Age-Dependent Signal Intensity Changes in the Structurally Normal Pediatric Brain on Unenhanced T1-Weighted MR Imaging

T.F. Flood, P.R. Bhatt, A. Jensen, J.A. Maloney, N.V. Stence, and D.M. Mirsky

ABSTRACT

BACKGROUND AND PURPOSE: Various pathologic and nonpathologic states result in brain parenchymal signal intensity changes on unenhanced T1-weighted MR imaging. However, the absence of quantitative data to characterize typical age-related signal intensity values limits evaluation. We sought to establish a range of age-dependent brain parenchymal signal intensity values on unenhanced T1WI in a sample of individuals (18 years of age or younger) with structurally normal brains.

MATERIALS AND METHODS: A single-center retrospective study was performed. Gadolinium-naïve pediatric patients with structurally normal MR brain imaging examination findings were analyzed (n = 114; 50% female; age range, 68 days to 18 years). ROI signal intensity measurements were obtained from the globus pallidus, thalamus, dentate nucleus, pons, and frontal lobe cortex and subcortical white matter. Multivariable linear regression was used to analyze the relationship between signal intensity values and age.

RESULTS: Results demonstrated a statistically significant association between signal intensity values and linear age in all neuroanatomic areas tested, except the frontal gray matter, (P < .01). There were no statistically significant differences attributable to patient sex.

CONCLUSIONS: Age-dependent signal intensity values were determined on unenhanced T1WI in structurally normal pediatric brains. Increased age correlated with increased signal intensity in all brain locations, except the frontal gray matter, irrespective of sex. The biologic mechanisms underlying our results remain unclear and may be related to chronologic changes in myelin density, synaptic density, and water content. Establishing age-dependent signal intensity parameters in the structurally normal pediatric brain will help clarify developmental aberrations and enhance gadolinium-deposition research by providing an improved understanding of the confounding effect of age.
and was compliant with the Health Insurance Portability and Accountability Act. Informed consent was waived. Pediatric patients older than 31 days and younger than 18 years who underwent an unenhanced brain MR imaging examination between January 1, 2012, and December 31, 2012, were consecutively identified from our institution’s electronic medical record data base. The first 3 male and the first 3 female patients per year of life encountered in the data base who met the following criteria were included for analysis: the presence of an interpretable 3D-MPRAGE sequence; structurally normal brain per the imaging report; no history of prior exposure to gadolinium-based contrast agents; and no brain radiation, neurofibromatosis type 1, impaired renal or hepatic function, and systemic or metabolic illness, as per review of the patient’s electronic medical record (see On-line Table 1 for a complete list of MR imaging examination indications). The MPRAGE MR imaging sequence was chosen for analysis to limit variation secondary to analysis of differing cations). The MPRAGE MR imaging sequence was chosen for Table 1 for a complete list of MR imaging examination indications.

Data Collection

All brain MR imaging examinations were performed with a 1.5T whole-body MR imaging system within our institution (Avanto; Siemens, Erlangen, Germany) on 1 of 2 identical scanners. All ROI measurements were made on an unenhanced axial T1WI 3D-MPRAGE sequence created with uniform acquisition parameters (TR range = 1700–1800 ms, TE = 2.92 ms, section thickness = 1.0 mm, FOV = 250 mm, matrix = 250 × 250).

Imaging Protocol

All brain MR imaging examinations were performed with a 1.5T whole-body MR imaging system within our institution (Avanto; Siemens, Erlangen, Germany) on 1 of 2 identical scanners. All ROI measurements were made on an unenhanced axial T1WI 3D-MPRAGE sequence created with uniform acquisition parameters (TR range = 1700–1800 ms, TE = 2.92 ms, section thickness = 1.0 mm, FOV = 250 mm, matrix = 250 × 250).

Results

The general linear model, which included a variable for quadratic age, was found to have a better fit to the data than the model that only included subject sex and linear age across all ROIs. This model fit satisfied all modeling assumptions (linearity, homoscedasticity, normality, and independence) via examination of diagnostic plots and tests. Subject sex was not found to be significantly associated with normalized signal intensity for any of the ROIs (P > .01). For all ROIs, except the frontal gray matter using both models and the dentate nucleus using the quadratic model, both the linear and quadratic age parameters were statistically significant (Table). To assess whether there existed an acute period of signal intensity change in each ROI, we conducted independent piecewise linear spline analyses, with a grid search to determine the optimal placement of the knots. This analysis was conducted on the model with only subject sex and linear age. For all ROIs, the age parameter estimate was found to be significantly different at the 36-month mark; therefore, a knot, used to allow the parameter estimate to be different before and after 36 months, was included in each ROI model. A comparison of these estimates showed that for all ROIs except frontal gray matter and the dentate nucleus, the parameter estimate for age was significantly larger during the first 3 years of life (On-line Table 2), indicating an acute period of signal intensity change throughout the brain in these regions. Figures 1 and 2 illustrate the quadratic and linear.

Table: Linear and quadratic age parameter estimates from the general linear model

ROI	Linear Age	Quadratic Age				
	Estimate	95% CI	P Value	Estimate	95% CI	P Value
Globus pallidus	0.00900	0.006–0.012	<.001	–	–	–
Thalamus	0.006	0.003–0.008	<.001	–	–	–
Dentate	0.00500	0.002–0.008	.001	–	–	–
Frontal GM	0.003	0.001–0.005	.01	–	–	–
Frontal WM	0.011	0.008–0.014	<.001	–	–	–

Statistical Analysis

To account for the effect of CSF, we normalized all ROI signal intensities to the CSF intensity scale. Signal intensity as a function of age (in months) was investigated for all ROIs using 2 general linear models to compare linear with quadratic fits. The linear fit used the covariates of subject sex and age, while the quadratic fit included the additional covariate of squared age. The Akaike information criteria were used to determine which model provided a higher quality fit. Additionally, to determine whether there was an acute period of signal intensity change, we conducted a piecewise linear spline analysis, and if significant, a knot corresponding to the significant change in linear slope was included in the model. Ninety-five percent confidence intervals were calculated in all figures to show the variability of the average normalized signal intensity across all ages. All analyses were performed using R statistical and computing software (Version 3.6.0; http://www.r-project.org/). A Bonferroni-corrected significance value of P < .01 was considered indicative of a statistically significant parameter estimate.
spline model fits of age (in months) to normalized signal intensity for each ROI, respectively.

DISCUSSION

This study establishes a range of age-dependent signal intensity values in the structurally normal pediatric brain on unenhanced T1WI in multiple neuroanatomic areas. Increased age was associated with increased signal intensity values in all brain locations tested, except the frontal gray matter, irrespective of sex. Furthermore, in all brain regions tested, except the frontal gray matter and the dentate nucleus, there was a statistically significant period of increased positive signal intensity change in the first 36 months of life relative to later time points. Although the frontal gray matter and dentate nucleus failed to achieve statistical significance, as above, both anatomic regions demonstrated a similar trend relative to the other regions tested. Overall, these results are in line with multiple published studies that demonstrated temporal changes in brain development on MR imaging.2–20 Specifically, our results parallel those of multiple

![FIG 1](image1.png)

FIG 1. Multivariable linear regression with the quadratic age effect of signal intensity in the globus pallidus (A), thalamus (B), dentate (C), frontal white matter (D), and frontal gray matter (E). The dashed line represents the average predicted signal intensity at each age with the gray shading representing the 95% confidence band. Points on the scatterplots are differentiated by sex.

![FIG 2](image2.png)

FIG 2. Multivariable linear regression of signal intensity in the globus pallidus (A), thalamus (B), dentate (C), frontal white matter (D), and frontal gray matter (E). The solid line represents the average predicted signal intensity at each age with the gray shading representing the 95% confidence band. The vertical dashed line shows the location of the spline, where the effect of age on signal intensity changes. Points on the scatterplots are differentiated by sex.
published studies showing a nonlinear positive correlation between T1WI signal intensity and age in numerous cortical areas and white matter tracts within the brain, including a similar steeper slope at earlier time points.10,12,16,20 Furthermore, our results correlate with known developmental changes in brain myelin content; however, additional less dominant factors, as listed below, likely also contributed.8,20

In the current study, by establishing age-dependent signal intensity values in the structurally normal pediatric brain on unenhanced T1WI throughout infancy to older adolescence, especially in deep gray and cerebellar nuclei, our results fill an existing gap in the literature. It is known that various pathologic and nonpathologic processes result in pediatric brain parenchymal signal intensity changes on MR imaging, such as hypoxic-ischemic injury, infection, mitochondrial or metabolic disorders, and, most recently, gadolinium deposition.8–14 Establishing brain signal intensity parameters in the structurally normal pediatric brain on unenhanced T1WI will help clarify developmental aberrations, elucidate pathology, and enhance gadolinium-deposition research by providing an improved understanding of the confounding effect of age. Specifically, these results will aid in the recognition of deviations from the expected brain parenchymal signal intensity changes, which occur throughout development. The biologic mechanisms underlying our results remain unclear and may be related to chronologic changes in myelin density, synaptic density, physiologic mineral and metal deposition, water content, and/or the lymphatic system.

Study limitations include a small single-center retrospective design and reliance on signal intensity measurements, which limit generalization of the results. T1 mapping would be more accurate to characterize T1-weighted signal intensity values, but it is not currently performed on a routine clinical basis at our institution. An additional limitation is reliance on our institution’s electronic medical record to exclude prior gadolinium-based contrast material exposure; it is possible that a prior exposure was not documented in our electronic medical record.

CONCLUSIONS
Age-dependent signal intensity values in the structurally normal pediatric brain were determined on unenhanced T1-weighted MR imaging. Increased age was associated with increased signal intensity values in all brain locations tested, except the frontal gray matter, irrespective of sex. Establishing signal intensity parameters in the structurally normal pediatric brain will help clarify developmental aberrations, elucidate pathology, and enhance gadolinium-deposition research by providing an improved understanding of the confounding effect of age.

Disclosures: Thomas F. Flood—UNRELATED: Support for Travel to Meetings for the Study or Other Purposes: University of Colorado Radiology Department, Comments: Turbo Talk at the American Society of Neuroradiology 2017 annual meeting with travel expenses funded by the University of Colorado Department of Radiology.

REFERENCES
1. Kandel ER, Mack S, eds. Principles of Neural Science. 5th ed. New York: McGraw-Hill Medical; 2013
2. Salat DH, Tuch DS, Hevelone ND, et al. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann N Y Acad Sci 2005;1064:37–49 CrossRef Medline
3. Welker KM, Patton A. Assessment of normal myelination with magnetic resonance imaging. Semin Neurol 2012;32:15–28 CrossRef Medline
4. Tannnes CK, Ostby Y, Fell AJ, et al. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 2010;20:534–48 CrossRef
5. Wently LT, Walhov KB, Dale AM, et al. Differentiating asexual and aging-related changes of the cerebral cortex by use of thickness and signal intensity. Neuroimage 2010;52:172–85 CrossRef Medline
6. Sowell ER, Thompson PM, Toga AW. Mapping changes in the human cortex throughout the span of life. Neuroscientist 2004;10:372–92 CrossRef Medline
7. Paus T, Collins DL, Evans AC, et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 2001;54:255–66 CrossRef Medline
8. Barkovich AJ, Kjos BO, Jackson DE, et al. Normal maturation of the neonatal and infant brain: MR imaging at 1.5T. Radiology 1988;166:173–80 CrossRef Medline
9. Cho S, Jones D, Reddick WE, et al. Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Med 1997;15:1133–43 CrossRef
10. Dean DC, O’Muireachtaigh J, Dirks H, et al. Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 2014;86:742–52 CrossRef Medline
11. Deoni SC, Mercure E, Blasi A, et al. Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 2011;31:784–91 CrossRef Medline
12. Deoni SC, Dean DC, O’Muireachtaigh J, et al. Investigating white matter development in infancy and early childhood using myelin water fraction and relaxation time mapping. Neuroimage 2012;63:1038–53 CrossRef Medline
13. Gilmore JH, Shi F, Woolson SL, et al. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 2012;22:2478–85 CrossRef Medline
14. Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 2011;31:11597–616 CrossRef Medline
15. Grydeland H, Walhov KB, Tannnes CK, et al. Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. J Neurosci 2013;33:18618–30 CrossRef Medline
16. O’Muireachtaigh J, Dean DC, Ginestet CW, et al. White matter development and early cognition in babies and toddlers. Hum Brain Mapp 2014;35:4475–87 CrossRef Medline
17. Shafee R, Buckner RL, Fischl B. Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage 2015;105:473–85 CrossRef Medline
18. Sowell ER, Thompson PM, Leonard CM, et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 2004;24:8223–31 CrossRef Medline
19. Travis KE, Curran MM, Torres C, et al. Age-related changes in tissue signal properties within cortical areas important for word understanding in 12- to 19-month-old infants. Cereb Cortex 2014;24:1948–55 CrossRef Medline
20. Deoni SC, Dean DC, Remer J, et al. Cortical maturation and myelination in healthy toddlers and young children. Neuroimage 2015;11:147–61 CrossRef
21. Finelli PF, Singh JU. A syndrome of bilateral symmetrical basal ganglia lesions in diabetic dialysis patients. Am J Kidney Dis 2014;63:286–88 CrossRef Medline
22. Hedge AN, Mohan S, Lath N, et al. Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. Radiographics 2011;31:5–30 CrossRef Medline
23. Zuccoli G, Yannes MP, Nardone R, et al. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015). *Neuroradiology* 2015;57:973–89 CrossRef Medline

24. Kanda T, Ishii K, Kawaguchi H, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. *Radiology* 2014;270:834–41 CrossRef Medline

25. Kanda T, Matsuda M, Oba H, et al. Gadolinium deposition after contrast-enhanced MR imaging. *Radiology* 2015;277:924–25 CrossRef Medline

26. Flood TF, Stence NV, Maloney JA, et al. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. *Radiology* 2017;282:222–28 CrossRef Medline

27. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. *Radiology* 2015;275:783–91 CrossRef Medline

28. Ramalho J, Ramalho M, AlObaidy M, et al. T1 signal-intensity increase in the dentate nucleus after multiple exposures to gadodiamide: intraindividual comparison between 2 commonly used sequences. *AJNR Am J Neuroradiol* 2016;37:1427–31 CrossRef Medline

29. Blumfield E, Swenson D, Ramesh I, et al. Gadolinium-based contrast agents review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. *Pediatr Radiol* 2019;49:448–57 CrossRef Medline

30. Deike-Hofman K, Reuter J, Haase R, et al. Glymphatic pathway of gadolinium-based contrast agents through the brain overlooked and misinterpreted. *Invest Radiol* 2019;54:229–37 CrossRef Medline