INTERSECTION K-THEORY

TUDOR PĂDURARIU

Abstract. For a proper map $f : X \to S$ between varieties over \mathbb{C} with X smooth, we introduce increasing filtrations $P^c_f \subset P^\leq f \subset P^\geq f$ on $\text{gr} \, K(X)$, the associated graded on K-theory with respect to the codimension filtration, both sent by the cycle map to the perverse filtration on cohomology $^pH^*_f(X)$. The filtrations P^c_f and $P^\leq f$ are functorial with respect to proper pushforward and $P^\geq f$ is functorial with respect to pullback.

We use the above filtrations to propose two definitions of (graded) intersection K-theory $\text{gr} \, IK^\cdot(S)$ and $\text{gr} \, IK^\cdot(S)$. Both have cycle maps to intersection cohomology $IH^\cdot(S)$. We conjecture a version of the decomposition theorem for semismall surjective maps and prove it in some particular cases.

1. Introduction

For a complex variety X, intersection cohomology $IH^\cdot(X)$ coincides with singular cohomology with rational coefficients $H^\cdot(X)$ when X is smooth and has better properties than $H^\cdot(X)$ when X is singular, for example it satisfies Poincaré duality and the Hard Lefschetz theorem. Many applications of intersection cohomology, for example in representation theory [18], [7, Section 4], are through the decomposition theorem of Beilinson–Bernstein–Deligne–Gabber [3].

A construction of intersection K-theory is expected to have applications in computations of K-theory via a K-theoretic version of the decomposition theory, and in representation theory, for example in the construction of representations of vertex algebras using (framed) Uhlenbeck spaces [5]. The Goresky–MacPherson construction of intersection cohomology [15] does not generalize in an obvious way to K-theory.

1.1. The perverse filtration and intersection cohomology. For S a variety over \mathbb{C}, intersection cohomology $IH^\cdot(S)$ is a subquotient of $H^\cdot(X)$ for any resolution of singularities $f : X \to S$. The decomposition theorem implies that $IH^\cdot(S)$ is a (non-canonical) direct summand of $H^\cdot(X)$. Consider the perverse filtration

$$^pH^c^\leq f(X) := H^\cdot(S, ^p\tau^c_!Rf_*IC_X) \hookrightarrow H^\cdot(S, Rf_*IC_X) = H^\cdot(X).$$

For $V \hookrightarrow S$, denote by $X_V := f^{-1}(V)$. Let A_V be the set of irreducible components of X_V and let c^n_V be the codimension on $i_V^n : X^n_V \hookrightarrow X$ for $a \in A_V$. Consider a
3.5. In (1), we further impose that \(\Gamma \) is a quasi-smooth scheme surjective over \(X \). Let \(g^\alpha_a : Y^\alpha_a \to V \). Define

\[
\begin{align*}
\hat{p}H^\leq_i|_{f,V} & := \bigoplus_{a \in A_V} \iota^a_{V*} \pi^\alpha_a : \hat{p}H^\leq_i(Y^\alpha_a) \subset \hat{p}H^\leq_i(X), \\
\hat{p}H^\leq_i & := \bigoplus_{V \leq S} \hat{p}H^\leq_i \subset \hat{p}H^\leq_i(X).
\end{align*}
\]

The decomposition theorem implies that

\[
IH^i(S) \cong \hat{p}H^\leq_0(X)^i/\hat{p}H^\leq_0(X).
\]

1.2. **Perverse filtrations in \(K \)-theory.** Inspired by the above characterization of intersection cohomology via the perverse filtration, we propose two \(K \)-theoretic perverse filtrations \(\mathcal{F}_f \subset \mathcal{P}_f \) on \(\mathcal{P}_K(X) \) for a proper map \(f : X \to S \) of complex varieties with \(X \) smooth. Here, the associated graded \(\mathcal{P}_K(X) \) is with respect to the codimension of support filtration on \(K(X) \) [13, Section 5.4].

The precise definition of the filtration \(\mathcal{P}_f \mathcal{P}_K(X) \) is given in Subsection 3.3, roughly, it is generated by (subspaces of) images

\[
(1) \quad \Phi_T : \mathcal{P}_K(T) \to \mathcal{P}_K(X)
\]

induced by correspondences \(\Gamma \) on \(X \times T \) of restricted dimension, see [3], for \(T \) a smooth variety with a generically finite map onto a subvariety of \(S \). These subspaces of the images of \(\Phi_T \) are required to satisfy certain conditions when restricted to the subvarieties \(Y^\alpha_a \) from Subsection 1.1.

The definition of the filtration \(\mathcal{P}_f \mathcal{P}_K(X) \subset \mathcal{P}_f \mathcal{P}_K(X) \) is given in Subsection 3.3. In [1], we further impose that \(\Gamma \) is a quasi-smooth scheme surjective over \(T \). This further restricts the possible dimension of the cycles \(\Gamma \), see Proposition 3.9, and allows for more computations.

Theorem 1.1. Let \(f : X \to S \) be a proper map with \(X \) smooth. Then the cycle map \(\mathcal{P}_f \mathcal{P}_K(X)_Q \to \mathcal{P}_f \mathcal{P}_K(X) \) respects the perverse filtration

\[
\mathcal{P}_f \mathcal{P}_K(X)_Q \subset \mathcal{P}_f \mathcal{P}_K(X)_Q \to \mathcal{P}_f \mathcal{P}_K(X).
\]

Perverse filtrations in \(K \)-theory have the following functorial properties. Let \(X \) and \(Y \) be smooth varieties with \(c = \dim X - \dim Y \). Consider proper maps

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & X \\
\downarrow{g} & & \downarrow{f} \\
S & \xrightarrow{f} & \end{array}
\]

There are induced maps

\[
\begin{align*}
& h_* : \mathcal{P}_g^{\leq i-c} \mathcal{P}_K(Y) \to \mathcal{P}_f^{\leq i} \mathcal{P}_K(X), \\
& h_* : \mathcal{P}_g^{\leq i-c} \mathcal{P}_K(Y) \to \mathcal{P}_f^{\leq i} \mathcal{P}_K(X), \\
& h_* : \mathcal{P}_f^{\leq i-c} \mathcal{P}_K(X) \to \mathcal{P}_g^{\leq i} \mathcal{P}_K(Y).
\end{align*}
\]
If h is surjective, then there is also a map
\[h^* : P^\leq_{f-c} \text{gr} K(X) \to P^\leq_g \text{gr} K(Y). \]

Let $f : X \to S$ be a resolution of singularities. We define $\tilde{P}^\leq_{f} \text{gr} K(X)$ and $P^\leq_{f} \text{gr} K(X)$ similarly to $\tilde{P}^\leq_{f} \text{gr} K(X)$. Inspired by the discussion in cohomology from Subsection 1.1, define
\[\text{gr} I\mathcal{K} \cdot (S) := P^\leq_{f} \text{gr} K(X)/\left(\tilde{P}^\leq_{f} \text{gr} K(X) \cap \ker f_* \right). \]

Note that we do not construct $\text{gr} I\mathcal{K} \cdot (S)$ and $\text{gr} I\mathcal{K} \cdot (S)$ as associated graded of spaces $I\mathcal{K} \cdot (S)$ or $I\mathcal{K} \cdot (S)$, but we hope that such a construction is possible, see Subsection 1.6.

Theorem 1.2. The definitions of $\text{gr} I\mathcal{K} \cdot (S)$ and $\text{gr} I\mathcal{K} \cdot (S)$ do not depend on the resolution of singularities $f : X \to S$ with the properties mentioned above. Further, there are cycle maps
\[c : \text{gr}^j I\mathcal{K} \cdot 0 (S) \to IH^{2j}(S) \]
\[c : \text{gr}^j I\mathcal{K} \cdot 0 (S) \to IH^{2j}(S). \]

We also propose definitions for $\text{gr} I\mathcal{K} \cdot (S, L)$ and $\text{gr} I\mathcal{K} \cdot (S, L)$ for L a local system on U open in S of the form $L \cong h_* (\mathbb{Z}_V)$ for an étale map $h : V \to U$. There are cycle maps
\[c : \text{gr}^j I\mathcal{K} \cdot (S, L) \to IH^{2j}(S, L \otimes \mathbb{Q}) \]
\[c : \text{gr}^j I\mathcal{K} \cdot (S, L) \to IH^{2j}(S, L \otimes \mathbb{Q}). \]

1.3. Properties of the perverse filtrations and intersection K-theory. The perverse filtrations in K-theory and intersection K-theory have similar properties to their counterparts in cohomology.

For a map $f : X \to S$, let $s := \dim X \times_S X - \dim X$ be its defect of semismallness. In Theorem 3.11 we show that
\[P^\leq_{f-s-1} \text{gr} K_0(X) = 0, \]
\[P^\leq_{f-s} \text{gr} K_0(X) = P^\leq_{f-s} \text{gr} K_0(X) = \text{gr} K_0(X). \]

This implies that
\[\text{gr} I\mathcal{K} \cdot (S) = \text{gr} I\mathcal{K} \cdot (S) = \text{gr} K \cdot (S) \text{ for } S \text{ smooth}, \]
\[\text{gr} I\mathcal{K} \cdot (S) = \text{gr} K \cdot (S) \text{ if } S \text{ has a small resolution } f : X \to S. \]

For more computations of perverse filtrations in K-theory and intersection K-theory, see Subsections 3.7 and 1.4.
Let $d = \dim S$. In cohomology, there are natural maps

$$H^i(S) \to IH^i(S) \to H_{BM}^{2d-i}(S)$$

$$IH^i(S) \otimes IH^j(S) \to H_{BM}^{2d-i-j}(S).$$

The composition in the first line is the natural map $H^i(S) \to H_{BM}^{2d-i}(S)$. The second map is non-degenerate for cycles of complementary dimensions. In Subsection 4.3 we explain that there exist natural maps

$$gr_i IK(S) \to gr_i G(S)$$

$$gr_i IK(S) \times gr_j IK(S) \to gr_{d-i-j} G(S)$$

and their analogues for IK. The above filtration on G-theory is by dimension of supports, see [13, Section 5.4].

1.4. The decomposition theorem for semismall maps. As mentioned above, many applications of intersection cohomology are based on the decomposition theorem. When the map

$$f : X \to S$$

is semismall, the statement of the decomposition theorem is more explicit, which we now explain. Let $\{S_a | a \in I\}$ be a stratification of S such that $f_a : f^{-1}(S_a^0) \to S_a^0$ is a locally trivial fibration, where $S_a^0 = S_a - \bigcup_{b \in I} (S_a \cap S_b)$. Let $A \subset I$ be the set of relevant strata, that is, those strata such that for $x_a \in S_a^0$:

$$\dim f^{-1}(x_a) = \frac{1}{2}(\dim S - \dim S_a).$$

For $x_a \in S_a^0$, the monodromy group $\pi_1(S_a^0, x_a)$ acts on the set of irreducible components of $f^{-1}(x_a)$ of top dimension; let L_a be the corresponding local system. Let c_a be the codimension of $X_a = f^{-1}(S_a)$ in X. The decomposition theorem for the map $f : X \to S$ says that there exists a canonical decomposition [7, Theorem 4.2.7]:

$$H^j(X) \cong \bigoplus_{a \in A} IH^{j-c_a}(S_a, L_a).$$

We conjecture the analogous statement in K-theory.

Conjecture 1.3. Let $f : X \to S$ be a semismall map and consider $\{S_a | a \in I\}$ a stratification as above, and let $A \subset I$ be the set of relevant strata. There is a decomposition for any integer j:

$$gr^j K(X) \cong \bigoplus_{a \in A} gr^{j-c_a} IK(S_a, L_a).$$

See Conjecture 5.1 for a more precise statement. In Theorem 5.4, we check the above conjecture for K_0 under the extra condition that for any $a \in A$, there are small maps $\pi_a : T_a \to S_a$ such that $\pi_a^{-1}(S_a^0) \to S_a^0$ is étale with associated local system L_a. The proof of the above result is based on a theorem of de Cataldo–Migliorini [6, Section 4]. In Subsection 4.4.4, we prove the statement for K_0 when $f : X \to S$ is a resolution of singularities of a surface.
1.5. **Intersection Chow groups.** When X is smooth, $\text{gr}^i K_0(X)_\mathbb{Q} = CH^i(X)_\mathbb{Q}$. Thus $\text{gr}^i IK_0(S)_\mathbb{Q}$ is a candidate for an intersection Chow group of S. Corti–Hanamura already defined (rational) intersection Chow groups (or Chow motives) in \cite{10}, \cite{11} inspired by the decomposition theorem. One proposed definition assumes conjectures of Grothendieck and Murre and proves a version of the decomposition theorem for Chow groups; the other approach defines a perverse-type filtration on Chow groups by induction on level i of the filtration and via correspondences involving all varieties $W \to S$. These correspondences need to satisfy certain vanishings for the perverse filtration in cohomology. The advantage of the definition we propose is that one uses fewer correspondences to define $P_f^{\leq i}$ and $P_f^{< i}$ and this allows for computations, see Subsection 4.4 and Theorem 5.3.

For varieties S with a semismall resolution of singularities $f : X \to S$, de Cataldo–Migliorini \cite{6} proposed a definition of Chow motives $ICH(S)$ and proved a version of the decomposition theorem for semismall maps.

1.6. **Intersection K-theory.** Our approach to define (graded) intersection K-theory uses functoriality of the perverse filtration in an essential way. To obtain this functoriality, it is essential to pass to $\text{gr} K_*(X)$. It is a very interesting problem to find a definition of the perverse filtration on $K_*(X)$. We hope that such a definition will provide a version of equivariant intersection K-theory with applications to geometric representation theory, for example in understanding the K-theoretic version of \cite{5}.

There are proposed definitions of intersection K-theory in some particular cases. Cautis \cite{8}, Cautis–Kamnitzer \cite{9} have an approach for categorification of intersection sheaves for certain subvarieties of the affine Grassmannian. Eberhardt defined intersection K-theoretic sheaves for varieties with certain stratifications \cite{12}. In \cite{19}, we proposed a definition of intersection K-theoretic for good moduli spaces of smooth Artin stacks which has applications to the structure theory of Hall algebras of Kontsevich–Soibelman \cite{20}.

1.7. **Outline of the paper.** In Section 2 we discuss preliminary material. In Section 3 we introduce the two perverse filtrations $P_f^{\leq *} \subset P_f^{< *}$. In Section 4 we define the two versions of intersection K-theory $\text{gr} IK_*(S)$ and $\text{gr} IK_*(S)$. In Section 5 we discuss the decomposition theorem for semismall maps.

1.8. **Acknowledgements.** I thank Jacob Lurie for useful discussions related to the paper. I thank the Institute of Advanced Studies for support during the preparation of the paper. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1926686.

2. Preliminary material

2.1. **Notations and conventions.** All schemes considered in this paper are finite type and defined over \mathbb{C}. The definition of the filtration in Subsection 3.1 works over any field, but to define intersection K-theory we use resolution of singularities. The definition of intersection K-theory works over any field of characteristic
zero. A variety is an irreducible reduced scheme. We use quasi-smooth schemes in Subsections 3.3 and 3.4 which are the natural extension of lci schemes in derived geometry.

For \(S \) a scheme, let \(D^b\text{Coh}(S) \) be the derived category of bounded complexes of coherent sheaves and let \(\text{Perf}(S) \) be its subcategory of bounded complexes of locally free sheaves on \(S \). For their analogues for quasi-smooth schemes, see [16, Subsections 2.1 and 3.1]. The functors used in the paper are derived; we sometimes drop \(R \) or \(L \) from notation, for example we write \(f_* \) instead of \(Rf_* \). When \(S \) is smooth, the two categories coincide. Define

\[
G_i(S) := K_\big(D^b\text{Coh}(S)^{\geq i} \big),
\]

\[
K_i(S) := K_\big(\text{Perf}(S)^{\geq i} \big).
\]

For \(Y \) a subvariety of \(X \), let \(D^b\text{Coh}_Y(X) \) be the subcategory of \(D^b\text{Coh}(X) \) of complexes supported on \(Y \), and define

\[
G_Y, i(X) := K_\big(D^b\text{Coh}_Y(X)^{\geq i} \big).
\]

When \(X \) is smooth, we also use the notation \(K_Y, i(X) \) for the above. We will usually drop the subscript \(\cdot \) from the notation.

The local systems used in this paper are of the form \(L \cong h_* (\mathbb{Z}_V) \) (or \(L \cong h_* (\mathbb{Q}_V) \)) for an étale morphism \(h : V \to U \). We call these local systems integer (or rational) finite local systems.

Singular and intersection cohomology and Borel-Moore homology are used only with coefficients in a rational finite local system, usually \(\mathbb{Q} \).

For \(f \) a morphism of varieties, we denote by \(\mathbb{L}_f \) its cotangent complex.

2.2. Filtrations in K-theory

A reference for the following is [13], especially Section 5 in loc. cit. Let \(F^iG_i(S) \) be the filtration on \(G_i(S) \) by sheaves with support of codimension \(\geq i \); it induces a filtration on \(K_i(S) \). The associated graded will be denoted by \(\text{gr} G_i(S) \), \(\text{gr} K_i(S) \). A morphism \(f : X \to Y \) of smooth varieties induces maps:

\[
f^* : F^iK_i(Y) \to F^iK_i(X)
\]

\[
f^* : \text{gr}^iK_i(Y) \to \text{gr}^iK_i(X).
\]

Further, let \(F^\dim_iG_i(S) \) be the filtration on \(G_i(S) \) by sheaves with support of dimension \(\leq i \); it induces a filtration on \(K_i(S) \). The associated graded will be denoted by \(\text{gr}^\dim G_i(S) \), \(\text{gr}^\dim K_i(S) \). A proper morphism \(f : X \to Y \) of schemes induces maps:

\[
f_* : F^\dim_iG_i(X) \to F^\dim_iG_i(Y)
\]

\[
f_* : \text{gr}^\dim_iG_i(X) \to \text{gr}^\dim_iG_i(Y).
\]

There are similar filtrations and associated graded on \(G_Y(X) \) for \(Y \hookrightarrow X \) a subvariety. If \(X \) is smooth of dimension \(d \), then \(\text{gr}^\dim G_Y(X) = \text{gr}^{d-i}G_Y(X) \).
Proposition 2.1. Let $S \xrightarrow{\alpha} \text{Spec} \mathbb{C}$ be a variety of dimension d. Then
\[
\left(a^*, \bigoplus_{T \subseteq S} \iota_{T^*} \right) : G_0(\text{Spec} \mathbb{C}) \oplus \bigoplus_{T \subseteq S} \text{gr}_i G_0(T) \to \text{gr}_0 G_0(S),
\]
where the sum is taken over all proper subvarieties T of S.

Proof. For $i < d$, the map
\[
\bigoplus_{T \subseteq S} \iota_{T^*} : \bigoplus_{T \subseteq S} \text{gr}_i G_0(T) \to \text{gr}_i G_0(S)
\]
is surjective by definition of the filtration F^i_{\dim}. Finally, the following map is an isomorphism
\[
a^* : G_0(\text{Spec} \mathbb{C}) \xrightarrow{\sim} \text{gr}_d G_0(S).
\]
\[\square\]

Proposition 2.2. Let S be a singular variety of dimension d, and let $f : X \to S$ be a resolution of singularities. The following map is surjective:
\[
f_* : \text{gr}_i G_0(X) \to \text{gr}_i G_0(S).
\]

Proof. We use induction on d. By Proposition 2.1, the following is an isomorphism
\[
f_* : \text{gr}_d G_0(X) \xrightarrow{\sim} \text{gr}_d G_0(S) \xrightarrow{\sim} G_0(\text{Spec} \mathbb{C}).
\]
For $V \subseteq S$ a subvariety, consider g a resolution of singularities as follows:
\[
Y \xrightarrow{g} X \xrightarrow{f} S.
\]
The surjectivity of f_* for $i < d$ follows using Proposition 2.1 and the induction hypothesis. \[\square\]

2.3. Quasi-smooth schemes.

2.3.1. A morphism $f : X \to Y$ of derived schemes is quasi-smooth if it is locally of finite presentation and the cotangent complex \mathcal{L}_f has Tor-amplitude ≤ 1. Alternatively, there is a factorization
\[
X \xrightarrow{\iota} X' \xrightarrow{\pi} Y
\]
with π smooth and ι a quasi-smooth immersion, that is, the complex $\mathcal{L}_\iota[-1]$ is a vector bundle, see [17, Section 2], [2, Subsections 2.1 and 2.2]. A proper map between smooth varieties is quasi-smooth. Any quasi-smooth map has a well defined relative dimension.

A derived scheme X is quasi-smooth if the structure morphism $X \to \text{Spec} \mathbb{C}$ is quasi-smooth. Any quasi-smooth scheme has a well defined dimension.
2.3.2. We list some properties satisfied by quasi-smooth morphisms and schemes. We are using them only in the proof of an excess intersection formula, see [1]. Consider a cartesian diagram

\[
\begin{array}{ccc}
X' & \xrightarrow{f'} & Y' \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & Y.
\end{array}
\]

If \(f \) is quasi-smooth, then \(f' \) is quasi-smooth and

\[
\text{rel.dim}(f) = \text{rel.dim}(f').
\]

Composition of quasi-smooth maps is quasi-smooth.

Let \(Y \) be a quasi-smooth scheme. Define a filtration \(F_i \) on \(G \cdot Y \) generated by images of \(f^* : G \cdot X \rightarrow G \cdot Y \) for \(f : Y \rightarrow X \) a quasi-smooth morphism with \(\text{rel.dim}(f) \leq -i \). It induces a filtration on \(K \cdot Y \). One can define similarly a filtration \(F_i \) on \(G \cdot Y \) when \(Y \) is a classical scheme, this definitions recover the filtrations introduced in Subsection 2.2, see [16, Theorem 6.21]. By (2), pullback respects the filtrations \(F_i \). Pushforward clearly respects the filtrations \(F_i \).

2.3.3. Let \(X \) be a quasi-smooth scheme. There exists an open set \(U \subset X \) of codimension \(\geq 1 \) and a vector bundle \(E \) on \(U^{\text{cl}} \) such that \(\mathcal{O}_U \cong \mathcal{O}_{U^{\text{cl}}}[\mathcal{E}[1]; d] \), where \(d : \mathcal{E} \rightarrow \mathcal{O}_U \) is the zero map. The bundle \(\mathcal{E} \) has rank \(\dim X^{\text{cl}} - \dim X \).

2.4. The perverse filtration in cohomology. Let \(S \) be a scheme over \(\mathbb{C} \). Let \(D^b_c(S) \) be the derived category of bounded complexes of rational constructible sheaves [7, Section 2]. Consider the perverse \(t \)-structure \((\mathcal{P}^{\leq i}, \mathcal{P}^{\geq i})_{i \in \mathbb{Z}}\) on this category. There are functors:

\[
\begin{align*}
\tau^{\leq i} : D_c^b(S) &\rightarrow \mathcal{P}^{\leq i}, \\
\tau^{\geq i} : D_c^b(S) &\rightarrow \mathcal{P}^{\geq i}
\end{align*}
\]

such that for \(F \in D_c^b(S) \) there is a distinguished triangle in \(D_c^b(S) \):

\[
\tau^{\leq i} F \rightarrow F \rightarrow \tau^{\geq i} F[1].
\]

For a proper map \(f : X \rightarrow S \) and \(F \in D_c^b(X) \), the perverse filtration on \(H^r(X,F) \) is defined as the image of

\[
\tau^{\leq i} F \rightarrow F \rightarrow \tau^{\geq i} F[1].
\]

For \(F = \mathcal{I}C_X \), the decomposition theorem implies that

\[
\tau^{\leq i} \mathcal{I}C_X \cong \mathcal{I}H^{\leq i}(X).
\]
Let \(f : X \to S \) be a generically finite morphism from \(X \) smooth, let \(U \) be a smooth open subset of \(S \) such that \(f^{-1}(U) \to U \) is étale, and let \(L = f_* (\mathbb{Q}_{f^{-1}(U)}) \).

For \(V \hookrightarrow S \), denote by \(X_V := f^{-1}(V) \). Let \(A_V \) be the set of irreducible components of \(X_V \). Let \(c^a_V \) be the codimension on \(V^a \hookrightarrow X \) for \(a \in A_V \). Consider a resolution of singularities \(\pi^a_V : Y^a \to V^a \). Let \(g^a_V := f \pi^a_V : Y^a \to V \). Then

\[
p_{\tau \leq 0} Rf_* IC_X \cong \ker \left(Rf_* IC_X \to \bigoplus_{V \subseteq S} \bigoplus_{a \in A_V} (p_{\tau > c^a_V} Rg^a_V IC_{Y^a}) [c^a_V] \right).
\]

Define the subspace

\[
p_{\tau \leq 0} Rf_* IC_X := \operatorname{image} \left(\bigoplus_{V \subseteq S} \bigoplus_{a \in A_V} (p_{\tau \leq -c^a_V} Rg^a_V IC_{Y^a}) [-c^a_V] \to p_{\tau \leq 0} Rf_* IC_X \right).
\]

By a computation of Corti–Hanamura [11, Proposition 1.5, Theorem 2.4], there is an isomorphism:

\[
IC_S(L) \cong p_{\tau \leq 0} Rf_* IC_X / p_{\tau \leq 0} Rf_* IC_X.
\]

Further, consider a more general morphism \(f : X \to S \) with \(X \) smooth. Let \(V \subsetneq S \) be a subvariety. For \(i \in \mathbb{Z} \), denote by \(p^{\mathcal{H}}(Rf_* IC_X)_V \) the direct sum of simple summands of \(p^{\mathcal{H}}(Rf_* IC_X) \) with support equal to \(V \). A computation of Corti–Hanamura [11, Proposition 1.5] shows that:

\[
p^{\mathcal{H}}_i (Rf_* IC_X)_V \hookrightarrow \bigoplus_{a \in A_V} p^{\mathcal{H}}_{i+c^a_V} (Rg^a_V IC_{Y^a}).
\]

3. The perverse filtration in \(K \)-theory

3.1. Definition of the filtration \(P_{\tau \leq i} \). Let \(f : X \to S \) be a proper map between varieties. We define an increasing filtration

\[
P_f^{\tau \leq i} \operatorname{gr} G.(X) \subset \operatorname{gr} G.(X).
\]

It induces a filtration on \(\operatorname{gr} K.(X) \). We use the notations from Subsection 2.4. Let \(Y \hookrightarrow X \) be a subvariety and let \(T \xrightarrow{\pi} S \) be a map generically finite onto its image from \(T \) smooth. Consider the diagram:

\[
\begin{array}{ccc}
T \times X & \xrightarrow{p} & X \\
\downarrow q & & \downarrow f \\
T & \xrightarrow{\pi} & S.
\end{array}
\]

For a correspondence \(\Gamma \in \operatorname{gr}_{\dim X - s} G_{T \times_s Y, 0}(T \times X) \), define

\[
\Phi_\Gamma := p_*(\Gamma \otimes q^*(-)) : \operatorname{gr} K_i(T) \to \operatorname{gr}^{-s} G_{Y,s}(X).
\]
We usually drop the shift by \(s \) in the superscript of \(\text{gr}G_Y(X) \). We define the subspace of \(\text{gr}G_Y(X) \):

\[
P_{f,T}^{\leq i} := \text{span}_T (\Phi_T : \text{gr}K(T) \to \text{gr}G_Y(X))
\]

\[
P_{f}^{\leq i} := \text{span} \left(P_{f,T}^{\leq i} \text{ for all maps } \pi \text{ as above} \right),
\]

where the dimension of the correspondence satisfies

\[
\left\lfloor \frac{i + \dim X - \dim T}{2} \right\rfloor \geq s.
\]

We also define a quotient of \(\text{gr}G_Y(X) \):

\[
P_{f}^{i <} \text{gr}G_Y(X) \hookrightarrow \text{gr}G_Y(X) \twoheadrightarrow P_{f}^{i >} \text{gr}G_Y(X).
\]

3.2. Functoriality of the filtration \(P_{i \leq} \).

Proposition 3.1. Let \(X \) and \(Y \) be smooth varieties with \(c = \dim X - \dim Y \).

Consider proper maps

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & X \\
\downarrow g & & \downarrow f \\
S & & \\
\end{array}
\]

There are induced maps

\[
h^* : P_{f}^{i \leq i - c} \text{gr}K(X) \to P_{g}^{i \leq i - c} \text{gr}K(Y).
\]

Proof. Let \(T \to S \) be a generically finite map onto its image with \(T \) smooth. It suffices to show that

\[
h^* : P_{f,T}^{i \leq i - c} \text{gr}K(X) \to P_{g,T}^{i \leq i - c} \text{gr}K(Y)
\]

Consider the diagram:

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & X \\
\uparrow p_Y & & \uparrow p_X \\
Y \times T & \xrightarrow{\bar{h}} & X \times T \\
\downarrow q_Y & & \downarrow q_X \\
T & & \\
\end{array}
\]

Let \(\Theta \in \text{gr}_{\dim X - s}G_{T \times S,X,0}(T \times X) \) be a correspondence such that

\[
i \geq 2s - \dim X + \dim T.
\]

For \(j \in \mathbb{Z} \), we have that:

\[
\begin{array}{ccc}
\text{gr}^j K(T) & \xrightarrow{\Phi_{\Theta}} & \text{gr}^{j - s} K(X) \\
\downarrow \Phi_{h^* \Theta} & & \downarrow h^* \\
\text{gr}^{j - s} K(Y) & & \\
\end{array}
\]
To see this, we compute:

\[h^*\Phi_{\Theta}(F) = h^* p_{X*}(\Theta \otimes q_X^* F) = p_{Y*}\tilde{h}^*(\Theta \otimes q_X^* F) = p_{Y*}(\tilde{h}^*\Theta \otimes q_Y^* F) = \Phi_{\tilde{h}^*\Theta}(F). \]

The correspondence \(\tilde{h}^*\Theta \in \text{gr}_{\dim Y-s} G_{T \times S}Y(T \times Y) \) satisfies

\[i + c \geq 2s - \dim Y + \dim T, \]

and this implies the desired conclusion. \(\square \)

Proposition 3.2. Let \(X \) and \(Y \) be varieties with proper maps

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & X \\
\downarrow{g} & & \downarrow{f} \\
S
\end{array}
\]

Let \(c = \dim X - \dim Y \). There are induced maps

\[h_* : P^i_{g,T} \text{gr}.G.(Y) \to P^i_{f,T} \text{gr}.G.(X). \]

Proof. Let \(T \to S \) be a generically finite map onto its image from \(T \) smooth. We first explain that

\[h_* : P^i_{g,T} \text{gr}.G.(Y) \to P^i_{f,T} \text{gr}.G.(X). \]

We use the notation from the proof of Theorem 3.1. Consider a correspondence \(\Gamma \in \text{gr}_{\dim Y-s} G_{T \times S}Y(T \times Y) \) such that

\[i \geq 2s - \dim Y + \dim T. \]

For \(j \in \mathbb{Z} \), we have that:

\[
\begin{array}{ccc}
\text{gr}_{\dim T-j}K(T) & \xrightarrow{\Phi_{\Gamma}} & \text{gr}_{\dim Y-j+s}G.(Y) \\
& \xrightarrow{\Phi_{\tilde{h}^*\Gamma}} & \text{gr}_{\dim Y-j+s}G.(X). \\
\end{array}
\]

To see this, we compute:

\[h_* p_{Y*}(\Gamma \otimes q_Y^* F) = p_{X*}\tilde{h}^*(\Gamma \otimes h^* q_X^* F) = p_{X*}(\tilde{h}^*\Gamma \otimes q_X^* F). \]

The correspondence

\[\tilde{h}^*\Gamma \in \text{gr}_{\dim Y-s} G_{T \times S}X(T \times X) = \text{gr}_{\dim X-(c+s)} G_{T \times S}X(T \times X) \]

satisfies

\[i + c \geq 2(s + c) - \dim X + \dim T, \]

and thus the conclusion follows. \(\square \)

We continue with some further properties of the filtration \(P^i_{\leq \cdot} \). The following is immediate:

Proposition 3.3. Let \(f : X \to S \) be a proper map. Let \(U \) be an open subset of \(S \), \(X_U := f^{-1}(U) \), \(\iota : X_U \to X \), and \(f_U : X_U \to U \). Then

\[\iota^* : P^i_{f,T} \text{gr}.G.(X) \to P^i_{f_U,T} \text{gr}.G.(X_U). \]
Proposition 3.4. Let $f : X \to S$ be a proper map from X smooth and consider $e \in \text{gr}^i K_0(X)$. Then
\[e \cdot P_f^{\leq i} \text{gr}^i K(X) \subset P_f^{\leq i+2j} \text{gr}^{i+j} K(X). \]

Proof. Let $T \to S$ be a generically finite map onto its image with T smooth and let $\Theta \in \text{gr}_{a_G T \times S, 0}(T \times X)$. Let $p : T \times X \to X$ be the natural projection. Then
\[p^*(\cdot) \cdot \Theta \in \text{gr}^{-j} G T \times S, 0((T \times X)). \]

For $x \in \text{gr} \cdot K \cdot (T)$, we have that
\[e \cdot \Phi(x) = \Phi(p^*(\cdot) \cdot \Theta(x)), \]
and the conclusion thus follows. □

Proposition 3.5. Let X and Y be smooth varieties with proper maps $f : X \to S$, $g : Y \to S$ such that h is surjective. Let $c = \dim X - \dim Y$. Then
\[h^* \left(P_f^{\leq i} \text{gr}^i K(X) \right) = P_g^{\leq i+c} \text{gr}^i K(Y) \]
\[h^* \left(\text{gr}^i K(X) \right) \cap P_g^{\leq i+c} \text{gr}^i K(Y) = h^* \left(P_f^{\leq i} \text{gr}^i K(X) \right). \]

If there exists $X' \to Y$ such that the induced map $X' \to X$ is birational, then the above isomorphisms hold integrally.

Proof. The statement and its proof are similar to [11, Proposition 3.11].

Let $i : X' \to Y$ be a map such that $hi : X' \to X$ is generically finite and surjective. Let $f' := fi : X' \to S$. Then, by Proposition 3.2
\[P_f^{\leq i+c} \text{gr}^i K(X') \xrightarrow{i_*} P_g^{\leq i+c} \text{gr}^i K(Y) \xrightarrow{h_*} P_f^{\leq i+c} \text{gr}^i K(X). \]
The map $h_* i_* : \text{gr}^i K(X') \to \text{gr}^i K(X)$ is multiplication by the degree of the map hi, so it is an isomorphism rationally. It is an isomorphism integrally if $X' \to X$ has degree 1. The pullback statement is similar. □

3.3. The filtration $P^{\leq i}$. Let $f : X \to S$ be a proper map from X smooth. Let $V \hookrightarrow S$ be a subvariety, and let \mathcal{A}_V the set of irreducible components of $f^{-1}(V)$. For an irreducible component X^a_V of $f^{-1}(V)$, consider a resolution of singularities π^a_V as follows:

\[
\begin{array}{c}
\tilde{X}^a_V \xrightarrow{\pi^a_V} X^a_V \xrightarrow{i^a_V} X \\
\downarrow \quad \quad \downarrow \quad \downarrow \\
\overline{f^a} \quad \quad \quad \quad \quad \quad \quad f
\end{array}
\]

where $\overline{f^a} : \mathcal{V} \hookrightarrow S$.

\[
\mathcal{A}_V = \{ \pi^a_V : V \to \overline{f^a} \}
\]

The map $\pi_* i_* : \text{gr}^i K(X') \to \text{gr}^i K(X)$ is multiplication by the degree of the map hi, so it is an isomorphism rationally. It is an isomorphism integrally if $X' \to X$ has degree 1. The pullback statement is similar. □
Let c_V^a be the codimension of X_V^a in X. Denote by $\tau_V^a = e_V^a \pi_V^a$. Consider a subvariety $Y \hookrightarrow X$. Define

$$P_f^{\leq i} \gr G_Y(X) := \bigcap_{V \supseteq S} \bigcap_{a \in A_V} \ker \left(\tau_V^{a*} : P_f^{\leq i} \gr G_Y(X) \to P_{f_V}^{\leq i+c_V^a} \gr K \left(\overline{X}_V^a \right) \right).$$

The definition is independent of the resolutions π_V^a chosen. Indeed, consider two different resolutions \overline{X}_V^a, $\overline{X}_V'^a$. There exists W such that

$$\pi : \overline{X}_V^a \to X \quad \pi' : \overline{X}_V'^a \to X,$$

where the maps π and π' are successive blow-ups along smooth subvarieties of \overline{X}_V^a and $\overline{X}_V'^a$, respectively. Let $\tau_V^a : \overline{X}_V'^a \to X$ as above. Then $\tau_V^a \pi = \tau_V^a \pi'$. By Proposition 3.4

$$\ker \left(\tau_V^{a*} : P_f^{\leq i} \gr G_Y(X) \to P_{f_V}^{\leq i+c_V^a} \gr K \left(\overline{X}_V^a \right) \right) \cong$$

$$\ker \left(\pi^* \tau_V^{a*} : P_f^{\leq i} \gr G_Y(X) \to P_{f_V}^{\leq i+c_V^a} \gr K(W) \right) \cong$$

$$\ker \left(\tau_V'^{a*} : P_f^{\leq i} \gr G_Y(X) \to P_{f_V'}^{\leq i+c_V^a} \gr K \left(\overline{X}_V'^a \right) \right).$$

Theorem 3.6. Let X and Y be smooth varieties with $c = \dim X - \dim Y$. Consider proper maps

$$Y \xrightarrow{h} X \quad \xleftarrow{g} \quad \xrightarrow{f} S.$$

There are induced maps

$$h^* : P_f^{\leq i-c} \gr K.(X) \to P_g^{\leq i} \gr K.(Y)$$

$$h_* : P_g^{\leq i-c} \gr K.(Y) \to P_f^{\leq i} \gr K.(X).$$

Proof. The functoriality of h^* follows from Proposition 3.1 and induction on dimension of S.

We discuss the statement for h_*. We use induction on the dimension of S. The case of S a point is clear as $P_f^{\leq i} = P_f^{\leq i}$. We use the notation from the beginning of Subsection 3.3. Let V be a subvariety of S. Let X_V^a be an irreducible component of $f^{-1}(V)$ with a resolution of singularities $\overline{X}_V^a \to X_V^a$. Let B be the set of irreducible
component of Y_V over X_V^a. For $b \in B$, consider a resolution of singularities $\widetilde{Y}^b_V \to Y^b_V$ and maps such that

$$
\begin{array}{ccc}
\bigcup_{b \in B} \widetilde{Y}^b_V & \xrightarrow{\Theta_B h^b_V} & \widetilde{X}^a_V \\
\downarrow \Theta_B \tau^b_V & & \downarrow \tau^a_V \\
Y & \xrightarrow{h} & X.
\end{array}
$$

Consider the cartesian diagram

$$
\begin{array}{ccc}
Y^\text{der}_V & \xrightarrow{\tilde{h}} & \tilde{X}^a_V \\
\downarrow \tau & & \downarrow \tau^a_V \\
Y & \xrightarrow{h} & X.
\end{array}
$$

The scheme Y^der_V is quasi-smooth, see Subsection 2.3, and \text{reldim} $\tilde{h} = \text{reldim} h$. For $b \in B$, there is a map $p_b : \widetilde{Y}^b_V \to Y^\text{der}_V$. Let $d_b = \dim \widetilde{Y}^b_V - \dim Y^\text{der}_V$ and define

$$
e_b = \det \left(\mathbb{L}^{b^*}_V / h^*_V \mathbb{L}^{\tau^*_V} \right) \in \text{gr}^{d_b} K^0 \left(\widetilde{Y}^b_V \right).
$$

By a version of the excess intersection formula, the following diagram commutes:

$$
\begin{array}{ccc}
\text{gr.} K(Y) & \xrightarrow{h^*} & \text{gr.} K(X) \\
\downarrow \Theta_B \tau^*_V & & \downarrow \\
\bigoplus_B \text{gr.} K(Y^b_V) & & \bigoplus_B \text{gr.} K(X^a_V)
\end{array}
$$

where we have ignored shifts in the above gradings. We now explain that (6) commutes. Consider the diagram

$$
\begin{array}{ccc}
\bigcup_B \widetilde{Y}^b_V & \xrightarrow{\bigcup_B h^b_V} & \widetilde{X}^a_V \\
\downarrow \bigcup_B p_b & & \downarrow \\
Y^\text{der}_V & \xrightarrow{\tilde{h}} & \tilde{X}^a_V \\
\downarrow \tau & & \downarrow \tau^a_V \\
Y & \xrightarrow{h} & X.
\end{array}
$$

Then

$$
\sum_{b \in B} h^b_V \left(e_b \cdot \tau^a_V \right) = \sum_{b \in B} \tilde{h}_* p^*_b \left(e_b \cdot \tau^*_V \right) = \tilde{h}_* \left(\left(\sum_{b \in B} p^*_b e_b \right) \cdot \tau^* \right).
$$
For M a quasi-smooth scheme, denote by $1 := [\mathcal{O}_M] \in \text{gr}^0K_0(M)$. It suffices to show that
\[
\sum_{b \in B} p_b^*(e_b) = 1 \in \text{gr}^0K_0(Y^{\text{der}}_V).
\]

The underlying scheme Y^{cl}_V has irreducible components indexed by B and these components are birational to \widetilde{Y}_V. Recall the discussion in Subsection 2.3.3. There exist open sets
\[
W = \bigsqcup_{b \in B} W^b \subset Y^{\text{der}}_V,
\]
\[
U^b \subset \widetilde{Y}_V
\]
whose complements have codimension ≥ 1 and such that for any $b \in B$:
\[
W_b^{\text{cl}} \cong U^b,
\]
\[
W^b \times_{Y^{\text{der}}_V} \widetilde{Y}_V \cong U^b,
\]
\[
\mathcal{O}_{W^b} \cong \mathcal{O}_{U^b}[E^b[1]; d],
\]
where E^b is a vector bundle on U^b of rank d^b and the differential $E^b \to \mathcal{O}_{U^b}$ is zero.

Let $e_b \in \text{gr}^{d^b}K_0(U^b)$ be the Euler class of E^b. Then $p_b^*(e_b) = 1 \in \text{gr}^0K_0(W^b)$ and the restriction map sends
\[
\text{res} : \text{gr}^{d^b}K_0(\widetilde{Y}_V) \to \text{gr}^{d^b}K_0(U^b)
\]
\[
e_b \mapsto e_b.
\]

Back to proving (7), we have that $\text{gr}^0K_0(Y^{\text{der}}_V) \cong \bigoplus_{b \in B} \text{gr}^0K_0(W^b)$. Consider the diagram
\[
\begin{array}{ccc}
\text{gr}^{d^b}K_0(\widetilde{Y}_V) & \xrightarrow{\text{res}} & \text{gr}^{d^b}K_0(U^b) \\
\downarrow{p_b^*} & & \downarrow{p_b^*} \\
\text{gr}^0K_0(Y^{\text{der}}_V) & \xrightarrow{\text{res}} & \text{gr}^0K_0(W^b),
\end{array}
\]
where the horizontal maps are restriction to open sets maps. Then
\[
\text{res} p_b^*(e_b) = p_b^*(e_b) = 1 \text{ in } \text{gr}^0K_0(W^b).
\]
The diagram (8) thus commutes. The conclusion now follows from Propositions 3.2 and 3.3.

3.4. Towards the filtration P_i^j. We continue with the notation from Subsection 3.3. Let X be a smooth variety with a proper map $f : X \to S$. Let $T \xrightarrow{\pi} S$ be a generically finite map onto its image from T smooth.
We say that Γ is a (f, π)-quasi-smooth scheme if Γ is a derived scheme with maps

$$
\begin{array}{ccc}
\Gamma & \xrightarrow{\iota} & X' \\
\downarrow^{\iota} & & \downarrow^{t} \\
T & \xrightarrow{\pi} & S
\end{array}
$$

such that ι is a quasi-smooth immersion in a smooth variety X' (i.e. the cotangent complex $L_{\iota}[-1]$ is a vector bundle on Γ), t is smooth, and q^{cl} is surjective. The conditions on the maps ι and t imply that Γ is quasi-smooth. Let

$$
gr K^q_{T \times S \times X}(T \times X) \subset gr K_{T \times S}(T \times X)
$$

be the subspace generated by classes $[\Gamma]$ for (f, π)-quasi-smooth schemes as above.

Proposition 3.7. Let h be a proper map:

$$
\begin{array}{ccc}
Y & \xrightarrow{h} & X \\
\downarrow^{g} & & \downarrow^{f} \\
S
\end{array}
$$

There are induced maps

$$
h_* : gr K^q_{T \times S \times Y}(T \times Y) \rightarrow gr K^q_{T \times S \times X}(T \times X).
$$

If h is surjective, then there are induced maps

$$
h^* : gr K^q_{T \times S \times X}(T \times X) \rightarrow gr K^q_{T \times S \times Y}(T \times Y).
$$

Proof. We discuss the statement about pullback. Consider the diagram:

$$
\begin{array}{ccc}
\Theta & \xrightarrow{\iota} & Y' \\
\downarrow^{r} & & \downarrow^{t_Y} \\
\Gamma & \xrightarrow{\iota} & X' \\
\downarrow^{q} & & \downarrow^{t_X} \\
T & \xrightarrow{\pi} & S
\end{array}
$$

where Γ is a (f, π)-quasi-smooth scheme with q^{cl} is surjective, t_X is smooth, and the upper squares are cartesian. Then the map $\Theta \hookrightarrow Y'$ is a quasi-smooth immersion and t_Y is smooth. The map h is surjective, so $r^{cl} : \Theta^{cl} \rightarrow \Gamma^{cl}$ is surjective, and thus $(gr)^{cl} : \Theta^{cl} \rightarrow T$ is surjective as well, so Θ is a (g, π)-quasi-smooth scheme.
We next discuss the statement about pushforward. Consider

\[
\begin{array}{ccc}
Y' & \xrightarrow{t'} & Y \\
\downarrow & \downarrow & \downarrow \\
T & \xrightarrow{q} & S
\end{array}
\]

such that \(t \) is a closed immersion, \(t' \) is smooth, and \(q^{cl} \) is surjective. The map \(Y' \to X \) is a proper map of smooth quasi-projective varieties, so we can choose \(X' \) with maps

\[
\begin{array}{ccc}
Y' & \xrightarrow{t'} & X' \\
\downarrow & \downarrow & \downarrow \\
T & \xrightarrow{q} & S
\end{array}
\]

such that \(t' \) is a closed immersion and \(t' \) is smooth. Then

\[
\begin{array}{ccc}
X' & \xrightarrow{\iota'} & X \\
\downarrow & \downarrow & \downarrow \\
T & \xrightarrow{p} & S
\end{array}
\]

such that \(\iota' \) is a closed immersion, \(t' \) is smooth, and \(q^{cl} \) is surjective.

Consider a diagram

\[
\begin{array}{ccc}
X' & \xrightarrow{t'} & X \\
\downarrow & \downarrow & \downarrow \\
T & \xrightarrow{p} & S
\end{array}
\]

as above, with \(t \) a smooth map and with \(\iota \) a closed immersion. Let

\[
T \times_S X = Z_1 \cup Z_2,
\]

where \(Z_1 \) is the union of irreducible components of \(T \times_S X \) dominant over \(T \) and \(Z_2 \) is the union of the other irreducible components. Denote by \(Z_1^{\alpha} := Z_1 \setminus (Z_1 \cap Z_2) \). Similarly define \(Z_1' \) and \(Z_2' \) for \(T \times_S X' \). Let \(b = \text{reldim } q \) and \(a = b + \dim T = \dim \Gamma \).

Proposition 3.8. The class \([\Gamma] \in gr_{a}K_{T \times_S X'}(T \times X')\) is not supported on \(Z_2' \).

Proof. Let \(\ell \) be an \(ft \)-ample divisor. Denote by \(\text{pr}_1 : T \times X' \to T \). Then

\[
\text{pr}_{1*} \left([\Gamma] \cdot \ell^b \right) = d[T] \in \text{gr}_{d}K_{T}(T)
\]

for \(d \) a non-zero integer. Indeed, let \(\eta \) be the generic point of \(T \). By abuse of notation, we denote by \(\eta \) its image in \(S \). It suffices to show \(9 \) after restricting to \(\eta \). In this case, \(d \) is the intersection number \([\Gamma_{\eta}] \cdot \ell^b \) in \(X'_{\eta} \).
Further, let $x \in \text{gr}_a K_{Z_2}(T \times X')$. We have that
\[
\text{pr}_{1*} (x \cdot \ell^b) = 0 \in \text{gr}_{\dim T} K(T)
\]
because the support on $x \cdot \ell^b$ is not dominant over T. The conclusion thus follows.

Proposition 3.9. Let $T \xrightarrow{\tilde{\pi}} X$ be a generically finite map from T smooth with image V. Let $a > \dim X_V$. Then $\text{gr}_a K^q_{T \times S} (T \times X) = 0$. Further, $\text{gr}_{\dim X_V} K^q_{T \times S} (T \times X)$ is generated by irreducible components of $T \times S X$ dominant over T of dimension X_V.

Proof. Suppose we are in the setting of (8) and let $s : X \to X'$ be a section of t. We write $\tilde{p} : \Gamma \to T \times X$, $\tilde{r} : \Gamma \to T \times X'$ etc. Assume that
\[
\tilde{r}_s \tilde{r}_s [\Gamma] = \tilde{p}_s [\Gamma] \neq 0 \in \text{gr}_a K^q_{T \times S} (T \times X).
\]
Then there exists a non-zero $x \in \text{gr}_a K^q_{T \times S} (T \times X)$ such that
\[
\tilde{p}_s [\Gamma] = \tilde{s}_s (x) \in \text{gr}_a K^q_{T \times S} (T \times X').
\]
Consider the diagram
\[
\begin{array}{ccc}
\text{gr}_a K_{T \times S} (T \times X') & \xrightarrow{\text{res}} & \text{gr}_a K_{Z_1^a} (T \times X') \\
\tilde{s}^* & & \tilde{s}^* \\
\text{gr}_a K_{T \times S} (T \times X) & \xrightarrow{\text{res}} & \text{gr}_a K_{Z_1^a} (T \times X \setminus Z_2).
\end{array}
\]
By Proposition 3.8, we have that $\text{res}(x) \neq 0 \in \text{gr}_a K_{Z_1^a} (T \times X \setminus Z_2)$. We have that $\dim Z_1^a = \dim X_V$, and the conclusion follows from here.

3.5. **The perverse filtration $P^{\leq i}_f$.** We now define a smaller filtration $P^{\leq i}_f \subset P^{\leq i}_f$.

We use the notation from Subsection 3.3.

Let X be a smooth variety with a proper map $f : X \to S$ and let $T \xrightarrow{\pi} S$ be a generically finite map onto its image from T smooth. Consider a subvariety $Y \hookrightarrow X$.

Define the subspaces of $\text{gr} G_Y(X)$:
\[
P^{\leq i}_{f,T} := \text{span}_T \left(\Phi_T : \text{gr} K(T) \to \text{gr} G_Y(X) \right)
\]
\[
P^{\leq i}_{f,V} := \text{span} \left(P^{\leq i}_{f,T} \text{ for all maps } \pi \text{ as above } V \right),
\]
where $\Gamma \in \text{gr}_{\dim X - s} K^q_{T \times S, Y \hookrightarrow} (T \times X)$ and
\[
\left\lfloor \frac{i + \dim X - \dim T}{2} \right\rfloor \geq s.
\]

Using the notation from Subsection 3.3 define
\[
P^{\leq i}_f \text{gr} G_Y(X) := \bigcap_{V \subset S} \bigcap_{a \in A_V} \ker \left(\tau_{V,T}^{\alpha} : P^{\leq i}_f \text{gr} G_Y(X) \to P^{\leq i+e_{a,T}}_{f,V} \text{gr} K \left(X^u \right) \right).
\]

The definition is independent of the resolutions \tilde{X}^u_V chosen, see Subsection 3.3.
Theorem 3.10. Let X and Y be smooth varieties with $c = \dim X - \dim Y$. Consider proper maps

$$
Y \xrightarrow{h} X
\quad
\xrightarrow{g} \quad
\xrightarrow{f} S
$$

There are induced maps

$$
h_* : P_g^{\leq c} \cdot \gr K(Y) \to P_f^{\leq c} \cdot \gr K(X)
$$

$$
h_* : P_g^{\leq c} \cdot \gr K(Y) \to P_f^{\leq c} \cdot \gr K(X).
$$

If h is surjective, then there are induced maps

$$
h^* : P_f^{\leq c} \cdot \gr K(X) \to P_g^{\leq c} \cdot \gr K(Y)
$$

$$
h^* : P_f^{\leq c} \cdot \gr K(X) \to P_g^{\leq c} \cdot \gr K(Y).
$$

Proof. The functoriality follow as in Propositions 3.1, 3.2, and Theorem 3.6, using Proposition 3.7. □

3.6. Properties of the perverse filtration. Consider a proper map $f : X \to S$ with X smooth. Define the defect of semismallness of f by

$$
s := s(f) = \dim X \times S X - \dim X.
$$

Further, define $s' = \max (\dim X + \dim S - 4, \dim X)$. The perverse filtration in cohomology satisfies

$$
p^{\leq -s-1} H_f(X) = 0 \quad \text{and} \quad p^{\leq s}_f(X) = H_f(X),
$$

see [7, Section 1.6]. We prove an analogous result in K-theory:

Theorem 3.11. For f as above,

$$
P_f^{\leq -s' - 1} \cdot \gr K(X) = P_f^{\leq -s - 1} \cdot \gr K(X) = 0
$$

$$
P_f^{\leq s} \cdot \gr K_0(X) = P_f^{\leq s} \cdot \gr K_0(X) = \gr K_0(X).
$$

Proposition 3.12. Let $f : X \to S$ be a surjective map from X smooth with $\text{rerdim } f > 0$ and consider a subvariety $Z \hookrightarrow X$ of codimension ≥ 2. Then there exists a subvariety $\iota : Y \hookrightarrow X$ of codimension 1 such that $Z \subset Y$ and $f \iota : Y \to S$ is surjective.

Proof. It suffices to pass to the generic point of Z, and we can thus assume that Z is a point and is given by a complete intersection of smooth hypersurfaces H_1, \cdots, H_r in X with $r \geq 2$. Localizing at the generic point of Z, we can assume that Z is a point. Further restricting to an open set of X, we can assume that the fibers of f are irreducible. Assume that none of the maps

$$
f_i : H_i \to Z
$$

are surjective. Let S_i be the image of f_i. Let $S' := \bigcap_{i=1}^r S_i$. Then S' is not empty because it contains $f(Z)$. We have $\pi^{-1}(S_i) = H_i$ and so $\bigcap_{i=1}^r H_i$ contains $\pi^{-1}(S')$.

This means that \(\dim (\bigcap_{i=1}^r H_i) \geq \text{reldim } f \). This bound contradicts that \(\bigcap_{i=1}^r H_i \) is a point \(Z \).

Proposition 3.13. Let \(f : X \to S \) be a proper surjective map from \(X \) smooth of relative dimension \(d \). Then

\[
P_f^{\leq d} \text{gr} K_0(X) = \text{gr} K_0(X).
\]

Proof. We use induction on \(d \). Assume that \(f \) is generically finite. Consider the correspondence \(\Delta \cong X \leftarrow X \times_S X \):

\[
\begin{array}{ccc}
\Delta & \sim \rightarrow & X \\
\downarrow & & \downarrow f \\
X & \sim \rightarrow & S.
\end{array}
\]

This implies that \(P_f^{\leq 0} \text{gr} K_0(X) = \text{gr} K_0(X) \).

Consider \(f \) with \(d > 0 \). Let \(\iota : Z \hookrightarrow X \) be a subvariety of codimension \(\geq 2 \).
By Proposition 3.12 there exists \(Y \hookrightarrow X \) of codimension 1 such that \(Z \subset Y \) and \(Y \to S \) has image \(W \) of codimension \(\leq 1 \) in \(S \). Let \(Y' \to Y \) be a resolution of singularities and denote the resulting map by \(g : Y' \to W \). By induction,

\[
P_g^{d-1} \text{gr} K_0(Y') = \text{gr} K_0(Y').
\]

By Proposition 2.2

\[
\text{image} \left(\iota_* : \text{gr} K_0(Z) \to \text{gr} K_0(X) \right) \subseteq \text{image} \left(g_* : \text{gr} K_0(Y') \to \text{gr} K_0(X) \right).
\]

Finally, assume that \(Z \hookrightarrow Y \) has codimension 1. By Proposition 2.1 it suffices to show that

\[
\text{image} \left(\text{gr}_{\dim Z} G_0(Z) \to \text{gr}_{\dim Z} G_0(X) \right) \subseteq P_f^{\leq d} \text{gr} K_0(X)
\]

because \(\text{gr}_i G_0(Z) \) for \(i < \dim Z \) is generated by varieties of smaller dimension than \(Z \). If \(Z \to S \) is surjective, then it has relative dimension \(d - 1 \) and we can treat it as above. If \(Z \to S \) is not surjective, let \(W \subset S \) be its image. Choose a resolution of singularities \(T \to W \) and a smooth variety \(\Gamma \) with surjective maps \(p \) and \(q \):

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{p} & Z & \xrightarrow{q} & X \\
\downarrow & & \downarrow & & \downarrow f \\
T & \xrightarrow{q} & W & \xrightarrow{g} & S.
\end{array}
\]

Then \([\Gamma] \in \text{gr}_{\dim X-1} K^d_T \times_S X(T \times X)\) and its image \(\Phi_\Gamma \) is in \(P_f^{\leq d} \text{gr} K_0(X) \). Then

\[
\text{image} \left(\text{gr}_{\dim Z} G_0(Z) \to \text{gr}_{\dim Z} K_0(X) \right) \subseteq \text{image} \Phi_\Gamma \subseteq P_f^{\leq d} \text{gr} K_0(X).
\]

The conclusion now follows from Proposition 2.1. \(\square \)
Proof of Theorem 3.11. We first show that \(P^{\leq -s'} \) gr \(K_0(X) = 0 \). Consider a map \(\pi : T \to X \) generically finite onto its image \(V \subseteq S \) with \(T \) smooth and consider a correspondence

\[\Gamma \in \text{gr}_{\dim X-b}G_{T \times S}(T \times S). \]

Then \(\dim X-b \leq \dim T \times S X \leq \max(\dim X, \dim X + \dim T - 2) \), and so

\[b \geq \min(0, -\dim T + 2). \]

By the bound (5), it suffices to show that

\[\left\lfloor -s' - 1 + \dim X - \dim T \right\rfloor \leq 0, \]

or, alternatively, that

\[\max(\dim X - \dim T - 1, \dim X + \dim T - 5) < s', \]

which is true because \(0 \leq \dim T \leq \dim S \).

We next explain that \(P^{\leq s-1} \) gr \(K_0(X) = 0 \). We keep the notation from the previous paragraph. Let \([\Gamma] \in \text{gr}_{\dim X-b}K_T^{\omega}(T \times S) \). By Proposition 3.9 we have that

\[b \geq \dim X - \dim X_V. \]

It suffices to show that

\[\left\lfloor -s - 1 + \dim X - \dim T \right\rfloor < \dim X - \dim X_V, \]

or, alternatively, that

\[2 \dim X_V - \dim V \leq s - \dim X = \dim X \times_S X, \]

which is true because \(2 \dim X_V - \dim V \leq \dim X_V \times_V X_V \leq \dim X \times_S X \).

We next show that \(P^{\leq s} \) gr \(K_0(X) = 0 \). We can assume that \(f \) is surjective of relative dimension \(d \). Use the notation from Subsection 3.3. We have that

\[P^{\leq s} \text{gr} K_0(X) := \bigcap_{V \subseteq S} \bigcap_{a \in A_V} \ker \left(\tau^{\omega_s}_V : P^{\leq s} \text{gr} K_0(X) \to P^{\leq s+c^a_V} \text{gr} K_0 \left(\widetilde{X}_V \right) \right). \]

We claim that

\[\text{reldim} \left(\widetilde{X}_V \to V \right) = \text{reldim} \ (X^a_V \to V) \leq s + c^a_V. \]

Indeed,

\[\dim X^a_V - \dim V \leq (\dim X \times_S X - \dim X) + (\dim X - \dim X^a_V) \]

\[2 \dim X^a_V - \dim V \leq \dim X^a_V \times_V X^a_V \leq \dim X \times_S X, \]

which is true. By Proposition 3.13 this implies that \(P^{s+c^a_V} \) gr \(K_0 \left(\widetilde{X}_V \right) = 0 \). Furthermore, \(s \geq d \), so Proposition 3.13 implies that \(P^{\leq s} \) gr \(K_0(X) = \text{gr} K_0(X) \), and
thus $P_f^{\leq s} \gr K_0(X) = \gr K_0(X)$. This also implies that $P_f^{\leq s} \gr K_0(X) = \gr K_0(X)$.

\[\square\]

3.7. Examples of perverse filtration in K-theory.

3.7.1. Let X be a smooth variety of dimension d, and let $f : X \to \Spec \mathbb{C}$. Then

$$P_f^{\leq i} \gr^j K_0(X) = \begin{cases} \gr^j K_0(X) & \text{if } j \leq \frac{i+d}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

This also implies that $P_f^{\leq s} \gr^j K_0(X) = \gr^j K_0(X)$.

3.7.2. Let X be a smooth variety and let E be a vector bundle on X of rank $d + 1$. Let $Y := \mathbb{P}_X(E)$. Denote by $h := c_1(O_Y(1)) \in \gr^2 K_0(Y)$. Consider the projection map $f : Y \to X$. We have that $s(f) = d$. For $i \leq d$, there exists an isomorphism

$$\bigoplus_{0 \leq j \leq \frac{i+d}{2}} \gr^{a-2j} K_0(X) \cong P_f^{\leq i} \gr^a K_0(Y)$$

$$(x_0, \cdots, x_{\frac{i+d}{2}}) \mapsto \sum_{j \leq \frac{i+d}{2}} h^j f^*(x_j).$$

The condition for $P^{\leq i}$ is checked using projective bundles over varieties of smaller dimension, and we obtain that

$$\bigoplus_{0 \leq j \leq \frac{i+d}{2}} \gr^{a-2j} K_0(X) \cong P_f^{\leq i} \gr^a K_0(Y).$$

3.7.3. Let X be a smooth variety and let Z be a smooth subvariety of codimension $d + 1$. Consider the blow-up diagram for $Y = \text{Bl}_Z X$:

$$\begin{array}{ccc} E & \xleftarrow{i} & Y \\ \downarrow p & & \downarrow f \\ Z & \xleftarrow{j} & X. \end{array}$$

Let $h := c_1(O_E(1)) \in \gr^2 K_0(E)$. We have that $s(f) = d - 1$. For $i \leq d - 1$, there is an isomorphism:

$$\gr^a K_0(X)^{\varepsilon} \oplus \bigoplus_{0 \leq j \leq \frac{i+d}{2} - 1} \gr^{a-2-2j} K_0(Z) \cong P_f^{\leq i} \gr^a K_0(Y)$$

$$(x, z_0, \cdots, z_{\frac{i+d}{2} - 1}) \mapsto f^*(x) + \sum_{j \leq \frac{i+d}{2} - 1} \iota_\ast (h^j q^s(z_j)).$$

Here ε is 0 if $i < 0$ and is 1 otherwise. This follows from the computation in Subsection 3.7.2 and Proposition 4.4.

One can check that in the above examples, we have that $P_f^{\leq s} = P_f^{\leq s}$.
3.8. Compatibility with the perverse filtration in cohomology. Consider a proper map $f : X \to S$ with X smooth. Define filtrations $P_f^{\leq i}, P_f^{< i}, P_f^{> i}$ on $H^\cdot(X), H^\cdot(X)_{\text{alg}}$ as in Subsections 3.1 and 3.5. We have that
\[
\text{image} \left(\zeta : P_f^{\leq i} \text{gr}^j K_0(X)_Q \to P_f^{\leq i} H^{2j}(X) \right) = P_f^{\leq i} H^{2j}(X)_{\text{alg}}.
\]
We use the notation $P_f^{\leq i} H^\cdot(X)_{\text{full}}$ for the cohomology of summands of $P_f^{\leq i} R^\cdot f_! IC_X$ with support S.

Proposition 3.14. There exist natural inclusions
\[
P_f^{\leq i} H^\cdot(X) \subset P_f^{< i} H^\cdot(X) \subset P_f^{\leq i} H^\cdot(X)_{\text{alg}} \subset P_f^{\leq i} H^\cdot(X)_{\text{alg}} \subset p_h^{\leq i} H^\cdot(X)_{\text{alg}}.
\]
Thus the cycle map restricts to
\[
\zeta : P_f^{\leq i} \text{gr}^j K_0(X)_Q \to p_h^{\leq i} H^{2j}(X)_{\text{alg}}.
\]

Proof. Let $\pi : T \to S$ be a generically finite map with T smooth. Consider a correspondence
\[
\Gamma \in \text{gr}^{\dim X - s} K_{T \times S, 0}(T \times X)
\]
such that
\[
\left\lfloor \frac{i + \dim X - \dim T}{2} \right\rfloor \geq s.
\]
The correspondence Γ induces a map of constructible sheaves on S:
\[
R\pi_* Q_T[-2s] \xrightarrow{\Phi_\Gamma} Rf_* Q_X.
\]
\[
R\pi_* IC_T[\dim X - \dim T - 2s] \xrightarrow{\Phi_\Gamma} Rf_* IC_X.
\]
If π is not surjective, $R\pi_* IC_T$ has summands with support $W \subseteq S$. If π is surjective, the complex $R\pi_* IC_T$ has summands $IC_S(\mathcal{L})$ of full support and of perverse degree zero, and other summands with support $W \subsetneq S$. The perverse degree of the sheaf with support S in the image of Φ_Γ is
\[
\dim X - \dim T - 2s \leq i.
\]
Thus $P_f^{\leq i} H^\cdot(X)$ contains cohomology of sheaves $IC_S(\mathcal{L})[j]$ with $j \leq i$ which appear as summands of $Rf_* IC_X$ and of other sheaves with support $W \subsetneq S$. Thus
\[
P_f^{\leq i} H^\cdot(X) \to p_h^{\geq i} H^\cdot(X)_{\text{full}}.
\]
Using the notation in Subsection 3.3, we have that
\[
P_f^{\leq i} H^\cdot(X) := \bigcap_{V \subsetneq S} \bigcap_{a \in A_V} \ker \left(\tau'^* : P_f^{\leq i} H^\cdot(X) \to P_f^{> i + e\nu} H^\cdot \left(\widetilde{X^\nu} \right) \right).
\]
In particular,
\[P_{f}^{<i} H^{i}(X) \subset \bigcap_{V \subseteq S} \bigcap_{a \in A_{V}} \ker \left(\tau_{V}^{a*} : P_{f}^{<i} H^{i}(X) \to P_{f}^{<1+i} \left(X_{V}^{a} \right) \right). \]

Using (4), we obtain that \(P_{f}^{<i} H^{i}(X) \subseteq P_{f}^{<i} H^{i}(X). \)

\[\square \]

Remark. We expect equalities \(P_{f}^{<i} H^{i}(X)_{al} = P_{f}^{<i} H^{i}(X)_{alg} = P_{f}^{<i} H^{i}(X)_{alg} \) in the above Proposition.

4. **Intersection \(K \)-theory**

4.1. **Definition of intersection \(K \)-theory.** Let \(S \) be a variety, let \(U \) be an open subset, let \(f : X \to S \) be such \(f^{-1}(U) \to U \) is étale, and let \(L = f_{*} \left(Z_{f^{-1}(U)} \right) \).

Recall the notation of Subsection 3.3. Define
\[\tilde{P}_{f}^{<i} \operatorname{gr} K(X) := \text{image} \left(\bigoplus_{V \subseteq S} \bigoplus_{a \in A_{V}} P_{f}^{<i} \operatorname{gr} K_{X_{V}^{a}}(X) \to P_{f}^{<i} \operatorname{gr} K(X) \right). \]

Define
\[\operatorname{gr} IK(S, L) := P_{f}^{<0} \operatorname{gr} K(X)/ \left(\tilde{P}_{f}^{<0} \operatorname{gr} K(X) \cap \ker f_{*} \right). \]

Theorem 4.1. The definitions of \(\operatorname{gr} IK(S, L) \) and \(\operatorname{gr} IK(S, L) \) do not depend on the choice of the map \(f : X \to S \) with \(f^{-1}(U) \to U \) étale such that \(L \cong f_{*} \left(Z_{f^{-1}(U)} \right) \).

Further, let \(U^{o} \subset U \) be an open set and let \(L^{o} := L|_{U^{o}}. \) Then
\[\operatorname{gr} IK(S, L) \cong \operatorname{gr} IK(S, L^{o}), \]
\[\operatorname{gr} IK(S, L) \cong \operatorname{gr} IK(S, L^{o}). \]

We start with some preliminary results. Let \(f : X \to S \) be a proper map with \(X \) smooth. Let \(Z \) be a smooth subvariety of \(X \) with normal bundle \(N, Y = \text{Bl}_{Z} X, \) and \(E = \mathbb{P}_{Z}(N) \) the exceptional divisor
\[E \xrightarrow{\iota} Y \xrightarrow{\pi} X. \]

Consider the proper maps
\[E \leftarrow^{\iota} Y \xrightarrow{\pi} X \]
\[\xrightarrow{h} Z \xrightarrow{j} X. \]
Let \(X' \hookrightarrow X \) be a closed subset, and denote its preimages in \(Y, Z, E \) by \(Y', Z', E' \) respectively. Denote by
\[
\text{gr} \, K_{Y'}(Y)^0 = \ker (\pi_* : \text{gr} \, K_{Y'}(Y) \to \text{gr} \, K_{X'}(X)).
\]

Proposition 4.2. Let \(T \to S \) be a map with \(T \) smooth which is generically finite onto its image. Then
\[
\text{gr} \, K_{T \times_S Y'}(T \times Y) = \pi^* \text{gr} \, K_{T \times_S X'}(T \times X) \oplus \text{gr} \, K_{T \times_S E'}(T \times Y)^0
\]
\[
\text{gr} \, K_{T \times_S Y'}^q(T \times Y) = \pi^* \text{gr} \, K_{T \times_S X'}^q(T \times X) \oplus \text{gr} \, K_{T \times_S E'}^q(T \times Y)^0.
\]

Proof. Let \(c + 1 \) be the codimension of \(Z \) in \(X \). Denote by \(O(1) \) the canonical line bundle on \(E \) and let \(h = c_1(O(1)) \in \text{gr}^2 K_0(E) \). There is a semi-orthogonal decomposition [4, Theorem 4.2] with \(\pi^* \) fully faithful on \(D^b(X) \):
\[
D^b(Y) = \left\langle \pi^* D^b(X), t_* \left(p^* D^b(Z) \otimes O(-1) \right), \cdots, t_* \left(p^* D^b(Z) \otimes O(-c) \right) \right\rangle,
\]
which implies that
\[
\text{gr}^j K_{Y'}(Y) = \pi^* \text{gr}^j K_{X'}(X) \oplus \bigoplus_{0 \leq k \leq c - 1} t_* \left(h^k \cdot p^* \text{gr}^j - 2k K_{Z'}(Z) \right).
\]
Using the analogous decomposition for \(Y' \setminus Y'' = \text{Bl}_{Z'}(X \setminus X') \) and the localization sequence in K-theory [21, V.2.6.2], we obtain that
\[
\text{gr}^j K_{Y'}(Y) = \pi^* \text{gr}^j K_{X'}(X) \oplus \bigoplus_{0 \leq k \leq c - 1} t_* \left(h^k \cdot p^* \text{gr}^j - 2k K_{Z'}(Z) \right).
\]
In particular, we have that
\[
\text{gr}^j K_{T \times_S Y'}(T \times Y) = \pi^* \text{gr}^j K_{T \times_S X'}(T \times X) \oplus \bigoplus_{0 \leq k \leq c - 1} t_* \left(h^k \cdot p^* \text{gr}^j - 2k K_{T \times_S E'}(T \times Z) \right)
\]
and thus that
\[
\text{gr} \, K_{T \times_S Y'}(T \times Y) = \pi^* \text{gr} \, K_{T \times_S X'}(T \times X) \oplus \text{gr} \, K_{T \times_S E'}(T \times Y)^0.
\]
By Proposition 3.7, we also have that
\[
\text{gr} \, K_{T \times_S Y'}^q(T \times Y) = \pi^* \text{gr} \, K_{T \times_S X'}^q(T \times X) \oplus \text{gr} \, K_{T \times_S E'}^q(T \times Y)^0.
\]

An immediate corollary of Proposition 4.2 is:

Corollary 4.3. We continue with the notation from Proposition 4.2. There are decompositions
\[
P^{\leq i}_g \text{gr} \, K_{Y'}(Y) = \pi^* \! P^{\leq i}_f \text{gr} \, K_{X'}(X) \oplus P^{\leq i}_g \text{gr} \, K_{E'}(Y)
\]
\[
P^{< i}_g \text{gr} \, K_{Y'}(Y) = \pi^* \! P^{< i}_f \text{gr} \, K_{X'}(X) \oplus P^{< i}_g \text{gr} \, K_{E'}(Y).
\]
We next prove:
Proposition 4.4. We continue with the notation from Proposition 4.2. There are decompositions

\[
\begin{align*}
P_g^i \text{gr}' K_Y(Y) &= \pi^* P_f^i \text{gr}' K_X'(X) \oplus P_g^i \text{gr}' K_E(Y) \\
P_g^i \text{gr}' K_Y(Y) &= \pi^* P_f^i \text{gr}' K_X'(X) \oplus P_g^i \text{gr}' K_E(Y).
\end{align*}
\]

Proof. We use the notation from Subsection 3.3. For \(V \subseteq S\), let \(A_V\) be the set of irreducible components of \(f^{-1}(V)\). Let \(X_V^a\) be such a component.

If \(X_V^a \subset Z\), then there is only one irreducible component \(Y_V^a = \mathbb{P}_{X_V^a}(N)\) of \(g^{-1}(V)\) above it.

If \(X_V^a\) is not in \(Z\), then there is one component \(Y_V^a\) of \(g^{-1}(V)\) birational to \(X_V^a\). The other components are \(\mathbb{P}_{W_V^b}(N)\), where \(W_V^b\) is an irreducible component of \(X_V^a \cap Z\). Denote by \(B_a\) the set of such components. For \(a \in A\) and \(b \in B_a\), consider resolutions of singularities \(r\) such that

\[
\begin{array}{cccccc}
\widetilde{Y}_V^a & \xrightarrow{r} & Y_V^a & \xrightarrow{r} & Y \\
\downarrow & & \downarrow & & \downarrow \\
\widetilde{X}_V^a & \xrightarrow{r} & X_V^a & \xrightarrow{r} & X \\
& & X_V^a \cap Z & & \\
\widetilde{W}_V^b & \xrightarrow{r} & W_V^b
\end{array}
\]

Denote by \(\tau\) maps as in Subsection 3.3 for example \(\tau_V^a : \widetilde{X}_V^a \to X\), and by \(\mu\) the map

\[
(10) \quad \tau_V^b : \widetilde{W}_V^b \xrightarrow{\mu} \widetilde{X}_V^a \xrightarrow{\tau_V^a} X.
\]

We consider the proper maps

\[
\begin{align*}
\widetilde{f}_V^a : \widetilde{X}_V^a & \to X_V^a \to V \\
\widetilde{g}_V^a : \widetilde{Y}_V^a & \to Y_V^a \to V \\
\widetilde{f}_V^b : \widetilde{W}_V^b & \to W_V^b \to V \\
\widetilde{g}_V^b : \mathbb{P}_{\widetilde{W}_V^b}(N) & \to \mathbb{P}_{W_V^b}(N) \to V.
\end{align*}
\]

Denote by

\[
\begin{align*}
\phi_V^a &= \text{codim } \langle X_V^a \text{ in } X \rangle = \text{codim } \langle Y_V^a \text{ in } Y \rangle \\
\phi_V^b &= \text{codim } \langle W_V^b \text{ in } X \rangle \\
\phi_V^b &= \text{codim } \langle \mathbb{P}_{W_V^b}(N) \text{ in } Y \rangle
\end{align*}
\]
Any two such varieties \(f : X \to S \) and \(f' : X' \to S \) are birational, so by (10) there is a smooth variety \(W \) with \(\overline{\tau_V^a} : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{W}_V^a) \), so that \(\ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{W}_V^a)) \).

By Proposition 3.5 and Proposition 3.1 for the map \(\mu \) in (10), we have that

\[
\ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{W}_V^a)) \supset \ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{X}_V^a)).
\]

Let \(B_V \) be the set of irreducible components of \(g^{-1}(V) \). For \(d \in B_V \), denote by \(\overline{g}_d^V : \overline{Y}_d^V \to V \) and let \(c_d^V := \operatorname{codim} (Y_d^V \text{ in } Y) \). We have that \(B_V = A \cup \bigcup_{a \in A} B_a \).

The statements in (11) and (12) imply that

\[
\pi_* \left(\bigcap_{V \subseteq S} \bigcap_{d \in B_V} \ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{Y}_d^V)) \right) = \bigcap_{V \subseteq S} \bigcap_{a \in A_V} \ker (\tau_V^a : P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{X}_V^a)).
\]

Using Corollary 4.3 we obtain that

\[
P_g^i \operatorname{gr} K_{Y^j}(Y) = \pi^* P_{f^j}^i \operatorname{gr} K_{X^j}(X) \oplus P_g^i \operatorname{gr} K_{E^j}(Y)^0.
\]

The analogous statement for \(P_{\leq i}^j \) follows similarly.

Proof of Theorem 4.4 Any two such varieties \(f : X \to S \) and \(f' : X' \to S \) are birational, so by (11) there is a smooth variety \(W \) such that

\[
\begin{array}{ccc}
X & \xleftarrow{\pi} & W \\
\downarrow{f} & \quad & \uparrow{\pi'} \\
S & \xrightarrow{f'} & X'
\end{array}
\]

and the maps \(\pi \) and \(\pi' \) are successive blow-ups along smooth subvarieties of \(X \) and \(X' \), respectively. It thus suffices to show that

\[
P_f^{i_0} \operatorname{gr} K. (X) / \left(\overline{P}_f^{i_0} \operatorname{gr} K. (X) \cap \ker f_* \right) \cong P_g^{i_0} \operatorname{gr} K. (Y) / \left(\overline{P}_g^{i_0} \operatorname{gr} K. (Y) \cap \ker g_* \right),
\]

the codimensions as in Subsection 3.3. By Proposition 3.5 we have that

\[
(11) \quad \ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{Y}_V^a)) \cong \\
\ker (\tau_V^a : P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{X}_V^a)).
\]

By Proposition 3.5 and Proposition 3.1 for the map \(\mu \) in (10), we have that

\[
(12) \quad \ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{W}_V^a)) \supset \\
\ker (\tau_V^a : \pi^* P_{f^a}^i \operatorname{gr} K. (X) \to P_{f^a}^{i+\varepsilon} \operatorname{gr} K. (\overline{X}_V^a)).
\]
where \(\pi : Y \to X \) is the blow up along smooth subvariety \(Z \hookrightarrow X \) and

\[
Y \xrightarrow{\pi} X \quad \text{with support} \quad \pi^{-1}(S) \subset f^{-1}(U) \to U \text{ étale, and let } L = f_*\left(Z_{f^{-1}(U)}\right).
\]

By Proposition 4.4, we have that

\[
P_g^{\leq i} \text{gr}^r K(Y) = \pi^* P_f^{\leq i} \text{gr}^r K(X) \oplus P_g^{\leq i} \text{gr}^r K_E(Y)^0
\]

\[
\tilde{P}_g^{\leq i} \text{gr}^r K(Y) = \pi^* \tilde{P}_f^{\leq i} \text{gr}^r K(X) \oplus P_g^{\leq i} \text{gr}^r K_E(Y)^0.
\]

The map \(\pi^* \) is injective. Taking the quotients we thus obtain the isomorphism (13). The analogous statement for \(IK \) is similar. \(\square \)

4.2. Cycle map for intersection K-theory. Let \(S \) be a variety, let \(U \) be an open subset, let \(f : X \to S \) be such \(f^{-1}(U) \to U \) is étale, and let \(L = f_*\left(Z_{f^{-1}(U)}\right) \).

Proposition 4.5. The cycle map \(\text{ch} : \text{gr}^d K_0(X)_Q \to H^{2j}(X) \) induces cycle maps independent of the map \(f : X \to S \) as in Subsection 4.1:

\[
\epsilon : \text{gr}^d IK_0(S, L)_Q \to IH^{2j}(S, L \otimes Q)
\]

\[
\epsilon : \text{gr}^d IK_0(S, L)_Q \to IH^{2j}(S, L \otimes Q).
\]

Proof. Define \(P_f^{\leq i} H_{X^p}^j(X) \) as in Subsection 3.1 and denote by

\[
\tilde{P}_f^{\leq 0} H^j(X) := \text{image} \left(\bigoplus_{V \subseteq S, a \in A_T} P_f^{\leq i} H_{X^p}^j(X) \to H^j(X) \right) \cap P_f^{\leq 0} H^j(X).
\]

Denote by \(\tilde{P}_f^{\leq 0} H^j(X) \subset P_f^{\leq 0} H^j(X) \) the sum of summands of \(\text{gr}^d Rf_*IC_X \) with support strictly smaller than \(S \). By Proposition 3.14, the cycle map respects the perverse filtrations in K-theory and cohomology

\[
\epsilon : P_f^{\leq 0} \text{gr}^d K_0(X)_Q \to P_f^{\leq 0} H^{2j}(X) \hookrightarrow \tilde{P}_f^{\leq 0} H^j(X)
\]

\[
\epsilon : \tilde{P}_f^{\leq 0} \text{gr}^d K_0(X)_Q \to \tilde{P}_f^{\leq 0} H^{2j}(X) \hookrightarrow \tilde{P}_f^{\leq 0} H^j(X).
\]

Taking the quotient and using (3), we obtain a map

\[
\epsilon : \text{gr}^d IK_0(S, L)_Q \to IH^{2j}(S, L \otimes Q).
\]

The proof that the above cycle map is independent of the map \(f \) chosen follows as in Theorem 4.1. The argument for \(IK \) is similar. \(\square \)

4.3. Further properties of intersection K-theory. Intersection cohomology satisfies the following properties, the second one explaining its name [10]. Motivation:

- The natural map \(H^i(S) \to H^{BM}_{2d-i}(S) \) factors through

\[
H^i(S) \to IH^i(S) \to H^{BM}_{2d-i}(S).
\]
• There is a natural intersection map

\[IH^i(S) \otimes IH^j(S) \to H_{2d-i-j}^{BM}(S) \]

which is non-degenerate for \(i + j = 2d \).

We prove analogous, but weaker versions of the above properties in \(K \)-theory.

Proposition 4.6. (a) There are natural maps

\[gr^j IK.(S) \to gr_{d-i} G.(S) \]

\[gr^j IK.(S) \to gr_{d-i} G.(S). \]

(b) There are natural intersection maps

\[gr^j IK.(S) \otimes gr^j IK.(S) \to gr_{d-i-j} G.(S) \]

\[gr^j IK.(S) \otimes gr^j IK.(S) \to gr_{d-i-j} G.(S). \]

Proof. Let \(f : X \to S \) be a resolution of singularities. We discuss the claims for \(IK_\cdot \), the ones for \(IK \) are similar. We construct maps as above using \(f \). They are independent by \(f \) by an argument as in Theorem 4.4.

(a) There is a natural map \(gr^j K.(X) = gr_{d-i} G.(X) \xrightarrow{f_*} gr_{d-i} G.(S) \), and we thus obtain a map

\[gr^j IK.(S) = P_f^{\leq 0} gr^j K.(X) / (\tilde{P}_f^{\leq 0} gr^j K.(X) \cap \ker f_*) \to gr_{d-i} G.(S). \]

(b) Consider the composite map

\[P_f^{\leq 0} gr^j K.(X) \otimes P_f^{\leq 0} gr^j K.(X) \to gr^{i+j} K.(X \times X) \xrightarrow{\Delta_*} gr^{i+j} K.(X) \xrightarrow{f_*} gr_{d-i-j} G.(S). \]

The subspaces

\[(\tilde{P}_f^{\leq 0} gr^j K.(X) \cap \ker f_*) \otimes P_f^{\leq 0} gr^j K.(X) \]

\[P_f^{\leq 0} gr^j K.(X) \otimes (\tilde{P}_f^{\leq 0} gr^j K.(X) \cap \ker f_*) \]

are in the kernel of \(f_* \Delta^* = \Delta^* (f_* \otimes f_*) \). We thus obtain the desired map. \(\square \)

4.4. **Computations of intersection \(K \)-theory.**

4.4.1. If \(S \) is smooth, then \(gr^j IK.(S) = gr^j IK.(S) = gr^j K.(S) \).

4.4.2. Let \(f : X \to S \) be a small resolution of singularities. Then

\[gr^j IK_0(S) = gr^j K_0(X). \]

Let \(T \xrightarrow{q} S \) be a generically surjective finite map from \(T \) smooth. By Proposition 3.9, \(gr_{dim.X} K^q_{T \times S X}(T \times X) \) is generated by the irreducible components of \(T \times S X \) dominant over \(S \). This means that the cycles in \(gr^a K^q_{T \times S X}(T \times X) \) supported on the exceptional locus have \(a < \dim X \), and thus they only contribute in perverse degrees \(\geq 1 \), see [3].
Next, say that $T \xrightarrow{\pi} S$ has image $V \subsetneq S$. Let $[\Gamma] \in \text{gr}_{\dim X - a} K^q_{T \times S X}(T \times X)$. By Proposition 3.9 $a \leq \dim X - \dim X_V$. If it contributes in perverse degree i, then
\[
\left\lfloor \frac{i + \dim X - \dim V}{2} \right\rfloor \geq \dim X - \dim X_V,
\]
and thus that
\[
i \geq \dim X + \dim V - 2 \dim X_V \geq 1.
\]
This means that $\widetilde{P}^0_f \text{gr} K.(X) = 0$. By Theorem 3.11 $P^0_f \text{gr} K_0(X) = \text{gr} K_0(X)$, and thus $\text{gr} \text{K}_0(S) = \text{gr} K_0(X)$.

4.4.3. Let S be a surface. Consider a resolution of singularities $f : X \to S$. Let B be the set of singular points of S. For each p in B, let $A_p = \{C^a_p\}$ be the set of irreducible components of $X_p := f^{-1}(p)$. For each such curve, consider the diagram
\[
\begin{array}{ccc}
C^a_p & \xrightarrow{g^a_p} & X \\
h^a_p \downarrow & & f \\
p \xleftarrow{} & & S
\end{array}
\]
Consider the maps
\[
m^a_p := g^a_p h^{a*}_p : K.(p) \to \text{gr}^1 K.(X)
\]
\[
\Delta^a_p := h^a_p g^{a*} : \text{gr}^1 K.(X) \to K.(p).
\]
We claim that
\[
\widetilde{P}^0_f \text{gr} K.(X) = \text{image} \left(\bigoplus_{p \in B} \bigoplus_{a \in A_p} m^a_p : K.(p) \to \text{gr}^1 K.(X) \right).
\]

The correspondences which contribute to \widetilde{P}^0_f are in $\text{gr}_{2 - s} K^q_{T \times S X}(T \times X)$ for $\pi : T \to S$ a generically finite map onto its image $V \subsetneq S$ with T smooth. By Proposition 3.9
\[
\left\lfloor \frac{2 - \dim V}{2} \right\rfloor \geq s \geq \dim X - \dim X_V.
\]
So the map $T \to S$ is the inclusion of a point $p \hookrightarrow S$ for $p \in B$ and Γ is in $\text{gr}_1 G_{X_p}(X)$. Further, for $p, q \in B, a \in A_p, b \in A_q$:
\[
\Delta^b_q m^a_p = \delta_{pq} \delta_{ab} \text{id}.
\]
This means that:
\[
\bigoplus_{p \in B} \bigoplus_{a \in A_p} m^a_p : \bigoplus_{p \in B} K.(p)^{|A_p|} \cong \widetilde{P}^0_f \text{gr}^1 K.(X).
\]
The map \(f \) is semismall, so by Theorem 3.11 we obtain a form of the decomposition theorem for the map \(f \):

\[
\text{gr}^* K_0(X) \cong \text{gr}^* I K_0(S) \oplus \bigoplus_{p \in B} K_0(p)^{[A_p]}.
\]

See Section 5 for further discussions of the decomposition theorem for semismall maps.

4.4.4. Let \(Y \) be a smooth projective variety of dimension \(d \) and let \(\mathcal{L} \) be a line bundle on \(Y \). Consider the cone \(X := \text{Tot}_Y \mathcal{L} \to S \).

Let \(o \) be the vertex of the cone \(X \). There is only one fiber with nonzero dimension \(Y \times \{ o \} \cong S \).

Using the correspondence \(X \cong \Delta \leftarrow X \times_S X \), we see that

\[
P_{f}^{P \leq 0} \text{gr}^i K(X) = \ker (\iota^* : \text{gr}^i K(X) \to P_{f}^{P > 1} \text{gr}^i K(Y)).
\]

By the computation in Subsection 3.7.1

\[
P_{f}^{P > 0} \text{gr}^i K(Y) = \begin{cases}
\text{gr}^i K(Y) & \text{if } j > |\frac{d+1}{2}|, \\
0 & \text{otherwise}.
\end{cases}
\]

The map \(\iota^* : \text{gr}^i K(X) \to \text{gr}^i K(Y) \) is an isomorphism, so we have that

\[
P_{f}^{P \leq 0} \text{gr}^i K(X) = \begin{cases}
\text{gr}^i K(Y) & \text{if } j \leq |\frac{d+1}{2}|, \\
0 & \text{otherwise}.
\end{cases}
\]

Further, \(\tilde{P}_{f}^{P \leq 0} \text{gr}^i K(X) \) is generated by the cycles over \(X_o \cong Y \) of codimension between 0 and \(|\frac{d-1}{2}| \). The map

\[
\iota_* : \text{gr}^i K(Y) \to \text{gr}^{i+2} K(X) \cong \text{gr}^{i+2} K(Y)
\]

is multiplication by the class \(h := c_1(\mathcal{L}|_Y) \in \text{gr}^2 K_0(Y) \). As a vector space, we thus have that

\[
\text{gr}^i I K(S) = \begin{cases}
\text{gr}^i K(S)/h \text{gr}^{i-2} K(Y) & \text{if } j \leq |\frac{d+1}{2}|, \\
0 & \text{otherwise}.
\end{cases}
\]
The computation in cohomology is similar, see [7, Example 2.2.1].

5. The decomposition theorem for semismall maps

We will be using the notation from Subsection 1.4. For \(a, b \in A\), we write \(b < a\) if \(S_b \subset S_a\). Denote by \(\iota_{ba}: X_b \rightarrow X_a\). For \(a \in A\), define

\[
\tilde{P}_f^{< 0}gr^j K_{X_a}(X) = \text{image} \left(\bigoplus_{b < a} \iota_{ba}^* : P_{fgr}^{< 0}gr^j K_{X_b}(X) \rightarrow P_{fgr}^{< 0}gr^j K_{X_a}(X) \right).
\]

First, we state a more precise version of Conjecture 1.3.

Conjecture 5.1. Let \(f: X \rightarrow S\) be a semismall map and consider \(\{S_a| a \in I\}\) a stratification as in Subsection 1.4, denote by \(A \subset I\) the set of relevant strata. For \(a \in A\), consider generically finite maps \(\pi_a: T_a \rightarrow S_a\) with \(T_a\) is smooth such that \(\pi_a^{-1}(S_a) \rightarrow S_a\) is smooth and \(L_a \cong f_*(\mathbb{Z}_{S_a})\). For each \(a\), there exists a rational map \(X_a \rightarrow T_a\), and let \(\Gamma_a\) be the closure of its graph

\[
\begin{array}{ccc}
\varGamma_a & \rightarrow & X_a \\
\downarrow & & \downarrow f_a \\
T_a & \xrightarrow{\pi_a} & S_a \\
\end{array}
\]

The correspondence \(\varGamma_a\) induces an isomorphism

\[
(14) \quad \iota_{a*}\Phi_{\varGamma_a} : P_{\pi_a}^{< 0}gr^j - c_a K(T_a)_\mathbb{Q} \rightarrow P_{\pi_a}^{< 0}gr^j K(T_a)_\mathbb{Q} \cong \iota_{a*} \left(P_{fgr}^{< 0}gr^j K_{X_a}(X)_\mathbb{Q} / \tilde{P}_f^{< 0}gr^j K_{X_a}(X)_\mathbb{Q} \right)
\]

and a decomposition

\[
\bigoplus_{a \in A} gr^j - c_a IK(S_a, L_a)_\mathbb{Q} \cong gr^j K(X)_\mathbb{Q}
\]

\[
(x_a)_{a \in A} \mapsto \sum_{a \in A} \iota_{a*}\Phi_{\varGamma_a}(x_a).
\]

In relation to (14), we propose the following:

Conjecture 5.2. Let \(f: X \rightarrow S\) be a surjective map of relative dimension \(d\) with \(X\) is smooth. Let \(U\) be a smooth open subset of \(S\) such that \(f^{-1}(U) \rightarrow U\) is smooth. For \(y \in U\), \(\pi_1(U, y)\) acts on the irreducible components of \(f^{-1}(y)\) of top dimension and let \(L\) be the associated local system. Then \(L\) is an integer finite local system. There is an isomorphism

\[
P_{fgr}^{< -d}gr^j K(X)_\mathbb{Q} / \tilde{P}_f^{< -d}gr^j K(X)_\mathbb{Q} \cong gr^j IK(S, L)_\mathbb{Q}.
\]

The analogous statement in cohomology follows from the decomposition theorem. In this section, we prove the following:

Theorem 5.3. We use the notation from Conjecture 5.1. Assume that the maps \(\pi_a: T_a \rightarrow S_a\) are small. Then Conjecture 5.1 holds for \(K_0\).
We first note a preliminary result.

Proposition 5.4. Consider varieties S and X, and a smooth variety Y with surjective maps $f : X \to S$ of relative dimension d and $g : Y \to S$ of relative dimension 0. Assume there exists an open subset U of S and a map h such that:

$$ g^{-1}(U) \xleftarrow{h} f^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y $$

Denote also by h the rational map $h : X \dasharrow Y$. Consider a resolution of singularities $\pi : X' \to X$ such that there exists a regular map h' as follows:

$$ X' \xrightarrow{h'} X \xrightarrow{\pi} Y \xrightarrow{g} S. $$

Let Γ be the closure of the graph of h in $Y \times X$ and let Γ' be the graph of h' in $Y \times X'$. Then the following diagram commutes:

$$ \begin{array}{ccc} gr^r K(Y) & \xrightarrow{\Phi_{\Gamma'}} & gr^r K(X') \\ \Phi_{\Gamma} \downarrow & & \downarrow \pi_* \\ & gr^r G(X). & \end{array} $$

Proof. Consider the maps:

$$ \begin{array}{ccc} Y \times X' & \xrightarrow{\pi'} & X' \\ \pi' \downarrow & & \downarrow \pi \\ Y \times X & \xrightarrow{\pi} & X \\ \pi \downarrow & & \downarrow f \\ Y & \xrightarrow{g} & S. \end{array} $$

Let $x \in gr^r K(Y)$. We want to show that:

$$ \pi_* p'_*(\Gamma' \otimes \pi'^* q^*(x)) = p_*(\Gamma \otimes q^*(x)). $$

It suffices to show that

(15) \[\pi'_* [\Gamma'] = [\Gamma] \text{ in } gr G(X \times Y). \]

Both Γ and Γ' have dimension equal to the dimension of X. The map $\pi' : \Gamma' \to \Gamma$ is birational, so the cone of

$$ \mathcal{O}_\Gamma \to \pi'_* \mathcal{O}_{\Gamma'} $$

is supported on a proper set of Γ, which implies the equality in (15). \qed
Proof of Theorem 5.3. Let \(a \in A \) and consider the diagram:

\[
\begin{array}{c}
Y_a \\
\downarrow \tau_a \\
X_a \\
\downarrow f \\
T_a \xrightarrow{\pi_a} S_a \\
\end{array}
\]

where the map \(\tau_a \) is a resolution of singularities. Let \(\Gamma_a \) be the closure of the natural rational map \(X_a \rightarrow T_a \). By Proposition 5.4 and Theorem 3.10, the map \(\Phi_{\Gamma_a} \) factors as:

\[
\Phi_{\Gamma_a} : \text{gr}^j K(T_a) \xrightarrow{h_a} \text{gr}^j K(Y_a) \xrightarrow{\tau_a} \text{gr}^j G(X) \rightarrow \text{gr}^{j+c_a} K_{X_a}(X).
\]

By Theorems 3.6 and 3.11, the map \(\Phi_{\Gamma_a} \) factors as:

\[
\Phi_{\Gamma_a} : \text{gr}^j K_0(T_a) = P_{h_a} \text{gr}^j K_0(T_a) \xrightarrow{h_a} P_{f_a} \text{gr}^j K_0(Y_a) \xrightarrow{\tau_a} P_{f_a} \text{gr}^j K_0(X_a) \rightarrow P_{f} \text{gr}^{j+c_a} K_{X_a,0}(X) \rightarrow P_{f} \text{gr}^{j+c_a} K_{X_a,0}(X) = \text{gr}^{j+c_a} K_0(X).
\]

We thus obtain a map of vector spaces

\[
\bigoplus_{a \in A} \Phi_{\Gamma_a} : \bigoplus_{a \in A} \text{gr}^{j-c_a} K_0(T_a) \rightarrow \bigoplus_{a \in A} \text{gr}^{j-c_a} K_{X_a,0}(X) \rightarrow \text{gr}^j K_0(X).
\]

A theorem of de Cataldo–Migliorini [6, Theorem 4.0.4] says that there is an isomorphism:

\[
\bigoplus_{a \in A} \Phi_{\Gamma_a} : \bigoplus_{a \in A} \text{gr}^{j-c_a} K_0(T_a)_Q \xrightarrow{\sim} \text{gr}^j K_0(X)_Q.
\]

Combining with \((16)\), we see that in this case

\[
\Phi_{\Gamma_a} : \text{gr}^{j-c_a} K_0(T_a)_Q \xrightarrow{\sim} \text{gr}^{j-c_a} K_0(T_a)_Q \rightarrow \text{gr}^{j-c_a} K_{X_a,0}(X)_Q \rightarrow \text{gr}^{j-c_a} K_{X_a,0}(X)_Q.
\]

This implies the claim of Theorem 5.3. □

References

[1] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk. Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (2002), no. 3, 531—572.
[2] D. Arinkin, D. Gaitsgory. Singular support of coherent sheaves and the geometric Langlands conjecture. Selecta Math. (N.S.) 21 (2015), no. 1, 1–199.
[3] A.A. Be˘ ılinson, J. Bernstein, P. Deligne. Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris, 1982.
[4] A. Bondal, D. Orlov. Semiorthogonal decomposition for algebraic varieties. https://arxiv.org/pdf/alg-geom/9506012.pdf 1995.
[5] A. Braverman, M. Finkelberg, H. Nakajima. Instanton moduli spaces and \(\mathcal{W} \)-algebras. Astérisque, No. 385 (2016), vii+128 pp.
[6] M. A. de Cataldo, L. Migliorini. The Chow motive of semismall resolutions. *Math. Res. Lett.* 11 (2004), no. 2-3, 151–170.

[7] M. A. de Cataldo, L. Migliorini. The decomposition theorem, perverse sheaves and the topology of algebraic maps. *Bull. Amer. Math. Soc. (N.S.)* 46 (2009), no. 4, 535–633.

[8] S. Cautis. Clasp technology to knot homology via the affine Grassmannian. *Math. Ann.* 363 (2015), no. 3-4, 1053–1115.

[9] S. Cautis, J. Kamnitzer. Quantum K-theoretic geometric Satake: the SL_n case. *Compos. Math.* 154 (2018), no. 2, 275–327.

[10] A. Corti, M. Hanamura. Motivic decomposition and intersection Chow groups. I. *Duke Math. J.* 103 (2000), no. 3, 459–522.

[11] A. Corti, M. Hanamura. Motivic decomposition and intersection Chow groups. II. *Pure Appl. Math. Q.* 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson. Part 3, 181–203.

[12] J. Eberhardt. K-motives and Koszul Duality. https://arxiv.org/pdf/1909.11151.pdf 2019.

[13] H. Gillet. K-theory and intersection theory. *Handbook of K-theory.* Vol. 1, 2, 235–293, Springer, Berlin, 2005.

[14] M. Goresky, R. MacPherson. Intersection homology theory. *Topology* 19 (1980), no. 2, 135–162.

[15] M. Goresky, R. MacPherson. Intersection homology theory. II. *Invent. Math.* 72 (1983), no. 1, 77–129.

[16] A. Khan. K-theory and G-theory of derived algebraic stacks https://arxiv.org/abs/2012.07130 2020.

[17] A. Khan, D. Rydh. Virtual Cartier divisors and blow-ups. http://arxiv.org/abs/1802.05702v2 2018.

[18] G. Lusztig. Intersection cohomology methods in representation theory. A plenary address presented at the International Congress of Mathematicians held in Kyoto, August 1990.

[19] T. Pădurariu. Non-commutative resolutions and intersection cohomology of quotient singularities. https://arxiv.org/pdf/2103.08215.pdf 2021.

[20] T. Pădurariu. K-theoretic Hall algebras for quivers with potential. http://arxiv.org/abs/1911.05526 2019.

[21] C. Weibel. The K-book: an introduction to algebraic K-theory. Graduate Studies in Math. vol. 145, AMS, 2013.

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027

Email address: tgp2109@columbia.edu