Superconductivity and the electronic phase diagram of \(\text{LaPt}_{2-x}\text{Ge}_{2+x} \)

S. Maeda\(^1\), K. Matano\(^1\), R. Yatagai\(^1\), T. Oguchi\(^2\), and Guo-qing Zheng\(^1,3\)

\(^1\)Department of Physics, Okayama University, Okayama 700-8530, Japan
\(^2\)Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan and
\(^3\)Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

In many cases, unconventional superconductivity are realized by suppressing another order parameter, such as charge density wave (CDW) or spin density wave (SDW). This suggests that the fluctuations of these order parameters play an important role in producing superconductivity. \(\text{LaPt}_{2}\text{Ge}_2 \) undergoes a structural phase transition (SPT) at 394 K accompanied by a double period modulation in the \(a \)-axis direction, and superconducts at \(T_c = 0.41 \) K. We performed band calculations and found a partial Fermi surface nesting corresponding to the double period modulation, which indicates that the SPT of this compound is due to CDW. By changing the stoichiometry between Pt and Ge, we succeeded in suppressing the CDW transition temperature (\(T_{\text{CDW}} \)) and increasing \(T_c \) in \(\text{LaPt}_{2-x}\text{Ge}_{2+x} \). Comparison of \(^{139}\text{La} \) and \(^{195}\text{Pt} \)-NMR data reveals strong fluctuations associated with CDW around \(T_{\text{CDW}} \). From \(^{139}\text{La} \)-NQR measurements at zero field, we found that an isotropic superconducting gap is realized in \(\text{LaPt}_{2-x}\text{Ge}_{2+x} \) (\(x = 0.20 \)). We discuss the relationship between superconductivity and the CDW order/fluctuations.

PACS numbers: 74.25.Dw, 74.25.nj, 71.20.Eh
I. INTRODUCTION

Most of ternary compounds in the formula of MT_2X_2 (M = rare earth or alkaline earth metals, T = transition metals, X = Si or Ge) including some Fe-based superconductors crystallize in the body centered tetragonal ThCr$_2$Si$_2$ type structure (Fig. 1(a)). On the other hand, some MT_2X_2 with T = Ir or Pt crystallize in the primitive tetragonal CaBe$_2$Ge$_2$ type structure (Fig. 1(b)). The CaBe$_2$Ge$_2$ type structure is closely related to the ThCr$_2$Si$_2$ type structure. The ThCr$_2$Si$_2$ type structure has two [X-T-X] layers along the c-axis while in the CaBe$_2$Ge$_2$ type structure, one of them is replaced by [T-X-T] layer. Some of non-magnetic CaBe$_2$Ge$_2$ type compounds (SrPt$_2$As$_2$$_{1,7}$ and LaPt$_2$Si$_2$$_{6,8,9}$) show a coexistence of superconductivity and charge density wave (CDW). In these compounds, the CDW occurs in the [X-T-X] layers.

Fluctuations associated with CDW or spin density wave (SDW) have attracted much attention in recent years, since they may be responsible for superconductivity that is realized near a CDW or SDW phase. In the high-T_c cuprates, spin fluctuations arising from the nearby antiferromagnetism have been studied extensively. Recently, CDW has also attracted attention in relation to the unusual normal state in the cuprates10. In the Fe pnictides, both spin fluctuations and orbital or structural fluctuations are believed to be important. For example, underdoped BaFe$_{2-x}$M$_x$As$_2$ (M = Co, Ni) are metallic and show a tetragonal-to-orthorhombic structural phase transition (SPT) followed by an SDW order11,12. Superconductivity appears after suppressing these orders, and fluctuations associated with SPT and SDW have been observed12. Compounds such as SrPt$_2$As$_2$ and LaPt$_2$Si$_2$ showing a coexistence of superconductivity and CDW can be recognized as non-magnetic versions of Fe-based superconductors, because both CDW and SDW originate from a Fermi surface nesting and the crystal structure is very similar.

LaPt$_2$Ge$_2$ is a superconductor with $T_c = 0.41$ K13,11 and shows a SPT at 385.8 K15. As shown in Figs. 2(a) and 2(b), The crystal structure of the high temperature phase is a tetragonal CaBe$_2$Ge$_2$ type (space group: $P4/nmm$) while that of the low temperature phase is a monoclinically distorted CaBe$_2$Ge$_2$ type ($P2_1/c$)11,15. The monoclinic phase has a doubled unit cell in the a-axis direction. As shown in Figs. 2(c) and 2(d), the monoclinic distortion is mainly in the [Ge(1)-Pt(2)-Ge(1)] layer, while there is almost no distortion in the [Pt(1)-Ge(2)-Pt(1)] layer. The origin of the SPT, and its relationship to superconductivity
is unknown.

In this work, we address this issue by band calculations, material synthesis and nuclear magnetic resonance (NMR) measurements. We find that the SPT is due to CDW order. By suppressing the CDW order, T_c is enhanced. We have also performed nuclear quadrupole resonance (NQR) measurements to study the superconducting gap. We will also discuss about the fluctuations associated with the CDW/SPT.

FIG. 1: (Color online) Crystal structure of the ThCr$_2$Si$_2$ type (a) and CaBe$_2$Ge$_2$ type (b). The blue rectangle and the pink oval represent the [X-T-X] and the [T-X-T] layers, respectively.

FIG. 2: (Color online) Crystal structure of the tetragonal (a) and monoclinic (b) phases, [Pt(1)-Ge(2)-Pt(1)] (c) and [Ge(1)-Pt(2)-Ge(1)] (d) layers of the monoclinic phase. The solid rectangle represents the unit cell.
II. METHODS

The full relativistic band calculations including spin-orbit coupling (SOC) were performed with all-electron full-potential linear augmented plane wave (FLAPW) method implemented in HiLAPW16. Details of numerical procedures were described in the previous work16. Polycrystalline samples of LaPt$_{2-x}$Ge$_{2+x}$ were synthesized by melting the elements of La (99.9\%), Pt (99.99\%), and Ge (99.99\%) in an arc furnace under high purity (99.9999\%) Ar atmosphere. The resultant ingot was turned over and re-melted several times to ensure good homogeneity. The weight loss during the arc melting was less than 1\%. Subsequently, the samples were wrapped in Ta foil, sealed in a quartz tube filled with He gas, annealed at 1000 °C for 3 days and then slowly cooled to room temperature over a period of 3 days. The samples were characterized by powder X-ray diffraction using Rigaku RINT-TTR III at room temperature. The XRD patterns were analyzed by RIETAN-FP program17. The crystal structure is drawn by using VESTA program18. The resistivity was measured by using a dc four-terminal method in the temperature range of 1.4 ∼ 480 K. For ac susceptibility and NMR/NQR measurements, a part of the ingot was powdered. The T_c was determined by measuring the inductance of a coil filled with a sample which is a typical setup for NMR/NQR measurements. The measurements below 1.4 K was carried out with a 3He-4He dilution refrigerator. NMR/NQR were carried out by using a phase-coherent spectrometer. The NMR spectrum was obtained by integrating the spin echo intensity by changing the resonance frequency (f) at the fixed magnetic field of 12.951 T. The spin-lattice relaxation rate ($1/T_1$) was measured by using a single saturating pulse, and determined by fitting the recovery curve of the nuclear magnetization to the theoretical function19,20. $(M_0 - M(t))/M_0 = \exp(-t/T_1)$ for 195Pt-NMR, $(M_0 - M(t))/M_0 = (1/84) \exp(-t/T_1) + (3/44) \exp(-6t/T_1) + (75/364) \exp(-15t/T_1) + (1225/1716) \exp(-28t/T_1)$ for 139La-NMR (center peak) and $(M_0 - M(t))/M_0 = 0.931265 \exp(-16.934663t/T_1) + 0.001432 \exp(-7.919195t/T_1) + 0.067304 \exp(-3t/T_1)$ for 139La-NQR ($\eta = 0.71, m = \pm3/2 \leftrightarrow \pm5/2$ transition), where M_0 and $M(t)$ are the nuclear magnetization in the thermal equilibrium and at a time t after the saturating pulse.
III. RESULTS

A. Electronic structure calculations

In the band calculation, we used the crystal structure determined for single crystal LaPt$_2$Ge$_2$ by Imre et al.15. Figures 3(a) and 3(b) show the band structure and the Fermi surface of the tetragonal phase, respectively. These results are very similar to those of LaPt$_2$Si$_2$.4 The Fermi surface consists of five sheets, and there are two 2D-like sheets around M point. The outer Fermi surface clearly shows a partial nesting represented by a red arrow. The nesting vector is $q_{\text{CDW}} = 0.42 \pm 0.03$ which is close to the actual modulation vector of $q_{\text{CDW}} = 0.515$. Figures 3(c) and 3(d) display the total and partial density of states ($N(E)$), respectively. Comparison between the tetragonal and monoclinic phases shows that the total $N(E)$ at the Fermi level (E_F) of the monoclinic phase is 18% smaller than that of the tetragonal phase. This result together with the existence of Fermi surface nesting and the double period modulation in the a-axis indicate that the SPT of LaPt$_2$Ge$_2$ is due to CDW. Looking in detail, the partial $N(E_F)$ at Pt(1) for the tetragonal and monoclinic phases are very similar. The partial $N(E_F)$ at Pt(2) is larger than that at Pt(1) in the tetragonal phase, while is reduced to a value almost same as that at Pt(1) in the monoclinic phase, indicating that the CDW appears in [Ge(1)-Pt(2)-Ge(1)] layer.
FIG. 3: (Color online) Band structure (a) and Fermi surface (b) of the tetragonal phase. The red arrows represent a nesting vector. Total and partial $N(E)$ of the tetragonal (c) and monoclinic (d) phases. The Fermi level is taken at the origin in (a), (c), and (d).
B. Basic physical properties of LaPt$_{2-x}$Ge$_{2+x}$

No impurity peaks were observed in the XRD pattern in the range of $0 \leq x \leq 0.30$. The extra Ge in non-stoichiometric LaPt$_{2-x}$Ge$_{2+x}$ ($x > 0$) is assumed to occupy deficient Pt sites because Pt and Ge sites are equivalent in the CaBe$_2$Ge$_2$ type structure. Figure 4 shows the x dependence of the lattice parameters for LaPt$_{2-x}$Ge$_{2+x}$ at room temperature. With increasing x, the c-axis length increases linearly up to $x = 0.20$. Beyond $x = 0.20$, the c-axis length is saturated which suggests that the solubility limit is $x = 0.20$. On the other hand, the length a and b decrease. For $x \geq 0.06$, a and b become constant since the compounds are in the tetragonal structure.

Figure 5(a) shows the temperature dependence of the electrical resistivity for LaPt$_{2-x}$Ge$_{2+x}$. The electrical resistivity for $x = 0$ showed a kink at $T_{CDW} = 394$ K due to the onset of CDW. This is in good agreement with the value of $T_{CDW} = 385.8$ K reported by Imre et al.15. With increasing x, T_{CDW} decreased. For $x = 0.15$, the anomaly due to the CDW disappeared. Figure 5(b) shows the magnified view of the low temperature range. Superconductivity was observed in all samples except for $x = 0$. As seen in Fig. 5(b), the T_c increased with increasing x. The sample with $x = 0.20$ showed the highest T_c.

Figure 6 shows the temperature dependence of the ac susceptibility measured by the NMR/NQR coil for LaPt$_{2-x}$Ge$_{2+x}$. All samples showed a large decrease in the ac susceptibility below T_c.

FIG. 4: (Color online) x dependence of the lattice parameters a, b and c for LaPt$_{2-x}$Ge$_{2+x}$. The monoclinic structures are interpreted in the notation of tetragonal structure.
FIG. 5: (Color online) (a) Temperature dependence of the electrical resistivity for LaPt$_{2-x}$Ge$_{2+x}$. The solid arrows indicate T_{CDW}. (b) Magnified view of the low temperature range. The solid arrows indicate T_c.
FIG. 6: (Color online) Temperature dependence of the ac susceptibility for LaPt$_{2-x}$Ge$_{2+x}$. The solid arrows indicate T_c.

C. CDW transition probed by 195Pt- and 139La-NMR

We performed both 195Pt- and 139La-NMR measurements for the $x = 0.06$ and $x = 0.20$ samples at a fixed magnetic field of 12.951 T. Because 139La has nuclear spin 7/2, fluctuations due to both the hyperfine field and the electric field gradient can be probed by the spin-lattice relaxation. By contrast, 195Pt-NMR can only see the former, since 195Pt has nuclear spin 1/2.

Figure 7(a) shows the 195Pt-NMR spectra at $T = 200$ K. The spectrum of $x = 0.06$ is sharper than that of $x = 0.20$, probably it is because the grains in $x = 0.06$ are well orientated to the magnetic field towards the high susceptibility direction. The grains in $x = 0.20$ are orientated only partially, resulting in spectrum close to a powder pattern. The degree of orientation depends on the anisotropy of the susceptibility, the size of the domains and the size of the grains. We speculate that the domains of $x = 0.06$ has grown much larger than that of $x = 0.20$ because $x = 0.06$ is closer to the stoichiometry.

The spectrum of $x = 0.06$ shows two peaks at high temperatures (Fig. 7(b)). This is because there are two Pt sites in LaPt$_2$Ge$_2$. Since Pt(2) is mainly affected by the CDW, we identified the high frequency peak having large T-dependence as Pt(2), and the low frequency peak as Pt(1). For $x = 0.20$, two Pt sites can not be distinguished because of the
powder pattern.

The temperature dependence of the Knight shift (K) obtained from these spectra is shown in Fig. 8(a). The K reflects $N(E_F)$, through $K = K_o + K_s$ and $K_s = A\mu_B N(E_F)$. Here K_o and K_s are T-independent orbital part and T-dependent spin part, respectively, and A and μ_B are the hyperfine coupling constant and the Bohr magneton, respectively. For Pt(2), a large decrease in the K due to the change in the $N(E_F)$ was observed around T_{CDW}, while for Pt(1), no change due to the CDW was observed.

The quantity $1/T_1 T$ also reflects the $N(E_F)$ through the relation $1/T_1 T = A^2 \pi k_B \gamma_n^2 h N^2(E_F) + (1/T_1 T)_F$. Here, γ_n is a nuclear gyromagnetic ratio, and the T-dependent $(1/T_1 T)_F$ is due to magnetic or electric fluctuations whose frequency is equal to the NMR frequency f. For $x = 0.06$, the temperature dependence of $1/T_1 T$ (Fig. 8(b)) and K is consistent. For Pt(2), the $1/T_1 T$ decreased around T_{CDW} because of the decrease in the $N(E_F)$ and became almost the same as that of Pt(1). While for Pt(1) site, no change due to the CDW was observed. These results are consistent with the band calculations. For $x = 0.20$ where it is difficult to distinguish Pt(1) and Pt(2) in the spectrum (Fig. 7), the T_1 was measured at the left peek where the Pt(1) signal is dominant. No clear change was observed in the temperature dependence of the $1/T_1 T$.

Figure 9 shows the temperature dependence of the $1/T_1 T$ measured by 139La-NMR. For $x = 0.06$, the $1/T_1 T$ increased upon cooling to T_{CDW}, and then decreased rapidly because of the onset of CDW. Similar behavior was observed for $x = 0.20$. These results are in sharp contrast with those for 195Pt-NMR. Such upturn in 139La-NMR $1/T_1 T$ can be understood as due to fluctuations associated with CDW that couple to the electric quadrupole moment of 139La nuclei.
FIG. 7: (Color online) (a) 195Pt-NMR spectra for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.06$ and 0.20) at 200 K. (b) 195Pt-NMR spectra for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.06$) at various temperatures.
FIG. 8: (Color online) (a) Temperature dependence of the 195Pt-NMR Knight shift for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.06$). (b) Temperature dependence of the 195Pt-NMR $1/T_1 T$ for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.06$ and 0.20).
FIG. 9: (Color online) Temperature dependence of the $^{139}\text{La-NMR } 1/T_1T$ for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.06$ and 0.20).

D. Phase diagram for LaPt$_{2-x}$Ge$_{2+x}$

Figure 10 shows the phase diagram for LaPt$_{2-x}$Ge$_{2+x}$ obtained in the present work. In this phase diagram, the T_{CDW} was determined by two ways: by the minimum of the electrical resistivity ($x \leq 0.1$) or by the maximum of the $^{139}\text{La-NMR } 1/T_1T$ ($x = 0.20$). The T_{CDW} decreased linearly and the T_c increased with increasing x. The maximum T_c was 1.95 K in $x = 0.20$. The CDW critical point ($T_{\text{CDW}} = 0$) is estimated to be $x_c = 0.22$ by extrapolating the data for $x \leq 0.2$.
FIG. 10: (Color online) Phase diagram for LaPt$_{2-x}$Ge$_{2+x}$ obtained by the present work. The red circles represent the T_{CDW} determined by a minimum of the electrical resistivity ($x < 0.20$) or a maximum of the 139La-NMR $1/T_1T$ ($x = 0.20$). The filled blue squares represent the T_c determined as the onset temperature of the ac susceptibility. The T_c is multiplied by 20 for clarity.

E. Superconducting gap probed by 139La-NQR

Figure 11 shows the temperature dependence of the 139La-NQR $1/T_1$ for the $x = 0.20$ sample which shows the highest $T_c = 1.95$ K. The $1/T_1$ was measured at the $m = \pm 3/2 \leftrightarrow \pm 5/2$ transition. As seen in Fig. 11, the $1/T_1$ is proportional to T in the temperature range of $T_c < T < 4.2$ K which is consistent with the 139La-NMR $1/T_1T$. Just below T_c, the $1/T_1$ showed a small Hebel-Slichter peak and then decreased rapidly. Thus we concluded that the superconducting gap of $x = 0.20$ sample is isotropically opened. The gap size is estimated to be $2\Delta(0)/k_BT_c = 4.0 \pm 0.2$, which is slightly larger than the BCS value ($2\Delta(0)/k_BT_c = 3.53$).
FIG. 11: (Color online) Temperature dependence of the $1/T_1$ for LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.20$) obtained by 139La-NQR. The inset is a $1/T_1$ on a logarithmic scale vs T_c/T plot. The solid line below T_c means that $1/T_1 \propto \exp (-\Delta/k_B T)$. From the slope, $2\Delta/k_BT_c = 4.0 \pm 0.2$ is obtained.

IV. DISCUSSION

The relationship between CDW and superconductivity has been investigated in systems by intercalation (Cu$_x$TiSe$_2^{21}$, Cu$_x$TaS$_2^{22}$), substitution (Lu$_5$Ir$_4$(Si$_{1-x}$Ge$_x$)$_{10}^{23}$) or applying pressure (2H-NbSe$_2^{24}$, NbSe$_3^{25}$). The general feature of these systems is that suppressing CDW results in increasing T_c. The phase diagram of LaPt$_{2-x}$Ge$_{2+x}$ also has this feature. It is natural to think that the T_c increases because of the increase in $N(E_F)$ by suppressing CDW. To verify this idea, we used a rough approximation by fixing the Debye temperature θ_D and the attractive interaction V to estimate the increase in T_c from $x = 0$ ($T_c = 0.41$ K). We used McMillan formula26 for this estimation,

$$T_c = \frac{\Theta_D}{1.45} \exp \left(-\frac{1.04 (1 - \lambda)}{\lambda - \mu^* (1 - 0.62\lambda)} \right)$$

(1)

with $\theta_D = 310$ K27, $\mu^* = 0.13^{26}$ and $\lambda = VN(E_F)$, where $N(E_F)$ was obtained by band calculations. As a result, we obtained $T_c = 1.47$ K for the tetragonal phase. This value is smaller than $T_c = 1.95$ K obtained for $x = 0.20$, but accounts for the majority of the increase in T_c. In cuprates and Fe-based superconductors, the magnetic fluctuations or structural/orbital
fluctuations are believed to play an important role in producing superconductivity. From comparison between 195Pt- and 139La-NMR, we found moderate fluctuations around T_{CDW}. Such fluctuations may contribute to the rest of increase in T_c.

V. SUMMARY

We performed band calculations for LaPt$_2$Ge$_2$ and showed that the structural phase transition is due to CDW. Secondly, we synthesized non-stoichiometric LaPt$_{2-x}$Ge$_{2+x}$ samples and performed electrical resistivity, ac-susceptibility, 195Pt and 139La NMR/NQR measurements. We found that the CDW transition temperature (T_{CDW}) decreases and superconducting transition temperature (T_c) increases from 0.41 K to 1.95 K with increasing x. From 139La- and 195Pt-NMR, we found a reduction of $N(E_F)$ and moderate fluctuations associated with CDW/structure transition. From 139La-NQR measurements at zero field, we found that an isotropic superconducting gap is realized in LaPt$_{2-x}$Ge$_{2+x}$ ($x = 0.20$). The change in $N(E_F)$ accounts for the majority of the increase in T_c.

1. E. Parthé and B. Chabot, in Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, Jr. and L. Eyring (North-Holland, New York, 1984) Vol. 6, p. 113.
2. R. N. Shelton, H. F. Braun, and E. Musick, Solid State Commun. 52, 797 (1984).
3. A. Dommann, F. Hulliger, H. R. Ott, and V. Gramlich, J. Less-Common Met. 110, 331 (1985).
4. A. Imre, A. Hellmann, G. Wenski, J. Graf, D. Johrendt, and A. Mewis, Z. Anorg. Allg. Chem. 633, 2037 (2007).
5. K. Kudo, Y. Nishikubo, and M. Nohara, J. Phys. Soc. Jpn. 79, 123710 (2010).
6. S. Kim, K. Kim, and B. I. Min, [arXiv:1412.1237](http://arxiv.org/abs/1412.1237) (2014).
7. S. Kawasaki \textit{et al.}, unpublished.
8. Y. Nagano, N. Araoka, A. Mitsuda, H. Yayama, H. Wada, M. Ichihara, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. 82, 064715 (2013).
9. T. Kubo, Y. Kizaki, H. Kotegawa, H. Tou, Y. Nagano, N. Araoka, A. Mitsuda, and H. Wada, JPS Conf. Proc. 3, 017031 (2014).
10. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang,
D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nature Phys. 8, 871-876 (2012).

11 A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).

12 R. Zhou, Z. Li, J. Yang, D. L. Sun, C. T. Lin, and G.-q. Zheng, Nature Commun. 4, 2265 (2013).

13 G. W. Hull, J. H. Wernick, T. H. Geballe, J. V. Waszczak, and J. E. Bernardini, Phys. Rev. B 24, 6715 (1981).

14 S. Maeda, K. Matano, H. Sawaoka, Y. Inada, and G.-q. Zheng, J. Phys. Soc. Jpn. 82, 065002 (2013).

15 A. Imre, A. Hellmann, and A. Mewis, Z. Anorg. Allg. Chem. 632, 2217 (2006).

16 T. Oguchi, Phys. Rev. B 63, 125115 (2001).

17 F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).

18 K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272-1276 (2011).

19 M. I. Gordon, and M. J. R. Hoch, J. Phys. C: Solid State Phys. 11, 783 (1978).

20 J. Chepin and J. H. Ross, Jr., J. Phys.: Condens. Matter 3, 8103 (1991).

21 E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Nature Phys. 2, 544-550 (2006).

22 K. E. Wagner, E. Morosan, Y. S. Hor, J. Tao, Y. Zhu, T. Sanders, T. M. McQueen, H. W. Zandbergen, A. J. Williams, D. V. West, and R. J. Cava, Phys. Rev. B 78, 104520 (2008).

23 Y. Singh, R. Nirmala, S. Ramakrishnan, and S. K. Malik, Phys. Rev. B 72, 045106 (2005).

24 C. Berthier, P. Molinié, and D. Jeromé, Solid State Comm. 18, 1393-1395 (1976).

25 A. Briggs, P. Monceau, M. Nunez-Regueiro, J. Peyrard, M Ribault, and J. Richard, J. Phys. C: Solid State Phys. 13, 2117 (1980).

26 W. L. McMillan, Phys. Rev. 167, 331 (1967).

27 C. Tonohiro, Y. Nakano, F. Honda, T. Yamada, T. Takeuchi, K. Sugiyama, M. Hagiwara, K. Kindo, T. D. Matsuda, Y. Haga, M. Hedo, Y. Uwatoko, R. Settai, and Y. Önuki, J. Phys. Soc. Jpn. 78, 114706 (2009).
Acknowledgments

We thank S. Kawasaki for technical help. This work was partially supported by the “Topological Quantum Phenomena” (No. 22103004) KAKENHI on Innovative Areas from MEXT of Japan.