The Comparison of Neutron Beams through $^7\text{Li}(p,n)$ Reactions for the Design of a Thermal Neutron Radiography Facility using the MCNPX Code

J. G. Fantidis* and G. E. Nicolaou

*Department of Electrical Engineering–Department of Physics, International Hellenic University, Kavala, Greece

1. INTRODUCTION

Radiography without a doubt is the most widespread non-destructive testing (NDT) in human history. Radiography today uses not only gamma or X-rays but also electrons, protons, and neutrons. Neutron radiography (NR) is the most interesting case because neutron beams can be used to bring information from the materials that are not visible by using X-rays. Neutrons can penetrate effectively through light materials like hydrogen, boron, or lithium. The thermal neutrons range is the most interesting for NR because in this range the thermal neutron beam is more efficient. Compared to the X-ray radiography thermal neutron facilities are rather rare. The reason for this is the lack of high-intensity thermal neutron sources [1–3].

According to many previous works to increase not only the thermal NR units but also many other facilities, there is a need for non-reactor high-intensity neutron sources [3–6]. Accelerators although are not “low-priced” but have a considerably lower cost than nuclear reactors or spallation neutron sources, and seem like the most suitable solution. Protons, electrons, deuterium, and tritium accelerators on heavy or light materials target have been proposed; however, based on the results the $^7\text{Li}(p,n)$ reaction is the best solution both for thermal and epithermal neutron beams because offer both soft spectrum and high-intensity neutron yield. Neutrons via $^7\text{Li}(p,n)$ reaction can be used for thermal NR, for Boron Neutron Capture Therapy, for medical isotope production, for physics cross-section experiments, and for the development of a quasi monoenergetic neutron beam [7–9].

However, the $^7\text{Li}(p,n)$ reaction requires special attention because the lithium metal has poor mechanical and chemical properties. In addition, based on the fact...
that has a rather low melting temperature (=180°C) is necessary for the presence of an appropriate cooling system. Previous works from Bayanov et al. have indicated that it is possible to cool a lithium target with water using up to 10 mA proton beam [10, 11]. The energy of the protons determines the total neutron yield, the maximum and the minimum energy of the emitted neutrons. The increment of the energy in the protons beam increases the neutron flux but simultaneously provides a harder spectrum so a compromise is necessary.

A representative unit for thermal NR based on Deuterium-Tritium, Deuterium-Deuterium or Tritium-Tritium neutron generators, 252Cf, 241Am/Be isotopic neutron sources, and proton or electron accelerators usually on beryllium target [3, 7, 12-14]. The use of proton accelerators in a lithium target for NR facilities is rare. In this article, the proposed thermal NR facility improves the only previous similar proposed system [9] in four ways. Firstly, by using 6 different proton beam energy; secondly, to maximize the thermal neutron flux in the object the angle between the proton beam and the collimator was 0°; thirdly, by using a smaller disk source with a lower proton beam current which reduces considerably the scattered neutrons and fourthly, optimizing the divergent collimator dimensions. Hence, this work aims to evaluate the performance of a thermal NR facility based on neutrons emitted when the lithium target bombarded by protons beams with 6 different energies 2.3, 2.5, 3, 4, 4.5, and 5 MeV. The facility firstly modified to maximize the flux of the thermal neutrons and secondly the quality of the beam enhanced using a sapphire filter. Both the design and the calculations have been simulated with the help of the MCNPX 2.5.0 Monte Carlo code [15, 16]. For this article, the results are based on the use of 1 mA protons beams as a result the presented facility does not require any special cooling system for the lithium target [7].

2. MATERIAL AND METHODS

2.1. Neutron Source Although there are many articles that study and measure the neutron yield from lithium targets for different energy of proton accelerator some discrepancies still exist [17, 18]. Theoretical neutron yield emitted per second into solid angle dΩ when a thick lithium target bombarded by a proton beam can be calculated from the equation [19, 20]:

$$\frac{d^2 \phi}{dΩ dE_p} = igD\left(\frac{d^2\sigma_n}{dΩ}\right)_{CMS} \frac{d\sigma_{CMS}}{dΩ} \frac{dE_n}{dE_p} S^{-1}(E_p)$$

(1)

where i is the proton beam current in µA, g gives the number of protons per µA, D is the atomic density of 7Li, \((\frac{d\sigma_{CMS}}{dΩ})_{CMS}\) describes the differential cross-section for the \(^7\)Li(p,n) reaction, \(E_p\) is the proton energy, \(E_n\) is the energy of the emitted neutrons in the solid angle Ω and \(S^{-1}(E_p)\) is the inverse stopping power in lithium.

In this article 6 protons beams with energies 2.3, 2.5, 3, 4, 4.5, and 5 MeV bombard thick lithium target. The lithium target is a disk with 4 cm diameter and 100 µm thickness with the intention to minimize the unwanted flux of 478 keV γ-rays [15, 16]. The spectra of the emitted neutrons are shown in Figure 1 for proton current equal to 1 mA. The estimated total neutron yields are 5.78×10^11, 8.83×10^11, 1.56×10^12, 3.62×10^12, 4.96×10^12, and 6.48×10^12 ncm⁻²s⁻¹ for 2.3, 2.5, 3, 4, 4.5, and 5 MeV protons beams respectively. From the spectra is obvious that despite the relatively soft spectra more thermalization of the beams is necessary. According to many previous works, the best material for this purpose is the high-density polyethylene (HD-PE) so HD-PE was selected as a neutron moderator [3, 12].

2.2. Collimator Design There are a number of parameters that govern the quality of the radiography produced by a thermal NR facility. The most important parameter is the L/D ratio, where L is the length of the collimator and D is the diameter of the inlet aperture. L/D ratio is used as an indicator of the efficacy of the neutron beam. A large L/D ratio value means better spatial resolution but in the same time decreases the thermal neutron flux (fn) in the investigated object so it is necessary a mutual compromise between high spatial resolution and high fn. The part of neutrons lost due to collimation defining by the ratio [2]:

$$\varphi_i = 16 \cdot \varphi_o \left(\frac{L}{D}\right)^2$$

(2)

where \(\varphi_o\) describes neutron intensity at the entrance to the collimator and \(\varphi_i\) is neutron flux at the exit of the collimator. The spatial resolution losses can be calculated by the geometric unsharpness \(u_g\) [2]:

$$u_g = L_r \cdot \left(\frac{L}{L_r}\right)$$

(3)

where \(L_r\) expresses the neutron source to investigated object distance and \(L_i\) is the image to object distance (usual equal to 0.5 cm). The divergence of the neutron beam is described by the equation [2]:

$$\theta = \tan^{-1}\left(\frac{L}{2L_i}\right)$$

(4)

where \(\theta\) gives the half-angle of the beam divergence, \(L\) is the maximum dimension of the image plane and \(L_i\) is the length of the divergent collimator. Thermal neutron content (TNC) is the number of thermal neutrons within the neutron beam. Usually, this parameter has small values which can be improved using fast neutrons filters. The \(n/γ\) ratio, which is the ratio of neutron intensity of the beam versus the gamma components, is a factor that creates noise in the radiographic image and has suggested value > 10⁵ ncm⁻²mSv⁻¹ [1, 2].
2. 3. Thermal Neutron Radiography Facility

The geometrical configuration of the proposed facility is shown in Figure 2. All the presented dimensions have chosen with a criterion to provide the maximum f_n. Next to the neutron source, there is HD-PE moderator, the parameter a (distance between the source and convergent collimator) is equal to 1.4 cm for the 2.3 MeV proton beam and 1.7 cm for the others beams. The divergent collimator has a conical shape with radii 1.5 and 1 cm with the bigger one on the side of the source. The length b of the divergent collimator is 10 cm for the 2.3 and 2.5 MeV protons beams, 11 cm for 3, 4, 4.5 MeV protons beams, and 12 cm for the 5 MeV proton beam. The divergent collimator is void but to improve the TNC parameter can be filled with a single sapphire filter which is an excellent fast neutron filter [21].

Next to the convergent collimator, there is a divergent collimator with variable length ($L = 50–200$ cm) while the inlet aperture (D) is 1 cm. The divergent collimator has as lining material Boral with thickness 0.8 cm, while borated polyethylene (PE-B) and bismuth (bi) with thicknesses 3.2 and 1 cm were selected as filling materials. The aperture in the side of the investigated object (D_0) has a changeable dimension (14–18 cm). Boral and bi were also chosen as materials for the configuration of the aperture with dimensions 0.8 and 1.2 cm correspondingly; the first prevents the stray and scattered neutrons and the second minimizes the unwanted gamma-rays.

TABLE 1. Thermal NR calculated parameters for the 6 beams and for different L/D values

| L/D | L (cm) | D0 (cm) | θ (deg) | U_r (cm) | f_n (n cm$^{-2}$ s$^{-1}$) TNC (%) |
|------|--------|---------|---------|------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 50 | 50 | 50 | 14 | 4.00 | 1.82E+5 5.85 2.29E+5 5.47 3.75E+5 5.25 5.98E+5 3.04 7.54E+5 2.77 9.69E+5 2.72 |
| 100 | 100 | 16 | 2.29 | 5.00E-3 | 4.67E+4 5.55 6.11E+4 5.40 9.95E+4 5.12 1.43E+5 2.69 1.86E+5 2.52 2.38E+5 2.45 |
| 150 | 150 | 18 | 1.71 | 3.33E-3 | 2.05E+4 5.37 2.66E+4 5.17 4.44E+4 5.02 6.54E+4 2.69 8.18E+4 2.43 1.08E+5 2.43 |
| 200 | 200 | 18 | 1.29 | 2.50E-3 | 1.14E+4 5.29 1.47E+4 5.04 2.59E+4 5.01 3.75E+4 2.70 4.69E+4 2.44 6.08E+4 2.40 |

3. RESULTS AND DISCUSSION

To evaluate and compare the 6 beams the presented facility was simulated for a wide range of the parameters which characterize a thermal NR unit. L/D ratio has values from 50 to 200, divergence angle (θ) varies from 1.29–4° and the geometric unsharpness diversifies 2.5×10$^{-3}$ up to 1×10$^{-2}$. In this work, the $n/γ$ ratio values are not presented because in each simulation has a value of at least two orders of magnitude higher than the recommended value (10^5 n cm$^{-2}$ mSv$^{-1}$). The f_n (with energy 0.01–0.3 eV) was calculated with the MCNPX code using the surface tally (F2). F2 tally calculates the averaged neutron flux in a surface in neutrons cm$^{-2}$ per starting neutron. In the presented facility this surface was placed 0.5 cm away from the divergent collimator and has a radius equal to the aperture beside the image detector [2].

f_n and TNC parameters for every source and for the different values of the basic parameters are shown in Table 1. From these results, it is evident that the 2.3 MeV proton beam offers the higher values for the TNC parameter but the minimum f_n in each simulation. In the opposite direction, the 5 MeV proton beam owing to the higher neutron yield provides the higher intensities for the f_n but with the smaller TNC values. For the same configurations, the f_n varies by a factor up to 5.43, in the same conditions the TNC fluctuates by a factor up to 2.27. However, in every simulation, the TNC has values less than 5.9%, which is not always practical. To overcome this drawback, the use of a fast neutron filter is necessary. Figures 3a-3c show the beam profile at the image plane with and without a single sapphire filter in

![Figure 1. Neutron spectra for 1mA proton current](image1.png)

![Figure 2. Geometric configuration of the simulated facility](image2.png)
the convergent collimator for L/D = 50. The thermal neutrons (0.01–0.3 eV) are separated in 10 groups, the epithermal neutrons energy range (0.3 eV–0.1 MeV) are arranged in 26 groups and the fast neutrons are divided in 11 bands. The presence of the filter reduces significantly the fast neutrons in the cases of 2.3, 2.5, and 3 MeV protons beams, without important consequence on the thermal neutrons energy range.

Figures 4a–4c illustrate that for harder neutron spectra although there is a noticeable reduction in the fast neutrons band the quantity of them is still rather high. The thermal energy range presents again a small decrement. f_{th} and TNC parameters were also calculated for each source and each L/D ratio for 3 different thickness of the sapphire filter. For the 2.3 MeV proton beam, the results are listed in Table 2. The TNC parameter is nearly stable for the same thickness of the sapphire filter and practical independent of the L/D ratio. The TNC is about 18%, 37%, and 68% for 3, 6 and 10, cm thicknesses of the filter respectively. At the same time, the reduction of the f_{th} is about 11%, 21%, and 33%. The second beam gives lower TNC values for the same thicknesses of the filter with percentages in the region of 13%, 28%, and 57% and a similar tendency for the f_{th} (Table 3). Similar

![Figure 3](image1.png)
Figure 3. Neutron spectra at the image position for L/D=50, a) 2.3 MeV, b) 2.5 MeV, c) 3 MeV protons energy respectively

![Figure 4](image2.png)
Figure 4. Neutron spectra at the image position for L/D=50, a) 4 MeV, b) 4.5 MeV, c) 5 MeV protons energy respectively

L/D	f_{th} (ncm$^{-2}$s$^{-1}$)	TNC (%)	f_{th} (ncm$^{-2}$s$^{-1}$)	TNC (%)	f_{th} (ncm$^{-2}$s$^{-1}$)	TNC (%)
50	2.49E+5	18.55	2.21E+5	37.85	1.93E+5	67.90
100	6.38E+4	18.34	5.67E+4	37.36	4.95E+4	68.27
150	2.80E+4	17.94	2.48E+4	37.17	2.17E+4	67.97
200	1.56E+4	17.80	1.39E+4	36.88	1.21E+4	67.62

TABLE 2. Thermal NR simulated parameters using a proton beam with energy 2.3 MeV
TABLE 3. Thermal NR simulated parameters using a proton beam with energy 2.5 MeV

L/D	Sapphire filter (cm)	TNC (%)	f_{th} (n/cm²s)				
50	3	2.05E+5	13.40	1.82E+5	28.90	1.59E+5	58.13
100	6	5.46E+4	13.43	4.86E+4	29.26	4.24E+4	58.35
150	10	2.38E+4	12.95	2.12E+4	28.55	1.85E+4	58.37
200	11	1.32E+4	12.70	1.17E+4	28.07	1.02E+4	57.95

behavior, both for the TNC and the f_{th}, presents and the 3 MeV proton beam. The filter with thickness 3, 6, and 11 cm reduces the f_{th} by a factor 1.12, 1.26, and 1.48 respectively, at the same time the TNC ratio is about 12%, 28%, and 64% (Table 4).

For proton energy > 3 MeV the neutron spectra are softer so the TNC parameter gives lower percentages, with a decrement in the flux similar to the previous cases. Table 5 shows the results for the 4 MeV proton beam for 3, 6, and 11 cm of sapphire filter; the TNC is approximately 5%, 11%, and 27% correspondingly. In the case of 4.5 MeV proton beam (Table 6) for the same thicknesses of the filter, the TNC values are lower compared with the 4 MeV proton beam (5%, 10%, and 25%). As expected the neutrons produced by 5 MeV proton beam provide the lower TNC values owing to the harder spectra so the TNC for 3, 6, and 12 cm of sapphire filter has values about 5%, 9%, and 21% respectively (Table 7).

TABLE 4. Thermal NR simulated parameters using a proton beam with energy 3 MeV

L/D	Sapphire filter (cm)	TNC (%)	f_{th} (n/cm²s)				
50	3	3.36E+5	13.06	2.99E+5	27.87	2.54E+5	61.77
100	6	8.90E+4	12.94	7.91E+4	28.03	6.73E+4	64.19
150	11	3.97E+4	12.81	3.53E+4	27.99	3.00E+4	64.17
200	11	2.32E+4	13.14	2.06E+4	28.80	1.75E+4	65.66

TABLE 5. Thermal NR simulated parameters using a proton beam with energy 4 MeV

L/D	Sapphire filter (cm)	TNC (%)	f_{th} (n/cm²s)				
50	3	5.35E+5	6.37	4.75E+5	12.09	4.04E+5	25.76
100	6	1.28E+5	5.77	1.14E+5	11.48	9.65E+4	27.18
150	11	5.85E+4	5.00	5.20E+4	11.68	4.42E+4	28.83
200	11	3.36E+4	5.87	2.98E+4	11.91	2.54E+4	29.98

TABLE 6. Thermal NR simulated parameters using a proton beam with energy 4.5 MeV

L/D	Sapphire filter (cm)	TNC (%)	f_{th} (n/cm²s)				
50	3	6.74E+5	5.76	5.99E+5	10.90	5.10E+5	23.13
100	6	1.67E+5	5.34	1.48E+5	10.55	1.26E+5	24.92
150	11	7.31E+4	5.12	6.50E+4	10.16	5.53E+4	25.76
200	11	4.19E+4	5.20	3.72E+4	10.45	3.17E+4	26.73

TABLE 7. Thermal NR simulated parameters using a proton beam with energy 5 MeV

L/D	Sapphire filter (cm)	TNC (%)	f_{th} (n/cm²s)				
50	3	8.67E+5	5.10	7.70E+5	9.09	6.33E+5	21.42
100	6	2.13E+5	4.69	1.89E+5	8.49	1.56E+5	21.49
150	12	9.68E+4	4.68	8.61E+4	8.52	7.07E+4	22.00
200	12	5.44E+4	4.63	4.84E+4	8.52	3.97E+4	22.62

4. CONCLUSION

The performance of six neutrons beams generated by \(^{3}\text{Li}(p,n) \) reaction with proton energy in the range between 2.3 up to 5 MeV for a thermal neutron radiography facility was evaluated using the MCNPX Monte Carlo code. The geometrical configuration of the facility has been designed with the intention to maximize the f_{th} which reaches at the image position. For each source, the facility has been simulated for a wide range of the parameters which characterize every thermal radiography system. To reduce the intensity of the fast neutrons and enhance the quality of the beam a single sapphire was used as a fast neutron filter. The presence of the filter improves drastically the TNC without significant sacrifice in the f_{th} values. Neutrons which produced by proton energy from 2.3 to 3 MeV provide softer spectra and better TNC values but with lower f_{th}, on the contrary, neutrons generated by proton energy in the range 4 to 5 MeV offer higher f_{th} but the TNC, even though the use of a filter, has a relatively low percentage.
For this reason, is compulsory a mutual compromise between f_a and TNC.

5. REFERENCES

1. Hawkesworth, M. R. “Neutron radiography. Equipment and methods.” Atomic Energy Review, Vol. 15, No. 2, (1977), 169–220. Retrieved from http://inis.iaea.org/Search/search.aspx?orig_q=RN:8343576

2. Hardt, P. von der, and Röttger, H. Neutron radiography handbook: nuclear science and technology. Springer Science & Business Media, 2012.

3. Fantidis, J. G. “The use of electron linac for high quality thermal neutron radiography unit.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 908, (2018), 361–366. https://doi.org/10.1109/nims.2018.8890814

4. Prouz, F., Najaïpour, G., Jahanshahi, M., and Sharifzadeh Baei, M. “Plant-based calcium fluoride borate as boron-carrying nanoparticles for neutron cancer therapy.” International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 4, (2019), 460–466. https://doi.org/10.5829/ije.2019.32.04a.01

5. Chichester, D. L., Simpson, J. D., and Lemechak, M. “Advanced compact accelerator neutron generator technology for active neutron interrogation field work.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 271, No. 3, (2007), 629–637. https://doi.org/10.1007/s10967-007-0318-7

6. Anderson, I. S., Andreani, C., Carpenter, J. M., Festa, G., Gorini, G., Loong, K. C., and Senesi, R. “Research opportunities with compact accelerator-driven neutron sources.” Physics Reports. Elsevier B.V. https://doi.org/10.1016/j.physrep.2016.07.007

7. Fantidis, J. G. “A study of a transportable thermal neutron radiography unit based on a compact RFI linac.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 293, No. 1, (2012), 95–101. https://doi.org/10.1007/s10967-012-1736-8

8. Mashnik, S. G., Chadwick, M. B., Hughes, H. G., Little, R. C., MacFarlane, R. E., Waters, L. S., and Young, P. G. “7 Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV.” In Proceeding 2000 ANS/ENS International Meeting, Nuclear Applications of Accelerator Technology (pp. 1–11). Retrieved from http://arxiv.org/abs/nucl-th/0110666

9. Fantidis, J. G. “Beam shaping assembly study for BNCT facility based on a 2.5 MeV proton accelerator on Li target.” Journal of Theoretical and Applied Physics, Vol. 12, No. 4, (2014), 221–224. https://doi.org/10.1007/s10907-013-1212-7

10. Bayanov, B., Belov, V., Kindyuk, V., Oparin, E., and Taskaev, S. “Lithium neutron producer target for BINP accelerator-based neutron source.” Applied Radiation and Isotopes, Vol. 67, No. 7-8, SUPPLE. (2009), S282–S284. https://doi.org/10.1016/j.apradiso.2009.03.076

11. Da Silva, A. X., and Crispim, V. R. “Study of a neutron radiography system using 252Cf neutron source.” Radiation Physics and Chemistry, Vol. 61, No. 3, (2001), 515–517. https://doi.org/10.1016/S0969-806X(01)00318-8

12. Fantidis, J. G., Nicolaou, G. E., and Tsagas, N. F. “A transportable neutron radiography system.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 284, No. 2, (2010), 479–484. https://doi.org/10.1007/s10967-010-0502-2

13. Fantidis, J. G., Bandekas, D. V., Constantinos, N., and Vordos, N. “Fast and thermal neutron radiographies based on a compact neutron generator.” Journal of Theoretical and Applied Physics, Vol. 6, No. 1, (2012), 1–8. https://doi.org/10.1186/2251-7235-6-20

14. Hendrickx, J. S., McInnesy, G. W., Waters, L. S., Roberts, T. L., Egdorh, W. H., Finch, J. P., Trellue, H. R., Pitcher, E. J., Mayo, D. R., Swinhoe, M. T., Lebenhaft, J. MCNPX extensions version 2.5. 0 (Report No LA-UR-05-2675), 2005. Retrieved from https://mcpnx.lanl.gov/pdf_files/fa-ur-05-2675.pdf

15. Miresghiy, M. “Simulation of a Neutron Detector for Real Time Imaging Applications.” International Journal of Engineering, Vol. 11, No. 4, (1998), 207–212. Retrieved from http://www.ije/article_71214.html

16. Atanackovic, J., Matsuyski, W., Witharanu, S., Dubeau, J., and Waker, A. J. “Measurements of neutron energy spectra from 7Li(p,n) be reaction with bonner sphere spectrometer, nested Neutron spectrometer and ROSPEC.” Radiation Protection Dosimetry, Vol. 161, No. 1–4, (2014), 221–224. https://doi.org/10.1093/rpd/ntc314

17. Baksfi, A. K., Dawn, S., Suryanarayana, S. V., and Datta, D. “Spectrometry and dosimetry of neutron beams produced by 7Li(p,n) reactions in the proton energy range of 3–5 MeV.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 499, (2002), 16926. https://doi.org/10.1016/j.nima.2019.162926

18. Allen, D. A., and Beynon, T. D. “A design study for an accelerator-based epithermal neutron beam for BNCT.” Physics in Medicine and Biology, Vol. 40, No. 5, (1995), 807–821. https://doi.org/10.1088/0031-9155/40/5/007

19. Matsuyisa, W., Prestwich, W. V., and Byun, S. H. “Precise measurements of the thick target neutron yields of the 7Li(p,n) reaction.” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 543, No. 1, (2011), 47–52. https://doi.org/10.1016/j.nima.2011.04.034

20. Mildner, D. F. R., and Lanaze, G. P. “Neutron Transmission of Single-Crystal Sapphire.” Journal of Applied Crystallography, Vol. 31, No. 6, (1998), 835–840. https://doi.org/10.1107/S0021889898005846