Hypermethylation of the hMLH1 gene promoter in solitary and multiple gastric cancers with microsatellite instability

K Sakata1, G Tamura*,1, Y Endoh1, K Ohmura1, S Ogata1 and T Motoyama1

1Department of Pathology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585, Japan

Human cancers with a high frequency microsatellite instability phenotype develop due to defects in DNA mismatch repair genes. Silencing of a DNA mismatch repair gene, hMLH1 gene, by promoter hypermethylation is a frequent cause of the microsatellite instability-H phenotype. Using methylation specific PCR we investigated the methylation status of the hMLH1 gene promoter in 17 solitary gastric cancers (12 microsatellite instability-H and five microsatellite stable tumours from 17 patients), and 13 multiple gastric cancers (eight microsatellite instability-H, one low frequency microsatellite instability-L and four microsatellite stable tumours from five patients) and also examined non-cancerous gastric mucosa both adjacent to and distant from each tumour. Expression of hMLH1 protein was evaluated by immunohistochemistry. All microsatellite instability-H tumours (20 out of 20) had evidence of methylation of hMLH1 promoter, whereas only one out of 10 microsatellite instability-L and microsatellite stable tumours did (P < 0.0000005), and the methylation status correlated with hMLH1 protein expression (P < 0.000003). Furthermore, methylation of the hMLH1 promoter was detected in 50% (6 out of 12) and 63% (5 out of 8) of non-cancerous gastric mucosa samples adjacent to, and in 33% (4 out of 12) and 40% (2 out of 5) of those obtained from distant portion of, solitary and multiple cancers with microsatellite instability-H. Thus both solitary and multiple gastric cancers with microsatellite instability-H have evidence of similar high levels of hMLH1 promoter hypermethylation in the surrounding non-cancerous tissue. Hypermethylation of the hMLH1 promoter occurs in non-cancerous gastric mucosa of microsatellite instability-H tumours and may increase the risk of subsequent neoplasia.

British Journal of Cancer (2002) 86, 564 – 567. DOI: 10.1038/sj/bjc/6600076 www.bjcancer.com

© 2002 Cancer Research UK

Keywords: gastric cancer; hMLH1; hypermethylation; multiple cancer

Microsatellite instability (MSI) due to defects in mismatch repair genes such as hMLH1 and hMSH2 is now widely recognized as an important mechanism in tumorigenesis (Aaltonen et al, 1993; Ionov et al, 1993; Thibodeau et al, 1996; Fleisher et al, 1999; Kang et al, 1999; Leung et al, 1999; Suzuki et al, 1999; Toyota et al, 1999a). MSI is reportedly present in 15–33% of solitary gastric cancers, although mutations of the hMLH1 or hMSH2 genes are rare in sporadic gastric cancers (Chong et al, 1994; Mironov et al, 1994; Strickler et al, 1994; Tamura et al, 1996). Hypermethylation of promoter region CpG islands is a common mechanism by which tumour suppressor or tumour-related genes, and DNA mismatch repair genes are inactivated (Herman et al, 1995, 1998; Kane et al, 1997; Baylin et al, 1998; Jones and Laird, 1999). Aberrant DNA methylation of promoter region CpG islands of several genes, including retinoblastoma (Rb), von Hippel-Lindau (VHL), p16, p15, APC, E-cadherin and hMLH1 has been reported in human cancers, and silencing of hMLH1 by promoter hypermethylation is the major causative event in the development of human cancers with MSI phenotype, including gastric cancers (Graff et al, 1997; Kane et al, 1997; Herman et al, 1998; Fleisher et al, 1999; Kang et al, 1999; Leung et al, 1999; Suzuki et al, 1999; Tamura et al, 2000; Tsuchiya et al, 2000).

To clarify the role of hypermethylation of the hMLH1 gene promoter in the development of multiple gastric cancers, we compared both the methylation status and expression of the hMLH1 gene, in solitary and multiple gastric cancers with and without MSI. In addition, we examined the methylation status of the hMLH1 gene in non-cancerous gastric mucosa adjacent to and distant from each tumour.

MATERIALS AND METHODS

Samples and DNA extraction

Thirty gastric adenocarcinomas, including 17 solitary tumours from 17 patients and 13 multiple tumours from five patients were studied. The patients ranged in age from 59 to 84 years (average 72 years). We also examined non-cancerous gastric tissue both adjacent to (at a distance of 2 mm) and distant from (at a distance of 5 cm or surgical margin) each tumour. The tumours were histologically differentiated adenocarcinomas comprising 28 early cancers (depth of invasion limited to the mucosa or submucosa) and two advanced cancers. Specimens were fixed in 10% buffered formalin. The carcinomas were cut serially into 5 mm slices in parallel with the lesser curvature and then embedded in paraffin. From one block that included the maximum diameter of the tumour, we prepared two sets of 3 and 10 μm thick serial sections. The 3 μm thick sections were used for haematoxylin-eosin and immunohistochemical stainings, and each set of the 10 μm thick sections for DNA extraction of cancerous or non-cancerous DNA. To avoid contamination, either of cancerous or non-cancerous the area was carefully dissected using disposable scalps by a reference to the serial haematoxylin-eosin stained sections under the microscope. DNA extraction was as described by Goelz...
et al (1983). All samples had been previously screened for MSI using 12 microsatellite markers, i.e. D2S115, D4S404, D5S178, IL9, D6S265, D7S490, D11S900, MYH6, TP53, D17S1176, D18S56, and D21S1407, and defined as MSI-H if there were more than 30% unstable loci, MSI-L less than 30% unstable loci, and microsatellite stable (MSS) no unstable loci (Ohmura et al, 2000; Ogata et al, 2001). Our samples constituted of 20 (12 solitary and eight multiple) MSI-H tumours, 1 MSI-L tumour and nine (five solitary and four multiple) MSS tumours.

**Methylation-specific PCR**

*hMLH1* gene promoter methylation patterns were determined by methylation specific PCR (MSP), as described previously (Fleisher et al, 1999). MSP distinguishes unmethylated from methylated alleles of a given gene based on sequence changes that are produced following bisulfite treatment of DNA, which converts unmethylated cytosines to uracils, while leaving methylated cytosines unaffected. Subsequent PCR using primers specific to sequences that correspond to either methylated or unmethylated *hMLH1* gene promoter DNA was performed. The primer sequences of MSP for the unmethylated reaction were 5'-TTT TAT TTT AGG GTT GTT-3' (sense) and 5'-ACC ACC TCA TCA TAA CTA CCC ACA-3' (antisense), whereas for the methylated reaction they were 5'-ACG TAG ACG TTT TAT TAG GTT CGC-3' (sense) and 5'-CCT CAT CTT TAG ACG CGG CGG-3' (antisense) (Fleisher et al, 1999). Briefly, 2 μg of genomic DNA was denatured by treatment with NaOH and modified by sodium bisulfite. DNA samples were then purified using a Wizard DNA purification resin (Promega, Madison, WI, USA), treated with NaOH, precipitated with ethanol, and resuspended in 30 μl water. Modified DNA was amplified in a total volume of 20 μl using GeneAmp PCR Gold Buffer (PE Applied Biosystems, Foster City, CA, USA) containing 1.0 mM MgCl₂, 20 μM of each primer, 0.2 mM dNTPs, and 1 unit of Taq polymerase (AmpliTaq Gold DNA Polymerase, PE Applied Biosystems). After activation of the Taq polymerase at 95°C for 10 min, PCR was performed in a thermal cycler (GeneAmp 9700, PE Applied Biosystems) for 35 cycles, each cycle consisting of denaturation at 95°C for 15 s, annealing at 55°C for 15 s, and extension at 72°C for 30 s, followed by a final 7 min extension at 72°C. The PCR products were then loaded onto a non-denaturing 6% polyacrylamide gel, stained with ethidium bromide, and visualized under UV illumination.

**Immunohistochemistry**

Immunohistochemistry was performed on formalin-fixed, paraffin embedded sections using a standard labelled streptavidin-biotin system (Nichirei, Tokyo, Japan). Mouse monoclonal antibody to the *hMLH1* gene product, G168-728 (PharMingen, San Diego, CA, USA), was used at 1:50 dilution after antigen retrieval by microwave.

**Statistical analysis**

Statistical comparisons were performed using Fisher’s exact test. *P* values < 0.05 were considered significant.

**RESULTS**

Hypermethylation of the *hMLH1* gene promoter was detected in all solitary (12 out of 12) and multiple (8 out of 8) gastric cancers with MSI-H (Figure 1 and Table 1). Methylated alleles were found in none (0 out of 5) of solitary and 20% (1 out of 5) of multiple MSI-L and MSS tumours (Table 1). The MSI-L tumour did not have methylated *hMLH1* gene promoter alleles. The methylation status of the *hMLH1* promoter was significantly correlated with MSI status (*P* < 0.000005). Methylated *hMLH1* alleles were also present in 50% (6 out of 12) and 63% (5 out of 8) of samples of non-cancerous gastric mucosa adjacent to, and in 33% (4 out of 12) and 40% (2 out of 5) samples of non-cancerous gastric mucosa distant from solitary and multiple gastric cancers with MSI-H (Table 1). In contrast, methylated alleles were infrequently present in none (0 out of 5) of non-cancerous mucosa adjacent to, and in 20% (1 out of 5) of non-cancerous mucosa distant from solitary gastric cancers with MSS (Table 1). Most of the methylated tumours (12 out of 12 solitary tumours and 7 out of 9 (78%) of multiple tumours) showed an apparent loss of hMLH1 protein expression (Figure 2). All nine unmethylated tumours (five solitary and four multiple tumours) and their surrounding non-cancerous mucosa had a normal expression level of hMLH1 protein. The methylation status of the *hMLH1* promoter was significantly correlated with protein expression in solitary and multiple tumours (*P* < 0.000003, Table 2).

**DISCUSSION**

MSI is found in 15 – 33% of sporadic gastric cancers, a higher incidence than that seen in other types of sporadic human cancers (Chong et al, 1994; Mironov et al, 1994; Strickler et al, 1994; Tamura et al, 1996; Ohmura et al, 2000). Furthermore, multiple gastric cancers have a higher incidence of MSI than solitary gastric cancers, although few studies have focused on the relationship between multiple gastric cancers and MSI (Nakashima et al, 2002).
hMLH1 hypermethylation in multiple gastric cancer
K Sakata et al

were reported by other investigators (Suzuki et al, 1999; Leung et al, 2001). In our present study, however, methylation of the hMLH1 promoter was detected in non-cancerous mucosa adjacent to both solitary (6 out of 12, 50%) and multiple (5 out of 8, 63%) gastric tumours with MSI-H. Similarly to our present results, Guo et al (2001) has recently reported a high frequency (40%; 4 out of 10) of hMLH1 methylation in non-cancerous mucosa adjacent to gastric cancer showing MSI-H. The exact cause of these discrepancies among reports remains uncertain. However, because hypermethylation originates within the flanking regions of the CpG islands (Graff et al, 1997) and the more 3' region of hMLH1 promoter than we studied displayed a higher degree of correlation with MSI status (Deng et al, 1999; Nakagawa et al, 2001), it is possible that hMLH1 promoter was not yet fully methylated (or silenced) in non-cancerous mucosa in which reduction of hMLH1 expression was inconspicuous. Alternatively, MSI-H gastric cancers may develop through clonal expansion of fully methylated cells showing loss of hMLH1. Such a finding has been previously reported in colorectal tissue (Kuismanen et al, 1999).

Multiple gastric cancers are frequently found in the elderly, and the incidence of gastric cancers with MSI-H also correlates with age (Esaki et al, 1987; Nakashima et al, 1995; dos Santos et al, 1996; Halling et al, 1999). Furthermore, hypermethylation of the promoters of several tumour-related genes is also increased with age (Ahuja et al, 1997, 1998; Kane et al, 1997; Veigl et al, 1998). Thus, age-related methylation has the potential to behave as a mutator process resulting in the simultaneous silencing of multiple tumour related genes in aging tissues (Lipkin, 1988; Issa, 2000). While the mechanism of age-related methylation is not known, it is clear that age-related methylation only affects a subset of genes, suggesting a gene-specific susceptibility to this process (Issa, 2000). Several factors have been suggested to modulate this process, such as exogenous carcinogens, endogenously generated reactive oxygen species, and genetic differences in individuals’ susceptibility to age-related methylation (Issa, 2000). Although we found frequent hypermethylation of the hMLH1 gene promoter in non-cancerous mucosa adjacent to, or distant from solitary and multiple gastric cancers with MSI-H, methylated alleles were rarely detected in similar tissues from patients with solitary gastric cancer of the MSS phenotype. We conclude that hypermethylation of the hMLH1 gene promoter occurs in the non-cancerous mucosa which varies significantly among individuals and may lead to the development of MSI-H gastric cancer. Such methylation in non-cancerous mucosa may also increase the risk of subsequent neoplasia.

Table 2 Promoter hypermethylation and protein expression of the hMLH1 gene

| Methylation status | Reduced | Normal |
|--------------------|---------|--------|
| SOLITARY           | 12      | 0      |
| MULTIPLE           | 7       | 2      |
| TOTAL              | 19      | 2      |
| UNMETHYLATED       | 0       | 5      | P < 0.000003 |
| SOLITARY           | 0       | 4      |
| MULTIPLE           | 0       | 4      |
| TOTAL              | 0       | 9      |

Figure 2 Immunohistochemical staining for hMLH1 protein expression in gastric cancers with unmethylated (A) or hypermethylated (B) gene promoters. (A) Nuclear staining of hMLH1 in a MSS tumour without promoter hypermethylation (intramucosal well differentiated tubular adenocarcinoma). (B) Loss of hMLH1 expression in a MSI-H tumour with promoter hypermethylation (left, intramucosal well differentiated tubular adenocarcinoma; right, intestinal metaplastic mucosa exhibiting hMLH1 expression).
REFERENCES

Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR, Petersen GM, Kinzler KW, Vogelstein B, de la Chapelle A (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260: 812 – 816

Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB, Issa JP (1997) Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 57: 3370 – 3374

Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58: 5489 – 5494

Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72: 141 – 196

Chong JM, Fukayama M, Hayashi Y, Takizawa T, Koike M, Konishi M, Kikuchi-Yanoshita R, Miyaki M (1994) Microsatellite instability in the progression of gastric carcinoma. Cancer Res 54: 4595 – 4597

Deng G, Chen A, Hong J, Chae HS, Kim YS (1999) Methylation of CpG in a small region of the hMLM1 promoter invariably correlates with the absence of gene expression. Cancer Res 59: 2029 – 2033

dos Santos NR, Senura R, Constancia M, Seixas M, Sobrinho-Simoes M (1996) Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology 110: 38 – 44

Esaki Y, Hirokawa K, Yamashiro M (1987) Multiple gastric cancers in the aged with special reference to intramucosal cancers. Cancer 59: 560 – 565

Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Ryhu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ (1999) Hypermethylation of the hMLH1 gene promoter in human gastric carcinomas with microsatellite instability. Cancer Res 59: 1090 – 1095

Fleisher AS, Esteller M, Tamura G, Rashid A, Stine OC, Yin J, Zou TT, Abraham JM, Kong D, Nishizuka S, James SP, Wilson KT, Herman JG, Meltzer SJ (2001) Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 20: 329 – 335

Goelz SE, Hamilton SR, Vogelstein B (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun 130: 118 – 126

Graff JR, Herman JG, Myohanen S, Baylin SB, Vertino PM (1997) Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J Biol Chem 272: 22322 – 22329

Guo RJ, Arai H, Kitayama Y, Igarashi H, Hemmi H, Arai T, Hanai H, Sugiura H (2001) Microsatellite instability of papillary subtype of human colorectal adenocarcinoma and hMLH1 promoter hypermethylation in the surrounding mucosa. Pathol Int 51: 240 – 247

Halling KC, Harper J, Moskaluk CA, Thibodeau SN, Petroni GR, Yustein AS, Usuba O, Kimura W, Nishizuka S, Wilson KT, James SP, Silverberg SG, Nishizuka T, Shibata D, Togo K, Meltzer SJ (2000) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability in primary human gastric carcinomas. Am J Pathol 155: 205 – 211

Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525 – 4530

Herman JG, Umar A, Policky K, Graff JR, Ahuja N, Issa JP, Markowitz S, Wilson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal cancer. Proc Natl Acad Sci USA 95: 6870 – 6875

Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Periyasamy S, Lutterbach JD, Markowitz SD (1998) CpG island methylation in aging and cancer. Curr Top Microbiol Immunol 249: 101 – 118

Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21: 163 – 167

Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, Jessup JM, Kolodner R (1997) Methylation of the hMLH1 promoter correlates with lack of expression of mismatch repair in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57: 808 – 811

Kang GH, Shim YH, Ro JY (1999) Correlation of methylation of the hMLH1 promoter with lack of expression of hMLH1 in sporadic gastric carcinomas with replication error Lab Invest 79: 903 – 909

Kuismanen SA, Holmberg MT, Salovaara R, Schweizer P, Aaltonen LA, de la Chapelle A, Nystrom-Lahti M, Peltomaki P (1999) Epigenetic phenotypes distinguish microsatellite stable and -unstable colorectal cancers. Proc Natl Acad Sci USA 96: 12661 – 12666

Leung SY, Yuen ST, Chung IP, Chu KM, Chan AS, Ho JC (1999) hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 59: 159 – 164

Leung WK, Yu J, Ng EKW, To KF, Ma PK, Lee TL, Go MY, Chung SCS, Sung JYY (2001) Concurrent hypermethylation of multiple tumor-related genes in gastric carcinoma and adjacent normal tissues. Cancer 91: 2294 – 2301

Lipkin M (1988) Biomarkers of increased susceptibility to gastrointestinal cancer: new application to studies of cancer prevention in human subjects. Cancer Res 48: 235 – 245

Mironov NM, Aguelov MA, Potapova GI, Omori Y, Gorbunov OV, Klimentov AA, Yasahaki H (1994) Alterations of (CA)n DNA repeats in normal and cancer tissues. Proc Natl Acad Sci USA 91: 591 – 596

Nakashima H, Inoue H, Mori M, Ueo H, Ikeda M, Akiyoshi T (1995) Microsatellite instability in Japanese gastric cancer. Cancer 75: 1503 – 1507

Ogata S, Tamura G, Endoh Y, Sakata K, Ohmura K, Motoyama T (2001) Microsatellite alterations and target gene mutations in the early stages of multiple gastric cancer development. J Pathol 194: 334 – 340

Ohmura K, Tamura G, Endoh Y, Sakata K, Takahashi T, Motoyama T (2000) Microsatellite alterations in differentiated-type adenocarcinomas and precancerous lesions of the stomach with special reference to cellular phenotype. Hum Pathol 31: 1031 – 1035

Strickler JG, Zheng J, Shu Q, Burgart LJ, Alberts SR, Shibata D (1994) p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res 54: 4750 – 4755

Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, Hinoda Y, Imai K (1999) Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int J Cancer 83: 309 – 313

Tamura G, Sakata K, Nishizuka S, Maesawa C, Suzuki Y, Terashima M, Eda Y, Sato T, Ohno A, Ando Y (1999) Allelytotype of adenoma and differentiated adenocarcinoma of the stomach. J Pathol 180: 371 – 377

Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka T, Shibata D (1994) p53 mutations and microsatellite instability in sporadic gastric cancer: when guards fail. Cancer Res 54: 4750 – 4755

Toyota M, Aihua N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999a) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8861 – 8866

Toyota M, Aihua N, Suzuki H, Itoh F, Oe-Toyota M, Imai K, Baylin SB, Issa JP (1999b) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 59: 5438 – 5442

Tsuchiya T, Tamura G, Sato K, Endoh Y, Sakata K, Jin Z, Motoyama T, Usuba O, Kimura W, Nishizuka S, Wilson KT, James SP, Yin J, Fleisher AS, Zou T, Silverberg SG, Kong D, Meltzer SJ (2000) Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia. Oncogene 19: 3642 – 3646

Yamashita K, Arimura Y, Kurokawa S, Itoh F, Endo T, Hiraoka K, Imamura A, Kondo M, Sato T, Imai K (2000) Microsatellite instability in patients with multiple primary cancers of the gastrointestinal tract. Gut 46: 790 – 794

Veigl ML, Kasturi L, Olechnowicz J, Ma AH, Lutterbach JD, Modrich PL, Sedwick WD, Markowitz SD (1998) Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci USA 95: 8698 – 8702