SUPPLEMENTAL MATERIAL
Table S1. Diagnosis and procedure codes used for this analysis.

OPS codes

Code	Description
5-351.0*	Surgical aortic valve replacement
5-35a.0*	Transcatheter aortic valve replacement
5-361.*, 5-362.*, 5-363.*	Coronary artery bypass graft
363.*	
5-351.1*, 5-351.2*, 5-353.1, 5-353.2	Surgical mitral valve replacement/reconstruction
5-354*	Surgical tricuspid valve replacement
5-377.0 et seqq.	Permanent pacemaker implantation

8-800.7*	Transfusion of RBC
since 2010:	
8-800.c*	

Diagnosis

Code	Description
I35.0, I06.0	Aortic valve stenosis (degenerative/rheumatic)
I35.2, I06.2	Combined aortic valve diseases (degenerative/rheumatic)
I50.1*	Left ventricular congestive heart failure (according to NYHA classes)
I10*	Arterial Hypertension
I25.11, I25.12, I25.13	Coronary artery disease
I25.20, I25.21, I25.22	Previous myocardial infarction (within 4 months/1 year/after 1 year)
Z95.1	Previous coronary artery bypass graft
Z95.1 – Z95.4	Previous cardiac surgery
I70.20-I70.25, I70.8, I70.9, I73.9	Peripheral vascular disease
I65.2	Carotid disease
I21*	Acute myocardial infarction (within the last 28 days)
J44*	Chronic obstructive pulmonary disease
I27*	Pulmonary hypertension
N18*	Renal disease
N17*	Acute kidney injury
I48.1*	Atrial fibrillation
E10* - E14*	Diabetes
I63*, I64	Stroke or cerebral infarction incl. occlusion and stenosis of cerebral and precerebral arteries, resulting in cerebral infarction
Tables S2-S17 Legends (see Excel file):

Table S2. Analysis details, all patients (N=33,789).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S3. Analysis details, patients <75 years of age (N=11,073).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S4. Analysis details, patients <80 years of age (N=8,292).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.
Table S5. Analysis details, patients <85 years of age (N=8,283).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S6. Analysis details, patients 85+ years of age (N= 6,141).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S7. Analysis details, female patients (N=16,308).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S8. Analysis details, patients in NYHA class III or IV (N=13,318).
Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S9. Analysis details, patients with previous CABG (N=2,143).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S10. Analysis details, patients with atherosclerotic disease (N=2,433).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S11. Analysis details, patients with COPD (N=3,900).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level
Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S12. Analysis details, patients with pulmonary hypertension (N=5,616).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S13. Analysis details, patients with GFR < 30ml (N=1,647).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S14. Analysis details, patients with diabetes (N=10,046).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score
represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S15. Analysis details, patients with EuroSCORE < 4 (N=7,053).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S16. Analysis details, patients with EuroSCORE 4-9 (N=12,314).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.

Table S17. Analysis details, patients with EuroSCORE >9 (N=14,402).

Analysis strategy 1: Covariate adjustment: Logistic regression models with a random intercept at the center level

Analysis strategy 2: Propensity score adjustment: First, a logistic regression model was performed on all patient and procedural characteristics to calculate the propensity score. The propensity score represents the likelihood that the patient was in the TF-TAVR arm. Then, logistic regression models
with a random intercept at the center level, the propensity score as continuous covariate and year 2015 as additional confounder were conducted.

SAVR: surgical aortic valve replacement; TF-TAVR: transfemoral transcatheter aortic valve replacement; SD: standard deviation; CAD: coronary artery disease; MI: myocardial infarction; CABG: coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; GFR: glomerular filtration rate.
Figure S1. Results regarding different subgroups, outcomes and adjustment strategies

All Patients

<75 years

75-79

80-84

>=85

Peripheral vascular disease

All Patients

<75 years

75-79

80-84

>=85

Peripheral vascular disease

TF-TAVR better ↔ SAVR better

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment

mortality

stroke

AKI

bleeding

ventilation

PPI

odds ratios and 95% confidence intervals

Propensity score adjustment

Regression adjustment
EuroSCORE < 4

- TF-AVR better ↔ sAVR better

mortality
stroke
AKI
bleeding
ventilation
PPI

0.15 0.5 1 2 3 4 5 7
odds ratios and 95% confidence intervals

Propensity score adjustment
Regression adjustment

Female sex

- TF-AVR better ↔ sAVR better

mortality
stroke
AKI
bleeding
ventilation
PPI

0.15 0.5 1 2 3 4 5
odds ratios and 95% confidence intervals

Propensity score adjustment
Regression adjustment

EuroSCORE 4-9

- TF-AVR better ↔ sAVR better

mortality
stroke
AKI
bleeding
ventilation
PPI

0.15 0.5 1 2 3 4 5 7
odds ratios and 95% confidence intervals

Propensity score adjustment
Regression adjustment

EuroSCORE > 9

- TF-AVR better ↔ sAVR better

mortality
stroke
AKI
bleeding
ventilation
PPI

0.15 0.5 1 2 3 4 5
odds ratios and 95% confidence intervals

Propensity score adjustment
Regression adjustment
Subgroup	SAVR N	TF-TAVR N	Risk-adjusted additional length of stay	days	95% CI	P Value
All patients	13,151	20,638		-1.33	-1.60 - -1.06	<0.001
Age <75 years	8,793	2,280		-1.35	-1.85 - -0.85	<0.001
Age 75-79 years	3,225	5,067		-1.27	-1.74 - -0.80	<0.001
Age 80-84 years	980	7,303		-1.46	-2.06 - -0.85	<0.001
Age >=85 years	153	5,936		-2.83	-4.24 - -1.42	<0.001
EuroSCORE <4	6,280	748		-0.85	-1.41 - -0.28	0.003
EuroSCORE 4-9	5,056	7,258		-1.31	-1.68 - -0.94	<0.001
EuroSCORE >9	1,770	12,632		-2.34	-2.92 - -1.77	<0.001
female	5,057	11,251		-0.88	-1.29 - -0.48	<0.001
heart failure (NYHA III/IV)	3,746	9,572		-0.89	-1.41 - -0.37	0.001
previous CABG	248	1,895		-4.28	-5.79 - -2.76	<0.001
peripheral vascular disease	598	1,835		-1.97	-3.25 - -0.69	0.002
COPD	1,189	2,711		-1.63	-2.62 - -0.63	0.001
pulmonary hypertension	1,330	4,286		-1.88	-2.76 - -1.00	<0.001
renal failure (GFR <30)	285	1,362		-5.40	-7.51 - -3.30	<0.001
diabetes	3,311	6,735		-1.45	-2.01 - -0.90	<0.001

TF-TAVR better ↔ SAVR better