Dynamic Expression of Genes Involved in Proteoglycan/Glycosaminoglycan Metabolism during Skin Development

P. J. E. Uijtdewilligen, E. M. Versteeg, E. M. A. van de Westerlo, J. van der Vlag, W. F. Daamen, and T. H. van Kuppevelt

1Department of Biochemistry, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
2Department of Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands

Correspondence should be addressed to P. J. E. Uijtdewilligen; peterudw@gmail.com

Received 23 March 2018; Accepted 4 July 2018; Published 29 August 2018

Abstract

Glycosaminoglycans are important for cell signaling and therefore for proper embryonic development and adult homeostasis. Expressions of genes involved in proteoglycan/glycosaminoglycan (GAG) metabolism and of genes coding for growth factors known to bind GAGs were analyzed during skin development by microarray analysis and real time quantitative PCR. GAG related genes were organized in six categories based on their role in GAG homeostasis, viz. (1) production of precursor molecules, (2) production of core proteins, (3) synthesis of the linkage region, (4) polymerization, (5) modification, and (6) degradation of the GAG chain. In all categories highly dynamic up- and downregulations were observed during skin development, including differential expression of GAG modifying isoenzymes, core proteins, and growth factors. In two mice models, one overexpressing heparanase and one lacking C5 epimerase, differential expression of only few genes was observed. Data show that during skin development a highly dynamic and complex expression of GAG-associated genes occurs. This likely reflects quantitative and qualitative changes in GAGs/proteoglycans, including structural fine tuning, which may be correlated with growth factor handling.

1. Introduction

During various cell signaling processes, glycosaminoglycans (GAGs), such as heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS), play a role in binding, guiding, and modulating signaling molecules, e.g., growth factors and morphogens [1–3]. In skin this role can be illustrated by the importance of GAGs in adult wound healing [2, 4] and in the extracellular matrix architecture formed during dermal development [5, 6]. A further example to illustrate the importance of GAGs comes from mice overexpressing heparanase, an enzyme involved in the degradation of HS, showing accelerated hair growth [7], indicating its involvement in hair follicle morphogenesis and homeostasis. Other observations show that HS is involved in hair follicle cycling, sebaceous gland morphogenesis, and homeostasis [8]. Finally, HS and heparanase influence wound healing in adult mice by enhancing keratinocyte migration and stimulating blood vessel maturation [9]. Taken together, GAGs play an important role in skin healing and development and this prompted us to evaluate the expression of GAG related genes during (embryonic) development in skin.

Inhibition of the expression of genes coding for enzymes involved in GAG modification reactions clearly indicates the importance of GAGs during organogenesis [10], especially with respect to growth factor handling. For example, mice deficient in Ndst1 (N-deacetylase sulfotransferase isoenzyme 1) die neonatally due to several defects in which defective sonic hedgehog (Shh) signaling is implicated [11, 12]; mice deficient in Hs2st (heparan sulfate 2-O sulfotransferase) or Glce (glucuronic acid epimerase) display renal agenesis [13, 14], whereas mice deficient in Hs6st1 (heparan sulfate
6-O sulfotransferase isozyme 1) show aberrant signaling of VEGF (vascular endothelial growth factor) and impaired lung development [15]. A skin phenotype of the above mouse models, however, has not been reported.

In general, it is thought that specific modifications of the GAG chain are involved in the binding and modulation of signaling molecules resulting in cell-type and/or tissue specific reactions [2, 3]. GAG mimetics like the RGTAs (regenerating agents) have been used to treat skin disorders and improve skin healing [16, 17]. To obtain insight in GAG metabolism during skin development we studied the expression of GAG related genes covering six functional classes ranging from the synthesis of precursor molecules to the synthesis and degradation of GAGs. In addition, we probed the expression of a number of (GAG binding) signaling molecules.

2. Materials and Methods

An overview of the experimental setup on the gene expression during murine skin development is given in Figure 1.

2.1. Animals for the Study on Skin Development. NIH guidelines for the care and use of laboratory animals (NIH publication 85–23 Rev. 1985) were followed. The study was approved by the Ethics Committee of the Radboud university medical center (DEC 2005-III, project: 81027). C57BL6/j mice were obtained from Elevage Janvier (Le Genest Saint Isle, France). Mice aged 90 days (90 days post birth [P90]) were used for timed mating and dorsal skin was collected at 14 days (E14) and 16 days after conception (E16). At E14 hair follicle development is initiated, and at E16 this process is almost completed in combination with a stratified epidermis and organized dermis [18, 19]. For the RNA samples of E14, dorsal skin of seven embryos from one female was pooled and used for RNA isolation. Skin was isolated at E14 by snap freezing the whole embryo in liquid nitrogen followed by scraping the skin layer in a cryomicrotome with a scalpel to minimize contamination with other embryonic tissues (skin is very thin at this time point). Samples were stored at -80°C.

RNAsamples for E16 were taken from two females, collecting dorsal skin from 7 embryos each. In addition, skin from 1-day old pups (P1) and adult mice (P90) was collected. At P1 skin is more organized and has been exposed to air [18, 19]. For the two dorsal skin samples for P1, three pups from two females were taken per sample. Two adult three-month old mice were used for the two dorsal skin samples at P90. Samples for RNA isolation for E16, P1, and P90 were collected by removing dorsal skin and snap freezing it in liquid nitrogen and storage at -80°C.
2.2. Tissue of Genetically Modified Mice. Skin samples of glucuronic acid epimerase (GlcE) knockout mice (E18.5 for expression analysis; E17.5 and E18.5 for histological analysis) and of heparanase overexpression (HpsE) mice (P70) were provided by Prof. Dr. Jin-Ping Li (Department of Medical Biochemistry and Microbiology, University of Uppsala, Sweden) and Prof. Dr. Israel Vlodavsky (Vascular and Cancer Biology Research Center Rappaport Faculty of Medicine and Research Institute Technion-Israel Institute of Technology, Israel), respectively [7, 20]. For RNA isolation two wildtype and two mutant mice were used of both mouse models.

2.3. RNA Isolation, Real Time Quantitative PCR, and Microarray Analysis. Frozen samples were grinded in a microdismembrator (Sartorius, Bunlik, The Netherlands) and RNA was isolated using the TRIZOL-methid (Invitrogen, Paisley, UK) in combination with RNeasy Mini kit with DNase step (Qiagen, Hilden, Germany). RNA quality was assessed using the Bioanalyzer system (Agilent Technologies, Amstelveen, The Netherlands). The RNA integrity numbers (RIN, 27) were 8.8±0.25 (technical replicate N=2), 8.0±0.35, 8.5±0.55, and 7.3±0.2 for E14, E16, P1, and P90 (biological replicates N=2), respectively. The same procedure was used for the RNA isolation for the Glce knockout mouse and HpsE overexpression mouse. The RIN was 6.5±0.51 for Glce-/- samples and 8.0±0.48 for Glce+/+ and 6.3±0.3 and 7.7±0.6 for HPA-TG and HPA-WT, respectively (all biological replicate N=2).

Gene Chip Mouse exon 1.0 ST Arrays (Affymetrix, High Wycombe, UK) were used to analyze gene expression for E14, E16, P1, and P90 using 1 µg of RNA per chip. Expression data were preprocessed to check sensitivity and specificity of the results based on Kadota et al. (2009) as shown in Uijtdewilligen et al. (2016) [18, 21]. Gene level expression data were calculated for the CORE transcripts (probe sets supported by RefSeq mRNAs) using Affymetrix Expression Console software with quantile normalization (all arrays are considered to have an equal intensity distribution), GC-content background correction (probes with high GC-content hybrized better, corrected for with built-in probes with different known GC-contents) and summarization with the RMA algorithm [22]. Data were imported into GeneSpring GX 7.3 (Agilent Technologies), duplicates were averaged, and the expression of each transcript was normalized to the median per array.

Real Time-Quantitative PCR (qPCR) was performed using custom designed Taqman Low Density arrays (TLDA) (Applied Biosystems, Nieuwerkerk aan de IJssel, the Netherlands) containing probes against genes involved in GAG metabolism and GAG binding proteins (Supplementary data Table 1). Glce and HpsE samples were analyzed using qPCR using custom designed TLDA with an adapted design containing additional GAG related genes (Supplementary data Table 2).

For the TLDA cards, 100 ng cDNA in Taqman Universal PCR Master Mix (Applied Biosystems) was loaded on the TLDA card per slot and run on a 7900HT Fast Real Time PCR System (Applied Biosystems). Expression was analyzed based on the threshold cycle (Ct) which was obtained using the SDS 2.3 software and RQ Manager 1.2 of Applied Biosystems using the combined expression data of the tested TLDA cards. In Microsoft Excel the reference genes for ΔCt calculation were checked for stability of expression by analyzing the results of the reference genes across all used TLDA cards and selecting the reference genes with the smallest deviation across the cards tested. Subsequently ΔCt values were calculated using a reference gene with the smallest difference between the average Ct found for the gene of interest and for the reference gene. The obtained ΔCt values were further processed using the $2^{-\Delta\Delta Ct}$ method using P90 as a calibration point in case of the developmental study and the wild type background (C57BL6 mice) data in case of the two mouse models [23].

2.4. Statistical Methods. Statistical significance of the exon array data was analyzed using ANOVA and Benjamini-Hochberg multiple testing correction [24]. Statistical significance of the TLDA card data was tested with an unpaired T-test (2-tailed) using Microsoft Excel. Data with a statistical threshold of p<0.10 and a fold threshold of >2.0 were considered statistically significant.

3. Results

Genes involved in glycosaminoglycan (GAG) synthesis, modification, and degradation were studied during skin development at 14 and 16 days after conception (E14 and E16, respectively) and at one day after birth (P1) and compared to mature skin of a 3 month old mouse (P90). In addition, two mouse models, a Glce knockout mouse (E18.5) and an HpsE overexpression mouse model (P70), were analyzed. Taqman Low Density Array (TLDA) cards were designed to contain genes involved in GAG metabolism (Supplementary data Tables 1 and 2). The expression data obtained using TLDA cards and exon arrays were screened for genes with 2-fold differential expression at a statistical threshold of p<0.10 (Tables 1, 2, 3, and 4, Supplementary data Tables 4, 5, and 6).

In Tables 1–3 and Supplementary data Table 3, an overview is given of the differentially expressed genes applying TLDA cards and exon arrays. In all categories of genes involved in GAG metabolism, i.e., production of precursor molecules, core proteins, synthesis of linkage region, polymerization, modification and degradation of the GAG chain, and differences in expression were found (Tables 1–3). This indicates a highly dynamic expression pattern during skin development. Some isoenzymes were upregulated, whereas other isoenzymes were downregulated, further stressing the metabolic complexity. This is, for instance, the case with GPFT1 and 2, both rates limiting enzymes involved in the production of hexosamines, and the isoenzymes HS 3-O-sulfotransferase 6 and 3b1.

With respect to the core proteins, differential expression was found for both HS and CS/DS proteoglycans. Differential expression was found for two of the four syndecans, viz. Sdc1 and Sdc4, three of the six glypicans, viz. Gpc2, Gpc3, and Gpc6, and Hspg2 (Tables 2 and 3). The syndecans were downregulated, while the glypicans were upregulated, indicating an embryonic role for glypicans as described in literature.
Table 1: Comparison of the number of differentially expressed genes during skin development in mice (p<0.10, fold>2.0) based on real-time qPCR and on exon array analysis.

Total genes	System	E14 vs. P90					
		Down	Up	Down	Up	Down	Up
Production of precursors		43	43	43	43	3	2
Exon		43	43	43	43	2	0
Overlap		1	2	1	1	1	0
Core proteins		14	14	14	14	2	2
Exon		14	14	14	14	0	1
Overlap		2	2	2	2	0	1
Preparation of linkage region		8	8	8	8	0	1
Exon		8	8	8	8	0	0
Overlap		0	0	0	0	0	0
Glycosaminoglycan chain polymerisation		13	13	13	13	1	2
Exon		13	13	13	13	0	0
Overlap		0	0	0	0	0	0
Glycosaminoglycan chain modification		32	32	32	32	0	5
Exon		32	32	32	32	0	3
Overlap		0	0	0	0	0	0
Glycosaminoglycan chain degradation		19	19	19	19	1	1
Exon		19	19	19	19	2	0
Overlap		2	1	2	1	0	0
Growth factors		37	37	37	37	3	8
Exon		37	37	37	37	10	4
Overlap		0	2	10	8	0	4

* P values for the exon array measurements were calculated using Benjamini–Hochberg multitesting correction. P values for the TLDA assay were calculated using an unpaired T-test.

Overlap refers to genes differentially expressed in both TLDA card and exon array.

[25, 26]. Hspg2, a secreted HS presenting proteoglycan coding for perlecan [2], was found to be upregulated (Tables 2 and 3). Based on the exon array the CS/DS core protein of versican (Vcan) was upregulated at all time points (Supplementary data Table 5).

The upregulated expression of genes involved in the synthesis of the linkage region may signal increased GAG synthesis during development since after the formation of the linkage region the GAG chain is formed. For HS polymerization differential expression was found for, e.g., Extll1 and Extll2. Extll1 showed downregulation at E14 while Extll2 was upregulated, and both enzymes are involved in the initiation and elongation of the HS chain [2].

During and after synthesis of the glycosaminoglycan chain, disaccharide units within the chain are specifically modified. These modifications determine which effector molecules can bind to the chain and thus play a role in cell signaling [1, 3]. Upregulated expression was found for three of the four N-deacetylase/N-sulfotransferases (Ndst; TLDA cards, Table 2), especially isoenzyme Ndst3. Upregulation was also found for two out of seven genes coding for 3-O-sulfotransferases (Hs3st1 and Hs3st3b1), involved in 3-O sulfation of GlcNS and GlnNAc residues, whereas one was downregulated (Hs3st6).

The GlcNS and GlcNAc residues can also be 6-O sulfated by 6-O-sulfotransferases (Hs6st) [2] and selectively desulfated extracellularly by two sulfatases (Sulf1 and Sulf2) aided by two cofactors (Sumf1 and Sumf2) [2, 27]. Hs6st2 was upregulated at all time points (Table 3). Sulf1 was upregulated during embryonic development, whereas Sumf2 was upregulated at E14 (Tables 2 and 3). These results indicate that specific expression of GAG modifying enzymes may play a role in specific cellular signaling during skin development.

Within the class of genes encoding for GAG chain degradation enzymes, two genes were differentially expressed. Heparanase expression was downregulated at E14 and P1 (Tables 2 and 3), whereas N-sulfoglocosamine sulfohydrolase...
Table 2: Differentially expressed GAG related genes during skin development in mice in comparison to mature skin (p<0.10) based on real-time qPCR.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
		P-value	Relative change	P-value	Relative change	P-value	Relative change
Production of precursors							
Galk1 ‡	Galactokinase 1 Mm00444182_m1	0.029	5.897	0.057	3.867	0.074	3.043
Galt ‡	Gal-1-P-Uridylyltransferase Mm00489459_g1	0.042	0.573	0.027	0.497	0.832	0.964
Gfpt1 ‡	Glu-Fru-6-P-Transaminase 1 Mm00600127_m1	0.002	2.378	0.160	1.273	0.282	1.481
Gfpt2 ‡	Glu-Fru-6-P-Transaminase 2 Mm00496565_m1	0.269	0.772	0.079	0.494	0.356	0.780
Hk2 ‡	Hexokinase 2 Mm00443385_m1	0.027	0.652	0.253	1.390	0.586	0.904
Pgm3 ‡	Phosphoglucomutase 2 Mm00459270_m1	0.058	1.876	0.296	1.249	0.098	1.470
Pgm5 ‡	Phosphoglucomutase 5 Mm00723432_m1	0.002	4.053	0.033	2.792	0.019	2.515
S1c13a5 ‡	Solute Carrier Family 13 Member A5 Mm00523288_m1	Not detected	Not detected	Not detected	Not detected		
S1c26a9 ‡	Solute Carrier Family 26 Member A9 Mm00628490_m1	Not detected	Not detected	0.036	0.264	0.023	0.318
S1c35a3 ‡	Solute Carrier Family 35 Member a3 Mm00523288_m1	0.008	0.444	0.060	0.567	0.455	0.811
Core proteins							
Cd44	CD44 Molecule Mm01277164_m1	0.018	0.536	0.171	0.637	0.223	1.385
Gpc2 ‡	Glypican 2 Mm00549650_m1	0.005	11.686	0.638	1.294	0.369	1.249
Gpc3 †	Glypican 3 Mm00516722_m1	<0.001	6.765	0.019	3.734	0.013	8.044
Gpc6 ‡	Glypican 6 Mm00516235_m1	0.027	2.880	0.275	1.376	0.130	1.926
Hspg2 ‡	Perlecan Mm0181179_g1	0.030	1.504	0.064	1.959	0.007	3.325
Sdc1 ‡	Syndecan 1 Mm00448918_m1	0.012	0.293	0.107	0.313	0.069	0.403
Sdc4 †	Syndecan 4 Mm00488527_m1	0.002	0.201	0.039	0.240	0.065	0.471
Preparation of linkage region							
B3gat1	β-1,3-Glucuronyltransferase 1 Mm00661499_m1	Not detected	Not detected	Not detected	Not detected		
B3gat2	β-1,3-Glucuronyltransferase 2 Mm00549042_m1	Not detected	Not detected	Not detected	Not detected		
B4galt2 ‡	β-1,4-Galactosyltransferase 2 Mm00479556_m1	0.023	4.562	0.059	2.679	0.038	3.384
Glycosaminoglycan chain polymerisation							
Chpf ‡	Chondroitin Polymerizing Factor Mm01262239_g1	<0.001	2.991	0.059	1.865	0.050	2.401
Chsy1 ‡	CS Synthase 1 Mm01319178_m1	0.013	3.900	0.024	2.282	0.072	2.229
Chsy3 ‡	CS Synthase 3 Mm01545329_m1	0.026	4.006	0.075	2.184	0.101	2.013
Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
-------------	-----------------------------	-------------	-------------	------------			
Csgalnact1 ‡	CS-GalNAc-transferase 1 Mm00555164_m1	0.099 0.496	0.098 0.475	0.634 1.128			
Extl1 ‡	Exostoses (multiple)-like 1 Mm00621977_sl	Not detected	Not detected	Not detected			
Extl2 ‡	Exostoses (multiple)-like 2 Mm00469621_m1	0.007 2.043	0.660 1.220	0.106 1.765			
Hs2 ‡	Hyaluronan Synthase 2 Mm00515089_m1	0.188 1.933	0.235 1.705	0.410 1.577			

Glycosaminoglycan chain modification

Chst4 ‡	Chondroitin 4-O-Sulfotransferase 1 Mm00517563_m1	0.002 3.000	0.087 1.955	0.087 1.957
Chst14 ‡	Dermatan 4 Sulfotransferase 1 Mm00511291_sl	0.026 2.459	0.156 1.513	0.203 1.707
Chst2 ‡	Carbohydrate Sulfotransferase 2 Mm00449018_gl	0.014 3.664	0.152 1.941	0.026 2.773
Chst3 ‡	Chondroitin 6-O-Sulfotransferase 1 Mm00489736_m1	0.041 3.241	0.152 1.941	0.028 3.550
Chst8 ‡	GalNAc-4-O-Sulfotransferase 1 Mm00558321_m1	0.089 2.587	0.221 0.591	0.139 2.280
Hs3st1 ‡	HS 3-O-sulfotransferase Mm00609038_m1	0.051 1.796	0.039 1.937	0.027 2.809
Hs3st3b1 ‡	HS 3-O-sulfotransferase 3b1 Mm00479621_m1	0.004 3.204	0.028 2.511	0.002 2.629
Hs3st6 ‡	HS 3-O-sulfotransferase 6 Mm01299930_m1	0.006 0.208	0.089 0.664	0.041 1.765
Hs6st2	HS 6-O-sulfotransferase 2 Mm00479296_m1	Not detected	Not detected	Not detected
Ndst1 ‡	N-deacet./N-sulfotrans. 1 Mm00447005_m1	0.118 1.487	0.140 1.449	0.054 2.202
Ndst2 ‡	N-deacet./N-sulfotrans. 2 Mm00447818_m1	0.008 1.347	0.001 2.017	0.002 2.021
Ndst3 ‡	N-deacet./N-sulfotrans. 3 Mm00453178_m1	0.004 4.708	0.041 7.910	0.004 12.034
Sulft ‡	Sulfatase 1 Mm00552283_m1	0.004 4.644	0.079 2.674	0.008 2.077
Sumf2 ‡	Sulfatase modifying factor 2 Mm01197721_m1	0.008 2.657	0.104 2.023	0.038 1.857

Glycosaminoglycan chain degradation

Ars½	Arylsulfatase J Mm00557970_m1	0.013 7.805	0.010 12.075	0.014 7.146
ArsK ‡	Arylsulfatase K Mm00513099_m1	0.306 0.801	0.059 0.466	0.143 0.678
Galns ‡	Galactosamine (N-Acetyl)-6-Sulfatase Mm00489575_m1	<0.001 2.648	0.066 1.674	0.091 1.584
Hpse ‡	Heparanase Mm00461768_m1	0.044 0.304	0.342 1.450	0.169 0.578
Hyal1 ‡	Hyaluronoglucosaminidase 1 Mm00476206_m1	0.001 0.198	0.008 0.288	0.006 0.607
Sgsh ‡	N-Sulfoglucosamine Sulfohydrodase Mm00450747_m1	0.055 0.647	0.002 0.435	0.644 0.897
Table 2: Continued.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
		P-value	Relative change	P-value	Relative change	P-value	Relative change
Growth factors							
Areg	Amphiregulin Mm00437583_m1	Not detected	Not detected	0.656	0.834		
Bmp3 †	Bone morphogenetic growth factor 3 Mm00557790_m1	0.007	4.270	0.004	7.240	0.002	11.628
Bmp5 †	Bone morphogenetic growth factor 5 Mm00432091_m1	0.022	12.051	0.303	1.788	0.587	1.300
Ctgf †	Connective tissue growth factor Mm01192931_g1	0.668	1.079	**0.011**	0.232	0.076	0.580
Fgfr10 †	Fibroblast growth factor 10 Mm00433275_m1	0.063	1.649	0.050	1.801	**0.093**	**2.262**
Fgfr13 †	Fibroblast growth factor 13 Mm00438910_m1	**0.002**	**3.205**	0.059	1.750	0.181	1.544
Fgfr2 †	Fibroblast growth factor 2 Mm01285715_m1	0.277	0.651	0.166	0.539	0.382	1.446
Fgfr20	Fibroblast growth factor 20 Mm00748347_m1	Not detected	Not detected	Not detected	Not detected		
Fgfr22 †	Fibroblast growth factor 22 Mm00445749_m1	Not detected	0.386	0.632	0.060	0.614	
Fgfr7 †	Fibroblast growth factor 7 Mm00433291_m1	0.045	0.606	**0.002**	**0.394**	0.087	0.630
Fgfr8	Fibroblast growth factor 8 Mm00438921_m1	Not detected	Not detected	Not detected	Not detected		
Fgfr1 †	C-fos induced growth factor Mm0131929_g1	0.081	1.397	0.030	1.787	0.545	0.834
Gdf10 †	Growth differentiation factor 10 Mm03024279_s1	**0.015**	**3.181**	0.454	1.143	0.166	1.519
Hbegf †	Heparin–binding epidermal growth factor Mm00439305_g1	Not detected	0.015	0.347	0.016	0.423	
Hdgf †	Hepatoma-derived growth factor Mm00725733_s1	0.257	1.221	0.737	0.911	0.975	1.008
Igfr1 †	Insulin-like growth factor 1 Mm00439560_m1	0.320	1.207	0.217	0.705	0.364	0.790
Igfr2 †	Insulin-like growth factor 2 Mm00439565_g1	<**0.001**	**592.335**	**0.002**	**338.094**	**0.001**	**416.096**
Nog †	Noggin Mm01297833_s1	0.054	2.945	0.019	2.935	0.021	3.067
Pdgfa †	Platelet-derived growth factor a Mm01205760_m1	**0.021**	**3.005**	Not detected	0.016	3.669	
Pdgfb †	Platelet-derived growth factor b Mm01298578_m1	0.321	1.098	0.033	1.468	**0.010**	**2.096**
Pdgfc †	Platelet-derived growth factor c Mm00480205_m1	Not detected	0.016	**2.362**	Not detected		
Pdgfd †	Platelet-derived growth factor d Mm00546829_m1	Not detected	0.288	0.709	0.139	1.644	
Shh	Sonic hedgehog Mm00436527_m1	Not detected	Not detected	Not detected	Not detected		
Tgfb1 †	Transforming growth factor beta 1 Mm01178820_m1	0.027	0.540	0.488	0.817	0.157	1.372
Table 2: Continued.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
Tgfb2 ‡	Transforming growth factor beta 2, Mm01321739.m1	0.039	2.697	0.757	1.081	0.127	1.809
Tgfb3 ‡	Transforming growth factor beta 3, Mm01307950.m1	0.033	2.420	0.094	1.854	0.034	2.517
Vegfa ‡	Vascular endothelial growth factor a, Mm01281447.m1	0.394	1.108	0.112	1.613	0.461	1.358
Vegfb ‡	Vascular endothelial growth factor b, Mm00442102.m1	Not detected	Not detected	Not detected	Not detected		
Vegfc ‡	Vascular endothelial growth factor c, Mm00437313.m1	0.024	1.839	0.303	1.250	0.015	1.996
Wnt10b ‡	Wingless-related integration site 10b, Mm00442104.m1	0.180	5.829	0.122	9.688	0.105	11.748
Wnt6 ‡	Wingless-related integration site 16, Mm00446420.m1	0.066	2.094	0.016	4.809	0.014	4.362
Wnt2 ‡	Wingless-related integration site 2, Mm00470018.m1	0.054	3.144	0.090	3.555	0.074	3.760
Wnt2b ‡	Wingless-related integration site 2b, Mm00437330.m1	Not detected	Not detected	Not detected	Not detected		
Wnt3a ‡	Wingless-related integration site 3a, Mm00437337.m1	0.394	1.610	0.441	1.520	0.840	1.106
Wnt6 ‡	Wingless-related integration site 6, Mm00437353.m1	0.015	11.709	0.018	10.400	0.016	10.758
Wnt7a ‡	Wingless-related integration site 7a, Mm00437355.m1	Not detected	Not detected	Not detected	Not detected		
Wnt7b ‡	Wingless-related integration site 7b, Mm00437357.m1	0.003	4.180	0.056	6.076	0.003	4.181

Numbers in italic are significant (p<0.10); numbers in bold are >2-fold differentially expressed. Gene symbols indicated with a ‡-symbol are normalized using GAPDH as a reference gene. Gene symbols indicated with a †-symbol are normalized using TBP as a reference gene. Genes, for which a signal was not or only partly detected at a given time point or multiple time points and therefore a fold change and/or p value could not be calculated based on the available data, are given as “not detected.” Gene symbols for which all time points were classified as “not detected” do not show a symbol for the used reference gene due to lack of data for a calculation.

(Sgsh) was downregulated during embryonic development at E16 (Table 2) and at E14 (Table 3).

In addition to genes involved in GAG metabolism, the TLDA card contained 37 genes encoding growth factors, which were also present in the microarray (Tables 2 and 3). Differential expression was found by both TLDA card and microarray analysis for 10, 9 and 4 growth factors at E14, E16 and P1 respectively. Examples are insulin-like growth factor 2 (Igf2), wingless-related integration site 6 (Wnt6), and Wnt7b. Igf2 was dramatically upregulated at all time points, as expected based on previous research [18]. Wnt6 was also upregulated at all time points, while Wnt7b was upregulated only during embryonic development.

Next to their expression during development, gene expression of GAG-associated genes was studied in a Glce (glucuronyl epimerase) knockout mouse model and a heparanase overexpression mouse model using TLDA cards. In the Glce knockout mice six genes were differentially expressed (Table 4). Three of them are involved in CS and DS proteoglycans and were downregulated, i.e., aggrecan (Acan), asporin (Aspn), and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (Csgalnt2). Up/downregulation was not found for HS related genes, except for Glce, which was downregulated as expected. For the heparanase overexpression mouse model, in which a human heparanase was overexpressed [7], the results showed only one gene to be differentially expressed, i.e., aggrecan (Acan) which was 2.5-fold upregulated. The complete results of both the Glce knockout mouse and the Hpse overexpression mouse are given in Supplementary data Table 6.

4. Discussion

GAGs play a regulating role during embryonic development of various organs [1–3]. Therefore, we examined the expression of genes involved in GAG metabolism during skin development using custom designed Taqman Low Density Arrays (TLDA card) and exon arrays. To structure the data we studied gene expression in six functional classes, viz. the production of precursor molecules, the synthesis...
Table 3: Differentially expressed GAG related genes during skin development in mice in comparison to mature skin (p<0.10) based on gene Chip Mouse Exon 1.0 ST Arrays.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90					
		Stepup P-value	Fold change	Stepup P-value	Fold change	Stepup P-value	Fold change		
Production of precursors									
Galk1	Galactokinase 1	0.030	4.242	0.126	2.483	0.231	2.194		
Galt	Gal-1-P-Uridylyltransferase	0.664	0.814	0.231	1.864	0.665	1.340		
Gfpt1	Glu-Fru-6-P-Transaminase 1	0.020	2.110	0.077	1.682	0.801	1.081		
Gfpt2	Glu-Fru-6-P-Transaminase 2	0.176	0.610	0.087	0.426	0.229	0.547		
Hk2	Hexokinase 2	0.003	0.451	0.040	1.375	0.039	0.655		
Pgm3	Phosphoglucomutase 2	0.083	2.193	0.676	1.178	0.654	1.286		
Pgm5	Phosphoglucomutase 5	0.058	2.338	0.104	2.209	0.291	1.696		
Slc13a5	Solute Carrier Family 13 Member A5	0.003	2.588	0.059	1.322	0.576	1.075		
Slc26a9	Solute Carrier Family 26 Member A9	0.012	0.227	0.090	0.471	0.091	0.392		
Slc35a3	Solute Carrier Family 35 Member A3	0.105	0.767	0.596	0.925	0.572	0.890		
Core proteins									
Cd44	CD44 Molecule	0.009	0.370	0.144	0.728	0.873	0.955		
Gpc2	Glypican 2	Not measured	Not measured	Not measured					
Gpc3	Glypican 3	0.003	4.339	0.013	3.305	0.015	4.721		
Gpc6	Glypican 6	0.019	2.767	0.109	1.747	0.393	1.640		
Hspg2	Perlecan	0.309	1.183	0.075	1.554	0.042	2.230		
Sdc1	Syndecan 1	0.031	0.380	0.067	0.413	0.103	0.424		
Sdc4	Syndecan 4	0.017	0.341	0.094	0.536	0.215	0.621		
Preparation of linkage region									
B3gat1	β-1,3-Glucuronyltransferase 1	0.008	3.467	0.256	1.302	0.828	0.929		
B3gat2	β-1,3-Glucuronyltransferase 2	0.009	3.241	0.286	1.269	0.690	1.129		
B4gal1	β-1,4-Galactosyltransferase 2	0.039	1.726	0.053	1.856	0.176	1.477		
Glycosaminoglycan chain polymerisation									
Chipf	Chondroitin Polymerizing Factor	0.071	1.679	0.182	1.459	0.309	1.403		
Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90					
-------------	-----------------------------	-------------	-------------	-------------					
	Stepup	P-value	Fold change	Stepup	P-value	Fold change	Stepup	P-value	Fold change
Chsy1	CS Synthase 1	Not measured	Not measured	Not measured	Not measured				
Chsy3	CS Synthase 3	0.429	1.153	0.056	1.769	0.849	1.058		
	6861281								
Csgalnact1	CS-GalNAc-transferase 1	0.137	0.512	0.202	0.541	0.974	0.975		
	6983073								
Extl1	Exostoses (multiple)-like 1	0.025	0.407	0.149	0.625	0.144	0.505		
	6926017								
Extl2	Exostoses (multiple)-like 2	0.085	1.702	0.819	1.066	0.518	1.272		
	6900659								
Has2	Hyaluronan Synthase 2	0.095	2.107	0.157	1.969	0.537	1.403		
	6854042								

Glycosaminoglycan chain modification

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90					
	Stepup	P-value	Fold change	Stepup	P-value	Fold change	Stepup	P-value	Fold change
Chst11	Chondroitin 4-O-Sulfotransferase 1	0.049	1.922	0.465	1.208	0.239	1.531		
	6769366								
Chst14	Dermatan 4 Sulfotransferase 1	0.151	1.491	0.506	1.191	0.773	1.122		
	6880476								
Chst2	Carbohydrate Sulfotransferase 2	0.035	2.302	0.072	2.160	0.207	1.682		
	6997990								
Chst3	Chondroitin 6-O-Sulfotransferase 1	0.885	1.034	0.108	1.545	0.162	1.530		
	6774295								
Chst8	GalNAc-4-O-Sulfotransferase 1	0.945	1.007	0.569	1.054	0.420	1.108		
	6966453								
Hs3st1	HS 3-O-sulfotransferase 1	0.074	1.658	0.105	1.688	0.119	1.824		
	6937654								
Hs3st3b1	HS 3-O-sulfotransferase 3bl	0.683	1.178	0.253	1.634	0.511	1.432		
	6788991								
Hs3st6	HS 3-O-sulfotransferase 6	0.019	0.406	0.291	0.771	0.721	1.130		
	6849317								
Hs6st2	HS 6O-sulfotransferase 2	0.004	6.417	0.012	5.609	0.041	3.080		
	7016808								
Ndst1	N-Deacetylase and N-Sulfotransferase 1	0.090	1.363	0.056	1.649	0.067	1.763		
	6865926								
Ndst2	N-Deacetylase and N-Sulfotransferase 2	0.822	1.044	0.059	1.697	0.083	1.733		
	6823122								
Ndst3	N-Deacetylase and N-Sulfotransferase 3	0.173	2.472	0.111	3.856	0.122	4.860		
	6908938								
Sulft1	Sulfatase 1	0.010	4.522	0.051	2.546	0.232	1.627		
	6747641								
Sumf2	Sulfatase modifying factor 2	Not measured	Not measured	Not measured	Not measured				

Glycosaminoglycan chain degradation

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90					
	Stepup	P-value	Fold change	Stepup	P-value	Fold change	Stepup	P-value	Fold change
ArsJ	Arylsulfatase J	0.003	2.498	0.006	3.164	0.031	1.702		
	6901136								
ArsK	Arylsulfatase K	0.368	0.784	0.102	0.543	0.514	0.779		
	6814451								
Galns	Galactosamine (N-Acetyl)-6-Sulfatase	0.087	1.671	0.322	1.311	0.786	1.115		
Table 3: Continued.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
		Stepup P-value	Fold change	Stepup P-value	Fold change	Stepup P-value	Fold change
Hpse	Heparanase 6940363	0.021	0.267	0.540	1.244	0.095	0.360
Hyal1	Hyaluronoglucosaminidase 1 6992224	0.003	0.154	0.001	0.222	0.041	0.402
Sgsh	N-Sulfoglucoamine Sulphohydrolase 6792702	0.017	0.458	0.052	0.537	0.201	0.699
Growth factors							
Areg	Amphiregulin 6932394	0.016	0.157	0.043	0.200	0.333	0.550
Bmp3	Bone morphogenetic growth factor 3 6932718	0.280	1.392	0.067	2.381	0.100	2.365
Bmp5	Bone Morphogenetic growth factor 5 6990569	0.001	7.247	0.141	1.191	0.688	1.057
Ctgf	Connective tissue growth factor 6766623	0.148	0.729	0.025	0.366	0.068	0.485
Fgf10	Fibroblast growth factor 10 6810592	0.138	1.521	0.057	2.250	0.094	2.142
Fgf13	Fibroblast growth factor 13 7017134	0.012	2.998	0.075	1.824	0.296	1.391
Fgf2	Fibroblast growth factor 2 6896850	0.201	0.664	0.279	0.696	0.952	0.967
Fgf20	Fibroblast growth factor 20 6981854	0.659	1.228	0.125	2.483	0.777	1.220
Fgf22	Fibroblast growth factor 22 6769141	0.005	0.329	0.972	0.994	0.097	0.646
Fgf7	Fibroblast growth factor 7 6880900	0.531	0.740	0.078	0.286	0.212	0.418
Fgf8	Fibroblast growth factor 8 6873363	0.492	0.883	0.655	1.085	0.682	0.895
Fgf	C-fos induced growth factor 7015007	0.051	1.734	0.062	1.909	0.548	0.832
Gdf10	Growth differentiation factor 10 6898153	0.028	2.334	0.757	1.086	0.894	1.060
Hbegf	Heparin-binding epidermal growth factor 6864680	0.037	0.551	0.063	0.547	0.087	0.530
Hdgf	Hepatoma-derived growth factor 6899028	0.104	1.246	0.575	1.070	0.409	1.147
Igf1	Insulin-like growth factor 1 6769597	0.235	0.631	0.173	0.537	0.398	0.641
Igf2	Insulin-like growth factor 2 6972317	0.001	59.615	0.002	55.864	0.002	52.364
Nog	Noggin 6790670	0.275	2.605	0.517	1.773	0.677	1.712
Pdgfa	Platelet-derived growth factor a 6942654	0.028	2.013	0.035	2.347	0.057	2.338
Pdgfb	Platelet-derived growth factor b 6837144	0.037	0.704	0.199	1.197	0.157	1.298
Table 3: Continued.

Gene symbol	Full gene name and probe set	E14 vs. P90	E16 vs. P90	P1 vs. P90			
		Stepup P-value	Fold change	Stepup P-value	Fold change	Stepup P-value	Fold change
Pdgfc	Platelet-derived growth factor c	0.019	2.152	0.035	2.207	0.902	1.042
Pdgd	Platelet-derived growth factor d	0.925	0.952	0.191	0.504	0.790	1.205
Shh	Sonic hedgehog	0.448	0.595	0.308	2.117	0.152	4.571
Tgfb1	Transforming growth factor beta 1	0.106	0.552	0.241	0.653	0.975	0.981
Tgfb2	Transforming growth factor beta 2	0.057	2.441	0.448	1.335	0.264	1.802
Tgfb3	Transforming growth factor beta 3	0.026	2.386	0.238	1.408	0.100	2.077
Vegfa	Vascular endothelial growth factor a	0.779	0.875	0.721	1.174	0.940	1.061
Vegfb	Vascular endothelial growth factor b	0.008	1.461	0.031	1.318	0.060	1.277
Vegfc	Vascular endothelial growth factor c	0.088	2.120	0.477	1.316	0.316	1.700
Wnt10b	Wingless-related integration site 10b	0.629	1.280	0.120	2.812	0.240	2.325
Wnt16	Wingless-related integration site 16	0.358	1.180	0.026	2.402	0.093	1.710
Wnt2	Wingless-related integration site 2	0.057	3.047	0.082	3.260	0.122	3.219
Wnt2b	Wingless-related integration site 2b	0.009	2.189	0.024	2.030	0.077	1.590
Wnt3a	Wingless-related integration site 3a	0.457	1.199	0.103	1.728	0.684	1.159
Wnt6	Wingless-related integration site 6	0.011	3.166	0.032	2.668	0.064	2.352
Wnt7a	Wingless-related integration site 7a	0.060	2.117	0.131	1.865	0.395	1.456
Wnt7b	Wingless-related integration site 7b	0.072	2.297	0.050	3.623	0.237	1.912

Numbers in Italic are significant (p < 0.10); numbers in bold are >2-fold differentially expressed. Genes indicated as “not measured” represent genes for which probes were not available on the used exon array version.

of core proteins and the linkage region, and the synthesis, modification, and degradation of the GAG chain proper. In addition we studied a number of growth factors, since GAGs are involved in their regulation including growth factor diffusion and signaling [3, 28].

With respect to core proteins, the heparan sulfate proteoglycans syndecan and glypican showed notable differential expression (Tables 2 and 3). Glypicans play an important role in development and cell signaling [12, 26, 29], and we found upregulation of 3 out of 6 glypican core proteins. Gpc3 was upregulated during embryonic development and one day postbirth, suggesting that this glypican has a role during skin development. A possible function of Gpc3 in skin has been suggested for the Gpc3-null mouse, which showed pigmentation defects [30]. Humans deficient in Gpc3 suffer from the Simpson-Golabi-Behmel syndrome (SGBS). Based on the symptoms of SGBS and the phenotype found for the Gpc3-null mice, it has been suggested that Gpc3 is involved in the regulation of hedgehog signaling [31], a signaling pathway involved in hair follicle development [32]. Surprisingly, the Gpc3-null mice did not show a defect in appendage formation [30], indicating a functional but not essential role. Further
Table 4: Differentially expressed genes in C5 epimerase (Glce) knockout mouse (p<0.10) based on real-time qPCR.

Gene symbol	Full gene name and probe set	P-value	Relative change
Production of precursors			
Gnpnat1	Glucosamine-Phosphate N-Acetyltransferase 1 Mm00834602.mH	0.033	0.468
Slec2a4	Solute Carrier Family 2 Member 4 Mm01245507.g1	0.086	2.526
Core proteins			
Acan	Aggrecan Mm00545807.ml	0.005	0.242
Aspn	Asporin Mm00445945.ml	0.010	0.382
Glycosaminoglycan chain polymerisation			
Csgalnact	CS N-Acetylgalactosaminyltransferase 2 Mm00513340.ml	0.049	0.431
extl2			
extl3			
Glycosaminoglycan chain modification			
Glce	Glucuronic Acid Epimerase Mm00473667.ml	0.013	0.079

Numbers in Italic are significant (p<0.10); numbers in bold are >2 fold differentially expressed. All genes were normalized using 18S RNA as a reference gene.

research is needed to elucidate the role of Gpc3 and the two other differentially expressed glypicans, i.e., Gpc2 and Gpc6.

Syndecans are described to take part in adult wound healing [33]. We found downregulation of the core proteins of two syndecans during embryonic development, which could indicate that these proteoglycans do not play a major general role during skin development. Specific roles, such as the involvement of Sdc1 in hair follicle development, as described on basis of immunohistochemical data [34], can, however, not be excluded.

In the class of GAG chain polymerization, we found differential expression of genes encoding for the initiation of HS or CS/DS synthesis. HS chain polymerization is initiated by the addition of GlcNAc by Extl2 [35] or Extl3 [36], while CS/DS chain polymerization is initiated by the addition of GaINAc by Csgalnact1 [37]. Extl2 was upregulated during early skin development (Table 2), while Csgalnact1 was downregulated (Supplementary data Table 5), which suggests that during early skin development HS production is stimulated in comparison to CS/DS production.

Enzyme mediated chemical modifications of the GAG chains result in the creation of specific binding sites for effector molecules [38]. Enzymes forming the class of N-deacetylase/sulfotransferases (Ndst's) are initiating elements in this respect. Especially Ndst3 was upregulated, being one of four enzymes responsible for the removal of the acetyl group from the N-acetylated glucosamine and for the addition of a sulfate group. The additional expression of Ndst3 in combination with Ndst1 and Ndst2 points to the fine tuning of HS chains for specific recognition of ligands. Ndst3 has a higher deacetylation activity in comparison to the N-sulfotransferase activity, while Ndst1 and Ndst2 have a slightly higher N-sulfotransferase activity [39]. In addition, the data on the expression of heparan sulfate 3-O sulfotransferases (Hs3sts) [40] and heparan sulfate 6-O-sulfotransferases (Hs6sts) [41] suggest dynamic and specific modification of HS chains.

Three genes encoding for enzymes involved in HS and CS/DS degradation were differentially expressed, one of them being Hpse (heparanase). Hpse is downregulated at E14 and at P1, but not at E16 at which time point hair follicle development is taking place. Hpse has been reported to be involved in this process [42, 43].

Glycosaminoglycans are involved in growth factor regulation during developmental processes [1, 2]. We therefore studied 37 growth factors implied in skin development. A number of genes encoding growth factors were differentially expressed during development and the data are in line with earlier results for, e.g., Igf2 [18], Wnt6, and Wnt7b [44]. Although speculative, the dynamics in GAG structure may be correlated with the dynamics of growth factors.

Next to skin development we also studied gene expression in skin of a Glce (glucuronyl epimerase) knockout mouse and an Hpse (heparanase) overexpression mouse [7, 13]. In the Glce knockout mice relatively few genes were differentially expressed, suggesting that skin is relatively unaffected by the lack of Glce in line with the observation that skin in these mice is phenotypically normal [20]. The skin phenotype of the Hpse overexpression mouse shows accelerated hair growth [7]. Gene expression analysis of this model showed only one differentially expressed gene (aggrecan). These results may touch upon the regulation of translation of mRNAs coding for GAG related enzymes. Enzymes involved in the synthesis and modification of GAGs as well genes coding for (some) growth factors share a common alternative translation mechanism via IRES sites [45, 46]. In general mRNAs are translated by the ribosomal scanning mechanism which scans for short leader sequences of 50 to 70 nucleotides [46, 47]. The leader sequences of the HS modifying enzymes and growth factors are characterized by long but structured sequences, which
are not recognized by the ribosomal scanning mechanism [46, 47]. Within these sequences internal ribosomal entry sites (IRES) allow alternative translation, e.g., under stress conditions [47]. This indicates that in addition to mRNA levels an additional control mechanism on the translational level may be present. In addition, other types of regulatory levels are known including the interaction of biosynthetic enzymes with each other and the (possible) presence of large biosynthetic complexes (GAGosomes) [48]. This makes the regulation of GAG biosynthesis very complex, gene expression being only a part of it.

Taken together, it is concluded that a highly dynamic expression of genes involved in GAG metabolism and in GAG binding growth factors is associated with skin development. This indicates the importance of fine tuning of GAG structures during developmental processes. Further studies should focus on the biochemical analysis of the GAGs chains themselves.

Data Availability

The EXON array data used to support the findings of this study are included within the article and are provided via [18]. The Taqman low density array data used to support the findings of this study are included within the article. The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

P. J. E. Uijtdewilligen wrote the main manuscript text and prepared Figure 1, Tables 1–4, and Supplementary data Tables 1–6. P. J. E. Uijtdewilligen, E. M. Versteeg, and E. M. A. van de Westerlo were responsible for the performance of the genetic analysis using RNA isolation, real time quantitative PCR, and microarray analysis. P. J. E. Uijtdewilligen, J. van der Vlag and T. H. van Kuppevelt were responsible for the design of the Taqman Low Density Array as described in Supplementary data 1-2. W. F. Daamen and T. H. van Kuppevelt were involved in study design, manuscript text, and design of the figures. All authors have given approval for the final version of the manuscript.

Acknowledgments

This study was financially supported by the Dutch Program for Tissue Engineering (DPT6735). The authors would like to thank the Microarray Facility Nijmegen of the Radboud University Medical Center (The Netherlands) for carrying out the array experiments and assistance with the data analysis. The Central Animal Laboratory of the Radboud University Medical Center is acknowledged for assistance with the animal experiments.

Supplementary Materials

The supplementary data contains 6 tables: Supplemental data Table 1: Design TLDA cart version 1: An overview of the used genes/assays on the Taqman Low Density Array, version 1. This table supports the materials and method section and the results section. Supplemental data Table 2: Design TLDA cart version 2: An overview of the used genes/assays on the Taqman Low Density Array, version 2. This table supports the materials and method section and the results section. Supplemental data Table 3: Differentially expressed genes as % per category. This table provides a comparison between the EXON array expression data and the TLDA Data Supplemental data Table 4: Differentially expressed genes during skin development in mice in comparison to mature mouse skin using TLDA cards. Supplemental data Table 5: Differentially expressed genes during skin development in mice in comparison to mature mouse skin using EXON array Supplementary data Table 6: Differentially expressed genes found using Taqman Low Density Arrays for the Glce knockout and HSPEtg mouse compared to wild type. (Supplementary Materials)

References

[1] H. E. Bülow and O. Hobert, “The molecular diversity of glycosaminoglycans shapes animal development,” Annual Review of Cell and Developmental Biology, vol. 22, no. 1, pp. 375–407, 2006.
[2] S. Sarrazin, W. C. Lamanna, and J. D. Esko, “Heparan sulfate proteoglycans,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 7, pp. 1–33, 2011.
[3] I. Matsuo and C. Kimura-Yoshida, “Extracellular modulation of fibroblast growth factor signaling through heparan sulfate proteoglycans in mammalian development,” Current Opinion in Genetics & Development, vol. 23, no. 4, pp. 399–407, 2013.
[4] P. Olczyk, L. Mencner, and K. Komosisinska-Vassev, “The role of the extracellular matrix components in cutaneous wound healing,” BioMed Research International, vol. 2014, Article ID 747584, 8 pages, 2014.
[5] M. Maccarana, S. Kalamaiski, M. Kongsgaard, S. Peter Magnusson, A. Oldberg, and A. Malmström, “Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin,” Molecular and Cellular Biology, vol. 29, no. 20, pp. 5517–5528, 2009.
[6] J. K. Mouw, G. Ou, and V. M. Weaver, “Extracellular matrix assembly: a multiscale deconstruction,” Nature Reviews Molecular Cell Biology, vol. 15, no. 12, pp. 771–785, 2014.
[7] E. Zcharia, S. Metzger, T. Chajek-Shaul et al., “Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior,” The FASEB Journal, vol. 18, no. 2, pp. 252–263, 2004.
[8] V. J. Coulson-Thomas, T. F. Gesteira, J. Esko, and W. Kao, “Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis,” The Journal of Biological Chemistry, vol. 289, no. 36, pp. 25221–25226, 2014.
[9] E. Zcharia, R. Zilka, A. Yaar et al., “Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models,” The FASEB Journal, vol. 19, no. 2, pp. 211–221, 2005.
[10] S. Mizumoto, S. Yamada, and K. Sugahara, “Human genetic disorders and knockout mice deficient in glycosaminoglycan,” *BioMed Research International*, vol. 2014, Article ID 495764, 24 pages, 2014.

[11] K. Grobe, M. Inatani, S. P. R. Pallerla, J. Castagnola, Y. Yamaguchi, and J. D. Esko, “Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate N’dsl gene function,” *Development*, vol. 132, no. 16, pp. 3777–3786, 2005.

[12] R. M. Witt, M.-L. Hecht, M. F. Pazyra-Murphy et al., “Heparan sulfate proteoglycans containing a glypicain 5 core and 2-O-sulfido-uridonic acid function as sonic hedgehog co-receptors to promote proliferation,” *The Journal of Biological Chemistry*, vol. 288, no. 36, pp. 26275–26288, 2013.

[13] J.-P. Li, F. Gong, Å. Hagner-McWhirter et al., “Targeted disruption of a murine glucuronyl C5-epimerase gene results in hepatic heparan sulfate L-iduronic acid and in neonatal lethality,” *The Journal of Biological Chemistry*, vol. 278, no. 31, pp. 28363–28366, 2003.

[14] J. Jia, M. Maccarana, X. Zhang, M. Bespalov, U. Lindahl, and J.-P. Li, “Lack of L-iduronic acid in hepatic heparan sulfate affects interaction with growth factors and cell signaling,” *The Journal of Biological Chemistry*, vol. 284, no. 23, pp. 15942–15950, 2009.

[15] H. Habuchi, N. Nagai, N. Sugaya, F. Atsumi, R. L. Stevens, and K. Kimata, “Mice deficient in hepatic sulfate 6-O-sulfotransferase-1 exhibit defective hepatic sulfate biosynthesis, abnormal placenta, and late embryonic lethality,” *The Journal of Biological Chemistry*, vol. 282, no. 21, pp. 15578–15588, 2007.

[16] M. Tong, B. Tuk, I. M. Hekking, M. Vermeij, D. Barritault, and J. W. Van Neck, “Stimulated neovascularization, inflammation resolution and collagen maturation in healing rat cutaneous wounds by a heparan sulfate glycosaminoglycan mimetic,” *Wound Repair and Regeneration*, vol. 17, no. 6, pp. 840–852, 2009.

[17] D. Barritault, M. Gilbert-Sirieix, K. L. Rice et al., “RGTA or ReGeneraTing Agents mimic heparan sulfate in regenerative medicine: from concept to curing patients,” *Glyconjugate Journal*, vol. 34, no. 3, pp. 325–338, 2017.

[18] P. L. E. Uijtdewilligen, E. M. M. Versteeg, C. Gilissen et al., “Towards embryonic-like scaffolds for skin tissue engineering: Identification of effector molecules and construction of scaffolds,” *Journal of Tissue Engineering and Regenerative Medicine*, vol. 10, no. 1, pp. E34–E44, 2016.

[19] J. Rossant and P. P. L. Tam, *Mouse Development: Patternning, Morphogenesis, and Organogenesis*, Academic Press, London, UK, 2002.

[20] J.-P. Li, F. Gong, K. El Darwish, M. Jalkanen, and U. Lindahl, “Characterization of the D-Glucuronyl C5-epimerase Involved in the Biosynthesis of Heparin and Heparan Sulfate,” *The Journal of Biological Chemistry*, vol. 276, no. 23, pp. 20069–20077, 2001.

[21] K. Kadota and K. Shimizu, “Evaluating methods for ranking differentially expressed genes applied to microArray quality control data,” *BMC Bioinformatics*, vol. 12, no. 1, p. 227, 2011.

[22] G. Lammers, C. Gilissen, S. T. M. Nillesen et al., “High density gene expression microarrays and gene ontology analysis for identifying processes in implanted tissue engineering constructs,” *Biomaterials*, vol. 31, no. 32, pp. 8299–8312, 2010.

[23] K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method,” *Methods*, vol. 25, no. 4, pp. 402–408, 2001.

[24] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” *Journal of the Royal Statistical Society B: Methodological*, vol. 57, no. 1, pp. 289–300, 1995.

[25] H. H. Song and J. Filmus, “The role of glypicans in mammalian development,” *Biochimica et Biophysica Acta (BBA) - General Subjects*, vol. 1573, no. 3, pp. 241–246, 2002.

[26] J. Filmus and M. Capurro, “The role of glypicans in Hedgehog signaling,” *Matrix Biology*, vol. 35, pp. 248–252, 2014.

[27] M. Buono, I. Visigalli, R. Bergamasco, A. Biffi, and M. P. Cosma, “Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development,” *The Journal of Experimental Medicine*, vol. 207, no. 8, pp. 1647–1660, 2010.

[28] D. Yan and X. Lin, “Shaping morphogen gradients by proteoglycans,” *Cold Spring Harbor Perspectives in Biology*, vol. 1, no. 3, pp. 1–17, 2009.

[29] A. B. Campos-Xavier, D. Martinet, J. Bateman et al., “Mutations in the Heparan-Sulfate Proteoglycan Glypicain 6 (GPC6) Impair Endochondral Ossification and Cause Recessive Omodysplasia,” *American Journal of Human Genetics*, vol. 84, no. 6, pp. 760–770, 2009.

[30] E. Chiao, P. Fisher, L. Crispioni et al., “Overgrowth of a mouse model of the Simpson - Golabi - Behmel syndrome is independent of IGF signaling,” *Developmental Biology*, vol. 243, no. 1, pp. 185–206, 2002.

[31] M. I. Capurro, P. Xu, W. Shi, F. Li, A. Jia, and J. Filmus, “Glypican-3 Inhibits Hedgehog Signaling during Development by Competing with Patched for Hedgehog Binding,” *Developmental Cell*, vol. 14, no. 5, pp. 700–711, 2008.

[32] A. E. Oro and K. Higgins, “Hair cycle regulation of Hedgehog signal reception,” *Developmental Biology*, vol. 255, no. 2, pp. 238–248, 2003.

[33] F. X. Maquart and J. C. Monboisse, “Extracellular matrix and wound healing,” *Pathologic Biologie*, vol. 62, no. 2, pp. 91–95, 2014.

[34] G. D. Richardson, K. A. Fantuzzo, H. Bazzi, A. Mättä, and C. A. B. Jahoda, “Dynamic expression of Syndecan-1 during hair follicle morphogenesis,” *Gene Expression Patterns*, vol. 9, no. 6, pp. 454–460, 2009.

[35] S. Nadanaka, S. Zhou, S. Kagiyama et al., “EXTL2, a member of the EXT family of tumor suppressors, controls glycosaminoglycan biosynthesis in a xylene kinase-dependent manner,” *The Journal of Biological Chemistry*, vol. 288, no. 13, pp. 9321–9333, 2013.

[36] B.-T. Kim, H. Kitagawa, J.-I. Tamura et al., “Human tumor suppressor EXT gene family members EXT1 and EXT3 encode α1,4-N-acetylgalactosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 98, no. 13, pp. 7176–7181, 2001.

[37] T. Sato, M. Gotoh, K. Kiyohara et al., “Differential roles of two N-acetylgalactosaminyltransferases, CSGalNAcT-1, and a novel enzyme, CSGalNAcT-2. Initiation and elongation in synthesis of chondroitin sulfate,” *The Journal of Biological Chemistry*, vol. 278, no. 5, pp. 3063–3071, 2003.

[38] A. Varki, R. D. Cummings, J. Esko et al., *Essentials of Glycobiology*, 1999.

[39] J.-I. Aikawa, K. Grobe, M. Tsujimoto, and J. D. Esko, “Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of
the fourth member, NDST4,” *The Journal of Biological Chemistry*, vol. 276, no. 8, pp. 5876–5882, 2001.

[40] T. H. van Kuppevelt, M. A. Dennissen, W. J. van Venrooij, R. M. A. Hoet, and J. H. Veerkamp, “Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology: further evidence for heparan sulfate heterogeneity in the kidney,” *The Journal of Biological Chemistry*, vol. 273, no. 21, pp. 12960–12966, 1998.

[41] H. Habuchi and K. Kimata, “Mice Deficient in Heparan Sulfate 6-O-Sulfotransferase-1,” *Progress in Molecular Biology and Translational Science*, vol. 93, pp. 79–111, 2010.

[42] S. Malgouries, M. Donovan, S. Thibaut, and B. A. Bernard, “Heparanase I: A key participant of inner root sheath differentiation program and hair follicle homeostasis,” *Experimental Dermatology*, vol. 17, no. 12, pp. 1017–1023, 2008.

[43] V. N. Patel, S. M. Knox, K. M. Likar et al., “Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis,” *Development*, vol. 134, no. 23, pp. 4177–4186, 2007.

[44] R. B. Widlitz, “Wnt signaling in skin organogenesis,” *Orangogenesis*, vol. 4, no. 2, pp. 123–133, 2008.

[45] L. Créancier, D. Morello, P. Mercier, and A.-C. Prats, “Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation,” *The Journal of Cell Biology*, vol. 150, no. 1, pp. 275–281, 2000.

[46] K. Grobe and J. D. Esko, “Regulated translation of heparan sulfate N-acetylgalactosamine N-deacetylase/N-sulfotransferase isozymes by structured 5'-untranslated regions and internal ribosome entry sites,” *The Journal of Biological Chemistry*, vol. 277, no. 34, pp. 30699–30706, 2002.

[47] C. U. T. Hellen and P. Sarnow, “Internal ribosome entry sites in eukaryotic mRNA molecules,” *Genes & Development*, vol. 15, no. 13, pp. 1593–1612, 2001.

[48] J. D. Esko and S. B. Selleck, “Order out of chaos: assembly of ligand binding sites in heparan sulfate,” *Annual Review of Biochemistry*, vol. 71, pp. 435–471, 2002.
