Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia
A Nonrandomized Controlled Trial

M. Dominik Fischer, MD, PhD; Stylianos Michalakis, PhD; Barbara Wilhelm, MD; Ditta Zobor, MD, PhD; Regine Muehlfriedel, PhD; Susanne Kohl, PhD; Nicole Weisschuh, PhD; G. Alex Ochakovski, MD; Reinhold Klein, MD; Christian Schoen, PhD; Vithiyanjali Sothilingam, PhD; Marina Garcia-Garrido, PhD; Laura Kuehlewein, MD; Nadine Kahle, PhD; Annette Werner, PhD; Danyar Dauletbekov, MD, PhD; François Paquet-Durand, PhD; Stephen Tsang, MD, PhD; Peter Martus, PhD; Tobias Peters, MD; Mathias Seeliger, MD; Karl Ulrich Bartz-Schmidt, MD; Marius Ueffing, PhD; Eberhart Zrenner, MD, PhD; Martin Biel, PhD; Bernd Wissinger, PhD

IMPORTANCE Achromatopsia linked to variations in the CNGA3 gene is associated with day blindness, poor visual acuity, photophobia, and involuntary eye movements owing to lack of cone photoreceptor function. No treatment is currently available.

OBJECTIVE To assess safety and vision outcomes of supplemental gene therapy with adeno-associated virus (AAV) encoding CNGA3 (AAV8.CNGA3) in patients with CNGA3-linked achromatopsia.

DESIGN, SETTING, AND PARTICIPANTS This open-label, exploratory nonrandomized controlled trial tested safety and vision outcomes of gene therapy vector AAV8.CNGA3 administered by subretinal injection at a single center. Nine patients (3 per dose group) with a clinical diagnosis of achromatopsia and confirmed biallelic disease-linked variants in CNGA3 were enrolled between November 5, 2015, and September 22, 2016. Data analysis was performed from June 6, 2017, to March 12, 2018.

INTERVENTION Patients received a single unilateral injection of 1.0×10^{10}, 5.0×10^{10}, or 1.0×10^{11} total vector genomes of AAV8.CNGA3 and were followed up for a period of 12 months (November 11, 2015, to October 10, 2017).

MAIN OUTCOMES AND MEASURES Safety as the primary end point was assessed by clinical examination of ocular inflammation. Systemic safety was assessed by vital signs, routine clinical chemistry testing, and full and differential blood cell counts. Secondary outcomes were change in visual function from baseline in terms of spatial and temporal resolution and chromatic, luminance, and contrast sensitivity throughout a period of 12 months after treatment.

RESULTS Nine patients (mean [SD] age, 39.6 [11.9] years; age range, 24-59 years; 8 [89%] male) were included in the study. Baseline visual acuity letter score (approximate Snellen equivalent) ranged from 34 (20/200) to 49 (20/100), whereas baseline contrast sensitivity log scores ranged from 0.1 to 0.9. All 9 patients underwent surgery and subretinal injection of AAV8.CNGA3 without complications. No substantial safety problems were observed during the 12-month follow-up period. Despite the congenital deprivation of cone photoreceptor-mediated vision in achromatopsia, all 9 treated eyes demonstrated some level of improvement in secondary end points regarding cone function, including mean change in visual acuity of 2.9 letters (95% CI, 1.65-4.13; $P = .006$, 2-sided t test paired samples). Contrast sensitivity improved by a mean of 0.33 log (95% CI, 0.14-0.51 log; $P = .003$, 2-sided t test paired samples).

CONCLUSIONS AND RELEVANCE Subretinal gene therapy with AAV8.CNGA3 was not associated with substantial safety problems and was associated with cone photoreceptor activation in adult patients, as reflected by visual acuity and contrast sensitivity gains.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02610582

JAMA Ophthalmol. doi:10.1001/jamaophthalmol.2020.1032
Published online April 30, 2020.
Achromatopsia is an inherited disease that affects cone photoreceptors in the retina. Individuals with achromatopsia demonstrate a total lack of function of all 3 types of cones in the retina. Achromatopsia is clinically characterized by day blindness (hemeralopia), glare, poor visual acuity, involuntary oscillatory movement of the eyes (nystagmus), and failure to discriminate chromatic contrasts (achromatopsia). In contrast to common forms of color blindness, in which alterations in the opsin genes affect spectral sensitivity only, patients with achromatopsia lack any cone response from birth. Consequently, patients do not report progression of symptoms, and the disease was initially thought to be nonprogressive. Previous studies, however, established structural alterations and foveal lesions that emerge with age and are consistent with a slowly progressive degeneration and loss of cone photoreceptor cells in patients with achromatopsia. Variants in 6 genes are implicated in achromatopsia, which together likely explain more than 90% of cases. Most prevalent are pathogenic variants in the 2 genes that encode the α and β subunits of the cone cyclic nucleotide-gated (CNG) channel, CNGA3 (found in approximately 25%-28% of European and US cases) and CNGB3 (50% of cases). CNG channels are essential components of the phototransduction process in cone photoreceptors, which enable daylight vision, high spatial and temporal resolution, color discrimination, and stable fixation. No treatment is currently available for achromatopsia, and any procedure that results in improvement of day blindness and visual function is therefore desired.

Supplemental gene therapy is successfully applied in other inherited retinal diseases due to, for example, mutations in RPE65. The US Food and Drug Administration and the European Medicines Agency recently approved the first gene therapy drug for inherited retinal diseases caused by variants in RPE65. The primary targets for RPE65 gene therapy are cells of the retinal pigment epithelium. In contrast, our gene therapy approach for CNGA3-linked achromatopsia was designed to specifically treat cone photoreceptors. Such an approach was proven successful in a Cnga3-deficient mouse model on retinal and behavioral levels. Preclinical toxicologic studies in nonhuman primates demonstrated no adverse effect and limited biodistribution after subretinal application. We therefore initiated a trial in November 2015 to assess the safety and efficacy of a gene therapy approach that targeted the remaining cone photoreceptors in patients with achromatopsia. We used adeno-associated virus 8 (AAV8) as a vector with proven ability to transduce photoreceptors, opted for a cone-specific promoter (derived from the human cone arrestin 3 gene ARR3), and delivered the vector in a subretinal bleb under the cone-rich macula of patients with achromatopsia due to variants in CNGA3. This first, to our knowledge, trial in human patients was designed to evaluate the safety and tolerability of such an approach, to give insights into the association of the treatment with changes in visual function, and to assess the potential utility of functional end points for future studies.

Methods

Study Design and Oversight

This open-label, exploratory nonrandomized controlled trial included patients with CNGA3-linked achromatopsia enrolled in 3 dose groups from November 5, 2015, to September 22, 2016. Thirty-six patients were initially assessed, and 21 were deemed unsuitable in the investigator’s opinion (eg, residual cone response in electroretinography or very poor fixation). Of these 15 patients, 6 did not consent to the study. All patients provided written informed consent, and patients were deidentified for the data analysis. Study protocol and documenta tion were approved by the Paul Ehrlich Institute and the local ethics board of the University Hospital Tübingen. An independent data monitoring committee evaluated the safety data and gave a go or no-go decision for each dose escalation step. International Conference on Harmonization Good Clinical Practice monitoring was performed independently and on behalf of the sponsor (Universitätsklinikum Tübingen). This study followed the Transparent Reporting of Evaluations With Nonrandomized Designs (TREND) reporting guideline. The trial protocol can be found in Supplement 1.

Patients

Nine patients (8 men and 1 woman) with a clinical phenotype of complete achromatopsia and confirmed biallelic variants in the CNGA3 gene were enrolled into this trial (Figure 1); eligibility criteria are given in the eAppendix in Supplement 2. Three patients each were assigned to 1 of 3 groups with escalating doses (1 × 10^{10} total vector genomes [vg], 5 × 10^{10} vg, and 1 × 10^{11} vg) with the aim of investigating first the safety and tolerability and second the therapeutic efficacy of AAV8.CNGA3. The patients received a single unilateral injection of AAV8.CNGA3 and were followed up for a period of 12 months (November 11, 2015, to October 10, 2017). For ethical reasons, the worse eye based on clinical examination and subjective judgment by the patient was used as the study eye in this trial. Patients were not prescreened for immunity to AAV8.

Vector Production

The vector was produced according to Good Manufacturing Practice requirements at Atlantic BioGMP. Details are described in the eAppendix in Supplement 2. In brief, the ex-
Men used routinely in our hospital after vitreoretinal surgical complications. Patients were treated with a 21-day oral course of antibiotics as prophylaxis against AA V8 CNGA3 gene therapy, a number of functional tests centered around cone photoreceptor function were performed by an assessor masked to the treatment. These tests included assessments of visual acuity and contrast sensitivity, color vision, flicker fusion frequency, full-field stimulus threshold, pupillometry, microperimetry, and questionnaire-based measures of patient-reported outcome measures at baseline and during follow-up for 1 year. Details are given in eTables 9 through 11 in Supplement 2.

Statistical Analysis
We present the absolute values for 9 patients alongside the calculated mean (±2 SDs) for the 3 dose subgroups (n = 3) and all treated eyes (n = 9) over time. The exploratory outcomes were assessed as the change from the baseline measurement to 12 months using parametric (2-sided t test) and nonparametric (Wilcoxon signed rank test) analyses. A 2-sided P > .05 was interpreted as not statistically significant. The trial was not designed to formally test efficacy, and no formal sample size estimation was performed a priori. Therefore, the number of statistical tests for different clinical parameters with P < .05 was compared with the expected number of false-positive calls owing to multiple testing (eAppendix in Supplement 2). To combine findings from different clinical efficacy end points, standardized scores (z scores) were calculated by using the individual baseline value and the SD of all 9 measurements at baseline to achieve a dimensionless quantity. Data analysis was performed from June 6, 2017, to March 12, 2018.

Results

Patient Characteristics and Intervention
Nine patients (mean [SD] age, 39.6 [11.9] years; age range, 24-59 years; 8 [89%] male) were included in the study. The patients’ retinas represented different morphologic stages of the disease ranging from near-normal foveal structure to complete foveal atrophy (Table 1 and eFigure 1 in Supplement 2). Baseline visual acuity letter score (approximate Snellen equivalent) ranged from 34 (20/200) to 50 (20/100). Baseline contrast sensitivity log scores ranged from 0.1 to 0.9. All patients received the full designated vector dose without complications. The cone-rich center of the retina was included in the treatment area in all cases. The treatment was not associated with clinically relevant adverse changes in the neuroretinal tissue and/or vasculature (Figure 2). Moreover, all patients maintained their preferred retinal locus inside the treatment area, and the foveal thickness remained unchanged after reattachment (Figure 2 and eFigure 2 in Supplement 2).

Transgene expression (immune labeling of CNGA3 after subretinal gene therapy of Cnga3−/− mice) and biological activity (electroretinography after subretinal gene therapy of Cnga3−/− mice) were assessed with different engineering lots and the final clinical lot (eAppendix in Supplement 2). Short-term (n = 12, 28 days) toxicologic and long-term (n = 22, 13 weeks) toxicologic and biodistribution studies in nonhuman primates demonstrated that AA V8.CNGA3 can safely be applied for subretinal injections.

Surgery and Concomitant Medication
AAV8.CNGA3 was delivered by subretinal injection in all 9 patients after standard 23-gauge vitrectomy with the patient under general anesthesia using a 2-step approach described previously. First, a sterile irrigating solution (BSS, Alcon) was injected using an extendable 41-gauge cannula (1270.EXT, DORC) to create a localized retinal detachment (prebleb). Second, a fixed volume (0.2 mL) of AAV8.CNGA3 was injected into the prebleb formation through the same retinotomy using 7- to 14-kPa positive pressure on the infusion program of the PentraSys system. All operations were performed without complications. Patients were treated with a 21-day oral course of prednisolone (starting 1 day before surgery) at 1 mg/kg body weight, which was then tapered out. Topical glucocorticoid and antibiotic medication was administered as prophylaxis against inflammation and infection in accordance with the drug regimen used routinely in our hospital after vitreoretinal surgical procedures (eAppendix in Supplement 2).

Clinical Investigation
Best-corrected visual acuity (to rule out loss of ≥15 letters in visual acuity at 1 m) and clinical examinations of the eye (to rule out severe, vector-induced intraocular inflammation unresponsive to treatment) were performed to examine the primary end point (safety). Systemic safety parameters included vital signs, clinical chemical analyses (eg, C-reactive protein level, IgG titer, IgM titer, and differential blood cell counts), quantitative polymerase chain reaction–based analysis of vector shedding and biodistribution, an enzyme-linked immunosorbent assay quantifying antibody titers against AA V8 capsid proteins, and lymphocyte transformation tests and supernatant cytokine assays to monitor cellular immune reactivity against AA V8. Details are given in eTables 1 through 6 in Supplement 2.

To explore the efficacy of AA V8.CNGA3 gene therapy, a number of functional tests centered around cone photoreceptor function were performed by an assessor masked to the treatment. These tests included assessments of visual acuity and contrast sensitivity, color vision, flicker fusion frequency, full-field stimulus threshold, pupillometry, microperimetry, and questionnaire-based measures of patient-reported outcome measures at baseline and during follow-up for 1 year. Details are given in eTables 9 through 11 in Supplement 2.

Preclinical Testing
Transgene expression (immune labeling of CNGA3 after subretinal gene therapy of Cnga3−/− mice) and biological activity (electroretinography after subretinal gene therapy of Cnga3−/− mice) were assessed with different engineering lots and the final clinical lot (eAppendix in Supplement 2). Short-term (n = 12, 28 days) toxicologic and long-term (n = 22, 13 weeks) toxicologic and biodistribution studies in nonhuman primates demonstrated that AA V8.CNGA3 can safely be applied for subretinal injections.
Table 1. Baseline Demographic and Clinical Characteristics Before and After Gene Therapy

Patient No.	Eye, dose, vector genomes	Disease causing CNGA3 variantsa	Before gene therapyb	1 Year after gene therapyb						
			BCVA	ETDRS letter score	Snellen score	Contrast sensitivity, log*	BCVA	ETDRS letter score (change)b	Snellen score	Contrast sensitivity, log*(change)a
101	Right, 1 × 10^{10}	c.[1641C>A];[1682G>A]; [p.Phe547Leu];[Gly561Glu]	41	20/160	0.45	43 (+2)	20/160	0.90 (+0.45)		
102	Left, 1 × 10^{10}	c.[1641C>A];[1641C>A]; [p.Phe547Leu];[Gly561Glu]	34	20/200	0.20	38 (+4)	20/200	1.05 (+0.85)		
103	Left, 1 × 10^{10}	c.[800G>A];[1963C>T]; [p.Gly267Asp];[Gln655*]	35	20/200	0.10	39 (+4)	20/160	0.45 (+0.35)		
104	Right, 5 × 10^{10}	c.[800G>A];[1963C>T]; [p.Gly267Asp];[Gln655*]	38	20/200	0.60	44 (+6)	20/125	0.65 (+0.05)		
105	Left, 5 × 10^{10}	c.[847C>T];[847C>T]; [p.Arg283Trp];[Arg283Trp]	49	20/100	0.90	52 (+3)	20/100	1.15 (+0.25)		
106	Left, 5 × 10^{10}	c.[847C>T];[847C>T]; [p.Arg283Trp];[Arg283Trp]	45	20/125	0.50	46 (+1)	20/125	0.90 (+0.40)		
107	Left, 1 × 10^{11}	c.[848G>A];[848G>A]; [p.Arg283Gln];[Arg283Gln]	43	20/160	0.60	45 (+2)	20/125	0.85 (+0.45)		
108	Left, 1 × 10^{11}	c.[940_942delATC];[940_942delATC]; [p.Ile314del];[Ile314del]	39	20/160	0.55	40 (+1)	20/160	0.85 (+0.30)		
109	Right, 1 × 10^{11}	c.[872C>G];[1641C>A]; [p.Thr291Arg];[Phe547Leu]	50	20/100	0.80	53 (+3)	20/100	0.85 (+0.05)		

Abbreviations: BCVA, best-corrected visual acuity; ETDRS, Early Treatment Diabetic Retinopathy Study.

* GenBank reference sequence: NM_001298; variant nomenclature according to recommendations of the Human Genome Variation Society.

b Higher values in visual acuity and contrast sensitivity indicate improvement. Patients 103 and 104 are siblings.

Figure 2. Treatment Area and Association With Foveal Anatomic Features

Representative indocyanine green angiographic images from 2 patients at 1 year after treatment with low (1 × 10^{10} vector genomes) (A) and high (1 × 10^{11} vector genomes) (B) doses of adeno-associated virus encoding CNGA3 gene therapy showing no change in retinal and choroidal perfusion. The target area included the cone photoreceptor-rich macula in all cases (small dashed circles indicate prebleb area; larger circles, extent of full bleb; blue X, retinotomy; blue X, preferred retinal locus at baseline; blue X with apostrophe, preferred retinal locus at 1 year after treatment). Foveal thickness as the mean (±2 SDs [error bars]) of all patients (C) and of individual patients (D) over time. Foveal thickness measurement at day 0 (immediately after surgery) was only available for 1 patient. BL indicates baseline.
Safety and Vision Outcomes of Subretinal Gene Therapy in Achromatopsia

Primary Outcome

The following limits were defined in the trial protocol for ocular safety: (1) loss of 15 or more letters in visual acuity at 1 m and (2) severe, vector-induced intraocular inflammation unresponsive to treatment. Neither of these limits occurred in any of the patients, and no serious adverse event was documented throughout the study (eAppendix in Supplement 2). Two adverse events were deemed possibly related to the study drug: one patient (patient 105) had hyperreflective spots on optical sections (optical coherence tomography) in the treated retina 1 month after treatment; another patient (patient 106) reported symptoms of iridocyclitis 1 month after treatment. Both adverse events quickly resolved with corticosteroid treatment without sequelae.

Analysis of systemic safety end points (vital signs, clinical chemical analysis, and vector biodistribution and shedding) confirmed an excellent safety profile (eAppendix in Supplement 2). Specifically, there was no measurable shedding of AAV8.CNGA3 in lacrimal or nasal fluids, blood, or urine as early as 3 days after surgery (earliest time point measured). Consequently, no changes in antibody titer levels directed against AAV8 epitopes were observed. Adaptive cellular immune reactions were not observed clinically (apart from the above-mentioned hyperreflective spots potentially signifying recruitment of immune cells and the iridocyclitis). Proliferation and activation assays of peripheral blood mononuclear cell subfractions (CD4+ or CD8+ T cells, CD19+ B cells, and CD56+ natural killer cells) (eAppendix in Supplement 2) demonstrated that AAV8.CNGA3 was associated with increased reactivity of CD4+ TH1 cells in the medium- and high-dose group after day 90 and with activated B cells. For the mean activation rate of CD4+ TH1 cells at days 90 and 180 (eTable 6 in Supplement 2), only 0.6% of cells from the low-dose cohort samples reacted to AAV8.CNGA3 antigen, whereas 1.25% were reactive in the intermediate-dose cohort and 6.6% in the high-dose cohort. Similarly, 6.9% of CD19+ B cells were reactive to AAV8.CNGA3 antigen in samples from the low-dose cohort at days 90 and 180 (eTable 6 in the Supplement 2), whereas samples from the intermediate-dose cohort had 11.5% reactive B cells, and 54.7% of B cells from the high-dose cohort were reactive to the AAV8.CNGA3 antigen. The general immune response toward recall antigens was only marginally associated with the stimulation with AAV8 epitopes.

Secondary Outcomes

Best-corrected visual acuity and contrast sensitivity are well-established end points associated with cone-mediated vision.21,22 Both end points showed an improvement (mean best-corrected visual acuity, 2.9 letters [95% CI, 1.65-4.13 letters; P = .006, 2-sided t test paired samples]; mean log contrast sensitivity, 0.33 log [95% CI, 0.14-0.51 log]; P = .003, 2-sided t test paired samples) when comparing the treated eye at baseline vs 1 year after treatment (Figure 3, Table 1, and eFigure 3 in Supplement 2). A potential learning effect cannot be fully ruled out for contrast sensitivity testing, which at 1 year after treatment also improved in the untreated contralateral eye (log*t [±SD] difference from 1 year to baseline, 0.189 [0.236]). However, the measured improvement was more pronounced in the treated eye (log*t [±SD] difference from 1 year to baseline, 0.328 [0.240]). Color vision showed a significant improvement expressed in reduced chromatic discrimination thresholds by 5.3 ± 6.51/1000th° L°u°v° (P = .04, 2-sided t test).23 Analysis of flicker fusion frequency showed that in 4 of 9 patients, the critical fusion frequency increased by 5 Hz or more, suggesting that the temporal resolution of the retina reached levels suggestive of newly gained cone function (Table 2 and eFigure 3 in Supplement 2). A chromatic pupillography protocol previously shown to discriminate between patients with achromatopsia and healthy control individuals was applied as an objective outcome measure independent of any placebo effect in this open-label study.24 Five of 9 patients had a normalization of pupil constriction after chromatic stimuli 1 year after gene therapy (Table 2).

Individual values, descriptive statistics, and significance analyses of all tested efficacy measures are summarized in eTable 8 in Supplement 2. With the exception of contrast sensitivity, none of the other efficacy measures reached statistical significance in the untreated control eye (eFigure 4, eFigure 5, and eTable 7 in Supplement 2).

In the assessment of patient-reported outcome measures, a study-specific symptom scale (A3-PRO)25 showed 3 improvements (expected false-positive rate of 1). With the use of the validated Visual Function Questionnaire 25,26 6 improvements were observed (expected by chance: 1 or 2). Thus, results from the patient-reported outcome measures (eTable 9 and eTable 10 in Supplement 2) support a functional gain associated with AAV8.CNGA3 gene therapy. Specifically, patients reported improvements in the ability to identify letters and numbers and in color vision.

To combine findings from different clinical end points, standard z scores were calculated from 11 key end points that reflected potential cone function (visual acuity, contrast sensitivity, flicker fusion frequency, full-field stimulus threshold [red stimulus], pupil diameter [red stimulus], chromatic contrast sensitivity [ellipse area], mean retinal sensitivity [microperimetry], Visual Function Questionnaire 25 color vision score, and A3-PRO scores for identification of colors, letters, and glare).27,28 These individual z scores were normalized for baseline and, if necessary, changed in sign to more intuitively show functional gain (z score >0) or loss (z score <0) up to 4 SDs over time (eFigure 6 in Supplement 2). All 9 patients demonstrated improvement in cone function at month 12 (mean z score >0). Six of 9 patients (67%) had improvement of more than 0.5 SD.

Discussion

During the past years, academic and pharmaceutical research activities in the field of ocular gene therapy have been intensified and led to marketing authorization of voretigene neparvovec, the first-in-class US Food and Drug Administration-approved gene therapy for inherited retinal diseases caused by variants in the retinal pigment epithelium–expressed gene RPE65. Multiple other forms of inherited blindness still remain without treatment options. We report the results of the
first, to our knowledge, human clinical study that evaluated gene therapy for type 2 achromatopsia, an inherited retinal disorder caused by variants in CNGA3 and leading to cone photoreceptor dysfunction. The aim of the study was to test the safety and efficacy of AAV8.CNGA3 in patients with complete achromatopsia due to biallelic variants in CNGA3. All primary outcomes substantiate that AAV8.CNGA3 treatment is not associated with substantial safety problems. The adverse event profile

Table 2. Descriptive Analysis and Tests of Significance vs Baseline in Functional Outcomes of the Treated Eye

Outcome	Baseline, mean (SD)	6 mo, mean (SD)	Parametric/ nonparametric P value	1 y, mean (SD)	Parametric/ nonparametric P value
BCVA	41.38 (6.39)	43.75 (5.80)	.005/.02	44.00 (5.24)	.01/.02
Contrast sensitivity, 3 m	0.52 (0.26)	0.74 (0.35)	.02/.03	0.85 (0.20)	.003/.008
Flicker fusion frequency	17.44 (5.59)	20.50 (5.89)	.12/.17	18.89 (4.94)	.53/.67
Mean retinal sensitivity	21.14 (2.51)	20.84 (2.29)	.21/.18	21.41 (2.46)	.53/.53
Fixation stability, 4°	58.29 (16.93)	53.22 (15.14)	.33/.40	56.11 (18.13)	.50/.31
CCT ellipse area	0.0249 (0.0053)	0.0202 (0.0060)	.04/.046	0.0213 (0.0063)	.11/.12
Full stimulus threshold	−38.78 (7.03)	−37.00 (4.95)	.58/.77	−36.25 (3.92)	.37/.62
Pupillography	29.3o (6.05)	22.38 (9.46)	.11/.14	15.48 (3.65)	<.001/.008
Relative constriction with red light stimuli	5.37 (1.50)	4.65 (1.20)	.01/.051	4.81 (0.86)	.14/.11

Abbreviations: BCVA, best-corrected visual acuity; CCT, Cambridge Color Test.
was limited and in line with preclinical findings.11 These findings suggest that AAV vectors in the eye are recognized by the adaptive immune system, with the immune response peaking 1 month after treatment. This finding has potential implications for patient management. With respect to treatment of the second eye, the question of whether AAV8.CNGA3 should be administered before or after that peak remains. Bennett et al29 ruled out immunogenic adverse events when treating the second eye 2 to 3 years after treatment of the first eye with AAV2.

We enrolled adult patients with advanced disease and treated each patient’s worse eye in which a substantial amount of cone photoreceptors had already undergone degeneration. However, achromatopsia has to be considered as a pediatric ophthalmologic disorder because the complete lack of cone photoreceptor function is already present at birth and the patient’s visual cortex never experienced and processed cone-derived visual input. Therefore, deprivation amblyopia and altered organization of the visual cortex should be considered as potential limiting factors for efficacy in nonpediatric patients.33 The concept that the human visual cortex matures in an interplay between functional input and information processing during a critical period in childhood stems from the investigations of Wiesel and Hubel32 in the mammalian visual cortex. This concept suggests that lack of appropriate input from cones will negatively affect the hard wiring of the visual cortex, leading to amblyopia. Amblyopia is best treated before the end of the critical period but is considered essentially irreversible in adults. Although specific exercises can lead to some improvements in amblyopic eyes even in adults,33 it was questionable whether plasticity of the visual cortex is preserved throughout life. As such, efficacy of any therapy aiming at restoration of cone photoreceptor function may depend, at least to some extent, on treating before the critical period. Our results in adult patients with achromatopsia indicated some degree of improved visual function in the treated eye, which was consistent throughout different ophthalmologic and patient-reported outcome measures. The clinical effect of this treatment may be most pronounced before the end of the critical period. In the current study, one cannot exclude that the vision outcomes were limited because of (1) advanced morphologic changes (ie, lack of cone photoreceptor outer segments) or (2) persistent amblyopia and a limited plasticity of the visual cortex in the adult patient population.

Taken together, this gene therapy study for achromatopsia found an excellent safety profile associated with subretinally delivered AAV8.CNGA3 and functional improvement in patients 1 year after treatment, although the absence of randomized concurrent control individuals precludes determining a cause-and-effect relationship. Improvement in functional variables, such as visual acuity, contrast sensitivity, and color vision, were noted despite the limited cohort size. In addition, patient-reported outcome measures provided additional support for a possible beneficial treatment effect. For example, the ability to differentiate colors improved after treatment with AAV8.CNGA3, as did measures for vision and identification of letters and numbers—key tasks in everyday life. As such, we found that targeting cone photoreceptors for gene supplementation with recombinant AAV8 can be applied safely and successfully. Of more importance, these data provide evidence that cone photoreceptor function can be gained in adult patients with complete achromatopsia.

Limitations
The results of this study should be considered within the context of its limitations attributable to its design (open-label, non-randomized controlled trial), the small patient numbers (9 patients in total and 3 patients per dose group), and the relatively short follow-up period.

Conclusions
The findings suggest that gene therapy with AAV8.CNGA3 in adults with CNGA3-linked achromatopsia is not associated with substantial safety problems and is associated with improvement in vision outcome. Future studies are needed to investigate whether treatment at an earlier age (ie, before closure of the critical period of visual cortex development at the age of approximately 7–8 years and before structural loss of cone photoreceptors) will lead to greater functional benefit because of higher cortical plasticity.
responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Fischer, Michalakis, Wilhelm, Muehlfriedl, Schoen, Kohle, Werner, Tsang, Martus, Ueffing, Biel, Wissinger.

Acquisition, analysis, or interpretation of data: Fischer, Michalakis, Wilhelm, Zobor, Kohl, Weisschuh, Ochakovski, Klein, Sothilingam, Garcia-Garrido, Kuehlewein, Werner, Dauletbekov, Paquet-Durand, Tsang, Martus, Peters, Seeliger, Bartz-Schmidt, Ueffing, Zrenner, Biel.

Drafting of the manuscript: Fischer, Michalakis, Muehlfriedl, Kohl, Ochakovski, Sothilingam, Werner, Bartz-Schmidt, Biel.

Critical revision of the manuscript for important intellectual content: Fischer, Michalakis, Wilhelm, Zobor, Kohl, Weisschuh, Ochakovski, Klein, Schoen, Garcia-Garrido, Kuehlewein, Kahle, Werner, Dauletbekov, Paquet-Durand, Tsang, Martus, Peters, Seeliger, Ueffing, Zrenner, Wissinger, Peters, Seeliger, Ueffing, Zrenner, Biel.

Conflict of Interest Disclosures: Dr Fischer reported receiving grants from the Kerstan Foundation during the conduct of the study; receiving personal fees from Novartis, Adelphia Vision, and the Charcot-STIF Foundation; receiving grants from Biogen and Casebia Therapeutics; receiving grants and personal fees from Bayer outside the submitted work; and having a patent to treat Retinitis Pigmentosa licensed. Dr Michalakis reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study and having a patent to PCT/EP2017/054229 pending. Dr Wilhelm reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Kuehlewein reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Sothilingam reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Seeliger reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Ueffing reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Wissinger reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study. Dr Zrenner reported receiving grants from the Tistou and Charlotte Kerstan Foundation during the conduct of the study.

Funding/Support: The Tistou and Charlotte Kerstan Foundation provided the sole funding of this study as part of the RD-CURE project (Bringing Gene Supplementation Therapy for Inherited PDE6A- and CNG3A-associated Retinopathies into Clinical Practice: A joint Tübingen-München Project). Funds were granted to Drs Wissinger, Biel, and Michalakis on behalf of the RD-CURE Consortium.

Role of the Funder/Sponsor: The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Apostolos Bezirgiannidis, MD (University Eye Hospital, University Hospital Tübingen, Tübingen, Germany). Sven Korte, PhD, and Joerg Luft, DVM (Covance Preclinical Services GmbH) helped with the primate study; Sandra Planckenhorn provided technical assistance with immunological assays; and Sylvia Bolz, MSc, Christian J. Gloeckner, PhD, Ahmad Zhouh, MD, and Jonas Neubauer, MD, contributed as members of the RD-CURE Consortium. These individuals were not compensated for their help. We thank the patients and their families for their participation.

REFERENCES

1. Blackwell HR, Blackwell OM. Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia. Vision Res. 1961;1:62-107. doi:10.1016/0042-6989(61)90022-0

2. Sundaram V, Wilde C, Aboshiha J, et al. Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology. 2014;121(1):234-245. doi:10.1016/j.photha.2013.08.017

3. Thanders AA, Somerova V, van den Born LI, et al. Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(11):5952-5957. doi:10.1167/iovs.09-4380

4. Zobor D, Werner A, Stanzial F, et al; RD-CURE Consortium. The clinical phenotype of CNG3A-related achromatopsia: pretreatment characterization in preparation of a gene replacement therapy trial. Invest Ophthalmol Vis Sci. 2017;58(2):821-832. doi:10.1167/iovs.16-20427

5. Roosjen S, Thanders AA, Hoyng CB, Klaver CC, van den Hollander AI, Cremers FP. Causes and consequences of congenital cone disorders. Prog Retin Eye Res. 2014;42:1-26. doi:10.1016/j.preteyres.2014.05.001

6. Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018;39(2):149-157. doi:10.1080/13680228.2017.148389

7. Kohl S, Varsanyi B, Klaver CC, et al. CNG3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur J Hum Genet. 2005;13(3):302-308. doi:10.1038/sj.ejhg.5201269

8. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860. doi:10.1016/S0140-6736(17)31868-8

9. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6(1):601-621. doi:10.1146/annurev-virology-092818-015530

10. Michalakis S, Mühlfriedl R, Tanimoto N, et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther. 2018;26(12):2057-2063. doi:10.1016/j.ymthe.2018.10.014

11. Reichel FF, Dauletbekov DL, Klein R, et al; RD-CURE Consortium. AAVB can induce innate and adaptive immune response in the primate eye. Mol Ther. 2017;25(12):2648-2660. doi:10.1016/j.molther.2017.08.018

12. Ochakovski GA, Peters T, Michalakis S, et al; RD-CURE Consortium. Subretinal injection for gene therapy does not cause clinically significant outer nuclear layer thinning in normal primate foveae. Invest Ophthalmol Vis Sci. 2017;58(10):4155-4160. doi:10.1167/iovs.17-22402

13. Vandenberghe LH, Bell P, Maguire AM, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54. doi:10.1126/scitranslmed.3002103
21. Csaky KG, Richman EA, Ferris FL III. Report from the NEI/FDA ophthalmic clinical trial design and endpoints symposium. Invest Ophthalmol Vis Sci. 2008;49(2):479-489. doi:10.1167/iovs.07-1132

22. Baden T, Schubert T, Chang L, et al. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron. 2013;80(5):1206-1217. doi:10.1016/j.neuron.2013.09.030

23. Seitz IP, Jolly JK, Dominik Fischer M, Simunovic MP. Colour discrimination ellipses in choroideremia. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):665-673. doi:10.1007/s00417-018-3921-0

24. Lisowska J, Lisowski L, Kelbsch C, et al; RD-CURE Consortium. Development of a chromatic pupillography protocol for the first gene therapy trial in patients with CNGA3-linked achromatopsia. Invest Ophthalmol Vis Sci. 2017;58(2):1274-1282. doi:10.1167/iovs.16-20505

25. Wilhelm B, Koegel A, Kahle N, et al. How do patients rate their subjective symptoms after CNGA3 gene therapy: first application of the instrument A3-PRO. Invest Ophthalmol Vis Sci. 2017;58(8):4678.

26. Marella M, Pesudovs K, Keffe JE, O’Connor PM, Rees G, Lamoureux EL. The psychometric validity of the NEI VFQ-25 for use in a low-vision population. Invest Ophthalmol Vis Sci. 2010;51(6):2878-2884. doi:10.1167/iovs.09-4494

27. Jeter PE, Rozanski C, Massof R, Adeyemo O, Dagnelie G; PLOVR Study Group. Development of the Ultra-Low Vision Visual Functioning Questionnaire (ULV-VFQ). Transl Vis Sci Technol. 2017;6(3):11. doi:10.1177/tvst.6.3.11

28. Colan SD. The why and how of Z scores. J Am Soc Echocardiogr. 2013;26(1):38-40. doi:10.1016/j.echo.2012.11.005

29. Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15. doi:10.1126/scitranslmed.3002865

30. Ye GJ, Budzynski E, Sonnentag P, et al. Safety and biodistribution evaluation in cynomolgus macaques of rAAV2/9YP-Pr1.7-hCNGB3, a recombinant AAV vector for treatment of achromatopsia. Hum Gene Ther Clin Dev. 2016;27(1):37-48. doi:10.1089/humc.2015.164

31. Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jägle H, Wandell BA. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nat Neurosci. 2002;5(4):364-370. doi:10.1038/nneurosci.817

32. Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003-1017. doi:10.1152/jn.1963.26.6.1003

33. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009;12(11):1370-1371. doi:10.1038/nn.2412