Abstract

Charged particles multiplicity distributions at the maximum of electromagnetic showers initiated by 5 to 1000 GeV electrons in Fe, W, and Pb were calculated using GEANT4. It is shown that they are reasonably well fitted by the inverse sum of two exponents and the energy dependence of the average multiplicity follows power law with the power of ~0.95 for all studied materials.

Protvino, September 2018
1. Introduction

Detectors consisting of a high Z converter and a hodoscope type particle detector behind it are often used in HEP experiments for e, γ/hadron and γ/π^0 separations and for e, γ coordinate and energy measurements[1-18]. The most popular converter materials are Pb and W, while Fe or Cu are used less frequently. The converter thickness t usually varies from 2-3 X_0 to t_{max} where X_0 is a radiation length and t_{max} corresponds to the maximum flux N_{max} of charge particles in the electromagnetic (EM) shower. A converter of t_{max} placed in high energy electron beam can also be used as a source of the short and intense bunches of relativistic positrons and electrons[19]. Thus the characteristics of EM showers at t_{max} are of particular interest. The charged particles flux at t_{max} consists mainly of e^+ and e^-. For example for 200 GeV electrons hitting Pb it contains 56% of e^-, 44% of e^+ and 0.018% of other particles.

In this paper the results of calculations of the charged particles multiplicity distributions at t_{max} for the Fe, W and Pb converters irradiated by 5 to 1000 GeV electrons are presented. All converters are 70 cm in diameter. The calculations are based on GEANT4 10.01.p02 (Physical list FTFP_BERT)[20, 21]. By default the range cut of R_c=0.7 mm is used for the shower particles in this version. Corresponding energy thresholds are shown in Table 1. They are much less than the average e^- and e^+ energy of ~50 MeV at t_{max}. Thus one can expect rather weak $N_{\text{max}}(R_c)$ dependence. Calculations performed for twice less and twice higher R_c values confirm this conclusion (see Table 2). All results presented below were obtained with R_c=0.7 mm.

Material	gamma	electron	positron	proton	X_0, g/cm²
Fe	0.017	0.951	0.902	0.070	13.84
W	0.097	1.640	1.543	0.070	6.76
Pb	0.095	1.004	0.951	0.070	6.37

Cut, mm	0.35	0.7	1.4
20 GeV	96.4 ± 0.6	95.2 ± 0.6	94.1 ± 0.6
200 GeV	828.1 ± 3.5	825.9 ± 3.5	825.6 ± 3.5
2. Energy dependence of t_{max} and N_{max}

To find the converter thicknesses t_{max} from 500 to 4000 EM cascades were generated for the primary electron energies E_0 of 5, 10, 20, 30, 40, 80, 120, 160, 200, 300, 500 and 1000 GeV. Obtained dependencies of the average number $\langle N \rangle$ of charged particles vs converter depth t are shown in Fig.1. They are fitted by gamma function

$$\langle N \rangle = c_0 (bt)^{a-1} e^{-bt}$$ \hspace{1cm} (1)

where c_0, a and b are free parameters [23]. Function (1) reaches maximum at

$$t_{\text{max}} = (a-1)/b.$$ \hspace{1cm} (2)

a and b values obtained by fitting are presented in Fig. 2. As expected[22] a depends logarithmically on E_0:

$$a = a_1 \ln E_0 + a_2,$$ \hspace{1cm} (3)

where $a_{1,2}$ are free parameters shown in Table 3. It is evident from Fig. 2 that parameter b is independent of energy and its averaged values are equal to 0.580 (Fe), 0.537(W) and 0.535(Pb) in 1/X_0 units. One need to keep in mind that a and b are correlated [24].

The values of t_{max} and N_{max}=$\langle N \rangle$ (t= t_{max}) calculated by formulas (1) and (2) are shown in Fig. 3. t_{max} follows the same E_0 dependence as a:

$$t_{\text{max}} = c_1 \ln E_0 + c_2,$$ \hspace{1cm} (4)

where $c_{1,2}$ are free parameters shown in Table 3. N_{max} as a function of E_0 follows power law:

$$N_{\text{max}} = N_0 E_0^k$$ \hspace{1cm} (5)

with power k close to 0.95 (Table 3) in agreement with previous calculations[2] and experimental results[4]. As can be seen from Figs. 2, 3 and Table 3, all values for Pb and W parameters are close to each other and charge particle flux in Fe is by factor of 1.4 less than that in W and Pb in agreement with measurements[25].

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Material & Fe & W & Pb \\
\hline
a_1 & 0.586±0.012 & 0.621±0.019 & 0.599±0.015 \\
a_2 & 2.60±0.06 & 2.57±0.09 & 2.66±0.07 \\
c_1 & 1.05±0.01 & 1.13±0.01 & 1.11±0.01 \\
c_2 & 2.61±0.03 & 3.06±0.06 & 3.14±0.05 \\
N_0 & 3.92±0.03 & 5.44±0.02 & 5.39±0.03 \\
k & 0.946±0.001 & 0.945±0.001 & 0.950±0.001 \\
\hline
\end{tabular}
\caption{Parameters values in the equations (3)-(5), E_0 in GeV, $c_{1,2}$ in X_0.}
\end{table}
Fig. 1. Results of GEANT4 simulation of EM showers fitted by gamma function (1).
Fig. 2. a and b values vs E_0 for Fe (▲), W (○) and Pb (●). Parameter b is in $1/X_0$ units. The solid and dash-dotted lines are the fits to formula (3) for W and Fe with a_1 and a_2 parameters shown in Table 3. Results for W and Pb almost coincide.
3. Multiplicity distributions

Calculated probability distributions dP/dN of charged particles multiplicity at t_{max} are shown in Figs. 4-9. They have tails at low multiplicities due to late development of some showers. Several functions representing different combinations of exponents, Gaussians and polynomials were used to describe these distributions. The best fits for the entire range of E_0 were obtained for the inverse sum of two exponents:
\[
\frac{dP}{dN} = \frac{p_0}{e^{p_1(N-p_1)} + e^{p_2(N-p_3)}},
\]

where \(p_0 \) is a normalization factor and \(p_1, p_2, p_3 \) are free parameters. The function (6) is defined from \(-\infty\) to \(+\infty\). Its integral is equal to

\[
\int_{-\infty}^{\infty} \frac{dP}{dN} dN = \int_{-\infty}^{\infty} \frac{p_0 e^{-p_1 N}}{1 + e^{p_1 N}} dN' = p_0 \pi \csc \frac{p_1 \pi}{q} \frac{p_1 \pi}{q},
\]

if \(q > p > 0 \) or \(0 > p > q \) where \(p = p_1 \) and \(q = p_1 - p_2 \) [26]. Thus the factor \(p_0 \) can be presented in the following form:

\[
 p_0 = \frac{p_1 - p_2}{\pi} \sin \frac{\pi p_1}{p_1 - p_2} \tag{7}
\]

Parameters \(p_1 \) and \(p_2 \) define the steepness of the right and left slopes of \(dP/dN \) and \(p_3 \) is close to the most probable value

\[
N_{mp} = p_3 - \ln \frac{p_1 - \ln (-p_2)}{p_1 - p_2} \tag{8}
\]

(the second term in (8) is \(\sim 3\% \) of \(p_3 \) for all materials and energies).

The results of the fit of \(dP/dN \) distribution using formula (6) are presented in Figs. 4-10 and Tables 4-7. Fitting is performed for the entire range of \(N \) from 0 to the maximum value shown in the corresponding figure. It turned out that \(p_3 \) follows the same \(E_0 \)-dependence as \(N_{\text{max}} \) (5):

\[
p_3 = p_0 E_0^l \tag{9}
\]

Values of the free parameters \(P_0 \) and \(l \) are presented in the Table 4. From Tables 3 and 4 it follows that powers \(l \) and \(k \) are close to each other.

Convertor	Fe	W	Pb
\(P_0 \)	4.321±0.049	5.726±0.091	6.094±0.027
\(l \)	0.945±0.002	0.951±0.002	0.943±0.001

Formula (6) can’t be used at small values of \(\langle N \rangle \) when \(dP/dN \) (0) is not close to 0.
Fig. 4. Multiplicity distributions for the shower energies of 5 and 10 GeV fitted to formula (6).
Fig. 5. Multiplicity distributions for the shower energies of 20 and 30 GeV fitted to formula (6).
Fig. 6. Multiplicity distributions for the shower energies of 40 and 80 GeV fitted to formula (6).
Fig. 7. Multiplicity distributions for the shower energies of 120 and 160 GeV fitted to formula (6).
Fig. 8. Multiplicity distributions for the shower energies of 200 and 300 GeV fitted to formula (6).
Fig. 9. Multiplicity distributions for the shower energies of 500 and 1000 GeV fitted to formula (6).
Figure 10. p_1, p_2 and p_3 parameters vs E_0 for Fe (▲), W (○) and Pb (●). The solid and dash-dotted lines are the fits to formula (9) for W and Fe with parameters shown in the Table 4. The p_3 values for W and Pb almost coincide.
Table 5. $p_{1,2,3}$ parameters for Fe.

E_0, GeV	p_1	p_2	p_3
5	0.251±0.005	-0.206±0.005	21.1±0.2
10	0.186±0.004	-0.128±0.003	39.8±0.3
20	0.122±0.005	-0.079±0.003	74.9±0.9
30	0.101±0.003	-0.057±0.001	110.3±0.7
40	0.0787±0.0022	-0.0484±0.0011	140.6±0.8
80	0.0625±0.0019	-0.0261±0.0005	277.0±1.2
120	0.0476±0.0013	-0.0187±0.0004	400.9±1.5
160	0.0379±0.0012	-0.0149±0.0003	525.2±1.9
200	0.0364±0.0011	-0.0124±0.0003	653.3±2.1
300	0.0266±0.0008	-0.0094±0.0002	944.4±2.9
500	0.0190±0.0007	-0.0059±0.0001	1535±4
1000	0.0126±0.0004	-0.0032±0.0001	2969±6

Table 6. $p_{1,2,3}$ parameters for W.

E_0, GeV	p_1	p_2	p_3
5	0.230±0.004	-0.175±0.004	28.0±0.2
10	0.164±0.003	-0.1082±0.0019	53.3±0.3
20	0.111±0.005	-0.067±0.003	100.8±0.9
30	0.086±0.003	-0.046±0.001	148.7±0.8
40	0.076±0.002	-0.039±0.001	194.2±0.9
80	0.055±0.002	-0.0213±0.0005	374.4±1.3
120	0.043±0.001	-0.0158±0.0003	548.7±1.7
160	0.035±0.001	-0.0122±0.0002	720.9±2.2
200	0.0301±0.0009	-0.0104±0.0002	888.2±2.5
300	0.0238±0.0008	-0.0078±0.0002	1299±3.2
500	0.0151±0.0005	-0.0051±0.0001	2096±5.1
1000	0.0092±0.0007	-0.0028±0.0001	4035±17.8

Table 7. $p_{1,2,3}$ parameters for Pb.

E_0, GeV	p_1	p_2	p_3
5	0.221±0.004	-0.183±0.004	28.1±0.2
10	0.157±0.003	-0.1084±0.0020	53.6±0.3
20	0.108±0.005	-0.063±0.002	103.2±1.0
30	0.094±0.003	-0.045±0.001	152.6±0.7
40	0.079±0.002	-0.0360±0.0008	198.8±0.9
80	0.054±0.002	-0.0211±0.0004	382.2±1.3
120	0.044±0.001	-0.0150±0.0003	558.4±1.7
160	0.035±0.001	-0.0125±0.0002	730.5±2.1
200	0.0282±0.0009	-0.0105±0.0002	898.5±2.5
300	0.0242±0.0007	-0.0075±0.0002	1327±3
500	0.0165±0.0006	-0.0049±0.0001	2144±5
1000	0.0081±0.0006	-0.00273±0.00014	4123±20
4. Conclusions

Simulations of EM showers initiated by 5 to 1000 GeV electrons in Fe, W, and Pb are performed using GEANT4. Studies of charge particles multiplicity distributions at the shower maximum show that they are reasonably well described by the inverse sum of two exponents with three free parameters for all materials and energies and the energy dependence of the average multiplicity follows power law with the power of ~0.95. Data presented in the Tables 4-8 and Fig. 10 allow to calculate the multiplicity distribution at any energy within the studied interval.

Acknowledgment

We gratefully acknowledge the help of D.S. Denisov, T.Z. Gurova, A.V.Popov and D.A. Stoyanova in preparation of this manuscript. This work was supported by the Russian Foundation for Basic Research, project #17-02-00120.

References

[1] A. A. Tyapkin, NIM 85 (1970) 277-278.
[2] D. Muller, Phys. Rev. D 5 (1972) 2677.
[3] Ts. A. Amatuni, S. P. Denisov, R. N. Krasnokutsky et al., NIM 203 (1982) 179-182.
[4] Ts. A. Amatuni, Yu. M. Antipov, S. P. Denisov et al., NIM 203 (1982) 183-187.
[5] C. S. Zhang, M. Shibata, K. Kasahara, T. Yuda, NIM A, 283 (1989) 78-87.
[6] J. del Peso, E.Ros, NIM A, 306 (1991) 485.
[7] G. Apollinari, N. D. Giokaris, K. Goulianos et al., NIM A, 324 (1993) 475-481
[8] D. Acosta, B. Bylsma, L. S. Durkin et al., NIM A 354 (1995) 296-308.
[9] S.J. Alvsvaag, O.A. Maeland, A. Klovning et al., NIM A 360 (1995) 219-223.
[10] K. Byrum, J. Dawson, L. Nodulman et al., NIM A 364 (1995) 144-149.
[11] S. A. Akimenko, V. I. Belousov, B. V. Chuko et al., NIM A 365 (1995) 92-97.
[12] J. Grunhaus, S. Kanovan, C. Milststene, NIM A 354 (1995) 368-375.
[13] Y. H. Chang, A. E. Chen, S. R. Hou et al., NIM A 388 (1997) 135-143.
[14] K. Kawagoe, Y. Sugimoto, A. Takeuchi et al., NIM A 487 (2002) 275–290.
[15] A. Balanda, M. Jaskula, M. Kajetanowicz et al., NIM A 531 (2004) 445-458.
[16] S. Itoh, T. Takeshita, Y. Fujii, F. Kajino et al., NIM A 589 (2008) 370–382.
[17] A. Ronzhin, S. Los, E. Ramberg et al., NIM A 795 (2015) 288-292.
[18] M. Antonello, M. Caccia, M. Cascella et al., arXiv:1805.03251v1 [physics.ins-det], May 2018. Accepted for publication in NIM A.
[19] V. V. Brekhovskikh, V. V. Gorev, University proceedings. Volga region. Physics and mathematics sciences, #3(31), 134, 2014.
[20] http://cern.ch/geant4
[21] S. Incerti, V. Ivanchenko, and M. Novak, JINST 13 (2018) C02054.
[22] http://pdg.lbl.gov
[23] E. Longo and I. Sestili, NIM 128 (1975) 283.
[24] G. Grindhammer, M. Rudowicz and S. Peters, NIM A 290 (1990) 469–488.
[25] Ts. A. Amatuni, Yu. M. Antipov, S. P. Denisov, A.I. Petrukhin, Pribori i Tehnika Eksperimenta 3 (1983) 33, Preprint IHEP 82-28, Serpukhov, 1982.
[26] I. S. Gradshteyn, I. M. Ryzhik, San Diego, (CA): Academic Press, 2000.