DEVELOPMENT

Running head: Arabidopsis seed aging

Corresponding authors:

Loïc Rajjou

Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech “Laboratoire de Biologie des Semences”
AgroParisTech, Chaire de Physiologie Végétale, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France
Phone: +33 (0) 1 44 08 72 56 - Fax: +33 (0) 1 44 08 18 34
Email: loic.rajjou@agroparistech.fr

and

Dominique Job

Unité Mixte de Recherche 5240 Centre National de la Recherche Scientifique – Université Claude Bernard Lyon – Institut National des Sciences Appliquées – Bayer CropScience - Joint Laboratory, Bayer CropScience, 14-20 rue Pierre Baizet, F-69263 Lyon Cedex 09, France
Phone: +33 (0) 4 72 85 21 79 - Fax: +33 (0) 4 72 85 22 97
Email: dominique.job@bayercropscience.com
Proteome-wide characterization of seed aging in
Arabidopsis. A comparison between artificial and
natural aging protocols[w]

Loïc Rajjou*, Yoann Lovigny, Steven PC Groot, Maya Belghazi, Claudette Job and Dominique Job*

Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech “Laboratoire de Biologie des Semences”, AgroParisTech, Chaire de Physiologie Végétale, 16 rue Claude Bernard, F-75231 Paris Cedex 05, France (L.R.); Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech “Laboratoire de Biologie des Semences”, Institut Jean-Pierre Bourgin-Institut National de la Recherche Agronomique, Route de St-Cyr, F-78026 Versailles Cedex, France (L.R.); Centre d’Analyse Protéomique de Marseille, IFR Jean Roche - 51, boulevard Pierre Dramard, F-13916 Marseille Cedex 20, France (M.B.); Plant Research International, Wageningen University and Research centre, P.O. Box 16, 6700 AA Wageningen, The Netherlands (S.P.C.G.); Unité Mixte de Recherche 5240 Centre National de la Recherche Scientifique-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, Bayer CropScience, 14-20 rue Pierre Baizet - F-69263 Lyon Cedex 9, France (Y.L., C.J., D.J.)

[w] The online version of this article contains Web-only data.
*Corresponding authors; e-mail loic.rajjou@agroparistech.fr; fax +33-1-44-08-18-34 and e-mail dominique.job@bayercropscience.com; fax +33-4-72-85-22-97

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Loïc Rajjou (loic.rajjou@agroparistech.fr).
Abbreviations - 2D, 2-dimensional; CDT, controlled deterioration treatment; DTT, dithiothreitol; IEF, isoelectrofocusing

Keywords - seed longevity, seed germination, proteomics, aging, Arabidopsis thaliana
ABSTRACT

A variety of mechanisms has been proposed to account for the extension of life span in seeds (seed longevity). In the present work, we have used Arabidopsis thaliana seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time, up to seven days. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, the CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results unveiled essential mechanisms for seed vigor as translational capacity, mobilization of seed storage reserves and detoxification efficiency. Finally, the present work shows that similar molecular events accompany artificial and natural seed aging.
INTRODUCTION

Before aging ultimately and irreparably leads to seed death, punctual and progressive accumulation of alterations during storage are likely to affect the potential ability of seeds to germinate. This deterioration process can occur even under the “best” storage conditions. The life span of seeds is determined by their genetic and physiological storage potential and by any deteriorating events that occur prior to or during storage, as well as by the interaction with environmental factors (Bewley and Black, 1994). Since seed storage is often accompanied by a progressive loss of germination vigor, storage conditions must be optimized both for the preservation of genetic resources and commercial applications. For orthodox or desiccation-tolerant seeds, low seed moisture content, low temperature or cryopreservation seem to result in an increase in storage life span (Abdalla and Roberts, 1968; Walters, 2004; Walters et al., 2004). However, a recent investigation reported a large heterogeneity and inequality for longevity between seeds descended from different plant species (Walters et al., 2005).

Genetic approaches in rice (Oryza sativa; Miura et al., 2002) and Arabidopsis (Arabidopsis thaliana; Bentsink et al., 2000; Clerkx et al., 2004b) showed that seed longevity is controlled by several genetic factors. For both plants several QTL were identified affecting viability, which were located on different chromosomes. This behavior suggests that seed longevity is a multigenic trait including various seed traits as for example germination under various stresses or sucrose and seed oligosaccharides contents (Clerkx et al., 2004b). Several molecular studies also support this notion of the complex genetic basis of seed longevity, as diverse mechanisms were documented to play a role. For example, Arabidopsis seed mutants affected in flavonoid (Debeaujon et al., 2000) or in tocopherol (Sattler et al., 2004) biosynthetic pathways display a reduced longevity, a finding that agrees with data showing that protection against reactive oxygen species (ROS) production and attack are important features of Arabidopsis seed longevity (Clerkx et al., 2004a). Furthermore, Bentsink et al. (2006) recently showed that mutations within the DOG1 gene, which specifically controls
seed dormancy in Arabidopsis, were associated with a seed longevity phenotype, indicating that the absence of dormancy might also be a factor that reduces seed longevity. Also, transgenic Arabidopsis seeds over-accumulating a heat stress transcription factor (HSF) exhibit enhanced accumulation of heat shock proteins (HSPs) and improved resistance to aging (Prieto-Dapena et al., 2006). On the contrary, a high level of a membrane lipid-hydrolyzing phospholipase D (PLDalpha1) seems detrimental for seed quality (Devaiah et al., 2007). Finally, the fantastic multicentenarian longevity of sacred lotus (*Nelumbo nucifera*) seeds (Shen-Miller et al., 1995; Shen-Miller, 2002) has been correlated with the extractible activity of the protein L-isoaspartyl methyltransferase (PIMT), an enzyme repairing abnormal L-isoaspartyl (isoAsp) residues accumulated in proteins during aging, notably during oxidative stress (Ingrosso et al., 2002; Clarke, 2003; Xu et al., 2004).

We are interested in determining the molecular basis of seed longevity. For that purpose, the model plant Arabidopsis can be viewed as a reference species allowing a molecular dissection of this trait. Indeed, achievement of the Arabidopsis genome sequence (Arabidopsis Genome Initiative, 2000) markedly increased our knowledge and understanding of the large complexity of plant growth regulation and development (Somerville and Koornneef, 2002). Global approaches as transcriptome profiling (Ogawa et al., 2003; Nakabayashi et al., 2005; reviewed in Holdsworth et al., 2008) have proved useful for the characterization of potential biomarkers of seed quality and germinative capacity. However, the functional components of a biological system are proteins and metabolites. Thanks to the availability of genomic sequence information and based on the progress achieved in sensitive and rapid separation of proteins and in their high-throughput identification by electrophoresis and mass spectrometry, proteomic approaches have opened up new perspectives to analyze the complex functions of model plants and crop species (Cánovas et al., 2004; Park, 2004; Agrawal et al., 2005a,b,c; Rossignol et al., 2006; Jorrín et al., 2007). In this way, previous proteomic studies
unveiled the requirements in terms of RNA and protein synthesis for Arabidopsis seed germination (Gallardo et al., 2001, 2002a,b; Rajjou et al., 2004, 2007a). In particular, these studies revealed that proteins and mRNAs stored in the dry mature seeds are sufficient for germination sensu stricto (Rajjou et al., 2004).

Based on these previous findings, in the present work, we have used proteomics and a seed deterioration treatment known as controlled deterioration (CDT) that is presumed to mimic natural aging (Delouche and Baskin, 1973; Bentsink et al., 2000; Clerkx et al., 2004b) to unravel mechanisms of seed vigor loss during storage. Sensitivity of seeds to the CDT has been successfully used for the rapid evaluation and prediction of seed vigor and longevity (Powell, 1995; TeKrony, 1995; Lanteri et al., 1996; McDonald, 1999; Bentsink et al., 2000; Halmer, 2000; Clerkx et al., 2004a,b; Sattler et al., 2004; Job et al., 2005; Prieto-Dapena et al., 2006). Accordingly, this treatment is widely used by seed companies as a vigor assay for numerous seed species and has been described for Arabidopsis seeds (Tesnier et al., 2002). Here, we compared Arabidopsis seed samples submitted to this CDT for different times, up to seven days. A comparison of the dry seed proteome for each sample was carried out to reveal changes in the accumulation of specific proteins during the treatment. The proteome of 1-d-imbibed seeds was also characterized for all seed samples to analyze the behavior of the treated seeds during early steps of the germination process. Since the CDT and prolonged seed storage are known to entail an oxidative stress (Goel et al., 2003; Bailly, 2004; Job et al., 2005; Kibinza et al., 2006), which can lead to the formation of oxidatively modified proteins (Terskikh et al., 2008), we also analyzed the oxidized proteome in the deteriorated seeds. Finally, we discuss our results in comparison to natural aging conditions.

RESULTS AND DISCUSSION

The CDT Entails a Seed Vigor Loss
The CDT protocol described by Tesnier et al. (2002) was used to alter seed vigor of wild-type Arabidopsis ecotype Landsberg erecta (Ler) seeds for up to seven days (see “Materials and Methods”). The germination ability of each seed sample was assessed by germination assays (Fig. 1). The CDT led to a rapid decline of seed vigor, affecting both the speed, homogeneity, and the final extent of Arabidopsis seed germination (Fig. 1).

Rationale of the Proteomic Approach

To reveal molecular mechanisms associated with the loss of seed vigor induced by the CDT, a differential proteomic approach was carried out, under two different protocols. In the first we hypothesized that the CDT can directly affect the proteome of the seeds, and hence their vigor. In the second, we analyzed whether the loss in seed vigor imposed by the CDT resulted from incapacity of the deteriorated seeds to appropriately set up the protein changes normally accompanying early germination (Gallardo et al., 2001; Rajjou et al., 2004).

Total soluble protein extracts from all seed samples (control and deteriorated seeds) were separated by 2D-PAGE. Following silver-nitrate staining, protein patterns were determined by image analysis, and protein spots were quantified by Image Master 2D Elite software. Because of the very high reproducibility of 2D protein patterns compared to our previous work (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005), a number of proteins of interest could be readily identified using previously established reference maps for the Arabidopsis seed proteome (http://www.seed-proteome.com). Besides, the present study allowed the identification of 87 novel proteins accumulates in Arabidopsis seeds (Supplemental Table S2).

The Proteome Is Markedly Affected in Seeds Submitted to the CDT

A typical 2D-gel corresponding to the control non-deteriorated seeds is presented in Figure 2A. Image analysis of 2D protein patterns from control and deteriorated seed samples
revealed 12 proteins spots that were more abundant in the deteriorated seeds, corresponding to ten genes. In parallel, six protein spots showed a lower abundance in the deteriorated seeds, corresponding to five genes (Fig. 2; Tables I and II). The time needed to reach 50% of the change in spot accumulation ($T_{1/2}$) during progress of the CDT is a good index of the sensitivity of each of these protein spots toward deterioration. This kinetic analysis disclosed that proteins whose accumulation was altered by the CDT displayed a wide range of sensitivity toward this treatment (Tables I and II), with $T_{1/2}$ values ranging from 0.4 to more than 7 d. This finding is illustrated in Figure 3 for protein spots whose relative volume increased (spots nos 253, and 312) or decreased (spots nos 146, and 311) during progress of the CDT.

Our results clearly reveal that, despite an expected metabolic quiescent state and a relative low water content characteristic of the seeds, proteome variations can occur under the low hydration conditions of the CDT, as the CDT only increases the seed water content from 5.8 to 10.5% (Tesnier et al., 2002). It remains to investigate whether these changes arose from de novo transcription, translation of stored mRNAs or from non-enzymatic modifications of the seed proteins altering their migration in 2-D gels.

The Glycolytic Pathway is Affected During Seed Aging

Among the 12 proteins being more abundant in deteriorated seeds than in control seeds, four of them belong to the glycolytic pathway (Table I). Thus, the abundance of these protein spots, corresponding to glyceraldehyde-3-phosphate dehydrogenase (cGAPDH; E.C. 1.2.1.12; spots nos 253, 302 and NADP-GAPDH; E.C. 1.2.1.13; spot no 312) and to phosphoglucomutase (EC 2.7.5.1; spot no 305), significantly increased in seeds submitted to the CDT. Interestingly, a recent study demonstrated that Arabidopsis cells exposed to oxidative stress react by substantially increasing the levels of hexose phosphates, Glc-6-P and Fru-6-P, as well as 3-phosphoglycerate (3-PGA) (Baxter et al., 2007). Our results thereby
Arabidopsis seed aging
c
confirmed that seeds underwent an oxidative stress during CDT (Goel et al., 2003; Bailly, 2004; Sattler et al., 2004; Job et al., 2005; Kibinza et al., 2006) and mounted a protective response through modification of the glycolytic pathway.

The β-Mercaptopyruvate Sulfurtransferase Exhibits Varying Accumulation Levels During Seed Aging

The protein β-mercaptopyruvate sulfurtransferase (MST; E.C. 2.8.1.2; spot no 146; Figs. 2 and 3; Table II) was abundant in control high-vigor seeds (0 d). However, during the CDT, the level of this protein showed an important decline. The MST catalyzes the transfer of sulfur from mercaptopyruvate to sulfur acceptors such as thiols or cyanide (Papenbrock and Schmidt, 2000a,b), presumably contributing to cyanide detoxification (Cipollone et al., 2007). Despite the fact that at low concentrations cyanide is beneficial for releasing seed dormancy and improving germination (Taylorson and Hendricks, 1973; Bethke et al., 2006) its production is often associated with deleterious mechanisms and must therefore be controlled. Also, cyanide can inhibit the activity of heme proteins as peroxidases (Ellis and Dunford, 1968; Job and Ricard, 1975) and catalases (Tejera García et al., 2007). Further, this molecule is a potent inhibitor of mitochondrial ascorbate synthesis in plants (Bartoli et al., 2000), thus potentially impeding plant defense against ROS attack. Most frequently, cyanide production in plants results from the catabolism of cyanogenic glycosides or during cyanolipid hydrolysis (Poulton, 1990). It has been shown that the cyanide potential of sorghum (Sorghum spp.), a plant containing high levels of hydrogen cyanide, shows a rapid transient increase during germination and early seedling formation (Busk and Møller, 2002). Similarly, a recent work showed that imbibition of dormant and non-dormant sunflower embryos entails a substantial rise in cyanide content (Oracz et al., 2008). However, no data are available on the metabolism of cyanogenic compounds in dry and germinating Arabidopsis seeds. In plants, cyanide can also be released as a by-product of ethylene biosynthesis (Adams and Yang, 1981; Peiser et
al., 1984). However, temporal patterns of accumulation of enzymes involved in methionine and S-adenosylmethionine synthesis in seeds are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion (Gallardo et al., 2002b), findings that do not favor the hypothesis that cyanide accumulates to high toxic levels through the ethylene pathway during germination sensu stricto. Finally, the decomposition of glucosinolates has also been suggested as a possible source of cyanide production in brassicaceous plant (Cipollini and Gruner, 2007). The glucosinolates of Arabidopsis seeds are distinguished by their high concentration, unique aliphatic constituents and the low level of indole compounds (Brown et al, 2003). However, the cyanide production from stored-seed glucosinolates has never been observed but should be investigated in the context of seed biology. Besides cyanide detoxification, proposed roles for sulfurtransferases are sulfur metabolism (Donadio et al., 1990), and mobilization of sulfur for iron-sulfur cluster biosynthesis or repair (Pagani et al., 1984; Bonomi et al., 1985). Also, MST plays physiological role in the protection against oxidative stress, and particularly contributes to the maintenance of cellular redox homeostasis via the metabolic regulation of cysteine degradation (Nagahara and Katayama, 2005). In plants, the mobilization of sulfur for transport processes in older leaves was also proposed (Papenbrock and Schmidt, 2000a,b).

Our results revealed for the first time that a loss in seed vigor is associated with a decreased level of β-mercaptopyruvate sulfurtransferase, highlighting further the importance of sulfur metabolism and homeostasis in seeds (Gallardo et al., 2002b). Furthermore our data suggest as yet unknown important role(s) of this enzyme in seed physiology and quality.

The Dehydrin/RAB Group of LEA Proteins Contributes to Seed Vigor

The present proteomic analysis revealed two protein spots (spots nos 254, and 255) progressively disappearing in seeds according to the time of CDT. These spots correspond to two isoforms of the RAB (Responsive to ABA) 18 dehydrin, belonging to the LEA group 2.
(D11) protein family. This result was unexpected because a previous work showed an absence of correlation between accumulation of dehydrin/RAB group of LEA proteins and seed longevity (Wechsberg et al., 1994). These proteins are inducible by dehydration and ABA (Skriver and Mundy, 1990) and have been suggested to play a role in desiccation tolerance, particularly during seed development (Dure, 1993; Close, 1996, 1997). Expression of the RAB18 gene is high in Arabidopsis dry mature seeds, at both mRNA and protein levels (Lång and Palva 1992; Parcy et al., 1994; Rajjou et al., 2004). Such a high expression could correspond to a remnant accumulation during the maturation program of seed development, in response to the acquisition of desiccation tolerance. However, it is also likely that RAB18 expression is needed to prevent environmental stress that may occur at the start of the germination process (Lopez-Molina et al., 2002; Rajjou et al., 2004, 2006a). The high hydrophilicity and thermostability of dehydrins suggest their involvement in a large-scale of hydrophobic interactions such as membrane structures or hydrophobic patches of proteins with chaperone-like properties (Ismail et al., 1999; Borovskii et al., 2002). Interestingly, in seeds from cabbage (Brassica oleracea), a related cruciferous species, mRNA levels of the RAB18 homologue are correlated with seed stress tolerance (Soeda et al., 2005). Thus, its transcript level increased during seed maturation, declined during priming (an invigoration treatment of seeds based upon their controlled hydration; Heydecker et al., 1973) and germination. Furthermore, the mRNA can be re-induced during a slow and warm drying treatment of primed seeds to increase their storability (Soeda et al., 2005). As in cabbage, our results suggest that RAB18 protein abundance in dry mature Arabidopsis seeds is strongly correlated with seed aging. One possible explanation is that the decreased level of this protein in deteriorated seeds is associated with membrane destabilization and/or alterations in protein structure. It is noted that RAB18 protein displays both cytosolic and nuclear localization suggesting multiple functionalities as yet unclear. In the present proteomic study, we have not identified other dehydrins than the RAB18 dehydrin. This could mean that only this member
of the large LEA protein family (Bies-Ethève et al., 2008) plays a role in seed vigor. Alternately, we cannot exclude the possibility that other LEA proteins are also involved in seed vigor, but that they are present in too low levels so that their detection escaped our analysis.

Seed Deterioration Entails a Massive Increase in Carbonylated Proteins

In all organisms, oxidative stress has been postulated to be a causal factor in aging processes (Harman, 1956). The extent of oxidative damage to nucleic acids, lipids and proteins has been found to increase with age, providing support for this basic tenet (Levine and Stadtman, 2001). Indeed, a progressive accumulation of oxidative damage of these macromolecules in aged tissues is thought to contribute to the decline in biological functions, characteristic of the aged phenotype (Stadtman, 2001, 2004). There is strong evidence that proteins are the most important targets for oxidants (Davies, 2005). Protein carbonylation has been widely used as an indicator of oxidative damage in several organisms and has been shown to increase in aged tissues (Nyström, 2005; Møller et al., 2007). It results from oxidative attack on Arg, Lys, Pro or Thr residues of proteins (Levine et al., 1990), which can affect enzyme activities or alter susceptibility of the modified proteins to proteolysis (Berlett and Stadtman, 1997; Davies, 2005). We characterized the influence of the CDT on the oxidized proteome of Arabidopsis seeds (Fig. 4). Carbonylated proteins were then identified by matching the 2,4-dinitrophenylhydrazone (DNP)-derivatized protein spots to master gel maps of Arabidopsis seed proteins (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com). The results revealed that protein carbonylation strongly increased in deteriorated seeds, indicating the occurrence of ROS during the CDT. In agreement with previous data (Job et al., 2005; Rajjou et al., 2006a, 2007a,b), several polypeptides corresponding to the alpha- and beta-subunits of the 12S cruciferins (legumin-type seed storage proteins) were strongly carbonylated in deteriorated seeds compared to
control seeds. However, the present work also revealed that several other proteins ought to be oxidized in Arabidopsis seeds submitted to the CDT (Fig. 4; Table III). Among them, several isoforms of the Rubisco large subunit (spots nos 10, 319, 320, and 321) proved to be oxidized. Rubisco catalyzes the first step in net photosynthetic CO$_2$ assimilation and photorespiratory carbon oxidation. This protein has already been shown to be a preferential target of ROS in Arabidopsis (Johansson et al., 2004; Job et al., 2005). Also, previous work demonstrated that one of the first apparent symptoms of leaf senescence is the aggregation and the deterioration of the Rubisco (Feller and Fischer, 1994). Finally, deterioration of Rubisco has also been observed during oxidative stress or ozone treatment (Pell et al., 1997). All these observations point out the hypersensitivity to oxidative stress of this protein, which is also found in the present study.

Many proteins with chaperon activities were also favored targets for oxidation (spots nos 1, 43, 90, 135, 136, 137, and 140; Table III). Among them, three HSP70 proteins (spots nos 43, 136, and 137) are described as being abundant in dry and imbibed seeds (Gallardo et al., 2001; Rajjou et al., 2006a; http://www.seed-proteome.com). Molecular chaperones are known to be targets of carbonylation in yeast and bacteria challenged by oxidative stress (Tamarit et al., 1998; Cabisco et al., 2000), presumably because they act as shields protecting other proteins against ROS damage (Cabisco et al., 2000). Other chaperon proteins associated with endoplasmic reticulum, as the luminal binding protein BiP (spots nos 1, and 135), calreticulin (spot no 140) and protein disulfide isomerase (PDI) (spot no 90) (Laboissière et al., 1997; Freedman et al., 1998; Wilkinson and Gilbert, 2004) are also oxidized in deteriorated dry seeds (Table III). The fundamental role of the ER and associated proteins in stress response and aging has been recently reviewed in human (Yoshida, 2007). Our results support this hypothesis in plants.

It is worth noting that three LEA protein isoforms (spots nos 60, 61, and 431), encoded by the At2g42560 gene, appeared to be more oxidized in deteriorated seeds than in control seeds.
Arabidopsis seed aging

(Table III). Protein sequence of this LEA protein displays a strong homology with that of previously described seed biotinylated proteins from pea (Pisum sativum; Duval et al., 1994b; Job et al., 2001), soybean (Glycine max;Franca Neto et al., 1997; Shatters et al., 1997; Hsing et al., 1998) and barley (Hordeum vulgare; March et al., 2007). This type of LEA proteins exhibits a characteristic biochemical feature in that they bind in vivo the vitamin biotin (Duval et al., 1994a; Alban et al., 2000; Job et al., 2001). Biotin (vitamin B7), also known as vitamin H, is a fundamental molecule for all living organisms being the cofactor of housekeeping enzymes involved in carboxylation, decarboxylation, and transcarboxylation reactions (Patton et al., 1998; Alban et al., 2000; Nikolau et al., 2003). It has been proposed that the seed biotinylated LEA proteins may play a role in sequestering this vitamin late in embryogenesis for subsequent use during germination and/or to maintain metabolic quiescent state in dry seed by biotin deprivation (Alban et al., 2000; Job et al., 2001). It is also interesting to note the existence of an ortholog of this biotinylated LEA protein in Medicago truncatula seeds, whose accumulation level is strongly associated with reinduction of desiccation tolerance in radicles (Boudet et al., 2006). Hence, a specific carbonylation of this biotinylated LEA protein caused by the CDT could entail an alteration of Arabidopsis seed survival in the dry state.

Overall, our results document that the CDT generates an oxidative stress, which in turn induces chemical modifications of proteins by carbonylation, thus providing an explanation for the decrease in seed vigor associated with this treatment.

The CDT Exerts an Influence on Proteome Expression During Germination

The evolution of the seed proteome during germination was also analyzed 1-d post-imbibition for the control and deteriorated seeds. This stage corresponds to the germination sensu stricto of the Arabidopsis (Ler) high-vigor control seeds, as none of these seeds showed radicle protrusion at that time (Fig. 1). Out of 45 protein spots presenting reproducible
variations in their accumulation level, 29 protein spots were less abundant, while 16 protein spots were more abundant in germinating deteriorated seeds than in control seeds (Fig. 5, Tables IV and V). One of the specific features observed is the maintenance of a high level of storage protein precursors (spots nos 151, 177, and 354) in germinating deteriorated seeds, implying that deteriorated seeds are less active than control seeds in mobilizing their storage protein reserves. In the same way, lipid storage mobilization was also strongly affected. Thus, isocitrate lyase (threo-Ds-isocitrate-glyoxylate lyase, EC 4.1.3.1), which is the key enzyme in seed lipid mobilization via the glyoxylate cycle (Graham, 2008), increased about five fold during germination sensu stricto of the control seeds (0 d), whereas its relative accumulation decreased steadily in deteriorated seeds according to the time of the CDT (spot no 365; Fig. 5; Table V). Isocitrate lyase plays a crucial role in the synthesis of carbohydrates from storage lipids during seed germination and seedling establishment (Eastmond and Graham, 2001). Also, it has been proposed that glyoxylate cycle activity is a good indicator of seedling emergence potential and seed vigor in sugar beet and Arabidopsis, notably under stress conditions (de los Reyes et al., 2003; Rajjou et al., 2006a). This suggests that a rapid onset of the glyoxylate pathway during germination can facilitate the mobilization of the lipid storage reserves, enabling a fast establishment of a vigorous seedling. Our present results are in perfect agreement with these previous studies (de los Reyes et al., 2003; Rajjou et al., 2006a) and further document the fundamental role of the glyoxylate cycle for germination and seed vigor. Moreover, isocitrate lyase is regarded suitable to determine the transition from late embryogenesis to germination (Goldberg et al., 1989). In summary, this enzyme is therefore a very good candidate as a diagnostic marker of seed vigor.

Amongst proteins accumulating to lower amounts in germinating deteriorated seeds than in corresponding control seeds, two isoforms of the cytosolic O-acetylserine(thiol)lyase (OASTL; EC 2.5.1.47) encoded by At4g14880 gene were identified (spots nos 174, and 175) (Fig. 5; Table V). This enzyme forms a complex with serine acetyltransferase to catalyze the
last step of Cys synthesis (Droux et al., 1998). It is noted that in Arabidopsis the cytosolic form encoded by At4g14880 is the major contributor to the total OASTL activity of the plant (Lopez-Martin et al., 2008). Our observations therefore suggest that Cys synthesis is an important feature of germination potential. Cys is the essential precursor of all organic molecules containing reduced sulfur ranging from the amino acid Met to peptides as glutathione or phytochelatins, proteins, vitamins, cofactors as S-adenosylmethionine and hormones (Höfgen et al., 2001). All these sulfur compounds play fundamental roles in plant metabolism (Ravanel et al., 1998). Furthermore, Met and/or Met derivatives have been shown to play an important promotive role in Arabidopsis seed germination and early seedling growth (Gallardo et al., 2002b). Finally knocking out of the At4g14880 gene showed that Cys is an important determinant of the antioxidative capacity of the cytosol in Arabidopsis as the resulting mutant appeared to be oxidatively stressed, accumulated ROS and exhibited lesions characteristic of spontaneous cell death in the leaves (Lopez-Martin et al., 2008). We conclude that the reduced efficiency of deteriorated seeds to synthesize Cys can induce an irreparable loss of seed vigor owing to its general implication in metabolism and antioxidative potential in plants.

2-Alkenal reductase (2AER; EC 1.3.1.74) encoded by the At5g16970 gene also showed a strongly depressed accumulation in germinating deteriorated seeds (spot no 29; Table V). Interestingly, conditional over-expression of the 2AER gene in Arabidopsis results in increased salt tolerance during germination (Papdi et al., 2008). The 2-alkenal reductase possesses a NADPH-dependent oxidoreductase activity, which has been shown to play a key role in the detoxification of reactive carbonyls occurring during degradation of lipid peroxides, and hence in the protection of cells against oxidative stress (Mano et al., 2005). As lipid peroxides accumulate during seed aging (Devaiah et al., 2007), our data highlight the role of this enzyme in seed vigor.
Protein Metabolism and Translation Are Major Components of Seed Vigor

It has been shown that seed germination has an absolute requirement for protein synthesis. Thus, cycloheximide, an inhibitor of protein translation, induces a complete inhibition of Arabidopsis seed germination (Rajjou et al., 2004). In the present study, an interesting feature supports these previous observations and concerns the apparent correlation between protein metabolism and translation and the reduction of seed vigor induced by the CDT (Table V). Indeed, several proteins associated with translation, as initiation factor 4A-1 (eIF4A), elongation factor 1-gamma 2 (eEF-1-gamma 2), elongation factor 1B-gamma (eEF-1B gamma) and ribosomal protein 60S (spots nos 129, 128, 105, and 314) are less abundant in deteriorated seeds during germination sensu stricto (Table V). Moreover, we already observed in the present study that many other proteins involved in protein metabolism are altered by carbonylation in deteriorated seeds (spots nos 1, 43, 90, 135, 136, 137, and 140). Protein metabolism regroups several biological functions as protein folding, protein translocation, thermostolerance, oligomeric assembly and switching between active and inactive protein conformations. Our results demonstrate that simultaneous impairing of these functions is closely linked with the loss of seed vigor. Our conclusion is supported by a recent study showing that transgenic seeds over-accumulating a heat stress transcription factor (HSF), which enhances the accumulation of heat shock proteins (HSPs), exhibit improved seed resistance to CDT (Prieto-Dapena et al., 2006). Moreover, the preservation of a robust stress response and protein disposal by the action of HSPs is indispensable for health and longevity in all organisms (reviewed by Söti and Csermely, 2007).

To get direct insight on the importance of protein synthesis activity in seed vigor, proteins that were neosynthesized in vivo following seed imbibition were labeled in the presence of radioactive 35S-Met. The control seeds (0 d), which had a maximum of germination of 100%, exhibited a very high extent of 35S-Met incorporation, testifying to a high translational activity during germination sensu stricto. As shown in Figure 6, the extent of
[\(^{35}\text{S}\)]-Met incorporation declined dramatically in the deteriorated seed samples. For example, seeds deteriorated for three days of CDT presented an 8-fold decrease in [\(^{35}\text{S}\)]-Met incorporation compared with control seeds although under these conditions the aged seeds still kept good vigor with a maximum of germination of about 80% (Fig. 1). This result disclosed that translational capacity can be an excellent feature for the estimation of seed vigor, a finding that is in good agreement with previous work demonstrating a loss in translational capacity during seed aging in soybean (Pillay, 1977). The seed samples deteriorated for five and seven days had respectively a germination maximum of about 28% and 2% and showed an almost nil translational activity. The consequences of the observed reduction of protein synthesis can be diverse, for example affecting the systems necessary for the maintenance, repair, and normal resumption of metabolism and cell cycle activity, the efficiency of detoxification, the efficiency of the signaling pathways, and/or the production and secretion of several metabolites and plant hormones like gibberellins.

To investigate more closely this question and to reveal seed proteins whose neosynthesis during germination sensu stricto was altered by the CDT, we characterized the neosynthesized proteome of three seed samples submitted to this treatment for 0 d, 2 d and 7 d. Radiolabeled proteins were separated by 2DE and revealed by autoradiography (Fig. 7). Translational activity of the non-deteriorated seeds (0 d) was high, as shown previously (Fig. 6). The analysis of this neosynthesized protein pattern revealed 1272 protein spots (Fig. 7A) out of which 217 proteins could be identified by using our Arabidopsis seed reference maps (Supplemental Table S1). These proteins are involved in a large number of plant metabolic processes, in cell division, in translation and protein metabolism and interestingly, 28 protein spots match with 12S and 7S storage proteins. These seed storage proteins neosynthesized during germination sensu stricto are likely translated from stored mRNA. Indeed, it has been shown that in dry seeds, a large amount of stored mRNA are translated during germination sensu stricto and play a fundamental role for the metabolic restart in the initialization of the
Arabidopsis seed aging

germination program (Aspart et al., 1984; Rajjou et al., 2004). Deteriorated seeds submitted to
two days of CDT displayed a reduced translational activity during germination sensu stricto
(Fig. 6A). Autoradiography analysis revealed 836 neosynthesized proteins (Fig. 7B), of which
a large number were also neosynthesized in the non-deteriorated seeds (0 d). Yet, some
proteins were specifically translated in these seeds deteriorated for 2 d, although unfortunately
they could not be identified from our Arabidopsis seed protein reference maps because of
their very low abundance. In contrast, de novo synthesis of many proteins evidenced in the
non-deteriorated control seeds (0 d) was abolished in 2-d-deteriorated seeds. Some of them
could be identified by comparison with Arabidopsis reference maps (Table VI). Interestingly,
a large number of these proteins are generally associated with the end of the seed maturation
program and not with the germination program such as 12S seed storage proteins, LEA
proteins or dehydrins (Bewley and Black, 1994; Finkelstein, 1993; Cuming, 1999). It has been
shown that the seed maturation program can be re-induced during early step of seed
germination (Lane, 1991; Lopez-Molina et al., 2002; Rajjou et al., 2006a,b). This recruitment
of the late maturation program either by de novo transcription (Lopez-Molina et al., 2002) or
by translation of stored mRNAs (Rajjou et al., 2004, 2006a) is a strategy to mount appropriate
defense mechanisms in response to the vagaries of nature’s water supply and to protect the
embryo during the transition from a metabolic quiescent state to an active metabolism. For a
longer time of CDT (7 d) seeds became almost unable to support de novo protein synthesis
(Fig. 7C). In summary, the present results clearly indicate that seed vigor is closely associated
with the ability of the seeds to re-induce the late maturation program during early stage of
germination.

Similar Events Occur During Accelerated and Natural Aging

There is still uncertainty as to whether the CDT mimics natural aging. This is a major
concern of seed companies because, for practical reasons, they rely on the CDT and
germination assays to predict seed storability (Delouche and Baskin, 1973). It was therefore of importance to compare the biochemical behavior of seeds submitted to the CDT and of seeds that have been naturally aged, namely seeds that have been stored for several years in tubes in a refrigerator regulated at 5°C. For that purpose, three naturally aged Arabidopsis seed samples were examined. Two of them were 7-year and 8-year-old, and presented a maximum of germination of about 45% and 23%, respectively. A third one, was 11-year-old, and did not germinate even after 30-d post-imbibition (Table VII).

Our present proteome analysis revealed common features between the artificially and naturally aged seeds. Indeed, the evolution of the dry seed proteome during natural aging and during CDT displayed common changes, as shown in Figure 8 for two protein spots (spots nos 146, and 7). Spot no 146 (Figs. 2, 3 and 8; Tables II and V) corresponding to β-mercaptopyruvate sulfurtransferase was abundant in non-deteriorated seeds (0 d) and in freshly harvested seeds. However, during both CDT and natural aging, the abundance of this protein was strongly reduced in the dry seeds. An opposite behavior was observed for protein spot no 7 corresponding to the 60S ribosomal protein, whose level strongly increased during both artificial and natural aging (Figs. 2, 3 and 8; Tables II and V).

Another spectacular similarity observed between natural and artificial aging concerned the oxidation patterns of the seed proteome. As depicted in Figure 4, almost identical protein carbonylation events occurred during natural and artificial aging. In both cases, the extent of protein carbonylation was strongly increased and the protein targets of carbonylation were nearly the same. In particular, these results confirm our previous finding that protein oxidation is not a random process but targets very specific proteins (Job et al., 2005).

Finally, it is remarkable that translational capacity was strongly repressed in naturally aged seeds (Fig. 6), a specific feature also observed with the CDT (Figs. 6 and 7).

Overall, our data thereby provide the first molecular indication supporting the usefulness of the CDT for prediction of seed storability.
A Reduction in Amino Acid Pools During Aging Is Not the Cause of Seed Vigor Loss

Aging of the seeds, either by CDT or by natural aging, caused large reduction in protein synthesis during the first day of imbibition. One of the hypotheses is that this can be caused by preferential use of amino acids as alternative energy source, thereby limiting the substrate for protein synthesis. This hypothesis was tested by incubating CD-treated and control seeds in solutions of different amino acids, pyruvate or glucose.

We found that Asp, Glu, or Met at 1 M could not stimulate the germination of seeds submitted to the CDT. Also neither glucose nor pyruvate could stimulate the germination of the CD-treated seeds (data not shown).

A Reduction in Template Activity of Stored mRNAs Is Not the Cause of Seed Vigor Loss

As documented above, the potential of de novo protein synthesis was severely reduced during both artificial and natural aging. A possible explanation could be that the translational machinery was damaged, which is supported by our present data (Fig. 6). However, a different explanation to account for this behavior could be that the stored mRNA pool is damaged in seeds challenged by the CDT or following natural aging. To further explore this question, stored mRNAs were extracted from non-deteriorated and aged seeds and the translation potential of these mRNAs were evaluated by in vitro translation assays using a commercially available wheat germ translation system, as described in Materials and Methods. For all seed samples, we found that stored mRNAs can be used as templates in this system (data not shown). It should be noted however that this conclusion is based on the use of an in vitro heterologous translation system that might not reproduce all facets of the in vivo situation. Furthermore, the present assay allowed only globally estimating the template activity of the extracted pool of stored mRNAs, and we cannot exclude at present the possibility that particular stored mRNAs playing a role in seed quality could be damaged by
aging. Nevertheless our data strongly indicate that reduced activity of the translational machinery is one of the main factors involved in seed longevity integrity, either due to reduced integrity or to an inhibition of this machinery.

CONCLUSIONS

In conclusion, proteomics provided an innovative and powerful tool for investigating the molecular mechanisms of seed vigor and seed viability during aging. From a methodological point of view, it is worth noting that the proteins presently analyzed could be readily identified from our previous studies establishing reference protein maps of Arabidopsis seeds (http://www.seed-proteome.com). On the one hand, this illustrates the robustness of the proteomic approach, notably concerning the reproducibility of protein patterns in 2D gels. On the other hand, this shows the usefulness of establishing such protein maps, especially considering the cost and effort needed for protein identification. From the present work, it appears that changes in the regulation of protein synthesis, post-translational modifications, and protein turnover are crucial determinants of age-related decline in the maintenance, repair, and survival of the seed. The controlled deterioration treatment (CDT) used to mimic natural seed aging was efficient to alter germinative ability as indicated by germination behavior. A decrease of seed vigor was observed in relation to the duration of treatment. This experimental protocol allowed comparing differentially deteriorated seed proteome in order to get a better understanding of complex mechanisms controlling seed aging. In particular our proteomic analyses revealed that the loss in seed vigor induced by aging can be accounted for both by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. We characterized several proteins of which the level of accumulation varied as a consequence of the CDT and the loss of the ability to germinate. Therefore, these proteins should play an important role in the expression of seed vigor. In this
context, our results unveiled essential mechanisms for seed vigor as translational capacity, mobilization of seed storage reserves and detoxification efficiency. Furthermore, the observed increase in protein oxidation both in artificially and naturally aged seeds lend support to the finding that oxidative stress accompanies seed aging. The accumulation of oxidative damage in seeds was correlated with the loss of germination vigor. Increased protein oxidation (carbonylation) might induce a loss of functional properties of target seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. Since protein oxidation mainly results from attack by ROS, this suggests an important role of antioxidant systems through detoxification and protection upstream mechanism to maintain seed vigor.

Another fundamental feature depicted by our study was the dramatic reduction of the protein neosynthesis capacity of the aged seeds. Their translational activity was strongly reduced during the first day of imbibition corresponding to germination sensu stricto. It may be strongly impaired by aging, through protein oxidation and/or degradation. The 3-d-CD-treated seeds although having a considerable reduction in translation potential during the first day of imbibition, still kept a high vigor as 80% of these seeds could germinate under the present experimental conditions. Since these seeds would require a functional translational machinery, we assume that their translational machinery is either both damaged and repaired, or that its activity is temporary halted or a combination of both. It can be hypothesized that during germination the seeds have feedback mechanisms inhibiting mRNA translation till e.g. DNA damage is repaired. Induction of DNA damage during seed ageing has been demonstrated for a long time (Osborne et al., 1980/81).

Our results are in agreement with previous experiments showing that Arabidopsis seeds are unable to germinate in the presence of the translational inhibitor cycloheximide, thereby implying that seed germination requires de novo protein synthesis (Rajjou et al., 2004). The present study realized on the model plant Arabidopsis enables to reach a better understanding of molecular mechanisms underlying loss of germination vigor during seed aging. Finally, for
the first time we demonstrated that the controlled deterioration treatment (CDT) protocol, extensively used by the seed industry to control seed quality, mimics truly molecular and biochemical events occurring during natural seed aging. Further work is in progress in our laboratories to validate the role of the presently characterized proteins in seed vigor by reverse genetics.

MATERIALS AND METHODS

Plant Material and Germination Experiments

Non-dormant seeds of Arabidopsis thaliana, accession Landsberg erecta (Ler), were used in all experiments. Germination assays were carried out at 25°C, with 16 h light/8 h dark daily, as described (Rajjou et al., 2004, 2006a). Naturally aged seeds had been stored for several years in tubes in a refrigerator regulated at 5°C.

Controlled Deterioration Treatment (CDT)

The CDT was performed according to Tesnier et al. (2002). Briefly, seeds were equilibrated at 85% relative humidity (20°C) in an electronically controlled environment cabinet (van den Berg klimaattechniek Montfoort, the Netherlands), and day 0 controls were immediately dried back at 32% relative humidity. Treatment was done by storing the seeds (after equilibration at 85% relative humidity) for various times (0 h, 4 h, 16 h, 1 d, 2 d, 3 d, 5 d and 7 d) at 40°C. Then seeds were dried back at 32% relative humidity (20°C) and stored at 4°C.

Preparation of Total Protein Extracts

Total protein extracts were prepared from dry mature seeds and from 1-d post-imbibed seeds as described previously (Rajjou et al., 2006a). Following grinding of 100 mg of seeds
using mortar and pestle in liquid nitrogen, total soluble proteins were extracted at 4°C in 1.2 mL of thiourea/urea lysis buffer (Harder et al., 1999) containing 7 M urea (GE Healthcare), 2 M thiourea (Merck, Lyon, France), 4% (w/v) CHAPS (Amersham Biosciences), and 1% (v/v) Pharmalyte pH 3 to 10 carriers ampholytes (GE Healthcare). This extraction buffer also contained 18 mM Tris-HCl (Trizma HCl; Sigma); 14 mM Trizma base (Sigma); the protease inhibitor cocktail, complete Mini from Roche Diagnostics (Mannheim, Germany); 53 units/mL DNase I (Roche Diagnostics); 4.9 Kunitz units/mL RNAse A (Sigma); and 0.2% (v/v) Triton X-100. After 10 min at 4°C, 14 mM dithiothreitol (DTT; GE Healthcare) was added and the protein extracts were stirred for 20 min at 4°C, then centrifuged (35,000 g, 10 min) at 4°C. The supernatant was submitted to a second clarifying centrifugation as above. The final supernatant corresponded to the total soluble protein extract. Protein concentrations in the various extracts were measured according to Bradford (1976). Bovine serum albumin was used as a standard.

Two-Dimensional Electrophoresis

Proteins were first separated by electrophoresis according to charge. Isoelectric focusing was realized with protein samples with an equivalent to an extract of 100 seeds, corresponding to about 150 mg protein for all samples. Proteins from the various extracts were separated using gel strips forming an immobilized nonlinear pH gradient from 3 to 10 (Immobiline DryStrip pH 3–10 NL, 18 cm; GE Healthcare). Strips were rehydrated for 14 h at 20°C with the thiourea/urea lysis buffer containing 2% (v/v) Triton X-100, 20 mM DTT, and the protein extracts. Isoelectric focusing was performed at 20°C in the Multiphor II system (Amersham Biosciences) for 1 h at 300 V and 7 h at 3,500 V. Proteins were then separated according to size. Prior to the second dimension, the gel strips were equilibrated for 2 x 30 min in 2 x 100 mL equilibration solution containing 6 M urea, 30% (v/v) glycerol, 2.5% (w/v) SDS, 0.15 M BisTris, and 0.1 M HCl (Görg et al., 1987; Harder et al., 1999). DTT (50 mM)
Arabidopsis seed aging

was added to the first equilibration solution, and iodoacetamide [4% (w/v)] to the second (Harder et al., 1999). Equilibrated gel strips were placed on top of vertical polyacrylamide gels [10% (v/v) acrylamide, 0.33% (w/v) piperazine diacrylamide, 0.18 M Trizma base, 0.166 M HCl, 0.07% (w/v) ammonium persulfate, 0.035% (v/v) Temed]. A denaturing solution [1% (w/v) low-melting agarose (Gibco BRL), 0.4% (w/v) SDS, 0.15 M BisTris, and 0.1 M HCl] was loaded on gel strips. After agarose solidification, electrophoresis was performed at 10°C in a buffer (pH 8.3) containing 25 mM Trizma base, 200 mM taurine, and 0.1% (w/v) SDS, for 1 h at 35 V and 14 h at 100 V. Ten gels (200 x 250 x 1.0mm) were run in parallel (Isodalt system from Amersham Biosciences). For each condition analyzed, 2D gels were made at least in triplicate and from three independent protein extractions; kinetic data shown in Figure 2, and Tables I, II, IV and V were obtained from at least five gels for each seed sample (non-deteriorated and deteriorated seeds). Two-dimensional gels were stained with silver nitrate according to Blum et al. (1987) for densitometric analyses. Image analysis was carried out with the ImageMaster 2D Elite version 4.01 software (Amersham Biosciences). Kinetics of protein accumulation were analyzed by non-linear regression analysis using exponential relationships and the KaleidaGraph software (Synergy Software).

Detection of Oxidized Proteins and Western Blotting

Detection of oxidized proteins by carbonylation was performed by derivatization of protein extracts with 2-4 dinitrophenylhydrazine (DNPH) and immunological detection of the DNP adducts with monoclonal anti-DNP antibody (OxyBlot™ Oxidized Protein Detection Kit; Chemicon, France) as described previously (Korolainen et al., 2002; Johansson et al., 2004; Job et al., 2005).

De novo Protein Synthesis

Labeled proteins were synthesized in vivo by imbibing seeds on water for one day in the
Arabidopsis seed aging

presence of $[^{35}S]$-Met (1.85 MBq; ICN Biomedicals, S.A.R.L.). Protein synthesis was measured by trichloroacetic acid (TCA) precipitation of aliquots of reaction mixtures spotted on Whatmann GF/C filters; after ten washing steps in cold 5% TCA and 0.04 M sodium pyrophosphate and two washing steps in absolute ethanol, filters were dried and counted for radioactivity in a liquid scintillation counter (Rajjou et al., 2004).

Protein Identification

Proteins of interest correspond to previously identified seed proteins from 2D electrophoresis experiments and localized on 2DE reference maps (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005; http://www.seed-proteome.com). In the present work, the protein identification of each spot of interest was verified by mass spectrometry as described by Rajjou et al. (2006a).

RNA Integrity

Stored RNAs were extracted using hot borate (Wan and Wilkins, 1994). Integrity of the rRNA and mRNA pools was analyzed, respectively, by gel electrophoresis and by using a wheat germ extract in vitro translation assay (Promega, USA) with 35S-labeled Met (ICN Biochemicals SARL 1.85 MBq).

Date of manuscript receipt:

Date of manuscript acceptance:
LITERATURE CITED

Abdalla FH, Roberts EH (1968) The effects of temperature and moisture on the induction of chromosome damage in seeds of barley, broad bean and pea during storage. Ann Bot 32: 119-136

Adams DO, Yang SF (1981) Ethylene, the gaseous plant hormone: mechanism and regulation of biosynthesis. Trends Biochem Sci 6: 161-164

Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005a) Systems, trends and perspectives of proteomics in dicot plants Part I: Technologies in proteome establishment. J Chromatogr B 815: 109-123

Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005b) Systems, trends and perspectives of proteomics in dicot plants Part II: Proteomes of the complex developmental stages. J Chromatogr B 815: 125-136

Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R (2005c) Systems, trends and perspectives of proteomics in dicot plants Part III: Unraveling the proteomes influenced by the environment, and at the levels of functions and genetic relationships. J Chromatogr B 815: 137-145

Alban C, Job D, Douce R (2000) Biotin metabolism in plant. Annu Rev Plant Physiol Plant Mol Biol 51: 17-47

Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815

Aspart L, Meyer Y, Laroche M, Penon P (1984) Developmental regulation of the synthesis of proteins encoded by stored mRNA in radish embryos. Plant Physiol 76: 664-673

Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14: 93-107

Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked
Arabidopsis seed aging

to the electron transport chain between complexes III and IV. Plant Physiol 123: 335-344

Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143: 312-325

Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC, Koornneef M (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol 124: 1595-1604

Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOGI, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103: 17042–17047

Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313-20316

Bethke PC, Libourel IG, Reinohl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223: 805-812

Bewley JD, Black M (1994) Seeds. Physiology of development and germination. Plenum Press, New York

Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67: 107-124

Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99

Bonomi F, Pagani S, Kurtz DM Jr (1985) Enzymic synthesis of the 4Fe-4S clusters of Clostridium pasteurianum ferredoxin. Eur J Biochem 148: 67-73
Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2: 5

Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140: 1418-1436

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72: 248–254

Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62: 471-481

Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129: 1222-1231

Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275: 27393–27398

Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrín J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4: 285-298

Cipollini D, Gruner B (2007) Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J Chem Ecol 33: 85-94

Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59: 51-59

Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev
2: 263-285

Clerkx EJ, Blankestijn-De Vries H, Ruys GJ, Groot SPC, Koornneef M (2004a) Genetic differences in seed longevity of various Arabidopsis mutants. Physiol Plant 121: 448-461

Clerkx EJ, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SPC, Vreugdenhil D, Koornneef M (2004b) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135: 432-443

Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795-803

Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100: 291-296

Cumming AC (1999) LEA proteins. In PR Shewry, R Casey, eds, Seed proteins. Kluwer Academic Press, Dordrecht, The Netherlands, pp 753-780

Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703: 93-109

de los Reyes BG, Myers SJ, McGrath JM (2003) Differential induction of glyoxylate cycle enzymes by stress as a marker for seedling vigor in sugar beet (Beta vulgaris). Mol Genet Genomics 269: 692–698

Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122: 403-414

Delouche JC, Baskin CC (1973) Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol 1: 427-452

Devaiah SP, Pan X, Hong Y, Roth M, Welti R, Wang X (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50: 950-957
Donadio S, Shafiee A, Hutchinson CR (1990) Disruption of a rhodanese like gene results in cysteine auxotrophy in Saccharopolyspora erythraea. J Bacteriol 172: 350–360

Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants-structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255: 235-245

Dure L III (1993) Structural motifs in LEA proteins of higher plants. In TJ Close, EA Bray, eds, Response of plants to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, MD, pp 91-103

Duval M, DeRose RT, Job C, Faucher D, Douce R, Job D (1994a) The major biotinyl protein from Pisum sativum seeds covalently binds biotin at a novel site. Plant Mol Biol 26: 265-273

Duval M, Job C, Alban C, Douce R, Job D (1994b) Developmental patterns of free and protein-bound biotin during maturation and germination of seeds of Pisum sativum: characterization of a novel seed-specific biotinylated protein. Biochem J 299: 141-150

Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6: 72–78

Ellis WD, Dunford HB (1968) The kinetics of cyanide and fluoride binding by ferric horseradish peroxidase. Biochemistry 7: 2054-2062

Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13: 241-273

Finkelstein RR (1993) Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene. Mol Gen Genet 238: 401-408

Franca Neto JB, Shatters RG, West SH (1997) Developmental pattern of biotinylated proteins during embryogenesis and maturation of soybean seed. Seed Sci Res 7: 377-384
Freedman RB, Dunn AD, Ruddock LW (1998) Protein folding: a missing redox link in the endoplasmic reticulum. Curr Biol 8: R468-470

Gallardo K, Job C, Groot SPC, Puyne M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848

Gallardo K, Job C, Groot SPC, Puyne M, Demol H, Vandekerckhove J, Job D (2002a) Proteomics analysis of Arabidopsis seed germination. A comparative study of wild-type and GA-deficient seeds. Plant Physiol 129: 823-837

Gallardo K, Job C, Groot SPC, Puyne M, Demol H, Vandekerckhove J, Job D (2002b) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116: 238-247

Goel A, Goel AK, Sheoran IS (2003) Changes in oxidative stress enzymes during artificial ageing in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol 160: 1093-1100

Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56: 149-160

Görg A, Postel W, Weser J, Günther S, Strahler JR, Hanash SM, Somerlot L (1987) Elimination of point streaking on silver stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8: 122-124

Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59: 115-142

Halmer P (2000) Commercial seed treatment technology. In M Black, JD Bewley, eds, Seed technology and its biological basis. Sheffield Academic Press Ltd, Sheffield, England, pp 257-286

Harder A, Wildgruber R, Nawrocki A, Fey SJ, Larsen PM, Görg A (1999) Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20: 826–829

Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol
Heydecker W, Higgins J, Gulliver RL (1973) Accelerated germination by osmotic seed treatment. Nature 246: 42–44

Höfgen R, Kreft O, Willmitzer L, Hesse H (2001) Manipulation of thiol contents in plants. Amino Acids 20: 291-299

Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13: 7-13

Hsing YC, Tsou CH, Hsu TF, Chen ZY, Hsieh KL, Hsieh JS, Chow TY (1998) Tissue- and stage-specific expression of a soybean (Glycine max L.) seed-maturation, biotinylated protein. Plant Mol Biol 38: 481-490

Ingrosso D, Cimmino A, D'Angelo S, Alfinito F, Zappia V, Galletti P (2002) Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes: role of oxidative stress. Eur J Biochem 269: 2032-2039

Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120: 237-244

Job C, Laugel S, Duval M, Gallardo K, Job D (2001) Biochemical characterization of atypical biotinylation domains in seed proteins. Seed Sci Res 11: 149-161

Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138: 790-802

Job D, Ricard J (1975) Kinetic and equilibrium studies of cyanide and fluoride binding to turnip peroxidases. Arch Biochem Biophys 170: 427-437

Johansson E, Olsson O, Nyström T (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem 279: 22204-22208

Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7: 2947-2962
Kibinza S, Vinel D, Côme D, Bailly C, Corbineau F (2006) Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. Physiol Plant 128: 496-506

Korolainen MA, Goldsteins G, Alafuzoff I, Koistinaho J, Pirttila T (2002) Proteomic analysis of protein oxidation in Alzheimer’s disease brain. Electrophoresis 23: 3428–3433

Laboissière MC, Sturley SL, Raines RT (1997) Protein disulfide isomerase in spore germination and cell division. Biol Chem 378: 431-437

Lane BG (1991) Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos. FASEB J 5: 2893-2901

Lång V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20: 951-962

Lanteri S, Nada E, Belletti P, Quagliotti L, Bino RJ (1996) Effects of controlled deterioration and osmoconditioning on germination and nuclear replication in seeds of pepper (Capsicum annuum L.). Ann Bot 77: 591-597

Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464-478

Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36: 1495-1502

Lopez-Martín MC, Becana M, Romero LC, Gotor C (2008) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. PMID: 18441224

Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination.
Mano J, Belles-Boix E, Babiychuk E, Inzè D, Torii Y, Hiraoka E, Takimoto K, Slooten L, Asada K, Kushnir S (2005) Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls. Plant Physiol 139: 1773-1783

March TJ, Able JA, Schultz CJ, Able AJ (2007) A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics 7: 3800-3808

McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27: 177-237

Miura K, Lin Y, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104: 981-986

Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481

Nagahara N, Katayama A (2005) Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis. J Biol Chem 280: 34569-34576

Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41: 697-709

Nikolau BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414: 211-222

Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24: 1311-1317

Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell
Oracz K, El-Maarouf-Bouteau H, BogatekR, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. PMID: 18448476

Osborne DJ, Sharon R, Ben-Ishai R (1980/81) DNA integrity and repair. Isr J Bot 29: 259-272

Pagani S, Bonomi F, Cerletti P (1984) Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. Eur J Biochem 142: 361-366

Papdi C, Abraham E, Joseph MP, Popescu C, Koncz C, Szabados L (2008) Functional identification of Arabidopsis stress regulatory genes using the Controlled cDNA Overexpression System, COS. PMID: 18441225

Papenbrock J, Schmidt A (2000a) Characterization of a sulfurtransferase from Arabidopsis thaliana. Eur J Biochem 267: 145-154

Papenbrock J, Schmidt A (2000b) Characterization of two sulfurtransferase isozymes from Arabidopsis thaliana. Eur J Biochem 267: 5571-5579

Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567-1582

Park OK (2004) Proteomic studies in plants. J Biochem Mol Biol 37: 133-138

Patton DA, Schetter AL, Franzmann LH, Nelson K, Ward ER, Meinke DW (1998) An embryo-defective mutant of Arabidopsis disrupted in the final step of biotin synthesis. Plant Physiol 116: 935-946

Peiser GD, Wang TT, Hoffman NE, Yang SF, Liu HW, Walsh CT (1984) Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci USA 81: 3059-3063

Pell EJ, Schlagnhauser CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms
Arabidopsis seed aging

of action and reaction. Physiol Plant 100: 264-273

Pillay DTN (1977) Protein synthesis in aging soybean cotyledons. Loss in translational capacity. Biochem Biophys Res Commun 79: 796-804

Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94: 401-405

Powell AA (1995) The controlled deterioration test. In HA van de Venter, ed, Seed vigour testing seminar. International Seed Testing Association, Zurich, pp 73-87

Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142: 1102-1112

Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006a) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141: 910-923

Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134: 1598-1613

Rajjou L, Gallardo K, Job C, Job D (2006b) Proteome analysis for the study of developmental processes in plants. In C Finnie, ed, Plant proteomics. Annual Plant Reviews 28. Blackwell Publishing, pp 151-184

Rajjou L, Lovigny Y, Job C, Belghazi M, Groot S, Job D (2007a) Seed quality and germination. In S Navie, S Adkins, S Ashmore, eds, Seeds: biology, development and ecology. CAB International, pp 324-332

Rajjou L, Miché L, Huguet R, Job C, Job D (2007b) Proteome and transcriptome profiling to understand seed germination and identify intrinsic markers determining seed quality, germination efficiency and early seedling vigor. In S Navie, S Adkins, S Ashmore, eds, Seeds: biology, development and ecology. CAB International, pp 149-158

Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine
biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805–7812

Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV (2006) Plant proteome analysis: a 2004-2006 update. Proteomics 6: 5529-5548

Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16: 1419-1432

Shatters RG, Boo SP, Franca Neto JB, West SH (1997) Identification of biotinylated proteins in soybean [Glycine max (L.) Merrill] seeds and their characterization during germination and seedling growth. Seed Sci Res 7: 373-376

Shen-Miller J (2002) Sacred lotus, the long-living fruits of China Antique. Seed Sci Res 12: 131-143

Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient Sacred Lotus from China. Am J Bot 82: 1367-1380

Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503-512

Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest AHM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination are Indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137: 354-368

Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3: 883-889

Söti C, Csermely P (2007) Protein stress and stress proteins: implications in aging and disease. J Biosci 32: 511-515

Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad. Sci
Arabidopsis seed aging

928: 22-38

Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11: 1105-1112

Tamarit J, Cabisco E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273: 3027–3032

Taylorson RB, Hendricks SB (1973) Promotion of seed germination by cyanide. Plant Physiol 52: 23-27

Tejera García NA, Iribarne C, Palma F, Lluch C (2007) Inhibition of the catalase activity from Phaseolus vulgaris and Medicago sativa by sodium chloride. Plant Physiol Biochem 45: 535-541

TeKrony DM (1995) Accelerated aging. In HA van de Venter, ed, Seed vigour testing seminar. International Seed Testing Association, Zurich, pp 53-73

Terskikh VV, Zeng Y, Feurtado JA, Giblin M, Abrams SR, Kermode AR (2008) Deterioration of western redcedar (Thuja plicata Donn ex D. Don) seeds: protein oxidation and in vivo NMR monitoring of storage oils. J Exp Bot 59: 765-777

Tesnier K, Strookman-Donkers HM, van Pijlen JG, van der Geest AHM, Bino RJ, Groot SPC (2002) A controlled deterioration test of Arabidopsis thaliana reveals genetic variation in seed quality. Seed Sci Technol 30: 149-165

Walters C (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys J 86: 1253-1258

Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15: 1-20

Walters C, Wheeler LM, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiol 48: 229-244

Wan CY, Wilkins TA (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223: 7-12
Wechsberg GE, Probert RJ, Bray CM (1994) The relationship between “dehydrin-like” proteins and seed longevity in *Ranunculus sceleratus* L. J Exp Bot 45: 1027–1030

Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699: 35-44

Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB (2004) A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol 136: 2652-2664

Yoshida H (2007) ER stress and diseases. FEBS J 274: 630-658
LEGENDS TO FIGURES

Figure 1. Influence of controlled deterioration treatment (CDT) on Arabidopsis seed germination. Seeds were submitted to the CDT for different periods (●, 0 d; ○, 4 h; ▲, 16 h; △, 1 d; ♦, 2 d; ◊, 3 d; ■, 5 d; □, 7 d) as described in “Materials and Methods”. The graph shows a representative experiment carried out three times in triplicate.

Figure 2. Influence of controlled deterioration treatment (CDT) on the proteome of Arabidopsis seeds. An equal amount (150 µg) of total soluble protein extracts was loaded in each gel. A, Silver-stained 2D gel of total soluble proteins from non-deteriorated seeds (0 d, control seeds). The indicated portions of the gel, (a, b, c, and d) are reproduced in panel B. B, Enlarged windows (a–d) of 2D gels as shown in A for non-deteriorated seeds (left), 3-d-deteriorated seeds (middle) and 7-d-deteriorated seeds (right). The seven labeled protein spots (spots nos 7, 146, 212, 253, 254, 255, and 302) were identified by mass spectrometry and by comparison with Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com; see Tables I and II and Supplemental Table S2). Protein spot quantitation was carried out as described in "Materials and Methods," from at least five gels for each seed sample.

Figure 3. Dynamic evolution of protein spot abundance in Arabidopsis seeds submitted to the controlled deterioration treatment (CDT). The relative abundance of protein spots was calculated by dividing the normalized spot volumes in the deteriorated seeds (4 h, 16 h, 1 d, 2 d, 3 d, 5 d or 7 d) by the corresponding normalized spot volumes in the non-deteriorated seeds (0 d). A, Time courses of relative abundance increase in deteriorated seeds during CDT for the two protein spots (spots nos 253, and 312). B, Time courses of relative abundance decrease in deteriorated seeds during CDT for the two protein spots (spots nos 146, and 311).
Protein spot quantitation was carried out as described in "Materials and Methods," from at least five gels for each seed sample. Solid lines were obtained by non-linear regression analysis using the following equations: relative abundance of spot = a - b.exp(-t / T_{1/2}) and relative abundance of spot = a + b.exp(-t / T_{1/2}), for increase and decrease in relative abundance, respectively, where a and b are constant parameters, T_{1/2} is the time (days) needed to reach half variation in spot volume during the CDT, and t is the time of CDT (d). T_{1/2} values are listed in Tables I, II, IV and V.

Figure 4. Protein carbonyl patterns in Arabidopsis seeds following controlled deterioration treatment (CDT) or natural aging. Protein extracts were prepared as described in "Materials and Methods" from the dry mature seeds and analyzed by 2D-PAGE. Carbonylated proteins were characterized in non-deteriorated seeds (0 d, control seeds) (A), 7-d-deteriorated seeds (B), freshly harvested seeds (C) and 11-year-old dry mature seeds (D). Proteins were separated by 2D-gel electrophoresis as shown in Figure 2A. Following transfer to nitrocellulose, the appearance of carbonyl groups in proteins was analyzed by immunodetection of protein-bound 2,4-dinitrophenylhydrazone (DNP) after derivatization with the corresponding hydrazine, as described (Job et al., 2005). Proteins undergoing carbonylation are labeled with black arrows. They are listed in Table III. This figure shows that both the CDT and natural aging induce an oxidative stress on specific proteins, presumably through the generation of ROS.

Figure 5. Changes in protein accumulation patterns in deteriorated seeds during germination sensu stricto (1-d post-imbibition). An equal amount (150 µg) of total soluble protein extracts was loaded in each gel. Proteins were separated by 2D-gel electrophoresis. A representative silver-stained 2D gel of total soluble proteins from non-deteriorated dry mature seeds is presented in Figure 2A. The analysis was carried out on non-deteriorated seed samples (0 d,
Arabidopsis seed aging

control seeds) and deteriorated seeds (3 d, 5 d and 7 d of CDT) imbibed in water for 1 d. The
18 labeled protein spots (spots nos 29, 139, 174, 175, 176, 200, 253, 272, 302, 349, 350, 358,
359, 360, 365, 372, and 380) were identified by mass spectrometry and by comparison with
Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou
et al., 2004, 2006a; http://www.seed-proteome.com; see Tables IV and V and Supplemental
Table S2). Protein spot quantitation was carried out as described in "Materials and Methods,"
from at least five gels for each seed sample.

Figure 6. Influence of the controlled deterioration treatment (CDT) and natural aging on de
novo protein synthesis during germination sensu stricto (1-d post-imbibition). Arabidopsis
seeds were incubated in water containing $[^{35}S]$-Met for 1 d. Protein synthesis was measured
by TCA precipitation of aliquots of reaction mixtures spotted on Whatmann GF/C filters;
after ten washing steps in cold 5% TCA and 0.04 M sodium pyrophosphate and two washing
steps in absolute ethanol, filters were dried and counted for radioactivity in a liquid
scintillation counter. A, Incorporation of $[^{35}S]$-Met in proteins synthesized de novo during
germination sensu stricto of deteriorated seeds (0 d, 1 d, 2 d, 3 d, 5 d and 7 d of CDT). B,
Incorporation of $[^{35}S]$-Met in proteins synthesized de novo during germination sensu stricto of
naturally aged seeds (freshly harvested seeds, 7-year-old seeds, 8-year-old seeds and 11-year-
old seeds).

Figure 7. Comparison of de novo protein synthesis patterns during germination sensu stricto
(1-d post-imbibition) of deteriorated seeds. A, Protein profiles of de novo synthesized proteins
in non-deteriorated seeds (0 d, control seeds). B, Protein profiles of de novo synthesized
proteins in 3-d-deteriorated seeds (3 d of CDT). C, Protein profiles of de novo synthesized
proteins in 7-d-deteriorated seeds (7 d of CDT). Radiolabeling of proteins was carried out by
introducing $[^{35}S]$-Met in the germination assays, as described in "Materials and Methods."
Soluble proteins were extracted after 1-d imbibition, submitted to 2D gel electrophoresis, and the radiolabeled proteins revealed as described in "Materials and Methods." The thirty three labeled protein spots were identified by mass spectrometry and by comparison with Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com; see Table VI and Supplemental Table S2). a, 12S seed storage protein precursor; b, alpha-subunit of 12S seed storage protein; c, beta-subunit of 12S seed storage protein. Several radiolabeled spots exhibiting contrasting specific accumulation in deteriorated seeds could not be identified because they had no match with proteins detected in Arabidopsis seed protein reference maps (http://www.seed-proteome.com).

Figure 8. Similar protein pattern evolution during controlled deterioration treatment (CDT) or natural aging. An equal amount (150 µg) of total protein extracts was loaded in each gel. A representative silver-stained 2D gel of total proteins from non-deteriorated seeds (0 d, control seeds) is presented Figure 2A. A, Enlarged window of 2D gels as shown in 2Ab for non-deteriorated seeds. B, Enlarged window of 2D gels as shown in 2Ab for deteriorated seeds (7 d of CDT). C, Enlarged window of 2D gels as shown in 2Ab for freshly harvested seeds. D, Enlarged window of 2D gels as shown in 2Ab for 7-year-old seeds (natural aging).
Arabidopsis seed aging

TABLES

Table I. Arabidopsis proteins whose abundance significantly increased in dry mature seeds according to controlled deterioration time.

No.	Exp. MW (kDa)	Exp. pl	Arabidopsis Protein Name	Th. MW (kDa)	Theo. pl	AGI No.	% Cov.	Relative Abundance Ratio 7 d / 0 d	T1/2 (d)
7b	37.55	5.09	60S acidic ribosomal protein	34.37	5.08	At3g11250	24%	3.4 (±0.1)	>7
212c	42.57	5.18	Actin 2	41.21	5.43	At3g18780	33%	2.5 (±0.4)	>7
253c	40.29	5.84	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic Peptidase M1 family protein	36.99	6.34	At3g04120	18%	>16	>7
293c	96.69	5.61	Glyceraldehyde-3-phosphate dehydrogenase	103.40	6.09	At1g63770	4%	>5.1	>7
302c	40.34	6.03	Glyceraldehyde-3-phosphate dehydrogenase	36.90	7.21	At1g13440	30%	7.7 (±1.4)	>7
305c	68.25	5.70	Phosphoglucomutase	63.46	5.57	At1g70730	34%	2.2 (±0.1)	>7
308b	28.52	5.89	Alpha-cruciferin 12S (seed storage protein fragment)	50.56	6.55	At1g03880	10%	3.4 (±0.5)	>7
312b	14.21	3.82	NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (Fragment)	53.04	6.61	At2g24270	8%	6.0 (±0.3)	>7
320b	57.36	5.82	Tubulose bisphosphate arboxylase large chain	53.47	6.25	AtGc00490	24%	>2.7	>7
321b	57.36	5.84	Tubulose bisphosphate arboxylase large chain	53.47	6.25	AtGc00490	28%	>2.8	>7
322b	35.21	5.20	60S acidic ribosomal protein	33.65	4.93	At2g40010	15%	>4.4	>7
376b	57.35	4.92	Tubulin beta-8 chain	50.39	4.46	At5g23860	9%	5.0 (±0.2)	1.5 (±0.2)

Notes:
- Protein numbering following Arabidopsis seed protein reference maps available on this website: http://www.seed-proteome.com.
- Listed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002; Rajjou et al., 2004, 2006; Job et al., 2005).
- Listed proteins correspond to proteins identified during this work; the peptide sequences determined are available in Supplemental Table S2.
- Data obtained from densitometric analysis of individual spots from proteins in 2D gels stained with silver nitrate (see Figure 2A for an example of 2D gel): normalized spot volume in the deteriorated seeds (7 d of CDT) divided by the normalized spot volume in the non-deteriorated control seeds (0 d of CDT); from five different gels and three independent extractions.

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
Table II. Arabidopsis proteins whose abundance significantly decreased in dry mature seeds according to controlled deterioration time.

No.	Exp. MW (kDa)	Exp. pI	Arabidopsis Protein Name	Th. MW (kDa)	Theo. pI	AGI No.	% Cov.	Relative Abundance Ratio 7 d / 0 d	T1/2 (d)
4a	57.35	4.89	Tubulin beta 2 beta 3 chain Mercaptopyruvate sulfurrtransferase	50.73	4.7	At5g62700	35%	0.26 (±0.01)	0.17 (±0.05)
146b	37.67	5.03	Dehydrin	41.89	5.95	At1g79230	35%	0.33 (±0.05)	1.12 (±0.33)
254b	22.1	4.96	Dehydrin	18.44	7.95	At5g66400	6%	0.13 (±0.04)	0.093 (±0.15)
255b	21.65	5.18	Dehydrin	18.44	7.95	At5g66400	6%	<0.22	>7
304b	69.3	5.56	Phosphoglucomutase	63.44	5.73	At1g70730	37%	0.30 (±0.04)	0.37 (±0.12)
311b	14.1	3.2	Beta-cruciferin 12S (seed storage protein fragment)	21.20	6.19	At4g28520	11%	0.19 (±0.01)	0.56 (±0.04)

*Protein numbering following Arabidopsis seed protein reference maps available on this web site: http://www.seed-proteome.com; *aListed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005); *bData obtained from densitometric analysis of individual spots from proteins in 2D gels stained with silver nitrate (see Figure 2A for an example of 2D gel: normalized spot volume in the deteriorated seeds (7 d of CDT) divided by the normalized spot volume in the non-deteriorated control seed (0 d of CDT); from five different gels and three independent extractions.
Table III. Identification and relative carbonyl content of oxidized proteins during Arabidopsis seed aging.

No. a	Exp. MW (kDa)	Exp. pI	Arabidopsis Protein Name	Th. MW (kDa)	Th. pI	AGI No.	% Cov.	Relative Abundance b d	Ratio 7 d/0 d
Protein metabolism									
140b	60.26	4.15	Calreticulin 1 (Precursor)	48.51	4.2	At1g56340	15%	2.3	
1b	79.36	5.08	dnaK-type molecular chaperone BiP	71.17	5.08	At5g52020	20%	>100	
135b	80.5	5.04	dnaK-type molecular chaperone BiP	71.17	5.08	At5g52020	20%	>100	
136a	77.87	4.87	Heat shock cognate 70 kDa protein 1	71.37	5.03	At5g02500	19%	>100	
43b	78.9	5.06	Heat shock cognate 70 kDa protein 3	71.13	4.69	At3g09440	15%	>100	
137a	76.06	5.07	Heat shock protein 70	71.37	5.03	At3g12580	38%	>100	
614a	68.68	5.83	Aspartyl-tRNA synthetase	62.90	6.12	At4g17750	39%	2.1	
90a	64.11	4.81	Protein disulfide isomerase	55.60	4.81	At1g21750	39%	2.1	
Energy metabolism and Photosynthesis									
109b	64.79	6.35	Malate oxidoreductase or Malic enzyme	64.28	6.32	At2g19900	14%	>100	
63b	57.09	6.11	Isocitrate lyase	50.42	6.29	At3g21720	30%	>100	
10b	57.36	5.77	Ribulose bisphosphate carboxylase large chain	53.47	6.25	At1g00490	30%	>100	
319b	57.36	5.57	Ribulose bisphosphate carboxylase large chain	53.47	6.25	At1g00490	26%	>100	
320b	57.36	5.82	Ribulose bisphosphate carboxylase large chain	53.47	6.25	At1g00490	21%	>100	
321b	57.36	5.84	Ribulose bisphosphate carboxylase large chain	53.47	6.25	At1g00490	30%	>100	
Stress response									
60b	66.68	5.74	Late embryogenesis abundant (LEA)	67.19	5.78	At2g25600	25%	1.2	
61b	66.68	5.78	Late embryogenesis abundant (LEA)	67.19	5.78	At2g25600	32%	1.5	
431b	66.68	5.79	Late embryogenesis abundant (LEA)	67.19	5.78	At2g25600	32%	2.2	
Hydrolase									
96b	64.62	6.08	Glycosyl hydrolase family 1 protein	57.83	6.02	At3g21370	11%	>100	
207a	64.96	5.92	Glycosyl hydrolase family 1 protein	57.83	6.02	At3g21370	21%	>100	
208a	64.96	6.23	Glycosyl hydrolase family 1 protein	57.83	6.02	At3g21370	14%	>100	
Seed storage proteins									
35a	56.47	6.84	12S seed storage protein [Precursor]	55.86	6.36	At4g28520	16%	>100	
70a	49.43	7.19	12S seed storage protein [Precursor]	52.59	7.68	At5g44120	22%	>100	
71a	50.44	7.67	12S seed storage protein [Precursor]	52.59	7.68	At5g44120	34%	>100	
110b	57	6.4	12S seed storage protein [Precursor]	55.86	6.36	At4g28520	19%	>100	
111a	56.89	7.19	12S seed storage protein [Precursor]	55.86	6.36	At4g28520	16%	>100	
271b	59.96	6.52	12S seed storage protein [Precursor]	55.86	6.36	At4g28520	30%	>100	
239b	28.95	6.64	Alpha-cruciferin 12S (seed storage protein fragment)	48.03	6.56	At1g03880	18%	>100	
80a	32.64	5.85	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	33%	3.29	
82a	33.89	6.24	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	42%	1.6	
83a	34.35	6.42	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	33%	1	
84a	30.46	6.61	Alpha-cruciferin 12S (seed storage protein fragment)	31.75	6.49	At5g44120	42%	2.1	
85a	27.2	6.5	Alpha-cruciferin 12S (seed storage protein fragment)	27.24	6.34	At1g03880	32%	2.9	
118a	29.21	6.04	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	26%	1	
119a	30.66	6.16	Alpha-cruciferin 12S (seed storage protein fragment)	31.75	6.49	At5g44120	28%	2.9	
134a	26.35	6.34	Alpha-cruciferin 12S (seed storage protein fragment)	27.24	6.34	At1g03880	21%	3.9	
238a	29.42	6.5	Alpha-cruciferin 12S (seed storage protein fragment)	31.75	6.49	At5g44120	28%	2.1	
No.	Exp. MW (kDa)	Exp. pI	Arabidopsis Protein Name	Th. MW (kDa)	Th. pI	AGI No.	% Cov.	Relative Abundance \(^d\)	Ratio 7 d / 0 d
-----	---------------	---------	-------------------------	-------------	--------	---------	-------	------------------------	----------------
Seed storage proteins									
240\(^b\)	27.28	6.74	Alpha-cruciferin 12S (seed storage protein fragment)	27.24	6.34	At1g03880	16%	3.57	
241\(^b\)	34.11	5.87	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	32%	1.2	
243\(^b\)	34.92	6.62	Alpha-cruciferin 12S (seed storage protein fragment)	34.68	6.42	At4g28520	19%	1	
278\(^b\)	27.24	6.44	Alpha-cruciferin 12S (seed storage protein fragment)	31.75	6.49	At5g44120	24%	>100	
98\(^b\)	18.08	6.12	Beta-cruciferin 12S (seed storage protein fragment)	20.8	7.03	At1g03880	45%	4.9	
498\(^b\)	22.82	8.85	Beta-cruciferin 12S (seed storage protein fragment)	21.2	6.19	At4g28520	79%	12.4	
87\(^b\)	18.43	6.36	Beta-cruciferin 12S (seed storage protein fragment)	20.8	7.03	At1g03880	33%	>100	
88\(^b\)	22.82	8.68	Beta-cruciferin 12S (seed storage protein fragment)	21.2	6.19	At4g28520	44%	1.8	
231\(^b\)	19.71	8.82	Beta-cruciferin 12S (seed storage protein fragment)	21.2	6.19	At4g28520	39%	>100	
233\(^b\)	18.45	9.1	Beta-cruciferin 12S (seed storage protein fragment)	20.84	9.06	At5g44120	52%	>100	
497\(^b\)	18.45	6.12	Beta-cruciferin 12S (seed storage protein fragment)	21.2	6.19	At4g28520	64%	>100	
499\(^b\)	20.67	8.85	Beta-cruciferin 12S (seed storage protein fragment)	20.84	9.06	At5g44120	53%	5.3	

| Others processes |
|------------------|---------------|---------|-------------------------|-------------|--------|---------|-------|------------------------|----------------|
| 259\(^b\) | 27.01 | 6.1 | Expressed protein | 27.28 | 6.7 | At1g05510 | 21% | 5.7 |

\(^a\)Protein numbering following Arabidopsis seed protein reference maps available on this website: http://www.seed-proteome.com; \(^b\)Listed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005); \(^c\)Listed proteins correspond to proteins identified during this work; the peptide sequences determined are available in Supplemental Table S2; \(^d\)Data obtained from densitometric analysis of individual spots from carbonylated proteins in 2D gels revealed by anti-DNP immunoassay (examples are shown in Figure 4): normalized spot volume in the deteriorated seeds (7 d of CDT) divided by the normalized spot volume in the non-deteriorated control seeds (0 d of CDT) (ratio of carbonylation in deteriorated dry seeds (7 d of CDT) over carbonylation in non-deteriorated dry seed (0 d of CDT)), from three different and independent protein extractions; >100 means that the accumulation level of the corresponding carbonylated protein in the non-deteriorated dry seeds (0 d of CDT) was close to background.
Table IV. Arabidopsis proteins whose abundance was significantly greater in deteriorated seeds than in control seeds during germination *sensu stricto* (1-d post-imbibition)

No.	Exp. MW (kDa)	Exp. pl	Arubidopsis Protein Name	Th. MW (kDa)	Theo. pl	AGI No.	% Cov.	Relative Abundance *d*	Ratio 7 d / 0 d	T1/2 (d)	
Energy metabolism											
253°	40.29	5.84	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	36.99	6.34	At3g04120	18%	>6.2	>7		
302c	40.34	6.03	Glyceraldehyde-3-phosphate dehydrogenase	36.90	7.21	At1g13440	30%	>7.6	>7		
368b	40.36	6.24	Glyceraldehyde-3-phosphate dehydrogenase	36.90	7.21	At1g13440	17%	>4.5	>7		
369b	40.33	6.20	Glyceraldehyde-3-phosphate dehydrogenase	36.90	7.21	At1g13440	22%	>5.0	>7		
349b	64.85	6.77	Malate oxidoreductase	64.24	6.68	At2g19900	12%	>32.0	>7		
350b	64.70	7.21	Malate oxidoreductase	64.24	6.68	At2g19900	2%	>39.0	>7		
Amino acid metabolism											
359c	56.90	5.57	S-Adenosyl-L-homocysteine hydrolase	53.36	5.83	At4g13940 or At3g23810	13%	>20.0	>7		
370c	41.66	6.50	Glutamate dehydrogenase	44.51	6.02	At5g18170 or At3g03910	13%	>2.5	>7		
Seed storage proteins											
354b	42.61	6.60	12S seed storage protein [Precursor]	52.56	8.08	At5g44120	25%	>9.2	>7		
177b	45.47	6.07	12S seed storage protein [Precursor]	48.03	6.56	At1g03880	17%	>3.0	>7		
151b	46.11	5.38	Cupin family protein	49.66	5.45	At1g03890	>6.0	>7			
Hydrolase and Protease											
378c	80.28	5.77	Subtilisin-like serine protease	81.80	6.76	At3g14067	19%	>3	>7		
360c	64.96	5.75	Glycosyl hydrolase family	84.29	7.71	At5g64570	14%	>3.0	>7		
Others processes											
139°	40.07	5.56	Reversibly glycosylated polypeptide	40.7	5.61	At3g02230 or At5g15650	7%	>2.5	>7		
377b	38.42	6.58	Potassium channel beta subunit	36.52	7.49	At1g04690	15%	>3.8	>7		
380c	26.31	5.89	Nucleoside diphosphate kinase II, chloroplast	25.53	9.30	At5g63310	12%	>3.8	>7		

*Protein numbering following Arabidopsis seed protein reference maps available on this web site: http://www.seed-proteome.com; °Listed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005); ‡Listed proteins correspond to proteins identified during this work; the peptide sequences determined are available in Supplemental Table S2; *Data obtained from densitometric analysis of individual spots from proteins in 2D gels stained with silver nitrate (see Figure 2A for an example of 2D gel): normalized spot volume in the deteriorated seeds (7 d of CDT) incubated 1 d in water divided by the normalized spot volume in the non-deteriorated control seeds (0 d of CDT) incubated 1 d in water; from five different gels and three independent extractions.
Table V. Arabidopsis proteins whose abundance was significantly smaller in deteriorated seeds than in control seeds during germination sensu stricto (1 d post-imbibition)

No.	Exp. MW (kDa)	Exp. pl	Arabidopsis Protein Name	Th. MW (kDa)	Theo. pl	AGI No.	% Cov.	Relative Abundance	T1/2 (d)
Translation and protein metabolism									
128	47.45	5.45	Elongation factor 1B-gamma	46.66	5.36	At1g09640	26%	<0.28	>7
129	47.20	5.50	Eukaryotic initiation factor 4A-1	46.70	5.47	At3g13920	28%	<0.49	>7
105	48.63	5.61	Elongation factor 1-gamma 2	46.4	5.55	At1g57720	41%	<0.5	>7
314	37.54	5.22	60S acidic ribosomal protein P0-C	34.37	4.78	At2g40010	7%	<0.25	>7
200	40.57	5.72	Protein disulfide isomerase-like (PDIL)	39.50	5.80	At2g47470	20%	<0.44	>7
364	65.22	5.56	T-complex protein 1. theta subunit (TCP-1-Theta)	58.92	5.01	At3g03960	2%	<0.30	>7
Energy metabolism									
39	38.52	6.23	Glyceraldehyde-3-phosphate dehydrogenase	36.91	6.62	At3g04120	26%	<0.48	>7
40	38.55	6.26	Glyceraldehyde-3-phosphate dehydrogenase	36.91	6.62	At3g04120	27%	<0.44	>7
307	40.30	5.87	Glyceraldehyde-3-phosphate dehydrogenase	36.91	6.62	At3g04120	19%	<0.21	>7
365	62.77	6.30	Isocitrate lyase	50.42	5.29	At3g21720	16%	<0.21	>7
Cell detoxification and stress response									
23	56.48	6.64	Catalase	56.93	6.63	At4g35090	16%	<0.25	>7
146	37.67	5.03	Mercaptoerythritol sulfurtransferase	38.13	5.81	At5g16970	14%	<0.26	>7
29	38.35	5.72	2-Alkenal reductase	38.13	5.81	At5g16970	14%	<0.26	>7
284	25.34	5.43	GSH-dependent Dehydroascorbate reductase	23.62	5.79	At4g46290	44%	<0.49	>7
Cell division									
24	42.94	5.06	Actin 7	41.73	5.31	At5g09810	23%	<0.43	>7
4	57.35	4.89	Tubulin beta 2 beta 3 chain	50.73	4.70	At5g62700	35%	<0.32	>7
Seed storage proteins									
504	60.87	6.20	12S seed storage protein [Precursor]	55.86	6.36	At4g28520	7%	<0.18	>7
311	14.1	3.2	Beta-cruciferin 12S (seed storage protein fragment)	58.23	6.53	At4g28520	11%	<0.21	>7
Others processes									
182	50.76	5.53	DEAD box RNA helicase	48.38	5.49	At5g11200	32%	<0.42	>7
361	54.65	5.22	4-methyl-5(b-hydroxyethyl)-thiazole monophosphate biosynthesis protein	41.84	5.08	At3g14960	6%	<0.16	>7
116	30.24	5.77	Expressed protein	28.78	5.92	At3g45690	40%	<0.35	>7

Protein numbering following Arabidopsis seed protein reference maps available on this web site: http://www.seed-proteome.com; Listed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005); Listed proteins correspond to proteins identified during this work; the peptide sequences determined are available in Supplemental Table S2; Data obtained from densitometric analysis of individual spots from proteins in 2D gels stained with silver nitrate (see Figure 2A for an example of 2D gel): normalized spot volume in the deteriorated seeds (7 d of CDT) incubated 1 d in water divided by the normalized spot volume in the non-deteriorated control seeds (0 d of CDT) incubated 1 d in water; from five different gels and three independent extractions.
Table VI. Arabidopsis proteins whose de novo synthesis was inhibited during germination sensu stricto (1-d post-imbibition) of deteriorated seeds submitted to the CDT for 2 d compared to non-deteriorated control seeds

No.	Exp. MW (kDa)	Exp. pl	Arabidopsis Protein Name	Th. MW (kDa)	Th. pl	AGI No.	% Cov.
Translation and protein metabolism							
127	93.92	5.89	Elongation factor EF-2	94.25	5.89	At1g60707	24%
9	17.94	5.50	HSP 17.6	17.83	5.22	At5g12030	14%
45	76.38	5.24	HSP 70	70.91	5.30	At1g16030	24%
138	76.06	5.07	HSP 70	71.37	5.30	At3g12580	19%
190	101.62	5.82	HSP101	101.27	5.99	At1g74310	16%
364	65.22	5.56	T-complex protein 1. theta subunit (TCP-1-Theta)	58.92	5.01	At3g03960	2%
579	36.05	3.98	Glycine-rich protein similar to P23 co-chaperone	25.47	4.17	At4g02450	24%
Energy metabolism							
44b	25b						
1155c	1155c						
739c	392c						
84b	83b						
80b	78b						
69b	69b						
271c	271c						
241c	241c						
392c	392c						
739c	739c						
1154c	1154c						
1155c	1155c						
25c	23c						
44c	16.14	7.42		20.80	7.03	At1g03880	7%

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
Table VI. (Continued from previous page.)

No.	Exp. MW (kDa)	Exp. pI	Arabidopsis Protein Name	Th. MW (kDa)	Th. pI	AGI No.	% Cov.
87b	18.43	6.36	Beta-cruciferin 12S (seed storage protein fragment)	20.80	7.03	At1g03880	33%
88b	22.82	8.68	Beta-cruciferin 12S (seed storage protein fragment)	21.20	6.19	At4g28520	44%
267b	23.44	5.58	Beta-cruciferin 12S (seed storage protein fragment)	20.84	9.06	At5g44120	22%
705c	11.75	8.90	Beta-cruciferin 12S (seed storage protein fragment)	21.20	6.19	At5g03880	44%
1153c	11.51	9.02	Beta-cruciferin 12S (seed storage protein fragment)	21.20	6.19	At4g28520	39%
1156c	10.68	9.05	Beta-cruciferin 12S (seed storage protein fragment)	20.84	9.06	At5g44120	41%
246b	29.45	6.70	Storage proteins 7S	55.05	7.15	At3g22640	28%
247b	34.02	6.77	Storage proteins 7S	55.05	7.15	At3g22640	18%

*Protein numbering following Arabidopsis seed protein reference maps available on this web site: http://www.seed-proteome.com; Listed proteins correspond to previously identified proteins (Gallardo et al., 2001, 2002a; Rajjou et al., 2004, 2006a; Job et al., 2005); Listed proteins correspond to proteins identified during this work; the peptide sequences determined are available in Supplemental Table S2.
Table VII. The effect of natural aging on the germination of Arabidopsis seeds

\(G_{\text{max}} \), maximum of germination.

Seed samples	\(G_{\text{max}} \) (%)	Standard deviation (%)
Freshly harvested seeds	99.00	1
7-year-old seeds	45.33	2.96
8-year-old seeds	23.00	2.52
11-year-old seeds	0.00	0
SUPPLEMENTAL DATA

Supplemental Table S1: Arabidopsis proteins whose de novo synthesis occurs during germination sensu stricto (1-d post-imbibition) of non-deteriorated control seeds (0d).

Supplemental Table S2: Peptide sequences identified by MS-MS sequencing and corresponding to novel proteins in Arabidopsis seeds identified in this work.
Figure 1. Influence of controlled deterioration treatment (CDT) on Arabidopsis seed germination. Seeds were submitted to CDT for different periods (●, 0 d; ○, 4 h; ▲, 16 h; △, 1 d; ◆, 2 d; ◇, 3 d; ■, 5 d; □, 7 d) as described in “Materials and Methods”. The graph shows a representative experiment carried out three times in triplicate.
Figure 2. Influence of controlled deterioration treatment (CDT) on the proteome of Arabidopsis seeds. An equal amount (150 µg) of total soluble protein extracts was loaded in each gel. A, Silver-stained 2D gel of total soluble proteins from non-deteriorated seeds (0 d, control seeds). The indicated portions of the gel, (a, b, c, and d) are reproduced in panel B. B, Enlarged windows (a–d) of 2D gels as shown in A for non-deteriorated seeds (left), 3-d-deteriorated seeds (middle) and 7-d-deteriorated seeds (right). The seven labeled protein spots (spots nos 7, 146, 212, 253, 254, 255, and 302) were identified by mass spectrometry and by comparison with Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com; see Tables I and II and Supplemental Table S2). Protein spot quantitation was carried out as described in "Materials and Methods," from at least five gels for each seed sample.
Figure 3. Dynamic evolution of protein spot abundance in Arabidopsis seeds submitted to the controlled deterioration treatment (CDT). The relative abundance of protein spots was calculated by dividing the normalized spot volumes in the deteriorated seeds (4 h, 16 h, 1 d, 2 d, 3 d, 5 d or 7 d) by the corresponding normalized spot volumes in the non-deteriorated seeds (0 d). A, Time courses of relative abundance increase in deteriorated seeds during CDT for the two protein spots (spots nos 253, and 312). B, Time courses of relative abundance decrease in deteriorated seeds during CDT for the two protein spots (spots nos 146, and 311). Protein spot quantitation was carried out as described in "Materials and Methods," from at least five gels for each seed sample. Solid lines were obtained by non-linear regression analysis using the following equations: relative abundance of spot = a - b.exp(-t / T_{1/2}) and relative abundance of spot = a + b.exp(-t / T_{1/2}), for increase and decrease in relative abundance, respectively, where a and b are constant parameters, T_{1/2} is the time (days) needed to reach half variation in spot volume during the CDT, and t is the time of CDT (d). T_{1/2} values are listed in Tables I, II, IV and V.
Figure 4. Protein carbonyl patterns in Arabidopsis seeds following controlled deterioration treatment (CDT) or natural aging. Protein extracts were prepared as described in "Materials and Methods" from the dry mature seeds and analyzed by 2D-PAGE. Carbonylated proteins were characterized in non-deteriorated seeds (0 d, control seeds) (A), 7-d-deteriorated seeds (B), Freshly harvested seeds (C) and 11-year-old dry mature seeds (D). Proteins were separated by 2D-gel electrophoresis as shown in Figure 2A. Following transfer to nitrocellulose, the appearance of carbonyl groups in proteins was analyzed by immunodetection of protein-bound 2,4-dinitrophenylhydrazone (DNP) after derivatization with the corresponding hydrazine, as described (Job et al., 2005). Proteins undergoing carboxylation are labeled with black arrows. They are listed in Table III. This figure shows that the CDT and natural aging induce an oxidative stress on specific proteins, presumably through the generation of ROS.
Figure 5. Changes in protein accumulation patterns in deteriorated seeds during germination sensu stricto (1-d post-imbibition). An equal amount (150 µg) of total soluble protein extracts was loaded in each gel. Proteins were separated by 2D-gel electrophoresis. A representative silver-stained 2D gel of total soluble proteins from non-deteriorated dry mature seeds is presented in Figure 2A. The analysis was carried out on non-deteriorated seed samples (0 d, control seeds) and deteriorated seeds (3 d, 5 d and 7 d of CDT) imbibed in water for 1 d. The 18 labeled protein spots (spots nos 29, 139, 174, 175, 176, 200, 253, 272, 302, 349, 350, 358, 359, 360, 365, 372, and 380) were identified by mass spectrometry and by comparison with Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com; see Tables IV and V and Supplemental Table S2). Protein spot quantitation was carried out as described in "Materials and Methods," from at least five gels for each seed sample.
Figure 6. Influence of the controlled deterioration treatment (CDT) and natural aging on de novo protein synthesis during germination sensu stricto. Arabidopsis seeds were incubated in water containing 35S-Met for 1 d. Protein synthesis was measured by TCA precipitation of aliquots of reaction mixtures spotted on Whatmann GF/C filters; after ten washing steps in cold 5% TCA and 0.04 M sodium pyrophosphate and two washing steps in absolute ethanol, filters were dried and counted for radioactivity in a liquid scintillation counter. A, Incorporation of 35S-Met in proteins synthesized de novo during germination sensu stricto of deteriorated seeds (0 d, 1 d, 2 d, 3 d, 5 d and 7 d of CDT). B, Incorporation of 35S-Met in proteins synthesized de novo during germination sensu stricto of naturally aged seeds (freshly harvested seeds, 7-year-old seeds, 8-year-old seeds and 11-year-old seeds).
Figure 7. Comparison of de novo protein synthesis patterns during germination sensu stricto (1-d post-imbibition) of deteriorated seeds. A, Protein profiles of de novo synthesized proteins in non-deteriorated seeds (0 d, control seeds). B, Protein profiles of de novo synthesized proteins in 3-d-deteriorated seeds (3 d of CDT). C, Protein profiles of de novo synthesized proteins in 7-d-deteriorated seeds (7 d of CDT). Radiolabeling of proteins was carried out by introducing [35S]-Met in the germination assays, as described in "Materials and Methods." Soluble proteins were extracted after 1-d imbibition, submitted to 2D gel electrophoresis, and the radiolabeled proteins revealed as described in "Materials and Methods." The thirty three labeled protein spots were identified by mass spectrometry and by comparison with Arabidopsis seed protein reference maps (Gallardo et al., 2001, 2002a; Job et al., 2005; Rajjou et al., 2004, 2006a; http://www.seed-proteome.com; see Table VI and Supplemental Table S2). a, 12S seed storage protein precursor; b, alpha-subunit of 12S seed storage protein; c, beta-subunit of 12S seed storage protein. Several radiolabeled spots exhibiting contrasting specific accumulation in deteriorated seeds could not be identified because they had no match with proteins detected in Arabidopsis seed protein reference maps (http://www.seed-proteome.com).
Figure 8. Similar protein pattern evolution during controlled deterioration treatment (CDT) or natural aging. An equal amount (150 µg) of total protein extracts was loaded in each gel. A representative silver-stained 2D gel of total proteins from non-deteriorated seeds (0 d, control seeds) is presented Figure 2A. A, Enlarged window of 2D gels as shown in 2Ab for non-deteriorated seeds. B, Enlarged window of 2D gels as shown in 2Ab for deteriorated seeds (7 d of CDT). C, Enlarged window of 2D gels as shown in 2Ab for freshly harvested seeds. D, Enlarged window of 2D gels as shown in 2Ab for 7-year-old seeds (natural aging).