Dimensional Reduction of the Generalized DBI

Jun-Kai Hoa,1 and Chen-Te Maa,2

a Department of Physics, Center for Theoretical Sciences,
b Center for Advanced Study in Theoretical Sciences, National Taiwan University,
Taipei 10617, Taiwan, R.O.C.
c Department of Physics, Brown University, Box 1843 Providence, RI 02912-1843, USA.

Abstract

We study the generalized Dirac-Born-Infeld (DBI) action of a q-brane ending on a p-brane with a $(q+1)$-form background. This action has the equivalence of commutative and non-commutative description, which can be understood from the generalized metric and Nambu-Sigma model. This theory reduces to the usual DBI action when $q = 1$. We also discuss the structure of the dimensional reduction of the generalized DBI.

1e-mail address: junkai125@gmail.com
2e-mail address: yefgst@gmail.com
1 Introduction

In string theory, T-duality shows the equivalence of two theories that seem different by exchanging radius R and radius $\frac{\alpha'}{R}$. For closed string, T-duality exchanges winding and momentum modes. In the case of open string, it exchanges the Dirichlet and Neumann boundary conditions. The low energy effective description of an open string ending on a single D-brane can be described by the DBI model [1]. We can observe T-duality in the DBI model. T-duality can also be seen in string field theory [2].

One interesting problem of brane theory is to construct action of a single M5-brane. An important observation is the equivalence of commutative and non-commutative description [3, 4] by studying the DBI, non-abelian DBI and Nambu-Poisson M5 [5] model. Hopefully, the equivalence of commutative and non-commutative description gives a strong constraint on the final form of a single M5-brane action. From this equivalence, we can deduce the suitable form of brane theory. The related closed-open string relations can also be obtained from the Nambu-Sigma model, which is the generalization of the Poisson-Sigma model. The description of this theory is a q-brane ending on a p-brane. This theory is called the generalized DBI which can be consistently reduced to DBI by considering 2-form background. One nice thing of the generalized DBI is that we can find the same form for the M5-brane as given in [6] up to the second order when considering the 5-brane theory in 3-form background. This implies that the DBI-part of the M5-brane theory can be obtained from the generalized DBI [7]. More evidences on the validity of the generalized DBI can be found by looking into the generalized metric as done in [8].

On the other hand, the recent interesting developments of T-duality are double field theory [9] and generalized geometry [10]. We can see manifest $O(D, D)$ by doubling coordinates in the formulation of the double field theory. The meaning of manifest $O(D, D)$ is to embed Busher’s rule in the $O(D, D)$ structure. Then we can exchange coordinates to obtain Busher’s rule. The current stage of double field theory is established on closed strings. Currently, we only have few understanding on open strings. The most important thing is the “stringy geometry” [11, 12] constructed in double field theory in understanding the non-geometric flux [13]. We already understood how to generalize the standard 10-dimensional supergravity (NS-NS) to the new 10-dimensional supergravity as shown in [12, 14]. We also expect that this different structure can give inspirations.
to other fields in analogy to the famous example that the quantum correction of string
theory inspires new gravity model [15]. Under the strong constraint (that is a constraint
for removing the additional coordinate), double field theory will reduce to the generalized
geometry. The study of relaxing constraint is in [16]. Other interesting features of double
field theory are α' geometry [17], exceptional field theory [18], D-brane [19] and others
[20]. The recent reviews are in [21]. The related discussions of generalized geometry
are curvature, torsion [22], Courant algebra [23], reduction [24], exceptional generalized
geometry [25] and supergravity [26].

The main task of this paper is to carry out the dimensional reduction of the general-
ized DBI. We perform dimensional reduction from a $(q + 1)$-brane ending on a $(p + 1)$-
brane to a q-brane ending on a p-brane. In this work, we only consider flat spacetime,
constant background and $(q+1)$-form gauge field only exists in $(q+1)$-dimensional world-
volume directions (no time direction) in q-p system. The non-trivial result is that the
appearance of the $2(q + 1)$-th root can be shown by the equivalence of commutative and
non-commutative description, which is inherited under the consistent dimensional reduc-
tion. The most interesting case is a 2-brane ending on a 5-brane. It can reduce to a
1-brane ending on a 4-brane. It shows that the non-trivial 2-brane ending on a 5-brane
can reduce to DBI theory in our simple consideration, and gives an interesting interpre-
tation to our calculations. The 2-5 system possibly inspires to the M2-M5 system, which
can go to F1-D4 system by dimensional reduction. We also explore the possibility of
extending the generalized DBI. We show that this theory is possible to include one-form
gauge field based on the consistency of dimensional reduction.

The plan of this paper is to first review the generalized DBI in Sec. 2. Then we
show the discussion of dimensional reduction without scalar fields in Sec. 3. Dimensional
reduction with scalar fields is in Sec. 4. Finally, we conclude in Sec. 5.

2 Review of the Generalized DBI

In this section, we review the generalized DBI. At first, we show the closed-open string
relations from string sigma model. Secondly, we generalize Poisson-Sigma model to
Nambu-Sigma model. We can also obtain generalized closed-open relations from the
Nambu-Sigma model. Thirdly, we introduce membrane action. We find that the action
is equivalent to Nambu sigma model under the gauge fixing. We also introduce worldsheet
We define our notations as follows. We denote the index A to be worldvolume direction. While $a, b = 1, 2, \cdots, p$ are reserved for the spatial components of worldvolume coordinates. $\mu, \nu = 0, 1, \cdots, D - 1$ denote target space indices and $w = 0, 1$ denote worldsheet indices. In addition, we use I to denote transverse direction and i, j to denote antisymmetric indices, $i = (i_1, i_2, \cdots, i_r)$ with $0 \leq i_1 < i_2 < \cdots < i_r \leq (r + 1)$, where r is the dimension of i.

2.1 Closed-Open Relations

We first introduce action of the Poisson-Sigma model \[S_P = \int_{\Sigma} \left(A_\mu \wedge dX^\mu - \frac{1}{2} \Pi^{\mu \nu} A_\mu \wedge A_\nu \right), \quad \Pi \equiv \frac{1}{2} \Pi^{\mu \nu} (X) \partial_\mu \wedge \partial_\nu, \] where $X : \Sigma \rightarrow M$, Σ is the two dimensional world-sheet and M is the target space manifold. The one-form field $A(\sigma)$ is on Σ and Π is an antisymmetric tensor. From the equations of motion

$$
\begin{align*}
 dX^\mu - \Pi^{\mu \nu} A_\nu &= 0, \\
 dA_\mu + \frac{1}{2} \partial_\mu \Pi^{\nu \rho} A_\nu \wedge A_\rho &= 0,
\end{align*}
$$

we can show that the bi-vector Π satisfy the Jacobi identity. The first equation is the equation of motion for A_μ. The other one is the equation of motion for X^μ. We can add a metric term in the Poisson-Sigma model to obtain the non-topological generalized Poisson-Sigma model

$$
S_P = \int_{\Sigma} \left(A_\mu \wedge dX^\mu - \frac{1}{2} \Pi^{\mu \nu} A_\mu \wedge A_\nu - \frac{1}{2} (G^{-1})^{\mu \nu} A_\mu \wedge *A_\nu \right),
$$

where $*A_\nu$ is the Hodge dual of A_ν. The signature of world-sheet is $(-, +)$ and volume form $d^2 \sigma \equiv d\sigma^0 \wedge d\sigma^1$. The $A_\mu \equiv A_{\mu w}(\sigma) d\sigma^w$ are auxiliary fields. By using the equation of motion of A_μ, the action \[(3) \] can be rewritten as the string sigma model action,

$$
S_S = - \int_{\Sigma} \frac{1}{2} (g_{\mu \nu} dX^\mu \wedge *dX^\nu + B_{\mu \nu} dX^\mu \wedge dX^\nu),
$$

where the g and B are defined by the closed-open string relations \[(3) \]

$$
\frac{1}{g + B} = G^{-1} + \Pi \Rightarrow \quad G = g - B g^{-1} B, \quad \Pi = -G^{-1} B g^{-1} = -g^{-1} B G^{-1}.
$$
The action (3) can also be rewritten in terms of the components of $\eta_\mu \equiv -A_\mu(\sigma)$ and $\tilde{\eta}_\nu \equiv A_{\nu 0}(\sigma)$, the action is

$$S_P = \int d^2 \sigma \left[-\frac{1}{2} (G^{-1})^{\mu\nu} \eta_\mu \eta_\nu + \frac{1}{2} (G^{-1})^{\mu\nu} \tilde{\eta}_\mu \tilde{\eta}_\nu + \eta_\mu \partial_0 X^\mu + \tilde{\eta}_\mu \partial_1 X^\mu - \Pi^{\mu\nu} \eta_\mu \tilde{\eta}_\nu \right].$$

(6)

We can use matrix notation to rewrite it. We define

$$\eta \equiv \eta_\mu, \quad \tilde{\eta} \equiv \tilde{\eta}_\nu, \quad G \equiv G^{\mu\nu}, \quad X \equiv X^\mu, \quad \Pi \equiv \Pi^{\mu\nu}.$$

(7)

The action is

$$S_P = \int d^2 \sigma \left[-\frac{1}{2} \eta^T G^{-1} \eta + \frac{1}{2} \tilde{\eta}^T G^{-1} \tilde{\eta} + \partial_0 X^T \eta + \partial_1 X^T \tilde{\eta} - \eta^T \Pi \eta \right].$$

(8)

where the superscript T indicates transpose of matrix. By using the matrix notation, it is easier to generalize Poisson-Sigma model.

2.2 Generalized Closed-Open Relations

We introduce Nambu-Sigma model at first. It is a generalized Poisson-Sigma model. The action is

$$S_N = \int d^{q+1} \sigma \left[-\frac{1}{2} \eta^T \tilde{G}^{-1} \eta + \frac{1}{2} \tilde{\eta}^T \tilde{G}^{-1} \tilde{\eta} + \partial_0 X^T \eta + \partial_1 X^T \tilde{\eta} - \eta^T \Pi \eta \right],$$

(9)

where

$$\tilde{G}_{ij} = \sum_\pi \text{sgn}(\pi) G_{i_{\pi(1)}j_1} \cdots G_{i_{\pi(q)}j_q},$$

(10)

π is a permutation and the antisymmetric product of partial derivatives

$$\tilde{\partial} X^i \equiv \sum_{a_1, \ldots, a_q = 1} \epsilon^{a_1 a_2 \cdots a_q} \partial_{a_1} X^{i_1} \cdots \partial_{a_q} X^{i_q},$$

(11)

where $0 \leq i_1 < \cdots < i_q \leq (q + 1)$. There are two types of metrics G and \tilde{G}, auxiliary fields η and $\tilde{\eta}$, and an antisymmetric $(q + 1)$-form tensor Π. We can integrate out the fields η and $\tilde{\eta}$. Then the resulting action is

$$S_b = \frac{1}{2} \int d^{q+1} \sigma \left[\partial_0 X^T g \partial_0 X - \tilde{\partial} X^T \tilde{g} \tilde{\partial} X \right] - \int d^{q+1} \sigma \partial_0 X^T C \tilde{\partial} X,$$

(12)
where
\[g \equiv g_{\mu\nu}, \quad \tilde{g} \equiv \tilde{g}_{ij}, \quad C \equiv C_{\mu i}. \] (13)

We identify \(g \) by
\[g = (G^{-1} + \Pi \tilde{G} \Pi^T)^{-1}, \quad \tilde{g} = (\tilde{G}^{-1} + \Pi^T \tilde{G} \Pi)^{-1}, \quad C = -g \Pi \tilde{G} = -G \Pi \tilde{g}. \] (14)

For the special case \(q = 1 \), these relations reduce to the closed-open string relations \[5 \]. We can also rewrite the action after using Wick rotation \((\sigma^0 \rightarrow -i\sigma^0) \) by the compact matrix form
\[S_{bE} = \frac{1}{2} \int d^{t+1}\sigma \left[V^+ \left(\begin{array}{cc} g & C \\ -CT & \tilde{g} \end{array} \right) V \right], \quad \left(\exp(iS_b) = \exp(-S_{bE}) \right) \] (15)
where
\[V \equiv \left(\begin{array}{c} i\partial_\tau X^\mu \\ \frac{\partial_\sigma}{\partial X^i} \end{array} \right). \] (16)

Let \(\mathcal{G} \) denote the matrix
\[\mathcal{G} \equiv \left(\begin{array}{cc} g & C \\ -CT & \tilde{g} \end{array} \right). \] (17)
We can find the inverse matrix
\[\mathcal{G}^{-1} = \left(\begin{array}{cc} (g + C \tilde{g}^{-1} CT)^{-1} & -(g + C \tilde{g}^{-1} CT)^{-1} \tilde{g}^{-1} \\ \tilde{g}^{-1} CT(g + C \tilde{g}^{-1} CT)^{-1} & (g + C \tilde{g}^{-1} CT)^{-1} \tilde{g} \end{array} \right), \] (18)

by using the analytic inversion formula
\[\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)^{-1} = \left(\begin{array}{cc} a^{-1} + a^{-1}b(d-ca^{-1}b)^{-1}ca^{-1} & -a^{-1}b(d-ca^{-1}b)^{-1} \\ -(d-ca^{-1}b)^{-1}ca^{-1} & (d-ca^{-1}b)^{-1} \end{array} \right) \]
\[= \left(\begin{array}{cc} (a - bd^{-1}c)^{-1} & -(a - bd^{-1}c)^{-1}bd^{-1} \\ -d^{-1}c(a - bd^{-1}c)^{-1} & d^{-1} + d^{-1}c(a - bd^{-1}c)^{-1}bd^{-1} \end{array} \right). \] (19)

We also consider
\[\mathcal{H} \equiv \left(\begin{array}{cc} G & \Phi \\ -\Phi^T & \tilde{G} \end{array} \right)^{-1} + \left(\begin{array}{cc} 0 & \Pi \\ -\Pi^T & 0 \end{array} \right) \]
\[= \left(\begin{array}{cc} (G + \Phi \tilde{G}^{-1} \Phi^T)^{-1} & -(G + \Phi \tilde{G}^{-1} \Phi^T)^{-1} \tilde{G}^{-1} + \Pi \\ \tilde{G}^{-1} \Phi^T(G + \Phi \tilde{G}^{-1} \Phi^T)^{-1} - \Pi^T & (G + \Phi \tilde{G}^{-1} \Phi^T)^{-1} \Phi \tilde{G}^{-1} \end{array} \right). \] (20)
Interestingly, we can get the generalized closed-open relations by setting $G^{-1} = H$, the results are

$$g + C\hat{g}^{-1}C^T = G + \Phi\hat{g}^{-1}\Phi^T, \quad \hat{g} + C^Tg^{-1}C = \hat{G} + \Phi^TG^{-1}\Phi,$$

$$g^{-1}C = G^{-1}\Phi - \Pi(\hat{G} + \Phi^TG^{-1}\Phi), \quad \Phi\hat{G}^{-1} = C\hat{g}^{-1} + (g + C\hat{g}^{-1}C^T)\Pi.$$ (21)

These relations imply that we can use

$$g \leftrightarrow G, \quad \hat{g} \leftrightarrow \hat{G}, \quad C \leftrightarrow \Phi, \quad \Pi \leftrightarrow -\Pi$$

(23)

to write the action in terms of G, Φ and Π. If $q = 1$, we can get

$$\frac{1}{g + B} = \frac{1}{G + \Phi} + \Pi.$$ (24)

We can use $G = H^{-1}$ to get another form of the generalized closed-open relations as well.

$$\begin{pmatrix} g & C \\ -C^T & \hat{g} \end{pmatrix} = H^{-1}.\quad (25)$$

We determine g explicitly by this way

$$g^{-1} = (G + \Phi\hat{G}^{-1}\Phi^T)^{-1}$$

$$-\left(- (G + \Phi\hat{G}^{-1}\Phi^T)^{-1}\Phi\hat{G}^{-1}(\hat{G} + \Phi^TG^{-1}\Phi) + \Pi(\hat{G} + \Phi^TG^{-1}\Phi)\right)$$

$$\cdot \left(\hat{G}^{-1}\Phi^T(G + \Phi\hat{G}^{-1}\Phi)^{-1} - \Pi^T\right)$$

$$= (G + \Phi\hat{G}^{-1}\Phi^T)^{-1} + (G + \Phi\hat{G}^{-1}\Phi^T)^{-1}\Phi\hat{G}^{-1}(\hat{G} + \Phi^TG^{-1}\Phi)\hat{G}^{-1}\Phi^T(G + \Phi\hat{G}^{-1}\Phi^T)^{-1}$$

$$- (G + \Phi\hat{G}^{-1}\Phi^T)^{-1}\Phi\hat{G}^{-1}(\hat{G} + \Phi^TG^{-1}\Phi)\Pi^T - \Pi(\hat{G} + \Phi^TG^{-1}\Phi)\hat{G}^{-1}\Phi^T(G + \Phi\hat{G}^{-1}\Phi^T)^{-1}$$

$$+ \Pi(\hat{G} + \Phi^TG^{-1}\Phi)\Pi^T.$$ (26)

Before we give the explicit answer, we show the trick for the third and fourth terms. The third term is

$$-(G + \Phi\hat{G}^{-1}\Phi^T)^{-1}\Phi\hat{G}^{-1}(\hat{G} + \Phi^TG^{-1}\Phi)\Pi^T$$

$$= -(G + \Phi\hat{G}^{-1}\Phi^T)^{-1}(\Phi + \Phi\hat{G}^{-1}\Phi^TG^{-1}\Phi)\Pi^T$$

$$= -\left((G + \Phi\hat{G}^{-1}\Phi^T)G^{-1}\Phi(G^{-1}\Phi)^{-1}\right)^{-1}(\Phi + \Phi\hat{G}^{-1}\Phi^TG^{-1}\Phi)\Pi^T$$

$$= -G^{-1}\Phi\Pi^T.$$ (27)
The fourth term is
\[
-\Pi(\tilde{G} + \Phi^T G^{-1}\Phi) G^{-1}\Phi^T(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}
\]
\[
= -\Pi(\Phi^T + \Phi^T G^{-1}\Phi\tilde{G}^{-1}\Phi^T)(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}
\]
\[
= -\Pi(\Phi^T + \Phi^T G^{-1}\Phi\tilde{G}^{-1}\Phi^T) \left((\Phi^TG^{-1})^{-1}\Phi^TG^{-1}(G + \Phi\tilde{G}^{-1}\Phi^T) \right)^{-1}
\]
\[
= -\Pi\Phi^TG^{-1}. \quad (28)
\]

By using the same method, the first and second term are
\[
(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1} + G^{-1}\Phi\tilde{G}^{-1}\Phi^T(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}
\]
\[
= (1 + G^{-1}\Phi\tilde{G}^{-1}\Phi^T)(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}
\]
\[
= G^{-1}. \quad (29)
\]

We can see explicit answer by combining all terms.
\[
g^{-1} = (1 - \Phi\Pi^T)^T G^{-1}(1 - \Phi\Pi^T) + \Pi\tilde{G}\Pi^T. \quad (30)
\]

Then \(C\) is also easy to obtain
\[
C = -\left((1 - \Phi\Pi^T)^T G^{-1}(1 - \Phi\Pi^T) + \Pi\tilde{G}\Pi^T \right)^{-1}
\]
\[
\times \left(- (G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}\Phi\tilde{G}^{-1} + \Pi \right) \left(\tilde{G} + \Phi^TG^{-1}\Phi \right)
\]
\[
= \left((1 - \Phi\Pi^T)^T G^{-1}(1 - \Phi\Pi^T) + \Pi\tilde{G}\Pi^T \right)^{-1} \left((1 - \Phi\Pi^T)^T G^{-1}\Phi - \Pi\tilde{G} \right). \quad (31)
\]

Explicit expression for \(\tilde{g}^{-1}\) can be shown below
\[
\tilde{g}^{-1} = (\tilde{G} + \Phi^T G^{-1}\Phi)^{-1}
\]
\[
+ \left(\tilde{G}^{-1}\Phi^T - \Pi^T(G + \Phi\tilde{G}^{-1}\Phi^T) \right) \left((G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}\Phi\tilde{G}^{-1} - \Pi \right)
\]
\[
= (\tilde{G} + \Phi^TG^{-1}\Phi)^{-1} + \tilde{G}^{-1}\Phi^T(G + \Phi\tilde{G}^{-1}\Phi^T)^{-1}\Phi\tilde{G}^{-1}
\]
\[
- \tilde{G}^{-1}\Phi^T\Pi - \Pi^T\Phi\tilde{G}^T + \Pi^T(G + \Phi\tilde{G}^{-1}\Phi^T)\Pi. \quad (32)
\]

The first term can be rewritten by
\[
(a + b)^{-1} = a^{-1} - a^{-1}b(b + ba^{-1}b)^{-1}ba^{-1}. \quad (33)
\]
The above formula can be derived from Binomial Inverse Theorem. The first term is
\[
\tilde{G}^{-1} - \tilde{G}^{-1}(\Phi^T \tilde{G}^{-1} \Phi+(\Phi^T \tilde{G}^{-1} \Phi \tilde{G}^{-1} \Phi^T \Phi \tilde{G}^{-1} \Phi^T \Phi \tilde{G}^{-1} \Phi)^{-1}) \tilde{G}^{-1} \Phi \tilde{G}^{-1}
\]
\[
= \tilde{G}^{-1} - \tilde{G}^{-1} \Phi^T (\Phi^T + \Phi^T \tilde{G}^{-1} \Phi \tilde{G}^{-1} \Phi^T)^{-1} \Phi \tilde{G}^{-1}
\]
\[
= \tilde{G}^{-1} - \tilde{G}^{-1} \Phi^T \left(1 + \tilde{G}^{-1} \Phi \tilde{G}^{-1} \Phi^T \right)^{-1} \tilde{G}^{-1} \Phi \tilde{G}^{-1}
\]
(34)

If we combine the first term and second term, we obtain \(\tilde{G}^{-1}\). Now we can combine all terms to see explicit answer.
\[
\tilde{g}^{-1} = (1 - \Phi^T \Pi) \tilde{G}^{-1} (1 - \Phi^T \Pi) + \Pi^T \Pi.
\]
(35)

However, the (21) and (22) can be a possibility of the generalization of the closed-open relations. We call these relations “generalized closed-open relations”. We can also use the generalized metric to see the generalized closed-open relations. The generalized metric is exactly the matrix in the Hamiltonian. We start from
\[
S_{bE} = \frac{1}{2} \int d^{q+1}\sigma \left[V^T \left(\begin{array}{cc} g & C \\ -C^T & \tilde{g} \end{array} \right) \right].
\]
(36)

Then we show the Hamiltonian
\[
H[X,P] = \int d^q\sigma \left(\partial_0 X^T P - S_{bE} \right),
\]
\[
= \int d^q\sigma \left(\partial_0 X^T (g \partial_0 X - i C \partial X) - \frac{1}{2} \partial_0 X^T g \partial_0 X - \frac{1}{2} \partial_0 X^T \tilde{g} \partial X + i \partial_0 X^T C \partial X \right)
\]
\[
= \int d^q\sigma \left(\frac{1}{2} \partial_0 X^T g \partial_0 X - \frac{1}{2} \partial X^T \tilde{g} \partial X \right)
\]
\[
= -\frac{1}{2} \int d^q\sigma \left(\frac{i P}{\partial X^i} \right)^T \left(\begin{array}{cc} g^{-1} & -g^{-1} C \\ -C^T g^{-1} \tilde{g} + C^T g^{-1} C \end{array} \right) \left(\frac{i P}{\partial X^i} \right),
\]
(37)

where \(P\) is the canonical momenta corresponding to the fields \(X\) (\(P = g \partial_0 X - i C \partial X\)). If we consider \(q = 1\), the matrix in Hamiltonian has the same structure as the familiar generalized metric.
We can use another way to write the generalized metric
\[
\begin{pmatrix}
1 & \Pi \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi^T & 1
\end{pmatrix}
\begin{pmatrix}
G^{-1} & 0 \\
0 & \tilde{G}
\end{pmatrix}
\begin{pmatrix}
1 & -\Phi \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi^T & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
(1 - \Pi \Phi^T)G^{-1}(1 - \Phi \Pi^T) + \Pi \tilde{G}\Pi^T & -(1 - \Pi \Phi^T)G^{-1}\Phi + \Pi \tilde{G} \\
-\Phi^T G^{-1}(1 - \Phi \Pi^T) + \tilde{G}\Pi^T & \Phi^T G^{-1}\Phi + \tilde{G}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
g^{-1} & -g^{-1}C \\
-C^T g^{-1} & \tilde{g} + C^T g^{-1}C
\end{pmatrix}. \tag{38}
\]

Then we can get the generalized closed-open relations from the generalized metric.

2.3 Membrane Action

We start from the action
\[
S_M = -\int d^{p+1}\sigma \sqrt{-\det(g_{\mu\nu}\partial_{A}\!^{\mu}\partial_{B}\!^{\nu})} \tag{39}
\]

to introduce membrane action. We can introduce an auxiliary field \(h_{AB} \) and write the classically equivalent action
\[
S_{Mc} = -\frac{1}{2} \int d^{p+1}\sigma \sqrt{-\det h(x)} \left(g_{\mu\nu} h^{AB} \partial_{A}\!^{\mu}\partial_{B}\!^{\nu} - (q - 1) \right). \tag{40}
\]

We used equations of motion of \(h^{AB} \)
\[
\frac{1}{2} h_{AB} \left(h^{CD} \partial_{C}\!^{\mu}\partial_{D}\!^{\nu} g_{\mu\nu} - (q - 1) \right) = \partial_{A}\!^{\mu}\partial_{B}\!^{\nu} g_{\mu\nu} \tag{41}
\]

to derive the equivalence. For \(q \neq 1 \), we also have
\[
h^{AB} \partial_{A}\!^{\mu}\partial_{B}\!^{\nu} g_{\mu\nu} = q + 1. \tag{42}
\]

Then we can get \(h_{AB} = \partial_{A}\!^{\mu}\partial_{B}\!^{\nu} g_{\mu\nu} \). Even for \(q \neq 1 \), we can also show the equivalence as \(q = 1 \). After we gauge fix (by reparametrization invariance) the components \(h_{a0}, h_{0b} \) and \(h_{00} \) by choosing \(h_{a0} = h_{0b} = 0 \) and \(h_{00} = -\det(h_{ab}) \), and use the equations of motion of \(h^{ab} \)
\[
h_{ab} \left(h^{cd} \partial_{c}\!^{\mu}\partial_{d}\!^{\nu} g_{\mu\nu} - (q - 1) \right) = \partial_{a}\!^{\mu}\partial_{b}\!^{\nu} g_{\mu\nu}, \tag{43}
\]
we get a classically equivalent action with gauge fixing

\[
S_{gf} = \frac{1}{2} \int d^{q+1}\sigma \left[g_{\mu\nu} \partial_\mu X^\nu \partial_0 X^\nu - \det(g_{\mu\nu} \partial_a X^\mu \partial_b X^\nu) \right]. \tag{44}
\]

The action (44) can also be rewritten as

\[
S_{gf} = \frac{1}{2} \int d^{q+1}\sigma \left[\partial_0 X g \partial_0 X - \tilde{\partial} X \tilde{g} \tilde{\partial} X \right]. \tag{45}
\]

We can also add a \((q+1)\)-form background field term, \(\frac{1}{(q+1)!} C_{i_1 i_2 \ldots i_{q+1}} dx^{i_1} dx^{i_2} \ldots dx^{i_{q+1}}\). The action is

\[
S_C = - \int d^{q+1}\sigma \partial_0 X C \tilde{\partial} X. \tag{46}
\]

If we combine \(S_{gf}\) with \(S_C\), we can get the same action as the Nambu-Sigma model.

2.4 Generalized DBI

Before we generalize the DBI action, we first review the well-known theory, DBI theory, which is an effective action for an open string ending on a D-brane. The action is

\[
-\frac{1}{g_s} \int d^{p+1}x \sqrt{-\det [g + B + F]} = -\frac{1}{g_s} \int d^{p+1}x \left(-\det[g] \right)^{\frac{1}{4}} \left(-\det \left[g-(B+F)g^{-1}(B+F) \right] \right)^{\frac{1}{4}}, \tag{47}
\]

where \(g_s\), \(g\) and \(B\) are closed string coupling constant, metric and background. \(F\) is the usual abelian field strength \((F = dA)\). Before we show the equivalence of commutative and non-commutative description, we discuss the relations between the closed and open string parameters. These are

\[
G_s = g_s \left(\frac{\det(G + \Phi)}{\det(g + B)} \right)^{\frac{1}{2}}, \tag{48}
\]

\[
g - Bg^{-1}B = G - \Phi G^{-1}\Phi, \quad Bg^{-1} = \Phi G^{-1} - (G - \Phi G^{-1}\Phi)\Pi. \tag{49}
\]

The meaning of the above relations is to determine the open string variables from closed string variables by choosing \(\Pi\). We can also rewrite \(G_s\) as

\[
G_s = g_s \left(\frac{\det(G + \Phi)}{\det(g + B)} \right)^{\frac{1}{2}} = g_s \left(\frac{\det G}{\det g} \right)^{\frac{1}{4}} \left(\frac{\det(G - \Phi G^{-1}\Phi)}{\det(g - Bg^{-1}B)} \right)^{\frac{1}{4}} = g_s \left(\frac{\det G}{\det g} \right)^{\frac{1}{4}}. \tag{50}
\]
Now we include the gauge field in the generalized metric
\[
\begin{pmatrix}
1 & F \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & B \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
g & 0 \\
0 & g^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-B & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-F & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
g - (B + F)g^{-1}(B + F) & (B + F)g^{-1} \\
g^{-1}(B + F) & g^{-1}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & F \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & \Phi \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
G & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-F & 1
\end{pmatrix}
\]
\[
\cdot \begin{pmatrix}
1 & 0 \\
-(\Phi + F') & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
F' & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-F & 1
\end{pmatrix}
\] (51)

Now we add one new block matrix \(N \) to factorize of the generalized metric. Later we will combine them to see the equivalence of non-commutative and commutative description
\[
\begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & \Phi' \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
G & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi' & 1
\end{pmatrix}
\begin{pmatrix}
N & 0 \\
0 & (N^{-1})^T
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi' \\
0 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
1 & -F' \\
0 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & F \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -F' \\
0 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 + F\Pi & -1 + (F\Pi)F' + F \\
\Pi & -\Pi F' + 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi' \\
0 & 1
\end{pmatrix}
\] (52)

where \(\Phi' = \Phi + F' \). From
\[
\begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi' \\
0 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & \Pi \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi' \\
0 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 + F\Pi & -1 + (F\Pi)F' + F \\
\Pi & -\Pi F' + 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi' \\
0 & 1
\end{pmatrix}
\] (53)

we can obtain
\[
\Pi' = (1 + \Pi F)^{-1}\Pi = \Pi(1 + F\Pi)^{-1},
\]
\[
F' = F(1 + \Pi F)^{-1} = (1 + F\Pi)^{-1}F,
\]
\[
N = 1 + \Pi F.
\] (54)
We can also find useful formula from
\[
\begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & N^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & \Phi' \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
G & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi' & 1
\end{pmatrix}
\begin{pmatrix}
N & 0 \\
0 & (N^{-1})^T
\end{pmatrix}
\begin{pmatrix}
1 & -\Pi'
\end{pmatrix}
=
\begin{pmatrix}
g - (B + F)g^{-1}(B + F) & (B + F)g^{-1} \\
-g^{-1}(B + F) & g^{-1}
\end{pmatrix}.
\]
(55)

Then we find
\[
g - (B + F)g^{-1}(B + F) = N^T\left(G - \Phi'G^{-1}\Phi'\right)N,
\]
\[
(B + F)g^{-1} = -N^T\left(G - \Phi'G^{-1}\Phi'\right)\Pi' + N^T\Phi'G^{-1}(N^T)^{-1},
\]
\[
g^{-1} = -\Pi'N^TGN\Pi' + \left(\Pi'N^T\Phi' + N^{-1}\right)G^{-1}\left(\Phi'N\Pi' + (N^T)^{-1}\right).
\]

Thus, we have
\[
det\left(g - (B + F)g^{-1}(B + F)\right) = det^2(N) det\left(G - \Phi'G^{-1}\Phi'\right),
\]
\[
(g + B + F)^{-1} = \Pi' + \left(N^T(G + \Phi')N\right)^{-1}.
\]
(56)

The DBI action can be rewritten from the closed string parameters to the open string parameters by the above relations
\[
-\frac{1}{g_s}\left(-\det\left[g + B + F\right]\right)^{\frac{1}{2}}
= -\frac{1}{g_s}\left(-\det[g]\right)^{\frac{1}{4}}\left(-\det\left[g - (B + F)g^{-1}(B + F)\right]\right)^{\frac{1}{4}}
= -\frac{1}{g_s}\left(-\det[g]\right)^{\frac{1}{4}}\det^{\frac{1}{4}}\left(1 + \Pi F\right)\left(-\det\left[G - \Phi'G^{-1}\Phi'\right]\right)^{\frac{1}{4}}
= -\frac{1}{G_s}\det\left[1 + \Pi F\right]\left(-\det[G]\right)^{\frac{1}{4}}\left(-\det\left[G - \Phi'G^{-1}\Phi'\right]\right)^{\frac{1}{4}}
= -\frac{1}{G_s}\det\left[1 + \Pi F\right]\left(-\det\left[G + \Phi'\right]\right)^{\frac{1}{2}}.
\]
(57)

Then we perform Seiberg-Witten map to get
\[
-\int d^{p+1}x \frac{1}{g_s}\left(-\det\left[g + B + F\right]\right)^{\frac{1}{2}} = -\int d^{p+1}\hat{x} \frac{1}{G_s}\det^{\frac{1}{4}}\left(\hat{\Pi}\right)\left(-\det\left[\hat{G} + \hat{\Phi}'\right]\right)^{\frac{1}{2}},
\]
(58)
where the superscript \(^\hat{} \) means the fields evaluated at **covariant coordinates**. When we change the coordinates, \(x \mapsto \rho^*_A(x) = \hat{x} = x + \Pi \hat{A} \) induced by a map \(\Pi \mapsto \Pi' = (1 + \Pi \cdot F)^{-1}\Pi \). The coordinate \(\hat{x}^\mu \) is called **covariant coordinate**. We used
\[
\det(1 + \Pi F) = \det \left(\frac{\Pi'}{\Pi} \right) \det^2 \left(\frac{\partial x}{\partial \hat{x}} \right)
\]
to show the equivalence of the non-commutative and commutative description in the DBI theory.

We expect that we can use the similar method to generalize DBI theory. In other words, we use the equivalence of non-commutative and commutative description to construct the generalized DBI theory. In the generalized DBI theory, the background field is \((q + 1)\)-form. When \(q=1 \), we can obtain the usual DBI theory.

The generalization of DBI can also be done by a similar decomposition of matrix
\[
\begin{pmatrix}
1 & -H^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -C^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{g} & 0 \\
0 & g^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-C & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-H & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
\tilde{g} + (C + H)^T g^{-1}(C + H) & -(C + H)^T g^{-1} \\
-g^{-1}(C + H) & g^{-1}
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & -H^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & -\Phi^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{G} & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-H & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
1 & -H^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Pi & 1
\end{pmatrix}
\begin{pmatrix}
1 & H^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & -(\Phi^T + H'^T) \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{G} & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-H & 1
\end{pmatrix}
\cdot
\]
\[
\begin{pmatrix}
1 & 0 \\
\Pi' & 1
\end{pmatrix}
\begin{pmatrix}
N^T & 0 \\
0 & M^T
\end{pmatrix}
\begin{pmatrix}
1 & -\Phi^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{G} & 0 \\
0 & G^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-\Phi' & 1
\end{pmatrix}
\begin{pmatrix}
N & 0 \\
0 & M
\end{pmatrix}
\begin{pmatrix}
1 & \Pi'^T \\
0 & 1
\end{pmatrix}
\]
where $\Phi' = \Phi + H'$. From
\[
\begin{pmatrix} 1 & 0 \\ \Pi' & 1 \end{pmatrix} \begin{pmatrix} N^T & 0 \\ 0 & M^T \end{pmatrix} = \begin{pmatrix} N^T & 0 \\ \Pi' N^T & M^T \end{pmatrix} \\
= \begin{pmatrix} 1 & -H^T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \Pi & 1 \end{pmatrix} \begin{pmatrix} 1 & H'^T \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - H^T \Pi & (1 - H^T \Pi) H'^T - H^T \\ \Pi & \Pi H'^T + 1 \end{pmatrix},
\]
(62)
we can obtain
\[
\Pi' = \Pi(1 - H^T \Pi)^{-1},
\]
\[
H' = H(1 - \Pi^T H)^{-1},
\]
\[
N = 1 - \Pi^T H = (1 + \Pi^T H)^{-1},
\]
\[
M = 1 + H' \Pi^T = (1 - H \Pi)^{-1}.
\]
(63)

We can also find useful formula from
\[
\begin{pmatrix} 1 & 0 \\ \Pi' & 1 \end{pmatrix} \begin{pmatrix} N^T & 0 \\ 0 & M^T \end{pmatrix} \begin{pmatrix} 1 & -\Phi'^T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{G} & 0 \\ 0 & G^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Phi' & 1 \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & M \end{pmatrix} \begin{pmatrix} 1 & \Pi'^T \\ 0 & 1 \end{pmatrix} \\
= \begin{pmatrix} \tilde{g} + (C + H)^T g^{-1} (C + H) & -(C + H)^T g^{-1} \\ -g^{-1} (C + H) & g^{-1} \end{pmatrix}.
\]
(64)

Then we find
\[
\tilde{g} + (C + H)^T g^{-1} (C + H) = N^T \left(\tilde{G} + \Phi'^T G^{-1} \Phi' \right) N,
\]
\[
-(C + H)^T g^{-1} = N^T \left(\tilde{G} + \Phi' G^{-1} \Phi' \right) N \Pi'^T \Pi'^T - N^T \Phi'^T G^{-1} M,
\]
\[
g^{-1} = \Pi'^T N^T \tilde{G} N \Pi'^T + \left(- \Pi' N^T \Phi'^T + M^T \right) G^{-1} \left(- \Phi' N \Pi'^T + M \right).
\]

Thus, we have
\[
det \left(\tilde{g} + (C + H)^T g^{-1} (C + H) \right) = det^2(N) det \left(\tilde{G} + \Phi'^T G^{-1} \Phi' \right) \\
= det^2 \left(1 - \Pi'^T H \right) \left(\tilde{G} + \Phi'^T G^{-1} \Phi' \right). \quad (65)
\]
From the down right block of
\[
\begin{pmatrix}
1 & -\Pi^T \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
N^{-1} & 0 \\
0 & M^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
\Phi' & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{G}^{-1} & 0 \\
0 & G
\end{pmatrix}
\begin{pmatrix}
1 & \Phi^T \\
0 & (M^T)^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-P' & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{g} + (C + H)^T g^{-1}(C + H) & - (C + H)^T g^{-1} \\
-g^{-1}(C + H) & g^{-1}
\end{pmatrix}^{-1},
\]
we can obtain
\[
\det \left(g + (C + H)\tilde{g}^{-1}(C + H)^T \right) = \det [M^{-1} \left(G + \Phi' \tilde{G}^{-1} \Phi^T \right) (M^{-1})^T] = \det^2 (1 - H \Pi^T) \det \left(G + \Phi' \tilde{G}^{-1} \Phi^T \right). \tag{66}
\]
We also have
\[
\det (1 - \Pi^T H) = \det (1 - H \Pi^T) = \det \left(\frac{\Pi}{\Pi} \right) \det g^{q+1} \left(\frac{\partial x}{\partial \tilde{x}} \right). \tag{67}
\]
We can get \(\frac{\partial x}{\partial \tilde{x}}\)^2(q+1) in the action. From this term, we postulate the action can be
\[
S_{GDBI} = - \int d^{p+1}x \frac{1}{g_b} \left(- \det [g] \right)^{\frac{q}{2(q+1)}} \cdot \left(- \det [g + (C + H)\tilde{g}^{-1}(C + H)^T] \right)^{\frac{1}{2(q+1)}}.
\tag{69}
\]
because the term \(\frac{\partial x}{\partial \tilde{x}}\)^2(q+1) cancel with the Jacobian which arise from coordinate transformation, such that the Lagrangian is an integral density. The coupling constant \(g_b\) is called closed brane coupling constant. We can also rewrite open brane coupling constant \(G_b\) as
\[
G_b = g_b \left(\frac{\det G}{\det g} \right)^{\frac{q}{2(q+1)}} \left(\frac{\det (G + \Phi \tilde{G}^{-1} \Phi^T)}{\det (g + C \tilde{g}^{-1} C^T)} \right)^{\frac{1}{2(q+1)}} = g_b \left(\frac{\det G}{\det g} \right)^{\frac{q}{2(q+1)}}.
\tag{70}
\]
We used
\[
G + \Phi \tilde{G}^{-1} \Phi^T = g + C \tilde{g}^{-1} C^T
\tag{71}
in the last equality. The action of the generalized DBI can be rewritten from the closed.
brane parameters to the open brane parameters.

\[- \int d^{p+1}x \frac{1}{g_b} \left(- \det [g] \right)^{\frac{q}{2(q+1)}} \cdot \left(- \det \left[g + (C + H)\tilde{g}^{-1}(C + H)^T \right] \right)^{\frac{1}{2(q+1)}} \]

\[= - \int d^{p+1}x \frac{1}{G_b} \left(- \det [G] \right)^{\frac{q}{2(q+1)}} \cdot \left(- \det \left[g + (C + H)\tilde{g}^{-1}(C + H)^T \right] \right)^{\frac{1}{2(q+1)}} \]

\[= - \int d^{p+1}x \frac{1}{G_b} \left(- \det [\hat{G}] \right)^{\frac{q}{2(q+1)}} \cdot \left(- \det \left[\hat{G} + \hat{\Phi}'\tilde{G}^{-1}\hat{\Phi}^T \right] \right)^{\frac{1}{2(q+1)}}. \quad (72)\]

This action is based on the equivalence of non-commutative and commutative gauge theory. The closed-open relations can be generalized from the generalized metric. On the other hand, it can also be derived from the Nambu-Sigma model. This generalized DBI theory can also be viewed as a generalization of the DBI. If we consider 2-form background, it goes back to the usual DBI theory. If we choose 3-form background and \(p=5\), the action is

\[S_{5-\text{DBI}} = - \int d^6x \frac{1}{g_b} \sqrt{-\det(g)} \cdot \det \left[1 + g^{-1}(C + H)\tilde{g}^{-1}(C + H)^T \right] \]

\[\approx - \int d^6x \frac{1}{g_b} \sqrt{-\det(g)} \cdot \left[1 + \frac{1}{3}\text{Tr}k - \frac{1}{6}\text{Tr}k^2 + \frac{1}{18}(\text{Tr} k)^2 + \cdots \right]^{\frac{1}{2}}, \quad (73)\]

where \(k^\mu_\nu = (H + C)^\mu_\rho(H + C)^\nu_\sigma\). This action is consistent with the [6] up to the second order. This action up to the second order can be understood from the \(\kappa\)-symmetry and equivalence of non-commutative and commutative gauge description. The understanding of full order comes from the equivalence of non-commutative and commutative gauge description. The supersymmetric extension and other formulation of the membrane theory are in [28].

3 Consistency of Dimensional Reduction

In this section, we discuss dimensional reduction of the action (69) without scalar fields. At first, we show dimensional reduction from \((q+1) - (p+1)\) to \(q - p\). We only consider flat spacetime, constant background, and \((q+1)\)-form gauge field exists in \((q+1)\)-dimensional worldvolume directions (without time direction) in \(q-p\) system. In other
words, we will have two types worldvolume directions. We denote \(\alpha \) is the worldvolume direction without background and \(\dot{\alpha} \) is the other one direction with background. For a consistent notation, we define \((\dot{1}, \dot{2}, \cdots, \dot{q})\) \(\equiv (p - q, p - q + 1, \cdots, p - 1)\). The generalized DBI theory \((69)\) gives

\[
S_{q+1,p+1} = - \int d^{p+2}x \frac{1}{g_b} \det \frac{1}{2\pi i} \left[\delta_A^B + H_A \tilde{g}^{ij} H_{Cj} g^{CB} \right]
\]

\[
= - \int d^{p+2}x \frac{1}{g_b} \exp \left(\frac{1}{2(q + 2)} \text{Tr} \ln(\delta_A^B + H_A \tilde{g}^{ij} H_{Cj} g^{CB}) \right)
\]

\[
= - \int d^{p+2}x \frac{1}{g_b} \exp \left(\frac{1}{2(q + 2)} \text{Tr} \left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(H_A \tilde{g}^{ij} H_{Cj} g^{CB} \right)^n \right) \right). \tag{74}
\]

We used

\[
\det x[I + M] = \exp[x \text{Tr} \ln(I + M)], \quad \ln(1 - x) = - \sum_{n=1}^{\infty} \frac{x^n}{n} \tag{75}
\]

in the above action. Then we calculate \(H_A \tilde{g}^{ij} H_{Cj} g^{CB} \)

\[
H_A \tilde{g}^{ij} H_{Cj} g^{CB} = \frac{1}{((q + 1)!)^2} H_{A_1 \cdots C_{q+1}} \sum_{\pi \in \sigma_{q+1}} \text{sgn}(\pi) (g_{C_{u(1)}} D_1 g_{C_{u(2)}} D_2 \cdots g_{C_{u(q+1)}} D_{q+1}) H_{E D_1 \cdots D_{q+1}} g^{EB}
\]

\[
= \frac{1}{((q + 1)!)^2} \sum_{\pi \in \sigma_{q+1}} \text{sgn}(\pi) H_A^{D_{u(1)} \cdots D_{u(q+1)}} H^B_{D_1 \cdots D_{q+1}}
\]

\[
= \frac{1}{(q + 1)!} H_A^{D_1 \cdots D_{q+1}} H^B_{D_1 \cdots D_{q+1}}
\]

\[
\equiv \frac{1}{(q + 1)!} (H^2)_A^B. \tag{76}
\]

The only non-zero components in \((H^2)_A^B\) are

\[
(H^2)_{p-q}^{p-q} = (H^2)_{p-q+1}^{p-q+1} = \cdots = (H^2)_{p+1}^{p+1} = (q + 1)! (H^2)_{p-q,p-q+1,\cdots,p+1}. \tag{76}
\]

Substituting the result and taking trace in the action \((74)\), we get

\[
S_{q+1,p+1} = - \int d^{p+2}x \frac{1}{g_m} \exp \left(\frac{1}{2(q + 2)} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (q + 2) (H_{p-q,p-q+1,\cdots,p+1})^{2n} \right)
\]

\[
= - \int d^{p+2}x \frac{1}{g_m} \sum_{m=0}^{\infty} \frac{1}{m!} \left(\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (H_{p-q,p-q+1,\cdots,p+1})^{2n} \right)^m, \tag{77}
\]
If we compactify one direction, the final expression (77) simply becomes

\[S_{q,p} = -\int d^{p+1}x \frac{1}{g_m} \sum_{m=0}^{\infty} \frac{1}{m!} \left(\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (H_{p-q,p-q+1,...,p})^{2n} \right)^m. \tag{78} \]

In conclusion, we start from a system of \((q + 1) - (p + 1)\), we can get an effective action for \(q-p\) system by dimensional reduction.

We want to emphasize that this is not a trivial check because the \(2(q+1)\) root in the action is so far predicted based on the equivalence of non-commutative and commutative gauge theory. Thus, the calculation of this simple example gives us a confidence to show that this theory can also be consistent with dimensional reduction.

4 Comments on Pull-Back

If we also require that the generalized DBI can also go from \((q + 1) - (p + 1)\) to \(q - p\) with scalar fields (by pull-back). Generalized DBI (69) needs to include a one-form gauge potential for a \(U(1)\) gauge symmetry. For the non-commutative gauge theory, we also have these similar systems \([29]\). We wish to explore the possibility by dimensional reduction.

4.1 Scalar Fields and Gauge Potential

When a worldvolume direction is compactified, the component of the compactified direction of a gauge potential \(A^I\) give a scalar field \(X^I\),

\[A^I \rightarrow X^I, \quad F^{AI} \rightarrow \partial^A X^I. \tag{79} \]

The scalar fields \(X^I\) are actually the positions of a brane in transverse directions.

The way we introduce scalar field is simply to set the metric by pull-back. In static gauge and the case of flat spacetime

\[g_{AB} = \eta_{AB} + \partial_A X^I \partial_B X^I. \tag{80} \]

The inverse of this metric is

\[g^{AB} = \eta^{AB} + \sum_{n=1}^{\infty} (-1)^n (\partial^A X^{I_1})(\partial_{D_1} X^{I_1})(\partial^{D_1} X^{I_2}) \cdots (\partial_{D_{n-1}} X^{I_{n-1}})(\partial^{D_{n-1}} X^{I_n})(\partial^B X^{I_n}), \tag{81} \]
which indeed satisfy the condition $g_{AB}g^{BC} = \delta^C_A$. We define
\[\omega^{AB} = \sum_{n=1}^{\infty} (-1)^n (\partial^AX^I_1)(\partial^DX^I_2)\cdots (\partial^D_{n-1}X^I_n)(\partial^B X^I_n) \] (82)
for convenience and notice that it is symmetric, i.e. $\omega^{AB} = \omega^{BA}$.

4.2 $(q + 1)-(p + 1) \rightarrow q-p$

We show that the effective action of a q-p brane system without one-form gauge potential can be deduced from the $(q + 1)-(p + 1)$ system up to H^2 order.

Again, we assume that only α components of H and backgrounds are turned on. The action is
\[
S_{q+1,p+1} = -\int d^{p+2}x \frac{1}{g_b} \sqrt{-\det g} \text{ det}\{\delta_A^B + H_{AB}\tilde{g}^{ij}H_{CB}g^{CB}\}
\]
\[
= -\int d^{p+2}x \frac{1}{g_b} \sqrt{-\det g} \exp\left[\frac{1}{2(q + 2)} \text{ Tr}\left(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (H_{AB}\tilde{g}^{ij}H_{CB}g^{CB})^n \right) \right].
\] (83)

For $n = 1$, we can obtain
\[
\text{ Tr}(H_{AB}\tilde{g}^{ij}H_{CB}g^{CB})
\]
\[
= H_{p-q,p-q+1,\cdots,p+1} g^{q+1} \sum_{k=0}^{q+1} \sum_{k=0}^{p+1} \frac{1}{k!(q + 2 - k)!}
\]
\[
\epsilon_{\hat{\alpha}_1\hat{\beta}_2\cdots\hat{\alpha}_k\hat{\gamma}_{k+1}\cdots\hat{\gamma}_{q+2}} \omega^{\hat{\alpha}_1\hat{\beta}_1}\omega^{\hat{\alpha}_2\hat{\beta}_2}\cdots\omega^{\hat{\alpha}_k\hat{\beta}_k},
\] (84)
where $\epsilon_{\hat{\alpha}_1\hat{\beta}_2\cdots\hat{\alpha}_k\hat{\gamma}_{k+1}\cdots\hat{\gamma}_{q+2}}$ and $\epsilon_{\hat{\beta}_1\hat{\beta}_2\cdots\hat{\beta}_k\hat{\gamma}_{k+1}\cdots\hat{\gamma}_{q+2}}$ are Levi-Civita symbols. The factorials $k!$ and $(q + 2 - k)!$ are used to cancel the factor of overcounting such that the coefficients of each term in the summation is simply unity. The expression (83) becomes
\[
S_{q+1,p+1} = -\int d^{p+2}x \frac{1}{g_b} \sqrt{-\det g} \exp\left[\frac{1}{2} H_{p-q,p-q+1,\cdots,p+1} g^{q+1} \sum_{k=0}^{q+1} \sum_{k=0}^{p+1} \frac{1}{k!(q + 2 - k)!}
\]
\[
\epsilon_{\hat{\alpha}_1\hat{\beta}_2\cdots\hat{\alpha}_k\hat{\gamma}_{k+1}\cdots\hat{\gamma}_{q+2}} \omega^{\hat{\alpha}_1\hat{\beta}_1}\omega^{\hat{\alpha}_2\hat{\beta}_2}\cdots\omega^{\hat{\alpha}_k\hat{\beta}_k} + \cdots \right].
\] (85)
The factors \((q + 2)\) in (83) and (84) cancel out each other. If we compactify one world-volume direction with background, say \(p + 1\). Then, all \(\omega^{\hat{\alpha}(p+1)}\)'s vanish and this is equivalent to ruling the \(p + 1\) out in the summation, that is

\[
\sum_{k=0}^{p+1} \to \sum_{k=0}^{p}
\]

\[
\{\hat{\alpha}_k, \hat{\beta}_k, \gamma_k = p-q\} \to \{\hat{\alpha}_k, \hat{\beta}_k, \gamma_k = p-q\}
\]

(86)

On the other hand, the Levi-Civita symbols should be modified to

\[
\epsilon_{\hat{\alpha}_1 \hat{\beta}_2 \cdots \hat{\alpha}_k \gamma_k+1 \gamma_k+2 \cdots \gamma_{q+2}} \to (q+2-k) \epsilon_{\hat{\alpha}_1 \hat{\beta}_2 \cdots \hat{\alpha}_k \gamma_k+1 \gamma_k+2 \cdots \gamma_{q+2}}
\]

As a result, the action (85) becomes

\[
S_{q,p} = - \int d^{p+1}x \frac{1}{g_b} \sqrt{-\det g} \exp\left\{ \frac{1}{2} H^2_{p-q, p-q+1, \ldots, p} \sum_{k=0}^{q} \sum_{k=0}^{p} \frac{1}{k!(q+1-k)!} \epsilon_{\hat{\alpha}_1 \hat{\beta}_2 \cdots \hat{\alpha}_k \gamma_k+1 \gamma_k+2 \cdots \gamma_{q+2}} \omega^{\hat{\alpha}_1 \hat{\beta}_1 \hat{\alpha}_2 \hat{\beta}_2 \cdots \hat{\alpha}_k \hat{\beta}_k + \cdots} \right\},
\]

(87)

which is exactly the action (85) with \(q+1\) and \(p+1\) being replaced by \(q\) and \(p\) respectively. This calculation shows that we could possibly incorporate one-form gauge field in this theory up to \(H^2\) order.

5 Conclusion

The generalized DBI is aimed for describing a \(q\)-brane ending on a \(p\)-brane. The most non-trivial feature of this action is that it contains a \(2(q+1)\) root, which is predicted by the existence of the equivalence of the commutative and non-commutative description of the \(q-p\) system. In this paper, we showed that the generalized DBI action is also consistent with dimensional reduction to all orders perturbatively in the absence of scalar fields for \(q+1)-(p+1)\) \(q-p\) in flat spacetime, constant background, and \((q+1)\)-form gauge field which only exists in \((q+1)\)-dimensional worldvolume (without time direction). It gives
more understanding on the relation between 2-5 with M2-M5 system. In addition, we also find the possibility of the extension of including one-form gauge field in the presence of scalar fields based on dimensional reduction. The full understanding of dimensional reduction for \((q+1)-(p+1) \rightarrow q-p\) leave it to the future.

In this paper, we focus on the dimensional reduction. However, the most interesting problem should be T-duality rule. Of course, we still have familiar Buscher’s rule for \(q=1\) with different \(p\). Exploring T-duality rule is a challenging and interesting problem. It should give more interesting understanding to \(q-p\) system.

One related interesting problem is to explore double field theory of the DBI. By now, we do not get any insight to put one-form gauge fields. It is still an open problem about how to consider gauge fields in the double field theory. The starting direction is to find the gauge transformation which can be related to Courant bracket. It can offer the unique structure to constrain the DBI theory in double field theory. One more interesting thing related to open string of double field theory is to understand string sigma model with manifest Buscher’s rule. It is a well-known fact that DBI model is equivalent to the calculation of the one-loop \(\beta\) function of the string sigma model. If we can include strong constraints in double field theory of the string sigma model, the one-loop \(\beta\) function would be an interesting thing. We also point out that one-loop \(\beta\) function of the Nambu-Sigma model is an important problem. So far, we only use the generalized metric and equivalence of the commutative and non-commutative description to understand the generalized DBI. We expect that one-loop \(\beta\) function of the Nambu-Sigma model should give the generalized DBI.

Acknowledgement

We thank Chi-Ming Chang, Song He, Pei-Ming Ho, Branislav Jurco, Pei-Wen Peggy Kao, Feng-Li Lin, Hisayoshi Muraki, Yiwen Pan, Peter Schupp, Yang Sun, Satoshi Watamura and You Wu for useful discussions. This work is supported in part by NTU (grant #NTU-CDP-102R7708), National Science Council (grant #101-2112-M-002-027-MY3), CASTS (grant #103R891003) Taiwan, R.O.C..
References

[1] E. S. Fradkin and A. A. Tseytlin, “Quantum String Theory Effective Action,” Nucl. Phys. B 261, 1 (1985). R. G. Leigh, “Dirac-Born-Infeld Action from Dirichlet Sigma Model,” Mod. Phys. Lett. A 4, 2767 (1989). A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” In *Shifman, M.A. (ed.): The many faces of the superworld* 417-452 [hep-th/9908105].

[2] E. Witten, “Noncommutative Geometry and String Field Theory,” Nucl. Phys. B 268, 253 (1986). B. Zwiebach, “Closed string field theory: Quantum action and the B-V master equation,” Nucl. Phys. B 390, 33 (1993) [hep-th/9206084]. M. Saadi and B. Zwiebach, “Closed String Field Theory from Polyhedra,” Annals Phys. 192, 213 (1989). T. Kugo, H. Kunitomo and K. Suehiro, “Nonpolynomial Closed String Field Theory,” Phys. Lett. B 226, 48 (1989). T. Kugo and K. Suehiro, “Nonpolynomial Closed String Field Theory: Action and Its Gauge Invariance,” Nucl. Phys. B 337, 434 (1990). V. A. Kostelecky and S. Samuel, “Collective Physics in the Closed Bosonic String,” Phys. Rev. D 42, 1289 (1990). A. Sen and B. Zwiebach, “A Proof of local background independence of classical closed string field theory,” Nucl. Phys. B 414, 649 (1994) [hep-th/9307088]. A. Sen and B. Zwiebach, “Quantum background independence of closed string field theory,” Nucl. Phys. B 423, 580 (1994) [hep-th/9311009]. A. Sen and B. Zwiebach, “A Note on gauge transformations in Batalin-Vilkovisky theory,” Phys. Lett. B 320, 29 (1994) [hep-th/9309027]. Y. Okawa and B. Zwiebach, “Twisted tachyon condensation in closed string field theory,” JHEP 0403, 056 (2004) [hep-th/0403051]. H. Yang and B. Zwiebach, “Dilaton deformations in closed string field theory,” JHEP 0505, 032 (2005) [hep-th/0502161]. H. Yang and B. Zwiebach, “A Closed string tachyon vacuum?,” JHEP 0509, 054 (2005) [hep-th/0506077]. Y. Michishita, “Field redefinitions, T-duality and solu-
tions in closed string field theories,” JHEP 0609, 001 (2006) [hep-th/0602251].
N. Moeller, “Closed Bosonic String Field Theory at Quintic Order: Five-Tachyon
Contact Term and Dilaton Theorem,” JHEP 0703, 043 (2007) [hep-th/0609209].
N. Moeller, “Closed Bosonic String Field Theory at Quintic Order. II. Marginal
Deformations and Effective Potential,” JHEP 0709, 118 (2007) [arXiv:0705.2102
[hep-th]]. N. Moeller, “A Tachyon lump in closed string field theory,” JHEP 0809,
056 (2008) [arXiv:0804.0697 [hep-th]].

[3] N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP
9909, 032 (1999) [hep-th/9908142].

[4] L. Cornalba, “On the general structure of the nonAbelian Born-Infeld action,” Adv.
Theor. Math. Phys. 4, 1259 (2002) [hep-th/0006018]. S. Terashima, “The Non-
Abelian Born-Infeld action and noncommutative gauge theory,” JHEP 0007, 033
(2000) [hep-th/0006058]. C. -H. Chen, K. Furuuchi, P. -M. Ho and T. Takimi, “More
on the Nambu-Poisson M5-brane Theory: Scaling limit, background independence
and an all order solution to the Seiberg-Witten map,” JHEP 1010, 100 (2010)
[arXiv:1006.5291 [hep-th]].

[5] P. -M. Ho, “A Concise Review on M5-brane in Large C-field Background,” Chin.
J. Phys. 48, 1 (2010) [arXiv:0912.0445 [hep-th]]. P. -M. Ho, Y. Imamura, Y. Matsuo
and S. Shiba, “M5-brane in three-form flux and multiple M2-branes,” JHEP 0808,
014 (2008) [arXiv:0805.2898 [hep-th]]. P. -M. Ho and Y. Matsuo, “M5 from M2,”
JHEP 0806, 105 (2008) [arXiv:0804.3629 [hep-th]]. P. -M. Ho, C. -T. Ma and C. -
H. Yeh, “BPS States on M5-brane in Large C-field Background,” JHEP 1208, 076
(2012) [arXiv:1206.1467 [hep-th]].

[6] M. Cederwall, B. E. W. Nilsson and P. Sundell, “An Action for the superfive-brane
in D = 11 supergravity,” JHEP 9804, 007 (1998) [hep-th/9712059].
[7] B. Jurco and P. Schupp, “Nambu-Sigma model and effective membrane actions,” Phys. Lett. B 713, 313 (2012) [arXiv:1203.2910 [hep-th]]. P. Schupp and B. Jurco, “Nambu Sigma Model and Branes,” PoS CORFU 2011, 045 (2011) [arXiv:1205.2595 [hep-th]]. B. Jurčo, P. Schnupp and J. Vysoký, “Nambu-Poisson Gauge Theory,” Phys. Lett. B 733, 221 (2014) [arXiv:1403.6121 [hep-th]].

[8] B. Jurco, P. Schupp and J. Vysoký, “p-Brane Actions and Higher Roytenberg Brackets,” JHEP 1302, 042 (2013) [arXiv:1211.0814 [hep-th]]. B. Jurco, P. Schupp and J. Vysoky, “On the Generalized Geometry Origin of Noncommutative Gauge Theory,” JHEP 1307, 126 (2013) [arXiv:1303.6096 [hep-th]]. B. Jurčo, P. Schnupp and J. Vysoký, “Extended generalized geometry and a DBI-type effective action for branes ending on branes,” JHEP 1408, 170 (2014) [arXiv:1404.2795 [hep-th]].

[9] C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 0909, 099 (2009) [arXiv:0904.4664 [hep-th]]. C. Hull and B. Zwiebach, “The Gauge algebra of double field theory and Courant brackets,” JHEP 0909, 090 (2009) [arXiv:0908.1792 [hep-th]]. O. Hohm, C. Hull and B. Zwiebach, “Background independent action for double field theory,” JHEP 1007, 016 (2010) [arXiv:1003.5027 [hep-th]]. O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP 1008, 008 (2010) [arXiv:1006.4823 [hep-th]]. W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47, 5453 (1993) [hep-th/9302036]. W. Siegel, “Superspace duality in low-energy superstrings,” Phys. Rev. D 48, 2826 (1993) [hep-th/9305073]. W. Siegel, “Manifest duality in low-energy superstrings,” In *Berkeley 1993, Proceedings, Strings ’93* 353-363, and State U. New York Stony Brook - ITP-SB-93-050 (93,rec.Sep.) 11 p. (315661) [hep-th/9308133].

[10] M. Gualtieri, “Generalized complex geometry,” math/0401221 [math-dg]. N. Hitchin, “Generalized Calabi-Yau manifolds,” Quart. J. Math. Oxford Ser. 54, 281 (2003) [math/0209099 [math-dg]]. N. Hitchin, “Brackets, forms and in-
variant functionals,” [math/0508618 [math-dg]. M. Gualtieri, “Generalized complex geometry,” [math/0703298 [math.DG]. M. Gualtieri, “Generalized Kahler geometry,” [arXiv:1007.3485 [math.DG]. N. Hitchin, “Lectures on generalized geometry,” [arXiv:1008.0973 [math.DG]. G. Cavalcanti, “Introduction to generalized complex geometry,” Publicationes Matematicas do IMPA. (2007) P. Koerber, “Lectures on Generalized Complex Geometry for Physicists,” Fortsch. Phys. 59, 169 (2011) [arXiv:1006.1536 [hep-th]]. G. R. Cavalcanti and M. Gualtieri, “Generalized complex geometry and T-duality,” A Celebration of the Mathematical Legacy of Raoul Bott (CRM Proceedings & Lecture Notes) American Mathematical Society (2010) 341-366. ISBN: 0821847775 [arXiv:1106.1747 [math.DG]]. H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, “Generalized Kaehler geometry of instanton moduli spaces,” [arXiv:1203.2385 [math.DG]. N. Hitchin, “Instantons, Poisson structures and generalized Kahler geometry,” Commun. Math. Phys. 265, 131 (2006) [math/0503432 [math-dg]]. N. Hitchin, “Generalized holomorphic bundles and the B-field action,” J. Geom. Phys. 61, 352 (2011) [arXiv:1010.0207 [math.DG]].

[11] O. Hohm, S. K. Kwak and B. Zwiebach, “Unification of Type II Strings and T-duality,” Phys. Rev. Lett. 107, 171603 (2011) [arXiv:1106.5452 [hep-th]]. O. Hohm, S. K. Kwak and B. Zwiebach, “Double Field Theory of Type II Strings,” JHEP 1109, 013 (2011) [arXiv:1107.0008 [hep-th]]. O. Hohm and S. K. Kwak, “Frame-like Geometry of Double Field Theory,” J. Phys. A 44, 085404 (2011) [arXiv:1011.4101 [hep-th]]. O. Hohm and S. K. Kwak, “N=1 Supersymmetric Double Field Theory,” JHEP 1203, 080 (2012) [arXiv:1111.7293 [hep-th]]. O. Hohm and B. Zwiebach, “On the Riemann Tensor in Double Field Theory,” JHEP 1205, 126 (2012) [arXiv:1112.5296 [hep-th]]. O. Hohm and B. Zwiebach, “Towards an invariant geometry of double field theory,” J. Math. Phys. 54, 032303 (2013) [arXiv:1212.1736 [hep-th]]. D. S. Berman, C. D. A. Blair, E. Malek and M. J. Perry, “The $O_{D,D}$ geometry of string theory,” Int.
J. Mod. Phys. A 29, no. 15, 1450080 (2014) [arXiv:1303.6727 [hep-th]]. D. S. Berman, H. Godazgar, M. Godazgar and M. J. Perry, “The Local symmetries of M-theory and their formulation in generalised geometry,” JHEP 1201, 012 (2012) [arXiv:1110.3930 [hep-th]]. J. -H. Park, “Comments on double field theory and diffeomorphisms,” JHEP 1306, 098 (2013) [arXiv:1304.5946 [hep-th]]. K. Lee and J. -H. Park, “Covariant action for a string in doubled yet gauged spacetime,” Nucl. Phys. B 880, 134 (2014) [arXiv:1307.8377 [hep-th]]. I. Jeon, K. Lee and J. -H. Park, “Differential geometry with a projection: Application to double field theory,” JHEP 1104, 014 (2011) [arXiv:1011.1324 [hep-th]]. I. Jeon, K. Lee and J. -H. Park, “Stringy differential geometry, beyond Riemann,” Phys. Rev. D 84, 044022 (2011) [arXiv:1105.6294 [hep-th]]. J. H. Park and Y. Suh, “U-gravity: SL(N),” JHEP 1406, 102 (2014) [arXiv:1402.5027 [hep-th]].

[12] D. Andriot, M. Larfors, D. Lust and P. Patalong, “A ten-dimensional action for non-geometric fluxes,” JHEP 1109, 134 (2011) [arXiv:1106.4015 [hep-th]].

[13] S. Hellerman, J. McGreevy and B. Williams, “Geometric constructions of nongeometric string theories,” JHEP 0401, 024 (2004) [hep-th/0208174]. A. Dabholkar and C. Hull, “Duality twists, orbifolds, and fluxes,” JHEP 0309, 054 (2003) [hep-th/0210209]. A. Flournoy, B. Wecht and B. Williams, “Constructing nongeometric vacua in string theory,” Nucl. Phys. B 706, 127 (2005) [hep-th/0404217].

[14] D. Andriot and A. Betz, “β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework,” JHEP 1312, 083 (2013) [arXiv:1306.4381 [hep-th]]. D. Andriot, O. Hohm, M. Larfors, D. Lust and P. Patalong, “A geometric action for non-geometric fluxes,” Phys. Rev. Lett. 108, 261602 (2012) [arXiv:1202.3060 [hep-th]]. D. Andriot, O. Hohm, M. Larfors, D. Lust and P. Patalong, “Non-Geometric Fluxes in Supergravity and Double Field Theory,” Fortsch. Phys. 60, 1150 (2012) [arXiv:1204.1979 [hep-th]]. R. Blumenhagen,
A. Deser, E. Plauschinn and F. Rennecke, “A bi-invariant Einstein-Hilbert action for the non-geometric string,” Phys. Lett. B 720, 215 (2013) [arXiv:1210.1591 [hep-th]].
R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, “Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids,” JHEP 1302, 122 (2013) [arXiv:1211.0030 [hep-th]].
R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, “The Intriguing Structure of Non-geometric Frames in String Theory,” Fortsch. Phys. 61, 893 (2013) [arXiv:1304.2784 [hep-th]].
M. Grana, R. Minasian, M. Petrini and D. Waldram, “T-duality, Generalized Geometry and Non-Geometric Backgrounds,” JHEP 0904, 075 (2009) [arXiv:0807.4527 [hep-th]].
G. Aldazabal, W. Baron, D. Marques and C. Nunez, “The effective action of Double Field Theory,” JHEP 1111, 052 (2011) [Erratum-ibid. 1111, 109 (2011)] [arXiv:1109.0290 [hep-th]].

[15] B. Zwiebach, “Curvature Squared Terms and String Theories,” Phys. Lett. B 156, 315 (1985).
[16] O. Hohm and S. K. Kwak, “Massive Type II in Double Field Theory,” JHEP 1111, 086 (2011) [arXiv:1108.4937 [hep-th]].
D. Geissbuhler, “Double Field Theory and N=4 Gauged Supergravity,” JHEP 1111, 116 (2011) [arXiv:1109.4280 [hep-th]].
D. Geissbuhler, D. Marques, C. Nunez and V. Penas, “Exploring Double Field Theory,” JHEP 1306, 101 (2013) [arXiv:1304.4172 [hep-th]].
M. Grana and D. Marques, “Gauged Double Field Theory,” JHEP 1204, 020 (2012) [arXiv:1201.2924 [hep-th]].
[17] O. Hohm, W. Siegel and B. Zwiebach, “Doubled α'-geometry,” JHEP 1402, 065 (2014) [arXiv:1306.2970 [hep-th]].
O. Hohm and B. Zwiebach, “Double Field Theory at Order α',” arXiv:1407.3803 [hep-th].
O. Hohm and B. Zwiebach, “Green-Schwarz mechanism and α'-deformed Courant brackets,” arXiv:1407.0708 [hep-th].
O. A. Bedoya, D. Marques and C. Nunez, “Heterotic α'-corrections in Double Field Theory,” arXiv:1407.0365 [hep-th].

27
[18] O. Hohm and H. Samtleben, “Exceptional Field Theory II: E\(_7(7)\),” Phys. Rev. D 89, 066017 (2014) [arXiv:1312.4542 [hep-th]]. O. Hohm and H. Samtleben, “Exceptional Form of D=11 Supergravity,” Phys. Rev. Lett. 111, 231601 (2013) [arXiv:1308.1673 [hep-th]]. G. Aldazabal, M. Graña, D. Marqués and J. A. Rosabal, “Extended geometry and gauged maximal supergravity,” JHEP 1306, 046 (2013) [arXiv:1302.5419 [hep-th]]. G. Aldazabal, M. Graña, D. Marqués and J. A. Rosabal, “The gauge structure of Exceptional Field Theories and the tensor hierarchy,” JHEP 1404, 049 (2014) [arXiv:1312.4549 [hep-th]]. O. Hohm and H. Samtleben, “Exceptional Field Theory I: E\(_6(6)\) covariant Form of M-Theory and Type IIB,” Phys. Rev. D 89, 066016 (2014) [arXiv:1312.0614 [hep-th]]. D. S. Berman, M. Cederwall, A. Kleinschmidt and D. C. Thompson, “The gauge structure of generalised diffeomorphisms,” JHEP 1301, 064 (2013) [arXiv:1208.5884 [hep-th]]. O. Hohm and H. Samtleben, “U-duality covariant gravity,” JHEP 1309, 080 (2013) [arXiv:1307.0509 [hep-th]]. O. Hohm and H. Samtleben, “Gauge theory of Kaluza-Klein and winding modes,” Phys. Rev. D 88, 085005 (2013) [arXiv:1307.0039 [hep-th]]. O. Hohm and H. Samtleben, “Exceptional Field Theory III: E\(_8(8)\),” Phys. Rev. D 90, 066002 (2014) [arXiv:1406.3348 [hep-th]]. H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, “Supersymmetric E\(_7(7)\) Exceptional Field Theory,” JHEP 1409, 044 (2014) [arXiv:1406.3235 [hep-th]].

[19] A. Lawrence, M. B. Schulz and B. Wecht, “D-branes in nongeometric backgrounds,” JHEP 0607, 038 (2006) [hep-th/0602025]. C. Albertsson, T. Kimura and R. A. Reid-Edwards, “D-branes and doubled geometry,” JHEP 0904, 113 (2009) [arXiv:0806.1783 [hep-th]]. C. Albertsson, S. -H. Dai, P. -W. Kao and F. -L. Lin, “Double Field Theory for Double D-branes,” JHEP 1109, 025 (2011) [arXiv:1107.0876 [hep-th]]. S. Kawai and Y. Sugawara, “D-branes in T-fold conformal field theory,” JHEP 0802, 027 (2008) [arXiv:0709.0257 [hep-th]].
[20] H. Wu and H. Yang, “Double Field Theory Inspired Cosmology,” JCAP 1407, 024 (2014) [arXiv:1307.0159 [hep-th]]. H. Wu and H. Yang, “New Cosmological Signatures from Double Field Theory,” arXiv:1312.5580 [hep-th]. J. Berkeley, D. S. Berman and F. J. Rudolph, “Strings and Branes are Waves,” JHEP 1406, 006 (2014) [arXiv:1403.7198 [hep-th]]. T. Kugo and B. Zwiebach, “Target space duality as a symmetry of string field theory,” Prog. Theor. Phys. 87, 801 (1992) [hep-th/9201040]. A. Betz, R. Blumenhagen, D. Lüst and F. Rennecke, “A Note on the CFT Origin of the Strong Constraint of DFT,” JHEP 1405, 044 (2014) [arXiv:1402.1680 [hep-th]]. D. S. Berman, E. T. Musaev and M. J. Perry, “Boundary Terms in Generalized Geometry and doubled field theory,” Phys. Lett. B 706, 228 (2011) [arXiv:1110.3097 [hep-th]]. C.-T. Ma and C.-M. Shen, “Cosmological Implications from O(D,D),” arXiv:1405.4073 [hep-th]. S. Lv, H. Wu and H. Yang, “Loop Corrections in Double Field Theory: Non-trivial Dilaton Potentials,” arXiv:1408.3713 [hep-th].

[21] O. Hohm, D. Lust and B. Zwiebach, “The Spacetime of Double Field Theory: Review, Remarks, and Outlook,” Fortsch. Phys. 61, 926 (2013) [arXiv:1309.2977 [hep-th]]. G. Aldazabal, D. Marques and C. Nunez, “Double Field Theory: A Pedagogical Review,” Class. Quant. Grav. 30, 163001 (2013) [arXiv:1305.1907 [hep-th]]. D. S. Berman and D. C. Thompson, “Duality Symmetric String and M-Theory,” arXiv:1306.2643 [hep-th]. D. S. Berman, M. Cederwall and M. J. Perry, “Global aspects of double geometry,” JHEP 1409, 066 (2014) [arXiv:1401.1311 [hep-th]].

[22] M. Gualtieri, “Branes on Poisson varieties,” arXiv:0710.2719 [math.DG]. M. Boucetta, “Riemannian geometry of Lie algebroids,” J. Egyptian Math. Soc. 19, 57 (2011).

[23] P. Bressler, “The first Pontryagin class,” math/0509563 [math.AT]. Z. J. Liu, A. Weinstein and P. Xu, “Manin Triples for Lie Bialgebroids,” J. Diff. Geom. 45, 547 (1997)
[dg-ga/9508013]. I. Vaisman, “Transitive Courant algebroids,” Int. J. Math. Math.
Sci. 2005, no. 11, 1737 (2005) [math/0407399 [math.DG]].

[24] H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, “Reduction of Courant algebroids
and generalized complex structures,” Adv. Math. 211, 726 (2007) [math/0509640
[math.DG]].

[25] D. Baraglia, “Leibniz algebroids, twistings and exceptional generalized geometry,”
J. Geom. Phys. 62, 903 (2012) [arXiv:1101.0856 [math.DG]]. R. Rubio, “Bn-
generalized geometry and G2(2)-structures,” J. Geom. Phys. 73, 150-156 (2013)
[arXiv:1301.3330 [math.DG]]. A. Coimbra, C. Strickland-Constable and D. Wal-
dram, “$E_{d(d)} \times \mathbb{R}^+$ generalised geometry, connections and M theory,” JHEP 1402,
054 (2014) [arXiv:1112.3989 [hep-th]]. A. Coimbra, C. Strickland-Constable and
D. Waldram, “Supergravity as Generalised Geometry II: $E_{d(d)} \times \mathbb{R}^+$ and M the-
ory,” JHEP 1403, 019 (2014) [arXiv:1212.1586 [hep-th]].

[26] C. M. Hull, “Generalised Geometry for M-Theory,” JHEP 0707, 079 (2007)
[hep-th/0701203]. P. P. Pacheco and D. Waldram, “M-theory, exceptional generalised
geometry and superpotentials,” JHEP 0809, 123 (2008) [arXiv:0804.1362 [hep-th]].
C. Hillmann, “Generalized E(7(7)) coset dynamics and D=11 supergravity,” JHEP
0903, 135 (2009) [arXiv:0901.1581 [hep-th]]. D. S. Berman and M. J. Perry, “Gen-
eralized Geometry and M theory,” JHEP 1106, 074 (2011) [arXiv:1008.1763 [hep-
th]]. T. Asakawa, S. Sasa and S. Watamura, “D-branes in Generalized Geometry
and Dirac-Born-Infeld Action,” JHEP 1210 (2012) 064 [arXiv:1206.6964 [hep-th]].
T. Asakawa, H. Muraki and S. Watamura, “D-brane on Poisson manifold and Gen-
eralized Geometry,” Int. J. Mod. Phys. A 29, no. 15, 1450089 (2014) [arXiv:1402.0942
[hep-th]]. T. Asakawa, H. Muraki, S. Sasa and S. Watamura, “Generalized geometry
and nonlinear realization of generalized diffeomorphism on D-brane effective
action,” [arXiv:1402.0942 [hep-th]]. A. Coimbra, C. Strickland-Constable and D. Wal-
dram, “Supergravity as Generalised Geometry I: Type II Theories,” JHEP 1111, 091 (2011) [arXiv:1107.1733 [hep-th]]. T. Asakawa, H. Muraki, S. Sasa and S. Watamura, “Poisson-generalized geometry and R-flux,” arXiv:1408.2649 [hep-th].

[27] N. Ikeda, “Two-dimensional gravity and nonlinear gauge theory,” Annals Phys. 235, 435 (1994) [hep-th/9312059]. P. Schaller and T. Strobl, “Poisson structure induced (topological) field theories,” Mod. Phys. Lett. A 9, 3129 (1994) [hep-th/9405110].

[28] K. Lee and J. H. Park, “Partonic description of a supersymmetric p-brane,” JHEP 1004, 043 (2010) [arXiv:1001.4532 [hep-th]]. J. H. Park and C. Sochichiu, “Taking off the square root of Nambu-Goto action and obtaining Filippov-Lie algebra gauge theory action,” Eur. Phys. J. C 64, 161 (2009) [arXiv:0806.0335 [hep-th]].

[29] P. M. Ho and C. T. Ma, “S-Duality for D3-Brane in NS-NS and R-R Backgrounds,” arXiv:1311.3393 [hep-th]. P. M. Ho and C. T. Ma, “Effective Action for Dp-Brane in Large RR (p-1)-Form Background,” JHEP 1305, 056 (2013) [arXiv:1302.6919 [hep-th]]. C. T. Ma and C. H. Yeh, “Supersymmetry and BPS States on D4-brane in Large C-field Background,” JHEP 1303, 131 (2013) [arXiv:1210.4191 [hep-th]]. P. M. Ho, “Gauge Symmetries from Nambu-Poisson Brackets,” Universe 1, 46 (2013).