Privacy amplification scheme based on composite coding

Wei Li1,2,3 and Shengmei Zhao1,*

1Nanjing University of Posts and Telecommunications, Institute of Signal Processing and Transmission, Nanjing, 210003, China.
2Nanjing University of Posts and Telecommunications, Key Lab Broadband Wireless Communication and Sensor Network, Ministry of Education, Nanjing, 210003, China. and
3National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

(Dated: September 16, 2021)

Abstract

Privacy amplification is an indispensable step in the post-processing of quantum key distribution, which can be used to compress the redundancy of shared key and improve the security level of the key. The commonly used privacy amplification is based on the random selection of universal hash functions, which needs the help of an additional random source, while it does not exist in general. In this paper, we propose a privacy amplification scheme based on composite coding, which is an extension of quantum CSS codes to classical linear codes. Compared with the universal hashing function, the proposed scheme does not need other random sources, and the randomness can be completely provided by the qubit string. Furthermore, the information-theoretic bound for the extraction of the key is obvious in composite coding.
Quantum key distribution (QKD) is a remarkable achievement in the field of quantum information, which allows two parties, Alice and Bob, to share an unconditionally secure key for message encryption. Privacy amplification is an important component in the postprocessing of practical QKDs. In the security research of QKD, the inevitable noise in the realistic quantum channel provides an opportunity for the eavesdropper, Eve, to implement powerful quantum side channel attacks, such as coherent attacks, collective attacks and individual attacks. These channel attacks could generate correlation between Eve and Alice, and Bob, and some information of the key may be leaked to Eve. With privacy amplification, the correlation between them can be eliminated and the redundancy of the shared keys can be compressed.

The generalized privacy amplification is realized by means of universal hashing function, where an auxiliary random source is needed to randomly select a hashing function from the universal class. The auxiliary source is called a random seed, and the privacy amplification process can be viewed as an unconditionally-secure expansion of the random seed. In general, the ideal source of randomness does not exist, one has to extract the perfect random number from an imperfect random source with the help of an extractor. However, this randomness generation process will suffer a computational complexity larger than $O(n \log n)$, with the input length of $n \geq 10^6$ due to the finite size effect. In addition, the collision probability and Rényi entropy are commonly introduced in the privacy amplification process to quantify the randomness generated by universal hashing. Due to the gap between Shannon entropy and Rényi entropy, the final key is always over compressed. Therefore, it is an interesting question that whether there exists a privacy amplification scheme that does not depend on the random selection of any universal hashing functions.

In the well-known security proof of QKD based on entanglement purification protocol (EPP), error correction and privacy amplification are implemented simultaneously through Calderbank-Shor-Steane (CSS) codes. In this kind of security proof, no universal hashing function is used, and a tight key rate can be obtained. Unfortunately, CSS codes belong to quantum error correction codes, while the postprocessings of practical QKDs are always carried out in a classical way. Are there any classical channel codes that
can be used for error correction and privacy amplification simultaneously? In this paper, we propose a new scheme of privacy amplification based on classical composite linear codes. Firstly, we illustrate the relationship between error correction and information leakage in QKDs from the perspective of error correction coding. Next, we present a classical composite linear coding scheme which shares a similar structure with the CSS codes. The classical composite linear code consists of two subcodes, one of which is embedded in the other, and the two subcodes perform error correction and privacy amplification respectively.

II. ERROR CORRECTION AND INFORMATION LEAKAGE

In the most common QKDs, such as BB84-QKD [32], E91-QKD [33], measurement device independent (MDI)-QKD [34–36] and twin-field (TF)-QKD [37–39], the two communicating parties, Alice and Bob, are connected by quantum channels, and they exchange the key information through transmission of single-photon like states encoded in mutual unbiased bases (MUBs). Suppose that the eavesdropper, Eve, can do whatever she wants to do with the transmitted quantum state. In the case of ideal noise-free quantum channel, the non-cloning theorem and uncertainty principle guarantee that Eve cannot steal any key information without being detected. In fact, some inevitable quantum channel noise provides an opportunity for Eve’s eavesdropping operation in theory, like intercept-resend attacks [40], quantum channel attacks [11, 14, 18]. After all the processes before error correction, Alice, Bob and Eve each obtain a random binary bit string R_A, R_B and R_E with the error patterns $E_{AB} = R_A \oplus R_B$ and $E_{AE} = R_A \oplus R_E$, where \oplus is the Xor operation. Assume that Alice, Bob and Eve are connected by binary symmetric channels (BSC), the bits in the strings can be viewed as independent identically distributed (i.i.d) random variables.

In the general QKDs, Alice and Bob are in symmetrical positions. Suppose that Alice sends information to Bob in the key agreement process and the length of the transmitted qubit string is long enough, the bit error rate (BER) in the quantum channel is equal to $e_{AB} = \frac{d(R_A, R_B)}{n}$, the BER of Eve’s bit string with respect to Alice’s is $e_{AE} = \frac{d(R_A, R_E)}{n}$, where $d(x, y) = W(x \oplus y) = \sum_{i=0}^{n-1} x_i \oplus y_i$ is the Hamming distance between strings x and y, $W(z)$ is the weight of the codeword z, n is the length of R_A, R_B and R_E. According to the law of large numbers, an error pattern E_{AB} is a typical sequence if its probability
satisfies\[41\]
\[2^{-n(H(e_{AB})+\epsilon)} \leq p(E_{AB}) \leq 2^{-n(H(e_{AB})-\epsilon)}\] \hspace{1cm} (1)
for any $\epsilon > 0$, where $H(x)$ is Shannon entropy $H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)$. All the typical sequences of E_{AB} form a typical set A_{ϵ}^{AB} and the number of elements in A_{ϵ}^{AB} is within a range
\[(1 - \epsilon) 2^{n(H(e_{AB})-\epsilon)} \leq |A_{\epsilon}^{AB}| \leq 2^{n(H(e_{AB})+\epsilon)},\] \hspace{1cm} (2)
in which ϵ can be infinitesimal when $n \to \infty$. Similarly, the number of typical sequences of E_{AE} of R_E with respect to R_A is approximately $|A_{\epsilon}^{AE}| \approx 2^{n(H(e_{AE})+\epsilon)}$.

FIG. 1. Schematic diagram of the key agreement process.

In the key agreement, Alice publicly share an error correction code C, a classical linear code (n,k), with Bob through a classical channel and it can also be passively received by Eve. Let’s first review the general linear error correction coding. Alice sends a code vector $u_{1 \times n} \in C$ over a BSC with an error probability of $p(e)$ to Bob. For n large enough, the code vector that Bob receives with a high probability is $R_{1 \times n} = u_{1 \times n} \oplus E_{\epsilon}$, where E_{ϵ} is a typical error pattern and $W(E_{\epsilon}) = np(e)$. Let $H_{n \times (n-k)}$ be the parity check matrix of code C, which consists of the bases of the dual vector space C^\perp. The corresponding syndrome can be obtained by $S_{1 \times (n-k)} = R_{1 \times n} \cdot H_{n \times (n-k)}^T$, with which the typical error pattern E_{ϵ} can be computed. There are a total of 2^{n-k} syndromes, which means that the maximum number of error patterns that can be corrected is 2^{n-k}.

4
Lemma 1. For any real number $t \in [0, 0.5]$ and its Shannon entropy $H(t)$,
\[\sum_{i=0}^{\lfloor nt \rfloor} C_n^i \leq 2^{nH(t)}, \]
where n is a positive number, $\lfloor x \rfloor$ is the largest integer smaller than or equal to x, C_n^i is the combinatorial number formula $C_n^i = \frac{n!}{i!(n-i)!}$.

Proof. The proof of the inequality is equivalent to prove that $\sum_{i=0}^{\lfloor nt \rfloor} C_n^i 2^{-nH(t)} \leq 1$. According to the binomial theorem, we have
\[
1 = \left[t + (1-t) \right]^n = \sum_{i=0}^{n} C_n^i t^i (1-t)^{n-i} \geq \sum_{i=0}^{\lfloor nt \rfloor} C_n^i \left(\frac{t}{1-t} \right)^i (1-t)^n. \tag{3}
\]
As $0 \leq t \leq 0.5$, therefore, $\frac{t}{1-t} \leq 1$ and $\left(\frac{t}{1-t} \right)^i \geq \left(\frac{t}{1-t} \right)^{nt}$ for any $i \leq \lfloor nt \rfloor$. Using these observations we see that
\[
\sum_{i=0}^{\lfloor nt \rfloor} C_n^i \left(\frac{t}{1-t} \right)^i (1-t)^n \geq \sum_{i=0}^{\lfloor nt \rfloor} C_n^i \left(\frac{t}{1-t} \right)^{nt} (1-t)^n = \sum_{i=0}^{\lfloor nt \rfloor} C_n^i 2^{-nH(t)}, \tag{4}
\]
which completes the proof.

According to Lemma 1, for any $p(e) \in [0, 0.5]$, we have the inequality
\[\sum_{i=0}^{\lfloor W(E_\epsilon) \rfloor} C_n^i \leq 2^{nH(p(e))}, \tag{5} \]
where $W(E_\epsilon) = np(e)$ is the weight of the typical error pattern E_ϵ, and according to the law of large numbers one has $\lim_{n \to \infty} \frac{W(E_\epsilon) - \lfloor W(E_\epsilon) \rfloor}{n} = 0$. In the Shannon limit, $nH(p(e)) = n-k$. Assume that the error correction length of the code C is $t = \lfloor W(E_\epsilon) \rfloor \approx W(E_\epsilon)$ for sufficient large n, then Eq. (5) means that all the error patterns with code weight less than t can all be corrected in theory. In the actual key agreement where the finite size effect should be considered, we have $n-k = fnH(p(e))$, where $f > 1$ is the error correction efficiency.

The diagram of the key agreement is schematically illustrated shown in Fig. 1, assume that the error correction length of C is $t = \lfloor np(e_{AB}) \rfloor + \delta$ with $\delta > 0$. The red circle
represents the typical set \(A_{\epsilon}^{AB} \) with a Hamming radius of \(t \) in the hyper space centered on the codeword \(u_i \in C \). From Eq. (5), we can see that \(|A_{\epsilon}^{AB}| \sim 2^{nH(E_{AB})+\epsilon} \). Alice first decodes her random string \(R_A \) to the nearest codeword \(u_i \in C \) and publicly announces the result \(u_i \oplus R_A \) to Bob. Then Bob subtracts \(u_i \oplus R_A \) from \(R_B \), and gets \(v_B = u_i \oplus E_{AB} \), where \(E_{AB} = R_A \oplus R_B \). By applying the parity check matrix \(H \) of code \(C \) to \(v_B \), Bob can obtain the syndrome \(s_{AB} \) and calculate the error pattern \(E_{AB} \), so \(R_B \) can be corrected to \(u_i \) as well. Assume that the typical set \(A_{\epsilon}^{AB} \) and the syndrome set \(S_{AB} \) form a one-to-one mapping. For sufficiently large \(n \), the probability for \(A_{\epsilon}^{AB} \) satisfies \(\Pr (A_{\epsilon}^{AB}) > 1 - \epsilon \), and the probability of occurrence of a decoding error approaches 0.

As Bob’s error correction process is conducted in private, the only thing that benefits Eve is to perform the same operations as Bob. Eve subtracts \(u_i + R_A \) from \(R_E \), and gets \(v_E = u_i + E_{AE} \). With code \(C \), Eve can decode \(v_E \) to \(u_j \), whose Hamming distance from \(u_i \) has a great probability equal to \(d(u_i, u_j) \sim np(e_{AE}) \) according to the law of large numbers. In Fig. 1, the green circle represents the typical set \(A_{\epsilon}^{AE} \), within which the Hamming distance of all codevectors from \(u_j \) is not greater than \(\lfloor np(e_{AE}) \rfloor + \delta \) with \(\delta > 0 \). For Eve, all the codewords \(u \in C \) within the green circle may equally be considered as the codeword \(u_i \) sent from Alice to Bob. In a perfect linear code, the codewords are uniformly distributed in the codevector space. According to Eq. (5), the number of codevectors within the green circle is about \(|A_{\epsilon}^{AE}| \sim 2^{nH(E_{AE})+\epsilon} \). Thus, the number of codewords \(u \in C \) is equal to \(N = \frac{|A_{\epsilon}^{AE}|}{|A_{\epsilon}^{AB}|} \), and Eve’s probability of correctly guessing \(u_i \) is about \(\Pr \approx 2^{-n(H(e_{AE})-H(e_{AB}))} \), and the final key rate is \(r = H(e_{AE}) - H(e_{AB}) \). If \(H(e_{AE}) = 1 \), that is, Eve get no information form Alice, then \(r = 1 - H(e_{AB}) = \frac{k}{n} \). In the usual cases, the mutual information between Eve and Alice \(I(A; E) > 0 \), so Alice and Bob need to further compress the redundancy of the shared random string from \(k \) to \(nr \) with the help of privacy amplification. From Fig. 1, we can see that the optimal privacy amplification is that Alice and Bob map the codewords within the green circle one-to-one into the \(2^{n-r} \) space.

III. PRIVACY AMPLIFICATION BASED ON COMPOSITE CODING

According to the Hamming distance between the codeword decoded by Eve and that decoded by Alice and Bob in the codevector space, we propose a privacy amplification scheme based on composite error correction coding. The schematic diagram of this composite
coding is shown in Fig. 2. Assume that the information is sent from Alice to Bob in the key agreement, the BER of the quantum channel between Alice and Bob is e_{AB} and the BER of the quantum channel between Alice and Eve is e_{AE}. Under the condition that Alice and Bob can extract a finite key, we have $e_{AE} > e_{AB}$ and $H(e_{AE}) > H(e_{AB})$. In the composite coding, C_1 and C_2 are (n, k_1) and (n, k_2) classical linear codes with $C_2 \subset C_1$, the error correction lengths of these two codes are $t_1 = \lfloor ne_{AB} \rfloor + \delta$ and $t_2 = \lfloor ne_{AE} \rfloor + \delta$, respectively. In Fig. 2, the codewords of C_2 are represented by red dots, the codewords of C_1 are represented by black dots, and the i-th codeword of C_2 is denoted as D_i. To simplify the discussion, here we assume that both C_1 and C_2 can reach the Shannon limit, then $\delta = 0$, $k_1 = n(1 - H(e_{AB}))$ and $k_2 = n(1 - H(e_{AB}))$.

Assume that C_1 and C_2 are perfect linear codes, their codewords are uniformly distributed in their codevector spaces. Here, we define the set $D_1 = B(D_i, t_2)$ to be

$$B(D_i, t_2) = \{c|d(c, D_i) \leq t_2, \forall c \in C_1\},$$

where $i = 0, 1, \cdots, 2^{k_2-1}$, the number elements in D_i is $N(D_i) = 2^{n(H(e_{AE}) - H(e_{AB}))}$, the a-th element in D_i is denoted as C_i^a with $a = 0, 1, \cdots, 2^{k_1-k_2} - 1$, and the 0-th element is $C_i^0 = D_i$. Here, the allocation of indexes to the elements in D_i can be arbitrary. We first construct the set D_0, where D_0 is the all zero code, and the remaining elements are the codewords whose weight is less than or equal to t_2.

The set D_i can be obtained through $D_i = D_i \oplus D_0$, which is the coset of D_0, the b-th codeword in D_i is $C_i^b = D_i \oplus C_0^b$. For any codewords $C_i^a, C_i^b \in D_i$, the Hamming distance between them is $d(C_i^a, C_i^b) \leq d(C_i^a, D_i) + d(C_i^b, D_i) \leq 2t_2$, which is not larger than the size of D_i. However, for code C_2 whose error correction length is t_2, the Hamming distance between any two codewords satisfies $d(D_i, D_j) \geq 2t_2 + 1$. Then we have $D_i \cap D_j = \emptyset, \forall i \neq j$. Therefore, there is no intersection between D_i and D_j, and this can be expressed as that for any two codewords $C_i^a \in D_i$ and $C_j^b \in D_j$, $C_i^a \neq C_j^b$. Another proof of this assertion is as follows. As $C_i^a \oplus C_j^b = (D_i \oplus D_j) \oplus (C_0^a \oplus C_0^b)$, while $d(D_i, D_j) = W(D_i \oplus D_j) \geq 2t_2 + 1$ and $d(C_0^a, C_0^b) = W(C_0^a \oplus C_0^b) \leq 2t_2$, so $C_i^a \oplus C_j^b \neq 0$ is obtained, where 0 is the all zero code. Finally, we use $\text{Str}_2(a)$, the equal length binary representation of the index a, as the privacy amplified random bit string.

Assume that in a practical QKD, after the key agreement between Alice and Bob, Eve decode R_E to the codeword u_E, represented by a blue dot in Fig. 2. The blue circle
FIG. 2. Schematic diagram of privacy amplification based on composite coding.

is the set \(u_E = B(u_E, t_2) \), which consists of all the codewords \(C \in C_1 \) whose Hamming distance from \(u_E \) is not larger than \(t_2 \). For Eve, the codeword obtained by Alice and Bob must not be outside the set \(u_E \). Here, \(u_E \) may intersect with several sets \(D_i \). Then we will demonstrate that the indexes of any two codewords in \(u_E \) are not equal, which is the requirement of ideal privacy amplification. Assume \(D_i \) and \(D_j \) are the two sets that intersect with \(u_E \), then the Hamming distance of any two codewords \(C_i^a \) and \(C_j^a \) with the same index is \(d(C_i^a, C_j^a) = W(C_i^a \oplus C_j^a) = W(D_i \oplus D_j \oplus C_0^a \oplus C_0^a) = W(D_i \oplus D_j) \geq 2t_2 + 1 \), which is larger than the size of \(u_E \). Therefore, we can be sure that the indexes of any two elements in \(u_E \) must be different.

The complete protocol for the BB84-like QKDs, which consists of BB84-QKD, E91-QKD, MDI-QKD and TF-QKD, can be expressed as follows. (0) The composite linear error correction code \((n, k_1, k_2)\) is known publicly to any parties that want to share secret key through QKD. (1) Alice and Bob choose a QKD scheme to transmit a set of quantum states randomly coded by MUBs through a quantum channel, in which each of them prepares or measures the quantum states privately. Suppose that \(4n \) quantum states are successfully transmitted between Alice and Bob. (3) Alice and Bob discard the bits when they use different bases through public discussion, and each obtain a random bit string \(R_A \) and \(R_B \). With a high probability, the length of each bit string is \(2n \). (4) Alice and Bob randomly

\(\text{Code vector space} \)
select \(n \) of these bits as check bits to evaluate the BER between them. (5) If the BER is within a predetermined value, Alice (Bob) decodes \(R_A (R_B) \) to \(u_A (u_B) \) with the \((n, k_1)\) code, and sends \(R_A \oplus u_A \) \((R_B \oplus u_B) \) to Bob (Alice) through an authenticated classical channel. (6) Bob (Alice) subtracts \(R_B \) \((R_A) \) from \(R_A \oplus u_A \) \((R_B \oplus u_B) \), and decode \(E_{AB} \oplus u_A (u_B) \) to \(u_B (u_A) \) with the \((n, k_1)\) code, where \(E_{AB} = R_A \oplus R_B \) is the error pattern between \(R_A \) and \(R_B \). (7) With the \((n, k_2)\) code, they further decode \(u_A (u_B) \) to \(D_i \), and the probability for \(u_A = u_B = u \) approaches 1 for \(n \to \infty \). (8) They obtain \(C^a_0 \) through \(C^a_0 = u \oplus D_i \), and use \(\text{Str}_2 (a) \), the equal length binary representation of the index of the decoded codeword, as the final shared random bit string.

IV. CONCLUSION

In this paper, We propose a privacy amplification scheme based on composite coding, and analyze the relationship between information leakage and bit error correction from the perspective of coding. Composite coding can be regarded as the extension of quantum CSS codes to classical linear codes, which integrates privacy amplification and error correction. Compared with the universal hashing function, composite coding has significant advantages in privacy amplification. For example, the randomness is only provided by the qubit string, no other random source is needed. With composite coding, the proof that the extraction of key reaches the information-theoretic bound is obvious. We anticipate that composite coding will play an important role in the post-processing of quantum information.

ACKNOWLEDGMENTS

This work is supported by China Postdoctoral special funding project (2020T130289), the National Natural Science Foundation of China (No. 61871234).

[1] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Reviews of modern physics 81, 1301 (2009).
[2] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, npj Quantum Information 2, 1 (2016).
[3] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Reviews of Modern Physics 92, 025002 (2020).

[4] C. H. Bennett, G. Brassard, and J.-M. Robert, SIAM journal on Computing 17, 210 (1988).

[5] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, IEEE Transactions on Information theory 41, 1915 (1995).

[6] D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Physical review letters 77, 2818 (1996).

[7] M. Hayashi, IEEE Transactions on Information Theory 57, 3989 (2011).

[8] M. Hayashi and T. Tsurumaru, IEEE Transactions on Information Theory 62, 2213 (2016).

[9] H.-K. Lo and H. F. Chau, science 283, 2050 (1999).

[10] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

[11] B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, Optica 4, 163 (2017).

[12] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Physical review letters 109, 100502 (2012).

[13] L. Sheridan, T. P. Le, and V. Scarani, New Journal of Physics 12, 123019 (2010).

[14] E. Biham and T. Mor, Physical Review Letters 78, 2256 (1997).

[15] E. Biham, M. Boyer, G. Brassard, J. Van De Graaf, and T. Mor, Algorithmica 34, 372 (2002).

[16] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Physical Review Letters 98, 230501 (2007).

[17] S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, New Journal of Physics 11, 045021 (2009).

[18] C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, Phys. Rev. A 56, 1163 (1997).

[19] D. Bruß, Physical Review Letters 81, 3018 (1998).

[20] N. Lütkenhaus, Physical Review A 61, 052304 (2000).

[21] E. Waks, A. Zeevi, and Y. Yamamoto, Physical Review A 65, 052310 (2002).

[22] Y. Dodis and R. Oliveira, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Springer, 2003) pp. 252–263.

[23] N. Nisan and D. Zuckerman, Journal of Computer and System Sciences 52, 43 (1996).

[24] U. Maurer and S. Wolf, in Annual International Cryptology Conference (Springer, 1997) pp. 307–321.
[25] M. Hayashi and R. Nakayama, New Journal of Physics 16, 063009 (2014).
[26] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nature communications 3, 1 (2012).
[27] I. Csiszár and J. Körner, Information theory: coding theorems for discrete memoryless systems (Cambridge University Press, 2011).
[28] I. Csiszár and J. Korner, IEEE transactions on information theory 24, 339 (1978).
[29] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Physical Review A 54, 3824 (1996).
[30] A. R. Calderbank and P. W. Shor, Physical Review A 54, 1098 (1996).
[31] A. Steane, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996).
[32] C. H. Bennett and G. Brassard, “Proceedings of the iee international conference on computers, systems and signal processing,” (1984).
[33] A. K. Ekert, Physical review letters 67, 661 (1991).
[34] H.-K. Lo, M. Curty, and B. Qi, Physical review letters 108, 130503 (2012).
[35] Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, et al., Physical review letters 111, 130502 (2013).
[36] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, et al., Physical review letters 117, 190501 (2016).
[37] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Nature 557, 400 (2018).
[38] X. Ma, P. Zeng, and H. Zhou, Physical Review X 8, 031043 (2018).
[39] W. Li, L. Wang, and S. Zhao, Scientific reports 9, 1 (2019).
[40] J. Lin, H.-Y. Tseng, and T. Hwang, Optics Communications 284, 2412 (2011).
[41] T. M. Cover, Elements of information theory (John Wiley & Sons, 1999).