Aim

Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort.

Methods and results

In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding C-3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that 38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes.
Introduction

Dilated cardiomyopathy (DCM) accounts for 30–40% of all heart failure cases in large clinical trials and is the leading cause of heart transplantation. There is ample data on the familial aggregation of DCM and in recent registers familial forms of DCM account for 30–50% of all DCM cases. With an autosomal-dominant inheritance being the predominant pattern of transmission, some familial cases also present by an autosomal recessive or X-linked recessive trait. Particularly in western countries, the small size of contemporary families may obscure the genetic nature of the disease and it is important to consider that also sporadic DCM cases can be due to genetic mutations.1

Tremendous advances have been made in understanding the genetic basis of DCM. Linkage analyses in families and candidate gene sequencing as well as genome-wide association studies (GWAS) in large cohorts2 have contributed to the identification of risk variants and disease causing mutations in >30 disease genes, many of which encode for structural components of the heart muscle, such as the sarcomere or the cardiac z-disc. Recently, we and others have used Next-Generation Sequencing (NGS) approaches to dissect the genetic causes of DCM and established a comprehensive methodology for the clinical genetic testing of all currently known disease genes.3 However, the existing studies are either limited by the small number of investigated patients or the restriction to only a subset of disease genes, prohibiting a more detailed dissection of the role of DNA-alterations in DCM.

We are here presenting the results of the gene sequencing study of the European INHERITANCE project including 639 patients with sporadic or proven familial DCM enrolled in eight different clinical centres (Denmark, Sweden, France, Italy, Germany, UK, Netherlands, and Spain). We aimed to systematically investigate not only the clinically relevant DCM genes but also genes causative for other inherited cardiomyopathies and to systematically benchmark the analytical performance of NGS as a novel technology being introduced into broad clinical application.

Methods

Patients and study design

This multi-centre study was conducted in accordance with the principles of the Declaration of Helsinki. All participants from all centres have given written informed consent and the study was approved by the ethic committees of the participating study centres.

Target enrichment, next-generation sequencing, and data analysis

SureSelectXT Target Enrichment System (Agilent; Waldbronn, Germany) was used for capturing of the desired regions. Design of the capture baits was done using eArray (Agilent Technologies, Santa Clara, CA, USA). Raw data analysis was performed with an in-house pipeline based on variant calling of the Genome Analysis Toolkit (GATK). Annotation of the variants was mainly done using ANNOVAR. Genotype–phenotype association tests were done with the SAS software. For a detailed description of the data analysis, please refer to the Supplemental Material online.

Variant classification

In this study, we relied on distinct, well-defined categories for the classification of variants. Variants were classified as benign when present in...
‘dbSNP137common’ (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/snp137Common.sql) and flagged as validated-by-frequency, which means that those variants have been found with an allele-frequency of $\geq 1\%$ in populations. For further determination of the likelihood to being disease relevant mutations, we defined distinct categories (see also Figure 1C): category Ia consists of coding human genome mutation database (HGMD) disease mutations (heart muscle diseases and channelopathies) and either are non-synonymous, frameshift insertions or deletions, splice or start/stop mutations. The same definition was applied for category Ib, where we additionally removed variants present in the 4300 individuals of the European-Americans cohort of the NHLBI GO Exome Sequencing Project (ESP) database (http://evs.gs.washington.edu/EVS/). As category II, we defined all not common, truncating variants that are frameshift start/stop, splice or start/stop variants. Finally, all not common non-synonymous variants with prediction ‘disease’ were classified as category III. The predictions were based on SNPs&GO (February/March 2013; http://snps.biofold.org/snps-and-go/snps-and-go.html).7

Genotype–phenotype association analysis

Association analyses were carried out using the SAS software version 9.2 (SAS Institute, Inc., Cary, NC, USA). Patients were characterized by gender, country, family history of DCM, LVEF, LVEDD, NYHA classification, age at diagnosis, heart transplantation, and implantation of ICD according to available information. Based on the above-described variant classification, the number of variants, the number of patients carrying at least one variant, the number of patients carrying at least two variants in a single investigated gene, and the number of patients carrying at least two variants in any investigated gene were calculated for each group. Probability values and effect sizes with 95% confidence intervals were estimated based on logistic and Poisson regression assuming a dominant penetrance model. To identify the most relevant DCM variants according to their function, a stepwise forward model selection was carried out. The list of explanatory variables included the variant carrier status in genes grouped by function (ion flux, nucleus, cell membrane, sarcomeric, cytoskeleton, and intercalated disc). Significant explanatory variables at the 5% level (score test) entered the models and they were not removed if they remained significant at the 10% level. Because of the exploratory

Figure 1 Study design. (A) The map is showing the participating European countries and the number of patients included (absolute and in brackets relative). Map (EU27-European_Union_map.svg) by Kolja21, used under CC BY. (B) Applied workflow, consisting of target-enrichment of cardiomyopathy related genes, next-generation sequencing and data analysis. (C) Overview of variant classification. Total number of patients in the whole cohort is given in brackets.
Table I Patient characteristics

Characteristics	DCM patients (n = 639)
Gender (%)	
Woman	212 (34)
Man	405 (66)
Family history familial DCM (%)	
Sporadic	271 (51)
Familial	265 (49)
LVEF (%)	31.2 ± 12.1
LVEDD (mm)	64.4 ± 11.2
NYHA functional class (%)	
I	145 (28)
II	164 (32)
III	165 (32)
IV	39 (8)
Received heart transplantation (%)	
No	465 (80)
Yes	113 (20)
Received ICD implantation (%)	
No	344 (73)
Yes	130 (27)

nature of the genotype—phenotype association analysis, no correction for multiple testing has been applied.

Results

Ultra-high coverage next-generation sequencing enables comprehensive diagnostics of dilated cardiomyopathy

For the purpose of this study, we designed and optimized a custom target-enrichment assay based on in-solution hybridization, targeting relevant genes involved in human DCM being summarized in Supplemental material online, Table S1. The custom target region encompasses all known coding exons of each gene. In total, we analysed 639 patients with known DCM diagnosed according to current ESC guidelines. Importantly, all 639 samples from the eight countries analysed in this study were processed according to the same standard operating procedures (SOPs) and quality control measures, allowing detailed inter-sample comparisons. Figure 1 details the origin of patients and the workflow applied. As shown in Table 1, the proportion of number of patients with familial DCM was 49%. Left ventricular ejection fraction, indicating disease severity, was 31.2% (± 12.1), while the NYHA functional class, being a measure of the individual clinical status, was mainly in I—III. Heart transplantation was performed in 113 patients and another 130 received ICD implantation. Gender distribution was as expected with more male patients being affected. For detailed patient characteristics, please refer to Table 1.

As a pre-requisite for clinically applicable tests, we reached a very high 50-fold target coverage of 99.1% over all genes by iteratively improving the enrichment assay in a preceding establishment phase, being relevant to conclude positive as well as negative test results in individual patients. The mean coverage over all DCM was as high as 2526-fold (Figure 2A). To determine the accuracy, specificity, and sensitivity of the proposed diagnostic tool, we followed-up 25 randomly selected amplicons containing at least one variant by Sanger sequencing. From 5909 readable bases in the Sanger sequencing, we observed 5879 true-negative calls (TN) and 26 true-positive (TP) calls. Only three false-positive (FP) calls and one false-negative (FN) call were found, together resulting in a sensitivity [TP/(TP + FN)] of 96.3% and specificity [TN/(TN + FP)] of 100% and accuracy [(TP + TN)/(TP + FP + FN + TN)] of 99.9%. To further increase the depth of variants for benchmarking, we enriched and sequenced the well-genotyped HapMap sample NA12878 using the same methodology. When testing the standard GATK cut-off values, we find a sensitivity of 100% and an accuracy of 85.4%. Using our filter off-sets described in materials and methods, we achieved a much higher accuracy of 91.3% by maintaining a sensitivity of 99.0%. After manual inspection of the false-positives that could not be validated by Sanger, we postulated that at least some of these must be true variants. Hence, we exemplarily subcloned genomic DNA of patients with a variant call in the NGS data set and negative Sanger sequencing and sequenced individual clones. As shown in Supplementary material online, Figure S3, wild-type as well as mutant clones from one individual can be found, which is not obvious in the Sanger sequence, indicating that the actual accuracy of NGS is even higher than the estimated and that Sanger sequencing may miss at least some of the variants.

Distribution of mutations in dilated cardiomyopathy patients

In total, we identified 8269 unique genetic variants, adding up to 359 669 variants in the 639 patients across the investigated target region. On average, each patient carries 563 variants in this region. To gain information on the relevance of each variant, we performed a stepped filtering approach, first by eliminating known common variants. We thereafter annotated the remaining variants using ANNOVAR, snpEff, Genometrix (Biobase), and SNPs&GO.

We then applied the classification presented in Figure 1C. A known cardiomyopathy mutation (category Ia; reported in HGMD as cardiomyopathy or channelopathy variant) was found in 305 patients (48% of all patients). When we additionally excluded variants observed in a large non-DCM control cohort (ESP whole exome sequencing project9 (=category Ib), we still find in 294 patients (46%) a known mutation previously reported as disease causing. Figure 2B gives an overview over the distribution of mutations across the screened DCM genes. When considering only DCM-causing mutations by excluding mutations of other cardiomyopathies, a known mutation is found in 101 patients (16% of all patients).

Since many cardiomyopathy cases will be caused by rare or private mutations, which are not yet annotated in databases such as HGMD, we next searched in all patients for ‘likely’ disease mutations (category II). The ‘likely’ mutations include frameshift insertions/deletions, stop-gain/loss variants, and splice-site mutations within the target genes. In addition to the category Ia variants, our analysis yielded insertions with resulting frameshifts in three different genes across 13 patients and
frameshift deletions in 10 DCM genes covering a total of 37 patients. We also identified 11 individual splicing variants in 8 DCM genes in a total of 37 patients and 60 stop-gain/-loss variants in 17 genes in another 67 patients. Altogether, we find 117 previously not annotated highly 'likely' pathogenic variants in 26 genes for 147 patients (23%).

To search for ‘potential’ disease mutations (category III), we selected all non-common, non-synonymous variants, and applied bioinformatics methods to predict a detrimental effect of each variant on the protein function. By using SNPs&GO, we classified as many as 939 variants as neutral and 141 unique variants as potentially disease causing. These
141 variants were detected in 221 patients and are rare judged by their frequency. Figures 3 and 4 exemplify the distribution of variants for representative disease genes (Nexilin, Titin, Lamin A/C). See also Supplementary material online, Figure S1 for the whole list of genes. To investigate whether the variants from category II–III indeed represent rare mutations, we calculated the percentage of Singletons, which means variants found uniquely in only one patient. Here, the rate was 21.8% in the categories II–III, compared with 1.6% in the removed variants, underlining the stringency of the classification approach.

Looking at the total number of variants within the DCM genes, the majority of variants (13%) can be found in the Titin gene (TTN) (Figure 5A). This is not surprising since TTN is the largest human gene and accounts for >20% of the total target region. When normalizing, the number of variants to the size of each gene.
Figure 4 Variant classification in TTN and LMNA. Diagrams are showing the number of individual variants of different types for (A) titin and (B) lamin. Numbers in brackets are the total sum of variants found in the cohort. HGMD disease variants (category Ia) were annotated using the Biobase Human Genome Mutation Database, regardless of their appearance in dbSNP137 common. All subcategories (non-synonymous, frameshift, stop/start, predicted disease, predicted benign, splicing, synonymous) were annotated after removing those common variants. For prediction of non-synonymous variants, SNPs&Go was used. Colours of the boxes indicate a potential benign (green) or deleterious (red) effect. Variant categorization is indicated below the deleterious variant types. Sketch below the diagram is showing the target region of the gene (black) and the distribution of common (green) and known and likely/potential pathogenic variants (red).
Figure 5B, a rather even distribution can be found, disproving the existence of instability hotspots in DCM genes. A detailed view on the distribution of all likely and potentially pathogenic variants is given in Figure 5C showing the number of splice, frameshift, stop, non-synonymous, and predicted disease causing (SNPs&GO) non-synonymous variants.
Distribution of the functional effects of dilated cardiomyopathy mutations

Numerous studies suggest different phenotypic manifestations or severities depending on the gene affected, type and number of mutations. Hence, we tested if DCM patients in our cohort might carry multiple disease mutations, e.g. compound mutations (category lb–III). Strikingly, such compound heterozygous states were found in 49 (7%) patients and combined heterozygous mutations were found in 243 patients (38%). Remarkably, we detected in 82 patients (12.8%) at least 3 mutations (Table 2). Considering only the very stringent category lb variants of annotated disease mutations after exclusion of variants detected in additional control cohorts, still 82 patients (12.8%) carry at least 2 known disease mutations. As expected, using logistic regression, we find a significant association of patients having a disease mutation and familial DCM (P = 0.03, category lb–III) (Table 3). To test if those results are driven by an effect of the large ttn gene, we repeated the analysis after exclusion of any ttn variant and still find 79 patients (12.4%) with at least two category lb variants (Supplementary material online, Table S5).

When looking more closely at the variants annotated using the HGMD database (CatIb), a large portion of disease causing mutations are known to cause arrhythmogenic right ventricular cardiomyopathy (ARVC) (31%), HCM (16%), or channelopathies (6%) (Figure 6A), indicating a marked overlap not only related to disease genes, but also to specific mutations in cardiomyopathies. Hence, based on current literature, all genes investigated in this study were classified according to the different cell components or functions they contribute to (Supplementary material online, Table S1).

Next, we summed up the number of patients carrying a category lb mutation in the different groups. Figure 6B details the groups and the identified number of patients. Based on this classification, the sarcomere group shows the highest number of patients having a mutation (14%), followed by ion flux (13%), z-disc/cytoskeleton (12%), and intercalated disc (11%).

We next asked whether we might identify specific genotype–phenotype associations in this large cohort. This would have direct clinical implications, since a genotype-guided risk assessment could improve patient selection for intensified monitoring or directed therapies. First, we investigated the gene groups introduced above and the available phenotypes. In an exploratory association analysis by using a stepwise forward selection, we could identify a logistic regression model for the group ‘nucleus’ being a significant predictor for ICD-carrier status in DCM (unadjusted P = 0.02). The odds ratio (OR) for patients carrying such variants was 2.44 [95% confidence interval (95% CI): 1.13–5.28]. This association was mainly driven by the nuclear gene RBM20, having an OR of 5.65 (1.89–16.86; P = 0.002). For the age at diagnosis, which might be relevant for establishing genetic testing in relatives, we find a significant association between MTHH6 and ADRB3 mutations (Tables 4 and 5). Other clinically relevant associations were found for SMYD1, which we here suggest as novel disease gene for DCM, as well as for alpha-crystallin B (CRYAB) mutations, both were associated with LVEF. Alterations in left-ventricular diameter (LVEDD) could be seen in association with TBX20 (OR: 0.45, 0.22–0.94; P = 0.03). Since a significant number of patients also received heart transplantation (HTX) due to end-stage heart failure (20% of the cohort), we investigated associations with HTX. Here, we found a significant association with MYPN having an OR of 4.23 (1.04–17.18).

Differences of dilated cardiomyopathy mutations across Europe

This study includes a total of 639 patients from eight countries, enabling us to investigate the geographical distribution of cardiomyopathy relevant variants. When considering genetic variants from category lb–III (Supplementary material online, Table S6), we observe small yet statistically significant differences between countries regarding the rate of mutations (variants per patient), with Germany showing the lowest rate of 0.98 and Great Britain showing the highest rate of 1.51 (global P = 0.04, Poisson regression). The rate of mutation positive patients for single genes and across countries is depicted in Figure 7. For example, the rate of patients carrying a TTN variant ranged from 0.56 in Dutch patients to 0.20 in German patients.

Table 2 Multiple mutations affecting single patients

Number of mutations	HGMDa variant pos patients (%)	Category lb–IIIb variant pos patients (%)
0	345 (54.0)	171 (26.7)
≥1	294 (46.0)	468 (73.2)
≥2	82 (12.8)	243 (38.0)
≥3	14 (2.2)	82 (12.8)
≥4	2 (0.3)	16 (2.5)

(global $P < 0.001$, logistic regression). However, mutation frequencies of DCM genes are clearly more homogeneous than previously reported in smaller studies, suggesting that genetic testing for DCM can be applied in a uniform setting across Europe.

Discussion

To our knowledge, this is the most comprehensive study on the contribution of DCM-causing genes to date. The data reported shed light...
bioinformatics analyses must include a filter step, e.g. excluding
nearly complete coverage and high accuracy of the approach
has now become feasible and technically validated as shown by the
testing of disease genes for DCM, HCM and other cardiomyopathies
target enrichment followed by NGS, for high-throughput genetic
sensitivity and detection failure of clinically relevant mutations. The use of
representation and coverage of exons, bearing the risk of limited sen-
teristics for the comprehensive exploration of genetic mechanisms.10
a fast alternative to Sanger-sequencing, providing the analytical charac-
burden of patients with DCM.

Next-generation sequencing technologies (NGS) have emerged as
a new tool in genetic research, enabling the rapid and comprehensive
analysis of genetic variations. However, NGS retains some weaknesses,
such as the incomplete representation and coverage of exons, bearing the risk of limited sen-
sitivity and detection failure of clinically relevant mutations. The use of
target enrichment followed by NGS, for high-throughput genetic
testing of disease genes for DCM, HCM and other cardiomyopathies
has now become feasible and technically validated as shown by the
nearly complete coverage and high accuracy of the approach
described here.

To reduce the number of likely and potentially pathogenic variants,
bioinformatics analyses must include a filter step, e.g. excluding
common variants present in databases like dbSNP. However, it is
known that dbSNP is ‘contaminated’ with a small but yet substantial
number of pathogenic alleles.11 On the other hand, disease mutation
databases contain potentially benign variants, previously classified as
disease causing. Therefore, to substantiate the disease causing nature
of a variant, further investigations must include a screening of well-
phenotyped control cohorts from diverse populations and a detailed
follow-up on the clinical circumstances in each patient and family, for
example, by co-segregation analyses. But since families are often small
and many patients are classified as sporadic, the ultimate solution of
this intricate problem seems illusive. Mestroni and Taylor12 recently
reviewed how the progress in genetic research already changed the
view on the genetic basis of DCM. It is hence obvious that bioinfor-
matics strategies must grow together with the enormous amount
of data from adequately sized and high-quality NGS studies. With
regard to a functional prediction, Thusberg et al.13 observed signifi-
cant differences between algorithms, but found that algorithms
such as the here applied SNPs&GO perform already surprisingly
well. However, at least by now, proving new variants or genes as
disease causing requires further efforts to validate them through
functional and familial studies and large-scale population-based
control cohorts sequenced by NGS.

Previous publications have given rise to the notion that disease-
causing gene mutations may underlie geographical disparities.14 In
our study, we enrolled patients from eight countries to create a Euro-
pean map of cardiomyopathy relevant variants and find only modest
differences across the countries. We observed the lowest number of
variants in the German cohort when compared with the other coun-
dies. This effect may be due to a higher number of patients in
Germany bearing sporadic forms of DCM. However, differences
cbought our attention for Sweden, where we detected the most cat-
ology Ib–III variants in DSP and MYBPC3 compared with the other
countries, as well as for the Netherlands, where we observed the
highest number in TTN variants. With respect to PLN, we only uncov-
ered one single mutation in our study population, suggesting that the

Table 4 Association between genotypes and dilated cardiomyopathy

Gene	Phenotype	No. of patients	Patients with category Ib-III* variants	P-value from logistic regression	OR (95% CI)
OR1AB	LVEF	582	2	0.04	0.05 (0.00–0.81)
MYPN	Received HTX	No	465	4	Reference
		Yes	113	4	4.23 (1.04–17.18)
RBM20	Received ICD	No	344	5	Reference
		Yes	130	10	5.65 (1.89–16.86)
SMYD1	LVEF	582	2	0.03	Reference
TBX20	LVEDD	538	7	0.03	0.45 (0.22–0.94)
MYH6	Age at diagnosis	439	8	0.03	0.63 (0.41–0.96)
ADRB3		2	2	0.04	0.36 (0.14–0.94)

*Either category Ib or category II or category III.

Only significant associations are shown (unadjusted α = 5%, two-sided).

Table 5 Mutation counts by country

Country	No. of patients	No. of category Ib-III* variants	P-value from poisson regression	RR (95% CI)
Denmark	100	130	0.04	Reference
England	70	106	1.16 (0.90–1.51)	
France	92	111	0.93 (0.72–1.20)	
Germany	98	93	0.73 (0.56–0.95)	
Italy	78	97	0.96 (0.74–1.24)	
Netherlands	70	99	1.09 (0.84–1.41)	
Spain	82	107	1.00 (0.78–1.30)	
Sweden	49	71	1.11 (0.83–1.49)	

*Either category Ib or category II or category III.

RR, relative risk; CI, confidence interval.

The use ofNext-generation sequencing technologies (NGS) have emerged as
a fast alternative to Sanger-sequencing, providing the analytical charac-
teristics for the comprehensive exploration of genetic mechanisms.10
However, NGS retains some weaknesses, such as the incomplete
representation and coverage of exons, bearing the risk of limited sen-
sitivity and detection failure of clinically relevant mutations. The use of
target enrichment followed by NGS, for high-throughput genetic
testing of disease genes for DCM, HCM and other cardiomyopathies
has now become feasible and technically validated as shown by the
nearly complete coverage and high accuracy of the approach
described here.

To reduce the number of likely and potentially pathogenic variants,
bioinformatics analyses must include a filter step, e.g. excluding
common variants present in databases like dbSNP. However, it is
known that dbSNP is ‘contaminated’ with a small but yet substantial
number of pathogenic alleles.11 On the other hand, disease mutation
databases contain potentially benign variants, previously classified as
disease causing. Therefore, to substantiate the disease causing nature
of a variant, further investigations must include a screening of well-
phenotyped control cohorts from diverse populations and a detailed
follow-up on the clinical circumstances in each patient and family, for
example, by co-segregation analyses. But since families are often small
and many patients are classified as sporadic, the ultimate solution of
this intricate problem seems illusive. Mestroni and Taylor12 recently
reviewed how the progress in genetic research already changed the
view on the genetic basis of DCM. It is hence obvious that bioinfor-
matics strategies must grow together with the enormous amount
of data from adequately sized and high-quality NGS studies. With
regard to a functional prediction, Thusberg et al.13 observed signifi-
cant differences between algorithms, but found that algorithms
such as the here applied SNPs&GO perform already surprisingly
well. However, at least by now, proving new variants or genes as
disease causing requires further efforts to validate them through
functional and familial studies and large-scale population-based
control cohorts sequenced by NGS.

Previous publications have given rise to the notion that disease-
causing gene mutations may underlie geographical disparities.14 In
our study, we enrolled patients from eight countries to create a Euro-
pean map of cardiomyopathy relevant variants and find only modest
differences across the countries. We observed the lowest number of
variants in the German cohort when compared with the other coun-
dies. This effect may be due to a higher number of patients in
Germany bearing sporadic forms of DCM. However, differences
cbought our attention for Sweden, where we detected the most cat-
ology Ib–III variants in DSP and MYBPC3 compared with the other
countries, as well as for the Netherlands, where we observed the
highest number in TTN variants. With respect to PLN, we only uncov-
ered one single mutation in our study population, suggesting that the

Table 5 Mutation counts by country

Country	No. of patients	No. of category Ib-III* variants	P-value from poisson regression	RR (95% CI)
Denmark	100	130	0.04	Reference
England	70	106	1.16 (0.90–1.51)	
France	92	111	0.93 (0.72–1.20)	
Germany	98	93	0.73 (0.56–0.95)	
Italy	78	97	0.96 (0.74–1.24)	
Netherlands	70	99	1.09 (0.84–1.41)	
Spain	82	107	1.00 (0.78–1.30)	
Sweden	49	71	1.11 (0.83–1.49)	

*Either category Ib or category II or category III.

RR, relative risk; CI, confidence interval.
previously mentioned mutation frequencies might express a very local phenomenon rather than a common cause of DCM. The overall distribution of mutations in DCM disease genes all over the participating countries appeared to be more homogeneous than expected.

In clinical routine, only detailed workup of cases and their families allows to uncover familial aggregation. Often this is impeded by small family structures, unavailable family members or incomplete penetrance, which classifies many cases as sporadic or idiopathic. However, this does not exclude a genetic cause of DCM in this individual patient. By introducing familial and sporadic DCM cases in our study, we were able to compare both groups in a comprehensive and well-controlled manner. By doing so, we observed significantly higher mutation rates in familial cases than in the sporadic ones (OR: 1.52). However, as shown, we find also in many cases of idiopathic DCM a known and well-characterized disease mutation. Hence, the current work underlines that even if a definite familial DCM may not be proven, a genetic aetiology cannot be ruled out. The decision to genetically test sporadic DCM cases should be taken carefully to avoid unnecessary costs and inconclusive results. By limiting testing to familial DCM and risk groups of idiopathic DCM, e.g. with documented arrhythmias, would be an apparent conclusion.

Genotype–phenotype correlations will be of increasing importance to predict the clinical manifestations of genetically diagnosed patients. However, there are few existing studies on genotype–phenotype correlations in selected cohorts. Convincing data exist for the clinical impact of LMNA. Here, several studies have repeatedly shown a poor prognosis for LMNA mutation carriers due to the occurrence of ventricular arrhythmias and sudden cardiac death. In our study, the often-maligned stop or frameshift mutations in LMNA ranked within the top three genes of our tested gene panel and we find LMNA to having together with RBM20 the most category Ib–IIl mutations for genes with a comparable size. While we observed a significant association of ICD-carriers with the functional gene group ‘nucleus’ to which LMNA belongs, a statistically significant effect could only be seen for RBM20, where we find an association with the ICD-carrier status. It should be kept in mind that present results rely on a small number of observations for some strata and that probability values are not corrected for multiplicity. When using an exact test, the probability value $MYPN$ and HTX ($P = 0.04$) decreases to $P = 0.0051$, while the probability value for CRYAB ($P = 0.04$) decreases to $P = 0.02$ and RBM20 ($P = 0.002$) remains unchanged. While for RBM20 our results may be seen as validation of previous findings and hence underline the importance for testing this gene now routinely, the newly found associations require additional replication in independent cohorts of DCM patients.

Remarkably, we find in our DCM cohort a high percentage of mutations previously described for HCM, ARVC, or channelopathies, which questions the hypothesis of the allelic nature of cardiomyopathies. For instance, we found plakophilin-2 to be the most frequently affected gene when considering only known pathogenic mutations. Plakophilin-2 mutations represent a frequent cause of ARVC, which is characterized by the degeneration of cardiomocytes and resulting arrhythmias. A similar finding was recently provided by Pugh et al., underlining that our findings are not spurious. While they hypothesized that misdiagnosis in their broad referral population of an ordering provider could be one potential explanation, we nearly can exclude this due to the controlled setting of our study. To avoid phenotypic misclassification, we relied on experienced clinicians for recruiting to our
best knowledge only DCM patients and performed additional phenotyping by coronary angiography, cMRI, or myocardial biopsy where appropriate. We rather hypothesize a pathophysiological link between conductance defects and resulting cardiac mechanical disparities. However, even then a certain overlap of phenotypes will explain at least a part of these findings.

We were to our knowledge first to introduce genetic testing of cardiomyopathy patients for the large TTN gene using NGS. In accordance with recent findings by Herman et al. reporting TTN truncating mutations to be the cause of DCM in ~25% of familial and in 18% of sporadic cases, we were able to identify such mutations in 19% of familial and 11% of sporadic cases. Interestingly, 44% of all patients with a truncating TTN variant also had additional known disease-causing variants in at least one other gene, suggesting that in these cases, the TTN variant may not be the sole cause of DCM, underlining the importance to investigate a broad gene panel rather than selected genes. In this regard, this study sheds for the first time light on the role of variants in at least one other gene, suggesting that in these cases, the TTN variant may not be the sole cause of DCM, underlining the importance to investigate a broad gene panel rather than selected genes. This is also underlined by the high clinical sensitivity of our approach of 46% (considering only known mutations, cat IIb) up to 73.2% (considering cat IIb–III), which is already in the range of the sensitivity reported for HCM. This is in contrast to previous studies that reported lower sensitivity values, maybe due to more inhomogeneous cohorts or the use of NGS in subgroups of patients. This maybe also the reason why MYBPC3 mutations, which we surprisingly find very frequently, could not be associated with DCM in some previous studies and hence was long debated if it contributes to DCM at all. For the group of patients without IIb–III variants (26.7%), family-based whole exome sequencing or alternative approaches should be applied to identify possible genetic defects in so far unknown disease genes, with BAG3 being one recent example.

Even if genetic investigations do not resolve a familial disease, other mechanisms such as epigenetic modifications (microRNAs, Histone-modifications, DNA methylation) should be taken into account. Only very recently, first studies underlined the role of DNA methylation on heart failure and DCM. While the studies did not provide evidence for the causality or inheritance of the observed changes, it will be interesting to investigate the shown proof-of-principle in pedigrees with DCM. Furthermore, the increasing numbers of genetic susceptibility loci harbouring common polymorphisms add to the concept that DCM is a complex disorder, with rare and common genetic variants and environmental factors driving disease onset and outcome.

With improved accuracy, efficiency, and decreasing cost, NGS is becoming the sole standard for gene sequencing. It must be noted that high analytical standards must be the basis for introducing such methodology for the diagnostics of DCM. We were able to show high-analytical fidelity and consistency in a large patient cohort, demonstrating that targeted NGS is already well suited to be applied in clinical routine diagnostics, substantiating the ongoing paradigm shift from low- to high-throughput genomics in medicine. However, many third party providers do not publish quality indices that should be prerequisite for introducing their technologies into the clinics. Our study hopefully stimulates not only the single physician to demand for transparency in regard to quality but also helps to impact on future recommendations for the next-generation of genetic testing. By means of our atlas of the genetics of human DCM, we aspire cardiologist and human geneticists to soon be able to apply our findings to the individual patient with cardiomyopathy in daily clinical practice.

Supplementary material

Supplementary material is available at European Heart Journal online.

Acknowledgements

This work was supported by grants from the European Union (FP7 HERITANCE and BestAgeing), the ‘Bundesministerium für Bildung und Forschung’ (BMBF): German Center for Cardiovascular Research (DZHK), NGFN II, NGFN-plus and NGFN-transfer, the medical faculty of the University of Heidelberg (B.M.), and INSIGHT DCM (BMBF and Agence nationale pour la recherche).

Conflict of interest: A.K., W.-K.L., X.Z., D.F., A.K., V.K., E.W. are employees of Siemens AG. Siemens AG is an international provider of diagnostic assays and hold several patients on diagnostic assays. B.M. and H.A.K. conduct research together with Siemens AG, Erlangen.

References

1. McNally EM, Golbus JR, Puckeltowicz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 2013;123:19–26.
2. Meder B, Ruhle F, Weis T, Homuth G, Keller A, Franke J, Pel B, Lorenzo Bermejo J, Frese K, Hagen A, Wetten A, Vogel B, Haas J, Volker U, Ernst F, Teumer A, Ehlermann P, Zugck C, Friedrichs F, Kroener H, Dorr M, Hoffmann W, Masch B, Pankuweit S, Ruppert V, Scheffold T, Kuhl U, Schultz HE, Kreutz R, Ertl G, Angermann C, Charron P, Villard E, Gary F, Isnard R, Komada M, Lutz M, Metinger T, Sinner MF, Wichmann HE, Krawczak M, Ivanic B, Weichenhan D, Gelbrich G, El-Mokhtari NE, Schreiber S, Felix SB, Hasenfuss G, Pfeuffer A, Hubner N, Kaab S, Arbustini E, Rottbauer W, Frey N, Stoll M, Katus HA. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 2014;35:1069–1077.
3. Meder B, Haas J, Keller A, Heid C, Just S, Borries A, Boisguerin V, Scharfberger-Schmeer M, Stahler P, Beier M, Weichenhan D, Strom TM, Pfeuffer A, Korn B, Katus HA, Rottbauer W. Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet 2011;4:110–122.
4. Richardson P, McKenna W, Bristow M, Miasch B, Maunter B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996;93:841–842.
5. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Miasch B, McKenna W, Monseurat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardi and Pericardial Diseases. Eur Heart J 2008;29:270–276.
6. Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna W, Monseurat L, Pankuweit S, Perrot A, Rapezzi C, Ristic A, Seggewiss H, van Langen I, Tavazzi L. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2010;31:2715–2726.
7. Capriotti E, Altman RB. Improving the prediction of disease-related variants using protein three-dimensional structure. BMC Bioinformatics 2011;12(Suppl. 4):53.
8. Andreassen C, Nielsen JB, Refgaard L, Holst AG, Christensen AH, Andreassen L, Sajadeh A, Haunso S, Svendsen JH, Olsen MS. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet 2013;21:918–928.
11. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. *Nat Rev Genet* 2011;12:745–755.

12. Mestroni L, Taylor MR. Genetics and genetic testing of dilated cardiomyopathy: a new perspective. *Discov Med* 2013;15:43–49.

13. Thusberg J, Olutobosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. *Hum Mutat* 2011;32:358–368.

14. van der Zwaag PA, van Rijssing IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiestfeld AC, Cox MG, van Lochem LT, de Boer RA, Hofstra RM, Christianss I, van Spoodonk-Zwarts KY, Lekanne Dit Deprez RH, Judge DP, Calkins H, Suurmeijer AJ, Hauer RN, Saffitz JE, Wilde AA, van den Berg MP, van Tintelen JP. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. *Eur J Heart Fail* 2012;14:1199–1207.

15. Meder B, Katus HA. Clinical and genetic aspects of hypertrophic and dilated cardiomyopathy. *Internist (Berl)* 2012;53:408–414, 417–418.

16. van Rijssing IA, Nannenberg EA, Arbustini E, Elliott PM, Madeira HB, Calkins H, van Spaendonck-Zwarts KY, Lekanne Dit Deprez RH, Judge DP, Calkins H, Suurmeijer AJ, Hauer RN, Saffitz JE, Wilde AA, van den Berg MP, van Tintelen JP. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. *Eur J Heart Fail* 2012;14:1199–1207.

17. Refaat MM, Lubitz SA, Makino S, Islam Z, Franckinfeld J, Mehl H, Gutmann R, Zhang ML, Bloom HL, MacRae CA, Dudely SC, Shalaby AA, Weiss R, McNamara DM, London B, Ellinor PT. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. *Heart Rhythm* 2012;9:376–384.

18. van der Zwaag PA, van Rijssing IA, Cox MG, Wilde AA, van Langen IM, Ummels A, Hennekam FA, Dooijes D, Gerbens F, Bikkelen H, Hauer RN, Doevendans PA. Clinical and genetic characterization of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy caused by a plakophilin-2 splice mutation. *Cardiology* 2012;123:181–189.

19. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, Bowser M, Harrison B, Aaron D, Mahanta LM, Lakdawala NK, McDermott G, White ET, Rehm HL, Lebo M, Funke BH. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. *Genet Med* 2014;16:601–608.

20. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cinro AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Munro CE, Lakdawala NK, Hu CY, Barton PJ, Cook SA, Mestronli L, Seidman JG, Seidman CE. Truncations of titin causing dilated cardiomyopathy. *N Engl J Med* 2012;366:619–628. 10.1056/NEJMoa1110186.

21. Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. *Circ Heart Fail* 2009;2:253–261.

22. Villard E, Perret C, Gary F, Prout C, Dlanian G, Hengstenberg C, Ruppert V, Arbustini E, Wichter T, Germani M, Dubourg O, Tassazi L, Aumont M, Degroote P, Fauchier L, Trochu JN, Gbelin P, Auperit JF, Stark K, Erdmann J, Hezzer R, Roberts AM, Barton PJ, Regtiz-Zagrosek V, Alam U, Duboseq-Bidot L, Meybog M, Masch B, Madeira H, Waldenstrom A, Galve E, Cieland JG, Dorent R, Roizes G, Zeller T, Blankenburg S, Goodall AH, Cook S, Tregouet DA, Tietl L, Imsland R, Komajda M, Charron P, Cambien F. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. *Eur Heart J* 2011;32:1063–1076.

23. Norton N, Li D, Rieder MJ, Siegfried JD, Rampersaud E, Zuchner S, Mangos S, Gonzalez-Quijano J, Wang L, McGee S, Reiser J, Martin E, Nickerson DA, Hershberger RE. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. *Am J Hum Genet* 2011;88:273–282.

24. Vogel B, Keller A, Fresle KS, Leidinger P, Sedaghat-Hamedani F, Kayvanpour E, Kloos W, Backe C, Thanaraj A, Breftoft T, Beier M, Hardt S, Meece E, Katus HA, Meder B. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. *Eur Heart J* 2013;34:2812–2822.

25. Haas J, Fresle KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weinchen D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietisch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hobelsel JD, Plass C, Katus HA, Meder B. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. *EMBO Mol Med* 2013;5:413–429.

26. Movazagh P, Vujic A, Foo R. Genome-wide DNA methylation in human heart failure. *Epigenomics* 2011;3:103–109.