Abstract

We propose a new realization of the one-loop radiative model of neutrino mass generated by dark matter (scotogenic), where the particles in the loop have an additional $U(1)_D$ gauge symmetry, which may be exact or broken to Z_2. This model is relevant to a number of astrophysical observations, including AMS-02 and the dark matter distribution in dwarf galactic halos.
The notion that dark matter (DM) is the origin of neutrino mass (scotogenic) is by now a common theme among many studies. The first one-loop realization \([1]\), as shown in Fig. 1, remains the simplest such example. The standard model (SM) of quark and lepton interactions is augmented by three neutral singlet Majorana fermions \(N_{1,2,3}\) and a second scalar doublet \((\eta^+, \eta^0)\). A new discrete \(Z_2\) symmetry is imposed so that the new particles are odd and all the SM particles even. The complex scalar \(\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}\) is split by the allowed \((\lambda_5/2)(\Phi^\dagger\eta)^2 + H.c.\) term in the Higgs potential so that \(m_R \neq m_I\) and the scotogenic neutrino mass is given by \([1]\)

\[
(M_\nu)_{ij} = \sum_k \frac{h_{ik}h_{jk}M_k}{16\pi^2} \left[\frac{m_R^2}{m_R^2 - M_k^2} \ln \frac{m_R^2}{M_k^2} - \frac{m_I^2}{m_I^2 - M_k^2} \ln \frac{m_I^2}{M_k^2} \right].
\]

(1)

The DM candidate is either \(\eta_R\) (assuming of course that \(m_R < m_I\)) or \(N_1\) (assuming of course \(M_1 < M_{2,3}\)). Many studies and variations of this original model are now available in the literature. One important extension is the promotion of the stabilizing discrete \(Z_2\) symmetry to a \(U(1)_D\) gauge symmetry \([2, 3]\), which gets broken to \(Z_2\) through an additional scalar field. This has two effects: (1) the stability of dark matter is now protected against possible violation of the \(Z_2\) symmetry from higher-dimensional operators including those of quantum gravity, (2) the force carriers (both vector and scalar) between DM particles may be relevant in explaining a number of astrophysical observations.
Figure 2: One-loop generation of neutrino mass with $U(1)_D$ symmetry.

In this paper, we propose a new scotogenic model with a $U(1)_D$ gauge symmetry which may be exact or broken to Z_2. The new particles are two scalar doublets $(\eta_1^+, \eta_1^0) \sim 1$ and $(\eta_2^+, \eta_2^0) \sim -1$ under $U(1)_D$, and three neutral singlet Dirac fermions $N_{1,2,3} \sim 1$ under $U(1)_D$. The allowed couplings completing the loop, as shown in Fig. 2, are $h_1 \bar{N}_R \nu_L \eta_1^0$, $h_2 N_L \nu_L \eta_2^0$, and $(\Phi^t \eta_1) (\Phi^t \eta_2)$ which mixes η_1^0 and $\bar{\eta}_2^0$. Let

$$
\begin{pmatrix}
\eta_1^0 \\
\eta_2^0
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\chi_1 \\
\chi_2
\end{pmatrix},
$$

(2)

where $\chi_{1,2}$ are mass eigenstates, then the analog of Eq. (1) becomes

$$(M_\nu)_{ij} = \sin \theta \cos \theta \sum_k \frac{[(h_1)_{ki}(h_2)_{kj} + (h_2)_{ki}(h_1)_{kj}]}{8\pi^2} M_k \left[\frac{m_1^2}{m_1^2 - M_k^2} \ln \frac{m_1^2}{M_k^2} - \frac{m_2^2}{m_2^2 - M_k^2} \ln \frac{m_2^2}{M_k^2} \right],
$$

(3)

where $m_{1,2}$ are the masses of $\chi_{1,2}$ and M_k the mass of N_k. Note that in contrast to Fig. 1, Majorana neutrino masses are obtained in Fig. 2 even though only Dirac masses appear in the loop. At this point, the $U(1)_D$ gauge symmetry may remain exact, in which case there is a massless dark photon. However, we can also break the $U(1)_D$ gauge symmetry to Z_2 by a complex singlet scalar field $\zeta \sim 2$, in which case there is a massive dark photon γ_D as well as a dark Higgs boson, both of which may be relevant in astrophysics as force carriers between DM particles.

If $U(1)_D$ is unbroken, only N_1 is a DM candidate because $\eta_{1,2}^0$ are not split in their real
and imaginary parts, which means that their interaction with nuclei through Z exchange cannot be suppressed and thus ruled out by direct-search data as a possible DM candidate. In the presence of $U(1)_D$ breaking with the allowed $y_L \zeta^\dagger N_L N_L$ and $y_R \zeta^\dagger N_R N_R$ couplings, N is no longer a Dirac fermion, but if these new terms are small, it may still be a pseudo-Dirac particle. At the same time, the $\zeta \eta^\dagger \eta_2$ coupling allows splitting of the real and imaginary parts of $\eta_{1,2}$.

There is yet another scenario, where the gauge $U(1)_D$ symmetry becomes an exact global $U(1)_D$ symmetry. This is accomplished if ζ is forbidden to couple to N or $\eta_{1,2}$, by choosing for example $\zeta \sim 3$. The spontaneous breaking of the gauge $U(1)_D$ symmetry now results in a global $U(1)_D$ symmetry, under which only N and $\eta_{1,2}$ transform. This means that dark Higgs is no longer a force carrier for the dark matter N, but the vector force carrier γ_D remains and is no longer massless.

In the following we choose our DM candidate to be the lightest Dirac (or pseudo-Dirac) N and investigate how it fits into the standard thermal WIMP (Weakly Interacting Massive Particle) paradigm. The dark photon γ_D may be massless [4] in which case a realistic scenario would require N to be heavier than about 1 TeV. If $U(1)_D$ is broken by $\zeta = (u + \rho + i\sigma)/\sqrt{2}$, where $u = \sqrt{2}\langle\zeta\rangle$, then γ_D is massive together with ρ. In the following we will assume u to be small compared to the decoupling temperature of N, in which case its relic abundance is determined by the unbroken theory, whereas at present, its interaction with ordinary matter is determined by the broken theory. In the early Universe, NN would annihilate to $\gamma_D\gamma_D$ and $\zeta\zeta^*$. Since the dark scalar singlet ζ must mix with the SM Higgs doublet Φ in the most general scalar potential containing both, and the dark photon γ_D may have kinetic mixing [5] with the SM photon, these processes will allow N to have the correct thermal relic abundance to be a suitable DM candidate. Furthermore, for γ_D and ρ lighter than about 0.1 GeV, a number of astrophysical observations at present may be explained.
Our DM scenario assumes \(N \) to be much heavier than the \(U(1)_D \) breaking scale. Thus \(N \) is in general pseudo-Dirac. As far as relic abundance is concerned, it behaves as a Dirac fermion \([6]\). Further, since it can annihilate into scalars \((\zeta \zeta^*)\) or vectors \((\gamma_D \gamma_D)\) instead of just SM quarks and leptons, its cross section is not suppressed by fermion mass. Its thermally averaged s-wave annihilation cross sections to \(\gamma_D \gamma_D \) and \(\zeta \zeta^* \) are given by

\[
\langle \sigma(N \bar{N} \to \gamma_D \gamma_D)v \rangle = \frac{\pi \alpha_D^2}{M_1^2},
\]

\[
\langle \sigma(N \bar{N} \to \zeta \zeta^*)v \rangle = \frac{(|y_L|^2 + |y_R|^2)^2 - (y_L y_R^* - y_R^* y_L)^2}{16 \pi M_1^2},
\]

where \(\alpha_D = g_D^2/4\pi \) is the dark fine structure constant and we have neglected the masses of \(\gamma_D \) and \(\zeta \).

Figure 3: Values of DM couplings \(\alpha_D \) (left) and \(y_L, y_R \) (right) as a function of DM mass required to obtain observed relic abundance of DM in the Universe. For simplicity we have chosen \(y_L = y_R \).

In Fig. 3 we display the values of DM couplings required to obtain the observed value for the dark-matter relic density of the Universe, \(\Omega_{DM} h^2 = 0.1187(17) \) \([7]\). For example, if \(M_1 = 1 \) TeV, then we need either \(\alpha_D = 0.04 \) or \(y_L = y_R = 0.48 \).

As \(U(1)_D \) is broken, the Dirac DM fermion \(N \) splits up into two Majorana fermions of about equal mass, The heavier state \(\Sigma_2 \) will decay into the lighter state \(\Sigma_1 \) and a force carrier \((\Sigma_2 \to \Sigma_1 \gamma_D, \Sigma_1 \rho)\) if kinematically allowed. If the mass splitting is smaller than the mass of
the force carriers, Σ_2 will decay through an off-shell force carrier or $\eta_{1,2}$ to Σ_1 and a pair of SM leptons.

There are two important phenomenological implications of our $U(1)_D$ DM scenario. First, the large positron excess observed by PAMELA \cite{8,9} requires an enhancement of the DM annihilation cross section at present compared to what it was at the time of freeze-out. This may be accomplished \cite{10} by the inclusion of a new force in the dark sector, resulting in a Sommerfeld enhancement of the cross section from multiple exchange of the light force carrier. Recent AMS-02 results \cite{11} may also be explained \cite{12} in a similar way. In our case, since ρ mixes with h and γ_D mixes with γ, their decays to $\mu^-\mu^+$ and e^-e^+ are ideal for such a purpose.

Second, DM self interactions change its density profile from the usual collisionless WIMP scenario. To reconcile the theoretical prediction with the present astronomical observation of the halos of dwarf galaxies, a rather large cross section per unit DM mass ~ 1 cm2/g is required, and may be achieved \cite{13,14} with rather light force mediators, such as $M_1 = 1$ TeV and $m_{\rho,\gamma_D} \sim 4$ MeV, or $M_1 = 100$ GeV and $m_{\rho,\gamma_D} \sim 20$ MeV.

Finally, additional insight into DM candidates in our scenario may come from direct detection experiments. The current XENON100 limits \cite{15} are already sensitive to very small couplings corresponding to the mixing of the dark-force carriers with the appropriate SM bosons. For a benchmark value 10^{-10} for the coupling involved in the kinetic mixing of the dark photon with the SM photon, and for a 10-100 MeV dark force-carrier mass, XENON100 excludes self-interacting DM with a mass larger than ~ 300 GeV \cite{14}.

Acknowledgment: The work of EM is supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837. IP and BR are supported by the Croatian Ministry of Science, Education and Sports under Contract No. 119-0982930-1016.
References

[1] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73, 077301 (2006) [hep-ph/0601225].

[2] J. Kubo and D. Suematsu, Neutrino masses and CDM in a non-supersymmetric model, Phys. Lett. B 643, 336 (2006) [hep-ph/0610006].

[3] E. Ma, Supersymmetric U(1) Gauge Realization of the Dark Scalar Doublet Model of Radiative Neutrino Mass, Mod. Phys. Lett. A 23, 721 (2008) [0801.2545 [hep-ph]].

[4] L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark Matter and Dark Radiation Phys. Rev. D 79, 023519 (2009) [0810.5126 [hep-ph]].

[5] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166, 196 (1986).

[6] A. De Simone, V. Sanz and H. Sato, Pseudo-Dirac Dark Matter Leaves a Trace, Phys. Rev. Lett. 105, 121802 (2010) [1004.1567 [hep-ph]].

[7] P. A. R. Ade et al. [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [astro-ph.CO].

[8] O. Adriani et al. (PAMELA Collaboration), An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458, 607 (2009) [1001.3522 [astro-ph.HE]].

[9] O. Adriani et al. (PAMELA Collaboration), A statistical procedure for the identification of positrons in the PAMELA experiment, Astropart.Phys. 34, 1 (2010) [0810.4995 [astro-ph]].

[10] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79, 015014 (2009) [0810.0713 [hep-ph]].
[11] M. Aguilar et al. (AMS Collaboration), First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5 − 350 GeV, Phys. Rev. Lett. 110, 141102 (2013).

[12] Z.-P. Liu, Y.-L. Wu and Y.-F. Zhou, Sommerfeld enhancements with vector, scalar and pseudoscalar force-carriers, arXiv:1305.5438 [hep-ph].

[13] S. Tulin, H.-B. Yu and K. M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87, 115007 (2013) [1302.3898 [hep-ph]].

[14] M. Kaplinghat, S. Tulin and H.-B. Yu, Self-interacting Dark Matter Benchmarks, arXiv:1308.0618 [hep-ph].

[15] E. Aprile et al. (XENON100 Collaboration), Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109, 181301 (2012) [1207.5988 [astro-ph.CO]].