The molecular identification and phylogenetic reconstruction of Palaemonid and Penaeid shrimp from the southern part of Bangladesh

M J Alam1,3,*, S Andriyono1,4, A T M Eunus5 and H W Kim1,2

1Interdisciplinary Program of Biomedical, Mechanical, and Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
2Department of Marine Biology, Pukyong National University, Republic of Korea
3Department of Fisheries, Ministry of Fisheries and Livestock, Bangladesh
4Fisheries and Marine Faculty, C Campus Jl. Mulyorejo Surabaya 60115. Universitas Airlangga, Surabaya, East Java, Indonesia
5WorldFish, Bangladesh and South Asia Office, H#22B, Road#7, Block-F, Banani, Dhaka-1213, Bangladesh

*Corresponding author: jobaidul_dof@yahoo.com

Abstract. The study aimed to reveal the molecular identification and relationships between Palaemonid prawns and Penaeid shrimp in Bangladesh. Combined, they form an important economic part of tropical and subtropical fisheries. These species have a wide distribution range around the mangrove ecosystems, rivers, estuaries, flood plains, inundated natural depression water bodies, rice fields and other inland water bodies. Some of these species have a lack of information available about their biological and molecular characteristics. This study revealed the identification of prawn and shrimp species based on the molecular approach employed using mitochondrial COI gene markers, PCR, sequencing and matching the sequence to that stored in the NCBI database; four Palaemonid species (Macrobrachium rosenbergii, M. lamarrei, M. kistnense, Palaemonstiliferus) and one Penaeid shrimp (Penaeus monodon) were confirmed with 99-100\% confirmation of identity with multiple sequencing alignments. The inter-specific genetic divergence (K2P distance) among the family Palaemonid (Macrobrachium and Palaemon) is 0.171-0.257 \%, and intraspecific genetic distance was revealed to be 0.243-0.302\%. This result will be useful for obtaining the basic genetic information of these species and it will be helpful for future studies looking into the genetic biodiversity of the population structure, and finally, for the conservation and management of these resources in the southern part of Bangladesh.

1. Introduction
Bangladesh is a riverine country blessed with many rivers, canals, depressions, oxbow lakes, ponds, and floodplains, covering a huge area of water resources totaling about 4.70 million hectares [1]. In 2016, Bangladesh produced 2.20 million tons of fish from aquaculture and 1.05 million tons from inland freshwater [2, 3]. Shrimp aquaculture is one of the fastest growing financial activities in the coastal areas of Bangladesh and is the 5th largest shrimp producer country in the world [3]. In Bangladesh, \textit{P. monodon} comprises 60\% of farmed shrimp production, followed by the giant freshwater prawn, \textit{Macrobrachium rosenbergii}, which accounts for 25\% of production. The remaining portion comes from other shrimp species including \textit{Metapenaeus monoceros}, \textit{Fenneropenaeus indicus}, \textit{Penaeus semisulcatus}, and \textit{F. merguiensis} [4, 5].
The giant freshwater prawn *Macrobrachium rosenbergii* is a commercially cultured important species of Palaemonid freshwater prawn in Bangladesh [6]. It is found throughout the tropical and subtropical areas of the Indo-Pacific region, from India to Southeast Asia and Northern Australia. This species has also been introduced to Asian countries (Thailand, China, Japan), Africa, New Zealand, the Americas and the Caribbean. It is one of the biggest freshwater prawns in the world and is widely cultivated in several countries for food [7]. A sub-tropical climate and a vast area of water bodies provide a unique opportunity for the production of *Macrobrachium* spp. Twenty-four species of freshwater prawns, including 10 species of *Macrobrachium*, are found in Bangladesh [8].

We examined the phylogenetic relationship of four Palaemonid (*Macrobrachium rosenbergii, M. lamarrei, M. kistnense*, and *Palaemonstyliferus*) and one Penaeid shrimp (*Penaeus monodon*) species collected from the southern part of Bangladesh in March 2017. These species have a wide range of distribution around the mangrove ecosystem, including in rivers, estuaries and other inland water bodies, but there is a lack of information about its biological and molecular characteristics. Therefore, molecular identification and the phylogenetic reconstruction of the prawns and shrimps of Bangladesh will be helpful to improving the genetic information available for the future conservation management of this fishery resource.

2. Materials and methods

2.1. Sample collection and preparation

Ten (10) samples were collected from the local fish market, Khulna (22°50′44.3″N 89°32′27.7″E), in the southern part of Bangladesh. After the collection of all species was undertaken, morphological identification was done according to [9, 10]. Digital photographs of all of the samples were taken, and then the specimens were directly preserved in 96% ethanol and deposited at the Department of Fisheries headquarter in Dhaka, Bangladesh.

2.2. Samples collection

Tissue samples were taken from the abdominal region and genomic DNA was extracted using the DNeasy® Blood and Tissue Kit (Qiagen, Germany) according to the manufacturer’s instructions. In brief, 200 mg of tail muscle was dissected and mixed with 1x lysis buffer, which was further homogenized by the Tissue Lyser II motorized homogenizer (QIAGEN, Hilden, Germany). The quantification of the purified genomic DNA was performed using the NanoDrop spectrophotometer, ND-1000 (Thermo Scientific, Waltham, MA, USA). The extracted genomic DNA was kept at -20°C for further analysis.

2.3. PCR amplification

One pair of universal primer sets, LCO1490 and HCO2198 [11], were used to obtain the mitochondrial cytochrome c oxidase I (COI) partial gene sequences. The PCR mixture (20µL) contained 11.2 µL ultrapure water, 1 µL of each of the primers (0.5 µM, forward and reverse), 0.2 µL Ex Taq DNA polymerase (TaKaRa Bio Inc. Japan), 2.0 µL 10X Ex Taq buffer, a 2.0 µL deoxynucleotide triphosphate (dNTPs) mixture (2.5 mM, TaKaRa, Japan), and 2.0 µL genomic DNA as the template. PCR was performed under the following settings: the initial denaturation step at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 50°C for 30 sec and with an extension at 72°C for 45 sec. The PCR products were separated by 1.5 % of agarose gel and electrophoresis after staining with the loading star (Dynebio, Sungnam, Republic of Korea). The PCR products of the COI were purified using the AccuPrep®Gel purification kit according to the manufacturer’s protocol (Bioneer, Korea).
Table 1. Species list with the GenBank accession number for the Palaemonid prawn and Penaeid shrimps and their cytochrome c oxidase subunit I (COI) genes

ID No.	Species name	Locality	GenBank no.	References
SH 01	*Penaeus monodon*	Bangladesh	MH884751	In this study
SH 02	*Macrobrachium rosenbergii*	Bangladesh	MH884752	In this study
SH 05	*Macrobrachium lamarrei*	Bangladesh	MH884753	In this study
SH 07	*Palaemonstyliferus*	Bangladesh	MH884754	In this study
SH 10	*Macrobrachium kistnense*	Bangladesh	MH884755	In this study
	Penaeus monodon	India	KX399427	Ram et al. (20016)
	Macrobrachium rosenbergii	India	MF563570	Mandal et al. (2017)
	Macrobrachium lamarrei	Bangladesh	MF621334	Habib et al. (2017)
	Palaemonstyliferus	Bangladesh	MF621340	Habib et al. (2017)
	Macrobrachium kistnense	India	KY451617	Deepa and Karuthapandi (2017)
	Scylla paramamosain	China	AY750937	Ma et al. (2006)

3. Result and discussion

The LCO and HCO primer set was amplified for five samples and the total length of the aligned mitochondrial COI gene sequence was from 508-634 base-pairs (bp). The average nucleotide compositions were; *Macrobrachium rosenbergii* with T 26.8%, C 25.5%, A 28.5%, and G 19.3%; *M. lamarrei* with T 28.3%, C 25.9%, A 26.1%, and G 19.7%; *M. kistnense* with T 29.8%, C 21.8%, A 30.4% and G 18.0%; *Palaemonstyliferus* with T 31.3%, C 23.8%, A 26.1%, and G 18.8% and *Penaeus monodon* with T 36.0%, C 17.8%, A 27.4%, and G 18.8% respectively. The interspecific genetic divergence (K2P distance) in the family Palaemonid (*Macrobrachium* and *Palaemon*) was 0.171 - 0.257% and the intraspecific genetic distance revealed was 0.243 - 0.302% (Table 2). The COI region sequences were compared to the references from the NCBI database and 99 to 100% of the identity queries were covered. All of the sequences were submitted to the GenBank database to improve the COI region information of the shrimp species collected from Bangladesh waters (Table 1).

The base composition of the COI gene region varied among the species. The giant tiger prawn (Sh01), *Penaeus monodon* had a 36.46% GC content similar to the *P. Monodon* species from India, with 36.46% (628bp). *M. rosenbergii* and *M. lamarrei* had a similar GC% of 45.55% (630bp) and 46.06% (508bp) respectively. *M. lamarrei*’s AT% and GC% showed different results compared to the previous research in India, which had a lower GC% from 40.0 - 40.7% [13]. However, two species, *M. kistnense* (40.95%; 608bp) and *Palaemonstyliferus* (42.355; 543bp) were lower than the references of 41.44 (608bp) and 43.27 (543 bp) respectively. This condition shows there to be a positive correlation in the genetic distance of both of species (Table 2)
Table 2. Genetic distance for the pair-wise nucleotide K2P divergence of the mitochondrial COI sequences among the samples with references.

Species Name	1	2	3	4	5	6	7	8	9	10
Sh01 Penaeus monodon	0.000									
KX399427 Penaeus monodon		0.284	0.284							
Sh02 Macrobrachiumrosenbergii			0.284	0.284	0.000					
MF653570 Macrobrachiumrosenbergii		0.284	0.284	0.000						
Sh05 Macrobrachiumlamarrei			0.302	0.302	0.211	0.211				
MF621334 Macrobrachiumlamarrei		0.302	0.302	0.211	0.211	0.000				
Sh07 Palaemonstyliferus			0.276	0.276	0.257	0.257	0.294	0.294		
MF621340 Palaemonstyliferus		0.290	0.290	0.267	0.267	0.291	0.291	0.291	0.011	
Sh10 Macrobrachiumkistnense		0.243	0.243	0.171	0.171	0.215	0.215	0.274	0.287	
KY451617 Macrobrachiumkistnense		0.252	0.252	0.174	0.174	0.234	0.234	0.271	0.284	0.018
AY750937 Scylla paramamosain					1.081	1.081	1.242	1.242	1.223	1.223
Penaeus monodon	1.262	1.293	1.223	1.223	1.262	1.293				

The predicted phylogenetic information has been presented in Figure 1 in a phylogenetic tree (ML and NJ). It shows that all Macrobrachium and Palaemon styliferus were clustered in the same family [14] and that there was a close relationship to the Penaeid shrimp. The phylogenetic trees (NJ and ML) helped the researcher to figure out that the shrimp and prawns had a similar ancestry, but that they were clustered in different family groups (Penaeid and Palaemoid). Even though the BLASTN system confirmed SH10 as Macrobrachium kistnense, this sequence is not completely similar to the similar species from India. The interspecific distance between both species is 0.018, so SH10 is Macrobrachium kistnense, possibly as a Bangladeshi haplotype. Palaemon styliferus, from the GenBank database, also has an interspecific genetic distance of 0.011 to a similar species, P. styliferus. This species (MF621340) was collected from the Sundarbans area in Bangladesh. Beside P. styliferus, Penaeus monodon is a well-known species and found in the Sundarbans area, which is a world heritage site [15].

Figure 1. (a) Phylogenetic analysis based on the Maximum Likelihood (ML) shows that all species shared their habitat in both Bangladesh and Indian waters. (b) Phylogenetic analysis based on Neighbor- Joining (NJ) shows that all species shared their habitat in Bangladesh and Indian waters.

Molecular identification of the Palaemonid and Penaeid shrimp samples was successfully performed on five samples and the species were known to be Macrobrachiumrosenbergii, M. lamarrei, M. kistnense, Palaemonstyliferus; and Penaeus monodon. The phylogenetic analysis (ML and NJ) showed that all species share a habitat with P. monodon from India (Figure 1a, 1b). The natural range of this particular Palaemoid species is eastward from eastern Pakistan up to Borneo and Java (Wow or and Ng 2007, as M.dacqueti). The species is widely cultured both within its natural range and far
by beyond (Africa, South America). Further specimens have been found in Sao Paulo state, but these may represent a non-breeding population.

The current fishery product intensification program continues to be developed, which has made the Macrobrachium rosenbergii species the main export product of Bangladesh to the United States, Japan, the EU, the United Kingdom, Italy, Belgium and Germany. The giant prawn shrimp has developed a monoculture [16] or polyculture system[17]. From the results of the molecular identification, it can be determined that Macrobrachium rosenbergii is scattered in the southern region of Bangladesh. It was found that this type of giant freshwater prawn has a kinship with the same species in India which belongs to the M. rosenbergii region in the West. It is now known M. rosenbergii has three different distributions, namely Eastern, Western and Australian 'Race', separated by Huxley's and Wallace's lines [18].

Beside M. rosenbergii, another freshwater prawn, M. lamarrei also, is found in India [13] and distributed in the Indo West-Pacific region. It can also be found in Nepal [19], which have a part of their life cycle only in freshwater [20]. The previous study found M. lamarrei in the northeast and southwest part of Bangladesh [21]. Even though M. rosenbergii was a common species for prawn culturing in Bangladesh, another species is the wild freshwater prawn. Currently, M. lamarrei and M. kistnense are wild freshwater prawns and are not yet cultured for commercial purposes. They are very famous in artisanal fisheries in Bangladesh, reaching 93%, and only 7% have been found in industrial fisheries [22]. Palaemon styliferus is an estuarine prawn species commonly found as an artisanal fishery product in Bangladesh. Currently, there have been a very limited number of publications regarding the population and genetic study of this species. This species can be found in Sangu River, including 127 Ichthyofauna [23].

4. Conclusion

Molecular identification has successfully identified four species from the Palaemonid family and one Penaeid shrimp, collected from the southern part of Bangladesh. This identification clarified their phylogeographic status, and also improved the molecular information available in the GenBank database, which is very useful for genetic population studies and related topics. The phylogenetic analysis also showed the diversity and evolution of the five species of the Palaemonidae and Penaeidae family, distributed in Indo-Pacific waters (Bangladesh, India, Pakistan, Myanmar, Nepal etc).

5. References
[1] DoF 2016 Fishery statistical yearbook of Bangladesh. Fisheries (Dhaka: Resources Survey System. Department of Fisheries Ministry of Fisheries and Livestock, Government of the Peoples, Republic of Bangladesh)
[2] Hossain M.A 2018 Sci. Total Environ. 637 954-970
[3] FAO 2015 FAO yearbook of Fishery Statistics, Aquaculture Production vol. 90/2 (Rome: Food and Agricultural Organization of the United Nations) p 90
[4] Rosenberry B 1997 World shrimp farming 1999 (San Diego: Shrimp News International) p 284
[5] Alauddin M, Hamid M A 1999 Shrimp culture in Bangladesh with emphasis on social and economic aspects in ACIAR PROCEEDINGS. 1999 and ACIAR; 1998
[6] Wahab M A 2012 Aquac. Res. 43(7): 970-983
[7] Mutoh H. 1980 Field guide for the edible crustacea of the Philippines (Aquaculture Department, Southeast Asian Fisheries Development Center)
[8] Hossain M., Uddin M, Fakhruddin A 2013 Rev. Environ. Sci. Bio. 12(3): 313-332
[9] Siddiqui K 2007 Encyclopedia of Flora and Fauna of Bangladesh. Vols 5 & 11 (Dhaka: Asiatic Society of Bangladesh)
[10] Rahman A A 1989 Freshwater fishes of Bangladesh. Zoological Society of Bangladesh
[11] Vrijenhoek R 1994 Mol. mar. bio. biotec. 3(5): 294-299
[12] Kumar S, Stecher G, Tamura K 2016 Mol. biol. evol. 33(7): 1870-1874
[13] Udayasuriyan R, Kalpana R 2017 J. Gen. Prot.
[14] Murphy N P, Austin C M 2005 Zool. Scr. 34(2): 187-197
[15] Hoq M E, Wahab M A, Islam M N 2006 Wetl. Ecol. Manag. 14(1): 79-93
[16] Hossain M A, Paul L 2007 Aquac. Res. 38(3): 232-238
[17] Wahab M A 2008 Aquac. Res. 39(14): 1524-1532
[18] De Bruyn M, Wilson J A, Mather P B 2004 Mol. phylogenet. evol. 30(1), 251-257
[19] Sharma A, Subba B 2005 Our nature 3(1): 31-41
[20] Liu M Y, Cai Y X, Tzeng C S 2007 Zool. Stud. Tai. 46(3): 272
[21] Saifullah A 2005 Pak. J. Bio. Sci. 8(3): 425-428
[22] Mome M A 2007 The potential of the artisanal hilsa fishery in Bangladesh: an economically efficient fisheries policy (Iceland: Fisheries Training Programme Final Project Report, United Nations University)
[23] Azadi M, Arshad-ul-Alam M 2014 Biodiversity and conservation of fin and shellfishes of the River Sangu, Bangladesh (Dhaka: The IUCN Bangladesh-The Festschrift on the 50th Anniversary of the IUCN Red List of threatened Species TM) p 67-74

Acknowledgment
We would like to thank the graduate students at the Molecular Physiology Laboratory in Pukyong National University, Busan in the Republic of Korea for their helpful suggestions during this study. This work was supported by a grant from Pukyong National University in 2017.