Elliptic and hexadecapole flow of charged hadrons
in Au+Au collisions at $\sqrt{S_{NN}} = 200$ GeV

A. Adare,11 S. Afanasiev,26 C. Aidala,39 N.N. Ajitanand,56 Y. Akiba,50,51 H. Al-Bataineh,45 J. Alexander,56 K. Aoki,32,56 Y. Aramaki,10 E.T. Atomssa,33 R. Averbeck,57 T.C. Awes,46 B. Aznoun,5 V. Babintsev,22 M. Bai,4 G. Baksay,18 L. Baksay,18 K.N. Barish,6 B. Bassalleck,44 A.T. Basye,1 S. Bathe,6 V. Baublis,49 C. Baumann,40 A. Bazilevsky,5 S. Belikov,5 K. Belmont,51 R. Bennett,57 A. Berdnikov,53 Y. Berdnikov,53 A.A. Bickley,11 J.S. Bok,64 K. Boyle,57 M.L. Brooks,35 H. Buesching,5 V. Bunazhnov,22 G. Bunce,5,51 S. Butsyk,35 C.M. Camacho,35 S. Campbell,57 C.-H. Chen,57 C.Y. Chi,12 M. Chiu,5 I.J. Choi,64 R.K. Choudhury,3 P. Christiansen,37 T. Chuto,60 P. Chung,67 O. Chvála,6 V. Cianciolo,46 Z. Citron,57 B.A. Cole,12 M. Connors,57 P. Constantin,35 M. Csanád,16 T. Csörgő,29 T. Dahms,57 S. Dairaku,32,50 I. Danchev,61 K. Das,19 A. Dautta,30 G. David,5 A. Denisov,22 A. Deshpande,51,57 E.J. Desmond,5 O. Dietzsch,54 A. Dion,57 M. Donadelli,54 O. Draper,33 A. Drees,57 K.A. Drees,4 J.M. Durham,57 A. Durum,22 D. Dutta,5 S. Edwards,19 Y.V. Efremenko,46 F. Ellinghaus,11 T. Engelmore,12 A. Enokizono,34 H. En’yo,50,51 S. Esumi,60 B. Fadem,41 D.E. Fields,44 M. Finger, Jr.,7 M. Finger,7 F. Fleuret,33 S.L. Fokin,31 Z. Fraenkel,63 J.E. Frantz,57 A. France,5 A.D. Frawley,19 K. Fujisawa,50 Y. Fukako,50 T. Fusayasu,43 I. Garishvili,58 A. Glenn,11 H. Gong,57 M. Goni,33 Y. Goto,50,51 R. Granier de Cassagnac,33 N. Grau,13 S.V. Greene,61 M. Grosse Perdekamp,53,51 T. Gunji,50,51 H.-A. Gustafsson,33 J.S. Haggerty,5 K.I. Hahn,17 H. Hamagaki,19 J. Hamblen,58 J. Hanks,12 R. Han,48 E.P. Hartouni,34 E. Hashem,37 R. Hayano,10 M. Heffner,34 S. Hegyi,29 T.K. Hemmick,57 T. Hester,6 X. He,20 J.C. Hill,25 M. Hohlmann,18 W. Holzmann,12 K. Homma,21 F. Huang,50 T. Horaguchi,21 D. Hornback,58 S. Huang,61 T. Ichihara,50,51 R. Ichimia,50 J. Ide,41 Y. Ikeda,60 K. Imai,32,50 M. Inaba,60 D. Izenhower,1 M. Ishihara,50 T. Isole,10 M. Issah,61 A. Isupov,26 D. Ivanischev,49 B.V. Jacak,57 J. Jia,5,56 J. Jin,12 B.M. Johnson,5 K.S. Joo,42 D. Jouan,47 D.S. Jumper,1 F. Kajihara,10 S. Kamihara,50 N. Kamihara,53 J. Kamin,57 J.H. Kang,64 J. Kapustinsky,5 D. Kawall,39,51 M. Kawashima,32,56 B.V. Kazantsev,31 T. Kempel,25 A. Khanzadeev,49 K.M. Kijima,21 B.I. Kim,30 D.H. Kim,42 D.J. Kim,27 E.J. Kim,8 E. Kim,50,51 H.Y. Kim,26 J. Kinney,1 K. Kirihara,11 A. Kiss,16 E. Kistenev,5 L. Kochenda,5 B. Komkov,49 M. Konno,60 J. Koster,23 D. Kotechetkov,44 A. Kozlov,63 A. Král,33 A. Kravitz,12 G.J. Kunde,35 K. Kurita,52,50 M. Kurowsawa,50 Y. Kwon,64 G.S. Kyle,45 R. Lacey,56 Y.S. Lai,12 J.G. Lajoie,25 A. Lebedev,25 D.M. Lee,45 J. Lee,17 K.B. Lee,30 K. Lee,55 K.S. Lee,30 M.J. Leitch,53 M.A.L. Leite,54 E. Leitner,51 B. Lenzi,54 P. Liebing,51 L.A. Linden Levy,11 T. Liška,13 A. Litvinenko,26 H. Liu,35,45 M.X. Liu,35 X. Li,9 B. Love,61 R. Luechtersen,40 D. Lynch,5 C.F. Maguire,61 Y.I. Makdisi,4 A. Malakhot,25 M.D. Malik,44 V.I. Manko,31 E. Mannel,12 Y. Mao,48,50 H. Masui,60 F. Matathias,12 M. McCumber,57 P.L. McGaughy,35 N. Means,57 B. Meredith,23 Y. Miake,60 A.C. Migone,38 P. Mikes,7,24 K. Miki,60 A. Milov,59 M. Mishra,2 J.T. Mitchell,5 A.K. Mohanty,3 Y. Morino,10 A. Morello,9 D.P. Morrison,5 T.V. Moukhova,31 J. Murata,52,50 S. Nagamiya,28 J.L. Nagle,11 M. Naglis,60 M.I. Nagy,16 I. Nakagawa,50,51 Y. Nakamiya,21 T. Nakamura,21,28 K. Nakano,50,51 J. Newby,34 M. Nguyen,47 R. Nouicer,5 A.S. Nynai,31 E. O’Brien,5 S.X. Oda,10 C.A. Ogilvie,25 K. Okada,51 M. Oka,60 Y. Onuki,50 A. Oskarsson,23 M. Ouchida,21 K. Ozawa,16 R. Pak,5 V. Pantuev,57 V. Papavassiliou,55 I.H. Park,60 S.K. Park,49 G. Park,49 S.P. Stoll,49 R. Patel,54 H. Pei,25 J.-C. Peng,23 H. Perea,14 V. Peresedov,26 D.Yu. Peressounko,31 C. Pinkenburg,5 R.P. Pisani,5 M. Proissl,57 M.L. Purschke,5 A.K. Purwar,35 H. Q. Rau,27 A. Rakotozafindrabe,33 I. Ravovich,63 K.F. Read,46,58 K. Reygers,40 V. Ribakov,49 Y. Ribakov,49 E. Richardson,38 D. Roach,61 G. Roche,36 S.D. Rolnick,5 M. Rosati,25 C.A. Rosen,11 S.S.E. Rosendahl,7 P. Rosnet,36 P. Rukoyatkin,26 P. Ružička,24 B. Salzburger,40 N. Saito,28 T. Sakaguchi,5 K. Sakashita,50,59 V. Samsonov,49 S. Sano,45 T. Sato,50 S. Sawada,28 K. Sedgwick,6 J. Seele,11 R. Seidl,23 A.Yu. Semenov,25 R. Seto,6 D. Sharma,63 I. Shein,22 T.A. Shibata,50,59 K. Shigaki,21 M. Shimomura,60 K. Shoji,32,50 P. Shukla,3 A. Sickles,5 C.L.C. Silva,54 D. Silvermyr,46 C. Silvestre,14 K.S. Sim,30 B.K. Singh,2 C.P. Singh,2 V. Singh,2 M. Shunečka,7 R.A. Soltz,34 W.E. Sondheim,35 S.P. Sorensen,59 J.V. Sourkova,5 N.A. Sparks,1 P.W. Stankus,46 E. Stenlund,37 S.P. Stoll,5 T. Sugitake,21 A. Sukhovation,5 J. Sziklai,29 E.M. Takagui,54 A. Taketani,50,51 R. Tanabe,60 Y. Tanaka,43 K. Tanida,32,50,51 M.J. Tannenbaum,5 S. Tarafdar,2 A. Taranenko,36 P. Tarján,15 H. Themann,57 T.L. Thomas,44 M. Togawa,32,50 A. Toia,57 L. Tomášek,24 H. Torii,21 R.S. Towell,1 I. Tserruya,63 Y. Tsuchimoto,21 C. Vale,25 H. Valle,64 H.W. van Hecke,35 E. Vazquez-Zambrano,12 A. Veicht,23 J. Velkovska,61 R. Veres,15,29 A.A. Vinogradov,31 M. Virtus,13 V. Vrba,24 E. Vznuzdaev,49 X.R. Wang,5 D. Watanabe,21 K. Watanabe,60 Y. Watanabe,50,51 F. Wei,25 R. Wei,56 J. Wessels,40 S.N. White,5 D. Winter,12 J.P. Wood,1 C.L. Woody,5 R.M. Wright,1 M. Wysocki,11 W. Xie,51 Y.L. Yamaguchi,10 K. Yamaura,21 R. Yang,23 A. Yanovich,22 J. Ying,20 S. Yokkaiči,50,51
G.R. Young, I. Younus, Z. You, I.E. Yushmanov, W.A. Zaje, C. Zhang, S. Zhou, and L. Zolin

(phenix collaboration)

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Banaras Hindu University, Varanasi 221005, India
3 Bhabha Atomic Research Centre, Bombay 400 085, India
4 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
5 Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
6 University of California - Riverside, Riverside, California 92521, USA
7 Charles University, Ovocn¿ trh 5, Praha 1, 116 36, Prague, Czech Republic
8 Chonbuk National University, Jeonju, 561-765, Korea
9 China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China
10 Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
11 University of Colorado, Boulder, Colorado 80309, USA
12 Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA
13 Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
14 Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
15 Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
16 ELTE, Eötvös Loránd University, H - 1117 Budapest, Pázmány P. s. 1/A, Hungary
17 Ewha Womans University, Seoul 120-750, Korea
18 Florida Institute of Technology, Melbourne, Florida 32901, USA
19 Florida State University, Tallahassee, Florida 32306, USA
20 Georgia State University, Atlanta, Georgia 30303, USA
21 Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
22 Institute of Atomic Energy, National Research Center, Moscow, Russia
23 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
24 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
25 Iowa State University, Ames, Iowa 50011, USA
26 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
27 Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland
28 KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
29 KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, POBox 49, Budapest, Hungary
30 Korea University, Seoul, 136-701, Korea
31 Russian Research Center "Kurchatov Institute", Moscow, Russia
32 Kyoto University, Kyoto 606-8502, Japan
33 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
34 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
35 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
36 LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France
37 Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
38 University of Maryland, College Park, Maryland 20742, USA
39 Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
40 Institut f"ur Kernphysik, University of Muenster, D-48149 Muenster, Germany
41 Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
42 Myongji University, Yongin, Kyonggi-do 449-728, Korea
43 Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
44 University of New Mexico, Albuquerque, New Mexico 87131, USA
45 New Mexico State University, Las Cruces, New Mexico 88003, USA
46 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
47 IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France
48 Peking University, Beijing, People's Republic of China
49 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
50 RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, JAPAN
51 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
52 Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
53 Saint Petersburg State Polytechnic University, St. Petersburg, Russia
54 Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo CEP05315-970, Brazil
55 System Electronics Laboratory, Seoul National University, Seoul, Korea
56 Chemistry Department, Stony Brook University, Stony Brook, SUNY, New York 11794-3400, USA
57 Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA
58 University of Tennessee, Knoxville, Tennessee 37996, USA
59 Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
60 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or number of participant nucleons (N_{part}) for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The $v_{2,4}$ measurements at pseudorapidity $|\eta| \leq 0.35$, obtained with four separate reaction-plane detectors positioned in the range $1.0 < |\eta| < 3.9$ show good agreement, indicating the absence of significant $\Delta\eta$-dependent nonflow correlations. Sizable values for $v_4(p_T)$ are observed with a ratio \(\frac{v_4(p_T,N_{\text{part}})}{v_2(p_T,N_{\text{part}})} \approx 0.8 \) for $50 \lesssim N_{\text{part}} \lesssim 200$, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For $N_{\text{part}} \gtrsim 200$ this ratio increases up to 1.7 in the most central collisions.

PACS numbers: 25.75.Dw, 25.75.Ld

The discovery of large azimuthal anisotropy at the Relativistic Heavy Ion Collider (RHIC) is a key piece of evidence for the creation of dense partonic matter in ultra relativistic nucleus-nucleus collisions [1, 2]. With sufficiently strong interactions, the medium in the collision zone can be expected to locally equilibrate and exhibit hydrodynamically driven flow [3, 4]. The momentum anisotropy results from an initial “almond-shaped” collision zone produced in noncentral collisions [3, 4]. It is now routinely characterized, at midrapidity, by the even order Fourier coefficients \(v_n = \langle e^{in(\phi_p-\phi_{\text{RP}})} \rangle, n = 2, 4, \ldots \), where ϕ_p is the azimuthal angle of an emitted particle, Φ_{RP} is the azimuth of the reaction plane and the brackets denote averaging over particles and events.

At the highest RHIC collision energy of $\sqrt{s_{NN}} = 200$ GeV, differential flow measurements $v_2(p_T)$ (for transverse momentum $p_T \lesssim 2.5$ GeV/c) and $v_2(N_{\text{part}})$ have been measured for a broad range of centralities or number of participants N_{part}. These data are found to be in accord with calculations that model an essentially locally equilibrated quark gluon plasma (QGP) having little or no viscosity [4, 6–8]. The magnitude of v_2 and v_4 in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, the ratio $\frac{v_4(p_T)}{v_2(p_T)}$, and the freeze-out dynamics [16], can indicate whether full local equilibrium is achieved in the QGP [17]. The role of fluctuations and so-called “nonflow” correlations is important for such measurements. It is well established that initial eccentricity fluctuations significantly influence the magnitudes of $v_{2,4}$ [18–22]. However, the precise role of nonflow, which leads to a systematic error in the determination of $v_{2,4}$, is less clear. Non-flow correlations among produced particles may arise from jets, whose influence is found to vary with pseudorapidity η and p_T [23]. This provides a tool to evaluate how jets influence the measured flow.

We report precise measurements of charged hadron v_2 and v_4 in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The measurements were performed in the two PHENIX central arms ($|\eta| \leq 0.35$) with respect to event planes obtained from four separate reaction-plane detectors in the range $1.0 < |\eta| < 3.9$. Multiple event planes allow a search for possible $\Delta\eta$-dependent nonflow contributions that would influence the magnitude of $v_{2,4}$, which may be crucial for reliable extraction of transport coefficients.

The results reported here are derived from $\sim 3.6 \times 10^8$ minimum-bias Au+Au events obtained at $\sqrt{s_{NN}} = 200$ GeV with the PHENIX detector [24] during the 2007 running period. The event centrality was determined via cuts on the analog response of the Beam-Beam Counters (BBC). For each centrality selection, the number of participant nucleons N_{part}, was estimated via a Glauber model Monte-Carlo simulation [25]. The drift chambers and two layers of multi-wire proportional chambers with pad readout (PC1 and PC3) were used for charged particle tracking and momentum reconstruction with azimuthal coverage $\Delta\varphi = \pi/2$ in the central region $|\eta| \leq 0.35$. Tracks were required to have $E/p_T > 0.1$ and a confirmation hit within a 2σ matching window in PC3 and the Electromagnetic Calorimeters (EMCal) (E denotes the energy deposited in the EMCal). This minimized albedo, conversions and weak decay products.

The event-plane method [26] was used to correlate...
the azimuthal angles ϕ_p of the charged tracks in the PHENIX central arms ($|\eta| \leq 0.35$) with the azimuth of the estimated second order event plane Φ_2, determined via hits in the two BBCs and Muon Piston Calorimeters (MPCs), and the two inner (i), outer (o) and combined (io) rings of newly installed Reaction-Plane Detectors (RXN). The two RXNs are situated at $|z| = 38$–40 cm of the nominal crossing point and their inner and outer rings are comprised of twelve plastic scintillators ($\Delta \phi = \pi/6$ for each). The MPCs are PbWO$_4$ based electromagnetic calorimeters with 2π azimuthal acceptance. The respective η coverage for these event-plane detector pairs are $3.1 < |\eta_{BBC}| < 3.9$, $3.1 < |\eta_{MPC}| < 3.7$, $1.5 < |\eta_{RXN, i}| < 2.8$ and $1.0 < |\eta_{RXN, o}| < 1.5$. For a given pair the detector, which is located at positive (negative) η, is designated North (N) (South (S)).

Charge-averaged values for the second and fourth flow harmonics were evaluated separately for each estimated event plane i as:

$$v_{2k}^i = \frac{\langle\cos(2k(\Phi_p - \Phi_2^i))\rangle}{\text{Res}(\Psi_{2k}^i)}$$

where the denominator represents a resolution factor that corrects for the difference between the true azimuth Φ_{RP} and the 2nd order estimate Φ_2 of the event plane. This estimate was obtained from the combined sub-events (North and South) for each detector pair. Resolution factors were evaluated via the three-sub-events method [20, 27]:

$$\text{Res}(\Psi_{2k}^i) = \sqrt{\frac{\langle\cos(2k(\Phi_2^i - \Phi_2^l))\rangle\langle\cos(2k(\Phi_2^i - \Phi_2^m))\rangle}{\langle\cos(2k(\Phi_2^i - \Phi_2^o))\rangle}} \tag{2}$$

where i, l and m indicate event and subevent planes with disparate η values (eg., $i = \text{RXN}_{io}$, $l = \text{MPC}_N$, and $m = \text{BBC}$).

An advantage of this procedure is that, for any given centrality, it allows several independent estimates of $\text{Res}(\Psi_{24}^i)$ for each event plane. In turn, such estimates allow an evaluation of the systematic errors for $\text{Res}(\Psi_{24}^i)$. It is noteworthy that estimates for these correction factors were also obtained (for $k = 1$ and 2) via the two-sub-events method [20, 27], which is regularly used for elliptic flow analysis. For RXN the difference between both methods is small for v_2 i.e., $\sim 1\%$ for mid-central collisions and $\sim 5\%$ for the most central and peripheral collisions. For v_4, it is $\sim 2\%$ for mid-central collisions and grows to $\sim 7\%$ and 20% in the most peripheral and central collisions respectively.

Figure 1 shows the centrality dependence of $\langle\text{Res}(\Psi_2^i)\rangle$ and $\langle\text{Res}(\Psi_4^i)\rangle$ for several event planes. Similar maxima are observed for $N_{\text{part}} \approx 200$ with a falloff at lower and higher N_{part}. Measurements with the RXN$_{io}$ event plane benefit from about a factor of two (five) improvement in the resolution for v_2 (v_4) compared to prior PHENIX measurements with the BBC event plane [20].

The systematic errors associated with the RXN$_{io}$ resolution factors for v_2 (v_4) are estimated to be less than 2% (6%) for mid-central collisions but increase to about 3% (10%) in the most central and peripheral collisions. Similar estimates were obtained for the RXN$_1$ and RXN$_o$ event planes. On average, those for the BBC and the MPC event planes are about a factor of two larger. Other sources, such as track cuts, are estimated to range from ~ 1–2% (3–4%) for $p_T \gtrsim 0.5$ GeV/c to $\sim 5\%$ (10%) for the lowest p_T values.

Figures 2(a) and (b) compare the double differential
flow coefficients \(v_2, v_4(p_T, N_{\text{part}})\) for event-plane detectors spanning the range \(1.0 < \eta < 3.9\). Within systematic errors, they agree to better than \(\sim 5\%\) (10\%) for \(v_2\) (\(v_4\)) in mid-central collisions and approximately 10\% (20\%) in central and peripheral events (cf., ratios in Figs. 5(c) and (d)) independent of \(p_T\). This agreement indicates a reliable measurement free of significant \(\Delta \eta\) and \(p_T\)-dependent nonflow contributions (for \(p_T \lesssim 3\) GeV/c), which would affect \(v_2\) and \(v_4\) (very little influence is expected from a possible \(\Delta \eta\)-independent long-range correlation \[28\]). Non-flow correlations, such as from dijets, would lead to a difference in the \(v_2\) (\(v_4\)) values obtained with event planes determined at different rapidity gaps (\(\Delta \eta\)) with respect to the central arms \[23\]. In the following we utilize the RXN\(_{\text{Bar}}\) event plane due to its good resolution. The associated systematic error for \(v_2\) (\(v_4\)) is estimated to be \(\approx 3\%\) (8\%) for mid-central collisions and increase to about 7\% (15\%) in the most peripheral and central collisions.

Figures 3 and 4 summarize the results for elliptic and hexadecapole flow. The magnitude and trends agree well with those reported earlier \[1, 2\]. However they now benefit from a factor of five increase in statistics, as well as improved precision \(\sim 2\) in the event plane. Figures 3(a) and (b) compare the measured charged hadron differential \(v_2(p_T)\) and \(v_4(p_T)\), as a function of centrality. In contrast to the approximately linear dependence observed in Fig. 3(a) for \(p_T \lesssim 1.5\) GeV/c, the \(v_4\) data exhibit a non linear dependence on \(p_T\) compatible with the prediction from hydrodynamics that \(v_4 \propto v_2^2\) \[29\]. The large increase \(\sim \times 6\) from central to peripheral collisions, reflects the expected increase due to the change in initial eccentricity from central to peripheral events \[17, 30\].

Figure 4 compares the \(v_2(N_{\text{part}})\) (a) and \(v_4(N_{\text{part}})\) (b) for several \(p_T\) selections as indicated. The \(N_{\text{part}}\) values are mean values evaluated for the centrality selections indicated in Fig. 4. Here, the data trends in (a) and (b) are strikingly similar albeit with a much smaller magnitude in (b). The magnitude and trends with \(p_T\) and \(N_{\text{part}}\) in Figs. 4(a) and (b) (a) and (b) follow expectations for a hydrodynamically expanding low viscosity fluid \[3, 7, 8, 11, 13\].

The ratio \(\frac{v_4}{v_2}\) is shown as a function of \(N_{\text{part}}\) in Fig. 4(c) for the same \(p_T\) selections used in (a) and (b): systematic errors are \(\approx 4 - 5\%\) for mid-central collisions and increase to \(8-10\%\) for central and peripheral collisions. Within errors, these data indicate that the magnitude of \(\frac{v_4}{v_2}\) is essentially independent of \(p_T\) for the range 0.5 - 3.6 GeV/c, i.e. extending beyond the maxima in Fig. 3(a). An approximately constant ratio of value \(\frac{v_4(p_T, N_{\text{part}})}{v_2(p_T, N_{\text{part}})} \approx 0.8\) is observed for \(50 \lesssim N_{\text{part}} \lesssim 200\), which is larger than the ratio \(\approx 0.5\) for ideal hydrodynamics in the model of \[22\]. The inclusion of eccentricity
fluctuations in this model, cause this ratio to exceed 0.5 as shown by the dashed curve (from [22] in Fig. 4(c). Viscosity from the hadron gas phase, in addition to a small value in the quark gluon plasma ($4\pi \frac{k}{T}^2 \sim 2$) [12], results in a further increase of this ratio as indicated by the dashed-dot curve [22].

Our $\frac{1}{2}v_4^{(pT,N_{\text{part}})}$ ratio is smaller than the centrality-averaged value of 1.2 reported by STAR [31]. Part of this difference can be understood by averaging over our measured centrality range (0-60%) yielding the value ≈ 1.0. Comparison to STAR results [22] shows a 10% discrepancy for mid-central collisions, possibly reflecting differences in the methods used to estimate $\text{Res}(\Psi_4)$.

In more central collisions where $N_{\text{part}} \gtrsim 200$, $\frac{1}{2}v_4^{pT}$ increases rapidly. Adding eccentricity fluctuations to ideal hydrodynamics causes a similar trend, indicated by the dashed curve in Fig. 4(c). Central collisions are the most sensitive because the eccentricity decreases as the overlap region becomes more symmetric. In order to reproduce the central data, the authors of [22] introduced additional fluctuations shown as the solid line in Fig. 4(c), though the source of these fluctuations is as yet unspecified.

In summary, we have presented differential measurements of v_4 and v_2 for charged hadrons obtained with four reaction-plane detectors at different $\Delta \eta$ with respect to the PHENIX central arms. There are no significant Δp_T and p_T-dependent nonflow contributions for $p_T \lesssim 3$ GeV/c in the centrality ranges of our study. Consequently there are no significant systematic errors from jets on the event-plane determinations or values of v_2 and v_4. The ratio $\frac{1}{2}v_4^{(pT,N_{\text{part}})}$ is 0.8 for $50 \lesssim N_{\text{part}} \lesssim 200$ is essentially independent of p_T, consistent with the effects of finite viscosity and eccentricity fluctuations. For $N_{\text{part}} \gtrsim 200$ the ratio increases up to 1.7 in the most central collisions. The precision of these data provide stringent constraints for further theoretical modeling and more detailed extractions of the transport properties of hot and dense partonic matter.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), NRF (Korea), MES, RAS, and FAME (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungary Fulbright, and US-Israel BSF.

[1] K. Adcox et al., Nucl. Phys. A757, 184 (2005).
[2] J. Adams et al., Nucl. Phys. A757, 102 (2005).
[3] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[4] U. Heinz and P. Kolb, Nucl. Phys. A702, 269 (2002).
[5] E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009).
[6] A. Adare et al., Phys. Rev. Lett. 98, 172301 (2007).
[7] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007).
[8] Z. Xu, C. Greiner, and H. Stocker, Phys. Rev. Lett. 101, 082302 (2008).
[9] A. Adare et al., Phys. Rev. Lett. 98, 162301 (2007).
[10] R. A. Lacey and A. Taranenko, Proc. of Science CFRNC2006, 021 (2006).
[11] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007).
[12] H.-J. Drescher, A. Dumitru, C. Gombeaud, and J.-Y. Ollitrault, Phys. Rev. C 76, 024905 (2007).
[13] A. K. Chaudhuri, Phys. Rev. C 81, 044905 (2010).
[14] N. Borghini and J.-Y. Ollitrault, Phys. Lett. B642, 227 (2006).
[15] M. Asakawa, S. A. Bass, and B. Muller, Phys. Rev. Lett. 96, 252301 (2006).
[16] V. Greco, M. Colonna, M. Di Toro, and G. Ferini, Prog. Part. Nucl. Phys. 62, 562 (2009).
[17] R. S. Bhalerao et al., Phys. Lett. B627, 49 (2005).
[18] M. Miller and R. Snellings, nucl-ex/0312008 (2003).
[19] Y. Hama et al., Phys. Atom. Nucl. 71, 1558 (2008).
[20] B. Alver et al., Phys. Rev. Lett. 98, 242302 (2007).
[21] R. A. Lacey, A. Taranenko, and R. Wei, arXiv:0905.4368 [nucl-ex] (2009).
[22] C. Gombeaud and J.-Y. Ollitrault, Phys. Rev. C 81, 044901 (2010).
[23] J. Jia, Nucl. Phys. A783, 501 (2007).
[24] K. Adcox et al., Nucl. Instrum. Meth. A499, 469 (2003).
[25] B. Alver, M. Baker, C. Loizides, and P. Steinberg, arXiv:0805.4411 [nucl-ex] (2008).
[26] S. Afanasiev et al., Phys. Rev. C 80, 024909 (2009).
[27] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[28] B. Alver et al. (PHOBOS), Phys. Rev. C 81, 034915 (2010).
[29] P. F. Kolb, Phys. Rev. C 68, 031902(R) (2003).
[30] W. Broniowski, P. Bozek, and M. Rybczynski, Phys. Rev. C 76, 054905 (2007).
[31] J. Adams et al., Phys. Rev. Lett. 92, 062301 (2004).