Dynamical Bulk Scaling limit of Gaussian Unitary Ensembles
and Stochastic Differential Equation gaps

Yosuke Kawamoto ; Hirofumi Osada
Appeared in J,Theoretical Probability: https://doi.org/10.1007/s10959-018-0816-2

November 13, 2018

Abstract

The distributions of N-particle systems of Gaussian unitary ensembles converge to Sine$_2$ point processes under bulk-scaling limits. These scalings are parameterized by a macro-position θ in the support of the semicircle distribution. The limits are always Sine$_2$ point processes and independent of the macro-position θ up to the dilations of determinantal kernels. We prove a dynamical counterpart of this fact. We prove that the solution of the N-particle systems given by stochastic differential equations (SDEs) converges to the solution of the infinite-dimensional Dyson model. We prove the limit infinite-dimensional SDE (ISDE), referred to as Dyson’s model, is independent of the macro-position θ, whereas the N-particle SDEs depend on θ and are different from the ISDE in the limit whenever $\theta \neq 0$.

1 Introduction

Gaussian unitary ensembles (GUE) are Gaussian ensembles defined on the space of random matrices M_N ($N \in \mathbb{N}$) with independent random variables, the matrices of which are Hermitian. By definition, $M_N = [M_{i,j}]_{i,j=1}^N$ is then an $N \times N$ matrix having the form

$$M_{i,j}^N = \begin{cases} \xi_i & \text{if } i = j \\ \tau_{i,j}/\sqrt{2} + \sqrt{-1}\zeta_{i,j}/\sqrt{2} & \text{if } i < j, \end{cases}$$

where $\{\xi_i, \tau_{i,j}, \zeta_{i,j}\}_{i<j}^\infty$ are i.i.d. Gaussian random variables with mean zero and unit variance. Then the eigenvalues $\lambda_1, \ldots, \lambda_N$ of M_N are real and have distribution μ_N^λ such that

$$\mu_N^\lambda(dx_N) = \frac{1}{Z_N^\pi} \prod_{i<j}^N |x_i - x_j|^2 \prod_{k=1}^N e^{-|x_k|^2} dN_k,$$ (1.1)

where $x_N = (x_1, \ldots, x_N) \in \mathbb{R}^N$ and Z_N^π is a normalizing constant [1]. Wigner’s celebrated semicircle law asserts that their empirical distributions converge in distribution to a semicircle distribution:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i/\sqrt{N}} + \cdots + \delta_{\lambda_N/\sqrt{N}} = \frac{1}{\pi} 1_{(-\sqrt{2}, \sqrt{2})}(x) \sqrt{2 - x^2} dx.$$

One may regard this convergence as a law of large numbers because the limit distribution is a non-random probability measure.

1keywords the Gaussian Unitary Ensemble; Dyson’s model; bulk scaling limit

1
We consider the scaling of the next order in such a way that the distribution is supported on
the set of configurations. That is, let \(\theta \) be the position of the macro scale given by
\[
-\sqrt{2} < \theta < \sqrt{2}
\]
(1.2)
and take the scaling \(x \mapsto y \) such that
\[
x = \frac{y}{\sqrt{N}} + \theta \sqrt{N}.
\]
(1.3)
Let \(\mu^N_\theta \) be the process for which the labeled density \(m^N_\theta dx_N \) is given by
\[
m^N_\theta(x_N) = \frac{1}{Z^N} \prod_{i<j}^N |x_i - x_j|^2 \prod_{k=1}^N e^{-|x_k + \theta N|^2/N}.
\]
(1.4)
The position \(\theta \) in (1.2) is called the bulk and the scaling in (1.3) the bulk scaling (of the point
processes). It is well known that the rescaled point processes \(\mu^N_\theta \) satisfy
\[
\lim_{N \to \infty} \mu^N_\theta = \mu_\theta \text{ in distribution,}
\]
(1.5)
where \(\mu_\theta \) is the determinantal point process with sine kernel \(K_\theta \):
\[
K_\theta(x, y) = \frac{\sin(\sqrt{2} - \theta^2 (x - y))}{\pi (x - y)}.
\]
By definition \(\mu_\theta \) is the point process on \(\mathbb{R} \) for which the \(m \)-point correlation function \(\rho^m_\theta \) with
respect to the Lebesgue measure is given by
\[
\rho^m_\theta(x_1, \ldots, x_m) = \det[K_\theta(x_i, x_j)]_{i,j=1}^m.
\]
We hence see that the limit is universal in the sense that it is the Sine\(_2\) point process and
independent of the macro-position \(\theta \) up to the dilation of determinantal kernels \(K_\theta \). This may be
regarded as a first step of the universality of the Sine\(_2\) point process, which has been extensively
studied (see [2] and references therein).
Once a static universality is established, then it is natural to enquire of its dynamical counter
part. Indeed, we shall prove the dynamical version of (1.5) and present a phenomenon called
stochastic-differential-equation (SDE) gaps for \(\theta \neq 0 \).
Two natural \(N \)-particle dynamics are known for GUE. One is Dyson’s Brownian motion corre-
sponding to time-inhomogeneous \(N \)-particle dynamics given by the time evolution of eigenvalues
of time-dependent Hermitian random matrices \(M^N(t) \) for which the coefficients are Brownian
motions \(B_{i,j} \) \[9\].
The other is a diffusion process \(X^\theta,N = (X^\theta,N,i)_{i=1}^N \) given by the SDE such that for \(1 \leq i \leq N \)
\[
dX^\theta,N,i = dB_i^t + \sum_{j \neq i}^N \frac{1}{X^\theta,N,i - X^\theta,N,j} dt - \frac{1}{N} X^\theta,N,i dt - \theta dt,
\]
(1.6)
which has a unique strong solution for \(X^\theta,N_0 \in \mathbb{R}^N \setminus \mathcal{N} \) and \(X^\theta,N \) never hits \(\mathcal{N} \), where \(\mathcal{N} = \{ x = (x_k)_{k=1}^N ; x_i = x_j \text{ for some } i \neq j \} \) \[4\].
The derivation of (1.6) is as follows: Let \(\tilde{\mu}^N_\theta(dx_N) = m^N_\theta(x_N)dx_N \) be the labeled symmetric
distribution of \(\mu^N_\theta \). Consider a Dirichlet form on \(L^2(\mathbb{R}^N, \tilde{\mu}^N_\theta) \) such that
\[
\mathcal{E}^{\tilde{\mu}^N_\theta}(f, g) = \int_{\mathbb{R}^N} \frac{1}{2} \sum_{i=1}^N \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i} \mu^N_\theta(dx_N).
\]
Then using (1.3) and integration by parts, we specify the generator $-A^N$ of \mathcal{E}^θ_N on $L^2(\mathbb{R}^N, \tilde{\mu}_\theta^N)$ such that

$$
A^N = \frac{1}{2} \Delta + \sum_{i=1}^N \left(\sum_{j \neq i} \frac{1}{x_i - x_j} \right) \frac{\partial}{\partial x_i} - \sum_{i=1}^N \left(\frac{x_i}{N} + \theta \right) \frac{\partial}{\partial x_i}.
$$

From this we deduce that the associated diffusion $X^{\theta,N}$ is given by (1.6).

Taking the limit $N \to \infty$ in (1.6), we intuitively obtain the infinite-dimensional SDE (ISDE) of $X^\theta = (X^\theta,i)_{i \in \mathbb{N}}$ such that

$$
dX^\theta,i = dB^i_t + \sum_{j \neq i} \frac{1}{X^\theta,i - X^\theta,j} dt - \theta dt,
$$

which was introduced in [21] with $\theta = 0$. For each θ, we have a unique, strong solution X^θ of (1.7) such that $X^\theta_0 = s$ for $\mu_\theta \circ l^{-1}$-a.s. s, where l is a labeling map. Although only the $\theta = 0$ ISDE of $X^0 =: X = (X^i)_{i \in \mathbb{N}}$ is studied in [16, 22], the general $\theta \neq 0$ ISDE is nevertheless follows easily using the transformation

$$
X^\theta,i = X^i - \theta t.
$$

Let $X^\theta_0 = \sum \delta_{X^\theta,i}$ be the associated delabeled process. Then $X^\theta = \{X^\theta\}$ takes μ_θ as an invariant probability measure, and is not μ_θ-symmetric for $\theta \neq 0$.

The precise meaning of the drift term in (1.7) is the substitution of $X^\theta = (X^\theta,i)_{i \in \mathbb{N}}$ for the function $b(x,y)$ given by the conditional sum

$$
b(x,y) = \lim_{r \to \infty} \left\{ \sum_{|x-y| < r} \frac{1}{x-y} \right\} - \theta \quad \text{in } L^1_{\text{loc}}(\mu_\theta^{[1]}),
$$

where $y = \sum \delta_{y_i}$ and $\mu_\theta^{[1]}$ is the one-Campbell measure of μ_θ (see [21]). We do this in such a way that $b(X^\theta,i, \sum_{j \neq i} \delta_{X^\theta,j})$. Because μ_θ is translation invariant, it can be easily checked that (1.8) is equivalent to (1.9):

$$
b(x,y) = \lim_{r \to \infty} \left\{ \sum_{|y| < r} \frac{1}{y-y_i} \right\} - \theta \quad \text{in } L^1_{\text{loc}}(\mu_\theta^{[1]}).
$$

Let l_N and l be labeling maps. We denote by $l_{N,m}$ and l_m the first m-components of l_N and l, respectively. We assume that, for each $m \in \mathbb{N}$,

$$
\lim_{N \to \infty} \mu_\theta^N \circ l_{N,m}^{-1} = \mu_\theta \circ l_m^{-1} \text{ weakly }.
$$

Let $X^{\theta,N} = (X^{\theta,N,i})_{i=1}^N$ and $X = (X^i)_{i \in \mathbb{N}}$ be solutions of SDEs (1.6) and (1.11), respectively, such that

$$
dX^{\theta,N,i} = dB^i_t + \sum_{j \neq i} \frac{1}{X^{\theta,N,i} - X^{\theta,N,j}} dt - \frac{1}{N} X^{\theta,N,i} dt - \theta dt,
$$

$$
dX^i = dB^i_t + \lim_{r \to \infty} \sum_{j \neq i, |X^i - X^j| < r} \frac{1}{X^i - X^j} dt.
$$

We now state the first main result of the present paper.
Theorem 1.1. Assume (1.2) and (1.10). Assume that $X^\theta_0 = \mu_\theta \circ \Gamma^{-1}$ in distribution and $X_0 = \mu_\theta \circ \Gamma^{-1}$ in distribution. Then, for each $m \in \mathbb{N}$,
\[
\lim_{N \to \infty} (X^{\theta,N,1}, X^{\theta,N,2}, \ldots, X^{\theta,N,m}) = (X^1, X^2, \ldots, X^m)
\]
(1.12)
weakly in $C([0, \infty), \mathbb{R}^m)$. In particular, the limit $X = (X^i)_{i \in \mathbb{N}}$ does not satisfy (1.7) for any θ other than $\theta = 0$.

We next consider non-reversible initial distributions. Let $X^N = (X^N,i)_{i=1}^\infty$ and $Y^\theta = (Y^\theta,i)_{i \in \mathbb{N}}$ be solutions of (1.13) and (1.14), respectively, such that
\[
dX^N_t = dB^t_i + \sum_{j \neq i} \frac{1}{X^N_t - X^N_j} dt - \frac{1}{N} X^N_t dt,
\]
(1.13)
\[
dY^\theta_t = dB^t_i + \lim_{r \to \infty} \sum_{j \neq i, |Y^\theta_t - Y^\theta,j| < r} \frac{1}{Y^\theta_t - Y^\theta,j} dt + \theta dt.
\]
(1.14)
Note that $X^N = X^0,N$ and that X^N is not reversible with respect to $\mu_\theta \circ \Gamma^{-1}$ for any $\theta \neq 0$. We remark that the delabeled process $Y^\theta = \{\sum_{i \in \mathbb{N}} \delta_{Y^{\theta,i}}\}$ of Y^θ has invariant probability measure μ_θ and is not symmetric with respect to μ_θ for $\theta \neq 0$. We state the second main theorem.

Theorem 1.2. Assume (1.2) and (1.10). Assume that $X^\theta_0 = \mu_\theta \circ \Gamma^{-1}$ in distribution and $Y^\theta_0 = \mu_\theta \circ \Gamma^{-1}$ in distribution. Then, for each $m \in \mathbb{N}$,
\[
\lim_{N \to \infty} (X^{\theta,1}, X^{\theta,2}, \ldots, X^{\theta,m}) = (Y^{\theta,1}, Y^{\theta,2}, \ldots, Y^{\theta,m})
\]
(1.15)
weakly in $C([0, \infty), \mathbb{R}^m)$.

- We refer to the second claim in Theorem 1.1 and (1.15) as the SDE gaps. The convergence in (1.15) of Theorem 1.2 resembles the “Propagation of Chaos” in the sense that the limit equation (1.14) depends on the initial distribution, although it is a linear equation. Because the logarithmic potential is by its nature long-ranged, the effect of initial distributions μ_θ still remains in the limit ISDE, and the rigidity of the Sine$_2$ point process makes the residual effect a non-random drift term θdt.

- Let S_θ be a Borel set such that $\mu_\theta(S_\theta) = 1$, where $-\sqrt{2} < \theta < \sqrt{2}$. In [7], the first author proves that one can choose S_θ such that $S_\theta \cap S_{\theta'} = \emptyset$ if $\theta \neq \theta'$ and that for each $s \in S_\theta$ (1.11) has a strong solution X such that $X = l(s)$ and that
\[
X_t := \sum_{i=1}^\infty \delta_{X^i_t} \in S_\theta \quad \text{for all } t \in [0, \infty).
\]
This implies that the state space of solutions of (1.11) can be decomposed into uncountable disjoint components. We conjecture that the component S_θ is ergodic for each $\theta \in (-\sqrt{2}, \sqrt{2})$.

- For $\theta = 0$, the convergence (1.12) is also proved in [15]. The proof in [15] is algebraic and valid only for dimension $d = 1$ and inverse temperature $\beta = 2$ with the logarithmic potential. It relies on an explicit calculation of the space-time correlation functions, the strong Markov property of the stochastic dynamics given by the algebraic construction, the identity of the associated Dirichlet forms constructed by two completely different methods, and the uniqueness of solutions of ISDE (1.7).

Although one may prove (1.10) for $\theta \neq 0$ using the algebraic method in [15], this requires a lot of work as mentioned above. We remark that, as a corollary and an application, Theorem 1.1 proves the weak convergence of finite-dimensional distributions explicitly given by the space-time correlation functions. We refer to [5, 15] for the representation of these correlation functions.
• Tsai proves the pathwise uniqueness and the existence of strong solutions of
\[dX^i_t = dB^i_t + \frac{\beta}{2} \lim_{r \to \infty} \sum_{j \neq i, |X^i_t - X^j_t| < r} \frac{1}{X^i_t - X^j_t} \, dt \quad (i \in \mathbb{N}) \] (1.16)
for general \(\beta \in [1, \infty) \) in [22]. The proof uses the classical stochastic analysis and crucially depends on a specific monotonicity of SDEs (1.16). For \(\beta = 1, 4 \), we have a good control of the correlation functions as for \(\beta = 2 \). Hence our method can be applied to \(\beta = 1, 4 \) and the same result as for \(\beta = 2 \) in Theorem 1.1 holds. We shall return to this point in future.

The key point of the proof of Theorem 1.1 is to prove the convergence of the drift coefficient \(b^N(x, y) \) of the \(N \)-particle system to the drift coefficient \(b(x, y) \) of the limit ISDE even if \(\theta \neq 0 \). That is, as \(N \to \infty \),

\[b^N(x, y) = \left\{ \sum_{i=1}^{N} \frac{1}{x - y_i} \right\} - \theta \implies b(x, y) = \lim_{r \to \infty} \left\{ \sum_{|y_i| < r} \frac{1}{x - y_i} \right\}. \]

Note that support of the coefficients \(b^N(x, y) \) and \(b(x, y) \) are mutually disjoint, and that the sum in \(b^N \) is not neutral for any \(\theta \neq 0 \). We shall prove uniform bounds of the tail of the coefficients using fine estimates of the correlation functions, and cancel out the deviation of the sum in \(b^N \) with \(\theta \). Because of rigidity of the Sine\(_2\) point process, we justify this cancellation not only for static but also dynamical instances.

The organization of the paper is as follows: In Section 2, we prepare general theories for interacting Brownian motion in infinite dimensions. In Section 3, we quote estimates for the oscillator wave functions and determinantal kernels. In Section 4, we prove key estimates (2.21)–(2.24). In Section 5, we complete the proof of Theorem 1.1. In Section 6, we prove Theorem 1.2.

2 Preliminaries from general theory

In this section we present the general theory described in [11, 12, 16, 8] in a reduced form sufficient for the current purpose. In particular, we take the space where particles move in \(\mathbb{R} \) rather than \(\mathbb{R}^d \) as in the cited articles.

2.1 \(\mu \)-reversible diffusions

Let \(S_r = \{ s \in \mathbb{R} : |s| < r \} \). The configuration space \(S \) over \(\mathbb{R} \) is a Polish space equipped with the vague topology such that

\[S = \{ s = \sum_i s_i ; s(S_r) < \infty \text{ for all } r \in \mathbb{N} \}. \]

Each element \(s \in S \) is called a configuration regarded as countable delabeled particles. A probability measure \(\mu \) on \((S, B(S)) \) is called a point process (a random point field).

A locally integrable symmetric function \(\rho^n : \mathbb{R}^n \to [0, \infty) \) is called the \(n \)-point correlation function of \(\mu \) with respect to the Lebesgue measure if \(\rho^n \) satisfies

\[\int_{A_1 \times \cdots \times A_n} \rho^n(s_1, \ldots, s_n) \, ds_n = \int \left(\prod_{i=1}^{m} \frac{s(A_i)!}{(s(A_i) - k_i)!} \right) \mu(ds) \]

for any sequence of disjoint bounded measurable subsets \(A_1, \ldots, A_m \subset \mathbb{R} \) and a sequence of natural numbers \(k_1, \ldots, k_m \) satisfying \(k_1 + \cdots + k_m = n \). Here we assume that \(s(A_i)!/(s(A_i) - k_i)! = 0 \) for \(s(A_i) - k_i < 0 \).
Let $\Phi : \mathbb{R} \to \mathbb{R}$ and $\Psi : \mathbb{R}^2 \to \mathbb{R} \cup \{\infty\}$ be measurable functions called free and interaction potentials, respectively. Let \mathcal{H}_r be the Hamiltonian on \mathcal{S}_r given by

$$\mathcal{H}_r(x) = \sum_{x_i \in \mathcal{S}_r} \Phi(x_i) + \sum_{j \neq k, x_j, x_k \in \mathcal{S}_r} \Psi(x_j, x_k) \quad \text{for} \quad x = \sum_i \delta_{x_i}.$$

For each $m, r \in \mathbb{N}$ and μ-$a.s.$ $\xi \in \mathcal{S}$, let $\mu_r^{m, \xi}$ denote the regular conditional probability such that

$$\mu_r^{m, \xi} = \mu(\pi_{\mathcal{S}_r^m} \in \cdot | \pi_{\mathcal{S}_r^m}(\xi) = \pi_{\mathcal{S}_r}(\xi), x(\mathcal{S}_r) = m).$$

Here for a subset A, we set $\pi_A : \mathcal{S} \to \mathcal{S}$ by $\pi_A(s) = s(\cdot \cap A)$.

Let Λ_r denote the Poisson point process with intensity being a Lebesgue measure on \mathcal{S}_r. We set $\Lambda_r^m(\cdot) = \Lambda_r(\cdot \cap \mathcal{S}_r^m)$, where $\mathcal{S}_r^m = \{s \in \mathcal{S} : s(\mathcal{S}_r) = m\}$.

Definition 2.1 ([12], [13]). A point process μ is said to be a (Φ, Ψ)-quasi Gibbs measure if its regular conditional probabilities $\mu_r^{m, \xi}$ satisfy, for any $r, m \in \mathbb{N}$ and μ-$a.s.$ ξ,

$$\mathbb{E}^{-1} \mathcal{H}_r(x) \Lambda_r^m(dx) \leq \mu_r^{m, \xi}(dx) \leq \mathbb{E}^{-1} \mathcal{H}_r(x) \Lambda_r^m(dx).$$

Here c_1 is a positive constant depending on r, m, ξ.

The significance of the quasi-Gibbs property is to guarantee the existence of μ-reversible diffusion process $\{P_t\}$ on \mathcal{S} given by the natural Dirichlet form associated with μ, in analogy with distorted Brownian motion in finite-dimensions.

To introduce the Dirichlet form, we provide some notations. We say a function f on \mathcal{S} is local if f is $\sigma[\pi_K]$-measurable for some compact set K in \mathbb{R}. For a local function f on \mathcal{S}, we say f is smooth if \overline{f} is the symmetric function such that $\overline{f}(x_1, \ldots) = f(x)$ for $x = \sum_i \delta_{x_i}$. Let \mathcal{D}_0 be the set of all bounded, locally smooth functions on \mathcal{S}.

Let \mathbb{D} be the standard square field on \mathcal{S} such that for $f, g \in \mathcal{D}_0$ and $s = \sum_i \delta_{s_i}$,

$$\mathbb{D}[f, g](s) = \frac{1}{2} \left(\sum_{i} \langle \nabla_i f, \nabla_i g \rangle(s) \right).$$

We write $s = (s_i)_i$. Because the function $\sum_{i} \langle \nabla_i f(s), \nabla_i g(s) \rangle(s)$ is symmetric in $s = (s_i)_i$, we regard it as a function of s. We set $L^2(\mu) = L^2(\mathcal{S}, \mu)$ and let

$$\mathcal{E}^\mu(f, g) = \int_{\mathcal{S}} \mathbb{D}[f, g](s) \mu(ds), \quad \mathcal{D}^\mu_0 = \{f \in \mathcal{D}_0 \cap L^2(\mu) : \mathcal{E}^\mu(f, f) < \infty\}.$$

We quote:

Lemma 2.1 ([12]). Assume that μ is a (Φ, Ψ)-quasi Gibbs measure with upper semicontinuous (Φ, Ψ). Assume that the correlation functions $\{\rho^n\}$ are locally bounded for all $n \in \mathbb{N}$. Then $(\mathcal{E}^\mu, \mathcal{D}^\mu_0)$ is closable on $L^2(\mu)$. Furthermore, there exists a μ-reversible diffusion process $\{P_t\}$ associate with the Dirichlet form $(\mathcal{E}^\mu, \mathcal{D}^\mu_0)$ on $L^2(\mu)$. Here $(\mathcal{E}^\mu, \mathcal{D}^\mu_0)$ is the closure of $(\mathcal{E}^\mu, \mathcal{D}^\mu_0)$ on $L^2(\mu)$.

2.2 Infinite-dimensional SDEs

Suppose that diffusion $\{P_t\}$ in Lemma 2.1 is collision-free and that each tagged particle does not explode. Then we can construct labeled dynamics $X = (X^i)_{i \in \mathbb{Z}}$ by introducing the initial labeling $I = (l_i)_{i \in \mathbb{Z}}$ such that

$$X_0 = I(X_0).$$
Indeed, once the label \(l \) is given at time zero, then each particle retains the tag for all time because of the collision-free and explosion-free property.

To specify the ISDEs satisfied by \(X \) above, we introduce the notion of the logarithmic derivative of \(\mu \), which was introduced in [11].

A point process \(\mu_x \) is called the reduced Palm measure of \(\mu \) conditioned at \(x \in \mathbb{R} \) if \(\mu_x \) is the regular conditional probability defined as

\[
\mu_x = \mu(\cdot - \delta_x|s(\{x\}) \geq 1).
\]

A Radon measure \(\mu^{[1]} \) on \(\mathbb{R} \times S \) is called the 1-Campbell measure of \(\mu \) if

\[
\mu^{[1]}(dxds) = \rho^1(x)\mu_x(ds)dx.
\]

We write \(f \in L^p_{\text{loc}}(\mu^{[1]}) \) if \(f \in L^p(S_x \times S, \mu^{[1]}) \) for all \(r \in \mathbb{N} \).

Definition 2.2. A \(\mathbb{R} \)-valued function \(d^\mu \in L^1_{\text{loc}}(\mu^{[1]}) \) is called the logarithmic derivative of \(\mu \) if, for all \(\varphi \in C_0^\infty(\mathbb{R}) \otimes D_r \),

\[
\int_{\mathbb{R} \times S} d^\mu(x,y)\varphi(x,y)\mu^{[1]}(dxdy) = -\int_{\mathbb{R} \times S} \nabla_x \varphi(x,y)\mu^{[1]}(dxdy).
\]

Under these assumptions, we obtain the following:

Lemma 2.2 ([11]). Assume that \(X = (X^i)_{i \in \mathbb{N}} \) is the collision-free and explosion-free. Then \(X \) is a solution of the following ISDE:

\[
dX^i_t = dB^i_t + \frac{1}{2} d^\mu(X^i_t, X^{iq}_t)dt \quad (i \in \mathbb{N})
\]

with initial condition \(X_0 = s \) for \(\mu \circ I^{-1} \)-a.s. \(s \), where \(X^{qi}_t = \sum_{j \neq i}^\infty \delta_{X^j_t} \).

2.3 Finite-particle approximations

Let \(\mu \) be a point process with correlaton functions \(\{\rho^n\}_{n \in \mathbb{N}} \). Let \(\{\mu^N\}_{N \in \mathbb{N}} \) be a sequence of point processes on \(\mathbb{R} \) such that \(\mu^N(\{s(\mathbb{R}) = N\}) = 1 \). We assume:

A1 Each \(\mu^N \) has correlation functions \(\{\rho^{N,n}\}_{n \in \mathbb{N}} \) satisfying, for each \(r \in \mathbb{N} \),

\[
\lim_{N \to \infty} \rho^{N,n}(x) = \rho^n(x) \quad \text{uniformly on } S^n_r \quad \text{for each } n \in \mathbb{N},
\]

(2.3)

\[
\sup_{N \in \mathbb{N}} \sup_{x \in S^n_r} \rho^{N,n}(x) \leq c^N_3 \rho^n(3^r),
\]

(2.4)

where \(0 < c_2(r) < \infty \) and \(0 < c_3(r) < 1 \) are constants independent of \(n \in \mathbb{N} \).

It is known that if \(\mu \) and \(\mu^N \) satisfy (2.3) and (2.4) imply the weak convergence of \(\{\mu^N\} \) to \(\mu \) [12, Lemma A.1]. As in Section 1, let \(l \) and \(l_N \) be labels of \(\mu \) and \(\mu^N \), respectively. We assume:

A2 For each \(m \in \mathbb{N} \),

\[
\lim_{N \to \infty} \mu^N \circ l^{-1}_N = \mu \circ l^{-1} \quad \text{weakly in } \mathbb{R}^m.
\]

We shall later take \(\mu^N \circ l^{-1}_N \) as an initial distribution of labeled finite particle system. Therefore, \(\textbf{A2} \) means the convergence of the initial distribution of the labeled dynamics.

For a labeled process \(X^N = (X^{N,i})_{i=1}^N \), where \(N \in \mathbb{N} \), we set

\[
X^{N,qi}_t = \sum_{j \neq i}^N \delta_{X^{N,j}_t}.
\]
Furthermore, we assume that
\[dX_i^{N,3} = dB_i^t + b^N(X_i^{N,i},X_i^{N,\omega_i})dt. \] (2.5)

We assume:
\[\text{(A3) SDE (2.4) with initial condition } X_0^N = s \text{ has a unique solution for } \mu^N \circ \Gamma^{-1} \text{-a.s. } s \text{ for each } N. \text{ This solution does not explode.} \]

Let \(u, u^N, w : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R}^2 \to \mathbb{R} \) be measurable functions. We set
\[g_r(x,y) = \sum_i \chi_r(x-y_i)g(x,y_i), \] (2.6)
\[w_r(x,y) = \sum_i (1 - \chi_r(x-y_i))g(x,y_i). \] (2.7)

where \(y = \sum_i \delta_{y_i} \) and \(\chi_r \in C_0^\infty(\mathbb{R}) \) is a cut-off function such that \(0 \leq \chi_r \leq 1 \), \(\chi_r(x) = 0 \) for \(|x| \geq r + 1 \), and \(\chi_r(x) = 1 \) for \(|x| \leq r \). We assume the following.

\[\text{(A4) Each } \mu^N \text{ has a logarithmic derivative } d^N \text{ such that} \]
\[d^N(x,y) = u^N(x) + g_r(x,y) + w_r(x,y). \] (2.8)

Furthermore, we assume that

1. \(u^N \) are in \(C^1(\mathbb{R}) \). Furthermore, \(u^N \) and \(\nabla u^N \) converge uniformly to \(u \) and \(\nabla u \), respectively, on each compact set in \(\mathbb{R} \).

2. \(g \in C^1(\mathbb{R}^2 \cap \{ x \neq y \}) \). There exists a \(\hat{p} > 1 \) such that, for each \(R \in \mathbb{N} \),
\[\lim_{p \to \infty} \limsup_{N \to \infty} \int_{x+y \leq 2-1 \rho} \chi_r(x-y) |g(x,y)|^{p \rho x} \mu^N \leq 0, \] (2.9)
where \(\rho x \mu^N \) is a one-correlation function of the reduced Palm measure \(\mu^N \).

3. There exists a continuous function \(w : \mathbb{R} \to \mathbb{R} \) such that for each \(R \in \mathbb{N} \)
\[\lim_{r \to \infty} \limsup_{N \to \infty} \int_{S_R \times S} |w_r(x,y) - w(x)|^{p \rho x} d\mu^N = 0. \] (2.10)

Let \(p \) be such that \(1 < p < \hat{p} \). Assume \(\text{(A1)} \) and \(\text{(A4)} \). Then \([11] \) Theorem 45] deduces that the logarithmic derivative \(d^p \) of \(\mu \) exists in \(L_0^p(\mu^{1}[1]) \) and is given by
\[d^p(x,y) = u(x) + g(x,y) + w(x). \] (2.11)
Here \(g(x,y) = \lim_{r \to \infty} g_r(x,y) \) and the convergence of \(\lim g_r \) takes place in \(L_0^p(\mu^{1}[1]) \). Taking \(L_0^p(\mu^{1}[1]) \) into account, we introduce the ISDE of \(X = (X^t)_{t \in \mathbb{N}} \):
\[dX_i^t = dB_i^t + \frac{1}{2} \{ u(X_i^t) + g(X_i^t, X_{i-1}^{\omega_i}) + w(X_i^t) \} dt. \] (2.12)

Under the assumptions of Lemma \([2.2] \) ISDE \([2.12] \) with \(X_0 = s \) has a solution for \(\mu \circ \Gamma^{-1} \)-a.s.\(s \). Moreover, the associated delabeled diffusion \(X = \{ X_t \} \) is \(\mu \)-reversible, where \(X_t = \sum_{i \in \mathbb{N}} \delta_{X_i^t} \) for \(X_t = (X_i^t)_{i \in \mathbb{N}} \). As for uniqueness, we recall the notion of \(\mu \)-absolute continuity solution introduced in \([16] \).
Let $X = (X^i)_{i \in \mathbb{N}}$ be a family of solution of (2.12) satisfying $X_0 = s$ for $\mu \circ t^{-1}$-a.s. s. Let μ_t be the distribution of the delabeled process $X_t = \sum_{i \in \mathbb{N}} \delta_{X^i_t}$ at time t with initial distribution μ. That is, μ_t is given by

$$\mu_t = \int_S P_t(X_t \in \cdot) d\mu$$

We say that X satisfies the μ-absolutely continuity condition if

$$\mu_t \lesssim \mu \quad \text{for all } t \geq 0,$$

(2.13)

where $\mu_t \lesssim \mu$ means that μ_t is absolutely continuous with respect to μ. If X is μ-reversible, then (2.13) is satisfied.

We say ISDE (2.12) has μ-uniqueness in law of solutions if X and X' are solutions with the same initial distributions satisfying the μ-absolute continuity condition, then they are equivalent in law. We assume:

(A5) ISDE (2.12) has μ-uniqueness in law of solutions.

It is proved in [16] that ISDE (2.12) has a μ-pathwise unique strong solution if μ is tail trivial, the logarithmic derivative $d\mu$ has a sort of off-diagonal smoothness, and the one-correlation function has sub-exponential growth at infinity. This results implies μ-uniqueness in law. We refer to Theorems 2.1 and 9.3 in [16] for details. The next result is a special case of [8, Theorem 2.1].

Lemma 2.3 ([8, Theorem 2.1]). Make the same assumptions in Lemma 2.1 and Lemma 2.2. Assume (A1)–(A4). Assume that $X_0^N = \mu_0^N \circ 1_N^{-1}$ in distribution. Then $\{X^N\}_{N \in \mathbb{N}}$ is tight in $C([0, \infty); \mathbb{R}^N)$ and each limit point X of $\{X^N\}_{N \in \mathbb{N}}$ is a solution of (2.12) with initial distribution $\mu \circ 1^{-1}$. If, in addition, we assume (A5), then for any $m \in \mathbb{N}$

$$\lim_{N \to \infty} (X_{N,1}^1, \ldots, X_{N,m}^m) = (X_1, \ldots, X_m),$$

weakly in $C([0, \infty), \mathbb{R}^m)$. Here $X^N = (X_{N,i})_{i = 1}^N$ and $X = (X^i)_{i \in \mathbb{N}}$ as before.

2.4 Reduction of Theorem 1.1 to (2.10)

In this subsection, we deduce Theorem 1.1 from Lemma 2.3 by assuming (2.10). We take μ_0^N and μ_0 as in Section 1. Then the logarithmic derivative $d\mu_0^N$ of μ_0^N is given by

$$d\mu_0^N (x,y) = \sum_{i=1}^{N} \frac{2}{x - y_i} - \frac{2x}{N} - 2\theta,$$

(2.14)

where $y = \sum_i \delta_{y_i}$. From (2.14), we take coefficients in (A4) as follows:

$$u^N(x) = -\frac{2x}{N} - 2\theta, \quad u(x) = -2\theta, \quad w(x) = 2\theta,$$

(2.15)

$$g(x,y) = \frac{2}{x - y},$$

(2.16)

Other functions are given by (2.6) and (2.7).

Lemma 2.4. Assume (2.10) holds with $\tilde{p} = 2$ for the coefficients as above. Then (1.12) holds.

Proof. To prove Lemma 2.4, we check the assumptions in Lemma 2.3 that is, the assumptions in Lemma 2.1 Lemma 2.2, and (A1)–(A5).

The assumptions in Lemma 2.1 are proved in [12]. The assumptions in Lemma 2.2 are checked in [11]. (A1) is well known. (A2) is assumed by (1.10). (A3) is obvious as the interaction is
smooth outside the origin, and the capacity of the colliding set \(\{x_i = x_j\text{ for some }i \neq j\}\) is zero (see [10][3]). Furthermore, the one-correlation functions are bounded, which guarantees explosion-free of tagged particles. We take functions in (A4) as (2.15) and (2.16). These satisfy (2.8), (2.11), and (1) of (A4). (2.10) is satisfied by assumption. It is known that \(\mu_0\) is tail trivial [14]. Then (A5) follows from tail triviality of \(\mu_g\) and [10] Theorem 3.1. All the assumptions in Lemma 2.3 are thus satisfied, and hence yields (1.12).

2.5 A sufficient condition for (2.10)

The most crucial step to apply Lemma 2.3 is to check (2.10). Indeed, it only remains to prove (2.10) for Theorem 1.1. We quote then a sufficient condition for (2.10) in terms of correlation functions from [11]. Lemma 2.6 below is a special case of [11, Lemma 53].

Let \(\mu_{0,x}^N\) be the reduced Palm measure of \(\mu_0^N\) conditioned at \(x\). We denote the supremum norm in \(x\) over \(S_R\) by \(\|\cdot\|_R\). Let \(E\) and \(\text{Var}\) denote the expectation and variance with respect to \(\cdot\), respectively.

Lemma 2.5. Assume \(|\theta| < \sqrt{2}\). Let \(w_r\) be as in (2.7) with \(g(x,y)\) given by (2.10). Let \(w(x) = 2\theta\) as in (2.10). Then \(2.10\) follows from (2.17)–(2.20).

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \frac{E^{\mu_0^N}[w_r(x,y)] - 2\theta}{\|w_r\|_R} \right\|_{\mu_0^N} = 0, \tag{2.17}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| E^{\mu_0^N}[w_r(x,y)] - E^{\mu_0^N}[w_r(x,y)] \right\|_{\mu_0^N} = 0, \tag{2.18}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \text{Var}^{\mu_0^N}[w_r(x,y)] \right\|_{\mu_0^N} = 0, \tag{2.19}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \text{Var}^{\mu_0^N}[w_r(x,y)] - \text{Var}^{\mu_0^N}[w_r(x,y)] \right\|_{\mu_0^N} = 0. \tag{2.20}
\]

Proof. Lemma 2.5 follows from [11, Lemma 52]. Indeed, (2.17), (2.18), (2.19), and (2.20) in the present paper correspond to (5.4), (5.2), (5.5), and (5.3) in [11], respectively. We note that in [11] we use \(\chi_r(x)\) instead of \(\chi_r(x)\). This slight modification yields no difficulty.

Multiplying \(w_r(x,y)\) by a half, we give a sufficient condition of (2.17)–(2.20) in terms of correlation functions. Let \(\rho_{N,0}^{N,m}\) and \(\rho_{0}^{N,m}\) be the \(m\)-point correlation functions of \(\mu_{0,x}^N\) and \(\mu_0^N\), respectively. Let

\[
S_{r,\infty}(x) = \{y \in \mathbb{R}; r < |x - y| < \infty\}.
\]

Lemma 2.6. Assume \(|\theta| < \sqrt{2}\). Then (2.17)–(2.20) follow from (2.21)–(2.24).

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{S_{r,\infty}(x)} \frac{\rho_0^{N,1}(y)}{x - y} dy - \theta \right\|_{\mu_0^N} = 0, \tag{2.21}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \mu_0^{N,1}(y) \frac{\rho_0^{N,1}(y)}{x - y} dy \right\|_{\mu_0^N} = 0, \tag{2.22}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{S_{r,\infty}(x)} \frac{\rho_0^{N,1}(y)}{(x - y)^2} dy + \int_{S_{r,\infty}(x)} \frac{\rho_0^{N,2}(y,z) - \rho_0^{N,1}(y)\rho_0^{N,1}(z)}{(x - y)(x - z)} dydz \right\|_{\mu_0^N} = 0, \tag{2.23}
\]

\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \mu_0^{N,1}(y) \frac{\rho_0^{N,1}(y)}{x - y} dy \right\|_{\mu_0^N} = 0, \tag{2.24}
\]

\[
\frac{\rho_0^{N,2}(y,z) - \rho_0^{N,1}(y)\rho_0^{N,1}(z)}{(x - y)(x - z)} dydz \right\|_{\mu_0^N} = 0. \tag{2.25}
\]

Proof. Lemma 2.6 follows immediately from a standard calculation of correlation functions and the definitions of \(w_r\) and \(\chi_r\).
3 Subsidiary estimates

Keeping Lemma 2.2 in mind, our task is to prove (2.21)–(2.24). To control the correlation functions in Lemma 2.6 we prepare in this section estimates of the oscillator wave functions and determinantal kernels. We shall use these estimates in Section 4.

3.1 Oscillator wave functions

Let \(H_n(x) = (-1)^n e^{x^2} (\frac{d}{dx})^n e^{-x^2} \) be Hermite polynomials. Let \(\psi_n(x) \) denote the oscillator wave functions defined by

\[
\psi_n(x) = \frac{1}{\sqrt{\sqrt{2\pi} n!}} e^{-\frac{x^2}{2}} H_n(x).
\]

Note that \(\{\psi_n\}_{n=0}^{\infty} \) is an orthonormal system; \(\int_\mathbb{R} \psi_n(x) \psi_m(x) dx = \delta_{nm} \).

The following estimates for these oscillator wave functions are essentially due to Plancherel-Rotach [18]. We quote here a version from Katori-Tanemura [6].

Lemma 3.1 ([6]). Let \(C_{nm}^1, C_{nm}^2, \) and \(D_{nm}^1 \) be the constants introduced in [6] (see (A.1) in [6]). Let \(l = -1, 0, 1 \) and \(N, L \in \mathbb{N} \). Then we have the following.

1. Let \(0 < \tau \leq \frac{\pi}{2} \). Assume that \(N \sin^3 \tau \geq CN^\varepsilon \) for some \(C > 0 \) and \(\varepsilon > 0 \). Then

\[
\psi_{N+l}(\sqrt{2N} \cos \tau) = \frac{1 + O(N^{-1})}{\sqrt{\pi} N} \left(\frac{2}{N} \right)^{\frac{3}{4}} \times \left[\sum_{m=0}^{L-1} \sum_{n=0}^{N} C_{nm}^1 (N + l, \tau) \sin \left(\frac{N}{2} (2\tau - \sin 2\tau) + D_{nm}^1 (\tau) - (1 + l)\tau \right) \right] + O\left(\frac{1}{N \sin \tau} \right).
\]

2. Let \(\tau > 0 \). Assume that \(N \sinh^3 \tau \geq CN^\varepsilon \) for some \(C > 0 \) and \(\varepsilon > 0 \). Then

\[
\psi_{N+l}(\sqrt{2N} \cosh \tau) = \frac{1 + O(N^{-1})}{\sqrt{2\pi} \sinh \tau} \left(\frac{1}{2N} \right)^{\frac{3}{4}} \times \exp \left[\left(\frac{N+1}{2} \right) (2\tau - \sinh 2\tau) + (1 + l)\tau \right] \times \sum_{m=0}^{L-1} \sum_{n=0}^{N} C_{nm}^2 (\tau, N + l) + O\left(\frac{\cosh^3 \tau}{N \sin \tau} \right).
\]

Proof. (1) and (2) follow from (5.5) and (5.10) in [6], respectively. □

We next quote estimates from [6, 17].

Lemma 3.2 ([6, 17]). (1) Let \(y = \sqrt{2N} \cos \tau \) with \(N \in \mathbb{N} \) and \(0 < \tau \leq \frac{\pi}{2} \). Assume that \(N \sin^3 \tau \geq CN^\varepsilon \) for some \(C > 0 \) and \(\varepsilon > 0 \). Then,

\[
\sum_{k=0}^{N-1} \psi_k(y)^2 = \frac{1}{\pi} \sqrt{2N - y^2} + O\left(\frac{\sqrt{N}}{2N - y^2} \right).
\]

(2) Let \(y = \sqrt{2N} \cosh \tau \) with \(N \in \mathbb{N} \) and \(\tau > 0 \). Assume that \(N \sinh^3 \tau \geq CN^\varepsilon \) for some \(C > 0 \) and \(\varepsilon > 0 \). Then

\[
\sum_{k=0}^{N-1} \psi_k(y)^2 = O\left(\frac{\sqrt{N}}{y^2 - 2N} \right) \quad (3.1)
\]

(3) There is a positive constant \(c_4 \) such that for all \(N \in \mathbb{N} \)

\[
\sup_{y \in \mathbb{R}} |\psi_N(y)| \leq c_4 N^{-\frac{3}{4}}. \quad (3.2)
\]
Proof. (1) follows from Lemma 5.2 (i) in [6]. (2) follows from Lemma 5.2 (ii) in [6]. From Lemma 6.9 in [17] there exists a constant c_4 such that
\[|N^{1/2} \psi_N(2\sqrt{N} + yN^{-1/2})| \leq \frac{c_4}{(1 + |y|)^{1/2}}, \quad y \in [-2N^{1/2}, \infty). \]
Hence we have
\[|\psi_N(y)| \leq \frac{c_4}{N^{1/2}(1 + \{N^{1/2}|y| - 2\sqrt{N}\})^{1/2}}, \quad y \in [0, \infty). \quad (3.3) \]
Claim (3.2) is immediate from (3.3) and the well-known property such that $\psi_N(y) = \psi_N(-y)$ if N is even and that $\psi_N(y) = -\psi_N(-y)$ if N is odd.

3.2 Determinantal kernels of N-particle systems

We recall the definition of determinantal point processes. Let $K : \mathbb{R}^2 \to \mathbb{C}$ be a measurable kernel. A probability measure μ on S is called a determinantal point process with kernel K if, for each n, its n-point correlation function is given by
\[\rho^n(x_1, \ldots, x_n) = \det[K(x_i, x_j)]_{i,j=1}^n. \quad (3.4) \]
If K is an Hermitian symmetric and of locally trace class such that $0 \leq \text{Spec}(K) \leq 1$, then there exists a unique determinantal point process with kernel K [19, 20].

The distribution of the delabeled eigenvalues of GUE associated with (1.1) is a determinantal point process with kernel K_N such that
\[K_N(x, y) = \frac{N}{2} \psi_N(x) \psi_N(y). \quad (3.5) \]
The Christoffel-Darboux formula and a simple calculation yield the following.
\[K_N(x, y) = \frac{N}{2} \psi_N(x) \psi_N(y). \quad (3.6) \]
From the scaling (1.3), μ_{θ}^N is a determinantal point process with kernel
\[K_{\theta}^N(x, y) = \frac{1}{\sqrt{N}} K_N\left(\frac{x + N\theta}{\sqrt{N}}, \frac{y + N\theta}{\sqrt{N}}\right). \quad (3.7) \]
Let $x_N = \sqrt{N}x$ and $y_N = \sqrt{N}y$. We set
\[L_N(x, y) = \frac{1}{\sqrt{N}} K_N(x_N, y_N) = \frac{1}{\sqrt{N}} K_N(\sqrt{N}x, \sqrt{N}y). \quad (3.8) \]
From (3.7) and (3.8) we then clearly see that
\[K_{\theta}^N(x, y) = L_N\left(\frac{x}{\sqrt{N}} + \theta, \frac{y}{\sqrt{N}} + \theta\right), \quad (3.9) \]
\[L_N(x, y) = K_{\theta}^N(N(x - \theta), N(y - \theta)). \quad (3.10) \]
From (3.6) we deduce
\[L_N(x, x) = (1/\sqrt{2}) \{\psi_{N-1}(x_N)\psi_N'(x_N) - \psi_N(x_N)\psi_{N-1}'(x_N)\}. \quad (3.11) \]
Using the Schwartz inequality to (3.5) we see from (3.6) and (3.8) that
\[L_N^2(y, z) \leq L_N(y, y)L_N(z, z). \] (3.11)
From here on, we assume
\[-\frac{2}{3} < \alpha < -\frac{1}{2}. \] (3.12)
We set
\[B_N = \left(-\sqrt{2} - N^\alpha, -\sqrt{2} + N^\alpha \right) \cup \left(\sqrt{2} - N^\alpha, \sqrt{2} + N^\alpha \right). \] (3.13)
The next lemma will be used in Section 4.

Lemma 3.3. We set \(U_N = \mathbb{R} \setminus B_N \). Then the following holds.
(1) There exists a constant \(c_5 \) such that for all \(N \in \mathbb{N} \)
\[\sup_{x,y \in \mathbb{R}} |L_N(x, y)| \leq c_5 N^{\frac{1}{3}}, \] (3.14)
\[\sup_{x,y \in U_N} |L_N(x, y)| \leq c_5. \] (3.15)
(2) Assume (3.12). Then there exists a constant \(c_6 \) such that
\[|L_N(x, y)| \leq \frac{c_6}{N|x-y|} \quad \text{for each } x, y \in U_N, N \in \mathbb{N}. \] (3.16)
Proof. It is well known that
\[\sqrt{2} \psi'_n(x) = \sqrt{n}\psi_{n-1}(x) - \sqrt{n+1}\psi_{n+1}(x). \]
From this and (3.10), we see that with a simple calculation
\[L_N^2(x, x) = \frac{1}{\sqrt{2}} \left(\psi_{N-1} \psi'_N - \psi_N \psi'_{N-1} \right)(x_N) \] (3.17)
\[= \frac{N^\frac{1}{2}}{2} \left(\psi_{N-1}^2 + \psi_N^2 - \sqrt{1-N^{-1}\psi_{N-2}^2} - \sqrt{1+N^{-1}\psi_{N-2}^2} \right)(x_N). \]
Combining this with (3.2) we obtain
\[L_N^2(x, x) \leq \frac{N^\frac{1}{2}}{2} \frac{5}{4} N^{-\frac{1}{2}} = \frac{5}{2} N^\frac{1}{2}. \]
From this and (3.11) we deduce (3.14). From Lemma 3.1 and (3.17), we see that
\[\sup_{N \in \mathbb{N}} \sup_{y \in U_N} L_N^2(y, y) < \infty. \]
We deduce (3.15) from this and (3.11). Taking a constant \(c_5 \) in (3.14) and (3.15) in common completes the proof of (1).

Claim (3.16) follows from Lemma 3.1, (3.6), and (3.8).

4 Proof of (2.21)-(2.24)
As we see in Section 2 the point of the proof of Theorem 1.1 is to check conditions (2.21)-(2.24) in Lemma 2.6. The purpose of this section is to prove these equations. We recall a property of the reduced Palm measures of determinantal point processes.
Lemma 4.1. Let μ be a determinantal point process with kernel K. Assume that $K(x, y) = K(y, x)$ and $0 \leq \text{Spec}(K) \leq 1$. Then the reduced Palm measure μ_x is a determinantal point process with kernel K_x given by

$$K_x(y, z) = K(y, z) - \frac{K(y, x)K(x, z)}{K(x, x)}$$

for x such that $K(x, x) > 0$.

Let K_N be the determinantal kernel of μ_y^N given by (3.7). Let $\mu_{\theta, x}$ be as in Lemma 2.6. Recall that $K_N(y, z) = K_N(z, y)$ by definition. Then from this, (3.7), and (4.1), $\mu_{\theta, x}^N$ is a determinantal point process with kernel

$$K_{\theta, x}^N(y, z) = K_N^N(y, z) - \frac{K_N^N(x, y)K_N^N(x, z)}{K_N^N(x, x)}.$$

From (3.4) and (4.2), we calculate correlation functions in (2.21)–(2.24) as follows.

Using these and (4.3) we rewrite (2.21)–(2.24) as follows.

Lemma 4.2. To simplify the notation, let

$$x_N^\theta = \frac{x}{N} + \theta, \quad T_{r, \infty}^N(x) = \{y \in \mathbb{R}; \frac{r}{N} \leq |x_N^\theta - y| < \infty\}.$$

Then (2.21)–(2.24) are equivalent to (4.8)–(4.11) below, respectively.

$$\lim_{r \to \infty} \lim_{N \to \infty} \left\| \int_{T_{r, \infty}^N(x)} \frac{L_N(y, y)}{x_N^\theta - y} dy - \theta \right\|_R = 0,$$

$$\lim_{r \to \infty} \lim_{N \to \infty} \left\| \int_{T_{r, \infty}^N(x)} \frac{1}{x_N^\theta - y} L_N^2(x_N^\theta, y) dy \right\|_R = 0.$$

Using (4.8) and (4.10) we rewrite (2.21)–(2.24) as follows.
Proof. Recall that $L^N(x, y) = K_y^N(N(x - \theta), N^2(y - \theta))$ by (3.3). Then Lemma 4.2 follows easily from (1.3), (4.6).

Let \mathcal{B}^N and U^N be as in Lemma 3.3. Decompose U^N into U_1^N and U_2^N such that

$$U_1^N = [-\sqrt{2} + N^\alpha, \sqrt{2} - N^\alpha], \quad U_2^N = \mathbb{R}\setminus(-\sqrt{2} - N^\alpha, \sqrt{2} + N^\alpha).$$

Then clearly $U^N = U_1^N \cup U_2^N$ and $\mathbb{R} = U_1^N \cup U_2^N \cup \mathcal{B}^N$. We begin by the integral outside U_1^N.

Lemma 4.3. Let $0 < q < 3/2$. Then

$$\limsup_{N \to \infty} \left\| \int_{\mathbb{R}\setminus U_1^N} \frac{L^N(x, y)^q}{|x^N - y|} dy \right\|_R = 0. \tag{4.12}$$

Proof. From (3.1), (4.7), and the definition of B, we obtain that

$$\limsup_{N \to \infty} \left\| \int_{\mathbb{R}\setminus \mathcal{B}^N} \frac{L^N(x, y)^q}{|x^N - y|} dy \right\|_R \leq \limsup_{N \to \infty} \left\| \int_{\mathbb{R}\setminus \mathcal{B}^N} \frac{L^N(x, y)^q}{|x^N - y|} dy \right\|_R \leq \limsup_{N \to \infty} \left\| \mathcal{B}^N \left\{ \frac{2 \log \frac{\sqrt{2} - N^\alpha}{N} + \theta - (\sqrt{2} - N^\alpha)}{\log \frac{\sqrt{2} + N^\alpha}{N} + \theta - (\sqrt{2} + N^\alpha)} \right\} \right\|_R = O(N^{\frac{3}{2} + \alpha}) = 0 \quad \text{as} \quad N \to \infty.$$

Here we used $q < 3/2$ and $\alpha < -1/2$ in the last line.

Note that $|y| \geq \sqrt{2} + N^\alpha$ for $y \in U_1^N$. Let $y = \sqrt{2} \cosh \tau$. Then we see that

$$N \sinh^2 \tau = N(\cosh^2 \tau - 1)^{\frac{3}{2}} = N2^{-\frac{3}{2}}(y^2 - 2)^{\frac{3}{2}} \geq N2^{-\frac{3}{2}}(2\sqrt{2}N^\alpha + N^{2\alpha})^{\frac{3}{2}}.$$

From this, $q > 0$, and $\alpha > -2/3$, we apply (3.1) to obtain $c_T > 0$ such that,

$$\limsup_{N \to \infty} \left\| \int_{U_1^N} \frac{L^N(x, y)^q}{|x^N - y|} dy \right\|_R \leq \limsup_{N \to \infty} \left\| \int_{U_1^N} \frac{1}{|x^N - y|^{N_2}(y^2 - 2)^q} dy \right\|_R = 0,$$

which combined with (4.13) yields (4.12).

Lemma 4.4. (4.5) holds.

Proof. Let $y = \sqrt{2} \cos \tau$. Then $N \sin^3 \tau \geq N2^{-\frac{3}{2}}(2\sqrt{2}N^\alpha - N^{2\alpha})$ for $y \in U_1^N$. Then applying Lemma 3.2 (1) we deduce that for each $r > 0$

$$\limsup_{N \to \infty} \left\| \int_{T^N(x)^N \cup U_1^N} \frac{L^N(x, y)^q}{|x^N - y|} dy - \theta \right\|_R = \limsup_{N \to \infty} \left\| \left\{ \int_{-\frac{\pi}{2} - \frac{N^\alpha}{2}}^{\frac{\pi}{2} - \frac{N^\alpha}{2}} + \int_{\frac{\pi}{2} + \frac{N^\alpha}{2}}^{\frac{\pi}{2} + \frac{N^\alpha}{2}} \right\} \frac{1}{|x^N - y|} \sqrt{2 - y^2} dy - \theta \right\|_R \leq P.V. \int_{-\frac{\pi}{2} - \frac{N^\alpha}{2}}^{\frac{\pi}{2} + \frac{N^\alpha}{2}} \frac{1}{y} \sqrt{2 - y^2} dy - \theta \right\| = 0. \tag{4.13}$$

Combining this with (4.12), we obtain (4.5).
It is well known that $K_N^y(x, x)$ are positive and continuous in x, and \{\(K_N^y(x, x)\)\}_{N \in \mathbb{N}} converges to $K_0(x, x) = \sqrt{2 - \theta^2} / \pi$ uniformly on each compact set. Then we see
\[
\sup_{N \in \mathbb{N}} \sup_{x \in S_N} \frac{1}{K_N^y(x, x)} < \infty.
\]
From this, (3.9), and (4.7), we see that the following constant c_8 is finite.
\[
\mathcal{S} := \sup_{N \in \mathbb{N}} \frac{1}{N} \left(\int_{T_{r,N}} \frac{L^N(x^N_0, y)^2}{|x^N_0 - y| \cdot L^N(x^N_0, x^N_0)} dy \right)^2 = 0.
\]

Lemma 4.5. (4.15) and (4.16) below hold. In particular, (4.9) holds.
\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T_{r,N}} \frac{L^N(x^N_0, y)^2}{|x^N_0 - y| \cdot L^N(x^N_0, x^N_0)} dy \right\|_R = 0.
\]
\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T_{r,N}} \frac{L^N(x^N_0, y)}{|x^N_0 - y| \cdot L^N(x^N_0, x^N_0)} dy \right\|_R = 0.
\]

Proof. From (3.11) and (4.12) we deduce that as $N \to \infty$
\[
\left\| \int_{R \setminus U_N} \frac{L^N(x^N_0, y)^2}{|x^N_0 - y| \cdot L^N(x^N_0, x^N_0)} dy \right\|_R \leq \left\| \int_{R \setminus U_N} \frac{L^N(y, y)}{|x^N_0 - y|^2} dy \right\|_R \to 0.
\]
From (3.16) and (4.14) for each $N \in \mathbb{N}$ and $r > 0$
\[
\left\| \int_{T_{r,N}(x) \cap U_N} \frac{L^N(x^N_0, y)^2 dy}{|x^N_0 - y|^2} \right\|_R \leq \left\| \int_{T_{r,N}(x) \cap U_N} \frac{c_8^2 dy}{N^2 |x^N_0 - y|^2} \right\|_R \leq \frac{\mathcal{S}}{r^2}.
\]
Hence (4.15) follows from (4.17) and (4.18). This completes the proof of (4.15).

We next prove (4.16). From (3.11), (4.12), and (4.14) we see for each $r > 0$
\[
\limsup_{N \to \infty} \left\| \int_{T_{r,N}(x) \cap U_N} \frac{L^N(x^N_0, y)}{|x^N_0 - y|^2} dy \right\|_R = 0.
\]
From (3.16) and (4.14) we see that for each $N \in \mathbb{N}$ and $r > 0$
\[
\left\| \int_{T_{r,N}(x) \cap U_N} \frac{L^N(x^N_0, y) dy}{|x^N_0 - y|^2} \right\|_R \leq \left\| \int_{T_{r,N}(x) \cap U_N} \frac{c_8 dy}{N^2 |x^N_0 - y|^2} \right\|_R \leq \frac{\mathcal{S}}{r}.
\]
Combining (4.19) and (4.20) we obtain (4.16).

Lemma 4.6. (4.21) and (4.22) below hold. In particular, (4.10) holds.
\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T_{r,N}(x)} \frac{L^N(y, y)}{N |x^N_0 - y|^2} dy \right\|_R = 0.
\]
\[
\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T_{r,N}(x)^2} \frac{L^N(y, z)^2}{|x^N_0 - y||x^N_0 - z|} dy dz \right\|_R = 0.
\]
Proof. Note that $L^N(y, y) \leq \frac{5}{4}$ on U^N by (5.15). Then by the definition of $T_{r, \infty}^N(x)$,

$$
\int_{T_{r, \infty}^N(x) \cap U^N} \frac{L^N(y, y)}{N|x_0^N - y|} \, dy \leq \frac{\frac{5}{4}2N}{r^2} = \frac{25}{4}.
$$

(4.23)

By (3.14) we see $L^N(y, y) \leq \frac{3}{4}N^\alpha$ on \mathbb{R}. Recall that $|B^N| = 4N^\alpha$ by construction. Furthermore, $c_{\alpha} := \limsup_{N \to \infty} \sup_{y \in B^N} \|x_0^N - y\|^{-2} \leq \infty$. Hence for each $r > 0$

$$
\limsup_{N \to \infty} \int_{T_{r, \infty}^N(x) \cap B^N} \frac{L^N(y, y)}{N|x_0^N - y|^2} \, dy \leq \limsup_{N \to \infty} \frac{\frac{5}{4}N^\alpha 4N^\alpha}{N} = 0.
$$

(4.24)

Here we used $\alpha < -1/2$. We thus obtain (4.21) from (4.23) and (4.24).

We proceed with the proof of (4.22). We first consider the integral away from the diagonal line.

By (3.16) and the Schwartz inequality, we see that

$$
\left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \geq \frac{1}{N}\}} \frac{L^N(y, z)^2}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
\leq \left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \geq \frac{1}{N}\}} \frac{1}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
\leq \left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \geq \frac{1}{N}\}} \frac{1}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
\leq \frac{2N}{r}.
$$

The last line follows from a straightforward calculation. Indeed, first integrating z over $\{|y - z| \geq \frac{1}{N}\}$, and then integrating y over $T_{r, \infty}^N(x)$, we obtain the inequality in the last line. We therefore see that

$$
\lim_{r \to \infty} \lim_{N \to \infty} \left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \geq \frac{1}{N}\}} \frac{L^N(y, z)^2}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R = 0.
$$

(4.25)

We next consider the integral near the diagonal. From (3.15), we see that

$$
\left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \leq \frac{1}{N}\}} \frac{L^N(y, z)^2}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
\leq \left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \leq \frac{1}{N}\}} \frac{1}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
\leq \left\| \int_{T_{r, \infty}^N(x) \cap \{|y - z| \leq \frac{1}{N}\}} \frac{1}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R
= \frac{2N}{r} \int_{T_{r, \infty}^N(x)} \frac{1}{|x_0^N - y|^2} \, dy = \frac{25}{4} \frac{2N}{r} = \frac{4N}{r}.
$$

(4.26)

From (4.25) and (4.26), we have

$$
\lim_{r \to \infty} \lim_{N \to \infty} \left\| \int_{(T_{r, \infty}^N(x) \cap U^N)^2 \cap \{|y - z| \leq \frac{1}{N}\}} \frac{L^N(y, z)^2}{N^2 |y - z|^2 |x_0^N - z|^2} \, dxdy \right\|_R = 0.
$$

(4.27)
We next consider the integral on $B^N \times B^N$. Let
\[c_{10} = \limsup_{N \to \infty} \sup_{x \in S_N, y \in B^N} |x^N_f - y|^{-1}. \]
Then, we deduce from (3.13) and the definition of B^N given by (3.12) that
\[\limsup_{N \to \infty} \left\| \int_{(T^N_{\infty})^2} L_N(y, z)^2 \frac{|x^N_f - y||x^N_f - z|}{N^\alpha} \, dydz \right\|_R \leq \lim_{N \to \infty} \left(2N^\frac{3}{2}(4N^\alpha)^2 = 0. \right) \]
Here we used $|B^N| = 4N^\alpha$ for the inequality and $\alpha < -1/2$ for the last equality.
We finally consider the case $U^N \times B^N$. Then a similar argument yields
\[\left\| \int_{(T^N_{\infty})^2 \cap U^N \times (T^N_{\infty})^2 \cap B^N) \frac{L_N(y, z)^2}{|x^N_f - y||x^N_f - z|} \, dydz \right\|_R \leq \lim_{N \to \infty} \left(2N^\frac{3}{2}(4N^\alpha)^2 = 0. \right) \]
Collecting (4.27), (4.28), and (4.29), we conclude (4.22).

Lemma 4.7. (4.30) holds.

Proof. We shall estimate the three terms in (4.30) beginning with the first. From (3.12) and (4.21) we have
\[\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T^N_{\infty} \times (x)} \frac{L_N(x^N_f, y)^2 \, dy}{N|x^N_f - y|^2L_N(x^N_f, x^N_f)} \right\|_R = 0. \]
Next, using the Schwartz inequality, we have for the second term
\[\left\| \int_{T^N_{\infty} \times (x)^2} \frac{L_N(y, z)L_N(x^N_f, y)L_N(x^N_f, z) \, dydz}{|x^N_f - y||x^N_f - z|L(x^N_f, x^N_f)} \right\|_R \leq \lim_{r \to \infty} \left\| \int_{T^N_{\infty} \times (x)^2} \frac{L_N(x^N_f, y)^2L_N(x^N_f, z)^2 \, dydz}{|x^N_f - y||x^N_f - z|L(x^N_f, x^N_f)} \right\|_R. \]
Applying (4.22) and (4.15) to the last line, we obtain
\[\lim_{r \to \infty} \limsup_{N \to \infty} \left\| \int_{T^N_{\infty} \times (x)^2} \frac{L_N(y, z)L_N(x^N_f, y)L_N(x^N_f, z) \, dydz}{|x^N_f - y||x^N_f - z|L(x^N_f, x^N_f)} \right\|_R = 0. \]
We finally estimate the third term. From (4.16), as \(N \to \infty \), we have
\[
\left\| \int_{T_{\infty}^N(x)}^{T_{\infty}^N(x)} \frac{L^N(x,y) L^N(x,z)}{|x-y|^2 |L^N(x,y) L^N(x,z)|^2} \right\|_R \leq \left\| \int_{T_{\infty}^N(x)}^{T_{\infty}^N(x)} \frac{L^N(x,y) dy}{|x-y|^2} \right\|_R \leq \left\| \int_{T_{\infty}^N(x)}^{T_{\infty}^N(x)} \frac{L^N(x,y) dy}{|x-y|^2} \right\|_R \to 0 \quad \text{by (4.16).}
\]
From (4.30), (4.31), and (4.32) we obtain (4.11). This completes the proof.

5 Proof of Theorem 1.1
From Lemma 4.4–Lemma 4.7 we deduce that all the assumptions (2.21)–(2.24) in Lemma 2.6 are satisfied. Hence (2.10) is proved by Lemma 2.6. Then Theorem 1.1 follows from Lemma 2.4, Lemma 2.5, and Lemma 2.6.

6 Proof of Theorem 1.2
In this section we prove Theorem 1.2 using Theorem 1.1. It is sufficient for the proof of Theorem 1.2 to prove (1.15) in \(C([0,T];\mathbb{R}^n) \) for each \(T \in \mathbb{N} \). Hence we fix \(T \in \mathbb{N} \). Let \(X^N = (X^N_i)_{i=1}^N \) be as in (1.13). Let \(Y^\theta,N,i = \{Y^\theta,N,i_t\} \) such that
\[
Y^\theta,N,i_t = X^N_i + \theta t. \tag{6.1}
\]
Then from (1.13) we see that \(Y^\theta,N = (Y^\theta,N,i)_{i=1}^N \) is a solution of
\[
dY^\theta,N,i_t = dB^i_t + \frac{1}{N} \sum_{j \neq i} Y^\theta,N,i_j - Y^\theta,N,j_i \ dt - \frac{1}{N} Y^\theta,N,i_t \ dt + \frac{\theta}{N} \ dt \tag{6.2}
\]
with the same initial condition as \(X^N \). Let \(P^{\theta,N} \) and \(Q^{\theta,N} \) be the distributions of \(X^N \) and \(Y^\theta,N \) on \(C([0,T];\mathbb{R}^N) \), respectively. Then applying the Girsanov theorem [3, pp.190-195] to (6.2), we see that
\[
\frac{dQ^{\theta,N}}{dP^{\theta,N}}(W) = \exp\left\{ -\frac{1}{2} \int_0^T \sum_{i=1}^N \left| \frac{\theta}{N} \right|^2 dt \right\} = \exp\left\{ -\frac{1}{2} \int_0^T \sum_{i=1}^N B^i_t dt - \frac{\theta^2 T}{2N} \right\}, \tag{6.3}
\]
where we write \(W = (W^i) \in C([0,T];\mathbb{R}^N) \) and \(\{B^i_t\}_{i=1}^N \) under \(P^{\theta,N} \) are independent copies of Brownian motions starting at the origin.

Lemma 6.1. For each \(\epsilon > 0 \),
\[
\lim_{N \to \infty} Q^{\theta,N}\left(\frac{dP^{\theta,N}}{dQ^{\theta,N}}(W) - 1 \right) \geq \epsilon = 0. \tag{6.4}
\]
Proof. It is sufficient for (6.4) to prove, for each \(\epsilon > 0 \),
\[
\lim_{N \to \infty} P^{\theta,N}\left(\frac{dQ^{\theta,N}}{dP^{\theta,N}}(W) - 1 \right) \geq \epsilon = 0.
\]
This follows from (6.3) immediately. □

Proof of Theorem 1.2. We write $W^m = (W^1, \ldots, W^m) \in C([0, T]; \mathbb{R}^m)$ for $W = (W^i)_{i=1}^N$, where $m \leq N \leq \infty$. Let Q^θ be the distribution of the solution Y^θ with initial distribution $\mu_0 \circ \Gamma^{-1}$. From Theorem 1.1 and (6.1) we deduce that for each $m \in \mathbb{N}$

$$\lim_{N \to \infty} Q^\theta,N(W^m \in \cdot) = Q^\theta(W^m \in \cdot)$$

weakly in $C([0, T]; \mathbb{R}^m)$. Then, from this, for each $F \in C_b(C([0, T]; \mathbb{R}^N))$,

$$\lim_{N \to \infty} \int_{C([0, T]; \mathbb{R}^N)} F(W^m) dQ^\theta,N = \int_{C([0, T]; \mathbb{R}^3)} F(W^m) dQ^\theta. \tag{6.5}$$

We obtain from (6.4) and (6.5) that

$$\lim_{N \to \infty} \int_{C([0, T]; \mathbb{R}^N)} F(W^m) dP^N,\theta = \lim_{N \to \infty} \int_{C([0, T]; \mathbb{R}^N)} F(W^m) dP^\theta,N dQ^\theta,N = \lim_{N \to \infty} \int_{C([0, T]; \mathbb{R}^N)} F(W^m) dQ^\theta,N = \int_{C([0, T]; \mathbb{R}^3)} F(W^m) dQ^\theta.$$

This implies (1.15). We have thus completed the proof of Theorem 1.2. □

7 Acknowledgement

H.O. thanks Professor H. Spohn for a useful comment at RIMS in Kyoto University in 2002. H.O. is supported in part by JSPS KAKENHI Grant Nos. 16K13764, 16H02149, 16H06338, and kiban-a 24244010. Y.K. is supported by Grant-in-Aid for JSPS JSPS Research Fellowships (Grant No.15J03091).

References

[1] Anderson, G.W., Guionnet, A., Zeitouni, O., An Introduction to Random Matrices, Cambridge university press, 2010.

[2] Bourgade, P., Erdős, L., and Yau, H.-T., Universality of general β-ensembles, Duke Math. J. **163**, (2014), 1127-1190.

[3] Ikeda, N., Watanabe, S., Stochastic differential equations and diffusion processes, 2nd ed, North-Holland (1989).

[4] Inukai, K., Collision or non-collision problem for interacting Brownian particles, Proc. Japan Acad. Ser. A **82**, (2006), 66-70.

[5] Katori, M., Tanemura, H., Non-equilibrium dynamics of Dyson’s model with an infinite number of particles, Comm. Math. Phys. **136**, 1177–1204 (2010)

[6] Katori, M., Tanemura, H., Markov property of determinantal processes with extended sine, Airy, and Bessel kernels, Markov processes and related fields **17**, 541-580 (2011).

[7] Kawamoto, Y., Density preservation of unlabeled diffusion in systems with infinitely many particles, in Stochastic analysis on large scale interacting systems, 337–350, RIMS Kôkyûroku Bessatsu, B59, Res. Inst. Math. Sci. (RIMS), Kyoto, 2016.
[8] Kawamoto, Y., Osada, H., Finite-particle approximations for interacting Brownian particles with logarithmic potentials, to appear in J. Math. Soc. Japan. [arXiv:1607.06922v1 [math.PR]
[9] Mehta, M. L., Random Matrices, 3rd edition, Amsterdam: Elsevier, 2004.
[10] Osada, H., Non-collision and collision properties of Dyson’s model in infinite dimensions and other stochastic dynamics whose equilibrium states are determinantal point fields, in Stochastic Analysis on Large Scale Interacting Systems, eds. T. Funaki and H. Osada, Advanced Studies in Pure Mathematics 39, 2004, 325-343.
[11] Osada, H., Infinite-dimensional stochastic differential equations related to random matrices, Probability Theory and Related Fields, 153, 471-509 (2012).
[12] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, Ann. of Probab. 41, 1-49 (2013).
[13] Osada, H., Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II : Airy random point field, Stochastic Processes and their Applications 123, 813-838 (2013).
[14] Osada, H., Osada, S., Discrete approximations of determinantal point processes on continuous spaces: tree representations and tail triviality, Journal of Statistical Physics, 170(2018), no.2, 421–435.
[15] Osada, H., Tanemura, H., Strong Markov property of determinantal processes with extended kernels, Stochastic Processes and their Applications 126, 186-208, no. 1, (2016), doi:10.1016/j.spa.2015.08.003.
[16] Osada, H., Tanemura, H., Infinite-dimensional stochastic differential equations and tail σ-fields, [arXiv:1412.8674v1 [math.PR].
[17] Osada, H., Tanemura, H., Infinite-dimensional stochastic differential equations related to Airy random point fields, [arXiv:1408.0632
[18] Plancherel, M., Rotach, W., Sur les valeurs asymptotiques des polynomes d’Hermite $H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2})$, Comment. Math. Helv. 1, 227-254 (1929).
[19] Shirai, T., Takahashi, Y., Random point fields associated with certain Fredholm determinants 1: fermion, Poisson and boson point process, J. Funct. Anal. 205, 414-463 (2003).
[20] Soshnikov, A., Determinantal random point fields, Russian Math. Surveys 55, 923-975 (2000).
[21] Spohn, H., Interacting Brownian particles: a study of Dyson’s model, In: Hydrodynamic Behavior and Interacting Particle Systems, G. Papanicolaou (ed), IMA Volumes in Mathematics and its Applications, 9, Berlin: Springer-Verlag, pp. 151-179 (1987).
[22] Tsai, Li-Cheng, Infinite dimensional stochastic differential equations for Dyson’s model, Probab. Theory Relat. Fields (published on line) DOI 10.1007/s00440-015-0672-2 (2015).

Yosuke Kawamoto
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
y-kawamoto@math.kyushu-u.ac.jp

Hirofumi Osada
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
osada@math.kyushu-u.ac.jp