ATOMIC DECOMPOSITION OF REAL-VARIABLE TYPE FOR BERGMAN SPACES IN THE UNIT BALL OF \mathbb{C}^n

Zeqian Chen and Wei Ouyang

Abstract: In this paper we show that, for any $0 < p \leq 1$ and $\alpha > -1$, every (weighted) Bergman space $A^p_\alpha(B_n)$ admits an atomic decomposition of real-variable type. More precisely, for each $f \in A^p_\alpha(B_n)$ there exist a sequence of $(p, \infty)_\alpha$-atoms a_k with compact support and a scalar sequence $\{\lambda_k\}$ such that $f = \sum_k \lambda_k a_k$ in the sense of distribution and $\sum_k |\lambda_k|^p \lesssim \|f\|_{p,\alpha}$; and moreover, $f = \sum_k \lambda_k P_\alpha(a_k)$ in $A^p_\alpha(B_n)$, where P_α is the orthogonal projection from $L^2_\alpha(B_n)$ onto $A^2_\alpha(B_n)$. The proof is constructive and our construction is based on analysis inside the unit ball B_n associated with a quasimetric.

2010 Mathematics Subject Classification: 32A36, 32A50.

Key words: Bergman space, atomic decomposition, Bergman kernel, homogeneous space, maximal function.