Convex hull-like property and supported images of open sets

BIAGIO RICCERI

Dedicated to Professor Anthony To-Ming Lau, with esteem and friendship

Abstract. In this note, as a particular case of a more general result, we obtain the following theorem:

Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty bounded open set and let $f : \overline{\Omega} \to \mathbb{R}^n$ be a continuous function which is C^1 in Ω. Then, at least one of the following assertions holds:

(a) $f(\Omega) \subseteq \text{conv}(f(\partial \Omega))$.

(b) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g : \Omega \to \mathbb{R}^n$ which is C^1 in X, there exists $\lambda > 0$ such that, for each $\lambda > \lambda$, the Jacobian determinant of the function $g + \lambda f$ vanishes at some point of X.

As a consequence, if $n = 2$ and $h : \Omega \to \mathbb{R}$ is a non-negative function, for each $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ satisfying in Ω the Monge-Ampère equation

$$u_{xx}u_{yy} - u_{xy}^2 = h,$$

one has

$$\nabla u(\Omega) \subseteq \text{conv}(\nabla u(\partial \Omega)).$$

Key words: Convex hull property; supported set; quasi-convex function; singular point; first-order system; Monge-Ampère equation.

2010 Mathematics Subject Classification: 26B10; 26A51; 35B50; 35F05; 35F50; 35J96.

1. - Introduction

Here and in what follows, Ω is a non-empty relatively compact and open set in a topological space E, with $\partial \Omega \neq \emptyset$, and Y is a real locally convex Hausdorff topological vector space. $\overline{\Omega}$ and $\partial \Omega$ denote the closure and the boundary of Ω, respectively. Since $\overline{\Omega}$ is compact, $\partial \Omega$, being closed, is compact too.

Let us first recall some well-known definitions.

Let S be a subset of Y and let $y_0 \in S$. As usual, we say that S is supported at y_0 if there exists $\varphi \in Y^* \setminus \{0\}$ such that $\varphi(y_0) \leq \varphi(y)$ for all $y \in S$. If this happens, of course $y_0 \in \partial S$.

Further, extending a maximum principle definition for real-valued functions, a continuous function $f : \overline{\Omega} \to Y$ is said to satisfy the convex hull property in $\overline{\Omega}$ (see [1], [2] and references therein) if

$$f(\Omega) \subseteq \text{conv}(f(\partial \Omega)),$$

$\text{conv}(f(\partial \Omega))$ being the closed convex hull of $f(\partial \Omega)$.

When $\dim(Y) < \infty$, since $f(\partial \Omega)$ is compact, $\text{conv}(f(\partial \Omega))$ is compact too and so $\overline{\text{conv}(f(\partial \Omega))} = \text{conv}(f(\partial \Omega))$.

A function $\psi : Y \to \mathbb{R}$ is said to be quasi-convex if, for each $r \in \mathbb{R}$, the set $\psi^{-1}([-\infty, r])$ is convex. Notice the following proposition:
PROPOSITION 1. - For each pair \(A, B \) of non-empty subsets of \(Y \), the following assertions are equivalent:

\[(a_1) \quad A \subseteq \text{conv}(B) \, . \]

\[(a_2) \quad \text{For every continuous and quasi-convex function } \psi : Y \to \mathbb{R} \text{, one has} \]

\[
\sup_A \psi \leq \sup_B \psi \, .
\]

PROOF. Let \((a_1)\) hold. Fix any continuous and quasi-convex function \(\psi : Y \to \mathbb{R} \). Fix \(\tilde{y} \in A \). Then, there is a net \(\{ y_\alpha \} \) in \(\text{conv}(B) \) converging to \(\tilde{y} \). So, for each \(\alpha \), we have

\[
y_\alpha = \sum_{i=1}^k \lambda_i z_i,
\]

where \(z_i \in B \), \(\lambda_i \in [0, 1] \) and \(\sum_{i=1}^k \lambda_i = 1 \). By quasi-convexity, we have

\[
\psi(y_\alpha) = \psi \left(\sum_{i=1}^k \lambda_i z_i \right) \leq \max_{1 \leq i \leq k} \psi(z_i) \leq \sup_B \psi
\]

and so, by continuity,

\[
\psi(\tilde{y}) = \lim_{\alpha} \psi(y_\alpha) \leq \sup_B \psi
\]

which yields \((a_2)\).

Now, let \((a_2)\) hold. Let \(x_0 \in A \). If \(x_0 \not\in \text{conv}(B) \), by the standard separation theorem, there would be \(\psi \in Y^* \setminus \{0\} \) such that \(\sup_{\text{conv}(B)} \psi < \psi(x_0) \), against \((a_2)\). So, \((a_1)\) holds. \(\triangle \)

Clearly, applying Proposition 1, we obtain the following one:

PROPOSITION 2. - For any continuous function \(f : \overline{\Omega} \to Y \), the following assertions are equivalent:

\[(b_1) \quad f \text{ satisfies the convex hull property in } \overline{\Omega} \, . \]

\[(b_2) \quad \text{For every continuous and quasi-convex function } \psi : Y \to \mathbb{R} \text{, one has} \]

\[
\sup_{x \in \Omega} \psi(f(x)) = \sup_{x \in \partial \Omega} \psi(f(x)) .
\]

In view of Proposition 2, we now introduce the notion of convex hull-like property for functions defined in \(\Omega \) only.

DEFINITION 1. - A continuous function \(f : \Omega \to Y \) is said to satisfy the convex hull-like property in \(\Omega \) if, for every continuous and quasi-convex function \(\psi : Y \to \mathbb{R} \), there exists \(x^* \in \partial \Omega \) such that

\[
\lim_{x \to x^*} \sup \psi(f(x)) = \sup_{x \in \Omega} \psi(f(x)) .
\]

We have

PROPOSITION 3. - Let \(g : \overline{\Omega} \to Y \) be a continuous function and let \(f = g|_{\Omega} \).

Then, the following assertions are equivalent:

\[(c_1) \quad f \text{ satisfies the convex hull-like property in } \Omega \, . \]

\[(c_2) \quad g \text{ satisfies the convex hull property in } \overline{\Omega} \, . \]

PROOF. Let \((c_1)\) hold. Let \(\psi : Y \to \mathbb{R} \) be any continuous and quasi-convex function. Then, by Definition 1, there exists \(x^* \in \partial \Omega \) such that

\[
\lim_{x \to x^*} \sup \psi(f(x)) = \sup_{x \in \Omega} \psi(f(x)) .
\]

But

\[
\lim_{x \to x^*} \sup \psi(f(x)) = \psi(g(x^*))
\]
and hence
\[\sup_{x \in \partial \Omega} \psi(g(x)) = \sup_{x \in \Omega} \psi(g(x)). \]

So, by Proposition 2, (c2) holds.

Now, let (c2) hold. Let \(\psi : Y \to \mathbb{R} \) be any continuous and quasi-convex function. Then, by Proposition 2, one has
\[\sup_{x \in \partial \Omega} \psi(g(x)) = \sup_{x \in \Omega} \psi(g(x)). \]

Since \(\partial \Omega \) is compact and \(\psi \circ g \) is continuous, there exists \(x^* \in \partial \Omega \) such that
\[\psi(g(x^*)) = \sup_{x \in \partial \Omega} \psi(g(x)). \]

But
\[\psi(g(x^*)) = \lim_{x \to x^*} \psi(f(x)) \]
and, by continuity again,
\[\sup_{x \in \Omega} \psi(g(x)) = \sup_{x \in \Omega} \psi(g(x)) \]
and so
\[\lim_{x \to x^*} \psi(f(x)) = \sup_{x \in \Omega} \psi(f(x)) \]
which yields (c1).

After the above preliminaries, we can declare the aim of this short note: to establish Theorem 1 below jointly with some of its consequences.

THEOREM 1. - For any continuous function \(f : \Omega \to Y \), at least one of the following assertions holds:

(i) \(f \) satisfies the convex hull-like property in \(\Omega \).

(ii) There exists a non-empty open set \(X \subseteq \Omega \), with \(\overline{X} \subseteq \Omega \), satisfying the following property: for every continuous function \(g : \Omega \to Y \), there exist \(\lambda > 0 \) such that, for each \(\lambda > \lambda \), the set \((g + \lambda f)(X) \) is supported at one of its points.

2. Proof of Theorem 1

Assume that (i) does not hold. So, we are assuming that there exists a continuous and quasi-convex function \(\psi : Y \to \mathbb{R} \) such that
\[\limsup_{x \to z} \psi(f(x)) < \sup_{x \in \Omega} \psi(f(x)) \] (1)
for all \(z \in \partial \Omega \).

In view of (1), for each \(z \in \partial \Omega \), there exists an open neighbourhood \(U_z \) of \(z \) such that
\[\sup_{x \in U_z \cap \Omega} \psi(f(x)) < \sup_{x \in \Omega} \psi(f(x)). \]

Since \(\partial \Omega \) is compact, there are finitely many \(z_1, ..., z_k \in \partial \Omega \) such that
\[\partial \Omega \subseteq \bigcup_{i=1}^{k} U_{z_i}. \] (2)

Put
\[U = \bigcup_{i=1}^{k} U_{z_i}. \]

Hence
\[\sup_{x \in U \cap \Omega} \psi(f(x)) = \max_{1 \leq i \leq k} \sup_{x \in U_{z_i} \cap \Omega} \psi(f(x)) < \sup_{x \in \Omega} \psi(f(x)). \]
Now, fix a number \(r \) so that
\[
\sup_{x \in U \cap \Omega} \psi(f(x)) < r < \sup_{x \in \Omega} \psi(f(x))
\] (3)
and set
\[
K = \{ x \in \Omega : \psi(f(x)) \geq r \}.
\]
Since \(f, \psi \) are continuous, \(K \) is closed in \(\Omega \). But, since \(K \cap U = \emptyset \) and \(U \) is open, in view of (2), \(K \) is closed in \(E \). Hence, \(K \) is compact since \(\Omega \) is so. By (3), we can fix \(\bar{x} \in \Omega \) such that \(\psi(f(\bar{x})) > r \). Notice that the set \(\psi^{-1}([-\infty, r]) \) is closed and convex. So, thanks to the standard separation theorem, there exists a non-zero continuous linear functional \(\varphi : Y \to \mathbb{R} \) such that
\[
\varphi(f(\bar{x})) < \inf_{y \in \psi^{-1}([-\infty, r])} \varphi(y).
\] (4)

Then, from (3) and (4), it follows
\[
\varphi(f(\bar{x})) < \inf_{x \in \Omega \setminus K} \varphi(f(x))
\]
Now, choose \(\rho \) so that
\[
\varphi(f(\bar{x})) < \rho < \inf_{x \in \Omega \setminus K} \varphi(f(x))
\]
and set
\[
X = \{ x \in \Omega : \psi(f(x)) < \rho \}.
\]
Clearly, \(X \) is a non-empty open set contained in \(K \). Now, let \(g : \Omega \to Y \) be any continuous function. Set
\[
\lambda = \inf_{x \in X} \frac{\varphi(g(x)) - \inf_{z \in K} \varphi(g(z))}{\rho - \varphi(f(x))}.
\]
Fix \(\lambda > \lambda \). So, there is \(x_0 \in X \) such that
\[
\frac{\varphi(g(x_0)) - \inf_{z \in K} \varphi(g(z))}{\rho - \varphi(f(x_0))} < \lambda.
\]
From this, we get
\[
\varphi(g(x_0)) + \lambda \varphi(f(x_0)) < \lambda \rho + \inf_{z \in K} \varphi(g(z))
\] (5)
By continuity and compactness, there exists \(\hat{x} \in K \) such that
\[
\varphi(g(\hat{x}) + \lambda f(\hat{x})) \leq \varphi(g(x)) + \lambda f(x)
\] (6)
for all \(x \in K \). Let us prove that \(\hat{x} \in X \). Arguing by contradiction, assume that \(\varphi(f(\hat{x})) \geq \rho \). Then, taking (5) into account, we would have
\[
\varphi(g(x_0)) + \lambda \varphi(f(x_0)) < \lambda \varphi(f(\hat{x})) + \varphi(g(\hat{x}))
\]
contradicting (6). So, it is true that \(\hat{x} \in X \), and, by (6), the set \((g + \lambda f)(X) \) is supported at its point \(g(\hat{x}) + \lambda f(\hat{x}) \).

3. Applications

The first application of Theorem 1 shows a strongly bifurcating behaviour of certain equations in \(\mathbb{R}^n \).

THEOREM 2. - Let \(\Omega \) be a non-empty bounded open subset of \(\mathbb{R}^n \) and let \(f : \Omega \to \mathbb{R}^n \) a continuous function.
Then, at least one of the following assertions holds:

\((d_1) \) \(f \) satisfies the convex hull-like property in \(\Omega \).

\(\triangle \)
(d₂) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g : \Omega \to \mathbb{R}^n$, there exist $\lambda > 0$ such that, for each $\lambda > \lambda$, there exist $\hat{x} \in X$ and two sequences $\{y_k\}, \{z_k\}$ in \mathbb{R}^n, with

$$\lim_{k \to \infty} y_k = \lim_{k \to \infty} z_k = g(\hat{x}) + \lambda f(\hat{x}),$$

such that, for each $k \in \mathbb{N}$, one has

(j) the equation

$$g(x) + \lambda f(x) = y_k$$

has no solution in X;

(jj) the equation

$$g(x) + \lambda f(x) = z_k$$

has two distinct solutions u_k, v_k in X such that

$$\lim_{k \to \infty} u_k = \lim_{k \to \infty} v_k = \hat{x}.$$

PROOF. Apply Theorem 1 with $E = Y = \mathbb{R}^n$. Assume that (d_1) does not hold. Let $X \subseteq \Omega$ be an open set as in (ii) of Theorem 1. Fix any continuous function $g : \Omega \to \mathbb{R}^n$. Then, there is some $\lambda > 0$ such that, for each $\lambda > \lambda$, there exists $\hat{x} \in X$ such that the set $(g + \lambda f)(X)$ is supported at $g(\hat{x}) + \lambda f(\hat{x})$. As we observed at the beginning, this implies that $g(\hat{x}) + \lambda f(\hat{x})$ lies in the boundary of $(g + \lambda f)(X)$. Therefore, we can find a sequence $\{y_k\}$ in $\mathbb{R}^n \setminus (g + \lambda f)(X)$ converging to $g(\hat{x}) + \lambda f(\hat{x})$. So, such a sequence satisfies (j).

For each $k \in \mathbb{N}$, denote by B_k the open ball of radius $\frac{1}{k} \hat{x}$ centered at \hat{x}. Let k be such that $B_k \subseteq X$. The set $(g + \lambda f)(B_k)$ is not open since its boundary contains the point $g(\hat{x}) + \lambda f(\hat{x})$. Consequently, by the invariance of domain theorem ([3], p. 705), the function $g + \lambda f$ is not injective in B_k. So, there are $u_k, v_k \in B_k$, with $u_k \neq v_k$ such that

$$g(u_k) + \lambda f(u_k) = g(v_k) + \lambda f(v_k).$$

Hence, if we take

$$z_k = g(u_k) + \lambda f(u_k),$$

the sequences $\{u_k\}, \{v_k\}, \{z_k\}$ satisfy (jj) and the proof is complete. △

REMARK 1. - Notice that, in general, Theorem 2 is no longer true when $f : \Omega \to \mathbb{R}^m$ with $m > n$. In this connection, consider the case $n = 1, m = 2, \Omega = [0, \pi]$ and $f(\theta) = (\cos \theta, \sin \theta)$ for $\theta \in [0, \pi]$. So, for each $\lambda > 0$, on the one hand, the function λf is injective, while, on the other hand, $\lambda f([0, \pi])$ is not contained in $\text{conv} \{f(0), f(\pi)\}$.

If $S \subseteq \mathbb{R}^n$ is a non-empty open set, $x \in S$ and $h : S \to \mathbb{R}^n$ is a C^1 function, we denote by $\det(J_h(x))$ the Jacobian determinant of h at x.

Another important consequence of Theorem 1 is as follows:

THEOREM 3. - Let Ω be a non-empty bounded open subset of \mathbb{R}^n and let $f : \Omega \to \mathbb{R}^n$ be a C^1 function.

Then, at least one of the following assertions holds:

(ε₁) f satisfies the convex hull-like property in Ω .

(ε₂) There exists a non-empty open set $X \subseteq \Omega$, with $\overline{X} \subseteq \Omega$, satisfying the following property: for every continuous function $g : \Omega \to \mathbb{R}^n$ which is C^1 in X, there exists $\lambda > 0$ such that, for each $\lambda > \lambda$, one has

$$\det(J_{g + \lambda f}(\hat{x})) = 0$$

for some $\hat{x} \in X$.

PROOF. Assume that (ε₁) does not hold. Let X be an open set as in (ii) of Theorem 1. Let $g : \Omega \to \mathbb{R}^n$ be a continuous function which is C^1 in X. Then, there is some $\lambda > 0$ such that, for each $\lambda > \lambda$, there exists $\hat{x} \in X$ such that the set $(g + \lambda f)(X)$ is supported at $g(\hat{x}) + \lambda f(\hat{x})$. By remarks already made, we infer that
the function $g + \lambda f$ is not a local homeomorphism at \hat{x}, and so \(\det(J_{g+\lambda f}(\hat{x})) = 0 \) in view of the classical inverse function theorem. \(\square \)

In turn, here is a consequence of Theorem 3 when \(n = 2 \).

THEOREM 4. Let \(\Omega \) be a non-empty bounded open set of \(\mathbb{R}^2 \), let \(h : \Omega \to \mathbb{R} \) be a continuous function and let \(\alpha, \beta : \Omega \to \mathbb{R} \) be two \(C^1 \) functions such that \(|\alpha_x \beta_y - \alpha_y \beta_x| + |h| > 0 \) and \((\alpha_x \beta_y - \alpha_y \beta_x)h \geq 0 \) in \(\Omega \). Then, any \(C^1 \) solution \((u, v) \in \Omega \) of the system

\[
\begin{cases}
 u_x v_y - u_y v_x = h \\
 \beta_y u_x - \beta_x u_y - \alpha_y v_x + \alpha_x v_y = 0
\end{cases}
\]

(7)

satisfies the convex hull-like property in \(\Omega \).

PROOF. Arguing by contradiction, assume that \((u, v)\) does not satisfy the convex hull-like property in \(\Omega \). Then, by Theorem 3, applied taking \(f = (u, v) \) and \(g = (\alpha, \beta) \), there exist \(\lambda > 0 \) and \((\hat{x}, \hat{y}) \in \Omega \) such that

\[\det(J_{g+\lambda f}(\hat{x}, \hat{y})) = 0 . \]

On the other hand, for each \((x, y) \in \Omega \), we have

\[\det(J_{g+\lambda f}(x, y)) = (u_x v_y - u_y v_x)(x, y)\lambda^2 + (\beta_y u_x - \beta_x u_y - \alpha_y v_x + \alpha_x v_y)(x, y)\lambda + (\alpha_x \beta_y - \alpha_y \beta_x)(x, y) \]

and hence

\[h(\hat{x}, \hat{y})\lambda^2 + (\alpha_x \beta_y - \alpha_y \beta_x)(\hat{x}, \hat{y}) = 0 \]

which is impossible in view of our assumptions. \(\square \)

We conclude by highlighting two applications of Theorem 4.

THEOREM 5. Let \(\Omega \) be a non-empty bounded open subset of \(\mathbb{R}^2 \), let \(h : \Omega \to \mathbb{R} \) be a continuous non-negative function and let \(w \in C^2(\Omega) \) be a function satisfying in \(\Omega \) the Monge-Ampère equation

\[w_{xx}w_{yy} - w_{xy}^2 = h . \]

Then, the gradient of \(w \) satisfies the convex hull-like property in \(\Omega \).

PROOF. It is enough to observe that \((w_x, w_y)\) is a \(C^1 \) solution in \(\Omega \) of the system (7) with \(\alpha(x, y) = -y \) and \(\beta(x, y) = x \) and that such \(\alpha, \beta \) satisfy the assumptions of Theorem 4. \(\square \)

THEOREM 6. Let \(\Omega \) a non-empty bounded open subset of \(\mathbb{R}^2 \) and let \(\beta : \Omega \to \mathbb{R} \) be a \(C^1 \) function. Assume that there exists another \(C^1 \) function \(\alpha : \Omega \to \mathbb{R} \) so that the function \(\alpha_x \beta_y - \alpha_y \beta_x \) vanishes at no point of \(\Omega \).

Then, for any function \(u \in C^1(\Omega) \cap C^0(\overline{\Omega}) \) satisfying in \(\Omega \) the equation

\[\beta_y u_x - \beta_x u_y = 0 , \]

(8)

one has

\[\sup_{\Omega} u = \sup_{\partial \Omega} u \]

and

\[\inf_{\Omega} u = \inf_{\partial \Omega} u . \]

PROOF. Observe that the function \((u, 0)\) satisfies the system (7) with \(h = 0 \) and that the assumptions of Theorem 4 are fulfilled. So, \((u, 0)\) satisfies the convex hull-like property in \(\Omega \). Since \(u \in C^0(\overline{\Omega}) \), the conclusion follows from Proposition 3. \(\square \)

REMARK 2. Observe that when \(\Omega \) is also star-shaped, the conclusion of Theorem 6 holds for any harmonic function \(\beta \) whose gradient vanishes at no point of \(\Omega \). Indeed, if \(\beta : \Omega \to \mathbb{R} \) is such a function, the
differential form $\beta_y dx - \beta_x dy$ is exact since $\beta_{yy} = -\beta_{xx}$ and Ω is star-shaped. So, there is a C^1 function $\alpha : \Omega \to \mathbb{R}$ such that $\alpha_x = \beta_y$ and $\alpha_y = -\beta_x$. Hence, $\alpha_x \beta_y - \alpha_y \beta_x = \beta_x^2 + \beta_y^2 > 0$ in Ω. That is to say, α satisfies the assumption of Theorem 6, and the claim follows.

REMARK 3. - Of course, if u is a solution of the equation (8) and $g : \mathbb{R} \to \mathbb{R}$ is any C^1 function, the composite function $g \circ u$ is a solution of (8) too. On the basis of this remark and in view of Theorem 6, we formulate the following final conjecture:

CONJECTURE 1. - Let Ω a non-empty bounded open subset of \mathbb{R}^2 and let $u \in C^1(\Omega) \cap C^0(\overline{\Omega})$ be such that, for every C^1 function $g : \mathbb{R} \to \mathbb{R}$, one has

$$
\sup_{\Omega} g \circ u = \sup_{\partial \Omega} g \circ u
$$

and

$$
\inf_{\Omega} g \circ u = \inf_{\partial \Omega} g \circ u .
$$

Then, there exist two C^1 functions $\alpha, \beta : \Omega \to \mathbb{R}$ such that the function $\alpha_x \beta_y - \alpha_y \beta_x$ vanishes at no point of Ω and u is a solution in Ω of the equation

$$
\beta_y u_x - \beta_x u_y = 0 .
$$

Acknowledgement. The author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] L. DIENING, C. KREUZER and S. SCHWARZACHER, *Convex hull property and maximum principle for finite element minimisers of general convex functionals*, Numer. Math., 124 (2013), 685-700.

[2] N. I. KATZOURAKIS, *Maximum principles for vectorial approximate minimizers of nonconvex functionals*, Calc. Var. Partial Differ. Equ., 46 (2013), 505-522.

[3] E. ZEIDLER, *Nonlinear functional analysis and its applications*, vol. I, Springer-Verlag, 1986.