Abstract

Mathematical population genetics is only one of Kingman’s many research interests. Nevertheless, his contribution to this field has been crucial, and moved it in several important new directions. Here we outline some aspects of his work which have had a major influence on population genetics theory.

AMS subject classification (MSC2010) 92D25

1 Introduction

In the early years of the previous century, the main aim of population genetics theory was to validate the Darwinian theory of evolution, using the Mendelian hereditary mechanism as the vehicle for determining how the characteristics of any daughter generation depended on the corresponding characteristics of the parental generation. By the 1960s, however, that aim had been achieved, and the theory largely moved in a new, retrospective and statistical, direction.

This happened because, at that time, data on the genetic constitution of a population, or at least on a sample of individuals from that population, started to become available. What could be inferred about the past history of the population leading to these data? Retrospective
questions of this type include: “How do we estimate the time at which mitochondrial Eve, the woman whose mitochondrial DNA is the most recent ancestor of the mitochondrial DNA currently carried in the human population, lived? How can contemporary genetic data be used to track the ‘Out of Africa’ migration? How do we detect signatures of past selective events in our contemporary genomes?” Kingman’s famous coalescent theory became a central vehicle for addressing questions such as these. The very success of coalescent theory has, however, tended to obscure Kingman’s other contributions to population genetics theory. In this note we review his various contributions to that theory, showing how coalescent theory arose, perhaps naturally, from his earlier contributions.

2 Background

Kingman attended lectures in genetics at Cambridge in about 1960, and his earliest contributions to population genetics date from 1961. It was well known at that time that in a randomly mating population for which the fitness of any individual depended on his genetic make-up at a single gene locus, the mean fitness of the population increased from one generation to the next, or at least remained constant, if only two possible alleles, or gene types, often labelled A_1 and A_2, were possible at that gene locus. However, it was well known that more than two alleles could arise at some loci (witness the ABO blood group system, admitting three possible alleles, A, B and O). Showing that in this case the mean population fitness is non-decreasing in time under random mating is far less easy to prove. This was conjectured by Mandel and Hughes (1958) and proved in the ‘symmetric’ case by Scheuer and Mandel (1959) and Mulholland and Smith (1959), and more generally by Atkinson et al. (1960) and (very generally) Kingman, (1961a,b). Despite this success, Kingman then focused his research in areas quite different from genetics for the next fifteen years. The aim of this paper is to document some of his work following his re-emergence into the genetics field, dating from 1976. Both of us were honoured to be associated with him in this work. Neither of us can remember the precise details, but the three-way interaction between the UK, the USA and Australia, carried out mainly by the now out-of-date flimsy blue aerogrammes, must have started in 1976, and continued during the time of Kingman’s intense involvement in population genetics. This note is a personal account, focusing on this interaction: many others were working in the field at the same time.
One of Kingman’s research activities during the period 1961-1976 leads to our first ‘background’ theme. In 1974 he established (Kingman, 1975) a surprising and beautiful result, found in the context of storage strategies. It is well known that the symmetric K-dimensional Dirichlet distribution

$$
\frac{\Gamma(K\alpha)}{\Gamma(\alpha)^K} (x_1 x_2 \cdots x_K)^{\alpha - 1} dx_1\,dx_2\,\ldots\,dx_{K-1},
$$

(2.1)

where $x_i \geq 0$, $\sum x_j = 1$, does not have a non-trivial limit as $K \to \infty$, for given fixed α. Despite this, if we let $K \to \infty$ and $\alpha \to 0$ in such a way that the product $K\alpha$ remains fixed at a constant value θ, then the distribution of the order statistics $x_{(1)} \geq x_{(2)} \geq x_{(3)} \geq \cdots$ converges to a non-degenerate limit. (The parameter θ will turn out to have an important genetical interpretation, as discussed below.) Kingman called this the Poisson–Dirichlet distribution, but we suggest that its true author be honoured and that it be called the ‘Kingman distribution’. We refer to it by this name in this paper. So important has the distribution become in mathematics generally that a book has been written devoted entirely to it (Feng, 2010). This distribution has a rather complex form, and aspects of this form are given below.

The Kingman distribution appears, at first sight, to have nothing to do with population genetics theory. However, as we show below, it turns out, serendipitously, to be central to that theory. To see why this is so, we turn to our second ‘background’ theme, namely the development of population theory in the 1960s and 1970s.

The nature of the gene was discovered by Watson and Crick in 1953. For our purposes the most important of their results is the fact that a gene is in effect a DNA sequence of, typically, some 5000 bases, each base being one of four types, A, G, C or T. Thus the number of types, or alleles, of a gene consisting of 5000 bases is 4^{5000}. Given this number, we may for many practical purposes suppose that there are infinitely many different alleles possible at any gene locus. However, gene sequencing methods took some time to develop, and little genetic information at the fundamental DNA level was available for several decades after Watson and Crick.

The first attempt at assessing the degree of genetic variation from one person to another in a population at a less fundamental level depended on the technique of gel electrophoresis, developed in the 1960s. In loose terms, this method measures the electric charge on a gene, with the charge levels usually thought of as taking integer values only. Genes
having different electric charges are of different allelic types, but it can well happen that genes of different allelic types have the same electric charge. Thus there is no one-to-one relation between charge level and allelic type. A simple mutation model assumes that a mutant gene has a charge differing from that of its parent gene by either ±1. We return to this model in a moment.

In 1974 Kingman travelled to Australia, and while there met Pat Moran (as it happens, the PhD supervisor of both authors of this paper), who was working at that time on this ‘charge-state’ model. The two of them discussed the properties of a stochastic model involving a population of \(N \) individuals, and hence \(2N \) genes at any given locus. The population is assumed to evolve by random sampling: any daughter generation of genes is found by sampling, with replacement, from the genes from the parent generation. (This is the well-known ‘Wright–Fisher’ model of population genetics, introduced into the population genetics literature independently by Wright (1931) and Fisher (1922).) Further, each daughter generation gene is assumed to inherit the same charge as that of its parent with probability \(1 - u \), and with probability \(u \) is a charge-changing mutant, the change in charge being equally likely to be +1 and −1.

At first sight it might seem that, as time progresses, the charge levels on the genes in future generations become dispersed over the entire array of positive and negative integers. But this is not so. Kingman recognized that there is a coherency to the locations of the charges on the genes brought about by common ancestry and the genealogy of the genes in any generation. In Kingman’s words (Kingman 1976), amended here to our terminology, “The probability that [two genes in generation \(t \)] have a common ancestor gene [in generation \(s \), for \(s < t \)] is \(1 - (1 - (2N)^{-1})^{t-s} \), which is near unity when \((t - s) \) is large compared to \(2N \). Thus the [locations of the charges in any generation] form a coherent group, . . . , and the relative distances between the [charges] remain stochastically bounded”. We do not dwell here on the elegant theory that Kingman developed for this model, and note only that in the above quotation we see here the beginnings of the idea of looking backward in time to discuss properties of genetic variation observed in a contemporary generation. This viewpoint is central to Kingman’s concept of the coalescent, discussed in detail below.

Parenthetically, the question of the mean number of ‘alleles’, or occupied charge states, in a population of size \(N \) (\(2N \) genes) is of some mathematical interest. This depends on the mutation rate \(u \) and the
population size N. It was originally conjectured by Kimura and Ohta (1978) that this mean remains bounded as $N \to \infty$. However, Kesten (1980a,b) showed that it increases indefinitely as $N \to \infty$, but at an extraordinarily slow rate. More exactly, he found the following astounding result. Define $\gamma_0 = 1$, $\gamma_{k+1} = e^{\lambda_k}$, $k = 1, 2, 3, \ldots$, and $\lambda(2N)$ as the largest k such that $\gamma_k < 2N$. Suppose that $4Nu = 0.2$. Then the random number of ‘alleles’ in the population divided by $\lambda(2N)$ converges in probability to a constant whose value is approximately 2 as $N \to \infty$.

Some idea of the slowness of the divergence of the mean number of alleles can be found by observing that if $2N = 10^{156520}$, then $\lambda(2N) = 3$.

In a later paper (Kingman 1977a), Kingman extended the theory to the multi-dimensional case, where it is assumed that data are available on a vector of measurements on each gene. Much of the theory for the one-dimensional charge-state model carries through more or less immediately to the multi-dimensional case. As the number of dimensions increases, some of this theory established by Kingman bears on the ‘infinitely many alleles’ model discussed in the next paragraph, although as Kingman himself noted, the geometrical structure inherent in the model implies that a convergence of his results to those of the infinitely-many-alleles model does not occur, since the latter model has no geometrical structure.

The infinitely-many-alleles model, introduced in the 1960s, forms the second background development that we discuss. This model has two components. The first is a purely demographic, or genealogical, model of the population. There are many such models, and here we consider only the Wright–Fisher model referred to above. (In the contemporary literature many other such models are discussed in the context of the infinitely-many-alleles model, particularly those of Moran (1958) and Cannings (1974), discussed in Section 4.) The second component refers to the mutation assumption, superimposed on this model. In the infinitely-many-alleles model this assumption is that any new mutant gene is of an allelic type never before seen in the population. (This is motivated by the very large number of alleles possible at any gene locus, referred to above.) The model also assumes that the probability that any gene is a mutant is some fixed value u, independent of the allelic type of the parent and of the type of the mutant gene.

From a practical point of view, the model assumes a technology (relevant to the 1960s) which is able to assess whether any two genes are of the same or are of different allelic types (unlike the charge-state model, which does not fully possess this capability), but which is not able to
distinguish any further between two genes (as would be possible, for
example, if the DNA sequences of the two genes were known). Further,
since an entire generation of genes is never observed in practice, atten-
tion focuses on the allelic configuration of the genes in a sample of size
\(n \), where \(n \) is assumed to be small compared to \(2N \), the number of genes
in the entire population.

Given the nature of the mechanism assumed in this model for dis-
tinguishing the allelic types of the \(n \) genes in the sample, the data in
effect consist of a partition of the integer \(n \) described by the vector
\((a_1, a_2, \ldots, a_n) \), where \(a_i \) is the number of allelic types observed in the
sample exactly \(i \) times each. It is necessary that \(\sum a_i = n \), and it turns
out that under this condition, and to a close approximation, the sta-
tionary probability of observing this vector is

\[
\frac{n! \theta^{\sum a_i}}{1^{a_1} 2^{a_2} \cdots n^{a_n} a_1! a_2! \cdots a_n! S_n(\theta)},
\]

(2.2)

where \(\theta \) is defined as \(4Nu \) and \(S_n(\theta) = \theta(\theta + 1)(\theta + 2) \cdots (\theta + n - 1) \),
(Ewens (1972), Karlin and McGregor (1972)).

The marginal distribution of the number \(K = \sum a_i \) of distinct alleles
in the sample is found from (2.2) as

\[
\text{Prob}(K = k) = \frac{|S_k^n\theta^k/S_n(\theta)|}{\theta k}
\]

(2.3)

where \(S_k^n \) is a Stirling number of the first kind. It follows from (2.2)
and (2.3) that \(K \) is a sufficient statistic for \(\theta \), so that the conditional
distribution of \((a_1, a_2, \ldots, a_n) \) given \(K \) is independent of \(\theta \).

The relevance of this observation is as follows. As noted above, the
extent of genetic variation in a population was, by electrophoresis and
other methods, beginning to be understood in the 1960s. As a result of
this knowledge, and for reasons not discussed here, Kimura advanced
(Kimura 1968) the so-called ‘neutral theory’, in which it was claimed
that much of the genetic variation observed did not have a selective
basis. Rather, it was claimed that it was the result of purely random
changes in allelic frequency inherent in the random sampling evolution-
ary model outlined above. This (neutral) theory then becomes the null
hypothesis in a statistical testing procedure, with some selective mecha-
nism being the alternative hypothesis. Thus the expression in (2.2) is
the null hypothesis allelic-partition distribution of the alleles in a sample
of size \(n \). The fact that the conditional distribution of \((a_1, a_2, \ldots, a_n) \)
given \(K \) is independent of \(\theta \) implies that an objective testing procedure
for the neutral theory can be found free of unknown parameters.
Both authors of this paper worked on aspects of this statistical testing theory during the period 1972–1978, and further reference to this is made below. The random sampling evolutionary scheme described above is no doubt a simplification of real evolutionary processes, so in order for the testing theory to be applicable to more general evolutionary models it is natural to ask: “To what extent does the expression in (2.2) apply for evolutionary models other than that described above?” One of us (GAW) worked on this question in the mid-1970s (Watterson, 1974a, 1974b). This question is also discussed below.

3 Putting it together

One of us (GAW) read Kingman’s 1975 paper soon after it appeared and recognized its potential application to population genetics theory. In the 1970s the joint density function (2.1) was well known to arise in that theory when some fixed finite number K of alleles is possible at the gene locus of interest, with symmetric mutation between these alleles. In population genetics theory one considers, as mentioned above, infinitely many possible alleles at any gene locus, so that the relevance of Kingman’s limiting ($K \to \infty$) procedure to the infinitely many alleles model, that is the relevance of the Kingman distribution, became immediately apparent.

This observation led (Watterson 1976) to a derivation of an explicit form for the joint density function of the first r order statistics $x_{(1)}, x_{(2)}, \ldots, x_{(r)}$ in the Kingman distribution. (There is an obvious printer’s error in equation (8) of Watterson’s paper.) This joint density function was shown to be of the form

$$f(x_{(1)}, x_{(2)}, \ldots, x_{(r)}) = \theta^r \Gamma(\theta)e^{\gamma \theta}g(y)\{x_{(1)}x_{(2)}\cdots x_{(r)}\}^{-1}x_{(r)}^{-1} \quad (3.1)$$

where $y = (1 - x_{(1)} - x_{(2)} - \cdots - x_{(r)}/x_{(r)}$, γ is Euler’s constant $0.57721\ldots$, and $g(y)$ is best defined through the Laplace transform equation (Watterson and Guess (1977))

$$\int_0^\infty e^{-tv}g(y)dy = \exp\left(\theta \int_0^1 u^{-1}(e^{-tu} - 1) \, du\right). \quad (3.2)$$

The expression (3.1) simplifies to

$$f(x_{(1)}, \ldots, x_{(r)}) = \theta^r \{x_{(1)}\cdots x_{(r)}\}^{-1}(1 - x_{(1)} - \cdots - x_{(r)})^{\theta-1} \quad (3.3)$$
when \(x(1) + x(2) + \cdots + x(r-1) + 2x(r) \geq 1 \), and in particular,

\[
f(x(1)) = \theta(x(1))^{-1}(1 - x(1))^{\theta-1}
\] (3.4)

when \(\frac{1}{2} \leq x(1) \leq 1 \).

Population geneticists are interested in the probability of ‘population monomorphism’, defined in practice as the probability that the most frequent allele arises in the population with frequency in excess of 0.99. Equation (3.4) implies that this probability is close to \(1 - (0.01)^{\theta} \).

Kingman himself had placed some special emphasis on the largest of the order statistics, which in the genetics context is the allele frequency of the most frequent allele. This leads to interesting questions in genetics. For instance, Crow (1973) had asked: “What is the probability that the most frequent allele in a population at any time is also the oldest allele in the population at that time?” A nice application of reversibility arguments for suitable population models allowed Watterson and Guess (1977) to obtain a simple answer to this question. In models where all alleles are equally fit, the probability that any nominated allele will survive longest into the future is (by a simple symmetry argument) its current frequency. For time-reversible processes, this is also the probability that it is the oldest allele in the population. Thus conditional on the current allelic frequencies, the probability that the most frequent allele is also the oldest is simply its frequency \(x(1) \). Thus the answer to Crow’s question is simply the mean frequency of the most frequent allele. A formula for this mean frequency, as a function of the mutation parameter \(\theta \), together with some numerical values, were given in Watterson and Guess (1977), and a partial listing is given in the first row of Table 3.1.

Table 3.1 Mean frequency of (a) the most frequent allele, (b) the oldest allele, in a population as a function of \(\theta \). The probability that the most frequent allele is the oldest allele is also its mean frequency.

\(\theta \)	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0
Most frequent	0.936	0.882	0.758	0.624	0.476	0.297	0.195	0.122
Oldest	0.909	0.833	0.667	0.500	0.353	0.167	0.091	0.048

As will be seen from the table, the mean frequency \(E(x(1)) \) of the most frequent allele decreases as \(\theta \) increases. Watterson and Guess (1977) provided the bounds \(\left(\frac{1}{2}\right)^{\theta} \leq E(x(1)) \leq 1 - \theta(1 - \theta) \log 2 \), which give an idea of the value of \(E(x(1)) \) for small values of \(\theta \), and also showed
that $E(x_{(1)})$ decreases asymptotically like $(\log \theta)/\theta$, giving an idea of the value of $E(x_{(1)})$ for large θ.

From the point of view of testing the neutral theory of Kimura, Watterson (1977, 1978) subsequently used properties of these order statistics for testing the null hypothesis that there are no selective forces determining observed allelic frequencies. He considered various alternatives, particularly heterozygote advantage or the presence of some deleterious alleles. For instance, in (Watterson 1977) he investigated the situation when all heterozygotes had a slight selective advantage over all homozygotes. The population truncated homozygosity $\sum x_i^2$ figures prominently in the allelic distribution corresponding to (3.1) and was thus studied as a test statistic for the null hypothesis of no selective advantage. Similarly, when only a random sample of n genes is taken from the population, the sample homozygosity can be used as a test statistic of neutrality.

Here we make a digression to discuss two of the values in the first row of Table 3.1. It is well known that in the case $\theta = 1$, the allelic partition formula (2.2) describes the probabilistic structure of the lengths of the cycles in a random permutation of the numbers $\{1, 2, \ldots, n\}$. Each cycle corresponds to an allelic type and in the notation a_j thus indicates the number of cycles of length j. Various limiting ($n \to \infty$) properties of random permutations have long been of interest (see for example Finch (2003)). Finch (page 284) gives the limiting mean of the normalized length of the longest cycle as $0.624\ldots$ in such a random permutation, and this agrees with the value listed in Table 3.1 for the case $\theta = 1$. (Finch also in effect gives the standard deviation of this normalized length as $0.1921\ldots$.) Next, (3.4) shows that the limiting probability that the (normalized) length of the longest cycle exceeds $1/2$ is $\log 2$. This is the limiting value of the exact probability for a random permutation of the numbers $\{1, 2, \ldots, n\}$, which from (2.2) is $1 - \frac{1}{2} + \frac{1}{3} - \cdots \pm \frac{1}{n}$.

Finch also considers aspects of a random mapping of $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, n\}$. Any such a mapping forms a random number of ‘components’, each component consisting of a cycle with a number (possibly zero) of branches attached to it. Aldous (1985) provides a full description of these, with diagrams which help in understanding them. Finch takes up the question of finding properties of the normalized size of the largest component of such a random mapping, giving (page 289) a limiting mean of $0.758\ldots$ for this. This agrees with the value in Table 3.1 for the case $\theta = 0.5$. This is no coincidence: Aldous (1985) shows that in a limiting sense (2.2) provides the limiting distribution of the number and (unnor-
malized) sizes of the components of this mapping, with now \(a_j \) indicating the number of components of size \(j \). As a further result, (3.4) shows that the limiting probability that the (normalized) size of the largest component of a random mapping exceeds \(\frac{1}{\theta} \) is \(\log(1 + \sqrt{2}) \approx 0.881374 \).

Arratia et al. (2003) show that (2.2) provides, for various values of \(\theta \), the partition structure of a variety of other combinatorial objects for finite \(n \), and presumably the Kingman distribution describes appropriate limiting \((n \to \infty) \) results. Thus the genetics-based equation (2.2) and the Kingman distribution provide a unifying theme for these objects.

The allelic partition formula (2.2) was originally derived without reference to the \(K \)-allele model (2.1), but was also found (Watterson, 1976) from that model as follows. We start with a population whose allele frequencies are given by the Dirichlet distribution (2.1). If a random sample of \(n \) genes is taken from such a population, then given the population’s allele frequencies, the sample allele frequencies have a multinomial distribution. Averaging this distribution over the population distribution (2.1), and then introducing the alternative order-statistic sample description \((a_1, a_2, \ldots, a_n) \) as above, the limiting distribution is the partition formula (2.2), found by letting \(K \to \infty \) and \(\alpha \to 0 \) in (2.1) in such a way that the product \(K\alpha \) remains fixed at a constant value \(\theta \).

4 Robustness

As stated above, the expression (2.2) was first found by assuming a random sampling evolutionary model. As also noted, it can also be arrived at by assuming that a random sample of genes has been taken from an infinite population whose allele frequencies have the Dirichlet distribution (2.1). It applies, however, to further models. Moran (1958) introduced a ‘birth-and-death’ model in which, at each unit time point, a gene is chosen at random from the population to die. Another gene is chosen at random to reproduce. The new gene either inherits the allelic type of its parent (probability \(1 - u \)), or is of a new allelic type, not so far seen in the population, with probability \(u \). Trajstman (1974) showed that (2.2) applies as the stationary allelic partition distribution exactly for Moran’s model, but with \(n \) replaced by the finite population number of genes \(2N \) and with \(\theta \) defined as \(2Nu/(1 - u) \). More than this, if a random sample of size \(n \) is taken without replacement from the Moran model population, it too has an exact description as in (2.2). This result is a consequence of Kingman’s (1978b) study of the consistency of the allelic properties
of sub-samples of samples. (In practice, of course, the difference between sampling with, or without, replacement is of little consequence for small samples from large populations.) Kingman (1977a, 1977b) followed up this result by showing that random sampling from various other population models, including significant cases of the Cannings (1974) model, could also be approximated by (2.2). This was important because several consequences of (2.2) could then be applied more generally than was first thought, especially for the purposes of testing of the neutral alleles postulate. He also used the concept of ‘non-interference’ (see the concluding comments in Section 4) as a further reason for the robustness of (2.2).

5 A convergence result

It was noted in Section 3 that Watterson (1976) was able to arrive at both the Kingman distribution and the allelic partition formula (2.2) from the same starting point (the ‘K-allele’ model). This makes it clear that there must be a close connection between the two, and in this section we outline Kingman’s work (Kingman 1977b) which made this explicit. Kingman imagined a sequence of populations in which the size of population i, $(i = 1, 2, \ldots)$ tends to infinity as $i \to \infty$. For any fixed i and any fixed sample size n of genes taken from the population, there will be some probability of the partition $\{a_1, a_2, \ldots, a_n\}$, where a_j has the definition given in Section 2. Kingman then stated that this sequence of populations would have the Ewens sampling property if, for each fixed n, this corresponding sequence of probabilities of $\{a_1, a_2, \ldots, a_n\}$ approached that given in (2.2) as $i \to \infty$. In a parallel fashion, for each fixed i there will also be a probability distribution for the order statistics (p_1, p_2, \ldots), where p_j denotes the frequency of the jth most frequent allele in the population. Kingman then stated that this sequence would have the Poisson–Dirichlet limit if this sequence of probabilities approached that given by the Poisson–Dirichlet distribution. (We would replace ‘Poisson–Dirichlet’ in this sentence by ‘Kingman’.) He then showed that this sequence of populations has the Ewens sampling property if and only if it has the Poisson–Dirichlet (Kingman distribution) limit.

The proof is quite technical and we do not discuss it here. We have noted that the Kingman distribution may be thought of as the distribution of the (ordered) allelic frequencies in an infinitely large population
evolving as the random sampling infinitely-many-allele process, so this result provides a beautiful (and useful) relation between population and sample properties of such a population.

6 Partition structures

By 1977 Kingman was in full flight in his investigation of various genetics problems. One line of his work started with the probability distribution (2.2), and his initially innocent-seeming observation that the size n of the sample of genes bears further consideration. The size of a sample is generally taken in Statistics as being comparatively uninteresting, but Kingman (1978b) noted that a sample of n genes could be regarded as having arisen from a sample of $n+1$ genes, one of which was accidently lost, and that this observation induces a consistency property on the probability of any partition of the number n. Specifically, he observed that if we write $P_n(a_1, a_2, \ldots)$ for the probability of the sample partition in a sample of size n, we require

$$P_n(a_1, a_2, \ldots) = \frac{a_1 + 1}{n + 1} P_{n+1}(a_1 + 1, a_2, \ldots) + \sum_{j=2}^{n+1} \frac{j(a_j + 1)}{n + 1} P_{n+1}(a_1, \ldots, a_{j-1} - 1, a_j + 1, \ldots). \quad (6.1)$$

Fortunately, the distribution (2.2) does satisfy this equation. But Kingman went on to ask a deeper question: “What are the most general distributions that satisfy equation (6.1)?” These distributions he called ‘partition structures’. He showed that all such distributions that are of interest in genetics could be represented in the form

$$P_n(a_1, a_2, \ldots) = \int P_n(a_1, a_2, \ldots | x) \mu(dx) \quad (6.2)$$

where μ is some probability measure over the space of infinite sequences (x_1, x_2, x_3, \ldots) satisfying $x_1 \geq x_2 \geq x_3 \cdots$, $\sum_{n=1}^{\infty} x_n = 1$.

An intuitive understanding of this equation is the following. One way to obtain a consistent set of distributions satisfying (6.1) is to imagine a hypothetically infinite population of types, with a proportion x_1 of the most frequent type, a proportion x_2 of the second most frequent type, and so on, forming a vector x. For a fixed value of n, one could then imagine taking a sample of size n from this population, and write $P_n(a_1, a_2, \ldots | x)$ for the (effectively multinomial) probability that the
configuration of the sample is \((a_1, a_2, \ldots)\). It is clear that the resulting sampling probabilities will automatically satisfy the consistency property in (6.1). More generally one could imagine the composition of the infinite population itself being random, so that first one chooses its composition \(x\) from \(\mu\), and then conditional on \(x\) one takes a sample of size \(n\) with probability \(P_n(a_1, a_2, \ldots | x)\). The right-hand side in (6.2) is then the probability of obtaining the sample configuration \((a_1, a_2, \ldots)\) averaged over the composition of the population. Kingman’s remarkable result was that all partition structures arising in genetics must have the form (6.2), for some \(\mu\). Kingman called partition structures that could be expressed as in (6.2) ‘representable partition structures’ and \(\mu\) the ‘representing measure’, and later (Kingman 1978c) found a representation generalizing (6.2) applying for any partition structure.

The similarity between (6.2) and the celebrated de Finetti representation theorem for exchangeable sequences might be noted. This has been explored by Aldous (1985) and Kingman (1978a), but we do not pursue the details of this here.

In the genetics context, the results of Section 4 show that samples from Moran’s infinitely many neutral alleles model, as well as the population as a whole, have the partition structure property. So do samples of genes from other genetical models. This makes it natural to ask: “What is the representing measure \(\mu\) for the allelic partition distribution (2.2)?” And here we come full circle, since he showed that the required representing measure is the Kingman distribution, found by him in (Kingman, 1975) in quite a different context!

The relation between the Kingman distribution and the sampling distribution (2.2) is of course connected to the convergence results discussed in the previous section. From the point of view of the geneticist, the Kingman distribution is then regarded as applying for an infinitely large population, evolving essentially via the random sampling process that led to (2.2). This was made precise by Kingman in (1978b), and it makes it unfortunate that the Kingman distribution does not have a ‘nice’ mathematical form. However, we see in Section 7 that a very pretty analogue of the Kingman distribution exists when we label alleles not by their frequencies but by their ages in the population. This in turn leads to the capstone of Kingman’s work in genetics, namely the coalescent process.

Before discussing these matters we mention another property enjoyed by the distribution (2.2) that Kingman investigated, namely that of non-interference. Suppose that we take a gene at random from the sample
of n genes, and find that there are in all r genes of the allelic type of this gene in the sample. These r genes are now removed, leaving $n - r$ genes. The non-interference requirement is that the probability structure of these $n - r$ genes should be the same as that of an original sample of $n - r$ genes, simply replacing n wherever found by $n - r$. Kingman showed that of all partition structures of interest in genetics, the only one also satisfying this non-interference requirement is \((2, 2) \). This explains in part the robustness properties of \((2, 2) \) to various evolutionary genetic models. However, it also has a natural interpretation in terms of the coalescent process, to be discussed in Section 8.

We remark in conclusion that the partition structure concept has become influential not only in the genetics context, but in Bayesian statistics, mathematics and various areas of science, as the papers of Aldous (2009) and of Gnedin, Haulk and Pitman (2009) in this Festschrift show. That this should be so is easily understood when one considers the natural logic of the ideas leading to it.

7 ‘Age’ properties and the GEM distribution

We have noted above that the Kingman distribution is not user-friendly. This makes it all the more interesting that a size-biased distribution closely related to it, namely the GEM distribution, named for Griffiths (1980), Engen (1975) and McCloskey (1965), who established its salient properties, is both simple and elegant, thus justifying the acronym ‘GEM’. More important, it has a central interpretation with respect to the ages of the alleles in a population. We now describe this distribution.

We have shown that the ordered allelic frequencies in the population follow the Kingman distribution. Suppose that a gene is taken at random from the population. The probability that this gene will be of an allelic type whose frequency in the population is x is just x. This allelic type was thus sampled by this choice in a size-biased way. It can be shown from properties of the Kingman distribution that the probability density of the frequency of the allele determined by this randomly chosen gene is

$$f(x) = \theta (1 - x)^{\theta - 1}, \quad 0 < x < 1.$$ \hfill (7.1)

This result was also established by Ewens (1972).

Suppose now that all genes of the allelic type just chosen are removed from the population. A second gene is now drawn at random from the
population and its allelic type observed. The frequency of the allelic type of this gene among the genes remaining at this stage is also given by (7.1). All genes of this second allelic type are now also removed from the population. A third gene then drawn at random from the genes remaining, its allelic type observed, and all genes of this (third) allelic type removed from the population. This process is continued indefinitely.

At any stage, the distribution of the frequency of the allelic type of any gene just drawn among the genes left when the draw takes place is given by (7.1). This leads to the following representation. Denote by w_j the population frequency of the jth allelic type drawn. Then we can write

$$w_1 = x_1, \ldots, w_j = (1 - x_1)(1 - x_2) \cdots (1 - x_{j-1})x_j, \quad (j = 2, 3, \ldots),$$

(7.2)

where the x_j are independent random variables, each having the distribution (7.1). The random vector (w_1, w_2, \ldots) then has the GEM distribution.

All the alleles in the population at any time eventually leave the population, through the joint processes of mutation and random drift, and any allele with current population frequency x survives the longest with probability x. That is, since the GEM distribution was found according to a size-biased process, it also arises when alleles are labelled according to the length of their future persistence in the population. Time reversibility arguments then show that the GEM distribution also applies when the alleles in the population are labelled by their age. In other words, the vector (w_1, w_2, \ldots) can be thought of as the vector of allelic frequencies when alleles are ordered with respect to their ages in the population (with allele 1 being the oldest).

The Kingman coalescent, to be discussed in the following section, is concerned among other things with ‘age’ properties of the alleles in the population. We thus present some of these properties here as an introduction to the coalescent: a more complete list can be found in Ewens (2004). The elegance of many age-ordered formulae derives directly from the simplicity and tractability of the GEM distribution.

Given the focus on retrospective questions, it is natural to ask questions about the oldest allele in the population. The GEM distribution shows that the mean population frequency of the oldest allele in the population is

$$\theta \int_0^1 x(1 - x)^{\theta - 1} dx = \frac{1}{1 + \theta}.$$

(7.3)

This implies that when θ is very small, this mean frequency is approxim-
ately $1 - \theta$. It is interesting to compare this with the mean frequency of the most frequent allele when θ is small, found in effect from the Kingman distribution to be approximately $1 - \theta \log 2$. A more general set of comparisons of these two mean frequencies, for representative values of θ, is given in Table 3.1.

More generally, the mean population frequency of the jth oldest allele in the population is

$$\frac{1}{1 + \theta \left(\frac{\theta}{1 + \theta} \right)^{j-1}}.$$

For the case $\theta = 1$, Finch (2003) gives the mean frequencies of the second and third most frequent alleles as 0.20958... and 0.088316... respectively, which may be compared to the mean frequencies of the second and third oldest alleles, namely 0.25 and 0.125. For $\theta = 1/2$ the mean frequency of the second most frequent allele is 0.170910..., while the mean frequency of the second oldest allele is 0.22222.

Next, the probability that a gene drawn at random from the population is of the type of the oldest allele is the mean frequency of the oldest allele, namely $1/(1 + \theta)$, as just shown (see also Table 3.1). More generally the probability that n genes drawn at random from the population are all of the type of the oldest allele in the population is

$$\theta \int_0^1 x^n (1 - x)^{\theta - 1} \, dx = \frac{n!}{(1 + \theta)(2 + \theta) \cdots (n + \theta)}.$$

(7.4)

The GEM distribution has a number of interesting mathematical properties, of which we mention here only one. It is a so-called ‘residual allocation’ model (Halmos 1944). Halmos envisaged a king with one kilogram of gold dust, and an infinitely long line of beggars asking for gold. To the first beggar the king gives w_1 kilogram of gold, to the second w_2 kilogram of gold, and so on, as specified in (7.2), where the x_j are independently and identically distributed (i.i.d.) random variables, each having some probability distribution over the interval (0,1).

Different forms of this distribution lead to different properties of the distribution of the ‘residual allocations’ w_1, w_2, w_3, \ldots. One such property is that the distribution of w_1, w_2, w_3, \ldots be invariant under size-biased sampling. It can be shown that the GEM distribution is the only residual allocation model having this property. This fact had been exploited by Hoppe (1986, 1987) to derive various results of interest in genetics and ecology.

We now turn to sampling results. The probability that n genes drawn at random from the population are all of the same allelic type as the
oldest allele in the population is given in (7.4). The probability that \(n \) genes drawn at random from the population are all of the same unspecified allelic type is

\[
\theta \int_0^1 x^{n-1} (1-x)^{\theta-1} \, dx = \frac{(n-1)!}{(1+\theta)(2+\theta) \cdots (n+\theta-1)},
\]

in agreement with (2.2) for the case \(a_j = 0, j = 1, 2, \ldots, n-1, a_n = n \). From this result and that in (7.4), given that \(n \) genes drawn at random are all of the same allelic type, the probability that they are all of the allelic type of the oldest allele is \(n/(n+\theta) \). The similarity of this expression with that deriving from a Bayesian calculation is of some interest.

Perhaps the most important sample distribution concerns the frequencies of the alleles in the sample when ordered by age. This distribution was found by Donnelly and Tavaré (1986), who showed that the probability that the number of alleles in the sample takes the value \(k \), and that the age-ordered numbers of these alleles in the sample are, in age order, \(n(1), n(2), \ldots, n(k) \), is

\[
\frac{\theta^k (n-1)!}{S_n(\theta)n(k)(n(k) + n(k-1)) \cdots (n(k) + n(k-1) + \cdots n(2))},
\]

(7.5)

where \(S_j(\theta) \) is defined below (2.2). This formula can be found in several ways, one being as the size-biased version of (2.2).

These are many interesting results connecting the oldest allele in the sample to the oldest allele in the population. For example, Kelly (1976) showed that the probability that the oldest allele in the sample is represented \(j \) times in the sample is

\[
\frac{\theta}{n} \binom{n}{j} \left(\frac{n + \theta - 1}{j} \right)^{-1}, \quad j = 1, 2, \ldots, n.
\]

(7.6)

He also showed that the probability that the oldest allele in the population is observed at all in the sample is \(n/(n+\theta) \). The probability that a gene seen \(j \) times in the sample is of the oldest allelic type in the population is \(j/(n+\theta) \). When \(j = n \), so that there is only one allelic type present in the sample, this probability is \(n/(n+\theta) \). Donnelly (1986) showed, more generally, that the probability that the oldest allele in the population is observed \(j \) times in the sample is

\[
\frac{\theta}{n + \theta} \binom{n}{j} \left(\frac{n + \theta - 1}{j} \right)^{-1}, \quad j = 0, 1, 2, \ldots, n.
\]

(7.7)

This is of course closely connected to Kelly’s result. For the case \(j = 0 \) the
probability \((7.7)\) is \(\theta/(n + \theta)\), confirming the complementary probability \(n/(n + \theta)\) found above. Conditional on the event that the oldest allele in the population does appear in the sample, a straightforward calculation using \((7.7)\) shows that this conditional probability and that in \((7.6)\) are identical.

It will be expected that various exact results hold for the Moran model, with \(\theta\) defined as \(2\nu/\left(1 - u\right)\). The first of these is an exact representation of the GEM distribution, analogous to \((7.2)\). This has been provided by Hoppe (1987). Denote by \(N_1, N_2, \ldots\) the numbers of genes of the oldest, second-oldest, \ldots alleles in the population. Then \(N_1, N_2, \ldots\) can be defined in turn by

\[
N_i = 1 + M_i, \quad i = 1, 2, \ldots, \tag{7.8}
\]

where \(M_i\) has a binomial distribution with index \(2N - N_1 - N_2 - \cdots - N_{i-1} - 1\) and parameter \(x_i\), where \(x_1, x_2, \ldots\) are i.i.d. continuous random variables each having the density function \((7.1)\). Eventually \(N_1 + N_2 + \cdots + N_k = 2N\) and the process stops, the final index \(k\) being identical to the number \(K_{2N}\) of alleles in the population.

It follows directly from this representation that the mean of \(N_1\) is

\[
1 + (2N - 1)\theta \int_0^1 x(1 - x)^{\theta - 1} dx = \frac{2N + \theta}{1 + \theta}.
\]

If there is only one allele in the population, so that the population is strictly monomorphic, this allele must be the oldest one in the population. The above representation shows that the probability that the oldest allele arises \(2N\) times in the population is

\[
\text{Prob}(M_1 = 2N - 1) = \theta \int_0^1 x^{2N-1}(1 - x)^{\theta - 1} dx,
\]

and this reduces to the exact monomorphism probability

\[
\frac{2N - 1}{(1 + \theta)(2 + \theta) \cdots (2N - 1 + \theta)}
\]

for the Moran model.

More generally, Kelly (1977) has shown that the probability that the oldest allele in the population is represented by \(j\) genes is, exactly,

\[
\frac{\theta}{2N} \binom{2N}{j} \left(\frac{2N + \theta - 1}{j}\right)^{-1}. \tag{7.9}
\]

The case \(j = 2N\) considered above is a particular example of \((7.9)\), and the mean number \((2N + \theta)/(1 + \theta)\) also follows from \((7.9)\).
We now consider ‘age’ questions. It is found that the mean time, into the past, that the oldest allele in the population entered the population (by a mutation event) is

\[
\text{Mean age of oldest allele} = \frac{2N}{\sum_{j=1}^{2N} \frac{4N}{j(j+\theta-1)}} \text{ generations.} \quad (7.10)
\]

It can be shown (see Watterson and Guess (1977) and Kelly (1977)) that not only the mean age of the oldest allele, but indeed the entire probability distribution of its age, is independent of its current frequency and indeed of the frequency of all alleles in the population.

If an allele is observed in the population with frequency \(p\), its mean age is

\[
\sum_{j=1}^{2N} \frac{4N}{j(j+\theta-1)} \left(1 - (1-p)^j\right) \text{ generations.} \quad (7.11)
\]

This is a generalization of the expression in (7.10), since if \(p = 1\) only one allele exists in the population, and it must then be the oldest allele.

Our final calculation concerns the mean age of the oldest allele in a sample of \(n\) genes. This is

\[
4N \sum_{j=1}^{n} \frac{1}{j(j+\theta-1)} \text{ generations.} \quad (7.12)
\]

Except for small values of \(n\), this is close to the mean age of the oldest allele in the population, given in (7.10). In other words, unless \(n\) is small, it is likely that the oldest allele in the population is represented in the sample.

We have listed the various results given in this section not only because of their intrinsic interest, but because they form a natural lead-in to Kingman’s celebrated coalescent process, to which we now turn.

8 The coalescent

The concept of the coalescent is now discussed at length in many textbooks, and entire books (for example Hein, Schierup and Wiuf (2005) and Wakeley (2009)) and book chapters (for example Marjoram and Joyce (2009) and Nordborg (2001)) have been written about it. Here we can do no more than outline the salient aspects of the process.

The aim of the coalescent is to describe the common ancestry of the
sample of n genes at various times in the past through the concept of an equivalence class. To do this we introduce the notation τ, indicating a time τ in the past (so that if $\tau_1 > \tau_2$, time τ_1 is further in the past than time τ_2). The sample of n genes is assumed taken at time $\tau = 0$.

Two genes in the sample of n are in the same equivalence class at time τ if they have a common ancestor at this time. Equivalence classes are denoted by parentheses: Thus if $n = 8$ and at time τ genes 1 and 2 have one common ancestor, genes 4 and 5 a second, and genes 6 and 7 a third, and none of the three common ancestors are identical and none is identical to the ancestor of gene 3 or of gene 8 at time τ, the equivalence classes at time τ are

$$\{(1, 2), (3), (4, 5), (6, 7), (8)\}.$$ \hspace{1cm} (8.1)

We call any such set of equivalence classes an equivalence relation, and denote any such equivalence relation by a Greek letter. As two particular cases, at time $\tau = 0$ the equivalence relation is $\phi_1 = \{(1), (2), (3), (4), (5), (6), (7), (8)\}$, and at the time of the most recent common ancestor of all eight genes, the equivalence relation is $\phi_n = \{(1, 2, 3, 4, 5, 6, 7, 8)\}$. The Kingman coalescent process is a description of the details of the ancestry of the n genes moving from ϕ_1 to ϕ_n. For example, given the equivalence relation in \(8.1\), one possibility for the equivalence relation following a coalescence is $\{(1, 2), (3), (4, 5), (6, 7, 8)\}$. Such an amalgamation is called a coalescence, and the process of successive such amalgamations is called the coalescence process.

Coalescences are assumed to take place according to a Poisson process, but with a rate depending on the number of equivalence classes present. Suppose that there are j equivalence classes at time τ. It is assumed that no coalescence takes place between time τ and time $\tau + \delta\tau$ with probability $1 - \frac{1}{2}j(j - 1)\delta\tau$. (Here and throughout we ignore terms of order $(\delta\tau)^2$.) The probability that the process moves from one nominated equivalence class (at time τ) to some nominated equivalence class which can be derived from it is $\delta\tau$. In other words, a coalescence takes place in this time interval with probability $\frac{1}{2}j(j - 1)\delta\tau$, and all of the $j(j - 1)/2$ amalgamations possible at time τ are equally likely to occur.

In order for this process to describe the ‘random sampling’ evolutionary model described above, it is necessary to scale time so that unit time corresponds to $2N$ generations. With this scaling, the time T_j between the formation of an equivalence relation with j equivalence classes to one with $j - 1$ equivalence classes has an exponential distribution with mean $2/j(j - 1)$.
The (random) time $T_{\text{MRCAS}} = T_n + T_{n-1} + T_{n-2} + \cdots + T_2$ until all genes in the sample first had just one common ancestor has mean

$$E(T_{\text{MRCAS}}) = 2 \sum_{j=2}^{n} \frac{1}{j(j-1)} = 2 \left(1 - \frac{1}{n}\right).$$

(8.2)

(The suffix ‘MRCAS’ stands for ‘most recent common ancestor of the sample.’) This is, of course close to 2 coalescent time units, or $4N$ generations, when n is large. Tavaré (2004) has found the (complicated) distribution of T_{MRCAS}. Kingman (1982a,b,c) showed that for large populations, many population models (including the ‘random sampling’ model) are well approximated in their sampling attributes by the coalescent process. The larger the population the more accurate is this approximation.

We now introduce mutation into the coalescent. Suppose that the probability that any particular ancestral gene mutates in the time interval $(\tau + \delta\tau, \tau)$ is $\frac{\theta}{2}\delta\tau$. All mutants are assumed to be of new allelic types (the infinitely many alleles assumption). If at time τ in the coalescent there are j equivalence classes, the probability that either a mutation or a coalescent event had occurred in $(\tau + \delta\tau, \tau)$ is

$$\frac{j\theta}{2}\delta\tau + \frac{j(j-1)}{2}\delta\tau = \frac{1}{2}j(j+\theta-1)\delta\tau.$$

(8.3)

We call such an occurrence a defining event, and given that a defining event did occur, the probability that it was a mutation is $\frac{\theta}{j+\theta-1}$ and that it is a coalescence is $\frac{j-1}{j+\theta-1}$.

The probability that k different allelic types are seen in the sample is then the probability that k of these defining events were mutations. The above reasoning shows that this probability must be proportional to $\frac{\theta^k}{S_n(\theta)}$, where $S_n(\theta)$ is defined below (2.2), the constant of proportionality being independent of θ. This argument leads to (2.3).

Using these results and combinatorial arguments counting all possible coalescent paths from a partition (a_1, a_2, \ldots, a_n) back to the original common ancestor, Kingman (1982a) was able to derive the more detailed sample partition probability distribution (2.2), and deriving this distribution from coalescent arguments is perhaps the most pleasing way of arriving at it. For further comments along these lines, see (Kingman (2000)).

The description of the coalescent given above follows the original derivation given by Kingman (1982a). The coalescent is perhaps more naturally understood as a random binary tree. These have now been investigated in great detail; see for example Aldous and Pitman (1999).
Many genetic results can be obtained quite simply by using the coalescent ideas. For example, Watterson and Donnelly (1992) used Kingman’s coalescent to discuss the question “Do Eve’s Alleles Live On?” To answer this question we assume the infinitely-many-neutral-alleles model for the population and consider a random sample of n genes taken at time ‘now’. Looking back in time, the ancestral lines of those genes coalesce to the MRCAS, which may be called the sample’s ‘Eve’. Of course if Eve’s allelic type survives into the sample it would be the oldest, but it may not have survived because of intervening mutation. If we denote by X_n the number of representative genes of the oldest allele, and by Y_n the number of genes having Eve’s allele, then Kelly’s result (7.6) gives the distribution of X_n. We denote that distribution here by $p_n(j), j = 0, 1, 2, \ldots, n$, and the distribution of Y_n by $q_n(j), j = 0, 1, 2, \ldots, n$. Unlike the simple explicit expression for $p_n(j)$, the corresponding expression for $q_n(j)$ is very complicated: see (2.14) and (2.15) in Watterson and Donnelly (1992), derived using some of Kingman’s (1982a) results. Using the relative probabilities of a mutation or a coalescence at a defining event gives rise to a recurrence equation for $q_n(j), j = 0, 1, 2, \ldots, n$ as

$$[n(n-1) + j\theta]q_n(j) = n(j-1)q_{n-1}(j-1) + n(n-j-1)q_{n-1}(j) + (j+1)\theta q_n(j+1)$$

(8.4)

for $j = 0, 1, 2, \ldots, n$, (provided that we interpret $q_n(j)$ as zero outside this range), and for $n = 2, 3, \ldots$. The boundary conditions $q_1(j) = 1$ for $j = 1$, $q_1(j) = 0$ for $j > 1$, and

$$q_n(n) = p_n(n) = \prod_{k=2}^{n} \frac{k-1}{k+\theta-1}$$

apply, the latter because if $X_n = n$ then all sample genes descend from a gene having the oldest allele, and ‘she’ must be Eve. The recurrence (8.4) is a special case of one found by Griffiths (1989) in his equation (3.7).

The expected number of genes of Eve’s allelic type was given by Griffiths (1986), (see also Beder (1988)), as

$$E(Y_n) = \sum_{j=0}^{n} j q_n(j) = n \prod_{j=2}^{n} \frac{j(j-1)}{j(j-1)+\theta}.$$ \hspace{1cm} (8.5)

Watterson and Donnelly (1992) gave some numerical examples, some asymptotic results, and some bounds for the distribution $q_n(j), j = 0,$
1, 2, ..., n. One result of interest is that $q_n(0)$, the probability of Eve's allele being extinct in the sample, increases with n, to $q_\infty(0)$ say. One reason for this is that a larger sample may well have its 'Eve' further back in the past than a smaller sample. We might interpret $q_\infty(0)$ as being the probability that an infinitely large population has lost its 'Eve's' allele. Note that the bounds

$$\frac{\theta^2}{(2 + \theta)(1 + \theta)} < q_\infty(0) \leq \frac{\theta e^\theta - \theta}{\theta e^\theta + 1},$$

(8.6)

for $0 < \theta < \infty$, indicate that for all θ in this range, $q_\infty(0)$ is neither 0 nor 1. Thus, in contrast to the situation in branching processes, there are no sub-critical or super-critical phenomena here.

9 Other matters

There are many other topics that we could mention in addition to those described above. On the mathematical side, the Kingman distribution has a close connection to prime factorization of large integers. On the genetical side, we have not mentioned the 'infinitely many sites' model, now frequently used by geneticists, in which the DNA structure of the gene plays a central role. It is a tribute to Kingman that his work opened up more topics than can be discussed here.

Acknowledgements Our main acknowledgement is to John Kingman himself. The power and beauty of his work was, and still is, an inspiration to us both. His generosity, often ascribing to us ideas of his own, was unbounded. For both of us, working with him was an experience never to be forgotten. More generally the field of population genetics owes him an immense and, fortunately, well-recognized debt. We also thank an anonymous referee for suggestions which substantially improved this paper.

References
Aldous, D. J. 1985. Exchangeability and related topics. Pages 1–198 of: Ecole d'Été de probabilités de Saint-Flour XIII. Lecture Notes in Math., vol. 1117. Berlin: Springer-Verlag.
Aldous, D. J. 2009. More uses of exchangeability: representations of complex random structures. In: Bingham, N. H., and Goldie, C. M. (eds),
Aldous, D. J., and Pitman, J. 1999. A family of random trees with random edge lengths. Random Structures & Algorithms, 15, 176–195.

Arratia, R., Barbour, A. D., and Tavaré, S. 2003. Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society Monographs in Mathematics. Zurich: EMS Publishing House.

Atkinson, F. V., Watterson, G. A., and Moran, P. A. P. 1960. A matrix inequality. Quart. J. Math. Oxford Ser. (2), 12, 137–140.

Beder, B. 1988. Allelic frequencies given the sample's common ancestral type. Theor. Population Biology, 33, 126–137.

Cannings, C. 1974. The latent roots of certain Markov chains arising in genetics: a new approach. 1. Haploid models. Adv. in Appl. Probab., 6, 260–290.

Crow, J. F. 1973. The dilemma of nearly neutral mutations: how important are they for evolution and human welfare? J. Heredity, 63, 306–316.

Donnelly, P. J. 1986. Partition structures, Pólya urns, the Ewens sampling formula, and the ages of alleles. Theor. Population Biology, 30, 271–288.

Donnelly, P. J., and Tavaré, S. 1986. The ages of alleles and a coalescent. Adv. in Appl. Probab., 18, 1–19.

Engen, S. 1975. A note on the geometric series as a species frequency model. Biometrika, 62, 694–699.

Ewens, W. J. 1972. The sampling theory of selectively neutral alleles. Theor. Population Biology. 3, 87–112.

Ewens, W. J. 2004. Mathematical Population Genetics. New York: Springer-Verlag.

Feng, S. 2010. The Poisson–Dirichlet Distribution and Related Topics. New York: Springer-Verlag.

Finch, S. R. 2003. Mathematical Constants. Cambridge: Cambridge Univ. Press.

Fisher, R. A. 1922. On the dominance ratio. Proc. Roy. Soc. Edinburgh, 42, 321–341.

Gnedin, A. V., Haulk, C., and Pitman, J. 2009. Characterizations of exchangeable random partitions by deletion properties. In: Bingham, N. H., and Goldie, C. M. (eds), Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press.

Griffiths, R. C. 1980. Unpublished notes.

Griffiths, R. C. 1986. Family trees and DNA sequences. Pages 225–227 of: Francis, I. S., Manly, B. F. J., and Lam, F. C. (eds), Proceedings of the Pacific Statistical Congress. Amsterdam: Elsevier Science Publishers.

Griffiths, R. C. 1989. Genealogical-tree probabilities in the infinitely-many-sites model. J. Math. Biol., 27, 667–680.

Halmos, P. R. 1944. Random alms. Ann. Math. Statist., 15, 182–189.

Hein, J., Schierup, M. H., and Wiuf, C. 2005. Gene Genealogies, Variation and Evolution. Oxford: Oxford Univ. Press.
Hoppe, F. 1986. Size-biased sampling of Poisson–Dirichlet samples with an application to partition structures in population genetics. *J. Appl. Probab.*, 23, 1008–1012.

Hoppe, F. 1987. The sampling theory of neutral alleles and an urn model in population genetics. *J. Math. Biol.*, 25, 123–159.

Karlin, S., and McGregor, J. L. 1972. Addendum to a paper of W. Ewens. *Theor. Population Biology*, 3, 113–116.

Kelly, F. P. 1976. On stochastic population models in genetics. *J. Appl. Probab.*, 13, 127–131.

Kelly, F. P. 1977. Exact results for the Moran neutral allele model. *J. Appl. Probab.*, 14, 197–201.

Kesten, H. 1980a. The number of alleles in electrophoretic experiments. *Theor. Population Biology*, 18, 290–294.

Kesten, H. 1980b. The number of distinguishable alleles according to the Ohta–Kimura model of neutral evolution. *J. Math. Biol.*, 10, 167–187.

Kimura, M. 1968. Evolutionary rate at the molecular level. *Nature*, 217, 624–626.

Kimura, M., and Ohta, T. 1978. Stepwise mutation model and distribution of allelic frequencies in a finite population. *Proc. Natl. Acad. Sci. USA*, 75, 2868–72.

Kingman, J. F. C. 1961a. On an inequality in partial averages. *Quart. J. Math. Oxford Ser. (2)*, 12, 78–80.

Kingman, J. F. C. 1961b. A mathematical problem in population genetics. *Proc. Cambridge Philos. Soc.*, 57, 574–582.

Kingman, J. F. C. 1975. Random discrete distributions. *J. Roy. Statist. Soc. Ser. B*, 37, 1–22.

Kingman, J. F. C. 1976. Coherent random walks arising in some genetical models. *Proc. R. Soc. Lond. Ser. A.*, 351, 19–31.

Kingman, J. F. C. (1977a). A note on multi-dimensional models of neutral mutation. *Theor. Population Biology*, 11, 285–290.

Kingman, J. F. C. (1977b). The population structure associated with the Ewens sampling formula. *Theor. Population Biology*, 11, 274–283.

Kingman, J. F. C. (1978a). Uses of exchangeability. *Ann. Probab.*, 6, 183–197.

Kingman, J. F. C. (1978b). Random partitions in population genetics. *Proc. R. Soc. Lond. Ser. A*, 361, 1–20.

Kingman, J. F. C. (1978c). The representation of partition structures. *J. Lond. Math. Soc.*, 18, 374–380.

Kingman, J. F. C. (1982a). The coalescent. *Stochastic Process Appl.*, 13, 235–248.

Kingman, J. F. C. (1982b). Exchangeability and the evolution of large populations. Pages 97–112 of: Koch, G., and Spizzichino, F. (eds). *Exchangeability in Probability and Statistics*. Amsterdam: North-Holland.

Kingman, J. F. C. (1982c). On the genealogy of large populations. *J. Appl. Probab.*, 19A, 27–43.

Kingman, J. F. C. 2000. Origins of the coalescent: 1974-1982. *Genetics* 156, 1461–1463.
Mandel, S. P. H., and Hughes, I. M. 1958. Change in mean viability at a multi-allelic locus in a population under random mating. *Nature*, 182, 63–64.

Marjoram, P., and Joyce, P. 2009. Practical implications of coalescent theory. In: Lenwood, S., and Ramakrishnan, N. (eds), *Problem Solving Handbook in Computational Biology and Bioinformatics*. New York: Springer-Verlag.

McCloskey, J. W. 1965. *A Model for the Distribution of Individuals by Species in an Environment*. Unpublished PhD. thesis, Michigan State University. Mulholland, H. P., and Smith, C. A. B. 1959. An inequality arising in genetical theory. *Amer. Math. Monthly*, 66, 673–683.

Moran, P. A. P. 1958. Random processes in genetics. *Proc. Cambridge Philos. Soc.*, 54, 60–71.

Nordborg, M. 2001. Coalescent theory. In: Balding, D. J, Bishop, M. J., and Cannings, C. (eds), *Handbook of Statistical Genetics*. Chichester: John Wiley & Sons.

Scheuer, P. A. G., and Mandel, S. P. H. 1959. An inequality in population genetics. *Heredity*, 31, 519–524.

Tavaré, S. 2004. Ancestral inference in population genetics. Pages 1–188 of: Cantoni, O., Tavaré, S., and Zeitouni, O. (eds), *École d’Été de Probabilités de Saint-Flour XXXI-2001*. Berlin: Springer-Verlag.

Trajstman, A. C. 1974. On a conjecture of G. A. Watterson. *Adv. in Appl. Probab.*, 6, 489–503.

Wakeley, J. 2009. *Coalescent Theory*. Greenwood Village, Colorado: Roberts and Company.

Watterson, G. A. 1974a. Models for the logarithmic species abundance distributions. *Theor. Population Biology*, 6, 217–250.

Watterson, G. A. 1974b. The sampling theory of selectively neutral alleles. *Adv. in Appl. Probab.*, 6, 463–488.

Watterson, G. A. 1976. The stationary distribution of the infinitely-many neutral alleles diffusion model. *J. Appl. Probab.*, 13, 639–651.

Watterson, G. A. 1977. Heterosis or neutrality? *Genetics*, 85, 789–814.

Watterson, G. A. 1978. An analysis of multi-allelic data, *Genetics*, 88, 171–179.

Watterson, G. A., and Donnelly, P. J. 1992. Do Eve’s alleles live on? *Genet. Res. Camb.*, 60, 221–234.

Watterson, G. A., and Guess, H. A. 1977. Is the most frequent allele the oldest? *Theor. Population Biology*, 11, 141–160.

Wright, S. 1931. Evolution in Mendelian populations. *Genetics*, 16, 97–159.