研究の概要（和文）：多くの国々の養鶏場においてワクモによる吸血被害は深刻な問題で、新たな防除法の開発が必要とされている。新規防除法としてワクチンの応用を検討しており、複数の抗原候補の有用性を示してきたが、ウイルスペクターの応用についても検討を行っている。本研究では、以前に作製した組換えウイルスの効果増大を目指し、抗原分泌型の組換えウイルスの作製を試みた。抗原分泌を促すためにウイルス由来分泌タンパク質のシグナルペプチドを挿入した組換えウイルスを作製し、抗原の分泌を検討した。しかし、感染細胞内に発現は認められなかったが、分泌は確認された。ウイルスペクターを用いたワクチン製造には、さらなる工夫と検討が必要である。

研究の成果（英文）：多様な国々の養鶏場においてワクモによる吸血被害は深刻な問題で、新たな防除法の開発が必要とされている。新規防除法としてワクチンの応用を検討しており、複数の抗原候補の有用性を示してきたが、ウイルスペクターの応用についても検討を行っている。本研究では、以前に作製した組換えウイルスの効果増大を目指し、抗原分泌型の組換えウイルスの作製を試みた。抗原分泌を促すためにウイルス由来分泌タンパク質のシグナルペプチドを挿入した組換えウイルスを作製し、抗原の分泌を検討した。しかし、感染細胞内に発現は認められなかったが、分泌は確認された。ウイルスペクターを用いたワクチン製造には、さらなる工夫と検討が必要である。
1. 研究開始当初の背景

ワクモ（Dermatophilus gallinae）は鳥類の外寄生虫で、吸血による貧血や卵産率の低下などによる産出の低下をひきおこし、日本を含めた世界各国の養鶏産業において深刻な問題となっている。またワクモは、サルモネラ属菌や鶏もウイルスなどの病原体からの中でも最ももたらされているほか、近年では人に皮膚炎を引き起こす症例などが報告されており、家畜衛生ならびに公衆衛生上重要な課題である。養鶏場においては、ワクモの防除対策にかかる費用および被害額は、欧州で年間2億3千億円、日本においても60億円以上にのぼると試算されている。

現在のワクモ防除は、主に鶏舎の洗浄や殺虫剤の散布によって行われている。しかし、ワクモは成虫でも体長が1mm程度であり、吸血後は鶏の体表から離れ鶏のすき間などに潜む性質をもつため、洗浄や薬剤が届きにくく十分に防除を行うことができない。加えて、薬剤耐性ワクモの出現も報告されており、現行の対策では防除は極めて困難となっている。新たなワクモ防除法が強く求められている中、新規防除法として抗ワクモワクチンの開発に取り組んでおり、これまでに複数のワクチン開発の同定、その効果を検証することでワクチンによる防除の可能性を示してきた。

抗ワクモワクチンの効果を担保するためには、高い血中抗体価の維持が必要となる。ワクチンの実用化を考慮した場合、組換えタンパク質による免疫はアジュバントの添加や追加免疫が必要となることから、ワクチンを組換えさせる目的として、主に全ての鶏に接種されるマレット病（MD）ワクチンを目標にし、ワクモ防除用ワクチン抗原遺伝子を挿入した組換えMDウイルス（MDV）による免疫の可能性を検討している。このMDウクチンをワクチンウクチンとして用いるワクチン開発は、上述の鶏の負担軽減に貢献し、同時にMD予防とワクモ防除を行う効果が期待できる。しかしこれまでに作製した組換えMDV抗ワクチンは、抗ウイルス抗体が接種後段階で発現され、その他のウイルスを対象とする可能性を示すことができたため、ワクチンは効果を発揮するためには、より効率よく抗体産生を促すワクチンを開発することが求められる。

2. 研究の目的

上記の背景をもとに、本研究では効率良くB細胞を活性化させ抗体産生を促すワクチンを開発を目指し、従来の細胞内発現型ワクチンに改良を加え、分泌型抗原として発現する組換えMDVの作製を目的とした。感染細胞より抗原分泌を促す工夫として、MDVがコードする分泌タンパク質であるviral interleukin 8(vIL8)のシグナルペプチド(vIL8SP)をワクチン抗原遺伝子の上流への挿入を行った。本研究では、家鶏として飼育されると全ての鶏に接種されているMDウクチンを利用するために、ワクモ防除に関するワクチン接種の負担を軽減に貢献し、また抗ウクチンであることからアジュバントを用いない効果的な免疫応答を誘導することができると考えられる。さらに、抗ウクチン免疫型の組換えMDVの開発を行うことで抗体産生効率を上昇させるとともに、鶏を長期間にわたり有効性を保つことが期待できる。ワクチンの開発過程は現状のMDワクチンの製造方法に変わらないため、コスト面においても負担が軽減されることを考えられる。

3. 研究の方法

本研究では、まず従来型である細胞内発現型ワクチンの抗体産生効率について、鶏を用いた感染実験により検証した。次にワクチン抗原を分泌タンパク質として特異的に組換えMDV抗ワクモワクチンの試作を行った。ワクチン抗原には有効性が確認されている、血液の消化・分解に関わるアスピラシージュ探索アーゼであるカタラシンD（DgCatD）を用いた。ウイルスペプチドとして用いるMDVウクチン抗原としては、強毒株であるRB-1B株より病態発現に必須とされるmeq遺伝子を欠損させた組換えMDVを用いた。meq遺伝子欠損MDVは鶏に感染しても重篤な症状を示さないことや、ワクチンとしても有用が検討されており、従来のワクチンよりも高いMD発症予防効果を示すことが知られている。本研究では、以前に作製したmeq遺伝子とDgCatD遺伝子を置換したvRB-1B_MeqDgCatDを細胞内発現型ワクチンとして用いた。

(1) 細胞内発現型ワクチン（vRB-1B_MeqDgCatD）の免疫によるDgCatDに対する抗体産生およびMD予防効果について検証を行った。生後14日目にvRB-1B_MeqDgCatDを2,000PFU接種し、その4日後にMD予防効果の検証、5,000PFUのRB-1B株を接種した。また、初回免疫より50日目に組換えDgCatDによる追加免疫を行った。追加免疫後、追加免疫1、2、3週後に採血を行い、組換えDgCatDを用いたELISA法により抗体価測定を行った。MD予防効果については、観察期間中の臨床観察および実験終了後の剖検における腫瘍形成等の
病態形成の有無により評価した。対照として vRB-1B_AMeq についても同様の検討を行った。

(2) 抗原分泌型組換え MDV の作製のため、vRB-1B_AMeq_DgCatD ゲノム中の DgCatD 遺伝子のシグナルペプチドと vIL8SP との置換を行った。まず、DgCatD のアスパラギン酸プロテーゼ活性による宿主への影響を排除するため、DgCatD の 2 篇所の活性中心となるアスパラギン酸 (83, 270 番目) に点変異を導入した。活性中心に位置する 2 篇所のアスパラギン酸は、en passant mutagenesis 法によりアラニンへと置換された (pRB-1B_AMeq_mutDgCatD)。次に vIL8SP を mutDgCatD 遺伝子のシグナルペプチドと置換した。vIL8S 遺伝子を pGEM T-easy vector にクローニングし、vIL8SP 配列内の BglII サイトにマーカー遺伝子 (aphA1) に相同配列を付加した配列を挿入し、シャトルプラスマドを作製した。シャトルプラスマド内マーカー遺伝子を挿入された vIL8SP を PCR により増幅し、両端に mutDgCatD 遺伝子上流の配列を付加した transgene を作製した。得られた transgene を用いて、en passant mutagenesis 法により mutDgCatD 遺伝子のシグナルペプチド配列部位へ vIL8SP を挿入した。なお、vIL8SP の挿入時には、シグナルペプチドののみ、シグナルペプチドに 2 あるいは 3 アミノ酸付加した感染性クローンプラスマドを作製した（それぞれ pRB-1B_AMeq_vIL8SP-mutDgCatD, pRB-1B_AMeq_vIL8SP(2)-mutDgCatD, pRB-1B_AMeq_vIL8SPvIL8SP(3)-mutDgCatD)。各感染性クローンプラスマドへの vIL8SP の挿入は、制限酵素群 jail 多型解析 (RFLP) によりスクローニングを行い、挿入部位について PCR および塩基配列解析を行い確認した。

作製した各感染性クローンプラスマドより、組換え MDV を再構成した。感染性クローンプラスマドをリン酸カルシウム法により鶏胚仔維芽細胞 (CEF) に導入し、継代培養を数回繰り返したのち、細胞変性効果 (CPE) の有無によりウイルスの再構成を確認した（それぞれ pRB-1B_AMeq_vIL8SP-mutDgCatD, pRB-1B_AMeq_vIL8SP(2)-mutDgCatD, pRB-1B_AMeq_vIL8SP(3)-mutDgCatD)。

再構成した組換え MDV について、ウイルスゲノム上の DgCatD 遺伝子および vIL8SP の挿入を PCR により確認した。また、感染細胞における mRNA 発現および感染細胞および培養上清におけるタンパク質発現について、RT-PCR およびウェスタンプロッティングにより検討した。

組換え MDV による DgCatD の発現量を増加させるために、CMV プロモーターを vRB-1B_AMeq_vIL8SP(3)-mutDgCatD ゲノムの vIL8SP の上流に挿入した感染性クローンプラスマド、CMV プロモーターと Meq プロモーターと置換した感染性クローンプラスマドを en passant mutagenesis 法により作製し、CEF にリン酸カルシウム法により導入し、継代培養を数回繰り返し、CPE の有無を観察した。

4. 研究結果

(1) ワクチン抗原を細胞内に発現する vRB-1B_AMeq DgCatD について、鶏に免疫を行い、抗体価を測定した。初生ひなを vRB-1B_AMeq DgCatD を接種し、50 日後に ELISA により抗体価を測定したところ、有意な抗体価の上昇は

群名	個体番号	追加免疫前	追加免疫 1週後	追加免疫 2週後	追加免疫 3週後
vRB-1B_AMeq免疫群	1	<2,000	>8,000	>8,000	>8,000
vRB-1B_AMeq_DgCatD免疫群	2	<2,000	>8,000	>8,000	

(A) TR1 IR1 U5 IR5 TR1
(B) TR1 IR1 U5 IR5 TR1

図 1 組換え MDV 感染性クローンプラスマドの作製

(A) pRB-1B 或者 TRL 領域に欠失させたプラスマド (pRB-1B_AIRL) の TRL 領域中の meq 遺伝子と vIL8SP 遺伝子とを挿入により導入した DgCatD 遺伝子を含む感染性クローンプラスマドに、2 または 3 アミノ酸を含む感染性クローンプラスマドを作製した。B) 感染性クローンプラスマドへの DgCatD 遺伝子および vIL8SP 配列挿入の確認。1. pRB-1B_AIRL; 2, pRB-1B_AMeq_DgCatD; 3, pRB-1B_AMeq_mutDgCatD(3Δ53A); 4, pRB-1B_AMeq_mutDgCatD(3Δ53A, D270A); 5, pRB-1B_AMeq_vIL8SP-mutDgCatD; 6, pRB-1B_AMeq_vIL8SP(2)-mutDgCatD; 7, pRB-1B_AMeq_vIL8SP(3)-mutDgCatD; 8, NC, 防障群; M, マーカー。
確認できなかった（表1）。そのため、組換え DgCatD タンパク質を作製し、追加免疫を行い、vRB-1B_AMeq と抗抗体産生能を比較したが、どちらも追加免疫後 2 週目および 8,000 倍以上の抗体価を示し、組換え MDV の免疫による抗抗体産生への影響は確認できなかった（表1）。なお、観察期間を通じて MD の発症は確認されず、MD 予防効果については著していたと考えられる。

(2) 細胞内発現型のワクチンでは、十分な抗体産生が確認できなかったため、vRB-1B_AMeq, DgCatD ゲノムを組換えし、抗原分泌型の組換え MDV の作製を検討した。その手法として、MDV がコードする分泌タンパク質である vIL8 と DgCatD のシグナルペプチドを組換えすることにより、産生したタンパク質の分泌を促進させることを試みた。

本研究では、DgCatD 遺伝子の活性中心に変異を挿入した感染性クローニングプラミッド pRB-1B_AMeq_mutDgCatD、さらに pRB-1B_AMeq_vIL8SP-mutDgCatD, pRB-1B_AMeq_vIL8SP(2)-mut DgCatD, pRB-1B_AMeq_vIL8SP(3)-mut DgCatD を作製した。いずれのプラミッドも RFLP により予想される切断パターンを示した。点変異の挿入については、塩基配列解析により変異の挿入を確認した。各プラミッドの DgCatD 遺伝子の共通配列を PCR で増幅したところ、主として pRB-1B_AIRL を除去して、いずれのプラミッドにおいても検出された。一方で、vIL8SP-DgCatD 遺伝子を増幅するプライマーを用いた場合は、vIL8SP を挿入したプラミッドでのみ検出された（図1）。さらに、vIL8SP への置換については挿入部位の塩基配列解析により確認を行い、いずれも目的の位置への変異あるいは挿入を持つプラミッドであることが確認された。

次に作製した感染性クローニングプラミッドより組換え MDV の再構成を行った。その結果、いずれのプラミッドからも組換え MDV の再構成に成功した。再構成した組換え MDV における DgCatD 遺伝子の挿入について、PCR および塩基配列解析により確認を行ったところ、挿入した vIL8SP はいずれも安定して組換え MDV ゲノム中に保持されていた（図2A）。続いて組換え MDV 感染細胞における DgCatD 遺伝子の mRNA 発現を RT-PCR により解析したところ、vIL8SP-DgCatD 遺伝子は発現していた（図2B）。DgCatD の感染細胞からの分泌の有無を確認するため、組換え MDV 感染細胞およびその培養上清を用いて、ウエスタンブロットにより DgCatD の検出を行った。その結果、細胞内には発現が確認できたものの、培養上清中に DgCatD は検出されなかった（図2C）。その要因の一つとして、発現量が不十分であることが考えられたため、DgCatD の発現量増加を目的として、CMV プロモーターを vIL8SP 上流に挿入し、あるいはウイルスゲノム中 Meq プロモーターと置換した感染性クローニングプラミッドを作製した。しかし、得られたプラミッドを CEF に導入したところ、組換え MDV の再構成は確認されなかった。

以上の結果より、目的とした抗原分泌型の組換え MDV を得ることはできなかった。今後検討が必要な点としては、抗原遺伝子の挿入部位や挿入する抗原遺伝子の選定が挙げられる。本研究では、meq 遺伝子とその組換えにより抗原遺伝子の挿入を行ったが、その他の領域についても抗原遺伝子の挿入に適した部位を検討する必要がある。また本研究では DgCatD を抗原として用い、DgCatD はアスパラギン酸プロテアーゼであり、本来はリソソーム内の発現が予想
される分子であるため、シグナルペプチドの置換のみでは発現部位を変えることは不十分であった可能性がある。加えて、より効率的に抗体産生を含めた免疫応答を惹起するためには発現量の改善も求められる。本研究では、CMV プロモーターの挿入を検討したが、従来 MDV が持つ発現の高い遺伝子プロモーターの応用なども検討する必要がある。本研究により、効果的で使用しやすいワクチンを開発するためには、上記のような課題を解決し、さらなる検証を行う必要がある。
項目	資料名	作者	雑誌名	年	巻	発行年	最初と最後の頁	オープンアクセス	閲覧の有無	国際共著
1	真菌類	西山, A., 網干, H., 牧野, Y., 小出, S., 菊地, N., 三宅, M., 富沢, T., 岡川, T., 佐藤, Y., 関川, K., 大野, S., 橋本, S., 菅原, K.	ジャパン	2021	162	162	162	オープンアクセスとしている（また、その予定である）	国際共著	-
2	細菌類	阿部, K., 和泉, S., 黒木, Y., 河野, T., 高橋, N., 佐々木, Y., 宮本, T., 千葉, S., 藤井, Y., 松本, S., 北川, K., 豊田, T., 佐々木, S., 松本, Y.	ジャパン	2021	163	163	163	オープンアクセスとしている（また、その予定である）	国際共著	-
3	病元動物	加藤, K., 中村, Y., 西田, M., 本間, Y., 高橋, Y., 高橋, T., 千葉, S., 福永, T., 岡川, T., 松本, S., 佐々木, S., 阿部, K., 河野, T.	ジャパン	2021	164	164	164	オープンアクセスとしている（また、その予定である）	国際共著	-
4	細菌類	加藤, K., 中村, Y., 西田, M., 本間, Y., 高橋, Y., 高橋, T., 千葉, S., 福永, T., 岡川, T., 松本, S., 佐々木, S., 阿部, K., 河野, T.	ジャパン	2021	165	165	165	オープンアクセスとしている（また、その予定である）	国際共著	-
5	病元動物	加藤, K., 中村, Y., 西田, M., 本間, Y., 高橋, Y., 高橋, T., 千葉, S., 福永, T., 岡川, T., 松本, S., 佐々木, S., 阿部, K., 河野, T.	ジャパン	2021	166	166	166	オープンアクセスとしている（また、その予定である）	国際共著	-
Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance

Conradie, A. M., Bertzbach, L. D., Trimpert, J., Patria, J. N., Murata, S., Parcells M. S., Kaufer, B. B.

Transcriptome dynamics of blood-fed and starved poultry red mites, Dermanyssus gallinae

Fujisawa, S., Murata, S., Isezaki, M., Oishi, E., Taneno, A., Maekawa, N., Okagawa, T., Konnai, S., Ohashi, K.

Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression

Sajiki, Y., Konnai, S., Ikenaka, Y., Gulay, K. C. M., Kobayashi, A. Parizi, L. F., Joo, B. C., Watari, K., Fujisawa, S., Okagawa, T., Maekawa, N., Logullo, C., da Silva Vaz, I., Murata, S., Ohashi, K.

Direct evidence of the preventive effect of milk replacer-based probiotic feeding in calves against severe diarrhea

Kayasaki, F., Okagawa, T., Konnai, S., Kohara, J., Sajiki, Y., Watari, K., Ganbaatar, O., Goto, S., Nakamura, H., Shimakura, H., Minato, E., Kobayashi, A., Kubota, M., Terasaki, N., Takeda, A., Noda, H., Honma, M., Maekawa, N., Murata, S., Ohashi, K.
A TLR7 agonist activates bovine Th1 response and exerts antiviral activity against bovine leukemia virus.

Sajiki, Y., Konnai, S., Okagawa, T., Maekawa, N., Nakamura, H., Kato, Y., Suzuki, Y., Murata, S., Ohashi, K.

Detection and molecular identification of Leucocytozoon and Plasmodium species from village chickens in different areas of Myanmar.

Win, S. Y., Chel, H. M., Hmoon, M. M., Htun, L. L., Bawm, S., Win, M. M., Murata, S., Nonaka, N., Nakao, R., Katakura, K.

Genetic characterization of a Marek's disease virus strain isolated in Japan.

Murata, S., Machida, Y., Isezaki, M., Maekawa, N., Okagawa, T., Konnai, S., Ohashi, K.

Molecular detection and genetic characterization of infectious laryngotracheitis virus in poultry in Myanmar.

Yang, Z., Murata, S., Fujisawa, S., Takehara, M., Katakura, Ken., Hmoon, M. M., Win, S. Y., Bawm, S., Konnai, S., Ohashi, K.
Haematophagous mites on poultry farms in the Republic of the Union of Myanmar.

Immunosuppressive effects of sialostatin L1 and L2 isolated from the taiga tick Ixodes persulcatus Schulze

Expression Analysis of Canine CMTM6 and CMTM4 as Potential Regulators of the PD-L1 Protein in Canine Cancers
1. 著者名	2. 論文標題	3. 雑誌名	4. 巻	5. 発行年	6. 最初と最後の頁	掲載論文の DOI(デジタルオブジェクト識別子)	查読の有無	オープンアクセス	国際共著	該当する
						10.1016/j.ttbdis.2019.101332	有	オープンアクセスとしている（また、その予定である）	国際共著	該当する
Sajiki, Y., Konnai, S., Ochi, A., Okagawa, T., Githaka, N., Isezaki, M., Yamada, S., Ito, T., Ando, S., Kawabata, H., Logullo, C., da Silva Vaz, I. Jr., Maekawa, N., Murata, S., Ohashi, K.	Immunosuppressive effects of sialostatin L1 and L2 isolated from the taiga tick Ixodes persulcatus Schulze	Ticks Tick Borne Dis.				10.1016/j.ttbdis.2019.101332	有	オープンアクセスとしている（また、その予定である）	国際共著	該当する
						10.4049/jimmunol.1900342	有	オープンアクセスではない、又はオープンアクセスが困難		
Sajiki, Y., Konnai, S., Ochi, A., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Watari, K., Minato, E., Kobayashi, A., Kohara, J., Yamada, S., Kaneko, M.K., Kato, Y., Takahashi, H., Terasaki, N., Takeda, A., Yamamoto, K., Toda, M., Suzuki, Y., Murata, S., Ohashi, K.	Prostaglandin E2-Induced Immune Exhaustion and Enhancement of Antiviral Effects by Anti-PD-L1 Antibody Combined with COX-2 Inhibitor in Bovine Leukemia Virus Infection.	J. Immunol.				10.1186/s12917-019-2082-7	有	オープンアクセスとしている（また、その予定である）	国際共著	該当する
Fujisawa, S., Murata, S., Takehara, M., Katakura, K., Hmoon, M.M., Win, S.Y., Ohashi, K.	Molecular detection and genetic characterization of Mycoplasma gallisepticum, Mycoplama synoviae, and infectious bronchitis virus in poultry in Myanmar.	BMC Vet. Res.				10.1186/s12917-019-2018-2	有	オープンアクセスではない、又はオープンアクセスが困難		
1. 著者名				4. 巻						
---	---	---	---	---						
				5. 発行年						
				6. 最初と最後の頁						
2. 論文標題										
3. 雑誌名										
掲載論文の DOI (デジタルオブジェクト識別子)										
公開アクセス	オープンアクセスとしている（また、その予定である）			国際共著						
1. 著者名				4. 巻						
				5. 発行年						
				6. 最初と最後の頁						
掲載論文の DOI (デジタルオブジェクト識別子)										
公開アクセス	オープンアクセスとしている（また、その予定である）			国際共著						
1. 著者名				4. 巻						
				5. 発行年						
				6. 最初と最後の頁						
掲載論文の DOI (デジタルオブジェクト識別子)										
公開アクセス	オープンアクセスとしている（また、その予定である）			国際共著						
1. 著者名				4. 巻						
				5. 発行年						
				6. 最初と最後の頁						
掲載論文の DOI (デジタルオブジェクト識別子)										
公開アクセス	オープンアクセスとしている（また、その予定である）			国際共著						
---	---	---	---	---	---					
1. 発表者名	2. 発表標題	3. 学会等名	4. 発表年	5. 発行年	6. 最初と最後の頁					
中村 卓人 □ 今内 覚 □ 岡川 朋弘 □ 佐治木 大和 □ 渡 慧 □ 神谷 可菜 □ 齋藤 麻矢 □ 前川 直也 □ 村田 史部 □ 大橋 和彦	牛白血病ウイルス感染症における免疫抑制受容体 コ avez の発現解析および機能解析	第 回日本獣医学学会学術集会	2018年	2020年						
1. 発表者名	2. 発表標題	3. 学会等名	4. 発表年	5. 発行年	6. 最初と最後の頁					
大塚 拓海 □ 今内 覚 □ 前川 直也 □ 渡 慧 □ 岡川 朋弘 □ 村田 史部 □ 大橋 和彦	ネコ を標的とした新規免疫抑制製剤の開発における基礎的研究	第 回日本獣医学学会学術集会	2018年	2020年						
1. 発表者名	2. 発表標題	3. 学会等名	4. 発表年	5. 発行年	6. 最初と最後の頁					
有泉 拓馬 □ 村田 史部 □ 齋藤 宗大郎 □ 伊勢崎 政美 □ 前川 直也 □ 岡川 朋弘 □ 種子野 章 □ 大石 英司 □ 今内 覚 □ 大橋 和彦	ワクモにおける定量的 ギュ 法確立のための内在性コントロール遺伝子の探索	第 回日本獣医学学会学術集会	2018年	2020年						

Prostaglandin E2 Induction Suppresses the Th1 Immune Responses in Cattle with Johne's Disease

Infection and Immunity e00910-17

Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Ikebuchi, R., Nagata, R., Kawaji, S., Kagawa, Y., Yamada, S., Kato, Y., Nakajima, C., Suzuki, Y., Murata, S., Mori, Y., Ohashi, K.
1. 発表者名	村田 史郎・今内 覚・大橋 和彦
2. 発表標題	マレック病に関する最近の知見について 日本に分布するマレック病ウイルスの性状
3. 学会等名	九州年度佐賀県支部第1回病技術研修会（招待講演）
4. 発表年	2019年

1. 発表者名	竹原 昌生・亀井 暮・村田 史郎・伊勢崎 政美・藤澤 宗太郎・種子野 章・酒井 英史・宇野 有紀子・小川 達・市居 修・前川 直也・岡川 朋弘・今内 覚・大橋 和彦
2. 発表標題	ワクモ由来 トリプルレシピ オレイン酸のパラベンの抗ワクモワクチン抗原としての評価
3. 学会等名	令和元年度 稲病研究会北海道支部技術検討会
4. 発表年	2019年

1. 発表者名	滝澤 由伸・村田 史郎・伊勢崎 政美・藤澤 宗太郎・種子野 章・酒井 英史・宇野 有紀子・小川 達・市居 修・前川 直也・岡川 朋弘・今内 覚・大橋 和彦
2. 発表標題	Cysteine protease and ferritin 2 as vaccine antigens to control poultry red mites, Dermanyssus gallinae
3. 学会等名	国際学会
4. 発表年	2019年
发表者名	坂内幸史, 小澤大次郎, 宮崎大次郎, 加納克己, 小澤大次郎, 宮崎大次郎, 加納克己
---	---
発表標題	The induction of immunosuppression via prostaglandin E2 and the enhancement of anti-bacterial effects by anti-PD-L1 antibody combined with COX-2 inhibitor in Mycoplasma bovis infection
学会等名	国際学会
発表年	2019年

発表者名	坂内幸史, 小澤大次郎, 宮崎大次郎, 加納克己, 小澤大次郎, 宮崎大次郎, 加納克己
発表標題	Establishment of anti-bovine PD-1 chimeric antibody and a pilot clinical study
学会等名	国際学会
発表年	2019年

発表者名	坂内幸史, 小澤大次郎, 宮崎大次郎, 加納克己, 小澤大次郎, 宮崎大次郎, 加納克己
発表標題	Contribution of prostaglandin E2 to disease progression and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection
学会等名	国際学会
発表年	2019年

発表者名	坂内幸史, 小澤大次郎, 宮崎大次郎, 加納克己, 小澤大次郎, 宮崎大次郎, 加納克己
発表標題	Immunomodulatory effects of sialostatin L and sialostatin L2 from Ixodes persulcatus Schulze, Taiga tick
学会等名	国際学会
発表年	2019年
1. 発表者名	ワタリ, K., コナイ, S., オカガワ, T., マエカワ, N., ムラタ, S., オハシ, K.
2. 発表標題	国際免疫学会総会2019年 (国際学会）
3. 学会等名	国際免疫学会総会2019年 (国際学会）
4. 発表年	2019年

1. 発表者名	ワタリ, K., コナイ, S., オカガワ, T., マエカワ, N., ムラタ, S., オハシ, K.
2. 発表標題	国際免疫学会総会2019年 (国際学会）
3. 学会等名	国際免疫学会総会2019年 (国際学会）
4. 発表年	2019年

1. 発表者名	ワタリ, K., コナイ, S., オカガワ, T., マエカワ, N., ムラタ, S., オハシ, K.
2. 発表標題	国際免疫学会総会2019年 (国際学会）
3. 学会等名	国際免疫学会総会2019年 (国際学会）
4. 発表年	2019年

1. 発表者名	茅先 史, 今内 興, 久保田 学, 岡川 朋弘, 佐治木 大和, 渡 慧, 小原 潤子, 前川 直也, 村田 史郎, 大橋 和彦
2. 発表標題	ロタウイルス実験感染子牛モデルを用いた増発酵代用乳の腸炎抑制効果の検証
3. 学会等名	北海道獣医師会学術集会
4. 発表年	2019年
1. 発表者名
佐治木 大和・今内 覚・岡川 朋弘・前川 直也・後藤 伸也・小原 潤子・山田 慎二・加藤 幸成・鈴木 定彦・村田 史郎・大橋 和彦

2. 発表標題
インフルエンザに対する ダイレクトライシテリス抗体と 抗 HIV 抗体併用法の抗ウイルス効果の検討

3. 学会等名
第 33 回日本獣医学会学術集会

4. 発表年
2019年

1. 発表者名
後藤 伸也・今内 覚・岡川 朋弘・前川 直也・小原 潤子・平野 佑気・鈴木 定彦・村田 史郎・大橋 和彦

2. 発表標題
インフルエンザに対する 抗 HIV キメラ抗体を用いた臨床試験

3. 学会等名
第 33 回日本獣医学会学術集会

4. 発表年
2019年

1. 発表者名
前川 直也・今内 覚・浅野 裕美・岡川 朋弘・髙木 哲・村田 史郎・大橋 和彦

2. 発表標題
ダミー阻害剤の併用による抗 HIV 抗体を用いたイヌ腫瘍免疫療法の効果増強に向けた基礎的検討

3. 学会等名
第 33 回日本獣医学会学術集会

4. 発表年
2019年

1. 発表者名
竹内 寛人・今内 覚・岡川 朋弘・前川 直也・村田 史郎・大橋 和彦

2. 発表標題
イヌ腫瘍由来細胞株における イヌラクサノウエ ホルモン チミトノジマウエ ミカイジ フットハナノコウザキ フットハナノコウザキ および シロウメの発現解析

3. 学会等名
第 33 回日本獣医学会学術集会

4. 発表年
2019年
1. 発表者名
吉武 昌夫 奈良 内藤 前川 直也 賀川 由美子 西村 麻紀 岡川 朋弘 鈴木 定彦 高木 哲 中川 貴之 村田 史郎 大橋 和彦

2. 発表標題
イヌ腫瘍組織およびイヌ腫瘍由来細胞株におけるイヌ virus の発現解析

3. 学会等名
第 回日本団体学会学术集会

4. 発表年

1. 発表者名
森田 雫 竹原 昌生 別村 史郎 藤原 宗太郎 佐藤 竹原 昌生 竹村 香 賀井 若林 坂本 有紀子 木村 達也 市居 修 前川 直也 岡川 朋弘 内藤 賀川 由美子

2. 発表標題
分子生物学的検討からなる イヌ腫瘍組織およびイヌ腫瘍由来細胞株におけるイヌ virus の発現解析

3. 学会等名
第 回日本団体学会学术集会

4. 発表年

1. 発表者名
藤澤 宗太郎 別村 史郎 藤原 宗太郎 昌生 伊勢牧 阿部 彦二重 山口 英史 木村 有紀子 小川 達也 修 前川 直也 岡川 朋弘 内藤 賀川 由美子

2. 発表標題
ワクチンの抗ワクチンワクチン抗原としての評価

3. 学会等名
第 回日本団体学会学术集会

4. 発表年

1. 発表者名
藤澤 宗太郎 別村 史郎 竹原 昌生 伊勢牧 阿部 彦二重 山口 英史 木村 有紀子 竹原 昌生 前川 直也 岡川 朋弘 内藤 賀川 由美子

2. 発表標題
幹細胞由来の ワクチンの吸血状態別の遺伝子発現解析

3. 学会等名
第 回日本団体学会学术集会

4. 発表年

号	発表者名	発表標題	学会等名	発表年
1.	竹原 昌生・村田 史郎・片倉 賢・高松 亮司・川村 眞理子・河野 智子・安藤 幸枝・田代 昭・植木 千草・井上 哲也・杉山 正美・今 内 覚・大橋 和彦	マレック病ウイルスの病原性新海機構の解明—病原性試験や全ゲノム解析の試み	第 回日本獣医学会学術集会（招待講演）	2018年
2.	竹原 昌生・村田 史郎・片倉 賢・高松 亮司・川村 眞理子・河野 智子・安藤 幸枝・田代 昭・植木 千草・井上 哲也・杉山 正美・今 内 覚・大橋 和彦	動物難治性疾病の免疫学的解析を基盤とした新規制御法の開発	第 回日本獣医学会学術集会（招待講演）	2018年
3.	岩瀬 慎一	ミャンマー連邦共和国における鶏の吸血性外部寄生虫の分布状況調査	第 回日本獣医学会学術集会	2018年
4.	岩瀬 慎一	ミャンマー連邦共和国における鶏の吸血性外部寄生虫の分布状況調査	第 回日本獣医学会学術集会	2018年

Molecular detection of Marek's disease virus in poultry farms in Myanmar
1. 発表者名	前川 直也 & 今内 航 & 村田 史郎 & 大橋和彦
2. 発表標題	免疫抑制因子 および にを標的としたイヌ腫瘍に対する新規免疫療法の検討
3. 学会等名	第 回日本畜医学会学術集会（招待講演）
4. 発表年	

1. 発表者名	渡 慧 & 今内 航 & 阿川 朋弘 & 前川 直也 & 後藤 伸也 & 佐治木 大和 & 村田 史郎 & 鈴木 定彦 & 大橋 和彦
2. 発表標題	ウシ および にを機能解析および慢性感染症における発現解析
3. 学会等名	第 回日本畜医学会学術集会
4. 発表年	

1. 発表者名	佐治木 大和 & 今内 航 & 阿川 朋弘 & 西森 朝美 & 前川 直也 & 後藤 伸也 & 永田 礼子 & 川治 聡 & 鈴木 康行 & 村田 史郎 & 大橋和彦
2. 発表標題	ヨーケ病におけるプロスタグランジン および () 動態解析及ぶ にを免疫系の免疫活性効果の検討
3. 学会等名	第 回日本畜医学会学術集会
4. 発表年	

1. 発表者名	後藤 伸也 & 今内 航 & 阿川 朋弘 & 前川 直也 & 佐治木 大和 & 橋口 豪起 & 小岩 政照 & 田島 誠士 & 鈴木 定彦 & 村田 史郎 & 大橋 和彦		
2. 発表標題	にを感染症における免疫抑制機序の解析		
3. 学会等名	第 回日本畜医学会学術集会		
4. 発表年			
発表者名	発表標題	学会等名	発表年
----------	----------	----------	--------
岡川 朋弘 今内 與西 時美 田中 晶菜 前川 直也 戸塚 知恵 千葉 由純 池田 昌穂 村田 史郎 大橋 和彦	地方病性牛白血病若齢発症牛におけるプロウイルス挿入部位の網羅的解析	第 XXX回日本獣医学会学術集会	2018
田中 晶菜 前川 直也 朋弘 西森 朝美 前川 直也 戸塚 知恵 千葉 由純 池田 昌穂 村田 史郎 大橋 和彦	地方病性牛白血病若齢発症牛の簡易鑑別診断基準の確立と若齢発症牛の実態調査	第 XXX回日本獣医学会学術集会	2019
前川 直也 岡川 朋弘 高木 哲 鈴谷 諒次 河川 由美子 岡川 朋弘 和泉 雄介 出口 辰弥 鈴木 定彦 山本 啓一 村田 史郎 大橋 和彦	延転移のある悪性黑色腫瘍犬に対する ハードを標的とした抗体薬の治療効果	第 XXX回日本獣医学会学術集会	2018
石原 悠太郎 今内 與西 時美 朋弘 前川 直也 鈴木 定彦 大田 田村 史郎 大橋 和彦	イヌ 企画 きもきも きもきも きもきも きもきも きもきも きもきも きもきもを標的としたバイオ医薬品の開発に向けた基礎的検討	第 XXX回日本獣医学会学術集会	2018
1. 発表者名
村田 史郎

2. 発表標題
抗ワクモワクチン開発に向けた試み

3. 学会等名
第284回鰻病事例検討会（招待講演）

4. 発表年
平成23年

1. 発表者名
村田 史郎 宇野 有紀子 酒井 英史 野村 孝美 川口 綾香 竹原 昌生

2. 発表標題
ワクモ（lichteschen すりたい）由来カテプシン（類似タンパク質およびフェリチン）を用いた抗ワクモワクチンの開発

3. 学会等名
平成23年度鰻病研究会北海道支部技術検討会

4. 発表年
平成23年

（図書） 計1件

【出願】 計1件
産業財産権の名称
抗ワクモワクチン組成物及びその使用

産業財産権の種類、番号
特許、特願 となる とき

発明者
村田 史郎 宇野 有紀子 酒井 英史 野村 孝美 川口 綾香 竹原 昌生

権利者
国立大学法人北海道大学

国内・外国の別
国内

（取得） 計1件

【その他】
北海道大学大学院薬学研究院 感染症学教室ホームページ
https://lab-inf.vetmed.hokudai.ac.jp
6. 研究組織

氏名	所属研究機関・部署・職	備考
今内 覚	北海道大学・献医学研究院・准教授	
大橋 和彦	北海道大学・献医学研究院・教授	

7. 科研費を使用して開催した国際研究集会

(国際研究集会) 計1件

8. 本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関