Three-Dimensional Printing Technologies for Drug Delivery Applications: Processes, Materials, and Effects

Jessica Mancilla-De-la-Cruz¹, Marisela Rodriguez-Salvador¹*, Jia An², Chee Kai Chua³

¹Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
²Singapore Centre for 3D Printing, Nanyang Technological University, Singapore 639798, Singapore
³Singapore University of Technology and Design - Engineering Product Development, 8 Somapah Road, Singapore 487372, Singapore

Abstract: Since the 1930s, new methods of drug delivery, such as implantable devices with drug release control, have been developed. However, manufacturing techniques require bulk due to high initial production costs. Three-dimensional (3D) printing, also known as additive manufacturing or rapid prototyping, allows the fabrication of personalized drug delivery that uses different materials and complex geometries with multiple release profiles, thereby eradicating high initial costs. Different studies have been developed showing the extensive potential of 3D printing for the pharmaceutical industry, and despite in-depth discussions that have been published, there is no comprehensive review of processes, materials, and effects in drug delivery applications thus far. This review aims to fill this gap by presenting the use of 3D printing technology for drug delivery, exposing the different variations of the technique according to the characteristics, material, and dosage form sought. There are seven main categories of 3D printing according to the standards jointly developed by International Organization for Standardization and American Society for Testing and Materials: material jetting, binder jetting, material extrusion, vat photopolymerization, powder bed fusion, sheet lamination, and directed energy deposition. There are different 3D fabrication processes used for drug delivery applications depending on the dosage form and material applied. In this context, polymers, glasses, and hydrogels represent the most frequent materials used. 3D printing allows different forms of drug dosage. Oral, topical, rectal and vaginal, parental and implantable are discussed in this paper, presenting the identification of the type of 3D printing technology, the active pharmaceutical ingredient, formulation, and pharmaceutical effect. The main aim of this paper is to offer insights to people from academy and industry who are interested in the advancement of drug delivery and in knowing the future directions in the development of 3D printing applications in this area.

Keywords: Three-dimensional printing; Drug delivery; Pharmaceutical applications; Additive manufacturing

© 2022 Author(s). This is an Open-Access article distributed under the terms of the Creative Commons Attribution License, permitting distribution and reproduction in any medium, provided the original work is properly cited.
from compressed powder into male rats, achieving the sustained release of a testosterone API over a 2-week period[6].

Since this discovery, many new methods of drug administration have been formulated varying from implantable devices using permeable membranes to control the release of drug, to injectable microspheres. Despite this, the majority of DDD manufacturing techniques require bulk manufacturing of identical products due to high initial production costs[2]. As a result, traditional DDDs fit a “one-dose-fits-all” paradigm, and as such, between 4% and 25% of the ten top-grossing drugs in the U.S. were rendered unsuccessful in their intended treatment[6], due to variances in the patients’ age, weight, medical history, and environment, among others[6]. In addition, many manufacturing techniques, for example, injection molding which is commonly used to create implantable DDDs, often require the heating of the polymer and API to above the polymer’s melting temperature, risking damages to the drug in the process[4].

The introduction of additively manufacturing pharmaceuticals eradicates the high initial input costs seen in traditional manufacturing techniques, opening the scope for DDDs with drug doses tailored for each individual patient. In addition, the creation of parts with multiple materials and highly complex geometries vastly widens the design scope of each device type to create drug delivery systems with multiple release profiles[2]. While the 3D printed drug Spritam gained U.S. Food and Drug Administration (FDA) approval in 2016, its potential is still largely unchartered[7]. The following sections in this paper detail the potential uses for 3D printing in a range of pharmaceutical applications and its current limitations.

The origins of 3D printing can be split into the two sub-fields of photo sculpture and topography:

1.1. Photo sculpture
In the 1800s, the process of using multiple photographs from differing angles of a 3D object was introduced. These early technologies required the artist to carve the photographed silhouettes of each object or person from each angle to create a completed 3D sculpture[3]. In the 1900s, Carlo Baese patented a simplified technique, implementing light to a photo-sensitive gelatine to create a replica of the original model[8].

1.2. Topography
The concept of combining multiple layers with differing geometries was suggested by Blanther in the 1890s, who layered wax sections on top of one another and smoothed them together to make a 3D structure[8]. Numerous variations of this concept ensued, such as the use of layered cardboard contours and the photo curing of photo-polymer resins onto powder particles[2].

The first technique for 3D printing was developed in 1951 by Otto John Munz, who detailed a method of producing 3D objects through the use of surface maps (topoglyphs) and curing the dimensions each of these maps into incremental layers of a vat of clear, photocurable polymer resin[8]. Since the success of this initial 3D printing technology, now widely known as vat polymerization, many other methods of building up a model in a layer-by-layer approach have been developed[7].

2. 3D printing technologies
According to the standards jointly developed by International Organization for Standardization and American Society for Standards, 3D printing technology, also known in a technical context as additive manufacturing or rapid prototyping, is divided into seven categories: material jetting, binder jetting, material extrusion, vat photopolymerization, powder bed fusion (PBF), sheet lamination, and directed energy deposition[9]. The processes that have been investigated for use in drug delivery applications are shown in Figure 1 and are detailed in this section. Printing techniques, printing characteristics, and applicable materials are discussed with the aim of helping distinguish the applicability of each process to the various DDDs and studies detailed in section 4.

2.1. Inkjet printing
Originating from the initial concept of inkjet printing detailed by Lord Raleigh in 1878, traditional two-dimensional inkjet printing to produce documents and photographs was introduced by Siemens in 1951[7]. The deposition of droplets on top of one another to build a 3D part was later developed in the 1980s. Inkjet printing can be split into two classifications: material jetting and binder jetting[7].

1) Material jetting (MJ)
MJ can be defined as the process in which droplets of build material are selectively deposited onto a substrate[9] and can be split into two main techniques: drop on demand (DoD) and continuous inkjet (CIJ) (Figure 2)[7,10].

DoD technique includes the use of either a vapor bubble or piezoelectric crystal which are subject to an increase in heat or voltage, respectively, to enlarge and force the ink from the nozzle, following which the input force is removed, allowing the nozzle to refill. In contrast, CIJ technique charge droplets upon ejection, following which deflector plates deflect them either onto the substrate or away as waste to be recirculated (Table 1)[7,10].
Binder jetting (BJ) uses the DoD approach as shown in Figure 1A to selectively deposit the liquid bonding agent to join powder materials located upon the print bed beneath. This inkjet printing process allows for the deposition of inks made primarily of solvent binders with low viscosities, with the bulk of the material typically presented in the spherical powder particles situated on the print bed, widening the scope of potential materials. (Table 2)
2.2. Material extrusion

Arguably the most recognized process of 3D printing, extrusion-based technologies can be defined as the process in which material is selectively dispensed through a nozzle or orifice[9]. Extrusion-based printing can be split into three key categories: hot melt extrusion (HME), filament extrusion, and syringe extrusion. In all three techniques, the material undergoes a change in physical state between ejection from the nozzle and solidification upon the substrate either by cooling or solvent evaporation, with printing processes (Figure 3)[10,12].

(1) HME

HME ejects semi-molten material from the nozzle tip; however, it additionally incorporates heated screws, which melt, mix and eject the polymer from the nozzle[10]. This technique is regularly used for gels and pastes containing APIs at room or elevated temperatures, allowing for solid dispersions to be printed[7]. Where filament extrusion requires impregnation of the filament with an API prior to printing, HME offers the addition of the API in the melting stage, whereby it either melts alongside the polymer, dissolves within it, or disperses across the polymer mix[17].
(2) Filament extrusion

Filament extrusion is the technique of using rollers to feed a solid polymer filament through a chamber with heating elements which melt the polymer filament into a semi-molten state, following which it is ejected from the end of a nozzle or orifice. Following ejection, the polymer cools and solidifies on the substrate, allowing further layers to be deposited on top (Table 3)\(^{10,16}\).

(3) Syringe extrusion

Syringe extrusion uses a plunger-type system to push semi-molten materials, such as gels and pastes, through the print nozzle, following which they are dried\(^{10}\). Pressure-assisted microsyringes (PAM) are capable of producing DDDs with a combination of materials of drugs using multi-head extruders (Table 4)\(^{16}\).

2.3. Vat photopolymerization

Vat photopolymerization can be defined as the process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization\(^9\) (Figure 4). It comes in four main forms: stereolithography (SLA), 2-photon polymerization (2PP), digital light processing (DLP), and continuous liquid interface production (CLIP)\(^{10,12,16}\).

![Figure 3. (A) Hot melt extrusion; (B) filament extrusion; (C) syringe extrusion.](image)

Characteristics	Challenges
Method	For complex geometries, it requires printing support structures, which must be removed during post-processing\(^{10}\). The preparation of the filament is tedious because the quality of the final piece depends on this\(^{10,12}\).
Material	Thermoplastic polymers are only used due to the heating step\(^{12,16}\). Filament extrusion process is not suitable for the thermolabile APIs\(^{12,16}\). The rheology of raw materials can produce inconsistent extrusion patterns\(^{10,11}\).
Quality	As mentioned previously, the resolution depends on different factors. For example, Stratasys Company (US) has the Fortus Printer that works with a layer thickness of 178 or 254 μm, which can achieve a resolution of 250 μm\(^{18}\).

Table 3. Characteristics and challenges of filament extrusion

International Journal of Bioprinting (2022)–Volume 8, Issue 4
Three-Dimensional Printing Technologies for Drug Delivery Applications

Table 4. Characteristics and challenges of syringe extrusion

Characteristics	Challenges
Method	The extrusion forces depend on the viscosity of the material.
Material	APIs are required to be uniformly dispersed in the printing material.
Quality	The rheology of raw materials can produce inconsistent extrusion patterns.
	The mechanical strength and durability are low.

Figure 4. Vat photopolymerization.

(1) **Stereolithography**

Stereolithography (SLA) uses a vat of UV-cross linkable polymer resin paired with a UV light source which scans along the X and Y axes of the surface of the resin in a defined geometry. A single layer of resin is cross-linked, and the build plate lowered a specified layer thickness between each curing layer to allow for the next layer to be cured on top. (Table 5)

(2) **2PP**

2PP follows a similar technique. 2PP is a non-linear near infrared (NIR) light process in which two photons are simultaneously absorbed with short laser pulses in a photosensitive material. 2PP, along with DLP and CLIP in sections 2.3.3 and 2.3.4, may allow for the pre-loading of APIs directly into the liquid prepolymer solution, but may suffer from a loss of drug loaded and precision on printing. (Table 6)

(3) **DLP**

DLP projects UV light onto a digital micro-mirror device (DMD) which projects the light waves onto the top or bottom surface of the vat resin. The use of the DMD means that the UV light can cure larger areas of resin per unit time than that seen in traditional SLA, while maintaining its high dimensional accuracy.

(4) **Continuous liquid interface production**

Similarly, to DLP, continuous liquid interface production (CLIP) utilizes a DMD to project digital light into the polymer vat through an O2 window, which inhibits the cross-linking of the layer of resin closest to the window, called the dead-zone, allowing the solidified resin not to adhere to the window.

2.4. **PBF**

PBF is defined as the process in which thermal energy selectively fuses regions of a powder bed. Similarly, to the binder jetting processes detailed in section 2.1.2, once a print layer is completed, the print bed is lowered by a specified layer thickness, another layer of powder deposited and spread through a roller, and the next layer fused to the previous. PBF comes in two main forms: selective laser sintering (SLS) and selective laser melting (SLM).

(1) **Selective laser sintering**

Selective laser sintering (SLS) technique uses a focused layer to selectively scan polymer powder material slightly below its melting temperature, while selective laser melting (SLM) uses a laser, which fully melts the powder, fusing it to the layer below. As SLS is mainly used for polymers, it has a wide range of applications for DDDs purposes; conversely, since SLM is mainly used for metals, it is not applied for DDDs. These similar techniques have comparable properties with respect to quality and macroscale resolution; however, SLS techniques are capable of producing parts with lower layer thicknesses and higher flexibility.
Previous tables have shown main characteristics of material jetting (MJ), binder jetting (BJ), filament extrusion, syringe extrusion, stereolithography (SLA), 2PP, DLP, and selective laser sintering (SLS), including advantages and disadvantages of methods as well as materials and product quality of each technique. In the next section, specific materials for 3D printing drug delivery will be discussed.
Three-Dimensional Printing Technologies for Drug Delivery Applications

3. Materials for 3D printing in pharmaceutical manufacturing

There are a wide range of polymeric, glass, and hydrogel materials which have been explored to act as drug-eluting devices, many of which exhibit biodegradable characteristics that allow for single administration into the body\(^{[11]}\).

3.1. Polymers

Polymers can be divided into those which are biodegradable and those which are not. Biodegradable
polymers degrade into the body over a specified time period by either surface erosion, whereby the material degrades at the outermost surface of the polymer via hydrolysis, or bulk erosion, whereby the polymer degrades evenly throughout the entire polymer bulk. In contrast, non-biodegradable polymers retain their structural and chemical integrity throughout the intended life cycle. Examples of biodegradable polymers used in DDDs include poly(caprolactone), poly (trimethylene carbonate), poly(lactide), poly (vinyl alcohol), and triethyl citrate (TEC), among others. Non-biodegradable polymers include poly (ethylene glycol) and ethylene vinyl acetate (EVA). Each polymer exhibits a particular degradation rate, and therefore drug release profile, with an alteration to the polymers molecular weight throughout the synthesis process able to tailor this further to suit a particular printing technology (e.g., material jetting which requires low-viscosity polymer inks, or extrusion-based methods which require more paste-like consistencies) or intended treatment dosage or administration time period[16,17].

Polymers are quite attractive for 3D printed drug delivery due to their distinctive capabilities for drug loading, drug release, biocompatibility, and biodegradability. In particular, smart polymers have attracted attention of the industry, as they are able to deliver the drug at specific moments and places as a response to physiological stimuli. Their main advantages lie in their versatility and tunable sensitivity while their main drawback is their slow response time. Despite this disadvantage, they have a huge potential to deliver oral drugs sensitive to both gastric acid and enteric enzymes as well as to make smart diagnostics[24]. Polymers can be applied to both hydrophilic and hydrophobic drugs, which allow drug-controlled release in constant doses even over long periods[25]. There are different types of polymers. One of the most common polymers is poly (vinyl alcohol), also designated as PVAL, which has good solubility in water but not in ethanol nor in various organic diluents. PVAL can be used to produce polymeric multiple-layered material for 3D printing through IP technique, and by varying the molecular weight of PVAL, it is possible to generate specific viscosity rates in combination with 3D models[26].

3.2. Glasses

Glasses have shown potential in pharmaceutical applications, with their potential bioactivity allowing for interactions with living cells. Similar to polymeric materials, glasses can be biodegradable or non-biodegradable, more or less brittle, and can be tailored to exhibit customizable degradation rates. As an example, mesoporous bioactive glass (Sr-MBG) containing strontium has shown sustained drug release due to its mesoporous structure, along with good bone-forming bioactivity and enhanced mechanical strength in comparison to polyurethane foams previously used[27]. For drug delivery purposes, bioceramic carriers are increasing its popularity. In fact, they have been considered a good replacement for polymers, particularly for bone local drug applications and tissue regeneration. Bioceramic materials for drug delivery include tricalcium phosphate, hydroxyapatite, and bioactive glass, among others. They exhibit unique characteristics; for example, bioactive glass is bioactive, osteoconductive and osteoinductive, and has a good degradation rate[6,7,28]. Moreover, due to the unique characteristics of mesoporous bioactive glass, such as large surface area, nanopore volume and nano-channel structure, it is frequently used for drug delivery as powders, fibers, disks, microspheres, MBG-polymer composites, and 3D scaffolds[29].

3.3. Hydrogels

Hydrogels consist of water-soluble polymers that are cross-linked in a 3D network[10,30]. The potential to create a hydrogel out of any water-soluble polymer results in them being considered an attractive alternative to polymeric materials in drug delivery applications as they encompass a wide range of chemical compositions and, as a result, physical properties. These physical properties can be tailored in terms of porosity and material swelling, which, in turn, allows the opportunity to control drug diffusion out of the polymer matrix. Some examples of hydrogels used in drug delivery include alginites, fibrins, gelatine, and polyacrylamide[30]. Of these, one of the most cost-effective biomaterials is gelatin methacrylamide (GelMA)[30]. In fact, gelatines have particular attributes for drug delivery applications, which include higher drug encapsulation efficiency, stable carrier and drug complexation, fewer side effects, lower systemic cytotoxicity, reduced immunogenicity, and prolonged circulatory time[31].

4. 3D printing in pharmaceutical manufacturing

The potential of parts with high geometric complexity, precise dimensional accuracy, and multi-material capabilities exhibited by various 3D printing processes has seen a rapidly expanding surge of research over the past two decades, with oral, topical, rectal and vaginal, parenteral, and implantable DDDs among those reviewed to target a range of conditions. Some examples are shown in Figure 6.

4.1. Oral drug dosage form

Oral DDDs (ODDDs) such as tablets and capsules are arguably the most widely accepted method of drug
administration, regularly exhibiting near-immediate release profiles\(^{[32]}\).

Modern ODDDs can be designed to exhibit a range of release speeds and manufactured with multiple drugs. Despite this, traditional powder compaction methods largely restrict the design freedom and therefore hinder the therapeutic efficacy of the dosage form. In addition, the high initial investment costs for the compression mold and high input energy require the production of large volumes of pills per cycle to reduce processing costs\(^{[3]}\). As such, tablet variance is not possible and results in all produced pills falling under the “one-dose-fits-all” paradigm. Other problems include the even dispersion of the API within the polymer excipient, and therefore in the pills, along with the restriction on producing pills with multiple drugs due to the potential of interactions between the differing drugs\(^{[32]}\).

Printing of ODDDs was first investigated into a 3D part in 1999, when Kastra \textit{et al.} began to use binder jetting to tailor release mechanisms via the use of different binder inks. Binder inks containing either Eudragit\(^{®}\) E-100 with ethanol or Eudragit\(^{®}\) RLPO onto cellulose powder to produce tablets exhibiting either erosion or diffusion-based drug release. In addition, the ability to tailor the release profile by varying of quantity of polymer in the ink was demonstrated, with lower polymer concentrations exhibiting faster dissolution rates\(^{[33]}\). In their further studies, Rowe \textit{et al.} utilized the pH dependency of excipients to control drug release in correlation to the ingested ODDDs location in the body, and achieved immediate release, DR, break-away devices capable of exhibiting two pulses of drug release through the incorporation of multiple material and drugs\(^{[34]}\).

Binder jetting has since been investigated to print a range of dissolution profiles, including those exhibiting zero-order release, fast-dissolving tablets, and extended release in addition to fast-disintegrating oral films, which led to the first 3D printed drug Spritam\(^{®}\) that showed drug release within the therapeutic window within 9 min of administration being given approval by the U.S. FDA in 2016 for the treatment of epilepsy\(^{[35]}\).

BJ of ODDDs usually includes the drug in the polymer powder. Unlike BJ process, the API is situated in the injectable ink for MJ printing and solidified by either polymer cross-linking or solvent evaporation, so fewer studies have been conducted using this inkjet method. The first use of MJ in pharmaceutical printing was by Hsu \textit{et al.} in 2015 who printed multi-layer tablets using naproxen (NAP)/polyethylene glycol (PEG) solid dispersions with various PEG barriers to control the release rate of the NAP, with higher dissolution rates being evident with the increasing PEG molecular weight\(^{[36]}\). Later studies investigated the effect of geometry on drug release, and Kyobula \textit{et al.} detailed faster release rates with higher surface areas, with the highlighted limitation being the factor of wettability of the inner honeycomb structure of smaller cell sizes\(^{[37]}\).

Extrusion-based 3D printing techniques have also been explored to manufacture ODDDs with tuneable release profiles. Filament extrusion has been used to print a range of immediate, extended and modified release profiles through the use of polymers include poly (lactic acid) (PLA), poly (vinyl alcohol) (PVA), PEG, and its diacrylates (PEGDA). Although a range of biodegradable and biocompatible materials are able to extrude filament, the generally high molecular weights required to retain its form upon printing tend to correlate to slow degradation rates; to deal with this, a number of studies have been explored. Alhijjaj \textit{et al.} performed an investigation into the blending of multiple polymers to widen the material base for extrusion-printing in pharmaceutics, and to control drug release rate through the polymer blend\(^{[38]}\). Arafat \textit{et al.} incorporated “caplets” into the print, thereby achieving faster degradation rates due to an increase in fluid flow throughout the pill\(^{[39]}\), and Sadia \textit{et al.} included perforating channels\(^{[40]}\), whereas Goyanes \textit{et al.} created similar pores in the pill structure by reducing the % infill of the pill in the printing process while investigating the effect of external geometry on drug release, and concluded that an increase in surface area/volume ratio corresponds to an increase in release rate\(^{[41]}\). Alternatively, Goyanes \textit{et al.} investigated the filament extrusion printing of caplets to achieve a fast pulse of drug release upon the dissolution of the outer shell\(^{[42]}\). To achieve sustained release, filament extrusion has been shown to print tablets with hollow or lattice internal structures in order to keep the ingested pills within the stomach for a sustained period\(^{[43,44]}\). 3D printing technologies for oral drug dosage form are shown in Table 9.
3D printing technology	API	Formulation	Effect	References
Tablet	**Material jetting**	Naproxen	Controlled release	[36]
		Beeswax, potassium phosphate monobasic, sodium phosphate dibasic,		
		sodium lauryl sulfate		
	Fenofibrate	Polyethylene glycol diallylate (PEGDA), Irgacure 2959 photoinitiator	Release mechanism	[46]
		(BASF)		
	Thiamine hydrochloride	Polymethyl methacrylate (PMMA), PEG, starch,	Immediate release	[45]
		lactose		
	Ropinirole hydrochloride	Polyethylene glycol diallylate (PEGDA), Irgacure 2959 photoinitiator	Release mechanism	[46]
		(BASF)		
	Chlorphenamine maleate, fluorescein	Eudragit L-100, Eudragit RLPO, lactose, ethanol, polyvinyl pyrrolidone	Delayed release	[33]
		(PVP), Tween 20 in deionized water		
	Chlorpheniramine maleate, diclofenac	Microcrystalline cellulose (MCC), Eudragit L-100, Eudragit RLPO, Eudragit L100, lactone, ethanol, polyvinyl pyrrolidone (PVP)	Multiple mechanism	[34]
		(PVP), Tween 20 in deionized water		
	Captopril	Polyvinyl pyrrolidone (PVP), maltitol, maltodextrin, water	Rapidly dispersing tablet	[47]
	Paracetamol, alizarin yellow	Colloidal silicon dioxide (SiO2), polyvinyl pyrrolidone (PVP) K30, mannitol, lactose	Fast-dissolving drug	[48]
		Colloidal silicon dioxide (SiO2), polyvinyl pyrrolidone (PVP) K30, mannitol, lactose		
		Microcrystalline cellulose (MCC), glycerin, Tween 80, povidone, sucrose	Rapidly dispersing dosage form	[49]
		Colloidal silicon dioxide (SiO2), polyvinyl pyrrolidone (PVP) K30, mannitol, lactose		
		Hydroxypropyl methylcellulose E100 (HPMC), ethyl cellulose (EC), polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[50]
	Acetaminophen	Hydroxypropyl methylcellulose E50 (HPMC), ethyl cellulose (EC), sodium lauryl sulfate, stearic acid, Eudragit RS-100, fluorescein, polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[51]
	Acetaminophen	Hydroxypropyl methylcellulose E50 (HPMC), ethyl cellulose (EC), sodium lauryl sulfate, stearic acid, Eudragit RS-100, fluorescein, polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[51]
Binder jetting	Chlorphenamine maleate, fluorescein disodium salt	Eudragit E-100, Eudragit RLPO, lactose, ethanol, polyvinyl pyrrolidone (PVP), Tween 20 in deionized water	Multiple mechanism	[33]
		Eudragit E-100, Eudragit RLPO, lactose, ethanol, polyvinyl pyrrolidone (PVP), Tween 20 in deionized water	Multiple mechanism	[33]
	Chlorpheniramine maleate, diclofenac	Microcrystalline cellulose (MCC), Eudragit E-100, Eudragit RLPO, Eudragit L100, ethanol, acetone	Multiple mechanism	[34]
		Microcrystalline cellulose (MCC), Eudragit E-100, Eudragit RLPO, Eudragit L100, ethanol, acetone	Multiple mechanism	[34]
		Colloidal silicon dioxide (SiO2)	Fast-dissolving drug	[48]
		Colloidal silicon dioxide (SiO2)		
		Microcrystalline cellulose (MCC), glycerin, Tween 80, povidone, sucrose	Rapidly dispersing dosage form	[49]
		Hydroxypropyl methylcellulose E100 (HPMC), ethyl cellulose (EC), polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[50]
	Acetaminophen	Hydroxypropyl methylcellulose E50 (HPMC), ethyl cellulose (EC), sodium lauryl sulfate, stearic acid, Eudragit RS-100, fluorescein, polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[51]
	Acetaminophen	Hydroxypropyl methylcellulose E50 (HPMC), ethyl cellulose (EC), sodium lauryl sulfate, stearic acid, Eudragit RS-100, fluorescein, polyvinyl pyrrolidone K30 (PVP), colloidal silicon dioxide	Zero-order release kinetics	[51]
Filament extrusion	Felodipine	Polyethylene glycol (PEG), polyol, sorbitol (Tweein 80), polyethylene oxide, Eudragit EPO, soluplus, polyvinyl alcohol (PVA)	Controlled release	[38]
	Theophylline	Hydroxypropyl cellulose (HPC), triacetin, sodium starch glycolate, croscarmellose sodium, crospovidone	Immediate release	[39]
	Hydrochlorothiazide	Triethyl citrate (TEC), tri-Calcium phosphate (TCP), Eudragit E	Design with perforating channels of increasing width	[40]
	4-aminosalicylic acid (4-ASA), 5-aminosalicylic acid (5-ASA)	Polyvinyl alcohol (PVA).	Modified release	[41]
	Dipyridamole	Hydroxypropyl methylcellulose (HPMC), microcrystalline cellulose (MCC), lactose, polyvinyl pyrrolidone (PVP), ethanol	Intragastric floating tablet, sustained release	[43]

(Contd...)
Table 9. (Continued)

3D printing technology	API	Formulation	Effect	References
	Domperidone	Hydroxy propyl cellulose (HPC), BaSO₄	Intragastric floating tablet	[44]
	Theophylline	Eudragit RL100, Eudragit RS100, hydroxypropyl cellulose (HPC), triethyl citrate (TEC), triacetin	Immediate and extended release	[52]
	Prednisolone	Polyvinyl alcohol (PVA), glycerol, acetonitrile, methanol	Extended release	[53]
	Hydrochlorothiazide	Polyvinyl alcohol (PVA), mannitol, polylactic acid (PLA)	Controlled release	[54]
	Nitrofurantoin	Polyactic acid (PLA), hydroxypropyl methylcellulose (HPMC)	Controlled release	[55]
	Nitrofurantoin	Hydroxyapatite, polylactic acid (PLA)	Controlled release	[56]
	Paracetamol	Hypermellose acetate succinate (HPMCAS): grades LG, MG and HG, methylparaben, magnesium stearate	Modified release	[57]
	Acetaminophen	Hydroxy propyl cellulose (HPC), hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC), Soluplus, Eudragit L100	Controlled release	[58]
	5-ASA, captopril, theophylline, prednisolone	Eudragit, triethyl citrate (TEC), tri-calcium phosphate (TCP), talc, microcrystalline cellulose (MMC)	Immediate release	[59]
	Glipizide	Polyvinyl alcohol (PVA)	Controlled release	[60]
	Cinnarizine	Hydroxypropyl cellulose (HPC), vinylypyrrolidone vinyl acetate copolymer (PVP VA 64)	Controlled release	[61]
	Haloperidol	Acid-base supersolubilization (ABS), Kollidon VA64, Affinisol 15cP	Slow release	[62]
	Isoniazid, rifampicin	Hydroxypropyl cellulose (HPC), hypermellose acetate succinate (HPMC – AS)	Controlled release	[63]
	Syringe extrusion	Guaifenesin	Bi-layers tablets for respiratory tract infections	[64]
	Nifedipine, captopril, glipizide	Hydroxypropyl methylcellulose (HPMC), poly acrylic acid (PAA), microcrystalline cellulose (MCC), sodium starch glycolate	Multi-active (Polypill)	[65]
	Hydrochlorothiazide, aspirin, pravastatin, atenolol, ramipril	Polyethylene glycol (PEG) 600, D-mannitol, cellulose acetate, hydroxypropyl methylcellulose (HPMC), lactose, sodium starch glycolate, polyvinyl pyrrolidone	Multi-active (Polypill)	[66]
	Curcumin, chloramphenicol	Sodium alginate-cellulose nanofibers (SA- CNF)	Controlled release	[67]
	Stereolithography	Paracetamol, 4-ASA	Modified release	[68]

(Contd...)
Table 9. (Continued)

3D printing technology	API	Formulation	Effect	References
Digital light processing	Ibuprofen, riboflavin	Polyethylene glycol (PEG), polyethylene glycol diacrylate (PEGDA), triethanolamine (TEA), diphenyl 2,4,6-trimethylbenzoyl phosphine oxide (DPPO), water	Controlled release	[69]
Digital light processing	5-fluorouracil	Acrylic acid (AA), polyethylene glycol dimethacrylate (PEGDMA), acrylated hyperbranched polyester (AHBPE)	Controlled release	[70]
Selective laser sintering	Paracetamol	Hydroxypropyl methylcellulose (HPMC), vinylpyrrolidone vinyl acetate copolymer, candurin	Fast drug release	[71]
Caplet	Paracetamol	Kollicoat IR, Eudragit L100--55, candurin	Immediate/modified release	[72]
Caplet Filament extrusion	Paracetamol or caffeine	Propylene glycol (PG), hydroxypropyl methylcellulose (HPMC), crospovidone, glycerol, water	Fast disintegration and dissolution	[73]
Oral film	Riboflavin sodium phosphate	Tesa, microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), gelatin, Listerine, hydroxypropyl methylcellulose with 2% TiO$_2$ (HPMCT), gelatin with 2% TiO$_2$, hydrophilic microcrystalline cellulose (pMCC)	Modified release	[74]
Oral film	Prednisolone	Ethanol, water, glycerol	Fast disintegration and dissolution	[75]
Oral film	Loperamide or caffeine	Propylene glycol (PG), ethanol, water	Fast disintegration and dissolution	[76]
Oral film	Rasagiline mesylate	Polyvinyl alcohol (PVA)	Drug release of PVA based caplets	[77]
Oral film	Acetaminophen	Polyvinyl alcohol (PVA), polyvinyl alcohol-polyethylene glycol graft copolymer (KIR), glycerol, hydroxypropyl methylcellulose (HPMC), polyethylene glycol (PEG), hypromellose acetate succinate (HPMCAS)	Two-pulse oral drug delivery	[78]
Binder jetting	Levetiracetam	Undisclosed formula	Fast disintegration and dissolution	[79]
Binder jetting	Enalapril maleate	Macrogol 400, water, ethanol	Modified release	[80]
Filament extrusion	Aripiprazole	Polyvinyl alcohol (PVA)	Fast disintegration and dissolution	[81]
Filament extrusion	Saquinavir	Hydroxypropyl methylcellulose (HPMC), malic acid, glycerol, water	Controlled release	[82]
Syringe extrusion	Warfarin sodium	Polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC), ethanol, water	Modified release	[83]
4.2. Topical dosage form

Topical delivery of drugs, also known as transdermal drug delivery, is the process of administering drugs on to the surface of the skin. Due to the high permeability of the skin, this often requires the assistance of a rate-controlling barrier layer with lower permeability to prevent over-dosing\(^{[16]}\). Transdermal DDDs may come in the form of patches, masks, wound dressing, etc. Goyanes et al. compared the use of filament extrusion and SLA to incorporate anti-acne drug, salicylic acid, into a mask of the intended patient’s nose attained through 3D scanning\(^{[85]}\). Drug diffusion tests showed SLA to produce masks with slower degradation, higher drug loading (1.9% w/w compared to 0.4–1.2% w/w for FDM) and higher dimensional accuracy\(^{[85]}\). Later, the same research group continued to print 3D-scanned masks as drug-delivering wound dressings, adding antimicrobial metals including zinc, copper, and silver into polycaprolactone to better aid wound healing\(^{[86]}\).

A similar concept of using 3D scans of an individual to tailor transdermal DDDs was exhibited by Wei et al., who demonstrated the ability to produce a face mask based on a pre-scanned file of the patient’s face, a mask was created using a medical-grade silicone gel and a transparent biocompatible material, for a 20-h/day treatment of facial hypertrophic scars\(^{[87]}\). More information of studies about topical dosage form using 3D printing technology is presented in Table 10.

4.3. Rectal and vaginal dosage form

Similarly, to topical dosage form, rectal and vaginal DDDs are administered in direct contact with the rectal mucosa or a vaginal epithelium, respectively, due to their permeability to a range of substances\(^{[12]}\). As with the 3D scanned masks detailed in section 4.2, Sun et al. utilized the ability of 3D printing to produce customizable geometries by using SLA technology, DLP, to print molds of the rectal and vaginal suppository in which silicon polymers loaded with analgesics were adhered\(^{[90]}\). Numerous studies have demonstrated the use of filament extrusion techniques to 3D print T-shaped intrauterine system (IUS), devices, which are regularly used to administer long-lasting contraceptives, with materials such as polycaprolactone and ethylene vinyl acetate. Details are shown in Table 11.

4.4. Parenteral dosage form

Parenteral dosage form is the injection of drugs through subcutaneous, intramuscular, intravenous, or intra-arterial routes. This dosage form allows the rapid action of the administered drug\(^{[96]}\).

To enhance the powerful delivery capabilities of needles, smaller devices were created known as microneedles, which are large enough to contain the drug but small enough to avoid pain and fear\(^{[97]}\). Taking advantage of 3D printing, Pere et al. used stereolithography technology to create pyramid and cone microneedles with a coat of insulin formulations\(^{[98]}\). Furthermore, Lim et al. developed microneedles with non-steroidal anti-inflammatory drugs (NSAIDs) that are useful to relieve finger pain, this device was fabricated with DLP\(^{[99]}\). Table 12 shows information of studies of parenteral dosage form applying 3D printing.

Table 10. 3D printing technologies for topical dosage form

3D printing technology	API	Formulation	Effect	References
Facial mask				
Filament extrusion	Salicylic acid	Flex EcoPLA (FPLA), polycaprolactone (PCL)	Personalized anti-acne facial masks	\([85]\)
Stereolithography	Salicylic acid	Polylene glycol diacrylate (PEGDA), polylene glycol (PEG)	Personalized anti-acne facial masks	\([85]\)
Polyjet	Silicone gel	OBJET MED610	Treatment of facial hypertrophic scars	\([87]\)
Patch	Copper sulphate, zinc oxide Montelukast sodium	Polycaprolactone (PCL) Kollidon 12PF, polylene glycol (PEG), and Polyethylene oxide (PEO)	Antimicrobial wound dressing Personalized patches	\([86]\) \([88]\)
Syringe extrusion	Lidocaine hydrochloride, levofloxacin	Chitosan methacrylate hydrogels	Personalized wound dressing	\([89]\)
4.5. Implants

Implantable DDDs (IDDDs) offer numerous advantages over oral and parenteral administration methods, which often require frequent re-administration of one or multiple drug(s). First, the issue of patient compliance can lead to variations in dosing frequencies, and therefore fluctuations in plasma concentrations\(^{[10,96]}\). The administration of IDDDs can either require a single administration, which can release drugs in two main ways: diffusion or dissolution. Diffusion-based administration, also known as membrane systems, requires a secondary procedure to remove the implant on completion of delivery, and tends to use a semi-permeable membrane through which drug molecules diffuse slowly over time. Dissolution-based administration, also known as matrix systems, requires a single invasive procedure upon administration, and breaks up the polymer chain to release the drug molecules either by surface or bulk erosion\(^{[2]}\).

Several studies have been conducted on BJ of IDDDs, with Wu et al. in 2009 showing the successful printing of a concentric cylinder with alternating isoniazid and rifampicin layers to create a pulsatile release of the two drugs for long-term tuberculosis treatments\(^{[105]}\). Later that year, they printed

3D printing technology	API	Formulation	Effect	References	
Suppository					
Syringe extrusion	Lidocaine	Kolliphor RH40, Gelucire 48/16, Geloil	Personalized delivery system	[91]	
Digital light processing	Lidocaine, ibuprofen sodium, diclofenac sodium, ketoprofen	Suppositories/silastic1 Q-4720 & MED-4901 Mold/3DM resin	Sustained release	[90]	
T-shape IUS	Filament extrusion	Indomethacin	Polycaprolactone (PCL)	Controlled release	[92]
		Indomethacin	Ethylene vinyl acetate (EVA), polycaprolactone (PCL)	Controlled release	[93]
		Estrogen, progesterone	Polycaprolactone (PCL)	Extended release	[94]
Vaginal Pessaries	Filament extrusion	Acyclovir	Thermoplastic polyurethanes (TPU)	Controlled release	[95]

3D printing technology	API	Formulation	Effect	References
Microneedle				
Material jetting	5-fluorouracil, curcumin, cisplatin	Soluplus, sodium fluorescein, methanol, ethanol, acetonitrile, acetic acid, phosphoric acid, hydrochloric acid	Anticancer agent coated metal	[100]
Stereolithography	Insulin	Dental SG resin, xylitol, mannitol, trehalose	Insulin skin delivery	[98]
2-photon polymerization	Gentamicin sulfate	Polycaprolactone diacrylate (PEGDA), polyethylene glycol (PEG)		
Digital light processing				
	Diclofenac sodium	3DM-Cast	Antimicrobial loaded	[101]
	Silver, zinc oxide coating	eShell 200, envisiontec GmbH	Antimicrobial loaded	[102]
	Riboflavin	Silk fibroin (SF)	Safe protein-based microneedle	[103]
Continuous liquid interface production	Rhodamine, fluorescein	Polycaprolactone (PCL), polyethylene glycol (PEG), polyacrylic acid (PAA), trimethylolpropane triacrylate (TMPTA)	Varying geometries	[104]
an implant containing both a reservoir system containing rifampicin and a matrix system containing levofloxacin aimed at treating conditions with combined bone infections in the same device\cite{100}, demonstrating the ability to print an implant with multiple drug release systems within a single IDDD. Wu et al. also investigated the use of BJ processing to build columnar-shaped tablets (CST), doughnut-shaped tablets (DST), and multilayer-shaped tablets (MLST) from PLLA, which contained a barrier layer without drug on the upper and lower surfaces of the implant\cite{107}. Dynamic soaking of the implants displayed the MLST to provide improved consistency of drug release characteristics due to smaller fluctuations in surface area of the device. Years after, Wu et al. replaced the drugs with levofloxacin and tobramycin in the layers to demonstrate its applicability to treat osteomyelitis\cite{108}.

Extrusion-based printing has been used to print IDDDs, including implant, stents, catheters and hernia meshes. Sandler et al. produced PLA antimicrobial medical devices, whereby HME technique allows 5% loading of the anti-microbial drug to be mixed into the material in the printing process, showing 89.56% reduction of biofilm formation\cite{109}. Other studies, which used filament extrusion instead, loaded the API by either coating of the polymer pellets with the API\cite{110,111} or mixing before the creation of the final filament\cite{112,113}. Boetker et al. co-extruded polylactic acid and either 20 or 40% hydroxypropyl methylcellulose (HE) (Metolose®) into disks, and determined an increase in degradation rates associated with higher amount of ME. This study shows the potential to customize the degradation rates of materials by altering the flow properties of the polymer blend\cite{114}.

Syringe extrusion has predominantly been utilized to validate the ability to extrude magnetic composite scaffolds and silica nanoparticulate composites and hydrogels, which would be unsuitable to print under heated conditions seen in filament extrusion and HME. Unlike heated extrusion techniques, these materials do not solidify on printing, with the gel-like structure providing enough support for the following layers to be printed. Instead, they require post-printing drying processes to evaporate any remaining solvents\cite{27,114-119}.

SLM techniques have also been established as a method for 3D printing IDDDs, with prominence in producing parts with good structural integrity. For instance, Maher et al. used SLM to print titanium bone replacement implants enriched with anticancer drugs doxorubicin (DOX) with particles and tubular arrays on the surface of the implant in order to promote cell attachment\cite{120}. A similar concept was detailed by Parry et al. who used SLA to produce poly (propylene fumarate) scaffolds with integrated pores to encourage cell attachment, whilst the printing of carbonate hydroxyapatite mineral coatings and polymer microspheres promoted DR of the drug rhBMP-2\cite{121}. Implant studies that use 3D printing technology are presented in Table 13.

Seemingly, most drugs are tissue growth factors and antibiotics. There are limited works on 3D printing of immunoregulatory drugs, which are needed in the recent development in tissue engineering\cite{124}.

5. Future directions and challenges

3D printing technology will transform disease treatment, enabling more advanced high-resolution DDDs, with suitable substrates and more controlled release profiles. This technology offers unique advantages in terms of product consistency, customization of drug administration, and combinations of different APIs, making the treatment more accurate for the benefit of the patient\cite{125}. To this end, challenges to bed addressed in 3D printing technology as well as the efforts to adapt to or benefit from new technologies are inevitable.

In pharmaceutical applications, many variables regarding processes, printers, compounds, formulations, type of dosages, post-treatments, and final distribution contribute to the drug delivery success, and compounds with the highest quality, accuracy and efficacy as well as safety to patients are paramount. Management and care of all compounds involved represent a critical factor not only when formulations are created, but also when type of dosage is selected and the drug is printed. In addition, even though the printed product complies with all desired characteristics, it may also need a post-treatment, a stage that should be carefully monitored to avoid any alteration to the effect of the drug\cite{126}. Therefore, quality control and safety are fundamental throughout the fabrication process. Assuring quality and safety already represents a challenge and even more so when it comes to 3D printing in large-scale manufacturing\cite{127,128}.

While it is clear that very strict parameters should be met to avoid any problem for patients, clear guidance and regulations regarding the materials, processes, as well as printers almost do not exist due to the novelty of the technology. Even for the post-manufacture quality assessment of 3D-printed devices, standard guidance has not yet been published. Current regulations of traditional manufacturing are not applicable to the flexibility that 3D printing techniques would need; 3D printing allows the manufacture of personalized and multi-drug medicines, and there is still no standard guidance in this regard\cite{129-131}. In 2017, the U.S. FDA published a guidance on 3D printed medical devices and prosthetics, which does not apply to DDDs. Spritam, by Aprecia Pharmaceuticals, is the only product fabricated by 3D printing that has been approved for commercialization\cite{127,130}.

Regulatory guidance is needed for materials, processes and products, and for this, there are different elements to consider, as detailed in Table 14.
3D printing technology	API	Formulation	Effect	References
Implant				
Binder jetting	Isoniazid, rifampicin	Poly D, L - lactic acid (PDLLA)	Multiactive, sustained release	[105]
	Levofloxacin, rifampicin	Poly L - lactic acid (PLLA)	Multiactive, controlled release	[106]
	Isoniazid	Poly L-lactic acid (PLLA), acetone, ethanol, water	Sustained release	[107]
	Levofloxacin, tobramycin, levofloxacin	Poly D, L - lactic acid (PDLLA)	Multiactive, sustained release	[108]
Filament extrusion	Nitrofurantoin	Poly L-lactic acid (PLLA), ethanol, acetone	Pulsed release profile	[122]
	Nitrofurantoin	Polylactic acid (PLA), hydroxypropyl methylcellulose (HPMC)	Flexible dosing and precision medication	[55]
	Gentamicin	Polylactic acid (PLA)	Biofilm inhibition	[109]
	Gentamicin	Polylactic acid (PLA)	Hernia meshes	[110]
	Gentamicin, methotrexate	Polylactic acid (PLA)	Drugs eluting product	[111]
	Niclosamide, inositol phosphate (IP6)	Polycaprolactone (PCL), graphene nanoplatelets (GR)	Vascular stent	[112]
	Ciprofloxacin, hydrochloride	Polylactic acid (PLA), polycaprolactone (PCL), mesoporous bioactive glass (MBG), Fe₃O₄	Bone defect diseases	[113]
	Dexamethasone	Strontium containing mesoporous bioactive glass (Sr-MBG)	Controlled ion release	[27]
	Isoniazid, rifampicin	Mesoporous silica nanoparticles (MSN), beta-tricalcium phosphate (B-TCP)	Multi-drug, osteoarticular tuberculosis therapy	[114]
	Doxorubicin	Polycaprolactone (PCL), mesoporous bioactive glass (MBG) (n-HA), Hydroxypropyl cellulose (HPC-M), Microcrysaline cellulose Pharmacel 101 (MCC PH 101).	Local anticancer and enhanced osteogenic activity, and magnetic hyperthermia	[115]
Syringe extrusion	Dimethylxallylglycine Vascular endothelial growth factor	Mesoporous bioactive glass (MBG), poly (3-hydroxybutyrate-co-3- hydroxyhexanoate) Calcium phosphate cement (CPC), alginate, alginate-gellan gum	Bone defect healing	[117]
	Ciprofloxacin	Polylactic acid (PLA), nano-hydroxyapatite (n-HA), Hydroxypropyl cellulose (HPC-M), Microcrysaline cellulose Pharmacel 101 (MCC PH 101).	Controlled antibacterial release	[118]
	Amikacin sulfate	Polylactic acid (PLA), nano-hydroxyapatite (n-HA), Hydroxypropyl cellulose (HPC-M), Microcrysaline cellulose Pharmacel 101 (MCC PH 101).	Local drug delivery	[119]
Stereolithography	Recombinant human bone morphogenetic protein 2 (rhBMP-2)	Mesoporous silica nanoparticles (MSN), beta-tricalcium phosphate (B-TCP)	Multi-drug, osteoarticular tuberculosis therapy	[114]
	Lidocaine hydrochloride	Polypropylene fumarate (PPF), carbonate, hydroxyapatite, polylactic-co-glycolic acid (PLGA) microspheres, collagen	Delayed release	[121]
Selective laser melting	Doxorubicin, apoptosis-inducing ligand (Apo2L/TRAIL)	Gelucire	Sustained and localized delivery	[123]
		Ti6Al4V, ethylene glycol	Bone cancer therapy	[120]
Furthermore, 3D printing techniques require a unique production environment and/or the use of some specific resources, such as a highly specialized laser\cite{127}. Current challenges of 3D printing technologies for drug delivery applications can lead to a long trial and error process before transforming it from a laboratory to a revolutionary manufacturing process\cite{127,133}. Large-scale manufacturing represents a big challenge as explained in previous sections; different techniques and processes have emerged and the evolution to mass production and further commercialization will also require an entire ecosystem where academy, industry, and government participate in to facilitate all the essential conditions\cite{128,131,133}.

Despite the challenges presented to date, 3D printed drug delivery system has a promising future that will change the course of current healthcare. Synergic efforts in different fields are required. They include a sustainability focus to produce eco-friendly and physiologically safe excipients and filaments, research to reduce waste of 3D printing processes, and studies for the improvement of the dosage accuracy until the incursion to digitalization\cite{131}.

Machine learning (ML), which is an application of artificial intelligence (AI) to enable pattern recognition from large and complex datasets, is gaining presence in the 3D printing field\cite{134-136}. This tool contributes to product quality and productivity by in situ monitoring, optimizing design and process parameters, and speeding up the microstructure evolution prediction\cite{142}.

In this context, ML has been applied in different 3D printing techniques to estimate performance and quality indicators. Recently in 2022, an integration of ML and 3D printing through a graphical user interface for printing parameter optimization was published. While the majority of 3D printing research considers orthogonal designs, authors employed nine different computer-aided design (CAD) images to allow ML algorithms to identify the difference among designs, calculating their complexity\cite{143}. Also in 2022, a study working on ML to predict 3D printing performance parameters of different formulations, such as processing temperatures (extrusion and printing temperatures), feedstock characteristics, and printability, was published. Ong \textit{et al}. mined data on hot-melt extrusion (HME) and fused deposition modeling (FDM), and an extensive range of different 3DP formulations to optimize product design without having it physically. Through this research, it was discovered that the simulated drugs had accurate release profiles; this represents a strong advantage in terms of time saving because each iteration would take days\cite{127}.

ML has also been used in decision trees for HME and artificial neural networks (ANNs) to enhance the quality of drug products throughout the pharmaceutical workflow. In addition, ANNs have correctly predicted the dissolution profiles of ibuprofen-loaded PrintletsTM fabricated using DLP\cite{144,145}. Moreover, ML has contributed to predicting the required force for penetration of 3D printed microneedle arrays (MLA) as well as the capabilities for their insertion into the skin\cite{146}.

Considering the advances worldwide, a strong emphasis on collaborative work in the digital era is expected to happen. In the future, automation and robotics will be a reality, giving rise to more innovative and efficient 3D printed drugs. In a more distant future, a big transformation from 3D to 4D printed drugs is foreseen, and this next generation of drugs will come foreseen, and this next generation of drugs will come
tissue engineering, and medical devices\cite{10}. Future trends envision a revolution in pharmacy in the next years, and science and technology advances will enable 3D printing of innovative drug delivery systems.

6. Conclusions
3D printing technology is evolving quickly providing a new way to develop attractive solutions for medical applications\cite{14}. Medication administration is being revolutionized, and researchers, doctors and patients become increasingly interested in having alternatives that are more efficient and friendly. At present, standardized doses of medicines predominate but each patient requires unique treatments with tailored dosages. The DDDs fabricated by 3D printing enable the production of personalized drugs for the patients with specific needs. Moreover, this technology has unique capabilities to work with complex geometries, high precision, and multiple APIs.

In this review, the potential uses of 3D printing technology are detailed, as well as the different techniques that have been developed along with their challenges and application in drug delivery is identified. Materials used were also determined through three principal categories: polymers, glasses and hydrogels. In addition, five dosage forms were identified: (i) Oral drug dosage, (ii) topical dosage form, (iii) rectal and vaginal, (iv) parenteral dosage form, and (v) implants. The API, formulation and effect are discussed for all cases.

3D printing will revolutionize the concept of traditional manufacturing by innovatively adding value to health applications, such as drug delivery. A radical change in medical treatments will happen in the coming years.

Acknowledgments
We acknowledge Tecnologico de Monterrey and CONACYT for their support.

Funding
The authors acknowledge institutional funding received from Tecnologico de Monterrey and Consejo Nacional de Ciencia y Tecnologia (CONACyT) through a Graduate Studies Scholarship and an Academic Scholarship as member of the National System of Researchers (Sistema Nacional de Investigadores).

Conflict of interest
The authors declare that they have no conflicts of interest.

Author contributions
Conceptualization, Methodology, Supervision, writing – review & editing: Marisela Rodriguez-Salvador

Information collection, data analysis, graphics and writing – original draft: Jessica Mancilla-De-la-Cruz

Review, vetting and editing: Jia An, Chee Kai Chua

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data
Not applicable.

References
1. Florence, A, Attwood, D 2015, Physiochemical Principles of Pharmacy. London: Pharmaceutical Press.
2. Kleiner L, Wright J, Wang Y, 2014, Evolution of Implantable and Insertable Drug Delivery Systems. J Control Release, 181:1–10. https://doi.org/10.1016/j.jconrel.2014.02.006
3. Hoffman A, Hillery A, 2017, Historical Introduction to the Field of Controlled Drug Delivery. Drug Delivery Fundamental Applications. United States: CRC Press. p1–21.
4. Deanesly R, Parkes A, 1937, Biological Properties of Some New Derivatives of Testosterone. Biochem J, 31:1161–4. https://doi.org/10.1042/bj0311161
5. Schork NJ, 2015, Personalized Medicine: Time for one-Person Trials. Nature, 520:609–11. https://doi.org/10.1038/520609a
6. Peak R, 2018, Precision Medicine is not Just Genomics: The right dose for every patient. Ann Rev Pharmacol Toxicol, 58:105–22. https://doi.org/10.1146/annurev-pharmtox-010617-052446
7. Prasad L, Smyth H, 2016, 3D Printing Technologies for Drug Delivery: A Review. Drug Dev Ind Pharm, 42:1019–31. https://doi.org/10.3109/03639045.2015.1120743
8. Syrkel M, 2021, A Brief History of Additive Manufacturing. Arizona: Nexus 3 Manufacturing and Engineering. Available from: https://www.nexus3mfg.com/3d-printing [Last accessed on 2021 Apr 06].
9. International Organization for Standardization/ASTM 52900, 2021, Additive Manufacturing-General Principles-Fundamentals and Vocabulary. Switzerland: International Organization for Standardization. Available from: https://Www.Iso.Org/Obp/Ui/Iso: Std:Iso-Astm:52900:Ed-2:V1:En
10. Jamroz W, Szafrańiec J, Kurek M, et al., 2018, 3D Printing in Pharmaceutical and Medical Applications-Recent
Three-Dimensional Printing Technologies for Drug Delivery Applications

Achievements and Challenges. Pharm Res, 35:176. https://doi.org/10.1007/s11159-018-2454-x

11. Norman J, Madurawe R, Moore C, et al., 2017, A New Chapter in Pharmaceutical Manufacturing: 3D-printed Drug Products. Adv Drug Deliv Rev, 108:39–50. https://doi.org/10.1016/j.addr.2016.03.001

12. Lim SH, Kathuria H, Yao J, et al., 2018, 3D Printed Drug Delivery and Testing Systems—a Passing Fad or the Future? Adv Drug Deliv Rev, 132:139–68. https://doi.org/10.1016/j.addr.2018.05.006

13. Li J, Rossignol F, Macdonald J, 2015, Inkjet Printing for Biosensor Fabrication: Combining Chemistry and Technology for Advanced Manufacturing. Lab Chip, 15:2538–58. https://doi.org/10.1039/c5lc00235d

14. Redwood B, 2022, Types of 3D Printing. HUBS, Netherlands. Available from: https://www.hubs.com/knowledge-base/types-of-3d-printing [Last accessed on 2022 Apr 03].

15. Loughborough University, 2021, The 7 Categories of Additive Manufacturing. England: Loughborough University. Available from: https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing [Last accessed on 2022 Apr 03].

16. Palo M, Holländer J, Suominen J, et al., 2017, 3D Printed Drug Delivery Devices: Perspectives and Technical Challenges. Expert Rev Med Dev, 14:685–96. https://doi.org/10.1080/17434440.2017.1363647

17. Moulton S, Wallace G, 2014, 3-Dimensional (3D) Fabricated Polymer Based Drug Delivery Systems. J Controlled Release, 193:27–34. https://doi.org/10.1016/j.jconrel.2014.07.005

18. Lee JY, Tan WS, An J, et al., 2016, The Potential to Enhance Membrane Module Design with 3D Printing Technology. J Membr Sci, 499:480–90. https://doi.org/10.1016/j.memsci.2015.11.008

19. Ostendorf A, Chichkov B, 2006, Two-Photon Polymerization: A New Approach to Micromachining. United States: Photonics Spectra. Available from: https://www.photonics.com/Articles/Two-Photon_Polymerization_A_New_Approach_to/a26907 [Last accessed on 2022 Sep 18].

20. Lee J, Sing S, Zhou M, et al., 2018, 3D Bioprinting Processes: A Perspective on Classification and Terminology. Int J Bioprint, 4:151. https://doi.org/10.18063/IJB.v4i2.151

21. Ge L, Dong L, Wang D, et al., 2018, A Digital Light Processing 3D Printer for Fast and High-Precision Fabrication of Soft Pneumatic Actuators. Sens Actuators A Phys, 273:285–92. https://doi.org/10.1016/j.sna.2018.02.041

22. Kadry H, Wadnap S, Xu C, et al., 2019, Digital Light Processing (DLP) 3D-Printing Technology and Photoreactive Polymers in Fabrication of Modified-Release Tablets. Eur J Pharm Sci, 135:60–7. https://doi.org/10.1016/j.ejps.2019.05.008

23. Carbon 3D, 2022, A Carbon 3D Printer for Every Budget. Available from: https://www.carbon3d.com/products [Last accessed on 2022 Sep 17].

24. James HP, John R, Alex A, et al., 2014 Smart Polymers for the Controlled Delivery of Drugs—a Concise Overview. Acta Pharm Sin B, 4:120–7. https://doi.org/10.1016/j.apsb.2014.02.005

25. Liechty WB, Kryscio DR, Slaughter BV, et al., 2010, Polymers for Drug Delivery Systems. Ann Rev Chem Biomol Eng, 1:149–73. https://doi.org/10.1146/annurev-chembioeng-070309-100847

26. Mahmood M, 2021, 3D Printing in Drug Delivery and Biomedical Applications: A State-of-the-art Review. Compounds, 1:94–115. https://doi.org/10.3390/compounds1030009

27. Zhang J, Zhao S, Zhu Y, et al., 2014, Three-dimensional Printing of Strontium-Containing Mesoporous Bioactive Glass Scaffolds for Bone Regeneration. Acta Biomater, 10:2269–81. https://doi.org/10.1016/j.actbio.2014.01.001

28. Soundrapandian C, Datta S, Kundu B, et al., 2010, Porous Bioactive Glass Scaffolds for Local Drug Delivery in Osteomyelitis: Development and in Vitro Characterization. AAPS PharmSciTech, 11:1675–83. https://doi.org/10.1208/s12249-010-9550-5

29. Wu C, Chang J, Xiao Y, 2011, Mesoporous Bioactive Glasses as Drug Delivery and Bone Tissue Regeneration Platforms. Ther Deliv, 2:1189–98. https://doi.org/10.4155/tde.11.84

30. Hoare TR, Kohane DS, 2008, Hydrogels in Drug Delivery: Progress and Challenges. Polymer, 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

31. Santoro M, Tatare AM, Mikos AG, 2014, Gelatin Carriers for Advanced Manufacturing. Int J Pharm, 499:480–90. https://doi.org/10.1016/j.ijpharm.2014.04.004

32. Trenfield S, Awad A, Goyanes A, et al., 2018, 3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends Pharmacol Sci, 39:440–51. https://doi.org/10.1016/j.tips.2018.02.006

33. Katstra W, Palazzolo R, Rowe C, et al., 2000, Oral Dosage Forms Fabricated by Three Dimensional Printing.
34. Rowe CW, Katstra WE, Palazzolo RD, et al., 2000, Multimechanism Oral Dosage forms Fabricated by Three Dimensional Printing. *J Controlled Release*, 66:11–7. https://doi.org/10.1016/S0168-3659(99)00224-2

35. Groll J, Burdick J, Cho D, et al., 2018, A Definition of Bioinks and their Distinction from Biomaterials Inks. *Biofabrication*, 11:013001.

36. Hsu H, Harris M, Toth S, et al., 2015, Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-naproxen/PEG 3350 Solid Dispersions. *AIChE J*, 61:4502–8. https://doi.org/10.1002/aic.14979

37. Kyobula M, Adedeji A, Alexander MR, et al., 2017, 3D Inkjet Printing of Tablets Exploiting Bespoke Complex Geometries for Controlled and Tuneable Drug Release. *J Controlled Release*, 261:207–15. https://doi.org/10.1016/j.jconrel.2017.06.025

38. Alhijjaj M, Belton P, Qi S, 2016, An Investigation into the use of Polymer Blends to Improve the Printability of and Regulate Drug Release from Pharmaceutical Solid Dispersions Prepared Via Fused Deposition Modeling (FDM) 3D Printing. *Eur J Pharm Biopharm*, 108:111–25. https://doi.org/10.1016/j.ejpb.2016.08.016

39. Arafat B, Wojsz M, Isreb A, et al., 2018, Tablet Fragmentation without a Disintegrant: A Novel Design Approach for Accelerating Disintegration and Drug Release from 3D Printed Cellulosic Tablets. *Eur J Pharm Sci*, 118:191–9. https://doi.org/10.1016/j.ejps.2018.03.019

40. Sadia M, Arafat B, Ahmed W, et al., 2018, Channelled Tablets: An Innovative Approach to Accelerating Drug Release from 3D Printed Tablets. *J Controlled Release*, 269:355–63. https://doi.org/10.1016/j.jconrel.2017.11.022

41. Goyanes A, Buanz AB, Hatton GB, et al., 2015, 3D Printing of Modified-release Aminosalicylate (4-ASA and 5-ASA) Tablets. *Eur J Pharm Biopharm*, 89:157–62. https://doi.org/10.1016/j.ejpb.2014.12.003

42. Goyanes A, Chang H, Sedough D, et al., 2015, Fabrication of Controlled-release Budesonide Tablets via Desktop (FDM) 3D Printing. *Int J Pharm*, 496:414–20. https://doi.org/10.1016/j.ijpharm.2015.10.039

43. Li Q, Guan X, Cui M, et al., 2018, Preparation and Investigation of Novel Gastro-Floating Tablets with 3D Extrusion-based Printing. *Int J Pharm*, 535:325–32. https://doi.org/10.1016/j.ijpharm.2017.10.037

44. Chai X, Chai H, Wang X, et al., 2017, Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone. *Sci Rep*, 7:2829. https://doi.org/10.1038/s41598-017-03097-x

45. Cader HK, Rance GA, Alexander MR, et al., 2019, Water-based 3D Inkjet Printing of an Oral Pharmaceutical Dosage form. *Int J Pharm*, 564:359–68. https://doi.org/10.1016/j.ijpharm.2019.04.026

46. Clark E, Alexander M, Irvine D, et al., 2017, 3D Printing of Tablets using Inkjet with UV Photoinitiation. *Int J Pharm*, 529:523–30. https://doi.org/10.1016/j.ijpharm.2017.06.085

47. Lee K, Kang A, Delfino JJ, et al., 2003, Evaluation of Critical Formulation Factors in the Development of a Rapidly Dispersing Captopril Oral Dosage Form. *Drug Dev Ind Pharm*, 29:967–79. https://doi.org/10.1081/DDC-120025454

48. Yu D, Shen X, Branford-White C, et al., 2009, Novel Oral Fast-disintegrating Drug Delivery Devices with Predefined Inner Structure Fabricated by Three-dimensional Printing. *J Pharm Pharmacol*, 61:323–9. https://doi.org/10.1211/jpp.61.03.0006

49. Jacob J, Coyle N, West TG, et al., 2014, Aprecia Pharmaceuticals LLC. Rapid Disperse Dosage form Containing Levetiracetam. US9339489B2, Abstract.

50. Yu DG, Branford-White C, Ma ZH, et al., 2009, Novel Drug Delivery Devices for Providing Linear Release Profiles Fabricated by 3DP. *Int J Pharm*, 370:160–6. https://doi.org/10.1016/j.ijpharm.2008.12.008

51. Yu DG, Yang X, Huang W, et al., 2007, Tablets with Material Gradients Fabricated by Three-dimensional Printing. *J Pharm Sci*, 96:2446–56. https://doi.org/10.1002/jps.20864

52. Pietrzak K, Isreb A, Allhnan M, 2015, A Flexible-dose Dispenser for Immediate and Extended Release 3D Printed Tablets. *Eur J Pharm Biopharm*, 96:380–7. https://doi.org/10.1016/j.ejpb.2015.07.027

53. Skowyra J, Pietrzak K, Allhnan MA, 2015, Fabrication of Extended-release patient-Tailored Prednisolone Tablets via Fused Deposition Modelling (FDM) 3D Printing. *Eur J Pharm Sci*, 68:11–7. https://doi.org/10.1016/j.ejps.2014.11.009

54. Gioumouzouzis C, Katsamenis O, Bouropoulos N, et al., 2017, 3D Printed Oral Solid Dosage forms Containing Hydrochlorothiazide for Controlled Drug Delivery. *J Drug Deliv Sci Technol*, 40:164–71. https://doi.org/10.1016/j.jddst.2017.06.008

55. Boetker J, Water JJ, Aho J, et al., 2016, Modifying Release Characteristics from 3D Printed Drug-eluting Products. *Eur J
Three-Dimensional Printing Technologies for Drug Delivery Applications

Pharm Sci, 90:47–52.
https://doi.org/10.1016/j.ejps.2016.03.013

56. Water JJ, Bohr A, Boetker J, et al., 2015, Three-dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material. J Pharm Sci, 104:1099–107.
https://doi.org/10.1002/jps.24305

57. Goyanes A, Fina F, Martorana A, et al., 2017, Development of Modified Release 3D Printed Tablets (printlets) with Pharmaceutical Excipients using Additive Manufacturing. Int J Pharm, 527:21–30.
https://doi.org/10.1016/j.ijpharm.2017.05.021

58. Zhang J, Feng X, Patil H, et al., 2017, Coupling 3D Printing with Hot-melt Extrusion to Produce Controlled-release Tablets. Int J Pharm, 519:186–97.
https://doi.org/10.1016/j.ijpharm.2016.12.049

59. Sadia M, Sośnicka A, Arafat B, et al., 2016, Adaptation of Pharmaceutical Excipients to FDM 3D Printing for the Fabrication of Patient-Tailored Immediate Release Tablets. Int J Pharm, 513:659–68.
https://doi.org/10.1016/j.ijpharm.2016.09.050

60. Li Q, Wen H, Jia D, et al., 2017, Preparation and Investigation of Controlled-release Glipizide Novel Oral Device with Three-dimensional Printing. Int J Pharm, 525:5–11.
https://doi.org/10.1016/j.ijpharm.2017.03.066

61. Vo AQ, Zhang J, Nyavanandi D, et al., 2020, Hot Melt Extrusion Paired Fused Deposition Modeling 3D Printing to Develop Hydroxypropyl Cellulose Based Floating Tablets of Cinnarizine. Carbohydr Polym, 246:116519.
https://doi.org/10.1016/j.carbpol.2020.116519

62. Patel NG, Serajuddin AT, 2021, Development of FDM 3D-Printed Tablets with Rapid Drug Release, High Drug-polymer Miscibility and Reduced Printing Temperature by Applying the Acid-base Supersolubilization (ABS) Principle. Int J Pharm, 600:120524.
https://doi.org/10.1016/j.ijpharm.2021.120524

63. Tabriz AG, Nandi U, Hurt AP, et al., 2021, 3D Printed Bilayer Tablet with Dual Controlled Drug Release for Tuberculosis Treatment. Int J Pharm, 593:120147.
https://doi.org/10.1016/j.ijpharm.2020.120147

64. Khaled SA, Burley JC, Alexander MR, et al., 2014, Desktop 3D Printing of Controlled Release Pharmaceutical Bilayer Tablets. Int J Pharm, 461:105–11.
https://doi.org/10.1016/j.ijpharm.2013.11.021

65. Khaled SA, Burley JC, Alexander MR, et al., 2015, 3D Printing of Tablets Containing Multiple Drugs with Defined Release Profiles. Int J Pharm, 494:643–50.
https://doi.org/10.1016/j.ijpharm.2015.07.067

66. Khaled S, Burley J, Alexander M, et al., 2015, 3D Printing of Five-in-one dose Combination Polypill with Defined Immediate and Sustained Release Profiles. J Controlled Release, 217:308–14.
https://doi.org/10.1016/j.jconrel.2015.09.028

67. Olmos-Juste R, Guaresti O, Calvo-Correas T, et al., 2021, Design of Drug-loaded 3D Printing Biomaterial Inks and Tailor-made Pharmaceutical forms for Controlled Release. Int J Pharm, 609:121124.
https://doi.org/10.1016.j.ijpharm.2021.121124

68. Wang J, Goyanes A, Gaisford S, et al., 2016, Stereolithographic (SLA) 3D Printing of Oral Modified-release Dosage forms. Int J Pharm, 503:207–12.
https://doi.org/10.1016/j.ijpharm.2016.03.016

69. Martínez PR, Goyanes A, Basit AW, et al., 2017, Fabrication of Drug-loaded Hydrogels with Stereolithographic 3D Printing. Int J Pharm, 532:313–7.
https://doi.org/10.1016/j.ijpharm.2017.09.003

70. Chen K, Zeng J, Lin G, 2022, Fabrication of 5-Fluorouracil-loaded Tablets with Hyperbranched Polyester by Digital Light Processing 3D Printing Technology. Eur Polym J, 171:111190.
https://doi.org/10.1016/j.eurpolymj.2022.111190

71. Fina F, Madla C, Goyanes A, et al., 2018, Fabricating 3D Printed Orally Disintegrating Printlets using Selective Laser Sintering. Int J Pharm, 541:101–7.
https://doi.org/10.1016/j.ijpharm.2018.02.015

72. Fina F, Goyanes A, Gaisford S, et al., 2017, Selective Laser Sintering (SLS) 3D Printing of Medicines. Int J Pharm, 529:285–93.
https://doi.org/10.1016/j.ijpharm.2017.06.082

73. Goyanes A, Kobayashi M, Martinez-Pacheco R, et al., 2016, Fused-filament 3D Printing of Drug Products: Microstructure Analysis and Drug Release Characteristics of PVA-based Caplets. Int J Pharm, 514:290–5.
https://doi.org/10.1016/j.ijpharm.2016.06.021

74. Maroni A, Melocchi A, Parietti F, et al., 2017, 3D Printed Multi-compartment Capsular Devices for Two-pulse Oral Drug Delivery. J Controlled Release, 268:10–8.
https://doi.org/10.1016/j.jconrel.2017.10.008

75. Genina N, Janßen E, Breitenbach A, et al., 2013, Evaluation of Different Substrates for Inkjet Printing of Rasagiline Mesylate. Eur J Pharm Biopharm, 85:1075–83.
https://doi.org/10.1016/j.ejpb.2013.03.017

76. Genina N, Fors D, Palo M, et al., 2013, Behavior of Printable Formulations of Loperamide and Caffeine on Different...
Substrates—Effect of Print Density in Inkjet Printing. *Int J Pharm*, 453:488–97. https://doi.org/10.1016/j.ijpharm.2013.06.003
77. Meléndez P, Kane K, Ashvar C, et al., 2008, Thermal Inkjet Application in the Preparation of Oral Dosage Forms: Dispensing of Prednisolone Solutions and Polymeric Characterization by Solid-State Spectroscopic Techniques. *J Pharm Sci*, 97:2619–36. https://doi.org/10.1002/jps.21189
78. Takala M, Helkiö H, Sundholm J, et al., 2012, Ink-jet Printing of Pharmaceuticals. In: 8th International DAAAM Baltic Conference. p.233–9.
79. Wimmer-Teubenbacher M, Planchet H, Pichler H, et al., 2018, Pharmaceutical-grade Oral Films as Substrates for Printed Medicine. *Int J Pharm*, 547:169–80. https://doi.org/10.1016/j.ijpharm.2018.05.041
80. Thabet Y, Lunter D, Breitkreutz J, 2018, Continuous Inkjet Printing of Enalapril Maleate onto Orodispersible Film Formulations. *Int J Pharm*, 546:180–7. https://doi.org/10.1016/j.ijpharm.2018.04.064
81. Boudria S, Hanzel C, Massicotte J, et al., 2016, Randomized Comparative Bioavailability of a Novel Three-dimensional Printed Fast-Melt Formulation of Levetiracetam Following the Administration of a Single 1000-mg Dose to Healthy Human Volunteers Under Fasting and Fed Conditions. *Drugs R D*, 16:229–38. https://doi.org/10.1007/s40268-016-0132-1
82. Jamróz W, Kurek M, Łyszczarz E, et al., 2017, 3D Printed Orodispersible Films with Aripiprazole. *Int J Pharm*, 533:413–20. https://doi.org/10.1016/j.ijpharm.2017.05.052
83. Sjöholm E, Sandler N, 2019, Additive Manufacturing of Personalized Orodispersible Warfarin Films. *Int J Pharm*, 564:117–23. https://doi.org/10.1016/j.ijpharm.2019.04.018
84. He S, Radeke C, Jacobsen J, et al., 2021, Multi-material 3D Printing of Programmable and Stretchable Oromucosal Patches for Delivery of Saquinavir. *Int J Pharm*, 610:121236. https://doi.org/10.1016/j.ijpharm.2021.121236
85. Goyanes A, Det-Amornrat U, Wang J, et al., 2016, 3D Scanning and 3D Printing as Innovative Technologies for Fabricating Personalized Topical Drug Delivery Systems. *J Controlled Release*, 234:41–8. https://doi.org/10.1016/j.jconrel.2016.05.034
86. Muwaffak Z, Goyanes A, Clark V, et al., 2017, Patient-specific 3D Scanned and 3D Printed Antimicrobial Polycaprolactone Wound Dressings. *Int J Pharm*, 527:161–70. https://doi.org/10.1016/j.ijpharm.2017.04.077
87. Wei Y, Li-Tsang CW, Liu J, et al., 2017, 3D-Printed Transparent Facemasks in the Treatment of Facial Hypertrophic Scars of Young Children with Burns. *Burns*, 43:e19–26. https://doi.org/10.1016/j.burns.2016.08.034
88. Azzizoglu E, Ozer O, 2020, Fabrication of Montelukast Sodium Loaded Filaments and 3D Printing Transdermal Patches onto Packaging Material. *Int J Pharm*, 587:119588. https://doi.org/10.1016/j.ijpharm.2020.119588
89. Teoh JH, Tay SM, Fuh J, et al., 2022, Fabricating Scalable, Personalized Wound Dressings with Customizable Drug Loadings via 3D Printing. *J Controlled Release*, 341:80–94. https://doi.org/10.1016/j.jconrel.2021.11.017
90. Sun Y, Ruan X, Li H, et al., 2016, Fabrication of Non-dissolving Analgesic Suppositories using 3D Printed Moulds. *Int J Pharm*, 513:717–24. https://doi.org/10.1016/j.ijpharm.2016.09.073
91. Chatzitaki AT, Tsongas K, Tzimtzimis EK, et al., 2021, 3D Printing of Patient-Tailored SNEDDS-based Suppositories of Lidocaine. *J Drug Deliv Sci Technol*, 61:102292. https://doi.org/10.1016/j.jddst.2020.102292
92. Holländer J, Genina N, Jukarainen H, et al., 2016, Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. *J Pharm Sci*, 105:2665–76. https://doi.org/10.1016/j.xphs.2015.12.012
93. Genina N, Holländer J, Jukarainen H, et al., 2016, Ethylene Vinyl Acetate (EVA) as a New Drug Carrier for 3D Printed Medical Drug Delivery Devices. *Eur J Pharm Sci*, 90:53–63. https://doi.org/10.1016/j.ejps.2015.11.005
94. Tappa K, Jamalamadaka U, Ballard D, et al., 2017, Medication Eluting Devices for the Field of OBGYN (MEOBGFYN): 3D Printed Biodegradable Hormone Eluting Constructs, a Proof of Concept Study. *PLoS One*, 12:e0182929. https://doi.org/10.1371/journal.pone.0182929
95. Eder S, Wiltschko L, Koutsamanis I, et al., 2022, Toward a New Generation of Vaginal Pessaries via 3D-printing: Concomitant Mechanical Support and Drug Delivery. *Eur J Pharm Biopharm*, 174:77–89. https://doi.org/10.1016/j.ejpb.2022.04.001
96. Indurkhya A, Patel M, Sharma P, et al., 2018, Chapter 6 Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. *Adv Pharm Prod Dev Res*, i:179–223. https://doi.org/10.1016/B978-0-12-814423-7.00006-X
97. Kim YC, Park JH, Prausnitz MR, 2012, Microneedles for Controlled Release Drug Administration on the Design of Controlled Release System. *Adv Pharm Prod Dev Res*, i:179–223. https://doi.org/10.1016/B978-0-12-814423-7.00006-X
Three-Dimensional Printing Technologies for Drug Delivery Applications

Drug and Vaccine Delivery. *Adv Drug Deliv Rev*, 64:1547–68. https://doi.org/10.1016/j.addr.2012.04.005

98. Pere CP, Economidou SN, Lall G, et al., 2018, 3D Printed Microneedles for Insulin Skin Delivery. *Int J Pharm*, 544:425–32. https://doi.org/10.1016/j.ijpharm.2018.03.031

99. Lim S, Ng J, Kang L, 2017, Three-dimensional Printing of a Microneedle Array on Personalized Curved Surfaces for Dual-pronged Treatment of Trigger Finger. *Biofabrication*, 9:015010. https://doi.org/10.1088/1758-5090/9/1/015010

100. Uddin M, Scoutaris N, Klepetsanis P, et al., 2015, Inkjet Printing of Transdermal Microneedles for the Delivery of Anticancer Agents. *Int J PharM*, 494:593–602. https://doi.org/10.1016/j.ijpharm.2015.01.038

101. Gittard S, Ovsianikov A, Akar H, et al., 2010, Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles. *Adv Eng Mater*, 12:B77–82. https://doi.org/10.1002/adem.200980012

102. Gittard S, Miller P, Jin C, et al., 2011, Deposition of Antimicrobial Coatings on Microstereolithography-fabricated Microneedles. *JOM*, 63:59–68. https://doi.org/10.1007/s11837-011-0093-3

103. Shin D, Hyun J, 2021, Silk Fibroin Microneedles Fabricated by Digital Light Processing 3D Printing. *J Ind Eng Chem*, 95:126–33. https://doi.org/10.1016/j.jiec.2020.12.011

104. Johnson A, Caudill C, Tumbleston J, et al., 2016, Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production. *PLoS One*, 11:e0162518. https://doi.org/10.1371/journal.pone.0162518

105. Wu W, Zheng Q, Guo X, et al., 2009, A programmed Release Multi-drug Implant Fabricated by Three-dimensional Printing Technology for Bone Tuberculosis Therapy. *Biomed Mater*, 4:065005. https://doi.org/10.1088/1748-6041/4/6/065005

106. Wu W, Zheng Q, Guo X, et al., 2009, The Controlled-releasing Drug Implant Based on the Three Dimensional Printing Technology: Fabrication and Properties of Drug Releasing in Vivo. *J Wuhan Univ Technol Mater Sci Ed*, 24:977–81. https://doi.org/10.1007/s11595-009-6977-1

107. Wu G, Wu W, Zheng Q, et al., 2014, Experimental Study of PLLA/INH Slow Release Implant Fabricated by Three Dimensional Printing Technique and Drug Release Characteristics in vitro. *BioMed Eng Online*, 13:97. https://doi.org/10.1186/1475-925X-13-97

108. Wu W, Ye C, Zheng Q, et al., 2016, A Therapeutic Delivery System for Chronic Osteomyelitis via a Multi-drug Implant Based on Three-dimensional Printing Technology. *J Biomater Appl*, 31:250–60. https://doi.org/10.1177/0885328216640660

109. Sandler N, Salmela I, Fallarero A, et al., 2014, Towards Fabrication of 3D Printed Medical Devices to Prevent Biofilm Formation. *Int J Pharm*, 459:62–4. https://doi.org/10.1016/j.ijpharm.2013.11.001

110. Ballard D, Weisman J, Jammalamadaka U, et al., 2017, Three-dimensional Printing of Bioactive Hernia Meshes: *In vitro* Proof of Principle. Surgery, 161:1479–81. https://doi.org/10.1016/j.surg.2016.08.033

111. Weisman IA, Jammalamadaka U, Tappa K, et al., 2015, 3D Printing Antibiotic and Chemotherapeutic Eluting Catheters and Constructs. *J Vasc Interv Radiol*, 26:S12. https://doi.org/10.1016/j.jvir.2014.12.040

112. Misra SK, Ostadhossein F, Babu R, et al., 2017, 3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite. *Adv Healthc Mater*, 6:1700008. https://doi.org/10.1002/adhm.201700008

113. Cui M, Hu N, Fang D, et al., 2022, Fabrication and Evaluation of Customized Implantable Drug Delivery System for Orthopedic Therapy Based on 3D Printing Technologies. *Int J Pharm*, 618:121679. https://doi.org/10.1016/j.ijpharm.2022.121679

114. Zhu M, Wang H, Liu J, et al., 2011, A Mesoporous Silica Nanoparticulate/B-TCP/BG Composite Drug Delivery System for Osteoarticular Tuberculosis Therapy. *Biomaterials*, 32(7), 1986–95. https://doi.org/10.1016/j.biomaterials.2010.11.025

115. Zhang J, Zhao S, Zhu M, et al., 2014, 3D-printed Magnetic Fe3O4/MBG/PCL Composite Scaffolds with Multifunctionality of Bone Regeneration, Local Anticancer Drug Delivery and Hyperthermia. *J Mater Chem B*, 2:7583–95. https://doi.org/10.1039/C4TB01063A

116. Min Z, Shichang Z, Chen X, et al., 2015, 3D-printed Dimethylxallyl Glycine Delivery Scaffolds to Improve Angiogenesis and Osteogenesis. *Biomater Sci*, 3:1236–44. https://doi.org/10.1039/C5BM00132C

117. Ahlfeld T, Akkeni A, Förster Y, et al., 2016, Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel. *Ann Biomed Eng*, 45:224–36.
118. Cui M, Pan H, Li L, et al., 2021, Exploration and Preparation of Patient-specific Ciprofloxacin Implants Drug Delivery System Via 3D Printing Technologies. J Pharm Sci, 110:3678–89. https://doi.org/10.1016/j.xphs.2021.08.004

119. Cui M, Pan H, Fang D, et al., 2022, 3D Printed Personalized Amikacin Sulfate Local Drug Delivery System for Bone Defect Therapy. J Drug Deliv Sci Technol, 70:103208. https://doi.org/10.1016/j.jddst.2022.103208

120. Maher S, Kaur G, Lima-Marques L, et al., 2017, Engineering of Micro-to Nanostructured 3D-Printed Drug-Releasing Titanium Implants for Enhanced Osseointegration and Localized Delivery of Anticancer Drugs. ACS Appl Mater Interfaces, 9:29562–70. https://doi.org/10.1021/acsami.7b09916

121. Parry JA, Olthof MG, Shogren KL, et al., 2017, Three-Dimension-Printed Porous Poly (Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation. Tissue Eng Part A, 23:359–65. https://doi.org/10.1089/ten.tea.2016.0343

122. Huang W, Zheng Q, Sun W, et al., 2007, Levofloxacin Implants with Predefined Microstructure Fabricated by Three-dimensional Printing Technique. Int J Pharm, 339:33–8. https://doi.org/10.1016/j.ijpharm.2007.02.021

123. Xu X, Goyanes A, Trenfield SJ, et al., 2021, Stereolithography (SLA) 3D Printing of a Bladder Device for Intravesical Drug Delivery. Mater Sci Eng C Mater Biol Appl, 120:111773. https://doi.org/10.1016/j.msec.2020.111773

124. Soetedjo AA, Lee JM, Lau HH, et al., 2021, Tissue Engineering and 3D Printing of Bioartificial Pancreas for Regenerative Medicine in Diabetes. Trends Endocrinol Metab, 32:609–22. https://doi.org/10.1016/j.tem.2021.05.007

125. Dhavalikar P, Lan Z, Kar R, et al., 2020, 1.4.8-Biomedical Applications of Additive Manufacturing. Biomater Sci (Fourth Ed), 623–39. https://doi.org/10.1016/B978-0-12-816137-1.00040-4

126. Barua R, Datta S, Roychowdhury A, et al., 2019, “Importance of 3D printing technology in medical fields”. In: Zindani D, Paulo J, Kumar DK, editors. Additive Manufacturing Technologies From an Optimization Perspective. United States: IGI Global. p21–40. https://doi.org/10.4018/978-1-5225-9167-2.ch002

127. Seoane-Viano I, Trenfield SJ, Basit AW, et al., 2021, Translating 3D Printed Pharmaceuticals: From Hype to Real-world Clinical Applications. Adv Drug Deliv Rev, 174:553–75. https://doi.org/10.1016/j.addr.2021.05.003

128. Kalyan BG, Kumar L, 2022, 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech, 23:92. https://doi.org/10.1208/s12249-022-02242-8

129. Morrison RJ, Kashlan KN, Flanagan CL, et al., 2015, Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices. Clin Transl Sci, 8:594–600. https://doi.org/10.1111/cts.12315

130. Mohapatra S, Kar RK, Biswal PK, et al., 2022, Approaches of 3D Printing in Current Drug Delivery. Sensors Int, 3:100146. https://doi.org/10.1016/j.sintl.2021.100177

131. Varghese R, Sood P, Salvi S, et al., 2022, 3D Printing in the Pharmaceutical Sector: Advances and Evidences. Sensors Int, 3:100177. https://doi.org/10.1016/j.sintl.2022.100120

132. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization Based Bioprinting-process, Materials, Applications and Regulatory Challenges. Biofabrication, 12:022001. https://doi.org/10.1088/1758-5090/ab6034

133. Smith J, Shanler M, 2021, Hype Cycle for Life Science Research and Development, 2021. Stamford: Gartner Research. p1–128.

134. Ong JJ, Muniz B, Gaissford S, et al., 2022, Accelerating 3D Printing of Pharmaceutical Products using Machine Learning. Int J Pharm, 4:100120. https://doi.org/10.1016/j.ijpharm.2022.100120

135. Yu C, Jiang J, 2020, A Perspective on using Machine Learning in 3D Bioprinting. Int J Bioprint, 6:253. https://doi.org/10.18063/ijb.v6i1.253

136. Lao W, Li M, Wong TN, et al., 2020, Improving Surface Finish Quality in Extrusion-based 3D Concrete Printing using Machine Learning-based Extrudate Geometry Control. Virtual Phys Prototyp, 15:178–93.

137. Ng WL, Chan A, Ong YS, et al., 2020, Deep Learning for Fabrication and Maturation of 3D Bioprinted Tissues and Organs. Virtual Phys Prototyp, 15:340–58.

138. Sing SL, Kuo CN, Shih CT, et al., 2021, Perspectives of using Machine Learning in Laser Powder Bed Fusion for Metal Additive Manufacturing. Virtual Phys Prototyp, 16:372–86.

139. Lyu J, Manoochehri S, 2021, Online Convolutional Neural
Network-based Anomaly Detection and Quality Control for Fused Filament Fabrication Process. *Virtual Phys Prototyp*, 16:160–77.

140. An J, Chua CK, Mironov V, 2021, Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin. *Int J Bioprint*, 7:342.
https://doi.org/10.18063/ijb.v7i1.342

141. Fu Z, Angeline V, Sun W, 2021, Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation. *Int J Bioprint*, 7:434.
https://doi.org/10.18063/ijb.v7i4.434

142. Dong G, Yeong WY, 2022, Applications of Machine Learning in 3D Printing. *Mater Today Proceed*, 54:2214–7853.
https://doi.org/10.1016/j.matpr.2022.08.551

143. Rahmani S, Ozcan O, Tasoglu S, 2022, Machine Learning-Enabled Optimization of Extrusion-Based 3D printing. *Methods*, 206:27–40.
https://doi.org/10.1016/j.ymeth.2022.08.002

144. Elbadawi M, McCoubrey LE, Gavins FK, et al., 2021, Disrupting 3D Printing of Medicines with Machine Learning. *Trends Pharmacol Sci*, 42:745–57.
https://doi.org/10.1016/j.tips.2021.06.002

145. Simões MF, Silva G, Pinto AC, et al., 2020, Artificial Neural Networks Applied to Quality-by-Design: From Formulation Development to Clinical Outcome. *Eur J Pharm Biopharm*, 152:282–95.
https://doi.org/10.1016/j.ejpb.2020.05.012

146. Sarabi MR, Alseed MM, Karagoz AA, et al., 2022, Machine Learning-enabled Prediction of 3D-printed Microneedle Features. *Biosensors*, 12:491.
https://doi.org/10.3390/bios12070491

147. Ahmed A, Arya S, Gupta V, et al., 2021, 4D Printing: Fundamentals, Materials, Applications and Challenges. *Polymer*, 228:123926.
https://doi.org/10.1016/j.polymer.2021.123926

148. Chua CK, 2020, Publication Trends in 3D Bioprinting and 3D Food Printing. *Int J Bioprint*, 6:257.
https://doi.org/10.18063/ijb.v6i1.257

Publisher’s note

Whioce Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.