Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis

Yuji Kamei¹, Yusuke Seino¹, Yuto Yamaguchi¹, Tatsuhiko Yoshino¹, Satoshi Maeda²,³,⁴, Masahiro Kojima¹✉ & Shigeki Matsunaga¹,⁵

Hydrogen atom transfer (HAT) hydrogenation has recently emerged as an indispensable method for the chemoselective reduction of unactivated alkenes. However, the hitherto reported systems basically require stoichiometric amounts of silanes and peroxides, which prevents wider applications, especially with respect to sustainability and safety concerns. Herein, we report a silane- and peroxide-free HAT hydrogenation using a combined cobalt/photoredox catalysis and ascorbic acid (vitamin C) as a sole stoichiometric reactant. A cobalt salophen complex is identified as the optimal cocatalyst for this environmentally benign HAT hydrogenation in aqueous media, which exhibits high functional-group tolerance. In addition to its applicability in the late-stage hydrogenation of amino-acid derivatives and drug molecules, this method offers unique advantage in direct transformation of unprotected sugar derivatives and allows the HAT hydrogenation of unprotected C-glycoside in higher yield compared to previously reported HAT hydrogenation protocols. The proposed mechanism is supported by experimental and theoretical studies.

¹Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. ²Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan. ³Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. ⁴JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Sapporo 060-0810, Japan. ⁵Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan. ©email: m-kojima@pharm.hokudai.ac.jp; smatsuna@pharm.hokudai.ac.jp
Pioneered by Drago and Mukaiyama in the late 1980s, Markovnikov-selective hydrofunctionalizations of alkenes via hydrogen atom transfer (HAT) have evolved into versatile tools in the synthesis of complex molecules. Among the selected recent contributions by Carreira, Boger, Baran, Shenvi, and others, the HAT hydrogenation of alkenes was introduced independently by Shenvi and Herzon and has since been established as a complementary method for commonly used noble-metal-catalyzed hydrogenation reactions. Shenvi has reported Mn- and Co-catalyzed protocols that use phenylsilane or isoproxy(phenyl)silane reductants in the presence of tert-buty1 hydroperoxide, which tolerates benzyl group and C(sp²)-halogen bonds. In addition, thermodynamically controlled stereoselectivity is characteristic of these transformations and supports the proposed carbon-based radical intermediates (Fig. 1a). Herzon has reported Co-catalyzed hydrogenation protocols using triethylsilane, tert-buty1 hydroperoxide, and 1,4-cyclohexadiene. This method possesses high functional-group tolerance and was studied in detail for the hydrogenation of haloalkenes and the selective hydrogenation of substituted alkenes (Fig. 1b). While these systems have been increasingly appreciated in natural-product synthesis, stoichiometric amounts of organosilanes and peroxides are required in order to achieve a wide substrate scope, which remains problematic in terms of sustainability and safety concerns. In this context, Norton’s cobaloxime-catalyzed protocol allowed hydrogenation of acrylamides using only molecular hydrogen as the sole stoichiometric reactant, and should thus be considered as an insightful example of the silane- and peroxide-free HAT hydrogenation of alkenes (Fig. 1c). Norton’s studies revealed fundamental physical parameters associated with HAT hydrogenations, albeit that the substrates hydrogenated in high yield were limited to alkenes activated with electron-withdrawing groups. During the review of this manuscript, Kattamuri and West reported iron and thiol-cocatalyzed oxidant-free HAT hydrogenation of alkenes. Nonetheless, stoichiometric silane is required as a reductant in their catalytic system.

We were motivated to devise silane- and peroxide-free catalytic HAT hydrogenation reactions in order to expand the scope of HAT hydrogenations beyond the canonical synthesis of complex molecules. We hypothesized that this might be possible by using ascorbic acid and a combined cobalt/photoredox catalytic system. Inspired by König’s proposed mechanism for the cobalt/photoredox-catalyzed alkene isomerization, we designed our HAT hydrogenation by metal-photoredox cooperative catalysis as shown in Fig. 2a. The photoredox catalyst, Ru(bpy)₃Cl₂ (PC) is excited by visible light and oxidizes ascorbic acid (Fig. 2b). The resulting dehydroascorbic acid then reduces the cobalt(II) hydride to an unactivated alkene should regenerate the cobalt(II) catalyst and afford an alkyl radical. The second HAT to the resulting alkyl radical from ascorbic acid should realize the hydrogenation of the alkene. The resulting ascorbic acid radicals disproportionate to ascorbic acid and dehydroascorbic acid (Fig. 2b).

Results

Investigation of reaction conditions. Based on the proposed reaction design, we started to examine suitable cobalt-based co-catalysts for the photoredox-mediated HAT hydrogenation. Initially, we attempted the hydrogenation of 1a using Ru(bpy)₃Cl₂ as the PC and ascorbic acid as a hydrogen source. Hydrogenated 2a was not observed in the presence of cobalt chloride (Table 1, entry 1) or Co(acac)₃·2H₂O (acac: 2,4-pentanedionato), which is...
the optimal catalyst for the cobalt/photoredox-catalyzed isomerization of alkenes48 (entry 2). However, 2a was obtained when salcomine 3a (entry 3) or cobalt porphyrin 3b (entry 4) was used as a cocatalyst. A further evaluation of cobalt salen complexes revealed that a complex with cyclohexanediamine linker (3c) showed a very low catalytic performance (entry 5), while a complex with phenylenediamine linker (3d) generated 2a in higher yield (entry 6). The hydrogenation was further facilitated by increasing the amount of the cobalt catalyst and the photocatalyst (entry 7). Subsequently, we investigated the effects of the substituents, and discovered that complexes that contain tert-butyl groups (3e) show high catalytic performance (entry 8).

Eventually, 3f, which was previously studied as a catalyst for electrocatalytic hydrogen evolution31,65, was identified as an optimal cobalt cocatalyst (entry 9). Using 3f, hydrogenated product 2a was obtained in 87% yield when the reaction was carried out with 0.2 M of 1a in the presence of catalytic amounts of tricyclohexylphosphine (entry 10). It is expected that the sterically demanding phosphine additive facilitated the reaction by preventing the accumulation of catalytically inactive cobalt-alkyl species31,65. Finally, 2a was obtained in 92% isolated yield on a larger reaction scale by increasing the amount of photon source (entry 11).

The involvement of each reaction component was confirmed by control experiments (entries 12–15). In the absence of Co complex (entry 12), photocatalyst (entry 13), light (entry 14) or ascorbic acid (entry 15), no hydrogenation proceeded, supporting the proposed reaction design described in Fig. 2.

Table 1 Evaluation of the reaction conditions for the combined cobalt/photoredox-catalyzed hydrogenation of 1a.

Entry	Co complex (X mol%)	Ru(bpy)3Cl2 (Y mol%)	Yield (%)a
1	CoCl2·6H2O (5.0)	1.0	0
2	Co(acac)2·2H2O (5.0)	1.0	0
3	3a (5.0)	1.0	13
4	3b (5.0)	1.0	6
5	3c (5.0)	1.0	< 5
6	3d (5.0)	1.0	28
7	3d (10)	2.0	36
8	3e (10)	2.0	47
9	3f (10)	2.0	62
10b,c	3f (10)	2.0	87
11b,c,d	3f (10)	2.0	90 (92)a
12b,c,d	none	2.0	0
13b,c,d	3f (10)	0	0
14b,c,d,f	3f (10)	2.0	0
15b,c,d,g	3f (10)	2.0	0

bpy = 2,2′-bipyridyl; acac = 2,4-pentanedionato. Unless otherwise noted, all reactions were carried out as follows: 1a (0.10 mmol), Co complex (X mol%), Ru(bpy)3Cl2·6H2O (Y mol%) and ascorbic acid (3.0 equiv); in 2-propanol/H2O (3:1, 0.05 M); room temperature; 18 h; under blue LED irradiation (one panel); under Ar.

a Determined by 1H NMR of the crude reaction mixture.

b PCy3 (20 mol%) was added.

c In 2-propanol/H2O (3:1, 0.2 M).

d With 1a (0.20 mmol) under blue LED irradiation (two panels) and temperature control (ca. 25 °C).

e Isolated yield.

f In the dark.
g Without ascorbic acid.

Substrate scope. The scope of the HAT hydrogenation of alkenes using the combined cobalt/photoredox catalysis is summarized in Table 2. Substrates with electron-rich arenes substituted with methyl (2b) and methoxy group (2c) were hydrogenated in high yield. Electron-deficient arenes containing trifluoromethyl and cyano groups were not affected during the hydrogenation and the hydrogenated products (2d, 2e) were obtained in 86% and 87%
Table 2 Scope of the ascorbic-acid-mediated hydrogenation of alkenes.

Compound	Yield (%)
2a	92%
2b	92%
2c	91%
2d	86%
2e	87%
2f	78%
2g	78%
2h	71%
2i	67%
2j	78%
2k	87%
2l	88%
2m	80%
2n	85%
2o	87%
2p	86%
2q	64%
2r	45%
2s	65%
2t	79%
2u	84%
2v	84%
2w	84%
2x	89%
2y	85%

Cy cyclohexyl, bpy 2,2'-bipyridyl, Ac acetyl, Bn benzyl, Ts 4-toluenesulfonyl, Cbz benzyloxycarbonyl, TBDPS tert-butyldiphenylsilyl.

Isolated yields.

α2-Propanol/DMF/H2O = 3:3:2 was used as a solvent.

β40 °C.

γThe yield and diastereoselectivity (trans/cis = 75:25 for 2r) were determined by GCMS analysis.

δThe yield was determined by 1H NMR analysis of the purified material containing 2 and 1.

εHydrogenation was performed for two cycles.

ζIsolated after treatment with trimethylsilyldiazomethane.
yield, respectively. Despite the putative intermediacy of a low-valent cobalt catalyst, C(sp²)–Cl, C(sp³)–Br and C(sp³)–I bonds of haloarenes were compatible with the applied reaction conditions and the chemoselective hydrogenation of alkenes proceeded in good yield (2f, 2g, 2h). These results might be due to the fast protonation of the low-valent cobalt by ascorbic acid compared to the abstraction of halogen atoms. A substrate with an aromatic ketone was converted into the corresponding hydrogenated product in 67% yield (2i). Benzyl groups attached to oxygen or nitrogen remained intact and the desired hydrogenated products were obtained in 78% (2j) and in 87% yield (2k), again demonstrating a distinct chemoselectivity between the conditions used in this study and conventional palladium-catalyzed hydrogenation conditions. An aliphatic ketone in the substrate remained intact during the hydrogenation to afford 2l in 88% yield. Substrates containing sulfone amide or benzyl carbonate moieties were also hydrogcnated in good yield (2m, 2n). 2o was obtained in 87% yield while its C(sp³)–Cl bond remained untouched, again suggesting that HAT hydrogenation outcompeted halide abstraction. In addition to trisubstituted alkenes, 1,1-disubstituted alkene derived from γ,δ-unsaturated alcohol was efficiently hydrogenated in 86% yield (2p). The hydrogenation of α,β-unsaturated esters also proceeded in 64% yield under the standard conditions (2q). The hydrogenation of an exocyclic alkene (1r) afforded the trans diastereomer of 2r as the major product, which is consistent with the thermodynamically controlled stereoselectivity of the HAT hydrogenation. The aqueous solvent system required for this catalytic hydrogenation was partly responsible for low yield of 2r. Nevertheless, hydrogenation of alkenes without polar functional groups proceeded in synthetically useful yield (2s, 2t, 2u). γ,δ-Unsaturated amide was hydrogenated in 84% yield (2v). High functional-group tolerance of the present HAT hydrogenation was further demonstrated by the hydrogenation of amino-acid derivatives. A glutamine derivative was hydrogenated in 84% yield, indicating that the hydrogenation was not affected in the presence of a primary amide moiety (2w). The free hydroxyl group of serine and the thioether group of methionine were also compatible with this hydrogenation and afforded the desired products in 89% (2x) and 85% yield (2y). The substrate derived from glycyglycine was hydrogenated in 79% yield (2z), indicating applicability of the present hydrogenation to dipptides. Given that trisubstituted alkenes are frequently found in terpenes, we also studied the hydrogenation of these natural products. We found that (−)-isopropyl, dihydroinalool, and (−)-β-citronellol were hydrogenated to afford 2aa–2ac in 78–93% yield using the standard protocol. Due to the high compatibility of the present HAT hydrogenation with a variety of functional groups, we next examined the potential late-stage hydrogenation of bioactive small molecules. An immunosuppressant mycophenolic acid with free carbonyl and phenol groups was hydrogenated to furnish 2ad in 86% yield. It is noteworthy that the 1,2-disubstituted alkene of an analogs agent capsaicin was hydrogenated to afford 2ae in 95% yield. The catalytic hydrogenation was readily applicable to C-glycosides derived from ribofuranose (2af) and galactose (2ag). Importantly, the present protocol is even suitable for the hydrogenation of an unprotected galactose derivative and afforded the gene inducer isobutyl-β-C-galactoside (IBCG, 2ah) in 89% yield.

Comparison with previous HAT hydrogenation protocols. Despite the abundance of sugar derivatives in biologically active substances, HAT hydrogenations that were performed in the presence of unprotected sugar derivatives are, to the best of our knowledge, not known. Such protecting-group-free transformation has deemed a challenge partly due to the chelating nature of the sugar derivatives, which can poison metal-based HAT catalysts. We speculated that 3f, which does not possess vacant cis-coordination sites because of its planar tetradentate salophen ligand, might serve as a good metal-based catalyst for the HAT transformation of unprotected sugar derivatives. Indeed, the present system exhibits superior performance for the HAT hydrogenation of 1ah relative to previously reported catalytic methods (Table 3, entries 2 and 3). Both the manganese catalyst with bidentate dipivaloylmethane ligands and the cobalt catalyst with bidentate acetylacetonate ligands afford 2ah in lower yield compared to the HAT hydrogenation catalyzed by 3f. For a fair comparison, catalytic hydrogenation of 1ah can be performed in 96% yield by heterogeneous palladium-catalyzed hydrogenation (entry 4). Nevertheless, the dual cobalt and photoredox-catalyzed HAT hydrogenation potentially serve as a chemoselective alternative for hydrogenation of alkenes in carbohydrate chemistry.

Electrochemical study of the cobalt catalyst. Electrochemical analysis of 3f was conducted in order to assess our mechanistic proposal. Cyclic voltammetry of 3f in DMF afforded quasi-reversible voltammogram (Fig. 3a) with $E_{1/2} = −1.36$ V vs. SCE, which reasonably corresponds to the CoIII/CoI redox couple. The $E_{1/2}$ value suggests that the charge transfer to 3f from the reduced photocatalyst ($E_{0\text{red}(RuI/RuI)} = −1.33$ V vs. SCE) is within an accessible range. An increase in the voltammetric current in the voltammogram of 3f was observed when increasing amounts of ascorbic acid

Table 3 Comparison of the HAT hydrogenation performance for the preparation of IBCG 2ah.

Entry	Conditions (mol%)	Yield (%)
1	3f (10), PCy₃ (20), Ru(bpy)₃Cl₂ (2.0), ascorbic acid (300), 2-propanol/H₂O, 25 °C, Blue LED	88 (89)²
2f	Mn(dpmm)₃ (10), PhSH₂ (100), BuOOH (150), 2-propanol, 22 °C	35
3d	Co(acac)₂ (25), PCy₃ (25), Et₂SiH (500), BuOOH (25), DTBMP (50), 1,4-CHD (500), 1-propanol, 50 °C	5
4	Pd/C (1.6), H₂ (1 atm), EO/H₂O, 25 °C	96

For experimental details, see the Supplementary Information.

Cy cyclohexyl, bpy 2,2'-bipyridyl, dpmm 2,2,6,6-tetramethyl-3,5-heptanedionato, acac 2,4-pentanedionato, DTBMP 2,6-di-tet-butyl-4-methylpyridine, 1,4-CHD 1,4-cyclohexadiene.

* Determined by ¹H NMR analysis of the crude reaction mixture.
* Isolated yield.
* Ref. 39.
* Ref. 40.

Table 3 Comparison of the HAT hydrogenation performance for the preparation of IBCG 2ah.

Entry	Conditions (mol%)	Yield (%)
1	3f (10), PCy₃ (20), Ru(bpy)₃Cl₂ (2.0), ascorbic acid (300), 2-propanol/H₂O, 25 °C, Blue LED	88 (89)²
2f	Mn(dpmm)₃ (10), PhSH₂ (100), BuOOH (150), 2-propanol, 22 °C	35
3d	Co(acac)₂ (25), PCy₃ (25), Et₂SiH (500), BuOOH (25), DTBMP (50), 1,4-CHD (500), 1-propanol, 50 °C	5
4	Pd/C (1.6), H₂ (1 atm), EO/H₂O, 25 °C	96

For experimental details, see the Supplementary Information.

Cy cyclohexyl, bpy 2,2'-bipyridyl, dpmm 2,2,6,6-tetramethyl-3,5-heptanedionato, acac 2,4-pentanedionato, DTBMP 2,6-di-tet-butyl-4-methylpyridine, 1,4-CHD 1,4-cyclohexadiene.

* Determined by ¹H NMR analysis of the crude reaction mixture.
* Isolated yield.
* Ref. 39.
* Ref. 40.
In the absence of ascorbic acid. While the concentration of ascorbic acid was increased, the current density increased. These changes in the voltammograms were in accord with reported electrochemical behavior of 3f in the presence of increasing amounts of acetic acid64 and indicate the generation of cobalt hydride intermediate from 3f via cathodic reduction followed by protonation by ascorbic acid.

Thus, the electrochemical studies support the two processes described in Fig. 4a: (i) One electron reduction of 3f by an electron transfer from the electrode, and (ii) Successive protonation of the reduced cobalt catalyst by ascorbic acid. In the absence of an alkene, the resulting cobalt hydride should be consumed by proton reduction64. In turn, in the photocatalytic reaction process, it is likely that the cobalt hydride, generated via one-electron transfer from the reduced ruthenium photocatalyst followed by protonation by ascorbic acid, reacts with an alkene to afford the carbon radical intermediate (Fig. 4b).

Theoretical and experimental evaluation of the HAT pathway

In order to gain insight into the HAT process, quantum chemical calculations were performed using the cobalt(salophen) hydride complex derived from 3f and isobutene as a model substrate. The calculated pathway using UoB97X-D density functional [PCM (2-Propanol), LANL2DZ(f) for Co, 6-31G(d,p)] (see Section 5 of Supplementary Information for details) revealed that the barrier for the exergonic HAT between the two starting materials (SM) is only 7.3 kcal/mol higher in free energy relative to the SM at 25 °C (Fig. 5a), supporting that the HAT should proceed rapidly under the current reaction conditions. In the computed transition state, the cobalt center possesses square pyramidal geometry without cis-vacant sites (Fig. 5b). This molecular geometry closely resembles the reported transition states of the HAT between alkenes and cobalt(porphyrin) hydride complexes69,70. The observed similarity suggests that, like the [H-Co III(porphyrin)] complex, the [H-Co III(salophen)] complex favors HAT compared to concerted migratory insertion when reacting with alkenes.

As for an experimental support for HAT, the intermediacy of an alkyl radical in the hydrogenation reaction was confirmed by a radical-trapping experiment. When the hydrogenation of 1ac was attempted in the presence of TEMPO, no hydrogenated product 2ac was obtained. Instead, TEMPO adduct 4 was unambiguously observed by LCMS analysis of the reaction mixture (Fig. 6, see Sections 2–5 of Supplementary Information for details). This observation is in accord with the intermediacy of tertiary alkyl radical presumably generated by HAT from cobalt hydride to 1ac.

Discussion

In summary, we have developed a combined cobalt/PC system that enables the silane- and peroxide-free, ascorbic-acid-mediated HAT hydrogenation of alkenes in aqueous media. While the aqueous conditions were generally beneficial for the hydrogenation of polar substrates, substrates without polar functional groups were also hydrogenated in synthetically useful yield. The present reaction offers not only a more sustainable and safer alternative to previously reported HAT hydrogenation methods, but also a highly functional-group tolerant hydrogenation protocol suitable for the late-stage hydrogenation of amino-acid

Fig. 3 Cyclic voltammograms of 3f in the presence of various amounts of ascorbic acid. Recorded at 100 mV/s in a DMF solution of 3f (0.50 mM) and Bu4NClO4 (0.1 M). a In the absence of ascorbic acid. b 0.63 mM of ascorbic acid. c 1.5 mM of ascorbic acid. d 3.0 mM of ascorbic acid. The potential was corrected using Fc/Fc+ as an internal standard; SCE saturated calomel electrode, Fc ferrocene.

Fig. 4 Evaluation of the proposed mechanism by electrochemical analysis. a Interpretation of the observations in cyclic voltammetry. b Plausible mechanisms of the cobalt-photoredox catalyzed hydrogenation in analogy with the electrochemical reaction; SCE saturated calomel electrode, AschH2 ascorbic acid.
In an argon-flushed glove box, a flame dried reaction vial was charged with an alkene 1 (0.20 mmol), ascorbic acid (106 mg, 0.60 mmol), 3f (12.0 mg, 20 µmol), tricyclohexyphosphine (11.2 mg, 40 µmol) and Ru(bpy)₃Cl₂·6H₂O (3.0 mg, 4.0 µmol). The vial was capped and removed from the glove box. A mixed solvent (2-propanol/H₂O = 3:1, 1 mL) was added to the vial via syringe, and the syringe hole was carefully sealed with a vinyl tape. The reaction vial was placed in front of the light source (ca. 3 cm from two blue LED panels) in a cold room (4 °C) so that the temperature of the reaction mixture was kept approximately at 25 °C. After stirring for the indicated time, the reaction mixture was cooled in an ice bath and sat. aq. NaHCO₃ was added. Organic material was extracted with EtOAc (x 3) and the combined organic layer was washed with brine. The organic layer was concentrated under reduced pressure and purified by column chromatography (silica gel) to afford the hydrogenated product 2.

Data availability

The authors declare that all other data supporting the findings of this study are available within the article and Supplementary Information files, and also are available from the corresponding author upon reasonable request.

Received: 18 June 2020; Accepted: 16 December 2020; Published online: 11 February 2021

References

1. Crossley, S. W. M., Obradors, C., Martínez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. *Chem. Rev.* **116**, 8912–9000 (2016).

2. Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. *Acc. Chem. Res.* **51**, 2628–2640 (2018).

3. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydroxides by the cobalt-catalyzed hydroxyhydroxyamination reaction of olefins and azodicarboxylates. *J. Am. Chem. Soc.* **126**, 5676–5677 (2004).

4. Waser, J. & Carreira, E. M. Catalytic hydroxyamination of a wide range of alkenes with a simple Mn complex. *Angew. Chem. Int. Ed.* **43**, 4099–4102 (2004).

5. Waser, J., Nambu, H. & Carreira, E. M. Cobalt-catalyzed hydroxyamination of olefins: convenient access to alkyl amines. *J. Am. Chem. Soc.* **127**, 8292–8295 (2005).

6. Gaspar, B. & Carreira, E. M. Catalytic hydroxyamination of protected alkenes. *Angew. Chem. Int. Ed.* **47**, 5758–5760 (2008).

7. Gaspar, B. & Carreira, E. M. Cobalt-catalyzed functionalization of unprotected olefins: regioselective reductive C–C bond forming reactions. *J. Am. Chem. Soc.* **131**, 13214–13215 (2009).

8. Barker, T. J. & Boger, D. L. Fe(III)/NaBH₄-Mediated free radical hydroxyamination of unsaturated olefins. *J. Am. Chem. Soc.* **134**, 13588–13591 (2012).

9. Leggans, E. K., Barber, T. J., Duncan, K. K. & Boger, D. L. Iron(III)/NaBH₄-Mediated additions to unsaturated alkenes: synthesis of novel 20′-vinblastine analogues. *Org. Lett.* **14**, 1428–1431 (2012).

10. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. *J. Am. Chem. Soc.* **136**, 1304–1307 (2014).

11. Lo, J. C., Gui, J., Yabe, Y., Pan, C.-M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. *Nature* **516**, 343–348 (2014).

12. Gui, J. et al. Practical olefin hydroamination with nitroarenes. *Science* **348**, 886–891 (2015).

13. Dan, H. T., Li, C., Michaudel, Q., Maxwell, R. D. & Baran, P. S. Hydroxymethylation of unsaturated olefins. *J. Am. Chem. Soc.* **137**, 8046–8049 (2015).

14. Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. *J. Am. Chem. Soc.* **136**, 16788–16791 (2014).

15. Green, S. A., Matos, J. L. M., Yagi, A. & Shenvi, R. A. Branch-selective hydroxyamination: iodoarene–olefin cross-coupling. *J. Am. Chem. Soc.* **138**, 12779–12782 (2016).

16. Green, S. A., Vasquez-Céspedes, S. & Shenvi, R. A. Iron–nickel dual-catalysis: a new engine for olefin functionalization and the formation of quaternary carbons. *J. Am. Chem. Soc.* **140**, 11317–11324 (2018).

17. Shevick, S. L., Obradors, C. & Shenvi, R. A. Mechanistic interrogation of Co/Ni-dual catalyzed hydroxyamination. *J. Am. Chem. Soc.* **140**, 12056–12068 (2018).

18. Green, S. A., Huffman, T. R., McCourt, R. O., van der Puy, V. & Shenvi, R. A. Hydroxyamination of olefins to form quaternary carbons. *J. Am. Chem. Soc.* **141**, 7709–7714 (2019).

19. Matos, J. L. M. et al. Cycloisomerization of olefins in water. *Angew. Chem. Int. Ed.* **59**, 12998–13003 (2020).
21. Ma, X. & Herzon, S. B. Synthesis of ketones and esters from heteroatom-functionalized alkenes by cobalt-mediated hydrogen atom transfer. J. Org. Chem. 81, 8672–8695 (2016).

22. Ma, X. & Herzon, S. B. Intramolecular methylenehydration of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).

23. Ma, X., Dang, H., Rose, J. A., Rablen, P. & Herzon, S. B. Hydroheteroarylation of unactivated alkenes using N-methoxyheteroarenes salts. J. Am. Chem. Soc. 139, 5998–6017 (2017).

24. Touney, E. E., Foy, N. J. & Pronin, S. V. Catalytic radical–polar crossover reactions of aliphatic alcohols. J. Am. Chem. Soc. 140, 16982–16987 (2018).

25. Discolo, C. A., Touney, E. E. & Pronin, S. V. Catalytic asymmetric radical–polar crossover hydrosilation. J. Am. Chem. Soc. 141, 17527–17532 (2019).

26. Shigeishi, H., Aoki, T., Yamaguchi, S., Shimizu, N. & Hiyoka, K. Hydroalkylation of unactivated olefins with carbon radicals and carboxylation species as key intermediates. J. Am. Chem. Soc. 135, 10306–10309 (2013).

27. Shigeishi, H. et al. Catalytic hydroamination of unactivated olefins using a Co catalyst for complex molecule synthesis. J. Am. Chem. Soc. 136, 15334–15337 (2014).

28. Zhou, X.-L. et al. Cobalt-catalyzed intramolecular hydrofunctionalization of alkenes: evidence for a bimetallic pathway. J. Am. Chem. Soc. 141, 7250–7255 (2019).

29. Iwasaki, K., Wan, K. K., Oppedisano, A., Crossley, S. W. M. & Shenivi, R. A. Singlet dihydrogenation of dihalides with thermodynamic stereocontrol. J. Am. Chem. Soc. 136, 1300–1303 (2014).

30. Obradors, C., Martinez, R. M. & Shenivi, R. A. Ph3–(Pr)3SiH: an exceptional reductant for metal-catalyzed hydrogen atom transfers. J. Am. Chem. Soc. 138, 4962–4971 (2016).

31. King, S. M., Ma, X. & Herzon, S. B. A method for the selective hydrogenation of alkenes to alkyl halides. J. Am. Chem. Soc. 136, 6684–6687 (2014).

32. Ma, X. & Herzon, S. B. Non-classical selectivities in the reduction of alkenes by cobalt-mediated hydrogen atom transfer. Chem. Sci. 6, 6250–6255 (2015).

33. Ma, X. & Herzon, S. B. Cobalt bis(acetylene)–tert-butyldihydroperoxide–triethylsilane: a general reagent combination for the Markovnikov-selective hydrofunctionalization of alkenes by hydrogen atom transfer. Beilstein J. Org. Chem. 14, 2259–2265 (2018).

34. Wein, L. A., Wurst, K., Angyal, P., Weisheit, L. & Maguara, T. Synthesis of (−)−methylammonium triboethamine via a bioinspired late stage C–H oxidation of (−)−methylammonium triboethamine. J. Am. Chem. Soc. 141, 19589–19593 (2019).

35. Li, J., Li, F., King-Smith, E. & Renata, H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized steroperiodens. Nat. Chem. 12, 173–179 (2020).

36. Lorenz, C., Vibeert, H. B., Yao, C., Norton, J. R. & Rauch, M. H. Transfer-initiated synthesis of γ-lactams: interpretation of cyclosomerization and hydrogenation ratios. ACS Catal. 9, 10294–10298 (2019).

37. Kattamuri, P. V. & West, J. G. Hydrogenation of alkenes via cooperative hydrogen atom transfer. Beilstein J. Org. Chem. 14, 1936–1936 (2018).

38. McNamara, W. R. et al. A cobalt dithiolene complex for the photocatalytic dehalogenation of vicinal dibromo- and dibromocarbonyl meroterpenoids. J. Org. Chem. 76, 7340–7341 (2011).

39. Naumann, R., Kegel, C. & Geoz, M. Laboratory-scale photocatalysis using hydrated electrons sustainably generated with a single green laser. Chem. Sci. 8, 7510–7520 (2017).

40. Giedyk, M. et al. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogenous solutions. Nat. Catal. 3, 40–47 (2020).

41. Kojima, M. & Matsunaga, S. The merger of photocatalysis and cobalt catalysis. Trends Chem. 2, 410–420 (2020).

42. West, J. G., Huang, D. & Sorensen, E. J. Acceptless dehydrogenation of small molecules through cooperative base catalysis. Nat. Commun. 6, 10093 (2015).

43. Ruhl, K. E. & Revis, T. Visible light-gated cobalt catalysis for a spatially and temporally resolved [2+2+2] cycloaddition. J. Am. Chem. Soc. 138, 15527–15530 (2016).

44. He, K.-H. et al. Acceptless dehydrogenation of N-heterocycles by merging visible-light photocatalysis and cobalt catalysis. Angew. Chem. Int. Ed. 56, 3080–3083 (2017).

45. Sun, X., Chen, J. & Ritter, T. Catalytic dehydrogenative decarboxylation of carboxylic acids. Nat. Chem. 10, 1229–1233 (2018).

46. Zhang, G. et al. Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions. Nat. Commun. 9, 1225 (2018).

47. Meng, Q.-Y., Schnier, T. E., Katou, K. & König, B. Controllable isomerization of alkenes by dual visible-light-cobalt catalysis. Angew. Chem. Int. Ed. 58, 5723–5728 (2019).
Author contributions
Y.K., Y.S., Y.Y., and M.K. performed the experiments and analyzed the data. S. Maeda and M.K. performed the quantum chemical calculations. Y.K., T.Y., S. Maeda, M.K., and S. Matsunaga conceived and designed the experiments and prepared the manuscript. All authors contributed to discussions and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20872-z.

Correspondence and requests for materials should be addressed to M.K. or S.M.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021