Handbook of normal frames and coordinates

Bozhidar Z. Iliev * † ‡

Short title: Handbook of normal frames and coordinates

Published in “Progress in Mathematical Physics”: Vol. 42, Birkhäuser, Basel, 2006

http://www.arXiv.org e-Print archive No.: math.DG/0610037

Produced: February 2, 2008

Subject Classes:

2000 MSC numbers: 53-02, 53B05, 53B99
53C05, 53C80, 53C99
53Z05, 57R55, 81Q99
83C99, 57R25

2003 PACS numbers: 02.40.Ma, 02.40.Vh
04.20.Cv, 04.50.+h

Key-Words:

Normal frame, Frame fields, Normal coordinates
Derivation, Covariant derivative, Linear connection
Connection in vector bundles, Connection on differentiable bundle
Parallel transport, Linear transport along paths, Transport along paths

*Laboratory of Mathematical Modeling in Physics, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Tzarigradsko chaussée 72, 1784 Sofia, Bulgaria
†E-mail address: bozho@inrne.bas.bg
‡URL: http://theo.inrne.bas.bg/~bozho/
Table of Contents

List of conventions xiii
Preface xv
Acknowledgments xix

I Manifolds, normal frames and Riemannian coordinates 1
1 Introduction 2
2 Differentiable manifolds 4
2.1 Basic definitions 4
2.2 Differentiable mappings 7
2.3 Tangent vectors and vector fields 8
2.4 Covectors and covector fields 15
2.5 Tensors and tensor fields. Tensor algebras 17
3 Linear connections on a differentiable manifold 19
3.1 Motivation 20
3.2 Basic definitions 21
3.3 Parallel transport 26
3.4 Geodesics and exponential mapping 30
4 Riemannian manifolds 33
5 Normal frames: general ideas, uniqueness and holonomicity 37
6 Normal coordinates on Riemannian manifolds 44
7 Examples of normal coordinates for Riemannian connections 49
8 Terminology 1: Bases and frames. Holonomicity 68
9 Conclusion 71

II Existence, uniqueness and construction of normal frames and coordinates for linear connections 73
1 Introduction 74
Table of Contents

II Existence, uniqueness and construction of normal frames and coordinates for linear connections 73

1 Introduction .. 74
2 The case at a single point 75
 2.1 Old classical method 75
 2.2 Complete description 79
 2.3 Modern classical method 82
3 The case along paths without self-intersections ... 84
 3.1 Fermi coordinates 85
 3.2 Complete description 93
4 The case in a neighborhood 104
 4.1 Conventional method 112
 4.2 Complete description 120
5 Examples of normal frames and coordinates 127
6 Conclusion .. 137

III Normal frames and coordinates for derivations on differentiable manifolds 139

1 Introduction .. 140

III Normal frames and coordinates for derivations on differentiable manifolds 139

1 Introduction .. 140

2 Derivations of the tensor algebra over a manifold ... 141

3 General overview 146

4 Frames and coordinates normal at a point 151

5 Frames and coordinates normal along paths 152

6 Frames and coordinates normal in a neighborhood ... 155

7 Frames and coordinates normal on submanifolds 156

8 Frames and coordinates normal along mappings 158
 8.1 Injective mappings 160
 8.2 Locally injective mappings 166
 8.3 Mappings between manifolds 167

9 Normal frames and coordinates for derivations along a fixed vector field 170
 9.1 The case at a single point 173
 9.2 The case along paths 176
 9.3 The case on the whole manifold 182
 9.4 Other cases 184

10 Normal frames and coordinates for derivations along paths .. 187

11 On frames simultaneously normal for two derivations ... 194

12 Normal frames for linear connections (review) 199

13 Examples ... 202

14 Terminology 2: Normal and geodesic frames 207
Table of Contents

15 Conclusion .. 208

IV Normal frames in vector bundles 211
 1 Introduction ... 212

IV Normal frames in vector bundles 211
 1 Introduction ... 212
 2 Vector bundles .. 214
 2.1 Basic definitions 215
 2.2 Liftings of paths .. 215
 2.3 Derivations along paths 217
 2.4 Tensor bundles ... 220
 3 Linear transports along paths in vector bundles 223
 3.1 Definition and general form 223
 3.2 Representations in frames along paths 226
 3.3 Linear transports and derivations along paths 228
 4 Normal frames for linear transports 232
 5 On the existence of normal frames 237
 6 The case of a manifold as a base 244
 7 Linear transports and normal frames in line bundles 252
 8 Normal frames for derivations in vector bundles with a manifold as a base ... 254
 9 Curvature and normal frames 258
 9.1 Curvature of linear transport or derivation along paths 259
 9.2 On the curvature of Euclidean transports along paths 265
 10 Torsion and normal coordinates 268
 10.1 Torsion of linear transport or derivation along paths in the tangent bundle over a manifold 269
 10.2 Holonomic normal frames in the tangent bundle 274
 11 Parallel transports in tangent bundles 278
 11.1 The parallel transport as a transport along paths 278
 11.2 Normal frames for parallel transports along paths 283
 12 Strong normal frames .. 286
 13 Linear transports assigned to derivations in tangent bundles 290
 13.1 Derivations along paths 290
 13.2 Derivations along vector fields 292
 13.3 Derivations along fixed vector field 293
 13.4 Normal frames .. 296
 14 Links with the theory of connections and parallel transports 298
 14.1 Parallelism structures, connections and covariant derivatives . 299
 14.2 Parallel transports in vector bundles 308
 14.3 Parallel transports and linear transports along paths 312
 14.4 Normal frames for parallel transports, connections and covariant derivatives 317
Table of Contents

14.5 On the role of the curvature .. 320
15 Autoparallel paths ... 322
16 On a fibre bundle view at quantum mechanics 325
17 Conclusion ... 328

V Normal frames for connections on differentiable fibre bundles 329
1 Introduction ... 330

V Normal frames for connections on differentiable fibre bundles 329
1 Introduction ... 330
2 Preliminaries .. 332
3 Connections on bundles ... 335
 3.1 Frames and coframes on the bundle space 335
 3.2 Connection theory .. 338
4 Connections on vector bundles ... 346
 4.1 Vertical lifts .. 346
 4.2 Linear connections on vector bundles 349
 4.3 Covariant derivatives in vector bundles 353
 4.4 Affine connections ... 357
5 General (co)frames .. 360
6 Normal frames .. 371
 6.1 The general case .. 371
 6.2 Normal frames adapted to holonomic frames 372
 6.3 Normal frames on vector bundles 376
7 Coordinates normal along injective mappings with non-vanishing horizontal component ... 379
8 Links between connections and transports along paths in fibre bundles ... 384
9 Conclusion ... 392

Bibliography ... 397

Author index ... 411

Notation index .. 413

Subject index .. 419
List of Tables

Chapter II

Table	Page
6.1 Main contributions in the theory of normal coordinates for torsionless linear connections	137

Chapter V

Table	Page
9.1 Main contributions in axiomatizing the concept of “parallel transport”	395
List of Figures

Chapter V

Chapter V 329

8.1 Mappings between the sets of parallel transports, connections and parallel transports along paths 393
List of Figures
List of conventions

References. The book is divided into chapters which have a sequential Roman enumeration. The chapters are divided into sections with a sequential Arabic enumeration, which is independent in each chapter. Some sections are divided into subsections.

In each chapter the subsections, equations, propositions, theorems, lemmas, and so on have a double independent enumeration of the form \(m.n \) or \((m.n)\) for the equations, where \(m \) is the number of the section in which the designated item appears and \(n \) is its sequential number in it. So, proposition 4.7 and (3.12) (or equation (3.12)) mean respectively proposition 7 in section 4 and equation 12 in section 3 of the current chapter. A suitable item from a chapter different from the current one is referred as \(R.m \), \(R.m.n \) or \((R.m.n)\) for equations, where \(R=I,II, \ldots \) is the Roman number of the chapter in which the item appears; e.g. remark II.5.3 and IV.4 (or section IV.4) mean respectively remark 3 in section 5 of chapter II and section 4 in chapter IV.

The footnotes are indicated as superscripts in the main text and have independent Arabic enumeration in each section. When we refer to a footnote, it is on the current page if the page on which it appears is not explicitly indicated.

Citations. An Arabic number in square brackets, e.g. [27], directs the reader to the list of references, i.e. in this example [27] means the 27th item from the Bibliography list beginning on page 397.

The ends of the proofs are marked by empty square sign, viz. with \(\square \).

Indices. The Latin indices refer to an arbitrary linear (vector) space, in particular to the tangent and cotangent spaces. If in a given problem are presented the tangent and cotangent spaces to a manifold and other vector space(s), then the indices referring to the first two spaces are denoted with small Greek letters; for the rest one(s) the Latin letters will be used.

Einstein’s summation convention: in a product of quantities or in a single expression, a summation over indices repeated on different levels is assumed over
the whole range in which they change. Any exception of this rule is explicitly stated.

Symmetrization and antisymmetrization. On indices included in (or surrounded by) round (resp. square) brackets a symmetrization (resp. antisymmetrization) with coefficient one over the factorial of their number is assumed. If some indices in such a group have to be excluded from this operation, they are included in (surrounded by) vertical bars.

Matrix of linear mapping with respect to a given basis, or bases, or field of, possibly local, bases: the same symbol but the kernel letter is in **boldface**. Exception: the matrix of a derivation (derivative operator) is denoted by boldface capital Greek letter gamma, i.e. by Γ, possibly with some indices.

Matrix elements. When the elements of a (two-dimensional) matrix are labeled by superscript and subscript, the superscript is considered as a first index, numbering the matrix’s rows, and the subscript as a second one, numbering the matrix’s columns. In this way the matrix of composition of linear mappings is equal to the product of the matrices of the mappings in the same order in which they appear in the composition and this does not depend on the way the matrix’s indices are situated.

Free arguments. If we want to show explicitly the argument(s) of some mapping or to single out it (them) as arbitrary while the other arguments, if any, are considered as fixed ones, we denote it (them) by (centered) dot, i.e. by \cdot. E.g., if $f: A \to C$ and $g: A \times B \to C$, then $f(\cdot) \equiv f$, $g(\cdot, \cdot) \equiv g$, and $g(\cdot, b), b \in B$, means $g(\cdot, b): A \to C$ with $g(\cdot, b): a \mapsto g(a, b)$ for all $a \in A$.
Preface

The main subject of this book is an up-to-date and in-depth survey of the theory of normal frames and coordinates in differential geometry. The existing results, as well as new ones obtained lately by the author, on the theme are presented.

The text is so organized that it can serve equally well as a reference manual, introduction to and review of the current research on the topic. Correspondingly, the possible audience ranges from graduate and post-graduate students to scientists working in differential geometry and theoretical/mathematical physics. This is reflected in the bibliography which consists mainly of standard (text)books and journal articles.

The present monograph is the first attempt for collecting the known facts concerning normal frames and coordinates into a single publication. For that reason, the considerations and most of the proofs are given in details.

Conventionally local coordinates or frames, which can be holonomic or not, are called normal if in them the coefficients of a linear connection vanish on some subset, usually a submanifold, of a differentiable manifold. Until recently the existence of normal frames was known (proved) only for symmetric linear connections on submanifolds of a manifold. Now the problems concerning normal frames for derivations of the tensor algebra over a differentiable manifold are well investigate; in particular they completely cover the exploration of normal frames for arbitrary linear connections on a manifold. These rigorous results are important in connection with some physical applications. They may be applied for rigorous analysis of the equivalence principle. This results in two general conclusions: the (strong) equivalence principle (in its 'conventional' formulations) is a provable theorem and the normal frames are the mathematical realization of the physical concept of 'inertial' frames. The normal frames find other important physical application in the bundle formulation of quantum mechanics. It turns out that in a normal frame the bundle Heisenberg and Shrödinger pictures of motion coincide.

Applying some freedom of language, we can state the general physical idea: the normal frames are the most suitable ones for describing free objects and events, i.e. such that on them do not act any forces. Regardless of the different realizations of that idea in general relativity and its generalizations, quantum mechanics, gauge theories etc., there is an underlying mathematical background for the general description of such situations: the existence (or non-existence) of normal frames.
in vector bundles. This observation fixes to a great extent the mathematical tools required for the description of some fundamental physical theories.

In the book, formally, may be distinguished three parts: The first one includes chapters I–III and deals with a variety of mathematical problems concerning normal frames and coordinates on differentiable manifolds. The second part consists of chapters IV and V and investigates normal frames (and possibly coordinates) in vector bundles and differentiable bundles, respectively. The last part, involving the text after chapter V, contains inquiry material.

The requisite mathematical language required for the description of normal frames is spread over the initial sections of the chapters. In particular, sections I.2–I.4, III.2, IV.9, IV.2, IV.14.1 and V.2–V.5 can be collected into an introductory chapter under the title “Mathematical preliminaries” \(^1\) but this is not done by pedagogical reasons. \(^2\) The normal coordinates and frames, in the case of linear connections on a manifold, are initially introduced in chapter I. It contains our basic preliminary material and a review of the Riemannian coordinates. Chapter II is devoted to the existence, uniqueness, construction and other related problems concerning normal frames and coordinates in manifolds endowed with linear connection. It presents, in historical order, a detailed review of the existing literature as well as generalization of a number of results, e.g. for connections with torsion. Further, in chapter III, problems connected with the existence, uniqueness, holonomicity etc. of normal frames for arbitrary derivations of the tensor algebra over a manifold are investigated. Next (chapter IV), the same range of problems is explored for normal frames for linear transports in vector bundles. This material covers completely the special case of normal frames for linear connections in vector bundles or on a differentiable manifold. The main aim of chapter V is the exploration of normal frames (and coordinates, if any) for general connections on differentiable fibre bundles which, in particular, can be vector ones.

The general approach of the book is essentially coordinate-dependent or basis-dependent. This is due to its basic subject: frames, bases or coordinates with some special properties. However, if possible and suitable, the coordinate-free notation and methods are not neglected.

The basic mathematical prerequisites vary from chapter to chapter but generically they include the grounds of vector (linear) spaces, differentiable manifolds, vector bundles, connection theory, and a firm belief in the existence and uniqueness theorems of ordinary differential equations. Some of the corresponding concepts and results are reproduced in our text but the acquaintance with adequate literature is required. Appropriate references are given in the Introductions to the chapters and directly in the main text.

The material is so organized that a successive chapter generalizes the pre-

\(^1\) As (practically) any ‘preliminary’ knowledge requires for its understanding some other ‘preliminary’ to it knowledge, in the corresponding sections are cited a number of works containing this second kind of mathematical ‘luggage’.

\(^2\) The material is so organized, that the required concepts and results appear in the logical order in which they are necessary for some particular purpose(s).
Any suggestions and comments are welcome. The author’s postal address is
Bozhidar Zakhariev Iliev, Laboratory of Mathematical Modeling in Physics,
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of
Sciences, Boul. Tzarigradsko chaussée 72, 1784 Sofia, Bulgaria,

his e-mail address is
bozho@inrne.bas.bg

and

http://theo.inrne.bas.bg/~bozho/

is the URL address of his personal World Wide Web site.

Sofia, Bulgaria
7 July, 2006
PREFACE
Acknowledgments

The idea for writing a book on normal frames and coordinates in differential geometry was suggested by professor Dr. Michiel Hazewinkel (Centre for Mathematics and computer science, Amsterdam, The Netherlands) to the author in October 1998. I express to him my sincere gratitude for this.

I would like to thank Prof. Dr. Stancho Dimiev and mathematician Vladimir Aleksandrov (Mathematical Institute of Bulgarian Academy of Sciences) for the encouragement and fruitful conversations at the early stages of my investigations on normal frames. Special thanks to professor Dr. Sava Manov (1943–2005) (Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences). During 1991–1996 he read the manuscripts of some my papers on the subject. With him I have had many useful discussions concerning, first of all, the applications of normal frames to gravity physics. I am indebted to prof. N.A. Chernikov for his hospitality during my numerous visits in the Joint Institute for Nuclear Research, Dubna, Russia.

The (anonymous for me) referees from Journal of Physics A: Mathematical and General helped me with many suggestions and improvements. I would like to thank them also.

The entire manuscript was typeset by the author by means of the main \LaTeX 2 document preparation computer system together with a number of additional to it packages of programs, including first of all AMS-\LaTeX, AMS-fonts, Bu\LaTeX, MakeIndex, Index, etc. My gratitude to all of the numerous persons who created and developed, maintain and distribute (free!) this valuable and high-quality typesetting system.

I would like to express my deep gratitude to my mother Dr. Lilyana Stefanova Shtereva for her understanding, support, love and faith in me.

The work on this monograph was partially supported by the National Science Fund of Bulgaria under Grant No. F 1515/2005.

Bozhidar Z. Iliev

11 July, 2006
Sofia, Bulgaria
Chapter I

Manifolds, normal frames and Riemannian coordinates

The basic differential-geometric concepts, such as differentiable manifolds and mappings, tensors and tensor fields, and linear connections, on which the book rests, are introduced. Partially the notation and terminology employed are fixed. The normal frames and coordinates are defined as ones in which the coefficients of a linear connection in them vanish on some set. Certain their general properties are mentioned. The Riemannian coordinates, which are normal at their origin, are described.
1. Introduction

The goal of this chapter is twofold: it introduces most of the basic preliminary definitions and results on which our investigation rests (sections 2, 3, and 4) and it begins the study of the normal frames and coordinates (sections 5 and 6).

The main concepts of differential geometry required for the understanding of the book are: differentiable manifolds and mappings, submanifolds, Riemannian manifolds, tangent vectors and vector fields, tensors and tensor fields, linear connections. The readers acquainted with them may only look over the corresponding sections for our notation, omitting the major text to which they may wish to return later, following the references to it.

In more details, the contents of the chapter is as follows.

The purpose of Sect. 2 is to fix our terminology and notation concerning differentiable manifolds and some typical to them natural structures. This is not a summary of the differential geometry, only certain basic concepts and particular relations between them required for our future aims are presented. At first the concepts of topological and differentiable manifolds are introduced, then tangent vectors, cotangent vectors, and tensors and the corresponding fields of them on a manifold are defined. Also some expressions in local bases (or frames) and coordinates are given. If the reader is acquainted with all this, he/she can simply look over this section for our notation skipping the main text. A reader interested in deeper understanding of these concepts, as well as in differential geometry as a whole, should consult with the specialized literature. Here is a (random) selection of such titles. An elementary introduction to differential geometry, with ‘physical’ orientation, can be found in [1–6]. The same purpose can serve the books [7–10] which are more ‘mathematically’ oriented. Our text follows the excellent (text)books [11,12]. At last, the advanced works [13–16] can be recommended. A brief synopsis of the mathematics preceding the introduction of manifolds is given it [9,14,16] while [12,17] contain an expanded presentation of the ‘preliminary’ to manifolds material. Of course, the reading of all of the above-mentioned serious books is not necessary for the understanding of what follows. For this end, the reading of Sect. 2 is sufficient and the references cited may be consulted for more detains and proofs of some assertions. The knowledge of the tensor analysis in coordinate-dependent language is desirable [18,19]. It is almost sufficient for the most of this and subsequent chapters.

In Sect. 3, we introduce the concept of linear connection on a manifold. The approach chosen is, in a sense, middle between elementary books on general relativity, such as [20,21], and pure mathematical ones on differential geometry, like [11,22]. We have tried to follow closely [9,11,12] but the abstracting material is adapted to the goals of the present book. After a motivation for what the connections are needed for, we introduce the linear connections via a system of axioms for the covariant derivative of the algebra of tensor fields over a given manifold. We employ this method since the theory of vector bundles, which is not required for chapters I–III, will be involve into action only at the beginning of
chapter IV. In this connection, let us mention that the linear connections can be defined only on the algebra of vector fields on a manifold (i.e. to the tangent to it bundle), and then they admit a unique extension on the whole algebra of tensor fields [11, chapter 3, proposition 7.5]. A more advanced and deep treatment of the theory of linear connections on manifolds and vector bundles can be found in [10,13,15,22,23]. We also present the notion of a parallel transport (induced by a linear connection) which will practically step on scene in chapter IV but here is a natural place for it to appear. It will be used in chapters I–III for proving and formulating some results. Sect. 3 ends with a brief consideration of the geodesics and exponential mapping.

The concept of Riemannian metric and Riemannian connection are given in Sect. 4. If the reader is interested in essence of Riemannian geometry, he/she is referred, for example, to [8–12,19,24–27].

In Sect 5, we introduce the main objects of our investigation, the normal frames and coordinates. We define them as ones in which the coefficients of a linear connection vanish on a given set. Some considerations on the uniqueness and (an)holonomicity of the normal frames are presented too.

Sect. 6 contains a complete description of normal frames at a given point on \((C^\infty)\) Riemannian manifolds. This is done on the base of Riemannian coordinates which turn to be normal at their origin. The geodesic coordinates are pointed as other example of coordinates normal at a point. Some general results, proved further in chapter II, concerning the existence of normal frames on submanifolds are quoted. An expanded presentation of the problem of existence of normal coordinates at a point of a \(C^\infty\) Riemannian manifold is given in [19,24], where also a list of original early works on this topic can be found.

Sect. 7 are presented a number of examples and exercises of concrete Riemannian connection and coordinates/frames normal for them on different sets. At first, the (locally) Euclidean and one-dimensional manifolds are considered. The (pseudo)spherical coordinates on (pseudo)spheres are (partially) investigated for sets on which they are normal for the Riemannian connection induced on them by the metric on them generated by the Euclidean one of the Euclidean space in which the (pseudo)spheres are embedded. Similar instance on the two dimensional torus is presented. The cosmological models of Einstein, de Sitter and Schwarzschild are considered (in concrete coordinates) from the view-point of normal frames/coordinates on them. Some peculiarities of the light cone in Minkowski spacetime are pointed too.

Sect. 8 deals with certain terminological problems concerning bases and frames. Some links between these concepts are explicitly formulated and/or derived.

The chapter ends with some general remarks and conclusions in Sect. 9.
Chapter II

Existence, uniqueness and construction of normal frames and coordinates for linear connections

An in-depth investigation of existence, uniqueness and construction of frames and coordinates normal for linear connections on manifolds is given. Detailed review of the literature dealing with normal coordinates is presented. Some proofs are improved/generalized which entails a number of new results. Similar problems in the case with non-zero torsion are studied. Main results: For arbitrary (resp. torsionless) connections frames (resp. coordinates) normal at a single point and along path exist; they exist on submanifolds of higher dimensions iff the parallel transport along paths lying in them is path-independent. Complete constructive description of all, if any, frames and coordinates normal for arbitrary linear connections.
CHAPTER II. NORMAL FRAMES FOR CONNECTIONS

1. Introduction

This chapter presents a complete exploration of the problems linked to the existence, uniqueness, and construction of normal coordinates and frames for manifolds endowed with a linear connection, with or without torsion. The review of the literature dealing with normal coordinates is mixed with new results. Such are, first of all, the ones concerning normal frames, connections with non-vanishing torsion, and the complete constructive description of the normal coordinates, if any.

The methods for description of normal coordinates/frames on Riemannian manifolds can mutatis mutandis be transferred on arbitrary manifolds, real or complex \((K = \mathbb{R}, \mathbb{C})\), \(^1\) endowed with linear connection. The possibility for this is hidden in the fact that the existence and properties of the normal coordinates/frames on a Riemannian manifold is intrinsically connected with the properties of the Christoffel symbols, i.e. with the Riemannian connection, not with the particular metric generating them. After this situation was clearly understood, somewhere in 1922–1927 [50, 72–74] (see [19, p. 155] for other references), the attention of the mathematicians, working in the field, was completely switched to the exploration of normal coordinates on manifolds with linear connections. Practically only the symmetric (torsionless) case has been investigated (see the comments after remark I. 5.4 on page 41). Some random works, like [44, 75], dealing with the asymmetric case (non-zero torsion) do not add nothing new as they simply note that the symmetric parts (I.3.9) of the connection coefficients (in coordinate frame) are coefficients of a symmetric linear connection to which the known results for torsionless connections are applicable.

Below in this chapter, in more or less modern terms and notation, are reviewed all results concerning the existence of normal coordinates/frames on manifolds endowed with symmetric linear connection. It contains a number of original new results too.

At first (Sect. 2), we concentrate on coordinates or frames normal at a single point. We present the known classical methods in this field [18, 19, 70] and then, modifying the methods that will be given in chapter III in full generality, we present a full description of these coordinates/frames.

In Sect. 3 the attention is turned on the coordinates or frames normal along paths without self-intersections. For symmetric linear connections, we give a detailed description of the Fermi coordinates as the first known coordinates of this kind with [19] being our basic reference. Then, modifying the methods developed for similar but more general problems (see chapter III and [76]), we derive a complete description of all coordinates or frames normal along paths without self-intersections or along locally injective paths in manifolds with symmetric or, respectively, arbitrary linear connections.

Several pages deal with problems concerning normal frames and coordinates on submanifolds with maximum dimensionality (Sect. 4), in particular on neigh-

\(^1\) In the literature is often supposed \(K = \mathbb{R}\) but this does not influence the results.
1. INTRODUCTION

borhoods and on the whole manifold. We prove that such frames or coordinates exist iff the connection is (locally) respectively flat or flat and torsionless. A complete description of the normal frames and coordinates in these cases is presented. We also point to some links between normal frames and parallel transports for flat linear connections.

Section 4 explores the problems of existence, uniqueness, and construction of frames or coordinates normal on arbitrary submanifolds. The classical results of [55] are reproduced in details using modern notation. Meanwhile, the corresponding proofs are improved, some results are generalized for arbitrary connections, with or without torsion, and new ones are presented. Next, we provide a complete constructive description of all frames (resp. coordinates) normal on submanifolds of a manifold with arbitrary (resp. torsionless) linear connection. Amongst a number of general results, we prove that normal on a submanifold frames (resp. coordinates) exist iff the parallel transport is path-independent along paths lying entirely in it (resp. and the connection is torsionless).

Section 5 contains instances and exercises illustrating the general theory of this chapter. Explicit expressions for frames and coordinates normal at a single point in and along a great circle on a two dimensional sphere are presented in a case of the Riemannian connection induced from the Euclidean space in which the sphere is embedded. Some problems connected with frames/coordinates normal for Weyl connections are investigated. All frames/coordinates normal in the one-dimensional case are explicitly described. Similar problem is solved along a geodesic path in 2-dimensional manifold. All coordinates normal at a point in Einstein-de Sitter spacetime are found.

A brief recapitulation of the above items can be found in Sect 6.
Chapter III

Normal frames and coordinates for derivations on differentiable manifolds

The existence, uniqueness, and construction of frames and coordinates normal for derivations (along vector fields, fixed vector field, paths, and fixed path) of the tensor algebra over a manifold are explored in details. For arbitrary vector fields or paths, normal frames (resp. coordinates) exist always (resp. if the torsion vanishes); on other submanifolds or along more general mappings necessary and sufficient conditions for such existence are derived. For derivations along fixed vector field or path normal frames and coordinates exist always. With a few exceptions, a complete constructive description of the normal frames and coordinates, if any, is presented. Frames simultaneously normal for two derivations are studied. With respect to the normal frames, the unique role of the linear connections amongst the other derivations is pointed out.
1. Introduction

The aim of this chapter is the investigation of frames and coordinates normal for different kinds of derivations of the tensor algebra over a differentiable manifold. Since the linear connections are a particular example of such derivations, the presented here material is a direct continuation and generalization of the one in chapter II. But, as we shall see, a number of problems concerning normal frames and charts for general derivations are ‘locally’ reduced to the same problems for linear connections and, consequently, their (local) solutions could be found, in more or less ready form, in chapter II.

Some of the results in the present chapter are partially based on the ones in the series of works [76, 80, 83–87] and are completely revised and generalized their versions. But most of the material is new and original.

Sect. 2 has an introductory character. The concepts of derivations and derivations along vector fields of the tensor algebra over a manifold are introduced. Their components, coefficients (if they are linear), curvature, and torsion are defined. Next, in section 3, the normal frames and coordinates are defined as ones in which the components of a derivation along vector fields vanish (on some set). The equations describing the transition to normal frames or coordinates are derived and the linearity of a derivation along vector fields is pointed as a necessary conditions for their existence.

In Sect. 4 (resp. Sect. 5) is proved that at a single point (resp. along a (locally injective) path) frames normal for a linear at it (resp. along it) derivation along vector fields always exist and their complete descriptions are given. Besides, if the derivation is torsionless, all normal coordinates are found. In sections 6–8, the problems of existence, uniqueness, and complete description of frames and local charts (or coordinates) on neighborhoods, on submanifolds, and along (injective or locally injective) mappings, respectively, for derivations along vector fields are studied in details and solved.

To the problems concerning frames or coordinates normal for derivations along fixed vector field is devoted Sect. 9. The existence of normal frames and coordinates in this case is proved. A complete description of the frames normal at a single point, along a path, and on the whole manifold are presented. The local charts (or coordinates) normal at a point are completely described. Along a path the explicit system of differential equations, which the normal coordinates must satisfy and which always have (local) solutions, is derived. A method for obtaining the coordinates (locally) normal on the whole manifold is pointed in the C^∞ case.

Normal frames for derivations along paths are investigated in section 10. After the introduction of the basic definitions and notation, it is proved that frames normal for a derivation along a given (fixed) path always exist and their general form is found. A (local) holonomic extension of such frames, as well as of any other frame defined only along a path, is constructed. For derivations along arbitrary paths is proved that they admit normal frames iff they are covariant derivatives along paths induced by linear connections for which normal frames
exist. Since the normal frames for the derivations and connections turn to be identical, all problems for these frames are transferred to similar ones considered in chapter II.

Section 11 deals with problems connected with frames simultaneously normal for two derivations along arbitrary/fixed vector field or path. Necessary and sufficient conditions for the existence of such frames are found. In particular, in the case of arbitrary vector field or path, they exist iff the two derivations coincide. Normal frames for mixed linear connections are explored. It is shown that this range of problems is completely and equivalently reduced to similar one for two, possibly identical, linear connections, the contra- and co-variant ‘parts’ of the initial mixed connection.

In section 12 are collected and commented some results concerning linear connections obtained in the preceding sections of this chapter.

Section 13 illustrates the theory of the preceding sections with concrete examples.

Section 14 contains a discussion of some terminological problems linked to the normal frames or coordinates.

The chapter ends with certain general remarks in Sect. 15.
CHAPTER III. NORMAL FRAMES ON MANIFOLDS
Chapter IV

Normal frames in vector bundles

The theory of linear transports along paths in vector bundles, generalizing the parallel transports generated by linear connections, is developed. The normal frames for them are defined as ones in which their matrices are the identity one. A number of results, including theorems of existence and uniqueness, concerning normal frames are derived. Special attention is paid to the case when the bundle’s base is a manifold. The normal frames are defined and investigated also for derivations along paths and along tangent vector fields in the last case. Frames normal at a single point or along a given path always exist. On other subsets normal frames exist only in the curvature free case. The privileged role of the parallel transports is pointed out in this context.
1. Introduction

The analysis of corollary II. 4.4 on page 123 reveals that the properties of the parallel transport assigned to a linear connection, not directly the ones of the connection itself, are responsible for the existence of frames normal on a submanifold for the connection. \(^1\) This observation forms the groundwork of the idea the ‘normal’ frames to be defined directly for (parallel) transports without referring to the concept of a (linear) connection (or some other derivation along vector fields). The main obstacle for the realization of such an approach to ‘normal frames’ is that, ordinary, the concept of a parallel transport is a secondary one, it is introduced on the base of the concept of a (linear) connection. To the solution of the last problem and the development of the mentioned approach to normal frames (in finite dimensional vector bundles) is devoted the present chapter of the book. As we shall demonstrate below, the consistent realization of the above idea leads to a completely new look on the ‘normal frames’, which is self-contained and incorporates as special cases all of the results of the preceding chapters.

The material in sections 3–6 and 8 is based on the work \([102]\) and the one after them is practically new and written especially for the present book. \(^2\)

In the present chapter is studied a wide range of problems concerning frames normal for linear transports and derivations along paths in vector bundles and for derivations along tangent vector fields in the case when the bundle’s base is a differentiable manifold. In the last case, when tangent bundles are concerned, the only general result, known to the author and regarding normal frames, is \([23, p. 102, \text{theorem 2.106}]\).

The structure of this chapter is as follows.

Sect 2 introduces some basic concepts from the theory of (fibre) bundles, in particular of the one of vector bundles, required for the investigations in this chapter. After the concepts of bundle, section, and vector bundle are fixed, a special attention to the ones of liftings of paths and derivations along paths, which will play an important role further, is paid. The tensor bundles over a manifold are pointed as particular examples of vector bundles. Details on these and many other concepts regarding (fibre) bundles, the reader can find in the monographs \([7, 11, 106–110]\).

Sect. 3 is devoted to the general theory of linear transports along paths in vector fibre bundles which is a far reaching generalization of the theory of parallel transports generated by linear connections. \(^3\) The general form and other properties of these transports are studied. A bijective correspondence between them and derivations along paths is established. In Sect. 4, the normal frames are defined

\(^1\) Here the situation is similar to the one described in the second paragraph of Sect. II. 1 on page 74: the properties of the Christoffel symbols, not directly the ones of the Riemannian metric generating them, are fully responsible for the existence of coordinates normal at a single point in a Riemannian manifold.

\(^2\) Although, some initial ideas and results are borrowed from the papers \([103–105]\).

\(^3\) This section is based on the early works \([101, 105, 111–115]\) of the author. For some more general results, see chapter V.
1. INTRODUCTION

as ones in which the matrix of a linear transport along paths is the identity (unit) one or, equivalently, in which its coefficients, as defined in Sect. 3, vanish 'locally'. A number of properties of the normal frames are found. In Sect. 5 is explored the problem of existence of normal frames. Several necessary and sufficient conditions for such existence are proved and the explicit construction of normal frames, if any, is presented.

Sect. 6 concentrates on, possibly, the most important special case of frames normal for linear transports or derivations along smooth paths in vector bundles with a differentiable manifold as a base. A specific necessary and sufficient condition for existence of normal frames in that case is proved. In particular, normal frames may exist only for those linear transports or derivations along paths whose (2–index) coefficients linearly depend on the vector tangent to the path along which they act. Obviously, this is a generalization of the derivation along curves assigned to a linear connection. Sect. 8 is devoted to problems concerning frames normal for derivations along tangent vector fields in a bundle with a manifold as a base. Necessary and sufficient conditions for the existence of these frames are derived. The conclusion is made that there is a one-to-one onto correspondence between the sets of linear transports along paths, derivations along paths, and derivations along tangent vector fields all of which admit normal frames.

In the first part of Sect. 9, based on [103], the concept of a curvature of a linear transport along paths is introduced and some its properties are explored. In its second part, relations between the curvature of a linear transports along paths and the frames normal for them are studied. The main result is that only the curvature free transports admit normal frames. The concept of a torsion of a linear transport along paths in the tangent bundle over a manifold is introduced in Sect. 10 (cf. the early paper [103]). Links between the torsion and holonomic normal frames are investigated. The vanishment of the torsion is pointed as a necessary and sufficient condition for existence of normal coordinates on submanifolds. If such coordinates exist, their complete description is given.

Sect. 11 deals with parallel transports in the tangent bundles over manifolds and frames normal for these transports. It is shown that the parallel transport assigned to a linear connection is a special kind of a linear transport in tangent bundles. As a side result, an axiomatic definition of a parallel transport is obtained, on the base of which a new definition of a linear connection, equivalent to the usual one, is given. The flat parallel transports are pointed as the only linear transports along paths in tangent bundles which transports admit normal frames. The coordinates normal for flat and torsionless parallel transports are explicitly presented.

Sect. 12 concerns a special type of normal frames in which the 3-index coefficients, if any, of a linear transport along paths vanish.

Sect. 13 is similar to Sect. 11, but it deals with the interrelations between different types of derivations along vector fields over a manifold and the linear transports along paths in the tangent bundle over it. As examples, particular derivations or transports, such as Fermi-Walker, Jaumann, etc., are considered.
CHAPTER IV. NORMAL FRAMES IN VECTOR BUNDLES

The aim of Sect. 14 is twofold. On one hand (Subsections 14.1–14.3), the rigorous relations between the theory of linear transports along paths in vector bundles and the one of parallel transports and connections in these bundles are investigated. On the base of the axiomatic approach to the theory of parallel transports, as presented in [23], we show how it (and hence the one of connections) is incorporated as a special case in the general theory of linear transports along paths. On another hand (subsections 14.4 and 14.5), we demonstrate how the results concerning normal frames and derived for linear connections on manifolds and linear transports along paths are almost in extenso applicable to the theory of parallel transports and connections on vector bundles.

In Sect. 15 is introduced the notion of autoparallel paths in manifolds whose tangent bundle is endowed with a linear transport along paths. If this transport is a parallel one, it is proved that the autoparallels coincide with the geodesics of the linear connection generating the transport.

The chapter ends with some notes in Sect. 17.

All fibre bundles in this chapter are vectorial ones. The base and total bundle space of such bundles can be general topological spaces. However, if some kind of differentiation in one/both of these spaces is needed to be introduced (considered), it/they should possess a smooth structure; if this is the case, we require it/they to be smooth, of class \(C^1 \), differentiable manifold(s). Starting from Sect. 6, the base and total bundle space are supposed to be \(C^1 \) manifolds. Sections 3–5 do not depend on the existence of a smoothness structure in the bundle’s base. Smoothness of the bundle space is partially required in sections 2–5. \(^4\)

\(^4\) The bundle space is required to be a \(C^1 \) manifold in Sect 2 (starting from definition 2.1), in definition 4.1', in proposition 4.1–4.2, if (4.1c) and (4.1d) are taken into account, in theorem 5.2, and in proposition 5.6.
Chapter V

Normal frames for connections on differentiable fibre bundles

The general connection theory on differentiable fibre bundles, with emphasis on the vector ones, is partially considered. The theory of frames normal for general connections on these bundles is developed. Links with the theory of frames normal for linear connections in vector bundles are revealed. Existence of bundle coordinates normal at a given injective horizontal point and/or along injective horizontal mappings is proved. The concept of a transport along paths in differentiable bundles is introduced. Different links between connections, parallel transports (along paths) and transports along paths are investigated.
1. Introduction

All connections considered until now, on manifolds and on vector bundles, were linear. It is well known that there exist non-linear connections on vector bundles as well as on non-vector ones. Can normal frames (and/or coordinates) be introduced for such more general connections? The positive solution of that problem is the main goal of the present chapter of this book. For the purpose and for a comparison with the definitions and results already obtained is required some preliminary material on general connection theory on differentiable bundles, which is collected in sections 2–5. On its base, the normal frames for connections on such bundles are studied in sections 6 and 7.

Sections 2–5 follow the work [137], sections 6 and 7 are a slightly revised version of [139], and section 8 reproduces in a modified form the paper [118].

The work is organized as follows.

In Sect. 2 is collected some introductory material, like the notion of Lie derivatives and distributions on manifolds, needed for our exposition. Here some of our notation is fixed too.

Section 3 is devoted to the general connection theory on bundles whose base and bundles spaces are differentiable manifolds. From different view-points, this theory can be found in many works, like [6, 7, 10–13, 16, 28, 60, 98, 106, 107, 117, 138, 140–146]. In Subsect. 3.1 are reviewed some coordinates and frames/bases on the bundle space which are compatible with the fibre structure of a bundle. Subsect. 3.2 deals with the general connection theory. A connection on a bundle is defined as a distribution on its bundle space which is complimentary to the vertical distribution on it. The notions of parallel transport generated by connection and of specialized frame are introduced. The fibre coefficients and fibre components of the curvature of a connection are defined via part of the components of the anholonomicity object of a specialized frame. Frames adapted to local bundle coordinates are introduced and the local (2-index) coefficients in them of a connection are defined; their transformation law is derived and it is proved that a geometrical object with such transformation law uniquely defines a connection.

In Sect. 4, the general connection theory from Sect. 3 is specified on vector bundles. The most important structures in/on them are the ones that are consistent/compatible with the vector space structure of their fibres. The vertical lifts of sections of a vector bundle and the horizontal lifts of vector fields on its base are investigated in more details in Subsect. 4.1. Subsect. 4.2 is devoted to linear connections on vector bundles, i.e. connections such that the assigned to them parallel transport is a linear mapping. It is proved that the 2-index coefficients of a linear connection are linear in the fibre coordinates, which leads to the introduction of the (3-index) coefficients of the connection; the latter coefficients being defined on the base space. The transformations of different objects under changes of vector

1 The presentation of the material in sections 2–4 is according to some of the main ideas of [138, chapters 1 and 2], but their realization here is quite different and follows the modern trends in differential geometry.
bundle coordinates are explored. The covariant derivatives are introduced and investigated in Subsect. 4.3. They are defined via the Lie derivatives [138] and a mapping realizing an isomorphism between the vertical vector fields on the bundle space and the sections of the bundle. The equivalence of that definition with the widespread one, defining them as mappings on the module of sections of the bundle with suitable properties, is proved. In Subsect. 4.4, the affine connections on vector bundles are considered briefly.

In Section 5, some of the results of the previous sections are generalized when frames more general than the ones generated by local coordinates on the bundle space are employed. The most general such frames, compatible with the fibre structure, and the frames adapted to them are investigated. The main differential-geometric objects, introduced in the previous sections, are considered in such general frames. Particular attention is paid on the case of a vector bundle. In vector bundles, a bijective correspondence between the mentioned general frames and pairs of bases, in the vector fields over the base and in the sections of the bundle, is proved. The (3-index) coefficients of a connection in such pairs of frames and their transformation laws are considered. The covariant derivatives are also mentioned on that context.

The theory of normal frames for connections on bundles is considered in Section 6. Subsect. 6.1 deals with the general case. Loosely said, an adapted frame is called normal if the 2-index coefficients of a connection vanish in it (on some set). It happens that a frame is normal if and only if it coincides with the frame it is adapted to. The set of these frames is completely described in the most general case. The problems of existence, uniqueness, etc. of normal frames adapted to holonomic frames, i.e., adapted to local coordinates, are discussed in Subsect. 6.2. If such frames exist, their general form is described. The existence of frames normal at a given point and/or along an injective horizontal path is proved. The flatness of a connection on an open set is pointed as a necessary condition of existence of (locally) holonomic frames normal on that set. Some links between the general theory of normal frames and the one of normal frames in vector bundles, presented in chapter IV, are given in Subsect. 6.3. It is proved that a frame is normal on a vector bundle with linear connection if and only if in it vanish the 3-index coefficients of the connection. The equivalence of the both theories on vector bundles is established.

In section 7 is formulated and proved a necessary and sufficient condition for existence of coordinates normal along injective mappings with non-vanishing horizontal component, in particular along injective horizontal mappings.

Section 8 is devoted to some aspects of the axiomatical approach to parallel transport theory [17, 23, 30–33, 91, 147–150] and its relations to connection theory; it is based on the paper [118]. It starts with a definition of a transport along paths in a bundle and a result stating that, under some assumptions, it defines a connection. The most important properties of the parallel transports generated by connections are used to be (axiomatically) defined the concept of a parallel transport (irrespectively to some connection on a bundle). In a series of results
are constructed bijective mappings between the sets of transports along paths satisfying some additional conditions, connections, and parallel transports. In this way, two different, but equivalent, systems of axioms defining the concept “parallel transport” will be established.

The chapter ends with some remarks and conclusions in Sect. 9.
CHAPTER V. NORMAL FRAMES FOR CONNECTIONS ON BUNDLES
Bibliography

[1] Bernard F. Schutz. *Geometrical methods of mathematical physics*. Cambridge University Press, Cambridge-London-New York- New Rochelle-Melbourne-Sydney, 1982. Russian translation: Mir, Moscow, 1984.

[2] Chris J. Isham. *Modern differential geometry for physicists*, volume 32 of *World scientific lecture notes in physics*. World scientific, Singapore, 1989.

[3] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko. *Modern geometry: methods and applications, pt. 1*, volume 93 of *Graduate text in Mathematics: The geometry of surfaces, transformation groups, and fields*. Springer, New York, 2 edition, 1992. Translation from the original Russian ed., Moscow, Nauka, 1979.

[4] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko. *Modern geometry: methods and applications, pt. 2*, volume 104 of *Graduate text in Mathematics: The geometry and topology of manifolds*. Springer, New York, 1985. Translation from the original Russian ed., Moscow, Nauka, 1979.

[5] M. Göckeler and T. Schücker. *Differential geometry, gauge theories, and gravity*. Cambridge Univ. Press, Cambridge, 1987.

[6] C. Nash and S. Sen. *Topology and Geometry for physicists*. Academic Press, London-New York, 1983.

[7] F. W. Warner. *Foundations of differentiable manifolds and Lie groups*. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. Russian translation: Mir, Moscow, 1987.

[8] D. Gromoll, W. Klingenberg, and W. Meyer. *Riemannian geometry at large*. Mir, Moscow, 1971. Russian translation from the German original: Riemannsche Geometrie im großen, Springer, Berlin-Heidelberg-New York, 1968.

[9] F. Brickell and R. S. Clark. *Differentiable manifolds. An introduction*. van Nostrand Reinhold Co. Ltd., London, 1979.

[10] R. L. Bishop and R. J. Crittenden. *Geometry of Manifolds*. Academic Press, New York-London, 1964.
[11] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume I. Interscience Publishers, New York-London, 1963. Russian translation: Nauka, Moscow, 1981.

[12] Y. Choquet-Bruhat et al. Analysis, manifolds and physics. North-Holland Publ. Co., Amsterdam, 1982.

[13] S. Sternberg. Lectures on differential geometry. Chelsea Publ. Co., New York, 1983. First eddition: Prentice Hall, Inc. Englewood Cliffs, N.J., 1964. Russian translation: Mir, Moscow, 1970.

[14] Serge Lang. Differential manifolds. Springer Verlag, New York, 1985. (originally published: Addison-Wesley Pub. Co, Reading, Mass. 1972).

[15] S. Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York San Francisco-London, 1978.

[16] W. Greub, S. Halperin, and R. Vanstone. De Rham cohomology of manifolds and vector bundles, volume 1 of Connections, Curvature, and Cohomology. Academic Press, New York and London, 1972.

[17] C. Teleman. Elements of topology and differentiable manifolds. Mir, Moscow, 1967. In Russian. Translation from the Rumanian original: Elemente de topologie si varietăți differentiable, Bucuresti, 1964. German translation: Grundzüge der Topologie und differenzierbare Mannigfaltigkeiten (Autorisierte und vom Autor erg. Übersetzung aus dem Rumänischen: Horst Antelmann.) Mit 22 Abbildungen, Berlin, Deutscher Verlag der Wissenschaften, 1968, 411 p.

[18] David Lovelock and Hanno Rund. Tensors, Differential Forms, and Variational Principals. Pure and applied mathematics. Wiley-Interscience Publication, John Wiley & Sons, New York-London-Sydney-Toronto, 1975.

[19] J. A. Schouten. Ricci-Calculus: An Introduction to Tensor Analysis and its Geometrical Applications. Springer Verlag, Berlin-Göttingen-Heidelberg, second edition, 1954.

[20] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman and Company, San Francisco, 1973. Russian translation in 3 volumes: Mir, Moscow, 1977.

[21] S. Weinberg. Gravitation and cosmology. John Wiley & Sons, Inc., New York-London-Sydney-Toronto, 1972. Russian translation: Mir, Moscow, 1975.

[22] W. Greub, S. Halperin, and R. Vanstone. Lie groups, principal bundles, and characteristic classes, volume 2 of Connections, Curvature, and Cohomology. Academic Press, New York and London, 1973.

[23] Walter A. Poor. Differential geometric structures. McGraw-Hill Book Company Inc., New York, 1981.
Bibliography

[24] Luther P. Eisenhart. *Riemannian geometry*. Princeton Univ. Press, Princeton, second edition, 1949. First edition: 1926.

[25] P. K. Rashevskii. *Riemannian Geometry and Tensor Analysis*. Nauka, Moscow, 1967. In Russian.

[26] S. Kobayashi and K. Nomizu. *Foundations of Differential Geometry*, volume II. Interscience Publishers, New York-London-Sydney, 1969. Russian translation: Nauka, Moscow, 1981.

[27] A. S. Mishchenko and A. T. Fomenko. *A course on differential geometry and topology*. Moscow University Press, Moscow, 1980. In Russian.

[28] N. J. Hicks. *Notes on differential geometry*. D. Van Nostrand Comp., Inc., Princeton, 1965.

[29] T. Levi-Civita. Nazione di parallelismo in una varietà qualunque e conseguente speciazione geometrica della curvatura riemanniano. *Rend. Palermo*, 42:73–205, 1917. In Italian.

[30] Ülo G. Lumiste. To the foundations of the global connection theory. In *Scientific writings of the Tartu state university*, number 150 in Works on mathematics and mechanics, IV, pages 69–107. University of Tartu, Tartu, 1964. In Russian.

[31] Peter Dombrowski. Krümmungsgrößen gleichungsdefinierter Untermannigfaltigkeiten Riemannscher Mannigfaltigkeiten. *Mathematische Nachrichten*, 38(3/4):133–180, 1968.

[32] Ülo G. Lumiste. Connection theory in fibre bundles. In *Science review*, Mathematics: Algebra. Topology. Geometry. 1969, pages 123–168. VINITI, Moscow, 1971. In Russian.

[33] P. Nikolov. On the correspondence between infinitesimal and integral description of connections. Internal Report, IC/81/196, ICTP, Trieste, 1981.

[34] Ph. Hartman. *Ordinary Differential Equations*. John Wiley & Sons, New York-London-Sydney, 1964.

[35] Sawa S. Manoff. Geodesic and autoparallel equation over differentiable manifolds. *Int. J. Mod. Phys. A*, 11(21):3849–3874, 1996.

[36] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman. Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. *Phys. Rep.*, 258(1 & 2):1–171, July 1995.

[37] F. Gronwald and F. W. Hehl. On gauge aspects of gravity. In Bergmann P. G., de Sabbata V., and Treder H.-J., editors, *Quantum Cosmology*, Proc. of the 14-th Course of the School of Cosmology and Gravitation, pages 148–198, Erice, Italy, May 1995, 1996. World Scientific, Singapore. http://arXiv.org e-Print archive, E-print No. gr-qc/9602013, 1996.
[38] M. M. Postnikov. *Introduction to the Morse theory*. Nauka, Moscow, 1971. In Russian.

[39] Josef A. Wolf. *Spaces of constant curvature*. Univ. of California, Berkley, California, 1972. Russian translation: Nauka, Moscow, 1982.

[40] K. Kodaira. *Complex manifolds and deformations of complex structures*, volume 283 of *Grundlehren der mathematischen Wissenschaften*. Springer, New York, 1986.

[41] A. P. Norden. *Spaces with affine connection*. Nauka, Moscow, second edition, 1976. In Russian.

[42] *Mathematical encyclopedia*, chief editor Vinogradov I. M., volume 3, Moscow, 1982. Sovetskaya Entsiklopediya (Soviet encyclopedia). In Russian. English translation in: Encyclopedia of Mathematics, vol. I–VI, Kluwer, 1995.

[43] J. A. Schouten and D. J. Struik. *Einführung in die neueren Methoden der Differentialgeometrie*, volume I. Noordhoff, Groningen, 1935. Vol. I by J. A. Schouten, Russian translation: Moscow, 1939.

[44] M. J. Pinl. Geodesic coordinates and rest systems for general linear connections. *Duke Mathematical Journal*, 18:557–562, 1951.

[45] A. M. L. Messiah. *Quantum mechanics*, volume II. North Holland, Amsterdam, 1962. Russian translation: Nauka, Moscow, 1979.

[46] *Physical encyclopedia*, chief editor Prohorov A. M., volume 3, Moscow, 1992. Bol’shaya Rossijskaya Entsiklopediya (Big Russian encyclopedia). In Russian.

[47] Agapitos Hatzinikitas. A note on Riemann normal coordinates. http://arXiv.org e-Print archive, E-print No. hep-th/0001078, 2000.

[48] B. Riemann. Über die Hypothesen welche de Geometrie zugrunde liegen (On the hypotheses underlying the geometry). *Göttingen Abh.*, 13:1–20, 1868. Habilitationsschrift (Ph.d. thesis), 1854. In German.

[49] R. Bellman. *Introduction to matrix analysis*. McGraw-Hill book comp., New York-Toronto-London, 1960. Russian translation: Nauka, Moscow, 1978.

[50] G. D. Birkhoff. *Relativity and modern physics*. Harvard Univ. Press, Cambridge, Mass., 1923.

[51] V. A. Fock. *Theory of space, time and gravitation*. Nauka, Moscow, 1955, 1961 (second ed.). In Russian. English translation: Pergamon Press, New York-London, 1959; German Translation: V. Fock, *Theorie von Raum, Zeit und Gravitation*, Akademie-Verlag, Berlin, 1960.

[52] E. Fermi. Sopra i fenomeni che avvengono in vicinanza di una linear oraria (On phenomena near a world line). *Atti R. Accad Lincei Rend., Cl. Sci.*
Bibliography

Fis. Mat. Nat., 31(1):21–23, 51–52, 1922. In Italian. Russian translation in [159, pp. 64–71].

[53] Luther P. Eisenhart. Non-Riemannian geometry, volume VIII of Colloquium Publications. American Mathematical Society, New York, 1927.

[54] T. Levi-Civita. Absolute differential calculus. Blacckie, London, 1927.

[55] L. Ó Raifeartaigh. Fermi coordinates. Proceedings of the Royal Irish Academy, 59 Sec. A(2):15–24, 1958.

[56] Keith Burns and Marian Gidea. Differential geometry and topology with a view to dynamical systems. Champman & Hall/CRC, Roca Raton-London-New York-Singapore, 2005.

[57] G. Korn and T. Korn. Mathematical Handbook. Mc Graw-Hill Book Company, New York, second edition, 1968. Russian translation: Nauka, Moscow, 1973.

[58] Richard C. Tolman. Relativity, thermodynamics and cosmology. Clarendon Press, Oxford, 1969. Russian translation: Nauka, Moscow, 1974.

[59] Physical encyclopedia, chief editor Prohorov A. M., volume 1–5, Moscow, 1988, 1990, 1992, 1994, 1998. Sovetskaya Entsiklopediya (Soviet encyclopedia) and Bol’shaya Rossiiškaya Entsiklopediya (Big Russian encyclopedia). In Russian.

[60] R. K. Sachs and H. Wu. General Relativity for Mathematicians. Springer-Verlag, New York-Heidelberg-Berlin, 1977.

[61] C. Møller. The theory of relativity. Clarendon Press, Oxford, second edition, 1972. Russian translation: Atomizdat, Moscow, 1975.

[62] J. L. Synge. Relativity: The General Theory. North-Holland Publ. Co., Amsterdam, 1960. Russian translation: IL (Foreign Literature), Moscow, 1963.

[63] N. N. Bogolyubov and D. V. Shirkov. Introduction to the theory of quantized fields. Nauka, Moscow, third edition, 1976. In Russian. English translation: Wiley, New York, 1980.

[64] J. D. Bjorken and S. D. Drell. Relativistic quantum mechanics, volume 1 and 2. McGraw-Hill Book Company, New York, 1964, 1965. Russian translation: Nauka, Moscow, 1978.

[65] A. G. Kurosh. Higher algebra. Mir Publ., Moscow, 1980. Translation from the second Russian edition, Nauka, Moscow, 1975.

[66] Mathematical encyclopedia, chief editor Vinogradov I. M., volume 1, Moscow, 1977. Sovetskaya Entsiklopediya (Soviet encyclopedia). In Russian. English translation in: Encyclopedia of Mathematics, vol. I–VI, Kluwer, 1995.
[67] S. Chandrasekhar. *The mathematical theory of black holes*. Clarendon Press, Oxford, 1983. Russian translation in two volumes: Mir, Moscow, 1986.

[68] L. D. Landau and E. M. Lifshitz. *Classical theory of fields*, volume II of *Course of theoretical physics*. Pergamon Press, Oxford, 5 edition, 1967. Translation from Russian, Nauka, Moscow, 1973.

[69] *Mathematical encyclopedia*, chief editor Vinogradov I. M., volume 1–5, Moscow, 1977–1985. Sovetskaya Entsiklopediya (Soviet encyclopedia). In Russian. English translation: Encyclopedia of Mathematics, vol. I–VI, Kluwer, 1995.

[70] J. A. Schouten. *Tensor analysis for physicists*. Clarendon Press, Oxford, 1951. Russian translation: Nauka, Moscow, 1965.

[71] R. Torretti. *Relativity and Geometry*. Pergamon Press, Oxford-New York-Toronto-Sydney-Paris-Frankfurt, 1983.

[72] O. Veblen. Normal Coordinates for the Geometry of Paths. *Proc. Nat. Acad.*, 8:192–197, 1922.

[73] O. Veblen and T. Y. Thomas. Projective normal coordinates for the geometry of paths. *Proc. Nat. Acad.*, 11:204–207, 1925.

[74] T. Y. Thomas. Note on the projective geometry of paths. *Bull. Am. Math. Soc.*, 31:318–322, 1925.

[75] E. Bortolotti. Sulla geometria della varietà a connessione affine. teoria invariante delle transformazione che conservano il parallelismo. *Ann. di Mat.*, 8:53–101, 1930.

[76] Bozhidar Z. Iliev. Normal frames and the validity of the equivalence principle: II. The case along paths. *Journal of Physics A: Mathematical and General*, 30(12):4327–4336, 1997. DOI No.10.1088/0305-4470/30/12/019 http://arXiv.org e-Print archive, E-print No. gr-qc/9709053, September 1997.

[77] Laurent Schwartz. *Analyse mathématique*, volume I. Hermann, Paris, 1967. In French; Russian translation: Mir, Moscow, 1972.

[78] J. Dieudonné. *Foundations of modern analysis*. Academic Press, New York, 1960.

[79] Walter Rudin. *Principles of mathematical analysis*. McGraw-Hill Book Company, New York, 1964. Bulgarian translation: Nauka i izkustvo, Sofia, 1973.

[80] Bozhidar Z. Iliev. Normal frames and the validity of the equivalence principle: I. Cases in a neighborhood and at a point. *Journal of Physics A: Mathematical and General*, 29(21):6895–6901, 1996. DOI No. 10.1088/0305-4470/29/21/020 http://arXiv.org e-Print archive, E-print No. gr-qc/9608019, August 1998.
[81] T. Levi-Civita. Sur l’écart géodésique. Math. Ann., 97:291–320, 1926.

[82] F. R. Gantmacher. The theory of matrices, volume two. Chelsea Pub. Co., New York, N.Y., 1960 (reprinted 1964). Translation from Russian. The right English transliteration of the author’s name is Gantmakher.

[83] Bozhidar Z. Iliev. Normal frames and the validity of the equivalence principle: III. The case along smooth maps with separable points of self-intersection. Journal of Physics A: Mathematical and General, 31(4):1287–1296, January 1998. DOI No. 10.1088/0305-4470/31/4/016 http://arXiv.org e-Print archive, E-print No. gr-qc/9805088, May 1998.

[84] Bozhidar Z. Iliev. Special bases for derivations of tensor algebras. I. Cases in a neighborhood and at a point. JINR Communication E5-92-507, Dubna, 1992. 19 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0303373, March 2003. See also [80].

[85] Bozhidar Z. Iliev. Special bases for derivations of tensor algebras. II. Case along paths. JINR Communication E5-92-508, Dubna, 1992. 16 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0304157, April 2003. See also [76].

[86] Bozhidar Z. Iliev. Special bases for derivations of tensor algebras. III. Case along smooth maps with separable points of self-intersection. JINR Communication E5-92-543, Dubna, 1992. 15 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0305061, May 2003. See also [83].

[87] Bozhidar Z. Iliev. Normal frames for derivations and linear connections and the equivalence principle. Journal of Geometry and Physics, 45(1–2):24–53, February 2003. DOI No. 10.1016/S0393-0440(02)00119-5 http://arXiv.org e-Print archive, E-print No. hep-th/0110194, October 2001.

[88] R. Hermann. Geometry, physics, and systems. Marcel Dekker, Inc., New York, 1973.

[89] K. Yano. The theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam, 1957.

[90] F. R. Gantmacher. The theory of matrices, volume one. Chelsea Pub. Co., New York, N.Y., 1960. Translation from Russian. The right English transliteration of the author’s name is Gantmakher.

[91] Mathematical encyclopedia, chief editor Vinogradov I. M., volume 4, Moscow, 1984. Sovetskaya Entsiklopediya (Soviet encyclopedia). In Russian. English translation in: Encyclopedia of Mathematics, vol. I–VI, Kluwer, 1995.

[92] G. Magnano. Are there metric theories of gravity other than general relativity? http://arXiv.org e-Print archive, E-print No. gr-qc/9511027, 1995.
[93] N. A. Chernikov. Two connections in the gravity theory. JINR preprint E2-96-250, Dubna, Russia, 1996.

[94] M. N. Tentyukov. Gravitational theory with the dynamical affine connection. JINR preprint E2-92-491, Dubna, Russia, 1992.

[95] Sawa S. Manoff. Kinematics of vector fields, pages 61–113. Complex Structure and Vector Fields. World Scientific Publ., Singapore, 1995. Proc. of “Int. Workshop on Complex Structure and Vector Fields”, August 14–17, 1994.

[96] Sawa S. Manoff. Lagrangian theory of tensor fields over spaces with contravariant and covariant affine connection and metrics and its application to Einstein’s theory of gravitation in ∇_4 spaces. Acta Aplicandae Mathematicae, 55(1):51–125, 1999.

[97] Bozhidar Z. Iliev. Is the principle of equivalence a principle? Journal of Geometry and Physics, 24(3):209–222, 1998. DOI No. 10.1016/S0393-0440(97)00011-9
http://arXiv.org e-Print archive, E-print No. gr-qc/9806062, June 1998.

[98] R. Dandoloff and W. J. Zakrzewski. Parallel transport along a space curve and related phases. J. Phys. A: Math. Gen., 22:L461–L466, 1989.

[99] N. V. Mitskevich. Physical fields in general theory of relativity. Nauka, Moscow, 1969. In Russian.

[100] D. Hartley. Normal frames for non-Riemanian connections. Class. Quantum Grav., 12(11):L103–L105, November 1995. http://arXiv.org e-Print archive, E-print No. gr-qc/9510013, 1995.

[101] Bozhidar Z. Iliev. Linear transports along paths in vector bundles. II. Some applications. JINR Communication E5-93-260, Dubna, 1993. 24 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0412010, December 1, 2004.

[102] Bozhidar Z. Iliev. Normal frames and linear transports along paths in vector bundles. JP Journal of Geometry and Topology, 5(3):187–250, 2005. http://arXiv.org e-Print archive, E-print No. gr-qc/9809084, September 1998 (last revision: March 2005).

[103] Bozhidar Z. Iliev. Linear transports along paths in vector bundles. III. Curvature and torsion. JINR Communication E5-93-261, Dubna, 1993. 12 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0502008, February 1, 2005.

[104] Bozhidar Z. Iliev. Linear transports along paths in vector bundles. V. Properties of curvature and torsion. JINR Communication E5-97-1, Dubna, 1997. 11 pp.
http://arXiv.org e-Print archive, E-print No. dg-ga/9709017, September 1997.

[105] Bozhidar Z. Iliev. Parallel transports in tensor spaces generated by derivations of tensor algebras. JINR Communication E5-93-1, Dubna, 1993. 19 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0502008, February 1, 2005.

[106] N. Steenrod. The topology of fibre bundles. Princeton Univ. Press, Princeton, ninth edition, 1974.

[107] D. Husemoller. Fibre bundles. McGraw-Hill Book Co., New York-St. Louis-San Francisco-Toronto-London-Sydney, 1966. Russian translation: Mir, Moscow, 1970.

[108] Sze-Tsen Hu. Homotopy Theory. Academic Press, New York-London, 1959.

[109] I. M. James. General topology and homotopy theory. Springer-Verlag., New York-Berlin-Heidelberg-Tokio, 1984.

[110] W. Greub, S. Halperin, and R. Vanstone. Connections, Curvature, and Cohomology, volume 1,2,3. Academic Press, New York and London, 1972, 1973, 1976.

[111] Bozhidar Z. Iliev. Linear transports of tensors along curves: General S-transport. Comptes rendus de L'Academie bulgare des Sciences, 40(7):47–50, 1987.

[112] Bozhidar Z. Iliev. General linear transport (I-transport). Comptes rendus de L'Academie bulgare des Sciences, 40(8):45–48, 1987.

[113] Bozhidar Z. Iliev. Linear transports along paths in vector bundles. I. General theory. JINR Communication E5-93-239, Dubna, 1993. 22 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0411023, November 1, 2004.

[114] Bozhidar Z. Iliev. Transports along paths in fibre bundles. General theory. JINR Communication E5-93-299, Dubna, 1993. 26 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0503005, March 1, 2005.

[115] Bozhidar Z. Iliev. Transports along paths in fibre bundles. II. Ties with the theory of connections and parallel transports. JINR Communication E5-94-16, Dubna, 1994. 24 pp. http://arXiv.org e-Print archive, E-print No. math.DG/0503006, March 1, 2005.

[116] D. J. Saunders. The geometry of jet bundles. Cambridge Univ. Press, Cambridge, 1989.
Bibliography

[117] R. Hermann. Vector bundles in mathematical physics, volume I. W. A. Benjamin, Inc., New York, 1970.

[118] Bozhidar Z. Iliev. Links between connections, parallel transports, and transports along paths in differentiable fibre bundles. *International Journal of Geometric Methods in Modern Physics*, 2(5):823–838, 2005. DOI No: 10.1142/S0219887805000806
Talk at the International Workshop on “Advanced Geometric Methods in Physics”, Florence, Italy, 14 – 18 April, 2005.
http://arXiv.org e-Print archive, E-print No. math.DG/0504010, April 1, 2005.

[119] S. W. Hawking and G. F. R. Ellis. The large scale structure of space-time. Cambridge Univ. Press, Cambridge, 1973.

[120] B. B. Walwadkar. Truesdell transport in general relativity. *General Relativity and Gravitation*, 15(12):1107–1116, 1983.

[121] B. B. Walwadkar and K. V. Virkar. Truesdell invariance in relativistic electromagnetic fields. *General Relativity and Gravitation*, 16(1):1–7, 1984.

[122] L. Radhakrishna, L. N. Katkar, and T. H. Date. Jaumann transport in relativistic continuum mechanics. *General Relativity and Gravitation*, 13(10):939–946, 1981.

[123] Bozhidar Z. Iliev. Transports along maps in fibre bundles. JINR Communication E5-97-2, Dubna, 1997. 19 pp.
http://arXiv.org e-Print archive, E-print No. dg-ga/9709016, September 1997.

[124] James D. Stasheff. “Parallel” transport in fibre spaces. Reimpreso del boletin de la sociedad matematica mexicana, Sociedad Matematica Mexicana, Printed in USA, 1966. pages 68–84.

[125] Pham Mau Quan. Introduction a la géométrie des variétés différentes. Dunod, Paris, 1969.

[126] Richard G. Cooke. Infinite matrices and sequence spaces. London, 1950. Reprinted: Dover Publications, New York, 1966.

[127] Bozhidar Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics. I. Introduction. The evolution transport. *Journal of Physics A: Mathematical and General*, 34(23):4887–4918, 2001. DOI No. 10.1088/0305-4470/34/23/308
http://arXiv.org e-Print archive, E-print No. quant-ph/9803084, March 1998.

[128] Bozhidar Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics. II. Equations of motion and observables. *Journal of Physics A:
[129] Bozhidar Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics. III. Pictures and integrals of motion. *Journal of Physics A: Mathematical and General*, 34(23):4919–4934, 2001. DOI No. 10.1088/0305-4470/34/23/309
http://arXiv.org e-Print archive, E-print No. quant-ph/9804062, April 1998.

[130] Bozhidar Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics. IV. Mixed states and evolution transport’s curvature. *International Journal of Modern Physics A*, 17(2):229–243, 2002. DOI No. 10.1142/S0217751X02005669
http://arXiv.org e-Print archive, E-print No. quant-ph/9901039, January 1999.

[131] Bozhidar Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics. V. Interpretation, summary, and discussion. *International Journal of Modern Physics A*, 17(2):245–258, 2002. DOI No. 10.1142/S0217751X02005712
http://arXiv.org e-Print archive, E-print No. quant-ph/9902068, February 1999.

[132] O. Ya. Viro and D. B. Fuks. Introduction to homotopy theory. In *Reviews of science and technique*, volume 24 of sec. “Modern problems in mathematics”, pages 6–121. VINITI, Moscow, 1988. In Russian.

[133] P. A. M. Dirac. *The principles of quantum mechanics*. Oxford at the Clarendon Press, Oxford, fourth edition, 1958. Russian translation in: P. Dirac, Principles of quantum mechanics, Moscow, Nauka, 1979.

[134] V. A. Fock. *Fundamentals of quantum mechanics*. Mir Publishers, Moscow, 1978. Russian edition: Nauka, Moscow, 1976.

[135] A. M. L. Messiah. *Quantum mechanics*, volume I and II. Interscience, New York, 1958. Russian translation: Nauka, Moscow, 1978 (vol. I) and 1979 (vol. II).

[136] J. von Neumann. *Mathematical foundations of quantum mechanics*. Princeton Univ. Press, Princeton, New Jersey, 1955.

[137] Bozhidar Z. Iliev. Connection theory on differentiable fibre bundles: A pedagogical introduction.
http://arXiv.org e-Print archive, E-print No. math-ph/0510004, October 1, 2005, 2005.

[138] Maido Rahula. *New problems in differential geometry*, volume 8 of *Series on Soviet and East European Mathematics*. World Scientific, Singapore-New Jersey-London-Hong Kong, 1993. 172 p.
[139] Bozhidar Z. Iliev. Normal frames for general connections on differentiable fibre bundles. *Journal of Geometry and Physics*, 56(5):780–812, 2006. DOI No. 10.1016/j.geomphys.2005.04.018 http://arXiv.org e-Print archive, E-print No. math.DG/0405004, May 1, 2004.

[140] S. Kobayashi. Theory of connections. *Ann. mat. pure ed appl.*, 43:119–194, 1957.

[141] K. Yano and M. Kon. *Structures on Manifolds*, volume 3 of *Series in Pure Mathematics*. World Scientific Publ. Co., Singapore, 1984.

[142] R. Sulanke and P. Wintgen. *Differential geometry and fibre bundles*. Mir, Moscow, 1975. In Russian. Translation from the German original: Differentialgeometrie und Faserbündel, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972.

[143] A. S. Mishchenko. *Vector fibre bundles and their applications*. Nauka, Moscow, 1984. In Russian.

[144] M. F. Atiyah. *K-theory*. Harvard Univ, Cambridge, Mass., 1965.

[145] I. Tamura. *Topology of foliations*. Mir, Moscow, 1979. Russian translation from 1976 Japanese original.

[146] L. Mangiarotti and G. Sardanashvily. *Connections in classical and quantum field theory*. World Scientific, Singapore-New Jersey-London-Hong Kong, 2000.

[147] Õlo G. Lumiste. Homogeneous fibre bundles with connection and their immersions. In *Works of the Geometrical seminar*, volume 1, pages 191–237. VINITI, Moscow, 1966. In Russian.

[148] B. Durhuus and J. M. Leinaas. On the loop space formulation of gauge theories. Preprint TH 3110, CERN, Geneva, 1981.

[149] O. M. Khudaverdian and A. S. Schwarz. A new comments on the string representation of gauge fields. *Phys. Lett. B*, 91(1):107–110, 1980.

[150] N. M. Ostianu, V. V. Rizhov, and P. I. Shveikin. Article on the scientific investigations of German Fedorovich Laptev. In *Works of the Geometrical seminar*, volume 4, pages 7–70. VINITI, Moscow, 1973. In Russian.

[151] S. Kobayashi and K. Nomizu. *Foundations of Differential Geometry*, volume I and II. Interscience Publishers, New York-London-Sydney, 1963 and 1969. Russian translation: Nauka, Moscow, 1981.

[152] Ivan Kolář, Peter W. Michor, and Jan Slovák. *Natural operations in differential geometry*. Springer, Berlin - Heidelberg, 1993.

[153] M. Spivak. *A comprehensive introduction to differential geometry*, volume 1. Publish or Perish, Boston, 1970.
[154] B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko. *Modern geometry: methods and applications, pt. 3*, volume 124 of *Springer series in Soviet mathematics: Introduction to homotopy theory*. Springer, New York, 1990. Translation from the original Russian ed., Moscow, Nauka, 1984.

[155] T. Eguchi, P. B. Gilkey, and A. J. Hanson. Gravitation, gauge theories and differential geometry. *Physics reports*, 66(6):213–393, December 1980.

[156] D. V. Alekseevskii, A. M. Vinogradov, and V. V. Lychagin. Basic ideas and concepts of differential geometry. In *Science and technology reviews*, volume 28, of *Modern problems in Mathematics, Fundamental directions. Geometry-1*, pages 5–298. VINITI, Moscow, 1988. In Russian.

[157] Andre Lichnerowicz. *Global theory of connections and holonomy groups*. Foreign literature, Moscow, 1960. Russian translation from the French original: Théorie globale des connexions et des groupes d’holonomie, Edizioni Cremonese, Roma, 1955.

[158] A. Liebermann. Parallélismes. *Journal of differential geometry*, pages 511–519, 1973.

[159] Enrico Fermi. *Scientific papers, 1921–1938. Italy*, volume I. Nauka, Moscow, 1971. In Russian.
Author index

Letter	Author	Notes
B	Birkhoff George D. (1884–1944)	48, 84
C	Cartan Élie J. (1869–1951)	36
	Christoffel Elvin B. (1829–1900)	36
D	Dombrowski Peter	223
E	Eisenhart Luther O. (1876–1965)	84, 137
F	Fermi Enrico (1901–1954)	48, 84, 137
L	Levi-Civita Tullio (1871–1941)	26, 84, 137
	Lumiste Õlo G. (b. 1919)	223
P	Poor Walter A.	223
R	O’Raifeartaigh Lochlainn S. (1933–2000)	49, 111, 137
	Riemann Bernhard G. W. (1826–1866)	47, 137
	Rinow Willi (1907–1979)	223
S	Schouten Jan A. (1883–1971)	69, 111
	Struik Dirk J. (1894–2000)	111
T	Teleman C. (b. 1933)	223
V	Veblen Oswald (1880–1960)	78, 137
Author index
The frequently used symbols with a fixed meaning are listed below. They are arranged in more or less alphabetical order. Since the sorting of mathematical symbols is not unique, they are sorted according to up to three criterions: the symbol's name or pronunciations (if any), the name of symbol's kernel (root) letter, and the meaning of the symbol as a whole. For some symbols such a classification is not unique, due to which they are listed more than ones; e.g. ∇ can be found under the letters “C”, standing for Connection or Covariant derivative (sorting by meaning), and “N”, standing for Nabla (sorting by name). Besides, a multiple appearance of a symbol under different sorting letters may mean that it has different meanings in different but similar contexts. The number(s) standing to the right of the symbols denote the page(s) where the symbols first appear or are defined.

Symbols	Page(s)	
$*$	15	
$:= $	4	
$=$	4	
$=: $	22	
\setminus	27	
\cap	5	
\circ	5	
\cup	5	
\varnothing	5	
\leftrightarrow	34	
\in	4	
\ni	6	
∇	21	
\exists	7	
1	89	
\oplus	4	
\odot	17	
\subseteq	8	
\supsetneq	27	
\supseteq	175	
\times	4	
\rightarrow	5	
\rightarrowset	5	
$	$	7
\mathbf{A}		
$A_{(ij)}$	24	
$A_{[ij]}$	24	
f_{i}	26	
$\{\omega^i\}$	342	

- The notation index provides a list of frequently used symbols with a fixed meaning, arranged in alphabetical order. Symbols are sorted by up to three criterions: name or pronunciations, name of kernel letter, and meaning as a whole. Some symbols have multiple listings due to non-unique classifications. The page numbers indicate where these symbols first appear or are defined.
Notation index

\{X_I\} ... 342
\mathfrak{g}(U) 8
\mathfrak{g}'(U) 8
\mathbf{T}(U) 19
\mathbf{T}_p(M) 17
\mathbf{T}^*(U) 19
(\mathbf{T}(M), \pi, M) 221
\ast ... 13, 15

\textbf{B}
\{\epsilon_i\} 216
\{w^\mu\} 336
\{dx^i\} 340
\{\frac{\partial}{\partial x^i}\} 15
\{E_i^p\} 15
\{E_i\} ... 11
\{e_i\} .. 83
\in .. 4
(\mathbf{E}, \pi, B) 215
\{u^l\} .. 335
(\mathbf{E}, \pi, M) 298

\textbf{C}
\mathcal{C}^i_j 26
\mathcal{C}^i 5, 7
\times ... 4
\{U, \varphi\} 5
\{i, j\} .. 36
\{a, b\} 27
\Gamma^i_{j\mu} 246
\Gamma^i_{b \mu} 351
\Gamma^j_{\mu} 246
\Gamma^a_{b \mu} 341
\Gamma^i_{\mu} 342
\Gamma^i_{j\mu} 306
\Gamma^i_{j\mu}(\cdot, \cdot) 306
\Gamma^i_{jk} 22
\Gamma^i_{jk} 144
\Gamma_i 143
\Gamma^i_i 229
\Gamma^i_{\mu} 245
\{E_i\} 16
\{\omega^i\} 342
\{\cdot, \cdot\} 13
\{A, B\} 13
\mathcal{C} 4
\mathcal{C}^n 4
\Gamma^i_j(s, \gamma) 218
\Gamma_i^{ja\beta} 263
\Gamma_i^{\mu\nu} 341
\{R_i(s, t)\}^i_j 260
\Gamma_{X, i} 145
\Gamma_{i, j} 189
\Gamma^i_j(s, \gamma) 189
\{T^*_i(s, t)\}^i 269
\Gamma \circ 270
\mathcal{O} 55
\nabla ... 222
\nabla^\varphi 305
\nabla^g 300
\nabla^h(E) 300
\nabla^h(E) 300
\subseteq 5
\subset 8
\exists .. 7
\mathcal{C} 19
\mathcal{C}^m 19
\{\frac{\partial}{\partial x^i}\} 10
\{dx^i\} 16
\{dx^i\} 15
\{\varphi^i\} 5
\{u^l\} 335
\{u^l\} 336
\{r^i\} 5
\{E_i^p\} 340
\{T^*_i(M, \pi^*, M) \} 220
\{T^*_i(M) \} 220
\nabla_i 21
\nabla_X 21
\nabla_Y 21
R ... 262
R^D .. 145
Notation	Page
$R_{\mu \nu}$	341
$R_{\mu \nu \rho \sigma}$	25
R^i_{jkl}	26
R_{st}	105
$R^{\alpha}(s, t)$	260, 261
R_{\ast}	145
$\{e_i\}$	83
$\{E^i_p\}$	15
$\{E_{\alpha p}\}$	11
\varnothing	5
\mathbb{S}^n	52
\ast	4
\mathbb{E}^n	34
\mathbb{E}^n	34
\wedge	49, 334

D

- d | 49 |
- D_X | 142 |
- Δ^k | 338 |
- δ^k_i | 15 |
- Δ^v | 338 |
- D | 141, 144 |
- D_X | 255 |
- D^i | 189 |
- D^s | 228 |
- D^j_s | 228 |
- D | 217 |
- D | 189 |
- D | 228 |
- D | 217 |
- \mathcal{D} | 219 |
- \det | 255 |
- $\text{diag}(a_1, \ldots, a_n)$ | 36 |
- C^k | 7 |
- M | 4 |
- $f \ast$ | 13 |
- dim | 5 |
- dim_G | 5 |
- dim_R | 5 |
- \otimes | 4 |
- Δ | 334 |
- Δ^k | 334 |
- Δ^v | 338 |
- Δ^v | 338 |
- \ast | 15 |

E

- $\{e_i\}$ | 216 |
- $\{e_i\}$ | 216 |
- $\{E^i\}$ | 16 |
- $\{E_i\}$ | 12 |

F

- $f \ast$ | 13 |
- $f \ast$ | 26 |
- $\Gamma^i_{\mu \nu}$ | 341 |
- $P_{\mu \nu}$ | 341 |
- $\{u^i\}$ | 336 |
- \mathbb{K}^i | 4 |
- \mathbb{K}^n | 4 |
- $R^i_{\mu \nu \beta}$ | 263 |
- \bar{X}_i | 342 |
- $\{d x^i\}$ | 16 |
- $\{E^i\}$ | 16 |
- $\{e_i\}$ | 216 |
- $\{E_i\}$ | 12 |
- $\mathfrak{S}(U)$ | 8 |
- $\mathfrak{S}^i(U)$ | 8 |

G

- g | 33 |
- $\Gamma^i_{\mu \nu}$ | 246 |
- $\{i\}_{jk}$ | 36 |
- $\Gamma^i_{\mu \nu}$ | 306 |
- $\Gamma^i_{\mu \nu}(\cdot: g)$ | 306 |
- Γ^i_{jk} | 144 |
- Γ^i_{k} | 143 |
- Γ^j_{i} | 229 |
- Γ^i_{μ} | 245 |
- $\Gamma^i_{j}(s; \gamma)$ | 218 |
- Γ^i_X | 145 |
\[\Gamma \gamma^i \] 189
\[\Gamma^i_j(s; \gamma) \] 189
\[\gamma \] 11
\[\Gamma (g; \cdot) \] 245
\[\Gamma \gamma(s; \gamma) \] 190
\[\gamma : J \rightarrow M \] 9
\[\gamma : J \rightarrow B \] 216
\[\Gamma^i_j(\cdot) \] 246
\[\gamma(s) \] 9
\[\Gamma_{X} \] 145
\[\text{GL}(n, \mathbb{K}) \] 82
\[\lambda, \mu, \nu, \ldots \] 244
\[\mu, \nu, \ldots \] 305
\[\alpha, \beta, \ldots, \mu, \nu, \ldots \] 244
\[\Delta^b \] 338
\[\text{id}_A \] 5
\[1 \] .. 89
\[1_n \] .. 97
\[
\] 34
\[\varepsilon \] 4
\[I, J, K, \ldots \] 335
\[a, b, c, \ldots \] 335
\[\lambda, \mu, \nu, \ldots \] 244
\[i, j, k, \ldots \] 305
\[\mu, \nu, \ldots \] 305
\[i, j, k, \ldots \] 216
\[i, j, k, \ldots \] 216
\[\alpha, \beta, \ldots, \mu, \nu, \ldots \] 244
\[\mathbb{N} \] 4
\[\cap \] .. 5
\[J \] ... 6
\[[a, b] \] 27
\[a, b \] 24
\[(a, b) \] 27
\[(a, b) \] 27
\[f^{-1} \] 5
\[A^{-1} \] 11

\[\equiv \] 55

\[J \] ... 6
\[J^n \] 158

\[\mathbb{K} \] 4
\[\mathbb{K}^n \] 4
\[\delta^i \] 15

\[L \] .. 335
\[a, b, c, \ldots \] 335
\[i, j, k, \ldots \] 305
\[\mathcal{E}_X \] 142
\[\text{Lift}_g(E, \pi, B) \] 215
\[\text{PLift}(E, \pi, B) \] 216
\[\text{PLift}^b(E, \pi, B) \] 217
\[\nabla \] 21
\[L^\gamma \] 224
\[L_{s-t} \] 224
\[(U, \varphi) \] 5
\{ \varphi \} 5

\[M \] ... 335
\[f : x \mapsto y \] 6
\[f : A \rightarrow B \] 5
\[\rightarrow \] 5
\[\equiv \] 6
\[\Gamma_\mu \] 245
\[R_{\alpha\beta} \] 263
\[\Gamma^i_j \] 245
\[\Gamma_\mu(s; g) \] 307
\[\Gamma_k \] 39
\[R^{\mu}(s, t) \] 262
\[\Gamma_X \] 145
\[\Gamma_\gamma \] 190
\[\Gamma(s; \gamma) \] 187
\[\Gamma \] 218
\[\Gamma \] 230
\[[A^\ell_i] \] 11
\[[A^\ell_i]_{i,j=1} \] 11
Notation index
g
$\mathcal{T}_s^{jk}(U)$
$\mathcal{X}(U)$
$\mathcal{T}_r(\mathcal{U})$
$\mathcal{X}(U)$
\mathcal{N}
∇
∇^g
∇_X
\mathbb{N}
J^n
$\{\omega^I\}$
\mathbb{S}^1
(a,b)
\otimes
\mathbb{P}
\mathbb{P}_β
\mathbb{P}_λ
$\mathbb{P}_{\lambda-t}$
\mathbb{P}_t
\mathbb{P}_{λ}
$\text{PP}(B)$
$\text{PP}^k(B)$
$\gamma: J \rightarrow B$
$\gamma: J \rightarrow M$
$\text{PLift}(E, \pi, B)$
$\text{PLift}^k(E, \pi, B)$
$\mathbb{P}(A)$
\preceq
\succeq
\mathbb{S}_q^s
\mathbb{R}
$(\mathbb{R}^n(s,t))^I$
\mathbb{R}
\mathbb{R}^n
\mathbb{R}
\mathbb{R}^q
$\mathbb{R}^n(s,t)$
$\{r^I\}$
$\mathbb{R}_{\alpha\beta}$
J
\mathbb{R}
\mathbb{R}^n
$
$
g
\mathbb{S}
D
$\text{Sec}(E, \pi, B)$
$\text{Sec}^k(E, \pi, B)$
$[a,b]$
$\{a,b\}$
$\{x:P\}$
$\{x
$\{a,b,c,\ldots\}$
δ
σ
\mathbb{C}^k
\mathbb{S}^1
\mathbb{S}^2
\mathbb{S}^n
\mathbb{S}_q^n
$\{r^I\}$
$C^I_{\beta\delta}$
N
\subset
U
\subseteq
\backslash
$A_{(ij)}$
\mathbb{T}
$T^*(M)$
$\mathbb{T}(M, \pi, M)$
$(T^n(s,t))^I$
T^I_{jk}
\begin{itemize}
\item \((T^*(M), \pi^*, M)\) \hfill 220
\item \(T^\mu(E)\) \hfill 300
\item \(T^h(E)\) \hfill 300
\item \(T^h(M)\) \hfill 15
\item \(T_p(M)\) \hfill 9
\item \(T\) \hfill 270
\item \(T^\mu_u(E)\) \hfill 300
\item \(T^\nu(E)\) \hfill 300
\item \(T(M)\) \hfill 11
\item \(\{E_i\}_p\) \hfill 11
\item \((T(M), \pi, M)\) \hfill 220
\item \(T(M)\) \hfill 11
\item \(\{E_i\}\) \hfill 12
\item \(T_p(M)\) \hfill 9
\item \(\gamma(s)\) \hfill 9
\item \(T(U)\) \hfill 19
\item \(T_p(U)\) \hfill 17
\item \(T^\gamma(U)\) \hfill 19
\item \((T(M), \pi^* \gamma, M)\) \hfill 220
\item \(T^\gamma_p(M)\) \hfill 220
\item \(\Sigma^\gamma(U)\) \hfill 18
\item \(\Sigma^\gamma_s \kappa(U)\) \hfill 19
\item \(\otimes\) \hfill 17
\item \(\otimes_k\) \hfill 17
\item \(T^\gamma_p(M)\) \hfill 17
\item \(\Gamma^\gamma_{i \mu}\) \hfill 246
\item \(\times\) \hfill 4
\item \(T\) \hfill 270
\item \(T^D\) \hfill 145
\item \(T\) \hfill 25
\item \(T^\gamma_{j \kappa}\) \hfill 26
\item \(T^\gamma(s, t)\) \hfill 269
\item \(T\) \hfill 145
\item \(\tau^2\) \hfill 60
\item \(A^\gamma\) \hfill 47
\item \(\Gamma^\gamma_{i \mu}\) \hfill 246
\item \((R^\alpha(s, t))^j_1\) \hfill 260
\item \(S^2\) \hfill 51
\item \(\Gamma^\gamma_{i}\) \hfill 229
\item \(\{u^\alpha\}\) \hfill 336
\item \(\{u^f\}\) \hfill 335
\end{itemize}
Subject index

The **boldface** numbers refer to the page where a concept is defined. The letter ‘n’ after a page number means that the concept is mentioned in a footnote. The ligature ’ff’ after a page number stands for “and following pages”. Some important concepts are listed twice under different names, e.g. ‘coefficients of linear connection’ and ‘linear connection coefficients of’.

Symbols

- 1-form see covector field
- A
 - adapted frame 342–344
 - admissible changes 336
 - affine connection 357–360
 - 2-index coefficients of 357–358
 - criterion for 358
 - definition of 357
 - generalized on manifold 360
 - on manifold 360
 - on vector bundle 357
 - algebraic tensor bundle 221
 - atlas 5
 - autoparallel path 30, 322–325
 - definition of 323
 - autoparallels . see autoparallel path
 - axiomatic definition of parallel transport
 - in differentiable bundle 387ff
 - in tangent bundle 281ff
 - in vector bundle 310–311
 - axiomatic description of parallel transport
- B
 - base of bundle 215
 - basic coordinates 336
 - basis
 - coordinate 11
 - for distribution 334
 - of liftings of paths 216
 - of vector space 68
 - bundle 215
 - algebraic tensor 221
 - base (space) of 215
 - bundle coordinates of 335
 - bundle property of 215
 - bundle space of 215
 - fibre of 215
 - fibre over a point 215
 - line 252
 - local triviality of 215
 - projection of 215
 - restriction to set 215
 - section of 215
 - tangent to manifold see tangent
| Subject index |
|---------------|
| bundle | tensor | see | tensor bundle | coordinate | tangent | 215 |
| topological | vector | 215 |
| bundle coordinates | 335 |
| bundle property | 215 |
| bundle Schrödinger equation | 327 |
| bundle space | 215 |
| coframes on | 335–338 |
| frames on | 335–338 |
| C | chart | 5 |
| normal | see normal chart |
| Christoffel symbols | 36 |
| circle | 52 |
| normal coordinate on | 52 |
| cobasis for distribution | 335 |
| coefficients | 2-index of affine connection | 357–358 |
| 2-index of connection | 342, 363ff |
| 2-index of derivation along paths | 218n |
| 2-index of derivation along tangent vector | 255 |
| 2-index of linear transport along paths | 229, 246, 249 |
| 3-index of derivation along tangent vector fields | 257 |
| 3-index of linear connection | 351 |
| 3-index of linear transport along paths | 246, 249 |
| fibre of connection | 341, 365 |
| of linear connection | 351 |
| coefficients of connection | 342, 363ff |
| covariant derivative in vector bundle | 306 |
| transformation law | 307 |
| derivation along paths | 218n |
| derivation along tangent vector fields | 257 |
| linear connection | 23–25, 350–352 |
| definition | 22 |
| transformation law | 23 |
| linear derivation along vector field | 144 |
| linear transport along paths | 229ff, 246 |
| coefficients’ matrix of | see matrix of coframe | 16 |
| on bundle space | 335–338 |
| specialized | 339 |
| commutator of vector fields | 13 |
| components fibre of curvature of connection | 341, 365 |
| components of | anholonomicity object | 69, 333 |
| covariant derivative | 356 |
| covariant differential | 23 |
| curvature of connection on vector bundle | 321ff |
| curvature of covariant derivative in vector bundle | 321ff |
| curvature of derivation along paths | 262 |
| curvature of linear transport along paths | 263–264 |
| 2-index | 263 |
| 4-index | 263 |
| derivation along fixed vector field | 143 |
| along paths | 189, 218 |
| along tangent vector fields | 255 |
| along vector field | 144 |
| linear transport along paths | 226 |
| tangent vector | 10 |
| tangent vector field | 12 |
| components’ matrix of connection | see matrix of connection |
| (2-index) coefficients of | 342, 363ff |
| assigned to transport along paths | 386ff |
| coefficients of | 342, 363ff |
| differentiable | 338, 343 |
| fibre coefficients of | 341, 365 |
Subject index

fibre components of curvature of
341, 365
flat 341
flat Riemannian 132
Levi-Civita 34
linear see linear connection
links with transports along paths
384–392
on differentiable bundle ... 338
on manifold 345
on vector bundle 346–360
Riemannian 34
Weyl 35
connection mapping 303
connection on differentiable bundle 338–346
connection on vector bundle ... 300,
346–360
determined by covariant derivative
303
determined by parallelism structure 301
connection theory 338–346
contraction operator(s) 19
coordinate functions 5
standard 5
coordinate system 5
coordinates 5
basic 336
bundle 335
fibre 336
normal. see normal coordinates,
normal coordinates for and
also normal frame
on light cone 66–68
pseudospherical 55–56
Riemannian 46ff
Riemannian normal 76ff
spherical 52–53
vector bundle 346
vector fibre 346
coordinates normal. see also normal coordinates
along great circle on 2-sphere 128–129
at point in 2-sphere 128
cotangent bundle 220
cotangent space 15
covariant derivative 257, 294
along fixed vector field 202
frames/coordinates normal for
202
along path 27
in vector bundle ... 303, 353–357,
see also linear connection
along mapping 302–303
as connection 356
coefficients of 306
components of 356
curvature of 356–357
definition of 354
definitions of 354–356
determined by connection 303
flat 321, 357
transformation of its coefficients
307
on manifold 21, 303
along vector field 21
covariant derivative operator ... see
covariant derivative
covariant differential 23
covariant vector field ... see covector field
covector 15–16
definition of 15
covector field 16
definition of 16
curvature free see flat
curvature of
connection on vector bundle 320ff
components of 321ff
covariant derivative in vector bundle
components of 321ff
derivation along paths 261ff
components of 262
matrix elements of 262
matrix of 262
derivation along vector field 145–146
Subject index

Euclidean linear transport along paths 265–268
linear connection 25–26
linear transport along paths 259–265
2-index components of . . . 263
4-index components of . . . 263
definition of . 262
section-derivation .
Subject index
horizontal 338
integrable 334
vertical 338

E

Einstein manifold 63
normal coordinates on 64
equation of
autoparallels 324–325
geodesics . see geodesic equation
normal coordinates . see normal coordinates equation
normal frames see normal frame equation

Euclidean
derivation . see derivation
linear transport . see linear transport
metric 34, 50
of index \(q \) 54
space 34, 50
normal frames on 50
of index \(q \) 54
exponential mapping 32
exterior derivative 49
exterior product 49

F

Fermi coordinates 84–93
definition of 90
on submanifold 119
Fermi derivative 205, 295
along path 205–206
Fermi-Walker derivative 205, 294
fibre coefficients of connection . 341, 365
fibre components of curvature of connection . 341, 365
fibre coordinates 336
fibre of bundle 215
fibre over a point 215
flat connection 341
connection on vector bundle 321
covariant derivative in vector bundle 321
derivation along paths 265
linear connection . 26, see also
linear connection
linear transport along paths 265
parallel transport in vector bundle 321
frame 12
adapted 342–344, 366ff
adapted to coordinates 342
adapted to frame 363
along paths 217
anholonomic 12
coordinate 12
geodesic 207–208
holonomic 12
in physics 71
in vector bundle 216
inertial 43
noncoordinate 12
normal . see normal frame, normal frame for
normal along great circle on 2-sphere 128–129
on bundle space 335–338
on differentiable bundle 360–370
adapted to coordinates 342
adapted to frame 363
over manifold 12, 68–71
anholonomic 69
definition of 68
holonomic 69, 70
locally holonomic 71
reference 43
specialized 339
function 8

G

generalized affine connection on manifold 360
geodesic equation . 30, 31, 323, 345–346
Subject index

geodesic frame 207–208
geodesic path 30ff, 322ff, 345
as autoparallel path 324
geodesics see geodesic path

H
holonomic normal frame, see normal frame holonomic
holonomicity of frame over manifold 69ff
horizontal
distribution 338
lifting of mapping 301
lifting of paths 338, 345
lifting of vector 338
lifting of vector field ... 301, 338
path 338
path in vector bundle 301
tangent space 301
tangent vector 301
vector 338
vector field 338

lifting of paths 215–216
generated by linear transport along
paths 229
horizontal 338, 345
tangent 323
light cone 65–68
coordinates on 66–68
definition of 66
induced metric on 67, 68
normal coordinates on 67, 68
line bundle 252
linear connection 19–33, 349–357
coefficients of 23–25
definition 22, 351
transformation law 23, 352
curvature of 25–26
defined via parallel transport 281ff
definition of 21, 349
derivation along paths generated
by see derivation along
paths
flat 26
in tangent bundle
as covariant derivative 306–307
motivation of 20–21
of class C^r 24–25
of mixed type, see mixed linear
connection
on vector bundle 349
symmetric 24
torsion of 25–26
torsionless 26
linear transport along paths 223–232
assigned to covariant derivative 315–317
coefficients 229ff, 246
2-index 229, 246, 249
3-index 246, 249
components 226
curvature of 259–265
4-index components of 263
definition of 202ff
definition of 224
derivation along paths generated by 228ff
equivalence with derivation along paths 230–231
Euclidean .. 233ff
basic definitions 233, 236
curvature of 265–268
 generated by frame 241
 in line bundle 252–253
lifting of paths generated by 229
matrix elements of 226
matrix of 226ff
path-independence 239, 268
 structure of 225–226
torsion of 269–274
definition of 270ff
torsionless 271ff
linear transport along paths in tangent bundle 290–298
assigned to derivation along fixed vector field 293–296
assigned to derivation along paths 290–292
definition of 291
assigned to derivation along vector fields 292–293
normal frame for 296–298
local coordinate system see coordinate system
coordinates see coordinates
local triviality 215
locally injective
 mapping 166
 path 99

M
manifold 4–7
 1-dimensional 50
 1-dimensional real 132
 normal frames/coordinates on 132–134
 chart of (for) 5
complex 4
 complex as real 7
dimension of 7
de Sitter 64
differentiable 6
dimension of 5
Einstein 63
Einstein-de Sitter 136
Minkowski see Minkowski spacetime
 real 4
 Riemannian see Riemannian
 Schwarzschild 61–62
topological 4
 with boundary 6
 without boundary 6
mapping
 differentiable 7–8
differentiable of class C^k 7
exponential see exponential mapping
 lifting of 215
 locally injective 166
 regular 14
matrices of
 coefficients of covariant derivative in vector bundle 307
coefficients of linear connection 39
matrix of
curvature of derivation along paths 262
 derivation along fixed vector field 143
 derivation along tangent vector fields 255
linear transport along paths 226ff
Minkowski spacetime 54, 63, 65, 131, 132
mixed linear connection 196–198
coefficients' matrices 197
contravariant coefficients .. 197
covariant coefficients 197
definition of 196
normal chart........ see also normal coordinates
for derivation along vector fields 149ff
for linear connection........ 40
normal coordinates see also normal coordinates for, normal frame, normal frame holonomic,
along geodesic in 1-manifold 134–136
history of ... 48–49, 84, 111, 137
on see normal coordinates on ...
normal coordinates equation 41, 373
normal coordinates for connection on bundle 375
along injective horizontal mapping 379–383
along injective horizontal path 374
at a point 373
on open set 375
normal coordinates for derivation along fixed vector field
definition of 172
existence/uniqueness along path 180
existence/uniqueness at a point 175
on manifold 183–184
normal coordinates for derivation along vector fields
along injective mapping
existence/uniqueness 165
along injective mapping 165–166
along locally injective mapping 166–167
along mapping between manifolds 169–170
existence/uniqueness 170
along path 154
at a point
existence/uniqueness 152
definition of 149

in neighborhood 156
on submanifold
eexistence/uniqueness 158
normal coordinates for linear connection 40ff
along path 84–104, see also Fermi coordinates
complete description ... 93–104
existence/uniqueness 103
at a point 75–84, see also Riemannian normal coordinates
complete description ... 79–82
existence 76
existence/uniqueness 81
in neighborhood existence/uniqueness 108
on submanifold 111–127
existence 119
existence/uniqueness 124
normal coordinates for linear transport along paths . 274–278
definition of 277
uniqueness 277
normal coordinates on
1-dimensional real manifold 132–134
1-sphere 52
2-sphere 51–52
2-sphere for Weyl connection 131
de Sitter manifold 64
Einstein manifold 64
Einstein-de Sitter manifold 136–137
Euclidean space 50
flat Riemannian manifold 132
light cone 67, 68
Minkowski spacetime for Weyl connection 131–132
n-sphere 53
pseudosphere 57–59
Riemannian manifold 44–49
1-dimensional 50
Schwarzschild manifold 62–63
surface of revolution 61
torus 60
normal frame. see also normal frame for
along geodesic in 1-manifold 134–136
for Weyl connection 130
for Weyl connection on 2-sphere 131
for Weyl connection on Minkowski spacetime 131–132
on 1-dimensional real manifold 132–134
on Euclidean space 50
on Riemannian manifold 132–134
strong, see strong normal frame terminology 207–208
normal frame equation 39, 147, 150, 171, 172, 191, 238, 288, 297, 319, 371
normal frame for connection on bundle 371–383
adapted to holonomic frame 372–383
along injective horizontal path 374
at a point 373
uniqueness 373
definition of 371
general case for 372
normal frame for derivation along fixed vector field 170–186
along path 176–182
existence/uniqueness 177
at a point 173–176
existence/uniqueness 173
definition of 170
general properties 170–172
on manifold 182–184
existence/uniqueness 182
on subset of manifold 184–186
normal frame for derivation along paths 187–194, 254
along path 191
existence/uniqueness 191
on subset 193
existence 193
normal frame for derivation along tangent vector fields 256ff
normal frame for derivation along vector fields
along injective mapping 160–166
existence/uniqueness 162–163
along locally injective mapping 166–167
along mapping 158–170
along mapping between manifolds 167–170
existence/uniqueness 168
along path 152–155
existence/uniqueness 153
holonomicity 154
at a point 151–152
existence/uniqueness 151
definition of 146
general properties 146–151
holonomicity 149
in neighborhood 155–156
existence 155
necessary condition for existence 147
on submanifold 156–158
existence/uniqueness 156–157
uniqueness 148
normal frame for derivation in vector bundle with manifold as base 254–258
normal frame for linear connection along path
complete description 93–104
existence/uniqueness 97–99
global 92
holonomicity 99
at a point
complete description 78
existence/uniqueness 81–82
definition of 37
fundamental ideas and definitions 37–43
holonomicity 40
on neighborhood
Subject index

existence 104, 111
uniqueness 107
on submanifold
 existence/uniqueness 120
 holonomicity 127
review 199–202
uniqueness 39

normal frame for linear transport along
 paths 233ff
 basic definitions 233
 existence theorems 237–244
 general properties 232–237
 holonomicity 274–278
 existence 274
 in tangent bundle assigned to derivation along vector fields 296–298
 when the bundle's base is manifold 244–252
normal frame for mixed linear connection 198ff
 existence/uniqueness 199
 normal frame for parallel transport in tangent bundle 283–286
 normal frame for parallel transport along paths in tangent bundle 283–286
 existence 283–284
 holonomicity 284–286
 normal frame for two derivations 194–199
 normal frame in line bundle 253–254
 normal frame in vector bundle for connection ... 317–320, 376–379
 definition of 318, 377
 covariant derivative ... 317–320
 definition of 318
 parallel transport ... 317–320
 definition of 318
 parallelism structure 318
 normal neighborhood 33

P
 parallel lifting see lifting
 parallel path see path
 parallel section see section
 parallel tensor field see tensor field
 parallel transport
 as linear transport along paths 231
 assigned to connection 339
 assigned to linear connection 26–30
 definition of 27
 path-independence 42
 assigned to parallel transport along paths 389ff
 axiomatically defined 387ff
 history of 395
 in tangent bundle 278–286
 along paths see parallel transport along paths
 axiomatic definition 281ff
 in vector bundle
 along path 299
 along product of paths 309–310
 as linear transport along paths 312–317
 assigned to parallelism structure 308
 axiomatic approach 299–317
 axiomatic definition of 310–311
 flat 321
 parallel transport along paths
 assigned to connection 391ff
 assigned to parallel transport 389ff
 axiomatic definition 281ff
 in tangent bundle 278–282
 definition of 278ff
 in vector bundle 312–317
 assigned to parallel transport 313ff
 axiomatic definition of 314
 parallel transport generated by linear connection 280–282
 parallelism structure in vector bundle 299–300ff

O
 one-form see covector field
Term	Page
determined by connection	301
path	9
canonical	387
geodesic	345
horizontal	338
in vector bundle	301
horizontal parallel	300
integral	13
inverse	387
locally injective	99
vertical	338
product of paths	309, 387
projection of bundle	215
pseudosphere	215
normal coordinates on	57–59
of index q	54
pseudospherical coordinates	55–56
R	43
reference frame	43
restriction to set of bundle	215
Riemannian	34
connection	34
connection flat	132
coordinates normal for	132
coordinates	46ff
manifold	34ff
metric	33
normal coordinates	76ff, 84
S	34
scalar product	34
Schrödinger bundle equation	327
Schwarzschild manifold	61–62
normal coordinates on	62–63
section	219
along paths	219
derivation of	219
derivation along paths of	219
of bundle	215
of tangent bundle	220
of tensor bundle	221
of vector bundle	220
parallel	300
vertical lift of	347
section-curvature operator of	see
curvature of	
section-derivation along paths	219
in tensor bundle	221–222
section-derivation curvature of	259ff
specialized coframe	339
specialized frame	339
sphere	
1-dimensional	52
normal coordinate on	52
2-dimensional	51
coordinates normal along great circle	128–129
normal coordinates on	51–52
even-dimensional	333, 363
n-dimensional	52
normal coordinates on	53
spherical coordinates	52–53
standard fibre	see fibre of bundle
strong normal frame	286–290
equation	288
for linear transport along paths in bundle with manifold as base	287ff
for parallel transport in tangent bundle	287
in vector bundle for connection	318
parallel transport	318
parallelism structure	318
submanifold	7
surface of revolution	60
normal coordinates on	61
system of normal frame equations	198
system of parallel transport	see parallelism structure
T	
tangent bundle	220
section of	220
Field	Definition/Description
-------	------------------------
Tensor	17–19
Tensor algebra	18
Bases	17–18
Bundle	220–222
Derivation along paths in (r, s)	220
Section of	221
Section-derivation along paths in	221–222
Field	18–19
Components of	18
Definition of	18
Parallel	29
Frame	18
Space	17

Tensor on manifold
- Components of: 18
- Definition of: 17

Torsion free
- See: Torsionless torsion

Torsion of
- Derivation along paths: 269ff
- Derivation along vector field: 145–146
- Linear connection: 25–26
- Linear transport along paths: 269–274
- Definition of: 270ff

Torsion vector
- See: Torsionless

Linear connection
- 26, see also
- Linear connection: 271ff
- Linear transport along paths: 271ff

Total bundle space
- See: Bundle space

Transport along mappings
- 225n
- Along paths: 224
- Assigned to parallel transport: 389ff
- Definition of: 384
- Linear... see linear transport along paths
- Links with connections: 384–392
- Parallel... see parallel transport
- Typical fibre: see fibre of bundle

U
- Universe model:
 - de Sitter: 64
 - Einstein: 63
 - Einstein-de Sitter: 136
 - Non-static spatially homogeneous: 65
 - Schwarzschild: 61

V
- Vector... see also tangent vector field
 - Horizontal: 338
 - Vertical: 338
- Vector bundle: 215
 - Connection on... see connection derivation along paths in... see
 - Derivation along paths
- Vector bundle coordinates: 346
- Vector fibre coordinates: 346
- Vector field... see also tangent vector field
 - Horizontal: 338
 - Horizontal lifting of: 301
 - Vertical: 338
- Vector-derivation along paths: 291
vertical
 distribution 338
 lift of section 347
 lifts 346–349
 path 338
 tangent space 301
 tangent vector 301
 vector 338
 vector field 338

W
 wedge product 49
 Weyl connection 35n, 129–130
 normal frame for 130
 on 2-sphere 130–131
 normal frame/coordinates for
 131
 on Minkowski spacetime131–132
 normal frame/coordinates for
 131–132