Padé Approximants and the Fixed-Points of the $n_f = 3$ QCD β-Function

V. Elias
Department of Applied Mathematics
The University of Western Ontario
London, Ontario N6A 5B7
Canada

and T. G. Steele
Department of Physics and Engineering Physics
University of Saskatchewan
Saskatoon, Saskatchewan S7N 5C6
Canada

March 2, 2017

PACS: 12.38.Aw, 11.10.Hi

Abstract

The positive zeros of [2|1], [1|2] and the most general possible [2|2] Padé approximants whose Maclaurin series reproduce the presently known terms in the three-flavour ($n_f = 3$) QCD β-function are all shown to correspond to ultraviolet fixed points.
Higher order terms of the QCD β-function

$$\mu^2 \frac{dx}{d\mu^2} \equiv \beta(x)$$

(1a)

$$\beta(x) = -\sum_{i=0}^{\infty} \beta_i x^{i+2},$$

(1b)

$[x \equiv \alpha_s(\mu)/\pi]$ are known to permit the occurrence of fixed points other than the ultraviolet fixed point at $x = 0$; e.g., the positive infrared fixed point (IRFP) which occurs for $9 \leq n_f \leq 16$ when the series for $\beta(x)$ in (1) is truncated after two terms $[\beta_0 = (11 - 2n_f/3)/4$; $\beta_1 = (102 - 38n_f/3)/16$; $x_{IRFP} = -\beta_0/\beta_1]$. However, the fixed points arising from such truncation are likely to be spurious, as the candidate-value for coefficient β e.g. to lower order terms [3].

In the present letter, we study the zeros of Padé-approximant summations of the $n_f = 3$ β-function that are consistent with the (now fully-known [4]) coefficients $\beta_0 - 3$. In particular, we consider the explicit [2] Padé approximants, as well as the most general possible Padé approximant, whose Maclaurin expansion reproduces $\beta_0 - 3$. In each case, we find that the positive zeros of the Padé approximant correspond to ultraviolet fixed points and not to infrared fixed points.

The known coefficients of the $n_f = 3$ β-function can be expressed as follows [4]:

$$\beta(x) = -(9x^2/4)[1 + R_1x + R_2x^2 + R_3x^3 + R_4x^4 + .],$$

(2)

with $R_1 = 16/9$, $R_2 = 4.471065$, $R_3 = 20.99027$. R_4 and subsequent terms are not presently known. The [2] Padé approximant that successfully matches the first four terms in the series (2) is $(1 - 2.91691x - 3.87504x^2)/(1 - 4.69468x)$. The only positive numerator root is at $x = 0.2559$. This fixed point, however, is separated from the β-function’s ultraviolet fixed point (UVFP) at $x = 0$ by a smaller positive zero of the denominator $(x = 0.2130)$. Consequently, if one uses the [2] approximant to represent the β-function (2), one finds that the β-function has negative slope as one approaches $x = 0.2559$ from above, and positive slope as one approaches $x = 0.2559$ from below. This behaviour characterizes 0.2559 as an UVFP.

Such behaviour — specifically, a zero of the numerator of the UVFP that is less than the first positive zero of the numerator — characterizes the [1] Padé approximant as well: $(1 - 8.1733x)/(1 - 9.95115x + 13.2199x^2)$. The numerator zero at $x = 0.1223$ is separated from the $x = 0$ UVFP by a denominator zero at $x = 0.1194$. Thus the zero of the [1] Padé approximant that matches the known terms of the series in (2) again corresponds to a UVFP of the β-function (2).

The R_4 term of the series (2) can be estimated using an algorithm [5] based upon the asymptotic error formula [1,6] relating the value R_{N+2} to the predicted value $R_{N+2}^{\text{Padé}}$ obtained from expanding an $[N]1$ Padé approximant into a Maclaurin series:

$$\delta_{N+2} \equiv \frac{R_{N+2}^{\text{Padé}} - R_{N+2}}{R_{N+2}} = \frac{-A}{[N + 1 + (a + b)]},$$

(3)
Using a \([0|1]\) approximant, one finds that \(\delta_2 = (R_1^2 - R_2)/R_2 = -A/[1+(a+b)]\). Using a \([1|1]\) approximant, one finds that \(\delta_3 = (R_2^3/R_2 - R_3)/R_3 = -A/[2 + (a+b)]\). Since \(R_{1,2,3}\) are known, these two relations determine the two unknowns \(A\) and \((a+b)\). One can estimate the unknown coefficient \(R_4\) by applying (3) to the \([2|1]\) approximant:

\[
R_4 = \frac{R_2^2/R_2}{1 + \delta_4} = \frac{R_2^2(R_3^2 + R_1 R_2 R_3 - 2 R_1^3 R_3)}{R_2(2 R_2^3 - R_1^3 R_2 - R_1^2 R_2^2)}.
\]

For the \(n_f = 3\) values of \(R_{1,2,3}\) given above, we find \(R_4 = -849.7\).

Using these numbers, the polynomial \(1 + R_1 x + R_2 x^2 + R_3 x^3 + R_4 x^4\) does have a positive zero which can be identified with a \(\beta\)-function IRFP at \(x = 0.2143\) \((\alpha_s = 0.673)\), provided we accept a degree-4 truncation of the series in (2). Such an IRFP [analogous to the naive IRFP \(x = -\beta_1/\beta_0\) described at the beginning of this letter] is of questionable validity because of the large magnitude of the dominant \(R_4 x^4\) term immediately preceding truncation \([7]\).

Such truncation difficulties are averted if the known coefficients \(R_{1,2,3}\) and the estimated coefficient \(R_4\) are utilized to generate a \([2|1]\) Padé approximant whose Maclaurin series reproduces \(1 + R_1 x + R_2 x^2 + R_3 x^3 + R_4 x^4\) as the first five terms of its infinite Maclaurin series. This approximant, \((1 + 94.383 x - 75.605 x^2)/(1 + 92.606 x - 244.71 x^2)\), has one positive numerator-zero \((x = 1.259)\), which is found to be larger than the only positive denominator-zero \((x = 0.3889)\). Consequently, the positive zero of the \([2|2]\) approximant generated via the estimate (4) for \(R_4\) once again corresponds to a UVFP of the \(\beta\)-function (2).

Surprisingly, this correspondence holds even if we discard (4) entirely and develop a general \([2|2]\) Padé approximant whose \(R_4\) dependence is explicit \([8]\). Using \(R_{1-3}\) appropriate for the \(n_f = 3\) \(\beta\)-function, one finds the most general \([2|2]\) approximant whose Maclaurin series reproduces \(1 + R_1 x + R_2 x^2 + R_3 x^3 + R_4 x^4\) with \(R_4\) arbitrary to be \((1 + a_1 x + a_2 x^2)/(1 + b_1 x + b_2 x^2)\), such that \(a_1 = 7.1945 - 0.10261 R_4\), \(b_2 = -11.329 + 0.075643 R_4\), \(b_1 = 5.4168 - 0.10261 R_4\), \(b_2 = -25.430 + 0.25806 R_4\). The numerator and denominator zeros are (respectively) denoted by \(x_\pm = (-a_1 \pm \sqrt{a_1^2 - 4a_2})/2a_2\), \(y_\pm = (-b_1 \pm \sqrt{b_1^2 - 4b_2})/2b_2\). For \(R_4 < 98.54\), both \(a_2\) and \(b_2\) are negative, in which case \(x_-\) and \(y_-\) are positive, and \(x_+\) and \(y_+\) are negative. Fig. 1 shows that \(0 < y_- < x_-\) through this range, in which case the positive root \(x_-\) necessarily corresponds to a UVFP. For \(R_4\) between 98.54 and 149.76, \(x_-\), \(y_-\) and \(y_+\) are all positive \((x_+\) is negative). Noting that \(y_- > y_- > x_- > 0\), \(x_- > y_- > y_- > 0\). Neither of these sets of inequalities is upheld over this range of \(R_4\). Instead \(y_- > x_- > y_- > 0\) [Fig. 1], consistent with \(x_-\) corresponding to a UVFP of the \(\beta\)-function. Finally, if \(R_4 > 149.76\), we see that \(x_+ > x_- > 0\) and \(y_+ > y_- > 0\). However, these four positive roots are seen to satisfy \(x_+ > y_+ > x_- > y_- > 0\) [Fig. 1], consistent with identifying both zeros of the Padé-approximant numerator with UVFP’s of the \(n_f = 3\) \(\beta\)-function. Corresponding behaviour of the coupling constant is heuristically presented in Fig 2. This same behaviour has already been shown to characterize the exact \(\beta\) function for SUSY gluodynamics \([10]\).

Thus, no matter what \(\beta_4\) \((= 3 \beta_0 R_4)\) is eventually found to be, the \([2|2]\) Padé approximant whose Maclaurin expansion matches the \(\beta_{0-4}\) terms of the \(\beta\)-function will not support the existence of any positive IRFPs; zeros of this approximant all correspond to UVFPs. As is evident from Fig. 2, the structure of the \([2|2]\) approximant to the \(\beta\)-function (2) decouples the IR-region entirely from coupling-constant evolution between UVFPs — i.e. if \(x\) is between zero and \(x_-\), \(\mu\) cannot be smaller than \(\mu(y_-)\). Finally we note that the existence of a UVFP different from zero [necessarily leading to a double-valued function for \(\alpha_s(\mu)\)] could indicate an additional strong-coupling phase of QCD at short distances \([9]\), with possible implications for dynamical electroweak symmetry breaking. QCD may conceivably furnish its own technicolour.
Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada for support, and to A. S. Deakin, R. Migneron and V. A. Miransky for related discussions. We also wish to acknowledge the late Mark Samuel for taking the time to acquaint us with Padé approximant methods and to familiarize us with his extensive work in this area; his sudden passage is a loss deeply felt.

References

[1] J. Ellis, M. Karliner and M. A. Samuel, Phys. Lett. B 400, 176 (1997).
[2] A. C. Mattingly and P. M. Stevenson, Phys. Rev. D 49, 437 (1994) and Phys. Rev. Lett. 69, 1320 (1992); P. M. Stevenson, Phys. Lett. B 331, 187 (1994).
[3] M. A. Samuel, J. Ellis, M. Karliner, Phys. Rev. Lett. 74, 4380 (1995); M. A. Samuel, G. Li, E. Steinfeld, Phys. Rev. E 51 (1995) 3911.
[4] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400, 379 (1997).
[5] J. Ellis, I. Jack, D.R.T. Jones, M. Karliner and M. A. Samuel, Phys. Rev. D 57 2665 (1998).
[6] J. Ellis, E. Gardi, M. Karliner and M. A. Samuel, Phys. Lett. B 366, 268 (1996) and Phys. Rev. D 54, 6986 (1996).
[7] The large negative value of R_4 is a consequence of the near cancellation of $2R_3^2 - R_1^3R_3 - R_2^3R_2^2$ in the denominator of (4), which could change sign under relatively small variations in R_{1-3}. Such a sign change would be expected to lead to a large positive value for R_4, thereby eliminating the positive IRFP zero. A large positive value for R_4 can be extracted from ref. 4’s fit of the explicit n_f dependence of β_4.
[8] As noted in ref. 4, the algorithm culminating in eq. (4) cannot anticipate quadratic-casimir contributions to R_4.
[9] We have verified for $n_f = 5$ (and $n_f = 0$) that all zeros of the most general $[2|2]$ Padé approximation of $\beta(x)$ [matching β_0 and $\beta_{1-3} = \beta_0 R_{1-3}$ in (2), with R_4 arbitrary] also correspond to UVFPs.
[10] See Fig. 1 of I.I. Kogan and M. Shifman, Phys. Rev. Lett. 75, 2085 (1995).

Figure Captions:

Figure 1: Relative size of eq. (4)’s numerator zeros x_{\pm} and denominator zeros y_{\pm}, expressed as functions of the horizontal-axis variable R_4. x_- approaches y_- from above for large positive values of R_4.

Figure 2: Schematic behaviour of $x(\mu)$ obtained from use of the $[2|2]$ Padé approximant for $x_+ > y_+ > x_- > y_- > 0$. x_+ and x_- are numerator zeros corresponding to UVFP’s. Corresponding behaviour of (positive) $x(\mu)$ when $x_- > y_- > 0$ with x_+, y_+ both negative (see Fig. 1) is obtained by excising the middle branch of the above figure. The value of μ when $x = y_-$, the first zero of the Padé-denominator, is denoted by $\mu(y_-)$.
