THE INVERSE GALOIS PROBLEM FOR CHEREDNIK ALGEBRAS

AKAKI TIKARADZE

Abstract. Given the spherical subalgebra B of a rational Cherednik algebra, we aim to classify all finite groups Γ for which there exists a domain R on which Γ acts by ring automorphisms, such that $B = R^\Gamma$. We describe such groups in terms of geometry of the center of the reduction of B modulo a large prime.

1. Introduction and main results

Given a simple domain B over \mathbb{C}, it is an interesting and natural problem to classify finite groups Γ for which there exists a domain R on which Γ acts via ring automorphisms such that $B = R^\Gamma$. Given the direct analogy with Galois theory, we refer to this question as the inverse Galois problem for B. In [T] we solved this problem for rings of differential operators on smooth affine varieties. Namely, if $D(X) = R^\Gamma$, where X is a smooth affine variety over \mathbb{C} and Γ is a finite group of \mathbb{C}-automorphisms of a domain R, then there exists a smooth affine variety Y such that $R \cong D(Y)$ and $Y \to X$ is a Γ-Galois etale covering of X [T, Theorem 1]. It was also shown in [T, Theorem 2] that a very generic central quotient of the enveloping algebra of a semi-simple Lie algebra cannot be a nontrivial fixed ring. In this paper we apply the methodology of [T] to the case when B is a (simple) spherical subalgebra of a rational Cherednik algebra defined by Etingof and Ginzburg [EG]. Let us recall their definition.

Let W be a complex reflection group; \mathfrak{h} its reflection representation and $S \subset W$ the set of all complex reflections. Let $(\, ,) : \mathfrak{h} \times \mathfrak{h}^* \to \mathbb{C}$ be the natural pairing. Given a reflection $s \in S$, let $\alpha_s \in \mathfrak{h}^*$ be an eigenvector of s for eigenvalue 1. Also, let $\alpha_s^\vee \in \mathfrak{h}$ be an eigenvector normalized so that $\alpha_s(\alpha_s^\vee) = 2$. Let $c : S \to \mathbb{C}$ be a function invariant with respect to conjugation by W. The rational Cherednik algebra H_c associated to (W, \mathfrak{h}) with parameter c is defined as the quotient of $\mathbb{C}[W] \ltimes T(\mathfrak{h} \oplus \mathfrak{h}^*)$ by the following relations

$$[x, y] = (y, x) - \sum_{s \in S} c(s)(y, \alpha_s)(\alpha_s^\vee, x), \quad [x, x'] = 0 = [y, y']$$

for all $x, x' \in \mathfrak{h}^*$ and $y, y' \in \mathfrak{h}$.

1
In this note we are concerned with the spherical subalgebra B_c of a Cherednik algebra H_c. Recall that

$$B_c = eH_c e, \quad e = \frac{1}{|W|} \sum_{g \in W} g.$$

For $c = 0$, we have that $B_0 = D(\mathfrak{h})^W$. Algebras B_c can be viewed as filtered quantizations of the ring of functions on $(\mathfrak{h} \oplus \mathfrak{h}^*)/W$.

Since B_c is defined over $S = \mathbb{Z}[\frac{1}{n}][c]$, we may define its base change $(B_c)_k = B_c \otimes_S k$ which we denote by \overline{B}_c, where \overline{c} is the image of c under the base change map $S \to k$.

The following theorem is the main result of this paper. It relates the inverse Galois problem for B_c to geometry of the center of reduction of B_c modulo a large prime.

Theorem 1.1. Let B_c be simple. If $B_c = R^\Gamma$ for a domain R and a finite group Γ, then there exists a finitely generated ring $S \subset \mathbb{C}$ containing values of c such that the following holds. For any base change $S \to k$ to an algebraically closed field of positive characteristic the group Γ is a quotient of the etale fundamental group of the smooth locus of $\text{Spec} \ Z(B_c)$.

We apply Theorem 1.1 to classes of Cherednik algebras for which the center of their reduction modulo $p > 0$ is well-known and (relatively) easy to describe. Namely, we consider two families of spherical subalgebra of the rational Cherednik algebras: one associated to the pair (S_n, \mathbb{C}^n) and a parameter $c \in \mathbb{C}$, the other family of algebras being noncommutative deformations of Kleinian singularities.

Theorem 1.2. Let B_c be the spherical subalgebra of a rational Cherednik algebra associated with (S_n, \mathbb{C}^n) with a parameter $c \in \mathbb{C}$. Assume that B_c is simple. If c is irrational then B_c cannot be a fixed ring of a domain under a nontrivial action of a finite group of ring automorphisms. For rational c, if $B_c = R^\Gamma$ with finite group Γ and domain R, then Γ must be a quotient of S_n.

Next, we consider the case of noncommutative deformations of the Kleinian singularities of type A_n (the spherical subalgebras of Cherednik algebras associated with the pair a cyclic group and its one dimensional representation). These family of algebras is also known as generalized Weyl algebras. Let us recall their definition.

Let $v = \prod_{i=1}^n (h-t_i) \in \mathbb{C}[h]$. Then the algebra $A(v)$ is generated by x, y, h subject to the relations

$$xy = v(h), \quad yx = v(h-1), \quad hx = x(h+1), \quad hy = y(h-1).$$

Recall that if $v = \prod_i (h + \frac{i}{n})$, then $A(v)$ can be identified with the fixed ring of the Weyl algebra $W_1(\mathbb{C})$ under the natural action of the cyclic group of order n. On the other hand, when $n = 2$ algebras $A(v)$ correspond to central quotients of $U(\mathfrak{sl}_2)$. It was shown in [S] that a countable family of
primitive quotients of $U(\mathfrak{sl}_2)$ can be realized as $\mathbb{Z}/2\mathbb{Z}$-fixed rings of algebras of differential operators on certain (singular) algebraic curves.

Theorem 1.3. Let $A(v)$ be simple. If $A(v) = R^\Gamma$ with R domain and Γ a finite group, then Γ must be a quotient of $\mathbb{Z}/n\mathbb{Z}$. If in addition $t_i - t_j \notin \mathbb{Q}$ for some i, j, then $|\Gamma| < n$.

2. **Proofs**

We start by recalling couple of very basic properties of the spherical subalgebras of rational Cherednik algebras. Namely the PBW property and the Dunkl isomorphism.

The crucial PBW property of H_c, B_c, implies that if we equip H_c, B_c, with an algebra filtration by putting $\deg(h) = 1, \deg(h^*) = 0, \deg(W) = 0$, then

$$\text{gr}(H_c) = C[W] \ltimes \text{Sym}(h \oplus h^*), \quad \text{gr}(B_c) = \text{Sym}(h \oplus h^*)^W.$$

Recall that since for any nonzero $f \in \text{Sym}(h^*)$, $\text{ad}(f) = [f, -]$ acts locally nilpotently on H_c, we may consider the localization $H_c[f^{-1}]$ (and $B_c[f^{-1}]$ for $f \in C[h]^W$). Then we have the induced filtration on $B_c[f^{-1}]$ and

$$\text{gr}(B_c[f^{-1}]) = \text{Sym}(h \oplus h^*)^{W_f}.$$

Set $\mathfrak{h}_{reg} = \{ x \in \mathfrak{h}, (x, \alpha) \neq 0, \alpha \in S \}$. Let $\delta \in C[h]^W$ be the defining function of $\mathfrak{h} \setminus \mathfrak{h}_{reg}$. Recall that via the Dunkl embedding we have an isomorphism

$$B_c[\delta^{-1}] \cong D(\mathfrak{h}_{reg}).$$

Proof of Theorem [T]. We denote B_c by B throughout the proof. Since B is a simple Noetherian ring and $Z(B) = C$, it follows from the standard facts about fixed rings [M] that B is Morita equivalent to the skew ring $C[\Gamma] \ltimes R$ (see [[T], Lemma 4]). Now, there exists a large enough finitely generated ring $S \subset C$, and models of B, R over S, to be denoted by B_S, R_S, so that B_S is Morita equivalent to $S[\Gamma] \ltimes R_S$. In particular, R_S is a projective left (and right) B_S-module. So for large enough $p \gg 0$ and a base change $S \to k$ to an algebraically closed field of characteristic p, we have that B_k is Morita equivalent to $k[\Gamma] \ltimes R_k$.

It is well-known that B_k is finite over its center, more specifically [BFG, Theorem 9.1.1]

$$\text{gr } Z(B_k) = \text{gr}(B_k)^p.$$

Let $f \in Z(B_k)$ be a nonzero element that vanishes on the singular locus of Spec($Z(B_k)$). As the smooth and the Azumaya loci of Spec($Z(B_k)$) coincide [[BC, Theorem]], we get that $(B_k)_f$ is an Azumaya algebra over $Z(B_k)_f$ and $(B_k)_f$ is Morita equivalent to $k[\Gamma] \ltimes (R_k)_f$. Then just as in [[T], Proposition
1], we can conclude that Spec \(Z(R_k)_f \rightarrow \text{Spec } Z(B_k)_f \) is a \(\Gamma \)-Galois etale covering and

\[
(R_k)_f = B_k \otimes_{Z(B_k)} Z(R)_f.
\]

Therefore, if \(U \) denotes the smooth locus of Spec\(Z(B_k) \), and \(Y \) denotes the preimage of \(U \) under the projection Spec\(Z(R_k) \rightarrow \text{Spec } Z(B_k) \), then \(Y \rightarrow U \) is \(\Gamma \)-Galois covering. In particular, for any \(g \in k[\hbar] \), \(\text{ad}(g) \) acts locally nilpotently on \((R_k)_f \). Which implies that \(\text{ad}(g) \) acts locally nilpotently on \(R_k \) as \(R_k \) is \(Z(B_k) \)-torsion free (since \(R_k \) is projective over \(B_k \)). It follows that if \(R_k \) is a domain, then \(\Gamma \) is a quotient of the etale fundamental group of the smooth locus of Spec\(Z(B_k) \) = \(U \). Thus, all it remains to show is that \(R_k \) is a domain.

Next we argue that \(\text{ad}(\delta) \) acts locally nilpotently on \(R \). Indeed, put \(B' = B \otimes B^{op} \) and \(f = \delta \otimes 1 - 1 \otimes \delta \). So, \(B' \) is a spherical subalgebra of a Cherednik algebra associated to \((W \times W, \hbar \otimes \hbar) \). We can view \(R \) as a left \(B' \)-module. Recall that we have the filtration on \(B'_S[f^{-1}] \) so that \(\text{gr}(B'_S[f^{-1}]) \) is a finitely generated commutative \(S \)-algebra. Equipping \(R_S[f^{-1}] \) with a compatible filtration gives that \(\text{gr}(R_S[f^{-1}]) \) is a finitely generated \(\text{gr}(B'_S[f^{-1}]) \)-module, so by the generic flatness theorem there is a localization \(S' \) of \(S \) so that \(\text{gr}(R'_S[f^{-1}]) \) and hence \(R'_S[f^{-1}] \) is a free \(S' \)-module. On the other hand, since \(R_k[f^{-1}] = 0 \) for all base changes \(S' \rightarrow k \) for \(\text{char}(k) \gg 0 \), we conclude that \(R[f^{-1}] = 0 \). Therefore the action of \(\text{ad}(\delta) \) on \(R \) is locally nilpotent.

Let \(\tilde{R}' = R[\delta^{-1}] \). Since \(R'^{\text{et}} = D(\hbar^{c\theta}) \), it follows from [1], Theorem 1] that \(R' \cong D(Y) \) for some smooth affine variety \(Y \). Hence \(R'_k \) is a domain for \(\text{char}(k) \gg 0 \), as desired.

\(\square\)

To use Theorem 1.1, we need to know the \(p' \)-part of the etale fundamental group of the smooth locus of Spec\(Z(B_c) \). For this purpose we utilize the following.

Remark 2.1. Let \(X \) be a complete smooth variety over an algebraically closed field \(k \) of characteristic \(p \), and \(U \subset X \) be an open subset such that \(X \setminus U \) is a divisor with normal crossings in \(X \). Let \(\tilde{X} \) be a complete smooth lift of \(X \) over \(W(k) \) (\(W(k) \) is the ring of Witt vectors over \(k \)), \(\tilde{U} \subset \tilde{X} \) be an open subset lifting \(U \), such that \(\tilde{X} \setminus \tilde{U} \) is a divisor with normal crossings over \(W(k) \). Then any \(p' \)-degree Galois covering of \(U \) admits a lift to a Galois covering of \(\tilde{U} \) [LO, Corollary A.12], which yields that any \(p' \)-quotient of the etale fundamental group of \(U \) must be a quotient of the fundamental group of \(U_C \).

We need the following corollary of the Chebotarev density theorem. It contains slightly more than [WWW, Theorem 1.1]. We present a short proof for a reader’s convenience.

Lemma 2.1. Let \(S \) be a finitely generated domain containing \(\mathbb{Z} \) and \(c \in S \). Then there are infinitely many primes \(p \) and ring homomorphisms \(\phi_p : S \rightarrow \)
If \(c \notin \mathbb{Q} \) then there exist infinitely many primes \(p \) and homomorphisms \(\phi_p : S \to F_q \), so that \(\phi_p(c) \notin F_p \) and \(q \) is a power of \(p \).

Proof. By the Noether normalization theorem, there exists \(l \in \mathbb{N} \) and algebraically independent \(x_1, \ldots, x_n \in S_l \) so that \(S_l \) is integral over \(S_l[x_1, \ldots, x_n] \). Let \(I \) be a prime ideal in \(S_l \) lying over \((x_1, \ldots, x_n) \) (such ideal exists since \(\text{Spec}(S) \to \text{Spec}(S_l[x_1, \ldots, x_n]) \) is surjective by the going-up theorem). So, \(S_l/I = R \) is an integral domain finite over \(\mathbb{Z} \). Let \(S'/l \) be the integral closure of \(\mathbb{Z} \) in \(R \). Then \(R = S'/l \). Thus suffices to show that there exists a homomorphism \(\phi_p : S' \to F_p \) for infinitely many \(p \). This is a consequence of the Chebotarev density theorem.

We have that the image of the map \(\text{Spec}(S) \to \text{Spec}\mathbb{Z}[c_1] \) contains a nonempty open subset. If \(c_1 \) is algebraic, then all but finitely many prime ideals in \(\mathbb{Z}[c_1] \) lift to \(S \). By the Chebotarev density theorem there are infinitely many primes \(I \subset \mathbb{Z}[c_1] \) such that the image of \(c_1 \) in the quotient \(\mathbb{Z}[c_1]/I \cong F_q \) does not belong to \(F_p \). Let \(I' \in \text{Spec}(S) \) be a lift of \(I \). Now any homomorphism \(S/I' \to F_p \) lifting \(\mathbb{Z}[c_1]/I \to F_q \) will do. Finally, let \(c_1 \) be transcendental. Let \(f \in \mathbb{Z}[c_1] \) be such that \(\text{Spec}(\mathbb{Z}[c_1]/f) \) lifts to \(\text{Spec}(S) \). Thus it suffices to show that there are infinitely many primes \(p \) for which there exists \(t \in \mathbb{Z}[c_1] \) such that \(f \notin (p, t) \) and \(\mathbb{Z}[c_1]/(p, t) = F_q \) for \(q > p \). For this purpose we can take any \(p \) that does not divide \(f \), then take a nonlinear irreducible \(t \in F_p[c_1] \) that does not divide \(f \) mod \(p \). Then let \(t \) be any lift of \(t \).

Remark 2.2. Given a Cherednik algebra \(H_c \) associated with an arbitrary pair \((W, \mathfrak{h})\), we expect that there is a base change to a characteristic \(p \) field \(k \) for infinitely many values of \(p \), such that

\[
\text{Spec}(\mathbb{Z}(H_c)) = \text{Spec}(\mathbb{Z}(B_c)) = (\mathfrak{h}_k \oplus \mathfrak{h}_k^*)/W.
\]

This in view of Theorem 1.1 would imply that if \(B_c = R^F \), where \(B_c \) is simple and \(R \) is a domain, then \(\Gamma \) must be a quotient of \(W \).

For the proof of Theorem 1.2 we need to recall the definition of the \(n \)-th Calogero-Moser space. Consider the following subscheme of pairs of \(n \)-by-\(n \) matrices over \(\mathbb{C} \)

\[
X = \{(A, B) | \text{rank}([A, B] + \text{Id}_n) = 1\}.
\]

It is known that \(PGL_n(\mathbb{C}) \) acts freely on \(X \) by conjugation, and the \(n \)-th Calogero-Moser space, denoted by \(\text{CM}_n \), is defined as the quotient

\[
X/PGL_n(\mathbb{C}) = \text{CM}_n.
\]

It is well-known that \(\text{CM}_n \) is a smooth, affine variety over \(\mathbb{C} \). In the following proof we also need that the Calogero-Moser spaces are simply connected. This follows from the fact that the \(n \)-th Calogero-Moser space is homeomorphic to the Hilbert scheme of \(n \)-points on the plane which is known to be simply connected based on its cell decomposition.
Proof of Theorem 1.2. If \(c \) is rational then after a base change to a field \(k \) of characteristic \(p \), we have that \[\text{Spec}(\mathbb{Z}(B_c)) = (\mathfrak{h} \oplus \mathfrak{h}^*)/S_n. \]

Hence using Remark 2.1 the \(p' \)-etale fundamental group of the smooth locus of \(\text{Spec}(\mathbb{Z}(B_c)) \) is \(S_n \). Let \(c \) be irrational. By Lemma 2.1 for any finitely generate subring \(S \subset \mathbb{C} \), there are infinitely many primes \(p \) and algebraically close fields \(k \) of characteristic \(p \) with a base change \(S \to k \), such that \(\bar{c} \not\in F_p \). Then as explained in [BFG], we have \[\text{Spec} \mathbb{Z}(B_c) \cong (\text{CM}_n)_k. \]

Since \((\text{CM}_n)_k \) admits a smooth simply connected lift to characteristic 0 (namely \(\text{CM}_n \)), the desired assertion follows.

Proof of Theorem 1.3. Let \(S \subset \mathbb{C} \) be as in the conclusion of Theorem 1.1. Denote by \(\bar{t}_1, \ldots, \bar{t}_n \) images of \(t_1, \ldots, t_n \) after a base change \(S \to k \) to an algebraically closed field of characteristic \(p \). The center of \(A(\bar{v}) = A(v) \otimes_S k \) is known to be generated by \(x_p = x^p, y_p = y^p, h_p = h^p - h \) subject to the following relation \[x_p y_p = \prod_{i=1}^n (h_p - (\bar{t}_i^p - \bar{t}_i)). \]

After reordering if necessary, let \(\bar{t}_1, \ldots, \bar{t}_k \) be representatives of all distinct cosets of \(\bar{t}_i + F_p \) with multiplicities \(a_1, \ldots, a_k \). So \[x_p y_p = \prod_{i=1}^k (h^p - h - (\bar{t}_i^p - \bar{t}_i))^{a_i}. \]

Hence the singular locus of \(\text{Spec} Z(A(\bar{v})) \) is \[\{ x_p = 0 = y_p, h_p = \bar{t}_i^p - \bar{t}_i, a_i > 1 \}. \]

Let \(\alpha_i, 1 \leq i \leq k \) be lifts of \(\bar{t}_i^p - \bar{t}_i \) in \(W(k) \). Let \(U \) be the smooth locus of \[\text{Spec} W(k)[a,b,c]/(ab - \prod_{i \leq k} (c - \alpha_i)^{a_i}). \]

Then \(U \) is a lift of the smooth locus of \(\text{Spec} Z(A(\bar{v})) \) over \(W(k) \) and the fundamental group of \(U_C \) is \(\mathbb{Z}/\gcd(a_1, \ldots, a_k)\mathbb{Z} \). Using Lemma 2.1, there are infinitely many \(p \) for which there exists a base change such that \(\bar{t}_i \in F_p \) for all \(i \). Hence, \(\Gamma \) must be a quotient of \(\mathbb{Z}/n\mathbb{Z} \). Let \(t_1 - t_2 \notin \mathbb{Q} \). Then again using Lemma 2.1 there exists a base change so that \(t_1^p - t_1 \neq t_2^p - t_2 \). Therefore, in the corresponding partition \((a_1, \ldots, a_k) \) all numbers are less than \(n \). Hence, \(\gcd(a_1, \ldots, a_k) = d < n \). Thus \(\Gamma \) must be a quotient of \(\mathbb{Z}/d\mathbb{Z} \). \(\square \)
Remark 2.3. It seems natural to expect that Theorem 1.1 should hold for general filtered quantizations. Namely, given a simple \mathbb{C}-domain A that can be equipped with an ascending filtration such that the corresponding associated graded algebra is a finitely generated commutative \mathbb{C}-domain. In this setting, if $A = R^G$, then it seems reasonable to expect that G must appear as a quotient of the étale fundamental group of the Azumaya locus of $\text{Spec}(Z(A_k))$ for $\text{char}(k) \gg 0$. The proof of Theorem 1.1 can easily be adapted to prove this provided that R_k is a domain. It also follows from the proof that R must be a Harish-Chandra bimodule over A.

References

[BC] K. Brown, K. Changtong, *Symplectic reflection algebras in positive characteristic*, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 61–81.

[BFG] R. Bezrukavnikov, M. Finkelberg, V. Ginzburg, *Cherednik algebras and Hilbert schemes in characteristic p*, Represent. Theory 10 (2006), 254–298.

[EG] P. Etingof and V. Ginzburg, *Symplectic reflection algebras and Calogero-Moser spaces and deformed Harish-Chandra homomorphism*, Invent. Math. 147 (2002), no. 2, 243–348. om. Funct. Anal. 20 (2010), no. 4, 958—987.

[H] T. Hodges, *Noncommutative deformations of type-A Kleinian singularities*, J. Algebra 161 (1993), no. 2, 271–290.

[LO] M. Lieblich, M. Olsson, *Generators and relations for the étale fundamental group*, Pure Appl. Math. Q. 6 (1) (2010) 209–243.

[M] S. Montgomery, *Fixed rings of finite automorphism groups of associative rings*, (1980) Lecture Notes in Math.

[S] P. Smith, *Overrings of primitive factor rings of $U(sl(2,C)$*, J. Pure Appl. Algebra 63 (1990), no. 2, 207–218.

[T] A. Tikaradze, *The Weyl algebra as a fixed ring*, Adv. Math. 345 (2019), 756–766.

[W] G. Wilson, *Collisions of Calogero-Moser particles and an adelic Grassmannian*, Inv. Math. 133 (1998), 1–41.

[VWW] V. Vu, M. Wood, P. Wood, *Mapping incidences*, J. Lond. Math. Soc. (2) 84 (2011), no. 2, 433–445.

The University of Toledo, Department of Mathematics, Toledo, Ohio, USA

Email address: tikar06@gmail.com