Celestial Holography

Sabrina Pasterski, Monica Pate, and Ana-Maria Raclariu

Abstract

Celestial holography proposes a duality between the gravitational $\mathcal{S}$-matrix and correlators in a conformal field theory living on the celestial sphere. In this white paper, solicited for the 2022 Snowmass process, we review the motivation from asymptotic symmetries, fundamentals of the proposed holographic dictionary, potential applications to experiment and theory, and some important open questions.
1 Motivation

The formulation of a complete theory of quantum gravity remains a major outstanding problem in modern physics. This fundamental, yet elusive, theory would provide the microscopic structure underlying systems whose long distance behavior is governed by Einstein’s theory of general relativity. To date, remarkable progress has emerged from concrete realizations \[1\text{–}4\] of the holographic principle \[5\text{–}7\], underscoring the power of identifying a lower-dimensional non-gravitational description of the same physics. Celestial holography provides a new approach to quantum gravity in asymptotically flat spacetimes by seeking to establish such a holographic correspondence.

More specifically, celestial holography proposes a duality between gravitational scattering in asymptotically flat spacetimes and a conformal field theory living on the celestial sphere \[8\text{–}11\]. One of the core features of this program is the reorganization of observables according to the principle of putting symmetries front and center. This framework makes manifest infinite dimensional enhancements that are typically hidden in soft theorems \[8\]. The central objects of study are celestial amplitudes, which recast the gravitational $\mathcal{S}$-matrix into a basis of boost eigenstates. These transform like the correlation functions of a conformal field theory, providing a key entry in the holographic dictionary. The quest for a self-consistent intrinsically-defined dual theory is thus isomorphic to the $\mathcal{S}$-matrix program \[12\text{–}14\].

In this white paper we review the asymptotic symmetry origins of this program and the basic building blocks of the celestial holographic dictionary, before presenting some of the prospects for merging tools from the relativity, amplitudes, and bootstrap communities in the form of potential applications and open questions. For concreteness we restrict to massless scattering in 3+1 dimensions throughout, though our story naturally generalizes to both higher dimensions \[15\text{–}18\] and massive external states \[15\text{–}19\text{,}22\].
2 Symmetries from the Infrared

Matching the symmetries on both sides of the proposed duality is the natural first step towards constructing a holographic dictionary from the ground up. In the bulk the relevant question is: what are the symmetries of asymptotically flat spacetimes? This question was first tackled by Bondi, van der Burg, Metzner, and Sachs [23–25]. Asymptotically flat spacetimes are a class of solutions to Einstein’s equations with vanishing cosmological constant and localized matter stress-energy [23–27], which capture the physics of isolated gravitational systems. Asymptotic symmetries are diffeomorphisms that preserve the causal structure of the boundary in a conformal compactification. They can be identified as the residual diffeomorphisms that remain after fixing appropriate gauge and boundary conditions. Namely

\[
\text{Asymptotic Symmetries} = \frac{\text{Allowed Symmetries}}{\text{Trivial Symmetries}},
\]

(2.1)

where we quotient by symmetries that act trivially on the phase space. The procedure for identifying the asymptotic symmetries involves a delicate interplay between the allowed boundary conditions and resulting asymptotic symmetry group. For example, BMS employed boundary conditions that led to an enhancement of the Poincaré group that includes angle-dependent translations of the generators of null infinity, known as supertranslations. However, it was not until rather recently that studies considered boundary conditions that were sufficiently relaxed to permit local enhancements of the Lorentz subgroup, called superrotations [28, 29].

This sensitivity to the choice of boundary conditions lends a degree of arbitrariness that one would like to mitigate. A directly observable consequence of asymptotic symmetries, known as the memory effect, informs this choice, singling out physically relevant solutions and symmetries. The celestial holography program is rooted in the interesting observation [30,31] that the perturbative gravitational S-matrix provides additional guidance in addressing this question. In particular, the Ward identities for asymptotic symmetries manifest as soft theorems of the S-matrix (see [8] and references therein)

\[
\langle \text{out} | Q^+ S - S Q^- | \text{in} \rangle = 0 \iff \langle \text{out} | a(\omega) S | \text{in} \rangle \propto \langle \text{out} | S | \text{in} \rangle.
\]

(2.2)

In fact there is an equivalence [32–34] between memory effects [35–43], soft theorems [44–50], and Ward identities [51–72] for asymptotic symmetries [73–82]. Moreover, the symmetry generators are naturally represented by currents in a two-dimensional theory [16,30,92–96]. In a particularly rewarding example of applying this equivalence, the aforementioned speculation about the physicality of superrotations led to the discovery of a subleading soft graviton theorem [47]. This in turn established the Ward identity for a Virasoro symmetry [52] and revealed a new memory

\footnote{For their generalizations to higher dimensions and massive external states, see [83–88] and [89–91].}
effect [33], as well as a 4D scattering mode that behaves like the stress tensor of a 2D conformal field theory [93].

Thus, a foundational lesson that emerges from symmetry is that a holographic dual to quantum gravity in four-dimensional asymptotically flat spacetimes must admit a two-dimensional conformal symmetry! Accordingly, the proposed dual theory built upon this 2D conformal symmetry is referred to as the celestial conformal field theory (CCFT).

3 Building a Holographic Dictionary

The subleading soft graviton mode couples to an external particle of helicity $\ell$ and energy $\omega$ through the operators [47, 54]

$$\hat{h} = \frac{1}{2}(\ell - \omega \partial_\omega), \quad \hat{\bar{h}} = \frac{1}{2}(-\ell - \omega \partial_\omega).$$

(3.1)

Scattering states that diagonalize $\hat{h}$ and $\hat{\bar{h}}$ are constructed by transforming from momentum to boost eigenstates [15, 19, 54, 93, 97–99]. For massless particles, this can be achieved via a Mellin transform in the energy

$$\langle \Theta^\pm_\Delta_1(z_1, \bar{z}_1) \cdots \Theta^\pm_\Delta_n(z_n, \bar{z}_n) \rangle = \prod_{i=1}^n \int_0^{\infty} d\omega_i \omega_i^{\Delta_i-1} \langle \text{out} | S | \text{in} \rangle,$$

(3.2)

where $(z_i, \bar{z}_i)$ parametrize the direction of propagation of the $i$th particle, $\Delta_i = h_i + \bar{h}_i$ is its scaling dimension or Rindler energy, and the $\pm$ superscripts distinguish between incoming and outgoing operators. Generalizations of this basis have been explored in [15, 100–105]. We thus have a map between traditional $S$-matrix elements and correlation functions on the celestial sphere.

The equivalence between Lorentz transformations in four dimensions and global conformal transformations on the celestial sphere guarantees that the operators constructed from Mellin-transformed wavepackets transform as quasi-primaries with conformal weights $(h, \bar{h})$. In a gravitational theory, these are enhanced to Virasoro primaries via their coupling to the subleading soft graviton [52, 93, 98, 106].

Given the central correspondence (3.2), a more complete holographic dictionary is readily built by directly transforming known amplitudes and features thereof. Universal properties including soft and collinear limits are of particular interest. We present a summary of the current status, organized in terms of standard CFT data, namely the spectrum and OPE coefficients.

The Spectrum  Finite-energy scattering states, characterized by normalizable single-particle wavepackets in the bulk [15], are captured by celestial operators with a spectrum [97]

$$\Delta = 1 + i\lambda, \quad \lambda \in \mathbb{R}. $$

(3.3)
Nevertheless, it has proven judicious to analytically continue $\Delta$ over the complex plane \cite{107} in order to incorporate both the action of translations which shift $\Delta \rightarrow \Delta + 1$ \cite{108,110}, as well as soft theorems which involve operators with (half)-integer dimensions \cite{106,108,111,116}. The conformal dimensions in the latter admit shortened representations of the global conformal symmetry \cite{17,18,116,120}, explaining the observed organization of soft theorems into these multiplets.

Remarkably, factorization in the soft limit of scattering persists in the boost eigenstate basis \cite{98,106,111,113,121,123}. In particular, soft theorems, which prescribe the Laurent coefficients of an expansion about $\omega \rightarrow 0$, become statements specifying the residues of simple poles in the corresponding external dimension $\Delta$. More generally, IR and UV phenomena can each have a rather stark and distinct effect on the analyticity of celestial amplitudes in their conformal dimensions \cite{124,126}. For example, as a function of the net conformal dimension (which is Mellin-conjugate to the center of mass energy), celestial amplitudes admit a series of simple poles. The locations of the poles distinguish UV completions of quantum field theories from expected UV completions of quantum gravity and the residues reproduce the coefficients in an EFT expansion.

**OPE Coefficients** The OPE data of the celestial CFT encode the behavior of scattering in collinear limits \cite{106,114,121,127,132}. This follows from the equivalence between the limit in which two operators approach one another on the celestial sphere and the limit in which two massless on-shell momenta become collinear. Celestial OPE coefficients obey symmetry constraints intrinsic to the CCFT. While superrotations establish a Virasoro symmetry naturally incorporated into the standard CFT technology, global translations, as well as the infinity of soft symmetries associated with (half)-integer dimension insertions, imply non-standard constraints on the CFT data. Curiously the Ward identities arising from soft theorems lead to recursion relations for the OPE data \cite{114,131} and, given certain analyticity assumptions in $\Delta$, are sufficient to completely bootstrap the leading and, in some cases, subleading collinear behavior of scattering \cite{114,128,130,131,133,135}. This quite unique feature of CCFT highlights the power of our symmetry-based approach, which apparently allows 4D kinematics to determine the dynamics of the 2D dual. Conversely, there is even recent evidence that celestial symmetries can be used to determine certain bulk dynamics \cite{136}.

There are many more features of the celestial holographic dictionary that are under active investigation for which the following two approaches have proven fruitful:

1. Determine properties of CCFT from known behavior of scattering amplitudes.
2. Establish intrinsic CCFT structure by applying known CFT properties or techniques.
In the first category, we have a wide variety of efforts to understand loop effects \[125, 137, 139\], double copy relations \[140–143\], supersymmetry \[21, 22, 115, 131, 143, 149\], changes in signature \[102, 150, 151\], twistor methods \[104, 111, 152, 153\], and more general amplitudes techniques \[146, 147, 154, 156\] and features \[125, 126, 157\]. For the second, there have been extensive investigations of constraints from celestial symmetries \[17, 18, 81, 109, 110, 114, 116–120, 128, 131, 133–135, 148, 152, 158–164\], the appropriate representations \[20, 165–168\], 2D EFT models for conformally soft sectors \[94, 96, 98, 169–178\], the celestial state operator correspondence \[103\], and conformal block decomposition \[101, 102, 132, 179, 180\]. These highlights are only a snapshot of an active venture. While there is a rich variety of open questions regarding technical aspects of the CCFT dictionary, let us turn now to the big picture goals for this program that we hope to accomplish in the near future.

4 Applications and Open Questions

Measuring Memory Effects The theoretical framework of asymptotic flatness is expected to describe a wide range of experimentally relevant systems from collider to astrophysical (but sub-cosmological) scales. Memory effects are low-frequency observable signatures \[35–38\] of symmetry enhancements \[32, 34, 41\] and thus provide an experimental litmus test for the relevance of the assumed boundary conditions to a given physical process. The soft physics program has identified new memory effects in both gravity (spin memory \[33\]) and gauge theory (color memory \[41\]), adding to the known examples of leading gravitational \[32, 35–37\] and electromagnetic \[34, 38, 39\] memory. In fact, experimental investigations into the leading gravitational memory effect are already underway \[181\] and the choice of BMS frame plays an important role in extracting the correct gravitational waveform \[182\]. Moreover, color memory is a natural observable \[12\] in the physical regime that will be probed by the recently launched electron-ion collider (EIC) project \[183, 184\]. It is tantalizing to ask: Can spin memory be measured by LISA? Will color memory be observed at the EIC? At the moment there are various proof-of-concept measurement proposals \[33, 34, 39, 41\] and experimental feasibility studies \[40\] for these lesser known memories, but we expect there is much more to come.

Constraining Black Hole Evaporation The infinite-dimensional symmetries that motivated the celestial holography program have interesting applications in their own right. In the context of infrared divergences, the notion of asymptotic charge non-conservation provides a beautiful interpretation of the vanishing amplitude for emitting a finite number of soft particles \[185\]. Upon including an infinite number of these soft emissions, one obtains a finite result precisely because the contributions from the soft quanta render the asymptotic charges conserved. By identifying
symmetry as the underlying origin of infrared divergences, this perspective establishes a general principle for constructing infrared safe amplitudes \[120, 125, 185, 192\].

The implications of asymptotic symmetry conservation laws are even more rich in the presence of horizons, which can carry soft hair \[193, 196\]. For example, asymptotic symmetries constrain black hole evaporation and thereby provide insight into questions about information loss and firewalls \[197, 205\]. Determining the precise phrasing of these statements within the CCFT framework is an active area of research \[98, 206, 207\] which will help bridge the gap between the celestial holography program and standard techniques from AdS holography for quantum information exchange. To this end, it would prove fruitful to understand how to recover celestial CFT from a flat limit of AdS by, for example, zooming into a bulk point \[208, 209\] or relaxing the standard boundary conditions to allow for radiation \[210\].

**A Bootstrap Program** The celestial holography program is inherently isomorphic to the \(S\)-matrix program. Namely any intrinsic definition of the celestial CFT should include a set of rules for constructing consistent (gravitational) scattering matrices as a function of their on-shell data. Our discussion of the celestial holographic dictionary demonstrates the success with which we have exploited soft and collinear behavior of scattering amplitudes to constrain and in some cases determine properties of celestial amplitudes. While CCFT may be an exotic 2D CFT \[99, 154\], we have already seen indications of a simple analytic structure in the boost weights that encodes information about bulk physics \[125, 126, 157\]. Recently, the CCFT framework facilitated the identification of a \(w_{1+\infty}\) algebra underlying the soft symmetries of the \(S\)-matrix \[116, 131, 148, 152, 160, 162\]. In turn, this symmetry algebra supplies the CCFT with yet more powerful organizing principles. Codifying the rules for a consistent CCFT will be an important step for bootstrapping the \(S\)-matrix in the boost basis.

**Connecting to String Theory** A crowning achievement for the celestial holography program would be for it to determine concretely whether string theories are the only consistent theories of (asymptotically flat) quantum gravity. Thus far, it has been observed that even at tree-level, string theoretic amplitudes are sufficiently well-behaved in the UV to admit a celestial representation \[124, 125\]. Yet another interesting line of inquiry is into the relation (and possible equivalence?) between CCFTs and worldsheet constructions of quantum gravity. Recent results matching celestial OPEs to worldsheet OPEs in both standard and twistor string contexts \[153, 162\], motivated by the discovery of symmetry algebras common to single helicity sectors of CCFT \[116, 131, 148, 152, 160, 162\] and stringy constructions, evoke even more anticipation!
Acknowledgements

This subfield has emerged as a collective effort of the many authors presented in the references below. We are indebted to all of our collaborators and colleagues, especially our phenomenal advisor Andrew Strominger. We thank Laurent Freidel, Andrew Strominger, and Herman Verlinde for comments on a draft. The work of S.P. is supported by the Sam B. Treiman Fellowship at the Princeton Center for Theoretical Science. The work of M.P is supported by the Harvard Society of Fellows, DOE grant de-sc/000787, and the Black Hole Initiative at Harvard University, funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation. The work of A.R. at the Perimeter Institute is supported by the Stephen Hawking fellowship and the Government of Canada through the Department of Innovation, Science and Industry Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

References

[1] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” *Adv. Theor. Math. Phys.* 2 (1998) 231–252, arXiv:hep-th/9711200.

[2] E. Witten, “Anti-de Sitter space and holography,” *Adv. Theor. Math. Phys.* 2 (1998) 253–291, arXiv:hep-th/9802150 [hep-th].

[3] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” *Phys. Rept.* 323 (2000) 183–386, arXiv:hep-th/9905111.

[4] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” *Phys. Rev. Lett.* 96 (2006) 181602, arXiv:hep-th/0603001.

[5] G. ’t Hooft, “Dimensional reduction in quantum gravity,” *Conf. Proc. C* 930308 (1993) 284–296, arXiv:gr-qc/9310026.

[6] L. Susskind, “The World as a hologram,” *J. Math. Phys.* 36 (1995) 6377–6396, arXiv:hep-th/9409089.

[7] R. Bousso, “The Holographic principle,” *Rev. Mod. Phys.* 74 (2002) 825–874, arXiv:hep-th/0203101.

[8] A. Strominger, *Lectures on the Infrared Structure of Gravity and Gauge Theory.* Princeton University Press, 2018. arXiv:1703.05448 [hep-th].
[9] S. Pasterski, “Implications of Superrotations,” Phys. Rept. 829 (2019) 1–35, arXiv:1905.10052 [hep-th]

[10] A.-M. Raclariu, “Lectures on Celestial Holography,” arXiv:2107.02075 [hep-th]

[11] S. Pasterski, “Lectures on Celestial Amplitudes,” arXiv:2108.04801 [hep-th]

[12] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic S-matrix. Cambridge Univ. Press, Cambridge, 1966.

[13] H. Elvang and Y.-t. Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th]

[14] J. M. Henn and J. C. Plefka, Scattering Amplitudes in Gauge Theories, vol. 883. Springer, Berlin, 2014.

[15] S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D96 no. 6, (2017) 065022, arXiv:1705.01027 [hep-th]

[16] D. Kapec and P. Mitra, “A $d$-Dimensional Stress Tensor for Mink$$_{d+2}$$ Gravity,” JHEP 05 (2018) 186, arXiv:1711.04371 [hep-th]

[17] S. Banerjee, P. Pandey, and P. Paul, “Conformal properties of soft operators: Use of null states,” Phys. Rev. D 101 no. 10, (2020) 106014, arXiv:1902.02309 [hep-th]

[18] S. Banerjee and P. Pandey, “Conformal properties of soft-operators. Part II. Use of null-states,” JHEP 02 (2020) 067, arXiv:1906.01650 [hep-th].

[19] S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D96 no. 6, (2017) 065026, arXiv:1701.00049 [hep-th]

[20] Y. A. Law and M. Zlotnikov, “Massive Spinning Bosons on the Celestial Sphere,” JHEP 06 (2020) 079, arXiv:2004.04309 [hep-th]

[21] L. Iacobacci and W. Mück, “Conformal Primary Basis for Dirac Spinors,” Phys. Rev. D 102 no. 10, (2020) 106025, arXiv:2009.02938 [hep-th]

[22] S. A. Narayanan, “Massive Celestial Fermions,” arXiv:2009.03883 [hep-th]

[23] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A269 (1962) 21–52
[24] R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A270 (1962) 103–126.

[25] R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851–2864.

[26] A. Ashtekar, “Asymptotic Quantization of the Gravitational Field,” Phys. Rev. Lett. 46 (1981) 573–576.

[27] D. Christodoulou, The Global Nonlinear Stability of the Minkowski Space (PMS-41). Princeton University Press, Princeton, 2014-07-14.

[28] G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS CNCFG (2010) 010, arXiv:1102.4632 [gr-qc] [Ann. U. Craiova Phys.21, S11 (2011)].

[29] G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, arXiv:1106.0213 [hep-th].

[30] A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” JHEP 07 (2014) 151, arXiv:1308.0589 [hep-th].

[31] A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, arXiv:1312.2229 [hep-th].

[32] A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, arXiv:1411.5745 [hep-th].

[33] S. Pasterski, A. Strominger, and A. Zhiboedov, “New Gravitational Memories,” JHEP 12 (2016) 053, arXiv:1502.06120 [hep-th].

[34] S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” JHEP 09 (2017) 154, arXiv:1505.00716 [hep-th].

[35] Y. B. Zel’dovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of superdense stars,” Sov. Astron. Lett 18 (1974) 17.

[36] V. B. Braginsky and L. P. Grishchuk, “Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas,” Sov. Phys. JETP 62 (1985) 427–430. [Zh. Eksp. Teor. Fiz.89,744(1985)].

[37] V. B. Braginsky and K. S. Thorne, “Gravitational-wave bursts with memory and experimental prospects,” Nature 327 no. 6118, (1987) 123–125.
[38] L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational wave memory,” *Class. Quant. Grav.* **30** (2013) 195009, [arXiv:1307.5098 [gr-qc]]

[39] L. Susskind, “Electromagnetic Memory,” [arXiv:1507.02584 [hep-th]]

[40] D. A. Nichols, “Spin memory effect for compact binaries in the post-Newtonian approximation,” *Phys. Rev. D* **95** no. 8, (2017) 084048, [arXiv:1702.03300 [gr-qc]]

[41] M. Pate, A.-M. Raclariu, and A. Strominger, “Color Memory: A Yang-Mills Analog of Gravitational Wave Memory,” *Phys. Rev. Lett.* **119** no. 26, (2017) 261602, [arXiv:1707.08016 [hep-th]]

[42] A. Ball, M. Pate, A.-M. Raclariu, A. Strominger, and R. Venugopalan, “Measuring color memory in a color glass condensate at electron–ion colliders,” *Annals Phys.* **407** (2019) 15–28, [arXiv:1805.12224 [hep-ph]]

[43] E. Himwich, Z. Mirzaiyan, and S. Pasterski, “A Note on the Subleading Soft Graviton,” [arXiv:1902.01840 [hep-th]]

[44] F. E. Low, “Scattering of light of very low frequency by systems of spin 1/2,” *Phys. Rev.* **96** (1954) 1428–1432

[45] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions,” *Phys. Rev.* **110** (1958) 974–977

[46] S. Weinberg, “Infrared photons and gravitons,” *Phys. Rev.* **140** (1965) B516–B524

[47] F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” [arXiv:1404.4091 [hep-th]]

[48] A. Sen, “Subleading Soft Graviton Theorem for Loop Amplitudes,” *JHEP* **11** (2017) 123, [arXiv:1703.00024 [hep-th]]

[49] A. Laddha and A. Sen, “Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity,” *JHEP* **10** (2017) 065, [arXiv:1706.00759 [hep-th]]

[50] A. Laddha and A. Sen, “Logarithmic Terms in the Soft Expansion in Four Dimensions,” *JHEP* **10** (2018) 056, [arXiv:1804.09193 [hep-th]]

[51] T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” *JHEP* **05** (2015) 151, [arXiv:1401.7026 [hep-th]]

[52] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the quantum gravity S-matrix,” *JHEP* **08** (2014) 058, [arXiv:1406.3312 [hep-th]]
[53] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” *JHEP* **10** (2014) 112, [arXiv:1407.3789 [hep-th]].

[54] V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of QED,” *Phys. Rev. Lett.* **113** no. 11, (2014) 111601, [arXiv:1407.3814 [hep-th]].

[55] M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton theorem,” *Phys. Rev.* **D90** no. 12, (2014) 124028, [arXiv:1408.2228 [hep-th]].

[56] D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED in Even Dimensions,” *Adv. Theor. Math. Phys.* **21** (2017) 1747–1767, [arXiv:1412.2763 [hep-th]].

[57] S. G. Avery and B. U. W. Schwab, “Burg-Metzner-Sachs symmetry, string theory, and soft theorems,” *Phys. Rev. D* **93** (2016) 026003, [arXiv:1506.05789 [hep-th]].

[58] A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” *Phys. Rev. Lett.* **116** no. 3, (2016) 031602, [arXiv:1509.00543 [hep-th]].

[59] M. Campiglia, “Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime,” *JHEP* **11** (2015) 160, [arXiv:1509.01408 [hep-th]].

[60] S. G. Avery and B. U. W. Schwab, “Noether’s second theorem and Ward identities for gauge symmetries,” *JHEP* **02** (2016) 031, [arXiv:1510.07038 [hep-th]].

[61] T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories,” [arXiv:1511.07429 [hep-th]].

[62] S. G. Avery and B. U. Schwab, “Residual Local Supersymmetry and the Soft Gravitino,” *Phys. Rev. Lett.* **116** no. 17, (2016) 171601, [arXiv:1512.02657 [hep-th]].

[63] V. Lysov, “Asymptotic Fermionic Symmetry From Soft Gravitino Theorem,” [arXiv:1512.03015 [hep-th]].

[64] M. Campiglia and A. Laddha, “Subleading soft photons and large gauge transformations,” *JHEP* **11** (2016) 012, [arXiv:1605.09677 [hep-th]].

[65] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,” *JHEP* **01** (2017) 036, [arXiv:1608.00685 [gr-qc]].

[66] T. He, D. Kapec, A.-M. Raclariu, and A. Strominger, “Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity,” *JHEP* **08** (2017) 050, [arXiv:1701.00496 [hep-th]].
[67] M. Campiglia, L. Coito, and S. Mizera, “Can scalars have asymptotic symmetries?,” *Phys. Rev. D* **97** no. 4, (2018) 046002, arXiv:1703.07885 [hep-th].

[68] P. Mitra, *Asymptotic Symmetries in Four-Dimensional Gauge and Gravity Theories*. PhD thesis, Harvard U. (main), 5, 2017.

[69] A. Laddha and P. Mitra, “Asymptotic Symmetries and Subleading Soft Photon Theorem in Effective Field Theories,” *JHEP* **05** (2018) 132, arXiv:1709.03850 [hep-th].

[70] T. M. He, *On Soft Theorems and Asymptotic Symmetries in Four Dimensions*. PhD thesis, Harvard U. (main), 2018.

[71] D. S. Kapec, *Aspects of Symmetry in Asymptotically Flat Spacetimes*. PhD thesis, Harvard U., 5, 2018.

[72] Z. Liu and P. Mao, “Infrared photons and asymptotic symmetries,” *Phys. Lett. B* **822** (2021) 136698, arXiv:2107.03240 [hep-th].

[73] G. Barnich and C. Troessaert, “Finite BMS transformations,” *JHEP* **03** (2016) 167, arXiv:1601.04090 [gr-qc].

[74] G. Compère and J. Long, “Vacua of the gravitational field,” *JHEP* **07** (2016) 137, arXiv:1601.04958 [hep-th].

[75] A. Strominger and A. Zhiboedov, “Superrotations and Black Hole Pair Creation,” *Class. Quant. Grav.* **34** no. 6, (2017) 064002, arXiv:1610.00639 [hep-th].

[76] G. Compère, A. Fiorucci, and R. Ruzziconi, “Superboost transitions, refraction memory and super-Lorentz charge algebra,” *JHEP* **11** (2018) 200, arXiv:1810.00377 [hep-th].

[77] F. Alessio and M. Arzano, “A fuzzy bipolar celestial sphere,” *JHEP* **07** (2019) 028, arXiv:1901.01167 [gr-qc].

[78] M. Campiglia and J. Peraza, “Generalized BMS charge algebra,” arXiv:2002.06691 [gr-qc].

[79] G. Barnich and R. Ruzziconi, “Coadjoint representation of the BMS group on celestial Riemann surfaces,” arXiv:2103.11253 [gr-qc].

[80] L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended corner symmetry, charge bracket and Einstein’s equations,” *JHEP* **09** (2021) 083, arXiv:2104.12881 [hep-th].

[81] L. Donnay and R. Ruzziconi, “BMS Flux Algebra in Celestial Holography,” arXiv:2108.11969 [hep-th].
[82] P. B. Aneesh, G. Compè re, L. P. de Gioia, I. Mol, and B. Swidler, “Celestial Holography: Lectures on Asymptotic Symmetries,” arXiv:2109.00997 [hep-th].

[83] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-dimensional supertranslations and Weinberg’s soft graviton theorem,” Ann. Math. Sci. Appl. 02 (2017) 69–94, arXiv:1502.07644 [gr-qc].

[84] M. Pate, A.-M. Raclariu, and A. Strominger, “Gravitational Memory in Higher Dimensions,” JHEP 06 (2018) 138 arXiv:1712.01204 [hep-th].

[85] T. He and P. Mitra, “Asymptotic symmetries and Weinberg’s soft photon theorem in Mink$_{d+2}$,” JHEP 10 (2019) 213, arXiv:1903.02608 [hep-th].

[86] T. He and P. Mitra, “Asymptotic symmetries in (d + 2)-dimensional gauge theories,” JHEP 10 (2019) 277, arXiv:1903.03607 [hep-th].

[87] L. Freidel, F. Hopfmüller, and A. Riello, “Asymptotic Renormalization in Flat Space: Symplectic Potential and Charges of Electromagnetism,” JHEP 10 (2019) 126, arXiv:1904.04384 [hep-th].

[88] A. Campoleoni, D. Francia, and C. Heissenberg, “On asymptotic symmetries in higher dimensions for any spin,” JHEP 12 (2020) 129, arXiv:2011.04420 [hep-th].

[89] M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, arXiv:1505.05346 [hep-th].

[90] D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” arXiv:1506.02906 [hep-th].

[91] M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft theorems for massive particles,” JHEP 12 (2015) 094, arXiv:1509.01406 [hep-th].

[92] T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,” JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].

[93] D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “2D Stress Tensor for 4D Gravity,” Phys. Rev. Lett. 119 no. 12, (2017) 121601, arXiv:1609.00282 [hep-th].

[94] A. Nande, M. Pate, and A. Strominger, “Soft Factorization in QED from 2D Kac-Moody Symmetry,” JHEP 02 (2018) 079, arXiv:1705.00608 [hep-th].

[95] E. Himwich and A. Strominger, “Celestial Current Algebra from Low’s Subleading Soft Theorem,” arXiv:1901.01622 [hep-th].
[96] E. Himwich, S. A. Narayanan, M. Pate, N. Paul, and A. Strominger, “The Soft $\delta$-Matrix in Gravity,” *JHEP* **09** (2020) 129, arXiv:2005.13433 [hep-th]

[97] J. de Boer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,” *Nucl. Phys.* **B665** (2003) 545–593, arXiv:hep-th/0303006 [hep-th]

[98] C. Cheung, A. de la Fuente, and R. Sundrum, “4D scattering amplitudes and asymptotic symmetries from 2D CFT,” *JHEP* **01** (2017) 112, arXiv:1609.00732 [hep-th]

[99] S. Pasterski, S.-H. Shao, and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” *Phys. Rev. D* **96** no. 8, (2017) 085006, arXiv:1706.03917 [hep-th]

[100] S. Pasterski, “Soft Shadows,” 978-0-9863685-4-7 (2017).

[101] W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu, “Conformal Blocks from Celestial Gluon Amplitudes,” arXiv:2103.04420 [hep-th]

[102] A. Atanasov, W. Melton, A.-M. Raclariu, and A. Strominger, “Conformal Block Expansion in Celestial CFT,” arXiv:2104.13432 [hep-th]

[103] E. Crawley, N. Miller, S. A. Narayanan, and A. Strominger, “State-Operator Correspondence in Celestial Conformal Field Theory,” arXiv:2105.00331 [hep-th]

[104] A. Sharma, “Ambidextrous light transforms for celestial amplitudes,” arXiv:2107.06250 [hep-th]

[105] D. Kapec and P. Mitra, “Shadows and Soft Exchange in Celestial CFT,” arXiv:2109.00073 [hep-th]

[106] A. Fotopoulos and T. R. Taylor, “Primary Fields in Celestial CFT,” *JHEP* **10** (2019) 167, arXiv:1906.10149 [hep-th]

[107] L. Donnay, S. Pasterski, and A. Puhm, “Asymptotic Symmetries and Celestial CFT,” *JHEP* **09** (2020) 176, arXiv:2005.08990 [hep-th]

[108] L. Donnay, A. Puhm, and A. Strominger, “Conformally Soft Photons and Gravitons,” *JHEP* **01** (2019) 184, arXiv:1810.05219 [hep-th]

[109] S. Stieberger and T. R. Taylor, “Symmetries of Celestial Amplitudes,” *Phys. Lett. B* **793** (2019) 141–143, arXiv:1812.01080 [hep-th]

[110] Y. T. A. Law and M. Zlotnikov, “Poincaré Constraints on Celestial Amplitudes,” arXiv:1910.04356 [hep-th]

14
111] T. Adamo, L. Mason, and A. Sharma, “Celestial amplitudes and conformal soft theorems,” *Class. Quant. Grav.* **36** no. 20, (2019) 205018, arXiv:1905.09224 [hep-th].

112] A. Ball, E. Himwich, S. A. Narayanan, S. Pasterski, and A. Strominger, “Uplifting AdS<sub>3</sub>/CFT<sub>2</sub> to flat space holography,” *JHEP* **08** (2019) 168, arXiv:1905.09809 [hep-th].

113] A. Guevara, “Notes on Conformal Soft Theorems and Recursion Relations in Gravity,” arXiv:1906.07810 [hep-th].

114] M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial Operator Products of Gluons and Gravitons,” arXiv:1910.07424 [hep-th].

115] A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu, “Extended Super BMS Algebra of Celestial CFT,” *JHEP* **09** (2020) 198 arXiv:2007.03785 [hep-th].

116] A. Guevara, E. Himwich, M. Pate, and A. Strominger, “Holographic Symmetry Algebras for Gauge Theory and Gravity,” arXiv:2103.03961 [hep-th].

117] S. Banerjee, “Null Infinity and Unitary Representation of The Poincare Group,” *JHEP* **01** (2019) 205 arXiv:1801.10171 [hep-th].

118] S. Banerjee, “Symmetries of free massless particles and soft theorems,” *Gen. Rel. Grav.* **51** no. 9, (2019) 128 arXiv:1804.06646 [hep-th].

119] S. Pasterski, A. Puhm, and E. Trevisani, “Celestial Diamonds: Conformal Multiplets in Celestial CFT,” arXiv:2105.03516 [hep-th].

120] S. Pasterski, A. Puhm, and E. Trevisani, “Revisiting the Conformally Soft Sector with Celestial Diamonds,” arXiv:2105.09792 [hep-th].

121] W. Fan, A. Fotopoulos, and T. R. Taylor, “Soft Limits of Yang-Mills Amplitudes and Conformal Correlators,” *JHEP* **05** (2019) 121 arXiv:1903.01676 [hep-th].

122] M. Pate, A.-M. Raclariu, and A. Strominger, “Conformally Soft Theorem in Gauge Theory,” *Phys. Rev.* **D100** no. 8, (2019) 085017 arXiv:1904.10831 [hep-th].

123] A. Puhm, “Conformally Soft Theorem in Gravity,” *JHEP* **09** (2020) 130, arXiv:1905.09799 [hep-th].

124] S. Stieberger and T. R. Taylor, “Strings on Celestial Sphere,” *Nucl. Phys.* **B935** (2018) 388–411 arXiv:1806.05688 [hep-th].
[125] N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial Amplitudes from UV to IR,” arXiv:2012.04208 [hep-th]

[126] C.-M. Chang, Y.-t. Huang, Z.-X. Huang, and W. Li, “Bulk locality from the celestial amplitude,” arXiv:2106.11948 [hep-th]

[127] A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu, “Extended BMS Algebra of Celestial CFT,” JHEP 03 (2020) 130, arXiv:1912.10973 [hep-th]

[128] S. Banerjee, S. Ghosh, and R. Gonzo, “BMS symmetry of celestial OPE,” JHEP 04 (2020) 130, arXiv:2002.00975 [hep-th]

[129] W. Fan, A. Fotopoulos, S. Stieberger, and T. R. Taylor, “On Sugawara construction on Celestial Sphere,” JHEP 09 (2020) 139, arXiv:2005.10666 [hep-th]

[130] S. Ebert, A. Sharma, and D. Wang, “Descendants in celestial CFT and emergent multi-collinear factorization,” arXiv:2009.07881 [hep-th]

[131] E. Himwich, M. Pate, and K. Singh, “Celestial Operator Product Expansions and $w_{1+\infty}$ Symmetry for All Spins,” arXiv:2108.07763 [hep-th]

[132] A. Guevara, “Celestial OPE blocks,” arXiv:2108.12706 [hep-th]

[133] S. Banerjee, S. Ghosh, and P. Paul, “MHV Graviton Scattering Amplitudes and Current Algebra on the Celestial Sphere,” arXiv:2008.04330 [hep-th]

[134] S. Banerjee and S. Ghosh, “MHV Gluon Scattering Amplitudes from Celestial Current Algebras,” arXiv:2011.00017 [hep-th]

[135] S. Banerjee, S. Ghosh, and P. Paul, “(Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes,” arXiv:2108.04262 [hep-th]

[136] L. Freidel and D. Pranzetti, “Gravity from symmetry: Duality and impulsive waves,” arXiv:2109.06342 [hep-th]

[137] N. Banerjee, S. Banerjee, S. Atul Bhatkar, and S. Jain, “Conformal Structure of Massless Scalar Amplitudes Beyond Tree level,” JHEP 04 (2018) 039, arXiv:1711.06690 [hep-th]

[138] H. A. González, A. Puhm, and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102 no. 12, (2020) 126027, arXiv:2009.07290 [hep-th]

[139] S. Albayrak, C. Chowdhury, and S. Kharel, “On loop celestial amplitudes for gauge theory and gravity,” Phys. Rev. D 102 (2020) 126020, arXiv:2007.09338 [hep-th]
[140] E. Casali and A. Puhm, “A Double Copy for Celestial Amplitudes,”
arXiv:2007.15027 [hep-th]

[141] E. Casali and A. Sharma, “Celestial double copy from the worldsheet,”
arXiv:2011.10052 [hep-th]

[142] N. Kalyanapuram, “Soft Gravity by Squaring Soft QED on the Celestial Sphere,”
Phys. Rev. D 103 no. 8, (2021) 085016, arXiv:2011.11412 [hep-th]

[143] S. Pasterski and A. Puhm, “Shifting Spin on the Celestial Sphere,”
arXiv:2012.15694 [hep-th]

[144] A. Brandhuber, G. R. Brown, J. Gowdy, B. Spence, and G. Travaglini, “Celestial Superamplitudes,”
arXiv:2015.10263 [hep-th]

[145] H. Jiang, “Celestial superamplitude in $\mathcal{N} = 4$ SYM theory,”
arXiv:2015.10269 [hep-th]

[146] Y. Hu, L. Ren, A. Y. Srikant, and A. Volovich, “Celestial Dual Superconformal Symmetry, MHV Amplitudes and Differential Equations,”
arXiv:2106.16111 [hep-th]

[147] L. Ferro and R. Moerman, “The Grassmannian for Celestial Superamplitudes,”
arXiv:2107.07496 [hep-th]

[148] H. Jiang, “Holographic Chiral Algebra: Supersymmetry, Infinite Ward Identities, and EFTs,”
arXiv:2108.08799 [hep-th]

[149] Y. Pano, S. Pasterski, and A. Puhm, “Conformally Soft Fermions,”
arXiv:2108.11422 [hep-th]

[150] A. Atanasov, A. Ball, W. Melton, A.-M. Raclariu, and A. Strominger, “(2, 2) Scattering and the celestial torus,”
JHEP 07 (2021) 083, arXiv:2101.09591 [hep-th]

[151] B. Bhattacharjee and C. Krishnan, “Celestial Klein Spaces,”
arXiv:2110.06180 [hep-th]

[152] T. Adamo, L. Mason, and A. Sharma, “Celestial $w_{1+\infty}$ symmetries from twistor space,”
arXiv:2110.06066 [hep-th]

[153] T. Adamo, W. Bu, E. Casali, and A. Sharma, “Celestial operator products from the worldsheet,”
arXiv:2111.02279 [hep-th]

[154] A. Schreiber, A. Volovich, and M. Zlotnikov, “Tree-level gluon amplitudes on the celestial sphere,”
Phys. Lett. B781 (2018) 349–357, arXiv:1711.08435 [hep-th]
[155] M. Zlotnikov, *Scattering Equations, Soft Theorems, and Amplitudes on the Celestial Sphere*, PhD thesis, Brown U., 2018.

[156] W. Melton, “Celestial Feynman Rules for Scalars,” arXiv:2109.07462 [hep-th].

[157] H. T. Lam and S.-H. Shao, “Conformal Basis, Optical Theorem, and the Bulk Point Singularity,” arXiv:1711.06138 [hep-th].

[158] Y. A. Law and M. Zlotnikov, “Relativistic partial waves for celestial amplitudes,” *JHEP* 11 (2020) 149, arXiv:2008.02331 [hep-th].

[159] S. Banerjee, S. Ghosh, and S. Satyam Samal, “Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes,” arXiv:2104.02546 [hep-th].

[160] A. Strominger, “w(1+infinity) and the Celestial Sphere,” arXiv:2105.14346 [hep-th].

[161] N. Gupta, P. Paul, and N. V. Suryanarayana, “An $\hat{sl}_2$ Symmetry of $\mathbb{R}^{1,3}$ Gravity,” arXiv:2109.06857 [hep-th].

[162] H. Jiang, “Celestial OPEs and $w_{1+\infty}$ algebra from worldsheet in string theory,” arXiv:2110.04255 [hep-th].

[163] N. Banerjee, T. Rahnuma, and R. K. Singh, “Asymptotic Symmetry of Four Dimensional Einstein-Yang-Mills and Einstein-Maxwell Theory,” arXiv:2110.15657 [hep-th].

[164] C. Ahn, “Towards A Supersymmetric $w_{1+\infty}$ Symmetry in the Celestial Conformal Field Theory,” arXiv:2111.04268 [hep-th].

[165] S. Banerjee, S. Ghosh, P. Pandey, and A. P. Saha, “Modified celestial amplitude in Einstein gravity,” *JHEP* 03 (2020) 125, arXiv:1909.03075 [hep-th].

[166] C. Liu and D. A. Lowe, “Conformal Wave Expansions for Flat Space Amplitudes,” arXiv:2105.01026 [hep-th].

[167] L. Lippstreu, “Zwanziger’s pairwise little group on the celestial sphere,” arXiv:2106.00084 [hep-th].

[168] C. Liu and D. A. Lowe, “Conformal Wavefunctions for Graviton Amplitudes,” arXiv:2109.00037 [hep-th].

[169] K. Nguyen and J. Salzer, “The effective action of superrotation modes,” *JHEP* 02 (2021) 108, arXiv:2008.03321 [hep-th].
[170] N. Kalyanapuram, “Gauge and Gravity Amplitudes on the Celestial Sphere,”
arXiv:2012.04579 [hep-th]

[171] L. Magnea, “Non-abelian infrared divergences on the celestial sphere,”
JHEP 05 (2021) 282 arXiv:2104.10254 [hep-th]

[172] H. A. González and F. Rojas, “The structure of IR divergences in celestial gluon
amplitudes,” JHEP 2021 no. 06, (2021) 171 arXiv:2104.12979 [hep-th]

[173] N. Kalyanapuram, “Holographic soft S-matrix in QED and gravity,”
Phys. Rev. D 104 no. 4, (2021) 045006 arXiv:2105.04314 [hep-th]

[174] K. Nguyen and J. Salzer, “Celestial IR divergences and the effective action of
supertranslation modes,” arXiv:2105.10526 [hep-th]

[175] N. Kalyanapuram, “Infrared and Holographic Aspects of the S-Matrix in Gauge Theory
and Gravity,” arXiv:2107.06660 [hep-th]

[176] N. Kalyanapuram, “Holographic Representations of Supertranslation Eigenstates,”
arXiv:2109.12351 [hep-th]

[177] N. Kalyanapuram, “Spin Multipole Expansion of the Memory Effect,”
arXiv:2109.12368 [hep-th]

[178] H. Nastase, F. Rojas, and C. Rubio, “Celestial IR divergences in general
most-subleading-color gluon and gravity amplitudes,” arXiv:2111.06861 [hep-th]

[179] D. Nandan, A. Schreiber, A. Volovich, and M. Zlotnikov, “Celestial Amplitudes:
Conformal Partial Waves and Soft Limits,” JHEP 10 (2019) 018,
arXiv:1904.10940 [hep-th]

[180] W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu, “Conformal Blocks from
Celestial Gluon Amplitudes II: Single-valued Correlators,” arXiv:2108.10337 [hep-th]

[181] M. Hübner, C. Talbot, P. D. Lasky, and E. Thrane, “Measuring gravitational-wave
memory in the first LIGO/Virgo gravitational-wave transient catalog,”
Phys. Rev. D 101 no. 2, (2020) 023011 arXiv:1911.12496 [astro-ph.HE]

[182] K. Mitman et al., “Fixing the BMS frame of numerical relativity waveforms,”
Phys. Rev. D 104 no. 2, (2021) 024051 arXiv:2105.02300 [gr-qc]

[183] A. Accardi et al., “Electron Ion Collider: The Next QCD Frontier: Understanding the
glue that binds us all,” Eur. Phys. J. A 52 no. 9, (2016) 268
arXiv:1212.1701 [nucl-ex]
[184] R. Abdul Khalek et al., “Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report,” arXiv:2103.05419 [physics.ins-det]

[185] D. Kapec, M. Perry, A.-M. Raclariu, and A. Strominger, “Infrared Divergences in QED, Revisited,” Phys. Rev. D 96 no. 8, (2017) 085002 arXiv:1705.04311 [hep-th]

[186] V. Chung, “Infrared Divergence in Quantum Electrodynamics,” Phys. Rev. 140 (1965) B1110–B1122

[187] P. P. Kulish and L. D. Faddeev, “Asymptotic conditions and infrared divergences in quantum electrodynamics,” Theor. Math. Phys. 4 (1970) 745

[188] C. Gomez and M. Panchenko, “Asymptotic dynamics, large gauge transformations and infrared symmetries,” arXiv:1608.05630 [hep-th]

[189] S. Choi, U. Kol, and R. Akhoury, “Asymptotic Dynamics in Perturbative Quantum Gravity and BMS Supertranslations,” JHEP 01 (2018) 142 arXiv:1708.05717 [hep-th]

[190] S. Choi and R. Akhoury, “BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes,” JHEP 02 (2018) 171 arXiv:1712.04551 [hep-th]

[191] C. Gómez, R. Letschka, and S. Zell, “The Scales of the Infrared,” JHEP 09 (2018) 115 arXiv:1807.07079 [hep-th]

[192] S. Choi and R. Akhoury, “Subleading soft dressings of asymptotic states in QED and perturbative quantum gravity,” JHEP 09 (2019) 031 arXiv:1907.05438 [hep-th]

[193] S. Hawking, “The Information Paradox for Black Holes,” arXiv:1509.01147 [hep-th]

[194] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116 no. 23, (2016) 231301 arXiv:1601.00921 [hep-th]

[195] S. W. Hawking, M. J. Perry, and A. Strominger, “Superrotation Charge and Supertranslation Hair on Black Holes,” JHEP 05 (2017) 161 arXiv:1611.09175 [hep-th]

[196] A. Strominger, “Black Hole Information Revisited,” arXiv:1706.07143 [hep-th]

[197] L. Donnay, G. Giribet, H. A. Gonzalez, and M. Pino, “Supertranslations and Superrotations at the Black Hole Horizon,” Phys. Rev. Lett. 116 no. 9, (2016) 091101 arXiv:1511.08687 [hep-th]
[198] M. Mirbabayi and M. Porrati, “Dressed Hard States and Black Hole Soft Hair,” *Phys. Rev. Lett.* **117** no. 21, (2016) 211301, arXiv:1607.03120 [hep-th]

[199] L. Donnay, G. Giribet, H. A. Gonzalez, and M. Pino, “Extended Symmetries at the Black Hole Horizon,” *JHEP* **09** (2016) 100, arXiv:1607.05703 [hep-th]

[200] R. Bousso and M. Porrati, “Soft Hair as a Soft Wig,” *Class. Quant. Grav.* **34** no. 20, (2017) 204001, arXiv:1706.00436 [hep-th]

[201] L. Donnay, G. Giribet, H. A. González, and A. Puhm, “Black hole memory effect,” *Phys. Rev. D* **98** no. 12, (2018) 124016, arXiv:1809.07266 [hep-th]

[202] S. Haco, S. W. Hawking, M. J. Perry, and A. Strominger, “Black Hole Entropy and Soft Hair,” *JHEP* **12** (2018) 098, arXiv:1810.01847 [hep-th]

[203] S. Haco, M. J. Perry, and A. Strominger, “Kerr-Newman Black Hole Entropy and Soft Hair,” arXiv:1902.02247 [hep-th]

[204] A. A. Rahman and R. M. Wald, “Black Hole Memory,” *Phys. Rev. D* **101** no. 12, (2020) 124010, arXiv:1912.12806 [gr-qc]

[205] S. Pasterski and H. Verlinde, “HPS meets AMPS: How Soft Hair Dissolves the Firewall,” arXiv:2012.03850 [hep-th]

[206] D. Kapec, A.-M. Raclariu, and A. Strominger, “Area, Entanglement Entropy and Supertranslations at Null Infinity,” *Class. Quant. Grav.* **34** no. 16, (2017) 165007, arXiv:1603.07706 [hep-th]

[207] A. Laddha, S. G. Prabhu, S. Raju, and P. Shrivastava, “The Holographic Nature of Null Infinity,” *SciPost Phys.* **10** no. 2, (2021) 041, arXiv:2002.02448 [hep-th]

[208] E. Hijano, “Flat space physics from AdS/CFT,” *JHEP* **07** (2019) 132, arXiv:1905.02729 [hep-th]

[209] E. Hijano and D. Neuenfeld, “Soft photon theorems from CFT Ward identities in the flat limit of AdS/CFT,” *JHEP* **11** (2020) 009, arXiv:2005.03667 [hep-th]

[210] G. Compère, A. Fiorucci, and R. Ruzziconi, “The A-BMS$_4$ group of dS$_4$ and new boundary conditions for AdS$_4$,” *Class. Quant. Grav.* **36** no. 19, (2019) 195017, arXiv:1905.00971 [gr-qc] [Erratum: Class.Quant.Grav. 38, 229501 (2021)].