ψ-Pascal and \(q_\psi \)-Pascal matrices - an accessible factory of one source identities and resulting applications

Andrzej K. Kwaśniewski

Higher School of Mathematics and Applied Informatics
Kamienna 17, PL-15-021 Białystok, Poland

Summary
Recently the author proposed two extensions of Pascal and \(q \)-Pascal matrices defined here also - in the spirit of the Ward “Calculus of sequences” [1] promoted in the framework of the \(\psi \)- Finite Operator Calculus [2,3]. Specifications to \(q \)-calculus case and Fibonomial calculus case are made explicit as an example of abundance of new possibilities being opened. In broader context the \(\psi \)-Pascal \(P_\psi [x] \) and \(q_\psi \)-Pascal \(P_{q_\psi} [x] \) matrices appear to be as natural as standard Pascal matrix \(P[x] \) already is known to be [4]. Among others these are a one source factory of streams of identities and indicated resulting applications.

1 I. On the usage of references

The papers of main reference are: [1-3]. We shall take here notation from [2,3] (see below) and the results from [1] as well as from [2,3] - for granted. For other respective references see: [2,3]. The acquaintance with “The matrices of Pascal and other greats” [4] is desirable. Further relevant references of the present author are: [5] on extended finite operator calculus of Rota and quantum groups and other [6-7]. The reference to \(q \)-Pascal matrix is [8] Further Pascal matrix references for further readings are [9-14]. One may track down there among others relations: the Pascal Matrix versus Classical Polynomials. The book [15] is recommended and the recent reference [16] is useful for further applications. Very recent \(\psi \)-Pascal matrix reference is [17] and also recent further Pascal matrices references (far more not complete list of them) are to be found in [18-21]. The book of Kassel Christian [22] - makes an intriguing link to the advanced world of related mathematics.

Before to proceed we anyhow explain -for the reader convenience - some of the very basic of the intuitively useful \(\psi \)-notation promoted by the author [2,3,5,6]. Here \(\psi \) denotes an extension of \(\langle \frac{1}{n} \rangle_{n \geq 0} \) sequence to quite arbitrary one (the so called - admissible) and the specific choices are for example: Fibonomialy-extended \(\langle \frac{1}{F_n} \rangle_{n \geq 0} \) (here \(\langle F_n \rangle \) denotes the Fibonacci sequence) or Gauss \(q \)-extended \(\langle \frac{1}{F_n(q)} \rangle_{n \geq 0} \) admissible sequences of extended umbral operator calculus or just ”the usual” \(\langle \frac{1}{n} \rangle_{n \geq 0} \) common choice. We get used to write these \(q \) - Gauss and other extensions in mnemonic convenient upside down notation [2,3,5,6]

\[
\begin{align*}
(1) \quad & \psi_n \equiv n_\psi, x_\psi \equiv \psi(x) \equiv \psi_x, n_\psi! = n_\psi(n - 1)_\psi!, n > 0, \\
(2) \quad & x_\psi^k = x_\psi(x - 1)_\psi(x - 2)_\psi \ldots (x - k + 1)_\psi \\
(3) \quad & x_\psi(x - 1)_\psi \ldots (x - k + 1)_\psi = \psi(x)\psi(x - 1)\ldots \psi(x - k - 1).
\end{align*}
\]

The corresponding \(\psi \)-binomial symbol and \(\partial_\psi \) difference linear operator on \(F[[x]] \) (F - any field of zero characteristics) are below defined accordingly where following Roman [3,3,5,6] we shall call \(\psi = \{ \psi_n(q) \}_{n \geq 0}; \psi_n(q) \neq 0; n \geq 0 \) and \(\psi_0(q) = 1 \) an admissible sequence.
Definition 1 The ψ-binomial symbol is defined as follows:

$$(\binom{n}{k})_\psi = \frac{n!_\psi}{k!_\psi (n-k)!_\psi} = \binom{n}{n-k}_\psi$$

Definition 2 Let ψ be admissible. Let ∂_ψ be the linear operator lowering degree of polynomials by one defined according to $\partial_\psi x^n = n_\psi x^{n-1}; n \geq 0$. Then ∂_ψ is called the ψ-derivative.

You may consult [2,3,5,6] and references therein for further development and use of this notation “q-commuting variables” - included.

2 II. Towards ψ-Pascal matrix factory of identities

Let us define analogously to [4,9,10] define the ψ-Pascal matrix as

$$P_\psi[x] = \exp_\psi \{xK_\psi\}$$

where (Z_n denotes the additive cyclic group)

$$K_\psi = (j+1)_\psi \delta_{i,j+1}$$

therefore

$$P_\psi[x] = \binom{x}{i-j}_\psi$$

due to: $\partial_\psi P_\psi[x] = K_\psi P_\psi[x]$ where $\psi P_\psi[x]|_{x=0} = K_\psi$.

Explicitly (see [8] for q-case) K_ψ matrix is of the form

$$K_\psi = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 5_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 7_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 8_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10_\psi & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11_\psi & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & (n-1)_\psi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \end{bmatrix}$$

Fig.1. The K_ψ matrix

Naturally $K_\psi^n = 0; K_\psi^k \neq 0$ for $0 \leq k \leq (n-1)$. Hence we have

$$P_\psi[x] = \exp_\psi \{xK_\psi\} = \sum_{k \in Z_n} \frac{x^k K_\psi^k}{k!_\psi}$$
the result $P_\psi[x]$ of ψ-exponentiation above being shown on the Fig.2.

$$
P_\psi[x] =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x^1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
x^2 & 2_\psi x & 1 & 0 & 0 & 0 & 0 & 0 \\
x^3 & 3_\psi x^2 & 3_\psi x & 1 & 0 & 0 & 0 & 0 \\
x^4 & 4_\psi x^3 & 6_\psi x^2 & 4_\psi x & 1 & 0 & 0 & 0 \\
\cdot & \cdot \\
\cdot & \cdot \\
x^{n-1} & 0 & 0 & 0 & 0 & 0 & (n-1)_\psi x & 1
\end{bmatrix}
$$

Fig. 2. The $P_\psi[x]$ matrix

Immediately we see that the ψ-Pascal matrix $P_\psi[x] = \exp_\psi \{x K_\psi\}$ is also the source of many important identities. Here below there are the examples correspondent to those from [4] which are accordingly inferred from the ψ-additivity property (non-group property in general):

$$P_\psi[x]P_\psi[y] = P_\psi[x + \psi y].$$

Warning: for not normal sequences : see: [1,2,3,5,6,8] - the one parameter family $\{P_\psi[x]\}_{x \in F}$ is *not a group*! since for not normal sequences $\{1 - \psi 1\}^{2k} \neq 0$ thought $[x + \psi (-x)]^{2k+1} = 0$.

In general we are dealing with abelian semigroup with identity which becomes the group only for normal sequences. And so coming back to identities we have for example:

$$\sum_{j \leq k \leq i} \binom{i}{k}_\psi \binom{k}{j}_\psi = (1 + \psi 1)^{i-j} \binom{i}{j}_\psi, i \geq j \iff P_\psi[1]P_\psi[1] = P_\psi[1 + \psi 1].$$

$$\sum_{j \leq k \leq i} (-1)^k \binom{i}{k}_\psi \binom{k}{j}_\psi = (1 - \psi 1)^{i-j} \binom{i}{j}_\psi, i \geq j \iff P_\psi[1]P_\psi[-1] = P_\psi[1 - \psi 1].$$

The above identities after the choice $\psi = \binom{1}{n}_\psi$ coincide with the corresponding ones from [4]. There are much more examples of this nature.

We shall now try also to find out a kind of ψ-extended version of the q-identity (6)

$$\sum_{0 \leq k \leq i} \binom{i}{k}_q^2 = \binom{2i}{i}_q \iff P_\psi[1]P_\psi^T[1] = F_q[1].$$

where we have defined the q-Fermat matrix as follows

$$F_q[1] = \binom{i + j}{i}_q, i,j \in \mathbb{Z}_n.$$

For $q=1$ case- name Fermat - see [15] for this Fermat called Pascal symmetric Matrix for $q=1$ see: [4,9]. For q-binomial - see below in **Important**.

In order to find out a kind of ψ-extended version of the Pascal-Fermat q-identity identity (6) we shall proceed as in [16]. There the Cauchy \hat{q}_ψ- identity and \hat{q}_ψ-Fermat
matrix were introduced due to the use of the \hat{q}_ψ-muting variables from Extended Finite Operator Calculus [3,5]. The linear \hat{q}_ψ-mutator operator was defined in [3,5,16] as follows for F - field of characteristic zero and $F[x]$ - the linear space of polynomials.

$$\hat{q}_\psi : F[x] \rightarrow F[x]; \quad \hat{q}_\psi x^n = \frac{(n + 1)q^n - 1}{nq^n} x^n; \quad n \geq 0.$$

Important. With the Gaussian choice of admissible sequence [3,5] $\psi = \{\psi_n(q)\}_{n \geq 0}, \psi_n(q) = [n_q!]^{-1}, n_q = \frac{1 - q^n}{1 - q}, n_q! = n_q(n - 1)_q!, 1_q! = 1, \hat{q}_\psi x^n = q^n x^n$

and the \hat{q}_ψ-Pascal and \hat{q}_ψ-Fermat matrices from [16] (see next section) coincide with q-Pascal and q-Fermat matrices correspondingly **which is not the case** for the general case - for example Fibonomial F-Pascal matrix is different from \hat{q}_ψ-Pascal matrix - see next section.

In [16] in analogy to the standard case [9,10,4] the matrices with operator valued matrix elements

$$x^{i-j} \binom{i}{j}_{\hat{q}_\psi} = \binom{i + j}{j}_{\hat{q}_\psi}, \quad i, j \in \mathbb{Z}_n$$

were named the \hat{q}_ψ-Pascal $P[x]$ and \hat{q}_ψ-Fermat $F[1]$ matrices - correspondingly i.e.

$$P_{\hat{q}_\psi}[x] = \left(x^{i-j} \binom{i}{j}_{\hat{q}_\psi} \right)_{i, j \in \mathbb{Z}_n}$$

The \hat{q}_ψ-P[1] Pascal and \hat{q}_ψ-F[1] Fermat matrices from [16] are related via the following identity for operator valued matrix elements

$$\sum_{k \geq 0} \hat{q}_\psi^{(r-k)(j-k)} \binom{i}{k}_{\hat{q}_\psi} \binom{j}{k}_{\hat{q}_\psi} = \binom{i + j}{j}_{\hat{q}_\psi}.$$

The relation (8) is the one being looked for to extend the Pascal-Fermat q-identity (6). Here - following [16]- we use the new \hat{q}_ψ-Gaussian symbol with operator valued matrix elements.

Definition 3 We define \hat{q}_ψ-binomial symbol i.e. \hat{q}_ψ-Gaussian coefficients as follows:

$$\binom{n}{k}_{\hat{q}_\psi} = \frac{n_{\hat{q}_\psi}!}{k_{\hat{q}_\psi}!(n-k)_{\hat{q}_\psi}!} = \binom{n}{n-k}_{\hat{q}_\psi} \quad \text{where} \quad n_{\hat{q}_\psi}! = n_{\hat{q}_\psi}(n-1)_{\hat{q}_\psi}!, 1_{\hat{q}_\psi}! = 1$$

and $n_{\hat{q}_\psi} = 1 - q^n_{\hat{q}_\psi}$ for $n > 0$.

3 III. Specifications : q-umbral and umbral Fibonomial cases

III-q q-umbral calculus case [1,2,3,5-8]

Let us make the q-Gaussian choice [2,3,5,6,8] of the admissible sequence $\psi = \{\psi_n(q)\}_{n \geq 0}$. Then the ψ-Pascal matrix becomes the q-Pascal matrix from [8] and we arrive mnemonic at the corresponding to $q = 1$ case numerous q-identities and
other "q-applications". Specifically in the q-case we have (see: Proposition 4.2.3 in [22])

\[
\sum_{k \geq 0} q^{(r-k)(j-k)} \binom{r}{k}_q \binom{s}{j-k}_q = \binom{r+s}{j}_q
\]

hence from this Cauchy q-identity we obtain the following easy to find out formula for the symmetric Pascal (or Fermat) matrix elements:

\[
\sum_{k \geq 0} q^{(r-k)(j-k)} \binom{i}{k}_q \binom{j}{k}_q = \binom{i+j}{j}_q.
\]

Naturally we are dealing now with not normal sequences i.e. not with a one parameter q-Pascal group [8] since for $(1-q)2^k \neq 0$ though $[x+q(-x)]^{2k+1} = 0$; see: [1] and then [2,3,5,6,8]. If q-Pascal matrix $P_q[1] = exp_q\{xK_q\}|_{x=1}$ is considered also for $q \in GF(q)$ field then $q = p_m$ where p is prime and $\binom{n}{k}_q$ becomes the number of k-dimensional subspaces in $n-th$ dimensional space over Galois field $GF(q)$. Also q real and $-1 < q < +1$ cases are exploited in vast literature on the so-called q-umbral calculus (for Cigler, Roman and Others see: [3,23] and references therein- links to thousands in [23]). It is not difficult to notice that the \hat{q}_ψ-Pascal and \hat{q}_ψ-Fermat matrices under the q-Gaussian choice of the admissible sequence ψ - coincide with q-Pascal and q-Fermat matrices correspondingly which is meaningful magnificent exception and which is not the case in general.

III-F FFOC-umbral calculus case [6-7]

In straightforward analogy to the q-case above consider now the Fibonomial coefficients (see: FFOC = Fibonomial Finite Operator Calculus Example 2.1 in [6]) where F_n denote the Fibonacci numbers and $\psi_n(q) = [F_n]^{-1}$.

\[
\binom{n}{k}_F = \frac{F_n!}{F_k!F_{n-k}!} \equiv \frac{n_kF}{k_F!}, \quad n_F \equiv F_n \neq 0,
\]

where we make an analogy driven [6,5,3,2] identifications ($n > 0$):

\[
n_F! \equiv n_F(n-1)_F(n-2)_F(n-3)_F \ldots 2_F 1_F; \quad 0_F! = 1; \quad n_F^k = n_F(n-1)_F \ldots (n-k+1)_F.
\]

Information In [7] a partial ordered set was defined in such a way that the Fibonomial coefficients count the number of specific finite "birth-self-similar" sub-posets of this infinite non-tree poset naturally related to the Fibonacci tree of rabbits growth process.

The ψ-Pascal matrix becomes then the F-Pascal matrix and we arrive at the corresponding F-identities (mnemonic replacement of ψ by F) and other "F-applications" - hoped to be explored soon.

Naturally we are now dealing with **not normal** sequences : see: [1,2,3,5,6,8] - i.e. we have no F-Pascal group since for $(1-F1)^{2k} \neq 0$ though $[x+F(-x)]^{2k+1} = 0$. For example: $(x+Fy)^2 = x^2 + F_2xy + y^2, (x+Fy)^3 = x^3 + F_4x^3y + F_4F_3x^2y^2 + F_4xy^3 + y^4$.

Here in the Fibonomial choice case the semi-group generating matrix matrix K_F is of the form
The $K_{\hat{q}}$-Pascal $P_{K_{\hat{q}}}[x]$ and $K_{\hat{q}_{\psi}}$-Fermat matrix do not coincide with F-Pascal and F-Fermat matrices correspondingly as indicated earlier though in our friendly mnemonic notation they look so much alike. Namely, the corresponding $K_{\hat{q}_{\psi}}$ matrix with the Fibonomial choice $\psi_n(q) = [F_n]^{-1}$ is now of the form
The perspective of numerous applications are opened. Apart from being the natural one source factory of identities we indicate in explicit also the origins of the \hat{q}_F-Pascal and \hat{q}_F-Fermat matrices factory of mnemonic attainable identities (compare via [16] with [9-14,18-21,4]). From operator identities involving the \hat{q}_F-Pascal $P_{\hat{q}_F}[x]$ and $K_{\hat{q}_F}$-Fermat matrix we obtain identities in terms of objects on which the \hat{q}_F (or \hat{q}_F from [3,5,6,16]) act and these are polynomials from $F[x]$ or in more general setting [6,5,3] from formal series algebra $F[[x]]$ where F denotes any field of zero characteristics. In order to get such countless realizations of operator identities in terms of formal series it is enough to act by both sides of a given operator identity on the same element from $F[[x]]$.

4 IV. Remark on perspectives

The perspective of numerous applications are opened. Apart from being the natural one source factory of identities ψ-Pascal $P_{\psi}[x]$ and \hat{q}_F-Pascal $P_{\hat{q}_F}[x]$ and $K_{\hat{q}_F}$-Fermat...
matrices as well appear to be the similar way natural objects and tools as the Pascal matrix $P[x]$ is in the already mentioned and other applications - (see [4,18]- for example). Just to indicate few more of them: the considerations and results of [4] concerned with Bernoulli polynomials might be extended to the case of ψ-basic Bernoulli-Ward polynomials introduced in [1] and investigated recently in [17] in the framework of the ψ- Finite Operator Calculus [2,3,5-7] due to the use of the ψ- integration proposed in [2,6] . The same applies equally well to the case of ψ-basic Hermite-Ward polynomials and other examples of ψ-basic generalized Appell polynomials [3,2,5-6] which - being of course ψ- Sheffer are characterized equivalently by the familiar ψ-Sheffer identity [3,2]

\[A_n(x + \psi y) = \sum_{k \geq 0} \binom{n}{k} \psi A_k(y)x^{n-k}. \] \hspace{1cm} (11)

For further possibilities - see references [8-14,18-21] and many other ones not known for the moment to the present author.

References

[1] M. Ward, A calculus of sequences Amer. J. Math. 58 (1936): 255-266
[2] A.Kwaśniewski Main theorems of extended finite operator calculus Integral Transforms and Special Functions, 14 No 6 (2003): 499-516
[3] A. K. Kwaśniewski, Towards ψ-extension of finite operator calculus of Rota, Rep. Math. Phys. 47 no. 4 (2001), 305–342. ArXiv: math.CO/0402078 2004
[4] Aceto L., Trigiante D., The matrices of Pascal and other greats, Am. Math. Mon. 108, No.3 (2001): 232-245.
[5] A. K. Kwaśniewski, On extended finite operator calculus of Rota and quantum groups, Integral Transforms and Special Functions 2 (2001), 333–340.
[6] A. K. Kwaśniewski, On simple characterizations of Sheffer Ψ-polynomials and related propositions of the calculus of sequences, Bull. Soc. Sci. Lettres Łódź 52, Sér. Rech. Déform. 36 (2002), 45–65. ArXiv: math.CO/0312397 2003
[7] A. K. Kwaśniewski, Combinatorial derivation of the recurrence relation for fibonacci coefficients ArXiv: math.CO/0403017 v1 1 March 2004
[8] A.K.Kwaśniewski, B.K.Kwaśniewski On q-difference equations and Z_n decompositions of \exp_q function Advances in Applied Clifford Algebras, (1) (2001): 39-61
[9] Brawer R., Pirovino M. The Linear Algebra of the Pascal Matrix, Linear Algebra Appl. 174(1992) : 13-23
[10] Call G. S. Velman D.J. , Pascal Matrices , Amer. Math. Monthly ,100 (1993): 372-376
[11] Zhizheng Zhang The Linear Algebra of the Generalized Pascal Matrix Linear Algebra Appl., 250 (1997): 51-60
[12] Zhizheng Zhang, Liu Maixue An Extension of the Generalized Pascal Matrix and its Algebraic Properties Linear Algebra Appl., 271 (1998): 169-177
[13] Li Y-M. , Zhang X-Y ” Basic Conversion among Bzier, Tchebyshev and Legendre” Comput. Aided Geom. Design, 15 (1998): 637-642
[14] Bayat M. , Teimoori H. The Linear Algebra of the Generalized Pascal Functional Matrix Linear Algebra Appl. 295 (1999): 81-89
[15] L. Comtet Advanced Combinatorics D. Reidel Pub. Boston Mass. (1974)
[16] A.K.Kwaśniewski, Cauchy \hat{q}_ψ-identity and \hat{q}_ψ-Fermat matrix via \hat{q}_ψ-muting variables for Extended Finite Operator Calculus Inst.Comp.Sci.UwB/Preprint No. 60, December, (2003)
[17] A.K.Kwaśniewski A note on ψ-basic Bernoulli-Ward polynomials and their specifications Inst. Comp. Sci. UwB/Preprint No. 59, December, (2003)

[18] 18) J. M Zobitz, Pascal Matrices and Differential Equations Pi Mu Epsilon Journal 11, No 8. (2003): 437-444.

[19] 19) Bacher R. Chapman R. Symmetric Pascal Matrices arXiv:math. NT/0212144v2 (2003) to appear in European Journal of Combinatorics http://www.maths.ex.ac.uk/~rjc/preprint/pascal.pdf.

[20] 20) Alan Edelman, Gilbert Strang Pascal Matrices Amer. Math. Monthly, to appear (2004) http://www-math.mit.edu/~edelman/homepage/papers/pascal.ps

[21] 21) Xiqiang Zhao and Tianming Wang The algebraic properties of the generalized Pascal functional matrices associated with the exponential families Linear Algebra and its Applications, bf 318 (1-3) (2000): 45-52

[22] L. Kassel Quantum groups, Springer-Verlag, New York, (1995)

[23] A.K.Kwaśniewski First Contact Remarks on Umbra Difference Calculus References Streams Inst. Comp. Sci. UwB/Preprint No. 63, January (2004). see: ArXiv March 2004