Glycyrrhiza glabra: Chemistry and Pharmacological Activity

Varsha Sharma, Akshay Katiyar, and R. C. Agrawal

Abstract
Nature is an attractive source of new therapeutic candidate compounds as a tremendous chemical diversity is found in millions of species of plants, animals, marine organisms, and microorganisms as potential medicinal agents. This chapter of research is an effort to highlight the phytochemical/chemical constituents of an ancient medicinal plant G. glabra and their pharmacological importance. G. glabra is an old age medicinal plant that belongs to Leguminosae/Fabaceae/ Papilionaceae family and commonly known as mulaithi in north India. The chemical composition of G. glabra is glycyrrhizin, glycyrrhetic acid, isoliquiritin, isoflavones, etc., and their derivatives have been reported for several pharmacological activities like, expectorant, antidemulcent, antiulcer, anticancer, anti-inflammatory, antidiabetic, etc. These phytochemicals hold strong promise for designing new herbal drugs, and derivatives of these compounds are being generated to evaluate their pharmacological purposes for future drug use. Natural products have been a prime source for the treatment of many forms of ailments, many of which are consumed daily with the diet. They provide significant protection against various diseases and disorders.

Keywords
Chemistry • Glycyrrhiza glabra • Licorice • Medicinal plant • Pharmacology
Abbreviations

AP-1 Activator protein-1
Bcl2 B cell lymphoma-2
CCL4 Carbon tetrachloride
CYP1A1 Cytochrome P1450A1
DGL Deglycyrrhizinated licorice
DNA Deoxyribonucleic acid
GA Glycyrrhetinic acid
GG/G glabra Glycyrrhiza glabra
GST Glutathione-S-transferase
H1N1 Hemagglutinin type-1 and neuraminidase type-1
HIV Human immunodeficiency virus
KK-Ay Knockout diabetic mice
MAP Mitogen activated protein
NADH Nicotinamide adenine dinucleotide (reduced)
PAF Platelet aggregating factor
SARS Severe acute respiratory syndrome
SNMC Stronger neo-minophagen-C
TPA 12-O-tetradecanoylphorbal-13-acetate

Contents

1 Introduction ... 89
1.1 Scientific Classification .. 90
1.2 Binomial Name ... 90
1.3 Synonyms ... 90
1.4 Vernacular Names [4] .. 90
1.5 Origin .. 91
1.6 Ecology ... 91
1.7 Morphology ... 91
1.8 Medicinal Parts Used ... 91
2 Phytochemistry/Chemistry .. 91
3 Pharmacological Activity ... 93
3.1 Antitussive and Expectorant ... 93
3.2 Antimicrobial ... 93
3.3 Anticoagulant and Memory Enhancing Activity 94
3.4 Antiviral .. 94
3.5 Antioxidant and Anti-inflammatory .. 94
3.6 Antiulcer Activity ... 94
3.7 Anticarcinogenic and Antimutagenic Activity 95
3.8 Hepatoprotective Activity .. 95
3.9 Antidiabetic .. 96
3.10 Immunomodulator Activity ... 96
4 Side Effects and Toxicity ... 97
5 Future Aspects ... 97
6 Conclusion .. 97
References ... 98
1 Introduction

Plants have been one of the important sources of medicines since the beginning of human cultivation. There is a growing demand for plant-based medicines, health products, pharmaceuticals, food supplements, etc. Medicinal plants are of great importance to the health of individuals and communities. The medicinal value of these plants lies in some chemical substances that produce a definite physiological action on the human body. The most important of these bioactive constituents of plants are triterpenoid, saponin, flavonoids, tannins, alkaloids, and phenolic compounds [1]. Many of these indigenous medicinal plants are used as spices and food plants. They are also sometimes added to foods meant for pregnant and nursing mothers for medicinal purposes [2, 3].

Glycyrrhiza glabra (Fig. 1) is one of the useful medicinal plants. Glycyrrhiza is derived from the ancient Greek term glykos, meaning sweet, and rhiza, meaning root. Glycyrrhiza glabra is known as mulaithi in north India. Glycyrrhiza glabra, also known as licorice and sweet wood, is native to the Mediterranean and certain areas of

Fig. 1 Glycyrrhiza glabra plant
Asia. A number of traditional healers have claimed the efficacy of *Glycyrrhiza* species for a variety of pathological conditions as a diuretic, choleretic, used as insecticide, and indicated in traditional medicine for coughs, colds, and painful swellings [4, 5].

1.1 Scientific Classification

Kingdom: Plantae
Division: Angiospermae
Class: Dicotyledoneae
Order: Rosales
Family: Leguminosae
Genus: *Glycyrrhiza*
Species: *glabra* Linn

1.2 Binomial Name

Glycyrrhiza glabra Linn.

1.3 Synonyms

Glycyrrhiza glandulifera

1.4 Vernacular Names [4]

Sanskrit: Yashti-madhu, madhuka
Bengali: Jashtimadhu, jaishbomodhu
Gujarat: Jethimadhu
Hindi: Jothi-madh, mulaithi
Kannada: Yastimadhuka, atimaddhura
Malayalam: Iratimadhuram
Marathi: Jeshtamadha
Oriya: Jatimadhu
Tamil: Atimaduram
Telugu: Atimadhuranu, yashtimadhukam
English: Licorice, liquorices, sweet wood
Arab: Aslussiesa
Persia: Ausareha mahaka
France: Boisdoux
Germany: Sussholz
1.5 **Origin**

The roots are unearthed in the autumn of the fourth season. It is grown in India, Spain, Iran, Russia, China and Italy.

1.6 **Ecology**

Glycyrrhiza glabra enjoys fertile, sandy, and clay soil near a river or stream where enough water is available for the plant to flourish in the wild, or under cultivation where it can be irrigated.

1.7 **Morphology**

Glycyrrhiza glabra is herbaceous perennial, growing to 1 m in height, with pinnate leaves about 7–15 cm long, with 9–17 leaflets. The flowers are 0.8–1.2 cm long, purple to pale whitish blue, produced in a loose inflorescence. The fruit is an oblong pod, 2–3 cm long, containing several seeds [6]. The *Glycyrrhiza* shrub is a member of the pea family and grows in subtropical climates in rich soil. Below ground, the *Glycyrrhiza glabra* plant has an extensive root system with a main taproot and numerous runners. The main taproot, which is harvested for medicinal use, is soft, fibrous, and has a bright yellow interior [7].

1.8 **Medicinal Parts Used**

Roots and Rhizome (powder, teas, tonic, extracts, tinctures, decoction).

2 **Phytochemistry/Chemistry**

A number of components have been isolated from the roots of *Glycyrrhiza glabra*, including a water-soluble, biologically active complex that accounts for 40–50% of total dry material weight. This complex is composed of triterpene, saponin, flavonoids, polysaccharides, pectins, simple sugars, amino acids, mineral salts, asparagines, bitters, essential oil, fat, female hormone estrogen, gums, mucilage (rhizome), protein, resins, starches, sterols, volatile oils, tannins, glycosides, and various other substances [8, 9]. Glycyrrhizin (Fig. 2), a triterpenoid compound, accounts for the sweet taste of licorice root. This compound represents a mixture of potassium-calcium-magnesium salts of glycyrrhizic acid that varies within a 2–25% range. Among the natural saponin, glycyrrhizic acid is a molecule composed of a
hydrophilic part, two molecules of glucuronic acid, and a hydrophobic fragment, glycyrrhetic acid (Fig. 3) [10]. The yellow color of licorice is due to the flavonoid content of the plant, which includes liquiritin (Fig. 4), isoliquiritin (Fig. 5) (a chalcone) and other compounds [11]. The isoflavones, glabridin (Fig. 6) and
hispaglabridins A and B have significant antioxidant activity [12], and both glabridin and glabrene possess estrogen-like activity [13].

3 Pharmacological Activity

The various studies carried out by ethnobotanists, phytochemists, and experimental pharmacologists on its bioactivities revealed that the plant may be a source of new drugs, and therapeutic agents for the treatment of a variety of diseases and ailments could be manufactured. Report of various activities is given here.

3.1 Antitussive and Expectorant

The licorice powder and extract was found to be useful for the treatment of sore throat, cough, and bronchial catarrh. It has antitussive, demulcent, and expectorant loosening activities which may attribute due to presence of glycyrrhizin and helping to expel congestion in the upper respiratory tract as it accelerates tracheal mucus secretion [14]. It has been recently found that liquiritin apioside is an active compound present in the methanolic extract of liquorice. The compound inhibits capsaicin-induced cough [15].

3.2 Antimicrobial

Multidrug-resistant microorganisms pose a serious infestation in clinical medicine today due to the rapid spread as well as chronic infections caused by them. Each species of the genus Glycyrrhiza Linn is characterized by isoprenoid phenols, which have selective antimicrobial activity. Recent research has shown antibacterial effects of hydromethanolic root extract of G. glabra against some gram-positive and negative pathogens [16]. A number of components isolated from Glycyrrhiza include glabridin, gabrin, glabrol, glabrene, hispaglabridin A, hispaglabridin B, 40-methylglabridin, and 3-hydroxyglabrol have exhibited potential in vitro antimicrobial activity [17, 18]. Glycyrrhizinic acids have been used to cure atopic dermatitis, pruritis, and cysts due to parasitic infestations of skin [19, 20].
3.3 Anticoagulant and Memory Enhancing Activity

Glycyrrhizin, an already known anti-inflammatory compound, has also been found as the first plant-based inhibitor of thrombin. It prolonged the thrombin and fibrinogen clotting time and increased plasma recalcification duration. The thrombin-induced platelet aggregation was found to be inhibited by the action of glycyrrhizin, but PAF (platelet aggregating factor)- or collagen-induced agglutination was not affected by glycyrrhizin [21, 22]. One of the laboratory-based research has shown memory enhancing activity of *G. glabra* in experimental animals [23].

3.4 Antiviral

Glycyrrhizin has a prominent antiviral activity, as it does not allow the virus cell binding. Recently antiviral activities of ribavirin, 6-azauridine, pyraziofurin, mycophenolic acid, and glycyrrhizin against two clinical isolates of SARS (severe acute respiratory syndrome) virus, i.e., FFM-1 and FFM-2 were evaluated. It was observed that glycyrrhizin was the most effective in controlling viral replication and could be used as a prophylactic measure. Glycyrrhizin has been previously used to treat patients suffering from HIV-1 and chronic hepatitis C virus [24–26].

3.5 Antioxidant and Anti-inflammatory

Hydromethanolic root extract of *Glycyrrhiza glabra* exhibited marked antioxidant activity in a test tube system [16]. *Glycyrrhiza* (root) have a plenty of polyphenolic components as a potential source of antioxidants. Licochalcones B and D exhibit a potential activity by inhibiting the microsomal lipid peroxidation. Retrochalcones exhibit mitochondrial lipid peroxidation and prevent red blood corpuscles from oxidative hemolysis. Isoflavones like glabridin, hispaglabridin A and 3’hydroxy-4-O-methylglabridin present in *Glycyrrhiza glabra* were found to have potential antioxidant activity. More recently, dehydrostilbene derivatives like α-dihydro-3,5,4-trihydroxy-4,5-diiodopentenylstilbene have been isolated and reported as free radical scavengers [27–29]. Research shows that on being broken down in the gut, glycyrrhizin exerts an anti-inflammatory action similar to hydrocorticosone and other corticosteroid hormones.

3.6 Antiulcer Activity

Licorice has been used as an antiulcer agent since early 1970s. The extracted glycyrrhizin, DGL (deglycyrrhizinated licorice) is generally employed for the effective treatment of ulcers. Carbenoxolone from liquorice roots produce the antiulcerogenic effect by inhibiting the secretion of gastrin [28]. Liquorice can raise the concentration of prostaglandins in the digestive system that promote
mucus secretion from the stomach. It was also reported that liquorice prolongs the life span of surface cells in the stomach and has an antipepsin effect [29].

3.7 Anticarcinogenic and Antimutagenic Activity

The aqueous extract of *G. glabra* inhibits in vivo and in vitro proliferation of Ehrlich ascites tumor cells and inhibits angiogenesis in in vivo assay, peritoneal and choreoal-lantonic membrane assay [30]. On the other hand, there are many reports about the anticancer effects of several derivatives of its components both in in vivo and in vitro studies. Glycyrrhetic acid could trigger the proapoptotic pathway by inducing mitochondrial permeability transition, and this property may be useful for inducing apoptosis of tumor cells [31, 32]. The licorice extract induced the Bcl2 phosphorylation and G2/M cycle arrest in tumor cell lines, and 70% methanol soluble fraction of licorice acetone extract was found to induce apoptosis in human monoblastic leukemia U937 cells. The compound was identified to be licocoumarone also responsible for antioxidant and antimicrobial activity [33]. The hydromethanolic root extract of *G. glabra* also exhibited antimutagenic potential by suppressing micronucleus formation and chromosomal aberration in bone marrow cells of albino mice [34, 35]. It was found that glycyrrhizin induced AP-1 (activator protein-1) activity in untreated cells whereas inhibited TPA (12-O-tetradecanoylphorbal-13-acetate) induced AP-1 activity in TPA treated cells. This mechanism could serve as a model for development of new chemoprotective agents [36]. Recently licochalcone E, a new retrochalcone from the roots of *G. inflata*, exhibited the most potent cytotoxic effect compared with the known antitumor agents, lichochalcone A and isoliquiritigenin [37].

3.8 Hepatoprotective Activity

Chronic hepatitis (viral as well as nonviral) is a slowly progressive liver disease that may evolve into cirrhosis with its potential complications of liver failure or hepatocellular carcinoma. In Japan, glycyrrhizin has been used for more than 60 years as treatment for chronic hepatitis under the name of SNMC (stronger neo--minophagen-C) clinically as an antiallergic and antihepatitis agent [38]. Glycyrrhizin induced significant reduction in serum aminotransferases and improved the liver histology when compared with the placebo. It has also been implicated that long-term usage of glycyrrhizin prevents development of hepatocellular carcinoma in chronic hepatitis C. In vitro studies have indicated that glycyrrhizin modifies the intracellular transport and uppresses hepatitis B virus surface antigen [39, 40]. It has been found that 18β-glycyrrhetinic acid (GA), an aglycone of glycyrrhizin decreases the expression of P450 E1 thereby protecting the liver [41]. GA also prevents the oxidative and hepatic damage caused by aflatoxins by increasing the CYP1A1 and GST (glutathione-S-transferase) activities and may also contribute to anticarcinogenic activity by metabolic deactivation of the hepatotoxin [42]. One of the researches indicated that the hydromethanolic root extract of *G. glabra* exhibited significant
protection from hepatotoxicity induced by CCl₄ (carbon tetrachloride) in liver tissue of experimental mice [43]. It has also been experimentally investigated that glycyrrhizin and its analogues have a mitogenic effect via epidermal growth factor receptors subsequently stimulating the MAP (mitogen activated protein) kinase pathway to induce hepatocyte DNA synthesis and proliferation [44].

3.9 Antidiabetic

Type 2 (noninsulin dependent) diabetes mellitus, an insulin resistant syndrome, is a growing health concern in the modern society. PPAR’s (peroxisome proliferation activated receptors) are ligand-dependent transcriptional factors regulating the expression of a group of genes that play an important role in glucose and lipid metabolism. The PPAR receptors are classified as PPAR-α, PPAR-γ, and PPAR-δ. The PPAR-α is found in liver, muscle, and kidney. PPAR-γ is associated with adipose tissue, adrenals, and small intestine whereas PPAR-δ is expressed ubiquitously. PPAR-γ serves as a predominant target for insulin sensitizing drugs like pioglitazone and roziglitazone. Ethyl acetate extract of licorice using GAL-4-PPAR-γ chimera assay exhibited a significant PPAR-γ binding activity which was attributed to seven phenolic compounds, viz., dehydroglyasperin, glyasperin B, glyasperin D, glyycoumarin, glycyrrin, glycyrol, and isolglycyrol. Pioglitazone and glycyrrin were found to suppress the increased blood glucose level in mice after sucrose loading during the oral sucrose tolerance test. Pioglitazone, a potent PPAR-γ agonist ameliorated the insulin resistance and type 2 diabetes mellitus. Similarly, glycyrrin also exhibited a potent PPAR-γ ligand binding activity and therefore reduces the blood glucose level in KK-Ay (knockout diabetic mice). This finding is of much significance as licorice has also been traditionally used as an artificial sweetening agent and could be helpful in insulin resistance syndrome prevalent in the modern society [45].

3.10 Immunomodulator Activity

Swine flu is a highly contagious respiratory disease of pigs with low mortality (1–4%), is species-specific in nature, and outbreak usually occurs once in a year with an upsurge in autumn and winter in temperate zones. One such virus, namely, influenza A H1N1 virus has evolved the capacity to cross species barrier (i.e., pig to humans) and has spread widely among humans. Polysaccharide fractions obtained from Glycyrrhiza glabra stimulate macrophages and hence elevate and assist immune stimulation [46]. N-acetylmuramoyl peptide is glycyrrhizin analogue having potential in vitro immune-stimulating properties, [47] also animal studies have revealed its efficacy against the influenza virus that is mediated by stopping the virus replication. Glycyrrhizic acid present in the plant inhibits virus growth and inactivates virus particles is a potential source of immunomodulator [48].
4 Side Effects and Toxicity

Everything on the earth has a purpose whether they are plants, animals, or microbes, but there is a limit for consumption because it is well known that anything can be harmful or poisonous after a limit. The most common reported side effect with licorice supplementation is elevated blood pressure. This is thought to be due to the effect of licorice on the rennin-angiotensin-aldosterone system. It is suggested licorice saponins are capable of potentiating aldosterone action while binding to mineral-corticoid receptors in the kidneys. In addition to hypertension, patients may experience hypokalemia and sodium retention, resulting in edema. All symptoms usually disappear with discontinuation of therapy. Many studies report no side effects during the course of treatment [27, 28]. Generally the onset and severity of symptoms depend on the dose and duration of licorice intake, as well as individual susceptibility. The amount of licorice ingested daily by patients with mineral-corticoid excess syndromes appears to vary over a wide range, from as little as 1.5 g daily to as much as 250 g daily [5, 29].

5 Future Aspects

In ancient Indian literature, it is mentioned that every plant on this earth is useful for human beings, animals, and other plants. *G. glabra* is an herbal plant which has lots of medicinal properties such as antimicrobial, antioxidant, anti-inflammatory, antitussive, antidiabetic, antiviral, anticancer, antimutagenic, antiulcer, and hepatoprotective. The phytochemicals present in *G. glabra* have been of immense importance in phytotherapeutics. Thus there is an immense need to modify the natural *Glycyrrhiza* constituents to reduce these side effects thereby generating the advanced versions of the bioactive compounds to be used as drugs in future. There are so many bioactive compounds that have been isolated from *G. glabra* like glycyrrhizin, glycyrrhetic acid, glabridin, liquiritin, isoliquiritigenin, isoflavones, etc. and have been assessed for medicinal potential which showed that these compounds hold a strong promise in designing future drugs. Derivatives of these compounds are being generated to evaluate their pharmacological purposes for future drug use. There are ample chances of arriving to pharmacophores with least toxic side effects using combinatorial chemistry.

6 Conclusion

Glycyrrhiza glabra (GG) is a plant with strong ethnobotanical history. The root and rhizome parts of this plant are used as a folk medicine both in Europe and eastern countries. *G. glabra* extracts have been shown to possess lot of medicinal properties like antitussive, antimicrobial, antioxidant, anti-inflammatory, antiulcer, anticancer, etc. due to presence of so many bioactive components, triterpene, saponins, flavonoids, alkaloids, glycyrrhizin, glycyrrhetic acid, glabridin, liquiritin, etc. *G. glabra* is one of those ancient plants, which have been used in the traditional pharmacopoeias
for its multifaceted activities against variety of systematic and nonsystematic ailments. The chemical foundations of \textit{G. glabra} have been discovered in the last era. The chemical constituents of \textit{G. glabra} hold a strong promise for providing new molecules, which could be of immense medicinal applications in the drug discovery process for the development of new drugs present era.

References

1. Hill AF (1952) Economic botany: a textbook of useful plants and plant products, 2nd edn. McGraw Hill, New York
2. Okwu DE (1999) Flavouring properties of spices on cassava Fufu. Afr J Roots Tuber Crops 3(2):19–21
3. Okwu DE (2001) Evaluation of the chemical composition of indigenous spices and flavouring agents. Global J Pure Appl Sci 7(3):455–459
4. Chopra RN, Nayar SL, Chopra IC (2002) Glossary of Indian medicinal plants. NISCAIR, CSIR, New Delhi
5. Sharma V, Agrawal RC (2013) \textit{Glycyrrhiza glabra}: a plant for the future. Mintage J Pharm Med Sci 2(3):15–20
6. Huxley A (ed) (1992) New RHS dictionary of gardening. ISBN 0-333-47494-5
7. Olukoga A, Donaldson D (1998) Historical perspectives on health. The history of liquorice: the plant, its extract, cultivation, and commercialization and etymology. J R Soc Health 118:300–304
8. Bradley PR (ed) (1992) British herbal compendium, vol 1. BHMA, Bournemouth
9. Hoffmann D (1990) The new holistic herbal, 2nd edn. Element, Shaftesbury
10. Obolentseva GV, Litvinenko VI, Ammosov AS, Popova TP, Sampiev AM (1999) Pharmacological and therapeutic properties of licorice preparations (a review). Pharm Chem J 33:24–31
11. Yamamura Y, Kawakami J, Santa T, Kotaki H, Uchino K, Sawada Y, Tanaka N, Iga T (1992) Pharmacokinetic profile of glycerrhizin in healthy volunteers by a new high-performance liquid chromatographic method. J Pharm Sci 81(10):1042–1046
12. Vaya J, Belinky PA, Aviram M (1997) Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med 23:302–313
13. Tamir S, Eizenberg M, Somjen D, Izrael S, Vaya J (2001) Estrogen like activity of glabrene and other constituents isolated from licorice root. J Steroid Biochem Mol Biol 78:291–298
14. Hikino H, Wagner H, Farnsworth NR (eds) (1985) Recent research on oriental medicinal plants. Economic and medicinal plant research, vol 1. Academic, London, pp 53–85
15. Kamei J, Nakamura R, Ichiki H, Kubo M (2003) Anti-tussive principles of \textit{Glycyrrhiza radix}, a main component of Kampo preparations Bakumondo-to. E J Pharm 69:159–163
16. Sharma V, Agrawal RC, Pandey S (2013) Phytochemical screening and determination of antibacterial and anti-oxidant potential of \textit{Glycyrrhiza glabra} root extracts. J Environ Res Dev 7 (4A):1552–1558
17. Haraguchi H, Tanimoto K, Tamura Y, Kinoshita T (1998) Antioxidative and Superoxide scavenging activities of retrochalcones in \textit{Glycyrrhiza inflata}. Phytochemistry 48:125–129
18. Mitscher LA, Park YH, Clark D, Beal JL (1980) Antimicrobial agents from higher plants: antimicrobial isoflavonoids and related substances from \textit{Glycyrrhiza glabra} L. var typical. J Nat Prod 43:259–262
19. Saeedi M, Morteza-Seemann K, Ghoreish MR (2003) The treatment of atopic dermatitis with licorice gel. J Dermatol Treat 14:153–157
20. Indian Herbal Pharmacopoeia (1998) Indian drug manufacturer’s association and Regional Research Laboratory, vol 1. Regional Research Laboratory, Jammu Tawi/Mumbai, pp 89–97
21. Mauricio I, Francischet B, Monterio RQ, Guimarães JA (1997) Identification of glycyrrhizin as thrombin inhibitor. Biochem Biophys Res Commun 235:259–263
22. Mendes-Silva W, Assafim M, Ruta B, Monterio RQ, Guimarães JA, Zingali RB (2003) Antithrombotic effect of glycyrrhizin, a plant-derived thrombin inhibitor. Thromb Res 112:93–98
23. Dhingra D, Parle M, Kulkarni SK (2004) Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 91(2–3):361–365
24. De Clercq E (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 20:323–349
25. Badam L (1997) In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (Sigma) on Japanese encephalitis virus. J Commun Dis 29:91–99
26. Badam L (1994) In vitro studies on the effect of glycyrrhizin from Glycyrrhiza glabra on some RNA and DNA viruses. Indian J Pharmacol 26:194–199
27. Biondi DM, Rocco C, Ruberto G (2003) New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their anti-oxidant activity. J Nat Prod 66:477–480
28. Masoomeh MJ, Kiarash G (2007) In vitro susceptibility of Helicobacter pylori to licorice extract. Iran J Pharm Res 6:69–72
29. Adel M, Alousi LA, Salem HA (2005) Licorice: a possible anti-inflammatory and anti-ulcer drug. AAPS Pharm Sci Tech 6:74–82
30. Sheela ML, Ramakrishna MK, Salimath BP (2006) Angiogenic and proliferative effects of the cytokine VEGF in Ehrlich ascites tumor cells is inhibited by Glycyrrhiza glabra. Int Immunopharmacol 6:494–498
31. Salvi M, Fiore C, Armanini D, Toninello A (2003) Glycyrrhetinic acid induced permeability transition in rat liver mitochondria. Biochem Pharmacol 66:2375–2379
32. Fiore C, Salvi M, Palermo M, Sinigagliab G, Armaninia D, Toninello A (2004) On the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid. Biochim Biophys Acta 1658:195–201
33. Watanabe M, Hayakawa S, Isemura M, Kumazawa S, Nakayama T, Mori C, Kawakami T (2002) Identification of licocoumarone as an apoptosis inducing component in licorice. Biol Pharm Bull 25:1388–1390
34. Sharma V, Agrawal RC, Shrivastava VK (2014) Assessment of median lethal dose and antimutagenic effects of Glycyrrhiza glabra root extract against chemically induced micronucleus formation in swiss albino mice. Int J Basic Clin Pharmacol 3:292–297
35. Sharma V, Agrawal RC (2015) Evaluation of Anticlastogenic effects of Glycyrrhiza glabra root extract against cyclophosphamide induced chromosomal aberration in swiss albino Mice. J Appl Pharm Sci 5(6):127–132
36. Hsiang CY, Lai IL, Chao DC, Ho TY (2002) Differential regulation of activator protein-1 activity by glycyrrhizin. Life Sci 70:1643–1656
37. Yoon G, Jung YD, Cheon SH (2005) Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem Pharm Bull 53:694–695
38. Acharaya SK, Dasarathy S, Tandon A, Joshi YK, Tandon BN (1993) Preliminary open trial on interferon stimulator (SNMC) derived from Glycyrrhiza glabra in the treatment of subacute hepatic failure. Indian J Med Res 98:69–74
39. Sato H, Goto W, Yamamura J, Kurokawa M, Kageyama S, Takahara T, Watanabe A, Shiraki K (1996) Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antivir Res 30:171–177
40. Van Rossum TG, Vulto AG, De Man RA, Brouwer JT, Schalm SW (1998) Glycyrrhizin as a potential treatment of chronic hepatitis C. Aliment Pharmacol Ther 12:199–205
41. Jeong HG, You HJ, Park SJ, Moon AR, Chung YC, Kang SK, Chun HK (2002) Hepatoprotective effects of 18β-glycyrrhetinic acids on carbon tetrachloride-induced liver injury, inhibition of cytochrome P450 2E1 expression. Pharmacol Res 46(3):221–227
42. Chan HT, Chan C, Ho JW (2003) Inhibition of glycyrrhizic acid on aflatoxin B1-induced cytotoxicity of hepatoma cells. Toxicology 188:211–217

43. Sharma V, Agrawal RC (2014) In vivo antioxidant and hepatoprotective potential of Glycyrrhiza glabra extract on carbon tetra chloride (CCl₄) induced oxidative stress mediated hepatotoxicity. Int J Res Med Sci 2:314–320

44. Kimura M, Inoue H, Hirabayahi K, Natsume H, Ogihara M (2001) Glycyrrhizin and some analogues induce growth of primary cultured adult rat hepatocytes via epidermal growth factor receptors. Eur J Pharmacol 431:151–161

45. Takii H, Kometani T, Nishimura T, Nakae T, Okada S, Fushiki T (2000) Anti-diabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice. Biol Pharm Bull 24:484–487

46. Wagner H, Jurcic K (2002) Immunological studies of Revitonil: a phytopharmaceutical containing Echinacea purpurea and Glycyrrhiza glabra root extract. Phytomedicine 9(5):390–397

47. Blatina LA (2003) Chemical modification of glycyrrhizic acid as a route to bioactive compounds for medicine. Curr Med Chem 10:155–171

48. Arora R, Chawla R, Marwah R, Arora P, Sharma RK, Kaushik V, Goel R, Kaur A, Silambarasan M, Tripathi RP, Bhardwaj JR (2011) Potential of complementary and alternative medicine in preventive management of novel H1N1 Flu (Swine Flu) pandemic: thwarting potential disasters in the bud. Evid Based Complement Alternat Med 2011:1–16