Span equivalence between algebras for n-globular operads

Yuya Nishimura

July 21, 2018

Abstract. We define a new equivalence between algebras for n-globular operads which is suggested in [Cottrell 2015], and show that it is a generalization of ordinary equivalence between categories.

Keywords. Algebras for n-globular operads, Span equivalence.

Mathematics Subject Classification (2010). 18A22, 18C20, 18D50

1. Introduction

In [Cottrell 2015], Thomas Cottrell defined an equivalence of K-algebras on an n-globular set to show the following coherence theorem:

Theorem 1.1. Let K be an n-globular operad with unbiased contraction γ, and let X be n-globular set. Then the free K-algebra on X is equivalent to the free strict n-category on X.

His equivalence in this theorem is as follows:

Definition 1.2. Let K be an n-globular operad. K-algebras $KX \to X$ and $KY \to Y$ are equivalent if there exists a map of K-algebras $u : X \to Y$ or $u : Y \to X$ such that u is surjective on 0-cells, full on m-cells for all $1 \leq m \leq n$, and faithful on n.

But, as he said, this equivalence is not the best one: “This definition of equivalence is much more (and thus much less general) than ought to be.” To improve it, he suggested two approaches. The one of them is to replace
the map \(u \) with a span of maps of \(K \)-algebras. In this paper, we adopt this approach and prove two theorem. The first is that we define an adequate equivalence using spans and prove this is indeed an equivalence relation. The second is that our equivalence is a generalization of ordinary equivalence between categories.

In Section 2 we recall the preliminary definitions (globular sets, their maps, operads, algebras for a operad). In Section 3 we define the notion of span equivalence in \(K \text{-Alg} \) and prove the first theorem. In Section 4, for ordinary categories, we define span equivalence in \(\text{Cat} \) independently. Then we show that two categories are ordinary equivalent if and only if they are span equivalent in \(\text{Cat} \). To prove this, we use a combinatorial construction named equivalence fusion. Furthermore, we show the second theorem.

2. Preliminary

The contents of the section is in [Cottrell 2015].

Definition 2.1. Let \(n \in \mathbb{N} \). An \(n \)-globular set is a diagram

\[
X = (X_n \xrightarrow{s^n_X} X_{n-1} \xrightarrow{s^{X}_{n-1}} \cdots \xrightarrow{s^X_1} X_0)
\]

of sets and maps such that

\[
s^X_{k-1} s^n_X(x) = s^n_X t^X_k(x), \quad t^X_{k-1} s^X_k(x) = t^X_{k-1} t^X_k(x)
\]

for all \(k \in \{2, \ldots, n\} \) and \(x \in X_k \).

Elements of \(X_k \) are called \(k \)-cells of \(X \). We defined hom-sets of \(X \) as follows:

\[
\text{Hom}_X(x, y) := \{\alpha \in X_k \mid s^X_k(\alpha) = x, t^X_k(\alpha) = y\}
\]

for all \(k \in \{1, \ldots, n\} \) and \(x, y \in X_{k-1} \).

Let \(X, Y \) be \(n \)-globular sets, A map of \(n \)-globular sets from \(X \) to \(Y \) is a collection \(f = \{f_k : X_k \rightarrow Y_k\}_{k \in \{1, \ldots, n\}} \) of maps of sets such that

\[
s^Y_k f_k(x) = f_{k-1} s^X_k(x), \quad t^Y_k f_k(x) = f_{k-1} t^X_k(x)
\]

for all \(k \in \{1, \ldots, n\} \) and \(x \in X_k \).

The category of \(n \)-globular sets and their maps is denoted by \(n \text{-GSet} \).
Definition 2.2. A category is cartesian if it has all pullbacks. A functor is cartesian if it preserves pullbacks. A natural transformation is cartesian if it all of its naturality squares are pullbacks squares. A monad is cartesian if its functor part, unit and counit are cartesian. A map of monad is cartesian if its underlying natural transformation is cartesian.

Definition 2.3. Let C be a cartesian category with a terminal object 1, and T be a cartesian monad on C. The category of T-collections is the slice category $C/T\downarrow 1$. The category has a monoidal structure: let $k : K \to T\downarrow 1, k' : K' \to T\downarrow 1$ be collections; then their tensor product is defined to be the composite along the top of the diagram

\[
\begin{array}{ccc}
K \otimes K' & \longrightarrow & TK' \\
\downarrow & & \downarrow^{T!}
\end{array}
\begin{array}{ccc}
& \longrightarrow & T^2 \downarrow 1 \\
& \downarrow & \downarrow^{\mu^T_1}
\end{array}
\begin{array}{ccc}
& \longrightarrow & T\downarrow 1
\end{array}
\]

where $!$ is the unique map $K' \to 1$. The unit for this tensor product is the collection

\[
\begin{array}{ccc}
1 & \longrightarrow & T\downarrow 1 \\
\downarrow & & \downarrow^{\eta^T_1}
\end{array}
\]

The monoidal category is denoted by $T\text{-Coll}$.

Definition 2.4. Let C be a cartesian category with a terminal object 1, and T be a cartesian monad on C. A T-operad is a monoid in the monoidal category $T\text{-Coll}$. In the case in which T is the free strict n-category monad on $n\text{-GSet}$, a T-operad is called an n-globular operad.

Definition 2.5. Let C be a cartesian category with a terminal object 1, T be a cartesian monad on C and K be a T-operad. Then there is an induced monad on C, which by abuse of notation we denote (K, η^K, μ^K): The endfunctor $K : C \to C$
is defined as follows; The object part of the functor, for $X \in \mathcal{C}$, KX is defined by the pullback:

$$
\begin{array}{c}
KX \xrightarrow{K!} K \\
k_X \downarrow \quad \downarrow k \\
TX \xrightarrow{T!} T1
\end{array}
$$

The arrow part of the functor, for $Y \in \mathcal{C}$, $u : X \to Y$, Ku is defined by the unique property of the pullback:

Components η^K_X, μ^K_X of the unit map $\eta^K : 1 \Rightarrow K$ and $\mu^K : K^2 \Rightarrow K$ are defined by the following diagrams:

$$
\begin{array}{c}
X \xrightarrow{!} 1 \\
\eta^K_X \downarrow \quad \downarrow \epsilon \\
KX \xrightarrow{K!} K \\
k_X \downarrow \quad \downarrow k \\
TX \xrightarrow{T!} T1
\end{array}
$$
Definition 2.6. Let C be a cartesian category with a terminal object 1, T be a cartesian monad on C and K be a T-operad. We define a K-algebra as an algebra for the induced monad (K, η^K, μ^K). Similarly, a map of algebras for T-operad K is a map of algebras for the induced monad. The category of K-algebras and their maps is denoted by K-Alg.

Leinster’s weak n-category is an algebra for specific operad. See section 9 and 10 in [Leinster 2004] for details.

3. Span equivalence

Definition 3.1. Let $f : X \to Y$ be a map of n-globular sets.

- f is surjective on k-cells $\iff f_k : X_k \to Y_k$ is surjective
- f is injective on k-cells $\iff f_k : X_k \to Y_k$ is injective
- f is full on k-cells $\iff \forall x, x' \in X_{k-1}, \beta \in \text{Hom}_Y(f_{k-1}(x), f_{k-1}(x'))$,
 $\exists \alpha \in \text{Hom}_X(x, x')$ s.t. $f_k(\alpha) = \beta$
- f is faithful on k-cell $\iff \forall x, x' \in X_{k-1}, \alpha, \alpha' \in \text{Hom}_X(f_{k-1}(x), f_{k-1}(x'))$,
 $\alpha \neq \alpha' \Rightarrow f_k(\alpha) \neq f_k(\alpha')$
Let \(f \) be a map of \(K \)-algebras. \(f \) is surjective (respectively, injective, full, faithful) on \(k \)-cells if and only if the underlying map is surjective (respectively, injective, full, faithful) on \(k \)-cells.

Definition 3.2. Let \(K \) be an \(n \)-globular operad. \(K \)-algebras \(\phi : KX \to X \) and \(\psi : KY \to Y \) are span equivalent in \(K \)-Alg if there exists a triple \(\langle \theta, u, v \rangle \) such that \(\theta : KZ \to Z \) is a \(K \)-algebra, \(u : \theta \to \phi \) and \(v : \theta \to \psi \) are maps of \(K \)-algebras, surjective on 0-cells, full on \(m \)-cells for all \(1 \leq m \leq n \), and faithful on \(n \)-cells. The triple \(\langle \theta, u, v \rangle \) is referred to as a span equivalence of \(K \)-algebras.

Trivially, under the same situation as Theorem 1.1, the free \(K \)-algebra on \(X \) is span equivalent to the free strict \(n \)-category on \(X \).

Proposition 3.3. In the pullback diagram in \(n \)-GSet

\[
\begin{array}{ccc}
P & \xrightarrow{j} & Y \\
\downarrow{i} & & \downarrow{g} \\
X & \xrightarrow{j} & S
\end{array}
\]

- \(f \) is surjective on 0-cells \(\Rightarrow \) \(j \) is surjective on 0-cells
- \(f \) is full on \(k \)-cells \(\Rightarrow \) \(j \) is full on \(k \)-cells
- \(f \) is faithful on \(k \)-cells \(\Rightarrow \) \(j \) is faithful on \(k \)-cells

Proof. We define an \(n \)-globular set \(P \) as follows:

\[
P_k := \{ (x, y) \in X_k \times Y_k \mid f_k(x) = g_k(y) \}
\]

\[
s_l^P := (P_l \ni (x, y) \mapsto (s_l^X(x), s_l^Y(y)) \in P_{l-1})
\]

\[
t_l^P := (P_l \ni (x, y) \mapsto (t_l^X(x), t_l^Y(y)) \in P_{l-1})
\]

for all \(k \in \{0, ..., n\}, l \in \{1, ..., n\} \), and maps of \(n \)-globular sets \(i, j \) as follows:

\[
i_k := (P_k \ni (x, y) \mapsto x \in X_k), \quad j_k := (P_k \ni (x, y) \mapsto y \in Y_k)
\]
for all $k \in \{0, \ldots, n\}$. Then (P, i, j) is a pullback of X and Y over S. It is enough to prove the proposition that we check the claims for (P, i, j).

Firstly, we prove surjectivity on 0-cells. For $y \in Y_0$, there exists $x \in X_0$ such that $f_0(x) = g_0(y)$. So $(x, y) \in P_0$ and $j_0((x, y)) = y$, which is the condition of surjectivity. To show fullness, we suppose $(x, y), (x', y') \in P_{k-1}$, $\phi, \psi \in \text{Hom}(y, y')$, we can see $s_k g_k(\phi) = g_{k-1}(y) = f_{k-1}, t_k g_k(\phi) = g_{k-1}(y') = f_{k-1}(x')$. Thus $g_k(\phi) \in \text{Hom}(f_{k-1}(x), f_{k-1}(x'))$. For fullness, there exists $\psi \in \text{Hom}(x, x')$ such that $f_k(\psi) = g_k(\phi)$. Then $(\psi, \phi) \in \text{Hom}((x, y), (x', y'))$ and $j_k(\psi, \phi) = \phi$. Therefore j is full on k-cells. Lastly, we suppose that f is faithful on k-cells. Let $(x, y), (x', y') \in P_{k-1}$ and $\psi, \phi \in \text{Hom}((x, y), (x', y'))$ such that $j_k(\psi) = j_k(\phi)$. Then $f_k j_k(\psi) = g_k j_k(\psi) = g_k j_k(\phi) = f_k j_k(\phi)$. From faithfulness, $i_k(\psi) = i_k(\phi)$, and $\psi = (i_k(\psi), j_k(\psi)) = (i_k(\phi), j_k(\phi)) = \phi$. Therefore j is faithful on k-cells.

By the following remark, for the category of K-algebras, we can also get similar results of proposition 3.3.

Remark 3.4. Let T be a monad on C. Then the forgetful functor $U : K-\text{Alg} \to C$ creates limits. Hence any monadic functor reflects limits. (Theorem 3.4.2. in [TTT])

Proposition 3.5. In $K-\text{Alg}$, Let

\[
\begin{array}{ccc}
P & \xrightarrow{f} & X \\
g & \swarrow & \downarrow \text{id} \\
Y & \xleftarrow{i} & Z
\end{array}
\quad
\begin{array}{ccc}
P & \xleftarrow{h} & Y \\
g & \searrow & \downarrow \text{id} \\
Q & \xrightarrow{i} & Z
\end{array}
\]

be span equivalences, then

\[
\begin{array}{ccc}
P & \xrightarrow{f} & X \\
g & \swarrow & \downarrow \text{id} \\
Y & \xleftarrow{i} & Z
\end{array}
\quad
\begin{array}{ccc}
P & \xleftarrow{h} & Y \\
g & \searrow & \downarrow \text{id} \\
Q & \xrightarrow{i} & Z
\end{array}
\]

\[
\begin{array}{ccc}
P & \xleftarrow{h} & Q \\
g & \searrow & \downarrow \text{id} \\
Y & \xrightarrow{i} & Z
\end{array}
\]

is span equivalence.
Proof. By the fact, \(p, q \) are are surjective on 0-cells, full on \(k \)-cells for \(1 \leq k \leq n \) and faithful on \(n \)-cells. Therefore \(f \circ p, i \circ q \) are surjective on 0-cells, full on \(k \)-cells for \(1 \leq k \leq n \) and faithful on \(n \)-cells. So the span is span equivalence.

Theorem 3.6. Span equivalence is equivalence relation on \(K \)-algebras.

Proof. It is straightforward from the definition and previous proposition that span equivalence is equivalence relation.

4. Characterizing equivalence of categories via spans

In this section, we define span equivalence in \(\text{Cat} \) which is independent of that in \(K\text{-Alg} \). Then we show that two categories are ordinary equivalent if and only if they are span equivalent in \(\text{Cat} \) and that span equivalence of categories implies span equivalence of algebras of them. Consequently, span equivalence is a generalization of ordinary equivalence.

Definition 4.1. Let \(A \) and \(B \) be categories. We say that \(A \) and \(B \) are span equivalent in \(\text{Cat} \) if there exists a triple \(\langle A, u, v \rangle \) such that \(C \) is a category, \(u : C \to A \) and \(v : C \to B \) are functors, surjective on objects, full and faithful.

Definition 4.2. Let \(A \) and \(B \) be categories, let \(\langle S : A \to B, T : B \to A, \eta : I_A \to TS, \epsilon : ST \to I_B \rangle \) be an adjoint equivalence between \(A \) and \(B \). We define a category, equivalence fusion \(A \sqcup B \), as follows:

- **object-set**
 \[
 \text{Ob}(A \sqcup B) := \text{Ob}(A) \sqcup \text{Ob}(B) \quad \text{(disjoint)}
 \]

- **hom-set**
 \[
 \text{Hom}(x, y) := \begin{cases}
 \{\langle f, x, y \rangle \mid f \in A(x, y)\} & (x, y \in A) \\
 \{\langle f, x, y \rangle \mid f \in B(x, y)\} & (x, y \in B) \\
 \{\langle f, x, y \rangle \mid f \in B(Sx, y)\} & (x \in A, y \in B) \\
 \{\langle f, x, y \rangle \mid f \in B(x, Sy)\} & (x \in B, y \in A)
 \end{cases}
 \]
composition

\[\delta : \text{Hom}(y, z) \times \text{Hom}(x, y) \to \text{Hom}(x, z) \]
\[\langle \langle g, y, z \rangle, \langle f, x, y \rangle \rangle \mapsto \langle \langle g \circ f, x, z \rangle \rangle := \langle g \circ f, x, z \rangle \]

\[g \circ f := \begin{cases}
 g \circ_A f & (x, y, z \in A) \\
 g \circ_B f & (x, y, z \in B) \\
 g \circ_B S f & (x, y \in A, z \in B) \\
 g \circ_B f & (x \in A, y, z \in B) \\
 S g \circ_B f & (x \in B, y, z \in A) \\
 \eta_{z}^{-1} \circ_A T g \circ_A T f \circ_A \eta_{x} & (x \in A, y \in B, z \in A) \\
 g \circ_B f & (x \in B, y \in A, z \in B)
\end{cases} \]

identities

\[\text{id}_x := \begin{cases}
 \langle \text{id}_x, x, x \rangle & (x \in A, \text{id}_x \in A(x, x)) \\
 \langle \text{id}_x, x, x \rangle & (x \in B, \text{id}_x \in B(x, x))
\end{cases} \]

Proposition 4.3. The equivalence fusion \(A \| B \) forms a category.

Proof. It is easy to check that the composition \(\delta \) is map from \(\text{Hom}(x, y) \times \text{Hom}(y, z) \) to \(\text{Hom}(x, z) \). Now, we prove that the composition \(\delta \) satisfies associative law and identity law by case analysis.

- associative law

 \[h \circ (g \circ f) = h \circ (g \circ_A f) \]
 \[(h \circ g) \circ f = (h \circ_A g) \circ_A f \]

 \[h \circ (g \circ f) = h \circ (g \circ_A f) = h \circ_B S (g \circ_A f) = h \circ_B (S g \circ_B S f) \]
 \[(h \circ g) \circ f = (h \circ_B S g) \circ f = (h \circ_B S g) \circ_B S f \]

 \[h \circ (g \circ f) = h \circ (g \circ_B S f) = \eta_{w}^{-1} \circ_A T h \circ_A T g \circ_A T S f \circ_A \eta_{x} \]
 \[= \eta_{w}^{-1} \circ_A T h \circ_A T g \circ_A T S f \circ_A \eta_{x} \]
 \[= \eta_{w}^{-1} \circ_A T h \circ_A T g \circ_A \eta_{y} \circ_A f \]
 \[(h \circ g) \circ f = (\eta_{w}^{-1} \circ_A T h \circ_A T g \circ_A \eta_{y}) \circ f = (\eta_{w}^{-1} \circ_A T h \circ_A T g \circ_A \eta_{y}) \circ_A f \]
- $x \in A, y \in A, z \in B, w \in B$

 $h \circ (g \circ f) = h \circ (g \circ_B Sf) = h \circ_B (g \circ_B Sf)$

 $(h \circ g) \circ f = (h \circ_B g) \circ f = (h \circ_B g) \circ_B Sf$

- $x \in A, y \in B, z \in A, w \in A$

 $h \circ (g \circ f) = h \circ (\eta_z^{-1} \circ_A Tg \circ_A Tf \circ_A \eta_x) = h \circ_A \eta_z^{-1} \circ_A Tg \circ_A Tf \circ_A \eta_x$

 $= \eta_w^{-1} \circ_A TSh \circ_A Tg \circ_A Tf \circ_A \eta_x$

 $(h \circ g) \circ f = (Sh \circ_B g) \circ f = \eta_w^{-1} \circ_A T(Sh \circ_B g) \circ_A Tf \circ_A \eta_x$

 $= \eta_w^{-1} \circ_A TSh \circ_A Tg \circ_A Tf \circ_A \eta_x$

- $x \in A, y \in B, z \in A, w \in B$

 $h \circ (g \circ f) = h \circ (\eta_z^{-1} \circ_A Tg \circ_A Tf \circ_A \eta_x)$

 $= h \circ_B S(\eta_z^{-1} \circ_A Tg \circ_A Tf \circ_A \eta_x)$

 $= h \circ_B S\eta_z^{-1} \circ_B ST(g \circ_B f) \circ_B \eta_x$

 $= h \circ_B (\epsilon_{S_z} \circ_B S\eta_z) \circ_B S\eta_z^{-1} \circ_B ST(g \circ_B f) \circ_B \eta_x$

 $= h \circ_B \epsilon_{S_z} \circ_B ST(g \circ_B f) \circ_B \eta_x$

 $= h \circ_B g \circ_B f \circ_B \epsilon_{S_z} \circ_B \eta_x$

 $= h \circ_B g \circ_B f$

 $(h \circ g) \circ f = (h \circ_B g) \circ f = (h \circ_B g) \circ_B f$

- $x \in A, y \in B, z \in B, w \in A$

 $h \circ (g \circ f) = h \circ (g \circ_B f) = \eta_w^{-1} \circ_A Th \circ_A T(g \circ_B f) \circ_A \eta_x$

 $(h \circ g) \circ f = (h \circ_B g) \circ f = \eta_w^{-1} \circ_A T(h \circ_B g) \circ_A Tf \circ_A \eta_x$

- $x \in A, y \in B, z \in B, w \in B$

 $h \circ (g \circ f) = h \circ_B (g \circ_B f)$

 $(h \circ g) \circ f = (h \circ_B g) \circ_B f$

- $x \in B, y \in A, z \in A, w \in A$

 $h \circ (g \circ f) = h \circ (Sg \circ_B f) = Sh \circ_B (Sg \circ_B f)$

 $(h \circ g) \circ f = (h \circ_A g) \circ f = S(h \circ_A g) \circ_B f = (Sh \circ_B Sg) \circ_B f$

- $x \in B, y \in A, z \in A, w \in B$

 $h \circ (g \circ f) = h \circ (Sg \circ_B f) = h \circ_B (Sg \circ_B f)$

 $(h \circ g) \circ f = (h \circ_B Sg) \circ f = (h \circ_B Sg) \circ_B f$

- $x \in B, y \in A, z \in B, w \in A$

 $h \circ (g \circ f) = h \circ (g \circ_B f) = h \circ_B (g \circ_B f)$

 $(h \circ g) \circ f = (\eta_w^{-1} \circ_A Th \circ_A Tg \circ_A \eta_y) \circ f$

 $= S(\eta_w^{-1} \circ_A Th \circ_A Tg \circ_A \eta_y) \circ_B f$
\[S_{\eta_w}^{-1} \circ_B ST(h \circ_B g) \circ_B S_{\eta_y} \circ_B f \]
\[= (\epsilon_S \circ_B S_{\eta_w}) \circ_B S_{\eta_w}^{-1} \circ_B ST(h \circ_B g) \circ_B S_{\eta_y} \circ_B f \]
\[= \epsilon_S \circ_B ST(h \circ_B g) \circ_B S_{\eta_y} \circ_B f \]
\[= h \circ_B g \circ_B \epsilon_S \circ_B S_{\eta_y} \circ_B f \]
\[= h \circ_B g \circ_B f \]

- \(x \in B, y \in A, z \in B, w \in B \),
 \[h \circ (g \circ f) = h \circ_B (g \circ_B f) \]
 \[(h \circ g) \circ f = (h \circ_B g) \circ_B f \]

- \(x \in B, y \in B, z \in A, w \in A \),
 \[h \circ (g \circ f) = h \circ (g \circ_B f) = Sh \circ_B (g \circ_B f) \]
 \[(h \circ g) \circ f = (Sh \circ_B g) \circ_B f \]

- \(x \in B, y \in B, z \in A, w \in B \),
 \[h \circ (g \circ f) = h \circ_B (g \circ_B f) \]
 \[(h \circ g) \circ f = (h \circ_B g) \circ_B f \]

- \(x \in B, y \in B, z \in B, w \in A \),
 \[h \circ (g \circ f) = h \circ_B (g \circ_B f) \]
 \[(h \circ g) \circ f = (h \circ_B g) \circ_B f \]

- \(x \in B, y \in B, z \in B, w \in B \),
 \[h \circ (g \circ f) = h \circ_B (g \circ_B f) \]
 \[(h \circ g) \circ f = (h \circ_B g) \circ_B f \]

\[\text{identity law} \]

- \(x \in A, y \in A \),
 \[f \circ \text{id}_x = f \circ_A \text{id}_x = f \]
 \[\text{id}_y \circ f = \text{id}_y \circ_A f = f \]

- \(x \in A, y \in B \),
 \[f \circ \text{id}_x = f \circ_B \text{Sid}_x = f \circ_B \text{id}_Sx = f \]
 \[\text{id}_y \circ f = \text{id}_y \circ_B f = f \]

- \(x \in B, y \in A \),
 \[f \circ \text{id}_x = f \circ_B \text{id}_x = f \]
 \[\text{id}_y \circ f = \text{Sid}_y \circ_B f = \text{id}_S_y \circ_B f = f \]

- \(x \in B, y \in B \),
 \[f \circ \text{id}_x = f \circ_B \text{id}_x = f \]
 \[\text{id}_y \circ f = \text{id}_y \circ_B f = f \]
Definition 4.4. Let \(\langle S : A \to B, T : B \to A, \eta : I_A \to TS, \epsilon : ST \to I_B \rangle \) be an adjoint equivalence, let \(A \sqcup | B \) be the equivalence fusion. We define the projections \(u, v \) as follows:

- **u**: \(A \sqcup | B \to A \)
 - **object-function** \(u : \text{Ob}(A \sqcup | B) \to \text{Ob}(A) \)
 \[x \mapsto u(x) := \begin{cases} x & (x \in A) \\ T_x & (x \in B) \end{cases} \]
 - **hom-functions** \(u : \text{Hom}(x, y) \to A(u(x), u(y)) \)
 \[\langle f, x, y \rangle \mapsto uf := \begin{cases} f & (x, y \in A) \\ Tf & (x, y \in B) \\ Tf \circ A \eta_x & (x \in A, y \in B) \\ \eta_y^{-1} \circ A Tf & (x \in B, y \in A) \end{cases} \]

- **v**: \(A \sqcup | B \to B \)
 - **object-function** \(v : \text{Ob}(A \sqcup | B) \to \text{Ob}(B) \)
 \[x \mapsto v(x) := \begin{cases} Sx & (x \in A) \\ x & (x \in B) \end{cases} \]
 - **hom-functions** \(v : \text{Hom}(x, y) \to B(v(x), v(y)) \)
 \[\langle f, x, y \rangle \mapsto vf := \begin{cases} Sf & (x, y \in A) \\ f & (\text{others}) \end{cases} \]

Proposition 4.5. The projections \(u, v \) are functors.

Proof. We show that \(u, v \) preserve composition of morphisms and identity morphism by case analysis.

- **u** preserves composition of morphisms
 - \(x \in A, y \in A, z \in A \),
 \[u(g \circ f) = u(g \circ_A f) = g \circ_A f \]
 \[ug \circ_A uf = g \circ_A f \]
 - \(x \in A, y \in A, z \in B \),
 \[u(g \circ f) = u(g \circ_B Sf) = T(g \circ_B Sf) \circ_A \eta_x = Tg \circ_A TSf \circ_A \eta_x \]
 \[ug \circ_A uf = (Tg \circ_A \eta_y) \circ_A f = Tg \circ_A TSf \circ_A \eta_x \]
\[u(x, y) \in A, \quad u(z, y) \in B, \quad u(z, x) \in A, \quad u(g \circ f) = u(\eta^{-1}_z \circ_A Tg \circ_A Tf \circ_A \eta_x) = \eta^{-1}_z \circ_A Tg \circ_A Tf \circ_A \eta_x \]
\[u(g \circ_A f) = (\eta^{-1}_z \circ_A Tg) \circ_A (Tf \circ_A \eta_x) \]

- \(x \in A, \ y \in B, \ z \in A, \)
\[u(g \circ f) = u(g \circ_B f) = Tg \circ_A Tf \]
\[u(g \circ_A f) = Tg \circ_A Tf \circ_A \eta_x \]
\[u(g \circ_B f) = Tg \circ_A Tf \circ_A \eta_x \]

- \(x \in B, \ y \in A, \ z \in A, \)
\[u(g \circ f) = u(g \circ_B f) = Tg \circ_A Tf \]
\[u(g \circ_A f) = Tg \circ_A Tf \]
\[u(g \circ_B f) = Tg \circ_A Tf \]

- \(x \in B, \ y \in B, \ z \in A, \)
\[u(g \circ f) = u(g \circ_B f) = Tg \circ_A Tf \]
\[u(g \circ_A f) = Tg \circ_A Tf \]

- \(x \in B, y \in B, z \in B, \)
\[u(g \circ f) = u(g \circ_B f) = Tg \circ_A Tf \]
\[u(g \circ_A f) = Tg \circ_A Tf \]

- \(u \) preserves identity morphisms

\[x \in A, \]
\[u(id_x) = id_x = id_{ux} \]

- \(x \in B, \]
\[u(id_x) = Tid_x = id_{Tux} = id_{ux} \]

- \(v \) preserves composition of morphisms

\[x \in A, y \in A, z \in A, \]
\[v(g \circ f) = v(g \circ_A f) = S(g \circ_A f) = Sg \circ_B Sf \]
\[vg \circ_B vf = Sg \circ_A Sf \]

- \(x \in A, y \in A, z \in B, \)
\[v(g \circ f) = v(g \circ_B f) = g \circ_B Sf \]
\[vg \circ_B vf = g \circ_B Sf \]
\[-x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{A},
\]
\[v(g \circ f) = v(\eta_x^{-1} \circ \mathcal{A}T g \circ \mathcal{A}T f \circ \mathcal{A}\eta_x)\]
\[= S(\eta_x^{-1} \circ \mathcal{A}T g \circ \mathcal{A}T f \circ \mathcal{A}\eta_x)\]
\[= S\eta_x^{-1} \circ \mathcal{B}ST(g \circ \mathcal{B}f) \circ \mathcal{B}S\eta_x\]
\[= g \circ \mathcal{B}f\]
\[vg \circ \mathcal{B}vf = g \circ \mathcal{B}f\]
\[-x \in \mathcal{A}, y \in \mathcal{B}, z \in \mathcal{B},
\]
\[v(g \circ f) = v(g \circ \mathcal{B}f) = g \circ \mathcal{B}f\]
\[vg \circ \mathcal{B}vf = g \circ \mathcal{B}f\]
\[-x \in \mathcal{B}, y \in \mathcal{A}, z \in \mathcal{A},
\]
\[v(g \circ f) = v(Sg \circ \mathcal{B}f) = Sg \circ \mathcal{B}f\]
\[vg \circ \mathcal{B}vf = Sg \circ \mathcal{B}f\]
\[-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{A},
\]
\[v(g \circ f) = v(g \circ \mathcal{B}f) = g \circ \mathcal{B}f\]
\[vg \circ \mathcal{B}vf = g \circ \mathcal{B}f\]
\[-x \in \mathcal{B}, y \in \mathcal{B}, z \in \mathcal{B},
\]
\[v(g \circ f) = v(g \circ \mathcal{B}f) = g \circ \mathcal{B}f\]
\[vg \circ \mathcal{B}vf = g \circ \mathcal{B}f\]

• \(v\) preserves identity morphisms

\[-x \in \mathcal{A}\]
\[v(id_x) = Sid_x = id_{\mathcal{S}x} = id_{vx}\]
\[-x \in \mathcal{B}\]
\[v(id_x) = id_x\]

\[\square\]

Proposition 4.6. The projections \(u, v\) are surjective on objects, full and faithful.

Proof. It’s trivial by definitions that \(u, v\) are surjective on objects. So we check fullness and faithfulness.
• u is full and faithful

- $x, y \in A$,

 $u : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in A(x, y) \} \ni (f, x, y) \mapsto f \in A(x, y)$ is bijective.

- $x, y \in B$,

 $T : B(x, y) \to A(Tx, Ty)$ is bijective. Therefore $u : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(x, y) \} \ni (f, x, y) \mapsto f \in A(x, y) \ni (f, x, y) \mapsto T f \in A(Tx, Ty) = A(ux, uy)$ is bijective.

- $x \in A, y \in B$,

 $B(Sx, y) \ni f \mapsto Tf \circ A \eta_x \in A(x, Ty)$ is the right adjunct of each f, and bijective. Therefore $u : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(Sx, y) \} \ni (f, x, y) \mapsto T f \circ A \eta_x \in A(x, Ty) = A(ux, uy)$ is bijective.

- $x \in B, y \in A$,

 $B(x, Sy) \ni f \mapsto \eta_y^{-1} \circ A T f \in A(Tx, y)$ is the left adjunct of each f, and bijective. Therefore $u : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(x, Sy) \} \ni (f, x, y) \mapsto \eta_y^{-1} \circ A T f \in A(Tx, y) = A(ux, uy)$ is bijective.

• v is full and faithful

- $x, y \in A$,

 $S : A(x, y) \to B(Sx, Sy)$ is bijective. Therefore $v : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in A(x, y) \} \ni (f, x, y) \mapsto S f \in B(Sx, Sy) = B(vx, vy)$ is bijective.

- $x, y \in B$,

 $v : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(x, y) \} \ni (f, x, y) \mapsto f \in B(x, y) = B(vx, vy)$ is bijective.

- $x \in A, y \in B$,

 $v : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(Sx, y) \} \ni (f, x, y) \mapsto f \in B(Sx, y) = B(vx, vy)$ is bijective.

- $x \in B, y \in A$,

 $v : \text{Hom}(x, y) = \{ (f, x, y) \mid f \in B(x, Sy) \} \ni (f, x, y) \mapsto f \in B(x, Sy) = B(vx, vy)$ is bijective.
Theorem 4.7. Let \mathcal{A} and \mathcal{B} be categories. \mathcal{A} is equivalent to \mathcal{B} if and only if \mathcal{A} is span equivalent to \mathcal{B} in Cat.

Proof. Let \mathcal{A} be equivalent to \mathcal{B}, then \mathcal{A} is adjoint equivalent to \mathcal{B}. Thus there exists a adjoint equivalence between \mathcal{A} and \mathcal{B}. So we can construct the equivalence fusion and the projections. By Propositions, they are span equivalence in Cat. Therefore \mathcal{A} is span equivalent to \mathcal{B}.

On the other hand, let \mathcal{A} be span equivalent to \mathcal{B} in Cat. Then there exists a span equivalence $\langle C, u, v \rangle$ between \mathcal{A} and \mathcal{B}, and C is equivalent to both \mathcal{A} and \mathcal{B}. Therefore \mathcal{A} is equivalent to \mathcal{B}.

□

Remark 4.8. Let \mathcal{A} be presheaf category. The forgetful functor

$$U : A-\text{Cat} \to A-\text{Gph}$$

is monadic. (Proposition F 1.1 in [Leinster 2004])

Let $\mathcal{A} = \text{Set}$, we can see $\text{Set-\text{Cat}} = \text{Cat}$, $\text{Set-Grp} = 1-\text{GSet}$, and the induced monad T_1 is the free strict 1-category monad on $1-\text{GSet}$. By the remark, the comparison functor

$$N : \text{Cat} \to T_1-\text{Alg}$$

is isomorphic and arrow part of the functor is

$$N : f \mapsto Uf.$$

Moreover, the category $\text{Wk-1-\text{Cat}}$ of Leinster’s weak 1 categories is the category $T_1-\text{Alg}$ of algebras for the monad for details, refer to the proof of Theorem 9.1.4 in [Leinster 2004]. So the isomorphism $N : \text{Cat} \to \text{Wk-1-\text{Cat}}$ preserve surjectivity, fullness and faithfullness. Hence,

Proposition 4.9. Let $N : \text{Cat} \to \text{Wk-1-\text{Cat}}$ be the isomorphism above. let \mathcal{A} and \mathcal{B} be categories. \mathcal{A} is span equivalent to \mathcal{B} in Cat if and only if $N(\mathcal{A})$ is span equivalent to $N(\mathcal{B})$ in $\text{Wk-1-\text{Cat}}$.

As a result of Proposition 4.7 and Proposition 4.9, we obtain the following theorem:

Theorem 4.10. \mathcal{A} is equivalent to \mathcal{B} if and only if $N(\mathcal{A})$ is span equivalent to $N(\mathcal{B})$ in $\text{Wk-1-\text{Cat}}$.
References

[1] [Cottrell 2015] Thomas Cottrell, OPERADIC DEFINITIONS OF WEAK N-CATEGORY: COHERENCE AND COMPARISONS, Theory and Applications of Categories, Vol. 30, No. 13, 2015, pp. 433-488.

[2] [Leinster 2004] Tom Leinster, Higher operads, higher categories, volume 298 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2004.

[3] [TTT] Michael Barr and Charles Wells, TOPOSES, TRIPLES AND THEORIES. Reprint in Theory and Applications of Categories, No. 12, 2005, pp. 1-288.

Division of Science (mathematics),
Graduate School, Kyoto Sango University,
Kyoto 603-8555, Japan
E-mail: i1655059@cc.kyoto-su.ac.jp