Promoting seedling growth in kagzi lime through pre-sowing treatments

Asha Chaudhary, TR Ahlawat, Sanjeev Kumar, Dharmishtha Patel and Suchismita Jena

DOI: https://doi.org/10.22271/chemi.2020.v8.i1aq.8694

Abstract
An experiment was conducted to study the effect of gibberellic acid on seedling growth in Kagzi lime at Regional Horticultural Research Station, Navsari Agricultural University, Navsari during the year 2016-17. The experiment was laid out in a Completely Randomized Design with factorial concept with sixteen treatments and three repetitions. Freshly extracted kagzi lime seeds (S1) and those stored for 15 days (S2) were soaked for 12 hours (D1) and 24 hours (D2) in aqueous solution of gibberellic acid at different concentrations i.e. 200 ppm (G1), 300 ppm (G2), 400 ppm (G3) and 500 ppm (G4). Freshly extracted kagzi lime seeds had significantly higher leaf area, total chlorophyll content, tap root length, tap root diameter, shoot dry weight and total dry weight. For all above mentioned characters, a soaking duration of 12 hours proved significantly better over 24 hours. GA3 at 500 ppm recorded significantly the highest leaf area, total chlorophyll content and tap root diameter. Further, for tap root length, shoot dry weight and total dry weight, significantly highest values were recorded under 400 ppm GA3 treatment. Shoot root dry weight ratio was significantly lower in case of freshly extracted seeds, GA3 at 200 ppm and a soaking duration of 12 hours when taken as separate factors. The interaction effect between storage treatments, different concentrations of GA3 and soaking duration was found non-significant for all parameters chosen in this study.

Keywords: Kagzi lime, GA3, leaf area, chlorophyll content, tap root length

Introduction
Citrus fruits have a prominent place among popular and extensively grown tropical and subtropical fruits. Among them, kagzi lime (Citrus aurantifolia Swingle) is an important citrus crop which is grown on commercial scale in India. It is a member of the family Rutaceae and originated in the tropical and sub tropical regions of South East Asia, particularly India and China. In India, kagzi lime covers an area of 259 thousand hectares with a production of 2789 thousand MT, being the sixth largest producer of citrus in the world contributing 4.8 per cent share in production (Anon., 2017) [3]. Gujarat is the second largest producer of kagzi lime in the country contributing about 16% to the total production. It produces about 605 thousand MT of kagzi lime from an area of 46 thousand hectares with a productivity of 13 MT/ha. Kagzi lime is grown in almost all districts of Gujarat (Anon., 2018) [2].

Kagzi lime is used for table purpose in daily life of Indians for flavouring vegetable curries, salad, fish and meat. It is also used in the preparation of refreshing cold drinks especially to beat the summer heat. Kagzi lime is commercially propagated by seeds as it is the easiest and cheapest method of propagating this crop. Kagzi lime propagation is hampered by high mortality at the nursery stage moreover; seeds lose their viability very soon. Nurserymen and growers thus face problems like lower seed germination and poor vigour of seedling. The growth of kagzi lime seedlings is also very slow and therefore to raise plants within the shortest possible time, growth has to be accelerated for which pre sowing treatments can be employed.

Plant growth regulators are often employed to increase the germination percentage of seeds and improve the subsequent growth of seedlings. In this regard, seed treatment with GA3 has given remarkable results in mango (Patel et al., 2016) [18], papaya (Mishra et al., 2017) [12] and kagzi lime (Dilip et al., 2017) [7]. Nevertheless, there is wide variation in the range of GA3 concentration (50-700 ppm) and the duration of soaking (6-40 hrs) which promote germination.
It was therefore felt necessary to study the effect of storage treatment, gibberellic acid and duration of soaking on seedling growth of kagzi lime.

Material and Methods
This experiment was conducted at Regional Horticultural Research Station, Navsari Agricultural University, Navsari, Gujarat during 2016-17 in a net house and evaluated in completely randomized design based on factorial concept. Seeds were extracted from fully mature and healthy fruits of acid lime cv. Kagzi lime, washed in running water and dried under shade for about an hour. Treatment details were as under

Factor I: Seed Storage (S)
S1: Freshly extracted seeds
S2: Seeds stored for 15 days

Factor II: Gibberellic acid (GA3)
G1: Soaking in 200 g/L GA3
G2: Soaking in 300 g/L GA3
G3: Soaking in 400 g/L GA3
G4: Soaking in 500 g/L GA3

Factor III: Duration of Soaking (D)
D1: 12 hours
D2: 24 hours

Seeds were stored in an aluminium foil for 15 days. Gibberellic acid solution was prepared by dissolving 200, 300, 400 and 500 mg GA3 in 1 litre of water, respectively. Treated citrus seeds were sown in polythene bags which were properly filled, labelled with tags and placed at proper spacing. Seeds were irrigated immediately after sowing using a rose-can and subsequently watered as and when required. Observations were recorded from five randomly selected and labelled seedlings in each treatment in a repetition. The data obtained from all plots per repetition under each treatment were averaged and reported. Leaf area was calculated using a leaf area meter and expressed in centimetre square. It was recorded at an interval of 30 days up to 4 months after sowing. Total Chlorophyll Content was estimated using chlorophyll measuring meter and expressed as SPAD value. Tap root length (cm) was measured using a measuring tape and tap root diameter (cm) was measured using a vernier callipers. The average dry weight of seedling from each treatment was recorded after oven drying for 24 hours and thereafter, the shoot root dry weight ratio (g/g) was calculated from the formula

\[
\text{Root shoot dry weight ration} = \frac{\text{Dry shoot weight (g)}}{\text{Dry root weight (g)}}
\]

All parameters except leaf area were calculated after 120 days of sowing.

Results and Discussion
Leaf area
The data regarding leaf area of kagzi lime seedlings presented in Table 1 revealed significant differences due to storage conditions, GA3 treatment and soaking duration. Leaf area was higher at 60, 90 and 120 days (6.37, 8.04 and 9.57 cm²) in freshly extracted seeds as compared to stored seeds. The treatment comprising of 500 ppm GA3 at 60, 90 and 120 days after sowing resulted in maximum leaf area (7.06, 8.31 and 10.17 cm²), respectively. It was at par with the treatment comprising GA3 at 400 ppm (6.54, 8.07 and 9.92 cm²) at 60, 90 and 120 days after sowing. This can be very well attributed to the higher number of leaves under these treatments. Further, it is a well-known fact that gibberellic acid promotes cell division, elongation and expansion which may have increased leaf initiation and leaf growth (Taiz and Zeiger, 2002) [21]. These results are in conformity with those of Rahemi and Baninasab (2000) [19] in pistachio and Joshi et al. (2015) [10] in acid lime. Further, leaf area was higher at 60, 90 and 120 days (6.35, 8.05 and 9.57 cm²) in 12 hours soaking treatment. The interaction effect of seed storage, GA3 treatments and duration of soaking was found non-significant with respect to leaf area.

Total chlorophyll content
The total chlorophyll content in kagzi lime seedlings was significantly influenced by storage conditions, imposition of GA3 treatments and duration of soaking (Table 1). The maximum total chlorophyll content was observed at 120 days (78.52) in freshly extracted seeds, when treated with GA3 500 ppm (81.38) and under 12 hours soaking (78.47) treatment. The interaction effect of storage conditions, different treatments of GA3 and duration of soaking was found non-significant with respect to total chlorophyll content.

Table 1: Effect of pre-sowing treatments on leaf area and total chlorophyll content of kagzi lime seedlings

Treatments	Leaf area (cm²)	Total chlorophyll content (SPAD value)		
	60 DAS	90 DAS	120 DAS	120 DAS
S - Seed Storage				
S1: Freshly extracted seeds	6.37	8.04	9.57	78.52
S2: Seeds stored for 15 days	6.21	7.86	9.36	74.29
S. Em.±	0.05	0.06	0.07	1.43
C.D. at 5%	0.13	0.18	0.21	4.11
G - GA3 Levels				
G1: 200 ppm	5.51	7.59	8.64	71.40
G2: 300 ppm	6.03	7.83	9.14	74.77
G3: 400 ppm	6.54	8.07	9.92	78.07
G4: 500 ppm	7.06	8.31	10.17	81.38
S. Em.±	0.06	0.09	0.10	2.02
C.D. at 5%	0.18	0.26	0.29	5.81
D - Duration of Soaking				
D1: 12 hours	6.35	8.05	9.57	78.47
D2: 24 hours	6.22	7.85	9.36	74.34
S. Em.±	0.05	0.06	0.07	1.43
C.D. at 5%	0.13	0.18	0.21	4.11
Twelve hours soaking treatment resulted in longer tap roots and elongation of existing cells which in turn may have contributed to increased root length. These results are in close agreement with Shaban (2010) [20] in mango, Brijwal and Kumar (2013) [6] in guava, Vasanth et al. (2014) [22] in tamarind and Megha Shukla et al. (2012) [11] in kagzi lime. Twelve hours soaking treatment resulted in longer tap roots (23.02 cm). The interaction effect of storage treatments, different GA$_3$ treatments and duration of soaking was found non-significant with respect to tap root length.

Table 2: Effect of pre-sowing treatments on tap root length, tap root diameter, shoot dry weight, total dry weight and shoot root dry weight of kagzi lime seedlings

Treatments	Tap root length (cm)	Tap root diameter (cm)	Shoot dry weight (g)	Total dry weight (g)	Shoot root dry weight ratio (g/g)
S$_1$: Freshly extracted seeds	23.02	1.71	3.52	7.39	3.82
S$_2$: Seeds stored for 15 days	22.52	1.70	3.40	7.22	3.87
S. Em.\pm	0.17	0.01	0.02	0.04	0.02
C.D. at 5%	0.49	0.02	0.06	0.11	0.05
G: 200 ppm	20.66	1.66	2.83	6.56	3.73
G$_2$: 300 ppm	22.07	1.69	3.25	7.06	3.81
G$_3$: 400 ppm	24.88	1.72	4.09	7.97	3.88
G$_4$: 500 ppm	23.47	1.75	3.67	7.63	3.96
S. Em.\pm	0.24	0.01	0.03	0.05	0.03
C.D. at 5%	0.69	0.02	0.08	0.15	0.07
D: 12 hours	23.02	1.71	3.50	7.37	3.82
D$_2$: 24 hours	22.52	1.70	3.42	7.24	3.87
S. Em.\pm	0.17	0.01	0.02	0.04	0.02
C.D. at 5%	0.49	0.02	0.06	0.11	0.05

Interaction Effect

S x G	S. Em.\pm	0.34	0.01	0.04	0.07	0.04
C.D. at 5%	NS	NS	NS	NS	NS	
S x D	S. Em.\pm	0.24	0.01	0.03	0.05	0.03
C.D. at 5%	NS	NS	NS	NS	NS	
G x D	S. Em.\pm	0.34	0.01	0.04	0.07	0.04
C.D. at 5%	NS	NS	NS	NS	NS	
S x G x D	S. Em.\pm	0.48	0.02	0.05	0.11	0.05
C.D. at 5%	NS	NS	NS	NS	NS	
CV%	3.66	1.70	2.75	2.51	2.31	
Shoot dry weight
Data presented in Table 2 indicates that shoot dry weight at 120 days was significantly influenced by different treatments. Shoot dry weight was higher in case of freshly extracted seeds (3.52 g). Similarly, seeds were soaked for 12 hours had higher shoot dry weight (3.50 g). Amongst GA3 treatments, application at 400 ppm (4.09 g) gave the maximum shoot dry weight which was at par with GA3 at 500 ppm (3.67 g). Application of GA3 treatments recorded significantly higher shoot length, number of leaves and leaf area which may have contributed to an increase in shoot dry weight (Pampanna and Sulikeri, 1999) [14]. These results corroborate the findings of Pandey (1992) [15] in citrus and Anjanaw et al. (2013) [1] in papaya. The interaction effect of all the factors was found non-significant with respect to shoot dry weight.

Total dry weight
It is evident from Table 2 that total dry weight of kagzi lime seedlings was significant affected by storage conditions, treatments of GA3 and duration of soaking. At 120 days, higher total dry weight was observed in freshly extracted kagzi lime seeds (7.39 g). Further, seeds treated GA3 at 400 ppm had the maximum total dry weight (7.97 g). Whereas, soaking seeds for 12 hours (7.37 g) recorded higher total dry weight. The increased total dry weight may be due to higher shoot length, root length, number of leaves and leaf area under these treatments. All of these may have led to the overall assimilation and redistribution of photosynthates within the plant, thereby promoting growth and development (Brian and Hemming, 1955) [5]. Identical results were obtained by Padma Lay et al. (2013) [13] in papaya and Gurung et al. (2014) [8] in passion fruit. The interaction effect of these three factors were found non-significant with respect to total dry weight.

Shoot root dry weight ratio
The shoot root dry weight ratio is an effective and safe index to evaluate seedling quality, as described by Parviainem (1981) [17]. It is an important measure for seedling survival but requires destructive sampling. Lower values of shoot root dry weight ratio indicate a healthy seedling with better chances of survival (Jaenicke, 1999) [9]. The data regarding root shoot dry weight ratio of kagzi lime seedlings presented in Table 2 revealed significant differences due to storage conditions. Lower shoot root dry weight ratio was observed in freshly extracted kagzi lime seeds (3.82) and with seeds soaked in GA3 at 200 ppm (3.73) at 120 days. It was at par with the treatment comprising GA3 at 300 ppm (3.81). Twelve hours soaking treatment reported lower root shoot dry weight ratio (3.82). With regard to statistical analysis, the interaction between storage treatments, different GA3 treatments and duration of soaking was found non-significant for shoot root dry weight ratio.

Conclusion
Based on the current investigation, it can be deduced that in case of kagzi lime, seedlings raised from freshly extracted seeds were superior over stored seeds and a soaking duration of 12 hours was superior over 24 hours for all parameters considered in this study. Between different levels of GA3, 400 ppm emerged as the best treatment for ensuring better seedling growth with regard to leaf area, total chlorophyll content and tap root diameter. Hence, nurserymen can employ any of these findings to promote vegetative growth in kagzi lime seedlings.

References
1. Anjanaw SR, Kanpure RN, Kachoui BK, Mandloi DS. Effect of plant growth regulators and growth media on seed germination and growth vigour of papaya. Ann. Plant Soil Res. 2013; 15(1):31-34.
2. Anonymous, Horticulture at a Glance-2017. National Horticulture Board, Gurugram, Haryana, 2017.
3. Anonymous, District-wise area and production of horticultural crops in Gujarat state. Directorate of Horticulture, Government of Gujarat, Gandhinagar, Gujarat, 2018.
4. Anonymous, District-wise area and production of Horticultural crops in Gujarat state. Directorate of Horticulture, Government of Gujarat, Gandhinagar, Gujarat, 2014.
5. Brian PW, Hemming HG. The effect of GA on shoot growth of pea seedlings. Physiol. Pl.1955; 8:669-681.
6. Brijwal M, Kumar R. Studies on the seed germination and subsequent seedling growth of guava (Psidium guajava L.). Indian J Agric. Res. 2013; 47(4):347-352.
7. Dilip WS, Singh D, Moharana D, Rout S, Patra SS. Influence of Gibberellic acid on seed germination and seedling growth of Kagzi lime. J Sci. Agric. 2017; 1: 62-69.
8. Gurung N, Swamy GSK, Sarkar SK, Ubale NB. Effect of chemicals and growth regulators on germination, vigour and growth of passion fruit (Passiflora edulis Sims). The Bioscan. 2014; 9(1):155-157.
9. Jaenicke H. Good Tree Nursery Practices: Practical Guidelines for Research Nurseries. ICRAF, Nairobi, 1999, 8-15.
10. Joshi PS, Sahoo AK, Bhyor RK, Meshram PC. Effect of various plant growth promoting substances on seedling growth of acid lime. Trends in Biosci. 2015; 8(19):5222-5225.
11. Megha Shukla, Singh J, Nandeo KN, Ahiwae MK. Effect of growth regulators and fungicide on seed germination and seedling vigour of kagzi lime. Ann. Pl. Soil Res. 2012; 14(2):175-176.
12. Mishra U, Vijay Bahadur, Prasad VM, Verty P, Singh AK, Mishra S et al. Influence of GA3 and growing media on growth and seedling establishment of papaya (Carica papaya L.) cv. Pusa Nanha. Int. J Curr. Microbiol. App. Sci. 2017; 6(11):415-422.
13. Padma Lay, Basvaraju GV, Sarika G, Amrutha N. Effect of seed treatments to enhance seed quality of papaya (Carica papaya L.) cv. Surya. G. J. B. H. S. 2013; 2(3):221-225.
14. Pampanna Y, Sulikeri GS. Growth of sapota (Manilkara acharis Mill. Fosberg) seedlings as influenced by presowing seed treatment with growth regulators. Seed Res. 1999; 27(1):49-53.
15. Pandey AK. Influence of gibberellic acid on seed germination and seedling growth of Khasi mandarin. Prog. Hort.1992; 24(3-4):147-157.
16. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi, India, 1967.
17. Parviainem J, Qualidade E, Aivaliaco DA, Qualidade DE, Mudas F. In: Seminario de sementes e viveriros florestsis, Curitiba, Anais Curitiba: Fundacao DE, Pesquisas Florestais DO, Parana. 1981; 2:59-90.
18. Patel RJ, Ahlawat TR, Alka Singh, Momin SK, Gavri Chaudhri. Effect of pre-sowing treatments on stone germination and seed growth of mango (Mangifera
19. Rahemi MR, Baninasab B. Effect of gibberellic acid on seedling growth in two wild species of pistachio. J of Hort. Sci. and Biotech. 2000; 75(3):336-339.

20. Shaban AEA. Improving seed germination and seedling growth of some mango rootstocks. American-Eurasian J Agric. & Environ. Sci. 2010; 7(5):535-541.

21. Taiz L, Zeiger E. Plant Physiology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts, USA, 2002, 223-258.

22. Vasantha PT, Vijendrakumar R, Guruprasad TR, Mahadevamma M, Santhosh KV. Studies on effect of growth regulators and bio fertilizers on seed germination and seedling growth of tamarind (Tamarindus indica L.). Pl. Archves. 2014; 14(1):155-160.