Effectiveness of Interventions to Improve Medication Adherence in Adults With Depressive Disorders: A Meta-Analysis

Beatriz González de León
Unidad Docente de Atención Familiar y Comunitaria “La Laguna-Tenerife Norte”, Gerencia de Atención Primaria del Área de Salud de Tenerife, Santa Cruz de Tenerife

Tasmania del Pino-Sedeño (tasmania.delpino@sescs.es)
Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Santa Cruz de Tenerife

Pedro Serrano-Pérez
Hospital Universitario Vall d’Hebron

Cristobalina Rodríguez-Álvarez
Universidad de La Laguna

Daniel Bejarano-Quisoboni
Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC)

María M. Trujillo-Martín
Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Santa Cruz de Tenerife

Research Article

Keywords: Depressive Disorder, Medication, Adherence, Systematic review, Meta-analysis

Posted Date: September 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-887776/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Non-adherence to medications is a major obstacle in the treatment of depressive disorders. We systematically reviewed the literature to evaluate the effectiveness of interventions aimed at improving adherence to medications among adults with depressive disorders.

Methods: We searched Medline, EMBASE, The Cochrane Central Register of Controlled Trials (CENTRAL), PsycINFO, Social Science Citation Index and Science Citation Index for randomized or non-randomized controlled trials up to September 2019. Risk of bias was assessed using the criteria of the Cochrane Collaboration. Meta-analyses, cumulative and meta-regression analyses for adherence were conducted.

Results: Forty-five trials (n= 24,413) were included. Pooled estimate indicates an increase in the probability of adherence to antidepressants at 6 months with the different types of interventions (OR 1.28; 95% CI: 1.07 to 1.54). The improvement in adherence is obtained from 3 months (OR 1.57, 95% CI: 1.22 to 2.01) but it is attenuated at 12 months (OR 1.25, 95% CI: 0.99 to 1.53). Selected articles show methodological differences, mainly the diversity of both the severity of the depressive disorder and intervention procedures. Patients with depression and anxiety seem to benefit most from intervention (OR 2.77, 95% CI: 1.74 to 4.42) and collaborative care is the most effective intervention to improve adherence (OR 1.67, 95% CI: 1.17 to 2.40).

Conclusions: Our findings indicate that interventions aimed at improving short and medium-term adherence to medications among adults with depressive disorders are effective. However, the evidence on the effectiveness of long-term adherence is insufficient and supports the need for further research efforts.

International Prospective Register for Systematic Reviews (PROSPERO) number: CRD42017065723

1. Introduction

Depression is a common mental disorder typically chronic, disabling and frequently comorbid that affects more than 260 million people every year (1) and causes considerable personal suffering and has great economic costs for Western societies (2).

Although pharmacological treatment of depressive disorders has shown a considerable efficacy, non-adherence to appropriately prescribed medications remains a major challenge in current clinical psychiatric practice that compromises the effectiveness of available treatments and interferes with patient recovery (3). The impact of non-adherence increases the likelihood of relapse and/or recurrence, emergency department visits, and hospitalization rates; increases symptom severity and decreases treatment response and remission rates (4). Non-adherence subsequently translates to an increase in medical and total healthcare utilization (4). Recent literature shows early adherence rates to prescribed medication for depression ranging between 74% and 82% (5, 6), but unfortunately, approximately 50% of patients prematurely discontinue therapy (7, 8).

Socio-demographic variables, such as age, positive attitudes to prescribed medication and previous experiences were found to be factors predicting better adherence. Conversely, experience of side effects, dissatisfaction with treatment and a poor patient–professional relationship were found to be associated with poorer adherence (9, 10).

Several interventions have been designed to improve medication adherence. Some evidence suggests that multifaceted interventions targeting the patient, physician and structural aspects of care are more effective than single-component interventions (11, 12).

The aims of the present study are to identify, critically assess and synthesize the available scientific evidence on the effectiveness of interventions aimed at improving adherence to medications among adults with depressive disorders.

2. Material Y Methods

A systematic review and meta-analysis were performed according to the Cochrane Handbook (13) and reported in accordance to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (14). The protocol of the present review has been registered in Prospero (CRD42017065723).

2.1. Information sources and search strategy

The following electronic databases were searched (September 2019): Medline (OVID interface), EMBASE (Elsevier interface), CENTRAL (The Cochrane Library interface), PsycINFO (EBSCO interface), SCI-EXPANDED (Web of Science interface) and SSCI (Web of Science interface). The search strategy was initially developed in Medline, using a combination of controlled vocabulary and free text terms and was then adapted for each of the other databases. Search terms included the following: depressive disorder, medication and adherence. Searches were limited to the English and Spanish languages and no date restriction was imposed. The full search strategy is available in Supplementary Material (see Supplementary Table 1). The reference lists of all included papers were also examined to identify possible additional studies meeting selection criteria.

2.2. Selection criteria

Studies were eligible for inclusion if they fulfilled the following criteria: 1) randomized controlled trials (RCTs) or non-randomized controlled trials (nRCTs), with allocation of both individuals and clusters; 2) any type of intervention aimed at increasing adherence to anti-depressive medications administered to adults (18–65 years) with a diagnosis of depressive disorder. If a study addressed a heterogeneous group of patients, the study was included as long as the results for patients meeting the inclusion criteria were reported separately or they accounted for more than 80% of the target population; 3) usual care or alternative intervention as comparison group; 4) studies assessing short-term (closest to 3 months), medium-term (closest to 6 months) or long-term (closest to 12 months) adherence to prescribed medication; 5) studies published in English or Spanish. Exclusion criteria included: 1) studies examining patients with bipolar depression or schizoaffective disorder; and 2) studies with fewer than 10 study participants.
2.3. Study selection process
Two reviewers addressed eligibility separately. Firstly, the title and abstract of references identified in the electronic search were screened. Secondly, the full text of the studies that appeared to fulfil the pre-specified selection criteria was read and evaluated for inclusion. Disagreements between reviewers were resolved through discussion with the research team until consensus was reached.

2.4. Data collection process
A data extraction form was prepared by the authors, pilot tested on two studies and refined accordingly. One reviewer extracted the following data from the included studies: identification of the article (author, date of publication, country), study objective and methodology (design, context, duration), details of participants (selection criteria and demographics), interventions (type, modality and number of sessions), comparators and outcomes (definition, measurement method), and finally results. A second reviewer subsequently verified the extracted data. When any required information was missing or unclear in a paper, an effort was made to contact the corresponding author.

2.5. Risk of bias assessment
Two reviewers independently and in duplicate assessed risk of bias of included studies using the Cochrane Risk of Bias tools for RCT (RoB 2.0) (15) with the additional guidance for cluster-RCT (16) and nRCT (ROBINS-I) (17). Discrepancies of judgments between the reviews were discussed by the research team until consensus was reached.

2.6. Assessment of publication bias
According to the recommendations of the Cochrane Collaboration (13), the presence of publication bias was assessed considering the size and sponsorship of the included studies, and by constructing a funnel plot and computing the Egger’s regression test using metafunnel and metabias commands in STATA version 14, respectively.

2.7. Analysis and synthesis of results
Meta-analyses and forest plots were performed for the adherence rate using the metan commands in STATA version 14. Effects of interventions were estimated as odd ratios (OR), with 95% confidence intervals (CI). Heterogeneity was assessed using the I² statistic. When there was heterogeneity (I² ≥ 25%), meta-analyses were performed using a random-effects model using the method of DerSimonian and Laird and taking the estimate of heterogeneity from the Mantel-Haenszel model. When there was neither clinical nor statistical heterogeneity, a fixed-effect model was used (18).

Several sources of heterogeneity relating to the characteristics of the study population and the interventions were anticipated. Predictive variables included age, gender, diagnoses, type of intervention, providers of the intervention (multidisciplinary vs. non-multidisciplinary team), modality of intervention (face-to-face vs. telephone, mails and/or website) and number of sessions. When reported in most studies, the effect of these study-level variables on the effectiveness closest to six months using subgroup analyses (diagnoses, type of intervention, providers of intervention and modality of intervention) and meta-regression techniques (age, gender, and number of sessions) were explored using the metareg command in STATA version 14.

Sensitivity analyses were conducted to assess the stability of the effects of excluding certain types of studies (n-RCT).

The evolution of evidence on the effectiveness of interventions aimed at increasing adherence to anti-depressive medications over time were explored using cumulative meta-analysis. Studies were sequentially added by year of publication to a random-effects model using the metacum user-written command in STATA version 14.

3. Results
Out of a total of 3,698 initially identified references after eliminating duplicates, 38 studies were selected after full-text screening (Fig. 1). The manual search provided seven additional studies, thus, 45 studies (published in 49 papers) were finally eligible for inclusion according to the pre-established selection criteria (19, 20, 29–38, 21, 39–48, 22, 49–58, 23, 59–67, 24–28).

3.1. Characteristics of included studies
The 45 included trials were published in English between 1976 and 2017 (Table 1). Thirty-two are individual-RCT (19, 22, 36–39, 42, 44–46, 48, 50, 23, 51–53, 56–61, 64, 24, 65–67, 25, 28, 32–35), eight are cluster-RCT (20, 26, 30, 40, 43, 53, 54, 63), four are individual-nRCT (31, 41, 47, 49), and one is cluster-nRCT (29). The duration of reported follow-up ranged from 4 to 76 weeks (median 32 weeks).
Study Country	Design	Follow-up (w)	Sample	Age (years) Mean, (SD)	Gender (female) (%)	Diagnoses	Inclusion Criteria	Type	Modality	Nº of sessions	Duration (m)	
Adler et al., 2004	RCT	16	533	268	265	42.3 (13.9)	71.80	MDD + PDD	≥ 18 years	MDD and/or PDD (DSM-IV)	English reading comprehension	
USA												
Akerblad et al., 2003	Cluster RCT	24	1,031	366	339	48.4 (14.36)	28.10	MDD	≥ 18 years	MDD (DSM-IV)	SSRI prescription	Education + support (programme RHYTHMS)
Sweden												
Aljumah and Hassali, 2015	RCT	16	239	119	120	39.5 (NR)	58.16	MDD	18–60 years	MDD (DSM-IV)	AD prescription	
Saudi Arabia												
Al-Saffar et al., 2008, 2005	RCT	20	300	100	100	NR	33.10	MDD	≥ 18 years	Unipolar depression (ICD-10)	TCA or SSRI prescription	Education + support
Kuwait												
Browne et al., 2002	RCT	24	707	212	196	42.4 (NR)	68.00	PDD + MDD	18–75 years	PDD ± MDD (DSM-IV)	Interpersonal psychotherapy	
Canada												
Capoccia et al., 2004	RCT	52	74	41	33	38.7 (13.5)	57.00	Depressive episode	≥ 18 years	Depressive episode	New AD prescription	CCM
USA												
Chang et al., 2014	Cluster RCT	24	915	503	411	46.03 (21.49)	66.30	MDD	≥ 18 years; MDD; newly prescribed antidepressant; capable of self-management and understand English.	Monitoring and feedback to physicians about the patient’s symptom severity		
USA												
de Jonghe et al., 2001	RCT	24	167	83	84	34 (19–60)	62.00	PDD ± MDD	18–60 years; DSM-III criteria MDD with or without dysthymia; 17-item HDRS ≥ 14; written informed consent.	Short Psychodynamic Supportive Psychotherapy		
Netherlands												

*: Own estimation; **: data sent by email by authors; AD: Antidepressant; AG: Agoraphobia; Base: Baseline; CBT: Cognitive behavioural therapy; CCM: Collaborative care strategy; GAD: Generalized anxiety disorder; GP: General practitioner; IG: Intervention group; m: months; MDD: Major depressive disorder; MMAS: Morisky Medication Adherence Scale; MMSE: Mini-Mental State Examination; PC: Panic disorder; PDD: persistent depressive disorder or Dysthymic Disorder; Reminder APP: Medication reminder app; SDM: Shared decision making.
Study	Design	Follow-up (w)	Sample	Intervention
Desplenter et al.,	Cluster	52	99	Tailoring counselling or counselling intervention
2013	NRCT		41	MDD ≥ 18 years; MDD according to DSM-IV-TR criteria; antidepressant medicine; Dutch speaking; could be reached by telephone for follow-up
Belgium		58	46.10	62.60
Dietrich et al.,	Cluster	24	405	CCM
2004	RCT		224	MDD or PDD (DSM-IV)
USA		181	42.0	Patients who had a telephone
			(20.80)*	Hopkins symptom checklist-20 score ≥ 0.5
Gervasoni et al.,	NRCT	2	131	Monitoring and motivational support
2010		81	50	Moderate or severe depressive episode
Switzerland			36.24	59.54
			(19–62)	
Guo et al., 2015	RCT	24	81	Measurement-based care
China		44	37	Moderate to severe MDD
			41.10	64.16
			(12.10)	
Hammonds et al.,	RCT	4	57	Medication reminder app
2015		30	27	AD prescription
USA			20.6	English speaking
			(4.3)	Patients who had an Android or iPhone smartphone
Interian et al.,	RCT	20	50	Motivational Enhancement Therapy
2013		26	24	AD prescription
USA			40.6	Motivational Enhancement Therapy
			(16.90)*	AD prescription
John et al., 2016	RCT	6	39	Educational
India		17	22	ICD-10 criteria; diagnosed by psychiatry residents and confirmed by a senior member; MDD ≥ 18 years; Mild depression, moderate depression or PDD.
			34 (21–46)	61.53

*: Own estimation; **: data sent by email by authors; AD: Antidepressant; AG: Agoraphobia; Base: Baseline; CBT: Cognitive behavioural therapy; CCM: Collaborative Care; GAD: Generalized anxiety disorder; GP: General practitioner; IG: Intervention group; m: months; MDD: Major depressive disorder; MMAS: Morisky Medication Adherence Scale; PC: Panic disorder; PDD: Persistent depressive disorder or Dysthymic Disorder; Reminder APP: Medication reminder app; SDM: Shared decision making.
Study Country	Design	Follow-up (w)	Sample	Intervention	
Katon et al., 2002 USA	RCT	112	171	NR	18–80 years; new AD; ≥11 SCL-20 and > 4 DSM-IV or < 4 DSMIV and ≥ 11.5 SCL-20.
Katon et al., 2001 USA	RCT	52	386	194	MDD or PDD
Katon et al., 1999 USA	RCT	24	228	114	MDD or PDD
Katon et al., 1996 USA	RCT	12	153	31	18–75 years
Keeley et al., 2014 USA	Cluster RCT	NR	175	85	Depression
Klang et al., 2015 Israel	nRCT	24	NR	173	Depressive episode

*: Own estimation; **: data sent by email by authors; AD: Antidepressant; AG: Agoraphobia; Base: Baseline; CBT: Cognitive behavioural therapy; CCM: Collaborative Care; CCM: Generalized anxiety disorder; GP: General practitioner; IG: Intervention group; m: months; MDD: Major depressive disorder; MMAS: Morisky Medication Adherence Scale; PC: Panic disorder; PDD: Persistent depressive disorder or Dysthymic Disorder; Reminder APP: Medication reminder app; SDM: Shared decision making.
Study Country	Design	Follow-up (w)	Sample	Intervention					
Klutcher et al., 2002 Canada	RCT	29	269	131	138	NR	NR	MDD	MDD (DSM-IV) Contraceptive method in females of childbearing years.
LeBlanc et al., 2015 USA	Cluster RCT	24	297	138	139	43.5 (43.54)*	66.92	Moderate to severe depression	≥ 18 years Moderate/Severe depression PHQ-9 score ≥ 10
Lin et al., 2003 USA	RCT	52	386	194	192	46.0 (17.85)*	26.40	High risk for recurrent depression	18–80 years AD prescription Improvement of depressive episode (≥ 4 DSM-III-R major depressive symptoms or 4 major depressive symptoms + SCL-20 score ≥ 1.5) High risk of relapse (≥ 3 lifetime depressive episodes or a history of dysthymia)
Lin et al., 1999 USA	RCT	19	156	63	53	44.10 (13.60)	81.00	MDD	SCL-20 score ≥ 0.75; 18–80 years; AD
Mantani et al., 2017 Japan	RCT	17	164	81	83	40.90 (NR)	53.05	MDD ± anxiety	25–59 years; MDD without psychotic features (DSM-5 and PRIME-MD); antidepressant-resistant, BDI-II score ≥ 10 for ≥ 4 weeks; AD in monotherapy (not antipsychotics or mood stabilizers); smartphones users; being an outpatient; no plan to transfer within 4 months
Meglic et al., 2010 Slovenia	NRCT	24	19	10	9	35.71 (12.11)	86.00	Depression or mixed anxiety and depression disorder	ICD10 group F32 or F41.2; first time or after a remission > 6 months; newly AD; internet and mobile phone; BDI-II score ≥ 14

*: Own estimation; **: data sent by email by authors; AD: Antidepressant; AG: Agoraphobia; Base: Baseline; CBT: Cognitive behavioural therapy; CCM: Collaborative Care Management; DP: Dysthymia; GP: General practitioner; IG: Intervention group; m: months; MDD: Major depressive disorder; MMAS: Morisky Medication Adherence Scale; PC: Panic disorder; PDD: Persistent Depressive Disorder or Dysthymic Disorder; Reminder APP: Medication reminder app; SDM: Shared Decision Making.
Study Country	Design	Follow-up (w)	Sample	Intervention					
Mundt et al., 2001 USA	RCT	30	246 124	MDD (DSM-IV) Symptom duration of ≥ 1 month					
				AD prescription Hamilton Depression score ≥ 18					
Myers and Calvert, 1984 UK	RCT	NR	120 40	Depression, reactive or endogenous Dothiepin prescription					
Myers and Calvert, 1976 UK	nRCT	NR	89 46	21–77 years ≥ Attack of primary depression, reactive or endogenous					
				Dothiepin prescription					
Nwokeji et al., 2012 USA	RCT	52	166 101	MDD (DSM-IV) Hamilton Depression score ≥ 15					
Perahia et al., 2008 11 European countries	RCT	4	962 485	≥ 18 years MDD (DSM-IV) Hamilton Depression score ≥ 15					
				Access to a telephone					
Perlis et al., 2002 USA	RCT	28	132 66	MDD (DSM-III-R)					
				CBT					
Pradeep et al., 2014 India	Cluster RCT	24	260 122	Women ≥ 18 years MDD (DSM-IV-TR)					
				Education + support					
Richards et al., 2016 UK	Cluster RCT	52	581 276	≥ 18 years Depressive episode (ICD-10)					
				CCM					
Study	Country	Design	Follow-up (w)	Sample	Intervention				
---------------------------	---------	---------	---------------	--------	---				
Rickles et al., 2006, 2005	USA	RCT	24	63	31	32	37.6 (17.15)*	Depressive symptoms ≥ 18 years BDI-II score ≥ 16 Willingness to take AD	Education + monitoring
Salkovskis et al., 2006	UK	RCT	26	77	39	38	40.5 (NR)	Depressive disorder AD prescription and 17–70 years.	Self-help programme
Simon et al., 2011	USA	RCT	24	197	104	93	45.5 (NR)	Depressive disorder ≥ 18 years new AD; no AD ≥ 270 days before; online messaging	Support
Simon et al., 2006	USA	RCT	24	207	103	104	43.0 (21.21)*	MDD or PDD New AD prescription	Support
Smit et al., 2005	Netherlands	RCT	52	267	112	72	42.8 (19.39)*	MDD 18–70 years MDD (DSM-IV)	Education
Vannachavee, 2016	Thailand	RCT	6	60	30	30	45.3 (22.70)*	MDD 18 years MDD (DSM-IV-TR) A new AD prescription Thai speaking	Educational, motivational and cognitive intervention
Vergouwen et al., 2009, 2005	Netherlands	Cluster RCT	26	211	101	110	43.0 (20.29)*	MDD ≥ 18 years MDD (DSM-IV)	Education + support + active participation in treatment process with discussion on AD
Wiles et al., 2014, 2013	UK	RCT	52	469	234	235	49.6 (11.7)	MDD + PD, social phobia or GAD 18–75 years AD prescription Patients' adherence to the prescribed AD Beck Depression Inventory score ≥ 14	CBT
Wiles et al., 2008	UK	RCT	16	25	14	11	45.3 (NR)	Depressive disorder 18–65 years; AD; ≥ 15 BDI-II; positive Morisky-Green-Levine test; ICD-10 criteria.	CBT

*: Own estimation; **: data sent by email by authors; AD: Antidepressant; AG: Agoraphobia; Base: Baseline; CBT: Cognitive behavioural therapy; CCM: Collabo Generalized anxiety disorder; GP: General practitioner; IG: Intervention group; m: months; MDD: Major depressive disorder; MMAS: Morisky Medication Adherence controlled; PC: Panic disorder; PDD: persistent depressive disorder or Dysthymic Disorder; Reminder APP: Medication reminder app; SDM: Share decision making.
Most of the studies enrolled patients with depression at different levels of severity. However, five studies required a combination of major depressive disorder with panic disorder, social phobia or generalized anxiety disorder, or anxiety (37, 46, 47, 53, 65, 66).

All the studies assessed individual interventions and used usual care as comparator. In general, the number of sessions or contacts of the interventions ranged from 1 to 20. A total of 11 studies assessed the effects of the Collaborative Care Model (CCM) consisting of the following four elements of collaborative care: 1) a multi-professional approach to patient care; 2) a structured management plan, included either or both pharmacological and non-pharmacological interventions; 3) scheduled patient follow-ups to provide specific interventions, facilitate treatment adherence, or monitor symptoms or adverse effects; and 4) enhanced inter-professional communication. Five studies assessed the effects of interventions with only an educational focus while six studies evaluated the effects of education and support, three of them used the RHYTHMS programme, a patient education programme which mails information directly to patients being treated with antidepressant medications in a time-phased manner. Education was also added to Cognitive Behavioural Therapy (CBT), CBT and motivational interview, coaching, monitoring and psychiatric consultation. Psychotherapy was another type of included intervention; in particular, six studies used CBT, one study included short psychodynamic supportive psychotherapy and one study included interpersonal psychotherapy. Other types of interventions were shared decision-making, support, counselling, the use of medication reminder applications for mobile phones, Enhanced Care and Treatment Initiation and Participation, an intervention aimed at modifying factors such as psychological barriers, concerns about treatment, fear of antidepressants and misconceptions of depression treatment.

Intervention modalities included face-to-face meetings alone (18 studies) or in combination with telephone conversations (2 studies), leaflets (1 study), videotapes (2 studies), mails (1 study) or website. Nine studies used telephone-conversations and two studies used the same intervention in combination with mails and one study combined the same intervention with letters. Moreover, leaflets were used in three while consultation of websites was included in two studies. Another intervention modality was the use of a smartphone (2 studies).

The intervention providers varied among studies: multidisciplinary teams (17 studies), primary care professionals - general practitioners, clinicians or internal medicine doctors (8 studies), pharmacists (6 studies); psychiatrists, psychologists or therapists (5 studies), nurses (2 studies), research assistant (1 study), and health worker (1 study). In the remaining studies, the providers were required to deliver intervention (2 studies) or not reported (1 study).

Twenty-three studies provided short-term (ranged from 4 to 16 weeks), 21 studies provided mid-term (ranged from 20 to 36 weeks), and seven studies provided long-term (ranged from 48 to 76 weeks) outcomes. The types of adherence measures included were: self-report (e.g., questionnaires, diaries or interviews); or other non-self-report measures (e.g., electronic measures, pill count or plasma drug concentration).

3.2. Risk of bias in the included studies

Out of the 40 RCTs identified, 3 were classified as having low risk of bias in all RoB 2.0 domains (24, 37, 58) see Table 2. In the remaining RCTs, the most common methodological concerns involved bias arising from the randomization generation and allocation concealment process (3 RCTs had a high RoB) and bias in measurement of the outcome (6 had a high RoB).
Table 2
Risk of bias of included RCTs

Cluster-RCTs	Study	Domains	Effect of assignment to intervention	Missing outcome data	Measurement of the outcome	Selection of the reported result	
	Akerblad 2003	High	Low	Low	Low	Some concerns	Low
	Chang 2014	Low	Low	Low	Low	Some concerns	Low
	Dietrich 2004	Some concerns	Low	Low	Some concerns	Low	Low
	Keeley 2014	Low	Low	Low	Some concerns	Some concerns	Low
	LeBlanc 2015	Unclear	Low	Low	Some concerns	Some concerns	Low
	Pradeep 2014	Some concerns	Low	Low	Some concerns	Low	Low
	Richards 2016	Low	Low	Low	Low	High	Low
	Vergouwen 2009, 2005	Low	Low	Low	Some concerns	Some concerns	Low

Individually RCTs	Study	Domains	Effect of assignment to intervention	Missing outcome data	Measurement of the outcome	Selection of the reported result	
	Adler 2004	Low	Low	Low	High	Low	
	Aljumah & Hassali, 2015	Low	Some concerns	High	Low	Low	
	Al-Saffar 2008, 2005	Low	Low	Some concerns	Some concerns	Low	
	Browne 2002	Low	Low	Some concerns	Low	Low	
	Capoccia 2004	Some concerns	Low	Low	Some concerns	Low	
	De Jonghe 2001	Low	Some concerns	Low	Some concerns	Some concerns	Some concerns
	Guo 2015	Some concerns	Low	Low	Some concerns	Some concerns	Some concerns
	Hammonds 2015	Some concerns	Some concerns	Some concerns	Low	High	
	Interian 2013	Some concerns	Low	Low	Low	Low	
	John 2016	Low	Low	Some concerns	High	Some concerns	Some concerns
	Katon 2002	Some concerns	Low	Some concerns	Some concerns	Some concerns	Some concerns
	Katon 2001	Some concerns	Some concerns	Low	Some concerns	Low	
	Katon 1999	Low	Low	Low	Low	Low	
	Katon 1996	Some concerns	Some concerns	Low	Some concerns	Low	
	Katon 1995	Low	Low	Low	Some concerns	Low	
	Klutcher 2002	Low	Some concerns	High	Some concerns	Low	
	Lin 2012	Some concerns	Low	Low	Some concerns	Low	

High: high risk of bias; Low: low risk of bias; Unclear: unclear risk of bias

RCTs: randomized controlled trials
Risk of bias was generally low-to-moderate across all identified n-RCTs, all presenting risk of bias in at least three domains (Table 3).

Table 3. Risk of bias of included n-RCTs

Study	Bias due to confounding	Bias in selection of participants	Bias in classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result
Desplenter et al., 2013	Moderate	Low	Low	Low	NI	Moderate	Moderate
Gervasoni et al., 2010	Serious	Low	Moderate	Low	NI	Low	Low
Myers and Calvert, 1976	NI	NI	Low	Low	Moderate	Moderate	Moderate
Klang et al., 2015	Moderate	Low	Low	Low	Moderate	Moderate	Moderate
Meglic et al., 2010	Moderate	Low	Moderate	Low	Moderate	Moderate	Moderate

Serious: serious risk of bias; Moderate: moderate risk of bias; Low: low risk of bias

NI: No information; nRCTs: non-randomized controlled trials

3.3. Publication bias

No evidence of publication bias was found according to the funnel plot of the observed effect (Fig. 2) and the Egger’s regression test (P = 0.51).

3.4. Synthesis of results
Nevertheless, subgroup analyses indicate how other characteristics of the intervention may not help to enhance adherence. The modality of intervention and support for the usefulness of brief interventions or therapies to improve adherence to treatment. Moreover, the number of sessions was negatively related to adherence. Although it is not clear regarding the optimal number of sessions, this result provides healthcare provider and the health care delivery system, are more effective than single-component interventions to improve medication adherence (with previous literature and suggests that multifaceted interventions targeting all dimensions that affect medication adherence problems, i.e., the patient, the symptoms in adults with depressive disorders (effective than primary or mental healthcare teams. This finding supports the idea that collaborative care is not only clinically effective for the management of high risk for recurrent depression (I² = 70.00%) and major depressive disorder with or without dysthymic disorder (OR, 0.68, 95% CI: 0.30 to 1.50; p = 0.29; I² = 70.70%) were not statistically significant.

3.5.1. Diagnosis

Interventions aimed at improving adherence to medications when addressed to adults with depression at different levels of severity were associated with a significantly increased effect size (OR MDD or PDD and anxiety studies 2.77, 95% CI: 1.74 to 4.42; p < 0.01; OR High risk for recurrent depression 1.69, 95% CI: 1.13 to 2.54; p = 0.01; OR Major depressive disorder or dysthymic disorder 1.28, 95% CI: 1.06 to 1.55; p < 0.01; I² = 36.00%). However, pooled effect sizes of studies on patients with depressive symptoms (OR, 2.50, 95% CI: 0.86 to 7.31; p = 0.29; I² = NA%), depressive episode (OR, 0.88, 95% CI: 0.69 to 1.12; p = 0.29; I² = 0%), and major depressive disorder with or without dysthymic disorder (OR, 0.68, 95% CI: 0.30 to 1.50; p = 0.29; I² = 70.70%) were not statistically significant.

3.5.2. Type of intervention

In the case of CCM interventions, the pooled result showed a significant increase in adherence (OR 1.67, 95% CI: 1.16 to 2.21; p < 0.01; I² = 52.30%) compared to the control group. However, statistically significant differences were not found for other specific forms of intervention (see Supplementary Table 3).

3.5.3. Providers of the intervention

A multi-professional approach to patient care involving at least one primary care provider and another health professional (e.g., nurse, psychologist, psychiatrist or pharmacist) was associated with an increased effect size (OR 1.58, 95% CI: 1.11 to 2.25; I² = 60.20%). A non-multidisciplinary approach was not statistically significant (OR 1.15, 95% CI: 0.94 to 1.40; I² = 42.90%).

3.5.4. Modality of intervention delivery

Effect sizes did not significantly differ by the modality of intervention delivery used (see Supplementary Table 3).

3.5.5. Other sources of heterogeneity

The number of intervention sessions was related to adherence (β, -0.08; 95% CI: -0.14 to -0.01). However, none of the other sources of heterogeneity investigated (age and gender of participants) had an effect.

3.6. Cumulative meta-analysis of outcome at 6 months

By plotting the emergence of interventions aimed at improving adherence to medications over time (Fig. 4), it is unclear whether earlier trials meeting the inclusion criteria demonstrated a high degree of heterogeneity or a high percentage of negative results. There is a sufficient body of evidence to demonstrate a reliable, consistent and statistically significant benefit of interventions aimed at improving adherence to medications over usual care. In general, the overall effect size has remained relatively stable within an effect size between OR 1.14 and 1.56.

4. Discussion

Our findings support and confirm the notion that interventions aimed at improving adherence to medications among adults with depressive disorders are effective in improving short and medium-term outcomes in adherence. The evidence, when given using cumulative meta-analysis, shows that further trials are unlikely to overturn this positive result. However, it is possible to appreciate a small decline in effect size over time.

The evidence shows that collaborative care is effective in improving adherence. In this respect, a multi-professional approach to patient care was more effective than primary or mental healthcare teams. This finding supports the idea that collaborative care is not only clinically effective for the management of symptoms in adults with depressive disorders (68, 69), but could also have a major effect on improving adherence to treatment (Ho et al., 2016). This is in line with previous literature and suggests that multifaceted interventions targeting all dimensions that affect medication adherence problems, i.e., the patient, the healthcare provider and the health care delivery system, are more effective than single-component interventions to improve medication adherence (11, 12). Moreover, the number of sessions was negatively related to adherence. Although it is not clear regarding the optimal number of sessions, this result provides support for the usefulness of brief interventions or therapies to improve adherence to treatment.

Nevertheless, subgroup analyses indicate how other characteristics of the intervention may not help to enhance adherence. The modality of intervention and the provider profile were unrelated to effect size. Effectiveness is essentially similar in mail, website and/or telephone, and face-to-face interventions.
Computer support systems, mobile technologies, web-based e-mail or telephone-based assistance can be used for improving adherence to medication (70, 71). In this regard, these interventions may be available across different geographic areas and in different clinical settings (72).

Generally, it might be expected that patients with severe symptoms would have different treatment and support needs, and thus may profit from this type of interventions compared to patients with moderate or mild symptoms. However, the findings here show a weak association between severity of symptoms and adherence outcome. Several interventions are effective in improving adherence outcomes among patients diagnosed with depression and anxiety at the same time. Although effectiveness is also demonstrated in the cases of patients at high risk of recurrent depression and in patients with major depressive disorder or dysthymic disorder, the results do not present such high values. Other patient characteristics such as age or gender were unconnected to adherence outcome.

The main limitation of the present review is the methodological differences between studies, mainly the diversity of both intervention procedures and severity of depressive disorder of participants. Interventions aimed at improving medication adherence among adults with emotional disorders have been designed with varying levels of intensity. Consequently, the review here found significant between-study heterogeneity. Subgroup and meta-regression analyses have been used to explore some of the issues related to the diversity of interventions and patients that affect the magnitude of effectiveness. Finally, the systematic review was limited to studies written in English and Spanish.

Despite all these limitations, the comprehensive systematic review provided an assessment of the effectiveness of different types of interventions aimed at improving medication adherence among adults with emotional disorders, supported by meta-analyses, using cumulative meta-analysis, exploring important sources of heterogeneity and following rigorous and transparent methods.

The systematic review reported here shows that interventions aimed at improving short and medium-term adherence to medications among adults with depressive disorders are effective. Patients with depression and anxiety at the same time seem to benefit most from interventions and collaborative care is the best option to improve adherence. Compared with outcomes over the short and medium-term, the available evidence on the effectiveness of long-term adherence is insufficient and supports the need for further research efforts.

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: All data generated or analysed during this study are included in this published article and its supplementary information files.

Competing interests: The authors declare that they have no competing interests.

Funding: This work has been supported by the Institute of Health Carlos III (PI18/00767).

Authors’ contributions:

BGrL and TP-S participated in the conceptualization, methodology, writing and the editing. CR-A, DB-Q, MT-M participated in the supervision, drafting and revision. MT-M also participated in the project administration. All authors read and approved the final manuscript.

Acknowledgements: The authors would like to thank Leticia Rodríguez for her guidance in developing the search strategy.

References

1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.
2. Kazdin AE, Rabbitt SM. Novel models for delivering mental health services and reducing the burdens of mental illness. Clin Psychol Sci. 2013;1(2):170–91.
3. de las Cuevas C, Peñate W, García de Cecilia JM, de Leon J. Predictive validity of the Sidorkiewicz instrument in Spanish: Assessing individual drug adherence in psychiatric patients. Int J Clin Heal Psychol. 2018;18(2):133–42.
4. Ho SC, Chong HY, Chaiyakanapruk N, Tangisuran B, Jacob SA. Clinical and economic impact of non-adherence to antidepressants in major depressive disorder: A systematic review. J Affect Disord. 2018;213(1):193:1–10.
5. Fischer MA, Stedman MR, Li J, Vogeli C, Shrank WH, Brookhart MA, et al. Primary medication non-adherence: Analysis of 195,930 electronic prescriptions. J Gen Intern Med. 2010;25(4):284–90.
6. Simon GE, Johnson E, Stewart C, Rossom RC, Beck A, Coleman KJ, et al. Does patient adherence to antidepressant medication actually vary between physicians? J Clin Psychiatry. 2018;79(3):7–10.
7. Garrido MM, Boockvar KS. Perceived Symptom Targets of Antidepressants, Anxiolytics, and Sedatives: The Search for Modifiable Factors That Improve Adherence. J Behav Heal Serv Res. 2014;41(4):529–38.
8. Lee M, Lee H, Kang SG, Yang J, Ahn H, Rhee M, et al. Variables influencing antidepressant medication adherence for treating outpatients with depressive disorders. J Affect Disord. 2010;123(1–3):216–21.

9. Rivero-Santana A, Perestelo-Perez L, Perez-Ramos J, Serrano-Aguilar P, de Las Cuevas C. Sociodemographic and clinical predictors of compliance with antidepressants for depressive disorders: systematic review of observational studies. Patient Prefer Adherence. 2013;7:151–69.

10. Hung CJ. Factors predicting adherence to antidepressant treatment. Curr Opin Psychiatry. 2014;27(5):344–9.

11. Pampallona S, Bollini P, Tibaldi G, Kupelnick B, Munizza C. Patient adherence in the treatment of depression. Br J Psychiatry. 2002;180:104–9.

12. Vergouwen ACM, Bakker A, Katon WJ, Verheij TJ, Koerselman F. Improving adherence to antidepressants: a systematic review of interventions. Vol. 64, The Journal of clinical psychiatry. 2003. p. 1415–20.

13. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions [Internet]. Version 5. The Cochrane Collaboration; 2011. 633 p. Available from:
36. Katon W, Rutter C, Ludman EJ, Von Korff M, Lin E, Simon G, et al. A randomized trial of relapse prevention of depression in primary care. Arch Gen Psychiatry. 2001;58(3):241–7.
37. Katon W, Korff M Von, Lin E, Simon G, Walker E. Stepped Collaborative Care for Primary Care Patients With Persistent Symptoms of Depression. Arch Gen Psychiatry. 1999;56:1109–15.
38. Katon W, Robinson P, Korff M Von, Lin E, Bush T, Ludman E, et al. A multifaceted intervention to improve treatment of depression in primary care. Arch Gen Psychiatry. 1996;53:924–32.
39. Katon W. Collaborative Management to Achieve Treatement Guidelines. Jama. 1995;273(13):1026.
40. Kleeley RD, Burke BL, Brody D, Dimidjan S, Engel M, Emsrmein C, et al. Training to Use Motivational Interviewing Techniques for Depression: A Cluster Randomized Trial. J Am Board Fam Med. 2014;27(5):621–36.
41. Klang SH, Ben-Ammon Y, Cohen Y, Barak Y. Community pharmacists' support improves antidepressant adherence in the community. Int Clin Psychopharmacol. 2015;30(6):316–9.
42. Kutcher S, Leblanc J, Maclaren C, Hadrava V. A randomized trial of a specific adherence enhancement program in sertraline-treated adults with major depressive disorder in a primary care setting. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):591–6.
43. LeBlanc A, Herrin J, Williams MD, Inselman JW, Branda ME, Shah ND, et al. Shared decision making for antidepressants in primary care a cluster randomized trial. JAMA Intern Med. 2015;175(11):1761–70.
44. Lin EHB, Von Korff M, Ludman EJ, Rutter C, Bush TM, Simon GE, et al. Enhancing adherence to prevent depression relapse in primary care. Gen Hosp Psychiatry. 2003;25(5):303–10.
45. Lin EHB, Simon GE, Katon WJ, Russo JE, Von Korff M, Bush TM, et al. Can enhanced acute-phase treatment of depression improve long-term outcomes? A report of randomized trials in primary care. Am J Psychiatry. 1999;156(4):643–5.
46. Mantani A, Kato T, Furukawa TA, Horikoshi M, Imai H, Hiroe T, et al. Smartphone cognitive behavioral therapy as an adjunct to pharmacotherapy for refractory depression: Randomized controlled trial. J Med Internet Res. 2017;19(11):1–20.
47. Meglic M, Furlan M, Kuzmanic M, Kozel D, Baraga D, Kuhar I, et al. Feasibility of an eHealth service to support collaborative depression care: Results of a pilot study. J Med Internet Res. 2010;12(5):1–17.
48. Mundt JC, Clarke GN, Burroughs D, Brenneman DO, Griest JH. Effectiveness of antidepressant pharmacotherapy: The impact of medication compliance and patient education. Depress Anxiety. 2001;13(1):1–10.
49. Myers ED, Calvert EJ. The Effect of Forewarning on the Occurrence of Side-Effects and Discontinuance of Medication in Patients on Dothiepin. J Int Med Res. 1976;4(4):237–40.
50. Myers E, Calvert E. Information, compliance and side-effects: a study of patients on antidepressant medication. Br J Clin Pharmacol. 1984;17(1):21–5.
51. Nwokje ED, Bohman TM, Wallisch L, Stoner D, Christensen K, Spence RR, et al. Evaluating patient adherence to antidepressant therapy among uninsured working adults diagnosed with major depression: Results of the Texas demonstration to maintain independence and employment study. Adm Policy Ment Heal Ment Heal Serv Res. 2012;39(5):374–82.
52. Perahia DGS, Quail D, Gandhi R, Walker DJ, Pveuler RC. A randomized, controlled trial of duloxetine alone vs. duloxetine plus a telephone intervention in the treatment of depression. J Affect Disord. 2008;108(1–2):33–41.
53. Pradeep J, Isaacs A, Shanbag D, Selvan S, Srinivasan K. Enhanced care by community health workers in improving treatment adherence to antidepressant medication in rural women with major depression. Indian J Med Res. 2003;461(2):236–45.
54. Richards DA, Bower P, Chew-Graham C, Gask L, Lovell K, Cape J, et al. Clinical effectiveness and cost-effectiveness of collaborative care for depression in UK primary care (CADET): A cluster randomised controlled trial. Health Technol Assess (Rockv). 2016;20(14):1–192.
55. Rickles NM, Svarstad BL, Statz-Paynter JL, Taylor LV, Kobak KA. Pharmacist telemonitoring of antidepressant use: Effects on pharmacist-patient collaboration. J Am Pharm Assoc. 2005;45(3):344–53.
56. Rickles N, Svarstad B, Statz-Paynter J, Taylor L, Kobak K. Improving Patient Feedback About and Outcomes with Antidepressant Treatment: A Study in Eight Community Pharmacies. J Am Pharm Assoc. 2006;46(1):25–32.
57. Salkovskis P, Rimes K, Stephenson D, Sacks G, Scott J. A randomized controlled trial of the use of self-help materials in addition to standard general practice treatment of depression compared to standard treatment alone. Psychiatr Med. 2006;36(3):325–33.
58. Simon GE, Ludman EJ, Opskalski BH. Randomized Trial of a Telephone Care Management Program for Outpatients Starting Antidepressant Treatment. Psychiatr Serv. 2006;57(10):1441–5.
59. Simon GE, Ralston JD, Savarino J, Pabiniak C, Wentzel C, Opskalski BH. Randomized trial of depression follow-up care by online messaging. J Gen Intern Med. 2011;26(7):698–704.
60. Smit A, Tiemens BG, Ormel J, Kluiter H, Jenner JA, van de Meer K, et al. Enhanced treatment for depression in primary care: First year results on compliance, self-efficacy, the use of antidepressants and contacts with the primary care physician. Prim Care Community Psychiatry. 2005;10(2):39–49.
61. Vannachavee U, Seerenguinung A, Yuttarti P Chulakadabba S. The Effect of a Drug Adherence Enhancement Program on the Drug Adherence Behaviors of Patients With Major Depressive Disorder in Thailand: A Randomized Clinical Trial. Arch Psychiatr Nurs. 2016;30(3):322–8.
62. Vergouwen AC, Burger H, Verheij TJ, Koerselman F. Improving Patients' Beliefs About Antidepressants in Primary Care. Prim Care Companion J Clin Psychiatry. 2009;11(2):48–52.
63. Vergouwen AC, Bakker A, Burger H, Verheij TJ, Koerselman F. A cluster randomized trial comparing two interventions to improve treatment of major depression in primary care. Psychol Med. 2005;35(0033–2917 (Print)):25–33.
64. Wiles N, Hollinghurst S, Mason V, Musa M, Burt V, Hyde J, et al. A randomized controlled trial of cognitive behavioural therapy as an adjunct to pharmacotherapy in primary care based patients with treatment resistant depression: A pilot study. Behav Cogn Psychother. 2008;36(1):21–33.

65. Wiles N, Thomas L, Abel A, Ridgway N, Turner N, Campbell J, et al. Cognitive behavioural therapy as an adjunct to pharmacotherapy for primary care based patients with treatment resistant depression: Results of the CoBalT randomised controlled trial. Lancet. 2013;381(9864):375–84.

66. Wiles N, Thomas L, Abel A, Barnes M, Carroll F, Ridgway N, et al. Clinical effectiveness and cost-effectiveness of cognitive behavioural therapy as an adjunct to pharmacotherapy for treatment-resistant depression in primary care: The CoBalT randomised controlled trial. Health Technol Assess (Rockyv). 2014;18(31):1–167.

67. Guo T, Xiang YT, Xiao L, Hu CQ, Chiu HFK, Ungvari GS, et al. Measurement-based care versus standard care for major depression: A randomized controlled trial with blind raters. Am J Psychiatry. 2015;172(10):1004–13.

68. Ekers D, Murphy R, Archer J, Ebenezer C, Kemp D, Gilbody S. Nurse-delivered collaborative care for depression and long-term physical conditions: A systematic review and meta-analysis. J Affect Disord. 2013;149(1–3):14–22.

69. Van den Broeck K, Remmen R, Vanmeerbeek M, Destoop M, Dorn G. Collaborative care regarding major depressed patients: A review of guidelines and current practices. J Affect Disord. 2016;200:189–203.

70. Dayer L, Heldenbrand S, Anderson P, Gubbins PO, Martin BC. Smartphone Medication Adherence Apps: Potential Benefits To Patients And Providers. J Am Pharm Assoc. 2013;53(2):172–81.

71. Rootes-Murdy K, Glazer KL, Van Wert MJ, Mondimore FM, Zandi PP. Mobile technology for medication adherence in people with mood disorders: A systematic review. J Affect Disord. 2017;227(June 2017):613–7.

72. Cavanagh K. Geographic inequity in the availability of cognitive behavioural therapy in england and wales: A 10-year update. Behav Cogn Psychother. 2014;42(4):497–501.

Figures

Figure 1

Flow diagram of the selection process of studies
Funnel plot – Potential publication bias
Figure 3

Forest plots for effect of intervention on adherence rate

Study ID	OR (95% CI)	% Weight
Ader (2004)	1.62 (1.13, 2.34)	2.75
Aitcheson (2006)	3.90 (1.24, 12.28)	0.90
Aitcheson (2005)	2.92 (0.31, 9.41)	0.88
Aitcheson (2004)	1.32 (0.36, 4.47)	0.85
Chang (2013)	1.81 (1.79, 1.83)	2.95
de Jongh (2001)	0.94 (0.37, 2.40)	1.34
de Jongh (2000)	0.91 (0.37, 2.40)	1.34
Hammond (2010)	1.86 (0.64, 5.45)	1.09
Interven (2010)	1.86 (0.64, 5.45)	1.09
Karon (1999)	2.72 (1.26, 5.89)	2.06
Karon (1998)	4.46 (1.20, 15.60)	2.49
Karon (1997)	1.47 (0.53, 4.08)	1.17
Karon (1998)	2.43 (1.53, 3.87)	2.44
Karon (1997)	1.68 (1.24, 2.29)	2.58
Marfell (2017)	3.08 (1.27, 7.16)	0.85
Myers (1984)	2.74 (0.46, 16.32)	0.46
Petruca (2014)	0.92 (0.38, 2.40)	0.43
Richards (2016)	0.50 (0.32, 0.93)	2.29
Rickels (2006)	1.08 (0.59, 1.96)	0.81
Simon (2006)	3.47 (0.57, 2.14)	0.15
Simon (2005)	3.47 (0.57, 2.14)	0.15
Simon (2005)	3.47 (0.57, 2.14)	0.15
Simit (2009)	1.04 (0.31, 3.49)	0.93
Simit (2009)	1.04 (0.31, 3.49)	0.93
Verghese (2005)	16.34 (2.39, 192.07)	0.01
Wallis (2009)	1.35 (0.52, 3.47)	0.46
Overall (I² = 64.9%, p = 0.000)	1.57 (1.22, 2.01)	39.31

6 months

Study ID	OR (95% CI)	% Weight
Ader (2004)	1.56 (1.08, 2.25)	2.76
Aitcheson (2006)	1.97 (1.04, 3.76)	2.82
Aitcheson (2005)	3.91 (0.90, 15.94)	0.73
Aitcheson (2004)	1.75 (0.86, 3.59)	0.73
Borese (2002)	0.98 (0.67, 1.46)	0.79
Capocci (2004)	1.33 (0.45, 3.87)	1.10
Chang (2013)	1.90 (1.09, 3.32)	2.76
de Jongh (2001)	0.94 (0.35, 2.63)	1.63
de Jongh (2000)	1.79 (0.91, 3.55)	2.82
Hammond (2010)	2.93 (1.74, 4.84)	0.99
Karon (1999)	2.60 (1.23, 5.52)	2.58
Karon (1998)	1.85 (1.23, 2.86)	2.68
Karon (1997)	0.80 (0.57, 1.16)	2.10
Kuclikiew (2002)	0.85 (0.44, 1.61)	1.91
Leffler (2015)	0.99 (0.80, 1.27)	2.45
Leffler (2015)	0.93 (0.80, 1.09)	2.24
Perini (2002)	0.94 (0.31, 2.91)	1.60
Perini (2002)	0.90 (0.30, 2.79)	1.48
Simon (2011)	3.77 (1.48, 9.49)	1.98
Simon (2009)	0.51 (0.10, 2.50)	1.57
Simit (2006)	0.99 (0.30, 3.25)	1.30
Simit (2006)	1.00 (0.34, 3.26)	0.92
Verghese (2005)	1.85 (0.95, 3.60)	1.57
Overall (I² = 67.0%, p = 0.000)	1.28 (0.71, 2.26)	43.05

12 months

Study ID	OR (95% CI)	% Weight
Capocci (2004)	1.04 (0.41, 2.63)	1.31
Karon (2001)	1.72 (1.14, 2.56)	2.63
Karon (2001)	1.72 (1.14, 2.56)	2.63
Keedey (2014)	1.31 (0.71, 2.45)	0.92
Lin (1999)	0.60 (0.36, 1.00)	1.71
Richards (2016)	0.91 (0.58, 1.40)	2.34
Simit (2006)	1.03 (0.56, 1.94)	1.10
Simit (2006)	0.97 (0.49, 1.91)	1.00
Simit (2006)	0.98 (0.38, 2.83)	1.39
Ward (2014)	0.73 (0.39, 1.37)	1.53
Subtotal (I² = 13.2%, p = 0.302)	1.23 (0.90, 1.65)	17.64
Overall (I² = 59.8%, p = 0.000)	1.36 (1.19, 1.58)	100.00

Note: Analyzed using the random-effects model.

Odd ratio (95% Confidence Interval)
Figure 4
Cumulative meta-analysis of studies ordered by year of publication

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable1.docx
- SupplementaryTable2.docx
- SupplementaryTable3.docx
- SupplementaryTable4.docx