The characterization of the best approximant for the multivariable functions in the space $L_{p_1,\ldots,p_n};\Omega$

Досліджуються питання характеризації елемента найкращого наближення у просторах зі змішаною інтегральною метрикою з вагою для функцій багатьох змінних.

Питання найкращого наближення функцій двох змінних у просторах $L_{p_1,q};\Omega$ вивчались Г.С.Смірновим. Потім його результати були розповсюджені Трактинською В.М. і Ткаченко М.Є. спочатку на простори L_{p_1,p_2,\ldots,p_n}, а потім на простори $L_{p,q};\Omega$ з вагою. В статті розглядаються простори $L_{p_1,\ldots,p_n};\Omega$ функцій багатьох змінних з вагою, в яких норма задається таким чином:

$$
\|f\|_{p_i;\Omega} = \|f\|_{p_1,\ldots,p_n;\Omega} = \left[\int_{I_1} \ldots \int_{I_n} \left[\Omega(x)|f(x)|^{p_1} dx_1 \right]^{\frac{p_1}{p_i}} dx_2 \ldots dx_n \right]^{\frac{1}{p_i}},
$$
de вага $\Omega(x) = \Omega(x_1, x_2, \ldots, x_n) = \text{непівдіємая, сумова на } n\text{-вимірному паралелепіпеді} K = I_1 \times I_2 \times \ldots \times I_n$ (де $I_i = [a_i, b_i]$, $1 \leq i \leq n$) функція, яка має всюди не дорівнює нулю. Якщо $\Omega(x) = 1, \forall x \in K$, то отримуємо простори L_{p_1,p_2,\ldots,p_n}, які розглядалися раніше.

Встановлено, що будь-який лінійний неперервний функціонал, заданий в просторі $L_{p_1,p_2,\ldots,p_n;\Omega}$ має вигляд: $F(f) = \int_K \Omega(x)f(x)\alpha(x)dx_1dx_2\ldots dx_n$, де $f(x)$ – довільна функція з простору $L_{p_1,p_2,\ldots,p_n;\Omega}$, а $\alpha(x)$ – деяка функція зі спряженого простору $L_{q_1,q_2,\ldots,q_n;\Omega}$, який визначається за функціоналом F, і при цьому його норма задовольняє умову $\|F\| = \|\alpha\|_{q_1,q_2,\ldots,q_n;\Omega}$.

Отриманий критерій елемента найкращого наближення із скінченновимірного підпростору H_m. А саме, для того, щоб елемент $P_m^*(x) \in H_m$ був поліномом найкращого наближення для функції $f(x)$ в метриці простору $L_{p_1,p_2,\ldots,p_n;\Omega}$, достатньо і (коли хоча б одне з $p_i = 1$, у випадку, коли різниця $f(x) - P_m^*(x) \neq 0$ майже скрізь на паралелепіпеді K) необхідно, щоб для кожного елемента $P_m \in H_m$ виконувалось співвідношення: $\int_K \Omega(x)P_m(x)g(x)dx_1dx_2\ldots dx_n = 0$.

Якщо покласти $\Omega(x) = 1, \forall x \in K$, то отримаємо загальний вид лінійного неперервного функціоналу та критерії елемента найкращого наближення, які були раніше встановлені для просторів L_{p_1,p_2,\ldots,p_n}.

© M.YE. TKACHENKO, V.M. TRAKTYNSKA, 2019
The characterization of the best approximant in the space $L_{p_1,\ldots,p_n;\Omega}$

Key words: multivariable functions, space with a mixed metric with weight, the linear continuous functional, the criterion of the best approximant.

Let $\Omega(x) = \Omega(x_1,\ldots,x_n)$ be the nonnegative summable on $K = I_1 \times I_2 \times \cdots \times I_n$ function and $\Omega(x) \neq 0$ almost everywhere on K. Let $L_{p_1,\ldots,p_n;\Omega} = L_{p_i;\Omega}$ ($1 \leq p_i \leq \infty$, $1 \leq i \leq n$) be the space of all real-valued summable on K functions $f(x) = f(x_1,\ldots,x_n) : K \to \mathbb{R}$ such that

$$
\|f\|_{p_i;\Omega} = \left[\int_{I_1} \cdots \int_{I_n} \left(\int_{I_1} \cdots \int_{I_n} \Omega(x) |f(x)|^{p_i} \, dx_1 \right)^{\frac{p_i}{p_i-1}} \, dx_2 \cdots dx_n \right]^{\frac{1}{p_i}} < \infty.
$$

If $\Omega(x) = 1$, $\forall x \in K$, then $L_{p_i;\Omega} = L = L_{p_1,\ldots,p_n}$.

We set

$$
|f|_{p_k,\ldots,p_i;\Omega} = \left[\int_{I_1} \cdots \int_{I_{i-1}} \left(\int_{I_{k+1}} \cdots \int_{I_n} \Omega(x) |f(x)|^{p_k} \, dx_{k+1} \right)^{\frac{p_{k+1}}{p_k}} \, dx_{k+2} \cdots dx_i \right]^{\frac{1}{p_i}},
$$

where $1 \leq k < i \leq n$.

If $\Omega(x) = 1$, $\forall x \in K$, we will write $|f|_{p_k,\ldots,p_i}$.

Consider also the classes L_{p_1,\ldots,p_n} (where at least one $p_i = \infty$) of functions f respectively with norms

$$
\|f\|_{p_1,\ldots,p_{n-1},\infty;\Omega} = \text{ess sup}_{x_n \in I_n} |f(x)|_{p_1,\ldots,p_{n-1};\Omega},
$$

$$
\|f\|_{p_1,\ldots,p_i-1,\infty,p_{i+1},\ldots,p_n;\Omega} = \left[\int_{I_1} \cdots \int_{I_{n-1}} \left(\text{ess sup}_{x_{i+1} \in I_{i+1}} |f(x)|_{p_1,\ldots,p_{i-1};\Omega} \right)^{p_i} \, dx_{i+1} \cdots dx_n \right]^{\frac{1}{p_i}},
$$

$$
\|f\|_{\infty,p_2,\ldots,p_n;\Omega} = \text{ess sup}_{x_i \in I_i} |f(x)|_{p_2,\ldots,p_n;\Omega},
$$

where $1 \leq i < n$.

In 1973 G.S. Smirnov [1] proved the criterion of the best approximant in the spaces with mixed integral metric for the functions of two variables. V.M. Traktynska...
[3] extended this result to the multivariable functions in the spaces $L_{p_1,p_2,...,p_n}$. V.M. Traktynska and M.E. Tkachenko [4] proved the criterion of the best approximant in the spaces with mixed integral metric with weight for the functions of two variables. The purpose of this article is getting the general form of a bounded linear functional and the criterion of best approximant in the space $L_{p_1,...,p_n};\Omega$.

Let $f \in L_{p_1,\Omega}, \varphi \in L_{q_\Omega} \left(\frac{1}{p_i} + \frac{1}{q_i} = 1, 1 \leq i \leq n \right)$ be given (for $p_i = 1$ we take $q_i = \infty$). Applying Geler’s inequality and Fubini’s Theorem, we obtain for $1 \leq p_i, q_i < \infty, 1 \leq i \leq n, p_1 \neq 1$:

$$\left| \int_K \Omega(x)f(x)\varphi(x)dx \right| \leq \left| \int_K \left(\int \Omega(x) \frac{1}{p_i} f(x) \cdot (\Omega(x)) \frac{1}{q_i} \varphi(x) dx \right) dx_2 \right| ...dx_n \leq \cdots$$

$$\leq \left(\int_{I_n} \cdots \left(\int_{I_2} \left(\int_{I_1} \Omega(x) \frac{1}{p_1} f(x) \cdot (\Omega(x)) \frac{1}{q_1} \varphi(x) dx_1 \right) dx_2 \right) ...dx_n \right) \cdot \left\| f \right\|_{\overline{p_1,\Omega}} \cdot \left\| \varphi \right\|_{\overline{q_\Omega}}.$$

We can get similar inequality in the case when some $p_i = 1$ except p_1. So for $1 \leq p_i, q_i < \infty, 1 \leq i \leq n, p_1 \neq 1$, we get the inequality:

$$\left| \int_K \Omega(x_1,...,x_n)f(x)\varphi(x)dx \right| \leq \left\| f \right\|_{\overline{p_1,\Omega}} \cdot \left\| \varphi \right\|_{\overline{q_\Omega}}.$$

In the case when $p_1 = 1, 1 < p_i < \infty, 1 < i \leq n$, we will have:

$$\left| \int_K \Omega(x)f(x)\varphi(x)dx \right| \leq \cdots$$

$$\leq \left(\int_{I_n} \cdots \left(\int_{I_2} \left(\int_{I_1} \Omega(x) f(x) dx_1 \right) \cdot \operatorname{ess \sup_{x_1 \in I_1}} |\varphi(x)| dx_2 \right) ...dx_n \right).$$
\[
\begin{align*}
\leq \int_{I_n} \ldots \left(\int_{I_2} \left[\int_{I_1} \Omega(x) |f(x)| dx_1 \right]^{p_2} dx_2 \right)^{\frac{1}{p_2}} \ldots dx_n,
\end{align*}
\]

\[
\cdot \int_{I_n} \ldots \left(\int_{I_2} \left[\text{ess sup}_{x_1 \in I_1} |\varphi(x)| \right]^{q_2} dx_2 \right)^{\frac{1}{q_2}} \ldots dx_n \leq \ldots
\]

\[
\leq \left(\int_{I_n} \ldots \left[\int_{I_2} \left[\int_{I_1} \Omega(x) |f(x)| dx_1 \right]^{p_2} dx_2 \right]^{\frac{q_3}{q_2}} \ldots dx_n \right)^{\frac{1}{q_3}} = \|f\|_{L^p, \Omega} \cdot \|\varphi\|_{\bar{P}}.
\]

Similarly inequality holds true in the case when some \(p_i = 1 \).

For \(1 \leq p_i, q_i < \infty, 1 \leq i \leq n \), we have equality if and only if the following conditions are simultaneously satisfied:

\[
(\Omega(x))^{\frac{1}{q_1}} \varphi(x) = c_1(x_2, \ldots, x_n) \left((\Omega(x))^{\frac{1}{q_1}} |f| \right)^{p_1-1} \cdot \text{sign} f(x)
\]

almost everywhere on \(I_1 \) for every fixed \((x_2, \ldots, x_n) \in I_2 \times \ldots \times I_n \);

\[
\left(\int_{I_1} \Omega(x) |\varphi|^{q_1} dx_1 \right)^{\frac{1}{q_1}} = c_2(x_3, \ldots, x_n) \left(\int_{I_1} \Omega(x) |f|^{p_1} dx_1 \right)^{\frac{p_2-1}{p_1}},
\]

or \(|\varphi|_{q_1; \Omega} = c_2(x_3, \ldots, x_n) |f|_{p_1; \Omega}\) almost everywhere on \(I_2 \) for every fixed \((x_3, \ldots, x_n) \in I_3 \times \ldots \times I_n \); \(|\varphi|_{q_1, q_2; \Omega} = c_3(x_4, \ldots, x_n) |f|_{p_1, p_2; \Omega}\) almost everywhere on \(I_3 \) for every fixed \((x_4, \ldots, x_n) \in I_4 \times \ldots \times I_n \); continuing reasonings, we have

\[
|\varphi|_{q_1, \ldots, q_{n-2}; \Omega} = c_{n-1}(x_n) |f|_{p_1, \ldots, p_{n-2}; \Omega} \quad (1)
\]

almost everywhere on \(I_{n-1} \) for every fixed \(x_n \in I_n \);

\[
|\varphi|_{q_1, \ldots, q_{n-1}; \Omega} = c_n |f|_{p_1, \ldots, p_{n-1}; \Omega} \quad (2)
\]

almost everywhere on \(I_n \). Let us combine these conditions. In left part of condition (2) we substitute condition (1):

\[
\left(\int_{I_{n-1}} dx_{n-1} \left(\int_{I_{n-2}} \ldots \left(\int_{I_1} |\varphi|^{q_1} dx_1 \right)^{\frac{q_2}{q_1}} \ldots \right)^{\frac{q_{n-1}}{q_n}} \right) =
\]
\[c_{n-1}(x_n) = \left(\int_{I_{n-1}} dx_{n-1} \left(\int_{I_{n-2}} dx_{n-2} \cdots \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_2 \over p_1} \right)^{p_{n-1} \over p_n - 1} \right)^{1 \over \eta_{n-1}} = \]

\[= c \cdot \left(\int_{I_{n-1}} dx_{n-1} \left(\int_{I_{n-2}} dx_{n-2} \cdots \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_2 \over p_1} \right)^{p_{n-1} \over p_n - 1} \right)^{p_n - 1 \over \eta_{n-1}} \]

Thus:

\[c_{n-1}(x_n) = c \cdot \left(\int_{I_{n-1}} dx_{n-1} \left(\int_{I_{n-2}} dx_{n-2} \cdots \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_2 \over p_1} \right)^{p_{n-1} \over p_n - 1} \right)^{p_n - 1 \over \eta_{n-1}} \]

Then in left part of condition (1) we substitute the previous condition and find \(c_{n-2}(x_{n-1}, x_n) \) and so on. As a result, we get:

\[\varphi(x) = c |f|^{p_1 - 1} \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_2 - 1 \over p_1} \cdot \left(\int_{I_2} dx_2 \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_3 \over p_2} \right)^{p_4 - 1 \over p_3} \cdots \cdot \left(\int_{I_{n-1}} dx_{n-1} \left(\int_{I_{n-2}} dx_{n-2} \cdots \left(\int_{I_1} |f|^{p_1} dx_1 \right)^{p_2 \over p_1} \right)^{p_{n-1} \over p_n - 1} \right)^{p_n - 1 \over \eta_{n-1}} \cdot \text{sign} f \]

or

\[\varphi = c |f|^{p_1 - 1} |f|^{p_2 - p_1} |f|^{p_3 - p_2} \cdots |f|^{p_{n-1} - p_n} \cdot \text{sign} f. \]

Theorem 1. Any linear continuous functional given in the space \(L_{\tau;\Omega} \) has the form:

\[F(f) = \int_\Omega (x) f(x) \alpha(x) dx_1 \ldots dx_n, \]

where \(f(x) \) is arbitrary function from \(L_{\tau;\Omega} \) and \(\alpha(x) \) is some function from \(L_{\tau;\Omega} \) which is determined by functional \(F \), and

\[\| F \| = \| \alpha \|_{\tau;\Omega}. \]
THE CHARACTERIZATION OF THE BEST APPROXIMANT IN THE SPACE \(L_{p_1, \ldots, p_n; \Omega} \)

For a system of linearly independent functions \(\{\varphi_1, \ldots, \varphi_m\} \subset L_{\varphi; \Omega} \) we denote \(H_m = \text{span}\{\varphi_1, \ldots, \varphi_m\} \), \(E(f, H_m)_{p; \Omega} = E(f)_{p; \Omega} \) is best \(L_{p; \Omega} \)-approximation of function \(f(x) \in L_{\varphi; \Omega} \) by polynomials \(P_m(x) = \sum_{k=1}^{m} c_k \varphi_k(x) \) where \(c_k(k = 1, 2, \ldots, m) \) are constants.

Theorem 2. For any \(f \in L_{\varphi; \Omega} \),

\[
E_m(f)_{p; \Omega} = \sup_{g} \int K \Omega(x)f(x)g(x)dx_1 \ldots dx_n
\]

where \(\sup \) distributed to functions \(g \in L_{\varphi; \Omega} \) such as \(\|g\|_{p; \Omega} = 1 \) and \(g \perp H_m \), that is \(\int K \Omega(x)P_m(x)g(x)dx_1 \ldots dx_n = 0, \forall P_m \in H_m \). \(\sup \) on the right-hand side of (3) is realized on functions \(g \in L_{\varphi; \Omega} \) with the norm \(\|g\|_{p; \Omega} = 1 \).

In particular, if \(f \in L_{\varphi; \Omega} \) then

\[
\|f\|_{p; \Omega} = \sup_{g} \int K \Omega(x)f(x)g(x)dx_1 \ldots dx_n,
\]

where \(\sup \) on the right-hand side of (4) distributed to all functions \(g \in L_{\varphi; \Omega} \), \(\|g\|_{p; \Omega} \leq 1 \).

Lemma 1. If \(\|f\|_{p; \Omega} > 0 \) then \(\sup \) on the right-hand side of (4) distributed to the function

\[
g_0(x) = \frac{1}{\|f\|_{p; \Omega}^{p_1-1}}|f|^{|p_1-1|}|f|^{p_2-p_1} \ldots |f|^{p_n-p_{n-1}} \text{sgn} f \quad \text{if} \quad |f|_{p_1, \ldots, p_{n-1}} \neq 0,
\]

\[
g_0(x) = 0 \quad \text{if} \quad |f|_{p_1, \ldots, p_{n-1}} = 0.
\]

The function \(g_0 \) will be unique (if at least one of \(p_i = 1 \), assuming that \(f(x) \neq 0 \) almost everywhere on \(K \)).

Theorem 3. The polynomial \(P^*_m \in H_m \) is the best approximant for \(f \in L_{\varphi; \Omega} \) if and only if there exists a function \(g_0 \in L_{\varphi; \Omega} \) that satisfies the conditions:

1) \(\|g_0\|_{p; \Omega} = 1 \);
2) \(\|f - P^*_m\|_{p; \Omega} = \int K \Omega(x)f(x)g_0(x)dx_1 \ldots dx_n \);
3) \(\int K \Omega(x)P^*_m(x)g_0(x)dx_1 \ldots dx_n = 0, \forall P_m \in H_m \).

Theorem 3 is the implementation of the general criterion for the best approximant.

Theorem 4. In order for the polynomial \(P^*_m(x) = \sum_{i=1}^{m} c^*_i \varphi_i(x) \) to be an best approximant for the function \(f(x) \) in the space \(L_{\varphi; \Omega} \) sufficient and (if at least one of \(p_i = 1 \) in the case when the difference \(f(x) - P^*_m(x) \neq 0 \) almost everywhere on \(K = I_1 \times I_2 \times \ldots \times I_n \)) necessary truth of the equality

\[
\int K \Omega(x)P_m(x)g(x)dx_1 \ldots dx_n = 0, \forall P_m \in H_m,
\]
where

\[g_0(x) = |f - P_m^*|^{p_1-1} |f - P_m^*|^{p_2-p_1} \ldots |f - P_m^*|^{p_n-p_{n-1}} \Omega(f - P_m^*) \]

if \(|f - P_m^*|_{p_1,\ldots,p_{n-1};\Omega} \neq 0 \),

\[g_0(x) = 0 \quad \text{if} \quad |f - P_m^*|_{p_1,\ldots,p_{n-1};\Omega} = 0. \]

Proof.

\[g(x) = |f - P_m^*|^{p_1-1} \cdot \left(\int_{I_1} \Omega(x)|f - P_m^*|^{p_1} dx_1 \right)^{p_2/p_1-1} \ldots \cdot
\]

\[\cdot \left(\int_{I_{n-1}} \left(\int_{I_{n-2}} \ldots \left(\int_{I_1} \Omega(x)|f - P_m^*|^{p_1} dx_1 \right)^{p_2/p_1} \right)^{p_n/p_{n-2}} dx_{n-2} \right)^{p_{n-1}/p_{n-2}} dx_{n-1} \]

\[\cdot \text{sgn}(f - P_m^*), \]

if \(|f - P_m^*|_{p_1,\ldots,p_{n-1};\Omega} \neq 0 \), and \(g(x) = 0 \) if \(|f - P_m^*|_{p_1,\ldots,p_{n-1};\Omega} = 0. \)

Sufficiency.

Suppose that \(g(x) \) satisfies the above condition. Let’s check that

\[\int_{K} \Omega(x)f(x)g(x)dx_1 \ldots dx_n = \|f - P_m^*\|_{p;\Omega}^p. \quad (5) \]

Indeed

\[\int_{K} \Omega(x)f(x)g(x)dx_1 \ldots dx_n = \int_{K} \Omega(x)(f(x) - P_m^*(x) + P_m^*(x))g(x)dx_1 \ldots dx_n = \]

\[= \int_{K} \Omega(x)(f(x) - P_m^*(x))g(x)dx_1 \ldots dx_n + \int_{K} \Omega(x)P_m^*(x)g(x)dx_1 \ldots dx_n = \]

\[= \int_{K} \Omega(x)(f(x) - P_m^*(x))g(x)dx_1 \ldots dx_n = \]

\[= \int_{I_n} \ldots \int_{I_{n-1}} \Omega(x)(f - P_m^*)|f - P_m^*|^{p_1-1} \left(\int_{I_1} |f - P_m^*|^{p_1} dx_1 \right)^{p_2/p_1-1} \ldots \cdot
\]

\[\cdot \left(\int_{I_{n-1}} \left(\int_{I_{n-2}} \ldots \left(\int_{I_1} \Omega(x)|f - P_m^*|^{p_1} dx_1 \right)^{p_2/p_1} \right)^{p_n/p_{n-2}} dx_{n-2} \right)^{p_{n-1}/p_{n-2}} dx_{n-1} \]

\[\cdot \text{sgn}(f - P_m^*)dx_1 \ldots dx_n = \]
\[\int_{I_n} \left[\int_{I_{n-1}} \ldots \left[\int_{I_1} \left(\Omega(x) |f - P^*_m|^{p_1} dx_1 \right)^{\frac{p_2}{p_1}} \right]^{\frac{p_3}{p_2}} \right]^{\frac{p_4}{p_3}} dx_n = \|f - P^*_m\|^{p_n}_{\Omega}. \]

In addition
\[\|g\|_{\Omega} = \|f - P^*_m\|^{p_n-1}_{\Omega}. \]

Indeed,
\[\|g\|_{\Omega} = \left(\int_{I_n} \left(\int_{I_{n-1}} \ldots \left(\int_{I_1} \left(\Omega(x) |g|^{q_1} dx_1 \right)^{\frac{\Omega}{q_1}} \right)^{\frac{\Omega}{q_2}} \right)^{\frac{\Omega}{q_3}} dx_n \right)^{\frac{1}{\Omega}} = \]
\[= \|f - P^*_m\|^{p_n-1}_{\Omega}. \]

Then, taking into account the generalization of Holder's inequality, the theorem 2 and (6), we obtain:
\[\int_{K} \Omega(x) f(x) g(x) dx_1 \ldots dx_n \leq \|f\|_{\Omega} \cdot \|g\|_{\Omega} = \]
\[= \sup_{g} \int_{K} \Omega(x) f(x) g(x) dx_1 \ldots dx_n \cdot \|f - P^*_m\|^{p_n-1}_{\Omega} = E_m(f)_{\Omega} \cdot \|f - P^*_m\|^{p_n-1}_{\Omega}. \]

So,
\[\int_{K} \Omega(x) f(x) g(x) dx_1 \ldots dx_n \leq E_m(f)_{\Omega} \cdot \|f - P^*_m\|^{p_n-1}_{\Omega}. \] (7)

Comparing (5) i (7), we obtain:
\[\|f - P^*_m\|^{p_n}_{\Omega} \leq E_m(f)_{\Omega} \cdot \|f - P^*_m\|^{p_n-1}_{\Omega}, \]

or \(\|f - P^*_m\|_{\Omega} \leq E_m(f)_{\Omega}, \) and therefore, \(P^*_m(x) \) is the best approximant for \(f(x) \).

Necessity. Let \(P^*_m \) be the best approximant for \(f \in L_{\Omega}. \) Then by the theorem 3 there is a function \(g_0 \in L_{\Omega} \) that satisfies the conditions:
1) \(\|g_0\|_{\Omega} = 1; \)
2) \(\|f - P^*_m\|_{\Omega} = \int_{K} \Omega(x) f(x) g_0(x) dx_1 \ldots dx_n; \)
3) \(\int_{K} \Omega(x) P^*_m(x) g_0(x) dx_1 \ldots dx_n = 0, \quad \forall P_m \in H_m. \)

By the lemma the condition 2) will be satisfied for the function
\[g_0(x) = \|f - P^*_m\|_{\Omega}^{1-p_n} \frac{|f - P^*_m|^{1-p_n} \ldots \frac{|f - P^*_m|^{1-p_{m-1}}}{p_1} \ldots \frac{|f - P^*_m|^{1-p_{m-1}}}{p_m} \ldots \frac{|f - P^*_m|^{1-p_{m-1}}}{p_m} \ldots \frac{|f - P^*_m|^{1-p_{m-1}}}{p_m}}{\} \cdot \text{sgn}(f - P^*_m) \]
if \(|f - P^*_m|_{p_1, \ldots, p_{m-1}, \Omega} \neq 0, \)
and the function g_0 is unique. But then from the condition 3) of the theorem 3 we obtain:

$$\int_{\Omega} \Omega(x) P_m^* (x) g(x) dx_1...dx_n = 0, \quad \forall P_m \in H_m.$$

Theorem 4 is completely proved.

References

1. Смирнов, Г. С. Общий вид линейного функционала и критерий полинома наилучшего приближения в пространствах со смешанной интегральной метрикой // Укр. мат. журн. — 1973. — Т. 25, № 1. — С. 134–138.
2. Смирнов, Г. С. Критерий полинома наилучшего приближения в пространствах $L_{p,1}$, $L_{1,q}$ // Там же. — Т. 25, № 3. — С. 415–419.
3. Трактинская, В. Н. Характеризация элемента наилучшего интегрального приближения функций многих переменных // Вісн. ДНУ. Сер.: Математика. —2007. — Вип. 12. — С. 134–136.
4. Трактинська В. М., Ткаченко М. Є. Загальний вид лінійного неперервного функціоналу і критерій елемента найкращого наближення у просторах із змішаною інтегральною метрикою з вагою // Вісн. ДНУ. Сер.: Математика. 2014. Вип. 19. С. 91–97.

Received: 1.12.2019. Accepted: 20.12.2019