Categoricity of Theories in $L_{\kappa^*\omega}$, when κ^* is a measurable cardinal. Part II

Saharon Shelah*
Institute of Mathematics
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
and
Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, USA

May 16, 2018

Abstract

We continue the work of [KSh 362] and prove that for λ successor, a λ-categorical theory T in $L_{K^*\omega}$ is μ-categorical for every $\mu, \mu \leq \lambda$ which is above the $(2^{LS(T)})^+\text{-beth cardinal}$.

*Research supported by the United States-Israel Binational Science Foundation. Done 6-7/88. Publication number 472
0 Introduction

We deal here with the categoricity spectrum of theory T in logic: $T \subseteq L_{\kappa^*,\omega}$ with κ^* measurable. Makki Shelah [MaSh 285] have dealt with the case κ^* a compact cardinal. So κ^* measurable is too high compared with the hope to deal with $T \subseteq L_{\omega_1,\omega}$ (or any $L_{\kappa,\omega}$) but seem quite small compared to the compact cardinal in [MaSh 285]. Model theoretically a compact cardinal ensure many cases of amalgamation, whereas measurable cardinal ensure no maximal model. We continue [Sh 300], [MaSh 285], [KlSh 362]: try to imitate [MaSh 285]; a parallel line of research is [Sh 394]. Earlier works are [Sh 48], [Sh 87a], [Sh 87b]; on the upward Loś conjecture, look at [Sh 576] and [Sh 600].

On the situation with the upward direction and generally more see [Sh 576].

This paper continues the tasks begun in [KlSh 362]. We use the results obtained therein to advance our knowledge of the categoricity spectrum of theories in $L_{\kappa^*,\omega}$, when κ^* is a measurable cardinal.

The main theorems are proved in section three; section one treats of types and section two described some constructions.

The notation follows [KlSh 362], except in two important details: we reserve κ^* for the fixed measurable cardinal and T for the fixed λ-categorical theory in $L_{\kappa^*,\omega}$ in a given vocabulary L. κ is any infinite cardinal and T is usually some kind of tree. To recap briefly: T is a λ-categorical theory in $L_{\kappa^*,\omega}$, $LS(T) \overset{\text{def}}{=} \kappa^* + |T|$, $K = \langle K, \preceq_F \rangle$ is the class of models of T, where F is a fragment of $L_{\kappa^*,\omega}$ satisfying $T \subseteq F$, $|F| \leq \kappa^* + |T|$, and for $M, N \in K$, $M \preceq_F N$ means that M is an F-elementary submodel of N.

The principal relevant results from [KlSh 362] are: $K_{<\lambda}$ has the amalgamation property (5.5 there) and every member of $K_{<\lambda}$ is nice (5.4 there). But this assumption (T categorical in λ) or its consequences mentioned above will be mentioned in theorems when used.

Let $(M_1, M_0) \preceq_F (M_3, M_2)$ means $M_1 \preceq_F M_3$, $M_0 \preceq_F M_2$.

(I_1, I_2) is a Dedekind cut of the linear order I if

$$I = I_1 \cup I_2, I_1 \cap I_2 = \emptyset, \forall x \in I_1 \forall y \in I_2 (x < y),$$

the two sided cofinality of I, $\text{dcf}(I)$ is $(\text{cf} I_1, \text{cf} I_2^*)$ where I_2^* is the order I_2 inverted.

Writing proofs we also consider their hopeful rule in the hopeful classification theory. But we have been always careful in stating the assumptions.

Note that [KlSh 362] improve results of [MaSh 285]; but they do not fully recapture the results on the compact case to the measurable case, e.g. there the results work for every $\lambda > \kappa^*$ whereas here we sometimes need “λ above the Hanf number of omitting types”, say $\sum(2^{LS(T)})$.
We thank Oren Kolman for writing and ordering notes from lectures on the subject from spring 90 (you can see his style in the parts with good language).

1 Knowing the right types:

The classical notion of type relates to the satisfaction of sets of formulas in a model. We shall define a post-classical type (following [Sh 300], [Sh:h] which was followed by [MaSh 285] but niceness is involved) and use this to define notions of freeness and non-forking appropriate in the context of a λ-categorical theory in $L_{\kappa^*,\omega}$. The definitions try to locate a notion which under the circumstances behave as in [Sh:c].

Context 1.1 $T \subseteq L_{\kappa^*,\omega}$ in the vocabulary L, $K = \{M : M$ a model of $T\}$, \preceq_F as in the introduction. $K_\mu = \{M \in K : \|M\| = \mu\}$, $K_{<\kappa} = \bigcup_{\mu<\kappa} K_\mu$, and $K = (K, \preceq_F)$ and we stipulate $K_{<\kappa^*} = \emptyset$, e.g. $K_{<\kappa} = \bigcup\{K_\mu : \mu < \kappa$ but $\mu \geq \kappa^*\}$. We let $LS(K) = |F| + \kappa^*$. Remember “$M \in K$ is nice” is defined in [KlSh 362], definitions 3.2, 1.8; nice implies being an amalgamation base in $K_{<\lambda}$ (see 3.7).

Definition 1.2 Suppose that $M \in K_{<\lambda}$ is a nice model of T. Define a binary relation, $E_M = E^{<\lambda}_M$, as follows:

$$(\bar{a}_1, N_1)E_M(\bar{a}_2, N_2) \iff \ell = 1,2, N_\ell \in K_{<\lambda}$ is nice and $M \preceq_F N_\ell$, $\bar{a}_\ell \in N_\ell$ (i.e. \bar{a}_ℓ a finite sequence of members of N_ℓ), and there exist a model N and embeddings h_ℓ such that $M \preceq_F N$, $h_\ell : N_\ell \rightarrow F N$, $id_M = h_1 \upharpoonright M = h_2 \upharpoonright M$, and $h_1(\bar{a}_1) = h_2(\bar{a}_2)$.

Fact 1.3 1. E_M is an equivalence relation.

2. Let $M \in K_{<\lambda}$, $\bar{a} \in N$, and for $\ell = 1,2$, $N \subseteq N_\ell \preceq_F M$, $\|N_\ell\| < \lambda$ then $(\bar{a}, N_1)E_M(\bar{a}, N_2)$

Proof 1) To prove [1.3], let’s look at transitivity.

Suppose $(\bar{a}_\ell, N_\ell)E_M(\bar{a}_{\ell+1}, N_{\ell+1})$, $\ell = 1,2$. Thus there are models N_ℓ and embeddings h_0^ℓ, h_1^ℓ of N_ℓ, $N_{\ell+1}$ over M into N^ℓ, with $h_0^\ell(\bar{a}_\ell) = h_1^\ell(\bar{a}_{\ell+1})$, $\ell = 1,2$. W.l.o.g. $N^\ell \in K_{<\lambda}$ (by the Downward Loewenheim Skolem Theorem).

By assumption N_2 is nice, hence by [KlSh 362, 3.5] is an amalgamation base for $K_{<\lambda}$, i.e. there is an amalgam $N^* \in K_{<\lambda}$, and embeddings g_ℓ:
$N^* \xrightarrow{\xi} N^*$, amalgamating N^1, N^2 over N^2 w.r.t h_1^1, h_0^2. In other words, the following diagram commutes:

\[
\begin{array}{ccc}
N^* & \xrightarrow{g_1} & N^1 \\
\downarrow & & \downarrow h_0^1 \searrow \downarrow h_0^2 \\
N^1 & \xrightarrow{\text{id}} & M \\
\end{array}
\]

Just notice now that N^*, $g_1 h_0^1$, $g_2 h_1^2$ witness that $(\bar{a}_1, N_1) E_M (\bar{a}_3, N_3)$, since:

\[g_1 h_0^1(\bar{a}_1) = g_1(h_1^1(\bar{a}_2)) = g_2 h_0^2(\bar{a}_2) = g_2 h_1^2(\bar{a}_3)\]

Definition 1.4 Suppose that $M \in K_{<\lambda}$ is nice, $a \in N \in K_{<\lambda}$ and $M \preceq_F N$. Then

1. $\text{tp}(a, M, N)$, the type of a over M in N, is the E_M-equivalence class of (a, N),

$$
(a, N)/E_M = \{(b, N^1) : (a, N) E_M (b, N^1)\}.
$$
We also say “$a \in N$ realizes p”. If $\|N\| \geq \lambda$ define $\text{tp}(\bar{a}, M, N)$ by (1.3).

2. If $M' \preceq_F M \in K_{\lambda}$, $p \in S(M)$ (see below) is $(a, N)/E_M$ then $p \restriction M' = (a, N)/E_{M'}$.

3. If $LS(T) < \kappa \leq \mu \leq \lambda$, we call $M \in K_\mu \kappa$-saturated if for every nice $N \preceq_F M$, $\|N\| < \kappa$ and $p \in S(N)$, some $\bar{a} \in M$ realizes p (in M) or at least for some N', $N \preceq_F N' \preceq_F M$, some $a' \in N'$ realizes p in N'.

4. $S^m(N) = \{ p : p = tp(\bar{a}, N, N_1) \text{ for any } N_1, \bar{a} \text{ satisfying: } N \preceq_F N_1, \|N_1\| \leq \|N\| + LS(K) \text{ and } \bar{a} \in ^m(N_1) \}$

5. $S^{<\omega}(N) = \bigcup_{m<\omega} S^m(N)$.

6. We say N is μ-universal over M when: $M \preceq_F N$, $N \in K_\mu$ and if $M \preceq_F N' \in K_{\leq \mu}$ then there is a \preceq_F-embedding of N' into N over M.

7. We say N is (μ, κ)-saturated over M if there is an increasing continuous sequence $(M_i : i < \kappa)$ such that: $M_0 = M$, $N = \bigcup_{i<\kappa} M_i$, $M_i \in K_\mu$ and M_{i+1} is μ-universal over M_i.

8. We say K (or T) is stable in μ if for every $M \in K_\mu$, M is nice and $|S(M)| \leq \mu$.

Definition 1.5 We shall write $M_1 \bigcup M_2$ to mean: $M_0 \preceq_F M_1 \preceq_F M_3$, $M_0 \preceq_F M_2 \preceq_F M_3$ and there exist suitable operation (I, D, G) and an embedding $h : M_3 \overset{F}{\rightarrow} \text{Op}(M_0, I, D, G)$ such that $h \restriction M_1 = \text{id}_{M_1}$ and $\text{Rang}(h \restriction M_2) \subseteq \text{Op}(M_0, I, D, G)$ (remember that $\text{Op}(M, I, D, G)$ is the limit ultrapower of M w.r.t. (I, D, G); see [KlSh 362, 1.7.4]). We say that M_1, M_2 do not fork in M_3 over M_0 if

M_3

$M_1 \bigcup M_2$

M_0

If

M_3

$M_1 \bigcup M_2$

M_0
does not hold, we'll write

\[
M_3 \uplus M_2
\]

and say that \(M_1, M_2 \) fork in \(M_3 \) over \(M_0 \).

Theorem 1.6 Suppose that \(M_1 \uplus M_2 \) and \(M_2 \uplus M_1 \) (failure of \(\uplus \)-symmetry)

and \(M_0 \preceq_{\text{nice}} M_3 \).

Let \(\mu = \kappa^* + ||T|| + ||M_2|| + ||M_1|| \). Then for every linear order \((I, <) \) there exists an Ehrenfeucht-Mostowski model \(N = EM(I, \Phi) \) with \(\mu \) (individual) constants \(\{ \tau^0_i : i < \mu \} \) and unary function symbols \(\{ \tau^1_i(x_i) : i < \mu \} \) such that, for \(M = (N \upharpoonright L) \upharpoonright \{ \tau^0_i : i < \mu \} \) (i.e. \(M \) is a submodel of \(N \) with the same vocabulary as \(T \) and universe \(\{ \tau^0_i : i < \mu \} \) i.e. the set of interpretations of these individual constants and for every \(t \in I, \ell = 1, 2 \),

\[
M^t_\ell = (N \upharpoonright L) \upharpoonright \{ \tau^\ell_i(x_i) : i < \mu \},
\]

one has \(M \preceq_F N, M^t_\ell \preceq_F N \) and for \(s \neq t \in I, t < s \) iff \(M^t_1 \uplus M^t_2 \).

Remark: Note \(M_0 \preceq_{\text{nice}} M_3 \) is automatic in the interesting case since \(M_0 \in K_{<\lambda} \) and every element of \(K_{<\lambda} \) is nice by [KSh 362, 5.4]. On the operations see [KSh 362].

Proof W.l.o.g. \(||M_3|| = \mu \). Add Skolem functions to \(M_3 \). We know that \(M_0 \preceq_{\text{nice}} M_3 \). So there is \(\text{Op}^1 \) such that \(M_0 \preceq_F M_1 \preceq_F \text{Op}^1(M_0) \) and \(\text{Op}^2 \) such that \(M_1 \preceq_F M_3 \preceq_F \text{Op}^2(M_1) \), \(M_2 \preceq_F \text{Op}^2(M_0) \). Let \(\text{Op} = \text{Op}^2 \circ \text{Op}^1 \). For each \(t \in I \), let \(\text{Op}_t = \text{Op} \). Let \(N \) be the iterated ultrapower of \(M_0 \) w.r.t. \((\text{Op}_t : t \in I) \). For each \(t \in I \), there is a canonical \(F \)-elementary embedding \(F_t : \text{Op}_t(M_0) \overset{F}{\rightarrow} N \). Let \(M = M_0 \), and \(M^t_\ell = F_t(M_\ell) \) for \(\ell = 1, 2, t \in I \).

For each \(t < s \), we can let \(M^t_\ell = (\text{Op}_v : v < s)(M_0) \), so \(M_0 \preceq_F M^t_\ell \preceq_F M^t_+ \preceq_F \text{Op}^1(M^t_+) \) and we can extend \(F_t \upharpoonright M_1 \) to an embedding of \(\text{Op}^2(M_1) \) into \(\text{Op}^2(\text{Op}_t(M^t_+)) \), so \((F_t \upharpoonright M_1) \cup (F_s \upharpoonright M_2) \) can be extended to a \(\preceq_F \)-embedding of \(M_3 \) into \(N \). From the definition of the iterated ultrapower it follows that for \(s \neq t \in I, t < s \) implies \(M^t_1 \uplus M^t_2 \) and on the other hand by the assumption it follows that if \(s, t \in I, s < t \) then \(M^t_1 \uplus M^t_2 \).
Corollary 1.7 Assume T categorical in λ or just $I(\lambda, T) < 2^\lambda$. Then

$$\bigcup_{\mu^+ < \lambda} K_\mu$$

obeys \bigcup-symmetry, i.e.: if $M_1 \bigcup M_2$ holds for M_0, M_1, M_2, $M_3 \in M_0$ then

$$\bigcup_{\mu^+ < \lambda} K_\mu,$$ M_3 then $M_2 \bigcup M_1$ holds.

Proof If $\mu^+ < \lambda$, $M_1 \bigcup M_2$ and $M_2 \bigcup M_3$, then theorem 1.6 gives the assumptions of the results at the end of section three in [Sh 300], III (or better [Sh:e], III, §3), yield a contradiction to the λ-categoricity of T and even 2^λ pairwise non isomorphic models.

It may be helpful, though somewhat vague, to add the remark that \bigcup-asymmetry enables one to define order and to build many complicated models; so 1.7 removes a potential obstacle to a categoricity theorem.

Definition 1.8 Let A be a set. We write $M_1 \bigcup A$ (where $A \subseteq M_3$, $M_0 \preceq_F M_3$) to mean that there exist M_2, M_3' such that $A \subseteq |M_2|$, $M_3 \preceq_F M_3'$ and $M_1 \bigcup M_2$. In this situation we say that $A/M_1 = \text{tp}(A, M_1, M_3)$ does not fork over M_0 in M_3.

We’ll write $M_1 \bigcup a$ to mean $M_1 \bigcup \{a\}$, we then say $\text{tp}(a, M_1, M_3)$ do not fork on M_0.

We write $A_1 \bigcup A_2$ if for some M_3, $M_3 \preceq_F M_3'$ $\in K_{<\lambda}$, and for some M_1', $A_2 \subseteq M_1' \preceq_F M_3'$, and $M_1' \bigcup A_2$.

Remark 1.9 1. Of particular importance is the case where A is finite. Let us explain the reason. We wish to prove a result of the form:

$$(*) \text{ if } \{M_i : i \leq \delta + 1\} \text{ is a continuous } \preceq_F \text{-chain and } a \in M_\delta, \text{ then there is } i < \delta \text{ such that } M_\delta \bigcup_{M_i} a.$$
This says roughly that the type tp(a, \(M_\delta, M_{\delta+1}\)) is definable over a finite set (or at least in some sense has finite characters). In general the former relation is not obtained. However its properties are correct. Hence it will be possible to define the rank of a over \(M_0\), \(\text{rk}(a, M_0)\), as an ordinal, so that for large enough \(M_3\), if \(M_1 \upharpoonright M_3 \supseteq a\), then \(\text{rk}(a, M_1) < \text{rk}(a, M_0)\).

2. If \(A\) is an infinite set, then we cannot prove (*), in general. For example, suppose that \(\langle M_i : i \leq \omega \rangle\) is (strictly) increasing continuous, \(a_i \in (M_{i+1} \setminus M_i)\) and \(A = \{a_i : i < \omega\}\). Then for every \(i < \omega\), \((\bigcup_{j<\omega} M_j) \upharpoonright M_i A\). Still we can restrict ourselves to \(\delta\) of cofinality \(>|A|\).

3. Notice that quite generally speaking, \(N_1 \bigcup_{\mathcal{N}_0} N_2\) implies that \(N_1 \cap N_2 = \mathcal{N}_0\).

Definition 1.10 We define

\[
\kappa_\mu(T) = \kappa_\mu(K) = \{\kappa : \text{cf}(\kappa) = \kappa \leq \mu \text{ and there exist a continuous } \prec \text{-chain } \langle M_i : i \leq \kappa + 1 \rangle \subseteq K \leq \mu \text{ and } a \in M_{\kappa+1} \text{ such that for all } i < \kappa, a/M_i \text{ forks over } M_i \text{ in } M_{\kappa+1}\}.
\]

i.e. for \(\kappa \in \kappa\mu(T)\) there are \(\langle M_i \in K \leq \mu : i \leq \kappa + 1 \rangle\) and \(a \in M_{\kappa+1}\) such that \(i < \kappa \Rightarrow M_{M_{\kappa+1}} \upharpoonright M_i a\).

Example 1.11 Fix \(\mu\) and \(\alpha \leq \mu\). Let \((\mu, E_\beta)_{\beta<\alpha}\) be the structure with universe

\[
\mu \omega = \{\eta : \eta \text{ is a function from } \mu \text{ to } \omega\},
\]

\(\eta E_\beta \nu\) iff \(\eta \upharpoonright \beta = \nu \upharpoonright \beta\). Let \(T = \text{Th}(\mu \omega, E_\beta)_{\beta<\alpha}\). Then \(\kappa_\mu(T) = \{\kappa : \text{cf}(\kappa) = \kappa \leq \alpha\}\).

Why? If \(\text{cf}(\kappa) = \kappa \leq \alpha\), then there are \(M_i(i \leq \kappa + 1), a \in M_{\kappa+1}\) and \(a_i \in (M_{i+1} \setminus M_i)\) such that \(a_i/E_{i+1} \notin M_i\) (that’s to say, no element of \(M_i\) is \(E_{i+1}\)-equivalent to \(a_i\)) and \(a E_i a_i\).
Definition 1.12 The class $\mathcal{K} = \langle K, \preceq_F \rangle$ is χ-based iff for every pair of continuous \preceq_F-chains $\langle N_i \in K_{\leq \chi} : i < \chi^+ \rangle$, $\langle M_i \in K_{\leq \chi} : i < \chi^+ \rangle$, with $M_i \preceq_F N_i$, there is a club C of χ^+ such that

$$(\forall i \in C) \left(M_{i+1} \bigcup_{M_i} N_i \right).$$

Replacing χ^+ by regular χ we write $(< \chi)$-based. We say synonymously that T is χ-based.

Definition 1.13 The class $\mathcal{K} = \langle K, \preceq_F \rangle$ has continuous non-forking in (μ, κ) iff

(a) whenever $\langle M_i \in K_{\leq \mu} : i \leq \delta \rangle$ is an continuous \preceq_F-chain, $|\delta| \leq \mu$, $\text{cf}(\delta) = \kappa$, $M_0 \preceq_F N_0 \preceq_F N^*$, $M_\delta \preceq_F N^*$ and

$$(\forall i < \delta) \left(M_i \bigcup_{M_0} N_0 \right),$$

then $M_\delta \bigcup_{M_0} N_0$;

(b) whenever $\langle M_i \in K_{\leq \mu} : i \leq \delta + 1 \rangle$, $\langle N_i \in K_{\leq \mu} : i \leq \delta + 1 \rangle$ are continuous \preceq_F-chains, $M_i \preceq_F N_i$, $|\delta| \leq \mu$, $\text{cf}(\delta) = \kappa$ and

$$(\forall i < \delta) \left(M_{\delta+1} \bigcup_{M_i} N_i \right),$$

then $M_{\delta+1} \bigcup_{M_\delta} N_{\delta}$.

Again we’ll mean the same thing by saying that T has continuous non-forking in (μ, κ).

Our next goal is to show that if T fails to possess these features for some $\mu < \lambda$ such that $\mu \geq \kappa + \text{LS}(\mathcal{K})$, then T has many models in λ.

Let us quote in this context a further important result from [Sh 300], II, 2.12:

Theorem 1.14 Assume T be a λ-categorical theory, or just $K_{<\lambda}$ has amalgamation and every $N \in K_{<\lambda}$ is nice.
1. Let $LS(T) < \mu \leq \lambda$, $M \in K_\mu$. Then TFAE:

(A) M is universal-homogeneous: if $N \preceq_{\mathcal{F}} M$, $\|N\| < \mu$, $N \preceq_{\mathcal{F}} N' \in K_{<\mu}$, then there is an \mathcal{F}-elementary embedding $g : N' \xrightarrow{\mathcal{F}} M$ such that $g \upharpoonright N = \text{id}_N$.

(B) if $N \preceq_{\mathcal{F}} M$, $\|N\| < \mu$ and $p \in S(N)$, then p is realized in M i.e. N is saturated.

2. M as in (A) or (B) is unique for fixed T, μ.

3. Any two (μ, κ)-saturated models are isomorphic (see [Sh 300], II 3.10).

Proof
1), 2) See [Sh 300], II 3.10.
3) Easy.

Claim 1.15 Assume T is λ-categorical or just $K_{<\lambda}$ has amalgamation.

1. If $LS(T) \leq \mu < \lambda$, $N_0 \preceq_{\mathcal{F}} N_1$ are in K_μ then TFAE

(A) N_1 is (μ, μ)-saturated over N_0

(B) there is a $\preceq_{\mathcal{F}}$-increasing continuous $\langle M_i : i \leq \mu \times \mu \rangle$, such that:

$M_\mu = N_1$, $M_0 = N$ and every $p \in S(M_i)$ is realized in M_{i+1}

2. Also TFAE for $\kappa = \text{cf}(\kappa) \leq \mu^+$

(A)$_\kappa$ N_1 is (μ, κ)-saturated over N_0

(B)$_\kappa$ there is a $\preceq_{\mathcal{F}}$-increasing continuous $\langle M_i : i \leq \mu \times \kappa \rangle$ with $M_\mu \times \kappa = N_1$, $M_0 = N$ and every $p \in S(M_i)$ is realized in M_{i+1}

3. If \mathcal{K} is stable in μ, $\mu \geq LS(\mathcal{K})$, $\kappa = \text{cf}(\kappa) \leq \mu^+$ then there is a (μ, κ)-saturated model.

Proof
1) See [Sh 300], II 3.10
2) Same proof.
3) Straight.

Claim 1.16 (T categorical in λ)

1. Any $M \in K_\lambda$ is saturated.

2. Every $N \in K_{<\lambda}$ is nice.

3. $K_{<\lambda}$ has $\preceq_{\mathcal{F}}$-amalgamation.
4. \mathcal{K} is stable in μ for $\mu \in [LS(T), \lambda]$.

Proof 1) By the proof of [KlSh 362. 5.4] (for λ-regular easier).
2) [KlSh 362. 5.4].
3) [KlSh 362. 5.5].
4) See [KlSh 362].

Intermediate Corollary 1.17
1. Suppose that T is λ-categorical. If $\mu < \lambda$, $\mu > LS(T)$ and T is not μ-categorical, then there is an unsaturated model $M \in K_{\mu}$.

2. It now follows that if we show that the existence of an unsaturated model in K_{μ} implies that of an unsaturated model in K_{λ}, then λ-categoricity of T implies μ-categoricity of T.

Conclusion 1.18 (T categorical in λ) If I is a linear order, $I = I_1 + I_2$, $|I| < \lambda$ and $J = I_1 + \omega + I_2$ then every $p \in S(EM(I))$ is realized in $EM(J)$.

Proof $EM(I_1 + \lambda + I_2)$ is in K_{λ} hence is saturated hence every $p \in S(EM(I))$ is realized in it, say by a_p, for some finite $w \subseteq \lambda$, we have $a_p \in EM(J_1 + w + I_2)$, now we indiscernibility.

Remark 1.19 By changing Φ we can replace “ω” by “1”.

Conclusion 1.20 (T categorical in λ)
1. If $J = \bigcup I_\alpha$, $|J| = \mu \in [LS(T), \lambda]$, I_α increasing continuous, for each α some Dedekind cut of I_α is realized by infinitely many members of $I_{\alpha+1} \setminus I_\alpha$ then $EM(J)$ is (μ, μ)-saturated over $EM(I_0)$.

2. If Φ is “corrected” as in [1.13], $I_0 \subseteq J$, $|J \setminus I_0| = |J| = \mu$, $\mu \in [LS(T), \lambda]$, then $EM(J)$ is (μ, μ)-saturated over $EM(I_0)$ moreover for any $\kappa = \text{cf}(\kappa) \leq \mu$ it is (μ, κ)-saturated.

Proof By [1.18+1.13]

Claim 1.21
1. Suppose $(N_i^\ell : i \leq \alpha)$ is \leq_{nice}-increasing continuous for $\ell = 1, 2$, $N_i^1 \leq_{\text{f}} N_i^2 \in K_{<\lambda}$ and $N_i^2 \bigcup N_{i+1}^1$ for each $i < \alpha$, then $N_0^2 \bigcup N_0^1 \subseteq N_0^2 \bigcup N_0^1$.

2. The monotonicity properties of $\bigcup\limits_{M_0} M_3$, i.e.: if $M_1 \bigcup\limits_{M_0} M_2$ and for some operation Op and moduls M'_1, M'_2, M'_3 we have $M_3 \preceq_{\mathcal{F}} M'_3 \preceq \text{Op}(M_3)$ and $M_0 \preceq_{\mathcal{F}} M'_1 \preceq_{\mathcal{F}} M_1$ and $M_0 \preceq_{\mathcal{F}} M'_2 \preceq_{\mathcal{F}} M_2$ then $M'_1 \bigcup\limits_{M_0} M'_2$.

3. If $M_1 \bigcup\limits_{M_0} A$ and $M_0 \preceq_{\mathcal{F}} M'_0 \preceq_{\mathcal{F}} M'_1 \preceq_{\mathcal{F}} M'_3 \preceq_{\mathcal{F}} M''_3$ and $M_3 \preceq_{\mathcal{F}} M''_3$ and $A' \subseteq A$ then $M'_1 \bigcup\limits_{M'_0} A'$.

Proof Use [KSh 362, 1.11].

Claim 1.22 If \mathcal{T} is λ-categorical, if $M_0 \preceq_{\text{nice}} M_1, M_2$ are in $K_{<\lambda}$ then we can find $M_4 \in K_{<\lambda}$, $M_0 \preceq_{\mathcal{F}} M_4$ and $\preceq_{\mathcal{F}}$-embeddings f_1, f_2 of M_1, M_2 respectively into M_4 such that

(a) $f_1(M_1) \bigcup\limits_{M_0} f_2(M_2)$ and

(b) $f_2(M_2) \bigcup\limits_{M_0} f_1(M_1)$.

Remark 1.23 Note 1.7 deal only with models in $\bigcup\{K_{\mu}: \mu^+ < \lambda\}$ hence (b) is not totally redundant.

Proof If we want to get (a) only, use operation Op such that $\text{Op}(M_0)$ has cardinality $\geq \lambda$, choose $N \preceq_{\mathcal{F}} \text{Op}(M_0)$, $\|N\| = \lambda$, hence N is saturated hence we can find a $\preceq_{\mathcal{F}}$-embedding $f_2 : M_2 \rightarrow N$, let $N_1 = \text{Op}(M_1)$, so $N \preceq_{\mathcal{F}} \text{Op}(M_0) \preceq_{\mathcal{F}} \text{Op}(M_1) = N_1$, and choose $M_4 < N_1, M_4 \in K_{\mu}$ such that $M_1 \bigcup\text{Rang} f_2 \subseteq N$.

By “every $N \in K_{\lambda}$ is saturated” there are an operation Op and $N \in K_{\lambda}$ such that $M_0 \preceq_{\mathcal{F}} N \preceq_{\mathcal{F}} \text{Op}(M_0)$ hence there are M^+_1, M^+_2, M^+_3 in $K_{<\lambda}$ such that:

(*)\(_0\) $(M^+_1, M^+_2) \preceq_{\mathcal{F}} \text{Op}(M_1, M_0), (M^+_2, M^+_3) \preceq_{\mathcal{F}} \text{Op}(M_2, M_0)$ and M^+_0 has the form $\text{EM}(I_0)$, I_0 a linear order with $|I_0|$ Dedekind cuts with cofinality (κ^*, κ^*). [Note that by [2.2][2] if $LS(\mathcal{T}) \leq |I_0| \leq \lambda$ then $\text{EM}(I_0)$ is saturated and N is saturated, clearly there is I_0 as required.]
Hence we can find I_1, I_2, I_3 such that: $I_o \defeq I \subseteq I_1 \subseteq I_3$ $I_0 \subseteq I_2 \subseteq I_3$, $I_1 \cap I_2 = I$, no $t_1 \in I_1 \setminus I_0$, $t_2 \in I_2 \setminus I_0$ realize the same Dedekind cut of I, and every $t \in T_3 \setminus I_0$ realize a cut of $I \setminus I_0$ with cofinality (κ^*, κ^*). Hence $I_0 \subseteq \text{n\textit{ice}} I_\ell$ ($\ell \geq 3$), moreover $I_1 \bigcup I_2$ and $I_2 \bigcup I_1$ hence

$$EM(I_3) \cup EM(I_2) \text{ and } EM(I_2) \cup EM(I_1).$$

Also by \ref{1.20}(2), wlog ($\ell = 1, 2$) $M^+_\ell \preceq_{\mathcal{F}} EM(I_\ell)$.

So

$$EM(I_3) \cup M^+_2 \text{ and } M^+_2 \cup EM(I_3).$$

By $(*)_1 + (*)_2$ and \ref{1.21}(1) (for $\alpha = 2$) we get the conclusions. \hfill \square

\textbf{Claim 1.24} \textit{[T is λ-categorical]}

1. If $M^\ell_1 \cup M^\ell_2$ for $\ell = 1, 2$, $M^3_\lambda \subseteq K_{< \lambda}$ moreover $\|M^\ell_3\|^+ < \lambda$ and f_k

M^ℓ_0

an isomorphism from M^ℓ_1 onto M^ℓ_2 for $k = 0, 1, 2$ such that $f_0 \subseteq f_1$, $f_0 \subseteq f_2$ then there is M, $M^3_\lambda \preceq_{\mathcal{F}} M \subseteq K_{< \lambda}$, $\|M\| = \|M^3_\lambda\| + \|M^3_\lambda\|$ and a $\preceq_{\mathcal{F}}$-embedding f' of M^3_λ into M^3_λ extending f_1 and f_2.

2. Assume $M^\ell_1 \cup M^\ell_2$ for $\ell = 1, 2$ and $A^\ell_2 \subseteq M^\ell_2 \subseteq M^3_\lambda$, and $M^3_\lambda \subseteq K_{< \lambda}$

M^ℓ_0

moreover $\|M^\ell_0\|^+ < \lambda$, and f_k is an isomorphism from M^ℓ_1 onto M^ℓ_2

M^ℓ_k

for $k = 0, 1, 2$ such that $f_0 \subseteq f_1$ and $f_0 \subseteq f_2$ and f_2 maps A^ℓ_2 onto A^ℓ_2

A^ℓ_0

then there is M, $M^3_\lambda \preceq_{\mathcal{F}} M \subseteq K_{< \lambda}$ such that $\|M\| = \|M^3_\lambda\| + \|M^3_\lambda\|$ and a $\preceq_{\mathcal{F}}$-embedding f' of M^3_λ into M^3_λ extending f_1 and $f_2 \upharpoonright A^\ell_2$.

3. If for $\ell = 1, 2$ we have $p_\ell \in S(N)$ does not fork over M (see Definition \ref{1.8}), $M \preceq_{\mathcal{F}} N \subseteq K_\mu$, $\mu^+ < \lambda$ and $p_1 \upharpoonright M = p_2 \upharpoonright M$ then $p_1 = p_2$

\textbf{Remark 1.25} 1. This is uniqueness of non forking amalgamation.

2. The requirement is $\|M^\ell_3\|^+ < \lambda$ rather than $\|M^\ell_3\| < \lambda$ only because of the use of symmetry, i.e. \ref{1.7}.\hfill \square
In this section we’ll attempt to describe some constructions of models of \mathbf{T} relating to the situations in \ref{Def.4.12} and \ref{Def.4.13}, i.e. we want to prove there are “many complicated” models of \mathbf{T} when \mathbf{T} is “on unstable side” of Def.\ref{Def.4.12} or Def.\ref{Def.4.13}. May we suggest that on a first reading the reader be content with the perusal of \ref{2.1} and \ref{2.2}, leaving the heavier work of \ref{2.2.3} until after section three which contains the model-theoretic fruits of the paper. The construction should be meaningful for the classification problem.

What we actually need are \ref{2.2.1}, \ref{2.2.2}, \ref{2.2.3}

\textbf{Construction 2.1} First try

\textbf{Data 2.1.1} Suppose that $\langle M_i : i \leq \kappa + 1 \rangle$ is an continuous \prec_x-chain of models of \mathbf{T}, $\mu < \lambda$; T is a non empty subset of $(\kappa+1, \text{Ord})$ and

(i) T is closed under initial segments, i.e. if $\eta \in T$ and $\nu < \eta$, then $\nu \in T$,

(ii) if $\eta \in T$ and $\rho(g(\eta)) = \kappa$ then $\eta^\lambda(0) \in T$ and for all i, $\eta^\lambda(1 + i) \notin T$.

Let $\lim_\kappa(T) = \{ \eta : \rho(g(\eta)) = \kappa \text{ and } \bigwedge_{i < \kappa} (\eta | i \in T) \}$. Let $\{ \eta_i : i < i^* \}$ be an enumeration of T such that if $\eta_i \prec \eta_j$ (η_i is an initial segment of η_j), then

\textbf{Proof} Wlog $f_0 = \text{id}$, $M_0^1 = M_0^2$ call it M_0 and $f_1 = \text{id}_{M_1^1}$, $M_1^1 = M_1^2$ call it M_1. For some operation Op_ℓ we have $(M_0^\ell, M_1^\ell) \preceq_x \text{Op}_\ell(M_1^\ell, M_0^\ell)$. Let $\text{Op} = \text{Op}_1 \circ \text{Op}_2$, so $M_2^0 \preceq_x \text{Op}(M_1), M_2^1 \preceq_x \text{Op}(M_0)$. W.l.o.g. $\|\text{Op}(M_0)\| \geq \lambda$ and $\|\text{Op}(M_1)\| \geq \lambda$, so there is $N_0, \bigcup_{\ell = 1}^2 M_\ell^\ell \subseteq N_0 \preceq_x \text{Op}(M_0)$, such that $\|N_0\| = \lambda$, hence N_0 is saturated hence there is an automorphism g_0 of N_0 such that $g_0 \upharpoonright M_1^0 = f_2$ (so $g_0 \upharpoonright M_0 = \text{id}_{M_0}$). So there is $N_2, \bigcup_{\ell = 1}^2 M_\ell^\ell \subseteq N_2 \preceq_x N_0, \|N_2\| < \lambda$, N_2 closed under g_0, g_0^{-1}. Now there is $N_3, N_0 \cup M_1 \subseteq N_3 \preceq_x \text{Op}(M_1), N_3 \in K_\lambda$, hence N_3 is saturated. So $M_1 \cup N_2$ hence $N_2 \cup M_1$ (by symmetry i.e. \ref{1.7}) hence for some N_3', $N_3 \preceq_x N_3' \in K_{<\lambda}$, some automorphism g_1 of N_3 extend $(g_0 \upharpoonright N_3) \cup \text{id}_{M_1}$. Why? for some $\text{Op}', (N_3, M_1) \preceq_x \text{Op}'(N_1, M_0)$ and $\text{Op}'(N_1), \text{Op}'(g_0 \upharpoonright N_1)$ are as required except having too large cardinality, but this can be rectified.

Clearly we are done.

2) Similarly.

3) Follows.

\hspace{1cm}\blacksquare
$i < j$, and if $\eta_i = \nu^\lambda(\alpha)$, $\eta_j = \nu^\lambda(\beta)$, $\alpha < \beta$, then $i < j$. For simplicity i^* is a limit ordinal.

First Try 2.1.2 From the data of 2.1.1 we shall build a model N^* with Skolem functions, $N^* \upharpoonright L \in K$, and for $\eta \in T$, $M^*_\eta \subseteq N^*$, $f_\eta : M^*_{\eta|y(\eta)} \xrightarrow{\text{onto}} M^*_\eta \upharpoonright L$ such that if $\eta_i \prec \eta_j$, then $f_{\eta_i} \subseteq f_{\eta_j}$, and $M^*_{\eta_i} \subseteq_{\mathcal{F}_k} M^*_{\eta_j}$, where $\mathcal{F}_k \subseteq \mathcal{T}_k$ is a fragment of $(L^k)^{\kappa^*, \omega}$.

Let $M^*_i = \text{Sk}(M_i)$ be a Skolemization of M_i for \mathcal{F}, increasing (\subseteq) with i i.e. for every formula $(\exists y) \varphi(y, \bar{x}) \in \mathcal{F}$ we choose a function $F_{\varphi(y, \bar{x})}^{M_i}$ from M_i to M_i, with $\ell g(\bar{x})$-places such that

$$M_i \models (\exists y) \varphi(y, \bar{a}) \rightarrow \varphi(F_{\varphi(y, \bar{x})}^{M_i}(\bar{a}), \bar{a})$$

such that $j < i \Rightarrow F_{\varphi(y, \bar{x})}^{M_i} | M_j = F_{\varphi(y, \bar{x})}^{M_j}$.

Note: we do not require even $M^*_i < M^*_{i+1}$.

To achieve this, let us define by induction on $i \leq i^*, M^*_i, M^*_j$ and f_{η_j}. W.l.o.g. $\eta_0 = \emptyset$. Let $N^*_0 = M^*_\eta_0 = \text{Sk}(M_0)$, the Skolemization of M_0, $f_{\emptyset} = \text{id}_{M_0}$. If i is a limit ordinal, let $N^*_i = \bigcup_{j<i} N^*_j$. If i is a successor ordinal and $\ell g(\eta_i) = \alpha + 1$, then letting $\eta_j = \eta_i \upharpoonright \alpha$, note that $\eta_j \prec \eta_i$ so $j < i$ and so M^*_j and f_{η_j} are defined. We are assuming $M^*_0 \subseteq_{\text{nice}} M^*_\alpha + 1$ hence, there is an operator $\text{Op} = \text{Op}_\alpha$ such that $M^*_\alpha \subseteq_{\text{nice}} \text{Op}(M_0)$. Let $N^*_i = \text{Op}(N^*_i - 1)$, let $\text{Op}(N^*_i - 1, M_\alpha, f_{\eta_j}) = (N^*_i, \text{Op}(M_\alpha), (\text{Op}(f_{\eta_j})), and let $f_{\eta_j} = \text{Op}(f_{\eta_j}) | M^*_{\eta|y(\eta)}$ and $M^*_j = \text{Rang}(f_{\eta_j})$. (We can replace N^*_i by any N' such that $N^*_i \cup M^*_i \subseteq N' \subseteq_{\mathcal{F}} N^*_{i+1}$ so preserving $|N^*_i| \leq \mu + |i|$. Finally, let $N^*_i = \bigcup_{i < \kappa^*} N^*_i$. We are left with the case i successor ordinal, $\ell g(\eta_i)$ a limit ordinal; we let $N^*_i = N^*_{i+1}$, $M^*_i = \bigcup_{\nu \preceq \eta_i} M^*_\nu$ and $f_{\eta_j} = \bigcup_{\nu \preceq \eta_j} f_\nu$.

Explanation: In order to use this construction to prove non-structure results, we intend to use property: for every $\eta \in \text{lim}_\alpha T$, it is possible to extend $f_\eta = \bigcup_{\alpha < \kappa} f_{\eta|\alpha}$ to an \mathcal{F}-elementary embedding f^* of $M_{\kappa+1}$ into N^* iff $\eta \in T$.

Remark that if for example χ is a strong limit cardinal of cofinality κ^* and $\chi^{<\kappa} \subseteq T \subseteq \chi^{<\kappa} \cap \{\eta^{\nu}(\alpha) : (\exists \alpha < \kappa) \ell g(\eta) = \alpha + 1\}$, then over $\bigcup_{\eta \in \chi^{<\kappa}} M^*_\eta$ for χ parameters there are 2^χ independent decisions. This is not only a reasonable result, it has been shown, (Sh:k, VIII §1 for χ as above, Sh:k, III §5 more generally) that this result is sufficient to prove the existence of many models in every cardinality $\lambda > \mu + L\text{S}(T)$.

But to use this construction we have to have some continuity of non forking, which, we have not proved. Hence we shall use another variant of the construction.
Construction 2.2 We modify the construction of 2.1 to suit our purposes.

Modified Data 2.2.1 Let \((M_i ∈ K_{κ+1} : i ≤ κ + 1)\) be an continuous \(≤_{\text{nice}}\)-chain of models of \(T\), \(||M_{κ+1}|| = μ < λ\). Let \(T\) be a subset of \(κ+1≤ (\text{Ord})\), \(≺^{\text{lex}}\) be the lexicographic order on \(T\), it is a linear order of \(T\); suppose that \(T\) is \(＜\)-closed i.e. \(ν ≺ η ∈ T \Rightarrow ν ∈ T\), and if \(η ∈ κ^{\text{Ord}}(T) \cap T\), then \(η^{\langle 0 \rangle}\) is the unique \(≺^{\text{lex}}\)-successor of \(η\) in \(T\). For \(S ⊆ T\) let \(S^{\text{se}} = \{η ∈ S : \ell g(η)\) successor\}. Let \(Ω_{κ+i+1}\) witness \(M_i \leq_{\text{nice}} M_{κ+i+1}\).

We define \(Ω_η = \bigcup_{i < κ} \bigcup_{\ell g(η)} \Omega_i\) for \(η ∈ T^{\text{se}}\). We can iterate the operation \(Ω_η\) w.r.t. \((T^{\text{se}}, ≺^{\text{lex}})\). Also, for each \(S ⊆ T\), we can iterate \(Ω_η\) w.r.t. \((S^{\text{se}}, ≺^{\text{lex}})\). Let us denote the result of this iteration w.r.t. \((S, ≺^{\text{lex}})\) by \(Ω^\text{\text{erm}}\) (see [KlSh 362, 1.11]). Note that for any \(M ∈ K\), if \(S_1 ⊆ S_2 ⊆ T\), then \(M ≺ F Ω^\text{\text{erm}}(M) ≤ F Ω^{\text{S}_2}(M) ≤ F Ω^T(M)\) (by natural embeddings).

More formally:

Claim 2.2.2 There exist operations \(Ω^S\) for \(S ⊆ T\) such that

1. for every \(S ⊆ T\) which is \(≺\)-closed \(M_S = Ω^S(M)\) is defined, and whenever \(S_1 ⊆ S_2 ⊆ T\), then \(M_{S_1} ≤ F M_{S_2}\);
2. for \(η ∈ T\), \(h_η\) is a surjective \(≺^T\)-elementary embedding from \(M^\text{\text{erm}}(η)\) to \(M_η\), \(M_η ≤ F M_{\langle η \rangle}\), and \(\langle η : η ∈ T \rangle\) is a \(≺\)-increasing sequence, i.e. \(h_η ≤ h_ν\) whenever \(η ≺ ν\);
3. for every \(x ∈ M_T\), there exists an \(≺\)-closed \(S ⊆ T\), \(|S| ≤ κ\) such that \(x ∈ M_S\) (in fact \(S\) is the union of finitely many branches);
4. for \(η ∈ T\) with \(\ell g(η) = κ\), and \(α < κ\), letting \(T[η] = \{ν ∈ T : \neg(η ≺ ν)\}, T^≤[η] = \{ν ∈ T[η] : ν ≤ T[η]\}, T^≥[η] = \{ν ∈ T[η] : ν ≤ T[η]\}\) (so \(T[η] = T^≤[η] ∪ T^≥[η]\)) and \(M_T^≤[η] = \bigcup_{\alpha < κ} M_α[η]\) and \(M_T^≥[η] = \bigcup_{\alpha < κ} M_α[η]\) for \(α < κ\);
5. if \(η ∈ \text{lim}_κ(T)\) and \(η ∉ T\), then \(M_T = \bigcup_{\alpha < κ} M_T^{\text{\text{erm}}[η]}\)
6. \(||M_S|| ≤ |S| + ||M_{κ+1}||^{κ^*} + \sup_{\eta ∈ S} ||M^\text{\text{erm}}[η]|\).

Fact 2.2.3 1. By clause (4), if we have the conclusion of 1.7 (and 1.21(1))
then \(M_η \bigcup_{\alpha < κ} M_T^{\text{\text{erm}}[η]}\).
2. Then in fact one can replace clause (4) above by the weaker condition
\[(4)\] for every \(S \subseteq T \), if \(\{ \eta \upharpoonright i : i \leq \alpha \} \subseteq S \subseteq T \), then \(M_\eta \bigcup_{\eta \upharpoonright \alpha} M_S \).

(2) by (4).

Short Proof of 2.2.2: As \(\langle M_i : i \leq \kappa +1 \rangle \) is \(\succeq_{\text{nice}} \)-increasing continuous by renaming there is \(\langle M^*_i : i \leq \kappa +1 \rangle \) \(\succeq_{\text{nice}} \)-increasing continuous, \(M^*_0 = M_0 \), \(M^*_i = \text{Op}(M^*_i) \), \(M_i \preceq_F M^*_i \), and \(M^*_i \bigcup_{\eta \in \alpha} M^*_i \) for \(i \leq \kappa \). W.l.o.g.

\[\| M^*_\kappa \| \leq \| M_i \|^\kappa. \]

Let \((I_\eta, D_\eta, G_\eta) \) be a copy of \(\text{Op}_{\eta} \) for \(\eta \in T \), and let \(I_\eta \) be pairwise disjoint. Define \(I = \Pi \{ I_\eta : \eta \in T \} \), \(D, G \) as in the proof of [Kri 362, 1.11], so every equivalence relation \(e \in G \) has a finite subset \(\{ \eta_0 <_{\text{lex}} \ldots <_{\text{lex}} \eta_{n(e)-1} \} \subseteq T \) and \(\epsilon e \in G_{\eta e} \) as there. We let \(\text{Op}_{T^e} = (I, D, G) \), \(M_{T^e} = \text{Op}_{T^e}(M_0) \) and for \(S \subseteq T \) we let

\[M_S = \{ x \in M_T : w[eq(x)] \subseteq S \}. \]

Naturally there are canonical maps \(f^*_\eta \) from \(M^*_{Ig\eta} \) onto \(M_{\{\nu : \nu \subset \eta\}} \) and let \(M_\eta = f^*_{\eta}(M_{Ig\eta}) \).

Improvement 2.2.4 Improvement in cardinality.

We can replace \(\| M_{\kappa+1} \|^\kappa \) by \(\| M_{\kappa+1} \| + LS(T) \) in part (6) of claim 2.2.2.

After choosing \(\langle M_i : i \leq \kappa +1 \rangle \), let \(M^*_0 = M_0 \), \(M^*_i = \text{Op}(M^*_i) \), \(M^*_i = \bigcup_{i \leq \delta} M^*_i \). Of course \(M^*_S \) (\(S \subseteq T \) is \(\triangleleft \)-closed) are well defined similarly. Let \(N_i \) be the Skolem hull of \(M_i \) in \(M^*_i \). For \(\eta \in T \) let \(N_\eta = f^*_\eta(N_{Ig\eta}) \). Now for any \(\triangleleft \)-closed \(S \subseteq T \) let

\[N_S = \text{Skolem hull in } M^*_S \text{ of } \cup \{ N_\eta : \eta \in S \}. \]

* * *

There are two different ways to carry on the construction (under Data 2.2.1). We’ll consider each in its turn.

Construction 2.3 Recall that it is possible to iterate the operation \(\text{Op} \) with respect to the linear order \((T, <_{\text{lex}}) \) and this iteration can be defined as the direct limit of finite approximations. We shall use different approximations and take the direct limit we obtain the required operation.
Suppose that \(w \subseteq T \) is closed with respect to \(\triangleleft \) (i.e. initial segment) and is \(<_{lex} \)-well-ordered. For each approximation \(w \) of this kind, the iterated ultrapower \(\text{Op}^w(M_0) \) of \(M_0 \) with respect to \(w \) is defined as a limit ultrapower and there are natural elementary embeddings into this limit. The principal difference is that this limit is a little larger than a limit obtained using only finite approximations. For example, if \(\langle \eta_n : n \leq \omega \rangle \) is a \(<_{lex} \)-increasing sequence, then in \(\text{Op}^\omega \left(\ldots \text{Op}^{\eta_0}(M_0) \right) \), the last operation \(\text{Op}^\omega \) adds elements which are dispersed over all \(\text{Op}^{\eta_n}(\ldots \text{Op}^{\eta_0}(M_0)) \). (This is of more interest when the sequence has length \(\kappa \).) Now it is easy to check the symmetry (for \(\eta \in {}^\alpha \lambda, \alpha < \kappa \)) between the \(<_{lex} \)-successors and \(<_{lex} \)-predecessors of \(\eta \).

We define the embeddings \(h_\eta \) for \(\eta \in T \) as follows. For \(\eta = \langle \rangle \), \(h_\eta = \text{id} \upharpoonright M_0 \). If \(\eta = \nu^\lambda \langle i \rangle \), then \(\text{Op}^\eta \) acts on \(M_\nu = h_\nu [M_{\ell^\lambda(\nu)}] \) and we use the commuting diagram:

\[
\begin{array}{ccc}
\text{Op}^\theta(M_{\ell^\lambda(\nu)}) & \longrightarrow & \text{Op}^\theta(M_\nu) \\
\uparrow & & \uparrow \\
M_{\ell^\lambda(\eta)} & \longrightarrow & M_\eta \\
\uparrow & & \uparrow \\
M_{\ell^\lambda(\nu)} & \longrightarrow & M_\nu \\
\downarrow h_\nu & & \downarrow \\
h_\eta & & \end{array}
\]

This completes the construction.

Construction 2.4 In this approach, we employ the generalized Ehrenfeucht-Mostowski models \(EM(I, \Phi) \) from chapter VII in [Sh:a] or [Sh:c]. For this we need to specify the generators of the model and what the types are.
Let M_0^+ be the model obtained from M_0 by adding Skolem functions and individual constants for each element of M_0. We know that there is an operation Op such that, for $i \leq \kappa$, $M_i \not\preceq_F M_{i+1} \not\preceq_F \text{Op}(M_i)$. As in [KSh 362, 1.7.4] this means that there are I, D and G such that $\text{Op}(M_i) = \text{Op}(M, I, D, G)$ where I is a non-empty set, D is an ultrafilter on I, and G is a suitable set of equivalence relations on I, i.e.

(i) if $e \in G$ and e' is an equivalence relation on I coarser than e, then $e' \in G$;

(ii) G is closed under finite intersections;

(iii) if $e \in G$, then $D/e = \{ A \subset I/e : \bigcup x \in A x \in D \}$ is a κ^*-complete ultrafilter on I/e.

For each $b \in M_i+1 \setminus M_i$, let $\langle x^b_t : t \in I \rangle/D$ be the image of b in $\text{Op}(M_i)$. We’ll also write $\langle x^b_t : t \in I \rangle/D$ for the canonical image $d(b)$ of $b \in M_i$ in $\text{Op}(M_i)$.

\[
M_{i+1} \ni b \mapsto \langle x^b_t : t \in I \rangle/D \in \text{Op}(M_i)
\]

We define a model $M^+, M_0^+ \preceq_{\text{L}_{\kappa^{*}}, \omega} M^+$, as follows. M^+ is generated by the set $\{ x^b_\eta : b \in M_{i+1} \setminus M_i, \eta \in T, \ell g(\eta) = i + 1 \}$. Note that this set does generate a model since M_0^+ is closed under Skolem functions. Since functions have finite arity, it is enough to specify, for each finite set of the x^b_η, what quantifier-free type it realizes. Since there is monotonicity, we shall obtain indiscernibility as in [Sh:a]. The type of a finite set $\langle x^b_\eta^\ell : \ell = 1, \ldots, n \rangle$ depends on the set $\langle b_1, \ldots, b_n \rangle$ and the atomic (i.e. quantifier-free) type of $\langle \eta_1, \ldots, \eta_n \rangle$ in the model $\langle T, \triangleleft, \prec_{\text{lex}}, \lnot \eta \mid i = \nu \mid i \rangle$. Now w.l.o.g. we can allow finite sequences \vec{b} instead of b for $b \in M_{i+1} \setminus M_i$ and thus w.l.o.g.
\(\eta_1, \ldots, \eta_n\) is repetition-free, so w.l.o.g. \(\eta_1 \prec_{\text{lex}} \eta_2 \prec_{\text{lex}} \cdots \prec_{\text{lex}} \eta_n\). Suppose that the lexicographic order \(\prec_{\text{lex}}\) on \(\{\eta_\ell \mid \alpha \leq \ell g(\eta_\ell)\) and \(\ell = 1, \ldots, n\) is a well-order and the sequence \(\{\nu_\zeta : \zeta < \zeta(\ast)\}\) is \(\prec\)-increasing. We define \(N_0 = M_0^\ast, N_{\zeta+1} = \text{Op}(N_\zeta), N_\zeta = \bigcup_{\zeta < \zeta} N_\xi\) (for limit \(\zeta\)). Next, we define \(h_{\nu_\zeta} : M_{\ell g(\nu_\zeta)} \to N_{\zeta+1}, h_{\nu_\zeta} \upharpoonright \beta \subseteq h_{\nu_\zeta}\). If \(\ell g(\nu)\) is a limit ordinal, then \(\alpha < \ell g(\nu) \Rightarrow h_{\nu_\alpha}\) is defined and we let \(h_\nu = \bigcup_{\alpha < \ell g(\nu)} h_{\nu_\alpha}\). If \(\nu_\zeta = \nu_\xi \upharpoonright \gamma\), then \(M_{\zeta+1} = \text{Op}(M_\zeta, I, D, G)\), identifying elements of \(M_\zeta\) with their images in the ultrapower. Now define

\[
h_{\nu_\zeta}(b) = \begin{cases}
d(H_{\nu_\zeta}(b)) & \text{if } b \in M_i, \\
(h_{\nu_\zeta}(a_i^b)) : t \in I \big/ D & \text{if } b \in M_{i+1} \setminus M_i,
\end{cases}
\]

where \(d(h_{\nu_\zeta}(b))\) is the canonical image of \(H_{\nu_\zeta}(b)\) in the ultrapower. The type of \(\langle x^b_i : \ell = 1, \ldots, n \rangle\) is defined to be the type of \(\langle h_{\eta_\ell}(b) : \ell = 1, \ldots, n \rangle\) in \(N_\zeta\).

Remark 2.4.1 It is possible to split the construction into two steps. For \(i \leq j < \kappa + 1\), there is an operation \(\text{Op}^{i,j}\), \(M_i \leq M_j \leq \text{Op}^{i,j}(M_i)\), moving \(b\) to \(\langle i^j d_i^b : t \in I\rangle, b \in M_j, i^j d_i^b \in M_i\), with the obvious commutativity and continuity properties. Now the construction is done on a finite tree \(\langle \eta_\ell : \ell = 1, \ldots, n \rangle, \{\eta_\ell \cap \eta_m : \ell, m < \omega\}\). We omit the details of monotonicity.

Notation 2.4.2 Let \(M_T = M\) be the Skolem closure. If \(S \subseteq T\) is closed with respect to initial segments, let \(M_S = \text{Sk}_M(x^b_\eta : \eta \in S, b \in M_{\ell g(\eta)})\) and \(M^\ast_\eta = M_{\{\eta : \alpha \leq \ell g(\eta)\}}\). Define \(h_\eta : M_{\ell g(\eta)} \to M^\ast_\eta\) by \(h_\eta(b) = x^b_{\eta \upharpoonright \tau(T)}\) and \(N_\eta = h_\eta[M_\eta]\).

Remark 2.4.3 The construction can be used to get many fairly saturated models. We list the principal properties below.

Fact 2.4.4 Suppose that \(S_\ell \subseteq T\) is closed with respect to initial segments, \(S_0 = S_1 \cap S_2\) and \([\eta \in S_1 \& \nu \in S_2 \setminus S_1 \Rightarrow \eta \prec_{\text{lex}} \nu]\) then

\[
M_{S_1} \uplus \bigcup_{M_{S_0}^T} M_{S_2}.
\]

Proof W.l.o.g. \(S_\ell\) is closed, \(M_{\ell g(S_\ell)} = M_{S_\ell}\). Let \(S_2 \setminus S_0 = \{\nu_\zeta : \zeta < \zeta(\ast)\}\) be a list such that \(\nu_\zeta < \zeta_\xi \Rightarrow \zeta < \xi\); let \(S_2^\xi = S_0 \cup \{\nu_\zeta : \zeta < \zeta(\ast)\}\). Then
1. \(\langle M_{S_2^\xi} : \xi \leq \xi(\ast) \rangle \) is continuous increasing;

2. \(\langle M_{S_2^\xi \cap S_1} : \xi \leq \xi(\ast) \rangle \) is continuous increasing. Hence one has

\[
M_{S_2^\xi+1 \cup S_1} \cup M_{S_2^\xi+1} \cup M_{S_2^\xi} \cup S_1 \cup N_{\nu_{\xi}}
\]

This is immediate from the definitions, because \(M_{S_2^\xi+1 \cup S_1} \) is the Skolem closure of \(M_{S_2^\xi \cup S_1} \cup N_{\nu_{\xi}} \), and so elements of \(N_{\nu_{\xi}} \) can be represented as averages.

3. Categoricity in \(\mu \), when \(LS(T) \leq \mu < \lambda \)

Hypothesis 3.1 Every \(M \in K_{<\lambda} \) is nice hence has a \(\preceq_F \)-extension of cardinality \(\lambda \) which is saturated and \(K_{<\lambda} \) has amalgamation.

This section contains the principal theorems of the paper: if \(T \) is \(\lambda \)-categorical, \(LS(T) \leq \mu < \lambda \), then \(\kappa_\mu(T) = \emptyset \) when \(\mu \in [LS(T), \lambda) \) and when \(LS(T) \leq \chi = \text{cf}\chi < \lambda \), \(T \) is \(\chi \)-based, (and \(K \) does not have \((\mu, \kappa) \)-continuous non forking when \(\mu \in [LS(T), \lambda], \kappa \leq \mu \)) also there is a saturated model in \(K_\mu = \langle K_\mu, \preceq_F \rangle \) and \(T \) is \(\lambda \)-categorical. However we first deal with some preliminary results, quoting [Sh 300] extensively.

Theorem 3.2 Assume the conclusion of 1.7 for \(\mu \) (e.g. \(\mu^+ < \lambda \)). Suppose that the tree \(T \) is as in Claim 2.2.2 and suppose further: \(\langle M_i \in K_{\leq \mu} : i \leq \kappa + 1 \rangle \) is \(\preceq_{\text{nice}} \)-increasing continuous sequence of members of \(K_{\leq \mu} \), and we apply §2 and

\((*) \) there is no \(\preceq_F \)-increasing continuous sequence \(\langle N_i \in K_{\leq \mu} : i \leq \kappa \rangle \) such that:

\[
M_i \preceq_F N_i \\
M_{\kappa+1} \preceq_F N_\kappa \\
N_{i+1} \cup M_{i+1} \text{ for } i < \kappa
\]

Then TFAE for \(\eta \in \text{Lim}_\kappa(T) \) \(\overset{\text{def}}{=} \{ \eta \in \kappa(\text{Ord}) : \bigwedge_{i<\kappa} (\eta \upharpoonright (i+1) \in T) \} \):

\((\alpha) \) There is an \(F \)-elementary embedding \(h \) from \(M_{\kappa+1} \) into \(M_T \) such that \(\bigcup_{i<\kappa} h_{\eta \upharpoonright i+1} \subseteq h \).
Claim 3.3 Suppose the conclusion of 1.7 for \(\mu \) and \(\bar{M} = \langle M_i \in K_{\leq \mu} : i \leq \kappa + 1 \rangle \) is given. Then \(\bar{M} \) satisfies (\(\ast \)) of 3.2 if one of the following holds:

(a) there is \(a \in M_{\kappa+1} \) such that \(i < \kappa \Rightarrow M_i \uplus a \), or

(b) \(\kappa = \text{cf}(\kappa) = \mu > \text{LS}(T) \) and \(i < \kappa \Rightarrow ||M_i|| < \kappa \), and there is a continuous 2-elementary chain \(\langle N_i : i \leq \kappa \rangle \),
\[
M_{\kappa+1} = \bigcup_{i \leq \kappa} N_i, \quad \kappa = \chi^{\text{cf}(\kappa)}, \quad \bigwedge_{i < \kappa} (N_i \in K_{< \kappa}),
\]
and \(E = \{ i < \kappa : M_{i+1} \uplus N_i \} \) is a stationary subset of \(\kappa \).

Proof Straight from 3.2, §2.

Remark 3.4 Clause (\(\beta \)) can also be proved using niceness as in the proof of 3.8. This works for any \(\kappa < \lambda \). Also we can imitate 2.2.2 but no need arise.

Corollary 3.5 If \(T \) is a \(\lambda \)-categorical theory\(^1\), then

1. \(T \) is \(\chi \)-based if \(\chi^+ < \lambda \) and \(\chi \geq \text{LS}(T) \); also it is not \(< \mu \)-based if \(\mu = \text{cf}(\mu) \), \(\text{LS}(T) < \mu \), \(\mu^+ < \lambda \);

2. \(\kappa_\mu(T) = \emptyset \) for every \(\mu \), \(\mu^+ < \lambda \) and \(\mu \geq \text{LS}(T) \).

Proof 1), 2) We use 3.3, 3.4 to contradict \(\lambda \)-categoricity.

Case 1: \(\lambda^\mu = \lambda \) By [Sh 300, III, 5.1 = Shc IV, 2.1].

Case 2: \(\lambda \) is regular, \(\lambda > \mu^+ \). We can find a stationary \(W^* \in I[\lambda] \), \(W^* \subseteq \{ \delta < \lambda : \text{cf}(\delta) = \kappa \} \) (by [Sh 420], §1). Hence, possibly replacing \(W^* \) by its intersection with some club of \(\lambda \), there is \(W^+ \), \(W^* \subseteq W^+ \) and \(\langle a_\alpha : \alpha \in W^+ \rangle \) such that: \(\alpha \in a_\beta \) (so \(\beta \in W^+ \)) implies \(\alpha \in W^+ \), \(a_\alpha = a_\beta \cap a_\alpha \) and \(\text{otp}(a_\alpha) \leq \kappa \) and \(\alpha = \sup a_\alpha \iff \text{cf}(\alpha) = \kappa \iff \alpha \in W^* \). Now let \(\eta_\alpha \) enumerate \(a_\alpha \) in increasing order (for \(\alpha \in W^+ \)), and for any \(W \subseteq W^* \) let
\[
T_W = \{ \eta_\alpha : \alpha \in W^+ \text{ but } \alpha \notin W^* \setminus W \} \cup \{ \eta_\alpha^- (0) : \alpha \in W \}.
\]

\[^1\text{or just has } < 2^\lambda \text{ non isomorphic model in } \lambda\]
Now if \(W_1, W_2 \subseteq W \), \(W_1 \setminus W_2 \) is stationary, then \(M_{W_1} \) cannot be \(\preccurlyeq^\mathcal{F} \)-embedded into \(M_{W_2} \) (again by [Sh 300] III, §5 = [Sh:e], IV §2).

Case 3: \(\lambda \) singular.

Choose \(\lambda', \lambda > \lambda' = \text{cf}(\lambda') > \mu^+ \) and act as in case 2 (to get \(2^\lambda \) we need more, see [Sh:e], IV. 3).

Hypothesis 3.6 The conclusion of 3.5 (in addition to 3.1 of course).

Conclusion 3.7 Suppose \(\mu \geq \text{LS}(T), \mu^+ < \lambda, M \in K_\mu \).

1. If \(p \in S(M) \) then \(p \) is determined by \(\{ p \restriction N : N \preccurlyeq^\mathcal{F} M \text{ and } \|N\| = \text{LS}(T) \} \)

2. Assume further

\[(*)^M_{\{N_t : t \in I\}} \]

a) \(I \) (a partial order) which is directed (i.e. every finite many elements have a common upper bound)

b) \(N_t \preccurlyeq^\mathcal{F} M \),

c) \(I \models t \leq s \) implies \(N_t \subseteq N_s \) (hence \(N_t \preccurlyeq^\mathcal{F} N_s \) by clause (b))

d) \(\bigcup_{t \in I} M_t = M \).

Then every \(p \in S(M) \) is determined by

\[\{ p \restriction N_t : t \in I \}\]

Proof

1) Follows by part (2).

2) Easily (and as [Sh 88] §1):

\(\otimes \) we can choose by induction on \(n < \omega \) for every \(u \in [M]^n \), \(t[u] \in I \) and \(N_u^* \) such that:

\(u \in N_u^*, N_u^* \preccurlyeq^\mathcal{F} N_u, \|N_u^*\| \leq \text{LS}(T) \) and: \(u \subseteq v \in [|M|]^{<\aleph_0} \) implies \(N_u^* \prec N_v^* \) and \(t[u] \leq t[v] \).

Let for \(U \subseteq |M|, N_U^* =: \{ N_u^* : u \subseteq U \text{ finite} \} \) the definitions are compatible. Easily \(U_1 \subseteq U_2 \subseteq |M| \Rightarrow N_{U_1}^* \preccurlyeq^\mathcal{F} N_{U_2}^* \preccurlyeq^\mathcal{F} M \). Now we prove by induction on \(\mu \leq |M| \) that:

\((**):\) if \(U \subseteq \|M\|, |U| = \mu, p \in N_U^* \) then for some \(u \in [U]^{<\aleph_0} \), \(p \) does not fork over \(N_u^* \).
For μ finite this is trivial, for μ infinite then $\text{cf}(\mu) \notin \kappa_{\mu+\text{LS}(T)}(T)$ (by 3.52) so (**) holds. Now by 3.24(3), we are done.

\textbf{Theorem 3.8} Suppose that $\text{cf}(\kappa) = \kappa \leq \mu < \lambda$ and $\text{LS}(T) < \mu$. Then

1. The (μ, κ)-saturated model M is saturated (i.e. $N \preceq M$, $\|N\| < \|M\|$, $p \in S(N) \Rightarrow p$ realized in M, and hence unique). Hence there is a saturated model in K_μ.

2. The union of a continuous \preceq_F-chain of length κ of saturated models from K_μ is saturated.

3. In part (1) we can replace saturated by (μ, μ)-saturated if $\mu = \text{LS}(T)$.

 We can in part (1) replace saturated by χ-saturated if $\chi > \text{LS}(T)$.

\textbf{Proof} 1), 2) Suppose that $M = M_\kappa$ and $\langle M_i : i \leq \kappa \rangle$ is a continuous \preceq_F-chain of members of K_μ such that for the proof of 1) M_{i+1} is a universal extension of M_i and for the proof of 2) M_{i+1} is saturated. Let $i \leq j \leq \kappa$. Then $M_i \preceq \text{nice} M_j$ (by [KSh 362], 5.4 or more exactly by the hypothesis \textbf{3.1}). So there is an operation $\text{Op}_{i,j}$ such that $M_i \preceq M_j \preceq \text{Op}_{i,j}(M_i)$. It follows that there is an expansion $M_{i,j}^+$ of M_j by at most $\text{LS}(T)$ Skolem functions such that if N is a submodel of $M_{i,j}^+$, then

$$M_i \bigcup_{i \leq j \leq \kappa} M_j \upharpoonright \leq N.$$

[Why? as we use operations coming from equivalence relations with $\leq \kappa^*$ classes and $\text{LS}(T) \geq \kappa^*$ by its definition]. More fully, letting $\text{Op}_{i,j}(N) = N'_{i,j} \downarrow / G$, every element $b \in M_j$ being in $\text{Op}_{i,j}(M_i)$ has a representation as the equivalence class of $\langle t^b_i : t \in I \rangle / D$ under $\text{Op}_{i,j}$, $t^b_i \in M_i$ and $\{\langle t^b_i : t \in I \rangle \} \leq \kappa^*$. The functions of $M_{i,j}^+$ are the Skolem functions of M_j and M_i and functions $F_\zeta (\zeta < \kappa^*)$ such that $\{F_\zeta(b) : \zeta < \kappa^*\} \supseteq \{t^b_i : t \in I\}$.

If $\kappa = \text{cf}(\mu)$, the theorem is immediate. So we’ll suppose that $\kappa < \mu$. Suppose $N \preceq M = M_\kappa$, $\|N\| < \mu$ and $p \in S(N)$. Let $\chi = \|N\| + \kappa + \text{LS}(T)$. W.l.o.g., there is no N_1, $N \preceq N_1 < M_\kappa$, $\|N_1\| \leq \chi$ and p_1, $p \subseteq p_1 \in S(N_1)$ such that p fork over N (by 3.3). If there is $i < \kappa$ such that $N \subseteq M_i$, then p is realized in M_{i+1}. By the choice of the models $M_{i,j}^+$, it is easy to find N' such that $N \preceq N' \preceq M_\kappa$, $\|N'\| = \chi \overset{\text{def}}{=} \|N\| + \kappa + \text{LS}(T)$ and, for every $i \leq \kappa$,

$$M_i \bigcup_{i \leq \kappa} N'. $$
Now let $N_i = N' \cap M_i$ and note that $N_\kappa = N'$. The sequence $\langle N_i : i \leq \kappa \rangle$ is continuous increasing and there is an extension p' of p in $S(N_\kappa) = S(N')$. Hence there exists $i < \kappa$ such that $(i \leq j < \kappa) \Rightarrow (p' \text{ does not fork over } N_j)$. By [Sh:c](4), it is sufficient to find $j \in [i, \kappa)$ and $\langle N^*_\varepsilon : \varepsilon < \chi^+ \rangle$ continuous such that: $N_i \preceq_F N^*_\varepsilon \preceq_F M_j$, $N^*_\varepsilon+1$ is a χ-universal extension of N^*_ε (recall symmetry and uniqueness of extensions).

3) Similar proof for the second sentence, [Sh:21] for the first sentence.

Remark: Using categoricity we can prove 3.8 also by [Sh:21](2) (and uniqueness).

Conclusion 3.9 Assume $LS(T) \leq \kappa < \mu \in (LS(T), \lambda)$, $M \in K_\mu$ is not κ^+-saturated; let $\langle N^*_u : u \in \langle |M|^{|< \aleph_0} \rangle \text{ and } N^*_U \text{ (for } U \subseteq |M|) \rangle$ be as in the proof of 3.7(2). Then there is $U \subseteq |M|$, $|U| \leq \kappa$, $p \in S(N^*_U)$ i.e. there are $N^+, N^*_U \preceq_F N^+ \in K_\kappa$, and $a^+ \in N^+$ satisfying $(a^+, N^+)/E_{N^*_U} = p$ such that:

for no $a \in M$ do we have $u \in \langle |U|^{|< \aleph_0} \rangle \Rightarrow \tp(a, N^*_u, M) = \tp(a^+, N^*_u, N^+)$. Equivalently: w.l.o.g. $N^+ \cap M = N^*_U$ and we can define N^*_u for $u \in \langle |N^+|^{|< \aleph_0} \rangle$, such that $\langle N^*_u : u \in \langle |N^+|^{|< \aleph_0} \rangle \rangle$ as in the proof of 3.7(2), and $u \in \langle |U|^{|< \aleph_0} \rangle \Rightarrow N^*_u = N^*_u$ and for no $u_0 \in \langle |M|^{|< \aleph_0} \rangle$, $v_0 \in \langle |N^+|^{|< \aleph_0} \rangle$, $a^+ \in N^*_u$, and $a \in N^*_u$ do we have

$$\bigwedge_{u \in \langle |U|^{|< \aleph_0} \rangle} \tp(a, N^*_u, N^*_u^{|\cup v_0}) = \tp(a^+, N^*_u^{|\cup v_0}).$$

Corollary 3.10 1. If T is λ-categorical and $LS(T) < \mu < \lambda$, $LS(T) \leq \chi$, $\delta(*) = (2^{LS(T)})^+ \text{ and } \exists_\delta(*) \chi \leq \mu$ then every $M \in K_\mu$ is χ^+-saturated. In fact for some $\delta < \delta(*)$ we can replace $\delta(*)$ by δ.

2. If $\mu = \exists_\gamma(2\gamma)^{+\times \delta}$, δ a limit ordinal then T is μ-categorical.

Proof By 3.9 this problem is translated to an omitting type argument + cardinality of a predicts which holds (see [Sh:c], VIII §4, [Sh:c], VII §5). See more on this in [Sh 88].

Claim 3.11 [T categorical in λ]

1. If $\langle M_i : i \leq \delta \rangle$ is \preceq_F-increasing continuous, $M_i \in K_{\leq \lambda}$, $p \in S(M_\delta)$ then for some $i < \delta$, p does not fork over M_i.

2. If $N \in K_{< \lambda}$ and $p, q \in S(N)$ does not fork over M, $M \preceq_F N \in K_{< \lambda}$ then $p = q \iff p \upharpoonright M = q \upharpoonright M$. Moreover if $M \preceq_F N \preceq_F N^+$, $a \in N^+$ then

$$N^+ \bigcup_M a \iff N^+ \bigcup_M a.$$

3. If $M \preceq_F N \in K_{< \lambda}$ and $p \in S(M)$ then there is $q \in S(N)$ extending p not forking over M.

4. If $M_0 \preceq_F M_1 \preceq_F M_2$, $p \in S(M_2)$, $p \upharpoonright M_{\ell+1}$ does not fork over M_{ℓ} for $\ell = 0, 1$ then p does not fork over M_0.

5. If $\mu, \delta < \lambda$, $M_i \in K_{< \mu}$ for $i < \delta$ is \preceq_F-increasing continuous, $p_i \in S(M_i)$, $[j < i \implies p_j \subseteq p_i]$ then there is $p \in S(M_\delta)$ such that $i < \delta \implies p_i \subseteq p_\delta$.

Proof

1) Otherwise we can find N, $M_\delta \preceq_F N \preceq_F \text{Op}(M_\delta)$, $N \in K_\lambda$, N omit $p \bigcup_{i<\delta} \text{Op}(M_i)$; so we get a non-$\lambda$-saturated model of cardinality $\geq \lambda$, contradiction.

2) The first sentence follows from the second. If the second fails then we can contradict stability in $\|N\|$, by a proof just like 1.6, 1.7.

3) we can find an operation Op, $\|\text{Op}(M)\| \geq \lambda$, so in Op($M$) some \bar{a} realizes p so $q = \text{tp}(\bar{a}, N, \text{Op}(N))$ is as required.

4) For some operation Op, some $\bar{a} \in \omega>(\text{Op}(M_0))$ realizes $p \upharpoonright M_0$, so $p_\ell = \text{tp}(\bar{a}, M_\ell, \text{Op}(M_\ell))$ does not fork over M_0, and $p_{\ell+1}$ does not fork over M_ℓ, so by part 2) show $p_1 = p \upharpoonright M_1$ and then $p_2 = p$, but p_2 does not fork over M_0.

5) **Case 1:** $\text{cf}(\delta) > 8_0$.

For every limit $\alpha < \delta$ for some $i < \delta$ we have p_δ does not fork over M_α. By Fodour lemma, for some $i < \delta$, $j \in [i, \delta) \implies p_j$ does not fork over M_i. So the stationarization of p_i in $S(M_\delta)$ (exists by [122]) is as required.

Case 2: $\text{cf}(\delta) = 8_0$.

So w.l.o.g. $\delta = \omega$. Here chasing arrows (using amalgamation) suffice.

Lemma 3.12 In $K_{< \lambda}$ we can define $\text{rk}(\text{tp}(a, M, N))$ with the right properties. I.e.

(A) if $M \preceq_F N \in K_{< \lambda}$, $\bar{a} \subseteq N$, $M \in \bigcup_{\mu^+ < \lambda} K_\mu$, $p = \text{tp}(\bar{a}, M, N)$ then

$$\text{rk}(p) \geq \alpha \iff \text{for every } \beta < \alpha \text{ there are } p', M' \text{ such that } M \preceq_F M' \in \bigcup_{\mu^+ < \lambda} K_\mu$$

$$p' \in S(M'), p' \upharpoonright M = p \text{ and } \text{rk}(p') \geq \beta.$$

May 16, 2018
(B) for every M, N, a, p as above $\text{rk}(p)$ is an ordinal.

(C) If $M_1 \prec F M_2 \in \bigcup \mathcal{K}_\mu$ and $p_2 \in S(M_2)$, then $\text{rk}(p_2 \upharpoonright M_1) \geq \text{rk}(p_2)$ and equality holds if p_2 does not fork over M_1 and then $p_2 \upharpoonright M_1$ (and M_2) determine p_2.

(D) If $(M_i : i \leq \delta)$ is \preceq_F-increasing continuous, $M_i \in \bigcup \mathcal{K}_\mu \mu^+ < \lambda$ and $p_\delta \in S(M_\delta)$ then for some $i < \delta$ we have:

\[j \in [i, \delta] \Rightarrow \text{rk}(p_\delta) = \text{rk}(p_\delta \upharpoonright M_j). \]

Lemma 3.13 Assume $\mu \geq \text{LS}(T), \mu^+ < \lambda$. If $M \in \mathcal{K}_\mu$ is saturated (for $\mu = \text{LS}(T)$ means (μ, μ)-saturated), and $p \in S(M)$ then there are N, a such that $N \in \mathcal{K}_\mu$ is saturated, $a \in N$, $\text{tp}(a, M, N) = p$ and N is μ-isolated over $M \cup \{a\}$ (i.e. if $N \preceq_F N^+ \in \mathcal{K}_< \lambda$, and $N^* \preceq_F N^+$, and $\text{tp}(a, N^*, N^+)$ does not fork over N ($\preceq_F N^*$) then $N^* \bigcup_M N$).

Proof As in [Sh:h], Ch. V (or Makkai Shelah [MaSh 285], 4.22) because we have 3.5(1) (by 3.6).

Claim 3.14 For M, N, a as in 3.13 if $N \preceq_F N^+ \in \mathcal{K}_< \lambda$, $A \subseteq N^+$, $|A| \leq \mu$ and $a \bigcup_M A$ then $N \bigcup_M A$.

Proof We use the symmetry of \bigcup (hold by 1.7 as $\mu^+ < \lambda$).

Claim 3.15 If $\mu \in [\text{LS}(T), \lambda)$, $M \in \mathcal{K}_\mu$ is saturated and $p \in S(M)$ then for some saturated $N \in \mathcal{K}_\mu, M \preceq_F N$, $a \in N$ and (M, N, a) satisfies the conclusion of 3.14 for finite A.

Proof A problem arise only if $\mu^+ = \lambda$. We can find $(M_i : i \leq \mu)$ which is \preceq_F-increasing continuous, $\|M_i\| = |i| + \text{LS}(T)$, $M_\mu' = M$, M_i' is saturated, M_{i+1} universal over M_i' and p does not fork over M_0.

Now choose by induction on $i \leq \mu$, (M_i, N_i, a) such that:

(a) $M_0 = M_0'$,
(b) $\|M_i\| = \|N_i\| = |i| + \text{LS}(T)$,
(c) for i non limit (M_i, N_i, a) as in 3.13 (with $|i| + \text{LS}(T)$ instead of μ),

(d) $\text{tp}(a, M_0, N_0) = p \upharpoonright M'_0$,

(e) $\langle M_i : i \leq \mu \rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous,

(f) $\langle N_i : i \leq \mu \rangle$ is $\preceq_{\mathcal{F}}$-increasing continuous,

(g) $\text{tp}(a, M_{i+1}, N_{i+1})$ does not fork over M_i (hence is the stationarization of $\text{tp}(a, M_0, N_0) = p \upharpoonright M'_0$),

(h) M_{i+1} is universal over M_i.

(i) $N_i \preceq_{\mathcal{F}} N_i$.

(j) N_{i+1} is isolated over (M_{i+1}, a)

There is no problem, so as M_{i+1} is saturated and in K_{μ}, $M_0 = M'_0$ has cardinality $< \mu$, w.l.o.g. $M_\mu = M$. For any candidates N^+, A, as in 3.14 (but A is finite) assume $N \biguplus_{M}^N A$; as A is finite, for some $i < \mu$, the type $\text{tp}(A, M, N^+)$ does not fork over M_i, and for some $j < \mu$ the type $\text{tp}(A, N, N^+)$ does not fork over N_j, w.l.o.g. $i = j$ is a successor ordinal and $\text{tp}(A \cup \{a\}, M)$ does not fork over M_i. So as $N \biguplus_{M}^N A$, necessarily $\text{tp}(A, N_i, N^+)$ forks over M_i, hence (by clause (c) above), $a \biguplus_{M_i}^N A$, hence $a \biguplus_{M_i}^N A$ (state the laws of \biguplus).

Alternatively repeat the proof of 3.13 using 3.11(2)'s second sentence.

\[3.17\]

Theorem 3.16 Assume λ is a successor cardinal i.e. $\lambda = \lambda_0^+$. Then T is categorical in every $\mu \in \beth\{2\text{LS}(T)^+, \lambda\}$ (really for some $\mu_0 < \beth\{2\text{LS}(T)^+, \mu \in [\mu_0, \lambda) \) suffices).

Proof As in [MaSh 285]. By 3.10, for some $\mu_1 < \beth\{2\text{LS}(T)^+, \text{ for every } M \in K_{[\mu_1, \lambda]} \} \text{LS}(T)^+$-saturated. Let $\mu \in [\mu_1, \lambda)$, and assume $M \in K_{\mu}$ is not saturated, so for some $\kappa \in (\text{LS}(T), \mu)$ the model M is κ-saturated but not κ^+-saturated. Let p, $\langle N^*_u : u \in \beth\{M\}^{<\kappa_0}\rangle$, U, N^+, $\langle N^*_u : u \in \beth\{N^+\}^{\kappa_0}\rangle$ be as in 3.9. Let $U_0 = U$. W.l.o.g. $N^*_{U_0}$ is saturated, p does not fork over
N_\lambda^*, \ M^* \in [U]^<\aleph_0 \text{ finite, } \text{rk}(p) \text{ minimal under the circumstances. Now let } \ b \in M \setminus N_\lambda^*, \text{ so there is } N_1 \preceq_F M \text{ which is } \mu\text{-isolated over } N_\lambda^* \cup \{b\}. \text{ By defining more } N_\lambda^* \text{ w.l.o.g. } N_1 = N_{\lambda_1}^* . \text{ So } \text{tp}(b, N_{\lambda_0}^*, M), \text{ and } p \text{ are orthogonal (see } [Sh]: \text{ Ch. V}). \text{ Now we deal with orthogonal types and we continue as } [MaSh 285]: \text{ define a } \prec_F \text{-chain } M_i^* (i < \lambda) \text{ of saturated models of cardinality } \lambda_0 \text{ all omitting some fixed } p \in S(M_0^*).

Discussion 3.17 1) Below \(\Delta_{(2^{LS(T)})^+} \)

A problem is what occurs in \([LS(T), \Delta_{(2^{LS(T)})^+}] \). As T is not necessarily complete, for any \(\psi \) and T we can consider \(T' \) defined as \(\{ \psi \rightarrow \varphi : \varphi \in T \} \), if \(\neg \psi \) has a model in \(\mu \) iff \(\mu < \mu^* \), we get such examples. So we may consider T complete. Hart Shelah [HaSh 323] bound our possible improvement but we may want larger gaps, a worthwhile direction. If \(T \subseteq L_{\kappa^+, \omega} \) is \(L_{\kappa^+, \omega} \)-complete hence \(L_{\kappa^+, \omega} \)-complete, \(LS(T) = \kappa \), we cannot improve.

If \(|T| < \kappa^* \) we may look at what occurs in large enough \(\mu < \kappa^* \).

2) Below \(\lambda \).

If \(\lambda \) is a limit cardinal we get only \([3.1] \), this is a more serious issue. The problem is that we can get \(\mu \)-saturated not saturated model in \(K_{\mu^+} \), so we get for \(M \in K_{\mu} \text{ saturated, two orthogonal types } p, q \in S(M) \) (not realized in M). We want to build a prime model over \(M \cup \text{(a large indiscernible set for } p) \). Clearly \(P^{-}(n) \)-diagrams are called for.

3) Above \(\lambda \).

In some sense we know every model is saturated: if \(M \in K_{\lambda^+}, N \preceq_F M, \|N\| < \lambda, p \in S(N) \) then \(\text{dim}(p, N, M) = \|M\| \), i.e. if \(N \preceq_F N^+ \preceq_F M \) and : \(\|N^+\| < \|M\| \) when \(\lambda \) is successor, or \(\Delta_{(2^{LS(T)})^+} (\|N^+\|) \) when \(\lambda \) is a limit cardinal.

Another way to say it: the stationarization of \(p \) over \(N^+ \) is realized. But is every \(q \in S(N^+) \) a stationarization of some \(p \in S(N^+) \), \(N' \preceq_F N^+ \), \(\|N'\| \leq LS(T) \)? We can find \(N_0 \preceq_F N^+, \|N_0\| \subseteq (T), \) such that: \([N_0 \preceq_F N_1 \leq N^+ \& \|N_1\| \leq LS(T) \Rightarrow q \upharpoonright N_1 \text{ does not fork over } N_0] \), we can get it for \(\|N_1\| < \mu, \) but does it hold for \(N_1 = N^+ \)? A central point is

(*) Does K satisfies amalgamation?

Again it seems that \(P^{-}(n) \)-systems are called for. Now Grossberg Shelah have started in the mid eighties to write a paper, which solves the problem but with two drawbacks. It says: if \(T \subseteq L_{\kappa^+, \omega} \) has arbitrarily large models, is categorical in \(\chi^+ \) (for \(n < \omega \)), \(\chi \geq LS(T) \), and \(2^{\chi^+} < 2^{\chi^+} \) for
$n < \omega$, then T is categorical in every $\lambda' > \chi$. So we need the set theoretic assumption

$$\left(\forall \alpha < (2^{LS(T)})^+ \right) \left(\exists \chi \right) \left[\exists_\alpha \leq \chi \& \chi^{+n} \leq \lambda \& \bigwedge_n 2^{\chi^{+n}} < 2^{\chi^{+n+1}} \right].$$

4) If $|T| < \kappa^*$ we can do better, as $\text{Op}(EM(I, \Phi)) = EM(\text{Op}(I), \Phi)$, will discuss elsewhere.

5) Elsewhere we shall adopt what is done here to abstract elementary class K categorical in $\lambda \geq \sum_{(2^{LS(K)})^+}$ such that $K_{<\lambda}$ has amalgamation.

References

[HaSh 323] Bradd Hart and Saharon Shelah. Categoricity over P for first order T or categoricity for $\phi \in L_{\omega_1^1}$ can stop at $\aleph_0, \cdots, \aleph_{k-1}$. *Israel Journal of Mathematics*, 70:219–235, 1990.

[KlSh 362] Oren Kolman and Saharon Shelah. Categoricity of Theories in $L_{\kappa, \omega}$, when κ is a measurable cardinal. Part 1. *Fundamenta Mathematicae*, 151:209–240, 1996.

[MaSh 285] Michael Makkai and Saharon Shelah. Categoricity of theories in $L_{\kappa, \omega}$, with κ a compact cardinal. *Annals of Pure and Applied Logic*, 47:41–97, 1990.

[Sh 600] Saharon Shelah. Categoricity in abstract elementary classes: going up inductive step. *in preparation*.

[Sh 394] Saharon Shelah. Categoricity of abstract classes with amalgamation. *Annals of Pure and Applied Logic*, *accepted*.

[Sh 576] Saharon Shelah. Categoricity of an abstract elementary class in two successive cardinals. *Israel Journal of Mathematics*, *submitted*.

[Sh:e] Saharon Shelah. *Non–structure theory*, accepted. Oxford University Press.

[Sh:h] Saharon Shelah. *Universal classes*, in preparation.

[Sh 48] Saharon Shelah. Categoricity in \aleph_1 of sentences in $L_{\omega_1, \omega}(Q)$. *Israel Journal of Mathematics*, 20:127–148, 1975.
[Sh:a] Saharon Shelah. *Classification theory and the number of non-isomorphic models*, volume 92 of *Studies in Logic and the Foundations of Mathematics*. North-Holland Publishing Co., Amsterdam-New York, xvi+544 pp, $62.25, 1978.

[Sh 87a] Saharon Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1,\omega}$. Part A. *Israel Journal of Mathematics*, 46:212–240, 1983.

[Sh 87b] Saharon Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1,\omega}$. Part B. *Israel Journal of Mathematics*, 46:241–273, 1983.

[Sh 88] Saharon Shelah. Classification of nonelementary classes. II. Abstract elementary classes. In *Classification theory (Chicago, IL, 1985)*, volume 1292 of *Lecture Notes in Mathematics*, pages 419–497. Springer, Berlin, 1987. Proceedings of the USA–Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.

[Sh 300] Saharon Shelah. Universal classes. In *Classification theory (Chicago, IL, 1985)*, volume 1292 of *Lecture Notes in Mathematics*, pages 264–418. Springer, Berlin, 1987. Proceedings of the USA–Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.

[Sh:c] Saharon Shelah. *Classification theory and the number of nonisomorphic models*, volume 92 of *Studies in Logic and the Foundations of Mathematics*. North-Holland Publishing Co., Amsterdam, xxxiv+705 pp, 1990.

[Sh 420] Saharon Shelah. Advances in Cardinal Arithmetic. In *Finite and Infinite Combinatorics in Sets and Logic*, pages 355–383. Kluwer Academic Publishers, 1993. N.W. Sauer et al (eds.).