Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations

Authors

Eui Min Jeong1,2, Yun Min Song1,2, and Jae Kyoung Kim1,2
1Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea

Abstract

Transcriptional repression can occur via various mechanisms, such as blocking, sequestration, and displacement. For instance, the repressors can hold the activators to prevent binding with DNA or can bind to the DNA-bound activators to block their transcriptional activity. Although the transcription can be completely suppressed with a single mechanism, multiple repression mechanisms are utilized together to inhibit transcriptional activators in many systems, such as circadian clocks and NF-κB oscillators. This raises the question of what advantages arise if seemingly redundant repression mechanisms are combined. Here, by deriving equations describing the multiple repression mechanisms, we find that their combination can synergistically generate a sharply ultrasensitive transcription response and thus strong oscillations. This rationalizes why the multiple repression mechanisms are used together in various biological oscillators. The critical role of such combined transcriptional repression for strong oscillations is further supported by our analysis of formerly identified mutations disrupting the transcriptional repression of the mammalian circadian clock. The hitherto unrecognized source of the ultrasensitivity, the combined transcriptional repressions, can lead to robust synthetic oscillators with a previously unachievable simple design.

Keywords

Transcriptional repression, sequestration, displacement, ultrasensitivity, biological oscillators, circadian clock

1. Introduction

Transcription, the first step of gene expression, is regulated by activators and repressors, i.e., the bindings of the activators and repressors to a specific DNA sequence promote and down-regulate transcription, respectively [1, 2]. The repressors can also indirectly inhibit transcription by binding with the activators rather than with DNA (figure 1a) [3, 4]. That is, the repressors can bind to the DNA-bound activators to block their transcriptional activity (Blocking; figure 1a), hold the activators to prevent them from binding with DNA (Sequestration; figure 1a), and dissociate the activators from DNA by forming a complex (Displacement; figure 1a).

Each repression mechanism appears to be able to suppress transcription solely. However, various repressors utilize combinations of multiple repression mechanisms [3]. For example, retinoblastoma (Rb) protein, a key regulator of mammalian cell cycle genes, represses transcription by blocking the activator and recruiting histone deacetylase, which alters the structure of chromatin [5-7]. Similarly,
PHO80, a component of a yeast nutrient-responsive signaling pathway, represses transcription by blocking the activator and sequestering the activator in the cytoplasm [8-10]. This raises the question of the advantages of utilizing a combination of multiple repression mechanisms, which seems redundant.

In the transcriptional negative feedback loop (NFL) of various biological oscillators, repressors also inhibit their own transcriptions via combinations of the multiple repression mechanisms. For example, IkBα inhibits its own transcriptional activator NF-κB by sequestering it in the cytoplasm [11] as well as displacing it from DNA [12, 13], which induces the NF-κB oscillation under stress conditions. In the transcriptional NFL of the circadian clock, the transcription is also suppressed in multiple ways. Specifically, in the Drosophila circadian clock, the repressor (PER:TIM) sequesters its own transcriptional activator (CLK:CYC) from DNA (sequestration), blocks the transcriptional activity by binding to DNA-bound CLK:CYC (blocking), and then displaces it from DNA (displacement; figure 1b) [14]. Similarly, in the mammalian circadian clock, the repressor (PER:CRY and CRY) also inhibits its own transcriptional activator (BMAL1:CLOCK) by sequestration, blocking, and displacement (figure 1c) [15-17].

The transcriptional NFL can generate oscillations when the transcriptional activity shows an ultrasensitive response to changes in the concentration of repressors [18-21]. Such ultrasensitivity can be generated solely by sequestration when the activators and repressors tightly bind [22, 23]. In particular, the sequestration requires only tight binding, which seems to be physiologically more achievable than the conditions for the other ultrasensitivity-generating mechanisms based on cooperativity (e.g., cooperative oligomerization). Thus, sequestration has recently been adopted for mathematical models of circadian clocks [21, 24-30]. However, Heidebrecht et al. pointed out that the tightness of the binding between the activator and repressor required for the sequestration to generate sustained rhythms is beyond the physiologically plausible binding affinity [31].

Here, we find that combining multiple transcriptional repression mechanisms can synergistically generate ultrasensitivity by deriving their governing equations. Specifically, we find that the sole blocking-type repression can generate only low-sensitivity transcriptional activity. When sequestration is added, the ultrasensitivity can be generated only with strong blocking and stronger sequestration compared to the blocking. The required strong sequestration is challenging to achieve with a physiologically plausible binding affinity. Interestingly, this limitation to generate ultrasensitivity and strong oscillations can be overcome by adding displacement. To test whether the combination of the multiple repressions is critical for the mammalian circadian clock to generate strong rhythms, we investigated the previously identified mutations disrupting the transcriptional repressions [32-35]. Indeed, when any of the blocking, sequestration, or displacement was disrupted, the circadian rhythms of PER2-LUC became weaker in mice. Our work explains why the combination of seemingly redundant repression mechanisms is used in various systems requiring ultrasensitivity, such as the cell cycle and the circadian clock.

2. Results

2.1. The sole blocking-type repression generates a hyperbolic response in the transcriptional activity

To investigate how the transcription is regulated by the multiple repression mechanisms (figure 1a), we first constructed a model describing the single blocking-type repression (figure 2a; see Methods for details). In the model, the transcription is triggered when the free activator (A) binds to the free DNA (E_F) with a dissociation constant of K_{A} to form the activated DNA (E_A). The transcription is inhibited when the repressor (R) binds to the DNA-bound A (E_A) to form ternary complex (E_R) with a dissociation constant of K_{b} (i.e., the blocking-type repression). Therefore, the transcriptional activity
is proportional to the probability that DNA is bound with only A and not R, i.e., \(E_A/E_T \), where \(E_T = E_F + E_A + E_R \) is the conserved total concentration of DNA. In particular, when the transcription rate is normalized to one, the transcriptional activity and \(E_A/E_T \) become the same. Thus, for simplicity, we refer to \(E_A/E_T \) as the transcriptional activity throughout this study.

The transcriptional activity (\(E_A/E_T \)) increases as \(A \) increases or \(R \) decreases. This relationship can be quantified by deriving the steady state of \(E_A/E_T \). Because the steady state of \(E_T \) depends on the single pair of binding and unbinding reactions with the dissociation constant of \(K_a \), its steady state equation is \(AE_F = K_a E_A \). Similarly, the steady state equation of \(E_R \) is also simple as \(RE_A = K_b E_R \).

Therefore, \(E_T: E_A: E_R = 1: A: R: A \) at the steady state, leading to the steady state of \(E_A/E_T \) as follows:

\[
\frac{E_A}{E_T} = \frac{A}{\frac{K_a}{K_a + K_b A}}
\]

(2.1)

where \(A \) and \(R \) are the steady states of the free activator and repressor, respectively (see Methods for details). Because the steady states of \(A \) and \(R \) depend on the dissociation constants (i.e., \(K_a \) and \(K_b \)), it is challenging to analyze equation (2.1).

Equation (2.1) can be further simplified because the concentration of DNA is typically negligible compared to the concentration of activator and repressor proteins (see Methods for details). Specifically, \(E_A \) and \(E_R \) can be neglected in the conserved total concentration of the activator (\(A_T = A + E_A + E_R \)) and the repressor (\(R_T = R + E_R \)), and thus \(A \approx A_T \) and \(R \approx R_T \). This allows us to get the simplified approximation for equation (2.1) as follows:

\[
\frac{E_A}{E_T} \approx \frac{A_T}{K_a} = \frac{\bar{K}_b}{\bar{K}_T}
\]

(2.2)

where \(\bar{R}_T = R_T/A_T \) is the molar ratio between \(R_T \) and \(A_T \), and \(\bar{K}_b = K_b/A_T \) and \(\bar{K}_a = K_a/A_T \) are the dissociation constants normalized by the concentration of the total activator. Equation (2.2) indicates that the transcriptional activity shows a hyperbolic response with respect to the molar ratio \(\bar{R}_T \) (figure 2b). Specifically, when \(\bar{R}_T = 0 \), \(E_A/E_T \) has the maximum value 1/(1 + \(\bar{K}_a \)), which becomes closer to one as \(A \) binds to DNA more tightly (i.e., \(\bar{K}_a \ll 1 \)). When \(\bar{R}_T = \bar{K}_b (1 + \bar{K}_a) \), \(E_A/E_T \) is reduced to its half-maximal value. Thus, as the binding between the DNA-bound \(A \) and \(R \) becomes tighter (i.e., \(\bar{K}_b \) decreases), the transcriptional activity achieves its half-maximal value at the lower \(\bar{R}_T \) (figure 2b). The sensitivity of the transcriptional activity with respect to \(\bar{R}_T \) can be quantified using the effective Hill coefficient \(\frac{\text{Log(11)}}{\text{Log(EC10/EC90)}} \), which is equivalent to the Hill exponent for a Hill curve [36]. The effective Hill coefficient of the transcriptional activity is one regardless of the \(\bar{K}_b \) and \(\bar{K}_a \) values (figure 2c), as expected from the Michaelis-Menten-type equation (equation (2.2)). Taken together, with the sole blocking repression, the transcriptional activity cannot sensitively respond to \(\bar{R}_T \).

2.2. The combination of the sequestration- and blocking-type repressions can generate the ultrasensitivity

We wondered whether the sensitivity of the transcriptional activity can be increased by incorporating an additional repression mechanism. To investigate this, we added the sequestration-type repression to the blocking model: \(R \) binds with the free \(A \) to form complex \(R_A \) with a dissociation constant of \(K_s \), and thus sequesters \(A \) from DNA (figure 2d; see Methods for details). Due to the complex \(R_A \), the
conservations are switched to \(A_T = A + R_A + E_A + E_R \) and \(R_T = R + R_A + E_R \). When the binding between \(A \) and \(R \) is weak (i.e., \(\bar{K}_s = K_s / A_T \gg 1 \)) and thus \(R_A \) is negligible, the steady states of \(A \) and \(R \) can be approximated with simple \(A_T \) and \(R_T \). On the other hand, when the binding is not weak, \(R_A \) is not negligible and thus the approximations for the steady states of \(A \) and \(R \) become a bit complex (see Methods for details):

\[
A \approx \frac{A_T - R_T - K_s + \sqrt{(A_T - R_T - K_s)^2 + 4A_T K_s}}{2},
\]

\[
R \approx R_T - (A_T - A).
\]

When the binding between \(A \) and \(R \) is extremely tight (\(\bar{K}_s \approx 0 \)), \(A \) and \(R \) can be approximated by the simple functions \(\max(A_T - R_T, 0) \) and \(\max(R_T - A_T, 0) \), respectively [21, 28, 30]. By substituting equation (2.3) for equation (2.1), the approximated \(E_A / E_T \) can be derived:

\[
\frac{E_A}{E_T} \approx \frac{\bar{A}}{\bar{K}_a} \left(1 + \frac{\bar{A}}{\bar{K}_a} + \frac{\bar{R}}{\bar{K}_b} \bar{A} \right),
\]

where \(\bar{X} = X / A_T (X \in \{ A, R, K_A, K_B, K_s \}) \). Because \(\bar{A} \) and \(\bar{R} \) are determined by the molar ratio \(\bar{R}_T = R_T / A_T \), \(E_A / E_T \) is still the function of \(\bar{R}_T \) like in equation (2.2).

The transcriptional activity described by equation (2.4) shows more sensitive responses with respect to \(\bar{R}_T \) compared to the blocking model as the sequestration becomes stronger (i.e., \(\bar{K}_s \) decreases; figure 2c). Specifically, when the sequestration is weaker than the blocking (i.e., \(\bar{K}_s > \bar{K}_b \)), the transcriptional regulation is mainly governed by the blocking, and thus the transcriptional activity shows a hyperbolic response (figure 2e, dotted line) similar to the sole blocking-type repression (figure 2b). On the other hand, when the sequestration is stronger than the blocking (i.e., \(\bar{K}_s < \bar{K}_b \); figure 2e, solid line), \(R \) is more likely to bind with the free \(A \) rather than the DNA-bound \(A \). Thus, when there are more activators than repressors (i.e., \(\bar{R}_T < 1 \)), the majority of \(R \) is bound to the free \(A \), not the DNA-bound \(A \), and thus the high level of transcriptional activity is maintained. As \(\bar{R}_T \) is greater than one and thus the free \(R \), not sequestered by the free \(A \), is available, \(R \) can block the DNA-bound \(A \), leading to the rapid drop in the transcriptional activity (figure 2e, solid line). This switch-like transition in the transcriptional activity generates the ultrasensitivity (figure 2e). Consistently, the effective Hill coefficient increases as the sequestration becomes stronger (i.e., \(\bar{K}_s \) decreases; figure 2f).

The ultrasensitivity can be generated when the blocking and sequestration act synergistically (figure S1). That is, when the blocking is stronger than the sequestration (\(\bar{K}_b < \bar{K}_s \); figure S1a-c), the ultrasensitivity cannot be generated, similar to the sole blocking model (figure 2c). When the blocking is too weak (\(\bar{K}_s \ll \bar{K}_b \)), and thus the transcriptional regulation is mainly governed by the sequestration, the DNA-bound activator cannot be inhibited effectively via blocking. As a result, ultrasensitivity cannot be generated when the activator binds to DNA more tightly than the repressor (\(\bar{K}_s < \bar{K}_b \); figures S1d and e). Taken together, to generate ultrasensitivity, the appropriate level of blocking and the stronger sequestration compared to the blocking are needed. This requires a mechanism for the repressor to have different binding affinities with the free activator and the DNA-bound activator. Furthermore, due to the requirement of stronger sequestration compared to the blocking, the condition is challenging to achieve with physiologically plausible binding affinities.

Specifically, the concentration of transcriptional factors \((A_T) \) is \(2 \times 10^{-3} \sim 10^{-2} \) M as their number is
$10^4 \sim 10^5$ (i.e., $2 \times 10^{-20} \sim 10^{-19}$ mol) and the typical mammalian cell volume is $10^{-11} \sim 10^{-12}$ L [31, 37, 38]. Thus, even the extremely high affinity protein whose dissociation constant is picomolar (i.e., $K_d \approx 10^{-12}$ M) has the K_s with the range of $0.5 \times 10^{-5} \sim 10^{-3}$. With these physiologically plausible values of K_s, the range of K_b where the ultrasensitivity can be generated is narrow (figure S1).

2.3. The combination of the displacement-, sequestration- and blocking-type repressions can readily generate the ultrasensitivity under physiologically plausible conditions

To investigate whether the requirement of the strong sequestration can be relaxed by adding the displacement-type of repression, we expanded the model where the complex R_A can dissociate from DNA with a dissociation constant of K_d (figure 2g; see Methods for details). Due to the displacement, E_F is affected by two different reversible bindings between R_A and E_F as well as between A and E_F unlike in the previous models. Thus, the steady state equation of E_F is switched to $AE_F + R_AE_F = K_aE_A + K_dE_R$ from $AE_F = K_aE_A$ (see Methods for details). Similarly, the steady state equation of E_R is also switched to $K_bE_R + K_dE_R = RE_A + R_AE_F$ from $K_bE_R = RE_A$. By solving these coupled equations, we can get the ratio of the steady states of E_F, E_A, and E_R, i.e.,

$$I(R_T) = I(R_T) = \frac{K_bK_a}{K_aK_b},$$

where $I(R_T) = K_a + K_a + R$ and $J(R_T) = K_a + K_a + R + K_d$. Note that when $\sigma = 1$, which is known as the detailed balance condition [39], $I(R_T) = J(R_T) = 1$ and thus the ratio becomes the same as the previous simple one. This is because under the detailed balance condition, all reversible bindings reach equilibrium, and thus the steady state equations of the species affected by multiple reversible reactions (e.g., $AE_F + R_AE_F = K_aE_A + K_dE_R$) can be partitioned into the equilibrium relations for each reversible reaction (i.e., $AE_F = K_aE_A$ and $R_AE_F = K_dE_R$) [39].

Therefore, under the detailed balance condition, the transcriptional repression by the three types of repressions becomes equivalent to the repression by the blocking- and sequestration-types.

When $\sigma \neq 1$, the ratio of the steady states of E_F, E_A, and E_R are changed and thus we get $E_A = E_T = \frac{I(R_T)A}{1 + I(R_T)A}$, different from equation (2.1). After substituting equation (2.3) into A and R and normalizing the variables and parameters with A_T, we can derive the approximation for E_A/E_T in terms of the molar ratio (\tilde{R}_T):

$$E_A \approx \frac{I(\tilde{R}_T) \tilde{A}(\tilde{R}_T)}{\tilde{K}_a} \frac{\tilde{A}(\tilde{R}_T) \tilde{R}(\tilde{R}_T) \tilde{A}(\tilde{R}_T)}{\tilde{K}_b} \frac{1 + I(\tilde{R}_T) \tilde{A}(\tilde{R}_T)}{\tilde{K}_a} + J(\tilde{R}_T) \tilde{R}(\tilde{R}_T) \tilde{R}(\tilde{R}_T) \tilde{A}(\tilde{R}_T) \tilde{K}_a (2.5)$$

where $I(\tilde{R}_T) = \tilde{K}_a + \sigma \tilde{K}_a + \tilde{R}(\tilde{R}_T)$, $J(\tilde{R}_T) = \tilde{K}_a + \sigma \tilde{K}_a + \tilde{R}(\tilde{R}_T)$, and $\tilde{X} = X/A_T$ ($X \in \{A, R, K_a, K_b, K_d\}$). To investigate whether the displacement enhances the sensitivity of the transcriptional activity, we first consider the case where R binds to the free A and the DNA-bound A with the same affinity (i.e., $K_b = K_s$), so the combination of the sequestration- and blocking-type repressions fails to generate the ultrasensitivity (figures 2f and S1). In this case, if R_A and A have the same binding affinity with DNA (i.e., $K_d = K_a$), $\sigma = 1$ and thus the displacement-type repression does not make any difference compared to the combination of the sequestration- and blocking-type repressions (figure 2e and h, dashed lines). On the other hand, if effective displacement occurs (i.e., R_A more easily dissociates from DNA compared to A, $K_d > K_a$), E_R decreases and E_A increases. As a result, the higher level of transcriptional activity is maintained until \tilde{R}_T becomes closer to one, yielding greater sensitivity (figure 2h, solid line). Consistently, the effective Hill coefficient becomes larger as \tilde{K}_d becomes greater than \tilde{K}_a (figure 2i). Furthermore, even if $\tilde{K}_b < \tilde{K}_s$ (i.e., the
sequestration is weaker than the blocking), the ultrasensitivity can be generated when the effective displacement occurs (figure S2), unlike with the combination of blocking and sequestration (figure 2f and S1). Taken together, effective displacement can eliminate the requirement for the combination of the sequestration- and blocking-type repressions to generate the ultrasensitivity.

When there is no energy expenditure, the dissociation constants have to satisfy the detailed balance condition \(\sigma = \frac{K_d K_R}{K_a K_s} = 1 \). In this case, effective displacement can occur \((\bar{R}_d > \bar{R}_a) \) under limited conditions \((\bar{R}_c < \bar{B}_R) \), which is challenging to achieve physiologically. On the other hand, when energy is expended to break the detailed balance condition \((\sigma > 1) \), effective displacement can occur without the limitation. Such energy expenditure can happen mechanistically by adenosine triphosphate hydrolysis.

Interestingly, when there is no energy expenditure to break the detailed balance condition, the equilibrium relations for each reversible reaction (i.e., \(AE_F = K_a E_A, R_A E_R = K_d E_P \)) hold at the steady state. Thus, the transcription regulated by all three repressions becomes the same as that regulated by any two of the repressions (see Supplementary Materials for details). This allows us to easily identify the condition for ultrasensitivity generated with any two repression mechanisms by substituting the detailed balance condition \((\sigma = \frac{K_d K_R}{K_a K_s} = 1) \) to the condition for the ultrasensitivity generated with the three repression mechanisms (table S1). This reveals that the requirement of strong sequestration of the blocking and sequestration model, which was challenging physiologically, is switched to the effective displacement of the blocking and displacement model. Importantly, with energy expenditure, the combination of all three repressions can generate ultrasensitivity over a wider range of condition compared to the combination of any two repressions (table S1, figure 2i, S2, and S3).

2.4. The transcriptional NFL with multiple repression mechanisms can generate strong rhythms

The ultrasensitivity is critical for the transcriptional NFL to generate sustained and strong oscillations [18-21]. Thus, when the transcriptional repression is regulated by the combination of the multiple repression mechanisms, the strong oscillations can be generated. To investigate this, we constructed a simple transcriptional NFL model (figure 3a), where the free activator \((A) \) binds to the free DNA, and then promotes the transcription of the repressor mRNA \((M) \). \(M \) is translated to the repressor protein in the cytoplasm \((R_c) \). After translocation to the nucleus, the repressor protein \((R) \) inhibits its own transcriptional activator \((A) \) with the previously described repression mechanisms (figure 2a, d, and g). Thus, the transcription of \(M \) depends on the transcriptional activity \(E_A/E_T \). We assumed that \(E_A/E_T \) rapidly reaches its quasi-steady-state (QSS) because the reversible bindings regulating the transcriptional activity typically occur much faster than the other processes of the transcriptional NFL (i.e., transcription, translation, translocation, and degradation). Using the quasi-steady-state approximation (QSSA) and the non-dimensionalization, we can obtain the simple NFL model (see Supplementary Materials for details),

\[
\begin{align*}
\frac{dM}{dt} &= \frac{E_A(\bar{R}_T)}{E_T} - M, \\
\frac{dR_c}{dt} &= M - R_c, \\
\frac{d\bar{R}_c}{dt} &= R_c - R_T,
\end{align*}
\]

where \(E_A(\bar{R}_T)/E_T \) is the QSSA for the transcriptional activity. Depending on the repression mechanism, we can use the steady state equations for \(E_A/E_T \) derived in the previous sections (i.e., equations (2.2), (2.4), and (2.5)). Note that these QSSAs are known as the “total” QSSAs as they are
determined by the molar ratio between the “total” concentrations of the repressor and activator, \(\frac{R_T}{A_T} \), which is not affected by the fast reversible bindings. Thus, the QSSAs are accurate as long as the reversible bindings are fast [42]. In this way, the NFL model (equation (2.6)) can accurately capture the dynamics of the interactions between \(A \) and \(R \) even when their levels are comparable [42].

As more repression mechanisms are added, \(E_A(\frac{R_T}{E_T}) \) more sensitively changes in response to the variation of \(R_T \) (figure 3b), which is critical for amplitude amplification. Thus, stronger rhythms, which have a high relative amplitude (i.e., the amplitude normalized by the peak value of the rhythm), are generated (figure 3c). Specifically, while the NFL with the sole blocking repression cannot generate rhythms (figure 3c, red dotted line), the NFL with the combination of the blocking, sequestration, and displacement can generate the strongest rhythms (figure 3c, green solid line). Such strong rhythms become weaker as the displacement becomes ineffective (i.e., \(\tilde{R}_d \) becomes smaller than \(R_d \); figure 3d), or the blocking or the sequestration become weaker (i.e., \(\tilde{R}_b \) or \(\tilde{R}_s \) increases; figure 3e).

2.5. In the mammalian circadian clock, the disruption of synergistic multiple repressions weakens rhythms

In the transcriptional NFL of the mammalian circadian clock, the transcriptional repression occurs via the combination of blocking, sequestration, and displacement (figure 4a). Specifically, CLOCK:BMAL1 binding to E-box regulatory elements in the Period (Per1 and Per2) and Cryptochrome (Cry1 and Cry2) genes activates their transcription at around Circadian Time (CT) 4-8.

After CRY and PER are translated in the cytoplasm, they form the complex with the kinase CK1\(\delta \) and enter the nucleus. The complex dissociates CLOCK:BMAL1 from the E-box and sequesters CLOCK:BMAL1 to prevent binding to the E-box at around CT12-22 (displacement- and sequestration-type repression). At around CT0-4, CRY binds to the CLOCK:BMAL1:E-box complex to block the transcriptional activity (blocking-type repression) [15-17, 43].

In the mammalian circadian clock, because the PER:CRY complex recruits CK1\(\delta \), inducing the dissociation of CLOCK:BMAL1 from the E-box [15], the binding affinity of CLOCK:BMAL with the E-box is higher compared to its complex with PER:CRY (i.e., \(K_d/K_a > 1 \)). This effective displacement is critical for strong rhythm generation (figure 4b, black solid line) according to our model prediction (figure 3d). Then we can expect that, as either \(K_a \) increases or \(K_d \) decreases, \(K_d/K_a \) decreases, which deactivates the displacement-type repression, the circadian rhythms become weaker (figure 4b; orange solid line). Indeed, when \(K_a \) was increased by a BMAL1 mutant lacking the basic region (BMAL1\(\Delta \)basic), which is critical for the binding of BMAL1 to the E-box element (figure 4a, top right), the amplitude of PER2-LUC rhythms from the fibroblasts of mutant mice was reduced compared to that from wild-type (WT) mice (figure 4c) [35]. Furthermore, when \(K_d \) was decreased by a CK1\(\delta \)\(^{-/-} \) mutant lacking the CK1\(\delta \)-induced dissociation of CLOCK:BMAL1 from the E-box (figure 4a, bottom left), the amplitude of PER2-LUC rhythms in the suprachiasmatic nucleus (SCN) of mutant mice was also reduced compared to that in WT mice (figure 4d) [32]. Note that the amplitude reduction by the CK1\(\delta \)\(^{-/-} \) mutant could be due to other factors because CK1\(\delta \) also regulates the stability and nucleus entry of PER [44].

The blocking- and sequestration-type repressions also effectively occur in the mammalian circadian clock. That is, PER:CRY binds with CLOCK:BMAL1 tightly (i.e., small \(K_r \)), and CRY binds with CLOCK:BMAL1:E-box tightly (i.e., small \(K_b \)) [45]. Such tight bindings are important for strong rhythm generation (figure 4e, black solid line) according to our model prediction (figure 3e). Thus, as either \(K_b \) or \(K_s \) increases, weakening the blocking- or the sequestration-type repression, the rhythms are expected to become weaker (figure 4e, orange solid lines). Indeed, when \(K_b \) was increased due to the BMAL1 619X mutation reducing the binding affinity between BMAL1 and CRY1 (figure 4a, top left), the amplitude of PER2-LUC rhythms from the fibroblasts of mutant mice was reduced to 0.4
compared to WT (figure 4f) [34]. When K_b was further increased by a BMAL1 L606A L607A
mutation, the amplitude was further reduced (figure 4f) [34]. Moreover, when K_s was increased by
the CLOCK mutant lacking the exon 19 region (CLOCKΔ19), which is required for the binding of
PER (figure 4a, bottom right) [46], the amplitude of PER2-LUC rhythms in the SCN of mutant mice
was reduced compared to that in WT mice (figure 4g) [33]. Note that such reduction of the amplitude
by CLOCKΔ19 could be due to other factors such as the low transcriptional activity of CLOCKΔ19
[47] and the impaired binding with the E-box [48].

3. Discussion

Transcriptional repression plays a central role in precisely regulating gene expression [2]. Various
mechanisms for the repression have been identified [2-4]. In particular, the transcriptional activators
can be inhibited in various ways by repressors such as blocking, sequestration, and displacement
(figure 1a). Interestingly, these repression mechanisms are used together to inhibit a transcriptional
activator in many biological systems [3]. In this study, we found that multiple repression mechanisms
can synergistically generate a sharply ultrasensitive transcriptional response (figure 2) and thus strong
rhythms in the transcriptional NFL (figure 3). Consistently, the mutations disrupting any of the
blocking, sequestration, or displacement in the transcriptional NFL of the mammalian circadian clock
weaken the circadian rhythms (figure 4). Our work identifies a benefit of utilizing multiple repression
mechanisms together, the emergence of ultrasensitive responses, which are critical for cellular
regulation such as epigenetic switches, the cell cycle, and circadian clocks [22].

Recently, detailed transcriptional repression mechanisms underlying various biological systems have
been identified. For instance, while MDM2 was known to inhibit p53 by promoting its degradation
[49], recent studies have suggested that MDM2 can also inhibit p53 through displacement and
blocking [50, 51]. In the Rb-E2F bistable switch, the suppressor Rb protein and the E2F family of
transcription factors inhibit mutually with multiple repression mechanisms such as blocking and
chromatin structure modification, which are critical to generate ultrasensitivity and thus the bistable
switch of cell cycle [6, 7, 52]. However, such repression mechanisms have not yet been incorporated
into the mathematical models [53-56]. Similarly, the recent discoveries of multiple repression
mechanisms underlying biological oscillators such as the circadian clock [14-17] and the NF-κB
oscillator [12, 13] have not been fully incorporated even in recent mathematical models [21, 53-62].
In particular, the majority of the mathematical models for various systems have used the simple
Michaelis-Menten or Hill-type functions to describe the transcriptional repression regardless of its
underlying repression mechanisms, which can distort the dynamics of the system [21, 42]. Our work
highlights the importance of careful modeling of the transcriptional repression depending on blocking,
sequestration, or displacement to accurately capture the underlying dynamics.

Interestingly, to fully utilize the three repression mechanisms, energy expenditure is required. Without
the energy expenditure, the detailed balance condition needs to be satisfied ($\sigma = \frac{K_s K_B}{K_b K_s} = 1$). Under
this restriction, the transcriptions regulated by the three repression mechanisms and any one of these
become equivalent (see Supplementary Materials for details). As a result, the ultrasensitivity is
generated under a limited condition compared to when the detailed balance condition is broken via
dissipation of energy ($\sigma > 1$) (table 1, figures 2i, S1, and S2). Similarly, the limitation for generating
the sensitivity of transcription under the detailed balance condition was also identified when DNA is
directly regulated by its transcriptional factors [40]. Specifically, Estrada et al. found that when the
energy expenditure breaks the detailed balance condition, the cooperative bindings of the
transcriptional factors to multiple binding sites of DNA are more likely to generate ultrasensitivity.

The advantages of utilizing multiple repression mechanisms for biological oscillators have just begun
to be investigated. For instance, in the NF-κB oscillator, IκBα inhibits its own transcriptional
activator NF-κB via sequestration and displacement. Z. Wang et al. found that the displacement can enhance NF-κB oscillation by dissociating the NF-κB from decoy sites and promoting its nuclear export (i.e., facilitating the sequestration), and compensating for the heterogeneous binding affinity of NF-κB to the promoter of IκBα [63]. Furthermore, a recent study of the transcriptional NFL of the mammalian circadian clock found that the displacement of the transcriptional activator (BMAL1:CLOCK) by its repressor (PER:CRY) can facilitate the mobility of the BMAL1:CLOCK to its various target sites, pointing out the hidden role of PER:CRY [64]. While PER:CRY dissociates and sequesters CLOCK:BMAL1 from E-box (i.e., sequestration- and displacement-type), CRY blocks the transcriptional activity of CLOCK:BMAL1 (i.e., blocking type) [15-17]. Because Cry1 displays a delayed expression phase compared to Per, the blocking repression occurs at the late phase, which turns out to be critical for rhythm generation [65-67]. It would be interesting in future work to extend the model to include multiple repressors (e.g., PER and CRY) to investigate their distinct roles.

While we focused on transcriptional repression mechanisms, other mechanisms leading to the ultrasensitivity [68], and thus generating rhythms have been identified. For instance, phosphorylation of the repressor [24, 69, 70] and saturated degradation of the repressor [25, 71-73] can be additional sources of ultrasensitivity for strong rhythms. Furthermore, an additional transcriptional positive feedback loop has been known to enhance the robustness of rhythms [18, 21, 70, 72] in the presence of Hill-type transcriptional repression, which can be induced by phosphorylation-based transcriptional repression [73, 74]. On the other hand, when the transcription is regulated by sequestration-type repression, an additional negative feedback loop rather than the positive feedback loop can enhance the robustness of rhythms [21, 28, 31]. It would be important in future work to investigate the role of additional feedback loops depending on the transcriptional repression mechanisms identified in this study.

A transcriptional NFL, where a single repressor inhibits its own transcription by binding to its own promoter, is the simplest design of the synthetic genetic oscillator [75, 76]. To generate the ultrasensitivity with this simple design, Stricker et al. used a repressor that forms a tetramer to bind with its own promoter [77]. Nonetheless, the degree of the ultrasensitivity was not enough for the synthetic oscillator to generate strong oscillations with high amplitude. Thus, more complex designs of synthetic oscillators have been constructed [75, 76]: the modified repressilators [78, 79], the combination of the negative and positive feedback loops [77, 80], and the coupling of synthetic microbial consortiums [81-84]. Our study proposes that a strong synthetic oscillator with a simple design (i.e., a single NFL) could be constructed by modifying the previously used repression mechanisms. That is, by using the combining blocking-, sequestration- and displacement-type repressions, although this might be challenging to implement, ultrasensitivity to achieve strong rhythms could be obtained, providing a new strategy for the design of synthetic oscillators.
4. Methods

4.1. The equation for the transcriptional activity regulated by the sole blocking-type repression

The transcription regulated by sole blocking-type repression (figure 2a) can be described by the following system of ordinary differential equations (ODEs) based on the mass action law:

\[
\begin{align*}
\frac{dR}{dt} &= -k_{fb}RE_A + k_bE_R, \\
\frac{dA}{dt} &= -k_{fa}AE_F + k_aE_A, \\
\frac{dE_F}{dt} &= -k_{fa}AE_F + k_aE_A, \\
\frac{dE_A}{dt} &= k_{fa}AE_F - k_aE_A - k_{fb}RE_A + k_bE_R, \\
\frac{dE_R}{dt} &= k_{fb}RE_A - k_bE_R,
\end{align*}
\] (4.1)

where \(R, A, E_F, E_A, \) and \(E_R \) represent the concentration of the repressor, the activator, DNA, the activator-bound DNA, and the activator and repressor complex-bound DNA, respectively. Here, \(k_b \) and \(k_{fa} \) (\(k_a \)) are the association (dissociation) rate constants between \(E_A \) and \(R \) and between \(A \) and \(E_F \), respectively. Note that as \(\frac{dR}{dt} + \frac{dE_R}{dt} = 0 \), \(\frac{dA}{dt} + \frac{dE_A}{dt} + \frac{dE_R}{dt} = 0 \), and \(\frac{dE_F}{dt} + \frac{dE_A}{dt} + \frac{dE_R}{dt} = 0 \), the total concentrations of the repressor (\(R_T \equiv R + E_R \)), the activator (\(A_T \equiv A + E_A + E_R \)), and DNA (\(E_T \equiv E_F + E_A + E_R \)) are conserved. The steady states of the system satisfy the following equations,

\[
RE_A = K_bE_R, \tag{4.2}
\]

\[AE_F = K_aE_A, \tag{4.3}
\]

where \(K_b = k_b/k_{fb} \) and \(K_a = k_a/k_{fa} \). This yields \(E_F:E_A:E_R=1 : \frac{A}{K_a} : \frac{R}{K_b} \), and thus the steady state for \(E_A/E_T \):

\[
\frac{E_A}{E_T} = \frac{E_A}{E_F + E_A + E_R} = \frac{E_A}{1 + \frac{E_A}{E_F} + \frac{E_R}{E_F}} = \frac{A}{K_a} \tag{4.4}
\]

where \(A \) and \(R \) in equation (4.3) are the steady states of the free activator and the free repressor, respectively.

Equation (4.3) can be simplified if the total concentration of DNA (\(E_F \)) is much lower than the concentrations of the activator (\(A_T \)) and repressor (\(R_T \)) and thus \(A_T = A + E_A + E_R \approx A \) and \(R_T = R + E_R \approx R \). That is, by replacing \(A \) and \(R \) in equation (4.3) with conserved \(A_T \) and \(R_T \), respectively, we get the following approximation for equation (4.3):

\[
\frac{E_A}{E_T} \approx \frac{A_T}{K_a} \frac{R_T}{K_b + K_a} \tag{4.4}
\]

which is accurate as long as \(E_T/A_T \) is small (figure S4a). This assumption is likely to hold in the mammalian circadian clock as the number of BMAL1:CLOCK in the mammalian cells is about
10^4\sim 10^5 \text{ [37]}. On the other hand, it might not be acceptable in E. coli or S. cerevisiae cells, which contain much lower numbers of transcription factors (10^1\sim 10^2) \text{ [37]}.

4.2. The equation for the transcriptional activity regulated by the blocking- and sequestration-type repressions

The transcription regulated by both blocking and sequestration (figure 2d) can be described by the following ODEs:

\[\frac{dR}{dt} = -k_{fb}RE_A + k_bE_R - k_{fs}RA + k_sR_A, \]
\[\frac{dA}{dt} = -k_{fa}AE_F + k_aE_A - k_{fs}RA + k_sR_A, \]
\[\frac{dR_A}{dt} = k_{fs}RA - k_sR_A, \]
\[\frac{dE_F}{dt} = -k_{fa}AE_F + k_aE_A, \]
\[\frac{dE_A}{dt} = k_{fa}AE_F - k_aE_A - k_{fb}RE_A + k_bE_R, \]
\[\frac{dE_R}{dt} = k_{fb}RE_A - k_bE_R. \]

(4.5)

The reversible binding between \(R \) and \(A \) to form the complex (\(R_A \)) with the association rate constant \(k_{fs} \) and the dissociation rate constant \(k_s \) are added to equation (4.1). Thus, the conservation laws for the activator and the repressor are changed to \(A_T = A + R_A + E_A + E_R \) and \(R_T = R + R_A + E_R \), respectively. Because the steady states of equation (4.5) also satisfy equation (4.2), the steady state of \(E_A/E_T \) in this system also satisfies equation (4.3). However, even if \(E_T \) is much lower than \(A_T \) and \(R_T \), equation (4.3) cannot be simplified by replacing \(A \) and \(R \) with \(A_T \) and \(R_T \) because \(A_T = A + R_A + E_A + E_R \approx A + R_A \) and \(R_T = R + R_A + E_R \approx R + R_A \). Thus, we also need to use another steady state equation, \(AR = K_sR_A \), where \(K_s = k_s/k_{fs} \), to derive the steady state of \(R_A \) in terms of \(A_T \) and \(R_T \). Specifically, by replacing \(A \) and \(R \) with \(A_T - R_A \) and \(R_T - R_A \), respectively, in \(AR = K_sR_A \), we get \(R_A^2 = (A_T + R_T + K_s)R_A + A_T R_T \approx 0 \), yielding the approximate steady state for \(R_A \):

\[R_A \approx A_T + R_T + K_s - \frac{(A_T - R_T - K_s)^2 + 4A_TK_s}{2}. \]

(4.6)

Then by substituting equation (4.6) to \(A \approx A_T - R_A \) and \(R \approx R_T - R_A \), we can get the following approximate steady state for the free activator and repressor:

\[A \approx \frac{A_T - R_T - K_s + \sqrt{(A_T - R_T - K_s)^2 + 4A_TK_s}}{2}, \]
\[R \approx \frac{R_T - A_T - K_s + \sqrt{(A_T - R_T - K_s)^2 + 4A_TK_s}}{2}. \]

(4.7)

By substituting equation (4.7) to equation (4.3), the approximate \(E_A/E_T \) can be derived (equation (2.4)), which is accurate as long as \(E_T/A_T \) is small (figure S4b).

4.3. The equation for the transcriptional activity regulated by all the blocking-, sequestration-, and displacement-type repressions
The transcription regulated by all blocking, sequestration, and displacement (figure 2g) can be described by the following ODEs:

\[
\begin{align*}
\frac{dR}{dt} &= -k_{fb}RE_A + k_b E_R - k_{fs}RA + k_s R_A, \\
\frac{dA}{dt} &= -k_{fa}AE_F + k_a E_A - k_{fs}RA + k_s R_A, \\
\frac{dR_A}{dt} &= k_{fs}RA - k_s R_A - k_{fa}R_AE_F + k_d E_R, \\
\frac{dE_F}{dt} &= -k_{fa}AE_F + k_a E_A - k_{fa}R_AE_F + k_d E_R, \\
\frac{dE_A}{dt} &= k_{fa}AE_F - k_a E_A - k_{fb}RE_A + k_b E_R, \\
\frac{dE_R}{dt} &= k_{fb}RE_A - k_b E_R + k_{fa}R_AE_F - k_d E_R,
\end{align*}
\] (4.8)

which have the same conservation laws as equation (4.5). Because the reversible binding between R_A and E_F to form E_R with the association rate constant k_{fa} and the dissociation rate constant k_d are added to equation (4.5), the steady states are changed to the following equations:

\[
\begin{align*}
RA - K_s R_A - \gamma (R_A E_F - K_d E_R) &= 0, \\
AE_F - K_a E_A - \delta (R_A E_F - K_b E_R) &= 0, \\
RE_A - K_b E_R + \theta (R_A E_F - K_d E_R) &= 0,
\end{align*}
\] (4.9)

where $K_d = k_d/k_{fa}$, $\gamma = k_{fa}/k_{fs}$, $\delta = k_{fb}/k_{fa}$, and $\theta = k_{fa}/k_{fb}$. If E_T is much lower than A_T and R_T, and thus $A_T = A + R_A + E_A + E_R \approx A + R_A$ and $R_T = R + R_A + E_R \approx R + R_A$, the last two equations of (4.9) can be simplified as follows:

\[
\begin{align*}
(A_T - R_A)(E_T - E_A - E_R) - K_s E_A - \delta(R_T - R_A)E_A + \delta K_b E_R &\approx 0, \\
(R_T - R_A)E_A - K_b E_R + \theta R_A(E_T - E_A - E_R) - \theta K_d E_R &\approx 0.
\end{align*}
\] (4.10)

Their solution yields the steady state approximation for E_A/E_T as

\[
\frac{(\theta R_A + K_b + \theta K_d)(R_A - A_T) - \theta(R_A - A_T + \delta K_b)R_A}{((1 + \delta)R_A - A_T - \delta R_T - K_A)(\theta R_A + K_b + \theta K_d) - (R_A - A_T + \delta K_b)((\theta + 1)R_A - R_T)}
\] (4.11)

Furthermore, by using the approximation $A_T \approx A + R_A$ and $R_T \approx R + R_A$, we can simplify the first equation of equation (4.9) as follows:

\[
R_A^2 - (A_T + R_T + K_s - \gamma E_F)R_A + A_T R_T - \gamma K_d E_R \approx 0.
\] (4.12)

Because E_T is much lower than A_T and R_T, equation (4.12) can be further simplified to $R_A^2 - (A_T + R_T + K_s)R_A + A_T R_T \approx 0$, leading to the approximation for the steady state of R_A described in equation (4.6). Then, by substituting equation (4.6) to equation (4.11), the approximated E_A/E_T in terms of conserved A_T and R_T can be derived. The approximation of E_A/E_T can be further simplified as follows if we assume $\delta = 1$ and $\theta = 1$ (i.e., the binding rates are the same):
\[
\frac{E_A}{E_T} \approx \frac{(R_A + K_b + K_d)(R_A - A_T) - (R_A - A_T + K_b)R_A}{(2R_A - A_T - R_T - K_a)(R_A + K_b + K_d) - (R_A - A_T + K_b)(2R_A - R_T)} (4.13)
\]

\[
= \frac{[(K_b + K_d)K_a + K_d(R_T - R_A)] + [(K_b + K_d)A_T - K_dR_A] + [(R_T - R_A)A_T + K_dR_A]}{K_dK_a + K_a + K_dK_a + K_dR = \mu(K_s + \sigma K_a + \sigma R),}
\]

\[
(K_b + K_d)A_T - K_dR_A \approx (K_b + K_d)(A + R_A) - K_dR_A \approx K_bA + K_dA + \frac{K_b}{K_s}RA
\]

\[
(K_b + K_d)A_T - K_dR_A \approx \mu(K_s + \sigma K_a + \sigma R) \frac{A}{K_a},
\]

\[
(R_T - R_A)A_T + K_aR_A \approx R(A + \frac{RA}{K_s}) + K_a \frac{RA}{K_s} = \mu(K_s + K_a + R) \frac{R}{K_bK_a}
\]

Each term of equation (4.13) can be transformed by using \(A \approx A_T - R_A, R \approx R_T - R_A, \) and \(AR \approx K_dR_a \) as follows:

\[
(K_b + K_d)K_a + K_d(R_T - R_A) \approx K_bK_a + K_dK_a + K_dR = \mu(K_s + \sigma K_a + \sigma R),
\]

\[
(K_b + K_d)A_T - K_dR_A \approx (K_b + K_d)(A + R_A) - K_dR_A \approx K_bA + K_dA + \frac{K_b}{K_s}RA
\]

\[
(R_T - R_A)A_T + K_aR_A \approx R(A + \frac{RA}{K_s}) + K_a \frac{RA}{K_s} = \mu(K_s + K_a + R) \frac{R}{K_bK_a}
\]

where \(\sigma = K_sK_d/K_bK_a \) and \(\mu = K_bK_a/K_s. \) By substituting equation (4.14) to equation (4.13), we can derive equation (2.5) as follows:

\[
\frac{E_A}{E_T} \approx \frac{(K_s + \sigma K_a + R) \frac{A}{K_a}}{(K_s + \sigma K_a + \sigma R) + (K_s + \sigma K_a + R) \frac{A}{K_a} + (K_s + K_a + R) \frac{R}{K_bK_a}} (4.15)
\]

\[
I(R_T) \frac{A}{K_a} + J(R_T) \frac{R}{K_bK_a}
\]

where \(I(R_T) = \frac{K_s + \sigma K_a + R}{K_s + \sigma K_a + \sigma R} \) and \(J(R_T) = \frac{K_s + K_a + R}{K_s + \sigma K_a + \sigma R}. \) This approximation is accurate as long as \(E_A/E_T \) is small (figure S4c). Importantly, it accurately captures the cases when \(\delta \) and \(\theta \) are not one if the displacement effectively occurs \((K_d > K_a; \) figure S5).

Funding

This work was supported by the Human Frontiers Science Program Organization [grant, no. RGY0063/2017] (J.K.K.); a National Research Foundation of Korea, Ministry of Science and ICT [grant, no. NRF-2016 RICIB 3008468] (J.K.K.); and the Institute for Basic Science [grant, no. IBS-R029-C3] (J.K.K.).
References

[1] Ma, J. 2011 Transcriptional activators and activation mechanisms. *Protein Cell* 2, 879-888. (doi:10.1007/s13238-011-1101-7).

[2] Maldonado, E., Hampsey, M. & Reinberg, D. 1999 Repression: targeting the heart of the matter. *Cell* 99, 455-458. (doi:10.1016/s0092-8674(00)81533-0).

[3] Gaston, K. & Jayaraman, P.S. 2003 Transcriptional repression in eukaryotes: repressors and repression mechanisms. *Cell Mol Life Sci* 60, 721-741. (doi:10.1007/s00018-003-2260-3).

[4] Renkawitz, R. 1990 Transcriptional repression in eukaryotes. *Trends Genet* 6, 192-197. (doi:10.1016/0168-9525(90)90176-7).

[5] Luo, R.X., Postigo, A.A. & Dean, D.C. 1998 Rb interacts with histone deacetylase to repress transcription. *Cell* 92, 463-473. (doi:10.1016/s0092-8674(00)80940-x).

[6] Nevins, J.R. 1992 E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. *Science* 258, 424-429. (doi:10.1126/science.1411535).

[7] Dimova, D.K. & Dyson, N.J. 2005 The E2F transcriptional network: old acquaintances with new faces. *Oncogene* 24, 2810-2821. (doi:10.1038/sj.onc.1208612).

[8] Kaffman, A., Rank, N.M., O'Neill, E.M., Huang, L.S. & O'Shea, E.K. 1998 The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. *Nature* 396, 482-486. (doi:10.1038/24898).

[9] Kaffman, A., Herskowitz, I., Tjian, R. & O'Shea, E.K. 1994 Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. *Science* 263, 1153-1156. (doi:10.1126/science.8108735).

[10] Jayaraman, P.S., Hirst, K. & Goding, C.R. 1994 The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation. *EMBO J* 13, 2192-2199.

[11] Ghosh, S., May, M.J. & Kopp, E.B. 1998 NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. *Annu Rev Immunol* 16, 225-260. (doi:10.1146/annurev.immunol.16.1.225).

[12] Bergqvist, S., Alverdi, V., Mengel, B., Hoffmann, A., Ghosh, G. & Komives, E.A. 2009 Kinetic enhancement of NF-kappaBxDNA dissociation by IkappaBalp/alpha. *Proc Natl Acad Sci U S A* 106, 19328-19333. (doi:10.1073/pnas.0908797106).

[13] Potoyan, D.A., Zheng, W., Komives, E.A. & Wolynes, P.G. 2016 Molecular stripping in the NF-kappaB/IkappaB/DNA genetic regulatory network. *Proc Natl Acad Sci U S A* 113, 110-1115. (doi:10.1073/pnas.1520483112).

[14] Menet, J.S., Abruzzi, K.C., Desrochers, J., Rodriguez, J. & Rosbash, M. 2010 Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. *Genes Dev* 24, 358-367. (doi:10.1101/gad.1883910).

[15] Cao, X., Yang, Y., Selby, C.P., Liu, Z. & Sancar, A. 2021 Molecular mechanism of the repressive phase of the mammalian circadian clock. *Proc Natl Acad Sci U S A* 118. (doi:10.1073/pnas.2021174118).

[16] Chiou, Y.Y., Yang, Y., Rashid, N., Ye, R., Selby, C.P. & Sancar, A. 2016 Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner. *Proc Natl Acad Sci U S A* 113, E6072-E6079. (doi:10.1073/pnas.1612917113).

[17] Ye, R., Selby, C.P., Chiou, Y.Y., Ozkan-Dagliyan, I., Gaddameedhi, S. & Sancar, A. 2014 Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. *Genes Dev* 28, 1989-1998. (doi:10.1101/gad.249417.114).

[18] Novak, B. & Tyson, J.J. 2008 Design principles of biochemical oscillators. *Nat Rev Mol Cell Biol* 9, 981-991. (doi:10.1038/nrm2530).

[19] Ferrell, J.E., Jr., Tsai, T.Y. & Yang, Q. 2011 Modeling the cell cycle: why do certain circuits oscillate? *Cell* 144, 874-885. (doi:10.1016/j.cell.2011.03.006).

[20] Ferrell, J.E., Jr. & Ha, S.H. 2014 Ultrasensitivity part III: cascades, bistable switches, and oscillators. *Trends Biochem Sci* 39, 612-618. (doi:10.1016/j.tibs.2014.10.002).
[21] Kim, J.K. 2016 Protein sequestration versus Hill-type repression in circadian clock models. *IET Syst Biol* **10**, 125-135. (doi:10.1049/iet-syb.2015.0090).

[22] Buchler, N.E. & Cross, F.R. 2009 Protein sequestration generates a flexible ultrasensitive response in a genetic network. *Mol Syst Biol* **5**, 272. (doi:10.1038/msb.2009.30).

[23] Buchler, N.E. & Louis, M. 2008 Molecular titration and ultrasensitivity in regulatory networks. *J Mol Biol* **384**, 1106-1119. (doi:10.1016/j.jmb.2008.09.079).

[24] Beesley, S., Kim, D.W., D'Alessandro, M., Jin, Y., Lee, K., Joo, H., Young, Y., Tomko, R.J., Jr., Faulkner, J., Gamsby, J., et al. 2020 Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis. *Proc Natl Acad Sci U S A* **117**, 28402-28411. (doi:10.1073/pnas.2003524117).

[25] D'Alessandro, M., Beesley, S., Kim, J.K., Jones, Z., Chen, R., Wi, J., Kyle, K., Vera, D., Pagano, M., Nowakowski, R., et al. 2017 Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. *Curr Biol* **27**, 3454-3467 e3458. (doi:10.1016/j.cub.2017.10.014).

[26] Gotth, T., Kim, J.K., Liu, J., Vila-Caballé, M., Stauffer, P.E., Tyson, J.J. & Finkelstein, C.V. 2016 Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor Period 2. *Proc Natl Acad Sci U S A* **113**, 13516-13521. (doi:10.1073/pnas.1607984113).

[27] Kim, J.K., Kilpatrick, Z.P., Bennett, M.R. & Josic, K. 2014 Molecular mechanisms that regulate the coupled period of the mammalian circadian clock. *Biophys J* **106**, 2071-2081. (doi:10.1016/j.bpj.2014.02.039).

[28] Kim, J.K. & Forger, D.B. 2012 A mechanism for robust circadian timekeeping via stoichiometric balance. *Mol Syst Biol* **8**, 630. (doi:10.1038/msb.2012.62).

[29] Xie, Z. & Kulasi, D. 2007 Modelling of circadian rhythms in Drosophila incorporating the interlocked PER/TIM and VRI/PDP1 feedback loops. *J Theor Biol* **245**, 290-304. (doi:10.1016/j.jtbi.2006.10.028).

[30] Kim, J.K. 2021 Tick, Tock. Circadian Clocks. In *Case Studies in Systems Biology* (ed. P. Kraikivski), pp. 79-94. Cham, Springer International Publishing.

[31] Heidebrecht, B., Chen, J. & Tyson, J.J. 2020 Mathematical Analysis of Robustness of Oscillations in Models of the Mammalian Circadian Clock. *bioRxiv*, 2020.2020.2020.297648. (doi:10.1101/2020.09.15.297648).

[32] Etchegaray, J.P., Yu, E.A., Indic, P., Dallmann, R. & Weaver, D.R. 2010 Casein Kinase 1 Delta (CK1 delta) Regulates Period Length of the Mouse Suprachiasmatic Circadian Clock In Vitro. *Plos One* **5**. (doi:ARTN e1030310.1371/journal.pone.0010303).

[33] Sujino, M., Asakawa, T., Nagano, M., Koinuma, S., Masumoto, K.H. & Shigeyoshi, Y. 2018 CLOCKDelta19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus. *Sci Rep* **8**, 854. (doi:10.1038/s41598-018-19224-1).

[34] Xu, H., Gustafson, C.L., Sammons, P.J., Khan, S.K., Parsley, N.C., Ramanathan, C., Lee, H.W., Liu, A.C. & Partch, C.L. 2015 Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. *Nat Struct Mol Biol* **22**, 476-484. (doi:10.1038/nsmb.3018).

[35] Lee, Y., Chen, R.M., Lee, H.M. & Lee, C. 2011 Stoichiometric Relationship among Clock Proteins Determines Robustness of Circadian Rhythms. *J Biol Chem* **286**, 7033-7042. (doi:10.1074/jbc.M110.207217).

[36] Ferrell, J.E., Jr. & Ha, S.H. 2014 Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. *Trends Biochem Sci* **39**, 496-503. (doi:10.1016/j.tibs.2014.08.003).

[37] Milo, R., & Phillips, R. 2015 *Cell Biology by the numbers*.

[38] Song, Y.M., Hong, H. & Kim, J.K. 2021 Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities. *PLoS Comput Biol* **17**, e1008952. (doi:10.1371/journal.pcbi.1008952).

[39] Rubi, J.M., Bedeaux, D., Kjelstrup, S. & Pagonabarraga, I. 2013 Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description. *Int J Thermophys* **34**, 1214-1228. (doi:10.1007/s10765-013-1484-1).

[40] Estrada, J., Wong, F., DePace, A. & Gunawardena, J. 2016 Information Integration and Energy Expenditure in Gene Regulation. *Cell* **166**, 234-244. (doi:10.1016/j.cell.2016.06.012).
688 687 686 685 684 683 682 681 680 679 678 677 676 675 674 673 672 671 670 669 668 667 666 665 664 663 662 661 660 659 658 657 656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638

[41] Qian, H. 2007 Phosphorylation energy hypothesis: open chemical systems and their biological functions. *Anna Rev Phys Chem* 58, 113-142. (doi:10.1146/annurev.physchem.58.032806.104550).
[42] Kim, J.K. & Tyson, J.J. 2020 Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy. *PLoS Comput Biol* 16, e1008258. (doi:10.1371/journal.pcbi.1008258).
[43] Partch, C.L. 2020 Orchestration of Circadian Timing by Macromolecular Protein Assemblies. *J Mol Biol* 432, 3426-3448. (doi:10.1016/j.jmb.2019.12.046).
[44] Vanselow, K., Vanselow, J.T., Westermark, P.O., Reischl, S., Maier, B., Korte, T., Herrmann, A., Herzl, H., Schlosser, A. & Kramer, A. 2006 Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). *Gene Dev* 20, 2660-2672. (doi:10.1101/gad.397006).
[45] Kepstutis, B., Kiziel, R. & Kiziel, S. 2014 Quantification of interactions among circadian clock proteins via surface plasmon resonance. *J Mol Recognit* 27, 458-469. (doi:10.1002/jmr.2367).
[46] Lee, E., Cho, E., Kang, D.H., Jeong, E.H., Chen, Z., Yoo, S.H. & Kim, E.Y. 2016 Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation. *Proc Natl Acad Sci U S A* 113, E4904-4913. (doi:10.1073/pnas.1523494113).
[47] Lowrey, P.L. & Takahashi, J.S. 2011 Genetics of circadian rhythms in Mammalian model organisms. *Adv Genet* 74, 175-230. (doi:10.1016/B978-0-12-387690-4.00006-4).
[48] Shimomura, K., Kumar, V., Koike, N., Kim, T.K., Chong, J., Buhr, E.D., Whiteley, A.R., Low, S.S., Omura, C., Fenner, D., et al. 2013 Usf1, a suppressor of circadian rhythms and dopamine. *Cell* 157, 1035-1048. (doi:ARTN 4657110.1038/srep46571).
[49] Haupt, Y., Maya, R., Kazaz, A. & Oren, M. 1997 Mdm2 promotes the rapid degradation of p53. *Nature* 387, 296-299. (doi:10.1038/387296a0).
[50] Cross, B., Chen, L., Cheng, Q., Li, B., Yuan, Z.M. & Chen, J. 2011 Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. *J Biol Chem* 286, 16018-16029. (doi:10.1074/jbc.M111.228981).
[51] Chen, J. 2016 The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. *Cold Spring Harb Perspect Med* 6, a026104. (doi:10.1101/cshperspect.a026104).
[52] Yao, G., Lee, T.J., Mori, S., Nevins, J.R. & You, L. 2008 A bistable Rb-E2F switch underlies the restriction point. *Nat Cell Biol* 10, 476-482. (doi:10.1038/ncb1711).
[53] Kim, E., Kim, J.Y. & Lee, J.Y. 2019 Mathematical Modeling of p53 Pathways. *Int J Mol Sci* 20, 00139. (doi:ARTN 517910.1038/srep51791).
[54] Jolma, I.W., Ni, S.S., Omura, C., Fenner, D., et al. 2013 Usf1, a suppressor of circadian rhythms and dopamine. *Cell* 157, 1035-1048. (doi:ARTN 4657110.1038/srep46571).
[55] Falcke, M. & Loewer, A. 2017 Theor Biol Med Model 18, 8. (doi:10.1016/bpj.2009.11.013).
[56] Lev Bar-Or, R., Maya, R., Segel, L.A., Alon, U., Levine, A.J. & Oren, M. 2000 Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. *Proc Natl Acad Sci U S A* 97, 11250-11255. (doi:10.1073/pnas.210171597).
[57] Monke, G., Cristiano, E., Finzel, A., Friedrich, D., Herzl, H., Falcke, M. & Loewer, A. 2017 Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells. *Sci Rep-Uk* 7. (doi:ARTN 4657110.1038/srep46571).
[58] Kim, R. & Reed, M.C. 2021 A mathematical model of circadian rhythms and dopamine. *Theor Biol Med Model* 18, 8. (doi:10.1186/s12976-021-00139-w).
[59] Rashid, M.M. & Kurata, H. 2020 Coupling protocol of interlocked feedback oscillators in circadian clocks. *J R Soc Interface* 17, 202000287. (doi:10.1098/rsif.2020.00287).
[60] Uriu, K. & Tei, H. 2019 A saturated reaction in repressor synthesis creates a daytime dead zone in circadian clocks. *PLoS Comput Biol* 15, e1006787. (doi:10.1371/journal.pcbi.1006787).
[61] Pett, J.P., Kondof, M., Bordyugov, G., Kramer, A. & Herzl, H. 2018 Co-existing feedback loops generate tissue-specific circadian rhythms. *Life Sci Alliance* 1. (doi:ARTN e20180007810.26508/lsa.201800078).
[61] van Soest, I., del Olmo, M., Schmal, C. & Herzel, H. 2020 Nonlinear phenomena in models of the circadian clock. *Journal of the Royal Society Interface* **17**. (doi:ARTN 2020055610.1098/rsif.2020.0556).

[62] Almeida, S., Chaves, M. & Delaunay, F. 2020 Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs. *Journal of Theoretical Biology* **484**. (doi:ARTN 11001510.1016/j.jtbi.2019.110015).

[63] Wang, Z., Potyoyan, D.A. & Wolynes, P.G. 2016 Molecular stripping, targets and decoys as modulators of oscillations in the NF-kappaB/IkappaBalpha/DNA genetic network. *J R Soc Interface* **13**. (doi:10.1098/rsif.2016.0606).

[64] Bagnall, J.S., Koch, A.A., Smyllie, N.J., Begley, N., Adamson, A., Fribourgh, J.L., Spiller, D.G., Meng, Q.-J., Partch, C.L., Strimmer, K., et al. 2021 Quantification of circadian interactions and protein abundance defines a mechanism for operational stability of the circadian clock. *bioRxiv*, 2021.08.27.456017. (doi:10.1101/2021.08.27.456017).

[65] Korenec, A., Kosir, R., Borduyogov, G., Lehmann, R., Rozman, D. & Herzel, H. 2014 Timing of circadian genes in mammalian tissues. *Sci Rep* **4**, 5782. (doi:10.1038/srep05782).

[66] Ukai-Tadenuma, M., Yamada, R.G., Xu, H., Ripperger, J.A., Liu, A.C. & Ueda, H.R. 2011 Delay in feedback repression by cryptochrome 1 is required for circadian clock function. *Cell* **144**, 268-281. (doi:10.1016/j.cell.2010.12.019).

[67] Gabriel, C.H., Del Olmo, M., Zehtabian, A., Jager, M., Reischl, S., van Dijk, H., Ulbricht, C., Rahkmyzhan, A., Korte, T., Koller, B., et al. 2021 Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. *Nat Commun* **12**, 3796. (doi:10.1038/s41467-021-24086-9).

[68] Ferrell, J.E., Jr & Ha, S.H. 2014 Ultrasensitivity part II: multsite phosphorylation, stoichiometric inhibitors, and positive feedback. *Trends Biochem Sci* **39**, 556-569. (doi:10.1016/j.tibs.2014.09.003).

[69] Tyson, J.J., Hong, C.I., Thron, C.D. & Novak, B. 1999 A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. *Biophys J* **77**, 2411-2417. (doi:10.1016/S0006-3495(99)77078-5).

[70] Ananthasubramaniam, B. & Herzel, H. 2014 Positive feedback promotes oscillations in negative feedback loops. *PLoS One* **9**, e104761. (doi:10.1371/journal.pone.0104761).

[71] Kuroswa, G. & Iwasa, Y. 2002 Saturation of enzyme kinetics in circadian clock models. *J Biol Rhythms* **17**, 568-577. (doi:10.1177/0748730402238239).

[72] Tsai, T.Y., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C. & Ferrell, J.E., Jr. 2008 Robust, tunable biological oscillations from interlinked positive and negative feedback loops. *Science* **321**, 126-129. (doi:10.1126/science.1156951).

[73] Gonze, D. & Abou-Jaoude, W. 2013 The Goodwin model: behind the Hill function. *PLoS One* **8**, e69573. (doi:10.1371/journal.pone.0069573).

[74] Gonze, D. & Ruoff, P. 2021 The Goodwin Oscillator and its Legacy. *Acta Biotheor* **69**, 857-874. (doi:10.1007/s10441-020-09379-8).

[75] Li, Z. & Yang, Q. 2018 Systems and synthetic biology approaches in understanding biological oscillators. *Quant Biol* **6**, 1-14. (doi:10.1007/s40484-017-0120-7).

[76] Purcell, O., Savery, N.J., Grierson, C.S. & di Bernardo, M. 2010 A comparative analysis of synthetic genetic oscillators. *J R Soc Interface* **7**, 1503-1524. (doi:10.1098/rsif.2010.0183).

[77] Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S. & Hasty, J. 2008 A fast, robust and tunable synthetic gene oscillator. *Nature* **456**, 516-519. (doi:10.1038/nature07389).

[78] Potvin-Trottier, L., Lord, N.D., Vinnicombe, G. & Paulsson, J. 2016 Synchronous long-term oscillations in a synthetic gene circuit. *Nature* **538**, 514-+. (doi:10.1038/nature19841).

[79] Niederholtmeyer, H., Sun, Z.Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R.M. & Maerkl, S.J. 2015 Rapid cell-free forward engineering of novel genetic ring oscillators. *Elife* **4**, e09771.

[80] Hussain, F., Gupta, C., Hirning, A.J., Ott, W., Matthews, K.S., Josic, K. & Bennett, M.R. 2014 Engineered temperature compensation in a synthetic genetic clock. *P Natl Acad Sci USA* **111**, 972-977. (doi:10.1073/pnas.1316298111).
[81] Kim, J.K., Chen, Y., Hirning, A.J., Alnahhas, R.N., Josic, K. & Bennett, M.R. 2019 Long-range temporal coordination of gene expression in synthetic microbial consortia. *Nat Chem Biol* 15, 1102-1109. (doi:10.1038/s41589-019-0372-9).

[82] Chen, Y., Kim, J.K., Hirning, A.J., Josic, K. & Bennett, M.R. 2015 Emergent genetic oscillations in a synthetic microbial consortium. *Science* 349, 986-989. (doi:10.1126/science.aaa3794).

[83] Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S. & Hasty, J. 2012 A sensing array of radically coupled genetic 'biopixels'. *Nature* 481, 39-44. (doi:10.1038/nature10722).

[84] Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. 2010 A synchronized quorum of genetic clocks. *Nature* 463, 326-330. (doi:10.1038/nature08753).
Figure 1. Multiple transcriptional repression mechanisms are used together in the transcriptional NFL of the circadian clock. (a) Repressors (R) can suppress the transcriptional activity of activators (A) with multiple mechanisms. For example, R binds to the DNA-bound A to block its transcriptional activity (Blocking), holds A to prevent binding to DNA (Sequestration), or dissociates A from DNA (Displacement). (b) Such multiple repression mechanisms are used together in the transcriptional NFL of the Drosophila circadian clock. The activator CLK:CYC (A) promotes the synthesis of the repressor PER:TIM (R). Then, R inhibits the transcriptional activity of A in various ways: R sequesters the free A from DNA, and blocks the transcriptional activity of the DNA-bound A and then displaces it from DNA. (c) Similarly, in the mammalian circadian clock, the repressors PER:CRY and CRY (R) inhibit their own transcriptional activator CLOCK:BMAL1 (A) via blocking, sequestration, and displacement.
Figure 2. The combination of multiple repression mechanisms leads to ultrasensitive transcription response. (a) Diagram of the model describing the blocking-type repression. The binding of the activator (A) to DNA with a dissociation constant of K_a leads to the transcription, and the binding of the repressor (R) to the DNA-bound A with a dissociation constant of K_b, inhibits the transcription. (b) As the molar ratio between the total repressor and activator concentrations (\tilde{R}_T) increases or their binding affinity increases (i.e., \tilde{K}_b decreases), the transcriptional activity decreases. The sensitivity of the transcriptional activity is quantified using the effective Hill coefficient

$$\frac{\log(B_1)}{\log(\text{EC}_{90}/\text{EC}_{10})}$$

which increases as the width of the EC90 and EC10 box decreases (i.e., the red box). The grey dashed lines denote the 10% and 90% values of the maximal transcriptional activity, respectively. Here, $\tilde{K}_d = 10^{-4}$. (c) The effective Hill coefficient is one regardless of the values of \tilde{K}_b and \tilde{K}_a, indicating that the sole blocking can generate only low sensitivity. The square and triangle...
marks represent the parameter values used for (b). (d) The sequestration-type repression is added to
the blocking model in (a): \(R \) sequesters the free A with a dissociation constant of \(K_s \) from DNA. (e) When the sequestration is weaker than the blocking (i.e., \(K_s > K_b \); dotted line), the sensitivity of the transcriptional activity is similar to that regulated by only the blocking-type repression (b). On the other hand, when the sequestration is stronger than the blocking (i.e., \(K_s < K_b \); solid and dashed lines), a switch-like transition in the transcriptional activity occurs. Here, \(K_b = 10^{-5} \) and \(K_a = 10^{-4} \). (f) The effective Hill coefficient increases as \(K_s \) decreases. The circle, square, and triangle marks represent the parameter values used for (e). (g) The displacement-type repression is added to the model in (d): the \(R_A \) complex dissociates from DNA with a dissociation constant of \(K_d \). (h) When \(K_d = K_a \) (dashed line), it satisfies the detailed balance condition (i.e., \(K_d K_A / K_b K_a = 1 \)) and thus the displacement has no effect on the transcriptional activity (cf. dashed line in (e)). When the effective displacement occurs (i.e., \(K_d > K_a \); solid line), the sensitivity increases. Here, \(K_s = 10^{-5} \), \(K_b = 10^{-5} \) and \(K_a = 10^{-4} \). (i) When \(K_d > K_a \), the effective Hill coefficients become extremely larger compared to those obtained with the sequestration and blocking (f). The circle, square, and triangle marks represent the parameter values used for (h).
Figure 3. The transcriptional NFL with multiple repression mechanisms can generate strong oscillations. (a) In the transcriptional NFL model, the transcription rate of mRNA (M) is determined by the transcriptional activity (E_A/E_T). (b) E_A/E_T changes more sensitively in response to \tilde{R}_T when more repression mechanisms are used, as shown in figure 2. (c) The NFL model with the sole blocking cannot generate rhythms (red dotted line), while the model with the multiple repressions can generate rhythms (blue dashed and green solid lines). In particular, the combination of the blocking, sequestration, and displacement can generate the strongest rhythms. Here, $A_T = 0.05$, $\tilde{K}_a = 10^{-4}$, $\tilde{K}_b = 10^{-5}$, $\tilde{K}_s = 10^{-5}$, and $\tilde{K}_d = 10^{-1}$ are used, and all trajectories are normalized by their own maximum value to compare their relative amplitudes. (d) As the displacement becomes ineffective (i.e., \tilde{R}_d becomes smaller than \tilde{R}_a), the relative amplitude decreases. (e) Similarly, as the blocking or sequestration becomes weaker (i.e., \tilde{R}_b or \tilde{R}_s increases), the relative amplitude decreases.
Figure 4. In the mammalian circadian clock, the disruption of synergistic multiple repressions weakens rhythms. (a) In the mammalian circadian clock, the transcriptional activity of CLOCK:BMAL1 is regulated by blocking-, sequestration-, and displacement-type repressions. Several mutations disrupting the combination of multiple repressions have been identified. BMAL1 transactivation domain mutations such as 619X and L606A L607A decrease the binding affinity.
between BMAL1 and CRY1 (i.e., K_b increases), weakening the blocking. CLOCKΔ19 has impaired binding with PER (i.e., K_s increase), disrupting the sequestration. A CK1δ+ mutation prevents the CK1δ-induced phosphorylation of CLOCK:BMAL1, which is essential for the effective displacement (i.e., K_d decreases). Furthermore, BMAL1Δbasic has impaired binding with the E-box (i.e., K_a increases), decreasing K_d/K_a and thus disrupting the effective displacement. (b) Schematic diagram showing the alteration of amplitudes by change in dissociation constants K_a and K_d based on the predictions in figure 3d. In the mammalian circadian clock, CLOCK:BMAL1 shows higher binding affinity with the E-box compared to the PER:CRY:CLOCK:BMAL1 complex (i.e., $K_d/K_a > 1$; below the gray line) [15], which is critical for strong rhythm generation according to our model prediction. (c-d) When K_a was increased by the BMAL1Δbasic mutation (c) and K_d was decreased by the CK1δ+ mutation (d), the amplitude of PER2-LUC rhythms was reduced to 0.5 and 0.6 compared to the WT mice, respectively. Adapted from [35] and [32]. (e) Schematic diagram showing the alteration of amplitudes by change in dissociation constants K_s and K_b based on the predictions in figure 3e. In the mammalian circadian clock, PER:CRY binds with CLOCK:BMAL1 tightly (i.e., small K_s) and CRY binds with CLOCK:BMAL1:E-box tightly (i.e., small K_b), which is crucial for strong rhythm generation according to our model prediction. (f) Indeed, as the dissociation constant between CRY and CLOCK:BMAL1:E-box (K_b) was increased by the BMAL1 619X mutation, the amplitude of PER2-LUC rhythms from fibroblasts in mutant mice was reduced to 0.4 compared to that in WT. The amplitude was further reduced when the K_b was further increased by the BMAL1 L606A L607A mutation. Adapted from [34]. (g) When the binding affinity between PER and CLOCK was decreased (i.e., K_s increased) by the CLOCKΔ19 mutation, the amplitude of PER2-LUC rhythms in the SCN of mutant mice was reduced to 0.7 compared to that in WT mice. Adapted from [33]. For each mutation, all adapted PER2-LUC rhythms of WT and mutant mice were measured under the same condition. However, amplitudes among different mutations cannot be compared due to different experimental conditions.