Structure-Based Approach for the Study of Thyroid Hormone Receptor Binding Affinity and Subtype Selectivity

Fang-Fang Wanga, Wei Yangb, Yong-Hui Shia, Xiang-Rong Chenga, Guow-Wei Lea*

a The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.

b Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia.

* Corresponding author: Tel.: +86-510-8591-7789; Fax: +86-510-8591-7789.

E-mail: lgw@jiangnan.edu.cn

Table S1. Molecular structures of Indane Derivatives and their TR\(\beta\) binding affinity values (pK\(\text{d}\)).
9	Br	Br	H	![Chemical Structure](image1)	![Chemical Structure](image2)	6.6234
10	Me	-CH₂CH₂CH₂	4-F-C₆H₄CH₂	![Chemical Structure](image3)	![Chemical Structure](image4)	8.4318
11	Me	-CH₂CH₂CH₂	![Chemical Structure](image5)	![Chemical Structure](image6)	7.8508	
12	Me	-CH₂CH₂CH₂	PhCH₂CH₂	![Chemical Structure](image7)	![Chemical Structure](image8)	7.3958
13	Me	-CH₂CH₂CH₂	4-F-C₆H₄CH₂CH₂	![Chemical Structure](image9)	![Chemical Structure](image10)	8.0862
14	Me	-CH₂CH₂CH₂	PhCH₂CH(OH)	![Chemical Structure](image11)	![Chemical Structure](image12)	6.9066
15	Me	-CH₂CH₂CH₂	PhCH₂CO	![Chemical Structure](image13)	![Chemical Structure](image14)	6.3556
16	Me	-CH₂CH₂CH₂	PhCH₂CH₂CH₂	![Chemical Structure](image15)	![Chemical Structure](image16)	6.6517
25	Br	Br	H	![Chemical Structure](image17)	![Chemical Structure](image18)	9.3665
26	Me	Me	H	![Chemical Structure](image19)	![Chemical Structure](image20)	8.0000
27	Cl	Cl	Cl	![Chemical Structure](image21)	![Chemical Structure](image22)	8.8125
28	Me	Me	Me	![Chemical Structure](image23)	![Chemical Structure](image24)	7.6925
29	Br	-CH₂CH₂CH₂	![Chemical Structure](image25)	![Chemical Structure](image26)	8.9245	
30	Br	-CH₂(CH₂)₂CH₂	![Chemical Structure](image27)	![Chemical Structure](image28)	6.5214	
31	Me	-CH₂CH₂CH₂	![Chemical Structure](image29)	![Chemical Structure](image30)	8.5867	
32	Me	-CH₂CH₂CH₂	![Chemical Structure](image31)	![Chemical Structure](image32)	7.821	
33	Me	-CH₂CH₂CH₂	![Chemical Structure](image33)	![Chemical Structure](image34)	6.6716	
Compound	2	3	4	pK_i(nM)		
----------	---	---	---	---------		
17	F	H	F	7.9208		
18	H	F	F	8.2218		
19a	CL	H	H	7.5229		
20	H	CL	H	7.3872		
21	H	H	CL	7.3979		
22	OH	H	H	7.2716		
23	H	OH	H	7.0899		
24	H	H	OH	7.2396		

*represents the test set.

Table S2. Summary of QSAR results based on superimposition I.

CoMFA	CoMSIA								
	SE	S	E	H	D	A	SE	SH	SD
R^2_cv	0.732	0.706	0.572	0.734	0.803	0.811	0.698	0.779	0.804
R^2_ncv	0.973	0.942	0.957	0.966	0.941	0.981	0.966	0.969	0.983
SEE	0.161	0.243	0.204	0.193	0.226	0.1433	0.182	0.179	0.128
F	102.781	37.408	62.613	53.144	75.203	98.93	79.564	71.033	164.513
R^2_pred	0.7054	0.5247	0.5758	0.086	0.7051	0.6163	0.581	0.133	0.6792
SEP	0.508	0.549	0.642	0.539	0.412	0.455	0.540	0.475	0.435
N_C	6	7	6	8	4	8	6	7	6

Field contribution
S
E
H
D
A
L2r
MATS4p

CoMSIA
SA
EH
ED
EA
HD
SEP

Nc

Field contribution

	S	E	H	D	A	L2p	MATS4p		
	0.208	-	-	-	-	0.191	0.173		
	0.129	0.070	0.346	0.236	0.195	0.191	0.195		

CoMSIA

	SEA	SHD	SHA	SDA	EHD	EHA	EDA	HDA	SEHD
R²_{cv}	0.718	0.810	0.802	0.848	0.858	0.753	0.890	0.846	0.867
R²_{ncv}	0.989	0.972	0.991	0.971	0.995	0.986	0.996	0.982	0.999

Field contribution

	S	E	H	D	A	L2p	MATS4p		
	0.134	0.078	0.145	0.074	-	-	-		
	0.065	0.200	0.113	0.256	0.213	0.213	0.153		

CoMSIA

	SEHA	SEDA	SHDA	EHD	EHA	EDA	HDA	SEHD
R²_{cv}	0.783	0.881	0.853	0.873	0.873	0.875	0.875	0.875
R²_{ncv}	0.993	0.997	0.982	0.995	0.995	0.995	0.995	0.995

Field contribution

	S	E	H	D	A	L2p	MATS4p		
	0.106	0.059	0.062	-	-	0.177	0.223	0.214	0.210
	0.051	0.158	0.093	0.225	0.100	0.209	0.209	0.209	0.209
	CoMFA	CoMSIA							
------------------	-------------	--------------							
	SE	S	E	H	D	A	SE	SH	SD
R²_cv	0.467	0.473	0.445	0.455	0.457	0.433	0.447	0.461	0.457
R²_{pred}	0.663	0.710	0.622	0.610	0.630	0.605	0.633	0.620	0.641
SEE	0.513	0.487	0.543	0.552	0.537	0.555	0.535	0.544	0.529
F	20.658	16.349	78.362	16.424	17.874	16.077	18.106	17.150	18.749
SEP	0.645	0.657	0.658	0.652	0.651	0.665	0.657	0.649	0.651
Nc	2	3	2	2	2	2	2	2	2

Field contribution

	CoMSIA								
	SA	EH	ED	EA	HD	HA	DA	SEH	SED
R²_cv	0.438	0.439	0.433	0.425	0.445	0.431	0.429	0.440	0.433
R²_{pred}	0.615	0.638	0.612	0.601	0.646	0.620	0.607	0.648	0.615
SEE	0.548	0.532	0.538	0.545	0.526	0.545	0.541	0.524	0.536
F	16.785	18.484	34.723	33.153	19.132	17.131	33.934	19.371	35.075
SEP	0.662	0.662	0.650	0.655	0.658	0.666	0.652	0.661	0.650
Nc	2	2	2	1	1	1	2	1	1

Field contribution

	CoMSIA								
	SEA	SHD	SHA	SDA	EHD	EHA	EDA	HDA	SEHD
R²_cv	0.425	0.444	0.432	0.429	0.430	0.422	0.427	0.426	0.430
R²_{pred}	0.604	0.657	0.631	0.609	0.613	0.603	0.614	0.608	0.615
SEE	0.543	0.518	0.537	0.540	0.537	0.544	0.536	0.540	0.535
F	33.519	20.087	17.964	34.299	34.836	33.357	34.998	34.100	35.167
\(R^2_{\text{pred}} \)	0.6360	0.7478	0.7320	0.6687	0.6601	0.6421	0.6466	0.6744	0.6610
SEP	0.655	0.659	0.666	0.652	0.652	0.656	0.653	0.654	0.652
\(N_C \)	1	2	2	1	1	1	1	1	1

Field contribution

\(S \)	0.017	0.045	0.045	0.017	-	-	-	-	0.016
\(E \)	0.080	-	-	-	0.074	0.078	0.075	-	0.073
\(H \)	-	0.082	0.086	-	0.046	0.048	-	0.048	0.045
\(D \)	-	0.168	-	0.087	0.081	-	0.082	0.084	0.080
\(A \)	0.039	-	0.073	0.039	-	0.038	0.037	0.038	-
GATS8e	0.556	0.580	0.632	0.552	0.515	0.539	0.520	0.535	0.507
Mor29m	0.307	0.126	0.163	0.304	0.284	0.297	0.287	0.295	0.279

CoMSIA

\(R^2_{\text{cv}} \)	0.422	0.427	0.426	0.424	0.424
\(R^2_{\text{dev}} \)	0.605	0.616	0.610	0.615	0.617
SEE	0.542	0.535	0.539	0.536	0.534
F	33.700	35.336	34.442	35.093	35.411
\(R^2_{\text{pred}} \)	0.6431	0.6485	0.6755	0.6539	0.6553
SEP	0.656	0.653	0.654	0.655	0.655
\(N_C \)	1	1	1	1	1

Field contribution

\(S \)	0.017	0.016	0.017	-	-	0.015
\(E \)	0.076	0.074	-	0.072	0.071	
\(H \)	0.047	-	0.047	0.044	0.044	
\(D \)	-	0.081	0.083	0.078	0.077	
\(A \)	0.038	0.036	0.037	0.035	0.035	
GATS8e	0.530	0.511	0.526	0.497	0.489	
Mor29m	0.292	0.282	0.290	0.274	0.270	

Table S4. Summary of QSAR results based on superimposition III.
	D	A	GATS8e	Mor29m	0.221	0.128	0.653	0.609	0.626	0.611
CoMSIA										
	SA	EH	ED	EA	HD	HA	DA	SEH	SED	
R^2_{cv}	0.474	0.471	0.449	0.449	0.489	0.477	0.467	0.474	0.454	
R^2_{acc}	0.633	0.671	0.693	0.666	0.681	0.651	0.678	0.678	0.700	
SEE	0.535	0.506	0.490	0.510	0.499	0.522	0.501	0.501	0.484	
F	18.137	21.447	23.672	20.970	22.390	19.599	22.157	22.106	24.516	
R^2_{pred}	0.7541	0.7443	0.7392	0.7264	0.7688	0.7700	0.7681	0.7439	0.7401	
SEP	0.641	0.643	0.656	0.656	0.632	0.639	0.645	0.641	0.653	
N_C	2	2	2	2	2	2	2	2	2	

Field contribution

	S	E	H	D	A	GATS8e	Mor29m		
R^2_{cv}	0.453	0.491	0.479	0.470	0.455	0.445	0.451	0.455	
R^2_{acc}	0.674	0.687	0.658	0.686	0.640	0.631	0.641	0.638	0.641
SEE	0.504	0.494	0.517	0.495	0.518	0.524	0.517	0.519	0.517
F	21.717	23.042	20.177	22.919	39.037	37.649	39.236	38.831	39.330
R^2_{pred}	0.7253	0.7697	0.7707	0.7686	0.6777	0.6704	0.6761	0.6910	0.6788
SEP	0.653	0.630	0.638	0.643	0.637	0.643	0.640	0.637	0.637
N_C	2	2	2	2	1	1	1	1	1

Field contribution

	S	E	H	D	A	GATS8e	Mor29m
R^2_{cv}	0.445	0.451	0.455	0.455	0.455		
R^2_{acc}	0.633	0.643	0.640	0.649	0.649	0.650	
SEE	0.523	0.516	0.518	0.511	0.511	0.510	
Compound	Observed	Predicted	Residual				
----------	----------	-----------	----------				
1	8.6402	8.615	-0.0252				
2	5.7794	5.781	0.0016				
3	7.2708	7.15	-0.1208				
4	8.1068	8.007	-0.0998				
5	7.3990	7.406	0.007				
6	7.4989	7.417	-0.0819				
7	7.7696	7.476	-0.2936				
8	8.6635	8.768	0.1045				
9	6.6234	7.307	0.6836				
10	8.4318	7.83	-0.6018				
11	7.8508	7.727	-0.1238				
12	7.3958	7.35	-0.0458				
13	8.0862	7.752	-0.3342				
14	6.9066	7.583	0.6764				
15	6.3556	6.767	0.4114				
16	6.6517	6.67	0.0183				
17	7.9208	7.781	-0.1398				
18	8.2218	8.179	-0.0428				
19	7.5229	7.278	-0.2449				
20	7.3872	7.367	-0.0202				
21	7.3979	7.39	-0.0079				
22	7.2716	7.285	0.0134				

Field contribution
S
E
H
D
A
GATS8e
Mor29m

R^2_{cv} = cross-validated correlation coefficient using the leave-one-out methods;
R^2_{ncv}=Non-cross-validated correlation coefficient; SEE = Standard error of estimate; F= Ratio of R^2_{ncv} explained to unexplained = $R^2_{ncv}/(1−R^2_{ncv})$;
R^2_{pred} = Predicted correlation coefficient for the test set of compounds; SEP= Standard error of prediction; N_{C}= Optimal number of principal components; S=steric, E=electrostatic, H=hydrophobic, D=hydrogen bond donor, A= hydrogen bond acceptor.

Table S5. Actual and Optimal CoMFA predicted pK_i of training and test sets.
Table S6. Actual and Optimal CoMSIA predicted pKᵢ of training and test sets.

Compound	Observed	Predicted	Residual
1	8.6402	8.747	0.1068
2	5.7794	5.747	-0.0324
3	7.2708	7.116	-0.1548
4	8.1068	7.876	-0.2308
5	7.3990	7.43	0.031
6	7.4989	7.493	-0.0059
7	7.7696	7.638	-0.1316
8	8.6635	8.98	0.3165
9	6.6234	7.226	0.6026
10	8.4318	7.778	-0.6538
11	7.8508	7.574	-0.2768
12	7.3958	7.507	0.1112
13	8.0862	7.816	-0.2702
14	6.9066	7.48	0.5734
15	6.3556	6.903	0.5474
16	6.6517	6.7	0.0483
17	7.9208	7.822	-0.0988
18	8.2218	8.069	-0.1528
19	7.5229	7.531	0.0081
20	7.3872	7.561	0.1738
21	7.3979	7.551	0.1531
22	7.2716	7.361	0.0894
23	7.0899	7.142	0.0521
24	7.2396	7.332	0.0924
25	9.3665	9.422	0.0555
26	8.0000	7.929	-0.071
27	8.8125	8.784	-0.0285
28	7.6925	7.64	-0.0525
29	8.9245	8.931	0.0065
Table S7. Descriptors used in model construction.

Symbol	Class	Meaning
L2p	WHIM	2nd component size directional WHIM index/weighted by atomic polarizabilities
MATS4p	2D autocorrelations	Moran autocorrelation-lag 4/weighted by atomic polarizabilities
GATS8e	2D autocorrelations	Geary autocorrelation-lag 8/weighted by atomic masses
Mor29m	3D-MoRSE	3D-MoRSE-signal 29/weighted by atomic masses

Figure S1. Graphs of the predicted versus the experimental pKᵢ values of the optimal models. (A) CoMFA model. (B) CoMSIA model.

Figure S2. The structure of the most active molecule used in the contour analyses.
Figure S3. The enlargement for compound 2 in the binding site after molecular docking, which is displayed in stick, H-bonds are shown as dotted black lines, and the nonpolar hydrogens were removed for clarity.

Figure S4. The enlargement for compound 1 in the binding site after molecular docking, which is displayed in stick, H-bonds are shown as dotted black lines, and the nonpolar hydrogens were removed for clarity.