Integrated Membrane Protein Analysis of Mature and Embryonic Stem Cell-derived Smooth Muscle Cells Using a Novel Combination of CyDye/Biotin Labeling*

Anissa Sidibe‡, Xiaoke Yin‡, Edward Tarelli§, Qingzhong Xiao‡, Anna Zampetaki‡, Qingbo Xu‡, and Manuel Mayr‡¶

Cultivated vascular smooth muscle cells (SMCs) were surface-labeled with CyDyes followed by biotinylation. After enrichment on avidin columns, proteins were separated on large format gradient gels by SDS-PAGE. A comparison between CyDye-tagged and non-tagged gel bands revealed a substantial increase of protein identifications from membrane, membrane-associated, and extracellular matrix proteins with a corresponding reduction in co-purified intracellular proteins. Notably the majority of identified proteins were involved in cellular adhesion processes. To demonstrate the quantitative potential of this platform, we performed a comparison between mature and embryonic stem cell-derived smooth muscle cells (esSMCs) and identified the membrane proteins E-cadherin, integrin α6, and CD98 (4F2) to be significantly up-regulated in esSMCs suggesting that SMCs derived from embryonic stem cells maintain characteristics of their embryonic stem cell origin. This was subsequently confirmed by RT-PCR: despite expressing a panel of smooth muscle markers (calponin, Sm22, and aortic smooth muscle actin), esSMCs remained positive for markers of stem cell pluripotency (Oct4, Nanog, and Rex1). In summary, we describe a novel strategy for the profiling of cell membrane proteins. The procedure combines DIGE technology with biotin/avidin labeling to discriminate membrane and membrane-associated proteins from intracellular contaminants by fluorescence tagging and permits semiquantitative differential expression analysis of membrane proteins. Molecular & Cellular Proteomics 6:1788–1797, 2007.

The proteins embedded in the plasma membrane are involved in fundamental cellular processes including signal reception/transduction, adhesion, solute transport, and interaction with cytoskeleton and extracellular matrix. The importance of this subset is expressed in the fact that about 50% of commercially available drugs target plasma membrane proteins (1). Therefore, differential membrane proteome analysis is a highly desired approach for the discovery of new diagnostic and therapeutic molecules. Additionally from a biology standpoint, this protein class may provide missing links for a basic understanding of cellular function. For these reasons, plasma membrane protein analysis has become an area of substantial interest for many proteomics investigations.

A major drawback in proteomics analysis of membrane proteins is the low abundance of these proteins. Because membrane proteins are dramatically underrepresented compared with cytosolic proteins, prior to analysis, most studies have attempted to reduce complexity and thus enrich the membrane fractions. To achieve this, several techniques including density gradient centrifugation (2), detergent-based fractionation (3), and isolation by biotin/avidin labeling (4) have been used. However, differential protein expression analysis is problematic due to experimental variability during the extraction procedure and contamination by high abundance proteins, which hampers the identification and quantification of membrane proteins present in low copy numbers. So far, quantitative membrane differential analysis has mainly been achieved by MS-based proteomics using HysTag (5) or ICAT (6) labeling, but precious instrument time is wasted on copurified contaminant proteins in the membrane preparation. Hence there is a need for a method to restrict analysis to proteins of interest.

In the current report, we propose a new gel-based proteomics approach capable of restricting analysis to membrane proteins while facilitating differential analysis. Briefly, surface proteins are first labeled using DIGE dyes adapted from Mayrhofer et al. (7), then targeted using biotin labeling, enriched on avidin affinity columns, and finally separated using common SDS-PAGE. In this method, the biotin/avidin step reduces sample complexity while the additional fluorescence tag allows membrane and membrane-associated proteins to be readily distinguished from co-purifying contaminant proteins. We confirm the applicability of the platform by using the approach 1) for membrane protein profiling of vascular

From the ‡Cardiovascular Division, King’s College London School of Medicine, Kings College London, University of London, SE5 9NU London, United Kingdom and §Medical Biomics Center, St. George’s, University of London, SW17 0RE London, United Kingdom
Received, November 15, 2006, and in revised form, June 29, 2007
Published, MCP Papers in Press, July 11, 2007, DOI 10.1074/mcp.M600433-MCP200

© 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org
smooth muscle cells (SMCs) and 2) differential expression analysis of membrane proteins from embryonic stem cell-derived smooth muscle cells (esSMCs) and mature aortic SMCs.

MATERIALS AND METHODS

Antibodies—The following antibodies were used: α-tubulin (ab7750, 1:100, Abcam), heat shock protein 90 (sc-7947, 1:300, Santa Cruz Biotechnology), α-actin (sc-1616, 1:1,000, Santa Cruz Biotechnology), lactate dehydrogenase (ab7639, 1:1,000, Abcam), integrin β1 (sc-6622, 1:100, Santa Cruz Biotechnology), neural cell adhesion molecule (RDI-NCAM13abm, 1:500, Fitzgerald), transforming growth factor β receptor II (sc-400, 1:400, 1:100, Santa Cruz Biotechnology), CD98 (sc-7084, 1:200, Santa Cruz Biotechnology), integrin α6 (sc-6597, 1:200, Santa Cruz Biotechnology), and E-cadherin (ab40772, 1:500, Abcam).

Smooth Muscle Cell Culture—Vascular SMCs from C57BL mice were cultivated from aortas as described by Hu et al. (8). SMCs were cultured on gelatin-coated flasks in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 15% fetal calf serum (Invitrogen), penicillin (100 units/ml), and streptomycin (100 μg/ml). Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂ and passaged by treatment with 0.05% trypsin, 0.02% EDTA solution. The purity of SMCs was routinely confirmed by immunostaining with antibodies against aortic smooth muscle actin. Experiments were conducted on ESsMCs achieving subconfluence at passages 15–25.

Embryonic Stem Cell-derived Smooth Muscle Cell (esSMC) and SMC Culture—esSMCs were obtained using a method recently established in our laboratory (9). esSMCs were cultivated on gelatin-coated flasks in basic differentiation medium: α-essential medium (Invitrogen) supplemented with 10% FCS (Invitrogen), 50 μM 2-mercaptoethanol (Sigma), 2 mM L-glutamine (Invitrogen), 100 units/ml penicillin (Invitrogen), and 100 μg/ml streptomycin (Invitrogen). Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂ and passaged by treatment with 0.05% trypsin, 0.02% EDTA solution. The purity of SMCs was routinely confirmed by immunostaining with antibodies against aortic smooth muscle actin. Experiments were conducted on SMCs achieving subconfluence at passages 15–25.

Embryonic Stem Cell-derived Smooth Muscle Cell (esSMC) and SMC Culture—esSMCs were obtained in vitro using a method recently established in our laboratory (9). esSMCs were cultured on gelatin-coated flasks in basic differentiation medium: α-essential medium (Invitrogen) supplemented with 10% FCS (Invitrogen), 50 μM 2-mercaptoethanol (Sigma), 2 mM L-glutamine (Invitrogen), 100 units/ml penicillin (Invitrogen), and 100 μg/ml streptomycin (Invitrogen). Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂ and passaged by treatment with 0.05% trypsin, 0.02% EDTA solution. Experiments were conducted on ESsMCs achieving subconfluence at passages 15–25. To allow differential expression analysis of esSMCs with SMCs, the latter cells were also cultured in basic differentiation medium.

Biotin Targeting of Plasma Membrane Proteins—For each labeling reaction, cells were grown in two 150-mm dishes until reaching 90% confluency. Approximately 4 × 10⁷ cells (2 × 10⁷ cells/dish) were quickly washed twice with 8 ml of ice-cold PBS²−/H¹ (0.1 M phosphate, 1 mM MgCl₂, 1 mM CaCl₂, pH 7.2). The sulfo-NHS-SS-biotin (12 mg) was dissolved in 48 ml of ice-cold PBS²−/H¹ (approximately 0.25 mg/ml), and 10 ml was added to each dish. Next dishes were placed on a rocking platform and agitated for 30 min at 4 °C to ensure even coverage of the cells with the labeling solution. To stop the reaction, 500 μl of quenching solution (PBS⁰−/H⁰ with 100 mM glycine) was added to each dish. Gently cells were scrapped into solution, and the contents of all two dishes were transferred to a 50-ml conical tube and centrifuged at 500 × g for 3 min, and the supernatant was discarded. The cell pellet was washed twice using 5 ml of TBS by gently pipetting up and down, centrifuging at 500 × g for 3 min, and discarding the supernatant. The cell pellet was lysed using 50 μl of lysis buffer (150 mM NaCl, 5 mM EDTA, 50 mM Tris, pH 7.4) containing 1% Nonidet.

Protein Separation—Protein samples recovered following biotin and Dige/biotin labeling were separated by SDS-PAGE. Gels were cast with an acrylamide gradient (4–12%) using the 2DEoptimizer with a standard Laemmli Tris/glycine reagent pack (NextGen Sciences, Huntingdon, UK). Large format low fluorescence plates (1 mm, 27 × 21 cm, GE Healthcare) were used to allow subsequent visualization of fluorescent tagged proteins. After casting, the gels were overaided with water-saturated 2-butanol and left overnight to polymerize. Next a stacking gel containing 4–5% acrylamide weakly buffered at pH 9.0 was cast over the already set resolving gel. The protein concentration of samples was determined using the Bradford assay (Bio-Rad), and equal amounts of samples (100 μg) were loaded. A constant 50-mA current was applied as proteins migrated down the stacking gel; at the stacking gel/separating gel boundary, the current was increased and maintained at 75 mA until the dye front reached the gel bottom. The total run time was 7 h.

Protein Visualization—Gels were fixed overnight in methanol:acetic acid:water solution (4:1:5) and stained on the following day using Flamingo fluorescent stain (Bio-Rad). Briefly CyDye-tagged and Flamingo-stained protein profiles were scanned on a Typhoon 9400 imager (GE Healthcare). Cy5-tagged proteins were visualized using the red (633 nm) laser and the appropriate emission filter, 670 nm bandpass 30. Flamingo-stained proteins were scanned using the blue laser (473 nm) with 530-nm emission filter. After scanning, proteins were visualized by silver staining using the Plus one silver staining kit (GE Healthcare) with slight modifications to ensure compatibility with subsequent MS analysis (10). Finally silver-stained gels were scanned in transmission scan mode using a calibrated scanner (GS-800, Bio-Rad).

Mass Spectrometry—Gel bands were excised from silver-stained gels. In-gel digestion was performed using trypsin according to published methods for use with an Investigator ProGest (Genomic Solutions) robotic digestion system (11). Following enzymatic degradation, peptides were separated by capillary liquid chromatography on a reverse-phase column (BioBasic-18; 100 × 0.18 mm; particle size, 1 μm) and fractionated using a reverse-phase column (BioBasic-18; 100 × 0.18 mm; particle size, 1 μm).
Membrane Proteomics in SMCs and Their Progenitors

5 μm; Thermo Electron Corp.) at 2 μl/min using a Surveyor MS pump (Thermo Electron Corp.) and eluted with a 90-min gradient (0.1–30% B in 35 min, 30–50% B in 10 min, and 50–80% B in 5 min where A = 99.9% H₂O, 0.1% formic acid and B = 99.9% acetonitrile, 0.1% formic acid). The column was coupled to an electrospray source, and spectra were collected from an ion trap mass analyzer (LCQ Deca XP Plus, Thermo Electron Corp.) using full ion scan mode over the m/z range 300–1,800. MS/MS was performed on the top three ions in each MS scan using the data-dependent acquisition mode with dynamic exclusion enabled. MS/MS spectra were matched to database entries (UniProt Knowledgebase Release 7.5 consisting of UniProtkB/Swiss-Prot Release 49.5 and UniProtKB/TrEMBL Release 32.5 of the combined DIGE/biotin labeling approach. After labeling of lysines using CyDye DIGE fluor minimal dyes, remaining lysines are targeted using biotin and consequently purified on avidin affinity columns.

Confocal Microscopy—Smooth muscle cells were cultured in 8-well chamber slides, seeding each well with 10,000 cells. Once cells adhered they were CyDye-labeled. Briefly cells were washed twice with ice-cold HBSS, pH 8.5, and labeled using CyDye in HBSS/urea solution (1 pmol/10,000 cells). Following an incubation time of 15 min at 4 °C on a rocking platform, the reaction was quenched using L-lysine (10 mM). Slides were quickly rinsed in PBS, and membrane integrity was assessed by incubating cells for an additional 5 min with propidium iodide (10 μg/ml) in a solution containing 10 mM Heps, 100 mM NaCl, 2 mM CaCl₂ (pH 7.4). Finally cells were rinsed in PBS, mounted, visualized, and imaged using a Leica TCS SP5 confocal microscope.

Western Blotting—To assess the purity of the enriched membrane fractions equal protein concentrations (Bradford assay, Bio-Rad) of-bound fractions (membrane proteins, 25 μg) were separated on 4–12% Tris/glycine precast gels (Invitrogen) and transferred to nitrocellulose membranes. Membranes were blocked (overnight at 4 °C) in 5% milk in PBS. Consequently they were probed with the appropriate primary antibodies (1 h at room temperature) diluted in 5% milk in PBS, washed three times for 5 min each in 0.05% Tween 20 in PBS, and incubated again (1 h at room temperature) with appropriate horseradish peroxidase-conjugated secondary antibodies in 5% milk in PBS. Membranes were washed three times for 5 min each, ECL (GE Healthcare) was applied for 1 min, and proteins were detected using x-ray films.

Immunocytochemical Staining—SMCs and esSMCs were cultured in 8-well chamber slides (10,000 cells/well). After washing twice with cold PBS, the cells were fixed with cold 4% paraformaldehyde in PBS for 10 min at room temperature. Next 3% H₂O₂ in methanol was used to quench endogenous peroxidase for 30 min. Cells were then washed in PBS two times for 5 min each and then incubated with normal swine serum (5% in PBS) for 20 min at room temperature. The excess serum was drained, and cells were incubated for 1 h with anti-E-cadherin monoclonal antibody (Abcam) in a 1:500 dilution. The cells were washed twice in PBS for 5 min each. The cells were incubated for 30 min with swine anti-rabbit Ig-horseradish peroxidase in a 1:100 dilution. Next the cells were washed twice in PBS for 5 min each and incubated in peroxidase substrate solution (3,3'-diaminobenzidine, Dako, K3466) for 2 min. The cells were rinsed in water and mounted using DPX mounting medium (Fluka, 44581).

RT-PCR—Total RNA was extracted from cells using the RNeasy kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. Reverse transcription was performed using an Invitrogen-1TM RT kit (Promega, Madison, WI). cDNA (50 ng) was used in a PCR kit (Invitrogen) following the manufacturer’s instructions. Oligonucleotide primer sequences were as follows: aortic smooth muscle actin (Acta2): forward, 5'-ACGGCGCCCTCCTCTTCTCTC-3'; reverse, 5'-GGCCCGCCTTCTGCTATTCC-3'; smooth muscle protein 22 (Sm22): forward, 5'-GCGTCCAAAATTGAGAAGA-3'; reverse, 5'-CTGTTGCTGCCCATTGGAAG-3'; calponin: forward, 5'-ACCAACCATACACAGTTCA-3'; reverse, 5'-CAAATTGCTCTTCTGCCTCTC-3'; Nanog: forward, 5'-AGGGTCTGTCATGAGTGCTCTG-3'; reverse, 5'-CAACCCACTGTGTTTCTGCACCCG-3'; Oct4: forward, 5'-GGCTTTCTCCTTGGAAAGGTGTTC-3'; reverse, 5'-GCTGAAACACATCTCTCTCT-3'; Gapdh: forward, 5'-CCGAGTGCAGAGAATTGGA-3'; reverse, 5'-GAGGTCTGATCAGTGCTGCT-3'; β-actin (Actb): forward, 5'-CACAACCTGGGACGACATGG-3'; reverse, 5'-TCTCATGAGGTATCGATCTGG-3'.

RESULTS

The DIGE/Biotin Labeling Procedure—We attempted to combine DIGE and biotin labeling of membrane proteins based on the principle that both techniques use an N-hydroxysulfosuccinimide (NHS) ester group to react with the ε-amine of lysines. Because CyDye DIGE fluor minimal dyes are designed to ensure the dyes are limiting in the reaction (12), biotin can target the remaining free lysines, although the stoichiometry has to be kept low during primary amine derivatization so as not to compromise trypsinolysis. Subsequent purification of biotinylated proteins by avidin affinity columns allows enrichment of fluorescently tagged membrane proteins. Fig. 1 shows an overview of the combined DIGE/biotin labeling approach.

Enrichment of Plasma Membrane Proteins—Plasma membrane proteins of SMCs were targeted using DIGE/biotin andnotin labeling. Following avidin purification the eluate (membrane) and flow-through (intracellular) fractions were collected. Both fractions were analyzed by immunoblotting using antibodies to membrane (integrin β1, neural cell adhesion molecule, and transforming growth factor β receptor II) as well as intracellular proteins (α-tubulin, lactate dehydrogenase, and heat shock protein 90). As shown in Fig. 2, only trace amounts of lysozyme were detected in the membrane fractions.
amounts of membrane proteins were identified in the flow-through fractions, whereas intracellular proteins were substantially reduced but not completely removed in the membrane protein fraction. Notably control experiments with unbiotinylated extracts revealed that enrichment was dependant on biotinylation and not a result of unspecific binding of membrane proteins to avidin affinity columns (Supplement 1).

Protein Separation and Visualization—Following SDS-PAGE separation of eluates, the gels were scanned on a Typhoon imager using the 633 nm laser with narrow bandpass filters to resolve Cy5-tagged proteins (Fig. 3A, red) in the DIGE/biotin samples. The 532 nm laser was used to visualize the counterstaining for total proteins (green, Flamingo stain, Bio-Rad). Samples labeled with biotin only served as control (Fig. 3A, left lane) to demonstrate that the enrichment was not compromised by the fluorescent labeling. Although the total protein stain of the biotin and DIGE/biotin samples resembled each other, the DIGE/biotin sample highlighted specific bands amid the biotinylated proteins that were additionally CyDye-tagged (red). Importantly reproducible fluorescence profiles were obtained when using constant CyDye concentrations (Supplement 2). Fig. 3B shows the separate fluorescence channels obtained for Cy5-tagged and total proteins (Flamingo) in the DIGE/biotin sample along with a corresponding silver-stained image. As the band pattern in Flamingo and silver staining was identical, the Cy5-tagged bands could be accurately aligned. This allowed silver-stained bands corresponding to CyDye-tagged and non-tagged proteins to be easily discerned, and these are numbered in red and black, respectively. The data shown are representative of two similar experiments.

Protein Identification—The bands numbered in Fig. 3B were excised and subjected to in-gel tryptic digestion using a robotic digester (ProGest, Genomic Solutions). Each digest was analyzed by LC-MS/MS using a 90-min gradient. MS/MS spectra were searched against the UniProt database using the Sequest algorithm. From the 90 bands, a total of 228 proteins were identified by multiple peptides (Supplement 3); those corresponding to the CyDye labeled bands (Fig. 3B, red numbers) are shown separately in Supplement 4. A comparison in terms of protein functionality and localization between CyDye-tagged bands (red numbers) and non-tagged bands...
(black numbers) is shown in Fig. 4, A and B, respectively. Regarding the groups of membrane, membrane-associated proteins, and extracellular matrix proteins, we achieved an overall increase from 5% in non-tagged bands to 32% in CyDye-tagged bands and a corresponding reduction in intracellular proteins (cytoskeleton, cytoplasm, mitochondria, nucleus, endoplasmic reticulum, and ribosomes).

Fig. 4. Comparison of identified CyDye-tagged and non-tagged proteins. The subcellular localization of identified CyDye-tagged fluorescent proteins (A) and non-tagged proteins (B) was determined based on the Swiss-Prot database. The percentage of the proteins in each category is identified. In CyDye-tagged fluorescent bands (A), we achieved an overall increase from 5 to 32% within the groups of membrane, membrane-associated, and extracellular matrix proteins and a corresponding reduction in intracellular proteins (cytoskeleton, cytoplasm, mitochondria, nucleus, endoplasmic reticulum, and ribosomes).

but is strongly CyDye labeled (Fig. 5B). Furthermore bands visualized by faint CyDye but prominent Flamingo staining highlighted the presence of membrane proteins among intracellular proteins (Fig. 5C). Notably although multiple identifications were obtained for most bands, an inherent issue of protein co-migration associated with SDS-PAGE, membrane, membrane-associated, and extracellular matrix proteins rarely co-localized within the same CyDye-tagged band (see Supplement 4), a prerequisite for semiquantitative comparisons based on the staining intensity.

Fig. 5. Enlarged image of the DIGE/biotin sample. A, abundant intracellular proteins such as myosin (band 9, see Fig. 3B) were not CyDye-tagged. B, in contrast, membrane proteins like integrin αV (band 28, see Fig. 3B) are barely visible with Flamingo total protein stain but intensely CyDye-labeled. C, LC-MS/MS analysis of band 60 (see Fig. 3B), which was labeled by both Flamingo stain and CyDye tagging, confirmed the presence of the membrane protein vacuolar ATP synthase B among intracellular proteins (see Supplement 3).

Characterization of Membrane Receptors—Among the CyDye-tagged proteins were peripheral membrane proteins and transmembrane receptors including neural cell adhesion molecule 1, integrin α5, neural cadherin, integrin αV, vascular cell adhesion molecule (13, 14), vacuolar ATP synthase subunit B, and a new receptor, KIAA0152, with an unknown function. The MS-MS spectra for the known SMC membrane receptors are provided in Supplement 5. The MS-MS spectrum for the newly identified membrane protein KIAA0152 is shown in Fig. 6. For the membrane receptors, TMHMM version 2.0 (15) was used to calculate the length, number of TMHs, expected numbers of amino acids in the TMHs, and the probability that the N terminus is inside. In addition GRAVY scores (16) for these proteins were calculated. The results for these different parameters are shown in Table I. Membrane proteins targeted possessed one or two transmembrane helices, suggesting that the majority of amino acid sequences for these proteins are located on the extracellular and intracellular hydrophilic domains. Indeed GRAVY scores indicate that these proteins are hydrophilic. Given the hydropathy index of lysine (−3.9), this implies the presence of several lysine residues. Further-
more the probability scores suggested that in many of the membrane proteins identified the N termini face the extracellular environment, an observation consistent with previous reports stating that type 1 membrane proteins are preferentially targeted by biotin labeling (17).

Characterization of Membrane-associated Proteins—Apart from membrane receptors, extracellular matrix proteins, i.e. collagen and fibronectin (14), and membrane-associated proteins were also identified. The majority of proteins belonging to the latter category were cell adhesion molecules known to bind tightly to their receptors, cadherins, and integrins. Based on the identified proteins we were able to reconstruct several known pathways involved in vascular SMC adhesion (Fig. 7). When the DIGE surface labeling was subsequently assessed using confocal microscopy (Fig. 8), the staining pattern displayed a dotted, granular, and interrupted staining pattern similar to what has been previously described for various cell adhesion (18, 19) molecules.

Membrane Protein Differential Expression Analysis—To establish the applicability of the DIGE/biotin approach for differential expression analysis of membrane proteins, a comparison of esSMCs and mature SMCs was performed. Both cell lines were DIGE/biotin-labeled using Cy5, and samples were separated by SDS-PAGE. Fig. 9A shows the CyDye-tagged protein profiles of SMCs and esSMCs, respectively. The CyDye-tagged bands specific to esSMCs were numbered, excised, and analyzed by mass spectrometry (Fig. 9A). Protein identifications are provided in Table II. We successfully identified three membrane receptors (CD98, integrin α6, and E-cadherin) of the five bands excised. Again it can be observed that not more than one protein from the membrane, membrane-associated, and extracellular categories was localized within the same band and that the membrane protein topology of these proteins was similar to the topology of the proteins identified in SMCs (see Table I). To confirm whether the three membrane receptors were indeed predominantly

![MS/MS spectrum of the KIAA0152 peptide (amino acids 126–138).](image)

A search against the complete UniProt database returned the result that this identified peptide is specific for the mouse KIAA0152 protein. The spectrum shows the b- and y-ion series of the peptide FAEVYFAQSQOK.

![Table I](image)

Membrane protein topology (TMHMM) and GRAVY scores

Transmembrane proteins	Length	No. of predicted TMHs	Expected no. AAs in TMHs	Total probability N-in	GRAVY score
Neural cell adhesion molecule 1	1,115	2	44.80	0.48	−0.41
Neural cadherin precursor	906	1	23.13	0.01	−0.35
Epithelial cadherin precursor	889	1	23.08	0.001	−0.42
Integrin α5 precursor	1,053	1	22.91	0.003	−0.23
Integrin αV precursor	1,044	1	23.11	0.01	−0.25
Integrin α6	1,091	1	25.12	0.09	−0.39
Vascular cell adhesion protein 1	739	1	36.69	0.74	−0.10
Protein KIAA0152	291	1	24.91	0.29	−0.20
4F2 (CD98)	526	1	22.62	0.98	−0.21

a Amino acids.
b The total probability that the N terminus is on the cytoplasmic side of the membrane.
c Identified in esSMCs.
expressed in esSMCs, Western blot analysis and immunocytochemical staining were performed. Immunoblots (Fig. 9B) of eluates showed that 4F2 (CD98) was more abundant in esSMCs. Similarly for integrin α92516, the proform (140 kDa) was predominantly expressed in esSMCs. With regard to E-cadherin, immunocytochemical staining (Fig. 9C) confirmed higher expression of this cell adhesion protein in esSMCs than in mature SMCs. Overall the identified membrane proteins indicate that esSMCs differ from mature SMCs, and this was further supported by RT-PCR results. EsSMCs expressed SMC markers (calponin, Sm22, and aortic smooth muscle actin) (Fig. 9D) but also showed persistent expression of embryonic stem cell pluripotency markers (Oct4, Nanog, and Rex1).

DISCUSSION

In this study, we propose a new method of profiling membrane proteins based on two existing technologies for membrane protein purification and labeling, both of which are readily available in most laboratories but in combination sim-
plify gel-based analysis of membrane proteins. Our combined approach using CyDye labeling and subsequent membrane protein enrichment based on biotin/avidin purification offers several advantages. First, in this new approach, analysis can be confined to those proteins that are fluorescently labeled. As observed in the biotin approach alone, fluorescent labeling is particularly important because membrane proteins, due to their low abundance, are often present in bands of very low silver staining intensity even after enrichment. With our combined approach, the fluorescence tag will pinpoint the bands containing membrane proteins. Second, we have shown that this approach can be used for semiquantitative differential analysis.

TABLE II

No.	Protein identity	Swiss-Prot entry name	Peptides identified^a	Molecular mass Da (× 10³)	XC^b	Subcellular location
1	Integrin α 6 precursor	ITA6_MOUSE	K.NIGDINODGYPDIAGAPYDDLGK.V, R.VNSLPEVLPILNSNEAK.T	122.0	2.65	Membrane receptor
2	US small nuclear ribonucleoprotein component	USS1_MOUSE	K.STPVTVPDPTK.G, K.IAEVNPISLPK.M	109.2	2.29	Nucleus
	Epithelial cadherin precursor	CADH1_MOUSE	K.DINDNAPFVNPSTQGQPENENVN.R, R.RVEVPEFVGQGEITSYAR.E, R.PANPDEIGNFIDENL.K, R.DTGVISLTSGLDR.E	98.1	3.72	Membrane receptor
3	Ezrin	EZRI_MOUSE	R.QLLTLSNELSQR.D, K.APDFVFYAPR.L, K.LTLQPVDSTISLQM*GTNK.V	68.3	4.10	Cytoskeleton/membrane-associated
4	4F2 cell surface antigen heavy chain	4F2_MOUSE	R.IGDLQAFVGR.D, R.LGASNLPGILSPASAK.L	58.3	3.06	Membrane receptor
5	Guanine nucleotide-binding protein G₁, α-2 subunit	GNAI2_MOUSE	R.IAQSDYIPTQDVLR.T, K.LLLLALGESGK.S	40.4	3.78	Membrane-associated
	Calponin-3	CNN3_MOUSE	K.AGQSVIGLQM*GTNK.C, K.LTLQPVDSTISLQM*GTNK.V	36.4	3.06	Cytoskeleton

^a M* denotes oxidation of methionine.

^b X correlation score.
expression of membrane proteins. A side-to-side comparison of the CyDye-tagged protein profiles readily identified bands specific to esSMCs, which were subsequently shown to contain membrane receptors with increased abundance in the stem cell-derived cells. Notably without additional CyDye tagging these bands would have been impossible to depict from samples labeled with just biotin because contaminating cytoskeletal components still dominate the total protein staining pattern.

Previously our group created a dataset of proteins expressed in vascular aortic SMCs (20), Sca-1{sup+} progenitors derived from embryonic stem cells (21), and conducted a DIGE analysis between esSMCs and SMCs using two-dimensional electrophoresis (9). Notably none of the membrane, membrane-associated, and extracellular proteins identified in the present study was among these datasets. This indicates that the DIGE/biotin labeling targets a different subcellular proteome. With regard to the profiling of SMCs, the majority of membrane, extracellular, and membrane-associated proteins identified were involved in cell adhesion. This finding is further supported by confocal images of surface-labeled SMCs revealing a staining pattern characteristic of cell adhesion molecules. We also identified a single pass type I membrane protein, KIAA0152, with an unknown function. The protein has been shown to be very close in homology to KOGS3593, a receptor-like serine/threonine kinase domain, suggesting a role for this protein in signal transduction mechanisms (22).

Another member of the KIAA family, KIAA0747, with a similar potential function was recently classified as a new receptor on platelets (23). Interestingly a bioinformatics analysis of uncharacterized genes in heart failure revealed a 12.5-fold up-regulation of KIAA0152 in disease, and Center for Biological Sequence Analysis SignalP Prediction Server search results indicated that KIAA0152 possessed six serine, three threonine, seven tyrosine phosphorylation sites and one glycosylation site (22). However, the function of this protein in heart failure and vascular SMCs remains to be elucidated.

Finally using the DIGE/biotin platform, membrane differential expression analysis between esSMCs and SMCs was performed. The rationale for conducting this specific comparison stands from findings of a previous study by our group that revealed that the cellular proteome of the two cell types was significantly different, although esSMCs expressed a panel of smooth muscle markers (9). Results from this investigation suggested the need for new markers not only capable to assess the stage of the stem cell differentiation process but to clearly distinguish between the mature and cell-derived SMCs. Using our current approach, we identified three membrane receptors (4F2, integrin α6, and E-cadherin), shown in Fig. 9, that may be used for this purpose. Notably in a proteomics study by Nunomura et al. (24), 4F2 (CD98) was identified among several CD antigens and membrane receptors shown to be expressed on the surface of undifferentiated mouse embryonic stem cells. In another study, Azzarone et al. (25) showed that 4F2 was up-regulated in human fibroblasts of embryonic origin and down-regulated as they differentiated and/or matured into adult cells. With regard to integrin α6, a study analyzing microRNA of differentiated and undifferentiated embryonic stem cells revealed that this integrin was highly expressed in undifferentiated cells and showed a quantitative shift among the splicing isoforms during the differentiation process (26). In addition, similar to our findings, a study on differentiating embryonic lens fiber cells has shown that the uncleaved proform was present on the cell surface and that as the cells differentiated there was a switch in predominance from the cleaved to uncleaved protein (27). Finally E-cadherin has been found to be strongly expressed homogeneously in undifferentiated mouse embryonic stem cells (28) with a primary function of mediating attachment between neighboring embryoid bodies; however, during differentiation, the receptor was found to be down-regulated (29). Relating these findings to our own, which show an overexpression of CD98, uncleaved integrin α6, and E-cadherin in esSMCs, we may presume that esSMCs maintain characteristics of their embryonic stem cell origin despite expressing the same SMC markers as mature aortic SMCs. This hypothesis was further confirmed by our finding that esSMCs retained the expression of pluripotency markers (Oct4, Nanog, and Rex1), an important feature of embryonic stem cells.

In summary, this study was intended to develop a simple method to study membrane proteins by utilizing fluorescent labeling together with the purification capabilities of the biotin/avidin extraction for integrated membrane protein analysis. We achieved efficient labeling of membrane proteins and their associated proteins and provide proof-of-principle for the suitability of the platform for semiquantitative differential expression analysis by identifying membrane proteins that can serve as additional markers during mouse embryonic stem cell differentiation. We expect membrane proteomics to offer an opportunity to progress toward a more comprehensive classification of stem cell-derived cells (30, 31).

Acknowledgments—The use of the facilities of the Medical Biomics Centre (St. George’s, University of London) is gratefully acknowledged. We thank Dr. Yanhua Hu and Edward Cloake for the immunocytochemical staining and confocal imaging experiments, respectively.

* This work was supported by grants from the British Heart Foundation and the Oak Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The on-line version of this article (available at http://www.mcponline.org) contains supplemental material.

¶ To whom correspondence should be addressed: Cardiovascular Division, The James Black Centre, King’s College London School of Medicine, King’s College London, University of London, 125 Coldharbour Lane, London SE5 9NU, UK. Tel.: 44-20-7848-5238; Fax: 44-20-7848-5296; E-mail: manuel.mayr@kcl.ac.uk.
Membrane Proteomics in SMCs and Their Progenitors

REFERENCES

1. Hopkins, A. L., and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1, 727–730

2. Adam, P. J., Boyd, R., Tyson, K. L., Fletcher, G. C., Stamps, A., Hudson, L., Poyser, H. R., Redpath, N., Griffiths, M., Steers, G., Harris, A. L., Patel, S., Berry, J., Loader, J. A., Townsend, R. R., Daviet, L., Legrain, P., Parekh, R., and Terrett, J. A. (2003) Comprehensive proteomic analysis of breast cancer cell membrane reveals unique proteins with potential roles in clinical cancer. J. Biol. Chem. 278, 6482–6489

3. Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1664–1670

4. Zhang, W., Zhou, G., Zhao, Y., and White, M. A. (2003) Affinity enrichment of plasma membrane for proteomics analysis. Electrophoresis 24, 2855–2863

5. Olsen, J. V., Andersen, J. R., Nielsen, P. A., Nielsen, M. L., Figey, D., Mann, M., and Wisniewski, J. R. (2004) HysTag—a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics 3, 82–92

6. Han, D. K., Eng, J., Zhou, H., and Aebersold, R. (2001) Quantitative profiling of differentiation-induced microosomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 948–951

7. Mayrhofer, C., Krieger, S., Allmaier, G., and Kerjaschki, D. (2006) DIGE technology for differential-display 2D-gel proteomics. Membrane Proteomics in SMCs and Their Progenitors.

8. Hu, Y., Zou, Y., Dietrich, H., Wick, G., and Xu, Q. (1999) Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation 100, 861–868

9. Yin, X., Mayr, M., Xiao, Q., Wang, W., and Xu, Q. (2006) Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells. Proteomics 6, 6437–6446

10. Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., and Dunn, M. J. (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666–3672

11. Shevchenko, A., Wilim, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858

12. Lilley, K. S., and Friedman, D. B. (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics 1, 401–409

13. Juliano, R. L. (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42, 283–323

14. Moiseeva, E. P. (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc. Res. 52, 372–386

15. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 306, 567–580

16. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, 105–132

17. Peirce, M. J., Wait, R., Begum, S., Saklatvala, J., and Cope, A. P. (2004) Expression profiling of lymphocyte plasma membrane proteins. Mol. Cell. Proteomics 3, 56–65

18. Golgenhofer, N., and Drenckhahn, D. (2000) The catenin, p120ctn, is a common membrane-associated protein in various epithelial and non-epithelial cells and tissues. J. Histochem. Cytochem. 48, 147–155

19. Baba, T., Ueda, H., Terada, N., Fujii, Y., and Ohno, S. (1999) Immunocytochemical study of endocytic structures accumulated in HeLa cells transformed with a temperature-sensitive mutant of dynamin. J. Histochem. Cytochem. 47, 637–648

20. Mayr, U., Mayr, M., Yin, X., Begum, S., Tarelli, E., Wait, R., and Xu, Q. (2005) Proteomic dataset of mouse aortic smooth muscle cells. Proteomics 5, 4548–4557

21. Yin, X., Mayr, M., Xiao, Q., Mayr, U., Tarelli, E., Wait, R., Wang, W., and Xu, Q. (2005) Proteomic dataset of Sca-1+ progenitor cells. Proteomics 5, 4533–4545

22. Sharma, U. C., Pochare, S., Evelo, C. T., and Maessen, J. G. (2005) A systematic review of large scale and heterogeneous gene array data in heart failure. J. Mol. Cell. Cardiol. 38, 425–432

23. Moebius, J., Zahedi, R. P., Lewandrowski, U., Berger, C., Walter, U., and Sickmann, A. (2005) The human platelet membrane proteome reveals several new potential membrane proteins. Mol. Cell. Proteomics 4, 1754–1761

24. Nunomura, K., Nagano, K., Itagaki, C., Taoka, M., Okamura, N., Yamauchi, Y., Sugano, S., Takahashi, N., Izumi, T., and Isobe, T. (2005) Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics 4, 1968–1976

25. Azzarone, B., Suarez, H., Mingari, M. C., Moretta, L., and Fauci, A. S. (1984) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666–3672

26. Auger, P., Pochare, S., Evelo, C. T., and Maessen, J. G. (2005) The human platelet membrane proteome reveals several new potential membrane proteins. Mol. Cell. Proteomics 4, 1754–1761

27. Houbaviv, H. B., Murray, M. F., and Sharp, P. A. (2003) Embryonic stem cell-specific MicroRNAs. Dev. Cell 9, 351–358

28. Walker, J. L., Zhang, L., and Menko, A. S. (2002) A signaling role for the uncleaved form of αβ integrin in differentiating lens fiber cells. Dev. Biol. 251, 195–205

29. Chang, S. M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J., and Zandstra, P. W. (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22, 275–282

30. Choi, D., Lee, H. J., Jee, S., Jin, S., Koo, S. K., Paik, S. S., Jung, S. C., Hwang, S. Y., Lee, K. S., and Oh, B. (2005) In vitro differentiation of embryonic stem cells: enrichment of endodermal cells in the embryoid body. Stem Cells 23, 817–827

31. Mayr, M., Zhang, J., Greene, A. S., Gutterman, D., Perlroth, J., and Ping, P. (2006) Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol. Cell. Proteomics 5, 1853–1864

32. Van Hoof, D., Mummery, C. L., Heck, A. J., and Krijgsfeld, J. (2006) Embryonic stem cell proteomics. Expert Rev. Proteomics 3, 427–437