ABCDEF Bundle and Supportive ICU Care Practices for patients with COVID-19 infection: An international point prevalence study ~The ISIIC Study~

Keibun Liu
Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia https://orcid.org/0000-0002-6867-1420

Kensuke Nakamura (mamashockpapashock@yahoo.co.jp)
https://orcid.org/0000-0001-8481-0294

Hajime Katsukawa
Japanese Society for Early Mobilization, Tokyo, Japan

Muhammed Elhadi
Faculty of Medicine, University of Tripoli, Tripoli, Libya

Peter Nydahl
Nursing Research, Department of Anesthesiology and Intensive Care Medicine, Universty Hospital of Schleswig-Holstein, Kiel, Germany

Eugene Wesley Ely
Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University School of Medicine, Nashville, USA

Sapna R Kudchadkar
Department of Anesthesiology and Critical Care Medicine, Department of Physical Medicine and Rehabilitation, and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA

Kunihiko Takahashi
Department of Biostatistics, M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

Shigeaki Inoue
Emergency and Critical Care Center, Kobe University Hospital, Kobe

Alan Kawarai Lefor
Department of Surgery, Jichi Medical University, Tochigi,

Jozef Kesecioglu
Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University

Osamu Nishida
Johns Hopkins Department of Anesthesiology and Critical Care Medicine: Johns Hopkins Medicine Department of Anesthesiology and Critical Care Medicine

Research

Keywords: ICU liberation bundle, novel coronavirus, post intensive care syndrome, quality improvement

DOI: https://doi.org/10.21203/rs.3.rs-89768/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Although the number of patients with COVID-19 infection is increasing and concerns for their long-term disabilities are increasing, there is a lack of data about the delivery of the ABCDEF-bundle and supportive care in Intensive Care Units (ICUs). The aim of this study is to investigate the implementation of the ABCDEF-bundle and supportive care provided to patients with COVID-19 infections in ICUs.

Methods

This was a world-wide two-day point prevalence study, on June 3 and July 1, 2020. A total of 212 ICUs in 38 countries (166 ICUs on Day 1 and 212 on Day 2) participated. Clinicians in each participating ICU completed web-based online surveys. The implementation rate for elements of the ABCDEF-bundle, other supportive ICU care measures and implementation associated structures were investigated.

RESULTS

Data for 262 patients was collected during the two-day study. Of patients included, 124 (47.3%) underwent mechanical ventilation (MV) and 12 (4.6%) patients were treated with extracorporeal membrane oxygenation (ECMO). The proportion of patients with implementation of each element was: Element A (regular pain assessment) 45%; B (both spontaneous awakening and breathing trials) 28%; C (regular sedation assessment) 52%; D (regular delirium assessment) 38%; E (early mobility and exercise) 47%; and F (family engagement and empowerment) 16%. The implementation of element E for patients on MV was 16% and ECMO was 17%. Supportive care, such as providing protein throughout the ICU stay (under 1.2g/kg for more than 50% of the patients) and introduction of an ICU diary (25%) was inadequate. A higher implementation rate of elements A and D were recognized in ICUs with specific protocols for ICU care and lower numbers of ICU beds exclusively for patients with COVID-19 infection. Element E was implemented at a higher rate in ICUs with more ICU beds for patients with COVID-19 infection.

CONCLUSIONS

This worldwide two-day point prevalence study found low implementation of the ABCDEF-bundle. Specific protocols and the number of ICU beds reserved for patients with COVID-19 infections might be key factors to deliver appropriate supportive care.

Trial registration: UMIN, UMIN000040405. Registered 14 May 2020, https://upload.umin.ac.jp/cgi-open-bin/ctr_view.cgi?recptno=R000046103

Introduction

It is clear that evidence-based and supportive Intensive Care Unit (ICU) care synchronized with treatment of the underlying disease should be the standard of care to prevent weakness and disabilities in patients after resolution of their critical illness [1–3]. The implementation of ICU care, along with the ABCDEF bundle [1], PADIS guideline [2], and nutrition guidelines [3, 4], have been shown to be key elements for patients in ICUs not only to improve mortality and morbidity [5] but also to rehabilitate their functional abilities and health related quality of life [6]. A variety of guidelines recommend incorporation of these evidence-based approaches to ICU care into clinical practice [1–3], according to the local situation and available resources [7, 8].

However, the novel coronavirus pandemic (SARS-CoV-2) rapidly changed ICU practice internationally [9]. Challenges include an inadequate number of beds to meet the staggering increase in the number of patients with COVID-19 infections [10] and unbalanced interprofessional staff resources to meet the demand [11]. These challenges may lead to patients not receiving the same quality of clinical care, resulting in poorer outcomes including increased mortality [12]. In addition to increased ICU mortality in patients with COVID-19 infections, recent evidence has highlighted the severe physical disabilities and prolonged symptoms during recovery from COVID-19 infection that limits patients’ daily activities and quality of life after discharge from the hospital [13–16]. Thus, an enhanced recovery program which optimizes evidence-based ICU care and patient recovery is essential [15–18]. Although, many studies and guidelines propose a way to conduct ICU care including the ABCDEF bundle [19–22] and providing adequate nutrition [23, 24] for patients with COVID-19 infections in this pandemic, data demonstrating implementation of these aspects of care in the ICU is insufficient. There are serious concerns regarding second waves in many countries, and these data are essential to improve future patient outcomes and minimize disabilities.

Therefore, we conducted an international, internet-based, 2-day point prevalence survey, aiming to investigate the implementation of the ABCDEF-bundle, the PADIS guideline and other supportive care provided to patients with COVID-19 infections in ICUs, with consideration of the specific ICU structure.

Materials And Methods

Design and Setting

This was a worldwide two-day point prevalence study of evidence-based ICU care for critically ill patients in ICUs with COVID-19 infections, which was approved by the ethics committee of the Saiseikai Utsunomiya Hospital (2020-07) as the central institution, registered in UMIN (ID: 000046103), and followed the STROBE cross sectional guidelines (Supplemental Table 1). Surveys were performed on June 3rd and July 1st 2020. This project was led by the Japanese Society of Intensive Care Medicine; JSICM collaborating with World Federation of Intensive and Critical Care; WFICC, European Society of Intensive Care Medicine; ESICM, Indian Society of Critical Care Medicine; ISCCM, and other networks (Appendix 1).

Surveys were anonymous and the information collected did not include specific data which could identify the facility or individual, therefore ethical approval at each participating facility was omitted according to the Ethical Guidelines for Medical and Health Research Involving Human Subjects in Japan [25]. This
ethical policy was explained to all clinicians, and only ICUs for which participants agreed after referring to the ethics policies in their regions and countries participated. If there was difficulty in participation based on this ethical policy, clinicians could decide to participate after obtaining ethical approval. Under this policy, the registration process for each participating site and surveys were managed online using Google Forms (Google. Inc).

The Study Process

Participating ICUs were recruited by distributing information about the study and an invitation letter to members of JSICM, WFICC, ESICM, and ISCCM via their own networks between May 16 and July 1 2020. Social networking services and a web-based advertisement were also used (eAppendix). All ICUs in the world were eligible, regardless of whether they had patients with COVID-19 infections at the time and there were no exclusion criteria based on the structure of the facility or ICU.

After registration, all representatives were requested to answer a pre-survey to obtain basic information about the hospital/ICU. Only those who completed the pre-survey were enrolled as participating sites. One day before each of the survey dates, participating representatives received the URL for the survey of baseline characteristics of patients and daily ICU care provided to patients with COVID-19 infections in the participating ICU on the survey date. Patients considered to be in a terminal state and receiving palliative care, were excluded.

Data collection

The questionnaires and response sheets for both surveys are shown in Appendix 2. The facility registration number was used to link the basic information of the participating hospital/ICU with the data for baseline characteristics of the patients and daily ICU care. The operational definitions of the ABCDEF bundle, composed of elements A, B, C, D, E, and F, were cited from a previous study (Supplemental Table 2) [5]. Other ICU care, such as nutrition, an ICU diary, and physical restraints are defined in Supplemental Table 2.

Study outcomes

This primary outcome of this study was the implementation of each element of the ABCDEF bundle. The following data were examined: classification of professionals with primary responsibility for the bundle, the presence of a target goal for pain and sedation management, the prevalence of delirium on the survey dates, the highest mobility level according to the ICU Mobility Scale [26], the implementation of nutrition therapy, interventions to promote sleep, an ICU diary, the use of physical restraints, the route and amount of energy and protein in nutrition, assessment tools used for pain, sedation, and delirium, agents used for pain, sedation, delirium, and sleep, the reason why element B was not implemented, non-pharmacological interventions to control delirium and promote sleep, classifications of professionals delivering mobilization/rehabilitation, devices used during rehabilitation, barriers which prevent sitting on the edge of the bed or more, and the visiting habits for family members.

The association between the implementation of ICU care and the ICU structure, including the presence of specific protocols, the frequency of multidisciplinary and/or multi-professional rounds, the nurse to patient ratio, the number of ICU beds exclusively for patients with COVID-19 infections, the presence of dedicated physiotherapists, the ability of physiotherapists to enter the room of patients with COVID-19 infections, and visiting hours were also evaluated.

Data analysis

Non-normally distributed continuous data and categorical data, without missing data, are presented as medians with interquartile range (IQR) and numbers or percentages respectively. The chi-squared test and Fisher’s exact test were used for categorical data appropriately.

In the analysis of the implementation of ICU care, patients were classified into three groups: no mechanical ventilation (MV) or extracorporeal membrane oxygenation (ECMO), undergoing MV, and undergoing ECMO. The highest mobility level and the energy and protein provided per day were evaluated according to three phases of critical illness: the early period in the acute phase (ICU days 1 to 3), the late period in the acute phase (ICU days 4 to 7), and after the acute phase (ICU days 8 to 14 and from 15) [3, 4].

All statistical analyses were conducted using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan) [27], which is a graphical user interface for R. Statistical tests were two sided and statistical significance was set at \(p < 0.05 \).

Patient and public involvement

This study did not involve patients or the public directly in terms of development and implementation of the study, or preparation of the manuscript. However, the findings will be widely and immediately disseminated to the public through official (press release and institutional websites), personal, and social communication tools necessitated by the rapid global progression of COVID-19.

Results

Characteristics of Participating Hospitals and ICUs

A total of 166 and 212 ICUs were enrolled on the first and second survey dates respectively (Supplemental Fig. 1 and Supplemental Table 3). The majority of the respondents were intensivist physicians (Supplemental Table 4). There was no difference in basic structure of the hospital/ICU between the two dates (Table 1) at each site. Most ICUs were medical-surgical mixed ICUs with a 1:2 nurse to patient ratio and had less than 5 beds assigned for patients with COVID-19 infections. Intensivists, physicians, and nurses were generally allowed to enter the rooms of patients with COVID-19 infections. About 40% of ICUs used written protocols for ICU care and 60% of the ICUs performed multidisciplinary/professional rounds daily. Visiting hours were reduced or banned during the COVID-19 pandemic (Supplemental Table 5).
Table 1
Participating hospitals and ICUs

Parameter	ICUs Participating in the first survey (n = 166)	ICUs Participating in the second survey (n = 212)
Basic information for hospitals with participating ICUs^a		
Type, n (%)		
University hospital	58 (36%)	75 (35%)
University affiliated hospital	34 (20%)	48 (23%)
Community hospital	60 (36%)	71 (34%)
Others	14 (8%)	18 (8%)
Number of (beds), n (%)		
\(<200)	10 (6%)	19 (9%)
\(200 \leq x <400\)	29 (17%)	40 (19%)
\(400 \leq x <600\)	41 (25%)	48 (23%)
\(x \geq 600\)	86 (52%)	105 (50%)
Beds exclusively for patients with COVID-19 infection, n (%)		
\(<10)	61 (37%)	71 (35%)
\(10 \leq x <20\)	34 (20%)	41 (19%)
\(x \geq 20\)	71 (43%)	100 (47%)
Basic information for participating ICUs		
Type of ICU, n (%)^b		
Medical-Surgical mixed ICU	140 (84%)	169 (80%)
Medical ICU	11 (7%)	26 (12%)
Surgical ICU including cardiac surgery	7 (4%)	9 (4%)
Other types of ICU^c	8 (5%)	8 (4%)
Nurse-to-patient ratio, n (%)		
1:1	22 (13%)	35 (17%)
1:2	133 (80%)	151 (71%)
1:x (x \geq 3)	11 (7%)	26 (12%)
Number of ICU beds, n (%)		
\(<10)	43 (26%)	59 (28%)
\(10 \leq x <20\)	75 (45%)	90 (42%)
\(x \geq 20\)	48 (29%)	63 (30%)
ICU beds exclusively for patients with COVID-19, n (%)		
\(<5)	101 (61%)	113 (53%)
\(5 \leq x <20\)	43 (26%)	66 (31%)
\(x \geq 20\)	22 (13%)	33 (16%)
Professionals who may enter rooms of patients with COVID-19 under infection control regulations, n (%)		
Intensivists	157 (95%)	202 (95%)

Data are presented as number (%)

ICU: intensive care unit

^a In 5 instances two different ICUs in the same hospital participated in this study.

^b One ICU is managed as a tele-ICU by another hospital or ICU

^c Among both 8 other types of ICUs, 5 are pediatric ICUs.
Parameter	ICUs Participating in the first survey (n = 166)	ICUs Participating in the second survey (n = 212)
Physicians other than intensivists	134 (81%)	169 (80%)
Nurses	166 (100%)	212 (100%)
Physiotherapists	93 (56%)	122 (58%)
Respiratory Therapists	48 (29%)	68 (32%)
ICUs with dedicated intensivists, n (%)	159 (96%)	205 (97%)
Role of dedicated intensivists in the ICU, n (%)		
Intensivists have primary responsibility for patient care	88 (53%)	120 (57%)
Intensivists provides mandatory consultations	43 (26%)	48 (23%)
Intensivists available for consultation	28 (17%)	37 (17%)
ICUs with dedicated physiotherapists, n (%)	78 (47%)	108 (51%)
ICUs with dedicated respiratory therapists, n (%)	44 (27%)	65 (31%)
ICU structure associated with evidence-based and supportive ICU care		
ICUs with a written Pain management protocol, n (%)	73 (44%)	98 (46%)
ICUs with a written Spontaneous Awakening Trials management protocol, n (%)	60 (36%)	83 (39%)
ICUs with a written Spontaneous Breathing Trials management protocol, n (%)	70 (42%)	91 (43%)
ICUs with a written Sedation management protocol, n (%)	88 (53%)	115 (54%)
ICUs with a written Delirium management protocol, n (%)	66 (40%)	82 (39%)
ICUs with a written Mobilization / Rehabilitation management protocol, n (%)	73 (44%)	93 (44%)
ICUs with a written Sleep management protocol, n (%)	21 (13%)	30 (14%)
Frequency of multidisciplinary rounds for patients with COVID-19 in the ICU, n (%)		
Daily	100 (60%)	135 (64%)
At least once a week	9 (5%)	10 (5%)
Not applicable	57 (34%)	67 (32%)
Visiting hours/day for patients with COVID-19 in the ICU (hours), n (%)		
No visiting hours	142 (86%)	182 (86%)
0< x <6	21 (13%)	26 (12%)
6 ≤ x <24	1 (1%)	2 (1%)
No limitation on visiting hours	2 (1%)	2 (1%)

Data are presented as number (%)

ICU: intensive care unit

a In 5 instances two different ICUs in the same hospital participated in this study.
b One ICU is managed as a tele-ICU by another hospital or ICU
c Among both 8 other types of ICUs, 5 are pediatric ICUs.

Baseline patient characteristics

There were 135 and 127 patients in ICUs on the first and second survey dates respectively (Table 2), with equal distribution of age groups. Most patients were male (68%). Racial mix included mostly and Asian (45%) and white (39%). The median ICU length of stay was 9 [5–35] days. Of a total of 262 patients, 47.3% (n = 124) patients underwent MV and 4.6% (n = 12) patients were treated with ECMO. There was no statistically significant difference between the first and second survey days for these characteristics, except for the use of MV (p < 0.001), the number of patients who underwent prone positioning (p = 0.002), and its duration (p < 0.05) (Table 2).
Demographics	Total patients (n = 262)	Patients in the first survey (n = 135)	Patients in the second survey (n = 127)
Age (years), n (%)			
x <50	69 (26%)	27 (20%)	42 (33%)
50 ≤ x <60	69 (26%)	24 (18%)	45 (35%)
60 ≤ x <70	62 (24%)	37 (27%)	25 (20%)
70 ≤ x <80	46 (18%)	35 (26%)	11 (9%)
x ≥ 80	16 (6%)	12 (9%)	4 (3%)
Gender (male), n (%)			
Asian	118 (45%)	63 (47%)	55 (43%)
White	103 (39%)	54 (40%)	49 (39%)
Hispanic	10 (4%)	4 (3%)	6 (5%)
Black	7 (3%)	5 (4%)	2 (2%)
Other	24 (9%)	9 (7%)	15 (12%)
BMI (kg/m²), n (%)			
x < 18.5	19 (7%)	8 (6%)	11 (9%)
18.5 ≤ x <25	118 (45%)	58 (43%)	60 (47%)
25 ≤ x <30	79 (30%)	41 (30%)	38 (30%)
30 ≤ x <35	27 (10%)	14 (10%)	14 (11%)
x ≥ 35	19 (7%)	14 (10%)	4 (3%)
ICU length of stay (days), median [IQR]	9 [5–35]	24 [7–50]	6 [4–10]
Ambulatory independence prior to ICU admission, n (%)	222 (85%)	118 (87%)	104 (82%)
ICU treatment provided on the survey date			
Respiratory assistance, n (%)			
No respiratory device	20 (8%)	12 (9%)	8 (6%)
Oxygen, such as nasal cannula, face mask, reserved face mask, and others	89 (34%)	37 (27%)	52 (41%)
Nasal high flow cannula	22 (8%)	10 (7%)	12 (9%)
Non-invasive ventilation	33 (13%)	9 (7%)	24 (19%)
Mechanical ventilation	124 (47%)	86 (64%)	38 (30%)
ECMO	12 (5%)	11 (8%)	1 (1%)
Patients receiving continuous / intermittent renal replacement therapy, n (%)	38 (15%)	22 (16%)	16 (13%)

Data are presented as median [interquartile range] or number (%)

ICU intensive care unit, IQR interquartile range, BMI body mass index, ECMO extracorporeal membrane oxygenation

a Of 69 patients, 2 patients are under 20 years old.

b Percentages are calculated by dividing the number of patients without mechanical ventilation and ECMO. The number of patients without mechanical ventilation and ECMO as total, the first survey, and the second survey are 137, 48, and 89 respectively.

c Percentages are calculated by dividing the number of patients on mechanical ventilation. The number of patients on mechanical ventilation as total, the first survey, and the second survey are 124, 86, and 38 respectively.

d Percentages are calculated by dividing the number of patients on ECMO. The number of patients on ECMO as total, the first survey, and the second survey are 12, 11, and 0 respectively.
Total patients (n = 262)	Patients in the first survey (n = 135)	Patients in the second survey (n = 127)
Patients receiving continuous neuromuscular blocking agents, n (%) | 38 (15%) | 25 (19%) | 13 (10%)
Patients receiving continuous vasoactive drugs, n (%) | 65 (25%) | 42 (31%) | 23 (18%)
Patients receiving continuous analgesics, n (%) | 118 (45%) | 45 (33%) | 73 (57%)
Patients receiving continuous use of sedatives, n (%) | 102 (39%) | 59 (44%) | 43 (34%)
Patients receiving prone positioning, n (%) | 57 (22%) | 19 (14%) | 38 (30%)
Prone positioning without mechanical ventilation and ECMO, n (%) | 35 (26%) | 6 (13%) | 29 (33%)
Prone positioning on mechanical ventilation, n (%) | 22 (18%) | 13 (15%) | 9 (24%)
Prone positioning on extracorporeal membrane oxygenation, n (%) | 2 (17%) | 2 (18%) | 0 (0%)
Scheduled total hours of prone positioning (hours), n (%) | (n = 57) | (n = 19) | (n = 38)
0< x <6 | 26 (46%) | 5 (26%) | 21 (55%)
6 ≤ x <12 | 9 (16%) | 4 (21%) | 5 (13%)
12 ≤ x <18 | 17 (30%) | 8 (42%) | 9 (24%)
18 ≤ x <24 | 3 (5%) | 1 (5%) | 2 (5%)
24 (all day long) | 2 (4%) | 1 (5%) | 1 (3%)

Data are presented as median [interquartile range] or number (%).

ICU intensive care unit, IQR interquartile range, BMI body mass index, ECMO extracorporeal membrane oxygenation

a Of 69 patients, 2 patients are under 20 years old.
b Percentages are calculated by dividing by the number of patients without mechanical ventilation and ECMO. The number of patients without mechanical ventilation and ECMO as total, the first survey, and the second survey are 137, 48, and 89 respectively.
c Percentages are calculated by dividing by the number of patients on mechanical ventilation. The number of patients on mechanical ventilation as total, the first survey, and the second survey are 124, 86, and 38 respectively.
d Percentages are calculated by dividing by the number of patients on ECMO. The number of patients on ECMO as total, the first survey, and the second survey are 12, 11, and 0 respectively.

Implementation of the ABCDEF bundle

Implementation of the ABCDEF bundle was primarily by intensivists (58%), followed by nurses and a multidisciplinary/professional team (Table 3). The implementation of each element of the bundle is shown in Fig. 1 and Table 3. Among the different patient groups, there were significant differences in implementation of elements A, C, D, and E. The implementation rates included: element A, regular pain assessment, (45%); element B, both spontaneous awakening and breathing trials, (28%); element C, regular sedation assessment, (52%); element D, regular delirium assessment, (38%); element E, early mobility and exercise, (47%); element F, family engagement and empowerment, (16%). The details associated with implementation of each element are shown in Supplemental Table 6. Most patients undergoing MV and ECMO were managed with a target for pain control and sedation by using of fentanyl and benzodiazepines. The Numerical Rating Scale, Critical-care Pain Observation Tool, and Behavioral Pain Scale were used as Pain assessment tools, the Richmond Agitation- Sedation Scale for sedation assessment, and the Confusion Assessment Method for ICU to monitor delirium. The most common reason why spontaneous awakening trials (Element B) were not performed was respiratory instability, followed by the absence of a protocol. Overall, 11% of patients were diagnosed with delirium. Non-pharmacological interventions, such as orientation, optimizing sleep conditions, and mobilization, were more frequently performed than pharmacological interventions to control delirium. While 75% of the patients without MV or ECMO could mobilize to the level of standing, the implementation of element E for the patients on MV or ECMO was less than 20%. The mobility level increased gradually over during the ICU stay, while the median level in patients undergoing MV remained IMS 0, the level of passive exercise in bed (Fig. 2). The barriers preventing increased mobility to sitting at the edge of the bed or higher were primarily respiratory factors, such as desaturation or an excessive respiratory rate, followed by consciousness factors. The involvement of intensivists in mobilization (20%) was less frequent than nurses (60%) or physiotherapists (56%). The cycle-ergometer and electrical neuromuscular stimulation were rarely used. Electronic devices, using a monitor to facilitate meetings, were used for 40% of the patients. The full implementation of all elements of the ABCDEF bundle was achieved for only 1% of the patients (Supplemental Table 7).
Table 3
Implementation of the ABCDE bundle and other supportive measures for patients with COVID-19 infections

Variables	Total patients (n = 262)	The patients without mechanical ventilation and ECMO (n = 137)	The patients on mechanical ventilation (n = 124)	The patients on ECMO (n = 12)
Person with primary responsibility for implementing the ABCDEF bundle				
Intensivist, n (%)	151 (58%)	71 (52%)	79 (64%)	4 (33%)
Nurse (include nurse managers, directors, and critical care nurse specialists), n (%)	112 (43%)	76 (55%)	36 (29%)	3 (25%)
Multidisciplinary rounds / conference / team, n (%)	92 (35%)	58 (42%)	33 (27%)	5 (42%)
Respiratory Therapist, n (%)	63 (24%)	48 (35%)	15 (12%)	0 (0%)
Physician other than intensivists, n (%)	41 (16%)	27 (20%)	14 (11%)	0 (0%)
Physiotherapist, n (%)	21 (8%)	13 (9%)	8 (6%)	0 (0%)
No one has responsibility for implementing the bundle, n (%)	7 (3%)	4 (3%)	3 (2%)	1 (8%)
Implementation of each element of the ABCDEF bundle				
Patients receiving element A, n (%)	118 (45%)	42 (31%)	75 (60%)	
The presence of a target goal to control patient's Pain, n (%)	136 (52%)	49 (36%)	86 (69%)	10 (83%)
Patients receiving element B				
Spontaneous Awakening Trial during continuous sedation, n (%)	29 (28%)	4 (19%)	25 (32%)	
Spontaneous Breathing Trial on mechanical ventilation, n (%)			35 (28%)	
Patients receiving element C, n (%)	136 (52%)	45 (33%)	90 (73%)	
The presence of a target goal to control patient's Sedation, n (%)	157 (60%)	49 (36%)	107 (86%)	12 (100%)
Patients receiving element D, n (%)	100 (38%)	37 (27%)	62 (50%)	7 (58%)
Patients diagnosed with delirium, n (%)	30 (11%)	9 (7%)	21 (17%)	2 (17%)
Patients receiving element E, n (%)	124 (47%)	103 (75%)	20 (16%)	2 (17%)
The highest mobility level according to the ICU Scale, median [IQR]	2 [0–6]	5 [3–8]	0 [0–1]	0 [0–2]
Patients receiving element F, n (%)	42 (16%)	23 (17%)	19 (15%)	1 (8%)
The implementation of other essential ICU care				
Patients receiving standardized Nutrition support, n (%)	259 (99%)	136 (99%)	122 (98%)	12 (100%)
feeding tube, n (%)	149 (57%)	39 (28%)	110 (89%)	10 (83%)

Data presented as number (%) or median [interquartile range]

ICU intensive care unit, IQR interquartile range

a Operational definitions of each element of the ABCDEF bundle are shown in Supplemental Table 3.

b Percentages are calculated by dividing by the numbers of sedated patients. All the number of sedated patients were 102. The number of sedated patients without mechanical ventilation and extracorporeal membrane oxygenation are 21. The number of sedated patients on mechanical ventilation or extracorporeal membrane oxygenation are 79 or 10 respectively.

c Percentage is calculated by dividing by the number of the patients on mechanical ventilation, or 124.

d Highest exercise / rehabilitation level performed at the survey date is assessed based on the ICU Mobility Scale (Hodgson C, et al. Heart and Lung. 2014; 43:19–24). IMS 0: Nothing (lying in bed, passive exercise), 1: sitting in bed, exercises in bed, 2: passively moved to chair (no standing), 3: sitting over edge of bed, 4: standing, 5: transferring bed to chair, 6: marching on spot (at bedside), 7: walking with assistance of 2 or more people, 8: walking with assistance of 1 person, 9: walking independently with a gait aid, 10: walking independently without a gait aid.

e There are 19 patients who received nutrition via multiple routes. Of them, 15 patients received nutrition via enteral and oral nutrition, 2 patients received via enteral and total parenteral nutrition, and 2 patients received via oral and parenteral nutrition.
Variables	Total patients (n = 262)	The patients without mechanical ventilation and ECMO (n = 137)	The patients on mechanical ventilation (n = 124)	The patients on ECMO (n = 12)
oral, n (%) | 113 (43%) | 105 (77%) | 0 (0%) | 1 (8%)
total parenteral nutrition, n (%) | 16 (6%) | 5 (4%) | 12 (10%) | 2 (17%)

Estimated energy in nutrition provided within last 24 hours (kcal/day)

- x < 1000: 24 (9%), 12 (9%), 12 (10%), 2 (17%)
- 1000 ≤ x <1500: 118 (45%), 76 (55%), 42 (34%), 3 (25%)
- 1500 ≤ x <2000: 105 (40%), 45 (33%), 60 (48%), 6 (50%)
- x ≥2000: 15 (6%), 4 (3%), 10 (8%), 1 (8%)

Estimated protein in nutrition provided within last 24 hours (g/kg/day)

- <1.2 g/kg: 157 (60%), 82 (60%), 75 (60%), 7 (58%)
- ≥1.2 g/kg: 105 (40%), 55 (40%), 49 (40%), 5 (42%)

Patients receiving a regular standardized **Sleep** assessment, n (%) | 86 (33%) | 34 (25%) | 51 (41%) | 6 (50%)

Patients receiving **ICU Diary**, n (%) | 65 (25%) | 50 (36%) | 15 (12%) | 1 (8%)

Patients placed in **Physical Restraints** at any time on the survey date, n (%) | 58 (22%) | 23 (17%) | 35 (28%) | 5 (42%)

Data presented as number (%) or median [interquartile range]

ICU intensive care unit, IQR interquartile range

- a Operational definitions of each element of the ABCDEF bundle are shown in Supplemental Table 3.
- b Percentages are calculated by dividing by the numbers of sedated patients. All the number of sedated patients were 102. The number of sedated patients without mechanical ventilation and extracorporeal membrane oxygenation are 21. The number of sedated patients on mechanical ventilation or extracorporeal membrane oxygenation are 79 or 10 respectively.
- c Percentage is calculated by dividing by the number of the patients on mechanical ventilation, or 124.
- d Highest exercise / rehabilitation level performed at the survey date is assessed based on the ICU Mobility Scale (Hodgson C, et al. Heart and Lung. 2014; 43:19–24). IMS 0: Nothing (lying in bed, passive exercise), 1: sitting in bed, exercises in bed, 2: passively moved to chair (no standing), 3: sitting over edge of bed, 4: standing, 5: transferring bed to chair, 6: marching on spot (at bedside), 7: walking with assistance of 2 or more people, 8: walking with assistance of 1 person, 9: walking independently with a gait aid, 10: walking independently without a gait aid.
- e There are 19 patients who received nutrition via multiple routes. Of them, 15 patients received nutrition via enteral and oral nutrition, 2 patients received via enteral and total parenteral nutrition, and 2 patients received via oral and parenteral nutrition.

Implementation of other supportive ICU care

Most patients, even while undergoing MV or ECMO, received nutrition therapy with 1000–2000 kcal/day as their total energy intake via feeding tube or oral intake (Table 3). Protein greater than 1.2 g/kg/day was supplied to less than 50% of patients at any time during the ICU stay (Fig. 2). The implementation of sleep assessment, ICU diary and physical restraints were 33%, 25%, and 20% respectively. About half of the patients received either non-pharmacological or pharmacological interventions to promote sleep (Supplemental Table 8).

Association between ICU structure and implementation of the ABCDEF bundle

In ICUs with protocols for pain and sedation management, more patients received elements A and C, while fewer patients received element E in the ICU with the protocol for mobilization/rehabilitation (Table 4). Daily multidisciplinary rounds and a 1:1 nurse to patient ratio did not improve the rate of implementation of the bundle and nutrition therapy. With a 1:2 nurse to patient ratio, elements D, E, and nutrition therapy were more frequently implemented.
exacerbation of pulmonary injury by self-inflicted lung injury

agitation, and delirium to stabilize symptoms induced by COVID-19 infection, such as strong spontaneous breathing and coughing.

Relatively high rates of implementation for elements A, C, and D for patients undergoing MV might reflect the need for intense management of pain, sedation, agitation, and delirium to stabilize symptoms induced by COVID-19 infection, such as strong spontaneous breathing and coughing, and to prevent exacerbation of pulmonary injury by self-inflicted lung injury. This study also shows a relatively low prevalence of delirium potentially because of deep sedation with the use of benzodiazepines. This could also affect the implementation and intensity of mobilization.
As previously reported [37, 38], MV and ECMO were major barriers to implementation of element E for patients with COVID-19 infections. The complicated pathophysiology of the pulmonary illness with two different phases of acute lung injury caused by COVID-19 infection, which need different ventilation strategies to avoid exacerbation of lung injury [33–36], could limit aggressive mobilization of patients. The variety of neurological complications, such as weakness and fatigue after the acute phase of the disease, often reported as complications associated with COVID-19 infections recently [13–16, 39] and recognized as barriers to mobilization, could also inhibit the implementation of element E. More research is needed to develop the most efficient approach to early rehabilitation of patients with COVID-19 infections and a high risk for developing PICS.

This study showed that energy via enteral nutrition was provided to most of patients, while the protein intake did not reach the target level at any time during the ICU stay. Although many guidelines and statements, including those specifically related to COVID-19 infection, recommended nutrition therapy to provide adequate energy and protein to preserve skeletal muscle and function [3, 4], the protein intake did not often reach the target (1.2 g/kg/day) after or even before the pandemic. The failure to provide sufficient protein and the absence of nutritionists under strict infection regulations might hinder providing enough protein. Protocol-driven nutrition strategies focusing on providing enriched protein, high-protein enteral formulas (> 20%) [40], and sometimes the addition of amino-acid parenteral nutrients in case of digestive complications of COVID-19 infection[41], must be considered.

The ICU diary is used to supplement the patient’s memory in the ICU, and helps mitigate anxiety, depression, and post-traumatic stress disorder [42]. Just 20% of ICUs provided diaries, which is low compared to ICUs from Scandinavia [43]. In order to introduce ICU diaries while considering limitations imposed by serious infections, a novel strategy, such as electrical ICU diaries shared online or video based ICU diaries, might be beneficial [44].

The introduction of protocols, especially for pain and sedation management, could provide an ICU with a systematic and resource-conserving approach that would facilitate delivery of evidence-based ICU care [5, 8, 11]. However, these results show that a protocol for mobilization did not facilitate implementation of element E possibly because of the several complicated mechanisms of lung injury and different ventilation strategy in the various phases of the illness [33–36]. A mobilization protocol for other patient populations might apply to patients with COVID-19 infections. In this setting, the aggressive involvement of intensivists, which was lower in this study, and a specialized mobilization program for patients with COVID-19 infections, considering the severity and phases of the lung injury, might facilitate the delivery of safe and efficient rehabilitation with appropriate considerations of risk [45]. Incorporating the dedicated use of ergometers and electrical muscle stimulation into the protocol may also promote rehabilitation.

Controlling the number of ICU beds might allow adjusting the workload of the staff appropriately [46, 47]. Although more ICU beds for patients with COVID-19 infections may increase the burden and responsibility of medical staff making it difficult to implement evidence-based and supportive ICU care, as seen in the poor levels of implementation of elements A and D, it could be lead to greater implementation of element E and nutrition. Assigning more beds, or centralization, could benefit patients by providing multidisciplinary/professional and structured interventions by trained and experienced staff [48, 49]. The effectiveness of centralization according to the local resources and staffing capacity under a standardized or specialized protocol should be investigated.

Daily multidisciplinary/professional rounds and a 1:1 nurse to patient ratio, which were regarded as important aspects of care [19], might consume excessive time and resources in an ICU. Optimizing distribution of resources according to the clinical needs might be key factors for the implementation of evidence-based and supportive ICU care.

This study has acknowledged strengths and limitations. Although data were collected from many countries around the world, including locations considered to be COVID-19 infection "hotspots", the relative proportion of data from Japan could introduce bias and limit the generalizability of the results to ICUs in other countries. The limited number of patients also limits applying the results in other ICUs. Second, surveys were conducted at two time points, one month apart, to include more data. However, as evidence and recommendations for the care of patients with COVID-19 infection has been changing, the policies for ICU care might have changed. For example, an increased number of patients receiving prone positioning on the second survey and the decrease in its duration may be partially due to a recent paper which showed the positive effect of short-term prone positioning [50]. Third, because of the nature of a point prevalence study, a causal relationship for facilitating or limiting factors for ICU care could not be definitively demonstrated. Finally, a variety of key information and possibly confounding factors which could affect the implementation of evidence-based ICU care, such as extubation rate related to spontaneous breathing trials, the consciousness level of patients receiving sedatives during mobilization, frailty, and complications related to COVID-19 infection were not investigated. In order to validate these results and understand the influence of evidence-based ICU care on the long-term outcomes of patients with COVID-19 infections, further investigation and verification are necessary.

Conclusion

This worldwide, two-day point prevalence study revealed a low implementation rate of elements of the ABCDEF bundle, inadequate protein supply, and low rate of use of ICU diaries in patients with COVID-19 infections. The introduction of specific protocols and controlling the number of beds exclusively for patients with COVID-19 infections in an ICU may facilitate the delivery of evidence-based and supportive ICU care during the pandemic.

Abbreviations

ICU
Intensive care unit
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
COVID-19
coronavirus disease 2019
UMIN
Declarations

Ethics approval and consent to participate: The study protocol was approved by the Ethics Committee of the Saiseikai Utsunomiya Hospital (No 2020-07). The ethics committee confirmed that the informed consent from the patient was waived because of the nature of this study.

Consent for publication: Not applicable

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests for the submitted work. There are several potential conflicts of interests for some authors outside of this submitted study. KN reports personal fees from Abbott Laboratory, Nestle, TERUMO, GETINGE, Asahi Kasei Pharma, Ono Pharmaceutical, Japan Blood Products Organization, Nihon Pharmaceutical, Otsuka Pharmaceutical, Pfizer, Toray, and Baxter, and grants from Asahi Kasei Pharma outside the submitted work. HK receive a salary from Japanese Society for Early Mobilization (Non-profit Society) as a chair (full time) outside the submitted work. EWE reports grants from VA/NIH, personal fees from Pfizer, Orion, Lilly, personal fees from Masimo, grants from kohler, outside the submitted work. IS reports personal fees from Abbott Laboratory, Teijin Pharma, Nestle and Nihon Pharmaceutical. NO reports grants from Asahi Kasei Pharma, Ono Pharmaceutical, Baxter, Maruishi Pharmaceutical, Torii Pharmaceutical, Teijin Pharma, Shionogi Pharmaceutical, andFuso Pharmaceutical, outside the submitted work.

Authors’ contribution: KL, KN, HK contributed equally to this paper. Study conception and design: KL, KN, HK, PN, EWE, and SRK. Statistical analysis, or interpretation of data: KL, KN, HK, PN, EWE, SRK, and KT. Drafting the manuscript: KL, KN, HK, PN, EWE, SRK, and KT. Critical review and revision of the manuscript for important intellectual insight: KN, HK, PN, EWE, SRK, KT, SI, AKL, and ON. Study supervision: PN, EWE, SRK, KT, SI, AKL and ON. Recruitment the participating ICUs in overseas countries: ME, PN, EWE, SRK, KT, SI, AKL, and ON. All authors drafted the manuscript for important intellectual content, contributed to revision of the final version of the manuscript, approved the final version submitted, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.KN and ON are the guarantors of the study. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted. All authors approved the final version of the manuscript.

Acknowledgement: We wish to thank the Japanese Society of Intensive Care Medicine which took on the role as an executive office for this study, and all the collaborating societies: the European Society of Intensive Care Medicine, the World Federation of Intensive and Critical Care, the Indian Society of Critical Care Medicine, and the Covid-19 Critical Care Consortium. We also thank all the investigators from Japan and overseas listed on Appendix.

Funding: No specific funding was received for this study.

References

1. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF Bundle in Critical Care. Crit Care Clin. 2017;33:225–43.
2. Devlin JW, Skrobik Y, Gelinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med. 2018;46:e825-73.

3. Singer P, Blaser AR, Berger MM, Alhazzani W, Calde PC, Cesaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48-79.

4. Sheean R Gonzalez MC, Prado CM, Mckeever L, Hall AM, Braunschweig CA. American Society for Parenteral and Enteral Nutrition Clinical Guidelines: The Validity of Body Composition Assessment in Clinical Populations. JPEN J Parenter Enteral Nutr. 2020;44:12-43.

5. Pun BT, Balas MC, Barnes-Daly MA, Thompson JL, Aldrich JM, Barr J, et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15,000 Adults. Crit Care Med. 2019;47:3-14.

6. Ely EW. The ABCDEF Bundle: Science and Philosophy of How ICU Liberation Serves Patients and Families. Crit Care Med. 2017;45:321-30.

7. Moraes FS, Marengo LL, Silva MT, Bergamaschi CC, Lopes LC, Moura MDG, et al. ABCDE and ABCDEF care bundles: A systematic review protocol of the implementation process in intensive care units. Medicine (Baltimore). 2019;98.e14792.

8. Stolligs JL, Devlin JW, Lin JC, Pun BT, Byrum D, Barr J. Best Practices for Conducting Interprofessional Team Rounds to Facilitate Performance of the ICU Liberation (ABCDEF) Bundle. Crit Care Med. 2020;48:562-70.

9. Thornton J. Covid-19: how coronavirus will change the face of general practice forever. BMJ. 2020;368:m1279.

10. Mareiniss DP. The impending storm: COVID-19, pandemics and our overwhelmed emergency departments. Am J Emerg Med. 2020;38:1293–4.

11. Aziz S, Arabi YM, Alhazzani W, Evans Laura, Giterio G, Fischkoff K, et al. Managing ICU surge during the COVID-19 crisis: rapid guidelines. Intensive Care Med. 2020;46:1303-25.

12. Woolf SH, Chapman DA, Sabo RT, Weinberger DM, Hill L, et al. Excess Deaths From COVID-19 and Other Causes, March-April 2020. JAMA. 2020;324:510-3.

13. Halpin SJ, McVor C, Whyatt G, Adams A, Harvey Q, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol 2020; https://doi.org/10.1002/jmv.26368.

14. Carfi A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603-5.

15. Prescott HC, Girard TD. Recovery From Severe COVID-19 Leveraging the Lessons of the Survival From Sepsis. JAMA. 2020;324:739-40.

16. Curci C, Pisano F, Bonacci E, Camozzi DM, Ceravolo C, Bergonzì R, et al. Early rehabilitation in post-acute COVID-19 patients: data from an Italian COVID-19 Rehabilitation Unit and proposal of a treatment protocol. A cross-sectional study. Eur J Phys Rehabil Med. 2020. [Epub ahead of print]

17. Blehi M, Sese D. Post-intensive care syndrome and COVID-19 – Implications post pandemic. Cleve Clin J Med. 2020; https://doi.org/10.3949/ccjm.87a.ccc055.

18. Hosey MM, Needham DM. Survivorship after COVID-19 ICU stay. Nat Rev Dis Primers. 2020;6:60.

19. Devlin JW, O’Neal Jr HR, Thomas C, Daly Barnes MA, Stolligs JL, Janz DR, et al. Strategies to Optimize ICU Liberation (A to F) Bundle Performance in Critically Ill Adults With Coronavirus Disease 2019. Crit Care Explor. 2020;2:e0139.

20. Kofidis K, Roberson SW, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care. 2020;24:176.

21. Thomas P, Bladwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66:73-82.

22. Salawu A, Green A, Crooks MG, Brixey N, Ross DH, Sivan M. A Proposal for Multidisciplinary Tele-Rehabilitation in the Assessment and Rehabilitation of COVID-19 Survivors. Int J Environ Res Public Health. 2020;17:4890.

23. Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39:1631-8.

24. Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition Therapy in Critically Ill Patients With Coronavirus Disease 2019. JPEN J Parenter Enteral Nutr 2020; https://doi.org/10.1002/jpen.1930

25. Ministry of Health, Labour and Welfare, Japan. Ethical Guidelines for Medical and Health Research Involving Human Subjects. 2015;

26. Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020;39:1631-8.

27. Sheean R Gonzalez MC, Prado CM, Mckeever L, Hall AM, Braunschweig CA. American Society for Parenteral and Enteral Nutrition Clinical Guidelines: The Validity of Body Composition Assessment in Clinical Populations. JPEN J Parenter Enteral Nutr. 2020;44:12-43.

28. Aziz S, Arabi YM, Alhazzani W, Evans Laura, Giterio G, Fischkoff K, et al. Managing ICU surge during the COVID-19 crisis: rapid guidelines. Intensive Care Med. 2020;46:1303-25.

29. Balas MC, Pun BT, Pasero C, Engel HJ, Perme C, Esbrook CL, et al. Common Challenges to Effective ABCDEF Bundle Implementation: The ICU Liberation Campaign Experience. Crit Care Nurse. 2019;39:46-60.

30. Hsieh SJ, Otusanya O, Gershengorn HB, Hope AA, Dayton C, Levi D, et al. Staged Implementation of Awakening and Breathing, Coordination, Delirium Monitoring and Management, and Early Mobilization Bundle Improves Patient Outcomes and Reduces Hospital Costs. Crit Care Med. 2019;47:885-93.
31. Fan E, Beitler JR, Brochard L, Caffee CS, Ferguson ND, Slutsky AS, et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med. 2020;8:816-21.
32. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324:782-93.
33. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099-102.
34. Yoshida T, Fujino Y, Amato M, Kavanagh BP. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med. 2017;195:985-92.
35. Cruces P, Retamal J, Hurtado DE, Erranz B, Iturrieta P, Gonzalez C, et al. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit Care. 2020;24:494.
36. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020;323:2329-30.
37. Lee H, Ko YJ, Suh GY, Yang JH, Park CM, Jeon K, et al. Safety profile and feasibility of early physical therapy and mobility for critically ill patients in the medical intensive care unit: Beginning experiences in Korea. J Crit Care. 2015;30:673-7.
38. Jolley SE, Moss M, Needham DM, Caldwell E, Morris PE, Miller RR. Point prevalence study of mobilization practices for acute respiratory failure patients in the United States. Crit Care Med. 2017;45:205-15.
39. Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7:875-82.
40. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Westphal AB, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929-36.
41. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26:1017-32.
42. Barreto BB, Luz M, Nogueira M, Lopes AA, Gusmao-Flores D. The impact of intensive care unit diaries on patients’ and relatives’ outcomes: a systematic review and meta-analysis. Crit Care. 2019;23:411.
43. Egerod I, Storli SL, Akerman E. Intensive care patient diaries in Scandinavia: a comparative study of emergence and evolution. Nurs Inq. 2011;18:235-46.
44. Jones C, Backman C, Egerod I, Gibb P, Nydahl P, Storli S. Report on Third International Intensive Aftercare Conference in Norrkoping, Sweden. Nurs Crit Care. 2015;20:271-3.
45. Liu K, Ogura T, Takahashi K, Nakamura M, Ohtake H, Fujiduka K, et al. The safety of a novel early mobilization protocol conducted by ICU physicians: a prospective observational study. J Intensive Care 2018;6:10.
46. Litton E, Bucci T, Chavan S, Ho YY, Holley A, Howard G, et al. Surge capacity of intensive care units in case of acute increase in demand caused by COVID-19 in Australia. Med J Aust. 2020;212:463-467.
47. Phua Jason, Weng L, Ling L, Egi M, Lim CM, Divatia JV, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8:506-17.
48. Ostermann M, Vincent JL. How much centralization of critical care services in the era of telemedicine? Crit Care. 2019;23:423.
49. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanyi MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351-63.
50. Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care. 2020;24:28.