Catalytic Esterification of Palm Fatty Acid Distillate into Biodiesel Over Sulfonated Iron Oxide Catalyst

Michelle MATIUS※1※2 and Mohd Sufri MASTULI※1※2†
(Received January 5, 2021)

The palm fatty acid distillate (PFAD), as a low-cost feedstock, was catalytically esterified into biodiesel (also known as fatty acid methyl ester, FAME) using sulfonated iron oxide (HSO₃⁻/Fe₂O₃) catalyst. In this work, the catalyst was synthesised via self-propagating combustion (SPC) method, towards a greener synthesis technique, followed by sulfonation with chlorosulfonic acid (HSO₃Cl) to enhance the catalyst’s acid properties. The catalysts were characterised and the success of sulfonation process was determined. From this study, Fe₂O₃ catalysts were proven to be pure and single-phase. The success of the sulfonation then was verified by the presence of sulfur, functional groups of S-O asymmetric vibration and S=O symmetric vibration, and increasing total acidity. Then, the sulfonated Fe₂O₃ catalyst was used to esterify the PFAD feedstock in methanol in which the esterification parameters were also optimized to obtain maximum free fatty acid (FFA) conversion. It was found that 15:1 of methanol-to-PFAD molar ratio, 4 wt.% of catalyst loading, 80 °C of reaction temperature and 5 h of reaction time produced 95.5% of FFA conversion. Interestingly, the sulfonated Fe₂O₃ catalyst can be considered as a superacid solid catalyst that enables boosting the esterification of the PFAD feedstock into biodiesel.

Key Words
Esterification, Biodiesel, PFAD, Catalyst, Fe₂O₃

1. Introduction

Biodiesel can be an alternative fuel for diesel engines due to its several advantages over petrol-diesel fuel. Biodiesel is readily available, biodegradable, non-toxic, and produces cleaner emissions ¹⁻³. Biodiesel can be defined as a mixture of the mono-alkyl ester of long-chain fatty acid, which can be produced through the esterification of free fatty acids (FFA) and transesterification of triglycerides (TG). The first-generation biodiesel which was derived from high-value edible feedstock, such as soybean, sunflower oil and rapeseed oil, are highly popular in the first-world countries where there are no food-versus-food issue. With tropical climates of Malaysia, palm is one of the most popular and extensively cultivated plants which contributes to almost 80% of world production ⁶. Therefore, the use of low-cost and non-edible feedstock such as palm fatty acid distillate (PFAD) can reduce the cost and increase its sustainability. The PFAD is a by-product from crude palm oil (CPO) refining process, which contains >80% of FFA ⁵⁻⁶. In Malaysia, PFAD is cheap and highly abundant, which makes the PFAD as a potential sustainable source of feedstock for the esterification process to produce biodiesel with the presence of alcohol and catalyst ⁶⁻⁸. Heterogeneous solid acid catalyst is preferable to be used for high FFA content feedstock because it is easy to separate, less corrosive and reusable. Thus, the production cost can be reduced due to less wastewater treatment and less production steps ⁸. Solid acid catalyst such as iron oxide (Fe₂O₃) was used as dopant for sulfated tin(IV) oxide ¹⁰ and aluminium oxide ¹¹, and gained much attention due to their ability to esterify and transesterify high FFA feedstock simultaneously ¹². However, the utilization of mixed metal increases the total cost. Instead of using as a dopant, single metal oxide catalyst of Fe₂O₃ has more merit and the study regarding this catalyst is still very limited. Since the PFAD feedstock contained higher FFA, a superacid catalyst

Technical Paper

Special articles: JCREN III

Catalytic Esterification of Palm Fatty Acid Distillate into Biodiesel Over Sulfonated Iron Oxide Catalyst

Michelle MATIUS※1※2 and Mohd Sufri MASTULI※1※2†

(Received January 5, 2021)

The palm fatty acid distillate (PFAD), as a low-cost feedstock, was catalytically esterified into biodiesel (also known as fatty acid methyl ester, FAME) using sulfonated iron oxide (HSO₃⁻/Fe₂O₃) catalyst. In this work, the catalyst was synthesised via self-propagating combustion (SPC) method, towards a greener synthesis technique, followed by sulfonation with chlorosulfonic acid (HSO₃Cl) to enhance the catalyst’s acid properties. The catalysts were characterised and the success of sulfonation process was determined. From this study, Fe₂O₃ catalysts were proven to be pure and single-phase. The success of the sulfonation then was verified by the presence of sulfur, functional groups of S-O asymmetric vibration and S=O symmetric vibration, and increasing total acidity. Then, the sulfonated Fe₂O₃ catalyst was used to esterify the PFAD feedstock in methanol in which the esterification parameters were also optimized to obtain maximum free fatty acid (FFA) conversion. It was found that 15:1 of methanol-to-PFAD molar ratio, 4 wt.% of catalyst loading, 80 °C of reaction temperature and 5 h of reaction time produced 95.5% of FFA conversion. Interestingly, the sulfonated Fe₂O₃ catalyst can be considered as a superacid solid catalyst that enables boosting the esterification of the PFAD feedstock into biodiesel.

Key Words

Esterification, Biodiesel, PFAD, Catalyst, Fe₂O₃

1. Introduction

Biodiesel can be an alternative fuel for diesel engines due to its several advantages over petrol-diesel fuel. Biodiesel is readily available, biodegradable, non-toxic, and produces cleaner emissions ¹⁻³. Biodiesel can be defined as a mixture of the mono-alkyl ester of long-chain fatty acid, which can be produced through the esterification of free fatty acids (FFA) and transesterification of triglycerides (TG). The first-generation biodiesel which was derived from high-value edible feedstock, such as soybean, sunflower oil and rapeseed oil, are highly popular in the first-world countries where there are no food-versus-food issue. With tropical climates of Malaysia, palm is one of the most popular and extensively cultivated plants which contributes to almost 80% of world production ⁶. Therefore, the use of low-cost and non-edible feedstock such as palm fatty acid distillate (PFAD) can reduce the cost and increase its sustainability. The PFAD is a by-product from crude palm oil (CPO) refining process, which contains >80% of FFA ⁵⁻⁶. In Malaysia, PFAD is cheap and highly abundant, which makes the PFAD as a potential sustainable source of feedstock for the esterification process to produce biodiesel with the presence of alcohol and catalyst ⁶⁻⁸. Heterogeneous solid acid catalyst is preferable to be used for high FFA content feedstock because it is easy to separate, less corrosive and reusable. Thus, the production cost can be reduced due to less wastewater treatment and less production steps ⁸. Solid acid catalyst such as iron oxide (Fe₂O₃) was used as dopant for sulfated tin(IV) oxide ¹⁰ and aluminium oxide ¹¹, and gained much attention due to their ability to esterify and transesterify high FFA feedstock simultaneously ¹². However, the utilization of mixed metal increases the total cost. Instead of using as a dopant, single metal oxide catalyst of Fe₂O₃ has more merit and the study regarding this catalyst is still very limited. Since the PFAD feedstock contained higher FFA, a superacid catalyst

※1 Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia
※2 School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia
†Corresponding author: mohdsufri@uitm.edu.my
is desired. Therefore, sulfonation by chlorosulfonic acid was performed to enhance the catalytic activity of Fe₂O₃ catalyst. In this study, the Fe₂O₃ catalyst was synthesised using the self-propagating combustion (SPC) method and activated with chlorosulfonic acid. The catalyst properties were systematically characterised. Various esterification parameters such as methanol-to-PFAD molar ratio, catalyst loading, reaction temperature and reaction time were also investigated and optimised.

2. Methodology

2.1 PFAD feedstock

The PFAD feedstock used in this study was obtained from Jomalina R&D, Sime Darby Sdn Bhd, Klang, Selangor, Malaysia. The feedstock was characterized according to American Oil Chemists’ Society (AOCS) official method such as moisture content (AOCS Ca 2b-38), saponification value (AOCS TI 1a-64) and acid value (AOCS Cd 3d-63).

2.2 Catalysts synthesis and characterisation

Stoichiometric amounts of 98.0% purity iron(III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O) and 99.5% purity citric acid (C₆H₈O₇) were dissolved separately in a minimum volume of deionised water. Both solutions were mixed continuously by heating at 350°C until combustion occurs, resulting in a reddish-brown coloured precursor which was calcined at 600°C for 6 h to give a pure Fe₂O₃ catalyst. Subsequently, about 2 g of Fe₂O₃ was added into 100 mL of a round-bottom flask followed by addition of 2 mL of 99.0% purity concentrated HSO₃Cl while stirring. The mixture was stirred gently for 1 h at room temperature. Then, the sulfonated catalyst was rinsed with methanol for multiple times, and the excess solvent was separated through centrifugation. Lastly, the sulfonated Fe₂O₃ catalysts were dried in an oven at 100°C for overnight. All the obtained catalysts were characterised using simultaneous thermogravimetric analysis (STA), powder X-Ray diffraction (XRD), field emission scanning electron microscopy equipped with energy dispersive X-Ray spectroscopy (FESEM-EDX), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and temperature-programmed desorption of ammonia (TPD-NH₃).

2.3 Catalytic esterification of PFAD feedstock

The PFAD esterification was carried out using the conventional reflux system. The initial control set of parameters were methanol-to-PFAD molar ratio of 9:1, catalyst loading of 1 wt.%, reaction temperature of 120°C and reaction time of 5 h. At this initial control set, the methanol-to-PFAD molar ratio varied from 3:1 to 21:1 to determine the optimum ratio. Next, the catalyst loading was also changed between 1 wt.% and 5 wt.% to obtain the optimum catalyst loading. Then, the reaction temperature of 80°C was increased progressively to 160°C to determine the optimum temperature. Lastly, the reaction time was prolonged from 1 h until 6 h to obtain the optimum time. About 5 g of PFAD was mixed with the required amount of methanol and catalyst, and then it was refluxed at the desired temperature and time under continuous stirring. After the reaction completed, the cooled reaction mixture was centrifuged to collect the catalyst and the remaining product was left overnight for separation between methanol (upper layer) and biodiesel (bottom layer). The biodiesel samples were analysed by titration method to determine the acid value and FFA conversion.

3. Results and discussion

3.1 Properties of PFAD feedstock

Table 1 shows the physicochemical properties of PFAD feedstock, featuring other non-edible oils such as castor seed oil and waste cooking oil (WCO). It was found that PFAD has higher FFA content than the other two oils. The fatty acid composition of PFAD was determined using gas chromatography-mass spectrometry (GC-MS), and the results are tabulated in Table 2. The major fatty acids in

Properties	PFAD	Castor seed oil	Waste cooking oil
Saponification value (mg KOH/g)	217.66	184.60	204.77 ± 1.40
Acid value (mg KOH/g)	200.43	5.92	204 ± 0.03
FFA content (%)	100.21	2.98	1.02 ± 0.02
Molecular weight (g/mol)	257.86	911.86	822.03 ± 5.63
Moisture content (wt.%)	0.01	2.11	0.12 ± 0.00

Table 2 Fatty acid composition of PFAD

Fatty acids	Molecular formula	Composition (wt.%)
Myristic acid	C₁₄H₂₈O₂	0.9
Oleic acid	C₁₈H₃₄O₂	34.1
Palmitic acid	C₁₆H₃₂O₂	50.5
Stearic acid	C₁₈H₃₆O₂	3.2
Linoleic acid	C₁₈H₃₂O₂	6.3
the PFAD are palmitic acid and oleic acid.

3.2 Catalyst characterization

Thermal profile of the precursor (sample before calcination) is shown in Fig. 1. The first weight loss of about 5% (range of 100-300 °C) was associated to the loss of adsorbed moisture and other volatile traces from the catalyst’s surface \(^{16}\). The second weight loss of around 30% (between 300 °C and 500 °C) was attributed to the decomposition of the formed precursor into its metal oxide. A plateau of the TGA curve can be seen after 500 °C onwards with insignificant weight loss, indicating a pure Fe\(_2\)O\(_3\) is possible to be formed \(^{17,18}\). From this plateau, 600 °C is chosen as the calcination temperature to form a single-phase Fe\(_2\)O\(_3\) before treated with HSO\(_3\)Cl.

Fig. 2 (a) displays the XRD patterns of unsulfonated and sulfonated Fe\(_2\)O\(_3\) catalysts. Both samples exhibited similar XRD peaks, which belonged to hematite (\(\alpha\)-Fe\(_2\)O\(_3\)) with a space group of R-3c and rhombohedral (hexagonal) crystal structure (ICDD 01-089-0597). The formed catalysts were found to be a single-phase with no impurity peaks detected, suggesting that the SPC method could be used to form pure catalysts. Fig. 2 (b) depicts the surface morphologies of the resultant catalysts. The particles grew and aggregated with changing in shape from polyhedral to the sponge and flaky structures after the deposition of HSO\(_3\)ˉ ions. The chlorosulfonic acid seemed to affect the surface morphology. A similar observation was also seen in other researchers’ study \(^{19}\). Subsequently, the Fe, O and S elemental analyses were determined using the EDX

![Fig. 1 TGA/DSC curves of precursor obtained](image1)

![Fig. 2 (a) XRD patterns, (b) FESEM images and (c) FTIR spectra of (i) unsulfonated and (ii) sulfonated Fe\(_2\)O\(_3\) catalysts](image2)
measurement and tabulated in Table 3. Only the sulfonated Fe₂O₃ catalyst showed the existence of element S. The success of sulfonation and incorporation of HSO₃⁻ onto the Fe₂O₃ surface was further verified using the FTIR spectra in Fig. 2 (c). For the sulfonated Fe₂O₃ catalyst, additional absorption bands at 1058 cm⁻¹ and 1205 cm⁻¹ reflect the S–O asymmetric vibration and S=O symmetric vibration, which indicated that the covalently linked sulfonic acid group was formed on the catalyst’s surface. Table 4 summarised the textural properties of the catalysts. After the sulfonation, the volume and diameter of the pores increased. This allows the reactants to be in contact with more active sites, and better catalytic activity is expected. In addition, the sulfonated Fe₂O₃ catalyst displayed three significant peaks at 352 °C (weak acid sites), 493 °C (medium acid sites) and 957 °C (strong acid sites) with total acidity of 1.75 mmol g⁻¹.

Table 3 Elemental composition analysis of Fe₂O₃ catalysts

Catalyst	Fe (%)	O (%)	S (%)
Unsulfonated Fe₂O₃	66.03	33.97	-
Sulfonated Fe₂O₃	64.01	35.67	0.32

Table 4 Textural properties of Fe₂O₃ catalysts

Fe₂O₃ catalyst	Specific surface area (m²/g)	Total pore volume (cm³/g)	Average pore diameter (nm)	NH₃ desorption temperature (°C)	Amount of NH₃ desorbed (µmol g⁻¹)
Unsulfonated	7.68	0.08	41.62	-	333.26
Sulfonated	8.61	0.10	47.31	352	493
				80.30	957
				611.01	

3.3 Catalytic esterification performances

Theoretically, one mole of FFA reacts with one mole of methanol to produce one mole of FAME. However, the esterification reaction is reversible. Thus, an excess amount of methanol is preferable to shift the reaction forward to the product side. The molar ratio of methanol-to-PFAD was changed between 3:1 and 21:1. As shown in Fig. 3 (a), the FFA conversion increased markedly from 27.9% at 3:1 to 87.6% at 15:1. When the amount of methanol increased, the mass transfer limitation among the catalyst-reactant-product phases also occurred rapidly. Nevertheless, further increase in the molar ratio resulted in the decrement of FFA conversion. The superfluous methanol may have flooded the catalyst’s active sites and hindered the protonation of FFA. Besides, excess polar –OH group from the excess methanol may solidify the product and forming gels that are difficult to separate. Hence, 15:1 was used as the optimal methanol-to-PFAD molar ratio.
ratio. Based on Fig. 3 (b), it can be clearly seen that, when catalyst loading was increased from 1 wt.% to 5 wt.%, the FFA conversion raised significantly. The highest conversion of 97.8% was obtained at catalyst loading of 5 wt.%. This is because the catalyst’s active site also increases, resulting in more effective collision between reactant and catalyst and faster reaction rate to reach equilibrium. Therefore, 4 wt.% catalyst loading was chosen as the optimum amount in consideration of insignificant FFA conversion at 5 wt.% of catalyst loading and cost perspective. For example, production of B10 in Malaysia is priced at RM2.18 per litre. As illustrated in Fig. 3 (c), the FFA conversion increased drastically to 89.7% when the reaction temperature was increased from 80 to 120 °C. When temperature increases, reactant molecules gain more kinetic energy which enables them to move faster with more effective collision. As a result, the mass transfer rate accelerated, and higher FAME yield is obtained. However, when the temperature was further increased up to 160 °C, the FFA conversion dropped drastically to 89.7%. This is due to the faster evaporation rate of methanol at a very high temperature, resulting in an insufficient amount of methanol for reaction with oil. Hence, 80 °C was chosen as the optimum reaction temperature for lower energy consumption and operating cost. Based on Fig. 3 (d), the FFA conversion increased steadily and maximum FFA conversion of 95.5% was accomplished at 5 h. Beyond 5 h, the esterification is said to have reached the equilibrium point because most of the reactants has been converted into products and the mass transfer rate among the catalyst-reactant-product phases has reduced. Thus, production of FAME slows down and the FFA conversion drops to 87.6%. Besides, the hydrolysis of FAME with the by-product (water) is possible, thus shifting the reaction backwards, lowers the FAME yield and deactivates the catalyst. Therefore, a reaction time of 5 h was chosen with a methanol-to-PFAD molar ratio of 15:1, catalyst loading of 4 wt.% and reaction temperature of 80 °C as the optimum esterification conditions, which effectively catalysed by the sulfonated Fe2O3 catalyst resulting in the highest FFA conversion of 95.5%.

4. Conclusion

In this study, the sulfonated Fe2O3 catalyst was successfully synthesised and studied for the FFA esterification into biodiesel. The highest FFA conversion of 95.5% was achieved at the optimized esterification parameters.

Acknowledgement

The authors would like to acknowledge the Ministry of Higher Education of Malaysia for the financial support under the Fundamental Research Grant Scheme (No. Grant: 600-IRMI/FRGS 5/3 (036/2019)).

References

1) Atadashi, I. M.; Aroua, M. K.; Abdul, Aziz, A. R.; Sulaiman, N. M. N., Renew Sustain Energy Rev., 16, 3275-3285 (2016)
2) Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.; Azad, A. K., Renew Sustain Energy Rev., 55, 1109-1128 (2016)
3) Yusuf, N. N. A. N; Kamarudin, S. K.; Yaakub, Z., Energy Convers Manag., 52, 2741-2751 (2011)
4) Anwar, M., Fuel, 283, 119204 (2021)
5) Mukti, N. I. F.; Sutrisno, B.; Hidayat, A., IOP Conf Ser Mater Sci Eng, 358 (2018)
6) Kanjaikaew, U.; Tongurai, C.; Chongkhong, S.; Prasertsit, K., Renew Energy, 119, 336-344 (2018)
7) Wang, Z.; Lim, J. K.; Hameed, B. H., J Taiwan Inst Chem Eng., 54, 64-70 (2015)
8) Szulczyk, K. R.; Khan, M. A. R., J Clean Prod, 203, 260-272 (2018)
9) Mansir, N.; Taufiq-Yap, Y. H.; Rashid, U.; Lokman, I. M., Energy Convers Manag., 141, 171-182 (2017)
10) Zhai, D.; Nie, Y.; Yue, Y.; He, H.; Hua, W.; Gao, Z., Catal Commun., 12, 593-596 (2011)
11) Widayat, W.; Putra, D. A.; Nursafitri, I., Mater Today Proc., 13, 97-102 (2019)
12) Ezzah-Mahmudah, S.; Lokman, I. M.; Saiman, M. I.; Taufiq-Yap, Y. H., Energy Convers Manag., 126, 124-131 (2016)
13) Fadhil, A. B.; Aziz, A. M.; Al-Tamer, M. H., Energy Convers Manag., 108, 255-265 (2016)
14) Omotehinse, S. A.; Igboanugo, A. C.; Ikuhuoria, E. U.; Ehibigie, C. A., Journal of Science and Technology Research, 1, 45-54 (2019)
15) Chuah L. F.; Suzana Y.; Aziz, A.; Bokhari A., Australian Journal of Basic and Applied Sciences., 9, 10 445-448 (2015)
16) Basavegowda, N.; Mishra, K.; Lee, Y. R., Adv Nat Sci Nanosci Nanotechnol, 8, (2017)
17) Soltani, S.; Rashid, U.; Nehdi, I. A.; Al-Resayes, S. I., Chem Eng Technol., 40, 1933-1939 (2017)
18) Yahya, N. F.; Kamarulzaman, N.; Elong, K. et al., AIP Conf Proc., 1877, (2017)
19) Kaur, K.; Wanchoo, R. K.; Toor, A. P., Ind Eng Chem Res., 54, 3285-3292 (2015)
20) Istadi, I.; Anggoro, D. D.; Buchori, L.; Rahmawati, D. A.;
21) Gupta, A. R.; Chiplunkar, P. P.; Pratap, A. P.; Rathod, V. K., *Waste and Biomass Valorization*, 12(1), 25 (2020)

22) Syazwani, O. N.; Rashid, U.; Mastuli, M. S.; Taufiq-Yap Y. H., *Renew Energy*, 131, 187-196 (2019)

23) Omar, W. N. N. W.; Amin, N. A. S., *Biomass and Bioenergy*, 35, 1329-1338 (2011)

24) Juan, J. C.; Zhang, J.; Jiang, Y.; Cao, W.; Yarmo, M. A., *Catal Letters*, 117, 153-158 (2007)

25) Mohd. Ali, M. A.; Yunus, R. M.; Cheng, C. K.; Gimbun, J., *RSC Adv.*, 5, 76743-76751 (2015)

26) Olutoye, M. A.; Wong, C. P.; Chin, L. H.; Hameed, B. H., *Fuel Process Technol.*, 124, 54-60 (2014)

27) Ibrahim, N. A.; Rashid, U.; Choong, T. S. Y.; Nehdi, I. A., *RSC Adv.*, 10, 6098-6108 (2020)

28) Mastuli, M. S.; Kamarulzaman, N.; Kasim, M. F.; Zainal, Z.; Matsumura, Y.; Taufiq-Yap Y. H., *Int J Hydrogen Energy*, 44, 3690-3701 (2019)