SUMS OF THREE SQUARES IN $\mathbb{Q}(\sqrt{3})$, AND IN $\mathbb{Q}(\sqrt{17})$

SHIGEAKI TSUYUMINE

Abstract. The numbers of representations of totally positive integers as sums of three integer squares in $\mathbb{Q}(\sqrt{3})$ and in $\mathbb{Q}(\sqrt{17})$, are studied by using Shimura lifting map of Hilbert modular forms. We show the following results. In case of $\mathbb{Q}(\sqrt{3})$, a totally positive integer $a + b\sqrt{3}$ is represented as a sum of three integer squares if and only if b is even. In case of $\mathbb{Q}(\sqrt{17})$, a totally positive integer is represented as a sum of three integer squares if and only if it is not in the form $\pi_1^2 \pi_2^2 \mu$ with $\mu \equiv 7 \pmod{\pi_2^2}$ or $\mu \equiv 7 \pmod{\pi_2^2}$ where π_2, π_2' are prime elements with $2 = \pi_2\pi_2'$. A similar result as Gauss’s three squares theorem in both cases of $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{17})$, and as its application, tables of class numbers of their totally imaginary extensions are given.

1. Introduction

H. Maass [3] showed that all totally positive integers in $\mathbb{Q}(\sqrt{5})$ are expressed as a sum of three integer squares in $\mathbb{Q}(\sqrt{5})$ by giving the explicit formula for the numbers $r_{3,\mathbb{Q}(\sqrt{5})}(\alpha)$ of representations for totally positive integers α. The formula involves class numbers of totally imaginary quadratic extensions $\mathbb{Q}(\sqrt{5}, \sqrt{-\alpha})$ of $\mathbb{Q}(\sqrt{5})$. Since the numbers of representations are calculable, by using Maass’s formula H. Cohn [1] gave a table of class numbers of totally imaginary quadratic extensions of $\mathbb{Q}(\sqrt{5})$. In our previous paper [8] we showed, by using Shimura lifting map, that any totally positive integer $a + b\sqrt{2}$ ($a, b \in \mathbb{Z}$) in $\mathbb{Q}(\sqrt{2})$ is expressed as a sum of three integer squares if and only if b is even. Further we gave the formula for the number $r_{3,\mathbb{Q}(\sqrt{2})}(a + b\sqrt{2})$ representing $a + b\sqrt{2}$ as sums of three integer squares which involves the class number of a totally imaginary quadratic extension $\mathbb{Q}(\sqrt{2}, \sqrt{-a - b\sqrt{2}})$ of $\mathbb{Q}(\sqrt{2})$.

In the present paper we are concerned with the fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{17})$. By using Shimura lifting map of Hilbert modular forms again, we give the following results. A totally positive integer $a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ is expressed as a sum of three integer squares if and only if b is even. The formula for $r_{3,\mathbb{Q}(\sqrt{3})}(\alpha\nu^2)$ with totally positive square-free α and with products ν of totally positive prime elements is obtained, which gives as its application, a table of class numbers of totally imaginary quadratic extensions of $\mathbb{Q}(\sqrt{3})$. As for $\mathbb{Q}(\sqrt{17})$, let $\pi_2 := \frac{5 + \sqrt{17}}{2}, \pi'_2 := \frac{5 - \sqrt{17}}{2}$. A totally positive integer is expressed as a sum of three integer squares if and only if it is not in the form $\pi_2^2 \pi_2'^2 \mu$ with nonnegative integers ϵ, ϵ' and with $\mu \equiv 7 \pmod{\pi_2^2}$ or $\mu \equiv 7 \pmod{\pi_2^2}$. The formula for $r_{3,\mathbb{Q}(\sqrt{17})}$ is obtained as well as a table of class numbers of totally imaginary quadratic extensions of $\mathbb{Q}(\sqrt{17})$.

To see how the Shimura lifting map works, we illustrate the case of rational integers (see [5, 6, 7]). Let \mathbb{H} be the upper half plane $\{z \in \mathbb{C} \mid \Im z > 0\}$, and let

2010 Mathematics Subject Classification. 11F41, 11E25, 11R29.
Key words and phrases. Hilbert modular form, class number, Shimura lift.
e(z) := \exp(2\pi \sqrt{-1}z). For a discriminant D of a quadratic field, χ_D denotes the Kronecker-Jacobi-Legendre symbol. If a is a square-free natural number, then a^* denotes a or $4a$ according as $a \equiv 1 \pmod{4}$ or not. For $N \in \mathbb{N}$, $(\mathbb{Z}/N)^*$ denotes the group of Dirichlet characters modulo N with 1_N as the identity element. Let $M_{k+1/2}(N, \chi)$ be the space of holomorphic modular forms for $\Gamma_0(N)$ of weight $k + 1/2$ with character $\chi \in (\mathbb{Z}/N)^*$ ($4/N$). Then there is a Shimura lifting map $\mathcal{S}_{a^*, \chi}$ of $M_{k+1/2}(N, \chi)$ to $M_{2k}(N/2, \chi^2)$ for each square-free $a \geq 1$ and for $k \geq 1$, such as

$$\mathcal{S}_{a^*, \chi}(f) = C_{f, a} + \sum_{1 \leq n \leq a^*} \sum_{0 \leq d | n} (\chi_n \chi)(d)d^{k-1}c_{an^2/d^2}e(nz)$$

with $f(z) = \sum_{0 \leq n} c_n e(nz)$, where $C_{f, a}$ is a constant for which the left hand side of (1) is a modular form. Let $\theta(z)$ be a theta series, namely $\theta(z) = \sum_{n=-\infty}^{\infty} e(n^2z)$. If f is a product of $\theta(z)$ and an Eisenstein series $E(z)$ of weight k, then $C_{f, a}$ is obtained as the constant term of a Hilbert-Eisenstein series over a field $\mathbb{Q}(\sqrt{a})$ where the Hilbert-Eisenstein series is determined only by $E(z)$.

Let $r_3(\mathbb{Q})$ denote the numbers of representations of n as sums of three rational integral squares. The generating function $\sum_{n \leq n} r_3(\mathbb{Q})e(nz)$ of $r_3(\mathbb{Q})$ is $\theta(z)^3 \in M_{3/2}(4, \chi_4)$. Let $n = am^2$ with square-free $a > 0$. Since $\theta(z)^2$ is an Eisenstein series, $\theta(z)^3$ is a product of $\theta(z)$ an the Eisenstein series. The constant term of $\mathcal{S}_{a^*, \chi}(\theta(z)^3)$ is obtained from the constant term of an associated Hilbert-Eisenstein series which involves the class number of $\mathbb{Q}(\sqrt{-a})$. Since $M_{2}(2, 1_2)$ is one dimensional, it is spanned by an Eisenstein series of weight 2, and by comparing the Fourier coefficients of $\mathcal{S}_{a^*, \chi}(\theta(z)^3)$ and those of the Eisenstein series, we obtain the formula for $r_3(\mathbb{Q})$ (12). In particular Gauss’s three squares theorem is derived from the formula, that is $r_3(\mathbb{Q})(a) = 2^23h\mathbb{Q}(\sqrt{-a})$ for square-free $a \equiv 1, 2 \pmod{4}$, and $r_3(\mathbb{Q}) = 2^3h\mathbb{Q}(\sqrt{-a})$ for square-free $a \equiv 3 \pmod{8}$, $h\mathbb{Q}(\sqrt{-a})$ being the class number of $\mathbb{Q}(\sqrt{-a})$. The one of purposes of the present paper is to obtain such a kind of formulas on $\mathbb{Q}(\sqrt{3})$ or on $\mathbb{Q}(\sqrt{17})$ instead of \mathbb{Q}.

Our paper [8] gives only a partial result on Shimura lifts of noncuspidal Hilbert modular forms over a totally real field K, however it is shown that products of theta series and Hilbert-Eisenstein series over K have Shimura lifts whose constant terms are obtained from Hilbert-Eisenstein series over totally real quadratic extensions of K. So there is a way that a similar argument as in the elliptic modular forms can be made for Hilbert modular forms. In the present paper we carry out this for $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{17})$. However while the space $M_{2}(2, 1_2)$ contains no nontrivial cusp forms in the elliptic modular case as well as the cases of $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{2})$, there is a non-trivial cusp form of weight 2 in each case of $\mathbb{Q}(\sqrt{3})$ or $\mathbb{Q}(\sqrt{17})$, and a closer study of Fourier coefficients of Hilbert modular forms is necessary.

2. Notations and some preceding results

Let K be a totally real algebraic number field of degree g over \mathbb{Q}. We denote by O_K, d_K and δ_K, ring of algebraic integers, the different of K and the discriminant respectively. For $\alpha \in K$, $\alpha^{(1)}, \cdots, \alpha^{(g)}$ denotes the conjugates of α in a fixed order. If $\alpha^{(i)}$ is positive for every i, then we call α totally positive, and denote it by $\alpha > 0$. For an integral ideal \mathfrak{a}, let $E_{\mathfrak{a}}$ denotes the group of totally positive units congruent to 1 modulo \mathfrak{a}, and so $E_{\mathfrak{a}}$ denotes the group of all totally positive units, while O_K^\times denotes the group of all units. We denote by N and tr, the norm map and the trace
map of K over \mathbb{Q} respectively, namely $N(\alpha) = \prod_{i=1}^{g} \alpha(i)$ and $\text{tr}(\alpha) = \sum_{i=1}^{g} \alpha(i)$. An integral ideal is called odd or even according as it is coprime to the ideal (2) or not. An integer α in \mathcal{O}_K is called odd or even according as the ideal (\alpha) is odd or even. If \mathfrak{P} is a prime ideal, then $v_{\mathfrak{P}}$ denotes the \mathfrak{P}-adic valuation. Let μ_K denote the Möbius function on K, and let φ_K denote the Euler function on K, that is, $\varphi_K(\mathfrak{N}) = N(\mathfrak{N}) \prod_{\mathfrak{P} | \mathfrak{N}} (1 - N(\mathfrak{P})^{-1})$ for an integral ideal \mathfrak{N}. We denote by $C_{\mathfrak{N}}$, the fractional ideal class group modulo \mathfrak{N} in the narrow sense where ideals have denominators coprime to \mathfrak{N}, and denote by $C_{\mathfrak{N}}^*$, the group of characters of $C_{\mathfrak{N}}$. An element of $C_{\mathfrak{N}}^*$ is called a (classical) Hecke character. The identity element of $C_{\mathfrak{N}}^*$ is denoted by $1_{\mathfrak{N}}$, for which $1_{\mathfrak{N}}(\mathfrak{N})$ is 1 or 0 according as a numerator of an ideal \mathfrak{N} is coprime to \mathfrak{N} or not. If \mathfrak{N} is principal with a generator ν, then we denote $1_{\mathfrak{N}}$ also by 1_{ν}. For $\mathfrak{a} = (a_1, \ldots, a_g) \in \{0, 1\}^g$, we define $\text{sgn}^a(\alpha)$ by setting $\text{sgn}^a(\alpha) := \text{sgn}(\alpha^{(1)})^{a_1} \cdots \text{sgn}(\alpha^{(g)})^{a_g}$ for $\alpha \in K, \neq 0$ where $\text{sgn}^0(0) := 1$. For $\psi \in C_{\mathfrak{N}}^*$, let $e_\psi = (e_1, \ldots, e_n) \in \{0, 1\}^g$ be so that $\psi(\mu) = \text{sgn}^{e_\psi}(\mu)$ for $\mu \equiv 1 \mod \mathfrak{N}, \mu \neq 0$. The character ψ is called even if $e_\psi = (0, \ldots, 0)$, and it is called odd if $e_\psi = (1, \ldots, 1)$.

For a Hecke character ψ, we denote by f_ψ, the conductor of ψ, and put $e_\psi := f_\psi, \prod_{\mathfrak{p} | \mathfrak{a}} \mathfrak{p}^{f_\psi \mathfrak{p}^{(a)}} \mathfrak{P}$. The primitive character associated with ψ is denoted by ψ. For an integral ideal \mathfrak{N}, we define $\psi_{\mathfrak{N}}$ to be $\psi_{\mathfrak{N}}$. For an integer $\alpha \in K$ not square, we denote by f_α or $d_{K(\alpha)/K}$, the relative discriminant of $K(\sqrt{\alpha})$ over K, and denote by ψ_{α} in $C_{\mathfrak{N}}^*$, the character associated with the extension, where $\psi(\mathfrak{N})$ is 1, -1 or 0 according as the prime \mathfrak{P} of K is split at $K(\sqrt{\alpha})$, inert or ramified.

We need some more general character than a Hecke character. For the purpose it is convenient to use the idelic language. For a prime \mathfrak{P} of K, let $K_{\mathfrak{P}}, \mathcal{O}_{\mathfrak{P}}, \mathcal{O}^*_{\mathfrak{P}}$ be the \mathfrak{P}-adic completion of K, the maximal local ring and the group of its units. For an integral ideal \mathfrak{N} of K, let $J(\mathfrak{N})$ denote the group consisting of ideles whose \mathfrak{P}-th components are in $\mathcal{O}_{\mathfrak{P}}$ for $\mathfrak{P} | \mathfrak{N}$. Put $U_K := \prod_{\mathfrak{P}} \mathcal{O}_{\mathfrak{P}}^\times \times (\mathbb{R}^\times)^g$ with $\mathbb{R}^\times = \{ x \in \mathbb{R} \mid x > 0 \}$. Let $K^\times(\mathfrak{N}) := K \cap J(\mathfrak{N})$, namely $K^\times(\mathfrak{N})$ is the group of elements in K^\times whose denominators and numerators are both coprime to \mathfrak{N}. Let $K^\times_{\mathfrak{N}}$ denote the subgroup of $K^\times(\mathfrak{N})$ consisting of totally positive elements multiplicatively congruent to 1 modulo \mathfrak{N}. A homomorphism of the finite idele to $C_{\mathfrak{N}}$ by sending $j = (j_{\mathfrak{P}})$ to an ideal class containing fractional ideal $\prod_{\mathfrak{P}} \mathcal{O}^\times_{\mathfrak{P}} \times (\mathbb{R}^\times)^g$ gives the natural isomorphism between $J(\mathfrak{N})/(K^\times_{\mathfrak{N}}U_K)$ and $C_{\mathfrak{N}}$, and we identify them. Let $U_{\mathfrak{N}}$ be the subgroup of U_K consisting of ideles whose \mathfrak{P}-th components are in $1 + \mathcal{O}^\times_{\mathfrak{P}} \mathcal{O}_{\mathfrak{P}}$. The factor group $U_K/U_{\mathfrak{N}}$ is isomorphic to $(\mathcal{O}_K/\mathfrak{N})^\times$. We fix local parameters $\varpi_{\mathfrak{P}}$ of $\mathcal{O}_{\mathfrak{P}}$ for \mathfrak{P}, which give the isomorphism of $U_K/U_{\mathfrak{N}}$ onto $(\mathcal{O}_K/\mathfrak{N})^\times$. Let $(\mathcal{O}_K/\mathfrak{N})^\times$ denote the group of characters of $(\mathcal{O}_K/\mathfrak{N})^\times$. For $\phi \in C_{\mathfrak{N}}^*$ and for $\omega \in (\mathcal{O}_K/\mathfrak{N})^\times$ we define

$$
\psi(\xi \cdot \mathfrak{N}) = \omega(\xi) \prod_{\mathfrak{P} | \mathfrak{N}} \varpi_{\mathfrak{P}}^{-\varphi(\mathfrak{N})} \phi(\varpi_{\mathfrak{P}}^{-\varphi(\mathfrak{N})})
$$

for $\xi \in K^\times$ and for an ideal \mathfrak{N} where a denominator of $\xi \mathfrak{N}$ is coprime to \mathfrak{N}. We define $\psi(\xi \cdot \mathfrak{N}) = 0$ if a numerator of $\xi \mathfrak{N}$ is not coprime to \mathfrak{N}. Obviously there holds an equality $\psi(\xi \cdot \mathfrak{N})\psi(\xi' \cdot \mathfrak{N}') = \psi(\xi' \cdot \xi' \mathfrak{N} \mathfrak{N}')$. This is a character of $J(\mathfrak{N})/(K^\times_{\mathfrak{N}}U_{\mathfrak{N}})$. Since $J(\mathfrak{N})/(K^\times_{\mathfrak{N}}U_{\mathfrak{N}}) \simeq (U_K/U_{\mathfrak{N}})^\times \times J(\mathfrak{N})/(K^\times_{\mathfrak{N}}U_K) \simeq (\mathcal{O}_K/\mathfrak{N})^\times \times C_{\mathfrak{N}}$ as groups, the group $(J(\mathfrak{N})/(K^\times_{\mathfrak{N}}U_{\mathfrak{N}}))^\times$ of characters is isomorphic to $(\mathcal{O}_K/\mathfrak{N})^\times \times C_{\mathfrak{N}}$. We put $\psi(\xi) := \psi(\xi \cdot \mathfrak{N}) = \omega(\xi)\phi(\xi)$ for $\xi \in K^\times(\mathfrak{N})$, and $\psi(\mathfrak{N}) := \psi(1 \cdot \mathfrak{N})$ for
an ideal \mathfrak{A}. Also for $\psi \in (O_K/H_\mathfrak{n})^* \times C^-_\mathfrak{n}$, e_ψ is defined as in the case of Hecke characters, however the equality $e_\psi = e_\delta$ holds since $\omega(\xi) = 1$ for ξ with $\xi \equiv 1 \pmod{\mathfrak{n}}$. We call ψ primitive if there is no ideal integral \mathfrak{M} so that $\psi = \psi' \mathfrak{1}_\mathfrak{M}$ with a character ψ' of $J(\mathfrak{M})/(K^*_\mathfrak{M} H_\mathfrak{M})$. In such a case we denote \mathfrak{M} by f_ψ, and call it the conductor of ψ, and put $e_\psi := f_\psi \prod_{\psi(\mathfrak{p}) = 0, \mathfrak{p} \mid f_\psi} \mathfrak{p}$. For ψ primitive, we define the Gauss sum by

\[
\tau_K(\psi) := \psi(\mu \cdot f_\psi) = \sum_{\xi \in O_K (\text{mod } f_\psi)} \psi(\xi)e(\text{tr}(\mu \xi))
\]

with $\mu \in K, \nu > 0, (\mu f_\psi, f_\psi) = O_K$, where $\tau_K(\psi)$ is determined up the choices of μ. The standard argument shows that $|\tau_K(\psi)| = N(f_\psi)^{1/2}$, and that $\tau_K(\psi)\tau_K(\psi') = \text{sgn}^\psi(-1)\psi(-1)N(f_\psi)$. When ω is trivial, $\tau_K(\psi)$ of (2) coincides with the Gauss sum of a Hecke character.

Let $\mathfrak{M}, \mathfrak{N}$ be integral ideals. Let $\omega = \omega' \in (O_K/\mathfrak{M})^* \times C^-_\mathfrak{M}, \psi = \psi' \in (O_K/\mathfrak{N})^* \times C^-_\mathfrak{N}$, so that $\psi \omega$ is an even or odd Hecke character in $C^-_\mathfrak{MN}$, namely

\[
e_\psi \omega = (0, \cdots, 0) \text{ or } (1, \cdots, 1), \text{ and } \omega(\xi) = \omega'(\xi) \text{ for } \xi \in K^\times (\mathfrak{M}, \mathfrak{N})).
\]

For a fractional ideal $2\mathfrak{M}$ and for a totally positive $\nu \in K$, we define

\[
\sigma_{k-1,\psi}(\nu; \mathfrak{M}) := \sum_{\nu\mathfrak{M} \subset \mathfrak{A} \subset O_K} \psi(\mathfrak{A})\psi'(\nu \cdot \mathfrak{MN}^{-1})N(\mathfrak{A})^{k-1},
\]

where it is 0 if $\nu \mathfrak{M}$ is not integral. We also define $\sigma_{k-1,\psi}(\nu; \mathfrak{M})$ to be 0 if ν is not totally positive. By a condition (9), the summation (4) is equal to $\omega'(\nu \prod_{\psi(\mathfrak{p}) = 0, \mathfrak{p} \mid f_\psi} \mathfrak{p})$ $\sum_{\nu \mathfrak{M} \subset \mathfrak{A} \subset O_K} \psi'(\mathfrak{A})\psi(\nu \mathfrak{MN}^{-1})N(\mathfrak{A})^{k-1}$. If $\mathfrak{M} = O_K$, then we denote $\sigma_{k-1,\psi}(\nu; \mathfrak{M})$ simply by $\sigma_{k-1,\psi}(\nu)$, and further if K is of class number 1 and if both of ψ and ψ' are Hecke characters, namely, ω and ω' are both trivial, then $\sigma_{k-1,\psi}(\nu)$ is expressed as

\[
\sigma_{k-1,\psi}(\nu) = \sum_{\delta|\nu, \delta \in O_K/O_K^*} \psi(\delta)\psi'(\nu/\delta)N((\delta))^{k-1} \quad (\nu \in O_K, \nu > 0).
\]

We omit ψ from the notation $\sigma_{k-1,\psi}$ if $\mathfrak{M} = O_K$ and $\psi = 1$, and do similar as for ψ'.

Let 2^g be the product of g copies of the upper half plane 2^g. For g, δ in K and for $\delta = (z_1, \cdots, z_g) \in 2^g, N(\gamma + \delta)$ and $\text{tr}(\gamma)$ stand for $\prod_{i=1}^{2g} (\gamma(i)z_i + \delta(i))$ and $\sum_{i=1}^{2g} \gamma(i)z_i$ respectively. For a matrix $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(K)$, we put $A_3 = \begin{pmatrix} \alpha(i)z_i + \beta(i) \\ \gamma(i)z_i + \delta(i) \end{pmatrix}$. We define

\[
\Gamma_0(2^g, \mathfrak{M}) := \{ (\alpha, \beta, \gamma, \delta) \in SL_2(K) \mid \alpha, \delta \in O_K, \beta \in 2^g, \gamma \in \mathfrak{M} \}
\]

for a fractional ideal 2^g and for an integral ideal \mathfrak{M}.

Let $\psi \in (O_K/\mathfrak{M})^* \times C^-_\mathfrak{M}, \psi' \in (O_K/\mathfrak{N})^* \times C^-_\mathfrak{N}$ be as in (4), and let k be a natural number with the same parity as $e_\psi \omega$. We assume that ψ or ψ' is nontrivial when $g = 1$ and $k = 2$. Then we define an Eisenstein series by

\[
G_{k,\psi}(3; \mathfrak{M}, \mathfrak{N}, \epsilon_\psi^{-1}, \mathfrak{M}^{-1}, \epsilon_\psi^{-1}, \mathfrak{N}^{-1}, \epsilon_\psi^{-1}, \mathfrak{M}^{-1}, \mathfrak{N}^{-1}, \epsilon_\psi^{-1}) := C + 2^g \sum_{0 < \nu \in \mathfrak{D}} \sigma_{k-1,\psi}(\nu; \mathfrak{M}^{-1}, \epsilon_\psi^{-1}, \mathfrak{N}^{-1}, \epsilon_\psi^{-1})e(\text{tr}(\nu_3))
where C is a constant term given by (i) $\psi((\mathcal{N}\varepsilon^{-1}_{\psi}\phi)\mathcal{D})\psi(1 - k, \psi\overline{\psi})$ if $k > 1$ and $\mathcal{N} = \mathcal{O}_K$ or if $\mathcal{N} \subset \mathcal{O}_K$ and $\mathcal{N} = \mathcal{O}_K$, (ii) $\psi((\mathcal{N}\varepsilon^{-1}_{\psi}\phi)\mathcal{D})\psi(0, \psi\overline{\psi})$ if $k = 1$, $\mathcal{N} = \mathcal{O}_K$ and $\mathcal{N} \subset \mathcal{O}_K$, (iii) $\psi(\mathcal{D})\psi(0, \psi\overline{\psi}) + \psi(\mathcal{D})\psi(0, \psi\overline{\psi})$ if $k = 1$ and $\mathcal{N} = \mathcal{N}' = \mathcal{O}_K$, and (iv) 0 otherwise. The Eisenstein series $G_{k,\psi}(z; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D})$ of (5) is a Hilbert modular form for $\Gamma_0(\mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K)$ of weight k with character $\psi\overline{\psi}$, namely $G_{k,\psi}(z; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D})$ satisfies

$$G_{k,\psi}(A; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D}) = (\psi\overline{\psi})(\gamma)N(\gamma + \delta)kG_{k,\psi}(z; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D})$$

for $A = \begin{pmatrix} \alpha & \beta \\ -\gamma & \delta \end{pmatrix} \in \Gamma_0(\mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K)$ (6). We denote by $\mathcal{M}_k(\Gamma_0(\mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K), \psi\overline{\psi})$, the space of Hilbert modular forms of weight k with character $\psi\overline{\psi}$. For f in the space, the value $\kappa(\alpha, \gamma, f) = \kappa(\alpha, \gamma, f)$ of $f(c)$ at a cusp α/γ ($\gamma \in \mathcal{D}_K$) is defined by $\kappa(\alpha, \gamma, f) = \lim_{l \to \infty} N(\gamma + l)k f(B)\gamma$ where $B = (\alpha/\gamma) \in SL_2(K)$. The subspace of $\mathcal{M}_k(\Gamma_0(\mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K), \psi\overline{\psi})$ consisting of cusps forms is denoted by $\mathcal{S}_k(\Gamma_0(\mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K), \psi\overline{\psi})$, where $\psi\overline{\psi}$ is omitted if $\psi\overline{\psi} = 1$.

The values of Eisenstein series (5) at cusps are computed in (5). We can take α, γ so that $\mathcal{B} := (\alpha, \gamma, \mathcal{D}^{-1}\mathcal{D}_K^{-1})$ is coprime to $\mathcal{N}\mathcal{D}_K$. The value $\kappa(\alpha, \gamma, G_{k,\psi}(z; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D}))$ at the cusp α/γ is 0 if γ is not an integral ideal \mathcal{M}_γ, \mathcal{M}_γ' with $\mathcal{M}_\gamma, \mathcal{M}_\gamma'$ coprime to $\mathcal{N}\mathcal{D}_K$, $\mathcal{N}\varepsilon^{-1}e\psi^{-1}$ and with $(\gamma, \mathcal{D}^{-1}\mathcal{D}_K^{-1}, \mathcal{N}\mathcal{D}_K^{-1}) = \mathcal{M}_\gamma^{-1}\mathcal{N}\varepsilon^{-1}e\psi^{-1}\mathcal{M}_\gamma^{-1}$. Suppose otherwise, and let \mathcal{M}_γ be the largest such ideal. Then the value is given by (7)

$$sgn^{\psi}(\alpha)sgn^{\psi\overline{\psi}}(\gamma)\mu_K((\mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1}, \mathcal{M}_\gamma, \mathcal{M}_\gamma'))N(\alpha \cdot \mathcal{B}^{-1}\mathcal{M}_\gamma, \mathcal{M}_\gamma, \mathcal{M}_\gamma')^{-1} \times \psi(\gamma)N(\mathcal{M}_\gamma^{-1}\mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1}, \mathcal{M}_\gamma, \mathcal{M}_\gamma')^{-1}\tau_K(\mathcal{M}_\gamma^{-1})^{-1}N(\mathcal{M}_\gamma)^{-1}N(\mathcal{M}_\gamma^{-1})^{-1}$$

$$\times \prod_{\mathcal{P}|\mathcal{M}_\gamma} (1 - N(\mathcal{P}))(1 - (1 - N(\mathcal{P}))^{-1})$$

where if $\gamma = 0$, then the value is non-zero only when $\mathcal{N} = \mathcal{O}_K$ and it is given by replacing γ in (7) by $N(\mathcal{N})$, and where if $\alpha = 0$, the value is non-zero only when $f_{\psi} = \mathcal{O}_K$ and it is given by replacing α in (7) by 1.

When $k = 1$, the values of Eisenstein series at cusps may have an additional term. Let $\mathcal{L}_{\gamma} := \gamma \mathcal{D}^{-1}\mathcal{D}_K^{-1}\mathcal{M}_\gamma^{-1}\mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1}$ and $\mathcal{L}'_{\gamma} := \gamma \mathcal{D}^{-1}\mathcal{D}_K^{-1}\mathcal{M}_\gamma^{-1}\mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1} \cap e\psi^{-1}f_{\psi}$. If there is an integer divisor \mathcal{R} of $\mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1}$ so that the numerator of $\mathcal{L}_{\gamma}\mathcal{R}^{-1}$ is coprime to \mathcal{N} and the denominator is coprime to $f_{\psi}\mathcal{R}$, then there is the additional term. Let \mathcal{R}_γ be the divisor of $(\mathcal{N}, \mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1})$ satisfying $v_{\mathcal{P}}(\mathcal{L}_{\gamma}\mathcal{R}_\gamma^{-1}) = 0$ for any prime divisor \mathcal{P} of $(\mathcal{N}, \mathcal{E}_{\psi}\varepsilon^{-1}e\psi^{-1})$. Then $\kappa(\alpha, \gamma, G_{k,\psi}(z; \mathcal{N}\varepsilon^{-1}e\psi^{-1}, \mathcal{D}))$ has the additional term

$$sgn^{\psi}(\gamma)\mu_K(\mathcal{R}_{\gamma})\psi(-\gamma \cdot \gamma^{-1}(\mathcal{L}_{\gamma}\mathcal{R}_\gamma^{-1} \cap \mathcal{O}_K))N(\mathcal{L}_{\gamma}\mathcal{R}_\gamma^{-1})^{-1}\tau_K(\mathcal{M}_\gamma^{-1})^{-1}N(\mathcal{M}_\gamma)^{-1}$$

(8)
where if $\gamma = 0$, then the value is non-zero only when $\mathfrak{M} = \mathcal{O}_K$ and it is given by replacing γ in (5) by $N(\mathfrak{M})$, and where if $\alpha = 0$, the value is non-zero only when $f_{\psi'} = \mathcal{O}_K$ and it is given by replacing α in (5) by 1.

Let $\theta(\overline{z}) = \sum_{\mu \in \mathcal{O}_K} e(\text{tr}(\overline{\mu} z))$ be a theta series. It is a modular form of weight 1/2 for $\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K)$. Let j be its factor of automorphy, namely, $\theta(\overline{A} \overline{z}) = j(A, \overline{z}) \theta(\overline{z})$ for $A \in \Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K)$. Suppose that 4|$\mathfrak{M}$. Let $\psi_0 \in C^*_{\mathfrak{M}}$ and let k be a natural number with same parity as ψ_0. We denote by $\mathbf{M}_{k+1/2}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$, the space of modular forms with $\psi_0(\gamma) j(A, \overline{z}) N(\gamma \mathfrak{M} + \delta)^k (A = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \in \Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K))$ as a factor of automorphy. Assume that the class number of K is 1 in the wide sense. Let α be a totally positive square-free integer in K. Then the Shimura lifting map $\mathcal{A}_{\alpha, \psi_0}$ associated with α should be a linear map of $\mathbf{M}_{k+1/2}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$ to $\mathbf{M}_{2k}(\Gamma_0(\mathfrak{d}_K^{-1}, 2^{-1}4\mathfrak{d}_K), \psi_0^0)$ satisfying

$$
\mathcal{A}_{\alpha, \psi_0}(f) = C_{f, \alpha} + \sum_{\nu \in \mathcal{O}_K, \nu \not| \epsilon} \sum_{\mu \in \mathcal{O}_K, \mu \not| \epsilon} (\psi_{\alpha} \psi_0)(\delta) N((\delta))^{-k-1} c_{\alpha, \nu} \epsilon(\text{tr}(\nu \mathfrak{M}))
$$

with $f(\overline{z}) = c_0 + \sum_{\nu \in \mathcal{O}_K, \nu \not| \epsilon} \sum_{\mu \in \mathcal{O}_K, \mu \not| \epsilon} \epsilon(\text{tr}(\nu \mathfrak{M})) \in \mathbf{M}_{k+1/2}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$ where $C_{f, \alpha}$ is a constant for which the left hand side of (9) is a Hilbert modular form. As for a space of Hilbert cusp forms, Shimura [8] established such lifting map. However the existence of the map for non-cuspidal Hilbert modular forms is not yet proved unconditionally. We show in [8], for example that if $k \geq 2$ and 16|\mathfrak{M}, then there is a map $\mathcal{A}_{\alpha, \psi_0}$ of $\mathbf{M}_{k+1/2}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$, and further that there is a map of the subspace of $\mathbf{M}_{k+1/2}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$ with $4 \mathfrak{M}$ \text{ mod } \mathfrak{d}_K generated by the products of the theta series and Eisenstein series \mathfrak{E} with $\psi_0 = \psi, \psi'$ for even or odd Hecke characters ψ, ψ'. The latter assertion can be slightly generalized to ψ, ψ' as in [8] because the key proposition (Proposition 6.5 in [8]) holds for such characters, where the proof is made by word-to-word translation of the original proof.

Let $f(\overline{z}) = c_0 + \sum_{\nu \in \mathcal{O}_K, \nu \not| \epsilon} \sum_{\mu \in \mathcal{O}_K, \mu \not| \epsilon} \epsilon(\text{tr}(\nu \mathfrak{M})) \in \mathbf{M}_{k}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$, and let $\mu \in \mathcal{O}_K, \mu \not| \epsilon$ be so that $\mu \epsilon | \mathfrak{M}$ and $\mu^2 | \mathfrak{M}$. Then we define

$$
(U(\mu ; f))(\overline{z}) := c_0 + \sum_{\nu \in \mathcal{O}_K, \nu \not| \epsilon} c_{\mu \nu} \epsilon(\text{tr}(\nu \mathfrak{M}))
$$

which is in $\mathbf{M}_{k}(\Gamma_0(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K), \psi_0)$.

3. Hilbert modular forms on $\mathbb{Q}(\sqrt{3})$

Let $K = \mathbb{Q}(\sqrt{3})$. Then $\mathfrak{d}_K = (2\sqrt{3})$, and the class number of K in the wide sense is 1. Let $\epsilon_0 := 2 + \sqrt{3}$ be a fundamental unit, which has a positive norm. Put $\pi_2 := 1 + \sqrt{3}$ and $p_2 = (\pi_2)$. Then the ideal (2) is decomposed as (2) = p_2^2. Let $\chi_{-4}^K := \chi_{-4} \circ N \in C^*_{p_2}$. For $\mu \in \mathcal{O}_K$, $\chi_{-4}^K(\mu) = \text{sgn}(N(\mu))$ for $\pi_2 \nmid \mu$, and $\chi_{-4}^K(\mu) = 0$ for $\pi_2 | \mu$. The Hecke character χ_{-4}^K is odd. The conductor $f_{\chi_{-4}^K}$ of χ_{-4}^K is \mathcal{O}_K, and $\chi_{-4}^K(\mu) = \text{sgn}(N(\mu))$, in particular $\chi_{-4}^K(p_2) = \text{sgn}(N(p_2)) = -1$. We have $\tau_K(\chi_{-4}^K) = \chi_{-4}^K(2\sqrt{3}) = -1$. Let ρ_2 be the unique nontrivial character of
Transformation formulas for theta series (see for example [8], Sect.3) give the values of \(\theta \) as cusps of Eisenstein series. Taking values at cusps of Eisenstein series, the square \(\theta^2 \) of the theta series is a Hilbert modular form for \(\Gamma_0(1,4\mathcal{O}_K) \) of weight 1 with character \(\chi^{-1} \). We take as a set \(C_0(4) \) of representatives of cusps of \(\Gamma_0(1,4\mathcal{O}_K) \),

\[
C_0(4) = \left\{ \frac{1}{8\sqrt{3}}, \frac{1}{4\pi_2 \sqrt{3}}, \frac{1}{4\sqrt{3}}, \frac{4\pi_2}{2\pi_2 \sqrt{3}}, \frac{1}{2\sqrt{3}} \right\},
\]

and as a set \(C_0(2) \) of representatives of cusps of \(\Gamma_0(1,2\mathcal{O}_K) \),

\[
C_0(2) = \left\{ \frac{1}{4\sqrt{3}}, \frac{1}{2\pi_2 \sqrt{3}}, \frac{1}{2\sqrt{3}} \right\}.
\]

We express \(\theta^2 \) as a linear combination of Eisenstein series of weight 1. By (7) and (8), and by equations \(L_K(0, \chi^{-1}_4) = 3^{-1} \) and \(L_K(0, \chi^{-1}_4) = 2^{-1}3^{-1} \), the values at cusps of Eisenstein series \(G_{1,\chi^{-1}_4}(3; \mathcal{O}_K, \mathcal{O}_K), G_{1,\chi^{-1}_4}(3; \mathcal{O}_K, \mathcal{O}_K) \), \(G_{1,\chi^{-1}_4}\psi(3; \mathcal{O}_K, \mathcal{O}_K) \) are obtained as in Table 2, where these Eisenstein series are modular forms for \(\Gamma_0(1,4\mathcal{O}_K) \) of weight 1 with character \(\chi^{-1}_4 \).
Corollary 3.3.

The following equality holds;

\[\theta(\zeta)^2 = 3G_{1,\chi_{24}}(\zeta; \mathcal{O}_K, \mathcal{O}_K) - 2^{-1}G_{1,\chi_{24}}^4(\zeta; \mathcal{O}_K, \mathcal{O}_K) \]

\[- 2G_{1,\chi_{24}}^2(\zeta; (2), \mathcal{O}_K) + 2^{-1}G_{1,\psi}^\varphi(\zeta; \mathcal{O}_K, \mathcal{O}_K). \]

Proof. Let \(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2] \) := \(\{ \left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix} \right) \in \text{SL}_2(K) \mid \alpha \equiv \delta \equiv 1 \pmod{2}, \beta \in 2\mathfrak{d}_K, \gamma \in 2\mathfrak{d}_K \} \), which is called a congruence subgroup of level 2. Then \(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2] \) acts freely on \(\mathfrak{S}_2 \). The arithmetic genus of a compactified nonsingular model of \(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2] \) is determined by the volume and by the contribution from cusp singularities (van der Geer [2] Chap. II ~ IV), and it is computed to be 4 + 1/12 (4 + 4 + 4 + 4 + 4 + 4 + 4 + 4) = 6. Hence \(\text{dim} \mathcal{S}_2(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2]) = 5 \) where \(\mathcal{S}_2(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2]) \) denotes the space of cusp forms for \(\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2] \) of weight 2. Since \((\frac{\mathfrak{d}}{\mathfrak{d}})^{-1}\Gamma(\mathfrak{d}_K^{-1}, \mathcal{O}_K)[2] \) is a subgroup of \(\Gamma(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K) \) of index 2, the dimension of the space of cusp forms for \(\Gamma(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K) \) of weight 2 is at most 5.

Let \(f(\zeta) \) be a Hilbert modular form given as the left hand side minus the right hand side of the equation \(\Theta(\zeta) \). Then it is a cusp form from Table 1 and Table 2. It is easy to check that the Fourier coefficients of \(f \) are 0 at least for \(\nu = 1, 2, 2 \pm \sqrt{3} \). We show that \(f = 0 \). Suppose that \(f \neq 0 \). Then \(f(\zeta)G_{1,\chi_{24}}(\zeta; \mathcal{O}_K, \mathcal{O}_K), f(\zeta)G_{1,\chi_{24}}^4(\zeta; (2), \mathcal{O}_K), f(\zeta)G_{1,\psi}^\varphi(\zeta; \mathcal{O}_K, \mathcal{O}_K), f(\zeta)^2 \) are linearly independent. The first four Fourier coefficients of these cusp forms vanish. Then these cusp forms together with \(G_{1,\chi_{24}}^4(\zeta; \mathcal{O}_K, \mathcal{O}_K)G_{1,\psi}^\varphi(\zeta; \mathcal{O}_K, \mathcal{O}_K) \) and \(\Xi(\zeta) \) are linearly independent by the Fourier expansions of \(10 \) and \(11 \). This contradicts to \(\text{dim} \mathcal{S}_2(\Gamma(\mathfrak{d}_K^{-1}, 4\mathfrak{d}_K)) \leq 5 \). Hence \(f = 0 \).

Comparing the Fourier coefficients of the both sides of \(\Theta(\zeta) \), we obtain the following:

Corollary 3.2. Let \(r_{2,K}(\nu) \) denote the number representing \(\nu \) as sums of two integer squares in \(K \). Let \(\mathfrak{S}_{0,\psi}^{\varphi} \) be as in \(\Theta(\zeta) \). Then

\[r_{2,K}(\nu) = 2\{6\sigma_{0,\chi_{24}}(\nu) + (\nu^2 - 5)\sigma_{0,\chi_{24}}^2(\nu) - 4\sigma_{0,\chi_{24}}^4(\nu/2) \} \quad (\nu \in \mathcal{O}_K, \nu \neq 0). \]

In other words, for \(\nu = a + b\sqrt{3} > 0 \), we have (i) \(r_{2,K}(\nu) = 0 \) if \(v_{p_2}(\nu) = 0 \) and \(b \) is odd, or if \(v_{p_2}(\nu) \) is odd, and (ii) \(r_{2,K}(\nu) = 4\sigma_{0,\chi_{24}}(\nu) \) if \(v_{p_2}(\nu) = 0 \) and \(b \) is even, or if \(v_{p_2}(\nu) = 2 \), and (iii) \(r_{2,K}(\nu) = 12\sigma_{0,\chi_{24}}(\nu) \) if \(2\sigma_{p_2}(\nu) \geq 4 \).

The following corollary is for later use, which is rather technical.

Corollary 3.3. (i) Assume that \(\nu \) is odd, and it is represented as a sum of two integer squares. Then \(x_1, x_2 \in \mathcal{O}_K \) satisfying \(x_1^2 + x_2^2 = \nu^2 \), are both even.

(ii) Assume that \(\nu > 0, v_{p_2}(\nu) \geq 4 \), and \(\nu \) is represented as a sum of two integer squares. Then there are \(x_1, x_2 \in \mathcal{O}_2 \) satisfying \(x_1^2 + x_2^2 = \nu \).
Proof. (i) Since \(\nu \) is represented as a sum of two squares, \(\rho_2(\nu) = 1 \). Then \(r_{2,K}(\pi^2_2 \nu) = 4\sigma_0,_{K}^\nu(\pi^2_2 \nu) = 4\sigma_0,_{K}^\nu(\nu) = r_{2,K}(\nu) \). Hence all the solutions of \(x^2_1 + x^2_2 = \pi^2_2 \nu \) is obtained by \(x_1 = \pi_2 x'_1, x_2 = \pi_2 x'_2 \) with \(x'^2_1 + x'^2_2 = \nu \), which shows the assertion.

(ii) Since \(\nu \) is represented as a sum of two squares, \(v_{p_2}(\nu) \) is even. Then \(r_{2,K}(\pi^2 v_{p_2}(\nu)) > 0 \). For solutions \(x'_1, x'_2 \) of \(x'^2_1 + x'^2_2 = \pi^2 v_{p_2}(\nu) \), \(x_1 = \pi_2 v_{p_2}(\nu)/2 - 1 \) and \(x_2 = \pi_2 v_{p_2}(\nu)/2 + 1 \) satisfy \(x'^2_1 + x'^2_2 = \nu \).

We derive from Corollary 3.3, the following result on sums of two integer squares in \(K \). Let \(p_l > 0 \) denote an odd prime element of \(\mathcal{O}_K \) with positive norm, and let \(q_j > 0 \) denote an odd prime element of \(\mathcal{O}_K \) with negative norm. We may assume that the coefficient of \(\sqrt{3} \) in \(p_l \) is even by multiplying by the fundamental unit \(\epsilon_0 \) if necessary. Then a totally positive integer \(\nu \) in \(\mathcal{O}_K \) has a prime factorization as \(\nu = \epsilon_0^l \pi^2_1 \nu_1 \cdots \pi^2_s \nu_s q_1^1 \cdots q_t^t \) with \(e + \sum_{1 \leq j \leq t} n_j \equiv 0 \pmod{2} \). Then the necessary and sufficient condition that \(\nu \) is expressed as a sum of two integers in \(K \), is that (I) \(e = 0 \) and \(k \equiv n_1 \equiv \cdots \equiv n_t \equiv 0 \pmod{2} \), or that (II) \(2e > 0 \) and \(n_1 \equiv \cdots \equiv n_t \equiv 0 \pmod{2} \). The number of representations is \(4 \prod_i (1 + m_i) \) for \(e = 0, 2 \), and it is \(12 \prod_i (1 + m_i) \) for \(e \geq 4, e \equiv 0 \pmod{2} \).

4. Quadratic extensions of \(\mathbb{Q}(\sqrt{3}) \)

Let \(\alpha \in \mathcal{O}_K \) be square-free and not necessarily totally positive, and let \(F = K(\sqrt{\alpha}) \). We denote by \(\psi, f_\alpha(= d_{F/K}) \) and \(\mathcal{O}_F \), the character associated the extension, the conductor of the extension and the relative different of \(F \) over \(K \) respectively. The norm map of \(F/K \) and the norm map of \(F/Q \) are denoted by \(N_{F/K} \) and \(N_F \) respectively. Let \(\chi_F := \chi_1 \circ N_F = \chi_1^3 \circ N_{F/K} \). We classify quadratic extensions by the congruence condition on \(\alpha \) as in Table 3, where we understand that \(\alpha \equiv 1 \pmod{4p_2} \) or \(\alpha \equiv 3 \pmod{4p_2} \) in Case (A) and so on.

Table 3. Quadratic extensions \(F = K(\sqrt{3}, \sqrt{\alpha}) \) of \(\mathbb{Q}(\sqrt{3}) \).

\(\alpha \equiv \mod{4p_2} \)	\(v_{p_2}(f_\alpha) \)	\(\mathcal{O}_F/K \)	\(p_2 \) at \(F \)
(A) \(1, 3 \)	0	\((\sqrt{\alpha})\)	split
(B) \(5, 7 \)	0	\((\sqrt{\alpha})\)	iner
(C) \(1 + 2\sqrt{3}, 3 + 2\sqrt{3} \mod{4} \)	2	\(\pi_2 \sqrt{\alpha}\)	rami
(C) \(\sqrt{3} \mod{2} \)	4	\(2\sqrt{\alpha}\)	rami
(D) \(1 + \sqrt{3} \mod{2} \)	5	\(2\sqrt{\alpha}\)	rami

Let \(\mathfrak{P}_2 \subset \mathcal{O}_F \) be the ideal with \(\mathfrak{P}^2_2 = p_2 \mathcal{O}_F \) in Cases (C), (C2) and (D). Then \(\chi_{F,4}^* \in C_{\mathcal{O}_F}^* \) in Cases (A) and (B), and \(\chi_{F,4}^* \in C_{\mathfrak{P}^2_2}^* \) in Cases (C), (C2) and (D). In either case, the conductor \(f_{\chi_{F,4}^*} \) is \(\mathcal{O}_F \). There holds

\[
\chi_{F,4}^{K}\psi_\alpha = \begin{cases}
\psi_\alpha^1 \mathfrak{P}_2 & \text{((A), (B))}, \\
\psi_{-\alpha} & \text{((C1), (C2), (D))}.
\end{cases}
\]

Let \(\chi_{F,4}^* \) be the primitive character associated with \(\chi_{F,4}^* \). Then \(\chi_{F,4}^* \in C_{\mathcal{O}_F}^* \), and \(\tau_F(\chi_{F,4}^*) = 1 \). In Cases (C), (C2) and (D), the value of \(\chi_{F,4}^* \) at \(\mathfrak{P}_2 \) is \(-1\). There holds

\[
L_F(s, \chi_{F,4}^*) = L_K(s, \chi_{F,4}^{K})L_K(s, \psi_\alpha)(1 - \psi_{-\alpha}(\mathfrak{P}_2)2^{-s}),
\]
(13) \[L_F(s, \chi_E^F) = L_K(s, \chi_K^F) L_K(s, \psi_{-\alpha}), \]

and hence \(L_F(0, \chi_E^F) \) equals \(2^{-3} L_K(0, \psi_{-\alpha}) \), and \(L_F(0, \chi_E^F) \) equals \(2 \times 3^{-1} \times L_K(0, \psi_{-\alpha}) \) in Case (A), 0 in Case (B), or \(3^{-1} L_K(0, \psi_{-\alpha}) \) in Case (C1), (C2) or (D). Let \(\psi, \psi' \) be as in the preceding section. Then \(f_0 \circ N_{F/K} = f_{\psi' \circ N_{F/K}} = (2) \) and \(\tau_F(\psi \circ N_{F/K}) = \tau_F(\psi' \circ N_{F/K}) = 4 \) in Cases (A) and (B), and \(f_0 \circ N_{F/K} = f_{\psi' \circ N_{F/K}} = \psi_2 \) and \(\tau_F(\psi \circ N_{F/K}) = \tau_F(\psi' \circ N_{F/K}) = 2 \) in Cases (C1), (C2) and (D).

Let \(\alpha \) be a totally positive square-free integer of \(K \). By (12), we have

\[
\mathcal{J}_{\alpha, \chi_K^4}(\theta(3)^{3}) = 3 \mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; O_K, O_K)) - 2^{-5} \mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; O_K, O_K))
\]

which is a Hilbert modular form of weight 2 for \(\Gamma_0(\mathcal{D}^{-1}, 2\mathcal{D}) \).

 Shimura lifts of products of the theta series and Eisenstein series are explicitly constructed in [8] Sect. 6, Sect. 7, which are essentially the restricts to the diagonal, of Hilbert-Eisenstein series on the field \(F \). Let \(\iota: \mathbb{H}^2 \to \mathbb{H}^2 \) be the diagonal map associated with the inclusion of \(K \) into \(F \). For a Hilbert modular form \(f(\overline{3}) (\overline{3} \in \mathbb{H}^2) \) on \(F \) of weight \(k \), \(f(\iota(\overline{3})) (\overline{3} \in \mathbb{H}^2) \) is a Hilbert modular form on \(K \) of weight \(2k \). We put

\[
\lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), O_K) := \begin{cases} \lambda_{\alpha, \chi_K^4}(\iota(\overline{3}), O_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(A), (B)}, \\ \lambda_{1, \chi_K^4}(\iota(\overline{3}), \mathcal{O}_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(C1), (C2), (D)}, \end{cases}
\]

\[
\lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), (2)) := \begin{cases} \lambda_{\alpha, \chi_K^4}(\iota(\overline{3}), \mathcal{O}_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(A), (B), (C1), (C2), (D)}, \\ \lambda_{1, \chi_K^4}(\iota(\overline{3}), \mathcal{O}_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(C1), (C2), (D)}, \end{cases}
\]

\[
\lambda_{\psi, \psi}(\overline{3}; (\alpha), O_K) := \begin{cases} \lambda_{\psi, \psi}(\iota(\overline{3}), O_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(A), (B), (C1), (C2), (D)}, \\ \lambda_{1, \chi_K^4}(\iota(\overline{3}), \mathcal{O}_F, \overline{\mathcal{D}}_{F/K}^{-1}) & \text{(C1), (C2), (D)}, \end{cases}
\]

In [8], \(\lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), O_K) \), \(\lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), O_K) \), \ldots, are denoted by \(\lambda_{\alpha, \chi_K^4}(\iota(\overline{3}), O_K, O_K, O_K) \), \(\lambda_{1, \chi_K^4}(\iota(\overline{3}), O_K, O_K, O_K) \), \ldots. We drop the last two ideals from the notation \(\lambda_{\alpha, \chi_K^4}(\iota(\overline{3}), O_K, O_K, O_K) \) and so on because they are always \(O_K \) in the present paper.

By [8], we have

\[
\mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; O_K, O_K)) = 2^2 \lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), O_K),
\]

\[
\mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; O_K, O_K)) = 2^{-2} \lambda_{\alpha, \chi_K^4}(\overline{3}; (\alpha), O_K),
\]

\[
\mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; (2), O_K)) = \lambda_{2, \alpha, \chi_K^4}(\overline{3}; (\alpha), (2))
\]

and

\[
\mathcal{J}_{\alpha, \chi_K^4}(\theta(3)G_{1, \chi_K^4}(\overline{3}; O_K, O_K)) = \lambda_{\psi, \psi}(\overline{3}; (\alpha), O_K).
\]
We can obtain the values at cusps of Eisenstein series on F by (7) and (9), which are all rational multiples of $L_F(0, \chi^2_{E})$, and hence we obtain the values at cusps of $\lambda_{2, \chi^4}(\alpha; O_K)$, $\lambda_{2, \psi}^{(1)}(\alpha; O_K)$, $\lambda_{2, \psi}^{(2)}(\alpha; O_K)$ and $\lambda_{2, \psi}^{(3)}(\alpha; O_K)$ by using Lemma 8.2. Then the equation (14) gives the values at cusps of $\mathcal{S}_{a, \chi^4}(\theta(3)^2)$ as in Table 4.

Table 4. Values of $L_F(0, \chi^2_{E})^{-1} \mathcal{S}_{a, \chi^4}(\theta(3)^2)$ at cusps in $C_0(2)$.

$C_0(2)$	$\frac{1}{4\sqrt{3}}$	$\frac{1}{2\pi_2\sqrt{3}}$	$\frac{1}{2\pi_1\sqrt{3}}$
$\mathcal{S}_{a, \chi^4}(\theta(3)^2)$	3	3	2 $^{-3/2}$
$L_F(0, \chi^2_{E})$	0	0	2^{-32}
	2 $^{-3}$	2 $^{-13}$	2 $^{-13}$
	2 $^{-3}$	2 $^{-13}$	2 $^{-13}$

5. **Sums of three squares in $Q(\sqrt{3})$**

The Hilbert modular surface of the group $\Gamma_0(\mathcal{O}^{-1}_{K}, 2\mathcal{O}_K)$ is a blown up K3 surface (see van der Geer [2] Chap. VII), dim $\mathcal{S}_2(\Gamma_0(\mathcal{O}^{-1}_{K}, 2\mathcal{O}_K))$ is one dimensional. The cusp form $\Xi(\gamma)$ of (11) is a generator of the space $\mathcal{S}_2(\Gamma_0(\mathcal{O}^{-1}_{K}, 2\mathcal{O}_K))$. By (2) and (8), and by using $\zeta(-1) = 1/6$ and $L(-1, \chi_{12}) = -2$, the the values at cusps of Eisenstein series $G_2(\gamma; O_K, O_K)$, $G_{2,1_{\nu_2}}(\gamma; O_K, O_K)$, $G_{2,1_{\nu_2}}(\gamma; p_2, O_K)$ are obtained as in Table 5. From the table we see that these three Eisenstein series are linearly independent, and hence $M_2(\Gamma_0(\mathcal{O}^{-1}_{K}, 2\mathcal{O}_K)) = \langle G_2(\gamma; O_K, O_K), G_{2,1_{\nu_2}}(\gamma; O_K, O_K), G_{2,1_{\nu_2}}(\gamma; p_2, O_K) \rangle, \Xi(\gamma) \rangle$.

Table 5. Values at cusps, of Eisenstein series of weight 2.

$C_0(2)$	$\frac{1}{4\sqrt{3}}$	$\frac{1}{2\pi_2\sqrt{3}}$	$\frac{1}{2\pi_1\sqrt{3}}$
$G_2(\gamma; O_K, O_K)$	2 $^{-13}$	2 $^{-13}$	2 $^{-13}$
$G_{2,1_{\nu_2}}(\gamma; O_K, O_K)$	2 $^{-13}$	2 $^{-13}$	2 $^{-13}$
$G_{2,1_{\nu_2}}(\gamma; p_2, O_K)$	2 $^{-13}$	2 $^{-13}$	2 $^{-13}$

Let $r_{3,K}(\nu)$ denote the number of representations of ν as sums of three integer squares in K. Then $\theta(3)^3$ is a generating function of $r_{3,K}(\nu)$’s, namely $\theta(3)^3 = 1 + \sum_{\nu \neq 0} r_{3,K}(\nu)e(\text{tr}(\nu))$. Let α be a totally positive square-free integer in K. The Shimura lift $\mathcal{S}_{a, \chi}(\theta(3)^3)$ is in $M_2(\Gamma_0(\mathcal{O}^{-1}_{K}, 2\mathcal{O}_K))$, and by Table 3 and Table 5 it is equal to $3^2 L_F(0, \chi_{E}^F) \{3G_2(\gamma; O_K, O_K) + G_{2,1_{\nu_2}}(\gamma; O_K, O_K) + c_{\alpha}\Xi(\gamma) \}$ in Case (A), $3^2 L_F(0, \chi_{E}^F) \{G_2(\gamma; O_K, O_K) + G_{2,1_{\nu_2}}(\gamma; O_K, O_K) + c_{\alpha}\Xi(\gamma) \}$ in Case (B), $3^2 L_F(0, \chi_{E}^F) \{G_2(\gamma; O_K, O_K) + G_{2,1_{\nu_2}}(\gamma; O_K, O_K) + c_{\alpha}\Xi(\gamma) \}$ in Case (C), and $2^{-13/2} L_F(0, \chi_{E}^F) \{G_2(\gamma; O_K, O_K) - G_{2,1_{\nu_2}}(\gamma; O_K, O_K) + c_{\alpha}\Xi(\gamma) \}$ in Cases (C2) and (D) where c_{α} is a constant depending only on α.

Lemma 5.1. In all cases, $c_{\alpha} = 0$.

Proof. We note that the Fourier coefficient of $\Xi(\gamma)$ for $\nu = 1$ is 1 and that for $\nu = \varepsilon_0$ is -1 by (11). At first we consider Case (C2) or (D). In this case the coefficient of $\sqrt{3}$ in α is odd, and hence α can not be represented as a sum of squares. Comparing the Fourier coefficients of the equality before the lemma, we have $r_{3,K}(\alpha) = c_{\alpha}$ since...
the Fourier coefficient for $\nu = 1$, of $G_2(\mathcal{O}_K, \mathcal{O}_K) - G_{2,1_{p_2}}(\mathcal{O}_K, \mathcal{O}_K)$ vanishes. Then $c_\alpha = 0$.

Next, we consider Case (A). Comparing the Fourier coefficients of the both sides of the equality $\mathcal{S}_{\alpha, \chi_{K_4}}(\theta(\mathcal{O}^3)) = 3^2 L_F(0, \chi_{F_4}) \{3 G_2(\mathcal{O}_K, \mathcal{O}_K) + G_{2,1_{p_2}}(\mathcal{O}_K, \mathcal{O}_K)\} + c_\alpha \mathcal{Z}(\mathcal{O})$ for $\nu = 1$ and for $\nu = \varepsilon_0$, we obtain $r_{3,K}(\alpha) = 2^4 3^2 L_F(0, \chi_{F_4}) + c_\alpha$ and $r_{3,K}(\varepsilon_0^2 \alpha) = 2^4 3^2 L_F(0, \chi_{F_4}) - c_\alpha$. However obviously the equality $r_{3,K}(\alpha) = r_{3,K}(\varepsilon_0^2 \alpha)$ holds, and hence $c_\alpha = 0$. The similar argument shows the assertion also in the rest of cases.

Corollary 5.2. The Shimura lift $\mathcal{S}_{\alpha, \chi_{K_4}}(\theta(\mathcal{O}^3))$ is equal to

$$3^2 L_F(0, \chi_{F_4}) \{3 G_2(\mathcal{O}_K, \mathcal{O}_K) + G_{2,1_{p_2}}(\mathcal{O}_K, \mathcal{O}_K)\} \quad \text{(A)},$$

$$3^2 L_F(0, \chi_{F_4}) \{G_2(\mathcal{O}_K, \mathcal{O}_K) + G_{2,1_{p_2}}(\mathcal{O}_K, \mathcal{O}_K)\} \quad \text{(B)},$$

$$3^2 L_F(0, \chi_{F_4}) G_2(\mathcal{O}_K, \mathcal{O}_K) \quad \text{(C)},$$

$$2^{-1} 3^2 L_F(0, \chi_{F_4}) \{G_2(\mathcal{O}_K, \mathcal{O}_K) - G_{2,1_{p_2}}(\mathcal{O}_K, \mathcal{O}_K)\} \quad \text{(D)}.$$

Since $\mathcal{S}_{\alpha, \chi_{K_4}}(\theta(\mathcal{O}^3)) = C + \sum_{\delta | \nu \delta \mathcal{O}_K^\mathcal{K}} \sum_{\sigma_0, \sigma_1 \mathcal{O}_K^\mathcal{K}} (\psi - \alpha \mathcal{O}_K^\mathcal{K}) (\sigma_3, K(\alpha(\nu/\delta)^2)) \times \mathbb{E} (\nu_0^2)$, with a constant C, comparing the terms corresponding to ν, of the both sides of equations in Corollary 5.2, we have for $\nu > 0$,

$$\sum_{\sigma_0, \sigma_1 \mathcal{O}_K^\mathcal{K}} (\psi - \alpha \mathcal{O}_K^\mathcal{K}) (\sigma_3, K(\alpha(\nu/\delta)^2)) \times \mathbb{E} (\nu_0^2) = 2^2 3^2 L_F(0, \chi_{F_4}) \times \begin{cases} 3 \sigma_1(\nu) + \sigma_{1,1_{p_2}}(\nu) \quad \text{(A)}, \\ \sigma_1(\nu) + \sigma_{1,1_{p_2}}(\nu) \quad \text{(B)}, \\ \sigma_1(\nu) - \sigma_{1,1_{p_2}}(\nu) \quad \text{(C)}, \\ 2^{-1} \{\sigma_1(\nu) - \sigma_{1,1_{p_2}}(\nu)\} \quad \text{(D)}. \end{cases}$$

By (11), $L_F(0, \chi_{F_4}) = 2^{-1} 3^2 L_F(0, \psi - \alpha)$, and there holds $L_F(0, \psi - \alpha) = \frac{2^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})}{\varepsilon_0^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})}$, where $\varepsilon_0^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ and $\mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ denote the number of units in $K(\sqrt{-\alpha})$ and the relative class number respectively. Here the relative class number is just the class number of $K(\sqrt{-\alpha})$ since K is of class number 1. If square-free $\alpha > 0$ is not a unit, then $\varepsilon_0^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 2 and $\mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 1. For $\alpha = 1$, $\varepsilon_0^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 12 and $\mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 2, and for $\alpha = \varepsilon_0$, $\varepsilon_0^2 \mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 2 and $\mathcal{H}_K(\sqrt{-\alpha}) \mathcal{Z}(\mathcal{O})$ is 2. Thus $L_F(0, \chi_{F_4})$ is equal to $2^{-2} 3^2 h_K(\sqrt{-\alpha})$ for $\alpha = 1$, $2^{-1} 3^2 h_K(\sqrt{-\alpha})$ for $\alpha = \varepsilon_0$, and $3^{-1} h_K(\sqrt{-\alpha})$ for α non-unit. If ν is a product of totally positive prime elements, by using the Möbius inversion formula on K, it is shown that for square-free $\alpha \neq \varepsilon_0^2 > 0$, $r_{3,K}(\alpha \nu^2)$ is equal to $2^2 3^2 h_K(\sqrt{-\alpha})$ times the following:

$$\sum_{0 < \delta | \nu \delta \mathcal{O}_K \mathcal{E}_K} (\psi - \alpha \mathcal{O}_K^\mathcal{K}) (\delta) \{3 \sigma_1(\nu/\delta) + \sigma_{1,1_{p_2}}(\nu/\delta)\} \quad \text{(A)},$$

$$\sum_{0 < \delta | \nu \delta \mathcal{O}_K \mathcal{E}_K} (\psi - \alpha \mathcal{O}_K^\mathcal{K}) (\delta) \{\sigma_1(\nu/\delta) + \sigma_{1,1_{p_2}}(\nu/\delta)\} \quad \text{(B)},$$

$$\sum_{0 < \delta | \nu \delta \mathcal{O}_K \mathcal{E}_K} (\psi - \alpha \mathcal{O}_K^\mathcal{K}) (\delta) \sigma_1(\nu/\delta) \quad \text{(C)}. $$
Theorem 5.3. Let $K = \mathbb{Q}(\sqrt{3})$.

(i) A totally positive integer $a + b\sqrt{3}$ $(a, b \in \mathbb{Z})$ is represented as a sum of three squares in K if and only if b is even.

(ii) Let α be a totally positive square-free integer in K which is not a unit. We classify α as in Table 3. Then the class number of $K(\sqrt{-\alpha})$ is given by

$$2^{-1} \sum_{0<\delta | \nu, \delta \in \mathcal{O}_K/\mathcal{E}_K} (\psi_{-\alpha}1_{p_2\mathcal{H}K})(\delta)\{\sigma_1(\nu/\delta) - \sigma_{1,1_{p_2}}(\nu/\delta)\} = (2), (D),$$

where σ_1 and $\sigma_{1,1_{p_2}}$ being as in (5). Further for $\alpha = 1, \varepsilon_0$ and for a product ν of totally positive primes,

$$r_{3, K}(\nu^2) = h_{K(\sqrt{-\varepsilon_0})} \sum_{0<\delta | \nu, \delta \in \mathcal{O}_K/\mathcal{E}_K} (\psi_{-\alpha}1_{p_2\mathcal{H}K})(\delta)\{3\sigma_1(\nu/\delta) + \sigma_{1,1_{p_2}}(\nu/\delta)\},$$

$$r_{3, K}(\varepsilon_0\nu^2) = 3h_{K(\sqrt{-\varepsilon_0})} \sum_{0<\delta | \nu, \delta \in \mathcal{O}_K/\mathcal{E}_K} (\psi_{-\alpha_0}1_{p_2\mathcal{H}K})(\delta)\{\sigma_1(\nu/\delta) - \sigma_{1,1_{p_2}}(\nu/\delta)\},$$

where $h_{K(\sqrt{-\varepsilon_0})} = 1$ and $h_{K(\sqrt{-\varepsilon_0})} = 2$.

Proof. (i) The necessity is obvious, and only the sufficiency is to be proved. We can write as $a + b\sqrt{3} = \alpha \nu^2$ for α square-free. If α satisfies (A), (B) or (C), then $r_{3, K}(\alpha) > 0$ by the formulas before Theorem. Then $r_{3, K}(\alpha \nu^2) > 0$ for any $\nu \in \mathcal{O}_K$.

Suppose that α satisfies (C) or (D). If ν is odd, then $\nu^2 \equiv 1 \pmod{2}$ and b is odd, which contradicts to our assumption. Hence ν must be in p_2, and $\alpha \nu^2$ is a product of $\pi_2^2 \alpha$ and some integer square. To prove $r_{3, K}(\alpha \nu^2) > 0$, it is enough to show $r_{3, K}(\pi_2^2 \alpha) > 0$. By (15) in Cases (D) and (D), there holds

$$r_{3, K}(\pi_2^2 \alpha) = 2^23^2h_{K(\sqrt{-\varepsilon_0})} > 0,$$

and there are $x_1, x_2, x_3 \in \mathcal{O}_K$ satisfying $x_1^2 + x_2^2 + x_3^2 = \pi_2^2 \alpha$. At least one of x_i’s is even, say x_3. If $v_{p_2}(x_3) = 1$, then putting $x_3 = \pi_2x_3'$, there holds $x_1^2 + x_2^2 = \pi_2^2(\pi_2^2 \alpha - x_2^2)$ with $\rho_2(\pi_2^2 \alpha - x_2^2) = 1$. Then by Corollary 3.3 (i), both of x_1, x_2 are even, and hence $r_{3, K}(\pi_2^2 \alpha) > 0$. If $x_3 = 0$ or $v_{p_2}(x_3) \geq 2$, then there are even x_1, x_2 by Corollary 3.3 (ii), and hence $r_{3, K}(\pi_2^2 \alpha) > 0$.

The assertion (ii) is obtained from formulas before the theorem and from (16) since $\pi_2^2 = 4z_3^2$.

Remark 5.4. A formula for the left hand side of (15) in case $N(\nu) < 0$ is obtained by using the theta lifts of $\theta_{\alpha^{-1}}(j) = \sum_{\mu \in \mathbb{R}_K} e(\text{tr}(\mu^2 \nu^2))$. We omit the argument because it is not necessary to show Theorem 5.3.

6. Hilbert modular forms on $\mathbb{Q}(\sqrt{17})$

Let $K = \mathbb{Q}(\sqrt{17})$. Then $\mathfrak{o}_K = (\sqrt{17})$, and the class number of K is 1. We put $\omega := (1 + \sqrt{17})/2$ and $\omega' := (1 - \sqrt{17})/2$. Let $\varepsilon_0 := 3 + 2\omega$ be a fundamental unit, which has a negative norm. Put $\pi_2 := 2 + \omega$, $\pi_2' := 2 + \omega'$, $\epsilon_2 := (\pi_2')$. Then the ideal (2) is decomposed as $\langle 2 \rangle = \mathfrak{p}_2\mathfrak{p}_2'$ in K. Let $\chi_{14}^{\mathfrak{p}_2} := \chi_{-\delta} \circ N \in C_{14}^*$, whose conductor $f_{14}^{\mathfrak{p}_2}$ is (4). Let ρ_2 be the unique nontrivial ideal class character
in \(\mathcal{O}_K^* \), and let \(\rho'_2 \) be the unique nontrivial ideal class character in \(\mathcal{O}_K^* \). Then \(f_{\rho_2} = p_2^2, f_{\rho'_2} = p_2^2 \) and

\[
\chi_{K_4}^{-1} = \rho_2 \rho'_2.
\]

For \(a, b \in \mathbb{Z} \), we have \(\rho_2((a + b\omega)) = \text{sgn}(a + b\omega)\chi_{-4}(a), \rho'_2((a + b\omega)) = \text{sgn}(a + b\omega)\chi_{-4}(a + b) \), and \(e_{\rho_2} = (0, 1), e_{\rho'_2} = (1, 0) \). Further \(\rho_2(p_2) = -1, \rho'_2(p_2) = -1, \tau_K(\chi_{K_4}^{-1}) = -4, \tau_K(\rho_2) = \tau_K(\rho'_2) = 2\sqrt{-1}, L_K(0, \chi_{K_4}^{-1}) = 2 \).

The set \(C_0(4) \) of representatives of cusps of \(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K) \) is taken as

\[
C_0(4) = \{ \frac{1}{4\sqrt{17}}, \frac{1}{2\pi_2\sqrt{17}}, \frac{1}{2\pi_2\sqrt{17}}, \frac{1}{2\sqrt{17}}, \frac{1}{2\pi_2\sqrt{17}}, \frac{1}{\pi_2\sqrt{17}}, \frac{1}{\pi_2\sqrt{17}} \}
\]

and the set \(C_0(2) \) of representatives of cusps of \(\Gamma_0(\mathcal{O}_K^{-1}, 2\mathcal{O}_K) \) is taken as

\[
C_0(2) = \{ \frac{1}{4\sqrt{17}}, \frac{1}{2\pi_2\sqrt{17}}, \frac{1}{\pi_2\sqrt{17}}, \frac{1}{\pi_2\sqrt{17}} \}.
\]

The square \(\theta(\mathfrak{z})^2 \) of the theta series is a Hilbert modular form for \(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K) \) of weight 1 with character \(\chi_{K_4}^{-1} \), and it takes the values at cusps as in Table 6.

Table 6. Values of \(\theta(\mathfrak{z})^2 \) at cusps.

\(\theta(\mathfrak{z})^2 \)	1	0	0	0	2 \(\sqrt{-1} \)	2 \(\sqrt{-1} \)	1
\(C_0(4) \)	0	0	0	0	0	0	2 \(\sqrt{-1} \)
\(\mathfrak{z} \in \mathbb{Z} \)	0	0	0	0	0	0	0

By \(7 \) and \(8 \), and by \(L_K(0, \chi_{K_4}^{-1}) = 2 \), the values at cusps of Eisenstein series \(G_{1,\chi_{K_4}^{-1}}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K), G_{1,\rho_2}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K) \in \mathbb{M}_1(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K), \chi_{K_4}^{-1}) \) are obtained as in Table 7.

Table 7. Values at cusps, of Eisenstein series of weight 1.

\(\mathfrak{z} \in \mathbb{Z} \)	1	0	0	0	0	0	0	2 \(\sqrt{-1} \)
\(G_{1,\chi_{K_4}^{-1}}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K) \)	2	0	0	0	0	0	0	2 \(\sqrt{-1} \)
\(G_{1,\rho_2}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K) \)	0	0	0	0	0	0	0	0

The product of these Eisenstein series is a cusp form of weight 2, since it vanishes at all the cusps. Put \(\Phi(\mathfrak{z}) := 2^{-3}G_{1,\chi_{K_4}^{-1}}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K)G_{1,\rho_2}(\mathfrak{z}; \mathcal{O}_K, \mathcal{O}_K) \), and put \(\Xi(\mathfrak{z}) := 3^{-1}U(2)(\Phi(\mathfrak{z})) \) which is in \(\mathbb{S}_2(\Gamma_0(\mathcal{O}_K^{-1}, 2\mathcal{O}_K)) \). The first several Fourier coefficients of \(\Phi(\mathfrak{z}), \Xi(\mathfrak{z}), U(\mathfrak{z}_2)(\Phi(\mathfrak{z})), U(\mathfrak{z}_2')(\Phi(\mathfrak{z})), \Xi(2\mathfrak{z}) \) are as in Table 8 where for example we read the second row as \(\Phi(\mathfrak{z}) = e(\text{tr}(\mathfrak{z})) + 3e(\text{tr}(2\mathfrak{z})) - e(\text{tr}(\mathfrak{z}_2')) + 2e(\text{tr}(3\mathfrak{z})) - e(\text{tr}(3\omega\mathfrak{z}_3)) - e(\text{tr}(3\omega\mathfrak{z}_3 + \mathfrak{z})) + 3e(\text{tr}(4\mathfrak{z})) + \cdots \).

Table 8. Fourier coefficients of cusp forms of weight 2.

\(\mathfrak{z} \)	1	2	\(\pi'_2 \)	\(\pi_2 \)	3 + \(\omega' \)	3 + \(\omega \)	4
\(\Phi(\mathfrak{z}) \)	1	3	-1	-1	2	-1	-1
\(\Xi(\mathfrak{z}) \)	1	1	-1	-1	2	-1	-1
\(U(\mathfrak{z}_2)(\Phi(\mathfrak{z})) \)	-1	-3	3	1	2	1	3
\(U(\mathfrak{z}_2')(\Phi(\mathfrak{z})) \)	-1	-3	1	3	2	3	1
\(\Xi(2\mathfrak{z}) \)	0	1	0	0	0	0	1
The group $\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K)$ acts freely on \mathcal{S}^2, and hence the arithmetic genus of a nonsingular model of the compactified Hilbert modular surface for $\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K)$ is obtained from the volume of the fundamental domain and from the contributions from cusps (van der Geer [2]). It is computed to be 6, and hence $\dim S_2(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K)) = 5$. We see that cusp forms in Table 5 are linearly independent only by looking at the first five Fourier coefficients. This shows that $S_2(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K)) = \langle \Phi(\lambda), \Xi(\lambda), U(\pi_2)(\Phi(\lambda)), U(\pi_2')(\Phi(\lambda)), \Xi(2\lambda) \rangle$, and that a cusp form in $S_2(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K))$ vanishes identically if its first five Fourier coefficients are all 0.

Lemma 6.1. The following equality holds:

$$
\theta(\lambda)^2 = 2^{-1}G_{1,\chi_{\mathbb{A}}}(\lambda; \mathcal{O}_K, \mathcal{O}_K) + 2^{-1}G''_{1,\rho}(\lambda; \mathcal{O}_K, \mathcal{O}_K).
$$

Proof. Let f be a Hilbert modular form given as the left hand side minus the right hand side of the equation (17). It is a cusp form from Table 6 and from Table 7. As easily checked, the first four Fourier coefficients of f are all 0, and hence so are the first five Fourier coefficients of $f^2 \in S_2(\Gamma_0(\mathcal{O}_K^{-1}, 4\mathcal{O}_K))$. Then $f^2 = 0$, and $f = 0$. \hfill \Box

Corollary 6.2. For $\nu \in \mathcal{O}_K, > 0$, there holds

$$
r_{2,K}(\nu) = 2\sigma_{0,\chi_{\mathbb{A}}}(\nu) + 2\sigma_{0,\rho_2}(\nu).
$$

In considering a prime factorization in K, we may assume that prime elements are totally positive since a fundamental unit has a negative norm. Let $p_i \in K$ be a totally positive prime element congruent to 1 (mod 4), $q_j \in K$ be a totally positive prime element congruent to 3 (mod 4), and let $r_k \in K$ be a totally positive prime element congruent to $\sqrt{17}$ or to $2 + \sqrt{17}$ modulo 4. Then a totally positive ν has a prime factorization $\nu = e^2_0 \pi_{2}^{e_2} p_1^{b_1} \cdots p_r^{b_r} q_1^{c_1} \cdots q_u^{c_u} \nu'$. Then by Corollary 6.2, it is expressed as a sum of two integer squares if and only if $e + e' + \sum b_j \equiv c_1 \equiv \cdots \equiv c_u$ (mod 2). The number of representations is given by $4 \prod (1+a_i) \prod (1+b_j)$.

7. Quadratic Extensions of $\mathbb{Q}(\sqrt{17})$

Let $\alpha \in \mathcal{O}_K$ be square-free and not necessarily totally positive, and let $F = K(\sqrt{\alpha})$. We denote by v_0, f_0, the character associated the extension, the conductor of the extension. Let $\chi_{\mathbb{Q}} F := \chi_{\mathbb{Q}} \circ \mathcal{N}_F$. We classify quadratic extensions by the congruence conditions on α modulo some powers of p_2 and modulo some powers of p_2' as in Table 9.

$\alpha \equiv$	$v_{p_2}(f_0)$	p_2 at F	$\alpha' \equiv$	$v_{p_2'}(f_0)$	p_2' at F
(A) 1 (mod p_2^2)	0	split	(A') 1 (mod p_2^2)	0	split
(B) 5 (mod p_2^2)	0	inert	(B') 5 (mod p_2^2)	0	inert
(C_A) 7 (mod p_2^2)	2	ramify	(C_A') 7 (mod p_2^2)	2	ramify
(C_B) 3 (mod p_2^2)	2	ramify	(C_B') 3 (mod p_2^2)	2	ramify
(D) 2 (mod p_2^2)	3	ramify	(D') 2 (mod p_2^2)	3	ramify

If α satisfies both (A) and (A'), then we say that α is in Case (AA'). It is similar for (AB'), (AC' A'), and so on.
Let ρ_2, ρ_2' be as in the preceding section. Put $\rho_2^F := \rho_2 \circ N_{F/K}, \rho_2'^F := \rho_2' \circ N_{F/K}$. Then since $\chi^K_E = \rho_2 \rho_2'$, we have $\chi^E_4 = \rho_2^F \rho_2'^F$ and $\overline{\chi}_E^4 = \overline{\rho_2^F} \overline{\rho_2'^F}$. The conductors of $\rho_2^F, \rho_2'^F$ and their values of Gauss sums are given as in Table [10] where $\mathfrak{p}_2, \mathfrak{p}_2'$ denote prime ideals in F with $\mathfrak{p}_2^2 = p_2, \mathfrak{p}_2'^2 = p_2'$ respectively.

Table 10. Conduets and Gauss sums of $\rho_2^F, \rho_2'^F$.
$f_{\rho_2^F}$

(A)
(B)
(C_A)
(C_B)
(D)

We have $f_{\rho_2^F} = f_{\rho_2^F} f_{\rho_2'^F}$. The equality $\tau_F(\overline{\chi}_E^4) = \tau_F(\overline{\rho_2^F}) \tau_F(\overline{\rho_2'^F})$ holds, since $f_{\rho_2^F}, f_{\rho_2'^F}$ are squares in \mathcal{O}_F and since $\rho_2^F, \rho_2'^F$ are real characters. We have

$$
\chi^K_4 \psi_\alpha = \begin{cases}
\psi_{-\alpha}^1 \mathbf{1}_2 & (C_A C_A') \backslash (C_A C_B') \backslash (C_B C_A'), \\
\psi_{-\alpha}^1 \mathbf{1}_{p_2} & (C_A X), (C_B X') \text{ with } X' \neq C_A', C_B', \\
\psi_{-\alpha}^1 \mathbf{1}_{p_2'} & (X C_A'), (X C_B') \text{ with } X \neq C_A, C_B, \\
\psi_{-\alpha}^1 & \text{(otherwise)},
\end{cases}
$$

and

$$
L_F(s, \chi^K_4) = L_K(s, \chi^K_4) L_K(s, \psi_{-\alpha})(1 - \psi_{-\alpha}(p_2) 2^{-s})(1 - \psi_{-\alpha}(p_2') 2^{-s}),
$$

(18)

In particular $L_F(0, \chi^K_4) = 0$ in Case (C_A) or (C_A'). The standard argument shows the following lemma, and we omit the proof.

Lemma 7.1. (i) If $\nu \equiv 7 \pmod{p_2^2}$ or $\nu \equiv 7 \pmod{p_2'^2}$, then $r_{3, K}(\nu) = 0$.

(ii) The equalities $r_{3, K}(\pi_2^2 \nu) = r_{3, K}(\nu)$ and $r_{3, K}(\pi_2'^2 \nu) = r_{3, K}(\nu)$ hold.

In the following argument we exclude Cases (C_A) and (C_A') because of Lemma 7.1 (i).

Let α be a totally positive square-free integer in K. By (12), we have

$$
\mathcal{J}_{\alpha, \chi^K_4}(\theta(\bar{\alpha})) = 2^{1} \mathcal{J}_{\alpha, \chi^K_4}(\theta(\bar{\alpha}) G_1 \chi^K_4(\bar{\alpha}; \mathcal{O}_K, \mathcal{O}_K)) + 2^{1} \mathcal{J}_{\alpha, \chi^K_4}(\theta(\bar{\alpha}) G_1 \chi^K_4(\bar{\alpha}; \mathcal{O}_K, \mathcal{O}_K)),
$$

which is a Hilbert modular forms of weight 2 for $\Gamma_0(\mathfrak{d}_K^{-1}, \mathfrak{d}_K)$. Let $\iota: \mathfrak{h}^2 \rightarrow \mathfrak{h}^4$ be the diagonal map associated with the inclusion of K into F. We put

$$
\lambda_{2, \chi^K_4}(\bar{\alpha}; \mathcal{O}_K) = \begin{cases}
U(2)(G_1 \chi^K_4(\iota(\bar{\alpha}); \mathcal{O}_F, \mathfrak{d}_F^{-1})) & (AA'), (AB'), (BA'), (BB') \\
U(\tau_2)(G_1 \chi^K_4(\iota(\bar{\alpha}); \mathcal{O}_F, \mathfrak{d}_F^{-1})) & (AC_B'), (AD'), (BC_B'), (BD') \\
U(\tau_2')(G_1 \chi^K_4(\iota(\bar{\alpha}); \mathcal{O}_F, \mathfrak{d}_F^{-1})) & (C_B A'), (C_B B'), (DA'), (DB') \\
G_1 \chi^K_4(\iota(\bar{\alpha}); \mathcal{O}_F, \mathfrak{d}_F^{-1}) & \text{(otherwise)}
\end{cases}
$$
and
\[
\begin{align*}
\lambda_{\rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_K) := \\
U(2)(G_{\rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_F, \mathcal{O}_F^{-1})) \\
U(\pi_2)(G_{\rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_F, \mathcal{O}_F^{-1})) \\
U(\pi_2')(G_{\rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_F, \mathcal{O}_F^{-1})) \\
G_{1, \rho_2}'(\delta; (\alpha), \mathcal{O}_F, \mathcal{O}_F^{-1})
\end{align*}
\]

By [8], we have \(\mathcal{S}_{\alpha, \lambda^2} \mathcal{F}(\delta; (\alpha), \mathcal{O}_K) = 2^{-\lambda_{2, \rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_K)} \), \(\mathcal{S}_{\alpha, \lambda^2} \mathcal{F}(\delta; (\alpha), \mathcal{O}_K) = 2^{-\lambda_{2, \rho_2}^\varepsilon(\delta; (\alpha), \mathcal{O}_K)} \).

By (7) and (8), and by using the fact \(\mathcal{S}_{\alpha, \lambda^2} \mathcal{F}(\delta; (\alpha), \mathcal{O}_K) \) has a fundamental unit with negative norm, the arithmetic genus of a compactified Hilbert modular surface for \(\mathcal{S}_{\alpha, \lambda^2} \mathcal{F}(\delta; (\alpha), \mathcal{O}_K) \) is obtained from the volume of fundamental domain and from contributions from elliptic singularities of \(\mathcal{S}_{\alpha, \lambda^2} \mathcal{F}(\delta; (\alpha), \mathcal{O}_K) \).

8. Sums of three squares in \(\mathbb{Q}(\sqrt{3}) \), and in \(\mathbb{Q}(\sqrt{17}) \)

The group \(\Gamma_0(\mathfrak{o}_K^{-1}, 2\mathfrak{d}_K) \) has 4 elliptic fixed points on \(\Gamma_0(\mathfrak{o}_K^{-1}, 2\mathfrak{d}_K) \) of \(\mathcal{S}_2 \), which are all of order 2. Since \(K \) has a fundamental unit with negative norm, the arithmetic genus of a compactified Hilbert modular surface for \(\Gamma_0(\mathfrak{o}_K^{-1}, 2\mathfrak{d}_K) \) is obtained from the volume of fundamental domain and from contributions from elliptic singularities, and it is computed to be 2, and hence \(\dim \mathcal{S}_2(\Gamma_0(\mathfrak{o}_K^{-1}, 2\mathfrak{d}_K)) = 1 \).

By (7) and (8), and by using the fact \(\zeta_K(-1) = 1/3 \) and \(L(-1, \chi_{17}) = -4 \), the values at cusps, of Eisenstein series \(G_2(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K) \) are given as in Table 13. The table shows that these Eisenstein series are linearly independent, and \(\mathcal{M}(\Gamma_0(\mathfrak{o}_K^{-1}, 2\mathfrak{d}_K)) = \langle G_2(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K), G_{2,1,\rho_2}(z; \mathcal{O}_K, \mathcal{O}_K), \rangle \).
Let α be a totally positive square-free integer in K. The Shimura lift $S_{\alpha,\chi_3}(\theta(3))$ is in $M_2(\Gamma_0(3^2, 29K))$, and by Table 12 and Table 13 it is equal to $2^{-3}3L_F(0, \chi_3^-) \times G_{2,16}(j; \mathcal{O}_K, \mathcal{O}_K) + c_0\Xi(j)$ in Case (E), $2^{-2}3L_F(0, \chi_3^-)G_{2,16}(j; \mathcal{O}_K, \mathcal{O}_K) + c_0\Xi(j)$ in Case (F), and $2^{-1}3L_F(0, \chi_3^-)G_{2,16}(j; \mathcal{O}_K, \mathcal{O}_K) + c_0\Xi(j)$ in Case (G) where c_0 is a constant depending only on α.

Lemma 8.1. In all cases, c_0 is 0.

Proof. We consider the case (E). We note that the Fourier coefficients of $\Xi(j)$ for $\nu = 1$ and for $\nu = \pi_2$ are 1 and -1 respectively by Table 8. Comparing the Fourier coefficients of the equality $S_{\alpha,\chi_3}(\theta(3)) = 2^{-3}3L_F(0, \chi_3^-)G_{2,16}(j; \mathcal{O}_K, \mathcal{O}_K) + c_0\Xi(j)$ for $\nu = 1$ and for $\nu = \pi_2$, we have $r_{3,K}(\alpha) = 2^{-1}3L_F(0, \chi_3^-) + c_0$ and $r_{3,K}(\pi_2) = 2^{-1}3L_F(0, \chi_3^-) - c_0$. Then Lemma 7.1 (ii) leads to $c_0 = 0$. The similar arguments show the assertion also in the rest of cases.

Corollary 8.2. The Shimura lift $S_{\alpha,\chi_3}(\theta(3))$ is equal to

$$ S_{\alpha,\chi_3}(\theta(3)) = 2^{-3}3cL_F(0, \chi_3^-)G_{2,16}(j; \mathcal{O}_K, \mathcal{O}_K) $$

where $c = 1$ in Case (E), $c = 2$ in Case (F), and $c = 2^2$ in Case (G).

By (13), $L_F(0, \chi_3^-) = 2L_K(0, \psi_\alpha)$. Let $h_{K(\sqrt{-\alpha})}, w_{K(\sqrt{-\alpha})}, Q_{K(\sqrt{-\alpha})}/K$ be as in Sect. 5. Then $w_{K(\sqrt{-\alpha})}$ is 6 if $\sqrt{-3} \in K(\sqrt{-\alpha})$, 4 if $\sqrt{-1} \in K(\sqrt{-\alpha})$, and 2 if otherwise. The Hasse unit index $Q_{K(\sqrt{-\alpha})}/K$ is always 1. By $L_K(0, \psi_\alpha) = w_{K(\sqrt{-\alpha})}^{-2}h_{K(\sqrt{-\alpha})}^{-1}h_{K(\sqrt{-\alpha})}$, $L_F(0, \chi_3^-)$ is expressed in terms of $h_{K(\sqrt{-\alpha})}$. Applying the Möbius inversion formula on K to the equality between ν-th terms of both sides of (20), we have for α with $K(\sqrt{-\alpha}) \neq K(\sqrt{-1}), K(\sqrt{-3})$,

$$ r_{3,K}(\alpha \nu^2) = 2 \cdot 3c h_{K(\sqrt{-\alpha})} \sum_{\delta < \nu, \delta \in \mathcal{O}_K/\mathcal{E}_K} (\psi_\alpha 1_{2\mu K})(\delta) \sigma_{1,1_2}(\nu/\delta) \quad (\nu \in \mathcal{O}_K, > 0) $$

where $c = 1$ in Case (E), $c = 2$ in Case (F), and $c = 2^2$ in Case (G) and where $\sigma_{1,1_2}$ is as in (5). When $\alpha = 1$ or $\alpha = 3$, we have

$$ r_{3,K}(\nu^2) = 3h_{K(\sqrt{-3})} \sum_{\delta > 0, \delta \in \mathcal{E}_K} (\psi_{-1} 1_{2\mu K})(\delta) \sigma_{1,1_2}(\nu/\delta) \quad (\nu \in \mathcal{O}_K, > 0), $$

$$ r_{3,K}(3\nu^2) = 3h_{K(\sqrt{-3})} \sum_{\delta > 0, \delta \in \mathcal{E}_K} (\psi_{-1} 1_{2\mu K})(\delta) \sigma_{1,1_2}(\nu/\delta) \quad (\nu \in \mathcal{O}_K, > 0), $$

where $h_{K(\sqrt{-3})} = 2, h_{K(\sqrt{-3})} = 1$. For any $\nu \in \mathcal{O}_K$, $\neq 0$, one of $\pm \nu, \pm \varepsilon_0 \nu$ is totally positive and hence the formula for $r_{3,K}(\alpha \nu^2)$ for any ν is obtained from the above formulas since $r_{3,K}(\alpha \nu^2) = r_{3,K}(\varepsilon_0^2 \alpha \nu^2)$.

We have shown the following:
Theorem 8.3. Let \(K = \mathbb{Q}(\sqrt{17}) \). Let \(\pi_2 = (5 + \sqrt{17})/2, \pi'_2 = (5 - \sqrt{17})/2, \) and \(p_2 = (\pi_2), p'_2 = (\pi'_2) \).

(i) A totally positive integer in \(K \) is represented as a sum of three integer squares in \(K \) if and only if it is not in the form \(\pi_2^{2x} \pi'_2^{2y} \mu \) with nonnegative rational integers \(e, e' \) and with \(\mu \equiv 7 \pmod{p_2^3} \) or \(\mu \equiv 7 \pmod{p'_2^3} \).

(ii) Let \(\alpha \) be a totally positive square-free integer in \(K \) which is congruent to 7 neither modulo \(p_2^3 \) nor modulo \(p'_2^3 \). Further we assume that \(K(\sqrt{-\alpha}) \neq K(\sqrt{-1}), K(\sqrt{-3}) \).

We classify \(\alpha \) as in Table 11. Then the class number of the field \(K(\sqrt{-\alpha}) \) is given by

\[2^{-1}3^{-1}r_{3,K}(\alpha) \text{ in Case (E)}, \quad 2^{-2}3^{-1}r_{3,K}(\alpha) \text{ in Case (F)}, \quad \text{and } 2^{-3}3^{-1}r_{3,K}(\alpha) \text{ in Case (G)}. \]

9. Tables of class numbers

A tabulation for class numbers of totally imaginary quadratic extensions \(F = K(\sqrt{-\alpha}) \) of \(K \) is made for 220 selected values of \(\alpha \) in each case of \(K = \mathbb{Q}(\sqrt{3}) \) and \(K = \mathbb{Q}(\sqrt{17}) \).

In case \(K = \mathbb{Q}(\sqrt{3}) \), square-free totally positive integers \(\alpha = a + b\sqrt{3} \) with \(b \geq 0 \) are arranged in lexicographical order, where we omit \(\alpha \) with \(b < 0 \) since rings of integers in \(F \) for \(\alpha = a + b\sqrt{3} \) and for \(\alpha = a - b\sqrt{3} \) are isomorphic to each other and they have the same class number. We omit \(a + b\sqrt{3} \) from the table if there is \(n \in \mathbb{Z} \) so that \(a + b\sqrt{3} = \varepsilon_0^n(a' \pm b'\sqrt{3}) \) with \(a' < a \). By Theorem 5.3, a class number \(h_F \) is obtained from \(r_{3,K}(\alpha) \) or \(r_{3,K}(4\alpha) \), and \(r_{3,K}(a + b\sqrt{3}) \) is obtained by counting integral solutions of

\[x_1^2 + 3y_1^2 + x_2^2 + 3y_2^2 + x_3^2 + 3y_3^2 = a, \]
\[2x_1y_1 + 2x_2y_2 + 2x_3y_3 = b \]

in terms of ordinary integral arithmetic.

In case \(K = \mathbb{Q}(\sqrt{17}) \), square-free totally positive integers \(\alpha = a + b\omega \) (\(\omega = (1 + \sqrt{17})/2 \) with \(b \geq 0 \) and with \(\alpha \not\equiv 7 \pmod{p_2^3} \), \(\alpha \not\equiv 7 \pmod{p'_2^3} \), are arranged in lexicographical order. A tabulation is made applying essentially the same principle as in \(\mathbb{Q}(\sqrt{3}) \), where we note that rings of integers in \(F \) for \(\alpha = a + b\omega \) and for \(\alpha = a + b - b\omega \) are isomorphic to each other. By Theorem 8.3 a class number \(h_F \) is obtained from \(r_{3,K}(\alpha) \), and \(r_{3,K}(a + b\omega) \) is obtained by counting integral solutions of

\[x_1^2 + 4y_1^2 + x_2^2 + 4y_2^2 + x_3^2 + 4y_3^2 = a, \]
\[2x_1y_1 + y_1^2 + 2x_2y_2 + y_2^2 + 2x_3y_3 + y_3^2 = b. \]
Table 14. Table of class numbers of $F = \mathbb{Q}(\sqrt{3}, \sqrt{-\alpha})$

\[\alpha = a + b\sqrt{3}, \quad d_{F/\mathbb{Q}(\sqrt{3})} = (m\alpha), \quad h_F = \text{the class number of } F. \]

			h_F						
1	0	1	1	16	7	4	6	23	4
2	1	4	2	17	0	1	4	23	5
3	1	4	2	17	1	4	16	23	6
4	1	4	2	17	2	2	10	23	7
5	0	1	2	17	3	4	22	23	8
5	1	4	6	17	4	1	8	23	9
5	2	2	2	17	5	4	14	23	10
6	1	4	4	17	6	2	6	23	11
7	0	1	2	17	7	4	12	24	1
7	1	4	4	17	8	1	2	24	5
7	2	2	2	18	1	4	16	24	7
7	3	4	2	18	5	4	12	24	11
8	1	4	10	18	7	4	8	25	1
8	3	4	6	19	0	1	2	25	2
9	1	4	4	19	1	4	10	25	3
9	2	4	6	19	2	2	6	25	4
9	4	1	2	19	3	4	8	25	5
10	1	4	4	19	4	1	6	25	6
10	3	4	4	19	5	4	8	25	7
10	5	4	4	19	6	2	4	25	8
11	0	1	2	19	7	4	10	25	9
11	1	4	10	19	9	4	6	25	10
11	2	2	6	20	1	4	14	25	11
11	3	4	12	20	3	4	18	25	12
11	4	1	4	20	5	4	20	26	1
11	5	4	8	20	7	4	20	26	3
12	1	4	12	20	9	4	18	26	5
12	5	4	4	21	1	4	16	26	9
13	0	1	4	21	2	2	8	26	11
13	1	4	10	21	4	1	2	26	13
13	2	2	2	21	5	4	16	27	2
13	3	4	8	21	7	4	12	27	4
13	5	4	4	21	8	1	6	27	5
13	6	2	2	21	10	2	4	27	7
14	1	4	16	22	1	4	12	27	8
14	7	4	8	22	3	4	12	27	10
15	1	4	8	22	5	4	12	27	11
15	2	2	4	22	7	4	8	27	13
15	4	1	2	22	9	4	8	28	1
15	5	4	8	22	11	4	8	28	3
15	7	4	8	23	0	1	12	28	5
16	1	4	8	23	1	4	32	28	7
16	3	4	6	23	2	2	12	28	9
16	5	4	10	23	3	4	22	28	11
Table 15. Table of class numbers of $F = \mathbb{Q}(\sqrt{17}, \sqrt{-\alpha})$.

$\alpha = a + b\omega$ ($\omega = \frac{1 + \sqrt{17}}{2}$), $d_{F/\mathbb{Q}(\sqrt{17})} = (\pi_1 \pi_2' \alpha)$, h_F is the class number of F.

a	b	e	e'	h_F
1	0	2	2	12
2	0	2	2	4
3	0	0	0	2
5	0	2	4	8
5	1	2	4	6
6	0	2	4	1
6	1	2	0	2
6	3	2	4	9
7	3	0	2	20
9	1	2	8	12
9	2	0	2	24
9	4	2	4	24
9	5	2	4	28
10	0	2	12	16
10	3	2	8	24
10	4	2	8	28
10	5	0	2	18
11	0	0	1	7
11	2	0	2	16
11	6	0	2	24
13	0	2	16	16
13	1	2	8	32
13	4	2	12	16
13	5	2	12	32
13	6	2	4	24
13	8	2	4	28
14	0	2	16	32
14	1	2	0	2
14	3	2	12	24
14	4	2	8	4
14	7	2	8	8
14	8	2	8	16
15	3	0	2	4
15	7	0	2	20
17	1	2	16	22
17	2	0	6	24
17	4	2	12	24
17	5	2	12	24
17	9	2	8	16
17	10	0	2	24
18	3	2	16	22
18	4	2	12	28
18	5	2	4	24
18	7	2	16	22

$\frac{\sqrt{17}}{2}$
References

[1] H. Cohn, A computation of some bi-quadratic class numbers, MTAC. 12 (1958), 213–217.
[2] G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, Berlin Heidelberg New York, 1988.
[3] H. Maass, Über die Darstellung total positiver Zahlen des Körpers \(R(\sqrt{5}) \) als Summe von drei Quadraten, Abh. Math. Sem. Hamburg 14 (1941), 185–191.
[4] G. Shimura, On Hilbert modular forms of half-integral weight, Duke Math. J. 55 (1987), 765–838.
[5] S. Tsuyumine, On values of \(L \)-functions of totally real algebraic number fields at integers, Acta. Arith. 76 (1996), 359–392.
[6] S. Tsuyumine, On Shimura lifting of modular forms, Tsukuba J. Math. 23 (1996), 465–483.
[7] S. Tsuyumine, Shimura lifting of modular forms of weight \(3/2 \), Ramanujan J. 39 (2016), 363–449.
[8] S. Tsuyumine, On Shimura lifting of Hilbert modular forms, Research in Number Theory 4:40 (2018), 1–40.
[9] S. Tsuyumine, The values of Hilbert-Eisenstein series at cusps, III, Bull. Fac. Educ. Mie Univ. 71, (2020), 15–30.

Mie University, Faculty of Education, Department of Mathematics, Tsu, 514-8507, Japan
E-mail address: tsuyu@edu.mie-u.ac.jp