MicroRNA-449a Plays an Indicative Role in Diagnosing Lung Cancer

Jun Yang
The First Affiliated Hospital of Xinxiang Medical University

Hua Zhong
The First Affiliated Hospital of Xinxiang Medical University

Qinghui Yang
The First Affiliated Hospital of Xinxiang Medical University

Jian Yu
The First Affiliated Hospital of Xinxiang Medical University

Cailing Jin
The First Affiliated Hospital of Xinxiang Medical University

Xiaorui Li (gcngffd@126.com)
Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
https://orcid.org/0000-0003-2600-5988

Primary research

Keywords: MiR-449a, Diagnose, Lung cancer

DOI: https://doi.org/10.21203/rs.3.rs-91596/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Lung cancer is one of the most common causes of cancer death among all the malignancies worldwide. Evidences suggest that the incidence and mortality of lung cancer has been on the rise. MicroRNA-449a (miR-449a) as one important member of microRNAs, has been demonstrated acting as a tumor suppressor in lung cancer. In this study, we sought to assess the relationship between miR-449a expression level and diagnostic value of lung cancer.

Methods: In this present research, quantitative Real-Time PCR was applied to detect the miR-449a expression in 116 lung cancer patients and 41 healthy volunteers. The diagnostic value of miR-449a in lung cancer patients was determined by receiver operating characteristic (ROC) curve.

Results: MiR-449a was significantly down-regulated in lung cancer patients compared with healthy control (P<0.05). In addition, miR-449a expression was associated with sex (P=0.004), tumor size (P=0.000), TNM stage (P=0.006) and metastasis (P=0.036). However, there was no correlation with age, smoking history and histological type of lung cancer patients (all P>0.05). In the ROC analysis, the results showed that the area under the ROC curve (AUC) was 0.902 with the sensitivity of 94.8% and specificity of 78.0%, and the optimum cutoff value was 2.255.

Conclusion: MiR-449a expression was down-regulated in lung cancer patients, and it could be an efficient diagnostic biomarker in lung cancer patients.

Background

Lung cancer is one of the leading causes of cancer related death around the world, and has an increasing incidence and mortality [1]. There is no obvious clinical symptoms at the early stage of lung cancer, with the evidences suggest that almost 75% of lung cancer patients are already at an advanced stage at the time of diagnosis [2, 3]. However, few effective test methods of lung cancer are available so far. Several protein markers, such as carcinoembryonic antigen, cytokeratin 19 fragment, cancer-associated antigen (CA) 125, CA 19-9, neuron-specific enolase, and tissue polypeptide specific antigen have been used to diagnose lung cancer without a surgical procedure, but the sensitivity is limited [3, 4]. Therefore, novel sensitive and specific diagnostic biomarkers are needed for the detection of lung cancer.

MicroRNAs (miRNAs) are endogenous non-coding RNA molecules of 22 nucleotides in length, which play important roles in regulation of pathological and biological processes [5]. Cellular miRNAs are released into different body fluids, such as blood [6]. They are presented in human serum in a highly stable form that is resistant to harsh conditions and RNase digestion [7, 8]. It is generally considered that miRNAs target the 3’-untranslated region (3’-UTR) of the targeted mRNAs, causing translation inhibiting or degradation of the mRNA. There are approximately half of miRNA genes are located at genomic regions which frequently amplified or deleted in cancer [9-11]. Recently studies have found that miRNAs possess regulatory functions in tumorigenesis and closely correlated with tumor differentiation [12-15]. MicroRNA-449a (miR-449a) is one of these miRNAs, which expressed in wide types of cancers, such as ovarian
cancer, gastric carcinoma, bladder cancer and lung cancer [16-20]. Recent evidences suggest that \textit{miR-449a} performs suppression role in non-small cell lung cancer (NSCLC), which could inhibit tumor cell proliferation and promote tumor cell apoptosis [21]. However, no related studies have reported the diagnostic value of \textit{miR-449a} in lung cancer.

In this present study, we examined the expression level of \textit{miR-449a} in lung cancer patients with Quantitative Real-Time PCR (qRT-PCR) method and further evaluated the diagnostic potential of \textit{miR-449a} for lung cancer patients.

Methods

Patients and serum specimens’ collection

The study was approved by Ethics Committee of The First Affiliated Hospital of Xinxiang Medical University. All the serum specimens and clinical materials in this research were obtained with the informed consents of all the participants.

Serum specimens were obtained from 116 cases with lung cancer and 41 healthy control cases without any malignancy before the study. These serum specimens were collected from patients on the day of diagnosis and before tumor surgery and therapy. All samples taken from lung cancer patients and healthy volunteers were put into blood collection tube of EDTA and stored at -80°C until RNA extraction. At the same time, clinicopathological features, which including age, sex, smoking history, histological type, tumor size, TNM stage and metastasis were also collected.

Plasma preparation and RNA extraction

A volume of 5 ml of EDTA-anticoagulated blood was obtained from each participant. Serum was separated by centrifugation. Total RNA, including miRNA, was extracted from the serum using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The RNA with OD A260/A280 ratio closed to 2.0 was subsequently used, which suggested that the RNA were pure.

Quantitative Real-Time PCR (qRT-PCR)

The RNA was reverse transcribed into cDNA by AMV reverse transcription system (Promega, USA) and stored at -20°C. Quantitative real-time PCR was performed to evaluate the expression level of \textit{miR-449a} using SYBR Green PCR master mix (Applied Biosystems, USA) by the 7300 Real-Time PCR System (Applied Biosystems, USA). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA was used as the endogenous control. Primer sequences were as follow, \textit{miR-449a} forward: 5’-TGCGGTGGCAGTGTATTGTTAGC-3’, reverse: 5’-CCAGTGCAGGGTCCGAGGT-3’; GAPDH forward: 5’-TGACCACCAACTGCTTAGC-3’ reverse: 5’-GCCATGCACTGTGGTCATGAG-3’ [22]. After the reaction, all the data were quantitated with 2^{-\Delta\Delta Ct} method.

Statistical analysis
Statistical analysis was performed using SPSS 19.0 software. Measurement data were expressed as means ± SD. T-test was used to compare the expression of miR-449a between the lung cancer patients and the healthy group. Chi-square test was used to analyze the differences between miR-449a expression and various clinicopathological characteristics. The diagnostic value of miR-449a in distinguishing lung cancer patients from healthy controls was performed using receiver operating characteristic (ROC) analysis. All tests with P values <0.05 were considered as statistically significant.

Results

The expression level of miR-449a

The present analysis used qRT-PCR to estimate the miR-449a expression level in 116 lung cancer patients and 41 healthy volunteers. The result showed that the expression of miR-449a was significantly reduced in lung cancer patients compared with the healthy controls ($P<0.05$; Figure 1).

Relationship between miR-449a and clinicopathological characteristics of lung cancer

In this study, we used statistical analysis to explore the relationship between miR-449a expression level and the clinicopathological data of lung cancer patients. In Table 1, the analysis results showed that miR-449a expression was associated with sex ($P=0.004$), tumor size ($P=0.000$), TNM stage ($P=0.006$) and metastasis ($P=0.036$). However, there was no significant association between miR-449a expression and age, smoking history as well as histological type of lung cancer patients (all $P>0.05$).

Diagnostic value of miR-449a for lung cancer

ROC curves were constructed to evaluate the diagnostic value of miR-449a expression level in lung cancer patients. In Figure 2, the ROC curve showed that the lung cancer patients were distinguished from the healthy volunteers with sensitivity of 94.8%, specificity of 78.0% and associated area under the curve (AUC) value of 0.902. The cutoff value for miR-449a expression level is 2.255. This result indicated that the miR-449a expression has efficient diagnostic value for lung cancer.

Discussion

Lung cancer, as a major death cause, is reported to be with no clinically apparent symptoms until it has reached an advanced stage [23]. Recently evidences demonstrated that the incidence and mortality of lung cancer has been on the rise [9]. The development of lung cancer is a complicated process that involves multiple genes, factors and pathways. Although there are several biomarkers for lung cancer such as SCC antigen, carcinoembryonic antigen and pro-gastrin-releasing peptote, none of them are perfect in terms of sensitivity or specificity. Therefore, we sought to find an efficient biomarker to achieve the earlier diagnosis for lung cancer patients.
MiRNAs are a class of small noncoding RNAs. There are several researches find that miRNAs are associated with a wide range of cellular processes, such as cellular proliferation, differentiation, apoptosis, and play a critical role in cancer [24-26]. Recently, miR-449a as a member of miRNAs has been found down-regulated in several types of cancers including prostate cancer, gastric cancer, bladder cancer as well as lung cancer [17, 19, 27-29]. These studies have showed that miR-449a is an important miRNA that has been identified as tumor suppressor, and it plays important roles in the occurrence, development, and prognosis of multiple malignancies. However, the role of miR-449a in the diagnosis of lung cancer still needs to be explored.

In our study, we observed that the miR-449a expression level was lower in lung cancer patients than that in healthy volunteers. This finding is consistent with previous reports. For example, Ding et al. demonstrated that the miR-449a expression levels in non-small cell lung cancer are significantly lower than those in the surrounding tissue [21]. Ren et al. confirmed that miR-449a acts as a tumor suppressor and is mostly down-regulated in lung cancer patients [29]. In addition, the present study assessed the relationship between miR-449a expression and the clinical-pathological features of lung cancer patients and found that the expression of miR-449a was significantly associated with sex, tumor size, TNM stage and metastasis. However, there were no relation with age, smoking history and histological type of the lung cancer patients. Luo et al. [30] have proved that low expression level of miR-449a appeared to be correlated with various clinical features such as advanced pathological stage, and lymph node metastasis. What's more, they also suggested that miR-449a might be a useful prognostic predictor for NSCLC patients. In the present study, we evaluated the diagnostic value of miR-449a in lung cancer patients, and the results of ROC analysis showed that down-regulation of miR-449a might serve as a novel biomarker to diagnose lung cancer.

Currently, the molecular mechanisms for the expression of miR-449a in tumors still remain unclear. According to the previous reports, single miRNAs with multiple functions are potential candidates for gene therapy. For example, Noonan et al. [28] have showed that HDAC1 was a target of miR-449a and miR-449a regulates cell growth and viability in part by repressing the expression of HDAS-1. Moreover, in the study of Jeon HS et al. [20] showed that the down expression of miR-449a might be one mechanism for over-expression of HDAC1 in lung cancer, and miR-449a could be a potential therapeutic candidate in lung cancer patients.

Conclusions

In summary, the results provided evidences that miR-449a was significantly down-regulated in lung cancer patients compared with the healthy controls. The ROC curves indicated that the down-regulation of miR-449a could be used as a novel biomarker to distinguish patients with lung cancer from the healthy ones. However, there are still some limitations, for example, the sample size is small and we did not give subdivision of lung cancer. Therefore, more detailed research will be needed in the further studies.

List Of Abbreviations
Declarations

Ethics approval and consent to participate

This study was supported by the Ethics Committee of The First Affiliated Hospital of Xinxiang Medical University and also has been carried out in accordance with the World Medical Association Declaration of Helsinki.

The subjects had been informed the objective. Certainly, written consents were signed by every subject in this study.

Consent for publication

We obtaining permission from participants to publish their data.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors’ contributions

Jun.Y design of the work; H.Z. and X.L. the acquisition, analysis, Q.Y. interpretation of data; Jian.Y. the creation of new software used in the work; C.J. have drafted the work or substantively revised it. All
authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Dillman RO, McClure SE: Steadily improving survival in lung cancer. Clinical lung cancer 2014, 15(5):331-337.
2. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA: a cancer journal for clinicians 2012, 62(1):10-29.
3. Wang P, Yang D, Zhang H, Wei X, Ma T, Cheng Z, Hong Q, Hu J, Zhuo H, Song Y et al: Early Detection of Lung Cancer in Serum by a Panel of MicroRNA Biomarkers. Clinical lung cancer 2015, 16(4):313-319 e311.
4. Tarro G, Perna A, Esposito C: Early diagnosis of lung cancer by detection of tumor liberated protein. Journal of cellular physiology 2005, 203(1):1-5.
5. Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT, Ochs MF, Ahrendt SA, Mambo E, Califano JA: Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS one 2012, 7(2):e32307.
6. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K: The microRNA spectrum in 12 body fluids. Clinical chemistry 2010, 56(11):1733-1741.
7. Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y, Guamera M, Liao J, Chou A, Lu CL et al: Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Laboratory investigation; a journal of technical methods and pathology 2011, 91(4):579-587.
8. Mitchell PS, Parkin RK, Koh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(30):10513-10518.
9. Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathe EA, Takenoshita S, Yokota J, Haugen A et al: The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clinical cancer research : an official journal of the American Association for Cancer Research 2011, 17(7):1875-1882.
10. Lin PY, Yang PC: Circulating miRNA signature for early diagnosis of lung cancer. EMBO molecular medicine 2011, 3(8):436-437.
11. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(9):2999-3004.

12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.

13. Mishra PJ, Merlino G: MicroRNA reexpression as differentiation therapy in cancer. The Journal of clinical investigation 2009, 119(8):2119-2123.

14. Schmittgen TD: Regulation of microRNA processing in development, differentiation and cancer. Journal of cellular and molecular medicine 2008, 12(5B):1811-1819.

15. Tsuchiya S, Okuno Y, Tsujimoto G: MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. Journal of pharmacological sciences 2006, 101(4):267-270.

16. Li X, Li H, Zhang R, Liu J: MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2015, 35(5):2033-2042.

17. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, Gronbaek K, Federspiel B, Lund AH, Friis-Hansen L: miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Molecular cancer 2011, 10:29.

18. Zhou Y, Chen Q, Qin R, Zhang K, Li H: MicroRNA-449a reduces cell survival and enhances cisplatin-induced cytotoxicity via downregulation of NOTCH1 in ovarian cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2014, 35(12):12369-12378.

19. Chen H, Lin YW, Mao YQ, Wu J, Liu YF, Zheng XY, Xie LP: MicroRNA-449a acts as a tumor suppressor in human bladder cancer through the regulation of pocket proteins. Cancer letters 2012, 320(1):40-47.

20. Jeon HS, Lee SY, Lee EJ, Yun SC, Cha EJ, Choi E, Na MJ, Park JY, Kang J, Son JW: Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer 2012, 76(2):171-176.

21. Ding M, Qiu TF, Zhou PG: microRNA-449a suppresses non-small cell lung cancer. Cell biochemistry and biophysics 2015, 71(2):1255-1259.

22. You J, Zhang Y, Liu B, Li Y, Fang N, Zu L, Li X, Zhou Q: MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian journal of cancer 2014, 51 Suppl 3:e77-81.

23. Walker BL, Williamson C, Regis SM, McKee AB, D’Agostino RS, Hesketh PJ, Lamb CR, Flacke S, Wald C, McKee BJ: Surgical Outcomes in a Large, Clinical, Low-Dose Computed Tomographic Lung Cancer Screening Program. The Annals of thoracic surgery 2015, 100(4):1218-1223.
24. Rehbein G, Schmidt B, Fleischhacker M: *Extracellular microRNAs in bronchoalveolar lavage samples from patients with lung diseases as predictors for lung cancer*. *Clinica chimica acta; international journal of clinical chemistry* 2015, 450:78-82.

25. Banwait JK, Bastola DR: *Contribution of bioinformatics prediction in microRNA-based cancer therapeutics*. *Advanced drug delivery reviews* 2015, 81:94-103.

26. Zhang WC, Liu J, Xu X, Wang G: *The role of microRNAs in lung cancer progression*. *Med Oncol* 2013, 30(3):675.

27. Noonan EJ, Place RF, Basak S, Pookot D, Li LC: miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. *Oncotarget* 2010, 1(5):349-358.

28. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R: miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. *Oncogene* 2009, 28(14):1714-1724.

29. Ren XS, Yin MH, Zhang X, Wang Z, Feng SP, Wang GX, Luo YJ, Liang PZ, Yang XQ, He JX et al: Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. *Cancer letters* 2014, 344(2):195-203.

30. Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, Qiu X, Wang E: MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. *PloS one* 2013, 8(5):e64759.

Tables

Table 1. The expression of *miR-449a* and clinicopathological features in lung cancer patients
Features	No.	MiR-449a expression	P values	
	N=116	Low (n=76)	High (n=40)	
Age (years)				0.053
<60	64	37	27	
≥60	52	39	13	
Sex				0.004
Male	65	50	15	
Female	51	26	25	
Smoking history				0.390
Yes	32	19	13	
No	84	57	27	
Tumor size				0.000
<3cm	47	21	26	
≥3cm	69	55	14	
Histologic type				0.633
Adenocarcinoma	90	60	30	
Squamous carcinoma	8	4	4	
Others	18	12	6	
TNM stage				0.006
I-II	52	41	11	
III-IV	64	35	29	
Metastasis				0.036
Yes	73	53	20	
No	43	23	20	