Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation

A. Nava-Bolaños 1, D.E. Vrech 2, A.V. Peretti 3 & A. Córdoba-Aguilar 4

1 Instituto de Diversidad y Ecología Animal, CONICET - Universidad Nacional de Córdoba, Vélez Sarsfield 299 (5000), Córdoba, Argentina.
2 Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510 Ciudad de México, México.
3 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, México, D.F. 04510, México.

Abstract: In terms of conservation, Argentinian odonates have not been assessed using a quantitative approach. One way to achieve this is by modelling their distribution to gather the extent of occurrence. Thus, we modelled the current and future (projected year, 2050) potential distribution of 44 odonate species that occur in Argentina as well as in neighboring countries. Our models of current times indicate a fairly wide distribution for most species but one exception is relevant for conservation purposes: Lestes dichrostigma has less than 30,000 km² and falls in the ‘Near Threatened’ category according to the IUCN Red List. Another seven species have less than or close to 100,000 km²: Elasmosthemis cannacioides, Erythemis credula, E. paraguayensis, Heteragrion angustipenne, H. inca, Lestes forficula, and Mecistogaster linearis. Future distribution estimates suggest that: a) 12 species will lose or gain around 10%, four species will increase their distribution beyond 10% (up to 2,346%), and 28 species will lose more than 10% (up to 99%). Although current protected areas embrace most odonate species in Argentina, it is still premature to conclude whether this situation will remain in the future given the physiological tolerance and dispersal abilities of the study species among other drivers of distribution.

Keywords: Argentina, global change, IUCN, Odonata, potential distribution, status.

Resumen: En términos de conservación, los odonatos argentinos no han sido evaluados usando un enfoque cuantitativo. Una manera de hacer esto es modelando su distribución para obtener la extensión de la ocurrencia. En este trabajo modelamos la distribución actual y futura (año proyectado, 2050) de 44 especies de odonatos que se distribuyen en Argentina y países vecinos. Nuestros modelos indican una distribución amplia para la mayoría de especies aunque existe una excepción para propósitos de conservación: Lestes dichrostigma con menos de 30,000 km² y que cae en la categoría de “cercana a la amenaza” según la lista roja de la UICN. Otras siete especies tienen menos o cerca de 100,000 km²: Elasmosthemis cannacioides, Erythemis credula, E. paraguayensis, Heteragrion angustipenne, H. inca, Lestes forficula y Mecistogaster linearis. Las estimas futuras sugieren que: a) 12 especies perderán o ganarán alrededor de 10% de área, cuatro especies incrementarán su distribución por más de 10% (hasta 2,346 %), y 28 especies perderán más del 10% (hasta 99%). Aunque las áreas naturales protegidas abarcan la mayoría de especies en Argentina, es aún prematuro concluir que esta situación prevalecerá en el futuro dada la tolerancia fisiológica y capacidad de dispersión de las especies incluidas en este estudio así como otros efectores de su distribución.
INTRODUCTION

Given their analytical strength, species distribution models have been widely used to assess the potential area where a species occurs as predicted by environmental variables (Peterson 2006). Odonates have not been an exception to this practice with at least 30 different studies in distinct world regions (reviewed by Collins & McIntyre 2015). Such interest is partly understood on the basis of the intrinsic threat that humankind has posed to freshwater bodies (e.g. Sala et al. 2000) related to the direct dependence of odonates on these bodies. Furthermore, a more recent analysis indicated that odonates can be used as the indicators of global change given their practicality as study models (i.e. large body size), well-described macro-ecological responses, key role as predators in aquatic and terrestrial habitats and their trend of becoming field-animal models for temperature-mediated responses (Hassall 2015). Paradoxically, our current knowledge of the extinction risk for most odonates is extremely limited. For example, the IUCN (2018) shows a shortage of species with strong geographical biases, with country-based assessments frequently lacking firm quantitative-supporting data (see for example, Paulson 2004). One case is that of Argentina: 86 species are listed of which one is ‘Endangered’, one is ‘Vulnerable’, two are ‘Near Threatened’, four are ‘Data Deficient’, and 78 are ‘Least Concern’ (IUCN 2018). This implies that a proper assessment is badly needed for this country.

Distribution models of odonates have provided clues of how current distribution will be affected by increases in temperature (reviewed by Collins & McIntyre 2015). These studies have covered up to 25% of the total world odonate diversity, and have shown that in general there will be shifts in distribution, with lotic species and narrow-distribution species (e.g., endemic) showing a tendency to have their areas reduced (reviewed by Collins & McIntyre 2015). In this paper, we have carried out an exercise of calculating current and future distribution models for Argentinian odonates to supplement current studies of distribution gathered from provincial records (e.g. Muzón et al. 2014, 2015; von Ellenrieder & Muzón 1999, 2008; von Ellenrieder 2009, 2010). Our analysis is based on a fraction of the 271 species currently known to occur in Argentina (Muzón & von Ellenrieder 1999; von Ellenrieder & Muzón 2008). Our aim is to use our assessment to guide the current IUCN risk categories for Argentinian odonates based on criteria A and B, that define extent of occurrence.

MATERIAL AND METHODS

Occurrence data of species

Presence of odonate species was compiled from literature records, GBIF records (www.gbif.org as of 20 December 2017; GBIF Occurrence Download http://doi.org/10.15468/dl.mf6nh7), and odonate specialists (Rosser Garrison, Natalia von Ellenrieder, and Dennis Paulson). All data were checked carefully for geographic accuracy by removing duplicates and records with inconsistent georeferencing, for example coordinates on the sea, or missing as recommended in the literature of data cleaning (Chapman 2005). Most records were gathered by odonate experts, so we are confident that identification bias should be minimal. Niche models were built only when more than 10 records per species were available. Thus, the final data set included 1,734 unique presences of 44 species (see Table 1) which were those species with enough collecting data (range 11–158, see Table 1). The database of records is available upon request.

Study area, background and environmental predictors

We have modeled the potential distribution of Argentinian species including cases outside the country’s boundaries. Our study area included land between latitudes -55.08 and -21.55S, and longitudes -75.30 to -53.13W. As bioclimatic variables, we used the WorldClim 1.4 (www.worldclim.org) data set (Hijmans et al. 2005) at 0.041666669 cell size. To establish a background and a set of uncorrelated climatic variables, we intersected the variables with target group points, and with 10,000 points randomly selected in the extension of the study area (M). We eliminated some variables with an exploratory data analysis and Pearson correlation analysis (values >0.7). Thus, we selected variables with low correlation and high contribution to reduce the parametrization of the models. After this, the final data set included uncorrelated variables which had more biological importance for our study species, and contributed the most according to the jackknife analysis. Variables were: mean diurnal range (bio 02), isothermality (bio 03), temperature seasonality (bio 04), mean temperature of driest quarter (bio 09), mean temperature of warmest quarter (bio 10), precipitation of wettest month (bio 13), precipitation seasonality (bio 15), precipitation of driest quarter (bio 17), precipitation of warmest quarter (bio 18), and precipitation of the coldest quarter (bio 19).

papers/0001/2006/0001.pdf?Expires=1701755486&OSSAccessKeyId=3ib7yvL24g9BhJosq393F6JS&Signature=m8j7s0OHk9%4v4A56ld4F6Gc0KrZc4
Table 1. Argentinian odonates species modeled, number of records, potential distribution of species in km2, TSS values and current and proposed IUCN categories.

Species	Records	Current area (km2)	TSS	Current IUCN status	Suggested IUCN status
Acanthagrion aepiolum Tennessen, 2004	23	206259	0.90	N/A	LC
A. cuyabae Calvert, 1909	55	1136583	0.86	LC	LC
A. floridense Fraser, 1946	47	166257	0.89	N/A	LC
A. gracile (Rambur, 1842)	43	865415	0.85	N/A	LC
A. hidegarda Gloger, 1967	27	112352	0.90	N/A	LC
A. lancea Selys, 1876	48	645339	0.87	N/A	LC
Elasmosthemis cannaeoides (Calvert, 1906)	12	79208	0.83	N/A	LC
Erythemis attala (Selys in Sagra, 1857)	70	368120	0.89	LC	LC
E. credua (Hagen, 1861)	16	67990	0.86	N/A	LC
E. persuviana (Rambur, 1842)	72	1056558	0.86	LC	LC
E. piebojo (Burmeister, 1839)	94	152367	0.84	LC	LC
E. vesiculata (Fabricius, 1775)	132	2228200	0.81	LC	LC
Erythrodiplax fusca (Rambur, 1842)	22	173798	0.90	LC	LC
E. paraguayensis (Forster, 1905)	11	40995	0.80	LC	LC
E. umbrata (Linnaeus, 1758)	59	184811	0.90	LC	LC
Heteragrion angustipenne Selys, 1886	14	74209	0.84	N/A	LC
H. inca Calvert, 1909	13	102730	0.82	N/A	LC
Ischnura capreolus (Hagen, 1861)	139	734839	0.88	N/A	LC
J. fluvialis Selys, 1876	158	1714797	0.83	LC	LC
I. ultima Ris, 1908	34	11808573	0.90	N/A	LC
Lestes dichrostigma Calvert, 1909	11	28823	0.80	LC	NT
L. forficula Rambur, 1842	14	72423	0.83	N/A	LC
L. spatula Fraser, 1946	30	504657	0.88	N/A	LC
L. undulatus Say, 1840	34	195329	0.89	LC	LC
Mecistogaster linearis (Fabricius, 1777)	13	71030	0.82	N/A	LC
Miathyria margarita (Selys in Sagra, 1857)	44	4166276	0.87	LC	LC
Microdiplax hesperis Ris, 1911	19	7900041	0.87	N/A	LC
M. hydropidyma Calvert, 1906	33	653996	0.88	N/A	LC
M. longifasciata Calvert, 1909	48	416857	0.89	LC	LC
M. tibialis Kirby, 1897	11	184013	0.80	LC	LC
Orthemis ferruginea (Fabricius, 1775)	13	1401215	0.79	LC	LC
Pantala flavescens (Fabricius, 1798)	17	387339	0.85	LC	LC
Perithemis mooma Kirby, 1889	15	829042	0.83	N/A	LC
Rhionaeschna absoluta (Calvert, 1952)	133	934413	0.86	N/A	LC
R. bonariensis (Rambur, 1842)	158	1417407	0.84	N/A	LC
R. confusa (Rambur, 1842)	52	261179	0.88	N/A	LC
R. diffinis (Rambur, 1842)	40	226574	0.89	LC	LC
R. pallipes (Fraser, 1947)	26	142412	0.89	N/A	LC
R. planaltica (Calvert, 1952)	51	163524	0.89	LC	LC
R. vaniegata (Fabricius, 1775)	41	365158	0.88	N/A	LC
R. vigipunctata (Ris, 1918)	47	155497	0.90	N/A	LC
Tramea darwini Kirby, 1889	16	321819	0.85	LC	LC
Uracis fastigata (Burmeister, 1839)	17	760515	0.85	N/A	LC
U. imbuta (Burmeister, 1839)	22	830556	0.84	N/A	LC
Background selection

To choose the best background, preliminary species distribution models were generated with Maxent 3.3.3k (Phillips et al. 2006) with target group points (with 10,000 points randomly selected in the extension of the study area, M), and with a special extent delineating M for each particular species with ecoregions (World Wildlife Fund; www.worldwildlife.org/ date accessed 20 January 2018). Models were constructed by setting several parameters to default (‘Auto features’, convergence= 10-5, maximum number of iterations= 500). However, we used random seed (with a 30 test percentage), 10 replicates, removed duplicate records, ran bootstrap replicated type, with no extrapolation and no clamping. All this to find which combination of settings and variables generated the best outcomes (highest area under the curve, or AUC) while minimizing the number of model parameters, as well as producing ‘closed’, bell-shaped response curves guaranteeing model calibration (Elith et al. 2010). The best background by the preliminary analyses was 10,000 points randomly selected in the extension of the study area.

Training ecological niche models

Final models were built with BIOMOD (Biodiversity Modelling) package in R software. This package is a platform for predicting species’ distribution, including the ability to model the distribution using various techniques and test patterns (Thuiller et al. 2009). We trained models using four widely used algorithms: maximum entropy (Maxent), random forest (RF), generalized boosting methods (GBM), and multivariate adaptive regression splines (MARS). These models have shown good performance in terms of predictive power (Broennimann et al. 2012; Pliscoff & Fuentes-Castillo 2011; Reiss et al. 2011). From individual models obtained with these different algorithms, we generated a ‘consensus model’. Such model combination is the best logistic compromise to avoid either overfitting and overpredicting (Merow et al. 2014). In other words, this reduces biases and limitations of using only individual models. Seventy percent of data was used for training, and 30% for validation with 10 replicates. Final model validation was performed with TSS (True Skill Statistics), average net rate of successful prediction for sites of presence and absence (Liu et al. 2009), ranging from -1 to 1, where the more positive values indicate a higher degree of accuracy and discrimination model (Allouche et al. 2006) (Table 1). Notice that the result of these models is not the area that species occupy absolutely, because they do not consider population dynamics, dispersibility, interactions with other species, and human impacts. However, these models predict where species can be potentially found given their environmental conditions. This assumes that the distribution known of each species provides enough information to characterize its environmental requirements.

A total of 224 models were generated, whose performance was assessed by means of the AUC and TSS statistics (Table 1), while minimizing the number of model parameters, and the best presence/absence models using the ‘10 percentile-training presence’ are shown. This threshold was used because we prefer to err in the side of caution accepting that a 10% of our presences could be problematic (for a similar rationale, see Sánchez-Guillén et al. 2013). The best models of current climatic conditions of species were used to generate projections.

Future projections

The best models of current climatic conditions of species were used to generate projections for the 2050 year assuming climatic change scenarios. The data for future projections were: Global Climate Models (GCM) (CNRM-CM5, HadGEM2-ES, and MPI-ESM-LR) in WorldClim (http://worldclim.org/CMIP5v1; date accessed 12 December 2017), these climate projections were gathered from the Fifth Assessment (CMIP5) (http://cmip-pcmdi.llnl.gov/cmip5/ date accessed 19/7/2017) report of The Intergovernmental Panel on Climate Change (IPPC) (http://www.ipcc.ch/). The representative concentration pathways used (RCP) were 4.5 and 8.5, for year 2050. A RCP 8.5 is considered a pessimistic scenario, where CO₂ emissions would continue to rise while a RCP 4.5 is considered a more optimistic situation.

We estimated areas of potential distribution of odonate species occurring within Argentinian borders in km², and calculated the percentage of loss or gain of geographic areas with respect to current potential distribution. 2050 distribution was represented by a consensus model where only pixels-predicted-present by all models were considered as representing the presence of the species. We estimated areas with a function with stringr and raster packages in R (R Core Team 2017).
Argentinian odonates: distribution and discussion
Na va-Bolaños et al.

RESULTS

Table 1 shows the potential current distribution (in km²) for each species, and the summary of the performance of the best models (with TSS). This table also shows the current IUCN Red List categories (as of 28 January 2018) and the new categories we suggest based on our analysis of distribution area. From these data, only *Lestes dichrostigma* Calvert, 1909 appears as ‘Near Threatened’ as its estimated distribution area is 28,823 km² (Figure 1). This as well as other seven species deserve some attention given that their distribution is less than or close to 100,000 km² (Figure 1): *Elasmothemis cannacrioides* (Calvert, 1906), *Erythemis credula* (Hagen, 1861), *Erythrodiplax paraguayensis* (Förster, 1905), *Heteragrion angustipenne* Selys, 1886, *H. inca* Calvert, 1909, *Lestes forficula* Rambur, 1842, and *Mecistogaster linearis* (Fabricius, 1777). Distributions of all species are included in supplementary material Figure 1.

In regard to climate change projections for the year 2050 the RCP 8.5 estimated the following: 12 species would maintain their distribution with loss or gain of only around 10% of change of their current distribution, four species would increase their distribution beyond 10%, and 28 species would lose their area of their distribution for more than 10% (Table 2). These changes, in general, were fairly consistent with the scenario RCP 4.5 with more than 20,000 km². These coincidences for both scenarios include, for example, *Erythrodiplax paraguayensis* (Förster, 1905), *Heteragrion angustipenne* Selys, 1886, *H. inca* Calvert, 1909, *Lestes forficula* Rambur, 1842 and *Mecistogaster linearis* (Fabricius, 1777). These five species may reduce their area to less than 20,000 km².

In some cases. According to this, some other species not in danger currently would face threat according to these future scenarios: *Acanthagrion hidegarda* Gloger, 1967, *Heteragrion angustipenne* Selys, 1886, *Lestes dichrostigma* Calvert, 1909, *Mecistogaster linearis* (Fabricius, 1777), and *Rhioneschna viginpunctata* (Ris, 1918). These five species may reduce their area to less than 20,000 km².

Essential to our present estimates of area is the fact that 70% of Argentinian species are currently present in protected areas (Muzón & von Ellenrieder 1999). However, given that global change will lead to shifts in current distribution (Sánchez-Guillén et al. 2016), a necessary step is to define whether current Argentinian protected areas will still embrace future odonate geographical distributions. A key issue here is to carry out more intensive collections to construct models for the remaining 227 odonate species that occur within Argentinian boundaries (von Ellenrieder & Muzón 2008). Moreover, research should pay attention to answer whether dispersal abilities can allow odonates catch up with different habitats located at different temperature regimes (Bush et al. 2014).

DISCUSSION

One benefit species distribution models can bring about is the conservation aspects. In this extent, our results suggest that although most Argentinian species have relatively large distributions, a few species deserve some attention. According to the current IUCN Red List (IUCN 2018), the following species face some risk: *Andinagrion garrisoni* von Ellenrieder & Muzón, 2006 and *Progomphus kimminsi* Belle, 1973 (Near Threatened), *Phyllogomphoides joaquini* Rodrigues Capitulo, 1992 (Vulnerable) and *Staurophlebia bosqi* Navás, 1927 (Endangered). The remaining 82 are categorized as Data Deficient (4 species) or Least Concern (78 species). The threatened four species were classified as such given the paucity of collecting records and their restricted areas of distribution. We were not able to locate enough collecting points for any of these four species. However, our work suggests that *Lestes dichrostigma* Calvert, 1909 deserves some attention, as its area is above but close to 20,000 km². Although the remaining 43 species can be categorized as least concern, another five have less than 100,000 km² so we suggest their populations should be also monitored: *Elasmothemis cannacrioides* (Calvert, 1906), *Erythemis credula* (Hagen, 1861), *Erythrodiplax paraguayensis* (Förster, 1905), *Heteragrion angustipenne* Selys, 1886, *H. inca* Calvert, 1909, *L. forficula* Rambur, 1842, and *Mecistogaster linearis* (Fabricius, 1777). Of course, several other population parameters should be gathered to complement IUCN categorization for all species, for example to detect the population reduction or less of variability. Notice that future projections would not help most species we modelled as 28–30 species would reduce their distribution dramatically in some cases. According to this, some other species not in danger currently would face threat according to these future scenarios: *Acanthagrion hidegarda* Gloger, 1967, *Heteragrion angustipenne* Selys, 1886, *Lestes dichrostigma* Calvert, 1909, *Mecistogaster linearis* (Fabricius, 1777), and *Rhioneschna viginpunctata* (Ris, 1918). These five species may reduce their area to less than 20,000 km².

Related to global change scenarios, it is not surprising to find an inter-specific variation in projected responses to raising temperatures in odonates. Our explanations for this are incomplete yet but may have to do with odonate physiological abilities that affect thermoregulatory responses (e.g., Corbet & May 2008) and development (especially at egg and larval stages; Pritchard & Leggot 1987). Given this, it is also not surprising that the largest
Figure 1. Potential distribution of a subset of Argentinian odonate species as predicted by ecological niche models: *Elasmothemis cannacrioides*, *Erythemis credula*, *Heteragrion angustipenne*, *E. paraguayensis*, *Lestes dichrostigma*, *L. forficula*, and *Mecistogaster linearis*.
Table 2. Absolute (in km2) and relative changes in suitable area per Argentinian odonate species according to different climatic changes scenarios. Losses are shown as negative values while gains are shown as positive values.

Species	2050 (km2)	RCP4.5	2050 (km2)	RCP8.5	2050 (%) RCP4.5	2050 (%) RCP8.5
Acanthagrion aepiolum	95025	77268	-53.93	-62.54		
A. cuyabae	108525	1128738	-4.52	-0.69		
A. floridense	124121	148521	-25.34	-10.67		
A. gracile	511056	459049	-40.95	-46.96		
A. hidegarda	740	7418	-93.39	-93.40		
A. lancea Selys, 1876	334559	328591	-48.16	-49.08		
Elasmotheremis cannaeoides (Calvert, 1906)	26652	20123	-66.35	-74.59		
Erythemis attala (Selys in Sagra, 1857)	1040509	1672709	182.65	354.39		
E. credula (Hagen, 1861)	3475076	3578859	88.73	134.89		
E. vesculosa (Fabricius, 1775)	6394736	8249237	200.39	270.22		
Erythrodiplax fusca (Calvert, 1906)	26652	20123	-66.35	-74.59		
E. peruviana (Rambur, 1842)	104121	181602	53.14	167.10		
E. plebeja (Burmeister, 1839)	709	709	-93.39	-93.40		
E. paraguayensis (Förster, 1905)	29488	30549	-28.07	-25.48		
E. umbrata (Linnaeus, 1758)	1107621	1462042	499.33	691.10		
E. angustipenne Selys, 1886	2709	566	-94.81	-94.95		
E. forficula Rambur, 1842	61821	78055	-14.64	7.78		
E. spatula Fraser, 1946	297025	323398	-41.14	-35.92		
E. undulatus Say, 1840	177025	181143	-9.37	-7.26		
Micrathyria hesperis Ris, 1891	5544382	6676849	228.90	276.42		
I. peruviana (Selys in Sagra, 1857)	1040509	1672709	182.65	354.39		
I. ultima Ris, 1908	1438693	1637097	499.33	691.10		
L. dichrostigma Calvert, 1909	1497	1496	-94.81	-94.95		
L. forficula Rambur, 1842	61821	78055	-14.64	7.78		
L. spatula Fraser, 1946	297025	323398	-41.14	-35.92		
L. undulatus Say, 1840	177025	181143	-9.37	-7.26		
Mecistogaster linearis (Fabricius, 1777)	5896	2538	-91.70	-96.43		
Miathyria marcella (Selys in Sagra, 1857)	8903701	9675724	640.89	808.61		
Microhagron sapho Ris, 1911	1325471	1539839	1687.21	2345.89		
M. hypodidyma Calvert, 1906	360230	360273	-44.92	-44.91		
M. longifasciata Calvert, 1909	301298	304006	-27.72	-27.07		
M. tibialis Kirby, 1897	3288689	4500751	1687.21	2345.89		
Orthemis ferruginea (Fabricius, 1775)	856545	573823	-38.87	-59.05		
Pantala flavescens (Fabricius, 1798)	345606	358468	-10.77	-7.45		
Parathemis mooma Kirby, 1889	586843	671876	-29.21	-18.96		
Rhinaeascha abscondita (Calvert, 1952)	775879	740279	-16.97	-20.78		
R. bonariesis (Rambur, 1842)	713468	711143	-49.66	-49.83		
R. confusa (Rambur, 1842)	211253	216912	-19.12	-16.95		
R. affinis (Rambur, 1842)	262980	259209	-16.07	14.40		
R. pallipes (Fraser, 1947)	70805	75227	-50.28	-47.18		
R. planalitica (Calvert, 1952)	45782	44497	-72.00	-72.79		
R. vanegata (Fabricius, 1775)	295227	300756	-19.15	-17.64		
R. vigintipunctata Ris, 1918	89497	89484	-42.44	-42.45		
Tramea darwini Kirby, 1889	343101	337055	6.61	4.73		
U. fastigiata (Burmeister, 1839)	223876	175053	-70.56	-76.98		
U. imbuta (Burmeister, 1839)	416894	126006	-49.81	-84.83		
species turnover will occur at intermediate altitudes where drastic changes in temperature currently occur (Maes et al. 2010). The case of Argentina is actually very relevant to this altitude phenomenon given its sharp changes in elevation. Thus, special attention should be given to these areas. Given the small number of records for most species, we are far from ensuring a well-known distribution for a large number of Argentine species, where field work, as well as the digitization of records, is advisable to document regions that are poorly explored. One tool to help in this regard is the use of repositories of citizen science photographs.

Apart from North America (Canada and USA; Hassall 2012; Rangel-Sanchez et al. 2018) and Brazil (Nóbrega & De Marco 2011), our study adds a substantially high number of odonate species with projected distributions for America. Considering that there exist around 5,680 described odonate species, of which 25% had been modelled (Collins & McIntyre 2015), our study makes a valuable global contribution for the Southern Hemisphere. This importance can be seen not only in terms of conservation as discussed above, but also in terms of biogeography given the southerly location of our study species (currently, the southern extreme was Brazil with mainly tropical species; De Marco et al. 2015; Nóbrega & De Marco 2011). Thus our results can be used to understand biogeographical patterns based on odonate ecology (e.g., preference for lentic and lotic waters and global distribution; Hof et al. 2006).

REFERENCES

Alouche, O., A. Tsoar, & R. Kadmon (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology* 43(6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M-J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham & A. Guisan (2012). Measuring ecological niche overlap from occurrence and spatial environmental data, *Global Ecology and Biogeography* 21(4): 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Bush, A.A., D.A. Nipperess, D.A. Nipperess, D.E. Duursma, G. Theischinger, E. Turak & L. Hughes (2014). Continental-scale assessment of risk to the Australian Odonata from climate change. *PloS ONE* 9(2). https://doi.org/10.1371/journal.pone.0088958

Chapman, A.D. (2005). *Principles and Methods of Data Cleaning*. GBIF, Copenhagen, 75pp.

Collins, S.D. & N.E. McIntyre (2015). Modeling the distribution of odonates: A review. *Freshwater Science* 34(3): 1124–1158. https://doi.org/10.1086/682688

Corbet, P.S. & M.L. May (2008). Fliers and perchers among Odonata: Dichotomy or multidimensional continuum? A provisional reappraisal. *International Journal of Odonatology* 11(2): 155–171. https://doi.org/10.1080/13887890.2008.9748320

De Marco Júnior, P., C.C. Nóbrega, R.A. De Souza, & U.G. Neiss (2015). Modeling the distribution of a rare Amazonian odonate in relation to future deforestation. *Freshwater Science* 34(3): 1123–1132. https://doi.org/10.1086/682707

Elith, J., K. Michael & P. Steven (2010). The art of modelling range-shifting species. *Methods in Ecology and Evolution* 1(4): 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

Hassall, C. (2012). Predicting the distributions of under-recorded Odonata using species distribution models. *Insect Conservation and Diversity* 5(3): 192–201. https://doi.org/10.1111/j.1752-4598.2011.00150.x

Hassall, C. (2015). Odonata as candidate macroecological barometers for global climate change. *Freshwater Science* 34(3): 1040–1049. https://doi.org/10.1086/682210

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 25(15): 1965–1978. https://doi.org/10.1002/joc.1276

Hof, C., M. Brändle & R. Brandl (2006). Lentic odonates have larger and more northern ranges than lotic species. *Journal of Biogeography* 33(1): 63–70. https://doi.org/10.1111/j.1365-2699.2005.01358.x

IUCN (2018). The IUCN Red List of Threatened Species. www.theredlist.org accessed 25 August 2016.

Liu, C., M. White, & G. Newell (2009). Measuring the accuracy of species distribution models: A review. *18th World IMACS Congress and MODSIM 2009 - International Congress on Modelling and Simulation: Interacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings* (January 2009): 4241–4247.

Maes, D., N. Titeu, J. Hortal, A. Anselin, K. Declere, G. de Knijf, ... M. Luoto (2010). Predicted insect diversity declines under climate change in an already impoverished region. *Journal of Biogeography* 14(5): 485–498. https://doi.org/10.1111/j.1365-2699.2010.02377.x

Merow, C., M.J. Smith, T.C. Edwards, A. Guisan, S.M. Mclunahan, S. Normand, W. Thuiller, R.O. Wüest, N.E. Zimmermann & Elih (2014). What do we gain from simplicity versus complexity in species distribution models? *Ecography* 37(12): 1267–1281. https://doi.org/10.1111/ecog.00845

Muzón, J., F. Lozano, A. del Palacio, L.S. Ramos, & A. Lutz (2015). Odonata from the Lower Delta of the Paraná River, Argentina. *Agrion* 20(2): 68–72.

Muzón, J., P. Pessoa & F. Lozano (2014). The Odonata (Insecta) of Patagonia: A synopsis of their current status with illustrated keys for their identification. *Zootaxa* 3784(4): 346–388. https://doi.org/10.11646/zootaxa.3784.4.2

Normand, W. Thuiller, R.O. Wüest, N.E. Zimmermann & Elih (2014). What do we gain from simplicity versus complexity in species distribution models? *Ecography* 37(12): 1267–1281. https://doi.org/10.1111/ecog.00845

Phillips, S., R. Anderson & R. Schapire (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling* 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, P.C., T. Fuentes-Castillo (2011). Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. *Revista de Geografía Norte Grande* 48: 61–79. https://doi.org/10.4067/S0718-34072011000100005

Pritchard, G., M.A. Leggott, G. Pritchard & M.A. Leggott (1987). Temperature, Incubation Rates and Origins of Dragonflies. *Odonata as candidate macroecological barometers*.
Argentinian odonates: distribution and discussion

Na va-Bolaños et al.

19456

R Core Team (2017). R: A language and environment for statistical computing. In: R Found Stat Comput Vienna, Austria.

Rangel-Sánchez, L., A. Nava-Bolaños, F. Palacino-Rodríguez & A. Córdoba-Aguilar (2018). Estimating distribution area in six Argia damselflies (Insecta: Odonata: Coenagrionidae) including A. garrisoni, a threatened species. Revista Mexicana de Biodiversidad 89(3): 921–926. http://dx.doi.org/10.22201/ib.20078706e.2018.3.2469

Reiss, H., H. Kunze, K. König, K. Neumann & I. Kröncke (2011). Species distribution modelling of marine benthos: A North Sea case study. Marine Ecology Progress Series 442: 71–86. https://doi.org/10.3354/meps09391

Sala, O.E., F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker & D.H. Wall (2000). Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774. https://doi.org/10.1126/science.287.5459.1770

Sánchez-Guillén, R.A., A. Córdoba-Aguilar, B. Hansson, J. Ott & M. Wellenreuther (2016). Evolutionary consequences of climate-induced range shifts in insects. Biological Reviews 91(4): 1050–1064. https://doi.org/10.1111/brv.12204

Sánchez-Guillén, R.A., J. Muñoz, G. Rodríguez-Topia, T.P.F. Arroyo & A. Córdoba-Aguilar (2013). Climate-induced range shifts and possible hybridisation consequences in insects. PloS ONE 8(11): 1–10. https://doi.org/10.1371/journal.pone.0080531

Thuiller, W., B. Lafourcade, R. Engler, & M.B. Araújo (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography 32(3): 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

Von Ellenrieder, N. (2009). Odonata of the Argentine Yungas cloud forest: Distribution patterns and conservation status. Odonatologica 38(1): 39–53.

Von Ellenrieder, N. (2010). Odonata biodiversity of the argentine chaco biome. International Journal of Odonatology 13(1): 1–25. https://doi.org/10.1080/13887890.2010.9748357

Von Ellenrieder, N. & J. Muzón (2008). An updated checklist of the Odonata from Argentina. Odonatologica 37(1): 55–68.

Von Ellenrieder, N. & J. Muzón (1999). The Argentinean species of the genus Perithemis Hagen (Anisoptera: Libellulidae). Odonatologica 28(4): 385–398.

Author details: A. NAVA-BOLAÑOS is a postdoctoral researcher at the Museum of Zoology (Universidad Nacional Autónoma de México) conducting global biodiversity analysis of pollinator species. Her research topics include hybridization, climate change, reproductive isolation barriers, species distribution, ecological niche models and insect conservation. D.E. VRECH is a researcher at the Instituto de Diversidad y Ecología Animal (Universidad Nacional de Córdoba, Argentina). His main research topics are behavioral ecology of arthropods, sperm biology, evolutionary biology, and reproductive behavior. A.V. PENEITI is a researcher at the Instituto de Diversidad y Ecología Animal (Universidad Nacional de Córdoba, Argentina). His research lines include the study of the reproductive biology of arthropods, and topics associated with ecology, functional morphology, physiology and genetics. He has worked with scorpions, spiders, and insects, mainly odonates. A. Córdoba-Aguilar is a researcher at the Instituto de Ecología (Universidad Nacional Autónoma de México). His research topics are insect vector control and insect conservation.

Author contributions: ANB, DV, AVP; and ACA planned the paper, ANB and DV executed all analyses and all authors wrote and revised the paper. ANB and DV contributed equally to the paper.

Acknowledgements: To PAPIIT-UNAM grants IN 203115 and IN206618 to ACA. To a CONACyT-CONICET grant 190552 to ACA and AVP. To Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México (SECTEI) for the support to ANB.
Supplementary material figure. Current potential distribution of Argentinian odonate species as predicted by ecological niche models. Predictions of suitable area appear in black.
Argentinian odonates: distribution and discussion

Erythemis credula

Erythemis plebeja

Erythemis peruviana

Erythemis vesiculosa
Argentinian odonates: distribution and discussion

Na va-Bolaños et al.

Erythrodiplax umbrata

Erythrodiplax fusca

Ischnura capreolus

Ischnura fluviatilis
Argentinian odonates: distribution and discussion

Rhionaeschna absoluta

Rhionaeschna bonariesis

Rhionaeschna pallipes

Rhionaeschna planaltica
Argentinian odonates: distribution and discussion

Rhionaeschna variegata
Rhionaeschna viginpunctata
Tramea darwini
Uracis fastigiate
Articles

Understanding human-flying fox interactions in the Agusan Marsh Wildlife Sanctuary as basis for conservation policy interventions
– Sherryl L. Paz & Juan Carlos T. Gonzalez, Pp. 19431–19447

Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation
– A. Nava-Bolaños, D.E. Vrech, A.V. Peretti & A. Córdoba-Aguilar, Pp. 19448–19465

Communications

The diel activity pattern of small carnivores of Western Ghats, India: a case study at Nelliampathies in Kerala, India
– Devika Sanghamithra & P.O. Nameer, Pp. 19466–19474

Distribution and threats to Smooth-Coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae) in Shuklaphanta National Park, Nepal
– Gopi Krishna Joshi, Rajeev Joshi & Bishow Poudel, Pp. 19475–19483

Wildlife hunting practices of the Santal and Oraon communities in Rajshahi, Bangladesh
– Azizul Islam Barkat, Fahmida Tasnim Liza, Sumaiya Akter, Ashikur Rahman Shome & M. Fazle Rabbe, Pp. 19484–19491

Ethnozoological use of primates in northeastern India
– Deborah Daolagupu, Nazimur Rahman Talukdar & Parthankar Choudhury, Pp. 19492–19499

Factors influencing the flush response and flight initiation distance of three owl species in the Andaman Islands
– Sharmmmavu Sureshmarimuthu, Santhanakrishnan Babu, Honnavalli Nagaraj Kumara & Nagaraj Rajeshkumar, Pp. 19500–19508

Birds of Barandabhar Corridor Forest, Chitwan, Nepal
– Saneer Lamichhane, Babu Ram Lamichhane, Kapil Pokhare, Pramod Raj Regmi, Tulasi Prasad Dahal, Santosh Bhattarai, Chiranjibi Prasad Pokheral, Pabitra Gotame, Trishna Rayamajhi, Ram Chandra Kandel & Aashish Gurung, Pp. 19509–19526

On some additions to the amphibians of Gunung Inas Forest Reserve, Kedah, Peninsular Malaysia
– Shahriza Shahrudin, Pp. 19527–19539

Reviews

A review of research on the distribution, ecology, behaviour, and conservation of the Slender Loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mewa Singh, Mridula Singh, Honnavalli N. Kumara, Shanthala Kumar, Smitha D. Gnanasigal & Ramamoorthy Sasi, Pp. 19540–19552

Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats
– Abdulla Al-Asif, Hadi Hamli, Abu Hena Mustafa Kamal, Mohd Hanafi Idris, Geofery James Gerusu, Johan Ismail & Muyassar H. Abualreesh, Pp. 19553–19565

Disentangling earthworm taxonomic stumbling blocks using molecular markers
– Azhar Rashid Lone, Samrendra Singh Thakur, Nalini Tiwari, Ulusola B. Sokefun & Shweta Yadav, Pp. 19566–19579

A reference of identification keys to plant-parasitic nematodes (Nematoda: Tylenchida, Tylenchomorpha)
– Reza Ghaderi, Manouchehr Hosseinivand & Ali Eskandari, Pp. 19580–19602

A preliminary assessment of odonate diversity along the river Tirthan, Great Himalayan National Park Conservation Area, India with reference to the impact of climate change
– Amar Paul Singh, Kritish De, Virendra Prasad Uniyal & Sambandam Sathyakumar, Pp. 19611–19615

A checklist of orthopteran fauna (Insecta: Orthoptera) with some new records in the cold arid region of Ladakh, India
– M. Ali, M. Kamil Usmani, Hira Naz, Tajamul Hassan Baba & Mohsin Ali, Pp. 19616–19625

New distribution records of two Begoniaceae to the flora of Bhutan
– Phub Gyeltshen & Sherab Jamtsho, Pp. 19626–19631

Rediscovery of Aponogeton lachnosenis A. Camus (Aponogetonaceae): a long-lost aquatic plant of India
– Debolina Dey, Shrirang Ramchandra Yadav & Nilaaksh Dey, Pp. 19632–19635

Glyphiothrix acuminata (H. Clark) Clayton var. laevis (Poaceae): a new variety from central Western Ghats of Karnataka, India
– H.U. Abhijit & Y.L. Krishnamurthy, Pp. 19636–19639

A cytomorphological investigation of three species of the genus Sonchus L. (Asteraceae) from Punjab, India
– M.C. Sidhu & Rai Singh, Pp. 19640–19644

Dryopteris lunanensis (Dryopteridaceae) - an addition to the pteridophytic diversity of India
– Chhandam Chanda, Christopher Roy Fraser-Jenkins & Vineet Kumar Rawat, Pp. 19645–19648

Notes

First record of Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) with photographic evidence in Meghalaya, India
– Papri Khatonier & Adrian Wansaindiy Lyndgoh, Pp. 19649–19651

First record of the Eastern Cat Snake Boiga gocool (Gray, 1835) (Squamata: Colubridae) from Tripura, India
– Sumit Nath, Biswajit Singh, Chiranjib Deb Nath & Joydeb Majumder, Pp. 19652–19656

First record of the genus Tibetania (Lepidoptera: Eupterotidae: Janinae) from India
– Alka Vaidya & H.S. Sankaraman, Pp. 19657–19659

Austroborus cordillerae (Mollusca: Gastropoda) from central Argentina: a rare, little-known land snail
– Sandra Gordillo, Pp. 19660–19662

Intestinal coccidiosis (Apicomplexa: Eimeriidae) in a Himalayan Griffon Vulture Gyps himalayensis
– Vimalraj Padayatchiar Govindan, Parag Madhukar Dhakate & Ayush Uniyal, Pp. 19663–19664

Two new additions to the orchid flora of Assam, India
– Sanyang Basumatary, Sanjib Baruah & Lal Ji Singh, Pp. 19665–19670

Wildlife art and illustration – combining black and white ink drawings with colour: some experiments in Auroville, India
– M. Eric Ramanujam & Joss Brooks, Pp. 19671–19674

Short Communications

Catalogue of herpetological specimens from Meghalaya, India at the Salim Ali Centre for Ornithology and Natural History
– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P.V. Karunakaran & Honnavalli N. Kumara, Pp. 19603–19610

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2021 | Vol. 13 | No. 11 | Pages: 19431-19674
Date of Publication: 26 September 2021 (Online & Print)
DOI: 10.11609/jott.2021.13.11.19431-19674