DIAGNOSTIC CRITERIA OF ORAL LICHEN PLANUS: A NARRATIVE REVIEW

Doina Iulia Rotaru¹, Diana Sofineti², Sorana D. Bolboacă³ and Adriana E. Bulboacă⁴

¹Department of Odontology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; ²Dental Center Cassandraplein, Eindhoven, The Netherlands; ³Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; ⁴Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy Cluj–Napoca, Romania

SUMMARY – Oral lichen planus (OLP) is a disease with unclear etiology or pathogenesis, categorized by the World Health Organization as oral lichenoid lesions (OLL; interface mucositis or lichenoid mucositis) into a group of potentially malignant disorders. The diagnosis of OLP is challenging because the clinical and histopathologic features are frequently seen in OLP, OLL and/or other mucosal diseases with lichenoid characteristics. Furthermore, OLP has a dynamic nature. Finally, an early and precise diagnosis can play a decisive role, allowing timely treatment and thus improving the patient quality of life. This article summarizes the state-of-the-art regarding OLP and OLL and discusses the challenges faced on making an accurate diagnosis, aiming to provide a practical guideline for the postgraduates and oral physicians in reaching the diagnosis of these lesions.

Key words: Lichen planus; Oral lichen planus; Oral lichenoid lesions; Diagnosis guideline; Precancerous conditions

Introduction

Lichen planus (Greek leichen = tree moss, Latin planus = flat, even)¹ is a common inflammatory dermatosis of unclear origin that affects the skin, nails, hair and mucous membranes, recognized as early as 1866. The term lichen planus (LP) was coined by Wilson², in association with the condition previously described by von Hebra³. The presence of reticulate white lines on the surface of LP papules, today known as Wickham striae⁴, were first reported by Wickham in 1895. Dari-er presented the first description of the histopathologic features seen in LP⁵. A particular form of muco-
sal LP, which associates the presence of erosive lesions at the level of oral and vulvovaginal mucosa, was described by Pelisse et al⁶.

Epidemiology

Lichen planus is distributed worldwide, but the exact incidence and prevalence are unknown due to the lack of clear diagnostic criteria, varied clinical presentation, and because the most common form of oral lichen planus (OLP, reticular) is asymptomatic and underdiagnosed⁷. The prevalence of LP is estimated at 0.5% to 2.0% (e.g., 0.5% in Japan, 1.9% in Sweden, and 2.6% in India)⁸,⁹. No racial predisposition has been reported⁹,¹⁰. OLP frequently affects middle-aged or older adults, with a higher prevalence in females³,¹¹,¹² and is rare in children¹³.

Cutaneous LP presents as small violaceous papules most frequently localized at the flexor surfaces of the
limbs. The 6 ‘Ps’ of LP are ‘Pruritic, Purple, Polygonal, Planar, Papules, and Plaques’14. The lesions are usually bilateral with relatively symmetric appearance.

Oral lichen planus can occur solitary or with simultaneous cutaneous or mucosal manifestations (e.g., genital area, gastrointestinal tract, eyes, etc.)15. Oral lesions are usually bilateral, often symmetric, and most commonly involve buccal mucosa (80\%-90\% of OLP cases), gingiva and tongue7,16. Unilateral presentation of oral lesions is atypical7, and localizations on the palate, lip, and floor of the mouth are atypical7,16.

Etiology

The etiology remains uncertain, but external and internal agents are believed to be associated with OLP. The most incriminate external agents are a virus (mostly hepatitis C virus18,19), certain medications (such as nonsteroidal anti-inflammatory drugs; ibuprofen, diclofenac, naproxen, indomethacin, aspirin, etc.), antihypertensives (β-blockers, thiazides, angiotensin-converting enzyme inhibitors), antirheumatics, antimalarials, gold salts, penicillamine, or retroviral therapies7,20,21, metallic materials22,23, and/or trauma. Among internal agents, stress and heat shock protein antigen expression have received most attention7,24,25. Other etiologic factors associated with OLP include genetic predisposition, diabetes, hypertension, and infections7,24,25.

Several mechanisms of its pathogenesis have been proposed, i.e. antigenic cell-mediated immune response26, nonspecific mechanisms27, and autoimmune response26,28. The risk of malignant transformation of OLP ranges from 0.4\% to 12.5\%29,31, the highest rate of transformation being reported for erythematous and erosive lesions7,9,32. In 2005, the World Health Organization (WHO) through the Global Oral Health Program classified OLP as a premalignant condition33. The malignant potential of OLP is still debated due to the lack of consensus on accurate diagnostic criteria, thus the diagnosis being based only on clinical presentation in some cases30,34.

Pathogenesis

Oxidative stress has been reported as being involved in OLP35,36. Saliva contains several antioxidants (uric acid, glutathione, and ascorbic acid) and its defensive mechanism is called salivary antioxidant system37,38. Some researchers have shown lower salivary and plasma levels of total antioxidant status in erosive LP patients as compared with healthy controls. The inflammatory cellular infiltrate in LP, which consists mainly of CD4+ lymphocytes, is a well-known source of reactive oxygen species39.

Clinical Presentation

Oral lichen planus is usually bilateral40-43, symmetric or asymmetric, located on buccal mucosa, tongue, lips and/or gingiva, with fine white lines forming a lace-like network (known as Wickham’s striae as a highly characteristic feature of OLP). The presence of Wickham’s striae is a pathognomonic feature to define a lesion as LP44.

Three OLP white forms (reticular, papular and plaque-like) and three OLP red forms (erosive (ulcerated), atrophic (erythematous) and bullous) have been reported in the literature45,46. The most common forms are reticular, erosive, papular and plaque-type, whereas the atrophic and bullous types are less frequently seen. Clinical types of OLP may occur alone or in various combinations27,33,47. No symptoms are reported for reticular lesions, whereas burning sensation and pain are reported for atrophic, erosive and bullous OLP lesions48.

The following four types of oral lichenoid lesions (OLL) are known to date33,49: lichenoid lesions in chronic graft-versus-host disease (cGVHD), oral lichenoid contact hypersensitivity reaction (OLCHR), oral lichenoid drug reactions (OLDR), and lesions with lichen planus-like aspect but missing one or several clinical characteristics (e.g., lichen planus pemphigoid, chronic ulcerative stomatitis, lupus erythematosus). Thickened white hyperkeratotic lesions with atypical localization, which typically have a straight topographic relation to the causative agent are typical for OLL33,50.

Oral squamous cell carcinoma (OSCC) could have a precursor in OLP or OLL, both bearing a risk of malignant transformation28,30,51,52, but this risk is small (1.1\% of patients with OLP develop OSCC)30,53. Erosive OLP, especially tongue lesions34, commonly progresses into OSCC55,56.

Doina Iulia Rotaru et al. Oral lichen planus: diagnosis
A higher risk of malignant transformation is reported in patients with OLL28,57; the risk increases if the patient is smoker, alcoholic, or infected with hepatitis C virus30,57. Although the risk of malignant transformation in patients with OLP and OLL is comparatively lower than for other potentially malignant disorders, active follow-up of all patients is mandatory30,57.

A reliable diagnosis of OLP and OLL has proved challenging due to both dynamic nature of the lesions and similar clinical and histologic appearances in various conditions30. Thorough medical history of the patient along with complete mucocutaneous examination before particular diagnostic tests58, and due knowledge of the clinical and pathological variations of OLP and OLL are essential to make an accurate diagnosis.

Diagnostic Criteria

Significant changes have been made over years concerning the diagnosis of OLP. According to the WHO, there is a lack of clinical and histologic criteria for both OLP and OLL59. Diagnostic criteria for OLP were established in 1978 by the WHO59. Modified criteria were published in 2003 by van der Meij and van der Waal60, while the newest diagnostic approach for these lesions was published in 2016 (Table 1). Rad \textit{et al.}61 compared the criteria set by the WHO in 197859 with those modified by van der Meij and van der Waal60. Hiremath \textit{et al.} have reported on a mild to moderate clinico-pathologic correlation in definitive diagnosis of OLP and recommended the association of the clinical and histopathologic features for definitive diagnosis62. The latest modified classification33 includes those clinical and histopathologic characteristics able to discriminate between LP and lichenoid reactions correctly.

The clinical (history and presentation), histopathologic, immunofluorescence, biomarkers, reflectance confocal microscopy, fluorescence spectroscopy, and/or therapeutic probation features detailed below support the diagnosis of OLP and OLL.

Clinical history

Oral lichen planus can be associated with stress (e.g., extension of OLP with lengthy emotional stress, increased levels of psychosocial and/or emotional stress) and/or psychological problems (especially depression and anxiety). Furthermore, an association with immune mediated disorders (e.g., alopecia areata, dermatomyositis, lichen sclerosus et atrophicus, morphea, myasthenia gravis, primary biliary cirrhosis, ulcerative colitis, or vitiligo56,65) could be observed.

Oral lichenoid lesions can present in three forms according to the associated conditions49, as follows: post allogeneic bone marrow transplantation (lichenoid lesions in cGVHD), dental restorations (checking the cytotoxicity of dental materials is mandatory66), habits of using cinnamon-containing foods or oral hygiene products (e.g., toothpaste, mouthwashes; oral lichenoid contact hypersensitivity, OLCh), or drug therapy, systemic or topical application (oral lichenoid drug reaction, OLDR), etc.

Temporal relationship between the above-mentioned elements from clinical history and the onset of oral lesions is observed.

Clinical presentation

The appearance and distribution of lesions should be considered on making the diagnosis (Table 2). OLP is frequently asymptomatic (NEOLP) or with oral symptoms such as mild burning sensation to debilitating pain which interferes with speech, chewing and swallowing (EOLP). OLP could be associated with cutaneous lesions (15\% of OLP patients develop cutaneous lesions49, which appear as purplish papules of 2–3 mm in diameter, with a glistening surface marked by minute fine striae, typically located on the flexor surface of the wrists and forearms, usually itchy. Skin lesions help but are not essential for making the diagnosis of OLP67), or with other mucosal manifestations such as genital lesions (~20\% of OLP patients have concomitant genital lesions33), gastrointestinal lesions68-70, and, lesions at the level of the conjunctiva of the eyes71-73.

The following aspects are seen in all patients with OLP or OLL33:

- the patient has multiple oral lesions or only a single isolated one;
- where the lesion(s) is/are located (list the site/sites of involvement);
- the lesion(s) is/are limited to an area with direct contact with/adjacent to dental restoration; and
- clinical aspect of the lesion/lesions: white striations, papules, diffuse redness, ulceration surrounded by white striations or plaques, white plaques without redness, or other appearance.
A significant weight on making clinical and definitive diagnosis of OLP lesions has the modification of clinical appearance (including unilateral or bilateral distribution), as well as changes of routines.\(^8\)

Histopathologic diagnosis

The following aspects are essential regarding the histopathologic diagnosis of OLP and OLL:\(^3\):

- one tissue sample is sufficient for typical lesions; samples from multiple areas with different mucosal clinical features are needed in case of atypical oral lesions;
- clinical information must accompany biopsy specimen (anatomic site of lesions, clinical history, and lesion type);
- histopathologic features are variable, depending on anatomic sites, clinical type, and the stage of disease activity and/or novel treatments; and
- microscopic diagnosis of OLP and OLL lacks consensus.

Table 1. Diagnostic criteria for oral lichen planus: changes over time

Clinical criteria	Histopathologic criteria
World Health Organization, 1978\(^5\)	
Multiple, often symmetric in distribution:	
• white papule, reticular (gray-white lines distributed as a lace-like network), annular, or plaque-type lesions	
• central papules with radiating gray-white lines	
• atrophic lesions with or without erosion	
• bullae (rare)	
• thickened orthokeratinized or parakeratinized layer in usually keratinized sites; very thin layer may be observed when it appears in ordinarily nonkeratinized sites	
• Civatte bodies localized at the basal, epithelium and superficial layers of the connective tissue	
• well-defined, band-like zone	
• cellular infiltration (lymphocytes) at the level of the connective tissue (superficial layer)	
• liquefaction degeneration in the basal cell layer	
van der Meij and van der Waal, 2003\(^6\)	
Bilateral, more or less symmetric lesions	
• reticular pattern of the lace-like network as gray-white lines	
• erosive, atrophic, bullous and plaque-type lesions just in the presence of reticular lesions elsewhere in the oral mucosa	
All other lesions that resemble OLP but do not meet the criteria mentioned above are called 'clinically compatible with'	
• cellular infiltration (mainly lymphocytes) as a well-defined band-like zone that is confined to the superficial layer of the connective tissue	
• basal cell layer with signs of liquefaction degeneration	
• absence of epithelial dysplasia	
When the histopathologic features are not so obvious, the term 'histopathologically compatible with' is applied	
American Academy of Oral and Maxillofacial Pathology, 2016\(^3\)	
Multifocal symmetric distribution	
• white and red lesions exhibiting one or more of the following forms:	
• reticular/papular	
• atrophic (erythematous)	
• erosive (ulcerative)	
• plaque	
• bullous	
• lesions are not exclusively localized	
• to the sites of smokeless tobacco placement	
• adjacent to and in contact with dental restorations	
• lesion onset does not correlate with	
• the start of a medicine	
• use of cinnamon-containing products	
• band-like or patchy, predominately lymphocytic infiltrate in the lamina propria confined to the epithelium-lamina propria interface	
• basal cell liquefactive (hydropic) degeneration	
• lymphocytic exocytosis	
• absence of epithelial dysplasia	
• absence of verrucous epithelial architectural change	
A diffuse lymphocytic infiltrate mixed with plasma cells, and eosinophils are observed in the case of oral lichenoid drug reactions (OLDRs). Furthermore, inflammatory infiltrates frequently extend to the deeper connective tissue layer and a perivascular inflammatory cell infiltrate is often seen. Similar microscopic features are observed in oral lichenoid contact hypersensitivity reactions (OLCHRs) and OLDRs. Nonspecific microscopic features such as hydropic degeneration of basal epithelial cells and low intensity lymphocytic infiltrate mixed with plasma cells and eosinophils in the lamina propria are seen in the case of cGVHD. Lichen planus pemphigoides, as well as

Appearance	Oral lichen planus	Oral lichenoid lesions
Two or more types of OLP can co-occur in a patient	Occur in different forms similar to OLP	erythematous
reticular: most common; lacy white streaks (Wickham striae) surrounded by well-defined erythematous borders and lesions can cause roughness and reduced mucosal flexibility	reticular: chronic graft vs. host disease, oral lichenoid drug reaction	
papular: small white pinpoint papules that may coalesce	plaque-like: chronic graft vs. host disease	
plaque-like: large, homogeneous white patches	atrophic: oral lichenoid drug reaction	
erosive: atrophic or erythematous ulcerations, erosions of the mucosa, faint radiating white striae	erosive: chronic graft vs. host disease, oral lichenoid drug reaction	
atrophic: atrophic lesions surrounded by erythema with radiating white striae. It presents as ‘desquamative gingivitis’ when gingiva is involved	Atypical sites (such as the palate) and frequently with straight topographic relation to the causative agent:	
bullous: fluid-filled lesions	chronic graft vs. host disease: any oral mucosal sites	
Non-erosive OLP lesions (reticular, papular and plaque-like) are frequently asymptomatic as compared to erosive OLP (EOLP, the other three lesions)	oral lichenoid contact hypersensitivity reaction: in contact with dental restoration, at the level of buccal mucosa and/or lateral border of the tongue	
Distribution	Bilateral and symmetric distribution of oral lesions	oral lichenoid drug reaction: single oral lesion (unlike bilateral, symmetric, and multifocal presentations of OLP lesions)
reticular: posterior buccal mucosa bilaterally (usually), could spread forward almost to the commissures; it may also involve the lateral and dorsal surface of the tongue, the gingiva, and the vermilion border	lichen planus pemphigoides: buccal mucosa and gingiva	
papular: buccal mucosa	chronic ulcerative stomatitis: gingiva (may look like desquamative gingivitis), tongue, and buccal mucosa	
plaque-like: dorsal surface of the tongue (frequently), or bilateral posterior buccal mucosa	lupus erythematosus: hard palate, buccal mucosa, and/or gingiva	
atrophic/erosive: often bilateral and symmetric. When EOLP involves gingival mucosa it is called ‘desquamative gingivitis’		
chronic ulcerative stomatitis have histopathologic characteristics similar to those of OLP\(^{33,77}\). In lupus erythematosus, the histopathologic features of oral lesions are similar to those found in OLP, OLDR, and OLCHR\(^{33,77}\). Mast cells are increased in OLP as compared to oral lichenoid reactions\(^{81}\).

Immunofluorescence assessment

Direct immunofluorescence (DIF) adds value to the diagnosis whenever the clinical and pathologic information is insufficient to support the diagnosis of OLP but increases the cost of diagnosis\(^{33}\). DIF can distinguish erosive or rare bullous OLP from pemphigus vulgaris, benign mucous membrane pemphigoid, dermatitis herpetiformis, and linear immunoglobulin A (IgA) disease. DIF sees the shaggy expression of fibrinogen in the basement membrane zone, deposition of immunoglobulin M as colloid bodies, and deposition of C3 in granular and linear patterns in OLP\(^{33,82}\). Furthermore, DIF finding in the perilesional tissue demonstrates a shaggy deposit of fibrin at the basement membrane zone in OLDR and IgM-positive cytoid bodies similar to those in OLP\(^{33}\).

The findings of DIF in OLCHR and cGVHD are similar to that of OLP and are the same in lichen planus pemphigoidides and mucous membrane pemphigoid. DIF of the perilesional tissue in chronic ulcerative stomatitis reveals deposition of IgG autoantibodies in a speckled and/or granular pattern (also known as stratified epithelium specific-antinuclear antibody (SESA-ANA) pattern) in the nuclei of basal and parabasal epithelial cells. DIF of tissue specimen shows granular or shaggy deposits of IgG, IgM, and/or C3 at the basement membrane zone in lupus erythematosus\(^{33,77}\).

Indirect immunofluorescence (IIF) is not useful in the diagnosis of OLP and shows negative results. An IIF 'string of pearls' pattern, an annular fluorescent deposit of serum antibodies, indicates OLDR. Negative IIF results are also seen for OLCHR, cGVHD, and discoid lupus erythematosus. Deposits of immunoglobulins, frequently IgG, and C3 at the basement membrane zone (~80% of the cases) are identified by IIF in the case of lichen planus pemphigoides.

Other diagnostic methods

Combinations of several salivary proteins such as complement component C3c, fibrinogen fragment D, and cystatin SA have been reported as salivary biomarkers for the diagnosis of OLP\(^{83,84}\).

In vivo reflectance confocal microscopy offers a real-time virtual biopsy of the tissues and has been used to differentiate OLP from other clinical entities.

A pilot study suggests that time-resolved fluorescence spectroscopy is a promising technology for the development of a novel OLP diagnostic technique\(^{85}\).

The resolution of OLLs (OLCH, OLDR) after identification and elimination of the trigger (in months or even longer) could indicate positive diagnosis (therapeutic probation). For a clear and precise definitive diagnosis, a thorough history and clinical features of lesions should be correlated with complex testing including histopathology, DIF, IIF, and cutaneous patch testing. Furthermore, diagnostic process of OLP and OLL demands continuous follow-up and, if necessary, additional biopsies for histopathologic evaluation and immunofluorescence tests.

Diagnostic challenges

Oral lichenoid lesions can be a diagnostic challenge for clinicians. A variety of diseases may have the same or very similar clinical and histopathologic features. Oral lesions associated with cGVHD, chronic ulcerative stomatitis, lichenoid drug reactions, and even lichenoid contact hypersensitivity have the same clinical characteristics as those of idiopathic OLP. Other disorders such as mucous membrane pemphigoid, lupus erythematosus, and proliferative verrucous leukoplakia can also mimic OLP. Furthermore, histopathologic features depend on anatomic sites of lesions, clinical type, and previous treatments. Accordingly, clinical information must accompany biopsy specimens.

Concluding Remarks

Oral lichen planus is a disease with unclear etiology or pathogenesis, and with unclear premalignant potential. Accurate diagnosis certainly is of paramount importance for effective management and future studies of new therapeutic options. Valid research is needed, and designs of a homogeneous group of patients with OLP could lead to more accurate diagnosis strategies, unanimously accepted and applied.

Diagnosis of OLP is established by clinical examination with histopathologic confirmation. Direct im-
munofluorescence examination is used to rule out particular autoimmune diseases (e.g., pemphigus, pemphigoid).

Histopathologic diagnosis confirms the clinical diagnosis of OLP. The correlation between clinical and histopathologic diagnosis is crucial for definitive diagnosis of OLP. OLP necessitates additional biopsy for direct immunofluorescence assessment and/or histopathologic evaluation, so continued clinical follow-up after the initial biopsy is essential.

Oral lichenoid lesions must be distinguished from OLP by two factors. First, the association with the administration of a drug, contact with a metal or food-stuff, or presence of a systemic disease must be verified. Second, elimination of the offending agent leads to resolution of the OLL.

References

1. Daoud M, Pittelkow M. Lichen planus. In: Goldsmith L, Katz SI, Gilchrest BA, Paller AS, Leffell DJ, Wolff K (Eds.). Fitzpatrick's Dermatology in General Medicine. New York, USA: McGraw-Hill, 2012.

2. Wilson E. On lichen planus. J Cutan Med Dis Skin. 1869; 3:117-32.

3. Schifter M, Fernando SL, Li J. Oral lichen planus. In: Fernando SL (Ed.). Skin Biopsy – Diagnosis and Treatment. IntTech, 2013; pp. 149-75. Available from: http://www.intechopen.com/books/skin-biopsy-diagnosis-and-treatment/oral-lichen-planus (cited June 3, 2017)

4. Wickham LF. Sur unsigne pathognomonique delichen du Wilson (lichen plan) etres et punctuations grisatres. Ann Dermatol Syph. 1895;6:17-20. (in French)

5. Black MM. The pathogenesis of lichen planus. Br J Dermatol. 1972;86:302-5. https://doi.org/10.1111/j.1365-2133.1989.tb01328.x

6. Pelisse M, Leibowitch M, Sedel D, Hewitt J. A new vulvovagino-gingival syndrome. Plurimucous erosive lichen planus. Ann Dermatol Venereol. 1982;109(9):797-8. (in French)

7. Schlosser BJ. Lichen planus and lichenoid reactions of the oral mucosa. Dermatol Ther. 2010;23:251-67. https://doi.org/10.1111/j.1529-8019.2010.01322.x

8. Edwards PC, Kelsch R. Oral lichen planus: clinical presentation and management. J Can Dent Assoc. 2002;68:494-9.

9. Ismail SB, Kumar SK, Zain RB. Oral lichen planus and lichenoid reactions; etiopathogenesis, diagnosis, management and malignant transformation. J Oral Sci. 2007;49:89-106. https://doi.org/10.2334/josmd.49.89

10. Shekar C, Ganesan S. Oral lichen planus: review. J Dent Sci Res. 2011;2(1):62-87. https://doi.org/10.4103/0975-5950.55847

11. Gorouhi F, Davari P, Fazel N. Cutaneous and mucosal lichen planus: a comprehensive review of clinical subtypes, risk factors, diagnosis, and prognosis. Sci World J. 2014;2014:742826. http://dx.doi.org/10.1155/2014/742826

12. Au J, Patel D, Campbell JH. Oral lichen planus. Oral Maxillofac Surg Clin North Am. 2013;25:93-100. https://doi.org/10.1016/j.coms.2012.11.007.

13. Scully C, de Almeida OP, Welbury R. Oral lichen planus in childhood. Br J Dermatol. 1994;130:131-3. https://doi.org/10.1111/j.1365-2133.1994.tb6905.x

14. Kumar V, Abbas A, Aster J, Robbins & Cotran Pathologic Basis of Disease. 8th edn. Philadelphia, USA: Saunders, 2009.

15. Eisen D. The evaluation of cutaneous, genital, scalp, nail, esophageal, and ocular involvement in patients with oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol. 1999;88(4):431-6. https://doi.org/10.1016/S1079-2104(99)70057-0

16. Rice PJ, Hamburger J. Oral lichenoid drug eruptions: their recognition and management. Dent Update. 2002;29:442-7. https://doi.org/10.12968/denu.2002.29.9.442

17. Dudhia S, Dudhia B, Shah J. An etiologic, clinical and histological study of oral lichen planus with comparative evaluation between various therapies. J Indian Acad Oral Med Radiol. 2011;23:163-8. https://doi.org/10.5005/jp-journals-10011-1211

18. Calvaruso V, Craxi A. Immunological alteration in hepatitis C virus infection. World J Gastroenterol. 2013;19:8916-23. https://doi.org/10.3748/wjg.v19.i47.8916

19. Carrozzo M, Brancatello F, Dametto E, Arpino P, Pentenero M, Rendine S, et al. Hepatitis C virus-associated oral lichen planus: is the geographical heterogeneity related to HLA-DR? J Oral Pathol Med. 2005;34:204-8. https://doi.org/10.1111/j.1600-0714.2005.00303.x

20. Khudhr AS, Di Zenzo G, Carrozzo M. Oral lichenoid tissue reactions: diagnosis and classification. Expert Rev Mol Diagn. 2014;14:169-84. https://doi.org/10.1586/1747759.2014.1488953.

21. Muller S. Oral manifestations in dermatologic disease: a focus on lichenoid lesions. Head Neck Pathol. 2011;5:36-40. https://doi.org/10.1007/s12105-010-0237-8

22. Issa Y, Duxbury AJ, Macfarlane TV, Brunton PA. Oral lichenoid lesions related to dental restorative materials. Br Dent J. 2005;198:361-6. https://doi.org/10.1038/sj.bdj.4812176

23. Thornhill MH, Sankar V, Xu XJ, Barrett AW, High AS, Odell EW, et al. The role of histopathological characteristics in distinguishing amalgam-associated oral lichenoid reactions and oral lichen planus. J Oral Pathol Med. 2006;35:233-40. https://doi.org/10.1111/j.1600-0714.2006.00406.x

24. Payeras MR, Cherubini K, Figueiredo MA, Salum FG. Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol. 2013;58:1057-69. https://doi.org/10.1016/j.archoralbio.2013.04.004.

25. Hegarty A. Oral lichen planus: aetiology, diagnosis and treatment. Dent Nurs. 2012;8:141-6. https://doi.org/10.12968/denn.2012.8.3.141
26. Muller S. The lichenoid tissue reactions of the oral mucosa: oral lichen planus and other lichenoid lesions. In: Richardson MS, ed. Current Concepts in Head and Neck Pathology. Philadelphia, USA: Saunders; 2011: pp. 1005-26.

27. Sugarman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, et al. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002;13:350-65.

28. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, et al. Pathogenesis of oral lichen planus – a review. J Oral Pathol Med. 2010;39:729-34. https://doi.org/10.1111/j.1600-0714.2010.00946.x

29. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugarman PB, et al. Current controversies in oral lichen planus: report of an international consensus meeting. Part I. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:40-51. https://doi.org/10.1016/j.tripleo.2004.06.077

30. Fitzpatrick SG, Hirsch SA, Gordon SC. The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. J Am Dent Assoc. 2014;145:45-56. https://doi.org/10.14219/jada.2013.10.

31. Landini G, Mylonas P, Shab IZ, Hamburger J. The reported rates of transformation of oral lichen planus. J Maxillofac Surg Med Pathol. 2014;26:213-20. https://doi.org/10.1016/j.tripleo.2013.04.015

32. Marttila E, Uitto J, Rusanen P, Lindqvist C, Salaspuro M, Gergun S, Tröšala S, Warnakulasuriya S, Özel S, Önalan AE, Parrish CL, Thongprasom K. Current controversies in oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(1):61-8.

33. Cheng YS, Gould A, Kurago Z, Fantasia J, Muller S. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(3):332-54. https://doi.org/10.1016/j.oooo.2016.05.004

34. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugarman PB, Thongprasom K. Current controversies in oral lichen planus: report of an international consensus meeting. Part 2. Clinical management and malignant transformation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:164-78. https://doi.org/10.1016/j.tripleo.2004.06.076

35. Anshumalae N, Shashikanth MC, Sharma S. Oxidative stress and oral lichen planus: a possible association? Cusp. 2007;4:31-4.

36. Ergun S, Trowsa SC, Warnakulasuriya S, Ozel S, Oral AE, Offuogho D, et al. Evaluation of oxidative stress and antioxidant profile in patients with oral lichen planus. J Oral Pathol Med. 2011;40:286-93. https://doi.org/10.1111/j.1600-0714.2010.00955.x

37. Bartino M, Ferreiro MS, Gallardo I, Newman HN, Bullon P. The antioxidant capacity of saliva. J Clin Periodontol. 2002;29:189-94. https://doi.org/10.1034/j.1600-051X.2002.290301.x

38. Crnkovic D, Peco M, Gelo J. Correlation between salivary biochemical stress indicators and psychological indicators. Acta Clin Croat. 2018;57:316-26. https://doi.org/10.20471/acc.2018.57.02.13

39. Azizi A, Farshchi F. Comparison of salivary and plasma antioxidant levels in lichen planus patients and healthy subjects. J Oral Pathol Med. 2012;41:524-6. https://doi.org/10.1111/j.1600-0714.2012.01138.x

40. Bandypadhyay A, Behura SS, Nishat R, Dash KC, Bhuan L, Ramachandra S. Clinicopathological profile and malignant transformation in oral lichen planus: a retrospective study. J Int Soc Prevent Commun Dent. 2017;7:116-24. https://doi.org/10.4103/jispcd.JisPCD_103_17

41. Munde AD, Karle RR, Wankhede PK, Shalik SS, Kulkurni M. Demographic and clinical profile of oral lichen planus: a retrospective study. Contemp Clin Dent. 2013;4:181-5. https://doi.org/10.4103/0976-237X.114873

42. Radoschová V, Drizhal I, Slezák R. A retrospective study of 171 patients with oral lichen planus in the East Bohemia – Czech Republic – single center experience. J Clin Exp Dent. 2014;6:e556-61. https://doi.org/10.4317/jced.51784

43. Irani S, Esfahani AM, Ghorbani A. Dysplastic change rate in cases of oral lichen planus: a retrospective study of 112 cases in an Iranian population. J Maxillofac Pathol. 2016;20:395-9. https://doi.org/10.4103/0973-029X.190911

44. Shirasuna K. Oral lichen planus: malignant potential and diagnosis. Oral Sci Int. 2014;11(1):1-7. https://doi.org/10.1016/S1348-8643(13)00030-X

45. Andreassen JO. Oral lichen planus. I. A clinical evaluation of 115 cases. Oral Surg Oral Med Oral Pathol. 1968;25:31-42.

46. Pindborg JJ, Reichart PA, Smith CJ, van der Waal I. Histological typing of cancer and precancer of the oral mucosa. 2nd edn. New York, USA: Springer; 1997; pp. 30.

47. Mollaoglu N. Oral lichen planus: a review. Br J Oral Maxillofac Surg. 2000;38:370-7. https://doi.org/10.1054/bjom.2000.0335

48. Eisen D. The clinical features, malignant potential, and systemic associations of oral lichen planus: a study of 723 patients. J Am Acad Dermatol. 2002;46:207-17. https://doi.org/10.1067/mjd.2002.120452

49. Kamath VV, Setlur K, Yerlagudda K. Oral lichenoid lesions – a review and update. Indian J Dermatol. 2015;60(1):102. https://doi.org/10.4103/0019-5154.147830

50. Sugarman PB, Satterwhite K, Bigby M. Autocytotoxic T-cell clones in lichen planus in lichen planus. Br J Dermatol. 2000;142(3):449-56. https://doi.org/10.1046/j.1365-2133.2000.03355.x

51. El Naggar AK, Reichart PA. Proliferative verrucous leukoplakia and precancerous conditions, In: El-Naggar AK, Chan JK, Grandis JR, Takata T, Slootweg PJ (Eds). WHO Classification of Head and Neck Tumours. WHO Classification of Tumours, 4th edn., 2017;9:180-1.

52. Ruokonen HMA, Juuriikivi A, Kauppila T, Heikkinen AM, Seppänen-Kajansinkko R. High percentage of oral lichen planus and lichenoid lesion in oral squamous cell carcinomas. Acta Odontol Scand. 2017;75(6):442-5. https://doi.org/10.1080/00163577.2013.132777
53. Aghbani SMH, Abushouk AI, Attica A, Elmaraczy A, Men-shaway A, Ahmed MS, et al. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68:92-102. https://doi.org/10.1016/j.oraloncology.2017.03.012

54. Bombecarelli GP, Guzzi G, Tettamanti M, Gianni AB, Baj A, Pallotti F, et al. Oral lichen planus and malignant transformation: a longitudinal cohort study. Oral Surg Oral Med Oral Pathol Radiol Endod. 2011;112(3):328-34. https://doi.org/10.1016/j.tripleo.2011.04.009

55. Mignogna MD, Lo Muzio L, Lo Russo L, Fedele S, Ruoppo E, Bucci E. Clinical guidelines in early detection of oral squamous cell carcinoma arising in oral lichen planus: a 5-year experience. Oral Oncol. 2001;37(3):262-7. https://doi.org/10.1016/S1368-9375(00)00096-8

56. Kaplan BR. Oral lichen planus and squamous carcinoma: case report and update of the literature. R I Dent J. 1991;24(4):5-9, 11-4.

57. Gopalakrishnan A, Balan A, Kumar NR, Haris PS, Bindu P. Malignant potential of oral lichen planus: an analysis of literature over the past 20 years. Int J Appl Dent Sci. 2016;2:1-5.

58. Van der Meij EH, Reibel J, Slotteweg P van der Waal I, de Jong WJ, van der Waal I. Interobserver and intraobserver variability in the histologic assessment of oral lichen planus. J Oral Pathol Med. 1999;28:274-7. https://doi.org/10.1111/j.1600-0714.1999.tb02038.x

59. WHO Collaborating Centre for Oral Precancerous Lesions. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1978;46:518-39.

60. van der Meij EH, van der Waal I. Lack of clinicopathologic correlation in the diagnosis of oral lichen planus based on the presently available diagnostic criteria and suggestions for modifications. J Oral Pathol Med. 2003;32:507-12. https://doi.org/10.1034/j.1600-0714.2003.00125.x

61. Rad M, Hashemipoor MA, Mojtahedi A. Correlation between clinical and histopathologic diagnoses of oral lichen planus based on modified WHO diagnostic criteria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:796-800. https://doi.org/10.1016/j.tripleo.2009.02.020

62. Hiremath SKS, Kale AD, Hallikerimath S. Diagnostic criteria for oral lichen planus. Turk J Pathol. 2015;31(1):24-9. https://doi.org/10.5146/tjpath.2014.01285

63. Akay A, Pekcanlar A, Bozdag KE, Altuntas L, Karaman A. Assessment of depression in subjects with psoriasis vulgaris and lichen planus. J Eur Acad Dermatol Venereol. 2002;16:347-52. https://doi.org/10.1046/j.1468-3083.2002.00467.x

64. Kalkur C, Sattur AP, Gutta KS. Role of depression, anxiety and stress in patients with oral lichen pPlanus: a pilot study. Indian J Dermatol. 2015;60(5):445-9. https://doi.org/10.4103/0019-5154.159625

65. Agha-Hosseini F, Moosavi MS, Sadrzadeh Afshar MS, Sheykhhbahei N. Assessment of the relationship between stress and oral lichen planus: a review of literature. J Islam Dent Assoc Iran. 2016;28(2):78-85.

66. Brzovć Rajić V, Željezic D, Malčić Ivanisević A, Verzak Ž, Baraba A, Miletić I. Cytotoxicity and genotoxicity of resin based dental materials in human lymphocytes in vitro. Acta Clin Croat. 2018;57(2):278-85. https://doi.org/10.20471/acc.2018.57.02.07

67. Odell E. Cawson's Essentials of Oral Pathology and Oral Medicine. 8th edn. Churchill Livingstone, 2008.

68. Cheng S, Kirtschig G, Cooper S, Thornhill M, Leonardis-Bee J, Murphy R. Interventions for erosive lichen planus affecting mucosal sites. Cochrane Database Syst Rev. 2012;2:CD008092. https://doi.org/10.1002/14651858.CD008092.pub2

69. Yamada T, Alpers DH, Kallooro AN, Kaplowitz N, Owacy W, Powell DW. Textbook of Gastroenterology, 5th edn. Chichester, West Sussex: Blackwell Pub., 2009; pp. 3304.

70. Treister NS, Bruch JM. Clinical Oral Medicine and Pathology. New York: Humana Press, 2010; pp. 59-62.

71. Mucosal Lichen Planus Simultaneously Involving Oral Mucosa, Conjunctiva and Larynx. [cited 2018 Jun 26]. Available from: https://www.researchgate.net/publication/45274121_Mucosal_Lichen_Planus_Simultaneously_Involving_Oral_Mucosa_Conjunctiva_and_Larynx

72. Rhee MK, Mootha VV. Bilateral keratoconjunctivitis associated with lichen planus. Cornea, 2004;23:100-5.

73. Thorne JE, Labs DA, Nikolskaia OV, Mimouni D, Anhalt GJ, Nousari HC. Lichen planus and cicatrizsing conjunctivitis: characterization of five cases. Am J Ophthalmol. 2003;136:239-43.

74. Zhao ZZ, Savage NW, Sugerman PB, Walsh LJ. Mast cell/T cell interactions in oral lichen planus. J Oral Pathol Med. 2002;31:189-95. https://doi.org/10.1034/j.1600-0714.2002.310401.x

75. Hirota J, Osaki T, Tatemoto Y. Immunohistochemical staining of infiltrates in oral lichen planus. Path Res Pract. 1990;186:625-32.

76. Yamamoto T, Yoneda K, Ueda E, Osaki T. Cellular immunosuppression in oral lichen planus. J Oral Pathol Med. 1990;19:464-70. https://doi.org/10.1111/j.1600-0714.1990.tb00788.x

77. Chiang CP, Yu-Fong Chang J, Wang YP, Wu YH, Lu SY, Sun A. Oral lichen planus – differential diagnoses, serum autoantibodies, hematnic deficiencies, and management. J Formos Med Assoc. 2018;pii:S0929-6646(18)30052-4. https://doi.org/10.1016/j.jfma.2018.01.021

78. Potts AJ, Hamburger J, Scully C. The medication of patients with oral lichen planus and the association of nonsteroidal anti-inflammatory drugs with erosive lesions. Oral Surg Oral Med Oral Pathol. 1987;64:541-3.

79. Lamey PJ, McCartan BE, MacDonald DG, MacKie RM. Basal cell cytoplasmic autoantibodies in oral lichenoid reactions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:44-9. https://doi.org/10.1016/S0107-2104(05)80072-1

80. Sanketh DS, Srinivasan SR, Patil S, Ranganathan K. Issues related to diagnosing oral lichen planus among oral pathologists.
Doina Iulia Rotaru et al. Oral lichen planus: diagnosis

DiJagnostički Kriteriji za Oralni LiHen Planus: Narativni Pregled

D.I. Rotaru, D. Sofineti, S.D. Bolboacă i A.E. Bulboacă

Oralni lihen planus (OLP) je bolest nejasne etiologije ili patogeneze. Prema Svjetskoj zdravstvenoj organizaciji kategorizira se kao oralne lihenoidne lezije (OLL; prijelazni mukozitis ili lihenoidni mukozitis) u skupinu potencijalno zloćudnih bolesti. Dijagnosticiranje OLP-a je zahtjevno, jer se klinička i histopatološka obilježja često vide u OLP-u, OLL-u i/ili drugim bolestima sluznice s lihenoidnim značajkama. Nadalje, OLP ima dinamičnu narav. Konačno, rana i precizna dijagnoza može imati odlučnu ulogu i omogućiti pravodobno liječenje te time poboljšati bolesnikovu kvalitetu života. Ovaj pregled sažima današnja saznanja o OLP-u i OLL-u te raspravlja o izazovima kod postavljanja dijagnoze, a cilj je pružiti praktične smjernice za dijagnostiku ovih promjena za postdiplomante i liječnike oralne medicine.

Ključne riječi: Lihen planus; Oralni lihen planus; Oralne lihenoidne lezije; Dijagnostičke smjernice; Predkancerozna stanja