Research Article

Intuitionistic Fuzzy Dombi Hybrid Decision-Making Method and Their Applications to Enterprise Financial Performance Evaluation

Chiranjibe Jana, G. Muhiuddin, Madhumangal Pal, and D. Al-Kadi

1Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, India
2Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
3Department of Mathematics and Statistic, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to G. Muhiuddin; chishtygm@gmail.com

Received 29 May 2021; Accepted 2 July 2021; Published 20 July 2021

Academic Editor: Ewa Rak

Copyright © 2021 Chiranjibe Jana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the era of the knowledge-based economy, the active branch of information technology plays a crucial role. The enterprise administration covers efficient changes, and it has been entered in the age of reasonable management argument. The standard enterprise financial review evaluation centers on the importance of bondholders. The investor takes operational data as an issue and pays surveillance to the study of material attraction and the result. Otherwise, it is not intelligent to adjust in a modern marketplace period. Therefore, enterprise financial directing the interests of shareholders and business policies that are taking into account stakeholders’ needs is continually investigated in the future lively competition. In that view, accumulating data is an essential research tool to draw the researchers’ recent attention during the knowledge investigation. In this research, multiple attribute decision-making (MADM) approach has been proposed for the enterprise financial performance evaluation. To this view, financial performance evaluation has been done with intuitionistic fuzzy arguments. We apply new Dombi hybrid operators such as the intuitionistic fuzzy Dombi hybrid average (IFDHWA) operator and intuitionistic fuzzy Dombi hybrid geometric (IFDHWG) operator. These operators have a good advantage of adaptability in the working parameter. Finally, a realistic instance for enterprise financial performance is reported following comment on the benefit or utility of the recommended output.

1. Introduction

Financial control is an integral part of administration examination which shows how companies exploit proper approaches to generate and keep up reasonable dominance. Nowadays, the study on contest has enlarged exponentially. Mintzberg et al. [1] condemned excessively explanatory orientation, upper administration slant, and an absence of thoughtfulness regarding taking movement and learning and disregarding the components that prompt those formations of methodologies. Shrivastava [2] focused on his examination of hierarchical learning forms; this can offer bits of knowledge into these apparent disadvantages. The hierarchical information is justified as the groundwork for gaining defended aggressive capabilities and a resolution alternative of the exhibition of firm performance [3]. Moreover, a few studies set up evidence of the beneficial connection between policy-making learning and obstinate execution. For example, the learning intention has an immediate impact on firm production [4]. Ussahawanitchakit [5] executed advanced model research on the economy and obtained related issues.

The enterprise financial performance appraisal is not only a growth of the market economy at a particular time. But, there also a precise approach to supervising the enterprises for a nation with the contemporary market economy. It is the direction to manage successfully with modern enterprise management. The enterprise management team must learn about the foreign market economy, which can supervise its performance. The methods of
contemporary enterprise management systems change rapidly and face the challenges of a rapidly developing economy. Also, a policy of offering judgment in which our business community plays an essential operation improving the management level, sharpening the business competitiveness, and further increasing the industrial growth quality is shown. Numerous MCDM or MADM approaches (review from business management, financial, and strategic management) have been considered using aggregation operators (AOs) in probabilistic notion [6–8]. The ordered weighted averaging induces geometric operators and then utilizes these to construct strategic decision theory [9]. The management study [10] based on game theory has been developed in the IFS environment. The survey of aggregation under the IFS environment is a vital research machine in decision theory. In the next part, we shortly overview some related decision-making-based problems. It is hard to take absolute values of attributes because of complexity level to be higher in the field of decision science. Zadeh [11] started the hypothesis of fuzzy sets (FSs) new mathematical knowledge of handling MADM issues efficiently and multiattribute group decision-making (MAGDM) problems. However, FS cannot handle complex fuzzy information because it expresses only membership degree. In that situation, Atanassov [12] defined IFSs, which easily handle complex FS information. IFS addressed an object characterized by membership degree (MD) and non-membership degree (NMD). In the preceding several decades, researchers have more thought about IFSs and interval-valued intuitionistic fuzzy sets (IVIFSs) because these thoughts have been connected to many practical results, such as medical science, decision-making, pattern recognition, and clustering. Recently, many tremendous works have been developed in the IFS environment, such as De et al. [13] defined operation on IFSs, Szmidt and Kacprzyk [14] measured the similarity between IFSs, and Guo and Song [15] proposed entropy between IFSs. It is generally seen that the theory of IFSs is used to manage the MAGDM issues and clustering algorithms for economic risk evaluation utilizing MCDM procedures [16], Li et al. [17] introduced an MADM method using Hassdorff’s distance measure generalized fuzzy numbers, Garg [18] proposed a generalized improved score function of IVIFSs and applied it in expert systems, and Chen and Chiou [19] solved MADM problems based on IVIFSs using PSO procedures and evidential logic methodology. Kumar and Garg [20] utilized the technique for order of preference by similarity to ideal solution (TOPSIS) process based on set pair evaluation relationship under the IVIFSs environment. Li and Pen [21] pointed out the MADM method using the amount and reliability of IFS information. Lourenzutti and Krohling [22] studied TODIM (an acronym in Portuguese for interactive multicriteria decision making) problems based on IFS random methodology. Nowadays, information AOs are a major research topic in the multiattribute group decision-making (MAGDM) environment and become a concentration of the researchers to developed critical works [23–30]. Some traditional results [31–38] have been developed based on aggregation operators. At present, some research studies have been made using extended AOs; for instance, Zhang et al. [39] delivered power AOs on IFSs and Liu and Yu [40] used density operators for IFSs or IVIFSs, respectively. Wu and Su [41] introduced prioritized AOs for IFSs that bear in mind priorities of characteristics using precedence weights. In [42, 43], a few AOs based on algebraic operational laws for IFSs are suggested, which is an exceptional case of triangular norms. The Archimedean triangular norms are the Hamacher norms, Algebraic norms, Einstein norms, Frank norms, and Dombi norms. Liu [44] utilized Hamacher AOs on IVIFSs and developed a MAGDM model. Zhang [45] proposed Frank AOs for IVIFSs and their applications to MAGDM procedures. Einstein hybrid AOs for IFSs are applied to the MADM approach. Yu [47] introduced Choquet AOs based on Einstein norms for IFS. Dombi triangular norms are general triangular norms, which can deal with the data collection process more adaptable by a parameter. Dombi [48] provided Dombi norms which have good operational flexibility to find the results. For this advantage, Bonferroni operations to IFSs are applied to develop a MAGDM [49] problem. Chen and Ye [50] referred MADM problem using Dombi AOs in the SVN environment. Some research studies [51, 52] are developed based on Dombi norms in the different uncertain fuzzy environment, and hybrid aggregation operators [53, 54] in intuitionistic ambiguous environment have been motivated to study the proposed work. They are gripping in mind that the IFS has a powerful technique to model the vague and imprecise knowledge that appears in real-world problems. The decision-making problems in a complex fuzzy environment under Dombi operations present sufficient motivation to improve our present paper. The central object of this paper is to develop an MADM approach based on intuitionistic Dombi hybrid operators. The objectives of this paper are as follows:

A new approach is developed in connecting with intuitionistic fuzzy Dombi hybrid operators

The proposed operators are utilized for IFMADM approach

An illustrative example is demonstrated by a numerical example

Superiority of the proposed method is verified numerically.

The organization of the paper is sorted as follows: in the next section, some basic ideas of IFNs are briefly reviewed, and their operational laws and some operators are presented. Intuitionistic fuzzy Dombi weighted averaging, order weighted averaging, and hybrid weighted averaging operator are defined in Section 3. In Section 4, intuitionistic fuzzy Dombi hybrid weighted geometric operator, order weighted geometric operator, and hybrid weighted geometric operators are mentioned. In Section 5, we have applied IFDHWA and IFDHWG operators to construct MADM problems. An illustrative example is given for the preference of the best choice of the alternatives in Section 6. Section 7 incorporates
assured comparative discussions with different broadly used MADM procedures. In Section 8, some comments are given to the paper.

2. Preliminaries

In this section, we recall a few fundamental ideas associated with IFSs over the universe of discourse X.

Definition 1 (see [55]). An IFS over the fixed set X is interpreted as

$$T = \{ (x, \mu(x), \nu(x)) \mid x \in X \},$$

(1)

where $\mu(x): X \rightarrow [0,1]$ follows MD and $\nu(x): X \rightarrow [0,1]$ indicates NMD for an element $x \in X$ to an IFS. $\pi(x) = 1 - \mu(x) - \nu(x)$ is the depicted degree of indeterminacy for an element x to the set T. $\langle \mu, \nu \rangle$ is denoted as intuitionistic fuzzy elements (IFEs) or intuitionistic fuzzy values (IFVs).

Reference [32] introduced the IFWA operator, IFOWA operator, and IFHWA operator as follows for which $(\sigma(1), \sigma(2), \ldots, \sigma(\eta))$ is a permutation of $(1, 2, \ldots, \eta)$, where \bar{T}_ϕ is the ϕ-th largest weighted IFV $(\bar{\Omega}_\phi = \eta \psi \bar{\phi}, (\phi = 1, 2, \ldots, \eta)$ and $\psi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T$ be the weight vector of $\bar{\Omega}_\phi$ with $\psi_\phi > 0$ and $\sum_{\phi=1}^{\eta} \psi_\phi = 1$.

Definition 2 (see [32]). Let $\bar{\Omega}_\phi = (\mu_\phi, \nu_\phi)$ $(\phi = 1, 2, \ldots, \eta)$ be a group of IFEs. The IFWA operator of dimension η is a function $\bar{\Omega}_\phi \rightarrow \bar{\Omega}_\phi$ with weight vector $\psi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T$ and react as $\psi > 0$ and $\sum_{\phi=1}^{\eta} \psi_\phi = 1$; then,

$$\text{IFWA}_\psi(\bar{\Omega}_\phi, \bar{\Omega}_\psi, \ldots, \bar{\Omega}_\eta) = \prod_{\phi=1}^{\eta} \psi_\phi \bar{\Omega}_{\eta(\psi)}$$

$$= \left(1 - \prod_{\phi=1}^{\eta} (1 - \mu_{\phi(\psi)}) \prod_{\phi=1}^{\eta} \nu_{\phi(\psi)} \right).$$

(2)

Definition 3 (see [32]). Let $\bar{\Omega}_\phi = (\mu_\phi, \nu_\phi)$ $(\phi = 1, 2, \ldots, \eta)$ be a group of IFEs. An IFOWA operator is a function with dimension η defined as $\bar{\Omega}_\phi \rightarrow \bar{\Omega}_\phi$ with acting weight vector $\psi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T$ such that $\psi > 0$ and $\sum_{\phi=1}^{\eta} \psi_\phi = 1$. Furthermore,

$$[\text{IFOWA}_\psi(\bar{\Omega}_\phi, \bar{\Omega}_\psi, \ldots, \bar{\Omega}_\eta)]^\eta = \prod_{\phi=1}^{\eta} \psi_\phi \bar{\Omega}_{\eta(\psi(\phi))}$$

$$= \left(1 - \prod_{\phi=1}^{\eta} (1 - \mu_{\eta(\psi(\phi)))} \prod_{\phi=1}^{\eta} \nu_{\eta(\psi(\phi)))} \right).$$

(3)

Definition 4 (see [32]). Let $\bar{\Omega}_\phi = (\mu_\phi, \nu_\phi)$ $(\phi = 1, 2, \ldots, \eta)$ be a group of IFEs. A function IFHWA of dimension η defined as $\bar{\Omega}_\phi \rightarrow \bar{\Omega}_\phi$ is weight vector acting $\psi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T$ with $\psi > 0$ and $\sum_{\phi=1}^{\eta} \psi_\phi = 1$. Furthermore,

$$\text{IFHWA}_\psi(\bar{\Omega}_\phi, \bar{\Omega}_\psi, \ldots, \bar{\Omega}_\eta) = \prod_{\phi=1}^{\eta} \psi_\phi \bar{\Omega}_{\eta(\psi(\phi))}$$

$$= \left(1 - \prod_{\phi=1}^{\eta} (1 - \mu_{\eta(\psi(\phi)))} \prod_{\phi=1}^{\eta} \nu_{\eta(\psi(\phi)))} \right).$$

(4)

Xu [33] also used weighted geometric operators such as IFWG, IFOWG, and IFHWG operators.

We defined score and accuracy functions [54] as follows.

Definition 5 (see [36]). Let $U = (\mu_U, \nu_U)$ be an IFEs. Then, score U for IFEs is computed as follows:

$$\Lambda(U) = \frac{1 + \mu_U - \nu_U}{2}, \quad \Lambda(U) \in [0,1],$$

(5)

and accuracy function Φ for IFEs is evaluated as follows:

$$\Phi(U) = \frac{\mu_U + \nu_U}{2}, \quad \Phi(U) \in [0,1].$$

(6)

On the basis of $\Lambda(U)$ and $\Phi(U)$, we used order relation between two IFEs $U = (\mu_U, \nu_U)$ and $V = (\mu_V, \nu_V)$ as follows.

Definition 6 (see [36]). Let U and V be any two IFEs. Then,

(i) If $\Lambda(U) < \Lambda(V)$, then $U < V$

(ii) If $\Lambda(U) > \Lambda(V)$, then $U > V$

(iii) If $\Lambda(U) = \Lambda(V)$, then

(1) If $\Phi(U) < \Phi(V)$, then $U < V$

(2) If $\Phi(U) > \Phi(V)$, then $U > V$

(3) If $\Phi(U) = \Phi(V)$, then $U \sim V$

In the following section, we defined Dombi operator [48].

2.1. Dombi Operations on IFEs. Dombi triangular norms and conorms are defined as follows.

Definition 7 (see [48]). Let us take p and q as any two real numbers. Then,

$$\text{Dom}(p,q) = \frac{1}{1 + \left\{ ((1-p)/p)^{\frac{1}{q}} + ((1-q)/q)^{\frac{1}{q}} \right\}^{1/q}},$$

$$\text{Dom}^{*}(p,q) = 1 - \frac{1}{1 + \left\{ ((p/(1-p))^q + (q/(1-q))^p \right\}^{1/q}},$$

(7)

where $q \geq 1$ and $(p,q) \in [0,1] \times [0,1]$.

In view of Dom-norms and Dom-conorms, we explained Dombi operations with respect to IFEs.

Let $\bar{\Omega}_1$ and $\bar{\Omega}_2$ be two IFEs and $\lambda > 0$, then Dombi-product and Dombi-sum of $\bar{\Omega}_1$ and $\bar{\Omega}_2$ are, respectively, denoted as $\bar{\Omega}_1 \odot \bar{\Omega}_2$ and $\bar{\Omega}_1 \oplus \bar{\Omega}_2$ given as follows:
weighting themselves. OQ_hus, weighting for IFDWA and weights in their ordered locations of IFVs instead of IFVs whereas the IFDOWA operator used the \(\phi \) (\(\phi \in \mathbb{R} \)) operator.

To this section, we propose Dombi arithmetic AOs with IFEs such as intuitionistic fuzzy Dombi weighted averaging (IFDWA) operator, intuitionistic fuzzy Dombi ordered weighted averaging (IFDOWA) operator, and intuitionistic fuzzy Dombi hybrid weighted averaging (IFDHWHA) operator.

3. Intuitionistic Fuzzy Dombi Aggregation Operator

To this section, we propose Dombi arithmetic AOs with IFEs such as intuitionistic fuzzy Dombi weighted averaging (IFDWA) operator, intuitionistic fuzzy Dombi ordered weighted averaging (IFDOWA) operator, and intuitionistic fuzzy Dombi hybrid weighted averaging (IFDHWHA) operator.

3.1. Intuitionistic Fuzzy Dombi Hybrid Averaging Operator

In this section, we introduce IFDHWHA operator.

Definition 8 (see [55]). Let \(\Omega_\phi = (\mu_\phi, \nu_\phi) (\phi = 1, 2, \ldots, \eta) \) be a group of IFEs. Then, IFDWA operator is a function \(\text{IFE}^\eta \longrightarrow \text{IFE} \) such that

\[
\text{IFDWA}_{\psi}(\Omega_1, \Omega_2, \ldots, \Omega_\eta) = \bigoplus_{\psi=1}^{\eta} (\psi_\phi \bar{\Omega}_\phi) = \bigoplus_{\psi=1}^{\eta} \left(1 - \frac{1}{1 + \left(\left(1 - \frac{\mu_\phi}{\nu_\phi} \right)^{\psi_{\phi}} \right)_{1^{1/\psi}}^{\eta} \left(1 + \left(\left(1 - \frac{\mu_\phi}{\nu_\phi} \right)^{\psi_{\phi}} \right)_{1^{1/\psi}}^{\eta} \left(1 + \left(\left(1 - \frac{\mu_\phi}{\nu_\phi} \right)^{\psi_{\phi}} \right)_{1^{1/\psi}}^{\eta} \right)_{1^{1/\psi}}^{\eta} \right)_{1^{1/\psi}}^{\eta} \right)_{1^{1/\psi}}^{\eta},
\]

where \(\psi = (\psi_1, \psi_2, \ldots, \psi_\eta) \) be the weight vector of \(\bar{\Omega}_\phi \) (\(\phi = 1, 2, \ldots, \eta \)) with \(\psi_\phi > 0 \) and \(\sum_{\phi=1}^{\eta} \psi_\phi = 1 \).

Now, we introduce IFDWA operator.

Definition 9 (see [36]). Let \(\bar{\Omega}_\phi = (\mu_\phi, \nu_\phi) (t = 1, 2, \ldots, \eta) \) be a number of IFEs. The IFDWA operator of dimension \(\eta \) is a function IFDWA: \(\text{IFE}^\eta \longrightarrow \text{IFE} \) with related vector \(\psi = (\psi_1, \psi_2, \ldots, \psi_\eta) \) such that \(\psi_i > 0 \) and \(\sum_{\phi=1}^{\eta} \psi_\phi = 1 \). Therefore,

\[
\text{IFDWA}_{\psi}(\bar{\Omega}_1, \bar{\Omega}_2, \ldots, \bar{\Omega}_\eta) = \bigoplus_{\psi=1}^{\eta} (\psi_\phi \bar{\Omega}_\phi) = \bigoplus_{\psi=1}^{\eta} \left(1 - \frac{1}{1 + \left(\left(1 - \frac{\mu_\phi}{\nu_\phi} \right)^{\psi_{\phi}} \right)_{1^{1/\psi}}^{\eta} \left(1 + \left(\left(1 - \frac{\mu_\phi}{\nu_\phi} \right)^{\psi_{\phi}} \right)_{1^{1/\psi}}^{\eta} \right)_{1^{1/\psi}}^{\eta} \right)_{1^{1/\psi}}^{\eta},
\]

where \((\sigma (1), \sigma (2), \ldots, \sigma (\eta)) \) are the permutation of \((\phi = 1, 2, \ldots, \eta) \), for which \(\bar{\Omega}_{\sigma (1)} \geq \bar{\Omega}_{\sigma (\phi)} \) for all \(\phi = 1, 2, \ldots, \eta \).

In Definitions 8 and 9, the IFDWA considered the weights of the IFVs whereas the IFDWA operator used the weights in their ordered locations of IFVs instead of IFVs weighting themselves. Thus, weighting for IFDWA and IFDWA is used in different aspects. However, they are produced one time only. To overcome this happening, we focus on IFDHA operator.

Definition 10. The IFDHWHA operator of dimension \(\eta \) is a function IFDHWHA: \(\text{IFE}^\eta \longrightarrow \text{IFE} \), with related weight vector \(W = (w_1, w_2, \ldots, w_\eta) \) such that \(w_\phi > 0 \) and \(\sum_{\phi=1}^{\eta} w_\phi = 1 \). Therefore, IFDHWHA operator can be evaluated as
where $\tilde{\Omega}_{\phi}^{(\sigma)}$ is the ϕth biggest weighted IFVs $\tilde{\Omega}_{\phi} (\tilde{\Omega}_{\phi} = \eta \psi_{\phi} \Omega_{\phi}), \phi = 1, 2, \ldots, \eta$, and weighting vector be $\psi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T$ of $\tilde{\Omega}_{\phi}$ with $\psi_\phi > 0$ and $\sum_{\phi=1}^{\eta} \psi_\phi = 1$, where η is the equipoise coefficient.

\[
\text{IFDHWA}_{\phi}(\tilde{\Omega}_1, \tilde{\Omega}_2, \ldots, \tilde{\Omega}_\eta) = \frac{\eta}{\phi-1} \left(\psi_t \tilde{\Omega}_{\phi}^{(\sigma)} \right) \\
= \left(1 - \frac{1}{1 + \sum_{\phi=1}^{\eta} \psi_\phi \left(\bar{\mu}_{\phi} \left(1 - \bar{\mu}_{\phi} \right) \right)^\eta} \right) \left(\frac{1}{1 + \sum_{\phi=1}^{\eta} \psi_\phi \left(\bar{\psi}_{\phi} \left(1 - \bar{\psi}_{\phi} \right) \right)^\eta} \right),
\]

(14)

Example 1. There are four IFEs $\tilde{\Omega}_1 = (0.5, 0.3), \tilde{\Omega}_2 = (0.6, 0.3), \tilde{\Omega}_3 = (0.7, 0.3), \text{ and } \tilde{\Omega}_4 = (0.2, 0.4)$ and $\psi = (0.20, 0.30, 0.20)^T$ is the weight vector of these four IFEs and $W = (0.2, 0.1, 0.3, 0.4)^T$ is the associated weight vector. Then, by Definition 10, for aggregated of IFEs for $\kappa = 3$, by the way,

\[
\begin{align*}
\tilde{\Omega}_1 &= \left(1 - \frac{1}{1 + \left[4 \times 0.20 \times 0.5 \right]^{1/3}} \right) \left(1 - \frac{1}{1 + \left[4 \times 0.20 \times 0.3 \right]^{1/3}} \right) \\
&= \langle 0.4814, 0.3158 \rangle, \\
\tilde{\Omega}_2 &= \left(1 - \frac{1}{1 + \left[4 \times 0.30 \times 0.6 \right]^{1/3}} \right) \left(1 - \frac{1}{1 + \left[4 \times 0.30 \times 0.3 \right]^{1/3}} \right) \\
&= \langle 0.6145, 0.2874 \rangle, \\
\tilde{\Omega}_3 &= \left(1 - \frac{1}{1 + \left[4 \times 0.30 \times 0.7 \right]^{1/3}} \right) \left(1 - \frac{1}{1 + \left[4 \times 0.30 \times 0.3 \right]^{1/3}} \right) \\
&= \langle 0.7126, 0.2874 \rangle, \\
\tilde{\Omega}_4 &= \left(1 - \frac{1}{1 + \left[4 \times 0.20 \times 0.2 \right]^{1/3}} \right) \left(1 - \frac{1}{1 + \left[4 \times 0.20 \times 0.4 \right]^{1/3}} \right) \\
&= \langle 0.1884, 0.4180 \rangle.
\end{align*}
\]

(15)

Scores of $\tilde{\Omega}_t$ ($t = 1, 2, 3, 4$) are calculated as follows:

\[
\begin{align*}
\Lambda \left(\tilde{\Omega}_1 \right) &= \frac{1 + 0.4814 - 0.3158}{2} = 0.5828, \\
\Lambda \left(\tilde{\Omega}_2 \right) &= \frac{1 + 0.6145 - 0.2874}{2} = 0.6636, \\
\Lambda \left(\tilde{\Omega}_3 \right) &= \frac{1 + 0.7126 - 0.2874}{2} = 0.7126, \\
\Lambda \left(\tilde{\Omega}_4 \right) &= \frac{1 + 0.1884 - 0.4180}{2} = 0.3852.
\end{align*}
\]

(16)

Since

\[
\Lambda \left(\tilde{\Omega}_3 \right) > \Lambda \left(\tilde{\Omega}_2 \right) > \Lambda \left(\tilde{\Omega}_1 \right) > \Lambda \left(\tilde{\Omega}_4 \right),
\]

(17)

then

\[
\begin{align*}
\tilde{\Omega}_{\sigma(1)} &= \tilde{\Omega}_3 = (0.7126, 0.2874), \\
\tilde{\Omega}_{\sigma(2)} &= \tilde{\Omega}_2 = (0.6145, 0.2874), \\
\tilde{\Omega}_{\sigma(3)} &= \tilde{\Omega}_1 = (0.4814, 0.3158), \\
\tilde{\Omega}_{\sigma(4)} &= \tilde{\Omega}_4 = (0.1884, 0.4180).
\end{align*}
\]

(18)

Therefore, aggregated values of IFEs for $\kappa = 3$ by IFDHWA operator are as follows:
IFDHWG\(_{(\tilde{O}_1, \tilde{O}_2, \ldots, \tilde{O}_\eta)} = \varnothing_{\phi=1}^{\eta}(\tilde{O}_{\phi})^{w_{\phi}}\)

\[
= \left\langle 1 - \frac{1}{1 + \sum_{\phi=1}^{\eta} w_{\phi}\left(1 - \mu_{\phi}\right)/\mu_{\phi}} \right\rangle_{\text{IFDHWG}}
\]

4. Intuitionistic Fuzzy Dombi Geometric Aggregation Operators

To this section, we propose Dombi geometric AOs with IFEs such as intuitionistic fuzzy Dombi weighted geometric (IFDWG) operator, intuitionistic fuzzy Dombi ordered weighted geometric (IFDOWG) operator, and intuitionistic fuzzy Dombi hybrid weighted geometric (IFDHWG) operator.

\[
\text{IFDHWG}_\Psi(\tilde{O}_1, \tilde{O}_2, \ldots, \tilde{O}_\eta) = \varnothing_{\phi=1}^{\eta}(\tilde{O}_{\phi})^{\psi_{\phi}}
\]

\[
= \left\langle 1 - \frac{1}{1 + \sum_{\phi=1}^{\eta} \psi_{\phi}\left(1 - \mu_{\phi}\right)/\mu_{\phi}} \right\rangle_{\text{IFDHWG}}
\]

where \(\varphi = (\psi_1, \psi_2, \ldots, \psi_\eta)^T\) be the weight vector of \(\tilde{O}_\phi\) (\(\phi = 1, 2, \ldots, \eta\)) such that \(\psi_{\phi} > 0\) and \(\sum_{\phi=1}^{\eta} \psi_{\phi} = 1\).

Now, we introduce IFDOWG operator.

\[
\text{IFDOWG}_w(\tilde{O}_1, \tilde{O}_2, \ldots, \tilde{O}_\eta) = \varnothing_{\phi=1}^{\eta}(\tilde{O}_{\phi})^{w_{\phi}}
\]

\[
= \left\langle 1 - \frac{1}{1 + \sum_{\phi=1}^{\eta} w_{\phi}\left(1 - \mu_{\phi}\right)/\mu_{\phi}} \right\rangle_{\text{IFDOWG}}
\]

where \((\sigma(1), \sigma(2), \ldots, \sigma(\eta))\) are the permutation of \((\phi = 1, 2, \ldots, \eta)\), for which \(\tilde{O}_{\sigma(\phi)} \geq \tilde{O}_{\sigma(\phi)}\) for all \(\phi = 1, 2, \ldots, \eta\).

In Definitions 11 and 12, the IFDWG considered the weights of the IFVs, however, in IFDOWG weights considered the ordered ground of the IFVs in view of weights of the IFVs among. Thus, the weighting for IFDWG and IFDOWG is utilized in various ways. However, they are produced only one time. To overcome this case, we introduce IFDHWG operator.

\[
\text{Definition 13.} \text{An IFDHWG operator of dimension } \eta \text{ is a function } \text{IFDHWG: } \text{IFE}^{\eta} \longrightarrow \text{IFE}, \text{with related weight vector } w = (w_1, w_2, \ldots, w_\eta) \text{ such that } w_{\phi} > 0 \text{ and } \sum_{\phi=1}^{\eta} w_{\phi} = 1. \text{ Therefore, IFDHWG operator can be evaluated as}
\]
where \(\hat{\Omega}_{\sigma(\phi)} \) is the \(\phi^{th} \) largest weighted IFVs \(\hat{\Omega}_{\phi} = \eta \psi_{\phi} I_{\phi}, \phi = 1, 2, \ldots, \eta \) and weight vector be \(\psi = (\psi_1, \psi_2, \ldots, \psi_{\eta})^{T} \) of \(\hat{I}_{\phi} \) with \(\psi_{\phi} > 0 \) and \(\sum_{\phi=1}^{\eta} \psi_{\phi} = 1 \), where \(\eta \) is the equipoise coefficient.

Example 2. There are four IFEs \(\hat{\Omega}_1 = (0.5, 0.3), \hat{\Omega}_2 = (0.6, 0.3), \hat{\Omega}_3 = (0.7, 0.3), \) and \(\hat{\Omega}_4 = (0.2, 0.4) \), and \(\psi = (0.20, 0.30, 30, 0.20)^T \) is the weight vector of these four IFEs and \(W = (0.2, 0.1, 0.3, 0.4)^T \) is the associated weight vector. Then, by Definition 13, for aggregated of IFEs for \(\kappa = 3 \), by the way,

\[
\begin{align*}
\hat{\Omega}_1 &= \left\langle \left(\frac{1}{1 + \{4 \times 0.20 \times ((1 - 0.5)/0.5)^{1/3}\}} \right)^{1/\eta} \right\rangle \\
&= \langle (0.5186, 0.2846) \rangle, \\
\hat{\Omega}_2 &= \left\langle \left(\frac{1}{1 + \{4 \times 0.30 \times ((1 - 0.6)/0.6)^{1/3}\}} \right)^{1/\eta} \right\rangle \\
&= \langle (0.5853, 0.3129) \rangle, \\
\hat{\Omega}_3 &= \left\langle \left(\frac{1}{1 + \{4 \times 0.30 \times ((1 - 0.7)/0.7)^{1/3}\}} \right)^{1/\eta} \right\rangle \\
&= \langle (0.6871, 0.3129) \rangle, \\
\hat{\Omega}_4 &= \left\langle \left(\frac{1}{1 + \{4 \times 0.20 \times ((1 - 0.2)/0.2)^{1/3}\}} \right)^{1/\eta} \right\rangle \\
&= \langle (0.2122, 0.3823) \rangle.
\end{align*}
\]

Scores of \(\hat{\Omega}_{\phi} \) (\(\phi = 1, 2, 3, 4 \)) are calculated as follows:

\[
\begin{align*}
\Lambda\left(\hat{\Omega}_1\right) &= \frac{1 + 0.5186 - 0.2846}{2} = 0.6170, \\
\Lambda\left(\hat{\Omega}_2\right) &= \frac{1 + 0.5853 - 0.3129}{2} = 0.6362, \\
\Lambda\left(\hat{\Omega}_3\right) &= \frac{1 + 0.6871 - 0.3129}{2} = 0.6871, \\
\Lambda\left(\hat{\Omega}_4\right) &= \frac{1 + 0.2122 - 0.3823}{2} = 0.4150.
\end{align*}
\]

Since

\[
\Lambda\left(\hat{\Omega}_3\right) > \Lambda\left(\hat{\Omega}_2\right) > \Lambda\left(\hat{\Omega}_1\right) > \Lambda\left(\hat{\Omega}_4\right),
\]

then

\[
\hat{\Omega}_{\sigma(1)} = \hat{\Omega}_3 = (0.6871, 0.3129), \\
\hat{\Omega}_{\sigma(2)} = \hat{\Omega}_2 = (0.5853, 0.3129), \\
\hat{\Omega}_{\sigma(3)} = \hat{\Omega}_1 = (0.5186, 0.2846), \\
\hat{\Omega}_{\sigma(4)} = \hat{\Omega}_4 = (0.2122, 0.3823).
\]

Therefore, aggregated values of IFEs (\(q = 3 \) by IFDHWG operator are as follows:

\[
\begin{align*}
\Lambda\left(\tilde{\Omega}_3\right) > \Lambda\left(\tilde{\Omega}_2\right) > \Lambda\left(\tilde{\Omega}_1\right) > \Lambda\left(\tilde{\Omega}_4\right),
\end{align*}
\]
5. MADM Model Based on Hybrid Operators

For the section, we form an MADM approach applying IFS AOs in which the weight of the attributes is in real numbers, and one can apply different existing methods for the evaluation of the attribute’s weight vector. Here, MADM problem is used to develop for enterprise financial performance evaluation under intuitionistic fuzzy information. Let a group of alternative be \(Q = \{Q_1, Q_2, \ldots, Q_n\} \) and attributes be \(G = \{G_1, G_2, \ldots, G_m\} \). Let a set of weight vector be \(\psi = (\psi_1, \psi_2, \ldots, \psi_n) G_{\phi} (\phi = 1, 2, \ldots, \eta) \) of \(Q \) which are real-values where \(\psi_{\phi} > 0 \) and \(\sum_{\phi=1}^{\eta} \psi_{\phi} = 1 \). Suppose the decision matrix \(\bar{D} = (\mu_{\xi \phi}, \nu_{\xi \phi})_{\phi \in \Psi} \) where \(\mu_{\xi \phi} \) is the MD considered for the alternative \(Q_\xi \) satified under the attribute \(G_{\phi} \) proposed by the DMs, and \(\nu_{\xi \phi} \) implied NMD for the alternative \(Q_\xi \) does not comfort \(G_{\phi} \) stated by the DMs, where \(\mu_{\xi \phi} \in [0, 1] \) and \(\nu_{\xi \phi} \in [0, 1] \) such that \(0 \leq \mu_{\xi \phi} + \nu_{\xi \phi} \leq 1 \), \((\xi = 1, 2, \ldots, \delta) \) and \((\phi = 1, 2, \ldots, \eta) \).

In the following algorithm, IFDHWA and IFDHWG operators are applied to solve an MADM problem:

\[\text{Step 1.} \text{ We operate the decision said matrix } D \text{ and apply the IFDHWA operator as follows:} \]

\[\beta_\xi = \text{IFDHWA}(\beta_{\xi1}, \beta_{\xi2}, \ldots, \beta_{\xi\eta}) = \Phi_{\phi=1}^{\eta} \left(w_{\phi} \beta_{\xi \phi} \right) \]

\[= \left(1 - \frac{1}{1 + \left\{ \sum_{\phi=1}^{\eta} w_{\phi} \left(\frac{\mu_{\sigma(\phi)}(1 - \mu_{\sigma(\phi)})}{\mu_{\sigma(\phi)}} \right) \right\}^{1/\psi_{\phi}}} \right) \frac{1}{1 + \left\{ \sum_{\phi=1}^{\eta} w_{\phi} \left(\frac{\mu_{\sigma(\phi)}/(1 - \nu_{\sigma(\phi)})}{\mu_{\sigma(\phi)}} \right) \right\}^{1/\psi_{\phi}}}, \]

or \(\beta_\xi = \text{IFDHWG}(\beta_{\xi1}, \beta_{\xi2}, \ldots, \beta_{\xi\eta}) = \Phi_{\phi=1}^{\eta} \left(\beta_{\xi \phi} \right) w_{\phi} \)

\[= \left(1 - \frac{1}{1 + \left\{ \sum_{\phi=1}^{\eta} w_{\phi} \left(\frac{\mu_{\sigma(\phi)}(1 - \mu_{\sigma(\phi)})}{\mu_{\sigma(\phi)}} \right) \right\}^{1/\psi_{\phi}}} \right) \frac{1}{1 + \left\{ \sum_{\phi=1}^{\eta} w_{\phi} \left(\frac{\mu_{\sigma(\phi)}/(1 - \nu_{\sigma(\phi)})}{\mu_{\sigma(\phi)}} \right) \right\}^{1/\psi_{\phi}}}, \]

\[\text{Step 2. Measure the score } \Lambda(\beta_\xi) (\xi = 1, 2, \ldots, \delta) \text{ approaching overall IFVs } \beta_\xi (\xi = 1, 2, \ldots, \delta) \text{ in established to list all the alternatives } Q_\xi (\xi = 1, 2, \ldots, \delta) \text{ to get favorable } Q_{\phi}. \]

\[\text{Step 3. List all } Q_\xi (\xi = 1, 2, \ldots, \delta) \text{ to get the leading one(s) conforming with } \Lambda(\beta_\xi) (\xi = 1, 2, \ldots, \delta). \]

\[\text{Step 4. Stop.} \]

6. Case Study

The long-time steady increase of enterprise production hindered due to specific problems: improvement of production, sounding environmental impairment, reduced class production, loss of sources, and reduced security of the benefits. As a result, its employees lose interest in spending their wealth, and they move to special-purpose funding in the organization and support the funding opportunity. Thus, the enterprise’s growth and survival rely upon its capacity to manage the relationship among different investors. The necessary management expert’s steadily understood that it is small-minded conduct for enterprises if they want to achieve the aim of stockholder value in manufacturing procedure, regardless of the importance of different stakeholder situations. Finally, they reach the strategic control purpose of an enterprise. In this article, we will present a project to select the best enterprise alternative(s). Here, we investigate the financial performance of five possible enterprise for their ranking \(Q_\phi (\phi = 1, 2, 3, 4, 5) \). An organization invests its money in an enterprise with the enterprise financial shows and to maximize the demanded profit. In that direction, it is required to measure the enterprise financial
performance of five possible enterprises to select attractive ones. The funding enterprise makes a decision depending on the consequent four attributes as follows: G_1: dept paying ability; G_2: management capability; G_3: earning capacity; and G_4: development and proper application. Enterprise financial performance of five possible enterprises Q_ϕ ($\phi = 1, 2, \ldots, 5$) is evaluated using IFS data by the DMs under the IFDHWA and IFDHWG operators in which triangular Dombi norms are used which have a good advantage of flexibility for the operation of working parameter φ based on G_4 and their weight vector $\psi = (0.2, 0.1, 0.3, 0.4)^T$, for resulting matrix $\tilde{D} = (\beta_{\xi \varphi})_{5 \times 4}$ given in Table 1, where $\beta_{\xi \varphi}$ is IFEs.

In order to find most desirable enterprise Q_ϕ ($\phi = 1, 2, \ldots, \eta$), we utilize the IDFHA operator to develop an MADM theory with intuitionistic fuzzy data, which can be evaluated as follows:

Step 1. Utilizing the decision data stated in matrix \tilde{D}, $\mathbf{T}_{\xi \varphi} = \eta \psi \mathbf{T}_{\xi \varphi}$, we get

\[
\begin{align*}
\tilde{\Omega}_{11} &= (0.6512, 0.3488), \\
\tilde{\Omega}_{12} &= (0.2857, 0.3846), \\
\tilde{\Omega}_{13} &= (0.6429, 0.1724), \\
\tilde{\Omega}_{14} &= (0.8649, 0.1351), \\
\tilde{\Omega}_{21} &= (0.5455, 0.2381), \\
\tilde{\Omega}_{22} &= (0.4828, 0.3846), \\
\tilde{\Omega}_{23} &= (0.5455, 0.0847), \\
\tilde{\Omega}_{24} &= (0.5161, 0.4839), \\
\tilde{\Omega}_{31} &= (0.3478, 0.3488), \\
\tilde{\Omega}_{32} &= (0.3750, 0.3846), \\
\tilde{\Omega}_{33} &= (0.6429, 0.3571), \\
\tilde{\Omega}_{34} &= (0.7059, 0.2113), \\
\tilde{\Omega}_{41} &= (0.5455, 0.1220), \\
\tilde{\Omega}_{42} &= (0.2857, 0.3846), \\
\tilde{\Omega}_{43} &= (0.8276, 0.0847), \\
\tilde{\Omega}_{44} &= (0.6154, 0.2113), \\
\tilde{\Omega}_{51} &= (0.5455, 0.4545), \\
\tilde{\Omega}_{52} &= (0.2857, 0.2174), \\
\tilde{\Omega}_{53} &= (0.6429, 0.1724), \\
\tilde{\Omega}_{54} &= (0.5161, 0.0649).
\end{align*}
\] (30)

Table 1: Intuitionistic fuzzy elements.

	Q_1	Q_2	Q_3	Q_4	Q_5
G_1	(0.7, 0.3)	(0.6, 0.2)	(0.4, 0.3)	(0.6, 0.1)	(0.6, 0.4)
G_2	(0.5, 0.2)	(0.7, 0.2)	(0.6, 0.2)	(0.5, 0.2)	(0.5, 0.1)
G_3	(0.6, 0.2)	(0.5, 0.1)	(0.6, 0.4)	(0.8, 0.1)	(0.6, 0.2)
G_4	(0.8, 0.2)	(0.4, 0.6)	(0.6, 0.3)	(0.5, 0.3)	(0.4, 0.1)

Then, by score function, we obtained

\[
\begin{align*}
\tilde{\Omega}_{\sigma(11)} &= (0.8649, 0.1351), \\
\tilde{\Omega}_{\sigma(12)} &= (0.6429, 0.1724), \\
\tilde{\Omega}_{\sigma(13)} &= (0.6512, 0.3488), \\
\tilde{\Omega}_{\sigma(14)} &= (0.2857, 0.3846), \\
\tilde{\Omega}_{\sigma(21)} &= (0.5455, 0.0847), \\
\tilde{\Omega}_{\sigma(22)} &= (0.5455, 0.2381), \\
\tilde{\Omega}_{\sigma(23)} &= (0.4828, 0.3846), \\
\tilde{\Omega}_{\sigma(24)} &= (0.5161, 0.4839), \\
\tilde{\Omega}_{\sigma(31)} &= (0.7059, 0.2113), \\
\tilde{\Omega}_{\sigma(32)} &= (0.6429, 0.3571), \\
\tilde{\Omega}_{\sigma(33)} &= (0.3478, 0.3488), \\
\tilde{\Omega}_{\sigma(34)} &= (0.3750, 0.3846), \\
\tilde{\Omega}_{\sigma(41)} &= (0.8276, 0.0847), \\
\tilde{\Omega}_{\sigma(42)} &= (0.5455, 0.1220), \\
\tilde{\Omega}_{\sigma(43)} &= (0.6154, 0.2113), \\
\tilde{\Omega}_{\sigma(44)} &= (0.2857, 0.3846), \\
\tilde{\Omega}_{\sigma(51)} &= (0.6429, 0.1724), \\
\tilde{\Omega}_{\sigma(52)} &= (0.5161, 0.0649), \\
\tilde{\Omega}_{\sigma(53)} &= (0.5455, 0.4545), \\
\tilde{\Omega}_{\sigma(54)} &= (0.2857, 0.2174).
\end{align*}
\] (31)

Step 2. Utilizing the \tilde{D} using the IFDHWA operator and applying weighted vector $w = (0.20, 0.30, 0.30, 0.20)^T$, then obtain overall decision assessments β_ξ for Q_ξ ($\xi = 1, 2, \ldots, 5$) as follows: $\beta_1 = (0.7110, 0.2174)$, $\beta_2 = (0.5223, 0.2077)$, $\beta_3 = (0.5652, 0.3158)$, $\beta_4 = (0.6528, 0.1479)$, and $\beta_5 = (0.5283, 0.1358)$.
Step 3. Compute the score of $\Lambda (\beta_\xi)$ ($\xi = 1, 2, \ldots, 5$) of each $Q_\xi \beta_\xi$ ($\xi = 1, 2, \ldots, 5$) as follows:

\[
\begin{align*}
\Lambda (\beta_1) &= 0.7468, \\
\Lambda (\beta_2) &= 0.6573, \\
\Lambda (\beta_3) &= 0.6247, \\
\Lambda (\beta_4) &= 0.7525, \\
\Lambda (\beta_5) &= 0.6963.
\end{align*}
\]

(32)

Step 4. Rank Q_ξ ($\xi = 1, 2, \ldots, 5$) in accordance with the value of $\Lambda (\beta_\xi)$ as follows: $Q_1 > Q_2 > Q_3 > Q_4 > Q_5$.

Step 5. Thus, Q_3 is finalized as the favorable enterprise.

If IFDWG operator is applied, proceed similarly as above.

Step 1. Utilizing the decision matrix $\bar{D} = \bar{I}_{\xi \phi} = \eta \psi \bar{I}_{\xi \phi}$, we get

\[
\begin{align*}
\tilde{\Omega}_{11} &= (0.7447, 0.2553), \\
\tilde{\Omega}_{12} &= (0.7143, 0.0909), \\
\tilde{\Omega}_{13} &= (0.5556, 0.2308), \\
\tilde{\Omega}_{14} &= (0.7143, 0.2857), \\
\tilde{\Omega}_{21} &= (0.6522, 0.1667), \\
\tilde{\Omega}_{22} &= (0.8537, 0.0909), \\
\tilde{\Omega}_{23} &= (0.4545, 0.1176), \\
\tilde{\Omega}_{24} &= (0.2941, 0.7059), \\
\tilde{\Omega}_{31} &= (0.4545, 0.2553), \\
\tilde{\Omega}_{32} &= (0.7895, 0.0909), \\
\tilde{\Omega}_{33} &= (0.5556, 0.4444), \\
\tilde{\Omega}_{34} &= (0.4839, 0.4068), \\
\tilde{\Omega}_{41} &= (0.6523, 0.0816), \\
\tilde{\Omega}_{42} &= (0.7143, 0.0909), \\
\tilde{\Omega}_{43} &= (0.7692, 0.1176), \\
\tilde{\Omega}_{44} &= (0.3846, 0.4068), \\
\tilde{\Omega}_{51} &= (0.6522, 0.3478), \\
\tilde{\Omega}_{52} &= (0.7143, 0.0426), \\
\tilde{\Omega}_{53} &= (0.5556, 0.2308), \\
\tilde{\Omega}_{54} &= (0.3846, 0.1509).
\end{align*}
\]

(33)

Then, by score function, we obtained

\[
\begin{align*}
\tilde{\Omega}_{\sigma(11)} &= (0.7143, 0.0909), \\
\tilde{\Omega}_{\sigma(12)} &= (0.7447, 0.2553), \\
\tilde{\Omega}_{\sigma(13)} &= (0.7143, 0.2857), \\
\tilde{\Omega}_{\sigma(14)} &= (0.5556, 0.2308), \\
\tilde{\Omega}_{\sigma(21)} &= (0.8537, 0.0909), \\
\tilde{\Omega}_{\sigma(22)} &= (0.6522, 0.1667), \\
\tilde{\Omega}_{\sigma(23)} &= (0.4545, 0.1176), \\
\tilde{\Omega}_{\sigma(24)} &= (0.2941, 0.7059), \\
\tilde{\Omega}_{\sigma(31)} &= (0.7895, 0.0909), \\
\tilde{\Omega}_{\sigma(32)} &= (0.4545, 0.2553), \\
\tilde{\Omega}_{\sigma(33)} &= (0.5556, 0.4444), \\
\tilde{\Omega}_{\sigma(34)} &= (0.4839, 0.4068), \\
\tilde{\Omega}_{\sigma(41)} &= (0.7692, 0.1176), \\
\tilde{\Omega}_{\sigma(42)} &= (0.7143, 0.0909), \\
\tilde{\Omega}_{\sigma(43)} &= (0.6523, 0.0816), \\
\tilde{\Omega}_{\sigma(44)} &= (0.3846, 0.4068), \\
\tilde{\Omega}_{\sigma(51)} &= (0.7143, 0.0426), \\
\tilde{\Omega}_{\sigma(52)} &= (0.5556, 0.2308), \\
\tilde{\Omega}_{\sigma(53)} &= (0.6522, 0.3478), \\
\tilde{\Omega}_{\sigma(54)} &= (0.3846, 0.1509).
\end{align*}
\]

(34)

Step 2. Utilizing matrix \bar{D} using the IFDHWG operator and applying weighted vector $\xi = (0.20, 0.30, 0.30, 0.20)^T$, we get overall decision costs β_ϕ of Q_ϕ ($\phi = 1, 2, \ldots, 5$) as follows:

\[
\begin{align*}
\beta_1 &= (0.6836, 0.2324), \\
\beta_2 &= (0.4915, 0.3750), \\
\beta_3 &= (0.5357, 0.3333), \\
\beta_4 &= (0.6024, 0.1807), \\
\beta_5 &= (0.5556, 0.2274).
\end{align*}
\]

(35)
Table 2: Comparison analysis with some of the existing method.

Methods	\(\lambda(\beta_1)\)	\(\lambda(\beta_2)\)	\(\lambda(\beta_3)\)	\(\lambda(\beta_4)\)	\(\lambda(\beta_5)\)
Xu [32] method by IFWA	0.4704	0.1983	0.2280	0.4819	0.3135
Liao and Xu [53] by IFHWA	0.7192	0.6175	0.6151	0.6937	0.3663
Zhao and Wei [46] by IFEHWA	0.4718	0.2362	0.2356	0.4647	0.3518
Huang [54] by IFHHWA	0.6819	0.5029	0.5406	0.6206	0.5331
Proposed method by IFDHWA	0.7468	0.6573	0.6247	0.7525	0.6963
Proposed method by IFDHWG	0.7256	0.5583	0.6012	0.7109	0.6641

Table 3: Characteristic comparisons of different methods.

Methods	Fuzzy information easier	Aggregation flexibility
Xu [32] method by IFWA	Yes	No
Liao and Xu [53] by IFHWA	Yes	No
Zhao and Wei [46] by IFEHWA	Yes	No
Huang [54] by IFHHWA	Yes	Yes
Proposed method	Yes	Yes

Table 4: Aggregate value of overall evaluation by IFDHWA, IFDHWG, and other methods.

Methods	\(\beta_1\)	\(\beta_2\)	\(\beta_3\)	\(\beta_4\)	\(\beta_5\)
Reference [32] method by IFWA	0.6956, 0.2252	0.5177, 0.3194	0.5587, 0.3307	0.6592, 0.1773	0.5231, 0.2096
Liao and Xu [53] by IFHWA	0.6956, 0.2204	0.5177, 0.2215	0.5749, 0.3208	0.6291, 0.1600	0.5263, 0.1713
Zhao and Wei [46] by IFEHWA	0.6927, 0.2209	0.5160, 0.2798	0.5570, 0.3214	0.6278, 0.1631	0.5337, 0.1819
Huang [54] by IFHHWA	0.6915, 0.0096	0.5163, 0.0134	0.5559, 0.0153	0.6276, 0.0070	0.5409, 0.0078
Proposed method by IFDHWA	0.7110, 0.2174	0.5223, 0.2077	0.5652, 0.3158	0.6528, 0.1479	0.5283, 0.1358
Proposed method by IFDHWG	0.6836, 0.2324	0.4915, 0.3750	0.5357, 0.3333	0.6024, 0.1807	0.5556, 0.2274

Step 3. Calculate the value of \(\Lambda(\beta_\phi)\) (\(\phi = 1, 2, \ldots, 5\)) of each \(\beta_\phi\) (\(\phi = 1, 2, \ldots, 5\)) as follows:

\[
\Lambda(\beta_1) = 0.7256,
\Lambda(\beta_2) = 0.5583,
\Lambda(\beta_3) = 0.6012,
\Lambda(\beta_4) = 0.7109,
\Lambda(\beta_5) = 0.6641.
\]

Step 4. Now, enterprise ranking \(Q_\xi, (\xi = 1, 2, \ldots, 5)\) as per score values \(\Lambda(\beta_\phi)\) is \(Q_1 \succ Q_5 \succ Q_3 \succ Q_2\).

Step 5. Thus, \(Q_1\) is selected as attractive enterprise.

7. Comparative Analysis

A comparative study was directed to approve the after-effects of the proposed technique with those of the other approach. The relative outcomes appear in Tables 2 and 3. Therefore, with regard to the same MADM problem for assessing enterprise financial performance, this paper contrasted the outcomes acquired with those of the Xu method, the Liao and Xu method, the Zhao and Wei method, and the Huang methods inside the intuitionistic fuzzy surroundings. Table 4 gives an aggregate value of overall evaluation by IFDHWA, IFDHWG, and other methods. Table 2 gives a synopsis of solution consequences for the choice issue of enterprise financial performances.

As indicated in Table 2, the Xu method and the proposed method by IFDHWA yielded the same complete-preference ranking result of the financial performance of five possible enterprises: \(Q_1 \succ Q_5 \succ Q_3 \succ Q_2\). The distinction exists within the preference relation between \(Q_1\) and \(Q_5\). The comparative outcomes exhibit that the recommended method by IFDHWA is powerful and legitimate for addressing the interpretative issue within the intuitionistic fuzzy surroundings. By using the Liao and Xu method, we get the complete-preference ranking result of the alternatives as \(Q_1 \succ Q_5 \succ Q_3 \succ Q_2\), which is the same as our obtained result by IFDHWG operator. Again, by applying the Zhao and Wei method and the Huang method, we get the complete-preference ranking outcome of the alternatives as \(Q_1 \succ Q_5 \succ Q_3 \succ Q_2\) and \(Q_5 \succ Q_1 \succ Q_3 \succ Q_2\), respectively. The difference exists in the preference relation between \(Q_3\), \(Q_2\), and \(Q_5\). For this proposed approach, we apply intuitionistic fuzzy Dombi hybrid averaging and geometric operators which have an advantage of flexibility for the operation of \(\varrho\); on the other hand, the existing operators IFWA [32], IFHWA [53], IFEHWA [46], and IFHHWA [54] have no
such advantages provided in Table 3. Thus, our proposed methods are more general and more flexible than some existing methods to control intuitionistic fuzzy MADM problems.

8. Conclusions

Enterprises are an important key factor of employees, stockholders, customer, creditor, government, and other stakeholder. In the financial performance of enterprises, double characters should be considered: economic and society, so we should consider all stakeholder’s benefit in performance of enterprise evaluating time. We set up a performance evaluating system on basis of stakeholder benefits. In this article, we have studied MADM problems for enterprise financial performance with intuitionistic fuzzy data. We employ IFDHWA and IFDHWG operators to develop MADM approach for evaluating enterprises financial performance. In these operators, we use triangular Dombi norms which have a good advantage of flexibility for the operation of working parameter \(\varrho \). For this proposed approach, we apply intuitionistic fuzzy Dombi hybrid averaging and geometric operators which have an advantage of flexibility for the operation of \(\varrho \); on the other hand, the existing operators IFWA [32], IFHWA [53], IFEHWA [46], and IFHHWA [54] have no such advantages. In future, proposed approach can be applied in (1) green supplier selection [56], (2) economic risk evaluation [8], (3) hybrid rough approach study [57], and other domains under ambiguous environments.

Data Availability

No data were used to support the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Taif University Researchers Supporting Project (TURSP-2020/246), Taif University, Taif, Saudi Arabia.

References

[1] H. Mintzberg, B. M. Ahlstrand, and J. Lampel, “Strategy safari: a guided tour through the wilds of strategic management,” Management Services, vol. 48, no. 11, p. 152, 2009.
[2] P. Shrivastava, J. S. Walsh, and A. Huf, Advances in Strategic Management: Organizational Learning and Strategic Management, Emerald Group, Greenwich, England, 1997.
[3] B. K. Brockman and R. M. Morgan, “The role of existing knowledge in new product innovativeness and performance,” Decision Sciences, vol. 34, no. 2, pp. 385–419, 2003.
[4] W. E. Baker and J. M. Sinkula, “The synergistic effect of market orientation and learning orientation on organizational performance,” Journal of the Academy of Marketing Science, vol. 27, no. 4, pp. 411–427, 1999.
[5] P. Ussahawanitchakit, “Impacts of organizational learning on innovation orientation and firm efficiency: an empirical assessment of accounting firms in Thailand,” International Journal of Business and Systems Research, vol. 8, no. 4, pp. 1–12, 2008.
[6] J. M. Merigò, “Probabilities in the OWA operator,” Expert Systems with Applications, vol. 39, no. 13, pp. 11456–11467, 2012.
[7] J. M. Merigò, M. Casanovas, and J.-B. Yang, “Group decision making with experts and uncertain generalized probabilistic weighted aggregation operators,” European Journal of Operational Research, vol. 235, no. 1, pp. 215–224, 2014.
[8] J. M. Merigò, “Decision-making under risk and uncertainty and its application in strategic management,” Journal of Business Economics and Management, vol. 16, no. 1, pp. 1–24, 2015.
[9] J. M. Merigó, A. M. Gil-Lafuente, and J. G. Aluja, “A new aggregation method for strategic decision making and its application in assignment theory,” African Journal of Business Management, vol. 5, no. 11, pp. 403–4043, 2011.
[10] D. F. Li, “Decision and game theory in management with intuitionistic fuzzy sets,” Studies in Fuzziness and Soft Computing, vol. 308, p. 1441, 2014.
[11] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[12] K. T. Atanassov, “Intuitionistic fuzzy sets: theory and applications,” Studies in Fuzziness and Soft Computing, Physica-Verlag, vol. 35, 1999.
[13] S. K. De, R. Biswas, and A. R. Roy, “Some operations on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, pp. 477–484, 2000.
[14] E. Szmidt and J. Kacprzyk, “Distances between intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114, no. 3, pp. 505–518, 2000.
[15] K. Guo and Q. Song, “On the entropy for Atanassov’s intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge,” Applied Soft Computing, vol. 24, pp. 328–340, 2014.
[16] G. Kou, Y. Peng, and G. Wang, “Evaluation of clustering algorithms for financial risk analysis using MCDM methods,” Information Sciences, vol. 275, pp. 1–12, 2014.
[17] D.-F. Li and H.-P. Ren, “Multi-attribute decision making method considering the amount and reliability of intuitionistic fuzzy information,” Journal of Intelligent & Fuzzy Systems, vol. 28, no. 4, pp. 1877–1883, 2015.
[18] H. Garg, “A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems,” Applied Soft Computing, vol. 38, pp. 988–999, 2016.
[19] S.-M. Chen and C.-H. Chiou, “Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 1905–1916, 2015.
[20] K. Kumar and H. Garg, “TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment,” Journal of Computational and Applied Mathematics, vol. 37, no. 2, pp. 1319–1329, 2019.
[21] G. Li, G. Kou, C. Lin, L. Xu, and Y. Liao, “Multi-attribute decision making with generalized fuzzy numbers,” Journal of the Operational Research Society, vol. 66, no. 11, pp. 1793–1803, 2015.
[22] R. Lourenzutti and R. A. Krohling, “A study of TODIM in a intuitionistic fuzzy and random environment,” Expert Systems with Applications, vol. 40, no. 16, pp. 6459–6468, 2013.
[23] C. Jana, M. Pal, and J.-Q. Wang, “Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision making process,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 9, pp. 3533–3549, 2019.
[24] C. Jana and M. Pal, “A robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making,” Symmetry, vol. 11, no. 1, p. 110, 2019.
[25] C. Jana, G. Muchiuddin, and M. Pal, “Multiple-attribute decision making problems based on SVTrN methods,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 9, pp. 3717–3733, 2020.
[26] C. Jana, M. Pal, and J. Q. Wang, “A robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment,” Iranian Journal of Fuzzy Systems, vol. 16, no. 6, pp. 1–16, 2019.
[27] P. Liu, Z. Liu, and X. Zhang, “Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making,” Applied Mathematics and Computation, vol. 236, pp. 570–586, 2014.
[28] J. Q. Wang and Z. Zhang, “Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems,” Systems Engineering and Electronics, vol. 20, no. 2, pp. 321–326, 2009.
[29] G. W. Wei, “Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 17, no. 02, pp. 179–196, 2009.
[30] G.-W. Wei, H.-J. Wang, and R. Lin, “Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision making with incomplete weight information,” Knowledge and Information Systems, vol. 26, no. 2, pp. 337–349, 2011.
[31] C. Jana, M. Pal, F. Karaaslan, and J. Q. Wang, “Trapezoidal neutrosophic aggregation operators and its application in multiple attribute decision-making process,” Scientia Iranica E, vol. 27, no. 3, pp. 1655–1673, 2020.
[32] Z. S. Zeshui Xu, “Intuitionistic fuzzy aggregation operators,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187, 2007.
[33] Z. Xu and R. R. Yager, “Some geometric aggregation operators based on intuitionistic fuzzy sets,” International Journal of General Systems, vol. 35, no. 4, pp. 417–433, 2006.
[34] R. R. Yager, “On ordered weighted averaging aggregation operators in multicriteria decisionmaking,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190, 1988.
[35] R. R. Yager and J. Kacprzyk, The OrderedWeighted Averaging Operators: Theory and Applications, M.A., Kluwer, Boston, MA, USA, 1997.
[36] C. Jana, M. Pal, and G. W. Wei, “Multiple attribute decision making method based on intuitionistic Dombi operators and its application in mutual fund evaluation,” Archives of Control Sciences, vol. 30, no. 3, pp. 673–686, 2020.
[37] C. Jana and M. Pal, “A dynamical hybrid method to design decision making process based on GRA approach for multiple attributes problem,” Engineering Applications of Artificial Intelligence, vol. 100, Article ID 104203, 2021.
[38] C. Jana, G. Muchiuddin, and M. Pal, “Multi-criteria decision making approach based on SVTrN Dombi aggregation functions,” Artificial Intelligence Review, vol. 54, no. 5, pp. 3683–3723, 2021.
[56] S. Gupta, U. Soni, and G. Kumar, “Green supplier selection using multi-criterion decision making under fuzzy environment: a case study in automotive industry,” Computers & Industrial Engineering, vol. 136, pp. 663–680, 2019.

[57] F. Jia, Y. Liu, and X. Wang, “An extended MABAC method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers,” Expert Systems With Applications, vol. 127, pp. 241–255, 2019.