Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation

Gunnar N. Eastep, Ruba H. Ghanam, Todd J. Green, and Jamil S. Saad*

Running Title: HIV-1 matrix mutants that impact envelope incorporation

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

*To whom correspondence should be addressed: Jamil S. Saad, Ph.D., 845 19th Street South, Birmingham, AL 35294; Phone: 205-996-9282; Fax: 205-996-4008; Email: saad@uab.edu.

Keywords: Human immunodeficiency virus type 1 (HIV-1), retroviruses, virus assembly, Gag polyprotein, myristoylated matrix (MA), plasma membrane (PM), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P_2), Envelope protein (Env), gp41 cytoplasmic tail (gp41CT), nuclear magnetic resonance (NMR), x-ray crystallography, analytical ultracentrifugation (AUC).

ABSTRACT
During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, x-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer–trimer equilibrium. The high-resolution x-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of Arg-63 and Ser-67 located in the center of the trimer interface, providing the first structural evidence for a stabilization of the trimer form. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.

During the late phase of HIV-1 replication, the viral Gag polyproteins are targeted to the plasma membrane (PM) for particle budding and release (1-7). Binding of HIV-1 Gag polyproteins to the inner leaflet of the PM is mediated by the matrix (MA) domain, which harbors a bipartite signal represented by an N-terminal myristoyl group (myr) and a highly basic region (HBR). An abundance of studies demonstrated that HIV-1 Gag association with membranes is regulated by multiple factors including electrostatic and hydrophobic interactions, protein multimerization, cellular and viral RNA, specific phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P_2) (7-13). Gag binding to membranes is also enhanced by inclusion of phosphatidylserine (PS) and cholesterol (6,8,9,12,14-20).
Pioneering x-ray crystallography studies of HIV-1 unmyristoylated MA [myr(–)MA] revealed that the protein adopts a trimer structure (21). However, solution NMR studies indicate that the myr(–)MA protein is monomeric at all tested concentrations (22-27). On the other hand, sedimentation equilibrium data confirmed that the MA protein resides in monomer–trimer equilibrium. NMR–based structural studies have shown that the myr group of MA can adopt sequestered and exposed conformations (26). Extrusion of the myr group can be increased by factors that promote protein self-association, such as increasing protein concentration or inclusion of the capsid (CA) domain (26). Subsequent studies revealed that myr exposure in MA is promoted by binding of Ptd(4,5)P_2 (25) and is regulated by pH (27). In a recent study, we engineered a stable recombinant HIV-1 MA trimer construct by fusing a foldon domain (FD) of phage T4 fibritin to the MA C terminus (28). Hydrogen–deuterium exchange MS data supported a MA–MA interface that is consistent with that observed in the crystal structure of the myr(–)MA trimer (28). A plethora of structural and biophysical studies have provided invaluable insights into retroviral MA proteins binding to phospholipids and membrane mimetics (23-25,29-38). These studies identified key molecular determinants of MA–membrane interactions and advanced our knowledge of retroviral assembly.

Studies by Barklis and co-workers revealed that the HIV-1 MA and MACA proteins assemble as hexagonal cage lattices on PS/cholesterol membrane monolayers and as hexamers of trimers in the presence of Ptd(4,5)P_2 (39-41). The hexamer of trimers assembly is currently used as a model to explain the mechanism by which the envelope (Env) protein is incorporated into virus particles (42-45). In its processed form, Env consists of two non-covalently associated subunits, a surface glycoprotein (gp120) and a transmembrane domain (gp41), which are products of proteolytic cleavage of the viral gp160 precursor protein (reviewed in (46-48)). There is strong evidence that the cytoplasmic tail of gp41 (gp41CT) plays a functional role in Env incorporation in physiologically relevant cell types (42,44,45,49-52). NMR studies of HIV-1 gp41CT revealed that the N-terminal 45 residues lack secondary structure and are not associated with the membrane. The C-terminal 105 residues, however, form three membrane–bound amphipathic α-helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation–π interactions (53).

Genetic and biochemical studies suggested that the MA domain of Gag and the gp41CT play distinct, yet complementary, roles in Env incorporation into budding particles (42,44,45,49,50,54-59). Point mutations in MA (L13E, E17K, L31E, V35E, or E99V) were found to impair HIV-1 Env incorporation (42-44,50,56). [Note: The N-terminal Met, which is absent in the myristoylated protein, is designated as residue 1. In contrast, other studies considered the N-terminal Gly of the myristoylated protein as residue 1]. When mapped on the putative hexamer of trimer model of MA, these residues were found to point toward the hexamer centers (Fig. 1) (39,40). It was also shown that substitution of residue Gln^{63} with Arg suppressed Env incorporation defects of the L13E, E17K, L31E, V35E, or E99V MA mutations and of a gp41CT mutation that has the same phenotype (42-44,50). Freed and co-workers provided biochemical evidence that MA trimerization is an obligatory step in the assembly of infectious HIV-1 and demonstrated a correlation between loss of MA trimerization and loss of Env incorporation (44). It was suggested that Q63R mutation may stabilize the trimer structure such that MA lattices, which form large hexamer holes, are favored over those that feature small hexamer holes (Fig. 1) (44). In another study, biochemical and pulldown experiments suggested that Q63R mutation promoted interaction with gp41CT, and this mutation did not alter the organization of MA on a membrane layer (41). Non-conservative mutations at positions Ala^{45}, Ser^{2}, and Leu^{75} located in the trimer interface (Fig. 1) also impaired Env incorporation and infectivity, and biochemical cross-linking experiments showed that these mutations reduced trimerization of MA (44). Although genetic and biochemical studies provided evidence for a correlation between Env incorporation and formation of MA trimers, the
structural or biophysical evidence for such a correlation is lacking. In particular, it is not known how single residue mutations which impair or rescue Env incorporation impact the structure and oligomerization properties of MA.

In this report, we employed NMR spectroscopy, x-ray crystallography and analytical ultracentrifugation (AUC) techniques to characterize the structure and trimerization properties of HIV-1 MA mutants that have been shown to impair Env incorporation (L75G, A45E, and T70R) or suppress Env incorporation defects (Q63R). We show that these mutations had no adverse effect on the structure or folding of MA and had only a minimal effect on the monomer–trimer equilibrium. NMR data revealed that these mutations caused chemical shift perturbations (CSPs) for residues located in the trimer interface. The x-ray structure of myr(−)MA Q63R protein revealed hydrogen bonding between the side chains of Arg35 and Ser67, which are located in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.

Results

Effect of point mutations on the structure of MA

Point mutations in the HIV-1 MA protein (A45E, Q63R, T70R and L75G) were made by site-directed mutagenesis of the MA gene embedded in a co-expression vector harbouring yeast N-myristoyltransferase (26). Point mutations had no detectable effect on protein expression or the efficiency of myristoylation. Two-dimensional (2D) 1H,15N HSQC NMR spectra provides a structure-sensitive signal for each amide group in a protein, and thus, it can be used to report on changes to protein structure caused by amino acid substitutions. As shown in Figures 1 and S1, the HSQC spectra for the four MA mutants are very similar to the spectrum of the wild-type (WT) protein, indicating that amino acid substitutions had no adverse effect on the structure and folding of the protein. This result was supported by the 1H, 15N, Ca, and Cβ chemical shifts, which were very similar to the corresponding shifts of the WT MA protein (25,26).

Effect of amino acid substitutions on the myr switch

Previous NMR studies of the WT MA protein have shown that a subset of 1H and 15N resonances for amino acid residues 2-18, Val39, Trp36, Arg39, Gly49, Glu52, and His89 shift progressively toward the corresponding frequencies observed for myr(−)MA upon increasing protein concentration. These shifts were attributed to exposure of the myr group and a concomitant shift in the monomer–trimer equilibrium toward the trimeric species (26). Subsequent NMR studies revealed that point mutations in the N-terminal region of MA (e.g., V7R, L8A or L8I) that impaired membrane targeting of Gag and inhibited virus assembly and release (60-63), did not exhibit concentration-dependent myristate exposure (24). Structural data revealed conformational changes that appeared to be responsible for stabilizing the myristate–sequestered species and inhibiting exposure (24). Herein, we assessed whether the A45E, Q63R, T70R and L75G mutations in MA had any effect on the positioning of the myr group and/or the concentration–dependent myr-exposure. We obtained 1H,15N HSQC spectra for WT and A45E, Q63R, T70R, and L75G mutant MA proteins at three protein concentrations (50, 150 and 450 μM) (Fig. 2). Like WT MA, for all mutants the 1H and 15N resonances for residues 2-18, Val35, Trp36, Arg39, Gly49, Glu52, and His89 were sensitive to protein concentration and shifted progressively toward the corresponding frequencies observed for myr(−)MA upon increasing protein concentration (Fig. 2). This result indicates that none of the four amino acid substitutions had any detectable effect on the concentration–dependent myr switch.

Chemical shift comparison between the WT and mutant MA proteins

We mapped the chemical shift changes caused by amino acid substitutions in MA and assessed whether they induced structural and/or
conformational changes in distal regions of the MA protein, especially within the trimer interface. Typically, only a few signals corresponding to amino acids in the vicinity of the mutation site exhibit major chemical shift changes in the \(^1\text{H}-\text{^15}\text{N}\) HSQC spectrum. Chemical shift differences between the WT and mutant MA proteins is provided in Figure 3, and a cartoon representation of the X-ray structure of the WT MA protein onto which the locations of residues that exhibited significant amide \(^1\text{H}-\text{^15}\text{N}\) chemical shift change are mapped (Fig. 4). As expected, the largest differences are observed in the vicinity of mutation site. Interestingly, other regions that are distant from the mutation site were also perturbed. For the A45E mutant, in addition to the CSPs observed for signals of residues 39-47 which are in the vicinity of the mutation site, resonances corresponding to Glu\(^44\) and Leu\(^75\) also exhibited significant CSPs (Fig. 3). Interestingly, these two residues are quite distant from the mutation site within the same molecule but are intermolecularly adjacent (~4.5 Å) in the trimer structure of myr(−)MA (Fig. 4). This result suggests that substitution of Ala\(^45\) to Glu may have caused structural perturbations in the trimer interface. Next, we examined the Q63R mutant. Gln\(^63\) is located in helix 4, with its side chain projecting towards the loop comprised of residues 42-46 (~4.1 Å to residue Val\(^46\)) within the same molecule. As shown in Figure 3, in addition to the mutation site two other regions exhibited significant CSPs. These comprise residues 42-47 and 74-76. Mapping out the CSPs on the trimer structure of myr(−)MA revealed that this mutation can cause structural perturbations for residues 42-46 within the same molecule (Fig. 4). Therefore, it is likely that the CSPs corresponding to residues 42-46 are caused by intramolecular structural adjustments or perturbations as a result of this substitution. However, whereas amino acid residues 74-75 are intramolecularly distant from Gln\(^63\), these residues are located in the trimer interface (Fig. 4). In this case, the effect of Q63R mutation could be direct on residues 74-76 or indirect through a local structural perturbation of residues 42-47, which are also close to residues 74-76 (Fig. 4).

Among the four MA mutants, the largest CSPs have been observed in the HSQC spectra of the T70R and L75G proteins (Fig. 3). For T70R, the most significant CSPs are for residues localized in the vicinity of the mutation site (amino acid residues 69-76). Structural analysis of the MA trimer revealed that the side chain of Thr\(^70\), which resides in the loop connecting helices 4 and 5, is sandwiched between the side chains of Gln\(^59\) and Gln\(^63\) of a neighboring molecule (Fig. 4). Interestingly, the amide resonances of these two residues did not exhibit significant chemical shift changes. On the other hand, mutation of Leu\(^75\) to Gly induced substantial CSPs that extended beyond the mutation site, including amino acid residues in the trimer interface (Figs. 3 and 4). Of note, residue Leu\(^75\), located in helix 5, is not involved in intermolecular interactions with a neighboring molecule. However, within the same molecule the side chain of Leu\(^75\) is relatively close to the side chain of Leu\(^61\) located in helix 5 (4 Å) and is spatially close to the loop made of residues 67-72. As discussed above, amino residues 67-72 are located in the trimer interface and are in close proximity to the loop made of amino acid residues 43-47. Therefore, it is conceivable that Leu\(^75\) contributes to the orientation of the loop.

Taken together, NMR data provided insights into structural perturbations within the trimer interface. However, we were unable to precisely determine the structural changes in the trimer interface by NMR methods because, like the WT MA protein (26), detection of intermolecular contacts (e.g. NOE) proved to be technically challenging. In summary, we provided structural evidence that substitution of amino acid residues in the trimer interface can directly or indirectly contribute to the (de)stabilization of the MA trimer form.

**Crystal structure of the myr(−)MA Q63R protein**

As discussed above, to explain the role of MA trimerization in Env incorporation, it was suggested that the Q63R mutation in MA may stabilize the trimer structure such that MA lattices which form large hexamer holes are favored over those that feature small hexamer holes (Fig. 1) (44). However, it is not clear how this substitution can stabilize the trimer form. We have shown
that, similar to the WT MA protein, MA Q63R is in monomer–trimer equilibrium. As indicated by the NMR data, substitution of Gln to Arg did not induce significant CSPs of residues in the trimeric interface. To be able to assess the structural changes in the MA trimer, we determined the high-resolution structure of myr(−)MA Q63R protein by x-ray crystallography. Atomic coordinates and structure factors for two crystal forms have been deposited in the PDB (codes 7JXR and 7JXS; Table 1). Interestingly, the two crystal forms of myr(−)MA Q63R yielded structures that are essentially identical with slightly different parameters (Fig. S2 and Table 1). Each asymmetric unit of the crystal structure contains two trimers. The structure of the myr(−)MA Q63R trimer in both crystal forms is virtually identical to that of the WT myr(−)MA protein with slight orientation differences of monomers in the trimeric assembly (Fig. 5) (21). The structures in the two crystal forms revealed only minor conformational changes in the loops connecting helices I and II and helices V and VI (Fig. S2). Intriguingly, the guanidinium group of Arg is 2.54 Å (averaged across 12 examples in the asymmetric unit of the two crystal forms) from the hydroxyl group of Ser of an adjacent MA molecule, which forms new hydrogen bonding in the trimer interface (Fig. 5). This result demonstrates that substitution of Gln with Arg stabilizes the trimer structure of MA through H-bonding between the side chains of Arg and Ser located on two neighboring MA molecules.

Oligomeric properties of MA mutants

As mentioned earlier, previous sedimentation equilibrium (SE) studies have shown that, while myr(−)MA is monomeric at all tested protein concentrations and pH values (22-27), the MA protein is in monomer–trimer equilibrium (24,26), a process that is modulated by changing solution pH (27). These results were explained by a (de)protonation process of the His imidazole ring. Deprotonation of His destabilizes the salt bridge formed between His(H-O2 and Glu(COO−), leading to tight sequestration of the myr group and a shift in the equilibrium from trimer to monomer. To determine how the various MA mutations impacted the oligomerization properties of the MA protein in solution, we collected sedimentation velocity (SV) and SE data on the WT and mutant MA proteins at pH 5.5. Consistent with previous data, the SV profile for myr(−)MA exhibits a sharp sedimentation boundary indicating a monomeric character (Fig. 6). The MA protein, however, exhibits a broad sedimentation boundary with a larger S value consistent with a monomer–trimer equilibrium. The MA mutants exhibited slightly variable sedimentation boundaries with an overall sedimentation coefficient (c(s)) distribution similar to that of the WT MA protein. Interestingly, the sedimentation boundary for the L75G mutant is sharper than the WT and the other mutants and shifted to a smaller S value, suggesting that the monomer–trimer equilibrium is shifted towards the monomeric form (Fig. 6). Next, we collected SE data for WT and mutant MA proteins at pH 5.5. Like the WT protein, SE data for all mutants best fit a monomer–trimer model. Interestingly, while the Ks values for the A45E, T70R and Q63R mutant proteins are similar to the WT protein, the corresponding value for the L75G mutant is ~3-fold lower (Fig. 6), consistent with a lower trimer population. Taken together, the SV and SE data indicate that whereas none of the four mutations in MA significantly altered the monomer–trimer equilibrium in solution, the L75G mutation appears to shift the equilibrium towards the monomer form.

Discussion

Point mutations of MA residues Leu, Glu, Leu, Val, and Glu, located at the tip of the hexamer centers in the hexamer of trimer model (Fig. 1), were found to impair Env incorporation without affecting virus particle formation (54-57). Freed and co-workers have provided biochemical evidence that MA trimerization is an obligatory step in the assembly of infectious HIV-1 and demonstrated a correlation between loss of MA trimerization and loss of Env incorporation (44). Nonconservative mutations at, or near, the trimer interface in the crystal structure (Fig. 1) inhibited MA trimerization and yielded particles with impaired Env incorporation and infectivity (44). Substitution of residue Gln
with Arg suppressed Env incorporation defects of
the L13E, E17K, L31E, V35E, and E99V MA
mutations (42-44,50). The current hypothesis
suggests that Q63R mutation may stabilize the
trimer structure such that MA lattices, which
form large hexamer holes, are favored over those
that feature small hexamer holes (Fig. 1) (44).
This hypothesis was further supported by the
finding that Q63R mutation promoted interaction
with gp41CT without altering the organization of
MA on a membrane layer (41). A correlation
between MA trimerization and gp41CT binding
was also suggested in a biochemical study
involving MA mutants and MACA proteins,
supplemented with inositol polyphosphates (64).

In this study, we have shown that: (i)
mutations that either impaired (A45E, T70R, and
L75G) or rescued (Q63R) Env incorporation had
no adverse effects on the structures and folding of
the MA protein. This result rules out the
possibility that such mutations produce a non-
functional protein that indirectly impacts its
ability to form a trimer or participate in other
functions involved in Env incorporation. (ii)
None of the mutations had any detectable effect
on the efficiency of myristoylation or concentration–dependent myr switch. NMR data
obtained at different protein concentrations
indicate that all four mutants display a
concentration–dependent myr switch mechanism, similar to the WT MA protein. (iii)
Mutations appear to induce minor structural
perturbations in the trimer interface, which can
directly or indirectly contribute to the
(de)stabilization of the MA trimer form. As
detected by NMR, the largest CSPs were
observed for the L75G mutant. This result is not
surprising given that Leu\(^{75}\) is located in a helical
motif. Substitution with a glycine reside, which is
sometimes known as a helix breaker, may have
induced a larger structural change than the other
three mutants. As mentioned earlier, the effect of
Leu\(^{75}\) mutation on MA trimerization is probably
indirect as this residue is not involved in
intermolecular interactions with a neighboring
MA molecule. Leu\(^{75}\) is in close proximity to
Leu\(^{64}\), which is in juxtaposition to the loop made
of amino acid residues 67-72 that interacts with
amino acid residues 42-46 of a neighboring
molecule. Therefore, it is conceivable that Leu\(^{75}\)
contributes to the orientation of this loop to
enable interaction with an adjacent molecule. (iv)
A new hydrogen bond is formed between the side
chains of Arg\(^{63}\) and Ser\(^{67}\) in the center of the
trimer interface of myr(−)MA Q63R, providing
the first structural evidence for a stabilization of
the trimer form. (v) SV and SE data show that
the A45E, T70R, and Q63R mutations had minimal
effect on the monomer–trimer equilibrium,
whereas the L75G mutation enhanced the
population of the monomeric form.

As discussed above, the structures of MA and
myr(−)MA are nearly identical (21,22,25,26,65).
The only distinct difference is that the X-ray
structure of myr(−)MA revealed a trimer
arrangement of MA molecules (21). The MA
protein, however, is in monomer–trimer
equilibrium. To determine whether the MA–MA
interface in solution resembles that in the x-ray
structure of myr(−)MA (21), we recently
engineered a stable MA trimer by fusing a FD
domain on the C-terminus of MA (28).
Hydrogen–deuterium exchange MS data
supported a MA–MA interface that is consistent
with that observed in the crystal structure of the
myr(−)MA trimer (28). Of note, the region
exhibited a significant increase in protection from
deuteration in the HDX-MS assay is the same
region identified here as a putative trimer
interface. Our data presented here demonstrate
that neither of the three mutants that were
proposed to inhibit MA trimerization (A45E,
T70R, and L75G) completely shifted the
equilibrium to a monomer, nor did the Q63R
mutation which rescues Env incorporation, forms
a stable trimer in solution even though a new H-
bond is observed between the side chains of Arg\(^{63}\)
and Ser\(^{67}\) from neighboring subunits (Fig. 5). This
discrepancy between the crystal structure and
solution data is still not well understood.

It is important to highlight the link between
the structural findings and the previous biological
findings. It is worth noting that previous studies
indicated that residue Gln\(^{63}\) is not crucial for Env
incorporation in the context of otherwise-WT
MA, and that Q63R is unique for its ability to
fully rescue Env incorporation defects (42). It
appears that the type of amino acid substitution
at position Gln\(^{63}\) is key for its function in restoring
Env incorporation. When introduced as a single
mutation in MA, Q63R only minimally enhanced Env incorporation (42). However, the effect was more dramatic in restoring Env incorporation to a WT level when this mutation was introduced along with the Env-defective L13E mutant (42). By substituting Gln\(^{63}\) with E, G, K, L, N, or W, it was shown that all mutants replicated with WT kinetics in Jurkat cells, and that none of the single mutations severely impaired virus release, infectivity or Env incorporation. When the L13E/Q63[E/G/K/L/N/W] double mutants were subjected to the same analysis, none of the Gln\(^{63}\) mutants was able to fully rescue the virus replication, infectivity, and Env incorporation defects imposed by the L13E mutant (42). Interestingly, even the L13E/Q63K mutant exhibited a partial rescue, as infectivity in TZM-bl cells was comparable to that of L13E/Q63R, no rescue of Env incorporation was apparent. Taken together, Q63R appears to be unique for its ability to fully rescue Env incorporation defects. Our findings complemented the biological data by showing that the H-bond formed between the side chains of Arg\(^{63}\) and Ser\(^{67}\) is key for the stability of the MA trimer and hence to its function in rescuing Env incorporation (42). It is possible that slight changes to trimerization affinity may be amplified in a biological context, due to the 2D constraint imposed by the membrane or the presence of other oligomerization promoting domains of Gag such as CA.

Role of Ser\(^{67}\) and Thr\(^{70}\) in Env incorporation in the context of WT, L13E, Q63R, and L13E/Q63R clones was also investigated (42). Whereas the S67A mutation had no effect on the phenotypes of the four viral clones, T70A blocked the ability of Q63R to rescue L13E infectivity and Env incorporation, although Q63R/T70A was as infectious as Q63R alone. The single T70A mutant was also impaired for infectivity and Env incorporation, suggesting that Thr\(^{70}\) may be involved in MA function. Another interesting result is the finding that S67R behaved like Q63R in its ability to rescue the defect imposed by L13E, indicating that an Arg at either residue 63 or 67 could rescue the L13E defect (42). Based on the structure of the myr(−)-MA Q63R protein (Fig. 5), it is clear that Ser\(^{67}\) plays an important role in forming a H-bond with Arg\(^{63}\). It is expected that an Arg at position 67 is also capable of forming a H-bond with the side chain of Gln\(^{63}\) on a neighboring molecule, therefore stabilizing the MA trimer structure. The close proximity of Arg\(^{63}\) and Ser\(^{67}\) and their role in the stabilization of the MA trimer is supported by the finding that MA forms dimer and trimer in the glutaraldehyde cross-linking assay conducted with the double mutant (Q63K/S67K) in Jurkat and MT4 cell lines (44).

Combining previous studies with the data presented here, it appears that the correlation between trimerization of the MA domain of Gag and Env incorporation is not straightforward. Mutation of residues located in the trimer interface, on the tip of the hexamer ring, or even distant residues can impact Env incorporation. In a recent study, new compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation in MT-4 T-cells were identified (45). Viruses with MA L75G mutation acquired mutations G11S, V35I/F44I, V35I/E52K, V46I and E52K. For viruses with MA L75E mutation, compensatory mutations D14N/V45I, Q28K, V35I/F44L and E52K were identified. Of note, among all these secondary mutations only Phe\(^{44}\) and Val\(^{46}\) are located in the trimer interface. It was suggested that mutations that are distant from the trimer interface may indirectly influence the trimer interface by inducing potential structural or conformational changes (45). Structural studies to discern conformational changes induced by the compensatory mutations are warranted.

Our data support the hypothesis that mutations in MA that block Env incorporation do so by disrupting an otherwise-stable MA lattice, rather than by disrupting a specific MA–gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that a stable MA trimer is key to trap Env into the Gag lattice. This model is also supported by recent high-resolution single-molecule tracking data (66), which demonstrated that Env trimers are confined to subviral regions of a budding Gag lattice, supporting a model where direct interactions and/or steric corralling between the gp41CT and MA lattice promote Env trapping. In summary, the new findings advance our understanding of the complementary, yet distinct,
roles the MA domain of Gag and gp41CT play in Env incorporation.

**Experimental procedures**

**Plasmid Construction and Protein Expression**

A plasmid encoding for HIV-1 MA (pNL4-3 strain) and yeast N-terminal myristoyl transferase was provided by Dr. Michael Summers (Howard Hughes Medical Institute, University of Maryland Baltimore County, MD). The A45E, T70R, Q63R and L75G MA mutant constructs were generated using a QuickChange XL site-directed mutagenesis kit (Stratagene). Forward and reverse primers (Integrated DNA Technologies) extended 15 base-pairs on either side of the mutation codon. Mutations were verified by plasmid sequencing at the Heflin Genomics Core at the University of Alabama at Birmingham. WT and mutant MA, and myr(−)MA proteins were prepared as described (22,24-26).

**NMR Spectroscopy**

NMR data were collected at 35 °C on a Bruker Avance II (700 MHz ¹H) or Avance III (600 or 850 MHz ¹H) spectrometers equipped with cryogenic triple-resonance probes, processed with NMRPIPE (67) and analyzed with NMRVIEW (68) or CCPN Analysis (69). The backbone resonances were assigned using standard triple resonance data (HNCA, HN(CO)CA, HN(CO)CACB, and HNCACB) collected at 35 °C on 100–500 µM samples in a buffer containing 50 mM sodium phosphates (pH 5.5), 50 mM NaCl, and 1 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP). The triple-resonance experiments were collected as non-uniformly sampled (NUS) sparse data (20% sampling density in indirect dimensions) according to schemes generated using hmslST (70). Chemical shift perturbations were calculated as \( \Delta \delta_{HN} = \sqrt{\Delta \delta_H^2 + 0.04 \Delta \delta_N^2} \), where \( \Delta \delta_H \) and \( \Delta \delta_N \) are ¹H and ¹⁵N chemical shift changes, respectively. Histograms for the chemical shift changes were generated using gnuplot software (http://www.gnuplot.info) (71). Structural representations of the chemical shift changes were generated using PyMOL (Version 2.3.2 Schrödinger, LLC) (72).

**X-ray crystallography and structure determination**

The HIV-1 myr(−)MA Q63R protein used in the crystallization trials was at 20 mg/mL in a buffer containing 10 mM Tris.HCl (pH 8), 1 mM EDTA, 2 mM β-mercaptoethanol, and 50 mM NaCl. Diffraction quality crystals were obtained using hanging-drop vapor diffusion in a solution of 40% PEG (molecular weight 400), 0.1 M sodium acetate (pH 4), and 50 mM lithium sulfate. Crystals were cryo-cooled in the same conditions. X-ray diffraction data were collected at the Advance Photon Source, SER-Cat Beamline 22-ID. Raw intensity data were processed with the HKL2000 software package (73). The initial electron density map was generated via molecular replacement with PHASER (74) using the previously solved structure of the WT myr(−)MA protein (PDB code IHIW). The structure was then iteratively refined with PHENIX (75) and Coot (76). Visualization of structures was performed using Pymol.

**Analytical Ultracentrifugation**

Sedimentation velocity (SV) and sedimentation equilibrium (SE) experiments were performed on a Beckman XL-I Optima ultracentrifuge equipped with a four-hole An-60 rotor (Beckman Coulter, Pasadena, CA). Cells were equipped with double-sector, charcoal-filled epon centerpieces with 12 mm path lengths and sapphire windows. Prior to AUC data collection, protein samples were run on a size exclusion chromatography column (Superdex 75, 10/300 GL, cytiva) in a buffer containing 50 mM sodium phosphates (pH 5.5), 100 mM NaCl and 2 mM TCEP. Loading concentrations of MA samples ranged from 30–100 µM. For SV experiments, rotor speed was set at 40,000 rpm. SE experiments were performed at 22000, 26000, and 30000 rpm. All experiments were carried out at 20 °C. Scans were collected at a wavelength of 280 nm for SV and 250 nm for SE. Partial specific volumes (v-bar) and molar extinction coefficients
were calculated by using the program SENDTERP, and buffer densities were measured pycnometrically. SV data were analyzed using SEDFIT (77-80), and SE data were analyzed with HETEROANALYSIS (81). Sedimentation coefficients obtained from SV experiments were corrected to 20 °C and infinite dilution in water (\(s_{20,w}\)). Equilibrium association constants were obtained by global fitting of SE scans collected at a single concentration and at three rotor speeds using a monomer–trimer equilibrium model. The molecular weight of the monomer (15.6 kDa) and the complex stoichiometry (\(n = 3\)) were treated as fixed parameters. Reference concentrations and baselines for each scan were floated parameters, and the \(K_a\) for the monomer–trimer equilibrium was fit as a global parameter. The confidence intervals for the \(K_a\) at 95% were determined using the F-statistic method in HETEROANALYSIS (81).
Acknowledgments. We thank Dr. Aaron Lucius (University of Alabama at Birmingham) for helping with the AUC experiments. We also the O’Neal Comprehensive Cancer Center at the University of Alabama at Birmingham (funded by the NCI grant P30 CA013148) for supporting the High-Field NMR facility. X-ray data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. SER-CAT is supported by its member institutions, and equipment grants (S10_RR25528 and S10_RR028976) from the National Institutes of Health. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: GNE, RHG, TJG and JSS designed the experiments. GNE and RHG expressed, purified, and characterized the proteins. GNE and JSS performed the NMR experiments and analyzed the results. TJG collected and analyzed the x-ray data. GNE and JSS wrote the paper. GNE, TJG and JSS edited the paper.

References

1. Mücksch, F., Laketa, V., Muller, B., Schultz, C., and Krausslich, H. G. (2017) Synchronized HIV assembly by tunable PIP$_2$ changes reveals PIP$_2$ requirement for stable Gag anchoring. eLife 6, e25287
2. Hendrix, J., Baumgartel, V., Schrimpf, W., Ivanchenko, S., Digman, M. A., Gratton, E., Krausslich, H. G., Muller, B., and Lamb, D. C. (2015) Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. J Cell Biol 210, 629-646
3. Gousset, K., Ablan, S. D., Coren, L. V., Ono, A., Soheilian, F., Nagashima, K., Ott, D. E., and Freed, E. O. (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 4, e1000015
4. Jouvenet, N., Neil, S. J. D., Bess, C., Johnson, M. C., Virgen, C. A., Simon, S. M., and Bieniasz, P. D. (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435
5. Welsch, S., Keppler, O. T., Habermann, A., Allespach, I., Krijnse-Locker, J., and Kräusslich, H.-G. (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3, e36
6. Chukkapalli, V., Hogue, I. B., Boyko, V., Hu, W.-S., and Ono, A. (2008) Interaction between HIV-1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient Gag-membrane binding. J Virol. 82, 2405-2417
7. Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K., and Freed, E. O. (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 101, 14889-14894
8. Chukkapalli, V., Inlora, J., Todd, G. C., and Ono, A. (2013) Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells. J. Virol. 87, 7155-7159
9. Chukkapalli, V., and Ono, A. (2011) Molecular Determinants that Regulate Plasma Membrane Association of HIV-1 Gag. J. Mol. Biol. 410, 512-524
10. Purohit, P., Dupont, S., Stevenson, M., and Green, M. R. (2001) Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection. RNA 7, 576-584

11. Li, H., Dou, J., Ding, L., and Spearman, P. (2007) Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J. Virol. 81, 12899-12910

12. Dalton, A. K., Ako-Adjei, D., Murray, P. S., Murray, D., and Vogt, M. V. (2007) Electrostatic Interactions Drive Membrane Association of the Human Immunodeficiency Virus Type 1 Gag MA Domain. J. Virol. 81, 6434-6445

13. Dick, R. A., Goh, S. L., Feigenson, G. W., and Vogt, V. M. (2012) HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. U.S.A. 109, 18761-18767

14. Waheed, A. A., and Freed, E. O. (2009) Lipids and membrane microdomains in HIV-1 replication. Virus Res. 143, 162-176

15. Chukkapalli, V., Oh, S. J., and Ono, A. (2010) Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc. Natl. Acad. Sci. 107, 1600-1605

16. Waheed, A. A., and Freed, E. O. (2010) The role of lipids in retrovirus replication. Viruses 2, 1146-1180

17. Ono, A. (2010) HIV-1 assembly at the plasma membrane. Vaccine 28S, B55-B59

18. Chan, J., Dick, R. A., and Vogt, V. M. (2011) Rous Sarcoma Virus Gag Has No Specific Requirement for Phosphatidylinositol-(4,5)-Bisphosphate for Plasma Membrane Association In Vivo or for Liposome Interaction In Vitro. J. Virol. 85, 10851-10860

19. Alfadhli, A., Still, A., and Barklis, E. (2009) Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids. J. Virol. 83, 12196-12203

20. Barros, M., Heinrich, F., Datta, S. A., Rein, A., Karageorgos, I., Nanda, H., and Losche, M. (2016) Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation. J Virol 90, 4544-4555

21. Hill, C. P., Worthylake, D., Bancroft, D. P., Christensen, A. M., and Sundquist, W. I. (1996) Crystal Structures of the Trimeric HIV-1 Matrix Protein: Implications for Membrane Association. Proc. Natl. Acad. Sci. 93, 3099-3104

22. Massiah, M. A., Starich, M. R., Paschall, C., Summers, M. F., Christensen, A. M., and Sundquist, W. I. (1994) Three dimensional structure of the human immunodeficiency virus type 1 matrix protein. J. Mol. Biol. 244, 198-223

23. Mercredi, P. Y., Bueca, N., Loeliger, B., Gaines, C. R., Mehta, M., Bhargava, P., Tedbury, P. R., Charlizer, L., Floquet, N., Muriaux, D., Favard, C., Sanders, C. R., Freed, E. O., Marchant, J., and Summers, M. F. (2016) Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. J Mol Biol 428, 1637-1655

24. Saad, J. S., Loeliger, E., Luncsford, P., Liriano, M., Tai, J., Kim, A., Miller, J., Joshi, A., Freed, E. O., and Summers, M. F. (2007) Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 366, 574-585

25. Saad, J. S., Miller, J., Tai, J., Kim, A., Ghanam, R. H., and Summers, M. F. (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103, 11364-11369

26. Tang, C., Loeliger, E., Luncsford, P., Kinde, I., Beckett, D., and Summers, M. F. (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc. Natl. Acad. Sci. USA 101, 517-522

27. Fledderman, E. L., Fujii, K., Ghanam, R. H., Waki, K., Prevelige, P. E., Freed, E. O., and Saad, J. S. (2010) Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH. Biochemistry 49, 9551-9562
28. Murphy, R. E., Samal, A. B., Vlach, J., Mas, V., Prevelige, P. E., and Saad, J. S. (2019) Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly. *J Biol Chem* **294**, 18600-18612

29. Vlach, J., and Saad, J. S. (2013) Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. *Proc Natl Acad Sci U S A* **110**, 3525-3530

30. Saad, J. S., Ablan, S. D., Ghanam, R. H., Kim, A., Andrews, K., Nagashima, K., Soheilian, F., Freed, E. O., and Summers, M. F. (2008) Structure of the myristylated HIV-2 MA protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. *J. Mol. Biol.* **382**, 434-447

31. Vlach, J., Eastep, G. N., Ghanam, R. H., Watanabe, S. M., Carter, C. A., and Saad, J. S. (2018) Structural basis for targeting avian sarcoma virus Gag polyprotein to the plasma membrane for virus assembly. *J Biol Chem* **293**, 18828-18840

32. Hamard-Peron, E., Juillard, F., Saad, J. S., Roy, C., Roingard, P., Summers, M. F., Darlix, J. L., Picart, C., and Muriaux, D. (2010) Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P₂/PS and a polybasic region in the matrix. *J Virol* **84**, 503-515

33. Stansell, E., Apkarian, R., Haubova, S., Diehl, W. E., Tytler, E. M., and Hunter, E. (2007) Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. *J Virol.* **81**, 8977-8988

34. Prchal, J., Srbl, P., Hunter, E., Ruml, T., and Hrabal, R. (2012) The Structure of Myristoylated Mason-Pfizer Monkey Virus Matrix Protein and the Role of Phosphatidylinositol-(4,5)-Bisphosphate in Its Membrane Binding. *J. Mol. Biol.* **423**, 427-438

35. Brown, L. A., Cox, C., Baptiste, J., Summers, H., Button, R., Bahlow, K., Spurrier, V., Kyser, J., Luttgte, B. G., Kuo, L., Freed, E. O., and Summers, M. F. (2015) NMR structure of the myristylated feline immunodeficiency virus matrix protein. *Viruses* **7**, 2210-2229

36. Anraku, K., Fukuda, R., Takamune, N., Misumi, S., Okamoto, Y., Otsuka, M., and Fujita, M. (2010) Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. *Biochemistry* **49**, 5109-5116

37. Shkriabai, N., Datta, S. A., Zhao, Z., Hess, S., Rein, A., and Kvaratskhelia, M. (2006) Interactions of HIV-1 Gag with assembly cofactors. *Biochemistry* **45**, 4077-4083

38. Fernandes, F., Chen, K., Ehrlich, L. S., Jin, J., Chen, M. H., Medina, G. N., Symons, M., Montelaro, R., Donaldson, J., Tjandra, N., and Carter, C. A. (2011) Phosphoinositides direct equine infectious anemia virus gag trafficking and release. *Traffic* **12**, 438-451

39. Alfadhli, A., Barklis, R. L., and Barklis, E. (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. *Virology* **387**, 466-472

40. Alfadhli, A., Huseby, D., Kapit, E., Colman, D., and Barklis, E. (2007) Human Immunodeficiency Virus Type 1 Matrix Protein Assembles on Membranes as a Hexamer. *J. Virol.* **81**, 1472-1478

41. Alfadhli, A., Mack, A., Ritchie, C., Cylinder, I., Harper, L., Tedbury, P. R., Freed, E. O., and Barklis, E. (2016) Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. *J Virol* **90**, 5657-5664

42. Tedbury, P. R., Ablan, S. D., and Freed, E. O. (2013) Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. *PLoS Pathog* **9**, e1003739

43. Tedbury, P. R., and Freed, E. O. (2014) The role of matrix in HIV-1 envelope glycoprotein incorporation. *Trends Microbiol* **22**, 372-378

44. Tedbury, P. R., Novikova, M., Ablan, S. D., and Freed, E. O. (2016) Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. *Proc Natl Acad Sci U S A* **113**, E182-190

45. Tedbury, P. R., Novikova, M., Alfadhli, A., Hikichi, Y., Kagiampakis, I., KewalRamani, V. N., Barklis, E., and Freed, E. O. (2019) HIV-1 Matrix Trimerization-Impaired Mutants Are Rescued by Matrix Substitutions That Enhance Envelope Glycoprotein Incorporation. *J Virol* **94**, e01526-01519
46. Checkley, M. A., Luttgé, B. G., and Freed, E. O. (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. *J Mol Biol* 410, 582-608

47. Chen, B. (2019) Molecular Mechanism of HIV-1 Entry. *Trends Microbiol* 27, 878-891

48. Wang, Q., Finzi, A., and Sodroski, J. (2020) The Conformational States of the HIV-1 Envelope Glycoproteins. *Trends Microbiol* 28, 655-667

49. Tedbury, P. R., and Freed, E. O. (2015) The cytoplasmic tail of retroviral envelope glycoproteins. *Prog Mol Biol Transl Sci* 129, 253-284

50. Tedbury, P. R., Mercredi, P. Y., Gaines, C. R., Summers, M. F., and Freed, E. O. (2015) Elucidating the mechanism by which compensatory mutations rescue an HIV-1 matrix mutant defective for gag membrane targeting and envelope glycoprotein incorporation. *J Mol Biol* 427, 1413-1427

51. Akari, H., Fukumori, T., and Adachi, A. (2000) Cell-dependent requirement of human immunodeficiency virus type 1 gp41 cytoplasmic tail for Env incorporation into virions. *J Virol.* 74, 4891-4893

52. Murakami, T., and Freed, E. O. (2000) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. *Proc. Natl. Acad. Sci.* 97, 343-348

53. Murphy, R. E., Samal, A. B., Vlach, J., and Saad, J. S. (2017) Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein. *Structure* 25, 1708-1718 e1705

54. Dorfman, T., Mammano, F., Haseltine, W. A., and Göttinger, H. G. (1994) Role of the Matrix Protein in the Virion Association of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein. *J Virol.* 68, 1689-1696

55. Freed, E. O., and Martin, A. M. (1996) Domains of the Human Immunodeficiency Virus Type 1 Matrix and gp41 Cytoplasmic Tail Required for Envelope Incorporation into Virions. *J Virol.* 70, 341-351

56. Freed, O. E., and Martin, A. M. (1995) Virion Incorporation of Envelope Glycoproteins with Long but Not Short Cytoplasmic Tails Is Blocked by Specific, Single Amino Acid Substitutions in the Human Immunodeficiency Virus Type 1 Matrix. *J Virol.* 69, 1984-1989

57. Yu, X., Yuan, X., Matsuda, Z., Lee, T.-H., and Essex, M. (1992) The Matrix Protein of Human Immunodeficiency Virus Type I is Required for Incorporation of Viral Envelope Protein into Mature Virions. *J Virol.* 66, 4966-4971

58. Cosson, P. (1996) Direct interaction between the envelope and matrix proteins of HIV-1. *EMBO J.* 15, 5783-5788

59. Murphy, R. E., and Saad, J. S. (2020) The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. *Viruses* 12, 548

60. Freed, E. O., Orenstein, J. M., Buckler-White, A. J., and Martin, M. A. (1994) Single Amino Acid Changes in the Human Immunodeficiency Virus Type 1 Matrix Protein Block Virus Particle Production. *J Virol.* 68, 5311-5320

61. Ono, A., and Freed, E. O. (1999) Binding of Human Immunodeficiency Virus Type 1 gag to membrane: Role of the matrix amino terminus. *J Virol.* 73, 4136-4144

62. Ono, A., Huang, M., and Freed, E. O. (1997) Characterization of human immunodeficiency virus type 1 matrix revertants: effects on virus assembly, Gag processing, and Env incorporation into virions. *J Virol.* 71, 4409-4418

63. Paillart, J.-C., and Gottlinger, H. G. (1999) Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of Gag membrane targeting. *J Virol.* 73, 2604-2612

64. Alfadhli, A., Staubus, A. O., Tedbury, P. R., Novikova, M., Freed, E. O., and Barklis, E. (2019) Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. *J Virol* 93, e01079-01019

65. Massiah, M. A., Worthylake, D., Christensen, A. M., Sundquist, W. I., Hill, C. P., and Summers, M. F. (1996) Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: Evidence for conformational changes during viral assembly. *Protein Sci.* 5, 2391-2398
66. Pezeshkian, N., Groves, N. S., and van Engelenburg, S. B. (2019) Single-molecule imaging of HIV-1 envelope glycoprotein dynamics and Gag lattice association exposes determinants responsible for virus incorporation. *Proc Natl Acad Sci U S A* **116**, 25269-25277

67. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* **6**, 277-293

68. Johnson, B. A., and Blevins, R. A. (1994) NMRview: a Computer Program for the Visualization and Analysis of NMR Data. *J. Biomol. NMR* **4**, 603-614

69. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. *Proteins* **59**, 687-696

70. Hyberts, S. G., Milbradt, A. G., Wagner, A. B., Arthanari, H., and Wagner, G. (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. *J Biomol NMR* **52**, 315-327

71. Racine, J. (2006) gnuplot 4.0: a portable interactive plotting utility. *Journal of Applied Econometrics* **21**, 133-141

72. DeLano, W. L. (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

73. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307-326

74. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. *J Appl Crystallogr.* **40**, 658-674

75. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 213-221

76. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501

77. Lebowitz, J., Lewis, M. S., and Schuck, P. (2002) Modern Analytical Ultracentrifugation in Protein Science - A Tutorial Review. *Protein Sci.* **11**, 2067-2079

78. Schuck, P. (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. *Biophys. J.* **78**, 1606-1619

79. Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. *Anal. Biochem.* **320**, 104-124

80. Schuck, P., Perugini, M. S., Gonzales, N. R., Howlett, G. J., and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. *Biophys. J.* **82**, 1096-1111

81. Cole, J. L. (2004) Analysis of heterogeneous interactions. *Methods Enzymol.* **384**, 212-232
Footnotes

This work was supported by grants 5R01GM117837 and 9R01AI150901 from the National Institutes of Health (NIH) to JSS. The High-Field NMR facility at the University of Alabama at Birmingham was established through the NIH (1S10RR026478) and is currently supported by the O’Neal comprehensive cancer center (NCI grant P30 CA013148).

The atomic coordinates and structure factors (codes 7JXR and 7JXS) have been deposited in the Protein Data Bank (http://wwpdb.org/).

The abbreviations used are: MA, myristoylated matrix; myr(−)MA, unmyristoylated matrix; PI(4,5)P₂, phosphatidylinositol 4,5-bisphosphate; NMR, nuclear magnetic resonance; HSQC, heteronuclear single quantum coherence; CSP, chemical shift perturbation; AUC, analytical ultracentrifugation.
| Parameter                              | Crystal 1                                      | Crystal 2                                      |
|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Wavelength                             | 1.000                                         | 1.000                                         |
| Resolution range                       | 46.21–2.04 (2.113–2.04)                       | 36.82–2.35 (2.434–2.35)                       |
| Space group                            | P 1 2 1                                       | P 1 2 1                                       |
| Unit cell                              | 63.13 97.92 84.81 90 99.94 90                 | 64.54 90.72 73.16 90 102.38 90               |
| Total reflections                      | 171742                                        | 100393                                        |
| Unique reflections                     | 61490 (6078)                                  | 32573 (3286)                                  |
| Multiplicity                           | 2.8                                           | 3.1                                           |
| Completeness (%)                       | 95.03 (94.19)                                 | 94.51 (95.36)                                |
| Mean I/sigma(I)                        | 28.86 (2.50)                                  | 25.95 (2.38)                                 |
| Wilson B-factor                        | 42.84                                         | 49.51                                         |
| R-merge                                | 0.067 (0.408)                                 | 0.072 (0.431)                                |
| R-meas                                 | 0.083 (0.508)                                 | 0.088 (0.515)                                |
| R-pim                                  | 0.048 (0.298)                                 | 0.050 (0.277)                                |
| CC1/2                                  | 0.987 (0.726)                                 | 0.987 (0.807)                                |
| Reflections used in refinement         | 61481 (6078)                                  | 32566 (3285)                                  |
| Reflections used for R-free            | 1995 (197)                                    | 1999 (202)                                    |
| R-work                                 | 0.2032 (0.2525)                               | 0.2170 (0.2481)                              |
| R-free                                 | 0.2340 (0.3166)                               | 0.2560 (0.2723)                              |
| Number of non-hydrogen atoms           | 5507                                          | 5286                                          |
| macromolecules                         | 5141                                          | 5111                                          |
| ligands                                | 149                                           | 108                                           |
| solvent                                | 217                                           | 67                                            |
| Protein residues                       | 638                                           | 632                                           |
| RMS(bonds)                             | 0.008                                         | 0.008                                         |
| RMS(angles)                            | 1.2                                           | 1.07                                          |
| Ramachandran favored (%)               | 100                                           | 98.06                                         |
| Ramachandran allowed (%)               | 0.00                                          | 1.61                                          |
| Ramachandran outliers (%)              | 0.00                                          | 0.32                                          |
| Rotamer outliers (%)                   | 1.07                                          | 3.22                                          |
| Clashscore                             | 5.99                                          | 8.92                                          |
| Average B-factor                       | 51.98                                         | 65.77                                         |
| macromolecules                         | 51.67                                         | 65.83                                         |
| ligands                                | 59.99                                         | 65.32                                         |
| solvent                                | 53.77                                         | 61.45                                         |
| Number of TLS groups                   | 40                                            | 29                                            |

The values in parentheses correspond to the highest resolution data shell.
Figure 1. MA trimer model and residues implicated in Env incorporation. (A) Structure of the myr(–)MA trimer (PDB ID: 1HIW) showing residues implicated in Env incorporation. Gln⁶³ is shown as blue sticks. (B) Schematic representation of the hexamer of trimer arrangement of MA based on studies by Alfadhli et al. (39) and adopted by Freed et al. (44). In this model, a ~45 nm central aperture is formed by residues at the tip of the hexamer (green). It is suggested that the gp41CT protein is accommodated in the central aperture. Mutations of residues in the trimer interface (red sticks) significantly disrupted Env incorporation. (C) Perturbations of the putative hexamer or trimer interface in the MA lattice are thought to create smaller central aperture (~30 nm) that may cause a steric exclusion of gp41CT.
Figure 2. NMR spectra of WT and mutant MA at different protein concentrations. Overlay of 2D $^1$H-$^{15}$N HSQC spectra for WT, myr(−), and mutant MA proteins collected at different concentrations [50 µM (black), 150 µM (red), and 450 µM (green)]. Like WT MA, for all four mutant proteins a subset of $^1$H-$^{15}$N resonances of MA shifted toward the corresponding signals of myr(−)MA (blue), indicating a shift in equilibrium towards the myr−exposed state.
Figure 3. Chemical shift differences between the WT and mutant MA proteins. Normalized $^1$H-$^{15}$N chemical shift differences are plotted vs. residue number. $\Delta \delta > 0.05$ ppm indicates significant chemical shift changes.
Figure 4. Chemical shift mapping on the structure of the myr(–)MA trimer. Structural mapping of the chemical shift differences onto the X-ray structure of WT MA trimer (PDB ID: 1HIW). The location of the amino acid mutation is marked with a blue sphere. Positions of residues whose amide resonances exhibited $\Delta\delta > 0.05$ ppm are highlighted in red (intermolecular) and green (intramolecular).
**Figure 5. High-resolution crystal structure of the HIV-1 myr(–)MA Q63R protein.**

*Figure 5.* High-resolution crystal structure of the HIV-1 myr(–)MA Q63R protein. *A,* superposition of WT myr(–)MA trimer protein (PDB code 1HIW; blue) and the two trimers found in the asymmetric unit of the crystal structure of myr(–)MA Q63R (yellow and grey). The structure of the myr(–)MA Q63R mutant is essentially identical to that of the WT myr(–)MA protein. *B,* surface representation of the trimer arrangement of the myr(–)MA Q63R protein. Amino acid residues Arg\(^{63}\) and Ser\(^{67}\) are shown as sticks. *C,* cartoon representation of myr(–)MA Q63R mutant showing the H-hydrogen bond formed between the side chains of Arg\(^{63}\) and Ser\(^{67}\). Residue Thr\(^{70}\) is also shown to highlight the close proximity to Arg\(^{63}\).
Figure 6. Sedimentation velocity and equilibrium data. A, Sedimentation coefficient distributions, c(s), obtained from the sedimentation profiles for WT and mutant MA at pH 5.5. B, A histogram showing the monomer–trimer association constants obtained from sedimentation equilibrium experiments at pH 5.5. The left series (dark shades) show the average $K_a$ and standard deviation from 2-3 replicates of the SE experiment, and the right series (light shades) show the $K_a$ for a single SE fit which had the closest value to the mean $K_a$ for replicates, along with the F-statistic confidence intervals at 95.46% for the fitted value of $K_a$. 
Supporting Information

Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation

Gunnar N. Eastep, Ruba H. Ghanam, Todd J. Green, and Jamil S. Saad¹*

Running Title: HIV-1 matrix mutants that impact envelope incorporation

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Corresponding Author:

Jamil S. Saad, Ph.D.
Department of Microbiology
University of Alabama at Birmingham
845 19th Street South, Birmingham, AL 35294
Phone: (205)-996-9282
Email: saad@uab.edu
Fig. S1. 2D $^1$H-$^{15}$N HSQC spectra obtained for WT and mutant HIV-1 MA proteins at 150 μM (308 K) in a buffer containing 50 mM sodium phosphates (pH 6) and 50 mM NaCl.
Fig. S2. Superimposition of HIV-1 myr(−)MA Q63R structures from crystals form 1 (PDB 7JXR; yellow) and form 2 (PDB 7JXS; grey). Residues 110-132 are not shown. Ribbon representations of the structures were generated using the PyMOL molecular graphics system (Schrödinger, LLC).