Additive Sequences, Sums, Golden Ratios and Determinantal Identities

Asutosh Kumar
P. G. Department of Physics, Gaya College, Magadh University, Rampur, Gaya 823001, India
Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Prayagraj 211 019, India
Vaidic and Modern Physics Research Centre, Bhagal Bhim, Bhinmal, Jalore 343029, India
(asutoshk.phys@gmail.com)

Abstract. The Fibonacci sequence is a series of positive integers in which, starting from 0 and 1, every number is the sum of two previous numbers, and the limiting ratio of any two consecutive numbers of this sequence is called the golden ratio. The Fibonacci numbers and the golden ratio are two significant concepts that keep appearing everywhere. In this article, we investigate the following issues:

• We recall the Fibonacci sequence, the golden ratio, their properties and applications, and some early generalizations of the golden ratio. The Fibonacci sequence is a 2-sequence because it is generated by the sum of two previous terms, $f_{n+2} = f_{n+1} + f_n$. As a natural extension of this, we introduce several typical p-sequences where every term is the sum of p previous terms given p initial values called seeds. In particular, we introduce the notion of 1-sequence. We then discuss generating functions and limiting ratio values of p-sequences. Furthermore, inspired by Fibonacci’s rabbit pair problem, we consider a general problem whose particular cases lead to nontrivial additive sequences.

• We obtain closed expressions for odd and even sums, sum of the first n numbers, and the sum of squares of the first n numbers of the exponent p-sequence whose seeds are $(0, 1, \cdots, p-1)$.

• We investigate the p-golden ratio of p-sequences, express a positive integer power of the p-golden ratio as a polynomial of degree $p-1$, and obtain values of golden angles for different p-golden ratios. We also consider further generalizations of the golden ratio.

• We establish a family of determinantal identities of which the Cassini’s identity is a particular case.
1 Introduction

We are familiar with the celebrated Fibonacci sequence [1–3]: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... In this sequence, each number is the sum of the previous two, starting from 1 and 1. The ratio of consecutive Fibonacci numbers approaches the unique number 1.618. That is, \(f_n = f_{n-1} + f_{n-2} \) with \(f_1 = 1 \) and \(f_2 = 1 \), and \(\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = 1.618 \) (upto three decimal places). This sequence arose from the Fibonacci’s famous rabbit pair problem. A version of this problem is: A man puts a male-female pair of adult rabbits in a field. Rabbits take a month to mature before mating. One month after mating, females give birth to one male-female pair and then mate again. It is assumed that no rabbits die but continue breeding. How many rabbit pairs are there after one year? See Table 1 for the answer.

Another problem, a modified version of Pingala’s (c. 200 BC) [4–9], which yields the Fibonacci sequence is: Suppose \(\{s_k \equiv k\}_{k=1}^{p} \) is the set of syllable elements, and a room of \(n \) syllables is available. In how many ways this \(n \)-syllable room can be occupied by these syllable elements? See Table 2 for the answer. Indeed, there are many ways to obtain the Fibonacci sequence.

1.1 Historical background

It is acknowledged that the notions of binomial coefficients via the Mount Meru and the Fibonacci sequence were well known to Indian mathematicians—Pingala (c. 200 BC), Varahamihira (505-587), Kedara (7th century), Virahanka (7th century), Halayudha (10th century), Gopala (c. 1135) and Hemachandra (1089-1172) [4–9], and Persian mathematicians—Al-Karaji (953-1029) and Omar Hayyam (1048-1131) (see [10]) before Fibonacci who had introduced it to the Western world in his book Liber Abaci (1202). The shallow diagonals of the Mount Meru sum to the Fibonacci numbers (see Fig. 1), and the Mount Meru is today popularly called the Pascal’s triangle [10–13] after Blaise Pascal (1623-1662) who introduced this triangle in his treatise Traité du triangle arithmétique (1653). The notion of Pascal’s triangle and its properties were also known to the Chinese—Jia Xian (1010-1070) and Yang Hui (1238-1298), the Germans—Petrus Apianus (1495-1552) and Michael Stifel (1487-1567), and the Italian mathematicians Niccolo Fontana Tartaglia (1499-1557) and Gerolamo Cardano (1501-1576).

1One can also start with \(f_0 = 0 \) and \(f_1 = 1 \). In that case the Fibonacci sequence will be \(\{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...\} \).

2We, therefore, advocate that the Fibonacci sequence be called the Pingala sequence or the Pingala-Fibonacci sequence.

3Keeping up with the tradition of giving due credit to the original propounder, the Pascal’s triangle should be called the Pingala’s triangle or the Pingala-Pascal’s triangle.
Table 1: The Fibonacci sequence resulting from Fibonacci’s famous rabbit pair problem.
In the beginning ($n = 0$), there is one male-female adult pair. At the start of the first month, there is one adult pair (they mate) and zero juvenile pair so there is only 1 rabbit pair. At the start of the second month they produce a new pair, so there are 2 pairs in the field. At the start of the third month, the original pair produce a new pair, but the second pair only mate without breeding, so there are 3 pairs in all. And so on. Note that $a_{n\geq2} = a_{n-1} + b_{n-1}$, $b_{n\geq2} = a_{n-1}$, and $t_{n\geq2} = a_n + a_{n-1} = t_{n-1} + t_{n-2}$.

n (month)	adult pair (a_n)	baby pair (b_n)	total pair (t_n)
0	1	0	1
1	1	0	1
2	1+0	1	2
3	1+1	1	3
4	2+1	2	5
5	3+2	3	8
6	5+3	5	13
7	8+5	8	21
8	13+8	13	34
9	21+13	21	55
10	34+21	34	89
11	55+34	55	144
12	89+55	89	233
13	144+89	144	377
14	233+144	233	610
15	377+233	377	987
16	610+377	610	1597
17	987+610	987	2584
18	1597+987	1597	4181
Table 2: Possible arrangements of occupation of \(n \)-syllable room with 1-syllable and 2-syllable elements. Each occupation is of the form \(s_1^{n_1} s_2^{n_2} (m) \), where \(s_k^{n_k} \) means that \(s_k \) occurs \(n_k \) times and number \(m \) in the parenthesis denotes the possible arrangements or multiplicity of \(s_1^{n_1} s_2^{n_2} \). The numbers in the last column build up a sequence. We call this syllable 2-sequence. This can be straightforward generalized for any number of syllable elements: \(\{ s_k \equiv k \}^p_{k=1} \). Note that \(n = \sum_{k=1}^p k \ n_k \) and multiplicity \(m = \frac{(n_1+n_2+\cdots+n_p)!}{n_1! \ n_2! \cdots n_p!} \).

And the last column (total number of ways in which \(n \)-syllable room can be occupied by these syllable elements): numbers in the first \(p \) rows will be \(2^0, 2^1, \cdots, 2^{p-1} \), and number in the \(n^{th} \) row \((n > p) \) will be the sum of \(p \)-previous terms. Numbers \(2^0, 2^1, \cdots, 2^{p-1} \) serve as the seeds for the syllable \(p \)-sequence.

\(n \)	possible arrangements	total
1	\(s_1 s_2^0 (1) \) [1]	1
2	\(s_1^1 s_2^1 (1) \), \(s_1^0 s_2^2 (1) \) [2]	2
3	\(s_1^2 s_2^1 (11) \), \(s_1^1 s_2^1 (2) \) [12, 21]	3
4	\(s_1^3 s_2^0 (111) \), \(s_1^1 s_2^1 (3) \) [112, 121, 211], \(s_1^0 s_2^2 (1) \) [22]	5
5	\(s_1^4 s_2^0 (1111) \), \(s_1^3 s_2^1 (4) \) [1112, 1121, 1211, 2111], \(s_1^1 s_2^2 (3) \) [122, 212, 221]	8

Figure 1: Pingala’s Mount Meru (Pascal’s triangle).
1.2 Other additive sequences

Lucas sequence, like Fibonacci sequence, is given by $l_n = l_{n-1} + l_{n-2}$ with $l_1 = 2$ and $l_2 = 1$ [2,3]. In general, starting with $g_1 = a$ and $g_2 = b$, one can construct the following sequence: $a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, \ldots$, $g_{n \geq 3} = f_{n-2}a + f_{n-1}b$. \ldots This general sequence is customarily called the Gopala-Hemchandra sequence [5, 6]. Furthermore, Narayana Pandita in his book Ganita Kaumudi (1356) [14] studies additive sequences where each term is the sum of the p-previous terms. He states the problem as: A cow gives birth to a calf every year. The calves become young and they begin giving birth to calves when they are three years old. Tell me, O learned man, the number of progeny produced during twenty years by one cow.

1.3 Golden ratio

The golden ratio [15–23] \footnote{The golden ratio is also called golden proportion, golden number, golden section, golden mean, divine proportion, and extreme and mean ratio.} as defined by Euclid in his book The Elements [22] is: A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less.

That is, the golden ratio arises when we consider division of a line segment AB with a point P such that $\frac{AP}{BP} = \frac{AB}{AP}$, where $AP > BP$ (see Fig. 2). Given $AP = a$ and $BP = b$ are two positive numbers, the above problem translates as

$$\frac{a}{b} = \frac{a + b}{a}.$$ (1)

Taking $\frac{a}{b} = x$, the above equation can be rewritten as $x = 1 + \frac{1}{x}$. This reduces to the characteristic equation \footnote{The characteristic equation is the minimal polynomial from which all the algebraic properties of an algebraic number (here Φ) can be drawn.} $X(x) = x^2 - x - 1 = 0$, (2)
whose positive solution is

$$\Phi = \frac{\sqrt{5} + 1}{2} = 1.618.$$ (3)
1.4 Relation between Fibonacci sequence and golden ratio

The Fibonacci sequence is closely related to the Golden Ratio in the sense that the limiting ratio value of the Fibonacci sequence, i.e., the ratio of successive numbers of the Fibonacci sequence tends to the golden ratio,

$$\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \Phi.$$ \hspace{1cm} (4)

1.5 Properties of Fibonacci numbers and golden ratio

The golden ratio has a number of interesting properties. They are listed below:

1. Some relations between Fibonacci numbers $f_0 = 0$, $f_1 = 1$, $f_{n \geq 2} = f_{n-1} + f_{n-2}$, and Lucas numbers $l_0 = 2$, $l_1 = 1$, $l_{n \geq 2} = l_{n-1} + l_{n-2}$.

 (a) $l_n = f_{n+1} + f_{n-1} = 2f_{n+1} - f_n$.

 (b) $f_n + f_{n+2} = l_{n+1}$.

 (c) $l_n + l_{n+2} = 5f_{n+1}$.

2. $f_{n+1}f_{n-1} - f_n^2 = (-1)^n$ (Cassini’s identity).

3. $\Phi^2 = \Phi + 1$.

4. $\Phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$.

5. $\Phi = \frac{1 + \sqrt{5}}{2}$ and $\phi = \frac{1 - \sqrt{5}}{2}$.

6. $\phi = \frac{1}{\Phi} = \Phi - 1$.

7. $\Phi = 1 + \frac{1}{\phi}$.

8. The golden ratio, continued fractions and its convergents.

 (a) The continued fraction 6 of the golden ratio:

 $$\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}} \equiv [1; \overline{1}] . \hspace{1cm} (5)$$

6A continued fraction is a form of representing a number by nested fractions, all of whose numerators are 1. The continued fraction of a rational number x is finite and is represented as $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}$, where a_1, a_2, \cdots, a_n are positive integers and a_0 is any integer. For example, $\frac{5}{4} = 1 + \frac{1}{1 + \frac{1}{2}} \equiv [1; 1, 2]$ and $\frac{10}{7} = 1 + \frac{1}{2 + \frac{1}{4}} \equiv [1; 2, 3]$. Note that the first term is followed by a semicolon, while other terms are followed by commas. If x is irrational, then $n \to \infty$.

6
(b) The convergents7 of the golden ratio:

\[[\Phi]_n = [1; \overline{1}]_n = \frac{f_{n+1}}{f_n}. \] \hspace{1cm} (6)

(c) The continued fraction of powers of the golden ratio:

\[[\Phi^n] = \begin{cases}
[l_n, \overline{f_n}] & (n \text{ odd}), \\
[l_n - 1, \overline{1, l_n - 2}] & (n \text{ even}).
\end{cases} \] \hspace{1cm} (7)

(d) The convergents of powers of the golden ratio:

\[\frac{f_{a(n+1)}}{f_{an}} = \begin{cases}
[\Phi^a]_n & (a \text{ odd}), \\
[\Phi^a]_{2n} & (a \text{ even}).
\end{cases} \] \hspace{1cm} (8)

9. \(\Phi = \lim_{n \to \infty} \frac{f_{n+1}}{f_n} \).

10. \(\Phi^n = \Phi^{n-1} + \Phi^{n-2} = \Phi f_n + f_{n-1} \).

11. \(f_n = \frac{\Phi^n - (-\phi)^n}{\sqrt{5}} \) (Binet’s formula).

12. \(\Phi^n = \frac{l_n + f_n \sqrt{5}}{2} \).

13. \(\Phi \) as an infinite series: \(\Phi = \frac{13}{8} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(2n+1)!}{n!(n+2)!4^{2n+3}} \).

14. \(\Phi \) as trigonometric functions: \(\Phi = 1 + 2 \sin 18^\circ = 2 \sin 54^\circ = \frac{1}{2} \csc 18^\circ \).

1.6 Applications of golden ratio

The golden ratio is certainly a famous number, and also a \textit{divine} one as considered by some [15, 21]. It allegedly appears everywhere.

- \textit{In geometry, maths and science} [21, 24–47]. The golden ratio appears, by construction, in geometrical objects such as the golden polygons (triangle, rectangle, pentagon, etc.) and golden spirals. It also appears in science, physical theories and problems.

7A \textit{convergent} is the truncation of a continued fraction. For example, the second convergent of \([1; 2, 3]\) is \([1; 2]\) and the \(m^{th}\) convergent of \([a_0; a_1, a_2, \cdots, a_n]\) is \([a_0; a_1, a_2, \cdots, a_{m-1}]\). That is, \([a_0; a_1, a_2, \cdots, a_n]_m := [a_0; a_1, a_2, \cdots, a_{m-1}]\).
• **In nature** [21, 48, 49]. It exhibits in natural flora and fauna in the form of golden shapes such as spirals and pentagon. A tantalizing connection appears between the Fibonacci numbers (and hence the golden golden) and phyllotaxis (i.e., the arrangement of leaves on a stem, scales on a pine cone, florets on a sunflower, inflorescences on a cauliflower, etc.). The plant tendrils get twisted by spirals, the helical motions are seen in the growth of roots and sprouts, and the sunflower seeds are arranged along the spirals. The spirals in sunflowers appear to rotate both clockwise (21 spirals) and counterclockwise (34 spirals). Remarkably, the numbers 21 and 34 are consecutive Fibonacci numbers. The golden ratio often shows in horns of rams, goats and antelopes. The pentagonal symmetry in the form of star fish, five-petal flowers, certain cactus plants, etc. are widespread in nature.

• **In human body** [21, 50–53]. It is believed that human body and its parts appear in the golden ratio. A ratio of feet-to-head height to feet-to-navel height (and also, ratio of feet-to-navel height to navel-to-head height) is called the navel ratio. A perfect human body is divided by the navel into the golden section. The human hand and face are also based on the golden ratio.

• **In architecture** [21, 54, 55]. It appears that the golden ratio has been used significantly in architecture: in Parthenon, in Great Pyramids of Egypt, in Indian meditation symbol Sri Yantra, in Taj Mahal and several ancient Indian temples such as Tanjavur Brihadeeshwara temple.

• **In art, painting and music** [8, 9, 21, 56–62]. The golden ratio is also prevalent in art, music and painting. For example, in the works of Da Vinci (The Annunciation, Madonna with Child and Saints, The Mona Lisa, St. Jerome, An Old Man, and The Vitruvian Man), in The Holy Family by Michelangelo, The Crucifixion by Raphael and The Sacrament of the Last Supper by Salvador Dali. It is illustrated in prolific number in portraits, paintings of Christian God and sculptures during the renaissance epoch. In music, it is present in works of Beethoven, Mozart, Wilson’s Meru I etc.

As asserted by many, it exists in any place where life and beauty are present.

1.7 Are Fibonacci sequence and golden ratio sacred?

Despite all-round great appearance of the golden ratio, many hold skeptical views on this [63–68]. The reasons are multifold.

• Application of the golden ratio to aesthetics is, by its nature, subjective and controversial. In order to find the golden ratio in our everyday life, we consider
the following either separately or in combination [68]: (i) arbitrary placement of points, lines, rectangles and spirals, (ii) arbitrary thickness of points and lines used as basis for measurements, and (iii) measurements of monuments eroded by time and of objects in photographs distorted by perspective.

• Not all spirals in the nature are the golden ones. The nautilus shell, a prime pedagogical example, corresponds to a spiral with the value $\Phi' = 1.33 (< 1.618)$.

2 Early generalizations of golden ratio

There have been sincere attempts to extend or generalize the notion of golden ratio from various perspectives such as generalizations of Euclid’s problem, limits of recurrence relations, and the characteristic equations [8, 9, 17, 18, 20, 69–82]. Fowler [69] revisited the Euclid’s problem the line divided in extreme and mean ratio and explored the propositions not investigated and proved in Euclid’s Elements. Here, we review briefly some early generalizations.

2.1 Golden p-proportions of Alexey Stakhov

Recall the Euclid’s division problem of a line segment AB into two segments $AP(=a)$ and $BP(=b)$ where $AP > BP$ (see Fig. 2). Alexey Stakhov, a Russian mathematician, considered the following generalization in his book [20]

$$\frac{AP}{BP} = \left(\frac{AB}{AP}\right)^p \Rightarrow \frac{a}{b} = \left(\frac{a + b}{a}\right)^p,$$

(9)

where p is a non-negative integer. From Eq. (9), with $\frac{AB}{AP} = x$, we obtain the following algebraic equation

$$x^{p+1} = x^p + 1,$$

(10)

whose the only positive solution χ_p is called the golden p-proportion. The Fibonacci p-numbers are obtained with the recurrence relation(s),

$$f_n(p) = t_{n-1}(p) + t_{n-(p+1)}(p), \quad (n \geq p + 1)$$

$$f_{n+1}(p) = t_n(p) + t_{n-p}(p), \quad (n \geq p)$$

(11)

where $f_k(p) = 1$, $k = 0, 1, \cdots, p$. These numbers are related to the concept of “deformed” Pascal’s p-triangles via the binomial coefficients as

$$f_{n+1}(p) = \sum_{k=0}^{\infty} \binom{n - kp}{k}.$$

(12)

Note the following observations:
Table 3: The Fibonacci p-numbers $f_n(p)$ for different p values. $f_n(p = 0) = 2^n$ are the binary numbers, $f_n(p = 1)$ are the Fibonacci numbers, and so on.

1. $f_n(p = 0) = 2^n$ are the binary numbers, $f_n(p = 1)$ are the Fibonacci numbers, and so on (see Table 3).
2. $\chi_0 = 2$, $\chi_1 = \frac{1 + \sqrt{5}}{2} = \Phi$, $\chi_\infty = 1$, and $1 \leq \chi_p \leq 2$.
3. $\chi_p^n = \chi_p^{n-1} + \chi_p^{(p+1)} = \chi_p \times \chi_p^{n-1}$.
4. Binomial coefficients, Fibonacci p-numbers, and golden p-proportions.

The notions of the golden p-proportions and Fibonacci p-numbers generalized the original mathematical concepts, and led to several interesting applications including in the different fields of mathematics and computer science [20, 28, 80].

2.2 Metallic means family of Vera Spinadel

Vera Spinadel, an Argentinean mathematician, considered an interesting generalization of the Fibonacci recurrence relation, $t_{n+1} = t_n + t_{n-1}$, in the following form

\[t_{n+1} = pt_n + qt_{n-1}, \]

\[\Rightarrow \frac{t_{n+1}}{t_n} = p + q \frac{t_{n-1}}{t_n}, \]

where p and q are non-negative integers. Assuming that $\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = x$ exists, we have

\[x = p + q \Rightarrow x^2 = px + q. \] \hspace{1cm} (14)

The algebraic equation (14) has a solution

\[\chi_{p,q} = \frac{p + \sqrt{p^2 + 4q}}{2}. \] \hspace{1cm} (15)

Positive solutions in Eq. (15) form a metallic means family (MMF), and Vera Spinadel gave a number of applications of the metallic means in her works [72–76]. Note the following observations:
Table 4: Wilson’s Meru 1 through Meru 9, each with its recurrence relation, the characteristic equation, and the convergence limit.

Meru	recurrence relation	characteristic equation	convergence limit
1	$A_n = A_{n-1} + A_{n-2}$	$x^2 = x + 1$	1.61803
2	$B_n = B_{n-1} + B_{n-3}$	$x^4 = x^2 + 1$	1.46557
3	$C_n = C_{n-2} + C_{n-3}$	$x^3 = x + 1$	1.32472
4	$D_n = D_{n-1} + D_{n-4}$	$x^4 = x^2 + 1$	1.38028
5	$E_n = E_{n-3} + E_{n-4}$	$x^3 = x + 1$	1.22074
6	$F_n = F_{n-1} + F_{n-5}$	$x^5 = x^3 + 1$	1.32472
7	$G_n = G_{n-2} + G_{n-5}$	$x^5 = x^3 + 1$	1.23651
8	$H_n = H_{n-3} + H_{n-5}$	$x^5 = x^3 + 1$	1.19386
9	$I_n = I_{n-4} + I_{n-5}$	$x^5 = x + 1$	1.16730

2.3 Mount merus of Erwin Wilson

Recall Pingala’s Mount Meru (Pascal’s Triangle) in Fig. 1. It was illustrated in 1968 by Thomas Green [83] that the sum of the simplest diagonals of Mount Meru yields the Fibonacci sequence, and that the sum of other diagonals similarly generate other recurrence relations, each with its own limit. Ervin Wilson, a Mexican/American music theorist, investigated these other diagonals and their recurrence relations in music [8,9]. He considered recurrence relations that he called Meru 1 through Meru 9. See Table 4.

2.4 Lower and upper golden ratios of Vedran Krcadinac

We saw earlier that Stakhov considered generalization of the form $\frac{a}{b} = \left(\frac{a+b}{a}\right)^p$ leading to the algebraic equation $x^{p+1} - x^p - 1 = 0$ when $\frac{a+b}{a} = x$. A similar generalization,
proposed by Krcadinac [79], for non-negative integer \(p \), is
\[
\left(\frac{a}{b} \right)^p = \frac{a + b}{a}.
\]
(16)

This relation, in general, leads to two algebraic equations:
\[
X_1(x) = x^{p+1} - x - 1 = 0, \quad \text{when } \frac{a}{b} = x
\]
(17)
\[
X_2(x) = x(x - 1)^p - 1 = 0, \quad \text{when } \frac{a + b}{a} = x
\]
(18)

Let \(\varphi_p \) be the positive root of the polynomial \(X_1(x) \) and \(\phi_p \) be that of the polynomial \(X_2(x) \). Then, \(\varphi_p \) and \(\phi_p \) are respectively called the \(p \)th lower and upper golden ratios. Note the following observations:

1. \(\varphi_0 = \text{undefined} \) and \(\phi_0 = 1 \).
2. \(\lim_{p \to \infty} \varphi_p = 1 \) and \(\lim_{p \to \infty} \phi_p = 2 \).
3. Evidently, \((\varphi_p)^p = \phi_p \).
4. Recurrence relation for \(X_1(x) \): \(f_n(p) = f_{n-p}(p) + f_{n-(p+1)}(p) \).
5. Recurrence relation for \(X_2(x) \): \(F_n(p) = \sum_{k=1}^{p} \binom{p}{k} (-1)^{k+1} F_{n-k}(p) + F_{n-(p+1)}(p) \).
6. \(\lim_{n \to \infty} \frac{f_{n+1}(p)}{f_n(p)} = \varphi_p \) and \(\lim_{n \to \infty} \frac{F_{n+1}(p)}{F_n(p)} = \phi_p \).
7. \(\lim_{n \to \infty} \frac{f_{n+p}(p)}{f_n(p)} = (\varphi_p)^p = \phi_p \).

3 \(p \)-sequences

We call the Fibonacci sequence a 2-sequence because it is generated by the sum of two previous terms. In a similar spirit, we introduce the \(p \)-sequence \(^8\).

To construct a \(p \)-sequence, we begin with \(p \) seeds \((s_0, s_1, \ldots, s_{p-1})\) such that \(t_0 = s_0, \; t_1 = s_1, \ldots, t_{p-1} = s_{p-1} \), and the \(n \)th term is the sum of its \(p \) previous terms \(^9\):

\[
t_n(p) := t_{n-1}(p) + t_{n-2}(p) + \cdots + t_{n-p}(p) = \sum_{k=n-p}^{n-1} t_k(p).
\]

\(^8\) \(p \) in the \(p \)-sequence is for Pingala, Phi(\(\Phi \)), and previous.

\(^9\)This can be equivalently rewritten as \(t_{n+p}(p) := t_{n+p-1}(p) + t_{n+p-2}(p) + \cdots + t_n(p) \).
By definition of $t_n(p)$, we have

$$ t_{n+1}(p) > t_n(p), $$

$$ t_{n+1}(p) = 2t_n(p) - t_{n-p}(p) < 2t_n(p). $$

Depending on the values of seeds, one can construct an infinite number of p-sequences. A few typical p-sequences are:

(i) General p-sequence whose seeds are arbitrary.

$$ S_G(p) \equiv \{(s_0, s_1, \ldots, s_{p-1}), t_n(p)\}. $$

(ii) k p-sequence whose k^{th} seed is unity and other seeds are zero.

$$ S_k(p) \equiv \{(s_i = \delta_{ik}, 0 \leq i \leq p - 1), t_n(p)\}. $$

For example, $S_0(p) \equiv \{(1, 0, \ldots, 0), t_n(p)\}$, $S_1(p) \equiv \{(0, 1, 0, \ldots, 0), t_n(p)\}$, and $S_{p-1}(p) \equiv \{(0, 0, \ldots, 1), t_n(p)\}$. Interestingly, we can rewrite $t_n[S_G(p)]$ in terms of seeds using these k p-sequences,

$$ t_n[S_G(p)] = \sum_{k=0}^{p-1} t_n[S_k(p)]s_k \quad (n \geq 0). $$

For example, $t_1[S_G(p)] = 0.s_0 + 1.s_1 + \cdots + 0.s_{p-1} = s_1$.

(iii) Coefficient p-sequence whose all seeds are unity.

$$ S_C(p) \equiv \{(s_k = 1, 0 \leq k \leq p - 1), t_n(p)\}. $$

There is an important relation between the terms of coefficient p-sequence and those of k p-sequences: $S_C(p) \equiv \sum_{k=1}^{p} S_k(p)$. Put differently,

$$ t_n[S_C(p)] = \sum_{k=0}^{p-1} t_n[S_k(p)]. $$

(iv) Exponent p-sequence whose seeds are $(0, 1, \ldots, p - 1)$.

$$ S_X(p) \equiv \{(s_k = k, 0 \leq k \leq p - 1), t_n(p)\}. $$

(v) Syllable p-sequence whose seeds are $(1, 2, \ldots, 2^{p-1})$.

$$ S_S(p) \equiv \{(s_k = 2^k, 0 \leq k \leq p - 1), t_n(p)\}. $$
We will learn the significance of these particular sequences in the forthcoming articles. For illustrations of and getting familiarized with these sequences, see Tables 5, 6, 7 and 8. Henceforth, $S_G(p) \equiv S(Gp)$, $S_k(p) \equiv S(kp)$, $S_C(p) \equiv S(Cp)$, $S_X(p) \equiv S(Xp)$, and $S_S(p) \equiv S(Sp)$ will be used interchangeably. We will denote the n^{th}-term of an arbitrary p-sequence by $t_n(p)$, and that of a particular p-sequence, viz. exponent sequence by $t_n(Xp)$, syllable sequence by $t_n(Sp)$, k sequence by $t_n(kp)$, and so on. Furthermore, in case of no ambiguity, we will not mention p explicitly in the sequence names and their terms.

3.1 1-sequence

What is 1-sequence? We construct a 1-sequence by choosing a seed $s_0 \geq 0$ and a constant $a \geq 0$ such that $t_0 = s_0$, and for $n \geq 1$

\[
\begin{align*}
t_1 &= t_0 + a = s_0 + a, \\
t_2 &= t_1 + a = s_0 + 2a, \\
t_n &= t_{n-1} + a = s_0 + na.
\end{align*}
\]

(29)

Thus, an additive 1-sequence is essentially an arithmetic progression. With $s_0 = 0$ and $a = 1$, 1-sequence is the set of whole numbers

\[S(1) = \{0, 1, 2, \ldots, 99, 100, \ldots\}.\]

(30)

When $a = 0$, the 1-sequence is a constant sequence: $\{s_0, s_0, s_0, \ldots\}$.

4 Generating functions of p-sequences

The generating function for p-sequences can be given by the power series

\[f_p(x) = \sum_{n=0}^{\infty} t_n(p)x^n,\]

(31)

where $t_n(p)$ is the n^{th} term of a given p-sequence. If we assume that the power series converges, we can show that $f_p(x)$ is given by

\[(1 - \sum_{k=1}^{p} x^k)f_p(x) = \sum_{k=0}^{p-1} [t_k(p) - \sum_{j=0}^{k-1} t_j(p)] x^k.\]

(32)
For example, for the exponent p-sequence $S(Xp)$, the generating functions are

\begin{align*}
 f_{X^2}(x) &= \frac{x}{1 - x - x^2}, \\
 f_{X^3}(x) &= \frac{x + x^2}{1 - x - x^2 - x^3}, \\
 f_{X^4}(x) &= \frac{x + x^2}{1 - x - x^2 - x^3 - x^4}, \\
 f_{X^5}(x) &= \frac{x + x^2 - 2x^4}{1 - x - x^2 - x^3 - x^4 - x^5}.
\end{align*}

5 Limiting ratio value of p-sequences

For an arbitrary p-sequence whose subsequent terms are the sum of p-previous terms $[t_n(p) := \sum_{k=n-p}^{n-1} t_k]$, we see from Tables 5, 6, 7 and 8 that the limiting ratio value of every p-sequence approaches a constant, say Φ_p. That is,

\[\Phi_p = \lim_{n \to \infty} \frac{t_{n+1}(p)}{t_n(p)} \]

(33)

Because $t_{n+1}(p) > t_n(p)$ and $t_{n+1}(p) < 2t_n(p)$, hence

\[1 < \Phi_p < 2. \]

(34)

Using Eq. (33), for integers u and v, it is easy to see that

\[\lim_{n \to \infty} \frac{t_{n+u}(p)}{t_n(p)} = \Phi_p^u, \quad \lim_{n \to \infty} \frac{t_{n+u}(p)}{t_{n+v}(p)} = \Phi_p^{u-v}. \]

(35)

5.1 Φ_p in the limit $p \to \infty$

Consider the syllable p-sequence $S_S(p \to \infty) = \{1, 2, 4, 8, 16, \ldots \}$, and the extended syllable p-sequence $S_S(p \to \infty) \equiv \{(0, 1), S_S(p \to \infty)\} = \{0, 1, 1, 2, 4, 8, 16, \ldots \}$, where each term is the sum of all the previous terms except the first two. For both these sequences, we have

\[\Phi_{p \to \infty} = \lim_{n \to \infty} \frac{t_{n+1}(p)}{t_n(p)} = 2. \]

(36)

Moreover, from Table 9, $\Phi_p = 2$ for $p \geq 18$.

15
5.2 Propositions

In Tables 5, 6, 7 and 8, we constructed p-sequences for $p = 2, 3, 4, 5$, and found their limiting ratio values. Similarly, one can construct tables of higher p-sequences and find their limiting ratio values. See Table 9 for the values of limiting ratios. In this regard, we propound the following two propositions.

(P1) The limiting ratio value of any p-sequence $S(p)$ is Φ_p. It is independent of the initial conditions (i.e., the seeds).

(P2) $\Phi_{p\geq 18} = 2$.

6 More additive sequences

In this section, motivated by Pingala’s syllable problem, Fibonacci’s rabbit pair problem, and Narayan Pandit’s cow’s progeny problem, we investigate a general problem: A creature gives birth to α female young ones in one unit of time. Baby creature grows and gives birth when β units of time old. The creature ceases to give birth after γ terms, and dies when δ units of time old. What is the total number of progeny at the end of n units of time? Initially, there is a single adult creature. Following, we consider a few illustrations sans δ. See Tables 10, 11, 12 and 13. We invite the readers to investigate the problem taking into account δ also.

7 Sums of p-sequences

In this section, we obtain closed expressions for odd and even sums, sum of the first n numbers, and the sum of squares of the first n numbers of the exponent p-sequences. We state the results without giving any proof. We invite the enthusiastic readers to verify (using Tables 5, 6, 7 and 8) and prove them, and also obtain similar expressions for other p-sequences.

7.1 Sum of first n numbers

Consider the general 1-sequence $S_G(1) = \{t_0 = s_0, t_1 = s_0 + a, t_n = t_{n-1} + a = s_0 + na\}$. The sum of first $n \geq 0$ terms of this sequence is

$$\sum_{k=0}^{n} t_k(G1) = \frac{(n + 1)(t_n + t_0)}{2} = \frac{(n + 1)(2s_0 + na)}{2}. \quad (37)$$
Table 5: 2-sequences. (i) \(S_C \equiv S_1 + S_0 \). (ii) \(S_X = S_1 \). (iii) \(S_1 \sim S_0 \sim S_C \sim S_S \). (iv) \(S_G \) is a general 2-sequence with seeds \(s_1 = 2 \), \(s_2 = 21 \). (v) For each of these 2-sequences, \(\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.61803 \).
Table 6: 3-sequences. (i) $S_C \equiv S_2 + S_1 + S_0$. (ii) $S_2 \sim S_0 \sim S_S$. (iii) $S_1 \sim S_X$. (iv) For each of these 3-sequences, $\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.83929$.

n	$S_2(3)$	$S_1(3)$	$S_0(3)$	$S_C(3)$	$S_X(3)$	$S_S(3)$
0	0	0	0	1	0	1
1	0	1	0	1	1	2
2	1	0	1	1	2	4
3	1	1	1	3	3	7
4	2	2	2	5	6	13
5	4	4	4	9	11	24
6	7	6	7	17	20	44
7	13	11	13	31	37	81
8	24	20	24	57	68	149
9	44	37	44	105	125	274
10	81	68	81	193	230	504
11	149	125	149	355	423	927
12	274	230	274	653	778	1705
13	504	423	504	1201	1431	3136
14	927	778	927	2209	2632	5768
15	1705	1431	1705	4063	4841	10609
16	3136	2632	3136	7473	8904	19513
17	5768	4841	5768	13745	16377	35890
18	10609	8904	10609	25281	30122	66012
19	19513	16377	19513	46499	55403	121415
20	35890	30122	35890	85525	101902	223317
21	66012	55403	66012	157305	187427	410744
22	121415	101902	121415	289329	344732	755476
23	223317	187427	223317	532159	634061	1389537
24	410744	344732	410744	978793	1166220	2555757
25	755476	634061	755476	1800281	2145013	4700770

For each of these 3-sequences, $\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.83929$.

18
n	$S_3(4)$	$S_2(4)$	$S_1(4)$	$S_0(4)$	$S_C(4)$	$S_X(4)$	$S_S(4)$
0	0	0	0	1	1	0	1
1	0	0	1	0	1	1	2
2	0	1	0	0	1	2	4
3	1	0	0	0	1	3	8
4	1	1	1	1	4	6	15
5	2	2	2	1	7	12	29
6	4	4	3	2	13	23	56
7	8	7	6	4	25	44	108
8	15	14	12	8	49	85	208
9	29	27	23	15	94	164	401
10	56	52	44	29	181	316	773
11	108	100	85	56	349	609	1490
12	208	193	164	108	673	1174	2872
13	401	372	316	208	1297	2263	5536
14	773	717	609	401	2500	4362	10671
15	1490	1382	1174	773	4819	8408	20569
16	2872	2664	2263	1490	9289	16207	39648
17	5536	5135	4362	2872	17905	31240	76424
18	10671	9898	8408	5536	34513	60217	147312
19	20569	19079	16207	10671	66526	116072	283953
20	39648	36776	31240	20569	128233	223736	547337
21	76424	70888	60217	39648	247177	431265	1055026
22	147312	136641	116072	76424	476449	831290	2033628
23	283953	263384	223736	147312	918385	1592363	3919944
24	547337	507689	431265	283953	1770244	3068654	7555935
25	1055026	978602	831290	547337	3412255	5623572	14564533

Table 7: 4-sequences. (i) $S_C \equiv S_3 + S_2 + S_1 + S_0$. (ii) $S_3 \sim S_0 \sim S_S$. (iii) $S_1 \sim S_X$. (iv) For each of these 4-sequences, $\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.92756$.
n	$S_4(5)$	$S_3(5)$	$S_2(5)$	$S_1(5)$	$S_0(5)$	$S_C(5)$	$S_X(5)$	$S_S(5)$
0	0	0	0	1	1	0	1	1
1	0	0	1	0	1	1	2	2
2	0	0	1	0	0	1	2	4
3	0	1	0	0	0	1	3	8
4	1	0	0	0	0	1	4	16
5	1	1	1	1	1	5	10	31
6	2	2	2	2	1	9	20	61
7	4	4	4	3	2	17	39	120
8	8	8	7	6	4	33	76	236
9	16	15	14	12	8	65	149	464
10	31	30	28	24	16	129	294	912
11	61	59	55	47	31	253	578	1793
12	120	116	108	92	61	497	1136	3525
13	236	228	212	181	120	977	2233	6930
14	464	448	417	356	236	1921	4390	13624
15	912	881	820	700	464	3777	8631	26784
16	1793	1732	1612	1376	912	7425	16968	52656
17	3525	3405	3169	2705	1793	14597	33358	103519
18	6930	6694	6230	5318	3525	28697	65580	203513
19	13624	13160	12248	10455	6930	56417	128927	400096
20	26784	25872	24079	20554	13624	110913	253464	786568
21	52656	50863	47338	40408	26784	218049	498297	1546352
22	103519	99994	93064	79440	52656	428673	979626	3040048
23	203513	196583	182959	156175	103519	842749	1925894	5976577
24	400096	386472	359688	307032	203513	1656801	3786208	11749641
25	786568	754784	707128	603609	400096	3257185	7443489	23099186

Table 8: 5-sequences. (i) $S_C ≡ S_4 + S_3 + S_2 + S_1 + S_0$. (ii) $S_4 ∼ S_0 ∼ S_S$. (iii) For each of these 5-sequences, $\lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.96595$.

20
Table 9: The limiting ratio value $\Phi_p := \lim_{n \to \infty} \frac{t_{n+1}}{t_n}$ for p-sequences, $2 \leq p \leq 21$. We have limited ourselves here to five decimal places (for no sacred reasons). Evidently, $\Phi_2 < \Phi_3 < \cdots < \Phi_{p \geq 18} = 2$.

p	2	3	4	5
Φ_p	1.61803	1.83929	1.92756	1.96595
p	6	7	8	9
Φ_p	1.98358	1.99196	1.99603	1.99803
p	10	11	12	13
Φ_p	1.99902	1.99951	1.99976	1.99988
p	14	15	16	17
Φ_p	1.99994	1.99997	1.99998	1.99999
p	18	19	20	21
Φ_p	2.0	2.0	2.0	2.0

Table 10: $\alpha = 1, \beta = 2$ and $\gamma = \text{NA}$. This yields Pingala (Fibonacci) sequence. Here $t_{n \geq 1} = b_n + b_{n-1}, t_{n \geq 3} = b_n + b_{n-2} + b_{n-3}$ (sum of $\beta + 1$ terms), $t_{n \geq 3} = t_{n-1} + t_{n-2}$ (recurrence relation), $x^2 = x + 1$ (characteristic equation) and $x = \lim_{n \to \infty} \frac{t_{n+1}}{t_n} = 1.618$ (limiting ratio).

n	creature	baby (b_n) at start	total (t_n) at end
0	1	0	0
1	1	1	1
2	1	1	2
3	1+1	2	3
4	2+1	3	5
5	3+2	5	8
6	5+3	8	13
7	8+5	13	21
8	13+8	21	34
9	21+13	34	55
10	34+21	55	89
11	55+34	89	144
12	89+55	144	233
13	144+89	233	377
14	233+144	377	610
15	377+233	610	987
Table 11: $\alpha = 1$, $\beta = 3$ and $\gamma = \text{NA}$. This sequence corresponds to Narayana Pandit’s cow’s progeny problem posed in *Ganit Kaumudi*. Here $t_{n\geq 3} = b_n + b_{n-1} + b_{n-2} + b_{n-3}$ (sum of $\beta + 1$ terms), $t_{n\geq 5} = t_{n-1} + t_{n-4}$ (recurrence relation), $x^4 = x^3 + 1$ (characteristic equation) and $x = \lim_{n\to\infty} t_{n+1}/t_n = 1.38$ (limiting ratio). See also Wilson’s *Meru 4*.

n	creature	baby (b_n)	total (t_n)
0	1	0	0
1	1	1	1
2	1	1	2
3	1	1	3
4	1	1	4
5	1+1	2	5
6	2+1	3	7
7	3+1	4	10
8	4+1	5	14
9	5+2	7	19
10	7+3	10	26
11	10+4	14	36
12	14+5	19	50

Table 12: $\alpha = 2$, $\beta = 2$ and $\gamma = 3$. Here $t_{n\geq 2} = b_n + b_{n-1} + b_{n-2}$ (sum of $\beta + 1$ terms). If $n = a\gamma + b$ then $t_n = b\alpha$ (when $a = 0$) and $t_n = [b(\alpha - 1) + \gamma]\alpha^a$ (when $a \geq 1$). Also note that $t_{n\leq 2}(\alpha = 1) = b$ and $t_{n\geq 3}(\alpha = 1) = \gamma = 3$.

n	creature	baby (b_n)	total (t_n)	
0	1	α	α	
1	α	α^2	$\alpha^2 + 2\alpha$	
2	α	2α	4	
3	α	3α	6	
4	$(1+\alpha) - 1$	α^2	$\alpha^2 + 2\alpha$	
5	$(\alpha + \alpha) - \alpha$	α^2	$2\alpha^2 + \alpha$	
6	$(\alpha + \alpha^2) - \alpha$	α^2	$3\alpha^2$	
7	$(\alpha^2 + \alpha^2) - \alpha^2$	α^2	$\alpha^2 + 2\alpha^2$	
8	$(\alpha^2 + \alpha^2) - \alpha^2$	α^2	$2\alpha^3 + \alpha^2$	
9	$(\alpha^2 + \alpha^3) - \alpha^2$	α^3	$3\alpha^3$	
10	$(\alpha^2 + \alpha^3) - \alpha^2$	α^3	$\alpha^4 + 2\alpha^3$	
11	$(\alpha^3 + \alpha^3) - \alpha^3$	α^4	$2\alpha^4 + \alpha^3$	
12	$(\alpha^3 + \alpha^3) - \alpha^3$	α^4	$3\alpha^4$	
n	creature	baby \((b_n)\)	total \((t_n)\)	
---	---	---	---	
0	1	0	0	
1	1	\(\alpha\)	\(\alpha\)	2
2	1	\(\alpha\)	\(2\alpha\)	4
3	0	0	\(2\alpha\)	4
4	0	0	\(2\alpha\)	4
5	\(\alpha\)	\(\alpha^2\)	\(\alpha^2 + \alpha\)	6
6	\(\alpha + \alpha\)	\(2\alpha^2\)	\(3\alpha^2\)	12
7	\((2\alpha + 0) - \alpha\)	\(\alpha^2\)	\(4\alpha^2\)	16
8	\((\alpha + 0) - \alpha\)	0	\(4\alpha^2\)	16
9	\((0 + \alpha^2) - 0\)	\(\alpha^3\)	\(\alpha^3 + 3\alpha^2\)	20
10	\((\alpha^2 + 2\alpha^2) - 0\)	\(3\alpha^3\)	\(4\alpha^3 + \alpha^2\)	36
11	\((3\alpha^2 + \alpha^2) - \alpha^2\)	\(3\alpha^3\)	\(7\alpha^3\)	56
12	\((3\alpha^2 + 0) - 2\alpha^2\)	\(\alpha^3\)	\(8\alpha^3\)	64
13	\((\alpha^2 + \alpha^3) - \alpha^2\)	\(\alpha^4\)	\(\alpha^4 + 7\alpha^3\)	72
14	\((\alpha^4 + 3\alpha^3) - 0\)	\(4\alpha^4\)	\(5\alpha^4 + 4\alpha^3\)	112
15	\((4\alpha^3 + 3\alpha^3) - \alpha^3\)	\(6\alpha^4\)	\(11\alpha^4 + \alpha^3\)	184

Table 13: \(\alpha = 2, \beta = 3\) and \(\gamma = 2\). Here \(t_{n\geq3} = b_n + b_{n-1} + b_{n-2} + b_{n-3}\) (sum of \(\beta + 1\) terms).

Recall that the exponent \(p\)-sequence \(S_X(p)\) whose seeds are \((0, 1, \ldots, p-1)\) is given as

\[
S_X(p) \equiv \{(s_k = k, \ 0 \leq k \leq p - 1), \ t_n(p)\}, \tag{38}
\]

where \(t_n(p) := \sum_{k=n-p}^{n-1} t_k\). Here we obtain the sum of first \(n\) numbers of \(p\)-sequence \(S(Xp)\) for different values of \(p\).

\[
\sum_{k=1}^{n} t_k(X2) = t_{n+2} - t_2, \tag{39}
\]

\[
2 \sum_{k=1}^{n} t_k(X3) = t_{n+2} + t_n - [t_3 - t_1]. \tag{40}
\]

\[
3 \sum_{k=1}^{n} t_k(X4) = t_{n+2} + 2t_n + t_{n-1} - [t_3 - t_1]. \tag{41}
\]

and
\[(p - 1) \sum_{k=1}^{n} t_k(Xp) = \sum_{k=0}^{p-1} (p - k)t_{n-k} - (t_p - \sum_{k=1}^{p-2} (p - 1 - k)t_k), \quad (42)\]

\[= t_{n+1} + \sum_{k=0}^{p-2} (p - 1 - k)t_{n-k} - (t_p - \sum_{k=1}^{p-2} (p - 1 - k)t_k), \quad (43)\]

\[= t_{n+2} + \sum_{k=0}^{p-2} (p - 2 - k)t_{n-k} - (t_p - \sum_{k=1}^{p-2} (p - 1 - k)t_k), \quad (44)\]

\[= t_{n+p} + \sum_{k=1}^{p-2} (p - 1 - k)t_{n+k} - (t_p - \sum_{k=1}^{p-2} (p - 1 - k)t_k). \quad (45)\]

7.2 Odd and even sums

- **Sum of the first \(n \) odd numbers of**

 (i) \(S_X(2) \) is \(\sum_{i=1}^{n} t_{2i-1} = t_{2n}, \)

 (ii) \(S_X(3) \) is \(\sum_{i=1}^{n} t_{2i-1} = \frac{t_{2n+1} + t_{2n-1} - 1}{2}, \)

 (iii) \(S_X(4) \) is \(\sum_{i=1}^{n} t_{2i-1} = \frac{t_{2n+1} + t_{2n-1} - 2}{3}, \)

 (iv) \(S_X(5) \) is \(\sum_{i=1}^{n} t_{2i-1} = \frac{t_{2n+1} + t_{2n-1} + t_{2n-3}}{4}. \)

- **Sum of the first \(n \) even numbers of**

 (i) \(S_X(2) \) is \(\sum_{i=1}^{n} t_{2i} = t_{2n+1} - 1, \)

 (ii) \(S_X(3) \) is \(\sum_{i=1}^{n} t_{2i} = \frac{t_{2n+1} + t_{2n-1}}{2}, \)

 (iii) \(S_X(4) \) is \(\sum_{i=1}^{n} t_{2i} = \frac{3t_{2n+2} + 2t_{2n-1}}{3}, \)

 (iv) \(S_X(5) \) is \(\sum_{i=1}^{n} t_{2i} = \frac{4t_{2n+2} + t_{2n-1} + t_{2n-3}}{4}. \)

8 Sum of squares of first \(n \) numbers

Following, we obtain the sum of squares of first \(n \) terms of \(p \)-sequence. For \(p = 1 \) we consider the general sequence \(S_G(1) \), and for \(p = 2, 3, 4 \) we consider the exponent
sequence $S_X(p)$.

8.1 $p = 1$ (general sequence)

For the general 1-sequence $S_G(1) = \{ t_0 = s_0, t_1 = s_0 + a, t_n = t_{n-1} + a = s_0 + na \}$, the sum of squares of first $n \geq 0$ terms is

$$
\sum_{k=0}^{n} t_k^2(G1) = (n + 1) [s_0^2 + ns_0a + \frac{n(2n+1)}{6}a^2]. \quad (46)
$$

8.2 $p = 2$ (exponent sequence)

$$
\sum_{k=1}^{n} t_k^2(X2) = t_n(X2)t_{n+1}(X2). \quad (47)
$$

8.3 $p = 3$ (exponent sequence)

$$
\sum_{k=1}^{n} t_k^2(X3) = t_n(X3)t_{n+1}(X3) - t_{n+1}^2[S_2(3)]. \quad (48)
$$

8.4 $p = 4$ (exponent sequence)

$$
\sum_{k=1}^{n} t_k^2(X4) = t_n(X4)t_{n+1}(X4) - [(t_{n+2}[S_3(4)] + t_{n-1}[S_3(4)])^2 \pm \delta_n], \quad (49)
$$

where $0 \leq \delta_n < t_{n-1}(X4)$. Note that here, unlike $p = 2$ & 3 cases, the formula is not exact.

8.5 More sums

We further find that

- For 2-sequence $S_X(2)$,
 (i) $\sum_{i=1}^{n} t_it_{i+1} = \frac{1}{2}(t_{n+2}^2 - t_n t_{n+1} - t_2^2)$, and
 (ii) $\sum_{i=1}^{n} t_it_{i+1} = \sum_{j=1}^{n} (n+1-j)t_j^2$.

- For 3-sequence $S_X(3)$,
 $$
 \sum_{i=1}^{n-1} (t_it_{i+1} + t_{i+1}t_{i+2} + t_{i+2}t_i) \\
 = \frac{1}{2} [t_{n+2}(t_{n+2} - 1) + t_n(t_n - 1) - (t_3 - t_1)(t_3 + t_1 - 1)].
 $$
\[
\sum_{k=1}^{n} t_{k}^{2}(X2) \quad \sum_{k=1}^{n} t_{k}^{2}(X3) \quad \sum_{k=1}^{n} t_{k}^{2}(X4)
\]

\(n\)	\(\sum_{k=1}^{n} t_{k}^{2}(X2)\)	\(t_{n}(X2) t_{n+1}(X2)\)	\(\sum_{k=1}^{n} t_{k}^{2}(X3)\)	\(t_{n}(X3) t_{n+1}(X3) - \left[t_{n+2}(S_{3}(4)) + t_{n-1}(S_{3}(4))\right]^{2} \pm \delta_{n}\)	\(\sum_{k=1}^{n} t_{k}^{2}(X4)\)	\(t_{n}(X4) t_{n+1}(X4) - \left[t_{n+2}(S_{3}(4)) + t_{n-1}(S_{3}(4))\right]^{2} \pm \delta_{n}\)
1	\(1^{2}\)	\(1 \times 1\)	\(1^{2}\)	\(1 \times 2 - (1 + 0)^{2} + 0\)	\(1^{2}\)	\(1 \times 2 - (1 + 0)^{2} + 0\)
2	\(1 + 2^{2} = 5\)	\(2 \times 3 - (1 + 0)^{2} + 0\)	\(1 + 2^{2} = 5\)	\(2 \times 3 - (1 + 0)^{2} + 0\)	\(1 + 2^{2} = 5\)	\(2 \times 3 - (1 + 0)^{2} + 0\)
3	\(2 + 2^{2} = 6\)	\(3 \times 6 - (2 + 0)^{2} + 0\)	\(5 + 3^{2} = 14\)	\(3 \times 6 - (2 + 0)^{2} + 0\)	\(5 + 3^{2} = 14\)	\(3 \times 6 - (2 + 0)^{2} + 0\)
4	\(6 + 3^{2} = 15\)	\(6 \times 12 - (4 + 1)^{2} - 3\)	\(14 + 6^{2} = 50\)	\(6 \times 12 - (4 + 1)^{2} - 3\)	\(14 + 6^{2} = 50\)	\(6 \times 12 - (4 + 1)^{2} - 3\)
5	\(15 + 5^{2} = 40\)	\(12 \times 23 - (8 + 1)^{2} + 1\)	\(50 + 11^{2} = 171\)	\(11 \times 20 - 7^{2}\)	\(50 + 11^{2} = 171\)	\(11 \times 20 - 7^{2}\)
6	\(40 + 8^{2} = 104\)	\(37 \times 68 - 24^{2}\)	\(171 + 20^{2} = 571\)	\(20 \times 37 - 13^{2}\)	\(171 + 20^{2} = 571\)	\(20 \times 37 - 13^{2}\)
7	\(104 + 13^{2} = 273\)	\(68 \times 125 - 44^{2}\)	\(571 + 37^{2} = 1940\)	\(37 \times 68 - 24^{2}\)	\(571 + 37^{2} = 1940\)	\(37 \times 68 - 24^{2}\)
8	\(273 + 21^{2} = 714\)	\(125 \times 230 - 81^{2}\)	\(1940 + 68^{2} = 6564\)	\(68 \times 125 - 44^{2}\)	\(1940 + 68^{2} = 6564\)	\(68 \times 125 - 44^{2}\)
9	\(714 + 34^{2} = 1870\)	\(225 \times 55 - 161^{2}\)	\(6564 + 125^{2} = 22189\)	\(125 \times 230 - 81^{2}\)	\(6564 + 125^{2} = 22189\)	\(125 \times 230 - 81^{2}\)

Table 14: Sum of squares of numbers of 2-sequence \(S_{X}(2)\) (see Table 5).

Table 15: Sum of squares of numbers of 3-sequence \(S_{X}(3)\) (see Table 6).

Table 16: Sum of squares of numbers of 4-sequence \(S_{X}(4)\) (see Table 7).
9 \ p\text{-golden ratio}

In this section, we present golden ratio (Φ_p) and golden angle ($\theta_g(p)$) associated with p-sequences, and consider other generalizations of golden ratio.

The \textit{golden ratio} is one of the most famous numbers. Given a and b ($a < b$) two positive numbers, the golden ratio is defined as

$$\frac{a}{b} = \frac{a + b}{a}.$$ \hspace{1cm} (50)

Taking $\frac{a}{b} = \Phi$, Eq. (50) reduces to the quadratic equation $\Phi^2 = \Phi + 1$ whose positive solution is $\Phi = \frac{\sqrt{5} + 1}{2} = 1.61803$. This value corresponds to the limiting ratio value of the Fibonacci sequence.

For the golden ratios associated with p-sequences, we first ask a couple of questions: (i) Does there exist a ratio, like golden ratio [Eq. (50)], for given $p \geq 3$ positive real numbers? (ii) What is the value of this ratio? Is this value unique? (ii) Is this value of ratio equal to the limiting ratio value of p-sequences? Surprisingly enough, the answer is in affirmative.

Suppose $a_1 < a_2 < \cdots < a_p$ are $p \geq 2$ positive real numbers (see Fig. 3). We define the p-golden ratio as

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \cdots = \frac{\sum_{k=1}^{p} a_k}{a_p} = \Phi_p.$$ \hspace{1cm} (51)

Note that Eq. (50) is a special case of Eq. (51) for $p = 2$.

9.1 \ Characteristic equation for Φ_p

We find that from Eq. (51) follows naturally the p-degree algebraic equation whose positive solution gives the value of Φ_p:

$$X_p(x) \equiv x^p - \sum_{k=0}^{p-1} x^k = 0.$$ \hspace{1cm} (52)

\footnote{We will see later that actually $\frac{t_n}{t_{n+1}}$ is the golden ratio for large n. The relation of limiting ratio value of p-sequence with the Euclid’s problem, Eq. (51), is accidental.}
We call this *golden equation*. Note that \(X_p(0) = -1 \) for all \(p \) and \(X_p(1) = -(p - 1) \). This equation has been obtained recently in an interesting physical problem concerning center of masses in two and higher dimensions [82].

9.2 Less radical characteristic equations

For fixed \(p \) and positive integers \(\{k_i\} \), one can choose recurrence relations with \(m \) terms \((2 \leq m, k_i < p)\) to obtain the following less radical characteristic equations,

\[
x^p = 1 + x^{k_1},
\]

\[
x^p = 1 + x^{k_1} + x^{k_2},
\]

\[
x^p = 1 + x^{k_1} + x^{k_2} + x^{k_3},
\]

and so on, each with its own convergence. Wilson’s *Meru 1* through *Meru 9* are particular examples of the above 2-term characteristic equation for \(p = 2, 3, 4, 5 \).

9.3 Roots of the golden equation

Here we look at the nature of roots of Eq. (52). Roots can be positive, negative and complex. Complex roots obviously occur in pairs and lie within a unit circle and approaches towards the boundary of the circle with increasing \(p \). The only negative root approaches \(-1\) for large \(p \). The only positive root lies between 1 and 2, and tends to 2 for large \(p \). See Figs. 4 and 5.

9.4 Near cousins of the golden equation

The equations (a) \(x^p = x^{p-1} - x^{p-2} + \cdots \pm 1 \) and (b) \(x^p = -\sum_{k=0}^{p-1} x^k \) are two immediate near cousins of the golden equation \(x^p = \sum_{k=0}^{p-1} x^k \). Roots of both (a) and (b) are complex and real. Complex roots obviously occur in pairs and lie within a unit circle and approaches towards the boundary of the circle with increasing \(p \). The only real positive root of (a) is +1, and the only real negative root of (b) is \(-1\). See Fig. 6.

10 Recursion relation for \(\Phi_p \)

Because \(\Phi_p \) is a solution of Eq. (52), we have

\[
\Phi_p^p = \Phi_p^{p-1} + \Phi_p^{p-2} + \cdots + \Phi_p + 1 = \sum_{k=0}^{p-1} \Phi_p^k, \tag{53}
\]

\[
\Phi_{p+1}^p = \Phi_p^p + \Phi_{p-1}^p + \cdots + \Phi_p^2 + \Phi_p, \]

\[
= 2\Phi_p^p - 1. \tag{54}
\]
Eq. (53) can be equivalently rewritten as

\[\Phi_p = \Phi_{p-1} + \sum_{k=0}^{p-2} \Phi_k, \]
\[= 1 + \frac{1}{\Phi_p - 1 + \sum_{k=0}^{p-2} \Phi_k}. \]

Also, Eq. (53) implies a recursion relation

\[\Phi_p^n = \Phi_{p-1} \Phi_p^{n-1} + \cdots + \Phi_{p-n+1} \Phi_p^{n-p} = \sum_{k=n-p}^{n-1} \Phi_k. \]

11 \(\Phi_1 \) of 1-sequence

We have seen above that Eq. (53) is the basic equation for \(\Phi_{p \geq 2} \). If we consider this sacred golden equation for \(p = 1 \), we have

\[\Phi_1 = \Phi_1^0 = 1. \]
Figure 5: Roots of the *golden equation* for different values of \(p \).
We remark that Φ_1 is related with the limiting ratio value of 1-sequences. We construct a 1-sequence by choosing a seed $s_0 \geq 0$ and a constant $a \geq 0$ such that $t_0 = s_0$, and for $n \geq 1$

$$t_n = t_{n-1} + a = s_0 + na. \quad (59)$$

The limiting ratio value for this 1-sequence is then

$$\lim_{n \to \infty} \frac{t_{n+1}(1)}{t_n(1)} = \lim_{n \to \infty} \frac{s_0 + (n+1)a}{s_0 + na} = \lim_{n \to \infty} \left(1 + \frac{1}{n + \frac{sa}{a}}\right) = 1 = \Phi_1. \quad (60)$$

We note that Eq. (58) provides the lower limit on Φ_p’s. That is,

$$\Phi_{p \geq 1} \geq 1. \quad (61)$$
\[\Phi_p = \arcsin \left(\frac{\Phi_{p-1}}{2} \right) \]

\[\theta = \arcsin \left(\Phi_p / 2 \right) \]

\(p \)	\(\Phi_p \)	\(\theta = \arcsin \left(\frac{\Phi_{p-1}}{2} \right) \)	\(\theta = \arcsin \left(\Phi_p / 2 \right) \)
1	1.0	0.0	30.0
2	1.61803	18.0	54.0
3	1.83929	24.8122	66.8742
4	1.92756	27.6313	74.5321
5	1.96595	28.8799	79.4124
6	1.98358	29.4583	82.6531
7	1.99196	29.7344	84.8608
8	1.99603	29.8688	86.3893
9	1.99803	29.9349	87.4567
10	1.99902	29.9676	88.2063
11	1.99951	29.9838	88.7317
12	1.99976	29.9921	89.1124
13	1.99988	29.996	89.3724
14	1.99994	29.998	89.5562
15	1.99997	29.999	89.6862
16	1.99998	29.9993	89.7438
17	1.99999	29.9997	89.8188
18	2.0	30.0	90.0
19	2.0	30.0	90.0
20	2.0	30.0	90.0

Table 17: Values of \(\Phi_p \), and the trigonometric angles such that \(\Phi_p = 1 + 2 \sin \theta = 2 \sin \theta \).

12 \(\Phi_p^n \) as a polynomial of degree \(p - 1 \)

We have seen earlier the following relations:

\[\Phi_p = \Phi_p^{p-1} + \Phi_p^{p-2} + \cdots + \Phi_p + 1, \]

and

\[\Phi_p^n = \Phi_p^{n-1} + \Phi_p^{n-2} + \cdots + \Phi_p^{n-p}. \]

Here the question we want to address is: is it possible to reduce \(\Phi_p^n \) to a polynomial of degree \(p - 1 \)? Put differently, can we express \(\Phi_p^n \) in terms of \(\{ \Phi_p^k \}_{k=0}^{p-1} \)? It is very illuminating to see that it is possible to express \(\Phi_p^n \) (\(n \geq 0 \)) in terms of \(\{ \Phi_p^k \}_{k=0}^{p-1} \) as follows:

\[
\Phi_p^n = \sum_{k=0}^{p-1} t_n[S_k(p)]\Phi_p^k + t_n[S_{p-1}(p)]\Phi_p^{p-1} + \cdots + t_n[S_1(p)]\Phi_p + t_n[S_0(p)]
\]

\[
= \sum_{k=0}^{p-1} t_n[S_k(p)]\Phi_p^k. \tag{62}
\]
where \(t_n[S_k(p)] = \sum_{j=n-p}^{n-1} t_j[S_k(p)] \). Eq. (62) can be easily verified from Tables 5, 6, 7 and 8.

In particular, for \(p = 2 \) and 3, the explicit expressions are

\[
\Phi_2^n = \begin{cases}
 t_n[S_1(2)]\Phi_2 + t_n[S_0(2)] & (n \geq 0), \\
 t_{n+1}[S_0(2)]\Phi_2 + t_n[S_0(2)] & (n \geq 2), \\
 t_n[S_X(2)]\Phi_2 + t_{n-1}[S_X(2)] & (n \geq 2),
\end{cases}
\]

(63)

and

\[
\Phi_3^n = \begin{cases}
 t_n[S_2(3)]\Phi_3^2 + t_n[S_1(3)]\Phi_3 + t_n[S_0(3)] & (n \geq 0), \\
 t_{n-3}[S_S(3)]\Phi_3^2 + t_{n-2}[S_X(3)]\Phi_3 + t_{n-4}[S_S(3)] & (n \geq 4).
\end{cases}
\]

(64)

13 Applications of \(p \)-golden ratios

We have seen earlier that the golden ratio and the related Fibonacci sequence are present in abundance in our everyday life. We also learnt the skeptical view on this, and that not all objects exhibit the golden ratio in the sense that convergent limits do not settle down to the numerical value 1.618. This is now evident with the introduction of \(p \)-sequences and the associated \(p \)-golden ratios why it is not the case. In fact, \(\Phi_2 = 1.618 \) is only one member of several families of golden ratios (such as those of Stakhov, Spinadel, Krcadinac, etc. including the present work). Therefore, it is natural to expect that \(\Phi_{p>2} \) will have many interesting applications as well.
Figure 8: The golden angle θ_g is determined by using $a/b = \Phi_p$.

![Diagram](a) ![Diagram](b)

p	Φ_p	$\theta_g(p)$
1	1.0	180°
2	1.61803	137.5°
3	1.83929	126.8°
18	2.0	120°

Table 18: The golden angles for p-sequences, $p = 1, 2, 3, 18$.

14 Golden geometry

14.1 Golden angles

The golden angle is defined as the acute angle θ_g that divides the circumference of a circle into two arcs ABD and ACD with lengths in the golden ratio. See Fig. 8(a). The golden ratio here satisfies $\Phi_p = \frac{a}{b}$. We then determine the golden angle by $\frac{\theta_g(p)}{2\pi} = \frac{b}{a+b} = \frac{1}{1+\frac{a}{b}} = \frac{1}{1+\Phi_p}$. Hence,

$$\theta_g(p) = \frac{2\pi}{1 + \Phi_p}. \quad (65)$$

From Table 18 we see that $\frac{2\pi}{3} \leq \theta_g(p) \leq \pi$.

14.2 Golden shapes

We can construct geometrical objects such as polygons (rectangle, pentagon, etc.) and spirals which have properties characterizing the golden p-ratio or certain p-sequences. Note that a square is a golden rectangle with golden ratio $\Phi_1 = 1$.
Further generalizations of golden ratio

The trouble with the notion of golden ratio is that it can be extended in many ways such that the original golden ratio Φ_2 is a particular case. In an earlier section, we have seen that the recurrence relation $t_n(p) = \sum_{k=1}^{p} t_{n-k}(p)$ and the golden ratio $\frac{a_2}{a_1} = \frac{a_1}{a_2} = \cdots = \frac{\sum_{k=1}^{p} a_k}{a_p}$ correspond to the characteristic equation $x^p = \sum_{k=0}^{p-1} x^k$. A straight-forward generalization of these yield

$$t_n(p) = \sum_{k=1}^{p} c_k t_{n-k}(p),$$ \hspace{1cm} (66)

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \cdots = \frac{\sum_{k=1}^{p} c_k a_k}{a_p},$$ \hspace{1cm} (67)

$$x^p = \sum_{k=0}^{p-1} c_k x^k.$$ \hspace{1cm} (68)

That is, for a sequence of numbers whose terms are given by the (weighted) sum of its consecutive p-previous terms, the characteristic polynomial equation can be obtained by using the golden ratio. However, how do we obtain the characteristic polynomial equation for an arbitrary recurrence relation

$$t_n = c_1 t_{n-m_1} + c_2 t_{n-m_2} + \cdots + c_p t_{n-m_p},$$ \hspace{1cm} (69)

otherwise? In this case also, we can project a ratio like the golden one, Eq. (67), as given below

$$x = \frac{t_{n-m+1}}{t_{n-m}} = \frac{t_{n-m+2}}{t_{n-m+1}} = \cdots = \frac{t_n}{t_{n-1}},$$ \hspace{1cm} (70)

where $m = \max\{m_1, m_2, \cdots, m_p\}$ so that

$$t_{n-m_k} = x^{m-m_k} t_{n-m}, \quad (1 \leq k \leq p)$$

$$t_{n-1} = x^{m-1} t_{n-m}.$$ \hspace{1cm} (71)

Then, the characteristic polynomial equation is

$$x^m = c_1 x^{m-m_1} + c_2 x^{m-m_2} + \cdots + c_p x^{m-m_p}.$$ \hspace{1cm} (72)

11Wilson’s Meru 1 through Meru 9 [8, 9] with their limiting ratios are particular examples of Eq. (69).

12Proof of Eq. (72).
We state a proposition below which gives us a straightforward general rule to obtain the characteristic polynomial equation for an arbitrary recurrence relation.

Proposition. The polynomial equation characteristic to a given recurrence relation is obtained by requiring \(x^{n-v} := \lim_{n \to \infty} \frac{t_{n+1}}{t_n} \), where \(u \) and \(v \) are integers. The characteristic equation is the minimal polynomial which gives the value of the limiting ratio of the sequence, and from which all its algebraic properties follow. For the generalized recurrence relation, \(t_n = c_1t_{n-m_1} + c_2t_{n-m_2} + \cdots + c_p t_{n-m_p} \), the characteristic polynomial equation is given by \(x^m = c_1 x^{m-m_1} + c_2 x^{m-m_2} + \cdots + c_p x^{m-m_p} \), where \(m = \max\{m_1, m_2, \ldots, m_p\} \).

Moving a step further, we consider the relation

\[
(\frac{u_1 a_2}{a_1})^{v_1} = (\frac{u_2 a_3}{a_2})^{v_2} = \cdots = (\frac{u_{p-1} a_p}{a_{p-1}})^{v_{p-1}} = (\frac{u_p \sum_{k=1}^{p} c_k a_k}{a_p})^{v_p},
\]

(73)

where \(\{(u_i, v_i)\} \) and \(\{c_k\} \) are given. Goal is to find values of the ratios \(\frac{a_{k+1}}{a_k} \) and \(\sum_{k=1}^{p} c_k a_k \) such that Eq. (73) holds. Does a solution exist? This problem is rather hard to solve in general.

Next, one can choose any pair of ratios at a time. Say, \((u_1 \frac{a_2}{a_1})^{v_1} = (u_2 \frac{a_3}{a_2})^{v_2} \). There are two cases here. (i) Assume that \(\frac{a_2}{a_1} = x \) and \(\frac{a_3}{a_2} = f_{23}(x) \). Then the characteristic equation is \((u_1 x)^{v_1} = (u_2 f_{23}(x))^{v_2} \) and the positive solution is \(x = \left(u_1 \frac{a_2}{a_1} \right)^{v_1} \). Thus, equating two ratios at a time, we will have \(2(p-1)! \) characteristic polynomial equations and consequently as many roots of them for given \(\{(u_i, v_i)\} \) and \(\{c_k\} \). To the best of our knowledge, most generalizations of the Fibonacci sequence and the golden ratio can be seen as special cases of Eqs. (69), (72) and (73).
16

\section*{Q-matrix and determinantal identity}

We have seen that the Fibonacci sequence can be generalized in many ways such as generalizations of the Euclid’s theorem, the recurrence relations, and the characteristic equations. There is yet another way to study and generalize the Fibonacci sequence and derive many interesting properties of these numbers using a matrix representation [84–95]. By matrix methods, while Silvester [86] derived many interesting properties of the Fibonacci numbers, Kalman [87] generalized Fibonacci numbers. In this section, we consider the generating Q-matrix and the \textit{determinantal identities} of \textit{p}-sequences.

For the Fibonacci sequence recurrence relation $f_n = f_{n-1} + f_{n-2}$ given $f_1 = 1$ and $f_0 = 0$, using the generating Q-matrix

\begin{equation}
Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} f_2 & f_1 \\ f_1 & f_0 \end{pmatrix},
\end{equation}

we have, for $n \geq 1$,

\begin{equation}
\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} f_1 \\ f_0 \end{pmatrix},
\end{equation}

and

\begin{equation}
Q^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}.
\end{equation}

From Eq. (76) follows the Cassini’s identity

\begin{equation}
(det Q)^n = \begin{vmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{vmatrix} = (-1)^n.
\end{equation}

In the following, we confine ourselves to establishing a family of \textit{determinantal identities} of which the Cassini’s identity is a particular case. We begin with introducing a square matrix Q_p of order p

\begin{equation}
Q_p = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix},
\end{equation}

where elements of the first row are seeds of the \textit{coefficient} p-sequence $S_C(p)$, those of the second row are seeds of p-sequence $S_0(p)$, and the third row are seeds of p-sequence...
\(n \)	\(f_{n+1}f_{n-1} - f_n^2 = (-1)^n \)
1	\(1 \times 0 - 1^2 = -1 \)
2	\(2 \times 1 - 1^2 = 1 \)
3	\(3 \times 1 - 2^2 = -1 \)
4	\(5 \times 2 - 3^2 = 1 \)
5	\(8 \times 3 - 5^2 = -1 \)
6	\(13 \times 5 - 8^2 = 1 \)
7	\(21 \times 8 - 13^2 = -1 \)
8	\(34 \times 13 - 21^2 = 1 \)
9	\(55 \times 21 - 34^2 = -1 \)

Table 19: Illustration of the Cassini’s identity for the Fibonacci sequence \(S_1(2) \) (see Table 5).

\(S_1(p) \), and so on, until the last row whose elements are seeds of \(p \)-sequence \(S_{p-2}(p) \). The determinant of this matrix \(Q_p \) is

\[
\det Q_p = \begin{cases}
-1 & \text{(} p \text{ even)}, \\
1 & \text{(} p \text{ odd).}
\end{cases}
\]

(79)

The matrix \(Q_p \) can be seen as a special case of the generating matrix \(\tilde{Q}_p \) [87],

\[
\tilde{Q}_p = \begin{pmatrix}
 c_1 & c_2 & c_3 & \cdots & c_p \\
 1 & 0 & 0 & \cdots & 0 \\
 0 & 1 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \cdots & \vdots \\
 0 & \cdots & 0 & 1 & 0
\end{pmatrix},
\]

(80)

for the generalized recurrence relation \(t_n(p) = \sum_{k=1}^{p} c_k t_{n-k}(p) \), where \(\{c_k\} \)s are constants, such that

\[
\begin{pmatrix}
 t_{n,p-1} \\
 \vdots \\
 t_{n+1} \\
 t_n
\end{pmatrix} = \tilde{Q}_p^n \begin{pmatrix}
 t_{p-1} \\
 \vdots \\
 t_1 \\
 t_0
\end{pmatrix} \quad (n \geq 1),
\]

(81)

and

\[
\det \tilde{Q}_p = (-1)^{p+1} c_p.
\]

(82)
We can, further, identify the matrix Q_p as

$$Q_p = \begin{pmatrix} t_p & t_{p-1} & \cdots & t_{p-1} & t_{p-1} \\ t_{p-1} & 0 & \cdots & 0 & t_{p-2} \\ t_{p-2} & t_{p-1} & \cdots & 0 & t_{p-3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ t_1 & 0 & \cdots & t_{p-1} & t_0 \end{pmatrix}, \quad (83)$$

where t_k's in the first row, the first and the last columns, and the diagonal below the main diagonal are terms of the p-sequence $S_{p-1}(p)$, and other elements of the matrix are zero. Now, making use of Eqs. (78) and (83), we can construct the determinantal identities, like the Cassini’s identity, for $p \geq 3$. Following, we illustrate the case for $p = 3, 4$.

16.1 Illustration for $p = 3$

Starting with

$$Q_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} t_3 & t_2 & t_2 \\ t_2 & 0 & t_1 \\ t_1 & t_2 & t_0 \end{pmatrix}, \quad (84)$$

we have

$$Q_3^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} t_3 & t_2 & t_2 \\ t_2 & 0 & t_1 \\ t_1 & t_2 & t_0 \end{pmatrix} = \begin{pmatrix} t_4 & 2t_2 & t_3 \\ t_3 & 2t_2 & t_2 \\ t_2 & 0 & t_1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad (85)$$

and likewise

$$Q_3^n = \begin{pmatrix} t_{n+2}[S_2(3)] & t_n[S_X(3)] & t_2[S_2(3)] & t_{n+1}[S_2(3)] \\ t_{n+1}[S_2(3)] & t_{n-1}[S_X(3)] & t_2[S_2(3)] & t_n[S_2(3)] \\ t_n[S_2(3)] & t_{n-2}[S_X(3)] & t_2[S_2(3)] & t_{n-1}[S_2(3)] \end{pmatrix} (n \geq 2), \quad (86)$$

where the notations have their usual meanings (see Table 6).

Hence, the determinantal identity is

$$(\det Q_3)^n = \begin{vmatrix} t_{n+2}[S_2(3)] & t_n[S_X(3)] & t_2[S_2(3)] & t_{n+1}[S_2(3)] \\ t_{n+1}[S_2(3)] & t_{n-1}[S_X(3)] & t_2[S_2(3)] & t_n[S_2(3)] \\ t_n[S_2(3)] & t_{n-2}[S_X(3)] & t_2[S_2(3)] & t_{n-1}[S_2(3)] \end{vmatrix} = 1. \quad (87)$$
16.2 Illustration for \(p = 4 \)

For \(p = 4 \), we have

\[
Q_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} t_4 & t_3 & t_3 & t_3 \\ t_3 & 0 & 0 & t_2 \\ t_2 & t_3 & 0 & t_1 \\ t_1 & 0 & t_3 & t_0 \end{pmatrix}, \tag{88}
\]

\[
Q_4^2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} t_4 & t_3 & t_3 & t_3 \\ t_3 & 0 & 0 & t_2 \\ t_2 & t_3 & 0 & t_1 \\ t_1 & 0 & t_3 & t_0 \end{pmatrix} = \begin{pmatrix} t_5 & 2t_3 & 2t_3 & t_4 \\ t_4 & t_3 & t_3 & t_3 \\ t_3 & 0 & 0 & t_2 \\ t_2 & t_3 & 0 & t_1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \tag{89}
\]

and, for \(n \geq 3 \),

\[
Q_4^n = \begin{pmatrix} t_{n+3}[S_3(4)] & t_{n+3}[S_2(4)] & t_3[S_3(4)] & t_n[S_X(4)] & t_3[S_3(4)] & t_{n+2}[S_3(4)] \\ t_{n+2}[S_3(4)] & t_{n+2}[S_2(4)] & t_3[S_3(4)] & t_{n-1}[S_X(4)] & t_3[S_3(4)] & t_{n+1}[S_3(4)] \\ t_{n+1}[S_3(4)] & t_{n+1}[S_2(4)] & t_3[S_3(4)] & t_{n-2}[S_X(4)] & t_3[S_3(4)] & t_{n}[S_3(4)] \\ t_n[S_3(4)] & t_n[S_2(4)] & t_3[S_3(4)] & t_{n-3}[S_X(4)] & t_3[S_3(4)] & t_{n-1}[S_3(4)] \end{pmatrix}, \tag{90}
\]

where the notations have their usual meanings (see Table 7).

Hence, the determinantal identity for 4-sequence \(S_3(4) \) is

\[
(\det Q_4)^n = \begin{vmatrix} t_{n+3}[S_3(4)] & t_{n+3}[S_2(4)] & t_3[S_3(4)] & t_n[S_X(4)] & t_3[S_3(4)] & t_{n+2}[S_3(4)] \\ t_{n+2}[S_3(4)] & t_{n+2}[S_2(4)] & t_3[S_3(4)] & t_{n-1}[S_X(4)] & t_3[S_3(4)] & t_{n+1}[S_3(4)] \\ t_{n+1}[S_3(4)] & t_{n+1}[S_2(4)] & t_3[S_3(4)] & t_{n-2}[S_X(4)] & t_3[S_3(4)] & t_{n}[S_3(4)] \\ t_n[S_3(4)] & t_n[S_2(4)] & t_3[S_3(4)] & t_{n-3}[S_X(4)] & t_3[S_3(4)] & t_{n-1}[S_3(4)] \end{vmatrix} = (-1)^n. \tag{91}
\]
References

[1] N. N. Vorobyov, *The Fibonacci Numbers*, D. C. Health and company, Boston, 1963.

[2] V. E. Hoggatt, *Fibonacci and Lucas Numbers*, Houghton-Mifflin Company, Boston, 1969.

[3] T. Koshy, *Fibonacci and Lucas Numbers with Applications*, John Wiley and Sons, New York, 2001.

[4] A. Weber, *Uber die Metrik de Inder*, Harrwitz and Gofsmann, Berlin, 1863.

[5] A. N. Singh, *On the use of series in Hindu mathematics*, Osiris 1 (1936), 606-628.

[6] P. Singh, *The so-called Fibonacci numbers in ancient and medieval India*, Historia Mathematica 12 (1985), 229-244.

[7] B. van Nooten, *Binary numbers in Indian antiquity*, Journal of Indian Philosophy 21 (1993), 31-50.

[8] E. M. Wilson, *The Scales of Mt. Meru*, 1993.

[9] E. M. Wilson, *Pingala’s Meru Prastara and the Sum of the Diagonals*, 2001.

[10] J. L. Coolidge, *The Story of the Binomial Theorem*, The American Mathematical Monthly 56 (1949), 147-157.

[11] A. W. F. Edwards, *Pascal’s Arithmetical Triangle: The Story of a Mathematical Idea*, John Hopkins University Press, Baltimore, 2002.

[12] A. W. F. Edwards, *The Arithmetical Triangle*, in R. Wilson and J. J. Watkins (Eds.) Combinatorics: Ancient and Modern, Oxford University Press, Oxford, pp. 166-180, 2013.

[13] K. J. Smith, *Nature of Mathematics*, Cengage Learning, 2010.

[14] T. Kusuba, *Indian Rules for the Decomposition of Fractions*, in Charles Burnett, Jan P. Hogendijk, Kim Plofker, et al. (eds.), Studies in the History of the Exact Sciences in Honour of David Pingree, Brill, p. 497, 2004.

[15] H. E. Huntley, *The Divine Proportion: A Study in Mathematical Beauty*, Dover Publications, Inc., 1970.

[16] G. Runion, *The Golden Section, and Related Curiosa*, Scott Foresman and Company, 1972.
[17] R. Herz-Fischler, *A Mathematical History of the Golden Number*, Dover Publications, Inc., 1987.

[18] R. Herz-Fischler, *A Mathematical History of Division in Extreme and Mean Ratio*, Wilfrid Laurier University Press, 1987.

[19] S. Vajda, *Fibonacci and Lucas Numbers and the Golden Section. Theory and Applications*, Ellis Horwood Limited, 1989.

[20] A. Stakhov, *The golden section in measurement theory*, Computers and Mathematics with Applications 17 (1989), 613-638.

[21] M. Livio, *The Golden Ratio: The Story of Phi*, Broadway Books, New York, 2002.

[22] T. Heath, *Euclid's Elements*, Green Lion Press, 2002.

[23] H. Kim and J. Neggers, *Fibonacci mean and golden section mean*, Computers and Mathematics with Applications 56 (2008), 228-232.

[24] J. Kepler, *A New Year Gift: On Hexagonal Snow*, Oxford University Press, 1966.

[25] G. Doczi, *Seen and unseen symmetries: A picture essay*, Computers and Mathematics with Applications 12 (1986), 38-62.

[26] H. Osborne, *Symmetry as an aesthetic factor*, Computers and Mathematics with Applications 12 (1986), 77-82.

[27] T. P. Srinivasan, *Fibonacci sequence, golden ratio, and a network of resistors*, Am. J. Phys. 60 (1992), 461.

[28] A. Stakhov, *The golden section and modern harmony mathematics*, Applications of Fibonacci numbers 7 (1998), 393-399.

[29] S. Bradley, *A geometric connection between generalized fibonacci sequences and nearly golden sections*, The Fibonacci Quarterly 38 (1999), 174-180.

[30] K. M. Ball, *Fibonacci Rabbits Revisited, Strange curves, Counting Rabbits and other Mathematical Explorations*, Princeton, N. J: Princeton Univ. Press, 2003.

[31] J. Kapusta, *The Square, the Circle and the Golden Proportion: A New Class of Geometrical Constructions*, Forma 19 (2004), 293-313.

[32] R. Heyrovská, *The golden ratio in ionic and atomic radii and bond lengths*, Mol. Phys. 103 (2005), 877-882.
[33] L. Marek-Cmijac, *The golden mean in the topology of four-manifolds in conformal field theory in the mathematical probability theory and in cantorian spacetime*, Chaos, Solitons and Fractals **28** (2006), 1113-1118.

[34] M. Sigalotti, *The golden ratio in special relativity*, Chaos, Solitons and Fractals **30** (2006), 521-524.

[35] S. Sen and R. Agarwal, *Golden ratio in science, as random sequence source, its computation and beyond*, Computers and Mathematics with Applications **56** (2008), 469-498.

[36] L.-P. Shao, Z. Qin, H.-L. Gao and X.-C. Heng, *2D triangular mappings and their applications in scrambling rectangle image*, Information Technology Journal **7** (2008), 40-47.

[37] C.-E. Hretcanu and M.-C. Crasmareanu, *Applications of the Golden Ratio on Riemannian Manifolds*, Turk. J. Math. **33** (2009), 179-191.

[38] M. Esmaeili and M. Esmaeili, *A Fibonacci-polynomial based coding method with error detection and correction*, Computers and Mathematics with Applications **60** (2010), 2738-2752.

[39] I. Daubechies, C. S. Gunturk, Y. Wang, and O. Yilmaz, *The golden ratio encoder*, IEEE Transactions on Information Theory **56** (2010), 5097-5110.

[40] I. Tanackov, J. Tepić, and M. Kostelac, *The golden ratio in probabilistic and artificial intelligence*, Tehnicki Vjesnik (Technical Gazette) **18** (2011), 641-647.

[41] S. Agaian and Y. Zhou, *Generalized phi number system and its applications for image decomposition and enhancement*, Proc. SPIE **7881**, Multimedia on Mobile Devices 2011; and Multimedia Content Access: Algorithms and Systems V, 78810M (11 February 2011).

[42] S. Agaian, J. Garcia, S. Abdul-Kafi, and J. T. Gill, *Fused Fibonacci-like (p,q)-sequences with compression and barcoding applications*, Proc. SPIE **8304**, Multimedia on Mobile Devices 2012; and Multimedia Content Access: Algorithms and Systems VI, 83040E (15 February 2012).

[43] M. Mishra, P. Mishra, M. C. Adhikary and S. Kumar, *Image encryption using Fibonacci-Lucas transformation*, International Journal on Cryptography and Information Security(IJCIS) **2** (2012), 131-141.

[44] C. Schretter, L. Kobbelt, and P.-O. Dehaye, *Golden ratio sequences for low-discrepancy sampling*, Journal of Graphics Tools **16** (2012), 95-104.

43
[45] M. Hassaballah, K. Murakami, and S. Ido, *Face detection evaluation: a new approach based on the golden ratio*, Signal, Image and Video Processing 7 (2013), 307-316.

[46] W. Yang, L. Zhang, L. Zhang, and H. Shi, *A golden ratio-based genetic algorithm and its application in traffic signal timing optimization for urban signalized intersections*, in ICTE 2013: Safety, Speediness, Intelligence, Low-Carbon, Innovation (2013), 22-29.

[47] Y. Liang, C.-T. Li, Y. Guan, and Y. Hu, *Gait recognition based on the golden ratio*, J. Image Video Proc. 2016, 22 (2016).

[48] A. Brousseau, *Fibonacci Statistics in Coniferi*, Fibonacci Quaterly 7 (1969), 525-532.

[49] S. Douady and Y. Couder, *Phyllotaxis as a Dynamical Self Organizing Process*, Journal of Theoretical Biology 178 (1996), 255-274.

[50] J. Y. Chan and G. H. Chang, *The golden ratio optimizes cardiomebic form and function*, Iranian Journal of Medical Hypotheses and Ideas 3 (2009), 1-5.

[51] A.Ajluni, C. Martin, A. Yalamathy, and J. Maleszewski, *A study on adult female human perception of the golden ratio in paintings using psychological survey*, Art and Science in Paris, 2010.

[52] M. Kleider, B. Rafaely, B. Weiss, and E. Bachmat, *Golden-ratio sampling for scanning circular microphone arrays*, IEEE transactions on audio, speech, and language processing 18 (2010), 2091-2098.

[53] M. Y. Henein, G. R. Collaborators, Y. Zhao, R. Nicoll, L. Sun, A. W. Khir, K. Franklin, and P. Lindqvist, *The human heart: application of the golden ratio and angle*, 2011.

[54] R. Herz-Fischler, *The Shape of the Great Pyramid*, Wilfrid Laurier University Press, 2000.

[55] C. Velmurugan and R. Kalaivanan, *Existence of the golden ratio in Tanjavur Brihadeeshwarar temple*, Open J. Math. Sci. 4 (2020), 211-219.

[56] C. Frayling, H. Frayling and R. Van Der Meer, *The Art Pack*, New York: Alfred A. Knopf publishing, USA, 1992.

[57] A. van Zanten, *The golden ratio in the arts of painting, building and mathematic*, Nieuw Arch. Wisk. 17 (1999), 229-245.
[58] A. Olariu, *Golden section and the art of painting*, National Institute for Physics and Nuclear Engineering (1999), 1-4.

[59] H. J. Jensen, *Mathematics and Painting*, Interdisciplinary Science Reviews 27 (2002), 45-49.

[60] S. Kak, *The Golden Mean and the Physics of Aesthetics*, arXiv: physics/0411195 (2004).

[61] S. Lian-ying, *Analysis of the golden section in garment sculpt design effect*, Jiangxi Science 31 (2013), 816-819.

[62] Z. Kazlacheva and J. Ilieva, *The golden and fibonacci geometry in fashion and textile design*, Proc. of the International Scientific Conference eRA-10 (2015), 30-39.

[63] K. Devlin, *Good stories, pity they’re not true*.

[64] C. Falbo, *The golden ratio: a contrary viewpoint*.

[65] C. Falbo, *Generalizations of the golden ratio*.

[66] S. J. Gould, *The Mismeasure of Man*, W. W. Norton & Company, 1981.

[67] G. O. Markowsky, *Misconceptions about the golden ratio*, The College Mathematics Journal 23 (1992), 2-19.

[68] M. Spira, *On the golden ratio*, 12th International Congress on Mathematical Education, COEX, Seoul, Korea, 2012.

[69] D. Fowler, *A generalization of the golden section*, The Fibonacci Quarterly 20 (1982), 146-158.

[70] J. Kapur, *Some generalizations of the golden ratio*, International Journal of Mathematical Education in Science and Technology 19 (1988), 511-517.

[71] P. Engstrom, *Sections, golden and not so golden*, The Fibonacci Quarterly 26 (1988), 118-127.

[72] V. W. Spinadel, *The metallic means family and multifractal spectra*, Nonlinear Analysis 36 (1999), 721-745.

[73] V. W. Spinadel, *A new family of irrational numbers with curious properties*, Humanistic Mathematics Network 19 (1999), 33-37.
[74] V. W. Spinadel, *The family of metallic means. Symmetry: culture and science*, Quart. Int. Soc. Interdisciplinary Study Symm. (ISIS-Symmetry) 10 (1999), 317-338.

[75] V. W. Spinadel, *The metallic means family and renormalization group techniques*, Proc. Steklov Inst. Math. (Suppl.) 2000, S194-S209.

[76] V. W. Spinadel, *The metallic means family and forbidden symmetries*, Int. Math. J. 2 (2002), 279-288.

[77] S. Lipovetsky and F. Lootsma, *Generalized golden sections, repeated bisections and aesthetic pleasure*, European Journal of Operational Research 121 (2000), 213-216.

[78] M. Rakocevic, *Further generalization of golden mean in relation to eulers’s divine equation*, FME Transactions 32 (2004), 95-98.

[79] V. Krcadinac, *A new generalization of the golden ratio*, The Fibonacci Quarterly 44 (2006), 335-340.

[80] A. Stakhov, *The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic*, Chaos, Solitons and Fractals 33 (2007), 315-334.

[81] S. Hashemiparast and O. Hashemiparast, *Multi parameters golden ratio and some applications*, Applied Mathematics 2 (2011), 808-815.

[82] G. Dutta, M. Mehta, and P. Pathak, *Balancing on the edge, the golden ratio, the Fibonacci sequence and their generalization*, arXiv:2003.06234.

[83] T. M. Green, *Recurrent Sequences and Pascal’s Triangle*, Mathematics Magazine 41 (1968), 13-21.

[84] E. P. Miles, *Generalized Fibonacci Numbers and Associated Matrices*, The American Mathematical Monthly 67 (1960), 745-752.

[85] J. Ivie, *A general Q-matrix*, The Fibonacci Quarterly 10 (1972), 255-264.

[86] J. R. Silvester, *Fibonacci Properties by Matrix Methods*, Mathematical Gazette 63 (1979), 188-191.

[87] D. Kalman, *Generalized Fibonacci numbers by matrix methods*, The Fibonacci Quarterly 20 (1982), 73-76.

[88] M. C. Er, *The matrices of Fibonacci numbers*, The Fibonacci Quarterly 22 (1984), 134-139.
[89] M. C. Er, *Sums of Fibonacci numbers by matrix methods*, The Fibonacci Quarterly 22 (1984), 204-207.

[90] G.-Y. Lee, S.-G. Lee and H.-G. Shin, *On the k-Generalized Fibonacci matrix Q_k*, Linear Algebra and its Applications 251 (1997), 73-88.

[91] A. P. Stakhov, *A generalization of the Fibonacci Q-matrix*, J. Rep. Ukrainian Acad. Sci. 9 (1999), 46-49.

[92] G.-Y. Lee and J.-S. Kim, *The linear algebra of the k-Fibonacci matrix*, Linear Algebra and its Applications 373 (2003), 75-87.

[93] E. Karaduman, *On determinants of matrices with general Fibonacci numbers entries*, Applied Mathematics and Computation 167 (2005), 670-676.

[94] P. Stanimirović, J. Nikolov, and I. Stanimirović, *A generalization of Fibonacci and Lucas matrices*, Discrete Applied Mathematics 156 (2008), 2606-2619.

[95] M. Chatterjee, A. I. Singh, and K. C. Sivakumar, *Fibonacci Fervour in Linear Algebra and Quantum Information Theory*, arXiv:1804.08100.