Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus
Koeck, R.; Becker, K.; Cookson, B.; van Gemert-Pijnen, J. E.; Harbarth, S.; Kluytmans, J.; Mielke, M.; Peters, G.; Skov, R. L.; Struelens, M. J.

Published in:
Eurosurveillance

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Koeck, R., Becker, K., Cookson, B., van Gemert-Pijnen, J. E., Harbarth, S., Kluytmans, J., ... Friedrich, A. W. (2014). Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Eurosurveillance, 19(29), 23-49. [20860].

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Meticillin-resistant *Staphylococcus aureus* (MRSA) is a major cause of healthcare-associated infections in Europe. Many examples have demonstrated that the spread of MRSA within healthcare settings can be reduced by targeted infection control measures. The aim of this systematic literature analysis and review was to summarise the evidence for the use of bacterial cultures for active surveillance the benefit of rapid screening tests, as well as the use of decolonisation therapies and different types of isolation measures. We included 83 studies published between 2000 and 2012. Although the studies reported good evidence supporting the role of active surveillance followed by decolonisation therapy, the effectiveness of single-room isolation was mostly shown in non-controlled studies, which should inspire further research regarding this issue. Overall, this review highlighted that when planning the implementation of preventive interventions, there is a need to consider the prevalence of MRSA, the incidence of infections, the competing effect of standard control measures (e.g. hand hygiene) and the likelihood of transmission in the respective settings of implementation.

Background

Meticillin-resistant *Staphylococcus aureus* (MRSA) is a major cause of healthcare-associated infections in Europe. In 2008, the European Centre for Disease Prevention and Control (ECDC) estimated that a total number of 171,200 nosocomial MRSA infections are acquired annually in the Member States of the European Union (EU), and in Iceland and Norway, resulting in 5,400 attributable excess deaths, more than 1 million excess days of hospitalisation and EUR 380 million excess in-hospital costs [1]. The burden of MRSA infections was also shown in an analysis of data on healthcare-associated infections collected prospectively from European intensive care units (ICU) between 2005 and 2008, where 1.7% of all patients developed *S. aureus* pneumonia or bloodstream infections. A mean of 35% of these infections were caused by MRSA. Moreover, the hazard ratio for mortality was 5.6-times higher (95% confidence interval (CI): 3.4–9.4) for patients with MRSA bloodstream infection than for patients without *S. aureus* bacteraemia [2].

Among the proposed methods to prevent MRSA, many (e.g. hand hygiene and transmission-based precautions) have been used for general infection control, and their effectiveness has been reviewed extensively [3,4]. However, there is an ongoing discussion about the evidence for the effectiveness of several more specific prevention methods which, nevertheless, have been included in standards for the prevention and control of MRSA in a majority of European countries [5]. Therefore, the scope of this review was to analyse systematically recent literature (published after 2000) with respect to the following questions related to MRSA prevention and control:
1. Does screening of patients before or on admission reduce the incidence of MRSA infection or transmission? How do PCR-based rapid tests for the direct detection of MRSA from screening specimens influence the incidence of MRSA colonisation or infection compared with culture-based methods?

2. Does the decolonisation of nasal MRSA or \textit{S. aureus} carriage using mupirocin nasal ointment, alone or in combination with other agents, reduce colonisation or the development of infections?

3. Does isolation in single rooms of patients colonised or infected with MRSA prevent the spread of MRSA better than the use of transmission-based precautions (hand hygiene, gloves, aprons) alone? What is the effect of pre-emptive isolation of risk patients for MRSA carriage (until screening results are available)?

Methods

A systematic literature analysis and review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [6]. To identify relevant publications, PubMed, EMBASE and Scopus were searched for articles published between 1 January 2000 and 31 October 2012 in English language. The search terms were: MRSA AND (prevention OR control OR prophylaxis OR preventive measures OR preventive therapy OR preventive treatment OR precaution OR screening OR active surveillance OR decolonization OR mupirocin OR surveillance culture* OR chromogenic OR PCR OR polymerase chain reaction OR rapid test OR isolation OR hygiene OR efficien* OR effective*) AND (healthcare OR hospital OR nursing home OR long-term care facilit*); the search terms were adapted for search in EMBASE: “MRSA AND decolonization”, “MRSA AND isolation”, “MRSA AND screening”.

Titles and abstracts were screened independently by two reviewers (RK and AWF). Studies with outcomes measuring the incidence of MRSA colonisation or infection were included. Exclusion criteria were: Studies that did not report on the effects of the preventive measures on infection or transmission; studies performed in settings other than hospitals, long-term care facilities and nursing homes; case series, outbreak reports and

Figure

Flow diagram for the selection of studies on preventive measures against to limit healthcare-associated infections by meticillin-resistant \textit{Staphylococcus aureus}, published 2000–2012 (n=9,340)
Study; Time; Country; Setting; Study type.	Turnaround time (PCR/culture)	Design	Screening followed by	Outcome	Result
Camus [9]; 2002–03; France; MICU; RCT.	NA	Intervention: screening of high-risk patients (nose, perineum, wounds, aspirates) at admission, weekly thereafter and at discharge; Control: same methods as in the intervention group, but the screening results were not reported.	Gloves, gowns, mask (also pre-emptively), decolonisation	A, I	MRSA acquisition in the intervention group vs the control group: 6.5% vs 5.3%; p=0.58; Proportion of patients who acquired MRSA infection was identical: 1.6% (n=4) vs 1.6% (n=4); p=0.99. Rate of ICU-acquired infection was identical: 16.5% vs 16.5%, p=0.98.
Chaberny [10]; 2002–06; Germany; ICU and surgery; CS (interrupted time series).	48 h	Intervention: screening (nose, throat, wounds) of all patients; Control: selective screening of contact patients or patients with a history of MRSA carriage.	Private rooms, gowns, gloves, decolonisation	I	Change in the level of infections: -0.165 MRSA infected patients/1,000 pd (95% CI: -0.276 to -0.05); Slope: -0.01 MRSA-infected patients/1,000 pd (95% CI: 0.018–0.003).
Clancy [12]; 2003–04; United States; MSICU; CS (before-and-after).	48 h	Intervention: nasal screening of all patients at admission and weekly thereafter; Control: phase without any or without non-compulsory screening.	Private rooms, gowns, gloves	I	Decrease of MRSA infections (6.1 vs 4.1 infections/1,000 census-days; p=0.01) and of nosocomial (72 h after admission) MRSA infections (4.5 vs 2.8 infections/1,000 census-days; p=0.01).
Ellingson [13]; 1999–2008; United States; Hospital-wide; CS (interrupted time series).	NA	Intervention: screening (nose, wounds) of all patients at admission and at discharge + behavoural change strategies, hand hygiene, environmental disinfection; Control: phase without any or with non-compulsory screening.	Private rooms, gowns, gloves	C/I	Incidence of MRSA colonisation or infection decreased by 21.8% (95% CI: 8.8–33.7) from 2.40 cases/1,000 pd to 1.88/1,000 pd at risk.
Eveillard [42]; 2003; France; Hospital-wide; CS.	NA	Intervention: screening of all patients admitted to ICUs (nose, axilla, rectal) and of high-risk patients admitted to other wards; prospective data acquisition without historical or prospective control group.	Contact precautions similar to guidelines from the United States Centers for Disease Control and Prevention	I	Incidence of MRSA from clinical specimens/100 days of hospitalisation for MRSA carriers identified at admission was 3.1% when the programme was completely implemented, compared with 10.4% when no screening was performed (p=0.001).
Gould [47]; 1999–2003; United Kingdom; MSICU; CS (interrupted time series).	NA	Intervention: screening (nose, throat, groin, axilla) of all patients at admission; Control: phase without any or non-compulsory screening.	Private rooms, barrier-nursing (unspecified), decolonisation	C/I, B	By time series regression analysis, the proportion of patients with MRSA (infection and colonisation) decreased from 15% to 5% (95% CI: 3.5–19.3; p=0.005); no significant effect on MRSA bacteraemia rates.

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant *Staphylococcus aureus*; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: surgical-site infections; W/SSI: wound infections/surgical-site infections.

a MRSA prevalence in the study setting per 100 patients admitted (except stated differently).

b Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).

c Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
Table 1B

Studies on the effectiveness of the use of active surveillance (screening) for meticillin-resistant *Staphylococcus aureus*, published 2000–2012 (n=41)

Study; MRSA; Time; Country; Setting; Study type.	Turnaround time (PCR/culture)	Design	Screening followed by	Outcome	Result
Culture-based tests					
Holzmann-Pazgal [19]; 2.7–8.3%; 2007–09; United States; PICU; CS (before-and-after).	48 h	Intervention: nasal screening of all patients at admission and weekly thereafter; Control: phase without any or with non-compulsory screening.	Gloves, gowns	C/I	Yearly MRSA incidence density decreased from 2006 to 2009 (6.88 vs 1.45/1,000 pd; p<0.01); and from 2007 to 2009 (7.32 vs 1.45/1,000 pd; p<0.01).
Lawes [38]; 3.1%; 2006–10; United Kingdom; Hospital-wide; CS without control (times series analysis).	mostly <24 h	Intervention: nasal screening of all patients at admission; isolation facilities and decolonisation; hand-hygiene campaign; Compared to: no control group; observation over time.	Private rooms, decolonisation	B	Reduction of MRSA bacteraemia (0.26/1,000 acute occupied bed days (AOBD) vs 0.07/1,000 AOBD; p<0.001). In a multivariate time-series analysis, introduction of screening resulted in reduction of MRSA bacteraemia, hospital-associated incidence density and 30-day mortality after MRSA bacteraemia (p<0.001).
Huang [21]; 12%; 1996–2004; United States; MSICU; CS (interrupted time series).	48 h	Intervention: campaigns for catheter placement, hand hygiene, nasal screening of all patients at admission and weekly thereafter introduced step by step; Control: phase without any or with non-compulsory screening.	Contact isolation precautions (unspecified)	B	MRSA screening was associated with a 67% decrease in the incidence density of MRSA bacteraemia in ICUs (p<0.002), a 39% decrease in non-ICUs, and a 53% decrease hospital-wide.
Huskins [20]; 9.5–12.6%; 2005–06; United States; MSICU; RCT.	5.2 ± 1.4 d	Intervention: nasal screening of all patients at admission, weekly thereafter; Control: control ICUs where screening was performed as in intervention ICUs but without reporting of the results.	Gloves, gowns	C/I	Incidence of events of colonisation or infection with MRSA/1,000 pd did not differ significantly between intervention and control ICUs after adjustment for the baseline incidence (40.4 vs 35.6; p=0.35).
Kelly [40]; 1.13–1.63%; 2005–07; Ireland; Orthopaedic surgery; CS (before-and-after).	NA	Intervention: period 1: pre-admission screening (nose, axillae, groin) of all elective orthopaedic patients; period 2: separation (admission to another hospital) of trauma patients from elective patients; Control: phase without any or with non-compulsory screening.	Decolonisation prior to admission	C/I	Incidence of MRSA infections declined from 0.49% in the control phase to 0.35% (p=0.108) in period 1, and to 0.23% (p=0.05) in period 2. MRSA colonisation detected rose from 1.13% (control phase) to 1.63% (period 1) and 1.59% (period 2) (p=0.002).

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant *Staphylococcus aureus*; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: surgical-site infections;

a MRSA prevalence in the study setting per 100 patients admitted (except stated differently).

b Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).

c Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
Table 1c

Studies on the effectiveness of the use of active surveillance (screening) for meticillin-resistant *Staphylococcus aureus*, published 2000–2012 (n=41)

Study; MRSAa	Time; Country; Setting; Study type.	Turnaround time (PCR/culture)b	Design	Screening followed by	Outcomec	Result
Lucet [43]; 6.5%; 1995–2001; France; MSICU; CS.	NA	Intervention: in period 1 and 2, nasal screening of all patients at admission and weekly thereafter; Control: prospective data acquisition without control group, in period 2 promotion of hand hygiene.	Private rooms, gloves, gowns	A	Incidence of MRSA acquisition/100 exposed patients (per 1,000 pd) decreased from 7% (5.43) in period 1 to 2.8% (2.39) in period 2. Period 2 was an independent protective factor influencing the incidence of MRSA acquisition (OR vs period 1: 0.49; 95% CI: 0.49–0.99).	
Malde [37]; 3.2–6.7%; 1996–2004; United Kingdom; Vascular surgery; CS (before-and-after).	NA	Intervention: nasal screening of all patients at admission or for elective admissions 1–3 weeks prior to admission; Control: phase without any or non-compulsory screening.	Decolonisation	W/SSI	MRSA wound infections among MRSA-positive elective admissions reduced from 20/36 (56%) to 15/67 (22%) (p=0.002); among MRSA-positive emergency admissions from 35/56 (63%) to 53/121 (44%) (p=0.042). Major limb amputation rates among MRSA-positive admissions reduced from 10/36 (18%) to 6/67 (9%) (p=0.026).	
Pan [28]; NA; 1996–2001; Italy; Hospital-wide; CS (before-and-after).	NA	Intervention: nasal screening of high-risk patients on high-risk wards at admission and in different intervals thereafter. Control: phase without any or non-compulsory screening.	Gloves, decolonisation, gowns (only for infected patients)	B	Incidence rate of MRSA bacteraemia decreased by 42% from 0.64 to 0.37/1,000 admissions (RR 0.57; 95% CI: 0.35–0.92; p=0.03). This effect was mostly due to reduction of bacteraemia cases related to central venous catheters.	
Reilly [27]; 3.9%; 2008–09; United Kingdom; Hospital-wide; CS (before-and-after).	NA	Intervention: nasal screening of all patients at admission; Control: phase without any or non-compulsory screening.	Private rooms, other precautions unspecified, decolonisation	C/I	MRSA infections (7/1,000 pd) reduced significantly over the study period (p=0.0209); admission prevalence decreased from 5.5% to 3.5% (p<0.0001).	
Rodriguez-Bano [30]; ca 9%; 1995–2008; Spain; Hospital-wide; CS (interrupted time series).	NA	Intervention: phase 2 screening of all patients (nose and various specimens) at admission and weekly thereafter and healthcare workers; phase 3 screening of patients admitted from other facilities; Control: phase without any or with non-compulsory screening.	Private rooms, contact precautions, decolonisation	C/I	MRSA colonisation and infection rates (0.56 cases/1,000 pd, 95% CI: 0.49–0.62) decreased significantly to 0.28 cases/1,000 pd (95% CI: 0.17–0.40) in phase 2 and to 0.07/1,000 pd (95% CI: 0.06–0.08) in phase 3.	

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant *Staphylococcus aureus*; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: surgical-site infections; W/SSI: wound infections/surgical-site infections.

a MRSA prevalence in the study setting per 100 patients admitted (except stated differently).
b Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).
c Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
Study	MRSA prevalence	Time	Country	Setting	Study type	Design	Outcome
Shitrit [31]	1.6–5.6%	2002–04	Israel	MSICU; Geriatric ward	CS (before-and-after).	Intervention: screening (nose, sputum for intubated, perineum, wounds) of high-risk patients at admission and in different intervals thereafter; Control: phase without any or with non-compulsory screening.	Private rooms, gowns, gloves, decolonisation. NA. Mean number of MRSA bacteraemia cases per month decreased from 3.6 cases to 1.8 cases after the intervention (p<0.001).
Souweine [46]	NA	1994–06	France	MSICU	CS (before-and-after).	Intervention: screening (nose, rectum) of all patients at admission, weekly thereafter and at discharge; Control: phase without any or with non-compulsory screening.	Gloves, gowns, decolonisation. NA. Number of patients infected by MRSA (including cases of bacteraemia, pneumonia, urinary tract infection, catheter infection, wound infection) decreased from 5.2% to 1.7% (p=0.018).
Thompson [32]	8.1%	1996–2008	United Kingdom	MSICU	CS (before-and-after).	Intervention: screening (nose, throat) of all patients at admission and weekly thereafter; Control: phase without any or with non-compulsory screening.	Private rooms, gowns, gloves, decolonisation. A, B. MRSA acquisition/1,000 bed-days decreased from 49.0 (95% CI: 34.4–63.6) to 28.3 (95% CI: 23.1–34.9), 19.3 (95% CI: 16.3–22.3) and 11.8 (95% CI: 7.3–16.3), respectively; MRSA bacteraemia cases/1,000 bed-days decreased from 7.6 (95% CI: 4.7–10.5) to 3.7 (95% CI: 2.6–4.8), 2.6 (95% CI: 0.4–2.9).
Tomic [45]	NA	1998–2002	Slovenia	MSICU	CS (before-and-after).	Intervention: screening (nose, throat, wounds and devices) of high-risk patients at admission; Control: phase without any or with non-compulsory screening.	Private rooms, gowns, gloves, decolonisation. C/I. MRSA cases increased from 4.5 to 8.0/1,000 admissions after implementation of screening (p=0.02); the proportion of acquired MRSA cases decreased from 50% in 1999 to 6% in 2002 (p=0.001).
Troché [44]	4.2%	1995–2000	France	ICU	CS.	Intervention: nasal screening of all patients at admission, weekly thereafter and at discharge; Control: phase without any or with non-compulsory screening.	All patients in private rooms, gloves, gowns, decolonisation. A. The overall MRSA acquisition rate was 7.9 cases/1,000 patient-days (p=NA); it declined in the first three years after the implementation of screening but increased again, when the admission prevalence increased.
Wang [33]	17.6–26.5%	2005–06	Taiwan	MSICU	CS (before-and-after).	Intervention: screening (nares, throat/sputum, axillae, inguinal area, wounds) of all patients at admission, every 3 days thereafter and at discharge; Control: as in intervention phase but results were not reported.	Private rooms, gloves. 3d. The incidence of acquiring MRSA during ICU stay did not differ significantly during intervention and control phases in two participating hospitals (9.6% vs 9.98%; p=0.94; 13.92% vs 13.52%; p=0.81). The incidence of MRSA infection did not differ either (p=0.719; p=0.932).

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MSICU: medical ICU; MSRA: meticillin-resistant Staphylococcus aureus; SICU: surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; RR: relative risk; RCT: randomised controlled trial; SSI: surgical-site infections; W/SSI: wound infections/surgical-site infections; a: MRSA prevalence in the study setting per 100 patients admitted (except stated differently).
Study; MRSAa; Time; Country; Setting; Study type.	Turnaround time (PCR/culture)b	Design	Screening followed by	Outcomec	Result
Culture-based tests					
Warren [34]; 2002–04; United States; SICU; CS (before-and-after).	72 h	Intervention: nasal screening of all patients at admission, weekly thereafter and at discharge; Control: phase without any or with non-compulsory screening.	Private rooms, gloves, gowns	A	MRSA admission prevalence increased (7.2% vs 11.4%; p=0.001); MRSA acquisition rate constant (7.0 vs 5.5 MRSA cases/1,000 pd; p=0.29).
Wernitz [36]; 1999–2002; Germany; Hospital-wide; CS (before-and-after).	NA	Intervention: screening (nose, throat, skin, devices, wounds) of high-risk groups at admission; Control: phase without any or with non-compulsory screening.	Private rooms, gowns, gloves, decolonisation	I	The standardised infection ratio was 0.52 (95% CI: 0.37–0.71), indicating that 48% of the expected hospital-acquired MRSA infections were prevented.
West [35]; 2001–03; United States; Hospital-wide; CS (before-and-after).	NA	Intervention: nasal MRSA screening of risk patients at admission and weekly thereafter; Control: phase without any or with non-compulsory screening.	Contact isolation, gowns, gloves	I	Mean number of nosocomial MRSA infections decreased by 39% from 0.76 to 0.45/1,000 pd (p=0.05) in one, and by 21% from 0.72 to 0.57 /1,000 pd (p=0.35) in another hospital.
PCR-based tests					
Aldeyab [7]; 2006–07; United Kingdom; Medical/surgical ward; CS (before-and-after).	19.3–22.7 h / 42.2–51.8 h	Intervention: phase 1: rapid test on surgical ward (nares, axillae, groin) for all patients at admission and discharge; culture-based screening (nares, axillae, groin, throat) on medical ward (4 months) for all patients at admission and discharge; Control: phase 2: switch of wards and tests.	Private rooms (not for all); contact precautions (unspecified)	C/I	Hospital-acquired MRSA incidence (cases of colonisation and infection) on surgical ward not reduced: 20 (phase 1) vs 22.1/1,000 bed-days (phase 2) (p=0.69); hospital-acquired MRSA incidence rate in medical ward increased in rapid test phase: 11.8 (phase 1) vs 20.3/1,000 bed-days (phase 2) (p=0.03).
Awad [8]; 2005–08; United States; Hospital-wide; CS (before-and-after).	NA	Intervention: multiple measures (nasal screening of all patients at admission/transfer and discharge; contact isolation of MRSA infected or colonised patients, hand hygiene campaign, cultural transformation campaign; Control: phase without any or with non-compulsory screening.	Contact isolation (unspecified)	A, B, I, W/SSI	MRSA transmission decreased from 5.8 to 3.6/1,000 bed-days (p=0.05); overall MRSA nosocomial infections decreased from 2.0 to 1.0/1,000 bed-days (p=0.016); overall SSI decreased (p<0.05); nosocomial MRSA bloodstream infections decreased from 2.9 to 2.5/1,000 bed-days (p=0.03).

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant *Staphylococcus aureus*; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: surgical-site infections;

a MRSA prevalence in the study setting per 100 patients admitted (except stated differently).
b Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).
c Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
Study; MRSA; Time; Country; Setting; Study type.	Turnaround time (PCR/culture)	Design	Screening followed by	Outcome	Result
Chowers [11]; 2.7–3.7%; 2003–08; Israel; Hospital-wide; CS (interrupted time series).	24 h / 2–4 d	Intervention: period 1: high-risk patients screened at admission (sample unspecified) + compliance monitoring; period 2: compliance monitoring with screening / contact isolation discontinued; period 3: PCR-based screening of high-risk patients introduced (sample unspecified); period 4: monitoring re-introduced and decolonisation discontinued; Control: period 0 without any or with non-compulsory screening (screening of contact patients only).	Contact isolation (unspecified), decolonisation	B	Period 0 vs period 1: average number of bacteraemia cases per 1,000 pd was reduced by factor 0.55 (95% CI: 0.36–0.83); period 0 vs period 4: average number of bacteraemia cases per 1,000 pd decreased by a factor of 0.27 (95% CI: 0.14–0.58); period 1 vs period 4: average number of bacteraemia cases per 1,000 pd reduced by factor 0.51 (95% CI: 0.27–0.88) (p=0.02).
Conterno [13]; ca 2%; 2000–5; Canada; ICU; Medical/surgical ward; CS (interrupted time series).	1.6 d / 3.8 d	Intervention: admission screening of high-risk patients (nose, rectum, skin lesions, catheter exit sites) using PCR-based test; Control: admission screening of high-risk patients using culture-based test.	Private rooms, gloves, gowns, discontinued if PCR not confirmed by culture	C/I	Insignificant decrease of 0.14 nosocomial (detected >48 h after admission) MRSA cases/1,000 pd per month (95% CI: 0.18–0.46) after the introduction of PCR detection (p=0.39).
Cunningham [14]; 7.0%; 2005–06; United Kingdom; MSICU; CS (before-and-after).	<1 d / 3 d	Intervention: PCR-based nasal screening of all patients at admission and discharge; Control: screening with conventional cultures of all patients at admission.	Private room (if available), standard infection control precautions, decolonisation	A	Incidence of MRSA transmission 13.89 vs 4.9/1,000 pd during culture and PCR-phase (RR reduction: 0.65; 95% CI: 0.28–1.07).
Harbarth [16]; 6.7%; 2003–05; Switzerland; MSICU; CS (before-and-after).	22 h / 93 h	Phase 1: screening (nose, perineum) of high-risk patients (culture-based); phase 2: universal screening (PCR-based) of all patients; phase 3: same as phase 2 but general preemptive isolation.	Gowns, gloves, masks, decolonisation	I	Reduction in medical ICU-acquired MRSA infections (RR: 0.3; 95% CI: 0.1–0.7); no effect in surgical ICU (RR: 1.0; 95% CI: 0.6–1.7).

CI: confidence interval; CS: comparative study; ICU: intensive care unit; M ICU: medical ICU; MRSA: meticillin-resistant Staphylococcus aureus; S ICU: surgical ICU; SSI: surgical-site infections;

* MRSA prevalence in the study setting per 100 patients admitted (except stated differently).

** Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).

† Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
Study	MRSA prevalence	Time	Country	Setting	Setting type	Design	Outcomes	Screening followed by	Result
Turnaround time (PCR/culture)									
Harbarth [17]; 2004–06; Switzerland; Surgical wards;	Prospective cohort study.								
5.1%;	2004–06;								
Harding [18]; 2005–07; United Kingdom; Surgical wards;	Prospective cohort study.								
3.6%;	2005–07;								
Jeyarathnam [23]; 2006–07; United Kingdom; Medical/surgical ward;	RCT.								
6.7%;	2006–07;								
Jog [24]; 2004–06; United Kingdom; Cardiac surgery;	CS (before-and-after).								
2.5%;	2004–06;								
Kjoonegaard [41]; 2009–10; United States; MICU/SICU;	CS (before-and-after).								
11.6%;	2009–10;								

Notes:
- MRSA prevalence in the study setting per 100 patients admitted (except stated differently).
- Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).
- Outcome measures: A=MRSA acquisition/transmission, B=MRSA bacteraemia, C/I=colonisation or (all/unspecified types of) infection, I=several or unspecified types of infection, W/SSI=wound infections/surgical-site infections.
- CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant Staphylococcus aureus; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: Surgical-site infections.
| Study; MRSA; Time; Country; Setting; Study type. | Turnaround time (PCR/culture)\(^b\) | Design | Screening followed by | Outcome\(^c\) | Result |
|---|---|---|---|---|---|
| **PCR-based tests** | | | | | |
| Kurup \[22\]; 13%; 2007–08; Singapore; MSICU; CS (before-and-after). | | Intervention: nasal screening of all patients at admission to the ICU, weekly thereafter and at discharge; Control: phase without any or with non-compulsory screening. | Private rooms, gowns, gloves, decolonisation | I | No statistically significant difference in MRSA infection rate in both ICUs combined (2.7 to 2.4/1,000 pd; p=0.48). |
| Leonhardt \[25\]; 1.8–6%; 2009–10; United States; Hospital-wide; CS (before-and-after). | 24 h in 90% of all cases | Intervention: nasal screening of all adult patients at admission or before in one intervention hospital; Control: phase with targeted screening of high-risk patients. | Private rooms, gowns, gloves, mask, decolonisation | I | Non-significant decline in hospital-acquired MRSA infections of 0.12 percentage points (p=0.34) during the intervention period. |
| Martinez-Capolino \[26\]; 13–23%; 2007–8; United States; MSICU; CS (before-and-after). | <24 h / ca 18–28 h | Intervention: nasal screening of all patients at admission and weekly thereafter; Control: phase without any or with non-compulsory screening. | Private rooms, gowns, gloves | I, B | Decrease in MRSA ventilator-associated pneumonia from 0.95 to 0.71/1,000 pd and 0.47 to 0/1,000 pd in Hospital 1 and 2, respectively; decrease of MRSA bloodstream infections from 0.22 to 0.13/1,000 pd and 0.93 to 0.31/1,000 pd in Hospital 1 and 2, respectively; decrease of overall hospital-wide MRSA infections only in Hospital 2 (0.63 vs 0.31/1,000 pd); statistical analysis NA. |
| Parvez \[39\]; 10.8%; 2008; United States; Hospital-wide; CS (before-and-after). | NA | Intervention: nasal screening of all patients at admission; Control: phase without any or with non-compulsory screening. | Contact isolation | W/SSI | No change in the MRSA SSI rate (22/3,862 (0.56%) vs 30/4,076 (0.73%); p=0.362). |
| Robicsek \[29\]; 6.3–8.3%; 2003–07; United States; MSICU; CS (before-and-after). | Phase 2: ca 2.5 d (in-house PCR); phase 3: 0.67 d (commercial PCR) | Intervention: nasal screening of all patients in the ICU (phase 2) and general hospital-wide screening and retesting upon ICU admission (phase 3); Control: patients without screening in phase 1. | Private rooms, gowns, gloves, decolonisation | I | Aggregate hospital-associated MRSA disease prevalence density changed by -36.2% (95% CI: -65.4% to 9.8%; p=0.17) from baseline to phase 2, and by -69.6% (95% CI: -89.2% to -19.6%; p=0.03) from baseline to phase 3. |

CI: confidence interval; CS: comparative study; ICU: intensive care unit; MICU: medical ICU; MRSA: meticillin-resistant *Staphylococcus aureus*; MSICU: medical/surgical ICU; NA: not available; OR: odds ratio; PICU: paediatric ICU; pd: patient-days; RCT: randomised controlled trial; RR: relative risk; SICU: surgical ICU; SSI: surgical-site infections;
\(^a\) MRSA prevalence in the study setting per 100 patients admitted (except stated differently).
\(^b\) Turnaround time of the screening test result (stratified by PCR-based test vs culture-based test, if both were compared in the respective study).
\(^c\) Outcome measures: A=MRSA acquisition/transmission; B=MRSA bacteraemia; C/I=cases of colonisation or (all/unspecified types of) infection; I=cases of several or unspecified types of infection; W/SSI=wound infections/surgical-site infections.
reviews (the literature lists of the reviews were manually screened for additional relevant publications).

Data were extracted by AWF and RK independently using a standardised form. The study designs were assigned according to a modified study design scheme published by the Centre for Reviews and Dissemination at the University of York, United Kingdom, in the NHS economic evaluation database handbook from 2007. Formal assessment of the quality of studies was not performed. Due to the different study outcomes included, formal meta-analysis was considered inappropriate. Heterogeneity in methodology and outcome measures also prevented quantitative assessment of publication bias.

Results

The literature search identified 9,340 articles, 151 of which were retrieved as full texts after review of titles and abstracts. Of these, 69 articles fulfilled the criteria for inclusion and a further 14 articles were added after search through the literature lists of excluded review articles (Figure). Overall, 83 articles were included in the review [7-89].

Screening

We identified 41 studies that investigated the question whether screening for MRSA carriers before or on admission had an impact on MRSA acquisition or infection rates (Table 1) [7-47].

Culture-based screening

Twenty-five studies used culture-based screening approaches, including two randomised controlled trials (RCTs) and 23 comparative studies mostly using a before-and-after design [9,10,12,15-19,21,27,28,30-38,40,42-47]. Of these 25 studies, seven used unspecified culture-based techniques [12,21,27,28,37,40,46], eight used MRSA chromogenic media (at least partially) [19,31-34,38,45,47] and the others used mannitol salt, oxacillin salt or blood agars. An estimate for the turnaround times (TAT) of screening results was only reported in eight of the 25 studies (1 d – 5.2 d) [10,12,19-21,33,34,38]. Overall, 19 of the 23 comparative studies included reported trends of decreasing rates of MRSA infection or colonisation [10,12,15,19,21,27,28,30-32,35-38,40,42,43,45,46], two reported ambiguous results [44,47], and two reported no reduction of MRSA infections or transmission [33,34]. The two RCTs found no reduction of MRSA infections or transmission [9,20].

PCR-based screening

Sixteen studies used PCR-based screening techniques in their intervention phases, including one RCT, two prospective cohort studies and 13 comparative studies [7,8,11,13,14,16-18,22-26,29,39,41]. The TAT of the PCR screening result was reported in 11 of 16 studies (0.67 d – 1.5 d) [7,11,13,14,16-18,23,25,26,29]. Overall, seven of 16 studies documented positive effects on the occurrence of MRSA infections or transmissions after implementation of screening [8,11,14,18,24,26,29]. One study reported ambiguous results [16]. Among the studies reporting a decrease of infection or transmission, five compared the intervention group (PCR-based screening) to a control group without active surveillance, with non-compulsory active surveillance or with screening of limited risk groups [8,11,24,26,29], and two compared with a control group where routine culture-based screening was performed [14,18]. Among the eight studies which could not document decreasing trends in MRSA infections or transmission following the implementation of screening, three compared PCR-based screening with culture-based screening [7,13,23], four compared the intervention to control periods without any active surveillance of MRSA [17,22,39,41], and one compared the intervention with a baseline period where PCR-based screening of selected risk patients was performed [25].

Screening (PCR-based and culture-based) vs no screening stratified by outcome measure

In eight of nine studies (89%) using this outcome parameter, MRSA bacteremia rates decreased after implementation of screening [8,11,21,26,28,31,32,38,47]. Incidence of MRSA acquisition or transmission decreased in three of eight studies (38%) assessing this outcome parameter [8,9,17,32-34,43,44]. Three of five studies (60%) using wound infection and surgical-site infections (SSI) as an outcome parameter showed decreasing SSI rates after implementation of screening [8,17,26,37,39]. A decrease of MRSA was observed in 20 of 23 studies (87%) using all or unspecified MRSA infections or cases of colonisation/infection as their outcome parameters [8-10,12,15-17,19,20,22,25-27,29,30,35,36,40,42,45,47]; among these studies, one found a decrease only in medical ICUs [16].

PCR-based vs culture-based screening

Five investigations compared PCR-based to culture-based screening [7,13,14,18,23]. All five documented that the TAT was reduced when compared to culture-based approaches (Table 1). However, three studies found no difference in MRSA acquisition or infection rates [7,13,23]. In contrast, one before-and-after study found a reduction in the incidence of MRSA transmission after introduction of the PCR-based test which almost reached statistical significance, and one cohort study reported a reduction in MRSA acquisition rates [14,18].

Decolonisation

A total of 11 RCTs, 23 comparative studies and one prospective cohort study evaluated the effectiveness of mupirocin-based nasal decontamination regimens for the prevention of *S. aureus* infections (Table 2) [48-82]. Of all 11 RCTs, six demonstrated significantly decreasing infection trends after implementation of decolonisation [48,51,52,72,73,75]; for one of these, this was only observed when selective digestive decontamination was added to nasal decolonisation [52], and for one RCT, the effect was only analysed for Gram-positive infections (which were mostly MRSA) [75]. Stratified by
types on infections prevented, the RCTs showed that decontamination decreased deep *S. aureus* SSI [48], overall *S. aureus* infections [48,51,73], overall infection rates [52], Gram-positive pneumonia [75] and *S. aureus* exit-site infections [72].

Among the 24 non-randomised studies identified, 19 reported evidence that the use of mupirocin was effective in reducing infection. Of the seven studies performed in ICUs, six (86%) demonstrated an effect; specifically, a decrease in pneumonia and hospital-acquired *S. aureus* infection [59], in the overall infection rates in ICUs [50,70], in MRSA SSI and bloodstream infections (BSI) in ICUs [55], and in the overall number of MRSA infections in ICUs [80,81]. Non-controlled studies implementing decontamination in non-ICU settings led to a decrease in overall and peristomal MRSA infections [57,76], in the incidence of *S. aureus*/MRSA SSI in surgical units [55,58,64,65,71,77,79], in overall *S. aureus*/MRSA infections in gastrointestinal surgery and orthopaedics [49,82], and in the total rate of SSI or wound infections [53,60,67].

Stratified by different implementation settings, four of five studies documented success among patients undergoing cardiothoracic surgery [53,65,66,71,77], four of six in orthopaedic departments [49,60,61,63,64,79], and six of seven in either or mixed surgical departments [54,55,58,67,73,75,82]. Moreover, seven of eight studies performed in ICU settings [50,52,55,59,68,70,80,81], two of two performed in haemodialysis units [51,72], two of five performed in different non-surgical departments [56,57,69,76,78], and one of three studies performed hospital-wide or in both medical and surgical departments [48,62,74], demonstrated successful effects of mupirocin-treatment.

Stratified by different causative organisms, eight studies showed that mupirocin-treatment led to a decrease in the overall incidence of infections due to all organisms [49,53,60,64,65,67,70,77]. In the same studies, this effect was partially non-significant for *S. aureus*/MRSA infections in particular [53,60,67,70]. Four studies reported a decrease in infections caused by methicillin-sensitive *S. aureus* (MSSA) [48,51,55,65]. Twelve investigations revealed a reduction in MRSA infections [49,50,55,57,58,64,76,77,79-82], six showed decreasing trends for *S. aureus* (MRSA and/or MSSA) infections [50,59,71-73,82] and one reported reduction of pneumonia caused by Gram-positive bacteria (mostly MRSA) [75].

Many of the studies identified in this review used mupirocin-only regimens [51,55,59,60,63,67,70-73,75,78,82]. Others combined nasal mupirocin with other topical agents to support decontamination, including chlorhexidine [48,50,53,56-58,61,62,64,68,74,81], triclosan [49,76,79], extra-nasal use of mupirocin [69,77,80], selective digestive decontamination [52], povidone-iodine [49], and systemic antibiotics [54].

Isolation

Focusing on the physical isolation of patients in separate single or cohort rooms, we identified one cohort study and seven comparative studies reporting on the effectiveness of this measure (Table 3) [16,83-89]. Five studies were performed in ICU settings [16,83-85,88], one in a vascular surgery ward, one in a diabetic food unit, and one hospital-wide [86,87,89]. In two of these studies, nurse cohorting was performed in addition to single-room isolation [83,86]. Overall, one cohort and three comparative studies reported on beneficial effects of single-room isolation (not performed pre-emptively) on MRSA colonisation or infection [85,86,88] and on acquisition rates [84]. Two comparative studies did not find a reduction of transmission [83] or MRSA prevalence [87].

Three studies assessed the role of pre-emptive isolation measures pending the results of screening [16,86,89]. In one before-and-after study, pre-emptive isolation precautions led to a reduction of the MRSA acquisition rate (0.21% vs 0.07%; p=0.04) [89]. In a retrospective comparative study placing all admitted patients in pre-emptive isolation, the number of nosocomial MRSA isolates was reduced (p=0.005). However, simultaneous introduction of a cohort isolation facility with dedicated staff makes the effects of this measure indistinguishable from the effects of pre-emptive isolation [86]. The third was a study that evaluated the effects of simultaneous implementation of pre-emptive isolation and a rapid screening test on the incidence of MRSA infections in two ICUs [16] resulting in a significant reduction of ICU-acquired infections in a medical but not in a surgical ICU.

Discussion

Improving the rational use of antibiotics and the implementation of hand hygiene are clearly cornerstones of MRSA prevention and control [90-92]. Moreover, benchmarking and public reporting systems have recently been demonstrated to successfully support infection control measures [93]. However, the effectiveness of screening, decontamination and isolation for MRSA prevention when implemented routinely in settings with endemic MRSA, remains controversial. For example, it is debated to what extent microbiological, strain-specific factors have contributed to the decreasing MRSA trends [94,95]. Therefore, the present review aimed to focus on three important measures and to summarise the current evidence for their impact on MRSA prevention.

Screening

The strategy of screening is based on the finding that microbiological cultures performed for clinical reasons fail to detect previously unknown MRSA carriers at admission in 69 to 85% of patients [96,97]. Technically, screening can be performed by culture-based methods (screening swab streaked onto non-selective or chromogenic media) or PCR-based tests.
TABLE 2A

Studies on the effectiveness of *Staphylococcus aureus* decolonisation using mupirocin-based regimens, published 2000–2012 (n=35)

Study; Time; Country; Setting; Study type.	Treatment regimen	Treatment of	Effects of treatment stratified by pathogen	Effect of treatment	Types of infections analysed separately			
Bode [48]; 2005–07; Netherlands; Surgery and internal medicine; Randomised placebo-controlled trial.	Mupirocin 2xd and chlorhexidine gluconate (40 mg/mL) soap for 5 days; further courses of same treatment for patients staying >3 weeks.	*S. aureus* carriers only	NA	NA	↓	Reduction of hospital-acquired MSSA infection (3.4% vs 7.7%; RR: 0.42; 95% CI: 0.23–0.75), deep MSSA SSI (RR: 0.21; 95% CI: 0.07–0.62) but not of superficial MSSA SSI 0.45 (0.18–1.11) and MSSA lower respiratory infections 0.82 (RR: 0.82; 95% CI 0.12–5.78).	Diverse, SSI, VAP/LRTI, (BSI, UTI assessed, but small numbers)	
Boelaert [51]; NA; Belgium; Haemodialysis; Randomised placebo-controlled trial.	Mupirocin 3xd for 2 weeks; subsequently 3x per week for 9 months.	*S. aureus* carriers only	NA	NA	↓	Reduction of MSSA infections (1/104 patient-months vs 6/147 patient-months; p<0.05).	Diverse	
Camus [52]; 1996–08; France; MICU; Randomised placebo-controlled trial.	Group 1: mupirocin 3xd for 5 days; again 5 days if nasal *S. aureus*; chlorhexidine gluconate (4%) total-body washing 2xd (until 24 h after extubation; max 90 days); Group 2: same as group 1 plus selective digestive decontamination	All patients irrespective of carriage	↓^b	NA	NA	NA	Group 1: number of acquired infections did not differ (OR: 0.98; 95% CI: 0.6–1.58; p=0.92). Group 2: number of acquired infections incl. VAP, UTI, catheter-related infections differed (OR: 0.42; 95% CI: 0.25–0.73; p=0.002).	Diverse, VAP, UTI, BSI
Cimochowski [53]; 1995–99; United States; Cardi thoracic surgery; Prospective comparative study with control (before-and-after).	Mupirocin the night and morning before surgery, before surgery, then 2xd for 5 days; chlorhexidine shower before surgery.	All patients irrespective of carriage	↓	n.s	NA	NA	Reduction of overall SSI (0.9 vs 2.7%; p=0.005), but not *S. aureus* SSI (4/854 vs 11/992; p=0.05).	Sternal SSI
Cordova [54]; NA; United States; Dermatology (Mohs surgery); Retrospective comparative study with control (before-and-after).	Mupirocin 2xd for 5–7 days and oral trimethoprim-sulfamethoxazole for 5–7 days	Only MRSA carriers	NA	NA	NS	NA	MRSA SSI: 0.3% in historical cohort (12/3,633) vs 0% in treatment group (0/962); statistical analysis NA; Fisher’s exact test performed by the authors of this review: p=0.08.	SSI

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant *Staphylococcus aureus*; MSSA: meticillin-sensitive *Staphylococcus aureus*; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection; VAP: ventilator-associated pneumonia; UTI: urinary tract infections.

- *Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.*
- *Only when selective digestive decontamination was added to mupirocin-treatment.*
- *MSSA and coagulase-negative staphylococci.*
- *Gram-positive infections (mostly MRSA).*
| Study; Country; Setting; Study type. | Treatment regimen a | Treatment of | Effects of treatment stratified by pathogen | Effect of treatment | Types of infections analysed separately | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Dupeyron [56]; 1999–2001; France; Digestive disease unit; Prospective comparative study with control (before-and-after). | Mupirocin 3xd for 5 days; chlorhexidine (4%) every second day during mupirocin treatment; further treatment courses in case of failure. | Only MRSA carriers | All organisms | MRSA+ MSSA | MRSA | MSSA | Overall MRSA infections: 1.41/1,000 pd in control period and 1.46/1,000 pd in intervention period (statistical analysis NA). | Diverse |
| Dupeyron [57]; 2000–04; France; Gastroenterology; Prospective comparative study with control (interrupted-time-series). | Mupirocin 3xd for 5 days; chlorhexidine (4%) every second day during mupirocin treatment; further courses in case of failure. | Only MRSA carriers | All organisms | MRSA+ MSSA | MRSA | MSSA | Reduction of overall MRSA infections (1.41/1,000 pd in the year before intervention to 1.40, 0.74, 0.59/1,000 pd in different periods thereafter, p=0.002). | Diverse |
| Fraser [59]; 2006–07; United States; MICU; Retrospective comparative study with control (before-and-after). | Mupirocin (5 doses) | S. aureus carriers only | All patients irrespective of carriage | NA | ↓ | NA | NA | Reduction of S. aureus VAP (p=0.03; RR 0.12; 95% CI: 0.01–0.83), overall S. aureus infections (p=0.03; RR 0.37; 95% CI: 0.14–0.90), but NS effect on S. aureus BSI (p=0.28). | Diverse, BSI, VAP/LRTI |
| Gernaat-van der Sluis [60]; 1992–06; The Netherlands; Orthopaedic wards; Prospective comparative study with control (before-and-after). | Mupirocin thrice before surgery | All patients irrespective of carriage | ↓ | NS | NA | NA | Reduction of overall SSI (p=0.02), but NS reduction of S. aureus SSI (p=0.3). | SSI |
| Hadley [61]; 2007–09; United States; Orthopaedic wards; Retrospective comparative study with control (before-and-after). | Mupirocin (2%) for 5 days (dose unspecified); chlorhexidine once preoperatively. | All patients irrespective of carriage | NS | NA | NS | NA | No reduction of SSI rate (1.28% in the treatment vs 1.45% in the control group; p=0.809) and no reduction of MRSA SSI (0.24% vs 0.30%; NS). | SSI |

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant Staphylococcus aureus; MSSA: meticillin-sensitive Staphylococcus aureus; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection, VAP: ventilator-associated pneumonia; UTI: urinary tract infections.

a Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.
b Only when selective digestive decontamination was added to mupirocin-treatment.
c MSSA and coagulase-negative staphylococci.
d Gram-positive infections (mostly MRSA).
Study; Time; Country; Setting; Study type.	Treatment regimena	Treatment of	Effects of treatment stratified by pathogen	Effect of treatment	Types of infections analysed separately			
Harbarth [62]; 1995–07; Switzerland; Hospital-wide; Randomised placebo-controlled trial.	Mupirocin 2xd for 5 days; chlorhexidine for 5 days.	Only MRSA carriers	All organisms	MRSA+ MSSA	MRSA	MSSA	No reduction of overall MRSA infections (3/48 vs 7/50; p=0.32).	Diverse
Huang [80]; 2003–06; Taiwan; Neonatal ICU; Prospective comparative study (before-and after).	Mupirocin 2xd for 5 days	Only MRSA carriers	NA	NA	NS	NA	Reduction of overall MRSA infections in the group of neonates treated (92/783 vs 5/450; OR: 11.85; 95% CI: 4.6-33.3).	Diverse
Kalmeijer [63]; 1997–09; The Netherlands; Orthopaedic wards; Randomised placebo-controlled trial.	Mupirocin 2xd until day of surgery (at least 2 doses before surgery).	All patients irrespective of carriage	NA	NS	NA	NA	No significant reduction of endogenous S. aureus SSI (0.3% in treatment vs 1.7% control group; RR: 0.19; 95% CI: 0.02-1.62).	SSI
Keshtgar [55]; 2000–06; United Kingdom; ICU and surgery; Prospective comparative study (before-and after).	Mupirocin 3xd for 5 days; chlorhexidine (use unspecified except for hairwash on days 1, 3, 5).	Only MRSA carriers	NA	NA	↓	↓	Reduction of MRSA BSI by 38.5% (p<0.001), MSSA BSI by 30.4% (p<0.001), MRSA SSI by 12.7% (p=0.021); but increase of MSSA SSI by 12.7% (p=0.006).	BSI, SSI
Kim [64]; 2005–07; United States; Orthopaedic wards; Prospective comparative study with control (before-and-after).	Mupirocin 2xd for 5 days; chlorhexidine 1xd for 5 days (3 days for MSSA).	S. aureus carriers only	↓	NA	↓	NS	Reduction of overall SSI (p=0.0093), MRSA SSI (0.19% vs 0.06%, p=0.035), MSSA SSI (0.26% vs 0.13%, p=0.0937).	SSI
Kluytmans [65]; 1989–92; The Netherlands; Cardiotoracic surgery; Retrospective comparative study with control (before-and-after).	Mupirocin 2xd for 5 days; chlorhexidine before surgery.	All patients irrespective of carriage	↓	NA	N	NA	Reduction of the overall rate of SSI (2.3% vs 2.8%; p=0.001) and of S. aureus/coagulase-negative staphylococcal SSI (p=0.0032).	SSI

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant Staphylococcus aureus; MSSA: meticillin-sensitive Staphylococcus aureus; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection; VAP: ventilator-associated pneumonia; UTI: urinary tract infections;

a Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.
b Only when selective digestive decontamination was added to mupirocin-treatment.
c MSSA and coagulase-negative staphylococci.
d Gram-positive infections (mostly MRSA).
Table 2d

Studies on the effectiveness of *Staphylococcus aureus* decolonisation using mupirocin-based regimens, published 2000–2012 (n=35)

Study; Time; Country; Setting; Study type.	Treatment regimena	Treatment of	Effects of treatment stratified by pathogen	Effect of treatment	Types of infections analysed separately
Konvalinka [66]; 1997–2003; Canada; Cardiothoracic surgery; Randomised placebo-controlled trial.	Mupirocin 2xd for 7 days before surgery for *S. aureus* carriers only; standard pre-operative clinical practice for all patients included chlorhexidine 12 h before surgery.	*S. aureus* carriers only	NS NS NA NA	No reduction of overall SSI (1.6% vs 2.4%; p=0.672) and *S. aureus* SSI (0% vs 1.6%; p=0.243).	SSI
Lipke [67]; 2005–07; United States; Surgery; Retrospective comparative study with control (before-and-after).	Mupirocin 2xd for 5 days; all patients: chlorhexidine morning before surgery.	Only MRSA carriers	↓ NA NS NA	Reduction of overall SSI (7/1,094 to 7/1,225; p=0.0196), but NS for MRSA SSI (8/1,094 vs 2/1,225; p=0.0538).	SSI
Milstone [68]; 2002–09; United States; Neonatal ICU; Retrospective comparative study with control (before-and-after).	Mupirocin for infants 13–6 weeks of gestational age or 14 weeks of chronological age with MRSA carriage; chlorhexidine; duration of therapy: unspecified.	Only MRSA carriers	NA NA NS NA	No reduction of overall MRSA infections (95% CI: 0.002–1.03).	Diverse
Mody [69]; NA; United States; Long-term care facility; Randomised placebo-controlled trial.	Mupirocin 2xd for 14 days; mupirocin treatment of wounds.	*S. aureus* carriers only	NA NS NA NA	No significant reduction of overall *S. aureus* infections (3/55 vs 7/47; p=0.1).	Diverse
Muller [70]; 1999–2003; France; MICU; Retrospective comparative study with control (before-and-after).	Mupirocin for 5 days (dose unspecified)	Only MRSA carriers	↓ NA NS NA	Reduction of overall infections (1/9 infections vs. 11/17; p=0.006), but NS for overall MRSA infections (p=0.24).	Diverse
Nicholson [71]; 2002–04; United States; Cardiothoracic surgery; Prospective comparative study with control (before-and-after).	Mupirocin 2xd for 7 days (if *S. aureus* carriage was confirmed) or less than 7 days (if screening was negative).	All patients irrespective of carriage	NA ↓ NA NA	Reduction of *S. aureus* SSI rate (1.68% to 0.37%; p=0.006) and reduction of deep sternal *S. aureus* infections (p=0.0087).	SSI

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant *Staphylococcus aureus*; MSSA: meticillin-sensitive *Staphylococcus aureus*; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection, VAP: ventilator-associated pneumonia; UTI: urinary tract infections;

a Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.

b Only when selective digestive decontamination was added to mupirocin-treatment.

MSSA and coagulase-negative staphylococci.

Gram-positive infections (mostly MRSA).
Table 2e

Studies on the effectiveness of *Staphylococcus aureus* decolonisation using mupirocin-based regimens, published 2000–2012 (n=35)

Study; Time; Country; Setting; Study type.	Treatment regimen*	Treatment of	Effects of treatment stratified by pathogen	Effect of treatment	Types of infections analysed separately			
Perl [73]; 1995–08; United States; Surgery; Randomised placebo-controlled trial.	Mupirocin 2xd for 5 days before surgery	All patients irrespective of carriage	NS	↓	NA	NA	Reduction of nosocomial *S. aureus* infection among *S. aureus* carriers (4% vs 7.7%; p=0.02); no reduction of *S. aureus* SSIs.	Diverse, SSI
Pofahl [58]; 2004–07; United States; Surgery; Retrospective comparative study (before-and after).	Mupirocin 2xd for 5 days; chlorhexidine (4%) days 1, 3, 5.	Only MRSA carriers	NA	NA	↓	NA	Reduction of MRSA SSI (0.23% vs 0.09%); pronounced in joint-replacement surgery (0.30–0%; p=0.04).	SSI
Ridenour [81]; 2003–04; United States; MICU; Retrospective comparative study (before-and after).	Mupirocin 2xd for 5 days; chlorhexidine 1xd for 7 days.	Only MRSA carriers	NA	NA	↓	NA	Reduction of MRSA incidence density of colonisation or infection (8.45 vs 4.05/1,000 pd; p=0.048).	Diverse
Robicsek [74]; 2006–07; United States; Hospital-wide; Prospective cohort study.	Mupirocin 2xd for 5 days and chlorhexidine (4%) days 1, 3, 5.	Only MRSA carriers	NA	NA	NS	NA	No reduction of overall MRSA infections (NS); trend towards delayed infections in treatment group (15.5 days vs 50 days until infection; p=0.06).	Diverse
Sandri [50]; 1999–2003; Brazil; General ICU; Prospective comparative study without control group.	Mupirocin 3xd for 5 days and chlorhexidine 1xd for 3 days	Only MRSA carriers	NA	↓	↓	NA	Reduction of nosocomial *S. aureus* infections (9.9% vs 3.3%; p=0.001) and MRSA infections (8.2% vs 2.8%; p=0.001).	Diverse
Sankar [49]; 2000–01; United Kingdom; Orthopaedic wards; Prospective comparative study (before-and after).	Mupirocin or povidone iodine or triclosan (unspecified treatment)	Only MRSA carriers	↓	NA	↓	NA	Reduction of overall hospital-acquired infections (8.6% vs 3.5%; p=0.05) and overall MRSA infections (p=0.05).	Diverse

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant *Staphylococcus aureus*; MSSA: meticillin-sensitive *Staphylococcus aureus*; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection, VAP: ventilator-associated pneumonia; UTI: urinary tract infections.

* Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.

b Only when selective digestive decontamination was added to mupirocin-treatment.

c MSSA and coagulase-negative staphylococci.

d Gram-positive infections (mostly MRSA).
Study; Time; Country; Setting; Study type.	Treatment regimen a	Treatment of	Effects of treatment stratified by pathogen	Effect of treatment	Types of infections analysed separately
Suzuki [75]; 1998–2000; Japan; Abdominal digestive surgery; Randomised controlled trial.	Mupirocin 3xd for 3 days before the operation	All patients irrespective of carriage	All organisms NS NA ↓d NA	No reduction of overall infections (mostly caused by Gram-negative bacteria); reduction of VAP due to Gram-positive bacteria (mostly MRSA) (p=0.028).	Diverse, VAP/ LRTI, SSI
The Mupirocin Study Group [72]; NA; Europe; Haemodialysis; Randomised placebo-controlled trial.	Mupirocin 2xd for 5 consecutive days every 4 weeks	S. aureus carriers only	NS ↓ NA NA	Reduction of S. aureus exit-site infections (p=0.006); no reduction of overall exit-site infections (p=0.17), tunnel infections and peritonitis (NS).	Exit-site infections
Thomas [76]; 2002–06; United Kingdom; Gastroenterology; Prospective comparative study with control (before-and-after).	Mupirocin 3xd and daily 2% triclosan for 5 days	Only MRSA carriers	NA NA ↓ NA	Reduction of peristomal MRSA infections (5/42–7/24 vs 1/47, p<0.01).	Peristomal infections
Walsh [77]; 2004-10; United States; Cardiothoracic surgery; Prospective comparative study with control (before-and-after).	Mupirocin (dose unspecified) for 5 days; sterile gauze coated with mupirocin on exit site.	All patients irrespective of carriage	↓ NA ↓ NA	Reduction of overall wound infections (p<0.01); 93% reduction of MRSA SSIs (32/2,766 vs 2/2,496; p<0.001); MSSA SSI rate NS (5/2,766 vs 2/2,496; p=0.27).	SSI
Wertheim [78]; 1999–2001; The Netherlands; Non-surgical departments; Randomised placebo-controlled trial.	Mupirocin 2xd for 5 days	S. aureus carriers only	NS NA NA NS	No reduction of overall nosocomial S. aureus infections (2.6% vs. 2.8%, risk difference 0.2 percentage points; 95%CI: -1.5-1.9). Trend towards delayed time of infection onset (32 days vs 25 days; p=0.28).	Diverse
Wilcox [79]; 1999–2000; United Kingdom; Orthopaedic wards; Prospective comparative study with control (before-and-after).	Mupirocin for 5 days (dose unspecified), starting one day before surgery and ending 4 days after surgery; triclosan 2% on the day before surgery.	All patients irrespective of carriage	NS NA ↓ NA	Reduction of MRSA SSI (23/1,000 operations vs 3.3/1,000 operations; p<0.001); no reduction of overall SSI rate and MSSA SSI rate (NS).	SSI

BSI: bloodstream infections; CI: confidence interval; diverse: diverse or all types of infections ICU: intensive care unit; LRTI: lower respiratory tract infections; MICU: medical intensive care unit; MRSA: meticillin-resistant *Staphylococcus aureus*; MSSA: meticillin-sensitive *Staphylococcus aureus*; NA: no data available; NS: not significant; ↓ reduction; ↑ increase; OR: odds ratio; pd: patient-days; RR: relative risk; SSI: wound infections or surgical-site infection, VAP: ventilator-associated pneumonia; UTI: urinary tract infections;

a Mupirocin refers to mupirocin nasal ointment unless specified otherwise. Chlorhexidine and triclocan body washes, 1xd or 2xd or 3xd refers to application 1x, 2x or 3x per day.
b Only when selective digestive decontamination was added to mupirocin-treatment.

c MSSA and coagulase-negative staphylococci.
d Gram-positive infections (mostly MRSA).
Screening vs no screening

Of 36 cohort and comparative studies investigating the effectiveness of compulsory screening compared with no or non-compulsory screening, 27 reported decreasing trends in the rates of MRSA infection or acquisition; this is in accordance with a meta-analysis describing a decrease in MRSA bloodstream infections (relative risk (RR): 0.54; 95% CI: 0.41–0.71) and surgical site infections (RR: 0.69; 95% CI: 0.46–1.01) [98]. On the other hand, two RCTs found that MRSA acquisition or infection in the intervention groups did not differ significantly from the control groups [9,20]. However, in both studies, the median time for reporting a positive screening result was very long (3 days and 5.2±1.4 days), which led to delayed implementation of contact precautions. In addition, compliance with transmission-based precautions was not as required [20] and the prevalence of MRSA infection was low in one of the studies [9]. Comparing successful and unsuccessful interventions, we did not find clear differences between the studies regarding the specimens used for screening (nasal swab only vs other swabs in addition) or the patient population included (all patients admitted vs high-risk patients only).

There was a tendency that studies including ‘incidence of MRSA acquisition’ as an outcome parameter, reported a success less frequently (three of eight studies) compared with studies focusing on MRSA infection rates using the outcome parameters ‘occurrence of bacteraemia’ (eight of nine studies) or ‘SSI’ (three of five studies). The reason for this effect is not known, but it could highlight that screening does not necessarily affect the rate of cross-transmission on the ward, unless it is linked to additional preventive measures; decolonisation, for instance, was not performed in two of the studies measuring incidence of acquisition [33,34], while in two others, single-room isolation was omitted or only performed if available [9,17].

In conclusion, we found evidence that screening can help decrease MRSA infection rates in hospitals. This is also supported by macro-epidemiological data and mathematical models showing that without screening, other infection control measures might fail to effectively reduce MRSA spread [99-102]. However, the included RCTs did not confirm the findings of non-controlled studies. This makes it impossible to firmly recommend the implementation of screening in all settings. However, the evidence provided can support the introduction of a programme for active surveillance of MRSA in settings that have hyperendemic MRSA cross-infections in spite of a high level of compliance with standard precautions. Clearly, the implementation of screening needs to be linked to other targeted infection control measures (e.g. hand hygiene) to achieve optimal impact.

Culture-based screening vs PCR-based screening

Screening for MRSA colonisation of patients at admission using culture-based approaches requires 24 to
Study	MRSA	Time	Country	Specialty	Study type	Design	Outcome	Result
Bracco [84]	1.1%	2002–04	Canada	MSICU	Prospective cohort study	Intervention: patients hosted in single rooms and bay rooms; allocation was not randomized; rates of nosocomial cross-contamination among patients hosted in single-rooms were assessed; Compared to: rates of nosocomial cross-contamination among patients hosted in bay rooms with 2–6 beds.	A	Incidence density of MRSA acquisition was 4.1/1,000 pd in bay rooms compared with 1.3/1,000 pd in single rooms (p=0.003); the RR of acquiring MRSA was 0.65 in single vs bay rooms; rates of BSI and positive catheter tips were also significantly reduced in single rooms compared to bay rooms.
Cepeda [83]	NA	2000–01	United Kingdom	MSICU	Prospective comparative study with control (interrupted) time-series	Intervention: phase 1 and 3: MRSA patients moved to single rooms or bays; Compared to: phase 2: no move to single rooms or bays.	A	No difference regarding transmission between the move and non-move phase; 0.73 (95% CI: 0.49–1.10; p=0.94)
Cheng [85]	NA	2002–09	China	MSICU	Retrospective comparative study with control (interrupted-time-series)	Intervention: phase 2 (2004–06): patients with MRSA detected in clinical specimens were placed in single rooms; phase 3 (2006–09) MRSA patients were cared for in single rooms and a hand hygiene campaign was introduced; Compared to: phase 1 (2002–04): patients with MRSA detected from clinical specimens were not moved to single rooms.	B, I	ICU-onset non-bacteraemic MRSA infections decreased from 3.56/1,000 pd in phase 1 to 2.26 in phase 2 (p=0.042) and 1.02 (p=0.006) in phase 3; bacteraemic MRSA infection decreased from 1.94/1,000 pd (phase 1) to 0.9 (phase 2, p=0.005) and 0.28 (phase 3, p=0.021).
Curran [86]	NA	2002–04	United Kingdom	Vascular surgery ward	Retrospective comparative study with control (interrupted-time-series)	Intervention: opening of a cohort area for MRSA colonised or infected patients; all admissions were placed in an isolation facility and then transferred to the cohort or the non-cohort area dependent on the results of screening; Compared to: time before the cohort area was opened.	C/I	Reduction of the number of nosocomial MRSA isolates (p=0.005) after opening of the cohort area; reduction was sustained after cohort area was discontinued.
Fazal [87]	NA	1991–94	United States	Hospital-wide	Retrospective comparative study with control (before-and-after)	Intervention: patients with MRSA no longer placed in private rooms plus transmission-based precautions (gloves, gowns, masks); the latter (without single room) were continued only on the ICU; Compared to: all patients with MRSA were placed in single rooms with transmission-based precautions.	C/I	Decrease of the percentage of MRSA among all S. aureus isolates (from 36% to 20%; p=0.001); discontinuing single room isolation did not result in an increase in the prevalence of MRSA.
Gregory [88]	1.3%	2000–07	United States	Neonatal ICU	Retrospective comparative study without control	Intervention: screening of all patients; in case of MRSA: isolation in a cohort plus contact precautions (gloves and gowns); Compared to: no control group; observation over time.	C/I	Incidence of MRSA decreased from 1.79/1,000 pd in 2000 to 0.15 in 2005 (yearly 31% decrease; p=0.001). However, incidence increased to 1.26/1,000 pd in 2007, accompanied by the occurrence of CA-MRSA types.
Harbarth [16]	6.7%	2003–05	Switzerland	MSICU	Prospective comparative study with control (before-and-after)	Phase 1: screening of high-risk patients (culture-based); phase 2: universal screening (PCR-based); phase 3: same as phase 2 but general pre-emptive isolation.	I	On-admission screening and pre-emptive isolation reduced medical ICU-acquired MRSA infections (RR: 0.3; 95% CI: 0.1–0.7), but had no effect in the surgical ICU (RR: 1.0; 95% CI: 0.6–1.7).

BSI: bloodstream infection; CA: community-acquired; ICU: intensive care unit; MSICU: medical-surgical intensive care unit; MRSA: meticillin-resistant *Staphylococcus aureus*; pd: patient-days; RR: relative risk.

Outcome measures: A=MRSA acquisition/transmission, B=MRSA bacteraemia, C/I=cases of colonisation or infection, I=cases of several or unspecified types of infection.
72 hours until the results are available on the wards [103,104]. During this time MRSA can spread among inpatients. Therefore, various PCR-based methods have been developed to reduce the TAT [105,106]. Reduction of TAT was indeed confirmed by all studies on PCR-based tests identified in this review. But these studies mostly did not find a significant reduction of MRSA infection or acquisition rates. These results are in accordance with data from a meta-analysis showing that, compared with cultures, the use of rapid tests was not associated with a significant decrease in MRSA acquisition rates (risk ratio 0.87; 95% CI: 0.61–1.24) [98]. On the other hand, we found two studies reporting on a significant reduction of MRSA acquisition and a trend towards declining transmission [14,18]. They demonstrate that implementation of PCR-based surveillance can be beneficial at least in facilities where culture results have a very long TAT (>3 days) [14,18].

We conclude that in settings where MRSA screening based on cultures, followed by the implementation of additional precautions, is already implemented, the current evidence does not suggest replacing or supplementing culture-based surveillance with rapid tests. However, besides accelerating the implementation of additional precautions, the high negative predictive value of MRSA rapid tests may also be useful when discontinuing contact precautions (including single-room isolation) in settings where they are implemented pre-emptively for suspected MRSA carriers [105]. However, the reliability of a negative nasal rapid test has not been evaluated in situations where pre-emptive isolation is performed for high-risk patients, who are often carrying MRSA at extranasal sites (e.g. wounds). Furthermore, using rapid tests in low prevalence settings may increase the number of false-positive tests (positive predictive values: 31–78%) [103,107-110].

Decolonisation

The effectiveness of mupirocin nasal ointment to eradicate MRSA has been estimated to be 94% one week after treatment and 65% after a 14-day follow-up period [111,112]. Effectiveness of MRSA decolonisation therapy is obviously limited when extranasal sites are colonised [113]. Since nasal carriage of *S. aureus* is a major risk factor for subsequent nosocomial infection, there is a theoretical rationale that eradicating *S. aureus* from the nares can reduce the development of infection. It is, however, controversial to what extent studies assessing the effectiveness of decolonisation among patients carrying MSSA also hold lessons for MRSA [114]. In this review, we have identified only four studies in which mupirocin-treatment was not restricted to MRSA carriers and where effects on MRSA and MSSA infections were reported separately. All four documented a decrease in MRSA, but found insignificant results for MSSA [64,77,79,82]. However, this does not mean that mupirocin-based decolonisation is ineffective against MSSA in general, since two randomised trials have reported a reduction of MSSA infections [48,51]. The reasons for this discrepancy are

Study	Time	Country	Study type	Design	Specialty	Study type	Time	Country	Study type	Design	Specialty	Study type	
Lecornet [89]	1997–2003	France	Prospective comparative study	Intervention: pre-emptive contact isolation of all patients until the screening results were negative; Compared to: isolation precautions performed after MRSA was isolated from the screening sample.	Diabetic foot unit	French medical-surgical intensive care unit; MRSA; meticillin-resistant *Staphylococcus aureus*; pd: patient-days; RR: relative risk.							
BS1	bloodstream infection; CA: community-acquired; ICU: intensive care unit; MSICU medical-surgical intensive care unit; B=MRSA bacteraemia; C=cases of colonisation or infection, I=cases of several or unspecified types of infection.												

We conclude that in settings where MRSA screening based on cultures, followed by the implementation of additional precautions, is already implemented, the current evidence does not suggest replacing or supplementing culture-based surveillance with rapid tests. However, besides accelerating the implementation of additional precautions, the high negative predictive value of MRSA rapid tests may also be useful when discontinuing contact precautions (including single-room isolation) in settings where they are implemented pre-emptively for suspected MRSA carriers [105]. However, the reliability of a negative nasal rapid test has not been evaluated in situations where pre-emptive isolation is performed for high-risk patients, who are often carrying MRSA at extranasal sites (e.g. wounds). Furthermore, using rapid tests in low prevalence settings may increase the number of false-positive tests (positive predictive values: 31–78%) [103,107-110].
unknown, and the question whether results obtained for MSSA can be transferred to MRSA is unresolved. Despite potential local differences in mupirocin susceptibility and the occurrence of clonal lineages [114], a plausible biological explanation why results on MSSA decolonisation treatment should not be applied for MRSA, is currently lacking. Therefore, we have explicitly included studies dealing with *S. aureus* decolonisation. However, future studies will have to assess in detail the differences between the preventive effectiveness of MSSA and MRSA decolonisation.

Regarding the setting of implementation, we found that 14 of 18 studies carried out mostly in surgical settings have found a reduction in infection rates, whereas six of 10 studies which did not report effectiveness, were performed mostly in non-surgical settings [56,62,68,69,74,78]. However, preventive effects have been documented for non-surgical patients, e.g. in haemodialysis units, ICUs or in gastroenterology [50,51,55,57,59,68,70,72,76,81].

Overall, we conclude that, taking into account local rates of healthcare-associated infections and infection control conditions, mupirocin-based decolonisation therapy should be considered for selected *S. aureus* carriers who are at high risk of developing nosocomial *S. aureus* infections. The best evidence is available for patients undergoing cardiothoracic or orthopaedic surgery. Of note, the preventive use of mupirocin for decolonisation is constrained by the development of resistance, found in 1% of all subjects when mupirocin was used for short-term prophylaxis. Increasing low-level mupirocin resistance (8–256 µg/mL) has recently been reported in parallel to increased mupirocin consumption [112,115,116].

Isolation

There are multiple approaches to organise isolation measures: Patients can be transferred to special isolation wards, housed in nursing cohorts with designated staff, isolated in single or cohort rooms on general wards without designated personnel, or housed in the same room as patients not affected by MRSA while applying barrier precautions (e.g. gloves and gowns) when caring for the MRSA patient. In this review, we focussed on single room or cohort room isolation because this measure is sometimes debated as it can be associated with disadvantages for the isolated patient [117]. Moreover, in settings with a high prevalence of MRSA, isolation of patients may be hindered due to insufficient side room capacity and financial constraints, if isolation results in bed-blocking.

Overall, we found four studies showing that single room isolation led to a reduction in nosocomial MRSA acquisition and in the incidence of MRSA infection [84-86,88]. In contrast, in a prospective interrupted-time-series study it was found that, MRSA acquisition was not different in phases during which MRSA-colonised or infected patients were moved to single or cohort isolation, compared with phases during which they were not moved [83]. However, limitations of this study are delayed notification of screening results, a high number of missed screenings (80–87% of patients at admission and 71–75% at discharge) and low compliance with hand hygiene (21% compliance) [83]. Moreover, a retrospective comparative study showed that discontinuing single-room isolation and applying transmission-based precautions (e.g. masks, gowns, gloves) for MRSA patients did not lead to an increase in the prevalence of MRSA. However, that study did not measure the occurrence of transmission on the wards and the incidence of MRSA infections [87].

We conclude that the limited evidence from non-controlled studies which is available to support the use of single-room isolation for MRSA (outside of outbreaks) should inspire further research in this field to facilitate the development of evidence-based guidance in future, also for the prevention and control of other multidrug-resistant organisms. However, the majority of studies identified and observations made during outbreaks support the use of single-rooms [3]. Therefore, where facilities (isolation wards, single rooms, cohort rooms) for the isolation of MRSA patients are available, their use should be recommended.

In all investigations identified, it is difficult to estimate to what extent the observed preventive effects were attributable to pre-emptive isolation or to other measures implemented in parallel [16,86,89]. Consequently, there is a need to assess the evidence for the use of pre-emptive isolation measures in hospitals. This is of major importance, because authors evaluating PCR-based screening tests often suggested that rapid tests could accelerate the start of isolation precautions [16,103,118]. However, these advantages cannot be assessed adequately as long as the additional value of pre-emptive isolation is unclear.

Conclusion

We have documented that the evidence for the effectiveness of three major MRSA prevention and control measures does not allow for clear guidance offering ‘one-size-fits-all’ solutions, because the effectiveness of these interventions seems highly depending on the prevalence of MRSA, compliance with general infection control measures (e.g. hand hygiene), the incidence and type of infections and the transmission rates within the respective setting of implementation. This is documented by the ambiguous study results presented here. In addition, models on the effectiveness of MRSA prevention strategies in different settings have shown that even measures which are performed highly effectively in outbreaks or low-prevalence areas, failed to control MRSA when applied for long-term control or in high-prevalence settings [119]. These difficulties have led to the development of models describing the effects and costs associated with universal vs selective MRSA screening in different settings, which may facilitate the implementation of local
In this review, we did not restrict the eligibility criteria to controlled studies such as RCTs, although quasi-experimental study designs are prone to be associated with various biases (e.g., selection bias or size of study population). This was done because only very few controlled investigations have been published. In addition, among the 14 RCTs included, most of which were performed for assessing the effectiveness of decolonisation therapy, a majority did either include patients affected by MSSA or did not stratify their outcomes for MSSA and MRSA infections. This makes the results, even of these formally “high-quality” studies, disputable. Against this background, we decided not to perform a formal grading of the quality of the included studies, but rather to present the study results holistically and leave their use in various settings and countries open for interpretation.

The controversy about different implementation pathways for screening, isolation and decolonisation should not obscure the fact that the beneficial effects of MRSA control measures in general [120] support the recommendations made in many European national MRSA policies from low prevalence countries (e.g. the Nordic countries and the Netherlands) and high prevalence countries (e.g. France, Germany, and the United Kingdom), where a combination of these measures are the standard of care and a reduction in MRSA infections has recently been achieved by coordinated efforts even in high prevalence settings [5,122].

Acknowledgements

The European Centre for Disease Prevention and Control (ECDC) has funded this work (service contract No. ECD.1366).

Conflict of interest

SH is member of the speakers’ bureau for bioMérieux and Pfizer, the scientific advisory board of Destiny Pharma, DaVolterra and bioMérieux. RLS is member of the Novartis advisory board. AWF has received fees from Siemens, Boehringer Ingelheim and Bayer; RLS from Pfizer, Leo Pharma, RibXrom and The Medicines Company; BDC from Sanofi Pasteur, Pfizer, Esoform/Ecolab and Vemacare.

Financial support for MRSA research activities was provided for: SH from Geneva University Hospitals, B. Braun, Pfizer and the European Commission under the Life Science Health Priority of the 6th Framework Program (MOSAR network contract LSHP-CT-2007-037963); ET from the Italian Department of Culture, University and Research, Università Cattolica Rome, Novartis, Pfizer and the European Commission under the Life Science Health Priority of the 7th Framework Program (SATURN network contract No.241796); KB and RK from the German Federal Ministry of Education and Research (01Kl1014a; AF 10/P12); KB, RK and AWF for the EU-funded interreg IVa projects Eurosafety Heath-net (III-1-02-73) and SafeGuard (III-2-03-025); KB from the German Federal Ministry of Economics and Technology (FK27980Ai9) and Pfizer (Europe ASPIRE); RLS from the 7th Framework Program (PiILgrIm) and from the Danish Ministry of Food, agriculture and Fisheries; and BDC from the English Department of Health. GP, JEWCvGP, JK, MJS, MM, and WW have no conflicts of interest related to this article.

Authors’ contributions

RK and AWF did the literature search and screened titles and abstracts for relevant articles. RK and AWF extracted data from the full-texts. RK, AW, KB, BC, JEWCvGP, SH, JK, MM, GP, RLS, MJS, ET and WW contributed to data collection, formulating the conclusions and writing of the manuscript.

References

1. European Centre for Disease Prevention and Control (ECDC)/ European Medicines Agency (EMEA) joint technical report: The bacterial challenge: time to react. Stockholm: ECDC; 2009. Available from: http://www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf
2. Wolkewitz M, Frank U, Philips G, Schumacher M, Davey P, Mortality associated with in-hospital bacteremia caused by Staphylococcus aureus: a multistate analysis with follow-up beyond hospital discharge. J Antimicrob Chemother. 2011;66(2):381-6. http://dx.doi.org/10.1093/jac/dkq424
3. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Coley LM, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol. 2003;24(5):362-86. http://dx.doi.org/10.1086/502213
4. Loveday HP, Pellowe CM, Jones SR, Pratt RJ. A systematic review of the evidence for interventions for the prevention and control of meticillin-resistant Staphylococcus aureus (1996-2004): report to the Joint MRSA Working Party (Subgroup A). J Hosp Infect. 2006;63 Suppl 1:S45-70. http://dx.doi.org/10.1016/j.jhin.2006.01.002
5. Kalenic S, Cookson BD, Gallagher R, Popp W, Asensio-Vegas A, Asaadain G, et al. Comparison of recommendations in national/regional Guidelines for prevention and control of MRSA. Int J Infect Control. 2010;6(2): doi: 10.3396/ijic.V6i2.016.10.
6. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006-12. http://dx.doi.org/10.1016/j.ceb.2009.06.005
7. Aldayab MA, Kearney MP, Hughes CM, Scott MG, Tunney MM, Gilpin DF, et al. Can the use of a rapid polymerase chain screening method decrease the incidence of nosocomial meticillin-resistant Staphylococcus aureus? J Hosp Infect.
wound infection after open heart surgery in diabetics and nondiabetics. Ann Thorac Surg. 2001;71(5):1572-8; discussion 8-9. http://dx.doi.org/10.1016/S0003-4975(01)02559-X

54. Cordova KB, Grenier N, Chang KH, Dufresne R, Jr. Preoperative meticillin-resistant Staphylococcus aureus screening in Mohs surgery appears to decrease postoperative infections. Dermatol Surg. 2010;36(11):1637-40. http://dx.doi.org/10.1111/j.1524-7247.2010.01678.x

55. Keshtgar MR, Khalili A, Coen PG, Carder C, Macabé JA, et al. Impact of rapid molecular screening for meticillin-resistant Staphylococcus aureus in surgical wards. Br J Surg. 2008;95(3):381-6. http://dx.doi.org/10.1002/bjs.6013

56. Dupeyrón C, Campillo B, Bordés M, Faubert E, Richardet JP, Mangeney N. A clinical trial of mupirocin in the eradication of meticillin-resistant Staphylococcus aureus nasal carriage in a digestive disease unit. J Hosp Infect. 2002;52(4):281-7. http://dx.doi.org/10.1038/jhi.2002.1287

57. Dupeyrón C, Campillo B, Richardet JP, Soussy CJ. Long-term efficacy of mupirocin in the prevention of infections with meticillin-resistant Staphylococcus aureus in a gastroenterology unit. J Hosp Infect. 2006;63(4):385-92. http://dx.doi.org/10.1016/j.jhin.2006.03.019

58. Podkali WE, Goettler CE, Ramsey KM, Cochran MK, Nobles DL, Rotondo MF. Active surveillance screening of MRSA and eradication of the carrier state decreases surgical-site infections caused by MRSA. J Am Coll Surg. 2009;208(5):981-8. http://dx.doi.org/10.1016/j.amcollsurg.2009.08.025

59. Fraser S, Brady RR, Graham C, Paterson-Brown S, Gibb AP. Meticillin-resistant Staphylococcus aureus in surgical patients: identification of high-risk patients for controlling meticillin-resistant Staphylococcus aureus in intensive care units. Intensive Care Med. 2005;31(8):1017-23. http://dx.doi.org/10.1007/s00134-005-2600-0

60. Gernaat-van der Sluis AJ, Hoogenboom-Verdegaal AM, Vandenbroucke-Grauls CM, Roosendaal R, et al. Preventing surgical-site infections in nasal carriers of methicillin-resistant Staphylococcus aureus: a randomised placebo-controlled double-blind trial. J Hosp Infect. 2002;52(4):281-7. http://dx.doi.org/10.1016/S0195-6701(02)00073-0

61. Hadley S, Immerman I, Hutzler L, Slover J, Bosco J. Staphylococcus aureus decolonization protocol decreases surgical site infections for total joint replacement. Arthritis. 2010;2010:924518. doi:10.1155/2010/924518. http://dx.doi.org/10.1155/2010/924518

62. Harbarth S, Bharan S, Liassine N, Herraert P, Ackenhall R, Pittet D. Randomized, placebo-controlled, double-blind trial to evaluate the efficacy of mupirocin for eradicating carriage of meticillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1999;43(6):1412-6. http://dx.doi.org/10.1128/AAC.43.6.1412-1416.1999

63. Kalmijer MD, Coertjens NV, van Nieuwenhoven-Vergdeaal AM, Edikhoven PJ, Spies-van Rooijen NH. Prophylactic mupirocin could reduce orthopedic wound infections. 1,044 patients treated with mupirocin compared with 1,260 historical controls. Acta Orthop Scand. 1998;69(4):412-4. http://dx.doi.org/10.1080/000164798750909058

64. Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, Cordova KB, Grenier N, Chang KH, Dufresne R, Jr. Preoperative mupirocin compared with 1,260 historical controls. Acta Orthop Scand. 1998;69(4):412-4. http://dx.doi.org/10.1080/000164798750909058

65. Kim DH, Spencer M, Davidson SM, Li L, Shaw JD, Gulczynski D, Cordova KB, Grenier N, Chang KH, Dufresne R, Jr. Preoperative mupirocin compared with 1,260 historical controls. Acta Orthop Scand. 1998;69(4):412-4. http://dx.doi.org/10.1080/000164798750909058

66. Konvalinka A, Errett L, Fong IW. Impact of treating methicillin-resistant Staphylococcus aureus nasal carriers on wound infections in cardiothoracic surgery by elimination of nasal carriage. Crit Care Med. 2005;33(2):307-14. http://dx.doi.org/10.1097/01.CCM.0000152244.01949.05

67. Korobkin M, Tawil R, Levy Y, et al. Role of decolonization in a comprehensive strategy to reduce meticillin-resistant Staphylococcus aureus infections in the neonatal intensive care unit: an observational cohort study. Infect Control Hosp Epidemiol. 2010;31(5):558-60. http://dx.doi.org/10.1086/652449

68. Mody L, Kauffman CA, McNeil SA, Galecki AT, Bradley SF. Mupirocin-based decolonization of Staphylococcus aureus in cardiac surgery patients undergoing elective open heart surgery. J Hosp Infect. 2006;64(2):162-8. http://dx.doi.org/10.1016/j.jhin.2006.06.010

69. Mohs surgery appears to decrease postoperative infections. J Bone Joint Surg Am. 2010;92(5):1820-6. http://dx.doi.org/10.2106/JBJS.I.01050
carriers in residents of 2 long-term care facilities: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2003;37(11):1467-74. http://dx.doi.org/10.1086/379325

70. Muller A, Talon D, Potier A, Belle E, Cappelier G, Bertrand X. Use of intranasal mupirocin to prevent methicillin-resistant Staphylococcus aureus infection in intensive care units. Crit Care. 2004;8(5):568-50. http://dx.doi.org/10.1186/cc3152

71. Nicholson MR, Huesman LA. Controlling the usage of intranasal mupirocin does impact the rate of Staphylococcus aureus deep sternal wound infections in cardiac surgery patients. Am J Infect Control. 2006;34(1):64-8. http://dx.doi.org/10.1016/j.ajic.2005.07.004

72. The Mupirocin Study Group. Nasal mupirocin prevents Staphylococcus aureus exit-site infection during peritoneal dialysis. Mupirocin Study Group. J Am Soc Nephrol. 1996;7(11):2403-8.

73. Perl TM, Cullen JJ, Wenzel RP, Zimmerman MB. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N Engl J Med. 2002;346(24):1871-7. http://dx.doi.org/10.1056/NEJMoa030699

74. Robicsek A, Beaumont JL, Thomson RB, Jr., Govindarajan G, Peterson LR. Effect of mupirocin for methicillin-resistant Staphylococcus aureus colonization: impact on infection risk. Infect Control Hosp Epidemiol. 2009;30(7):623-32. http://dx.doi.org/10.1086/597550

75. Suzuki Y, Kamigaki T, Fujino Y, Tominaga M, Ku Y, Kuroda Y. Randomized clinical trial of prophylactic intranasal mupirocin to reduce surgical-site infection after digestive surgery. Br J Surg. 2003;90(10):1277-81. http://dx.doi.org/10.1002/bjs.2426

76. Thomas S, Cantrill S, Whaggon DJ, McIntyre A. The role of screening and antibiotic prophylaxis in the prevention of percutaneous gastrostomy site infection caused by methicillin-resistant Staphylococcus aureus. Aliment Pharmacol Ther. 2007;25(5):593-7. http://dx.doi.org/10.1111/j.1365-2036.2006.03242.x

77. Walsh EE, Greene L, Kirshner R. Sustained reduction in methicillin-resistant Staphylococcus aureus wound infections after cardiothoracic surgery. Arch Intern Med. 2011;171(1):68-73.

78. Wertheim HF, Vis MC, Ott A, van Belkum A, Vos A, Kuyper P, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteremia in 3904230124. 9 residents in nasogastric versus non-carriers. Lancet. 2004;364(9435):703-5. http://dx.doi.org/10.1016/S0140-6736(04)6887-9

79. Wilcox MH, Hall J, Pike H, Templeton PA, Fawley WN, Parnell P, et al. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus colonization and infection among intensive care unit patients. Infect Control Hosp Epidemiol. 2009;30(4):394-9. http://dx.doi.org/10.1086/647146

80. Huang YC, Liem RI, Su LH, Chou YH, Lin TY. Successful control of methicillin-resistant Staphylococcus aureus in endemic neonatal intensive care unit: a 7-year campaign. PLoS One. 2011;6(8):e23001. http://dx.doi.org/10.1371/journal.pone.0023001

81. Ridenour G, Lampen R, Federspiel J, Kritchevsky S, Wong FE, et al. Decline of meticillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional initiative to prevent meticillin-resistant Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. BMJ. 2012;344:e3005. http://dx.doi.org/10.1136/bmj.e3005

82. Lee AS, Hutbner B, Barharth S. Control of methicillin-resistant Staphylococcus aureus. Infect Dis Clin North Am. 2011;25(1):155-79. http://dx.doi.org/10.1016/j.idc.2010.11.002

83. Hausstein T, Gastmeier P, Holmes A, Lucte J, Shannon RP, Pittet D, et al. Use of benchmarking and public reporting for infection control in four high-income countries. Lancet Infect Dis. 2011;11(6):471-81. http://dx.doi.org/10.1016/S1473-3099(10)70315-7

84. Drummond DF, Burns J, Wenzel RP, Lorian V. Trends in the prevalence of methicillin-resistant Staphylococcus aureus among intensive care unit patients. J Hosp Med. 2011;6(8):324-9. http://dx.doi.org/10.1093/cid/cis272

85. Curran ET, Hamilton K, Monaghan A, McGinlay M, Thakker B, Plunkett I, et al. Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus colonization and infection among intensive care unit staff. BMJ. 2011;343:d1618-20. http://dx.doi.org/10.1001/archinternmed.2010.1178

86. Curran ET, Hamilton K, Monaghan A, McGinlay M, Thakker B, Plunkett I, et al. Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus colonization and infection among intensive care unit staff. BMJ. 2011;343:d1618-20. http://dx.doi.org/10.1001/archinternmed.2010.1178

87. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

88. Taconelli E, De Angelis G, de Waure C, Cataldo MA, La Torre G, Cauda R. Rapid screening tests for meticillin-resistant Staphylococcus aureus at hospital admission: systematic review and meta-analysis. Lancet Infect Dis. 2009;9(9):546-55. http://dx.doi.org/10.1016/S1473-3099(09)70150-1

89. Jain R, Kralovic SM, Evans ME, Ambrose M, Simbartl LA, Peleg AY, et al. Decline of meticillin-resistant Staphylococcus aureus colonization and infection after cardiothoracic surgery. Arch Intern Med. 2011;171(6):552-9. http://dx.doi.org/10.1001/archinternmed.2010.32

90. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

91. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

92. Jin R, Kralovic SM, Evans ME, Ambrose M, Simbartl LA, Peleg AY, et al. Decline of meticillin-resistant Staphylococcus aureus colonization and infection among intensive care unit patients. Infect Control Hosp Epidemiol. 2007;28(10):1155-61. http://dx.doi.org/10.1086/520102

93. Zayas FE, Lorian V. Trends in the prevalence of methicillin-resistant Staphylococcus aureus in a vascular surgery ward. J Hosp Infect. 2006;63(3):374-9. http://dx.doi.org/10.1016/j.jhin.2006.02.017

94. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

95. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

96. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

97. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

98. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624

99. Salgado CD, Farr BM. What proportion of hospital patients colonized with methicillin-resistant Staphylococcus aureus are identified by clinical microbiological cultures? Infect Control Hosp Epidemiol. 2006;27(2):116-21. http://dx.doi.org/10.1086/500624
101. Bootsma MC, Diekmann O, Bonten MJ. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A. 2006;103(15):6260-5. http://dx.doi.org/10.1073/pnas.0510077103

102. Raboud J, Saskin R, Simor A, Loeb M, Green K, Low DE, et al. Modeling transmission of methicillin-resistant Staphylococcus aureus among patients admitted to a hospital. Infect Control Hosp Epidemiol. 2005;26(7):607-15. http://dx.doi.org/10.1086/505289

103. Wassenberg MW, Kluytmans JA, Box AT, Bosboom RW, Buiting AF. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus: a prospective study to evaluate costs and effects. Clin Microbiol Infect. 2010;16(12):1754-61. http://dx.doi.org/10.1111/j.1469-0691.2010.03210.x

104. Murthy A, De Angelis G, Pittet D, Schrenzel J, Uckay I, Harbarth S. Cost-effectiveness of universal MRSA screening on admission to surgery. Clin Microbiol Infect. 2010;16(12):1747-53. http://dx.doi.org/10.1111/j.1469-0691.2010.03220.x

105. Carroll KC. Rapid diagnostics for methicillin-resistant Staphylococcus aureus: current status. Mol Diagn Ther. 2008;12(1):15-24. http://dx.doi.org/10.1007/BF03256265

106. Malhotra-Kumar S, Haccuuria K, Michiels M, Leven M, Poyart C, Hryniewicz W, et al. Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococcus species. J Clin Microbiol. 2008;46(5):1577-87. http://dx.doi.org/10.1128/JCM.00326-08

107. Nulens E, Descheemaeker P, Deurenberg RH, Stobberingh EE. Rapid detection of methicillin-resistant Staphylococcus aureus using PCR and chromogenic agar: a prospective study to evaluate costs and effects. Clin Microbiol Infect. 2010;16(12):1754-61. http://dx.doi.org/10.1111/j.1469-0691.2010.03210.x

108. Laurent C, Bogaerts P, Schoevaerdts D, Denis O, Deplano A, Swine C, et al. Evaluation of the Xpert MRSA assay for rapid detection of methicillin-resistant Staphylococcus aureus from nares swabs of geriatric hospitalized patients and failure to detect a specific SCCmec type IV variant. Eur J Clin Microbiol Infect Dis. 2010;29(8):995-1002. http://dx.doi.org/10.1007/s10096-010-0958-3

109. Sang T, Moulin E, Strobbe G, Groothuis M, Zelantsky O, Puype M, et al. A prospective study to evaluate costs and effects of rapid PCR diagnosis of MRSA using the Xpert MRSA assay. J Antimicrob Chemother. 2009;63(1):32-9. http://dx.doi.org/10.1093/jac/dkp268

110. Bottma MC, Diekmann O, Bonten MJ. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A. 2006;103(15):6260-5. http://dx.doi.org/10.1073/pnas.0510077103

111. McConeghy KW, Mikolich DJ, LaPlante KL. Agents for the detection of methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010;15(41):19688.

112. Morgan DJ, Diekema DJ, Sepkowitz K, Perevezcovich EN. Adverse outcomes associated with Contact Precautions: a review of the literature. Am J Infect Control. 2005;33(2):85-93. http://dx.doi.org/10.1016/j.ajic.2008.04.257

113. Buhlmann M, Bogli-Stuber K, Droz S, Muellmann K. Rapid screening for carriage of methicillin-resistant Staphylococcus aureus by PCR and associated costs. J Clin Microbiol. 2008;46(7):2151-4. http://dx.doi.org/10.1128/JCM.00957-07

114. Groeger J, Blakley CL, Nelson MC, de Serres G, Wall HK. Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci U S A. 2004;101(27):9923-8. http://dx.doi.org/10.1073/pnas.0401324101

115. Harbarth S, Hawkey PM, Tenover F, Stefani S, Pantosti A, Struelens MJ. Update on screening and clinical diagnosis of meticillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2011;37(2):110-7. http://dx.doi.org/10.1016/j.ijantimicag.2010.10.022

116. Welsh CA, Flanagan ME, Kless C, Doebbeling BN. Implementing the MRSA bundle in ICUs: one citywide collaborative's key lessons learned. Infect Control Hosp Epidemiol. 2011;32(9):918-21. http://dx.doi.org/10.1016/j.ice.2010.11.002

117. Köck R, Becker K, Cookson B, van Gemert-Pijnen J, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010;15(41):19688.