Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection

Marzieh Zamaniyan1,2 | Aghdas Ebadi3 | Samaneh Aghajanpoor4 | Zahra Rahmani3 | Mohammadreza Haghshenas5 | Setareh Azizi4

1Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
2Infertility Center, Department of Obstetrics and Gynecology, Mazandaran University of Medical Sciences, Sari, Iran
3Department of Obstetrics and Gynecology, Medical School, Mazandaran University of Medical Sciences, Sari, Iran
4Student Research Committee, College of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
5Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Correspondence
Marzieh Zamaniyan, Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
Email: marziehzamaniyan@gmail.com
Zahra Rahmani, Division of Maternal Fetal Medicine, Imam Khomeini Hospital, Amir Mazandarani Street, Sari, Iran.
Email: z.rahmani1972@gmail.com

1 INTRODUCTION

Since December 2019, the novel coronavirus disease (COVID-19) infection has spread quickly from China to different parts of the world including Iran.1 Since February 18, 2020, over 12 000 confirmed cases of COVID-19 have been reported in Iran, and more than 150 000 cases in numerous other countries worldwide, with an around 3% to 4% mortality rate as up to March 15. One of the most important ways of viral transmission is the individuals' contact in hospitals, inside families, and other crowded places, but still no finding is reported on the optimal treatment modalities or vaccines.1–3

2 CLINICAL PRESENTATION

On March 7, 2020, a 22-year-old female, who was 32-weeks pregnant, presented at emergency clinic of Imam Khomeini Hospital, Sari, Iran, with dyspnea, myalgia, anorexia, nausea, non-productive cough, and fever during the fourth days before. She also had a history of controlled hypothyroidism. Her first physical examination revealed oral temperature = 37.6°C, O2 saturation = 85% with Venturi mask at 5 L per minute of oxygen, RR = 26/minute, and respiratory distress. Lung auscultation revealed fine rales and absence of breath sounds over the left lower lung zone. She had lost her uncle a week before due to COVID-19 pneumonia. Given the patient’s history and fever and cough, two nasal and throat swab samples were taken and tested to be positive for SARS-CoV-2 with SuperScript III Platinum, Quantitative Real-time PCR system Kits (Invitrogen company, USA).4 Chest X-Ray and chest computed tomography (CT) scan on March 8 revealed left-sided atelectasis in inferior zone and bilateral ground-glass opacities (Figure 1). Accordingly, she was isolated at intensive care unit (ICU) in a negative pressure room at Imam Khomeini Hospital of Mazandaran University, the elected medical care unit for COVID-19 in Sari. Other laboratory findings included a leukocyte count of 7.80*10⁹/L, neutrophils of 9.00*10⁹/L, lymphocytes of 1.00*10⁹/L, and C-reactive protein of 32.9 mg/L. Serum levels of aminotransferase and normal LDH. A routine pregnancy ultrasound showed a fetus with the normal structure of about 30 weeks+2 days of gestational age.

On admission, treatment with Azithromycin (500 mg administered intravenous every 12 hours), Ceftriaxone (1000 mg every 12 hours), Kaletra (Lopinavir/ritonavir 200 mg orally daily), and Tamiflu (capsule Oseltamivir oral 400 mg every 12 hours) and hydroxychloroquine (400 mg daily) were initiated, neuroprotective prophylaxis as magnesium sulphate or corticosteroid for the fetus was not administered due to unknown harmful effects on maternal condition. Since COVID-19 is a recently recognized virus and only limited women underwent cesarean delivery till now on March 15, fear of viral shedding and vertical transmission during vaginal delivery resulted in the avoidance of this fetal exposure. A multidisciplinary working team was convened, and based on the CT scan, low lymphocytes counts and presence of the illness, which was worsened gradually during the following 3 days, unfavorable cervix for induction, cesarean indication was made to terminate pregnancy instead of preterm pregnancy. Informed consent was obtained and patient underwent cesarean delivery with general analgesia due to anesthesiologist...
preference and patient’s condition on March 11. All exposed personnel physicians were protective equipment including gowns, N 95 mask, glasses, and gloves. A preterm female infant weighing 2.35 kg was delivered uneventfully, with Apgar scores of 8 and 9 at 1 and 5 minutes, respectively. She was kept in the isolated NICU without any contact with her mother after birth. The infant was given powdered milk as a substitute of breast milk. Prior operation sample of vaginal secretion with sterile cotton soap was obtained. During the cesarean section, 5 mL of amniotic fluid was aspirated into a sterile syringe with a needle after uterine incision exactly before tearing of the membrane by gentle traction. Then, the needle was removed and the amniotic fluid sample placed into sterile tubes containing 3 mL of viral transport media (VTM). After delivery of the neonate, 5 mL of umbilical cord blood was aspirated and transferred to subsequent VTM. After delivery of the neonate, RT-PCR test for COVID-19 was positive for amniotic fluid sample and second neonate nasal and throat test, but negative for vaginal secretion or umbilical cord blood or first neonate test. Also, her respiratory distress continued and exacerbated in postpartum period which required peritoneal dialysis to improve maternal health. The RT-PCR test was positive for amniotic fluid and neonate, suggesting the infant might have been affected intrauterine by COVID-19; therefore, once more, it raised the concerns

What’s already known about this topic?
- Vertical transmission due to intrauterine infection has not been reported in pregnant women who develop COVID-19 pneumonia in late pregnancy.

What does this study add?
- Amniotic fluid and infant PCR test was positive for COVID-19 infection.
- This case study raises concerns again about the possible vertical transmission of COVID-19 in pregnant women infected by SARS-CoV-2, especially in critical case that undergoes pregnancy termination.

3 | DISCUSSION

Respiratory infection caused by novel coronavirus as SARS-CoV-2 (COVID-19) recently recognized in Wuhan in China on December 31, 2019 and spearred to different parts of the world including Iran.\(^1\)–\(^3\) It is believed that person-to-person contact and transmission of SARS-CoV-2 as a droplet to be a major means of transmission, like another type of influenza.

When the infected person coughs or sneezes, these droplets can infect the environment about 6 ft.\(^5\) Additionally, pregnant women with different kinds of viral pneumonia are at risk of exacerbation and increasing adverse obstetric and perinatal outcomes compared with non-pregnant women, due to changes in the immune system as well as physiologic adaptation change in pregnancy like the elevation of diaphragm.\(^6\)

In this study, we presented a pregnant woman with severe COVID-19 pneumonia who delivered a healthy preterm baby with no evidence of COVID-19 in her 32 weeks of gestation. Her RT-PCR test for COVID-19 was positive for amniotic fluid sample and second neonate nasal and throat test, but negative for vaginal secretion or umbilical cord blood or first neonate test. Also, her respiratory distress continued and exacerbated in postpartum period which required peritoneal dialysis to improve maternal health. The RT-PCR test was positive for amniotic fluid and neonate, suggesting the infant might have been affected intrauterine by COVID-19; therefore, once more, it raised the concerns
regarding the possible vertical transmission of the virus in mothers with serious illness. Two prior research revealed possible vertical transmission from mothers with SARS CoV-2 in three neonates due to increased neonatal specific IgM antibodies at birth. However, we could not measure neonate specific IgM antibody due to unavailability that may better interpret these results.

The serious maternal outcomes in this patient could be interpreted in different ways. Her relative died from COVID-19; therefore, she was possibly exposed to a more invasive kind of viral infection that made her vulnerable to severe viral pneumonia of COVID-19. She attended the hospital 4 days after initiation of disease. Timely testing of SARS-CoV-2 and later gestational age are important factors for successful treatment, but our patient had a delay in attending the hospital that could affect treatment quality. She has no underlying disease except for controlled hypothyroidism that could not be considered as a significant risk factor for pathogenicity of virus but invasive nature of the diseases and delay in treatment had important roles in her prognosis. Also, her baby weight was about 2.35 kg that was greater than the estimated normal fetus weight in 32 weeks (1800 kg), but we did not have an abnormal blood sugar test in this setting. Hence, we encounter severe features of the disease. The patient in our study was managed by a multidisciplinary team, including perinatologist, two obstetricians, pediatrics, expert in infectious diseases, lung specialist, anesthesiologist, and ICU specialists. Appropriate consultations were provided to her family. Isolation of the neonate was even more important. In this case, we tried to observe sterility in all procedures, so the risk of contamination is unlikely, but caution should be considered in interpreting the data. In some previous studies, the authors reported 21 healthy babies delivered by infected mothers to COVID-19, but they could not detect the virus in any of the feto-maternal parts, namely placenta, amniotic fluid, and cord blood. In contrast to our study, in these studies, none of the mothers need mechanical ventilation or died; therefore, the severity of their disease is less and it could explain the possible relationship between mother’s illness and amniotic fluid and neonatal infection in our study that should be confirmed in the future. We did not measure RNA viral load in the mother and specific neonatal IgM antibody in neonate prior to delivery, but future researches can examine viral load and vertical transmission in infected mothers with COVID-19, especially in severe or critical conditions. We did not plasma convalescent as a new modality for this patient, but it has known effectiveness in SARS and Ebola infection. Other researches suggested that it has theoretically more effectiveness at the early stage of the disease but could be considered as the last option in patients with SARS whose condition continued to deteriorate despite another treatment.

The current case study, once again, raises concerns regarding the possible vertical transmission of COVID-19 in pregnant women infected by SARS CoV-2 in contrast to the findings reported in some small studies published previously. Cumulative data of pregnant women infected by COVID-19 are necessary to better knowledge the global influence of SARS-CoV-2 on maternal and fetal health.

ETHICAL STATEMENT

The work was approved by the ethics committee of Mazandaran University of Medical Sciences. Informed consent was obtained from the patients and her husband.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

No data was analyzed for preparation of this manuscript.

ORCID

Marzieh Zamaniyan DOI: https://orcid.org/0000-0001-8984-5592

REFERENCES

1. World Health Organization. Director-General’s remarks at the media briefing on 2019-nCoV on February 11, 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. Accessed February 12, 2020.

2. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 45.

3. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30195-X

4. Haghshenas M, Jafarian E, Babamahmoodi F, Tabrizi A, Nandoost S, Alizadeh-Navaei R. Prevalence of influenza a/H3N2 virus in northern Iran from 2011 to 2013. Caspian J Intern Med. 2015;6(2):116-119.

5. Hui DS, Zmula A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin. 2019;33(4):869-889.

6. Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obset Gynecol. 2020. In Press.

7. Zeng H, Xu C, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020. https://doi.org/10.1001/jama.2020.4861

8. Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020. https://doi.org/10.1001/jama.2020.4621

9. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-815.

10. Wang X, Zhou Z, Zhang J, et al. A case of 2019 novel coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa200

11. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60.

12. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20(4):398-400.

How to cite this article: Zamaniyan M, Ebadi A, Aghajanpoor S, Rahmani Z, Haghshenas M, Azizi S. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenatal Diagnosis. 2020;40:1759–1761. https://doi.org/10.1002/pd.5713