Analysis of the \(VSX1 \) gene in keratoconus patients from Saudi Arabia

Khaled K. Abu-Amero, Hatem Kalantan, Abdulrahman M. Al-Muammar

1Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 2Anterior Segment Unit, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia

Purpose: To screen the visual system homebox 1 (\(VSX1 \)) gene in Saudi Arabian keratoconus patients.

Methods: We sequenced the entire coding region, exon-intron boundaries in clinically confirmed keratoconus patients (n=55) and 50 ethnically matched healthy controls. All cases and controls were unrelated.

Results: Sequencing \(VSX1 \) revealed the presence of five nucleotide changes, 3 of which were non-coding (g.8326 G>A, g.10945 G>T, and g.11059 A>C) and 2 were synonymous-coding sequence changes (g.5053 G>T and g.8222 A>G). All five sequence changes were benign polymorphisms with no apparent clinical significance.

Conclusions: In our keratoconus cohort, no pathogenic \(VSX1 \) mutation(s) were identified.

Keratoconus (KTCN; OMIM 148300) is a non-inflammatory thinning and anterior protrusion of the cornea that results in steepening and distortion of the cornea, altered refractive powers and altered visual acuity. In more advanced cases, corneal scarring from corneal edema and decompensation further reduces visual acuity. Symptoms are highly variable and depend on the stage of progression of the disorder [1,2]. The prevalence of keratoconus has been reported to vary in different studies, from 8.8 to 54.4 per 100,000 [3,4], the variation is in part due to the different diagnostic criteria used. The incidence of keratoconus ranges between 1/500 to 1/2,000 individuals throughout the world [5]. The disease occurs with no ethnic or gender preponderance and causes significant visual impairment [2, 5,6]. Keratoconus should be divided into three broad categories: i) keratoconus associated with rare genetic disorders (such as Down syndrome, nail-patella syndrome, neurofibromatosis, etc); ii) keratoconus in the setting of commonly reported associations (contact lens wear, eye rubbing, atopy, Leber congenital amaurosis, mitral valve prolapsed and positive family history) and iii) isolated keratoconus with no associations. Most cases of keratoconus are sporadic but some (5%–10%) have a positive family history [6,7]. In such cases both autosomal recessive and dominant patterns of inheritance have been reported [8-11]. There are several chromosomal loci and genes reported to be associated with keratoconus [6,11], some of which were eventually excluded [6,12], while others showed no confirmed association with the disease [13,14]. This is not the case for the visual system homebox 1 (\(VSX1 \)) gene where mutations associated with keratoconus cases have been found in different studies [15-18], although other studies which did not find \(VSX1 \) mutations in cohorts of keratoconus patients from various populations [19,20]. This indicates that keratoconus is a complex condition of multi-factorial etiology and that mutations in \(VSX1 \) are not responsible for all cases of keratoconus. To our knowledge, this is the first time \(VSX1 \) was screened for mutations in the Saudi keratoconus patients.

METHODS

Patients and controls: The study adheres to the tenets of the Declaration of Helsinki, and all participants signed an informed consent. The study was approved by the College of Medicine (King Saud University, Riyadh, Saudi Arabia) ethical committee (proposal number # 09-659). All study subjects were self identified of Saudi Arabian ethnicity. Family names were all present in the database of Arab families of Saudi Arabian origin. In this study we screened 55 unrelated Saudi Keratoconus patients (each patient represents one family) and 50 ethnically matched unrelated controls for mutations in the \(VSX1 \) gene. Patients were selected from the anterior segment clinic at King Abdulaziz University Hospital after examination. Patients were diagnosed with keratoconus if the Schimpff-flow based elevation map showed posterior corneal elevation within the central 5 mm \(\geq +20 \mu m \), inferior-superior dioptic asymmetry (I-S value) \(>1.2 \) diopters (D) and the steepest keratometrey \(\geq 47 \) D. Patients were considered as sporadic cases after examining the immediate family members and identifying the patient as isolated case of keratoconus. Exclusion criteria was based on presence of post-laser-assisted in situ keratomileusis (LASIK) ectasia and refusal to participate.

Controls were recruited from the general ophthalmology clinic and had no ocular disease(s) or previous ophthalmic
surgery. Their slit lamp exam showed clear cornea and their Schimpff-flow based elevation map were within normal limits.

All Keratoconus cases secondary to causes such as trauma, surgery, Ehlers Danlos syndrome, Osteogenesis Imperfecta and pellucid marginal degeneration were excluded from the study.

DNA analysis: Five milliliters of peripheral blood were collected in EDTA tubes from all participating individuals. DNA was extracted using the illustra blood genomic Prep Mini Spin Kit from GE Healthcare (Buckinghamshire, UK), and stored at −20 °C in aliquots until required. PCR amplification of the VSX1 coding region were performed using the primers detailed in Table 1. Successfully amplified fragments were sequenced in both directions using the M13 forward and reverse primers and the BigDye terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster city, CA). Fragments were then run on the 3130xl Genetic Analyzer (Applied Biosystems) according to the manufacturer protocol. All sequenced fragments were analyzed using SeqScape software v2.6 (Applied Biosystems) and compared to the VSX1 reference sequence (GenBank NG_008101).

RESULTS

Fifty-five unrelated Keratoconus patients (Table 2) and 50 unrelated controls were recruited into this study. Of the 55 Keratoconus patients there were 24 males and 31 females with a mean age of 28.9 (SD 7.7). Of the 50 controls there were 19 males and 31 females with a mean age of 60 (SD 17).

Exon	Primer sequence	Annealing temperature (°C)
VSX1-1F	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-1R	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-2F	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-2R	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3aF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3aR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3bF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3bR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3cF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3cR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3dF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3dR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3eF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3eR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3fF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3fR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3gF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3gR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3hF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3hR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3iF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3iR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3jF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3jR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3kF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3kR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3lF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3lR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3mF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3mR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3nF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3nR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3oF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3oR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3pF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3pR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3qF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3qR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3rF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3rR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3sF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3sR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3tF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3tR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3uF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3uR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3vF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3vR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3wF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3wR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3xF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3xF	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3yR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3yR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60
VSX1-3zR	TGTAAAACGACGGCCAGTTGACCTGATTGAGGACGCTCCTTTC	60

DISCUSSION

We detected five nucleotide changes in both patients and controls (Table 3). Two were previously reported (rs8123716 and rs12480307; and three are novel; Table 3). Three of the sequence changes g.5053 G>T, g.8326 G>A, and g.11059 A>C were heterozygous and two were homozygous (g.8222 A>G and g.10945 G>T). None of the sequence changes detected were pathogenic. Two (g.5053 G>T and g.8222 A>G) were synonymous coding, one intronic (g.8326 G>A), and two (g.10945 G>T and g.11059 A>C) in the 3′ UTR region.

F: Forward; R: Reverse; Bold sequences are those of the M13.
Patient demographics	Uncorrected visual acuity in Snellen's chart	Munsen sign	Vogt's striae	Hydrops	Scarring	Average keratometry in VKG (diopters)	Optical pachymetry (mm)	Mode of Inheritance									
LD.	Age	Sex	OD	OS	Average keratometry in VKG (diopters)	Optical pachymetry (mm)	Mode of Inheritance										
1	20	M	20/100	20/200	+	+	+	+	+	-	+	51.9	64.7	525	502	SP	
2	37	F	20/200	20/400	+	+	+	-	-	-	+	68.6	81.3	282	160	AR	
3	18	M	CF	20/80	-	-	+	+	-	+	+	56	56	300	346	SP	
4	17	M	CF	20/100	-	-	+	+	-	-	-	60	56.6	455	509	SP	
5	35	F	20/20	20/60	-	-	-	+	-	+	+	43.1	44.6	584	554	SP	
6	30	M	20/200	CF	-	-	+	+	-	-	-	49.1	68.7	434	349	SP	
7	36	M	20/100	20/100	-	-	-	-	+	+	+	48.4	50.4	459	439	SP	
8	16	M	CF	CF	+	+	+	+	+	+	+	54.4	55	241	268	SP	
9	24	M	CF	20/80	+	+	+	+	+	+	+	53	65.7	302	397	SP	
10	25	F	CF	20/20	+	+	+	-	-	+	+	67.3	70.7	236	216	SP	
11	25	M	CF	CF	+	+	+	-	+	-	+	43.1	50.9	419	407	SP	
12	46	F	20/80	20/100	-	-	+	+	+	-	-	53	57.6	463	412	ND	
13	32	F	20/40	20/40	+	+	+	+	+	-	-	43.5	51.7	442	398	SP	
14	24	F	20/100	20/60	-	-	+	+	-	-	-	43.2	45.8	484	464	SP	
15	30	F	20/20	20/100	-	-	-	-	+	-	+	44.6	46.9	493	397	SP	
16	20	F	20/25	20/100	-	-	+	+	-	-	-	42.7	56.2	509	456	SP	
17	32	F	CF	20/200	-	-	-	+	-	-	-	56.3	52.6	429	471	SP	
18	17	F	CF	20/25	+	+	-	+	+	+	+	69.3	45.5	284	522	SP	
19	24	F	CF	20/200	-	-	-	+	+	+	-	49.8	62.2	492	218	SP	
20	39	F	20/200	20/200	-	-	-	-	+	-	+	49.2	53.1	458	419	SP	
21	28	F	CF	20/60	20/100	-	-	-	-	+	-	+	67.6	61.8	327	287	AR
22	40	F	20/60	20/100	-	-	-	-	+	-	+	45.8	46.2	538	520	AD	
23	32	F	CF	20/60	CF	+	+	+	+	+	+	+	48.7	43.5	427	558	AD
24	25	M	20/40	CF	+	+	+	+	+	+	-	42.8	43.7	482	511	SP	
25	17	F	20/60	20/100	+	+	-	+	+	+	-	56.4	58.2	411	414	SP	
26	32	F	20/100	20/100	+	+	-	-	+	+	+	47.3	50.4	459	435	AR	
27	22	F	20/100	20/100	-	-	-	+	-	+	-	46.4	44.5	425	416	SP	
28	40	M	20/100	CF	+	+	+	+	+	+	-	69.2	71.8	262	359	AR	
29	23	F	20/20	20/20	-	-	-	-	-	-	+	41.8	41.8	527	526	ND	
30	35	F	CF	CF	-	-	-	-	-	-	-	43.6	63.1	482	371	SP	
31	24	M	CF	CF	+	+	-	-	+	+	+	47.5	66	589	158	AR	
32	25	M	CF	CF	+	+	+	+	+	+	+	61.8	62.6	384	379	AR	
33	35	F	20/200	20/200	-	-	-	-	-	-	-	55.5	54.1	434	448	AR	
34	25	M	20/30	20/100	-	-	-	+	-	-	-	44.2	63.2	477	405	AR	
35	22	M	20/80	20/30	-	-	-	-	-	-	-	46.6	43.9	514	552	SP	
I.D.	Age	Sex	Uncorrected visual acuity in Snellen’s chart	Munsen sign	Vogt’s striae	Hydrops	Scarring	Average keratometry in VKG (diopters)	Optical pachymetry (mm)	Mode of Inheritance							
------	-----	-----	--	-------------	--------------	--------	---------	-------------------------------------	------------------------	--------------------							
36	25	M	20/200 CF	- +	- +	- +	OD OS	46 49	582 397	AR							
37	30	M	20/30 CF	- -	- -	- -	- -	44 54.6	300 300	SP							
38	40	F	20/200 CF	- -	- -	- -	- -	57.1 56.6	441 457	AR							
39	28	M	20/200 20/100	- -	- -	- -	- -	50 57.7	435 388	AR							
40	30	M	20/200 20/100	- -	- -	- -	- -	46.6 46.2	539 509	AR							
41	29	F	20/100 20/40	- -	+ +	+ +	- -	47.4 43.6	446 495	SP							
42	32	F	20/28 20/20	- -	- -	- -	- -	46 46.8	491 471	SP							
43	29	F	20/200 20/100	- -	- -	- -	- -	47.8 46.4	516 512	SP							
44	29	F	20/28 20/60	- -	- -	- -	- -	58.7 53.7	246 374	AD							
45	24	M	20/200 20/60	- -	+ +	+ +	- -	49.8 45.9	467 487	SP							
46	35	F	20/28 CF	- -	- -	- -	+ +	47 47.1	546 508	SP							
47	24	F	20/20 20/28	- -	+ +	+ +	+ +	42.4 44.1	511 470	SP							
48	40	F	CF 20/30	+ + + + + +	+ +	+ +	+ +	53.5 52	422 421	SP							
49	23	M	20/200 20/80	- -	- -	- -	- -	57.9 47.3	365 464	AR							
50	22	M	20/100 CF	- + - + + +	- +	+ +	+ +	45.6 68.5	491 381	SP							
51	28	M	20/80 20/80	+ + + + + +	+ +	+ +	+ +	45.9 42.6	441 453	AR							
52	41	M	20/28 20/100	- - - - -	- -	- -	- -	43.3 46.4	494 474	SP							
53	50	M	20/40 20/40	+ + + + + +	+ +	+ +	+ +	42.9 43.4	492 476	AR							
54	40	F	CF 20/20	- - - - - +	- -	+ +	+ +	57.6 53.4	225 242	AR							
55	23	F	20/60 20/20	- - - - - -	- -	+ +	+ +	48.1 44.7	465 515	AR							

Key: M=Male; F=Female; OD=Right eye; OS=Left eye; +=Positive; -=Negative; VKG=Videokeratography; AD=Autosomal dominant; AR=Autosomal recessive; SP=Sporadic; ND=not determined due to difficulty in predicting the mode of inheritance from available family pedigree. *Mode of inheritance was established (when possible) by examining the family pedigree carefully and taking detailed family history up to 2–3 generations.
that other loci, such as 13q32 [25], may be involved in the pathogenesis of keratoconus.

In our patient group, we noticed that females were more affected than males. In the literature, it is unclear whether significant differences between males and females exist. Some studies have not found differences in the prevalence between genders [7,26]; others have found a greater prevalence in females [27,28]; while other investigators have found a greater prevalence in males.

In the literature, most cases of keratoconus are sporadic, but a proportion (5%-10%) may be familial [6,7]. In our population, as judged by the family pedigree, 56.4% of cases were sporadic, 34.6% had autosomal recessive mode of inheritance, 5.4% were autosomal dominant, and 3.6% of cases were difficult to determine. So 40% (22 patients) of our keratoconus cohort were familial and this percentage is higher than that reported previously in the literature. This high rate of familial cases, could be attributed to the soaring scale of consanguinity in this society which reaches up to 60% in some areas of the Kingdom [29].

In the literature, 90% of pedigrees with familial keratoconus display an autosomal dominant inheritance with reduced penetrance [8,30]. Other modes of inheritance have been described, including autosomal recessive mode in families with children of consanguineous parents [31,32]. In our population, the familial cases (19 out of 22) had an autosomal recessive mode of inheritance. This is ideal for linkage analysis to identify the causative gene(s) in our population by focusing on families with multiple affected individuals, preferably in two or more generations.

ACKNOWLEDGMENTS

The authors would like to acknowledge the research center of the College of Medicine, King Saud University, Riyadh, Saudi Arabia.

REFERENCES

1. Li X, Yang H, Rabinowitz YS. Longitudinal study of keratoconus progression. Exp Eye Res 2007; 85:502-7. [PMID: 17681291]
2. Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, Hawlina M, Glavac D. Genetics and clinical characteristics of keratoconus. Acta Dermatovenol Alp Panonica Adriat 2010; 19:3-10. [PMID: 20664914]
3. Ihlaainen A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl 1986; 178:1-64. [PMID: 3019073]
4. Tanabe U, Fujikai K, Ogawa A, Ueda S, Kanai A. Prevalence of keratoconus patients in Japan. Nippon Ganka Gakkai Zasshi 1985; 89:407-11. [PMID: 3893060]
5. Romero-Jiménez M, Santodomingo-Rubido J, Wolfsohn JS. Keratoconus: a review. Cont Lens Anterior Eye 2010; 33:157-66. [PMID: 20537579]
6. Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am 2003; 16:607-20. [PMID: 14741001]
7. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 1986; 101:267-73. [PMID: 3513592]
8. Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci 2003; 44:5063-6. [PMID: 14638698]
9. Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiologic study of keratoconus: evidence for major gene determination. Am J Med Genet 2000; 93:403-9. [PMID: 10951465]
10. Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, Alitalo T. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci 2002; 43:3160-4. [PMID: 12356819]
11. Bisceglia L, De Bonis P, Pizzicoli C, Fischetti L, Laborante A, Di Perna M, Giuliani F, Delle Noci N, Buzzonetti L, Zelante L. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci 2009; 50:1081-6. [PMID: 18978346]
12. Fullerton J, Paprocki P, Foote S, Mackey DA, Williamson R, Forrest S. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north-west Tasmania, Australia. Hum Genet 2002; 110:462-70. [PMID: 12073017]
13. Eran P, Almogit A, David Z, Wolf HR, Hana G, Yaniv B, Elon P, Isaac A. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet 2008; 29:53-9. [PMID: 18484309]
14. Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea 2008; 27:189-92. [PMID: 18216574]
15. Mok JW, Baek SJ, Joo CK. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet 2008; 53:842-9. [PMID: 18626569]

16. Paliwal P, Singh A, Tandon R, Titiyal JS, Sharma A. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis 2009; 15:2475-9. [PMID: 19956409]

17. Héon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, Priston M, Dorval KM, Chow RL, McInnes RR, Heathcote G, Westall C, Sutphin JE, Semina E, Bremner R, Stone EM. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet 2002; 11:1029-36. [PMID: 11978762]

18. Dash DP, George S, O’Prey D, Burns D, Nabili S, Donnelly U, Hughes AE, Silvestri G, Jackson J, Frazer D, Heon E, Willoughby CE. Mutational screening of VSX1 in keratoconus patients from the European population. Eye (Lond) 2010; 24:1085-92. [PMID: 11978762]

19. Tanwar M, Kumar M, Nayak B, Pathak D, Sharma N, Titiyal JS, Dada R. VSX1 gene analysis in keratoconus patients from the European population. Eye (Lond) 2010; 16:2395-401. [PMID: 21139977]

20. Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea 2010; 29:172-6. [PMID: 20023586]

21. Semina EV, Mintz-Hittner HA, Murray JC. Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues. Genomics 2000; 63:289-93. [PMID: 10673340]

22. Hayashi T, Huang J, Deeb SS. RINX(VSX1), a novel homeobox gene expressed in the inner nuclear layer of the adult retina. Genomics 2000; 67:128-39. [PMID: 10903837]

23. Grunauer-Kloevekorn C, Duncker GI. Keratoconus: epidemiology, risk factors and diagnosis. Klin Monatsbl Augenheilkd 2006; 223:493-502. [PMID: 16804819]

24. Clausen I, Weidle E, Duncker G, Grunauer-Kloevekorn C. Mutational analysis of VSX-1 in one patient with posterior polymorphous corneal dystrophy and in three families with hereditary Fuchs endothelial dystrophy. Klin Monatsbl Augenheilkd 2009; 226:466-9. [PMID: 19507099]

25. Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, Ewing K, Molinari A, Pitarque JA, Lee K, Leal SM, Bejjani BA. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci 2009; 50:1531-9. [PMID: 19010105]

26. Li X, Rabinowitz YS, Rasheed K, Yang H. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 2004; 111:440-6. [PMID: 15019316]

27. Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1984; 28:293-322. [PMID: 6230745]

28. Stein HA, Stein RM, Freeman MI. The ophthalmic assistant: a text for allied and associated ophthalmic personnel. Canada: Elsevier Mosby; 2006. p. 396.

29. Al-Odaib AN, Abu-Amero KK, Ozand PT, Al-Hellani AM. A new era for preventive genetic programs in the Arabian Peninsula. Saudi Med J 2003; 24:1168-75. [PMID: 14647548]

30. Edwards M, McGhee CN, Dean S. The genetics of keratoconus. Clin Experiment Ophthalmol 2001; 29:345-51. [PMID: 11778802]

31. Kirby D, Jackson AP, Karbani G, Crow YJ. Mental retardation, keratoconus, febrile seizures and sinoatrial block: a previously undescribed autosomal recessive disorder. Clin Genet 2005; 67:448-9. [PMID: 15811017]

32. Jacobs DS, Dohlman CH. Is keratoconus genetic? Int Ophthalmol Clin 1993; 33:249-60. [PMID: 8325738]