Corrigendum: On the dynamics of the Meissner effect (2016 Phys. Scr. 91 035801)

J E Hirsch

Department of Physics, University of California, San Diego, La Jolla, CA, USA 92093-0319

Received 18 April 2016
Accepted for publication 21 June 2016
Published 1 August 2016

On page 7 the paper reads:

‘As the phase boundary advances at rate \( v_0 = \frac{dx_0}{dt} \), normal (negatively charged) carriers in the boundary layer are backflowing at speed \( v_y \), or equivalently positive normal carriers (holes) move forward together with the phase boundary. Because normal carriers scatter off the lattice they do not acquire a large \( v_y \) from the action of the magnetic Lorentz force; instead they transfer their \( y \)-momentum to the lattice as a whole, thus accounting for momentum conservation.’

The second half of that statement was incorrect. Similarly, figure 5 (reproduced below) and the last part of the figure caption that reads ‘The normal carriers do not acquire a large \( v_y \) in opposite direction because they scatter off impurities and transfer their \( y \)-momentum to the lattice.’ was also incorrect.

The paper was in error in ignoring the fact that within the theory of hole superconductivity the normal state carriers in a superconductor are necessarily holes [1]. If the carriers are holes, electric and magnetic forces in the \( y \) direction are exactly balanced and the backflowing carriers move exactly in the \( x \) direction, with no velocity component in the \( y \) direction. The momentum transfer occurs through the flow of hole carriers and this accounts for momentum conservation without scattering processes, which is necessary to ensure the reversibility of the process. For more details, see [2–4]. A corrected figure 5 is given below.

The author is grateful to an insightful referee who stated in his/her report: ‘For the situation at hand here, where the system is clearly a many-body one, the states being those of an interacting and hence correlated Fermion assembly, what exactly is meant by a ‘hole’? Again, and specifically in the context of promulgating a quite different view of a reasonably well accepted standard model it appears incumbent on the author to provide a cogent summary (a few sentences at the least) by way of elucidation of a ‘hole theory’ actually is.’

The author responded to the referee’s suggestion as follows: ‘In many papers listed in footnote 1 the key issue of holes versus electrons is addressed in detail, but it is not relevant to this paper and there is no reason to address it here.’ That answer was incorrect. The key issue of holes versus electrons was highly relevant to this paper.

Figure 5. (corrected): As carriers become superconducting (s carriers) they thrust forward into the normal region over a boundary layer of thickness \( \lambda_s \), and are deflected by the Lorentz force acquiring speed \( v_y = -e/(4\pi n_s q\lambda_s)B_0 \). This process creates an electric field \( E_x \) in the \(-\hat{x}\) direction that drives normal carrier (n carrier) backflow. Here, ‘n’ stands for ‘normal’ and ‘negative’. The normal carriers do not acquire a large \( v_y \) in opposite direction because they scatter off impurities and transfer their \( y \)-momentum to the lattice.

Figure 5. (original) As carriers become superconducting (s carriers) they thrust forward into the normal region over a boundary layer of thickness \( \lambda_s \), and are deflected by the Lorentz force acquiring speed \( v_y = -e/(4\pi n_s q\lambda_s)B_0 \). This process creates an electric field \( E_x \) in the \(-\hat{x}\) direction that drives normal carrier (n carrier) backflow. Here, ‘n’ stands for ‘normal’ carrier. The normal carriers are holes [1] and they do not acquire any \( v_y \) but instead propagate exactly along the \( x \) direction, as explained in [2–4], and in the process transfer \( y \)-momentum to the lattice without any scattering processes.
The answer to the referee’s query is contained in this corrigendum, which would have been unnecessary if the author had heeded the referee’s suggestion to clarify ‘what exactly is meant by a ‘hole’. The answer is, as illustrated in the corrected figure 5: a hole is a normal state carrier flowing in the direction of motion of the phase boundary in the reversible transition between normal and superconducting states. Because of its hole-like nature it propagates exactly perpendicular to the phase boundary without any velocity component in direction parallel to the phase boundary, which would render the transition irreversible in contradiction with experiment.

References

[1] See references in http://physics.ucsd.edu/~jorge/hole.html
[2] Hirsch J E 2016 On the reversibility of the Meissner effect and the angular momentum puzzle arXiv:1604.07443
[3] Hirsch J E 2016 The disappearing momentum of the supercurrent in the superconductor to normal phase transformation Europhys. Lett. 114 57001
[4] Hirsch J E 2016 Proposed experimental test of the theory of hole superconductivity Physica C 525-526 44