Codon usage bias analysis of genes linked with esophagus cancer

Hemashree Bordoloi1,2 & SR Nirmala3

1Department of Electronics and Communication Engineering, Gauhati University, Assam, India; 2Department of Electronics and Communication Engineering, Assam Don Bosco University, Assam, India; 3School of Electronics and Communication Engineering, KLE Technological University, Karnataka, India; *Corresponding author; Hemashree Bordoloi, Email: hemashree.bordoloi@dbuniversity.ac.in; SR Nirmala - nirmalasr3@gmail.com

Received June 26, 2021; Revised August 30, 2021; Accepted August 30, 2021, Published August 31, 2021

DOI: 10.6026/97320630017731

Abstract:
Esophageal cancer involves multiple genetic alterations. A systematic codon usage bias analysis was completed to investigate the bias among the esophageal cancer responsive genes. GC-rich genes were low (average effective number of codon value was 49.28). CAG and GTA are over-represented and under-represented codons, respectively. Correspondence analysis, neutrality plot, and parity rule 2 plot analysis confirmed the dominance over mutation pressure in modulating the codon usage pattern of genes linked with esophageal cancer.

Keywords: Natural selection; mutation pressure; compositional constraints; RSCU

Background:
Due to the degeneracy of the genetic code, we observe significant variation in synonymous codon usage in the coding sequences [1]. Mutation is the prime source of synonymous codon usage variation where selection pressure decides their selection and adaptation [2, 3]. Supek et al 2014, revealed the role of synonymous mutation in cancer progression [4]. Later on, it became evident that CUB and synonymous mutations have a non-trivial effect on human diseases [5]. Reports on the synonymous variant of genes having a role in metabolic processes revealed that CUB information may increase the diagnostic accuracy in a variety of diseases [6-8]. Cancer is a genetic disorder that results from catastrophic mutations causing genetic alternations [9]. Among the different cancer types, esophageal cancer (EA) ranks as seventh and sixth serious malignancy with respect to prognosis and mortality rate, respectively [10]. The 5-year survival rate of EC patients is within the range of 15% to 25% [10]. The incidence rate is higher in developing countries from the Asian region (highest in China) [11]. According to the Indian Council for Medical Research (ICMR), the number of EC patients is increasing each passing year in India [12]. Several independent research done on the molecular changes linked to EC have identified key regulatory genes of EC [11, 13]. Therefore, it is of interest to document the codon usage bias analysis of genes linked with esophageal cancer.

Materials and methods:
Sequence data:
We identified 82 human genes with a role in EC. The complete coding sequence of these genes was retrieved from the NCBI nucleotide database (www.ncbi.nlm.nih.gov). The sequences were pre-processed with an in-house Perl script to check sequences taken for CUB analysis starts with a proper initiation, ends with termination codons, and are perfect multiple of 3 bases.

Effective number of codons (ENC):
Wright proposed ENC in 1990. It quantifies the degree of CUB in a given sequence [14]. The values of ENC values can vary from 20
Correspondence analysis suggests that \(A = T \) and \(G = C \) and is \((0.5, 0.5)\). If a gene shows its presence on the center then it is the same in the presence of selection pressure.

Relative synonymous codon usage (RSCU): RSCU is the observed frequency of a codon divided by the expected frequency \([15]\). If all synonymous codons encoding the same amino acid are used equally, RSCU values are close to 1.0, indicating a lack of bias. Moreover, the codon with RSCU value greater than 1.6 is treated as over-represented codon, whereas the codon with RSCU value lower than 0.6 is considered as under-represented codon. RSCU value of a codon is estimated as:

\[
\text{RSCU}_{ij} = \frac{X_{ij}}{\frac{1}{n_i} \sum_j X_{ij}}
\]

Where \(X_{ij} \) is the frequency of occurrence of the \(j^{th} \) codon for \(i^{th} \) amino acid (any \(X_{ij} \) with a value of zero is arbitrarily assigned a value of 0.5) and \(n_i \) is the number of codons for the \(i^{th} \) amino acid (\(i^{th} \) codon family).

GC content analysis:
To quantify the variation in base frequencies that occur in varying numbers at each codon site we calculated GC1s, GC2s & GC3s i.e. frequency of GC content at first, second, and third codon positions, respectively.

\[
\text{GC}_n = \frac{N}{N_{GC}}
\]

Where, \(\text{GC}_n \) is the frequency of use of G or C on the \(n^{th} \) codon position, \(N \) is the total number of codons in the coding sequence of the gene and \(N_{GC} \) is the sum of codons with G or C on the \(n^{th} \) codon position.

Neutrality plot:
Reports suggest that there is a bias in the rate of mutations at three different codon positions, particularly high at the synonymous third codon position. Theoretically, mutation should occur randomly if there is no external pressure. The preference of bases in three different codon positions is not the same in the presence of selection pressure \([16]\). Neutrality plot, a graphical plot of GC12 against GC3 depicts the roles of directional mutational pressure against natural selection.

Parity rule 2 (PR2) plot:
PR2 bias plot was generated by plotting the \([G3 / (G3 + C3)] \) vs \([A3 / (A3 + T3)]\) \([17]\). In the PR2 plot, the center region coordinate is \((0.5, 0.5)\). If a gene shows its presence on the center then it suggests that \(A = T \) and \(G = C \) and no bias is the composition of the gene.

Correspondence analysis has been successfully used to explore codon usage variation among genes \([18]\). It is a commonly used multivariate statistical technique, in which all genes were plotted in a 59-dimensional space, according to the usage of the 59 sense codons (excluding codons for Met, Trp, and stop codons). The plot was then used to identify the axes, which represent the most prominent factors contributing to variation among genes.

Software used:
Codon-pair context quantifications were performed using Anaconda 2 \([19]\). The association of gene pair was assessed using the chi-square test of independence. All the statistical analyses were done using the SPSS software (version 16.0). Acua software was used to find the nucleotide composition at synonymous positions, compositional skewness, CAI, and EnC values \([20]\). RSCU value was calculated using INCA software \([21]\). Correspondence analysis was done using past3 \([22]\). CodonW was used to calculate GRAVY and Aromo values (http://codonw.sourceforge.net/).

Table 2: Interrelationships of overall nucleotide composition with their usage frequency at synonymous third codon position in the genes responsible for esophageal cancer.

	A	T	G	C	AT3	GC3
A	0.995	0.97	0.93	0.889	0.674	-0.681
T	0.982	0.982	0.971	0.948	0.812	-0.808
G	0.934	0.939	0.995	0.983	-0.828	0.828
C	0.926	0.944	0.982	0.994	-0.749	0.755
AT3	0.851	0.45	-0.503	-0.71	0.882	-0.885
GC3	-0.851	-0.45	0.503	0.71	-0.882	0.885

Codon usage bias:
EnC value was used to determine the overall codon usage bias. From Table 3 we observed that EnC value of the EC-related genes ranges from 33.778 to 56.976, with a mean ± standard deviation of 49.28 ± 5.72. This low bias (EnC<35) in codon selection might have a link with DNA replication as these genes are actively synthesized in different cell types. Moreover, we observed a significant negative correlation between EnC and GC3 (\(r=-0.56, p<0.05 \)). This further suggests the impact of GC nucleotide composition on the CUB. Genes with high GC3 composition showed the highest CUB. However, the correlation coefficient did not reach the extreme value i.e. 1, which further suggests that GC3 is not the sole determinant of CUB confirms the variation of nucleotides and thus CUB in EC-responsive genes. RSCU analysis further showed the dominance in the use of a specific group of codons in EC-responsive genes. 28 codons out of 60 codons showed RSCU score greater than 1, 7 codons RSCU > 1.6, whereas, 9 codons RSCU < 0.6 (Table 4).

Results:
Nucleotide Composition:
Nucleotide composition analysis was performed to identify the compositional variation present in the genes responsible for EC. From our analysis, it was observed that the EC-responsive genes are GC-rich \((52.01\%)\), similar to the overall genomic composition. Positional bias analysis revealed that in 59% gene G3>A3, whereas in 7% gene A3 is equal to G3 and in 34% gene A3>G3. Similarly, in 72% gene GC3>AT3, only in 1% gene AT3> GC3, whereas, in 27% gene AT3>GC3. This indicates the dominance of GC composition at synonymous codon positions. AT3 was found to be highest in the RBBP6 gene and GC3 in the SOX17 gene.

Table 1 represents the nucleotide composition of different genes responsible for EC. Furthermore, we observed a strong significant correlation between homogenous and heterogeneous nucleotide compositions (Table 2). These intricate correlation patterns suggest the influence of mutation (major) and selection pressure (minor) is shaping the CUB of EC-responsive genes. Our findings corroborated with the results reported elsewhere \([23]\).
Sl. No.	Gene	A3	T3	G3	C3	AT3 %	GC3 %
1	AF325503.1_cds_AAG42321.1_1	31	24	49	44	12.30	20.805
2	NM_032566.3_cds_NM_115955.1_1	26	22	22	15	18.605	14.341
3	NM_032411.3_cds_NM_115787.1_1	31	24	49	44	12.30	20.805
4	NM_001114387.2_cds_NM_00107859.1_1	137	84	127	70	17.582	15.672
5	NM_182606.4_cds_NM_872412.3_1	138	84	128	71	17.536	15.719
6	NM_002810.4_cds_NM_002801.1_1	108	37	151	81	12.787	20.459
7	NM_001330692.2_cds_NM_001317621.1_1	109	37	153	81	12.773	20.472
8	NM_001203258.2_cds_NM_001190187.1_1	117	74	144	95	14.772	18.484
9	NM_004689.4_cds_NM_004680.2_1	198	105	212	200	14.106	19.181
10	NM_006846.4_cds_NM_006837.2_1	370	164	360	170	16.714	16.588
11	NM_001127698.2_cds_NM_001121170.1_1	378	169	371	176	16.651	16.651
12	NM_003979.4_cds_NM_003970.1_1	92	76	103	86	15.642	17.598
13	NM_001286661.2_cds_NM_001275590.1_1	170	79	208	113	14.536	18.739
14	NM_001313.5_cds_NM_001304.1_1	171	81	205	115	14.66	18.615
15	NM_001014809.3_cds_NM_001014809.1_1	186	90	258	152	13.392	19.893
16	NM_001286662.1_cds_NM_001275591.1_1	167	79	206	114	14.462	18.812
17	NM_001127699.2_cds_NM_001121171.1_1	323	136	317	140	16.685	16.612
18	NM_014360.4_cds_NM_055175.2_1	27	39	84	89	9.167	24.028
19	NM_030916.3_cds_NM_112178.2_1	98	70	188	154	10.959	22.309
20	NM_002318.3_cds_NM_002309.1_1	191	147	266	170	14.538	18.735
21	NM_020983.3_cds_NM_066278.3_1	136	140	224	225	12.672	20.615
22	NM_005429.5_cds_NM_005420.1_1	116	97	116	90	16.905	16.349
23	NM_006010.6_cds_NM_006001.5_1	59	27	59	37	15.665	17.486
24	NM_001323081.2_cds_NM_001307739.1_1	169	78	230	108	14.05	19.226
25	NM_001282599.2_cds_NM_001269528.1_1	174	75	227	108	14.188	19.088
26	NM_004389.4_cds_NM_004380.2_1	265	111	351	178	13.834	19.463
27	NM_001164883.2_cds_NM_001158355.1_1	256	100	337	167	13.782	19.512
28	NM_0012860.2_cds_NM_001269529.1_1	154	70	212	101	13.879	19.393
29	NM_001282598.2_cds_NM_001269527.1_1	275	117	360	187	13.901	19.397
30	NM_001174147.2_cds_NM_001167618.1_1	88	73	124	117	13.317	19.934
31	NM_002316.4_cds_NM_002307.2_1	86	72	122	115	13.3	19.949
32	NM_001174146.2_cds_NM_001167617.1_1	86	72	128	120	12.94	20.311
33	NM_182644.3_cds_NM_872585.1_1	172	111	152	104	17.469	15.802
34	NM_005233.6_cds_NM_005224.2_1	317	180	301	185	16.836	16.463
35	NM_001282597.3_cds_NM_001269526.1_1	280	119	369	185	13.941	19.357
36	NM_001271082.2_cds_NM_001258011.1_1	68	39	122	82	11.432	21.795
37	NM_203401.2_cds_NM_981946.1_1	42	16	57	34	12.889	20.222
38	NM_007516.4_cds_NM_476508.2_1	784	394	1115	678	13.212	20.11
39	NM_203399.2_cds_NM_981944.1_1	42	16	57	34	12.889	20.222
40	NM_001145454.3_cds_NM_001138926.1_1	40	28	57	49	12.952	20.19

Table I: Nucleotide composition of genes responsible for esophagus cancer

ISSN 0973-2063 (online) 0973-8894 (print)
Accession	Description	Length (bp)	GC%	Similarity			
NM_003563.4_cds	NP_003554.1_1	42	16	57	34	12.889	20.222
NM_004369.4_cds	NP_004360.2_1	837	429	1196	715	13.279	20.044
NM_033120.4_cds	NP_149111.1_1	80	50	163	158	9.587	23.673
NM_001198754.2_cds	NP_001185683.1_1	25	7	25	12	15.238	17.619
NM_001198756.1_cds	NP_001185683.1_1	25	7	25	12	15.238	17.619
NM_001198755.1_cds	NP_001185684.1_1	25	7	25	12	15.238	17.619
NM_031498.2_cds	NP_1136861.1_1	25	7	25	12	15.238	17.619
NM_057165.5_cds	NP_476506.3_1	307	170	451	309	12.843	20.463
NM_057164.5_cds	NP_476505.3_1	260	142	370	264	12.922	20.379
NM_057166.5_cds	NP_476567.3_1	868	334	970	580	13.224	20.096
AF268198.1_cds	AAK27795.1_1	26	22	22	15	18.605	14.341
NM_017671.5_cds	NP_960141.3_1	197	140	199	141	16.568	16.716
NM_052923.2_cds	NP_443204.1_1	64	53	98	132	11.207	22.031
NM_173452.2_cds	NP_775628.1_1	51	56	98	83	12.341	20.877
NM_017729.4_cds	NP_601999.3_1	109	68	219	200	9.883	23.395
NM_032626.6_cds	NP_116015.2_1	45	26	29	18	19.888	13.165
NM_003665.4_cds	NP_003656.2_1	52	57	102	88	12.111	21.111
NM_018703.4_cds	NP_961173.1_1	631	300	481	346	17.643	15.672
NM_133180.3_cds	NP_573444.2_1	126	87	270	240	9.807	23.481
NM_006910.5_cds	NP_008841.2_1	645	308	489	350	17.717	15.598
NM_022454.4_cds	NP_071899.1_1	59	50	154	151	8.755	24.498
NM_181892.4_cds	NP_871621.1_1	46	32	37	33	17.45	15.66
NM_181890.3_cds	NP_871619.1_1	46	31	35	35	17.342	15.766
NM_001300795.2_cds	NP_001287724.1_1	40	28	23	27	19.048	14.006
NM_181893.3_cds	NP_871622.1_1	45	34	34	36	17.556	15.556
NM_001001420.3_cds	NP_001001420.1_1	135	95	116	119	16.452	16.81
NM_181887.3_cds	NP_871616.1_1	46	31	35	35	17.342	15.766
NM_001001419.3_cds	NP_001001419.1_1	135	95	116	119	16.452	16.81
NM_181891.3_cds	NP_871620.1_1	46	31	35	35	17.342	15.766
NM_005903.7_cds	NP_005894.3_1	135	95	116	119	16.452	16.81
NM_003340.6_cds	NP_003331.1_1	46	31	35	35	17.342	15.766
NM_181892.2_cds	NP_871618.1_1	46	31	35	35	17.342	15.766
NM_181888.3_cds	NP_871617.1_1	46	31	35	35	17.342	15.766
NM_181886.3_cds	NP_871615.1_1	46	31	35	35	17.342	15.766
NM_006825.4_cds	NP_008616.2_1	129	79	226	168	11.498	21.78
NM_174911.5_cds	NP_777571.1_1	55	40	114	101	10.182	23.044
NM_005416.3_cds	NP_005407.1_1	46	20	45	58	12.941	20.196
NM_001097892.9_cds	NP_001091058.1_1	46	20	45	58	12.941	20.196
AF228422.1_cds	AAK200708.1_1	27	14	23	19	16.27	16.667
NM_001262464.2_cds	NP_001273175.1_1	78	44	106	119	11.686	21.552
NM_00126245.2_cds	NP_001273174.1_1	80	44	106	120	11.776	21.462
NM_178502.4_cds	NP_848597.1_1	78	44	106	119	11.686	21.552
Sl. No	Gene	ENC					
-------	--	------					
1	NM_001006081.2_cds_NP_001005980.1_1	40.079					
2	NM_001006081.2_cds_NP_001005980.1_1	40.079					
3	NM_001006081.2_cds_NP_001005980.1_1	40.079					
4	NM_001006081.2_cds_NP_001005980.1_1	40.079					
5	NM_001006081.2_cds_NP_001005980.1_1	40.079					
6	NM_001006081.2_cds_NP_001005980.1_1	40.079					
7	NM_001006081.2_cds_NP_001005980.1_1	40.079					
8	NM_001006081.2_cds_NP_001005980.1_1	40.079					
9	NM_001006081.2_cds_NP_001005980.1_1	40.079					
10	NM_001006081.2_cds_NP_001005980.1_1	40.079					
11	NM_001006081.2_cds_NP_001005980.1_1	40.079					
12	NM_001006081.2_cds_NP_001005980.1_1	40.079					
13	NM_001006081.2_cds_NP_001005980.1_1	40.079					
14	NM_001006081.2_cds_NP_001005980.1_1	40.079					
15	NM_001006081.2_cds_NP_001005980.1_1	40.079					
16	NM_001006081.2_cds_NP_001005980.1_1	40.079					
17	NM_001006081.2_cds_NP_001005980.1_1	40.079					
18	NM_001006081.2_cds_NP_001005980.1_1	40.079					
19	NM_001006081.2_cds_NP_001005980.1_1	40.079					
20	NM_001006081.2_cds_NP_001005980.1_1	40.079					
21	NM_001006081.2_cds_NP_001005980.1_1	40.079					
22	NM_001006081.2_cds_NP_001005980.1_1	40.079					
23	NM_001006081.2_cds_NP_001005980.1_1	40.079					
24	NM_001006081.2_cds_NP_001005980.1_1	40.079					
25	NM_001006081.2_cds_NP_001005980.1_1	40.079					
26	NM_001006081.2_cds_NP_001005980.1_1	40.079					
27	NM_001006081.2_cds_NP_001005980.1_1	40.079					
28	NM_001006081.2_cds_NP_001005980.1_1	40.079					
29	NM_001006081.2_cds_NP_001005980.1_1	40.079					
30	NM_001006081.2_cds_NP_001005980.1_1	40.079					
31	NM_001006081.2_cds_NP_001005980.1_1	40.079					
32	NM_001006081.2_cds_NP_001005980.1_1	40.079					
33	NM_001006081.2_cds_NP_001005980.1_1	40.079					
34	NM_001006081.2_cds_NP_001005980.1_1	40.079					
35	NM_001006081.2_cds_NP_001005980.1_1	40.079					
36	NM_001006081.2_cds_NP_001005980.1_1	40.079					
37	NM_001006081.2_cds_NP_001005980.1_1	40.079					
38	NM_001006081.2_cds_NP_001005980.1_1	40.079					
39	NM_001006081.2_cds_NP_001005980.1_1	40.079					
40	NM_001006081.2_cds_NP_001005980.1_1	40.079					
41	NM_001006081.2_cds_NP_001005980.1_1	40.079					

Table 3: Effective number of codon (ENC) values of the esophageal cancer responsible genes. ENC ranged from 33.78 to 56.98, indicates low codon usage bias.
corroborated well with analysis (cluster analysis to validate the findings of our correspondence composition u altogether confirm the relative contribution of nucleotide were found to be near the center region. These findings majority of the codons are close to the two axes, whereas, genes dots represent codons. From variation. In Variation in codon usage to explore the variation in synonymous codon usage we did Variation in codon usage, respectively. Axis 1 and axis 2 contributes 27.5% and 11.6% of the total variation, respectively.

Table 4: Average RSCU score of the codons. Codons with green colored values represents over-represented codons, red color represents frequently used codons. Nine codons namely GTA, TCG, ATA, TTA, CCG, CGT, ACG, GCG and CTA were found to be under-represented (RSCU<0.6).

Codon	RSCU										
GCA	0.9584	AAC	1.1415	GGA	0.8584	CTC	1.1065	CCC	1.1091	ACC	1.3616
GCC	1.5344	AAT	0.8584	GGC	1.5346	CTG	2.2892	CCG	0.4461	ACC	0.4826
GCG	0.5144	GAC	1.0895	GGG	0.8641	CTT	0.8382	CCT	1.2354	ACT	0.7823
GCT	0.9926	GAT	0.9104	GGT	0.7427	TTA	0.4302	AGC	1.733	TAC	1.0778
AGA	1.6054	TGC	0.8757	CAC	1.049	TGG	0.793	AGT	0.7685	TAT	0.8489
AGG	0.8593	TGT	1.0266	CAT	0.8280	AAA	0.8134	TCA	0.7666	GTA	0.3634
CGA	0.6499	CAA	1.1750	ATA	0.4991	AAG	1.1865	TCC	1.2710	GTC	0.8839
CGC	0.8451	CAG	2.8249	ATC	1.4112	TTC	1.1310	TCG	0.3958	GTG	1.8612
CGG	1.4224	GAA	1.6304	ATT	1.1796	TTT	0.8689	TCT	1.0647	GTT	0.8913
CGT	0.4461	GAG	2.3695	CTA	0.542	CCA	1.2092	ACA	1.3733		

Figure 1: Correspondence analysis (COA) of EC-responsible genes based on the RSCU score of 59 codons. Black color indicates genes, blue-colored dots represent synonymous codons. Axis 1 and axis 2 contributes 27.5% and 11.6% of the total variation, respectively.

Variation in codon usage: To explore the variation in synonymous codon usage we did correspondence analysis based on the RSCU score of 59 codons across the 82 EC-responsible genes. Axis 1 and axis 2 were found to be the major contributors i.e. 27.5% and 11.6% of the total CUB variation. In Figure 1 black dot represents the genes and the blue dots represent codons. From Figure 1 it is evident that the majority of the codons are close to the two axes, whereas, genes were found to be near the center region. These findings altogether confirm the relative contribution of nucleotide composition under the influence of mutation pressure (major) in shaping the observed codon usage pattern [24]. Next, we did cluster analysis to validate the findings of our correspondence analysis (Figure 2). The findings of our cluster analysis corroborated well with the COA result.

Neutrality plot analysis: To evaluate the contribution of two major forces in shaping the codon usage pattern of EC-responsible genes we plotted GC12 vs GC3. We observed a significant positive correlation between them (r=0.684, p<0.01). The regression coefficient of GC12 on GC3 is 0.0246 (Figure 3). Previous reports suggest that if the regression coefficient in the neutrality plot is greater than 0.5 then there is a significant contribution of mutation pressure [25]. However, here we observed the opposite thereby our neutrality analysis suggests the dominance of selection pressure in shaping the CUB of EC-responsible genes.

Parity rule 2 (PR2) bias plot analysis

Mutation forces the random use of nucleotides at the synonymous codon position whereas selection pressure does not force the equal use of nucleotides [26]. In the PR2 plot, if the genes coincide in the center region then it suggests the dominance of mutation pressure whereas deviation from the center indicates the contribution of selection pressure. From figure 4 it is seen that the majority of the EC-responsible genes are far away from the center region. The average coordinates of A3/(A3+T3) and G3/(G3+C3) was 0.6308 and 0.5729, respectively. Therefore, in support of COA, our PR2 plot analysis further confirms the supremacy of selection pressure in shaping the CUB of EC-responsible genes.

Gene expression and its relation with various skews:

CAI was used to estimate the expression value of EC-responsible genes. The genes showed CAI value within the range of 0.705 to 0.863, which suggests higher expression. GRAVY analysis revealed that 5% of genes are hydrophobic and 95% of genes are hydrophilic. The aromaticity score can determine stability of the gene. A high aromaticity value signifies a more stable gene structure. 21% of genes show a high aromaticity value. CAI showed a positive correlation of 0.361 and 0.190 (p<0.05) with AT and GC skewness, respectively. Where as, CAI showed a negative correlation with GRAVY and aromaticity score of the EC-responsible genes (GRAVY: r= -0.404, p<0.05; aromaticity: r= -0.357, p<0.05). Amino acid composition analysis revealed that leucine is the highest used amino acid whereas tryptophan is the lowest used amino acid. Serine, alanine, glutamine, and lysine are the frequently used amino acids. Altogether, these findings suggest that the skews played a significant role in modulating the CUB and thereby the gene expression.
Figure 2: Cluster analysis for genes responsible for esophageal cancer. The gene cluster was constructed based on the neighbor joining method.

Figure 3: Neutrality plot analysis for genes responsible for esophageal cancer

Figure 4: PR2 plot of genes responsible for esophageal cancer

Codon context analysis:
Recently it became evident that not only preference of single codon selection but also the codon pair influences the genes expression and mRNA structure [27, 28]. From our analysis, it was observed that 56.73% of codon pairs are over-represented and 26.26% of codon pairs are under-represented. 16.99% of codon pairs are absent in the genes. Heat map for the codon context analysis is shown in Figure 5. The top 10 over-represented codon pairs are GAG-GAG, GAG-CUG, GAG-AAG, CUG-GAG, AAG-AAA, CAG-AAG, GAU-GAC, GAA-GAA, GUG-GAG, and AAA-GAA. Similarly, the top 10 under-represented codon pairs are ACG-GAU, ACG-CGU, ACG-CGG, ACG-CGC, ACG-CAA, ACG-AGG, ACC-CAA, ACA-UCA, ACA-CUA, and ACA-CCA.

Figure 5: Heat map representing the codon pair context pattern of the esophagus cancer-related genes. Green, black and red-colored dots represents over, absent, and under-represented codon pairs, respectively

Discussion:
A diverse array of mechanisms regulates protein biogenesis. This phenomenon is more complex in multicellular organisms. A vast range of studies reported the role of transcriptional regulation in disease progression. Here, in the present study, we have done a detailed analysis of the nucleotide composition and their variation resulting in CUB between the genes responsible for the...
development of esophageal cancer. Next, we did a systematic comparison with the results obtained by other researchers on the same genome or other genomes to identify similarities and differences. This will help to get new molecular insights into esophageal cancer. EC-related genes showed higher use of GC as compared to AT at the synonymous positions as well as in overall gene compositions. Previous reports suggest that the GC-rich genome prefers to use GC-ending codons whereas the AT-rich genome prefers to use AT-ending codons [29]. Therefore, our findings revealed that the nucleotide composition of the EC-related genes followed a similar pattern, corroborated well with the existing CUB reports on human genes [30]. GC composition pattern of a gene greatly influences its codon usage pattern [31]. EC-responsive genes showed an average ENC value of 49.28, which is significantly higher than 35. Extensive research on CUB proposed that ENC>35 should be considered as low CUB [32, 33]. In support of the ENC pattern observed in the CNS responsible genes, we observed low CUB of the EC-responsive genes [30]. The overall low CUB observed in multicellular organisms might be related to the replication process as different cell types have different codon preferences [34]. Transcription factor SOX17 showed the highest CUB whereas, fermitin family homolog1 showed the least CUB. Interestingly, a significant positive correlation was observed between the GC3 and ENC (r=0.56, p <0.05), suggest genes with higher GC3 have a lower CUB. A similar finding was reported by Malaker et al 2020 in a study conducted on mammalian genes [23]. Furthermore, GC showed strong positive correlations with GC endings codons (Table 2). Therefore, our findings confirmed the relative contribution of GC compositional constraints under the strong mutational pressure in shaping the codon usage pattern of human genes. RSCU analysis revealed the over-representation of GAA, AGA, AGC, GTG, CTG, GAG, and CAG. Similarly the codons GTA, TCG, ATA, TTA, CGG, CTG, AGC, GCC, and CTA as under-represented. 66.66% and 44.44% GC-ending codons were found in over and under-represented codon groups. This confirms the significance of AT nucleotides in modulating the CUB in association with GC compositional constraints. Correspondence analysis identified the contribution of forces behind the observed CUB of EC-responsive genes, where mutation pressure showed dominance over selection pressure. Although a few codons and genes showed scattered distribution i.e. away from the center and major axes, respectively. Cluster analysis supported the COA analysis. In support of the findings reported by Zhang et al [35] here we hypothesized that the observed variation might be due to the prevalence of different EC-responsive genes in different cell types. Mutation pressure causes the proportional use of nucleotides i.e. A=T and G=C. Neutrality and PR2 plot revealed the disproportional use of nucleotides at synonymous codon positions. EC-responsive genes showed higher use of A/G nucleotides, suggest the dominance of selection pressure. Uddin et al observed higher use C at the synonymous codon position for CNS genes [30]. Therefore, the PR2 bias pattern observed in the present study can be used as fingerprints for the EC-responsive genes, which requires further validation and systematic comparison with other diseases. Estimation of the gene expression revealed that all the EC-responsive genes are highly expressive in nature (based on CAI value). A few previous reports confirmed the role of various skews in gene expression [36]. Similarly the EC-responsive genes studied here showed significant relationship with AT-skew, GC-skew, GRAVY, and aromaticity. Furthermore, findings of our codon context analysis revealed that GAN-NNG as the frequent contexts present in EC-responsive genes. Compositional properties of a gene affect the CUB and gene function [37].

Conclusion:
We show that CAG and GTA are over-represented and under-represented codons, respectively in genes linked with esophageal cancer. Correspondence analysis, neutrality plot, and parity rule 2 plot analysis confirmed the dominance over mutation pressure in modulating the codon usage pattern of genes linked with esophageal cancer.

Acknowledgments:
Authors are also grateful to the Department of Electronics Communication and Engineering, Gauhati University, Assam, India for providing the necessary research facilities to carry out this work.

Conflicts of interest:
The authors declare that no conflict of interest exists for this work.

References:
[1] Qiux TEF et al. Molecular Cell, 2015. 59:149. [PMID: 26186290]
[2] Lynch M, Proceedings of the National Academy of Sciences, 2010. 107:961. [PMID: 20080596]
[3] Lynch M TRENDS in Genetics, 2010. 26: 345. [PMID: 27739533]
[4] Supek F et al. Cell, 2014. 156:1324. [PMID: 24630730]
[5] Hodgman et al. Nucleic acids research, 2020. 48:11030. [PMID: 33045750]
[6] Sauna ZE & C Kimchi-Sarfaty, Nature Reviews Genetics, 2011. 12:683. [PMID: 21878961]
[7] Fornasiero EF & S O Rizzoli, BMC genomics, 2019. 20: 1. [PMID: 31288782]
[8] Miller JE et al. Proceedings of the Pacific Symposium. 2018. 23:365. [PMID: 29218897]
[9] Son H et al. Scientific reports, 2017. 7: 1. [PMID: 29079855]
[10] Zhou W et al. Medicine, 2020. 99: e20340. [PMID: 32443386]
[11] Wang X et al. Oncology letters, 2018. 15: 8983. [PMID: 29848151]
[12] Mathur P et al. JCO Global Oncology, 2020. 6:1063. [PMID: 32623076]
[13] Yu VZ et al. AACR, 2016:1158
[14] Wright F Gene, 1990. 87:23. [PMID: 2110097]
[15] Sharp PM & WH LI Journal of molecular evolution, 1986. 24: 28. [PMID: 3104616]
[16] Sueoka N Proceedings of the National Academy of Sciences, 1988. 85: 2653. [PMID: 3357886]
[17] Mazumder GA et al. Infection, Genetics and Evolution, 2018. 87:128. [PMID: 29066170]
[18] Greenacre MJ 1984 Academic Press, BOOK title needed London.http://www.carme-n.org/?sec=books5
[19] Moura G et al. Genome biology, 2005. 6:R28. [PMID: 15774029]
[20] Vetrivel U et al. Bioinformation, 2007. 2:62. [PMID: 18188422]
[21] Supek F & K Vlahoviček Bioinformatics, 2004. 20: 2329. [PMID: 15059815]
[22] Hammer Ø et al. Palaeontologia electronica, 2001. 4: 1:
[23] Malakar AK et al. Genomics, 2020. 112: 1319. [PMID: 31377427]
[24] Wei L et al. BMC evolutionary biology, 2014. 14: 1 [PMID: 25515024]
[25] Deb Bet al. Archives of virology, 2020. 165: 557. [PMID: 32036428]
[26] Sueoka N, Cold Spring Harb Symp Quant Biol. 1961.26:35. [PMID: 13918160]
[27] Moura G et al. Plos one, 2007. 2: e847. [PMID: 17786218]
[28] Moura G et al. Genome biology, 2005. 6: 1. [PMID: 15774029]

[29] Sun Y et al. Genome biology and evolution, 2017. 9:2560. [PMID: 27540085]

[30] Uddin A & S. Chakraborty, Molecular neurobiology, 2019. 56:1737. [PMID: 29922982]

[31] Li J et al. G3: Genes, Genomes, Genetics, 2015. 5: 2027. [PMID: 26248983]

[32] Wang L et al. PLoS One, 2018. 13: p. e0194372. [PMID: 29584741]

[33] He Z et al. Viruses, 2019. 11: 752. [PMID: 31416257]

[34] Jenkins GM & EC Holmes, Virus research, 2003. 92: 1. [PMID: 12606071]

[35] Zhang Z et al. Archives of virology, 2013. 158: 145. [PMID: 23011310]

[36] Fujimori S et al. BMC genomics, 2005. 6: 1. [PMID: 15733327]

[37] Garcia JA et al. Molecular phylogenetics and evolution, 2011. 61: 650. [PMID: 21864693]

Edited by P Kangeane

Citation: Bordoloi & Nirmala, Bioinformation 17(8): 731-740 (2021)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
