Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit

Nobuko Sugimoto*, Philip Engelga*, A. Daniel Jones*,c,d, Jun Song*, and Randolph Beaudry*a,1

*Department of Horticulture, Michigan State University, East Lansing, MI 48824; bMass Spectrometry and Metabolomics Core, Research Technology Support Facility, Michigan State University, East Lansing, MI 48824; cDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824; dDepartment of Chemistry, Michigan State University, East Lansing, MI 48824; and eKentville Research and Development Center, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada

Edited by Harry J. Klee, University of Florida, Gainesville, FL, and approved December 9, 2020 (received for review June 11, 2020)

A plant pathway that initiates with the formation of citramalate from pyruvate and acetyl-CoA by citramalate synthase (CMS) is shown to contribute to the synthesis of α-ketoacids and important odor-active esters in apple (Malus × domestica) fruit. Microarray screening led to the discovery of a gene with high amino acid similarity to 2-isopropylmalate synthase (IPMS). However, functional analysis of recombinant protein revealed its substrate preference differed substantially from IPMS and was more typical of CMS. MdCMS also lacked the regulatory region present in MdIPMS and was not sensitive to feedback inhibition. 13C-acetate feeding of apple tissue labeled citramalate and α-ketoacids in a manner consistent with the presence of the citramalate pathway, labeling both straight- and branched-chain esters. Analysis of genomic DNA (gDNA) revealed the presence of two nearly identical alleles in “Jonagold” fruit (MdCMS_1 and MdCMS_2), differing by two nonsynonymous single-nucleotide polymorphisms (SNPs). The mature proteins differed only at amino acid 387, possessing either glutamine (MdCMS_1) or glutamate (MdCMS_2). Glutamate was associated with near complete loss of activity. MdCMS expression was fruit-specific, increasing severalfold during ripening. The translated protein product was detected in ripe fruit. Transient expression of MdCMS_1 in Nicotiana benthamiana induced the accumulation of high levels of citramalate, whereas MdCMS_2 did not. Domesticated apple lines with MdCMS isoforms containing only glutamate produced a very low proportion of 2-methylbutanol and 2-methylbutanoate (2MB) and 1-propanol and propanoate (PROP) esters. The citramalate pathway, previously only described in microorganisms, is shown to function in ripening apple and contribute to isoleucine and 2MB and PROP ester biosynthesis without feedback regulation.

fruit | citramalate | esters | isoleucine | ripening

Esters are aroma impact compounds produced by many fruits and contribute notably to the sensory quality of apple (Malus × domestica) fruit, accounting for 80 to 95% of the total volatiles emitted (1). The esters hexyl acetate, butyl acetate, and 2-methylbutyl acetate are abundantly produced and considered to confer typical apple aroma characteristics (2, 3), which are perceived as “fruity” and “floral.” Volatile esters produced in apple fruit are largely composed of either straight-chain (SC) or branched-chain (BC) alkyl (alcohol-derived) and alkanolate (acid-derived) groups, which typically possess one to eight carbons (1). The final step of ester formation is the condensation of an alcohol and a CoA thioester by alcohol acyltransferase (AAT) (4). Surprisingly, despite the importance of aroma in fruit consumption, the biochemistry of ester formation is poorly understood.

It has been suggested that ester precursors are produced primarily by degradative processes and that BC ester precursors, in particular, are derived from branched-chain amino acid (BCAA) degradation (5–9). In apples, isoleucine accumulates during apple fruit ripening, but valine and leucine do not (10–12). Correspondingly, esters related to isoleucine metabolism predominate, while those from valine can be detected only occasionally and usually at low levels, and no esters are produced from the leucine pathway (9, 13, 14). In plants, isoleucine is normally synthesized from threonine based on evidence for autotrophy in Nicotiana plumbaginifolia (15, 16). Threonine is deaminated to α-ketobutyrate by threonine deaminase (TD) (17), and α-ketoacetate is subsequently metabolized to α-keto-β-methylvalerate, the isoleucine precursor, by three enzymes (Fig. 1). These same three enzymes form α-ketoisovalerate from pyruvate in the synthesis pathway for valine. Leucine synthesis begins with the valine precursor α-ketoisovalerate to form the leucine precursor α-ketoisocaproate.

The final reaction in the synthesis of isoleucine, valine, and leucine involves branched-chain aminotransferase (BCAT), which catalyzes a freely reversible reaction (Fig. 1). BC esters can be produced from exogenously supplied BCAAs, but also by the application of BC α-ketoacids (α-KEAs) (6). Given that BC α-KEAs are in approximate equilibrium with their respective BCAAs (18), it may be reasonable to expect that, for apple, the pool of isoleucine roughly mirrors the pool of its respective BC α-KEA. Therefore, the accumulation of isoleucine in apples during ripening may well be an indication of the content of its precursor, α-keto-β-methylvalerate. Furthermore, α-keto-β-methylvalerate is

Significance

Fruit aroma influences herbivory and food choice by humans, ultimately affecting seed dispersal and plant reproductive success. Despite the significance of scent, our understanding of the biosynthesis of odor-active volatiles is incomplete. Herein, we detail a plant pathway that uses pyruvate and acetyl-CoA to form citramalic acid and, through a series of recursive reactions that bypass regulation at threonine deaminase, enables 1-C α-ketoacid elongation and synthesis of isoleucine and straight and branched chain esters. The initiating enzyme, citramalate synthase, is a neofunctionalized form of 2-isopropylmalate synthase that is insensitive to feedback inhibition. Engagement of the “citramalate pathway” in ripening fruit provides for an elevated and persistent production of isoleucine and volatile esters as fruit tissues ripen, age, and senesce.
ultimately the direct precursor to the BC ester 2-methylbutyl acetate, an important aroma impact compound for apple (1).

Biosynthesis of all three BCAAs is responsive to feedback regulation. TD is inhibited by isoleucine, although this inhibition is antagonized by valine; acetoacetyl-CoA synthase is principally inhibited by valine and leucine; and 2-isopropylmalate synthase (IPMS) is inhibited by leucine (19–21). Given that isoleucine biosynthesis is under feedback regulation, the explanation for the exclusive accumulation of this amino acid in ripening apple fruit is not obvious. Sugimoto et al. (12) used this evidence to propose the existence of an alternative pathway for α-ketobutyrate formation in ripening apple fruit, whose first step involves the formation of citramalate.

The citramalate pathway has been described in several strains of bacteria for isoleucine biosynthesis (22–25). In this pathway, acetyl-CoA and pyruvate are substrates for the formation of citramalate by citramalate synthase (CMS) (Fig. 1). Several bacteria form (R)-citramalate, whereas yeast and apple form (S)-citramalate (26, 27). CMS is closely related to IPMS, which belongs to an acyltransferase family (EC 2.3.3). The acyltransferase family also includes citrate synthase, homocitrate synthase, malate synthase, and methylthioalkylmalate synthase (MAM). Each differs in substrate specificity, preferring, respectively, oxaloacetate, α-ketoglutarate, glyoxylylate, α-ketoisovalerate, and various α-methylthio-α-ketoalanoates (28, 29).

In Leptospira interrogans, LiCMS (UniProtKB-Q8F3Q1) protein has a sequence similar to Mycobacterium tuberculosis MtIPMS, but unlike IPMS, its activity is specific to pyruvate as the α-KEA substrate (30, 31). In Arabidopsis, four genes in the IPMS family (IPMS1 [At1g18500], IPMS2 [At1g74040], MAM1 [At5g23010], and MAM3 [At5g23020]) have been characterized (28, 32, 33). The amino acid sequence identity is ~60% between AtIPMS and AtMAM proteins (32) and the most significant difference is the presence of an additional 130-aa sequence in the C-terminal region in AtIPMS. This domain, called the “R-region,” is involved in leucine feedback inhibition in the yeast IPMS protein (LEU4) (34). AtIPMS and LiCMS enzymes are inhibited by leucine (32) and isoleucine (35), respectively; however, the lack of the R-region in AtMAM eliminates leucine feedback inhibition (36).

CMS proteins in Methanococcus jannaschii (UniProtKB-Q58787) and L. interrogans have been characterized for their activity and specificity (30, 37). In yeast, CMS activity is evident in both Saccharomyces cerevisiae (38) and Saccharomyces carlsbergensis (26), but no nucleotide or amino acid sequence for CMS has been identified as yet in the yeast genome database. In plants, Kroumova and Wagner (39) reported the involvement of one-carbon fatty acid biosynthesis (1-C FAB) in the formation of sugar esters in some (e.g., tobacco [Nicotiana tabacum] and petunia [Petunia × hybrid]), but not all, members of the Solanaceae and suggested that an α-KEA elongation pathway initiated by the condensation of acetyl-CoA and pyruvate enables 1-C FAB. However, there has been no molecular characterization of the entry point into the pathway via CMS, for example, in these or other plant species, nor, in fact, in any eukaryote.

Although previous works have suggested that catabolic pathways are primarily responsible for ester biosynthesis (5–8), the lack of supportive molecular and biochemical data suggests that a reassessment of this conceptual model is appropriate. The objective of this work was to evaluate whether the citramalate pathway operates in specialized plant organs like apple fruit and whether it contributes to the synthesis of BC and SC esters. Herein, we identify and characterize two MtCMS alleles and their translated protein isomers, demonstrate the presence of an active citramalate pathway in apple that includes α-KEA elongation, and link these elements to ester biosynthesis. Our work...
builds upon that of Hulme (27), who originally identified citramalate from plant (apple) extracts, and confirms the hypothesis of Sugimoto et al. (12, 40) regarding the existence of a citramalate pathway in plants that, in apple, contributes to ester biosynthesis.

Materials and Methods

Isotope Feeding Study with 13C Acetic Acid. We studied the incorporation of 13C-labeled acetate (1-[13C] or 2-[13C]) into esters and other metabolites synthesized by peel discs of “Jonagold” apple fruit. Methanol was added to the incubation solution to enhance the synthesis of methyl esters, which are normally present at extremely low levels in apple fruit (40). Thus, 13C-labeled methyl esters could be considered largely as being synthesized de novo during the experimental run. The incorporation of 13C into soluble intermediates and headspace volatiles was analyzed, respectively, by liquid (LC) and gas chromatography (GC) coupled with mass spectrometry (MS) as described in SI Appendix, Materials and Methods. Isotopologs of headspace volatiles and soluble acids were quantified by integrating chromatogram peaks for molecular or unique ions. Mass isotopolog (M+1 to M+5) enrichment was calculated relative to the unlabeled mass fraction (M).

Developmental Changes in MdCMS, MdIPMS, and MdIPMS2 Expression and Citramalate Content. To determine the developmental patterns of gene expression and citramalate content, eight developmental stages of Jonagold apple fruit were selected. Developmental stages represent multiple time points from the early preclimacteric through ripening and senescence over a period of 13 d at 20°C at uniform temperature as described (40) and further detailed in SI Appendix, Materials and Methods. Plant material, volatile and metabolite analysis, RNA isolation, and microarray printing, design, labeling, and statistical analysis. For each developmental stage, 20 apples were randomly chosen and their internal ethylene content was used to calculate the relative unlabeled mass fraction (MR). The expected position of the isotopic carbon from labeled acetate in the various compounds of interest is predicted in the proposed pathway (Fig. 1).

Determination of mRNA transcript levels by RT-PCR. The expression of MdCMS (a mixture of alleles MdCMS_1 and _2), MdIPMS1, MdIPMS2, and 18S ribosomal RNA (18S rRNA) was measured on fruit, leaf, root, and stem tissues from Jonagold apple trees using semiquantitative RT-PCR analysis as described in SI Appendix, Materials and Methods using primers listed in SI Appendix, Table S1.

Citramalate and 2-isopropylmalate analysis. Citramalate and 2-isopropylmalate content was determined for fruit skin tissues using a MS (Quattro Premier XE; Waters Corporation) coupled to an ultraperformance LC (Acquity; Waters Corporation). MS and chromatographic identification and quantification protocols identical to those previously published (40). Data were collected and analyzed with proprietary software (Masslynx 4.1 and Quan Lynx; Waters).

Identification of MdCMS Protein In Situ. Purified recombinant MdCMS_1 and -2 protein sequences lacking predicted plastochloroplast targeting peptides were used as a query for tblastn searches against Rosaceae nucleotide databases (https://www.rosaceae.org/). Default parameters were used: e-value thresholds: 0.001; word size: 3; max matches in a query range: 0; scoring matrix: PAM30; gap costs: existence:7 extension:2. Results are listed in SI Appendix, Table S5.

Identification of IPMS and CMS in Rosaceae. MdCMS_1 and -2 protein sequences were used to search for homologs in Rosaceae databases (https://www.rosaceae.org/). Default parameters were used: e-value thresholds: 0.001; word size: 3; max matches in a query range: 0; scoring matrix: PAM30; gap costs: existence:7 extension:2. Results are listed in SI Appendix, Table S5.

Identification of MdCMS Protein In Situ. Purified recombinant MdCMS_1 protein was separated using two-dimensional (2D) electrophoresisSDS-PAGE, and fragment peptides from MdCMS_1 were identified by a quadrupole time-of-flight LC/MS instrument (XeVo; Waters). To confirm the presence of MdCMS protein in apple fruit, MdCMS protein fragments were sought in protein preparations from ripening “Golden Delicious” (Malus × domestica ‘Borkh.’) apple fruit. The detailed protein preparations and identification procedures are described in SI Appendix, Materials and Methods.

Protein Sequence Alignment and Phylogenetic Tree. Protein sequence alignment and phylogenetic tree were developed for CMS and IPMS as they related to bacterial CMS and eukaryotic IPMS and MAM. Additional protein sequence comparisons were also performed for CMS and IPMS in members of the Rosaceae family. Procedures for analyses are described in SI Appendix, Materials and Methods.

Results

13C-Acetate Feeding. Previous work in plant and nonplant systems (22–24, 41–45) was used to predict differential labeling of citramalate and other metabolites in the citramalate pathway from 1-[13C]C, 2-[13C]C, and 1,2-[13C2]-acetate feeding (Fig. 1). Consistent

Sugimoto et al.

Citramalate synthesis yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit
with the proposed pathway, the labeled carbon from 13C-labeled acetate was incorporated into citramalate, citraconate, isoleucine, 2-ethylmalate, 2-propylmalate (and/or 2-isopropylmalate), 1-propanol, 1-propanol, methyl propanoate, methyl 2-methylbutanoate, and 2-methylbutanol (Fig. 2). Citramalate was distinguishable from 2-hydroxyglutarate as a derivatized analyte based on retention times, bp 117 and bp 2488, yielding shifts from leucine36 and glutamate387 of MdCMS_1 to, respectively, proline36 and glutamate387. Experiments were repeated two to three times for each substrate/enzyme combination.

The absorbance was corrected by subtracting the background of the identical enzyme assay mixture without α-ketoacids. Experiments were repeated two to three times for each substrate/enzyme combination.

The 13C-acetate enrichment of M+1 and M+2 in threonine was not reflective of the isoleucine labeling pattern, suggesting that the citramalate pathway, rather than threonine deamination, dominates in the formation of isoleucine in ripening apple (SI Appendix, Fig. S2).

Table 1. Activity of citramalate synthase (MdCMS_1 and MdCMS_2) and 2-isopropylmalate synthase (MdIPMS1 and 2) proteins and activity relative to use of pyruvate (pyr) as a substrate under saturating substrate conditions using the DTNB endpoint assays described in SI Appendix, Materials and Methods

Substrate	MdCMS_1 activity μmol-min⁻¹·g⁻¹	Relative to pyr, %	MdCMS_2 activity μmol-min⁻¹·g⁻¹	Relative to pyr, %	MdIPMS1 activity μmol-min⁻¹·g⁻¹	Relative to pyr, %	MdIPMS2 activity μmol-min⁻¹·g⁻¹	Relative to pyr, %
α-Ketoisovalerate	32 ± 22	12	1.7 ± 1.3	6	824 ± 247	8,810	617 ± 47	9,720
α-Ketoisocaproate	1.8 ± 2.6	1	2.0 ± 2.8	7	1 ± 1.0	13	2.3 ± 3.2	20
α-Ketoisocaproate	0.0	0	1.9 ± 2.4	6	6 ± 1.6	77	2.3 ± 3.2	20
α-Ketoisocaproate	6.4 ± 9	2	1.7 ± 2.4	6	6 ± 8.9	113	2.3 ± 3.2	20
Oxaloacetate	89 ± 41	35	8.2 ± 1.5	27	9 ± 0.8	104	15.9 ± 0.0	245
Glyoxalate	1.8 ± 2.6	1	0.7 ± 0.9	2	8 ± 5.4	73	0.0	0
α-Ketoisocaproate	0.0	0	1.7 ± 2.4	6	1 ± 1.7	7	1.1 ± 1.6	10
α-Ketoisocaproate	0.0	0	0.0	0	10 ± 2.4	111	0.0	0
pyruvate	245 ± 82	100	30.1 ± 1.2	100	11 ± 7.7	100	8.0 ± 4.8	100

The absorbance was corrected by subtracting the background of the identical enzyme assay mixture without α-ketoacids.

The 13C-containing enrichment of M+1 and M+2 in threonine was not reflective of the isoleucine labeling pattern, suggesting that the citramalate pathway, rather than threonine deamination, dominates in the formation of isoleucine in ripening apple (SI Appendix, Fig. S2).

Metabolite Analysis and CMS Gene Expression. Citramalate content increased during ripening as the internal ethylene content rose above 0.1 μL·L⁻¹ on day 25 (40) and paralleled increases in 2MB and PROP esters and isoleucine content (Fig. 3). Citramalate content was very low in unripe fruit and began to increase on day 25, increasing about 120-fold as ripening progressed. Citramalate levels remained high even during senescence.

MdCMS, initially annotated as IPMS, was highly expressed following the onset of fruit ripening based on microarray analysis (Fig. 3). Since leucine does not increase in ripening apple fruit (12), a large increase in IPMS expression was contraindicated. Therefore, we hypothesized that the annotation-based identification of IPMS was incorrect and that the protein may, in fact, be CMS. This interpretation had the potential to explain both isoleucine and citramalate accumulation in apple (40). The expression of MdCMS first increased on day 25, increasing further during ripening and remaining high during senescence. Semi-quantitative RT-PCR analysis for MdCMS yielded an expression pattern similar to that found via microarray (SI Appendix, Fig. S3) and demonstrated that MdCMS was primarily expressed in ripening fruit (SI Appendix, Fig. S4). MdIPMS1 and MdIPMS2 differed from MdCMS in that MdIPMS1 and 2 expression in fruit was relatively constant from days 0 to 70. Expression of MdCMS increased with ripening in apple lines having high and low production of BC esters (SI Appendix, Fig. S5), suggesting that MdCMS expression alone was not responsible for the differences in ester phenotype.

MdCMS and MdIPMS Sequence Analysis. Genomic sequence analysis of MdCMS revealed a total of eight introns within the ORF (SI Appendix, Fig. S6). Two MdCMS alleles were identified in Jonagold based on differences in length at the fourth intron and two SNPs in the coding region. The fourth intron length for MdCMS_1 was 224 bp and for MdCMS_2 was 101 bp. The MdCMS_1 and MdCMS_2 ORF nucleotide sequences differed at only two positions, bp 117 and bp 2488, yielding shifts from leucine206 and glutamine857 of MdCMS_1 to, respectively, proline46 and glutamate46.
The inferred coding sequences of MdCMS\textsubscript{1} and \textsubscript{2} were 1,422 bp, about 280 bp shorter than Arabidopsis MAM genes (28). MdCMS had about 60\% similarity with AtIPMS\textsubscript{1} and \textsubscript{2} and AtMAM\textsubscript{1} and \textsubscript{3} based on BLASTp analysis.

The two IPMS genes, MdIPMS\textsubscript{1} and MdIPMS\textsubscript{2}, had coding sequences of 1,890 and 1,905 bp, respectively (SI Appendix, Fig. S8). These sequences were similar to those of the corresponding Arabidopsis IPMS genes, which are about 2,000 bp in length and had 93\% nucleotide sequence similarity. The predicted IPMS protein sequences were only about 65\% similar to MdCMS.

Alignment of MdCMS\textsubscript{1} and the two MdIPMS proteins with a selection of characterized plant IPMS and MAM, and LiCMS proteins revealed two shared domains containing motifs of GxGERxG and HxH[D,N]D (SI Appendix, Fig. S7). The MdCMS and the MdIPMS proteins also contained chloroplast-targeting regions. MdIPMS\textsubscript{1} and \textsubscript{2}, like AtIPMS and LiCMS, contained an R-region reported to confer feedback inhibition by, respectively, leucine and isoleucine (32, 34, 35). However, MdCMS\textsubscript{1} was shorter than MdIPMS\textsubscript{1} and \textsubscript{2} by ~150 aa as it lacked the sequence corresponding to the R-region. The R-region is also lacking in AtMAMs and SiIPMS3 proteins and its omission is responsible for a lack of feedback regulation in those enzymes (29, 36). This feature likely explains the lack of inhibition by BCAAs on purified MdCMS\textsubscript{1} preparations (see below).

Phylogenetic tree analysis of the AA sequences sans organelle targeting and R regions showed that MdCMS clustered with the predicted pear (Pyrus communis) CMS, but was outside the plant IPMS and MAM clusters, and distant from microbial IPMS and CMS clusters (SI Appendix, Fig. S9). Within the Rosaceae family, close matches for MdCMS were only found in Pyrus species and in MdCMS\textsubscript{2} (SI Appendix, Figs. S6 and S7).

The inferred coding sequences of MdCMS\textsubscript{1} and \textsubscript{2} were 1,422 bp, about 280 bp shorter than Arabidopsis MAM genes (28). MdCMS had about 60\% similarity with AtIPMS\textsubscript{1} and \textsubscript{2} and AtMAM\textsubscript{1} and \textsubscript{3} based on BLASTp analysis.

The two IPMS genes, MdIPMS\textsubscript{1} and MdIPMS\textsubscript{2}, had coding sequences of 1,890 and 1,905 bp, respectively (SI Appendix, Fig. S8). These sequences were similar to those of the corresponding Arabidopsis IPMS genes, which are about 2,000 bp in length and had 93\% nucleotide sequence similarity. The predicted IPMS protein sequences were only about 65\% similar to MdCMS.

Alignment of MdCMS\textsubscript{1} and the two MdIPMS proteins with a selection of characterized plant IPMS and MAM, and LiCMS proteins revealed two shared domains containing motifs of GxGERxG and HxH[D,N]D (SI Appendix, Fig. S7). The MdCMS and the MdIPMS proteins also contained chloroplast-targeting regions. MdIPMS\textsubscript{1} and \textsubscript{2}, like AtIPMS and LiCMS, contained an R-region reported to confer feedback inhibition by, respectively, leucine and isoleucine (32, 34, 35). However, MdCMS\textsubscript{1} was shorter than MdIPMS\textsubscript{1} and \textsubscript{2} by ~150 aa as it lacked the sequence corresponding to the R-region. The R-region is also lacking in AtMAMs and SiIPMS3 proteins and its omission is responsible for a lack of feedback regulation in those enzymes (29, 36). This feature likely explains the lack of inhibition by BCAAs on purified MdCMS\textsubscript{1} preparations (see below).

Phylogenetic tree analysis of the AA sequences sans organelle targeting and R regions showed that MdCMS clustered with the predicted pear (Pyrus communis) CMS, but was outside the plant IPMS and MAM clusters, and distant from microbial IPMS and CMS clusters (SI Appendix, Fig. S9). Within the Rosaceae family, close matches for MdCMS were only found in Pyrus species and

in MdCMS\textsubscript{2} (SI Appendix, Figs. S6 and S7). The inferred coding sequences of MdCMS\textsubscript{1} and \textsubscript{2} were 1,422 bp, about 280 bp shorter than Arabidopsis MAM genes (28). MdCMS had about 60\% similarity with AtIPMS\textsubscript{1} and \textsubscript{2} and AtMAM\textsubscript{1} and \textsubscript{3} based on BLASTp analysis.

The two IPMS genes, MdIPMS\textsubscript{1} and MdIPMS\textsubscript{2}, had coding sequences of 1,890 and 1,905 bp, respectively (SI Appendix, Fig. S8). These sequences were similar to those of the corresponding Arabidopsis IPMS genes, which are about 2,000 bp in length and had 93\% nucleotide sequence similarity. The predicted IPMS protein sequences were only about 65\% similar to MdCMS.

Alignment of MdCMS\textsubscript{1} and the two MdIPMS proteins with a selection of characterized plant IPMS and MAM, and LiCMS proteins revealed two shared domains containing motifs of GxGERxG and HxH[D,N]D (SI Appendix, Fig. S7). The MdCMS and the MdIPMS proteins also contained chloroplast-targeting regions. MdIPMS\textsubscript{1} and \textsubscript{2}, like AtIPMS and LiCMS, contained an R-region reported to confer feedback inhibition by, respectively, leucine and isoleucine (32, 34, 35). However, MdCMS\textsubscript{1} was shorter than MdIPMS\textsubscript{1} and \textsubscript{2} by ~150 aa as it lacked the sequence corresponding to the R-region. The R-region is also lacking in AtMAMs and SiIPMS3 proteins and its omission is responsible for a lack of feedback regulation in those enzymes (29, 36). This feature likely explains the lack of inhibition by BCAAs on purified MdCMS\textsubscript{1} preparations (see below).

Phylogenetic tree analysis of the AA sequences sans organelle targeting and R regions showed that MdCMS clustered with the predicted pear (Pyrus communis) CMS, but was outside the plant IPMS and MAM clusters, and distant from microbial IPMS and CMS clusters (SI Appendix, Fig. S9). Within the Rosaceae family, close matches for MdCMS were only found in Pyrus species and

in MdCMS\textsubscript{2} (SI Appendix, Figs. S6 and S7). The inferred coding sequences of MdCMS\textsubscript{1} and \textsubscript{2} were 1,422 bp, about 280 bp shorter than Arabidopsis MAM genes (28). MdCMS had about 60\% similarity with AtIPMS\textsubscript{1} and \textsubscript{2} and AtMAM\textsubscript{1} and \textsubscript{3} based on BLASTp analysis.

The two IPMS genes, MdIPMS\textsubscript{1} and MdIPMS\textsubscript{2}, had coding sequences of 1,890 and 1,905 bp, respectively (SI Appendix, Fig. S8). These sequences were similar to those of the corresponding Arabidopsis IPMS genes, which are about 2,000 bp in length and had 93\% nucleotide sequence similarity. The predicted IPMS protein sequences were only about 65\% similar to MdCMS.

Alignment of MdCMS\textsubscript{1} and the two MdIPMS proteins with a selection of characterized plant IPMS and MAM, and LiCMS proteins revealed two shared domains containing motifs of GxGERxG and HxH[D,N]D (SI Appendix, Fig. S7). The MdCMS and the MdIPMS proteins also contained chloroplast-targeting regions. MdIPMS\textsubscript{1} and \textsubscript{2}, like AtIPMS and LiCMS, contained an R-region reported to confer feedback inhibition by, respectively, leucine and isoleucine (32, 34, 35). However, MdCMS\textsubscript{1} was shorter than MdIPMS\textsubscript{1} and \textsubscript{2} by ~150 aa as it lacked the sequence corresponding to the R-region. The R-region is also lacking in AtMAMs and SiIPMS3 proteins and its omission is responsible for a lack of feedback regulation in those enzymes (29, 36). This feature likely explains the lack of inhibition by BCAAs on purified MdCMS\textsubscript{1} preparations (see below).

Phylogenetic tree analysis of the AA sequences sans organelle targeting and R regions showed that MdCMS clustered with the predicted pear (Pyrus communis) CMS, but was outside the plant IPMS and MAM clusters, and distant from microbial IPMS and CMS clusters (SI Appendix, Fig. S9). Within the Rosaceae family, close matches for MdCMS were only found in Pyrus species and
not for the more distantly related cherry (Prunus avium), apricot (Prunus armeniaca), peach (Prunus persica), strawberry (Fragaria x ananassa), raspberry (Rubus occidentalis), and rose (Rosa chinensis) (SI Appendix, Table S5).

MdCMS Allelic Composition and Association with Volatile Profile. Sanger sequencing of MdCMS-specific PCR products for 99 domesticated apple lines revealed clear indications of G, mixed G and C, or C at base 2488. Respectively, this reflected MdCMS isoforms having only glutamine\(^{387}\) (homozygous MdCMS_1), both glutamine\(^{387}\) and glutamate\(^{387}\) (homozygous MdCMS_1 and 2), or only glutamate\(^{387}\) (homozygous MdCMS_2). Of the accessions tested, 56 lines were homozygous for glutamine\(^{387}\), 36 were heterozygous, and 6 lines were homozygous for glutamate\(^{387}\) (SI Appendix, germplasm_genotype_BCester.xls). Those lines possessing only isoforms with glutamate\(^{387}\) produced a much lower proportion of 2MB and PROP esters, suggesting that this allele has low or no in vivo activity (Fig. 4).

MdCMS and MdIPMS Protein Characterization. Full-length MdCMS_1 and 2 proteins with chloroplast target peptides, and MdIPMS1 and 2 proteins without chloroplast targeting regions were used for enzymatic assays as noted in SI Appendix, Materials and Methods. Predicted MdCMS and MdIPMS protein sizes of 52 and 62 kDa, respectively, were confirmed with SDS-PAGE gel analysis (SI Appendix, Fig. S10). The products of the enzyme assays for MdCMS_1 with pyruvate and MdIPMS1 with α-ketoisovalerate were verified to be citramalate and 2-isopropylmalate, respectively (SI Appendix, Fig. S11).

In endpoint DTNB assays with 12 different α-ketoacids, MdCMS_1 had the highest level of activity with α-ketoisobutyrate and pyruvate, the first two steps in the citramalate pathway (Table 1). This result is different from that observed for bacterial CMS proteins, which were essentially pyruvate-specific and did not have much activity with other α-KEAs tested (i.e., α-ketoisovalerate, α-ketoisobutyrate, and glyoxylate) (30, 31, 37). MdCMS_2 had very low overall activity and, while being highly specific for pyruvate, it had essentially no activity with other α-ketoacids evaluated, suggesting that it may not contribute to the formation of citramalate in vivo. MdIPMS1 and 2 had the highest activities with α-ketoisovalerate, α-ketoisobutyrate, and α-ketoisobutyrate and had relatively low activity with pyruvate. When activity with pyruvate was used as a reference for comparing substrate preferences, the activity of MdIPMS1 and 2 for their favored substrate (α-ketoisovalerate) was roughly 9,000% that of pyruvate. The substrate preference for the two apple IPMS proteins was similar to IPMS from other species, but tended to have a lower relative activity with pyruvate (32, 47–51).

The enzyme kinetics of MdCMS_1 differed somewhat from CMS from nonplant organisms (MdCMS_2 was excluded from kinetic analysis due to its low level of activity). The \(K_m\) of MdCMS_1 for pyruvate (2446 \(\mu\)M) was much higher than for previously reported bacterial CMS enzymes (31, 37). The \(K_m\) of MdCMS_1 for acetyl-CoA was lower when pyruvate, rather than α-ketoisobutyrate, was used as a cosubstrate (Table 2). The \(K_m\) values of MdCMS_1 and the two MdIPMS proteins for acetyl-CoA were relatively similar when α-ketoisobutyrate was the cosubstrate; however, MdCMS_1 had a lower \(K_m\) for α-ketoisobutyrate than either MdIPMS1 or 2. The two MdIPMS proteins had low \(K_m\) values for α-ketoisovalerate, and are highly specific for this substrate based on their catalytic efficiency, consistent with previous findings (32, 47–51). The \(V_{\text{max}}\) of the reactions using α-ketoisobutyrate was similar for all three proteins, but those of the namesake reactions differed as much as fourfold from one another, with the \(V_{\text{max}}\) of MdCMS_1 with pyruvate being lowest. The enzymatic efficiency of the three proteins was similar for α-ketoisobutyrate; however, MdCMS_1 had a relatively low enzyme efficiency with pyruvate compared to the efficiencies of the reaction of MdIPMS1 and 2 with α-ketoisovalerate.

The optimum pH range for MdCMS_1 activity was 9.0 to 9.5 and for the two MdIPMS proteins was between 8.0 and 9.0 (SI Appendix, Fig. S12). The activity of MdCMS_1 and MdIPMS enzymes was very low at pH 6.0, but gradually increased until pH 8.0 to 9.0, and then decreased sharply above pH 10.0.

BCAA metabolism is typically regulated by feedback inhibition of the end product amino acid (19–21). However, none of the three BCAAs inhibited MdCMS_1 activity (Fig. 5). Interestingly, low threonine concentrations slightly stimulated MdCMS_1 activity and high threonine levels inhibited activity substantially (~50%). This has not been reported for CMS in bacteria. The presence of as little as 0.05 mM leucine reduced MdIPMS1 and MdIPMS2 activities by 40% and 70%, respectively, and activity further decreased with increasing leucine concentration. MdIPMS2 was somewhat more strongly inhibited by leucine than was MdIPMS1. The concentration of leucine needed to achieve maximal inhibition of MdIPMS (0.10 to 0.3 mM) was similar to that for Neurospora (50) and yeast (48), but lower than that for Arabidopsis, which was maximally inhibited at 1 mM leucine (32). The activity of the two MdIPMS proteins was also inhibited by high concentrations of isoleucine and valine, decreasing 60 to 75%, whereas MdCMS_1 activity was not influenced. The inhibitory effect of high levels of valine and isoleucine on MdIPMS activity is also consistent with microbial IPMS enzymes (48, 50). Additionally, both MdIPMS proteins were inhibited by elevated levels of threonine, a finding not previously reported in plants or microorganisms (52). Unlike MdCMS_1, the activities of MdIPMS1 and 2 were not stimulated by low threonine concentrations.

Transient expression of MdCMS_1 and MdIPMS1 and 2 proteins fused with YFP in tobacco indicated that these proteins are targeted to chloroplasts (SI Appendix, Fig. S13). This is consistent with previous reports for IPMS (53) from spinach (Spinacia oleracea) and AtMAM3 (33).

Transient expression of MdCMS_1 in N. benthamiana resulted in the production of very high levels of citramalate, but MdCMS_2

Fig. 4. Ratio of 2-methylbutyl and 2-methylbutanoate (2MB) (Left) and propyl and propanoate (PROP) (Right) ester moieties to straight-chain (SC) ester moieties for 99 apple lines classed according to the identity of amino acid 387 (AA387) for the two MdCMS isoforms, where glutamine\(^{387}\) (Q) is indicative of the functional MdCMS_1 and glutamate\(^{387}\) (E) is indicative of the nonfunctional MdCMS_2. SC esters are the sum of all alkyl and alkanoate ester elements having four or six carbons arranged in a SC. Significant differences between means (\(P < 0.05\), least significance difference [LSD]) are denoted by different letters above the SNP designation.
did not enhance citramalate accumulation over native levels (Fig. 6). MdIPMS2 expression led to the accumulation of 1/10th the amount of citramalate compared to MdCMS_2, reflective of its low activity with pyruvate. None of the enzymes impacted threonine, isoleucine, leucine, or valine levels (SI Appendix, Fig. S14).

We attempted to complement a yeast strain lacking the ability to synthesize isoleucine. TD was deleted in the strain YMRX-3B, which lacks LEU4 and LEU9, generating a triple-knockout YMRX-3B-TD that should have no citramalate synthase activity associated with IPMS. Unfortunately, the triple-knockout strain grew on the selective media, which lacked isoleucine, and underlined, yielding four peptides identical to MdCMS_1 fragments and the viability associated with IPMS. Unfortunately, the triple-knockout strain grew on the selective media, which lacked isoleucine, and underlined, yielding four peptides identical to MdCMS_1 fragments and the triplet knockdown strain on the selective media, which lacked isoleucine, likely indicating that yeast has an additional pathway to synthesize isoleucine without the requirement of threonine.

Evidence for MdCMS_1 Translation in Apple Fruit. Two-dimensional gels of His tag purified MdCMS_1 products from *E. coli* yielded several spots with molecular mass consistent with MdCMS_1 when stained with Sypro Ruby (SI Appendix, Fig. S15). LC-MS/MS analysis of peptide fragments from indicated spots yielded sequences identical to predicted protein sequences for MdCMS_1 (SI Appendix, Table S6). Protein preparations from apple fruit yielded four peptides identical to MdCMS_1 fragments and the known CMS sequence (SI Appendix, Table S7, and highlighted and underlined, SI Appendix, Fig. S7). The detection of MdCMS protein in ripening apple confirmed that MdCMS is translated.

Discussion

Following its discovery in apple (41), citramalate has been detected in pear, banana (*Musa acuminate*), citrus (*Citrus sinensis, Citrus limon, Citrus limettioideas, Citrus paradisi × Citrus reticulata, Citrus paradisi*), tomato (*Solanum lycopersicum*), sugarcane (*Beta vulgaris*), soybean (*Glycine max, Glycine soja*), Arabidopsis *thaliana* (54–61), and, in this paper, *N. benthamiana*. While several possible functions have been proposed for this compound, no role or roles have been demonstrated conclusively (54, 58, 62). Our study reveals a pathway for its formation and utilization as a precursor to isoleucine and aroma-active esters in ripening apple fruit.

The pattern and amount of citramalate accumulation in this study were similar to the findings of Hulme and Wootton (63). Concomitant increases in isoleucine, MdCMS expression, and PROP and 2MB esters, suggest a coordinated developmental process. In that apple ripening is entirely dependent upon ethylene action (10), it is likely that the induction of *MdCMS* and citramalate accumulation as they relate to ester biosynthesis are similarly ethylene dependent.

13C-Acetate Feeding. The isotope enrichment pattern in response to 13C-acetate feeding of apple skin discs showed no evidence of dilution of 13C enrichment in the presumptive pathway connecting citramalate, crotonate, 2-ethylmalic acid, isoleucine, propanol, propanal, D-methyl propionate, and methyl 2-methyl butanoate, suggesting that this pathway may be the primary route of PROP and 2MB ester synthesis for some apple lines. This assertion is supported by the finding of Sugimoto et al. (40), who found isoleucine and PROP and 2MB ester production greatly diminished in apple lines having no increase in citramalate during ripening. The lack of label dilution in this study, in concert with previous findings of declining threonine with fruit ripening (12), argues against threonine as the primary substrate for the ripening-related increase in isoleucine and propyl and 2MB esters. Furthermore, if the label from the 1,2-[13C2] acetate feeding studies were via threonine, which originates from aspartate, it would yield a gain of more than two mass units for isoleucine (64).

Isoleucine Metabolism. The existence of a citramalate pathway, bypassing threonine metabolism in ripening apple, would explain why isoleucine levels can increase markedly as threonine content decreases ~90% during apple fruit ripening (10–12, 40). Normally, isoleucine inhibits its own synthesis via feedback inhibition of TD (21), which can cause an accumulation of threonine (65). The possibility of ripening-specific expression of a novel TD isozyme, insensitive to feedback inhibition, was considered. In this case, the threonine level might be expected to increase to support the observed accumulation of isoleucine. However, as noted previously, threonine levels declined during ripening (12). The labeling data, taken in conjunction with these findings, support the suggestion that synthesis of isoleucine and its derivative esters may be accomplished in part or in whole via a feedback-insensitive citramalate pathway that bypasses threonine in the synthesis of α-ketobutyrate.

The relative contributions of the TD- and CMS-dependent pathways to total α-ketobutyrate synthesis are as yet unknown.

Table 2. Kinetic parameters for citramalate synthase (MdCMS_1) and 2-isopropylmalate synthase (MdIPMS) using DTNB endpoint assay as described in SI Appendix, Materials and Methods

Enzyme	Substrate	$K_m \pm SE$, μM	$V_{max} \pm SE$, μmol-min⁻¹-g⁻¹	$k_{cat} \pm SE$, s⁻¹	$k_{cat}/K_m \pm SE$, M⁻¹-s⁻¹
MdCMS_1	Pyruvate	2,446 ± 187	259 ± 27	0.22 ± 0.02	92 ± 3
	Acetyl-CoA	6.6 ± 0.9	383 ± 36	0.33 ± 0.03	53,169 ± 10,928
	α-Ketobutyrate	3,559 ± 509	447 ± 214	0.39 ± 0.18	104 ± 37
	Acetyl-CoA	11.3 ± 0.2	576 ± 75	0.50 ± 0.06	43,917 ± 4,796
MdIPMS1	α-Ketoisovalerate	1,004 ± 44	1,059 ± 313	1.09 ± 0.32	1,106 ± 371
	Acetyl-CoA	9.0 ± 1.9	900 ± 214	0.93 ± 0.22	102,341 ± 7,298
	α-Ketobutyrate	5,734 ± 796	478 ± 140	0.49 ± 0.14	82 ± 12
	Acetyl-CoA	13.5 ± 1.6	288 ± 37	0.30 ± 0.03	22,083 ± 243
MdIPMS2	α-Ketoisovalerate	706 ± 39	748 ± 89	0.77 ± 0.09	1,093 ± 91
	Acetyl-CoA	8.6 ± 1.0	742 ± 90	0.77 ± 0.09	90,742 ± 9,753
	α-Ketobutyrate	6,287 ± 562	544 ± 19	0.56 ± 0.02	91 ± 11
	Acetyl-CoA	10.4 ± 1.7	362 ± 61	0.37 ± 0.06	37,143 ± 6,932

Absorbance was corrected by subtracting the background of the identical enzyme assay mixture without α-ketocids. K_m and V_{max} were determined by regression analysis of the Lineweaver–Burke plots for each substrate. There were two to three replications performed for each regression analysis.

*In the presence of saturating (10 mM) pyruvate.

†In the presence of saturating (10 mM) α-ketobutyrate.

‡In the presence of saturating (5 mM) α-ketobutyrate.

https://doi.org/10.1073/pnas.2009988118
Likely, the feedback-sensitive TD pathway would meet metabolic needs associated with homeostatic plant metabolism, whereas the citramalate pathway may be more dedicated to specialized biochemistry. In this case, that would include the production of volatile metabolites at the end of life of a specialized plant reproductive organ to promote herbivory and subsequent seed dispersal (66).

The citramalate pathway, as described here, may be restricted to members of Maleae (e.g., *Malus* and *Pyrus*), since putative CMS genes were found in these and not other genera of Rosaceae. The evidence for a relatively recent genome duplication event in the Maleae tribe (67) may have provided an opportunity for specialization of IPMS. There are several instances of the development of specialized members of the IPMS family, at least two of which, MAM and IPMS3, include loss of a regulatory domain like MdCMS (28, 29, 33). Interestingly, in these instances, specialization takes the form of differing substrate preferences, producing glucosinolates in Brassicaceae (28, 33) and acylsugars in Solanaceae (29). In a study of *E. coli* IPMS (LeuA), Marcheschi et al. (68) identified four residues in the substrate binding pocket as important in size specificity. While these four residues are perfectly conserved in all 15 canonical IPMS proteins investigated (*SI Appendix*, Fig. S9), either three or four of the amino acids are altered in plant CMS and MAM proteins. In the case of MdCMS, all four have been modified (*SI Appendix*, Fig. S7).

Enzyme Activity. The high activity of MdCMS_1 for pyruvate and the relatively low activity of IPMS1 and 2 for this substrate suggest that MdCMS_1 provides the entry point for carbon into the citramalate pathway. Nevertheless, the fact that MdCMS_1 and MdIPMS1 and 2 have relatively high levels of activity with α-ketobutyrate and α-ketovalerate suggests that both MdCMS and MdIPMS can carry out the chain-elongation steps in the α-KEA pathway beyond α-ketobutyrate. Label incorporation from [13C]acetate into 2-ethylmalate and 2-propylmalate in this study indicates some level of 1-C elongation of α-KEAs takes place in apple. Evaluation of the α-KEA elongation pathway in yeast demonstrated that α-ketobutyrate contributes to the production of 1-propanol, 1-butanol, and 1-pentanol via this pathway (69–71). Furthermore, in a bacterial system, the introduction of CMS activity markedly altered the metabolic profile. Transformation of *E. coli* with *CimA* from *Methanococcus jannaschii* enhanced 1-propanol and 1-butanol production via α-ketobutyrate by 9- and 22-fold, respectively (45).

The slightly higher catalytic efficiency of MdCMS_1 for α-ketobutyrate compared to pyruvate in apple stands in contrast to bacteria. Bacterial CMS has a relatively high specificity for pyruvate, perhaps reflecting the fact that isoleucine is synthesized exclusively via citramalate pathway in bacterial systems (72). The relatively high *K_m* that MdCMS_1 has for pyruvate is curious. Reports of pyruvate levels in apple tissues are few; “Cox’s Orange Pippin” apple fruit extract was reported to...
Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit.

Conclusion
The physiological, molecular, metabolic, enzymatic, isotopic, transgenic, and proteomic evidence presented here uniformly and consistently demonstrate the presence of a citramalate pathway in plants and extend previous work by Sugimoto et al. (12) regarding existence of this pathway in plants and extend previous work by Krounova et al. (76) to include the entry point into the 1-C α-KEA elongation pathway and further link this pathway to aroma formation. The citramalate pathway uses pyruvate and acetyl-CoA, products of primary metabolism, in a developmentally dependent synthetic process that is not feedback regulated. This is in contrast to previous assertions that ester biosynthesis is largely catabolic in nature. The implication is that this specialized plant organ, destined to senesce, need not catabolize existing cellular components (e.g., cell membranes) to engage in the aromatic “invitation to herbivory” that is intended to bring about consumption and seed dispersal.

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. A.D.J. acknowledges support from the US Department of Agriculture National Institute of Food and Agriculture, Hatch Project MICO2143 and NSF Grant DBI-0619489 for the purchase of the Orbit Premier LC/MS/MS instrument. N.S. acknowledges Dr. Jonathan Gershenzon from the Max Planck Institute for sharing his characterized clones of AtIPMS1 and 2 for our study. P.E. acknowledges the assistance of Dr. Cornelius Barry in developing transient expression assays. J.S. acknowledges Ms. Leslie Campbell Palmer for her technical assistance on proteomic analysis and support from Agriculture and Agri-Food Canada for funding by the A-Base research project (RPI 197). R.B. acknowledges support from Michigan AgBioResearch.

1. N. M. M. Paillard, “The flavour of apples, pears and quinces” in Food Flavours, Part C, The Flavour of Fruits, I. D. Morton, A. J. Macleod, Eds. (Elsevier, Amsterdam, The Netherlands, 1990), pp. 1–41.

2. P. S. Dimick, J. C. Hoskin, Review of apple flavor—state of the art. Crit. Rev. Food Sci. Nutr. 18, 387–409 (1988).

3. J. K. Fellman, T. W. Miller, D. S. Mattinson, J. P. Matthies, Factors that influence bio synthesis of volatile flavor compounds in apple fruits. HortScience 35, 1026–1033 (2000).

4. Y. Ueda, K. Ogata, Coenzyme A-dependent esterification of alcohols and acids in separated cells of banana pulp and its homogenate. Nippon Shokuhin Kagaku Kaishi 24, 624–630 (1973).

5. S. G. Wylie, J. K. Fellman, Formation of volatile branched chain esters in bananas (Musa sapientum L.). J. Agric. Food Chem. 48, 3493–3496 (2000).

6. I. Gorda et al., Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J. Exp. Bot. 61, 1111–1123 (2010).

7. D. D. Rowe, H. P. Lane, J. M. Allen, S. Fielder, M. B. Hunt, Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoyl esters in Red Delicious and Granny Smith apples using deuterium-labeled substrates. J. Agric. Food Chem. 44, 3276–3285 (1996).

8. R. Tressl, F. Drawert, Biogenesis of banana volatiles. J. Agric. Food Chem. 21, 560–565 (1973).

9. A. Ortiz, G. Echeverria, J. Graell, I. Lara, The emission of flavour-contributing volatile esters by “Golden Reinders” apples is improved after mid-term storage by postharvest calcium treatment. Postharvest Biol. Technol. 57, 114–123 (2010).

10. B. G. Defilippi, A. M. Dandekar, A. A. Kader, Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J. Agric. Food Chem. 53, 3133–3141 (2005).

11. L. C. Nie, J. S. Sun, B. Di, Changes in amino acid and fatty acid contents as well as activity of some related enzymes in apple fruit during aroma production. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31, 663–667 (2005).

12. N. Sugimoto, A. D. Jones, R. Beaudry, Changes in free amino acid content in “Jonagold” apple fruit as related to branched-chain ester production, ripening, and senescence. J. Am. Soc. Hortic. Sci. 136, 429–440 (2011).

13. J. P. Matthies, D. A. Buchanan, J. K. Fellman, Volatile compounds emitted by “Galas” apples following dynamic atmospheric storage. J. Am. Soc. Hortic. Sci. 123, 426–432 (1998).

14. A. Platto, M. R. McDaniel, J. P. Matthies, Characterization of changes in “Galas” apple aroma during storage using OSME analysis, a gas chromatography-olfactometry technique. J. Am. Soc. Hortic. Sci. 125, 714–722 (2000).
