Multiple Myeloma Following Bladder Cancer Successfully Treated With Bortezomib: A Case Report and Review of Literature

Yihao Wang¹, Fengping Peng¹, Rong Fu¹, Wenjing Song² and Zonghong Shao¹,*

¹Department of Hematology, General Hospital, TianJin Medical University, No.154, HePing District, TianJin 300052, China
²Department of Pathology, General Hospital, TianJin Medical University, No.154, HePing District, TianJin 300052, China

*Corresponding author: Zong-Hong Shao, Department of Hematology, General Hospital, TianJin Medical University, No.154, HePing District, TianJin 300052, China. Tel: +86 22 60362085; Fax: +86 22 60362086; Email: shao-zonghong@sina.com

Received Date: December 16, 2013; Accepted Date: February 20, 2014; Published Date: February 22, 2014

Citation: Yihao Wang, et al. (2013) Multiple myeloma following bladder cancer successfully treated with Bortezomib: A case report and review of literature. J Cancer Res Therap Oncol 1: 1-5

Abstract

The incidence of Multiple Myeloma (MM) following other malignancies is extremely rare. To our knowledge, only 23 cases of this condition have been reported. This study is the first to report on an incidence of MM following bladder cancer after treatment with intravesical Pharmorubicin RD instillation in a 71-year-old male patient. The etiopathology of this specific condition is discussed with an emphasis on two pathogenic features, namely, anthracyclines and gene mutation, which may have been involved in MM development. Regimen consisting of bortezomib may be used as a clinical basis for future treatment of MM following other malignancies.

Keywords: Multiple myeloma; Bladder cancer; Gene mutation; Bortezomib

Introduction

Multiple myeloma (MM) following other malignancies is a rare type of malignant plasma cell disorder. To the best of our knowledge, only 23 cases of MM following other malignancies and its coexisting symptoms have been documented in PubMed MEDLINE [1–23] (Table. 1). MM can occur after the appearance of solitary tumors, such as those in lung cancer and gastric cancer, or hematological malignancies, such as MyeloProliferative Neoplasm (MPN) and lymphoma. We report the first case of a patient with MM following bladder cancer. The satisfactory clinical recovery of this patient after treatment with bortezomib is also discussed.

Case report

A 71-year-old male patient was admitted to the Second Affiliated Hospital of TianJin Medical University in January 2010 after being diagnosed with approximately one-month totally painless gross hematuria. The patient did not have a history of dysuria, urinary urgency, or urethral discharge that could indicate an infectious or inflammatory process. No fever was evident, but the patient occasionally complained of blood clot discharges and flank pain. B-scan ultrasound revealed multiple hypoechoic masses or nodules in the anterior bladder wall and bladder neck. Complete blood count, renal function, and globulin levels were normal. No other evidence of metastatic disease was found elsewhere in the body. Transurethral Resection of Bladder Tumor (TURBT) was performed. The pathological diagnosis was low-grade papillary transitional epithelium carcinoma (Figure. 1). After four cycles of intravesical Pharmorubicin RD instillation (50 mg/m², day 1; one week/cycle) after surgery, the patient exhibited satisfactory clinical recovery. However, a follow-up B-scan ultrasound evaluation five months after chemotherapy revealed multiphypoechoic masses or nodules in the anterior bladder wall and bladder neck. Complete blood count, renal function, and globulin levels were normal. No other evidence of metastatic disease was found elsewhere in the body. Transurethral Resection of Bladder Tumor (TURBT) was performed. The pathological diagnosis was low-grade papillary transitional epithelium carcinoma (Figure. 1). After four cycles of intravesical Pharmorubicin RD instillation (50 mg/m², day 1; one week/cycle) after surgery, the patient exhibited satisfactory clinical recovery. However, a follow-up B-scan ultrasound evaluation five months after chemotherapy revealed hyperechoic uplifted shapes on both sides of the bladder neck, which suggested relapse of bladder cancer. No symptoms and abnormalities were found upon laboratory examination. Cystoscopic examination and TURBT were again performed. Pathological analysis revealed intrinsic-fibrous tissue hyperplasia, as well as chronic inflammation in the tissue overlying the transitional epithelium. No
evidence of recurrence was observed, and no further therapy (including chemotherapy) was provided for four months after the last surgery.

In July 2011, the patient was again referred to the hospital with major complaints of intermittent fever and pain in both lower limbs. The blood count [hemoglobin (Hb) 81 g/L; mean corpuscular volume, 81.7 fl; mean corpuscular hemoglobin concentration, 328 g/L; white blood cell and platelet counts, normal] indicated normocytic, normochromic anemia. The bone marrow contained an excess of plasma cells (40.0%) (Figure 2). Immunohistochemical analysis of the bone marrow showed that the tumor cells were positive for monoclonal κ light chains, CD38, and CD138, but negative for CD79a, CD5, and CD10. Flow cytometric results are as follows: R5 2.0%: CD38 (47.8%), CD138 (31.1%), CD56 (40.2%), and CD20 (-). Immunoelectrophoresis and immunofixation showed a spike in the γ globulin region corresponding to a monoclonal protein (M protein) in the serum and in the urine. The patient had hyperglobulinemia (IgA 3570.0 mg/dL, κ light chain 2810.0 mg/dL), with a noticeably high κ/λ ratio of 30:1. The creatinine level was 108 μmol/L. Plasma albumin (ALB) and lactate dehydrogenase levels were normal (37 g/L and 128 U/L, respectively). The β2M level was increased (6.56 mg/dL). Serum C-reactive protein concentration was 2.98 mg/dl.

A skeletal survey revealed multiple lytic bone lesions in ribs 4, 7, and 8. The adjusted serum calcium concentration was 2.69 mmol/L. Both cytogenetic and FISH analysis indicated a normal karyotype (46, XX [9]). Both ras and p53 gene mutations were detected in the bone marrow mononuclear cells by reverse transcription-polymerase chain reaction.

A diagnosis of multiple myeloma (IgA κ) was given (Durie–Salmon Clinical staging IIIA, ISS stage III). The patient was then treated with one cycle of “VDZ” (1.3 mg/m² bortezomib, d 1, 4, 8, and 11; 40/m² dexamethasone, d1, 8, 15, and 22; and 4 mg/m² zoledronic acid, d1) for chemotherapy. CBC was normal. Bone marrow aspiration and biopsy showed 3% plasma cell. Serum protein electrophoresis and immunofixation indicated the presence of IgA κ monoclonal protein. Bence–Jones proteinuria was again detected (806 mg/dl IgA, 1080 mg/dl κ light chain, and 7.1:1 κ/λ ratio), and good partial remission was achieved based on the evaluation. The patient further received two regular cycles of “VDZ” chemotherapy.
Authors, year	Age/sex	Malignancies before MM	Treatment before MM	Malignancies-MM interval	SPE/IE	Treatment after MM	Outcome	Abnormal chromosome/gene
Drasin H et al., 1979	50 F	Lung Lymphocytic lymphoma	Radiation therapy	9 years	IgG	MOP	Died after 28 months	NS
Claudia W et al., 1999	57 M	T-cell lymphoma	PUVA + INFa2b	2 years	IgG λ	alkeran+ decortin	Died after 28 months	NS
Muzaffer K et al., 2013	68 M	Colon adenocarcinoma gastrointestinal stromal tumor lung cancer	folinic acid 5-fluorouracil irinotecan bevacizumab	15 months	IgG κ	Chemotherapy and biphosphomate	Died after 18 months	K-RAS mutation t(4;14),17p13,
Vassilia G. et al., 2005	68 M	CML	INF α Imatinib	18 months	IgG λ	MP + Imatinib	Alive after 8 months	t(9;14;22) (q34;q24;q11)
Frances C et al., 1995	74 F	ET	INF α2b P32	61 months	IgA λ	MP	Died after 3 months	NS
Philip M et al., 1995	94 F	ET	Alkylating + thiotepa	11 years	IgA κ	MP	NA	NA
Montserrat R et al., 1990	38 F	CNL	Without any therapy	7 years	κ	MP	Alive after 5 months	46XX; Ph(-)
Michalis M et al., 2009	63 F	CML	Imatinib	65 months	IgA κ	TD + Imatinib VAD Velcode	Alive after two years	NS
Pérez LM et al., 2007	63 M	Prostate adenocarcinoma	NA	NA	NA	NA	NA	NS
Rogulj IM et al., 2011	NA	CLL	NA	11 years	Without any therapy	NA	NA	NS
Prósper F, et al., 1992	NA	ET	NA	5 years	NA	NA	NA	NS
Dorn GW et al., 1984	NA M	Hodgkin's disease	NA	NA	NA	NA	NA	NS
Tzilves D et al., 2007	74 M	gastrointestinal stromal tumor	Imatinib	1 month	IgA κ	MP + Imatinib	Died after 6 months	NS
Nowakowski et al., 2007	65 M	Penile myeloid sarcoma	NA	NA	NA	NA	Died after 16 months	NS
Monique A, 2010	71 M	Merkel cell carcinoma CLL	RFC	14 years	κ	CTX+P	Died after 6 months	NS
Hashimoto S et al., 1992	71 M	Diffuse large B cell malignant lymphoma	CHOP	32 months	IgA κ	Combination chemotherapy	alive	NS
Derghazarian et al., 1974	65F	CML	busulphan	3 years	IgG κ	L	NA	46XX;22q--;Ph (+)
Zoumbos et al., 1987	57M	CNL	busulphan	5 years	κ	NA	NA	NS
Majhail NS et al., 2003	85 M	ET	hydroxyurea	50 months	IgG λ	Without any therapy	Refuse any treatment	NS
Majhail NS et al., 2003	54M	ET	Hydroxyurea	29 months	IgG κ	MP DOP	Died after 5 years	NS
Derghazarian C et al., 1974	65 F	ET	busulfan	7 years	IgG κ	Radiotherapy L + busulfan	Alive after 2 years	NS
Kough RH et al., 1978	75F	CLL	Chlorambucil	80 months	IgAk	MP CTX	Died after 3 year	NS
Kough RH et al., 1978	58 M	CLL	Chlorambucil	4 years	κ	MP	Died after 1 year	NS

Table 1. Clinical data from cases of MM following other malignancies

CTX, cyclophosphamide; L, Phenylalanine mustard; MP, melphalan + prednisone; TD, Thalidomide + dexamethasone; VAD vincristine + liposomal doxorubicin + dexamethasone; MOP, MP + Vincristine; DOP, vincristine + doxorubicin + dexamethasone; RFC, fludarabine + cyclophosphamide + rituximab; CHOP doxorubicin + cyclophosphamide + vincristine + prednisolone; F, female; M, male; NA, not available; NS, not stated; SPE, serum protein electrophoresis; IE, immunoelectrophoresis; + combined with; - negative; ↑ increased; CNL, chronic neutrophilic leukemia; CLL, chronic lymphocytic leukemia; CML, Chronic myeloid leukemia; ET, essential thrombocytopenia; L, Phenylalanine mustard; INF, interferon
developed MM after 18 months of treatment with Pharmorubicin RD alone. However, our patient received localized intravesical Pharmorubicin RD instillation with no systemic chemotherapy for four cycles (total accumulated dose of 200 mg) without receiving any prior treatment for bladder cancer. Furthermore, no chromosomal abnormality was found in our patient. Therefore, evidence to prove that anti-bladder cancer therapy could possibly cause myeloma development was insufficient in this case.

The development of MM and bladder cancer involves genomic instability. Therefore, the patient may have possessed a genetic defect predisposing the development of frequent neoplasia. Both ras and p53 genes are carcinogenic genes that are closely related to MM and bladder cancer. Mutations of these genes were also detected in our patient. These two genetic mutations may have triggered the occurrence of the two distinct malignancies. Another possible explanation for the biological mechanism of MM is that one genetic mutation (ras or p53) occurred at the onset of bladder cancer in the first stage, consequently creating a possible preneoplastic state for MM. The other gene (p53 or ras) mutated in the second stage under immune-deficient conditions and resulted in overt MM. This condition is called a “two-hit phenomenon.” However, the genetic mutations in bone marrow were undetected during biopsy and diagnosis of bladder cancer. However, the most likely explanation for the development of MM is predisposition to genetic defects.

In this report, our patient received bortezomib treatment. Bortezomib reversibly inhibits the 26S proteasome, which disrupts various cell signaling pathways and leads to cell cycle arrest, apoptosis, and inhibition of angiogenesis. Bortezomib has been approved and widely used as the first therapeutic proteasome inhibitor for patients with relapsed or refractory MM and mantle cell lymphoma [26]. Successful treatment of simultaneous MM and bladder cancer by bortezomib has not yet been reported. Nevertheless, in vitro and in vivo data from cell cultures and clinical trials support the hypothesis that bortezomib induces bladder cancer cell death and inhibits angiogenesis [27–30]. Bladder cancer rapidly relapsed and progressed because of the absence of a sensitive therapy, including TURBT and Pharmorubicin RD, at the early stage. Therefore, bortezomib was administered to our patient with MM and bladder cancer. Good clinical response was achieved for 20 months. Relapse of MM and bladder cancer occurred after discontinuation of bortezomib therapy. Complete remission was again achieved after three cycles of
bortezomib. Although direct evidence of the efficacy of bortezomib as a targeted therapy for bladder cancer is currently lacking, administration of bortezomib may be feasible because this drug is cytochrome independent. Further studies are required to improve the management of this rare case of coexisting multiple neoplasia.

To the best of our knowledge, this study is the first to report on an MM case following bladder cancer treated with Pharmorubicin RD alone. Genetic mutations may have been involved in the development of MM. The successful treatment of the condition with bortezomib may be used as a clinical basis for future treatment of concomitant MM and other malignancies.

Authors’ Contribution
YH. Wang and FP. Peng have contributed equally to this work.

Acknowledgments
This study was partly supported by Tianjin Bureau of Public Health (No. 2010KZ105), Tianjin Medical University (No. 2010ky20), and Natural Science Foundation of Tianjin Municipal Science and Technology commission (No. 12ZCDZSY18000).

Disclosure
The authors do not have any conflict of interest.

References
1) Rovira M, Cervantes F, Nomdedeu B, Rozman C (1990) Chronic neutrophilic leukemia preceding for seven years the development of multiple myeloma. Acta Haematol 83: 94-95.
2) Prösser F, Borbolla JR, Růfõn J, Cuesta B, Fernández J, et al. (1992) Coexistence of essential thrombocytopenia and multiple myeloma. Ann Hematol 65: 103-105.
3) Arlen PM, Goldkland GA (1995) Multiple myeloma after treatment of essential thrombocytopenia. Blood 52: 79-81.
4) Boneva R, Gercheva L, Todorov V, Dimitrova B (1996) Development of multiple myeloma in 2 patients with chronic pyelonephritis and long-term hemodialysis treatment. Nephron 73: 124.
5) Wickenhauser C, Borchmann P, Diehl V, Scharffetter-Kochanek K (1999) Development of IgG lambda multiple myeloma in a patient with cutaneous CD30+ anaplastic T-cell lymphoma. Leuk Lymphoma 35: 201-206.
6) Dorn GW, Baldwin JG Jr. (1984) Rapid development of myeloma in a patient with Hodgkin’s disease. J Clin Med Assoc 86: 599-600.
7) Yeh GK, Axelrod MR (1979) Tumores rari et inusitati. Development of multiple myeloma in long term survivors of breast cancer. Clin Oncol 5: 175-177.
8) Prösser F, Borbolla JR, Růfõn J, Cuesta B, Fernández J, et al. (1992) Coexistence of essential thrombocytopenia and multiple myeloma. Ann Hematol 65: 103-105.
9) Grudeva-Popova J, Ninova I, Spasova M, Yaneva M, Beleva E, et al. (2013) Multiple myeloma in association with second malignancy. JBUON 18: 448-452.
10) Keklik M, Srgin S, Deniz K, Karaça H, Kontas O, et al. (2013) Coincidence of three solid tumors in a patient with multiple Myeloma. Chin Med J 126: 1186-1187.
11) Garipidou V, Vakalopoulos S, Tziomalos K (2005) Development of Multiple Myeloma in a Patient with Chronic Myeloid Leukemia After Treatment with Imatinib Mesylate. The Oncologist 10: 457-458.C
12) Michael M, Antoniades M, Lemesiou E, Papaminas N, Melanthiou F (2009) Development of Multiple Myeloma in a Patient with Chronic Myeloid Leukemia While on Treatment with Imatinib Mesylate for 65 Months. The Oncologist 14: 1198-1200.