High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application

MEIPING LI1, YANPENG SHI1, XIAOYU LIU1, JINMEI SONG1, YIFEI ZHANG1, XIAODONG WANG2, AND FUHUA YANG2
1School of Microelectronics, Shandong University, Jinan 250100, China
2Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Corresponding authors: Yanpeng Shi (ypshi@sdu.edu.cn) and Yifei Zhang (yifeizhang@sdu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61805127, in part by the Natural Science Foundation of Shandong Province under Grant ZR2019BF014, in part by the Fundamental Research Funds of Shandong University under Grant 2018TB002, in part by China Postdoctoral Science Foundation funded project under Grant 2015M582073, and in part by the Key Technology Research and Development Program of Shandong under Grant 2019JZZY020109.

ABSTRACT Waveguide structures effectively controlling and guiding terahertz (THz) waves can achieve interesting resonance effects when combined with resonators. At present, achieving high quality factor (Q-factor) resonance in THz resonator-coupled waveguide structure is still a critical consideration to expand its practical application. Here, a high Q-factor Fano resonance based on a metal-dielectric-metal (MDM) waveguide consisting of a stub resonator and a metal wall with an aperture in the center is investigated theoretically and numerically in the THz region. The results show that the sharp and asymmetric Fano resonance peak is induced by the destructive interference between the stub resonator and metal wall which act as a Fabry-Pérot cavity. Q-factor is obviously improved about 60 times (3.72 to ∼225) by introducing the metal wall into the stub-coupled MDM waveguide. Moreover, Fano resonance can be effectively tuned by varying different structure parameters. Owing to the high sensitivity of Fano resonance peak to dielectric surroundings, a large-range refractive index (RI) sensor based on the proposed structure with a high sensitivity of 96480 nm/RIU is obtained. The figure of merit (FOM) of 195 is greatly improved compared to other THz Fano-based RI sensors. These results provide possibilities for subwavelength MDM waveguide structure to apply for THz bio/chemical sensing, bandpass filters, and on-chip highly integrated plasmonic device.

INDEX TERMS Fano resonance, MDM waveguide, high Q-factor, THz sensing.

I. INTRODUCTION
Fano resonance was firstly discovered in the autoionizing states of atoms by Ugo Fano, caused by the constructive and destructive interference between a discrete excited state and a broad continuous resonant scattering process [1], [2]. It not only exists in quantum systems, but also can be realized in symmetry-breaking classical systems, such as photonic crystals, plasmonic nanostructures, gratings, resonator-coupled waveguide structures, and metamaterials [3]–[7]. Compared to the symmetric Lorentzian profile, Fano resonance presents a sharp asymmetric line shape and a dramatic variation from dip to peak with only a small frequency shift, resulting in characteristics of easy identification and tracking of resonance peak. And it can also generate strong local electric field due to the interference effect. In addition, it is highly sensitive to the variation of geometric parameters and surroundings environment, leading to great advantages in tunability of Fano transmission spectra. These properties allow Fano resonance to be widely studied for these applications, including filters [8], [9], sensing [10]–[12], slow-light effect [13]–[15], optical switching [16], [17], nanofocusing [18] and modulators [19], [20].

In recent years, metal-dielectric-metal (MDM) waveguide structure supporting surface plasmon polaritons (SPPs) has attracted much attention because of its strong field enhancement and deep subwavelength confinement [21]. Meanwhile, Fano-based MDM waveguide structure coupled with
different shapes of resonators can be found in visible and infrared band, such as rectangular resonators [22], [23], multiple ring or disk resonators [24], [25], stub resonators combined with ring or disk resonators [15], [26], and triangular resonators [27]. Furthermore, due to the sensitivity of Fano resonance to the dielectric region, Fano-based MDM waveguide structure has great potential for refractive index (RI) sensing application. Many related studies devoted to improving the sensing performance have been reported in visible and infrared band. In 2016, Zhan et al. found that adjusting the asymmetry factor of Fano in MDM waveguide structure can improve the performance of the RI sensor and achieve a sensitivity of 780 nm/RIU, which can also be used for slow light sensing [14]. In order to investigate the coupling of different wave modes and break the traditional method of coupling between cavities, Chen et al. introduced metallic double-baffle into ring-coupled MDM waveguide to realize Fano resonance, and obtained a RI sensor with sensitivity of 825 nm/RIU [28]. In 2019, Chen et al. tuned the transmission spectrum of Fano resonance after the structure size was fixed, and achieved temperature adjustable Fano-based sensor with sensitivity of 0.31 nm/°C [29]. Zhou et al. achieved a RI sensor with the sensitivity of 8280 nm/RIU in MDM waveguide structure by introducing metal nanorods into the T-cavity, which was the highest sensitivity reported in cavity-MDM waveguide structure [30]. Due to the development of highly integrated circuits, multiple Fano resonances achieved in single MDM waveguide are of practical significance. In 2020, eight Fano peaks were generated from the visible to near-infrared band by introducing two metal barriers into ring-stub-coupled MDM waveguide structure, and a RI sensor with sensitivity of 1062 nm/RIU was obtained [31]. Considering figure of merit (FOM) is also an important indicator of sensor, Zhang et al. proposed a Fano-based RI sensor with sensitivity of 923 nm/RIU and FOM of 710 in MDM waveguide coupled with an equilateral triangle-shaped cavity, which significantly improved FOM [32]. These studies show that the sensing performance of RI sensor realized by Fano-based MDM waveguide structure has been improved in visible and infrared band. However, compared with terahertz (THz) Fano-based sensors, the sensitivity still needs to be improved.

In the THz region, Fano resonance is mainly achieved by the periodic array in metamaterials/metasurfaces and possesses high sensitivity in sensing applications [33]–[36]. Realizing high quality factor (Q-factor) Fano resonance is of particular significance to improve the resolution of THz sensor. However, the plasmonic metamaterials are strongly coupled to free space and have thin thickness, which leads to the limitation of possessing high electromagnetic field confinement. Thus, Q-factors of Fano resonance based on them need to be further improved and radiation losses need to be reduced [37]. All-dielectric metamaterials can overcome these shortcomings of plasmonic metamaterials to some extent, but they have the problems of diffraction limit and low field enhancement [38]. Furthermore, the dependence on periodic structures leads to inevitably large dimensions and makes them difficult to integrate into chips. Contrarily, MDM waveguide, due to its deep subwavelength confinement of light, easy fabrication, low propagation loss and long propagation distance [39]–[41], can be used to solve these problems. Moreover, it holds compact size and great promise
for THz subwavelength plasmonic device and highly integrated optical circuits. However, high Q-factor Fano-based MDM waveguide structure, which is a suitable platform for sensing application, remains rare explored in THz band.

In this paper, we propose a THz subwavelength MDM waveguide structure composed of a metal wall with an aperture in the center and a stub resonator, which can excite high Q-factor Fano resonance. The formation of Fano resonance is not only investigated numerically by finite-different time-domain (FDTD) solutions but also analyzed by the scattering matrix theory (SMT). Moreover, the electromagnetic field distributions are exhibited to further explain the mechanism of Fano resonance. Considering the ohmic losses can weak the SPPs in MDM waveguide, the propagation distance of SPPs is also calculated. Furthermore, the effect of structure parameters on Fano transmission spectra, especially on the improvement of Q-factor and the conversion between asymmetric Fano and symmetric Lorentzian profile, is clearly demonstrated. Finally, since the resonant frequency of SPPs excited in MDM waveguide is highly sensitive to the change of dielectric environment around metal, a Fano-based THz sensor with a sensitivity of 96480 nm/RIU and a FOM of 195 in the RI range of 1-2 is studied. In brief, the structure provides new routes for THz sensing application and sub-wavelength plasmonic device.

II. STRUCTURE DESIGN AND THEORETICAL ANALYSIS
A. CONFIGURATION AND NUMERICAL SIMULATION
Figs. 1(a) and (b) exhibit the 3D schematic diagram and the top view of the proposed MDM waveguide structure, which consists of a stub resonator and a metal wall with an aperture in the center. Waveguide-resonator structure is selected because it can create interesting notch effect. The metal wall is introduced to break the symmetric profile of waveguide-resonator structure and realize high-Q Fano resonance. The orange and white areas represent gold and air ($\varepsilon_d = 1$). The height L_1 and width L_2 of the stub resonator are 20 and 10 μm, respectively. The thickness of the metal wall t is 1 μm, the aperture size a in the metal wall is 0.4 μm. The distance d between the center of the stub resonator and metal wall is 20 μm, and the width of the MDM waveguide w is 10 μm. Properties of the proposed structure are numerically investigated by the two-dimensional FDTD. Note that 2D simulation results are close to 3D results when structure thickness is larger than the wavelength of incident light [42]. In addition, simulation time and complexity are obviously reduced without weakening the accuracy. The dielectric permittivity of gold is represented by the Drude model [43]. The Gaussian pulse is injected into the waveguide input and excites the fundamental TM mode with magnetic field parallel to the stub resonator. The maximum and minimum mesh step in the x and y directions are set as 1.8 μm and 0.01 μm, respectively. Boundary conditions in the x and y directions are perfect matched layers. Two power monitors are set at the input and output of the waveguide to calculate the incident power T_{in} and transmitted power T_{out}, transmission T of the THz waveguide structure is described as $T = T_{\text{out}} / T_{\text{in}}$. Moreover, high frequency structure simulator (HFSS) are also used to obtain the simulation result of the proposed structure, which is similar to the result simulated by FDTD (see Supporting Information, Fig. S1). The proposed structure can be fabricated by focused-ion-beam (FIB) and E-beam. First, we use FIB to etch a certain depth of stub-wall-coupled waveguide structure on Si substrate. Then we deposit titanium (Ti) film on the surface of the structure to increase adhesion between gold and Si. In the end, we can use E-beam to deposit gold on the surface of this structure. In fact, the simulation results of Al and Ag are consistent with gold, as shown in Fig. S2 in the Supporting Information. Characteristics of Al and Ag are obtained by Lorentz-Drude mode [45] and the experimental optical constant of Hagemann et al. [44], respectively. Therefore, the proposed structure shows strong universality and feasibility. Several metal materials, such as gold, Al, and Ag, can be selected in practical application.

To better understand the interaction between the stub resonator and metal wall, the MDM waveguide with only a stub resonator and with only a metal wall is calculated, respectively. The transmission spectrum for the single stub-coupled waveguide structure is shown as the black line in Fig. 1(c), which is a symmetric Lorentzian-like line shape for notch filter [46]. The transmission spectrum of a single metal wall with an aperture in MDM waveguide exhibits continuous broadband line shape shown in the Fig. 1(c) (red line). For waveguide with a stub resonator and a metal wall, the transmission spectrum exhibits an asymmetric Fano line shape, which is the green line in Fig. 1(c). It is worth noting that the maximum transmission is not 100% but \sim95.4% at the Fano resonance peak mainly due to the ohmic loss of Au and the coupling loss of the proposed structure. A return loss of 23 dB and a transmission loss of \sim0 dB also exist (see Fig. S3(a) in the Supporting Information). Furthermore, the full width half maximum (FWHM) of Fano resonance is 0.348 THz, thus Q-factor is \sim11.25 with the definition of $Q = f_0 / \text{FWHM}$, where f_0 is the resonant frequency. The minimum transmission is 0 at the notch frequency of 3.3 THz, which corresponds to a return loss of 0 dB and a transmission loss of 60 dB shown in Fig. S3(a) of the Supporting Information. Meanwhile, the propagation loss per unit distance of 2.836×10^{-3} dB/µm is calculated by FDTD shown in Fig. S4 in the Supporting Information, corresponding to the propagation length of \sim1.47 cm [47]. More detailed analyses on propagation loss are presented in Supporting Information.

Fig. 1(c) demonstrates that Fano resonance is induced by the interference between the stub resonator (discrete mode) and metal wall (continuum mode). But it is not clear what kind of interference it is. In order to illustrate the interference mechanism clearly, Hz field distributions at the Fano transmission dip and peak are depicted in Figs. 1(d) and (e), respectively. Fig. 1(d) reveals that the propagation of the incident light is inhibited and reflected at $f = 3.3$ THz due to the strong coupling between MDM waveguide and stub resonator. Meanwhile, due to the in-phase of Hz field...
distributions in stub resonator and left side of metal wall, the constructive interference between them occurs and further enhances the reflection, leading to the minimum transmission. Therefore, it can be concluded that the stub resonator plays a crucial role in the formation of Fano resonance dip. On the contrary, Fig. 1(e) exhibits that the incident light can effectively pass through the designed waveguide structure at 3.915 THz. The H_z field distributions in the stub resonator and left side of metal wall are antiphase and induce strong destructive interference between them, which cancels the reflection and results in a sharp transmission peak. Therefore, Fano transmission dip is mainly determined by the strong reflection of stub resonator and assisted by the constructive interference between the stub resonator and metal wall. Fano transmission peak is caused by the destructive interference between them. In addition, the stub resonator and metal wall act as a Fabry-Pérot cavity with the strong $|H_z|^2$ field distributions observed in Fig. 1(f). The dynamic process of H_z field distributions can be found in Supplementary video.

B. THEORETICAL CALCULATION

The characteristics of the proposed structure can be further analyzed by SMT [48], [49]. The resonant wavelength of single sub-coupled waveguide structure can be described as [46]:

$$\lambda_m = \frac{4n_{\text{eff}} L_1}{2m - \Delta \phi(\lambda)/\pi}, \quad m = 1, 2, 3, \ldots$$ \hspace{1cm} (1)

where the effective refractive index n_{eff} is inversely proportional to the width of MDM waveguide and stub resonator, $\Delta \phi(\lambda)$ is the phase change of the incident light, m is the order of the resonance mode. According to Eq. (1), the resonant wavelength of this structure is proportional to the height of stub resonator, which is consistent with simulation results shown in Fig. S3(b) in the Supporting Information.

According to the SMT [48], transmission and reflection spectra of the single sub-coupled waveguide structure can be derived as:

$$T(f) = \frac{(f - f_0)^2 + (1/\tau_0)^2}{(f - f_0)^2 + (1/\tau_0 + 1/\tau_e)^2}$$ \hspace{1cm} (2)

$$R(f) = \frac{(1/\tau_e)^2}{(f - f_0)^2 + (1/\tau_0 + 1/\tau_e)^2}$$ \hspace{1cm} (3)

where f_0 is the resonant frequency, $1/\tau_0$ and $1/\tau_e$ represent the decay coefficient of the field due to intrinsic loss and coupling loss of the proposed structure, respectively [50].
To simplify the theoretical model, the intrinsic loss is not considered, thus the transmission and reflection spectra of the single stub-coupled waveguide structure are obtained by Eqs. (2) and (3) shown in Fig. 2(a). The transmission reaches minimum $T_{\text{min}} = 0$ at $f = 3.3$ THz, which matches well with simulation results.

In order to break the symmetry line shape and obtain the sharp and asymmetric Fano transmission spectrum, a metal wall with an aperture is introduced at a certain distance from the center of stub resonator. The metal wall is regarded as a partially reflective element because the light is partly transmitted and partly reflected when passing through it. Transmission spectra of the Fano resonance can be calculated by combining the transfer matrix of stub resonator and metal wall [49]. Thus, the scattering matrix for the Fano structure with the incident wave at a frequency f is expressed as:

$$
\begin{bmatrix}
S_{-3} \\
S_{+3}
\end{bmatrix} = T_{\text{cavity}} T_{0} T_{\text{wall}} \begin{bmatrix}
S_{-1} \\
S_{+1}
\end{bmatrix}
\begin{bmatrix}
2/\tau_e \\
-2/\tau_e
\end{bmatrix}
\begin{bmatrix}
e^{i\delta} & 1 \\
0 & e^{-i\delta}
\end{bmatrix}
\begin{bmatrix}
S_{-1} \\
S_{+1}
\end{bmatrix}
$$

(4)

where T_{cavity} and T_{wall} are the transfer matrix of stub resonator and metal wall, respectively, T_0 is the phase matching matrix. δ is the phase change of the light propagating from stub resonator to metal wall, defined as $\delta = 2\pi fd/c$, c is the velocity of light in vacuum. r is the reflection coefficient of the metal wall shown in Fig. S3(c) in the Supporting Information.

And transmission spectra of the proposed structure can be derived as:

$$
T = \frac{S_{-3}}{S_{+3}} = r^2 \left| \frac{2\pi i (f - f_0)}{(2\pi (f - f_0) + 2i/\tau_e) e^{-i\delta} - 2ire^{i\delta}/\tau_e} \right|^2
$$

(5)

Transmission spectra of Fano resonance calculated by Eq. (5) in theory are shown in Fig. 2(b). It indicates that theoretical results are in accord with simulations, while slight deviation is mainly caused by the intrinsic loss of the structure and additional phase shift introduced by the stub resonator. More comparisons with different parameters can be found in Fig. S5 in the Supporting Information. In addition, strong local electric field can be generated due to the interference effect of the proposed structure, shown in Figs. 2(c) and (d). Fig. 2(c) shows that electric fields mainly focus on the stub resonator at the Fano resonance dip due to the strong coupling between stub resonator and waveguide, which is consistent with the results discussed above. Meanwhile, electric fields mainly distribute in the stub resonator and metal wall at the Fano resonance peak shown in Fig. 2(d). The maximum field strength at the Fano resonance peak is five times larger than that at the Fano resonance dip. This is because that the strong destructive interference between stub resonator and metal wall induces the Fano transmission peak, which generates strong field distribution.

III. RESULTS AND DISCUSSION

A. PARAMETRIC ANALYSIS

Fano resonance is sensitive to the structure size. In order to improve Q-factor of Fano resonance, which is beneficial to achieve better THz sensing performance, we optimize parameters of the proposed structure and investigate the transmission T, reflection R, and loss A of Fano resonance with three different geometric dimensions. Fig. 3(a) shows the high transmission peak, low reflection dip, and low loss of Fano resonance at $f = 3.915$ THz, where the loss A is defined as $A = 1 - T - R$. Due to the strong confinement of the MDM waveguide, the loss is not the radiative loss but the non-radiative loss caused by the materials. Compared to the result in Fig. 3(a), the transmission spectrum shown in Fig. 3(b) varies rapidly from dip to peak at $f = 3.05$ and 3.11 THz, respectively. A higher Q-factor of 130 is obtained with a transmission peak of 0.58. However, the reflection and loss of the proposed structure at the resonant frequency both increase, which induces the decrease of the Fano transmission peak. Fig. 3(c) shows a sharper Fano
resonance with a transmission peak of 0.43 and a Q-factor of 225, which is twenty times larger than that in Fig. 3(a). The reflection at the resonant frequency is only 0.03, while the loss is up to 0.54 due to the enhanced destructive interference between stub resonator and metal wall. Therefore, the decline of transmission peak results from the increasing loss, which can be compensated by introducing gain mediums into resonators [51]. From the insets of Figs. 3(b) and (c) we can find that H_z field distributions in the stub resonator are in phase with that in the MDM waveguide at points B and C, which is different from the distributions at point A shown in Fig. 1(e). It indicates that there is the weak coupling and constructive interference between the stub resonator and MDM waveguide. Comparing H_z field distributions at three points, it can be seen that the high Q-factor of Fano resonance are attributed to the strong destructive interference between the stub resonator and metal wall, and the weak coupling between the stub resonator and MDM waveguide.

Since the Fano transmission dip is mainly determined by the stub resonator, the variation of dip in the Fano waveguide structure is consistent with that in the single stub-coupled waveguide structure. According to Eq. (1), with the increasing height L_1 of the stub resonator, the transmission dip of the Lorentzian-like line shape is redshift in the single stub-coupled waveguide structure. Similarly, as L_1 increases from 15 to 20 μm, the transmission dip is redshift in the Fano waveguide structure, as shown in Fig. 4(a). At the same time, Fano transmission peak is also redshift due to the increasing effective RI of the proposed structure. Besides, it depicts that the minimum transmission occurs at around $L_1 = 18 \mu$m. It can be explained that when L_1 is equal to the width w of the MDM waveguide, the coupling strength between stub resonator and MDM waveguide enhances to the maximum, eventually inducing the strong reflection and weak transmission. Since Fano resonance dip is more sensitive to L_1 than the peak, the former changes faster as L_1 increases. Therefore, Fano line shape is reversed at $L_1 = 20 \mu$m compared to 18μm in Fig. 4(b). In order to understand the conversion clearly, H_z field distributions and phase shift of the proposed structure with two different stub heights are investigated in Figs. 4(c) and (d). The stub resonator and metal wall are antiphase (D point) at first and then in-phase (B point) at $L_1 = 18 \mu$m shown in Fig. 4(c) and lower inset of Fig. 4(b), respectively. The corresponding interference between the stub resonator and metal wall is destructive initially and then constructive, which generates the asymmetric
Fano-type transmission spectrum. In addition, the phase shift of the proposed structure at $L_1 = 20 \mu m$ is different from that at $18 \mu m$, as shown in Fig. 4(d). Therefore, the incident light has different degrees of phase shift after passing through the structure with different stub height, resulting in the conversion of Fano line shape.

Fig. 5(a) shows transmission spectra with the stub resonator width L_2 varying from 8 to 16 μm. Note that the stub resonator width plays an important role on the effective refractive index n_{eff} of the proposed structure and the coupling strength between stub resonator and MDM waveguide, which indirectly affects the variation of Fano transmission spectra. As L_2 increases, the Fano resonance peak shifts from 3.11 to 3.23 THz due to the decreasing n_{eff}. In addition, the transmission first increases owing to the decreasing coupling loss between stub resonator and MDM waveguide. Then it decreases due to the increasing reflection and enhanced coupling strength, where the maximum transmission is 0.6 at $L_2 = 10 \mu m$. The Fano resonance peak is red-shift and blue-shift with the increasing stub resonator height and width, and the resonance peak is more dependent on the stub resonator height than the width, which is demonstrated in Figs. 4(a) and 5(a). This is because that Fano resonant wavelength has a linear relationship with n_{eff} and stub resonator height shown in Eq. (1). Meanwhile, n_{eff} is inversely proportional to stub resonator width and has little correlation with width. Moreover, Fano transmission spectra with L_2 varying from 24 to 32 μm is plotted in Fig. S6(b) of the Supporting Information. It depicts that there is also a conversion from Fano-type to Lorentzian-type transmission spectrum as L_2 increases to 29 μm, which is similar to the conversion with different L_1.

Since the metal wall can be placed in an arbitrary position away from the stub resonator, Fano transmission spectra with different distance d are investigated in Fig. 5(b). As d increases from 23 to 31 μm, the resonant frequency shows a red shift from 3.18 to 2.90 THz. This is because that the phase shift δ has a linear relationship with d described in the theoretical analysis, which directly affects the variation of the Fano resonant frequency. Furthermore, the corresponding transmission is fluctuating and has a nonlinear relationship with d. It is due to the factor that d affects the interference strength between stub resonator and metal wall, and further results in the variation of the reflection of this structure, ultimately affecting the transmission. Moreover, as d increases to 26.55 μm, transmission spectra transform from Fano to Lorentzian line shape, as shown in the inset of Fig. 5(b). It can be explained that the strong destructive interference disappears between the stub resonator and metal wall at $d = 26.55 \mu m$. At the same time, the stub resonator manipulates the Lorentzian-type transmission spectrum independently and the metal wall impacts nothing on it. The conversion between Lorentzian and Fano line shape can be realized by adjusting the stub resonator height and width, as well as the position of the metal wall. Furthermore, from Fig. S6(c) in the Supporting Information we can see that the metal wall in the left or right side of the stub resonator results in the similar phenomenon.

Considering that the reflection coefficient r is an important factor on Fano transmission spectrum presented in Eq. (5), we investigate the effect of geometric parameters on r by simulation, as shown in Fig. 6. Fig. 6(a) shows the relationship between the transmission and aperture size a which varies from 0.2 to 3 μm. It exhibits that the transmission increases with the increasing a, which is due to the decreasing r and non-radiative loss A, as shown in the inset of Fig. 6(c). It can be found that r and A are highly sensitive to the variation of a. In addition, we can find that the Fano resonance dip remains unchanged due to the factor that it is not determined by the metal wall but the stub resonator. However, Fano resonance peak blue-shifted from 3.11 to 3.35 THz. This is because that r decreases with the increasing a, and the destructive interference between the stub resonator and metal wall gets weaker with smaller r, which ultimately induces the broadening of the FWHM. Due to the invariant Fano resonance dip and increasing FWHM, the peak is far away from the dip and blue-shift. Fig. 6(c) shows that with the decreasing a, Q-factor of Fano resonance increases due to the
strongly enhanced field and interference strength. However, high Q-factor is accompanied by low transmission, thus there is a tradeoff between the maximum transmission and Q-factor of the proposed structure. Fig. 6(b) depicts that as thickness t increases from 0.5 to 4.5 μm, the Fano resonance peak has a slight shift, keeping at around 3.12 THz, which indicates the insensitivity of Fano resonant frequency to t. This property can be used to compensate the error caused by the inaccuracy of the device size and reduce the difficulty during the fabrication process. The transmission sharply decreases from 0.63 to 0.2 due to the increasing A and r shown in the inset of Fig. 6(d). From Fig. 6(d) we can see that the maximum Q-factor is 225 at $t = 2.5$ μm, which is suitable for the highly sensitive THz sensing application.

B. SENSING APPLICATION

Due to the narrow and sharp Fano resonance peak, one interesting application of the proposed structure is THz sensing. The sensitivity (S) is a significant indicator for characterizing the RI sensor, which is defined as $S = \frac{\Delta \lambda}{\Delta n}$ nm/RIU [52], where $\Delta \lambda$ and Δn represent the change of Fano resonant wavelength and the dielectric RI (n), respectively. Fig. 7(a) shows the transmission spectra with RI varying from 1.0 to 2.0 with a step of 0.2. The large range of RI covers most biomolecules and chemical analytes in the THz region [33]. Here, several representative materials in the RI range of 1-2 are listed, such as, ovalbumin ($n \approx 1.15$), cyclohexane ($n = 1.3$), $C_8H_{18}-C_{16}H_{34}$ ($n = 1.39$-1.43), rape-seed oil ($n = 1.44$), 75% ethanol solution ($n = 1.6$), glycerin ($n = 1.77$), and HMX ($n = 1.81$). The Fano transmission spectra present a clear red-shift of the resonant wavelength, which varies from 96.48 to 192.95 μm. The transmission of Fano resonance decreases due to the increasing effective reflection coefficient of the proposed structure. A linear fit of the Fano resonant wavelength shown in Fig. 7(b) leads to a sensitivity of $S = 9.648 \times 10^4$ nm/RIU, which is comparable and higher than other THz Fano-based RI sensors shown in Table 1.

Moreover, FOM also plays an important role in characterizing the performance of the sensor, which is defined as $FOM = \frac{S}{FWHM}$ [53]. Here, the FOM of the proposed structure with a dielectric RI sweeping from 1.0 to 2.0 is presented in Fig. 7(c). It indicates that the FOM increases linearly due to the increasing destructive interference and the reduction of Fano linewidth. The maximum FOM is up to 195 at $n = 2.0$. Furthermore, compared to other RI sensors, the sensor based on the proposed structure can achieve a higher FOM, which can be seen in the Table 1.

In the practical detection process, two flat convex cylindrical lenses with appropriate size are placed at the input and output ports and in close contact with the waveguide (see Supporting Information, Fig. S7) [54]. They can prevent analyte overflow and improve the efficiency of optical coupling in and out of the waveguide. Then we can manually inject the
analyte into the detection region by using a precision syringe, and a focused HeNe laser beam is used to detect the filling of the analyte in the waveguide [55]. Considering the waveguide gap can serve as a channel for fluid flow, it can combine microfluidics technology to realize real-time monitoring [56].

IV. CONCLUSION

A Fano resonator with subwavelength planar structure has been numerically investigated and theoretically calculated in the THz region, which consists of a metal wall and a stub-coupled MDM waveguide. The numerical results simulated by FDTD are in good agreement with the theoretical results analyzed by SMT. The results indicate that the appearance of Fano resonance is attributed to the interference between the narrow discrete mode and broad continuum mode caused by stub resonator and metal wall, respectively. Maximum transmission of 95.4% is obtained with the propagation loss of 2.836×10^{-4} dB/µm. Fano transmission spectra can be conveniently adjusted by altering geometrical parameters. Moreover, the conversion of transmission spectra from Fano to Lorentzian line shape is realized by controlling the height and width of the stub resonator, as well as the distance between stub resonator and metal wall. Furthermore, the maximum Q-factor can reach up to 225 by optimizing the structural parameters, which is obviously improved about 60 times compared to the single stub-coupled waveguide structure. In sensing application, the results show that the Fano-based MDM waveguide structure can achieve a high sensitivity of 96480 nm/RIU and a satisfactory FOM of 195 in a wide RI range. Therefore, the proposed structure has a good application prospect in THz filtering and sensing, and provides the feasibility for the application of subwavelength plasmonic waveguide device in THz band.

REFERENCES

[1] U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., vol. 124, no. 6, pp. 1866–1878, Dec. 1961.
[2] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nature Photon., vol. 11, no. 9, pp. 543–554, Sep. 2017.
[3] Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nature Photon., vol. 11, no. 2, pp. 81–84, Feb. 2017.
[4] Y. Bao, Z. Hu, Z. Li, X. Zhu, and Z. Fang, “Magnetic plasmonic Fano resonance at optical frequency,” Small, vol. 11, no. 18, pp. 2177–2181, May 2015.
[5] Y. Wang, C. Sun, H. Li, Q. Gong, and J. Chen, “Self-reference plasmonic sensors based on double Fano resonances,” Nanoscale, vol. 9, no. 31, pp. 11085–11092, Jun. 2017.
[6] Z. Tu, D. Gao, M. Zhang, and D. Zhang, “High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator,” Opt. Exp., vol. 25, no. 17, pp. 20911–20922, Aug. 2017.
[7] P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photon., vol. 5, no. 5, pp. 1685–1690, May 2018.
[8] V. A. Nguyen, Q. M. Ngo, and K. Q. Le, “Efficient color filters based on fano-like guided-mode resonances in photonic crystal slabs,” IEEE Photon. J., vol. 10, no. 2, pp. 1–8, Apr. 2018.
[9] Z.-X. Shen, S.-H. Zhou, S.-L. Ge, W. Hu, and Y.-Q. Lu, “Liquid crystal enabled dynamic cloaking of terahertz Fano resonators,” Appl. Phys. Lett., vol. 114, no. 4, Jan. 2019, Art. no. 041106.
[10] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nature Mater., vol. 11, no. 1, pp. 69–75, Jan. 2012.
[32] J. Zhang, H. Feng, and Y. Gao, “Plasmonic narrowband filter based on an equilateral triangular resonator with a silver bar,” Photonics, vol. 8, no. 7, p. 244, Jun. 2021.

[33] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale, vol. 7, no. 29, pp. 12602–12608, Jun. 2015.

[34] Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, T. Zhan, L. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong fano-resonant metastable,” Nanoscale, vol. 8, no. 39, pp. 17278–17284, Sep. 2016.

[35] Y. K. Srivastava, L. Cong, and R. Singh, “Dual-surface flexible THz Fano metasensor,” Appl. Phys. Lett., vol. 111, no. 20, Nov. 2017, Art. no. 201110.

[36] W. Xu, X. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon, vol. 141, pp. 247–252, Jan. 2019.

[37] A. Ahmadvand, B. Gerislioglu, R. Abuja, and Y. K. Mishra, “Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensing,” Mater. Today, vol. 32, pp. 108–130, Jan. 2020.

[38] S. Jahanzi and Z. Jacob, “All-dielectric metamaterials,” Nature Technology, vol. 11, no. 1, pp. 23–36, Jan. 2016.

[39] G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal submillimeter wavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, no. 13, Sep. 2005, Art. no. 131102.

[40] G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightw. Technol., vol. 25, no. 9, pp. 2511–2521, Sep. 2007.

[41] A. Melikyan, L. Alloatti, A. Mustiša, D. Hilleruss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, and B. Chen, “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233, Mar. 2014.

[42] M. Danase and A. Shaltoutz, “Design of a high-resolution metal-insulator-metal plasmonic refractive index sensor based on a ring-shaped Si resonator,” Plasmonics, vol. 14, no. 6, pp. 1453–1456, Mar. 2019.

[43] M. A. Ordal, J. R. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ag, and Pb at submillimeter wavelengths,” Phys. Rev. Lett., vol. 52, no. 4, pp. 744–752, Feb. 1987.

[44] H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, and Al2O3,” J. Opt. Soc. Amer., vol. 65, no. 6, pp. 742–744, Jun. 1975.

[45] A. D. Rakic, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, no. 22, pp. 5271–5283, Aug. 1998.

[46] X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometric sizes,” Opt. Lett., vol. 33, no. 23, pp. 2874–2876, Dec. 2008.

[47] B. Pelini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys., vol. 98, no. 4, Aug. 2005, Art. no. 043109.

[48] Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 62, no. 5, pp. 7389–7404, Nov. 2000.

[49] S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett., vol. 80, no. 6, pp. 908–910, Feb. 2002.

[50] Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Exp., vol. 18, no. 8, pp. 8367–8382, Apr. 2010.

[51] Y. Zhao, C. Qian, K. Qiu, J. Tang, Y. Sun, K. Jin, and X. Xu, “Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure,” Sci. Rep., vol. 6, no. 1, Sep. 2016, Art. no. 33645.

[52] R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Thayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett., vol. 105, no. 17, Oct. 2014, Art. no. 171101.

[53] L. I. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett., vol. 5, no. 10, pp. 2034–2038, Aug. 2005.

[54] R. Mends and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett., vol. 26, no. 11, pp. 846–848, Jun. 2001.

[55] R. Mends, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett., vol. 95, no. 17, Oct. 2009, Art. no. 171113.
[56] X. Li, J. Song, and J. X. J. Zhang, “Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub,” Opt. Commun., vol. 361, pp. 130–137, Feb. 2016.

[57] C. Ding, L. Jiang, L. Wu, R. Gao, D. Xu, G. Zhang, and J. Yao, “Dual-band ultrasensitive THz sensing utilizing high-quality Fano and quadrupole resonances in metamaterials,” Opt. Commun., vol. 350, pp. 103–107, Sep. 2015.

[58] K. Shih, P. Pitchappa, L. Jin, C.-H. Chen, R. Singh, and C. Lee, “Nonflu- idic terahertz metasensor for sensing in aqueous environment,” Appl. Phys. Lett., vol. 113, no. 7, Aug. 2018, Art. no. 071105.

[59] M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett., vol. 110, no. 12, Mar. 2017, Art. no. 121108.

[60] S. Karmakar, D. Kumar, R. K. Varshney, and D. R. Chowdhury, “Strong terahertz matter interaction induced ultrasensitive sensing in Fano cavity based stacked metamaterials,” J. Phys. D, Appl. Phys., vol. 53, no. 41, Jul. 2020, Art. no. 415101.

[61] P.-R. Tang, J. Li, L.-H. Du, Q. Liu, Q.-X. Peng, J.-H. Zhao, B. Zhu, Z.-R. Li, and L.-G. Zhu, “Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure,” Opt. Exp., vol. 26, no. 23, pp. 30655–30666, Nov. 2018.

[62] M. Chen, L. Singh, N. Xu, R. Singh, W. Zhang, and L. Xie, “Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials,” Opt. Exp., vol. 25, no. 13, pp. 14089–14097, Jun. 2017.

[63] L. Du, J. Li, Q. Liu, J. Zhao, and L. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Exp., vol. 7, no. 4, pp. 1335–1342, Apr. 2017.

MEIPING LI is currently pursuing the M.S. degree in microelectronics and solid state electronics with Shandong University, Jinan, China. Her current research interests include THz metamaterials, THz sensing, and THz filter.

YANPENG SHI received the B.S. degree in electronic science and technology from Shandong University, Jinan, China, in 2010, and the Ph.D. degree in microelectronics and solid state electronics from the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2015. He is currently working as an Associate Researcher with Shandong University. His current research interests include 2D material devices, THz metamaterials, THz sensing, and EOT.

XIAOYU LIU is currently pursuing the M.S. degree in microelectronics and solid state electronics with Shandong University, Jinan, China. Her current research interests include THz metamaterials and anapole.

JINMEI SONG is currently pursuing the M.S. degree in microelectronics and solid state electronics with Shandong University, Jinan, China. Her current research interests include THz metamaterials and THz EOT.

YIFEI ZHANG received the B.S. and M.S. degrees in electrical engineering from Beijing Institute of Technology, Beijing, China, in 2006 and 2009, respectively, and the Ph.D. degree from the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, USA, in 2016. He is currently an Associate Professor with the School of Microwaves, Shandong University, Jinan, China. His research interests include terahertz, millimeter wave, and microwave antennas and circuits, graphene devices, multilayer high-frequency devices, phased shifters and arrays, monolithic integration of microwave and millimeter-wave integrated circuits (MMICs), electrooptics and RF-optics devices and systems, metamaterials, and their applications.

XIAODONG WANG received the M.S. degree in materials physics from the University of Science and Technology Beijing, Beijing, China, in 2001, and the Ph.D. degree from the Institute of Semiconductors, Chinese Academy of Science, Beijing, in 2005. Since 2005, he has been a Professor of microelectronics and solid electronics with the Institute of Semiconductors, Chinese Academy of Sciences. His current research interests include terahertz, millimeter wave, and microwave antennas and circuits, graphene devices, multilayer high-frequency devices, phased shifters and arrays, monolithic integration of microwave and millimeter-wave integrated circuits (MMICs), electrooptics and RF-optics devices and systems, metamaterials, and their applications.

FUHUA YANG received the B.Sc. degree in physics from Nankai University, Tianjin, China, in 1983, and the M.Sc. and Ph.D. degrees in physics from Paul Sabatier University, Toulouse, France, in 1994 and 1998, respectively. He then joined the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. He worked on the quantum structure device and physics. From 1993 to 1998, he studied the effective mass of GaN, SiC electrons, and GeSi/Si holes with Paul Sabatier University. Since 2001, he has been a Professor of microelectronics and solid electronics with the Institute of Semiconductors, Chinese Academy of Sciences, and was responsible for building the new semiconductor process platform, which is called the Engineering Center for Semiconductor Integrated Technology. His current research interests include nanowire transistors, power devices, and microelectromechanical systems.

* * *