Effect of supplementary irrigation on rice yield in dry land during rainy season

A Anshori1*, T E Suswatiningsih2, N A I Viandari3, Rajiman4 and Mujiyo5

1Assesment Institute for Agricultural Technology of Yogyakarta. Jalan Stadion Maguwoharjo No. 22 Wedomartani Ngemplak Sleman D.I. Yogyakarta Indonesia
2Department of Agribusiness, Faculty of agriculture, Instiper, Yogyakarta. Jalan Nangka 2 Maguwoharjo Depok Sleman D.I. Yogyakarta Indonesia
3Indonesian Agricultural Environment Research Institute. Jalan Raya Jakenan-Jaken Km 5 Pati Jawa Tengah Indonesia
4Agricultural Development Polytechnic of Yogyakarta – Magelang. Jalan Kusumanegara 2 Yogyakarta Indonesia
5Department of Soil Science, Faculty of Agriculture, Universitas Sebelas Maret. Jalan Ir. Sutami No.36A Jebres Surakarta Jawa Tengah Indonesia

*Corresponding author: arifanshori@yahoo.com

Abstract. Climate change causes change in rainfall patterns, which will affect water availability. Water is a limiting factor for rice production on dry land. Increasing rice yields on dry land requires precise water management. This study aimed to investigate the effect of supplementary irrigation when it does not rain on rice yields in dry land during rainy season. The research was conducted on dry land in Playen, Gunung Kidul, Daerah Istimewa Yogyakarta, Indonesia during rainy season of November 2020 to February 2021. The treatments were supplementary irrigation if 1 day without rain (A1), if 2 days without rain (A2) and if 3 days without rain (A3), and they were compared to control without supplementary irrigation (A0). This research used a randomized completely block design, each treatments replicated 4 times. The results showed A1 gave the highest grain yield, namely 7.786 ton ha$^{-1}$, significant different with other treatments of A2, A3 and A0. Dry straw of A1 was 7.324 ton ha$^{-1}$, significant different with A2, A3 and A0. Carbon absorption of A1 was 6.860 ton ha$^{-1}$, consisting of carbon in grain 3.575 ton ha$^{-1}$ and straw 3.285 ton ha$^{-1}$, it was significant different with other treatments of A2, A3 and A0 (p<0.05; n=16). B/C A2 1.73 was highest from the others and its farmers have profit Rp. 19,276,360 ha$^{-1}$.

1. Introduction
Climate change is a natural phenomenon [1], occurs naturally and can be accelerated by human behavior. Climate change has an impact on the hydrological cycle [2], rainfall patterns and agriculture [3] and soil degradation potential [4]. Climate change affects agricultural production [5], especially in areas that rely on rainfall as a source of water. Information on the amount and distribution of rain are important for crop production [6].

Dry land productivity is determined by climate stability, rainfall and soil [7]. Rainfall is the main water source in dry land [8], with limited quantity and distribution [9], making it prone to drought [10]. Dry land has a low level of soil fertility [11] with rapid decomposition of organic matter resulting in low soil organic carbon [12]. Dry land is vulnerable to degradation [13].
Water limits the increase in cropping intensity on dry land [14]. Irrigation arrangements increase the guarantee of water availability [15] and the effectiveness of farming [16]. Providing water as supplementary irrigation is an alternative in limited water conditions [17], originating from deep wells, shallow wells, river or ditch dams [18]. Supplementary irrigation is an alternative to increase production from dry land [19]. Supplementary irrigation is required when at a certain time it does not rain. Supplementary irrigation as a complement to rainfall for sufficiently crop water requirements. Supplementary irrigation provides water when needed. Water utilization must also be more efficient. According to Heryani, et al [20] Specific data on water resources are needed so that water management is appropriate and sustainable. Increasing rice production on dry land can be done with the support of supplementary irrigation [19]. This study aimed to investigate the effect of supplementary irrigation when it does not rain on rice yields in dry land during rainy season.

2. Materials and method

2.1. Research location
Dry land of Logandeng Playen Gunungkidul at coordinates 7°55'59''N, 110°34'42''E, with an altitude of 211 m above sea level was the research location during the rainy season 2020-2021. The research location has 5 wet months and 6 dry months with a rainfall of 1,852 mm per year. The farmer's cropping pattern is rice-palawija-palawija/vegetables. Farmers plant rice during the first growing season relying on water from rainfall, without irrigation.

2.2. Experimental design
Irrigation as a treatment basis to support rice planting during the first growing season, as supplementary irrigation. Supplementary irrigation refers to the Oldeman classification of 200 mm monthly rainfall for the water requirements of rice plants [21], So that the rainfall of 6.33 mm per day was determined as the limit for providing supplemental irrigation. A Randomized Completely Block Design (RCBD) was used in this research with 4 treatments and 4 replications. The treatment consisted of supplementary irrigation if 1 day without rain (A1), if 2 days without rain (A2) and if 3 days without rain (A3) to compare with control without additional irrigation (A0).

2.3. Rice cultivation
Rice was planted by tillage and transplanting system. Soil tillage was done with a hand tractor. Inpari 42 varieties was planted manually at the age of 20 days after sowing, 2-3 seeds per hole. The research was supported by 100 kg of N 46% and 250 kg of NPK 15-15-15. Fertilizer was given at 5 DAS, 25 DAS and 35 DAS. Weed control at 10, 20 and 30 DAS. Supplementary irrigation comes from deep wells by pump. Rice harvest at 96 DAS.

2.4. Parameters measurement
Rainfall was observed during the rice growing season, by installing a rainfall gauge at the research site. Harvest dry grain and straw were observed at harvest. The carbon content of grain and straw was determined based on the carbon content in the tissue [22]. Economic feasibility was obtained from direct survey and farmers interview.

2.5. Statistical analysis
The F test was used to determine the significance level of the treatment and the DMRT test to determine the effect of treatment interactions at the 5% level [23]. Economic analysis was used to determine the feasibility of farming [24].

3. Results and discussion
Dry land relies on water from rainfall. Rainfall is influenced by local and global environmental conditions. Rainfall intensity and time may not be suitable for plant water needs, in terms of quantity
and time. This phenomenon causes water to become a limiting factor for the growth and production of crops on dry land, including rice. At the time of research, from transplanting to harvest, for 96 days, 1,014 mm of rain occurred, with 36 rainy days. The amount and distribution of rain were uneven during the planting period. This condition causes supplementary irrigation to be provided.

Supplementary irrigation adjusts for rainfall occurs, with a rainfall limit of 6.33 mm. Supplementary irrigation was given 20 times for A1 treatment, 12 times for A2 and 6 times for A3. Irrigation was provided with an average water level of 10 cm. Supplementary irrigation comes from a deep well water pump. The results of previous studies by Viandari and Anshori [25] showed that at the same location, the 5 cm flooding was exhausted after 8 hours and reached a depth of 20 cm after the next 16 hours. In this study, supplementary irrigation was given an average of 10 cm to support dry land rice yields.

Harvested dry grain and dry straw and carbon absorption in grain and rice straw can be seen in Table 1. The harvested dry grain of A1 was 7.786 tons ha\(^{-1}\), significantly different from all treatments A2, A3 and A0. The harvested dry grain of A1 was higher of 77.76\% than A0. A1 produced highest dry straw of 7.324 ton ha\(^{-1}\), significantly different from all treatments A2, A3 and A0. Dry straw of A1 was higher of 58.63\% than A0, without supplementary irrigation. The harvested dry grain and dry straw with supplementary irrigation was higher than control, because water is available throughout the growing and developing period of the rice. According to Tsai and Lai [26] water plays a role in the formation of tillers and panicle initiation. Water affects root formation and soil nutrient uptake [27].

![Figure 1. Daily rainfall and irrigation time for A1, A2 and A3.](attachment:image.png)

Treatment	Dry Grain	Dry Straw	Carbon Absorption	
	ton ha\(^{-1}\)	ton ha\(^{-1}\)	Grain	Straw
A0	4.380±0.359a	4.617±0.184a	2.039±0.167a	2.071±0.083a
A1	7.786±0.368b	7.324±0.362b	3.575±0.169b	3.285±0.162b
A2	7.241±0.256c	6.451±0.531c	3.330±0.118c	2.893±0.238c
A3	5.624±0.243d	5.676±0.406d	2.597±0.112d	2.546±0.182d

Note: The average and standard deviations that followed by different letter in the same column show significantly different in 5% DMRT.

Supplementary irrigation increases carbon absorption in grain and rice straw. A1 absorbed the highest carbon of 3,575 ton ha\(^{-1}\) in grain and 3.285 ton ha\(^{-1}\) in straw, 75.33\% and 58.62\% higher than...
A0, significantly different from all treatments. Supplementary irrigation increases the absorption of carbon dioxide from the air, through increased photosynthesis to form plant tissue. Carbon dioxide is greenhouse gases [28], [29]. The absorption of carbon dioxide through photosynthetic reactions reduces the concentration of greenhouse gases from the air [30]. Economic analysis determines the cost and profit of farming under various treatments. A1 profit was highest of Rp. 19,566,200, greater than without irrigation of Rp. 9,305,000, an increase of 90.68%. A2 profit of Rp. 19,277,200, greater than without irrigation of Rp. 9,016,200, an increase of 87.87%. A3 profit of Rp. 14,235,800, more than without irrigation Rp. 3,905,000, an increase of 38.74%. The irrigation cost for A1 was 38.07%, A2 was 26.94% and A3 was 13.32% of the cost component. Lowest A3 irrigation cost, but low profit too (Table 2).

Component	A0	A1	A2	A3
Material (seed, fertilizer, pesticide)	2,835,000	2,835,000	2,835,000	2,835,000
Labor	4,800,000	4,800,000	4,800,000	4,800,000
Water for Irrigation	-	5,000,000	3,000,000	1,250,000
Total cost	8,135,000	13,135,000	11,135,000	9,385,000
Receipt	18,396,000	32,701,200	30,412,200	23,620,800
Profit	10,261,000	19,566,200	19,277,200	14,235,800
B/C	1.26	1.49	1.73	1.52

B/C shows the farmer's profit per unit cost. Positive B/C means that the farming business was feasible to develop [24], [31], the three treatments were feasible to be developed. The profit of A1 was higher than A2, but the B/C was lower. Economically, A2 was higher than A1.

4. Conclusion
Supplementary irrigation increases rice yields and absorption of the carbon dioxide greenhouse gas through photosynthetic reactions forming plant tissue on dry land in the rainy season. A1 provides the highest rice yield in the form of harvested dry grain of 7.786 ton ha⁻¹, dry straw of 7.324 ton ha⁻¹ and carbon absorption in grain of 3.575 ton ha⁻¹ and straw of 3.285 ton ha⁻¹. A1 provides the highest profit, but has lower B/C than A2. A2 was more economical than A1.

References
[1] Hermanto 2011 *Pedoman Umum Adaptasi Perubahan Iklim Sektor Pertanian* (Jakarta: Badan Penelit. dan Pengemb. Pertanian)
[2] Manik T K, Rosadi B and Nurhayati E 2014 Mengkaji Dampak Perubahan Iklim Terhadap Distribusi Curah Hujan Lokal di Propinsi Lampung *Forum Geogr* 28(1) 73–86
[3] Runutunuwu E and Syahbuddin H 2007 Perubahan pola curah hujan dan dampaknya terhadap periode masa tanam *J. Tanah Dan Iklim* 26 1–12
[4] Herawati A, Suntoro, Widijanto H, Pusponegoro I, Sutopo N R and Muijiyo 2017 Soil degradation level under particular annual rainfall at Jenawi District– Karanganyar, Indonesia *IOP Conf. Ser. Earth Environ. Sci.* 129 012010
[5] Ruminta Handoko and Nurmala T 2018 Indikasi perubahan iklim dan dampaknya terhadap produksi padi di Indonesia (Studi kasus: Sumatera Selatan dan Malang Raya) *J. Agro* 5 (1)
[6] Guan K, Sultan B, Biasutti M, Baron C and Lobell D B 2015 What Aspects of Future Rainfall Changes Matter for Crop Yields in West Africa? *Geophys. Res. Lett.* 42(19)
[7] Hayashi K, Llorca L, Rustini S, Setyanto P and Zaini Z 2018 Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production
in Southeast Asia Agric. Syst. **162** 66–76

[8] Sutrisno N 2016 *Pengembangan pengelolaan panen hujan mendukung kemandirian pangan Dalam Pasandaran,* E., R. Heriawan dan Syakir, M. Sumberd. lahan dan air Prospek Pengemb. dan pengelolaan (Bogor: IAARD Press)

[9] Brontowiyono W, Lupiyanto R, Yuwono E, Sulistiono B, Handayani S and Harjitoed D A 2013 Rainwater harvesting based marginal land irrigation technology : A case study in Ngawen Sub-district of Gunungkidul Regency Indonesia *Int. J. Sustain. Futur. Hum. Secur.* **1**(2) 63–7

[10] Haryati U 2011 *Irigasi suplemen dan strategi implementasinya pada pertanian lahan kering No. 3413 Tahun Sinar Tani Ed* (Bogor: Badan Litbang Pertanian)

[11] Abdurachman A, Dariah A and Mulyani A 2008 Strategi dan teknologi pengelolaan lahan kering mendukung pengadaan pangan nasional *J. Litbang Pertanian* **27**(2)

[12] Rahman A and Dariah A 2008 *Olah Tanah Konservasi dalam Konservasi Lahan Kering Jakarta: Badan Litbang Pertanian. Dep. Pertanian*

[13] Efendi R and Suwardi S 2009 Mempertahankan dan meningkatkan produktivitas lahan kering dan produksi jagung dengan sistem penyiaian lahan konservasi *Pros. Semin. Nas. Serealita. ISBN 978-979-8940-27-9*

[14] Suwarno 2010 Meningkatkan Produksi padi menuju ketahanan pangan lestari *J. Pangan* **19**(3) 233–43

[15] Arlius F, Irsyad F and Yanti D 2017 Analisis daya dukung lahan untuk sawah tadah hujan di Kabupaten Pasaman Barat *J. Rona Tek. Pertan.* **10**(1) 21–33

[16] Maman U 2014 *Pengelolaan sumber daya air bagi swasembada pangan dalam sistem agribisnis syariah J. agribisnis* **8**(2) 141–54

[17] Hidayat Y M, Harlan D and Winskayati 2012 Kajian optimalisasi penggunaan air irigasi di daerah irigasi Kabupaten Bandung [Online] Available: ftsi.itb.ac.id

[18] Anshori A, Riyanto D, and Suradal 2020 Peningkatan indeks pertanaman padi pada musim tanam ke dua di Kecamatan Ngawen, Kabupaten Gunungkidul, Provinsi Daerah Istimewa Yogyakarta *AgriHealth J. Agri-food, Nutr. Public Heal.* **1**(2) 9–15

[19] Anshori A, Riyanto D, Sukristiyonubowo, Widodo S and Suradal 2021 The increase of rice cropping index supported by river dam irrigation in dry land *IOP Conf. Ser. Earth Environ. Sci.* **653** 012074

[20] Heryani N, Kartiwa B, Hamdani A and Rahayu B 2017 Analisis ketersediaan dan kebutuhan air irigasi pada lahan sawah : studi kasus di Propinsi Sulawesi Selatan *J. Tanah dan Iklim* **41**(2) 135–45

[21] Wisnubroto S 1999 *Meteorologi Pertanian Indonesia* (Yogyakarta: Mitra Gama Widya)

[22] Eviati and Sulaeman 2009 *Petunjuk teknis analisis tanah, tanaman, air dan pupuk* (Bogor: Balai Penelit. Tanah)

[23] Steel R G D and Torie J H 1978 *Principles and procedures of statistics : Biometrical Approach* (Tokyo: Mac Graw Hill Inc. B. Co)

[24] Soekartawi 1995 *Analisis usaha tani.* (Jakarta: UI. Press)

[25] Viandari N A and Anshori A 2021 Rice cultivation on dry land during dry season supported by deep well irrigation and soil amelioration *IOP Conf. Ser. Earth Environ. Sci.* **672** 012019

[26] Tsai Y Z and Lai K L 1990 *The effect of temperature and light intensity on the tiller development of rice* (Taipei: Taiwan Dep. Agron. Natl. Univ)

[27] Marschner H 1995 *Mineral nutrition of higher Plants* (New York: Academic Press)

[28] Begum N Guppy C Herridge D and Schwenke G, 2014 Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic Black Vertisol *Bio Fertil Soils* **50** 499–506

[29] Lazăr A, Tudora C and Emanuela S M 2018 Carbon dioxide emissions monitoring in romania in the context of greenhouse gases reduction *MATEC Web Conf.* **171** 05001

[30] Tkemaladze G and Makhhashvili K A 2016 Climate changes and photosynthesis *Ann. Agrar. Sci.* **14** 119–26
[31] Priatmojo B, Adnyana M O, Wardana IP and Sembiring H 2019 Kelayakan finansial dan teknis cara tanam padi jajar legowo super di sentra produksi padi kawasan Sumatera *Penelit. Pertan. Tanam. Pangan* 3(1) 9-15