New Concept for FES-Induced Movements

Mohammed Ahmed1,2,3, M. S. Huq1,2, B. S. K. K. Ibrahim1,2, Aisha Ahmed4 and Zainab Ahmed4

1Department Mechatronic and Robotic Engineering, Faculty of Electrical and Electronic Engineering (FKEE), Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia

2Advance Mechatronic Research Group (AdMiRe), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia

3Department of Electrical and Electronics Engineering, Faculty of Engineering and Engineering Technology (FEET), Abubakar Tafawa Balewa University (ATBU), P. M. B. 0248 Bauchi, Bauchi State, Nigeria

4Department of Biological Sciences, Faculty of Science (FS), Abubakar Tafawa Balewa University (ATBU), P. M. B. 0248 Bauchi, Bauchi State, Nigeria

inunugoloma@yahoo.com

Abstract. Functional Electrical Stimulation (FES) had become a viable option for movement restoration, therapy and rehabilitation in neurologically impaired subjects. Although the number of such subjects increase globally but only few orthosis devices combine with the technique are available and are costly. A factor resulting to this could be stringent requirement for such devices to have passed clinical acceptance. In that regard a new approach which utilize the patient wheelchair as support and also a novel control system to synchronize the stimulation such that the movement is accomplished safely was proposed. It is expected to improve well-being, social integration, independence, cost, and healthcare delivery.

1. Introduction

Over the years, electrical stimulation have been used for alleviation of pains, healing of wounds and training of skeletal muscles. Functional Electrical Stimulation (FES) which is the application of electric current with certain behaviors in order to regain functional abilities lost due to trauma ailment or tragedy.

FES has numerous applications some of which include: in remedy of loss in urine control, in hearing restoration, in viewing disorders and in alleviating or solving problems of moving the parts of the body. In human body joint movements suitable FES signals are applied to the appropriate muscles via electrodes mounted on them. It could be internal or external which are technically known as implant or surface mount respectively [1, 2]. FES is currently used as assistant to facilitate the restoration of movement, rehabilitation and for therapy.
Most of existing control systems for the lower limb FES applications were open loop. Enhancement of performance and safety makes the closed loop worth exploring [3-5]. Additional reasons are due to few available FES devices and significant rise in number of patients (www.cms.gov/medicare-coverage-database/details/Decision-Memo-for-Neuromuscular-Electrical-Stimulation-(NMES)-for-Spinal-Cord-Injury-(CAG-00153R))[6]. Fatigue is the incapacitation of muscles to generate enough contraction and may be as results activities engaged or sickness (either of nervous system or metabolism [7-12]. Muscles that are artificially stimulated fatigue at higher rates [9, 13-19], giving rise to a significant factor due to the nonlinear nature of the neuromuscular plant [20, 21] and difficulty when applying FES. Others are delay in response of nervous systems, spasm, tremors etc. Fatigue could be reduced with closed loop control systems [22, 23] with acceptable limit of adaptation ability and robustness [24, 25]. Using feedback with predictive control can also be used [26, 27] for the task. Retuning the controller for each individual and evaluations on the extents of stability add up to the challenges. And finding solutions is strongly linked to leading to passage of clinical trials, which eventually could facilitate the availability of more devices [22, 28-33]. A novel hybrid sliding mode wavelet neural network controller would be explored due to robustness showed by the sliding mode control technique as shown in literature. Due to the performance of wavelet neural networks [34-37], it is expected that it could be harnessed suppression of major shortcoming associated with the sliding mode control technique and also improved robustness and adaptation, hence the possibility of reducing the retuning burden as well as smoothening the switching process of the controller which worsen the issue of fatigue.

A new approach for the FES-assisted sit-to-stand movement would be proposed for paraplegics. The wheelchair would be made in such a way that it become the support for the subject. New approach for modelling the FES systems using characteristics modelling as well as a novel control scheme using sliding mode-wavelet networks would be explored. Also, emphasis will be given on stability and adaptability. The work is expected to be both simulation and real experimentation depending on circumstances. The MATLAB/SIMULINK software and most likely SOLID WORKS software as well would be utilized.

2. Review of relevant literature

2.1. Review on control of FES-induced movements

The linear, intelligent and nonlinear control schemes have been proposed for operation FES-Induced movements in the lower limb. Abbas and Chizek [38], Jaime et al. [39], Masani et al. [40], Kim et al.[41, 42], Vette et al. [43-45], and Same et al. [46] proposed the Proportional Integral Derivative (PID) control for upright standing in paraplegic and “Von Hippel-Lidau syndrome” subjects. Matjacic and Bajd [47, 48], utilized the Linear Quadratic Regulator (LQR) method, while Hunt et al. [49, 50], went further to implement the Linear Quadratic Gaussian (LQG), the LQG with polynomial equation [51], and the pole placement [52-54], and finally the H-infinity control was developed for improvements [55-57]. Although experimentally tested some observations include: the need for improved sensing, retuning needs, tests conducted with patients having less complex neural ailment, complexity of implementation of the LQ and H-infinity based controls and that of stability. Standing is dominated by stance phase of gait is less complicated compared to the swing phase whose dynamics is associated with more variations. Imagine applying the schemes for swing phase, other movements or subject with significant level of spasm, tremor or of fatigue. Hence, the remarks by Lynch et al that the linear methods may not be suitable for FES control [58-60], had gained high weight.

Studies on intelligent control comprises of the works of Arifin et al. using fuzzy logic for movements (walking restoration) [61-67]. Same type controller was proposed by Davoodi and Andrews [68] rowing exercise. Combination genetic algorithms and fuzzy logic was applied for control of “sit-to-stand” movements, same technique was proposed for modelling and control of knee joint swinging by
Huq and Tokhi [69, 70] and Ibrahim et al. [71-75]. Artificial neural networks and fuzzy logic were combined for sit-to-stand control by Hussain et al. [76] and Massoud [77]. Chang et al. [78, 79], utilized Artificial Neural Networks(ANN)-PID for FES-induced gait control. ANN was used by Abbas et al. [80-87] and Graupe and Kordylewski [88] for movement restoration and for therapeutic exercise in the works of Chen et al. [89] and Hussain et al. [90]. Fuzzy logic together with sliding mode control techniques were proposed by Erfanian et al. for standing [91], swinging of knee joint [92, 93] and for cycling [94]. Although some studies were simulations but others are were tested with both healthy and unhealthy subjects. Results were encouraging and portray the likelihood of passing clinical tests. Observations were complexity, higher tuning timing, required retuning and higher computational time. An unstable controller is worthless and therefore this make analysis on stability important but that was very challenging when using intelligent control due to absence of mathematical model [70].

Works on nonlinear control include that of Jezernik et al. [95, 96], Mohammed et al. [97], Schauer et al. [98] and Lynch et al. [58, 99], proposed varieties of sliding mode controllers for knee joint movement. And for standing by Jezernik et al. [100]. Better results were observed but high switching is a treat to fatigue and similar properties of nervous disorder subjects. Gain-scheduling was proposed by Previdi et al. [101, 102], study was successful but identifying suitable variables for scheduling was very difficult. Negard et al. [103] and Schauer et al. [104] proposed the back-stepping control method for movements of knee joint. Results indicates that the accuracy of plant model is proportional to level of improvements. The adaptive control approach was proposed in research conducted by Ferrarin et al. [105] and Crago et al. [106] (ANN-based) explore the adaptive control technique for knee joint. Apart from enhancements observed the method also shows the tendency of improving systems with periodic properties. The unsuitability of the linear control techniques makes the intelligent and nonlinear techniques viable options, but the nonlinear becomes more suitable when stability become the focus. Stability is an essential property of control systems.

2.2. Sliding mode control (SMC)

SMC is a branch of variable structure control (VSC) systems and is classified as robust control method. Robust control are purposely developed to reduce the problem of differences in actual plant model to that used during the controller or control system design. VSC and SMC systems originated from the works of Emelyanov and colleagues, which include Utkins and Itkins of the then Soviet Union (Now Russia) in the 1950s. Later other researchers in control systems became highly interested due its potentials. Basically, VSC/SMC technique uses a control law with high switching capability that makes the plant/system follow a particular pattern by forcing its trajectory of the states to propagate in a defined sequence determined by the designer due to the particular surface chosen. It also regulate the plant state trajectory confined within the predefined surface. The structure of the control system keep varying due to the fact that the gain when operating above the surface is different from it operates below [107].

2.3. Wavelet networks (WNs)

WNs techniques are at their early stages for systems identification and control systems applications. They are formed by merger of wavelet and neural networks (sigmoid functions based) [36, 108, 109]. Wavelet analysis are used for removal of noise in signals, signal compressions, signal suppression, detection of discontinuities, detection changes in signals over long duration, detection of similarities in signals and pure frequency identification [110]. Works on wavelet begins with short time Fourier Transform with Gaussian windows by Denis Gabor in the year 1946. Jean Morlet in 1982 developed for application in geophysics where the modulation aspect was modified with an algorithm that directly dilates the fixed function. In 1984 Alex Grossman and co-researchers further the wavelet algorithm by incorporating coherent states of quantum Physics and linking it with the frame theory.
Wavelet was taken to next level again through the work of Yves Meyer in 1985, where the mathematical basics for the theory of wavelet was first developed, as a result of incorporating harmonics analysis to the one in existence, which eventually lead to the foundation orthonormal wavelets in 1986. It was taken to a greater heights by other researchers such as S. Mallat, I daubaches, R. Coffmant, A. Cohen [111, 112].

ANNs are mathematical models design to mimic the operation of the human central nervous system. The inputs are synonymous to the dendrites in the human nervous system while the output, weights and neuron are similar to the axon, synapse and soma respectively. Basically, it is made up of the input, hidden and output layers. The input and output layers of course are the points where signals are sent into and obtained or received from the network respectively while the processing is done in the hidden layer.

The system learns as a result of gradual adjustments of the weights due to the series of inputs and outputs supplied to it. Applications include engineering, finance, medical, science, management and operational research to mention just a few. System identification is another area where the artificial neural networks is receiving attention and yielding resounding results [113, 114]. Artificial neural networks are well known for detection of patterns, learning capabilities, processing of signals, identification of both linear and nonlinear systems, fault detection and control systems designs [115].

2.4. Why sliding mode wavelet networks

A distinguishing characteristic of the sliding mode control (SMC) technique is its complete insensitivity to system parameter uncertainties and perturbations hitting the system originating from other sources during operation while gliding along the surface. And also the surface could be varied in order to make the dynamics of the follow a particular pattern, this is achieved through high rate switching on the surface [107] which could lead to phenomenon known as chattering (a well-known shortcoming of the SMC). The rate at which fatigue is reached worsen as switching frequency is increased [116, 117]. Hence, this chattering effect might negatively affect the control scheme. Wavelet networks (WNs) utilize a combination of wavelet analysis and neural networks (with sigmoid functions) and are currently new or not very popular for control application. Wavelet transformation or analysis was outstanding in noise removal capability, while the artificial neural networks is well known for achieving adaptation due to its intelligence and both are good in nonlinear systems, apart from other desirable characteristics. These makes the WN rich in lowering switching rate, accuracy, reduced computational times and memory requirement in closed loop systems [34, 36, 108]. Therefore, these desirable could be explored to lower the switching rate of the SMC as well as that of the overall closed loop and hence improving or reducing the rate at which the muscle fatigue during FES induced movements. Review on literature showed that SMC is promising most especially when it is made hybrid. The hybrids form are intelligent based, so the problem of mathematical model still exist. In the current application the intelligence (WNs) component was intended be used for smoothening the switching surface. The sandwich from all indication could result in improving fatigue and the control system that can possibly lead to clinical acceptance when successfully implemented.

3. Methodology

3.1. Method description

The research would be conducted in stages: modelling of plant, controller design, analysis (stability, robustness and adaptation ability) and experimentation.

Simulation studies would be conducted by using existing knee joint model developed by Ferrarin and Pedotti, (2000) [118]. Disturbances models proposed by Lynch et al., [30, 58-60] would be used in analysis. The control system would be developed using SIMULINK/MATLAB software. Both
swinging knee joint and the sit-to-stand models would be implemented using SIMULINK/MATLAB and SOLIDWORKS softwares. The experiments will be conducted in two stages, the free knee joint swinging test and the sit-to-stand movement test.

In the first case the paraplegic subject would be seated comfortably on a suitable chair such that the leg the test will be conducted on hangs freely. Two stimulating electrodes, positive and negative would be placed on the quadriceps muscle after application of the conductive gel. Effort will be made to place the electrodes were full extension would be achieved. In order eradicate the effect of muscle changes in positions underneath the skin, the cathode will be fixed over the rectus femoris muscle while the anode would be immediately above the patella. The goniometer would be fixed at the knee joint which serves as the feedback transducer for the resulting angular position of the thigh during stimulation. In the second aspect it would be for sit-to-stand restoration which is will be achieved with the help of wheelchair support. Stimulating electrodes as well as goniometers will be placed at appropriate positions.

![Figure 1 Demonstration of the concept](image)

The wheelchair will be made such that it can conveniently support the patient and the wheels receive signal from the controller to lock or unlock the wheels depending on action being executed. Stimulations would be received by the desired muscles using surface electrodes and goniometers are used to measures angular position of the joints involved. After signals where collected they will be passed through the amplifier for boosting and then the analog to digital converter before finally reaching the controller. The controller generates signal that appropriately modulate the stimulator depending on feedback received from the goniometers. The controller would be initially implemented on PC after which it would be transferred to a microprocessor when implementing the project. Figure 1 is an illustration of process.

The control system performs two basic functions: First, is to synchronize the initiation of the movement (in sit-to-stand which is not present in free knee joint swinging). Secondly it regulates the stimulation pulse width depending on the angular knee position (feedback measurement) and the targeted position at a particular instant.

3.2. Proposed sliding mode wavelet networks controller

The Sliding Mode-Wavelet Networks Controller (SMWNC) would be achieved by exploring the robustness capability of the sliding mode technique, noise suppression capability of wavelet networks and the adaptive as well as intelligent abilities of the neural networks. The nature of our plant; that is the neuromuscular being highly nonlinear and associated with so many disturbances. Although, the SMC is robust, it is associated with high switching rate, that was a treat to fatigue related the FES activated movements. Noise suppression or smoothening or reducing the rate of switching but still maintaining the control objectives and the capabilities to improve the adaptation capability of the
overall control system using the WNs which is desirable for the application. The WNs would be used to smoothen switching on the sliding mode surface. The sandwich from all indication could result in improving fatigue, tremor, spasm and sensor error suppression as well as improved capability for making it suitable for different subjects and scenarios and finally the control system that can possibly lead to clinical acceptance after implementation.

4. Expected research outcome

Revelations of novel approach, controller and model and new findings regarding adaptation ability, robustness and stability for restoration of sit-to-stand manoeuvre using FES in mainly paraplegics. Potential application of the study would be mainly aiding in restoration of movements, others are for therapy and rehabilitation for spinal cord injury subjects as well as those with other forms of nervous system disorders. Automated, efficient and clinically acceptable alternative way to restore movements in spinal cord injury subject will emerge, which will provide solutions to the existing problems associated with open loop system. It can also be harnessed for prevention of complications and also for eradication of other mobility issues due to the failure of the nervous system. It would make the subjects more independent and hence lessen burden on others, improve integration with society. Reduce cost of management which could originate from the individual relatives or government and emergence of improved healthcare delivery.

5. Conclusion

FES was promising for movement restoration, therapy and rehabilitation for neural disorder patients whose number increase globally with no corresponding rise FES orthosis devices. It may be due to strict clinical requirement. A new approach was proposed that use the patient chair for support and a novel controller to facilitate efficient stimulation. Feedback, cost-effective and acceptable alternative way to restore movements in spinal cord injury subjects will emerge, which will provide solutions to the existing problems associated with closed loop lower limb control systems. It can also be harnessed for prevention of complications and also for eradication of other mobility issues due to the failure of the nervous system.

References

[1] W. K. Durfee, "Gait Restoration by Functional Electrical Stimulation," in Climbing and Walking Robots, ed: Springer, 2006, pp. 19-26.
[2] G. P. Braz, M. Russold, and G. M. Davis, "Functional electrical stimulation control of standing and stepping after spinal cord injury: A review of technical characteristics," Neuromodulation: Technology at the Neural Interface, vol. 12, pp. 180-190, 2009.
[3] D. Zhang, P. Poignet, F. Widjaja, and W. T. Ang, "Neural oscillator based control for pathological tremor suppression via functional electrical stimulation," Control Engineering Practice, vol. 19, pp. 74-88, 2011.
[4] Q. Zhang, M. Hayashibe, and C. Azevedo-Coste, "Evoked electromyography-based closed-loop torque control in functional electrical stimulation," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 2299-2307, 2013.
[5] D. Simon, D. Andreu, and S. Lafnoune, "Real-time Simulation for a Functional Electrical Stimulation system validation," in 10th National Conference on Control Architectures of Robots (CAR) 2015, Lyon, France, 2015.
[6] W. H. Organization, Neurological disorders: public health challenges: World Health Organization, 2006.
[7] R. Malcata, "Development of a Control Architecture for a Musculoskeletal Model of a Human Ankle Joint Using Multibody Dynamics and Hill-Type Muscle Actuators," PhD, BIOMEDICA ENGENHARIA, Universidade de Lisboa, 2009.

[8] N. K. Vøllestad, "Measurement of human muscle fatigue," Journal of neuroscience methods, vol. 74, pp. 219-227, 1997.

[9] G. M. Graham, T. A. Thrasher, and M. R. Popovic, "The effect of random modulation of functional electrical stimulation parameters on muscle fatigue," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, p. 38, 2006.

[10] R. M. Enoka and J. Duchateau, "Muscle fatigue: what, why and how it influences muscle function," The Journal of physiology, vol. 586, pp. 11-23, 2008.

[11] H. Westerblad, J. D. Bruton, and A. Katz, "Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability," Experimental cell research, vol. 316, pp. 3093-3099, 2010.

[12] S. J. Hall, Basic biomechanics: McGraw-Hill Boston, MA:, 2012.

[13] J. Ding, A. S. Wexler, and S. A. Binder-Macleod, "Mathematical models for fatigue minimization during functional electrical stimulation," Journal of Electromyography and Kinesiology, vol. 13, pp. 575-588, 2003.

[14] A. Thrasher, G. M. Graham, and M. R. Popovic, "Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters," Artificial organs, vol. 29, pp. 453-458, 2005.

[15] T. Kesar, L.-W. Chou, and S. A. Binder-Macleod, "Effects of stimulation frequency versus pulse duration modulation on muscle fatigue," Journal of Electromyography and Kinesiology, vol. 18, pp. 662-671, 2008.

[16] B. Dreibati, C. Lavet, A. Pinti, and G. Poumarat, "Influence of electrical stimulation frequency on skeletal muscle force and fatigue," Annals of physical and rehabilitation medicine, vol. 53, pp. 266-277, 2010.

[17] M. Hayashibe, M. Benoussaad, D. Guiraud, P. Poignet, and C. Fattal, "Nonlinear identification method corresponding to muscle property variation in fes-experiments in paraplegic patients," in Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, 2010, pp. 401-406.

[18] Q. Zhang, M. Hayashibe, P. Fraisse, and D. Guiraud, "FES-induced torque prediction with evoked EMG sensing for muscle fatigue tracking," Mechatronics, IEEE/ASME Transactions on, vol. 16, pp. 816-826, 2011.

[19] R. Jailani and M. Tokhi, "The effect of functional electrical stimulation (FES) on paraplegic muscle fatigue," in 2012 IEEE 8th International Colloquium on Signal Processing and its Applications (CSPA), 2012, pp. 500-504.

[20] M. Böll, H. Stark, and N. Schilling, "On a phenomenological model for fatigue effects in skeletal muscles," Journal of theoretical biology, vol. 281, pp. 122-132, 2011.

[21] C. L. Lynch and M. R. Popovic, "A Stochastic Model of Knee Angle in Response to Electrical Stimulation of the Quadriceps and Hamstrings Muscles," Artificial Organs, vol. 35, pp. 1169-1174, 2011.

[22] M. Ibitoye, Hamzaid, N., AbdulWahab, A., "Effects of muscle fatigue on FES assisted walking of sci patients: A review," in The 15th International Conference on Biomedical Engineering, 2014.

[23] M. O. Ibitoye, N. A. Hamzaid, N. Hasnan, A. K. A. Wahab, and G. M. Davis, "Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review," PloS one, vol. 11, p. e0149024, 2016.

[24] D. Tepavac and L. Schwirtlich, "Detection and prediction of FES-induced fatigue," Journal of Electromyography and Kinesiology, vol. 7, pp. 39-50, 1997.

[25] M. O. Ibitoye, E. H. Estigoni, N. A. Hamzaid, A. K. A. Wahab, and G. M. Davis, "The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury," Sensors, vol. 14, pp. 12598-12622, 2014.
[26] M. O. Ibitoye, N. A. Hamzaid, J. M. Zuniga, N. Hasnan, and A. K. A. Wahab, "Mechanomyographic parameter extraction methods: an appraisal for clinical applications," Sensors, vol. 14, pp. 22940-22970, 2014.

[27] M. O. Ibitoye, N. A. Hamzaid, J. M. Zuniga, and A. K. A. Wahab, "Mechanomyography and muscle function assessment: A review of current state and prospects," Clinical Biomechanics, vol. 29, pp. 691-704, 2014.

[28] M. R. Kasten, A. M. Ievins, and C. T. Moritz, "Neural Prostheses," in eLS, ed: John Wiley & Sons, Ltd, 2015.

[29] D. B. Popović, M. B. Popović, and S. Došen, "Neural prostheses for walking restoration," Journal of Automatic Control, vol. 18, pp. 63-71, 2008.

[30] C. Lynch and M. Popovic, "Sliding mode control of FES-induced quiet standing," in Proceedings of the 17th Annual Conference of the International Functional Electrical Stimulation Society (IFESS), Banff, Canada, 2012.

[31] C. L. Lynch, D. Sayenko, and M. R. Popovic, "Co-contraction of antagonist muscles during knee extension against gravity: Insights for functional electrical stimulation control design," in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 1843-1846.

[32] N. V. Thakor, "Neuroprosthetics: Past, Present and Future," in Replace, Repair, Restore, Relieve—Bridging Clinical and Engineering Solutions in Neurorehabilitation, ed: Springer, 2014, pp. 15-21.

[33] K. Minassian, U. Hofstoetter, K. Tansey, and W. Mayr, "Neuromodulation of lower limb motor control in restorative neurology," Clinical neurology and neurosurgery, vol. 114, pp. 489-497, 2012.

[34] D. M. Salih, S. B. M. Noor, M. Hamiruce Merhaban, and R. M. Kamil, "Wavelet Network: Online Sequential Extreme Learning Machine for Nonlinear Dynamic Systems Identification," Advances in Artificial Intelligence, vol. 2015, 2015.

[35] S. Srivastava, M. Singh, M. Hanmandlu, and A. N. Jha, "New fuzzy wavelet neural networks for system identification and control," Applied Soft Computing, vol. 6, pp. 1-17, 2005.

[36] S.-T. Tzeng, "Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification," Fuzzy Sets and Systems, vol. 161, pp. 2585-2596, 10/1/ 2010.

[37] M. Zekri, S. Sadri, and F. Sheikhholeslam, "Adaptive fuzzy wavelet network control design for nonlinear systems," Fuzzy Sets and Systems, vol. 159, pp. 2668-2695, 10/16/ 2008.

[38] J. J. Abbas and H. J. Chizeck, "Feedback control of coronal plane hip angle in paraplegic subjects using functional neuromuscular stimulation," Biomedical Engineering, IEEE Transactions on, vol. 38, pp. 687-698, 1991.

[39] R.-P. Jaime, Z. Matjacic, and K. J. Hunt, "Paraplegic standing supported by FES-controlled ankle stiffness," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 10, pp. 239-248, 2002.

[40] K. Masani, A. H. Vette, and M. R. Popovic, "Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments," Gait & posture, vol. 23, pp. 164-172, 2006.

[41] J.-y. Kim, J. K. Mills, A. H. Vette, and M. R. Popovic, "Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing," Journal of biomechanical engineering, vol. 129, pp. 838-847, 2007.

[42] J.-y. Kim, M. R. Popovic, and J. K. Mills, "Dynamic modeling and torque estimation of FES-assisted arm-free standing for paraplegics," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, p. 46, 2006.

[43] A. H. Vette, K. Masani, J. Y. Kim, and M. R. Popovic, "Closed-Loop Control of Functional Electrical Stimulation-Assisted Arm-Free Standing in Individuals With Spinal Cord Injury: A
Feasibility Study," *Neuromodulation: Technology at the Neural Interface*, vol. 12, pp. 22-32, 2009.

[44] A. H. Vette, K. Masani, K. Nakazawa, and M. R. Popovic, "Neural-Mechanical Feedback Control Scheme Generates Physiological Ankle Torque Fluctuation During Quiet Stance," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 18, pp. 86-95, 2010.

[45] A. H. Vette, K. Masani, and M. R. Popovic, "Implementation of a Physiologically Identified PD Feedback Controller for Regulating the Active Ankle Torque During Quiet Stance," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 15, pp. 235-243, 2007.

[46] M. B. Samec, H. Rouhani, K. Masani, and M. R. Popovic, "Closed-loop control of ankle plantarflexors and dorsiflexors using an inverted pendulum apparatus: A pilot study," *Journal of Automatic Control, University of Belgrade*, vol. 21, pp. 31-36, 2013.

[47] Z. Matjacic and T. Bajd, "Arm-free paraplegic standing. II. Experimental results," *IEEE Transactions on Rehabilitation Engineering*, vol. 6, pp. 139-150, 1998.

[48] Z. Matjacic and T. Bajd, "Arm-free paraplegic standing. I. Control model synthesis and simulation," *IEEE Transactions on Rehabilitation Engineering*, vol. 6, pp. 125-138, 1998.

[49] M. Munih, N. d. N. Donaldson, K. J. Hunt, and F. Barr, "Feedback control of unsupported standing in paraplegia. II. Experimental results," *Rehabilitation Engineering, IEEE Transactions on*, vol. 5, pp. 341-352, 1997.

[50] K. J. Hunt, M. Munih, and N. d. N. Donaldson, "Feedback control of unsupported standing in paraplegia. I. Optimal control approach," *IEEE Transactions on Rehabilitation Engineering*, vol. 5, pp. 331-340, 1997.

[51] K. J. Hunt, M. Munih, N. Donaldson, and F. Barr, "Optimal control of ankle joint moment: Toward unsupported standing in paraplegia," *Automatic Control, IEEE Transactions on*, vol. 43, pp. 819-832, 1998.

[52] K. Hunt, H. Gollee, R. Jaime, and N. Donaldson, "Feedback control of unsupported standing," *Technology and Health Care*, vol. 7, pp. 443-447, 1999.

[53] J. Hung, H. Gollee, R.-P. Jaime, and N. Donaldson, "Design of feedback controllers for paraplegic standing," in *Control Theory and Applications, IEE Proceedings-*, 2001, pp. 97-108.

[54] H. Gollee, K. J. Hunt, and D. E. Wood, "New results in feedback control of unsupported standing in paraplegia," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 12, pp. 73-80, 2004.

[55] K. Hunt, R.-P. Jaime, and H. Gollee, "Robust control of electrically-stimulated muscle using polynomial H∞ design," *Control Engineering Practice*, vol. 9, pp. 313-328, 2001.

[56] W. Holderbaum, K. Hunt, and H. Gollee, "H∞ robust control design for unsupported paraplegic standing: experimental evaluation," *Control Engineering Practice*, vol. 10, pp. 1211-1222, 2002.

[57] W. Holderbaum, K. J. Hunt, and H. Gollee, "Robust Discrete-Time H∞ Control for Unsupported Paraplegic Standing: Experimental Results," *European Journal of Control*, vol. 10, pp. 275-284, 2004.

[58] C. L. Lynch, "Closed-Loop Control of Electrically Stimulated Skeletal Muscle Contractions," PhD, University of Toronto, 2011.

[59] C. L. Lynch, G. M. Graham, and M. R. Popovic, "A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool," *Journal of Neural Engineering*, vol. 8, p. 046034, 2011.

[60] C. L. Lynch, G. M. Graham, and M. R. Popovic, "Including nonideal behavior in simulations of functional electrical stimulation applications," *Artificial Organs*, vol. 35, pp. 267-269, 2011.
[61] A. Ariffin, Watanabe, T. and Hoshimiya, N., "A Test of Fuzzy Controller for Cycle-to-Cycle Control of FES-induced Hemiplegic Gait: Computer Simulation in Single-joint Control," Biomedical Engineering: Japan M. Yee Journal, vol. 41, p. 68, 2003.

[62] A. Ariffin, Watanabe, T. and Hoshimiya, N., "Fuzzy controller for cycle-to-cycle control of swing phase of fes-induced hemiplegic gait: a computer simulation in two-joint control," in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2003.

[63] A. Ariffin, Watanabe, T. and Hoshimiya, N., "A test of fuzzy controller for cycle-to-cycle control of FES-induced hemiplegic gait: Computer simulation in single-joint control," in 36th Conference of Japaneese Society for Medical and Biological Engineering, 2002.

[64] A. Ariffin, T. Watanabe, and N. Hoshimiya, "Design of fuzzy controller of the cycle-to-cycle control for swing phase of hemiplegic gait induced by FES," IEICE transactions on information and systems, vol. 89, pp. 1525-1533, 2006.

[65] T. Watanabe, A. Ariffin, T. Masuko, and M. Yoshizawa, "An Experimental Test of Fuzzy Controller Based on Cycle-to-Cycle Control for FES-induced Gait: Knee Joint Control with Neurologically Intact Subjects," in 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, 2007, pp. 647-650.

[66] T. Watanabe, T. Masuko, and A. Ariffin, "Preliminary tests of a practical fuzzy FES controller based on cycle-to-cycle control in the knee flexion and extension control," IEICE TRANSACTIONS on Information and Systems, vol. 92, pp. 1507-1510, 2009.

[67] M. Huq and M. Tokhi, "Modelling of Musculoskeletal System with Genetic Optimization of Fuzzy Logic Approach," in Biomedical Engineering Research Projects and Case Studies, ed: Penerbit UTHM, 2015, pp. 17-42.

[68] B. S. K. K. Ibrahim, M. O. Tokhi, M. S. Huq, and S. Gharooni, "Fuzzy Logic Based Cycle-to-Cycle Fuzzy Logic Control of FES-Induced Swinging Motion," in Fuzzy Controllers-Recent Advances in Theory and Applications, S. Iqbal, N. Boumella, and J. C. F. Garcia, Eds., ed: INTECH Open Access Publisher, 2012.
[78] G.-C. Chang, G.-D. Liao, J.-J. Luh, J.-S. Lai, C.-K. Cheng, and T.-S. Kuo, "Application of neural network-based controller for the knee-joint position control with quadriceps stimulation," in Engineering in Medicine and Biology Society. 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, 1996, pp. 455-456.

[79] G.-C. Chang, J.-J. Lub, G.-D. Liao, J.-S. Lai, C.-K. Cheng, B.-L. Kuo, et al., "A neuro-control system for the knee joint position control with quadriceps stimulation," Rehabilitation Engineering, IEEE Transactions on, vol. 5, pp. 2-11, 1997.

[80] S.-J. Kim, M. D. Fairchild, A. Iarkov, J. J. Abbas, and R. Jung, "Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model," Biomedical Engineering, IEEE Transactions on, vol. 56, pp. 452-461, 2009.

[81] J. J. Abbas and H. J. Chizeck, "Adaptive feedforward control of cyclic movements using artificial neural networks," presented at the International Joint Conference on Neural Networks IJCNN, 1992.

[82] J. J. Abbas and H. J. Chizeck, "Neural network control of functional neuromuscular stimulation systems: computer simulation studies," Biomedical Engineering, IEEE Transactions on, vol. 42, pp. 1117-1127, 1995.

[83] J. J. Abbas and R. Triolo, "Experimental evaluation of an adaptive feedforward controller for use in functional neuromuscular stimulation systems," in Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1993.

[84] J. J. Abbas and R. J. Triolo, "Experimental evaluation of an adaptive feedforward controller for use in functional neuromuscular stimulation systems," Rehabilitation Engineering, IEEE Transactions on, vol. 5, pp. 12-22, 1997.

[85] J. Riess and J. J. Abbas, "Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 9, pp. 326-330, 2001.

[86] J. Riess and J. J. Abbas, "Control of cyclic movements as muscles fatigue using functional neuromuscular stimulation," in Proceedings of the First Joint Engineering in Medicine and Biology, 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society BMES/EMBS, 1999.

[87] E. C. Stites and J. J. Abbas, "Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation," Biomedical Engineering, IEEE Transactions on, vol. 47, pp. 1287-1292, 2000.

[88] D. Graupe and H. Kordylewski, "Artificial neural network control of FES in paraplegics for patient responsive ambulation," Biomedical Engineering, IEEE Transactions on, vol. 42, pp. 699-707, 1995.

[89] Y. Chen, J. Hu, L. Peng, and Z.-g. Hou, "The FES-assisted control for a lower limb rehabilitation robot: simulation and experiment," Robotics and Biomimetics, vol. 1, pp. 1-20, 2014.

[90] Z. Hussain, M. A. Zaidan, M. O. Tokhi, and R. Jailani, "The adaptive control of FES-assisted indoor rowing exercise," in Proceedings of 2009 CACS International Automatic Control Conference, 2009.

[91] H.-R. Kobravi and A. Erfanian, "A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation," Medical engineering & physics, vol. 34, pp. 28-37, 2012.

[92] V. Nekoukar and A. Erfanian, "Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems," Fuzzy Sets and Systems, vol. 179, pp. 34-49, 2011.

[93] V. Nekoukar and A. Erfanian, "A decentralized modular control framework for robust control of FES-activated walker-assisted paraplegic walking using terminal sliding mode and fuzzy logic control," Biomedical Engineering, IEEE Transactions on, vol. 59, pp. 2818-2827, 2012.
A. Farhoud and A. Erfanian, "Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 22, pp. 533-542, 2014.

S. Jezernik, P. Inderbitzin, T. Keller, and R. Riener, "Sliding mode control of functional electrical stimulation for knee joint angle tracking," presented at the Proc. of the 7th Vienna International Workshop on Functional Electrical Stimulation, 2001.

S. Jezernik, P. Inderbitzin, T. Keller, and R. Riener, "A novel sliding mode controller for functional electrical stimulation," in Proceedings of the 15th IFAC World Congress on Automatic Control, Barcelona Session slot T-Mo-M20: Modelling and Control in Biomedical Systems, 2002.

S. Mohammed, P. Poignet, P. Fraisse, and D. Guiraud, "Rehabilitation of the paralyzed lower limbs using Functional Electrical Stimulation: Robust closed loop control," in Rehabilitation Robotics, S. S. Kommu, Ed., ed: INTECH Open Access Publisher, 2007, pp. 337-358.

T. Schauer, W. Holderbaum, and K. Hunt, "Sliding-mode control of knee-joint angle: experimental results," in 7th Annu. Conf. Int. Functional Electr. Stimul. Soc., Ljubljana, Slovenia, 2002.

C. L. Lynch and M. R. Popovic, "A comparison of closed-loop control algorithms for regulating electrically stimulated knee movements in individuals with spinal cord injury," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 20, pp. 539-548, 2012.

S. Jezernik, R. G. Wassink, and T. Keller, "Sliding mode closed-loop control of FES controlling the shank movement," Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 263-272, 2004.

F. Previdi and E. Carpanzano, "Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation," Control Systems Technology, IEEE Transactions on, vol. 11, pp. 310-324, 2003.

F. Previdi, E. Carpanzano, and C. Cirillo, "Application of a gain scheduling control strategy to artificial stimulation of the quadriceps muscle," presented at the European Control Conference, 1999.

N. -O. Negård, T. Schauer, and J. Raisch, "Robust nonlinear control of knee-joint angle: A simulation study," in 3. Wismarer Automatisierungssymposium, 2002.

T. Schauer, N.-O. Negård, F. Previdi, K. Hunt, M. Fraser, E. Ferchland, et al., "Online identification and nonlinear control of the electrically stimulated quadriceps muscle," Control Engineering Practice, vol. 13, pp. 1207-1219, 2005.

M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern, "Model-based control of FES-induced single joint movements," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 9, pp. 245-257, 2001.

P. E. Crago, N. Lan, P. H. Veltink, J. J. Abbas, and C. Kantor, "New Control Strategies for Neuroprosthetic Systems," Journal of Rehabilitation Research and Development, vol. 33, pp. 158-172, 1996.

J. Liu and X. Wang, Advanced sliding mode control for mechanical systems: Springer, 2012.

A. K. Alexandridis and A. D. Zapranis, "Wavelet neural networks: A practical guide," Neural Networks, vol. 42, pp. 1-27, 2013.

S. A. Billings and H.-L. Wei, "A new class of wavelet networks for nonlinear system identification," Neural Networks, IEEE Transactions on, vol. 16, pp. 862-874, 2005.

M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, "Wavelet toolbox for use with Matlab, the MathWorks," Natick, MA, 1996.

I. W. Selesnick, "Wavelet Transforms—A Quick Study," Physics Today magazine, 2007.

J. C. Goswami and A. K. Chan, Fundamentals of wavelets: theory, algorithms, and applications vol. 233: John Wiley & Sons, 2011.
[113] A. K. Mutlag, "DYNAMIC SYSTEM IDENTIFICATION USING TIME-DELAY FEEDFORWARD NEURAL NETWORKS: APPLICATION TO DC MOTOR," *Diyala Journal of Engineering Sciences*, vol. 3, pp. 65-79, 2010.

[114] O. Jovanović, "Identification of dynamic system using neural network," *The Scientific Journal FACTA UNIVERSITATIS Series: Architecture and Civil Engineering*, vol. 31, pp. 525-532, 1997.

[115] J. Liu, *Radial Basis Function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation*: Springer Science & Business Media, 2013.

[116] R. J. Downey, T. H. Cheng, M. J. Bellman, and W. E. Dixon, "Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, vol. 23, pp. 1117-1127, 2015.

[117] R. J. Downey, T. H. Cheng, M. J. Bellman, and W. E. Dixon, "Switched Tracking Control of the Lower Limb During Asynchronous Neuromuscular Electrical Stimulation: Theory and Experiments," *IEEE Transactions on Cybernetics*, vol. PP, pp. 1-12, 2016.

[118] M. Ferrarin and A. Pedotti, "The relationship between electrical stimulus and joint torque: a dynamic model," *IEEE Transactions on Rehabilitation Engineering*, vol. 8, pp. 342-352, 2000.