Fingerprint positioning based on WiFi in coal mines has received much attention because of the widespread application of WiFi. Fingerprinting techniques have developed rapidly due to the efforts of many researchers. However, the off-line construction of the radio fingerprint database is a tedious and time-consuming process. When the underground environments change, it may be necessary to update the signal received signal strength indication (RSSI) of all reference points, which will affect the normal working of personnel positioning system. To solve this problem, an adaptive construction and update method based on a quantum-behaved particle swarm optimization—user-location trajectory feedback (QPSO–ULTF) for a radio fingerprint database is proposed. The principle of ULTF is that the mobile terminal records and uploads the related dataset in the process of user’s walking, and it forms the user-location track with RSSI through the analysis and processing of the positioning system server. QPSO algorithm is used for the optimal radio fingerprint match between the RSSI of the access point (AP) contained in the dataset of user-location track and the calibration samples to achieve the adaptive generation and update of the radio fingerprint samples. The experimental results show that the radio fingerprint database generated by the QPSO–ULTF is similar to the traditional radio fingerprint database in the statistical distribution characteristics of the signal received signal strength (RSS) at each reference point. Therefore, the adaptive radio fingerprint database can replace the traditional radio fingerprint database. The comparable results of well-known traditional positioning methods demonstrate that the radio fingerprint database generated or updated by the QPSO–ULTF has a good positioning effect, which can ensure the normal operation of personnel positioning system.

In view of the tedious construction and maintenance of the underground WLAN radio fingerprint database, this paper
proposes an adaptive construction and update method of the radio fingerprint database based on the quantum-behaved particle swarm optimization–user-location trajectory feedback (QPSO–ULTF) algorithm. The concept map is shown in Figure 1. As the miners walk through an underground tunnel, the ULTF algorithm records their relevant positions and RSS data with the technical advantages of a mobile terminal. In the process of creating a radio fingerprint database, each user-location point has its corresponding candidate reference points. The calibration samples belonging to these candidate reference points are used as a scale, and the QPSO algorithm is used to adaptively adjust the RSS data feedback by the user-location track. In the process of updating the radio fingerprint database, the RSS data of filtered user-location track points is used as a scale, and the QPSO algorithm is used to update the calibration samples of corresponding reference points. The secondary construction of the radio fingerprint samples is then used to complete the update of the radio fingerprint database. In general, the radio fingerprint database can be updated in a relatively low-frequency period of time when the miners enter or leave the location area, so as to minimize the impact of the update process on the normal operation of the location fingerprint positioning system. The experiments and analysis show that the QPSO–ULTF can effectively replace the traditional manual acquisition process in the construction and update of the radio fingerprint database. It can also adaptively complete the maintenance of the radio fingerprint database without affecting the normal operation of the positioning system. Furthermore, it reduces resource consumption and makes the system more robust.

Figure 1. Concept map of adaptive construction and update method based on the quantum-behaved particle swarm optimization–user-location trajectory (QPSO–ULTF) algorithm.

References

1. Sun, J.P. Research on characteristics and key technology in coal mine internet of things. J. China Coal Soc. 2011, 36, 167–171.
2. Sun, J.P. Research on coal-mine safe production conception. J. China Coal Soc. 2011, 36, 313–316.
3. Yongqiang Zhang; Liangliang Li; Yongjian Zhang; Research and Design of Location Tracking System Used in Underground Mine Based on WiFi Technology. *2009 International Forum on Computer Science-Technology and Applications 2009*, 3, 417-419, 10.1109/ifcsta.2009.341.
4. Tian, H.X.; Yang, W. Research on mine underground positioning technology based on wireless local area network. Coal Sci. Technol. 2008, 36, 72–75.
5. Wang, L.N. Study on Underground Colliery Personnel Locating Technology Based on Wi-Fi. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2015.
6. Feng, C.; Au, W.S.A.; Valae, S.; Tan, Z.H. Compressive sensing based positioning using RSS of WLAN access points. In *Proceedings of the IEEE Infocom*, San Deigo, CA, USA, 15–19 March 2010; pp. 1631–1639.
7. Ji, P.; Zhao, P.P.; Song, M.Z.; Zhang, K.N.; Coal mine underground localization method based on wireless access point selection. *Ind. Mine Autom.* 2019, 45, 69–72.
8. Liu, X.W.; Zhang, X.J.; Hao, L.N.; Yu, W.L.; Wang, J. Research on underground fingerprint localization algorithm based on Wi-Fi. Chin. J. Sens. Actuators 2012, 25, 854–858.
9. Matteo Cypriani; Gilles Delisle; Nadir Hakem; Wi-Fi-based positioning in underground mine tunnels. *International Conference on Indoor Positioning and Indoor Navigation 2013*, null, 1-7, 10.1109/ipin.2013.6817894.
10. Yuan Zhuang; Z. Syed; J. Georgy; N. El-Sheimy; Autonomous smartphone-based WiFi positioning system by using access points
localization and crowdsourcing. *Pervasive and Mobile Computing* 2015, 18, 118-136, 10.1016/j.pmcj.2015.02.001.

11. Iyad Husni Alshami; Noor Azurati Ahmad; Shamsul Sahibuddin; Firdaus Firdaus; Adaptive Indoor Positioning Model Based on WLAN-Fingerprinting for Dynamic and Multi-Floor Environments. *Sensors* 2017, 17, 1789, 10.3390/s17081789.

12. Chenshu Wu; Zheng Yang; Yunhao Liu; Smartphones Based Crowdsourcing for Indoor Localization. *IEEE Transactions on Mobile Computing* 2015, 14, 444-457, 10.1109/tmc.2014.2320254.

13. Yungeun Kim; Yohan Chon; Hojung Cha; Smartphone-Based Collaborative and Autonomous Radio Fingerprinting. *IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews)* 2010, 42, 112-122, 10.1109/TSMCC.2010.2093516.

Keywords

fingerprint positioning; WiFi; adaptive radio fingerprints database; ULTF; QPSO

Retrieved from https://encyclopedia.pub/644