Effects of Fineness of Rubber Powder on Micro-Surfacing Performance

Jinke Guo¹, Yali Ye¹, Chuanfeng Cai² and Wei Zhao²

¹School of Transportation and Civil Engineering, Shandong Jiaotong University. No.5001 Haitang Rd, University Science and Technology Park, China
²Shandong Taihe Highway Engineering Company, No.36 Dongtai Rd, Huantai New District, China

Email: 864603084@qq.com; 75704581@qq.com; 2895789724@qq.com; Skyangel001@126.com;

Abstract. In order to research the effects of fineness of rubber powder on micro-surfacing, the control variable method was used. Through a series of basic performance tests, performance indexes such as mixing time, cohesion torque, wet track abrasion value and load wheel sand value were studied. The results showed that waste rubber powder with 40 mesh had good effects on non-construction time, anti-wear performance, the density and water sealed performance of micro-surfacing.

1. Introduction
Micro-surfacing as one of pavement preventive maintenance technologies, it had good effects on the repairsments of pavement rutting and other diseases, in particular, the waste rubber powder dry micro-surfacing, it had great advantages in anti-cracking, anti-wear, anti-fatigue, riding comfort and other aspects. However, the quality of material was good, after paved still there were lots of problems in micro-surfacing. The practice showed that aggregate gradation had great effects on mix performance of micro-surfacing. The practice showed that the fineness of rubber powder in the mixture had a significant effect on the mix performance and micro-surfacing layer after paving. Therefore, in order to ensure the quality of the material used in the micro-surfacing, how to used a reasonable particle size of the rubber powder on the quality of micro-surfacing was essential. The effected of fineness of the waste rubber powder on the micro-surfacing performance was studied.

2. Properties of materials
2.1. Modified emulsified asphalt
SBR modified emulsified asphalt was used, the parameters met the requirements of micro-surfacing and slurry seal technology guide, the test results were shown in Table 1[1, 2].

Pilot projects	Technical requirements	Test results	Experiment method
Demulsification rate	Slow breaking	Slow breaking	T0658
The remaining amount on the sieve	≤0.1	0	T0652
2.2. Aggregate

The test aggregates were basalt, with a small particle size of more than 9.5 mm, which had been sieved before the test. The main technical indicators were shown in Table 2[3].

Evaporation residue properties	Penetration (100g, 25℃, 5s)/0.1mm	40~100	88	T0604
Evaporation residue content/%	≥60	Cation+	62.5	T0651
Evaporation residue properties	Ductility (5℃)/cm	≥20	80	T0605
Evaporation residue properties	Softening Point/℃	≥53	56	T0606
Evaporation residue properties	Solubility (trichlorethylene)/%	≥97.5	99	T0607
Storage stability	1d/%	≤1	0.6	T0655

Table 2. Aggregate technical properties and test results.

Pilot projects	Technical requirements	Test results	Experimental method
Stone crushing value/%	≤26	12	T0316
Los Angeles wear loss/%	≤28	13.6	T0317
Stone polished value/BPN	≥42	46	T0321
Ruggedness /%	≤12	0.9	T0314
Stone needle-like content/%	≤15	0.5	T0312
Synthetic mineral sand equivalent/%	≥65	69.5	T0334

2.3. Filling

Filling mainly cement and waste rubber powder. The cement used in this test was an ordinary portland cement without any additives, cement strength of 42.5MPa, the amount of 1.5% (with the mass ratio of aggregate). The role of waste rubber powder was mainly to improve the road surface flexibility, improve the mixture of water damage and anti-wear performance. The waste rubber used in this test was 40 mesh, 60 mesh, 80 mesh, the amount of 2% (with the mass ratio).

2.4. Water

The amount of water should be minimized when the requirements were met. The test used drinking water, and the content of water was 6% [1].

3. Performance of micro-surfacing
3.1. Mineral aggregate gradation

According to the design method of the International Slurry Seal Association, the MS-3 micro-surfacing gradation was used to design the mix ratio. According to the sieving results of the aggregates, the gradation used was shown in Table 3[4].

Table 3. Aggregate gradation table.

Gradation type	Percentage of mass by the following sieve (mm)%							
	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
5-10mm	100.0	9.7	2.0	1.9	1.9	1.8	1.8	1.7
3-5mm	100.0	93.8	3.4	1.5	0.9	0.8	0.7	0.7
0-3mm	100.0	100.0	77.8	57.9	42.6	29.0	20.9	15.1
MS-3Upper limit	100	90	70	50	34	25	18	15
MS-3Lower limit	100	70	45	28	19	12	7	5
Median of gradation	100.0	80.0	57.5	39.0	26.5	18.5	12.5	10.0
Synthetic Gradation	100.0	80.4	53.7	40.0	29.5	20.2	14.7	10.7

Notes: 5-10mm: 3-5mm:0-3mm=21%:11%:68%

3.2. Mixing time test and cohesion torque test

Through number of tests, it was determined that the best ratio of three different mesh rubber powders were used as aggregate: cement: used rubber powder: water: modified emulsified asphalt = 100: 1.5: 2: 6: 16, the test results were shown in Table 4 [1], [5-9].

The cohesion test was carried out using the same mixing ratio as the mixing test, and the value of 300g aggregate was used. The test results were also shown in Table 4 [1], [5-9].

Table 4. Results of mixing time and cohesion test.

The fineness of rubber powder	Mixing time/s	Non-construction time/s	30min Cohesion torque/(N•m)	60min Cohesion torque/(N•m)
40	>180	350	1.8	2.3
60	140	300	1.6	2.3
80	120	220	1.15	1.8

It could be seen from table 4 that the mixing time of the mixture with 40 mesh powder was more than 180s, the mixing time of the mixture of 60 mesh powder was 140s, the mixing time of 80 mesh powder was 120s, and the non-construction time was the same law in descending order. Mainly because the rubber powder adsorption emulsified asphalt capacity than the aggregate was strong, 40 mesh powder particle size larger, so relative to 60 mesh and 80 mesh powder specific surface area were much smaller, adsorption of asphalt emulsion was also very less, so there were enough emulsified asphalt and intermediate with more powder combination, the mixture would not become sticky, so the mixing time was longer. The 80 mesh powder was opposite. Mixed with 40 mesh powder 30min and 60min cohesion torque were in line with the requirements, and mixed with 80 mesh powder 30min and 60min cohesion torque were not ideal. The reason was that 40 mesh powder surface area was small, the adsorption of emulsified asphalt less, thus ensured a sufficient emulsified asphalt and
powder combination, made the specimen after the internal compact, 80 mesh powder was the opposite [5], [7-10].

3.3. Wet track abrasion test
Wet track abrasion test used the same mixing ratio as the cohesion torque test, and value of 800g of the aggregate was used. The test results were shown in Table 5.

Table 5. Results of wet track abrasion test and load wheel test.

The number of powder mesh	Asphalt-aggregate ratio /%	Abrasion value 1h (g/m²)	Abrasion value 6d (g/m²)	Adhesion sand amount (g/m²)
40	9	451	735	269
	10	280	499	288
	11	274	437	350
60	9	937	1022	208
	10	481	562	260
	11	293	521	327
80	9	1204	1522	179
	10	548	984	246
	11	467	535	305

3.4. Load wheel test
The load wheel test was still the same mixing ratio as the cohesion torque test, and value of 500g of the aggregate was used. The test results were shown in Table 5. The 40 mesh powder particle size was larger, the specific surface area was small, the adsorption of asphalt emulsion less, 10% and 11% of the asphalt stone ratio there was enough emulsified asphalt and powder combination, and the specimen dense. The 80 mesh powder was the opposite [5], [7-10].

4. Conclusions
(1) The use of 40 mesh of the rubber powder could properly absorb the mixture of excess emulsified asphalt, and asphalt emulsion was not reduced too much.
(2) The mixing time of waste rubber powder dry micro-surfacing was greatly affected by its fineness of rubber powder, the finer the powder, the shorter the mixing time.
(3) When the mesh of powder was greater than 60, the cohesion torque of micro-surfacing was lower than the specification requirements, rubber powder of 60 mesh or less was recommend. The powder mixture of 40 mesh powder had good abrasion resistance, and the asphalt emulsion by powder was less, and the specimen of 40 mesh rubber powder micro-surfacing was stabled and compacted.

5. Acknowledgements
This paper was financial supported by Natural Science Foundation of Shandong (No. ZR2014EEQ035) and Ministry of Transport Applied Basic Research Project (No. 2015319817110).

6. References:
[1] Ministry of Communications Highway Science Research Institute S 2006 Micro-Surfacing and Slurry Seal Technical Guide (China: People's Communications Press)
[2] People's Republic of China Industry Standard S 2011 Test Code for Asphalt and Asphalt Mixture for Highway Engineering (Beijing: People's Communications Press)
[3] Ministry of Communications Highway Science Research Institute S 2005 Test Methods of Aggregate for Highway Engineering (China: People's Communications Press)

[4] Aiqin Zhang, Xia Zhu M 2009 architecture material (Beijing: People's Communications Press)

[5] Tianqing Ling, Yaonan Li, Wei Li J 2011 Effect of Rubber Particles on Micro-Surfacing Performance Road construction 36(2) pp 174-175

[6] Jianwei Fan, Xinzhan Liu J 2007 Study on the Performance of Slurry Seal of Rubber Powder Modified Asphalt Mixture Road construction machinery and mechanization of construction (1) pp 33-36.39

[7] Xiaochen Li, Lijuan Zhang J 2016 Study on the Influence Mechanism of Rubber Powder Content and Head Number on Rubber Asphalt Performance Guangdong building materials(2) pp 22-23

[8] Qiang Li, Wei Huang, Hang Ren J 2010 Study on Modification of Waste Tire Rubber Powder Journal of Highway and Transportation Science and technology (3) pp 67-68

[9] Jinfeng Li, Luoying Wang, Wenjie Li more than three authors J 2011 Application of Waste Rubber Particles in Road Engineering Chinese and foreign roads 31(4) pp 241-244

[10] Jian Xu, Songchang Huang M 2011 Ideas and Techniques of Preventive Maintenance of Asphalt Pavement (Beijing: People's Communications Press)