Carotenogenesis in cyanobacteria: CruA/CruP-type and CrtL-type lycopene cyclases

(Received October 1, 2019; Accepted January 13, 2020; J-STAGE Advance publication date: March 28, 2020)

Kenjiro Sugiyama1,* and Shinichi Takaichi2

1 Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
2 Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan

Cyanobacteria are oxygenic photoautotrophic prokaryotes containing chlorophylls and carotenoids, and the latter play important roles in light-harvesting, protection of excess light, assembly of pigment-protein complexes, and stabilization of lipid membranes. Cyanobacteria produce many kinds of carotenoids, such as β-carotene, zeaxanthin, echinenone, and myxol glycosides, which have a cyclic structure at one or both ends. Cyclization of lycopene is a branch point in carotenoid biosynthesis to β-carotene and γ-carotene. Two types of lycopene cyclases, CruA/CruP-type and CrtL-type, are functionally confirmed in only five species, while homologous genes are found in the genomes of most cyanobacteria. This review summarizes the carotenogenesis pathways and the functional enzymes along with genes, focusing particularly on the cyclization of lycopene by distinct types of lycopene cyclases in cyanobacteria.

Key Words: carotenoid; CrtL; CruA; CruP; cyanobacteria; lycopene cyclase

Introduction

Carotenoids are synthesized in all phototrophic organisms and many non-phototrophic organisms, including bacteria, archaea, algae, fungi, and land plants. In phototrophic organisms, they play important roles in light-harvesting, protection of excess light, assembly of pigment-protein complexes, and stabilization of lipid membranes (Takaichi, 2011, 2013).

Cyanobacteria are considered to originate from photo-synthetic bacteria, and to have given rise to plant chloroplasts through evolution and symbiosis. The carotenoid structures and carotenogenesis pathways differ among photosynthetic bacteria, cyanobacteria, and chloroplasts, and, accordingly, carotenoids seem to change continuously. It is interesting to speculate on how these different carotenogenesis pathways have evolved and been obtained. Cyanobacteria can synthesize a variety of carotenoids. Most ordinary cyanobacteria contain β-carotene and its derivatives such as zeaxanthin, echinenone, and nrostoxanthin; and also unique carotenoid glycosides, such as myxol fucoside and ketomyxol chinovoside (Takaichi and Mochimaru, 2007). These carotenoids are cyclized at one or both ends of the structure. This cyclization reaction is catalyzed by lycopene cyclase. Thus far, several types of lycopene cyclases have been confirmed in various organisms including cyanobacteria (Sugiyama et al., 2017; Takaichi, 2013; Xiong et al., 2017). Furthermore, this is the branching point of β-carotene and γ-carotene: from β-carotene, echinenone, zeaxanthin and nrostoxanthin are produced; and from γ-carotene, myxol glycoside, ketomyxol glycoside and 2-hycroxymyxol glycoside are produced (Takaichi and Mochimaru, 2007). In this review, we summarize the carotenogenesis pathway, the functional enzymes as well as genes in cyanobacteria. We particularly focus on the cyclization of lycopene by distinct types of lycopene cyclases.

Carotenoid biosynthesis in cyanobacteria

The entire nucleotide sequence of the cyanobacteria genome was first elucidated in Synechocystis sp. PCC 6803 (Kaneo et al., 1996). Since then, the identification of carotenoids, including the chirality of hydroxyl groups and the determination of glycoside, and the genes involved in carotenogenesis, have been reported (Takaichi et al., 2001, 2017)
Based on the identification of the chemical structures of carotenoids and the genes involved in carotenogenesis in cyanobacteria, the carotenoid biosynthesis pathways are summarized in Fig. 1. Geranylgeranyl diphosphate (GGPP) is produced from farnesyl diphosphate and isopentenyl phosphate catalyzed by GGPP synthase (CrtE), and then two molecules of GGPP are condensed to the first C40 carotenoid, phytoene, catalyzed by phytoene synthase (CrtB). CrtE from *Thermosynechococcus elongatus* (Ohto et al., 1999) and CrtB from *Synechococcus* sp. PCC 7942 (Chamovitz et al., 1992), *Synechocystis* sp. PCC 6803 (Martínez-Férez et al., 1994) and *Gloeobacter violaceus* (Steiger et al., 2005), are functionally confirmed. These reactions are common in all carotenogenic organisms. Phytoene is converted to lycopene via a series of desaturation and isomerization events. Cyanobacteria, as well as land plants, need four enzymes; phytoene desaturase (CrtP), \(\zeta\)-carotene desaturase (CrtQ), \(\zeta\)-carotene isomerase (Z-ISO), and cis-carotene isomerase (CrtH). Exceptionally, the primitive cyanobacterium *Gloeobacter violaceus* PCC 7421, uses only one enzyme of bacterial-type phytoene desaturase (CrtI) to convert phytoene to lycopene (Steiger et al., 2005; Tsuchiya et al., 2005). CrtP from *Synechocystis* sp. PCC 6803 (Bautista et al., 2005), *Anabaena* sp. PCC 7120 (Breitenbach et al., 2013) and *Synechococcus* sp. PCC 7942 (Chamovitz et al., 1992) and CrtQ from *Synechocystis* sp. PCC 6803 (Bautista et al., 2005) and *Anabaena* sp. PCC 7120 (Breitenbach et al., 2013) are functionally confirmed. Z-ISO from *Arthrospira platensis* NIES-39, which converts 9,15,9\'-tri-cis \(\zeta\)-carotene to 9,9\'-di-cis \(\zeta\)-carotene, has been functionally identified very recently (Sugiyama et al., 2020). CrtH converts poly-cis neurosporene and lycopene to all-trans neurosporene and lycopene, respectively (Breitenbach et al., 2001; Masamoto et al., 2001). Furthermore, these functions of two isomerases can be replaced by light during cultivation.

Lycopene is cyclized to \(\beta\)-carotene via \(\gamma\)-carotene by lycopene cyclase as described below. Zeaxanthin is synthesized from \(\beta\)-carotene by \(\beta\)-carotene hydroxylase (CrtR), and then nostoxanthin is produced from zeaxanthin by 2,2\'-\(\beta\)-hydroxylation (CrtG). CrtR from *Synechocystis* sp. PCC 6803 (Masamoto et al., 1998) and *Anabaena* sp. PCC 7120 (Mochimaru et al., 2008) are functionally confirmed. The CrtG in some cyanobacteria, such as *Thermosynechococcus elongatus*, also catalyzes the conversion of both myxol 2\'-fucoside to 2-hydroxymyxol 2\'-fucoside and zeaxanthin to nostoxanthin (Iwai et al., 2008). Consequently, CrtG in cyanobacteria is used in two pathways, and, furthermore, these two hydroxylases do not have sequence homologies.

Two distinct \(\beta\)-carotene ketolases, CrtO and CrtW, are distributed in cyanobacteria, and they do not have sequence homologies (Takaichi, 2011). In *Anabaena* sp. PCC 7120, CrtO catalyzes the conversion of \(\beta\)-carotene into echinenone, while CrtW catalyzes the conversion of myxol 2\'-fucoside into 4-ketomyxol 2\'-fucoside (Mochimaru et al., 2005). *Nostoc punctiforme* PCC 73102 has two versions of CrtW; one produces echinenone, and the other produces 4-ketomyxol 2\'-fucoside (Steiger and Sandmann, 2004). Some other versions of CrtO and CrtW are functionally confirmed in some cyanobacteria (Takaichi, 2011).
In conclusion, echinenone and canthaxanthin may be produced by CrtO and/or CrtW, and 4-ketomyxol and astaxanthin may be produced by CrtW depending on the species (Takaichi, 2013).

The left half (β end group) of the γ-carotene is hydroxylated by CrtR, and then a keto group and a 2′-hydroxy group are introduced by CrtW and CrtG, respectively.

Myxol is presumably synthesized from monocyclic γ-carotene. The left half (β end group) of the γ-carotene is hydroxylated by CrtR, and then a keto group and a 2′-hydroxy group are introduced by CrtW and CrtG, respectively.
Lycopene cyclase
The cyclization of lycopene is a branch point in carotenoid biosynthesis pathways; β-carotene, γ-carotene to myxol, and α-carotene. Lycopene is cyclized into either β-carotene via γ-carotene by lycopene β-cyclase, or α-carotene via δ-carotene by lycopene ε-cyclase (Fig. 3). Lycopene cyclases can be divided into three types based on the amino acid sequences. These lycopene cyclases have been functionally confirmed in some carotenogenic organisms (Maresca et al., 2007; Takaichi, 2011).

The first type of lycopene cyclase is CrtY in bacteria and CrtL (CrtL-b, Lcy-b) in cyanobacteria, algae, and plants, which has an NAD(P)/FAD-binding motif. Lycopene ε-cyclases (CrtL-e, Lcy-e) in cyanobacteria and plants, and lycopene β-monocyclases (CrtYm, CrtLm) in bacteria are also included in this type. Note that Maresca et al. (2007) divide this type into two CrtY- and CrtL-types.

The second type is a heterodimer (CrtYc and CrtYd) in bacteria, a monomer (CrtYc-Yd) in archaea, and fused and bifunctional CrtYB in fungi, but not found in phototrophs (Hemmi et al., 2003; Takaichi, 2011).

The third type, CruA, was first found in a green sulfur bacterium, Chlorobaculum tepidum, and two homologous genes of CruA, cruA and cruP, are widely distributed among different species of cyanobacteria, as described below (Tables 1 and 2) (Takaichi, 2013).
Lycopene cyclase in cyanobacteria

To date, only seven lycopene cyclases from five species have been functionally confirmed in cyanobacteria (Tables 1–3, Fig. 4). A gene encoding CrtL-type lycopene cyclase was first isolated from Synechococcus elongatus PCC 7942 and characterized by functional complementation analysis in transformed Escherichia coli, which produced mainly lycopene (Cunningham et al., 1994). Prochlorococcus marinus MED4 contains mainly α-carotene and β-carotene, and two CrtL-type lycopene cyclases, CrtL-b and CrtL-e were functionally identified using lycopene producing E. coli (Stickforth et al., 2003). CrtL-b exhibits lycopene β-cyclase activity, whereas CrtL-e is a bifunctional enzyme, having both lycopene ε-cyclase and lycopene β-cyclase activities. The combination of these two cyclases enables the production of β-, α-, and ε-carotenoids. Acaryochloris marina MBIC11017 synthesizes β-carotene and the unusual (6′S)-α-carotene, which shows opposite chirality to the usual (6′R)-α-carotene, and is the only species to have such a carotene in nature (Fig. 3) (Takaichi et al., 2012). Interestingly, Acaryochloris marina MBIC11017 contains the crtL homologous gene and the homologous genes of cruA and cruP, the gene products of which are 63% and 51% amino acid identities for the functional Synechococcus sp. PCC 7002 CruA and CruP, respectively (Tables 1–3). However, there is no information on the function of crtL-e, cruA-, and cruP-like gene products in this cyanobacterium. Further studies are needed to elucidate the detail of each functional lycopene cyclase in cyanobacteria.

Two lycopene cyclases, CruA and a paralog known as CruP, in Synechococcus sp. PCC 7002 were shown to have lycopene cyclase activity, by using lycopene producing E. coli. Bradbury et al. (2012) reported that they were unable to replicate the cyclase activity of CruP in Synechococcus sp. PCC 7002 in E. coli (Bradbury et al., 2012). Based on the carotenoid profile, the CruP-deficient mutants, they proposed that the role of CruP should be rather on reducing oxidative damage caused by singlet oxygen. Recently, Sugiyama et al. (2017) have reported that CruA in Arthrospira platensis NIES-39 has lycopene cyclase activity, whereas CruP does not, by using lycopene producing E. coli. Furthermore, Xiong et al. (2017) found that CruA in Synechocystis sp. PCC 6803 has lycopene cyclase activity and requires a bound chlorophyll a for activation. CruA in Synechocystis sp. PCC 6803, expressed in lycopene producing E. coli strains, did not produce β-carotene (Xiong et al., 2017), and similar experiments were also performed with determined efforts of various laboratories in the world. However, the expression of cruA, isolated from Synechocystis sp. PCC 6803, in the Synechococcus sp. PCC 7002 cruA deletion mutant produced identical carotenoids to the wild type (Xiong et al., 2017). The CruA expressed in Synechocystis sp. PCC 6803 was purified from Synechococcus sp. PCC 7002, and the purified protein contained chlorophyll a and β-carotene (Xiong et al., 2017). The function of bound chlorophyll a is unknown.

The homologous genes of cruA and cruP are widely distributed in the genomes of some cyanobacteria species (Tables 1 and 2); however, there are only a few reports that showed lycopene cyclase activity in these gene products.

Phylogenetic analysis of the functional CruA-, CruP-, and CrtL-type lycopene cyclases with their homologs in cyanobacteria shows that three individual clusters are formed (Fig. 4). The CruA, CruP, and CrtL homologs are placed in the same cluster as each functional lycopene cyclase, except for CruP homologs in Synechococcus elongatus PCC 7942, and the CrtL-type cyclase forms a clade distinct from the CruA- and CruP-type cyclases.

References

Bautista, J. A., Rappaport, F., Guerova-Kuras, M., Cohen, R. O., Golbeck, J. H. et al. (2005) Biochemical and biophysical characterization of photosystem I from phytoene desaturase and ζ-carotene desaturase deletion mutants of Synechocystis sp. PCC 6803. J. Biol. Chem., 280, 20030–20041.

Bradbury, L. M., Shumskaya, M., Tzfadi, O., Wu, S.-B., Kennelly, E. J. et al. (2012) Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic phot SYNTHOIC organisms. Proc. Natl. Acad. Sci. USA, 109, E1888–E1897.

Breitenbach, J., Vioque, A., and Sandmann, G. (2001) Gene deletion of Synechocystis sp. strain Synechocystis 6803 encodes a carotene isomerase involved in the biosynthesis of all-E lycopene. Z. Naturforsch., 56, 915–917.

Breitenbach, J., Bruns, M., and Sandmann, G. (2013) Contribution of two ζ-carotene desaturases to the poly-cis desaturation pathway in the cyanobacterium Nostoc PCC 7120. Arch. Microbiol., 195, 491–498.

Chamovitz, D., Misawa, M., Sandmann, G., and Hirschberg, J. (1992) Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett., 296, 305–310.

Cunningham, F. X., Jr., Sun, Z., Chamovitz, D., Misawa, M., Sandmann, G., and Hirschberg, E. (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC 7942. Plant Cell, 6, 1107–1121.

Graham, J. E. and Bryant, D. A. (2009) The biosynthetic pathway for myxol-2'-fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol., 191, 3292–3300. Hemmi, H., Ikeji, S., Nakayama, T., and Nishino, T. (2003) Fusion-type lycopene β-cyclase from a thermophilic archaeon Sulfolobus solfataricus. Biochem. Biophys. Res. Commun., 35, 586–591.

Iwai, M., Maoka, T., Ikeuchi, M., and Takaichi, C. (2008) 2,2'-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2'-hydroxymycol 2'-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol., 49, 1678–1687.

Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E. et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3, 109–136.

Marcus, J. A., Graham, J. E., Wu, M., Eisen, J. A., and Bryant, D. A. (2007) Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc. Natl. Acad. Sci. USA, 104, 11784–11789.

Martínez-Férez, I., Fernández-González, B., Sandmann, G., and Vioque, A. (1994) Cloning and expression in Escherichia coli of the gene coding for phytoene synthase from the cyanobacterium Synechocystis sp. PCC6803. Biochem. Biophys. Acta, 1218, 145–152.

Masamoto, K., Misawa, N., Kaneko, T., Kikuno, R., and Toh, H. (1998) β-Carotene hydroxylase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol., 39, 560–564.

Masamoto, K., Wada, H., Kaneko, T., and Takaichi, S. (2001) Identification of a gene required for cis-to-trans carotenoid isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803.
Plant Cell Physiol., 42, 1398–1402.
Mochimaru, M., Masukawa, H., and Takaichi, S. (2005) The cyanobacterium *Anabaena* sp. PCC 7120 has two distinct β-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS Lett., 579, 6111–6114.

Mochimaru, M., Masukawa, H., Maoka, T., Mohamed, H. M., Vermaas, W. F. J. et al. (2008) Substrate specificities and availability of fucosyltransferase and β-carotene hydroxylase for myxol 2′-fucoside synthesis in *Anabaena* sp. strain PCC 7120 compared with *Synechocystis* sp. strain PCC 6803. J. Bacteriol., 190, 6726–6733.

Ohto, C., Ishida, C., Nakane, H., Muramatsu, M., Nishino, T. et al. (1999) A thermophilic cyanobacterium *Synechococcus elongatus* has three different Class I prenyltransferase genes. Plant Mol. Biol., 40, 307–321.

Steiger, S. and Sandmann, G. (2004) Cloning of two carotenoid ketolase genes from *Nostoc punctiforme* for the heterologous production of canthaxanthin and astaxanthin. Biotechnol. Lett., 26, 813–817.

Steiger, S., Jackisch, Y., and Sandmann, G. (2005) Carotenoid biosynthesis in *Gloeobacter violaceus* PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Arch. Microbiol., 184, 207–214.

Stickforth, P., Steiger, S., Hess, W. R., and Sandmann, G. (2003) A novel type of lycopene epsilon-cyclase in the marine cyanobacterium *Prochlorococcus marinus* MED4. Arch. Microbiol., 179, 409–415.

Sugiyama, K., Ebisawa, M., Yamada, M., Nagashima, Y., Suzuki, H. et al. (2017) Functional lycopene cyclase (CruA) in cyanobacterium, *Arthrospira platensis* NIES-39, and its role in carotenoid synthesis. Plant Cell Physiol., 58, 831–838.

Sugiyama, K., Takahashi, K., Nakazawa, K., Yamada, M., Kato, S. et al. (2020) Oxygenic phototrophs need Z-carotene isomerase (Z-ISO) for carotene synthesis: Functional analysis in *Arthrosira* and *Euglena*. Plant Cell Physiol., 61, 276–282.

Takaichi, S. (2011) Carotenoids in algae: Distributions, biosyntheses and functions. Mar. Drugs, 9, 1101–1118.

Takaichi, S. (2013) Tetraterpenes: carotenoids. In Natural Products, ed. by Merillon, J. M. and Ramawat, K. G., Springer, Berlin pp. 3251–3283.

Takaichi, S. and Mochimaru, M. (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell. Mol. Life Sci., 64, 2607–2619.

Takaichi, S., Maoka, T., and Masamoto, K. (2001) Myxoxanthophyll in *Synechocystis* sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-di-O-methyl-α-L-fucoside), not rhamnoside. Plant Cell Physiol., 42, 756–762.

Takaichi, S., Mochimaru, M., Maoka, T., and Katoh, H. (2005) Myxol and 4-ketomyxol 2′-fucosides, not rhamnosides, from *Anabaena* sp. PCC 7120 and *Nostoc punctiforme* PCC 73102, and proposal for the biosynthetic pathways of carotenoids. Plant Cell Physiol., 46, 497–504.

Takaichi, S., Mochimaru, M., Uchida, H., Hirose, E. et al. (2012) Opposite chirality of α-carotene in unusual cyanobacteria with unique chlorophylls, *Acaryochloris* and *Prochlorococcus*. Plant Cell Physiol., 53, 1881–1888.

Tsuechiya, T., Takaichi, S., Misawa, N., Maoka, T., Miyashita, H. et al. (2005) The cyanobacterium *Gloeobacter violaceus* PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett., 579, 2125–2129.

Xiong, W., Shen, G., and Bryant, D. A. (2017) *Synechocystis* sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. Photosynth. Res., 131, 267–280.