Constraints on the Masses of Fourth Generation Quarks

S. Hosseini†, M. Mohammadi Najafabadi†‡, A. Moshaii†‡, Y. Radkhorrani†, N. Tazik§

† Physics Department, Tarbiat Modarres University, Tehran, Iran
‡ School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395-5531, Tehran, Iran
§ Physics Department, Semnan University, Semnan, Iran

Abstract

We study the one loop contribution of the down type quark of the SM-like fourth generation (b') on the top quark electric dipole moment. Using the known limits on the top quark electric dipole moments (EDM), we place limits on the b' mass. Then from the estimated ratio for the masses of the fourth generation of quarks from other studies and the achieved bound from top quark EDM on $m_{b'}$, we obtain a limit for the up type quark of fourth generation (t') mass.

†Corresponding author email address: mojtaba@ipm.ir
1 Introduction

The Standard Model (SM) of particle physics is in a very good agreement with present experimental data. Nonetheless, it is believed to leave many questions unanswered, and this belief has resulted in numerous theoretical and experimental attempts to discover a more fundamental underlying theory. Various types of experiments may expose the existence of physics beyond the SM, including the search for direct production of exotic particles at high energy colliders. A complementary approach in hunting for new physics is to examine its indirect effects in higher order processes.

As mentioned, the SM with three generations of quarks and leptons is in excellent agreement with the current experimental data. However, the SM does not explain the fermion mass hierarchy and it also is not able to explain why there are precisely three families. Several models have been proposed to solve the shortcomings of the SM through the introduction of new generations of quarks and leptons. While some models beyond SM, such as Grand Unified Theories (GUT), predict the new generations of quarks or leptons. The strong CP problem is solvable by requiring additional quarks. The weak CP violation may be accommodated through the KM mechanism, while the strong CP issue can be solved in a model with two additional flavor of quarks by spontaneous CP violation. Another motivation for fourth generation is that in the literature it has been shown that a non-supersymmetric model with four generations can have successful unification of gauge couplings at the unification scale. In the scenarios of gauge mediated supersymmetry breaking additional generations of quarks and leptons arise automatically. More details can be found in [1], [2], [3] and references therein. It should be mentioned that the fourth generation of quarks and leptons can be a chiral doublet (SM-like fermion generation) or non-chiral doublet (also known as vector-like). For example, in Grand Unified Theories all types of additional fermions are possible. While in models which attempt to solve the strong CP problem only non-chiral doublet of quarks are considered. There have been already many indirect and direct studies on the fourth generation of quarks. For example, the effects of a vector-like fourth generation of quarks on the width of Z boson
and forward-backward asymmetry has been studied in [4]. Bounds on the mixing of the SM down type quarks with new vector-like singlet quarks derived in [5]. In [6], the pair production of t' quarks at Tevatron has been studied. It has been shown that the production cross section for $t't\bar{t}$ at hadron colliders could be considerably higher than QCD prediction if a gluon-prime (a massive color octet vector boson) is present in the theory. In [7], using a data sample corresponding to 2.8 fb^{-1} of integrated luminosity recorded by CDF experiment in proton anti-proton collisions, a limit was set on the production cross section of $t't\bar{t}$. From this limit a lower limit of 311 GeV/c^2 was derived for a new heavy top-like quark.

Since top quark is far more massive than other SM fermions, its interactions may be quite sensitive to new physics originating at higher scale [8],[9],[10]. Hence, the study of interactions of fourth generation of quarks with top quark might give interesting results about the fourth generation.

In this article, our aim is to constraint the mass of the down type quark of the fourth generation (b') using the one loop contribution of the b' in the electric dipole moment (EDM) of top quark. In the analysis, we will use the estimated bounds on the EDM’s of top quark to constraint the mass of b'. In [2], it has been shown that for the chiral doublet of (t', b') the ratio of masses is 1.1 or less ($m_{t'}/m_{b'} \leq 1.1$). Using this value, the bound on $m_{t'}$ is also estimated.

\section{The Contribution of the b' in the Top Quark EDM}

In this work, we examine the properties of masses of fourth generation of quarks. Similar to the interaction of Wtb', a general effective Lagrangian for the interaction of $Wtb'c$ can be written in the following form:

$$ \mathcal{L}_{WW} = \frac{g}{\sqrt{2}} t^\mu (g_L P_L + g_R P_R) b' W^\mu $$

where $P_L(P_R)$ are the left-handed (right-handed) projection operators. The g_L, g_R coefficients are complex in general. This signifies the CP violating effects. These coefficients
include the mixing factor between the fourth family and the top quark (V_{tb}') in the generalized CKM matrix. For the interaction of Wtb, these factors have been estimated from different studies. For example, from the B decay processes the limits on g_L, g_R are:

$$\text{Re}(g_R) \leq 4 \times 10^{-3}, \quad \text{Im}(g_R) \leq 10^{-3} \quad \text{and} \quad \text{Im}(g_L) \leq 3 \times 10^{-2}$$

[11],[12],[13].

The introduced Lagrangian in Eq.1 induces an electric dipole moment for the top quark at the one loop level via the Feynman diagrams shown in Fig.1. After calculation of the one loop corrections to the vertex of $\bar{t}t\gamma$ shown in Fig.1, we find some terms with different structures. The coefficient of the structure of $\sigma_{\mu\nu}\gamma^5 q^\nu$ gives the top quark electric dipole moment where q^ν is the four momentum of photon [14]. It should be mentioned that this structure arises via radiative corrections and does not exist at tree level. After all calculation, the top EDM is found as follows:

$$\text{Re}(d_{top}) = -\frac{e}{m_W^2 32\pi} \frac{3\alpha}{m_W} \left(V_1(x_{b'}, x_{W}) + \frac{1}{3} V_2(x_{b'}, x_{W}) \right) \text{Im}(g_L g_R^*) , \quad (2)$$

where $x_a = m_a^2/m_t^2$. The $V_{1,2}$ are the functions stand for the contribution of the Feynman diagram where the photon emerges from the W boson and the b' quark line, respectively. They have the following forms:

$$V_1 = -(4x_W - x_{b'} + 1) f(x_{b'}, x_W) - \left(x_{b'}^2 + 4x_W^2 - 5x_{b'}x_W - 3x_W - 2x_{b'} + 1 \right) g(x_{b'}, x_W)$$

$$V_2 = -(4x_W - x_{b'} + 1) f(x_W, x_{b'}) + \left(x_{b'}^2 + 4x_W^2 - 5x_{b'}x_W - 3x_W - 2x_{b'} + 1 \right) g(x_W, x_{b'}) \quad (3)$$
where the functions of f and g are as follows:

$$f(a, b) = \left(\frac{1 + a - b}{2}\right) \log \left(\frac{b}{a}\right) + \sqrt{(1 - a - b)^2 - 4ab} \times \text{ArcSech}\left(\frac{2\sqrt{ab}}{a + b - 1}\right) + 2$$

$$g(a, b) = -\frac{1}{2} \log \left(\frac{b}{a}\right) - \frac{1 + a - b}{\sqrt{(1 - a - b)^2 - 4ab}} \times \text{ArcSech}\left(\frac{2\sqrt{ab}}{a + b - 1}\right)$$

3 The Limits on $m_{t'}$, $m_{b'}$

In [15], the authors have predicted an upper bound for the top quark EDM. In that paper, a source of CP violation mediated by $WW\gamma$ vertex has been analyzed using the effective Lagrangian technique and its implications on the CP-odd electromagnetic properties of the Standard Model particles have been studied. The contribution of $WW\gamma$ vertex to the EDM of charged leptons and quarks has been calculated. Their estimate for the top quark EDM is 1.6×10^{-22} e.cm. In Eq[2], a reasonable assumption is to set $\text{Im}(g_Lg_R^*)$ to a value around 10^{-3} [16]. Under this assumption and by using the bound of the top EDM, the lower limit of 268 GeV/c^2 is achieved for the mass of the down type quark in the fourth family of quarks. Fig[2] presents the dependency of the top quark electric dipole moment on the $m_{t'}$ for $\text{Im}(g_Lg_R^*) = 10^{-3}$.

Obviously, this lower limit depends on the quantity of $\text{Im}(g_Lg_R^*)$. However, it is not
highly dependent on $\text{Im} (g_L g_R^*)$. When $\text{Im} (g_L g_R^*)$ changes from 10^{-3} to 1, the lower limit on the $m_{\nu'}$ varies only up to 3%. One of the recent estimated lower bound on the $m_{\nu'}$ is 199 GeV/c^2 \cite{7}. Hence, the constraint obtained in the current study is compatible with other studies and the lower bound on the $m_{\nu'}$ is slightly increased.

For the chiral doublet of (t', b'), the electroweak precision measurements predict that $\frac{m_{t'}}{m_{b'}} \leq 1.1$. Combining this with the bound obtained from top EDM on the mass of b' immediately gives the lower limit of 294.8 GeV/c^2 on the mass of t'. This value also confirms the achieved constraint from other studies (311 GeV/c^2) which mentioned in the introduction \cite{7}.

4 Conclusion

In this paper, we tried to extract a limit on the mass of the down type quark of the SM-like fourth generation (b') by employing a general Lagrangian for the interaction of $W - t - b'$ with complex left-handed and right-handed couplings. This general Lagrangian produces an electric dipole moment for the top quark at one loop level which contains $m_{\nu'}$. From the estimated upper limit on the top quark EDM, a lower limit of 268 GeV/c^2 predicted for the mass of b'. From electroweak precision data, other studies have been shown that for the chiral doublet of (t', b') the ratio of masses is 1.1 or less. It turns out that the lower bound on the mass of t' is 294.8 GeV/c^2. These results are regular and compatible with those obtained from other studies and the bound on $m_{\nu'}$ is slightly increased.

References

[1] P. H. Frampton, P. Q. Hung and M. Sher, Phys. Rept. 330 (2000) 263, [arXiv:hep-ph/9903387].

[2] P. H. Frampton and P. Q. Hung, Phys. Rev. D 58 (1998) 057704, [arXiv:hep-ph/9711218].

6
[3] V. Barger and Roger J.N. Phillips, Collider Physics (Frontiers in Physics).

[4] T. Yoshikawa, Prog. Theor. Phys. 96, 269 (1996) arXiv:hep-ph/9512251.

[5] L. Lavoura and J. Silva, Phys. Rev. D 47 (1993) 1117.

[6] B. A. Dobrescu, K. Kong and R. Mahbubani, arXiv:0902.0792 [hep-ph].

[7] A. Lister [CDF Collaboration], arXiv:0810.3349 [hep-ex].

[8] M. Beneke et al., arXiv:hep-ph/0003033.

[9] M. Mohammadi Najafabadi and N. Tazik, arXiv:0902.0441 [hep-ph].

[10] M. Mohammadi Najafabadi, arXiv:0902.0059 [hep-ph].

[11] A. Abd El-Hady and G. Valencia, Phys. Lett. B 414 (1997) 173, arXiv:hep-ph/9704300.

[12] F. Larios, M. A. Perez and C. P. Yuan, Phys. Lett. B 457 (1999) 334, arXiv:hep-ph/9903394.

[13] B. Grzadkowski and M. Misiak, Phys. Rev. D 78 (2008) 077501, arXiv:0802.1413 [hep-ph].

[14] M. Pospelov and A. Ritz, Annals Phys. 318 (2005) 119, arXiv:hep-ph/0504231.

[15] H. Novales-Sanchez and J. J. Toscano, Phys. Rev. D 77 (2008) 015011, arXiv:0712.2008 [hep-ph].

[16] W. S. Hou, M. Nagashima and A. Soddu, Phys. Rev. D 72 (2005) 115007, arXiv:hep-ph/0508237.

[17] C. Amsler et al., Phys. Lett. B 667 (2008) 1.