Zero-shot Cross-lingual Transfer is Under-specified Optimization

Anonymous ACL submission

Abstract

Pretrained multilingual encoders enable zero-shot cross-lingual transfer, but often produce unreliable models that exhibit high performance variance on the target language. We postulate that this high variance results from zero-shot cross-lingual transfer solving an under-specified optimization problem. We show that any linear-interpolated model between the source language monolingual model and source + target bilingual model has equally low source language generalization error, yet the target language generalization error reduces smoothly and linearly as we move from the monolingual to bilingual model, suggesting that the model struggles to identify good solutions for both source and target languages using the source language alone. Additionally, we show that zero-shot solution lies in non-flat region of target language error generalization surface, causing the high variance.

1 Introduction

Pretrained multilingual encoders like Multilingual BERT (mBERT; Devlin et al., 2019) and XLM-RoBERTa (XLM-R; Conneau et al., 2020) facilitate zero-shot cross-lingual transfer (Wu and Dredze, 2019; Hu et al., 2020) — training the model on one language then using it on another language without additional task-specific training data. While the generalization performance on the source language has low variance, on the target language the variance is much higher with zero-shot cross-lingual transfer (Keung et al., 2020; Wu and Dredze, 2020), making it difficult to compare different models in the literature. Similarly, pretrained monolingual encoders also have unstable performance during fine-tuning (Devlin et al., 2019; Phang et al., 2018).

Why are these models so sensitive to the random seed? Many theories have been offered: catastrophic forgetting of the pretrained task (Phang et al., 2018; Lee et al., 2020; Keung et al., 2020), impact of random seed on task-specific layer initialization and data ordering (Dodge et al., 2020), the Adam optimizer without bias correction (Mosbach et al., 2021; Zhang et al., 2021), and a different generalization error with similar training loss (Mosbach et al., 2021). However, none of these factors fully explain the high generalization error variance of zero-shot cross-lingual transfer on target language but low variance on source language.

We offer a new explanation for high variance in target language performance: the zero-shot cross-lingual transfer optimization problem is under-specified. Based on the well-established linear interpolation of 1-dimensional plot and contour plot (Goodfellow et al., 2014; Li et al., 2018), we empirically show that any linear-interpolated model between the monolingual source model and bilingual source and target model has equally low source language generation error. Yet the target language generation error surprisingly reduces smoothly and linearly as we move from a monolingual model to a bilingual model. To the best of our knowledge, no other paper documents this finding.

This result provides a new answer to our mystery: only a small subset of the solution space for the source language solves the target language on par with models with actual target language supervision; the optimization could not find such a solution without target language supervision, hence an under-specified optimization problem. If target language supervision were available, as it was in the counterfactual bilingual model, the optimization finds the smaller subset. By comparing both mBERT and XLM-R, we find that the generalization error surface of XLM-R is flatter than mBERT, contributing to its better performance compared to mBERT. Thus, zero-shot cross-lingual transfer has high variance, as the solution found by zero-shot cross-lingual transfer lies in the non-flat region of the target language generalization error surface.
2 Existing Hypotheses (Related Work)

Prior studies have observed encoder model instability, and have offered various hypotheses to explain this behavior. Catastrophic forgetting — when neural networks trained on one task forget that task after training on a second task (McCloskey and Cohen, 1989; Kirkpatrick et al., 2017) — has been credited as the source of high variance in both monolingual fine-tuning (Phang et al., 2018; Lee et al., 2020) and zero-shot cross-lingual transfer (Keung et al., 2020). Mosbach et al. (2021) wonder why preserving cloze capability is important. In zero-shot cross-lingual transfer, deliberately preserving the multilingual cloze capability with regularization improves performance but does not eliminate the zero-shot transfer gap (Aghajanyan et al., 2021; Liu et al., 2021).

In the pretraining-then-fine-tune paradigm, random seeds mainly impact the initialization of task-specific layers and data ordering during fine-tuning. Dodge et al. (2020) show development set performance has high variance with respect to seeds. Additionally, Adam optimizer without bias correction—an Adam (Kingma and Ba, 2014) variant (inadvertently) introduced by the implementation of Devlin et al. (2019)—has been identified as the source of high variance during monolingual fine-tuning (Mosbach et al., 2021; Zhang et al., 2021). However, in zero-shot cross-lingual transfer, while different random seeds lead to high variance in target languages, the source language has much smaller variance in comparison even with standard Adam (Wu and Dredze, 2020).

Beyond optimizers, Mosbach et al. (2021) attribute high variance to generalization issues: despite having similar training loss, different models exhibit vastly different development set performance. However, in zero-shot cross-lingual transfer, the development or test performance variance is much smaller on the source language compared to target language.

3 Under-specified Optimization

Existing hypotheses do not explain the high variance of zero-shot cross-lingual transfer: much higher variance on generalization error of the target language compared to the source language. We propose a new explanation: zero-shot cross-lingual transfer is an under-specified optimization problem. Optimizing a multilingual model for a specific task using only source language annotation allows choices of many good solutions in terms of generalization error. However, unbeknownst to the optimizer, these solutions have wildly different generalization errors on the target language. In fact, a small subset has similar low generalization error as models trained on target language. Yet without the guidance of target data, the zero-shot cross-lingual optimization could not find this smaller subset. As we will show in §5, the solution found by zero-shot transfer lies in a non-flat region of target language generalization error, causing its high variance.

3.1 Linear Interpolation

We test this hypothesis via a linear interpolation between two models to explore the neural network parameter space. Consider three sets of neural network parameters: θ_{src}, θ_{tgt}, $\theta_{\{\text{src},\text{tgt}\}}$ for a model trained on task data for the source language only, target language only and both languages, respectively. This includes both task-specific layers and encoders.\(^1\) Note all three models have the same initialization before fine-tuning, making the bilingual model a counterfactual setup if the corresponding target language supervision was available. We obtain the 1-dimensional (1D) linear interpolation of a monolingual (source) task trained model and bilingual task trained model with

$$\theta(\alpha) = \alpha \theta_{\{\text{src},\text{tgt}\}} + (1 - \alpha) \theta_{\text{src}}$$

or we could swap source and target by

$$\theta(\alpha) = \alpha \theta_{\{\text{src},\text{tgt}\}} + (1 - \alpha) \theta_{\text{tgt}}$$

where α is a scalar mixing coefficient (Goodfellow et al., 2014). Additionally, we can compute a 2-dimensional linear interpolation as

$$\theta(\alpha_1, \alpha_2) = \theta_{\{\text{src},\text{tgt}\}} + \alpha_1 \delta_{\text{src}} + \alpha_2 \delta_{\text{tgt}}$$

where $\delta_{\text{src}} = \theta_{\text{src}} - \theta_{\{\text{src},\text{tgt}\}}$, $\delta_{\text{tgt}} = \theta_{\text{tgt}} - \theta_{\{\text{src},\text{tgt}\}}$, α_1 and α_2 are scalar mixing coefficients (Li et al., 2018).\(^2\) Finally, we can evaluate any interpolated models on the development set of source and target languages, testing the generalization error on the same language and across languages.

\(^1\)We experiment with interpolating the encoder parameters only and observe similar findings. On the other hand, interpolating the task-specific layer only has a negligible effect.

\(^2\)Li et al. (2018) use two random directions and they normalize it to compensate scaling issue. In this setup, we find δ_{src} and δ_{tgt} have near identical norms, so we do not apply additional normalization. As these two directions are not random, we find that it spans around 55\(^\circ\). We plot the norm ratio and angle of these two vectors in App. B.
The performance of the interpolated model illuminates the behavior of the model’s parameters. Take Eq. (1) as an example: if the linear interpolated model performs consistently high for our task on the source language, it suggests that both models lie within the same local minimum of source language generalization error surface. Additionally, if the linear interpolated model performs vastly differently on the target language, it would support our hypothesis. On the other hand, if the linear interpolated model performance drops on the source language, it suggests that both models lie in different local minimum of source language generalization error surface, suggesting the zero-shot optimization searching the wrong region.

4 Experiments

We consider four tasks: natural language inference (XNLI; Conneau et al., 2018), named entity recognition (NER; Pan et al., 2017), POS tagging and dependency parsing (Zeman et al., 2020). We evaluate XNLI and POS tagging with accuracy (ACC), NER with span-level F1, and parsing with labeled attachment score (LAS). We consider two encoders: base mBERT and large XLM-R. For the task-specific layer, we use a linear classifier for XNLI, NER, and POS tagging, and Dozat and Manning (2017) for dependency parsing.

To avoid English-centric experiments, we consider two source languages: English and Arabic. We choose 8 topologically diverse target languages: Arabic, German, Spanish, French, Hindi, Russian, Vietnamese, and Chinese. We train the source language only and target language only monolingual model as well as a source-target bilingual model.

We compute the linear interpolated models as described in §3.1 and test it on both the source and target language development set. We loop over \(-0.5, -0.4, \ldots, 1.5\) for \(\alpha\), \(\alpha_1\) and \(\alpha_2\). We re-
port the mean and variance of three runs by using different random seeds. We normalized both mean and variance of each interpolated model by the bilingual model performance, allowing us to aggregate across tasks and language pairs. Details of fine-tuning can be found in App. A.

5 Results

In Fig. 1, we observe that interpolations between the source monolingual and bilingual model have consistently similar source language performance. In contrast, surprisingly, the target language performance smoothly and linearly improves as the interpolated model moves from the zero-shot model to bilingual model. The only exception is mBERT, where the performance drops slightly around 0.1 and 0.9 locally. In contrast, XLM-R has a flatter slope and smoother interpolated models.

Fig. 2 further demonstrates this finding with a 2D linear interpolation. The generalization error surface of the target language of XLM-R is much flatter compared to mBERT, perhaps the fundamental reason why XLM-R performs better than mBERT in zero-shot transfer, similar to findings in CV models (Li et al., 2018). As we discuss in §3, these two findings support our hypothesis that zero-shot cross-lingual transfer is an under-specified optimization problem. As Fig. 2 shows, the solution found by zero-shot transfer lies in a non-flat region of target language generalization error surface, causing the high variance of zero-shot transfer on the target language. In contrast, the same solution lies in a flat region of source language generalization error surface, causing the low variance on the source language.

6 Discussion

We have presented evidence that zero-shot cross-lingual transfer is an under-specified optimization problem, and the cause of high variance on target language but not the source language tasks during cross-lingual transfer. This finding holds across 4 language but not the source language tasks during cross-lingual transfer. This finding holds across 4 tasks, 2 source languages and 8 target languages. Training bigger encoders addresses this issue indirectly by producing encoders with flatter cross-lingual generalization error surfaces. However, a more robust solution may be found by introducing constraints into the optimization problem. Few-shot cross-lingual transfer (Zhao et al., 2021) or silver target data (Yarmohammadi et al., 2021) can provide useful constraints. Unsupervised model selection (Chen and Ritter, 2020) and optimization regularization (Aghajanyan et al., 2021) add constraints without annotation. As none of the existing techniques fully constrain the optimization, future work should study the combination of existing techniques and develop new techniques on top of it.
References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal Gupta. 2021. Better fine-tuning by reducing representational collapse. In International Conference on Learning Representations.

Yang Chen and Alan Ritter. 2020. Model selection for cross-lingual transfer using a learned scoring function. arXiv preprint arXiv:2010.06127.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2475–2485, Brussels, Belgium. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020. Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping. arXiv preprint arXiv:2002.06305.

Timothy Dozat and Christopher D Manning. 2017. Deep biaffine attention for neural dependency parsing. In International Conference on Learning Representations.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. 2014. Qualitatively characterizing neural network optimization problems. arXiv preprint arXiv:1412.6544.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhat Firt, and Melvin Johnson. 2020. Xtreme: A massively multilingual multitask benchmark for evaluating cross-lingual generalisation. In International Conference on Machine Learning, pages 4411–4421. PMLR.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas Bhawdaj. 2020. Don’t use English dev: On the zero-shot cross-lingual evaluation of contextual embeddings. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 549–554, Online. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kianran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. 2020. Mixout: Effective regularization to finetune large-scale pretrained language models. In International Conference on Learning Representations.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018. Visualizing the loss landscape of neural nets. In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Zihan Liu, Genta Indra Winata, Andrea Madotto, and Pascale Fung. 2021. Preserving cross-linguality of pre-trained models via continual learning. In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 64–71, Online. Association for Computational Linguistics.

Michael McCloskey and Neal J. Cohen. 1989. Catastrophic interference in connectionist networks: The sequential learning problem. Psychology of Learning and Motivation, 24:109–165.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. 2021. On the stability of fine-tuning BERT: Misconceptions, explanations, and strong baselines. In International Conference on Learning Representations.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross-lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1946–1958, Vancouver, Canada. Association for Computational Linguistics.

Jason Phang, Thibault Févry, and Samuel R Bowman. 2018. Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01089.

Shije Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages...
Shijie Wu and Mark Dredze. 2020. Do explicit alignments robustly improve multilingual encoders? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4471–4482, Online. Association for Computational Linguistics.

Mahsa Yarmohammadi, Shijie Wu, Marc Marone, Howard Yu, Jialiang Guo, Craig Harman, Kenton Murray, et al. 2021. Everything is all it takes: A multipronged strategy for zero-shot cross-lingual information extraction. arXiv preprint arXiv:2109.06798.
Ivan Riabov, Michael Rießler, Erika Rimkutė, Larissa Rinaldi, Laura Rituma, Luísa Rocha, Eiríkur Rógnvaldsson, Mykhailo Romanenko, Rudolf Rosa, Valentin Rosca, Davide Rovati, Olga Rudina, Jack Rueter, Kristján Rúnarsson, Shoval Sadde, Pegah Safari, Benoît Sagot, Aleks Jakala, Shadi Saleh, Alessio Salomoni, Tanja Samardžič, Stephanie Samuel, Manuela Sanguinetti, Dage Särg, Baiba Saulaitė, Yanin Sawanakunanon, Kevin Scannell, Salvatore Scarlata, Nathan Schneider, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Moigan Seraji, Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibussirri, Dmitry Sichinava, Einar Freyr Sigurðsson, Aline Silveira, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov, Maria Skchedubova, Aaron Smith, Isabelca Soares-Bastos, Carolyn Spadine, Steinhór Steingrimsson, Antonio Stella, Milan Straka, Emmett Strickland, Jana Strnadová, Alane Suhr, Yogi Lesmana Sulestio, Umut Sulubacak, Shingo Suzuki, Zsolt Szántó, Dima Taji, Yuta Takahashi, Fabio Tamburini, Mary Ann C. Tan, Takaaki Tanaka, Samuel Tella, Isabelle Tellier, Guillaume Thomas, Lísi Torga, Marsida Toska, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Utku Türk, Francis Tyers, Sumire Uematsu, Roman Untilov, Zdeněk Urešová, Larraitz Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Aya Wakasa, Joel C. Wallenberg, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North Washington, Maximilian Wendt, Paul Widmer, Seyi Williams, Mats Wirén, Christian Wittern, Tsegay Woldemariam, Tak-sum Wong, Alina Wróblewska, Mary Yako, Kayo Yamashita, Naoki Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Shoroqu Zahra, Amir Zeldes, Hanzhi Zhu, and Anna Zhuravleva. 2020. Universal dependencies 2.7. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Weinberger, and Yoav Artzi. 2021. Revisiting few-sample BERT fine-tuning. In International Conference on Learning Representations.

Mengjie Zhao, Yi Zhu, Ehsan Shareghi, Ivan Vulić, Roi Reichart, Anna Korhonen, and Hinrich Schütze. 2021. A closer look at few-shot crosslingual transfer: The choice of shots matters. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5751–5767, Online. Association for Computational Linguistics.
A Fine-tuning Experiments Detail

We follow the implementation and hyperparameter of Wu and Dredze (2020). We optimize with Adam (Kingma and Ba, 2014). The learning rate is 2×10^{-5}. The learning rate scheduler has 10% steps linear warmup then linear decay till 0. We train for 5 epochs and the batch size is 32. For token level tasks, the task-specific layer takes the representation of the first subword, following previous work (Devlin et al., 2019; Wu and Dredze, 2019). Model selection is done on the corresponding dev set of the training set. We fine-tune each model using a single Quadro RTX 6000 and it takes less than one hour except for XNLI.

During fine-tuning, the maximum sequence length is 128. We use a sliding window of context to include subwords beyond the first 128 for NER and POS tagging. At test time, we use the same maximum sequence length with the exception of parsing, where the first 128 words instead of subwords of a sentence were used. We ignore words with POS tags of SYM and PUNCT during parsing evaluation. For NER, the prediction of BIO was post-processed to make sure a valid span is produced.

All datasets we used are publicly available: NER, XNLI, POS tagging and dependency parsing. For POS tagging and dependency parsing, we use the following treebanks: Arabic-PADT, German-GSD, English-EWT, Spanish-GSD, French-GSD, Hindi-HDTB, Russian-GSD, Vietnamese-VTB, and Chinese-GSD. Data statistic can be found in Tab. 1.

	XNLI	NER	POS tagging	Parsing
en-train	392703	20000	12543	
en-dev	2490	10000	2002	
ar-train	392703	20000	6075	
ar-dev	2490	10000	909	
de-train	392703	20000	13814	
de-dev	2490	10000	799	
es-train	392703	20000	14187	
es-dev	2490	10000	1400	
fr-train	392703	20000	14449	
fr-dev	2490	10000	1476	
hi-train	392703	5000	13304	
hi-dev	2490	1000	1659	
ru-train	392703	20000	3850	
ru-dev	2490	10000	579	
vi-train	392703	20000	1400	
vi-dev	2490	10000	800	
zh-train	392703	20000	3997	
zh-dev	2490	10000	500	

Table 1: Number of examples.

C Normalized Variance of Linear Interpolated Models

Fig. 4 plots the normalized variance of linear interpolated models. We observe that the source language has much lower variance compared to target language on the monolingual side of the interpolated models, echoing findings in Wu and Dredze (2020).

D Break Down of Normalized Performance of Linear Interpolated Models by Tasks

Fig. 5 (NER), Fig. 6 (Parsing), Fig. 7 (POS), and Fig. 8 (XNLI) plot the normalized performance of linear interpolated models break down by task. We observe similar findings as Fig. 1.

E Additional 2D Linear Interpolation

Fig. 9 plots additional 2D linear interpolation. We observe similar findings as Fig. 2.
Figure 3: $||\delta_{src}|| / ||\delta_{tgt}||$ v.s. angle between δ_{src} and δ_{tgt}. Most δ_{src} and δ_{tgt} have similar norms, and the angle between them is around 55°.

Figure 4: Normalized variance of linear interpolation between monolingual model and bilingual model. The source language has much lower variance compared to target language on the monolingual side of the interpolated models.
Figure 5: Normalized NER performance of linear interpolated model between monolingual and bilingual model.

Figure 6: Normalized Parsing performance of linear interpolated model between monolingual and bilingual model.
Figure 7: Normalized POS performance of linear interpolated model between monolingual and bilingual model

Figure 8: Normalized XNLI performance of linear interpolated model between monolingual and bilingual model
Figure 9: Additional normalized performance of 2D linear interpolation between bilingual model and monolingual models