VARIDT 1.0: variability of drug transporter database

Jiayi Yin1,†, Wen Sun1,†, Fengcheng Li1,†, Jiajun Hong1, Xiaoxu Li1, Ying Zhou2, Yinjing Lu1, Mengzhi Liu1, Xue Zhang1, Na Chen1, Xiuping Jin1, Jia Xue1, Su Zeng1,* and Feng Zhu1,†

1College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China and 2The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China

Received July 29, 2019; Revised August 20, 2019; Editorial Decision August 28, 2019; Accepted August 29, 2019

ABSTRACT

The absorption, distribution and excretion of drugs are largely determined by their transporters (DTs), the variability of which has thus attracted considerable attention. There are three aspects of variability: epigenetic regulation and genetic polymorphism, species/tissue/disease-specific DT abundances, and exogenous factors modulating DT activity. The variability data of each aspect are essential for clinical study, and a collective consideration among multiple aspects becomes crucial in precision medicine. However, no database is constructed to provide the comprehensive data of all aspects of DT variability. Herein, the Variability of Drug Transporter Database (VARIDT) was introduced to provide such data. First, 177 and 146 DTs were confirmed, for the first time, by the transporting drugs approved and in clinical/preclinical, respectively. Second, for the confirmed DTs, VARIDT comprehensively collected all aspects of their variability (23 947 DNA methylations, 7317 noncoding RNA/histone regulations, 1278 genetic polymorphisms, differential abundance profiles of 257 DTs in 21 781 patients/healthy individuals, expression of 245 DTs in 67 tissues of human/model organism, 1225 exogenous factors altering the activity of 148 DTs), which allowed mutual connection between any aspects. Due to huge amount of accumulated data, VARIDT made it possible to generalize characteristics to reveal disease etiology and optimize clinical treatment, and is freely accessible at: https://db.idrblab.org/varidt/ and http://varidt.idrblab.net/.

INTRODUCTION

Drug transporter (DT) is acknowledged to be one of the main determinants governing drug absorption, excretion, and, in many cases, the extent of drug entry into target organs (1). Therefore, the variability of DTs has attracted considerable attention and widespread interest (2–4). There are three aspects of variability: (a) epigenetic regulation and genetic polymorphism of DT that are key in drug resistance (5) and clinical treatment optimization (6); (b) species-, tissue- and disease-specific DT abundances that are vital in bridging preclinical study with clinical trial (7), balancing efficacy and safety (8) and predicting disease-drug interaction (9), respectively; (c) exogenous factors (environmental substance, dietary constituent, bio/mycotoxin, pharmaceutical excipient/chemical, etc.) modulating DT activity and altering the disposition of DT’s endogenous substrate/transported drugs (10,11). These variability data are essential for preclinical and clinical studies (1,12), and the accumulation of such data can lay the foundation for big data-driven precision medicine (13–16).

Due to the extreme complexity of drug disposition in living organisms, the interplays among different aspects of DT variability attracts great interest and have emerged to be promising research directions (5,17,18). Particularly, one of the common mechanisms of cancer multidrug resistance (MDR) is the overexpression of particular efflux DTs (18) or low abundance of some uptake DTs (5) in cancer cells, and thus, several strategies (based on the interplays between the abnormal abundances of DT proteins and other aspect of variability) have been proposed to reverse cancer MDR successfully (5,18). These strategies include the discovery of exogenous chemical to inhibit the efflux of certain DT (17–19), the demethylation of corresponding DTs (5) or regulation of histone acetylation to restore DT abundances (20), and the combination of the multiple strategies reported above (21). In other words, besides the key role played by each aspect of DT variability in clinical study (1,12), the interplays among different aspects become increasingly impor-
tant, which makes the variability data of multiple aspects essential for revealing disease etiology and further optimizing clinical treatment.

To date, a variety of databases have been developed to provide DT-related data, the majority of which are still active and are freely accessible. Some of these databases (including UniProt (22), PDB (23), KEGG (24), ChEMBL (25), DrugBank (26) and TTD (27)) contain transporter information as part of a broader collection of biological and pharmacological data, and some others (including TCDB (28), TransportDB (29), HMPAS (30) and METscout (31)) include general classification and categorization for human transporters. Since the above databases do not focus on describing DT variability, several databases are designed to provide (i) the association between disease and the genetic polymorphism of a single transporter (like ABCA4Database (32) and SCNA Variant Database (33)) or transporters (like PharmGKB (34), UPHAR-DB (35), OMIM.org (36) and SLC TABLES (37)) or (ii) exogenous factors modulating the activity of ~50 DTs (like UCSF-FDA (38), Transformer (39) and Metrabase (40)). However, few epigenetic regulation data of DTs (DNA methylation, histone modification and noncoding RNA regulation) are provided by current available knowledge bases, and no database has been constructed to simultaneously describe the multiple aspects of variability for DT(s). Due to the great importance of the interplay among different variability aspects (as was discussed in the previous paragraph) and the big data of variability that is essential for precision medicine (13,41), it is crucial to develop a new database that comprehensively describes all aspects of DT variability.

In this study, an open-access database, Variability of Drug Transporter Database (VARIDT) was introduced. First, a comprehensive literature review on all (~1800) drugs approved by the U.S. FDA and >1000 drugs in clinical trial or preclinical study was conducted. Different from the small number of DTs (~20) that were well characterized in previous publication (42), 177 DTs were confirmed, for the first time, to transport approved drugs, and 146 DTs were to transport drugs in clinical/preclinical study. Second, for these newly confirmed DTs, VARIDT comprehensively provided all three aspects of their variability (a: epigenetic regulation and genetic polymorphism of DT; b: species-, tissue- and disease-specific protein abundance of DT; c: exogenous factors modulating DT activity; as shown in Figure 1), which allowed the mutual connection or interplay between any two aspects and could thus facilitate the study of disease etiology and the optimization of clinical treatment.

FACTUAL CONTENTS, DATA ACCESS AND INFORMATION RETRIEVAL

Confirmation and collection of DTs by comprehensive literature review

The DTs that were collected in this study were confirmed by the drugs that are of clinical importance (all drugs were either approved or in clinical/preclinical test). Particularly, a comprehensive literature review on all the drugs that were approved by the U.S. FDA (1875 drugs collected from FDA website) and 1268 drugs that were in clinical/preclinical test (collected from ClinicalTrials.gov and TTD (43)) was conducted to confirm their corresponding DT by searching the PubMed. As a result, 177 and 146 DTs were confirmed to transport 585 approved drugs and 246 clinical/preclinical drugs, respectively (57 out of these above DTs were able to transport both approved and clinical/preclinical drugs, which resulted in a total of 266 DTs confirmed by the drugs of clinical importance). These 266 DTs belonged to diverse transporter families (38 families in total defined by the TCDB (28)), and the top-5 popular DT families were Major Facilitator (55 DTs), ATP-binding Cassette (24 DTs), Mitochondrial Carrier (18 DTs), Neurotransmitter:sodium Symporter (17 DTs) and Amino Acid:auxin Permease (16 DTs). The affinities of experimentally assessed kinetic parameters based on Michaelis–Menten steady-state analysis between 151 drugs (121 approved and 30 clinical trial) and 78 DTs in 186 types of cell line were also collected via literature review and were provided in the VARIDT.

Moreover, since the discovery of a new drug that hitchhiked on a transporter was inspired frequently by the corresponding endogenous substrate of that transporter (44), the transporters with endogenous substrates were considered to be more feasible in becoming a DT than those without (44). This made these transporters potential DTs (PDTs). Herein, the endogenous substrates of all human transporters (769 in total collected from TCDB (28)) were thus systematically reviewed and collected. In addition to the 266 DTs that were confirmed by at least one drug of clinical importance, 150 PDTs were further identified to transport 118 endogenous substrates. The transporter families that were covered by these 150 PDTs were also very diverse (33 families in total), and the top-5 popular PDT families included the Drug/metabolite Transporter (18 PDTs), Mitochondrial Carrier (18 PDTs), Major Facilitator (16 PDTs), Voltage-gated Ion Channel (14 PDTs), and Monovalent Cation:proton Antiporter-I (13 PDTs). The biological function of all DTs and PDTs was provided, and the multiple aspects of DT variability were further collected for a total of 416 DTs and PDTs.

As an emerging area in current DT researches, the role of a given DT in the ‘handling’ of a range of endogenous metabolites (45) was frequently discovered using (i) in vivo DT knockout mice/rats (46), (ii) cell lines over/low expressing DT (47) or (iii) clinical data of the patients with DT polymorphisms (48). To collect such valuable data on endogenous metabolites for each DT, a comprehensive literature review on all DTs was conducted by searching the PubMed, which identified 73 DTs with endogenous metabolite available. Among these 73 DTs, 24 (32.9%), 30 (41.1%) and 7 (9.6%) were discovered by literature review and were provided in the VARIDT.

Epigenetic regulations and genetic polymorphisms of DTs

Epigenetic regulation of DT was one of the key mediators of drug resistance/toxicity in diseases such as cancer and infection (5,49), which included DNA methylation, histone modification and noncoding RNA (ncRNA) regulation (50,51).
Figure 1. Multiple aspects and sub-aspects of variability described in VARIDT. (A) ERGPDT (red): epigenetic regulations and genetic polymorphisms of DT; (B) DSTSPA (dark blue): disease-, species- and tissue-specific protein abundance of DT; (C) EFMDTA (gray): exogenous factors modulating DT activity. The leaf of the corresponding sub-aspect indicated its typical/potential application.

Overexpression of efflux DTs in the acquired resistance to cancer therapy was reported to be closely associated with DNA methylation (52) and histone acetylation (53), and the ncRNAs were found to sensitize the carcinoma cells to chemotherapy by downregulating DT expression (54,55). Moreover, the genetic polymorphisms of a DT could alter its function, which, in turn, significantly affected the pharmacokinetics of its transporting drug (6). Thus, knowledge of both the epigenetic regulation and genetic polymorphism of DTs were important (shown in Figure 1) for understanding the interindividual variations of treatments (6,56), guiding the optimization of medical products (57), and realizing the promise of precision medicine (58).

Since the epigenetic regulation information of all DTs was largely dispersed in the literature, PubMed database was systematically searched for their corresponding DNA methylation, histone modification and ncRNA regulation using the combination of the keywords 'methylation'/histone modification'/miRNA'/lncRNA'/noncoding RNA' and the name/synonyms of each DT/PDT. The discovered publications were assessed manually to retrieve any epigenetic regulation data of DTs. The collected data included the epigenetic types (DNA methylation, histone acetylation/methylation, ncRNA regulation, etc.); the location, prevalence, resulting alteration in RNA/protein expression and detail description of each epigenetic phenomenon; the experimental methods (microarray, proteomics, immunohistochemistry, etc.) and materials (various disease cell lines, tissues, etc.) adopted to validate each phenomenon; and the studied phenotype (species, habits, treatments, ages, organs, diseases, etc.). Moreover, the DNA methylation data for all DTs in VARIDT were further collected by the following process. First, microarray datasets of 16 disease indications covered by VARIDT were collected from Gene Expression Omnibus (59), which included GSE47915 (prostate cancer), GSE48684 (colorectal cancer), GSE66695 (breast cancer), GSE42752 (colon adenocarcinoma), GSE84745 (celiac disease), GSE67751 (HIV), GSE52955 (bladder cancer), GSE85845 (lung adenocarcinoma), GSE61441 (renal cell carcinoma), GSE9250 (system lupus erythematosus), GSE54503 (hepatocellular carcinoma), GSE97466 (papillary thyroid cancer), GSE49149 (pancreatic ductal adenocarcinoma), GSE70460 (atypical teratoid rhabdoid tumor), GSE102468 (panic disorder) and GSE113725 (depression). All the datasets were generated using Illumina HumanMethylation450 BeadChip with 1821 samples in total. Second, for
DT with multiple methylation beta values, the median was calculated and assigned as the methylation value of that particular DT. To assess the change in DT abundances between sample groups, Student’s t-test was adopted, and the Z-score and fold change were calculated. Corresponding epigenetic regulation data of DT could be assessed by different types of search strategies within the ‘Home’ page or the menu of ‘Genetic/Epigenetic Variability’ (as shown in Figure 2).

Additionally, the genetic polymorphism data of all DTs was searched in PubMed by combining the keywords ‘gene polymorphism’/’gene variability’/’genetic variant’/’gene mutation’/’genetic polymorphism’ with the name/synonym of each DT/PDT. The discovered literatures were checked manually to identify genetic polymorphism information of the DTs. The collected data included the polymorphism types (single nucleotide polymorphism, deletion mutation, insertion mutation, etc.); the polymorphism sites in human chromosome; the minor allele frequency; the drugs affected by the polymorphism together with the corresponding disease; and the detail phenotypes correlated with this polymorphism (drug responses, survival, disease risk, adverse reactions, etc.). All in all, 23,947 DNA methylations, 92 histone modifications, 7,225 ncRNA regulations and 1,278 genetic polymorphisms of 251 DTs and 129 PDTs were collected and were provided in the VARIDT.

Disease-, species- and tissue-specific protein abundances of DTs

Protein abundance of DT was always a critical issue in various aspects of drug development, such as clinical pharmacokinetics, adverse reaction assessments and drug-drug interactions (60). Particularly, the gene homology and differential abundance of DT between model organism and human should be considered before moving from preclinical to clinical (7); tissue-specific DT abundances determined the varied drug concentrations among different tissues, which were thus essential for maintaining the delicate balance between drug efficacy and safety (8); disease-associated variations in DT abundances could influence the drug pharmacokinetics and thus lead to drug toxicity (9). Since these variabilities in DT abundance were crucial in biomedical researches, the relevant data should be accumulated and further analyzed to promote modern drug discovery (60).

The disease-specific DT abundance data were collected by the following processes. First, 2812 series records of human microarray generated using the platform of HG-U133 Plus 2.0 were identified from Gene Expression Omnibus (59), and the tissue distribution together with the related disease indication were also collected. By comparing to the tissue and disease of the DTs in VARIDT, 436 series records of 108 diseases and 61 tissues covered by VARIDT were selected to analyze the expression profile of DTs. Second, normalization and log-transformation were used to preprocess all the collected records (61), which resulted in 21,781 samples. Third, the expression data from the same tissue and the same disease were integrated and further processed by perfect match correction, quantile, robust multiarray average and median polish (62). Fourth, a comparison between the cases and controls across samples was conducted by defining a baseline of DT expression that had median intensities and then all the samples were normalized to that baseline (63). To assess the variation in DT abundances between the different sample groups, Student’s t-test was applied, and the Z-score and fold change were calculated. The analyzed groups in the VARIDT included: (i) DT expression in the normal tissue adjacent to the diseased tissue of patients (blue color), (ii) DT expression in the diseased tissue of patients (red color), (iii) DT expression in the normal tissue of healthy individuals (green color) and (iv) DT expression in tissue other than the diseased tissue of patients (orange color). Finally, DT expression plot across all samples was drawn based on ggplot2 in the R environment, and a box plot illustrating the abundance variations between two studied groups was further generated based on the pandas module in Python 3.7.4. The plots drawn above could not only be viewed online (illustrated in Figure 3) but were also freely downloadable from website.

Species- and tissue-specific data of the DT abundances were collected by the following process. First, three benchmark microarray datasets containing the expression information across various tissues of human (GSE2361), mouse (GSE10246) and rat (GSE63362) were downloaded from Gene Expression Omnibus (59). Second, for the DT with multiple expression intensities (detected by multiple probes), the median of these intensities was calculated and assigned as the expression value of that DT. Finally, a DT expression plot across all tissues was drawn by ggplot2 in the R environment, which could also be viewed online and was directly downloadable from the website. Overall, the VARIDT covered and provided the differential abundance profiles of 257 DTs and 115 PDTs in 21,781 patients and healthy individuals of 61 tissues and 108 diseases. Additionally, the expression profiles of 245 DTs and 101 PDTs in 67 tissues of Homo sapiens and the model organisms (Mus musculus and Rattus norvegicus) were collected and provided. All the data could be directly downloaded from the VARIDT website.

Exogenous factors modulating the activity/expression of DTs

The activity or expression of DTs could be inhibited or induced by exogenous factors, which, in turn, affected the pharmacokinetics, efficacy and safety of drugs or the tissue level of drugs/substrates that were transported by the corresponding DTs (42). These exogenous factors that were reported by the previous publication (64) included the following: (i) environmental factors (bio/mycotoxin, pesticide residue, etc.); (ii) medications (investigative chemical, drug, pharmaceutical excipient, etc.); and (iii) dietary constituents (natural product, beverage, etc.). Since these exogenous factors were expected to facilitate the understanding of the mechanism underlying DT-mediated drug-drug interactions (60,65) and improve individual health care (13), it was critical to collect such factors and to clarify their effect on modulating the activity or expression of DTs.

Thus, the exogenous factors that modulated DT activities were systematically reviewed by searching literatures in PubMed based on the combination of the keywords ‘exogenous factor’, ‘environmental factor’, ‘biotoxin’, ‘mycotoxin’, ‘pesticide residue’, ‘dietary constituent’, ‘medica-
Figure 2. A typical page in VARIDT providing the epigenetic regulation information of DT. The DNA methylations, histone modifications and ncRNA regulations were collected and provided for each DT. Location, prevalence, resulting alterations in RNA/protein expression and detail description of each epigenetic phenomenon, experimental method (immunohistochemistry, microarray, etc.) and material (disease cell line, tissue, etc.) used to validate each phenomenon, together with the studied phenotype (species, habit, treatment, age, organ, disease, etc.) were described for each DT.

Data standardization and their access and retrieval

To make the access and analysis of VARIDT data convenient for all users, the collected raw data were carefully cleaned up and then were systematically standardized. For example, all the diseases in the VARIDT were standardized using the latest version of International Classification of Diseases (ICD-11, officially released by the World Health Organization), which was expected to serve comprehensive health management; the functional family of each DT was standardized according to the phylogenetic classification of TCDB (28) by assigning the family/subfamily names; the affinities of experimentally assessed kinetic parameters (K_m value) for drugs transported by their corresponding DTs were unified to the unit of micromolar; 815 (98.0%) out of the 832 drugs that were transported by DTs were with their structures available, and all these structures were drawn using ChemDraw and were standardized in the SDF format (both 2D and 3D); further information about each DT and its corresponding drug(s) could be accessed via the crosslinks to UniProtKB (22), TCDB (28), dbSNP (66), Drugs@FDA (67), ClinicalTrials.gov (68), ICD-11 (69), PubChem (70), ChEBI (71), TTD (27), NCBI Gene (72), CAS Registry Number (73) and so on. VARIDT had been smoothly running for months and been tested from different sites around the world, such as the United States, United Kingdom, Germany, Singapore and China. All data could be viewed, accessed and downloaded (Figure 4) without any login requirement at: https://db.idrblab.org/varidt/ and http://varidt.idrblab.net/.
INTERPLAY ANALYSIS AMONG MULTIPLE ASPECTS OF VARIABILITY

Although the data of each aspect of DT variability collected above were essential for clinical studies (1,12), the interplays among the different aspects had emerged to be increasingly important due to the extremely complex mechanism underlying drug metabolism (17,18,20). Taking multidrug resistance (MDR) as an example, the loss of the human uptake DT organic cation transporter OCT2 was reported to be responsible for the MDR of chemotherapy (21). Because the DNA hypermethylation and histone hyperacetylation played important roles in repressing OCT2, co-medication with exogenous inhibitor of either DNA methylation (5) or histone deacetylase (21) was found to effectively reverse the MDR (5,21). In other words, the collective consideration (interplay) of multiple variability data (epigenetic regulations vs exogenous chemicals) of OCT2 could help to discover new chemotherapeutic regimens. Similar to OCT2, the expressions of many other DTs (such as PCFT (74), OCT1 (75), SLCO1B1 (56), BCRP (76,77) and MRPI (78)) in VARIDT were altered by their epigenetic/genetic variability, which resulted in drug resistance to mesothelioma (74), cholangiocarcinoma (75), hyperlipidemia (56), lung cancer (76) and renal cell carcinoma (78), respectively. Therefore, the multiple variability data in the VARIDT of these DTs might be able to inspire new strategy to deal with the corresponding resistance.

In order to ensure the multiplicity of DT variability in VARIDT, the corresponding data were carefully collected according to the description that was provided in previous sections. As a result, 244 (91.7%) out of 266 DTs and 91 (60.7%) out of 150 PDTs were described in VARIDT with...
Figure 4. The page designed to download the full data of the VARIDT.

multiple variability data. Moreover, the number of variability data for each aspect was from hundreds to tens of thousands, which made it possible to identify the differential features or to generalize the common characteristics from these DT-related ‘big data’.

PERSPECTIVES

With increasing movements of modern therapeutics toward stratified and personalized medicines (79), extensive effort has been made to describe the connection among different aspects/sub-aspects of DT variability (17), understand drug-drug interactions (9), optimize therapeutics (6) and overcome drug resistance (80). Thus, the VARIDT and other databases may be further expanded to incorporate newly derived data and novel knowledge to cater the need for the development of novel therapeutics.

FUNDING

National Key R&D Program of China [2018YFC0910500, 2017YFC0908600]; National Natural Science Foundation of China [81872798]; Fundamental Research Fund for Central University [2018QNA7023, 10611CDJXZ238826, 2018CDQYSG0007, CDJZR14468801]; Innovation Project on Industrial Generic Key Technologies of Chongqing [cstc2015szdcy-ztzxj120003]; Leading Talent of “Ten Thousand Plan”- National High-Level Talents Special Support Plan. Funding for open access charge: National Key R&D Program of China [2018YFC0910500]; National Natural Science Foundation of China [81872798].

Conflict of interest statement. None declared.

REFERENCES

1. DeGorter, M.K., Xia, C.Q., Yang, J.J. and Kim, R.B. (2012) Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol., 52, 249–273.
2. Billington, S., Salphati, L., Hop, C., Chu, X., Evers, R., Burdette, D., Rowbottom, C., Lai, Y., Xiao, G., Humphreys, W.G. et al. (2019) Interindividual and regional variability in drug transporter abundance at the human blood-brain barrier measured by quantitative targeted proteomics. Clin. Pharmacol. Ther., 106, 228–237.
3. Nigam, S.K. (2015) What do drug transporters really do? Nat. Rev. Drug Discov., 14, 29–44.
4. Vulsteke, C., Lambrechts, D., Dieudonne, A., Hatse, S., Brouwers, B., van Brussel, T., Neven, P., Belmans, A., Schoffski, P., Paridaens, R. et al. (2013) Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with...
5-fluorouracil, epirubicin and cyclophosphamide (FEC).

Ann. Oncol., 24, 1513–1525.

Liu, Y., Zheng, X., Yu, Q., Wang, H., Tan, F., Zhu, Q., Yuan, L., Jiang, H., Yu, L. and Zeng, S. (2016) Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci. Transl. Med., 8, 348ra397.

Zhao, F., Zhu, L., Wang, K. and Murray, M. (2017) Recent advance in the pharmacogenomics of human solute carrier transporters (SCLs) in drug disposition. Adv. Drug Deliv. Rev., 116, 21–36.

Durmus, S., Lozano-MenA, G., van Esch, A., Wagenaa, E., van Tellingen, O. and Schinkel, A.H. (2011) Preclinical mouse models to study human OATP1B1 and OATP1B3-mediated drug-drug interactions in vivo. Mol. Pharm., 12, 4259–4269.

Nixon, M., Mackenzie, S.D., Taylor, A.I., Homer, N.Z., Durmus, S., Lozano-Mena, G., van Esch, A., Wagenaar, E., van Tellingen, O. and Schinkel, A.H. (2016) Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin, and rosuvastatin. Clin. Pharmacol. Ther., 100, 259–267.

Hahn, D., Emoto, C., Uteuerer, J.C., Muzuno, T., Vink, S.A.A. and Fukuda, T. (2019) Influence of OCT1 ontogeny and genetic variation on morphine disposition in critically ill neonates: lessons from PBPK modeling and clinical study. Clin. Pharmacol. Ther., 105, 761–768.

Fisel, P., Nies, A.T., Schaeffler, E. and Schwab, M. (2017) The importance of drug transporter characterization to precision medicine. Expert. Opin. Drug Metab. Toxicol., 13, 361–365.

Stopper, P., Giessmann, T., Hohk, K., Sharma, A., Ishiguro, N., Taub, M.E., Zanduhl-Gelling, G., Gansser, D., Weh, M., Ebner, T. et al. (2018) Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin, and rosuvastatin. Clin. Pharmacol. Ther., 100, 259–267.

Chen, Z., Shi, T., Zhang, L., Zhu, P., Deng, M., Huang, C., Hu, T., Jiang, L. and Li, J. (2016) Mammalian drug efflux transporters of the ATP-binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett., 370, 153–164.

Sun, Y., Liu, W., Wang, C., Meng, Q., Liu, Z., Hao, X., Yang, X., Sun, P., Sun, H., Ma, X. et al. (2019) Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of artemisinin in K562/ADR through downregulation of ORCIN1: a new strategy of inhibiting P-glycoprotein. J. Cell Physiol., 234, 3685–3696.

Ye, C., Han, K., Lei, J., Zeng, K., Zeng, S., Ju, H. and Yu, L. (2018) Inhibition of histone deacetylase 7 reverses concordant nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state. Br. J. Pharmacol., 175, 4209–4217.

Zhu, Q., Yu, L., Qin, Z., Chen, L., Hu, H., Zheng, X. and Zeng, S. (2019) Regulation of OCT2 transcriptional repression by histone acetylation in renal cell carcinoma. Epigenetics, 14, 791–803.

UniProt,C. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515.

Burley,S.K., Berman,H.M., Bhudakar,C., Bi,C., Chen,L., Di Costanzo,L., Christie,C., Dalenberg,K., Duarte,J.M., Dutta,S. et al. (2019) RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedical, biotechnology and energy. Nucleic Acids Res., 47, D364–D474.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361.

Mendez, D., Gaulton, A., Bento, A.P., Chambers, J., De Veij, M., Felix, E., Magarinios, M.P., Mosquera, J.F., Mutovo, P., Nowotka, M. et al. (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res., 47, D930–D940.

Wishart,D.S., Feunang,Y.D., Guo,C., Lo,E.J., Marcu,A., Marcu,R., Sajedi,T., Johnson,D., Li,C., Sayeeda,Z. et al. (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 46, D1074–D1082.

Li,Y.H., Yu,C.Y., Li,X., Zhang,P., Tang,J., Yang,Q., Fu,T., Zhang,X., Cui,X., Tu,G. et al. (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 46, D1121–D1127.

Saier,M.H. Jr, Reddy, V.S., Tsu,B.V., Ahmed,M.S., Li,C. and Moreno-Hagelsieb,G. (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res., 44, D372–D379.

Elbourne,L.D., Teto,S.G., Hassan,K.A. and Paulsen,I.T. (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res., 45, D320–D324.

Kim,M.S. and Yi,G.S. (2013) HMAPS: human membrane protein analysis system. Mol. Aspects Med., 34, 573–580.

Geffers,L., Tetzlaff,B., Cui,X., Yan,J. and Eichele,G. (2013) METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters. Nucleic Acids Res., 41, D1047–D1054.

Trezza,A., Bernini,A., Langella,A., Ascher,D.B., Pires,D.E.V., Sodi,A., Passerini,J., Pelo,E., Rizzo,S., Nicolai,N. et al. (2017) A computational approach from gene to structure to analysis of the human ABCA4 transporter involved in genetic retinal diseases. Invest. Ophthalmol. Vis. Sci., 58, 5320–5328.

Meng,H., Xu,H.Q., Yu,L., Lin,G.W., He,N., Su,T., Shi,Y.W., Li,B., Wang,J., Liu,X.R. et al. (2015) The SCI1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum. Mutat., 36, 573–580.

Barbarino,J.M., Whirl-Carrillo,M., Altman,R.B. and Klein,T.E. (2018) PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med., 10, e1417.

Harding,S.D., Sharmar,J., Faccenda,E., Southan,C., Pawson,A.J., Irland,S., Gray,A.J.G., Bruce,L., Alexander,S.P.H., Anderton,S. et al. (2018) The IUPHAR Receptor Data Base (RDB): improving and expanding the database for receptors currently under investigation: series): introduction. Mol. Aspects Med., 100, 1–10.

Moreno-Hagelsieb,G. (2016) The Transporter Classification Database (TCDB): 2016 update. Expert. Opin. Drug Metab. Toxicol., 12, D1113–D1117.

Genovesi,L., Ibar,L., Assaraf,Y.G., Fazi,F. and Colotti,G. (2017) Not only P-glycoprotein: amplification of the ABCB1-containing chromosome region 7q11 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist. Updat., 32, 23–46.

Chen,Z., Shi,T., Zhang,L., Zhu,P., Deng,M., Huang,C., Hu,T., Jiang,L. and Li,J. (2016) Mammalian drug efflux transporters of the ATP-binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett., 370, 153–164.

Sun,Y., Liu,W., Wang,C., Meng,Q., Liu,Z., Hao,X., Yang,X., Sun,P., Sun,H., Ma,X. et al. (2019) Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of artemisinin in K562/ADR through downregulation of ORCIN1: a new strategy of inhibiting P-glycoprotein. J. Cell Physiol., 234, 3685–3696.

Ye,C., Han,K., Lei,J., Zeng,K., Zeng,S., Ju,H. and Yu,L. (2018) Inhibition of histone deacetylase 7 reverses concordant nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state. Br. J. Pharmacol., 175, 4209–4217.

Zhu,Q., Yu,L., Qin,Z., Chen,L., Hu,H., Zheng,X. and Zeng,S. (2019) Regulation of OCT2 transcriptional repression by histone acetylation in renal cell carcinoma. Epigenetics, 14, 791–803.

Min,S., Lee,B. and Yoon,S. (2017) Deep learning in bioinformatics. Brief. Bioinform., 18, 851–869.
42. International Transporter, C., Giacomini,K.M., Huang,S.M., Tweedie,D.J., Benet,L.Z., Brouwer,K.L., Chu,X., Dahlin,A., Evers,R., Fischer,N. et al. (2010) Membrane transporters in drug development. Nat. Rev. Drug Discov., 9, 215–236.

43. Yang,H., Qin,C., Li,Y.H., Tao,L., Zhou,J., Yu,C.Y., Xu,F., Chen,Z., Zhu,F. and Chen,Y.Z. (2016) Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 44, D1069–D1074.

44. Kell,D.B. (2016) Implications of endogenous roles of transporters for drug discovery: hitchhiking and metabolite-like. Nat. Rev. Drug Discov., 15, 143.

45. Bush,K.T., Wu,W., Lun,C. and Nigam,S.K. (2017) The drug transporter OAT3 (SLC22A8) and endogenous metabolism communication via the gut-liver-kinney axis. J. Biol. Chem., 292, 15789–15803.

46. Safory,H., Neame,S., Shulman,Y., Zubedat,S., Radzishevsky,I., Bleijerveld,O.B., Altelaar,M., L,I.J., Wanders,R.J., Borst,P. et al. (2018) N-lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proc. Natl. Acad. Sci. U.S.A., 115, 6601–6606.

47. Martinez,D., Muñez,K., Woillard,J.B., Berthelot,A., Gyan,E., Choquet,S., Andres,C.R., Marquet,P. and Barin-Le Guècle,C. (2015) Endogenous metabolites-mediated communication between OAT1/OAT3 and OATP1B1 may explain the association between SLC01B1 SNPs and methotrexate toxicity. Clin. Pharmacol. Ther., 104, 687–698.

48. Fisel,P., Schaeffeler,E. and Schwab,M. (2016) DNA methylation of ADME genes. Clin. Pharmacol. Ther., 99, 512–527.

49. Goldberg,A.D., Allis,C.D. and Bernstein,E. (2007) Epigenetics: a landscape takes shape. Cell, 128, 635–638.

50. Chen,X., Xin,D., Zhao,Q. and You,Z.H. (2019) MicroRNA and complex diseases: from experimental results to computational models. Brief. Bioinform., 20, 515–539.

51. Dejeux,E., Ronneberg,J.A., Solvang,H., Bukholm,I., Geisler,S., Holko,M., Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M., Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311.

52. Schwartz,L.M., Waliszewski,M., Burgel,P., Holzer,A., Huber,W., Liefke,C., Pichler,W.J., Pilling,M. and Zanesco,A. (2012) DNA methylation profiling in doxorubicin-treated primary human hepatocytes identifies novel genes associated with survival and treatment response. Mol. Cancer, 9, 68.

53. To,K.K., Tong,W.S. and Fu,L.W. (2017) Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat. Cancer Res., 78, 58–65.

54. Yu,A.M., Jian,C., Yu,A.H. and Tu,M.J. (2019) RNA therapy: are we using the right molecules? Pharmacol. Ther., 196, 91–104.

55. Li,X., Tian,Y., Tu,M.J., Ho,P.Y., Batra,N. and Yu,A.M. (2018) DNA methylation analysis of doxorubicin-resistant lung cancer cells. Cancer Res., 78, 58–65.

56. Liu,S., Wang,J., Jang,J., Gao,W., Ding,Y., Ding,Y. and Jia,Z. (2018) Affy-analysis of affymetrix GeneChip data at the probe level. Bioinformatics, 30, 307–315.

57. Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L., Chang,B., Xue,L., Seetharaman,S., portrait,E. and Cline,M. (2012) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 40, D1042–D1050.

58. Li,S., Yang,J., Wang,J., and irizary,R.A. (2004) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 154–163.

59. Rodieux,F., Gotta,V., Pifer,M. and van den Anker,J.N. (2016) Causes and consequences of variability in drug transporter activity in pediatric drug therapy. J. Clin. Pharmacol., 56, S173–S192.

60. Qi,Z., Wang,L., Dai,Y., Ren,W., Jiang,W., Chen,X. and Li,N. (2015) The potential drug-drug interactions of ginkgolide B mediated by renal transporters. PloS One, 29, 662–667.

61. Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L., Chang,B., Xue,L., Seetharaman,S., portrait,E. and Cline,M. (2012) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 40, D1042–D1050.

62. Schwartz,L.M., Waliszewski,M., Burgel,P., Holzer,A., Huber,W., Liefke,C., Pichler,W.J., Pilling,M. and Zanesco,A. (2012) DNA methylation profiling in doxorubicin-treated primary human hepatocytes identifies novel genes associated with survival and treatment response. Mol. Cancer, 9, 68.

63. Barret,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F., Tomashevsky,M., Marshall,K.A., Phillipps,K.H., Sherman,P.M., Holko,M. et al. (2013) NCBI GEO: archive for functional genomics data set-up. Nucleic Acids Res., 41, D991–D995.

64. Lin,L., Yee,S.W., Kim,R.B. and Giacomini,K.M. (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov., 14, 543–560.

65. Mukk,M., Kapusheksy,M., Nikkila,J., Parkinson,H., Goncalves,A., Huber,W., Ukkonen,E. and Brazma,A. (2010) A global map of human expression. Nat. Biotechnol., 28, 322–324.