CONTROL OF FUSION BY ABELIAN SUBGROUPS OF THE HYPERFOCAL SUBGROUP

ELLEN HENKE AND JUN LIAO

Abstract. We prove that an isomorphism between saturated fusion systems over the same finite p-group is detected on the elementary abelian subgroups of the hyperfocal subgroup if p is odd, and on the abelian subgroups of the hyperfocal subgroup of exponent at most 4 if $p = 2$. For odd p, this has implications for mod p group cohomology.

1. Introduction

In 1971, Quillen [18] published two articles relating properties of the mod p cohomology ring of a group G to the elementary abelian p-subgroups of G. The results hold for any prime p and any group G which is a compact Lie group (e.g. a finite group). Quillen studied in particular varieties of mod p cohomology rings and proved a stratification theorem stating that the variety of the mod p cohomology ring of G can be broken up into pieces corresponding to the G-conjugacy classes of elementary abelian p-subgroups of G. Therefore, it is of interest to study conjugacy relations between elementary abelian subgroups.

From now on we assume that G is finite and H is a subgroup of G of index prime to p. For any two subgroups A and B of G, we write $\text{Hom}_G(A, B)$ for the set of group homomorphisms from A to B that are obtained via conjugation by an element of G. As a consequence of Quillen’s stratification theorem, H controls fusion of elementary abelian subgroups in G, if the inclusion map from H to G induces an isomorphism between the varieties of the mod p cohomology rings of H and G. Here we say that the subgroup H controls fusion of elementary abelian subgroups in G if $\text{Hom}_H(A, B) = \text{Hom}_G(A, B)$ for all elementary abelian subgroups A and B of H. Similarly we say that H controls p-fusion in G if $\text{Hom}_H(A, B) = \text{Hom}_G(A, B)$ for all p-subgroups A and B of H. By the Cartan–Eilenberg stable elements formula [9, XII.10.1], the inclusion map from H to G induces an isomorphism in mod p group cohomology if H controls fusion in G. Together with Quillen’s fundamental results, this motivates the study of connections between control of fusion of elementary abelian subgroups and control of p-fusion.

If $H = S$ is a Sylow p-subgroup of G and p is odd, Quillen [17] proved as a first illustration of his theory that G is nilpotent if the inclusion map from S to G induces an isomorphism between the corresponding varieties. We recall that, by a classical theorem of Frobenius, G is nilpotent if and only if S controls fusion in G. So Quillen showed that S controls fusion in G if S controls fusion of elementary abelian subgroups. Variations of this theorem were proved in [12, 7, 10, 13, 8, 2], but all maintaining the hypothesis that $H = S$ is a Sylow p-subgroup. Only relatively recently, Benson, Grodal and the first author of this paper...
proved a result that holds more generally for any subgroup H of index prime to p; see \[5\]. More precisely, it is shown that H controls fusion in G (and thus the inclusion map from H to G induces an isomorphism in mod p group cohomology), if the inclusion map induces an isomorphism between the corresponding varieties, i.e. if H controls fusion of elementary abelian subgroups of G. This is obtained as a consequence of a theorem that is stated and proved for saturated fusion systems; see \[5\], Theorem B]. In this short note, we point out that actually a slightly stronger version of this theorem holds. We refer the reader to \[1\], Part I for an introduction to fusion systems.

Theorem A (Small exponent abelian subgroups of the hyperfocal subgroup control fusion). Let $\mathcal{G} \subseteq \mathcal{F}$ be two saturated fusion systems over the same finite p-group S. Suppose that $\text{Hom}_G(A, B) = \text{Hom}_F(A, B)$ for all $A, B \leq \mathfrak{hnp}(\mathcal{F})$ with A, B elementary abelian if p is odd, and abelian of exponent at most 4 if $p = 2$. Then $\mathcal{G} = \mathcal{F}$.

If one replaces $\mathfrak{hnp}(\mathcal{F})$ by S, then the above theorem coincides with \[5\], Theorem B]. We recall that the hyperfocal subgroup $\mathfrak{hnp}(\mathcal{F})$ is the subgroup of S generated by all elements of the form $x^{-1}\varphi(x)$ where $x \in Q$ and $\varphi \in \text{O}^p(\text{Aut}_2(Q))$ for some subgroup Q of S. If $\mathcal{F} = \mathcal{F}_S(G)$ is the fusion system of a finite group G with Sylow p-subgroup S, then Puig’s hyperfocal subgroup theorem \[16\], §1.1] states that $\mathfrak{hnp}(\mathcal{F}) = \text{O}^p(G) \cap S$. In the situation of Theorem A, Quillen’s example $Q_8 \leq Q_8 : C_3$ shows that it is indeed not enough to consider only elementary abelian subgroups for $p = 2$.

A fusion system \mathcal{F} on S is called nilpotent if $\mathcal{F} = \mathcal{F}_S(S)$. Restricting attention to subgroups of the hyperfocal subgroup is motivated by a theorem of the second author of this paper together with Zhang, which characterizes p-nilpotency of a saturated fusion system \mathcal{F} by the fusion on certain subgroups of the hyperfocal subgroup of \mathcal{F}; see \[14\]. Another motivation comes from work of Ballester-Bolinches, Ezquerro, Su and Wang \[2\] showing that, in certain special cases, fusion is detected on the subgroups of the focal subgroup of \mathcal{F} which are cyclic of order p or 4. We show here that in Theorem A and C of \[2\], the focal subgroup can actually be replaced by the hyperfocal subgroup. More precisely, we prove the following theorem which gives in particular a new characterization of nilpotent fusion systems:

Theorem B. Let \mathcal{F} be a saturated fusion system over a finite p-group S, and let $\mathcal{G} = N_{\mathcal{F}}(S)$ or $\mathcal{G} = \mathcal{F}_S(S)$. Suppose that $\text{Hom}_G(A, B) = \text{Hom}_F(A, B)$ for all $A, B \leq \mathfrak{hnp}(\mathcal{F})$ which are cyclic subgroups of order p or 4. Then $\mathcal{G} = \mathcal{F}$.

We remark that, in general, it is not the case that the subgroup H controls fusion in G if it controls fusion on cyclic subgroups of order p for odd p, or on subgroups of order at most 4 for $p = 2$. This is not even the case if G has a normal Sylow p-subgroup as the following example shows: Let n be an integer such that $n \geq 2$ and p does not divide n. Let S be the field of order p^n, so that S under addition forms in particular an elementary abelian group of order p^n. Note that every non-zero element of S induces a group automorphism of S via multiplication. Let D be the group of all these automorphisms. Then D is a subgroup of $\text{Aut}(S)$ of order $p^n - 1$ acting freely and transitively on the non-trivial elements of S. Let σ be the Frobenius automorphism of the field S. Then σ has order n and is also a group automorphism of S. Moreover, σ normalizes D, as conjugation by σ takes every element of D to its pth power. Hence, $\hat{D} = D \times \langle \sigma \rangle$ is a group of order $(p^n - 1)n$. Since p does not divide n, it follows that S is a normal Sylow p-subgroup of $G := S \rtimes \hat{D}$. Moreover, $H := S \rtimes D$
is a subgroup of G of index prime to p. Note also that $S = [S, D] = \mathfrak{up}(\mathcal{F}_S(G))$. Let \mathcal{V} be the set of subgroups of S of order p. Then \mathcal{V} has $\frac{p^n-1}{p-1}$ elements. As D acts freely and transitively on the non-trivial elements of S, it follows that D acts also transitively on \mathcal{V}, and that $C_D(A) = 1$ for all $A \in \mathcal{V}$. Thus $|\text{Aut}_D(A)| = |N_D(A)| = \frac{|D|}{|C_D(A)|} = p - 1$ for every $A \in \mathcal{V}$. As any two elements of \mathcal{V} are conjugate under D, it follows $|\text{Hom}_D(A, B)| = p - 1$ for all $A, B \in \mathcal{V}$. Thus, $\text{Hom}_D(A, B) = \text{Hom}_D(A, B)$ is the set $\text{Inj}(A, B)$ of injective group homomorphism from A to B. As $\text{Hom}_D(A, B) \subseteq \text{Hom}_G(A, B) \subseteq \text{Inj}(A, B)$, this implies $\text{Hom}_D(A, B) = \text{Hom}_G(A, B)$ for all $A, B \in \mathcal{V}$. So H controls fusion in G of the cyclic subgroups of order p (and thus for $p = 2$ also of the cyclic subgroups of order at most 4). However, as $D \neq \hat{D}$, the subgroup H does not control fusion in G.

We conclude by stating a version of Theorem A in terms of varieties of cohomology rings. We continue to assume that G is a finite group and we fix moreover an algebraically closed field Ω of prime characteristic p. We either set $k = \Omega$ or $k = \mathbb{F}_p$. Moreover, set $H^*(G) := H^*(G, k)$ and define the variety V_G to be the variety $\text{Hom}_k(H^*(G), \Omega)$ of k-algebra homomorphisms from $H^*(G)$ to Ω; see Remark 3.2 for alternative definitions of V_G. Then every k-algebra homomorphism $\alpha : H^*(G) \to H^*(H)$ induces a map of varieties $\alpha^* : V_H \to V_G$ by sending any homomorphism $\beta \in V_H = \text{Hom}_k(H^*(H), \Omega)$ to $\beta \circ \alpha \in V_G = \text{Hom}_k(H^*(G), \Omega)$. For an arbitrary subgroup H of G, we write $\text{res}_{G, H} : H^*(G) \to H^*(H)$ for the map induced by the inclusion map $H \to G$, and hence $\text{res}_{G, H}^* : V_H \to V_G$ for the corresponding map of varieties.

If H is a subgroup of G containing a Sylow p-subgroup S of G, then we have the inclusion maps $S \cap O^p(G) \hookrightarrow H \hookrightarrow G$ which induce the following maps of varieties:

$$V_{S \cap O^p(G)} \xrightarrow{\text{res}_{H, S \cap O^p(G)}^*} V_H \xrightarrow{\text{res}_{G, H}^*} V_G$$

So in particular, we can consider the restriction of the map $\text{res}_{G, H}^* : V_H \to V_G$ to the subvariety $\text{res}_{H, S \cap O^p(G)}^* V_{S \cap O^p(G)}$ of V_H. If p is an odd prime and H is a subgroup of G of index prime to p, then the results in [5] say basically that H controls fusion in G if $\text{res}_{G, H}^* : V_H \to V_G$ is an isomorphism of varieties. Theorem A implies a slightly stronger statement which is stated in the next theorem. Notice that a subgroup H of G has index prime to p if and only if H contains a Sylow p-subgroup of G.

Theorem C. Let G be a finite group, let p be an odd prime, and let H be a subgroup of G containing a Sylow p-subgroup S of G. Suppose the restriction of the map $\text{res}_{G, H}^*$ to $\text{res}_{H, S \cap O^p(G)}^* V_{S \cap O^p(G)}$ is injective. Then H controls fusion in G and the restriction map $\text{res}_{G, H} : H^*(G) \to H^*(H)$ is an isomorphism.

Note that Theorem C says in particular that the map $\text{res}_{G, H}^* : V_H \to V_G$ is an isomorphism of varieties if its restriction to $\text{res}_{H, S \cap O^p(G)}^* V_{S \cap O^p(G)}$ is injective. One sees easily that the converse of Theorem C holds as well: If $\text{res}_{G, H} : H^*(G) \to H^*(H)$ is an isomorphism then $\text{res}_{G, H}^* : V_H \to V_G$ is an isomorphism. In particular, the restriction of $\text{res}_{G, H}^*$ to $\text{res}_{H, S \cap O^p(G)}^* V_{S \cap O^p(G)}$ is injective.

We remark also that a theorem analogous to Theorem C can be proved for saturated fusion systems rather than for groups. For more details, we refer the reader to Remark 3.3.

Acknowledgement. The authors would like to thank Dave Benson for his patient explanations regarding group cohomology.
The proof of Theorem \(\mathbf{A} \) is very similar to the proof of Theorem \(\mathbf{B} \) in \[5\]. We need the following variation of \[5\] Theorem 2.1.

Theorem 2.1. Let \(P \) be a finite \(p \)-group and let \(G \) be a subgroup of \(\text{Aut}(P) \) containing the group \(\text{Inn}(P) \) of inner automorphism. Then there exists a \(G \)-invariant subgroup \(D \) of \([P,O^p(G)] \), of exponent \(p \) if \(p \) is odd and exponent at most 4 if \(p = 2 \), such that \([D,P] \leq Z(D) \), and such that every non-trivial \(p' \)-automorphism in \(G \) restricts to a non-trivial \(p' \)-automorphism of \(D \). Furthermore, for any such \(D \) and any maximal (with respect to inclusion) abelian subgroup \(A \) of \(D \) it follows that \(A \leq P \) and \(C_G(A) \) is a \(p \)-group.

Proof. By \[5\] Theorem 2.1, there exists a characteristic subgroup \(D_1 \) of \(P \), of exponent \(p \) if \(p \) is odd and exponent at most 4 if \(p = 2 \), such that \([D_1,P] \leq Z(D_1) \), and such that every non-trivial \(p' \)-automorphism of \(P \) restricts to a non-trivial \(p' \)-automorphism of \(D_1 \). Set \(D := [D_1,O^p(G)] \). As \(D_1 \) is \(G \)-invariant and as \(O^p(G) \) is normal in \(G \), the subgroup \(D \) is \(G \)-invariant. In particular, as \(\text{Inn}(P) \leq G \) by assumption, we have \([D,P] \leq D \). Using \([D_1,P] \leq Z(D_1) \) we obtain thus \([D,P] \leq [D_1,P] \cap D \leq Z(D_1) \cap D \leq Z(D) \). If \(\varphi \) is a \(p' \)-automorphism of \(P \) with \(\varphi|_D = \text{Id}_D \) then \([D,\varphi] = 1 \) and \([D_1,\varphi] \leq [D_1,O^p(G)] = D \). Thus, by \[11\] Theorem 5.3.6, we have \([D_1,\varphi] = [D_1,\varphi,\varphi] \leq [D,\varphi] = 1 \) and \(\varphi|_{D_1} = \text{Id}_{D_1} \). Because of the way \(D_1 \) was chosen, this implies that \(\varphi = \text{Id}_P \). So we have shown that every non-trivial \(p' \)-automorphism in \(G \) restricts to a non-trivial automorphism of \(D \).

For the last part let \(A \) be a maximal subgroup of \(D \) with respect to inclusion. Then \([A,P] \leq Z(D) \leq A \) and thus \(A \leq P \). Furthermore, if \(B \leq C_G(A) \) is a \(p' \)-subgroup, then \(A \times B \) acts on \(D \). Since \(A \) is maximal abelian, it follows \(C_D(A) = A \leq C_D(B) \). Thompson’s \(A \times B \)-lemma \[11\] Theorem 5.3.4 now says that \([D,B] = 1 \) and so \(B = 1 \). Since \(B \) was arbitrary, it follows that \(C_G(A) \) is a \(p \)-group.

We need the following crucial lemma, which is \[5\] Main Lemma 2.4.

Lemma 2.2. Let \(G \subseteq F \) be two saturated fusion systems on the same finite \(p \)-group \(S \), and \(P \leq S \) an \(F \)-centric and fully \(F \)-normalized subgroup, with \(\text{Aut}_F(R) = \text{Aut}_G(R) \) for every \(P < R \leq N_S(P) \). Suppose that there exists a subgroup \(Q \leq P \) with \(\text{Hom}_F(Q,S) = \text{Hom}_G(Q,S) \). Then \(\text{Aut}_F(P) = \langle \text{Aut}_G(P), C_{\text{Aut}_F(P)}(Q) \rangle \).

Proof of Theorem \(\mathbf{A} \). By Alperin’s fusion theorem \[11\] Theorem I.3.6, \(F \) is generated by \(F \)-automorphisms of fully \(F \)-normalized \(F \)-centric subgroups. We want to show that \(\text{Aut}_F(P) = \text{Aut}_G(P) \) for all \(P \leq S \). By induction on \(|S:P| \), we can assume that \(\text{Aut}_F(R) = \text{Aut}_G(R) \) for all \(R \leq S \) with \(|R| > |P| \). Furthermore, by Alperin’s fusion theorem, we can choose \(P \) to be fully \(F \)-normalized and \(F \)-centric. By Theorem 2.1 we can pick an \(\text{Aut}_F(P) \)-invariant subgroup \(D \) of \([P,O^p(\text{Aut}_F(P))] \), of exponent \(p \) if \(p \) is odd and of exponent at most 4 if \(p = 2 \), such that every non-trivial \(p' \)-automorphism \(\varphi \in \text{Aut}_F(P) \) restricts to a non-trivial automorphism of \(D \) and, for any maximal (with respect to inclusion) abelian subgroup \(A \) of \(D \), \(A \leq P \) and \(C_{\text{Aut}_F(P)}(A) \) is a \(p \)-group. As \(P \) is fully \(F \)-normalized, \(\text{Aut}_S(P) \) is a Sylow \(p \)-subgroup of \(\text{Aut}_F(P) \), and so if we replace \(A \) by a conjugate of \(A \) under \(\text{Aut}_F(P) \), we can arrange that \(C_{\text{Aut}_F(P)}(A) \leq \text{Aut}_S(P) \leq \text{Aut}_G(P) \). As \(D \) has exponent \(p \) if \(p \) is odd and exponent at most 4 if \(p = 2 \), we have by assumption \(\text{Hom}_F(A,S) = \text{Hom}_G(A,S) \). So by Lemma 2.2 applied with \(A \) in place of \(Q \), we obtain that \(\text{Aut}_F(P) = \langle \text{Aut}_G(P), C_{\text{Aut}_F(P)}(A) \rangle = \text{Aut}_G(P) \) as wanted. \(\square \)
Let P be a set of representatives of the \mathcal{F}-conjugacy classes of \mathcal{F}-essential subgroups. A version of the Alperin–Goldschmidt Theorem for fusion systems states that \mathcal{F} is generated by the \mathcal{F}-automorphism groups of the elements of $\mathcal{P} \cup \{S\}$. Analyzing what is used in the proof above, one sees that we only need the following condition in Theorem A: For every $P \in \mathcal{P} \cup \{S\}$ and every abelian subgroup A of the commutator subgroup $[P, O^p(\text{Aut}_P(P))]$ which is of exponent p or 4, we have $\text{Hom}_\mathcal{F}(A, S) = \text{Hom}_G(A, S)$.

The proof of Theorem B is essentially the same as the one of [2, Theorem A] except that we use Theorem 2.1 instead of [5, Theorem 2.1]. Essentially, Theorem B is a consequence of the following lemma:

Lemma 2.3. Let \mathcal{F} be a saturated fusion systems over a finite p-group S. Suppose that $\text{Hom}_\mathcal{F}(A, B) \subseteq \text{Hom}_{N_\mathcal{F}(S)}(A, B)$ for all subgroups $A, B \leq \mathfrak{hnp}(\mathcal{F})$ which are cyclic of order p or 4. Then $\mathcal{F} = N_\mathcal{F}(S)$.

Proof. Suppose that Q is an \mathcal{F}-essential subgroup. Then by definition, Q is in particular fully normalized and thus $\text{Aut}_S(Q)$ is a Sylow p-subgroup of $\text{Aut}_\mathcal{F}(Q)$. By Theorem 2.1 there is an $\text{Aut}_\mathcal{F}(Q)$-invariant subgroup $D \leq [Q, O^p(\text{Aut}_\mathcal{F}(Q))] \leq Q \cap \mathfrak{hnp}(\mathcal{F})$ such that every non-trivial p'-element of $\text{Aut}_\mathcal{F}(Q)$ restricts to a non-trivial automorphism of D, and D is of exponent p or 4. Let $Z_i(S)$ be the i-th center of S and $D_i = D \cap Z_i(S)$. We argue now that $D_i = \text{Aut}_\mathcal{F}(Q)$-invariant: For every $x \in D_i$ and any $\varphi \in \text{Aut}_\mathcal{F}(Q)$, $\varphi|_{D_i}$ extends by hypothesis to an element of $\text{Aut}_\mathcal{F}(S)$ which clearly normalizes $Z_i(S)$. As φ normalizes D_i, it follows $\varphi(x) \in Z_i(S) \cap D = D_i$. So D_i is indeed $\text{Aut}_\mathcal{F}(Q)$-invariant. Thus, for some $n \in \mathbb{N}$, the series $1 = D_0 \leq D_1 \leq \cdots \leq D_n = D$ is a normal subgroup of $\text{Aut}_\mathcal{F}(Q)$. For any p'-element φ of H, we have $\varphi|_D = \text{Id}_D$ by [11, Theorem 5.3.2], and thus $\varphi = \text{Id}_Q$ by the choice of D. Therefore, the stabilizer H is a p-group and so $H \leq O_p(\text{Aut}_\mathcal{F}(Q))$. Since $\text{Aut}_S(Q)$ stabilizes the series $D_0 \leq D_1 \leq \cdots \leq D_n = D$, it follows that $\text{Aut}_S(Q) = O_p(\text{Aut}_\mathcal{F}(Q))$, which is a contradiction as every \mathcal{F}-essential subgroup is centric and radical. Hence there is no \mathcal{F}-essential subgroup. Thus, $\mathcal{F} = N_\mathcal{F}(S)$ by Alperin’s fusion theorem [11, Theorem I.3.6]. □

Proof of Theorem B Lemma 2.3 $\mathcal{F} = N_\mathcal{F}(S)$. So for $\mathcal{G} = N_\mathcal{F}(S)$ the assertion follows immediately. Assume now $\mathcal{G} = \mathcal{F}_S(S)$. As $\mathcal{F} = N_\mathcal{F}(S)$, it is sufficient to show that $\text{Aut}_\mathcal{F}(S) = \text{Inn}(S)$. By Theorem 2.1 there is an $\text{Aut}_\mathcal{F}(S)$-invariant subgroup $D \leq [S, O^p(\text{Aut}_\mathcal{F}(S))] \leq S \cap \mathfrak{hnp}(\mathcal{F})$ such that every non-trivial p'-element of $\text{Aut}_\mathcal{F}(S)$ restricts to a non-trivial automorphism of D, and D is of exponent p or 4. Let $D_i = D \cap Z_i(S)$ and $n \in \mathbb{N}$ such that $D_n = D$. By hypothesis, every element of $\text{Aut}_\mathcal{F}(S)$ acts on every element of D as conjugation by an element of S. Hence, $\text{Aut}_\mathcal{F}(S)$ stabilizes the series $1 = D_0 \leq D_1 \leq \cdots \leq D_n = D$ and is thus a p-group by [11, Theorem 5.3.2]. Since $\text{Inn}(S) \in \text{Syl}_p(\text{Aut}_\mathcal{F}(S))$, it follows $\text{Aut}_\mathcal{F}(S) = \text{Inn}(S)$ as required. □

3. **Proof of Theorem C**

Throughout, assume that G is a finite group and that Ω is an algebraically closed field of prime characteristic p. Let $H^*(G)$ and V_G be as in the introduction. Recall that, for any subgroup H of G, we write $\text{res}_{G,H}^\ast: H^*(G) \to H^*(H)$ for the map induced by the inclusion map from H to G, and $\text{res}_{G,H}^* : V_H \to V_G$ for the corresponding map of varieties.
For the proof of Theorem 6.3 we will need some more notation: For every elementary abelian p-group A, we set

$$V^+_A := V_A \setminus \bigcup_{A' < A} \text{res}^*_{A,A'} V_{A'}.$$

If A is an elementary abelian subgroup of G, set

$$V^+_{G,A} = \text{res}^*_{G,A} V_A^+.$$

We start with the following elementary observation:

Remark 3.1. Let $A \leq K \leq G$ such that A is elementary abelian. Then $\text{res}^*_{G,K} V^+_{K,A} = V^+_{G,A}$.

Proof. As $\text{res}^*_{G,K} \circ \text{res}^*_{K,A} = \text{res}^*_{G,A}$, we have $V^+_{G,A} = \text{res}^*_{G,A} V_A^+ = \text{res}^*_{G,K} (\text{res}^*_{K,A} V_A^+) = \text{res}^*_{G,K} V^+_{K,A}$. \Box

Remark 3.2. Write $H^{ev}(G)$ for the subring of $H^*(G)$ of elements of even degree. If $k = \mathbb{F}_p$ notice that the k-algebra homomorphisms from $H^*(G)$ to Ω are the same as the ring homomorphisms from $H^*(G)$ to Ω. So if $k = \mathbb{F}_p$ then, upon replacing $H^*(G)$ by $H^{ev}(G)$ if p is odd, the variety V_G corresponds to the variety $H_G(X)(\Omega)$ studied by Quillen [18] in the special case that X is a point. If $k = \Omega$, it follows from Hilbert’s Nullstellensatz that V_G is homeomorphic to the maximal ideal spectrum of $H^*(G)$ via the map sending every homomorphism in V_G to its kernel; see Theorem 5.4.2 and the surrounding discussion in [3]. So again upon replacing $H^*(G)$ by $H^{ev}(G)$, the variety V_G as defined in this paper corresponds to the variety V_G as defined by Benson [3].

It is common to study the variety of $H^{ev}(G)$ rather than the variety of $H^*(G)$, because $H^{ev}(G)$ is commutative, whereas $H^*(G)$ is only graded commutative, and texts on commutative algebra are written for strictly commutative rings. As pointed out by Benson [4, p.9], the results from commutative algebra which are needed in the theory hold accordingly for graded commutative rings. Moreover, it is pointed out that any graded commutative ring A is commutative modulo its nilradical, and every element of odd degree lies in the nilradical if p is odd. So writing \mathfrak{nil} for the nilradical of $H^*(G)$, it follows that $H^*(G)/\mathfrak{nil}$ is isomorphic to $H^{ev}(G)/(H^{ev}(G) \cap \mathfrak{nil})$. As the nilradical \mathfrak{nil} is contained in the kernel of every k-algebra homomorphism from $H^*(G)$ to Ω, the variety $\text{Hom}_k(H^*(G),\Omega)$ is canonically homeomorphic to the variety $\text{Hom}_k(H^{ev}(G),\Omega)$.

In particular, the Quillen Stratification Theorem as stated in [18 Theorem 10.2] and [3 Theorem 5.6.3] can be proved accordingly with our definitions:

Theorem 3.3 (Quillen’s Stratification Theorem). Let A be a set of representatives of the G-conjugacy classes of elementary abelian subgroups of G. Then V_G is the disjoint union

$$V_G = \coprod_{A \in A} V^+_{G,A}.$$

of locally closed subvarieties $V^+_{G,A}$. Moreover, for every $A \in A$, the automorphism group $\text{Aut}_G(A)$ acts freely on V^+_A and the map $\text{res}^*_{G,A}$ induces a homeomorphism $V^+_A/\text{Aut}_G(A) \to V^+_{G,A}$.

The fact that $V_G = \coprod_{A \in A} V^+_{A,G}$ for any set A of representatives of the G-conjugacy classes of the elementary abelian subgroups of G, will be used in our proof in the following form:
Remark 3.4. Let A and A' be elementary abelian subgroups of G. If A and A' are G-conjugate then we have $V_{G,A}^+ = V_{G,A'}^+$, and if A and A' are not G-conjugate then $V_{G,A}^+$ and $V_{G,A'}^+$ are disjoint.

Proof of Theorem C. Assume that the restriction of the map $\text{res}^*_H: V_H \to V_G$ to the subvariety $\text{res}^*_{H,S\cap O^p(G)} V_{S\cap O^p(G)}$ of V_H is injective.

Step 1: Let A be an elementary abelian subgroup of $S \cap O^p(G)$. We show that the map res^*_H induces a bijection from $V_{H,A}^+$ to $V_{G,A}^+$. Moreover, if A' is another elementary abelian subgroup of $S \cap O^p(G)$ such that $V_{G,A}^+ = V_{G,A'}^+$, then we show $V_{H,A}^+ = V_{H,A'}^+$. To see this note that, by Remark 3.1, we have that $\text{res}^*_H \circ \text{res}^*_{H,S\cap O^p(G)} V_{S\cap O^p(G)}$ is injective. By a symmetric argument, it follows that $V_{H,A'}^+$ is contained in $\text{res}^*_{H,S\cap O^p(G)} V_{S\cap O^p(G)}$. As the actions of $\text{Aut}_H(G,A)$-orbits on $V_{A,H}^+$ are the same as the $\text{Aut}_H(G)$-orbits. As the actions of $\text{Aut}_H(G,A)$ and $\text{Aut}_H(A)$ on $V_{A,H}^+$ are free, this implies that $|\text{Aut}_H(A)| = |\text{Aut}_H(A)|$. Thus, since $\text{Aut}_H(A) \subseteq \text{Aut}_G(A)$, it follows $\text{Aut}_G(A) = \text{Aut}_H(A)$.

Step 2: Let A and A' be two G-conjugate elementary abelian subgroups of $S \cap O^p(G)$. We show that $\text{Aut}_G(A) = \text{Aut}_H(A)$. By the Quillen stratification theorem Theorem 3.3, the group $\text{Aut}_G(A)$ acts freely on $V_{A,G}^+$, and the map res^*_G induces a homeomorphism $V_{A,G}^+ / \text{Aut}_G(A) \to V_{G,A}^+$. In particular, the fibres of the map $\text{res}^*_G: V_{G,A}^+ \to V_{G,A}^+$ are precisely the orbits of $\text{Aut}_G(A)$ on $V_{G,A}^+$. Similarly, applying the Quillen stratification theorem with H in place of G, we get that $\text{Aut}_H(A)$ acts freely on $V_{A,H}^+$, and the fibres of the map $\text{res}^*_H: V_{A,H}^+ \to V_{H,A}^+$ are precisely the orbits of $\text{Aut}_H(A)$ on $V_{H,A}^+$. Note that $\text{res}^*_G = \text{res}^*_H \circ \text{res}^*_H$. As the map $\text{res}^*_G: V_{H,A}^+ \to V_{G,A}^+$ is by Step 1 a bijection, it follows that the maps $\text{res}^*_G: V_{A,G}^+ \to V_{G,A}^+$ and $\text{res}^*_H: V_{A,H}^+ \to V_{H,A}^+$ have the same fibres. So the $\text{Aut}_G(A)$-orbits on $V_{G,A}^+$ are the same as the $\text{Aut}_H(A)$-orbits. As the actions of $\text{Aut}_G(A)$ and $\text{Aut}_H(A)$ on $V_{A,G}^+$ are free, this implies that $|\text{Aut}_G(A)| = |\text{Aut}_H(A)|$. Thus, since $\text{Aut}_H(A) \subseteq \text{Aut}_G(A)$, it follows $\text{Aut}_G(A) = \text{Aut}_H(A)$.

Step 4: We are now in a position to complete the proof. Let A and A' be elementary abelian subgroups of $S \cap O^p(G)$. We want to show that $\text{Hom}_G(A,A') = \text{Hom}_H(A,A')$ and can assume without loss of generality that A and A' are G-conjugate. Then A and A' are H-conjugate by Step 1 and thus there exists $\psi \in \text{Hom}_H(A,A')$. Let $\varphi \in \text{Hom}_G(A,A')$. Note that $\varphi = \psi \circ (\psi^{-1} \circ \varphi)$. By Puig’s hyperfocal subgroup theorem [16 §1.1], we have $S \cap O^p(G) = \text{hyp}(F_S(G))$. So using Theorem A we can conclude that $F_S(G) = F_S(H)$. Thus, by the Cartan–Eilenberg stable elements formula [9 XII.10.1], the map $\text{res}^*_G: H^*(G) \to H^*(H)$ is an isomorphism.

Remark 3.5. A version of Theorem C can also be formulated and proved for abstract saturated fusion systems rather than for groups. Let F be a saturated fusion system over a finite p-group S. Assume that k is an algebraically closed field of characteristic p. The
cohomology ring $H^*(\mathcal{F}) = H^*(\mathcal{F}, k)$ of the saturated fusion system \mathcal{F} is the subring of \mathcal{F}-stable element in $H^*(S) = H^*(S, k)$, which is the subring of $H^*(S)$ consisting of elements $\xi \in H^*(S)$ such that $\text{res}^S_\phi(\xi) = \text{res}_\phi(\xi)$ for any $\phi \in \text{Hom}_\mathcal{F}(P, S)$ and any subgroup $P \leq S$. The ring $H^*(\mathcal{F})$ is a graded commutative ring. We write $V_\mathcal{F}$ for the maximal ideal spectrum of $H^*(\mathcal{F})$, or alternatively for the variety of k-algebra homomorphisms from $H^*(\mathcal{F})$ to k.

Let \mathcal{G} be a saturated fusion subsystem of \mathcal{F}. Note that any \mathcal{F}-stable element of $H^*(S)$ is in particular \mathcal{G}-stable, so we can consider the inclusion map $\text{res}_{\mathcal{F}, \mathcal{G}}: H^*(\mathcal{F}) \rightarrow H^*(\mathcal{G})$ which then gives us a map $\text{res}_{\mathcal{F}, \mathcal{G}}^*: V_\mathcal{G} \rightarrow V_\mathcal{F}$ of varieties. Similarly, if $Q \leq S$, we are given a k-algebra homomorphism $\text{res}_{\mathcal{F}, Q}: H^*(\mathcal{F}) \rightarrow H^*(Q)$ by composing the inclusion map $H^*(\mathcal{F}) \hookrightarrow H^*(S)$ with the restriction map $\text{res}_{S,Q}: H^*(S) \rightarrow H^*(Q)$. Again, this induces a map of varieties $\text{res}_{\mathcal{F}, Q}^*: V_Q \rightarrow V_\mathcal{F}$. In particular, if $A \leq S$ is elementary abelian, one can define $V_{\mathcal{F}, A}^+ = \text{res}_{\mathcal{F}, A}^* V_A^+$. In an unpublished preprint, Markus Linckelmann [15, Theorem 1] proves a version of the Quillen stratification theorem; see also Theorem 1.3 and Remark 1.1 in [19]. Using this, one can similarly prove the following version of Theorem C for fusion systems:

Let $\mathcal{G} \subseteq \mathcal{F}$ be an inclusion of saturated fusion systems over the same finite p-group S, and p an odd prime. If the restriction of the map $\text{res}_{\mathcal{F}, \mathcal{G}}^*: V_\mathcal{G} \rightarrow V_\mathcal{F}$ to $\text{res}_{\mathcal{G}, \text{hyp}(\mathcal{F})}^* V_{\text{hyp}(\mathcal{F})}$ is injective, then $\mathcal{F} = \mathcal{G}$ and in particular $H^*(\mathcal{F}) = H^*(\mathcal{G})$.

References

[1] M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Math. Soc. Lecture Notes Series 391, Cambridge Univ. Press, 2011.
[2] A. Ballester-Bolinches, L. Ezquerro, N. Su and Y. Wang, On the focal subgroup of a saturated fusion system, J. Algebra, 468 (2016) 72–79.
[3] D.J. Benson, Representations and cohomology II, Cohomology of groups and modules, Cambridge Studies in Advanced Mathematics 31, Cambridge Univ. Press, Cambridge 1991.
[4] D.J. Benson, Commutative algebra in the cohomology of groups, Trends in commutative algebra, 1-50, Math. Sci. Res. Inst. Publ. 51, Cambridge Univ. Press, Cambridge 2004.
[5] D.J. Benson, J. Grodal and E. Henke, Group cohomology and control of p-fusion, Invent. Math. 197 (2014), 491–507.
[6] C. Broto, R. Levi and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779–856.
[7] M. Brunetti, A new cohomological criterion for the p-nilpotence of groups, Cand. Math. Bull. 41 (1998), no. 1, 20–22.
[8] J. Cantarero, J. Scherer, and A. Viruel, Nilpotent p-local finite groups, Ark. Mat. 52 (2014), 203-225.
[9] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math.Series, no. 19, Princeton Univ. Press, 1956.
[10] J. González-Sánchez, A p-nilpotency criterion, Arch. Math. (Basel) 94 (2010), no. 3, 201-205.
[11] D. Gorenstein, Finite groups, Chelsea publishing company, New York, 1980.
[12] H.-W. Henn, Cohomological p-nilpotence criteria for compact Lie groups, Astérisque (1990), no. 191, 6, 211-220, International Conference on Homotopy Theory (Marseille-Luminy, 1988).
[13] I.M. Isaacs and G. Navarro, Normal p-complements and fixed elements, Arch. Math. (Basel) 95 (2010), no. 3, 207-2011.
[14] J. Liao and J. Zhang, Nilpotent fusion systems. J. Algebra, 442 (2015), 438–454.
[15] M. Linckelmann, Quillen’s stratification for fusion systems, preprint.
[16] L. Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), no. 2, 365-397.
[17] D.G. Quillen, A cohomological criterion for p-nilpotence, J. Pure & Applied Algebra 1 (1971), 361-372.
[18] D.G. Quillen, The spectrum of an equivariant cohomology ring, I+II, Ann. Math. 94(1971), 549572, 573602.
[19] C.C. Todea, A theorem of Mislin for cohomology of fusion systems and applications to block algebras of finite groups, Expo. Math. 33(2015), no. 4, 526-534.

Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, U.K.
E-mail address: ellen.henke@abdn.ac.uk

School of Mathematics and Statistics, Hubei University, Wuhan, 430062, P. R. China.
Current address: Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, U.K.
E-mail address: jliao@pku.edu.cn