Analysis of Fingerprint Minutiae to Form Fingerprint Identifier
Ziad Alqadi#, Mohammad AbuZalata#, Yousf ElTous#, Ghazi M. Qaryouti#
Faculty of Engineering Technology, Albalqa Applied University, Amman-Jordan
E-mail: Natalia_mav@yahoo.com

Abstract— Detailed human fingerprints, almost unique, are difficult to change and are permanent on an individual's life, making them suitable as long-term signs of human identity. They may be employed by the police or other authorities to identify individuals who wish to conceal their identity, or identify incapacitated or deceased persons and therefore cannot identify them, as in the aftermath of a natural disaster. Fingerprints images are very important data type due to wide applications requiring this type, so extraction a fingerprint identifier is a vital issue. In this paper we will analyse the fingerprints images in order to extract minutiae from the images, these minutiae will be used to construct the fingerprint identifier, the proposed procedure will be implemented and tested to ensure that the procedure generates a simple and unique identifier, which can be easily used to recognize the fingerprint in any recognition system.

Keywords— Fingerprint, digital image, minutiae, ridge ending, bifurcation, identifier, Euclidean distance.

I. INTRODUCTION

The human fingerprint is the impression left by the friction of the human finger. Recovering partial fingerprints from the crime scene is an important method of forensic science. The moisture and grease in the finger causes fingerprints on surfaces such as glass or metal. Deliberate impressions of entire fingerprints can be obtained by ink or other materials transferred from the tops of friction edges on the skin to a smooth surface such as paper. Fingerprint records typically contain impressions from the panel on the last joint of the fingers and thumbs, although fingerprint cards usually record parts of the areas of the lower finger joint [1], [2].

Detailed human fingerprints, almost unique, are difficult to change and are permanent on an individual's life, making them suitable as long-term signs of human identity. They may be employed by the police or other authorities to identify individuals who wish to conceal their identity, or identify incapacitated or deceased persons and therefore cannot identify them, as in the aftermath of a natural disaster [3], [4].

One of the most important processes involved in many vital applications is fingerprint identification in order to identify the person where this process requires high speed and accuracy. The fingerprint image size is very high, because the resolution of the image is significantly high; this will make it difficult to identify the fingerprint [12], [13].

To simplify the process of fingerprint identification and make efficient and accurate, we have to represent the fingerprint by a small in size array of features [21], [22], which can be easily used in the process of identification [14], [15], [16]. Many methods were used to extract image features to be used as an identifier [17], [18], the extracted features must be characterized with the following:

![Fingerprint image example](image1.png)

Fig. 1 Fingerprint sample image
- Simplicity of extraction.
- Minimum time of extraction.
- The features for each image must be unique to maximize the identification system accuracy.
- Must have a small size to reduce the needed memory space.

In this paper we will analyze and discuss the minutiae method of features extraction, concentrating our attention on ridge ending and bifurcations.

II. FINGERPRINT CHARACTERISTICS

Human fingerprint has a unique structure, and each fingerprint is composed of various objects, the repetition of each object, and the continents of each object are unique and differ from one person to another, so we can based on these objects to create a unique identifier for each fingerprint[1],[2].

Each fingerprint consists of a set of minutiae, minutiae has different shapes as shown in figure 2, these shapes can be considered as an objects which we have to detect in order to build a fingerprint identifier.

![Figure 2: Minutiae types](image)

Figure 3 shows the most popular used minutiae in a human fingerprint.

![Figure 3: Popular used minutiae](image)

To detect and extract any minutiae we have to follow the following steps:
- Define a 3 by 3 mask, which we will call a classifier number (CN), this mask will be anded with each pixel and its neighbors, the sum of ones in the result will point to CN as shown in figure 4.

![Figure 4: Calculating CN](image)

- Each type of minutiae requires a special mask as shown in figure 5.

![Figure 5: Minutiae masks](image)

- Applying anding will generate a matrix containing calculated CN values.
- Referring to the calculated matrix we can extract the points of various minutiae, and the number of points.

III. PROCEDURAL ANALYSIS OF MINUTIAE EXTRACTION

The procedural analysis required to extract various fingerprint minutiae can be performed as shown in figure 6 applying the following steps:

1) Get the image of the fingerprint
2) If the image is color, convert it to gray.
3) Convert the gray image to binary.
4) Smooth the image; apply image thinning based on morphological operations [19].
5) Extract the selected types of minutiae applying the previous mentioned procedures.
6) Remove false minutiae.

![Figure 6: Steps to extract minutiae](image)
To minimize the number of points in each minutiae and the extraction time, we can take a selected segment of the image with smaller size (for example 100x100 pixels). Figure 7 shows an example of thinned image and the extracted minutiae.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed procedures were implemented using matlab, figure 8, 9, and 10 show the output examples of the executed matlab code:

Taking the thinned original image as an input to detect and extract minutiae will lead to extracting minutiae with large number of points, thus the size of the obtained minutiae will be large and the extraction time will be also big, figure 11 shows some samples of treated fingerprint, while table 1 shows the extracted minutiae:

In this paper research we will focus only on ridge ending and bifurcation types of minutiae, they are sufficient to create a unique identifier for a fingerprint, as will be shown later in this part.

Table 2 shows the first 10 points coordinates of the ridge ending minutiae, while table 3 shows the first 12 points coordinates of bifurcation of the first sample of fingerprint:

Characteristic	Number of points(Fingerprint 1)	Number of points(Fingerprint 2)	Number of points(Fingerprint 3)
Isolated points	0	0	81
Ridge ending point	172	168	58
Connective point	57484	46849	40656
Bifurcation point	696	528	3015
Crossing point	49	66	440

Ridge ending	Ridge_x	Ridge_y
1	74	12
2	41	17
3	40	19
4	39	21
5	70	21
6	69	23
7	92	24
Different fingerprints with different sizes were implemented to extract ridges ending and bifurcations points, table 4 shows the results of this implementation:

Bifurcation	Bifurcation_x	Bifurcation_y
1	76	12
2	77	12
3	84	12
4	86	14
5	29	15
6	39	17
7	38	19
8	92	21
9	20	22
10	71	22
11	84	22
12	20	23

From table 4 we can see that average extraction time is significantly high, also the number of points in each minutiae is also big, which leads to a huge number of extracted points.

The minimize the negative effects of the above mentioned disadvantages, we can use a selected segment of the fingerprint with a small fixed size, table 5 shows the extracted minutiae for the above used fingerprints with a 100x100 pixel segment

Finger print	Segment resolution	Size (byte)	Number of ridge ending	Size (byte)	Number of bifurcations	Size (byte)	Extraction time(s)
1	100x100	10000	2	32	7	112	0.028000
2	100x100	10000	1	16	17	272	0.023000
3	100x100	10000	32	512	79	1264	0.022000
4	100x100	10000	4	64	12	192	0.02760
5	100x100	10000	5	16	13	48	0.023000
6	100x100	10000	1	16	3	48	0.020000
7	100x100	10000	1	16	22	352	0.021000
8	100x100	10000	5	80	9	144	0.023000
9	100x100	10000					0.024000

Average 0.0235

From table 5 we can see the following facts:
- The extraction time was significantly reduced.
- The number of points in each minutia also was reduced, reducing the memory space required to store the points.
- The number of points for each finger print is unique.
- The points coordinate values for each minutia are also unique.

To minimize the size of the fingerprint identifier size we can form the identifier from the following components:
- Number of points in the ridge ending minutiae.
- Euclidean distance of the ridge ending point[20] which can be calculated applying the following formula:

\[d(p,q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \cdots + (q_k - p_k)^2} \]

Where p and q are the points coordinates.
- Number of points in the bifurcation.
- Euclidean distance of bifurcation points.
Table 6 shows the extracted and the calculated components of fingerprint identifiers:

Finger print	Fingerprint identifier (Features)	Number of ridge ending	Euclidean distance of ridge ending	Number of bifurcations	Euclidean distance of bifurcation
1	2	31.3847	7	19.1050	
2	1	4	17	2.2361	
3	32	66.4831	79	91.2195	
4	4	144	12	47.4236	
5	5	19.3518	13	29.2634	
6	1	196	3	48.7955	
7	1	25	22	84.1487	
8	5	11.6581	9	21.3327	
9	11	17.9705	23	21.0246	

V. CONCLUSIONS

A simple, accurate and efficient procedure for fingerprint identifier extraction was proposed, tested and implemented. The obtained experimental showed the following facts:
- The procedure requires small amount of time to extract minutiae.
- The memory space required is small.
- It is better to use a fingerprint seg-ment to minimize the extraction time and the memory space.
- We can use Euclidean distance to re-place the points coordinates in the identifier, making the identifier small-er and easier to handle.
- The obtained identifier for each fin-gerprint is unique, and it can be accu-rately used to retrieve the fingerprint in a recognition system.

REFERENCES

[1] Jude Hemanth & Valentina Emilia Balas, ed. (2018). Biologically Racionalized Computing Tech-niques For Image Processing Applications. Springer, p. 116. ISBN 9783319613161.
[2] Ronald F. Becker & Aric W. Dutelle (2018). Criminal Investigation. Jones & Bartlett Learning, p. 133. ISBN 9781284082852.
[3] Fingerprinting of UK school kids causes out-cry Archived February 11, 2017, at the Houck (Ed.): Forensic Fingerprints, London 2016, p. 21, 50 er.
[4] Fingerprint Source Book: manual of develop-ment techniques, published 26 March 2013 Archived February 11, 2017, at the Wayback Machine retrieved on February 9, 2017; see also Max M. Houck (Ed.): Forensic Fingerprints, London 2016, p. 21, 50 er.
[5] Ziad A.A. Alqadi, Musbah Aqel, Ibrahim M. M. El Emary, Fingerprint Matching Algorithm Based on Ridge Path Map, European Journal of Sci-entific Research ISSN 1450-216X Vol.15 No.3 (2006), pp. 344-351.
[6] Jamil Al-Azzeih, Bilal Zahran, Ziad Alqadi, Belal Ayyoub, Muhammed Mesleh, A Novel Based On Image Blocking Method To Encrypt-Decrypt Color, International Journal on Informatics Visualization, v. 3, issue 1. 2019.
[7] A. A. Moustafa, Z. A. Alqadi, Color Image Re-construction Using A New R'GI Model, journal of Computer Science, Vol.5, No. 4, pp. 250-254, 2009.
[8] Ziad Al-Qadi, Musbah Aqel, Performance analy-sis of parallel matrix multiplication algorithms used in image processing, World Applied Sciences Journal, V. 6, issue 1, pp. 45-52, 2009.
[9] AlQaisi Awis and AlTarawneh Mokhaled and Alqadi Ziad A. and Sharadqah Ahmad A, Analysis of Color Image Features Extraction using Texture Methods, TELKOMNIKA, volume 17, number 3, pages1220—1225, year 2019.
[10] Al-Azzeih J., Zahrani B., Alqadi Ziad, Ayyoub B. and Abu-Zaheer, M., A novel zero-error method to create a secret tag for an image, Journal of Theoretical and Applied Information Technology, volume 96, number13, pages 4081-4091, year 2018.
[11] Moustafa, A.A., Alqadi, Ziad A., A practical approach of selecting the edge detector parameters to achieve a good edge map of the gray image, Journal of Computer Science, volume 5,number 5,pages 355-362,year 2009.
[12] Al-Dwairi Majed O and Alqadi Ziad A and Abu jazair, Amjad A and Znaiti, Rushdi Abu, Opti-mized true-color image processing, World Applied Sciences Journal, volume8, number10, pages1175–1182, year2010.
[13] Jamil Al Azzeih, Ziad A. Alqadi, Hussein Alhatameh, Mohammad Khalil Abuzaalata, Creating a Color Map to be used to Convert a Gray Image to Color Image, International Journal of Computer Applications (0975 -- 8887), volume153, number2., pages31–34, year 2016.
[14] Quzem Jabar Ziad Alqadi, Jamil azza, Statistical analysis of methods used to enhance color image histogram, XX International scientific and technical conference, 2017.
[15] Pathool, Mohammed Ashraf Al and Khawat breh, Saleh and Alqadi Ziad A., Efficient Methods used to Extract Color Image Features, IJCSMC), volume 6, number 12, pages 7–14, year 2017.
[16] BILAL ZHANR, JAMIL AL- AZZEIH, ZI-AD ALQADI, MOHD-ASHRAF ALZOGHOUL, SALEH KWATREH, A MODIFIED LBP METHOD TO EXTRACT FEATURES FROM COLOR IMAGES, Journal of Theoretical and Applied Information Technology 31st May 2018. Vol.96. No 10.
[17] Saleh Khawatreh, Belal Ayyoub, Ashraf Abu-Ein, Ziad Alqadi, A Novel Methodology to Extract Voice Signal Features, International Journal of Com-puter Applications (0975 – 8887) Volume 179 – No.9, January 2018.
[18] Majed O. Al-Dwair , Amjad Y. Hendi, Mo-hamed S. Soliman , Ziad A.A. Alqadi, A new meth-od for voice signal features creation, International Journal of Electrical and Computer Engineering (IJEECE) Vol. 9, No. 5, October 2019, pp. 4092–4098 ISSN: 2088-8708, DOI: 10.1159/jipec.v9i5.ep4092-4098.
[19] Jihad Nader, Ziad A. A. Alqadi, Bilal Zahran, Analysis of Color Image Filtering Methods, Interna-tional Journal of Computer Applications (0975 – 8887) Volume 174 – No.8, September 2017.
[20] Ay, Nihat; Amari, Shun-ichi (2015). “A Novel Approach to Canonical Divergences within Infor-mation Geometry” (PDF). Entropy, 17 (12): 8111–8129. Bibcode: 2015En...17.8111A. DOI:10.3390/e17127866.
[21] Ziad A. Alqadi, A Highly Secure and Accurate Method for RGB Image Encryption, IJCSMC, v. 9, issue 1, pp. 12-21, 3030.
[22] Belal Zahran Rashad J. Rasras, Ziad Alqadi, Mutaa Rasmi Abu Sara, Developing new Multi-level security algorithm for data encryption-decryption (MLS ED), International Journal of Advanced Trends in Computer Science and Engineering, v. 8, issue 6, pp. 3228-3235, 2019.
[23] Jamil Al-Azzeih, Ziad Alqadi, Mohammed Abuzaalata, Performance Analysis of Artificial Neural Networks used for Color Image Recognition and Retrieving, international Journal of Computer Science and Mobile computing, v. 8, issue 2, pp. 93-103, 2019.
[24] J Al-Azzeih M Abuzaalata, Z Alqadi, Modified Inverse LSB Method for Highly Secure Message HIDing, International Journal of Computer Science and Mobile Computing, v. 8, issue 2, pp. 20-33, 2019.
[25] Bilal Zahran Belal Ayyoub, Jihad Nader, Ziad Al-Qadi, Suggested Method to Create Color Image Features Victor, Journal of Engineering and Applied Sciences, v. 14, issue 1, pp. 2303-2207, 2019.
[26] A Waheed, Ziad Alqadi, Gray image recon-struction, Eur. J. Sci. Res, v. 17, pp. 167-173, 2009.
[27] Ziad Alqadi, Bilal Zahran, Quzem Jaber, Belal Ayyoub, Jamil Al-Azzeh, Enhancing the Capacity of LSB Method by Introducing LSB2Z Method, IJCSMC, v. 8, Issue 3, pp. 76 – 90, 2019.

[28] Ziad A Alqadi, Akram A Moustafa, Majed Aldhuri, True Color Image Enhancement Using Morphological Operations, International Review on Computers & Software, v. 4, issue 5, pp. 557-563, 2009.

[29] Musbah J Aqel, Ziad ALQadi, Anmar Ahmed Abdullah, RGB Color Image Encryption-Decryption Using Image Segmentation and Matrix Multiplication, International Journal of Engineering and Technology, v. 7, issue 3.13, pp. 104-107, 2018.

[30] Ziad AlQadi, Hussein M Elsayyed, Window Averaging Method to Create a Feature Vector for RGB Color Image, International Journal of Computer Science and Mobile Computing, v. 6, issue 2, pp. 60-66, 2017.

[31] R Abu Zneit, Ziad Alqadi, M Abu Zalata, A Methodology to Create a Fingerprint for RGB Color Image, International Journal of Computer Science and Mobile Computing, v. 16, issue 1, pp. 205-212, 2017.

[32] Rashad J Rasras, Mohammed Abuzalata, Ziad Alqadi, Jamil Al-Azzeh, Quzem Jaber, Comparative Analysis of Color Image Encryption-Decryption Methods Based on Matrix Manipulation, International Journal of Computer Science and Mobile Computing, v. 8, issue 3, pp. 14-26, 2019.

[33] Jamil Al-azzeh Ahmad Sharadqh, Belal Ayyoub, Ziad Alqadi, Experimental investigation of method used to remove salt and pepper noise from digital color image, International Journal of Research in Advanced Engineering and Technology, v. 5, issue 1, pp. 23-31, 2019.

[34] RA Zneit, Ziad Alqadi, Dr. Mohammad Abu Zalata, Procedural analysis of RGB color image objects, International Journal of Computer Science and Mobile Computing, v. 6, issue 1, pp. 197-204, 2017.

[35] Ziad Alqadi, A Novel Methodology for Repairing a Torn Image, International Journal on Communications Antenna and Propagation, v. 4, issue 1, pp. 366-372, 2011.

[36] Akram A Moustafa, Ziad A Alqadi, Re-constructed color image segmentation, Proceedings of the World Congress on Engineering and Computer Science 2009 Vol II WCECS 2009, October 20-22, 2009, San Francisco, USA.

[37] M. Qaryouti, Dr. Saleh Khawatreh, Prof. Ziad AA Alqadi, Prof. Mohammed Abu Zalata, Optimal Color Image Recognition System (OCIRS), International Journal of Advanced Computer Science and Technology, v. 7, issue 1, pp. 91-99, 2017.

[38] Mutaz Rasm Abu Sara Rashad J. Rasras, Ziad A. AlQadi, A Methodology Based on Steganography and Cryptography to Protect Highly Secure Messages, Engineering, Technology & Applied Science Research, v. 9, issue 1, pp. 3681-3684, 2019.

[39] Jihad Nadir, Ashraf Abu Ein, Ziad Alqadi, A Technique to Encrypt-decrypt Stereo Wave File, International Journal of Computer and Information Technology, v. 5, issue 5, pp. 465-470, 2016.

[40] Haitham Alasha'ary, Abdullah Al-Hasanat, Khaled Matrouk, Ziad Al-Qadi, Ha-san Al-Shalabi, A Novel Digital Filter for Enhancing Dark Gray Images, European Journal of Scientific Research, Vol.122 No.1, 2014, pp.99-106.