A Coupled Karhunen–Loève and Anisotropic Sparse Grid Interpolation Method for the Probabilistic Load Flow Problem

Brandon Johnson, Student Member, IEEE, Nathan L. Gibson, and Eduardo Cotilla-Sanchez, Senior Member, IEEE

Abstract—In the traditional load flow analysis, a key assumption is that the input variables, i.e., generator output and customer demand, are fixed in time and the associated response has no variability. This assumption, however, is no longer valid as the adoption of renewable energy resources add more variability and uncertainty to the modern electrical system. Addressing these concerns is the definition of the Probabilistic Load Flow (PLF) problem. The challenge of the PLF problem lies in handling high-dimensional input uncertainties and the non-linearity of the load flow equations. The most straightforward way to address these problems, but at the cost of computational time, is to perform a Monte Carlo method. This work, however, solves these problems—accuracy, high-dimensionality, and computational time—with a coupled Karhunen–Loève (KL) expansion and Anisotropic Sparse Grid algorithm. The proposed method is implemented and tested on the IEEE 118-bus test system and a modernized version of the IEEE Reliability Test System–1996, the Reliability Test System–Grid Modernization Lab Consortium (RTS-GMLC). Results for the 194-dimensional case show a decrease in computational time when compared to the 10,000 sample Monte Carlo method given a bound on mean and standard deviation error.

Index Terms—Probabilistic power flow, sparse grid interpolation, stochastic collocation, Karhunen–Loève expansion, uncertainty quantification.

I. INTRODUCTION

Load flow studies are one of the most essential tools for grid operators because they provide a clear picture of the operating conditions of the power system. Traditionally, the solution to a load flow analysis is assumed to be deterministic; that is, the system variables contain no randomness. In recent years, distributed energy resources, such as wind and solar, are being adopted at an increasing rate causing the power system to be subjected to increasing levels of variability. The intrinsic variability of renewable resources stems from the inability to accurately predict local weather patterns at relatively small and discrete time-steps. As a result of these changes in the power system, it is no longer sufficient to assume that both generation and demand are constants in the load flow problem. The reality is that it is much more accurate to assess the power systems response to a range of possible inputs.

The Probabilistic Load Flow (PLF) problem was first proposed by Borkowska [1] with the goal of handling uncertainties, e.g., variability in the energy supply, within a power flow analysis. Since then, there are two major ways of solving the PLF problem: numerically, i.e., using a Monte Carlo method [2], [3], or analytically, i.e., using a convolutional method [4]–[7]. As in the study of other complex systems, in power systems Monte Carlo methods allow for a simplistic approach for solving the PLF, but come with the downside of high computational burden. As a result of this characteristic, Monte Carlo methods are more suited as a baseline for checking the accuracy of other methods. Analytical methods, on the other hand, are mathematically complex and are subject to inaccuracies that vary depending on assumptions and approximations, but have the capability to solve the PLF problem in real time—as it is needed in operations and control.

The objective of analytical methods is to obtain the probability distribution function (PDF) and cumulative distribution function (CDF) of the state vector, i.e., active and reactive power injections, voltage, and angle. The difficulty of this problem lies within the non-linear nature of the load-flow equations and that the uncertain parameters that affect the power system are unlikely to be independent. To remedy these two problems researchers have employed these two relatively simple steps: 1) linearize the load flow equations and 2) assume that the uncertain parameters are independent; these two steps alone enable the use of convolutional techniques. Unfortunately, convolutional methods have three major downsides: 1) linearizing the power-flow equations around the operating point is sufficient only when deviations are close to the operating point 2) in most cases, the assumption of statistical independence of input variables is often false [8] and 3) convolutional techniques require a large amount of memory. For example, in the case where two random variables are represented by discrete functions with \(k \) impulses, the resulting convolution will have \(k \) times \(k \) impulses [5], [9].

Recent work in this area has attempted to forego the convolutional method and move in favor of methods that seek to approximate the target output variables using cumulant and polynomial expansion methods. References [9], [10] use the properties of cumulants—an alternative to moments—and the Gram-Charlier expansion to reduce the computation time while still maintaining a comparable accuracy to that of Monte Carlo methods. References [11], [12] have used a polynomial chaos expansion to reformulate the stochastic problem into a purely deterministic one without the use of random sampling. Similarly, Sun et. al [13] applied a sparse polynomial chaos expansion to a small test system with four wind farms and 21 random load sources. Reference [14] uses perturbation methods, derived from Galerkin methods, to resolve issues using polynomial approximations of the load flow equations. While the main benefit of these methods are the significant reduction in computation time, the assumptions made to calculate the output PDF lead to inaccuracies.
A third group of methods, called approximation methods, seek to leverage the efficiency of deterministic solvers to build the output PDFs, much like Monte Carlo methods, but with far fewer simulations. The first method of this kind—introduced in 1975 by Rosenblueth—is called the Point Estimate Method (PEM) \cite{15,16}. The PEM bundles statistical information using the first few central moments of the input variable into \(K \) points for each variable, called concentrations. Rosenblueth’s original work showed that the probabilistic problem can be reduced to \(2^m \) deterministic simulations, where \(m \) is the number of random input variables. Since then, adaptations have been made to the original problem that can reduce the number of simulations to as little as \(2m + 1 \) while still retaining a high-level of accuracy \cite{17–19}. While the PEMs possess the speed of the analytical solutions and the accuracy of Monte Carlo methods, they can only produce statistical moment information of the output variables. One solution to overcome this problem is to employ Stochastic Collocation (SC) methods.

While technically an approximate method, SC methods are able to produce the necessary PDFs and CDFs to assess the risk of a system with uncertain input variables. Much like PEMs, one creates a set of nodes, called collocation points, and then the model is solved using a deterministic solver at each node. One approach to the SC problem is to use the interpolation approach with Tensor Grids \cite{20,21}. Given the high-dimensionality of the PLF problem, it is more practical to use a subset of full Tensor Grids called Smolyak sparse grids \cite{22}. Sparse grids are capable of reducing the impact of high-dimensionality that afflicts other approximation methods. The authors in \cite{23,24} use a dimension-adaptive sparse grid interpolation, in conjunction with Copula Theory principles, to explore the impact of dependent random variables on the PLF problem. While being fairly accurate, this method is computationally burdensome due to having to determine the sparse grid as the problem evolves. This rules out the option of parallelizing the deterministic load flow simulations due to the interdependence of each simulation.

We should note that sparse grids alone do not reduce the dimension of the problem, therefore, we propose to apply the Karhunen–Loève (KL) expansion \cite{25–27} to the random fields. The KL-expansion is a dimension reduction technique that, much like Principal Component Analysis (PCA) \cite{28}, seeks to represent a random process as a series combination of a complete set of deterministic functions with corresponding random coefficients. Our work also proposes coupling the KL-expansion with an anisotropic sparse grid \cite{30}, a more generalized Smolyak sparse grid, further improving the performance of approximate methods. By reducing the number of dimensions and assigning importance to each dimension, our method provides a significant computational savings while maintaining a comparable accuracy to existing methods. Furthermore, the PDF and CDF of the output can be computed directly by using the sparse grid interpolant.

The remainder of the paper is organized as follows. Section \textbf{II} includes a mathematical formulation for the KL-expansion. Section \textbf{III} provides a formal background for SC and the mathematical framework for anisotropic sparse grids. Then, in Section \textbf{IV} we discuss how both the KL-expansion and anisotropic sparse grids are coupled to solve the PLF problem. Thereafter, in Section \textbf{V} we outline the implementation and metrics used for accuracy analysis. Lastly, Section \textbf{VI} shows the results of implementing the proposed method and the concluding remarks follow in Section \textbf{VII}.

II. Dimension Reduction and the Karhunen–Loève (KL) Expansion

A. Mathematical Formulation

We begin by assuming there is a (spatial) correlation among the random input variables, and thus treat each as a sample of an underlying spatial stochastic process, which we represent efficiently using a KL-expansion, i.e., a series expansion in orthogonal eigenfunctions of the covariance structure. For example, multiple independent solar farms (in a given region) can be treated as a random process. One can treat them as either temporally (start producing near the same time) or spatially (similar solar irradiance, cloud coverage, etc.) correlated where the actual value of solar production is a random variable based on several other random variables. Consider the random process with two variables \(Y(x, \omega) \) where \(x \) is an index parameter (representing either time or space) and the outcome \(\omega \in \Omega \), where \(\Omega \) is the space of the underlying random variables. The random process \(Y(x, \omega) \) has mean \(\bar{Y}(x) \) and covariance function \(C(x, s) = \text{cov}(Y(x), Y(s)) \). Then, \(Y(x, \omega) \) has the orthogonal decomposition

\[Y(x, \omega) = \bar{Y}(x) + \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(x) \xi_n(\omega), \]

where \(\{(\lambda_n, \phi_n)\}_{n=1}^{\infty} \) are the eigenvalues and orthogonal eigenfunctions, which are the solutions to a Frendholm integral equation of the second kind, defined as

\[\lambda \phi(s) = \int C(x, s) \phi(x) dx. \]

The random variables \(\{\xi_n\}_{n=1}^{\infty} \) in (1) are uncorrelated and satisfy

\[E[\xi_n] = 0, \quad \text{cov}[\xi_n, \xi_k] = \delta_{nk}, \quad n, k \geq 1, \]

where \(\delta_{nk} \) is the Kronecker-delta function. It is often practical to truncate the KL-expansion in (1) to a finite number of terms \(d \). The truncated KL-expansion then becomes

\[Y(x, \omega) \approx \bar{Y}(x) + \sum_{n=1}^{d} \sqrt{\lambda_n} \phi_n(x) \xi_n(\omega), \quad d \geq 1. \]

The number of \(d \) terms to keep in the truncated KL-expansion is often determined by examining the decay rate of the eigenvalues \(\lambda_n \) as the index \(n \) increases. The decay rate of the eigenvalues depends inversely on the correlation length of the random process \cite{21}. This implies that having a long correlation length (i.e., strongly correlated variables) results in a fast decay of the eigenvalues. Conversely, an uncorrelated process with zero correlation length proves to be the limit of this method in which there is no eigenvalue decay.
It is common to select d such that the remaining eigenvalue contributions are negligible. In practice, it is often possible capture 90% of the input variability with only 10 variables.

B. The Need for Stochastic Collocation

While we will cover stochastic collocation in more detail in Section [III], it is important to discuss why the KL-expansion is necessary in the first place. Stochastic collocation methods, like PEMs, are very desirable because they help solve the PLF problem non-intrusively. That is, one can leverage fast deterministic solvers on a given set of samples or collocation points. In this way, PEMs may also be considered a collocation method. Unfortunately, in large problem spaces collocation methods suffer from something called the “curse of dimensionality”, i.e., the problem scales poorly in high dimensions. One way to overcome this limitation is to use a sparse set of collocation points. Although this lessens the impact caused by high-dimensionality, it does not effectively reduce the number of dimensions in the original problem space. It is in this way how—by using the KL-expansion to reduce the dimensionality—collocation methods become computationally tractable. We choose each ξ_n in (4) to be an independent random variable uniformly distributed over the interval $[-1, 1]$. This then allows us to use quadrature rules (please see Section [IV]) to deterministically sample each ξ_n; thus, mapping the stochastic problem into a deterministic one. Note that by choosing ξ_n to be uniformly distributed over $[-1, 1]$ means one must scale the KL-expansion by $\sqrt{3}$ to ensure that each variable has a variance of 1.

III. STOCHASTIC COLLOCATION AND TENSOR GRID INTERPOLANTS

The goal of SC methods is to solve a set of governing equations (e.g., a set of partial differential equations) at discrete nodes called collocation points. In cases where the input distributions are compatible with Askey scheme orthogonal polynomials, it is more efficient to use cubature rules to determine the nodal set [21]. With this in mind, the following section serves as the mathematical foundation for determining the nodal set used for tensor grid and sparse grid collocation methods. Please note that the mathematics presented in the following sub-sections are only a brief summary of the existing literature. For particularly interested readers, we would like to direct you to [21], [22], [30]–[32].

A. Tensor Product Collocation

For multivariate cases with dimensionality $d > 1$, for any $1 \leq i \leq d$, let Q_{m_i} be an interpolating operator such that

$$Q_{m_i}[f] = \Pi_{m_i} f(Z_i) \in P_{m_i}(Z_i),$$

is an interpolating polynomial of degree m_i, for a given function f in the Z_i, variable by using $m_i + 1$ distinct nodes in the set $\Theta^{m_i} = \{Z^{(1)}_i, \ldots, Z^{m_i}_i\}$. Then the most straightforward approach to interpolating f in the entire space $I \subset \mathbb{R}^d$ is to use the tensor product approach. That is,

$$Q_M = Q_{m_1} \otimes \cdots \otimes Q_{m_d},$$

and the nodal set is

$$\Theta_M = \Theta^{m_1}_1 \times \cdots \times \Theta^{m_d}_d,$$

where the total number of nodes is $M = m_1 \times \cdots \times m_d$. In the case where the total number of points $M = m^d$ grows very fast for large d. Again, this is commonly referred to as the “curse of dimensionality.”

B. Sparse Grid Collocation

A much more practical approach rather than the full Tensor Product Collocation are Smolyak sparse grids [22]. The Smolyak sparse grid construction is based on the tensor product construction but they only represent a subset of the full tensor grid. The construction of the grid takes the form

$$Q_N = \sum_{N-d+1 \leq |i| \leq N} (-1)^{N-|i|} \begin{pmatrix} d-1 \\ N-|i| \end{pmatrix} \cdot (Q_{i_1} \otimes \cdots \otimes Q_{i_d}),$$

where $N \geq d$ is an integer denoting the level of the construction. The nodal set, i.e., the sparse grid, is

$$\Theta_M = \bigcup_{N-d+1 \leq |i| \leq N} (\Theta^{i_1}_1 \times \cdots \times \Theta^{i_d}_d).$$

It is typically desired for the grid to take a nested form. One popular choice for a nested grid are the Clenshaw-Curtis nodes, which are the extrema of the Chebyshev polynomials, and are defined as

$$Z^{(i)}_j = -\cos \frac{\pi (j-1)}{m^k_i - 1}, \quad j = 1, ..., m^k_i,$$

where an additional index is introduced via the subscript k, often described as the level of the Clenshaw-Curtis grid and meaning that a higher level comes with a finer grid. While there is not a closed form expression for the total collocation points M in terms of k and d, in high-dimensional problems the total number of points is estimated by

$$M \sim 2^k d^k / k! \quad d \gg 1.$$
C. Anisotropic Sparse Grid Collocation

Until now the focus of sparse grids has been on methods that treat each dimension isotropically; that is, each dimension is treated equally. This assumption, however, is only valid for problems where there is either a weak dimensional dependence or that dependence is unknown. If, on the other hand, the problem exhibits a strong dimension-dependent variation then it is desirable to use an anisotropic formulation of the sparse grid problem [30], [33].

Let \(\mathbf{i} \) be a \(d \)-dimensional level vector where each dimension \(n \) is defined by \(i_n \in \mathbb{N}_+ \) and let \(\gamma = \{ \gamma_1, \gamma_2, \ldots, \gamma_d \} \in \mathbb{R}_+^d \) be a \(d \)-dimensional weight vector for each stochastic dimension \(\omega \). We then denote the anisotropic sparse grid of 0-based index \(w \), spatial dimension \(d \), and anisotropy vector \(\gamma \), by \(A(w, d, \gamma) \), which has the form

\[
A(w, d, \gamma) = \sum_{i \in Y_\gamma(w,d)} c_\gamma(i)(Q_{i_1} \otimes \cdots \otimes Q_{i_d}),
\]

with

\[
c_\gamma(i) = \prod_{j \in \{0,1\}^d} (-1)^{|j|},
\]

and the selection region of acceptable product rules defined by

\[
Y_\gamma(w, d) = X_\gamma(w, d) \setminus X_\gamma \left(w - \frac{\gamma}{2}, d \right),
\]

where

\[
X_\gamma(w, d) = \left\{ \mathbf{i} \in \mathbb{N}_+^d, \mathbf{i} \geq 1 : \sum_{n=1}^{d} (i_n - 1) \gamma_n \leq w_\gamma \right\},
\]

with \(\gamma = \min_{1 \leq n \leq d} \gamma_n \) and \(|\gamma| = \sum_{n=1}^{d} \gamma_n \). The selection criteria written in [15] and [16] can be simplified to the following expression:

\[
w_\gamma - |\gamma| < \sum_{n=1}^{d} (i_n - 1) \gamma_n \leq w_\gamma.
\]

As stated before, if each dimension is not equally important, then the anisotropic method can account for that by appropriately setting the weight vector. For instance, if the first dimension contributes 25% more to the variance of the problem than the second, then the ratio of those two components would be \(\gamma_2/\gamma_1 = 4/3 \). This may seem counterintuitive but in the anisotropic formulation a lower weight value means a higher importance. Additionally, generating the isotropic Smolyak sparse grid is a special case of the anisotropic method. This is done by setting the components of the weight vector to be equal, i.e., \(\gamma_1 = \gamma_2 = \cdots = \gamma_d \). In this sense, the anisotropic method is the more generalized version of the sparse grid method.

One more important thing to note about anisotropic sparse grid is that, while the weight vector may be chosen adaptively, as shown in [32], the relative weight vector can also be chosen using a priori or a posteriori information instead. In the former, the weight vector can be found by using information about the eigenpairs of the covariance matrix \((\lambda_n, \phi_n) \). In the latter, the dependence of the \(n \)th input variable can be found by simply “freezing” the other input variables to their mean and observe how the output varies [30].

IV. THE COUPLED KL-EXPANSION AND ANISOTROPIC SPARSE GRID APPLIED TO THE PLF PROBLEM

With the previous sections in mind, Fig. 2 depicts the full proposed solution to the PLF problem through the use of a coupled KL-expansion and anisotropic sparse grid method. First, in Step 1 we compute the means of each input variable, the eigenpairs \((\lambda, \phi) \) using [31], and determine the \(d \) number of eigenpairs to keep. Next, in Step 2 we generate the sparse grid for the stochastic collocation method. As discussed at the beginning of Section III, it is typical to use cubature rules for the generation of the collocation nodes; the most common of which is the Clenshaw-Curtis quadrature rule [34]. The Clenshaw-Curtis quadrature rule theoretically produces the fewest number of nodes and will, thereby, be the fastest. In practice, however, there exist alternative quadrature rules which are better suited for the PLF problem. Fejér’s “second” quadrature [35] is almost identical to the Clenshaw-Curtis quadrature but with one important difference.
That difference is that the endpoints are weighted to zero, i.e., \(f(-1) = 0 \) and \(f(+1) = 0 \). The Fejér second quadrature rule is advantageous because it overcomes a feature of the KL-expansion in which we call “covariance extrapolation”. Instead of strictly interpolating from the random input variables, the KL-expansion treats the data as samples—in space and random space—of a hypothetical true covariance function, then constructs a low-dimensional representation of this function, and re-samples from it. In this way we obtain many more realizations than we originally had. Furthermore, the realizations can potentially have more extreme values than represented in the original data thus giving the appearance of extrapolating the values of the data. By not considering the most extreme samples, we lessen the chance of infeasible input realizations.

After generating the sparse grid in Fig. 2, Step 2 we then assemble the KL-expansion in (1) and sample the independent random variables \(\xi_n \) using the \(m \)th collocation point. Subsequently, in Step 4 we solve the deterministic power flow. In Step 5, after each power flow simulation, we store bus voltages (\(V \)) and angles (\(\delta \)), bus active (\(P_i \)) and reactive (\(Q_i \)) power injections, and branch active (\(P_{ij} \)) and reactive (\(Q_{ij} \)) flows. After saving all variables the algorithm checks for more collocation points to simulate, if there are, \(m \) is incremented and the process is repeated. Otherwise, we proceed to compute relevant statistical information on the output variables to complete the algorithm.

V. EXPERIMENTAL SETUP

A. Software and Toolboxes for PLF and Sparse Grids

A MATLAB toolbox set for each of the sparse grids discussed in this paper were originally developed by J. Burkhardt [36], and we adapted them for use with power systems. In addition to the sparse grid toolboxes, we make use of the open-source power system optimization toolbox MATPOWER [37] to calculate all deterministic load flow solutions. While there exist other commercially available power system analysis software the sharing of data between these toolboxes reduces computational overhead. All simulations were performed on a machine with Intel Core i7-7700HQ CPU 2.8 GHz PC and 16GB of RAM.

B. Metrics for Performance Comparisons

In addition to comparing computational burden for our proposed method we use the following equation for statistical accuracy comparisons:

\[
\varepsilon_{\mu} = \frac{\mu_{\text{MCS}} - \mu_{\text{grid}}}{\mu_{\text{MCS}}},
\]

\[
\varepsilon_{\sigma} = \frac{\sigma_{\text{MCS}} - \sigma_{\text{grid}}}{\sigma_{\text{MCS}}},
\]

where \(\mu_{\text{MCS}} \) and \(\sigma_{\text{MCS}} \) represent the mean and standard deviation of the Monte Carlo simulation method and will be henceforth used as reference values. Similarly, \(\mu_{\text{grid}} \) and \(\sigma_{\text{grid}} \) represent the mean and standard deviation of various sparse grid methods. In addition to error analysis we make use of the Kullback-Leibler divergence (KLD) measure [38] to ascertain the likeness of the output distributions of the sparse grid methods to the Monte Carlo method. The KLD measure is defined as follow

\[
\text{KLD}_f = \sum_x f_{\text{MCS}}(x) \log \left(\frac{f_{\text{MCS}}(x)}{f_{\text{grid}}(x)} \right),
\]

where \(f_{\text{MCS}}(x) \) and \(f_{\text{grid}}(x) \) are the output PDFs of the Monte Carlo method and the various grid methods, respectively. Lastly, the CDFs used for visualization are calculated by creating and sampling the sparse grid interpolant, which approximates [5], using the method in [39].
VI. Experimental Results and Discussion

A. Test Cases for Proposed Methodology

In this paper, we test the proposed methodology on the IEEE 118-bus system [40] and on a modified version of the IEEE Reliability Test System–1996 [41], the Reliability Test System–Grid Modernization Lab Consortium (RTS-GMLC) [42]. For the IEEE 118-bus system we will adopt the assumptions first listed in [2] whereby:

- **Generation units.** Each generation plant is divided into units with the same power production and a forced outage rate of 0.09. A binomial distribution is used to model each generation plant, and the mean of this input random variable is set to the base case power production of the corresponding generation plant.

- **Load demand.** The active and reactive power of the load buses are modeled as normal distributions, whose means equal the base case data, and whose standard deviations are set arbitrarily as follows: 7% from bus #1 to bus #33, 4% from bus #34 to bus #59, 9% from bus #60 to bus #79, and 5% from bus #80 to bus #118.

In total, there are 194 random variables for this test case.

The second test case, the RTS-GMLC, is a product of the U.S. Department of Energy’s initiative to modernize the grid. While much of the test case remains the same as the original RTS, e.g., transmission line parameters, generator ratings, etc., researchers have mapped the synthetic case over the Southern California, Nevada, and Arizona region as shown in Fig. 3. This mapping enables the use of solar and wind resource maps to model the effect of photovoltaic (PV) solar, rooftop photovoltaic (RTPV) solar, concentrated solar power (CSP), wind, and hydro energy sources. A year worth of data for each type of renewable energy is quantized into discrete data points at 1-hour and 5-min intervals. In addition to these generation profiles, the RTS-GMLC dataset includes customer demand which is determined from energy usage data from the various utilities in the region. For this paper we will constrain the problem to using the PV, RTPV, and demand information; totaling 59 random variables.

B. Additional Assumptions and Implementation Specifics

For each test case we choose the number of d dimensions to keep for the truncated KL-expansion such that the percent total contribution of each eigenpair is greater than 90%. It should be noted that eigenpairs for each random input source are computed separately; that is, the covariance matrix is built using spatial information for each generator type (PV, RTPV, etc.) and load. For example, in the RTS-GMLC test case the covariance matrix for the PV data is a 25×25 matrix that explains the joint variability of each PV plant. In the case where the random input source is defined by a PDF and not data, the covariance matrix is built using 10,000 uniformly generated samples of the input source. This assumption leads us to keep 12 and 6 total dimensions for the IEEE 118-bus system and the RTS-GMLC test case, respectively.

Next, we choose the weight vector γ a priori using the recursive relationship $\gamma_1 = 1; \gamma_n = 2\gamma_{n-1}$ for $n \leq d$. Similar to the eigenpair calculation, this is done for each type of random input source. This choice means that the largest eigenpairs for each random input source will receive the maximum allowed sampling, denoted as l_{max}, and the proceeding eigenpairs will be less than or equal to l_{max}. For these experiments $l_{\text{max}} = 5$. The Monte Carlo samples used here for performance comparison are taken on the random variables ξ_n in the KL-expansion as compared to randomly sampling the random input variables. We consider representing the input uncertainty as a separate problem and are interested in how sampling the KL-expansion using quadrature nodes compares to random sampling. Finally, in cases where the collocation point or Monte Carlo sample produces a non-converging power flow solution, the results are replaced with the solution that corresponds to the mean of each input variable.

C. Accuracy Comparisons

Figure 4 shows the output voltage at Bus 83 of the IEEE 118-bus system CDF for various levels of isotropic sparse grids, an anisotropic sparse grid with $l_{\text{max}} = 5$, and the reference Monte Carlo simulations which are performed using 10,000 random samples. We observe that the each sparse grid method accurately predicts the response variable with the $l = 3$ isotropic sparse grid performing slightly worse than both the $l = 4$ and the anisotropic sparse grid. This result is expected because as one increases the level of the sparse grid the accuracy of the interpolant also increases. Looking at the accuracy metrics listed in Table I we see that there is no difference between the two isotropic sparse grids. We suspect this is the result of the relatively low variance of the input sources. With respect to the KLD measure we should keep in mind that lower numbers indicate a better approximation of the true solution. The ideal approximation is one where the KLD is zero.
Fig. 4. Voltage magnitude at Bus 93 in the IEEE 118-Bus system.

TABLE I

Statistical Accuracy Metrics for the IEEE 118-Bus System

	\(V \)	\(\delta \)	\(P_i \)	\(Q_i \)	\(P_{i,j} \)	\(Q_{i,j} \)	
Isotropic \((l = 3)\)	\(\varepsilon_\mu \) [\%]	0.01	0.05	0.03	0.09	0.11	0.04
	\(\varepsilon_\sigma \) [\%]	4.16	0.71	12.0	5.22	6.78	5.28
	KLD\(_f\)	0.84	0.05	0.06	0.12	0.18	0.13
Isotropic \((l = 4)\)	\(\varepsilon_\mu \) [\%]	0.01	0.05	0.03	0.09	0.11	0.04
	\(\varepsilon_\sigma \) [\%]	4.16	0.71	12.0	5.22	6.78	5.28
	KLD\(_f\)	0.56	0.01	0.04	0.08	0.13	0.09
Anisotropic \((l_{\text{max}} = 5)\)	\(\varepsilon_\mu \) [\%]	0.01	0.05	0.03	0.09	0.11	0.04
	\(\varepsilon_\sigma \) [\%]	4.70	0.68	13.0	6.00	7.71	5.90
	KLD\(_f\)	0.63	0.02	0.04	0.08	0.14	0.09

The measurement is, in fact, zero. Here, by comparing the KLD measure between the two isotropic sparse grids we notice that we do indeed produce a more accurate statistical approximation with a higher level sparse grid. However, the big takeaway from this experiment, which will be further supported by the next section, is that the anisotropic sparse grid is able to maintain a comparable accuracy with far fewer collocation points. In this experiment, there is only 0.5-1% difference in accuracy.

Figure 5 shows the CDF for active and reactive power line flows from Bus 203 to Bus 209 of the RTS-GMLC test case. As it is typical for stochastic collocation, the approximation is much more accurate near the mean than at the tails of the distributions. The most counterintuitive result we observe is that the \(l = 5 \) isotropic interpolant is less accurate than the \(l = 4 \) isotropic and anisotropic interpolant. We would typically expect that more collocation points results in a more accurate interpolant. One possible explanation of this result could be that the Vandermonde matrix used to create the interpolant is ill-conditioned. As the level of the sparse grid increases, the ability to create an accurate basis vector diminishes greatly. Therefore, in high-dimensional and high variance problems it is wise to use an anisotropic sparse grid.

TABLE II

Statistical Accuracy Metrics for RTS-GMLC

	\(V \)	\(\delta \)	\(P_i \)	\(Q_i \)	\(P_{i,j} \)	\(Q_{i,j} \)	
Isotropic \((l = 4)\)	\(\varepsilon_\mu \) [\%]	0.04	17.3	4.48	3.55	7.12	5.00
	\(\varepsilon_\sigma \) [\%]	19.4	61.6	15.6	22.6	13.3	19.7
	KLD\(_f\)	0.39	0.11	0.05	0.03	0.03	0.05
Isotropic \((l = 5)\)	\(\varepsilon_\mu \) [\%]	0.13	23.8	5.71	9.71	7.26	10.8
	\(\varepsilon_\sigma \) [\%]	19.2	52.5	11.3	19.2	12.3	18.5
	KLD\(_f\)	0.25	0.11	0.07	0.04	0.06	0.06
Anisotropic \((l_{\text{max}} = 5)\)	\(\varepsilon_\mu \) [\%]	0.02	8.53	1.56	1.51	3.14	1.95
	\(\varepsilon_\sigma \) [\%]	9.69	28.2	10.5	10.3	8.56	10.1
	KLD\(_f\)	0.47	0.09	0.04	0.03	0.04	0.04

The sparse grid has 3.5% and 12.5% lower error in the mean and standard deviation, respectively. Much like the previous experiment, the KLD measure of the anisotropic sparse grid is either as accurate as the best isotropic sparse grid or lies in between the two. Here, the outlier being the response variable \(V \) which is larger than either of the two isotropic sparse grids.

Fig. 5. Reliability Test System–Grid Modernization Lab Consortium (RTS-GMLC) active and reactive power line flows for the branch between Bus 203 and Bus 209. Negative values indicate the direction of the flow, therefore, in this case active power is flowing predominantly from Bus 209 to Bus 203.
TABLE III

	MC-10000	Isotropic Sparse Grid \(l=5\)	Isotropic Sparse Grid \(l=3\)	Anisotropic Sparse Grid \(l_{\text{max}}=5\)
\(N_{\text{samples}}\)	10,000	337	3,249	213
\(t_{\text{eigenpairs}}\)	0.01	0.01 s	0.01 s	0.01 s
\(t_{\text{grid}}\)	-	0.08 s	0.75 s	0.19 s
\(t_{\text{KL}}\)	1.10	0.01 s	0.04 s	0.01 s
\(t_{\text{FP}}\)	34.3 s	1.50 s	11.8 s	0.88 s
Total time	35.4 s	1.60 s	12.6 s	1.09 s

TABLE IV

	MC-10000	Isotropic Sparse Grid \(l=4\)	Isotropic Sparse Grid \(l=5\)	Anisotropic Sparse Grid \(l_{\text{max}}=5\)
\(N_{\text{samples}}\)	10,000	545	2,561	489
\(t_{\text{eigenpairs}}\)	0.03	0.03 s	0.03 s	0.03 s
\(t_{\text{grid}}\)	-	0.11 s	0.59 s	0.15 s
\(t_{\text{KL}}\)	0.56	0.01 s	0.03 s	0.01 s
\(t_{\text{FP}}\)	37.2 s	2.31 s	9.53 s	2.11 s
Total time	37.8 s	2.46 s	10.2 s	2.30 s

D. Computational Burden Comparisons

Computational burden comparisons for the IEEE 118-bus system are found in Table III. To see which portion of the method takes the longest to perform we have broken up the total time spent into four segments: eigenpair calculation, sparse grid construction, KL-expansion, and deterministic load flow solutions. Again, for comparison we will use 10,000 Monte Carlo simulations which, in this case, take 35.4 s to complete. The first thing to notice is the total number of samples–or collocation points for the sparse grids–required per method. We observe that as the number of samples increases, the total computational burden increases as well. This is a factor of it both taking longer to generate the sparse grid points (as shown in \(t_{\text{grid}}\)) as well as the time it takes to perform each deterministic load flow. By comparing each method we see that the anisotropic sparse grid interpolant is almost 1.5x faster than the next fastest sparse grid method. As we have mentioned earlier, this significant decrease in computational time only costs 0.5 - 1% decrease in accuracy. We see a similar result for the RTS-GMLC test case in Table IV. In this case the anisotropic sparse grid is only 0.16 seconds faster than the \(l=4\) isotropic sparse grid but, again, 3.5% less error in the mean of the \(l=4\) isotropic sparse grid.

E. Methods to Increase Performance

One very useful feature of the proposed method is that there are several ways to tune the method for either increases in accuracy and/or decreases in computational burden. The first way is to change the number of dimensions to keep in the KL-expansion. Reducing the number of eigenpairs to keep will significantly decrease the number of total collocation points needed to be created, and thereby decreasing computational burden. In most cases, the first eigenpair \(\{\lambda_1, \phi_1\}\) accounts for a greater than 80% of the total variance in the system which leads us to question how important the proceeding eigenpairs are to the accuracy of the system. The obvious cost of this decision is in accuracy. The second way is parallelizing the deterministic load flow solutions. Depending on the number of cores available and the access to, for example, the Parallel Computing ToolboxTM in MATLAB, parallelizing this segment of the code requires changing one line of code. Third, increasing or decreasing \(l_{\text{max}}\) changes the maximum allowed level for the anisotropic sparse grid. Increasing \(l_{\text{max}}\) means having more collocation nodes for each dimension, i.e., a higher level of accuracy, but at the cost of increased computational burden. The opposite is true for a decrease in \(l_{\text{max}}\). Lastly, changing the weight vector \(\gamma\) will have a similar effect as changing \(l_{\text{max}}\). One way to increase the performance is to weigh higher dimension by their normalized eigenvalues. This will have the outcome to increase/decrease the number of KL-expansion terms to keep and will impact the accuracy and/or computational burden.

VII. Conclusion

In this paper, we have established a formal methodology for implementing the coupled KL-expansion and anisotropic sparse grid to solve the PLF problem. Using two test cases, the IEEE 118-bus system and the more modernized grid RTS-GMLC, we have shown that our methodology is able to alleviate the “curse of dimensionality” issue present in the PLF problem. Furthermore, our method can solve the high-dimensional load flow problem 30 times faster while only having a 0.05% and 6% error in the mean and standard deviation when compared to 10,000 Monte Carlo simulations. In the modernized RTS-GMLC we show that, by taking advantage of the correlated input data, we are able to accurately and efficiently approximate their effect on the output variables. In addition to the observed high performance, we discuss how to tune the method to further increase accuracy and/or decrease computational burden, the easiest of which to implement is the parallelization of the deterministic load flow problem. Depending on the infrastructure available, this change could enable this method to be used as a real-time assessment of uncertainty given a large number of random variables.

REFERENCES

[1] B. Borkowska, “Probabilistic Load Flow,” IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 3, pp. 1–6, 1974.
[2] J. M. Morales and J. Pérez-Ruiz, “Point estimate schemes to solve the probabilistic power flow,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1594–1601, 2007.
[3] P. Chen, Z. Chen, and B. Bak-Jensen, “Probabilistic load flow: A review,” 3rd Int. Conf. Deregul. Restruct. Power Technol. DRPT 2008, no. April, pp. 1586–1591, 2008.
[4] R. N. Allan, B. Borkowska, and C. H. Grigg, “Probabilistic analysis of power flows,” Proc. Inst. Electr. Eng., vol. 121, no. 12, p. 1551, 1974.
[5] R. N. Allan, C. H. Grigg, and M. R. G. Al-Shakarchi, “Numerical techniques in probabilistic load flow problems,” Int. J. Numer. Methods Eng., vol. 10, no. 4, pp. 853–860, 1976. [Online]. Available: http://doi.wiley.com/10.1002/nme.1620100412
[6] R. N. Allan and M. Al-Shakarchi, “Probabilistic techniques in a.c. load-flow analysis,” Proc. Inst. Elect. Eng., vol. 124, no. 2, p. 154, 1977. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/piee.1977.0027

[7] R. N. Allan, A. M. L. da Silva, and R. C. Burchett, “Evaluation methods and accuracy in probabilistic load flow solutions,” IEEE Trans. Power Appar. Syst., vol. PAS-100, no. 5, pp. 2539–2546, 1981.

[8] M. L. Klaburt and C. Rehtanz, “Enhancement to the combination of point estimate method and Gram-Charlier Expansion method for probabilistic load flow computations,” IEEE Manchester PowerTech, 2017.

[9] P. Zhang and T. S. Lee, “Probabilistic Load Flow Computation Using the Method of Combined Cumulants and Gram-Charlier Expansion,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 676–682, Feb 2004.

[10] M. Fan, S. Member, V. Vittal, G. T. Heydt, and L. Fellow, “Probabilistic Power Flow Studies for Transmission Systems With Photovoltaic Generation Using Cumulants,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2251–2261, 2012.

[11] R. R. Appino, T. Mühlfordt, T. Faulwasser, and V. Hagenmeyer, “On Solving Probabilistic Load Flow for Radial Grids using Polynomial Chaos,” in 2017 IEEE Manchester PowerTech, Jun 2017, pp. 1–6.

[12] H. Wu, Y. Zhou, S. Dong, and Y. Song, “Probabilistic Load Flow Based on Generalized Polynomial Chaos,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 820–821, Jan 2017.

[13] X. Sun, Q. Tu, S. Chen, C. Zhang, and X. Duan, “Probabilistic load flow calculation based on sparse polynomial chaos expansion,” IET Gener. Transmiss. Distrib., vol. 12, no. 11, pp. 2735–2744, 2018. [Online]. Available: http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2017.0859

[14] Y. Zhou, H. Wu, C. Gu, and Y. Song, “A Novel Method of Polynomial Approximation for Parametric Problems in Power Systems,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3298–3307, 2017.

[15] E. Rosenblueth, “Point estimates for probability moments.” Proc. Natl. Acad. Sci. U. S. A., vol. 72, no. 10, pp. 3812–4, 1975. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=43085&tool=pmcentrez&rendertype=abstract

[16] ——, “Two-point estimates in probabilities,” Appl. Math. Model., vol. 5, no. 5, pp. 329–335, 1981.

[17] K. S. Li, “Point Estimate Method for Calculating Statistical Moments,” J. Eng. Mech., vol. 118, no. 7, pp. 1506–1511, Jul 1992.

[18] M. E. Harr, “Probabilistic estimates for multivariate analyses,” Appl. Math. Model., vol. 13, no. 5, pp. 313–318, 1989.

[19] H. Hong, “An efficient point estimate method for probabilistic analysis,” Reliab. Eng. Syst. Saf., vol. 59, no. 3, pp. 261–267, 1998. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0925180597000119

[20] D. Xiou, “Fast numerical methods for stochastic computations: A review,” in Commun. Comput. Phys., 2009.

[21] A. Bt, “Probabilistic Methods for Stochastic Computations: A Spectral Method Approach,” Princeton University Press, 2010.

[22] S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of certain classes of functions,” in Doklady Akademii Nauk, vol. 148, no. 5. Russian Academy of Sciences, 1960, pp. 197–205.

[23] D. Kosambi, “Statistics in function space,” Proc. Indian Acad. Sci. Math. Sci., vol. 13, no. 4, pp. 76–88, 1943. [Online]. Available: http://www.imsc.res.in/~journals/index.php/jims/article/view/17156

[24] K. Karhunen, “On linear methods in probability and statistics,” Ann. Acad. Sci. Fenn. Ser. A Math.-Phys., no. 37, pp. 1–79, 1947.

[25] M. Lo`eve, Probability Theory II, seri. Graduate Texts in Mathematics. New York, NY: Springer New York, 1978, vol. 46. [Online]. Available: http://link.springer.com/10.1007/978-1-4684-9464-8

[26] K. Pearson, “Lii on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[27] H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[28] F. Nobile, R. Tempone, and C. G. Webster, “An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data,” SIAM J. Numer. Anal., vol. 46, no. 5, pp. 2411–2442, Jan 2008. [Online]. Available: http://epubs.siam.org/doi/10.1137/070680540

[29] M. Griebel and T. Grestner, “Numerical Integration using Sparse-grids,” Numer. Algorithms, vol. 18, pp. 209–232, 1998.

[30] T. Grestner and M. Griebel, “Dimension Adaptive Tensor Product Quadrature,” Computing, vol. 71, no. 1, pp. 65–97, 2003.

[31] J. Burkard, “The ‘Combining Coefficient’ for Anisotropic Sparse Grids,” Interdiscip. Cent. Appl. Math. & Technol. Dep. Virginia Tech., pp. 1–14, 2012. [Online]. Available: https://people.sc.fsu.edu/~jburkardt/presentations/smgma_coefficient.pdf

[32] C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on an automatic computer,” Numerische Mathematik, vol. 2, no. 1, pp. 197–205, 1960.

[33] L. Fejér, “Mechanische quadraturen mit positiven coteschen zahlen,” Mathematische Zeitschrift, vol. 37, no. 1, pp. 287–309, 1933.

[34] J. Burkard, “John Burkard’s Home Page.” [Online]. Available: https://people.sc.fsu.edu/~jburkard/

[35] R. D. Zimmerman, C. E. Murilla-Sanchez, and R. J. Thomas, “MAT-POWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, 2011.

[36] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[37] K. L. Judd, L. Malari, S. Malari, and R. Valero, “Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain,” J. Econ. Dyn. Control, vol. 44, pp. 92–123, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jedc.2014.03.003

[38] “Power Systems Test Case Archive.” [Online]. Available: http://labs.ece.uw.edu/pstca/

[39] C. Grigg, P. Wong, P. Albrect, R. Allan, R. Billinton, Q. Chen, C. Fong, S. Haddad, W. Li, R. Mukerji, D. Patton, A. Schneider, M. Shahidehpour, and C. Singh, “The IEEE Reliability Test System - 1996,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020, 1999.

[40] “Reliability Test System - Grid Modernization Lab Consortium.” [Online]. Available: https://github.com/GridMod/RTS-GMLC

Brandon Johnson (S'15-M'19) received his B.S. and Ph.D. degrees in electrical and computer engineering from Oregon State University, Corvallis, OR, USA, in 2013 and 2019, respectively. He is currently an Electrical Engineer at Avangrid Renewables in Portland, OR, USA, where his main duties involve creating and maintaining wind farm electrical models, research into wind turbine and plant level controls, and performing NERC compliance assessments. Dr. Brandon Johnson’s research focuses is in uncertainty quantification methods, electrical resilience and reliability, and the integration of renewable energy resources.

Nathan L. Gibson Nathan Gibson holds a M.S. degree in Applied Mathematics from the University of Tennessee, Knoxville and a Ph.D. degree in Computational Mathematics from North Carolina State University. Gibson is currently Associate Professor of Mathematics at Oregon State University.

Eduardo Cotilla-Sanchez (S’08-M-12-SM-19) received the M.S. and Ph.D. degrees in electrical engineering from the University of Vermont, Burlington, VT, USA, in 2009 and 2012, respectively. He is currently an Associate Professor in the School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA. His primary field of research is electrical infrastructure resilience and protection, in particular, the study of cascading outages. Prof. Cotilla-Sanchez is the Secretary of the IEEE Working Group on Cascading Failures and President of the Society of Hispanic Professional Engineers Oregon Chapter.