Bidirectional PageRank Estimation: From Average-Case to Worst-Case

Peter Lofgren1, Siddhartha Banerjee2, and Ashish Goel3

1 Stanford University, Stanford CA 94305, USA
2 Cornell University, Ithaca NY 14850, USA

Abstract. We present a new algorithm for estimating the Personalized PageRank (PPR) between a source and target node on undirected graphs, with sublinear running-time guarantees over the worst-case choice of source and target nodes. Our work builds on a recent line of work on bidirectional estimators for PPR, which obtained sublinear running-time guarantees but in an average case sense, for a uniformly random choice of target node. Crucially, we show how the reversibility of random walks on undirected networks can be exploited to convert average-case to worst-case guarantees. While past bidirectional methods combine forward random walks with reverse local pushes, our algorithm combines forward local pushes with reverse random walks. We also modify our methods to estimate random-walk probabilities for any length distribution, thereby obtaining fast algorithms for estimating general graph diffusions, including the heat kernel, on undirected networks. Whether such worst-case running-time results extend to general graphs, or if PageRank computation is fundamentally easier on undirected graphs as opposed to directed graphs, remains an open question.

1 Introduction

Ever since their introduction in the seminal work of Page et al. \cite{PageRank}, PageRank and Personalized PageRank have become some of the most important and widely used network centrality metrics (For examples, refer a recent survey \cite{Survey}). For any graph G, given a personalized distribution σ over the nodes of G and a ‘teleport’ probability α, personalized PageRank models the importance of every node from the point of view of σ. It can be defined recursively as giving importance α to σ, and in addition giving every node importance based on the importance of its in-neighbors. Formally, given normalized adjacency matrix $W = D^{-1}A$, the PageRank vector π_σ with respect to source distribution σ is the solution to

$$\pi_\sigma = \alpha \sigma + (1 - \alpha) \pi_\sigma W.$$ \hfill (1)

An equivalent definition of personalized PageRank is in terms of the terminal node of a random-walk starting from σ. Let $RW = \{X_0, X_1, X_2, \ldots\}$ be a random-walk starting from $X_0 \sim \sigma$, and $L \sim Geometric(\alpha)$. Then the personalized PageRank of any node t is given by \cite{Survey}:

$$\pi_\sigma(t) = P[X_L = t]$$ \hfill (2)
The equivalence of these definitions can be seen using a power series expansion.

For studying PageRank estimation algorithms, smaller probabilities are more difficult to estimate than large ones, so a natural parametrization is in terms of the minimum PageRank we want to detect. Formally, given any source σ, target node $t \in V$ and a desired minimum probability threshold δ, we want algorithms that give accurate estimates whenever $\pi_\sigma[t] \geq \delta$. Now the above two characterizations also suggest the two natural algorithms for estimating PageRank – via linear-algebraic iterative techniques, and using Monte Carlo. The linear algebraic characterization of PageRank in Eqn. (1) suggests the use of the power iteration (or other localized iterations; cf Section 1.2 for details), while Eqn. (2) is the basis for a Monte-Carlo algorithm, wherein we estimate $\pi_\sigma[t]$ by sampling independent ℓ-step paths, each starting from a random state sampled from σ. Crucially, however, both Monte Carlo and linear algebraic techniques have a running time of $\Omega(1/\delta)$ for PageRank estimation. Moreover this is true not only for worst case choices of target state t, but necessary for Monte-Carlo to take $\Omega(1/\delta)$ time to estimate a probability of size δ. Even a power iteration takes $\Theta(m)$ time, and the work [14] shows empirically that the local version of power-iteration scales with $1/\delta$ for $\delta > 1/m$.

In a recent line of work, linear-algebraic and Monte-Carlo techniques were combined to develop new bidirectional PageRank estimators FAST-PPR [15] and Bidirectional-PPR [13], which gave the first significant improvement in the running-time of PageRank estimation since the development of Monte-Carlo techniques. Given an arbitrary source distribution σ and a uniform random target node t, these estimators were shown to return an accurate PageRank estimate with an average running-time of $O(\sqrt{d}/\delta)$ (where $d = m/n$ is the average degree of the graph). Although the authors showed how this average running-time could be leveraged to get worst-case guarantees using appropriate pre-computation and storage, it still raised the question as to under what conditions one could obtain similar running-time guarantees over a worst-case choice of target node t.

Inspired by the bidirectional estimators in [15,13], we propose a new PageRank estimator for undirected graphs with worst-case running time guarantees.

1.1 Our Contribution

We formally present our Undirected-BiPPR algorithm in Section 2, and prove that it has the following accuracy and running-time guarantees:

Result 1 (Refer Theorem 1 in Section 2) Given any undirected graph G, teleport probability α, source node s, target node t, threshold δ and relative error ϵ, the Undirected-BiPPR estimator (Algorithm 2) returns an unbiased estimate $\hat{\pi}_s[t]$ for $\pi_s[t]$, which, with high probability, satisfies:

$$|\hat{\pi}_s[t] - \pi_s[t]| < \max\{\epsilon \pi_s[t], 2e \delta\}.$$

Result 2 (Refer Theorem 2 in Section 2) Given any undirected graph G, teleport probability α, threshold δ and desired accuracy ϵ; for any source-target
pair \((s, t)\), the Undirected-BiPPR algorithm has a running-time of \(O\left(\frac{1}{\epsilon} \sqrt{d_t/\delta}\right)\), where \(d_t\) is the degree of the target node \(t\).

In personalization applications, we are often only interested in personalized importance scores if they are greater than global importance scores, so it is natural to set \(\delta\) based on the global importance of \(t\). Assuming \(G\) is connected, in the limit \(\alpha \to 0\), the PPR vector for any start node \(s\) converges to the stationary distribution of infinite-length random-walks on \(G\) – that is \(\lim_{\alpha \to 0} \pi_s[t] = d_t/m\). This suggests that a natural PPR significance-test is to check whether \(\pi_s(t) \geq d_t/m\). To this end, we have the following corollary:

Result 3 (Refer Corollary 1 in Section 2) For any graph \(G\) and any \((s, t)\) pair such that \(\pi_s(t) \geq \frac{d_t}{m}\), then Undirected-BiPPR returns an estimate \(\pi_s(t)\) with relative error \(\epsilon\) with a (worst-case) running-time of \(O\left(\sqrt{m/\epsilon}\right)\).

Finally, in Section 3, using ideas from [12], we extend our technique to estimating more general random-walk transition-probabilities on undirected graphs, including graph diffusions and the heat kernel [5,11].

1.2 Existing Approaches for PageRank Estimation

Before presenting our new algorithm, we first summarize the existing methods for PageRank estimation:

Monte Carlo Methods: A standard method [3] for estimating \(\pi_\sigma[t]\) is by using the terminal node of independently generated random walks of length \(L \sim \text{Geometric}(\alpha)\) starting from a random node sampled from \(\sigma\). Simple concentration arguments show that we need \(\tilde{\Theta}(1/\delta)\) samples to get an accurate estimate of \(\pi_\sigma[t]\), irrespective of the choice of \(t\) and graph \(G\).

Linear-Algebraic Iterations: Since the PageRank vector is the stationary distribution of a Markov chain, it can also be estimated via the forward or reverse power iterations. A direct power iteration is often infeasible for large graphs; in such cases, it is preferable to use localized power iterations [2,1]. Moreover, these local-update methods can also be used for other transition probability estimation problems such as heat kernel estimation [11]. Local update algorithms are often fast in practice, as unlike Monte-Carlo methods they exploit the local structure of the chain. However even in sparse Markov chains and for a large fraction of target states, their running time can be \(\Omega(1/\delta)\). For example, consider a random walk on a random \(d\)-regular graph and let \(\delta = o(1/n)\) – then for \(\ell \sim \log_d(1/\delta)\), verifying \(\pi_{\mathbb{P}}[t] > \delta\) is equivalent to uncovering the entire \(\log_d(1/\delta)\) neighborhood of \(s\). However even since a large random \(d\)-regular graph is (whp) an expander, this neighborhood has \(\Omega(1/\delta)\) distinct nodes.

Bidirectional Techniques: Bidirectional methods are based on simultaneously working forward from the source node \(s\) and backward from the target node \(t\) in order to improve the running-time. One example of such a bidirectional technique is the use of colliding random-walks to estimate length-2\(\ell\) random-walk transition probabilities in regular undirected graphs [8,10] – the main idea here is to exploit
the reversibility by using two independent random walks of length \(\ell \) starting from \(s \) and \(t \) respectively, and detecting if they collide. This results in reducing the number of walks required by a square-root factor, based on an argument similar to the birthday-paradox.

The first bidirectional algorithm for estimating PageRank in general graphs was the \textsc{Fast-PPR} algorithm of Lofgren et al. [15], which was subsequently refined and improved by the \textsc{Bidirectional-PPR} algorithm [13], and also generalized to other Markov chain estimation problems [12]. These algorithms were based on using a reverse local-update iteration from the target \(t \) (adapted from the work of Andersen et al. [1]) to smear the mass over a larger \textit{target set}, and then using random-walks from the source \(s \) to detect this target set. From a theoretical perspective, a significant breakthrough was in showing that for arbitrary choice of source node \(s \) these bidirectional algorithms achieved an average running-time of \(O(\sqrt{d/\delta}) \) over uniform-random choice of target node \(t \) – in contrast, both local-update and Monte Carlo has a running-time of \(\Omega(1/\delta) \) for uniform-random targets.

2 PageRank Estimation in Undirected Graphs

We now present our new bidirectional algorithm for PageRank estimation in undirected graphs.

2.1 Preliminaries

We consider an undirected graph \(G(V, E) \), with \(n \) nodes and \(m \) edges. For ease of notation, we henceforth consider unweighted graphs, and focus on the simple case where \(\sigma = e_s \) for some single node \(s \). We note however that all our results extend to weighted graphs and any source distribution \(\sigma \) in a straightforward manner (with some additional notation and assumptions).

2.2 An Symmetry for PPR in Undirected Graphs

The \textsc{Undirected-BiPPR} Algorithm critically depends on the following symmetry of the PPR vectors in undirected graphs:

Lemma 1. Given any undirected graph \(G(V, E) \), for any teleport probability \(\alpha \in (0, 1) \) and for any node-pair \((s, t) \in V^2\), we have:

\[
\pi_s[t] = \frac{d_t}{d_s} \pi_t[s].
\]

Similar results have appeared in several earlier works; for example, in [4] and [9] – for completeness, we present a simple probabilistic proof of this result:
Proof. For path $P = \{s, v_1, v_2, \ldots, v_k, t\}$ in G, we denote its length as $\ell(P)$ (here $\ell(P) = k + 1$), and define its reverse path to be $\overline{P} = \{t, v_k, \ldots, v_2, v_1, s\}$ – note that $\ell(P) = \ell(\overline{P})$. Moreover, we know that a random-walk starting from s traverses path P with probability $P[P] = \frac{1}{d_s} \cdot \frac{1}{d_{v_1}} \cdot \ldots \cdot \frac{1}{d_{v_k}}$, and thus, it is easy to see that we have:

$$P[P] \cdot d_s = P[\overline{P}] \cdot d_t \quad (3)$$

Now let P_{st} denote the set of paths in G starting at s and terminating at t. Then we can re-write Eqn. (2) as:

$$\pi_s[t] = \prod_{P \in P_{st}} \alpha(1 - \alpha)^{\ell(P)} P[P] = \prod_{\overline{P} \in P_{ts}} \alpha(1 - \alpha)^{\ell(\overline{P})} P[\overline{P}] = \frac{d_t}{d_s} \pi_t[s] \quad \square$$

2.3 The Undirected-BiPPR Algorithm

At a high level, the Undirected-BiPPR algorithm has two components:

- **Forward-work:** Starting from source s, we first use a forward local-update iteration, the ApproximatePageRank(G, α, s, r_{max}) algorithm of Andersen et al. [2]. This procedure pushes probability-mass out from source s; for any node u, it returns an estimate $p_s(u)$ of its PPR $\pi_s(u)$ from s with additive error at most $d_u r_{max}$. In addition, the algorithm also stores a residual $r_s(u)$, which keeps track of un-pushed mass at u.

- **Reverse-work:** We next sample random walks of length $L \sim Geometric(\alpha)$ starting from t, and use the residual at the terminal nodes of these walks to compute our desired PPR estimate. Our use of random walks backwards from t depends critically on the symmetry in undirected graphs presented in Lemma 1.

Note that this is in contrast to FAST-PPR and Bidirectional-PPR, which performs the local-update step in reverse from the target t, and generates random-walks forwards from the source s.

Algorithm 1 ApproximatePageRank(G, α, s, r_{max}) [2]

Inputs: graph G, teleport probability α, start node s, maximum residual r_{max}

1: Initialize (sparse) estimate-vector $p_s = 0$ and (sparse) residual-vector $r_s = \epsilon_s$ (i.e. $r_s(v) = 1$ if $v = s$; else 0)
2: while $\exists u \in V$ s.t. $\frac{r_s(u)}{d_u} > r_{max}$ do
3: for $v \in N(u)$ do
4: $r_s(v) += (1 - \alpha) r_s(u)/(d_u)$
5: end for
6: $p_s(u) += \alpha r_s(u)$
7: $r_s(u) = 0$
8: end while
9: return (p_s, r_s)
Going in more detail: our forward-work component is based on the local update algorithm of [2] (shown here as Algorithm 1) which works forwards from a start s to compute estimates $p_s \in \mathbb{R}^n$ of π_s and residuals $r_s \in \mathbb{R}^n$ which represent mass not yet pushed forward. Given a maximum residual r_{max}, we apply a local push operation until for all v, $r_s(v)/d_v < r_{\text{max}}$. Andersen et al. [2] prove that their local-push operation preserves the following invariant for vectors (p_s, r_s):

$$\pi_s[t] = p_s[t] + \sum_{v \in V} r_s(v)\pi_v[t], \quad \forall t \in V. \quad (4)$$

Since we ensure $r_s(v)/d_v < r_{\text{max}}$, we immediately get that $|\pi_s[t] - p_s[t]| \leq r_{\text{max}}d_t$, $\forall t \in V$. However, we can get a more accurate estimate by using the residuals. First we re-write this expression so that we can apply a Monte-Carlo algorithm. Using the symmetry Eqn. 4, we have:

$$\pi_s[t] = p_s[t] + d_t \sum_{v \in V} \frac{r_s(v)}{d_v} \pi_v[t].$$

Now can re-interpret this as an expectation:

$$\pi_s[t] = p_s[t] + d_t \mathbb{E}_{V \sim \pi_t} \left[\frac{r_s(V)}{d_V} \right]. \quad (5)$$

We estimate the expectation using standard Monte-Carlo. Let $V_i \sim \pi_t$ and $X_i = r_s(V_i)d_i/d_V$; then we have $\pi_s[t] = p_s[t] + \mathbb{E}[X]$. Moreover, each sample X_i is bounded by $d_t r_{\text{max}}$ (this is the stopping condition for ApproximatePageRank), which allows us to efficiently estimate its expectation. To this end, we generate w random walks, where

$$w = \frac{c}{\epsilon^2} \frac{r_{\text{max}}}{\delta/d_t}.$$

The choice of c is specified in Theorem 1. Finally, we return the estimate:

$$\hat{\pi}_s[t] = p_t[s] + \frac{1}{w} \sum_{i=1}^{w} X_i.$$

The complete pseudocode is given in Algorithm 2.

2.4 Analyzing the Performance of Undirected-BiPPR

Accuracy Analysis: We first prove that Undirected-BiPPR returns an unbiased estimate with the desired accuracy:

Theorem 1. In an undirected graph G, for any source node s, minimum threshold δ, maximum residual r_{max}, relative error ϵ, and failure probability p_{fail}, Algorithm 2 outputs an estimate $\hat{\pi}_s[t]$ such that with probability at least $1 - p_{\text{fail}}$ we have:

$$|\pi_s[t] - \hat{\pi}_s[t]| \leq \max\{\epsilon \pi_s[t], 2\epsilon \delta\}.$$
We perform a case analysis based on whether \(E \) is a parameter we choose later. Each walk is of length \(\alpha \); let \(V_i \) be the endpoint.

Proof. As stated in Algorithm 2, we average over \(w = cd_{r_{\max}}/\epsilon^2 \delta \) walks, where \(c \) is a parameter we choose later. Each walk is of length Geometric(\(\alpha \)), and we denote \(V_i \) as the last node visited by the \(i \)th walk; note that \(V_i \sim \pi_t \). As defined above, let \(X_i = r_s(V_i)d_t/d_{V_i} \); the estimate returned by Undirected-BiPPR is:

\[
\hat{\pi}_s[t] = p_t[s] + \frac{1}{w} \sum_{i=1}^{w} X_i.
\]

First, from Eqn. (5), we have that \(\mathbb{E}[\hat{\pi}_s[t]] = \pi_s[t] \). Also, ApproximatePageRank guarantees that for all \(v, r_t(v) < d_v r_{\max} \), and so each \(X_i \) is bounded in \([0, d_v r_{\max}]\); for completeness, we rescale \(X_i \) by defining \(Y_i = \frac{1}{d_v r_{\max}} X_i \).

We now show concentration of the estimates via the following Chernoff bounds (see Theorem 1.1 in [6]):

1. \(\Pr[|Y - \mathbb{E}[Y]| > \epsilon \mathbb{E}[Y]] < 2 \exp\left(-\frac{\epsilon^2}{3} \mathbb{E}[Y]\right) \)
2. For any \(b > 2 \epsilon \mathbb{E}[Y], \Pr[Y > b] \leq 2^{-b} \)

We perform a case analysis based on whether \(\mathbb{E}[X_i] \geq \delta \) or \(\mathbb{E}[X_i] < \delta \). First, if \(\mathbb{E}[X_i] > \delta \): then we have \(\mathbb{E}[Y] = \frac{w}{d_v r_{\max}} \mathbb{E}[X_i] = \frac{c}{\epsilon^2} \mathbb{E}[X_i] \geq \frac{c}{\epsilon^2} \), and thus:

\[
\Pr[|\hat{\pi}_s[t] - \pi_s[t]| > \epsilon \pi_s[t]] \leq \Pr[|\mathbb{X} - \mathbb{E}[X_i]| > \epsilon \mathbb{E}[X_i]] = \Pr[|Y - \mathbb{E}[Y]| > \epsilon \mathbb{E}[Y]] \leq 2 \exp\left(-\frac{\epsilon^2}{3} \mathbb{E}[Y]\right) \leq 2 \exp\left(-\frac{c}{3}\right) \leq p_{\text{fail}},
\]

where the last line holds as long as we choose \(c \geq 3 \ln (2/p_{\text{fail}}) \).

Suppose alternatively that \(\mathbb{E}[X_i] < \delta \). Then:

\[
\Pr[|\hat{\pi}_s[t] - \pi_s[t]| > 2\epsilon \delta] = \Pr[|\mathbb{X} - \mathbb{E}[X_i]| > 2\epsilon \delta] = \Pr[|Y - \mathbb{E}[Y]| > \frac{w}{d_v r_{\max}} 2\epsilon \delta] \leq \Pr\left[Y > \frac{w}{r_{\max}} 2\epsilon \delta\right],
\]
At this point we set $b = 2e\delta w/d_t r_{max} = 2e\epsilon^2/c^2$ and apply the second Chernoff bound. Note that $E[Y] = eE[X_t]/\epsilon^2 \delta < c/e^2$, and hence we satisfy $b > 2eE[Y]$. We conclude that:

$$P[|\hat{\pi}_s[t] - \pi_s[t]| > 2e\delta] \leq 2^{-b} \leq p_{fail}$$

as long as we choose c such that $c \geq \frac{e^2}{2x} \log_2 \frac{1}{p_{fail}}$. The proof is completed by combining both cases and choosing $c = 3 \ln (2/p_{fail})$. □

Running Time Analysis: The more interesting analysis is that of the running-time of **Undirected-Bippr** – we now prove a worst-case running-time bound:

Theorem 2. In an undirected graph, for any source node (or distribution) s, target t with degree d_t, threshold δ, maximum residual r_{max}, relative error ϵ, and failure probability p_{fail}, **Undirected-Bippr** has a worst-case running-time of:

$$O\left(\frac{1}{\epsilon} \sqrt{\frac{d_t}{\delta}}\right).$$

Before proving this result, we first state and prove a crucial lemma from [2]:

Lemma 2 (Lemma 2 in [2]). Let T be the total number of push operations performed by ApproximatePageRank, and let d_k be the degree of the vertex involved in the k^{th} push. Then:

$$\sum_{k=1}^{T} d_k \leq \frac{1}{\alpha r_{max}}$$

Proof. Let v_k be the vertex pushed in the k^{th} step – then by definition, we have that $r_s(v_k) > r_{max} d_k$. Now after the local-push operation, the sum residual $||r_s||_1$ decreases by at least $\alpha r_{max} d_k$. However, we started with $||r_s||_1 = 1$, and thus we have $\sum_{k=1}^{T} \alpha r_{max} d_k \leq 1$. □

Note also that the amount of work done while pushing from a node v is d_v.

Proof (of Theorem 2). As proven in Lemma 2, the push forward step takes total time $O(1/\alpha r_{max})$ in the worst-case. The random walks take $O(w) = O\left(\frac{1}{\epsilon^2} \frac{r_{max}}{\delta/d_t}\right)$ time. Thus our total time is

$$O\left(\frac{1}{r_{max}} + \frac{1}{\epsilon^2} \frac{r_{max}}{\delta/d_t}\right).$$

Balancing this by choosing $r_{max} = \epsilon \sqrt{\delta/d_t}$, we get total running-time:

$$O\left(\frac{1}{\epsilon} \sqrt{\frac{d_t}{\delta}}\right).$$ □
We can get a cleaner worst-case running time bound if we make a natural assumption on $\pi_s[t]$. In an undirected graph, if we let $\alpha = 0$ and take infinitely long walks, the stationary probability of being at any node t is $\frac{d_t}{m}$. Thus if $\pi_s[t] < \frac{d_t}{m}$, then s actually has a lower PPR to t than the non-personalized stationary probability of t, so it is natural to say t is not significant for s. If we set a significance threshold of $\delta = \frac{d_t}{m}$, and apply the previous theorem, we immediately get the following:

Corollary 1. If $\pi_s[t] \geq \frac{d_t}{m}$, we can estimate $\pi_s[t]$ within relative error ϵ in worst-case time:

$$O\left(\frac{\sqrt{m}}{\epsilon}\right).$$

In contrast, the running time for Monte-Carlo to achieve the same accuracy guarantee is $O\left(\frac{1}{\delta} \frac{\log(1/p_{\text{fail}})}{\epsilon^2}\right)$, and the running time for ApproximatePageRank is $O\left(\frac{d_t}{m}\right)$. Moreover, the FAST-PPR algorithm of [15] has an average case running time of $O\left(\frac{1}{\epsilon^2} \sqrt{\frac{d_t}{\delta}} \frac{\log(1/p_{\text{fail}}) \log(1/\delta)}{\log(1/1-\alpha)}\right)$ for uniformly chosen targets.

3 Extension to Graph Diffusions

PageRank and Personalized PageRank are a special case of a more general set of network-centrality metrics referred to as **graph diffusions** [5,11]. A graph diffusion is a polynomial function of the random-walk transition probabilities of the form:

$$f(W, \sigma) := \sum_{i=0}^{\infty} \alpha_i (\sigma W)^i,$$

where $\alpha_i \geq 0$, $\sum_i \alpha_i = 1$. To see that PageRank has this form, we can expand Eqn. (1) via a Taylor series to get:

$$\pi_\sigma = \sum_{i=1}^{\infty} \alpha (1-\alpha)^i (\sigma W)^i$$

Another important graph diffusion is the **heat kernel** h_σ, which corresponds to the scaled matrix exponent of $(I-W)^{-1}$:

$$h_{\sigma, \gamma} = e^{-\gamma(I-W)^{-1}} = \sum_{i=1}^{\infty} \frac{e^{-\gamma} \gamma^i}{i!} (\sigma W)^i$$

In [12], Lofgren et al. extended Bidirectional-PPR to get bidirectional estimators for graph diffusions and other general Markov chain transition-probability estimation problems. These algorithms inherited similar performance guarantees to Bidirectional-PPR — in particular, they had good expected running-time bounds for uniform-random choice of target node t. We now briefly discuss how we can modify Undirected-BiPPR to get an estimator for graph diffusions in undirected graphs with worst-case running-time bounds.

First, we observe that Lemma 1 extends to all graph diffusions, as follows:
Corollary 2. Given any undirected graph G with random-walk matrix W, and any function $f(W, \sigma) = \sum_{i=0}^{\infty} \alpha_i (\sigma W^i)$ which is a polynomial function of $\{W^i\}_i$. Then for any node-pair $(s, t) \in V^2$, we have:

$$f(W, e_s) = \frac{d_t}{d_s} f(W, e_t).$$

As before, the above result is stated for unweighted graphs, but it also extends to random-walks on weighted undirected graphs, if we define $d_i = \sum_j w_{ij}$.

Next, observe that for any graph diffusion $f(\cdot)$, the truncated sum $f^{\ell_{\max}} = \sum_{\ell=0}^{\ell_{\max}} \alpha_i (\pi_i P^\ell)$ obeys: $||f - f^{\ell_{\max}}||_\infty \leq \sum_{\ell=\ell_{\max}+1}^{\infty} \alpha_k$. Thus a guarantee on an estimate for the truncated sum directly translates to a guarantee on the estimate for the diffusion.

The main idea in [12] is to generalize the bidirectional estimators for PageRank to estimating multi-step transitions probabilities (for short, MSTP). Given a source node s, a target node t, and length $\ell \leq \ell_{\max}$, we define:

$$p^\ell_s[t] = Pr[\text{Random-walk of length } \ell \text{ starting from } s \text{ terminates at } t]$$

Note from Corollary 2, we have for any pair (s, t) and any ℓ, $p^\ell_s[t]d_s = p^\ell_t[s]d_t$.

Now in order to develop a bidirectional estimator for $p^\ell_s[t]$, we need to define a local-update step similar to ApproximatePageRank. For this, we can modify the REVERSE-UPDATE algorithm from [12], as follows.

Similar to ApproximatePageRank, given a source node s and maximum length ℓ_{\max}, we associate with each length $\ell \leq \ell_{\max}$ an estimate vector q^ℓ_s and a residual vector r^ℓ_s. These are updated via the following ApproximateMSTP algorithm:

Algorithm 3 ApproximateMSTP($G, s, \ell_{\max}, r_{\max}$)

Inputs: Graph G, source s, maximum steps ℓ_{\max}, maximum residual r_{\max}

1: Initialize: Estimate-vectors $q^\ell_s = 0$, $\forall \ell \in \{0, 1, 2, \ldots, \ell_{\max}\}$,
Residual-vectors $r^\ell_s = \mathbf{e}_s$ and $r^\ell_k = 0$, $\forall k \in \{1, 2, 3, \ldots, \ell_{\max}\}$

2: for $i \in \{0, 1, \ldots, \ell_{\max}\}$ do
3: while $\exists v \in S$ s.t. $r^i_s[v]/d_v > r_{\max}$ do
4: for $w \in N(v)$ do
5: $r^{i+1}_s[v] += r^i_s[v]/d_v$
6: end for
7: $q^i_s[v] += r^i_s[v]$
8: $r^i_s[v] = 0$
9: end while
10: end for
11: return $\{q^\ell_s, r^\ell_s\}_{\ell=0}^{\ell_{\max}}$

The main observation now is that for any source s, target t, and length ℓ, after executing the ApproximateMSTP algorithm, the vectors $\{q^\ell_s, r^\ell_s\}_{\ell=0}^{\ell_{\max}}$ satisfy
the following invariant (via a similar argument as in [12], Lemma 1):
\[p_s^\ell[t] = q_s^\ell[t] + \sum_{k=0}^{\ell} \sum_{v \in V} r_k^v[v] p_{v}^{\ell-k}[t] = q_s^\ell[t] + d_t \sum_{k=0}^{\ell} \sum_{v \in V} \frac{r_k^v[v]}{d_v} p_{v}^{\ell-k}[v] \]

As before, note now that the last term can be written as an expectation over random-walks origination from \(t \). The remaining algorithm, and accuracy and runtime arguments, follow the same lines as those in Section 2.

4 Conclusion

We have developed Undirected-BiPPR, a new bidirectional PPR-estimator for undirected graphs, which for any \((s,t)\) pair such that \(\pi_s[t] > d_t/m \), returns an estimate with \(\epsilon \) relative-error in worst-case running time of \(O(\sqrt{m}/\epsilon) \). This thus extends the average-case running-time improvements achieved in [15,13] to worst-case bounds on undirected graphs, using the reversibility of random-walks on undirected graphs. Whether such worst-case running-time results extend to general graphs, or if PageRank computation is fundamentally easier on undirected graphs as opposed to directed graphs, remains an open question.

References

1. R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. S. Mirrokni, and S.-H. Teng. Local computation of pagerank contributions. In Algorithms and Models for the Web-Graph. Springer, 2007.
2. R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, 2006.
3. K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte carlo methods in pagerank computation: When one iteration is sufficient. SIAM Journal on Numerical Analysis, 2007.
4. K. Avrachenkov, R. Van Der Hofstad, and M. Sokol. Personalized pagerank with node-dependent restart. In Algorithms and Models for the Web Graph. 2014.
5. F. Chung. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences, 2007.
6. D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, 2009.
7. D. F. Gleich. PageRank beyond the web. arXiv, cs.SI:1407.5107, 2014. Accepted for publication in SIAM Review.
8. O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. Springer, 2011.
9. V. Grolmusz. A note on the pagerank of undirected graphs. Information Processing Letters, 2015.
10. S. Kale, Y. Peres, and C. Seshadhri. Noise tolerance of expanders and sublinear expander reconstruction. In IEEE FOCS’08. IEEE, 2008.
11. K. Kloster and D. F. Gleich. Heat kernel based community detection. In *ACM SIGKDD’14*, 2014.
12. P. Lofgren and S. Banerjee. Fast bidirectional probability estimation in markov models. Technical report, 2015.
13. P. Lofgren, S. Banerjee, and A. Goel. Personalized pagerank estimation and search: A bidirectional approach. Technical report, 2015.
14. P. Lofgren and A. Goel. Personalized pagerank to a target node. *arXiv preprint arXiv:1304.4658*, 2013.
15. P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri. FAST-PPR: Scaling Personalized PageRank estimation for large graphs. In *ACM SIGKDD’14*. ACM, 2014.
16. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing order to the web. 1999.