Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

Amirreza Noori1a, Saeed Masoumi1b and Najmeh Hashemi1c

1Electronic Materials Laboratory, Electrical Engineering Department, K.N. Toosi University of Technology, Tehran 16317-14191, Iran.

aamirreza.noori@gmail.com, bsaeed.masoumi86@yahoo.com, cnajmehhashemi92@gmail.com

Abstract. Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

Keywords: thermoelectric, Seebeck coefficient, polycrystalline semiconductor, temperature dependence, ZnO thin film.

1. Introduction

Thermoelectric (TE) effect directly converts heat to electricity. TE devices have recently attracted considerable attention because of their potential applications in cooling units, power generator, sensors, and waste heat recovery system [1,2]. TE devices are advantages in that they have no mechanical moving parts, no greenhouse gas release, good stability, high reliability and long life. These features make TE devices suitable choices for portable, military and aerospace applications [3-5].

The performance of a TE device depends on the TE material; hence, for decades, researchers have tried to figure out the most efficient TE materials. The efficiency among TE materials is quantitatively...
Metal oxide semiconductors are promising candidates as TE materials [12-14]. Zinc Oxide is an important II-IV metal oxide semiconductor with wurtzite crystal structure and a good candidate TE material owing to its high chemical stability, high electrical conductivity and acceptable Seebeck coefficient [15]. Oxide semiconductors, because of their remarkable characteristics have various applications such as transparent conductor for solar cells/displays, surface acoustic wave devices, chemical sensors and etc. [16-18]. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. It is shown that as the temperature increases, the Seebeck coefficient of ZnO increases in absolute value.

2. Experimental

ZnO thin films are deposited on 10 mm × 5 mm alumina substrates by the thermal evaporation of zinc powder in vacuum followed by the controlled oxidation process in air carried out at the 350-500 °C temperature range. Two different types of samples are fabricated, which are produced in the same conditions, but are different in the utilized oxidation temperature. Sample A is oxidized at 450 °C but sample B has experienced 500 °C. Oxidation temperature profiles utilized are shown in figure 1. After oxidation, both samples are transparent indicating the completion of the oxidation process [19].

![Figure 1. Oxidation temperature profile of the zinc layers deposited on alumina.](image)

A chromium thin film microheater is deposited on the back side of the alumina substrate covering a third of its length. By passing different currents from the heater, temperature differences of different magnitude are created across the sample. All contacts to the microheater and ZnO thin film are made by silver paste printing and silver wire segments (figure 2.a and b) [20,21]. A Ni-Cr wire heater placed on the sample holder under the sample can increase the average sample temperature. This will allow sample
resistance measurements at different temperatures. Hence, we are using two different heaters; the first one determines the average temperature of the sample and the second heats up the one third of the sample to create the temperature gradient and generate Seebeck voltage.

Figure 2. (a) The schematic diagram of the sample positioned on the sample holder. (b) The photograph of the ZnO thin film sample on the sample holder.

The main requirement for an accurate Seebeck coefficient measurement is to make the temperature and voltage readouts simultaneous from the same locations on the sample [22]. To meet this condition, two fine type S thermocouples are placed on ZnO electrical contacts as show in figure 3.b.

The prepared ZnO samples’ resistance is in the $10^6 \, \Omega$ range. Thus, the correct measurement of the Seebeck voltage across our samples requires an ultra-high input impedance voltmeter [23,24]. In the case of a high resistance sample, an alternative method is used in the present work, which is schematically presented in figure 3 [25]. As shown in figure 3.a, a variable power supply and a resistor are connected in series with the sample. Seebeck voltage along the sample is measured by adjusting the voltage source V_s (see figure 3.a) manually till the voltage drop over the resistor R becomes zero. At this point, the power supply voltage is equal to the Seebeck voltage [26].

Figure 3. (a) The circuit utilized for the measurement of the Seebeck voltage. (b) The schematic diagram of the sample.
To measure the sample resistance at different temperatures, a dc voltage is applied to Ni-Cr wire heater. The sample temperature becomes stable in a few minutes. The resistance of sample is, then, recorded after 2 minutes. The temperature difference across the sample is require for Seebeck coefficient measurements. This is created by applying a dc voltage to the chromium microheater. Time is allowed for the temperature profile along the sample to become stable. The Seebeck voltage is read a few minutes after this stability.

3. Results and discussion

The variations of the resistance and Seebeck coefficients of the undoped polycrystalline ZnO samples are shown in figure 4.a-c. In figure 4.a the resistance variations in the A and B samples are presented, showing that the span of changes is wider in the A samples. The Arrhenius diagram for resistance is shown in figure 4.b. The conduction activation energy deduced for the sample is 0.50 ± 0.05 eV. As shown in figure 4.b, the activation energy of sample B is marginally lower than that of the sample A. This means that by increasing the oxidation temperature, carriers meet a slightly smaller energy barrier in passing from one grain to another.

Figure 4.c shows the variation of the Seebeck voltage versus the temperature difference across the sample. The slope of the plotted line in figure 4.c determines the Seebeck coefficient. It is clear that the Seebeck coefficient of sample B is larger than that of the sample A. The variations of the Seebeck coefficient of ZnO samples with respect to the average sample temperature is presented in figure 4.d, showing that the Seebeck coefficient in both sample categories increase in absolute value with temperature. That is more profound in the B sample.

![Figure 4.](image-url)

Figure 4. Resistance variations with temperature presented in linear (a) and logarithmic scales (b). (c) Seebeck voltage variations with respect to the established temperature differences across the sample and (d) the variations of the measured Seebeck coefficient with regards to the average sample temperature.
4. Conclusion
The maximum annealing temperature of the ZnO thin films is important in determining the Seebeck effect and zT of the undoped polycrystalline ZnO thin films. In fact, this parameter affects both electrical resistivity and Seebeck coefficient. Samples with higher annealing temperature of 500 °C have lower resistance and higher Seebeck coefficient than those annealed at 450 °C. Therefore, the figure of merit in B sample becomes significantly higher than that in A sample.

References
[1] Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Bashir MBA, Mohamad M 2014 A review on thermoelectric renewable energy: Principle parameters that affect their performance Renewable and Sustainable Energy Reviews 30 337-355
[2] Zhao D, Tan G 2014 A review of thermoelectric cooling: materials, modeling and applications Applied Thermal Engineering 66 15-24
[3] de Rochemont LP 2013 US Patent App. 13/602,019
[4] Tritt TM 2011 Thermoelectric phenomena, materials, and applications Annual review of materials research 41 433-448
[5] Yang J, Cailiat T 2006 Thermoelectric materials for space and automotive power generation MRS bulletin 31 224-229
[6] Rowe DM. CRC handbook of thermoelectrics: CRC press; 1995
[7] Snyder GJ, Toberer ES 2008 Complex thermoelectric materials Nature materials 7(2)
[8] Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG 2010 Nanostructured thermoelectrics: big efficiency gains from small features Advanced Materials 22(36)
[9] Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial JP, Gogna P 2007 New Directions for Low-Dimensional Thermoelectric Materials Advanced Materials 19 1043-1053
[10] Wood C, Chmielewski A, Zoltan D 1988 Measurement of Seebeck coefficient using a large thermal gradient Review of scientific instruments 59 951-954
[11] Wold PI 1916 The hall effect and allied phenomena in tellurium Physical Review 7 169
[12] Hossein-Babaei F, Lajvardi MM, Boroumand FA 2012 Large area Ag–TiO 2 UV radiation sensor fabricated on a thermally oxidized titanium chip Sensors and Actuators A: Physical 173(1) 116-121
[13] Hossein-Babaei F, Aalaei-Sheini N 2016 Electronic Conduction in Ti/Poly-TiO2/Ti Structures Scientific Reports 6 29624
[14] Hossein-Babaei F, Lajvardi MM, Aalaei-Sheini N 2015 The energy barrier at noble metal/TiO2 junctions Applied Physics Letters 106(8) 083503-083506
[15] Berger LI. Semiconductor materials: CRC press; 1996
[16] Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ 2011 Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell Nano letters 11 666-671
[17] Hossein-Babaei F, Paknahad M, Ghafarinia V 2012 A miniature gas analyzer made by integrating a chemoresistor with a microchannel Lab on a Chip 12(10) 1874-1880
[18] Hossein-Babaei F, Amini A 2014 Recognition of complex odors with a single generic tin oxide gas sensor Sensors and Actuators B: Chemical 194 156-163
[19] Chen S, Liu Y, Ma J, Zhao D, Zhi Z, Lu Y, Zhang J, Shen D, Fan X 2002 High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn Journal of Crystal Growth 240 467-472
[20] Hossein-Babaei F, Moghadam S, Masoumi S 2015 Forming ohmic Ag/SnO\textsubscript{2} contacts Materials Letters \textbf{141} 141-144

[21] Ghalamboran M, Saedi Y 2016 TiO\textsubscript{2}-TiO\textsubscript{2} composite resistive humidity sensor: ethanol crosssensitivity IOP Conference Series: Materials Science and Engineering \textbf{108} 012039

[22] Martin J, Tritt T, Uher C 2010 High temperature Seebeck coefficient metrology Journal of Applied Physics \textbf{108} 121101

[23] Srikant V, Clarke DR 1998 On the optical band gap of zinc oxide Journal of Applied Physics \textbf{83} 5447-5451

[24] Keem J, Honig J 1975 Seebeck measurements and their interpretation in high-resistivity materials—the case of semiconducting V2O\textsubscript{3} Physica Status Solidi (a) \textbf{28} 335-343

[25] Cai H, Cui D, Li Y, Chen X, Zhang L, Sun J 2013 Apparatus for measuring the Seebeck coefficients of highly resistive organic semiconducting materials Review of Scientific Instruments \textbf{84} 044703

[26] Hossein-Babaei F, Masoumi S 2014 Electrical Resistance and Seebeck Effect in Undoped Polycrystalline Zinc Oxide Key Engineering Materials \textbf{605} 185-188