Longitudinal and transverse form factors from 12C

F A Majeed

Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972 Rio de Janeiro, RJ, Brazil
E-mail: fouad@if.ufrj.br

Received 4 December 2006
Accepted for publication 3 August 2007
Published 5 September 2007
Online at stacks.iop.org/PhysScr/76/332

Abstract
Electron scattering form factors from 12C have been studied in the framework of the particle–hole shell model. Higher configurations are taken into account by allowing particle–hole excitations from the 1s and 1p shells core orbits up to the 1f–2p shell. The inclusion of the higher configurations modifies the form factors markedly and describes the experimental data very well in all momentum transfer regions.

PACS numbers: 25.30.Dh, 21.60.Cs

1. Introduction
Shell model calculations, carried out within a model space in which the nucleons are restricted to occupy a few orbits, are unable to reproduce the measured static moments or transition strengths without scaling factors. Inadequacies in the shell model wavefunctions are revealed by the need to scale the matrix elements of the one-body operators by effective charges to match the experimental data. However, the introduction of effective charges may bring the calculated transition strengths which are defined at the photon point, as well as, the form factors at the first maximum, closer to the measured values [1].

Electron scattering at 200 MeV on 12C and 13C, have been studied by Sato et al [2]. The effect of higher configurations wavefunctions are included in the work of Bennhold et al [3]. Booten et al [4] investigated the higher configurations contributions on some p-shell nuclei. Coulomb form factors of C2 transitions in several selected p-shell nuclei are discussed by Radhi et al [5] taking into account core-polarization effects. The configuration of the mixing shell model has been recently used [6] to study the isovector states of 12C in the framework of particle–hole theory. The calculations are quite successful and describe very well the experimental form factors for all momentum transfer regions.

The purpose of the present work is to include higher-energy configurations by allowing excitation from 1s and 1p shells core orbits up to the 1f–2p shell. The configurations which include the higher configurations are called the extended space configurations. The ground state of 12C is taken to have closed $1s_{1/2}$ and $1p_{3/2}$ shells. The states expected to be most strongly excited from closed-shell nuclei are linear combinations of configurations in which one nucleon has been raised to a higher shell, forming a pure single-particle–hole state [7]. This approximation is called the Tamm–Dancoff approximation (TDA) [8]. The dominant dipole, quadrupole and multipole $T = 1$ single particle–hole states of 12C are considered with the framework of the harmonic oscillator (HO) shell model. The Hamiltonian is diagonalized in the space of the single-particle–hole states, in the presence of the modified surface delta interaction (MSDI) [9]. The space of the single-particle–hole states include all shells up to $2p_{1/2}$ shell. Admixture of higher configurations is also considered. A comparison of the calculated form factors using this model with the available experimental data for the dominantly $T = 1$ states are discussed.

2. Theory
The ground state of 12C is taken to have closed $1s_{1/2}$ and $1p_{3/2}$ shells, and is represented by Ψ_0. The particle–hole state formed by promoting one particle from the shell-model ground state. The particle–hole state of the total Hamiltonian is represented by $\Phi_{JM}(ab^{-1})$ with labels (a) for particles with quantum numbers (n_a, ℓ_a, j_a) and (b) for holes with quantum numbers (n_b, ℓ_b, j_b). The state $\Phi_{JM}(ab^{-1})$ indicates that a particle was vacated from j_b and promoted to j_a.
The excited state wavefunction can be constructed as a linear combination of pure basis Φ^a as [7]

$$\Psi_{JM}^a = \sum_{ab} \chi_{ab}^J \Phi_{JM}(ab^{-1}),$$

where the amplitude χ_{ab}^J can be determined from a diagonalization of the residual interaction. By including the isospin T [8], one now has to solve the secular equation

$$\sum_{ab} (\delta^{ab^{-1}} + E_a \delta_{ab^{-1}}) \chi_{ab}^J = 0.$$ \hspace{1cm} (2)

The matrix element of the Hamiltonian is given by [9]

$$\langle \hat{a}b^{-1}|H|ab^{-1}\rangle_{JM_{TT_i}} = (e_a - e_b) \delta_{aa} \chi_{ab}^J + \langle \hat{a}b^{-1}|V|ab^{-1}\rangle_{JM_{TT_i}},$$

where $e_a - e_b$ is the unperturbed energy of the particle–hole pair obtained from energies in nuclei with $A \pm 1$ particles.

The matrix element of the residual interaction V is given by the MSDI with the strength parameters $A_0 = 0.8$ MeV, $A_1 = 1.0$ MeV, $B = 0.7$ MeV and $C = -0.3$ MeV [9].

$$\langle \hat{a}b^{-1}|V|ab^{-1}\rangle_{JM_{TT_i}} = - \sum_{iJ} (2J + 1)(2T + 1) \langle \hat{a}b|V|ab\rangle_{iJ},$$

The matrix elements of the multipole operators T_{J_i} are given in terms of the single particle matrix elements by [7]

$$\langle \Psi_J || T_{J_i} || \Psi_0 \rangle = \sum_{ab} \chi_{ab}^{J_i} \langle a | T_{J_i} || b \rangle,$$ \hspace{1cm} (5)

where $t_z = 1/2$ for protons and $-1/2$ for neutrons. The amplitudes $\chi_{ab}^{J_i}$ can be written in terms of the amplitudes χ_{ab}^{JT} in isospin space as [9]

$$\chi_{ab}^{J_i} = (-1)^{T_i - T_z} \left[\left(\begin{array}{cc} T_f & 0 \\ -T_z & T_z \end{array} \right) \sqrt{2} \chi_{ab}^{JT = 0} \right] + 2t_z \left(\begin{array}{cc} T_f & 0 \\ -T_z & T_z \end{array} \right) \sqrt{6} \chi_{ab}^{JT = 1},$$ \hspace{1cm} (6)

where

$$T_z = \frac{Z - N}{2}.$$

The single particle matrix elements of the electron scattering operator $T_{J_i}^a$ are those of [10] with η selects the longitudinal (L), transverse electric (E) and transverse magnetic (M) operators, respectively. Electron scattering form factors involving angular momentum transfer J are given by [10]

$$|F_j(q)|^2 = \frac{4\pi}{Z^2(2J_l + 1)} |\langle \Psi_{JM} || T_{J_l}^n || \Psi_{J_s} \rangle|^2 \times |F_{es}(q)|^2$$ \hspace{1cm} (8)

where $J_l = 0$ and $J_f = J$ for closed shell nuclei and q is the momentum transfer. The last two terms in equation (8) are the correction factors for the (c.m.) and the finite nucleon size (f.s.) [10]. The total inelastic electron scattering form factor is defined as [8]

$$|F_{J}(q, \theta)|^2 = |F_{J}^T(q)|^2 + \left[1 + \tan^2(\theta/2) \right] |F_{JT}(q)|^2.$$ \hspace{1cm} (9)

where $|F_{JT}(q)|^2$ is the transverse electric or transverse magnetic form factor.

3. Results and Discussion

The unperturbed energies for the single particle–hole states for both positive and negative parity states used in this work are adopted from our previous theoretical work (see tables 1 and 2 from [6]). Higher configurations are included in the calculations when the ground state is considered as a mixture of the $|(1s_{1/2})^2 (1p_{3/2})^0 \rangle$ and $|(2s_{1/2})^4 (2p_{3/2})^8 \rangle$ configurations, such that the ground state wavefunction becomes

$$|\Psi_{00} \rangle = \gamma |\Psi_{00}(1s_{1/2})^2 (1p_{3/2})^0 \rangle + \delta |\Psi_{00}(2s_{1/2})^4 (2p_{3/2})^8 \rangle$$ \hspace{1cm} (10)

with $\gamma^2 + \delta^2 = 1$, $\chi_{ab}^{JT} = \gamma \chi_{ab}^{JT}$, and $\chi_{ab}^{JT} = \delta \chi_{ab}^{JT}$.

The excited states are also assumed as a mixture of the particle–hole configurations, $|a_1 b_1^{-1} \rangle$, $|a_2 b_2^{-1} \rangle$, and $|a_3 b_3^{-1} \rangle$, where $|a_1 \rangle = |a \rangle = |n_a \ell_a j_a \rangle$, $|a_2 \rangle = |a \rangle = |n_a + 1 \ell_a j_a \rangle$, $|b_1 \rangle = |b \rangle = |n_b \ell_b j_b \rangle$, and $|b_2 \rangle = |b \rangle = |n_b + 1 \ell_b j_b \rangle$.

The matrix element given in equation (5) is called the model space matrix element, where a and b are defined by the amplitudes given in tables 1 and 2 for the negative and positive parity states, respectively.

Table 1. Energies and amplitudes χ^{JT} for $J - T = 1$ states.

particle–hole configuration	$E(1^+)$	$E(2^+)$	$E(3^+)$	
$(a b^{-1})$	18.44 MeV	19.88 MeV	23.50 MeV	18.87 MeV
$(1p_{1/2}) (1s_{1/2})^{-1}$	0.9473	0.0000	0.0000	0.0000
$(1d_{5/2}) (1p_{3/2})^{-1}$	-0.1810	0.8314	0.7073	0.9993
$(1s_{1/2}) (1p_{3/2})^{-1}$	0.1353	-0.1054	0.9936	0.0318
$(2s_{1/2}) (1p_{3/2})^{-1}$	0.9739	0.5430	0.0834	0.0000
$(1f_{5/2}) (1s_{1/2})^{-1}$	0.0000	0.0442	0.0000	0.0165
$(2p_{3/2}) (1s_{1/2})^{-1}$	0.0008	0.0000	0.0222	0.0000
$(1s_{1/2}) (1s_{1/2})^{-1}$	0.0000	-0.0636	0.0147	-0.0030
$(2p_{1/2}) (1s_{1/2})^{-1}$	0.0000	0.0000	0.0000	0.0000

Table 2. Energies and amplitudes χ^{JT} for $J^+ T = 1$ states.

particle–hole configuration	$E(3^+)$
$(a b^{-1})$	27.10 MeV
$(1p_{1/2}) (1p_{3/2})^{-1}$	0.0000
$(1d_{5/2}) (1s_{1/2})^{-1}$	-0.0475
$(2s_{1/2}) (1s_{1/2})^{-1}$	0.0000
$(1d_{3/2}) (1s_{1/2})^{-1}$	0.0000
$(1f_{5/2}) (1p_{3/2})^{-1}$	0.9461
$(2p_{3/2}) (1p_{3/2})^{-1}$	-0.3201
$(1s_{1/2}) (1p_{3/2})^{-1}$	-0.0020
$(2p_{1/2}) (1p_{3/2})^{-1}$	0.0000
The extended space matrix element becomes
\[
\langle \psi_{\gamma} | T_{Jt} | \psi_0 \rangle = \sum_{a_1b_1} \chi_{a_1b_1}^{Jt_{1}} \langle a_1 \parallel T_{Jt_{1}} \parallel b_1 \rangle
\]
\[
+ \sum_{a_2b_2} \chi_{a_2b_2}^{Jt_{2}} \langle a_2 \parallel T_{Jt_{2}} \parallel b_2 \rangle
\]
\[
+ \sum_{a_3b_3} \chi_{a_3b_3}^{Jt_{3}} \langle a_3 \parallel T_{Jt_{3}} \parallel b_3 \rangle,
\]
where
\[
\chi_{a_1b_1}^{Jt_{1}} = C_1 \chi_{ab}^{Jt_{1}}, \quad \chi_{a_2b_2}^{Jt_{2}} = C_2 \chi_{ab}^{Jt_{2}}, \quad \chi_{a_3b_3}^{Jt_{3}} = C_3 \chi_{ab}^{Jt_{3}}.
\]

The values of the parameters C^4 are given in Table 3. The states $1^−, 2^−_1, 2^−_2, 3^−$ and 3^+ are found experimentally at 18.12, 19.50, 22.70, 18.60 and 20.60 MeV, respectively [11]. We obtain the values 18.44, 19.88, 23.50, 18.87 and 27.10 MeV for the states $1^−, 2^−_1, 2^−_2, 3^−$ and 3^+, respectively.

The $1^−$ (18.12 MeV), C1+E1 form factor is shown in Figure 1. The amplitudes χ^4 are reduced by a factor 1.3, to agree with the low q data [7]. This state is dominated by $(2s_{1/2}) (1p_{3/2})$ particle–hole configuration, as given in Table 1. The single-particle matrix elements are calculated with the HO wavefunctions with oscillator parameter $b = 1.64$ fm to agree with the elastic form factor determination [2]. Our results are consistent with the previous calculation of Donnelly [12] and are in slightly better agreement with the experimental data for the momentum transfer region $q \leq 1.0$ fm$^{-1}$.

The transverse magnetic form factor M2 for the excitation to the $2^−_1$, 19.50 MeV state is shown in Figure 2. The amplitudes have to be enhanced by a factor 1.2 to account for the experimental data. The calculations incorporate the single-particle wavefunctions of the (HO) potential with $b = 1.64$ fm and a value of $\gamma = 0.95$, to account for the ground state correlation. The data are well explained for the momentum-transfer $q \leq 3.0$ fm$^{-1}$.

Figure 3, shows the transverse magnetic form factor M2 for the excitation to the $2^−_2$, 22.70 MeV state. The amplitudes
have to be reduced by a factor 1.82 to fit the low-q data. The single-particle wavefunctions are those of the (HO) potential with size parameter $b = 1.50\ \text{fm}$ and a value of $\gamma = 0.97$, to account for the ground state correlation. The experimental data are very well described throughout the momentum-transfer regions and the results are consistent with that of Hicks et al [13].

The 3^- ($18.60\ \text{MeV}$), is dominated by $(1d_{5/2}) (1p_{3/2})^{-1}$ particle–hole configuration, as given in table 1. The only multipole that contributes to the scattering is the longitudinal C3 multipole as shown in figure 4. The calculations incorporate the single-particle wavefunctions of the (HO) potential with $b = 1.64\ \text{fm}$ and γ takes the value 1.0. The experimental data are very well explained for the momentum-transfer values $q \lesssim 3.0\ \text{fm}^{-1}$ and the results are consistent with those of Hicks et al [13] and Yamaguchi et al [14], where the form factor seems to be a pure longitudinal form factor.

Figure 5 shows the transverse magnetic form factor for the excitation to the 3^+, $20.60\ \text{MeV}$ state. The dominated configuration is the $(1f_{7/2}) (1p_{3/2})^{-1}$ particle–hole configuration, as given in table 2. The only multipole that contributes to the scattering is the magnetic M3 multipole. The amplitudes have to be reduced by a factor of 5 to account for the experimental data. The calculations incorporate the single-particle wavefunctions of the (HO) potential with $b = 1.64\ \text{fm}$, and a value $\gamma = 0.7$, to account for the ground state correlation. The data are very well explained throughout the momentum-transfer values $q \lesssim 3.0\ \text{fm}^{-1}$.

4. Conclusions

The inclusion of higher energy configurations in the particle–hole shell model calculation succeeded in describing the form factors for the negative and positive parity states. The amplitudes of the transitions to the negative-parity states considered in this work have to be reduced by a factor 1.3 and 1.82 for the states 1^- and $2^-\gamma$ while the $2^-\gamma$ state need to be enhanced by a factor of 1.2, to describe the low-q data. The amplitudes for 3^+ need to be reduced by a factor of 5. This reduction may be attributed to higher order effects, such as 2p-2h excitations, or even more. Correlation in the ground state wavefunction by mixing more than one configuration are necessary to describe the data. The single-particle wavefunctions of the HO potential with size parameter $b = 1.64\ \text{fm}$ chosen to reproduce the root mean square charge radius are adequate to describe the data, except for M2 ($23.50\ \text{MeV}$) transition where the b value has to be reduced by a factor 14%.

Acknowledgments

I am very grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil), and the Third World Academy of Science (TWAS) (Italy) for under grant of the scheme (TWAS-CNPq exchange programs for postdoctoral researchers).

References

[1] Radhi R A and Bouchebak A 2003 Nucl. Phys. A 716 87
[2] Sato T, Koshigiri K and Ohtsubo H 1985 Z. Phys. A 320 507
[3] Bennhold C et al 1992 Phys. Rev. C 46 2456
[4] Booten J G L et al 1994 Nucl. Phys. A 569 510
[5] Radhi R A et al 2001 Nucl. Phys. A 696 442
[6] Majeed F A and Radhi R A 2006 Chin. Phys. Lett. 23 2699
[7] Donnelly T W and Sick I 1984 Rev. Mod. Phys. 56 461
[8] deForest T Jr and Walecka JD 1966 Adv. Phys. 15 1
[9] Brussaard P J and Glaudemans P W M 1977 Shell-Model Applications in Nuclear Spectroscopy (Amsterdam: North Holland)
[10] Brown B A et al 1985 Phys. Rev. C 32 1127
[11] Hicks R S, Huffman R L, Lindgren R A, Peterson G A, Plum M A and Button-Shafer J 1987 Phys. Rev. C 36 485
[12] Donnelly T W 1970 Phys. Rev. C 1 833
[13] Hicks R S et al 1984 Phys. Rev. C 30 1
[14] Yamaguchi A et al 1971 Phys. Rev. C 3 1750