Light-front holographic ρ-meson distributions in the momentum space

Satvir Kaura Chandan Mondalb,c,d Harleen Dahiyaa

aDepartment of Physics, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar-144011, India
bInstitute for Modern Physics, Chinese Academy of Sciences, Lanzhou-730000, China
cSchool of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
dCAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

E-mail: satvirkaur578@gmail.com, mondal@impcas.ac.cn, dahiyah@nitj.ac.in

ABSTRACT: We present the leading-twist quark transverse momentum-dependent parton distribution functions (TMDs) for the spin-1 target, such as the ρ-meson, in the light-front framework. Specifically, we predict the TMDs in the light-front holographic model and compare with the light-front quark model predictions. We obtain the TMDs using the overlap of the light-front wave functions. We evaluate the k_\perp moments up to second order and compare with the available theoretical predictions. Further, we analyze the leading-twist parton distribution functions (PDFs) of the ρ-meson in the light-front holographic model which are found to be in accord with the Nambu-Jona-Lasinio (NJL) model and the light-front quark model predictions. The positivity bounds on the TMDs and the PDFs are also discussed. We also present the quark spin densities in the transverse momentum plane for different polarization configurations of the quark and the ρ-meson target.
1 Introduction

Different aspects of hadron structure are described by the various partonic distributions. At partonic level, one of the most intimated function to reveal the structure of hadron is the parton distribution function (PDF) [1–4]. Being function of longitudinal momentum fraction \(x \) only, the PDFs do not provide any knowledge about the spatial location and the transverse motion of partons inside the hadron. However, the modern distributions, i.e. the generalized parton distributions (GPDs) [5–7] and the transverse momentum-dependent parton distributions (TMDs) [8–11], have been widely investigated in both experimentally and theoretically to perceive the combined hadronic structural information. The modern tomography is able to explain the three-dimensional structural information of the hadron. Basically, the three-dimensional TMDs are the extended version of collinear PDFs, predicting the information of the hadronic constituents within the transverse momentum space. These distributions also help to gain the knowledge about the correlation between spins of the hadron and the parton. The bunch of hidden information inside the hadron can be retrieved with the selection of high energy scattering processes. The complimentary method to acquire the TMDs are Drell-Yan processes [12–16] and \(Z^0/W^\pm \)
production [17–19]. The conventionally used process for measuring TMDs is semi-inclusive deep inelastic scattering (SIDIS) [20–22].

Our aim of this paper is to predict the holographic quark distributions of ρ-meson in the momentum space using the light-front (LF) dynamics. By illustrating the relativistic importance, the light-front dynamics having remarkable accomplishments provide a suitable framework to study the hadron structure [23–25]. To study the leading twist ρ-meson TMDs, we take the minimal Fock-state expansion into account, i.e. $|M\rangle = \sum |q\bar{q}\rangle \psi_{q\bar{q}}$. In the case of ρ-meson, there are total nine T-even TMDs at leading twist. These functions arise from the different matrix elements emerging from the bilocal operator. However, three TMDs are special distributions for ρ-meson: $f_{1LL}(x, k_{1\perp}^2), f_{1LT}(x, k_{1\perp}^2)$, and $f_{1TT}(x, k_{1\perp}^2)$, which are absent for spin-$0/1_2$ targets. The variables x and $k_{1\perp}$ are the longitudinal momentum fraction and transverse momentum carried by the active quark. By applying certain integrations on TMDs, one can get the four collinear PDFs in ρ-meson. In other words, if we do not consider any perturbative effects, spin-1 hadron can produce four PDFs, one of which is tensor-polarized corresponding to the unpolarized quark.

The tensor polarized PDF $b_1(x)$ being sensitive to the parton’s orbital angular momentum is of great importance theoretically as well as experimentally [26–34]. The utmost existing experimental data of structure function b_1 is available for the deuteron state, formed by the two weakly bounded spin-1/2 hadrons, only [35]. On the other hand, experimental data is not yet available for the ρ-meson, whereas on the theoretical front, the PDF $b_1(x)$ has been studied using simple relativistic model in Ref. [36]. A detailed investigation on ρ-meson TMDs has been done in Nambu-Jona–Lasinio (NJL) model focusing on the covariant approach [37]. An important discussion on deep inelastic inclusive processes for spin-1, such as ρ-meson, has been reported in Ref. [38]. Furthermore, the distributions containing the quark transverse momentum and the corresponding fragmentation functions have been explained in Ref. [39]. Hino and Kumano discussed the polarized Drell-Yan processes to study the structure functions of spin-1 hadrons [40, 41].

The LF holographic model for the ρ-meson [42] is widely implemented to successfully study the various decays [43, 44]. It is interesting to extend the investigation to study the leading twist quark TMDs in ρ-meson using this model. Also, it would be interesting to compare the TMDs obtained in the LF holographic model with one of another successful model, the LF quark model [45, 46]. The overlap representation of light-front wave functions (LFWFs) approach is used to reveal the quark TMDs of ρ-meson in both the models. On account of the light-front helicities of partons inside the hadron, this approach allows us to retrieve the understanding of encoded spin-spin and spin-orbit correlations in the TMDs explicitly [47].

The work is arranged as follows. In section 2, the essential details on basic formalism of the LF holographic model are presented. Section 3 contains the general relations between the various leading twist spin-1 hadron TMDs and the correlation
functions. We evaluate the T-even TMDs in terms of the overlaps of the LFWFs via
different light-front amplitudes and discuss the numerical results and their positivity
constrains in this section. In section 4, we provide the detailed study of the PDFs of
\(\rho \)-meson. The spin densities generated from the different polarization configurations
of the quark and the \(\rho \)-meson are explained in section 5. The summary is given in
section 6. The details about the general formalism of LF quark model and explicit
expressions of the TMDs are presented in Appendix A. The required description of
density matrix of spin-1 is given in Appendix B.

2 Light-front holographic \(\rho \)-meson wave functions

Let us begin with the holographic Schrödinger equation, which is derived in the
semiclassical approximation to QCD in the light-front and is assured by the dynamical
part of the holographic wave function. The holographic Schrödinger equation is
derived as:

\[
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U_{\text{eff}}(\zeta) \right) \Phi(\zeta) = M^2\Phi(\zeta), \tag{2.1}
\]

with \(\zeta^2 = x(1-x)b_\perp^2 \), where \(b_\perp \) defines the transverse separation of quark and anti-
quark in the hadron. For deriving Eq. (2.1), it is assumed that there is neither any
quark mass nor any quantum loop \([48–51]\). Eq. (2.1) specifies the wave equation of
spin-\(J \) string modes which propagate in the anti-de Sitter (AdS\(_5\)) spacetime, provided
\(\zeta \) maps onto the fifth dimension \(z \) of the AdS spacetime, where \((2-J)^2 = L^2 - (\mu R)^2 \).
\(R \) and \(\mu \) denote the radius of curvature of AdS\(_5\) and the 5-d mass of the string modes,
respectively \([50]\). The dilation field \(\varphi(z) \), which distorts the pure AdS\(_5\) geometry, is
used to derive the confining potential \(U(\zeta) \). Introducing \(\zeta \leftrightarrow z \), one has

\[
U_{\text{eff}}(\zeta,J) = \frac{1}{2}\varphi''(\zeta) + \frac{1}{4}\varphi'(\zeta)^2 + \frac{2J - 3}{2\zeta}\varphi'(\zeta). \tag{2.2}
\]

The choice of dilation field conditions the underlying action leading to the holo-
graphic Schrödinger equation, Eq. (2.1), being conformally invariant. The quadratic
confinement potential has tendency to do so, \(U(\zeta) = \kappa^4\zeta^2 \) \([52]\), which requires the
choice of dilation field to be \(\varphi = \kappa^2 z^2 \). Therefore, from Eq. (2.2):

\[
U_{\text{eff}} = \kappa^4\zeta^2 + 2\kappa^2(J - 1), \tag{2.3}
\]

where \(\kappa \) is known as the mass scale parameter, which determines the strength of the
dilation field in AdS spacetime. The value of \(\kappa = 523 \pm 24 \text{ MeV} \), which is fixed by the
fit to the Regge trajectories of light mesons \([53]\). Solving Eq. (2.1) by substituting
the confining potential, one can get the eigenvalue as the meson mass spectra:

\[
M_{n,L,S}^2 = 4\kappa^2 \left(n + L + \frac{S}{2} \right), \tag{2.4}
\]
\(\Phi_nL(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} \exp \left(-\frac{\kappa^2 \zeta^2}{2} \right) L_n^L(\kappa^2 \zeta^2), \) \quad (2.5)

as the dynamical part of the holographic wave function.

The complete holographic wave function is written as \([42, 50]\):

\[\psi(x, \zeta, \theta) = e^{iL\theta} X(x) \frac{\Phi(\zeta)}{\sqrt{2\pi \zeta}}, \] \quad (2.6)

where \(X(x)\) corresponds to the longitudinal part of the wave function, which is fixed by mapping the spacelike electromagnetic form factor calculated in AdS/QCD \([54]\) and the light-front formalism \([55, 56]\). In AdS\(_5\), the form factor is evaluated by an overlap integral of the incoming and outgoing hadronic modes convoluted with the bulk-to-boundary propagator which maps onto the free electromagnetic current in physical spacetime. In physical spacetime, the form factor is expressed by the integral overlap of the meson LFWFs. This matching procedure yields \(X(x) = \sqrt{x(1-x)}\) \([50]\). Meanwhile, mapping of the gravitational form factor in the AdS\(_5\) and the physical spacetime also provides an identical result \([54]\). The ground state holographic wave function is then expressed in the transverse impact-parameter space as:

\[\Phi(x, \zeta^2) = \frac{\kappa}{\sqrt{\pi}} \sqrt{x(1-x)} \exp \left(-\frac{\kappa^2 \zeta^2}{2} \right), \] \quad (2.7)

and in the transverse momentum space as:

\[\Phi(x, k_\perp^2) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M^2}{2\kappa^2} \right), \] \quad (2.8)

where the invariant mass of the quark-antiquark pair is determined by \(M^2 = k_\perp^2 / \{x(1-x)\}\). The Fourier transform of the transverse separation between quark and antiquark \(b_\perp\) leads to provide the quark transverse momentum \(k_\perp\). The above equation of the holographic wave function is true for the massless quarks. To include the non-zero quark masses, the invariant mass \(M\) must be replaced by \(M_{ff'}^{ff'} = \{k_\perp^2 + (1-x)m_f^2 + x m_{f'}^2\} / \{x(1-x)\}\), where \(m_f\) and \(m_{f'}\) are the masses of quark and antiquark of flavor \(f\) and \(f'\), respectively. Now, the holographic wave function is expressed as:

\[\psi(x, k_\perp^2) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{k_\perp^2}{2\kappa^2 x(1-x)} \right) \exp \left(-\frac{(1-x)m_f^2 + x m_{f'}^2}{2\kappa^2 x(1-x)} \right). \] \quad (2.9)

Since, we are dealing with the \(\rho\)-meson in this work, which follows: \(m_f = m_{f'} = m_q\), where \(m_q\) represents the mass of the light quarks \((u\text{ and }d)\). Therefore, the
holographic wave function becomes:
\[
\psi(x, k_\perp^2) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{k_\perp^2 + m_q^2}{2\kappa^2 x(1-x)} \right). \tag{2.10}
\]

Till now, the helicities of the quark and the antiquark are not included. To take these into account, one can express the wave functions as [58]:
\[
\Psi_{h_q, h_{\bar{q}}}(x, k_\perp) = \chi_{h_q, h_{\bar{q}}}^\Lambda(x, k_\perp^2) \psi(x, k_\perp^2), \tag{2.11}
\]
with Λ as the spin projection of the ρ-meson, and
\[
\chi_{h_q, h_{\bar{q}}}^\Lambda = \frac{1}{\sqrt{2}} \delta_{h_q, -h_{\bar{q}}}; \quad \chi_{h_q, h_{\bar{q}}}^{T(\pm)} = \frac{1}{\sqrt{2}} \delta_{h_q \pm, h_{\bar{q}} \pm}. \tag{2.12}
\]
Here, $h_q(h_{\bar{q}})$ are defined as the quark (antiquark) helicity. The spin structures in Eq. (2.12) correspond to a nondynamical spin wavefunction. Note that since the holographic wave function defined in Eq. (2.9) does not depend on the spin, there is no distinction between the light pseudoscalar and the light vector mesons. Thus, with a universal AdS/QCD scale, this would yield the degenerate decay constants for the pseudoscalar and the vector mesons, in contradiction with the experiment [59]. On the other hand, this would also lead to the same decay constants for the longitudinally and transversely polarized vector mesons, in contradiction with lattice QCD [60, 61]. The mentioned shortcomings can be addressed by taking the dynamical spin effects into account. Considering dynamical spin effects, the vector meson wave functions can then be written as [42, 58]:
\[
\Psi_{h_q, h_{\bar{q}}}(x, k_\perp) = \chi_{h_q, h_{\bar{q}}}^\Lambda(x, k_\perp^2) \psi(x, k_\perp^2), \tag{2.13}
\]
where the Lorentz invariant spin structure for the vector meson is expressed by accounting the photon-quark-antiquark vertex:
\[
\chi_{h_q, h_{\bar{q}}}^{L(T)}(x, k_\perp) = \frac{\bar{u}_{h_q}(k^+, k_\perp)}{\sqrt{x}} \gamma \cdot \epsilon_{\Lambda} \cdot \frac{v_{h_{\bar{q}}}(k'^+, k'_\perp)}{\sqrt{1-x}}, \tag{2.14}
\]
where k and k' denote the 4-momenta of the quark and the antiquark respectively. The longitudinal momentum fraction carried by the quark and the antiquark are defined as $x = \frac{k^+}{P^+}$ and $(1-x) = \frac{k'^+}{P^+}$, respectively. The polarizations vectors, ϵ_{Λ}, for the longitudinally polarized and the transversely polarized ρ-meson are given by
\[
\epsilon_L = \left(\frac{P^+}{M_\rho}, -\frac{M_\rho}{P^+}, 0, 0 \right) \quad ; \quad \epsilon_T^{\pm} = \mp \frac{1}{\sqrt{2}} (0, 0, 1, \pm \iota). \tag{2.15}
\]
This leads to the spin improved LFWFs for the longitudinally polarized ρ-meson as [42, 58]:
\[
\Psi_{h_q, h_{\bar{q}}}^L(x, k_\perp) = \mathcal{N}_L \delta_{h_q, -h_{\bar{q}}} (M_\rho^2 x(1-x) + m_q^2 + k_\perp^2) \frac{\psi(x, k_\perp^2)}{x(1-x)}, \tag{2.16}
\]
and for the transversely polarized ρ-meson as:

\[\Psi^{(+)}_{h_q,h_{\bar{q}}}(x, k_\perp) = \mathcal{N}_T \left(k_\perp e^{i\theta_{k_\perp}} (x \delta_{h_q,h_{\bar{q}}}- (1-x)\delta_{h_q,h_{\bar{q}}}^+) \right. \]
\[\left. + m_q \delta_{h_q,h_{\bar{q}}} \right) \psi(x, k_\perp^2) \frac{1}{x(1-x)}, \] (2.17)

\[\Psi^{(-)}_{h_q,h_{\bar{q}}}(x, k_\perp) = \mathcal{N}_T \left(k_\perp e^{-i\theta_{k_\perp}} ((1-x)\delta_{h_q,h_{\bar{q}}} - x\delta_{h_q,h_{\bar{q}}}^-) \right. \]
\[\left. + m_q \delta_{h_q,h_{\bar{q}}}^- \right) \psi(x, k_\perp^2) \frac{1}{x(1-x)}, \] (2.18)

where the normalization constants \(\mathcal{N}_{L(T)} \) are determined by

\[\sum_{h_q,h_{\bar{q}}} \int \frac{d^2 k_\perp}{2(2\pi)^3} |\Psi^{A}_{h_q,h_{\bar{q}}}(x, k_\perp)|^2 = 1, \] (2.19)

depending upon the polarization of the ρ-meson.

3 Transverse momentum-dependent parton distributions

The quark TMDs of the hadron are defined through the transverse momentum-dependent quark correlation function. For the spin-1 target having \(k_\perp \) as its active constituent transverse momentum, the quark correlator function is given by [14, 37–39, 41, 62, 63]

\[\Theta_{ij}^{(\Lambda)}(x, k_\perp) = \int \frac{dz^- d^2 z_\perp}{(2\pi)^3} e^{ikz} \langle P, \Lambda | \bar{\vartheta}_j(0) \mathcal{L}^1(0, 0_\perp | n) \mathcal{L}(z^-, z_\perp | n) \vartheta_i(z^-, z_\perp) | P, \Lambda \rangle_S, \]
\[\equiv \epsilon^*_{\Lambda(\mu)}(P) \Theta_{ij}^{\mu
u}(x, k_\perp) \epsilon_{\Lambda(\nu)}(P), \] (3.1)

with the gauge link \(\mathcal{L} \), defined as [62, 63]:

\[\mathcal{L}(z^-, z_\perp | n) = \mathcal{P} \exp \left(-ig \int_{z^-}^{n^-} d\eta^- \cdot A^+ (\eta^-, z_\perp) \right) \]
\[\times \mathcal{P} \exp \left(-ig \int_{z_\perp}^{\eta_\perp} d\eta_\perp \cdot A_\perp (z^- = n^- \cdot \eta_\perp) \right). \] (3.2)

The gauge link \(\mathcal{L} \) guarantees the gauge invariance of the non-local operator in Eq. (3.1). For simplicity, in this work, we assume the gauge link to be unity, which leads us to determine the T-even TMDs only. In Eq. (3.1), the state \(| P, \Lambda \rangle_S \) indicates that the projection of the target’s spin on the direction \(S \) is equal to \(\Lambda = \pm 1, 0 \). \(\vartheta \) represents the flavor SU(2) quark field operator. The quark correlation matrix is expressed as the contraction of the polarization-independent Lorentz tensor matrix.
\(P = (P^+, P^-, P_\perp) = \left(\frac{M^2}{P^+}, 0_\perp\right)\). \hspace{1cm} (3.3)

At the leading-twist, there are nine T-even TMDs for the \(\rho\)-meson, which are related to the quark-quark correlators depending on the different spin projections \(\Lambda = 0, \pm 1\) and, the longitudinal and transverse polarizations of the target as:

\[
\begin{align*}
\langle \gamma^+ \rangle^{(A)}_S(x, k_\perp) &= f_1(x, k_\perp^2) + S_{LL} f_{1LL}(x, k_\perp^2) \\
&+ \frac{S_{LT} \cdot k_\perp}{M_\rho} f_{1LT}(x, k_\perp^2) + \frac{k_\perp \cdot S_{TT} \cdot k_\perp}{M_\rho^2} f_{1TT}(x, k_\perp^2), \quad (3.4) \\
\langle \gamma^+ \gamma_5 \rangle^{(A)}_S(x, k_\perp) &= S_L g_{1L}(x, k_\perp^2) + \frac{k_\perp \cdot S_{TT}}{M_\rho} g_{1T}(x, k_\perp^2), \quad (3.5) \\
\langle \gamma^i \gamma^j \gamma_5 \rangle^{(A)}_S(x, k_\perp) &= S^i_L h_1(x, k_\perp^2) + S^j_L \frac{k^i}{M_\rho} h^i_{1L}(x, k_\perp^2) \\
&+ \frac{1}{2M_\rho^2} \left(2k^i_{\perp}k^j_{\perp} - S^i_{\perp}S^j_{\perp}\right) h^i_{1T}(x, k_\perp^2), \quad (3.6)
\end{align*}
\]

The correlations in Eqs. (3.4)-(3.6) are defined by

\[
\langle \Gamma \rangle^{(A)}_S(x, k_\perp) = \frac{1}{2} \text{Tr}_D \left(\Gamma \Theta^{(A)}_S(x, k_\perp)\right) \equiv \epsilon^{*}_{\Lambda(\nu)}(P) \langle \Gamma \rangle^{\mu\nu}(x, k_\perp) \epsilon_{\Lambda(\nu)}(P) \hspace{1cm} (3.7)
\]

where the Dirac matrices \(\Gamma\) are \(\gamma^+, \gamma^+\gamma_5\) or \(\gamma^i\gamma^j\gamma_5\) with \(i = 1, 2\), and we introduce the following quantities with implicit \(S\) and \(\Lambda\) dependence:

\[
\begin{align*}
S_{LL} &= (3\Lambda^2 - 2) \left(\frac{1}{6} - \frac{1}{2} S^2_L\right), \quad (3.8) \\
S_{LT}^i &= (3\Lambda^2 - 2) S^i_L S^j_L, \quad (3.9) \\
S_{TT}^i &= (3\Lambda^2 - 2) \left(S^i_L S^j_L - \frac{1}{2} S^2_L \delta^{ij}\right). \quad (3.10)
\end{align*}
\]

Here, \(S^i_{\perp(j)}\) symbolizes the transverse polarization of the target meson in the directions \(i(j) = x\) or \(y\), while \(S_L\) is the longitudinal polarization of the target. The correlator equates the respective spin-1 meson TMDs corresponding to the unpolarized quark, the longitudinally polarized quark and the transversely polarized quark identified with the several alphabets \(f, g\) and \(h\). The subscript 1 in the various TMDs refers to the twist-2 or leading-twist and \(L(T)\) connects the spin polarization of the target viz. longitudinal (transverse). We emphasize that for \(\rho\)-meson to be longitudinally polarized means \(|S_L| = 1\) and \(|S_\perp| = 0\), which corresponds to the spin projections \(\Lambda = 0, \pm 1\) parallel to the direction of quark momentum. However, when the \(\rho\)-meson is transversely polarized, the condition converses, i.e. \(|S_L| = 0\) and \(|S_\perp| = 1\), which describes the spin projections \(\Lambda = 0, \pm 1\) perpendicular to the direction of the quark momentum.

- 7 -
3.1 Overlap formalism

An equivalent way to derive the TMDs explicitly is to represent the correlator in the basis where one considers the light-front helicities of both, the target and the active parton [47]. The light-front helicity amplitudes with $h_q(h'_q)$ and $\Lambda(\Lambda')$, which define the initial(final) state helicities of the active quark and the target, respectively, can be expressed as:

$$A_{h'_qh_qA}(x, k_{\perp}) = \frac{1}{(2\pi)^3} \sum_{h_q} \Psi_{h'_q,h_q}^\Lambda \Psi_{h_q,A}^\Lambda(x, k_{\perp}), \quad (3.11)$$

where $\Psi_{h_q,A}^\Lambda$ are the light-front wave functions. By symmetry, we choose the row entries as $(h'_q \Lambda') = (\pm, \pm, \pm, 0, \pm, \pm, 0, \pm, 0, \pm, 0, \pm)$, and the column entries as $(h_q \Lambda) = (\pm, 0, \pm, (0), \pm, 0, \pm, 0, \pm, 0, \pm)$. We can therefore express the light-front helicity amplitude matrix for spin-1 hadron as:

$$\Phi = \begin{pmatrix}
A_{+++,+} & A_{+++,0} & A_{+++-} & A_{+++,0} & A_{++,-} & A_{++,-} \\
A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} \\
A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} & A_{+,+0} \\
A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} \\
A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} \\
A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0} & A_{-,+,0}
\end{pmatrix}. \quad (3.12)$$

The light-front helicity amplitudes can be parametrized by the following combinations of ρ-meson TMDs [37]:

$$\Phi = \begin{pmatrix}
f^+ & \frac{k_{\perp}}{\sqrt{2} M_{\rho}} g^{(+)}_{1T} & \frac{k_{\perp}^2}{M_{\rho} f_{1TT}} & \frac{k_R}{M_{\rho}} h_{1L} & \sqrt{2} h_1 & 0 \\
\frac{k_R}{\sqrt{2} M_{\rho}} g^{(+)}_{1T} & f^0 & \frac{k_L}{\sqrt{2} M_{\rho}} g^{(-)}_{1T} & \frac{k_R}{\sqrt{2} M_{\rho}^2} h_{1L} & 0 & \sqrt{2} h_1 \\
\frac{k_R}{M_{\rho}} h_{1L} & \frac{k_L}{\sqrt{2} M_{\rho}} h_{1T} & 0 & f^- & \frac{k_L}{\sqrt{2} M_{\rho}} g^{(-)}_{1T} & \frac{k_L}{M_{\rho} f_{1TT}} \\
\sqrt{2} h_1 & 0 & \frac{k_{\perp}^2}{\sqrt{2} M_{\rho}^2} h_{1T} & -\frac{k_{\perp}}{\sqrt{2} M_{\rho}} g^{(-)}_{1T} & f^0 & -\frac{k_L}{\sqrt{2} M_{\rho}} g^{(+)}_{1T} \\
0 & \sqrt{2} h_1 & -\frac{k_{\perp}}{M_{\rho} f_{1TT}} & \frac{k_R}{\sqrt{2} M_{\rho}} g^{(+)}_{1T} & \frac{k_{\perp}^2}{M_{\rho}^2} f_{1TT} & -\frac{k_R}{\sqrt{2} M_{\rho}} g^{(+)}_{1T}
\end{pmatrix}. \quad (3.13)$$
where

\[f^+ = f_1 - \frac{1}{3} f_{1LL} + g_{1L}, \quad (3.14) \]

\[f^0 = f_1 + \frac{2}{3} f_{1LL}, \quad (3.15) \]

\[f^- = f_1 - \frac{1}{3} f_{1LL} - g_{1L}, \quad (3.16) \]

\[g_{1T}^{(\pm)} = g_{1T} \pm f_{1LT}, \quad (3.17) \]

and

\[k_{R(L)} = k_x \pm t k_y. \quad (3.18) \]

By comparing the two matrices given in Eqs. (3.12) and (3.13), we obtain the \(\rho \)-meson TMDs in terms of the overlaps of the LFWFs as:

\[
f_1(x, k_\perp^2) = \frac{1}{6(2\pi)^3} \sum_{h_q, h_{\bar{q}}} \left(|\Psi_{h_q, h_{\bar{q}}}^0(x, k_\perp)|^2 + |\Psi_{h_q, h_{\bar{q}}}^\perp(x, k_\perp)|^2 \right), \quad (3.19)\]

\[
g_{1L}(x, k_\perp^2) = \frac{1}{4(2\pi)^3} \sum_{h_q} \left(|\Psi_{+h_q}^1(x, k_\perp)|^2 - |\Psi_{-h_q}^1(x, k_\perp)|^2 \right. \\
\left. - |\Psi_{+h_q}^{-1}(x, k_\perp)|^2 + |\Psi_{-h_q}^{-1}(x, k_\perp)|^2 \right), \quad (3.20)\]

\[
g_{1T}(x, k_\perp^2) = \frac{M_\rho}{4\sqrt{2(2\pi)^3} k_\perp^2} \sum_{h_q} \left(k_R \left(\Psi_{+h_q}^{1*}(x, k_\perp) \Psi_{+h_q}^0(x, k_\perp) \\
- \Psi_{-h_q}^{1*}(x, k_\perp) \Psi_{+h_q}^0(x, k_\perp) + \Psi_{+h_q}^{0*}(x, k_\perp) \Psi_{-h_q}^{-1}(x, k_\perp) \\
- \Psi_{-h_q}^{0*}(x, k_\perp) \Psi_{-h_q}^{-1}(x, k_\perp) + k_L \left(\Psi_{+h_q}^{0*}(x, k_\perp) \Psi_{+h_q}^1(x, k_\perp) \\
- \Psi_{-h_q}^{0*}(x, k_\perp) \Psi_{-h_q}^1(x, k_\perp) + \Psi_{-h_q}^{1*}(x, k_\perp) \Psi_{+h_q}^0(x, k_\perp) \\
- \Psi_{-h_q}^{1*}(x, k_\perp) \Psi_{-h_q}^0(x, k_\perp) \right) \right), \quad (3.21)\]

\[
h_1(x, k_\perp^2) = \frac{1}{4\sqrt{2(2\pi)^3}} \sum_{h_q} \left(\Psi_{+h_q}^{1*}(x, k_\perp) \Psi_{-h_q}^0(x, k_\perp) \\
+ \Psi_{-h_q}^0(x, k_\perp) \Psi_{+h_q}^1(x, k_\perp) + \Psi_{+h_q}^{0*}(x, k_\perp) \Psi_{-h_q}^{-1}(x, k_\perp) \\
+ \Psi_{-h_q}^{1*}(x, k_\perp) \Psi_{+h_q}^0(x, k_\perp) \right), \quad (3.22)\]
\[h_{1LL}^+(x, k_\perp^2) = \frac{M_\rho}{4(2\pi)^3 k_\perp^2} \sum_{h_q} \left(k_R \left(\Psi^{+1+}_{-h_q}(x, k_\perp) \Psi^{+1}_{+h_q}(x, k_\perp) \right) \\
- \Psi^{-1-}_{-h_q}(x, k_\perp) \Psi^{-1}_{+h_q}(x, k_\perp) \right) + k_L \left(\Psi^{+1+}_{+h_q}(x, k_\perp) \Psi^{+1}_{-h_q}(x, k_\perp) \right) \\
- \Psi^{-1-}_{+h_q}(x, k_\perp) \Psi^{-1}_{-h_q}(x, k_\perp) \right) \right), \]

\[f_{1LL}(x, k_\perp^2) = \frac{1}{2(2\pi)^3} \sum_{h_q,h_\bar{q}} \left(|\Psi^0_{h_q,h_\bar{q}}(x, k_\perp)|^2 \\
- \frac{1}{2} \left(|\Psi^{+1+}_{h_q,h_\bar{q}}(x, k_\perp)|^2 + |\Psi^{-1-}_{h_q,h_\bar{q}}(x, k_\perp)|^2 \right) \right), \]

\[f_{1LT}(x, k_\perp^2) = \frac{M_\rho}{4\sqrt{2}(2\pi)^3 k_\perp^2} \sum_{h_q} \left(k_R \left(\Psi^{+1+}_{+h_q}(x, k_\perp) \Psi^0_{+h_q}(x, k_\perp) \right) \\
+ \Psi^{+1+}_{-h_q}(x, k_\perp) \Psi^0_{-h_q}(x, k_\perp) - \Psi^{0+}_{+h_q}(x, k_\perp) \Psi^{-1-}_{+h_q}(x, k_\perp) \right) \\
- \Psi^{0+}_{-h_q}(x, k_\perp) \Psi^{-1-}_{-h_q}(x, k_\perp) \right) + k_L \left(\Psi^{0+}_{+h_q}(x, k_\perp) \Psi^{0+}_{-h_q}(x, k_\perp) \right) \\
+ \Psi^{0+}_{-h_q}(x, k_\perp) \Psi^{0+}_{-h_q}(x, k_\perp) - \Psi^{-1-}_{-h_q}(x, k_\perp) \Psi^{0+}_{-h_q}(x, k_\perp) \right) + k_L \left(\Psi^{0+}_{+h_q}(x, k_\perp) \Psi^{0+}_{-h_q}(x, k_\perp) \right) \right), \]

\[f_{1TT}(x, k_\perp^2) = \frac{M_\rho^2}{4(2\pi)^3 k_\perp^2} \sum_{h_q} \left(k_R \left(\Psi^{+1+}_{+h_q}(x, k_\perp) \Psi^{-1-}_{+h_q}(x, k_\perp) \right) \\
+ \Psi^{+1+}_{-h_q}(x, k_\perp) \Psi^{-1-}_{-h_q}(x, k_\perp) \right) + k_L \left(\Psi^{-1-}_{+h_q}(x, k_\perp) \Psi^{+1+}_{-h_q}(x, k_\perp) \right) \right). \]

Using the holographic LFWFs, Eqs. (2.16)-(2.18), in the overlap representations, Eqs. (3.19)-(3.27), we extract the explicit expressions for the leading-twist T-even TMDs for the \(\rho \)-meson in the LF holographic model as:

\[f_1(x, k_\perp^2) = \frac{1}{3(2\pi)^3} \left(\mathcal{N}_L^2 \left(M_\rho^2 x(1-x) + m_q^2 + k_\perp^2 \right)^2 \frac{\mid\psi(x, k_\perp^2)\mid^2}{x^2(1-x)^2} \\
+ \mathcal{N}_T^2 \left(m_q^2 + k_\perp^2 \left(2x^2 - 2x + 1 \right) \right) \frac{\mid\psi(x, k_\perp^2)\mid^2}{x^2(1-x)^2} \right). \]
The spin contribution is denoted by \(s \) the LFWFs with the OAMs \(L \) respectively and i.e. \(J \) quark model are evaluated in Appendix A. The LFWFs satisfy the angular momentum conservation projected along \(z \)-axis, i.e. \(\sum_{s} s_{z} \). Meanwhile, the overlap configurations of the other TMDs representation. In other words, there is zero OAM transfer from the initial to the final state of the hadron. Meanwhile, the overlap configurations of the other TMDs show interference between several wave compositions, which may refer to the non-zero OAM transfer from the initial to the final state of the \(\rho \)-meson.

\[
g_{1L}(x, k_{\perp}^{2}) = \frac{N_{T}^{2}}{2(2\pi)^{3}} \left(m_{q}^{2} + k_{\perp}^{2}(2x - 1) \right) \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}}, \tag{3.29}
\]

\[
g_{1T}(x, k_{\perp}^{2}) = N_{L}N_{T} \frac{M_{\rho}}{\sqrt{2}(2\pi)^{3}} \left(M_{\rho}^{2} x(1-x) + m_{q}^{2} + k_{\perp}^{2} \right) \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}}, \tag{3.30}
\]

\[
h_{1}(x, k_{\perp}^{2}) = N_{L}N_{T} \frac{m_{q}}{\sqrt{2}(2\pi)^{3}} \left(M_{\rho}^{2} x(1-x) + m_{q}^{2} + k_{\perp}^{2} \right) \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}}, \tag{3.31}
\]

\[
h_{1L}^{\perp}(x, k_{\perp}^{2}) = -N_{T}^{2} \frac{m_{q} M_{\rho}}{(2\pi)^{3}} \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}}, \tag{3.32}
\]

\[
h_{1T}^{\perp}(x, k_{\perp}^{2}) = 0, \tag{3.33}
\]

\[
f_{1LL}(x, k_{\perp}^{2}) = \frac{1}{(2\pi)^{3}} \left(N_{L}^{2} \left(M_{\rho}^{2} x(1-x) + m_{q}^{2} + k_{\perp}^{2} \right)^{2} \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}} \right.
- N_{T}^{2} \left(m_{q}^{2} + k_{\perp}^{2} \left(2x^{2} - 2x + 1 \right) \right) \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{2x^{2}(1-x)^{2}} \right), \tag{3.34}
\]

\[
f_{1LT}(x, k_{\perp}^{2}) = N_{L}N_{T} \frac{M_{\rho}}{\sqrt{2}(2\pi)^{3}} \left(2x - 1 \right) \left(M_{\rho}^{2} x(1-x) + m_{q}^{2} + k_{\perp}^{2} \right)
\times \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x^{2}(1-x)^{2}}, \tag{3.35}
\]

\[
f_{1TT}(x, k_{\perp}^{2}) = N_{T}^{2} \frac{M_{\rho}^{2}}{(2\pi)^{3}} \frac{\mid \psi(x, k_{\perp}^{2}) \mid^{2}}{x(1-x)}, \tag{3.36}
\]

where \(\psi(x, k_{\perp}^{2}) \) is given in Eq. (2.10). Meanwhile, all the T-even TMDs in the LF quark model are evaluated in Appendix A.

The LFWFs satisfy the angular momentum conservation projected along \(z \)-axis, i.e. \(J_{z} = \sum_{i=1}^{n} s_{z}^{i} + \sum_{j=1}^{n-1} L_{z}^{j} \), where \(n = 2 \) in this particular case. The intrinsic spin contribution is denoted by \(s_{z}^{1} + s_{z}^{2} \), while the relative orbital angular momentum (OAM) is \(L_{z} \) for each configuration of LFWF. Here, \(s_{z}^{1} \) and \(s_{z}^{2} \) represent \(h_{q} \) and \(h_{q} \), respectively and \(L_{z} = \Lambda - (h_{\bar{q}} + h_{q}) \). For the \(\rho \)-meson, the different configurations of the LFWFs with the OAMs \(L_{z} = 0, \pm 1 \) and \(\pm 2 \), which correspond to the S, P and D wave compositions respectively, are listed in Table 1.

We observe that \(f_{1}, g_{1L}, h_{1} \) and \(f_{1LL} \) are all diagonal in OAM in the overlap representation. In other words, there is zero OAM transfer from the initial to the final state of the hadron. Meanwhile, the overlap configurations of the other TMDs show interference between several wave compositions, which may refer to the non-zero OAM transfer from the initial to the final state of the \(\rho \)-meson.
Table 1. The possible orbital angular momentum L_z contributions for ρ-meson light-front wave functions based on the different configurations of spin projections of valence quarks $h_q, h_\bar{q}$ and hadron spin Λ.

L_z	Configurations: $	\Lambda\rangle \rightarrow	h_q + h_{\bar{q}}\rangle$				
-2	$	-1\rangle \rightarrow	+\frac{1}{2} + \frac{1}{2}\rangle$				
-1	$	0\rangle \rightarrow	+\frac{1}{2} + \frac{1}{2}\rangle$, $	-1\rangle \rightarrow	-\frac{1}{2} + \frac{1}{2}\rangle$		
0	$	+1\rangle \rightarrow	+\frac{1}{2} + \frac{1}{2}\rangle$, $	0\rangle \rightarrow	-\frac{1}{2} + \frac{1}{2}\rangle$, $	-1\rangle \rightarrow	-\frac{1}{2} - \frac{1}{2}\rangle$
$+1$	$	+1\rangle \rightarrow	+\frac{1}{2} - \frac{1}{2}\rangle$, $	+1\rangle \rightarrow	-\frac{1}{2} + \frac{1}{2}\rangle$, $	0\rangle \rightarrow	-\frac{1}{2} - \frac{1}{2}\rangle$
$+2$	$	+1\rangle \rightarrow	+\frac{1}{2} - \frac{1}{2}\rangle$				

3.2 Numerical results

For the numerical predictions of the ρ-meson TMDs, we use the quark mass, $m_{u/d} = 0.33$ GeV and the universal AdS/QCD scale, $\kappa = 0.523$ GeV as in Ref. [58, 64, 65]. In Figs. 1, 2, and 3, we illustrate the ρ-meson TMDs in the LF holographic model and compare with the LF quark model predictions. On the left panels of these figures, the TMDs are shown as a function of x when k_\perp is fixed, whereas, we show the TMDs as a function of k_\perp^2 for fixed values of x on the right panels. In Fig. 1, we present the unpolarized quark TMD, $f_1(x, k_\perp^2)$, as well as the longitudinally polarized quark TMDs: $g_{1L}(x, k_\perp^2)$ and $g_{1T}(x, k_\perp^2)$, while the transversely polarized quark TMDs: $h_1(x, k_\perp^2)$, $h_{1L}^\perp(x, k_\perp^2)$, and $h_{1T}^\perp(x, k_\perp^2)$ are displayed in Fig. 2. The qualitative behaviors of the TMDs f_1, g_{1L}, and g_{1T} in the LF holographic model are found to be consistent with the LF quark model. We also observe the similar trend followed by the TMDs h_1 and h_{1L}^\perp. However, we find that h_{1T}^\perp is zero in the LF holographic model but it is nonzero in the LF quark model. Note that h_{1T}^\perp has also been found to be zero in the NJL model [37]. The TMDs f_1, g_{1T} and h_1 describe the momentum distributions of the unpolarized quark in the unpolarized meson, the longitudinally polarized quark in the transversely polarized meson, and the transversely polarized quark in the transversely polarized meson, respectively. It can be noticed that the TMDs f_1, g_{1T} (known as “worm gear 2” distribution) and h_1 (known as transversity distribution) exhibit symmetry under $x \leftrightarrow (1 - x)$ in the LF holographic model. Similar behavior of these TMDs have been observed in the NJL model [37]. However, in the LF quark model, only f_1 is symmetric under the transformation. The TMDs, which describe the momentum distributions of the longitudinally polarized quark and the transversely polarized quark in the longitudinally polarized meson, are defined as: the helicity TMD g_{1L}, and the “worm gear 1” h_{1L}^\perp, respectively. Unlike f_1, g_{1T} and h_1, the longitudinally polarized meson TMDs, g_{1L} and h_{1L}^\perp, are asymmetric.
under $x \leftrightarrow (1 - x)$ and h_{1L} displays a negative distribution. It can be seen from Fig. 2(c) that it needs less than half of the momentum fraction to be carried by the transversely polarized quark to get the distribution peak. The pretzelosity TMD h_{1T} describes the momentum distribution when both the quark and the ρ-meson are transversely polarized and also, their polarizations are perpendicular to each other. Therefore, h_{1T} has different overlap contributions from h_1. However, due to the different spin structures, h_{1T} is unfaded in the LF quark model and found to be negative and asymmetrical with respect to x, shown in lower panel of Fig. 2. Nevertheless, the different responses are observed in the LF quark model: (i) the lesser number of TMDs show symmetry as compared to the NJL model [37] and the LF holographic model, (ii) $h_{1T} \neq 0$. The reason behind the difference in the observations lie in the
spin structure of the ρ-meson. In other words, the presence of the P-wave component i.e. $L_z = \pm 1$ in the longitudinally polarized ($\Lambda = L$) and the D-wave component i.e. $L_z = \pm 2$ in the transversely polarized ($\Lambda = T$) ρ-meson wave functions in the LF quark model are responsible for the asymmetry in g_{1T} and h_1 and the non-vanishing h_{1T}. Further, the dominance of TMDs on the quark longitudinal momentum fraction come to an end at the extended values of the quark transverse momentum and the quark TMDs get vanished.

Further, in Fig. 3, we display the tensor-polarized TMDs designated for the unpolarized quark. As discussed before, we plot these TMDs with respect to x at the fixed values of k_\perp^2 (left panel) and vice versa (right panel). We observe that f_{1LL} has a positive peak at $x = 0.5$, and two negative peaks at lower (< 0.5) and higher x (> 0.5) or equivalently, it has two zero crossings over x. For f_{1LL}, there
is no OAM transfer between the initial and final states as seen in the Eq. (3.25). Basically, the positive contribution from the S-wave and the negative contributions from the other wave compositions of the LFWFs cancel each other’s effect which leads to the zero distribution at the crossing over points. The S-wave contribution dominates at the central region of \(x \), whereas at lower and higher \(x \) domains, the other contributions rule over. However, with increasing \(k_\perp \), the effect of cancellation decreases resulting in the small negative distribution peaks. \(f_{1LL} \) shows symmetry under \(x \leftrightarrow (1-x) \). Further, \(f_{1LT} \) is shown in the middle panel of Fig. 3. It vanishes at \(x = 0.5 \) and exhibits the positive and the negative distributions at \(x > 0.5 \) and \(x < 0.5 \), respectively. The overlap of \(f_{1LT} \), Eq. (3.26), is observed to transfer one unit of OAM from the initial to the final states. In this case, the cancellation occurs due to \(L_z = \pm 1 \) contributions. \(L_z = 0 \) component of the wave functions is always positive.
Figure 4. (Color online) Light-front holographic TMDs of the ρ-meson as a function of x and k_2^2.
in nature, however, according to Eq. (3.26), the difference in terms corresponding to $L_z = +1$ and $L_z = -1$ brings zero into the picture. f_{1LT} is anti-symmetric under $x \leftrightarrow (1 - x)$. The left over tensor-polarized TMD f_{1TT}, shown in the lower panel of Fig. 3, shows the sum of the overlaps providing the two units of OAM transfer from the initial to the final states. Again, because of the different spin structure, the tensor-polarized TMDs do not survive in the LF quark model. To understand x and k^2_\perp dependence together, the three-dimensional structure of the eight non-zero TMDs in the LF holographic model is shown in Fig. 4. Similar behavior of all the TMDs has also been observed in the NJL model [37].

Further, to compare our results with the available theoretical predictions, we compute the k^a_\perp moments for several TMDs [37]

$$\langle k^a_\perp \rangle_{\text{TMD}} = \frac{\int \! dx \, d^2k_\perp |k_\perp|^a \text{TMD}(x, k^2_\perp)}{\int \! dx \, d^2k_\perp \text{TMD}(x, k^2_\perp)}, \quad (3.37)$$

where a represents the order of the moment. In Table 2, we compare our predictions for the first and the second order k^a_\perp moments in the LF holographic model and the LF quark model with the only available theoretical results from the NJL model [37]. We observe that except for g_{1L}, our predictions are under estimated and they are in more or less accord with the NJL model [37], however, the results in the LF quark model are closer to the results predicted in the NJL model compared to the LF holographic model. Our predictions for the moments of g_{1L} differ significantly from the NJL model. f_{1LL} and f_{1LT} are not shown in table, because in both the LF models, the denominator of the k^a_\perp moment is evaluated to be zero for both f_{1LL} and f_{1LT} TMDs. Similar observation has been made in NJL model. Also, the moments corresponding to f_{1TT} in the LF quark model are not filled up because the denominator of Eq. (3.37) vanishes.

3.3 Positivity constraints

Let us now check the positivity constraints of our holographic TMDs for the ρ-meson. For the spin-1 hadron, the TMDs satisfy the following relations [37, 39]:

$$f_1(x, k^2_\perp) \geq 0,$$

$$f^0(x, k^2_\perp) \geq 0 \Rightarrow f_1(x, k^2_\perp) \geq \frac{2}{3} f_{1LL}(x, k^2_\perp), \quad (3.38)$$

$$f^+(x, k^2_\perp) \geq 0 \Rightarrow f_1(x, k^2_\perp) + g_{1L}(x, k^2_\perp) \geq \frac{1}{3} f_{1LL}(x, k^2_\perp), \quad (3.39)$$

$$f^-(x, k^2_\perp) \geq 0 \Rightarrow f_1(x, k^2_\perp) - g_{1L}(x, k^2_\perp) \geq \frac{1}{3} f_{1LL}(x, k^2_\perp),$$

$$f^0(x, k^2_\perp) f^+(x, k^2_\perp) \geq 2|h_1(x, k^2_\perp)|^2, \quad (3.40)$$

$$f^0(x, k^2_\perp) f^+(x, k^2_\perp) \geq \frac{k^2_\perp}{2M_\rho^2} |g^{(+)}_{1TT}(x, k^2_\perp)|^2, \quad (3.41)$$

$$f^0(x, k^2_\perp) f^+(x, k^2_\perp) \geq \frac{k^2_\perp}{2M_\rho^2} |g^{(+)}_{1TT}(x, k^2_\perp)|^2, \quad (3.42)$$
Table 2. The first moment $\langle k_\perp \rangle$ [in GeV] and the second moment $\langle k_\perp^2 \rangle$ [in GeV2] predictions corresponding to several ρ-meson TMDs are compared with NJL model results [37]. The theory uncertainties result from the uncertainties in the constituent quark mass $m_q = 0.33 \pm 0.03$ GeV and the AdS/QCD scale $\kappa = 0.523 \pm 0.024$ GeV in the LF holographic model whereas in the LF quark model, the values of the parameters are $m_q = 0.20 \pm 0.02$ GeV and $\beta = 0.41 \pm 0.02$ GeV.

$$f^0(x, k_\perp^2) f^-(x, k_\perp^2) \geq \frac{k_\perp^2}{2 M_\rho^2} |g_{1T}(x, k_\perp^2)|^2, \quad (3.44)$$

$$f^0(x, k_\perp^2) f^-(x, k_\perp^2) \geq \frac{k_\perp^4}{2 M_\rho^4} |h_{1L}(x, k_\perp^2)|^2, \quad (3.45)$$

$$f^+(x, k_\perp^2) f^-(x, k_\perp^2) \geq \frac{k_\perp^2}{M_\rho^2} |h_{1T}(x, k_\perp^2)|^2, \quad (3.46)$$

$$f^+(x, k_\perp^2) f^-(x, k_\perp^2) \geq \frac{k_\perp^4}{4 M_\rho^4} |f_{1TT}(x, k_\perp^2)|^2, \quad (3.47)$$

$$3 f_1(x, k_\perp^2) \geq f_{1LL}(x, k_\perp^2) \geq - \frac{3}{2} f_1(x, k_\perp^2), \quad (3.48)$$

$$\frac{3}{2} f_1(x, k_\perp^2) \geq f_1(x, k_\perp^2) - \frac{1}{3} f_{1LL}(x, k_\perp^2) \geq g_{1L}(x, k_\perp^2), \quad (3.49)$$

$$\frac{3}{2} f_1(x, k_\perp^2) \geq f_1(x, k_\perp^2) + \frac{1}{6} f_{1LL}(x, k_\perp^2) \geq h_1(x, k_\perp^2). \quad (3.50)$$

Figs. 5 and 6 confirm that the different positivity constraints, defined in Eqs. (3.39)-(3.47), are satisfied by our holographic TMDs for the ρ-meson. In Fig. 5, the corresponding TMDs in each constraint equation are shown as a function of k_\perp^2 at fixed $x = 0.5$, while Fig. 6 displays the constraint equations of TMDs as a function of x for fixed $k_\perp = 0.15$ GeV.
Figure 5. The positivity constraints on the holographic TMDs, plotted with respect to k_\perp^2 at fixed $x = 0.5$.

4 Parton distribution functions

The PDFs encode the distribution of the longitudinal momentum and the polarization carried by the partons with no information on the parton intrinsic transverse momentum k_\perp. Therefore, one can retrieve the PDFs by integrating Eqs. (3.4)-(3.6) over k_\perp [38, 41]:

$$
\langle \gamma^+ \rangle^{(A)}_S (x) \equiv f_1(x) + S_{LL} f_{1LL}(x),
$$

(4.1)

$$
\langle \gamma^+ \gamma_5 \rangle^{(A)}_S (x) \equiv S_L g_1(x),
$$

(4.2)

$$
\langle \gamma^+ \gamma^i \gamma_5 \rangle^{(A)}_S (x) \equiv S^i_1 h_1(x).
$$

(4.3)
Figure 6. The positivity constraints on the holographic TMDs, plotted with respect to x at fixed $k_\perp = 0.15$ GeV.

After integrating over the quark transverse momenta, the 6×6 light-front helicity amplitudes matrix, Eq. (3.12), can then be parameterized by the leading-twist PDFs, defined as [39]:

$$
\Phi(x) =
\begin{pmatrix}
 f_1 + g_1 - \frac{f_{1LL}}{3} & 0 & 0 & 0 & \sqrt{2}h_1 & 0 \\
 0 & f_1 + \frac{2f_{1LL}}{3} & 0 & 0 & 0 & \sqrt{2}h_1 \\
 0 & 0 & f_1 - g_1 - \frac{f_{1LL}}{3} & 0 & 0 & 0 \\
 0 & 0 & 0 & f_1 - g_1 - \frac{f_{1LL}}{3} & 0 & 0 \\
 \sqrt{2}h_1 & 0 & 0 & 0 & f_1 + \frac{2f_{1LL}}{3} & 0 \\
 0 & \sqrt{2}h_1 & 0 & 0 & 0 & f_1 + g_1 - \frac{f_{1LL}}{3}
\end{pmatrix},
$$

$$
\Phi(x) =
\begin{pmatrix}
 f_1 + g_1 - \frac{f_{1LL}}{3} & 0 & 0 & 0 & \sqrt{2}h_1 & 0 \\
 0 & f_1 + \frac{2f_{1LL}}{3} & 0 & 0 & 0 & \sqrt{2}h_1 \\
 0 & 0 & f_1 - g_1 - \frac{f_{1LL}}{3} & 0 & 0 & 0 \\
 0 & 0 & 0 & f_1 - g_1 - \frac{f_{1LL}}{3} & 0 & 0 \\
 \sqrt{2}h_1 & 0 & 0 & 0 & f_1 + \frac{2f_{1LL}}{3} & 0 \\
 0 & \sqrt{2}h_1 & 0 & 0 & 0 & f_1 + g_1 - \frac{f_{1LL}}{3}
\end{pmatrix},
$$

(4.4)
where the positivity constraints on the PDFs are generated as
\[
\begin{align*}
 f_1(x) &\geq 0, \\
 3f_1(x) &\geq f_{1LL}(x) \geq -\frac{3}{2}f_1(x), \\
 \frac{3}{2}f_1(x) &\geq f_1(x) - \frac{1}{3}f_{1LL}(x) \geq |g_1(x)|, \\
 \left(f_1(x) + \frac{2}{3}f_{1LL}(x)\right)\left(f_1(x) + g_1(x) - \frac{1}{3}f_{1LL}(x)\right) &\geq 2|h_1(x)|^2.
\end{align*}
\]

In Fig. 7, we show the behavior of the leading-twist PDFs of \(\rho\)-meson namely, the unpolarized distribution \(f_1(x)\), the helicity distribution \(g_1(x)\), the transversity distribution \(h_1(x)\), and the tensor polarized distribution \(f_{1LL}(x)\) with respect to the longitudinal momentum fraction carried by the quark. We compare our results in the LF holographic model as well as in the LF quark model with the predictions of NJL model [37]. We obtain the holographic PDFs by integrating out \(k_\perp\) of the TMDs \(f_1(x, k_\perp^2)\), \(g_{1L}(x, k_\perp^2)\), \(h_1(x, k_\perp^2)\) and \(f_{1LL}(x, k_\perp^2)\) given in Eqs. (3.28), (3.29), (3.31) and (3.34) respectively, while in the LF quark model, the corresponding TMDs are evaluated in Eqs. (A.17), (A.18), and (A.23). Overall, the qualitative behavior of the holographic PDFs and ones in the LF quark model are consistent with the predictions in the NJL model [37]. The tensor-polarized PDF \(f_{1LL}\) being an important quantity, related to \(b_1\) structure function [26], vanishes in the LF quark model, whereas the holographic \(f_{1LL}\) is in more or less agreement with the one in the NJL model [37], within the range \(0.1 < x < 0.9\). However, it differs significantly when \(x \to \{0, 1\}\). \(f_{1LL}\) has been measured by HERA for the deuteron, spin-1 target [35]. In Fig. 8, we illustrate that our holographic PDFs also satisfy the positivity constraints mentioned in Eqs. (4.5)-(4.8).

Further, at the model scale, the following sum rules are satisfied by our PDFs,
\[
\begin{align*}
 \int_0^1 dx \ f_1(x) & = 1, \\
 \int_0^1 dx \ x f_1(x) + \int_0^1 dx \ (1-x) f_1(x) & = 1, \\
 \int_0^1 dx \ f_{1LL}(x) & = 0; \quad \int_0^1 dx \ x f_{1LL}(x) = 0.
\end{align*}
\]

5 Spin densities in the momentum space

The TMDs can be interpreted as the quark densities inside the hadron. One can define the quark momentum distributions inside the target with the different polarization combinations via TMDs. The spin densities describe the correlation between
Following Eqs. (3.4)-(3.6), we define the quark spin densities in the momentum space for the spin-1 target as,

\[
\rho(x, k_x, k_y, (\lambda, \lambda_\perp), (\Lambda, \Lambda_\perp)) = f_1 + \lambda \Lambda g_{1L} + \lambda \Lambda_\perp \frac{k_i^i}{M_\rho} g_{1T} + \Lambda_1^i \Lambda_{1\perp} h_1 + \Lambda_1^i \Lambda \frac{k_i^i}{M_\rho} h_{1L}^i \\
+ (3\lambda^2 - 2) \left(\frac{1}{6} - \frac{1}{2}\Lambda^2 \right) f_{1LL} + \Lambda \Lambda_1^i \frac{k_i^i}{M_\rho} f_{1LT}
\]
Here λ and Λ correspond to the quark and the target spins in the longitudinal direction. Note that in this Section, λ and Λ denote different quantities from the previous sections. The configurations for these two can be $\lambda = \uparrow, \downarrow$ (or +1,-1) and $\Lambda = \uparrow, \downarrow$ (or +1,-1). $\Lambda_{\perp} = \uparrow, \downarrow$ (or +1,-1) and $\Lambda_{\perp} = \uparrow, \downarrow$ (or +1,-1) symbolize the transverse spins of the quark and the target ρ-meson, respectively. Here, we consider the transverse polarization to be along x-direction. Depending on the different spin directions of the quark and the ρ-meson, we predict the various spin correlations, which are discussed below.

We integrate out the longitudinal momentum fraction x to get all the spin densities in the transverse momentum plane. In Fig. 9, we show the spin densities in the transverse momentum plane by considering the different polarization configurations of the quark and the ρ-meson in the longitudinal direction. $\rho_{\uparrow\uparrow} = f_{\uparrow} - \frac{1}{3} f_{1LL} = \rho_{\uparrow\downarrow}$ and $\rho_{\downarrow\uparrow} = f_{\downarrow} - \frac{1}{3} f_{1LL} = \rho_{\downarrow\downarrow}$ designated to $\lambda = \Lambda = \uparrow$ and $\lambda = \uparrow, \Lambda = \downarrow$ are explained in Figs. 9(b) and 9(c), respectively. In view of $\rho_{\uparrow\uparrow}$, one can observe the probability of finding the quark in the ρ-meson with the spin aligned to the spin of the composite system, while $\rho_{\downarrow\downarrow}$ explains the probability when both spins are anti-aligned. $\rho_{\uparrow\downarrow}(k_x, k_y)$ and $\rho_{\downarrow\uparrow}(k_x, k_y)$, allow only those overlap configurations of LFWFs, which display the effect of only two wave contributions out of three. $\rho_{\uparrow\uparrow}$ has the contributions from the squared of the wave functions which describe the S-wave and the P-wave separation, while $\rho_{\downarrow\downarrow}$ can be obtained from the squared of the P-wave and the D-wave components. In other words, no OAM transfer occur between the initial and the final states in these cases. Also, both the densities $\rho_{\uparrow\uparrow}$ and $\rho_{\downarrow\downarrow}$ are axially symmetric. However, due to constructive interference between f_{\uparrow} and g_{1L} in $\rho_{\uparrow\uparrow}$, much larger magnitude has been observed as compared to $\rho_{\downarrow\downarrow}$, where f_{\downarrow} and g_{1L} appear with the opposite signs. To shed light on the transverse spin densities, let us consider $\lambda_{\perp} = \Lambda_{\perp} = \uparrow$ and $\lambda_{\perp} = \Lambda_{\perp} = \downarrow$ shown in Figs. 9(d) and 9(e) respectively, indicated by $\rho_{\uparrow\uparrow} = f_1 - \frac{k^2}{M_\rho^2} f_{1TT} + h_1$ and $\rho_{\downarrow\downarrow} = f_1 - \frac{k^2}{M_\rho^2} f_{1TT} - h_1$. These spin densities are the mixture of zero and two units of OAM transfer overlap terms. These are also

Figure 8. Several positivity constraints on PDFs plotted with respect to x.

$$+ \left(\Lambda_{\uparrow}^i \Lambda_{\downarrow}^j - \frac{1}{2} \Lambda^2 \delta_{ij} \right) \frac{k^i k^j}{M_\rho^2} f_{1TT} \right). \quad (5.1)$$
Figure 9. (Color online) Quark density plots for $f_1(k_x, k_y)$ (upper panel); $\rho_{\uparrow\uparrow}(k_x, k_y)$, $\rho_{\uparrow\downarrow}(k_x, k_y)$ (middle panel) and $\rho_{\uparrow\uparrow}(k_x, k_y)$, $\rho_{\uparrow\downarrow}(k_x, k_y)$ (lower panel) in the momentum plane. The gray colored vacant small and large circles (upper right corner) corresponds to both quark and the ρ-meson being unpolarized. The dot and cross inside the circles denote the longitudinal polarization in same and opposite directions respectively. The arrow along upward and downward directions symbolize the transverse polarization of the quark and the ρ-meson.
Figure 10. (Color online) Quark density plots for \(\rho_{\uparrow \uparrow}(k_x, k_y), \rho_{\uparrow \downarrow}(k_x, k_y) \) (upper panel) and \(\rho_{\uparrow \downarrow}(k_x, k_y), \rho_{\downarrow \uparrow}(k_x, k_y) \) (lower panel) in the momentum plane. The gray colored small and large circles (upper right or left corner) with dot and cross inside, denote the longitudinal polarization in same and opposite directions respectively. The arrow along upward and downward directions symbolize the transverse polarization of the quark and the \(\rho \)-meson.

axially symmetric. Due to a similar reason mentioned in the case of the longitudinal spin densities, \(\rho_{\uparrow \uparrow} \) dominates over \(\rho_{\downarrow \downarrow} \).

The distorting effects are observed in \(\rho_{\uparrow \uparrow}(\uparrow \uparrow) \) and \(\rho_{\uparrow \downarrow}(\uparrow \downarrow) \) as shown in Fig. 10. \(\rho_{\uparrow \uparrow}(\uparrow \downarrow) \) spin densities come into the picture when the spin directions of the quark and the \(\rho \)-meson are longitudinal and transverse respectively, i.e. \(\lambda = \uparrow, \Lambda = \uparrow \) (\(\downarrow \)). To describe \(\rho_{\uparrow \uparrow}(\uparrow \downarrow) \), the spin directions \(\lambda = \uparrow, \Lambda = \uparrow \) (\(\downarrow \)) are considered. We observe that the distortion effect takes place with these considerations because of the terms \(\frac{k_x}{M_{\rho}} g_{1T} \) in \(\rho_{\uparrow \uparrow}(\uparrow \downarrow) \) and \(\frac{k_x}{M_{\rho}} h_{1L} \) in \(\rho_{\uparrow \downarrow}(\uparrow \downarrow) \). In these cases, the densities feature a significant dipole deformation along \(x \)-direction arising due to the terms mentioned above, while the \(f_1 \) is stick to the monopole effect. These terms lead to the distortion in the plots when implemented together. One can also notice that the distortion of the longitudinally-polarized quark in the transversely-polarized target is opposite to that of the transversely-polarized quark in the longitudinally
polarized target. The reason is that g_{1T} is positive, while h_{1L}^\perp is negative for ρ-meson.

6 Conclusions

In this work, we have presented the leading-twist TMDs for the ρ-meson in the LF holographic model where the dynamical spin effect has been taken into account in the wave functions. The TMDs have been analyzed by practising the overlap representation of the light-front wave functions in the constituent valence quark Fock space via the model independent overlap forms of the different light-front amplitudes. We have compared the holographic predictions with the distributions evaluated in the LF quark model, which contains a different spin structure from that in the LF holographic model.

We have observed that the TMDs $f_1, g_1, g_{1T}, h_1,$ and h_{1L}^\perp show a quite similar behavior in both the light-front models. However, the holographic h_{1T}^\perp TMD vanishes and shows the negative distribution in the LF quark model. On the other hand, the tensor polarized TMDs, f_{1LL}, f_{1LT} and f_{1TT} in the LF quark model appear to be zero but nonzero in the LF holographic model, where f_{1LL} and f_{1TT} exhibit symmetry and f_{1LT} shows anti-symmetry under $x \leftrightarrow (1-x)$. Nevertheless, our holographic predictions on all the TMDs have been found consistent with the previous finding in the NJL model [37]. All the TMDs satisfy the necessary positivity constraints [37, 39]. We have also presented first two moments, $\langle k_\perp \rangle$ and $\langle k_\perp^2 \rangle$, of various TMDs, which are comparable with the available predictions of the NJL model.

Next, we have evaluated the four survived PDFs for the ρ-meson, namely, the unpolarized f_1, the helicity g_1, the transversity h_1 and the tensor f_{1LL} PDFs. We have again compared our results in the LF holographic and the LF quark models with the available NJL model predictions and observed the qualitative agreement between our results (except f_{1LL} in the LF quark model) and the NJL model predictions. The PDF f_{1LL}, which requires the tensor polarization of the meson, is an important measurable quantity, vanishes in the LF quark model.

We have also studied the spin densities in the transverse momentum plane of the quark inside the ρ-meson with the different polarization configurations. The distributions for both the quark and the target polarized in the longitudinal or in the transverse directions have been found to be axially symmetric. Meanwhile, we have observed the dipolar distortions on top of the unpolarized symmetric distribution when the quark is longitudinally polarized and the target is transversely polarized, or vice-versa. The distortions have been found to be opposite for the longitudinal-transverse and the transverse-longitudinal polarization configurations of the quark and the ρ-meson.

For further investigation, the future developments should focus on the inclusion of the nontrivial gauge link that will provide a prediction of the various T-odd ρ-meson TMDs. The presented results in this study together with other theoretical
predictions on the TMDs and the PDFs may help the experimental groups to measure these distributions for the \(\rho \)-meson. Any experimental data on these distributions and the comparison with the theoretical predictions can help one to gain the valuable knowledge on the internal structure of the \(\rho \)-meson.

Acknowledgments

We thank Ruben Sandapen and Mohammad Ahmady for many useful discussions. C.M. is supported by the National Natural Science Foundation of China (NSFC) under the Grants No. 11850410436 and No. 11950410753. C.M is also supported by new faculty start up funding by the Institute of Modern Physics, Chinese Academy of Sciences and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB34000000. H.D. would like to thank the Department of Science and Technology (Ref No. EMR/2017/001549) Government of India for financial support.

A Light-front quark model

The complete light-front wave function is accomplished by appraising the spin and the momentum wave functions i.e. \(\chi \) and \(\psi \) depending upon the spin projections of the \(\rho \)-meson, \(\Lambda \), [45, 46]:

\[
\Psi_{h_q,h_{\bar{q}}}(x, k_{\perp}) = \chi_{h_q,h_{\bar{q}}}(x, k_{\perp}) \psi(x, k_{\perp}^2),
\]

(A.1)

with

\[
\sum_{h_q,h_{\bar{q}}} \chi_{h_q,h_{\bar{q}}}^*(x, k_{\perp}) \chi_{h_q,h_{\bar{q}}}(x, k_{\perp}) = 1.
\]

(A.2)

According to the Brodsky-Huang-Lepage (BHL) prescription, the momentum wave function is written as

\[
\psi(x, k_{\perp}^2) = \mathcal{N} \exp \left[-\frac{k_{\perp}^2 + m_q^2}{8\beta^2 x(1-x)} \right].
\]

(A.3)

The spin part of the wave function is provided by relating the spin states transforming from the instant form to the light-front form by using the Melosh-Wigner method.
For $\Lambda = T(\pm)$ with the quark and the antiquark helicities being h_q and $h_{\bar{q}}$, we have

$$\chi_T^{+\pm}(x, k_\perp) = \frac{m_q(M + 2m) + k_\perp^2}{(M + 2m_q)\sqrt{k_\perp^2 + m_q^2}}, \quad (A.4)$$

$$\chi_T^{+\mp}(x, k_\perp) = \frac{(2xM + m_q)k_R}{(M + 2m_q)\sqrt{k_\perp^2 + m_q^2}}, \quad (A.5)$$

$$\chi_T^{-\mp}(x, k_\perp) = \frac{m_q(M + 2m_q) + 2k_\perp^2}{(M + 2m_q)\sqrt{k_\perp^2 + m_q^2}}, \quad (A.6)$$

$$\chi_T^{-\pm}(x, k_\perp) = -\frac{k_R^2}{(M + 2m_q)\sqrt{k_\perp^2 + m_q^2}}, \quad (A.7)$$

for $\Lambda = L$,

$$\chi_L^{\pm\mp}(x, k_\perp) = \frac{(1 - 2x)Mk_L}{(M + 2m_q)\sqrt{2(k_\perp^2 + m_q^2)}}, \quad (A.8)$$

$$\chi_L^{\mp\pm}(x, k_\perp) = \frac{m_q(M + 2m_q) + 2k_\perp^2}{(M + 2m_q)\sqrt{2(k_\perp^2 + m_q^2)}}, \quad (A.9)$$

$$\chi_L^{-\mp}(x, k_\perp) = \frac{m_q(M + 2m_q) + 2k_\perp^2}{(M + 2m_q)\sqrt{2(k_\perp^2 + m_q^2)}}, \quad (A.10)$$

$$\chi_L^{-\pm}(x, k_\perp) = -\frac{(1 - 2x)Mk_R}{(M + 2m_q)\sqrt{2(k_\perp^2 + m_q^2)}}, \quad (A.11)$$

for $\Lambda = T(-)$

$$\chi_T^{\mp\mp}(x, k_\perp) = -\frac{k_L^2}{(M + 2m_q)\sqrt{k_L^2 + m_q^2}}, \quad (A.12)$$

$$\chi_T^{\mp\pm}(x, k_\perp) = \frac{((1 - x)M + m_q)k_L}{(M + 2m_q)\sqrt{k_L^2 + m_q^2}}, \quad (A.13)$$

$$\chi_T^{-\mp}(x, k_\perp) = -\frac{(xM + m_q)k_L}{(M + 2m_q)\sqrt{k_L^2 + m_q^2}}, \quad (A.14)$$

$$\chi_T^{-\pm}(x, k_\perp) = \frac{m_q(M + 2m_q) + k_L^2}{(M + 2m_q)\sqrt{k_L^2 + m_q^2}}, \quad (A.15)$$

where

$$\mathcal{M} = \sqrt{\frac{k^2_\perp + m_q^2}{x(1 - x)}}. \quad (A.16)$$
Following Eqs. (3.19)-(3.27), the explicit expressions of TMDs in LF quark model are given by

\[
f_1(x, k_1^2) = \frac{1}{3(2\pi)^3} \left(\frac{1}{2} \left(3 \left(m_q (\mathcal{M} + 2m_q) \right)^2 + (1 - 2x)^2 \mathcal{M}^2 k_1^2 \right) + 4k_1^2 (m_q (\mathcal{M} + 2m_q) + k_1^2) + k_1^2 (2m_q (\mathcal{M} + m_q) + (1 - 2x + 2x^2)\mathcal{M}^2) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.17)
\]

\[
g_{1L}(x, k_1^2) = \frac{1}{2(2\pi)^3} \left(m_q (\mathcal{M} + 2m_q) (m_q (\mathcal{M} + 2m_q) + 2k_1^2) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.18)
\]

\[
g_{1T}(x, k_1^2) = \frac{M^2}{2(2\pi)^3} (\mathcal{M} + 2m_q) \left(m_q \mathcal{M} (1 - 2x) + (m_q (\mathcal{M} + 2m_q) + 2k_1^2) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.19)
\]

\[
h_1(x, k_1^2) = \frac{1}{2(2\pi)^3} \left((m_q (\mathcal{M} + 2m_q) + 2k_1^2) \left(m_q ((\mathcal{M} + 2m_q) + k_1^2) \right) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.20)
\]

\[
h_{1L}^+(x, k_1^2) = -\frac{M^2}{(2\pi)^3} (\mathcal{M} + 2m_q) \left(m_q ((1 - x)\mathcal{M} + m_q) + k_1^2 \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.21)
\]

\[
h_{1T}^+(x, k_1^2) = -\frac{M^2}{(2\pi)^3} \left(\mathcal{M} ((1 - x)\mathcal{M} + m_q) (1 - 2x) + (m_q (\mathcal{M} + 2m_q) + 2k_1^2) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.22)
\]

\[
f_{1LL}(x, k_1^2) = 0, \quad (A.23)
\]

\[
f_{1LT}(x, k_1^2) = 0, \quad (A.24)
\]

\[
f_{1TT}(x, k_1^2) = \frac{M^2}{(2\pi)^3} \left(\mathcal{M}^2 x (1 - x) - (k_1^2 + m_q^2) \right) \frac{|\psi(x, k_1^2)|^2}{\omega^2}, \quad (A.25)
\]

with

\[
\omega = (\mathcal{M} + 2m_q) \sqrt{k_1^2 + m_q^2}, \quad (A.26)
\]

where \(\mathcal{M}\) and \(\psi(x, k_1^2)\) are defined in Eqs. (A.16) and (A.3) respectively. To find the numerical results, we use the quark mass and \(\beta\) parameter as: \(m_q = 0.2 \text{ GeV}\) and \(\beta = 0.41 \text{ GeV}\) respectively [45].
B Density matrix description of spin-1 hadron

The spin density matrix $\rho(S)$ of spin-J is totally related to the tensor matrices of $2J$ rank. The spin-1 matrices correspond to three cartesian and six traceless and symmetric tensor matrices denoted by Σ^i and $\Sigma^{ij} = \frac{1}{2} (\Sigma^i \Sigma^j + \Sigma^j \Sigma^i) - \frac{2}{3} \delta^{ij} I$ respectively, which are given by

$$\Sigma^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \Sigma^y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -t & 0 \\ t & 0 & -t \\ 0 & t & 0 \end{pmatrix}, \Sigma^z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad (B.1)$$

$$\Sigma^{xx} = \frac{1}{6} \begin{pmatrix} -1 & 0 & 3 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}, \Sigma^{xy} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -t \\ 0 & 0 & 0 \\ t & 0 & 0 \end{pmatrix}, \Sigma^{xz} = \frac{1}{2}\sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -t \\ 0 & t & 0 \end{pmatrix}, \quad (B.2)$$

$$\Sigma^{yy} = \frac{1}{6} \begin{pmatrix} -1 & 0 & -3 \\ 0 & 2 & 0 \\ -3 & 0 & -1 \end{pmatrix}, \Sigma^{yz} = \frac{1}{2}\sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ t & 0 & 0 \\ 0 & t & 0 \end{pmatrix}, \Sigma^{zz} = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \quad (B.3)$$

Now, the spin density matrix $\rho(S)$ is expressed as

$$\rho(S) = \frac{1}{3} \left(1 + \frac{3}{2} \Sigma^i S^i + 3 \Sigma^{ij} T^{ij} \right), \quad (B.4)$$

with

$$S = (S^x_T, S^y_T, S_L), \quad (B.5)$$

and

$$T^{ij} = \frac{1}{2} \begin{pmatrix} S^{xx}_{TT} + S_{LL} & S^{xy}_{TT} & S^x_{LT} \\ S^{xy}_{TT} & S^{yy}_{TT} + S_{LL} & S^y_{LT} \\ S^x_{LT} & S^y_{LT} & -2S_{LL} \end{pmatrix}, \quad (B.6)$$

where $S^{yy}_{TT} = -S^{xx}_{TT}$ and $S^{xy}_{LT} = S^{xy}_{TT}$. Therefore, from Eq. (B.4)

$$\rho(S) = \begin{pmatrix} \frac{1}{3} - S_{LL}^2 & \frac{1}{2} + \frac{S^x_{LT} + i S^y_{LT}}{2\sqrt{2}} & \frac{1}{2} - \frac{S^x_{LT} - i S^y_{LT}}{2\sqrt{2}} & \frac{S^x_{LT} - S^y_{LT} - 2S^z_{TT}}{2\sqrt{2}} \\ \frac{1}{2} + \frac{S^x_{LT} + i S^y_{LT}}{2\sqrt{2}} & \frac{1}{3} + S_{LL} & \frac{1}{2} + \frac{S^x_{LT} - i S^y_{LT}}{2\sqrt{2}} & \frac{1}{2} - \frac{S^x_{LT} + i S^y_{LT}}{2\sqrt{2}} \end{pmatrix}, \quad (B.7)$$

with

$$-1 \leq S_L \leq 1, \quad -\frac{1}{3} \leq S_{LL} \leq \frac{2}{3}. \quad (B.8)$$
References

[1] J. C. Collins and D. E. Soper, *Parton Distribution and Decay Functions*, Nucl. Phys. B194 (1982) 445–492.

[2] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, *Parton distributions: A New global analysis*, Eur. Phys. J. C4 (1998) 463–496, [hep-ph/9803445].

[3] M. Gluck, E. Reya, and A. Vogt, *Dynamical parton distributions of the proton and small x physics*, Z. Phys. C67 (1995) 433–448.

[4] M. Glück, E. Reya, and A. Vogt, *Dynamical parton distributions revisited*, Eur. Phys. J. C5 (1998) 461–470, [hep-ph/9806404].

[5] M. Diehl, *Generalized parton distributions*, Phys. Rept. 388 (2003) 41–277, [hep-ph/0307382].

[6] M. Garcon, *An Introduction to the generalized parton distributions*, hep-ph/0210068. Eur. Phys. J. A18,389(2003).

[7] A. V. Belitsky and A. V. Radyushkin, *Unraveling hadron structure with generalized parton distributions*, Phys. Rept. 418 (2005) 1–387, [hep-ph/0504030].

[8] M. Diehl, *Introduction to GPDs and TMDs*, Eur. Phys. J. A 52 (2016), no. 6 149, [arXiv:1512.01328].

[9] R. Angeles-Martinez et al., *Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects*, Acta Phys. Polon. B46 (2015), no. 12 2501–2534, [arXiv:1507.05267].

[10] D. Boer and P. J. Mulders, *Time reversal odd distribution functions in lepto-production*, Phys. Rev. D57 (1998) 5780–5786, [hep-ph/9711485].

[11] D. Boer, *Investigating the origins of transverse spin asymmetries at RHIC*, Phys. Rev. D60 (1999) 014012, [hep-ph/9902255].

[12] J. P. Ralston and D. E. Soper, *Production of Dimuons from High-Energy Polarized Proton Proton Collisions*, Nucl. Phys. B152 (1979) 109.

[13] J. T. Donohue and S. A. Gottlieb, *Dilepton Production from Collisions of Polarized Spin 1/2 Hadrons: I. General Kinematic Analysis*, Phys. Rev. D23 (1981) 2577–2580.

[14] R. D. Tangerman and P. J. Mulders, *Intrinsic transverse momentum and the polarized Drell-Yan process*, Phys. Rev. D51 (1995) 3357–3372, [hep-ph/9403227].

[15] J. Zhou, F. Yuan, and Z.-T. Liang, *Transverse momentum dependent quark distributions and polarized Drell-Yan processes*, Phys. Rev. D81 (2010) 054008, [arXiv:0909.2238].

[16] J. C. Collins, *Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering*, Phys. Lett. B536 (2002) 43–48, [hep-ph/0204004].
[17] J. C. Collins, D. E. Soper, and G. F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B250 (1985) 199–224.

[18] S. Catani, D. de Florian, G. Ferrera, and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047, [arXiv:1507.06937].

[19] I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J. C78 (2018), no. 2 89, [arXiv:1706.01473].

[20] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B530 (2002) 99–107, [hep-ph/0201296].

[21] X.-d. Ji, J.-p. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D71 (2005) 034005, [hep-ph/0404183].

[22] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, and A. Signori, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081, [arXiv:1703.10157]. [Erratum: JHEP06,051(2019)].

[23] P. A. M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21 (1949) 392–399.

[24] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299–486, [hep-ph/9705477].

[25] A. Harindranath, An Introduction to light front dynamics for pedestrians, in International School on Light-Front Quantization and Non-Perturbative QCD (To be followed by the Workshop 3-14 Jun 1996) Ames, Iowa, May 6-June 2, 1996. hep-ph/9612244.

[26] P. Hoodbhoy, R. L. Jaffe, and A. Manohar, Novel Effects in Deep Inelastic Scattering from Spin 1 Hadrons, Nucl. Phys. B312 (1989) 571–588.

[27] F. E. Close and S. Kumano, A sum rule for the spin dependent structure function \(b_1(x) \) for spin one hadrons, Phys. Rev. D42 (1990) 2377–2379.

[28] A. Yu. Umnikov, Relativistic calculation of structure functions \(b_{1,2}(x) \) of the deuteron, Phys. Lett. B391 (1997) 177–184, [hep-ph/9605291].

[29] W. Detmold, Target mass effects in deep-inelastic scattering on the deuteron, Phys. Lett. B632 (2006) 261–269, [hep-ph/0509011].

[30] S. Kumano, Tensor-polarized quark and antiquark distribution functions in a spin-one hadron, Phys. Rev. D82 (2010) 017501, [arXiv:1005.4524].

[31] S. Islam and D. K. Choudhury, Tensor structure function \(b_2^T(x,Q^2) \) of the deuteron at NLO and NNLO at small-\(x \), Eur. Phys. J. C72 (2012) 257.

[32] G. A. Miller, Pionic and Hidden-Color, Six-Quark Contributions to the Deuteron \(b_1 \) Structure Function, Phys. Rev. C89 (2014), no. 4 045203, [arXiv:1311.4561].
S. Kumano and Q.-T. Song, *Theoretical estimate on tensor-polarization asymmetry in proton-deuteron Drell-Yan process*, Phys. Rev. D94 (2016), no. 5 054022, [arXiv:1606.03149].

W. Cosyn, Y.-B. Dong, S. Kumano, and M. Sargsian, *Tensor-polarized structure function b₁ in standard convolution description of deuteron*, Phys. Rev. D95 (2017), no. 7 074036, [arXiv:1702.05337].

HERMES Collaboration, A. Airapetian et al., *First measurement of the tensor structure function b₁ of the deuteron*, Phys. Rev. Lett. 95 (2005) 242001, [hep-ex/0506018].

L. Mankiewicz, *Simple Relativistic Model for b₁ Structure Function of the ρ Meson*, Phys. Rev. D40 (1989) 255.

Y. Ninomiya, W. Beutü, and I. C. Cloët, *Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations*, Phys. Rev. C96 (2017), no. 4 045206, [arXiv:1707.03787].

A. Bacchetta and P. J. Mulders, *Deep inelastic lepton production of spin-one hadrons*, Phys. Rev. D62 (2000) 114004, [hep-ph/0007120].

A. Bacchetta and P. J. Mulders, *Positivity bounds on spin one distribution and fragmentation functions*, Phys. Lett. B518 (2001) 85–93, [hep-ph/0104176].

S. Hino and S. Kumano, *Structure functions in the polarized Drell-Yan processes with spin 1/2 and spin 1 hadrons. 1. General formalism*, Phys. Rev. D59 (1999) 094026, [hep-ph/9810425].

S. Hino and S. Kumano, *Structure functions in the polarized Drell-Yan processes with spin 1/2 and spin 1 hadrons. 2. Parton model*, Phys. Rev. D60 (1999) 054018, [hep-ph/9902258].

J. R. Forshaw and R. Sandapen, *An AdS/QCD holographic wavefunction for the rho meson and diffractive rho meson electroproduction*, Phys. Rev. Lett. 109 (2012) 081601, [arXiv:1203.6088].

M. Ahmady and R. Sandapen, *Predicting B^0 → ρ^0γ and B^0_s → ρ^0γ using holographic AdS/QCD Distribution Amplitudes for the ρ meson*, Phys. Rev. D87 (2013), no. 5 054013, [arXiv:1212.4074].

M. Ahmady, R. Campbell, S. Lord, and R. Sandapen, *Predicting the B− → ρ form factors using AdS/QCD Distribution Amplitudes for the ρ meson*, Phys. Rev. D88 (2013), no. 7 074031, [arXiv:1308.3694].

J.-h. Yu, B.-W. Xiao, and B.-Q. Ma, *Space-like and time-like pion-rho transition form factors in the light-cone formalism*, J. Phys. G34 (2007) 1845–1860, [arXiv:0706.2018].

W. Qian and B.-Q. Ma, *Vector meson omega-phi mixing and their form factors in light-cone quark model*, Phys. Rev. D78 (2008) 074002, [arXiv:0809.4411].
[47] A. Bacchetta, L. Mantovani, and B. Pasquini, *Electron in three-dimensional momentum space*, Phys. Rev. D93 (2016), no. 1 013005, [arXiv:1508.06964].

[48] S. J. Brodsky and G. F. de Teramond, *Hadronic spectra and light-front wavefunctions in holographic QCD*, Phys. Rev. Lett. 96 (2006) 201601, [hep-ph/0602252].

[49] G. F. de Teramond and S. J. Brodsky, *Hadronic spectrum of a holographic dual of QCD*, Phys. Rev. Lett. 94 (2005) 201601, [hep-th/0501022].

[50] S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, *Light-Front Holographic QCD and Emerging Confinement*, Phys. Rept. 584 (2015) 1–105, [arXiv:1407.8131].

[51] G. F. de Teramond and S. J. Brodsky, *Light-Front Holography: A First Approximation to QCD*, Phys. Rev. Lett. 102 (2009) 081601, [arXiv:0809.4899].

[52] S. J. Brodsky, G. F. De Téramond, and H. G. Dosch, *Threefold Complementary Approach to Holographic QCD*, Phys. Lett. B729 (2014) 3–8, [arXiv:1302.4105].

[53] S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and C. Lorce, *Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography*, Int. J. Mod. Phys. A31 (2016), no. 19 1630029, [arXiv:1606.04638].

[54] S. J. Brodsky and G. F. de Teramond, *Light-Front Dynamics and AdS/QCD Correspondence: Gravitational Form Factors of Composite Hadrons*, Phys. Rev. D78 (2008) 025032, [arXiv:0804.0452].

[55] S. D. Drell and T.-M. Yan, *Connection of Elastic Electromagnetic Nucleon Form-Factors at Large Q^2 and Deep Inelastic Structure Functions Near Threshold*, Phys. Rev. Lett. 24 (1970) 181–185.

[56] G. B. West, *Phenomenological model for the electromagnetic structure of the proton*, Phys. Rev. Lett. 24 (1970) 1206–1209.

[57] S. J. Brodsky and G. F. de Teramond, *AdS/CFT and Light-Front QCD*, Subnucl. Ser. 45 (2009) 139–183, [arXiv:0802.0514].

[58] M. Ahmady, S. Kaur, C. Mondal, and R. Sandapen, *Light-front holographic radiative transition form factors for light mesons*, Phys. Rev. D102 (2020), no. 3 034021, [arXiv:2006.07675].

[59] Particle Data Group Collaboration, M. Tanabashi et al., *Review of Particle Physics*, Phys. Rev. D98 (2018), no. 3 030001.

[60] D. Becirevic, V. Lubicz, F. Mescia, and C. Tarantino, *Coupling of the light vector meson to the vector and to the tensor current*, JHEP 05 (2003) 007, [hep-lat/0301020].

[61] V. M. Braun, T. Burch, C. Gattringer, M. Gockeler, G. Lacagnina, S. Schaefer, and A. Schafer, *A Lattice calculation of vector meson couplings to the vector and tensor...*
currents using chirally improved fermions, Phys. Rev. D68 (2003) 054501, [hep-lat/0306006].

[62] B. Pasquini and P. Schweitzer, Pion transverse momentum dependent parton distributions in a light-front constituent approach, and the Boer-Mulders effect in the pion-induced Drell-Yan process, Phys. Rev. D90 (2014), no. 1 014050, [arXiv:1406.2056].

[63] S. Meissner, A. Metz, and K. Goeke, Relations between generalized and transverse momentum dependent parton distributions, Phys. Rev. D76 (2007) 034002, [hep-ph/0703176].

[64] M. Ahmady, C. Mondal, and R. Sandapen, Dynamical spin effects in the holographic light-front wavefunctions of light pseudoscalar mesons, Phys. Rev. D98 (2018), no. 3 034010, [arXiv:1805.08911].

[65] M. Ahmady, C. Mondal, and R. Sandapen, Predicting the light-front holographic TMDs of the pion, Phys. Rev. D100 (2019), no. 5 054005, [arXiv:1907.06561].