Building Large-Scale Japanese Pronunciation-Annotated Corpora for Reading Heteronymous Logograms

Fumikazu Sato,1,3 Naoki Yoshinaga,2 Masaru Kitsuregawa1,4
1 The University of Tokyo 2 Institute of Industrial Science, the University of Tokyo 3 National Diet Library 4 National Institute of Informatics
{fumikazu.sato, yoshinaga, kitsure} @tk.iis.u-tokyo.ac.jp

Abstract

Although screen readers enable visually impaired people to read written text via speech, the ambiguities in pronunciations of heteronyms cause wrong reading, which has a serious impact on the text understanding. Especially in Japanese, there are many common heteronyms expressed by logograms (Chinese characters or kanji) that have totally different pronunciations (and meanings). In this study, to improve the accuracy of pronunciation prediction, we construct two large-scale Japanese corpora that annotate kanji characters with their pronunciations. Using existing language resources on i) book titles compiled by the National Diet Library and ii) the books in a Japanese digital library called Aozora Bunko and their Braille translations, we develop two large-scale pronunciation-annotated corpora for training pronunciation prediction models. We first extract sentence-level alignments between the Aozora Bunko text and its pronunciation converted from the Braille data. We then perform dictionary-based pattern matching based on morphological dictionaries to find word-level pronunciation alignments. We have ultimately obtained the Book Title corpus with 336M characters (16.4M book titles) and the Aozora Bunko corpus with 52M characters (1.6M sentences). We analyzed pronunciation distributions for 203 common heteronyms, and trained a BERT-based pronunciation prediction model for 93 heteronyms, which achieved an average accuracy of 0.939.

Keywords: pronunciation-annotated corpus, pronunciation prediction, pre-trained model

1. Introduction

The screen reader is a canonical tool not only for visually impaired people to understand written text, but also for children with reading difficulties to learn from textbooks. For example, in Japan, the government has enforced in 2019 a new law on act to further the improvement of reading environments for visually impaired persons and begun to develop multimedia DAISY (digital accessible information system) textbooks for children with reading difficulties. Although screen readers play a vital role in these kinds of activities, incorrect reading causes confusion in understanding the text, especially in languages with common heteronymous logograms (e.g., Japanese and Chinese). For example, in Japanese, if ‘表’ in a phrase ‘表に出る’ is pronounced as ‘hyour’ instead of ‘omote’, the meaning changes from ‘go outside’ to ‘listed in a table’; in Chinese, if ‘好’ in a phrase ‘这个人好说话’ is pronounced as ‘hào’ instead of ‘hǎo’, the meaning changes from ‘this person is easy-going’ to ‘this person likes talking.’

Since pronunciations of heteronyms depend on individual contexts, we want to use a machine-learning classifier to predict a pronunciation of a heteronym for a given context. However, since there is no large-scale pronunciation-annotated corpus in Japanese, it is difficult to train an accurate pronunciation classifier for various heteronyms. Although the recent pretrain-finetune framework advocated by BERT (Devlin et al., 2019) provides resource-efficient training of neural models on natural language processing tasks, the low-resource problem remains to be resolved. This is because pronunciation disambiguation is analogous to word sense disambiguation, which inherently requires substantial training data for individual heteronyms. We therefore need a massive language resource that annotates text with pronunciation at word-level.

Aiming to facilitate corpus-based studies on pronunciation prediction in Japanese, we built two large-scale corpora for training pronunciation classifiers. We leverage existing corpora with sentence-level and corpus-level annotations: i) book titles compiled by National Diet Library1 and ii) fiction and non-fiction books compiled by “Aozora Bunko” digital library2 and their Braille data translated by SAPIE,3 a Japanese national online library services for persons with print disabilities. We first convert Aozora Bunko text and its Braille translation to sentence-level parallel data as book titles via chapter-level alignment, and then perform word-level alignment by using a pronunciation dictionary compiled from various morphological analyzer dictionaries. We finally obtained the Book Title corpus with 336M characters (16.4M titles) and the Aozora Bunko corpus with 52M characters (2044 books, 120 authors).

In experiments, we analyzed distributions of pronunciations for 203 major heteronyms in the obtained corpora, and then evaluated the utility of our corpora on pronunciation prediction task. We finetuned a pre-trained Japanese BERT model on the target task for 93 heteronyms with 223 pronunciations, and confirmed the utility of our corpora.

https://www.ndl.go.jp/
https://www.aozora.gr.jp/
https://www.sapie.or.jp/

2. Related Work
This section first reviews existing language resources to predict pronunciation in Japanese, and then mentions the recent pretrain-finetune framework for resource-efficient training of neural models.

2.1. Pronunciation Prediction
In processing Japanese text, the pronunciation prediction is considered as a subtask of morphological analysis (Kudo et al., 2004; Neubig and Mori, 2010). The morphological analysis in Japanese consists of three subtasks, word segmentation, part-of-speech tagging, and lemmatization. Part-of-speech tagging and lemmatization is done by disambiguating lexical entries for the token, which include pronunciation information. The largest public corpus whose words are manually annotated with their pronunciations is the core data of the Balanced Corpus of Contemporary Written Japanese (BCCWJ) (Maekawa, 2008), consisting of only 60k sentences. Because there are few resources that manually annotate words with their pronunciations, researchers have explored methods of acquiring pronunciation-annotated text to train a pronunciation prediction model.

Existing studies on predicting pronunciations of words in contexts focus on predicting unknown words such as proper nouns. Sumita and Sugaya (2006) proposed a method of reading proper nouns with multiple pronunciations, using Web pages that include both proper nouns and their pronunciations. Kurata et al. (2007) and Sasada et al. (2008) exploit speech data to disambiguate new word pronunciation candidates. Hatori and Suzuki (2011b; 2011a) use natural annotations in Wikipedia articles to collect pairs of words and pronunciations. Takahashi et al. (2014) take advantage of kana-to-kanji conversion logs in input methods as noisy pronunciation-annotated data. Nishiyama et al. (2018) leverage contexts of synonyms for each pronunciation of the target heteronym as the pseudo training data.

Although the above studies partially address the lack of the training data in the pronunciation prediction task, these automatically-collected annotated data suffer from noises, and are used just as temporal resources to train a pronunciation classifier (not distributed for future evaluation).

2.2. Word Sense Disambiguation
Recently, researchers attempted to employ the pretrain-finetune framework initiated by BERT (Devlin et al., 2019) for word sense disambiguation, which is the same word-level classification task as pronunciation prediction, and obtained promising results (Huang et al., 2019; Hadikinoto et al., 2019; Yap et al., 2020; Loureiro et al., 2021). The pronunciation prediction task will also benefit from contextualized word embeddings computed by BERT to capture the similarity between pronunciations of heteronyms in similar contexts. Through preliminary experiments on a limited size of annotated data, we have confirmed the impact of contextualized word embeddings in the pronunciation prediction task in Japanese. This motivates us to develop a large-scale pronunciation-annotated corpora to obtain an accurate pronunciation classifier using BERT. In this study, we semi-automatically build annotated corpora that are enough large to train a neural-based classifier for the pronunciation prediction task. We exploit the obtained corpora to train a BERT-based classifier, and evaluate the utility of the corpus via the high prediction accuracy obtained by BERT.

3. Preliminaries
This section provides a brief overview of the Japanese writing system for those who speak a different first language other than Japanese, and then introduces several types of heteronyms in Japanese.

3.1. Japanese Writing System
Japanese sentences are basically composed of three types of characters; kanji, hiragana, and katakana; for example in a sentence ‘パリに立ち寄る (pari ni tachi yoru, I stop off at Paris); ‘ち (chi)’ and ‘寄 (yo)’ are kanji, ‘に (ni),’ ‘ち (chi),’ and ‘る (ru)’ are hiragana, and ‘バ (pa)’ and ‘リ (ri)’ are katakana.

Kanji characters are logograms mainly used for nouns and stems of verbs and adjectives. Japanese kanji were originally imported from China more than 1500 years ago, and Joyo Kanji, regular-use kanji characters officially announced by the Japanese Ministry of Education, now includes 2136 kanji characters. Each kanji character has two types of pronunciation, On-yomi, which derives from the Chinese pronunciations for that kanji (e.g., ‘米 (bakku)’), and Kun-yomi, which derives from Japanese words associated with that kanji (e.g., ‘麦 (mugi)’). We can explain pronunciations of kanji tokens (e.g., ‘東京 (toukyou)’) by concatenations of pronunciations of individual kanji characters in the token (‘東 (tou)’ and ‘京 (kyou)’), although there are some idiomatic pronunciations only used for specific kanji tokens (e.g., ‘東風 (kochi)’ and ‘麦酒 (biiru, beer)’); in particular, proper nouns for places and person names have many idiomatic pronunciations.

The hiragana and katakana are phonograms (like alphabet in European languages); Hiragana is mainly used for function words and inflectional endings of verbs and adjectives. Katakana is mainly used to transcribe foreign words and basically has a corresponding hiragana character (e.g., は ↔ ア). The number of hiragana and katakana characters is 169 if half-width variants of katakana (e.g., は for カメラ (kamera, camera)) are ignored. Hiragana and katakana have basically a one-to-one correspondence with their pronunciations; few exceptions includes ‘は (ha)’ which is pronounced as
Word-level alignment based on morphological analysis and dictionary + postprocessing (§4.4)

4. Construction of Pronunciation-Annotated Corpora

This section explains a method that semi-automatically builds large-scale corpora with word-level pronunciation annotations, by combining existing language resources (Figure 1). We exploit two sets of language resources in this paper: 1) book titles compiled in the National Diet Library, and 2) a collection of fiction and non-fiction books in Aozora Bunko and their Braille translation provided by SAPIE, a Japanese national online library services for persons with print disabilities. The former provides the titles of all the books published in Japan (e.g., ‘I Am a Cat’ written by Soseki Natsume) and their pron-
Aozora Bunko compiles more than thousands of books in Japan, and SAPIE provides their Braille translations. Using these sentence-level (title-level) and document-level annotated corpora, one may think of casting the pronunciation prediction task as a text generation task, and applying a neural encoder-decoder model such as Transformer (Vaswani et al., 2017) to generate pronunciation from text. However, document-level generation is still difficult due to the impact of the exposure bias (Ranzato et al., 2016). In addition, even with sentence-level text generation, the encoder-decoder models sometimes suffer from hallucinations.

To help visually impaired people read, we want to localize prediction errors within a single word, allowing the user to recover with some effort. We therefore convert these sentence- and document-level annotations into word-level annotations, using pattern matching based on word-level pronunciation dictionaries. The resulting corpora can be used to evaluate the world-level pronunciation prediction task.

The basic procedure to convert the document-level pronunciation annotation into word-level annotation is as follows; we

- compile a pronunciation dictionary from dictionaries of various morphological analyzers (§ 4.1),
- convert document-level annotated corpora into sentence-level annotated corpora (§ 4.2 and § 4.3), and
- convert sentence-level annotated corpora into word-level annotated corpora (§ 4.4).

4.1. Compiling a Pronunciation Dictionary

We first compile a large-scale pronunciation dictionary for words from various dictionaries of Japanese morphological analyzers. Specifically, we have compiled surface forms and pronunciations of morphemes included in the following dictionaries.

- MeCab-ipadic
- MeCab-ipadic-neologd
- UniDic for Contemporary Written Japanese
- UniDic for Spoken Japanese
- SudachiDict (full)

4.2. Preprocessing

We next conduct the following resource-specific preprocessing for individual language resources.

Aozora Bunko includes early modern literature written in Japanese. They also include some annotations such as ruby characters (pronunciations) for difficult kanji characters and string decorations. We thus performed the following preprocessing; we

- convert full-width alphanumeric characters (e.g., Ａ and ５) to half-width (e.g., A and 5),
- convert half-width katakana characters (e.g., ひらがな) to full-width (e.g., カメラ),
- remove the titles that consist of only English alphabet, traditional Chinese characters, and Hangul characters, and
- convert kanji characters in old character forms (e.g., 桜) into new character forms (e.g., 桜).

As a result of this preprocessing, we have collected 18,115,976 book titles from the total 19,633,431 book titles.

Ruby characters for some kanji characters are used as gold-standard alignments when word-level alignment is performed later.

Ruby characters for some kanji characters are used as gold-standard alignments when word-level alignment is performed later.

8We here assume morphemes defined in the morphological dictionary as words; although the definition of morphemes slightly depend on the individual dictionaries, it does not a serious impact on our task of word-level token and pronunciation alignment.
9https://taku910.github.io/mecab/
10https://github.com/neologd/mecab-ipadic-neologd/
11https://clrd.ninjal.ac.jp/unidic/en/
12https://github.com/WorksApplications/SudachiDict

13The old character forms are used until the Japanese government defined a list of kanji for general use in 1946.
14https://ja.wikipedia.org/wiki/JIS_X_0213
Finally, the Braille translations of the Aozora Bunko books are represented in various electric Braille formats such as BES, BSE, and BET, and a single data file sometimes contains multiple books. We thus performed the following preprocessing: we

- convert binary Braille data in BES, BSE, and BET formats into the corresponding hiragana characters (namely, pronunciations),
- split the data into single books by extracting the book titles and page numbers from the table of contents,
- remove cover page, table of contents, explanatory notes, gloss, colophon,
- convert historical kana orthography to modern kana usage (e.g., くずす → かずす), and
- split data into chapters based on chapter headings defined by the indent of text.

After the above preprocessing, we can find the corresponding books and chapters for the Aozora Bunko text and its Braille translation.

4.3. Building Sentence-level Parallel Corpora

We next extract sentence-level pronunciation annotations from chapter-level annotations. We perform this step only for the Aozora Bunko text, since the book titles compiled in National Diet Library are short enough to directly perform word-level pattern matching.

We extract parallel sentences from the parallel chapters by using periods to segment sentences in the text and using a morphological analysis to find pronunciations corresponding to the resulting sentences via pattern matching. We perform a morphological analysis of the Aozora Bunko text using a Japanese morphological analyzer, MeCab, to associate guessed pronunciations for automatically-segmented words (morphemes) in the text. Because the edition of the target book can be different in the Aozora Bunko text and its Braille counterpart and the morphological analyzer can provide wrong pronunciations for heteronyms, there are several mismatches in both texts. We therefore perform an approximate pattern matching between the guessed pronunciation of the original text and gold pronunciation converted from the Braille data based on Levenshtein distance to resolve this mismatch while considering punctuations in the original text to segment the text into sentences. As a result, we obtain, for each sentence, a gold pronunciation that matches with the guessed pronunciation of that sentence. Although this procedure may associate wrong pronunciations for some sentences due to the difference in the editions of the target book, these noisy data will be removed in finding word-level alignments.

4.4. Building Word-Level Parallel Corpora

Finally, we obtain corpora with word-level pronunciations from pairs of a sentence and its pronunciation obtained in Section 4.2 and 4.3. Since the pronunciations in the book titles and the Braille translation of Aozora Bunko text are manually tokenized, we follow this tokenization when obtaining pairs of words (tokens) and its pronunciations, with the exception for tokens that consist of different character types (e.g., 崩す) such as kanji (崩) and hiragana (す). For these tokens, we further split them into character sequences with the same character types (崩す) to associate pronunciations for kanji tokens (here, 崩).

We first tokenize the original text (e.g., すぐ着崩す) by using the morphological analyzer, MeCab, to obtain tokens in the text (すぐ着崩す) and further split the resulting tokens into character sequences with the same character types (すぐ着崩す). We next concatenate successive kanji tokens (着崩す) in the resulting text (すぐ着崩す), since the guessed tokenization for kanji sequences can be inconsistent with the tokenization in the pronunciation. We then compare the resulting tokenized text (すぐ着崩す) with its manually-tokenized pronunciations (すぐきくずす) (sugu ki kuzusu) to find pairs of a token and its pronunciation (すぐ and すぐ (sugu), 着崩 and きくず (kikuzu), and す and (su)). There will be some mismatches between pronunciations defined in the pronunciation dictionary and the provided pronunciations. To resolve this, we

- regard Chinese numerals as Arabic numerals, and
- handle iteration marks (e.g., ‘ゝヾゞヾゝ’),

Finally, we build pronunciation lattices for kanji sequences (here, 着崩) using the pronunciation dictionary compiled in Section 4.1, and perform a depth-first matching between the resulting lattice and the corresponding tokenized pronunciations to obtain text corresponding to each tokenized pronunciation (き (ki) for 着, くず (kuzu) for 崩).

We removed noisy parallel sentences from the final corpora when we could not have word-level matching of pronunciations. For Aozora Bunko text, we removed all sentences in a book when we could not have alignments for 90% of characters in the book to guarantee the quality of the resulting corpora.

Postprocessing We finally perform corpus-specific postprocessing to reduce the matching failure. For example, for the book titles, we modified ‘・’ to ‘一’ to match ‘コーヒー’ with ‘コーヒー’ Since the early Braille data have inconsistent format, we corrected the table of contents for some books.

We have ultimately obtained the Book Title corpus with 336,586,111 characters (16,460,687 book titles) and the Aozora Bunko corpus with 52,385,928 characters (1,618,222 sentences from 2044 books written by 120 authors).
5. Analysis

To see the difficulty in predicting pronunciations, we have investigated distributions of pronunciations for common heteronyms on our corpora. We first extract 203 heteronyms from applied rules for characters and “Yomi” (National Diet Library, 2021) (Table 1). We then counted the number of occurrences of each pronunciation of these heteronyms in each corpus. Here, we exclude the cases where the heteronyms appear in compound expressions (e.g., ‘国立駅’ where ‘国立’ is a heteronym), since the pronunciation disambiguation for such cases is rather trivial. Due to the space limitations, we here analyzed a part of the heteronyms with two alternative pronunciations in Table 2. The most frequent heteronym was ‘変化’, which has two pronunciations ‘henka (change)’ and ‘henge (embodiment)’, while the least frequent heteronym is ‘日供’, which has two pronunciations ‘nichigu (altargate)’ and ‘nikku (altargate)’. 197 of the 203 heteronyms appeared more than 30 times in the entire corpus.

We can also observe that the pronunciation distributions vary across the two domains. For example, the number of ‘国立’ in the Aozora Bunko corpus is much less than that in the Book Title corpus for both pronunciations (kokuritsu (national) and Kunitachi (city name)), and one pronunciation of ‘表’, ‘hyou (table), does not appear in the Aozora Bunko corpus. The rare pronunciation of ‘国立’ (Kunitachi) in the Aozora Bunko corpus can be explained by the fact that it was introduced in 1926. Meanwhile, ‘大方’ rarely appears in the Book Title corpus as daibu (fairly), and this is because the book titles rarely include adverbs. Since frequent pronunciations vary across domains, a classifier for predicting pronunciations will suffer from the risk of overfitting to the domain used in training the classifier. In the future, we will explore a method of collecting additional examples for rare pronunciations to augment our corpora; for example, we will use contextualized word embeddings of the rare pronunciations in our corpora to collect examples from the Web.
Table 3: Results of pronunciation prediction using BERT; the columns corr. refers to the number of correctly classified examples for each pronunciation.

heteronym	pronunciation (meaning)	count total	pronunciation (meaning)	count total	acc.
大分 daibu	fairly	218	Oita (prefecture name)	664	0.997
身体 shintai	system	4016	karada (body)	847	0.980
一目 hitome	(glance)	335	ichimoku (respect)	49	0.958
心中 shincyau	(feelings)	59	shinjyuu (joint suicide)	345	0.958
表 omote	(outside)	662	hyou (table)	526	0.947
玩具 omocha	(toy)	52	gangu (toy)	280	0.943
博士 hakashi	(doctor)	3585	hakase (expert)	535	0.935
礼拜 reihai	(Christian worship)	174	raihai (Buddhism worship)	17	0.927
故郷 koyou	(hometown)	784	furusato (hometown)	106	0.880
今日 kyou	(today)	3682	kon’ichi (nowadays)	1471	0.863
現世 sensei	(this life)	36	sense (this life)	49	0.859
金色 kin’iro	(golden)	200	konjiki (golden)	104	0.836
上方 kamikata	(Kyoto-Osaka area)	291	joushi (upper)	128	0.835
口腔 koukou	(mouth orifice)	1300	koukou (mouth orifice)	1113	0.776

6. Experiments

This section evaluates the utility of our corpora on the pronunciation prediction task. We use the pre-trained Japanese BERT to solve the pronunciation prediction task as a sequence labeling task. Although we can also use our corpora to solve the pronunciation prediction task by generation (Hatori and Suzuki, 2011a) instead of classification, here we adopt the classification-based approach commonly used in the literature. This is because i) we can assume a large-scale pronunciation dictionary to enumerate pronunciation candidates for kanji tokens, ii) we target on heterogeneous logograms in this study.

In what follows, we first explain the experimental settings, and then report the accuracy of pronunciation prediction. For brevity, in this experiment, we focus on heteronyms included in the subword vocabulary of the pre-trained Japanese BERT. Among the 203 heteronyms in Table 1, 93 heteronyms (223 pronunciations) are covered by the subword vocabulary of the pre-trained Japanese BERT.

6.1. Settings

Data We first collect sentences that include the target heteronyms from both the Book Title and Aozora Bunko corpora. We then split the resulting corpora into training, development and test split with a ratio of 6:2:2; the training, development, and test data included 456,223 (9,246,160), 152,095 (3,079,925), and 152,180 (3,079,577) sentences (tokens), respectively.

Model We implemented the BERT-based sequence labeling using PyTorch Lightning and huggingface-transformers. Since it is too costly to train independent disambiguation models for individual heteronyms, we cast the prediction task as sequence labeling. We provide heteronym-specific pronunciation tags (namely, 223 tags in total) for individual heteronym-pronunciation pairs. For subword tokens other than the target 93 heteronyms, we give a single dummy tag as the OTHER tag in the named entity recognition.

6.2. Results

The macro average of prediction accuracy with the BERT-based classifier was 0.939, while that of the majority class baseline is 0.884. Table 3 lists the detailed experimental results for some heteronyms with two pronunciations. We can see that our classifier successfully predicted the correct pronunciation for heteronyms that have semantically-distinguishable pronunciations (e.g., daibu (fairly) and ooit (Oita prefecture) for ‘大分’, and shincya (feelings) and shinjyu (joint suicide) for ‘心中’). Meanwhile, it is difficult to distinguish pronunciations with similar meanings; kyou (today) and kon’ichi (Nowadays) for ‘今日’ and koukou and koukou (mouth orifice) for ‘口腔’.

Misclassified Examples We finally report some misclassified examples that highlight the difficulty of the pronunciation prediction task. The classifier some-
times misclassifies pronunciations that depend on the specific style of text. The following examples are taken from the Book Title corpus and Dogura Magura written by the Kyusaku Yumeno in the Aozora Bunko corpus, respectively.

(1) 青年よ 故郷に帰って市長になろう

seinen yo koyou ni kaete shichou ni narou

‘Boys, return to your hometown to be a mayor.’

(2) そこの方は医学の博士です。
soko no enma ha igaka no hakase de

‘Yama there is a doctor of medicine.’

In (1), 故郷 should be pronounced as ‘furusato’ instead of ‘koyou.’ Although both pronunciations mean hometown, furusato is preferred in spoken language (as in this example), while koyou is preferred in written language. In (2), 博士 should be pronounced as ‘hakushi’ instead of ‘hakase.’ Hakushi is preferred especially when 博士 mentions a doctoral degree (here, doctor of medicine), while hakase is preferred in a more casual context.

There are several cases where we need more contexts for classification. The following example is taken from Kaso Jinbutsu written by Shusei Tokuda in the Aozora Bunko corpus.

(3) 先生は大家よ。
sensei wa ‘ooya yo

‘You are a great master.’

In this example, 大家 means a great master and should be pronounced as taika instead of ooya, which means a landlord. We need more context into consideration to handle this kind of examples.

7. Conclusions

We have developed large-scale Japanese corpora whose words are annotated with pronunciations, exploiting existing language resources including i) book titles in National Diet Library and ii) books in Aozora Bunko, a Japanese digital library and their Braille translations. After converting existing resources into sentence-level aligned corpora, we performed word-level alignment using a pronunciation dictionary compiled from various morphological analyzer dictionaries. We finally obtained two large-scale corpora with word-level pronunciation annotations: the Book Title corpus with 336M characters (16.4M titles) and the Aozora Bunko corpus with 52M characters (1.6M sentences). We have fine-tuned the pre-trained Japanese BERT on the pronunciation prediction task, and confirmed the utility of our corpora in improving the pronunciation prediction. We have released our Book Title corpus corpus21 and Aozora Bunko22 to promote research on pronunciation prediction in Japanese.

Acknowledgments

We thank the National Association of Institutions of Information Service for Visually Impaired Persons, Japan and the Japanese Braille Library for their permission to distribute the Aozora Bunko corpus. We thank Toru Aoike for his help in using book titles and releasing our corpora. The research (second author) was partially supported by NII CRIS collaborative research program operated by NII CRIS and LINE Corporation.

8. Bibliographical References

Devin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Hadiwinto, C., Ng, H. T., and Gan, W. C. (2019). Improved word sense disambiguation using pre-trained contextualized word representations. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5297–5306, Hong Kong, China, November. Association for Computational Linguistics.

Hatori, J. and Suzuki, H. (2011a). Japanese pronunciation prediction as phrasal statistical machine translation. In Proceedings of 5th International Joint Conference on Natural Language Processing, pages 120–128, Chiang Mai, Thailand, November. Asian Federation of Natural Language Processing.

Hatori, J. and Suzuki, H. (2011b). Predicting word pronunciation in Japanese. In CICLing 2011, Lecture Notes in Computer Science (6609), pages 477–492.

Huang, L., Sun, C., Qiu, X., and Huang, X. (2019). GlossBERT: BERT for word sense disambiguation with gloss knowledge. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3509–3514, Hong Kong, China, November. Association for Computational Linguistics.

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In International Conference for Learning Representations.

Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004). Applying conditional random fields to Japanese morphological analysis. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pages 230–237, Barcelona, Spain, July. Association for Computational Linguistics.
Kurata, G., Mori, S., Itoh, N., and Nishimura, M. (2007). Unsupervised lexicon acquisition from speech and text. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 421–424.

Loureiro, D., Rezaee, K., Pilehvar, M. T., and Camacho-Collados, J. (2021). Analysis and evaluation of language models for word sense disambiguation. Computational Linguistics, 47(2):387–443, June.

Maekawa, K. (2008). Balanced corpus of contemporary written Japanese. In Proceedings of the sixth Workshop on Asian Language Resources (ALR-8), pages 101–102.

National Diet Library, J. (2021). Applied rules for characters and "yomi".

Neubig, G. and Mori, S. (2010). Word-based partial annotation for efficient corpus construction. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, May. European Language Resources Association (ELRA).

Nishiyama, K., Yamamoto, K., and Nakajima, H. (2018). Dataset construction method for word reading disambiguation. In Proceedings of the 32nd Annual Conference of the Japanese Society for Artificial Intelligence. (In Japanese).

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level training with recurrent neural networks. In Proceedings of the fourth International Conference on Learning Representations.

Sasada, T., Mori, S., and Kawahara, T. (2008). The improvement of predicting pronunciation by acquiring lexicons from speech and text. In Proceedings of the Annual Meeting of Natural Language Proceed- ing, pages 420–423. (In Japanese).

Sumita, E. and Sugaya, F. (2006). Word pronunciation disambiguation using the Web. In Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 165–168, New York City, USA, June. Association for Computational Linguistics.

Takahashi, F. and Mori, S. (2014). Improving the accuracy of word segmentation and pronunciation prediction using kana-to-kanji conversion logs. In IPSJ SIG Technical Report. (In Japanese).

Toshinori Sato, T. H. and Okumura, M. (2017). Implementation of a word segmentation dictionary called mecab-ipadic-neologd and study on how to use it effectively for information retrieval (in japanese). In Proceedings of the Twenty-three Annual Meeting of the Association for Natural Language Processing, pages NLP2017–B6–1. The Association for Natural Language Processing.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In I. Guyon, et al., editors, Advances in Neural Infor-