Hepatic microsomal cytochrome P-450 from phenobarbital-pretreated rats is inactivated during the metabolism of linear olefins (ethylene, propene, and octene) and acetylenes (acetylene, propyne, and octyne). As expected from previous work, the inactivation is due to N-alkylation of the prosthetic heme group by the substrate. The N-alkyl group in each adduct is formally obtained by addition of a porphyrin nitrogen to the terminal carbon and of an oxygen atom (as a hydroxyl function) to the internal carbon of the \(\sigma \)-bond. The oxygen is shown here by \(^{18}O \) studies to be catalytically introduced by the enzyme. The olefins exclusively alkylate the nitrogen of pyrrole ring D, but the acetylenes alkylate that of pyrrole ring A. Acetylene is an exception in that it reacts with more than one nitrogen.

The mechanism by which cytochrome P-450 transfers acetyl and addsucts to the internal carbon of the \(\sigma \)-bond and of the ring D regioisomer of N-ethylprotoporphyrin IX obtained by alklylation of the prosthetic heme of hemoglobin have been used to determine which face of cytochrome P-450 heme is alkylated by the unsaturated substrates. These results implicate an active site that is sterically encumbered in the region over pyrrole ring B and has a lipophilic binding site that accommodates chains of at least six carbon atoms over pyrrole ring C.

The use of heme alkyl alkylation to probe the topology and mechanism of cytochrome P-450 is suggested by our finding that the prosthetic heme of the phenobarbital-inducible rat enzyme is alkylated during catalytic turnover of terminal olefins and acetylenes (4–7). Heme alkyl alkylation by olefins and acetylenes involves addition of an oxygen atom to one carbon of the \(\sigma \)-bond and of a heme pyrrole nitrogen to the other. The N-alkyl group in the resulting adducts, which are isolated as the iron-free N-alkylprotoporphyrin IX derivatives, is a 2-hydroxyethyl function in the case of ethylene (4) and a 2-oxopropyl moiety in the case of propyne (5). The advantages of prosthetic heme alkyl alkylation as a probe of the enzyme are that (a) the heme, as an integral component of the active site, by definition does not perturb the normal catalytic sequence, (b) the heme provides an absolute set of coordinates within the active site to which topological data can be related, and (c) the heme, because of its intimate involvement with the catalytic process, provides “real time” information on the fleeting events occurring during catalysis. The use of prosthetic heme in this context requires that heme alkyl alkylation occur during, rather than subsequent to, the catalytic event. The alkyl alkylation reaction that accompanies the metabolism of terminal olefins and acetylenes, according to various lines of evidence, fulfills this condition (see introduction to the accompanying article) (8). Prosthetic heme alkyl alkylation has recently provided evidence in support of a nonconcerted, probably free radical, mechanism for olefin epoxidation (6, 8). The use of heme alkyl alkylation to investigate the orientation of substrates in the active site, suggested by our finding that propyne reacts almost exclusively with the nitrogen of pyrrole ring A (5) but ethylene with that of either pyrrole ring C or D, is reported here (4). We have determined (a) the origin of the oxygen atom incorporated into the porphyrin adducts, (b) the absolute stereochemistry of the adduct obtained with ethylene, and (c) the regiochemistry of heme alklylation by three olefins and three acetylenes. The results confirm that the enzyme catalytically initiates alklylation of its own prosthetic heme, establish which face of heme reacts with the substrates, and define key elements of the active site topology.

The trivial name and abbreviation used are: heme, iron protoporphyrin IX regardless of the iron oxidation state; DDEP, 3,5-bis(carbethoxy)-2,6-dimethyl-1,4-dihydropyridine.
RESULTS

Octene, octyne, and propene decrease the concentration of cytochrome P-450 when incubated with hepatic microsomes from phenobarbital-pretreated rats. The time-dependent decrease in spectrophotometrically measured cytochrome P-450 is essentially complete within 30 min. The total cytochrome P-450 content was reduced at this time by 22 ± 2.3 ± 6 and 32 ± 1%, respectively. Enzyme loss is prevented by omissions of either NADPH or the substrate from the incubation mixture.

Treatment of phenobarbital-induced rats with octene (500 mg/kg), octyne (500 mg/kg), and propene (40% in air) resulted in the accumulation of abnormal liver porphyrins. The porphyrins were converted to their metal-free dimethyl esters by treatment with acidic methanol and were extracted and purified by thin layer and high pressure liquid chromatography according to previously developed protocols (4, 5). Each porphyrin migrated as a single band or peak during the multiple purification steps. The electronic absorption spectra of the porphyrins, both in the metal-free and zinc-complexed state, were characteristic of N-alkylporphyrin derivatives (Amax free base: 418, 012, 546, 592, and 652 nm; zinc complex: 546, 592, and 630 nm). A long wavelength shoulder on the Soret band was only observed with the zinc complex of the porphyrin obtained with octyne.

The molecular ion (MH+) in the field desorption mass spectrum of each of the metal-free porphyrins (propene adduct, m/e 549; octene adduct, m/e 719; octyne adduct, m/e 717) corresponds, as found before with ethylene and propyne (4, 5), to the sum of the molecular weights of the dimethyl ester of protoporphyrin IX plus the deuterated agent plus an oxygen atom. The source of the oxygen atom, however, has remained unknown. The ethylene adduct has therefore been generated in vitro under an atmosphere highly enriched in 18O2. The resulting adduct was purified by the standard procedure and was compared by field desorption mass spectrometry with the porphyrin previously obtained from ethylene-treated rats (4). The mass spectra of the two samples were obtained on the same day and with the same emitter to minimize instrumental variables (Table I, Miniprint). The porphyrin obtained in vitro has the expected molecular ion at m/e 634 and monoprotonated molecular ion at m/e 635, but the porphyrin obtained in the incubation with 18O2 exhibits a large monoprotonated molecular ion at m/e 637 with the attendant isotope peak at 638 and only a minor peak at m/e 635. The ratio of protonated to unprotonated molecular ions for N-alkylporphyrins has been found to be highly variable (12). The two mass unit difference observed here nevertheless clearly establishes that approximately 85% of the porphyrin is labeled with 18O2. The 15% of unlabeled oxygen incorporated into the adduct is not unexpected because the gentle purging required to maintain enzyme activity is not sufficient to remove all the dissolved oxygen from the incubation mixture.

Alkylation of prosthetic heme by ethylic, acetylic, and propylic involves formal addition of oxygen to one end of the s-bond and of a heme pyrrole nitrogen to the other (4-6). This reaction pattern could give rise in the present instance to a total of eight distinct porphyrins (not counting stereoisomers) if each of the four nonidentical nitrogens reacts with the two ends of the asymmetric s-bond. The 350 MHz NMR spectra of the zinc-complexed octene, octyne, and propene adducts (Fig. 1, Miniprint), however, clearly establish that essentially none of the adduct was actually formed in each instance. The formation at best of traces (approximately 5%) of other isomers is indicated by the presence of essentially only one set of signals for each proton. The observed adducts result from addition of a nitrogen to the terminal carbon of the s-bond. The spectrum of the octyne adduct, for example, exhibits the 2-proton singlet at -4.37 ppm expected for terminal N-alkylation rather than the one-proton multiplet expected for the internal alkylation product. Terminal N-alkylation is likewise confirmed for the octene and propene adducts by the presence of two-proton multiplets in the appropriate region of their NMR spectra (Fig. 1).

The N-alkyl proton signals in each spectrum have been identified by spin decoupling experiments. Irradiation of the multiplet at -5 ppm in the ABMx5 spin system of the N-(2-hydroxypropyl) moiety in the propyne adduct (11) has no effect on the doublet at -1.3 ppm, but causes subtle changes in the 0.9 ppm region. Irradiation of this region reduces the methyl doublet at -1.3 ppm to a singlet and the 8-line methylene proton pattern at -5 ppm to 4 lines. The methylene protons therefore are nonequivalent and geminally coupled (Jgem = 15 Hz). The different vicinal coupling constants of the two methylene protons with the methine proton (Jmeth = 2 and 7 Hz) indicate that rotation about the carbon-carbon bond is slow on the NMR time scale at room temperature. Similar results are obtained with the octene adduct (see Ref. 8). The remaining alkyl group proton signals for the octene and octyne pigments are identified in Table II (see Miniprint). The presence of two chiral centers in the olefin adducts make each set of methylene protons, including those of the propionate side chains, diastereotopic. The C-3 and C-4 pairs of methylene protons of the N-alkyl group in the octene adduct are sufficiently dissimilar to be resolved in the NMR spectrum.

The porphyrins isolated here from rats treated with propene, octene, and octyne, like those previously obtained with ethylene (4) and propyne (5), result from highly regioselective alkylation of a single pyrrole nitrogen. A technique has been developed to assign such isomers (11) and has been used to identify the nitrogen alkylated by propyne (5). The method hinges on the fact that an N-alkyl group on a porphyrin pyrrole ring causes the signals associated with the peripheral substituents of that ring to appear at higher field in the NMR spectrum relative to their position when on a nonalkylated ring. This reflects the different relationship of the substituents relative to the porphyrin ring current brought about by the associated tilting of the alkyld ring. The two internal vinyl protons of the octyne adduct, each a 4-line signal due to spin coupling with the terminal vinyl protons, differ in chemical shift by 0.3 ppm, while the same protons in the octene, propyne, and ethylene (4) adducts differ by only 0.06 ppm (Fig. 1). Conversely, the four methylene protons adjacent to the porphyrin ring (4.0-4.4 ppm) are chemical shift equivalent in the spectrum of the octyne adduct, as are the four methylene protons adjacent to the propionate carboxyl groups (3.0 to 3.3 ppm), but these protons are widely separated in the spectra of the three olefin adducts. The octyne adduct therefore bears the N-alkyl group on either ring A or B (the vinyl-substituted rings), whereas the olefin adducts are alkylated on either ring C or D (the rings with propionic acid side chains).

In order to differentiate between rings A and B or C and D it is necessary to specifically assign the six methyl and four meso proton signals in each spectrum (11). This is done by

2 Portions of this paper (including "Materials and Methods," Tables I and II, and Figs. 1-3) are presented in miniprint at the end of this paper. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are available from the Journal of Biological Chemistry, 9650 Rockville Pike, Bethesda, MD 20814. Request Document No. 82M-2726, cite authors, and include a check or money order for $3.20 per set of photocopies. Full size photocopies are also included in the microfilm edition of the Journal that is available from Waverly Press.
defining a unique set of structural connectivities based on the fact that (a) nuclear Overhauser enhancement of meso proton signals is observed when adjacent methyl, internal vinyl, or benzyl methylene protons are irradiated, and (b) the γ meso proton has a shorter T1 than the other three meso protons, whereas the two methoxy group protons relax more slowly than the ring methyls. The identification of the nitrogen alkylated by ethylene, the most difficult of the examples in this study, is outlined below to illustrate the logic involved. The γ meso proton at 10.322 ppm (Fig. 2, Miniprint) in the NMR spectrum of the ethylene adduct (the full spectrum has been published) is identified by its short T1 (Table II, Miniprint) and by the enhancement of its intensity upon irradiation of the benzyl methylene protons at 4.3 ppm. One ester methyl (3.705 ppm) is identified by its long T1 (Table II) and the other (3.555 ppm), which overlaps with a ring methyl signal, by integration. Further assignments are hampered by the fact that two of the remaining meso proton signals are superimposed (Fig. 2). Irradiation of three separate methyls enhances the signal due to the overlapping meso protons. One of the two protons in question must therefore be at the δ meso position. Sequential spin decoupling of each set of methyl group protons to determine which ones are spin-coupled (at 0.8Hz) to internal vinyl protons identifies the 1 and 3 methyls. A distinct sharpening of the 4-line signal due to an internal vinyl proton is observed when these two methyls are decoupled (middle two spectra, Fig. 3). Because a nuclear Overhauser enhancement of the overlapping meso proton signal was observed when the now identified 1- and 3-methyl protons were irradiated, the overlapping protons must be those at the α and δ meso positions. The remaining meso proton (10.236 ppm), by difference, is that at the β position. This is confirmed by enhancement of its signal when the internal vinyl protons are irradiated. Since the β meso proton is flanked by the 5-methyl group, the dipolar coupling observed in the nuclear Overhauser experiment between the two assignments (3.555 ppm). The 8-methyl group (3.388 ppm) can then be identified because it is the only methyl group not yet assigned. Irradiation at 8.17 ppm (differential irradiation of the two internal vinyl protons was not possible) more strongly enhanced the β than the α meso proton signal. Irradiation at 8.22 ppm, on the other hand, more strongly enhanced the α signal. The vinyl proton dipolar coupled to the β meso proton is therefore the one centered at 8.17 ppm (that on the 4-vinyl). The 3-methyl group on the same ring as the 4-vinyl is then located by spin decoupling. The final complete meso end methyl assignments are given in Table II. The porphyrins obtained with octyne, octene, and propyne were similarly analyzed. The results of these experiments are also given in Table II. It was not necessary to examine the coupling of the internal vinyl and meso protons in the propene and octene adducts, nor the existence of spin coupling between the internal vinyl and methyl protons in the octyne adduct, to make the assignments.

A single methyl group signal is shifted upfield (Table II) relative to its expected position in each of the adducts. The range of chemical shifts for the 3- and 6-methyl signals are essentially invariant but the 1-methyl signal of the octyne adduct is approximately 0.2 ppm upfield from its position in the other three porphyrins. The octyne adduct therefore is alkylated on ring A (Fig. 4). The 8-methyl signals of the three olefin adducts likewise occur at significantly higher field (0.15 ppm) than the 8-methyl signal of the octyne adduct (or of the three isomers of N-methylprotoporphyrin IX not alkylated on ring D) (11). The three olefin adducts therefore are alkylated on ring D (Fig. 4).

![Diagram](http://www.jbc.org/)

The circular dichroism spectrum of the zinc-complexed dimethyl ester of the ethylene adduct exhibits bands of the same sign and at the same positions as those in the spectrum of the ring D isomer of chlorozinc N-ethylprotoporphyrin IX from DDEP-treated rats. The spectra were recorded in CH3Cl.

DISCUSSION

Oxidation of terminal olefins by the reactive iron-coordinated species of atomic oxygen produced by catalytic turnover of cytochrome P-450 results in epoxide formation and heme N-alkylation. Heme alkylation, like olefin epoxidation, requires catalytic turnover of the enzyme in the presence of NADPH and oxygen (7), is inhibited by carbon monoxide and SKF-525A (7), and, as shown here (Table I), results in incorporation of 1 atom of molecular oxygen into the N-alkyl group of the heme adduct. The parallels between epoxidation and heme alkylation argue that both reactions spring from interaction of the olefin with a single (or very closely related) activated oxygen species. This mechanistic analogy underlies the use of heme alkylation as a probe of the mechanism by which cytochrome P-450 oxidizes α-bonds. Of particular topological relevance is the fact that catalytic incorporation of molecular oxygen into the olefin-derived N-alkyl group constrains the spatial relationship of the olefin relative to the prosthetic heme group during the reaction because the internal carbon of the unsaturated bond must be juxtaposed with...
the activated oxygen that initiates the reaction.

The structures of the propene, octene, and octyne prosthetic heme adducts are formally obtained by addition of an oxygen (as a hydroxyl group) to the inside carbon of the σ-bond and of a nitrogen from the protoporphyrin IX framework of heme to the terminal carbon (Fig. 4). These structures, in conjunction with those of the ethylene (4), acetylene (6), and propyne (5) adducts, clearly establish that reaction of the heme nitrogen with the terminal (unsubstituted) carbon of the σ-bond is overwhelmingly favored. High regiospecificity is also observed with respect to the nitrogen of the heme that is alkylated. The three olefins (ethylene, propene, and octene) react almost exclusively with the nitrogen of pyrrole ring D but the two terminal acetylenes (propyne and octyne) react with that of pyrrole ring A (Fig. 4). Only acetylene, among the linear unsaturated hydrocarbons so far tested, is not highly regiospecific and alkylates at least two of the six carbons of each terminal acetylene (sp² going to sp³) places the hydrocarbon chain in the region over pyrrole ring C.

In order to translate the regiochemical data into a specific active site geometry, it is necessary to know on which side of the prosthetic heme group oxygen activation and prosthetic heme alkylation occur. Heme is a prochiral molecule that gives rise to enantiomeric configurations when the two coordination sites on the iron are differentially occupied. We have recently used the circular dichroism spectra of the ring C isomers of N-ethylprotoporphyrin IX obtained from reaction of cytochrome P-450 with DDEP (16) and of hemoglobin with ethylhydrazine (14) to establish that the prosthetic hemes in the two proteins have the same orientation relative to the fifth iron ligand. Analogous comparison of the ethylene adduct (alkylated on ring D) with the corresponding isomer of N-ethylprotoporphyrin IX (Fig. 5) shows that the olefin reacts with the same face of heme as DDEP. A model of the active site that incorporates the absolute geometry of the prosthetic heme, the presence of a steric constraint over pyrrole ring B, and the presence of a lipophilic channel over pyrrole ring C, is given in Fig. 6.

The regiochemistry of prosthetic heme alkylation by one branched acetylene, 1-chloro-3-ethyl-1-penten-4-yn-3-ol (ethchlorvynol), is known (13). This sedative hypnotic reacts with at least three of the pyrrole nitrogens, including those of rings A and B. If the same cytochrome P-450 isozyme is inactivated by ethchlorvynol as by unbranched acetylenes, a fact that remains to be established, the active site structure must permit a much lower alkylation regiospecificity when “globular” rather than unbranched substrates are involved. The regiospecificity observed with propyne and octyne is difficult to reconcile, in fact, with metabolism of ethchlorvynol by the same hemoprotein unless the active site has some conformational flexibility. The constraints on reactions in one conformation are unlikely to be the same as those in another. A conformationally flexible active site would not be surprising for a catalytic system as complicated and promiscuous as cytochrome P-450 in view of the fact that even myoglobin, a dedicated monofunctional hemoprotein, apparently undergoes active site conformational breathing (17).

The active site model proposed here predicts that heme alkylation should result from oxidation of the re face of the double bond in 1-octene, the exposed face when the internal carbon is fixed over the iron and the terminal carbon is over pyrrole ring D. The stereochemical studies reported in the accompanying paper confirm this prediction and furthermore establish that the opposite (si) face of the olefin can be oxidized but does not result in heme alkylation, a result consistent with the proposed active site structure (8).

The model formulated for the active site leaves unexplained the fact that ethylene does not detectably alkylate the nitrogen of pyrrole ring C. The absence of ring C alkylation by olefins larger than ethylene is readily explained because this would involve intrusion of their substituents into the sterically
encumbered pyrrole ring A/B region, but the failure of ethylene to react cannot be explained in the same manner. The model proposed here also does not explicitly incorporate regionochemical imperatives defined by the still unknown detailed mechanism of the epoxidation reaction. The regionochemical specificity, for example, may be affected if alklylation by acetylenes involves an iron-carbene intermediate or if that mediated by olefins proceeds through an intermediate in which the iron is simultaneously bound to the oxygen and to the terminal carbon of the original σ-bond (7). It is to be hoped that future refinements of the active site model, which is consistent with all of the information now available, will confirm its validity and improve its predictive value.

REFERENCES

1. Jerina, D. M., Michaud, D. P., Feldman, R. J., Armstrong, R. N., Vyas, K. P., Thakker, D. R., Yagi, H., Thomas, P. E., Ryan, D. E., and Levin, W. (1982) in Microsomes, Drug Oxidations, and Drug Toxicity (Sat0, R., and Kato, R., eds) pp. 195-201, Wiley-Interscience, New York.
2. Yagi, H., and Jerina, D. M. (1982) J. Am. Chem. Soc. 104, 4026-4027.
3. Imai, Y. (1982) J. Biochem. (Tokyo) 92, 77-88.
4. Ortiz de Montellano, P. R., Beilan, H. S., Kunze, K. L., and Mico, B. A. (1981) J. Biol. Chem. 256, 4393-4399.

The Chromophore P-450 Adsorbs Ether. Effect of the Length of Alkylnyls in the Phospholipid Bilayer on the P-450 Chromophore.

Knut L. Kunze, Morrie L. S. Wang, J., Conrad Wheeler, Hal S. Beilan, and Paul R. Ortiz de Montellano.

MATERIALS AND METHODS

The following chemicals were used without further purification except for octane, which was distilled prior to use: octane (Alrich Chem., Co.), octylene (Farchan Division, Story Chem. Co.); propene and cyclohexene (Matheson Chem. Co., 95% Grade, Matheson; Co.); propene and acetylene (Aldrich Chem. Co.).

In vivo studies were performed on male Sprague-Dawley rats weighing 150-200 g. Anaesthesia was induced by intraperitoneal injection of sodium pentobarbitol (60 mg/kg body weight). The animals were sacrificed after 4 hours by exsanguination through the abdominal aorta. The livers were homogenized in 0.1 M potassium phosphate buffer (pH 7.4) containing 20% glycerol and 0.5 M Tris (pH 7.4) in a 1:1 mixture of hexane and tetrahydrofuran. Terpyridylporphyrin was added to the homogenate under an atmosphere of nitrogen immediately prior to use.

The Chromophore P-450 Destruction In Vivo. Detailed protocols have been reported for the isolation of hepatic microsomes and for the spectrophotometric measurement of time and wavelength dependent loss of chromophore P-450 (9). Microsomes from sodium phenobarbital-treated (50 mg/kg) male Sprague-Dawley rats were used in these experiments. Incubation mixtures contained microsomal protein (7 mg/ml), KC1 (10 mm), EDTA (1.5 mm), and NADPH (1.2 mm); in 0.1 M potassium phosphate buffer (pH 7.4). Purified microsomes were added to the incubation mixture 10 min prior to initiation of the reaction. After 15 min, the mixture was placed on ice and the incubation mixture was frozen in a closed system at a concentration of 38 in all at a flow rate of 100 ml/min. A 15 min preincubation period was added before NADPH was added. The enzymes tested (as a percent of the original concentrations) were the ethers of three independent runs.

Isolation of Prosthetic Heme Adducts Formed In Vivo. Octane and octylene (50 mg/kg) were administered to phenobarbital-induced rats by i.p. injection. Propene was administered by placing rats in a chamber containing propene. After sacrifice, the livers were homogenized in 0.1 M potassium phosphate buffer (pH 7.4) containing 20% glycerol and 0.5 M Tris (pH 7.4) in a 1:1 mixture of hexane and tetrahydrofuran. The homogenate was removed and left overnight in the dark. The resulting dimethylated porphyrins were washed and purified as described above. The experiments were performed by this last procedure on rats in ethylene addition to 32 bimolecular pairs (cis, trans, Z, Z) and then with 0.0 to remove ethylene imperatives and phasem, was stored over 3. Conditions for the nucleic overhandout of T. experiments have been reported (9, 11). Circular dichroism spectra were recorded in methylene chloride on a Jasco J-5001 at 21°C (in cells)

were chromatographed on a 1 x 40 cm silicic columns. TLC, and glc were used to identify the adducts.

5. Ortiz de Montellano, P. R., and Kunze, K. L. (1981) Biochemistry 20, 7266-7271.
6. Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S., and Wheeler, C. E. (1982) Biochemistry 21, 1331-1339.
7. Ortiz de Montellano, P. R. (1983) in Bioactivation of Foreign Compounds (Anders, M. W., ed) Academic Press, New York, in press.
8. Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O. (1983) J. Biol. Chem. 258, 4208-4213.
9. Ortiz de Montellano, P. R., Mico, B. A., Mathews, J. M., Kunze, K. L., Miwa, G. T., and Lu, A. Y. H. (1981) Arch. Biochem. Biophys. 210, 717-728
10. Ortiz de Montellano, P. R., and Mico, B. A. (1980) Mol. Pharmacol. 18, 128-135.
11. Kunze, K. L., and Ortiz de Montellano, P. R. (1981) J. Am. Chem. Soc. 103, 4225-4230.
12. Ortiz de Montellano, P. R., and Kunze, K. L. (1980) J. Biol. Chem. 255, 5578-5585.
13. Ortiz de Montellano, P. R., Beilan, H. S., and Mathews, J. M. (1981) J. Med. Chem. 25, 1174-1179.
14. Augusto, O., Kunze, K. L., and Ortiz de Montellano, P. R. (1982) J. Biol. Chem. 257, 6231-6241.
15. Ortiz de Montellano, P. R., and Kunze, K. L. (1981) J. Am. Chem. Soc. 103, 6534-6536.
16. Ortiz de Montellano, P. R., Beilan, H. S., and Kunze, K. L. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1490-1494.
17. Caughey, W. S., Shimada, H., Miles, G. C., and Tucker, M. P. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2902-2907.
Regiospecificity of Heme Alkylation

Table 1. \(^{13}C \)-content of the \(N \)-alkyl Porphyrin obtained with Ethylene.

Oxygen Isotope	Percent of the Total Molecular Ion (Percent of \(\text{Total}^{18}O \))-depleted \(N \)-alkyl Porphyrin
\(^{18}O \)	4.75, 4.76, 4.77, 4.78, 4.79, 4.80, 4.81, 4.82, 4.83, 4.84
\(^{17}O \)	4.75, 4.76, 4.77, 4.78, 4.79, 4.80, 4.81, 4.82, 4.83, 4.84

The average of 3 scans
The average of 4 scans

Table 2. Signal assignments for the dimethyl esterified chlorozinc \(N \)-alkylporphyrin IX derivatives.

Group	Signal Assignment
Ethylene	Proton (ppm)

Figure 1. NMR spectra of the dimethyl esterified chlorozinc porphyrins isolated and purified from rats treated with (a) propene, (b) octene, and (c) octyne.

Figure 2. Nuclear Overhauser enhancement of the meso proton signals in the chlorozinc dimethyl ester of \(N \)-1-octoxycarbamoylporphyrin IX isolated from ethylene treated rats. The signal enhancement observed on irradiation of the proton due to the methyl or methylene protons indicated on the right margin is given in the corresponding line. Each signal enhancement represents the difference between the meso proton region in the specifically irradiated sample and the meso proton region when irradiated non-specifically in a region with no protons. The identity of the meso proton signals is given.

Figure 3. The region of the NMR spectrum due to the internal protons of the two vinyl groups in the chlorozinc dimethyl ester of \(N \)-2-(octoxycarbamoyl)porphyrin IX isobutyl obtained with ethylene. The spectra in the absence of irradiation of one of the groups indicated on the right margin is irradiated not given. The sharpening of the vinyl proton signals when the 1- and 3-methylene are irradiated is to be noted.
The cytochrome P-450 active site. Regiospecificity of prosthetic heme alkylation by olefins and acetylenes.

K L Kunze, B L Mangold, C Wheeler, H S Beilan and P R Ortiz de Montellano

J. Biol. Chem. 1983, 258:4202-4207.

Access the most updated version of this article at http://www.jbc.org/content/258/7/4202

Alerts:
- When this article is cited
- When a correction for this article is posted

[Click here](http://www.jbc.org/content/258/7/4202.full.html#ref-list-1) to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/7/4202.full.html#ref-list-1