Functional Compartmentation of Acetaldehyde Oxidation in Rat Liver*

(Received for publication, February 15, 1974)

ROBERTO PARRILLA,† KIYOSHI OHKAWA,§ KAI O. LINDROS,¶ UN-JIN PAIK ZIMMERMAN, KUMPEI KOBAYASHI, AND JOHN R. WILLIAMSON||

From the Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19174

SUMMARY

Perfused rat liver and suspensions of isolated rat liver cells have been used to study the influence of the transaminase inhibitors aminooxyacetate and DL-cycloserine on the rate of acetaldehyde utilization, and the effects of acetaldehyde on the state of reduction of cytosolic and mitochondrial pyridine nucleotides. In the presence of 4-methylpyrazole to inhibit acetaldehyde reduction to ethanol, acetaldehyde removal was constant over the range from 0.1 to 0.4 mM at a rate of approximately 400 μmoles per g dry weight per hour. Between 0.4 and 10 mM acetaldehyde, the rate of acetaldehyde uptake increased by 60% with increasing acetaldehyde concentrations, with a half-maximum increment of uptake being achieved at about 1 mM acetaldehyde. DL-Cycloserine had no effect on acetaldehyde uptake at low concentrations of acetaldehyde but almost completely inhibited the stimulation of uptake observed at high concentrations. Neither DL-cycloserine nor aminooxyacetate had any inhibitory effect on the reduction of mitochondrial pyridine nucleotides by fatty acids, P-hydroxybutyrate, and amobarbital, and stimulation by acetoacetate. Oxidation of endogenous fatty acid was diminished by acetaldehyde.

These data indicate that oxidation of acetaldehyde by rat liver occurs almost entirely in the mitochondrial compartment when the mean arterial-venous acetaldehyde concentration is below about 0.4 mM. At higher acetaldehyde concentrations, oxidation occurs also in the cytosol, and reducing equivalents generated in the cytosol by a high K_m, NAD-dependent aldehyde dehydrogenase are transported to the mitochondria mainly by the malate-aspartate cycle. It may be concluded that acetaldehyde generated during ethanol metabolism is oxidized to acetate predominantly in the mitochondria, so that only 1 eq of NADH is generated in the cytosol per mole of ethanol oxidized via alcohol dehydrogenase.

A wide range of enzymes capable of oxidizing acetaldehyde to acetate in liver have been described. One type comprising a variety of flavoprotein oxidases has a low substrate specificity and affinity for aldehydes, and probably plays a minor role in acetaldehyde oxidation under physiological conditions (1-4). Racker (5) described the purification of a nonspecific NAD-linked aldehyde dehydrogenase from beef liver with a high affinity toward acetaldehyde (Michaelis constant less than 10^-6 M). NAD-linked aldehyde dehydrogenases with high affinity toward acetaldehyde have since been isolated and characterized from liver of a number of species (6-13) as well as from other organs such as kidney and brain (6, 14, 15). Subcellular distribution studies of the aldehyde dehydrogenase activity of rat liver have shown that the cell supernatant contains at least two NAD-dependent aldehyde dehydrogenases which differ in their substrate specificities and physical properties (16, 17) in addition to one or more enzymes associated with the mitochondrial fraction (14, 18-22). Clear evidence for the heterogeneity of the cytoplasmic enzymes has been obtained by Deitrich et al. (17, 23), who found that one of the soluble NAD-dependent aldehyde dehydrogenases was induced 10-fold without any change of the kinetic characteristics by treatment of genetically selected rats with phenobarbital. The soluble aldehyde dehydrogenases of rat liver (16, 17) appear to have apparent K_m values for acetaldehyde 2 to 3 orders of magnitude higher than those of the corresponding enzymes from beef (5, 9), horse (11), or human (7, 8) liver. In contrast to the earlier studies of Büttner (6) who found that most of the aldehyde dehydrogenase activity of rat liver was extramitochondrial, more recent studies (22-25) have shown that about 80% of the total activity is in the mitochondrial fraction. However, the mitochondrial NAD-dependent aldehyde dehydrogenase activity appears to be heterogeneous. Marijanen (24) reported an apparent K_m for acetaldehyde of below 10 μM, while Grunnet (22) found two K_m values for acetaldehyde: one below 1 μM and one about 1 mM. Mitochondrial fractionation studies by Tottmar et al. (26) suggest that an enzyme with a relatively high K_m for acetaldehyde (1

* This work was supported by Grants AM-15520 and AA-00292 from the United States Public Health Service.
† Present address, Centro de Investigaciones Biologicas Instituto “G. Maranon,” Velazquez 144, Madrid-6, Spain.
§ Present address, Department of Cardiology, Philadelphia General Hospital, Philadelphia, Pa.
¶ Present address, Research Laboratories of the State Alcohol Monopoly, SF 00101 Helsinki 10, Finland.
|| To whom correspondence should be addressed.
similar to that of supernatant aldehyde dehydrogenase is located on the outer membrane while a second enzyme in the matrix has an apparent K_m for acetaldehyde in the region of 1 μM. These latter authors also found considerable activity of the high K_m enzyme in the microsomal fraction of rat liver, and less than 5% of total activity in the soluble fraction. Isolated liver mitochondria oxidize acetaldehyde and other aldehydes when added at low concentrations, although high concentrations are inhibitory (18–22). Acetaldehyde also inhibited the oxidation of pyruvate by mitochondria from a number of tissues (19).

Previous studies using surface fluorometric techniques to monitor changes in the oxidation-reduction state of pyridine nucleotides in the cytosolic and mitochondrial spaces of blood-free perfused livers (27, 28) have shown that after ethanol addition a rapid reduction of pyridine nucleotides occurred in both spaces. These results were interpreted as indicating a rapid transport of reducing equivalents from cytosol to mitochondria by the malate-aspartate cycle. Furthermore, metabolic balances describing the interaction of ethanol oxidation with glycogen synthesis from alanine were calculated on the basis of the production of 3 eq of NADH in the cytosol per mole of ethanol utilized (28). The recent studies on the cellular distribution of aldehyde dehydrogenases quoted above, together with further studies of the effects of ethanol and acetaldehyde on cellular pyridine nucleotide oxidation-reduction changes in perfused rat liver (29) suggest that the mitochondrial oxidation of acetaldehyde predominates at low concentrations, and that the cytosolic enzyme is functionally operative only at acetaldehyde concentrations much higher than those of 100 to 200 μM reported in vivo (30–33) or in the effluent fluid of perfused livers (34) after ethanol administration.

The present study was initiated in order to clarify the respective roles of the cytosolic and mitochondrial aldehyde dehydrogenases for acetaldehyde metabolism in the intact liver cell. Use of DL-cycloserine to inhibit extramitochondrial transaminase reactions (35, 36) associated with the malate-aspartate cycle has established that the reduction of mitochondrial pyridine nucleotides by acetaldehyde was not affected by this inhibitor and that uptake of acetaldehyde by isolated liver cells was also unaffected at acetaldehyde concentrations below 0.4 μM. On the other hand, competition for acetaldehyde oxidation was exerted by compounds such as fatty acids or β-hydroxybutyrate which generate reducing equivalents directly in the mitochondria. It is evident, therefore, that the various metabolic effects associated with ethanol oxidation by the liver must be interpreted in terms of the subcellular compartmentation of the two reductive steps of ethanol metabolism to acetate.

EXPERIMENTAL PROCEDURES

Animals—Male albino rats (Holzman) 180 to 220 g in weight were fasted for 20 to 28 hours prior to liver perfusion studies or isolation of hepatocytes.

Liver Perfusion, Surface Fluorometry, and Oxygen Uptake—Livers were perfused with Krebs' bicarbonate medium saturated with 95% O_2-5% CO_2 using a flow-through system as described elsewhere (29). Aliquots of the effluent fluid were collected at 2-min intervals and assayed directly for glucose, lactate, pyruvate, acetoadetate, and β-hydroxybutyrate by standard enzymatic procedures (37). Substrates and inhibitors were added continuously by infusion pumps to fluid immediately prior to the liver to give the desired arterial concentration. Flavin and pyridine nucleotide fluorescence was measured from the surface of the liver as described elsewhere (20, 38), using excitation wavelengths of 475 and 366 nm and emission wavelengths of 580 and 460 nm for flavin and pyridine nucleotides, respectively. Oxygen consumption by the liver was monitored continuously by a small Teflon-covered platinum electrode placed in the effluent fluid. In some experiments the rate of endogenous fatty acid oxidation was estimated by infusion of tracer amounts of $U-^{14}C$ oleate (New England Nuclear, Boston, Mass.) into fluid passing to the liver and measuring acid-labile radioactivity in samples of the effluent fluid collected under toluene. Aliquots (6 to 10 ml) were transferred to sealed vessels containing 0.2 ml of Hyamine in a removable center well, and acidified by injection of 0.2 ml of 5 N H$_2$SO$_4$. Radioactive CO_2 trapped in Hyamine was counted in 15 ml of Bray's solution (39), using a Packard Tri-Carb liquid scintillation counter.

Preparation and Incubation of Parenchymal Cells—Isolated liver cells were prepared from fasted rats according to the procedure of Berry and Friend (40) as modified by Johnson et al. (41). Enzyme digests with collagenase and hyaluronidase were achieved by recirculation perfusion (42) using 60 ml of calcium-free Hanks' medium containing 4% (w/v) dylized fatty acid-free bovine serum albumin (Pentex, Fraction V from Miles Laboratories, Inc.). The cells were incubated at 37° in sealed 25-ml plastic Erlenmeyer flasks containing 4 to 6 ml of Krebs bicarbonate medium and 4% (w/v) albumin, pH 7.4, equilibrated with 95% O_2 and 5% CO_2. Aliquots of the cell suspension were removed at intervals by means of calibrated syringes and added to cold perchloric acid (final concentration 3.5% w/v). After removing the denatured protein by centrifugation and neutralizing the cold, the pH of the supernatant was adjusted to 6 to 6.5 with 6 N K_2CO$_3$ containing 0.5 m piperezine-N,N'-bis(2-ethanesulfonic acid) and regenerated to remove the precipitated KClO$_4$. Acetaldehyde was assayed immediately using acetaldehyde dehydrogenase as described by Lundquist (43). Loss of acetaldehyde by evaporation during cell incubation was negligible since the vessels were sealed and were well mixed before removal of aliquots.

Materials—Enzymes and coenzymes were purchased from Worthington Biochemical Corp., Sigma Chemical Co., or Boehringer Mannheim Corp. 4-Methylpyrazole was obtained from Research Plus Laboratory, Denville, N. J. 4-Proponylpyrazole was a gift from Dr. Henry R. Drott of this department. DL-Cycloserine was the generous gift of Doctors A. E. Braunschtein and Y. P. Skulachev, Laboratory of Nitrogenous Metabolism, The Institute of Biological and Medical Chemistry, Chemistry, Academy of Medical Sciences of the U.S.S.R., Moscow. This compound is now available from Regis Chemical Co., Chicago, Ill. Amino-oxyacetic acid hemihydrochloride was purchased from Eastman Kodak Co., Rochester, N. Y. Sodium amobarbital (Amytal) was obtained from Eli Lilly and Co.

RESULTS

A comparison of the flavin and pyridine nucleotide fluorescence responses to brief periods of ethanol and acetaldehyde infusion in perfused rat liver is shown in Fig. 1. Methylpyrazole (50 μM) was infused prior to acetaldehyde in order to prevent reduc-
Lactate to pyruvate and β-hydroxybutyrate to acetoacetate in the arterial fluid flowing to the liver. Studies have shown that at the concentrations (1 to 2 mM) of lactate and pyruvate and β-hydroxybutyrate and acetoacetate occurred with their respective dehydrogenases and the intracellular pyridine nucleotide pools during one passage through the liver (29). Measurements of the ratios of lactate to pyruvate and β-hydroxybutyrate to acetoacetate in the effluent fluid, therefore, provide an ancillary method for estimating the pyridine nucleotide oxidation-reduction potentials in the separate cytosolic and mitochondrial spaces (45). Both ethanol and acetaldehyde caused a prompt reduction of flavin and pyridine nucleotides, but a marked increase in the size of the pyridine nucleotide fluorescence response was observed with acetaldehyde relative to that obtained with ethanol. On the basis of these results alone it could be predicted that acetaldehyde would cause a larger reduction of cytosolic pyridine nucleotides than ethanol. However, direct measurements of the lactate to pyruvate ratio in the effluent fluid from the liver in companion experiments (Fig. 2) failed to confirm this interpretation. The data show that 1 mM acetaldehyde in the presence of methylpyrazole increased the lactate to pyruvate ratio to a value of about 20 compared with an increase to 50 after addition of a similar concentration of ethanol. The lack of effectiveness of low concentrations of acetaldehyde compared with ethanol in raising the lactate to pyruvate ratio in perfused liver has also been reported by Lindros et al. (34). An alternative explanation may be advanced that NADH bound to cytosolic acetaldehyde dehydrogenase exhibits a large fluorescence enhancement. This phenomenon has recently been observed with an acetaldehyde dehydrogenase isozyme purified from horse liver (46).

Figs. 1 and 2 show that acetaldehyde infusion in the presence of aminooxyacetate as transaminase inhibitor (47) produced essentially identical changes of flavin and pyridine nucleotide fluorescence and increase of the β-hydroxybutyrate to acetoacetate ratio as in the absence of aminooxyacetate. Addition of aminooxyacetate itself caused an increased state of reduction of total pyridine nucleotides and a slight oxidation of flavin nucleotides, indicating pyridine nucleotide reduction in the cytosol but oxidation in the mitochondria. These changes correlated with an increase of the lactate to pyruvate ratio from 6 to 18 and a decrease of the β-hydroxybutyrate to acetoacetate ratio from 0.48 to 0.42. Since aminooxyacetate largely abolishes the increased reduction of mitochondrial pyridine nucleotides observed after ethanol addition (48-50) it may be concluded that reducing equivalents are not generated at an appreciable rate in the cytosol by oxidation of acetaldehyde at low concentrations (cf. Ref. 29). However, it is evident from the increase of the lactate to pyruvate ratio after acetaldehyde addition that an interaction occurs between cytosolic acetaldehyde dehydrogenase and lactate dehydrogenase to increase the cytosolic NADH:NAD ratio. Further studies using DL-cycloserine as transaminase inhibitor (Fig. 3), also showed that it was without effect on the increase of the β-hydroxybutyrate to acetoacetate ratio obtained upon addition of 2 mM acetaldehyde to the perfused rat liver.

Aminooxyacetate and cycloserine inhibit transaminases by reacting with the pyridoxal phosphate form of the enzyme to form a relatively stable analogue of the normal enzyme substrate complex (see Ref. 36 for references). α-Ketoglutarate accelerates the rate of inhibition with aspartate aminotransferase, while glutamate and aspartate protect the enzyme. Kinetic studies with isolated aspartate aminotransferase, measured in the direction of oxalacetate formation in a coupled reaction with malate dehydrogenase, showed that at relatively low aspartate concentrations (1 to 2 mM) aminooxyacetate was a rather better

![Fig. 2. Effect of aminooxyacetate on changes of the ratios of lactate to pyruvate and β-hydroxybutyrate to acetoacetate in the effluent fluid of perfused rat livers after infusion of acetaldehyde. Methylpyrazole (50 μM) and aminooxyacetate (0.2 mM) were added at the times indicated and infusion continued to produce the concentrations shown in the arterial fluid.

![Fig. 3. Effect of DL-cycloserine on changes of the ratios of lactate to pyruvate and β-hydroxybutyrate to acetoacetate in the effluent fluid of perfused rat livers after infusion of acetaldehyde. Methylpyrazole (0.15 mM) was present throughout the experiment.](http://www.jbc.org/)

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
chondria incubated with 1 mM malate and 10 μM glutamate aminotransferase. Aminooxyacetate at concentrations of 0.5 to after correction for ethanol formation (A) and acetaldehyde oxidation after correction of the acetaldehyde uptake for ethanol formation (B) in isolated rat liver cells. The abscissa shows the mean acetaldehyde concentration over the time interval for measurement of the metabolic changes.

hibitor than DL-cycloserine as judged by concentrations for half-maximum inhibition of 0.07 and 0.2 mM, respectively, obtained with the two inhibitors. D-Cycloserine was found to be much less inhibitory than the D,L mixture on isolated aspartate aminotransferase. Aminooxyacetate at concentrations of 0.5 to 1 mM completely inhibited aspartate formation by rat liver mitochondria incubated with 1 mM malate and 10 mM glutamate under conditions of State 3 respiration, whereas DL-cycloserine was ineffective at concentrations up to 10 mM. Aminooxyacetate, therefore, inhibits both cytosolic and mitochondrial transaminases in the intact cell, whereas cycloserine inhibits only the cytosolic transaminases. This conclusion was corroborated by experiments with liver cells incubated with 10 mM DL-cycloserine or 0.5 mM aminooxyacetate, which were centrifuged and aspartate aminotransferase activity measured in the supernatant after ultrasonic disruption of the resuspended cells. Very little activity was found in cells incubated with aminooxyacetate, but up to 40% of the total activity was found in cells incubated with DL-cycloserine.

In order to investigate the relative proportions of acetaldehyde oxidized in the cytosol and mitochondria in greater detail, rates of acetaldehyde uptake at different concentrations of acetaldehyde were measured in the presence and absence of DL-cycloserine using isolated rat liver cells. The concentration of the cell suspension was varied along with the initial acetaldehyde concentration so that only about half of the acetaldehyde was removed during the incubation at each acetaldehyde concentration. Up to six samples were removed over a period of 30 or 60 min in order to calculate a mean rate for an average acetaldehyde concentration. Fig. 4A shows data from a series of experiments performed in the absence of methylpyrazole. Both acetaldehyde removal and ethanol production were measured, and the rates shown are calculated values for acetaldehyde oxidation after correction of the acetaldehyde uptake for ethanol formation. From the latter measurements a V_{max} of 1250 μmoles per g dry weight per hour for the rate of ethanol formation from acetaldehyde and an apparent K_m for acetaldehyde of 2 mM could be calculated, which is somewhat higher than that previously estimated by Lindros et al. (34). The data illustrated in Fig. 4A for acetaldehyde metabolism in the absence and presence (Fig. 4B) of methylpyrazole, where ethanol production was negligible, show a relatively high rate of acetaldehyde oxidation at mean acetaldehyde concentrations as low as 0.1 mM. This rate was not affected by the presence of 10 mM DL-cycloserine. Above about 0.4 mM acetaldehyde, an increased rate of acetaldehyde oxidation was observed which was sensitive to inhibition by DL-cycloserine. For the second phase of acetaldehyde oxidation, acetaldehyde concentrations of 1.5 and 1.1 mM may be calculated for half-maximum increases of acetaldehyde oxidation from the data obtained in the absence and presence of methylpyrazole, respectively. The presence of methyl pyrazole had the effect of diminishing the rate of acetaldehyde oxidation (corrected for ethanol formation) as previously observed by Lindros et al. (34). The data shown in Fig. 4 provide substantial support to the conclusions reached in another paper (29) that at low acetaldehyde levels (up to 0.4 mM) concomitant with those obtained during ethanol oxidation, acetaldehyde oxidation proceeds almost entirely via a low K_m mitochondrial dehydrogenase. At higher acetaldehyde concentrations, oxidation by cytosolic acetaldehyde dehydrogenase (apparent K_m 1 to 2 mM) is superimposed on the mitochondrial oxidation, and transport of reducing equivalents from cytosol to mitochondria proceeds mainly by the malate-aspartate cycle.

Table I shows that with relatively high acetaldehyde concentrations (3 to 4 mM) added to suspensions of liver cells in the

Table I
Regulation of acetaldehyde uptake by isolated rat liver cells at high acetaldehyde concentrations
Rat liver cells (4 to 6 mg dry weight per ml) were incubated at 37° in Krebs bicarbonate medium containing 4% (w/v) bovine serum albumin and 0.2 mM propionylpyrazole. Aliquots (0.8 ml) of the medium were removed at 6- or 12-min intervals over a period of 30 or 60 min. The mean acetaldehyde concentration refers to the average concentration present over the time interval used to calculate the rate of uptake. Rates were usually linear over the 30- or 60-min time interval under investigation.
Additions

Experiment 1
None
Pyruvate (10 mM)
Octanoate (2 mM)
Oleate (1 mM)
Experiment 2
None
Oleate (2 mM)
DL-β-Hydroxybutyrate (10 mM)
Acetoacetate (10 mM)
Experiment 3
None
Pyruvate (10 mM)
Oleate (1 mM)
DL-β-Hydroxybutyrate (10 mM)
Amytal (2 mM)
Amytal (4 mM)
presence of 0.2 mM propionylpyrazole to inhibit alcohol dehydrogenase activity, the rate of acetaldehyde uptake was strongly increased by addition of pyruvate as a trapping system for cytosolic NADH. On the other hand, addition of substrates which generate reducing equivalents directly in the mitochondria, such as octanoate, oleate, or β-hydroxybutyrate, all caused a substantial inhibition of acetaldehyde uptake, while addition of acetocetate stimulated acetaldehyde uptake. In Experiment 3 of Table I, addition of acetaldehyde decreased ketone body formation from oleate from 384 to 311 μmoles per g dry weight per hour and increased the ratio of β-hydroxybutyrate to acetoacetate from 3.0 ± 0.2 to 8.7 ± 1.3. Addition of amobarbital (Amytal) which inhibits electron transport between NADH dehydrogenase and cytochrome b also caused a severe inhibition of acetaldehyde uptake. When low (0.3 to 0.5 mM) initial acetaldehyde concentrations were used (Table II), the control rate of acetaldehyde uptake was lower (cf. Fig. 4), and pyruvate had a much smaller stimulatory effect on uptake, particularly at a mean acetaldehyde concentration of 0.2 mM. Oleate and β-hydroxybutyrate were strongly inhibitory, while acetocetate addition almost doubled acetaldehyde uptake. These results show a competition for mitochondrial NAD between acetaldehyde dehydrogenase and other mitochondrial dehydrogenases. On the other hand, relatively high acetaldehyde concentrations are required to show interactions with cytosolic NAD-linked dehydrogenases.

The effects of acetaldehyde infusion on oxygen uptake and 14CO2 production from [U-14C]oleate added in tracer amounts was investigated in perfused rat livers supplied with either 0.45 mM pyruvate (Fig. 5) or 0.45 mM L(+)-lactate (Fig. 6) in the arterial fluid. Methylpyrazole (50 μM) was also infused to inhibit reduction of acetaldehyde to ethanol. Addition of substrate stimulated cell respiration and oxidation of endogenous fatty acids, the latter effect being judged from the 2- to 3-fold stimulation of 14CO2 production. This finding is in accordance with previous indirect estimates based on calculations from metabolic balance studies of the effect of lactate (51) and pyruvate (52) on endogenous fatty acid oxidation. Infusion of 1 mM acetaldehyde for 10 min inhibited the generation of 14CO2 with both substrates, but had opposite effects on the rate of respiration; this being stimulated in the presence of pyruvate but inhibited transiently in the presence of lactate. Infusion of 0.2 mM aminooxyacetate caused a small increase of 14CO2 production, probably as compensation for inhibition of endogenous ureogenesis. It produced no effect on oxygen consumption in the presence of pyruvate but an inhibition of oxygen consumption to the endogenous rate in the presence of lactate. These changes

Table II

Regulation of acetaldehyde uptake by isolated rat liver cells at low acetaldehyde concentrations

Rat liver cells (0.5 to 1 mg dry weight per ml) were incubated as in Table I.

Additions	Acetaldehyde concentration	Acetaldehyde uptake	Control	
	Initial	Mean	μmoles/g dry wt/hr	%
None	0.5	0.20	430	100
Pyruvate (10 mM)	0.5	0.27	638	148
Oleate (1 mM)	0.5	0.29	276	64
None	0.3	0.20	459	100
Pyruvate (10 mM)	0.3	0.20	457	106
Oleate (1 mM)	0.3	0.21	325	71
dl-β-Hydroxybutyrate (10 mM)	0.3	0.21	304	66
Acetocetate (10 mM)	0.3	0.19	849	185

Fig. 5. Effects of acetaldehyde infusion with pyruvate as substrate on oxygen uptake and 14CO2 production from [U-14C]oleate by perfused rat liver. Substrates and inhibitors were added at the times indicated and infused over the interval denoted by the boxes. AOA, aminooxyacetate.

Fig. 6. Effects of acetaldehyde infusion with lactate as substrate on oxygen uptake and 14CO2 production from [U-14C]oleate by perfused rat liver. Substrates and inhibitors were added at the times indicated and infused over the interval denoted by the boxes. AOA, aminooxyacetate.
Effects of acetaldehyde on lactate and pyruvate metabolism in perfused rat liver

Livers were perfused with Krebs' bicarbonate medium using a flow-through system at a rate of approximately 30 ml per min. Lactate (0.45 mM) or pyruvate (0.45 mM) together with methylpyrazole (50 μM) were added to the arterial fluid by continuous infusion. Acetaldehyde (1 mM) and aminoxyacetate (AOA) (0.2 mM) were also infused for 10-min intervals as indicated in the table. Samples of effluent fluid were collected over 2-min intervals. Uptake of acetaldehyde was determined from the arteriovenous concentration difference and the measured flow rate. Values shown are mean ± S.E. The rate of acetaldehyde uptake in the absence of substrate was 369 ± 37 μmoles per 100 g body weight per hour.

Substrate	Acetaldehyde uptake (μmoles/100 g body wt/hr)	Lactate change	Pyruvate change	Glucose formation	Ratio of lactate to pyruvate
Pyruvate	424 ± 13	±24 ± 12	−324 ± 8	104 ± 4	0.26 ± 0.06
Pyruvate + acetaldehyde	84 ± 11	13 ± 5	−317 ± 9	140 ± 6	0.68 ± 0.08
Pyruvate + AOA	70 ± 13	17 ± 3	−328 ± 2	112 ± 9	0.66 ± 0.07
Pyruvate + AOA + acetaldehyde	478 ± 20	147 ± 19	−388 ± 3	116 ± 9	1.96 ± 0.25
Lactate	−153 ± 10	31 ± 2	54 ± 4	16.4 ± 2	4.5 ± 0.4
Lactate + acetaldehyde	−169 ± 10	12 ± 1	57 ± 5	16.4 ± 2	
Lactate + AOA	−34 ± 11	8 ± 1	21 ± 1	34 ± 1	
Lactate + AOA + acetaldehyde	388 ± 15	−9 ± 2	14 ± 1	360 ± 14	

Correlated with a lack of inhibitory effect of aminoxyacetate on gluconeogenesis from pyruvate but an almost complete inhibition of gluconeogenesis from lactate (Ref. 53 and Table III). A second 10-min infusion of 1 mM acetaldehyde in the presence of aminoxyacetate again inhibited 14CO2 production. With pyruvate as substrate, the inhibitory effect of acetaldehyde on 14CO2 production was the same with or without aminoxyacetate also present. However, with lactate as substrate the inhibitory effect of acetaldehyde was smaller in the presence than the absence of aminoxyacetate, and a small stimulation of respiration was observed in contrast to an inhibition in the absence of aminoxyacetate.

Table III shows further metabolic changes induced by acetaldehyde in a series of liver perfusions following the same experimental protocol as those shown in Figs. 5 and 6. Acetaldehyde stimulated gluconeogenesis from pyruvate by about 40%, increased pyruvate uptake by 20%, and the lactate to pyruvate ratio 2.6-fold, but had no significant effect on lactate production. Addition of acetaldehyde in the presence of aminoxyacetate and α-cycloserine to inhibit the transamination steps of the malate-aspartate cycle (54). A number of previous studies with rat kidney cortex and liver (44, 53, 55–61) have established that transamination via aspartate aminotransferase is involved obligatorily in gluconeogenesis from lactate and in the transfer of excess reducing equivalents from the cytosol to mitochondria, although the quantitative contribution of the malate-aspartate cycle to the over all flux of reducing equivalents is in dispute (60, 61). The rationale behind the use of these inhibitors in the present experiments was that oxidation of acetaldehyde in the cytosol should be inhibited to the extent that the malate-aspartate cycle contributes to the removal of reducing equivalents into mitochondria, while oxidation of acetaldehyde in the mitochondria should be unaffected. Although considerable circumspection must be exercised in the interpretation of
data using these inhibitors due to the possibility of Schiff-base formation between aminoxyacetate and acetaldehyde, no notable differences could be detected between the effects of aminoxyacetate and DL-cycloserine at concentrations of substrate and inhibitors used in the present experiments. Furthermore, clear evidence of inhibitory effects in the intact liver cell was obtained with both aminoxyacetate (Fig. 2, Fig. 6, and Table III) and DL-cycloserine (Figs. 3 and 4) in the presence of notable differences could be detected between the effects of formation between aminoxyacetate and acetaldehyde, no data using these inhibitors due to the possibility of Schiff-base formation, as previously suggested by Krebs (68). Regulation of the acetaldehyde concentration is unlikely to limit ethanol oxidation, and high degree of inhibition by DL-cycloserine at elevated acetaldehyde concentrations indicates that reducing equivalents generated in the cytosol are greatly stimulated by increasing acetaldehyde concentrations (29, 34). The apparent K_m for the cycloserine inhibition of acetaldehyde uptake by isolated liver cells but suppressed the increased uptake observed at higher acetaldehyde concentrations is strongly suggestive of a dual location for acetaldehyde oxidation. The high degree of inhibition by DL-cycloserine at elevated acetaldehyde concentrations indicates that reducing equivalents generated in the cytosol were transferred to the mitochondria for reoxidation largely by the malate-aspartate cycle. Furthermore, when alcohol dehydrogenase is active, ethanol formation and acetaldehyde uptake are greatly stimulated by increasing acetaldehyde concentrations (29, 34). The apparent K_m of 1.1 mM for the cycloserine-inhibited acetaldehyde uptake in the presence of methylpyrazole agrees closely with the apparent K_m for the cytosolic aldehyde dehydrogenase (16, 17, 22, 25, 26). The data in Fig. 4 show that the total activity of the cytosolic aldehyde dehydrogenase appears to be at least as great as that of the mitochondrial enzyme, despite reports that the over-all NAD-linked aldehyde dehydrogenase activity is largely mitochondrial (29–25). Direct mitochondrial oxidation of acetaldehyde is evidenced by the inability of either aminoxyacetate or DL-cycloserine to inhibit mitochondrial NADH generation and acetaldehyde uptake at low acetaldehyde concentrations. Since acetaldehyde levels do not rise above 0.2 mM during ethanol metabolism (30–34), it is clear that when acetaldehyde is generated from ethanol it is oxidized in a mitochondrion as a result of ethanol oxidation. However, this might be a species peculiarity since the apparent K_m for hepatic cytosolic NAD-linked aldehyde dehydrogenases is much lower in other species than in the rat (5, 7–9, 11).

Direct mitochondrial oxidation of acetaldehyde has important implications with regard to the regulation of ethanol metabolism. Notably, mutual competitive inhibition between acetaldehyde and fatty acids for oxidation appears to be at the level of mitochondrial NAD-linked dehydrogenases rather than at the step of transport of reducing equivalents into mitochondria. Likewise, amobarbital inhibition of ethanol metabolism (27, 48, 62) is probably accounted for by an indirect inhibition of mitochondrial acetaldehyde oxidation as a result of decreased NADH reoxidation by the electron transport chain with secondary feedback via alcohol dehydrogenase to ethanol uptake. The present data also illustrate inhibition of hepatic endogenous fatty acid oxidation by acetaldehyde, which is similar to that observed by ethanol.1 Presumably the suppression of citric acid cycle activity by ethanol (28, 63–67) is partially accounted for by competition between acetaldehyde dehydrogenase and citric acid cycle dehydrogenases for mitochondrial NAD. The very high affinity of the mitochondrial aldehyde dehydrogenase for acetaldehyde indicates that the acetaldehyde concentration is unlikely to limit ethanol oxidation, as previously suggested by Krebs (66). Regulation of the hepatic rate of ethanol uptake appears to be affected both by the rate of translocation of reducing equivalents generated from alcohol dehydrogenase into mitochondria (48), as well as by the rate of NADH reoxidation in the electron transport chain (34, 44).

REFERENCES

1. CAMPSSEN, F. H. (1951) Acta Chem. Scand. 5, 406–421
2. MACKLER, B., MAHLER, H. R., AND GREEN, D. E. (1954) J. Biol. Chem. 210, 149–164
3. KAJAGOPALAN, K. V., AND HANDLER, I. P. (1964) J. Biol. Chem. 239, 2027–2035
4. LUNDQUIST, F., FUGMANN, U., RASMUSSEN, H., AND SVENDSEN, L. (1962) Biochem. J. 84, 251–258
5. RACKER, E. (1949) J. Biol. Chem. 177, 885–892
6. RÜTTWITZ, H. (1965) Biochem. Z. 341, 309–314
7. BLAIR, A. M., AND BRADLEY, F. H. (1969) Can. J. Biochem. 47, 265–272
8. KRAMER, R. J., AND DEITRICH, R. A. (1968) J. Biol. Chem. 243, 6402–6408
9. DEITRICH, R. A., HELLERMAN, L., AND WEIN, J. (1972) J. Biol. Chem. 247, 300–304
10. FREDA, C. E., AND STOPPANI, A. O. M. (1970) Enzymol. Acta 38, 225–242
11. FELDMAN, R. I., AND WEINER, H. (1972) J. Biol. Chem. 247, 260–266
12. MAXWELL, E. S. (1962) J. Biol. Chem. 237, 1699–1703
13. SHEFFER, J. R., ALDERBERGH, P., AND MCCLEARN, G. (1970) J. Biol. Chem. 245, 2876–2882
14. DEITRICH, R. A. (1966) Biochem. Pharmacol. 15, 1011–1220
15. ERWIN, V. G., AND DEITRICH, R. A. (1966) J. Biol. Chem. 241, 3533–3539
16. SHUM, C. T., AND BLAIR, A. H. (1972) J. Biochem. 80, 711–748
17. DEITRICH, R. A., COLLINS, A. C., AND ERWIN, V. G. (1972) J. Biol. Chem. 247, 7232–7220
18. WALKER, S. S., AND WEINHOUSE, S. (1953) J. Biol. Chem. 200, 515–523
19. KIESLING, K.-H. (1963) Exp. Cell Res. 30, 569–576
20. HEDLUND, S.-G., AND KIESLING, K.-H. (1969) Acta Pharmacol. Toxicol. 27, 381–396
21. SMITH, L., AND PACKER, L. (1972) Arch. Biochem. Biophys. 148, 270–276
22. GRUNNET, N. (1973) Eur. J. Biochem. 36, 226–235
23. DEITRICH, R. A. (1971) Science 173, 334–336
24. MARJANEN, L. (1972) Biochem. J. 127, 633–639
25. TOTTMAR, S. O. C., PETTERSSON, H., AND KIESLING, K.-H. (1973) Biochem. J. 135, 577–588
26. TOTTMAR, S. O. C., PETTERSSON, H., AND KIESLING, K.-H. (1974) in Alcohol and Aldehyde Metabolizing Systems (Thurman, R. G., Yonetani, T., Williamson, J. R., and Chance, B., eds) Academic Press, New York, in press
27. WILLIAMSON, J. R., SCHOLZ, R., THURMAN, R. G., AND CHANCE, B. (1969) in The Energy Level and Metabolic Control in Mitochondria (PAPA, S., TAUKER, J. M., QUAGLIANIELLO, E., and SLATER, E. C., eds) pp. 411–429, Adriatica Editrice, Bari
28. WILLIAMSON, J. R., SCHOLZ, R., BROWNING, E. T., THURMAN, R. G., AND FUKAMI, M. H. (1969) J. Biol. Chem. 244, 5044–5054
29. LINDROS, K. O., OSHINO, N., PARRILLA, R., AND WILLIAMSON, J. R. (1974) J. Biol. Chem. 249, in press
30. MACJROWICZ, E., AND MENDELSON, J. H. (1970) Science 168, 1100–1102
31. FORSANDER, O. A., HILLBOM, M. E., AND LINDROS, K. O. (1969) Acta Pharmacol. Toxicol. 27, 410–416
32. ERIKSSON, C. J. P. (1973) Biochem. Pharmacol. 22, 2239–2292
33. TRUITT, E. B. (1970) Quart. J. Stud. Ale. 31, 1–22
34. LINDROS, K. O., VITHA, R., AND FORSANDER, O. A. (1972) Biochem. J. 126, 945–952
35. AZARKH, R. M., BRAUNSHTEIN, A. E., PASKHUA, T. A., AND TING-SEN, H. (1960) Biokhimiya (Transl.) 25, 741–748
36. WONG, D. T., FULMER, R. W., AND MOLLOY, B. B. (1973) Advan. Enzyme Regul. 11, 139–154
37. BERGMANN, E.-U., ed (1965) Methods of Enzymatic Analysis, Second Printing, Revised, Academic Press, New York.
38. Scholz, R., Thurman, R. G., Williamson, J. R., Chance, B., and Bucher, T. (1969) J. Biol. Chem. 244, 2317–2324
39. Bray, C. A. (1960) Anal. Biochem. 1, 279–285
40. Berry, N. M., and Friend, D. S. (1969) J. Cell Biol. 43, 509–520
41. Johnson, M. E. M., Das, N. M., Bucher, F. R., and Fain, J. N. (1972) J. Biol. Chem. 247, 3229–3235
42. Williamson, J. R., Browning, E. T., and Scholz, R. (1969) J. Biol. Chem. 244, 4607–4616
43. Lundquist, F. (1958) Biochem. J. 68, 172–177
44. Williamson, J. R., Brown, E. T., and Scholz, R. (1969) Biochem. J. 103, 172–177
45. Williamson, J. R., Jakob, A., and Refino, C. (1971) J. Biol. Chem. 246, 7632–7641
46. Hopper, S., and Segal, H. L. (1962) J. Biol. Chem. 237, 3189–3195
47. Williamson, J. R., Ohkawa, K., and Meijer, A. J. (1974) in Alcohol and Aldehyde Metabolizing Systems (Thurman, R. G., Yonetani, T., Williamson, J. R., and Chance, B., eds) pp. 963–982, Academic Press, New York
48. Williamson, J. R., Anderson, J., and Browning, E. T. (1969) J. Biol. Chem. 244, 4617–4627
49. Williamson, J. R., Anderson, J., and Browning, E. T. (1970) J. Biol. Chem. 245, 1717–1726
50. Anderson, J. H., Nicklas, W. J., Blank, B., Refino, C., and Williamson, J. R. (1971) in Regulation of Gluconeogenesis: 9th Conference of the Gesellschaft für Biologische Chemie (Söling, H.-D., and Willms, B., eds) pp. 293–315, G. Thieme-Verlag, Stuttgart
51. Bois, P. (1969) in Funktionelle und Morphologische Organisations der Zelle (Karsten, P., ed) pp. 137–158, Springer-Verlag, New York
52. Roos, R., and Katz, J. (1970) Biochem. J. 115, 483–491
53. Longshaw, I. D., Bowen, N. L., and Fogson, C. I. (1972) Eur. J. Biochem. 25, 306–317
54. Arinze, I. J., Garber, A. J., and Hanson, R. W. (1973) J. Biol. Chem. 248, 2266–2274
55. Berry, N. M., Kun, E., and Werner, H. V. (1973) Eur. J. Biochem. 29, 407–417
56. Berry, N. M., and Kun, E. (1972) Eur. J. Biochem. 20, 395–400
57. Ylikahri, R. H., Hassinen, I., and Kahonen, M. T. (1974) Biochem. Biophy. Res. Commun. 44, 150–156
58. Hassinen, I. E., Ylikahri, R. H., and Kahonen, M. T. (1970) Ann. Med. Exp. Biol. Fenn. 46, 176–183
59. Forsander, O. A., Kaitila, N., Salaspuro, M., and Meenpää, P. (1965) Biochem. J. 94, 369–366
60. Forsander, O. A. (1967) Biochem. J. 106, 93–97
61. Linder, C. S., Lefèvre, A., Spritz, N., Feinman, L., and De Carl, L. M. (1967) J. Clin. Invest. 46, 1451–1460
62. Zakim, D., and Green, J. (1968) Proc. Soc. Exp. Biol. Med. 127, 138–142
63. Lindros, K. (1972) Eur. J. Biochem. 26, 338–346
64. Krebs, H. A. (1969) Curr. Top. Cell. Regul. 1, 45–55
Functional Compartmentation of Acetaldehyde Oxidation in Rat Liver
Roberto Parrilla, Kiyoshi Ohkawa, Kai O. Lindros, Un-Jin Paik Zimmerman, Kumpei Kobay-ashi and John R. Williamson

J. Biol. Chem. 1974, 249:4926-4933.

Access the most updated version of this article at http://www.jbc.org/content/249/15/4926

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/249/15/4926.full.html#ref-list-1