fixed point with \(g_2 < 0 \). Moreover, the IR CFTs with negative \(g_2 \) are stable. They define a class of theories with the persistent symmetry breaking.

To understand the unbroken symmetries of the IR critical point at finite temperature we consider the effective potential, \(V_{\text{eff}} \), for the zero mode. To leading order in \(\epsilon_i \), thermal fluctuations simply induce quadratic terms in addition to the quartic potential \[4\],

\[
V_{\text{eff}}(\phi, \sigma; \beta) = \mathcal{M}_\phi(\beta) \phi^2 + \mathcal{M}_\sigma(\beta) \sigma^2 + g_1 \frac{\mu^{\epsilon_1}}{N} \mathcal{O}_1 + \frac{g_2 \mu^{\epsilon_2}}{N} \mathcal{O}_2 + \frac{g_3 \mu^{\epsilon_3}}{N} \mathcal{O}_3 + O(\epsilon_i^4),
\]

where

\[
\mathcal{M}_\phi(\beta) = 2 \frac{g_1 \mu^{\epsilon_1}}{N} \left(1 + \frac{2}{N}\right) \langle \phi^2 \rangle_\beta + \frac{g_2 \mu^{\epsilon_2}}{N} \langle \sigma^2 \rangle_\beta,
\]

\[
\mathcal{M}_\sigma(\beta) = \frac{g_2 \mu^{\epsilon_2}}{N} \langle \phi^2 \rangle_\beta + 6 \frac{g_3 \mu^{\epsilon_3}}{N} \langle \sigma^2 \rangle_\beta.
\]

As shown in the Supplemental Material, thermal expectation values of the generalized free fields are given by

\[
\langle \phi^2 \rangle_\beta = N \frac{2 \zeta(2\Delta_\phi)}{\beta^{2\Delta_\phi}}, \quad \langle \sigma^2 \rangle_\beta = \frac{4 \zeta(2\Delta_\sigma)}{\beta^{2\Delta_\sigma}}
\]

which follow straightforwardly from the thermal Green’s function. Obviously, full \(O(N) \times \mathbb{Z}_2 \) symmetry is preserved by the minimum of the potential at zero temperature. However, the finite temperature effects might break it if \(M_\phi < 0 \) or \(M_\sigma < 0 \). If this happens, the higher order perturbative corrections cannot restore the symmetry, because the higher loop contributions to \(M_\phi, M_\sigma \) are suppressed by higher powers of \(\epsilon_i \), whereas the terms with higher powers of fundamental fields are subdominant in the vicinity of the origin. To establish symmetry

1 See \[29\] where the holographic conformal order is studied on \(S^4 \).

2 Stability suggests the model is unitary; it would be interesting to confirm this by calculating anomalous dimensions at the IR fixed point. We also expect the fixed point to be a CFT, but since our model is non-local strictly speaking this has to be verified along the lines \[39\].

3 For original and recent studies of the LRI model see \[50, 43, 51\].

4 Note that \(\epsilon_2 = (\epsilon_1 + \epsilon_3)/2 \).
breaking at finite temperature, it is therefore sufficient to show that the model admits a fixed point where one of the masses becomes negative.

To ensure stability of the model it is necessary to satisfy $g_1, g_3 \geq 0$, while g_2 could be negative provided $4g_1 g_3 \geq g_2^2$. If all g_i are positive, $\mathcal{M}_\phi, \mathcal{M}_\sigma$ are positive as well, the potential is minimized at the origin $\phi = \sigma = 0$ and the symmetry is restored. The only scenario of symmetry breaking is therefore when $g_2 < 0$. The RG flow terminates at a weakly interacting IR fixed point in the vicinity of the original Gaussian theory. At the critical point at leading order in ϵ_i the couplings satisfy

$$\epsilon_1 g_1 = \frac{\pi^{d/2}}{\Gamma(d/2)} \left(C_{11} g_1^2 + C_{22} g_2^2 \right),$$

$$\epsilon_2 g_2 = \frac{\pi^{d/2}}{\Gamma(d/2)} \left(2 C_{12} g_1 g_2 + C_{22} g_2^2 + 2 C_{23} g_2 g_3 \right),$$

$$\epsilon_3 g_3 = \frac{\pi^{d/2}}{\Gamma(d/2)} \left(C_{22} g_2^2 + C_{33} g_3^2 \right).$$

There is always a trivial fixed point with $g_1 = \frac{\Gamma(1)}{8 \pi^{d/2}} \frac{N}{N-H} \epsilon_1$, $g_2 = 0$ and $g_3 = \frac{\pi^{d/2}}{\Gamma(d/2)} \epsilon_3$. It represents two decoupled theories: the so-called Long Range Ising model [39] and its $O(N)$ generalization. This fixed point was recently studied in, e.g., [51].

To simplify the analysis and illustrate the main idea in what follows we consider only a particular case of equal $\epsilon_i = \epsilon$. The case of non-equal ϵ_i is similar and also admits persistent symmetry breaking. It is also convenient to rescale the couplings $g_i = g_i \frac{\Gamma(1/2)}{\pi^{d/2}} \epsilon_i$. Before proceeding with the case of finite N we take infinite limit. In this case the equations (9) drastically simplify yielding the conformal manifold – a one-parameter family of fixed points

$$\tilde{g}_1 = \frac{1}{8}, \quad \tilde{g}_3 = 2 \tilde{g}_2^2,$$ \quad (10)

depicted in Fig. 1. For the negative branch $\tilde{g}_2 = -2 \sqrt{\tilde{g}_1 \tilde{g}_3}$ the effective potential degenerates into

$$V_{\text{eff}}(\phi, \sigma; \beta) = \mu^2 \left(2 \sqrt{\tilde{g}_1} \langle \phi^2 \rangle_\beta x + x^2 \right),$$ \quad (11)

$$x = \sqrt{\tilde{g}_1} \phi^2 - \sqrt{\tilde{g}_3} \sigma^2.$$ \quad (12)

The minimum is reached at

$$\sigma^2 = \sqrt{\frac{\tilde{g}_1}{\tilde{g}_3}} \langle \phi^2 \rangle_\beta.$$ \quad (13)

This is a one-dimensional family of vacua with the non-zero expectation value of σ, signaling spontaneous symmetry breaking. For positive g_2 and $\langle \phi^2 \rangle_\beta$ only $\sigma = 0$ is admitted.

From the discussion above it is clear negative g_2 is necessary for symmetry to be broken. Hence the crucial question is if the fixed point(s) with $g_2 < 0$ survive in the finite N regime. Before proceeding with an arbitrary N we employ $1/N$ expansion to find, in addition to (10), the consistency condition

$$4\tilde{g}_2^2 + 2\tilde{g}_2 - \frac{3}{4} = 0.$$ \quad (14)

Hence at large but finite N the continuous family (10) collapses into two solutions, one with positive and one with negative g_2. Upon taking finite N corrections into account degeneracy $4\tilde{g}_1 \tilde{g}_3 = \tilde{g}_2^2$ is lifted. Minimization of the potential (6) yields

$$\begin{pmatrix} \phi^2 \\ \sigma^2 \end{pmatrix} = -\frac{N \mu - \epsilon}{4 \tilde{g}_1 \tilde{g}_3 - \tilde{g}_2^2} \begin{pmatrix} 2 \tilde{g}_3 & -\tilde{g}_2 \\ -\tilde{g}_2 & 2 \tilde{g}_1 \end{pmatrix} \begin{pmatrix} \mathcal{M}_\phi \\ \mathcal{M}_\sigma \end{pmatrix},$$ \quad (15)

provided resulting ϕ^2 and σ^2 both are positive. Yet this is never the case for any solutions of (6). The true minimum of the potential is therefore achieved either at $\phi^2 = 0$ or $\sigma^2 = 0$. For all solutions of (6) $\mathcal{M}_\phi > 0$ but \mathcal{M}_σ become negative for the branch with negative g_2 and $N > 17$. In these cases the minimum is achieved at

$$\begin{pmatrix} \phi^2 \\ \sigma^2 \end{pmatrix} = -\frac{N \mu - \epsilon}{2 \tilde{g}_3} \begin{pmatrix} 0 \\ \mathcal{M}_\sigma \end{pmatrix}.$$ \quad (16)

Clearly, σ^2 is strictly positive, indicating symmetry breaking.

CONCLUSIONS

To summarize, the model [1] with the choice $\epsilon_i = \epsilon \ll 1$ for finite N has two different IR fixed points, and for
$N > 10$ one of them has negative g_2. The fixed points with $g_2 < 0$ and $N > 17$ exhibit symmetry breaking at arbitrary non-zero temperature

$$O(N) \times \mathbb{Z}_2 \rightarrow O(N).$$

(17)

The behavior for non-equal small ϵ_i is qualitatively similar.

The model [1] admits a straightforward generalization to two Gaussian free fields in the vector representations of $O(N_1)$ and $O(N_2)$. The example in this note corresponds to $N_2 = 1$ case. Deforming this theory by weakly relevant quartic operators and following the same steps as above, one finds IR fixed points which exhibit spontaneous breaking of the global continuous symmetry at finite temperature. In 2+1 dimensions it is therefore an example of persistent breaking of a continuous global symmetry, which bypasses the Coleman-Hohenberg-Mermin-Wagner theorem [5, 6, 9] by virtue of being a CFT with long-range interactions. We will discuss this case in detail in [10]. Our non-local $O(N) \times \mathbb{Z}_2$ model is similar to that one studied in [11, 2]. It would be also interesting to explore if they are related in the large N limit.

Our findings clearly show persistent breaking is possible in the UV-complete yet non-local models. This raises the question if non-locality is truly necessary, i.e. if there could be UV-complete unitary local field theoretic models in $d = 2 + 1$ exhibiting persistent breaking of discrete symmetries. It is an important open question to construct such an example or rule out this possibility.

Acknowledgements We thank Alex Avdoshkin, Dean Carmi, Soumyadeep Chaudhuri, Changha Choi, Joshua Feinberg, Mikhail Goykhman, Eliezer Rabinovici, Ritam Sinha and especially Zohar Komargodski for helpful discussions and correspondence. This work is partially supported by the Binational Science Foundation (grant No. 2016186). AD is grateful to Weizmann Institute of Science for hospitality and acknowledges sabbatical support of the Schwartz/Reisman Institute for Theoretical Physics. NC and MS are grateful to the Israeli Science Port of the Schwartz/Reisman Institute for Theoretical Physics. NC and MS are grateful to the Israeli Science Port of the Schwartz/Reisman Institute for Theoretical Physics. NC is grateful for the support from the Yuri Milner scholarship.

Supplemental Material

The action defines a conformal model with the canonically normalized two-point function of fundamental fields ϕ and σ,

$$\langle \phi_a \phi_b \rangle = \frac{\delta_{ab}}{|x_{12}|^{2\Delta_\sigma}}, \quad \langle \sigma \sigma \rangle = \frac{1}{|x_{12}|^{2\Delta_\sigma}}.$$

(18)

The two-point functions of the operators O_i

$$\langle O_i O_j \rangle = \delta_{ij} \frac{N_i}{|x|^{2\Delta}}.$$

(19)

where

$$N_1 = 8N^2 \left(1 + \frac{2}{N}\right), \quad N_2 = 4N, \quad N_3 = 24.$$

(20)

Similarly, the three-point functions

$$\langle O_i O_j O_k \rangle = \frac{C_{ijk} N_k}{|x_{12}|^{\Delta_1 - 2\Delta} |x_{23}|^{\Delta_2 - 2\Delta} |x_{13}|^{\Delta_3 - 2\Delta}},$$

$$\Delta = \Delta_i + \Delta_j + \Delta_k,$$

(21)

are fixed by the OPE coefficients (we list only non-zero ones)

$$C_{11}^1 = 8(N + 8), \quad C_{22}^1 = 2, \quad C_{12}^2 = 4(N + 2),$$

$$C_{22}^2 = 16, \quad C_{23}^2 = 12, \quad C_{22}^3 = 2N, \quad C_{33}^3 = 72.$$

(22)

They are related by

$$C_{ij}^k = C_{ik}^j N_j / N_k.$$

(23)

At finite temperature two-point function takes the form

$$\langle \phi_a \phi_b \rangle = \sum_{m=\infty}^\infty \frac{\delta_{ab}}{(\tau + m \beta)^2 + x^2} e^{-\Delta_\sigma \tau},$$

(24)

and similarly for σ. From here one trivially finds [8].

[1] Noam Chai, Soumyadeep Chaudhuri, Changha Choi, Zohar Komargodski, Eliezer Rabinovici, and Michael Smolkin. Thermal Order in Conformal Theories. Phys. Rev. D, 102(6):065014, 2020. doi:10.1103/PhysRevD.102.065014

[2] Noam Chai, Soumyadeep Chaudhuri, Changha Choi, Zohar Komargodski, Eliezer Rabinovici, and Michael Smolkin. Symmetry Breaking at All Temperatures. Phys. Rev. Lett., 125(13):131603, 2020. doi:10.1103/PhysRevLett.125.131603

[3] Ola Bratteli and Derek William Robinson. Operator Algebras and Quantum Statistical Mechanics: Volume 1: C^*- and W^*-Algebras. Symmetry Groups. Decomposition of States. Springer Science & Business Media, 2012.

[4] Steven Weinberg. Gauge and Global Symmetries at High Temperature. Phys. Rev. D, 9:3357–3378, 1974. doi:10.1103/PhysRevD.9.3357

[5] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17:1133–1136, 1966. doi:10.1103/PhysRevLett.17.1133

[6] P. C. Hohenberg. Existence of long-range order in one and two dimensions. Phys. Rev., 158:383–386, Jun 1967. doi:10.1103/PhysRev.158.383 URL:https://link.aps.org/doi/10.1103/PhysRev.158.383
[7] N. D. Mermin. Crystalline order in two dimensions. Phys. Rev., 176:250–254, Dec 1968. doi:10.1103/PhysRev.176.250 URL https://link.aps.org/doi/10.1103/PhysRev.176.250

[8] Bertrand I. Halperin. On the hothenberg?mermin?wagner theorem and its limitations. Journal of Statistical Physics, 175(3-4):521?529, Dec 2018. ISSN 1572-9631. doi:10.1007/s10955-018-2202-y URL http://dx.doi.org/10.1007/s10955-018-2202-y

[9] Sidney R. Coleman. There are no Goldstone bosons in two-dimensions. Commun. Math. Phys., 31:259–264, 1973. doi:10.1007/BF01645479

[10] Freeman J. Dyson. Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys., 12:91–107, 1969. doi:10.1007/BF01645907

[11] Freeman J. Dyson. Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet. Commun. Math. Phys., 12:212–215, 1969. doi:10.1007/BF01661575

[12] Freeman J. Dyson. An Ising Ferromagnet with Discontinuous Long-Range Order. Commun. Math. Phys., 21:269–283, 1971. doi:10.1007/BF01645749

[13] Nicolas Laforencie, Ian Affleck, and Mona Berciu. Critical phenomena and quantum phase transition in long range heisenberg antiferromagnetic chains. Journal of Statistical Mechanics: Theory and Experiment, 2005(12):P12001/P12001, Dec 2005. ISSN 1742-5468. doi:10.1088/1742-5468/2005/12/p12001 URL http://dx.doi.org/10.1088/1742-5468/2005/12/P12001

[14] Mohammad F. Maghrebi, Zhe-Xuan Gong, and Alexey V. Gorshkov. Continuous symmetry breaking in 1d long-range interacting quantum systems. Phys. Rev. Lett., 119:023001, Jul 2017. doi:10.1103/PhysRevLett.119.023001 URL https://link.aps.org/doi/10.1103/PhysRevLett.119.023001

[15] Noam Chai, Eliezer Rabinovici, Ritam Sinha, and Michael Smolkin. The bi-conical vector model at 1/N. JHEP, 05:192, 2021. doi:10.1007/JHEP05(2021)192

[16] Soumyadeep Chaudhuri, Changha Choi, and Eliezer Rabinovici. Thermal order in large N conformal gauge theories. JHEP, 04:203, 2021. doi:10.1007/JHEP04(2021)203

[17] Soumyadeep Chaudhuri and Eliezer Rabinovici. Symmetry breaking at high temperatures in large N gauge theories. 6 2021.

[18] Matthijs Hogervorst, Slava Rychkov, and Balt C. van Rees. Unitarity violation at the Wilson-Fisher fixed point in 4–ε dimensions. Phys. Rev. D, 93(12):125025, 2016. doi:10.1103/PhysRevD.93.125025

[19] Borut Bajc, Adrian Lugo, and Francesco Sannino. Asymptotically free and safe fate of symmetry non-restoration. Phys. Rev. D, 103:096014, 2021. doi:10.1103/PhysRevD.103.096014

[20] Daniel F. Litim and Francesco Sannino. Asymptotic safety guaranteed. JHEP, 12:178, 2014. doi:10.1007/JHEP12(2014)178

[21] Dean Carmi, Lorenzo Di Pietro, and Shota Komatsu. A Study of Quantum Field Theories in AdS at Finite Coupling. JHEP, 01:200, 2019. doi:10.1007/JHEP01(2019)200

[22] Alex Buchel and Chris Pagnutti. Exotic Hairy Black Holes. Nucl. Phys. B, 824:85–94, 2010. doi:10.1016/j.nuclphysb.2009.08.017

[23] Aristomenis Donos and Jerome P. Gauntlett. Superfluid black branes in AdS4 × S2. JHEP, 06:053, 2011. doi:10.1007/JHEP06(2011)053

[24] Umut Gürsoy, Elias Kiritsis, Francesco Nitti, and Leandro Silva Pimenta. Exotic holographic RG flows at finite temperature. JHEP, 10:173, 2018. doi:10.1007/JHEP10(2018)173

[25] Alex Buchel. Klebanov-Strassler black hole. JHEP, 01:207, 2019. doi:10.1007/JHEP01(2019)207

[26] Alex Buchel. Thermal order in holographic CFTs and no-hair theorem violation in black branes. Nucl. Phys. B, 967:115425, 2021. doi:10.1016/j.nuclphysb.2021.115425

[27] Alex Buchel. Holographic conformal order in supergravity. Phys. Lett. B, 814:136111, 2021. doi:10.1016/j.physletb.2021.136111

[28] Alex Buchel. Fate of the conformal order. Phys. Rev. D, 103(2):026008, 2021. doi:10.1103/PhysRevD.103.026008

[29] Alex Buchel. Compactified holographic conformal order. 7 2021.

[30] Seok-In Hong and John B. Kogut. Symmetry non-restoration in a Gross-Neveu model with random chemical potential. Phys. Rev. D, 63:085014, 2001. doi:10.1103/PhysRevD.63.085014

[31] Zohar Komargodski, Adar Sharon, Ryan Thorngren, and Xinan Zhou. Comments on Abelian Higgs Models and Persistent Order. SciPost Phys., 6(1):003, 2019. doi:10.21468/SciPostPhys.6.1.003

[32] Kyle Aitken, Alexey Chemer, Erich Poppitz, and Laurence G. Yaffe. QCQ on a small circle. Phys. Rev. D, 96(9):096022, 2017. doi:10.1001/PhysRevD.96.096022

[33] Yuya Tanizaki, Tatsuhiro Misumi, and Norisuke Sakai. Circle compactification and ‘t Hooft anomaly. JHEP, 12:056, 2017. doi:10.1007/JHEP12(2017)056

[34] Gerald V. Dunne, Yuya Tanizaki, and Mithat Ünal. Quantum Distillation of Hilbert Spaces, Semi-classics and Anomaly Matching. JHEP, 08:068, 2018. doi:10.1007/JHEP08(2018)068

[35] Zheyan Wan and Juven Wang. Higher anomalies, higher symmetries, and cobordisms III: QCD matter phases anew. Nucl. Phys. B, 957:115016, 2020. doi:10.1016/j.nuclphysb.2020.115016

[36] V. L. Berezinsky. Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP, 32:493–500, 1971.

[37] V. L. Berezinsky. Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems. Sov. Phys. JETP, 34(3):610, 1972.

[38] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6:1181–1203, 1973. doi:10.1088/0022-3719/6/7/010

[39] Miguel F. Paulos, Slava Rychkov, Balt C. van Rees, and Bernardo Zan. Conformal Invariance in the Long-Range Ising Model. Nucl. Phys. B, 902:246–291, 2016. doi:10.1016/j.nuclphysb.2015.10.018

[40] Noam Chai, Anatoly Dymarsky, Mikhail Goykhman, Ritam Sinha, and Michael Smolkin. (in preparation).

[41] Michael E. Fisher, Shang-keng Ma, and B. G. Nickel. Critical exponents for long-range interactions. Phys. Rev. Lett., 29:917–920, Oct 1972. doi:10.1103/PhysRevLett.29.917 URL https://link.aps.org/doi/10.1103/PhysRevLett.29.917

[42] J. Sak. Recursion relations and fixed points for ferro-
magnets with long-range interactions. *Phys. Rev. B*, 8:281–285, Jul 1973. [doi:10.1103/PhysRevB.8.281] URL https://link.aps.org/doi/10.1103/PhysRevB.8.281.

[43] J Honkonen and M Y Nalimov. Crossover between field theories with short-range and long-range exchange or correlations. *Journal of Physics A: Mathematical and General*, 22(6):751–763, mar 1989. [doi:10.1088/0305-4470/22/6/024] URL https://doi.org/10.1088/0305-4470/22/6/024.

[44] Accurate critical exponents for Ising-like systems in non-integer dimensions. In J.C. LE GUILLOU and J. ZINN-JUSTIN, editors, *Large-Order Behaviour of Perturbation Theory*, volume 7 of *Current Physics-Sources and Comments*, pages 559–564. Elsevier, 1990. [doi:https://doi.org/10.1016/B978-0-444-88597-5.50077-6] URL https://www.sciencedirect.com/science/article/pii/B9780444885975500776.

[45] Sheer El-Showk, Miguel Paulos, David Poland, Slava Rychkov, David Simmons-Duffin, and Alessandro Vichi. Conformal Field Theories in Fractional Dimensions. *Phys. Rev. Lett.*, 112:141601, 2014. [doi:10.1103/PhysRevLett.112.141601]

[46] Erik Luijten and Henk W. J. Blote. Boundary between long-range and short-range critical behavior in systems with algebraic interactions. *Phys. Rev. Lett.*, 89:025703, Jun 2002. [doi:10.1103/PhysRevLett.89.025703] URL https://link.aps.org/doi/10.1103/PhysRevLett.89.025703.

[47] Marco Picco. Critical behavior of the Ising model with long range interactions. 7 2012.

[48] T. Blanchard, M. Picco, and M. A. Rajabpour. Influence of long-range interactions on the critical behavior of the Ising model. *EPL*, 101(5):56003, 2013. [doi:10.1209/0295-5075/101/56003]

[49] Maria Chiara Angelini, Giorgio Parisi, and Federico Ricci-Tersenghi. Relations between short-range and long-range Ising models. *Physical Review E*, 89(6), Jun 2014. ISSN 1550-2376. [doi:10.1103/physreve.89.062120] URL http://dx.doi.org/10.1103/PhysRevE.89.062120.

[50] Nicolo Defenu, Andrea Trombettoni, and Alessandro Codello. Fixed-point structure and effective fractional dimensionality for o(n) models with long-range interactions. *Physical Review E*, 92(5), Nov 2015. ISSN 1550-2376. [doi:10.1103/physreve.92.052113] URL http://dx.doi.org/10.1103/PhysRevE.92.052113.

[51] Connor Behan, Leonardo Rastelli, Slava Rychkov, and Bernardo Zan. Long-range critical exponents near the short-range crossover. *Phys. Rev. Lett.*, 118(24):241601, 2017. [doi:10.1103/PhysRevLett.118.241601]