Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity

Yi-Ru Lee¹, Te-Sheng Lin¹, Shu-Jung Lai², Mu-Sen Liu¹, Mei-Chin Lai² & Nei-Li Chan¹,³

Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways’ end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. Here, we report the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT), which represents the first structural elucidation of the GSMT methyltransferase family. As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. This work implicates a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved.

Methyltransferases participate in a wide variety of cellular processes, ranging from biosynthesis and conversion of cellular components to the regulation of gene expression and protein function¹⁻⁴. Aberrant methyltransferase activities have been linked to significant biological consequences, and thus various regulatory strategies have evolved to properly control methyltransferases according to physiological needs⁵⁻⁸. Well known mechanisms include phosphorylation, oxidation, automethylation, ubiquitination and other post-translational events⁹⁻¹³. For the majority of methyltransferases that utilize S-adenosyl-L-methionine (SAM) as the methyl group-donating cofactor, accumulation of the demethylated cofactor S-adenosyl-L-homocysteine (SAH) may lead to product inhibition; SAH hydrolases relieve the inhibitory effect by breaking down SAH into adenosine and homocysteine¹⁴,¹⁵. Some methyltransferases involved in biosynthesis are subjected to feedback inhibition by the end product of their respective biosynthetic pathway. For example, phosphocholine, berberine, and mycophenolic acid shut down their own biosynthesis by acting as potent allosteric inhibitors of the enzymes.

¹Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan. ²Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan. ³Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan. Correspondence and requests for materials should be addressed to M.-C.L. (email: mclai@dragon.nchu.edu.tw) or N.-L.C. (email: nlchan@ntu.edu.tw)
phosphoethanolamine N-methyltransferase, noroclaurine 6-O-methyltransferase, and demethylmycolophenolic acid O-methyltransferase, respectively. Alternatively, phosphatidylcholine achieves feedback inhibition by binding to membrane-attached phospholipid N-methyltransferase to induce its detachment from the membrane. To date, no biosynthetic methyltransferase has been characterized by X-ray crystallography in the presence of its corresponding end product. In this study, we performed structural analysis on the glycine sarcosine N-glycosyltransferase (GSMT) from Methanohalophilus portucalensis strain FDF1T (MpGSMT) to understand how end product-mediated allosteric inhibition is achieved.

The survival of the halophilic methanoarchaeon *M. portucalensis* in high salinity environments requires *de novo* production of betaine, a common osmoprotectant whose intracellular accumulation protects cells against osmotic pressure. Betaine biosynthesis is accomplished by three N-methylation steps in which glycine is sequentially converted to sarcosine, dimethylglycine and the final product betaine (Supplementary Fig. S1). Two dual-activity, SAM-dependent methyltransferases sharing an overlapping function are employed to carry out this three-step biosynthetic pathway as follows: MpGSMT adds the first and second methyl groups to glycine, and the sarcosine dimethylglycine N-methyltransferase (MpSDMT) catalyzes the second and third methylation events. Similar to other commonly exploited regulatory strategies, the control of betaine production is achieved by betaine-mediated feedback inhibition of MpGSMT, the first enzyme in the betaine biosynthetic pathway.

According to the NCBI Protein Database, MpGSMT (GenBank: AEG464703.1) is annotated as a member of the Class I SAM-dependent methyltransferase superfamily and exhibits the highest homology with the vertebrate glycine N-methyltransferase (GNMT), a hepatic enzyme that helps maintain a proper cellular SAM:SAH ratio by consuming SAM and glycine to form SAH and sarcosine. The pronounced sequence similarity between MpGSMT and GNMT agrees with their overlapping activity as follows: both enzymes catalyze the SAM-dependent methylation of glycine to produce sarcosine and glycine monomethyltransferase reaction can then occur via the \(S_2\) mechanism. Given the prominent functional and sequence similarity, it is expected that MpGSMT should resemble GNMT in its overall structure and catalytic mechanism. However, there are outstanding distinctions between the two enzymes. First, while MpGSMT is negatively regulated by the end product betaine, the activity of GNMT is regulated by folate. Second, both glycine and sarcosine can be methylated by MpGSMT, whereas GNMT only acts on glycine. Here, we report structural characterization of MpGSMT in a betaine-bound, catalytically inactivated state, which elucidates for the first time the structural basis by which the activity of a biosynthetic methyltransferase is regulated by end product-mediated feedback inhibition.

Results

The structure of MpGSMT-sarcosine-SAH ternary complex in a catalytically inactivated state. To understand how MpGSMT is capable of catalyzing the N-methylation reaction with both glycine and sarcosine (N-monomethyl glycine), and how this enzyme is subjected to feedback inhibition by betaine, we first determined the crystal structure of MpGSMT in complex with the sarcosine substrate and the SAH cofactor at 2.47 Å resolution (Table 1; Fig. 1a). Consistent with previous sequence-based prediction, our structural analysis validated that MpGSMT indeed belongs to the Class I methyltransferases, with a characteristic seven-stranded Rossmann-like \(\alpha/\beta\) catalytic core responsible for substrate and cofactor binding (Fig. 1a). As expected, a structural comparison carried out using the DALI program showed that the overall structure of MpGSMT most closely resembles vertebrate GNMTs (Z-scores over 20). The MpGSMT and a rat GNMT structure can be superimposed with an RMSD of 2.1 Å over 230 structurally equivalent Ca atom pairs. Similar to GNMT, the catalytic core of MpGSMT is further elaborated by a helical N-terminal region that precedes the \(\beta\)-strand and a lid domain composed of a four-stranded antiparallel \(\beta\)-sheet that inserts into the \(\beta\)-strands and \(\alpha\)-E helix (Fig. 1).

Clear electron density is visible for bound sarcosine and SAH (Supplementary Fig. S2), which allows both molecules to be precisely positioned in the active site of MpGSMT. The cofactor-binding pocket mainly consists of residues from three universally present and conserved elements in Class I methyltransferases that interact with the three moieties of SAH (L-homocysteine, ribose, and adenine). These conserved elements are the glycine-rich motif (E/DXXXGXG; residues 65–73) and the short loop region between \(\beta\)3 and \(\alpha\)C (residues 113–116), which interact with the L-homocysteine and adenine, respectively, and an acidic loop (residues 88–91) that contacts both the ribose and adenine (Fig. 2a). Residues are arranged to accommodate the shape of SAH and these three regions participate in ionic interactions, direct and water-bridged hydrogen bonds, van der Waals contacts and aromatic stacking to stabilize the bound cofactor. In addition, Arg43 from the N-terminal region and Leu132 from the \(\beta\)-4-H3 loop also contribute to cofactor binding by anchoring the carboxyl and amino group of SAH, respectively. Notably, whereas structural analyses of other SAM-dependent methyltransferases have revealed the presence of a functionally significant interaction between an active site-located tyrosine and the positively charged sulfonium of the cofactor, such an interaction was not observed in the MpGSMT-sarcosine-SAHA ternary complex. The functional relevance of this finding will be discussed below.

The substrate-binding pocket, where sarcosine or glycine can be recognized and positioned for N-methylation, involves residues from the lid and the core domains (Fig. 2b). The observed interactions between MpGSMT and sarcosine indicate that both sarcosine and glycine can be specifically oriented by forming multiple contacts with the surrounding residues, including a salt bridge and a hydrogen bond formed, respectively, between the carboxyl group and the guanidino group of Arg167 and the phenolic hydroxyl of Tyr206; polar interactions between the amino group and the main-chain carbonyl and the side-chain amide of Asn134; and van der Waals contacts with Asn134, His138, and Met218. Among the residues involved in substrate binding, Arg167 is located at the
C-terminal end of β5 and is spatially equivalent to the Arg169 of A. halophytica GSMT42, implicating a pivotal role for this residue in recognizing glycine and its N-methylated derivatives.

By adopting the ligand binding mode observed in the MpGSMT-sarcosine-SAH structure, the amino group of sarcosine points directly at the sulfonium of the cofactor and approaches a position that appears suitable for engaging in the subsequent in-line attack on the S-methyl group of SAM (Fig. 2c). Intriguingly, in comparison with other SAM-dependent methyltransferases whose structures were determined in the presence of both the substrate and SAH (or the product and SAM)29,43, an unexpected distinctiveness was revealed in the MpGSMT ternary complex structure. First, it is well documented that methyltransferases undergo extensive conformational changes upon substrate and cofactor binding. The apo forms of SAM-dependent methyltransferases frequently exhibit an open conformation in which the N-terminal region and the lid domain are distant from the core domain36,44–46. Hence, active site residues are predominantly solvent-exposed and ready to interact with the incoming substrate and cofactor. In contrast, the enzyme-substrate-cofactor ternary complexes tend to adopt a closed conformation in which the N-terminal region and the lid domain close upon the bound substrate and cofactor.

Table 1. Summary of crystallographic analysis. Statistics for the highest-resolution shell are shown in parentheses. $R_{	ext{sym}} = (\sum_{hkl} |I_{hkl}| - <I>)/\sum |I_{hkl}|$, where the average intensity $<I>$ is taken over all symmetry equivalent measurements, and I_{hkl} is the measured intensity for any given reflection. $R_{	ext{free}} = \frac{\sum_{hkl} \|F_{o}\| - \|F_{c}\|}{\sum_{hkl} \|F_{o}\|}$. Categories were defined by PHENIX56.

Crystal structure	MpGSMT-sarcosine-SAH	MpGSMT-SAM	MpGSMT-sarcosine-SAM	MpGSMT-betaine	MpGSMT$^\text{42}$ (H21G,E23T,E24N,L28S)
PDBId	5HIL	5HIK	5GWX	5HIJ	5H02
Space group	I222	I222	I222	I222	I222
Unit cell dimensions	a, b, c(Å)	51.9, 121.1, 131.6	51.9, 121.0, 131.8	51.7, 120.7, 130.9	52.2, 120.5, 131.4
		51.9, 120.8, 131.3			
Data collection	Wavelength (Å)	0.97622	0.97622	0.97622	1.00000
	Resolution range (Å)	30.0–2.47 (2.60–2.47)	30.0–2.35 (2.43–2.35)	50.0–2.20 (2.28–2.20)	20.0–1.94 (2.0–1.93)
		20.0–1.78 (1.82–1.78)			
	Observed reflections	51428	80639	72957	133148
	Unique reflections	15131	17545	20701	31210
	Completeness (%)	99.0 (100)	99.9 (100)	98.3 (98.4)	99.8 (100.0)
		100.0 (100.0)			
	Multiplicity	3.4 (3.4)	4.6 (4.8)	3.5 (3.6)	4.3 (4.3)
		4.9 (4.9)			
	Mean/σ (I)	13.6 (2.6)	22.8 (4.9)	18.1 (2.7)	21.7 (3.3)
		31.5 (3.4)			
	$R_{ ext{sym}}$ (%)	8.6 (49.5)	6.3 (38.5)	5.7 (40.0)	5.4 (47.7)
		4.4 (49.8)			
Refinement	Resolution range (Å)	24.92–2.47 (2.66–2.47)	27.49–2.35 (2.50–2.35)	29.20–2.21 (2.28–2.21)	19.73–1.93 (1.99–1.93)
		19.89–1.78 (1.82–1.78)			
	No. of reflection in	15129	17543	20701	31208
	Working set	762	877	1039	1571
	Test set	38.1	37.1	36.0	27.3
	Wilson B-factor	17 (22)	17 (19)	17 (21)	17 (22)
		18 (22)			
	$R_{ ext{free}}$ (%)	22 (29)	21 (26)	20 (25)	21 (27)
		20 (22)			
	Number of atoms	2046	2078	2130	2160
	Macromolecules	1935	1962	1984	1962
		2012			
	Ligands	52	43	49	8
		42			
	Waters	59	73	97	190
		173			
	No of residues/Total residues	240/263	240/263	249/263	240/263
	Missing residues	23	23	14	23
	r.m.s. deviation from ideal	0.008	0.007	0.007	0.007
	Bond lengths (Å)	1.04	1.04	0.82	0.96
	Bond angles (degrees)				0.80
	Ramachandran analysis (%)	97.0	96.6	98.0	97.9
	Favored (%)	0	0	0	0
	Outliers (%)	1.83	2.33	1.03	1.31
	Clashscore	45.4	43.9	42.6	32.3
	Average B-factor	45.4	43.8	41.7	31.5
	Macromolecules	4.18	42.9	44.7	39.7
	Solvent	45.4	43.9	42.6	32.3

C-terminal end of β5 and is spatially equivalent to the Arg169 of *A. halophytica* GSMT42, implicating a pivotal role for this residue in recognizing glycine and its N-methylated derivatives.

By adopting the ligand binding mode observed in the MgPMT-sarcosine-SAH structure, the amino group of sarcosine points directly at the sulfonium of the cofactor and approaches a position that appears suitable for engaging in the subsequent in-line attack on the S-methyl group of SAM (Fig. 2c). Intriguingly, in comparison with other SAM-dependent methyltransferases whose structures were determined in the presence of both the substrate and SAH (or the product and SAM)29,43, an unexpected distinctiveness was revealed in the MgPMT ternary complex structure. First, it is well documented that methyltransferases undergo extensive conformational changes upon substrate and cofactor binding. The apo forms of SAM-dependent methyltransferases frequently exhibit an open conformation in which the N-terminal region and the lid domain are distant from the core domain36,44–46. Hence, active site residues are predominantly solvent-exposed and ready to interact with the incoming substrate and cofactor. In contrast, the enzyme-substrate-cofactor ternary complexes tend to adopt a closed conformation in which the N-terminal region and the lid domain close upon the bound substrate and cofactor.
The cofactor. This substrate/cofactor-induced conformational change not only places the methyl-accepting group and the donor methylsulfonyl in proximity but also creates a narrow tunnel between the two reacting groups to facilitate methyl transfer. However, despite the concomitant presence of both sarcosine and SAH, the MpGSMT active site remains partially open; the N-terminal H1 helix points away from the core domain without covering the substrate-binding pocket (Supplementary Fig. S3). Moreover, the distance between the methyl-accepting nitrogen of sarcosine and the cofactor's sulfonium (the “N-S distance”) was 6.3 Å in the MpGSMT structure (Fig. 2c), which is considerably longer than the N-S distances of 3.6–4.5 Å observed in other ternary complex structures43,47–49. Based on the observed partially open active site, the absence of a conserved polar/ionic interaction with the cofactor’s sulfonium, and the wide separation of the methyl-accepting nitrogen and sulfonium in our structure, we speculated that the structural state of MpGSMT reported here may correspond to a functionally inactivated conformation of the enzyme.

To test the validity of our interpretation, we investigated the feasibility of preparing crystals of the MpGSMT-sarcosine-SAM ternary complex. To this end, we first prepared crystals of the MpGSMT-SAM binary complex (Table 1, Supplementary Fig. S2b) and transferred them to a substitute mother liquor that contained sarcosine and SAM. If the observed MpGSMT structure does represent a catalytically inactivated state, we expected to observe the presence of both sarcosine and SAM in the active site without conversion to the products dimethylglycine and SAH. Indeed, X-ray diffraction analysis of the resulting crystals showed clear electron density maps corresponding to sarcosine and SAM in the active site (Table 1, Supplementary Fig. S2c).
The B-factors of the atoms that constitute sarcosine and SAM are comparable to those of the surrounding protein residues, suggesting full occupancy for both ligands. Superimposition analysis revealed that the structures of M_{p}GSMT-sarcosine-SAH and M_{p}GSMT-sarcosine-SAM are highly isomorphous; no significant structural differences were observed, except for the minor reposition of sarcosine in response to the presence/absence of the sulfonium-linked methyl group (Supplementary Fig. S4). Our finding that crystals of the M_{p}GSMT-sarcosine-SAM ternary complex can be successfully prepared strongly indicates that the structure reported here represents a catalytically inactivated state of M_{p}GSMT.

Figure 2. The structure of the M_{p}GSMT active site in a catalytically inactive state. (a) Structure of the SAH binding pocket. The cofactor-binding pocket is shaped by residues from the glycine-rich motif, the acidic loop and the loop region between β3 and αC. The guanidino group of Arg43 and the main-chain carbonyl group of Leu132 also contribute to cofactor binding by interacting with the carboxyl and amino groups of the cofactor’s methionine/homocysteine moiety, respectively. (b) Structure of the substrate-binding pocket. The bound substrate (sarcosine) is stabilized by a salt bridge and an H-bond between the carboxyl group and Arg167 and Tyr206, an H-bond between the amino group and Asn134, and van der Waals interactions with His138 and Met218. (c) Structure of the M_{p}GSMT active site. In this M_{p}GSMT-sarcosine-SAH structure, the methyl-accepting nitrogen atom and the cofactor’s sulfonium ion are 6.3 Å apart (blue dashed line), suggesting that the nitrogen is not yet in a “near attack” position to effectively initiate methyl transfer. The predicted location of the sulfur-attached methyl group is shown as a red asterisk. Salt bridges and H-bonds are shown as red dashed lines.
To our knowledge, this is the first observation of a methyltransferase in its catalytically inactivated form despite the presence of both substrate and cofactor. Given that MpGSMT is capable of switching between an inactivated and activated state depending on the ionic strength of the environment and the intracellular concentration of betaine, we speculated that the observed MpGSMT structure may, in fact, represent a functionally relevant, inactivated state of the enzyme that contains crucial structural information regarding the regulation of methyltransferase activity. The validity of this interpretation is addressed further in the following sections.

Structural basis of betaine-mediated feedback inhibition of MpGSMT. To control the throughput of the betaine biosynthetic pathway, the activity of MpGSMT is known to be feedback inhibited when the end product betaine reaches a sufficiently high concentration. However, the mechanism by which betaine regulates MpGSMT activity has remained elusive. We speculated that betaine may exert its inhibitory function by preferentially interacting with, and thus stabilizing, the inactivated state of MpGSMT. Given the assumption that the MpGSMT structure determined in this study may represent a functionally inactivated form of the enzyme, we tested whether this structure may possess a betaine binding site by soaking the crystals in a substituted mother liquor containing 1.7 M betaine. The use of such a high concentration of betaine for soaking is physiologically justifiable because upon hyperosmotic shock, betaine-mediated feedback inhibition only engages when its intracellular level approaches approximately 1 M; betaine concentrations as high as 2 M are needed to completely abolish MpGSMT activity. An unbiased Fo–Fc omit map calculated after initial refinement cycles, using a data set collected from a betaine-soaked crystal with just the protein as the source of phases, clearly shows the extra density, which can be readily interpreted as a bound betaine molecule. This result demonstrates that the observed betaine-binding pocket not only supports our hypothesis that the observed betaine-binding pocket is composed of residues from the H1 helix (Asp35), H1–H2 loop (Ile38, Asp39), H2 helix (Trp40), and αB helix (Asn100, His104) (Fig. 3b). Remarkably, whereas the MpGSMT-sarcosine-SA-H structure shows that the carboxyl group of the active site-bound sarcosine is extensively involved in the mediation of the enzyme-substrate interaction, no significant interaction was observed between the carboxyl group of betaine and surrounding residues. The bound betaine is mainly stabilized via van der Waals interactions with surrounding residues and the formation of a unique cation–π interaction between the positively charged trimethylated amino group and the indole sidechain of Trp40. A similar charge- aromatic ring interaction was also reported in the structures of betaine transporters. The lack of engagement with the carboxyl group suggests that betaine binds only weakly to this pocket and explains why inhibition of MpGSMT activity requires a high concentration of betaine. Although the affinity between betaine and MpGSMT appears weak, the interaction is nevertheless highly specific, as no secondary sites were observed despite the high betaine concentration. The functional significance of the observed betaine-binding pocket is also implicated by the finding that the key interacting residues (Asp35, Trp40, Asn100) are highly conserved among the GSMTs but not among the closely related GNMTs. This suggests that GSMT has evolved to respond to betaine.

Asn100 and His104, two of the residues that constitute the betaine-binding pocket, were mutated to Gln and Lys, respectively, to produce MpGSMTN100Q and MpGSMTH104K for further examining the functional relevance of the observed betaine-binding pocket. Compared to the wild-type enzyme, MpGSMTN100Q and MpGSMTH104K exhibited increased sensitivity to betaine. It is possible that the longer, positively charged side-chain of Lys enhances betaine-mediated inhibition by interacting with the carboxyl group of betaine. However, MpGSMTN100Q displayed a decreased response to betaine, likely due to the presence of steric clashes between betaine and the longer Gln side-chain. Nevertheless, the effects of the Asn100 mutation must be interpreted with caution, as this residue appears to serve an important role in cofactor binding by forming hydrogen bonds with the Thr70 of the glycine rich motif. The activity of MpGSMTN100Q is significantly lower than the wild-type enzyme. Nevertheless, it appears that both residues are involved in the betaine-mediated regulation of MpGSMT. Because most betaine-interacting elements are located within the N-terminal region of MpGSMT, it is likely that the movement of this region is restricted upon betaine-binding and traps the enzyme in the inactivated state. The successful identification of a specific betaine-binding site not only supports our hypothesis that the observed MpGSMT structure represents a physiologically relevant, inactivated state of the enzyme but also implicates the structural basis by which betaine inhibits MpGSMT function.

Structural modeling of MpGSMT in its catalytically active state. To provide structural information for MpGSMT in its catalytically active form, we performed an extensive screen of crystallization conditions in conjunction with different combinations of ligands (substrates, products, and cofactors in various concentrations) to identify the distinct conditions under which MpGSMT crystals can be produced. However, diffraction analysis revealed that all these MpGSMT crystals were isomorphous with the initial crystals of the MpGSMT-sarcosine-SA-H complex (Table 1), with the same space group and unit cell parameters. That is, all the newly determined structures corresponded to the inactivated state. This result suggests that it will be challenging to crystallize MpGSMT in the active conformation for structural analysis, possibly because the inactivated form is relatively stable and abundantly populated in solution. Therefore, the crystal structure of GNMT complexed with acetate and SAM (PDBid: 1NBH), which has been used to elucidate the catalytic mechanism of GNMT and shares significant sequence identity (28.6%) and structural similarity (DALI Z-score 26.2) with MpGSMT, was used as a template to build a homology model for an alternative conformational state of MpGSMT that could correspond to the active form.

Guided by the locations of bound acetate and SAM in the GNMT template structure, which occupy the substrate and cofactor binding pocket, respectively, the substrate (either glycine or sarcosine) and SAM were readily docked into the homology model to generate a hypothetical model for the MpGSMT-substrate-cofactor ternary complex (Fig. 4). Compared to the inactive MpGSMT, the H1 helix of N-terminal region undergoes a helix-to-loop transition and moves towards the bound substrate and cofactor. This conformational change
brings additional residues into contact with the substrate and cofactor to shield the active site from bulk solvent. Moreover, a channel is assembled between the amino group of the substrate and the methyl group of SAM; the channel walls are lined by triagonally arranged oxygen atoms (the phenolic oxygen atoms of Tyr26 and Tyr185 and the main-chain carbonyl oxygen of Asn134) (Fig. 5). These three electronegative oxygen atoms may facilitate catalysis by defining the pathway of methyl transfer and stabilizing the developing partial positive charges on the three methyl hydrogens during the reaction.

Figure 3. Identification of the betaine-binding site in MpGSMT. (a) Electron density map of bound betaine. As shown in the unbiased \(F_{o} - D_{c} \) map (blue mesh) contoured at 2.0 \(\sigma \), the positions of all non-hydrogen atoms of betaine are well defined. The bound betaine is stabilized by polar, van der Waals, and cation-π interactions. The distances between the C2 and C3 atoms of betaine and the Cδ2, Cε2, Nε1, and Cδ1 atoms of the indole ring of Trp40 are C2-Nε1: 3.5 Å; C2-Cδ1: 3.6 Å; C3-Cδ2: 3.4 Å; C3-Cε2: 3.5 Å, and the relative orientation between the positively charged quaternary amine and aromatic system fit the criteria for cation-π interaction. (b) Electrostatic surface representation of the betaine-binding site. The positively and negatively charged regions are in blue and red, respectively. The helices H1, H2, and αB are shown in cartoon. (c) Structural alignment of MpGSMT-betaine (green) with MpGSMT-sarcosine-SAH (cyan) shows that a betaine binding site is present in the inactive form of MpGSMT and that betaine fits snugly in the binding pocket without affecting the conformation of surrounding residues. Hydrogen bonds between the carboxyl group of betaine with the main-chain amide nitrogen of Trp40 and a water molecule (red filled circle) are displayed as red dashed lines. Betaine and selected residues are shown in thick and thin sticks, respectively.
Consistent with the proposed catalytic roles of Tyr26 and Tyr185, the Tyr26→Phe and Tyr185→Phe mutant enzymes exhibited 74- and 5-fold reduction in specific activity, respectively (Fig. 6a). The more pronounced functional impact of Tyr26→Phe may be explained by the modeling-based prediction that the phenolic oxygen of Tyr26 is also properly positioned to stabilize the sulfonium group of SAM (Fig. 5c), an interaction known to facilitate methyl transfer reactions. It should also be noted that the distance between the methyl-accepting nitrogen and the methyl carbon is shortened from approximately 3.7 Å in the inactivated state to approximately 2.7 Å in the homology model. This value is comparable to those seen in the structures of other SAM-dependent N-methyltransferases in their active forms. Together, these results indicate that the modeled conformational state of MpGSMT indeed harbors the structural features expected for the catalytically active MpGSMT and can be used to successfully predict the role of certain residues in catalysis.

Disruption of the H1 helix increases MpGSMT activity. To further test whether the functional switching of MpGSMT from the inactivated into active state requires a helix-to-loop transition of the H1 helix of the N-terminal region (Fig. 4), we examined whether reducing the stability of the H1 helix could enhance MpGSMT activity by lowering the threshold of the conformational change. Four residues in the H1 helix (His21, Glu23, Glu24, and Leu28) were mutated to glycine, threonine, asparagine, and serine, respectively. These amino acids are present in other members of the GSMT family or conserved in the GNMT family (lower panel).

Figure 4. Comparison of MpGSMT-sarcosine-SAH crystal structure and a homology model of MpGSMT constructed using the GNMT-acetate-SAM structure as a template. In the experimentally determined MpGSMT-sarcosine-SAH structure (upper left panel), which adopts a catalytically inactive conformation, the H1 helix is composed of four complete helical turns. In contrast, the corresponding region (red arrowhead) exists as a loop in the modeled, active form of MpGSMT (upper right panel). A key difference between the two structures is that Tyr26 is solvent-exposed in the crystal structure but points towards the cofactor and substrate (green sticks) and becomes an integral part of the active site. The polypeptide segment from His21 to Leu28 (highlighted in scarlet) was chosen for introducing helix-destabilizing mutations. Specifically, residues His21, Glu23, Glu24, and Leu28 were mutated to glycine, threonine, asparagine, and serine, respectively. These amino acids are present in other members of the GSMT family or conserved in the GNMT family (lower panel).
Glu24, Lys28) show a high propensity for helix formation and are not directly located in the active site (Figs 2c and 5c). These residues were mutated to amino acids with considerably lower helical propensity (Gly, Thr, Asn and Ser, respectively) to give a tetramutated \(M_p \)GSMT\(_{4}^{\text{mut}} \). We chose to use the tetramutant rather than single mutants because simultaneous incorporation of four mutations would be a more effective design to disrupt an \(\alpha \)-helix. This approach is considered valid because only a gain-of-function phenotype would allow us to draw a conclusion. It should be noted that none of the four mutation sites are conserved and all four were replaced by residues found in other members of the GSMT family or conserved in the GNMT family. Therefore, the structural integrity of the enzyme should not be significantly affected by our mutant design. Indeed, \(M_p \)GSMT\(_{4}^{\text{mut}} \) was abundantly expressed and purified to homogeneity, and the crystal structure of \(M_p \)GSMT\(_{4}^{\text{mut}} \) was essentially identical to the wild-type enzyme, except that the N-terminus of H1 helix prior to residue Glu25 underwent a helix-to-loop transition (Supplementary Fig. S6). Consistent with our assumption, the introduction of helix-destabilizing mutations increased the activity by 2.36-fold compared to wild-type \(M_p \)GSMT (Fig. 6b),

Figure 5. Surface representation showing structural differences of the active site between the two conformational states of \(M_p \)GSMT. (a) In the GNMT structure (PDBid: 1NBH), the estimated N-C distance is approximately 2.6 Å (left panel), and a narrow channel connects the methyl group and the substrate with three electronegative oxygen atoms from Tyr21, N138 and Tyr194 lining the channel wall (right panel). These structural features are expected to facilitate the methyl transfer reaction. (b) A 3.7 Å N-C distance was observed in the crystal structure of \(M_p \)GSMT-sarcosine-SAM (left panel). Because H1 helix, which carries Tyr26 and Trp34, points away from the core domain, only one electronegative group (the main-chain carbonyl group of Asn134) is present in the active site (right panel) and the channel that links the substrate and the methyl group is not present, suggesting that this structure likely reflects a catalytically inactive state for \(M_p \)GSMT. (c) In the \(M_p \)GSMT structure modeled using GNMT (PDBid: 1NBH; panel (a)) as the template, the N-C distance shortens to 2.7 Å (left panel), and a channel lined by three oxygen atoms from Tyr26, N134 and Tyr185 is formed between the methyl group and substrate (right panel). A helix-to-loop transition of the H1 helix allows Tyr26 and Trp34 to enter and complete the assembly of the active site, indicating that the modeled structure may represent \(M_p \)GSMT in its active conformation.
betaine, we suspected that the observed structural state of GSMTY26F and GSMTY185F are 74-fold and 5-fold lower than wild-type GSMT, respectively. Reactions were performed in a mixture containing 1 mM SAM, 2 M KCl, and 0.2 M glycine. (b) The GSMT activity is 2.36-fold higher than wild-type GSMT under a low-salt (0.1 M KCl) condition containing 1 mM SAM and 0.15 M glycine. All data represent the mean ± standard deviation from three independent experiments. Statistically significant differences are indicated by asterisks (Student’s t-test, ***p < 0.001).

suggesting that the presence of the H1 helix may be indicative of the catalytically inactivated enzyme and that enzyme activation can be triggered by a conformational change involving the disruption of this helix.

Discussion

In this work, we report the crystal structures of GSMT, which represents the first structural elucidation of the GSMT family of methyltransferases. Interestingly, despite the simultaneous presence of both substrate (sarcosine) and cofactor (SAH) in the structure, the enzyme appears to adopt a catalytically inactivated conformation. Additional structural changes were required to complete the active site assembly (Fig. 2). The validity of this hypothesis is backed by the finding that crystals of GSMT-sarcosine-SAH ternary complex can be prepared without triggering the methyl transfer (Fig. 5b). Given that GSMT is subjected to feedback inhibition by betaine, we suspected that the observed structural state of GSMT may harbor a betaine-binding site if this structure indeed corresponds to a functionally relevant, inactive form of the enzyme. The successful identification of a betaine-binding pocket composed of residues conserved in the GSMT family provides additional support for our interpretation (Fig. 3). Next, to understand how GSMT may switch from an inactive state to an active form, a homology model of activated GSMT was constructed (Fig. 4) and validated by mutagenesis (Fig. 6). By comparing the crystal structure of the inactivated state and the experimentally tested homology model of the activated state, we obtained new insights into the structural basis by which regulation of GSMT activity is achieved.

First, structural comparison revealed that the activation of GSMT likely involves a conformational change in the N-terminal region, because residues 21–37 form an H1 helix in the inactive state. These residues are predicted to undergo a helix-to-loop transition upon activation (Fig. 4). This hypothesis is consistent with the finding that GSMT activity can be enhanced when helix-disrupting mutations are introduced into the H1 helix (Fig. 6), which favors conversion to the activated state. Our structural analysis also shows that the H1 helix is an integral part of the betaine-binding pocket (Fig. 3). Thus, the presence of betaine is expected to inhibit catalysis by stabilizing the H1 helix against structural transition. As the betaine-binding pocket is present only in the inactive state, due to structural changes in the H1 helix and rearrangement of the betaine-interacting residues (Fig. 3), we speculate that betaine exerts its inhibitory function by binding to and arresting GSMT in the inactive state. An extensive survey of the structures of class I methyltransferases currently available in the Protein Data Bank revealed that the N-terminal regions may exist as a loop, β-strand or α-helix. Although no apparent correlation was observed between the intrinsic methyltransferase activity and the structure adopted by the respective N-terminal region, the observed structure-activity connection of GSMT nevertheless suggests that the activity of methyltransferases may be regulated by controlling the threshold of active-site assembly.

Although GNMT and GSMT share a high degree of sequence and structural similarity, a major difference between the two is that GNMT only acts on glycine, whereas GSMT can methylate both glycine and sarcosine. Comparing the GNMT structure with the GSMT model revealed that the substrate-binding site of GSMT is considerably more spacious (Supplementary Fig. S7). Either glycine or sarcosine can be snugly placed into the GSMT active site without inducing steric conflict. The extra methyl group of sarcosine can be accommodated in a side pocket and forms favorable van der Waals interactions with His138 and Met218. In contrast, steric clashes between the methyl group and surrounding residues were observed when sarcosine was modeled in the GNMT active site. Our modeling analysis suggests that differences in shape and volume between the active sites of GNMT and GSMT may explain their distinct substrate specificity. The following similar conclusions have been drawn from structural studies of the histone lysine methyltransferases53,54; those capable of catalyzing consecutive
rounds of methylation, such as human lysine methyltransferase SET7/9 and a viral histone H3 lysine 27 methyltransferase, are known to possess a larger pocket that allows the binding of either mono- or dimethyllysine.

In conclusion, we report here the first crystal structure of a GSMT methyltransferase family member. In addition, we provide structural and functional evidence that the observed conformational state represents MpGSMT in a catalytically inactivated form. Most importantly, we determined the crystal structure of the MpGSMT-betaine binary complex. This structure offers the first visualization of a biosynthetic methyltransferase in complex with a bona fide feedback inhibitor, that is, the end product of the corresponding biosynthesis pathway. Taken together, this work reveals structural insights into GSMT function and suggests a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved.

Methods

Protein preparation. The construction of an expression plasmid for producing full-length MpGSMT (residues 1–263) with a N-terminal His-tag was described previously. QuikChange™ mutagenesis method (Stratagene) was applied to this vector to allow the production of two MpGSMT mutants: MpGSMTT42S and MpGSMTT118F. The wild-type and mutant proteins were produced in E. coli strain BL21-CodonPlus(DE3)-RIIICam™. Briefly, single colonies were inoculated into LB medium containing 50 μg/ml kanamycin and 34 μg/ml chloramphenicol, cells were grown at 37 °C until OD₆₀₀ reached ~0.6. Protein expression was induced by adding isopropyl-β-D-thiogalactopyranoside to a final concentration of 1.0 mM, and culture was shifted to 30 °C and grown for another 20 hours. The cells were harvested by centrifugation and stored at −80 °C until further use. For protein purification, the cell pellet from 1 liter of culture was resuspended in 10 ml of buffer A (50 mM Tris-HCl pH 7.5, 300 mM KCl, 0.5 mM PMSF, 1 mM β-mercaptoethanol). Following cell disruption by sonication, the crude cell lysate was clarified by centrifugation at 27,216 × g for 1 hour (repeat 3 times) at 4 °C and loaded onto a pre-equilibrated Ni-NTA column. The column was washed with ten column volumes of buffer A and a step-wise increasing of imidazole concentration from 0.1 M to 5 M were used to remove contaminating proteins. The bound MpGSMT was eluted using buffers containing 150 mM and 300 mM imidazole. Fractions containing MpGSMT were pooled and concentrated using an Amicon Ultra device (Millipore; 30 KDa cutoff) and then loaded on to a 16/60 Superdex-200 size-exclusion column (GE Healthcare) pre-equilibrated in gel-filtration buffer (100 mM TES pH 7.3, 2.0 M KCl, 1.0 mM EDTA, 1.0 mM β-mercaptoethanol). The peak fractions containing MpGSMT were pooled and concentrated by ultrafiltration to 6.6 mg/ml for crystallization.

Protein crystallization, Data collection and structural determination. Initial crystallization trials were performed with commercially available kits (Hampton Research) using the hanging-drop vapor-diffusion method. To obtain the crystals of MpGSMT-sarcosine-SAHTernary complex, purified MpGSMT (6.6 mg/ml) was first incubated with 0.1 mM SAH and 0.2 M sarcosine on ice overnight, followed by mixing 1.0 μl of the protein sample with 1.0 μl of reservoir solution containing 0.1 M Tris-HCl pH 8.0, 1.5 M sodium chloride and equilibrated at 4 °C against 200 μl of reservoir solution. The crystals can be obtained in ~3–4 weeks. Before freezing, the crystals were transferred into 20 μl of substitute mother liquor containing 0.1 M TES pH 8.0, 1.8 M NaCl, 0.51 M sarcosine, 0.1 mM SAH and 25% ethylene glycol for 48 hours, and flash-frozen by plunging into liquid nitrogen. Crystals of the MpGSMT-SAM binary complex were prepared by transferring the MpGSMT-sarcosine-SAHTernary complex crystals into a substitute mother liquor 0.2 M potassium sodium tartrate tetrahydrate, 23% (w/v) polyethylene glycol 3350, 2 mM SAM and 25% ethylene glycol for 48 hours. Crystals of the MpGSMT-sarcosine-SAM ternary complex were prepared by transferring the MpGSMT-SAM binary complex crystals into a substitute mother liquor 0.2 M potassium sodium tartrate tetrahydrate, 23% (w/v) polyethylene glycol 3350, 2 mM SAM and 25% ethylene glycol for 48 hours. Crystals of the MpGSMT-sarcosine-SAM ternary complex were prepared by transferring the MpGSMT-SAM binary complex crystals into a substitute mother liquor 0.2 M potassium sodium tartrate tetrahydrate, 23% (w/v) polyethylene glycol 3350, 0.685 M sarcosine, 2 mM SAM and 25% ethylene glycol for 48 hours. Crystals of the both MpGSMT-SAM and MpGSMT-sarcosine SAM were looped directly from the respective substitute mother liquor and harvested by plunging into liquid nitrogen. To obtain the crystals of betaine-bound MpGSMT, 1.0 μl of purified MpGSMT (6.6 mg/ml) was mixed with 1.0 μl of reservoir solution containing 0.2 M potassium sodium tartrate tetrahydrate, 20% (w/v) polyethylene glycol 3350, 3.35 M equilibrated at 4 °C against 200 μl of reservoir solution. Single crystals can be obtained in ~3–4 weeks. Before freezing, 1.0 μl of 5.0 M betaine was added into the crystallization drop and incubated for ~3 hours at 4 °C, and the betaine-soaked crystals were frozen in liquid nitrogen using Parabar 10312 (Hampton research) as the cryoprotectant. Specifically, these crystals were transferred to a drop of Parabar 10312 and the residual liquid which surrounded the crystal was removed with the CryoLoop, flash-frozen was achieved by plunging into liquid nitrogen. To obtain the crystals of MpGSMTF42M (H21G, E23T, E24N, L28S), purified MpGSMT (6.6 mg/ml) was first incubated with 0.1 mM SAH and 0.1 M glycine on ice overnight, followed by mixing 2 μl of the protein sample with 2 μl of reservoir solution containing 0.2 M potassium sodium tartrate tetrahydrate, 20% (w/v) polyethylene glycol 3350 and equilibrated at 4 °C against 200 μl of reservoir solution. Single crystals can be obtained in ~3–4 weeks. Before freezing, 1.0 μl of 5.0 M betaine was added into the crystallization drop and incubated for ~3 hours at 4 °C, and the betaine-soaked crystals were frozen in liquid nitrogen using Parabar 10312 (Hampton research) as the cryoprotectant. Specifically, these crystals were transferred to a drop of Parabar 10312 and the residual liquid which surrounded the crystal was removed with the CryoLoop, flash-frozen was achieved by plunging into liquid nitrogen. To obtain the crystals of MpGSMTY20M (H21G, E23T, E24N, L28S), purified MpGSMT (6.6 mg/ml) was first incubated with 0.1 mM SAH and 0.2 M glycine on ice overnight, followed by mixing 1.0 μl of the protein sample with 1.0 μl of reservoir solution containing 0.2 M ammonia phosphate monobasic. Before freezing, the crystals were transferred into 20 μl of substitute mother liquor containing 0.23 M ammonia phosphate monobasic, 0.1 mM SAH and 3.35 M betaine as the cryoprotectant for 24 hours, and flash-frozen by plunging into liquid nitrogen. X-ray diffraction data sets were collected at NSRRC beamlines BL15A1 and BL13C1 (Hsinchu, Taiwan) and SPring8 beamline BL22B2 (Japan) and processed using the HKL2000 program suite. The MpGSMT-sarcosine-SAHTernary structure was solved by molecular replacement using the rat GNTM structure (PDBeid: 1XVA) as the search model. The MR-phased initial structure model was improved by the AutoBuild module of Phenoix followed by rounds of manual adjustment and refinement using Coot and Phenix. The MpGSMT-sarcosine-SAM structure was then used as the search model to solve the MpGSMT-SAM, MpGSMT-sarcosine-SAM, MpGSMT-betaine and MpGSMTF42M (H21G, E23T, E24N, L28S) structures. In all cases, the initial mFo-DF difference electron density maps allow the bound ligands (sarcosine, SAH, SAM, betaine) to be located and precisely positioned using Coot. The structures then underwent rounds of manual model rebuilding and refinement using Coot and Phenix. Data collection and refinement statistics were summarized in Table 1. All figures were generated using PyMOL.
Homology modeling of the active form of MpGSMT. To identify a suitable template for modeling, the crystal structure of MpGSMT from the rat liver was used for a DALI structural similarity search. The structure of rat liver GNMT complex in complex with the cofactor (SAM) and inhibitor (acetate) for a catalytically active conformation. Sequence alignment and homology modeling were performed by Accelrys Discovery Studio (Accelrys Software Inc.). SAM and acetate were placed into the homology model of MpGSMT by transferring the atomic coordinates of the ligands after superimposing the active site of GNMT.

Introducing mutations that destabilize helix H1 into MpGSMT. The H1-helix destabilizing mutations (H21G/E23T/E24N/L28S) were introduced into the MpGSMT gene by SOE (Splicing by Overlap Extension) method. The primers used for mutagenesis were synthesized by the manufacturer’s suggestion. Each reaction mixture (143.5 μL) contains 7 μL of enzyme, 150 μM glycine, 1 mM SAM, 0.1 M KCl, and 100.5 μL of the master mix. The reaction was followed using a microplate spectrophotometer (PowerWave, BioTek Instruments, Inc., USA) to monitor the absorbance change at 510 nm under 37 °C. Absorbance of the reaction mixture was recorded every minute for a total of 1 hour. A radioactivity-based assay described previously was used to measure the activities of MpGSMTY26F and MgGSMT.

Statistical analysis. Data obtained in this study were examined with Student’s t-test in SigmaPlot. Confidence levels of Student’s t-tests were depicted in the graph, three asterisks indicating p < 0.001.

References
1. Ahn, H. J. et al. Crystal structure of RNAi methyltransferase: insights into RNA recognition. EMBO J. 22, 2593–2603, doi: 10.1093/emboj/cdg209 (2003).
2. Wang, K. T., Xu, X. & Nakamura, Y. Structure of the bifunctional methytransferase YcBM (YcBM) that adds the m7G2G69 and m2G2G45 modifications to Escherichia coli tRNA. Nucleic Acids Res. 40, 5138–5148, doi: 10.1093/nar/gks160 (2012).
3. Chittka, A., Nitarska, I., Grazini, U. & Richardson, W. D. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J. Biol. Chem. 287, 42995–43006, doi: 10.1074/jbc.M111.292746 (2012).
4. Zakrzewicz, D., Zakrzewicz, A., Preissner, K. T., Markart, P. & Wygrecka, M. Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int. J. Mol. Sci. 13, 12383–12400, doi: 10.3390/ijms131212383 (2012).
5. Nicholson, T. B., Chen, T. & Richard, S. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharm. Res. 40, 465–475, doi: 10.1007/j.phrs.2009.07.006 (2009).
6. Robin-Lespinasse, Y. et al. HCA1, a new regulator of PRMT1-dependent arginine methylation. J. Cell Sci. 120, 638–647, doi: 10.1242/jcs.03357 (2007).
7. Drinkwater, N. et al. Molecular recognition of physiological substrate noradrenaline by the adrenaline-synthesizing enzyme PNMT and factors influencing its methytransferase activity. Biochem. J. 422, 463–471, doi: 10.1042/BJ20090702 (2009).
8. Horton, J. R., Sawada, K., Nishibori, M., Zhang, X. & Cheng, X. Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure 9, 837–849 (2001).
9. Moskovitz, I., Weiss, C., Cruz, D. A., Thompson, P. M. & Bortolato, M. Methionine sulfoxide reductase regulates breast cancer cell O-methyl transferase activity. Int. J. Neuropsychopharmacol. 17, 1707–1713, doi: 10.1177/S1461145714000467 (2014).
10. Perry, J. J. et al. Human C6orf211 encodes Armt1, a protein carboxyl methyltransferase that targets PCNA and is linked to the DNA damage response. Cell Reports 10, 1288–1296, doi: 10.1016/j.celrep.2015.01.054 (2015).
11. Higashimoto, K., Kuhn, P., Desai, D., Cheng, X. & Xu, W. Phosphorylation-mediated inactivation of coactivator-associated arginine methylation. Proc. Natl. Acad. Sci. (USA) 104, 12318–12323, doi: 10.1073/pnas.0610970104 (2007).
12. Shamma, A. et al. ATM mediates p53-BF function to control DNMT1 protein stability and DNA methylation. Mol. Cell. Biol. 31, 3113–3124, doi: 10.1128/MCB.01597-12 (2013).
13. Deplus, R. et al. Citrullination of DNMT3A by PAD4 regulates its stability and controls DNA methylation. Nucleic Acids Res. 42, 8285–8296, doi: 10.1093/nar/gks522 (2014).
14. Yeo, E. J., Briggs, W. T. & Wagner, C. Inhibition of glycine N-methyltransferase by 5-methyltetrahydrofolate pentaglutamate. J. Biol. Chem. 274, 37559–37564 (1999).
15. Télhívets, O., Malanovic, N., Visram, M., Pavkov-Keller, T. & Keller, W. S-adenosyl-L-homocysteine hydrolysis and methylation disorders: yeast as a model system. Biochem. Biophys. Acta 1832, 204–215, doi: 10.1016/j.bbadis.2012.09.007 (2013).
16. Mudd, S. H. & Datko, A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in U. Plant Physiol. 90, 296–305 (1989).
17. Sato, F., Tsujita, T., Katagiri, Y., Yoshida, S. & Yamada, Y. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. Euk. J. Biochem. FEBS 225, 125–131 (1994).
18. Muth, W. L. & Nash, C. H. 3rd. Biosynthesis of mycophenolic acid: purification and characterization of S-adenosyl-L-methionine: demethylymphoperoxidase O-methyltransferase. Antimicrob. Agents Chemother. 8, 321–327 (1975).
19. Danne, L. et al. Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Mol. Microbiol. 95, 313–331, doi: 10.1111/mmi.12870 (2015).

20. Lai, M. C., Yang, D. R. & Chuang, M. J. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Environ. Microbiol. 65, 828–833 (1999).

21. Lai, M. C., Hong, T. Y. & Gunsalus, R. P. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J. Bacteriol. 182, 5020–5024, doi: 10.1128/JB.182.17.5020-5024.2000 (2000).

22. Lai, M. C., Wang, C. C., Chuang, M. J., Wu, Y. C. & Lee, Y. C. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157, 948–955, doi: 10.1016/j.resmic.2006.08.007 (2006).

23. Rowling, M. J., McMullen, M. H., Chipman, D. C. & Schalinske, K. L. Hepatic glycine N-methyltransferase is up-regulated by excess dietary methionine in rats. J. Nutri. 132, 2545–2550 (2002).

24. Luka, Z., Pakhomova, S., Loukachevitch, L. V., Newcomer, M. E. & Wagner, C. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by S-methyltetrahydrofolate. Biochim. Biophys. Acta 1824, 286–291, doi: 10.1016/j.bbabap.2011.10.002 (2012).

25. Lai, S. J. & Lai, M. C. Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from the halophilic methanoarchaeon Methanohalophilus portucalensis. PLoS One 6, e25090, doi: 10.1371/journal.pone.0025090 (2011).

26. Martin, J. L. & McMillan, F. M. SAM (dependent) 1 A-M: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12, 783–789, doi: S0959440X02003913 [pii] (2002).

27. Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. J. Biol. Chem. 282, 4069–4075, doi: 10.1074/jbc.M601384200 (2007).

28. Liscombe, D. K., Louie, G. V. & Noel, J. P. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Struct. Mol. Biol. 24, 181–200, doi: 10.1016/j.str.2007.01.009 (2007).

29. Ziegler, C. & Perez, C. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126–130, doi: 10.1038/nature11403 (2012).

30. Nieman, K. M., Rowling, M. J., Garrow, T. A. & Schalinske, K. L. Modulation of methyl group metabolism by streptozotocin-induced dietary methionine in rats. J. Biol. Chem. 279, 45708–45712, doi: 10.1016/j.jbc.M40666420 (2004).

31. Komoto, J. et al. Catalytic mechanism of guanidinoacetate methyltransferase: crystal structures of guanidinoacetate methyltransferase and its complexes with inhibitors. J. Biol. Chem. 278, 4913–4925, doi: 10.1038/sj.emboj.7601912 (2007).

32. Peng, Y. & Waditee, R. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. J. Biol. Chem. 285, 4114–4127, doi: 10.1128/jbc.077578 (2010).

33. Jeong, J. H., Cha, H. J., Ha, S. C., Rojviriya, C. & Kim, Y. G. Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis. Biochemistry 47, 567–577, doi: 10.1021/bi961068n (1996).

34. Lu, C. et al. Catalytic mechanism of transport and regulation in the betaine transporter BetP. EMBO J. 26, 4913–4925, doi: 10.1038/sj.emboj.7601912 (2007).

35. Peng, Y. & Waditee, R. Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Biochemistry 43, 1957–1964, doi: 10.1016/j.bbabap.2011.07.023 (2012).

36. Peng, Y. & Waditee, R. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Plant Cell 22, 4913–4925, doi: 10.1038/sj.emboj.7601912 (2007).

37. Peng, Y. & Waditee, R. Structural basis of substrate recognition in thiopurine-s-methyltransferase. Biochemistry 47, 6216–6225, doi: 10.1021/bi800102b (2008).

38. Peng, Y. et al. Structural basis of substrate recognition in human nicotinamide N-methyltransferase. Biochemistry 50, 7800–7808, doi: 10.1021/bi1007614 (2011).

39. Lee, S. G., Kim, Y., Alpert, T. D., Nagata, A. & Jez, J. M. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: an antiparasitic drug target. J. Biol. Chem. 287, 1426–1434, doi: 10.1074/jbc.M308225200 (2012).

40. Perez, C., Koshy, C., Yildiz, O. & Ziegler, C. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126–130, doi: 10.1038/nature11403 (2012).

41. Resl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na(+)-betaine symporter BetP. Nature 458, 47–52, doi: 10.1038/nature07819 (2009).

42. Schieferer, A. et al. Cation–pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein PrnX from Escherichia coli. J. Biol. Chem. 279, 5588–5596, doi: 10.1074/jbc.M309771200 (2004).

43. Del Rizzo, P. A. et al. SET7/9 catalytic mutants reveal the role of active site water molecules in lysine multiple methylation. J. Biol. Chem. 285, 31849–31858, doi: 10.1074/jbc.M111.315267 (2012).

44. Othowicz, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A 276, 307–326, doi: 10.1007/s00679(07)76066-X (1997).
56. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D, Biol. Crystallogr. 66, 213–221, doi: 10.1107/S0907444909052925 (2010).
57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D, Biol. Crystallogr. 60, 2126–2132, doi: 10.1107/S0907444904019158 (2004).
58. Schroeder, M. C. The PyMOL Molecular Graphics System, Version 1.3r1. (2010).
59. Matsumura, I. A quarter century of reaping what we SOE. BioTech. 54, 127–128, doi: 10.2144/000114001 (2013).

Acknowledgements

Portions of this research were carried out at beamlines 15A1 and 13C1 of the National Synchrotron Radiation Research Center (Taiwan) and beamline SP12B2 of the SPring-8 (Japan). We are grateful to the staffs of Technology Commons in College of Life Science and Center for Systems Biology and the First Core Lab of the College of Medicine, National Taiwan University. This work was supported by the Ministry of Science and Technology (NSC101-2911-I-002-303, 103-2113-M-002-010-MY3, 104-2911-I-002-302), National Taiwan University (104R7614-3 and 104R7560-4), and Ministry of Education, Taiwan ROC, under the ATU plan to NLC (National Chung Hsing University).

Author Contributions

Y.-R.L., T.-S.L., S.-J.L., M.-S.L., and N.-L.C. designed research; Y.-R.L., T.-S.L., S.-J.L., M.-S.L., and N.-L.C. performed research; Y.-R.L., T.-S.L., S.-J.L., M.-S.L., and N.-L.C. analyzed data; and Y.-R.L., M.-C.L. and N.-L.C. wrote the paper. All authors reviewed the manuscript.

Additional Information

Accession codes: The crystal structures of MpGSMT-sarcosine-SAH, MpGSMT-SAM, MpGSMT-sarcosine-SAM, MpGSMT-betaine, and MpGSMT4 Mut(H21G, E23T, E24N, L28S) have been deposited in wwPDB under accession codes 5HIL, 5HIK, 5GWX, 5HIJ, and 5H02, respectively.

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lee, Y.-R. et al. Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity. Sci. Rep. 6, 38071; doi: 10.1038/srep38071 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016