The digestive systems of carnivorous plants

Matthias Freund,1 Dorothea Graus,1 Andreas Fleischmann,2 Kadeem J. Gilbert,2 Qianshi Lin,4 Tanya Renner,5 Christian Stigloher,6 Victor A. Albert,7 Rainer Hedrich1 and Kenji Fukushima1,*†

1 Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
2 Botanische Staatsammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
3 Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
4 Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
5 Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
6 Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
7 Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA

*Author for correspondence: kenji.fukushima@uni-wuerzburg.de
†Senior author

Abstract

To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
The carnivorous plant leaf as an all-in-one organ analogous to the animal digestive tract

Like an animal’s mouth, carnivorous plants use their trapping structures to “eat” their prey, primarily small arthropods. All carnivorous plants discovered to date capture their prey using modified leaves called “trap leaves,” except for Trianna (false asphodel), which was recently shown to produce flypaper-type traps exclusively on its flower stalks (Lin et al., 2021). Although trap leaves share many functions with animal digestive tracts, there are striking differences in their spatial arrangements (Figure 1). Most vertebrate digestive tracts are divided into functionally specialized organs such as the mouth, stomach, and intestines, where food is digested and absorbed in distinct compartments (Hedrich, 2015). In carnivorous plants, however, the prey does not travel through a digestive tract but instead remains in the same organ where it was captured for subsequent digestion and absorption (compare to some animals with a blind-ended digestive tract, such as polyps; Steinmetz, 2019). Therefore, in principle, trap leaves are all-in-one organs with multifaceted functions, regardless of trap type (Figure 2). However, in certain trap types, a spatial split of functions may be observed within the organ (i.e. within a single leaf). A striking example is the eel traps of Genlisea (corkscrew plants), in which bifurcating arm-like trapping organs are well separated from the digestive chamber (Figure 2).

Most carnivorous plants employ their leaf-derived traps (or parts of these structures) for both photosynthesis and prey capture, while a few plants develop specialized trap leaves in addition to conventional foliar leaves (Cephalotus [Albany pitcher plant], Genlisea, and some Utricularia [bladderworts] species) or compensate for the reduced photosynthetic function of the traps by generating modified shoots (most Utricularia species; Fleischmann, 2018; Fleischmann et al, 2018b).

The primary function of the animal stomach is the chemical breakdown of food. The parietal cells of the human stomach secrete hydrochloric acid (Engvik et al, 2020), which creates a highly acidic environment with a pH of approximately 1.5 (Dressman et al, 1990; Russell et al, 1993). The acidic conditions serve as a barrier against food-borne pathogens and provide the optimal environment for digestive enzyme activity (Smith, 2003; Martinsen et al, 2005). Although typically not as acidic as the human stomach, the digestive fluids of carnivorous plants can be highly acidic, often reaching pH 2–3, which is more acidic on average than the gastric acids of insect-eating animals (Beasely et al, 2015; Figure 3; Supplemental Table S1). Akin to the animal stomach, this acidic environment is primarily generated by inorganic acids, mainly hydrochloric acid (Rea, 1982). The molecular machinery that generates hydrochloric acid is largely unknown in many carnivorous plants, but in Dionaea (Venus flytrap), active exocytosis coincides with the secretion of calcium, protons, and chloride, suggesting the involvement of vesicle-mediated transport that prevents disturbance of the membrane potentials of gland cells (Scherzer et al, 2017). Alternatively, membrane proteins such as ion channels may be involved in this process, as shown in animals (Figure 1B).

One major proteolytic enzyme activated under acidic conditions in the human stomach is pepsin (Fruton, 2002). Since pepsin contains two aspartic acid residues in its active site, this enzyme belongs to the aspartic protease protein family. Carnivorous plants use enzymes similar to animal pepsin to breakdown animal proteins, as discovered by Charles Darwin (Darwin, 1875). More recently, carnivary-active proteolytic enzymes were isolated from Nepenthes (tropical pitcher plants), Cephalotus, and Sarracenia (North American pitcher plants) and were found to be aspartic proteases (Athauda et al, 2004; Hatano and Hamada, 2008; Rottloff et al, 2016; Fukushima et al, 2017). Although Dionaea also secretes aspartic proteases (Schulze et al, 2012; Paszota et al, 2014), cysteine proteases are likely the most abundant proteolytic enzymes in its digestive fluid (Takahashi et al, 2011; Libiaková et al, 2014). Many carnivorous plants possess several additional enzyme classes that degrade various high-molecular weight compounds found in an insect’s body. Examples include chitinases, which breakdown chitin, a component of the arthropod exoskeleton; ribonucleases, which breakdown nucleic acids; and other enzymes, such as amylases, esterases, and phosphatas (Ravee et al, 2018). This rich enzymatic repertoire parallels that of animal digestive systems (Lemaître and Miguel-Aliaga, 2013; Janiak, 2016). Their evolutionary origin is often linked to defense mechanisms (discussed later), but some enzymes appear to have been coopted from other ancestral functions (Kocab et al, 2020). The secretion of proteins such as digestive enzymes is assumed to occur via the conventional secretory pathway common to plants and animals (Wang et al, 2018), although other pathways may also be involved (see Supplemental Text S1). However, in several carnivorous plants, prey digestion is partly or fully performed by associated microorganisms that live in the trap—comparable to the intestinal microbiota in animals, which
are also essential for digestion (Hanning and Diaz-Sanchez, 2015).

Digested food in the human stomach is transported to the intestine, where degraded products are absorbed. Numerous transporter proteins in animal intestines participate in the uptake of a variety of nutrients such as ions, sugars, amino acids, and peptides (Pácha, 2000; Jackson and Mclaughlin, 2006; Bröer, 2008; Boudry et al., 2010; Schmidt et al., 2010; Estudante et al., 2013; Bröer and Fairweather, 2018; Rajendran et al., 2018; Engevik and Engevik, 2021). Several transporter proteins involved in nutrient absorption have been identified in Dionaea, whose repertoire may be distinct from its human counterparts (Figure 1B). Although transporters usually absorb only specific compounds, mammalian intestines, often during early postnatal life, can encapsulate extracellular macromolecules in vesicles and absorb them into cells intact (Pácha, 2000). This process, endocytosis, enables relatively nonselective nutrient uptake. This combination of membrane protein action and endocytosis is also found in carnivorous plant leaves (Adlassnig et al., 2012). Thanks to their variety of digestive enzymes and absorption pathways, carnivorous plants can utilize a wide range of prey-derived small and large molecules; the latter include proteins, nucleic acids, chitin, and glucans (Matušíková et al., 2018).

Figure 1 Functional similarities between a trap leaf and a digestive tract. A, The spatial differentiation of the digestive system. The sites for eating, digestion, and absorption are spatially separated in the animal system (symbolized by colors), but not in carnivorous plants (overlapping colors). B, Secretory and absorptive pathways that are discussed in the main text and Box 2. Note that the figure shows an imaginary synthetic cell because interspecies and gland-type-specific differences in these processes are often unknown in carnivorous plants. Among the many secretory and absorptive pathways and membrane proteins identified in parietal cells (Yao and Forte, 2003; Engevik et al., 2020), chief cells (Hirschowitz, 1967), and intestinal epithelial cells (Pácha, 2000; Rajendran et al., 2018; Engevik and Engevik, 2021) in animals, only the counterparts of those characterized in carnivorous plants are shown. The cell wall and cuticle are not shown. The organelles are not shown to scale.
Glands are not unique to carnivorous plants, as many vascular plants possess glands for secreting various materials, including nectar, mucilage, resin, salts, aromatic compounds, and physiological residues (Callow et al., 2000; Mehltreter et al., 2021). Such exudates often contain hydrolytic enzymes and other proteins (Shepherd and Wagner, 2007; Heil, 2011). Some of the most commonly secreted proteins are

Figure 2 Evolution of glandular cells in carnivorous plants. The order-level phylogeny of flowering plants (The Angiosperm Phylogeny Group et al., 2016) is shown on the left, with lineages containing carnivorous plants and their trap types highlighted in red. Branch lengths have no information. Trap leaves and glands of representative species are shown on the right (for scanning electron microscopy, see Supplemental Methods S1). To increase visibility, methylene blue staining was applied to the glands of Cephalotus, Sarracenia, Heliamphora, Darlingtonia, and Roridula (Supplemental Methods S2). Whole or parts of the photographs of Utricularia and Philcoxia were reproduced from the literature (Yang et al., 2009; Pereira et al., 2012). The photographs of Aldrovanda were provided by Dirk Becker. Original pictures (including scale bars for microscopic pictures) are available in figshare (https://doi.org/10.6084/m9.figshare.18271529) under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
pathogenesis-related proteins, which prevent fungal and bacterial growth via hydrolytic activity or function in processes such as lipid transfer and defense signaling (Sels et al., 2008). As such, the glandular functions in trap leaves may be considered convergent exaptations of the various repertoires of structures and exudates found across angiosperm phylogeny (Juniper et al., 1989; Fleischmann et al., 2018a, 2018b). For example, in a study of 19 noncarnivorous plants, 15 species were found to have protease activity in their glandular trichome secretions (Spomer, 1999).

Like other secretory tissues, such as hydathodes, salt glands, and nectaries (Fahn, 1988; Vogel, 1998), the glands of carnivorous plants are distinguished by their physiological functions, which are related to prey digestion and nutrient absorption. Their morphology is often well differentiated from that of other epidermal cells (Juniper et al., 1989; Fleischmann et al., 2018a, 2018b). For example, in a study of 19 noncarnivorous plants, 15 species were found to have protease activity in their glandular trichome secretions (Spomer, 1999).

Figure 3 Digestive fluid acidity across the tree of life. A, Extracellular pH in the digestive organs of plants and animals. The plant apoplast and phylloplane (i.e. leaf surface) were included for comparison with the digestive fluid of carnivorous plants. The datasets for animal stomachs and plant phylloplane were obtained from the literature (Beasley et al., 2015; Gilbert and Renner, 2021). The source data for the others are available in Supplemental Table S1. When pH was measured at multiple time points or under multiple conditions, only the lowest value was included. The silhouettes of representative organisms were obtained from PhyloPic (http://phylopic.org). The silhouette of Cathartes aura is licensed under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/) by Sevcik et al. B, pH of the digestive fluids of different carnivorous plant genera. Boxplot elements are defined as follows: center line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range.

Evolution of different trap types from flypaper traps
The flypaper trap is the most frequently occurring type of trap in carnivorous plants, having independently evolved in transport proteins and endocytosis. The occurrence of more than one type of gland is common in carnivorous plant groups (Juniper et al., 1989), but their functional differentiation is not clearly understood in many species. Although glands are defined based on their secretory or absorptive functions, they are often judged to be glands based on their morphology and localization. As such, it has been assumed that these morphological differences come with functional differences in terms of digestive and absorptive capabilities, but more recent evidence points toward at least partial overlap in functions between different types of glands in different lineages. For example, phosphatase activity could be detected in both sessile and stalked glands of Pinguicula (butterworts; Plachno et al., 2006), suggesting both glands are capable of digestion. There is also evidence of endocytotic uptake in both types of glands of Drosophyllum (Adlassnig et al., 2012). However, a more comprehensive study comparing all relevant genera and glands will be necessary to dispel the initial dogma completely.
at least six lineages, including three in the Lamiales alone (in *Pinguicula*, *Byblis* [rainbow plants], and *Philcoxia*; Schaferhoff et al., 2010; Fleischmann et al., 2018a, 2018b), at least one each within the Caryophyllales and Ericales (Albert et al., 1992), as well as the recently discovered carnivorous inflorescences of *Trianta occidentalis* (Lin et al., 2021; Figure 2). Some plants are considered “para-carnivorous,” that is, sticky plants that casually trap insects but do not make use of the trapped “prey,” for example, *ibicella* (Plachno et al., 2009) and *Stylium* (Darnowski et al., 2006). Note that the features required for the carnivorous syndrome are controversial and vary among researchers (Adamec et al., 2021); the term “para-carnivorous” is not clear-cut and does not imply a “transitional species” on the way to becoming a carnivorous plant. In any case, even more disparate species throughout the angiosperm phylogeny possess sticky trichomes (likely upward of thousands of species), including ones that are unequivocally not currently considered carnivorous or para-carnivorous; instead, they entrap arthropods primarily for herbivore defense, as exemplified by several Lamiales and Solanaeae species (Adlassnig et al., 2010; Bar and Shtein, 2019; Adamec et al., 2021; Chase and Christenhusz, 2021).

Flypaper traps may have given rise to all other trap types (Albert et al., 1992; Fleischmann et al., 2018b). In the carnivorous Caryophyllales, the most parsimonious hypothesis is that the flypaper trap type is plesiomorphic, with snap traps and pitfall traps derived from ancestors with sticky traps (Heubl et al., 2006; Renner and Specht, 2011; Fleischmann et al., 2018a, 2018b). Similarly, the flypaper trap of *Pinguicula* is sister to the two other trap types in Lentibulariaceae in carnivorous Lamiales (Muller et al., 2006). Although possibly not an immediate phylogenetic sister (Lofstrand and Schoenberger, 2015), the pitfall traps in Ericales are also closely related to those of a flypaper trap lineage (*Roridula*).

Evidence suggests that mucilage production in ancestral flypaper traps has been retained in some of these other trap types. For instance, both *Utricularia* and *Genlisea* (suction and eel traps, respectively; Lentibulariaceae) produce bifid trichomes with mucilage secretions on their traps and globose glands that secrete mucilage on their leaves (Taylor, 1989; Plachno et al., 2006; Adlassnig et al., 2010; Fleischmann, 2012). Interestingly, certain species of the pitfall-trapping *Nepenthes* genus produce a mucilage-derived, highly viscoelastic digestive fluid (Gaume and Forterre, 2007; Bauer et al., 2011; Bonhomme et al., 2011; Renner and Specht, 2011) that aids in prey retention (Di Giusto et al., 2008; Moran et al., 2013; Bazile et al., 2015; Gaume et al., 2019; Kang et al., 2021), representing a type of hybrid trapping strategy reminiscent of their close relatives *Drosera* (sundews). Exploring mucilage-mediated interactions with other organisms could shed light on the evolution of carnivorous plants (Box 1).

Mucilage production and secretion mechanisms

Little is known about the production and secretion of mucilage across the various carnivorous plant lineages, although limited evidence is available for members of the Caryophyllales (Droserraceae and Drosophyllaceae) and Lamiales (Lentibulariaceae). The mucilage of *Drosera binata* contains an acidic polysaccharide comprising arabinose, galactose, glucuronic acid, mannose, and xylose (Gowda et al., 1982; Erni et al., 2008), while the acidic polysaccharide of *D. capensis* is slightly modified and is composed of ester sulfate, galactose, glucuronic acid, mannose, and xylose (Rost and Schauer, 1977). Across *Drosera*, however, the Golgi apparatus appears to be responsible for both mucilage production and secretion (Schnefp, 1961a; Dexheimer, 1978; Outenreath and Dauwalder, 1986; Lichtscheidl et al., 2021). The glands of the Caryophyllales carnivores *Triphyophyllum* and *Drosophyllum* also produce acidic secretions. The constituents of these secretions in *Triphyophyllum* are unknown, but those in *Drosophyllum* contain carbohydrates produced by the Golgi apparatus (Schnefp, 1961b, 1963a, 1972; Marburger, 1979). Interestingly, the polysaccharide found in *Drosophyllum* mucilage differs from that of *Drosera* and includes the monomers arabinose, galactose, glucuronic acid, rhamnose, and xylose, as well as ascorbic acid (Schnefp, 1963b). Similarly, in *Pinguicula* of the Lentibulariaceae, polysaccharides are prevalent in the sticky mucilage and are likely transported

BOX 1. STICKY MUCILAGE PROVIDES BIOTIC INTERACTIONS.

Mucilage production has implications for other biotic interactions in carnivorous plants. *Roridula* relies on symbiotic hemipterans living on their traps to digest their prey (Ellis and Midgley, 1996), and similar interactions might also occur in *Byblis* (China and Carvalho, 1951; Hartmeyer, 1998; Lowrie, 1998). A possibly mutualistic, fungivorous mite species was found living in the sticky leaves of *Pinguicula longifolia* (Antor and Garcia, 1995). These symbiotic arthropods require particular biomechanical adaptations to overcome the adhesive forces of these sticky glands and maintain mobility (Voigt and Gorb, 2010). Caterpillars (Fletcher, 1908; Osaki and Tagawa, 2020) and a hoverfly larva (Fleischmann et al., 2016) have also evolved behavioral and physical adaptations to overcome mucilage adhesion to consume the leaves and tentacles or entrapped prey of *Drosera*. Almost nothing is known about the effects of viscoelastic fluid on the aquatic symbionts living in *Nepenthes* pitchers, but one study (Gilbert et al., 2020) revealed little difference in the microbial community composition between species with and without sticky fluid in a greenhouse setting. The nature of the potential microbial and arthropod communities in highly viscoelastic fluid in pitcher plant phytotelmata remains largely unexplored.
intracellularly by vesicles derived from the Golgi apparatus, as observed in *Drosera* and *Drosophyllum* (Heslop-Harrison and Knox, 1971; Vassilev and Muravnik, 1988). In *Pinguicula vulgaris*, the mucilage itself is stored within vacuoles, as well as the periplasmic space, before being released to the gland surface (Vassilev and Muravnik, 1988; Adlassnig et al., 2010). In closely related *Genlisea*, mucilage is also stored in the periplasmic space of secretory glands (Plachno, 2008). A notable exception to the polysaccharide-rich mucilages of carnivorous plants is the genus *Roridula*, which secretes resinous compounds and will be discussed further below.

Convergent co-option of digestive enzymes

The highly repeated convergent evolution of plant carnivory (Figure 2) suggests that the transition from the noncarnivorous to carnivorous state was broadly genetically accessible to a wide range of angiosperm lineages. In agreement with this idea, all known digestive enzymes of carnivorous plants are not unique but originated from ubiquitous gene families found throughout flowering plants (Fukushima et al., 2017). In particular, defense-related genes tend to be repurposed for digestive physiology (Bemm et al., 2016), with possible changes in biochemical properties occurring through positively selected convergent amino acid substitutions (Fukushima et al., 2017). Several proteins involved in plant defense, including hydrolytic enzymes, are secreted to the extracellular space (Lee et al., 2004). Pathogenic microbes, fungi, and both phytoparasitic and herbivorous (and sometimes prey) insects share many biological components (e.g. chitin), perhaps providing a ready basis for the evolutionary co-option of enzyme-encoding genes.

Secretion of digestive enzymes

Various digestive enzymes have been identified in the digestive fluid of carnivorous plants and are thought to be secreted from glands (Heslop-Harrison, 1975; Juniper et al., 1989; Ravee et al., 2018; Hedrich and Fukushima, 2021). In particular, extracellular phosphatase activity is a widely detected, key characteristic of the glands of carnivorous plants (Plachno et al., 2006, 2009; Lin et al., 2021). However, thus far, genes encoding secreted phosphatases have only been isolated in *Nepenthes* and *Cephalotus* (Fukushima et al., 2017). Additionally, commonly used dye-based method appears to label both intracellular and extracellular phosphatase activity following intensive endocytosis (Plachno et al., 2006), which may confound the extracellular signal with the intracellular noise of housekeeping phosphatases. Not much is known about the tissue-specific secretion and localization of digestive enzymes, except for the phosphatases and the aspartic protease Nepenthesin I expressed in the parenchyma around the glands of *Nepenthes* (Athauda et al., 2004). In *Cephalotus*, which conditionally produces distinct trapping leaves (Fukushima et al., 2017, 2021), approximately half of the genes encoding digestive fluid proteins are specifically expressed in pitcher leaves, but the other half are also expressed in the photosynthetic, non-trapping leaves (Fukushima et al., 2017). Trap-preferential gene expression has been reported in other species as well, with a few exceptions (Rottloff et al., 2011, 2013; Nishimura et al., 2013; Arai et al., 2021). Perhaps, these digestive enzymes exist in a bifunctional state for defense and digestion, or perhaps they are encoded by sub-/neofunctionalized duplicates specialized for digestive physiology, which might influence the tissues and cell types that secrete the enzymes.

Proton transport

The acidity of digestive fluid is a hallmark of carnivorous plants. Although the pH varies among carnivorous plant genera (Figure 3B), the digestive fluids of carnivorous plants are often more acidic than the gastric juices of animals with specialized feeding habits, including insect-eating carnivores (Figure 3A). This strong acidity has several potential benefits, including the capacity for (1) killing prey (Bazile et al., 2015); (2) suppressing microbial growth (Buch et al., 2013); (3) acid-mediated auto-activation of aspartic proteases, a process similar to pepsin activation in the animal stomach (Runeberg-Roos et al., 1991; Fruton, 2002; Buch et al., 2015); (4) efficient degradation of proteins and other substrates by digestive enzymes with acidic pH optima (An et al., 2001; Saganová et al., 2018); and (5) nutrient absorption driven by proton gradients. Protons and potassium ions are thought to be the primary cations in some carnivorous plant species due to their abundance and the scarcity of other cations (Nemček et al., 1966; Juniper et al., 1989; Scherzer et al., 2015).
Digestive systems of carnivorous plants

Ammonium absorption

In contrast to the digestive tracts of animals (Romero-Gómez et al., 2009), ammonium likely serves as the preferred form of nitrogen for uptake in carnivorous plants (Figure 1B). After prey capture, ammonium is released into the digestive fluid in Dionaea (Scherzer et al., 2013). The addition of pure protein also resulted in ammonium accumulation, and the relative abundance of released amino acids indicates that the enzymatic deamination of glutamine, in particular, produces ammonium in the digestive fluid of Dionaea (Scherzer et al., 2013). Tracer experiments supported the notion that nitrogen, likely in the form of ammonium, is separated from the carbon skeleton of glutamate in digestive fluid (Fasbender et al., 2017). In multiple carnivorous plants, ammonium transporters (AMTs) appear to play pivotal roles in ammonium uptake. Transporters for nitrogenous compounds in Nepenthes often show negligible expression in glands, except for AMT1 (Schulze et al., 1999). AMT1 transcripts are localized exclusively to the head cells of the gland, pointing to the involvement of AMT1 in ammonium uptake. Likewise, in Dionaea, AMT1 shows gland-specific expression, with further upregulation following coronatine treatment (Scherzer et al., 2013). Cephalotus also has an AMT1 gene that shows preferential expression in pitcher leaves (Fukushima et al., 2017). Interestingly, some AMT1 genes in Arabidopsis (Arabidopsis thaliana) are highly expressed in roots and are thought to be involved in the uptake of ammonium ions from the soil (Gazzarini et al., 1999; Rawat et al., 1999), suggesting possible co-option of this gene from roots to traps in multiple lineages.

Membrane trafficking

The direct transport of nutrients via membrane proteins is not the only way substances are absorbed and distributed by cells. Large molecules, such as whole proteins and degraded peptides, can be taken up and released via endocytosis and exocytosis, respectively (Battey et al., 1999; Doherty and McMahon, 2009; Paez Valencia et al., 2016). Active endocytosis is observed in the glands of many carnivorous lineages (Adlassnig et al., 2012). In Nepenthes, for example, a few small vesicles were observed within gland cells 1 h after the application of a fluorescent tracer, and by 30 h they combined into one or a few large vesicles that occupied most of the cell volume (Adlassnig et al., 2012).

Membrane trafficking must also be involved in the export of digestive enzymes. Newly synthesized digestive enzymes could follow the classical pathway of protein secretion, in which proteins are synthesized in the endoplasmic reticulum and modified in the Golgi apparatus to be packaged into vesicles in the trans-Golgi network and shuttled out via the plasma membrane (Battey et al., 1999; Cui et al., 2020). Indeed, exosome formation was observed in the glands of coronatine-stimulated Dionaea (Hawes et al., 1991; Thiel and Battey, 1998; Scherzer et al., 2017) and other species (Juniper et al., 1989).

Anion transport

To generate hydrochloric acid, both chloride and protons must be excreted into the digestive fluid. Classical pharmacological analyses with metabolic inhibitors demonstrated that the ionic gradients between digestive fluid and gland cells are actively modulated in carnivorous plants (Juniper et al., 1989). Chloride ions are a principal anion in the digestive fluids of some carnivorous species, such as Nepenthes spp. (Morrissey, 1955; Nemček et al., 1966). In these pitcher plants, the release of chloride ions coincides with the secretion of proteases (Lütteke, 1966), as in Dionaea (Rea et al., 1983; Scherzer et al., 2017) and Pinguicula (Heslop-Harrison and Heslop-Harrison, 1980). In Dionaea, the vacuolar voltage-dependent Chloride Channel (CLC) is implicated in chloride transport during prey digestion (Scherzer et al., 2017). Since digestive fluid contains only trace amounts of organic acids (Voelcker, 1849; Morrissey, 1955), it appears that organic anions such as malate (which functions in osmotic regulation in certain plant cells) do not play major roles in this process (Fernie and Martinoa, 2009; Araújo et al., 2011; López-Arredondo et al., 2014).

However, organic acids are relatively abundant in the traps of Utricularia, even though the fluid pH is close to neutral (Sirová et al., 2011).
Cuticular permeability

To exchange substances efficiently, the plasma membranes of gland cells must be accessible to the external environment. The plant epidermis is usually protected by a continuous cuticle, but gland cells of carnivorous plants often show cuticular pores or gaps that allow the passage of small molecules. The presence of such cuticular discontinuities has been revealed in many carnivorous plants using electron microscopy and staining with dyes such as methylene blue, which cannot penetrate intact cuticles (Juniper et al., 1989; Płachno et al., 2007; Adlassnig et al., 2012; Koller-Peroutka et al., 2019; Lichtscheidl et al., 2021). While the glands of many species exhibit cuticular permeability, there are some inter-species differences (Adlassnig et al., 2012). In Drosera, both stalked and sessile glands show cuticular permeability. Cephalotus produces small and large glands, but only small glands show clear cuticular permeability. Dye staining appears to correspond well with functional maturity; in Dionaea, immature glands do not stain, and only mature glands show clear permeability. Using fluorescent tracers, endocytotic activity was detected in cells exhibiting cuticular permeability (Adlassnig et al., 2012). In carnivorous Ericales (Sarraceniaceae and Roridulaceae), nutrient uptake is achieved through cuticular pores or an underlying digestive epithelium (Juniper et al., 1989; Anderson, 2005; Płachno et al., 2006) that functions as a gland. The genetics underlying cuticular discontinuity remain unknown.

Hormonal regulation of gland cell physiology

The digestive systems of carnivorous plants have a likely origin in defense mechanisms against herbivores (Hedrich and Fukushima, 2021). Considering that phytohormones regulate diverse physiological processes, such as plant growth, abiotic stress resistance, and defense against pathogens and insects, it is highly likely that their roles extend to digestive physiology (Pavlović and Mithöfer, 2019). Jasmonate accumulation during prey capture has been directly observed in Drosera, Aldrovanda (waterwheel plant), and Nepenthes (Nakamura et al., 2013; Yilamujiang et al., 2016; Krausko et al., 2017; Jakšová et al., 2021). In Dionaea, jasmonates induce trap closure and digestive fluid secretion (Escalante-Pérez et al., 2011; Libliaková et al., 2014; Pavlović and Mithöfer, 2019), coupled with proton efflux (Scherzer et al., 2017). While jasmonate induced a carnivory-related response in Caryophyllales species, no effect was detected in Pinguicula and Utricularia (Kocáb et al., 2020; Jakšová et al., 2021). Although several other phytohormones are also important in plant defense (Berens et al., 2017), the application of abscisic acid, salicylic acid, gibberellin, and indole-3-acetic acid had no detectable effect on the trapping and digestive physiology of Dionaea, Drosera, or Pinguicula (Escalante-Pérez et al., 2011; Libliaková et al., 2014; Krausko et al., 2017; Pavlović et al., 2017; Kocáb et al., 2020). In contrast, salicylic acid induced trap closure in Aldrovanda, although the observed pharmacological damage questions its physiological interpretation (Jakšová et al., 2021). The roles of these and other phytohormones, including ethylene, cytokinins, and brassinosteroids, remain largely unexplored.

Gland morphology in Oxalidales

Oxalidales has only one carnivorous member, Cephalotus follicularis of the monotypic family Cephalotaceae, which remains quite isolated phylogenetically and morphologically in this angiosperm order (Fleischmann et al., 2018b). Although Cephalotus uses pitcher-shaped leaves as pitfall traps similar to those of the independently evolved carnivorous lineages Nepenthes and Sarraceniaceae, the arrangement and types of glands are lineage specific. Unlike in Nepenthes, the lower part of the inner pitcher wall is not evenly endowed with glands in Cephalotus (Moran et al., 2010); instead, it has two opposing areas where the glands are densely localized (Figure 2). Within these gland patches, both small and large glands are embedded in the epidermis and are easily distinguished. From a purely visual point of view, small gland cells can be described as immobile stomatal guard cells whose aperture is plugged with a “wall plug” comprising a thickened cell wall (Juniper et al., 1989). Large glands consist of multiple (25–200) cells arranged in a dome-like pattern forming clusters of different sizes (Vogel, 1998; Supplemental Text S2). Large clusters are found in the glandular patch, and the glands gradually become smaller from the pitcher wall up to its peristome (Juniper et al., 1989; Vogel, 1998). The small glands have permeable cuticles (Adlassnig et al., 2012) and various enzyme activities such as esterase, protease, and phosphatase activity (Juniper et al., 1989; Płachno et al., 2006). The large glands have impermeable cuticles (Adlassnig et al., 2012), and only acid phosphatase activity (Płachno et al., 2006) has been demonstrated. These differences gave rise to the idea that Cephalotus developed a division of labor in its secretory systems: large glands for fluid production and small glands for digestive enzyme production (Juniper et al., 1989). Whether such a strict division of labor exists or whether these activities overlap remains a question for future research. Analysis of gland morphology pointed to a likely evolutionary connection between somatic guard cells and small glands (Lloyd, 1942) but not large glands (Parkes and Hallam, 1984), although such morphological (dis-)similarity does not provide conclusive evidence for their evolutionary (un)relatedness (Juniper et al., 1989).

Gland morphology in Caryophyllales

Some of the most well-known carnivorous plants are found in the noncore group of the order Caryophyllales (a.k.a., Nepenthales), ranging from the sundew and Venus flytrap (both Droseraceae) to the pitcher plants of the Nepenthaceae; this order includes genera with a variety of trap types (Supplemental Text S3; Figure 2). Glandular trichomes are prevalent in the lineages sister to the carnivorous group, such as Plumbago (Supplemental Text S3), and these trichomes may be homologous to those in caryophyllid carnivores. A carnivorous common ancestor of
Caryophyllales might have already developed two types of glands, stalked and sessile (Heubl et al., 2006), although a stochastic character mapping analysis did not necessarily support such a scenario (Renner and Specht, 2011). Only a single type of digestive gland maintains the pitcher fluid of Nepenthes by releasing enzymes and absorbing nutrients (An et al., 2001; Adlassnig et al., 2012). A piece of epidermis arches above each digestive gland (Owen, Jr., 1999; Wang et al., 2009). These structures are morphologically similar to the lunate cells of the upper parts of the pitcher, which are thought to provide difficult locomotive terrain for trapped insects (Wang et al., 2009, 2018; Wang and Zhou, 2016). A continuous layer of epidermal cells curves underneath the gland, with vascular cells in close proximity (Owen, Jr., 1999). The stalked glands in the other carnivorous Caryophyllales are vascularized whereas the glands of all other carnivorous plants are nonvascularized (Fenner, 1904; Lloyd, 1942; Juniper et al., 1989; Fleischmann et al., 2018b). In Drosera, these glands are called tentacles due to their exceptional anatomical and physiological characteristics. Nitschke (Nitschke, 1861) suggested that these organs represent modified leaf pinnae or outgrowths of the lamina margin, a theory that has since been refuted (Lloyd, 1942). In ~90% of Drosera species (Fleischmann et al., 2018a), increasing numbers of tentacles move toward the captured prey, likely to increase the contact surface area with the prey (Juniper et al., 1989). It was originally believed that the site of mechanosensation was the neck of the stalked cells, directly under the gland head, where the stalk is most bendable (Williams, 1976). However, transcripts of the stretch-activated ion channel gene FLYCATCHER1 (FLYC1.1 and FLYC1.2) were recently found to be localized specifically to the outer secretory cells of the glandular head, whereas in Dionaea, FLYC1 transcripts were specifically detected in sensory cells (in which most trigger hair flexure occurs; Procko et al., 2021), pointing to the evolutionary connection between digestive glands and Venus flytrap trigger hairs. These trigger hairs invoke rapid trap closure via action potentials, but little is known about the associated channels (Bohm and Scherzer, 2021), except for FLYC1, which functions in mechanosensing (Procko et al., 2021), and the Shaker-type channel K⁺ channel Dionaea muscipula 1 (KDM1), which functions in K⁺ re-uptake during the hyperpolarization phase (Iosip et al., 2020). The X-shaped quadrifid digestive glands of the aquatic plant Aldrovanda (Droseraceae) show remarkably similar morphology to those of the nonrelated Lamialean genus Utricularia (Lentibulariaceae). This gland shape increases the surface area of the expanded gland head cells in plants with an aquatic lifestyle.

Gland morphology in Lamiales

Among Lamiales, Byblis and Philcoxia are passive flypaper-type carnivorous plants with relatively few species, whereas Lentibulariaceae is a large family comprising three genera with different trapping mechanisms: Pinguicula with flypaper traps, Genlisea with eel traps, and Utricularia with suction traps (Supplemental Text S4). As in other flypaper-type carnivorous plants, Byblis, Pinguicula, and at least some species of Philcoxia show dimorphism, with stalked and sessile glands (Figure 2). The terminal cells of their glands form head-like structures, except in Utricularia, where they develop arm-like elongations, like those in the glands located at the trap margins of Aldrovanda (Droseraceae). The type of cuticular discontinuity varies among Lentibulariaceae genera (Plachno et al., 2007). The nonvascularized stalked glands of Pinguicula produce mucilage via a unique mechanism among carnivorous plants. It has been suggested for three Pinguicula species that during maturation, the gland fills with digestive fluid and undergoes autolysis, leaving dead cells full of mucilage (Heslop-Harrison and Heslop-Harrison, 1981). Thus, Pinguicula might be incapable of regenerating the gland after excretion. However, a study of another species provided compelling evidence that the glands remain active during digestion (Vassilyev and Muravnik, 1988). This discrepancy, which may stem from interspecies differences, should be reexamined in the future. In Lentibulariaceae, like in most Lamiales, gland cells are polyploid, which likely aids in their increased physiological activity (Fleischmann et al., 2018b).

Gland morphology in Ericales

Sarraceniaceae comprises three extant taxa: Heliamphora (sun pitchers), Darlingtonia (cobra lily), and Sarracenia. Their pitfall traps share an elongated, funnel-shaped silhouette that in some species collects rainwater, while in other species, an enlarged pitcher lid prevents the pitchers from being flooded (Chen et al., 2018). In all of these pitcher plants, the prey falls into the pitcher, where it is then digested. For glands, Sarraceniaceae utilize morphologically unremarkable epidermal cells called digestive epithelia (Figure 2), wherein endocytosis occurs (Koller-Peroutka et al., 2019). Dye staining of digestive zones revealed regions of these epidermal cells with permeable cuticles (Koller-Peroutka et al., 2019).

Ericales contains an additional carnivorous genus, Roridula, with flypaper-type traps. In addition to digestive epithelia, it has morphologically distinctive glands that sit on top of a multicellular trichome. Each globular gland contains an indentation at its pole for increased surface area (Figure 2). The longest trichomes are thought to be responsible for prey entanglement, the shortest ones for immobilization, and the medium-sized ones for slowing down prey movements (Voigt et al., 2009). The adhesive power of the glue, which in Roridula is resinous (in all other sticky carnivorous plants, it is aequous), is derived from triterpenoid compounds (Simoneit et al., 2008), making it a lipophilic resin that is sticky even underwater (Voigt et al., 2015). Due to this lipophilic secretory nature, Roridula exhibits unique features, such as digestive mutualism with symbiotic hemipterans (Ellis and Midgley, 1996) and a lack of digestive enzymes in the fluid (Lloyd, 1934) (Box 1; Supplemental Text S5). However, even in the absence of symbionts, Roridula seems to be capable of nutrient uptake from prey to some extent.
Plants (Juniper et al., 1989). Digestive epithelia seem to be the likely site of nutrient uptake, since phosphatase activity was only found in the epidermis of the leaves, rather than stalked glands (Plachno et al., 2009).

Gland morphology in Poales

Many epiphytic bromeliads collect water in a “tank” formed by tightly arranged rosette leaves (Ladino et al., 2019). Insects and other organic material can accumulate in these small bodies of water, termed phytotelmata. Among bromeliads, Brocchinia reducta, B. hechtioides, and Catopsis bertonioides are recognized as carnivorous (Fish, 1976; Frank and O’Meara, 1984; Givnish et al., 1984, 1997; Fleischmann et al., 2018b). Brocchinia reducta actively utilizes dead matter by absorbing free nutrients, earning the species a spot among carnivorous plants (Givnish et al., 1984; Benzing et al., 1985). Brocchinia hechtioides is less well studied, but it shares many carnivory-associated traits with B. reducta, such as overall morphology and habit, acidic tank water, emission of nectar-like scent, presence of insect carcasses in the tank and similar trichome structure (Givnish et al., 1997). The glandular trichomes of B. reducta have very weak phosphatase activity, but it remains unclear if they produce digestive enzymes themselves (Plachno et al., 2006); digestion is likely handled by bacteria and inquilines (Leroy et al., 2016). In B. reducta, glands are scattered across the entire leaf surface instead of being restricted to specific zones as in other pitcher plants (Juniper et al., 1989). These glandular trichomes are embedded in epidermal cavities, with the heads even with the inner tank surface (Benzing et al., 1985). The gland cap is radially organized, but it lacks the central disc cells typically observed in Tillandsioideae species such as Catopsis (Benzing et al., 1985). In that genus, four central disc cells are surrounded by multiple layers of cells, with each layer increasing in cell number (Benzing, 1976).

Paepalanthus bromelioides belongs to the Eriocaulaceae and even though not directly related to the bromeliads, its habitus is very similar to them: A rosette of leaves forms a water tank, the leaves are covered in wax possibly slippery to insects and produce UV-reflecting powder (Figueira et al., 1994). Although its carnivorous nature is under debate among scientists (Fleischmann et al., 2018b), some evidence points toward the plant being able to partially utilize nitrogen from insect carcasses and feces of inquiline predators falling into the water tank (Nishi et al., 2013). This species may be considered carnivorous under the confines of digestive mutualism but remains severely understudied. While there are mentions of hydrophilous trichomes near the leaf bases, a detailed description of any digestive glandular structure has yet to be provided (Figueira et al., 1994).

Gland morphology in Alismatales

Triantha is the only carnivorous lineage in the monocot order Alismatales. Carnivory has only been demonstrated in T. occidentalis (Lin et al., 2021), but it may also exist in the three other species of the genus. Triantha is unique among carnivorous plants in that it captures prey (small insects) solely on its sticky flowering stems and thus only during the flowering season, perhaps to enhance reproductive fitness (Lin et al., 2021). Unlike other genera in Tofieldiaceae, Triantha contains glandular hairs along its inflorescences (Packer, 2003), with fewer, smaller glands along the lower part of the stem, which is less sticky. The cylindrical glands are multicellular and typically concave at the top. The internal structure of the gland remains to be studied. The flowering stem of T. occidentalis secretes phosphatase (Lin et al., 2021), and phosphatase substrate hydrolysis is strongest on the glands, which appear to specifically secrete this digestive enzyme. The other digestive enzymes that Triantha may produce and the mechanism by which the plant absorbs nutrients remain to be demonstrated.

Concluding remarks

Studies of multiple carnivorous plant lineages revealed that various properties of glands have been acquired in parallel, such as gland dimorphism, cuticular permeability, acid secretion, endocytotic activity, and digestive enzyme secretion. However, the underlying molecular mechanisms are often unknown; thus, it is not clear whether these similar traits are brought about by the functions of common genes (see “Outstanding Questions”). The exception is the genes encoding digestive enzymes, in which multiple cases of convergent co-options are well documented. In contrast, the actions of phytohormones and gland morphology tend to be lineage specific. The glands in Dionaea have been particularly well characterized, mainly in terms of enzyme secretion and nutrient absorption (Hedrich and Neher, 2018; Hedrich and Fukushima, 2021). To understand the evolutionary trends of carnivorous plant glands, it is important to study

OUTSTANDING QUESTIONS

- How do the digestive fluids of carnivorous plants achieve the same level of acidity as the gastric juices of some animals?
- Are there convergent evolutionary trends in gland functions among independently evolved carnivorous plants, as well as between carnivorous plants and animals?
- Which cells of noncarnivorous ancestors of a given lineage served as the evolutionary origin of carnivorous glandular cells?
- How were ancestral cellular functions overwritten, repurposed, or reconciled with the new carnivorous functions of glands?
- Which molecular evolutionary mechanisms (e.g. gene duplication with sub-/neofunctionalization and/or new regulatory relationships) led to the convergent co-option of multiple protein families involved in gland functions?
multiple lineages and to apply knowledge about a well-
studied species to other species. In addition to studying glands, further research is needed to integrate our fragmen-
tary knowledge about other carnivory-related traits, such as
prey attraction and trap development. The convergent evo-
lution of carnivorous plants provides an opportunity to
study both common, convergent trends and unique traits in
the establishment of glands and other specialized tissues.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Methods S1. Scanning electron microscopy.

Supplemental Methods S2. Methylene blue staining.

Supplemental Text S1. Potential roles of the vacuole in
gland physiology.

Supplemental Text S2. Possible link between large glands and
extrafloral nectaries.

Supplemental Text S3. Glands of Caryophyllales carnivores.

Supplemental Text S4. Glands of Lamiales carnivores.

Supplemental Text S5. Glands of Ericales carnivores.

Supplemental Table S1. The pH levels of digestive fluids of
different species.

Supplemental References.

Acknowledgments
We thank the following people: Dirk Becker for providing
pictures of Aldrovanda vesiculosa, Claudia Gehrig-Höhn and
Daniela Bunsen for SEM sample preparation, and Ines Kreuzer for useful comments.

Funding
We acknowledge the following sources for funding: the Sofja
Kovalevskaja Program of the Alexander von Humboldt
Foundation (K.F.), Deutsche Forschungsgemeinschaft (DFG)
Individual Research Grants (K.F., 454506241), Human Frontier
Science Program (HFSP) Young Investigators Grant (K.F. and
T.R., RGY0082/2021), US National Science Foundation grant
(T.R. and V.A., DEB-2030871), DFG Reinhart Koselleck
grant (R.H., 415282803), and US Department of Agriculture
National Institute of Food and Agriculture Postdoctoral
Research Fellowship (K.J.G., 2019-67012-29872). The scanning
electron microscope JEOL JSM-7500F was funded by the DFG
(218894985, INST 93/761-1 FUFG).

Conflict of interest statement. The authors declare no competing interests.

References
Adamec L, Matusíková I, Pavlovič A (2021) Recent ecophysiological,
biochemical and evolutionary insights into plant carnivory. Ann Bot
128: 241–259
Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T,
Lichtscheid I K (2012) Endocytotic uptake of nutrients in carnivo-
rous plants. Plant J 71: 303–313
Adlassnig W, Lendl T, Lang I (2010) Deadly glue — adhesive traps
of carnivorous plants. In V Byern, J Grunwald, eds, Biological
Adhesive Systems. Springer, Vienna, Austria, pp 15–28
Adlassnig W, Steinhauser G, Peroutka M, Musilek A, Sterba JH,
Lichtscheid IK, Bichler M (2009) Expanding the menu for carniv-
orous plants: uptake of potassium, iron and manganese by carniv-
orous pitcher plants. Appl Radiat Isot 67: 2117–2122
Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phy-
logeny and structural evolution. Science 257: 1491–1495
An CI, Fukusaki E, Kobayashi A (2001) Plasma-membrane
H+-ATPases are expressed in pitchers of the carnivorous plant
Nepenthes alata Blanco. Planta 212: 547–555
Anderson B (2005) Adaptations to foliar absorption of faeces: a
pathway in plant carnivory. Ann Bot 95: 757–761
Aント R, Garcia MB (1995) A new mite-plant association: mites liv-
ing amidst the adhesive traps of a carnivorous plant. Oecologia
101: 51–54
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T (2021) Organ-specific expression and epigenetic traits of genes encoding
digestive enzymes in the lance-leaf sundew (Drosera adaelea). J Exp
Bot 72: 1946–1961
Araújo WL, Fernie AR, Nunes-Nesi A (2011) Control of stomatal
aperture. Plant Signal Behav 6: 1305–1311
Athauda SB, Matsumoto K, Rajapakshes S, Kuribayashi M, Kojima
M, Kubomura-Yoshida N, Iwamatsu A, Shibata C, Inoue H,
Takahashi K (2004) Enzymic and structural characterization of
Nepenthesin, a unique member of a novel subfamily of aspartic
proteinases. Biochem J 381: 295–306
Bar M, Shtein I (2019) Plant trichomes and the biomechanics of de-
fense in various systems, with Solanaceae as a model. Botany 97:
651–660
Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis
and endocytosis. Plant Cell 11: 643–659
Bauer U, Grafe TU, Federele W (2011) Evidence for alternative trap-
ping strategies in two forms of the pitcher plant, Nepenthes raffles-
iana. J Exp Bot 62: 3683–3692
Bazile V, Le Moguédec G, Marshall DJ, Gaume L (2015) Fluid
physico-chemical properties influence capture and diet in
Nepenthes pitcher plants. Ann Bot 115: 705–716
Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR (2015) The
evolution of stomach acidity and its relevance to the human
microbiome. PLoS One 10: e0134116
Bemm F, Becker D, Larsich C, Kreuzer I, Escalante-Perez M,
Schulze WX, Ankenbrand M, Weyer A-LV de, Krol E, Al-Rasheid
KA, et al. (2016) Venus flytrap carnivorous lifestyle builds on her-
vore defense strategies. Genome Res 26: 812–825
Benzing DH (1976) Bromeliad trichomes: structure, function, and
ecol ogical significanc e. Selbyana 1: 330–348
Benzing DH, Givnish TJ, Bermudes D (1985) Absorptive trichomes
in Brochichina reticula (Bromeliaceae) and their evolutionary and
systematic significance. Syst Bot 10: 81–91
Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017)
Evolution of hormone signaling networks in plant defense. Annu
Rev Phytopathol 55: 401–425
Böh m J, Scherzer S (2021) Signaling and transport processes related
to the carnivorous lifestyle of plants living on nutrient-poor soil.
Plant Physiol 187: 2017–2031
Böh m J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C,
Mueller TD, Shabala L, Monte I, Solano R, et al. (2016a) The
Venus flytrap, Dionaea muscipula counts prey-induced action
potentials to induce sodium uptake. Curr Biol 26: 286–295
Böh m J, Scherzer S, Shabala S, Krol E, Neher E, Mueller TD,
Hedrich R (2016b) Venus flytrap HKT1-type channel provides for
prey sodium uptake into carnivorous plant without conflicting
with electrical excitability. Mol Plant 9: 428–436
Bonhomme V, Pelloux-Prayer H, Jousselin E, Forterre Y, Labat J,
Gaume L (2011) Slippery or sticky? Functional diversity in the
trapping strategy of *Nepenthes* carnivorous plants. New Phytol 191: 545–554

Boudry G, David ES, Douard V, Monteiro IM, Le Huérrou-Luron I, Ferraris RP (2010) Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 51: 380–401

Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88: 249–286

Bröer S, Fairweather SJ (2018) Amino acid transport across the mammalian intestine. Compr Physiol 9: 343–373

Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A (2015) Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous *Nepenthes* plants. PLoS One 10: e0118853

Buch F, Rott M, Rottloff S, Paetz C, Hille I, Raessler M, Mithöfer A (2013) Secreted pitfall-trap fluid of carnivorous *Nepenthes* plants is unsuitable for microbial growth. Ann Bot 111: 375–383

Callow JA, Hallahan DL, Gray JC (2000) Plant Trichomes. Academic Press, San Diego, CA

Chase MW, Christenhusz MJM (2021) New ant-like mirid from *Solanum* sect. *Coca*: solanaceae. Curtiss Bot Mag 38: 350–364

Chen H, Ran T, Gan Y, Zhou J, Zhang Y, Zhang D, Jiang L (2018) Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater 17: 935–942

China WE, Carvalho JCM (1951) XXII: A new ant-like mirid from Western Australia (Hemiptera, *Miridae*). Ann Mag Nat Hist 4: 221–225

Cui Y, Gao J, He Y, Jiang L (2020) Plant extracellular vesicles. Protoplasta 257: 3–12

Darnowski DW, Carroll DM, Płachno B, Kabanoff E, Cinnamon E (2020) Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Nutr 150: 229–237

Dannowski DW, Carroll DM, Płachno B, Kabanoff E, Cinnamon E (2020) Secreted pitfall-trap fluid of carnivorous *Nepenthes* plants is unsuitable for microbial growth. Ann Bot 111: 375–383

Di Giusto B, Grosbois V, Fargeas E, Marshall DJ, Gaume L (2018) Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a *Nepenthes* carnivorous plant from borneo. J Biosci 33: 121–136

Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78: 857–902

Dressman JB, Berardi RR, Dermontzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7: 756–761

Ellis AG, Midgley JJ (1996) A new plant-animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia 106: 478–481

Engevik AC, Engevik MA (2021) Exploring the impact of intestinal transport on the gut microbiota. Comput Struct Biotechnol J 19: 134–144

Engevik AC, Kaji L, Goldenring JR (2020) The physiology of the gastric parietal cell. Physiol Rev 100: 573–602

Erni P, Varagnat M, McKinley GH (2008) Little shop of horrors: rheology of the mucilage of *Drosophila* sp., a carnivorous plant. AIP Conference Proceedings 1027: 579–581

Escalante-Perez M, Krol E, Stange A, Geiger D, Al-Rasheid KAS, Hause B, Neher E, Hedrich R (2011) A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proc Natl Acad Sci USA 108: 15492–15497

Estudante M, Morais JG, Soeveral G, Benet LZ (2013) Intestinal drug transporters: an overview. Adv Drug Deliv Rev 65: 1340–1356

Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108: 229–257

Fasbender L, Maurer D, Kreuzwieser J, Kreuzer I, Schulze WX, Kruse J, Becker D, Alfarrag S, Hedrich R, Werner C, et al. (2017) The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration. New Phytol 214: 597–606

Fenner CA (1904) Beiträge zur Kenntnis der Anatomie, Entwicklungsgeschichte und Biologie der Laubblätter und Drüsen einiger Insektenvögel. Vol. 23. Val. Höfling. https://books.google.de/books?id=xT9EAQAAMAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of few? Phytochemistry 70: 828–832

Figueira JEC, Vasconcellos-Neto J, Jolivet P (1994) Une nouvelle plante protocarnivore *Paepalanthus* bromelioides Silv. (Eleocharaceae) du Brésil. Rev D'Ecologie Terre Vie Société Natl Prot Nat 49: 3–9

Fish D (1976) Structure and Composition of the Aquatic Invertebrate Community Inhabiting Epiphytic Bromeliads in South Florida and the Discovery of an Insectivorous Bromeliad. University of Florida, Gainesville, FL

Fleischmann A (2018) Systemsatics and evolution of Littorellaceae: II. *Genlisea*. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press, Oxford, pp 81–88

Fleischmann A (2012) Monograph of the genus *Genlisea*. Redfern Natural History Productions, Dorset, Poole

Fleischmann A, Cross AT, Gibson R, Gonella PM, Dixon KW (2018a) Systematics and evolution of Droseraceae. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press, Oxford, pp 45–57

Fleischmann A, Rivadavia F, Gonella PM, Pérez-Baños C, Mengual X, Rojo S (2016) Where is my food? Brazilian flower fly steals prey from carnivorous sundews in a newly discovered plant-animal interaction. PLoS One 11: e0153900

Fleischmann A, Schlauer J, Smith SA, Givnish TJ (2018b) Evolution of carnivory in angiosperms. In Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press, Oxford, pp 22–41

Fletcher TB (1908) Description of a new plume-moth from Ceylon, with some remarks upon its life-history. Spolia Zeylanica 5: 20–32

Frank JH, O'Meara GF (1984) The Bromeliad *Catopsis berteroniana* traps terrestrial arthropods but harbors wyeomyia larvae (*Diptera: Culicidae*). Fla Entomol 67: 418

Futon JS (2002) A history of pepsin and related enzymes. Q Rev Biol 77: 127–147

Fukushima K, Fang X, Alvarez-Ponce D, Cai H, Carretero-Paulet L, Chen C, Chang T-H, Farr KM, Fujita T, Hiwatashi Y, et al. (2017) Genome of the pitcher plant *Cephalotus* reveals genetic changes associated with carnivory. Nat Ecol Evol 1: 0059

Fukushima K, Narukawa H, Palfalvi G, Hasebe M (2018) Malate: Amino acid transport across mammalian intestinal transporters: an overview. Adv Drug Deliv Rev 65: 380–401

Gaume L, Forterre Y (2020) Tropical INSECTICIDA: solanaceae. Curtiss Bot Mag 38: 350–364

Gilbert KJ, Bittleston LS, Tong W, Pierce NE (2014) Three functional transporters for constitutive, diurnal regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11: 937–947

Gilbert KJ, Benettles LS, Tong W, Pierce NE (2020) Tropical pitcher plants (*Nepenthes*) act as ecological filters by altering properties of their fluid microenvironments. Sci Rep 10: 4431

Gilbert KJ, Renner T (2021) Acid or base? How do plants regulate the ecology of their phylloplane? AoB Plants 13: plab032
Digestive systems of carnivorous plants

PLANT PHYSIOLOGY 2022: 190; 44–59 | 57

Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad *Broccinia reducta*, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124: 479–497

Givnish TJ, Sytsma J, Hahn W, Berzing DH, Burkhardt E (1997) Molecular evolution and adaptive radiation atop tepuis in *Broccinia* (Bromeliaceae: Pitcairnioideae). Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, pp 267–270

Gowda DC, Reuter G, Schauer R (1982) Structural features of an acidic polysaccharide from the mucin of *Drosera binata*. Phytochemistry 21: 2297–2300

Hanning I, Diaz-Sanchez S (2015) The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3: 51

Hartmeyer S (1989) The Carnivorous Plants. Chronica Botanica

Heslop-Harrison Y, Heslop-Harrison J (1980) Chloride ion move-

Heslop-Harrison Y, Knox RB (1998) Carnivory in *Pinguicula*. J Proteome Res 7: 809–816

Hawes C, Coleman J, Evans D (1991) Endocytosis, Exocytosis and Vesicle Traffic in Plants. Cambridge University Press, Cambridge

Hedrich R (2015) Carnivorous plants. Curr Biol 25: R99–R100

Hedrich R, Fukushima K (2021) On the origin of carnivory: molecular physiology and evolution of plants on an animal diet. Annu Rev Plant Biol 72: 133–153

Hedrich R, Neher E (2018) Venus flytrap: how an excitable, carnivorous plant works. Trends Plant Sci 23: 220–234

Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16: 191–200

Heslop-Harrison Y (1975) Enzyme release in carnivorous plants. Front Biol 43: 525–78

Heslop-Harrison Y, Heslop-Harrison J (1980) Chloride ion movement and enzyme secretion from the digestive glands of *Pinguicula*. Ann Bot 45: 729–731

Heslop-Harrison Y, Heslop-Harrison J (1981) The digestive glands of *Pinguicula*: structure and cytochemistry. Ann Bot 47: 293–319

Heslop-Harrison Y, Knox RB (1971) A cytochemical study of the leaf-gland enzymes of insectivorous plants of the genus *Pinguicula*. Planta 96: 183–211

Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in caryophyllales — revisited. Plant Biol 8: 821–830

Hirschowitz BI (1967) The control of pepsinogen secretion. Ann NY Acad Sci 140: 709–723

Iosip AL, Hahn W, Berzing DH, Burkhardt E (1997) Molecular Evolution and Adaptive Radiation. Cambridge University Press, Cambridge, pp 267–270

Iosip AL, Bo¨hm J, Scherzer S, Al-Rasheid KAS, Dreyer I, Schultz J, Hanning I, Diaz-Sanchez S (2015) The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3: 51

Hartmeyer S (1989) The Carnivorous Plants. Chronica Botanica

Heslop-Harrison Y, Knox RB (1971) A cytochemical study of the leaf-gland enzymes of insectivorous plants of the genus *Pinguicula*. Planta 96: 183–211

Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in caryophyllales — revisited. Plant Biol 8: 821–830

Hirschowitz BI (1967) The control of pepsinogen secretion. Ann NY Acad Sci 140: 709–723

Iosip AL, Bo¨hm J, Scherzer S, Al-Rasheid KAS, Dreyer I, Schultz J, Becker D, Kreuzer I, Hedrich R (2020) The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K⁺ gradient required for hapto-electric signaling. PLoS Biol 18: e3000964

Jackson AD, Mclaughlin J (2006) Digestion and absorption. Surg Oxf 24: 250–254

Jaksovich, J, Adamec L, Petrik I, Novák O, Šebela M, Pavlović A (2021) Contrasting effect of prey capture on jasmonate accumulation in two genera of aquatic carnivorous plants (*Aldrovanda, Utricularia*). Plant Physiol Biochem 166: 459–465

Janík MC (2016) Digestive enzymes of human and nonhuman pri-
mates. Ecol Anthropol Issues News Rev 25: 253–266

Janiak MC (2020) Carnivorous plants. Plants 9: 3749–3758

Koller-Peroutka M, Krammer S, Pavlík A, Edlinger M, Lang I, Adlassnig W (2019) Endocytosis and digestion in carnivorous pitcher plants of the family Sarraceniaceae. Plants 8: 367

Krausko M, Perutz K, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlović A (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant *Drosera capensis*. New Phytol 213: 1818–1835

Ladino G, Osprina-Bautista F, Varón JE, Jerabkova L, Kratina P (2019) Ecosystem services provided by bromeliad plants: a systematic review. Ecol Evol 9: 7360–7372

Lee SJ, Saravanan RS, Damasceno CMB, Yamane H, Kim BD, Rose JKC (2004) Digging deeper into the plant cell wall proteome. Plant Physiol Biochem 42: 979–988

Lemaître B, Miguel-Alía I (2013) The digestive tract of *Drosophila melanogaster*. Annu Rev Genet 47: 377–404

Leroy C, Carrias JF, Cérégino R, Corbara B (2016) The contribution of microorganisms and metabolites to mineral nutrition in bro-
meliads. J Plant Ecol 9: 241–255

Libliaková M, Floková K, Novák O, Slováková L, Pavlović A (2014) Abundance of cysteine endopeptidase diöin in digestive fluid of Venus flytrap (*Dionaea muscipula*) is regulated by different stimuli from prey through jasmonates. PLoS One 9: e104424

Lichtscheidl I, Lancelle S, Weidinger M, Adlassnig W, Koller-
Peroutka M, Bauer S, Krammer S, Hepler PK (2021) Gland cell responses to feedback in *Drosera capensis*, a carnivorous plant. Protoplasma 258: 1291–1306

Lin Q, Ané C, Givnish TJ, Graham SW (2021) A new carnivorous plant lineage (*Triantha*) with a unique sticky-inflorescence trap. Proc Natl Acad Sci USA 118: e2022724118

Lloyd FE (1942) The Carnivorous Plants. Chronica Botanica Company, Waltham, MA, USA

Lloyd FE (1934) Is *Roridula* a carnivorous plant? Can J Res 10: 780–786

Löfstrand SD, Schönberger J (2015) Molecular phylogenetics and floral evolution in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. Taxon 64: 1209–1224

López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65: 95–123

Lowrie A (1998) A Taxonomic Revision of the Genus *Byblis* (*Byblidaceae*) in Northern Australia. Nuytsia 12: 59–74

Luciano CS, Newell SJ (2017) Effects of prey, pitcher age, and microbes on acid phosphatase activity in fluid pitchers of *Sarracenia purpurea* (*Sarraceniaceae*). PLoS One 12: e0181252

Lütteke U (1966) Untersuchungen zur physiologie der carnivenor-drü-
sen. Planta 68: 269–285

Marburger JE (1979) Glandular leaf structure of *Triphyophyllum pelatum* (*Dioncophyllum*): a “fly-paper” insect trapper. Am J Bot 66: 404–411

Martinsen TC, Bergh K, Waldum HL (2005) Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol 96: 94–102

Matusíková I, Pavlović A, Renner T (2018) Biochemistry of prey diges-
tion and nutrient absorption. Carnivorous PlantsPhysiology, Ecology, and Evolution. Oxford University Press, Oxford, pp 207–220

Mehltrter K, Tenhaken R, Jansen S (2021) Nectaries in ferns: their taxonomic distribution, structure, function, and sugar composition. Am J Bot 109: 46–57

Moran JA, Gray LK, Clarke C, Chin L (2013) Capture mechanism in palaetropical pitcher plants (*Nepenthes*) is constrained by cli-
mate. Ann Bot 112: 1279–1291

Moran JA, Hawkins BJ, Goven BE, Robbins SL (2010) Ion fluxes across the pitcher walls of three Bornean *Nepenthes* pitcher plant species: flux rates and gland distribution patterns reflect nitrogen sequestration strategies. J Exp Bot 61: 1365–1374

Morrissey S (1955) Chloride ions in the secretion of the pitcher plant. Nature 176: 1220–1221
Müller KF, Borsch T, Legendre L, Porembski S, Barthlott W (2006) Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiaceae). Plant Biol 8: 748–757

Nakamura Y, Reichelt M, Mayer VE, Mithöfer A (2013) Jasmonates trigger prey-induced formation of ‘outer stomach’ in carnivorous sundew plants. Proc R Soc B Biol Sci 280: 20130228

Nemec O, Sigler K, Kleinzeller A (1966) Ion transport in the pitcher of Nepenthes henyana. Biochim Biophys Acta BBA-Biophys Photosynth 126: 73–80

Nishi AH, Vasconcellos-Neto J, Romero GQ (2013) The role of multiple partners in a digestive mutualism with a protocarnivorous plant. Ann Bot 111: 143–150

Nishimura E, Kawahara M, Kume M, Arai N, Nakamura Y, Reichelt M, Mayer VE, Mithöfer A (1999) Pathways for nutrient transport in the pitchers of the carnivorous plant Nepenthes alata. Ann Bot 83: 955–967

Nitschke T (1861) Morphologie des Blattes von Nitschke T

Osaki H, Tagawa K (2020) Life on a deadly trap: Morphologie des Blattes von Nitschke T

Parkes DM, Hallam ND (1986) Ultrastructural and radioautographic studies of the digestive gland cells of Drosera capensis I: development and mucilage secretion. J Ultrastruct Res 90: 71–88

Pászota P, Escalante-Perez M, Thomsen LR, Rissor MW, Dembski A, Sanglas L, Nielsen TA, Karring H, Thogersen IB, Hedrich R et al. (2012) Underground leaves of Philcoxia wounding mimics prey capture in the carnivorous Venus flytrap. Acta Biol Cracoviensia 109: 1154–1158

Paceva´ J, Nova´k O, Saganova´ M, Bokor B, Stola´rik T, Pavlovi´c A, Jak A, Sadowski O, Sigler K, Kleinzeller A (2013) Primary structure of a barley-grain aspartic proteinase. Eur J Biochem 270: 595–604

Pa´chta J (2000) Development of intestinal transport function in mammals. Physiol Rev 80: 1633–1667

Palmer GM (2003) Triantha and Toefieldia. Flora of North America. North of Mexico. Oxford University Press, New York, NY, pp 56–64

Parkes DM, Halam ND (1984) Adaptation for carnivory in the West Australian pitcher plant Cephalotus follicularis Labill. Aust J Bot 32: 595–604

Passota P, Escalante-Perez M, Thomsen LR, Risor MW, Dembski A, Sanglas L, Nielsen TA, Karring H, Thogerson IB, Hedrich R et al. (2014) Secreted major Venus flytrap chitinase enables digestion of Arthropod prey. Biochim Biophys Acta 2: 374–383

Pavlovi¯c A, Jaksová J, Novák O (2017) Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol 216: 927–938

Pavlovi A, Mithöfer A (2019) Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. J Exp Bot 70: 3379–3389

Pereira CG, Almenara DP, Winter CE, Fritsch PW, Lammers H, Oliveira RS (2012) Underground leaves of Philoxea trap and digest nematodes. Proc Natl Acad Sci USA 109: 1154–1158

Plachno BJ (2008) Prey attraction in carnivorous Genlisea (Lentibulariaceae). Acta Biol Cracoviensia 50: 87–94

Plachno BJ, Adamec L, Huet H (2009) Mineral nutrient uptake from prey and glundar phosphatase activity as a dual test of carnivory in semi-desert plants with glandular leaves suspected of carnivory. Ann Bot 104: 649–654

Plachno BJ, Adamec L, Lichtscheidl IK, Peroutka M, Adlassnig W, Vrba J (2006) Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol 8: 813–820

Plachno BJ, Kozieradzka-Kiszkurno M, S´wiatk´ek P (2007) Functional ultrastructure of Genlisea (Lentibulariaceae) digestive hairs. Ann Bot 100: 195–203

Procko C, Murthy S, Keenan WT, Mousavi SAR, Dabi T, Coombs A, Procko E, Baird L, Patapoutian A, Chory J (2021) Stretch-activated ion channels identified in the touch-sensitive structures of carnivorous Droseraceae plants. eLife 10: e64250

Rajendran VM, Schulzke JD, Seidler UE (2018) Chapter 58-Ion channels of the gastrointestinal epithelial cells. In HM Said, ed, Physiology of the Gastrointestinal Tract, 6th edn. Academic Press, Cambridge, MA, pp 1363–1404

Ravek R, Salleh F Imadi M, Goh HH (2018) Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6: e4914

Rawat SR, Silim SN, Kronzucker HJ, Siddiqi MY, Glass ADM (1999) AtAMT1 gene expression and NH4\(^+\) uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J 19: 143–152

Rea PA (1982) Fluid composition and factors that elicit secretion by the trap lobes of Dionaea muscipula Ellis. Z Für Pflanzenphysiol 108: 255–272

Rea PA (1984) Evidence for the H\(^+\)-co-transport of D-alanine by the digestive glands of Dionaea muscipula Ellis. Plant Cell Environ 7: 363–366

Rea PA, Joel DM, Juniper BE (1983) Secretion and redistribution of chloride in the digestive glands of Dionaea muscipula Ellis (Venus’s flytrap) upon secretion stimulation. New Phytol 94: 359–366

Renner T, Specht CD (2011) A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. Int J Plant Sci. 172: 889–901

Renner T, Specht CD (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62: 4639–4647

Runeberg-Roos P, Törmäkangas K, Östman A (1991) Primary structure of a barley-grain aspartic proteinase. Eur J Biochem 202: 1021–1027

Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, Dressman JB (1993) Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res 10: 187–196

Saganová M, Bokor B, Stolárik T, Pavlovi´c A (2018) Regulation of enzyme activity in carnivorous pitcher plants of the genus Nepenthes. Planta 248: 451–464

Sætherhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiaceae relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10: 352

Scherzer S, Böhm J, Krol E, Shabala L, Kreuzer I, Larisch C, Bemm F, Al-Rasheid KAS, Shabala S, Rennenberg H et al. (2013) Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proc Natl Acad Sci USA 112: 7309–7314

Scherzer S, Krol E, Kreuzer I, Kruse J, Karl F, von Ruden M, Escalante-Perez M, Muller T, Rennenberg H, Al-Rasheid KA et al. (2013) The Dionaea muscipula ammonium channel DmAMT1 provides NH4\(^+\) uptake associated with Venus flytrap’s prey digestion. Curr Biol 23: 1649–1657

Scheller S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rasheid KAS, Kreuzer I, Becker D et al. (2017) Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc Natl Acad Sci USA 114: 4822–4827

Schmidt RF, Lang F, Heckmann M (2010) Physiologie des Menschen: Mit Pathophysiologie. Springer, Heidelberg, Germany, p 31
Schneuf E (1961a) Licht- und elektronenmikroskopische beobachtungen an insektivoren-drüsen über die sekretion des fangscheimes. Flora Oder Allg Bot Ztg 151: 73–87
Schneuf E (1961b) Quantitative zusammenhänge zwischen der sekretion des fangscheimes und den golgi-strukturen bei Drosophyllum lusitanicum. Z Naturforsch 16 b: 605–610
Schneuf E (1963a) Zur cytologie und physiologie pflanzlicher drüsen: 3. Teil. cytologische veränderungen in den drüsen von Drosophyllum während der verdaunung. Planta 59: 351–379
Schneuf E (1972) Über die wirkung von hemmstoffen der protein-synthese auf die sekretion des kohlenhydrats-fangscheimes von Drosophyllum lusitanicum. Planta Berl 103: 334–339
Schneuf E (1963b) Zur cytologie und physiologie pflanzlicher drüsen: 1. Teil. Über den fangscheim der insektivoren. Flora Oder Allg Bot Ztg 153: 1–22
Schulze W, Frommer WB, Ward JM (1999) Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 17: 637–646
Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thogersen IB, Brautigam A, Thomsen LR, Schlesky S, Dyrlund TF, et al. (2012) The protein composition of the digestive fluid from the Venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 11: 1306–1319
Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46: 941–950
Shepherd RW, Wagner GJ (2007) Phylloplane proteins: emerging defenses at the aerial frontline? Trends Plant Sci 12: 51–56
Simoneti BRT, Medeiros PM, Wollenweber E (2008) Triterpenoids as major components of the insect-trapping glue of Roridula species. Z Für Naturforschung C 63: 625–630
Sirová D, Borovec J, Picek T, Adamec L, Nedbalová L, Vrba J (2011) Ecological implications of organic carbon dynamics in the traps of aquatic carnivorous Utricularia plants. Funct Plant Biol 38: 583–593
Smith JL (2003) The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 66: 1292–1303
Spomer GG (1999) Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int J Plant Sci 160: 98–101
Steinmetz PRH (2019) A non-bilaterian perspective on the development and evolution of animal digestive systems. Cell Tissue Res 377: 321–339
Takahashi K, Suzuki T, Nishii W, Kubota K, Shibata C, Isobe T, Dohmae N (2011) A cysteine endopeptidase (“Dionain”) is involved in the digestive fluid of Dionaea muscipula (Venus’s flytrap). Biosci Biotechnol Biochem 75: 346–348
Taylor P (1989) The genus Utricularia. A Taxonomic Monograph. Kew Bulletin, Kew, England
The Angiosperm Phylogeny Group, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judi WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, et al. (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181: 1–20
Thiel G, Battey N (1998) Exocytosis in plants. In J Soll, ed, Protein Trafficking in Plant Cells. Springer Netherlands, Dordrecht, Netherlands, pp 111–125
Vassilyev AE, Muravnik LE (1988) The ultrastructure of the digestive glands in Pinguisca vulgaris L. (Lentibulariaceae) relative to their function. I. The changes during maturation. Ann Bot 62: 329–341
Voelcker A (1849) XXVI. On the chemical composition of the fluid in the ascidia of Nepenthes. Lond Edinb Dublin Philos Mag J Sci 35: 192–200
Vogel S (1998) Remarkable nectaries: structure, ecology, organophylactic perspectives. Flora 193: 1–29
Voigt D, Gorb E, Gorb S (2009) Hierarchical organisation of the trap in the protocarnivorous plant Roridula gorgonias (Roridulaceae). J Exp Biol 212: 3184–3191
Voigt D, Gorb S (2010) Locomotion in a sticky terrain. Arthropod-Plant Interact 4: 69–79
Voigt D, Konrad W, Gorb S (2015) A universal glue: underwater adhesion of the secretion of the carnivorous flypaper plant Roridula gorgonias. Interface Focus 5: 20140053
Wang X, Chung KP, Lin W, Jiang L (2018) Protein secretion in plants: conventional and unconventional pathways and new techniques. J Exp Bot 69: 21–37
Wang L, Zhou Q (2016) Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid. Sci Rep 6: 19907
Wang L, Zhou Q, Zheng Y, Xu S (2009) Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Prog Nat Sci 19: 1657–1664
Williams SE (1976) Comparative sensory physiology of the Droseraceae-The evolution of a plant sensory system. Proc Am Philos Soc 120: 187–204
Yang YP, Liu HY, Chao YS (2009) Trap gland morphology and its systematic implications in Taiwan Utricularia (Lentibulariaceae). Flora- Morphol Distr Funct Ecol Plants 204: 692–699
Yao X, Forte JG (2009) Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes. Arch Phytomedicine 8: 159–172
Yilmaz Yilmaz et al. (2016) The protein composition of the digestive fluid of carnivorous Nepenthes plants. Ann Bot 118: 369–375