ANALYSIS OF MACHINE LEARNING METHODS IN THE TASK OF SEARCHING DUPLICATES IN THE SOFTWARE CODE

The object of the study is code in the Python programming language, analyzed by machine learning methods to identify clones.

This work is devoted to the study of machine learning methods and implementation of the decision tree machine learning model in the problem of finding clones in the program code. The paper also analyzes existing machine learning approaches for detecting duplicates in program code. During the comparison, the advantages and disadvantages of each algorithm were determined, and the results were summarized in the corresponding comparison tables. As a result of the analysis, it was determined that the method based on the decision tree, which gives the best result in the task of finding clones in the program code, is the most optimal both from the point of view of accuracy and from the point of view of implementation.

The result of the work is a created model that, with an accuracy of more than 99%, classifies cloned and non-cloned codes on an automatically generated dataset in a minimal amount of time. This system has several open questions for future research.

Keywords: clone detection, machine learning methods, decision tree, Support Vector Machine, TECCD, dataset.

References

1. Roy, C. K., Cordy, J. R., Koschke, R. (2009). Comparison and evaluation of code clone detection techniques and tools: A qualitative approach. Science of Computer Programming, 74 (7), 470–495. doi: https://doi.org/10.1016/j.scico.2009.02.007

2. Code Duplicate. Available at: https://t2informatik.de/en/smartpedia/code-duplicate/

3. Roy, C. K., Cordy, J. R. (2007). A Survey on Software Clone Detection Research. Computer and Information Science, 115 (541), 115.

4. Arammongkolvitichai, V., Koschke, R., Rakshitwetsagul, C., Choetkirtikul, M., Sunetnanta, T. (2019). Improving Clone Detection Precision Using Machine Learning Techniques. 2019 10th International Workshop on Empirical Software Engineering in Practice (IWESEP), 31–36. doi: http://doi.org/10.1109/iwesep49350.2019.00014

5. Jadon, S. (2016). Code Clones Detection Using Machine Learning Technique: Support Vector Machine. International Conference on Computing, Communication and Automation (ICCCA2016), 299–303. doi: http://doi.org/10.1109/ccca.2016.7813733

6. Gao, Y., Wang, Z., Liu, S., Yang, L., Sang, W., Cai, Y. (2019). TECCD: A Tree Embedding Approach for Code Clone Detection. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), 145–156. doi: http://doi.org/10.1109/icsme.2019.00025

7. Salberg, S. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16 (3), 235–240. doi: http://doi.org/10.1007/b00993309

8. Conforti, R., Leoni, M. D., Rosa, M. L., Aalst, W. V. D. (2013). Supporting risk-informed decisions during business process execution. 25th International Conference on Advanced Information Systems Engineering (CAiSE’17), 116–132. doi: http://doi.org/10.1007/978-3-642-38709-8_8

9. Kundel, D. (2020). ASTs – What are they and how to use them. Available at: https://www.twilio.com/blog/abstract-syntax-trees

10. Agerholm, S., Larsen, P. G. (1999). A Lightweight Approach to Formal Methods. Lecture Notes in Computer Science, 168–183. doi: http://doi.org/10.1007/3-540-48257-1_10

11. BigCloneBench. Available at: https://github.com/clonebench/BigCloneBench

12. Buckland, M., Gey, F. (1994). The relationship between Recall and Precision. Journal of the American Society for Information Science, 45 (1), 12–19. doi: https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L

13. Decision Tree Classification Algorithm. Available at: https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

14. Decision Tree Classifier. Available at: https://www.sciencedirect.com/topics/computer-science/decision-tree-classifier

15. Bondarenko, O. (2021). Matrytisv nevpoordnoestvi. Available at: https://oleghbond.medium.com/матрица-невідповідностей-329d7e4b05e

16. Kubiuk, Y., Kyselov, G. (2021). Comparative analysis of approaches to source code vulnerability detection based on deep learning methods. Technology Audit and Production Reserves, 3 (2 (59)), 19–23. doi: http://doi.org/10.15587/2706-5448.2021.233534

17. Scikit-Learn. Available at: https://scikit-learn.org/stable/

DOI: 10.15587/2706-5448.2022.262535
The object of the research is modern online services and machine learning libraries for predicting the probability of the bank client’s consent to the provision of the proposed services. One of the most problematic areas is the high unpredictability of the result in the field of banking marketing using the most common technique of introducing new services for clients — the so-called cold calling. Therefore, the question of assessing the probability and predicting the behavior of a potential client when promoting new banking services and services using cold calling is particularly relevant.

In the course of the study, libraries of machine learning methods and data analysis of the Python programming language were used. A program was developed to build a model for predicting the behavior of bank customers using data processing methods using gradient boosting, regularization of gradient boosting, random forest algorithm and recurrent neural networks. Analogous models were built using cloud machine learning services Azure ML, BigML and the Auto-sklearn library.

Data analysis and prediction models built using Python language libraries have a fairly high quality — an average of 94.5%. Using the Azure ML cloud service, a predictive model with an accuracy of 88.6% was built. The BigML machine learning service made it possible to build a model with an accuracy of 88.8%. Machine learning methods from the Auto-sklearn library made it possible to obtain a model with a higher quality – 94.9%. This is due to the fact that the proposed libraries of the Python programming language allow better customization of data processing methods and machine learning to obtain more accurate models than free cloud services that do not provide such capabilities.

Thanks to this, it is possible to obtain a predictive model of the behavior of bank customers with a fairly high degree of accuracy. It is worth noting that in order to make a prediction (forecast), it is necessary to study the context of the task, process the data, build various machine learning algorithms, evaluate the quality of the models and choose the best of them.

Keywords: artificial intelligence, machine learning methods, banking services, credit scoring, credit risk.

References

1. Buchko, I. Ye. (2013). Skorykh yak metod znyzhennia kredyt-noho ryzyku banku. Visnyk Universytetu bankivskoi spravy Nacionaлnoho banku Ukrainy, 2, 178–182.
2. Yak pratsiuei bankivskii skorpyh (2021). Available at: https://finance.ua/ua/credits/kak-rabotaet-bankovskiy-skorpyh Last accessed: 20.04.2022
3. NBU. Žvit pro finansovu stabilnist. Cherven 2019 roku. Available at: https://bank.gov.ua/ua/news/all/zvit-pro-finansovu-stabilnist-cherven-2019-roku
4. Dunas, N., Bilokryntstka, M. (2019). Implementation of credit scoring system by ukrainian banks for consumer credit. Pryazovs’kyi Economic Herald, 5 (16), 263–269. doi: http://doi.org/10.32840/2522-4263/2019-5-45
5. Maja, M. M., Letaba, P. (2022). Towards a data-driven technology roadmap for the bank of the future: Exploring big data analytics to support technology roadmapping. Social Sciences & Humanities Open, 6 (1), 100270. doi: http://doi.org/10.1016/j.ssoa.2022.100270
6. Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science, 2 (5). doi: https://doi.org/10.1007/s42790-021-00765-8
7. Gavrysh, V. (2019). Bank marketing campaigns dataset. Opening Deposit. Available at: https://www.kaggle.com/datasets/volodymyrgavrysh/bank-marketing-campaigns-dataset
8. Azure Machine Learning. Available at: https://azure.microsoft.com/en-us/services/machine-learning/#product-overview
9. BigML Tools. Available at: https://bigml.com/tools/
10. Auto-sklearn. Available at: https://automl.github.io/auto-sklearn/master/

DOI: 10.15597/2706-5448.2022.262797

CREATION OF THE METHOD OF MULTIPATH ROUTING USING KNOWN PATHS IN SOFTWARE-DEFINED NETWORKS

pages 19–24

Dmytro Korenko, Postgraduate Student, Department of Computer Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0001-0463-189X

Oleksi Cherevatenko, Postgraduate Student, Department of Computer Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, e-mail: chereva@ukr.net, ORCID: https://orcid.org/0000-0001-9686-0555

Volodymyr Rusinov, Postgraduate Student, Department of Computer Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-4362-0248

Yuri Kulakov, Doctor of Technical Sciences, Professor, Department of Computer Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-8981-5649

The object of the research is the creation of a multipath routing algorithm for software-defined networks (SDN) including known paths, subject of the research is network parameters, designed according to a certain topology and using the developed algorithm. One of the most problematic aspects of contemporary computer networks (including applied SDN networks) is overloading. This results in harder control and limiting traffic and amount of users. Most routing algorithms that are used today have a rather large time complexity. In the course of the study, the following methods were used: study of known routing solutions for SDN networks and
results of their application, method of path metric computation
on the given topology by the amount of «hops» (transitions between network nodes), optimization of procedure for
finding the path using SDN technology capabilities. These
methods were united and integrated into the development of
the overall routing algorithm, which is proposed in this article.

The proposed multipath routing algorithm allows for
the improvement of the process of traffic construction in the
SDN network. This was achieved by decreasing the time
complexity of the routing algorithm through the usage of
previously known paths in the topology without the need
to construct new ones. Involvement in the modification of
the algorithm of forming distance vectors facilitated timely
network reconfiguration in case its state changed. Using
a centralized SDN controller made it possible to increase
the stability of the network and save all configuration data in one
place. The above factors make it possible to deploy an SDN
network on an Edge architecture.

Obtained results of the application of the multipath rout-
ing algorithm allow to consider it effective when compared
with previously proposed algorithms, based on obtained
results from a practical network model, where the proposed
multipath routing algorithm is used. This is because the
research task was formed correctly, and the solution for this
task gave correct results. Results of using the described al-
dorithm are demonstrated, and an analysis of the obtained
results is conducted, which makes it possible to confirm the
accuracy of scientific research.

Keywords: software-defined networking, multipath rout-
ing, known routes, distance vector.

References
1. Merenda, M., Porcaro, C., Iero, D. (2020). Edge machine learn-
ing for ai-enabled iot devices: A review. Sensors, 20 (9), 2353.
doi: http://doi.org/10.3390/s20092353
2. Akbar, M. (2016). A Preliminary Survey on the Security of
Software-Defined Networks. Proceedings of International Con-
ference on Advanced Technology & Sciences (ICAT’16), 468–473.
3. Raza Shah, S. A., Bae, S., Jaikar, A., Noh, S.-Y. (2016). An
adaptive load monitoring solution for logically centralized
SDN controller. 18th Asia-Pacific Network Operations and Ma-
agement Symposium (APNOIMS). doi: http://doi.org/10.1109/apnoms.2016.7737207
4. Lemeshko, A. V., Esveseva, O. Yu., Garkusha, S. V. (2014).
Research on Tensor Model of Multipath Routing in Telecom-
munication Network with Support of Service Quality by Greate
Number of Indices. Telecommunications and Radio Engineer-
ing, 73 (15), 1339–1360. doi: http://doi.org/10.1615/telecom-
radeng.v73.i15.30
5. Abich, G., Reis, R., Ost, L. (2021). The impact of precision
bitwidth on the soft error reliability of the MobileNet net-
work. 2021 IEEE 12th Latin America Symposium on Circuits and
System (LASCAS), 1–4. doi: http://doi.org/10.1109/lascas51355.2021.9667153
6. Kulakov, Y. Kohan, A., Kopychko, S., Cherovehenko, R.; Hu, Z.,
Petoukhov, S., Dychka, L. He, M. (Eds.) (2021). Load Balanc-
ing in Software Defined Networks Using Multipath Routing,
Advances in Computer Science for Engineering and Education III.
ICCSSEA 2020. Advances in Intelligent Systems and Comput-
ing, Vol. 1247. Cham: Springer, 384–385. doi: http://doi.org/
10.1007/978-3-030-55506-1_35
7. Lemeshko, A. V., Esveseva, O. Yu., Garkusha, S. V. (2014).
Research on Tensor Model of Multipath Routing in Telecom-
munication Network with Support of Service Quality by Greate
Number of Indices. Telecommunications and Radio Engineer-
ing, 73 (15), 1339–1360. doi: http://doi.org/10.1615/telecom-
radeng.v73.i15.30
8. Kreutz, D., Ramos, F. M. V., Verissimo, P. J. E., Rothen-
berg, C. E., Azodolmolky, S., Uhlig, S. (2015). Software-De-
efined Networking: A Comprehensive Survey. Proceedings of the
IEEE, 103 (1), 14–76. doi: http://doi.org/10.1109/jproc.
2014.2371999
9. Chemeritskiy, E., Smeliansky, R. (2014). On QoS Management
in SDN by Multipath Routing. Science and Technology Confe-
rence (Modern Networking Technologies) (MoNeTeC). doi: http://
doi.org/10.1109/monetec.2014.6995581
10. Agrawal, R., Imielinski, T., Swami, A. (1993). Mining As-
nociation Rules Between Sets of Items in Large Databases.
ACM SIGMOD Record, 22 (3), 207–216. doi: http://doi.org/
10.1145/170036.170072

SYSTEMS AND CONTROL PROCESSES

DOI: 10.15587/2706-5448.2022.261874

ANALYSIS OF CONDITIONS AND FACTORS AFFECTING
CYBER SECURITY IN THE SPECIAL PURPOSE
INFORMATION AND TELECOMMUNICATION SYSTEM

pages 25–28

Oleg Sova, Doctor of Technical Sciences, Senior Researcher,
Head of Department of Automated Control Systems, Military
Institute of Telecommunications and Information Technologies
named after Heroes of Kruty, Kyiv, Ukraine, ORCID: https://
orcid.org/0000-0002-7200-8955, e-mail: soy125@ukr.net

The increase in the number of cases of failure of informa-
tion and telecommunication networks due to cyber attacks
determines the need to protect them from this type of attacks.
The issue of increasing cyber security in the conditions of
conducting operations by groups of troops (forces) is very im-
portant. Due to the armed conflict in the East of Ukraine, the
military-political instability in the Middle East, the struggle
for influence on world financial and energy flows, the global
military-political instability is intensifying. This is due to an
increase in the number of communication devices in informa-
tion and telecommunication networks, as well as an increase
in the number of possible attacks that can be used to disrupt
the operation of an information and telecommunication network.
Considering the above, the object of research is a special pur-
pose information and telecommunication system. The subject
of research is cyber security of a special purpose information
and telecommunication system. Classical methods of scientific
knowledge, namely analysis and synthesis, were used during
the research. The research identifies factors that affect cyber
security in a special purpose information and telecommunica-
tion system. All this must be taken into account while planning
and deploying a special purpose information and telecommuni-
cation system. The analysis of the consequences of the impact
on the information and telecommunications system of special
purpose of modern devices of defeat and the impact of devices
of radio-electronic suppression and other factors was carried
out. A typical special purpose information and telecommuni-
cation system does not fully meet the requirements for con-
stant readiness to ensure the management of troops (forces),
stability, mobility and throughput. A formalized description of the task of improving cyber security in a special purpose information and telecommunications network is provided. The components that affect the level of cyber security of the special purpose information and telecommunication network during the group’s operations have been established. The impact of the specified conditions and factors must be reflected: in the planning documents during the planning of the deployment and operation of the group’s information and telecommunication systems; in the software, during operational management.

Keywords: cyber security, radio-electronic environment, special purpose information and telecommunication system, operational management, cyber security.

References

1. Shishatchki, A. V., Bashkirov, O. M., Kostina, O. M. (2015). Rozvitiok integrovannikh sistem z’buzzka ta peredachi dannikh dlia potreb Zbroinikh Sil. Ozbroennia ta viklova tekhnika, 1 (5), 35–40.
2. Timchuk, S. (2017). Methods of Complex Data Processing from Technical Means of Monitoring. Path of Science, 3 (3), 4.1–4.9. doi: http://doi.org/10.22178/pos.20-4
3. Sokolov, K. O., Gudima, O. P., Tkachenko, V. A., Shiattii, O. B. (2015). Osnovnyi naprinyi strovennia IT-infrastruktruki Ministerstva oboroni Ukraini. Zhurnal naukovikh pratc Tsentra voenno-strategichnikh doslizhen, 3 (6), 26–30.
4. Shevenchenko, D. G. (2020). The set of indicators of the cyber security system in information and telecommunication networks of the armed forces of Ukraine. Suchasni informaciini tehnologii u sferi bezpeki ta oboroni, 38 (2), 57–62. doi: https://doi.org/10.33909/2311-7249/2020-38-2-57-62
5. Makarenko, S. I. (2017). Perspektivy i problemye voprosy razvitia setei sushchestvuiushchikh tekhnologii podderzhki priniatiia reshenii. Sistemy upravlenenia, svazi i bezopasnosti, 2, 18–68.
6. Zaiev, P., Zhivotovskiy, R., Zviriev, O., Hatenko, S., Kupriu, V., Na-konechnyi, O. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: http://doi.org/10.15587/1729-4061.2020.208554
7. Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes. LuLu.
8. Gorokhovatsky, V., Stahlky, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: http://doi.org/10.20998/2522-9052.2021.3.01
9. Meleshko, Y., Driieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: http://doi.org/10.20998/2522-9052.2020.2.05
10. Rybak, V. A., Akhmad, Sh. (2016). Analiticheskii obzor i svarnee nisuuchestvuushchikh tekhnologii podderzhki priniania re-sheni. Sistemi analiz i prikladnaia informatika, 3, 12–18.

DOI: 10.15587/2706-5448.2022.262792

DEVELOPMENT OF RECOMMENDATIONS REGARDING THE COMPOSITION OF FORCES AND EQUIPMENT FOR TOPOGEODESIC SUPPORT OF THE TROOPS OF THE OPERATIONAL COMMAND

pages 29–32

Andrii Bulhakov, Adjunct, Scientific and Organizational Department, Central Research Institute of the Armed Forces of Ukraine, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0003-4139-6761, e-mail: bulgandry@gmail.com

The object of the research is the forces and devices of topographic support of the operational command troops. The work highlights the recommendations regarding the composition of the forces and devices of topographic support of the operational command troops.

The analysis of the nature of the armed struggle of the last decades shows a sharp increase in the need of the troops (forces) for information provision, in particular in the provision of topogeodesic information (geospatial information) of the armed forces, the timeliness and reliability of which affects the course and results of military operations. One of the types of geospatial data that is needed by the military both in peacetime and in a special period are topographic maps, they are the main source of information about the terrain and the objects on it. Nowadays, the state of topographic information on most nomenclature sheets of topographic maps of the territory of Ukraine does not meet the modern requirements of the troops.

The successful implementation of the task of updating topographical information is facilitated by the use of the most acceptable and economically justified composition of forces and devices of topographical support of troops. However, the experience of geodetic support during the operational training of troops (forces), the operation of the United Forces in the east of the country and the large-scale armed aggression by the Russian Federation showed that the currently available forces and devices of geodetic support of the troops are not capable of fulfilling the entire scope of the assigned tasks. This especially applies to operational commands. Therefore, in order to successfully carry out changes in the system of topographic support regarding the necessary composition of forces and devices of this support, appropriate scientific researches were conducted. This, in turn, will provide an opportunity to improve existing methods and develop recommendations regarding the necessary composition of forces and devices of topographic support for the troops of the operational command. The mentioned recommendations will make it possible to justify the forces and devices of topographical support of the troops of the operational command by the persons planning the operations of the groups of troops (forces).

Keywords: operational command, topographic support, timeliness and reliability of information, geospatial data, topographic data.

References

1. Makridenko, L. A., Volkov, S. N., Khodnenko, V. P. (2010).Konceptualnye voprosy sozdaniia i primenenii mal’kih kosmi- cheskikh apparatov. Voprosy elektromekhaniki, 114, 15–26.
2. Shlyshatskiy, A. V., Bashkirov, O. M., Kostyn, O. M. (2015). Rozvytok interhanvanych sistem z’buzzka ta peredachi danykh dla potreb Zbroinikh Sil. Naukovo-tekhnichni zhurnal «Ozbroennia ta viklova tekhnika», 1 (5), 35–40.
3. Troceenko, R. V., Bolotov, M. V. (2014). Procesz izvlechenia dannikh iz raznotipnykh istochnikov. Pritrezniki naukchnyi vest-nik, 12-1 (40), 52–54.
4. Bodianskiy, E. V., Strukov, V. M., Uzlov, D. Yu. (2017). Obob-scheniia metryka v zadache analiza mnohomerinih dannikh s raznotympnimi pryznakam. Zbirnyk naukowych pratc Prats Kharkivskoho natsionalnoho univerzitetu Posivrianykh Sil, 3 (52), 98–101.
5. Noh, B., Son, J., Park, H., Chang, S. (2017). In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining. Sustainability, 9 (11), 2119. doi: http://doi.org/10.3390/su9112119
6. Petrasa, V., Petrasova, A., Jeziorska, J., Mitsaova, H. (2016). Processing UAV and lidar point clouds in Grass GIS. The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2016. Volume XLI-B7. XXIII ISPRS Congress. Prague, 945–952. doi: http://doi.org/10.5194/ispars-archives-xli-b7-945-2016

7. Polovina, S., Radic, B., Ristic, R., Milanevic, V. (2016). Spatial and temporal analysis of natural resources degradation in the Likodra river watershed. Bulletin of the Faculty of Forestry, 114, 169–188. doi: http://doi.org/10.2298/gsf1614169p

8. Poryadin, I. A., Smirnova, E. V. (2017). Binary Classification Method of Social Network Users. Science and Education of the Basmann MSTU, 2, 121–137. doi: http://doi.org/10.7463/0217.0000915

9. Tymchuk, S. (2017). Methods of Complex Data Processing from Technical Means of Monitoring. Path of Science, 3 (3), 4.1–4.9. doi: http://doi.org/10.22178/pos.28-4

10. Zhou, S., Yin, Z., Wu, Z., Chen, Y., Zhao, N., Yang, Z. (2019). A robust modulation classification method using convolutional neural networks. EURASIP Journal on Advances in Signal Processing, 2019 (1). doi: http://doi.org/10.1186/s13634-019-0616-6

11. Zhang, D., Ding, W., Zhang, B., Xie, C., Li, H., Liu, C., Han, J. (2018). Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles. Sensors, 18 (3), 924. doi: 10.3390/s18030924

DOI: 10.15587/2706-5448.2022.262797

J USTIFICATION OF THE NUMBER OF SAMPLES OF WEAPONS AND MILITARY TECHNIQUES FOR PERFORMING TASKS

pages 33–36

Volodymyr Dudnyk, PhD, Associate Professor, Professor of Department of Fire Training, Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine, e-mail: dudnyk555@gmail.com, ORCID: https://orcid.org/0000-0003-1985-4068

Oleksiy Grishchyn, Senior Lecturer, Department of Fire Training, Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine, ORCID: https://orcid.org/0000-0003-0190-4151

Vitaliy Netrebko, Senior Lecturer, Department of Fire Training, Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine, ORCID: https://orcid.org/0000-0003-2387-8943

Oleksandr Kmin, Senior Lecturer, Department of Fire Training, Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine, ORCID: https://orcid.org/0000-0002-8228-411X

Alexander Bohaches, Lecturer, Department of Fire Training, Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine, ORCID: https://orcid.org/0000-0002-7557-6624

During the research of the use issue of samples of weapons and military equipment in operations, a significant correlation was established between the predicted effectiveness of such use and the characteristics of the quantitative and qualitative composition of samples of weapons and military equipment. Taking this into account, it is clear that while preparing any operation, it would be desirable to have such a basis for the composition of samples of weapons and military equipment, which is well-founded and can only be adjusted in the conditions of a certain operation. The objects of the research are the samples of weapons and military equipment that are the part of the groups of troops (forces). However, the results of the analysis show that the existing methods for substantiating the composition of samples of weapons and military equipment need improvement. First of all, this concerns the determination of the basic (support) version of the composition of samples of weapons and military equipment (WME). As in the existing methods, the basic (support) version of the composition is not determined, it is chosen by comparing the composition of one’s troops and the enemy’s troops according to their combat potential. This approach does not provide an opportunity to compare the groups, taking into account the specifics of the use of their striking equipment and to create the necessary balance of forces at all stages of the operation. Taking into account the above, we conducted the researches that made it possible to determine that with certain proportions, characteristic of the organizational structure of the absolute majority of military formations, there is a close linear relationship between the number of their personnel and WME and combat potential.

Based on the research results, an improved method of determining the basic (support) composition of samples of weapons and military equipment in operation is proposed.

Keywords: samples of weapons and military equipment, predicted efficiency of use, composition of troops, multicriteria optimization methods.

References
1. Shyshatskisy, A. V., Bashlykyrov, O. M., Kostyna, O. M. (2015). Rozvytok inteirovanych system z"ivazku ta peredachi danykh dla potreb Zbroinskikh Syl. Nauc devised tekhничних zbirnykov “Osbroinennia ta visivka tehniki”, 1 (5), 35–40.
2. Zahorka, O. M., Mosov, S. P., Shyttnie, A. I., Stuzhuk, P. I. (2005). Elements dodіlshennia skladnych system visivkavo pryznachennia. Kyiv: NAO Ukraine, 100.
3. Televym, V. M., Zahorka, O. M., Strzyzhbskvy, V. V. (2012). Dosvid stvorennia ta zastosuvannia uhrupovan viisk (syl) u lokal-nyh viinakh i zbroinyh konfliktakh druhoi polovyny XX ta na pochatur XXI stolittia. Kyiv: NUOU, 336.
4. Romanchenko, I. S., Kotliarov, V. P., Shapoval, Yu. Ye., Smir-rov, O. O. (2008). Metodyka vyznachennia vykhidnoho spivvidnosshennia sly storin iz dotrymaniam vymoh do operatsii. Zbrynky naukowych prats. TsNDZ ZS Ukrainy, 3 (45), 14–18.
5. Nikitenko, A. P. (2019). Metod vyznachennia bazovoho (opornoho) boiovoho skladu operativnyho uhrupovannia visivk. Proble-ny koordynatsii voienno-tekhnickoi ta oboronzno-promyslovyi polityky Ukrainy. Perspektyvy rozvytku zbroinennia ta visivkoi tehniki, 205–206.
6. Pilar, A. B.-C., Pérez, C.-F.B., Sancho, R., Lorente, M., Sastre, G., González, C. (2019). A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TAC Trends in Analytical Chemistry, 116, 538–547. doi: http://doi.org/10.1016/j.tac.2019.06.015
7. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: http://doi.org/10.1016/j.autcon.2018.02.025
8. Pérez-González, C. J., Colebrook, M., Roda-Garcia, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: http://doi.org/10.1016/j.eswa.2018.11.023
9. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: http://doi.org/10.1016/j.procs.2018.04.233
ABSTRACTS AND REFERENCES: SYSTEMS AND CONTROL PROCESSES

10. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125. doi: http://doi.org/10.1016/j.dss.2019.113114

DOI: 10.15587/2706-5448.2022.262262

RESEARCH OF SOUND INSULATION FREQUENCY RESPONSE FOR A MULTILAYER INHOMOGENEOUS WALL STRUCTURES

pages 37–41

Vladyslav Zaretskyi, Postgraduate Student, Department of Electronics, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: http://orcid.org/0000-0003-4899-4545

Dmytro Bida, Postgraduate Student, Department of Electronics, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: http://orcid.org/0000-0001-5185-0927, e-mail: dm.v.bida@gmail.com

The object of research is the amplitude-frequency characteristic of sound insulation of multi-layer heterogeneous structures. One of the most problematic places is the calculation methodology, due to the existence of standards such as ISO, DBN, which have some differences between them, and software, the calculation methodology of which is not fully known, due to the copyright of the latter.

Using the modeling method in the INSUL software complex, the amplitude-frequency characteristics of the sound insulation of the partition walls between the halls were obtained. On-site measurements were carried out on a real object identical to the simulated fence constructions presented by the MULTIPLEX cinema in the DAFI shopping center in Dnipro (Ukraine). The calculation methodology of the INSUL software is completely unknown. According to information from open sources, it can be concluded that linear modeling of the amplitude-frequency characteristic is used. The measurements were carried out according to DBN B.1.1-31:2013. Data obtained theoretically, during modeling, and experimentally are compared with each other. The expediency of taking into account the results obtained with the help of the INSUL software when writing a new methodology for the state standard or for improving the latter is considered. Comparing real and simulated amplitude-frequency characteristics, it is possible to conclude that the INSUL software complex is not accurate at high frequencies. This phenomenon may be related to the inherent resonances of the existing partition, or to the quality of the installation, which can be equated to a setup error, due to the lack of possibility of influencing the quality of the construction process of the measurement object. A possible error occurs when the soundproof partition is violently connected to the existing structures of the building, or due to the presence of resonating technical elements in the cinema hall (air ducts, metal structures of the stage and seats, etc.). This error is not influential due to the not significantly small wavelength in the frequency of 3000–8000 Hz. Therefore, as a conclusion, the INSUL software can be used in the development of the methodology of state standards for sound insulation in buildings.

Keywords: soundproofing, sound insulation, building regulations, architectural acoustics, building acoustics, building structures, soundproofing structures.

References

1. Rubkovodstvo po rascheta i proektirovanii shumoglushenii v pro-myshlennykh zdaniakh (1983). Moscow: Stroyizdat, 360.
2. Beiblatt 1 zu DIN 4109 Schallschutz im Hochbau (1989). Ausführungsbeispiele und Rechenverfahren. Available at: https://www.baunormenlexikon.de/norm/din-4109-beiblatt-1/035e2290-9ca4-4c90-9d0f-8f172e46777
3. Sharp, B. H. (1978). Prediction Methods for the Sound Transmission of Building Elements. Noise Control Engineering, 11 (2), 53–63. doi: http://doi.org/10.3937/1.2832099
4. Zaborov, V. I. (1969). Teoriiia zvukozashchitnykh ogranidhiaschikh konstruktsii. Moscow, 185.
5. Predict transmission loss, impact sound, and rain noise. Available at: http://www.insul.co.za/features/
6. Rasmussen, B. (2010). Sound insulation between dwellings – Requirements in building regulations in Europe. Applied Acoustics, 71 (4), 373–385. doi: http://doi.org/10.1016/j.apacoust.2009.08.011
7. ISO 10140-2:2021. Acoustics – Laboratory measurement of sound insulation of building elements – Part 2: Measurement of airborne sound insulation (2021). Available at: https://www.iso.org/standard/79487.html
8. Didkovskiy, V. S., Lunova, V. S., Bohdanov, O. S. (2012). Arkhitekturna akustyka. Kyiv: KPY, 56–58.
9. OKTAVA-110A Sound level analyzer, spectrum analyzer, portable vibrometer. OKTAVA. Available at: http://www.oktava.info/oktva-110A
10. ISO 16283-1:2014. Acoustics – Field measurement of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation (2014). Available at: https://www.iso.org/standard/53997.html

DOI: 10.15587/2706-5448.2022.263719

THE FIRST PHASE OF RESEARCH AND MANUFACTURING OF BRIDGE DEFORMATION MONITORING EQUIPMENT USING POSITION SENSOR: CASE STUDY IN VIETNAM

pages 42–46

Viet Ha Nguyen, PhD, Associate Professor, Department of Engineering Geodesy, Hanoi University of Mining and Geology, Ha Noi, Vietnam, ORCID: https://orcid.org/0000-0001-6246-8475, e-mail: nguyenvietha@humin.edu.vn

Ngo Quang Vu, Postgraduate Student, Department of Transport Planning and Urban Transport, University of Transport and Technology, Ha Noi, Vietnam, ORCID: https://orcid.org/0000-0001-8960-772X

This paper is the first result of an experimental study of manufacturing deformation monitoring equipment using a position sensor, an efficient solution for contractors in bridge monitoring during either process of construction or operation in the context of the increasing number of large bridges. The object of the research is bridge work. The work is aimed at achieving two tasks, which include meeting the need of the surveyors in real-time monitoring and warning during the construction process with a suitable price and reducing the reliance on manufacturers in supplying and operating monitoring systems.

The study used a KTR position sensor, a Linear Variable Differential Transformer, and an Arduino board for
embedded coding. Data from the KTR sensor are acquired, processed, and controlled by a program written in Python. The results of the study are compared to the true observations from a Mitutoyo Palmer which has 0.01 mm accuracy in a laboratory.

The initial results from the laboratory show prospects for applications in reality, and accuracy is suitable for technical measurements. This is also a good choice for surveyors in acquiring continuously monitoring data at high accuracy for bridge monitoring in general and structure in particular. The study is fundamental to expanding the number of channels from 1 to 8 or 16 for monitoring a full cross-section. At the same time, cable connection mode will be developed to Wi-Fi or Bluetooth mode for online observation. The results of the study confirm the scientificity and feasibility of the solution. This solution can be applied for either bridge monitoring or other monitoring fields and can be produced by contractors. The cost of monitoring projects will be significantly reduced and there will be no more disruption of monitoring projects after suppliers leave as a new system will be quickly added or replaced.

Keywords: bridge monitoring, Arduino board, potentiometer sensor, amplifier, real-time monitoring, displacement.

References

1. Huong, B. H. (2014). Bô trí thiết bị quan trắc cho cầu dây văng Rach Miêu. Tự vận thiết kế, 1, 33–38.

2. Nguyen, L., Huy, H. P., Hong, T. B. (2018). Structural Health Monitoring System of the Thuan Phuoc Suspension Bridge in Viet Nam. The International Conference on Geoinformatics for Spatial-Infrastructure Development in Earth & Allied Sciences, 1–13.

3. Nam, H., Nam, L. V., Thanh, N. V., Thong, M. L. (2018). Hệ quan trắc công trình cầu Cầu Trị tüm Chi Giao thông vận tải, 1–11.

4. Tùng, T. T. (2015). Thông nhất quan lý việc lập đặt hệ thống quan trắc trong thi công và khai thác công trình. Tập chí điện tử Bộ giao thông vận tải, 1–5.

5. Chinh, L. M. (2013). Hệ thống quan trắc lấu đại công trình lớn ở việt nam. Tuyen tập Hội nghị Khóa học thường niên năm, 31–33.

6. Chinh, L. M. (2015). Monitoring methods determine displacement of the cable-stayed bridge tower on structural health monitoring system (SHMS). Khóa học Kỹ Thuật Thủy Lợi và Môi Trường, 48, 57–63.

7. Bisby, L. A. (2005) An Introduction to Structural Health Monitoring. Available at: http://www.samco.network/download_area/teaching_materials/teaching_mat_1_pdf

8. Atzori, L., Iera, A., Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54 (15), 2787–2805. doi: http://doi.org/10.1016/j.comnet.2010.05.010

9. Vermes, O., Fries, P., Guillemat, P., Guismeroli, S., Sundmayer, H., Bassi, A. et al. (2009). Internet of Things Strategic Research Roadmap. Internet of Things Vis, 10–51.

10. Vermes, O., Fries, P. (2013) Internet of Things – Converging Technologies for Smart Environments and Integrated Ecosystems. River Publishers, 153–204.

11. Weyrich, M., Ebert, C. (2016). Reference Architectures for the Internet of Things. IEEE Software, 33 (1), 112–116. doi: http://doi.org/10.1109/ms.2016.20

12. Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., Pires, P. F. (2015). An Analysis of Reference Architectures for the Internet of Things. Proceedings of the 1st International Workshop on Exploring Component-Based Techniques for Constructing Reference Architectures. doi: http://doi.org/10.1145/2755567.2755569

13. BenSaleh, M. S., Saidah, R., Kacem, Y. H., Abid, M. (2020). Wireless Sensor Network Design Methodologies: A Survey. Journal of Sensors, 2020, 1–13. doi: http://doi.org/10.1155/2020/9392836

14. Maraiya, K., Kant, K., Gupta, N. (2011). Application based Study on Wireless Sensor Network. International Journal of Computer Applications, 21 (8), 9–15. doi: http://doi.org/10.5120/2534-3459

15. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J. (2002). Wireless sensor networks for habitat monitoring. Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications – WSN’t02. doi: http://doi.org/10.1145/570738.570751

16. Markmiller, J. F. C., Chang, F.-K. (2009). Sensor Network Optimization for a Passive Sensing Impact Detection Technique. Structural Health Monitoring, 9 (1), 25–39. doi: http://doi.org/10.1177/1475921709349673

17. Gupta, V., Sharma, M., Thakur, N. (2010). Optimization Criteria for Optimal Placement of Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review. Journal of Intelligent Material Systems and Structures, 21 (12), 1227–1243. doi: http://doi.org/10.1177/1045389x10381659

18. Kopáček, A., Lipták, I., Erdélyi, J., Kyrinovič, P. (2015). Structural health monitoring of bridges using accelerometers – a case study at Apollo Bridge in Bratislava. Geonauka, 3 (1), 9–15. doi: http://doi.org/10.14438/gn.2015.03

19. Kopáček, A. (2017). Deformation monitoring of Danube bridges in Bratislava by integrated measurement system. FIG Working Week. Available at: https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/pts021/TS02F_kopack_liptak_et_al_8542_ppt.pdf

20. Bacco, M., Barsocchi, P., Cassara, P., Germanese, D., Gotta, A., Leone, G. R. et al. (2020). Monitoring Ancient Buildings: Real Deployment of an IoT System Enhanced by UAVs and Virtual Reality. IEEE Access, 8, 50131–50148. doi: http://doi.org/10.1109/access.2020.2980359

21. Ostachowicz, W., Soman, R., Malinowski, P. (2019). Optimization of sensor placement for structural health monitoring: a review. Structural Health Monitoring, 18 (3), 963–988. doi: http://doi.org/10.1177/1475921718825601

22. Capellari, G., Chatzi, E., Mariani, S. (2018). Cost–Benefit Optimization of Structural Health Monitoring Sensor Networks. Sensors, 18 (7). doi: http://doi.org/10.3390/s18072174

23. Soman, R., Kudela, P., Balasubramaniam, K., Singh, S. K., Malinowski, P. (2019). A Study of Sensor Placement Optimization Problem for Guided Wave-Based Damage Detection. Sensors, 19 (8), 1856. doi: http://doi.org/10.3390/s19081856

24. Russell, D. J. (2010). Introduction to embedded systems: Using ANSI C and the Arduino development environment. Morgan&;Lloyd publishers, 276. doi: http://doi.org/10.1007/978-3-631-78824-5

25. Bayle, J. (2013). C programming for Arduino: learn how to program and use Arduino boards with a series of engaging examples, illustrating each core concept. Packt Pub, 512.

26. Purdum, J. J. (2012). Beginning C for Arduino: learn C programming for the Arduino and compatible microcontrollers. Apress. Available at: https://www.mica.edu.vn/perso/Vu-Hai/EE3490/Ref/Beginning.C.for.Arduino.Dec.2012.pdf

27. Voudoukis, N. F. (2019). Arduino Based Embedded System and Remote Access Technologies of Environmental Variables Monitoring. European Journal of Electrical Engineering and Computer Science, 3 (4). doi: http://doi.org/10.24018/ejce.2019.3.4.101

28. Todd, C. D. (1975). The Potentiometer Handbook. New York: McGraw-Hill, 12.
Об’єктом дослідження є код на мові програмування Python, проаналізований методами машинного навчання з метою виявлення клонів. Дане робото присвячено дослідженню методів машинного навчання та реалізації моделі машинного навчання дерева рішень в задачі пошуку клонів у програмному коді. У роботі також проводиться аналіз щодо існуючих підходів машинного навчання для виявлення клонів у програмному коді. У ході порівняння були визначені переваги та недоліки кожного алгоритму, а результати зведено до відповідних таблиць порівняння. У результаті аналізу було визначено, що найбільш оптимальним як з точки зору точності, так і з точки зору реалізації являється метод на основі дерева рішень, що дає найбільші результати в задачі пошуку клонів у програмному коді.

Результатом роботи є створена модель, що з точністю більше 99 % класифікує клоновані та не клоновані коди на автоматично генерованому датасеті за мінімальний проміжок часу. Дане рішення має ряд відкритих для найбічніших досліджень питань, перелік яких представлений у цій роботі. Запропонована модель має наступні шляхи подальшого розвитку:

- розшук клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Перспективність роботи полягає в тому, що можливі перерахування в цей час збільшено для використання теорії в роботі з програмним кодом, включаючи такі аспекти, як:

- виявлення клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Побудовані за допомогою бібліотек мови Python моделі аналізу та прогнозування даних мають досить високу якість – в середньому 94.5 %. Завдяки цьому забезпечується можливість отримання прогнозної моделі поведінки клієнтів банку із досить високим ступенем точності. Вибір методів машинного навчання залежить від специфіки задачі. В цьому випадку використовувалися бібліотеки методів машинного навчання для прогнозування поведінки клієнтів банку за допомогою використання технологій, які дозволяють отримати торгову з точки зору точності, таких як:

- виявлення клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Побудовані моделі мають високу точність (около 99.4 %), що дає можливість отримання прогнозної моделі поведінки клієнтів банку з точністю більше 99 %. Така точність дозволяє забезпечити високу якість прогнозування, що є незмінним вимогаю з точки зору точності. Вибір методів машинного навчання залежить від специфіки задачі. В цьому випадку використовувалися бібліотеки методів машинного навчання для прогнозування поведінки клієнтів банку за допомогою використання технологій, які дозволяють отримати торгову з точки зору точності, таких як:

- виявлення клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Побудовані моделі мають високу точність (около 99.4 %), що дає можливість отримання прогнозної моделі поведінки клієнтів банку з точністю більше 99 %. Така точність дозволяє забезпечити високу якість прогнозування, що є незмінним вимогаю з точки зору точності. Вибір методів машинного навчання залежить від специфіки задачі. В цьому випадку використовувалися бібліотеки методів машинного навчання для прогнозування поведінки клієнтів банку за допомогою використання технологій, які дозволяють отримати торгову з точки зору точності, таких як:

- виявлення клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Завдяки цьому забезпечується можливість отримання прогнозної моделі поведінки клієнтів банку із досить високим ступенем точності.

Результатом роботи є створена модель, що з точністю більше 99 % класифікує клоновані та не клоновані коди на автоматично генерованому датасеті за мінімальний проміжок часу. Дане рішення має ряд відкритих для найбічніших досліджень питань, перелік яких представлений у цій роботі. Запропонована модель має наступні шляхи подальшого розвитку:

- розшук клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Побудовані за допомогою бібліотек мови Python моделі аналізу та прогнозування даних мають досить високу якість – в середньому 94.5 %. Завдяки цьому забезпечується можливість отримання прогнозної моделі поведінки клієнтів банку із досить високим ступенем точності.

Результатом роботи є створена модель, що з точністю більше 99 % класифікує клоновані та не клоновані коди на автоматично генерованому датасеті за мінімальний проміжок часу. Дане рішення має ряд відкритих для найбічніших досліджень питань, перелік яких представлений у цій роботі. Запропонована модель має наступні шляхи подальшого розвитку:

- розшук клонів, що переписані з однієї мови програмування на іншу;
- виявлення відмінностей в коді;
- покращення роботи моделі за допомогою створення більш універсальних датасетів.

Побудовані за допомогою бібліотек мови Python моделі аналізу та прогнозування даних мають досить високу якість – в середньому 94.5 %. Завдяки цьому забезпечується можливість отримання прогнозної моделі поведінки клієнтів банку із досить високим ступенем точності.
Збільшення кількості випадків виходу з ладу інформаційно-телекомунікаційних мереж через кібернетичні атаки обумовлює необхідність їх захисту від даного типу атак. Питання підвищення кібернетичної захищеності в умовах ведення операцій утримуваних військ (сил) є дуже важливим. Через збільшення строку та обсягу використання змінюються глобально воєнно-політична нестабільність. Зазначене обумовлене збільшенням кількості засобів зв'язку в інформаційно-телекомунікаційних мережах, а також зростанням кількості військових атак, які можуть бути застосовані для знищення вихідних інформаційно-телекомунікаційних мереж. Враховуючи зазначене, об'єктом дослідження є інформаційно-телекомунікаційна система війська спеціального призначення. Предметом дослідження є кібербезпека інформаційно-телекомунікаційної системи спеціального призначення. Вихідні дани для розгляду були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу. Вхідні дани були вироблені методами наукового пізнання, а саме аналізу та синтезу.

Ключові слова: кібербезпека інформації, інформаційно-телекомунікаційна система, кібербезпека в інформаційно-телекомунікаційних мережах, вплив засобів зв'язку на інформаційно-телекомунікаційну систему, вплив засобів зв'язку на інформаційно-телекомунікаційну систему.
Враховуючи це, зрозуміло, що при підготовці будь-якої операції бажано було б мати таку основу складу зразків зброєння та військової техніки, що добре обгрупована та може лише коригуватися в умовах певної операції. Об'єктом дослідження є зразки зброєння та військової техніки, що входять до складу утруну військ (стр.). Однак, результати аналізу свідчать, що існуючі методики щодо обрублювання складу зразків зброєння та військової техніки потребує удосконалення. В першу чергу це стосується визначення базового (опорного) варіанту складу зразків зброєння та військової техніки (ОВТ). Оскільки в існуючих методиках визначення базового (опорного) варіанту складу не проводиться, а обирається шляхом порівняння складу своїх військ і військ противника за їх бойовими потенціалами. Даний підхід не дає можливості порівняти утримування, враховуючи специфіку застосування їх універсальних засобів та створити необхідне співвідношення сил на всіх етапах операції.

Враховуючи вищезазначене, були проведено дослідження, які дали можливість визначити, що при певних пропорціях, характерних для організаційної структури абсолютної більшості військових формувань, між кількістю їх особового складу і ОВТ та бойовим потенціалом існує залежність, близька до лінійної.

На основі отриманих результатів дослідження пропонується удосконалення методика визначення базового (опорного) складу зразків зброєння та військової техніки в операції.

Ключові слова: військові засоби, військова техніка, методика визначення базового складу.

DOI: 10.15587/2706-5448.2022.263719

ДОСЛІДЖЕННЯ АМПЛІТУДНО-ЧАСТОТНОЇ ХАРАКТЕРИСТИКИ ЗВУКОІЗОЛЯЦІЇ БАГАТОШАРОВИХ НЕОДНОРЕДНИХ СТІНОВИХ КОНСТРУКЦІЙ

Дана робота є першим результатом експериментального дослідження виробництва обладнання для моніторингу деформації мосту з використанням датчиків положення, що є ефективним інструментом для керування та оптимізації процесів будівництва.

Ключові слова: звукоізоляція, шумоізоляція, будівельні норми, архітектура акустика, будівельна акустика, будівельні конструкції, звукоізоляційні конструкції.

DOI: 10.15587/2706-5448.2022.263719

ПЕРША ФАЗА ДОСЛІДЖЕННЯ ТА ВИРОБНИЦТВА ОБЛАДНАННЯ ДЛЯ МОНІТОРИНГУ ДЕФОРМАЦІЇ МОСТУ З ВИКОРИСТАННЯМ ДАТЧИКА ПОЛОЖЕННЯ: ПРЯМУЧИЙ ДОСЛІДЖУВАЮЧИЯ У ВПІТНЯМИ

**Copyright © 2022 TECHOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(66), 2022
ISSN 2664-9969**

Військові засоби, військова техніка, методика визначення базового складу.