ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening

Tao Xu, Wei Ding, Xiang Ao, Xianming Chu, Qinggong Wan, Yu Wang, Dandan Xiao, Wanpeng Yu, Mengyang Li, Fei Yu, Jianxun Wang,

⁎ Correspondence to: Dengzhou Rd 38, Qingdao 266021, China.
E-mail address: wangjx@qdu.edu.cn (J. Wang).

https://doi.org/10.1016/j.redox.2018.10.023
Received 2 July 2018; Received in revised form 23 October 2018; Accepted 31 October 2018
Available online 02 November 2018
2213-2317/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

1. Introduction

The death of terminally differentiated cardiomyocytes is the leading cause of various cardiac diseases, including heart failure, myocardial infarction (MI) and ischemia/reperfusion (I/R) injury. Apoptosis and necrosis both contribute to myocardial cell death during the pathogenesis of cardiac diseases [1,2]. Apoptosis has received much attention over the past 30 years because it was considered the only form of programmed cell death, although necrotic cell death is the central feature of the failing and I/R heart [3,4]. Myocardial necrosis is an irreversible cell death process, accompanied by rapid loss of cellular membrane potential, which leads to cell swelling, rupture, cytolysis and subsequent inflammation [5]. Increasing evidence suggests that several forms of necrosis are tightly regulated and programmed rather than merely an accidental form of cell death [6,7]. Several signaling pathways have been shown to be involved in necrotic cell death [8–10]. However, knowledge of the regulation of necrosis remains limited and further studies are needed to explore the central factors involved in the process.

The mitochondrial permeability transition pore (mPTP), a multiple protein complex, is the key effector in the pathway to cell death whose molecular components remain elusive [11–13]. mPTP opening is the primary event of the mitochondrial intrinsic necrosis pathway, which is referred to as sudden mitochondrial permeability transition and loss of inner mitochondrial potential. The opening of mPTP leads to the interruption of mitochondrial respiration, matrix swelling and rupture of the mitochondrial membrane, which results in necrotic cell death [12,13]. During cardiac I/R injury, necrosis induced by mPTP opening and the resulting mitochondrial damage is the main cause of myocardial cell death which contributes to more than 50% of the infarcted areas [14]. Understanding the regulation of necrosis induced by mPTP opening is essential for cardio-protection during I/R injury.

ARTICLE INFO

Keywords:
ARC
Myocardial necrosis
mPTP
CypD

ABSTRACT

Necrosis is a key factor in myocardial injury during cardiac pathological processes, such as myocardial infarction (MI), ischemia/reperfusion (I/R) injury and heart failure. Increasing evidence suggests that several aspects of necrosis are programmed and tightly regulated, so targeting the necrosis process has become a new trend for myocardial protection. Multiple cellular signaling pathways have been implicated in necrotic cell death, such as the death receptor-mediated extrinsic and mitochondrial intrinsic pathways. However, the precise mechanisms underlying myocardial necrosis remain unclear. In this study, we showed that apoptosis repressor with caspase recruitment domain (ARC) participated in the mitochondrial intrinsic pathway and inhibited myocardial necrosis by preventing the opening of the mitochondrial permeability transition pore (mPTP). ARC attenuated necrotic cell death triggered by exposure to 500 μM hydrogen peroxide (H₂O₂) in the cardiomyocyte cell line H9c2. In mice, ARC ameliorated myocardial necrosis, reduced the myocardial infarct size and improved long-term heart function during I/R injury. Mechanistically, it has been shown that the inhibition of necrosis by ARC was dependent on its mitochondrial localization and that ARC prevented the opening of mPTP by targeting CypD, the main regulator of mPTP. In addition, ARC expression was negatively regulated by the transcription factor p53 at the transcriptional level during the necrosis process. These findings identified the novel role of ARC in myocardial necrosis and delineated the p53-ARC-CypD/mPTP necrosis pathway during ischemia- and oxidative stress-induced myocardial damage, which can provide a new strategy for cardiac protection.
CypD has been reported to be a central factor in the mitochondrial intrinsic necrosis pathway, which promotes the opening of mPTP. CypD-deficient cardiomyocytes have been shown to have strong resistance to H2O2 or Ca2+-induced necrosis. CypD-knockout in mice was also found to play a cardio-protective role during I/R injury [15-17]. Cyclosporine A, a specific inhibitor of CypD, effectively prevents mPTP opening by binding to CypD and displacing it from the mPTP [18,19]. Several lines of evidence suggest that CypD can also be regulated through protein-protein interaction or posttranslational modification [20–23]. However, the precise mechanisms by which CypD/mPTP is regulated during necrosis remains largely unknown and further studies are required to understand these mechanisms.

Apoptosis repressor with caspase recruitment domain (ARC) is abundantly expressed in heart and muscle cells and has been reported to play a strong cardio-protective role during myocardial injury [24]. Previous studies mainly showed its anti-apoptotic effects by either directly binding to caspase-2 and -8 or indirectly decreasing the mitochondrial Ca2+ [25,26]. However, whether ARC is involved in the regulation of myocardial necrosis is still unknown.

ARC has been reported to inhibit necrosis in mouse L929 fibrosarcoma cells by participating in the extrinsic death receptor-mediated necrosis pathway [27]. However, the cardio-protective effects of ARC depend on its mitochondrial localization during myocardial injury [28,29]. The mitochondria is the convergence point for cell death signaling during the pathogenesis of cardiac diseases [30]. The work presented in this study focused on the mitochondrial intrinsic necrosis pathway and the potential role of ARC in the regulation of myocardial necrosis.

p53 is a tumor suppressor gene that has been reported to be a major factor influencing cell death processes. p53 promotes cell death by directly interacting with death-related proteins or by acting as a transcription factor in the regulation of vast gene expression programs [1]. It has been shown that p53 binds to the promoter region of ARC and decreases its expression at the transcriptional level at the initiation of apoptosis [31]. It was previously reported that p53 regulates necrosis by targeting CypD which promotes mPTP opening in MEF cells [23]. p53 is also a key mediator in myocardial cell death during I/R injury by influencing vast gene expression programs at the transcriptional level [1,32]. However, whether p53 participates in myocardial necrosis remains largely unknown. Therefore, the specific role of the ARC and CypD/mPTP axis in the mitochondrial intrinsic necrosis pathway was explored in this study. Furthermore, we have also demonstrated the role of p53 in the ARC/CypD/mPTP axis at the transcriptional level during myocardial necrosis.

2. Materials and methods

2.1. Cell culture and treatment

H9c2 cells (American Type Culture Collection) were cultured in Dulbecco’s modified Eagle’s medium (Invitrogen, 12100046) supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 µg/L streptomycin and 110 mg/L sodium pyruvate in a humidified atmosphere containing 5% CO2 at 37 °C. Cells were treated with 100 µM or 110 mg/L streptomycin and 110 mg/L sodium pyruvate in a humidified atmosphere.

2.2. Cell death assays

The detailed procedures for PI staining are as follows: cardiomyocytes climbing to the carry sheet glass were washed with PBS three times after the H2O2 treatment. The concentration of working PI solution was 1.5 µM. Cells were then incubated on ice for 5 min. After washing with PBS three times, cells were fixed with 4% PFA on ice for 30 min. Following a quick wash, the cardiomyocytes were mounted with mounting medium containing DAPI and examined with a Nikon Eclipse Ti-S fluorescence microscope. The percentage of necrotic cell death was calculated by counting the total number of PI-positive nuclei divided by total DAPI-stained nuclei.

TUNEL assay was performed using TUNEL Apoptosis Detection Kit (Alexa Fluor 488, YEASEN, 40307ES20) according to the manufacturer’s instructions. The percentage of apoptotic nuclei was calculated by counting the total number of TUNEL-positive nuclei divided by the total number of DAPI-stained nuclei.

2.3. Measurement of the lactate dehydrogenase (LDH) activity

Twenty microliters of supernatant was collected from each cell culture well after H2O2 treatment and LDH activity was measured using the Spectrophotometric kit (Nanjing Jiancheng, Jiangsu, China) following the manufacturer’s instructions.

2.4. Measurement of the mPTP dynamics

2.4.1. TMRE staining

TMRE at a working concentration of 20 nM was loaded into the cell culture pore and cultured with the cells for 30 min, and then the supernatant was discarded. After washing with PBS three times, the cells were immediately treated with 500 µM H2O2 and sequential cellular fluorescence images were acquired with a Leica TCS SP8 MP laser scanning confocal microscope.

2.4.2. Calcein-AM staining

The cells were trypsinized and resuspended in PBS, then loaded with calcein AM and cytosolic calcein fluorescence quencher (CoCl2) for 15 min at 37 °C. The cells were centrifuged, washed, and the cell pellets were resuspended in PBS and characterized for mitochondrial calcein fluorescence by flow cytometry analysis.

The cells were loaded with calcein-AM and a cytosolic calcein fluorescence quencher (CoCl2) for 30 min at 37 °C after the H2O2 treatment. Mitochondrial calcein fluorescence images were acquired with a Leica TCS SP8 MP laser scanning confocal microscope.

The fluorescence intensity was calculated as a percentage by gating upon the positive and negative controls.

2.5. Adenoviruses and vectors for gene overexpression

Adenovirus ARC (Ad-ARC) and adenovirus h-galactosidase (Ad-β-gal) were as previously described [31]. Adenovirus ARC-T49A (Ad-ARC-T49A) was as previously described [33]. Adenovirus p53 (Ad-p53) was as previously described [31]. The CypD overexpression vector was constructed as follows: the CDS of CypD was cloned into the pKC-EF1α eukaryotic expression vector with an EF1α promoter.

The HA-ARC overexpression vector was constructed as follows: The CDS of ARC was cloned into the pKC-EF1α eukaryotic expression vector, the HA sequence was inserted into the C terminal of ARC, Myc-CypD was purchased from OriGene Company.

2.6. RNA interference (RNAi)

Adenovirus si-ARC (Ad-si-ARC) and the Adenovirus scr-ARC (Ad-scr-ARC) were as previously described [31]. Adenovirus si-p53 (Ad-si-p53) and the Adenovirus scr-p53 (Ad-scr-p53) were as previously described [31].

The CypD RNAi sense sequence was as follows:

si-CypD-1: 5′ GCGACUCUCCAAUCAACATTT 3′

si-CypD-2: 5′ GCAUGUUGUGUUGGCGCAUTT 3′

The scramble sequence was as follows:

scr-CypD: 5′ UUUCCCGAAGCUGAGCUGUTT 3′
2.7. Quantitative real-time PCR (qRT-PCR)

The sequences of ARC primers were as follows:

Forward, 5′-CGGAAAGGGCTTGGAGAAC-3′;
Reverse, 5′-TGGCATGCTCAGTTGCT-3′

The sequences of IL-1β primers were as follows:

Forward, 5′-TGATGACCCCTGCTAGTGT-3′;
Reverse, 5′-CTCTTTGGGTATTTGGTCG-3′

The sequences of IL-6 primers were as follows:

Forward, 5′-AGTGGCTCTTGGGACTGA-3′;
Reverse, 5′-TGGGTGTATCCCTGTAAGG-3′

The sequences of TNF-α primers were as follows:

Forward, 5′-CACAAGATTCACACTGGGC-3′;
Reverse, 5′-GAGGAAAGGCTAAGGTC-3′

2.8. Immunoblotting

The cells were collected and lysed for 1 h on ice in a strong RIPA buffer containing a protease inhibitor cocktail (Merck, 539134). The samples were subjected to 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and transferred to PVDF (0.45 µm) membranes. The anti-ARC antibodies (1:2000) were from Abcam (ab110324). The anti-p53 antibody (1:200) was from Cell Signaling Technology (mAb #2524). The anti-ARC antibodies (1:2000) were from Abcam (ab126238). The anti-CypD antibodies were from Santa Cruz (sc-374177). The anti-CypD antibodies were from Cell Signaling Technology (mAb #2524). The anti-ACTIN antibody was from Sigma, A7732. The immunoblotting was performed as described above.

2.10. Mouse model of myocardial ischemia/reperfusion (I/R) injury

All procedures were in agreement with the standards for care of laboratory animals as outlined in the NIH Guide for the Care and Use of Laboratory Animals. All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of Qingdao University Medical College.

Mice were subjected to 30 min of LAD ligation followed by 3 h of reperfusion. The animals received PI injections of 10 mg/kg (PI, Sigma) to label necrotic cells after the termination of I/R surgery (n = 5/group). Frozen 5 µm sections were cut and counterstained with DAPI after which the quantification of necrotic cells was performed. Anti-α-actinin antibody was from Sigma, A7732. The immunofluorescence staining was performed as described above.

2.12. Detection of the pro-inflammatory factors

The I/R heart samples were harvested 24 h after I/R surgery and the pro-inflammatory factors were detected by Q-PCR analysis.

2.13. Masson trichrome staining for collagen

Masson trichrome staining was performed using the staining kit (Solarbio, G1340) following the manufacturer’s instructions. Cardiac fibrosis stained blue with Masson’s trichrome. The ratio of fibrotic area was quantified using software (Image J) by an observer blinded to the sample identity.

2.14. Cardiac functional assays

Left ventricular dimensions and cardiac function in mice exposed to I/R was analyzed by echocardiograph by an observer blinded to the sample identity two weeks after the I/R injury.

2.15. Statistical analysis

The results are expressed as the mean ± SEM of at least three independent experiments. The differences among experimental groups were evaluated by one-way ANOVA (analysis of variance). p < 0.05 was considered statistically significant.

3. Results

3.1. ARC attenuated H2O2-induced necrotic cell death in cardiomyocytes

Hydrogen peroxide (H2O2) induces both apoptosis and necrosis in cardiomyocytes and has been used to generate oxidative stress mimicking I/R injury [8,17,34,35]. Our previous work, and the work of others, has shown that the response to oxidative stress induced by H2O2 in cardiomyocytes depends upon the concentration of H2O2 applied [8,36]. Exposing the cardiomyocytes to lower concentrations of H2O2 (500 µM) mainly triggered apoptosis, while the higher concentration of H2O2 (1000 µM) mainly triggered apoptosis, while the higher concentration of H2O2 (500 µM) predominantly induced necrosis, as shown in Supplementary Fig. 1A and Supplementary Fig. 1B, which is consistent with previous results. Apoptosis and necrosis were respectively assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and propidium iodide (PI) staining [8,37]. To investigate the potential role of ARC in necrosis, cardiomyocytes were exposed to the higher concentration of H2O2 (500 µM), and the protein levels of ARC were examined during necrosis induced...
by oxidative stress. The protein levels of ARC showed a significant downregulation (Fig. 1A and Supplementary Fig. 4A). We then forced the expression of ARC in cardiomyocytes by adenoviral infection (Fig. 1B). Our results showed that the overexpression of ARC attenuated necrosis in cardiomyocytes exposed to H2O2 compared to the negative control group (Fig. 1C, D and Supplementary Fig. 1C). To mimic the H2O2-induced ARC downregulation, we knocked down the endogenous ARC in cardiomyocytes (Fig. 1E). Our results showed that the knockdown of ARC sensitized the cardiomyocytes to undergo necrosis after H2O2 exposure even at the lower concentration (100 μM) compared to the negative control (Fig. 1F and Supplementary Fig. 1D). Taken together, these results indicated that ARC could attenuate myocardial necrosis induced by oxidative stress as a result of H2O2 exposure.

3.2. ARC inhibited mPTP opening induced by H2O2 in cardiomyocytes

We next sought to understand the mechanism by which ARC inhibited myocardial necrosis. The mitochondrial permeability transition pore is the primary component of oxidative damage-induced necrosis during cardiac I/R injury. We then examined whether ARC-based attenuation of H2O2-induced myocardial necrosis was due to the prevention of the mitochondrial permeability transition pore (mPTP) opening. The opening of the mPTP is determined by the loss of the inner-membrane potential (ΔΨm). TMRE (tetramethylrhodamine ethyl ester) is a specific mitochondrial inner-membrane potential indicator and is widely used in the detection of ΔΨm during the induction of necrosis [17,20,38]. The cardiomyocytes were loaded with TMRE (20 nM) and the opening of the mPTP was visualized as a rapid dissipation of TMRE fluorescence. Our results showed that the rapid loss of TMRE fluorescence in a time dependent manner was indicating the opening of mPTP in cardiomyocytes that were exposed to H2O2. Conversely, treating cells with CsA (5 μM), the most specific inhibitor of mPTP opening [39], could delay the loss of TMRE fluorescence (Supplementary Fig. 2B). These results demonstrated that the dissipation of fluorescence in cells exposed to H2O2 was the result of the pores opening. Next, we explored whether ARC was involved in the regulation of the mPTP opening in...
Cardiomyocytes upon H₂O₂ exposure. We overexpressed ARC in cardiomyocytes successfully, as shown in Fig. 1B. The overexpression of ARC significantly delayed the TMRE loss in cardiomyocytes exposed to H₂O₂ compared to the negative control group indicating that ARC significantly inhibited mPTP opening during necrosis (Fig. 2B and C). To further confirm the specificity of these events on the pore dynamics, we utilized another established method to detect mPTP opening in the intact cells [40,41]. We incubated cardiomyocytes with calcein-AM (1 μM) and cobalt-chloride (CoCl₂, 1 mM), which localized calcein fluorescence in the mitochondria. The mPTP opening was determined by the reduction in calcein fluorescence in the mitochondria. Our results showed that H₂O₂-induced necrosis in cardiomyocytes could significantly induce loss of calcein fluorescence in the mitochondria compared to the negative control. Moreover, ARC overexpression in cardiomyocytes delayed the calcein fluorescence loss upon H₂O₂ exposure (Fig. 2D and E). Taken together, these results demonstrated that ARC could significantly inhibit mPTP opening in H₂O₂-induced necrosis in cardiomyocytes.

3.3. Mitochondrial localization of ARC was essential for its role in the inhibition of H₂O₂-induced necrotic cell death

It has been reported that ARC suppresses TNF-α-induced necrosis in mouse L929 fibrosarcoma cells by interacting with TNFR and disrupting RIP1 recruitment in the cytoplasm [27]. However, it is well known that ARC is mainly localized in the mitochondria [42]. Our results also showed that ARC significantly inhibited mPTP opening in H₂O₂-induced necrosis in cardiomyocytes. Therefore, we hypothesized that ARC was involved in the mitochondrial intrinsic necrosis pathway. Our previous results showed that the phosphorylation of ARC at the T149 residue by CK2 is involved in the localization to mitochondria in cardiomyocytes, whereas the nonphosphorylated ARC is unable to migrate to the mitochondria and remains distributed in the cytoplasm [28,43].

We forced the expression of the mutated form of ARC with T149 converted to a nonphosphorylatable alanine residue (A149) by the adenoviral infection. As shown in Fig. 3A and Supplementary Fig. 4B, the forced expression of ARC T149A was mainly distributed in the cytoplasm which was consistent with the previous results [28,43]. The normal ARC inhibited necrosis significantly compared to the control group,
while mutated ARCT149A could not inhibit necrosis in H2O2-exposed cardiomyocytes (Fig. 3B and C). Furthermore, the mutated ARCT149A could not inhibit the opening of mPTP in H2O2-exposed cardiomyocytes (Fig. 3D). These results demonstrated that the role of ARC on the inhibition of H2O2-induced necrotic cell death was dependent on its mitochondrial localization.

3.4. ARC inhibited H2O2-induced necrotic cell death by targeting CypD in cardiomyocytes

Our results showed that ARC was localized to mitochondria and significantly inhibited mPTP opening during H2O2-induced myocardial necrosis. Next, we explored the ARC mechanism for the inhibition of mPTP opening. CypD is the main regulator of mPTP, which can promote the opening of mPTP and induce necrosis in cardiomyocytes [44,45]. First, we forced the expression of CypD in cardiomyocytes using the eukaryon expression plasmid with the EF1α promoter to confirm its role in the induction of necrosis in cardiomyocytes (Fig. 4A). The overexpression of CypD sensitized cardiomyocytes to undergo necrosis when exposed to H2O2 (100 μM) (Fig. 4B and C). Then, we used siRNA to knockdown the expression of endogenous CypD in cardiomyocytes (Fig. 4D). Our results showed that the knockdown of CypD protected cardiomyocytes from necrosis induced by H2O2 exposure (Fig. 4E and F). CsA is the specific inhibitor which binds with CypD and antagonizes its activity [16]. We found that treatment with CsA (5 μM) could also protect cardiomyocytes from necrosis induced by H2O2 (Fig. 4G and H). These results confirmed that CypD was involved in H2O2-induced myocardial necrosis.

Then, we sought to investigate whether ARC inhibited mPTP opening and necrosis by targeting the CypD protein. It has been reported that the interacting proteins regulate the activity of CypD [20]. Our results showed that ARC colocalized with CypD in cardiomyocytes
We performed ectopic expression of HA-ARC and Myc-CypD in 293T cells and demonstrated that ARC could interact with CypD (Fig. 5B). We further confirmed the physical interaction between endogenous ARC and CypD by immunoprecipitation assay (Fig. 5C). Next, we explored whether ARC regulated myocardial necrosis by targeting CypD. Our results showed that the overexpression of ARC inhibited H2O2-induced necrosis compared to the control, whereas this inhibition was abolished by simultaneous overexpression of CypD (Fig. 5D). Moreover, the knockdown of ARC sensitized cardiomyocytes to undergo necrosis when exposed to 100 μM H2O2 for 12 h compared with the control. Necrosis was detected by PI assay (G) and indicated by LDH release assay (H). Error bars represent SEM. *P < 0.05 vs control.

3.5. p53 promoted myocardial necrosis by transcriptionally repressing ARC expression

As ARC was downregulated during the induction of necrosis, we explored the upstream regulator of ARC. In our previous work, we revealed that p53 could transcriptionally repress the expression of ARC during apoptosis induction [31]. Another study showed that p53 mediated necrosis by targeting CypD in MEF cells [23]. However,
whether p53 is involved in myocardial necrosis remains largely unknown. The protein levels of p53 were significantly increased, which was conversely related to the decreased protein levels of ARC during necrosis induced by H$_2$O$_2$ in cardiomyocytes (Fig. 6A and Fig. 1A). Therefore, we hypothesized that p53 might participate in H$_2$O$_2$-induced myocardial necrosis by repressing the expression of ARC. To assess the role of p53 in myocardial necrosis, p53 was stably overexpressed in cardiomyocytes by adenoviral infection (Fig. 6B). Our result showed that overexpression of p53 sensitized cardiomyocytes to undergo necrosis upon H$_2$O$_2$ exposure (100 μM) (Supplementary Fig. 3A and Supplementary Fig. 3B). Conversely, the knockdown of p53 inhibited H$_2$O$_2$-induced necrosis in cardiomyocytes (Fig. 6F and Supplementary Fig. 3C). These results showed that p53 participated in H$_2$O$_2$-induced myocardial necrosis. Next, we examined the link between p53 and ARC in the regulation of necrosis. Our results showed that the overexpression of p53 could significantly decrease the expression levels of ARC in cardiomyocytes at both the mRNA and protein levels (Fig. 6B and D). Conversely, the knockdown of p53 could rescue the expression of ARC at both the mRNA and protein levels in cardiomyocytes exposed to H$_2$O$_2$ (500 μM) (Fig. 6C and E). The overexpression of p53 sensitized cardiomyocytes to undergo necrosis when exposed to H$_2$O$_2$ (100 μM), but either the simultaneous overexpression of ARC or the knockdown of CypD could attenuate the sensitivity of cardiomyocytes to oxidative stress (Supplementary Fig. 3D-3G). Furthermore, the knockdown of p53 inhibited necrosis induced by H$_2$O$_2$ exposure and this inhibition was abolished either by the simultaneous knockdown of ARC or by the overexpression of CypD (Fig. 6G and H). Taken together, these results demonstrated that p53 promoted myocardial necrosis by repressing
ARC expression at the transcriptional level.

3.6. ARC protected cardiomyocytes from necrotic cell death in the heart

After validating the role of ARC in H$_2$O$_2$-induced necrosis in vitro, we further investigated the role of ARC in the pathogenesis of cardiac infarction in a mouse model of I/R. First, we examined the protein levels of ARC and p53 in the mice ischemic heart tissues. Our results showed that the protein levels of ARC were decreased but the protein levels of p53 were increased significantly in a time dependent manner in the ischemic heart tissues. Next, we examined whether ARC inhibited myocardial necrosis in the mouse I/R model. Our results showed that the adenovirus harboring, ARC overexpressing mice group had significantly reduced myocardial necrosis compared to the negative control. Knockdown of p53 inhibited necrosis which was abolished by simultaneous knockdown of ARC. Necrosis was detected by PI assay. Error bars represent SEM; *P < 0.05 vs control.

Fig. 6. p53 promoted myocardial necrosis by transcriptionally repressing ARC expression. (A) p53 protein levels in cardiomyocytes treated with 500 μM H$_2$O$_2$ for the indicated time were detected by Western blotting. (B) Overexpression of p53 by adenovirus decreased the protein levels of ARC in cardiomyocytes. (C) Knockdown of p53 partially recovered the protein levels of ARC in cardiomyocytes exposed to 500 μM H$_2$O$_2$. (D) Overexpression of p53 decreased the mRNA levels of ARC. (E) Knockdown of p53 partially recovered the mRNA levels of ARC in cardiomyocytes exposed to 500 μM H$_2$O$_2$. (F) Knockdown of p53 inactivated necrosis in cardiomyocytes exposed to 500 μM H$_2$O$_2$. Necrosis was detected by PI assay. Error bars represent SEM; *P < 0.05 vs control. (G) Knockdown of p53 inhibited necrosis which was abolished by simultaneous knockdown of ARC. Necrosis was detected by PI assay. Error bars represent SEM; *P < 0.05 vs control. (H) Knockdown of p53 inhibited necrosis which was abolished by simultaneous overexpression of CypD. Necrosis was detected by PI assay. Error bars represent SEM; *P < 0.05 vs control.
control group, as indicated by the PI staining (Fig. 7B and C) and by the LDH activity in the serum (Fig. 7D) after the I/R surgery. Moreover, the myocardial infarct size was also reduced in the ARC overexpressing mice group compared to the negative control group (Fig. 7E) during cardiac I/R damage. These results demonstrated that ARC protected cardiomyocytes from necrosis during the cardiac I/R injury.

It is well known that myocardial necrosis induces robust inflammation which further damages the heart during I/R injury [46,47]. To assess the role of ARC in the inflammatory response after I/R injury, we quantified the expression levels of pro-inflammatory markers. Our results showed that pro-inflammatory markers, such as IL-1β, TNF-α and IL-6, were upregulated significantly during the I/R injury, but expression of these markers was attenuated significantly in the ARC overexpressing mice group compared to the negative control group (Fig. 8A, B and C).

Long-term cardiac function and remodeling has been considered an important criterion for cardio-protective strategies. Fibrosis of the myocardium is closely associated with cardiac remodeling and exacerbates the deterioration of heart function after I/R injury [48]. Our results showed that the collagen areas were reduced two weeks after I/R injury in the ARC overexpressing mice compared to the negative control group (Fig. 8D and E). Moreover, the ARC overexpressing mice group had improved cardiac function as shown by preservation of the ejection fraction (EF) and fractional shortening (FS) and by a decrease in heart chamber dimensions after myocardial I/R injury. (Fig. 8F, G and H). Taken together, these results demonstrated that ARC prevented myocardial necrosis and reduced the infarcted areas of the heart exposed to I/R injury in mice. Moreover, ARC also attenuated the inflammation induced in response to necrosis and improved long-term heart function after I/R injury in mice hearts. Our findings revealed a significant role for ARC in regulating the myocardial necrosis that suggests ARC as a potential therapeutic target for cardio-protection during ischemia and oxidative stress-related cardiac diseases.

4. Discussion

Necrosis is the major form of cell death during myocardial I/R injury [1,3]. Understanding the underlying molecular mechanisms of necrosis will benefit clinical practice in protecting cardiomyocytes from I/R injury. In this study, we reported the pivotal role of ARC in
regulating myocardial necrosis induced by oxidative stress. Protein levels of ARC significantly decreased in H$_2$O$_2$-induced necrosis and overexpression of ARC attenuated necrosis both in vitro and in vivo utilizing cardiomyocytes and the mouse model of I/R injury. Moreover, the inhibition of necrosis by ARC was critically dependent upon ARC localization to mitochondria. Mechanistically, ARC inhibited the opening of mPTP by targeting CypD in H$_2$O$_2$-induced necrosis in cardiomyocytes. Furthermore, we also confirmed that p53 was the upstream regulator of ARC in H$_2$O$_2$-induced necrosis and promoted myocardial necrosis by transcriptional suppression of ARC expression.

ARC has been reported to exert its strong cardio-protective properties through the inhibition of apoptosis. ARC binds to caspase-8 and caspase-2 through its CARD domain and inhibits apoptosis initiation [24–26]. ARC can also preserve mitochondrial integrity and prevents cytochrome c release by inhibiting Bax in cardiomyocytes [49]. Our data also showed that ARC significantly inhibited H$_2$O$_2$-induced apoptosis in cardiomyocytes and confirmed previously published results [31] (Supplementary Fig. 2A). Although the cardio-protective role of ARC has been revealed in apoptosis, the function of ARC remains unknown in necrosis. Necrotic cell death has been shown to be involved in human cardiac diseases and contributes several-fold more to disease pathogenesis than apoptosis [50]. The well-established concept of programmed necrosis has drawn more attention toward targeting necrosis in cardiac pathologies [51,52]. Our present work has
demonstrated the central role of ARC in the inhibition of oxidative stress-induced necrosis.

mPTP is a nonspecific pore in the inner mitochondrial membrane. The prolonged opening of mPTP usually converts the mitochondria from organelles that support cell survival to those that actively induce apoptotic and necrotic cell death [53]. There is increasing evidence that mPTP opening is of critical importance during cardiac I/R injury [16,53]. Therefore, understanding the regulation of mPTP opening is crucial for clinical cardio-protection strategies. It has been reported that CypD is localized in the mitochondrial matrix but under oxidative stress it translocates to the inner mitochondrial membrane, allowing CypD to bind to ANT, the major pore-formation element that induces the opening of mPTP [54,55]. CypD exhibits peptidyl prolyl cis/trans isomerase (PPiase) activity, which causes a conformational change in ANT that converts it into a nonspecific pore [53]. This activity of CypD is regulated by either posttranslational modification or protein-protein interactions. For instance, it has been reported that acetylation of CypD at lysine 166 promotes age-related cardiac hypertrophy by regulating the mPTP opening, which can be reversed by SIRT3-mediated deacetylation of CypD [21]. HAX-1 has been reported to regulate the activity of CypD through interference with CypD binding to a chaperon protein in mitochondria, leaving CypD prone to degradation [20]. However, we could not detect significant changes in the protein levels of CypD in both in vitro and in vivo. Therefore, our results suggested that ARC could possibly prevent CypD translocation to the mPTP complex from the mitochondrial matrix, keeping the mPTP pore inactive. The activation of JNK has been reported to promote the activity of CypD and mPTP opening [56]. It has also been reported that ARC inhibits JNK activation by specific interaction with JNK1 and JNK2 in hepatic cells [57]. Additionally, ARC has also been reported as an inhibitor of TNF-α-mediated necrosis in which ARC interferes with recruitment of RIP1, a critical mediator of TNF-α-induced necrosis [27]. RIP1 has been reported as a central molecule for the initiation of multiple pathways that can contribute in necrotic cell death. For instance, RIP1 can disrupt the interaction between ANT and CypD, and impairs the function of ANT and increases ROS production [58,59]. However, there needs to be further exploration into whether ARC inhibits CypD through the JNK pathway or through interference with recruitment of RIP1 and/or RIP1 disruption of CypD in cardiomyocytes during oxidative stress.

The transcription factor p53 has been reported as a master regulator of the cardiac transcriptome and an important modulator during I/R injury [32,60]. In our previous work, we found that the ARC promoter region contains two p53 binding sites, and p53 represses the expression of ARC at the transcriptional level during apoptosis induction [31]. p53 has also been shown to induce necrosis in MEF cells [23]. However, little is known about the role of p53 in myocardial necrosis. Our results highlighted that p53 promotes myocardial necrosis by the transcriptional suppression of ARC in cardiomyocytes.

It has been reported that p53 could directly interact with CypD in MEF cells [23]. In our work, we found that ARC could regulate necrosis by targeting CypD, and p53 suppressed the expression of ARC at the transcriptional level to initiate necrosis. It is well known that ARC is abundant exclusively in terminally differentiated cells, for instance, cardiomyocytes and skeletal muscle cells, as well as some cancer cell lines, and is an important protein for maintaining cell survival [24,61]. The protein levels of ARC in cardiomyocytes determined the switching point from cell survival to cell death. Therefore, we reasoned that the transcriptional suppression of ARC by p53 was an important step for necrosis initiation in cardiomyocytes. However, whether p53 could directly target CypD in cardiomyocytes needs to be explored further.

5. Conclusion

In summary, our data revealed the pivotal role of ARC in myocardial necrosis and delineated the p53-ARC-CypD/mPTP central necrosis pathway, which can provide a potential therapeutic avenue for ischemia and oxidative stress-related cardiac diseases.

CRediT authorship contribution statement

Tao Xu: Methodology; Investigation; Writing – Original Draft; Writing – Review & Editing; Funding Acquisition. Wei Ding: Methodology; Formal Analysis. Xiang Ao: Conceptualization. Xianming Chu: Investigation; Formal Analysis. Qinggong Wan: Methodology. Yu Wang: Investigation. Dandan Xiao: Investigation. Wanpeng Yu: Formal Analysis. Mengyang Li: Formal Analysis. Fei Yu: Writing – Review & Editing. Jianxun Wang: Conceptualization; Methodology; Writing – Review & Editing; Funding Acquisition.

Acknowledgements

Thanks very much to Dr. AKRAM for the language help.

Funding

This work was supported by National Natural Science Foundation of China (81622005 and 81770232); Natural Science Foundation of Shandong Province (JQ201815); China Postdoctoral Science Foundation (2016M602095). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Declarations of interest

None.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.redox.2018.10.023

References

[1] R.S. Whelan, V. Kaplinskiy, R.N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance, Annu. Rev. Physiol. 72 (2010) 19–44.
[2] K. Konstantinidis, R.S. Whelan, R.N. Kitsis, Mechanisms of cell death in heart disease, Arterioscler. Thromb. Vasc. Biol. 32 (7) (2012) 1552–1562.
[3] H. Zhu, A. Sun, Programmed necrosis in heart disease: molecular mechanisms and clinical implications, J. Mol. Cell. Cardiol. 116 (2018) 125–134.
[4] G. Kang, K. Konstantinidis, R.N. Kitsis, Programmed necrosis, not apoptosis, in the heart, Circ. Res. 108 (8) (2011) 1017–1036.
[5] W.X. Zong, C.B. Thompson, Necrotic death as a cell fate, Genes Dev. 20 (1) (2006) 1–15.
[6] S. He, L. Wang, L. Miao, T. Wang, F. Du, L. Zhao, et al., Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha, Cell 137 (6) (2009) 1100–1111.
[7] D.W. Zhang, J. Shao, J. Lin, N. Zhang, B.J. Lu, S.C. Lin, et al., RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis, Science 325 (5939) (2009) 332–336.
[8] J.X. Wang, X.J. Zhang, Q. Li, K. Wang, Y. Wang, Q.J. Jiao, et al., MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD, Circ. Res. 117 (4) (2015) 352–363.
[9] T. Zhang, Y. Zhang, M. Cui, L. Jin, Y. Wang, F. Lv, et al., CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis, Nat. Med. 22 (2) (2016) 175–182.
[10] Z. Yang, Y. Wang, Y. Zhang, X. He, C.Q. Zhong, H. Ni, et al., RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis, Nat. Cell Biol. 20 (2) (2018) 186–197.
[11] J. Karch, J.D. Molkentin, Identifying the components of the elusive mitochondrial permeability transition pore, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 111(29), 2014, pp. 10396–10397.
[12] C.P. Baines, C.X. Song, Y.T. Zheng, G.W. Wang, J. Zhang, O.L. Wang, et al., Protein dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis, Arterioscler. Thromb. Vasc. Biol. 32 (7) (2012) 1552–1562.
[13] J.X. Wang, X.J. Zhang, Q. Li, K. Wang, Y. Wang, Q.J. Jiao, et al., MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD, Circ. Res. 117 (4) (2015) 352–363.
[14] J. Karch, J.Q. Kwong, A.R. Burr, M.A. Sargent, J.W. Elrod, P.M. Peixoto, et al., Bax and Bak function as the outer membrane component of the mitochondrial permeability transition pore in regulating necrotic cell death in mice, eLife 2 (2013) e00772.
[15] Z. Xu, J. Allonah, E. Beck, N. Weisleder, A marine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery, J. Vis. Exp.: JoVE 86 (2014).

425
A.V. Vaseva, N.D. Marchenko, K. Ji, S.E. Tsirka, S. Holzmann, U.M. Moll, p53 opens K. Kajitani, M. Fujihashi, Y. Kobayashi, S. Shimizu, Y. Tsujimoto, K. Miki, Crystal T. Nakagawa, S. Shimizu, T. Watanabe, O. Yamaguchi, K. Otsu, H. Yamagata, et al., Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature 434 (7033) (2005) 652-658.

C.P. Baines, R.A. Kaiser, N.H. Purcell, N.S. Blair, H. Osisaka, M.A. Hambleton, et al., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature 434 (7033) (2005) 658-662.

K. Kajitani, M. Fujihashi, S. Shimizu, Y. Tsujimoto, K. Miki, Crystal structure of human cyclophilin D in complex with its inhibitor, cyclosporin A at 1.96-A resolution, Proteins 70 (4) (2008) 1635-1639.

G. Kroemer, L. Galluzzi, C. Brenner, Mitochondrial membrane permeabilization in cell death, Physiol. Rev. 87 (1) (2007) 99-163.

C.K. Lam, W. Zhao, G.S. Liu, W.F. Cai, G. Gardner, G. Adly, et al., HAX-1 regulates cyclophilin D levels and mitochondria permeability transition pore in the heart, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 112(47), 2015, pp. E6466-E6475.

A.V. Hafner, J. Dai, A.P. Gomes, C.Y. Xiao, C.M. Palmeira, A. Rosenzweig, et al., Regulation of the mPTP by SIRT3-mediated deacetylation of Cyclo D at lysine 166 suppresses age-related cardiac hypertrophy, Aging 2 (12) (2010) 914-925.

K. Boengler, D. Hilliker-Klein, G. Heusch, R. Schutz, Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion, Basic Res. Cardiol. 105 (6) (2010) 771-785.

A.V. Vaseva, N.D. Marchenko, K. Ji, S.E. Tsirka, S. Holzmann, U.M. Moll, Cyclophilin D opens the mitochondrial permeability transition pore to trigger necrosis, Cell 149 (7) (2012) 1536-1548.

T. Koseki, N. Isohara, S. Chen, N. Gusev, A., an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 95(9), 1998, pp. 5156-5160.

Y.Q. Zhang, B. Herman, ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial transition, J. Cell. Biochem. 99 (2) (2006) 575-588.

D.G. Jo, J.I. Jun, J.W. Chang, Y.M. Hong, S. Song, D.H. Cho, et al., Localization of ARC mediates regulation of caspase 8 and cell death, Mol. Cell. Biol. 24 (2004) 9763-9770.

D. Gung, P. Dai, L. Deng, R.N. Kitsis, A novel role for the apoptosis inhibitor ARC in suppressing TNF-alpha-induced regulated necrosis, Cell Death Differ. 21 (4) (2014) 634-644.

P.F. Li, J. Ji, E.C. Muller, A. Otto, R. Dietz, R. von Harsdorf, Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC, Mol. Cell. 19 (20) (2005) 2479-2487.

W.Q. Tan, J.X. Wang, Z.Q. Lin, Y.R. Li, Y. Lin, P.F. Li, Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Ikk activation, J. Biol. Chem. 279 (2004) 21233-21238.

M. Chiong, Z.V. Wang, Z. Pedrozo, D.J. Cao, R. Troncoso, M. Ibacache, et al., Cardiomyocyte death: mechanisms and translational implications, Cell Death Dis. 2 (2011) e77.

W. Zhou, J. Yuan, Necroptosis in health and diseases, Semin. Cell Dev. Biol. 35 (2014) 14-23.

A. Pavlović, A. Luo, Y. Su, D. Lian, H. Xiang, Z. Yin, et al., RIPK3-mediated necroptosis regulates cardiac allograft rejection, Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transplant. Surg. 14 (8) (2014) 1778-1790.

A.P. Haleslap, S.J. Clarke, S.A. Javadov, Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardio protection, Cardiovasc. Res. 61 (3) (2004) 372-385.

A.P. Haleslap, K.Y. Woodfield, C.P. Connern, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocator, J. Biol. Chem. 272 (6) (1997) 3346-3354.

C.P. Connern, A.P. Haleslap, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel, Biochem. J. 302 (Pt 2) (1994) 321-324.

C. Zhou, Z. Chen, X. Liu, H. Wu, Q. Yang, D. Xu, Icarin activates JNK-dependent mPTP necrosis pathway in colorectal cancer cells, Tumour Biol.: J. Int. Soc. Oncodev. Biol. Med. 37 (3) (2016) 3135-3144.

J. An, F. Mehmohf, C. Harms, G. Lattig-Tunnenmann, S.L. Lee, M. Endres, et al., An novel therapeutic approach for acetaminophen-induced hepatocellular necrosis, J. Hepatol. 58 (2) (2013) 297-305.

T. Vanden Berghy, W. Declercq, P. Vandenvaelke, NADPH oxidases: new players in TNF-induced necrotic cell death, Mol. Cell 26 (6) (2007) 769-771.

Y. Lin, S. Choksi, H.M. Shen, Q.F. Yang, G.M. Hur, Y.S. Kim, et al., Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation, J. Biol. Chem. 279 (11) (2004) 10822-10828.

M. Sano, T. Minamino, H. Toko, H. Miyasuchi, M. Orimo, Y. Qin, et al., P38-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload, Nature 446 (7134) (2007) 444-448.

M. Wang, S. Geng, M.T. Crow, M. Watanabe, A.L. Nieminen, Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei, FEBS Lett. 579 (11) (2005) 2411-2415.