Regulation of pregnancy-associated plasma protein A2 (PAPPA2) in a human placental trophoblast cell line (BeWo)

Pamela K Wagner, Aki Otomo and Julian K Christians*

Abstract

Background: Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor-binding protein (IGFBP) protease expressed at high levels in the placenta and upregulated in pregnancies complicated by preeclampsia and HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelet count) syndrome. However, it is unclear whether elevated PAPPA2 expression causes abnormal placental development, or whether upregulation compensates for placental pathology. In the present study, we investigate whether PAPPA2 expression is affected by hypoxia, oxidative stress, syncytialization factors or substances known to affect the expression of PAPPA2’s parologue, PAPPA.

Methods: BeWo cells, a model of placental trophoblasts, were treated with one of the following: hypoxia (2% O2), oxidative stress (20 microM hydrogen peroxide), forskolin (10 microM and 100 microM), TGF-beta (10 and 50 ng/mL), TNF-alpha (100 ng/mL), IL-1beta (100 ng/mL) or PGE2 (1 microM). We used quantitative RT-PCR (qRT-PCR) to quantify the mRNA levels of PAPPA2, as well as those of PAPPA and ADAM12 since these proteases have similar substrates and are also highly expressed in the placenta. Where we observed significant effects on PAPPA2 mRNA levels, we tested for effects at the protein level using an in-cell Western assay.

Results: Hypoxia, but not oxidative stress, caused a 47-fold increase in PAPPA2 mRNA expression, while TNF-alpha resulted in a 6-fold increase, and both of these effects were confirmed at the protein level. PGE2 resulted in a 14-fold upregulation of PAPPA2 mRNA but this was not reflected at the protein level. Forskolin, TGF-beta and IL-1beta had no significant effect on PAPPA2 mRNA expression. We observed no effects of any treatment on PAPPA or ADAM12 expression.

Conclusion: Our study demonstrates that factors previously known to be highly expressed in preeclamptic placentae (PGE2 and TNF-alpha), contribute to the upregulation of PAPPA2. Hypoxia, known to occur in preeclamptic placentae, also increased PAPPA2 expression. These results are consistent with the hypothesis that PAPPA2 is upregulated as a consequence of placental pathology, rather than elevated PAPPA2 levels being a cause of preeclampsia.

Background

Preeclampsia affects approximately 1 in 15 pregnancies [1] and is characterized by a sudden rise in blood pressure and proteinuria which resolves after delivery [2,3]. Currently, there is no effective treatment for preeclampsia other than to induce delivery. However, premature delivery elevates the risk of neonatal death and health problems later in life [3-5]. The etiology of preeclampsia is thought to involve abnormal placental development [6-8].

Numerous studies have attempted to elucidate the mechanisms underlying abnormal placental development using microarrays to identify genes differentially expressed between placentae from healthy and complicated pregnancies [9,10]. Five studies have shown that placental expression of pregnancy-associated plasma protein A2 (PAPPA2) is upregulated at delivery in preeclampsia or a complication of preeclampsia, HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelet count) syndrome [11]. However, it is unclear whether elevated PAPPA2 expression causes abnormal placental development, or whether upregulation compensates for placental pathology.
Platelet count) syndrome [9,11-14]. PAPPA2 is an insulin-like growth factor-binding protein (IGFBP) protease [15] expressed at high levels during pregnancy [16,17] which shares approximately 40% amino acid similarity with PAPPA [15]. Abnormally low PAPPA levels in first trimester maternal circulation are associated with increased risk of preeclampsia [18,19], a pattern also observed for another IGFBP protease, ADAM12 [19-23].

It is not known whether altered PAPPA2 expression causes preeclampsia or is a response to placental pathology. It has been hypothesized that the upregulation of PAPPA2 in preeclamptic pregnancies is a compensatory response to abnormal placentation which might increase IGF availability and promote fetoplacental growth [18]. A number of factors might trigger this upregulation, and in the present study we attempt to identify factors that regulate PAPPA2 expression.

Early placentation involves extensive proliferation and fusion of multinucleated trophoblast cells, a process known as syncytialization or syncytial fusion, or syncytialization, may be a cause of preeclampsia [30-32] will affect PAPPA2 expression. The paralog of PAPPA2, PAPPA, is upregulated by TNF-α, TGF-β, PGE2, and IL-1β in osteoblasts [33], and we predict that these factors may also regulate PAPPA2 expression, given the homology between PAPPA and PAPPA2.

The goal of the present study was to test our hypotheses regarding the regulation of PAPPA2 using BeWo cells as a model of placental trophoblasts [34,35]. In addition to PAPPA2, we also measured levels of PAPPA and ADAM12 since they are also placental IGFBP proteases [21,36] associated with preeclampsia and intrauterine growth restriction (IUGR) [19,22,23,37,38], and IGFBP proteases may be coregulated [39]. We also measured levels of E-cadherin mRNA to determine the level of syncytialization, since E-cadherin expression decreases as cells fuse [40].

Methods

Cell culture and materials

BeWo cells, a gift from Dr. Andrée Gruslin of the University of Ottawa, were cultured in Ham’s F-12K medium (Sigma Aldrich, St. Louis, MO) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin and 100 U/mL streptomycin in 5% CO₂ and 95% air at 37°C. Cells were used at passages 30-42. Porcine TGF-β, recombinant TNF-α, and recombinant IL-1β were purchased from R&D Systems (Minneapolis, MN), forskolin and PGE2 were purchased from Sigma (St. Louis, MO), and 3% w/v HzO2 was purchased from Anachemia (Lachine, Quebec).

Experimental treatments

For the hypoxic treatment, cells were cultured in 9 cm plates at 30% confluence and were maintained at 37°C in 5% CO₂ and 95% air (normoxia) for 24 h, at which time the cells had reached 50% confluence. Half of the plates (N = 5) remained under normoxic conditions while the other half were transferred to a chamber with an atmosphere of 93% N₂, 5% CO₂, and 2% O₂, as used previously to simulate hypoxia during preeclampsia [31,41,42]. These plates were incubated for a further 24 h before protein analysis or collection for RNA isolation.

For the growth factor and peroxide treatments, cells were cultured under normoxic conditions as described above for 24 h. The medium was then replaced with fresh medium (control samples) or medium containing HzO2 at 20 μM [29] or one of the following factors previously shown to upregulate PAPPA in osteoblasts: TGF-β (10 ng/mL and 50 ng/mL), TNF-α (100 ng/mL) IL-1β (100 ng/mL), prostaglandin E₂ (1 μM), forskolin (10 μM and 100 μM, each dissolved in 0.1% ethanol) or a forskolin control (medium with 0.1% ethanol only) [30,32,33,43] (N = 5 plates per treatment).

Cell counting

BeWo cells were cultured on 6-well plates for 24 hours, with the treatments described above. 2 μL of Hoechst 33342 (Invitrogen, Carlsbad, CA) was added (final concentration of 1.5 μg/mL), and the plates were incubated for 20 minutes at 37°C. The medium was then replaced with 2 mL of Hank’s buffered salt solution (HBSS). Five pictures were taken of each well at 10x magnification, and cells were counted using Imagel software (NIH). Each experiment was repeated three times.

RNA isolation and RT-PCR

BeWo cells were collected and homogenized in 600 μL of buffer RLT (Qiagen, Ontario, Canada) using pipetting and Qiashredders (Qiagen, Ontario, Canada) and total RNA was extracted using the RNeasy Mini kit (Qiagen, Ontario, Canada) according to the manufacturer’s instructions. RNA concentration was determined using a Nanodrop spectrophotometer (Thermo Fischer Scientific Inc. Waltham, MA), and each sample was diluted to a final concentration of 50 ng/μL. Reference samples were made by combining 50 μL from each sample. These reference samples were measured for each gene and
were included in every assay to account for variation between assays. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to compare levels of PAPPA2, PAPPA, ADAM12, and E-cadherin mRNA. Levels of β-actin [31] and GAPDH [44] were also measured and used to standardize the values of the other genes (see Table 1 for primer sequences). The qScript one-step SYBR green qRT-PCR kit (Quanta Biosciences Inc. Gaithersburg, MD) was used to reverse-transcribe and amplify each sample. Reverse transcription was carried out at 50°C for 30 minutes, followed by a PCR activation step of 95°C for 15 minutes, followed by amplification by 40 cycles of 1 minute at 94°C, 1 minute at either 50°C, 56°C or 60°C (see Table 1 for annealing temperatures for each gene), and 1 minute at 72°C, and a final extension of 10 minutes at 72°C. Each reaction was performed using a volume of 25 μL and contained 12.5 μL of reaction mix, 8.5 μL of RNA sample at 50 ng/μL, 1.5 μL (22.5 mM) of each forward and reverse primer, 0.5 μL of reverse transcriptase, and 0.5 μL of nuclease free water. Ct values were recorded for each gene, defined as the point at which the signal crossed a predetermined threshold. Each sample was measured in triplicate and in each assay, one negative control and one reference sample were included for each gene. For each gene, we performed a melting curve analysis, and the qRT-PCR products were run on a 1% agarose gel to ensure that only one amplicon of the expected size was present.

In-cell Westerns
In-cell Westerns, an immunocytochemical assay to quantify proteins in fixed cells [45], were performed for treatments which had a significant effect on PAPPA2 mRNA levels (2% O₂, 1 μM PGE₂, 100 ng/mL TNF-α). Cells were cultured on 6-well plates, and treatments were performed as described above, using three wells per treatment (N = 3). Following treatment, the medium was removed, and the cells were fixed in 2.4 mL of 3.7% formaldehyde in PBS for 20 min. The cells were then permeabilized by washing with 3.2 mL PBS containing 0.1% Triton X-100 at room temperature, and incubated in a solution containing 1:10000 fluorescently-labelled IRDye 800 secondary antibodies (Li-Cor Biosciences, Lincoln, NE) diluted in Odyssey Blocking Buffer and 0.1% Tween-20 in PBS for 20 min. The cells were then permeabilized by washing with 3.2 mL PBS containing 0.1% Triton X-100 at room temperature, and incubated in a solution containing 1:200 goat anti-human PAPPA2 antibody diluted in the same blocking buffer, with 0.1% Tween-20. Membranes were washed 4 times in filter-sterilized PBS containing 0.1% Tween-20 at room temperature, and incubated in a solution containing 1:10000 fluorescently-labelled IRDye 800 secondary antibodies in blocking buffer, 0.1% Tween-20 and 0.1% SDS for 45 minutes in the dark with gentle shaking. The membranes were again washed 4 times for 5 minutes.

Western Blot
Cell cultured medium was centrifuged to remove cellular debris, and 40 μL was mixed with 5x SDS loading buffer and heated for 10 minutes at 100°C. Samples were run for 60 minutes through a 4% stacking and 8% separating polyacrylamide gel. After transfer, nitrocellulose membranes were blocked for 1 hour at room temperature in infrared blocking buffer, then incubated in 1:500 polyclonal goat anti-human PAPPA2 antibody diluted in the same blocking buffer, with 0.1% Tween-20. Membranes were washed 4 times in filter-sterilized PBS containing 0.1% Tween-20 at room temperature, and incubated in a solution containing 1:10000 fluorescently-labelled IRDye 800 secondary antibodies in blocking buffer, 0.1% Tween-20 and 0.1% SDS for 45 minutes in the dark with gentle shaking. The membranes were again washed 4 times for 5 minutes.

Table 1 Primer and probe sequences used in qRT-PCR for PAPPA2, PAPPA, ADAM12, E-cadherin, β-actin and GAPDH

Gene	Forward Primer	Reverse Primer	Annealing Temperature	Source
PAPPA2	ACTCACCCAAGAGGCACTACATGA	GCACCTAGCTTGCCAAAGTAGATGT	50°C	This paper
PAPPA	GTCATCTTGTGGCTGGAAGGGAGAA	AGGGCTTGTCACATCAGGATGAC	56°C	This paper
ADAM12	CTGGGCCACAAATTCTGGGATGAT	ACTGCTGAACACTTGGGAATG	50°C	This paper
E-cadherin	AGCCTCTGGATAGAGAGCAGGATTG	GGGTGAAATTTGGGCTGGTGTTGAT	50°C	This paper
β-actin	CGGAGAAAGATGACCCCCGAGCATC	CCAGTTGACAGGGCCAGAGG	60°C	Knerr et al. (2005) [31]
GAPDH	CGGGAGCTCTGTGATCAATGG	GGCGATGATGGCAGCTG	58°C	Kudo et al. (2003) [30]
each in filter-sterilized PBS containing 0.1% Tween-20 at room temperature, rinsed with filtered PBS, and scanned with an Odyssey infrared imaging system.

Statistical analyses

We used the method of Pfaffl [46] to calculate mRNA expression levels for PAPPA2, PAPPA, ADAM12, and E-cadherin, relative to the reference sample described above. For example, a value of 2 indicates a sample has 2 times more transcript than the reference sample, correcting for GAPDH or β-actin. qRT-PCR data were analysed using Wilcoxon signed-rank tests in JMP, Version 7 (SAS Institute Inc., Cary, NC). Results were normalized to β-actin or GAPDH.

Results and Discussion

BeWo cells express PAPPA2, with Ct values of approximately 25 and signal above the no-primary negative control in in-cell Western analysis. We examined the mRNA levels of PAPPA2, PAPPA, ADAM12 and E-cadherin in BeWo cells treated with different factors known to be involved in preeclampsia or shown to upregulate PAPPA. GAPDH and β-actin mRNA levels were used to normalize the mRNA levels of the other genes. However, GAPDH has been shown to increase under hypoxia [47], so only β-actin was used for hypoxia. The mRNA levels of β-actin and GAPDH did not differ significantly between treatments, suggesting that they were appropriate for use as controls. When used to standardize mRNA levels, β-actin and GAPDH produced similar results.

Hoechst 33342 staining was used to assess the number of BeWo cells under each treatment. Cells with condensed staining were considered dead, whereas cells with diffuse signal were considered alive. We did not find any significant cell death between treatments, when counting either the proportion or absolute number of alive and dead cells, which is consistent with previous studies [29,31].

Hypoxia and oxidative stress

Hypoxia has previously been shown to upregulate several factors in BeWo cells, including HIF-1 [48,49] and down-regulate factors such as syncytin [44,50]. We found PAPPA2 mRNA levels were approximately 47 times higher when BeWo cells were grown under hypoxic conditions (Figure 1; Wilcoxon Z = 2.506, p = 0.0122). We confirmed that this differential expression was reflected in protein levels, and found an approximate 14% upregulation of PAPPA2 protein using in-cell Western staining. Western blotting did not detect PAPPA2 in the conditioned cell medium (data not shown), even though we were previously able to detect PAPPA2 in Western blots of murine and human tissues [17,51]. Our inability to measure secreted PAPPA2 may account for the difference in the magnitude of effect on mRNA and protein expression. Hypoxia had no significant effect on either PAPPA (Wilcoxon Z = 0.4178, p = 0.6761) or ADAM12 (Wilcoxon Z = 0, p = 1) expression. Impaired trophoblast invasion into the maternal decidua is thought to cause decreased and intermittent blood flow to the placenta [25,28,52], with reperfusion leading to an increase in reactive oxygen species with potentially damaging effects. A previous study found that addition of reactive oxygen species, specifically hydrogen peroxide at high levels (50 uM) caused an increase in apoptosis in BeWo cells [29]. We therefore used a lower H2O2 concentration (20 uM) to mimic reperfusion injury and did not find any effect on PAPPA2 mRNA expression after 24 hours (Figure 1; Wilcoxon Z = 0.417, p = 0.6761).

Factors that affect syncytialization

TNF-α has been shown to impair syncytialization, based on impaired expression of hCG [53]. TNF-α expression has also been shown to increase in preeclamptic pregnancies at delivery [54] and in response to hypoxia/reoxygenation conditions [55]. Treating cells with 100 ng/mL TNF-α resulted in 6.34 times higher PAPPA2 expression (Figure 1; Wilcoxon Z = 2.507, p = 0.0122). This upregulation was confirmed using in-cell Western analysis, where we found an 18% upregulation in PAPPA2 protein expression compared to controls. Once again, our inability to detect free PAPPA2 in cell medium may account for the
lower upregulation at the protein level. PAPP-A (Z = 0.627, p = 0.5309) and ADAM12 (Z = 0.209, p = 0.8345) mRNA levels were not found to be affected by treatment with TNF-α. TGF-β has also been shown to inhibit trophoblast differentiation in human cytotrophoblast cells [56] perhaps due, in part, to its proposed tumor-suppressing activity [57]. We did not find any effect of 10 ng/mL TGF-β or 50 ng/mL TGF-β on PAPP-A2 mRNA expression (Figure 1; Wilcoxon Z = 0, p = 1; Wilcoxon Z = 0.2089 p = 0.8345; respectively). Treatment with TGF-β did not cause any significant increase in PAPP-A (10 ng/mL Wilcoxon Z = -0.209, p = 0.8345; 50 ng/mL Wilcoxon Z = -0.418, p = 0.6761) or ADAM12 (10 ng/mL Wilcoxon Z = 0, p = 1; 50 ng/mL Wilcoxon Z = 0, p = 1) mRNA levels. Furthermore, we did not find any significant difference in E-cadherin expression, suggesting that neither TNF-α (Wilcoxon Z = 0.208, p = 0.8345) nor TGF-β (10 ng/mL Wilcoxon Z = 0.626, p = 0.5309; 50 ng/mL Wilcoxon Z = -0.418, p = 0.6761) changed the rate of syncytialization.

Forskolin has been shown to increase intracellular cAMP levels and trigger increased cellular fusion in BeWo cells [30]. Surprisingly, we did not detect a significant decrease in E-cadherin mRNA compared to the 0.1% ethanol vehicle control (10 μM: Wilcoxon Z = -1.880, p = 0.0601; 100 μM: Wilcoxon Z = -1.462, p = 0.1437), and so did not find significant evidence of syncytialization in response to forskolin treatment. However, previous studies have shown that forskolin treatment at both 10 μM [57] and 100 μM [30,32,44,58] does induce cell fusion, based on other measurements of syncytialization such as levels of syncytin and human chorionic gonadotropin (hCG). We did not find any significant effect of either 10 μM or 100 μM of forskolin on PAPP-A2 expression (Figure 1; Wilcoxon Z = 0.418, p = 0.6761 in both cases).

Factors known to upregulate PAPP-A

A previous study by Conover et al. [33] tested the effect of various growth factors on PAPP-A expression in osteoblasts, finding that TGF-β, TNF-α, IL-1β or PGE2 all increased PAPP-A mRNA and protein expression. As we described above, in BeWo cells TGF-β had no effect on PAPP-A2 expression, but TNF-α caused a significant upregulation in both mRNA and protein. Treating BeWo cells with 100 ng/mL IL-1β did not have a significant effect on PAPP-A2 mRNA expression (Figure 1; Wilcoxon Z = 1.462, p = 0.1437). In preeclamptic pregnancies, PGE2 levels increase in placental tissue at term [59], and we found that treatment with 1 μM PGE2 resulted in a 14-fold upregulation of PAPP-A2 mRNA levels (Figure 1; Wilcoxon Z = 2.507, p = 0.0122). However, we were not able to confirm PAPP-A2 protein upregulation using the in-cell Western assay. Furthermore, PAPP-A and ADAM12 were not affected by any of these factors, including PGE2 (Z = -1.6712, p = 0.0947; Z = -1.6712, p = 0.0947; respectively).

Conclusions

Our study demonstrated that factors highly expressed in preeclamptic patients, PGE2 and TNF-α [54,59], increase the expression of PAPP-A2, at least at the mRNA level, suggesting a potential mechanism underlying the elevated PAPP-A2 levels in preeclamptic placentae at term [9,11-14]. Hypoxia, a condition known to occur in preeclamptic placentae [10], was also shown to increase PAPP-A2 expression. However, these same treatments had no effect on two other IGFBP proteases, PAPP-A and ADAM12. We have previously demonstrated that differences in placental PAPP-A2 expression do not result in significant changes in placental or birth weight in mice [51]. Both these previous results and those of the present study are consistent with the hypothesis that PAPP-A2 is upregulated as a consequence of placental pathology, rather than elevated PAPP-A2 levels being a cause of abnormal placental development and preeclampsia.
ADAM12s in maternal serum as a potential marker of pre-eclampsia. Prenat Diagn 2008, 28:212-216.

Miller R, Hupertz B. Human placental explants in culture: Approaches and assessments. Placenta 2006, 26:439-448.

Hung TH, Skipper JN, Burton PG. In vitro ischemia-reperfusion injury in term placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 2001, 159:1031-1043.

Guzik T, Tomruk S, Tuncay YA, Nak M, Sezginsoy S, Zemheri E, Yucel N, Kanadikirik F. The relation of increased uterine artery blood flow resistance and impaired trophoblast invasion in pre-eclamptic pregnancies. Arch Gynecol Obstet 2005, 272:283-288.

Meekins JW, Pinzenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994, 101:669-674.

Hung TH, Skipper JN, Charnock-Jones DS, Burton GJ. Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Curr Res 2002, 90:1274-1281.

Heazell AEP, Taylor NNU, Greenwood SL, Baker PN, Crocker IP. Does altered oxygenation or reactive oxygen species alter cell turnover of BeWo choriocarcinoma cells? Reprod Biol Online 2009, 18:111-119.

Kudo Y, Boyd CA, Kimura H, Cook PR, Redman CW, Sargent IL. Quantifying the syncytialization of human placent al trophoblast BeWo cells grown in vitro. Placenta 2009, 30:429-433.

Lachmeyer AMA, Dekker GA, Pals G, Aarnoudse JG, ten Kate LP, Argrimson R. Searching for syncytioma genes: the current position. Eur J Obstet Gynecol Reprod Biol 2002, 105:94-113.

Buimer M, Keijzer R, Post JA, Bril-Bosma M. Seven placental transcripts characterize HELLP syndrome. Placenta 2009, 29:444-451.

Nishizawa H, Pyor-Koishi K, Suzuki M, Kato T, Kogo H, Sekiya T, Kurahashi H, Udagawa Y. Increased levels of pregnancy-associated plasma protein-A2 in the serum of pre-eclampsic patients. Hum Reprod 2008, 14:595-602.

Varkonyi T, Schoenleber J, Nagy B, Fueter T, Tarca AL, Karaszi K, Schoenleber J, Hupucz F, Mihalik N, Kovalcic L, Roger J, Reil M, Pappo Z, Romoro R, Than NG. Microray Profiling Reveals That Placental Transcriptomes of Early-onset HELLP Syndrome and Preeclampsia Are Similar. Placenta 2011, 32:521-531.

Winn VD, Gormley M, Paquet AC, Graf AL, Henricksen L, Conovers CA, Oxvig C. Pregnancy-associated plasma protein-A (PAPP-A) and placental invasion with syncytioma formation in vivo. Hum Reprod 2003, 18:21849-21853.

King A, Thomas L, Bischof P. Cell culture models of trophoblast I: trophoblast cell lines—a workshop report. Placenta 2000, 21(Suppl A): S113-9.

Valinen Y, Ryynanen M. Synthesis and expression of human placental syncytin via cAMP mediated PKA signaling in human trophoblastic cells. Endocrinology 2005, 146:579-579.

Bersinger NA, Smarason AK, Muttukrishna S, Groome NP, Redman CW. Interleukin-10 and transforming growth factor-beta 1 increases syncytialisation in pre-eclampsia. Placenta 2003, 24:343-354.

Knerr I, Schubert SW, Wich C, Amanat K, Aigner T, Vogler T, Jung R, Dotsch J, Rasher W, Hashemohosseini S. Stimulation of GCMA and syncytioma via cAMP mediated PKA signaling in human trophoblast cells under normoxic and hypoxic conditions. FEBS Lett 2005, 579:3991-3996.

Kudo Y, Boyd CA, Sargent IL, Redman CW, Lee JM, Freeman TC. An analysis using DNA microarray of the time course of gene expression during syncytialization of a human placental cell line (BeWo). Placenta 2004, 25:479-488.

Conover CA, Chen BK, Reish ZT. Regulation of pregnancy-associated plasma protein-A expression in cultured human osteoblasts. Bone 2004, 34:297-302.

Ramos AJ, Cantero MR, Zhang P, Paychoudry MK, Green A, MacPhed D, Cantelli HF. Morphological and electrical properties of human trophoblast choriocarcinoma, BeWo cells. Placenta 2008, 29:492-502.

King A, Thomas L, Bischof P. Cell culture models of trophoblast II: trophoblast cell lines—a workshop report. Placenta 2000, 21(Suppl A): S113-9.

Valinen Y, Ryynanen M. Maternal serum ADAM12 levels correlate with PAPP-A levels during the first trimester. Gynecol Obstet Invest 2010, 69:503-6.

Coutillats C, Kao LC, Sehdev HM, Chin U, Babalola GO, Blaschuk OW, Strauss JF. E-cadherin expression during the differentiation of human trophoblasts. Development 2001, 113:767-777.

Arimoto-Ishida H, Sakata M, Sawada K, Nakayama M, Nishimoto F, Mabuchi S, Takeda T, Yamamoto T, Itohu A, Nakomoto Y, Lengyel E, Suehara N, Morishige K, Kimura T. E-cadherin expression during the differentiation of human trophoblasts. Development 2000, 202:837-847.

Bersinger NA, Smarason SK, Muttukrishna S, Groome NP, Redman CW: The relation of increased uterine artery blood flow resistance and impaired trophoblast invasion in pre-eclamptic pregnancies. Arch Gynecol Obstet 2005, 272:283-288.

Meekins JW, Pinzenborg R, Hanssens M, McFadyen IR, van Asshe A: A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994, 101:669-674.
47. Graven K, Farber H: Hypoxic regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase. Am J Physiol - Cell Ph 1998, 274:C347-C355.

48. Hayashi M, Sakata M, Takeda T, Tahara M, Yamamoto T, Okamoto Y, Minekawa R, Isobe A, Ohmichi M, Tasaka K, Murata Y: Up-regulation of c-met protooncogene product expression through hypoxia-inducible factor-1 alpha is involved in trophoblast invasion under low-oxygen tension. Endocrinology 2005, 146:4682-4689.

49. Baumann MU, Zamudio S, Illsley NP: Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol - Cell Ph 2007, 293:C477-C485.

50. Kneer I, Weigel C, Linnebahn K, Dotsch J, Meissner U, Fusch C, Rascher W: Transcriptional effects of hypoxia on fusogenic syncytin and its receptor ASCT2 in human cytotrophoblast BeWo cells and in ex vivo perfused placental cotyledons. Am J Obstet Gynecol 2003, 189:583-588.

51. Wagner PK, Christians JK: Altered placental expression of PAPP2 does not affect birth weight in mice. Reprod Biol Endocrin 2010, 8:90.

52. Collard CD, Gelman S: Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001, 94:1133-1138.

53. Leisser C, Knoffler M: Tumour necrosis factor-alpha impairs chorionic gonadotrophin beta-subunit expression and cell fusion of human villous cytotrophoblast. Mol Hum Reprod 2006, 12:601-609.

54. Wang Y, Walsh S: TNF-alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol 1996, 32:157-169.

55. Hung TH, Chambock-Jones DS, Skepper JN, Burton GI: Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol 2004, 164:1049-1061.

56. Morrish D, Paras M: Transforming growth factor-beta-1 inhibits placental differentiation and human chorionic-gonadotropin and human placental-lactogen secretion. Endocrinology 1991, 129:22-26.

57. Rama S, Rao A: Regulation of telomerase during human placental differentiation: a role for TGF beta 1. Mol Cell Endocrin 2001, 182:233-248.

58. Cohran V, Fang J, Milio L, Smith CH, Fant M: Type I insulin-like growth factor receptors in the BeWo choriocarcinoma cell (b30 clone) during cell differentiation. Placenta 1996, 17:313-320.

59. Munno I, Chechi LM, Lacedra G, Puglignano G, Patimo C, Lobascio A, Loizzi P: Spontaneous and induced release of prostaglandins, interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha by placental tissue from normal and preeclamptic pregnancies. Am J Reprod Immunol 1999, 42:369-374.