Zinc Status in Beta-Thalassemia Major

Khalaf Hussein Hasan¹, Hasan Abdullah Aswad², Aspazija Sofijanova³

¹Department of Pediatrics, College of Medicine, University of Duhok, Duhok, Iraq; ²Jin Oncology and hematology Center, Directorate of Health, Duhok, Iraq; ³University Children’s Hospital, Ss Cyril and Methodius University, Skopje, Republic of Macedonia

Abstract

BACKGROUND: Zinc is one of the most important minerals incorporated in the enzymes of the human body. Zinc may be deficient in patients with the β-thalassemia major with possible adverse outcomes.

AIM: The purpose of this study was to assess the serum zinc status in β-thalassemia major patients in Duhok city.

PATIENTS, MATERIAL, AND METHODS: In this case–control study, 70 children with β-thalassemia major (2–12 years) of both genders were enrolled and were matched with 70 apparently healthy children for age and sex. A venous blood sample was obtained from each child for the measurement of serum zinc and serum ferritin levels at Jin Center in Duhok City between January 1 and June 30, 2017.

RESULTS: The mean serum zinc in the thalassemia patients (74.79 [±25.14] µg/dl) was significantly lower compared to the control group (93.61 [±15.12] µg/dl), (p = 0.0001). The serum zinc was not significantly different in thalassemia patients in terms of age, disease onset, gender, height, weight, body mass index, amount of blood transfusion, and type of chelation. There was a statistically significant correlation between serum zinc levels with a serum ferritin level of patients.

CONCLUSION: The study showed that thalassemia patients have significantly lower serum levels of zinc with no relation to medical factors. Zinc is an essential micronutrient for human health. It is vital for activating growth and physical and neurological development in infants, children, and adolescents. It is found in all parts of the body. It is a component in more than 300 enzymes and influences hormones. Zinc also accelerates cell division and enhances the immune system. It is vital in protecting the body from illnesses and fighting infections. It also participates in the metabolism of CHO, lipids, and proteins, which, in turn, leads to good food utilization. Zinc also enhances Vitamin D effects on bone metabolism.

In humans, thalassemia is considered one of the most common hereditary blood disorders [1], [2]. About 150 million people carry the gene of thalassemia worldwide. The disease most commonly is seen in Africa, the Mediterranean region, and South-east Asia. The incidence may be as high as 10% in these regions [3]. Iran and Iraq are among the countries with the highest prevalence of major thalassemia [4], [5]. The clinical features of the disease may not be obvious until a complete conversion occurs from fetal to adult hemoglobin (Hb). Typically, the switch is completed by the age of 6 months [3]. The most severe form of thalassemia major requires frequent blood transfusions followed by giving iron-chelating agent (Desferrioxamine) [6]. Thalassemia is a group of inherited blood-borne disorders due to abnormal Hb chain synthesis (either alpha or beta chain). The lack of beta-chain synthesis causes beta-thalassemia, which causes the body to form new abnormal red blood cells (RBCs), leading to anemia. The abnormal Hb chain syntheses need about 200-point mutations in that particular chain of Hb. Beta-thalassemia major is a severe form of this blood disorder, where transfusion is the only hope for survival among patients, and a bone marrow transplant is a possible way to cure [3].
cell division, wound repairing, and improving visual acuity [8]. Zinc has the main role in the RBC life cycle and its lack leads to increased RBCs breakdown [12].

Zinc deficiency could be a possible cause of delayed maturity in beta-thalassemia major patients [13], [14]. There is an evident gap in zinc status in patients with a β-thalassemia major in this region. Therefore, this study aimed to measure the serum zinc levels β-thalassemia major compared to a healthy control group. In addition, the role of medical and general characteristics on serum zinc level in β-thalassemia major was examined in this age-sex match study.

Patients and Methods

A total of 70 children previously diagnosed with β-thalassemia major (2–12 years) of both genders were included in this age- and sex-matched case-control study. The cases were matched for age and sex with 70 apparently healthy controls. The serum zinc concentrations were compared between cases and controls. The patients were included from Jin center in Duhok city. The healthy children were selected from Heevi Pediatric Teaching Hospital with no history of chronic diseases. The Jin center provides care for thalassemia patients in Duhok Governorate, Iraqi Kurdistan. The data collection was done for a six month period between January 1 and June 30, 2017.

Inclusion and exclusion criteria

The patients who were diagnosed with β-thalassemia major up to 12 years old of both genders with no other medical chronic diseases met eligibility criteria for this study. The following children were excluded from the study: thalassemic children who were receiving multivitamins and Zn supplementation therapy, thalassemia children with any acute illness or any other chronic disease such as liver failure and heart failure.

Data collection and measurement

The following information was collected from the children and was recorded in a pre-designed questionnaire. The age, gender, onset age of disease (before one year and after one year), types of chelation (Desferrioxamine, Deferasirox (Exjade), Both Desferrioxamine and Deferasirox, of none). Body mass index (BMI) was categorized as normal, underweight, overweight, or obese.

To measure serum zinc, 3 ml venous blood was aspirated after cleaning the skin with a 70% alcohol swab. The blood was poured into a gel tube. Then, it was centrifuged at 4000 rotation per minute for 10 minutes. The serum was separated and collected in a plain tube labeled numerically for the measurement of serum Zn using atomic absorption spectrophotometer with a normal range of serum Zn is 70–115 µg/dl, and serum ferritin with normal range (20–300 ng/dl in male and 14–150 ng/dl in females) [15]. The serum zinc levels were categorized as; normal serum zinc: 70–115 µg/dl, high serum zinc: >115 µg/dl, mild Zn deficiency: 50–70 µg/dl, and severe Zn deficiency: <50 µg/dl [15].

Serum ferritin

Ethical considerations

The study was approved by the Ethical Committee of the Directorate General of Health/Duhok, Jin Center, and Heevi Pediatric Teaching Hospital. Written consent was obtained from the children’s parents before the interviews were carried out.

The ethical approval of the protocol was obtained from the Council of the College of Medicine at the University of Duhok.

Statistical analysis

The homogeneity of children in terms of age and gender was examined in a Pearson Chi-squared test. The concentration of serum zinc was presented in mean (SD). The mean level of serum zinc between patients with β-thalassemia major and their controls was examined in an independent t-test. The significant level of difference was set at a p < 0.05. The statistical analyses were performed by Statistical Package for the Social Sciences version 25 (IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp).

Results

Table 1 shows that the thalassemia patients and their control were comparable in gender (p = 0.864) and age distribution (p = 0.741)

Table 1: Age and gender distribution

Age (years)	Thalassemic patients	Controls	p-value		
	Male	Female	Male	Female	
2–4 years	9 (12.8)	10 (14.2)	8 (11.4)	9 (12.8)	0.741
5–9 years	13 (18.6)	20 (28.57)	13 (18.6)	20 (28.57)	
10–12 years	7 (10)	11 (15.71)	9 (12.8)	11 (15.71)	
Total	29 (41.42)	41 (58.58)	30 (42.85)	40 (57.15)	0.864

Pearson Chi-squared test was performed for statistical analyses.

The mean serum Zn levels in thalassemic patients and controls

The serum zinc concentration in β-thalassemic patients was significantly lower.
Discussion

In this study, mean serum Zn was below the normal range in patients in comparison with the mean serum Zn level of the controls in agreement with the literature [16]. Although zinc deficiency is common in beta-thalassemia major patients, it has no significant effect on physical growth and frequency of infections [17].

A study aimed to identify the zinc status and its effect on the growth and functions of young beta-thalassemia major patients. They included 40 patients with beta-thalassemia major and compared to age- and sex-matched 30 healthy control. They found that the serum zinc level in beta-thalassemia major patients was 44.7 (SD: 24.2 µg/dl) compared to 63.3 (SD: 30.3 µg/dl) in the controls. The mean serum zinc level was significantly lower in patients compared to the persons in the control group. In agreement with the findings of our study, they reported that age, gender, blood transfusion duration, and volume, mean pre-transfusion Hb concentration, deferasirox dose, and serum ferritin level bear no relation with serum zinc level in the patient group. Besides, serum zinc level was not found to associate with z-scores of stature, sitting, BMI, height index, and frequency of recent infections of patients [17].

Zinc deficiency in thalassemia major patients is determined by several factors, such as iron chelation therapy [18], ineffective erythropoiesis [19], increased hemolysis [19], and high prevalence of diabetes mellitus due to increased zinc losses [20].

Our study is consistent with the previous investigations [21], [22], [17]. In agreement with our study, several studies have shown that beta-thalassemia major patients have significantly lower serum zinc levels compared to healthy controls in the world [5], [14], [23].

Zinc deficiency in normal populations could be due to insufficient consumption of food sources rich with zinc and frequent consumption of tea. Dietary habits, geographical factors, and ethnic background may affect the serum zinc status in these patients may be contributory (Theodoridis et al., 1998). Our patients were under deferasirox therapy as well, high prevalence of zinc deficiency could be explained by disturbances of zinc metabolism, renal dysfunction, and high urinary zinc excretion. Furthermore, poor dietary intake of micronutrients has been documented in children and adolescents with sickle cell diseases [24].

The prevalence of zinc deficiency is high in patients when comparing with normal healthy individuals; therefore, we can justify that the zinc deficiency in beta-thalassemia major patients could be further complicated by several factors. These factors are not specific to thalassemia disease. The variations in the geographical distribution of zinc content in the

Table 2: The mean serum Zn levels in thalassemic patients and controls

Study groups	Mean (SD) µg/dl	t-test	p-value
Patients	74.79 (25.14)	-5.785	0.0001
Controls	93.61 (15.12)		

An independent t-test was performed for statistical analysis.

The prevalence of zinc deficiency is high in patients when comparing with normal healthy individuals; therefore, we can justify that the zinc deficiency in beta-thalassemia major patients could be further complicated by several factors. These factors are not specific to thalassemia disease. The variations in the geographical distribution of zinc content in the

Table 3: Association of patients’ characteristics with serum zinc levels

Characteristics	Zinc levels	p-value
Age of onset	Normal High Mid Severe	0.35
Below 1 year	35 2 10 9	
Above 1 year	7 1 3 3	
Type of chelation	Desferrioxamine 0 0 0 0	0.27
Desferrioxamine	0 0 0 0	
Deferasirox (Exjade)	36 3 12 10	0.08
Both deferasirox and deferasirox	4 0 1 0	
None	2 0 0 2	
BMI	Normal ≥18.5 and <25 kg/m²	0.08
Underweight ≥18.5 kg/m²	32 3 9 9	
Overweight ≥25 and <30 kg/m²	8 0 3 0	
Obese ≥30 kg/m²	2 0 1 1	
Residence	Urban 26 3 8 5	0.47
Rural	16 0 5 7	
Age	2–4 years 16 0 5 5	0.96
5–9 years	18 3 3 6	
10–12 years	8 0 5 1	
Gender	Male 19 3 3 4	0.29
Female	23 0 10 8	

Zinc levels: Normal serum zinc: 70–115 µg/dl. High serum zinc: >115 µg/dl. Mild Zn deficiency: 50–70 µg/dl. Severe Zn deficiency: <50 µg/dl. National Institutes of Health, 2000. BMI: Body mass index.

Table 4: The mean serum ferritin levels in thalassemic patients and controls

Study groups	Mean (SD) ng/dl	t-test	p-value
Patients	3217.57 (2307.19)	11.483	0.0001
Controls	93.61 (15.12)		

An independent t-test was performed for statistical analysis.

The prevalence of zinc deficiency is high in patients when comparing with normal healthy individuals; therefore, we can justify that the zinc deficiency in beta-thalassemia major patients could be further complicated by several factors. These factors are not specific to thalassemia disease. The variations in the geographical distribution of zinc content in the

Table 5: Correlation between serum zinc and serum ferritin of both case and control group

Details	Serum zinc mean (SD) µg/dl	Serum ferritin mean (SD) ng/dl	p-value
Patients	74.79 (25.14)	3217.57 (2307.19)	0.0001
Controls	93.61 (15.12)	46.37 (22.48)	0.915

An independent t-test was performed for statistical analysis.
Conclusion

The study showed that thalassemia patients have significantly lower serum level of zinc with no relation to medical factors.

References

1. Weatherall DJ. Thalassaemia: The long road from bedside to genome. Nat Rev Genet. 2004;5(8):625-31. https://doi.org/10.1038/nrg1406
PMid:15266345

2. Khan WA. Prevention is the only way to combat thalassemia. Daily Star. 2006;5(576):1-2.

3. Muncie HL, Campbell JS. Alpha and beta thalassaemia. Am Fam Physician. 2009;80(4):339-44.
PMid:19678601

4. Merat A, Haghshenas M. The spectrum of beta – thalassemia mutations in Iran. Med J Islam Repub Iran. 2000;14(1):103-6.

5. Al-Samarrai AH, Adaay MH, Al-Tikriti KA, Al-Anzy MM. Evaluation of some essential element levels in thalassemia major patients in Mosul district, Iraq. Saudi Med J. 2008;29(1):94-7.

6. Habibzadeh F, Yadollahie M, Merat A, Haghshenas M. Thalassemia in Iran; an overview. Arch Iran Med. 1998;1(1):27-33.

7. MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr. 2000;130(5):1500S-8.
PMid:10801966

8. Keikhbazi B, Badavi M, Pedram M, Zandian K, Rahim F. Serum zinc level in thalassemia major. Pak J Med Sci. 2010;26(4):942-5.

9. Akar N, Tekin M, Uysal Z, Uzunali O. Effect of desferrioxamine on urinary copper and zinc excretion in β-thalassemia major patients. J Trace Elem Exp Med. 2000;13(2):195-8. https://doi.org/10.1002/(sici)1520-670X(2000)13:2<195::aid-jtrem2>3.0.co;2-9

10. Claster S, Wood JC, Noetzel L, Carson SM, Hofstra TC, Khanna R, et al. Nutritional deficiencies in iron overloaded patients with hemoglobinopathies. Am J Hematol. 2009;84(6):344-8. https://doi.org/10.1002/ajh.21416
PMid:19415722

11. Prasad AS. Zinc in human health: Effect of zinc on immune cells. Mol Med. 2008;14(5-6):353-7. https://doi.org/10.1019/2008-00033;prasad
PMid:1838518

12. Tupe RS, Tupe SG, Tarwadi KV, Agte VV. Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions. Metabolism. 2010;59(11):1603-11. https://doi.org/10.1016/j.metabol.2010.02.020
PMid:20359724

13. Shamshirsaz AA, Bekehirnia MR, Kamgar M, Pourzahedgili N, Bouzari N, Habibzadeh M, et al. Metabolic and endocrinologic complications in beta-thalassemia major: A multicenter study in Tehran. BMC Endocr Disord. 2003;3(1):4. https://doi.org/10.1186/1472-6823-3-4
PMid:12914670

14. Yazdideh M, Faranosh M. Evaluation of serum zinc in children affected with beta-thalassemic patients. Res Med. 2010;24(1):7-9.

15. Brown KH, Wuehler SE, Peerson JM. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull. 2001;22(2):113-25. https://doi.org/10.1177/156482650102200201

16. Nidumuru S, Doddula V, Vadakedath S, Kolanu BR, Kandi V. Evaluating the role of zinc in beta thalassemia major: A prospective case-control study from a tertiary care teaching hospital in India. Cureus. 2017;9(7):e1495. https://doi.org/10.7759/cureus.1495
PMid:28948115

17. Karunaratna AM, Ranasingha JG, Mudiyanselage RM. Zinc status in beta thalassemia major patients. Biol Trace Elem Res. 2018;184(1):1-6. https://doi.org/10.1007/s12011-017-1158-0
PMid:28940159

18. Erdoğan E, Canatan D, Örmeci AR, Vural H, Aylak F. The effects of chelators on zinc levels in patients with thalassemia major. J Trace Elem Med Biol. 2013;27(2):109-11. https://doi.org/10.1016/j.jtemb.2012.10.002
PMid:23164519

19. Jansen J, Karges W, Rink L. Zinc and diabetes–clinical links and molecular mechanisms. J Nutr Biochem. 2009;20(6):399-417. https://doi.org/10.1016/j.jnutbio.2009.01.009

20. Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients. 2015;7(6):4296-307. https://doi.org/10.3390/nu7064296
PMid:26043030

21. Hettiarachchi M, Liyanage C, Wickremasinghe R, Hilmers DC, Abrams SA. Prevalence and severity of micronutrient deficiency: A cross-sectional study among adolescents in Sri Lanka. Asia Pac J Clin Nutr. 2006;15(1):56. https://doi.org/10.1038/sj.ejcn.1602791
PMid:16500879

22. Marasinghe E, Chackrewarthy S, Abeyesena C, Rajindrajith S. Micronutrient status and its relationship with nutritional status in preschool children in urban Sri Lanka. Asia Pac J Clin Nutr.
23. Mahyar A, Ayazi P, Pahlevan AA, Mojabi H, Sehhat MR, Javadi A. Zinc and copper status in children with Beta-thalassemia major. Iran J Pediatr. 2010;20(3):297-302. PMid:23056720

24. Kawchak DA, Schall JI, Zemel BS, Ohene-Frempong K, Stallings VA. Adequacy of dietary intake declines with age in children with sickle cell disease. J Am Diet Assoc. 2007;107(5):843-8. https://doi.org/10.1016/j.jada.2007.02.015 PMid:17467383

25. Mashhadi MA, Sepehri Z, Heidari Z, Shirzadeh E, Kiani Z. The prevalence of zinc deficiency in patients with thalassemia in South East of Iran, Sistan and Baluchistan province. Iran Red Crescent Med J. 2014;16(8):e6243. https://doi.org/10.5812/ircmj.6243 PMid:25389495

26. Wood JC, Tyszka JM, Carson S, Nelson MD, Coates TD. Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood. 2004;103(5):1934-6. https://doi.org/10.1182/blood-2003-06-1919 PMid:14630822

27. Mehdizadeh M, Zamani G, Tabatabaei S. Zinc status in patients with major beta-thalassemia. Pediatr Hematol Oncol. 2008;25(1):49-54. https://doi.org/10.1080/08880010701773738 PMid:18231954

28. El Missiry M, Hamed Hussein M, Khalid S, Yaqub N, Khan S, Itrat F, et al. Assessment of serum zinc levels of patients with thalassemia compared to their siblings. Anemia. 2014;2014:125452. https://doi.org/10.1155/2014/125452 PMid:25197566

29. Sherief LM, El-Salam A, Sanaa M, Kamal NM, Almalky MA, Azab SF, et al. Nutritional biomarkers in children and adolescents with beta-thalassemia-major: An Egyptian center experience. Biomed Res Int. 2014;2014:261761. https://doi.org/10.1155/2014/261761 PMid:24812610

30. Galanello R, Campus S. Deferiprone chelation therapy for thalassemia major. Acta Haematol. 2009;122(2-3):155-64. https://doi.org/10.1159/000243800 PMid:19907153

31. Sultan S, Irfan SM, Kakar J, Zeeshan R. Effect of iron chelator desferrioxamine on serum zinc levels in patients with beta thalassemia major. Malays J Pathol. 2015;37(1):35-8. PMid:25890611