Self-Conjugate-Reciprocal Irreducible Monic Polynomials over Finite Fields

Arunwan Boripan, Somphong Jitman and Patanee Udomkavanich

Abstract

The class of self-conjugate-reciprocal irreducible monic (SCRIM) polynomials over finite fields are studied. Necessary and sufficient conditions for monic irreducible polynomials to be SCRIM are given. The number of SCRIM polynomials of a given degree are also determined.

Keywords: order, degree, SCRIM polynomials
2010 Mathematics Subject Classification: 11T55

1 Introduction

A polynomial \(f(x) \) of degree \(n \) over a finite field \(\mathbb{F}_q \) (with \(f(0) \neq 0 \)) is said to be self-reciprocal if \(f(x) \) equals its reciprocal polynomial \(f^*(x) := x^n f(0)^{-1} f \left(\frac{1}{x} \right) \). A polynomial is said to be self-reciprocal irreducible monic (SRIM) if it is self-reciprocal, irreducible and monic. SRIM and self-reciprocal polynomials over finite fields have been studied and applied in various branches of Mathematics and Engineering. SRIM polynomials were used for characterizing and enumerating Euclidean self-dual cyclic codes over finite fields in [3] and for characterizing Euclidean complementary dual cyclic codes over finite fields in [7]. In [2], SRIM polynomials have been characterized up to their degrees. The order and the number of SRIM polynomials of a given degree over finite fields have been determined in [8].

In this paper, we focus on a generalization of a SRIM polynomial over finite fields, namely, a self-conjugate-reciprocal irreducible monic (SCRIM) polynomial. The conjugate of a polynomial \(f(x) = \sum_{i=0}^{n} f_i x^i \) over \(\mathbb{F}_{q^2} \) is defined to be \(\overline{f(x)} = f_0 + f_1 x + \cdots + f_n x^n, \) where \(\overline{\alpha} : \mathbb{F}_{q^2} \to \mathbb{F}_{q^2} \) is defined by \(\alpha \mapsto \alpha^q \) for all \(\alpha \in \mathbb{F}_{q^2} \). A polynomial \(f(x) \) over \(\mathbb{F}_{q^2} \) (with \(f(0) \neq 0 \)) is said to be self-conjugate-reciprocal if \(f(x) \) equals its conjugate-reciprocal polynomial \(f^!(x) := \overline{f^*(x)} \). If, in addition, \(f(x) \) is monic and irreducible, it is said to be self-conjugate-reciprocal irreducible monic (SCRIM). SCRIM polynomials have been used for characterizing Hermitian self-dual cyclic codes in [4]. However, properties of SCRIM polynomials have not been well studied. Therefore, it is of natural interest to characterize and to enumerate such polynomials.
2 Preliminaries

In this section, basic properties of polynomials that are important tools for studying SCRIM polynomials are recalled.

Let \(q \) be a prime power and let \(n \) be a positive integer such that \(\gcd(n, q) = 1 \). For each \(0 \leq i < n \), the cyclotomic coset of \(q \) modulo \(n \) containing \(i \) is defined to be the set

\[
Cl_q(i) = \{ iq^j \mod n \mid j \in \mathbb{N}_0 \}.
\]

A minimal polynomial of an element \(\alpha \in \mathbb{F}_{q^m} \) with respect to \(\mathbb{F}_q \) is a nonzero monic polynomial \(f(x) \) of least degree in \(\mathbb{F}_q[x] \) such that \(f(\alpha) = 0 \).

Theorem 2.1 ([6, Theorem 3.48]). Let \(n \in \mathbb{N} \) be such that \(\gcd(n, q) = 1 \). Let \(m \in \mathbb{N} \) satisfying \(n | (q^m - 1) \) and \(\alpha \) be a primitive element of \(\mathbb{F}_{q^m} \). Then

\[
M_{\mathbb{F}_q}^{(i)}(x) = \prod_{j \in Cl_q(i)} (x - \alpha^j)
\]

is the minimal polynomial of \(\alpha^i \).

Remark 2.2. The polynomial \(M_{\mathbb{F}_q}^{(i)}(x) \) in Theorem 2.1 will be referred to as the minimal polynomial of \(\alpha^i \) defined corresponding to \(Cl_q(i) \).

The order of a polynomial \(f(x) \), denoted by \(\ord(f(x)) \), is defined to be the smallest positive integer \(s \) such that \(f(x) \) divides \(x^s - 1 \).

Remark 2.3. It is well know that if \(f(x) \) is an irreducible polynomial over \(\mathbb{F}_q \), then \(f(x) \mid (x^{\ord(f(x))} - 1) \). Moreover, we have

\[
x^{\ord(f(x))} - 1 = \prod_{i=1}^{t} M_{\mathbb{F}_q}^{(i)}(x)^f
\]

where \(t \) is the cardinality of a complete set of representatives of the cyclotomic cosets of \(q \) modulo \(\ord(f(x)) \) [6, Theorem 3.48]. It follows that any irreducible polynomials over \(\mathbb{F}_q \) can be viewed as \(M_{\mathbb{F}_q}^{(i)}(x) \) for some \(i \).

The following property of the order mentioned in [8] and [9] is helpfull.

Lemma 2.4 ([8, Theorem 3.3]). If \(f(x) \) is an irreducible polynomial of degree \(n \) over \(\mathbb{F}_q \), then \(\ord(f(x)) \) is the order of any root of \(f(x) \) in the multiplicative group \(\mathbb{F}_q^* \).

3 Self-Conjugate-Reciprocal Irreducible Polynomials

In this section, we study self-conjugate-reciprocal irreducible monic (SCRIM) polynomials over finite fields. Since a SCRIM polynomial is defined over a finite field whose order is a square, for notation simplicity, we focus on polynomials in \(\mathbb{F}_{q^2}[x] \). We determine the orders and the number of SCRIM polynomials of a given degree.
Lemma 3.1. Let \(\alpha \) be an element in an extension field of \(\mathbb{F}_{q^2} \) and let \(f(x) \in \mathbb{F}_{q^2}[x] \). Then \(\alpha \) is a root of \(f(x) \) if and only if \(\alpha^{-q} \) is a root of \(f^1(x) \).

Proof. Let \(f(x) = a_0 + a_1 x + \cdots + a_n x^n \). Then

\[
f^1(\alpha^{-q}) = \alpha^{-qn}(a_0^{q} + \frac{a_1}{\alpha^{-q}} + \cdots + \frac{a_n}{\alpha^{-qn}}) = \alpha^{-qn}(a_0 + a_1 \alpha + \cdots + a_n \alpha^n)^q = \alpha^{-qn}(f(\alpha))^q.
\]

Therefore, \(\alpha \) is a root of \(f(x) \) if and only if \(\alpha^{-q} \) is a root of \(f^1(x) \). \(\square \)

Next lemma gives a necessary and sufficient condition for an irreducible polynomial to be SCRIM. By Remark 2.3, it suffices to concentrate on \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \).

Lemma 3.2. \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \) is self-conjugate-reciprocal if and only if \(Cl_{q^2}(i) = Cl_{q^2}(-qi) \).

Proof. Assume \(M_{\mathbb{F}_{q^2}}^{(i)}(x) = M_{\mathbb{F}_{q^2}}^{(i)}(x) \). Then \(x^i \) is a root of \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \). Since \(Cl_{q^2}(-qi) \) is a class corresponding to \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \), By Theorem 2.1, \(i \in Cl_{q^2}(-qi) \). Hence,

\[
Cl_{q^2}(i) = Cl_{q^2}(-qi).
\]

Conversely, assume that \(Cl_{q^2}(i) = Cl_{q^2}(-qi) \). Then

\[
M_{\mathbb{F}_{q^2}}^{(i)}(x) = \prod_{j \in Cl_{q^2}(i)} (x - \alpha^j) = \prod_{j \in Cl_{q^2}(-qi)} (x - \alpha^j) = \prod_{j \in Cl_{q^2}(i)} (x - \alpha^{-qj}).
\]

Since \(\alpha^{-qj} \) is a root of \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \) for all \(j \in Cl_{q^2}(i) \), it follows that \(\alpha^j \) is a root of \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \) for all \(j \in Cl_{q^2}(-qi) \). Therefore, \(M_{\mathbb{F}_{q^2}}^{(i)}(x) = M_{\mathbb{F}_{q^2}}^{(i)}(x) \) as desired. \(\square \)

Theorem 3.3. The degree of a SCRIM polynomial must be odd.

Proof. Assume that \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \) has degree \(t \). If \(t = 1 \), then the degree of \(M_{\mathbb{F}_{q^2}}^{(i)}(x) \) is odd. Suppose \(t \neq 1 \). Then, by Lemma 3.2, we have \(Cl_{q^2}(i) = Cl_{q^2}(-qi) \) and \(|Cl_{q^2}(i)| = t > 1 \). Then there exists \(0 \leq j < t \) such that

\[
i \equiv (-qi)^j \quad (\text{mod} \ t).
\]

It follows that

\[
-qj \equiv (-q)(-qi)^j \quad (\text{mod} \ t)
\]

\[
i q^{2j+2} \quad (\text{mod} \ t),
\]

3
and hence,

\[i \equiv iq^{2j+2}q^{2j} \pmod{t} \]
\[\equiv iq^{2(2j+1)} \pmod{t}. \]

It follows that

\[t \mid (2j+1). \]

Then \(2j+1 = kt \) for some positive integer \(k \). Since \(0 \leq j < t \), we have \(kt \leq 2j+1 < 2t \).

It follows that \(k = 1 \), and hence, \(t = 2j+1 \) which is odd.

Next, we determine the number of SCRIM polynomials of degree 1.

Proposition 3.4. There are \(q \) SCRIM polynomials of degree 1 over \(\mathbb{F}_{q^2} \).

Proof. Let \(f(x) \) be a polynomial over \(\mathbb{F}_{q^2} \) of degree 1. Then \(f(x) = x + a \) for some \(a \in \mathbb{F}_{q^2} \). Thus \(f^t(x) = x + a^{-q} \). The polynomial \(f(x) \) is SCRIM if and only if \(a = a^{-q} \).

Equivalently, \(a^{q+1} = 1 \).

Since \((q+1)||\mathbb{F}_{q^2}^* \) and \(\mathbb{F}_{q^2}^* \) is a cyclic group, there exists a unique subgroup \(H \) of order \(q+1 \) of \(\mathbb{F}_{q^2}^* \). Clearly, \(a^{q+1} = 1 \) if and only if \(a \in H \). Hence, the number of SCRIM polynomials of degree 1 over \(\mathbb{F}_{q^2} \) is \(q+1 \).

Example 3.5. By proposition 3.4 there are 6 SCRIM polynomials of degree 1 over \(\mathbb{F}_{25} \). In order to list all of them, we assume that \(\mathbb{F}_{25}^* = \langle \alpha \rangle \). It can be easily seen that \(1^6 = 1 = (\alpha^3)^6 = (\alpha^8)^6 = (\alpha^{12})^6 = (\alpha^{20})^6 \).

Hence, all SCRIM polynomials of degree 1 over \(\mathbb{F}_{25} \) are \(x + 1, x + \alpha^4, x + \alpha^8, x + \alpha^{12}, x + \alpha^{16} \) and \(x + \alpha^{20} \).

From now on, we assume that the polynomials have odd degree \(n \geq 3 \). We determine the number of SCRIM polynomials of degree \(n \geq 3 \) by using the orders of SCRIM polynomials of degree \(n \) over \(\mathbb{F}_{q^2} \). The following three lemmas are important tools for determining the order of SCRIM polynomial.

Lemma 3.6 (\cite{8}, Proposition 2). Suppose \(a, r \) and \(k \) are positive integers with \(r \) even. If \(a \) divides \(q^r - 1 \) and \(a \) divides \(q^k + 1 \), then \(a \) divides \(q^{r/2} + 1 \) for some positive integer \(s \).

Lemma 3.7 (\cite{8}, Proposition 1). Let \(a \) be a positive integers with \(a > 2 \). If \(m \) is the smallest positive integer such that \(a \) divides \(q^m + 1 \), then, for any positive integer \(s \), the following statements hold.

1. \(a \) divides \(q^s + 1 \) if and only if \(s \) is an odd multiple of \(m \).
2. \(a \) divides \(q^s - 1 \) if and only if \(s \) is an even multiple of \(m \).

Let \(D_n \) be the set of all positive divisors of \(q^n + 1 \) which do not divide \(q^k + 1 \) for all \(0 \leq k < n \).

Proposition 3.8. Let \(f(x) \) be a SCRIM polynomial of degree \(n \) over \(\mathbb{F}_{q^2} \). Then \(\text{ord}(f(x)) \in D_n \). Moreover, if \(\alpha \in \mathbb{F}_{q^2} \) is a root of \(f(x) \), then \(\alpha \) is a primitive \(d \)-th root of unity for some \(d \in D_n \).
Proof. Let \(\alpha \in \mathbb{F}_{q^{2n}} \) be a root of \(f(x) \). Since \(f(x) \) is SCRIM, by Lemma 3.1, \(f\left(\frac{1}{\alpha^t} \right) = 0 \) and we may write \(\frac{1}{\alpha^t} = \alpha^{2^t} \) for some positive integer \(t \). Then \(\alpha^{2^t+q} \) divides \(q^{2^n} + q \). Since \(\gcd(q, \text{ord}(\alpha)) = 1 \), we have \(\text{ord}(\alpha) | (q^{2t+1} + 1) \). From \(\alpha \in \mathbb{F}_{q^{2n}} \), then \(\text{ord}(\alpha) \) divides \(q^{2n} - 1 \). By Lemma 3.6 we have that \(\text{ord}(\alpha) \) divides \(q^{2n/2^t} + 1 \) for some positive integer \(s \). Since \(n \) is odd, it follows that \(s = 1 \). Then \(\text{ord}(\alpha) | (q^n + 1) \).

Let \(t \) be the smallest nonegative integer such that \(\text{ord}(\alpha) | (q^t+1) \). Since \(\deg(f(x)) \geq 3 \), we have \(\text{ord}(\alpha) \geq 3 \), and hence, \(t \geq 1 \). By Lemma 3.7, \(n \) is an odd multiple of \(t \). Using arguments similar to those in the proof of [8, Proposition 4], we have \(n = t \). Therefore, \(\text{ord}(\alpha) \nmid (q^k + 1) \) for all \(0 \leq k < n \). Hence, by Lemma 3.4, \(\text{ord}(f(x)) = \text{ord}(\alpha) \in D_n \). From this, it can implies that \(\alpha \) is a primitive \(d \)-th root of unity for some \(d \in D_n \).

Corollary 3.9. Let \(f(x) \) be a SCRIM polynomial of degree \(n \) over \(\mathbb{F}_{q^2} \). If \(\alpha \) is a primitive element of \(\mathbb{F}_{q^{2n}} \) and \(\alpha^j \) is a root of \(f(x) \), then

\[
\text{ord}(f(x)) = \frac{q^{2n} - 1}{\gcd(q^{2n} - 1, j)}.
\]

Proof. Let \(\alpha \) be a primitive element of \(\mathbb{F}_{q^{2n}} \) and let \(\alpha^j \) be a root of \(f(x) \). Then

\[
\text{ord}(\alpha^j) = \frac{q^{2n} - 1}{\gcd(q^{2n} - 1, j)}.
\]

From Lemma 3.4, we know that if \(f(x) \) is irreducible of degree \(n \), then \(\text{ord}(f(x)) \) is the order of any root of \(f(x) \) in the multiplicative group \(\mathbb{F}_{q^{2n}}^{*} \), so \(\text{ord}(\alpha^j) = \text{ord}(f(x)) \).

Hence, \(\text{ord}(f(x)) = \text{ord}(\alpha^j) = \frac{q^{2n} - 1}{\gcd(q^{2n} - 1, j)} \).

Proposition 3.10. If \(d \in D_n \) and \(\beta \) is a primitive \(d \)-th root of unity, then the set \(\{ \beta, \beta^2, ..., \beta^{q^{2n} - 1} \} \) is a collection of \(n \) distinct primitive \(d \)-th roots of unity.

Proof. Since \(d | (q^n + 1) \), we have \(d | (q^{2n} - 1) \). Let \(0 \leq i \leq n - 1 \). From \(d | (q^{2n} - 1) \), it follows that \(\gcd(d, q^i) = 1 \) and \(\beta^i \) is a primitive \(d \)-th root of unity. If \(\beta^{2i} = \beta^{2j} \) for some \(0 \leq i < j \leq n - 1 \), then \(\beta^{2i} - \beta^{2j} = 1 \) so that \(d \) divides \(q^{2i} - q^{2j} = q^{2i} (q^{2(j-i)} - 1) \). Since \(\gcd(d, q^2) = 1 \), we see that \(d \) divides \(q^{2(j-i)} - 1 \). Hence, by Lemma 3.7, \(2(j-i) = kn \) for some even positive integer \(k \). But then \(j = \frac{kn}{2} + i \geq n \), a contradiction. Hence, \(\beta^{2i} \)'s are distinct.

Let \(d \in D_n \) and let \(\beta \) be a primitive \(d \)-th root of unity over \(\mathbb{F}_{q^2} \). Define the polynomial \(f_\beta(x) = \prod_{i=0}^{n-1} (x - \beta^{2i}) \).

Proposition 3.11. \(f_\beta(x) \) is a SCRIM polynomials of degree \(n \) and order \(d \).
Proof. Using the definition of \(f_β(x) \) and the fact that \(n \) is odd, we have

\[
f_β^1(x) = \prod_{i=0}^{n-1} (x - \beta^{2i})^\dagger
\]

\[
= \prod_{i=0}^{n-1} x(-\beta^{2i})^{-q(\frac{1}{x} - \beta^{2i+1})}
\]

\[
= \prod_{i=0}^{n-1} (\beta^{-q^{2i+1}}) \prod_{i=0}^{n-1} (1 - \beta^{2i+1} x)
\]

\[
= \prod_{i=0}^{n-1} (\beta^{-q^{2i+1}}) \prod_{i=0}^{n-1} (\beta^{q^{2i+1}} - x)
\]

\[
= \prod_{i=0}^{n-1} (x - \beta^{-q^{2i+1}}).
\] (3.1)

We claim that \(\{\beta^{q^{2j}} \mid 0 \leq j \leq n - 1\} = \{\beta^{-q^{2i+1}} \mid 0 \leq i \leq n - 1\} \).

Let \(\beta^{-q^{2i+1}} \in \{\beta^{-q^{2i+1}} \mid 0 \leq i \leq n - 1\} \). Then

\[
\beta^{-q^{2i+1}} = \beta^{2s}(-q) = (\beta^{-q}q^{2s}) = (\beta^{q^{n+1}})q^{2s} = \beta^{q^{n+1+2s}}.
\]

Since \(n \) is odd, we have \(\beta^{-q^{2i+1}} = \beta^{q^l} \) for some \(0 \leq l \leq n - 1 \). Hence, \(\beta^{-q^{2i+1}} \in \{\beta^{q^l} \mid 0 \leq j \leq n - 1\} \).

Let \(\beta^{q^s} \in \{\beta^{q^l} \mid 0 \leq j \leq n - 1\} \). Since \(n \) is odd, we have

\[
\beta^{q^s} = \beta^{q^{n+1+2s}} = (\beta^{q^{n+1}})q^{2s} = (\beta^{-q}q^{2s}) = \beta^{q^{2s}(-q)}
\]

for some \(0 \leq s \leq n - 1 \). Hence, \(\beta^{q^s} \in \{\beta^{-q^{2i+1}} \mid 0 \leq i \leq n - 1\} \). Therefore, \(\{\beta^{q^s} \mid 0 \leq j \leq n - 1\} = \{\beta^{-q^{2i+1}} \mid 0 \leq i \leq n - 1\} \) as desired.

From (3.1) and the fact that \(\{\beta^{q^s} \mid 0 \leq j \leq n - 1\} = \{\beta^{-q^{2i+1}} \mid 0 \leq i \leq n - 1\} \), we have

\[
f_β^1(x) = \prod_{i=0}^{n-1} (x - \beta^{-q^{2i+1}})
\]

\[
= \prod_{j=0}^{n-1} (x - \beta^{q^j})
\]

\[
f_β(x).
\]

Suppose that \(f_β(x) \) is written as \(f_β(x) = g(x)h(x) \), where \(g(x) \) is an irreducible monic polynomial of degree \(r \) and \(h(x) \) is a monic polynomial of degree \(n - r \). Let \(α \) be a root of \(g(x) \). Then

\[
α^{q^{2r} - 1} = 1.
\]

Since \(α \) is a root of \(f_β(x) \), \(α \) is a \(d \)-th-root of unity. Hence,

\[
d((q^{2r} - 1)).
\]

Since \(d \) divides \(q^n + 1 \), by Lemma 3.7, \(2r \) is an even multiple of \(n \). Since \(r \leq n \), we have \(r = n \) and \(f_β(x) = g(x) \) is irreducible. \(\square \)
The construction of a SCRIM polynomial \(f_\beta(x) \) can be illustrated as follows.

Example 3.12. Let \(n = 3 \) and \(q = 3 \). Then \(D_3 = \{7, 14, 28\} \). Assume that \(\mathbb{F}_{29} = \langle \alpha \rangle \). Since the set \(\{\alpha^{52}, \alpha^{468}, \alpha^{572}\} \) is a collection of 3 distinct primitive 14-th roots of unity, it follows that

\[
f_{\alpha^{52}}(x) = f_{\alpha^{468}}(x) = f_{\alpha^{572}}(x) = (x - \alpha^{52})(x - \alpha^{468})(x - \alpha^{572}).
\]

By Theorem 3.11, \(f_{\alpha^{52}}(x) \) is a SCRIM polynomial.

Lemma 3.13 ([5] Theorem 2.45). Let \(\mathbb{F} \) be a field of characteristic \(p \) and let \(n \) be a positive integer not divisible by \(p \). Let \(\zeta \) be a primitive \(d \)-th root of unity over \(\mathbb{F} \). Then

\[
x^n - 1 = \prod_{d \mid n} Q_d(x),
\]

(3.2)

where \(Q_d(x) = \prod_{s=1, \gcd(s,n)=1} \) (x - \zeta^s).

Note that \(Q_d(x) \) can be viewed as

\[
Q_d(x) = \prod_{\eta \in D} (x - \eta),
\]

where \(D \) is the set of all primitive \(d \)-th roots of unity over \(\mathbb{F} \).

Theorem 3.14. Let \(f(x) \) be an irreducible monic polynomial of degree \(n \) over \(\mathbb{F}_{q^2} \). Then the following statements are equivalent:

1) \(\text{ord}(f(x)) \) is self-conjugate-reciprocal.

2) \(\text{ord}(f(x)) \in D_n \).

3) \(f(x) = f_\beta(x) \) for some primitive \(d \)-th root of unity \(\beta \) with \(d \in D_n \).

Proof. By Corollary 3.9 and Proposition 3.11 it remains to prove 2) implies 3). Assume \(\text{ord}(f(x)) \in D_n \). Let \(p \) be the characteristic of \(\mathbb{F}_{q^2} \). Since \(\gcd(p, \text{ord}(f(x))) = 1 \), by Lemma 3.13, we have

\[
x^{\text{ord}(f(x))} - 1 = \prod_{\ell \mid \text{ord}(f(x))} Q_\ell(x).
\]

Since \(f(x)|(x^{\text{ord}(f(x))} - 1) \), we have \(f(x)|Q_d(x) \) for some divisor \(d \) of \(\text{ord}(f(x)) \). Then \(d|(q^n + 1) \).

We claim that \(d \in D_n \). Suppose \(d|(q^k + 1) \) for some \(k < n \). Then \(d|(q^{2k} - 1) \), i.e., \(\delta^{2k} \equiv 1 \pmod{d} \). From [5] Theorem 2.47, \(n \) is the smallest positive integer such that \(q^{2n} \equiv 1 \pmod{d} \). Since \(k < n \), we have a contradiction. Therefore, \(d \in D_n \).

Let \(\gamma \) be a primitive \(d \)-th root of unity over \(\mathbb{F}_{q^2} \). Since \(q^{2n} \equiv 1 \pmod{d} \) and \(q^{2k} \not\equiv 1 \pmod{d} \), for all \(0 \leq k < n \), it follows that \(\gamma \in \mathbb{F}_{q^{2n}} \) but \(\gamma \not\in \mathbb{F}_{q^{2k}} \) for all \(0 \leq k < n \). Then the minimal polynomial of \(\gamma \) has degree \(n \). Since \(f(x) \) is irreducible and \(f(x)|Q_d(x) \), there exists a primitive \(d \)-th root of unity \(\delta \) such that its minimal polynomial equals \(f(x) \).

Finally, we show that \(f(x) = f_\delta(x) \). Since \(f_\delta(x) \) and \(f(x) \) are monic irreducible polynomials of the same degree \(n \) and \(\delta \) is a root of \(f_\delta(x) \), we have \(f(x) = f_\delta(x) \). \(\square \)
In the next theorem, we determine the number of SCRIM polynomials of a given degree.

Theorem 3.15. Let $n \geq 3$ be an odd positive integer. Then following statements hold.

1) For each $d \in D_n$, there are $\frac{\phi(d)}{n}$ SCRIM polynomials over \mathbb{F}_{q^2} of degree n and order d.

2) The number of SCRIM polynomials over \mathbb{F}_{q^2} of degree n is

$$\frac{1}{n} \sum_{d \in D_n} \phi(d).$$

Proof. For each $d \in D_n$, there are $\phi(d)$ primitive d-th root of unity. For each primitive d-th root of unity β, $f_\beta(x)$ has degree n by [5, Theorem 2.47]. Therefore, there are $\frac{\phi(d)}{n}$ SCRIM polynomials over \mathbb{F}_{q^2} of degree n and order d. Hence, 1) is proved.

Next, we show that $d = \text{ord}(f_\beta(x))$. From the proof of Theorem 3.14 we know $d \leq \text{ord}(f_\beta(x))$. Since $f_\beta(x)|Q_d(x)$, we have $f_\beta(x)|(x^d - 1)$. It follows that $\text{ord}(f_\beta(x)) \leq d$. Hence, $d = \text{ord}(f_\beta(x))$.

The statement 2) follows from 1) and the equivalence of the statements 1) and 2) in Theorem 3.14. \[\square\]

Example 3.16. Let $q = 3$ and $n = 3$. Then $D_3 = \{7, 14, 28\}$. Let α be defined as in Example 3.12. Then, we have the following properties.

1) If $d = 7$, there are 2 SCRIM polynomials over \mathbb{F}_{3^2} of degree 3 and order 7 which are $x^3 + a^3x^2 + a^5x + 2$, and $x^3 + ax^2 + a^7x + 2$.

2) If $d = 14$, there are 2 SCRIM polynomials over \mathbb{F}_{3^2} of degree 3 and order 14 which are $x^3 + a^5x^2 + a^7x + 1$ and $x^3 + a^7x^2 + a^5x + 1$.

3) If $d = 28$, there are 4 SCRIM polynomials over \mathbb{F}_{3^2} of degree 3 and order 28 which are $x^3 + ax^2 + a^x + a^6$, $x^3 + a^3x^2 + a^5x + a^2$, $x^3 + a^5x^2 + ax + a^2$ and $x^3 + a^7x^2 + a^3x + a^6$.

Table 3.1 displays the number of SCRIM polynomials of degree $n = 1, 3, 7, \ldots, 15$ over \mathbb{F}_{q^2}, where $q = 2, 3, 5$.

The order of SCRIM polynomials of degree $n = 11$ over \mathbb{F}_4 are listed in Table 3.2 together with the number of SCRIM polynomials of degree $n = 11$ over \mathbb{F}_4 of a given order.

Acknowledgements

The authors would like to thank the anonymous referees for helpful comments and suggestions.
The number of SCRIM polynomials of degree n over \mathbb{F}_{q^2}

q	n	The number of SCRIM polynomials
2	1	3
	3	2
	5	6
	7	18
	9	56
	11	186
	13	630
	15	2182
3	1	4
	3	8
	5	48
	7	312
	9	2184
	11	16104
	13	122640
	15	956576
5	1	6
	3	40
	5	624
	7	1160
	9	217000
	11	4438920
	13	93900240
	15	2034504992

Table 3.1: The number of SCRIM polynomials of a given degree over \mathbb{F}_{q^2}.

Order	The number of SCRIM polynomials of each order
99	4
331	22
993	44
2979	132
3641	220
10928	440
32769	1320
Total	2182

Table 3.2: The number of SCRIM polynomials of degree 15 over \mathbb{F}_4.

References

[1] O. Ahmadi and G. Vega, On the parity of the number of irreducible factors of self-reciprocal polynomials over finite fields, *Finite Fields and Their Applications*, 14(1) (2008), 124–131.

[2] S. J. Hong and D. C. Bossen, On some properties of self-reciprocal polynomials, *IEEE Transactions on Information Theory*, 21 (1975), 462–464.
[3] Y. Jia, S. Ling, and C. Xing, On self-dual cyclic codes over finite fields, *IEEE Transactions on Information Theory*, **57**(4) (2011), 2243–2251.

[4] S. Jitman, S. Ling, P. Solé, Hermitian self-dual abelian codes, *IEEE Transactions on Information Theory*, **60**(3) (2014), 1496–1507.

[5] R. Lidl and H. Niederreiter, *Finite Fields*, Cambridge Univ. Press, Cambridge, 1997.

[6] S. Ling and C. Xing, *Coding Theory: A First Course*, Cambridge Univ. Press, Cambridge, 2004.

[7] Y. Xing and J. L. Messay, The condition for a cyclic code to have a complementary dual, *Discrete Mathematics*, **126** (1994), 391–393.

[8] J. L. Yucas and G. L. Mullen, Self-reciprocal irreducible polynomials over finite fields, *Designs, Codes and Cryptography*, **33**(3) (2004), 275–281.