Production asymmetries of b and c hadrons at LHCb

F Ferrari on behalf of the LHCb Collaboration

1Università di Bologna, Dipartimento di Fisica ed Astronomia, via Irnerio 46, (40126) Bologna, Italy
2INFN - Sezione di Bologna, viale B. Pichat 6/2, (40126) Bologna, Italy
E-mail: fabio.ferrari@cern.ch

Abstract. Using a data sample corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by LHCb in pp collisions at a centre-of-mass energy of 7 TeV, the D^+_s, D^+, B^0 and B^0_s production asymmetries are determined. These quantities are measured by means of $D^+_s \to \phi(K^+K^-){\pi^+}$, $D^+_s \to K^0_S(\pi^+\pi^-){\pi^+}$, $B^0 \to J/\psi(\mu^+\mu^-)K^0(\pi^+\pi^-)$, $B^0 \to D^-(K^+\pi^-\pi^-){\pi^+}$ and $B^0_s \to D^-S(K^+K^-\pi^-){\pi^+}$ decays. Moreover, using the full LHCb Run 1 integrated luminosity, corresponding to 1.0 fb$^{-1}$ at 7 TeV and 2.0 fb$^{-1}$ at 8 TeV, the production and decay asymmetry of the Λ^0_b baryon, $A_{P+D}(\Lambda^0_b)$, is determined by means of $\Lambda^0_b \to J/\psi(\mu^+\mu^-)pK^-$ decays. All asymmetries are measured as a function of p_T and y (or η in the D^+, B^0 and B^0_s cases) of the involved hadrons, in order to check if there is a dependence on kinematics.

1. Introduction

The production rates of $b(c)$- and $\bar{b}(\bar{c})$-hadrons in pp collisions at the LHC are not expected to be identical. This phenomenon, commonly referred to as production asymmetry, is related to the fact that the $\bar{b}(\bar{c})$ quark produced in the hard scattering of the two colliding protons could coalesce with a u or d spectator quark in the proton remnants, whereas the opposite is not possible for a $b(c)$ quark. Some theoretical models also predict an enhancement of this effect in the forward region, where the produced $b\bar{b}(c\bar{c})$ pair is closer to the remnants of the colliding protons; finally, there are also predictions of other effects coming into play at high transverse momentum [1],[2],[3].

The determination of production asymmetries is very important, since in CP violation measurements one needs to disentangle the physical asymmetry from other spurious effects, that could resemble the effect of CP violation. The production asymmetries of D^+_s, D^+, B^0 and B^0_s mesons are defined as

$$A_P(B^0_{(s)}) = \frac{\sigma(B^0_{(s)}) - \sigma(B^0_{(s)})}{\sigma(B^0_{(s)}) + \sigma(B^0_{(s)})}, \quad A_P(D^+_{(s)}) = \frac{\sigma(D^+_{(s)}) - \sigma(D^-_{(s)})}{\sigma(D^+_{(s)}) + \sigma(D^-_{(s)})},$$

where σ stands for the production cross section.

The production and decay asymmetry for the $\Lambda^0_b \rightarrow J/\psi pK^-$ mode can be written as

$$A_{P+D}(\Lambda^0_b) = \frac{\sigma(\Lambda^0_b) - \sigma(\bar{\Lambda}^0_b)}{\sigma(\Lambda^0_b) + \sigma(\bar{\Lambda}^0_b)} + A_{CP}(\Lambda^0_b \rightarrow J/\psi pK^-)$$
Figure 1. Production asymmetry of D_s^+ mesons as a function of (a) rapidity and (b) transverse momentum for (red circles) magnet up and (blue squares) magnet down data. The results obtained for both magnet polarities are compatible. No significant trend is observed within the current experimental precision.

where the first term on the right hand side is the analogue of the terms in Equation (1) and the second term is the CP asymmetry in the decay. If one assumes that CP violation in the $\Lambda_b^0 \to J/\psi p K^-$ decay is zero, then $A_{P+D}(\Lambda_b^0) = A_P(\Lambda_b^0)$.

2. D_s^+ production asymmetry

The D_s^+ production asymmetry [4] can be written as the sum of its various contributions

$$A_P(D_s^+) = A_{RAW}(D_s^+ \to \phi \pi^+) - A_{CP}(D_s^+ \to \phi \pi^+) - A_D(\pi^+) + A_D(K^+ K^-),$$

where $A_{RAW}(D_s^+ \to \phi \pi^+)$ is defined as the difference between D_s^+ and D_s^- signal yields divided by their sum. The CP asymmetry in the decay is neglected, as this mode is Cabibbo favoured and no significant CP violation is expected [5],[6]. As the final state is symmetric with respect to charges of the kaons, the detection asymmetry of the kaon pair, $A_D(K^+ K^-)$, is zero. Hence the only correction that needs to be applied is due to the π^\pm detection asymmetry. This latter quantity can be derived by taking the ratio of the pion detection efficiencies $\varepsilon(\pi^+)/\varepsilon(\pi^-)$.

In order to measure the pion efficiencies, the decay sequence $D_s^*+ \to \pi^+ s D_0(K^- \pi^+ \pi^+ \pi^-)$ is employed. Assuming that the D_s^{*+} comes from the primary vertex, there are enough constraints to allow for the detection of this decay even if one pion from the D_s^0 decay is missed. One can also fully reconstruct this decay, if no charged track is missed. The ratio of fully to partially reconstructed D_s^0 decays gives a measurement of the pion detection efficiency.

The signal yield is obtained performing binned maximum likelihood fits to the invariant mass spectrum. The signal model employed is composed of triple Gaussians where all parameters are free to vary, except that two of the three Gaussians that are required to have a common mean. The background is parameterised by means of a second order polynomial.

The overall production asymmetry in the ranges $2.0 < y < 4.5$ and $p_T > 2$ GeV is

$$A_P(D_s^+) = (−0.33 \pm 0.22 \pm 0.10)\%$$

where the first error is statistical and the second systematic. The production asymmetry as a function of y and p_T of the D_s^+ meson is shown in Figure 1. No significant dependence on these variables is observed within the current experimental uncertainties.
Figure 2. Production asymmetry of D^+ mesons as a function of (a) transverse momentum and (b) pseudorapidity. Although non-zero slopes are found as central values, the uncertainties are still too large to draw any conclusion on the presence of a kinematic dependence.

3. D^+ production asymmetry

The D^+ production asymmetry [7] can be obtained by

$$A_P(D^+) = A_{\text{RAW}}(D^+ \rightarrow K^0_S \pi^+) - A_{\text{CP}}(D^+ \rightarrow K^0_S \pi^+) + A_D(\pi^+) + A_\epsilon,$$ \hspace{1cm} (4)

where the raw asymmetry is defined taking the difference of D^+ and D^- signal yields divided by their sum. The number of signal candidates is obtained by means of binned maximum likelihood fits to the $K^0_S \pi^+$ invariant mass distribution. The signal component is parameterised using Crujiff functions [8], while the background is described by a linear function plus a Gaussian function accounting for $D^+ \rightarrow K^0_S \pi^+ \pi^0$ decays, where the neutral pion is not reconstructed.

CP violation in the decay, $A_{\text{CP}}(D^+ \rightarrow K^0_S \pi^+)$, is estimated to be at most 1×10^{-4} [9] and thus neglected. The pion detection asymmetry, $A_D(\pi^+)$, is corrected for using the results obtained in the D^+ production asymmetry measurement.

The asymmetry due to CP violation in the neutral kaon system, A_ϵ, depends on the decay time acceptance for K^0_S mesons. This quantity is obtained by fitting the K^0_S decay time distribution with an empirical function. The value obtained for the asymmetry is $A_\epsilon = (2.831^{+0.003}_{-0.004}) \times 10^{-4}$, where the quoted uncertainty is statistical only.

The D^+ production asymmetry is obtained in the kinematic range $2.0 < p_T < 18.0$ GeV and $2.20 < \eta < 4.75$, excluding the region with $2.0 < p_T < 3.2$ GeV and $2.20 < \eta < 2.80$, and is found to be

$$A_P(D^+) = (-0.96 \pm 0.26 \pm 0.18)\%.$$

The production asymmetry as a function of D^+ meson p_T and η is shown in Figure 2. No dependence is observed within the current experimental uncertainties.

4. B^0 and B^0_s production asymmetries

The B^0 and B^0_s production asymmetries [10] are obtained by means of two dimensional maximum likelihood invariant mass and decay time fits to the relevant distributions.

The signal mass component is parameterised by two Gaussians with the same mean and different widths. The partially reconstructed contributions are described by shapes obtained from a kernel estimation technique [11] based on invariant mass distributions obtained from fully simulated events. The combinatorial component is fitted using an exponential function.

As for the decay time, the signal is parameterized by a theoretical function describing the time dependent decay rate of a $B^0_{(s)}(\overline{B}^0_{(s)})$ to a flavour specific final state $f \bar{f}$ convolved with a
The production asymmetries as a function of the b-mesons p_T and η are shown in Figure 3. The B^0 and B^0_s production asymmetries, integrated in the ranges $4 < p_T < 30$ GeV/c and $2.5 < \eta < 4.5$, are found to be

$$A_P(B^0) = (-0.35 \pm 0.76 \pm 0.28)\%$$
$$A_P(B^0_s) = (1.09 \pm 2.61 \pm 0.66)\%$$

where the first uncertainties are statistical, and the second uncertainties are systematic. No evidence of production asymmetry is found within the current precision.

5. Λ^0_b production asymmetry

The Λ^0_b production and decay asymmetry [12] can be obtained as the sum of various terms

$$A_{P+D}(\Lambda^0_b) = A_{RAW}(\Lambda^0_b \to J/\psi pK^-) + A_{PID}(\Lambda^0_b \to J/\psi pK^-) + A_D(p) + A_D(K),$$

where $A_{RAW}(\Lambda^0_b \to J/\psi pK^-)$ is the raw asymmetry defined as the difference between Λ^0_b and $\bar{\Lambda}^0_b$ signal yields divided by their sum, $A_{PID}(\Lambda^0_b \to J/\psi pK^-)$ is the asymmetry between the particle identification asymmetries of Λ^0_b and $\bar{\Lambda}^0_b$, and $A_D(p)(A_D(K))$ is the proton (kaon) detection asymmetry.

The signal yields are obtained from unbinned extended maximum likelihood fits to the invariant mass distributions of Λ^0_b and $\bar{\Lambda}^0_b$. The signal component is parameterised using an
Figure 4. Production and decay asymmetry as a function of (left) transverse momentum and (right) rapidity of the b-hadrons.

double sided Crystal Ball function, that is composed by a Gaussian shape with power-law tails. The combinatorial background is modelled using an exponential function, while the contribution from $\Lambda^0_b \to J/\psi K^+\bar{p}$ decays is taken into account using the same shape as for the signal.

The particle identification correction is calculated using samples of data with tracks from the decays $J/\psi \to \mu^+\mu^-$, $D^{*+} \to D^0(K^-\pi^+)\pi^+$ and $\Lambda^+_c \to pK^-\pi^+$, which can be identified without requiring any particle identification cut on the daughters.

The kaon detection asymmetry is obtained from a previous LHCb publication [13], while the proton detection asymmetry is estimated from simulated events.

The quantity A_{P+D} as a function of p_T and y is shown in Figure 4. The p_T result is consistent with a null slope, whereas the combined result for $A_{P+D}(y)$ gives

$$A_{P+D}(y) = (-0.001 \pm 0.007) + (0.058 \pm 0.014)(y - \langle y \rangle),$$

where $\langle y \rangle = 3.1$ is the average rapidity of the Λ^0_b in the sample. The quoted error is the combination of the statistical and systematic contributions to the uncertainty.

6. Conclusion

Thanks to the unprecedented amount of b- and c-hadrons produced in the LHC pp collisions, LHCb is in an excellent position to perform high-precision CP violation measurements. One key ingredient to perform such measurements is the determination of the b- and c-hadron production asymmetries. These proceedings summarise the present status at LHCb for D^+_s, D^+_c, B^0, B^0_s and Λ^0_b hadrons. LHCb will continue to produce results in this sector as more data are being collected.

References

[1] Chaichian M and Fridman A, On a possibility for measuring effects of CP violation at pp colliders, PLB, 298, 1, 1993.
[2] Norrbin E and Vogt R, Bottom Production Asymmetries at the LHC, arXiv:hep-ph/0003056.
[3] Norrbin E and Sjöstrand T, Production and Hadronization of Heavy Quarks, European Physics Journal C, 17, 1, 2000.
[4] Aaij R et al. (LHCb Collaboration), Measurement of the $D^+_s - D^-_s$ production asymmetry in 7 TeV pp collisions, Physics Letters B 713 (2012), pp. 186-195.
[5] Grossman Y, Kagan A L, and Nir Y, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008, arXiv:hep-ph/0609178.
[6] Bergmann S and Nir Y, New physics effects in doubly Cabibbo suppressed D decays, JHEP 09 (1999) 031, arXiv:hep-ph/9909391.
[7] Aaij R et al. (LHCb Collaboration), Measurement of the D^\pm production asymmetry in 7 TeV pp collisions, Phys. Lett. B. 718 (2013) pp. 902-907.

[8] del Amo Sanchez P et al. (BaBar Collaboration), Study of $B \to X\gamma$ decays and determination of $|V_{td}/V_{ts}|$, Phys. Rev. D82 (2010) 051101, arXiv:1005.4087.

[9] Bigi I I and Yamamoto H, Interference between Cabibbo allowed and doubly forbidden transitions in $D^+ \to K_S^0, K^0_L + \pi$ decays, Phys. Lett. B349 (1995) 363, arXiv:hep-ph/9502238.

[10] Aaij R et al. (LHCb Collaboration), Measurement of the $B^0\to B^0$ and $B^0_s\to B^0_s$ production asymmetries in pp collisions at $\sqrt{s}=7$ TeV, Phys. Lett. B739 (2014) 218.

[11] Cranmer K S, Kernel estimation in high-energy physics, Comput. Phys. Commun. 136 (2001) 198, arXiv: hep-ex/0011057.

[12] Aaij R et al. (LHCb Collaboration), Study of the production of Λ^0_c and \bar{B}^0 hadrons in pp collisions and first measurement of the $\Lambda^0_c \to J/\psi pK^-$ branching fraction, Chinese Physics C Vol. 40, No. 1 (2016) 011001.

[13] Aaij R et al. (LHCb Collaboration), Measurement of CP asymmetry in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays, JHEP 07 (2014) 041, arXiv:1405.2797.