Detection of new antibiotic resistance gene profile in *Escherichia coli* associated with avian leukosis virus infection from broiler chickens

HAIFENG WANG1,2,*; JUAN GUO1; LJING ZHENG1; SHUYING LIU1; ZHERONG WANG1; HONGXUAN HE2

1 School of Environmental Engineering, Central Plains Specialty Food Engineering and Technology Research Center, Kaiyong Key Laboratory of Food Composition and Quality Assessment, Yellow River Conservancy Technical Institute, Kaiyong, 475004, China
2 National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

Key words: Patterns, *E. coli*, Poultry, Genes

Abstract: The *Escherichia coli* (*E. coli*) is prevailing worldwide, but the epidemiology of *E. coli* infections feature regional distribution characteristics to some extent. *E. coli*, as a zoonotic pathogen, can be transferred from animals to humans through food chain or via contact with wounds, causing a public health risk. We reported the swelling of proventriculus and tracheal bleeding following the death in two broiler chickens (*Gallus gallus domesticus*) from Beijing, China. To investigate whether a virus was involved in the infection, Madin Darby Bovine Kidney (MDCK) cells were co-cultured with supernatants of proventriculus, trachea and spleen homogenates. The avian leucosis virus was detected in the samples of proventriculus and trachea, but the avian influenza virus, the Newcastle disease virus and the avian infectious laryngotracheitis virus were not detected. *E. coli* isolates were resistant to almost all the antimicrobial as tested except for the combinations of amoxicillin/clavulanic acid and sulfamethoxazole/trimethoprim. PCR tests demonstrated the presence of antibiotic resistance genes in these *E. coli isolates* and further research revealed a novel gene profile with the presence of CTX-M-1, gyrA, gyrB, oqxA, oqxB, parC and Sul2 antibiotic resistance genes in a strain isolated from a proventriculus sample. These results demonstrated that the presence of antibiotic resistant *E. coli* would not necessarily cause outbreak of large-scale disease. However, when the bacteria carrying new antibiotic resistance genes enter the environment, it may result in the development of more virulent strains which will potentially impact human and animal health.

Introduction

The bacterium *E. coli* can be found in many kinds of livestock such as poultry, farmed animals, other land animals and some aquatic animals, among which, pigs and chickens are the mostly susceptible of infection. *E. coli* is an important opportunistic zoonotic pathogen, belonging to the family *Enterobacteriaceae*, but it is usually considered as a commensal bacterium in humans and animals, and used as an indicator of enteric pathogens and environmental contamination by feces (Jiang et al., 2014). *E. coli* is mainly found in the feces of patients with gastrointestinal infections and can be mainly transmitted among people through fecal and oral routes. Our study detected new antibiotic resistance gene profiles in *E. coli* and further research indicated avian leukosis virus infection in dead broiler chickens that were the sources of these isolates. Studies suggest that ESBL/AmpC-producing *E. coli* are isolated with increasing frequency from animals, food, environmental sources and humans (Dorado-Garcia et al., 2018). To date, several different fluoroquinolone resistance mechanisms have been proposed, such as the aminoglycoside acetyltransferase AAC (6′)-Ib-cr, which acetylates several fluoroquinolones with piperazinyl substitutions; the qnr families (qnrA, qnrB,qnrS, qnrC, and qnrD) which protect DNA gyrase and topoisomerase IV from quinolone inhibition; and the active multidrug efflux pump qepA and oqxA/B, which can remove fluoroquinolones from the bacterial cells (Poirel et al., 2012; Ruiz et al., 2012; Wang et al., 2017). Recent experiments found acquisition of mcr-1 and co-carriage of virulence genes in avian pathogenic *E. coli* isolated from municipal wastewater influents in Japan (Hayashi et al., 2019). *E. coli* pathotypes have been identified to be largely responsible for moderating severe diarrhea transmitted from contaminated human or animal feces to susceptible hosts via environmental reservoirs such as hands, water and soil (Navab-Daneshmand et al., 2018). The soil may represent a direct source or act as an intermediary matrix for the transmission of antibiotic resistant pathogenic *E. coli* strains, particularly in rural settings, and the presence of *E. coli* in
soil is of public health significance (Monteagle et al., 2018). These studies show the significance of, and the need for urgent measures for reducing environmental contamination by bacteria carrying antibiotic resistance genes possibly resulting from contamination in the course of human activities such as random disposal of untreated water, soil, and waste.

The antibiotic resistant isolates and resistance genes of *E. coli* can be transferred to humans and animals through food, water, poor hygiene, improper cooking, logistics, and wound contact, causing potential harms to the public health (Ryu et al., 2012). Avian pathogenic *E. coli* is the etiologic agent of avian colibacillosis, which is the most common disease causing chicken morbidity (Mohamed et al., 2018). However, human activities influence the epidemiology of transmission among human, environment and animals. This study aimed at investigating the antibiotic susceptibility pattern and resistance gene types of *E. coli* through biochemical and gene sequencing methods to reveal valuable information for preventing bacterial diseases.

Materials and Methods

Samples collection and testing for microorganisms
Two dead broiler chickens were taken from a chicken farm on the outskirts of Beijing, China, and transferred to the laboratory at National Research Center for Wildlife-Borne Diseases. Six isolates of *E. coli* were obtained from proventriculus and trachea of the broiler chickens. Proventriculus samples were obtained in a sterile environment by first cutting the skin and muscle tissue of the broiler with sterile scissors, and then cutting the proventriculus with another pair of sterile scissors. The inner surface of the proventriculus was sampled by using a sterile inoculation loop, and it was then removed with sterile scissors. The proventriculus was fixed in 10% neutral buffered formalin and embedded in paraffin before the tissue sections were stained with hematoxylin and eosin for histological examination. To detect the viral infections, a cell culture approach was used. Briefly, a Madin-Darby canine kidney cells (MDCK) line was cultured in high-glucose Dulbecco’s modified Eagle’s medium (Gibco) with 10% fetal bovine serum (Gibco) and incubated for 5 days with 5% CO2 at 37°C for 24 h. The bacterial colonies from each sample were examined by using standard biochemical tests, and the polymerase chain reaction (PCR) amplification of 16S rDNA genes was performed with universal primers 27F (5′-AGAGTTTGATCTTGGCTCAG-3′), 1492R (5′-GGTTACCTTGTAGGACTT-3′) (Macrae et al., 2000). The BD Phoenix™ 100 (Maryland, USA) automated identification system was applied to identify the bacterial isolates. All PCR amplification products were sequenced and compared with the GenBank database by using BLAST (http://blast.ncbi.nlm.nih.gov/). The antibiotic resistance profiles of isolates were determined by using the disk diffusion test according to guidelines of the Clinical & Laboratory Standards Institute (CLSI) and the manufacturers’ instructions. The antibiotics involved included amikacin (AN), ampicillin (AM), aztreonam (AZT), cefazolin (CZ), cefotaxime (CTX), cephalothin (CF), chloramphenicol (C), ciprofloxacin (CIP), gentamicin (GM), levofloxacin (LVF), nitrofurantoin (FT), oxolinic (OFL), piperacillin (PIP), streptomycin (S), tobramycin (TM), amoxicillin/clavulanic Acid (AMX/CA) and sulfamethoxazole/trimethoprim (SXT). ATCC 25922 *E. coli* was used as a control. The degree of antibiotic resistance was measured by using the following Kirby-Bauer disc diffusion method (Biemer, 1973).

Detection of antibiotic resistance and viral genes
Antibiotic resistance gene identification was carried out for *AAC(3)-II*, *cmlA*, *CTX-M-1*, *gyrA*, *gyrB*, *blaKPC*, *NDM-1*, *ospA*, *ospB*, *OXA*, *parC*, *gcpA*, *qnrA*, *qnrB*, *qnrC*, *qnrD*, and *SuL2*, as shown in Appendix Tab. 1 (Guerra et al., 2010; Kim et al., 2009; Liu et al., 2008; Rhee et al., 2010; Wang and He, 2018; Yu et al., 2007). To detect the presence of viruses, DNA and RNA were extracted from proventriculus samples. Then, Avian leucosis virus (ALV), avian influenza virus (AIV), Newcastle disease virus (NDV) and avian infectious laryngotracheitis virus (AILTV) targets were amplified by using specific primers by PCR with the initial denaturation of 95°C for 5 min, 35 cycles at 95°C for 30 s, 52°C for 30 s, and 72°C for 40 s; and a final incubation for 10 min at 72°C. All sequences were compared with NCBI GenBank databases by using BLAST (http://blast.ncbi.nlm.nih.gov/). Alignments of clones and reference sequences were created with Clustal X. The phylogenetic analyses were then performed by using the neighbor-joining method with 1,000 bootstraps using MEGA 6 following the kimura 2-parameter model (Tamura et al., 2007).

Results

Clinical isolates and their identification
PCR amplified fragment was detected by 1% agarose gel electrophoresis, and the results indicated that the amplified products were 1500 bp in length with good specificity. The sequence and biochemical tests identified six isolates (E1, E2, E3, E4, E5 and E6) as *E. coli*. Our study showed that the cell morphology of the proventriculus samples was the same as that of the control (Fig. 1). Histopathological biopsy of proventriculus samples revealed cells with diffuse hemorrhage, cell gap enlargement and an increase in lymphocytes (Fig. 2). Further, evidences were found that ALV co-infection with *E. coli* was available in the city. The antibiotic resistance testing of bacterial isolates

Except for amoxicillin/clavulanic acid and sulfamethoxazole/trimethoprim, our study showed that all six isolates were multi drug resistant (MDR) to almost all antibiotics, including beta-lactams (cefazolin, cephalothin, cefotaxime, ampicillin and piperacillin), aminoglycosides (gentamicin,
tobramycin and amikacin) and quinolones (ciprofloxacin, levofloxacin and ofloxacin). Additionally, these MDR isolates were resistant to aztreonam and chloramphenicol. While the 16S rDNA gene sequences showed a closer similarity of isolates to *E. coli* (Fig. 4), several MDR isolates (E3, E4, E5 and E6) were susceptible to nitrofurantoin, although this was not found in isolates E1 and E2. The antibiotic resistance patterns of the six MDR isolates were presented in Tab. 1.

Detection of antibiotic resistance genes

AAC (3)-II was detected in isolates E1, E3, E5 and E6; CTX-M-1, gyrA, gyrB, parC and Sul2 were detected in all six isolates; oqxA and oqxB were found in E2; and qnrB testing produced a weak band in E2 and E3. However, cmlA, blaKPC, NDM-1, OXA, qepA, qnrA, qnrC, qnrD and qnrS antibiotic resistance genes were not amplified in any isolate (Tab. 2 and Appendix Fig. 1). The RT-PCR results revealed the novel coexistence of CTX-M-1, oqxA, oqxB, parC and Sul2 resistance genes in an isolate (E2) from a proventriculus sample that was also positive for ALV. Our study also found the combination of antibiotic resistance
TABLE 1

Antibiotic resistance of *Escherichia coli* was isolated from the broiler chickens

Antimicrobial agents	Strains					
	E1 (88.2%)	E2 (82.4%)	E3 (76.5%)	E4 (76.5%)	E5 (70.6%)	E6 (82.4%)
Amikacin (AN)	R	R	R	R	R	R
Ampicillin (AM)	R	R	R	R	R	R
Aztreonam (AZT)	R	R	R	S	R	R
Cefazolin (CZ)	R	R	R	R	R	R
Cefotaxime (CTX)	R	R	R	R	R	R
Cefalothin (CF)	R	R	R	R	R	R
Chloramphenicol (C)	R	R	R	R	R	R
Ciprofloxacin (CIP)	R	R	R	R	R	R
Gentamicin (GM)	R	R	R	R	R	R
Levofloxacin (LVF)	R	R	S	R	S	R
Nitrofurantoin (FT)	R	S	S	S	S	S
Ofloxacin (OFL)	R	R	R	S	R	R
Piperacillin (PIP)	R	R	R	R	R	R
Streptomycin (S)	R	R	R	R	R	R
Tobramycin (TM)	R	R	R	R	R	R
Amoxicillin/Clavulanic Acid (AMX/CA)	S	S	S	S	S	S
Sulfamethoxazole/Trimethoprim (SXT)	S	S	S	S	S	S

S = Susceptible; R = Resistant.

TABLE 2

Antibiotic resistance genes profile of *Escherichia coli* isolates

Gene Symbol	E1	E2	E3	E4	E5	E6
AAC (3)-II	P	N	P	N	P	P
cmlA	N	N	N	N	N	N
CTX-M-1	P	P	P	P	P	P
gyrA	P	P	P	P	P	P
gyrB	P	P	P	P	P	P
blaKPC	N	N	N	N	N	N
NDM-1	N	N	N	N	N	N
oqxA	N	P	N	N	N	N
oqxB	N	P	N	N	N	N
OXA	N	N	N	N	N	N
parC	P	P	P	P	P	P
qepA	N	N	N	N	N	N
qnrA	N	N	N	N	N	N
qnrB	N	N	N	N	N	N
qnrC	N	N	N	N	N	N
qnrD	N	N	N	N	N	N
qnrS	N	N	N	N	N	N
Sul2	P	P	P	P	P	P

P = positive; N = negative
genes CTX-M-1, gyrA, gyrB, parC and Sul2, whereby their presence in *E. coli* could potentially result in resistance of all single antibiotics in this study except for nitrofurantoin. Whether or not the presence of ALV will impact the distribution of antibiotic resistance genes in co-located bacteria still remain for further testing. The patterns of antibiotic resistance genes of six isolates were as follows: E1: AAC(3)-II+CTX-M-1+gyrA+gyrB +parC+Sul2; E2: CTX-M-1 +gyrA+gyrB+oqxA+oqxB+parC+Sul2; E3: AAC(3)-II+CTX-M-1+gyrA+gyrB +parC+Sul2; E4: CTX-M-1+gyrA+gyrB +parC+Sul2; E5: AAC(3)-II+CTX-M-1+gyrA+gyrB +parC +Sul2; E6: AAC(3)-II+CTX-M-1+gyrA+gyrB +parC+Sul2.

Discussion

Our results found that *E. coli* isolated from the broiler chickens showed different antibiotic resistance genes. The problem of antibiotic resistance has been concerned for many years, and the increase in antibiotic resistance is difficult to control the given population growth and the climate change. At present, the use of antibiotics is the main approach to prevent and treat diseases in the poultry industry, but the abuse of antibiotics has resulted in the emergence of antibiotic resistance in *E. coli* in the global area. Disease caused by this organism is one of the common disease agents infected by bacteria in poultry, causing vitelline peritonitis, salpingitis, septicaemia, airsacculitis, perihepatitis and pericarditis (Wang et al., 2013). The antibiotic resistance genes such as AAC(6’)-Ib-cr and qepA have been identified in many clinical isolates with high-level antibiotic resistance (Cavaco et al., 2009; Zhao et al., 2010). In this study, we identified a novel isolate possessing CTX-M-1, oqxA, oqxB, parC and Sul2 resistance genes, which is, to our knowledge, the first report of such combination. Extended-spectrum β-lactamases (ESBLs), such as CTX-M-1, CTX-M-2, CTX-M-14, CTX-M-15 and CTX-M-55, have been found in many European countries and China, and are associated with *E. coli* isolates from poultry and other animals (Rao et al., 2014). *E. coli* is ubiquitous in warm blooded animals and usually will not produce human diseases; but the variations within *E. coli*, especially new combinations of antibiotic resistance genes, may result in new manifestations of human diseases in the future. For example, the plasmid mediated quinolone resistance (PMQR) genes oqxA and oqxB, expressed in a novel *E. coli* isolate, may result in occurrence of a complex antibiotic resistance mechanism (Santos et al., 2014).

To our knowledge, few papers have been published regarding the coexistence of PMQR and ESBL encoding genes in *E. coli* isolated from proventriculus (Ammar et al., 2016; Gouveia et al., 2015). The industry is faced with a dilemma because on one hand, antibiotics are required to combat the high incidence of poultry disease; on the other hand, their use is the ultimate selection pressure that may promote widespread bacterial resistance. Our investigation showed that *E. coli* isolate E2 was not distinct in terms of antibiotic susceptibility when compared with other *E. coli* isolates although we cannot exclude the possibility that *E. coli* E2 will not have novel susceptibilities to other antibiotics. We usually only consider the presence of antibiotic resistant bacteria themselves, but our experiments showed their coexistence with ALV subgroup E in the broiler chickens. This result suggests that it will be interesting to study further whether the presence of pathogenic microorganisms other than *E. coli* can promote antibiotic resistance in bacteria.

Our study indicates that the antibiotic resistant *E. coli* is commonly seen in poultry and also reveals a novel antibiotic resistance gene pattern in *E. coli* isolated from the proventriculus. These data may help clinical veterinarians to better understand the antibiotic resistance present in relevant pathogenic *E. coli*. In addition, as an important foodborne pathogen, the antibiotic resistance gene spectrum of *E. coli* in poultry may provide an early warning of emerging antibiotic resistance patterns for the sake of human health and surveillance.

Funding Statement: We thank the Young Key Teachers Training Program of Yellow River Conservancy Technical Institute (HYJG [2019]7), Innovation Program of Chinese Academy of Sciences (KSCX2-EW-Z-4), Science and technology development plan of Kaifeng in 2020(BKW[2019]95) as well as National Natural Sciences Foundation of China (31101806).

Conflicts of Interest: The authors declare no conflict to interest.

References

Ammar AM, Attia AM, Abd El-Hamid MI, El-Shorbagy IM, Abd El-Kader SA (2016). Genetic basis of resistance waves among methicillin resistant Staphylococcus aureus isolates recovered from milk and meat products in Egypt. *Cellular and Molecular Biology (Noisy-le-Grand, France)* 62: 7–15.

Biemer JJ (1973). Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. *Annals of Clinical & Laboratory Science* 3: 135–140.

Cavaco LM, Hasman H, Xia S, Aarestrup FM (2009). qnrD, a novel gene conferring transferable quinolone resistance in salmonella enterica serovar kentucky and bovismoribicans strains of human origin. *Antimicrobial Agents and Chemotherapy* 53: 603–608. DOI 10.1128/AAC.00997-08.

Dorado-Garcia A, Smid JH, van Pelt W, Bonten MJM, Fluit AC, van den Bunt G, Wagenaar JA, Hordijk J, Dierikx CM, Veldman KT, de Koetijer A, Dohmen W, Schmitt H, Liakopoulos A, Pacholewicz E, Lam T, Velthuis AG, Heuvelink A, Gonggrijp MA, van Duijkeren E, van Hoek A, de Roda Husman AM, Blaa K, Havelaar AH, Mevius DJ, Heederik DJ (2018). Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: a pooled analysis. *Journal of Antimicrobial Chemotherapy* 73: 339–347. DOI 10.1093/jac/dkx397.

Gouveia R, Santos FD, Aquino MD, Pereira Vd A, Gouveia R, Santos FD, Aquino MD, Pereira Vd A (2015). Fluoroquinolones in industrial poultry production, bacterial resistance and food residues: a review. *Revista Brasileira De Ciência Avícola* 17: 1–10.

Guerra B, Helmuth R, Thomas K, Beutlich J, Jahn S, Schroeter A (2010). Plasmid-mediated quinolone resistance determinants in Salmonella spp. isolates from reptiles in Germany. *Journal of Antimicrobial Chemotherapy* 65: 2043–2045. DOI 10.1093/jac/dkq242.

Hayashi W, Tanaka H, Taniguchi Y, Iimura M, Soga E, Kubo R, Matsuo N, Kawamura K, Arakawa Y, Nagano Y, Nagano N
(2019). Acquisition of mcr-1 and co-carriage of virulence genes in avian pathogenic Escherichia coli isolates from municipal wastewater influents in Japan. *Applied and Environmental Microbiology* 85: e01661–e01619. DOI 10.1128/AEM.01661–19.

Jiang X, Yu T, Wu N, Meng H, Shi L (2014). Detection of qnr, aac(6′)-Ib-cr and qepA genes in Escherichia coli isolated from cooked meat products in Henan, China. *International Journal of Food Microbiology* 187: 22–25. DOI 10.1016/j.ijfoodmicro.2014.06.026.

Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC (2009). oqxAB encoding a multidrug efflux pump in human clinical isolates of enterobacteriaceae. *Antimicrobial Agents and Chemotherapy* 53: 3582–3584. DOI 10.1128/AAC.01574–08.

Liu JH, Deng YT, Zeng ZL, Gao JH, Chen L, Arakawa Y, Chen ZL (2008). Copherevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6′)-Ib-cr among 165 rRNA methylase RmtB-producing Escherichia coli isolates from pigs. *Antimicrobial Agents and Chemotherapy* 52: 2992–2993. DOI 10.1128/AAC.01686–07.

Macrae A, Rimmer DL, O’Donnell AG (2000). Novel bacterial diversity recovered from the rhizosphere of oilseed rape (Brassica napus) determined by the analysis of 16S ribosomal DNA. *Antonie van Leeuwenhoek* 78: 13–21. DOI 10.1023/A:1002745312030.

Mohamed L, Zhao G, Li YH, Gao YB, Rachid K, Mustapha O, Wang JW, Karine O (2018). Virulence traits of avian pathogenic (APEC) and fecal (APEC) E. coli isolated from broiler chickens in Algeria. *Tropical Animal Health and Production* 50: 547–553. DOI 10.1007/s11250-017-1467-5.

Montealegre MC, Roy S, Boni F, Hossain MI, Navab-Daneshmand T, Caduff L, Faruque ASG, Islam MA, Julian TR (2018). Risk factors for detection, survival, and growth of antibiotic-resistant and pathogenic Escherichia coli in household soils in rural Bangladesh. *Applied and Environmental Microbiology* 84: e01978–e01918. DOI 10.1128/AEM.01978–18.

Navab-Daneshmand T, Friedrich MND, Gachter M, Montealegre MC, Mlambo LS, Nihiwati T, Mosler HJ, Julian TR (2018). Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in urban harare: correlations and risk factors. *American Journal of Tropical Medicine and Hygiene* 98: 803–813. DOI 10.4269/ajtmh.17-0521.

Poirel L, Cattoir V, Nordmann P (2012). Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. *Frontiers in Microbiology* 3: 24. DOI 10.3389/fmicb.2012.00024.

Rao L, Lv L, Zeng Z, Chen S, He D, Chen X, Wu C, Wang Y, Yang T, Wu P, Liu Y, Liu JH (2014). Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003–2012. *Veterinary Microbiology* 172: 534–541. DOI 10.1016/j.vetmic.2014.06.013.

Rhee JY, Park YK, Shin JY, Choi JY, Lee MY, Peck KR, Song JH, Ko KS (2010). KPC-producing extreme drug-resistant klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. *Antimicrobial Agents and Chemotherapy* 54: 2278–2279. DOI 10.1128/AAC.00011–10.

Ruiz J, Pons MJ, Gomes C (2012). Transferable mechanisms of quinolone resistance. *International Journal of Antimicrobial Agents* 40: 196–203. DOI 10.1016/j.ijantimicag.2012.02.011.

Ryu SH, Lee JH, Park SH, Song MO, Park SH, Jung HW, Park GY, Choi SM, Kim MS, Chae YZ, Park SG, Lee YK (2012). Antimicrobial resistance profiles among Escherichia coli strains isolated from commercial and cooked foods. *International Journal of Food Microbiology* 159: 263–266. DOI 10.1016/j.ijfoodmicro.2012.09.001.

Santos M, Alcântara A, Perecmanis S, Campos A, Santana A (2014). Antimicrobial resistance of bacterial strains isolated from avian cellulitis. *Revista Brasileira De Ciência Avícola* 16: 13–18.

Tamura K, Dudley J, Nei M, Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Molecular Biology and Evolution* 24: 1596–1599. DOI 10.1093/molbev/msm092.

Wang CG, Lv JC, Zhang T (2013). Detection of resistance phenotype and genotype of avian Escherichia coli in Hebei Province. *Poultry Science* 92: 2326–2332. DOI 10.3382/ps.2013-03180.

Wang H, He H (2018). Characterization of multidrug-resistant Klebsiella pneumoniae isolated from the Chinese cobra Naja atra in a Beijing suburb. *BIOCELL* 42: 47–54. DOI 10.32604/biocell.2018.07006.

Wang HF, Du LY, Luo J, HeHX (2017). Isolation, identification and characterization of Morganella morganii from Naja naja atra in Beijing, China. *Cellular and Molecular Biology* 63: 52–58. DOI 10.14715/cmb/2017.63.7.9.

Wang HF, Du LY, Luo J, HeHX (2017). Isolation, identification and characterization of Morganella morganii from Naja naja atra in Beijing, China. *Cellular and Molecular Biology* (Noisy-le-Grand, France) 63: 52.

Yu Y, Ji S, Chen Y, Zhou W, Wei Z, Li L, Ma Y (2007). Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. *Journal of Infection* 54: 53–57. DOI 10.1016/j.jinf.2006.01.014.

Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, Huang X, Wu C, Sun Y, Sun Y, Zeng Z, Liu JH (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. *Antimicrobial Agents and Chemotherapy* 54: 4219–4224. DOI 10.1128/AAC.00139–10.
APPENDIX TABLE 1

Types	Gene Symbol	Sequence (5′-3′)	Amplicon (bp)	Annealing (°C)
Aminoglycosides	AAC(3)-II	GGACGCTTCACCGTTTCT	412	52
		GGACCGATCACCTACGAG		
Chloramphenicol	cmlA	GGGTGCCCGGCTATCTTT	467	52
		GCGACACCAAATACCCACTAG		
β lactams	CTX-M-l	CAGCGCTTTTGCGCTAGAG	94	52
		GGGGCATGTTAAAAATGACTCT		
Quinolones	gyrA	CGATGTCGGCTATTG	496	52
		ACTTCCGTCAGTGTG		
Quinolones	gyrB	GAAATGACCGCGCGTA	456	52
		CTTGCCCTTTATTACCT		
Carbapenems	blaKPC	GCTACACCTAGCCTACCCCT	1050	52
		TCAGTGCTCTACAGAAACCT		
β lactams	NDM-1	ATTAGCCGGCCTGATTG	151	52
		CATGTCGAGATAGGAGT		
Quinolones	oqxA	CTCGCCGCCGGCTG	393	52
		CCACTCTTCAGGGAGACGA		
Quinolones	oqxB	TTCCTCCCCGGCGGGAAAT	512	52
		CTCGCCCTTTTGCGGGGTA		
β lactams	OXA	ACAGAAGCATTGGCTGAAAGT	190	52
		TTGCTGTGAATCTCTGCACCA		
Quinolones	ParC	GTGATGCCAGGCGCCTAC	567	52
		GGGCGATCGCAGCCCT		
Quinolones	qepA	GCAGGTTCCACGCAGGGGTAG	218	52
		CTTGCCTGCCGCTG		
Quinolones	qnrA	ATTTTCTACGGCCAGATTCT	516	52
		GATGCGCAAAGGGTGGCTCA		
Quinolones	qnrB	GATCCTGAAAGGCAGAAAAAG	476	52
		ATGACGACAGTGCCTGGTA		
Quinolones	qnrC	GGGTTGTTACATTATTGAAATC	447	52
		TCCACCTTTACGGTGCTCT		
Quinolones	qnrD	CGAGATCAATTTACGGGGAATA	582	52
		AACAAGCTGAAGGCGCTC		
Quinolones	qnrS	ACGACATTGCTCAACTGCAA	417	52
		TAAATTGGCAACCCCTGTAGGC		
Sulfonamides	Su12	GATGGCATTGCCGCTCT	577	52
		TTTCTGCGGTTCTCTGCAC		
APPENDIX FIGURE 1. Resistance genes analysis of the *E. coli*. Gel electrophoresis of AAC(3)-II, cmlA, CTX-M-1, gyrA, gyrB, blaKPC, NDM-1, oqxA, oqxB, OXA, parC, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and Sul2 resistance genes amplicon products, E1-4 were isolated from proventriculus, E5 and E6 were isolated from the trachea, N: negative controls.