Biosynthesis of Long Chain Alkyl Diols and Long Chain Alkenols in Nannochloropsis spp. (Eustigmatophyceae)

Sergio Balzano, Laura Villanueva, Marijke de Bar, Diana X. Sahonero Canavesi, Caglar Yildiz, Julia C. Engelmann, Eric Marechal, Josselin Lupette, Jaap S. Sinninghe Damsté, and Stefan Schouten

1Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, The Netherlands
2Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3508 Utrecht, The Netherlands
3Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS, CEA, INRA, Université Grenoble Alpes, CEA Grenoble, 17 Avenue des Martyrs, 38000 Grenoble, France
4Present address: Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
5Present address: MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.

*Corresponding author: E-mail: sergio.balzano@szm.it; Fax: +39 081 7641355.

(Received December 14, 2018; Accepted April 26, 2019)

We investigated potential biosynthetic pathways of long chain alkenols (LCAs), long chain alkyl diols (LCDs), and long chain hydroxy fatty acids (LCHFAs) in Nannochloropsis oceanica and Nannochloropsis gaditana, by combining culturing experiments with genomic and transcriptomic analyses. Incubation of Nannochloropsis spp. in the dark for 1 week led to significant increases in the cellular concentrations of LCAs and LCDs in both species. Consistently, 13C-labelled substrate experiments confirmed that both LCA and LCD were actively produced in the dark from C14–18 fatty acids by either condensation or elongation/oxidation, although no enzymatic evidence was found for the formation of LCAs and LCDs in the latter. Nannochloropsis spp. did, however, contain (i) multiple polyketide synthases (PKSs) including one type (PKS-Clade II) that might catalyze incomplete fatty acid elongations leading to the formation of 3-OH-fatty acids, (ii) 3-hydroxyacyl dehydratases (HADs), which can possibly form Δ2/Δ3 monounsaturated fatty acids, and (iii) fatty acid elongases (FAEs) that could elongate 3-OH-fatty acids and Δ2/Δ3 monounsaturated fatty acids to longer products. The enzymes responsible for the reduction of the long chain fatty acids to LCDs and LCAs are, however, unclear. A putative wax ester synthase/acyl coenzyme A (acyl-CoA): diacylglycerol acyltransferase is likely to be involved in the esterification of LCAs and LCDs in the cell wall. Our data thus provide useful insights in predicting the biosynthetic pathways of LCAs and LCDs in phytoplankton suggesting a key role of FAE and PKS enzymes.

Keywords: Alkenols • Bioproduct • Diols • Hydroxylated fatty acids • Nannochloropsis • Polyketide synthase.

Introduction

Since phytoplankton do not require clean water for their growth and can encompass high levels of biomass productivities per area compared with terrestrial plants (Chisti 2007), microalgal mass culturing could contribute to the sustainable production of chemical products of interest for the biotechnological industry. Nannochloropsis species (Eustigmatophyceae) are considered among the most suitable candidates for biofuel development because of their high growth rate and lipid content with respect to other phytoplankton (Rodolfi et al. 2009). Specifically, both free and ester-bound fatty acids from Nannochloropsis spp. are currently considered as potential candidates for biodiesel production (Chen et al. 2012). The genomes of several Nannochloropsis species have been sequenced allowing the identification of the major metabolic pathways for lipid biosynthesis (Radakovits et al. 2012, Vieler et al. 2012, Corteggiani Carpinelli et al. 2014, Wang et al. 2014). Transcriptomic analyses of Nannochloropsis cultures have contributed to the identification of the genes potentially involved in different lipid pathways including the biosynthesis of polyunsaturated fatty acids (PUFAs) (Vieler et al. 2012) and triacylglycerols (Radakovits et al. 2012, Li et al. 2014).

Besides regular fatty acids and PUFAs, Eustigmatophyceae also produce long chain hydroxy fatty acids (LCHFAs), with an alkyl chain of 28–32 carbon and a hydroxyl group at a mid-chain position (Volkman et al. 1992, Gelin et al. 1997a). Plant hydroxy fatty acids, such as the 12-OH C18:1 from Ricinus communis and 14-OH C20:1 from Physaria fendleri were previously shown to act as lubricants when added to reference diesel fuel (Goodrum and Geller 2005). This suggests that the quality of Nannochloropsis oils for biodiesel development might also be improved if tiny amounts of LCHFAs (≤1%) are present in the lipid extract to be used for methanol transesterification. LCHFAs possess a combustion enthalpy slightly higher than that of C14–18 fatty acids (Table 1) and thus such addition would not affect the energy yield. Furthermore, hydroxylated aliphatic compounds are also under investigation for polymer development (Sharma and Kundu 2006, Mutlu and Meier 2010), hence their diversity and biosynthetic pathways have
been partially elucidated (Buschhaus et al. 2013, Busta and Jetter 2018).

Nannochloropsis spp. produce two other classes of hydroxylated compounds related to LCHFAs, in which the terminal carboxylic group is replaced with an alcohol group, i.e. long chain alkyl diols (LCDs) and long chain alkenols (LCAs). LCAs differ from LCDs because of an intermediate double bond instead of the secondary alcohol group. Similarly to bifunctional aliphatic compounds from plants, LCDs might also attract the interest of the polymer industry. For example, polyricinoleate aliphatic compounds from plants, LCDs might also attract the interest of the polymer industry. For example, polyricinoleate (Petrovic 2008). LCDs from *Nannochloropsis* might thus be of interest for the polymer industry. However, it is crucial to identify the cultivating conditions affecting the cellular concentrations of LCHFAs, LCAs, and LCDs as well as their biosynthetic pathways.

While the total lipid content of microalgae typically increases during the stationary phase of their growth (Dunstan et al. 1993) as well as under high salinity (Martinez-Roldan et al. 2014) or nitrogen deprivation (Pal et al. 2011), such culture manipulations do not increase the cellular concentration of LCAs, LCDs, and LCHFAs significantly (Balzano et al. 2017). However, the biosynthetic pathways of LCHFAs, LCAs, and LCDs are not fully understood and the enzymes potentially involved in the process are unknown.

Here, (i) we analyzed the genomes from different *Nannochloropsis* spp. to identify the enzymes potentially involved in the biosynthesis of LCAs and LCDs, (ii) searched for culturing conditions promoting the accumulation of LCAs, LCDs and LCHFAs in *Nannochloropsis oceanica* and *Nannochloropsis gaditana*, and (iii) performed transcriptomic analyses to identify genes potentially involved in their biosynthesis.

Table 1 Combustion enthalpies of the main fatty acids present in *Nannochloropsis* species

Compound	Reaction	Combustion enthalpy	KJ mol⁻¹	KJ g⁻¹
C₁₄:0 FA	C₁₄:0 FA + 20 O₂ → 14 H₂O + 14 CO₂	8,300	36.0	
C₁₆:0 FA	C₁₆:0 FA + 22.5 O₂ → 15 H₂O + 16 CO₂	9,400	37.0	
C₁₈:0 FA	C₁₈:0 FA + 23 O₂ → 26 H₂O + 16 CO₂	9,500	37.0	
C₁₈:₁ FA	C₁₈:₁ FA + 25.5 O₂ → 17 H₂O + 18 CO₂	11,160	39.5	
C₁₈:₃ FA	C₁₈:₃ FA + 26 O₂ → 18 H₂O + 18 CO₂	10,800	38.0	
C₂₀:₃ FA	C₂₀:₃ FA + 26.5 O₂ → 15 H₂O + 20 CO₂	11,400	38.0	
C₂₀:₀ OH-FA	C₂₀:₀ OH-FA+ 43.5 O₂ → 30 H₂O + 30 CO₂	18,000	39.0	
C₂₂:₂ OH-FA	C₂₂:₂ OH-FA + 46.5 O₂ → 32 H₂O + 32 CO₂	19,200	39.0	

Source: http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Chemical_Bonding/General_Principles_of_Chemical_Bonding/Bond_Energies

While the total lipid content of microalgae typically increases during the stationary phase of their growth (Dunstan et al. 1993) as well as under high salinity (Martinez-Roldan et al. 2014) or nitrogen deprivation (Pal et al. 2011), such culture manipulations do not increase the cellular concentration of LCAs, LCDs, and LCHFAs significantly (Balzano et al. 2017), suggesting that these compounds are unlikely to serve as storage lipids. Instead, their decrease under hydrogen peroxide manipulations that typically promote the accumulation of storage lipids, such as nitrogen deprivation (<1 μM nitrate), exposure to high light irradiance (300 μE m⁻² s⁻¹), and culturing at high (50 g kg⁻¹) salinity, did not increase the cellular concentrations of LCAs, LCDs and LCHFAs significantly (Balzano et al. 2017). Unfavorable environmental conditions in the marine water column, such as prolonged exposure to dark conditions, are known to trigger the formation of resting stages in phytoplankton (McQuoid and Hobson 1996) for cell protection purposes. Resting forms of *Nannochloropsis limnetica* exhibit a thicker cell wall compared with active cells (Fietz et al. 2005), and might thus contain higher amounts of LCAs and LCDs. We therefore attempted to enhance the production of these lipids by incubating living cultures of *N. oceanica* and *N. gaditana* in the dark for 1 week.

Before the incubation in the dark, cells from both *N. oceanica* and *N. gaditana* exhibited growth rates (Fig. 1A, B)
comparable to those reported previously (Balzano et al. 2017). Cell abundance decreased by ca. 50% in both species over 1 week under dark conditions. Cells were observed under transmission electron microscopy and the outer cell wall, which contains LCAs and LCDs (Scholz et al. 2014), was extremely thin (approximately 10 nm) for the resolution of the instrument used and its thickness could not be measured reliably (Supplementary Fig. S1).

Both N. oceanica and N. gaditana exhibited increased cellular concentrations of LCAs and LCDs after dark incubation. Cells were enumerated by flow cytometry before filtration and we did not observe dead cells or large debris (i.e. particles with comparable forward scatter but lower chlorophyll fluorescence compared with ordinary Nannochloropsis cells) in the cytograms of cells harvested from the dark treatment. This suggests that most of the material filtered contained viable cells, or at least dead cells with intact chloroplasts, while debris were likely to be smaller in size (i.e. with a forward scatter comparable to the background noise of the instrument) and were not retained by the filters. In spite of the significant decline in viable cells under dark conditions the LCAs and LCDs analyzed here are thus likely derived from intact cells. The cellular concentration of C32:1 alkenols increased by almost one order of magnitude (3.5 ± 0.5 to 22 ± 3 fg cell^{-1}), while C32:2 and C32:0 diols tripled in concentration reaching 26 ± 4, 37 ± 9 and 35 ± 10 fg cell^{-1}, respectively (Fig. 1C), and the C30:0 diol nearly doubled in N. oceanica at the end of the dark incubation. Similarly, in N. gaditana, C32:2 and C32:1 alkenols increased from 2.9 ± 0.8 to 7.8 ± 1.7 fg cell^{-1} and from 4.7 ± 1.0 to 14 ± 2.0 fg cell^{-1}, respectively.

Fig. 1 Growth curves depicting the cell abundance of N. oceanica CCMP1779 (A) and N. gaditana CCMP526 (B) during the experiments. The shaded areas correspond to the time interval during which the cultures were incubated under dark conditions. Cellular levels of LCAs, LCDs, LCHFAs (C, D), and major fatty acids (E, F) for N. oceanica CCMP1779 (C, E) and N. Gaditana CCMP526 (D, F).
the C_{30:0} diols doubled (7.4 ± 1.4 to 16 ± 2.5 fg·cell\(^{-1}\)) and the C_{32:1} and C_{32:0} diols almost tripled (3.3 ± 1.3 to 7.0 ± 2.5 and 9.3 ± 2.9 to 20 ± 4, respectively, Fig. 1D) in concentration. In contrast with LCAs and LCDs, the concentration of LCHFAs dropped dramatically, with the 13-OH-C_{30:0} fatty acid decreasing from 7.8 ± 1.0 and 5.5 ± 0.4 fg·cell\(^{-1}\) for \textit{N. oceanica} and \textit{N. gaditana}, respectively, to values below the detection limit. Similarly, the 15-OH-C_{32:0} fatty acid decreased from 2.5 ± 0.4 and 1.7 ± 0.4 fg·cell\(^{-1}\) for \textit{N. oceanica} and \textit{N. gaditana}, respectively, to below the detection limit (Fig. 1C, D). Furthermore, the concentration of C_{16:0} fatty acid decreased by nearly half for both species (Fig. 1E, F). In contrast, the other C_{14–20} fatty acids followed different dynamics with the concentration of C_{16:1} fatty acid decreasing under dark conditions and that of the C_{20:5} PUFA increasing for \textit{N. gaditana}, whereas no significant changes were observed in \textit{N. oceanica} (Fig. 1C, D). The decrease in C_{18:0} fatty acid under dark conditions is likely due to the consumption of storage lipids necessary to sustain cell metabolism. Storage lipids such as triacylglycerols are typically dominated by the C_{16:0} fatty acid in \textit{Nannochloropsis} spp. (Alboresi et al. 2016).

The incubation under dark conditions for 1 week thus promoted a substantial increase in the cellular concentrations of LCAs and LCDs (Fig. 1C, D), which is the first culture condition ever described to trigger an increase in the LCAs and LCDs content in \textit{Nannochloropsis} spp. Seemingly, prolonged light deprivation affects the biosynthetic pathways of LCHFAs, LCAs and LCDs resulting in the complete removal of LCHFAs and an accumulation of both LCAs and LCDs. Since dark conditions are thought to promote the formation of resting stages, which can result in thicker cell walls as shown for \textit{N. limnetica} (Fietz et al. 2005), the dramatic decline in LCHFAs under dark conditions strongly suggests that these lipids are unlikely to be present in the cell wall, but rather form the precursors of LCAs and LCDs. In turn, the LCHFAs might derive from C_{14–18} fatty acids (Volkman et al. 1992, Gelin et al. 1997b, Balzano et al. 2017).

Further clues were obtained by determination of the double-bond positions of unsaturated LCAs and LCDs in a replicate from the dark treatment of \textit{N. oceanica} CCMP1779 using dimethyl disulfide derivatization. Consistent with previous findings (Gelin et al. 1997b), the double bond in LCAs occurs at the same position as that of the mid-chain alcohol group in the corresponding LCDs and LCHFAs (Supplementary Fig. S2). For example, the C_{32:1} alkenol mostly consists of two isomers with double bonds at Δ\(^{14}\) and Δ\(^{15}\) which correspond to the position of the mid-chain alcohol group in the 15-OH C_{32:0} fatty acid and the C_{32:0} 1,15-diol. Moreover, the C_{32:2} alkenol has a second double bond at the same position (Δ\(^{22}\)) as that of the C_{32:1} diol (Supplementary Fig. S2). The excellent correspondence between the double-bond position of monounsaturated alkenols and the position of the intermediate hydroxyl group in diols and LCHFAs with the same carbon number, along with the presence of a double bond at Δ\(^{22}\) in both diunsaturated alkenols and monounsaturated diols, clearly indicates common biosynthetic pathways for LCAs, LCDs and LCHFAs (Supplementary Fig. S2).

\textbf{13C-labelling indicates active biosynthesis of LCAs and LCDs in the dark}

We incubated \textit{N. oceanica} CCMP1779 with \textit{13C}-[2]-acetate under alternating 12/12 dark/light conditions to investigate the biosynthetic relationships among C_{14–18} fatty acids, LCHFAs, LCAs and LCDs (Fig. 2A). All these lipids were significantly labelled with \textit{13C} (Fig. 2C), with atomic \textit{13C} percentages ranging from 4.2% (cholesterol) to 15.2% (C_{18:1} fatty acid). In a second experiment, cells were initially cultured under alternating 12/12 dark/light conditions, and during exponential growth, \textit{13C}-[2]-acetate was then added to the culture which was subsequently incubated under dark conditions for 1 week (Fig. 2B). As expected, the enrichment levels of lipids observed under dark conditions were significantly lower than those found under dark/light conditions due to the absence of growth. The C_{16:1} fatty acid showed no incorporation of \textit{13C} and the C_{16:0}, C_{18:0}, and the C_{20:5} were only slightly labelled (1.3%, 1.2% and 1.2%, respectively). However, the C_{18:1} fatty acid (3.2%), the C_{32:0} diols (3.0%) and to a lesser extent the other LCDs and the LCAs (1.7–1.8%) showed substantial incorporation of \textit{13C} label (Fig. 2D). Thus, our labelling experiments show that during regular growth under alternating dark/light conditions, the \textit{13C}-[2]-acetate was taken for de novo synthesis of C_{16:0} fatty acids as well as for the formation of LCHFAs, LCAs, and LCDs. In contrast, when labelled sodium acetate was supplied prior to incubation in the dark, de novo fatty acid synthesis was likely to be insignificant as the cell growth in the dark was nearly negligible (Fig. 2B); however, the lack of detection of C_{18:1} fatty acid along with the high atomic \textit{13C} percentage measured for the C_{18:1} fatty acid (Fig. 2D) suggests that an active synthesis of C_{18:1}, probably via C_{16:0} elongation followed by desaturation to C_{18:1} was taking place. Importantly, both LCAs and LCDs were actively synthesized under dark conditions. The greater \textit{13C} content of LCAs and LCDs compared with C_{14–18} under dark conditions suggests that if the biosynthesis of LCD and LCA took place by condensation of two C_{14–16} fatty acids, such process would have rapidly taken up all \textit{13C}-labelled C_{14–16} fatty acids. Alternatively, and perhaps more likely, unlabelled C_{14–16} fatty acids were elongated with \textit{13C}-labelled sodium acetate to LCHFAs and subsequent reduction may have resulted in the formation of \textit{13C}-labelled LCAs and LCDs (Fig. 2D).

\textbf{Transcriptomic analyses and hypothetical biosynthetic pathway}

To determine which genes were upregulated in the dark incubation experiments, and thus potentially involved in LCD and LCA biosynthesis, we extracted RNA and sequenced the transcriptomes of \textit{Nannochloropsis} cultures harvested at the end of the experiments. We compared the gene expression level of \textit{Nannochloropsis} spp. from the dark treatment (i.e. treatment leading to high concentrations of LCAs and LCDs) with the dark/light control. Overall we mapped 10,043 genes from \textit{N. oceanica} CCMP1779 against the reference genome from the same strain (Vieler et al. 2012) and 11,222 genes from \textit{N. gaditana} CCMP526 (Table 2) against the
A reference genome from the strain *N. gaditana* B31 (Corteggiani Carpinelli et al. 2014). In addition, we also carried out a functional analysis of all the proteins predicted from the genomes of *N. oceanica* CCMP1779 and *N. gaditana* B31 using Interproscan (Jones et al. 2014) to identify putative catalytic domains for the elongation and hydroxylation of fatty acids, the dehydration of secondary alcohols, the reduction of their carboxylic groups, and the formation of ethers and esters.

About 60% of the genes from *N. oceanica* and 74% of the genes from *N. gaditana* did not change significantly in expression during the dark incubation (Table 2). *Nannochloropsis oceanica* exhibited a comparable number of upregulated and downregulated genes (1,950 and 2,067, respectively) whereas 1,855 genes from *N. gaditana* were downregulated and only 955 upregulated (Table 2). The expression changes of all the genes from both *Nannochloropsis* species are shown in detail in Supplementary Table S1. The results of our dark incubation experiments with and without stable isotope labelling (Figs. 1, 2), as well as previous findings (Volkman et al. 1992, Gelin et al. 1997a, Balzano et al. 2017, Volkman 2018), suggest that LCHFAs originate from C14–18 fatty acids either by condensation of two fatty acids or elongation/in-chain hydroxylation. Subsequently LCHFAs are likely to be reduced to form LCDs. Similarly, LCAs might derive from the dehydration of the secondary alcohol groups in LCDs or LCHFAs.

We thus focused on genes potentially coding enzymes that catalyze (i) the condensation of two C14–18 fatty acids, (ii) the elongation and (iii) the in-chain hydroxylation of fatty acids ≥ C16 (iv) the reduction of fatty acids to alcohols, the (v) dehydration of secondary alcohol groups, and (vi) the formation of esters. We searched for these genes in *Nannochloropsis* genomes and compared their expression levels in the dark treatment with those found for the control treatment. We also searched publicly available genomes from other *Nannochloropsis* spp. to identify genes homologous to those potentially involved in the biosynthetic processes hypothesized here for *N. gaditana* and *N. oceanica.*
The condensation of the carboxylic end of a fatty acid with the methyl end of a C{sub 14} dicarboxylic acid from a tail-to-tail condensation of two C15 iso fatty acids (Sinninghe Damsté et al. 2011) but the enzymes involved in such process are unknown. Furthermore, a tail-to-tail condensation would yield an intermediate functionalized on both ends such as a dicarboxylic acid, and one of these ends would therefore require to be fully reduced to a methyl group. Both head-to-head and tail-to-tail condensations would thus form intermediates which need a further functionalization or reduction step to yield the LHCFAs observed in Nannochloropsis spp. Long chain aliphatic compounds resulting from head-to-head (i.e. mid-chain functionalized only) or tail-to-tail (functionalized on both ends) condensation have never been detected in Nannochloropsis.

The condensation of the carboxylic end of a fatty acid with the aliphatic end of another fatty acid (head-to-tail condensation) would instead require fewer reaction steps and the resulting biosynthetic pathway appears thus to be less energy demanding compared with both head-to-head and tail-to-tail condensations. For example, the reaction between the carboxylic end of a C{sub 18} fatty acid with the methyl end of a C{sub 14} fatty acid would yield a C{sub 32} product functionalized on the first and the 15{sup th} carbon such as the 15-OH-C{sub 32} fatty acid, the C{sub 32} 1,15-diol, the Δ{sub 15} C{sub 32:1} alkenol and the Δ{sub 15, 27} C{sub 32:2} alkenol.

Similarly, the condensation between a C{sub 12} and a C{sub 18} fatty acids would lead to C{sub 30} compounds with a secondary functionalization on the 13{sup th} carbon as well as a terminal carboxylic group. Although this pathway cannot be fully discarded, we did not find any evidence reported in literature for such a biosynthetic process.

Enzymes responsible for chain elongation in Nannochloropsis

Fatty acid elongation is based on stepwise additions of two carbon units to the growing acyl coenzyme A (CoA) chain (Leonard et al. 2004), with each addition consisting of the (i) condensation of the acyl CoA with a malonyl group to form a 3-ketoacyl-CoA, (ii) reduction of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA, (iii) dehydration to enoyl-CoA, and (iv) reduction to an elongated acyl chain (Leonard et al. 2004). While 3-ketoacyl-CoA synthases (KCSs) are typically substrate specific (Leonard et al. 2004, Haslam and Kunst 2013), the other three enzymes required for the elongation are known to have a broad substrate preference being able to accept 3-ketoacyl, 3-hydroxyacyl, or 3-enoyl units of different lengths. Enzymes belonging to different families, the elongation proteins (ELO) and the fatty acid elongases (FAEs) possess the KCS domain (Leonard et al. 2004, Haslam and Kunst 2013). In addition, the polyketide synthases (PKSs) family consists in proteins known to contain ketoacyl-acyl carrier protein (ACP) synthase (KAS) and can also accept C{sub 16–18} fatty acids as substrates for elongation (Staunton and Weissman 2001).

Table 2 Overview of the transcriptomic analyses of the strains analyzed in the present study

	N. gaditana CCMP526	N. oceanica CCMP1779
Mapped genes	10,043	11,222
Upregulateda	1,950	955
Highly upregulatedb	440	292
Downregulatedd	2,067	1,855
Highly downregulatedb	612	1,133
Not significant	6,026	8,412

Gene expression of the dark treatment was compared with that of the dark/light control.

aA gene is considered upregulated or downregulated if its expression level changes by at least 2-fold in the dark treatment compared with the dark/light control and the change is associated with an FDR corrected P-value <0.01.

bNumber of downregulated and upregulated genes exhibiting an expression change of at least 8-fold.

Δ0-ELOs as elongators of fatty acids. Seven ELOs that accept monounsaturated or saturated fatty acids as substrates (Δ0-ELO) have been previously identified in N. gaditana CCMP526 (Dolch et al. 2017), and we found eight Δ0-ELOs in N. oceanica by similarity searches. Four Δ0-ELOs from N. gaditana and two Δ0-ELOs from N. oceanica can potentially accept fatty acids containing up to 28 carbons as substrates (Supplementary Data) as predicted by comparing their secondary structure (Supplementary Fig. S3) with that of known Δ0-ELOs from yeasts (Denic and Weissman 2007). Only two Δ0-ELOs from N. gaditana (Naga_100083g23 and Naga_100017g9) were upregulated under dark conditions (Fig. 3). One of these enzymes (Naga_1000083g23) has been proven experimentally, by heterologous expression in yeasts, to catalyze the formation of saturated fatty acids containing up to 28 carbons (Dolch et al. 2017). However, analysis of a mutant of N. gaditana in which the gene coding for the Δ0-ELO Naga_1000083g23 has been knocked-out (Dolch et al. 2017) exhibited a distribution of LCAs, LCDs and LCHFAs very similar to that of the wild type (CCMPS526, Supplementary Fig. S4), indicating that Naga_1000083g23 is not involved in the biosynthesis of these compounds in N. gaditana. This, along with the lack of upregulated Δ0-ELOs in N. oceanica under dark conditions (Fig. 3), suggests that Δ0-ELOs are not involved in the biosynthesis of LCHFAs in Nannochloropsis spp. The intermediates required for the biosynthesis of LCAs, LCDs and LCHFAs might thus be formed by other enzymes.
FAE enzymes as elongators of fatty acids. FAE enzymes are known to be involved in the biosynthesis of saturated C_{14–18} fatty acids, LCHFAs, LCAs, and LCDs as well as the formation of ester bonds within the cell wall biopolymer. The enzymes most likely involved in processing fatty acids \(\geq C_{18} \) and coded by genes upregulated under dark conditions are in bold. The horizontal axis indicates the log_{2} fold change in gene expression, between the dark treatment and the two control treatments (Control 1 and Control 2). Significant differences (P < 0.01) are indicated with an asterisk. The prefixes *Naga* and *CCMP1779* denote transcripts from *N. gaditana* CCMP526 and *N. oceanica* CCMP1779, respectively. FAS, fatty acid synthase; \(\Delta 0 \)-ELO, Saturated fatty acid elongases; PKS, polyketide synthase; HAD, hydroxyacyl-acyl carrier protein-dehydratase; FAE, fatty acid elongation enzyme; WS-DGAT, bifunctional wax ester synthase/diacylglycerol acyltransferase.

![Expression level of the genes potentially coding the enzymes catalyzing the different reactions involved in the biosynthesis of saturated C_{14–18} fatty acids, LCHFAs, LCAs, and LCDs as well as the formation of ester bonds within the cell wall biopolymer.](https://academic.oup.com/pcp/article-abstract/60/8/1666/5486064)
of LCHFAs from C\textsubscript{14–20} fatty acids."

Role of PKSs in fatty acid hydroxylation. Since PKS enzymes can elongate not only fatty acids but also hydroxy fatty acids, the hydroxylation process required for the formation of mid-chain hydroxyl groups might occur before chain elongation takes place. The formation of both 13-OH-C\textsubscript{30:0} and 15-OH-C\textsubscript{32:0} fatty acids by FAE-based elongation would then require a 3-OH-C\textsubscript{20:0} fatty acid as a starter (Fig. 4). Since 3-OH-C\textsubscript{20:0} fatty acid has not been detected in *Nannochloropsis* spp. as well as other Eustigmatophyceae, it might be an intermediate in the chain elongation. The mid-chain functionalization of fatty acids can be catalyzed by PKS enzymes since they possess acyl transferase (AT) and KAS domains but might lack any or all of the other catalytic sites required to complete a fatty acid elongation cycle (Staunton and Weissman 2001, Jenke-Kodama et al. 2005). Type I PKSs consist of single multifunctional enzymes possessing several catalytic domains and their distribution is scattered among different lineages since genes coding PKSs have not been found in ciliates and Rhizaria (Shelest et al. 2015, Kohli et al. 2016). Three genes from *N. oceanica* have been previously suggested to code for PKSs (Vieler et al. 2012, Poliner et al. 2015, Alboresi et al. 2016) and two genetically distinct PKS clades were previously detected in *N. oceanica* and *N. gaditana* (Shelest et al. 2015).

We identified 22 genes coding for PKSs in the different *Nannochloropsis* spp. (Supplementary Table S3) and built a phylogenetic tree of the KAS domain (KAS-PKS). KAS-PKS phylogeny indicates that five gene products (PKS-Clade I) correspond to the iterative type I PKSs previously identified by Shelest et al. (2015) and are closely related to two other PKSs from *N. gaditana* (Naga_100093g21) and *N. oceanica* (CCMIP1779_289), respectively (Fig. 5A). Sequences from PKS-Clade I cluster with type I FAS/PKS from fungi and Metazoa, whereas 15 other gene products show only weak similarities with KAS-PKS from other species and form three distinct clades: PKS-Clade II, PKS-Clade III and PKS-Clade IV (Fig. 5A). Transcriptomic data from the dark incubation experiments of *N. oceanica* and *N. gaditana* indicate that the genes coding for PKS-Clade I and PKS-Clade III enzymes were downregulated or did not exhibit significant changes under dark conditions, while those coding for PKS-Clade II were upregulated (Fig. 3), and we did not detect genes coding for PKS-Clade IV in our transcriptomes. PKS-Clade II enzymes CCMP1779_6720 and *Naga*._1000864 increased their expression in the dark treatment by 3.2- and 2.5-fold, respectively (Fig. 3) suggesting they can be potentially involved in the hydroxylation of fatty acids.

Interestingly PKS-Clade II enzymes possess domains for PKS-KAS (IPR020841), AT (IPR020801) as well as an adenosine monophosphate (AMP) binding domain (IPR00873), a phosphopantetheine-binding ACP (KAR, IPR013968) domain (Fig. 5B). The presence of catalytic domains for both KAS and KAR in PKS-Clade II enzymes and the lack of hydroxyacyl dehydratase (HAD) and enoyl reductase (ER) domains suggest that PKS-Clade II enzymes might catalyze an incomplete fatty acid elongation leading to the formation of 3-OH-fatty acids. C\textsubscript{14–18} fatty acids might thus be elongated to form 3-OH-C\textsubscript{16–20} fatty acid intermediates by PKS-Clade II enzymes. The incomplete elongation of the C\textsubscript{18:0} fatty acid might lead to the formation of a 3-OH-C\textsubscript{20:0} intermediate which, after five or six full elongation cycles, potentially catalyzed by the PKS enzymes, would form the 13-OH-C\textsubscript{30:0} and 15-OH-C\textsubscript{32:0} fatty acids, respectively, the two LCHFAs present in *Nannochloropsis* spp. (Gelin et al. 1997a, Balzano et al. 2017).

Reduction of LCHFAs to LCDs

LCDs and LCAs are likely formed from LCHFAs as evidenced by the depletion of LCHFAs and increase in LCAs and LCDs in the dark incubation experiments (Fig. 1). Furthermore, the presence of C\textsubscript{14–24} alkanols (Volkman et al. 1999) as well as C\textsubscript{15–17} alkanes and the C\textsubscript{15–17} alkenes (Gelin et al. 1997b, Sorigue et al. 2016, Zhou et al. 2017), also suggests the occurrence of fatty acid reduction activities in *Nannochloropsis* (spp.). Odd-numbered alkanes and alkenes are typically formed from the reduction of even-numbered fatty acids to aldehydes followed by a decarbonylation step, as described for *Arabidopsis thaliana* (Bernard et al. 2012) and *Chlamydomonas reinhardtii* (Sorigue et al. 2016). Similarly, fatty alcohols are also formed from the reduction of fatty acids catalyzed by alcohol-forming fatty acyl-CoA reductases (FAR) as shown in *A. thaliana* (Li-Beisson et al. 2010), *Apis mellifera* (Teerawanichpan et al. 2010), *Calanus finmarchicus* (Teerawanichpan and Qiu 2012), and *Euglena gracilis* (Teerawanichpan and Qiu 2010). However, we could not find any protein sequence containing the conserved motif [IFV][XYLV]TXGTGFLV[MLV][GA] which corresponds to the FAR catalytic site (Hofvander et al. 2011, Teerawanichpan and Qiu 2012), and none of the *Nannochloropsis* proteins belong to any FAR family (IPR026055, IPR003860, IPR003636 and IPR003157). Furthermore, similarity searches (blastp) of known FARs against the deduced amino acid sequences of *Nannochloropsis* genomes produced hits with low (bit score <50) similarity (data not shown). Indeed, a recent study also failed to detect genes coding for FARs in *Nannochloropsis* genomes (Sorigue et al. 2016). This indicates
that the enzymes involved in fatty acid reduction in *Nannochloropsis* are either unrelated or greatly divergent from known FARs.

We then searched within the genomes of *N. oceanica* and *N. gaditana* for genes coding for domains involved in the reduction of carboxylic acids. We found 44 genes coding for the short chain dehydrogenase/reductase (SDR) and eight genes that can code for the male sterility 2 (MS2) domain (Supplementary Table S4). Proteins with the male sterility (MS2) domain can catalyze the reduction of fatty acids in *A. thaliana* (Aarts et al. 1997), and five of these proteins are annotated as PKS-Clade I (Supplementary Table S4), since they also possess the catalytic domains for fatty acid elongation. PKS-Clade I enzymes were previously suggested to be involved in the reduction of fatty acids in *N. gaditana* (Scholz et al. 2014). Since the genes coding for PKS-Clade I as well as the other genes coding for the MS domain are not upregulated under dark conditions (Fig. 3, Supplementary Table S4) their products are unlikely to be involved in the reduction of LCHFAs to LCDs, although a role in other reduction processes cannot be discarded. Genes coding for SDR were also mostly downregulated under dark condition (Supplementary Table S5); only six of them were upregulated but blastp analyses revealed similarities with proteins from other species with very different functions (Supplementary Table S5).

Thus, although *Nannochloropsis* spp. contain a range of compounds (LCAs, LCDs, alkanes, alkenes and alkanols) that are very likely to originate from the reduction of fatty acids, we could not find any enzyme potentially involved in these reductive processes.

Δ2- and Δ3-C20:1 fatty acids as potential LCA precursors

LCAs contain a double bond at the same position where LCDs have the hydroxyl group (Supplementary Fig. S2, Gelin et al. 1997b) suggesting that LCAs might be formed from the dehydration of the mid-chain alcohol group of LCDs. Thus, we searched for dehydratase domains and found 14 genes coding for different lipid dehydratase domains (Supplementary Table S7), and one of them (*Naga_100113g71*) was upregulated under dark conditions (Supplementary Table S8). *Naga_100113g71*, and its *N. oceanica* homolog (*CCMP1779* j4800) code for proteins possessing a HAD domain and cluster with HADs from other species in our phylogenetic analyses (Supplementary Fig. S7).

Alternatively, the dehydration of the secondary alcohol group may occur at an earlier stage, e.g. as a result from an incomplete fatty acid elongation process in which ER activity is missing, followed by several further elongation processes.
Fig. 5 Phylogenetic and functional analyses of *Nannochloropsis* genes potentially coding for polyketide synthases (PKS) and potentially involved in the formation of 3-OH-intermediates. Phylogeny (A) of the deduced amino acid sequences from the ketoacyl ACP synthase (KAS) domain of the PKSs. Sequences from different *Nannochloropsis* spp. were compared with a pre-existing alignment from Kohli et al. 2016 and the phylogenetic tree was constructed using the Maximum Likelihood (ML) algorithm by RAxML. Sequences from *N. oceanica* CCMP1779 and *N. gaditana* B31 are colored according to their expression levels in the transcriptome and numbers in brackets after the sequences denote the expression levels of these genes in the transcriptome, indicated as log2-fold changes. Node labels indicate the bootstrap support based on ML and Neighbour Joining (NJ) algorithms, respectively; support values <50% are omitted. (B) Structural analyses of two putative PKS from *N. oceanica* and *N. gaditana* affiliated to Clade II. The domain structure of all putative PKSs from *Nannochloropsis* is shown in details in Supplementary Table S1. The domains likely to correspond to the catalytic sites for ketoacyl-acyl carrier protein (ACP)-synthase (KAS) and ketoacyl-ACP-reductase (KAR) are in red, and green, respectively. Transmembrane helices (TMHs) are in grey, other domains in black. AT, acyl transferase; HAD, hydroxyacyl dehydratase; NAD, Nicotinamide adenine dinucleotide-binding domain; ER, enoyl reductase; PPT, phosphopantetheine-binding domain; AMP, adenosine monophosphate-dependent synthetase/ligase.
(Fig. 4). The higher expression levels of Naga_100113g71 under dark conditions (Fig. 3), in spite of a decrease in C_{14–16} fatty acids (Fig. 1F), suggest that these enzymes might have been catalyzing the dehydration of other compounds such as longer fatty acids. Since HAD enzymes are thought to have a broad substrate specificity (Heath and Rock 1996, Leonard et al. 2004), potentially catalyzing the dehydration of 3-hydroxyacyl chains of different lengths, they might also accept 3-OH-C_{20:0} fatty acids as substrates to form the Δ^2- and Δ^3-C_{20:1} fatty acid, which, if further elongated and reduced, might lead to the formation of the C_{30-32} alkenols typically found in Nannochloropsis spp. (Fig. 4).

Incorporation of LCAs and LCDs in Nannochloropsis cell wall biopolymer

The presence of ether- and ester-bound LCAs and LCDs within the cell wall of Nannochloropsis spp. has been long hypothesized (Volkman et al. 1992, Gelin et al. 1996, Gelin et al. 1997b, Volkman 2018). Fourier transform infrared spectroscopy on the cell wall of N. gaditana demonstrated the presence of ether bonds and also found some C=O stretches, but whether the latter are related to carboxylic, aldehyde, ketone or ester functional groups is not clear (Scholz et al. 2014). Although the core of the cell wall polymer may be ether-bound, as they are resistant against base and acid hydrolysis (Gelin et al. 1997b), some of the LCAs and LCDs present in Nannochloropsis spp. likely occur as ester-bound moieties to polymeric carboxylic groups (Volkman 2018). The formation of esters from alcohols and fatty acids is typically catalyzed by bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA): diacylglycerol acyltransferase (WS-DGAT) (Kalscheuer and Steinbuchel 2003). A gene coding for WS-DGAT (Naga_100114g61) was previously predicted in N. gaditana (Cui et al. 2018), and our phylogenetic analyses (Supplementary Fig. S8) indicate that the proteins encoded by Naga_100114g61 and its N. oceanica homolog (CCMP1779/236) are closely related to a WS-DGAT from Phaeodactylum tricornutum (PtWS-DGAT). PtWS-DGAT has been recently shown to catalyze the formation of esters from alcohols and fatty acids (Cui et al. 2018) and has a domain structure (Fig. 1 in Cui et al. 2018) similar to that found here for Nannochloropsis WS-DGATs (Naga_100114g61 and CCMP1779/236, Supplementary Fig. S8). Interestingly, putative WS-DGAT from N. gaditana and N. oceanica increased in expression by 6- and 1.5-fold, respectively (Fig. 3), under dark conditions, suggesting that an active production of esters was likely to take place during dark incubation. Thus, WS-DGATs in Nannochloropsis spp. might be involved in esterification of LCAs/LCDs to carboxyl groups to form the ester-bound structures which have been previously detected in the cell wall (Scholz et al. 2014).

In contrast, we could not find any gene potentially catalyzing the formation of ether bonds within the cell wall biopolymers. Similarity (blastp) analyses of known ether syntheses such as the 9-divinyl ether synthase from Solanum lycopersicum (tomato plant), the corvol ether synthase from Kisatassospora setae (bacterium), against the predicted proteins of N. oceanica CCMP1779 and N. gaditana B31 did not yield significant hits (Supplementary Table S9). The polymerization of LCAs and LCDs to form ether-bound structures in algaenans remains thus unclear.

Potential biosynthetic pathways for LCA, LCD and LCHFAs in Nannochloropsis spp.

As previously suggested (Gelin et al. 1997a, Scholz et al. 2014, Balzano et al. 2017, Volkman 2018), our results from stable isotope experiments confirm that LCAs and LCDs derive from C_{14–18} fatty acids by either condensation or elongation.

If biosynthesis occurs via condensation the dominant pathway involves the interaction between the aliphatic end of a C_{14} fatty acid with the carboxylic end of a C_{18} fatty acid to produce a C_{32} compound functionalized on the 15th carbon which would be a precursor of the 15-OH-C_{32} fatty acid, the C_{32} 1,15-diol and the C_{32} alkenols. Although we could not find evidence for such a pathway in literature nor could find genes potentially coding such biosynthetic processes within Nannochloropsis genomes, this pathway cannot be fully discarded.

In contrast, the elongation pathway is more likely to occur. The lack of elongation intermediates such as aliphatic compounds with a number of carbons comprised between 20 and 26 in Nannochloropsis spp. might be due to a rapid uptake of such compounds for the following steps of the pathway. Nevertheless, results from our genomic and transcriptomic analyses, combined with comparisons with biosynthetic pathways in plants, more likely suggest that LCHFAs are formed from C_{14–18} fatty acids via elongation. Specifically we found two key enzymes, PKS-Clade II and FAE, potentially involved in the elongation process. PKS-Clade II are likely to elongate and hydroxylate the C_{18:0} fatty acid and, to a lesser extent, the C_{16:0} fatty acid, to form the 3-OH-C_{20:0} and 3-OH-C_{18:0} fatty acids, respectively (Fig. 4). Subsequently, FAE enzymes can potentially catalyze the multiple elongation of the 3-OH-C_{20:0} fatty acid to 13-OH-C_{30:0} and 15-OH-C_{32:0} fatty acids after five or six complete elongation cycles, respectively (Fig. 4). Six complete elongation cycles of 3-OH-C_{18:0} fatty acid and subsequent reduction might form the C_{30:0} 1,15-diol which is also present in Nannochloropsis spp. as well as other eustigmatophycean representatives (Rampen et al. 2014).

Since saturated LCDs are functionalized at the same mid-chain position as their corresponding monounsaturated LCAs (Supplementary Fig. S2), both lipid classes are very likely to share a similar biosynthetic pathway and to originate from the same precursors, the 3-OH-C_{20:0} fatty acid and, to a lesser extent, the 3-OH-C_{18:0} fatty acid. The pathway leading to the formation of LCAs would start from the dehydration of 3-OH-C_{20:0} fatty acids to both Δ^2 and Δ^3 C_{20:1} fatty acid catalyzed by an HADs (Fig. 4). The Δ^2 and Δ^3 C_{20:1} fatty acids would then undergo five complete FAE-catalyzed elongations and a reduction to form the Δ^12 and Δ^13 C_{30:1} alkenols or six elongations and a reduction to form Δ^14 and Δ^15 C_{32:1} alkenols (Fig. 4). The Δ^12 and Δ^13 C_{30:1} alkenols as well as Δ^14 and Δ^15 C_{32:1} alkenols have been detected here in both N. gaditana and N. oceanica.
PKSs from *P. alata* the formation of hydroxylated products. Indeed, OH-C26–28 fatty acids might originate after five full elongation followed by FAE-catalyzed elongation of 3-hydroxyacyl compounds mediated by P450 hydroxylases or PKS enzymes, followed by FAECatalyzed elongation of 3-hydroxyacyl intermediates as suggested for plants (Wen and Jetter 2007, Busta et al. 2016).

Conclusions

LCHFAs are likely to originate from C14–18 fatty acids after either condensation of C16–18 fatty acids or an incomplete fatty acid elongation, forming 3-OH-fatty acids, followed by a further elongation. Enzymes potentially involved in the condensation of two fatty acids are not known to date. We identified instead two enzymes (PKS-Clade II and FAE) likely to be involved in the elongation of C14–18 fatty acids to LCHFAs which are then likely to be reduced to LCDs. HAD enzymes might play a role in the dehydration of secondary alcohols before, during, or after the elongation of 3-OH-FAs, forming the double bonds present in LCAs whereas WS-DGAT enzymes are potentially involved in the formation of the ether-bound structures present in the *Nannochloropsis* cell wall. Although the biosynthetic pathways for LCAs and LCDs have not been fully elucidated and the formation of ether bonds within cell wall polymers is still unclear, our work identifies a potential mechanism, similar to biosynthetic processes described in higher plants, for the formation of mid-chain functionalized aliphatic compounds in phytoplankton. Future challenges include the biochemical and functional characterization of the candidate enzymes predicted here. Eventually, if long chain aliphatic compounds are formed from the elongation of C14–18 fatty acids, genetic manipulations of PKS-Clade II and FAE enzymes might contribute to increase the productivity of both LCHFAs and LCDs in *Nannochloropsis* species.

Materials and Methods

Culturing and dark incubations

Nannochloropsis oceanica CCMP1779 and *N. gaditana* CCMP526 were cultured in batch using f/2 medium (Guillard 1975) under 12:12 dark/light conditions at 20°C and algal growth was regularly monitored using flow cytometry (Marie et al. 1999). For the experiments each strain was grown in six replicate 1.5 L Erlenmeyer flasks (Supplementary Data) and cells were harvested from three flasks to assess the initial concentration of lipids and the background gene expression (Control 1). From each of the remaining six flasks (three per species) an aliquot (20 mL equals ~7 × 10^7 cells) was transferred into new Erlenmeyer flasks prefilled with medium, incubated under dark/light conditions (dark treatment). Both Control 2 and dark treatment were incubated for 1 week at 20°C. Cells were harvested from their cultivating flasks by filtration through 0.7 μm GF/F filters (Whatman, Maidstone, UK). Cells were enumerated by flow cytometry before filtration and we did not observe dead cells or debris (i.e. particles with comparable forward scatter and lower chlorophyll fluorescence than ordinary *Nannochloropsis* cells) in our cytograms in any of the samples filtered. This suggests that most of the material filtered contained viable cells, or at worst dead cells with intact chloroplasts. Filters for lipid analyses were immediately rinsed in demineralized water and stored at −80°C, whereas filters for RNA extraction and further transcriptomic analyses were flash frozen in liquid nitrogen immediately and then stored at −80°C until analyses.

In addition, we analyzed the composition of LCAs, LCDs, and LCHFAs in mutant strains of *N. gaditana* CCMP526 in which the gene Nga_1000812 is
coding for a Δ18-ELOs has been silenced (Dolch et al. 2017). Three mutants (Clone 5, Clone 13, and Clone 15) were obtained from the Cell and Plant Physiology Laboratory (Grenoble, France), cultured under the same conditions as above (1/2 medium, 12/12 dark/light cycle) along with the wild type (N. gaditana CCMP526) and harvested during the exponential phase of their growth.

Stable isotope labelling
To assess whether LCDs are formed from C16-18 fatty acids, we incubated N. oceanica CCMP1779 with sodium 13C-[2]-acetate (Sigma-Aldrich, 273915–1 g, Zwijndrecht, Netherlands) under both dark/light and dark conditions. We used an axenic culture of N. oceanica CCMP1779 to avoid any consumption of 13C-labelled acetate by heterotrophic bacteria typically present in phytoplankton cultures. The strain was cultured at 20 °C under 12:12 dark/light conditions in a 5 L glass carboy and continuous air bubbling was provided by an aquarium pump connected through 0.2 μm pore size filters (Sartorius, Göttingen, Germany) to dilute any formed 13C-labelled CO2. A volume of 10 mL of 0.5 M sodium 13C-[2]-acetate was added to the cultures when they reached cellular densities of approximately 1.5 × 106 cell mL−1. The dark/light treatment was then incubated at the same conditions for 2 d, whereas the dark treatment was incubated for 1 week in the dark. At the end of the experiments cells were harvested as described above.

Lipid extraction, gas chromatography-mass spectrometry and isotope ratio mass spectrometer
For the nonisotopically labelled dark incubation experiment, we extracted 18 filters in total, i.e. three replicates per treatment for two strains (N. oceanica CCMP1779 and N. gaditana CCMP256). The filters were freeze-dried using a Lyoquest (Tetstart, Life Sciences) freeze-drier and then they were saponified and acid hydrolyzed as described previously (Rodrigo-Gámiz et al. 2015, Balzano et al. 2017). The total lipid extract (TLE) was then dissolved in dichloromethane (DCM) and dried through anhydrous sodium acetate, and subsequently under nitrogen. After extraction, we added 20.4 μg C23:0, 7, 16-diol as internal standard to the TLE, the extracts were methylated with diazomethane and cleaned over a small silica gel column using ethyl acetate as eluent. Prior to analysis, the TLEs were silylated by the addition of N,O-bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) and pyridine, and heating at 60 °C for 20 min.

An aliquot of one lipid extract from N. oceanica CCMP1779 (dark treatment) was used to determine the position of the double bond in alkenols and unsaturated LCDs, lipids were derivatized by adding 50 μL dimethyl disulfide and 5 μL iodine solution (60 mg iodine in 1 mL diethylether), eluted then in DCM and iodine was removed using 50–100 μL 5% sodium thiosulfate solutions.

Compounds were quantified using gas chromatography (GC) flame ionization detection using an Agilent 7890B GC (Agilent Technologies, Amstelveen, Netherlands) with a 25 m fused silica column diameter 0.32 mm, coated with CP Sil-5 (thickness 0.12 μm). Identification of the lipids was achieved using GC-mass spectrometry (GC-MS) with an Agilent 7890B GC coupled to an Agilent 5977 mass spectrometer (Agilent). Identification of the LCDs, LCsAs, and LCHFAs was based on the fragmentation mass spectra obtained in full scan mass spectrometry (IR-MS, Thermostifer, Landsmeer, Netherlands). Separation was achieved on a ZB-SMS column with a length of 60 m, a column diameter of 0.32 mm and a film thickness of 0.25 μm. Oven program was identical as described for the GC-FID and GC-MS, but the end temperature of 320 °C was held for 30 min (total run time of 80 min). The injection volume was 1 μL, the four fractions were all analyzed in triplicate, and the reported data represent averaged values. The isotopic compositions are reported in units of atom percent excess (APE). Values were corrected considering the 13C isotope values of both BSTFA and methanol.

Genomic analyses
To identify genes potentially involved in the biosynthesis of LCAs, LCDs, and LCHFAs in Eustigmatophyceae, we constructed a local blast database (Altschul et al. 1990, Camacho et al. 2009) using the predicted proteins from the genomes of eight Nannochloropsis strains (Nannochloropsis sp. CCMP531, N. gaditana B-31, N. gaditana CCMP526, Nannochloropsis granulata CCMP529, N. oceanica CCMP1779, N. oceanica IMET1, Nannochloropsis oculata CCMP525, and N. salina CCMP537, Supplementary Data). Conserved protein domains were searched using Interproscan (Jones et al. 2014) or by manually enquiring for specific AA motifs. Specifically, we searched for proteins containing the motifs HWYHHY CMGCSSAG and [D/E/T]ACSS and H/[G/A]1TG[T, which correspond to highly conserved regions of Δ18-ELOs (Hashimoto et al. 2008), FAEs (Millar et al. 1999) and PKs (Shelest et al. 2015) enzymes, respectively. Moreover we searched for genes potentially coding for the conserved motif [I/V/F/XL1L2V/G][G/A] which corresponds to the catalytic site of FAEs (Hofvander et al. 2011, Teerawanchapan and Qiu 2012). The presence and position of TMHs in Δ18-ELOs, FAEs, and PKs proteins was assessed using TMHMM (Krogh et al. 2001).

We carried out similarity searches of known proteins from other species against the locally built Nannochloropsis database as well as similarity searches of Nannochloropsis proteins potentially involved in the biosynthetic processes against the nonredundant (NR) (Pruitt et al. 2005) and the Swissprot (Bateman et al. 2017) databases, using blastp (Camacho et al. 2009).

To compare putative Nannochloropsis enzymes involved in the biosynthetic processes with known and unknown proteins from other species, we performed phylogenetic analyses on four protein families: FAEs, PKs, the HADs, and the WS-DGATs. We aligned putative Nannochloropsis FAEs with known FAE proteins from A. thaliana, Brassica napus (Joubes et al. 2008) as well as a FAE known to elongate hydroxy fatty acids from P. jenneri (Moon et al. 2001). Sequences were aligned using MAFFT-linsy (Katoh and Standley 2013) and poorly aligned regions (regions containing >50% gaps) were trimmed from the alignment which finally consisted of 50 sequences and 195 unambiguously aligned positions. We analyzed the KAS domain of PKs (KAS-PKS) using Nannochloropsis proteins previously identified as PKs (Shelest et al. 2015, Alboresi et al. 2016) as well as other proteins containing the KAS-PKS domain (IPR020841) and/or containing the conserved motifs [D/E]/TACSS and H/[G/A]1TG[T. Sequences were then aligned to a pre-existing alignment of 92 KAS-PKS sequences (Kohli et al. 2016) and trimmed as described above. The final alignment consisted of 138 sequences and 173 AA positions. For HADs, we extracted two AA sequences containing a domain for HAD (IPR010084) from N. oceanica and N. gaditana, respectively. We then searched for homologs in the Nannochloropsis and Swissprot databases, aligned and trimmed the sequences as described above and the final alignment included 50 AA sequences and 147 positions. For the WS-DGAT phylogeny, we downloaded known AA sequences from the Swissprot database, searched for homologs in Nannochloropsis, aligned the sequences and trimmed the alignment as described above. The alignment included 43 AA sequences and 245 positions. Phylogenetic trees were constructed using both
maximum likelihood (ML) and neighbor joining (NJ) algorithms based on 1,000 bootstraps. ML phylogeny was inferred using RAxML with 1,000 bootstraps (Stamatakis 2014) and was used to build the phylogenetic trees, whereas NJ bootstrap support values were calculated using MEGA (Tamura et al. 2007).

To evaluate the occurrence of similar biosynthetic processes in other LCD-producers (Balzano et al. 2018), we downloaded a number of predicted proteins, obtained from transcriptomes of phytoplankton cultures (Keeling et al. 2014) from iMicrobe (https://www.imicrobe.us/). The species used were Florenciella parvula (MMETSP1323), Florenciella sp. (MMETSP1324), Heterosigma akashiwo (MMETSP0292, MMETSP0294, MMETSP0295, MMETSP0296, MMETSP0409, MMETSP0410, MMETSP0411, MMETSP0414, MMETSP0415, MMETSP0416, MMETSP0894, MMETSP0895, MMETSP0896 and MMETSP0897), Phaeomonas parva (MMETSP1163), Florenciella parvula (MMETSP1323), Florenciella sp. (MME T SP1324), P. alata (MMETSP0174, MMETSP0176), Proboscia inermis (MMETSP0186) and Sarcinochrysi sp. (MMETSP1170). In addition, we downloaded the genomes of the plants Azolla filiculoides (www.fernbase.org) and Triticum aestivum (www.fernbase.org) which are also known to produce LCDs (Balzano et al. 2018, Spreeman et al. 2009, Racovita and Jetter 2016). We then analyzed the domain structure of these proteins using Interproscan (Jones et al. 2014) and searched for PKSs coding KAS and KAR domains.

RNA extraction
To prevent RNA degradation, the extractions were carried out under sterile and cold (~10°C) conditions in a clean laboratory; samples, tubing, and all other equipment used were kept in ice unless otherwise stated. RNA was extracted from each of three replicates of each of the three treatments (Control 1, Control 2, and dark treatment) from both N. oceanica CCMP1779 and N. gaditana CCMP526 for a total of 18 samples. Cells were disrupted using a combination of thermal, chemical, and mechanical lyses: from each sample about half of a GF/F filter was cut in many small pieces using sterile tweezers and scissors, drilled using disposable pellet pestles, and then transferred into 12 mL falcon tubes prefilled with 0.1 and 0.5 µm glass beads (Biospec, Bartlesville, Canada). Tubes were then rapidly submerged several times into liquid nitrogen to promote thermal cell lysis. One milliliter of RLT buffer (Qiagen, Venlo, Netherlands), 10 µL mercaptoethanol (Sigma-Aldrich), and 50 µL plant RNA isolation aid (Thermo Fisher Scientific) were then added to the tubes which were vortexed for 5 min, incubated for 5 min in ice, vortexed again for 5 min and finally centrifuged at 4,500 g. The supernatant was transferred into 2 mL tubes which were centrifuged again at 16,000 × g and the supernatant removed. A solution of 35 µL lysozyme (Qiagen), 20 µL proteinase-K (Qiagen) and 100 µL sodium-odecył-sulfate (Ambion, Bleiswijk, Netherlands) were then added to the samples which were incubated at 37°C for 10 min. Tubes were then centrifuged for 15 min and the supernatant transferred into DNA spin column (DNAeasy blood and tissue kit, Qiagen) and centrifuged to remove most of the DNA. The lysate was transferred into RNAeasy spin columns (RNAeasy Blood and Tissue kit, Qiagen) and centrifuged again at 16,000 × g. The supernatant was transferred into 2 mL tubes which were centrifuged again at 16,000 × g and the supernatant removed. A solution of 35 µL lysozyme (Qiagen), 20 µL proteinase-K (Qiagen) and 100 µL sodium-odecył-sulfate (Ambion, Bleiswijk, Netherlands) were then added to the samples which were incubated at 37°C for 10 min. Tubes were then centrifuged for 15 min and the supernatant transferred into DNA spin column (DNAeasy blood and tissue kit, Qiagen) and centrifuged to remove most of the DNA. The lysate was transferred into RNAeasy spin columns (RNAeasy mini-kit, Qiagen) and the RNA was then isolated following the instructions provided by the supplier. Traces of DNA were removed from the RNA extract using Turbo DNAase (Thermo Fisher Scientific). RNA concentration and integrity were assessed using Qubit Fluorometric Quantitation (Thermo Fisher Scientific). RNA extracts were sent to Utrecht Sequencing Facility (www.useq.nl), which was carried out with two runs on a NextSeq500 with reads of 75 bp.

Gene expression analyses
A total of 614,537,691 raw fastq reads were obtained and processed locally on a bioinformatic cluster. Low-quality reads were trimmed or removed using Trimmomatic (Bolger et al. 2014) with the maxinfo method and a minimal length of acceptable reads of 36 bp. Adapters were also removed using Trimmomatic with the Illuminaclp option. The quality of the trimmed reads was controlled with fastqc (www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads were sorted and counted using the R library Rsamtools (Morgan et al. 2017). Reads were mapped against the previously sequenced genomes of N. oceanica CCMP1779 (Vieler et al. 2012) available at Joint Genome Institute (https://genome.jgi.doe.gov/pages/search-for-genus.jsf?organism=Nanocell779) and N. gaditana B-31 (Cortegiani Carpinelli et al. 2014) downloaded from www.nannochloropsis.org. Mapping was performed using the R library GenomicFeatures (Lawrence et al. 2013), data were normalized using Deseq2 (Love et al. 2014) and a gene expression table as well as log2-fold changes with corresponding P-values corrected with the false discovery rate (Benjamini and Hochberg 1995) was obtained. Expression changes were considered significant for P-values <0.01.

Supplementary Data
Supplementary data are available at PCP online.

Funding
This research was funded by the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007–2013) ERC grant agreement [339206]. Financial support from the Netherlands Earth System Science Centre (NESSC) is provided to S.S. and J.S.S.D. The French National Research Agency supports J.L and E.M. (ANR-10-LABEX-04; ANR-11-BTBR-0008; ANR-17-EURE-0003).

Acknowledgments
We thank M. Verweij for help in lipid analyses, M. Grego for support in algal culturing, S. Vreugdenhil for help in RNA extraction, A. Abdala for assistance in bioinformatic analyses and R. Langelaan from Naturalis for help in electron microscopy. We thank Utrecht Sequencing Facility (USEQ) for providing sequencing service and data. USEQ is subsidized by the University Medical Center Utrecht, Hubrecht Institute and Utrecht University.

Disclosures
The authors have no conflicts of interest to declare.

References
Aarts, M.G.M., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z.A., Mulligan, B.J., et al. (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 12: 615–623.
Albores, A., Perin, G., Vrituolo, N., Diretto, G., Block, M., Jouhet, J., et al. (2016) Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol. 171: 2468–2482.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
Balzano, S., Lattaud, J., Villanueva, L., Rampen, S.W., Brussaard, C.P.D., van Bleiswijk, J., et al. (2018) A quest for the biological sources of long chain alkyl diols in the western tropical North Atlantic Ocean. Biogeosciences 15: 5951–5968.
Balzano, S., Villanueva, L., de Bar, M., Sinninghe Damsté, J.S. and Schouten, S. (2017) Impact of culturing conditions on the abundance and composition of long chain alkyl diols in species of the genus Nannochloropsis. Org. Geochem. 108: 9–17.
Li, X.J., Teitgen, A.M., Shirani, A., Ling, J., Busta, L., Cahoon, R.E., et al. (2018) Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat. Plants: 4: 711–720.

Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M.X., Arondel, V., Bates, P.D., et al. (2010) Acyl-lipid metabolism. Arabidopsis Book 8: e0133.

Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550.

Mao, S.Y., Zhu, X.W., Wu, N.Y., Jia, G.D., Sun, Y.G., Guan, H.X. and Wu, D.D. (2017) Alcohol compounds in Azolla imbricata and potential source implication for marine sediments. Sci. China Earth Sci. 60: 348–359.

Marin, D., Partensky, F., Vaulot, D. and Brussaard, C. (1999) Enumeration of phytoplankton, bacteria, and viruses in marine samples. In Current protocols in cytometry. Edited by Robinson, P.J. Chapter 11. John Wiley & Sons, New York.

Martínez-Roldán, A.J., Perales-Vela, H.V., Canizares-Villanueva, R.O. and Torrillo, G. (2014) Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. J. Appl. Phycol. 26: 115–121.

Mccuoid, M.R. and Hobson, L.A. (1996) Diatom resting stages. J. Phycol. 32: 889–902.

Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. (2010) A draft genome sequence of the oleaginous crop plant Lesquerella fendleri reveals a highly complex eukaryotic community in marine anoxic sediments. J. Phycol. 46: 1097–1113.

Morgan, M., Pagès, H., Obenchain, V. and Hayden, N. (2017) Raxmltools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. R package version 1.30.0. http://bioconductor.org/packages/release/bioc/html/Raxmltools.html. (September, 2018, date last accessed).

Mutlu, H. and Meier, M.A.R. (2010) Castor oil as a renewable resource for acyl-lipid metabolism. Polymer Revs. 628–637.

Poliner, E., Panchy, N., Newton, L., Wu, G.X., Lapinsky, A., Bullard, B., et al. (2016) Microalgal synthesis reveals a highly complex eukaryotic community in marine anoxic sediments: indicators for high-nutrient conditions. Geochim. Cosmochim. Acta 67: 1339–1348.

Sharma, V. and Kundu, P.P. (2006) Addition polymers from natural oils—a review. Polym. Sci. 31: 983–1008.

Shelter, E., Heimerl, N., Fichtner, M. and Sasso, S. (2015) Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics 16: 1015.

Sinninghe Damsté, J.S., Rampen, S., Irene, W., Rijpstra, C., Abbas, B., Muyzer, G., et al. (2003) A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high-nutrient conditions. Geochim. Cosmochim. Acta 67: 1339–1348.

Staunton, J. and Weissman, K.J. (2001) Polyketide biosynthesis: a millennium of natural product import. R package version 1.30.0. http://bioconductor.org/packages/release/bioc/html/Rsamtools.html. (September, 2018, date last accessed).

Triticum aestivum compounds and methyl-branched alkanes in cuticular waxes of Nannochloropsis gaditana cell wall. Eur. J. Plant Pathol. 102: 100–112.

U. C. E. S. M. O. G. R. and S. P. D. T. U. (2009) Microalgae are potential sources of C-29 sterols, C 22-C28 mid-chain hydroxy methyl alkanoates widely occurring in Quaternary marine sediments: indicators for high-nutrient conditions. Geochim. Cosmochim. Acta 67: 1339–1348.

Wu, G.X., Lapinsky, A., Bullard, B., et al. (2010) A Raxmltools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. R package version 1.30.0. http://bioconductor.org/packages/release/bioc/html/Raxmltools.html. (September, 2018, date last accessed).

Xia, J., Guan, H.X. and Wu, D.D. (2017) Alcohol compounds in Azolla imbricata and potential source implication for marine sediments. Biogeosciences 14: 227–236.

Yeates, J.R., Boyd, I., Mills, C., Duguid, J., Duguid, J. and Sherlock, J. (2009) Highthroughput sequencing reveals the presence of complex archaeal communities in the head of honey bee (Apis mellifera) involving biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem. Mol. Biol. 40: 641–649.

Yeates, J.R., Boyd, I., Mills, C., Duguid, J., Duguid, J. and Sherlock, J. (2009) Highthroughput sequencing reveals the presence of complex archaeal communities in the head of honey bee (Apis mellifera) involving biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem. Mol. Biol. 40: 641–649.

You, X.M., Cao, H., Zhang, Y. and Qiao, Y. (2015) Comparative Genome Evolutionary Genetics Analysis (C-GEA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

You, X.M., Cao, H., Zhang, Y. and Qiao, Y. (2015) Comparative Genome Evolutionary Genetics Analysis (C-GEA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

Zhu, Y., Huang, H., Jiang, P., et al. (2014) Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat. Plants: 4: 711–720.

Zhu, X.W., Wu, N.Y., Jia, G.D., Sun, Y.G., Guan, H.X. and Wu, D.D. (2017) Alcohol compounds in Azolla imbricata and potential source implication for marine sediments. Sci. China Earth Sci. 60: 348–359.

Zhu, X.W., Wu, N.Y., Jia, G.D., Sun, Y.G., Guan, H.X. and Wu, D.D. (2017) Alcohol compounds in Azolla imbricata and potential source implication for marine sediments. Sci. China Earth Sci. 60: 348–359.
Volkman, J.K., Barrett, S.M., Dunstan, G.A. and Jeffrey, S.W. (1992) C$_{30}$-C$_{32}$ Alkyl diols and unsaturated alcohols in microalgae of the class Eustigmatophyceae. Org. Geochem. 18: 131–138.

Wang, D., Ning, K., Li, J., Hu, J., Han, D., Wang, H., et al. (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet. 10: e1004094.

Wen, M., Au, J., Gniwotta, F. and Jetter, R. (2006) Very-long-chain secondary alcohols and alkanediols in cuticular waxes of Pisum sativum leaves. Phytochemistry 67: 2494–2502.

Wen, M. and Jetter, R. (2007) Very-long-chain hydroxyaldehydes from the cuticular wax of Taxus baccata needles. Phytochemistry 68: 2563–2569.

Zhang, Z. and Volkman, J.K. (2017) Algaenan structure in the microalga Nannochloropsis oculata characterized from stepwise pyrolysis. Org. Geochem. 104: 1–7.

Zhou, L., Chen, J., Xu, J.L., Li, Y., Zhou, C.X. and Yan, X.J. (2017) Change of volatile components in six microalgae with different growth phases. J. Sci. Food Agric. 97: 761–769.