Effects of Treating Depression and Low Perceived Social Support on Clinical Events After Myocardial Infarction

The Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) Randomized Trial

Writing Committee for the ENRICHD Investigators

Cardiovascular disease is the leading cause of death and a major cause of morbidity and disability in the United States, with an estimated 6 million people having symptomatic coronary heart disease (CHD). Recent studies have shown that depression and low perceived social support (LPSS) are associated with increased cardiac morbidity and mortality in CHD patients.

In patients with CHD, the prevalence of major depression is nearly 20% and the prevalence of minor depression is approximately 27%. After an acute myocardial infarction (MI), depression is a risk factor for mortality independent of cardiac disease severity. A recent randomized clinical trial found that the antidepressant sertraline hydrochloride was effective in treating recurrent depression in patients with either an acute MI or an episode of unstable angina. However, no clinical trial has examined whether treating depression with counseling or antidepressants after an acute MI improves survival or reduces cardiac risk.

The absence of social support is also a risk factor for cardiac morbidity and mortality in patients with CHD. No clinical trial has tested the effects of increasing social support on clinical end points following acute MI, although

Context Depression and low perceived social support (LPSS) after myocardial infarction (MI) are associated with higher morbidity and mortality, but little is known about whether this excess risk can be reduced through treatment.

Objective To determine whether mortality and recurrent infarction are reduced by treatment of depression and LPSS with cognitive behavior therapy (CBT), supplemented with a selective serotonin reuptake inhibitor (SSRI) antidepressant when indicated, in patients enrolled within 28 days after MI.

Design, Setting, and Patients Randomized clinical trial conducted from October 1996 to April 2001 in 2481 MI patients (1084 women, 1397 men) enrolled from 8 clinical centers. Major or minor depression was diagnosed by modified Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria and severity by the 17-item Hamilton Rating Scale for Depression (HRSD); LPSS was determined by the Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) Social Support Instrument (ESSI). Random allocation was to usual medical care or CBT-based psychosocial intervention.

Intervention Cognitive behavior therapy was initiated at a median of 17 days after the index MI for a median of 11 individual sessions throughout 6 months, plus group therapy when feasible, with SSRIs for patients scoring higher than 24 on the HRSD or having a less than 50% reduction in Beck Depression Inventory scores after 5 weeks.

Main Outcome Measures Composite primary end point of death or recurrent MI; secondary outcomes included change in HRSD (for depression) or ESSI scores (for LPSS) at 6 months.

Results Improvement in psychosocial outcomes at 6 months favored treatment: mean (SD) change in HRSD score, −10.1 (7.8) in the depression and psychosocial intervention group vs −8.4 (7.7) in the depression and usual care group (P<.001); mean (SD) change in ESSI score, 5.1 (5.9) in the LPSS and psychosocial intervention group vs 3.4 (6.0) in the LPSS and usual care group (P<.001). After an average follow-up of 29 months, there was no significant difference in event-free survival between usual care (75.9%) and psychosocial intervention (75.8%). There were also no differences in survival between the psychosocial intervention and usual care arms in any of the 3 psychosocial risk groups (depression, LPSS, and depression and LPSS patients).

Conclusions The intervention did not increase event-free survival. The intervention improved depression and social isolation, although the relative improvement in the psychosocial intervention group compared with the usual care group was less than expected due to substantial improvement in usual care patients.

JAMA. 2003;289:3106-3116

For editorial comment see p 3171.

©2003 American Medical Association. All rights reserved.
several small trials that tested psychologically supportive interventions found these to reduce mortality and recurrent events.12-15

Although results of individual trials have been mixed, 2 meta-analyses of psychosocial interventions following MI reported a reduction in all-cause mortality and cardiac morbidity.16,17 The major study reporting positive results was the Recurrent Coronary Prevention Project,18 which enrolled 1013 MI patients, of whom 592 were randomized to receive up to 4½ years of psychosocial treatment. The targeted psychosocial endpoints (eg, type A behavior, hostility) were improved and accompanied by a 44% reduction in cardiac death and nonfatal MI. In contrast, the Montreal Heart Attack Readjustment Trial (M-HART),19 which enrolled 1376 post-MI patients, found that a supportive and educational home health nursing intervention for patients in distress did not reduce medical events. Another trial that compared group counseling with standard care in 2328 MI patients found no improvement in either the psychosocial variables or the medical outcomes measured.20

No study has evaluated the effects of treatments designed to lessen depression or increase social support early after the onset of acute MI. Given the strength of the evidence that suggests a relationship between both depression and LPSS and clinical outcomes following acute MI, the objective of this randomized, controlled multicenter clinical trial, sponsored by the National Heart, Lung, and Blood Institute, was to determine whether treating depression and increasing social support as soon as possible after acute MI reduces the risk of recurrent nonfatal infarction and death.21

Fla, University of Washington, Seattle, Washington University, St Louis, Mo, and a combined Yale University, New Haven, Conn, and Harvard University, Boston, Mass, site. The Project Office, which was responsible for overall trial management, was the National, Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md. The Data Coordinating Center was at the University of North Carolina at Chapel Hill; the electrocardiography (ECG) core laboratory was at St Louis University, St Louis, Mo; the Beck Institute for Cognitive Therapy and Research, Bala Cynwyd, Pa, provided training and quality assurance for the intervention; and an independent Data and Safety Monitoring Board (DSMB) provided oversight. Protocol approval was obtained by local institutional review boards before beginning recruitment.

Patient Eligibility and Recruitment

Recruitment began in October 1996 and ended in October 1999. All patients with an acute MI admitted to the participating hospitals were considered for enrollment. The criteria for acute MI required characteristic elevation in 1 or more biomarkers of myocardial injury to twice the institution-specific upper limit, except for creatine kinase–MB fraction, for which any elevation with a rising and falling pattern deemed indicative of acute MI by the attending physician was considered acceptable. Symptoms compatible with acute MI or characteristic evolutionary ECG ST-T changes or new Q waves were also required.22

Patients who underwent intervention for ST elevation could be included even if marker criteria were not met. Patients with acute MI following percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery or those receiving psychotherapy for depression were excluded. Before April 1998, patients were also excluded if they were taking an antidepressant medication. In April 1998, the protocol was changed to allow enrollment of patients who were taking an antidepressant for longer than 14 days but remained depressed.

Patients were also excluded if they had noncardiac conditions likely to be fatal within 1 year; were too ill to participate; were participating in another research protocol that posed a significant logistic burden or that might confound evaluation of the Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) intervention; had major psychiatric comorbidity (including schizophrenia, bipolar disorder, severe dementia, or active substance abuse); were at imminent risk for suicide; refused to participate or their attending physician disallowed participation; could not be enrolled within 28 days of the acute event; or were inaccessible for intervention or follow-up.

Patients who fulfilled the eligibility criteria and gave written informed consent were screened for presence of depression and/or LPSS. The Depression Interview and Structured Hamilton (DISH),23 a semistructured diagnostic interview developed for ENRICHD, was used to diagnose current depressive episodes according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria24 and to screen for other psychiatric disorders. The DISH also yields a depression severity score on the 17-item Hamilton Rating Scale for Depression (HRSD).25

Patients were classified as depressed if they met the ENRICHD-modified DSM-IV diagnostic criteria for major or minor depression or dysthymia. Under these criteria, patients were eligible if depressive symptoms had been present for at least 7 (rather than 14) days, provided that there was at least 1 prior episode of major depression. Where no prior episode of major depression existed, the usual 14-day criterion was applied. Nurse coordinators were trained to administer the interview and evaluated on at least 20 interviews by trial psychiatrists and psychologists.25

The criteria for LPSS were based on the ENRICHD Social Support Instrument (ESSI), developed for ENRICHD and composed of 5 items derived from well-validated social support scales found in prior studies to be individually predictive of death in cardiac patients.23 A score...
of less than 3 on 2 or more items and a total score of less than 18, or a score of 2 on 2 items without regard to total score, were required to classify a patient as having LPSS. The ESSI was found to be both reliable (a coefficient of .87) and valid (correlation of .62, $P < .001$ with the Perceived Social Support Scale [PSSS]) in psychometric analyses. Design, methods, screening measures, and the numbers of patients who met specific enrollment criteria are described elsewhere.21,26

Randomization and Blinding

Randomization was stratified by clinical center and used a permuted block algorithm with blocks of varying sizes 2, 4, and 6. Following eligibility determination, study coordinators obtained treatment allocation using an automated telephone randomization system maintained at the ENRICHD Coordinating Center.

Although participants and interventionists were aware of the patients' treatment assignment, all staff who collected, verified, or classified end point data or follow-up assessments were masked as much as possible. To test for the potential for selection bias that results from research staff being able to predict the next treatment assignment based on unmasking of previous assignments, we used methods developed by Berger and Exner27 to test for selection bias by examining the association between the predicted probabilities of assignment to the intervention arm (assuming knowledge of the sequence of prior allocations) and selected baseline characteristics and event-free survival within each treatment group. All tests were nonsignificant, providing some assurance that any treatment group imbalances on baseline factors and observed treatment effects are not due to selection bias.

Baseline Measurements

At baseline, an ECG was performed, and demographic, medical history, current medication use (including antidepressants), and physical examination data were recorded. In addition to the DISH and the ESSI, the Beck Depression Inventory (BDI)28 and the PSSS29 were administered. The BDI is a 21-item measure of self-reported severity of depressive symptoms with scores between 0 and 64; a score of 10 or higher is the threshold for considering clinical depression. The PSSS is a 12-item scale that assesses perceived social support from family, friends, and others.28 Other psychosocial assessments made during the trial are described elsewhere.21,30

Treatment

Patients were assigned randomly either to the intervention or usual care group. The period of highest risk for reinfarction and death is during the initial 6 months after acute MI. Therefore, patients were enrolled within 28 days, and those in the intervention arm were treated as soon as possible after the index MI in the belief that the optimal time for intervention would be during this period. Both groups received written materials about risk factors based on the American Heart Association Active Partnership Program.31 Otherwise, patients in usual care received only the care provided by their physicians. Physicians were notified in writing that their patients were enrolled in the study with either depression or LPSS or both. Physicians were notified immediately if their patient was found to be suicidal or to have severe depression.

Cognitive behavior therapy (CBT)32 was used as the basis for the ENRICHD intervention because of its efficacy in treating depressed noncardiac patients33,34 and its ability to address a range of issues involving distress and behavioral problems. For depressed patients, CBT was given as described by Beck et al.28 and Beck.32 For patients with LPSS, CBT techniques were used to address the cognitions, behaviors, and affect that accompany LPSS, supplemented with techniques based on social learning theory and adopted from other psychotherapeutic support trials. For patients with LPSS, a detailed assessment of the patient's social needs, relationships, and deficits was performed during the first therapy session, including assessment of participants' social planning, communication, and problem-solving skills and social anxiety or phobia. Counseling sessions were tailored to address patients' specific needs through the use of modular intervention components that addressed (1) behavioral and social skill deficits, (2) cognitive factors that contribute to the perception or maintenance of unsatisfying levels of social support, and (3) social outreach and network development. The major thrust of the intervention was on strengthening network ties to be more functional, supportive, and satisfying, although sometimes patients were encouraged to create new relationships. Patients with both depression and LPSS received an intervention in which elements of both treatments were integrated across treatment sessions. A detailed description of the depression and social support interventions is provided elsewhere.33

Therapists were trained by study psychologists and trainers from the Beck Institute for Cognitive Therapy and Research. The Beck Institute also monitored quality and adherence of the treatment protocol by evaluating randomly selected therapy session audio-tapes. Training and quality control procedures have been described elsewhere.21

Intervention group patients with scores higher than 24 on the HRSD or those who showed a less than 50% reduction in BDI scores after 5 weeks were referred to study psychiatrists for consideration of pharmacotherapy. Unless contraindicated, sertraline hydrochloride (donated by Pfizer Inc, New York, NY, and provided without charge to intervention group patients, as needed) was initiated at 50 mg/d and adjusted to a maximum of 200 mg/d if deemed necessary by the treating psychiatrist. Alternative medications (another SSRI or nortriptyline hydrochloride) were considered for patients unable to tolerate sertraline or judged unresponsive. The maximum duration of the behavioral intervention was 6 months. Group therapy could extend an additional 12 weeks and adjunctive pharmacotherapy for up to 12
months, at which time the patient was reevaluated by the ENRICHD psychiatrist. If antidepressants were deemed still to be needed, the patient was referred to his or her physician.

Therapy was initiated as soon as possible after randomization. If indicated, therapists were permitted to schedule sessions more than once weekly. To overcome logistic barriers to prompt intervention, home visits were common soon after discharge. If possible, group therapy began as soon as was practical after the patient completed at least 3 sessions of individual CBT. When in group therapy, some patients discontinued individual CBT. Individual CBT continued until patients either met ENRICHD criteria for optimal treatment outcome or 6 months had elapsed. The criteria for optimal treatment outcome established a high standard to guide therapists and patients who sought to end the intervention before 6 months. Criteria were (1) completing at least 6 individual or group therapy sessions; (2) demonstrating adequate self-therapy skills (eg, cognitive behavioral skills to maintain treatment gains and prevent relapse); (3) reporting at least 1 sustainable, supportive relationship outside therapy (for patients qualifying for LPSS); and (4) 2 consecutive BDI scores of 7 or less (for patients qualifying for depression) or 2 consecutive PSS scores of 4 or more on at least 2 items of the short-form PSS (for patients qualifying for LPSS).

Follow-up Evaluations
Follow-up visits occurred 6 months after randomization and annually thereafter and included all baseline assessments, except for the DISH, which was administered by interview at the 6-month visit and by phone at 12 months to assess relapse. A resting ECG was recorded to detect otherwise unrecognized acute MI.

End Points
Potential end points were identified through patients, hospital records, or the patients’ physicians. Records of every identified hospitalization were obtained for review. Classification of the primary end point (recurrent MI or death from any cause) was made using standardized criteria by a member of the treatment-masked End Points Committee, which adjudicated ambiguous cases. An ECG core laboratory classified ECGs by Minnesota code serial change rules.36 Criteria for recurrent MI were as defined for enrollment except that periprocedural MI was diagnosed if biomarkers of cardiac injury were 3-fold above baseline after PCI or if new Q waves developed in 2 or more leads after CABG. Secondary end points, including revascularization procedures and cardiovascular hospitalizations, were also collected.

Statistical Analysis
The target sample size of 3000 patients was calculated to yield 88% power to detect a difference in proportion of events between the treatment groups of 30% in complying patients (or an observed treatment effect of 24% in all patients). Assumptions incorporated in calculations were a 2-sided α = .05 test, a 3-year cumulative event rate of 23% in usual care, that 67% of first events would be deaths, and that 25% of patients would be noncompliant without treatment effect. Recruitment of fewer patients (2481 vs 3000 patients) reduced power to detect a 30% difference between treatment groups from 88% to 78%. However, the DSMB recommended that recruitment not be extended beyond its originally planned time frame, based on conditional power calculations that projected less than 5% power for showing potential benefit even if the original enrollment target of 3000 patients was met.

The Cox regression model37 was used to analyze time elapsed to the primary and secondary events, and log-rank statistics were used to compare survival curves for the intervention and usual care arms. Survival curves were generated by the Kaplan-Meier method. Prespecified subgroup analyses included subpopulations defined by sex, race/ethnicity, and psychosocial and biomedical risk. All treatment group comparisons were based on the intention-to-treat principle that includes all randomized patients as randomized. Supplemental analyses were performed to assess whether treatment with an antidepressant, independent of treatment group assignment, was related to the risk of a primary event or all-cause mortality. Antidepressant use was treated as a time-dependent covariate in a Cox regression model and excluded those eligible on the basis of LPSS alone. Because the exact start date of drug use was not known, change in the covariate from 0 to 1 was estimated to have occurred at the midpoint of the interval between the visit at which drug use was reported and the previous visit or on the date of the visit if an antidepressant was prescribed at the visit. Adjustment was made for potential baseline confounders, including age, baseline BDI score, Killip class, ejection fraction, creatinine level, previous MI, and prior diagnosis of congestive heart failure, stroke or transient ischemic attack, pulmonary disease, or diabetes.

All statistical analyses were performed using SAS statistical software version 8 (SAS Institute Inc, Cary, NC, 1999).

RESULTS
Baseline Characteristics and Follow-up
The study population has been previously described in detail.26 TABLE 1 shows that treatment groups were balanced on key baseline characteristics and prognostic factors with the exception of angiotensin-converting enzyme (ACE) inhibitor use. During the 3-year recruitment from October 1996 through October 1999, 2481 patients were randomized; 39% were depressed, 26% had inhibitor use. During the 3-year recruitment from October 1996 through October 1999, 2481 patients were randomized; 39% were depressed, 26% had LPSS, and 34% met both criteria. Twelve hundred thirty-eight patients were randomized to the intervention arm, 1145 of whom received at least 1 therapeutic session. Baseline data collection was completed in October 1999 and treatment ended in April 2000. Vital status was obtained for 2308 randomized participants (93%) in the 6 months before the April 2001 trial termination, including 340 (14%) known to be deceased. End point information from the last available contact was used for 173 patients.
lost to follow-up (Figure 1). All patients were followed up for at least 18 months (average, 29 months).

Table 1. Key Demographic and Prognostic Characteristics on Admission by Treatment*

Characteristics	Usual Care (n = 1243)	Intervention (n = 1238)
Demographics		
Age, mean (SD), y	61 (12.5)	61 (12.6)
Sex, female	552 (44)	532 (43)
Race, nonwhite	425 (34)	409 (33)
Marital status, married	625 (51)	656 (53)
Education, high school or higher	558 (46)	573 (48)
Medical characteristics		
Diabetes	414 (33)	400 (32)
Hypertension	752 (61)	741 (60)
Smoking history	(80)(65)	789 (64)
Hypercholesteremia	698 (56)	719 (58)
Cerebrovascular disease	123 (10)	111 (9)
Renal insufficiency	117 (9)	124 (10)
Previous MI	341 (27)	318 (26)
Previous CABG surgery	166 (13)	154 (12)
Previous PTCA	199 (16)	177 (14)
CHF history	170 (14)	164 (13)
Comorbidity score, mean (SD)†	2.24 (2.11)	2.16 (2.03)
Peripheral vascular disease	150 (12)	152 (12)
Systolic blood pressure, mean (SD), mm Hg	124 (19)	123 (19)
Body mass index, mean (SD)‡	29 (6.6)	29 (6.7)
Characteristics of the index MI		
Infarct type		
Q wave	378 (32)	357 (30)
Non−Q wave	650 (54)	674 (57)
Indeterminate or unknown	165 (14)	152 (13)
Infarct location		
Anterior	385 (31)	355 (29)
Inferior	484 (39)	494 (40)
Ejection fraction category		
Severe dysfunction	249 (25)	263 (26)
Moderate dysfunction	252 (26)	238 (24)
Mild dysfunction or normal	483 (49)	508 (50)
Killip class III−IV	89 (7)	86 (7)
Treatment of the index MI		
Thrombolytic therapy	478 (39)	440 (36)
CABG surgery	218 (17)	212 (17)
Cardiac catheterization	1025 (83)	997 (81)
PTCA <24 h	293 (24)	288 (23)
Current prescribed medications		
ACE inhibitors	588 (47)	524 (42)
Anticoagulants	232 (19)	248 (20)
Aspirin	1046 (84)	1027 (83)
β-Blockers	884 (71)	901 (73)
Lipid-lowering drugs	530 (43)	492 (40)
Psychosocial risk factors		
Depressed only	480 (39)	498 (40)
Low perceived social support only	334 (27)	313 (25)
Depressed and low perceived social support	429 (34)	427 (35)

Abbreviations: ACE, angiotensin-converting enzyme; CABG, coronary artery bypass graft; CHF, congestive heart failure; MI, myocardial infarction; PTCA, percutaneous transluminal coronary angioplasty.

*Data are presented as No. (%) unless otherwise indicated. Denominator may vary due to missing values.
†Based on Charlson comorbidity index (range in sample, 0-11).
‡Calculated as weight in kilograms divided by the square of height in meters.

Table 2. Hazard ratios (HRs) for the primary end point and associated 95% confidence intervals (CIs) summarize the relative survival benefits in pre-planned subgroups (Figure 3). None of these were significant. There was some evidence of a treatment group-by-sex interaction (P = .03). Post hoc adjustment for age and Charlson comorbidity index (factors known to predict the primary end point) attenuated the interaction considerably (P = .20). Other interaction tests between treatment assignment and psychosocial risk groups (patients who met criteria for depression only, LPSS only, or both) or ethnic group (minority, nonminority) were nonsignificant (P = .77 and P = .20, respectively).

Treatment Effect on Clinical Events

Four-year survival curves showed no significant difference between treatments in recurrence of MI or death (log-rank P = .94; Figure 2). This null effect was consistent for all secondary end points, including recurrent nonfatal MI, death from any cause, and cardiac death (Table 2).

Hazard ratios (HRs) for the primary end point and associated 95% confidence intervals (CIs) summarize the relative survival benefits in pre-planned subgroups (Table 2). None of these were significant. There was some evidence of a treatment group-by-sex interaction (P = .03). Post hoc adjustment for age and Charlson comorbidity index (factors known to predict the primary end point) attenuated the interaction considerably (P = .20). Other interaction tests between treatment assignment and psychosocial risk groups (patients who met criteria for depression only, LPSS only, or both) or ethnic group (minority, nonminority) were nonsignificant (P = .77 and P = .20, respectively).

Treatment Effect on Psychosocial Measures

The intervention produced significant but modest differences in depression and social support (Table 3). At 6 months after randomization, the mean BDI score for patients enrolled on the basis of depression in the intervention group was 9.1 vs 12.2 in the usual care group (P < .001), a mean decrease in BDI score of 49% vs 33%, respectively. A comparable difference was observed for the structured interview assessment of depression severity, the HRSD (7.6 in the intervention vs 8.7 in the usual care group, P < .001). For patients enrolled on the basis of LPSS, the mean ESSI score at 6 months and the mean increase in ESSI score from baseline were significantly higher in the intervention than the usual care group (24.4 vs 22.6 and 27% vs 18%, respectively). Between-group differences in BDI and ESSI scores diminished over time, primarily because of improvement in the usual care group. No benefit of the intervention remained by 30 months of follow-up for the BDI and by 42 months for the ESSI (P = .61 and P = .10, respectively).
Protocol Adherence
Of the 1238 patients randomized to the intervention arm, 1145 (92%) received the intervention as assigned. TABLE 4 presents key indicators of treatment adherence by psychosocial risk group. The median time from the qualifying acute MI to enrollment was 6 days (interquartile range [IQR], 3-11 days; mean, 8 days), and the median time to the first treatment session was 17 days (IQR, 10-27 days; mean, 20 days). Patients attended a median of 11 sessions (IQR, 6-19 sessions). The timing or amount of individual therapy received by depressed or LPSS patients did not differ.

Antidepressant Drug Use
Among patients who were depressed at enrollment, the cumulative rates of any antidepressant use in the usual care and intervention arms, respectively, were 4.8% and 9.1% at baseline, 13.4% and 20.5% at the 6-month visit, and 20.6% and 28% by the end of follow-up. The most often prescribed antidepressant class was SSRIs, with use rates in the usual care and intervention arms, respectively, of 3.8% and 6.9% at baseline, 9.4% and 15.3% at the 6-month visit, and 14.6% and 21.0% by the end of follow-up. Median duration of antidepressant treatment was approximately 12 months for both groups.

Antidepressant drug use was associated with a lower risk of the primary outcome with a crude HR for death or nonfatal MI of 0.67 (95% CI, 0.49-0.92) and an adjusted HR of 0.63 (95% CI, 0.46-0.87). Antidepressant use was also associated with a decreased risk of dying, with a crude HR of 0.71 (95% CI, 0.48-1.06) and an adjusted HR of 0.63 (95% CI, 0.42-0.94). Similarly, the risk of death or nonfatal MI was significantly lower in patients taking SSRIs (adjusted HR, 0.57; 95% CI, 0.38-0.85), as was the risk of death (adjusted HR, 0.58; 95% CI, 0.36-0.94). In light of these findings, there was concern that the effect of CBT therapy on clinical outcomes may have been masked by the beneficial effects of pharmacotherapy among a relatively large number of patients in the usual care group taking antidepressants. However, analysis of the intervention effect on clinical outcomes among depressed patients who did not receive antidepressants did not suggest a treatment benefit, with HRs of 0.94 (95% CI, 0.77-1.16) and 0.97 (95% CI, 0.76-1.26) for the primary outcome and all-cause mortality, respectively. At the 6-month visit, the mean change from baseline in BDI score among reported users and nonusers of antidepressants was −6.6 and −7.4, respectively.

COMMENT
ENRICHD was the first clinical trial to test whether intervening on depression and LPSS soon after acute MI reduces mortality and reinfarction. The intervention decreased depression and improved social support more than was observed in usual care but did not affect...
the primary end point of death and nonfatal infarction.

Analyses of the time-dependent effect of pharmacologic therapy showed that antidepressant use was associated with a lower risk of reinfarction and/or mortality. It is interesting that patients who reported taking an antidepressant before the 6-month assessment showed less improvement on the BDI from baseline to 6 months than patients who reported not taking an antidepressant (−7.4 vs −6.6). In interpreting this result, it is important to keep in mind that patients in ENRICHD were not assigned randomly to receive antidepressants, and this analysis, although interesting, is post hoc. Therefore, the disassociation between the effects of pharmacotherapy on change in BDI and on the primary end point of mortality and reinfarction may be either due to chance or reflect a beneficial effect of pharmacotherapy on cardiac end points not mediated by change in depression. The finding of a reduced risk for recurrent infarction or death is consistent with earlier observational studies that show that antidepressants, in particular SSRIs, are associated with a reduction in risk of MI, perhaps due to the inhibitory effects of SSRIs on platelets or combinations of other effects. In addition, there was a trend toward improved outcomes in the Sertraline Antidepressant Heart Attack Randomized Trial (SADHART) study for depressed post-MI patients who received the SSRI sertraline compared with those patients who received placebo. Although these data are intriguing, the potential benefits of SSRIs on cardiac end points should be ascertained in a study with random assignment to pharmacotherapy.

The apparent treatment group-by-sex interaction on the risk of death or recurrent nonfatal MI (unadjusted $P=.03$; adjusted $P=.20$) may be due to true differences in treatment response between men and women or to chance, particularly since we did not correct for multiple comparisons. Whether it is appropriate to adjust for imbalances in clinical trials is debatable. The likelihood of imbalance increases when subgroups are examined, arguing for adjustment. The observed interaction may be due to disparities between the treatment groups on background factors associated with sex, such as age or comorbidities. On the other hand, adverse findings for women reported for the M-HART trial support the view that there may indeed be something important about the observed sex-by-treatment group interaction. Future research should seek to gain a better understanding of possible differential effects of psychosocial treatments by sex.

We found statistically significant treatment group differences in depression and social support scores after the 6-month intervention period, but the magnitude of the effect may not have been sufficient to influence medical morbidity or mortality. The decline in HRSD scores for depressed patients in the intervention group was comparable to the reduction in depression observed in other clinical trials of depression in post-MI patients. However, patients in the usual care group also improved substantially, resulting in a difference of only 1.7 points (2.7 on the BDI) between groups. Similar results were seen in the SADHART trial following antidepressant therapy.

Since few interventions have been developed and tested for patients with LPSS, the social support intervention used in ENRICHD was created specifically for this study, and no data are available with which to compare the efficacy of the ENRICHD social support intervention. It is notable that, like BDI scores, ESSI social support scores improved in both the intervention and usual care groups, resulting in a treatment benefit of only 2 points. Previously, and inconsistent with our results, social support was found to be high during and immediately after hospitalization and remain stable or decline during the next year. Additional research is needed to determine the amount of improvement in depres-
sion and social support needed to affect survival and to determine the relationship between duration of depression or LPSS and medical outcomes.

Information about stress management and the patients’ risk status obtained from the American Heart Association’s Active Partnership health booklet,31 spontaneous remission, or obtaining treatment outside the study may have contributed to improvement in usual care patients. Mild to moderate depression, typical of ENRICHD patients (average HRSD score was 17.8 at baseline), is more likely to remit spontaneously than more severe depression. Moreover, cumulative use of antidepressants increased steadily in both treatment arms from 4.8% at baseline to 20.6% at the end of the trial in the usual care group and from 9.1% to

Table 3. Psychological Measures at Baseline Through 6 Months by Treatment

Characteristics	No. of Patients	Scores, Mean (SD)	Mean (95% CI)	Treatment Difference	
BDI					
Depressed participants only					
Usual care	635	18.0 (7.6)	12.2 (9.1)	−5.8 (8.9)	−2.7 (−3.7 to −1.7)
Intervention	697	17.7 (8.1)	9.1 (8.6)	−8.6 (9.2)	
All	869	15.7 (8.1)	11.0 (8.7)	−4.7 (8.6)	−2.8 (−3.7 to −2.0)
Usual care	916	15.7 (8.5)	8.2 (8.3)	−7.6 (8.8)	
Intervention	889	15.7 (8.5)	8.2 (8.3)	−7.6 (8.8)	
HRSD					
Depressed participants only					
Usual care	646	17.8 (6.4)	9.4 (6.9)	−8.4 (7.7)	−1.7 (−2.5 to −0.9)
Intervention	697	17.7 (6.4)	7.6 (6.7)	−10.1 (7.8)	
All	876	15.5 (7.4)	8.4 (6.8)	−7.1 (7.8)	−1.5 (−2.3 to −0.8)
USual care	926	15.5 (7.4)	6.9 (6.5)	−8.6 (7.9)	
Intervention	886	15.5 (7.4)	6.9 (6.5)	−8.6 (7.9)	
ESSI					
Participants with LPSS					
Usual care	535	19.2 (4.2)	22.6 (6.7)	3.4 (6.0)	1.8 (1.0 to 2.5)
Intervention	556	19.2 (4.4)	24.4 (6.2)	5.1 (5.9)	
All	886	23.3 (6.3)	25.0 (6.7)	1.7 (6.0)	1.5 (1.0 to 2.0)
Usual care	926	23.1 (6.3)	26.3 (6.2)	3.2 (6.8)	
Intervention	886	23.1 (6.3)	26.3 (6.2)	3.2 (6.8)	
PSSS					
Participants with LPSS					
Usual care	513	54.4 (14.2)	58.9 (15.7)	4.5 (14.9)	4.5 (2.7 to 6.3)
Intervention	533	53.4 (14.1)	62.4 (15.2)	9.0 (14.9)	
All	859	60.5 (14.9)	62.8 (15.2)	2.3 (13.9)	3.9 (2.6 to 5.2)
Usual care	896	60.1 (15.2)	66.4 (14.3)	6.3 (13.9)	
Intervention	896	60.1 (15.2)	66.4 (14.3)	6.3 (13.9)	

Abbreviations: BDI, Beck Depression Inventory; CI, confidence interval; ESSI, Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) Social Support Instrument; HRSD, Hamilton Rating Scale for Depression; LPSS, low perceived social support; and PSSS, Perceived Social Support Scale.

*All P values are <.001 (for comparison between 6 months vs baseline and for group differences in change scores).

Table 4. Adherence to the Protocol by Psychosocial Risk Group

Characteristics	Depressed (n = 498)	Low Perceived Social Support (n = 313)	Depressed and Low Perceived Social Support (n = 427)	Overall (n = 1238)
Days from MI to first therapy session, median (IQR)	18 (11-28)	17 (11-25)	16 (8-25)	17 (10-27)
No. of sessions, median (IQR)	11 (5-17)	11 (6-18)	13 (8-20)	11 (6-19)
Received group therapy, No. (%)	119 (25)	100 (33)	151 (36)	370 (31)
Met optimal achievement of therapy goals, No. (%)	370 (77)	237 (77)	324 (77)	931 (77)
Met goals for decrease in depression or increase in social support*	271 (56)	229 (74)	182 (43)	682 (56)
Ability to perform Beck self-therapy†	228 (47)	128 (42)	170 (41)	526 (44)
Availability of ≥1 supportive relationships outside therapy	NA	250 (81)	324 (77)	959 (79)

Abbreviations: IQR, interquartile range; MI, myocardial infarction; NA, not applicable.

*Depression criterion: scored ≥7 on the Beck Depression Inventory for 2 consecutive sessions; social support criterion: scored ≥4 on at least 2 items of the Perceived Social Support Scale for 2 consecutive sessions. Denominator may vary due to missing values.
†Ability and willingness to apply problem-solving skills to new problems, as judged by therapist.

©2003 American Medical Association. All rights reserved.
mortality and/or recurrent infarction but have not been proven to reduce long-term benefits after acute infarction. The effects on mortality and recurrent infarction only occur long term. The risk associated with these conditions remains significant and is proportional to their severity. Additional research is needed to determine the optimal timing and duration of interventions for these psychosocial risk factors; to identify the biological and behavioral pathways that link psychosocial conditions, such as depression and LPSS, to cardiovascular health; and to develop preventive strategies for reducing

The duration and timing of intervention may also have affected the outcome. We attempted to intervene as soon as possible after acute MI. Psychosocial eligibility criteria had to be met within 28 days of the index infarction and treatment completed within the first 6 months, the period of greatest risk for death and (re)infarction. Yet, in most individuals, recurrent and chronic depression and social isolation and their influence on cardiac risk may be mediated by mechanisms that require more prolonged treatment. An analogy is found with some medical therapies, such as ACE inhibitors and statins, where some of the effects on mortality and recurrent infarction only occur long term. The benefits of ACE inhibitors on left ventricular remodeling are not substantial early after acute MI, but, over time, the effects on mortality and recurrent infarction are robust. Similarly, statins manifest benefits long term after acute infarction but have not been proven to reduce mortality and/or recurrent infarction early after treatment for acute coronary syndromes. Thus, early initiation of treatment for depression and provision of social support after the index infarction, as in this study, may not reduce medical morbidity and mortality substantially unless treatment is provided longer than the first 6 months after the acute event or outside the window of greatest medical risk.

Previous studies have found depression and LPSS to be independent risk factors for cardiac events. However, treatments that mitigate depression and LPSS might not reduce cardiac morbidity and mortality unless they also influence the underlying pathophysiologic or behavioral mechanisms. Mechanisms proposed to explain the influence of depression on CHD mortality include altered autonomic tone and altered platelet function, whereas social isolation has been found to be associated with altered neuroendocrine function. It is possible that pharmacologic agents prescribed for treatment of CHD or depression may have acted on these mechanisms, resulting in a failure to observe psychosocial treatment differences in ENRICHD. Further studies should investigate the potential pathophysiologic and behavioral pathways linking depression and social isolation to poor cardiac outcomes and their interaction with pharmacologic agents used to treat these patients.

Post has proposed that, even when it is effective, treatment may not remedy all neuropathologic conditions that result from long-standing depression. If residual risk remains, treatment may improve quality of life without affecting cardiac events. Similarly, patients who lack social support may have had this condition for years or even decades, involving behavioral or physiologic adaptations that are difficult to alter. Primary prevention strategies may be more effective than secondary prevention strategies

Patients in this trial generally received early and aggressive cardiologic care. During the past several years, the evolution of this aggressive approach has lowered reinfarction rates, which diminishes the ability to discern potential beneficial effects of additional therapies, whether behavioral or medical. Thrombolitics were administered to 37% of patients and 39% underwent revascularization (PCI or CABG) within 12 weeks after acute MI. A high proportion of patients received aspirin (84%), β-blockers (72%), and ACE inhibitors (45%) during the later phases of recovery. The fact that our patients received aggressive state-of-the-art care confirms the applicability of our data to contemporary MI patients. Intensive clinical care was applied equally to both groups, and the predicted event rates in the study were as projected, suggesting that the null results of the trial are unlikely to be attributable to group differences in concomitant medical therapy.

Depression in cardiac patients is associated with significant psychological, social, and physical disability, and its effective treatment enhances quality of life and improves overall functioning. Low perceived social support is associated with psychological distress and lowered physical functioning in patients with heart disease. Although the ENRICHD intervention did not impart survival benefit for primary and secondary medical end points up to 30 months, it succeeded in decreasing depression and increasing social support, especially during the first 6 months. Accordingly, patients who exhibit depression or LPSS following acute MI should be followed up and, if symptoms do not remit, considered for treatment.

ENRICHD achieved significant improvements in depression and LPSS yet did not demonstrate a parallel benefit on mortality and recurrent infarction. The risk associated with these conditions remains significant and is proportional to their severity. Additional research is needed to determine the optimal timing and duration of interventions for these psychosocial risk factors; to identify the biological and behavioral pathways that link psychosocial conditions, such as depression and LPSS, to cardiovascular health; and to develop preventive strategies for reduc-
ing the burden of depression and LPSS on morbidity and mortality.

Authors/Writing Committee for the ENRICHD investigators: Bedford, RD (study chair and coprincipal investigator), Harvard University, Boston, Mass; James Blumenthal, PhD (principal investigator), Duke University, Durham, NC; Matthew Burg, PhD (principal investigator), Yale University, New Haven, Conn; Robert M. Carney, PhD (principal investigator), Washington University, St Louis, Mo; Diane Catellier, DrPH (principal investigator), University of North Carolina at Chapel Hill, Little Rock, AR; Mary L. Cowan, PhD, RN, University of California, Los Angeles; Susan M. Czajkowski, PhD (project officer and writing committee chair), National Heart, Lung, and Blood Institute, Bethesda, Md; Robert DeBusk, MD (principal investigator), Stanford University, Palo Alto, Calif; James Hosking, PhD (principal investigator, 1995-2001), University of North Carolina at Chapel Hill, Allian Jeffe, MD (study cochair), Mayo Clinic, Rochester, Minn; Peter G. Kaufmann, PhD, National Heart, Lung, and Blood Institute, Bethesda, Md; Lynda H. Powell, PhD (principal investigator), Rush Presbyterian-St Luke’s Medical Center, Chicago, Ill; James M. Raczynski, PhD (principal investigator), University of Alabama at Birmingham; Stein Mettland, Burg, Berkman, Carney, Catellier, Cowan, Czajkowski, Schneider. Acquisition of data: Berkman, Blumenthal, Burg, Carney, Cowan, Czajkowski, DeBusk, Hosking, Jaffe, Kaufmann, Powell, Raczynski, Schneider. Analysis and interpretation of data: Berkman, Blumenthal, Burg, Carney, Cowan, DeBusk, Hosking, Jaffe, Kaufmann, Powell, Raczynski, Schneider. Administrative, technical, or material support: Berkman, Blumenthal, Burg, Carney, Cowan, Czajkowski, DeBusk, Hosking, Jaffe, Kaufmann, Mitchell, Norman, Powell, Raczynski, Schneider. Statistical expertise: Catellier, Hosking, Norman. Obtained funding: Berkman, Blumenthal, Burg, Carney, Cowan, DeBusk, Hosking, Powell, Raczynski, Schneider. Administrative, technical, or material support: Berkman, Blumenthal, Burg, Carney, Cowan, Czajkowski, DeBusk, Hosking, Jaffe, Kaufmann, Mitchell, Norman, Powell, Raczynski, Schneider. Statistical expertise: Catellier, Burg, Carney, Cowan, Czajkowski, DeBusk, Hosking, Jaffe, Kaufmann, Mitchell, Powell, Raczynski, Schneider.

ENRICHD Clinical Centers: Duke University, Durham, NC; James A. Blumenthal, PhD (principal investigator), Peggy Arias, BS, Michael Babayak, PhD, Teri Bal- dewicz, PhD, John Barefoot, PhD, Julie Bennett, RN, Paula Bills, Robert Carels, PhD, Brian Crenshaw, MD, Suzanne Curtis, RN, Leslie Davis, RN, MSN, Kenneth Faith, MD, Les Forman, Jamie Griggs, Elizabeth C. Gutierrez, MD, Penny Hackenbracht, MS, Tina Hacken- ney, RN, MSN, Alycia Hassett, MD, Sadaan B. Hegde, MD, Steven H. Herman, PhD, Alan Hinderliter, MD, Donna Isley, RN, BSN, Elizabeth Jackson, PhD, Parinda Khatri, PhD, Rebecca Freedland, PhD, Bruce Freedberg, PhD, Steve Leven- berg, PhD, Kathryn Lawendyanski, Daniel Mark, MD, Pamela Marz, Jennifer Matthews, RN, Robert McCarthy, MD, Melanie McKee, Kelly Mieszakowski, Cheryl Miller, Gary Miller, MA, Charles L. Norten, PhD, Christopher O’Connor, PhD, Joseph Puma, MD, Lorraine Rutt, Williams, MD, Ilene Siegel, PhD, Patrick Steffen, MD, Virginia Wedley, PhD, Lana Watkins, PhD, Robert Waugh, MD, FredRows, MD, William, MD, Robert M. Carney, PhD, David Cook, MD, Steven Creech, MS, Hugo Cuadros, MD, Gloria Darovic, Pablo Denes, MD, Diane Downs, RN, Clau- dia Eaton, MS, RN, W. J. Elliott, MD, Joseph Fanelli, MD, Daniel Fintell, MD, Kristin Flynn, PhD, Jill Frankowitz, Patricia Hernandez, Layla Kassem, PsyD, Philip Krause, MD, Alice Luten, MD, Carlos Mendes de Leon, PhD, William S. Miles, PhD, Rocio Munoz-Dunbar, MA, Paige Pfenninger, RN, Carol Rogn- berg, PhD, Joseph R. Raczynski, PhD, George C. Rosenkranz, PhD, Jane A. Tosch, MD, John R. Tracer, MD, Robert M. Carney, PhD, Robert F. DeBusk, MD (principal investigator), Linda Balenesi, RN, Anna Cas- tenee, Dianne Christopherson, PhD, RN, Alison Deeter, D. Sue Denker, RN, Susan Duenke, PsyD, Lynda Fisher Forseth, Erika S. Fro- elicher (University of California, San Francisco), Anne Blair Greiner, MS, Robin Hanna, RN, Heidi Kasser, Sarah Lamb, RN, Simone Madan, PhD, Margaret Marnell, PhD, Kirsten Martin, RN, Nancy Houston Miller, RN, Linda Moore, RN, Lexa Most, RN, Robert R. Nelson, RN, MSN, Stephen Rao, PhD, Peggy Raymond, Diane Strachowski, MD, C. Barr Taylor, MD, Marcia Thompson, RN, BS, Barbara Tremor, RN, BS, Carl E. Thoresen, PhD, Uni- versity of Alabama at Birmingham; James M. Raczynski, PhD (principal investigator), Barry Adams, PsyD, Ste- phanie Allison, RN, Meleia Band, MD, James Barton, RN, Larry Bates, PhD, Vera Bittner, MD, Diianne Cad- dell, Martha Cole, Carol E. Cornel, PhD, Viki Dililo, MD, Jeff Dolce, PhD, Angela Font, RN, M. Janice Gil- lilard, MA, MSpH, Deborah K. Ingle, RN, Shelly Jor- dan, JD, BS, Jenny Markovitz, MD, Dehny Mason, JD, PhD, John Shuster, MD, MPH, Heman Taylor, MD, Suzanne Thompson, Patricia White, PhD, Susan Winders, PhD (ClinSites SORRA Research): University of Mi- ami, Coral Gables, Fla; Neil Schneider, PhD (principal investigator), Martha Diaz, Karen Estoposo, MD, MD, Marc Gottell, MD, M. Gutt, PhD, Gail Ironson, MD, H. F. Hemmey, MD, Kristin Kilbourn, DrP, Ger- vasio Lamas, MD, F. Lopez-Jimenez, MD, MSc, Merta E. Manique-Reidok, MD, Judith Mycall, PhD, Thomas Muller, PhD, Carol Van, MS, Robert A. Meyberg, MD, F. Penedo, MD, Elsa Velez Bob- rin, RN, Patricia Saab, PhD, Rafael Sequeira, MD, Pura Teixeiro, RY, Joie Whitehlock, RN, BSD, University of Washington, Seattle; Pamela Mitchell, PhD, RN (prin- cipal investigator), Marie J. Couch, MD, PhD (Univer- sity of California, Los Angeles (principal investigator 1995–1997)); Patricia Bethus, RN, PhD, ELizabeth Bridges, RN, MN, Helen K. Budyrovich, PhD, RN, Ann Buszatik, MN, ARNP, Wan Chen, RN, Virginia Concannon, RN, BS, Susan A. Cunningham, PhD, RN, Linda Davis, RN, Susan DeBusk, RN, Susan E. Gilliam, MD, Don- ald Kunz, BA, Murray Raskind, MD, Stephen Sholl, PhD, Fendley Stewart, MD, Karen Sturm, RN, Richard C. Veith, MD, Charles Wilkinson, PhD, Susan I. Watson, RN, PhD; University of Washington, St Louis, Mo; Rob- ert M. Carney, PhD (principal investigator), Linda Beller, RN, MSN, Kathy Bence, RN, MBA, Teresa Benoist, RN, Karen Berman, RN, Stephen Marks, RN, Laura Brewer, PhD, Iris Cisk, MSW, Jerome D. Cohen, MD, Paul R. Eisenberg, MD, Kelly Everard, PhD, Jane Finn, RN, BSN, Robert F. DeBusk, MD (principal investigator), James Muller, MD, Sandip Mukherjee, MD, Jane Sherwood, RN, BSN (Harvard University, Boston, Mass) ; Thomas Stewart, Andrew Stohl, MD, Peter Stone, MD (Harvard University, Boston, Mass) ; Stuart Zarch, MD, Coordinating Center: The University of North Ar- kana at Chapel Hill: Diane Catellier, DrPH (principal in- vestigator), James D. Hosking, PhD (principal investi- gator, 1995–2001), Hope Bryian, Linda A. Hartig, Jean Johnson, Francis Keefe (Duke University, Durham, NC), PhD, Marc Huber, MS, Vahsa Shah, MSE, Kathleen Light, PhD, Lynn Martin, Ravi Mathew, MD, Alouc Ooro, James Schafer, MS, David Shaps, MD (Univer- sity of Gaineville), Gochnou; William World, MD, Marston Walker, Marston Youngblood, MA, MPH, Project Of- fice: National Heart, Lung, and Blood Institute, Bethesda, Md; Susan M. Czajkowski, PhD (project officer), Robert M. Carney, PhD (principal investigator), Robert F. DeBusk, MD (principal investigator), R. D. M. Thompson, RD, PhD, Sally Hunsberger, PhD, Cheryl A. Jennings, Peter G. Kaufmann, PhD, Sarah Knox, PhD, James Norman, PhD, Julie Reid, Carolmin C. Voorhees, PhD, Colin Wu, PhD, Center for Therapist Training and Quality Control: Beck Institute for Cognitive Therapy and Research, Bala Cyn- wyd, Pa; Judith S. Beck, PhD (director), Naomi Dank, PhD, Christine Reilly, PhD, RN, Leslie Sokol, PhD; Electrocardiogram Reading Center: St Louis University, St Louis, MO, Bernard Chairman, MD (principal investigator), Theresa Belgeri, RN, P. Cameron, BS, Thor Gussak, MD, PhD, M. Miller, BA, Karen Stocke, BS, MBA, Janet Holmes, RN.

Study Chair and Cochair: Lisa F. Berkman, PhD (chair), Harvard University, Allian Jaffe, MD (cochair), Mayo Clinic, Rochester, Minn.

Data and Safety Monitoring Board: Nanette Wengler, MD (chair), Baruch Brody, PhD, Luther Clark, MD, James Coyne, PhD, Robert M. Kaplan, PhD, Roger Kaciarek, MD, Genell Knatterud, PhD.

Funding/Support: This study was supported by contracts NO1-HC-55142, NO1-HC-55143, NO1-HC-55141, NO1-HC-55145, NO1-HC-55146, NO1-HC-55141, and NO1-HC-55148 from the National Heart, Lung, and Blood Institute, National Institutes of Health. Pfizer Inc provided sertraline (Zoloft) for the study.

REFERENCES
1. McGovarr PG, Pankow JS, Shahrar E, et al. Recent trends in acute coronary heart disease: mortality, mor- bidity, medical care, and risk factors. N Engl J Med. 1996;334:884-890.
2. Berkman LF, Leu-Sommers LH, Horwitz RI. Emotion- al support and survival after myocardial infarc- tion: a prospective, population-based study of the elderly. Ann Intern Med. 1992;117:1003-1009.
3. Riba K, Cote AJ, Case N, McDermott M, Eberly S. Living alone after myocardial infarction. JAMA. 1992; 267:515-519.
4. Frasure-Smith N, Lepré-Féron, Talajic M. Depression following myocardial infarction: impact on 6-month survival. JAMA. 1993;270:1819-1825.
5. Williams RR, Barefoot JC, RL, et Prog-
TREATING DEPRESSION AFTER MYOCARDIAL INFARCTION

nostic importance of social and economic resources among personally treated patients with angiographically documented coronary artery disease. JAMA. 1992; 267:520-524.

B. Bush DE, Ziegelstein RC, Tayback M, et al. Even minimal improvements of depression increase mortality risk after acute myocardial infarction. Am J Cardiol. 2001; 88:337-341.

Kawachi I, Colditz GA, Ascherio A, et al. A prospective study of social networks in relation to mortality and cardiovascular disease in men in the US. J Epidemiol Community Health. 1996; 50:245-251.

C. Carney RM, Rich MW, Te Velde A, Siani J, Clark K, Jaffe AS. Major depressive disorder in coronary artery disease. Am J Cardiol. 1987; 60:1273-1275.

D. Schleifer SJ, Macari-Hinson MM, Coyle DA, et al. The nature and course of depression following myocardial infarction. Arch Intern Med. 1989; 149:1785-1789.

E. Forrester AW, Lipsy JR, Teitelbaum ML, DePaulo JR, Andrzejewski PL. Depression following myocardial infarction. Int J Psychiatry Med. 1992; 22:33-46.

F. Glassman AH, O’Connor CM, Calif RM, et al. Sertaline treatment of major depression in patients with acute MI or unstable angina. JAMA. 2002; 288:701-709.

G. Frasure-Smith N, Prince R. The ischemic heart disease life stress monitoring program: impact on mortality. Psychosom Med. 1985; 47:431-445.

H. Ibrahim MA, Feldman JG, Schultz H, Staiman MJ, Young LJ, Dean D. Management after myocardial infarction. Arch Intern Med. 1975; 267:520-524.

I. Rahe R, O’Neil T, Hagen A, Arthur R. Brief group therapy following myocardial infarction: eighteen month follow-up controlled trial. Int J Psychiatry Med. 1975; 6:349-358.

J. Rahe R, Ward HW, Hayes V. Brief group therapy in myocardial infarction rehabilitation: three to four months follow-up of a controlled trial. Psychosom Med. 1979; 41:229-242.

K. Dusseldorf e, van Elsden T. Ma S, Meulman K, Kraaij V. A meta-analysis of psychological programs for coronary heart disease patients. Health Psychol. 1999; 18:506-519.

L. Linden W, Stossel C, Maurice J. Psychosocial interventions for patients with coronary artery disease. Arch Intern Med. 1996; 156:745-752.

M. Friedman M, Thoresen CE, Gill JJ, et al. Alteration of type A behavior and its effects on cardiac recurrences in post myocardial infarction patients: many results of the Recurrent Coronary Prevention Project. Am Heart J. 1986; 112:653-665.

N. Frasure-Smith N, Lespérance F, Prince RH, et al. Randomized trial of home-based in-rehabilitation nursing intervention for patients recovering from myocardial infarction. Lancet. 1997; 350:473-479.

O. Jones DA, West RR. Psychological rehabilitation after myocardial infarction: multirandomized controlled trial. BMJ. 1996; 313:1517-1521.

P. The ENRICHD Investigators. Enhancing recovery in coronary heart disease patients (ENRICHD): study design and methods. Am J Heart. 2000; 139 (1 Pt 1):1-9.

Q. The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959-969.

R. Freedland KE, Skala JA, Carney RM, et al. The relationship of depression and disability. J Am Geriatr Soc. 2000; 48:331-340.

S. Sauer WH, Berlin JA, Kimmel SE. Selective serotonin reuptake inhibitors and long-term mortality risk in patients with coronary artery disease. Circulation. 2001; 104:1894-1898.

T. Sreerumuen Y, Gurbel PA, O’Connor CM. Platelet inhibition by salitrine and n-desmethylsalitrine: a possible missing link between depression, coronary events, and mortality benefits of selective serotonin reuptake inhibitors. Pharmacol Res. 2001; 43:453-462.

U. Veith RC, Raskind MA, Caldwell JH, Barnes RF, Gumbrecht G, Ritchie JL. Cardiovascular effects of tricyclic antidepressants in depressed patients with chronic heart disease. JAMA. 1982; 266:954-959.

V. Strik JJ, Honig A, Lousberg R, et al. Efficacy and safety of fluoxetine in the treatment of depressed patients with myocardial infarction: findings from a double-blind, placebo-controlled trial. Psychosom Med. 2000; 62:783-789.

W. Roose SP, Laghrissi-Thode F, Kennedy JS, et al. Comparison of paroxetine and nortriptyline in depressed patients with ischemic heart disease. JAMA. 1998; 279:287-291.

X. Nelson JC, Kennedy JS, Pollock BG, et al. Treatment of major depression with nortriptyline and paroxetine in patients with ischemic heart disease. Am J Psychiatry. 1999; 156:1024-1028.

Y. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement trial. N Engl J Med. 1992; 327:669-677.

Z. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of long-term placebo-controlled, double-blind, multicenter study in acute coronary syndromes: the MIARCL study: a randomized controlled trial. JAMA. 2001; 285:1711-1718.

A. Ampt HR, Aggrawal R, Wunderlich W, et al. Beneficial effects of pravastatin (+/-colesterylamine/niacin) initiated immediately after a coronary event (the randomized Lipid-Coronyary-Artery-Study [L-CADE] Study). Am J Cardiol. 2000;86:1293-1298.

B. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Sur- vival Study (4S). Lancet. 1994; 344:1383-1389.

C. Sacks FM. Lipoid-lowering therapy in acute coronary syndromes. JAMA. 1991;285:1758-1760.

D. Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349-1357.

E. SoRelle R. Cardiovascular news. AMIOVIRT. Circulation. 2000; 102:E9050-E9051.

F. Carney RM, Freedland KE, Steink P, Skala JA, Hoffman P, Jaffe AS. Change in heart rate and heart rate variability during treatment for depression in patients with coronary heart disease. Psychosom Med. 2000;62:639-647.

G. Laghrissi-Thode F, Wagner WR, Pollock BG, Johnson PC, Finkle MS. Elevated platelet factor 4 and beta-thromboglobulin plasma levels in depressed patients with ischemic heart disease. Biol Psychiatry. 1992; 32:290-295.

H. Musselman DL, Tome RA, Manatunga AK, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996; 153:1313-1317.

I. Barefoot JC, Berkman LF, Blaser D, Rowe JW. Social ties and support and neuroendocrine function: the MacArthur studies of successful aging. Ann Behav Med. 1994; 16:95-106.

J. Berkan LF. Transfer of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry. 1992;149:999-1010.

K. Milani RV, Lavie CJ, Cassidy MM. Effects of cardiac rehabilitation and exercise training programs on depression in patients after major coronary events. Am J Heart. 1996; 132:726-732.

L. Srupts JA, McDonell M, Woodman CL, Fihn SD. Association between depression and worse disease-specific functional status in outpatients with coronary artery disease. Am Heart J. 2000;140:105-110.

M. Ormell J, Von Koff M. Synchrony of change in depression and disability. Arch Gen Psychiatry. 2000; 57:381-382.

N. Brummet BH, Babayak MA, Barefoot JC, et al. Social support and hostility as predictors of depressive symptoms in cardiac patients one month following hospitalization: a prospective study. Psychosom Med. 1998;60:707-713.

O. Mohn CJ, Holohan CK, Moos RH, Brennan PL. Social context, coping strategies, and depressive symptoms: an expanded model with cardiac patients. J Pers Soc Psychol. 1997;72:918-928.

P. Oxman TE, Hull JG. Social support, depression, and activities of daily living in older heart surgery patients. J Gerontol B Psychol Sci Soc Sci. 1997;52:1-14.

Q. LeSperance F, Frasure-Smith N, Juneau M, Theroux P. Depression and 1-year prognosis in unstable angina. Arch Intern Med. 2000;160:1354-1360.

R. Barefoot JC, Helms MJ, Mark DB, et al. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol. 1996;78:613-617.

S. Frasure-Smith N, Lesperance F, Juneau M, Talajic M, Bourassa MG. Gender, depression, and one-year prognosis after myocardial infarction. Psychosom Med. 1997;59:609-617.

T. LeSperance F, Frasure-Smith N, Talajic M, Bourassa MG. Five-year risk of cardiac mortality in relation to initial severity and one-year changes in depression symptoms after myocardial infarction. Circulation. 2002;105:1049-1053.

U. Berkman LF, Syme SL. Social networks, host resistance, and mortality: a nine year follow-up study of Alameda County residents. Am J Epidemiol. 1979; 109:186-204.