Aesthetic Features for Personalized Photo Recommendation

Yu Qing Zhou
Shopify
ivan.zhou@shopify.com

Ga Wu
University of Toronto
wuga@mie.utoronto.ca

Scott Sanner
University of Toronto
ssanner@mie.utoronto.ca

Putra Manggala
Shopify
putra.manggala@shopify.com

ABSTRACT

Many photography websites such as Flickr, 500px, Unsplash, and Adobe Behance are used by amateur and professional photography enthusiasts. Unlike content-based image search, such users of photography websites are not just looking for photos with certain content, but more generally for photos with a certain photographic “aesthetic”. In this context, we explore personalized photo recommendation and propose two aesthetic feature extraction methods based on (i) color space and (ii) deep style transfer embeddings. Using a dataset from 500px, we evaluate how these features can be best leveraged by collaborative filtering methods and show that (ii) provides a significant boost in photo recommendation performance.

KEYWORDS

Photo Recommendation, Image Style, HSV, Aesthetic Features

2 RELATED WORK

Many existing works in the literature on image aesthetic assessment are based on Photo.Net [2] or datasets from the DPCChallenge, like AVA [3]. These datasets were annotated with semantic and aesthetic labels and rated by users unidentifiable to researchers. For the purposes of this paper, it is not clear that these annotators align with the photography enthusiast community. Further, these works explored (non-personalized) image classification tasks.

Some previous work has leveraged stylistic and aesthetic image features for personalized recommendation of fashion products. For example, [6] used style-based features derived from deep embeddings for personalized clothing recommendation. Alternatively, [8] incorporated simple binary aesthetic features (e.g., if the images are aesthetically pleasing to the public or not). In contrast, we focus on extracting rich aesthetic photo features such as color composition and texture-based deep style embeddings of [4] that we conjecture may better relate to photography enthusiast preferences.

3 APPROACH

Photo recommendation can be formalized in the usual matrix view: given a set of m users, a set of n photos, and the observed interaction of users with photos $R \in \{0, 1\}$ (1 indicates a positive interaction, and 0 indicates no observed interaction) with shape of $m \times n$, we want to rank the top-k images that a user may positively interact with in the future.

One variant of item-item Nearest Neighbor Collaborative Filtering (I-NN) [5] predicts user i’s interaction with photo j as

$$\hat{r}_{i,j} = \sum_{k \in \{1, \ldots, n\}, k \neq j} \text{Sim} (\phi(j), \phi(k)) \cdot r_{i,k},$$

(1)

where $\phi(j)$ is a vector of information for item j, and $\text{Sim}(\phi(j), \phi(k))$ defines similarity between photos j and k; multiple similarity functions Sim are available such as Cosine, Pearson, and Euclidean.

If there is side information p_j available, in addition to the rating column $r_{i,j}$ in matrix R, it is expressed as

$$\text{Sim}(\phi(j), \phi(k)) = \theta \cdot \text{Sim}(p_j, p_k) + (1 - \theta) \cdot \text{Sim}(r_{i,j}, r_{i,k}).$$

(2)

where θ is a relative weighting hyperparameter that can be tuned through cross-validation.

Next we describe two aesthetic feature extraction methods.

HSV Color-Embedding. The HSV color space was designed to capture the human perception of color [1]. It has been used in (non-personalized) photo aesthetic assessment [2]. In contrast with the traditional RGB color space, HSV separates out luminance from color information. We represent the HSV (or RGB) color-embedding p_j of photo j as a concatenated histogram vector of the three HSV (or RGB) channels illustrated in Figure 1.

In another variant of I-NN, the predicted interaction in (1) is normalized by $\sum_{k \in \{1, \ldots, n\}} \text{Sim}(\phi(j), \phi(k))$. We observe better ranking performance without this.
We conduct our experiments on a dataset from 500px, an online photography website. The dataset contains 225,922 users and 300,000 photos. We prepared five temporally-split triples of train, validation, and test sets from this dataset. The validation set is used to tune hyperparameters, which are determined through experimentation from an inference performed on the photo \(j \) using a VGG-19 network [7].

4 RESULTS

We conduct our experiments on a dataset from 500px, an online photography website. The dataset contains 225,922 users and 300,000 photos. We prepared five temporally-split triples of train, validation, and test sets from this dataset. The validation set is used to tune hyperparameters, which are determined through experimentation from an inference performed on the photo \(j \) using a VGG-19 network [7].

Table 1: Recommender performance comparison (±95% CIs).

Model	Precision@10	R-Precision	Avg Precision
Random	0.006 ± 0.002	0.006 ± 0.002	0.006 ± 0.002
Popular	0.021 ± 0.004	0.018 ± 0.004	0.021 ± 0.005
I-NN	0.048 ± 0.009	0.041 ± 0.008	0.047 ± 0.010
I-NN-Meta	0.044 ± 0.005	0.037 ± 0.004	0.042 ± 0.006
I-NN-HSV	0.041 ± 0.006	0.033 ± 0.006	0.040 ± 0.008
I-NN-RGB	0.038 ± 0.003	0.030 ± 0.004	0.037 ± 0.006
I-NN-Style	0.059 ± 0.012	0.050 ± 0.011	0.057 ± 0.014

for \(k = 10 \) and \(k = 15 \). The results are provided in Figure 2. The Euclidean similarity metric applied to style embeddings extracted from layer 8 of VGG-19 gives us the highest Precision@\(k \) for both \(k = 10 \) and \(k = 15 \). Thus, we use this configuration for I-NN-Style.

Which photo recommender performs best overall?
Table 1 provides comparative results. As noted earlier, I-NN performs best among baselines and outperforms three methods that use photo-related information: I-NN-Meta, I-NN-HSV, and I-NN-RGB. However, the best performer overall by a substantial margin is I-NN-Style that uses photo aesthetic information derived from style embeddings.

5 CONCLUSION

Our results show that color and explicit metadata side information for photos do not help photo recommendation performance. However, style embeddings derived from layer 8 of VGG-19 provide a significant boost, demonstrating the importance of aesthetic style features in recommendation for photography enthusiasts.

REFERENCES

[1] H.D. Cheng, X.H. Jiang, Y. Sun, and Jingli Wang. 2001. Color image segmentation: advances and prospects. Pattern Recognition 34, 12 (2001), 2259–2281.
[2] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. 2006. Studying Aesthetics in Photographic Images Using a Computational Approach. Springer, 288–301.
[3] Yobin Deng, Chen Change Loy, and Xiaowu Tang. 2017. Image Aesthetic Assessment: An experimental survey. IEEE Signal Processing Magazine 34, 4 (7 2017), 80–106. http://ieeexplore.ieee.org/document/7974874/.
[4] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer Using Convolutional Neural Networks. In 2016 CVPR IEEE, 2414–2423.
[5] G. Linden, B. Smith, and J. York. 2003. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing 7, 1 (1 2003), 76–80.
[6] Julian McAuley, Christopher Tarantino, Qinfeng Shi, and Anton van den Hengel. 2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings of SIGIR ’15, 43–52. http://dl.acm.org/citation.cfm?doid=2766462.2767755
[7] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. (9 2014). http://arxiv.org/abs/1409.1556
[8] Wenhui Yu, Huish Zhang, Xiaoguan He, Xu Chen, Li Xiong, and Zheng Qin. 2018. Aesthetic-based Clothing Recommendation. In Proceedings of WWW ’18, 649–658.