A systematic mapping study of developer social network research

Aynur Amirfallaha, Fabian Trautscha, Jens Grabowskia, Steffen Herbolda,∗

aInstitute of Computer Science, University of Goettingen, Germany

Abstract
Developer social networks (DSNs) are a tool for the analysis of community structures and collaborations between developers in software projects and software ecosystems. Within this paper, we present the results of a systematic mapping study on the use of DSNs in software engineering research. We identified 194 primary studies on DSNs. We mapped the primary studies to research directions, collected information about the data sources and the size of the studies, and conducted a bibliometric assessment. Moreover, we determined open issues in the state of the art that can help to guide future research.

Keywords: developer social networks; mapping study; literature survey

1. Introduction

Social structures within software development projects are a topic that received a lot of attention in different research communities, e.g., by researchers interested in open source development, global software engineering, and mining software repositories. Developer Social Networks (DSNs) are often inferred automatically from information that can be found in forges like GitHub, Mailing Lists (MLs), Issue Tracking Systems (ITSs), and Version Control Systems (VCSs) of software development projects. The DSNs give valuable insights into the projects, e.g., regarding the importance of individuals, patterns in communication behavior, or for the identification of single points of failure. This article describes a mapping study performed based on the rigorous guidelines by Kitchenham and Charters \cite{Kitchenham:2007} for literature reviews with the goal to identify and map research on DSNs. We map the publications on DSNs published until 2017 to research topics and analyze the scope of the publications in terms of data sources, number of projects, and number of people. With our mapping study, we provide the following contributions.

∗Corresponding author

\textit{Email addresses:} aynur.amirfallah@stud.uni-goettingen.de (Aynur Amirfallah), trautsch@cs.uni-goettingen.de (Fabian Trautsch), grabowski@cs.uni-goettingen.de (Jens Grabowski), herbold@cs.uni-goettingen.de (Steffen Herbold)
A contemporary overview of the state of the art of the literature on DSNs.

A summary of the already investigated research directions, including the relevant literature.

A summary of the data sources, as well as the size of the DSNs in terms of number of projects and people involved.

A bibliometric assessment to identify influential publications, authors, venues, and interest in the topic over time.

The identification of open issues within the current state of the art.

The remainder of this paper is organized as follows. We give a definition of DSNs in Section 2. In Section 3, we present our methodology for the mapping study, including our research questions, inclusion and exclusion criteria for the literature, how we identified publications, and the data we collected for each included publication. In Section 4, we give the results of our review, by listing the primary studies we found and map them to DSN concepts according to our research questions. In Section 5, we discuss open issues regarding DSN research based on the results of our mapping study. Then, we discuss related prior literature studies in Section 6, and conclude the article in Section 7.

2. Definition of Developer Social Networks (DSNs)

A definition is difficult, because different data sources, research goals, and modelling approaches are used to represent DSNs in the literature. Due to this, publications on DSNs contain the specific definition of their DSN structure, but this varies between publications. For our purpose, we require a definition, that can be applied to validate if a construct is an instance of a DSN. We identified three necessary and sufficient conditions for DSNs.

1. A DSN is described by a graph $G = (V, E)$ where V denotes a set of vertices and E a set of edges such that $E \subseteq V \times V$. The graph can be directed or undirected, depending on the intent of the researchers and the data that is used for modelling the DSN.

2. The vertices or a subset of the vertices must represent actors of a software development process, e.g., developers, users, or project managers.

3. The edges represent connections between vertices that are based on communication behavior (e.g., email communication) or collaboration behavior (e.g., contributions to the same software artifact).

An example of a DSN is given in Figure 1. This figure depicts an anonymized excerpt of the DSN created by Bird et al. [10]. The vertices in this graph represent different developers, which were active on Apache email lists. A directed edge between two vertices exists, if the developer has sent or replied to at least 150 emails of another developer.
3. Methodology

Our review follows the guidelines for systematic literature reviews proposed by Kitchenham and Charters [1]. Additionally, we used backward and forward snowballing, which was suggested for systematic literature studies by Wohlin [2]. In the following, we define our underlying research questions, inclusion and exclusion criteria, how we identified papers, and which data was collected for our study. We do not define our study as systematic literature review but as a systematic mapping study, because we did not perform any synthesis of the results, but only provide an overview of the literature.

3.1. Research Questions

In order to study the state of the art in DSNs, we defined the following five research questions to guide our mapping study. The first three research questions guide our analysis of the state of the art on DSNs. The fourth and fifth question give us insights into the community of DSNs research itself.

- **RQ1.** What software engineering topics have been addressed by DSNs?
- **RQ2.** Which data sources are used for modelling of DSNs?
- **RQ3.** What is the scope of the analysis...
 a) with respect to number of projects considered
 b) and people modelled by the DSNs?
- **RQ4.** What are the most influential...
 a) publications?
 b) authors?
 c) venues?
- **RQ5.** How did the interest in DSN research evolve over time?
3.2. Inclusion and Exclusion Criteria
To identify which papers should be part of our review, we defined the following criteria for inclusion:

• publications that describe DSN;
• publications that describe how DSNs may be created; and
• publications that describe theoretical aspects of DSNs.

Additionally, we used the following exclusion criteria:

• publications that only summarize existing work without new contributions;
• publications that only consider social networks or graph structures in general, without a direct and specific relation to software development;
• publications that were not peer-reviewed;
• publications that are not published in English; and
• publications that were first published after 2017-12-31.

3.3. Identification of Primary Studies
Figure 2 summarizes our workflow for the identification of primary studies. We used a five step procedure.

1. Initial scan of the literature using search engines and prior literature studies to identify a seed of publications.
2. Backward and forward snowballing of publications found in the initial scan.
3. Second scan of the literature using search engines to capture the remainder of 2017 and to account for delayed indexing of publications.
4. Backward and forward snowballing of publications found in the second scan.
5. Final check of inclusion and exclusion criteria on all identified publications.

In the first step, we searched for publications by using five search engines: Google Scholar, IEEE Xplore, ACM Digital Library, Springer Link, and Elsevier Search. We used three queries for each search engine: "developer social networks", "developer network", and "collaborative networks OSS". Table 1 gives an overview on the number of hits we had with our search terms in each of the search engines. This initial search was conducted between May 2017 and September 2017. Due to the extremely high number of hits, we considered only 750 hits per search engine and search term to get the literature seed for our mapping study. Next, we selected candidates for inclusion by reading the titles, abstracts, and, if it was necessary, the introduction and conclusion sections of the publications. We identified 145 publications through this procedure from the
search engines. Additionally, we scanned the primary studies from prior related literature studies by Zhang et al. [3], Tamburri et al. [4], Manteli et al. [5], and Abufouda and Abukwaik [6] (see Section 6). We identified 39 additional publications from the prior studies. This difference is mainly due to the scope of the other literature studies, especially with respect to search terms. For example, Manteli et al. [5] focus on global software engineering and, therefore, also use search terms that do not mention DSNs. Thus, we identified 184 publications in this first step.

In the second step, we checked the related work cited in each of the publications we found using the search engines. This step is also known as backward snowballing [2]. Moreover, we used the “cited by” function of Google Scholar, to identify publications that cited the publications we identified with the search engines. This step is also known as forward snowballing [2]. We also applied the snowballing to each additional publication we found. We identified 32 additional publications, i.e., 216 publications in total. The snowballing also served
to mitigate potential negative effects because we did not consider every hit for the search terms with the search engines. Our assumption is that we find the literature we may have missed through the snowballing. Moreover, same as the use of the prior literature reviews as seed for the snowballing, the snowballing allowed us to identify literature that did not mention the DSN in the paper title or abstract and was, therefore, missed by our search.

In the third step, we repeated our search for literature from the first step. This was required, because the initial search already started in May 2017, i.e., we could not be confident that all papers from 2016 were indexed by the search engines and part of the data for 2017 was not available yet. Thus, we repeated the search in July 2018. This way, we identified 13 new publications from the years 2016 and 2017, bringing our total number of publications to 229.

Afterwards, in the fourth step, we performed an additional round of snowballing on these additional 13 publications, but did not find any additional publications.

Before we started with the data collection, we validated whether all identified candidates met the inclusion criteria or violate the exclusion criteria in our last step. This way, we excluded 35 of the identified publications, mainly because they were not peer reviewed (e.g., book chapters), summarized only existing work (e.g., surveys, dissertation summaries), or because they did not contain anything specific to developer social networks, regardless of our initial assessment. This left us with 194 primary studies.

3.4. Data Collection

Once all literature was identified, we proceeded with the collection of the data required to answer our research questions. For RQ1, we first extracted the research questions and/or hypothesis that were formulated to guide the research, as well as the contributions as listed in the introduction or summarized in the abstract from the publications. We used inductive coding [7] performed by two researchers to identify the research topics of the papers from the hypothesis and contributions in order to obtain the necessary information to answer RQ1. For this, we printed the title, research questions/hypotheses, and contributions of each publication on a separate sheet of paper and sorted them incrementally by their topic, starting with a coarse-grained separation until we were satisfied that our categories provided a sufficient amount of detail for our mapping study. For RQ2 and RQ3, we extracted the data source, the number of projects, and the number of participants in the DSN used within the publications. For RQ4 and RQ5, we collected meta data about the publications themselves, i.e., the title, authors, publication venue, year, and number of citations. We organized the collected data in a spreadsheet which is made available as supplementary material.

4. Literature Review

In this section, we provide the review of the the state of the art of DSN research based on the data collection we described in Section 3. We systemat-
ically address different topics. We use the data from this review to answer our research questions in Section 5.

4.1. Research Directions

Based on the description of the contributions, the research questions, and the research hypotheses of publications, we identified seven general research directions regarding DSNs. For four of the general research directions we identified subtopics, i.e., specific aspects that were considered within the general direction. Table 2 shows our mapping of publications to the research directions including subtopics.

Nearly half of the publications we identified analyze the community structures in software development projects. Most of these publications analyzed the general structure of the DSN. However, we also identified five more specific subtopics of the analysis of community structures: the evolution of the communities by considering DSNs over time; community structures in the context of global software engineering; the formation of teams within development projects; the correlation between the community structure and code quality; and the analysis of socio-technical congruence.

DSNs are frequently used for the creation or improvement of prediction models for various aspects in software development projects. We identified six subtopics of prediction approaches using DSNs: defect prediction, i.e., using the social structure of a project to enhance models that estimate the defect-proneness of different parts of software; bug triage, i.e., support for assigning appropriate developers to work on bug reports; recommendation of suitable developers for project work in general; predictions of the outcome of a project, i.e., if projects are likely successful; predictions of build failures; and prediction of appropriate developers for code review.

The collaboration behavior was also scrutinized using DSNs. While DSNs are modelling some direct or indirect collaboration behavior in software development projects, the analysis of the collaboration behavior itself is in general not the focus. The publications we identified for this research direction focus directly on the collaboration behavior, e.g., which tools were used or how collaboration behavior was impacted by the structure of projects. In addition to research on collaboration behavior in general, we identified three more specific subtopics: collaboration behavior in global software engineering; problems in collaboration behavior and how they are reflected in DSNs; and collaboration between developers from different companies, including competitors in open source projects.

DSNs are also frequently used to assess the roles of developers within a development project, e.g., whether a developer is a core developer or a peripheral developer. While the identification of roles for developers in general is the main topic of this research direction, we also identified two other subtopics; the analysis of how onboarding of peripheral developers within projects works; and how developers specialize within a project.

We also identified research regarding tools for DSN analysis, mostly for the visualization of DSNs based on different information sources.
The validity of DSN research was also considered by five publications. These publications do not question the validity of DSN research in general, but rather analyze how properties of DSN research may depend on the specific context of research projects, e.g., the scope of the analysis or the repository that was used as source for the DSNs.

Finally, we found one publication on a data set that directly contains the graph structure of a DSN. The lack of publications on data sets shows that researchers either generate DSNs from data they collect, or from more general data sets that do not model DSNs directly. Such data sets contain general information mined from software repositories from which a DSN is then built.

Category	#Pubs.	Publications
Community Structure		
General	53	[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161]
DSN Evolution	14	[63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]
Global SWE	10	[77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
Team Formation	6	[87, 88, 89, 90, 91, 92, 87, 88, 89, 90, 91, 92]
Impact on Code Quality	5	[93, 94, 95, 96, 97, 93, 94, 95, 96, 97]
Socio-technical Congruence	5	[98, 99, 100, 101, 102, 98, 99, 100, 101, 102]
Prediction		
Defect Prediction	11	[103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113]
Bug Triage	9	[114, 115, 116, 117, 118, 119, 120, 121, 122, 114, 115, 116, 117, 118, 119, 120, 121, 122]
Developers for Tasks in General	4	[123, 124, 125, 126, 123, 124, 125, 126]
Project Outcomes	3	[127, 128, 129, 127, 128, 129]
Build Failures	2	[130, 131, 130, 131]
Developers for Code Review	1	[132, 132]
Collaboration Behavior		
General	11	[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]
Global SWE	10	[144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153]
Problems	7	[154, 155, 156, 157, 158, 159, 160, 154, 155, 156, 157, 158, 159, 160]
Inter-company collaboration	1	[161, 161]
Developer Roles		
Table 2: Overview of the literature on DSNs by research directions.

Identification	18	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
Onboarding	7	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197
Specialization	1	187																	
Tools	10	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202			
DSN Validity	5	198	199	200	201	202													
Datasets	1	203																	

Answer to RQ 1: Community structures are the dominant research direction. Other frequently studied directions are DSNs for predictions, collaboration behavior and developer roles. Tools, studies on validity, and data sets play only a minor role.

4.2. **Data Sources**

There are five major data sources which are used by 184 of the 194 publications:

- Forges like GitHub or SourceForge that are used by millions of developers for hosting and developing open source software. These forges offer an integration of VCSs and ITSs within a single environment, often coupled with other services like Web pages, hosting of releases, or Wikis. Thus, they are a rich source for collaborations between developers, both within a project, as well as across multiple projects.

- ITSs like Jira or Bugzilla are used for the collection, tracking, and management of issues and work items within projects, e.g., change requests, bug reports, or questions by users. ITSs allow the discussion about issues, the definition of work flows for issues, and different types of resolutions.

- VCSs like Git or SVN are systems that track and archive changes of files and folders over time. Typically, VCSs allow different development branches and support working collaboratively on the same resources [8].

- MLs are collections of email addresses that can be used for communication within software projects. MLs may be restricted, e.g., not everybody may be allowed to post or subscribe to a ML. Participants of MLs may be natural persons (e.g., developers, users), but also systems (e.g., continuous integration systems, ITSs).

- Surveys, i.e., interviews or questionnaires that were used to directly ask developers about their communication behaviour within a development project.
In addition to the five major sources, there are other ways that researchers used to collect information about collaboration behavior which we summarized as "Other" in Table 3. These are IRC chats [79, 144, 201], plug-ins that monitor development environments [140, 158, 190], manual inspection of project documents, e.g., requirements [133, 146, 175], the web site Ohloh that provides statistics about open source development [31, 32], online discussion forums [56, 88], JAR files [108], the BlogLinks and Advogato social networks of software developers [53], on site researchers that observe communication behavior [159], and employee directories [156]. Additionally, one publication discusses DSNs from an abstract perspective and proposes the use of tracking for every communication including phone calls, emails, etc. [17].

Figure 3 depicts the number of data sources that were used for modelling DSNs. It highlights that 153 of the 194 publications build a DSN that is based on a single source, 34 publications used a combination of two data sources, six publications three data sources and one publication four data sources.

Data Source	#Pubs.	Publications
ITS	41	105, 116, 33, 113, 157, 158, 98, 127, 22, 165, 23, 100, 134, 52, 135, 136, 65, 96, 84, 117, 69, 171, 172, 139, 38, 150, 141, 72, 49, 113, 139, 137, 131, 114, 119, 61, 120, 121, 122, 186
Forge	37	16, 18, 87, 21, 24, 123, 183, 25, 26, 89, 90, 29, 33, 132, 138, 170, 36, 125, 128, 41, 44, 193, 194, 17, 50, 126, 129, 91, 52, 202, 54, 132, 53, 59, 60, 75, 62

1The name has changed to https://www.openhub.net/.
2Both are not available online anymore.
Table 3: Data sources that were used for the modelling of the DSNs.

Data Source	Number of Publications
VCS	32
	104 95 181 189 99 167 154 28
	106 13 341 15 169 60 67 39 40
	203 103 42 198 109 97 110 176
	196 16 197 161 102 73 179
ML	22
	77 10 19 11 183 27 124 12 68
	85 70 71 200 113 45 174 178 63
	71 160 162 134
Survey	11
	78 145 81 83 173 37 174 149 85
	151 152
Other	10
	17 188 144 159 190 31 32 108
	140 112
ITS & VCS	13
	199 155 94 106 164 107 63 100
	163 43 180 111 86
ML & VCS	13
	180 20 182 147 137 191 34 192
	92 48 101 143 70
Survey & Other	3
	146 135 175
ML & Other	2
	88 55
Forge & Survey	1
	80
ITS & Survey	1
	148
ITS & ML	1
	147
ITS, ML & VCS	3
	184 91 195
ITS, ML & Other	1
	56
ITS, Survey & Other	1
	79
ITS, VCS & Other	1
	136
ITS, ML, VCS & Other	1
	201

Answer to RQ 2: Software repositories like forges, ITSs, VCSs and MLs are the main sources for DSNs, however, surveys are also sometimes used. Publications commonly use a single source for DSN modelling. The knowledge about DSNs built with multiple sources is limited.

4.3. Number of Projects Analyzed

A major factor regarding the external validity of results is the number of projects for which data is collected. If only data about very few projects is used for an empirical study about a phenomenon that can be studied using DSNs, the results may not generalize to other projects. The likelihood that the results generalize to software engineering in general increases with the number of projects that are analyzed. Table 4 shows the number of projects per publication. The data we collected shows that most papers on DSNs perform some sort of empirical study to demonstrate their approach or research a phenomenon. Only 11 of the 194 publications we identified did not perform any empirical study. Moreover, we identified 9 publications for which we could not identify the number of projects from the publication. There were two reasons for this: either
Table 4: Number of projects that were analyzed as part of an empirical study of DSNs. Missing means that the number of projects is not or not accurately reported in the publication, NA means that the publication did not conduct an empirical study.

#Projects	#Pubs.	Publications
1	65	105, 77, 78, 93, 10, 13, 82, 158, 144, 98, 127, 159
		166, 63, 182, 82, 154, 28, 29, 65, 124, 31, 12, 69, 100
		125, 171, 172, 139, 173, 37, 174, 187, 175, 103, 32
		163, 43, 149, 109, 107, 60, 71, 150, 140, 110, 176, 45
		195, 130, 72, 177, 111, 89, 49, 101, 52, 152, 153, 57
		131, 114, 76, 121, 162
2-5	55	116, 155, 94, 115, 164, 157, 107, 180, 11, 104, 20, 29
		95, 145, 88, 133, 190, 167, 134, 81, 183, 191, 27, 64
		108, 117, 14, 33, 67, 68, 132, 138, 35, 36, 39, 40, 198
		201, 13, 192, 91, 151, 196, 46, 92, 178, 73, 118, 112
		56, 119, 179, 120, 122, 113
6-10	10	106, 154, 185, 108, 15, 169, 141, 201, 161, 186
11-100	16	199, 22, 80, 21, 137, 83, 96, 84, 66, 85, 48, 74, 133
>100	28	14, 181, 21, 165, 23, 123, 135, 136, 89, 30, 32
		170, 128, 88, 41, 14, 193, 47, 70, 120, 129, 51, 52
		202, 142, 59, 60
Missing	9	18, 146, 23, 138, 203, 54, 55, 68, 75
NA	11	17, 156, 188, 189, 99, 147, 26, 33, 191, 197, 102

the authors did not report how they selected a smaller subset from a larger database or the authors did not specify which projects were used at all. This is not only problematic for evaluating the external validity of a study, but also hinders replications of the results. Of the 174 publications for which we could identify the number of projects, 65 used only a single project for their empirical study, 55 used only 2-5 projects for the empirical study. In other words, about 35% of the publications on DSNs used a single project, another 30% used 2-5 projects. Both numbers are extremely low and do not allow for a generalization of the findings. Another 10 publications only considered 6-10 projects, which is still a small number. On the bright side, 28 publications used more than 100 projects, i.e., larger sample sizes that usually allow to generalize findings. Still, these sample sizes regarding the number of projects pose a severe threat to the external validity of many empirical studies on DSNs. 21 of these publications use a forge as data source.

Answer to RQ 3a: Over 71% of all publications use less than 11 projects to evaluate their findings. Most publications with at least 100 projects use a forge as data source (21 of 28).
4.4. Number of Developers in the DSNs

The second major factor regarding the validity of results is the number of people that are part of the DSNs. Table 5 shows the data we collected regarding the number of people in the DSNs. In case a publication created multiple DSNs, e.g., one per project considered, we report the mean value of the people in the DSNs. The number of people modelled by the DSNs is relatively high. 53 publications have more than 1,000 people as part of their DSNs, 9 publications actually model more than 100,000 people. Only two publications have very small networks with less than or equal to 10 people, another 29 publications consider less than 100 people. Thus, for the publications for which the data about the number of people is available, the networks that are considered are in general relatively large. When we looked closely at the data, we observed two reasons for this: first, while many publications consider only few projects, these projects tend to be very large, e.g., Mozilla Firefox and the Eclipse IDE. Moreover, our data also shows that MLs and forges are the most common data sources for DSNs. Both capture not only developers, but also users of the respective projects. We also found a very concerning general trend in the literature: 47 of the 183 publications that performed an empirical study did not report the number of participants in the DSN. This is a vital piece of information for the estimation of both the internal and external validity of empirical studies that should always be reported.

Answer to RQ 3b: Most publications report networks that have more than 100 vertices. The number of developers is often much larger than the number of projects, because large-scale projects with big communities are analyzed.

4.5. Influential Publications

We collected data regarding the citation counts from Google Scholar. We take the pattern from the ACM Distinguished Paper awards to define our criterion for influential publications, and consider the top 10% with the most citations as influential. Since we have 194 publications, this means we consider the 19 publications with the most citations (Table 6). We note that the citations for the third most cited paper [10] also include the citations for the paper [19], because the two publications are considered as the same paper by Google Scholar. The 19 most influential publications address

- software development with globally distributed project members [148, 177];
- community structures in software development projects [10, 22, 182, 41, 11, 60];
- the formation of teams in projects through collaboration [90, 88];
- the identification of relationships between developers [156];
- the impact of coordination requirements between developers on tool design [158] and modularization [98];
Table 5: Number of people that are inside the DSNs. Missing means that the number of people is not or not accurately reported in the publication, NA means that the publication did not conduct an empirical study.

#People	#Pubs.	Publications
1-10	3	146, 146, 176
11-100	29	105, 77, 78, 116, 11, 127, 145, 88, 138, 166, 80, 83, 137, 168, 14, 67, 68, 37, 175, 163, 43, 149, 201, 85, 151, 16, 152, 179, 162
101-1000	51	199, 87, 158, 144, 98, 23, 63, 107, 134, 182, 82, 184, 185, 27, 148, 121, 34, 115, 139, 63, 42, 138, 100, 171, 172, 139, 174, 40, 187, 103, 82, 198, 97, 71, 150, 141, 145, 196, 38, 80, 126, 202, 74, 153, 134, 114, 143, 61, 126, 70, 121
1001-	25	18, 137, 10, 19, 20, 183, 64, 29, 31, 117, 132, 36, 125, 173, 128, 70, 200, 13, 192, 47, 178, 49, 101, 53, 160
10000	19	164, 180, 123, 32, 63, 38, 41, 91, 195, 177, 50, 51, 52
100000	51	53, 73, 118, 119, 122, 186
>100000	9	16, 155, 21, 25, 90, 65, 193, 60, 75
Missing	47	93, 94, 115, 106, 107, 104, 79, 95, 184, 22, 165, 159, 190, 24, 154, 135, 136, 191, 28, 89, 83, 96, 84, 50, 108, 85, 170, 89, 203, 44, 109, 110, 130, 72, 111, 92, 129, 164, 55, 112, 60, 171, 142, 28, 59, 113, 62
NA	11	17, 156, 188, 189, 59, 147, 26, 33, 194, 197, 102
• communication issues and trust; and
• predictions to support software engineering processes, i.e., bug triage, defect prediction, and build failure prediction.

Title	Authors	Year	#Cit.
An empirical study of speed and communication in globally distributed software development	James D. Herbsleb, Audris Mockus	2003	1061
Individual Centrality and Performance in Virtual R&D Groups: An Empirical Study	Manju K. Ahuja, Dennis F. Galletta, Kathleen M. Carley	2003	608
Mining email social networks	Christian Bird, Alex Gourley, Premkumar Devanbu, Michael Gertz, Anand Swaminathan	2006	586
The social structure of free and open source software development	Kevin Crowston, James Howison	2005	553
Identification of Coordination Requirements: Implications for the Design of Collaboration and Awareness Tools	Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, Kathleen M. Carley	2006	444
Socialization in an Open Source Software Community: A Socio-Technical Analysis	Nicolas Ducheneaut	2005	426
Improving Bug Triage with Bug Tossing Graphs	Gaeul Jeong, Sungmin Kim, Thomas Zimmermann	2009	379
The Open Source Software Development Phenomenon: An Analysis Based on Social Network Theory	Gregory Madey, Vincent Freeh, Renee Tynan	2002	326
Socio-Technical Congruence: A Framework for Assessing the Impact of Technical and Work Dependencies on Software Development Productivity	Marcelo Cataldo, James D. Herbsleb, Kathleen M. Carley	2008	270
Latent social structure in open source projects	Christian Bird, David Pattison, Raissa D'Souza, Vladimir Filkov, Premkumar Devanbu	2008	262
Answer to RQ 4a: There are many publications on DSNs with a high citation count. The most influential publications address a very diverse number of topics, which highlights that there are many use cases for DSNs in software engineering research.

4.6. Influential Authors
We identified 356 different authors who contributed to the literature on DSNs. We use a bibliometric approach to identify the most influential of these authors, based on three different indicators: 1) the number of citations of all publications on DSNs; 2) the number of publications on DSNs; and 3) the
number of publications on DSNs we identified as influential (Section 4.5). We consider the top-5 authors in each category to be the most influential. For the bibliometric data we collected, this means that an author has to have at least 1275 citations, 8 publications, or 2 influential publications to be considered as one of the most influential authors.

Table 7 shows the 12 most influential authors we identified according to these criteria. Below, we briefly summarize the research directions of the influential authors. We discuss authors that frequently collaborated with each other as a group.

- James D. Herbsleb, Kathleen M. Carley, and Marcelo Cataldo are co-authors of two influential publications as well as several other publications. Herbsleb and Carley are both professors at Carnegie Mellon University, where they were the advisors of Marcelo Cataldo for his PhD. Their work covers structures and collaboration in global software engineering as well as socio-technical congruence within projects.

- Premkumar Devanbu was the PhD advisor of Christian Bird, who wrote his dissertation on DSNs. Their work addressed social structures and openness of open source projects, as well as build failure prediction.

- Kevin Crowston was the PhD advisor of James Howison, who wrote his dissertation on DSNs. Their work addressed community structures for open source software development.

- Daniela Damian collaborated with different authors as part of her work on communication between developers from different perspectives.

- Manji K. Ahuja collaborated with Kathleen M. Carley who was part of her PhD thesis committee. Their joint work analyzed community structures in global software engineering. Later, she worked on collaboration issues in global software engineering with respect to trust.

- Gregory Madey was the lead author of the first paper on DSNs we identified. He enabled many early papers through the SourceForge Research Data Archive [9].

- Thomas Zimmermann contributed to works that solve collaboration problems through an analysis of socio-technical aspects. The goal was to enhance developer communication, as well as describing how DSNs may be used to bug tossing as part of the triaging process.

- Vladimir Filkov, who contributed to different aspects, including homophily, developer initiation into projects, communication behavior, as well as general structural aspects of DSNs.
Table 7: Most influential authors according to the number of citations, number of publications, and number of influential publications.

Author	#Cit.	#Pubs.	#Influential Pubs.
James D. Herbsleb	2137	7	3
Kathleen M. Carley	1377	4	3
Christian Bird	1316	8	2
James Howison	1275	6	2
Kevin Crowston	1275	6	2
Premkumar Devanbu	1273	9	2
Daniela Damian	955	10	2
Marcelo Cataldo	921	6	2
Manju K. Ahuja	869	2	2
Gregory Madey	651	8	2
Thomas Zimmermann	584	2	2
Vladimir Filkov	371	8	1

4.7. Important Venues

The identified papers were published in 89 different venues, i.e., journals, conferences, and workshops. Table 8 lists the venues at which most papers on DSNs were published. Three conferences stand out: the International Conference on Open Source Software (OSS), the International Conference on Software Engineering (ICSE), and the International Conference on Mining Software Repositories (MSR). 22% of all papers on DSNs were published at these three venues. This is not surprising, as most publications analyse open source projects or ecosystems and employ software repository mining techniques. The ICSE is the top conference in the software engineering field, which highlights that there are also papers of outstanding quality on DSNs. We note that the venues with most publications are mostly conferences. The only two journals that made it into this list are Empirical Software Engineering and Information and Software Technology. However, there are also publications in other premier software engineering journals: three in the IEEE Transactions on Software Engineering [100, 148, 174], two in the Journal of Systems and Software [78, 95], and one in the ACM Transactions on Software Engineering Methodology [47].

Answer to RQ 4c: The papers on DSNs were published in 89 different venues, including journals, conferences, and workshops. The most prominent venues are the ICSE, the OSS, and the MSR. Only two journals are in
Table 8: Most important publication venues determined by the number of papers published. We omitted labels like IEEE, ACM, or similar from the conference names, as they often changed slightly throughout the years.

Venue	#Pubs.
International Conference on Software Engineering (ICSE)	15
International Conference on Open Source Software (OSS)	15
International Conference on Mining Software Repositories (MSR)	13
(Workshop until 2007, Working Conference until 2015)	
Conference on Computer Supported Cooperative Work (CSCW)	9
International Conference on the Foundations of Software Engineering (FSE)	6
Asia-Pacific Software Engineering Conference (APSEC)	6
International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE)	6
Empirical Software Engineering, Springer	5
Information and Software Technology, Elsevier	5
International Conference on Global Software Engineering (ICGSE)	5
International Conference on Software Maintenance and Evolution (ICSME) (ICSM until 2013)	5
Hawaii International Conference on System Sciences (HICSS)	5

4.8. Importance over Time

Another interesting aspect is the importance of DSNs over time measured by the number of publications per year. Figure depicts the number of papers published every year since the initial publication by Madey et al. in 2002. The topic quickly gained traction in the research community with rising numbers of publications until the interest became steady with 11 to 21 publications per year between 2005 and 2013. There seems to be a slight decline in the interest in DSNs since 2014 with only 9 to 10 publications per year since then.

Answer to RQ 5: There is a high interest in DSNs research since 2005, with a potentially slight decline in recent years.

5. Discussion of Open Issues

Our mapping study shows that DSNs are a versatile method for software engineering research. Mostly, they are used for the analysis of social structures and communication. However, the applications of DSNs range beyond that, e.g., for predictive purposes. Within this section, we discuss open problems in DSN research.
5.1. General Issues

Here, we discuss general issues within the current body of work on DSNs, that should be addressed by future work.

5.1.1. Lack of Guidelines

There are no guidelines on how to conduct DSN research. Therefore, the studies on DSNs are performed and described very heterogeneously. This is not an issue in itself, as heterogeneity can also be positive if different aspects are analyzed. Moreover, many publications perform well-designed case studies and report all important data regardless of the lack of guidelines. However, we observed several issues that result from the inconsistent way studies with DSNs are performed:

- lack of reporting of the exact data sources and/or selection criteria for case study subjects;
- lack of reporting of important meta data about the study, e.g., number of projects, number of people; and
- lack of reporting of pre-processing steps performed with the data, e.g., to merge identities in case the same people used multiple aliases.

The development of guidelines for research on DSNs can, therefore, help to enhance the quality of DSN research in general.

5.1.2. Studies with High External Validity

Our data shows that many results regarding DSNs were obtained only on very few projects, i.e., over 71% of the publications used less than 11 projects to conduct their research. While this does not mean that the results are wrong or would not generalize to other contexts, this poses a threat to the generalizability of results. This problem is to some degree further aggravated, because there is an overlap in the data that is used, i.e., multiple studies using the same data, sometimes the same single project (e.g., IBM Jazz or the Global Studio Project).
Moreover, we noted a strong relation between the data sources and the size of studies. Figure 5 shows the size of the studies with relation to the data source. The larger circles mean more publications. Almost all publications with large numbers of people and projects were based on data from forges. Thus, an open issue considered for all future publications is to use larger sample sizes regarding the number of projects, to enable a better generalizability of results. This could either be done by harnessing data from forges or by collecting data for more projects from other data sources.

5.1.3. Lack of Replications

There is general lack of replications in DSN research. The publications are more or less independent of each other, the exception being multiple publications by the same authors building on each other. We did not find any study that explicitly tried to replicate prior results. The lack of replications is especially problematic due to the often very small numbers of projects considered (see above). Thus, we believe that replication studies on DSN research are required for all research directions so far.

5.2. Open Topics

Here, we discuss potential future directions of DSN research.

5.2.1. Inter-company Collaborations

Since more and more companies contribute to open source software and/or develop their own software products as open source, the collaboration between developers of competing companies becomes an important issue. If developers from competing organizations contribute to the same project, this could lead to issues within a project, that could be analyzed through DSNs, e.g., with respect to team formation, onboarding, collaboration problems, and even impacts on
the socio-technical congruence of projects. Within our mapping study, we only discovered one publication in this direction [161].

5.2.2. DSNs from Multiple Sources

The use of multiple sources for DSN studies allows a deeper analysis of developer communities. For example, how does the community on a ML differ from the community that can be observed in pull request discussions or in an ITS? Can we infer something about onboarding of developers from their integration in different DSNs? Do projects that use an ITS and a ML exhibit different collaboration properties than projects that just use an ITS or a ML? What exactly is the temporal-spatial relationship between the DSN structures of different sources? Does research regarding the team formation of projects based on MLs yield the same results as research on team formation on ITSs? How does migration to a new ITS affect the community structure? All of these are currently open questions. Especially the comparison of DSNs that are based on different data sources has been neglected so far, with only a single publication that directly compares the DSN structure obtained from ITS data with that obtained from VCS data [199].

5.2.3. Applications using DSNs

The current literature on DSNs has a strong focus on understanding community structures and the implications of the community structure on issues like developer roles, team formation, and collaboration behavior. However, there are only relatively few actionable applications of DSNs. CodeBook [156] is a notable exception that demonstrates how DSNs can be used to improve the daily life of software developers. While other publications also study applications of DSNs, e.g., for defect prediction, failure prediction, or developer recommendations, they are mostly not accompanied by a tool that makes the research actionable for practitioners. The tool papers that we identified cover mostly the visualization of DSNs. While visualizations are a useful tool for the analysis of communities, they are not actionable applications of DSNs. We believe that research that produces actionable tools can have a big impact, e.g., on already considered issues like bug triage or developer recommendations.

5.2.4. Data sets

We only identified a single publication that published a DSN as data set. While there are other publications that are based on public data sets, e.g., the source forge dump [9], these data sets are not yet DSNs. They only contain the data necessary to create a DSN. While there are certainly use cases, in which new DSNs must be created, e.g., because different information is used to create links between developers, there are also cases for which dedicated data sets on DSNs would have advantages. For example, benchmark data sets could allow, e.g., to compare different approaches for developer recommendation or the identification of core developers. Moreover, the collection of data from a large amount of software repositories can be very time consuming. Data sets
for a large amount of projects could help with this issue, and, e.g., enable larger
studies with MLs as sources for projects.

6. Related Work

Our systematic mapping study is not the first literature study that covers
DSNs. Within this section, we discuss related literature studies on DSNs, their
differences to our work, and how we utilized them as sanity checks for our work.

Closest to our work is the survey by Zhang et al. [3]. Similar to our work, the
authors analyzed the data sources, as well as topics that were addressed with
DSNs. However, there are several notable differences between the work by Zhang
et al. and our work. First, the search strategy by Zhang et al. is different from
ours. They used the search term "developer network" and identified 20 publi-
cations related to DSNs within the first 50 hits on Google Scholar. Using these
publications as seed, the authors performed one round of forward/backward
snowballing and identified a total of 86 primary studies this way. In compari-
son, we use more search terms and multiple search engines, consider 750 instead
of 50 hits per search term/search engine, and performed exhaustive backward
and forward snowballing until no further papers were identified. Moreover, the
focus of the presentation from Zhang et al. differs from ours. We provide a
systematic mapping of approaches to topics through inductive coding. In compari-
son, Zhang et al. provide a more detailed description of different approaches
to address research topics, but no systematic mapping. We used the research
topics they describe as starting point for our inductive coding. Another differ-
ence to our work is that Zhang et al. also report on the metrics that were used
for the analysis of the DSN, an aspect that is not covered by our mapping study.

The literature study by Tamburri et al. [4] uses grounded theory to identify
different types of social structures within open source software development.
Thus, their focus is different from ours, which is on DSNs in general, not on social
structures. However, DSNs play an important role in the study by Tamburri et
al. and are part of the literature that they identify. Due to the different focus,
the search strategies also differ. Most importantly, the search by Tamburri et
al. also covers search terms like "organizational", "knowledge community" and
similar to account for the different focus. Moreover, the search engines used
are different from ours. They used SCOPUS, Web of Science, EBSCO, JSTOR
knowledge storage, Wiley InterScience and ProQuest in addition to the search
engines we used. On the other hand, we used Google Scholar, which was not
used by Tamburri et al.. The authors identified 143 publications for their study.

Manteli et al. [5] performed a literature study to analyze DSNs with respect
to global software development. Their focus was on coordination, cooperation,
and communication aspects of global software development. This scope of this
survey is narrower than our mapping study of DSNs without further restrictions.
This shows in the difference in search terms and inclusion criteria. Moreover,
there is a difference in search engines used. Manteli et al. used EBSCO and
Wiley InterScience in addition to the engines we used, but did not use Google
Scholar. The authors identified 23 primary studies on DSNs with a relation to global software development.

Abufouda and Abuwaik [6] performed a systematic literature review on DSNs with the goal to identify how reliable constructed social networks are. This goal is different from our general focus, which shows, e.g., in the different exclusion criteria. The authors used the same search engines we also used, with the exception of Google Scholar which was not considered. The authors identify 23 primary studies that meet the criteria for their survey. The data the authors collected is very detailed with respect to the required description of the model and covers aspects like vertex types, edge types, and validation criteria. Thus, the work by Abufouda and Abuwaik focuses on evaluating aspects related to the internal validity of studies. In comparison, we collect data related to the external validity of DSN studies in our work, i.e., the scope of the analysis that is conducted.

In addition to our comparison with related work above, there are several differences between our work and all the related literature. No other work performed a bibliometric assessment of influential authors, papers, and venues. Moreover, no work in the literature provides information about the scope of the networks, i.e., the number of projects and participants that are analyzed through DSNs in a publication.

7. Conclusion

This article presents the results of our systematic mapping study on DSNs. We identified 194 primary studies published between until 2017. Our results show that DSNs were used for the analysis of many different software engineering research topics since their initial use in the year 2002 [41]. Our mapping study provides insights into research directions, data sources, the size of studies, as well as a bibliometric assessment of the field. Based on our results, we determined open issues in the state of the art. Through this, we provide a valuable resource for researchers to guide future research on DSNs.
References

[1] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in Software Engineering (Version 2.3), Technical Report EBSE-2007-01, Keele Univ., EBSE (2007).

[2] C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in software engineering in: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, ACM, New York, NY, USA, 2014, pp. 38:1–38:10. doi:10.1145/2601248.2601268.
URL http://doi.acm.org/10.1145/2601248.2601268

[3] W. Zhang, L. Nie, H. Jiang, Z. Chen, J. Liu, Developer social networks in software engineering: construction, analysis, and applications, Science China Information Sciences 57 (12) (2014) 1–23.

[4] D. A. Tamburri, P. Lago, H. v. Vliet, Organizational social structures for software engineering, ACM Computing Surveys (CSUR) 46 (1) (2013) 3.

[5] C. Manteli, H. Van Vliet, B. Van Den Hooff, Adopting a social network perspective in global software development, in: Global Software Engineering (ICGSE), 2012 IEEE Seventh International Conference on, IEEE, 2012, pp. 124–133.

[6] M. Abufouda, H. Abukwaik, On using network science in mining developers collaboration in software engineering: A systematic literature review, International Journal of Data Mining & Knowledge Management Process 7 (5/6) (2017) 1–20. doi:10.5121/ijdkp.2017.7601

[7] D. R. Thomas, A general inductive approach for analyzing qualitative evaluation data American Journal of Evaluation 27 (2) (2006) 237–246. arXiv:https://doi.org/10.1177/1098214005283748 doi:10.1177/1098214005283748
URL https://doi.org/10.1177/1098214005283748

[8] I. Sommerville, et al., Software engineering, Boston: Pearson,, 2011.

[9] M. Van Antwerp, G. Madey, Advances in the sourceforge research data archive, in: Workshop on Public Data about Software Development (WoP-DaSD) at The 4th International Conference on Open Source Systems, Milan, Italy, 2008, pp. 1–6.
Primary Studies

[10] C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan, Mining email social networks, in: Proceedings of the 2006 international workshop on Mining software repositories, ACM, 2006, pp. 137–143.

[11] C. Bird, D. Pattison, R. D’Souza, V. Filkov, P. Devanbu, Latent social structure in open source projects, in: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, ACM, 2008, pp. 24–35.

[12] Y. Kamei, S. Matsumoto, H. Maeshima, Y. Onishi, M. Ohira, K.-i. Matsumoto, Analysis of coordination between developers and users in the apache community, in: IFIP International Conference on Open Source Systems, Springer, 2008, pp. 81–92.

[13] A. J. N. Nzeko’o, M. Latapy, M. Tchuente, Social network analysis of developers’ and users’ mailing lists of some free open source software, in: Big Data (BigData Congress), 2015 IEEE International Congress on, IEEE, 2015, pp. 728–732.

[14] A. Jermakovics, A. Sillitti, G. Succi, Mining and visualizing developer networks from version control systems, in: Proceedings of the 4th International Workshop on Cooperative and Human Aspects of Software Engineering, ACM, 2011, pp. 24–31.

[15] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle, From developer networks to verified communities: a fine-grained approach, in: Proceedings of the 37th International Conference on Software Engineering-Volume 1, IEEE Press, 2015, pp. 563–573.

[16] M. Y. Allaho, W.-C. Lee, Analyzing the social ties and structure of contributors in open source software community, in: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ACM, 2013, pp. 56–60.

[17] C. Amrit, J. Hillegersberg, K. Kumar, A social network perspective of conways law, in: Proceedings of the CSCW Workshop on Social Networks, Chicago, IL, USA, 2004.

[18] S. K. Behfar, Q. Behfar, Intragroup density predicting intergroup tie strength within open-source-software collaboration network, in: Distributed Computing and Artificial Intelligence, 13th International Conference, Springer, 2016, pp. 165–173.

[19] C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan, Mining email social networks in postgres, in: Proceedings of the 2006 international workshop on Mining software repositories, ACM, 2006, pp. 185–186.
[20] G. Canfora, L. Cerulo, M. Cimitile, M. Di Penta, Social interactions around cross-system bug fixings: the case of FreeBSD and OpenBSD, in: Proceedings of the 8th working conference on mining software repositories, ACM, 2011, pp. 143–152.

[21] G. Conaldi, F. Rullani, The meso-level structure of F/OSS collaboration network: local communities and their innovativeness, in: IFIP International Conference on Open Source Systems, Springer, 2010, pp. 42–52.

[22] K. Crowston, J. Howison, The social structure of free and open source software development, First Monday 10 (2).

[23] K. Crowston, J. Howison, Hierarchy and centralization in free and open source software team communications, Knowledge, Technology & Policy 18 (4) (2006) 65–85.

[24] T. A. dos Santos, R. M. de Araújo, A. M. Magdalen, Bringing out collaboration in software development social networks, in: Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement, ACM, 2011, pp. 18–21.

[25] Y. Gao, G. Madey, Network analysis of the sourceforge.net community. Limerick, Ireland: SN, in: International Conference on Open Source Systems, 2007.

[26] Y. Gao, G. Madey, Towards understanding: a study of the sourceforge. net community using modeling and simulation, in: Proceedings of the 2007 spring simulation multiconference-volume 2, Society for Computer Simulation International, 2007, pp. 145–150.

[27] P. A. Gloor, R. Laubacher, S. B. Dynes, Y. Zhao, Visualization of communication patterns in collaborative innovation networks-analysis of some W3C working groups, in: Proceedings of the twelfth international conference on information and knowledge management, ACM, 2003, pp. 56–60.

[28] J. M. González-Barahona, L. Lopez, G. Robles, Community structure of modules in the apache project, in: Proceedings of 4th Workshop on Open Source Software Engineering, IET, 2004.

[29] P. He, B. Li, Y. Huang, Applying centrality measures to the behavior analysis of developers in open source software community, in: Cloud and Green Computing (CGC), 2012 Second International Conference on, IEEE, 2012, pp. 418–423.

[30] J. Howison, K. Inoue, K. Crowston, Social dynamics of free and open source team communications, in: IFIP International Conference on Open Source Systems, Springer, 2006, pp. 319–330.
[31] D. Hu, J. L. Zhao, A comparison of evaluation networks and collaboration networks in open source software communities, AMCIS 2008 Proceedings (2008) 277.

[32] D. Hu, J. L. Zhao, J. Cheng, Reputation management in an open source developer social network: An empirical study on determinants of positive evaluations, Decision Support Systems 53 (3) (2012) 526–533.

[33] T. Ichimura, T. Uemoto, Analysis of the social community based on the network growing model in open source software community, in: Computational Intelligence and Applications (IWCIA), 2015 IEEE 8th International Workshop on, IEEE, 2015, pp. 149–153.

[34] A. Jermakovics, A. Sillitti, G. Succi, Exploring collaboration networks in open-source projects, in: IFIP International Conference on Open Source Systems, Springer, 2013, pp. 97–108.

[35] Y. H. Kidane, P. A. Gloor, Correlating temporal communication patterns of the eclipse open source community with performance and creativity, Computational and mathematical organization theory 13 (1) (2007) 17–27.

[36] W. Leibzon, Social network of software development at github, in: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, IEEE Press, 2016, pp. 1374–1376.

[37] S. L. Lim, P. J. Bentley, Evolving relationships between social networks and stakeholder involvement in software projects, in: Proceedings of the 13th annual conference on Genetic and evolutionary computation, ACM, 2011, pp. 1899–1906.

[38] Y. Long, K. Siau, Social network structures in open source software development teams, Journal of Database Management (JDM) 18 (2) (2007) 25–40.

[39] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona, et al., Applying social network analysis to the information in cvs repositories, in: International Workshop on Mining Software Repositories, IET, 2004, pp. 101–105.

[40] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, I. Herraiz, Applying social network analysis techniques to community-driven libre software projects, International Journal of Information Technology and Web Engineering 1 (2008) 28–50.

[41] G. Madey, V. Freeh, R. Tynan, The open source software development phenomenon: An analysis based on social network theory, AMCIS 2002 Proceedings (2002) 247.
[42] A. Meneely, L. Williams, Secure open source collaboration: an empirical study of linus’ law, in: Proceedings of the 16th ACM conference on Computer and communications security, ACM, 2009, pp. 453–462.

[43] A. Meneely, L. Williams, On the use of issue tracking annotations for improving developer activity metrics, Advances in Software Engineering 2010.

[44] I. Mergel, Open collaboration in the public sector: The case of social coding on github, Government Information Quarterly 32 (4) (2015) 464–472.

[45] J. Robertsa, I.-H. Hann, S. Slaughter, Communication networks in an open source software project, in: IFIP International Conference on Open Source Systems, Springer, 2006, pp. 297–306.

[46] M. Schwind, C. Wegmann, O. Wendt, Unveiling collaboration structures in software development projects., in: ECIS, 2008, pp. 1488–1499.

[47] P. V. Singh, The small-world effect: The influence of macro-level properties of developer collaboration networks on open-source project success, ACM Transactions on Software Engineering and Methodology (TOSEM) 20 (2) (2010) 6.

[48] S. K. Sowe, A. Cerone, D. Settas, An empirical study of oss developers patterns of contribution: Challenges for data linkage and analysis, Science of Computer Programming 91 (2014) 249–265.

[49] A. Sureka, A. Goyal, A. Rastogi, Using social network analysis for mining collaboration data in a defect tracking system for risk and vulnerability analysis, in: Proceedings of the 4th india software engineering conference, ACM, 2011, pp. 195–204.

[50] D. Surian, D. Lo, E.-P. Lim, Mining collaboration patterns from a large developer network, in: Reverse Engineering (WCRE), 2010 17th Working Conference on, IEEE, 2010, pp. 269–273.

[51] Y. Tan, V. Mookerjee, P. Singh, Social capital, structural holes and team composition: Collaborative networks of the open source software community, ICIS 2007 Proceedings (2007) 155.

[52] F. Thung, T. F. Bissyande, D. Lo, L. Jiang, Network structure of social coding in github, in: Software maintenance and reengineering (csmr), 2013 17th european conference on, IEEE, 2013, pp. 323–326.

[53] S. L. Toral, M. d. R. Martínez-Torres, F. Barrero, Analysis of virtual communities supporting oss projects using social network analysis, Information and Software Technology 52 (3) (2010) 296–303.
[54] M. Van Antwerp, G. Madey, The importance of social network structure in the open source software developer community, in: System Sciences (HICSS), 2010 43rd Hawaii International Conference on, IEEE, 2010, pp. 1–10.

[55] P. Wagstrom, J. Herbsleb, K. Carley, A social network approach to free/open source software simulation, in: Proceedings First International Conference on Open Source Systems, 2005, pp. 16–23.

[56] A. Wiggins, J. Howison, K. Crowston, Social dynamics of floss team communication across channels, in: IFIP International Conference on Open Source Systems, Springer, 2008, pp. 131–142.

[57] T. Wolf, A. Schröter, D. Damian, L. D. Panjer, T. H. Nguyen, Mining task-based social networks to explore collaboration in software teams, IEEE Software 26 (1) (2009) 58–66.

[58] J. Xu, G. Madey, Exploration of the open source software community, Proceedings of North American Association for Computational Social and Organizational Science (NAACSOS), Pittsburgh, PA, USA.

[59] J. Xu, S. Christley, G. Madey, The open source software community structure, NAACSOS2005, Notre Dame, IN.

[60] J. Xu, Y. Gao, S. Christley, G. Madey, A topological analysis of the open source software development community, in: System Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International Conference on, IEEE, 2005, pp. 198a–198a.

[61] M. S. Zanetti, E. Sarigol, I. Scholtes, C. J. Tessone, F. Schweitzer, A quantitative study of social organisation in open source software communities, arXiv preprint arXiv:1208.4289.

[62] H. Zhang, Y. Wu, W. Wu, Analyzing developer behavior and community structure in software crowdsourcing, in: Information science and applications, Springer, 2015, pp. 981–988.

[63] S. Datta, R. Sindhgatta, B. Sengupta, Evolution of developer collaboration on the jazz platform: a study of a large scale agile project, in: Proceedings of the 4th India Software Engineering Conference, ACM, 2011, pp. 21–30.

[64] A. Hannemann, R. Klamma, Community dynamics in open source software projects: Aging and social reshaping, in: IFIP International Conference on Open Source Systems, Springer, 2013, pp. 80–96.

[65] Q. Hong, S. Kim, S. C. Cheung, C. Bird, Understanding a developer social network and its evolution, in: Software Maintenance (ICSM), 2011 27th IEEE International Conference on, IEEE, 2011, pp. 323–332.
[66] M. Joblin, S. Apel, W. Mauerer, Evolutionary trends of developer coordination: A network approach, Empirical Software Engineering 22 (4) (2017) 2050–2094.

[67] T. Kakimoto, Y. Kamei, M. Ohira, K. Matsumoto, Social network analysis on communications for knowledge collaboration in oss communities, in: Proceedings of the International Workshop on Supporting Knowledge Collaboration in Software Development (KCSD06), Citeseer, 2006, pp. 35–41.

[68] D. Kavaler, V. Filkov, Stochastic actor-oriented modeling for studying homophily and social influence in oss projects, Empirical Software Engineering 22 (1) (2017) 407–435.

[69] A. Kumar, A. Gupta, Evolution of developer social network and its impact on bug fixing process, in: Proceedings of the 6th India Software Engineering Conference, ACM, 2013, pp. 63–72.

[70] K. Nakakoji, K. Yamada, E. Giaccardi, Understanding the nature of collaboration in open-source software development, in: Software Engineering Conference, 2005. APSEC’05. 12th Asia-Pacific, IEEE, 2005, pp. 8–pp.

[71] K. Ngamkajornwiwat, D. Zhang, A. G. Koru, L. Zhou, R. Nolker, An exploratory study on the evolution of oss developer communities, in: Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, IEEE, 2008, pp. 305–305.

[72] V. S. Sharma, V. Kaulgud, Studying team evolution during software testing, in: Proceedings of the 4th International Workshop on Cooperative and Human Aspects of Software Engineering, ACM, 2011, pp. 72–75.

[73] M. Van Antwerp, G. Madey, Open source software developer and project networks, in: IFIP International Conference on Open Source Systems, Springer, 2010, pp. 407–412.

[74] M. Weiss, G. Moroiu, P. Zhao, Evolution of open source communities, in: IFIP International Conference on Open Source Systems, Springer, 2006, pp. 21–32.

[75] Y. Yu, G. Yin, H. Wang, T. Wang, Exploring the patterns of social behavior in github, in: Proceedings of the 1st international workshop on crowd-based software development methods and technologies, ACM, 2014, pp. 31–36.

[76] W. Zhang, Y. Yang, Q. Wang, Network analysis of oss evolution: an empirical study on argouml project, in: Proceedings of the 12th International Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software Evolution, ACM, 2011, pp. 71–80.
[77] M. K. Ahuja, D. F. Galletta, K. M. Carley, Individual centrality and performance in virtual r&d groups: An empirical study, Management science 49 (1) (2003) 21–38.

[78] A. Avritzer, D. Paulish, Y. Cai, K. Sethi, Coordination implications of software architecture in a global software development project, Journal of Systems and Software 83 (10) (2010) 1881–1895. doi:https://doi.org/10.1016/j.jss.2010.05.070. URL http://www.sciencedirect.com/science/article/pii/S0164121210001330

[79] M. Cataldo, J. D. Herbsleb, Communication patterns in geographically distributed software development and engineers’ contributions to the development effort, in: Proceedings of the 2008 international workshop on Cooperative and human aspects of software engineering, ACM, 2008, pp. 25–28.

[80] C. R. De Souza, T. Hildenbrand, D. Redmiles, Toward visualization and analysis of traceability relationships in distributed and offshore software development projects, in: International Conference on Software Engineering Approaches for Offshore and Outsourced Development, Springer, 2007, pp. 182–199.

[81] K. Ehrlich, K. Chang, Leveraging expertise in global software teams: Going outside boundaries, in: Global Software Engineering, 2006. ICGSE’06. International Conference on, IEEE, 2006, pp. 149–158.

[82] K. Ehrlich, M. Cataldo, All-for-one and one-for-all?: a multi-level analysis of communication patterns and individual performance in geographically distributed software development, in: Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, ACM, 2012, pp. 945–954.

[83] P. Hinds, C. McGrath, Structures that work: social structure, work structure and coordination ease in geographically distributed teams, in: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, ACM, 2006, pp. 343–352.

[84] L. Hossain, D. Zhu, Social networks and coordination performance of distributed software development teams, The Journal of High Technology Management Research 20 (1) (2009) 52–61.

[85] S. Sarker, S. Sarker, S. Kirkeby, S. Chakraborty, Path to stardom in globally distributed hybrid teams: An examination of a knowledge-centered perspective using social network analysis, Decision Sciences 42 (2) 339–370. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5915.2011.00314.x. doi:10.1111/j.1540-5915.2011.00314.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5915.2011.00314.x
[86] D. Spinellis, Global software development in the freebsd project, in: Proceedings of the 2006 international workshop on Global software development for the practitioner, ACM, 2006, pp. 73–79.

[87] B. Caglayan, A. B. Bener, A. Miranskyy, Emergence of developer teams in the collaboration network, in: Cooperative and Human Aspects of Software Engineering (CHASE), 2013 6th International Workshop on, IEEE, 2013, pp. 33–40.

[88] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, J. Howison, Self-organization of teams for free/libre open source software development, Information and software technology 49 (6) (2007) 564–575.

[89] J. Hahn, J. Y. Moon, C. Zhang, Impact of social ties on open source project team formation, in: IFIP international conference on open source systems, Springer, 2006, pp. 307–317.

[90] J. Hahn, J. Y. Moon, C. Zhang, Emergence of new project teams from open source software developer networks: Impact of prior collaboration ties, Information Systems Research 19 (3) (2008) 369–391.

[91] S. Panichella, G. Canfora, M. Di Penta, R. Oliveto, How the evolution of emerging collaborations relates to code changes: an empirical study, in: Proceedings of the 22nd International Conference on Program Comprehension, ACM, 2014, pp. 177–188.

[92] P. V. Singh, Y. Tan, Developer heterogeneity and formation of communication networks in open source software projects, Journal of Management Information Systems 27 (3) (2010) 179–210.

[93] N. Bettenburg, A. E. Hassan, Studying the impact of social structures on software quality, in: Program Comprehension (ICPC), 2010 IEEE 18th International Conference on, IEEE, 2010, pp. 124–133.

[94] N. Bettenburg, A. E. Hassan, Studying the impact of social interactions on software quality, Empirical Software Engineering 18 (2) (2013) 375–431.

[95] B. Çaglayan, A. B. Bener, Effect of developer collaboration activity on software quality in two large scale projects, Journal of Systems and Software 118 (2016) 288–296.

[96] L. Hossain, D. Zhou, Measuring oss quality trough centrality, in: Proceedings of the 2008 international workshop on Cooperative and human aspects of software engineering, ACM, 2008, pp. 65–68.

[97] A. Mockus, Organizational volatility and its effects on software defects, in: Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of software engineering, ACM, 2010, pp. 117–126.
M. Cataldo, J. D. Herbsleb, K. M. Carley, Socio-technical congruence: a framework for assessing the impact of technical and work dependencies on software development productivity, in: Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, ACM, 2008, pp. 2–11.

C. De Souza, J. Froehlich, P. Dourish, Seeking the source: software source code as a social and technical artifact, in: Proceedings of the 2005 international ACM SIGGROUP conference on Supporting group work, ACM, 2005, pp. 197–206.

I. Kwan, A. Schroter, D. Damian, Does socio-technical congruence have an effect on software build success? a study of coordination in a software project, IEEE Transactions on Software Engineering 37 (3) (2011) 307–324.

M. M. Syeed, I. Hammouda, Socio-technical congruence in oss projects: Exploring conways law in freebsd, in: IFIP International Conference on Open Source Systems, Springer, 2013, pp. 109–126.

G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, C. Williams, Using software repositories to investigate socio-technical congruence in development projects, in: Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE Computer Society, 2007, p. 25.

A. Meneely, L. Williams, W. Snipes, J. Osborne, Predicting failures with developer networks and social network analysis, in: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, ACM, 2008, pp. 13–23.

C. Bird, N. Nagappan, H. Gall, B. Murphy, P. Devanbu, Putting it all together: Using socio-technical networks to predict failures, in: Software Reliability Engineering, 2009. ISSRE’09. 20th International Symposium on, IEEE, 2009, pp. 109–119.

R. Abreu, R. Premraj, How developer communication frequency relates to bug introducing changes, in: Proceedings of the joint international and annual ERCIM workshops on Principles of software evolution (IWPE) and software evolution (Evol) workshops, ACM, 2009, pp. 153–158.

P. Bhattacharya, M. Illofotou, I. Neamtiu, M. Faloutsos, Graph-based analysis and prediction for software evolution, in: Software Engineering (ICSE), 2012 34th International Conference on, IEEE, 2012, pp. 419–429.

S. Biçer, A. B. Bener, B. Çağlayan, Defect prediction using social network analysis on issue repositories, in: Proceedings of the 2011 International Conference on Software and Systems Process, ACM, 2011, pp. 63–71.
[108] W. Hu, K. Wong, Using citation influence to predict software defects, in: Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE, 2013, pp. 419–428.

[109] A. Miranskyy, B. Caglayan, A. Bener, E. Cialini, Effect of temporal collaboration network, maintenance activity, and experience on defect exposure, in: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ACM, 2014, p. 27.

[110] M. Pinzger, N. Nagappan, B. Murphy, Can developer-module networks predict failures?, in: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, ACM, 2008, pp. 2–12.

[111] B. Simpson, Changeset based developer communication to detect software failures, in: Software Engineering (ICSE), 2013 35th International Conference on, IEEE, 2013, pp. 1468–1470.

[112] J. Wang, Q. Wang, Analyzing and predicting software integration bugs using network analysis on requirements dependency network, Requirements Engineering 21 (2) (2016) 161–184.

[113] Y. Zhang, B. Shen, Y. Chen, Mining developer mailing list to predict software defects, in: Software Engineering Conference (APSEC), 2014 21st Asia-Pacific, Vol. 1, IEEE, 2014, pp. 383–390.

[114] W. Wu, W. Zhang, Y. Yang, Q. Wang, Drex: Developer recommendation with k-nearest-neighbor search and expertise ranking, in: Software Engineering Conference (APSEC), 2011 18th Asia Pacific, IEEE, 2011, pp. 389–396.

[115] P. Bhattacharya, I. Neamtiu, Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging, in: Software Maintenance (ICSM), 2010 IEEE International Conference on, IEEE, 2010, pp. 1–10.

[116] S. Banitaan, M. Alenezi, Decoba: Utilizing developers communities in bug assignment, in: Machine Learning and Applications (ICMLA), 2013 12th International Conference on, Vol. 2, IEEE, 2013, pp. 66–71.

[117] G. Jeong, S. Kim, T. Zimmermann, Improving bug triage with bug tossing graphs, in: Proceedings of the the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering, ACM, 2009, pp. 111–120.

[118] S. Wang, W. Zhang, Y. Yang, Q. Wang, Devnet: exploring developer collaboration in heterogeneous networks of bug repositories, in: Empirical Software Engineering and Measurement, 2013 ACM/IEEE International Symposium on, IEEE, 2013, pp. 193–202.
[119] J. Xuan, H. Jiang, Z. Ren, W. Zou, Developer prioritization in bug repositories, in: Software Engineering (ICSE), 2012 34th International Conference on, IEEE, 2012, pp. 25–35.

[120] M. S. Zanetti, I. Scholtes, C. J. Tessone, F. Schweitzer, Categorizing bugs with social networks: a case study on four open source software communities, in: Proceedings of the 2013 International Conference on Software Engineering, IEEE Press, 2013, pp. 1032–1041.

[121] T. Zhang, B. Lee, An automated bug triage approach: A concept profile and social network based developer recommendation, in: International Conference on Intelligent Computing, Springer, 2012, pp. 505–512.

[122] W. Zhang, S. Wang, Y. Yang, Q. Wang, Heterogeneous network analysis of developer contribution in bug repositories, in: Cloud and Service Computing (CSC), 2013 International Conference on, IEEE, 2013, pp. 98–105.

[123] P. Dražílová, A. Babškova, J. Martinovič, K. Slaninová, Š. Minks, Method for identification of suitable persons in collaborators networks, in: IFIP International Conference on Computer Information Systems and Industrial Management, Springer, 2012, pp. 101–110.

[124] L. Hossain, A. Wu, K. K. Chung, Actor centrality correlates to project based coordination, in: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, ACM, 2006, pp. 363–372.

[125] N. Li, W. Mo, B. Shen, Task recommendation with developer social network in software crowdsourcing, in: Software Engineering Conference (APSEC), 2016 23rd Asia-Pacific, IEEE, 2016, pp. 9–16.

[126] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, C. Faloutsos, Recommending people in developers’ collaboration network, in: Reverse Engineering (WCRE), 2011 18th Working Conference on, IEEE, 2011, pp. 379–388.

[127] M. Cataldo, K. Ehrlich, The impact of communication structure on new product development outcomes, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2012, pp. 3081–3090.

[128] X. Liu, B. Iyer, Design architecture, developer networks and performance of open source software projects, ICIS 2007 Proceedings (2007) 90.

[129] D. Surian, Y. Tian, D. Lo, H. Cheng, E. P. LIM, Predicting project outcome leveraging socio-technical network patterns.

[130] A. Schröter, Predicting build outcome with developer interaction in jazz, in: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2, ACM, 2010, pp. 511–512.
[131] T. Wolf, A. Schroter, D. Damian, T. Nguyen, Predicting build failures using social network analysis on developer communication, in: Proceedings of the 31st International Conference on Software Engineering, IEEE Computer Society, 2009, pp. 1–11.

[132] N. Kerzazi, I. El Asri, Who can help to review this piece of code?, in: Working Conference on Virtual Enterprises, Springer, 2016, pp. 289–301.

[133] D. Damian, R. Helms, I. Kwan, S. Marczak, B. Koelewijn, The role of domain knowledge and cross-functional communication in socio-technical coordination, in: Software Engineering (ICSE), 2013 35th International Conference on, IEEE, 2013, pp. 442–451.

[134] A. N. Duc, D. S. Cruzes, C. Ayala, R. Conradi, Impact of stakeholder type and collaboration on issue resolution time in oss projects, in: IFIP International Conference on Open Source Systems, Springer, 2011, pp. 1–16.

[135] S. Feczak, L. Hossain, Measuring coordination gaps of open source groups through social networks., in: ICEIS (5), 2009, pp. 84–90.

[136] S. Feczak, L. Hossain, Exploring computer supported collaborative coordination through social networks, The Journal of High Technology Management Research 22 (2) (2011) 121–140.

[137] M. Gharehyazie, V. Filkov, Tracing distributed collaborative development in apache software foundation projects, Empirical Software Engineering 22 (4) (2017) 1795–1830.

[138] N. Kerzazi, I. El Asri, Knowledge flows within open source software projects: A social network perspective, in: Advances in Ubiquitous Networking 2, Springer, 2017, pp. 247–258.

[139] S. A. Licorish, S. G. MacDonell, Exploring software developers work practices: Task differences, participation, engagement, and speed of task resolution, Information & Management 54 (3) (2017) 364–382.

[140] I. Omoronyia, J. Ferguson, M. Roper, M. Wood, Using developer activity data to enhance awareness during collaborative software development, Computer Supported Cooperative Work (CSCW) 18 (5-6) (2009) 509.

[141] M. Ortu, G. Destefanis, M. Kassab, M. Marchesi, Measuring and understanding the effectiveness of jira developers communities, in: Proceedings of the Sixth International Workshop on Emerging Trends in Software Metircs, IEEE Press, 2015, pp. 3–10.

[142] J. Wu, K.-Y. Goh, H. Li, C. Luo, H. Zheng, The effects of communication patterns on the success of open source software projects: an empirical analysis from social network perspectives, Journal of Global Information Management (JGIM) 24 (4) (2016) 22–44.
[143] Q. Xuan, M. Gharehyazie, P. T. Devanbu, V. Filkov, Measuring the effect of social communications on individual working rhythms: A case study of open source software, in: Social Informatics (SocialInformatics), 2012 International Conference on, IEEE, 2012, pp. 78–85.

[144] M. Cataldo, J. D. Herbsleb, Communication networks in geographically distributed software development, in: Proceedings of the 2008 ACM conference on Computer supported cooperative work, ACM, 2008, pp. 579–588.

[145] K. T. Chang, K. Ehrlich, Out of sight but not out of mind?: Informal networks, communication and media use in global software teams, in: Proceedings of the 2007 conference of the center for advanced studies on Collaborative research, IBM Corp., 2007, pp. 86–97.

[146] D. Damian, S. Marczak, I. Kwan, Collaboration patterns and the impact of distance on awareness in requirements-centred social networks, in: Requirements Engineering Conference, 2007. RE’07. 15th IEEE International, IEEE, 2007, pp. 59–68.

[147] S. B. Fonseca, C. R. De Souza, D. F. Redmiles, Exploring the relationship between dependencies and coordination to support global software development projects, in: null, IEEE, 2006, p. 243.

[148] J. D. Herbsleb, A. Mockus, An empirical study of speed and communication in globally distributed software development, IEEE Transactions on software engineering 29 (6) (2003) 481–494.

[149] S. P. Mikawa, S. K. Cunningham, S. A. Gaskins, Removing barriers to trust in distributed teams: understanding cultural differences and strengthening social ties, in: Proceedings of the 2009 international workshop on Intercultural collaboration, ACM, 2009, pp. 273–276.

[150] T. Nguyen, T. Wolf, D. Damian, Global software development and delay: Does distance still matter?, in: Global Software Engineering, 2008. ICGSE 2008. IEEE International Conference on, IEEE, 2008, pp. 45–54.

[151] S. Sarker, M. Ahuja, S. Sarker, S. Kirkeby, The role of communication and trust in global virtual teams: A social network perspective, Journal of Management Information Systems 28 (1) (2011) 273–310.

[152] R. Urdangarin, P. Fernandes, A. Avritzer, D. Paulish, Experiences with agile practices in the global studio project, in: Global Software Engineering, 2008. ICGSE 2008. IEEE International Conference on, IEEE, 2008, pp. 77–86.

[153] T. Wolf, T. Nguyen, D. Damian, Does distance still matter?, Software Process: Improvement and Practice 13 (6) (2008) 493–510.
[154] J. Ell, Identifying failure inducing developer pairs within developer networks, in: Proceedings of the 2013 International Conference on Software Engineering, IEEE Press, 2013, pp. 1471–1473.

[155] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, D. Distante, Do developers introduce bugs when they do not communicate? the case of eclipse and mozilla, in: Software Maintenance and Reengineering (CSMR), 2012 16th European Conference on, IEEE, 2012, pp. 139–148.

[156] A. Begel, Y. P. Khoo, T. Zimmermann, Codebook: discovering and exploiting relationships in software repositories, in: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, ACM, 2010, pp. 125–134.

[157] T. Bhowmik, N. Niu, W. Wang, J.-R. C. Cheng, L. Li, X. Cao, Optimal group size for software change tasks: a social information foraging perspective, IEEE transactions on cybernetics 46 (8) (2016) 1784–1795.

[158] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, K. M. Carley, Identification of coordination requirements: implications for the design of collaboration and awareness tools, in: Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, ACM, 2006, pp. 353–362.

[159] D. Damian, L. Izquierdo, J. Singer, I. Kwan, Awareness in the wild: Why communication breakdowns occur, in: Global Software Engineering, 2007. ICGSE 2007. Second IEEE International Conference on, IEEE, 2007, pp. 81–90.

[160] Q. Xuan, P. Devanbu, V. Filkov, Converging work-talk patterns in online task-oriented communities, PloS one 11 (5) (2016) e0154324.

[161] J. Teixeira, G. Robles, J. M. González-Barahona, Lessons learned from applying social network analysis on an industrial free/libre/open source software ecosystem, Journal of Internet Services and Applications 6 (1) (2015) 14.

[162] W. Zhang, Y. Yang, Q. Wang, An empirical study on identifying core developers using network analysis, in: Proceedings of the 2nd international workshop on Evidential assessment of software technologies, ACM, 2012, pp. 43–48.

[163] A. Menely, M. Corcoran, L. Williams, Improving developer activity metrics with issue tracking annotations, in: Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics, ACM, 2010, pp. 75–80.

[164] P. Bhattacharya, I. Neamtiu, M. Faloutsos, Determining developers, in: 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, 2014, pp. 11–20.
[165] K. Crowston, K. Wei, Q. Li, J. Howison, Core and periphery in free/libre and open source software team communications, in: System Sciences, 2006. HICSS’06. Proceedings of the 39th Annual Hawaii International Conference on, Vol. 6, IEEE, 2006, pp. 118a–118a.

[166] S. Datta, V. Kaulgud, V. S. Sharma, N. Kumar, A social network based study of software team dynamics, in: Proceedings of the 3rd India software engineering conference, ACM, 2010, pp. 33–42.

[167] A. Dittrich, M. H. Gunes, S. Dascalu, Network analysis of software repositories: identifying subject matter experts, in: Complex Networks, Springer, 2013, pp. 187–198.

[168] S.-K. Huang, K.-m. Liu, Mining version histories to verify the learning process of legitimate peripheral participants, ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–5.

[169] M. Joblin, S. Apel, C. Hunsen, W. Mauerer, Classifying developers into core and peripheral: An empirical study on count and network metrics, in: Software Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on, IEEE, 2017, pp. 164–174.

[170] M. J. Lee, B. Ferwerda, J. Choi, J. Hahn, J. Y. Moon, J. Kim, Github developers use rockstars to overcome overflow of news, in: CHI’13 Extended Abstracts on Human Factors in Computing Systems, ACM, 2013, pp. 133–138.

[171] S. A. Licorish, S. G. MacDonell, Understanding the attitudes, knowledge sharing behaviors and task performance of core developers: A longitudinal study, Information and Software Technology 56 (12) (2014) 1578–1596.

[172] S. A. Licorish, S. G. MacDonell, Communication and personality profiles of global software developers, Information and Software Technology 64 (2015) 113–131.

[173] S. L. Lim, D. Quercia, A. Finkelstein, Stakenet: using social networks to analyse the stakeholders of large-scale software projects, in: Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering-Volume 1, ACM, 2010, pp. 295–304.

[174] S. L. Lim, A. Finkelstein, Stakerare: using social networks and collaborative filtering for large-scale requirements elicitation, IEEE transactions on software engineering 38 (3) (2012) 707–735.

[175] S. Marczak, D. Damian, U. Stege, A. Schröter, Information brokers in requirement-dependency social networks, in: International Requirements Engineering, 2008. RE’08. 16th IEEE, IEEE, 2008, pp. 53–62.
[176] M. Pohl, S. Diehl, What dynamic network metrics can tell us about developer roles, in: Proceedings of the 2008 international workshop on Co-operative and human aspects of software engineering, ACM, 2008, pp. 81–84.

[177] P. N. Sharma, B. T. R. Savarinethu, N. Stanger, Boundary spanners in open source software development: A study of python email archives, in: Asia-Pacific Software Engineering Conference (APSEC), 2017 24th, IEEE, 2017, pp. 308–317.

[178] S. Sowe, I. Stamelos, L. Angelis, Identifying knowledge brokers that yield software engineering knowledge in oss projects, Information and Software Technology 48 (11) (2006) 1025–1033.

[179] L. Yu, S. Ramaswamy, Mining cvs repositories to understand open-source project developer roles, in: Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE Computer Society, 2007, p. 8.

[180] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, G. Hsu, Open borders? immigration in open source projects, in: Mining Software Repositories, 2007. ICSE Workshops MSR’07. Fourth International Workshop on, IEEE, 2007, pp. 6–6.

[181] C. Cheng, B. Li, Z.-Y. Li, Y.-Q. Zhao, F.-L. Liao, Developer role evolution in open source software ecosystem: An explanatory study on gnome, Journal of Computer Science and Technology 32 (2) (2017) 396–414.

[182] N. Ducheneaut, Socialization in an open source software community: A socio-technical analysis, Computer Supported Cooperative Work (CSCW) 14 (4) (2005) 323–368.

[183] I. El Asri, N. Kerzazi, L. Benhiba, M. Janati, From periphery to core: A temporal analysis of github contributors collaboration network, in: Working Conference on Virtual Enterprises, Springer, 2017, pp. 217–229.

[184] M. Gharehyazie, D. Posnett, V. Filkov, Social activities rival patch submission for prediction of developer initiation in oss projects, in: Software Maintenance (ICSM), 2013 29th IEEE International Conference on, IEEE, 2013, pp. 340–349.

[185] M. Gharehyazie, D. Posnett, B. Vasilescu, V. Filkov, Developer initiation and social interactions in oss: A case study of the apache software foundation, Empirical Software Engineering 20 (5) (2015) 1318–1353.

[186] M. Zhou, A. Mockus, Does the initial environment impact the future of developers?, in: Proceedings of the 33rd International Conference on Software Engineering, ACM, 2011, pp. 271–280.
[187] A. C. MacLean, L. J. Pratt, C. D. Knutson, E. K. Ringger, Knowledge homogeneity and specialization in the apache http server project, in: IFIP International Conference on Open Source Systems, Springer, 2011, pp. 106–122.

[188] A. Borici, K. Blincoe, A. Schröter, G. Valetto, D. Damian, Proxiscientia: Toward real-time visualization of task and developer dependencies in collaborating software development teams, in: Proceedings of the 5th International Workshop on Co-operative and Human Aspects of Software Engineering, IEEE Press, 2012, pp. 5–11.

[189] C. De Souza, P. Dourish, D. Redmiles, S. Quirk, E. Trainer, From technical dependencies to social dependencies, in: Workshop on Social Networks for Design and Analysis: Using Network Information in CSCW, 2004.

[190] C. R. de Souza, S. Quirk, E. Trainer, D. F. Redmiles, Supporting collaborative software development through the visualization of socio-technical dependencies, in: Proceedings of the 2007 international ACM conference on Supporting group work, ACM, 2007, pp. 147–156.

[191] E. Gilbert, K. Karahalios, Codesaw: A social visualization of distributed software development, in: IFIP Conference on Human-Computer Interaction, Springer, 2007, pp. 303–316.

[192] M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, A. Gourley, Visualizing social interaction in open source software projects, in: Visualization, 2007. APVIS'07. 2007 6th International Asia-Pacific Symposium on, IEEE, 2007, pp. 25–32.

[193] M. Ohira, N. Ohsugi, T. Ohoka, K.-i. Matsumoto, Accelerating cross-project knowledge collaboration using collaborative filtering and social networks, in: ACM SIGSOFT Software Engineering Notes, Vol. 30, ACM, 2005, pp. 1–5.

[194] M. Ohira, T. Ohoka, T. Kakimoto, N. Ohsugi, K.-i. Matsumoto, Supporting knowledge collaboration using social networks in a large-scale online community of software development projects, in: Software Engineering Conference, 2005. APSEC’05. 12th Asia-Pacific, IEEE, 2005, pp. 6–pp.

[195] A. Sarma, L. Maccherone, P. Wagstrom, J. Herbsleb, Tesseract: Interactive visual exploration of socio-technical relationships in software development, in: Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, IEEE, 2009, pp. 23–33.

[196] M. Schwind, C. Wegmann, Svnnat: Measuring collaboration in software development networks, in: E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services, 2008 10th IEEE Conference on, IEEE, 2008, pp. 97–104.
[197] M. Schwind, A. Schenk, M. Schneider, A tool for the analysis of social networks in collaborative software development, in: 2010 43rd Hawaii International Conference on System Sciences, IEEE, 2010, pp. 1–10.

[198] A. Meneely, L. Williams, Socio-technical developer networks: Should we trust our measurements?, in: Software Engineering (ICSE), 2011 33rd International Conference on, IEEE, 2011, pp. 281–290.

[199] M. A. Aljemabi, Z. Wang, Empirical study on the similarity and difference between vcs-dsn and bts-dsn, in: Proceedings of the 2017 International Conference on Management Engineering, Software Engineering and Service Sciences, ACM, 2017, pp. 30–37.

[200] R. Nia, C. Bird, P. Devanbu, V. Filkov, Validity of network analyses in open source projects, in: Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on, IEEE, 2010, pp. 201–209.

[201] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, G. Antoniol, How developers’ collaborations identified from different sources tell us about code changes, in: Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, IEEE, 2014, pp. 251–260.

[202] Y. Tymchuk, A. Mocci, M. Lanza, Collaboration in open-source projects: Myth or reality?, in: Proceedings of the 11th working conference on mining software repositories, ACM, 2014, pp. 304–307.

[203] A. C. MacLean, C. D. Knutson, Apache commits: social network dataset, in: Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE, 2013, pp. 135–138.