Longitudinal dielectric permeability into quantum degenerate plasma with frequency of collisions proportional to the module of a wave vector

A. V. Latyshev1 and A. A. Yushkanov2

Faculty of Physics and Mathematics,
Moscow State Regional University, 105005,
Moscow, Radio str., 10–A

Abstract

Formulas for the longitudinal dielectric permeability in quantum degenerate collisional plasma with the frequency of collisions proportional to the module of the wave vector, in approach Mermin, are received. Equation of Shrödinger–Boltzmann with integral of collisions relaxation type in Mermin’s approach is applied.

It is spent numerical and graphic comparison of the real and imaginary parts of dielectric function of non-degenerate and maxwellian collisional quantum plasma with a constant and a variable frequencies of collisions. It is shown, that the longitudinal dielectric function weakly depends on a wave vector.

Key words: Mermin, quantum collisional plasma, conductance, degenerate plasma.

PACS numbers: 03.65.-w Quantum mechanics, 05.20.Dd Kinetic theory, 52.25.Dg Plasma kinetic equations.

1. Introduction

In Klimontovich and Silin’s work \cite{klimontovich1958} expression for longitudinal and transverse dielectric permeability of quantum collisionless plasmas has been received.

Then in Lindhard’s work \cite{lindhard} expressions has been received also for the same characteristics of quantum collisionless plasma.

By Kliewer and Fuchs \cite{kliewer1969} it has been shown, that direct generalisation of formulas of Lindhard on a case of collisionless plasmas, is incorrectly. This lack for the longitudinal dielectric permeability has been eliminated in work

1avlatyshev@mail.ru
2yushkanov@inbox.ru
of Mermin [4] for collisional plasmas. In this work of Mermin [4] on the basis of the analysis of a nonequilibrium matrix density in τ-approach expression for longitudinal dielectric permeability of quantum collisional plasmas in case of constant frequency of collisions of particles of plasma has been announced.

For collisional plasmas correct formulas longitudinal and transverse electric conductivity and dielectric permeability are received accordingly in works [5] and [6]. In these works kinetic Wigner—Vlasov—Boltzmann equation in relaxation approximation in coordinate space was used.

In work [7] the formula for the transverse electric conductivity of quantum collisional plasmas with use of the kinetic Shrödinger—Boltzmann equation in Mermin’s approach (in space of momentum) has been deduced.

In work [8] the formula for the longitudinal dielectric permeability of quantum collisional plasmas with use of the kinetic Shrödinger—Boltzmann equation in approach of Mermin (in space of momentum) with any variable frequency of collisions depending from wave vector has been deduced.

In the present work on the basis of results from our previous work [8] formulas for longitudinal dielectric permeability in quantum degenerate collisional plasma with frequency of collisions, proportional to the module of a wave vector are received. The modelling is thus used Shrödinger—Boltzmann equation in relaxation approximation.

In our work [9] formulas for longitudinal and transverse electric conductivity in the classical collisional gaseous (maxwellian) plasma with frequency of collisions of plasma particles proportional to the module of particles velocity have been deduced.

Research of skin-effect in classical collisional gas plasma with frequency of collisions proportional to the module particles velocity has been carried out in work [10].

Let’s notice, that interest to research of the phenomena in quantum plasma grows in last years [11] – [24].

1. **Longitudinal dielectric function of quantum collisional plasma with variable collisional frequency**

In work [5] longitudinal dielectric function of the quantum collisional
plasmas with frequency of collisions, proportional to the module of a wave vector has been received

\[\varepsilon_l(q, \omega, \nu) = 1 + \frac{4\pi e^2}{q^2} \left[B(q, \omega + i\nu) + \right. \\
+ i b_\nu(q, \omega + i\nu) \frac{b(q, 0) - b(q, \omega + i\nu)}{\omega b(q, 0) + i b_{\omega,\nu}(q, \omega + i\nu)} \left. \right] \] \hspace{1cm} (1.1)

In the formula (1.1) \(e\) is the electron charge, \(q\) is the wave vector, \(\omega\) is the frequency of oscillations of an electromagnetic field, \(\nu(k)\) is the frequency of collisions of particles of plasma,

\(\bar{\nu} = \bar{\nu}(k, q) = \bar{\nu}(k + \frac{q}{2}, k - \frac{q}{2}) = \frac{\nu(k + \frac{q}{2}) + \nu(k - \frac{q}{2})}{2} \) \hspace{1cm} (1.2)

\[B(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} \left(f_{k+q/2} - f_{k-q/2} \right) \Xi(\omega + i\bar{\nu}(k + q/2, k - q/2)), \] \hspace{1cm} (1.3)

\[b(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} \left(f_{k+q/2} - f_{k-q/2} \right) \Xi(\omega + i\bar{\nu}(k + q/2, k - q/2)) \times \]
\[\frac{\bar{\nu}(k + q/2, k - q/2)}{\omega + i\bar{\nu}(k + q/2, k - q/2)}, \] \hspace{1cm} (1.4)

\[b(q, 0) = \int \frac{d^3k}{4\pi^3} \left(f_{k+q/2} - f_{k-q/2} \right) \Xi(0) \frac{\bar{\nu}(k + q/2, k - q/2)}{\omega + i\bar{\nu}(k + q/2, k - q/2)}, \] \hspace{1cm} (1.5)

\[b_\nu(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} \left(f_{k+q/2} - f_{k-q/2} \right) \Xi(\omega + i\bar{\nu}(k + q/2, k - q/2)) \times \]
\[\bar{\nu}(k + q/2, k - q/2), \] \hspace{1cm} (1.6)

\[b_{\omega,\nu}(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} \left(f_{k+q/2} - f_{k-q/2} \right) \Xi(\omega + i\bar{\nu}(k + q/2, k - q/2)) \times \]
\[\times \frac{\bar{\nu}^2(k + q/2, k - q/2)}{\omega + i\bar{\nu}(k + q/2, k - q/2)}, \tag{1.7} \]

In integrals (1.3) – (1.7) the following designations are accepted

\[\Xi(\omega + i\bar{\nu}(k + q/2, k - q/2)) = \]

\[= \frac{1}{\mathcal{E}_{k - q/2} - \mathcal{E}_{k + q/2} + \hbar[\omega + i\nu(k + q/2, k - q/2)]}; \]

\[f_k = \frac{1}{1 + \exp\left(\frac{\mathcal{E}_k - \mu}{k_B T}\right)}, \]

\[\mathcal{E}_{k \pm q/2} = \frac{\hbar^2}{2m} \left(k \pm \frac{q}{2}\right)^2. \]

Here \(m \) is the electron mass, \(k_B \) is the Boltzmann constant, \(\mu \) is the chemical potential of molecules of gas, \(\hbar \) is the Planck’s constant.

Let’s show, that at \(\nu(k) = \nu = \text{const} \), i.e. at a constant collisional frequency the formula (1.1) passes in the known Mermin’s formula

\[\varepsilon^\text{Mermin}_i = 1 + \frac{4\pi e^2 (\omega + i\bar{\nu}) B(q, \omega + i\nu) B(q, 0)}{q^2 \omega B(q, 0) + i\nu B(q, \omega + i\nu)}. \tag{1.8} \]

In (1.8) the following designations are used

\[B(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} (f_{k + q/2} - f_{k - q/2}) \Xi(\omega + i\nu), \tag{1.9} \]

\[B(q, 0) = \int \frac{d^3k}{4\pi^3} (f_{k + q/2} - f_{k - q/2}) \Xi(0), \]

\[\Xi(\omega + i\nu) = \frac{f_{k + q/2} - f_{k - q/2}}{\mathcal{E}_{k - q/2} - \mathcal{E}_{k + q/2} + \hbar(\omega + i\nu)}. \]

Let’s notice, that at \(\nu(k) \equiv \nu \), \(\bar{\nu}(k, q) \equiv \nu \), and we receive following equalities

\[B(q, \omega + i\bar{\nu}) \equiv B(q, \omega + i\nu), \]

\[b(q, \omega + i\bar{\nu}) = \frac{\nu}{\omega + i\nu} B(q, \omega + i\nu), \]

\[b(q, 0) = \frac{\nu}{\omega + i\nu} B(q, 0), \]
\[b_\nu(q, \omega + i\nu) = \nu B(q, \omega + i\nu), \]
\[b_{\omega,\nu}(q, \omega + i\nu) = \frac{\nu^2}{\omega + i\nu} B(q, \omega + i\nu). \]

It is as a result received, that
\[\varepsilon_i(q, \omega, \nu) = 1 + \frac{4\pi e^2}{q^2} B(q, \omega + i\nu) \left[1 + i\nu \frac{B(q, 0) - B(q, \omega + i\nu)}{\omega B(q, 0) + i\nu B(q, \omega + i\nu)} \right] = \varepsilon_i^{\text{Mermin}}(q, \omega, \nu). \]

Each of integrals (1.3) – (1.7) we will break into a difference of two integrals. In each of two integrals it is realizable the obvious linear replacement of variables. It is as a result received, that
\[B(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} f_k \left[\Xi(\omega + i\nu(k, k - q)) - \Xi(\omega + i\nu(k + q, k)) \right], \quad (1.10) \]
\[b(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} f_k \left[\frac{i\nu(k, k - q)}{\omega + i\nu(k, k - q)} \Xi(\omega + i\nu(k, k - q)) - \frac{i\nu(k + q, k)}{\omega + i\nu(k + q, k)} \Xi(\omega + i\nu(k + q, k)) \right], \quad (1.11) \]
\[b(q, 0) = \int \frac{d^3k}{4\pi^3} f_k \left[\frac{i\nu(k, k - q)}{\omega + i\nu(k, k - q)} \Xi(\omega + i\nu(k, k - q)) - \frac{i\nu(k + q, k)}{\omega + i\nu(k + q, k)} \Xi(\omega + i\nu(k + q, k)) \right], \quad (1.12) \]
\[b_\nu(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} f_k \left[\frac{i\nu^2(k, k - q)}{\omega + i\nu(k, k - q)} \Xi(\omega + i\nu(k, k - q)) - \frac{i\nu^2(k + q, k)}{\omega + i\nu(k + q, k)} \Xi(\omega + i\nu(k + q, k)) \right], \quad (1.13) \]
\[b_{\omega,\nu}(q, \omega + i\nu) = \int \frac{d^3k}{4\pi^3} f_k \left[\frac{i\nu^2(k, k - q)}{\omega + i\nu(k, k - q)} \Xi(\omega + i\nu(k, k - q)) - \frac{i\nu^2(k + q, k)}{\omega + i\nu(k + q, k)} \Xi(\omega + i\nu(k + q, k)) \right]. \quad (1.14) \]

In integrals (1.10) – (1.14) following designations are accepted
\[\bar{\nu}(k, k - q) = \frac{\nu(k) + \nu(k - q)}{2}, \]
\[\bar{\nu}(\mathbf{k} + \mathbf{q}, \mathbf{k}) = \frac{\nu(\mathbf{k} + \mathbf{q}) + \nu(\mathbf{k})}{2}, \]

\[\Xi(\omega + i\bar{\nu}(\mathbf{k}, \mathbf{k} - \mathbf{q}) = \frac{1}{\varepsilon_{k-q} - \varepsilon_k + \hbar[\omega + i\bar{\nu}(\mathbf{k}, \mathbf{k} - \mathbf{q})]}, \]

\[\Xi(\omega + i\bar{\nu}(\mathbf{k} + \mathbf{q}, \mathbf{k}) = \frac{1}{\varepsilon_k - \varepsilon_{k+q} + \hbar[\omega + i\bar{\nu}(\mathbf{k} + \mathbf{q}, \mathbf{k})]}. \]

2. Longitudinal dielectric function of the quantum collisional degenerate plasmas with frequency of collisions, proportional to the module of a wave vector

Let’s consider the frequency of collisions proportional to the momentum module, or, that all the same, to the module of a wave vector

\[\nu(\mathbf{k}) = \nu_0|\mathbf{k}|. \]

Then

\[\bar{\nu}(\mathbf{k}_1, \mathbf{k}_2) = \frac{\nu(\mathbf{k}_1) + \nu(\mathbf{k}_2)}{2} = \frac{\nu_0}{2}(|\mathbf{k}_1| + |\mathbf{k}_2|) \]

and

\[\bar{\nu}(\mathbf{k}, \mathbf{q}) = \bar{\nu}\left(\mathbf{k} + \frac{\mathbf{q}}{2}, \mathbf{k} - \frac{\mathbf{q}}{2}\right) = \frac{\nu_0}{2}\left(|\mathbf{k} + \frac{\mathbf{q}}{2}| + |\mathbf{k} - \frac{\mathbf{q}}{2}|\right). \]

The quantity \(\nu_0 \) we take in the form \(\nu_0 = \frac{\nu}{k_F} \), where \(k_F \) is the Fermi wave number, \(k_F = \frac{mv_F}{\hbar} \), \(\hbar \) is the Planck’s constant, \(v_F \) is the Fermi electron velocity. Now we have

\[\nu(\mathbf{k}) = \frac{\nu}{k_F}|\mathbf{k}|. \quad (2.1) \]

Let’s notice, that on Fermi’s surface, i.e. at \(k = k_F \): \(\nu(k_F) = \nu \). So, further in formulas (1.1) – (1.7) frequency collisions according to (2.1) it is equal

\[\bar{\nu}(\mathbf{k}, \mathbf{q}) = \frac{\nu}{2k_F}\left(|\mathbf{k} + \frac{\mathbf{q}}{2}| + |\mathbf{k} - \frac{\mathbf{q}}{2}|\right). \quad (2.2) \]

Instead of a vector \(\mathbf{k} \) we will enter the new dimensionless wave vector of integration

\[\mathbf{K} = \frac{\mathbf{k}}{k_F}, \quad d^3k = k_F^3 d^3K. \]

Let’s enter also new wave vector

\[\mathbf{Q} = \frac{\mathbf{q}}{k_F}. \]
At the specified replacement of variables we have

\[f_k = \Theta(E_F - \varepsilon_k) = \Theta(E_F - \frac{\hbar^2 k^2}{2m}) = \Theta(E_F - \frac{\hbar^2 k_F^2}{2m}K^2) = \]

\[= \Theta(E_F - E_F K^2) = \Theta(1 - K^2) = f_K. \]

Here \(\Theta(x) \) is the Heaviside function,

\[\Theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases} \]

According to the specified replacement of variables further it is received

\[\bar{\nu}(k, k - q) = \nu \left(|K| + |K - Q| \right), \]

\[\bar{\nu}(k + q, k) = \nu \left(|K + Q| + |K| \right), \]

\[\varepsilon_{k - q} - \varepsilon_k + \hbar[\omega + i\bar{\nu}(k, k - q)] = \]

\[= \frac{\hbar^2}{2m} \left((k - q) - k^2 \right) + \hbar[\omega + i\bar{\nu}(k, k - q)] = \]

\[= -2\varepsilon_F Q \left(K_x - \frac{Q}{2} \right) + \hbar[\omega + i\bar{\nu}(k, k - q)] = \]

\[= -2\varepsilon_F Q \left(K_x - \frac{Q}{2} - \frac{z^-}{Q} \right). \]

Here

\[Q = Q(1, 0, 0), \quad z^- = x + iy\rho^-, \quad x = \frac{\omega}{k_F v_F}, \quad y = \frac{\nu}{k_F v_F}, \quad \rho^- = \frac{1}{2} \left(|K| + |K - Q| \right) = \]

\[= \frac{1}{2} \left[\sqrt{K_x^2 + K_y^2 + K_z^2} + \sqrt{(K_x - Q)^2 + K_y^2 + K_z^2} \right]. \]

Similarly we receive, that

\[\varepsilon_k - \varepsilon_{k + q} + \hbar[\omega + i\bar{\nu}(k, k - q)] = \]

\[= -2\varepsilon_F Q \left(K_x + \frac{Q}{2} - \frac{z^+}{Q} \right), \quad z^+ = x + iy\rho^+, \]
\[
\rho^+ = \frac{1}{2} (|K| + |K + Q|) = \\
\frac{1}{2} \left[\sqrt{K_x^2 + K_y^2 + K_z^2 + \sqrt{(K_x + Q)^2 + K_y^2 + K_z^2}} \right].
\]

Let’s pass to new variables in integrals (1.10) – (1.14). We receive following equalities. For integral (1.10) it is had

\[
B(q, \omega + i\nu) = -\frac{k_F^3}{8\pi^3 E_F Q} B(Q, z^\pm),
\]

where

\[
B(Q, z^\pm) = \int f_K \left[\frac{1}{K_x - Q/2 - z^-/Q} - \frac{1}{K_x + Q/2 - z^+/Q} \right] d^3K.
\]

For integral (1.11) it is received

\[
b(q, \omega + i\nu) = -\frac{yk_F^3}{8\pi^3 E_F Q} b(Q, z^\pm),
\]

where

\[
b(Q, z^\pm) = \int f_K \left[\frac{\rho^-}{z^-(K_x - Q/2 - z^-/Q)} - \frac{\rho^+}{z^+(K_x + Q/2 - z^+/Q)} \right] d^3K.
\]

For integral (1.12) it is received

\[
b(q, 0) = -\frac{yk_F^3}{8\pi^3 E_F Q} b(Q, 0^\pm),
\]

where

\[
b(Q, 0^\pm) = \int f_K \left[\frac{\rho^-}{z^-(K_x - Q/2)} - \frac{\rho^+}{z^+(K_x + Q/2)} \right] d^3K.
\]

For integral (1.13) it is received

\[
b_{\nu}(q, \omega + i\nu) = -\frac{yk_F^4 v_F}{8\pi^3 E_F Q} b_{\nu}(Q, z^\pm),
\]

where

\[
b_{\nu}(Q, z^\pm) = \int f_K \left[\frac{\rho^-}{K_x - Q/2 - z^-/Q} - \frac{\rho^+}{K_x + Q/2 - z^+/Q} \right] d^3K.
\]

At last, for integral (1.14) it is similarly received

\[
b_{\omega,\nu}(q, \omega + i\nu) = -\frac{y^2 k_F^4 v_F}{8\pi^3 E_F Q} b_{\omega,\nu}(Q, z^\pm),
\]
where
\[b(Q, z^\pm) = \int f_K \left[\frac{\rho^2}{z^+(K_x + Q/2 - z/2)} - \frac{\rho^2}{z^-(K_x - Q/2 - z/2)} \right] d^3K. \]

Let’s substitute the received equalities in the formula (1.1). We receive the expression for longitudinal dielectric function
\[\varepsilon_l(Q, x, y) = 1 - \frac{3x_p^2}{4\pi Q^3} \left[B(Q, z^\pm) + iyb_\nu(Q, z^\pm) \frac{b(Q, 0) - b(Q, z^\pm)}{xb(Q, 0) + iyb_\omega,\nu(Q, z^\pm)} \right]. \]

(2.3)

Here \(x_p \) is the dimensionless plasma (Langmuir) frequency,
\[x_p = \frac{\omega_p}{k_F v_F}, \quad \omega_p^2 = \frac{4\pi^2 eN}{m}, \]
\(\omega_p \) is the dimension plasma (Langmuir) frequency.

Let’s notice, that in case of constant frequency of electron collisions the quantity \(\rho^\pm \) passes in unit. Then we have
\[B(Q, z^\pm) = QB(Q, z), \quad b(Q, 0) = \frac{Q}{z} B(Q, 0), \]
\[b_\nu(Q, z^\pm) = QB(Q, z), \quad b_\omega,\nu(Q, z^\pm) = \frac{Q}{z} B(Q, z), \]
where
\[B(Q, z) = \int \frac{f_K d^3K}{(K_x - z/Q)^2 - (Q/2)^2}. \]

Substituting these equalities in (2.3), we receive expression of dielectric function for quantum degenerate collisional plasmas with constant frequency of collisions
\[\varepsilon_l(Q, x, y) = 1 - \frac{3x_p^2}{4\pi Q^2} B(Q, z) \left[1 + iy \frac{B(Q, 0) - B(Q, z)}{xB(Q, 0) + iyB(Q, z)} \right]. \]

Let’s result the formula (2.3) in the calculation form. For this purpose in the plane \((K_y, K_z)\) we will pass to polar coordinates
\[K_y^2 + K_z^2 = r^2, \quad dK_ydK_z = rdrd\varphi. \]

Then
\[\varepsilon_l(Q, x, y) = 1 - \]
\[- \frac{3x_p^2}{2Q^3} \left[D(Q, z^\pm) + iyd_{\nu}(Q, z^\pm) \frac{d(Q, 0) - d(Q, z^\pm)}{xd(Q, 0) + iyd_{\omega,\nu}(Q, z^\pm)} \right]. \tag{2.4}\]

Here

\[D(Q, z^\pm) = \int_{-1}^{1} dK_x \int_{0}^{1} \sqrt{1-K_x^2} \left(\frac{1}{K_x - Q/2 - z^-/Q} - \frac{1}{K_x + Q/2 - z^+/Q} \right) rdr,\]

\[
\rho^- = \frac{1}{2} \left(\sqrt{(K_x - Q)^2 + r^2} + \sqrt{K_x^2 + r^2} \right),
\]

\[
\rho^+ = \frac{1}{2} \left(\sqrt{(K_x + Q)^2 + r^2} + \sqrt{K_x^2 + r^2} \right).
\]

Besides,

\[d(Q, z^\pm) =
\]

\[
= \int_{-1}^{1} dK_x \int_{0}^{1} \sqrt{1-K_x^2} \left(\frac{\rho^-}{z^-(K_x - Q/2 - z^-/Q)} - \frac{\rho^+}{z^+(K_x + Q/2 - z^+/Q)} \right) rdr,
\]

\[d(Q, 0) =
\]

\[
= \int_{-1}^{1} dK_x \int_{0}^{1} \left[\frac{\rho^-}{(x + iy\rho^-)(K_x - Q/2)} - \frac{\rho^+}{(x + iy\rho^+)(K_x + Q/2)} \right] rdr,
\]

\[d_{\nu}(Q, z^\pm) = \int_{-1}^{1} dK_x \int_{0}^{1} \sqrt{1-K_x^2} \left(\frac{\rho^-}{K_x - Q/2 - z^-/Q} - \frac{\rho^+}{K_x + Q/2 - z^+/Q} \right) rdr,
\]

and, at last,

\[d_{\omega,\nu}(Q, z^\pm) =
\]

\[
= \int_{-1}^{1} dK_x \int_{0}^{1} \sqrt{1-K_x^2} \left(\frac{\rho^-^2}{z^-(K_x - Q/2 - z^-/Q)} - \frac{\rho^+^2}{z^+(K_x + Q/2 - z^+/Q)} \right) rdr.
\]

On Figs. 1-8 comparison of the real and imaginary parts of dielectric function depending on quantity of the dimensionless wave vector \(Q\) (Figs. 1-4) and depending on the dimensionless quantities of frequency of an electromagnetic field \(x\) (Figs. 5-8) is shown. Thus curves 1 and 2 correspond to values of dimensionless frequency collisions \(y = 0.1\) and \(y = 0.01\). Everywhere more low \(x_p = 1\).
On Figs. 9 and 10 comparison of relative deviation of real (curves 1) and imaginary parts (curves 2) of dielectric function from the present work (with frequency of collisions, proportional to the module of a wave vector) with the corresponding parameters of dielectric Mermin function (with constant frequency collisions) at the same parameters, and quantity $y = \frac{\nu}{k_F v_F} = 0.01$ is the same. The last means, that on border Fermi’s surfaces quantity of frequency of collisions in both dielectric functions is the same. Curves 1 on Figs. 9 and 10 are defined by function

$$O_r(Q, x, y) = \frac{\text{Re} \varepsilon_{\text{Mermin}}^i(Q, x, y) - \text{Re} \varepsilon_i(Q, x, y)}{\text{Re} \varepsilon_{\text{Mermin}}^i(Q, x, y)},$$

and curves 2 defined by function

$$O_i(Q, x, y) = \frac{\text{Im} \varepsilon_{\text{Mermin}}^i(Q, x, y) - \text{Im} \varepsilon_i(Q, x, y)}{\text{Im} \varepsilon_{\text{Mermin}}^i(Q, x, y)}.$$

On Figs. 11-14 comparison of the real and imaginary parts of dielectric function according to frequency of collisions proportional to the module of a wave vector (curves 1) and constant frequency of collisions (curves 2) is shown.

5. Conclusions

In the present work the formula for longitudinal dielectric permeability into quantum collisional degenerate plasma is deduced. Comparison of the real and imaginary parts of dielectric function at various parameters is shown.
Fig. 1. Real part of dielectric function, $x = 0.5$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.

Fig. 2. Imaginary part of dielectric function, $x = 0.5$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.
Fig. 3. Real part of dielectric function, $x = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.

Fig. 4. Imaginary part of dielectric function, $x = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.
Fig. 5. Real part of dielectric function, $Q = 0.5$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.

Fig. 6. Imaginary part of dielectric function, $Q = 0.5$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.
Fig. 7. Real part of dielectric function, $Q = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.

Fig. 8. Imaginary part of dielectric function, $Q = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.
Fig. 9. Relative deviation of the real part of dielectric function, $x = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.

Fig. 10. Relative deviation of the imaginary part of dielectric function, $Q = 1$. Curves 1, 2 correspond to values of dimensionless collision frequency $y = 0.1, 0.01$.
Fig. 11. Real part of dielectric function, $Q = 1, y = 0.1$. Curves 1 and 2 correspond accordingly to variable and constant collision frequency.

Fig. 12. Imaginary part of dielectric function, $Q = 1, y = 0.1$. Curves 1 and 2 correspond accordingly to variable and constant collision frequency.
Fig. 13. Real part of dielectric function, $x = 1, y = 0.1$. Curves 1 and 2 correspond accordingly to variable and constant collision frequency.

Fig. 14. Imaginary part of dielectric function, $x = 1, y = 0.1$. Curves 1 and 2 correspond accordingly to variable and constant collision frequency.
REFERENCES

1. Klimentovich Y. and Silin V. P. The Spectra of Systems of Interacting Particles// JETF (Journal Experimental Theoreticheskoi Fiziki), 23, 151 (1952).

2. Lindhard J. On the properties of a gas of charged particles// Kongelige Danske Videnskabernes Selskab, Matematisk–Fysiske Meddelelser. V. 28, No. 8 (1954), 1–57.

3. Kliewer K. L., Fuchs R. Lindhard Dielectric Functions with a Finite Electron Lifetime// Phys. Rev. 1969. V. 181. No. 2. P. 552–558.

4. Mermin N. D. Lindhard Dielectric Functions in the Relaxation–Time Approximation. Phys. Rev. B. 1970. V. 1, No. 5. P. 2362–2363.

5. Latyshev A.V., Yushkanov A.A. Longitudinal permittivity of a quantum degenerate collisional plasma// Teor. and Mathem. Physics, 169(3): 1739–1749 (2011).

6. Latyshev A.V., Yushkanov A.A. Transverse Electric Conductivity in Collisional Quantum Plasma// Plasma Physics Reports, 2012, Vol. 38, No. 11, pp. 899–908.

7. Latyshev A.V., Yushkanov A.A. Transverse electric conductivity in quantum collisional plasma in Mermin approach// arXiv:1109.6554v1 [math-ph] 29 Sep 2011.

8. Latyshev A.V., Yushkanov A.A. Longitudinal electric conductivity and dielectric permeability in quantum plasma with variable frequency of collisions in Mermin’ approach// arXiv:1212.5659v1 [physics.plasma-ph] 17 Jan 2013, 28 p.

9. Latyshev A.V., Yushkanov A.A. Transverse and Longitudinal Permitivities of a Gaseous Plasma with an Electron Collision Frequency Proportional to the Electron Velocity. – Plasma Physics Report, 2007, Vol. 33, No. 8, pp. 696–702 (Fizika Plasmy, Vol. 33, No. 8, pp. 762–768, russian).

10. Latyshev A.V., Yushkanov A.A. Skin Effect in a Gaseous Plasma with a Collision Frequency Proportional to the Electron Velocity. – Plasma Physics Report. 2006. Vol. 32. No. 11, pp. 943 – 948 (Fizika Plasmy, Vol. 32, No. 11, pp. 1021–1026, russian).

11. Manfredi G. How to model quantum plasmas// arXiv: quant - ph/0505004.

12. Anderson D., Hall B., Lisak M., and Marklund M. Statistical effects in the multistream model for quantum plasmas// Phys. Rev. E 65 (2002), 046417.

13. Andrés P.,de, Monreal R., and Flores F. Relaxation–time effects in the transverse dielectric function and the electromagnetic properties of metallic surfaces and small particles// Phys. Rev. B. 1986. Vol. 34, No. 10, 7365–7366.
14. Shukla P. K. and Eliasson B. Nonlinear aspects of quantum plasma physics// Uspekhy Fiz. Nauk, 53(1) 2010;[V. 180. No. 1, 55-82 (2010) (in Russian)].

15. Eliasson B. and Shukla P.K. Dispersion properties of electrostatic oscillations in quantum plasmas// arXiv:0911.4594v1 [physics.plasm-ph] 24 Nov 2009, 9 pp.

16. Opher M., Morales G. J., Leboeuf J. N. Krook collisional models of the kinetic susceptibility of plasmas// Phys. Rev. E. V.66, 016407, 2002.

17. Gelder van, A.P. Quantum Corrections in the Theory of the Anomalous Skin Effect// Phys. Rev. 1969. Vol. 187. No. 3. P. 833–842.

18. Fuchs R., Kliewer K. L. Surface plasmon in a semi–infinite free–electron gas// Phys. Rev. B. 1971. V. 3. No. 7. P. 2270–2278.

19. Fuchs R., Kliewer K. L. Optical properties of an electron gas: further studies of a nonlocal description// Phys. Rev. 1969. V. 185. No. 3. P. 905–913.

20. Dressel M., Gräner G. Electrodynamics of Solids. Optical Properties of Electrons in Matter. - Cambridge. Univ. Press. 2003. 487 p.

21. Wierling A. Interpolation between local field corrections and the Drude model by a generalized Mermin approach// arXiv:0812.3835v1 [physics.plasm-ph] 19 Dec 2008.

22. Brodin G., Marklund M., Manfredi G. Quantum Plasma Effects in the Classical Regime// Phys. Rev. Letters. 100, (2008). P. 175001-1–175001-4.

23. Manfredi G. and Haas F. Self-consistent fluid model for a quantum electron gas// Phys. Rev. B 64 (2001), 075316.

24. Reinholz H., Röpke G. Dielectric function beyond the random-phase approximation: Kinetic theory versus linear response theory// Phys. Rev., E 85, 036401 (2012).