METHOD DEVELOPMENT AND VALIDATION FOR MULTI-COMPONENT ANALYSIS OF LAMIVUDINE & TENOFOVIR DISOPROXIL FUMARATE IN BULK DRUG BY UV-VISIBLE SPECTROPHOTOMETER & RP-HPLC
Shweta Sharma*, Amar Deep Ankalgi, Pooja Kaushal, M. S. Ashawat

ABSTRACT
A novel, simple, precise and accurate method developed for the estimation of Lamivudine and tenofovir disoproxil fumarate (TDF) in bulk drug form has been established. Lamivudine and tenofovir are well known drugs and used in treatment of HIV-1. The method was performed by using C18 column, ODS Hypersil column with UV detection at 262nm by using Acetonitrile and water in ratio 55:45. The retention time was found to be 2.8 and 6.8 min for Lamivudine and tenofovir disoproxil fumarate (TDF). The linearity was found in range of 6-14µg/ml for Lamivudine and 10-50µg/ml for Tenofovir disoproxil fumarate with flow rate 1ml/min. The method was validated for linearity, accuracy, precision and robustness as per ICH guidelines. This method is suitable for simultaneous analysis for both the nucleoside analog reverse- transcriptase inhibitors

INTRODUCTION
Tenofovir disoproxil fumarate (Fig-1) and Lamivudine (Fig-2) are widely used anti-retroviral drugs in the categories of NRTIs i.e. nucleotide analogues reverse transcriptase inhibitors [1-4]. These drugs are used for the prevention and clinical management of acquired immune deficiency syndrome (AIDS) with multiple complications [5-8].

Keywords
Lamivudine, Tenofovir
Disoproxil Fumarate, anti-HIV, RP-HPLC

*For Correspondence: sshwetasharma.903@gmail.com

©2020 The authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (https://creativecommons.org/licenses/by-nc/4.0/)
Tenofovir is a type of anti-HIV medicine called a nucleoside reverse transcriptase inhibitor (NRTI). It is always used in combination with other antiviral agents to treat patients with HIV. It is used in the form of a prodrug as Tenofovir Disoproxil Fumarate [13-15]. Tenofovir is not a cure for HIV infection but decreases the risk of spreading the disease to others. It is also used to treat the certain type of liver infection called chronic hepatitis B infection [16-18]. The literature review revealed that there are several methods available for single component analysis for lamivudine and Tenofovir (TDF) [19-20].

![Figure 1: Tenofovir (TDF)](image1)

![Figure 2: Lamivudine](image2)

MATERIAL AND METHOD

Instrument
The lambda max and iso-absorptive point were determined by UV–spectrophotometer using Lab India with UV win software. HPLC (Shimadzu) prominence LC 20 AD, manual sampler, software LC solution and detector (UV-visible), Column C-18, Thermo scientific octadecysilane Hypersil (ODS), ultrasonicater, vacuum filter, analytical balance.

Selection of wavelength
The selection of wavelength 10 µg/ml concentration of lamivudine and 10 µg/ml concentration of tenofovir was prepared in 55:45 with ACN: water respectively. The result show iso-absorptive point that was observed at 262 nm (figure 3).

![Figure 3. Overlain spectrum of lamivudine and TDF](image3)

Selection of chromatographic condition
The isocratic mode with mobile phase Acetonitrile and water in ratio 55:45 with flow rate 1ml/min. The resulting chromatograms were recorded and the chromatographic responses were measured.

Analytical Method Validation
A calibration curve was plotted with the concentration range 6-14 µg/ml for lamivudine and 10-50 µg/ml for tenofovir (TDF). The method was developed and validated as per ICH guidelines. The parameters were studied linearity, accuracy, precision (intraday and interday precision and repeatability) and robustness and the amount recovery, percentage recovery and mean recovery for the same was calculated.

Preparation of standard stock solution

Lamivudine standard stock solution
Standard lamivudine 100 mg was weighed and transferred to a 100 ml clean and dry volumetric flask and dissolved into the HPLC grade sample solution (ACN: Water in the ratio 55:45) then volume was made up to the mark with solution containing 1000 µg/ml conc. Then 10 ml of solution was pipette out and transferred to 100 ml clean and dry volumetric flask, made up its volume with solvent to get 100 µg/ml conc. solutions.

TDF standard stock solution
Standard tenofovir (TDF) 100 mg was weighed and transferred to a 100 ml clean and dry volumetric flask and dissolved into the HPLC grade sample solution (ACN: Water in the ratio 55:45) then volume was made up to the mark with solution containing 1000 µg/ml conc. Then 10 ml of solution was pipette out and transferred to 100 ml clean and dry volumetric flask, made up its volume with solvent to get 100 µg/ml conc. solutions.
Chromatographic conditions
The mobile phase consisting of Acetonitrile: water (55:45) was used and absorbance was measured at 262 with the run time 15 min and the flow rate was set at 1.0 ml/min respectively.

Preparation of mobile phase
Mobile phase was prepared by mixing HPLC grade acetonitrile and water in ratio of 55: 45 respectively, and the chromatographic conditions were made for separation of the drugs at the wavelength of 262nm. Degassing is done before the use of mobile phase.

Preparation of mobile phase
Mobile phase was prepared by mixing HPLC grade acetonitrile and water in ratio of 55: 45 respectively, and the chromatographic conditions were made for separation of the drugs at the wavelength of 262nm. Degassing is done before the use of mobile phase.

Validation of the developed method

Linearity curve for lamivudine
Standard lamivudine stock solution the volume of 0.6, 0.8, 1, 1.2, 1.4ml was pipetted out from 100µg/ml and transferred to different 10ml clean and dry volumetric flasks. The volume was made up to the mark having conc. of 6, 8, 10, 12, 14µg/ml respectively. The injection was prepared 20µg/ml and given with run time of 15 minutes. The linearity peaks was found to be within the limits. The results are shown in figure 7 and table 1.

S. No	Conc. (µg/mL)	Area (µ volt sec.)
1	6	376003
2	8	651314
3	10	866679
4	12	1108256
5	14	1357247

Figure 7: Linearity curve of lamivudine at 262nm

Accuracy
To study the accuracy, 3 determinants of conc. range of 8, 10, 12µg/ml for lamivudine and 20, 30, 40 µg/ml for tenofovir (TDF0 were prepared having 80%, 100%, and 120% of spiked level respectively. 3 replicates of above conc. were prepared and different 10 ml clean and dry volumetric flasks. The volume was made up to the mark having conc. of 6, 8, 10, 12, 14µg/ml respectively. The injection was prepared 20µg/ml and given with run time of 15 minutes. The linearity peaks was found to be within the limits. The results are shown in figure 7 and table 1.

Table: 1. Results of linearity curve of Lamivudine at wavelength 262 nm.

S. No	Conc. (µg/mL)	Area (µ volt sec.)
1	6	376003
2	8	651314
3	10	866679
4	12	1108256
5	14	1357247

Figure 7: Linearity curve of lamivudine at 262nm
responses were obtained. Percent recovery was calculated for obtained data and calculated according to ICH guidelines (Table 3 and 4).

Table 2. Result of linearity curve of tenofovir (TDF) at 262nm

S. No	Conc. (µg/mL)	Area (µ volt sec.)
1	10	427228
2	20	733996
3	30	1101386
4	40	1481526
5	50	1916508

Drug recovery

\[
\begin{align*}
80\% &= \left(\frac{\text{Mean abs. of 180\% fortified sample} - \text{mean abs. of 80\% unfortified sample}}{\text{Mean abs. of fortified standard solution of 100\% test conc.}} \right) \times 100 \\
100\% &= \left(\frac{\text{Mean abs. of 200\% fortified sample} - \text{Mean abs. of 100\% unfortified sample}}{\text{Mean abs. of fortified standard solution of 100\% test conc.}} \right) \times 100 \\
120\% &= \left(\frac{\text{Mean abs. of 220\% fortified sample} - \text{Mean abs. of 120\% unfortified sample}}{\text{Mean abs. of fortified standard solution of 120\% test conc.}} \right) \times 100
\end{align*}
\]

Table 3: % Drug Recovery of lamivudine at wavelength 262nm

S. No	Unfortified sample	Fortified sample	% Recovery					
	Conc. (µg/ml)	Area	Mean	Conc. (µg/ml)	Area	Mean		
1	8	651315	651313	651314	1517973	1517971	1517971	99.34
2	10	866680	866678	866679	1733398	1733400	1733396	100.02
3	12	1108257	1108255	1108254	1974929	1974927	1974927	99.05

Table 4: % Drug recovery of tenofovir (TDF) at wavelength 262nm

S. No	Unfortified sample	Fortified sample	% Recovery					
	Conc. (µg/ml)	Area	Mean	Conc. (µg/ml)	Area	Mean		
1	20	733996	733976	733996	1835268	1835270	1835269	99.06
2	30	1101386	1101389	1101387	2202799	2202797	2202797	100.0
3	40	1481526	1481429	1481428	2582813	2582811	2582812	99.76
Precision
The precision was done for interday, intraday and repeatability.

Interday & intraday precision
Interday & intraday precision of conc. 8, 10, 12µg/ml was prepared and data was obtained for lamivudine. Interday & intraday precision of conc. 20, 30, 40µg/ml was prepared and data was obtained for tenofovir (TDF). 3 replicates were prepared for 3 days. The results of lamivudine and tenofovir were shown in table 5 to 7.

Table 5: Intraday precision of lamivudine and tenofovir (TDF) at 262nm

Drug	Lamivudine	Tenofovir (TDF)						
	Conc.	8 µg/ml	10 µg/ml	12 µg/ml	8 µg/ml	30 µg/ml	40 µg/ml	
Area (µ volt sec.)		8 µg/ml	10 µg/ml	12 µg/ml		20 µg/ml		40 µg/ml
	651314	866679	1108256		733996	1101386	1481526	
	651294	866580	1108350		733954	1101285	1481429	
	651229	866662	1108275		733889	1101324	1481494	
Mean	651279	866640.3	1108294		733946.3	1101332	1481483	
S D	44.440	52.937	49.702		53.910	50.934	49.426	
% RSD	0.0068	0.0061	0.0044		0.007	0.004	0.003	

Table 6: Interday precision of lamivudine at 262nm

Day	Day 1	Day 2	Day 3						
Conc.	8µg/ml	10µg/ml	12µg/ml	8µg/ml	10µg/ml	12µg/ml	8µg/ml	10µg/ml	12µg/ml
Area (µ volt sec.)	651314	866679	1108256	651379	866679	1108256	6512134	866679	1108256
Mean	651279	866640.3	1108294	651302.7	866638.7	1108299	651276.3	866651	1108286
S D	44.440	52.937	49.702	48.585	69.859	44.015	53.346	53.777	78.805
% RSD	0.0068	0.0061	0.0044	0.012	0.008	0.003	0.0069	0.0062	0.0071

Table 7: Interday precision of tenofovir (TDF) at 262nm

Day	Day 1	Day 2	Day 3						
Conc.	20µg/ml	30µg/ml	40µg/ml	20µg/ml	30µg/ml	40µg/ml	20µg/ml	30µg/ml	40µg/ml
Area (µ volt sec.)	733996	1101386	1481526	733987	1101287	1481437	733996	1101386	1481432
Mean	733946.3	733946.3	1481493	733958.3	1101419	1481482			
S D	53.910	53.910	49.426	6.244	54.744	48.418	61.80885	49.81298	47.35328
% RSD	0.007	0.007	0.003	0.0008	0.0049	0.0032	0.0084	0.0045	0.0031

Repeatability
For repeatability determination minimum of 6 determinants were prepared of 20µg/ml conc. and the chromatogram responses were obtained. The results of lamivudine and tenofovir (TDF) were shown in table 8.
Robustness
This method was carried out by changing wavelength and flow rate of mobile phase. The results were shown in table 9 for change in mobile phase and table 10 for change in flow rate.

Table: 9 Robustness of lamivudine & tenofovir (TDF) at wavelength 262±2nm.

Wavelength	Difference	R_t of Lamivudine (min.)	R_t of Tenofovir (min.)
260	-2	2.769	6.883
262	0	2.858	6.881
264	+2	2.841	6.888

Change in flow rate of mobile phase

Table: 10 Robustness of lamivudine & tenofovir (TDF) at wavelength 262 nm.

Flow rate (mL/min.)	Difference	R_t of Lamivudine (min.)	R_t of Tenofovir (min.)
0.9	-0.1	2.752	6.780
1	0	2.858	6.880
1.1	+0.1	2.285	6.898

CONCLUSION
The estimation of lamivudine and Tenofovir (TDF) was done by RP-HPLC. The mobile phase was optizied Acetonitrile: water in the ratio of 55:45% v/v. A C18 column contains octa-decylsilane chemically linked to porous silica particles was used as stationary phase. UV detector was used at 262 nm. The solutions were chromatograph at a constant flow rate of 1 ml/min. The linearity range of lamivudine was found 6-14µg/ml and tenofovir (TDF) were found to be 10-50µg/ml. Linear regression coefficient was not more than 0.999.

The results obtained on the validation parameters met ICH and USP requirements. It can be also inferred that the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Table 11: Summary of developed method

Parameter	Lamivudine	Tenofovir	
Linear range (µg/ml)	6-14	10-50	
Regression coefficient (R^2)	0.999	0.999	
% Recovery	99.47	99.60	
Repeatability (n=6)	% RSD NMT 2	% RSD NMT 2	
Precision	Intraday precision	% RSD NMT 2	Interday precision

FINANCIAL ASSISTANCE
Nil

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTION
Ms. Shweta Sharma performed experiment in the laboratory and collected data. Dr. Amar Deep Ankalgi analyzed and helps to perform the studies in laboratory and recorded observation and make necessary correction in the records. He also helps to design the experimental data and read the manuscript and make all the necessary corrections in manuscript. Miss. Pooja Kaushal analyzed the data and help to reading and drafting manuscript and help in research work. Dr. M.S. Ashawat studies all the records and helps to make necessary correction and approved the manuscript.

REFERENCES
[1] Markwalder JA, Seitz SP, Crist DD, Multlib AE. Synthesis of putative metabolites of the non nucleoside reverse transcriptase inhibitor (DMP266). 26 National medicinal Chemistry Symposium (abstract); Richmond, VA. ACS Division of medicinal chemistry, 3, 21-31 (1998)
[2] Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med Group ISS, Lundgren JD, Babiker AG, et al. Initiation of
antiretroviral therapy in early asymptomatic HIV infection. *N Engl J Med*, **373**, 795–807 (2015).

[3] WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: World Health Organization, 2016.

[4] Backett AH, Stenlake JB, Practical of pharmaceutical chemistry. *4th ed.* New Delhi. CBS publishers & distributors, p. 284 (2005) Venkatesan S, Kannappan N. Simultaneous spectrophotometric method for determination of emtricitabine and tenofovir disoproxil fumarate in three-component tablet formulation containing rilpivirine hydrochloride. *International Scholarly Research Notices*, p.9(2014)

[5] Lloyed R, Joseph J et al. Practical HPLC method development. *2nd ed.* Jhon Willy and Sons, New York: p. 653.

[6] S. Raffanti, D. Haas, Antimicrobial Agents: Antiretroviral Agents, *McGraw-Hill*, New York, 1990.

[7] Kapoor Namita, Khandavilli Sateesh, Panchagnula Ramesh. Simultaneous determination of lamivudine, stavudine and nevirapine in antiretroviral fixed dose combinations by high performance liquid chromatography, *Analytica Chimica Acta*, **570**, 41-45 (2006)

[8] Markwalder JA, Seitz SP, Crist DD and Multlib AE. Synthesis of putative metabolites of the non nucleoside reverse transcriptase inhibitor. *National medicinal chemistry symposium*, 14 – 18 (1998)

[9] Sonara KV, Sapkalea P, Jadhav A. Development and validation of uv spectroscopic method for estimation of lamivudine in tablet dosage form, *International Journal of Current Pharmaceutical Research*, **9**, 86- 89 (2017)

[10] Anjaneyulu. N, Nagakishore. R, Nagaganesh. M, Muralikrishna. K. Development and validation of RP-HPLC method for the simultaneous estimation of lamivudine and tenofovir disoproxil fumarate in combined dosage form. *Asian Journal of Biomedical and Pharmaceutical Sciences*, **23**, 7-11 (2013)

[11] Krishna S, Subramanian S, Muthuraman MS. RP-HPLC Analytical Method Development And Validation For Lamivudine And Zidovudine In Pharmaceutical Dosage Forms, *International Journal of PharmTech Research*, **5**, 1321-1331 (2013)

[12] Patro SK, Swain SR, Patro VJ, Choudhary NSK. Development and validation of high performance liquid chromatographic method for determination of lamivudine from pharmaceutical preparation. *E-Journal of Chemistry*, **7**, 117- 122 (2010)

[13] Bhavsar DS, Patel BN, Patel CN. RP-HPLC method for simultaneous estimation of tenofovir disoproxil fumarate, lamivudine, and efavirenz in combined tablet dosage form, *Pharm Method*, **3**, 72-78 (2012)

[14] Kumar D, Rao GS. Simultaneous Determination of Lamivudine, Zidovudine and Abacavir in Tablet Dosage Forms by RP HPLC Method, *E-Journal of Chemistry*, **7**,180-184 (2009)

[15] Kapoor N., Khandavilli S, Panchagnula R. Simultaneous determination of lamivudine, stavudine and nevirapine in antiretroviral fixed dose combinations by high performance liquid chromatography, *Analytica Chimica Acta*, **570**, 41-45(2006)

[16] Deepali G, Elvis M. UV Spectrophotometric Method for Assay of the Anti-Retroviral Agent Lamivudine in Active Pharmaceutical Ingredient and in its Tablet Formulation, *Journal of Young Pharmacists*, **2**, 417-149 (2010)

[17] Uppalapati Y, Ghosh B, Deshpande K, Tadimarri VS. Method Development and Validation for the Simultaneous Estimation of Emtricitabine and Tenofovir in Pharmaceutical Dosage Forms by RP-HPLC, *Journal of Drug Development and Delivery*, **1:1**, 07-12 (2018)

[18] Akram N, Umamahesh MD. A New Validated RP-HPLC Method for the Determination of Emtricitabine and Tenofovir AF in its Bulk and Pharmaceutical Dosage Forms, *Journal of Chemical and Pharmaceutical Sciences*, **10**, 54- 59 (2017)

[19] Gorja Ashok, Sumanta Mondal. Development and Validation of Stability Indicating Method for the Simultaneous Quantification of Emtricitabine, Tenofovir Disoproxil Fumarate and Rilpivirine Hydrochloride in Pharmaceutical Dosage Forms by RP-HPLC, *Saudi Journal of Medical and Pharmaceutical Sciences*, **15**,175-183 (2018)