Mottness at finite doping and charge instabilities in cuprates

S. Peli1,2, S. Dal Conte3, R. Comin4,5,1, N. Nembrini1,2, A. Ronchi1,6,7, P. Abram1,6, F. Banfi1,6, G. Ferrini1,6, D. Brida3,8, S. Lupi9, M. Fabrizio10, A. Damascelli4,5, M. Capone10, G. Cerullo3 and C. Giannetti1,6,†

The influence of Mott physics on the doping–temperature phase diagram of copper oxides represents a major issue that is the subject of intense theoretical and experimental efforts. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p \rightarrow Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping $p_c \approx 0.16$ irrespective of the temperature, and it can be well described by dynamical mean-field theory calculations. We argue that the onset of low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the $p < p_c$ region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides.

When charge carriers are chemically doped into a Mott or charge-transfer insulator, the system evolves progressively into a metal whose electronic properties are strongly reminiscent of the on-site electronic correlations1. In the case of copper oxides, the complexity of the problem has roots in the intertwining between the high-energy scale of the Mott physics2 (several electronvolts) and the low-energy phenomena that typically emerge in the low-temperature/doping region of the phase diagram3. For example, the vicinity to the Mott insulating phase at zero doping ($p = 0$) has been advocated4–5 as the main mechanism that drives the freezing of the charge carriers within the CuO\textsubscript{2} unit cell and the reduction of their kinetic energy, thus facilitating the low-temperature formation of charge-ordered states and other forms of order that spontaneously break the translational symmetry of the underlying crystal. In fact, the universal tendency to develop short-ranged incommensurate charge-density waves (CDW) in the underdoped region of the phase diagram and below a characteristic temperature has been recently reported in both hole- and electron-doped copper oxides by X-ray diffraction6–16, tunnelling microscopy17,18 and nuclear magnetic resonance19. More generally, the breaking of the rotational symmetry from C_4 to C_1 (nematicity) has been argued from X-ray and neutron scattering experiments20–22 and directly imaged by scanning tunnelling microscopy (STM)23. The signature of intra-unit-cell magnetic order has been observed by neutron scattering24 and Kerr effect measurements25.

The ubiquitous instability towards ordered states raises the fundamental question whether these phenomena hide a common and profound origin connected to the existence of an elusive correlated metallic state2,6,27 that emanates from the Mott insulator and extends up to the critical hole doping level, $p_c \sim 0.16$, at which the symmetry-broken orders vanish. In charge-transfer systems, such as cuprates, the oxygen bands play a fundamental role in renormalizing the energy scale at which this possible Mott physics can be studied. Considering the simplest case of the parent insulator ($p = 0$), the valence fluctuations of Cu-3d^{9} are suppressed by the strong Coulomb repulsion ($U_{dd} \sim 10$ eV) between two electrons occupying the same Cu orbital. The lowest-energy excitation is thus the charge transfer (CT) of a localized Cu-3$d_{x^2-y^2}$ hole to its neighbouring O-2p_{xy} orbitals (see Fig. 1a, b), with an energy cost $\Delta_{CT} \sim 2$ eV $< U_{dd}$. In the optical conductivity, this process is revealed by a typical CT edge at $h\omega = \Delta_{CT}$, which corresponds to the onset of optical absorption by particle–hole excitations in the complete absence of a Drude response28.

Here we shed new light on the nature of the electronic excitations at the Δ_{CT} energy scale by adopting a non-equilibrium approach. The high temporal resolution (~ 10 fs) of the time-resolved technique employed in this work allows us to access the ultrafast dynamics of the CT excitations before complete thermalization is achieved. We performed experiments on the single-layer Bi$_2$Sr$_2$La$_{1-x}$CuO$_{4+x}$ (La-Bi2201) cuprate family (see Methods), in which the hole doping concentration can be accurately controlled by La substitution and can span a broad doping region ($0.03 < p < 0.2$) across the critical doping $p_c = 0.16$. The ultrafast dynamics of the CT excitations is directly compared to the CDW amplitude, which has been measured on the same samples by resonant soft X-ray scattering (RXS) at low temperature27. These results, supported by dynamical mean-field

1Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy. 2Department of Physics, Università degli Studi di Milano, 20133 Milano, Italy. 3IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy. 4Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. 5Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada. 6I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy. 7Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven, Belgium. 8Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany. 9CNR-IOM Dipartimento di Fisica, Università di Roma La Sapienza P.le Aldo Moro 2, 00185 Rome, Italy. 10Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy. †Present address: Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA. e-mail: claudio.giannetti@unicatt.it
Figure 1 | Charge-transfer excitation and optical properties of cuprates. **a.** Sketch of the generic charge-transfer process in the Cu–O layer of copper oxides. **b.** The upper (UHB) and lower (LHB) Hubbard bands, corresponding to the Cu-3d^{10} and Cu-3d^9 configurations. **c, d.** Reflectivity curve, $R(\omega)$, of the underdoped sample (yellow dots, taken from refs 29,30). The black line is the fit to the data obtained from a model dielectric function which contains an extended-Drude term and three Lorentz oscillators that account for the high-energy transitions. The contribution of the first interband oscillator, attributed to the charge-transfer process, to the total dielectric function is reported as a grey region. The top-right inset shows ω_{CT} as a function of the hole concentration. The bottom-left inset shows the position of the sample in the p–T phase diagram. The pink line represents the superconducting dome, while the green line indicates the CT insulating region. **d.** $R(\omega)$ of the overdoped sample (blue dots, taken from refs 29,30). The black line is the fit of the model dielectric function to the data. The grey area represents the contribution of the CT oscillator to the dielectric function. The bottom-left inset shows the position of the sample in the p–T phase diagram.

NATURE PHYSICS DOI: 10.1038/NPHYS4112

ARTICLES

theory (DMFT) calculations, unveil a temperature-independent crossover of the CT dynamics at $p_{\text{cr}} \sim 0.16$ and suggest that the high-temperature Mott-like state at $p < p_{\text{cr}}$ is the necessary precursor of the low-temperature instabilities.

In Fig. 1c,d we report the reflectivity curves, $R(\omega)$, for the most underdoped ($p = 0.03$, non-superconducting) and the most overdoped ($p = 0.2$, $T_c/T_{\text{max}} = 0.57$) samples33,34. Considering the deeply underdoped sample, the first high-energy optical transition is found at $\Delta_{\text{CT}} = 2$ eV, and hence can be safely ascribed to the charge-transfer process. When the doping concentration is increased, the energy of this optical transition remains constant (see the inset of Fig. 1c), while its spectral weight progressively decreases. Furthermore, the low-energy region develops a pronounced metallic plasma edge at $h\omega \sim 1$ eV.

Figure 2a reports the ultrafast dynamics of the CT transition at $T = 300$ K in the 1.8–2.5 eV energy range. The dynamics is triggered by pump pulses whose frequency content (1.35 eV central energy with 0.3 eV bandwidth, see Methods) guarantees a significant overlap with the CT transition (~ 1 eV full-width at half-maximum, see Fig. 1c,d) as well as the temporal resolution necessary for the experiment. Similar results were obtained with 1.6 eV and 2.1 eV pump photon energies (see Supplementary Figs 3 and 4). The measured sub-picoseconds dynamics exhibits a clear doping dependence: while the reflectivity variation ($\Delta R(\omega)/R$) measured on the underdoped samples is characterized by a pronounced negative (red) signal for $h\omega > 2$ eV—it progressively evolves toward a featureless positive (blue) signal for $p \geq 0.16$. The negative $\Delta R(\omega)/R$ measured in underdoped samples at $h\omega \sim \Delta_{\text{CT}}$ cannot be explained by simply assuming a variation of the total scattering rate of the conduction electrons31,32, since this would lead to a flat and positive signal over the entire probed frequency range (see Supplementary Information). In contrast, the $\delta R(\omega)/R$ signal can be perfectly reproduced by assuming a pump-induced redshift of the CT transition (see Supplementary Information), which results in a reflectivity variation proportional to the derivative of the peak shape. In Fig. 2b we report the $\delta R(\omega)/R$ signal calculated by introducing a redshift of the CT peak in the equilibrium dielectric function of the immediately doped sample ($p = 0.12$) and by assuming an exponential decay of the signal. The main features of the experimental transient reflectivity map are qualitatively reproduced by this simple assumption. For a quantitative analysis of the ultrafast dynamics, we report in Fig. 2c the fit to the $\delta R(\omega)/R$ spectra for the $p = 0.12$ sample at fixed delays ($t = 50, 100, 200, 600$ fs), from which we can extract the time evolution of the CT redshift ($\delta \Delta_{\text{CT}}$). For all the underdoped samples, the $\delta \Delta_{\text{CT}}$ dynamics (Fig. 2d) is similar and is characterized by two exponential recovery times, $\tau_i \simeq 100$ fs.
Figure 2 | Ultrafast optical spectroscopy on La-Bi2201. a, The top row shows the position of the measured samples in the p-T phase diagram. In the bottom row we report the $\delta R(\omega, t)/R$ maps measured by ultrafast optical spectroscopy on La-Bi2201. The colour scale is reported in the inset. b, Simulation of the $\delta R(\omega, t)/R$ signal for the $p = 0.12$ sample. A transient redshift of the CT oscillator, whose dynamics is given by an exponential decay, is assumed. The colour scale is the same than that in a. c, $\delta R(\omega, t)$ spectra at different time delays for the $p = 0.12$ sample. The black line is a fit to the data obtained by redshifting the position of the CT oscillator. For comparison, we report $\delta R(\omega, t)/R$ for the $p = 0.16$ sample (blue line), along with the best fit obtained by increasing the scattering rate in the Drude model. d, Dynamics of $\delta \Delta_{CT}$ for the $p = 0.12$ sample. The black line is the fit to the data of a double-exponential decay convolved with a Gaussian curve that accounts for the temporal resolution.

and $\tau_2 \approx 600$ fs. These timescales are compatible with the coupling to the optical buckling and breathing phonons and, subsequently, to the rest of the lattice vibrations, while the coupling of the local charge excitations to short-range antiferromagnetic fluctuations is expected to be effective on a 10-fs timescale. The maximum $\delta \Delta_{CT}$ is estimated by considering the value extracted from the fitting procedure at $t = 50$ fs. Considering the $p = 0.12$ sample, we obtain $\delta \Delta_{CT} = -5 \pm 1$ meV at the excitation density of 7 J cm$^{-2}$. With this excitation density the maximum value of the CT redshift (that is, $\delta \Delta_{CT} = -10 \pm 2$ meV) is measured at $p = 0.10$ hole doping.

The measured CT redshift discloses important information about the nature of the charge-transfer transition. This process can be easily rationalized starting from the CT insulator ($p = 0$), in which the completely localized picture provides a good description of the fundamental electronic excitations. In this framework, the energy necessary to move a localized hole from the Cu-3$d_{x^2-y^2}$ to the O-2p_{xy} orbitals is renormalized by the Coulomb interatomic potential (U_{pp}) between the excess Cu-3d electron and the holes residing on the nearest neighbouring oxygen sites. In simple terms, U_{pp} provides a binding energy for the local Cu-3$d_{x^2-y^2} - O-2$p_{xy}$ exciton. Within this local picture, we can sit on a spin-up polarized Cu atom (see Fig. 1a) and assume that the effect of the pump pulse is to transfer to that atom a fraction of spin-down electrons, $\delta \epsilon_f$, from the oxygens within the same CuO$_2$ cell. The excess of positive charges on the oxygen atoms leads to an increase of the binding energy of the additional excitons that can be created on the neighbouring cells by the following probe pulse. This process can be revealed as a decrease of the effective CT energy measured by the probe. Quantitatively, the pump-induced redshift of Δ_{CT} can be estimated by a simple mean-field calculation (see Methods):

$$\delta \Delta_{CT} = - \left(\frac{1}{2} U_{pp} - \frac{5}{24} U_{pd} \right) |\delta \epsilon_f|$$

where U_{pd} is the Coulomb repulsion between two charges occupying the same O-2p orbital. Considering the realistic values $U_{pp} \approx 5$ eV and $U_{pd} \approx 2$ eV (ref. 33) and the photodoping $\delta \epsilon_f \approx 0.3\%$ (see Methods), we estimate $\delta \Delta_{CT} \approx -9$ meV, which is in very good quantitative agreement with the measured pump-induced redshift in underdoped samples.

Interestingly, the $\delta \Delta_{CT}$ measured in the experiments progressively decreases as the hole doping increases until the $p_c \approx 0.16$ critical doping concentration is reached (see Fig. 3a). The $\delta R(\omega, t)/R$ signal measured on the optimally ($p = 0.16$) and overdoped ($p = 0.2$) samples does not show any evidence of a CT redshift, while it can be easily reproduced (see Fig. 2c) by assuming an average increase of the electron–boson scattering in the Drude component of the dielectric function, in agreement with the results reported in refs 31,32. These results are independent of the base temperature of the sample, as evidenced by the temperature-dependent broadband measurements reported in the Supplementary Methods. The picture emerging from these results can be summarized as follows: for $p < p_c$, the photoexcitation induces a redshift of the CT transition, which is qualitatively and quantitatively similar to what expected for a CT insulator34,35; for $p > p_c$, the ultrafast dynamics can be explained by an increase of the scattering rate of the charge carriers, as expected for a metal. We thus conclude that p_c discriminates, already at high temperature, an underdoped region in which the CT transition is a spatially localized process, as in a Mott insulator, from an overdoped region in which the CT excitation involves wavefunctions spread over many sites, as in more conventional band metals. We note that this localized–delocalized transition of the CT excitation is clearly distinct from the onset of the pseudogap physics, which occurs at a temperature evolving from $T^* \approx 250$ K at very low doping to $T^* \approx 90-150$ K at $p = 0.16$ and $T^* \approx 50$ K at $p = 0.2$, as observed by Knight-shift measurements36 and confirmed by single-colour pump–probe measurements on the same
samples (see Supplementary Information). A similar $T'(p)$ line has been recently observed by monitoring the $p-T$ dependence of the scattering rate of the Drude peak via non-equilibrium infrared spectroscopy in the 0.5–2 eV energy range\(^2\). Notably, no transition at p_{cr} is observed when we analyse the $\delta R(o)/R$ traces extracted at $t > 600$ fs (Fig. 2c)—that is, when the excess energy is dissipated in low-energy excitations and converted into heat. This demonstrates that the effect reported here for doped cuprates remains inaccessible to equilibrium techniques, in which only the charge fluctuations at $k_B T$ are activated.

The crucial idea that drives the present work is that the Mott-like nature of the electronic states, which we probe at the energy scale E_C, is the fundamental prerequisite for the development of low-temperature instabilities. A possible link between the high- and low-energy physics is that a correlated metal in proximity to the Mott insulating phase is characterized by a reduced mobility of the charge carriers confined into a narrow band at the Fermi level. Upon small variations of the chemical potential μ, the density of states at the Fermi level is expected to change dramatically, thus possibly leading to a very high electronic compressibility κ_{elec}, $K \propto \delta \eta / \delta \mu$. At low temperatures the additional freezing of the thermal excitations renders the system naturally prone to phase separation, in which strong charge inhomogeneities (br) can coexist at the same chemical potential. DMFT calculations provide a solid support to this naive picture in the case of a realistic three-band model with interaction terms among the O-2p_{z} and Cu-$d_{x^2-y^2}$ orbitals similar to those used in equation (1) (see Methods). In particular, we focus on the doping dependence of the upper Hubbard band (UHB), which corresponds to the double occupation of the Cu-$3d_{x^2-y^2}$ levels—that is, the final state of the CT process. In Fig. 3b we plot the imaginary part of the electronic self-energy, that corresponds to the inverse lifetime, of the UHB ($\text{Im} \Sigma_{\text{UHB}}$). At temperatures as high as 300 K the large value of the inverse lifetime, typical of local incoherent excitations in the vicinity of the Mott insulating state, decreases progressively until the p_{cr} doping is reached. Above this value, $\text{Im} \Sigma_{\text{UHB}}$ shows a smaller and almost constant value that indicates the transition to delocalized and coherent excitations, similar to what is expected for conventional interband transitions in uncorrelated solids. In the three-band model considered, the onset of coherence of the CT excitations at p_{cr} coincides with the merging of the quasiparticle peak at the Fermi level with the broad conduction band of mixed $p-d$ character, characteristic of the doping-driven Mott transition in DMFT\(^6\). As expected, the computed high-temperature compressibility is a smooth function of doping and does not evidence any tendency to charge-separation (Fig. 3b). The picture changes dramatically at low temperature, when the additional freezing of the charge carriers in the correlated states close to μ cooperates in increasing K in the underdoped region of the phase diagram. As shown in Fig. 3b, while the high-energy $\text{Im} \Sigma_{\text{UHB}}$ transition is almost unaffected by temperature, the compressibility shows at low temperatures a pronounced maximum for $p < p_{cr}$ that suggests the tendency to develop charge inhomogeneities. Even though the emergence of CDW at a specific wavevector is the result of more complex ingredients, such as the long-range Coulomb interactions\(^8\) and the topology of the Fermi surface, our results suggest that the proximity to the Mott-state is the prerequisite for the low-temperature development of charge-order instabilities.

The validity of this picture is further corroborated by the outcome of RXS measurements at $T = 10$ K on the same samples, as previously measured in ref. 17. The spontaneous breaking of the translational symmetry of the charge distribution within the CuO$_2$ planes is detected as a resonance in the RXS signal at a specific exchanged parallel wavevector (see Supplementary Information). While the width of the RXS peaks indicates a CDW correlation length of the order of 2–3 nm, the momentum-integrated signal can be taken as proportional to the average amplitude of the charge-density modulation.

Figure 3a reports the CDW amplitude, (ρ_{CDW}), on La-Bi$_2$201 at different hole-doping concentrations, obtained by integrating the RXS signal measured at the proper CDW wavevector. The CDW amplitude decreases progressively until $(\rho_{\text{CDW}}) \to 0$ at $p_{cr} = 0.16 \pm 0.01$—that is, the same doping concentration at which the δA_{CT} signal vanishes. This observation undoubtedly demonstrates that the development of short-ranged CDW at low temperature takes place only in the doping region $p < p_{cr}$, which is characterized, already at room temperature, by the Mottness of the UHB.
Taken together, these observations consistently show that the phase diagram of copper oxides is characterized by a temperature-independent transition from a correlated ground state in the $p < p_c$ region of the phase diagram; while low-energy models, which take into account the details of the electronic interactions at the Fermi level, are necessary to correctly predict the CDW wavevector, symmetry and onset temperature, the value p_c at which the charge order vanishes is the consequence of a high-energy phenomenon; any theory for the charge order phenomenon should rely on the correlated nature of the electronic states at the Fermi level, which is reflected in the quenching of the O-2p→Cu-3d charge fluctuations at the energy scale Δ_T, and in the freezing of the charge carriers that drives the upturn of the electronic compressibility at $p < p_c$.

More generally, we note that the critical doping p_c is a turning point for many low-temperature properties of copper oxides, such as the momentum space topology, the ARPES quasi-particle strength, the superconductivity-induced kinetic energy change, the time-reversal symmetry breaking, the change of the in-plane resistivity curvature, the transition from p to $1 + p$ charge carrier density and the strong increase of the quasiparticle effective mass. Our results suggest a novel intriguing scenario, in which the crossover at p_c between the physics of a doped Mott insulator to that of a more coherent metal is at the origin of the low-temperature phenomenology. In this framework, the reduced mobility of the charge carriers associated with the Mottness for $p < p_c$ constitutes a fertile ground for the onset of lower-symmetry instabilities which are commonly claimed to fan out from a putative zero-temperature quantum critical point hidden by the superconducting state.

Methods

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.

Received 21 September 2016; accepted 27 March 2017; published online 8 May 2017

References

1. Lee, P. A. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
2. Phillips, P. Mottness. Ann. Phys. 321, 1634–1650 (2006); July 2006 Special Issue.
3. Abbamonte, P. et al. Spatially modulated “Mottness” in $La_{1-x}Ba_xCuO_4$. Nat. Phys. 1, 155–158 (2005).
4. Fradkin, E. & Kivelson, S. High-temperature superconductivity: inexorable complexity. Nat. Phys. 8, 864–866 (2012).
5. Alloul, H. What is the simplest model that captures the basic experimental facts of the physics of underdoped cuprates? C. R. Phys. 15, 519–524 (2014).
6. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
7. Emery, V. & Kivelson, S. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).
8. Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995).
9. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 530–533 (1998).
10. Ghibinghelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba$_2$Cu$_3$O$_{y+}$, Science 337, 821–825 (2012).
11. Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-iii-ordered YBa$_2$Cu$_3$O$_{y+}$ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).
12. Chang, J. et al. Direct observation of competition between superconductivity and charge-density-wave order in YBa$_2$Cu$_3$O$_{y+}$. Nat. Phys. 8, 871–876 (2012).
13. Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density-wave correlations in YBa$_2$Cu$_3$O$_{y+}$. Phys. Rev. B 90, 054513 (2014).
46. Xia, J., et al. Polar Kerr-effect measurements of the high-temperature YBa$_2$Cu$_3$O$_{x+y}$ superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. **100**, 127002 (2008).

47. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-T_c cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. **93**, 267001 (2004).

48. Ono, S., et al. Metal-to-insulator crossover in the low-temperature normal state of Bi$_2$Sr$_2$La$_x$CuO$_{6+e}$. Phys. Rev. Lett. **85**, 638–641 (2000).

49. Badoux, S., et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature **531**, 210–214 (2016).

50. Laliberté, F., et al. Origin of the metal-to-insulator crossover in cuprate superconductors. Preprint at http://arXiv.org/abs/1606.04491 (2016).

51. Ramshaw, B. J., et al. Quasiparticle mass enhancement approaching optimal doping in a high-T_c superconductor. Science **348**, 317–320 (2015).

52. Ando, Y., et al. Carrier concentrations in Bi$_2$Sr$_2$La$_x$CuO$_{6+e}$ single crystals and their relation to the Hall coefficient and thermopower. Phys. Rev. B **61**, R14956–R14959 (2000).

Acknowledgements

We thank M. Grilli, A. Bianconi, L. Benfatto, F. Cilento, D. Fausti, F. Parmigiani, L. De’ Medici, M. Minola, B. Keimer and J. Bonca for useful and fruitful discussions. The research activities of M.F. have received funding from the European Union, under the project ERC-692670 (FIRSTORM). F.B. acknowledges financial support from the MIUR-Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (project number: RBF13NEA4). M.C. acknowledges financial support from MIUR through the PRIN 2015 Programme (Prot. 2015C5SEJ001). M.C. acknowledges funding by SISSA/CNR project ‘Superconductivity, Ferroelectricity and Magnetism in Bad Metals’ (Prot. 232/2015). F.B., G.F. and C.G. acknowledge support from Università Cattolica del Sacro Cuore through D.1, D.2.2 and D.3.1 grants. F.B. and G.F. acknowledge financial support from Fondazione I.U.O.L. O.B. acknowledges the Emmy Noether Programme of the Deutsche Forschung Gemeinschaft. G.C. acknowledges funding from the European Union Horizon 2020 Programme under Grant Agreement 696656 Graphene Core 1. This research was undertaken thanks in part to funding from the Max Planck-UBC Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Killam, Alfred P. Sloan, and Natural Sciences and Engineering Research Council of Canada’s (NSERC’s) Steacie Memorial Fellowships (A.D.); the Alexander von Humboldt Fellowship (A.D.); the Canada Research Chairs Program (A.D.); and the NSERC, Canada Foundation for Innovation (CFI), and CIFAR Quantum Materials.

Author contributions

C.G. coordinated the research activities with input from all the coauthors, in particular S.P., S.D.C., F.B., M.F., M.C., A.D. and G.C. The NOPA-based pump–probe set-up was designed and developed by D.B. and G.C. The time-resolved optical measurements were performed by S.P., S.D.C., N.M., A.R., F.B., G.F., D.B., G.C. and G.G. The analysis of the time-resolved data was performed by S.P., S.D.C., N.M. and C.G. The mean-field estimation of the charge-transfer shift was carried out by M.C. The DMFT calculations were carried out by M.C. The La–Bi$_2$201 crystals were characterized by S.L., R.C. and A.D. The RXS measurements were performed by R.C. and A.D. The text was written by C.G. with major input from S.P., S.D.C., F.B., G.F., D.B., S.L., M.F., M.C., A.D. and G.C. All authors extensively discussed the results and the interpretation and revised the manuscript.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to C.G.

Competing financial interests

The authors declare no competing financial interests.
Methods

Experiments. A Ti:sapphire amplifier (Clark-MXR model CPA-1) delivers a train of 150-fs pulses at a 1 kHz repetition rate with a central wavelength of 780 nm, and is used to simultaneously drive two non-collinear optical parametric amplifiers (NOPAs) operating in different frequency intervals. All NOPAs are seeded by a white light continuum (WLC) generated in a sapphire plate. The first NOPA (NOPA1) is pumped by the second harmonic and amplifies, in a beta-barium borate (BBO) crystal, pulses with a spectral content between 820 nm (1.5 eV) and 1,050 nm (1.2 eV), which are compressed to nearly transform-limited 13-fs duration by a pair of fused silica prisms. This NOPA serves to trigger the dynamics and is synchronized with a second NOPA (NOPA2), pumped by the second harmonic and using BBO, which is used to probe the reflectivity variation of the sample. The spectrum of NOPA2 spans a frequency range between 510 nm (2.4 eV) and 700 nm (1.8 eV), and is compressed to 7 fs duration by multiple bounces on a pair of chirped mirrors, making the overall temporal resolution of the pump–probe set-up below 15 fs. The time delay between pump and probe is adjusted by a motorized delay stage, and both the beams are focused on the sample by a spherical mirror in a quasi-collinear geometry. The reflected probe spectrum is detected by a Si spectrometer working at the full 1 kHz laser repetition rate. By recording the reflected probe spectrum at different temporal delays \(t \), with and without pump excitation, we measure the differential reflectivity:

\[
\Delta R(\omega, t) = R(\omega, t) - R(\omega, 0) / R(\omega, 0)
\]

The pump fluence used for the experiments is 500 \(\mu \)J cm\(^{-2}\). The density of CT excitations can be estimated starting from the pump penetration length \(L_{pen} \) at a specific doping (see Supplementary Information). For example, assuming \(L_{pen} \approx 700 \) nm for \(h\omega_0 = 1.4 \) eV and \(p = 0.10 \), we obtain an absorbed energy of \(7 \) cm\(^{-1}\), which corresponds to a density of \(\Delta n_\text{CT} = 2 \) eV excitations of about \(2 \times 10^3 \) cm\(^{-2}\). Considering that the density of Cu atoms is \(6 \times 10^5 \) cm\(^{-2}\), we obtain that the fraction of holes transferred from the Cu atoms is \(\gamma = 3 \times 10^{-4} \). The La-Bi2212 crystals were grown using the floating-zone technique, and characterized as described in ref. 53. The doping has been determined following ref. 52.

Differential analysis of the transient reflectivity. The analysis of the time-resolved data has been carried out starting from the equilibrium dielectric function of the samples that has been measured elsewhere\(^{33}\). The best fitting to the complex optical conductivity has been obtained by combining a Drude model\(^{11,12}\) and high-energy Lorentz oscillators:

\[
\sigma(\omega) = \frac{\omega_p^2}{4\pi} \frac{\gamma}{\omega - \omega_p^2} + \frac{\omega}{4\pi} \sum_j \frac{\omega_j^2}{\omega_j^2 - \omega^2 - i\Gamma_j(\omega^2 - \omega_j^2)}
\]

The first term refers to the relaxation of free charge carriers with a scattering rate \(\gamma = 1/\tau_0 \); the second term is a sum of Lorentz oscillators—characterized by the central frequency \(\omega_j \), the strength of the oscillator \(\omega_j^2 \), and the scattering rate \(\gamma_j = 1/\tau_j \)—that describe the response of bound charges.

The underlying idea of the differential model is to find the minimum number of parameters in the equilibrium dielectric function which have to be modified to reproduce the reflectivity variation, \(\Delta R(\omega, t)/R \), measured at a given time delay \(t \). As discussed in refs 31,32, the \(\Delta R(\omega, t)/R \) signal measured on optimally and overdoped copper oxides can be interpreted, already after \(40 \) fs, as a transient increase of the electron–boson scattering rate. The increase of the scattering rate induces a broadening of the Drude plasma edge across the plasma frequency at \(\omega_0 = 1 \) eV. The \(\Delta R(\omega, t)/R \) signal detected at probe frequencies \(\omega > \omega_0 \) results in a positive and featureless signal, which monotonically decreases at high frequencies. This behaviour, which is confirmed in the measurements on La-Bi2212 for hole concentrations \(p > 0.16 \), clearly contrasts with the \(\Delta R(\omega, t)/R \) signal observed at \(p < 0.16 \) and for \(t < 600 \) fs (see Fig. 2). As an example, we report in the Supplementary Fig. 4 the \(\Delta R(\omega, 50 \) fs) signal measured on the underdoped La-Bi2212 sample with \(p = 0.12 \). Clearly, the negative reflectivity variation at \(\omega > \Delta \omega \approx 2 \) eV cannot be attributed to a change of the electron–boson scattering rate. On the other hand, the \(\Delta R(\omega, t)/R \) signal is reproduced perfectly simply by assuming a redshift of the CT oscillator alone. For completeness, we also show that a change in the spectral weight of the CT oscillator does not account for the measured \(\delta R(\omega, t)/R \).

Mean-field calculation of the CT redshift. In the fully atomic picture (half-filling), the Hamiltonian governing the physics of the CuO\(_2\) plane can be written as:

\[
H = \epsilon_0 n_\sigma + \epsilon_0 (n_{\sigma} + n_{\bar{\sigma}}) + \frac{U_{pp}}{2} n_{\sigma} (n_{\bar{\sigma}} - 1)^2 + \frac{U_{pp}}{2} \sum_{i,j=\sigma,\bar{\sigma}} (n_{\sigma i} - 6)^2
\]

+ \frac{U_{pp}}{2} (n_{\bar{\sigma} i} - 1)^2 \sum_{i,j=\sigma,\bar{\sigma}} (n_{\bar{\sigma} i} - 6)
\]

where \(\epsilon_{\text{CuO}_2} \) is the energy of the Cu(O) orbitals, \(n_{\sigma(\bar{\sigma})} \) is the occupation of the \(d(\sigma) \) orbitals and \(U_{\text{CuO}_2} \), are the Coulomb interaction energies. To minimize the interaction between one electron sits on the Cu atom and both the oxygens (labelled by \(i \)) are fully occupied, that is, \(n_{\sigma i} + n_{\bar{\sigma} i} + n_{\text{Cu} i} = 3 \). As a crude approximation, we assume a localized spin (up) on the Cu atom through the following parametrization:\(n_{\sigma(\bar{\sigma})} = 1 - \epsilon_\sigma, n_{\text{Cu} i} = -\epsilon_\sigma, \) and \(n_{\text{Cu} i} = n_{\text{O} i} = 1 + (\epsilon_\sigma/2), \) where \(\epsilon = \epsilon_\sigma + \epsilon_\bar{\sigma} \) is the total photoinduced change of the occupation of the Cu, and O sites.

The mean-field calculation of the mean value of the Cu and O levels, that is, \(\mu_{\text{Cu}} \) and \(\mu_{\text{O}} \), results in:

\[
\mu_{\text{Cu} i} = \epsilon_\sigma - \frac{1}{2} (U_{pp} + \frac{3}{2} \gamma_\sigma)
\]

\[
\mu_{\text{O} i} = \epsilon_\bar{\sigma} - \frac{1}{2} (U_{pp} + \frac{3}{2} \gamma_\bar{\sigma})
\]

In the simplest case of a single-band model, the difference between the empty and occupied Cu levels, that is, \(\mu_{\text{Cu} i} - \mu_{\text{Cu} i} \) is independent of the photoinduced occupation, since intrinsically \(\epsilon = \epsilon_\sigma \). This result suggests that in the single-band model insulator, the density of states of the upper (UHB) and lower Hubbard bands (LHB) decreases upon photoexcitation, while the gap value remains constant.

The scenario is qualitatively different for a charge-transfer insulator, in which the electrons are transferred from the Cu to the O atoms and the \(\epsilon = \epsilon_\sigma \) symmetry is broken. If we sit on the spin-up Cu site, the effect of the pump excitation is to transfer a certain number of electrons from the oxygen to the Cu spin-down state—that is, \(\epsilon_\sigma < 0 \) while \(\epsilon_\bar{\sigma} = 0 \). Therefore, the change of the charge-exchange gap measured by the probe pulse is given by:

\[
\delta(\mu_{\text{Cu} i} - \mu_{\text{O} i}) = - \frac{3}{2} U_{pp} \left[\frac{2 \epsilon - 72}{\gamma_\sigma} \right] (\| \delta \epsilon \|)
\]

\[
\delta(\mu_{\text{Cu} i} - \mu_{\text{O} i}) = - \frac{3}{2} U_{pp} \left(\frac{2 \epsilon - 72}{\gamma_\sigma} \right) (\| \delta \epsilon \|)
\]

Mean-field theory calculations. We consider a model including copper \(d_{\sigma(\bar{\sigma})} \) orbitals and oxygen \(p_\sigma \) and \(p_{\bar{\sigma}} \) orbitals with the same interaction terms as in the Hartree–Fock calculation and near-neighbour hopping between copper–oxygen and oxygen–oxygen. The parameters are \(U_{pp} = 10 \) eV, \(U_{\sigma\bar{\sigma}} = 5 \) eV, \(U_{\bar{\sigma}\sigma} = 2 \) eV, \(\Delta \omega = 2 \) eV, \(\Delta_{\omega} = 0.3 \) eV, \(\Delta_{\omega} = 0.1 \) eV. We solve the model using single-site DMFT treating both the copper–oxygen and oxygen–oxygen repulsions at the Hartree–Fock level, while the copper–copper interaction is included without approximations. The impurity model is solved using exact diagonalization at finite temperature with eight levels in the bath (\(N_{\text{bath}} = 9 \)) and keeping 50 states in the calculation of the trace. We have verified that the results for statistical observables are converged in both truncation parameters.

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

53. Ono, S. & Ando, Y. Evolution of the resistivity anisotropy in Bi,Sr\(_2\)La,CuO\(_{4-x}\) single crystals for a wide range of hole doping. Phys. Rev. B 67, 104512 (2003).