Supplementary Information

Cationic indium catalysts for ring opening polymerization: Tuning reactivity with hemilabile ligands

Chatura Goonesinghe, Hootan Roshandel, Carlos Diaz, Hyuk-Joon Jung, Kudzanai Nyamayaro, Maria Ezhova, and Parisa Mehrkhodavandi*^a

Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
mehr@chem.ubc.ca

Table of Contents

A. Experimental procedures ... 2
B. Characterization of metal complexes and ligands in solution .. 8
C. Characterization of metal complexes in the solid state .. 50
D. Characterization of complex behavior ... 54
E. References .. 67
A. Experimental procedures

General Considerations. Unless otherwise indicated, all air- and/or water-sensitive reactions were carried out under dry nitrogen using either an MBraun glove box or standard Schlenk line techniques. NMR spectra were recorded on a Bruker Avance 300 MHz, 400 MHz and 600 MHz spectrometers. 1H NMR chemical shifts are reported in ppm versus residual protons in deuterated solvents as follows: δ 7.27 CDCl$_3$, δ 7.16 C$_6$D$_6$, δ 7.16 C$_6$D$_5$Br 13C{1H} NMR chemical shifts are reported in ppm versus residual 13C in the solvent: δ 77.2 CDCl$_3$. 19F{1H} NMR chemical shifts are reported in ppm and externally referenced to neat CFCl$_3$ at 0 ppm. 31P{1H} NMR chemical shifts are reported in ppm and externally referenced to 85% H$_3$PO$_4$ at 0 ppm.

Diffraction measurements for X-ray crystallography were made on a Bruker X8 APEX II diffraction and a Bruker APEX DUO diffraction with graphite monochromated Mo-Kα radiation. The structures were solved by direct methods and refined by full-matrix least-squares using the SHELXTL crystallographic software of Bruker-AXS. Unless specified, all non-hydrogens were refined with anisotropic displacement parameters, and all hydrogen atoms were constrained to geometrically calculated positions but were not refined.

EA CHN analysis was performed using a Carlo Erba EA1108 elemental analyzer. The elemental composition of unknown samples was determined by using a calibration factor. The calibration factor was determined by analyzing a suitable certified organic standard (OAS) of a known elemental composition.

Polymer molecular weights were determined by triple detection gel permeation chromatography (GPC-LLS) using a Waters liquid chromatograph equipped with a Water 515 HPLC pump, Waters 717 plus autosampler, Waters Styrage columns (4.6 × 300 mm) HR5E, HR4 and HR2, Water 2410 differential refractometer, Wyatt tristar miniDAWN (laser light scattering detector) and a Wyatt ViscoStar viscometer. A flow rate of 0.5 mL min$^{-1}$ was used and samples were dissolved in THF (2 mg mL$^{-1}$). Narrow molecular weight polystyrene standards were used for calibration purposes. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of isolated polymers was performed on a Bruker Autoflex MALDI-TOF equipped with a nitrogen laser (337 nm). The accelerating potential of the Bruker instrument was 19.5 kV. The polymer samples were dissolved in tetrahydrofuran (ca. 1 g/mL). The concentration of a cationization agent, sodium trifluoroacetate, in tetrahydrofuran was 1 mM. The matrix used was trans-[3-(4-tert-butylphenyl)2-methyl-2-propenylidene]malononitrile (DCTB) at the concentration of 20 mg/mL. A sample solution was prepared by mixing polymer, matrix, and salt in a volume ratio of 5:5:1, respectively.

Materials. Solvents (THF, pentane, toluene, hexane and diethyl ether) were collected from a Solvent Purification System from Innovative Technology, Inc. whose columns were packed with activated alumina. CDCl$_3$ was dried over CaH$_2$, collected by vacuum distillation and degassed through a series of freeze-pump-thaw cycles. Dimethylanilinium Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate ([HNMe$_2$Ph][BAR$_6^f$]) was generated by reacting dimethylanilinium chloride with sodium BAR$_6^f$ in diethyl ether at room temperature for 4 h.1 The solvent was removed under high vacuum, and addition of hexane to the residual precipitated a
white solid. The white solid was isolated by vacuum filtration and dried in vacuo for 4 h. InCl$_3$ was purchased from Strem Chemicals and used without further purification. Isobutylmagnesium chloride (2.0 M in Et$_2$O) and dimethylanilinium chloride ([HNMe$_2$Ph]Cl) were purchased from Aldrich and Alfa Aesar, respectively, and used as received.

Rac-lactide was recrystallized 3 times from dry toluene and dried under vacuum. e-caprolactone were dried over CaH$_2$, distilled and stored under molecular sieves. In(Bu)$_3$ was synthesized according to a previously reported procedure.2 Proligands L$_{a-d}$ were synthesized by the modification of a previously reported procedure.3

Synthesis of proligand L$_{a}$

(±)- trans-N-(thiophen-2-ylmethyl)cyclohexane-1,2-diamine (4.38 g, 20.8 mmol) was dissolved in 50 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (7.45 g, 20.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of ethyl acetate and crystallized by slow evaporation at low temperature to yield a pale yellow solid (yield 63%). HRMS [M+H]$^+$, calculated m/z = 551.3096. Found m/z = 551.3100. 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 13.23 (1H, br. s., Ar-OH), 7.03 - 7.41 (11H, m, ArH), 7.05 (1H, s, ArH), 7.13 (1H, m, Thioph α), 6.89 (1H, m, Thioph β), 6.74 (1H, m, Thioph γ), 3.97 (1H, d, 2J$_{HH}$ = 14 Hz, -CH$_2$ of thiophenyl), 3.86 (1H, d, 2J$_{HH}$ = 14 Hz, -CH$_2$ of thiophenyl), 2.95 (1H, m, -CH- of DACH), 2.63 (1H, m, -CH- of DACH), 1.02 - 1.74 (17H, m, -CH$_2$ of DACH and -CH$_3$ of cumyl), 13C(1H) NMR (101 MHz, CDCl$_3$) δ 165.7 (N=CH-Ar), 157.8 (Ar C), 150.9 (Ar C), 139.8 (Ar C), 129.2 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.0 (Ar C-H), 124.3 (Thioph α), 126.8 (Thioph β), 125.2 (Thioph γ), 74.4 (C-H of DACH), 59.5 (C-H of DACH), 42.8 (-CH$_2$ of thiophenyl) 31.1 (-CH$_3$ of cumyl), 30.0 (-CH$_3$ of cumyl), 29.3 (-CH$_3$ of cumyl).

Synthesis of proligand L$_{b}$

(±)- trans-N-(furan-2-ylmethyl)cyclohexane-1,2-diamine (6.28 g, 32.3 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (11.6 g, 36.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot hexane and crystallized by slow evaporation at low temperature to yield a yellow solid (yield 61%). HRMS [M+H]$^+$, calculated m/z = 535.3325. Found m/z = 535.3334. 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 13.22 (1H, br. s., Ar-OH), 7.02 - 7.43 (11H, m, ArH), 7.07 (1H, s, ArH), 7.16 (1H, m, furan α), 6.24 (1H, m, furan β), 5.98 (1H, m, furan γ), 3.73 (1H, d, 2J$_{HH}$ = 15 Hz, -CH$_2$ of furfuryl), 3.69 (1H, d, 2J$_{HH}$ = 15 Hz, -CH$_2$ of furfuryl), 2.95 (1H, m, -CH- of DACH), 2.57 (1H, m, -CH- of DACH), 1.06 - 2.12 (17H, m, -CH$_2$ of DACH and -CH$_3$ of cumyl), 13C(1H) NMR (101 MHz, CDCl$_3$) δ 165.8 (N=CH-Ar), 157.8 (Ar C), 153.8 (Ar C), 150.8 (Ar C), 139.8 (Ar C), 136.2 (Ar C), 142.0 (Ar C-H), 128.2 (Ar C-H), 128.1 (Ar C-H), 126.9 (Ar C-H), 125.2 (Furan β), 110.1 (Furan β), 107.0 (Furan γ), 74.2 (C-H of DACH), 59.3 (C-H of DACH), 43.1 (-CH$_2$ of furfuryl), 31.1 (-CH$_3$ of cumyl), 29.8 (-CH$_3$ of cumyl), 29.2 (-CH$_3$ of cumyl).

Synthesis of proligand L$_{c}$

(±)- trans-N-(pyridin-2-ylmethyl)cyclohexane-1,2-diamine (7.54 g, 36.8 mmol) was dissolved in 100 ml of acetonitrile (ACN) and 3,5-dicumylsalicylaldehyde (13.2 g, 36.8 mmol) was added while stirring. The solution was heated under reflux for 8 hours, and the solvent was removed under reduced pressure. The residue was dissolved in a minimum amount of hot pentane and crystallized by slow evaporation at low temperature to yield a bright yellow solid (yield 64%). HRMS [M+H]$^+$, calculated m/z = 546.3484. Found m/z = 546.3483. 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.37 (1H, s, -N=CH-Ar), 7.03 - 7.41 (12H, m, ArH),
Synthesis of complex 1a

A 20 mL scintillation vial was charged with proligand L₄ (186 mg, 0.345 mmol) in hexane (5 ml). triisobutylindium, In(Ch₂CH(CH₃)₂)₃ (100 mg, 0.345 mmol) was added to the stirring mixture. The reaction mixture was stirred for 4 h at room temperature. The concentrated in vacuo, the residue was cooled to -30 °C give yellow crystals. The solid was washed with hexane (3 × 3 mL) and dried under high vacuum for 4 hours. (Yield 94%) Anal. Calcd. For C₄H₅SO₃N₂: C 67.84; H 7.65; N 3.60. Found: C 67.56; H 7.55; N 3.70.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.02 (1H, s, -N=CH-Ar), 7.10 - 7.32 (1H, m, ArH), 7.18 (1H, m, Thioph α), 6.93 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 6.79 (1H, s, ArH), 3.96 (1H, dd, 2JH-H = 7, 15 Hz, -CH₂- of thiophenyl), 3.69 (1H, d, 2JH-H = 7, 15 Hz, -CH₂- of thiophenyl), 2.94 (1H, m, -CH- of DACH), 2.58 (1H, m, -CH- of DACH), 0.95 - 2.29 (2OH, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of `Bu), 0.84 (6H, d, 2JH-H = 6 Hz, -CH₃ of `Bu), 0.75 (6H, d, 2JH-H = 6 Hz, -CH₃ of `Bu), 0.47 (2H, d, 2JH-H = 7 Hz, -CH₂- of `Bu), 0.24 (2H, d, 3JH-H = 7 Hz, -CH₂- of `Bu), 1H NMR (101 MHz, CDCl₃) δ 171.2 (N=CH-Ar), 168.1 (Ar C), 151.8 (Ar C), 151.5 (Ar C), 143.1 (Ar C), 141.3 (Ar C), 132.0 (Ar-C-H), 131.7 (Ar-C-H), 127.9 (Thioph α), 127.5 (Thioph β), 125.4 (Thioph γ), 72.4 (C-H of DACH), 60.9 (C-H of DACH), 44.6 (-CH₂- of thiophenyl) 31.0 (-CH₃ of cumyl), 29.6 (-CH₃ of cumyl), 28.1 (-CH₃ of `Bu), 27.9 (-CH₃ of `Bu), 29.5 (-CH₂- of `Bu), 29.3 (-CH₂- of `Bu).

Synthesis of complex 1b

Complex 1b was generated using a similar procedure to complex 1a (187 mg of L₄, 0.350 mmol, yield=95%). Anal. Calcd. For C₄H₅SO₃N₂: C 69.27; H 7.81; N 3.67. Found: C 69.10; H 7.69; N 3.64.¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.06 (1H, s, -N=CH-Ar), 7.02 - 7.36 (11H, m, ArH), 7.34 (1H, m, Furan α), 6.80 (1H, ArH), 6.28 (1H, m, Furan β), 6.14 (1H, m, Furan γ), 3.81 (1H, dd, 2JH-H = 6, 14 Hz, -CH₂- of furfuryl), 3.71 (1H, d, 2JH-H = 6, 14 Hz, -CH₂- of furfuryl), 2.94 (1H, m, -CH- of DACH), 2.58 (1H, m, -CH- of DACH), 0.97 – 2.31 (16H, m, -CH₂- of DACH, -CH₃ of cumyl and -CH- of `Bu), 0.88 (6H, m, -CH₃
of's}Bu, 0.74 (6H, m, -CH\(_3\) of's}Bu), 0.50 (2H, m, -CH\(_2\)- of's}Bu), 0.11 (2H, m, -CH\(_2\)- of's}Bu),\(^{13}\)C\(^{1}\)H) NMR (101 MHz, CDCl\(_3\)) \(δ\) 171.7 (N=CH-Ar), 168.8 (Ar C), 152.9 (Ar C), 151 (Ar C), 152.0 (Ar C), 152.0 (Ar C), 142.3 (Furan α), 141.5 (Ar C), 132.2 (Ar C-H), 131.8 (Ar C-H), 128.2 (Ar C-H), 127.8 (Ar C-H), 127.1 (Ar C-H), 124.6 (Ar C-H), 110.8 (Furan β), 107.8 (Furan γ), 70.6 (C-H of DACH), 61.1 (C-H of DACH), 42.5(-CH\(_2\)- of furfuryl) 31.1 (-CH\(_3\) of cumyl), 29.8 (-CH\(_3\) of cumyl), 29.5 (-CH\(_3\) of cumyl), 28.5 (-CH\(_3\) of's}Bu), 28.4(-CH\(_3\) of's}Bu), 28.9 (-CH\(_2\)- of's}Bu), 29.4 (-CH\(_2\)- of's}Bu).

Synthesis of complex 1c

Complex 1c was generated using a similar procedure to complex 1a (191 mg of L\(_c\), 0.350 mmol, yield=95%). Anal. Calcd. For C\(_{46}H\(_{40}\)InN\(_2\)O: C 68.83; H 7.83; N 5.43. Found: C 69.87; H 7.61; N 5.70.\(^{1}\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(δ\) 8.52 (1H, m, Pyr γ), \(\delta\) 8.11 (1H, s, -N=CH-Ar), 7.95 - 7.16 (11H, m, ArH), 7.61 (1H, m, Pyr α), 7.16 (1H, m, Pyr δ), 7.03 (1H, m, Pyr β), 6.79 (1H, ArH), 3.84 (2H, m, -CH\(_2\)- of pyridyl), 3.01 (1H, m, -CH\(_2\)- of DACH), 2.63 (1H, m, -CH\(_2\)- of DACH), 0.93 – 2.18 (17H, m, -CH\(_2\)- of DACH, -CH\(_3\) of cumyl and -CH\(_2\)- of's}Bu), 0.88 (6H, m, -CH\(_3\) of's}Bu), 0.60 (6H, m, -CH\(_3\) of's}Bu), 0.52 (2H, m, -CH\(_2\)- of's}Bu), -0.07 (2H, m, -CH\(_2\)- of's}Bu),\(^{13}\)C\(^{1}\)H) NMR (101 MHz, CDCl\(_3\)) \(δ\) 171.3 (N=CH-Ar), 169.3 (Ar C), 158.4 (Ar C), 151 (Ar C), 152.0 (Ar C), 142.3 (Pyr γ), 141.3 (Ar C), 136.6 (Pyr α), 131.9 (Ar C-H), 131.4 (Ar C-H), 128.0 (Ar C-H), 127.1 (Ar C-H), 125.4 (Pyr δ), 124.4 (Pyr β), 68.4 (C-H of DACH), 61.5 (C-H of DACH), 49.5 (-CH\(_2\)- of pyridyl) 31.0 (-CH\(_3\) of cumyl), 29.9 (-CH\(_3\) of cumyl), 29.0 (-CH\(_3\) of cumyl), 28.3 (-CH\(_3\) of's}Bu), 27.9(-CH\(_3\) of's}Bu), 28.2 (-CH\(_2\)- of's}Bu), 28.1 (-CH\(_2\)- of's}Bu).

Synthesis of complex 1d

Complex 1d was generated using a similar procedure to complex 1a (191 mg of L\(_d\), 0.350 mmol, yield=96%). Anal. Calcd. For C\(_{46}H\(_{40}\)InN\(_2\)O: C 71.48; H 7.97; N 3.63. Found: C 71.74; H 7.99; N 3.57.\(^{1}\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(δ\) 7.85 (1H, s, -N=CH-Ar), 6.80 - 7.20 (11H, m, ArH), 6.61 (1H, m, ArH), 3.61 (1H, dd, \(\delta\)\(_{J_{HH}}\)=7, 13 Hz -CH\(_2\)- of benzyl), 3.50 (1H, dd, \(\delta\)\(_{J_{HH}}\)=7, 13 Hz -CH\(_2\)- of benzyl), 2.75 (1H, m, -CH\(_2\)- of DACH), 2.41 (1H, m, -CH\(_2\)- of DACH), 0.77 – 2.13 (17H, m, -CH\(_2\)- of DACH, -CH\(_3\) of cumyl and -CH\(_2\)- of's}Bu), 0.68 (6H, d, \(\delta\)\(_{J_{HH}}\)=7 Hz, -CH\(_3\) of's}Bu), 0.63 (6H, d, \(\delta\)\(_{J_{HH}}\)=7 Hz, -CH\(_3\) of's}Bu), 0.32 (2H, d, \(\delta\)\(_{J_{HH}}\)=7 Hz, -CH\(_2\)- of's}Bu), -0.01 (2H, d, \(\delta\)\(_{J_{HH}}\)=7 Hz, -CH\(_2\)- of's}Bu),\(^{13}\)C\(^{1}\)H) NMR (101 MHz, CDCl\(_3\)) \(δ\) 171.0 (N=CH-Ar), 168.2 (Ar C), 151.7 (Ar C), 151.5 (Ar C), 141.2 (Ar C), 139.8 (Ar C), 132.0 (Ar C-H), 131.5 (Ar C-H), 128.7 (Ar C-H), 127.9 (Ar C-H), 124.4 (Ar C-H), 71.7 (C-H of DACH), 61.1 (C-H of DACH), 50.1 (-CH\(_2\)- of benzyl) 30.9(-CH\(_3\) of cumyl), 29.4 (-CH\(_3\) of cumyl), 29.5 (-CH\(_3\) of cumyl), 27.8 (-CH\(_3\) of's}Bu), 28.1 (-CH\(_3\) of's}Bu), 29.4 (-CH\(_2\)- of's}Bu), 29.4 (-CH\(_2\)- of's}Bu).

Synthesis of complex 2a

A 20 mL scintillation vial was charged with 1a (200 mg, 0.257 mmol) in C\(_6\)H\(_6\) (3 ml). [HNMe\(_2\)Ph][BAr\(_{24}\)] (253 mg, 0.266 mmol) in C\(_6\)H\(_6\) (2 ml) was added to the stirring solution of 1a. The reaction mixture was stirred for 4 h at rt. The solvent was removed in vacuo to obtain a yellow residue and cold hexane (3 ml) was added to the residue. After stirring for 1 h, the supernatant was decanted off to remove the byproduct NMe\(_2\)Ph. This step was repeated at least 3 times until a pale-yellow solid precipitate formed. The product was washed with hexane (2 x 3 ml) and dried under high vacuum for a few hours. (70%). Anal. Calcd. For C\(_72\)H\(_{92}\)BF\(_24\)InN\(_2\)OS: C 54.79; H 4.10; N 1.75. Found: C 55.16; H 4.57; N 2.02.\(^{1}\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(δ\) 8.22 (1H, s, -N=CH-Ar), 7.76 (8H, br. s., ortho H of BA\(_F^2\)), 7.62 (1H, m, ArH), 7.57 (4H, br. s., para H of BA\(_F^2\)), 6.94 - 7.42 (14H, m, ArH), 7.36 (1H, m, Thioph α), 7.05 (1H, m, Thioph β), 6.86 (1H, m, Thioph γ), 4.38 (1H, d, \(\delta\)\(_{J_{HH}}\)=13 Hz, -CH\(_2\)- of thiophenyl), 3.75 (1H, m, -CH\(_2\)- of thiophenyl), 3.17 (1H, m, -CH\(_3\)- of DACH), 2.29 (1H, m, -CH\(_3\)- of DACH), 0.83 – 2.04 (16H, m, -CH\(_2\)- of DACH, -CH\(_3\) of cumyl and -CH\(_2\)- of's}Bu), 0.66 (6H, m, -CH\(_3\) of's}Bu), 0.73 (2H, m, -CH\(_2\)- of's}Bu),\(^{13}\)C\(^{1}\)H) NMR (101 MHz, CDCl\(_3\))
δ 169.3 (N=CH-Ar), 163.9 (Ar C), 161.3-162.4 (B-C), 151.7 (Ar C), 150.0 (Ar C), 141.8 (Ar C), 140.2 (Ar C), 138.8 (Ar C), 134.9 (ortho C-H of BArF), 134.4 (Ar-C-H), 131.7 (Ar-C-H), 130.9 (Ar-C-H), 129.6 (Thioph γ), 128.6-129.4 (qq, J_C-F = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_C-F = 273 Hz, -CF3), 128.8 Thioph β), 128.3 (Thioph α), 118.1 (Ar C), 117.6 (para C-H of BArF), 65.5 (C-H of DACH), 62.6 (C-H of DACH), 46.6 (-CH2- of furyl) 32.2 (-CH2- of 'Bu), 30.7 (-CH3 of cumyl), 30.8 (-CH3 of cumyl), 28.7 (-CH3 of cumyl), 27.6 (-CH3 of 'Bu), 19F {1H} NMR (282 MHz, CDCl3): δ -61.9.

Synthesis of complex 2b

Complex 2b was generated using a similar procedure to complex 2a (200 mg of 1b, 0.262 mmol, yield=75%). Anal. Calcd. For C_{72}H_{62}BF_{24}InN_{22}O_{7}: C 55.35; H 4.15; N 1.77. Found: C 54.86; H 4.18; N 1.89. 1H NMR (400 MHz, CDCl3, 25 °C) δ 8.19 (1H, s, -N=CH-Ar), 7.71 (8H, br. s., ortho H of BArF), 7.62 (1H, m, ArH), 7.53 (4H, br. s., para H of BArF), 6.90 - 7.36 (12H, m, ArH), 6.21 (1H, m, Furan α), 6.14 (1H, m, Furan β), 6.13 (1H, m, Furan γ), 4.03 (1H, d, J_{H-H}=15 Hz, -CH2- of furyl), 3.80 (1H, m, -CH2- of furyl), 3.12 (1H, m, -CH- of DACH), 2.33 (1H, m, -CH- of DACH), 0.85 – 2.29 (19H, m, -CH2- of DACH, -CH3 of cumyl, -CH- of 'Bu and -CH2- of 'Bu), 0.83 (6H, m, -CH3 of 'Bu), 13C{1H} NMR (101 MHz, CDCl3) δ 170.7 (N=CH-Ar), 165.7 (Ar C), 161.2-162.4 (B-C), 150.0 (Ar C), 146.1 (Furan δ), 144.2 (Furan γ), 141.5 (Ar C), 139.4 (Ar C), 134.9 (ortho C-H of BArF), 134.8 (Ar-C-H), 124.2 (Ar-C-H), 128.7-129.4 (qq, J_{C-F} = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_{C-F} = 273 Hz, -CF3), 126.2 (Ar-C-H), 125.5 (Ar-C-H), 122.0 (Ar-C), 117.6 (para C-H of BArF), 117.3 (Ar C), 112.3 (Furan β), 110.9 (Furan α), 64.7 (C-H of DACH), 61.6 (C-H of DACH), 42.5 (-CH2- of furyl) 31.3 (-CH3 of cumyl), 30.9 (-CH3 of cumyl), 30.8 (-CH2- of DACH), 30.3 (-CH2- of 'Bu), 28.4 (-CH3 of cumyl), 27.9 (-CH2- of DACH), 27.8 (-CH3 of 'Bu), 23.9 (-CH2- of DACH), 23.5 (-CH- of 'Bu), 19F {1H} NMR (282 MHz, CDCl3): δ -62.0.

Synthesis of complex 2c

Complex 2c was generated using a similar procedure to complex 2a (200 mg of 1c, 0.259 mmol, yield=86%). Anal. Calcd. For C_{75}H_{63}BF_{24}InN_{25}O_{7}: C 55.72; H 4.18; N 2.64. Found: C 55.60; H 4.28; N 2.82. 1H NMR (400 MHz, CDCl3, 25 °C) δ 8.20 (1H, s, -N=CH-Ar), 7.76 (9H, br. s., ortho H of BArF and Pyr γ), 7.61 (1H, m, ArH), 7.54 (4H, br. s., para H of BArF), 7.19 - 7.39 (10H, m, ArH), 7.16 (1H, m, Pyr α), 7.10 (1H, m, Pyr δ), 6.95 (2H, m, Pyr β and ArH), 4.02 (2H, m, -CH2- of pyridyl), 3.12 (1H, m, -CH2- of thiophenyl), 3.17 (1H, m, -CH- of DACH), 0.95 – 2.56 (20H, m, -CH2- of DACH, -CH3 of cumyl, -CH- of 'Bu and -CH2- of 'Bu), 0.87 (6H, m, -CH3 of 'Bu), 13C{1H} NMR (101 MHz, CDCl3) δ 171.0 (N=CH-Ar), 167.1 (Ar C), 161.8 (B-C), 152.2 (Ar C), 152.1 (Ar C), 150.0 (Pyr β), 149.9 (Ar C), 141.9 (Pyr γ), 135.1 (ortho C-H of BArF), 134.2 (Ar-C-H), 132.8 (Pyr δ), 128.7-129.4 (qq, J_{C-F} = 3, 32 Hz, meta C of BArF), 127.4,125.6,123.8,121.9 (q, J_{C-F} = 273 Hz, -CF3), 126.2 (Ar-C-H), 125.5 (Ar-C-H), 124.0 (Pyr α), 117.6 (para C-H of BArF), 64.2 (C-H of DACH), 60.6 (C-H of DACH), 47.3 (-CH2- of pyridyl) 33.8 (-CH3 of cumyl), 30.9 (-CH3 of cumyl), 25.9 (-CH3 of cumyl), 27.8 (-CH3 of 'Bu), 27.3 (-CH2- of 'Bu), 19F {1H} NMR (282 MHz, CDCl3): δ -61.8.

Synthesis of complex 2d

Complex 2d was generated using a similar procedure to complex 2a but was obtained in a mixture of decomposition products and could not be purified. Synthesis of 2d in THF at -30 °C resulted in less decomposition products. However, 2d could not be isolated. Anal. Calcd. For C_{30}H_{26}BF_{12}InN_{22}O_{7}: C 56.70; H 4.20; N 1.70. Found: C 55.10; H 4.50; N 1.71. 1H NMR (400 MHz, CDCl3, 25 °C) δ 8.36 (1H, s, -N=CH-Ar), 7.70 (8H, br. s., ortho H of BArF), 7.52 (4H, br. s., para H of BArF), 7.07 - 7.45 (14H, m, ArH), 4.17 (1H, m, -CH2- of benzyl), 3.98 (1H, m, -CH2- of benzyl), 3.76 (-CH2- of THF), 3.50 (1H, m, -CH- of
DACH), 3.14 (1H, m, -CH- of DACH), -0.22 – 2.31 (24H, m, -CH2- of DACH, -CH3 of cumyl, -CH- of ‘Bu, -CH2- of ‘Bu and -CH3 of ‘Bu).

Representative polymerization of epoxides using cationic complexes (2a)

A 7 mL scintillation vial was charged with a solution of complex 2a (19.0 mg, 0.012 mmol) in 0.3 ml of C6D6. Epichlorohydrin (0.30 mL, 3.8 mmol) was added directly to the vial by a syringe. The mixture was stirred at 25 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was added to it (0 °C, 15 mL). The polymer precipitated from solution and was isolated by decantation or centrifugation. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of ε-CL using cationic complexes (2b)

A 20 ml scintillation vial was charged with a solution of complex 2b (20.0 mg, 0.013 mmol) in 0.5 ml of toluene. A solution of ε-CL (0.5 ml, 4.5 mmol) in 0.5 ml of toluene was added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Representative polymerization of rac-LA using cationic complexes (2c)

A 20 ml scintillation vial was charged with a solution of complex 2c (10.1 mg, 0.006 mmol) in 1 ml of toluene. Rac-LA (230 mg, 1.6 mmol) was directly added to the vial. The mixture was stirred at 100 °C for 24 h. The resulting solution was concentrated under vacuum for 3 h and then cold methanol was slowly added to the vial (0 °C, 15 mL). The polymer precipitated from the solution and was isolated by decantation of the supernatant. The isolated polymer was dried under high vacuum for at least 3 h prior to analysis.

Complex	2a	2b	2c	2d
Pendant group donor strength (D₄)⁴	11	10	33	38
Synthesis temperature	Ambient temperature	Ambient temperature	Ambient temperature	-30 °C
Synthesis solvents	THF, DCM, C₆D₆	THF, DCM, C₆D₆	THF, DCM, C₆D₆	THF
Shelf life*	~48 h at r.t.	Stable up to 10 weeks at r.t.	Stable up to 10 weeks at r.t.	~20 mins at r.t.
	~2 weeks at -30 °C	Up to 10 days exposed to moist air		~ 1 day at -30 °C

Stored under dry N₂ unless otherwise stated.
B. Characterization of metal complexes and ligands in solution

Figure S1 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L_a.

Figure S2 13C-1H NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L_a.

S8
Figure S3 2D 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_a$.
Figure S4 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L$_a$.
Figure S5 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_b$.

Figure S6 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_b$.
Figure S7 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_b$.
Figure S8 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of L₉.
Figure S9 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L_c.

Figure S10 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L_c.
Figure S11 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_e$.
Figure S12 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L$_e$
Figure S13 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L$_d$.

Figure S14 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of L$_d$.
Figure S15 2D 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of L_d.
Figure S16 \(^1\text{H}-^{13}\text{C}\) Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of L$_d$
Figure S17 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1a

Figure S18 13C {1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1a
Figure S19 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1a.
Figure S20 ¹H-¹³C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl₃, 25 °C) of 1a.
Figure S21 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1a
Figure S22 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1b.

Figure S23 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1b
Figure S24 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1b
Figure S25 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1b.
Figure S26 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1b.
Figure S27 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1c.

Figure S28 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1c.
Figure S29 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1c
Figure S30 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1c.
Figure S31 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 1c.
Figure S32 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1d.

Figure S33 13C{1H} NMR spectrum (101 MHz, CDCl$_3$, 25 °C) of 1d
Figure S34: 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 1d.
Figure S35 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 1d.
Figure S36 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2a. (Residual diethyl ether q, 3.48 and t, 1.22 ppm)

Figure S37 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2a
Figure S38 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2a.
Figure S39 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 2a.
Figure S40 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2a.
Figure S41 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.

Figure S42 19F-1H NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2a
Figure S43 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2b.

Figure S44 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2b
Figure S45 ¹H-¹H COSY NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2b.
Figure S46 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.
Figure S47 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2b.
Figure S48 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) NMR spectrum (CDCl$_3$, 25 °C) of 2b.

Figure S49 19F-1H NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2b
Figure S50 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2c

Figure S51 13C{1H} NMR spectrum (151 MHz, CDCl$_3$, 25 °C) of 2c
Figure S52 1H-1H COSY NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 2e.
Figure S53 1H-13C Heteronuclear Single Quantum Coherence (HSQC) NMR spectrum (CDCl$_3$, 25 °C) of 2c.
Figure S54 Nuclear Overhauser Effect spectroscopy (NOESY) NMR spectrum (400 MHz, CDCl₃, 25 °C) of 2c.
Figure S55 19F{1H} NMR spectrum (282 MHz, CDCl$_3$, 25 °C) of 2c

Figure S56 1H NMR spectrum (300 MHz, CDCl$_3$, 25 °C) of 2d
C. Characterization of metal complexes in the solid state

Bond distances	In1-N1	2.510(3)	In1-C32	2.165(4)
	In1-N2	2.293(3)	In1-C36	2.169(4)
	In1-O1	2.205(3)		
Bond Angles	O1-In1-C32A	98.0(1)	O1-In1-N1	147.4(1)
	O1-In1-C36	95.0(1)	N1-In1-C32	99.4(1)
	C32-In1-C36	135.0(2)	N1-In1-C36	91.9(1)
	N1-In1-N2	69.6(1)		

Figure S57 Molecular structure of complex 1a. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
Selected bond distance (Å) and angles (°) for complex 1b.

Bond distances	Bond Angles
In1-N1 2.548(1)	O1-In1-C32A 94.00(7)
In1-N2 2.269(2)	O1-In1-C36 101.95(8)
In1-O1 2.203(1)	C32-In1-C36 129.61(9)
In1-C32 2.178(2)	N1-In1-C32 90.98(8)
In1-C36 2.187(3)	N1-In1-C36 98.52(8)
N1-In1-N2 70.31(6)	O2A

Figure S58 Molecular structure of complex 1b. (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity).
Selected bond distance (Å) and angles (°) for complex 1c.

Bond distances	Bond distance	Bond distances	Bond distance
In1-N1	2.510(2)	In1-C32	2.174(2)
In1-N2	2.286(1)	In1-C36	2.170(2)
In1-O1	2.209(2)		
O1-In1-C32A	94.72(7)	O1-In1-N1	148.01(6)
O1-In-C36	97.68(7)	N1-In1-C32	92.82(7)
C32-In1-C36	135.39(8)	N1-In1-C36	98.55(7)
N1-In1-N2	69.95(6)		

Figure S59 Molecular structure of complex 1c. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
Bond distances	Bond Angles	Selected bond distance (Å) and angles (°) for complex 1d.
In1-N1	2.516(2)	In1-C32
In1-N2	2.286(1)	In1-C36
In1-O1	2.206(1)	In1-C36
	O1-In1-C32A	97.49(5)
	O1-In-C36	94.38(5)
	C32-In1-C36	136.55(6)
	N1-In1-N2	69.81(4)

Figure S60 Molecular structure of complex 1d. (depicted with thermal ellipsoids at 50% probability and H atoms, as well as solvent molecules omitted for clarity).
D. Characterization of complex behavior

Figure S61 31P{1H} NMR spectra (162 MHz, C$_6$D$_6$, 25 °C) of 1a, 1b, 1c and 1d after the addition of 0.8 equivalents of OPEt$_3$. The free triethylphosphine oxide shift is determined by the addition of a capillary inside the NMR tube containing a solution of triethylphosphine oxide in C$_6$D$_6$.
Figure S62 1H NMR spectra of 2c before (time = 0 days) and after (time = 10 days) exposure to air for 10 days continuously. No significant changes were observed.
Figure S63 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 125 °C) of 1a. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S64 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 85 °C) of 1b. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S65 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 85 °C) of 1c. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S66 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 30 to 105 °C) of 2a. Shifts observed were irreversible. C$_6$D$_5$Br is taken as a reference.
Figure S67 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 25 to 125 °C) of 2b free ligand L2. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Figure S68 Variable temperature (VT) 1H NMR spectra (400 MHz, C$_6$D$_5$Br, 30 to 120 °C) of 2c. Shifts observed were reversible. C$_6$D$_5$Br is taken as a reference.
Selected bond distance (Å) and angles (°) for complex 2b.2THF.

Bond distances	In1-N1	2.468(5)	In1-O3	2.392(4)
	In1-N2	2.179(5)	In1-O4	2.354(4)
	In1-O1	2.127(3)	In1-C32	2.128(7)
Bond Angles	O1-In1-C32	112.9(2)	O1-In1-N1	156.3(1)
	O3-In1-O4	166.3(1)	N1-In1-C32	90.4(2)
	N1-In1-N2	72.9(2)		

Figure S69 Molecular structures of complex 2b.2THF (depicted with thermal ellipsoids at 50% probability and H atoms, minor disorders as well as solvent molecules omitted for clarity)
	1b	1d	1a	1c	2b.2THF
empirical formula	C₄₄H₅₉InN₂O₂	C₄₆H₆₁InN₂O	C₄₄H₅₉InN₂OS	C₄₅H₆₀InN₃O	C₈₈H₉₂BF₂₄InN₂O₆
Fw	762.75	772.78	778.81	773.78	1855.26
T (K)	296.15	273(2)	100	296.15	100
a (Å)	17.5732(15)	18.4020(6)	18.3672(15)	18.3804(16)	12.616(3)
b (Å)	13.8493(11)	13.9008(5)	14.0583(12)	13.9887(12)	13.343(3)
c (Å)	18.4226(15)	18.4542(7)	17.9736(14)	18.328(2)	26.255(5)
α (deg)	90	90	90	90	80.163(3)
β (deg)	117.891(2)	119.051(2)	118.8140(10)	119.839(2)	76.369(3)
γ (deg)	90	90	90	90	85.869(3)
volume (Å³)	3962.81	4126.72	4066.39	4087.71	4229.90
Z	4	4	4	4	2
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
space group	P 2₁/c	P 2₁/n	P 2₁/c	P 2₁/c	P -1
dcalc (g/cm³)	1.278	1.244	1.272	1.257	1.457
μ (Mo Kα) (cm⁻¹)	6.34	6.08	6.67	6.14	3.87
2θmax (deg)	61.3	61.2	55.8	61.0	54.6
absor corr (Tmin, Tmax)	0.7005, 0.7461	0.909, 0.986	0.982, 0.997	0.6730, 0.7461	0.9887, 0.9977
total no. of reflns	63957	65464	9204	56696	18759
no. of indep reflns (Rint)	12154 (0.0394)	12665 (0.0445)	9204 (0.0890)	12417 (0.0461)	18759(0.1605)
residuals (refined on F²): R₁; wR₂	0.0523, 0887	0.0354, 0634	0.0773, 0.1436	0.0465, 0.0808	0.0983, 2141
GOF	1.023	1.032	1.067	1.094	1.036
no. obsrvns [I > 2σ(I)]	9858	9908	9510	9643	9841
residuals (refined on F²): R₁; wR₂	0.0524, 0802	0.0273, 0.0600	0.0550, 0.1339	0.0373, 0.0772	0.0794, 2047

\[R₁ = \Sigma \| F_o \| - | F_c | / \Sigma | F_o | ^2 \]
\[wR₂ = \sqrt{ \Sigma (w (F_o - F_c)^2) / \Sigma w(F_o)^2 } \]

S63
Figure S70 DOSY-NMR of the mixture of THF and 2a (400MHz, diffusion time (Δ) = 0.85 s, gradient length (δ) = 400 µs, C$_6$D$_6$, 25 °C).

Figure S71 DOSY-NMR of the mixture of THF and 2b (400MHz, Δ = 1.2 s, δ = 400 µs, C$_6$D$_6$, 25 °C).
Figure S72 DOSY-NMR of the mixture of THF and 2c (400MHz, $\Delta = 0.55$ s, $\delta = 400$ μs, C$_6$D$_6$, 25 °C).

Figure S73 1H NMR of spectra of 2b in the presence of THF, pyridine, triethylphosphine oxide and epichlorohydrin (400 MHz in C$_6$D$_6$ at 25 °C).
Figure S74 MALDI-TOF spectrum of PLA isolated from polymerization of 250 equivalents of rac-LA with 2c in toluene at 100 °C for 24 hours.

2402.5 = [rac-LA_{144}]_{16} + Bu_{57} + Na^{+}_{23} + OH^{-}_{17}
2545.8 = [rac-LA_{144}]_{17} + Bu_{57} + Na^{+}_{23} + OH^{-}_{17}
2690.1 = [rac-LA_{144}]_{18} + Bu_{57} + Na^{+}_{23} + OH^{-}_{17}

Figure S75 1H/1H NMR spectrum (600 MHz, CDCl$_3$, 25 °C) of PLA as the product of the polymerization of 250 equivalents of rac-LA 2c in toluene at 100 °C for 24 hours. The methine protons of the polymer are decoupled. ($P_m = 0.46$)
E. References

1. Jung, H. J.; Chang, C.; Yu, I.; Aluthge, D. C.; Ebrahimi, T.; Mehrkhodavandi, P., Coupling of Epoxides and Lactones by Cationic Indium Catalysts To Form Functionalized Spiro-Orthoesters. *ChemCatChem* 2018, **10** (15), 3219-3222.
2. Beachley, O. T.; Rusinko, R. N., Preparation and properties of [(trimethylsilyl)methyl]indium(iii) compounds. *Inorg. Chem.* 1979, **18** (7), 1966-1968.
3. Murphy, A.; Pace, A.; Stack, T. D. P., Ligand and pH influence on manganese-mediated peracetic acid epoxidation of terminal olefins. *Org. Lett.* 2004, **6** (18), 3119-3122.
4. Sandstrom, M.; Persson, I.; Persson, P., A study of solvent electron-pair donor ability and lewis basicity scales. *Acta. Chem. Scand.* 1990, **44** (7), 653-675.