AF-algebras and topology of 3-manifolds

Igor Nikolaev *

Abstract

We construct a functor which maps conjugate pseudo-Anosov automorphisms of a surface to the so-called stably isomorphic stationary AF-algebras; the functor gives new topological invariants of three dimensional manifolds coming from the known invariants of the AF-algebras. The main invariant is a triple $(\Lambda, [I], K)$, where Λ is an integral order in the real number field K and $[I]$ the equivalence class of ideals in Λ.

Key words and phrases: AF-algebras, 3-dimensional manifolds

AMS (MOS) Subj. Class.: 19K, 46L, 57M.

Introduction

A. Three dimensional manifolds. Let X be an orientable surface of genus g. We shall denote by $\text{Mod} (X)$ the mapping class group, i.e. a group of the orientation-preserving automorphisms of X modulo the normal subgroup of trivial automorphisms. Let $\phi \in \text{Mod} (X)$ and consider a mapping torus $M_\phi = \{ X \times [0,1] \mid (x, 0) \mapsto (\phi(x), 1), \ x \in X \}$. The M_ϕ is a 3-dimensional manifold and $M_\phi \cong M_{\phi'}$ are homotopy equivalent if and only if $\phi' = \psi \circ \phi \circ \psi^{-1}$ are conjugate by an automorphism $\psi \in \text{Mod} (X)$ [7]. Equivalently, M_ϕ is a surface bundle over the circle given by the monodromy ϕ; such bundles make by far the most interesting, the most complex and the most useful part of the 3-dimensional topology [9], p.358. Each $\phi \in \text{Mod} (X)$ is isotopic to

*Partially supported by NSERC.
an automorphism ϕ', such that either (i) ϕ' has a finite order, or (ii) ϕ' is a pseudo-Anosov automorphism, or else (iii) ϕ' is reducible by a system of curves to either type (i) or (ii) [10]. Recall *ibid.* that ϕ is pseudo-Anosov if there exist a pair of the stable F_s and unstable F_u mutually orthogonal measured foliations of the surface X, such that $\phi(F_s) = \lambda_\phi F_s$ and $\phi(F_u) = \lambda_\phi F_u$, where $\lambda_\phi > 1$ is a dilatation of ϕ. The foliations F_s and F_u are minimal, uniquely ergodic and describe the automorphism ϕ up to a power. In the sequel, we shall classify surface bundles M_{ϕ}, where ϕ is the pseudo-Anosov automorphisms of a surface X.

B. The AF-algebras ([5]). The C^*-algebra A is an algebra over complex numbers endowed with the norm $a \mapsto ||a||$ and an involution $a \mapsto a^*$, $a \in A$, such that A is complete with respect to the norm, and such that $||ab|| \leq ||a|| \ ||b||$ and $||a^*a|| = ||a||^2$ for every $a, b \in A$. Any commutative algebra A is isomorphic to the C^*-algebra $C_0(X)$ of continuous complex-valued functions on a locally compact Hausdorff space X; the algebras which are not commutative are deemed as noncommutative topological spaces. A *stable isomorphism* $A \rightarrow A'$ is defined as the (usual) isomorphism $A \otimes K \rightarrow A' \otimes K$, where K is the C^*-algebra of compact operators on a Hilbert space; such an isomorphism corresponds to a homeomorphism between the noncommutative spaces A and A'. The matrix algebra $M_n(\mathbb{C})$ is an example of noncommutative finite-dimensional C^*-algebra; a natural generalization are approximately finite-dimensional (AF-) algebras, which are given by an ascending sequence $M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} \ldots$ of finite-dimensional semi-simple C^*-algebras $M_i = M_{n_1}(\mathbb{C}) \oplus \ldots \oplus M_{n_k}(\mathbb{C})$ and homomorphisms φ_i arranged into an infinite graph as follows. The two sets of vertices V_i, \ldots, V_k and V'_i, \ldots, V'_k are joined by the b_{rs} edges, whenever the summand M_i contains b_{rs} copies of the summand M_i' under the embedding φ_i; as $i \rightarrow \infty$, one gets a *Bratteli diagram* of the AF-algebra. Such a diagram is defined by an infinite sequence of incidence matrices $B_i = (b_{ij}^{(s)})$. If the homomorphisms $\varphi_1 = \varphi_2 = \ldots = Const$, the AF-algebra is called *stationary*; its Bratteli diagram looks like an infinite graph with the incidence matrix $B = (b_{rs})$ repeated over and over again.

C. The functoriality problem. Let $\phi \in Mod(X)$ be a pseudo-Anosov automorphism; the problem we seek a solution is as follows. Given ϕ one assigns to it an AF-algebra, A_{ϕ}, such that for every automorphism $h \in Mod(X)$ the following diagram commutes:
In words, if \(\phi \) and \(\phi' \) are the conjugate pseudo-Anosov automorphisms, then the corresponding \(AF \)-algebras \(A_\phi \) and \(A_{\phi'} \) are stably isomorphic; the following simple example indicates, that the functoriality problem has a solution.

D. A model example (case \(g = 1 \)). Let \(T^2 \) be two-dimensional torus and \(\phi \in Mod (T^2) \) an automorphism given by non-negative hyperbolic matrix \(A_\phi \in SL_2 (\mathbb{Z}) \). Consider a stationary \(AF \)-algebra \(A_\phi \) given by the infinite Bratteli diagram with the constant incidence matrix \(B = A_\phi \); it is verified directly, that \(F : \phi \mapsto A_\phi \) is a correctly defined map on the set of hyperbolic matrices with non-negative entries. Let us show that if \(\phi, \phi' \in Mod (T^2) \) are conjugate automorphisms, then \(A_\phi \) is stably isomorphic to \(A_{\phi'} \). Indeed, let \(\phi' = h \circ \phi \circ h^{-1} \) for an \(h \in Mod (X) \); then \(A_{\phi'} = T A_\phi T^{-1} \) for a matrix \(T \in SL_2 (\mathbb{Z}) \) and \((A_{\phi'})^n = (T A_\phi T^{-1})^n = T A_\phi^n T^{-1} \) for any \(n \in \mathbb{N} \). Recall that the \(AF \)-algebras are stably isomorphic if and only if their Bratteli diagrams contain a common block of an arbitrary length; this claim follows from [5], Theorem 2.3, where the order-isomorphism is replaced by an equivalent condition of Bratteli diagrams having the same infinite tail. Consider the Bratteli diagrams \(A_\phi = \lim_{n \to \infty} A_\phi^n \) and \(A_{\phi'} = \lim_{n \to \infty} T A_{\phi'}^n T^{-1} \); the latter have a common block of arbitrary length. Thus, \(A_\phi \otimes \mathbb{K} \cong A_{\phi'} \otimes \mathbb{K} \), which gives a solution to the functoriality problem in the case \(g = 1 \).

E. The \(AF \)-algebra \(A_\phi \) (case \(g \geq 1 \)). Denote by \(\mathcal{F}_\phi \) the unstable foliation of a pseudo-Anosov automorphism \(\phi \in Mod (X) \). For brevity, we assume that \(\mathcal{F}_\phi \) is an oriented foliation given by the trajectories of a closed 1-form \(\omega \in H^1 (X ; \mathbb{R}) \); if \(\mathcal{F}_\phi \) is not oriented, the standard double cover construction brings it to the oriented case [8]. Let \(v^{(i)} = \int_{\gamma_i} \omega \), where \(\{ \gamma_1, \ldots, \gamma_n \} \) be a basis in the relative homology \(H_1 (X, Sing \mathcal{F}_\phi ; \mathbb{Z}) \), such that \(\theta = (\theta_1, \ldots, \theta_{n-1}) \) is a vector with positive coordinates \(\theta_i = v^{(i+1)}/v^{(1)} \); while each \(\theta_i \) depends on a basis in the homology group, the \(\mathbb{Z} \)-module generated by \(\theta_i \) does not
(Lemma 1). Consider the Jacobi-Perron continued fraction of vector θ ([2]):

$$\begin{pmatrix} 1 \\ \theta \end{pmatrix} = \lim_{k \to \infty} \begin{pmatrix} 0 & 1 \\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b_k \end{pmatrix} \begin{pmatrix} 0 \\ I \end{pmatrix},$$

where $b_k = (b_1^{(i)}, \ldots, b_{n-1}^{(i)})^T$ is a vector of the non-negative integers, I the unit matrix and $I = (0, \ldots, 0, 1)^T$. We shall denote by A_ϕ an (isomorphism class of) AF-algebra given by the Bratteli diagram, whose incidence matrices coincide with $B_k = \begin{pmatrix} 0 & 1 \\ I & b_k \end{pmatrix}$ for $k = 1, \ldots, \infty$. Notice that such a definition coincides with the one given in the model example (case $g = 1$). The basic lemma says that A_ϕ is a stationary AF-algebra (Lemma 4).

F. The result. Let B be the incidence matrix of the stationary algebra A_ϕ; let λ_B be the Perron-Frobenius eigenvalue of B and $(v_B^{(1)}, \ldots, v_B^{(n)})$ the corresponding normalized eigenvector with $v_B^{(i)} \in K = \mathbb{Q}(\lambda_B)$. The endomorphism ring of the module $m = \mathbb{Z}v_B^{(1)} + \ldots + \mathbb{Z}v_B^{(n)}$ will be denoted by Λ. The equivalence class of ideals in the ring Λ generated by the ideal m, we shall write as $[I]$. Finally, let Φ be a category of all pseudo-Anosov automorphisms of the surface of genus $g \geq 1$; the morphisms are the conjugations between the automorphisms. Likewise, let A be a category of all stationary AF-algebras A_ϕ, where ϕ runs the set Φ; the morphisms of A are the stable isomorphisms among the A_ϕ’s. Our main result can be expressed as follows.

Theorem 1 Let $F : \Phi \to A$ be a map given by the formula $\phi \mapsto A_\phi$. Then:

(i) F is a covariant functor, which maps the conjugate pseudo-Anosov automorphisms to the stably isomorphic AF-algebras;

(ii) $F^{-1}(A_\phi) = [\phi]$, where $[\phi] = \{ \phi' \in \Phi \mid (\phi')^m = \phi^n, \ m, n \in \mathbb{N} \}$ is the commensurability class of the pseudo-Anosov automorphism ϕ.

Corollary 1 The triple $(\Lambda, [I], K)$ is a homotopy invariant of the manifold M_ϕ.

Contents

1 Preliminaries .. 5
 1.1 Jacobian of measured foliation 5
 1.2 Functoriality for measured foliations 6
 1.3 Basic lemma 8
2 Proofs
2.1 Proof of basic lemma . 8
2.2 Proof of theorem 1 . 9
2.3 Proof of corollary 1 . 11

3 Numerical invariants 12
3.1 Determinant and signature 12
3.2 Numerical invariants of Anosov automorphisms 13
3.3 Example . 14

1 Preliminaries
1.1 Jacobian of measured foliation

Let \mathcal{F} be a measured foliation on a compact surface X [10]. For the sake of brevity, we shall assume that \mathcal{F} is an oriented foliation, i.e. given by the trajectories of a closed 1-form ω on X; each non oriented foliation is covered by an oriented one on a surface \tilde{X}, which is a double cover of X ramified at the singular points of the half-integer index of the non-oriented foliation [8]. Let $\{\gamma_1, \ldots, \gamma_n\}$ be a basis in the relative homology group $H_1(X, \text{Sing } \mathcal{F}; \mathbb{Z})$, where $\text{Sing } \mathcal{F}$ is the set of singular points of the foliation \mathcal{F}. It is well known that $n = 2g + m - 1$, where g is the genus of X and $m = |\text{Sing } (\mathcal{F})|$. The periods of ω in the above basis we shall write as $\lambda_i = \int_{\gamma_i} \omega$. By a Jacobian $\text{Jac}(\mathcal{F})$ of \mathcal{F}, we understand a \mathbb{Z}-module $m = \mathbb{Z}\lambda_1 + \ldots + \mathbb{Z}\lambda_n$ regarded as a subset of the real line \mathbb{R}.

Lemma 1 The \mathbb{Z}-module m is independent of the choice of a basis in $H_1(X, \text{Sing } \mathcal{F}; \mathbb{Z})$.

Proof. Indeed, let $A = (a_{ij}) \in GL_n(\mathbb{Z})$ and let $\gamma'_i = \sum_{j=1}^n a_{ij} \gamma_j$ be a new basis in $H_1(X, \text{Sing } \mathcal{F}; \mathbb{Z})$. Then using the integration rules: $\lambda'_i = \int_{\gamma'_i} \omega = \int_{\sum_{j=1}^n a_{ij} \gamma_j} \omega = \sum_{j=1}^n \int_{\gamma_j} \omega = \sum_{j=1}^n a_{ij} \lambda_j$. To prove that $m = m'$, consider the following equations: $m' = \sum_{i=1}^n z\lambda'_i = \sum_{i=1}^n z \sum_{j=1}^n a_{ij} \lambda_j = \sum_{j=1}^n (\sum_{i=1}^n a_{ij} z) \lambda_j \subseteq m$. Let $A^{-1} = (b_{ij}) \in GL_n(\mathbb{Z})$ be an inverse to the matrix A. Then $\lambda_i = \sum_{j=1}^n b_{ij} \lambda'_j$ and $m = \sum_{i=1}^n z\lambda_i = \sum_{i=1}^n z \sum_{j=1}^n b_{ij} \lambda'_j = \sum_{j=1}^n (\sum_{i=1}^n b_{ij} z) \lambda'_j \subseteq m'$. Since both $m' \subseteq m$ and $m \subseteq m'$, we conclude that $m' = m$. Lemma 1 follows. □
Recall that the measured foliations \mathcal{F} and \mathcal{F}' are said to be *topologically conjugate*, if there exists an automorphism $h \in \text{Mod} (X)$, which sends the leaves of the foliation \mathcal{F} to the leaves of the foliation \mathcal{F}'. Note that such an equivalence deals with the topological foliations (i.e. the projective classes of measured foliations [10]) and does not preserve transversal measure.

Lemma 2 Let \mathcal{F} and \mathcal{F}' be topologically conjugate measured foliations on a surface X. Then $\text{Jac} (\mathcal{F}') = \mu \text{Jac} (\mathcal{F})$, where $\mu > 0$ is a real number.

Proof. Let $h : X \to X$ be an automorphism of the surface X. Denote by h_* its action on $H_1(X, \text{Sing} (\mathcal{F}); \mathbb{Z})$ and by h^* on $H^1(X; \mathbb{R})$ connected by the formula: $\int_{h_*(\gamma)} \omega = \int_\gamma h^*(\omega)$, $\forall \gamma \in H_1(X, \text{Sing} (\mathcal{F}); \mathbb{Z})$, $\forall \omega \in H^1(X; \mathbb{R})$.

Let $\omega, \omega' \in H^1(X; \mathbb{R})$ be the closed 1-forms whose trajectories define the foliations \mathcal{F} and \mathcal{F}', respectively. Since $\mathcal{F}, \mathcal{F}'$ are topologically conjugate, $\omega' = \mu h^*(\omega)$ for a $\mu > 0$. Let $\text{Jac} (\mathcal{F}) = \mathbb{Z}\lambda_1 + \ldots + \mathbb{Z}\lambda_n$ and $\text{Jac} (\mathcal{F}') = \mathbb{Z}\lambda'_1 + \ldots + \mathbb{Z}\lambda'_n$. Then $\gamma_i = \int_{\gamma_i} \omega' = \mu \int_{\gamma_i} h^*(\omega) = \mu \int_{h_*(\gamma_i)} \omega$, $1 \leq i \leq n$.

By lemma 1, it holds: $\text{Jac} (\mathcal{F}) = \sum_{i=1}^n \mathbb{Z} \int_{\gamma_i} \omega = \sum_{i=1}^n \mathbb{Z} \int_{h_*(\gamma_i)} \omega$. Therefore $\text{Jac} (\mathcal{F}') = \sum_{i=1}^n \mathbb{Z} \int_{\gamma_i} \omega' = \mu \sum_{i=1}^n \mathbb{Z} \int_{h_*(\gamma_i)} \omega = \mu \text{Jac} (\mathcal{F})$. Lemma 2 follows. \(\square\)

1.2 Functoriality for measured foliations

Let \mathcal{F} be a foliation of surface X endowed with the unique ergodic measure; suppose that \mathcal{F} is given by the trajectories of a closed 1-form $\omega \in H^1(X; \mathbb{R})$.

Let $v^{(i)} = \int_{\gamma_i} \omega$, where $\{\gamma_1, \ldots, \gamma_n\}$ be a basis in the relative homology $H_1(X, \text{Sing} \mathcal{F}_0; \mathbb{Z})$, such that $\theta = (\theta_1, \ldots, \theta_{n-1})$ is a vector with the positive coordinates $\theta_i = v^{(i+1)}/v^{(1)}$. Consider the Jacobi-Perron continued fraction of θ ([2]):

$$\left(\begin{array}{c} 1 \\ \theta \end{array}\right) = \lim_{k \to \infty} \left(\begin{array}{cc} 0 & 1 \\ I & b_1 \end{array}\right) \cdots \left(\begin{array}{cc} 0 & 1 \\ I & b_k \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right),$$

where $b_i = (b_1^{(i)}, \ldots, b_{n-1}^{(i)})^T$ is a vector of the non-negative integers, I the unit matrix and $I = (0, \ldots, 0, 1)^T$. Let $\mathcal{A}_\mathcal{F}$ be an (isomorphism class of) \mathcal{A}-algebra given by the Bratteli diagram, whose incidence matrices coincide with $B_k = \left(\begin{array}{cc} 0 & 1 \\ I & b_k \end{array}\right)$ for all $k = 1, \ldots, \infty$; notice that $\mathcal{A}_\mathcal{F}$ is correctly defined, since the Jacobi-Perron fraction of uniquely ergodic measured foliation is convergent [1]. The following lemma establishes functoriality of the algebras $\mathcal{A}_\mathcal{F}$ with respect to the topological conjugacy.
Lemma 3 If \(\mathcal{F} \) and \(\mathcal{F}' \) are topologically conjugate foliations, then \(\mathcal{A}_\mathcal{F} \) and \(\mathcal{A}_\mathcal{F}' \) are stably isomorphic AF-algebras.

Proof. (i) First, let us show that if \(m = \mathbb{Z} \lambda_1 + \ldots + \mathbb{Z} \lambda_n \) and \(m' = \mathbb{Z} \lambda'_1 + \ldots + \mathbb{Z} \lambda'_n \) are two \(\mathbb{Z} \)-modules, such that \(m' = \mu m \) for a \(\mu > 0 \), then the Jacobi-Perron continued fractions of the vectors \(\lambda \) and \(\lambda' \) coincide except, may be, a finite number of terms. Indeed, let \(m = \mathbb{Z} \lambda_1 + \ldots + \mathbb{Z} \lambda_n \) and \(m' = \mathbb{Z} \lambda'_1 + \ldots + \mathbb{Z} \lambda'_n \). Since \(m' = \mu m \), where \(\mu \) is a positive real, one gets the following identity of the \(\mathbb{Z} \)-modules:

\[
\mathbb{Z} \lambda'_1 + \ldots + \mathbb{Z} \lambda'_n = \mathbb{Z} (\mu \lambda_1) + \ldots + \mathbb{Z} (\mu \lambda_n).
\]

One can always assume that \(\lambda_i \) and \(\lambda'_i \) are positive reals; there exists a basis \(\{ \lambda''_1, \ldots, \lambda''_n \} \) of the module \(m' \), such that:

\[
\begin{cases}
\lambda''_i = A(\mu \lambda) \\
\lambda''_i = A' \lambda',
\end{cases}
\]

where \(A, A' \in GL_n^+(\mathbb{Z}) \) are the matrices, whose entries are non-negative integers. In view of the Proposition 3 of [1]:

\[
\begin{cases}
A = \begin{pmatrix} 0 & 1 \\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b_k \end{pmatrix}, \\
A' = \begin{pmatrix} 0 & 1 \\ I & b'_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b'_l \end{pmatrix},
\end{cases}
\]

where \(b_i, b'_i \) are non-negative integer vectors. Since the continued fraction for the vectors \(\lambda \) and \(\mu \lambda \) coincide for any \(\mu > 0 \) [2], we conclude that:

\[
\begin{cases}
\begin{pmatrix} 1 \\ \theta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ I & b_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b_k \end{pmatrix} \begin{pmatrix} 0 & 1 \\ I & a_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ I & a_2 \end{pmatrix} \cdots \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \\
\begin{pmatrix} 1 \\ \theta' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ I & b'_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & b'_l \end{pmatrix} \begin{pmatrix} 0 & 1 \\ I & a_1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ I & a_2 \end{pmatrix} \cdots \begin{pmatrix} 0 \\ 1 \end{pmatrix},
\end{cases}
\]

where

\[
\begin{pmatrix} 1 \\ \theta'' \end{pmatrix} = \lim_{i \to \infty} \begin{pmatrix} 0 & 1 \\ I & a_1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ I & a_i \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
\]

In other words, the continued fractions of the vectors \(\lambda \) and \(\lambda' \) coincide, except a finite number of terms.

(ii) By lemma 2 topologically conjugate foliations \(\mathcal{F} \) and \(\mathcal{F}' \) have proportional Jacobians, i.e. \(m' = \mu m \) for a \(\mu > 0 \). Thus, the continued fraction expansion of the basis vectors of the proportional Jacobians must coincide,
except a finite number of terms; the AF-algebras A_F and $A_{F'}$ are given by the Bratteli diagrams, which are identical, except a finite part of the diagram. It is well known ([5], Theorem 2.3) that the AF-algebras, which have such a property, are stably isomorphic. □

1.3 Basic lemma

There exists a countable family of measured foliations, which come from the pseudo-Anosov automorphisms of surfaces; we shall restrict our attention to this class of foliations. Let $\phi \in \text{Mod} (X)$ be a pseudo-Anosov automorphism of the surface; then there exist a stable F_s and unstable F_u mutually orthogonal measured foliations on X, such that $\phi(F_s) = \frac{1}{\lambda_\phi} F_s$ and $\phi(F_u) = \lambda_\phi F_u$, where $\lambda_\phi > 1$ is called a dilatation of ϕ. The foliations F_s, F_u are minimal, uniquely ergodic and describe the automorphism ϕ up to a power; we shall understand by F_ϕ the unstable foliation of ϕ. Let $\mathbb{A}_\phi := \mathbb{A}_{F_\phi}$ be the AF-algebra of the measured foliation F_ϕ; the following lemma describes the basic property of such an algebra (to be proved in the next section).

Lemma 4 \mathbb{A}_ϕ is stably isomorphic to a stationary AF-algebra.

Recall that any stationary AF-algebra is given by a positive integer matrix A; the similarity class of the matrix corresponds to the stable isomorphism class of the AF-algebra \mathbb{A}_ϕ [5].

2 Proofs

2.1 Proof of basic lemma

Let $\phi \in \text{Mod} (X)$ be a pseudo-Anosov automorphism of the surface X; we proceed by showing, that invariant foliation F_ϕ is given by form $\omega \in H^1(X; \mathbb{R})$, which is an eigenvector of the linear map $[\phi] : H^1(X; \mathbb{R}) \to H^1(X; \mathbb{R})$ induced by ϕ. Indeed, let λ_ϕ be a dilatation of ϕ and Ω the corresponding volume element; by definition, $\phi(\Omega) = \lambda_\phi \Omega$. Note, that Ω is given by restriction of form ω to a 1-dimensional manifold, transverse to the leaves of F_ϕ. The leaves of F_ϕ are fixed by ϕ and, therefore, $\phi(\Omega)$ is given by a multiple $\lambda_\phi \omega$ of form ω. Since $\omega \in H^1(X; \mathbb{R})$ is a vector, whose coordinates
define F_ϕ up to a scalar, we conclude, that $[\phi](\omega) = \lambda_\phi \omega$, i.e. ω is an eigenvector of the linear map $[\phi]$. Let $(\lambda_1, \ldots, \lambda_n)$ be a basis of the Jacobian of F_ϕ, such that $\lambda_i > 0$. Notice, that ϕ acts on λ_i as multiplication by constant λ_ϕ; indeed, since $\lambda_i = \int_{\gamma_i} \omega$, we have:

$$
\lambda'_i = \int_{\gamma_i} [\phi](\omega) = \int_{\gamma_i} \lambda_\phi \omega = \lambda_\phi \lambda_i,
$$

(1)

where $\{\gamma_i\}$ is a basis in $H_1(X, \text{Sing } F_\phi; \mathbb{Z})$. Since ϕ preserves the leaves of F_ϕ, one concludes that $\lambda'_i \in \text{Jac } (F_\phi)$; therefore, $\lambda'_i = \sum b_{ij} \lambda_i$ for a non-negative integer matrix $B = (b_{ij})$. According to [1], matrix B can be written as a finite product:

$$
B = \begin{pmatrix} 0 & 1 \\ I & b_1 \\ & \ddots \\ & & 0 & 1 \\ & & I & b_p \end{pmatrix} = B_1 \cdots B_p,
$$

(2)

where $b_i = (b_i^{(1)}, \ldots, b_i^{(n-1)})^T$ is a vector of non-negative integers and I the unit matrix. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$. Consider a purely periodic Jacobi-Perron continued fraction:

$$
\lim_{i \to \infty} B_1 \cdots B_p \begin{pmatrix} 0 \\ \mathbb{I} \end{pmatrix},
$$

(3)

where $\mathbb{I} = (0, \ldots, 0, 1)^T$; by a basic property of such fractions, it converges to an eigenvector $\lambda' = (\lambda'_1, \ldots, \lambda'_n)$ of matrix $B_1 \cdots B_p$ [3], Ch.3. But $B_1 \cdots B_p = B$ and λ is an eigenvector of matrix B; therefore, vectors λ and λ' are collinear. The collinear vectors are known to have the same continued fractions; thus, we have

$$
\begin{pmatrix} 1 \\ \theta \end{pmatrix} = \lim_{i \to \infty} \overline{B_1 \cdots B_p \begin{pmatrix} 0 \\ \mathbb{I} \end{pmatrix}},
$$

(4)

where $\theta = (\theta_1, \ldots, \theta_{n-1})$ and $\theta_i = \lambda_{i+1}/\lambda_1$. Since vector $(1, \theta)$ unfolds into a periodic Jacobi-Perron continued fraction, we conclude, that the AF-algebra A_{ϕ} is stationary. Lemma 4 is proved. □

2.2 Proof of theorem 1

(i) Let us prove the first statement; we start with the following lemma.

Lemma 5 Let ϕ and ϕ' be the conjugate pseudo-Anosov automorphisms of a surface X. Then the invariant foliations F_ϕ and $F_{\phi'}$ are topologically conjugate.

\[9\]
Proof. Let $\phi, \phi' \in \text{Mod}(X)$ be conjugate, i.e. $\phi' = \psi \circ \phi \circ \psi^{-1}$ for an automorphism $\psi \in \text{Mod}(X)$. Since ϕ is the pseudo-Anosov automorphism, there exists a measured foliation F_ϕ, such that $\phi(F_\phi) = \lambda_\phi F_\phi$. Let us evaluate the automorphism ϕ' on the foliation $\psi(F_\phi)$:

$$\phi'(\psi(F_\phi)) = \psi \circ \phi \circ \psi^{-1}(\psi(F_\phi)) = \psi \phi(F_\phi) = \psi \lambda_\phi F_\phi = \lambda_\psi(\psi(F_\phi)).$$

(5)

Thus, $F_{\phi'} = \psi(F_\phi)$ is the invariant foliation for the pseudo-Anosov automorphism ϕ' and foliations F_ϕ and $F_{\phi'}$ are topologically conjugate. Note also, that the pseudo-Anosov automorphisms ϕ and ϕ' have the same dilatation. □

One can prove claim (i) of theorem 1; let ϕ and ϕ' be conjugate pseudo-Anosov automorphisms. Functor F acts by the formulas $\phi \mapsto \mathcal{A}_\phi$ and $\phi' \mapsto \mathcal{A}_{\phi'}$, where \mathcal{A}_ϕ and $\mathcal{A}_{\phi'}$ are the AF-algebras of the invariant foliations F_ϕ and $F_{\phi'}$. In view of lemma 5, foliations F_ϕ and $F_{\phi'}$ are topologically conjugate. By lemma 3, the AF-algebras \mathcal{A}_ϕ and $\mathcal{A}_{\phi'}$ are stably isomorphic; claim (i) is proved.

(ii) Let $\phi \in \text{Mod}(X)$ be a pseudo-Anosov automorphism. Then there exists a unique measured foliation F_ϕ, such that $\phi(F_\phi) = \lambda_\phi F_\phi$, where $\lambda_\phi > 1$; let us evaluate the automorphism $\phi^2 \in \text{Mod}(X)$ on the foliation F_ϕ:

$$\phi^2(F_\phi) = \phi(\phi(F_\phi)) = \phi(\lambda_\phi F_\phi) = \lambda_\phi \phi F_\phi = \lambda_\phi^2 F_\phi,$$

(6)

where $\lambda_{\phi^2} := \lambda_\phi^2$. Thus, the foliation F_ϕ is an invariant foliation for the automorphism ϕ^2 as well; by induction, we conclude that F_ϕ is an invariant foliation for the automorphism ϕ^n for any $n \geq 1$. Denote by $[\phi]$ the set of all pseudo-Anosov automorphisms ψ of X, such that $\psi^m = \phi^n$ for some positive integers m and n.

Lemma 6 The foliation F_ϕ is an invariant foliation for every automorphism $\psi \in [\phi]$.

Proof. Suppose that $\psi \in \text{Mod}(X)$ is a pseudo-Anosov automorphism, such that $\psi^m = \phi^n$ for some $m \geq 1$ and $\psi \neq \phi$; then F_ϕ is an invariant foliation for the automorphism ψ. Indeed, F_ϕ is an invariant foliation for the
automorphism ψ^m. If there exists $\mathcal{F}' \neq \mathcal{F}_\phi$, such that the foliation \mathcal{F}' is an invariant foliation of ψ, then the foliation \mathcal{F}' is an invariant foliation of the pseudo-Anosov automorphism ψ^m. Thus, by the uniqueness of invariant foliations, $\mathcal{F}' = \mathcal{F}_\phi$. □

In view of lemma 6, one arrives at the following identities among the AF-algebras:

$$\mathbb{A}_\phi = \mathbb{A}_{\phi^2} = \ldots = \mathbb{A}_{\psi^n} = \ldots = \mathbb{A}_{\psi^2} = \mathbb{A}_\psi.$$ (7)

Thus, the functor $F : \Phi \to \mathbb{A}$ is not injective, since the preimage F^{-1} of the AF-algebra \mathbb{A}_ϕ is a countable set of pseudo-Anosov automorphisms $\psi \in [\phi]$ commensurable with the automorphism ϕ.

Theorem 1 is proved. □

2.3 Proof of corollary 1

Lemma 4 says that \mathbb{A}_ϕ is a stationary AF-algebra given by a positive integer matrix B. By the Perron-Frobenius theory, matrix B has a real eigenvalue $\lambda_B > 1$, which exceeds the absolute values of all other roots of the characteristic polynomial of B; note that λ_B is an algebraic number. Consider a real algebraic number field $K = \mathbb{Q}(\lambda_B)$ obtained as an extension of the field of the rational numbers by λ_B. Let $(v^{(1)}_B, \ldots, v^{(n)}_B)$ be the eigenvector corresponding to the eigenvalue λ_B; one can normalize the eigenvector so that $v^{(i)}_B \in K$. Consider the \mathbb{Z}-module $\mathfrak{m} = \mathbb{Z}v^{(1)}_B + \ldots + \mathbb{Z}v^{(n)}_B$; denote by Λ the endomorphism ring of \mathfrak{m} and by I an ideal in the ring Λ generated by \mathfrak{m}. The ring Λ is an order in the algebraic number field K and therefore I belongs to an ideal class in Λ; the ideal class of I is denoted by $[I]$. The triple $(\Lambda, [I], K)$ is an invariant of the stable isomorphism class of the stationary AF-algebra \mathbb{A}_ϕ (Handelman [6], §5). By theorem 1, $(\Lambda, [I], K)$ is an invariant of the conjugacy class of ϕ and by Hemion [7] of the homotopy class of manifold M_ϕ. □
3 Numerical invariants

3.1 Determinant and signature

One can derive numerical invariants of the stable isomorphism classes of stationary AF-algebras from the triple $(\Lambda, [I], K)$; one such invariant is associated with the trace function on the algebraic number field K. Recall that $Tr : K \to \mathbb{Q}$ is a linear function on K such that $Tr (\alpha + \beta) = Tr (\alpha) + Tr (\beta)$ and $Tr (a\alpha) = a\ Tr (\alpha)$ for $\forall \alpha, \beta \in K$ and $\forall a \in \mathbb{Q}$. Let m be a full \mathbb{Z}-module in the field K. The trace function defines a symmetric bilinear form $q(x, y) : m \times m \to \mathbb{Q}$ by the formula $(x, y) \mapsto Tr (xy)$, $\forall x, y \in m$. The form

$$q(x, y) = \sum_{j=1}^{n} \sum_{i=1}^{n} s_{ij} x_i y_j, \quad \text{where} \quad s_{ij} = Tr (\lambda_i \lambda_j); \quad (8)$$

depends on the basis $\{\lambda_1, \ldots, \lambda_n\}$ in the module m; however, certain numerical quantities will not depend on the basis. Namely, consider a symmetric matrix $S = (s_{ij})$ corresponding to the bilinear form $q(x, y)$. In a new basis matrix S will take the form $S' = U^T SU$, where $U \in GL_n(\mathbb{Z})$; thus $\det (S') = \det (U^T SU) = \det (U^T) \det (S) \det (U) = \det (S)$. Therefore, the rational integer

$$\Delta = \det (Tr (\lambda_i \lambda_j)), \quad (9)$$

does not depend on the choice of the basis $\{\lambda_1, \ldots, \lambda_n\}$ in the module m; it is called a determinant of the bilinear form $q(x, y)$. Clearly, Δ discerns the modules m and m'.

Finally, recall that the form $q(x, y)$ can be brought by the integer linear substitutions to the diagonal form:

$$s_1 x_1^2 + s_2 x_2^2 + \ldots + s_n x_n^2, \quad (10)$$

where $s_i \in \mathbb{Z} - \{0\}$. We let s_i^+ be the positive and s_i^- the negative entries in the diagonal form. In view of the law of inertia for the bilinear forms, the integer number $\Sigma = (#s_i^+) - (#s_i^-)$ does not depend on the choice of basis in the module m; it is called a signature of the form. Thus, Σ discerns the modules m and m'.

12
3.2 Numerical invariants of Anosov automorphisms

Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic extension of the field of rational numbers \mathbb{Q}. Further we suppose that d is a positive square free integer. Let

$$\omega = \begin{cases}
\frac{1 + \sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4, \\
\sqrt{d} & \text{if } d \equiv 2, 3 \mod 4.
\end{cases} \quad (11)$$

Proposition 1 Let f be a positive integer. Every order in K has form $\Lambda_f = \mathbb{Z} + (f\omega)\mathbb{Z}$, where f is the conductor of Λ_f.

Proof. See [4] pp. 130-132. □

The proposition 1 allows to classify the similarity classes of the full modules in the field K. Indeed, there exists a finite number of $m_f(1), \ldots, m_f(s)$ of the non-similar full modules in the field K, whose coefficient ring is the order Λ_f, cf Theorem 3, Ch 2.7 of [4]. Thus, proposition 1 gives a finite-to-one classification of the similarity classes of full modules in the field K.

Let Λ_f be an order in K with the conductor f. Under the addition operation, the order Λ_f is a full module, which we denote by m_f. Let us evaluate the invariants $q(x,y)$, Δ and Σ on the module m_f. To calculate $(s_{ij}) = Tr(\lambda_i\lambda_j)$, we let $\lambda_1 = 1, \lambda_2 = f\omega$. Then:

$$s_{11} = 2, \quad s_{12} = a_{21} = f, \quad s_{22} = \frac{1}{2} f^2(d + 1) \quad \text{if } d \equiv 1 \mod 4$$

$$s_{11} = 2, \quad s_{12} = s_{21} = 0, \quad s_{22} = 2f^2d \quad \text{if } d \equiv 2, 3 \mod 4, \quad (12)$$

and

$$q(x,y) = 2x^2 + 2fxy + \frac{1}{2} f^2(d + 1)y^2 \quad \text{if } d \equiv 1 \mod 4$$

$$q(x,y) = 2x^2 + 2f^2dy^2 \quad \text{if } d \equiv 2, 3 \mod 4. \quad (13)$$

Therefore

$$\Delta = \begin{cases}
2f^2d & \text{if } d \equiv 1 \mod 4, \\
4f^2d & \text{if } d \equiv 2, 3 \mod 4,
\end{cases} \quad (14)$$

and $\Sigma = +2$ in the both cases, where $\Sigma = \#(\text{positive}) - \#(\text{negative})$ entries in the diagonal normal form of $q(x,y)$.
3.3 Example

Let us consider a numerical example, which illustrates an advantage of the above invariants in comparison to the classical Alexander polynomials. Denote by M_ϕ and $M_{\phi'}$ the torus bundles given by the monodromy

$$B = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad B' = \begin{pmatrix} 5 & 1 \\ 4 & 1 \end{pmatrix},$$

respectively. The Alexander polynomial of three dimensional manifolds M_ϕ and $M_{\phi'}$ are identical $\Delta(t) = \Delta'(t) = t^2 - 6t + 1$. However, the bundles M_ϕ and $M_{\phi'}$ are not homotopy equivalent.

Indeed, the Perron-Frobenius eigenvector of matrix B is $v_B = (1, \sqrt{2} - 1)$ while of the matrix B' is $v_{B'} = (1, 2\sqrt{2} - 2)$. The bilinear forms for the modules $m_B = \mathbb{Z} + (\sqrt{2} - 1)\mathbb{Z}$ and $m_{B'} = \mathbb{Z} + (2\sqrt{2} - 2)\mathbb{Z}$ can be written as

$$q_B(x, y) = 2x^2 - 4xy + 6y^2, \quad q_{B'}(x, y) = 2x^2 - 8xy + 24y^2,$$

respectively. The modules m_B and $m_{B'}$ are not similar in the number field $K = \mathbb{Q}(\sqrt{2})$, since their determinants $\Delta(m_B) = 8$ and $\Delta(m_{B'}) = 32$ are not equal. Therefore the matrices B and B' are not similar 1 in $SL(2, \mathbb{Z})$.

References

[1] M. Bauer, A characterization of uniquely ergodic interval exchange maps in terms of the Jacobi-Perron algorithm, Bol. Soc. Bras. Mat. 27 (1996), 109-128.

[2] L. Bernstein, The Jacobi-Perron Algorithm, its Theory and Applications, Lect. Notes in Math. 207, Springer 1971.

[3] B. Blackadar, K-Theory for Operator Algebras, MSRI Publications, Springer, 1986.

1The reader may verify this fact using the method of periods, which dates back to Gauss. First we have to find the fixed points $Bx = x$ and $B'x = x$, which gives us $x_B = 1 + \sqrt{2}$ and $x_{B'} = \frac{1 + \sqrt{2}}{2}$, respectively. Then one unfolds the fixed points into a periodic continued fraction, which gives us $x_B = [2, 2, 2, \ldots]$ and $x_{B'} = [1, 4, 1, 4, \ldots]$. Since the period (2) of x_B differs from the period (1, 4) of B', the matrices B and B' are not similar in $SL(2, \mathbb{Z})$.

14
[4] Z. I. Borevich and I. R. Shafarevich, Number Theory, Acad. Press, 1966.

[5] E. G. Effros, Dimensions and C^*-Algebras, in: Conf. Board of the Math. Sciences No.46, AMS (1981).

[6] D. Handelman, Positive matrices and dimension groups affiliated to C^*-algebras and topological Markov chains, J. Operator Theory 6 (1981), 55-74.

[7] G. Hemion, On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds, Acta Math. 142 (1979), 123-155.

[8] J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), 221-274.

[9] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

[10] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), 417-431.

The Fields Institute for Mathematical Sciences, Toronto, ON, Canada, E-mail: igor.v.nikolaev@gmail.com

Current address: 101-315 Holmwood Ave., Ottawa, ON, Canada, K1S 2R2