Protection status against hepatitis B infection assessed from anti-HBs level, history of vaccination and history of infection based on anti-HBc in medical students

Annisa^1,2*, LH Zain^3 and R Loesnihari^4

^1Postgraduate Program in Tropical and Health Medicine, Faculty of Medicine, University of Sumatera Utara, Jl. Dr. T. Mansur, Padang Bulan, Medan, Sumatera Utara, Zip code 20155, Indonesia
^2Department of Microbiology, Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Jl. Gedung A.A Medan, Sumatera Utara, Zip Code 20217, Indonesia
^3Department of Gastroenterohepatology, Haji Adam Malik, General Hospital, Jl. Bunga Lau, Medan Tuntungan, Medan, Sumatera Utara, Zip code 20136, Indonesia
^4Chief Department of Clinical Pathology, Haji Adam Malik, General Hospital, Jl. Bunga Lau, Medan Tuntungan, Medan, Sumatera Utara, Zip code 20136, Indonesia
^*Corresponding author’s e-mail: annisa_130890@yahoo.com

Abstract. Hepatitis B virus (HBV) is one of the most contagious pathogens where the risk of exposure is very high among health care workers, especially students in the clerkship. This study describes the protection status by measuring anti-HBs level, history of vaccination, and history of HBV infection in medical students. Forty-four (44) students over 18 years old were randomly selected, interviewed for their vaccination history and then had their blood serum taken for anti-HBs and anti-HBc examinations to determine the protectivity and history of infection. There were 81.8% students without a protective anti-HBs level. Before starting their clerkship, 18.2% students received the vaccination, and only one-fourth formed protective antibody level above 10mIU/mL. Seventeen (38.6%) students had been exposed to HBV (positive anti-HBc), and only six of them showed protective anti-HBs level. None of the students that received vaccine underwent a post-vaccination serological test (PVST) to determine their immune response. These results indicated the vulnerability of medical students to the risk of HBV transmission while performing medical care. With the high incidence of HBV transmission, educational institutions are encouraged to make provisions for vulnerable students to receive a booster and an adequate PVST before their clerkship.

1. Introduction
Hepatitis B virus (HBV) infection was one of the most common chronic viral infections in the world, with a chronic carrier global prevalence varying between 0.1 and 20%. The most common hepatitis infection in Indonesia was Hepatitis B infection. The natural course of Hepatitis B might present from asymptomatic to identifiable liver damage, where chronic HBV infection may progress to cirrhosis and hepatocellular carcinoma (HCC).[1-5] HBV was a DNA virus from the hepatotropic Hepadnaviridae family with a nondirect cytopathic effect in its mechanism of liver damage, and instead, the damage resulted from interactions between HBV and the host’s immune system.[6-9]
HBV was transmitted percutaneously through mucosal exposure to infected blood or other body fluids from hepatitis B patients. One of the riskiest occupations were healthcare workers, especially medical students due to their lack of experience in procedures made them susceptible to accidental exposure.[10-14] Needle injuries were often experienced by healthcare workers in endemic areas, but such cases had not reported in Indonesia.[15-19]

In addition to universal standard precautions against infections, another preventive measure against HBV is vaccination, which has been a mandatory program in Indonesia. Vaccine response might vary, characterized by the formation of anti-HBs above 10mIU/mL. Some individuals might not form adequate immune response.[20-24] Levels of anti-HBs might decline over time, and although immunity to hepatitis B has a strong anamnestic response, some studies still recommend boosters especially in individuals with the low initial response, living in the endemic area, and often in contact with hepatitis B.[23-27]

2. Material and Methods

2.1. Location, time and population
This study was in March 2017 at the Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Medan. This faculty of medicine, like many other medical faculties in Indonesia, did not have clear rules about the medical profession's prerequisites, especially in disease screening or vaccination programs. The population of this study was medical students who enrolled in clerkship at the institution. The inclusion criteria were healthy subjects aged over 18 years. Subjects were at random as representatives of all students enrolled in clerkship from 2016 to 2017.

2.2. Collecting data
Subjects were given a questionnaire containing the history of vaccinations, type of vaccine, and the number of doses administered. They were asked about previous diseases, especially hepatitis, and also a history of hepatitis-related examinations such as Hepatitis B Surface Antigen (HBsAg) and Hepatitis B Surface Antibody (Anti-HBs) tests. Then the subjects had their blood samples taken for quantitative examination of anti-HBs and Total Hepatitis B Core Antibody (total anti-HBc).

2.3. Serological testing
Serology test was performed using ELISA method for quantitative anti-HBs and total anti-HBc using Rayto (RT 2100-C) and Cortez Diagnostics reagent. Anti-HBs had a cut-off value of 10 mIU/mL.

2.4. Ethics
Ethical Committee of Medical Faculty had approved the ethical clearance, University of Sumatera Utara. All participated subjects agreed with informed consents.

2.5. Data analysis
The data obtained were processed with computer software and then calculated as a descriptive statistical analysis of the demographic data, history of vaccinations, anti-HBs levels, and history of infections.

3. Results

3.1. Characteristic of subjects
Researchers identified 44 students consisting of 29 (65.9%) females and 15 (34.1%) men, and all of them aged over 20 years (Table 1). All subjects were medical students enrolled in the clerkship.
3.2. Questionnaire and interview
Subjects were given a questionnaire and interviewed with questions about the history of the disease, especially liver disease. One (2.7%) subjects previously had hepatitis A. None (0%) had ever been diagnosed with Hepatitis B. Subjects were asked for a history of vaccinations, either before education or at infant age, involving communication with parents and family to provide adequate information. The majority of subjects [31 (70.4%)] had ever been vaccinated for mandatory Hepatitis B at infancy. Eight (18.2%) subjects received vaccination recently in adulthood (Table 2). All of them (100%) used the recombinant vaccine. None were screened to determine the status of hepatitis B infection and immunity before and after vaccination.

3.3 Laboratory test result
Of the 44 healthy subjects examined for ELISA total anti-HBc, 17 (38.6%) subjects had been exposed to hepatitis B virus. The majority [36 (81.8%)] of subjects examined for anti-HBs level did not form protective antibodies against hepatitis B (Table 3).

Both male and female subjects were generally unprotected against Hepatitis B. Nearly half [12 (41.3%)] of females, and one-third [5 (33%)] of males had been exposed to HBV. Based on infant vaccination history, 25 (80.6%) subjects who had been vaccinated had an anti-HBs level below 10mIU/mL, and 12 (38.7%) infected subjects were positive against anti-HBc. Six (75%) subjects who received the recent vaccination before clerkship had an anti-HBs level below 10mIU/mL. (Table 4) of the eight people who had recent vaccinations, five of them received it in infancy, but only two formed protective antibody level while the remaining three did not form protective level at all.

Table 1. Characteristic of subjects.

Demography	N	%
Gender		
Male	15	34.1
Female	29	65.9
Age		
<20 years old	0	0
>20 years old	44	100%

Table 2. History of vaccination.

Vaccination history	N	%
Infant Vaccination		
Yes	31	70.4
No	13	29.5
Recent (adult) Vaccination	8	18.2
Yes	36	81.8

Table 3. Test results for total anti-HBc and anti-HBs.

Serology test	n	%
Total Anti-HBc		
Positive	17	38.6
Negative	27	61.4
Anti-HBs		
<10mIU/mL	36	81.8
≥10mIU/mL	8	18.8
Eleven (64.7%) of the study subjects who were positive for total anti-HBc, only six (35.3%) of them formed anti-HBs above 10mIU/mL. Four of them had a level above 100 mIU/mL, and two people had a level of 1071mIU/mL and 969mIU/mL respectively. Eleven (64.7%) showed an unprotected anti-HBs level despite the evidence of the previous infection.

Table 4. Serology results of anti-HBc and anti-HBs based on demography and vaccination history.
Gender
Male
Female
Infant Vaccination
Recent (adult)
Vaccination

Serologic examination showed that from 17 subjects who were positive for total anti-HBc, only six (35.3%) of them formed anti-HBs above 10mIU/mL. Four of them had a level above 100 mIU/mL, and two people had a level of 1071mIU/mL and 969mIU/mL respectively. Eleven (64.7%) showed an unprotected anti-HBs level despite the evidence of the previous infection.

Table 5. Anti-HBs and anti-HBc.
Anti - HBc
Positive
Negative

4. Discussion
We enrolled 44 medical students as subjects and most of them were females. This number coincides with the fact that the majority of medical students are females in the study site and the sampling does not discriminate the sexes involved because there was no hepatitis B prevalence data that distinguish between genders.[27-29]

We identified only 70.5% participants who received hepatitis B vaccination in childhood, even though this program was mandatory in Indonesia. From the entire vaccination procedure, none had done a post-vaccination test as recommended by CDC to see the individual response to form adequate antibody after completing vaccination dose. Studies regarding vaccination response after immunization in infancy showed responses varied between 60 to above 90 percent. History taking found the majority of HBsAg-positive or anti-HBc-positive mothers had an impact on the baby's serologic status, but no study had sought to elucidate the relationship between the two, which was difficult to explain properly due to many influencing variables.[30-33]

Only eight (18.1%) subjects showed a protective antibody level above 10mIU/mL, even though the actual subjects that received vaccination was 34 (77.3%). Antibodies against HBsAg might decrease over time, and this statement had already been in many studies. The level of antibody declined gradually from the first year, and by the age of 10, half the recipient of the vaccine will lose its protective titer. But immunity against hepatitis B had a durable memory. The problem was the absence of adequate serological testing before and after vaccination, i.e. PVST (post-vaccination serological testing) as recommended by many global guidelines.[31,34,35]

Twelve (38.7%) of the 31 subjects who had received a mandatory vaccination at infancy had a positive anti-HBc which showed a previous history of hepatitis B infection. Five of these subjects had even undergone another course of vaccination before clinical rotation, so the absence of adequate antibodies to these students indicates the non-responsiveness of the subjects to the administration of hepatitis B vaccine. Vaccine administration, especially boosters in individuals whose previous response were adequate, should be able to provide a very significant increase in antibody level (anamnestic response). These students were vulnerable to hepatitis B infection and also had the risk of transmitting the disease to the patients in their care.[35-37]
5. Conclusion
We found 81.9% of participants had no protective antibody level against hepatitis B. Hepatitis B vaccine was one of the mandatory vaccines in Indonesia, but not all students received the vaccine as they should. Although immunity against hepatitis B had a memory, without an adequate PVST examination the medical students were considered vulnerable while performing their duties as healthcare workers. All healthcare personnel including medical student should take anti-HBs and HBsAg screening test before making any risky contact and also received a booster dose if necessary.

References
[1] World Health Organization 2006 Hepatitis B global infection rates
[2] Coleman W B, Tsongalis G J and Liaw Y 2016 Hepatitis B Virus in Human Diseases Humana Press
[3] MacMahon B 2010 Natural history of chronic hepatitis B Clinics in liver disease vol 14, ed C Naoky, J Melorose, et al.
[4] Baumert T F, Thimme R, Von Weizsacker F, et al. 2007 Pathogenesis of hepatitis B virus infection World J. Gastroenterol. 13 82
[5] Chisari F V, Isogawa M and Wieland S 2010 Pathogenesis of hepatitis B virus infection Pathol. Biol. 58 258–66
[6] Dienstag J 2010 Hepatitis B and health-care workers
[7] Bhat M, Ghali P, Deschenes M and Wong P 2012 Hepatitis B and the infected health care worker: Public safety at what cost? Can. J. Gastroenterol. 26 257–60
[8] Batra V, Goswami A, Dadhich S, Kothari D and Bhargava N 2015 Hepatitis B immunization in healthcare workers Ann. Gastroenterol. 28 276–80
[9] de Oliveira L C M and Pontes J P J 2010 Frequency of hepatitis B immunity and occupational exposures to body fluids among Brazilian medical students at a public university Rev. Inst. Med. Trop. Sao Paulo 52 247–51
[10] Menteri Kesehatan Republik Indonesia 2013 Penyelenggaraan imunisasi (Indonesia)
[11] Noubiap J J N, Nansseu J R N, Kengne K K, TchokfeNdoula S and Agyingi L A 2013 Occupational exposure to blood, hepatitis B vaccine knowledge and uptake among medical students in Cameroon BMC Med. Educ. 13 148
[12] Perhimpunan Peneliti Hati Indonesia 2012 Konsensus nasional penatalaksanaan hepatitis B ed N Akbar (PPHI)
[13] World Health Organization 2006 Infection control standard precautions in health care World Heal. Organ. 1–2
[14] Coutinho R A 2011 Hepatitis B vaccination J. Virol. Methods. 10 327–31
[15] Aspinall E J, Hawkins G, Fraser A, Hutchinson S J and Goldberg D 2011 Hepatitis B prevention, diagnosis, treatment and care: A review Occup. Med. (Chic. Ill) 61 531–40
[16] Kim Y J, Li P, Hong J M and Ryu K H 2017 A single center analysis of the positivity of hepatitis B antibody after neonatal vaccination program in Korea 32 810–6
[17] Lao T T and Lao T T 2017 Long-term persistence of immunity after hepatitis B vaccination: Is this substantiated by the literature? Hum. Vaccin. Immunother. 0 1–3
[23] Leuridan E and Van Damme P 2011 Hepatitis B and the need for a booster dose Clin. Infect. Dis. 53 68–75
[24] Aghasadeghi M R, Banifazl M, Aghakhani A and Esalamifar A 2014 No evidence for occult HBV infection in hepatitis B vaccine non-responders 6 350–3
[25] Nashibi R, Alavi S M, Yousefi F, Salmanzadeh S, Moogahi S, Ahmadi F and Farashahinejad M 2015 Post-vaccination immunity against hepatitis B virus and predictors for non-responders among medical staff Jundishapur J. Microbiol. 8
[26] Ng K P, Ngeow Y F, Rozainah K and Rosmawati M 2013 Hepatitis B seroprevalence among university of Malaya students in the post-universal infant vaccination era Med. J. Malaysia 68 144–7
[27] Yano Y, Utsumi T, Lusida M I and Hayashi Y 2015 Hepatitis B virus infection in Indonesia World J. Gastroenterol. 21 10714–20
[28] Tsay P K, Tai D I, Chen Y M, Yu C P, Wan S Y, Shen Y J and Lin D Y 2009 Impact of gender, viral transmission and aging in the prevalence of hepatitis B surface antigen Chang Gung Med. J. 32 155–64
[29] Pracoyo N E and Wirbo 2016 Faktor-faktor yang berhubungan dengan tingkat kekebalan hepatitis b (anti-hbs) pada anak umur 1-14 tahun dari data hasil riskesdas 2007 Media Litbangkes 26 59–64
[30] Schillie S, Murphy T V, Sawyer M, Ly K, Hughes E, Jiles R, de Perio M A, Reilly M, Byrd K and Ward J W 2013 CDC guidance for evaluating health-care personnel for hepatitis B virus protection and for administering post exposure management MMWR Recomm. Rep. 62 1–19
[31] Wang Z, Gao Y, Lu W, Jin C, Zeng Y, Yan L and Ding F 2015 Long-term persistence in protection and response to a hepatitis B vaccine booster among adolescents immunized in infancy in the western region of 1–24
[32] Norouzirad R, Shakurnia A H, Assarehzadegan MA, Serajian A and Khabazkhoob M 2014 Serum levels of anti-hepatitis B surface antibody among vaccinated population aged 1 to 18 years in ahvaz city southwest of Iran Hepat. Mon. 14 e13625
[33] Romanò L, Galli C, Tagliacarne C, Tosti M E, Fomiatti L, Chironna M, Coppola R C, Cuccia M, Mangione R, Marrone F, Negron F S, Zotti C M, Mele A and Zanetti A R 2017 Persistence of immunity 18 – 19 years after vaccination against hepatitis B in two cohorts of vaccines primed as infants or as adolescents in Italy Taylor Fr. Gr. 5515
[34] Evdokimov K, Sayasinh K, Nouanthong P, Vilivong K, Samountry B, Phonekeo D, Haegeman F, Heimann P, Muller C P and Black A P 2016 SC Clin. Microbiol. Infect.
[35] Dini G, Toletone A, Barberis I, Debarbieri N, Massa E and Paganino C 2017 Persistence of protective anti-HBs antibody levels and anamnestic response to HBV booster vaccination: A cross-sectional study among healthcare students 20 years following the universal immunization campaign in Italy Hum. Vaccin. Immunother. 13 440–4
[36] Wang Y, Chen T, Lu L, Wang M, Wang D, Yao H, Fan C, Qi J, Zhang Y and Qu C 2017 Adolescent booster with hepatitis B virus vaccines decreases HBV infection in high-risk adults Vaccine
[37] Zhu C, Liu F, Chen T, Ni Z, Lu L, Huang F, Lu J, Sun Z and Qu C 2011 Presence of immune memory and immunity to hepatitis B virus in adults after neonatal hepatitis B vaccination Vaccine 29 7835–41