Genetic Analysis of TREM2 Variants in Tunisian Patients with Alzheimer's Disease

Zied Landoulsia Mouna Ben Djebaraa, b Imen Kacema, b Youssef Sidhoma, b Rym Kefic Sonia Abdelhakc Amina Gargouri-Berrechida, b Riadh Gouidera, b

aDepartment of Neurology, UR12SP21, Razi Hospital, Manouba, Tunisia; bFaculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia; cLaboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia

Keywords
TREM2 gene · Variants · Alzheimer's disease · North-African population · Case-control study

Abstract

Objective: Rare variants in the TREM2 gene have been reported to significantly increase the risk of Alzheimer's disease in Caucasian populations. Hitherto, this association was not studied in North African populations. In this work, we aimed to study the association between TREM2 exon 2 variants and the risk of late-onset Alzheimer's disease (LOAD) in a Tunisian population.

Methods: We sequenced exon 2 of TREM2 in 172 LOAD patients and 158 control subjects. We used the Fisher exact test to compare the distribution of allelic frequencies between the two groups.

Results: We identified 4 previously reported nonsynonymous variants (p.Asp39Glu, p.Arg62His, p.Thr96Lys, and p.Val126Gly) and 1 novel synonymous variant (p.Gln109Gln), none of which was significantly associated with the risk of Alzheimer's disease. Moreover, the rare TREM2 variant (p.Arg47His), which was considered to be a risk factor for Alzheimer's disease in European descent populations, was not detected in our cohort.

Conclusion: These findings do not support a major role for TREM2 in the pathogenesis of LOAD in the Tunisian population.
and regulating the inflammatory response. The rare missense mutation p.Arg47His (rs75932628) within TREM2 increases the risk of neurodegenerative disorders such as Parkinson’s disease [2], essential tremor [3], and late-onset Alzheimer’s disease (LOAD). This mutation was identified as a rare risk factor for LOAD in several European descent cohorts with an odds ratio similar to that for apolipoprotein E epsilon 4 (ApoE ε4) [4, 5].

TREM2 variants associated with Alzheimer’s disease (AD) have been screened in various populations worldwide; however, no studies have been carried out in North African populations. Most of the aforementioned variants were observed in exon 2 of the TREM2 gene. Therefore, the aim of this work was to evaluate the association of TREM2 exon 2 variants with risk of AD in a sample of the Tunisian population.

Subjects and Methods

Subjects

One hundred seventy-two Tunisian patients with LOAD were recruited from the Neurology Department of Razi Hospital, Manouba, Tunisia. Clinical diagnosis of LOAD was done according to the criteria of the National Institute of Neurological and Communication Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [6]. In addition, 158 unrelated control subjects were recruited from different primary care clinics. None of the control group subjects had cognitive impairment or personal or familial history of neurological and psychiatric disorders. Written informed consent was obtained from each individual prior to enrollment in the genetic study. Research protocols were approved by the Medical Ethics Committee of Razi Hospital and conformed to the guidelines of the Declaration of Helsinki.

ApoE Genotyping and TREM2 Sequencing

Blood samples were collected from LOAD patients and controls. Genomic DNA was extracted from blood by the salting-out method [7]. ApoE genotyping was performed as previously described [8]. Exon 2 of TREM2 gene was amplified by polymerase chain reaction (PCR) from genomic DNA using two primers: 5’-TGAATGAATGTCTCCTCCCGAG-3’ and 5’-CAGCCACTGCCAAGC-3’, under the following reaction conditions: denaturation at 95 °C for 5 min followed by 30 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s, and a final cycle of 7-min extension at 72 °C. PCR products were purified and sequenced using the BigDye Terminator Cycle Sequencing Kit v1.1 on a 3,500xl Genetic Analyzer DNA sequencer (Applied Biosystems, Foster City, CA, USA). Sequences were analyzed using the SeqScape software (Applied Biosystems) and compared to the TREM2 GenBank reference sequence (NM_018965).

In silico Tools

The impact of TREM2 variations was predicted using SIFT (Sorting Intolerant From Tolerant; http://sift.jcvi.org/www/SIFT_ chr_coords_submit.html), PolyPhen-2 (Polymorphism Phenotyping v2; http://genetics.bwh.harvard.edu/pph2/) and PredictSNP2 (http://loschmidt.chemi.muni.cz/predictsnp2/) [9]. Frequencies of variants were reported from exome database (1,000G; http://browser.1000genomes.org/index.html), ExAC (http://exac.broadinstitute.org/), EVS (http://evs.gs.washington.edu/EVS/), and Great Middle East (GME) Variome Project database (http://igm.ucsd.edu/gme/data-browser.php) including 508 samples from North Africa.

Statistical Analysis

We used Fisher’s exact test to compare the distribution of allelic frequencies between LOAD patients and control groups. ApoE genotype and sex distributions were compared using the χ² test and mean age was compared using the t test. All analyses were two-tailed and a p value of 0.05 or less was considered statistically significant. Odds ratios and 95% confidence intervals were calculated using SPSS.

Results

Demographic characteristics and ApoE genotypes of Tunisian LOAD patients (n = 172) and controls (n = 158) are summarized in Table 1. Both groups had similar sex ratios and similar mean ages. ApoE genotyping showed a
significant difference in genotype distributions between the two groups; as expected, the ApoE ε4 allele was over-represented in LOAD patients compared to the control group (36.9 vs. 16.1%; \(p < 0.05 \)). The ApoE ε2 allele was not detected in patients and controls.

Sequencing of exon 2 of the TREM2 gene revealed 5 variants in 14 LOAD patients and 1 variant in 5 controls. As shown in Table 2, 4 previously reported nonsynonymous variants (p.Asp39Glu, p.Arg62His, p.Thr96Lys, and p.Val126Gly) and 1 novel synonymous variant (p.Gln109Gln) were observed in patients. The variant p.Thr96Lys was also identified in controls. All variants were present in the heterozygous state and were detected in separate individuals (no individuals carried 2 or more variants). Among the 14 patients carrying the TREM2 variants, 11 had a positive family history of AD (Table 3).

The frequencies of each variation in the population’s exome sequencing database are detailed in Table 2. No common variants having minor allele frequency (MAF) >5% were found, and 2 variants (p.Val126Gly and p.Asp39Glu) were rare, with MAF <1%. Three variants were predicted to have a probable damaging effect (p.Asp39Glu, p.Thr96Lys, and p.Val126Gly; Table 4). The association analysis of all the identified TREM2 variants and AD

Table 2. Variants of TREM2 after sequencing of exon 2 in LOAD patients and controls

Variant	db SNP ID	Position (GRCh37)	Exonic function	LOAD patients (carriers, MAF)	Controls (carriers, MAF)	\(p \) value	OR (95% CI)	Population frequency data				
p.Asp39Glu	rs200392967	g.41129275G>C	nonsyn	1 (0.005)	0	NA	0	6.5 e-5	7.6 e-5	0		
p.Arg62His	rs143332484	g.41129207C>T	nonsyn	2 (0.011)	0	0.49	NA	0.005	0.008	0.007	0	
p.Thr96Lys	rs2324253	g.41129105G>T	nonsyn	5 (0.029)	6 (0.037)	0.76	1.3	(0.39-4.36)	0.041	0.012	0.039	0
p.Gln109Gln	NA	g.41129065C>T	syn	5 (0.029)	0	0.06	NA	0	8.2 e-6	0	0	

LOAD, late-onset Alzheimer's disease; db SNP, single nucleotide polymorphism database; MAF, minor allele frequency; syn, synonymous; nonsyn, nonsynonymous.

Table 3. Characteristics of individuals carrying the TREM2 variants

Variant	Carrier	Gender	Age at examination/ Age at onset, years	ApoE genotype	Family history of neurodegenerative disease
p.Asp39Glu	patient 1	F	86/82	ε4/ε4	yes
p.Asp39Glu	patient 2	M	79/71	ε3/ε3	yes
p.Asp39Glu	patient 3	M	79/66	ε4/ε4	yes
p.Asp39Glu	patient 4	M	69/67	ε3/ε3	yes
p.Asp39Glu	patient 5	M	72/65	ε3/ε4	yes
p.Asp39Glu	patient 6	M	80/75	ε3/ε4	yes
p.Asp39Glu	patient 7	M	89/79	ε3/ε4	yes
p.Asp39Glu	control 1	M	71/–	ε3/ε3	no
p.Asp39Glu	control 2	M	68/–	ε3/ε4	no
p.Asp39Glu	control 3	F	70/–	ε3/ε3	no
p.Asp39Glu	control 4	M	68/–	ε3/ε3	no
p.Asp39Glu	control 5	F	70/–	ε3/ε4	no
p.Asp39Glu	patient 9	M	85/70	ε3/ε4	yes
p.Asp39Glu	patient 10	F	75/65	ε4/ε4	yes
p.Asp39Glu	patient 11	F	72/67	ε3/ε3	no
p.Asp39Glu	patient 12	F	85/68	ε3/ε4	no
p.Asp39Glu	patient 13	F	77/72	ε3/ε3	no
p.Asp39Glu	patient 14	M	82/72	ε3/ε4	yes
was not statistically significant (Table 2). Even the rare variants p.Val126Gly and p.Asp39Glu were not significantly associated with AD ($p > 0.05$).

Discussion

This is the first investigation into the possible association between **TREM2** variants and risk of AD in a North African population. In this study, we sequenced exon 2 of the **TREM2** gene in a cohort of Tunisian patients with LOAD and healthy individuals, and identified 5 variants (p.Asp39Glu, p.Arg62His, p.Thr96Lys, p.Gln109Gln, and p.Val126Gly). The p.Arg47His mutation was not found in our cohort. Association analysis revealed that none of the identified variants were associated with AD risk. Therefore, we could not test the interaction of the ApoE ε4 allele with these variants.

A summary of the reported screening studies for **TREM2** mutations to date, including AD patients, is presented in Table 5. **TREM2** p.Arg62His was previously observed in AD patients and controls in Spanish, Belgian,

Table 4. In silico prediction of **TREM2 missense variants**

Variant	db SNP ID	Position (GRCh37)	SIFT	Polyphen2	PredictSNP2
p.Asp39Glu	rs200392967	g.41129275G>C	tolerated	possibly damaging	deleterious
p.Arg62His	rs143332484	g.41129207C>T	tolerated	benign	neutral
p.Thr96Lys	rs22342535	g.41129105G>T	damaging	probably damaging	neutral
p.Val126Gly	rs121908402	g.41129015A>C	damaging	Probably damaging	deleterious

Table 5. Summary of all variant screening studies of **TREM2 in patients with Alzheimer’s disease (AD)**

Ethnicity	AD patients	**TREM2** variants in AD patients	exon 2	exon 3	exon 4
Caucasian	256 European + 836 North American [5]	Q33X, Y38C, R47H, R62H, T66M, D87N, T96K, R98W	R136Q, H157Y	-	
	117 Norwegian + 944 Dutch + 517 German + 3,759 Icelandic + 399 US [4]	R47H	-		
	726 French [13]	Q33X, R47H, R62H, R62C, D87N, T96K	-	-	
	427 American [14]	R47H	-	-	
	504 Spanish [15]	R47H, R62H	-	-	
	3,172 Spanish [16]	R47H	-	-	
	1,216 Belgian [11]	D39G, D39E, R47H, G58A, R62H, D87N, T96K	L133L, H157Y	S162R, L211P, T223I	
	2,082 US [10]	Q33X, R47H, R52H, R62H, T66M, D87N, T96K	R136W, R136Q, H157Y	-	
	210 North American [17]	R47H, D87N,	H157Y	L205P, G219C	
East Asian	1,133 Chinese [18]	V34V, C110C, H114H, G115S	-	-	
	360 Chinese [19]	A130V	-	-	
	988 Chinese [20]	-	H157Y	S183C, A192T	
	400 Korean [21]	-	H157Y	A192T	
	2,190 Japanese [22]	R47H,	H157Y	L211P	
African American	899 African American [23]	R47H, R62H, D87N	E151K,	W191X, L211P	
Others	131 Iranian [24]	R47H, G55R, R62H, R62C	-	-	

Variations significantly associated with AD are underlined.
and French populations (Table 5), and did not show a nominally significant association with AD. However, a previous case-control study of large European American descent cohorts showed that in addition to p.Arg47His [10], p.Arg62His is a risk factor for AD. The variant rs2234253 (p.Thr96Lys), detected in Belgian, French, and Japanese populations (Table 5), was not shown to enhance AD risk. In our study, p.Thr96Lys was the unique variant detected in controls and LOAD patients with equivalent MAF. According to public exome databases, this variant was more common in African populations (MAF = 14.5%, 1,000G) than other populations, but was not present in North African populations of the GME (Table 2).

Two rare variants predicted to be deleterious, p.Asp39Glu and p.Val126Gly, were identified in our study. The p.Asp39Glu was previously reported in 2 AD patients at the heterozygous state [11], while homozygous p.Val126Gly was reported in 2 patients with Nasu-Hakola disease [12]. Among the 5 variants, variant Gln109Gln was not found in any of the exome databases. However, this variant is synonymous and does not change the amino acid sequence of TREM2 protein.

The previously reported rare variant rs75932628 (p.Arg47His), identified to be a risk factor for AD in Caucasian populations (Table 5), was not found in our cohort. Our findings are in agreement with published reports of African American, Iranian, and East Asian populations (Table 5) which showed that the p.Arg47His mutation could not be linked to an increased risk of AD. In our study, the lack of association of the p.Arg47His variant may be due to its very low MAF in the Tunisian population. In the GME database, this genetic polymorphism had a global MAF of 0.15 and 0.1% in North African populations. Moreover, this variant is considered to be a risk factor according to the ethnicity of the population. AD risk in the Tunisian population may be influenced by genetic and/or environmental factors which might reduce the effect of this variant. However, the limitation of our work is the small cohort size, which could explain the lack of statistical significance.

Conclusion

This study is the first to explore the possibility of an association of TREM2 with the risk of AD in North Africa, particularly in Tunisia. This population seems to be closer to the African American or East Asian populations than to the European ones regarding the AD risk factor p.Arg47His. We hypothesize that variations in exon 2 of TREM2 may not play a major role in the pathogenesis of LOAD in the Tunisian population. However, further studies on larger cohorts of North African populations are needed to confirm this hypothesis.

Acknowledgements

We are grateful to all the patients and their family members for participating in this study. This research was supported by grants from the Tunisian Ministry of Higher Education and Scientific Research and the Tunisian Ministry of Health.

Disclosure Statement

The authors declare that they have no conflicts of interest.

References

1. Colonna M, Wang Y: TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 2016;17:201–207.
2. Rayaprolu S, Mullen B, Baker M, et al: TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 2013;8:19.
3. Ortega-Cubero S, Lorenzo-Betancor O, Lorenzo E, et al: TREM2 R47H variant and risk of essential tremor: a cross-sectional international multicenter study. Parkinsonism Relat Disord 2015;21:306–309.
4. Jonsson T, Stefansson H, Steinberg S, et al: Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013;368:107–116.
5. Guerreiro R, Wojtas A, Bras J, et al: TREM2 variants in Alzheimer’s disease. N Engl J Med 2013;368:117–127.
6. McKhann G, Drachman D, Folstein M, et al: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–944.
7. Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215.
8. Hixson JE, Vernier DT: Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lipid Res 1990;31:545–548.
9. Bend J, Musil M, Stourac J, et al: PredictSNP2: a unified platform for accurately evaluating SNP effects by exploiting the different characteristics of variants in distinct genomic regions. PLoS Comput Biol 2016;12:e1004962.
10. Jin SC, Benitez BA, Karch CM, et al: Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 2014;23:5838–5846.
11. Cuyvers E, Bettens K, Philtjens S, et al: Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 2014;35:726.e711–e729.
12 Klunemann HH, Ridha BH, Magy L, et al: The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 2005;64:1502–1507.
13 Pottier C, Wallon D, Rousseau S, et al: TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 2013;35:45–49.
14 Gonzalez Murcia JD, Schmutz C, Munger C, et al: Assessment of TREM2 rs75932628 association with Alzheimer’s disease in a population-based sample: the Cache County Study. Neurobiol Aging 2013;34:2889.e2811–e2883.
15 Benitez BA, Cooper B, Pastor P, et al: TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 2013;34:1711.e1715–e1717.
16 Ruiz A, Dols-Icardo O, Bullido MJ, et al: Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 2014;35:444.e441–e444.
17 Ghani M, Sato C, Kakhki EG, et al: Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer’s disease data set. Neurobiol Aging 2016;42:217.e217–217.e213.
18 Yu JT, Jiang T, Wang YL, et al: Triggering receptor expressed on myeloid cells 2 variant is rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol Aging 2014;35:937.e931–e933.
19 Jiao B, Liu X, Tang B, et al: Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer’s disease from mainland China. Neurobiol Aging 2014;35:2422.e9–2422.e11.
20 Jiang T, Tan L, Chen Q, et al: A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging 2016;42:217.e211–e213.
21 Chung SJ, Kim MJ, Kim J, et al: Exome array study did not identify novel variants in Alzheimer’s disease. Neurobiol Aging 2014;35:1958.e1913–e1954.
22 Miyashita A, Wen Y, Kitamura N, et al: Lack of genetic association between TREM2 and late-onset Alzheimer’s disease in a Japanese population. J Alzheimers Dis 2014;41:1031–1038.
23 Jin SC, Carrasquillo MM, Benitez BA, et al: TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener 2015;10:19.
24 Mehrjoo Z, Najmabadi A, Abedini SS, et al: Association study of the TREM2 gene and identification of a novel variant in exon 2 in Iranian Patients with late-onset Alzheimer’s disease. Med Princ Pract 2015;24:351–354.