Mathematical Models for Local Sensing Hashes

Lilon Wangner

November 17, 2021

Abstract

As data volumes continue to grow, searches in data are becoming increasingly time-consuming. Classical index structures for neighbor search are no longer sustainable due to the “curse of dimensionality”. Instead, approximated index structures offer a good opportunity to significantly accelerate the neighbor search for clustering and outlier detection and to have the lowest possible error rate in the results of the algorithms. Local sensing hashes is one of those. We indicate directions to mathematically model the properties of it.

1 Basic Definition

In a local sensing hashes we use a number \(m \) of alternative clusterings, and we refine for each of the \(m \) clusterings exactly one cell, in which the query point (origin) is located. Therefore, the selectivity of the query response corresponds to the intersection of the union of all \(m \) cells with the query ball. We start with the analysis of the case \(s = b = 1 \). We assume that each of the \(m \) cells is selected uniformly and independently such that the origin (query point) is located inside, so the upper boundary of each cell in each dimension is uniformly taken from the interval \([0, \frac{1}{2}]\) and the lower boundary is consequently from \([-\frac{1}{2}, 0]\).

The idea is to consider the convex, Voronoi-like cells of k-means as a \(d \)-dimensional grid of hyper-cubic cells which have a volume such that an expectation of \(n/k \) points are located within each. We denote the side length of these cells with \(b \). The query is modeled as a ball with perimeter \(s \), centered at origin. In the beginning, we assume that the ball is actually from a maximum metric such that the query is as well a hypercube with side length \(s \).

In the following we will use several definite integrals which we denote in a bit unusual way which helps for clarity we will write

\[
\int \ldots (0 \leq x \leq 1) \text{ instead of } \int_0^1 \ldots \, dx.
\]

We will need a few integrals throughout this paper:

\[
\int x + \frac{1}{2} (0 \leq x \leq 1) = \frac{3}{8}
\]

\[
\int \int (x + \frac{1}{2})(y + \frac{1}{2}) (0 \leq x, y \leq \frac{1}{2}) = \frac{2}{27}
\]

\[
\int \ldots \int (x_1 + \frac{1}{2}) \cdot \ldots \cdot (x_d + \frac{1}{2}) (0 \leq x_1, \ldots, x_d \leq \frac{1}{2}) = \left(\frac{3}{8} \right)^d
\]

\[
\int \int \min(x_1, x_2) + \frac{1}{2} (0 \leq x_1, x_2 \leq \frac{1}{2}) = \frac{5}{27}
\]

\[
\int \ldots \int \min(x_1, \ldots, x_d) + \frac{1}{2} (0 \leq x_1, \ldots, x_d \leq \frac{1}{2}) = d \cdot \int x^{d-1} \cdot (x + \frac{1}{2}) (0 \leq x \leq \frac{1}{2}) = \frac{2d + 1}{(d + 1) \cdot 2d + 1}
\]
\[
\int y - v \ (0 \leq y \leq \frac{1}{2}, -\frac{1}{2} \leq v \leq 0) = \frac{1}{8}
\]
\[
\int \ldots \int (y_1 - v_1) \cdot \ldots \cdot (y_d - v_d) \ (0 \leq y_1, \ldots, y_d \leq \frac{1}{2}, -\frac{1}{2} \leq v_1, \ldots, v_d \leq 0) = \left(\frac{1}{8}\right)^d
\]

And, finally, we can also solve the following combination:
\[
\int \ldots \int (\min(x_1, \ldots, x_d) + \frac{1}{2}) \cdot (y_1 - v_1) \cdot \ldots \cdot (y_m - v_m) \ (0 \leq x_1, \ldots, x_d, y_1, \ldots, y_m \leq \frac{1}{2}, -\frac{1}{2} \leq v_1, \ldots, v_m \leq 0)
\]

which gives:
\[
= \frac{2m + 1}{8^d \cdot (m + 1) \cdot 2^{m+1}}.
\]

Definition 1. \(p(m, \ell, d)\) is the (hyper-) volume of the hypercube representing the query which is occupied by at least \(\ell\) of the \(m\) cells (with \(\ell \leq m\)). Here the \(m\) cells are uniformly selected in \(\mathbb{R}^d\) such that the query point is inside the cell.

Note that \(p(m, 1, d)\) corresponds to the selectivity of the hashing provided that \(b\) and \(s\) are of equal size.

For the case \(m = \ell = 1\) we can easily derive the closed formula of \(p(1, 1, d)\). We simply have to form, in each quadrant, the (identical) expectation with which the query is occupied by the cell:
\[
p(1, 1, d) = 2^d \cdot \int \ldots \int (x_1 + \frac{1}{2}) \cdot \ldots \cdot (x_d + \frac{1}{2}) \ (0 \leq x_1, \ldots, x_d \leq \frac{1}{2}) = \left(\frac{4}{3}\right)^d
\]

The case \(m > 1, \ell = 1\) can be reduced to the case \(m = 1\):
\[
p(m, 1, d) = \binom{m}{1} \cdot p(1, 1, d) - \binom{m}{2} \cdot p(1, 2, d) + \binom{m}{3} \cdot p(1, 3, d) - \ldots \pm \binom{m}{m} \cdot p(1, m - 1, d)
\]

For the case \(m = 1, \ell = 2\), we start with the analysis of \(d = 1\) and construct this case with two variables \(x\) and \(y\). We want to estimate the area which is covered by \(x\) and \(y\), which is
\[
p(1, 2, 1) = \int \left\{ \begin{array}{ll}
1 - |x - y| & \text{if } x < 0 \text{ xor } y < 0 \\
1 - \max(|x|, |y|) & \text{otherwise}
\end{array} \right.
\]
\[
(-\frac{1}{2} \leq x, y \leq \frac{1}{2}) = \frac{7}{12}.
\]

This is an independent information in each dimension such that
\[
p(1, 2, d) = p(1, 2, 1)^d = \left(\frac{7}{12}\right)^d.
\]

For a generalization to \(\ell = 3\) we make a similar case distinction:
\[
p(1, 3, 1) = \int \ldots \int \left\{ \begin{array}{ll}
1 - \max(x, y, z) & \text{if } x, y, z \geq 0 \\
1 - \max(x, y) + z & \text{if } x, y \geq 0 \text{ and } z < 0 \\
\ldots & \ldots
\end{array} \right. = \frac{15}{32},
\]

where the first case occurs in 2 octants and the second case in the remaining 6 octants. We solve the first case by letting
\[
2 \cdot \int \ldots \int 1 - \max(x, y, z) = 6 \cdot \int (1 - x) \cdot x^2 = \frac{5}{32}
\]

and similarly the second case
\[
6 \cdot \int \ldots \int 1 - \max(x, y) + z = 12 \cdot \int (1 - x + z) \cdot x = \frac{5}{16}.
\]

For the general case, we consider \(\ell\) variables \(x_1, \ldots, x_\ell\). Again we consider a solution space where we distinguish if each variable is greater or less than 0. All variables are equivalent, thus we consider all quadrants of the solutions space equally where the same number of variables is < 0. There is a number of
\[
\binom{\ell}{i}
\]
quadrants of the solution space having \(i\) out of \(\ell\) variables < 0.

Therefore, we have
\[
p(1, \ell, 1) = \sum_{0 \leq i \leq \ell} \binom{\ell}{i} \cdot \int \ldots \int 1 - \max(x_1, \ldots, x_i) + \min(x_{i+1}, \ldots, x_\ell) \ (0 \leq x_1, \ldots, x_i \leq \frac{1}{2}, -\frac{1}{2} \leq x_{i+1}, \ldots, x_\ell \leq 0)
\]
2 Related Work

Approximate nearest neighbor search techniques can also be applied to the similarity join problem, however without guarantees on completeness and exactness of the result. There may be false positives as well as false negatives. Recently an approach [1] to Local Sens Hash is used on a representative point sample, to reduce the number of lookup operations. LSH is of interest in theoretical foundational work, where a recursive and cache-oblivious LSH approach [2] was proposed. The topic of approximate solutions for the similarity join is also an emerging field in deep learning [3]. There are approximative approaches which target low dimensional cases (spatial joins in 2–3 dimensions [4]) or higher (10–20) dimensional cases [5]. Very high-dimensional cases, with dimensions of 128 and above have been targeted with Symbolic Aggregate approXimation (SAX) techniques [6] to generate approximate candidates. SAX techniques rely on several indirect parameters like PAA size or the iSAX alphabet size.

3 Conclusion

As data volumes continue to grow, searches in data are becoming increasingly time-consuming. Classical index structures for neighbor search are no longer sustainable due to the “curse of dimensionality”. Instead, approximated index structures offer a good opportunity to significantly accelerate the neighbor search for clustering and outlier detection and to have the lowest possible error rate in the results of the algorithms. Local sensing hashes is one of those. We indicate directions to mathematically model the properties of it. There is still a lot research necessary with local sensing hashes.

References

[1] Chenyun Yu, Sarana Nutanong, Hangyu Li, Cong Wang, and Xingliang Yuan. A generic method for accelerating lsh-based similarity join processing. IEEE Trans. Knowl. Data Eng., 29(4):712–726, 2017.
[2] Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. I/o-efficient similarity join. Algorithmica, 78(4):1263–1283, 2017.
[3] Nicolas Papernot and Patrick D. McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. CoRR, abs/1803.04765, 2018.
[4] Brent Bryan, Frederick Eberhardt, and Christos Faloutsos. Compact similarity joins. In ICDE, pages 346–355, 2008.
[5] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS 2006, pages 459–468, 2006.
[6] Youzhong Ma, Shijie Jia, and Yongxin Zhang. A novel approach for high-dimensional vector similarity join query. Concurrency and Computation: Practice and Experience, 29(5), 2017.
[7] Jens-Peter Dittrich and Bernhard Seeger. GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces. In SIGKDD, pages 47–56, 2001.
[8] Nick Koudas and Kenneth C. Sevcik. High dimensional similarity joins: Algorithms and performance evaluation. IEEE Trans. Knowl. Data Eng., 12(1):3–18, 2000.
[9] Michael D. Lieberman, Jagan Sankaranarayanan, and Hanan Samet. A fast similarity join algorithm using graphics processing units. In ICDE, pages 1111–1120, 2008.
[10] Lu Chen, Yunjun Gao, Xinhan Li, Christian S. Jensen, and Gang Chen. Efficient metric indexing for similarity search and similarity joins. IEEE Trans. Knowl. Data Eng., 29(3):556–571, 2017.
[11] Christian Böhm, Bernhard Braumann, Florian Krebs, and Hans-Peter Kriegel. Epsilon grid order: An algorithm for the similarity join on massive high-dimensional data. In SIGMOD Conf. 2001, pages 379–388, 2001.
[12] Dmitri V. Kalashnikov and Sunil Prabhakar. Similarity join for low-and high-dimensional data. In *DASFAA '03*, pages 7–16, 2003.

[13] Dmitri V. Kalashnikov and Sunil Prabhakar. Fast similarity join for multi-dimensional data. *Inf. Syst.*, 32(1):160–177, 2007.

[14] Dmitri V. Kalashnikov. Super-ego: fast multi-dimensional similarity join. *VLDB J.*, 22(4):561–585, 2013.

[15] Yasin N. Silva and Jason M. Reed. Exploiting mapreduce-based similarity joins. In *SIGMOD Conf. 2012*, pages 693–696, 2012.

[16] Yasin N. Silva, Jason M. Reed, and Lisa M. Tsosie. Mapreduce-based similarity join for metric spaces. In *Workshop on Cloud Intelligence*, page 3, 2012.

[17] Christian Böhm and Hans-Peter Kriegel. A cost model and index architecture for the similarity join. In *ICDE*, pages 411–420, 2001.

[18] Rodrigo Paredes and Nora Reyes. Solving similarity joins and range queries in metric spaces with the list of twin clusters. *J. Discrete Algorithms*, 7(1):18–35, 2009.

[19] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joins using r-trees. In *SIGMOD Conf. 1993*, pages 237–246, 1993.

[20] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for similarity search in metric spaces. In *VLDB’97*, pages 426–435, 1997.

[21] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. D-index: Distance searching index for metric data sets. *Multimedia Tools Appl.*, 21(1):9–33, 2003.

[22] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. Similarity join in metric spaces using ed-index. In *DEXA 2003*, pages 484–493, 2003.

[23] Spencer S. Pearson and Yasin N. Silva. Index-based R-S similarity joins. In *SISAP*, pages 106–112, 2014.

[24] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In *Theory of Computing*, pages 604–613, 1998.

[25] Donovan A. Schneider and David J. DeWitt. A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment. In *SIGMOD Conf. 1989*, pages 110–121, 1989.

[26] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs similarity search in metric spaces. In *SIGKDD*, pages 829–837, 2013.

[27] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-Christoph Freytag. Set similarity joins on mapreduce: An experimental survey. *PVLDB*, 11(10):1110–1122, 2018.

[28] Ye Li, Jian Wang, and Leong Hou U. Multidimensional similarity join using mapreduce. In *Web-Age Information Management*, pages 457–468, 2016.

[29] Samuel McCauley and Francesco Silvestri. Adaptive mapreduce similarity joins. In *SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond*, pages 4:1–4:4, 2018.

[30] Weijie Zhao, Florin Rusu, Bin Dong, and Kesheng Wu. Similarity join over array data. In *SIGMOD Conf. 2016*, pages 2007–2022, 2016.

[31] Christian Böhm, Robert Noll, Claudia Plant, and Andrew Zherdin. Index-supported similarity join on graphics processors. In Johann Christoph Freytag, Thomas Ruf, Wolfgang Lehner, and Gottfried Vossen, editors, *Datenbanksysteme in Business, Technologie und Web (BTW 2009)*, 13. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), Proceedings, 2.-6. März 2009, Münster, Germany, volume P-144 of *LNI*, pages 57–66. GI, 2009.
[32] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-oblivious algorithms. In FOCS 1999, pages 285–298, 1999.

[33] Bingsheng He, Yinan Li, Qiong Luo, and Dongqing Yang. Easedlb: a cache-oblivious in-memory query processor. In SIGMOD Conf. 2007, pages 1064–1066, 2007.

[34] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim, Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon. Cache-oblivious ray reordering. ACM Trans. Graph., 29(3), 2010.

[35] Miguel Ferreira, Nuno Roma, and Luís M. S. Russo. Cache-oblivious parallel SIMD viterbi decoding for sequence search in HMMER. BMC Bioinformatics, 15:165, 2014.

[36] Michael Bader and Christian E. Mayer. Cache oblivious matrix operations using peano curves. In PARA Workshop, pages 521–530, 2006.

[37] Michael Bader. Exploiting the locality properties of peano curves for parallel matrix multiplication. In Euro-Par Conference, pages 801–810, 2008.

[38] Christian Böhm, Martin Perdacher, and Claudia Plant. A novel hilbert curve for cache-locality preserving loops. IEEE Transactions on Big Data, 2018.

[39] Christian Böhm, Martin Perdacher, and Claudia Plant. Cache-oblivious loops based on a novel space-filling curve. In IEEE Big Data, pages 17–26, 2016.

[40] Christian Böhm, Martin Perdacher, and Claudia Plant. A novel hilbert curve for cache-locality preserving loops. IEEE Transactions on Big Data, pages 1–18, 2018.

[41] Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S. Duff. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.

[42] Christian Böhm, Christos Faloutsos, and Claudia Plant. Outlier-robust clustering using independent components. In Jason Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 185–198. ACM, 2008.

[43] Stefan Berchtold, Christian Böhm, Daniel A. Keim, Florian Krebs, and Hans-Peter Kriegel. On optimizing nearest neighbor queries in high-dimensional data spaces. In Jan Van den Bussche and Victor Vianu, editors, Database Theory - ICDT 2001, 8th International Conference, London, UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture Notes in Computer Science, pages 435–449. Springer, 2001.

[44] Christian Böhm and Florian Krebs. High performance data mining using the nearest neighbor join. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan, pages 43–50. IEEE Computer Society, 2002.

[45] Rani Siromoney and K. G. Subramanian. Space-filling curves and infinite graphs. In Hartmut Ehrig, Manfred Nagl, and Grzegorz Rozenberg, editors, Graph-Grammars and Their Application to Computer Science, pages 380–391, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.

[46] Christian Böhm, Beng Chin Ooi, Claudia Plant, and Ying Yan. Efficiently processing continuous k-nn queries on data streams. In Rada Chirkova, Asuman Dogac, M. Tamer ¨Ozsu, and Timos K. Sellis, editors, Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 156–165. IEEE Computer Society, 2007.

[47] Christian Böhm, Bernhard Braumüller, Markus M. Breunig, and Hans-Peter Kriegel. High performance clustering based on the similarity join. In Proceedings of the 2000 ACM CIKM International Conference on Information and Knowledge Management, McLean, VA, USA, November 6-11, 2000, pages 298–305. ACM, 2000.
Christian Böhm, Stefan Berchtold, Hans-Peter Kriegel, and Urs Michel. Multidimensional index structures in relational databases. *J. Intell. Inf. Syst.*, 15(1):51–70, 2000.

Christian Böhm, Bernhard Braumüller, Hans-Peter Kriegel, and Matthias Schubert. Efficient similarity search in digital libraries. In *Proceedings of IEEE Advances in Digital Libraries 2000 (ADL 2000), Washington, DC, USA, May 22-24, 2000*, pages 193–199. IEEE Computer Society, 2000.

Christian Böhm and Hans-Peter Kriegel. Dynamically optimizing high-dimensional index structures. In Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl, and Torsten Grust, editors, *Advances in Database Technology - EDBT 2000, 7th International Conference on Extending Database Technology, Konstanz, Germany, March 27-31, 2000, Proceedings*, volume 1777 of *Lecture Notes in Computer Science*, pages 36–50. Springer, 2000.

Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, and Arthur Zimek. Global correlation clustering based on the hough transform. *Statistical Analysis and Data Mining*, 1(3):111–127, 2008.

Christian Baumgartner, Christian Böhm, Daniela Baumgartner, G. Marini, Klaus Weinberger, B. Olgemöller, B. Liebl, and A. A. Roscher. Supervised machine learning techniques for the classification of metabolic disorders in newborns. *Bioinform.*, 20(17):2985–2996, 2004.

Christian Baumgartner, Christian Böhm, and Daniela Baumgartner. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. *J. Biomed. Informatics*, 38(2):89–98, 2005.

Christian Böhm and Claudia Plant. HISSCLU: a hierarchical density-based method for semi-supervised clustering. In Alfons Kemper, Patrick Valduriez, Nouredinne Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker Markl, Laurent Amsaleg, and Ioana Manolescu, editors, *EDBT 2008, 11th International Conference on Extending Database Technology, Nantes, France, March 25-29, 2008, Proceedings*, volume 261 of *ACM International Conference Proceeding Series*, pages 440–451. ACM, 2008.

Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Deriving quantitative models for correlation clusters. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, *Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006*, pages 4–13. ACM, 2006.

Christian Böhm, Frank Fiedler, Annahita Oswald, Claudia Plant, and Bianca Wackersreuther. Probabilistic skyline queries. In David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and Jimmy J. Lin, editors, *Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, November 2-6, 2009*, pages 651–660. ACM, 2009.

Christian Böhm, Alexey Pryakhin, and Matthias Schubert. Probabilistic ranking queries on gaussians. In *18th International Conference on Scientific and Statistical Database Management, SSDBM 2006, 3-5 July 2006, Vienna, Austria, Proceedings*, pages 169–178. IEEE Computer Society, 2006.

Christian Böhm, Katrin Haegler, Nikola S. Müller, and Claudia Plant. Coco: coding cost for parameter-free outlier detection. In John F. Elder IV, Françoise Fogelman-Soulié, Peter A. Flach, and Mohammed Javeed Zaki, editors, *Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009*, pages 149–158. ACM, 2009.

Stefan Berchtold, Christian Böhm, Daniel A. Keim, Hans-Peter Kriegel, and Xiaowei Xu. Optimal multidimensional query processing using tree stripping. In Yahiko Kambayashi, Mukesh K. Mohania, and A Min Tjoa, editors, *Data Warehousing and Knowledge Discovery, Second International Conference, DaWaK 2000, London, UK, September 4-6, 2000, Proceedings*, volume 1874 of *Lecture Notes in Computer Science*, pages 244–257. Springer, 2000.

Elke Achtert, Christian Böhm, Jörn David, Peer Kröger, and Arthur Zimek. Robust clustering in arbitrarily oriented subspaces. In *Proceedings of the SIAM International Conference on Data Mining, SDM 2008, April 24-26, 2008, Atlanta, Georgia, USA*, pages 763–774. SIAM, 2008.
[61] Christian Baumgartner, Kurt Gautsch, Christian Böhm, and Stephan Felber. Functional cluster analysis of CT perfusion maps: A new tool for diagnosis of acute stroke? *J. Digital Imaging*, 18(3):219–226, 2005.

[62] Son T. Mai, Xiao He, Jing Feng, Claudia Plant, and Christian Böhm. Anytime density-based clustering of complex data. *Knowl. Inf. Syst.*, 45(2):319–355, 2015.

[63] Christian Böhm, Robert Noll, Claudia Plant, Bianca Wackersreuther, and Andrew Zherdin. Data mining using graphics processing units. *Trans. Large Scale Data Knowl. Centered Syst.*, 1:63–90, 2009.

[64] Christian Böhm and Florian Krebs. Supporting KDD applications by the k-nearest neighbor join. In Vladimír Marík, Werner Retschitzegger, and Olga Stepánková, editors, *Database and Expert Systems Applications, 14th International Conference, DEXA 2003, Prague, Czech Republic, September 1-5, 2003, Proceedings*, volume 2736 of *Lecture Notes in Computer Science*, pages 504–516. Springer, 2003.

[65] Christian Böhm, Michael Gruber, Peter Kunath, Alexey Pryakhin, and Matthias Schubert. Prover: Probabilistic video retrieval using the gauss-tree. In Rada Chirkova, Asuman Dogac, M. Tamer Özsüt, and Timos K. Sellis, editors, *Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007*, pages 1521–1522. IEEE Computer Society, 2007.

[66] Martin Dyrba, Michael Ewers, Martin Wegryn, Ingo Kilimann, Claudia Plant, Annalita Oswald, Thomas Meindl, Michela Pivani, Arun L. W. Bokde, Andreas Fellgiebel, Massimo Filippi, Harald Hampel, Stefan Klöppel, Karlheinz Hauenstein, Thomas Kirste, and Stefan J. Teipel. Combining DTI and MRI for the automated detection of alzheimer’s disease using a large european multicenter dataset. In Pew-Thian Yap, Tianming Liu, Dinggang Shen, Carl-Fredrik Westin, and Li Shen, editors, *Multimodal Brain Image Analysis - Second International Workshop, MBIA 2012, Held in Conjunction with MICCAI 2012, Nice, France, October 1-5, 2012. Proceedings*, volume 7509 of *Lecture Notes in Computer Science*, pages 18–28. Springer, 2012.

[67] Claudia Plant and Christian Böhm. INCONCO: interpretable clustering of numerical and categorical objects. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, *Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011*, pages 1127–1135. ACM, 2011.

[68] Claudia Plant, Christian Böhm, Bernhard Tilg, and Christian Baumgartner. Enhancing instance-based classification with local density: a new algorithm for classifying unbalanced biomedical data. *Bioinform.*, 22(8):981–988, 2006.

[69] Junming Shao, Claudia Plant, Qinli Yang, and Christian Böhm. Detection of arbitrarily oriented synchronized clusters in high-dimensional data. In Diane J. Cook, Jian Pei, Wei Wang, Osmar R. Zaíane, and Xindong Wu, editors, *11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011*, pages 607–616. IEEE Computer Society, 2011.

[70] Claudia Plant, Afra M. Wohlschläger, and Andrew Zherdin. Interaction-based clustering of multivariate time series. In Wei Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong Wu, editors, *ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9 December 2009*, pages 914–919. IEEE Computer Society, 2009.

[71] Junming Shao, Nicholas Myers, Qinli Yang, Jing Feng, Claudia Plant, Christian Böhm, Hans Förstl, Alexander Kurz, Claus Zimmer, Chun Meng, Valentin Riedl, Afra Wohlschläger, and Christian Sorg. Prediction of alzheimer’s disease using individual structural connectivity networks. *Neurobiology of aging*, 33(12):2756–2765.

[72] Christian Böhm, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. RIC: parameter-free noise-robust clustering. *ACM Trans. Knowl. Discov. Data*, 1(3):10, 2007.
[73] Christian Böhm, Sebastian Goebl, Annahita Oswald, Claudia Plant, Michael Plavinski, and Bianca Wackersreuther. Integrative parameter-free clustering of data with mixed type attributes. In Mohammed Javeed Zaki, Jeffrey Xu Yu, Balaraman Ravindran, and Vikram Pudi, editors, *Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part I*, volume 6118 of Lecture Notes in Computer Science, pages 38–47. Springer, 2010.

[74] Son T. Mai, Sebastian Goebl, and Claudia Plant. A similarity model and segmentation algorithm for white matter fiber tracts. In Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, editors, *12th IEEE International Conference on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012*, pages 1014–1019. IEEE Computer Society, 2012.

[75] Junming Shao, Xinzuo Wang, Qinli Yang, Claudia Plant, and Christian Böhm. Synchronization-based scalable subspace clustering of high-dimensional data. *Knowl. Inf. Syst.*, 52(1):83–111, 2017.

[76] Wei Ye, Sebastian Goebl, Claudia Plant, and Christian Böhm. FUSE: full spectral clustering. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016*, pages 1985–1994. ACM, 2016.

[77] Jing Feng, Xiao He, Bettina Konte, Christian Böhm, and Claudia Plant. Summarization-based mining bipartite graphs. In Qiang Yang, Deepak Agarwal, and Jian Pei, editors, *The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012*, pages 1249–1257. ACM, 2012.

[78] Qinli Yang, Junming Shao, Miklas Scholz, Christian Böhm, and Claudia Plant. Multi-label classification models for sustainable flood retention basins. *Environ. Model. Softw.*, 32:27–36, 2012.

[79] Sebastian Goebl, Xiao He, Claudia Plant, and Christian Böhm. Finding the optimal subspace for clustering. In Ravi Kumar, Hannu Toivonen, Jian Pei, Joshua Zhexue Huang, and Xindong Wu, editors, *2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014*, pages 130–139. IEEE Computer Society, 2014.

[80] Muzaffer Can Altinigneli, Claudia Plant, and Christian Böhm. Massively parallel expectation maximization using graphics processing units. In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy, editors, *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013*, pages 838–846. ACM, 2013.

[81] Wei Ye, Samuel Maurus, Nina Hubig, and Claudia Plant. Generalized independent subspace clustering. In Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, *IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain*, pages 569–578. IEEE Computer Society, 2016.

[82] Claudia Plant. Dependency clustering across measurement scales. In Qiang Yang, Deepak Agarwal, and Jian Pei, editors, *The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012*, pages 361–369. ACM, 2012.

[83] Christian Böhm and Florian Krebs. The k-nearest neighbour join: Turbo charging the KDD process. *Knowl. Inf. Syst.*, 6(6):728–749, 2004.

[84] Bianca Wackersreuther, Peter Wackersreuther, Annahita Oswald, Christian Böhm, and Karsten M. Borgwardt. Frequent subgraph discovery in dynamic networks. In *MLG@KDD*, pages 155–162. ACM, 2010.

[85] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. On exploring complex relationships of correlation clusters. In *SSDBM*, page 7. IEEE Computer Society, 2007.
[86] Junming Shao, Xiao He, Christian Böhm, Qinli Yang, and Claudia Plant. Synchronization-inspired partitioning and hierarchical clustering. *IEEE Trans. Knowl. Data Eng.*, 25(4):893–905, 2013.

[87] Elke Achtert, Christian Böhm, Hans-Peter Kriegel, Peer Kröger, Ina Müller-Gorman, and Arthur Zimek. Finding hierarchies of subspace clusters. In *PKDD*, volume 4213 of *Lecture Notes in Computer Science*, pages 446–453. Springer, 2006.

[88] Elke Achtert, Christian Böhm, Peer Kröger, and Arthur Zimek. Mining hierarchies of correlation clusters. In *SSDBM*, pages 119–128. IEEE Computer Society, 2006.

[89] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel. High-dimensional index structure. In *US Patent 6,154,746*, 2000.

[90] Samuel Maurus and Claudia Plant. Skinny-dip: Clustering in a sea of noise. In *KDD*, pages 1055–1064. ACM, 2016.

[91] Son T. Mai, Xiao He, Nina Hubig, Claudia Plant, and Christian Böhm. Active density-based clustering. In *ICDM*, pages 508–517. IEEE Computer Society, 2013.

[92] Qinli Yang, Junming Shao, Miklas Scholz, and Claudia Plant. Feature selection methods for characterizing and classifying adaptive sustainable flood retention basins. *Water Research*, 45(3):993–1004, 2011.

[93] Junming Shao, Yue Tan, Lianli Gao, Qinli Yang, Claudia Plant, and Ira Assent. Synchronization-based clustering on evolving data stream. *Inf. Sci.*, 501:573–587, 2019.

[94] Christian Böhm, Martin Perdacher, and Claudia Plant. Multi-core k-means. In *SDM*, pages 273–281, 2017.

[95] Sebastian Goebl, Annika Tonch, Christian Böhm, and Claudia Plant. MEGS: Partitioning meaningful subgraph structures using minimum description length. In *ICDM*, pages 889–894. IEEE Computer Society, 2016.

[96] Dominik Mautz, Wei Ye, Claudia Plant, and Christian Böhm. Towards an optimal subspace for k-means. In *KDD*, pages 365–373. ACM, 2017.

[97] Theodore Bially. Space-filling curves: Their generation and their application to bandwidth reduction. *IEEE Trans. Information Theory*, 15:658–664, 1969.

[98] P Prusinkiewicz. Graphical applications of l-systems. In *Proceedings on Graphics Interface ’86/Vision Interface ’86*, pages 247–253, Toronto, Ont., Canada, Canada, 1986. Canadian Information Processing Society.