Assessing left ventricular systolic function by emergency physician using point of care echocardiography compared to expert: systematic review and meta-analysis

Bilal Albaroudi^a, Mahmoud Haddad^a, Omar Albaroudi^a, Manar E. Abdel-Rahman^b, Robert Jarman^c,d and Tim Harris^a,e

Assessing left ventricular systolic function (LVSF) by echocardiography assists in the diagnosis and management of a diverse range of patients presenting to the emergency department (ED). We evaluated the agreement between ED-based clinician sonographers and apriori-defined expert sonographers. We conducted a systematic review and meta-analysis based on Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines. We searched Medline, EMBASE, Cochrane, ClinicalTrials.gov, TRIP and Google Scholar for eligible studies from inception to February 2021. Risk of bias was evaluated using Quality Assessment Tool for Diagnostic Accuracy Studies-2 tool. The level of agreement between clinician and expert sonographers was measured using kappa, sensitivity, specificity, positive and negative likelihood ratio statistics using random-effects models. Twelve studies were included (1131 patients, 1229 scans and 159 clinician sonographers). Significant heterogeneity was identified in patient selection, methods of assessment of LVSF, reference standards and statistical methods for assessing agreement. The overall quality of studies was low, with most being small, single centre convenience samples. A meta-analysis including seven studies (786 scans) where visual estimation method was used by clinician sonographers demonstrated simple Kappa of 0.68 [95% confidence interval (CI), 0.57–0.79], and sensitivity, specificity, positive and negative likelihood ratio of 89% (95% CI, 80–94%), 85% (95% CI, 80–89%), 5.98 (95% CI, 4.13–8.68) and 0.13 (95% CI, 0.06–0.24), respectively, between clinician sonographer and expert sonographer for normal/abnormal LVSF. The weighted kappa for five studies (429 scans) was 0.70 (95% CI, 0.61–0.80) for normal/reduced/severely reduced LVSF.

Consequently, there is an increasing interest in emergency medicine, left ventricular dysfunction, meta-analysis, observer variation, point-of-care systems, sensitivity and specificity, systematic review.

Keywords adult, cardiologists, echocardiography, emergency medicine, left ventricular systolic function, meta-analysis, observer variation, point-of-care systems, sensitivity and specificity, systematic review

^aDepartment of Emergency Medicine, Hamad Medical Corporation, ^bDepartment of Public Health, College of Health Science, QU Health, Qatar, ^cEmergency Department, Royal Victoria Infirmary, Newcastle upon Tyne, ^dTeesside University, Middlesbrough and ^eBarts Health NHS Trust and the Queen Mary University of London, London, UK

Correspondence to Bilal Albaroudi, MD, Department of Emergency Medicine, Hamad Medical Corporation, 3050 Doha, Qatar
Tel: +974 3347 1180; e-mail: baroudi.bilal@gmail.com

Received 12 April 2021 Accepted 28 July 2021

Introduction

Point-of-care (POC) echocardiography is widely used in the evaluation and resuscitation of patients in the emergency department (ED) [1,2]. Acute breathlessness, cardiac arrest and shock are common presentations to the ED where POC echocardiography performed by clinicians provides rapid and focused findings to assist in the initial assessment. Data suggest that emergency physicians’ clinical assessment fails to accurately estimate the patient’s cardiac function and hemodynamic status [3], potentially leading to incorrect diagnosis and treatment with associated increases in length of stay and mortality [4,5]. A recent randomised control trial showed that using point-of-care ultrasound (POCUS) did not improve outcomes for patients presenting the ED with undifferentiated shock [6]. However, this trial excluded patients with conditions that had evidence of rapid diagnosis with POCUS, the interventions in both groups were similar and the trial evaluated a diagnostic test as therapy. Studies, including one systematic view and meta-analysis, have shown that rapid assessment with POC echocardiography early in the patient’s ED journey reduces time to diagnosis, improves diagnostic accuracy and changes treatment potentially improving outcomes in critical illness, shock and acute heart failure [7–16]. Consequently, there is an increasing interest in emergency physicians performing POC echocardiography with more
detailed studies performed urgently on selected patients or following admission by an expert.

Assessment of left ventricular systolic function (LVSF) is one of the most common indications for echocardiography [17]. In 2013, the American Society of Echocardiography published a recommendation to consider POC echocardiography as a bedside adjunct to physical examination to assist in diagnosis and guide treatment [18]. The American Society of Echocardiography and American College of Emergency Physicians 2010 consensus statement for use of POC echocardiography in the ED stated that POC echocardiography had a role in the assessment and diagnosis of pericardial effusion, right ventricle dilatation, intravascular volume status and left ventricular performance [1]. The latter was suggested as visually assessed and categorised as normal (ejection fraction >50%), reduced (ejection fraction 30–50%), or severely reduced (ejection fraction <30%). In 2014, the American College of Emergency Medicine published a revised policy statement [19] stating that the assessment of LVSF is one of three primary indications for POC echocardiography. In 2014, the International Evidence-Based Recommendations for Focused Cardiac Ultrasound stated that POC echocardiography can accurately assess left ventricle global function, narrow differential diagnosis and improve outcome in the setting of shock and is superior to physical examination alone [20].

The ability of emergency physicians to evaluate LVSF has been previously assessed in observational studies and one narrative review [21]. The authors were unable to identify any previous systematic review and meta-analysis. The aim of this review was to assess the level of agreement between emergency department-based clinician sonographers as compared to expert sonographers for the assessment of LVSF using POC echocardiography. The PICO question is depicted in Table 1.

Methods

This systematic review was designed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analysis statement and was registered on the International Prospective Register of Systematic Reviews (CRD42020179209). All authors reviewed the article and T.H. acts as a guarantor.

Data sources and search strategy

The medical literature was searched using PubMed (MEDLINE), OvidSP (EMBASE), Cochrane library and ClinicalTrials.gov. The grey literature was searched using Google Scholar and TRIP database. A combination of Medical Subject Headings terms and search terms was used and are listed in Appendix 1 in Supplemental Digital Content 1, http://links.lww.com/EJEM/A318. In addition to the database search, the bibliographies of the selected articles were reviewed for further references. Supplementary searching was performed using snowballing and hand searching of key medical journals. The publication period was defined by the database searched. The literature search was performed independently by a medical librarian, B.A. and M.H. in April 2020. A repeat search was performed in February 2021.

Study selection

The search was restricted to studies on humans and published in English. Studies that recruited adult patients where POC echocardiography was performed in the ED were included, regardless of physiological parameters, diagnoses or presenting complaints. Clinician sonographer was defined by the study authors as a trainee or specialist in emergency medicine with level 1 (core) or level 2 (advanced training or local training). A priori studies that focused on patients outside the ED were excluded (i.e. prehospital, ICU or ward) as well as studies using sonographers other than emergency physicians (e.g. intensivist or medical student). We defined expert sonographers as sonographers who had completed a training program, cardiologists who had completed training or ultrasound fellowship-trained clinicians who had completed a fellowship in echocardiography. We did not assess the experience of expert sonographers as this varies between countries and was not described in detail in any article under review.

We included studies that assessed LVSF using transthoracic echocardiography by visual estimation, E-point septal separation (EPSS), or an assessment of stroke volume/cardiac output using velocity time integral (VTI). We excluded studies where the clinician sonographer

Table 1 Review question details
Review question (PICO)
Population
Intervention
Comparison
Outcome
used fractional shortening to assess left ventricle ejection fraction (LVEF), reflecting its inherent inaccuracies. We imposed no restrictions on the method used by expert sonographers or machine used by either clinician or expert sonographer. We included studies performed using hand-held and free-standing ultrasound machines and any transducer type but excluded studies using transoesophageal echo. We included studies that used the review of recorded videoclips or stored images by expert sonographers as the reference standard and those where the expert sonographer’s echocardiogram was performed using either the same or a different machine to the clinician sonographer. Where there was a lack of clarity in the article, we wrote to the corresponding authors.

Three reviewers (T.H., B.A. and M.H.) worked independently in two groups to review all eligible titles and abstracts using inclusion criteria defined a priori. We included studies regardless of their designs. Randomised trials and observational studies (prospective and retrospective cohort studies) were included. Conference abstracts with sufficient methodological description for quality assessment and data for analysis were also included. Case studies, case reports, guidelines, editorials, letters and review articles were excluded. The full text was then read, and consensus was achieved for inclusion. When consensus agreement could not be reached between the authors, an independent third-party adjudicated (B.J.).

Data extraction and quality assessment
Two reviewers (B.A. and M.H.) independently extracted data using a standardised form (Table 2). The revised Quality Assessment Tool for Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the overall quality of the included studies [22–33]. The tool was applied by the two reviewers independently, and disagreements were resolved by a third reviewer (T.H.). The QUADAS-2 tool allows modification of the signalling questions to customise to the topic under review. Our signalling questions are described in Appendix 2 with details for the process of rating as low, high or unclear risk of bias in Supplemental Digital Content 1, http://links.lww.com/EJEM/A318.

Meta-analysis
To determine the level of agreement between the clinician sonographer and expert sonographer for LVSF assessment a meta-analysis was performed using four effect measures of interest. Cohen/Conger’s Kappa statistics (simple and weighted) [34–36], sensitivity, specificity, positive and negative likelihood ratio with 95% confidence interval (CI) were independently pooled. Forest plots were used to summarise and compare the included studies. Heterogeneity was quantified using Higgins’ I² statistics; any value of I² >50% was indicative of significant heterogeneity. To account for heterogeneity random effect models were used to pool the study effect sizes. The presence of publication bias was assessed using Deeks’ funnel plot [37]. The meta-analysis was conducted on each method of assessment of LVSF when there was enough data provided (visual estimation, EPSS, VTI). Information obtained from the quality assessment tool was used for bias assessment and subgroup analysis. Analysis of subgroups was performed to explore the potential sources of heterogeneity in the agreement. The following subgroups were evaluated: level of experience of clinician sonographer, training on POC echocardiography for clinician sonographer prior study enrolment and year of publication (before and after 2010). Analyses were conducted using kappaetci, meta and Midas packages in Stata software (StataCorp, 2019, Stata Statistical Software: Release 16, StataCorp LLC, College Station, Texas, USA).

Results
A total of 1673 studies were identified and screened, and 25 full articles were eligible for review (Fig. 1). Thirteen studies that did not meet the inclusion criteria were excluded. Consequently, 12 studies [22–33] published between 2002 and 2020 (1229 scans on 1131 patients) were included in this systematic review. Eleven studies enrolled 159 clinician sonographers (88 emergency medicine residents/fellows, 70 emergency medicine attendings and one study enrolled one physician assistant [23]). One study did not specify the number of clinician sonographers [25]. An attempt was made to contact all authors to clarify aspects of the included studies; four replies were received [22,24,27,31].

Characteristics of the included studies
Overall, 12 studies were included in this review (Table 2). Eleven studies [22–30,32,33] were prospective observational cohort design, and one study [31] was a retrospective chart review. All studies were single centre, included only patients presenting to hospitals via the ED, and used floor-based ultrasound machines with a phased array transducer. In all studies, POC echocardiography was performed solely in the ED except one study which included POC echocardiography performed in ED, ICU and wards [28]. The inclusion criteria for patients varied considerably, two studies included only patients with hypotension [22,25], two recruited patients with dyspnoea [24,29], five studies recruited patients who required inpatient echocardiography for any reason [23,26–28,31], one study included any patient with suspected cardiac disease [30], one study included patient with acute circulatory failure [33] and one study included patients who required volume status or LVSF assessment due to hypotension or suspected heart failure [32].

Visual estimation of left ventricular systolic function
Visual estimation of volume changes between diastole and systole using ranked categories was the most commonly used method by clinician sonographers to assess...
Author	Year	Country	Designs	Title	Study characteristics	Clinician sonographer/training	Participant characteristics	Intervention and expert sonographer	Outcome (95% confidence interval)
Moore et al. [22]	2002	USA	POS	Determination of Left Ventricular Function by Emergency Physician Echocardiography of Hypotensive Patients	Machine type: Index: Apogee CX-100 Floor-based US Machine Transducer PA Reference: Recorded images and clips Windows: PSLA, PSSA, A4C, A2C, SC, Method: Index: visual estimation Machine Transducer PA Reference: Recorded images and clips Windows: PSLA, PSSA, A4C, A2C, SC, Method: Index: visual estimation Categorization: (>50%) normal function, (30–50%) reduced function, (<30%) severe dysfunction	Clinician sonographer: four EPs			
Level of experience: highly experienced with various levels. Must have completed 10h of basic US instruction and 100 documented non-cardiac ultrasound examinations prior to echocardiography training. Additional training: Theoretical: 6h consist of video clips review Practical: 10h observing and performing Echo Supervised by cardiologist.	Convenience sample, n=51 ED adult patients Inclusion: asymptomatic hypotension, systolic Blood pressure <100mmHg for two times and 15 min apart, no trauma Exclusion: Asymptomatic hypotension, CPR, ECG suggestive of myocardial infarction	Intervention: POC echocardiography by clinician sonographer, then the scan repeated immediately by another clinician sonographer in convenience sample n=8 (blinded) Expert sonographer videoclips reviewed by 1# cardiologist then 2# cardiologist reviewed some scans in convenience sample n=20 (blinded)	Agreement of expert sonographer with clinician sonographer, n=50 (1 patient excluded due to poor image quality): κ = 0.61 (0.39–0.83) Weighted percent agreement = 84% Overall agreement = 68% Pearson’s correlation, r = 0.86 (8%) Modified Bland–Altman plot showed the difference falls within 1 SE of the estimate 96% of the patients. Correlation between the clinician sonographer, n=8 Pearson’s correlation, r = 0.94. Interobserver reliability between the expert sonographer, n=20 Pearson’s correlation, r = 0.84 Modified Bland–Altman plot showed agreement within 1 SE of the estimate in 95% of patients Categorical LVFS agreement for clinician sonographer with expert sonographer n=115 Pearson’s correlation, r=0.71 (CI=53%-89%) Overall agreement = 78.3% Calculated LVFS correlation for clinician sonographer visual estimation with expert sonographer n=102 (calculated ejection fraction was available for 102 patients. Thirteen cases had no formal ejection fraction reported on the final Echo report by cardiology) Pearson’s Correlation, r=0.72 Raw agreement for each category of LVFS Normal 92.9% Poor 70.4% Moderate 47.8% Overall agreement=86.1% Correlation between measurements of EPSS by resident EPs and visual estimations of LVFS by the EP US fellows, n=58: Spearman’s correlation, ρ = 0.844 The agreement between EP US fellow and cardiologists for visual estimation (expert to expert), n=58: r = 0.75 (0.48–1.00)				(Continued)		
Author	Year	Country	Design	Title Study characteristics	Clinician sonographer/training	Participant characteristics	Intervention and expert sonographer	Outcome (95% confidence interval)	
---	---	---	---	---	---	---	---	---	---
Weekes et al. [25]	2011	USA	POS	Comparison of Serial Qualitative and Quantitative Assessments of Cavitary Index and Left Ventricular Systolic Function During Early Fluid Resuscitation of Hypotensive Emergency Department Patients	Machine type: Philips CX50 Floor-based US machine	Emergency US division physicians: Additional training: no standardized training. Training on EPSS and the fractional shortening methods and on the details of image acquisition, technique, details of scoring criteria, and the sequence of measurements to standardize the protocol.	Intervention: POC echocardiography by clinician sonographer Expert sonographer: videoclips.	Agreement between clinician sonographer and expert sonographer scan for visual estimation, n = 24 patients (72 scans):	$\kappa = 0.82$ (0.66–0.93)
Weekes et al. [25]	2012	USA	POS	Measuring cardiac index with a focused cardiac ultrasound examination in the ED	Machine type: Index Z. One Ultra Floor-based US machine	Epistom: not described Level of experience: Not well described	US machine	Agreement between clinician sonographer and expert sonographer:	$\kappa = 0.56$ (0.23–0.90)
Dinh et al. [26]	2012	Malaysia	POS	Performance of emergency physicians in point-of-care Echocardiography following limited training	Machine type: Index and reference: Logiq e portable on a trolley US Transducer PA Windows: PSLA, A4C, SC Method Categorization: normal Cardiac index was defined as 2.5–4.0 L/min/m² Rating for the images by cardiologist: Optimal, suboptimal, and unobtainable images	Clinician sonographer: nine emergency medicine residency (PGY1–PGY2) Level of experience: novice with the least experience in Echo, all had <10 informal Echo Additional training: Theoretical: web-based learning which included images and videos. Practical: 3h delivered at the bedside by a cardiologist.	Intervention: POC echocardiography by clinician sonographer Expert sonographer: Echo by cardiologist	Agreement between clinician sonographer and expert sonographer for visual estimation, n = 100 scan:	$\kappa = 0.79$ (0.73–0.84)
---	---	---	---	---	---	---	---	---	---
(Continued)									
McKaigney et al. [28] 2014 Canada/USA POS E-point septal separation: a bedside tool for emergency physician assessment of left ventricular ejection fraction

Machine type: Index: Logic P6 Floor-based US Reference: Phillips E33 Floor-based US Transducer PA Windows: SC, PSSA, PSLA, A4C Method: Index: visual estimation, EPSS Reference: Teichholz method Categorization: (>55%) Normal function, (30%–55%) reduced function, (<30%) severe dysfunction.

Clinician sonographer: 3 EPs (EP US fellows – 7 months into a 1-year fellowship). Level of experience: 100 bedside echocardiograms. And had training in both visual and calculated LVSF estimation as part of their fellowship Additional training: Theoretical: 10 min presentation on EPSS Practical: three separates supervised EPSS measurements with the principal investigator.

Convenience sample, n = 80 ED adult patients 7 (8.8%) subjects were enrolled in the ED, 11 (13.8%) in ICU, and 62 (77.5%) in ward. Inclusion: treating physician had ordered TTE. Exclusion: pregnancy.

Intervention: POC echocardiography by clinician sonographer in the ED, ICU, inpatient ward. Expert sonographer: TTE by certified cardiac sonographer and interpreted by cardiologist Interval: expert sonographer then clinician sonographer <24 h.

n = 23 patients were randomly selected to have a second bedside ultrasound study performed independently by another clinician sonographer, blinded to the results of the first examination.

Agreement between clinician sonographer visual estimation and the calculated LVSF in TTE (expert sonographer)

- Overall agreement 69%
- $\kappa_w = 0.58$
- for subjects with severe systolic dysfunction (n=8) overall agreement 100%

Correlation of EPSS by clinician sonographer to the calculated LVSF by expert sonographer:

- Pearson's correlation, $r = 0.73$
- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 51.6% (38.6–64.5)
- Positive LR = 2.07
- Negative LR = 0.00

EPSS measurement of >7 mm for LVSF ≤ 30%, n = 71

- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 51.6% (38.6–64.5)
- Positive LR = 2.07
- Negative LR = 0.00

EPSS measurement of >8 mm for LVSF <55%, n = 71

- Sensitivity = 83.3% (62.6–95.2)
- Specificity = 50.0% (29.2–70.9)
- Positive LR = 1.67
- Negative LR = 0.33

Interobserver correlation for EPSS measurements, n = 23

- Spearman's correlation, $\rho = 0.87$
- $\kappa = 0.49$

Interobserver agreement for visual estimation, n = 23

- Pearson's correlation, $r = 0.77$
- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 86.3% (62.6–95.2)
- Positive LR = 0.90
- Negative LR = 0.01

Clinician sonographer POC echocardiography scans (cardiologist reports as reference standard):

- Sensitivity = 98.7%
- Specificity = 86% (86.2–87.9%)
- Positive PV = 0.92
- Negative PV = 0.98
- Positive LR = 7.153
- Negative LR = 0.015

Author	Year	Country	Designs	Title	Study characteristics	Clinician sonographer/training	Participant characteristics	Intervention and expert sonographer	Outcome (95% confidence interval)
Ünlüer et al. [29] 2014 Turkey POS Visual Estimation of Bedside Echocardiographic Ejection Fraction by Emergency Physicians	Machine type: Index and reference: M7R model ultrasound portable on a trolley US, Transducer PA Windows: PSLA Method: Index: visual estimation	Clinician sonographer: two EPs attending with 1-year experience. Level of experience: certified on focused abdominal sonography for trauma by Emergency Radiology Association in Turkey. Additional training: 3 h of didactic training; performed in the presence of an experienced echocardiographer.	Convenience sample, n = 133 ED adult patients Inclusion: dyspnoea. Exclusion: intubated, elevated cardiac biomarkers, pregnancy, atrial fibrillation, valvular pathology or surgery, if technical limitations.	Intervention: POC echocardiography by clinician sonographer #1 and 0.78 for clinician sonographer #2 Correlation between clinician sonographer to expert sonographer: Pearson's correlation, $r = 0.77$ for clinician sonographer #1 and 0.87 for clinician sonographer #2 Intraclass correlation coefficient of both clinician sonographers = 0.952 (0.934, 0.968) Clinician sonographer POC echocardiography scans (cardiologist reports as reference standard): Sensitivity = 98.7% Specificity = 86% (86.2–87.9%) Positive PV = 0.92 Negative PV = 0.98 Positive LR = 7.153 Negative LR = 0.015	Agreement between clinician sonographer visual estimation and the calculated LVSF in TTE (expert sonographer)				
- Overall agreement 69%
- $\kappa_w = 0.58$
- for subjects with severe systolic dysfunction (n=8) overall agreement 100%

Correlation of EPSS by clinician sonographer to the calculated LVSF by expert sonographer:

- Pearson's correlation, $r = 0.73$
- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 51.6% (38.6–64.5)
- Positive LR = 2.07
- Negative LR = 0.00

EPSS measurement of >7 mm for LVSF ≤ 30%, n = 71

- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 51.6% (38.6–64.5)
- Positive LR = 2.07
- Negative LR = 0.00

EPSS measurement of >8 mm for LVSF <55%, n = 71

- Sensitivity = 83.3% (62.6–95.2)
- Specificity = 50.0% (29.2–70.9)
- Positive LR = 1.67
- Negative LR = 0.33

Interobserver correlation for EPSS measurements, n = 23

- Spearman's correlation, $\rho = 0.87$
- $\kappa = 0.49$

Interobserver agreement for visual estimation, n = 23

- Pearson's correlation, $r = 0.77$
- Sensitivity = 100.0% (62.9–100.0)
- Specificity = 86.3% (62.6–95.2)
- Positive LR = 0.90
- Negative LR = 0.01

Clinician sonographer POC echocardiography scans (cardiologist reports as reference standard):

- Sensitivity = 98.7%
- Specificity = 86% (86.2–87.9%)
- Positive PV = 0.92
- Negative PV = 0.98
- Positive LR = 7.153
- Negative LR = 0.015

(Continued)
Table 2 (Continued)

Author	Year	Country	Designs	Title	Study characteristics	Clinician sonographer/training	Participant characteristics	Intervention and expert sonographer	Outcome (95% confidence interval)
Farsi et al. [30]	2017	Iran	POS	Focused cardiac ultrasound (FOCUS) by emergency medicine residents in patients with suspected cardiovascular diseases	Machine type: Index: SonoAce X8, Samsung Medison Co, Floor-based US Reference: EKO 7 device, Samsung Medison Co, Floor-based US Transducer PA Windows: PSLA, PSSA, A4C, SC Method: Index: EPS or Quonines equation, or both Reference: visual estimation Categorization: (>50%) normal function, (30–49%) reduced function, (<30%) severe dysfunction	Clinician sonographer: 17 emergency medicine Residents Level of experience: Not Described Additional training: Theoretical: 2 h for movies and pictures Practical: 2 h Workshop designed by the American Society of Echocardiography	Convenience sample, n=205 Intervention: POC echocardiography by clinician sonographer Expert sonographer: cardiologist Interval: clinician sonographer first then expert sonographer, as soon as possible	The agreement between clinician sonographer and expert sonographer, n=205: κ=0.85 (0.79–0.91) Overall agreement = 91% Clinician sonographer POC echocardiography scans (cardiologist reports as reference standard): Sensitivity 89% (81–99) Specificity 96% (90–99) Positive PV 96% (89–99) Negative PV 89% (81–99) Accuracy 92% (88–99) Negative LR 0.12 (0.07–0.2) Positive LR 22 (8–58) For wall motion abnormality κ=0.83 (0.76–0.90) Clinician sonographer to expert sonographer for the reduced USF and pericardial effusion, n=270 Overall agreement of 77% κ=0.53 Clinician sonographer POC echocardiography scan (cardiologist reports as reference standard), n=224: Overall agreement 78.1% Sensitivity 86% (86.6–89.1) Specificity 77.5% (70.3–83.4) Positive PV 53.7% (42.4–64.6) Negative PV 92.3% (86.2–95.9) Negative LR 0.26 (0.15–0.44) Positive LR 3.65 (2.61–4.85) Agreement between clinician sonographer visual estimation and expert sonographer review, n=92: Overall agreement = 79.4% κ=0.73 (0.58–0.89) Agreement between clinician sonographer and expert sonographer on the pericardial effusion diagnoses = 100%	
Balderston et al. [31]	2019	USA	Diagnostic Yield and Accuracy of Bedside Echocardiography in the Emergency Department in Hemodynamically Stable Patients	Machine type: Index: Fujifilm Sonosite X Porte US machine, Floor-based US Reference: not described Transducer PA Windows: Not Described Method: Index: visual estimation Reference: SBT Categorization: (>50%) normal function, (30–49%) reduced function, (<30%) severe dysfunction For the analysis: normal (>50%) and reduced (<50%)	Clinician sonographer: 90 EPs from all grades (40 residents, fellows, 50 attendings) Level of experience: US certificates in accordance with American College of Emergency Physicians guidelines Additional training: no	Consecutive sample, n=276 Intervention: POC echocardiography by clinician sonographer Expert sonographer: TTE by certified cardiac sonographer and interpreted by cardiologist Interval: clinician sonographer first then expert sonographer, <2 days	Overall agreement of 77% Sensitivity 89% (81–99) Specificity 96% (90–99) Positive PV 96% (89–99) Negative PV 89% (81–99) Accuracy 92% (88–99) Negative LR 0.12 (0.07–0.2) Positive LR 22 (8–58) For wall motion abnormality κ=0.83 (0.76–0.90) Clinician sonographer to expert sonographer for the reduced USF and pericardial effusion, n=270 Overall agreement of 77% κ=0.53 Clinician sonographer POC echocardiography scan (cardiologist reports as reference standard), n=224: Overall agreement 78.1% Sensitivity 86% (86.6–89.1) Specificity 77.5% (70.3–83.4) Positive PV 53.7% (42.4–64.6) Negative PV 92.3% (86.2–95.9) Negative LR 0.26 (0.15–0.44) Positive LR 3.65 (2.61–4.85) Agreement between clinician sonographer visual estimation and expert sonographer review, n=92: Overall agreement = 79.4% κ=0.73 (0.58–0.89) Agreement between clinician sonographer and expert sonographer on the pericardial effusion diagnoses = 100%		
Monsomboon et al. [32]	2019	Thailand	Clinician sonographer	Agreement between Emergency Physicians and a Cardiologist on Cardiac Function Evaluation after Short Training	Machine type: Index: Philips HD15 PureWave US, Floor-based US Transducer PA Reference: Recorded images and clips Windows: PSLA, PS SA, A4C, A5C, SC Method: Index: visual estimation Reference: Not described Categorization: (>65%) Normal function, (30%–55%) reduced function, (<30%) severe dysfunction	Clinician sonographer: seven emergency medicine Residents (PGY2 - PGY3) Level of experience: The residents had been working in the ED for less than 3 years. They had not participated in any formal US training courses because emergency ultrasound was not part of the emergency medicine curriculum Additional training: Theoretical: 2 h lecture Practical: 1-h hands-on workshop conducted by cardiologist	Consecutive sample n=101 ED adult inclusion: patient needed a volume status or LV function assessment 1) shock (systolic blood pressure < 90 mmHg or diastolic blood pressure < 60 mmHg); and 2) suspected heart failure, defined as having at least 1 of the Framingham criteria. Exclusion: uncooperative, STEMI, Intubated. Patients for whom POC echocardiography might delay their standard treatment	Intervention: POC echocardiography by clinician sonographer Expert sonographer: videoclips review by one cardiologist Interval: N/A After the course, each resident had to practice on at least 1 patient in the ED. All recorded images and videos were subsequently sent to the cardiologist to assess the residents’ ability to perform POC echocardiography. The cardiologist had to approve each participant’s performance before he or she was permitted to participate	The agreement between clinician sonographer visual estimation and expert sonographer review, n=92: Overall agreement = 79.4% κ=0.73 (0.58–0.89) Agreement between clinician sonographer and expert sonographer on the pericardial effusion diagnoses = 100%

(Continued)
Study characteristics	Intervention and expert sonographer	Participant characteristics	Outcome (95% confidence interval)
Clinician sonographer: five EPs	Intervention: POC echocardiography	Consecutive sample n = 114	Agreement between clinician sonographer and expert sonographer for: n = 100, LV failure = 0.74 (0.59–0.89)
Philips Healthcare	Interval: <1 h, in random order, conducted and supervised by two experienced intensivists who were board-certified	n = 114	
Transducer PA, Reference: CX 50, US	Additional training: critical care echocardiography depending on the availability of investigators.		
Windows: PSLA, PSSA, A4C, A5C, CI; confidence interval, ED; emergency department, EM; emergency medicine, EP; emergency physician, EPSS; E-point Septal Separation, LV; left ventricle, LVOT: left ventricle outflow tract, LVSF; left ventricle systolic function, PA; phased array transducer, POC; point-of-care, PGY; post-graduation year, POS; prospective observational study, PSLA; parasternal long axis, PSSA; parasternal short axis, PV; predictive value, ROS; Retrospective observational study, SBT; Simpson's biplanar technique, SC: subcostal, SOB; Shortness of breath, STEMI; ST-segment elevation myocardial infarction, TTE; transthoracic echocardiography, US; ultrasound, VTI; velocity time integral.			

E-point septal separation

The second most frequently used method to assess LVSF was EPSS (nine studies) [22,23,25,27–29,31–33]. Cardiac function was categorised as normal (ejection fraction ≥ 50%), reduced (ejection fraction 30–49%) or severely reduced (ejection fraction <30%) function in four studies [22,27,31,33], or as normal (ejection fraction >55%), reduced (ejection fraction 30–55%) or severely reduced (ejection fraction <50%) function in three studies [23,28,32]. One study did not use numerical cutoff values [25]. Two studies also included the category hyperdynamic function in addition to the three previously mentioned categories [25,33]. LVSF was ranked simply as normal or abnormal in two studies with cutoff ejection fraction value of 50% [31], or 55% [29]. Both the clinician sonographer and expert sonographer used visual estimation in three studies [22,27,33], in two studies clinician sonographers used visual estimation and the expert sonographer measured LVSF using Simpson’s Biplanar Technique (SBT) [29,31]. Three studies did not describe the expert sonographer method of LVSF estimation [23,25,32].

There was heterogeneity in the methods used to assess agreement between clinician sonographer and expert sonographer for visual estimation of LVSF (Table 2). Eight studies [22,23,25,27,28,31–33] reported a simple or weighted Cohen’s Kappa (0.46–0.79), one reported Pearson’s correlation [29] (for the two recruited emergency physicians values were 0.77 and 0.78). Five studies [22,23,27,28,31] reported raw/overall agreement, two reported agreement using Bland–Altman [22,27] and four calculated specificity and sensitivity for LVSF as normal or abnormal [28–31]. Overall, there was a high agreement in identifying LVSF as normal and with severe dysfunction. However, the agreement was moderate in identifying moderate dysfunction.

Velocity time integral

Cardiac index calculation using VTI and Left Ventricular Outflow Tract (LVOT) diameter was assessed in only one study [26], which reported the moderate agreement (κ = 0.40).

Image acquisition

There were some variations in the methods used to obtain images. In five studies [23,26,29–31], the clinician sonographer performed POC echocardiography
prior to the expert sonographer while in two the expert sonographer scanned first [27,28]. In one study, the POC echocardiography was performed based on investigator availability [33]. In five studies [22,24–26,32], the expert sonographer reviewed video images taken by the clinician sonographer; in three studies [23,28,31], the cardiologist reviewed videos recorded by a sonographer and in three studies [27,29,30] expert sonographers (cardiologists) performed their own echocardiograms. Expert sonographer used the same ultrasound machines as clinician sonographer in four studies [26,27,29,33] and different machines in four [23,28,30,31]. The expert sonographer were emergency physicians in two studies [24,25], cardiologists/sonographers in 10 [22–24,26–32] (one study combined emergency physician and cardiologists as expert sonographer [24]) and intensivists expert in echocardiography in one [33]. In 11 studies [22,23,25–33], the second sonographer was blind to the findings of the first, while in one study, the expert sonographers were not blind to EPSS measures by clinician sonographers [24]. In four studies, there was a time difference of greater than 1 h between clinician sonographer and expert sonographer scans [23,28,29,31].

Quality assessment of studies

The QUADAS-2 quality assessment is depicted in Table 3. Studies were rated as low (@), high (€) or uncertain (?) risk of bias. All studies scored at least one high-risk domain and seven studies scored two or more. Thus, the quality of the included studies was low, and all studies were assessed as high risk of bias. All studies excluded a proportion of their acquired POC echocardiography data, most commonly as a consequence of poor image quality and were consequently considered high risk (total enrolled sample 1309 patients and analysis sample 1131 patients). Eleven were rated as high risk of bias in patient selection due to convenience sampling or due to exclusion criteria, or both (body habitus or technical difficulties obtaining images) [22–30,32,33]. The protocol for the POC echocardiography performed by clinician sonographers varied widely between the studies with differing windows, machines, and transducer frequencies. Seven studies included low numbers of clinician sonographers selected from a larger clinician group with unclear reasons for clinician sonographer selection [22,23,26,28,29,32,33]. Five studies involved time intervals between POC echocardiography performed by clinician sonographers and the echocardiogram performed by expert sonographers, reflecting high risk of bias in flow and timing [28–31,33].

Meta-analysis

In seven studies (688 patients, 786 scans, >119 clinician sonographers; 60 attendings, and 59 emergency medicine residents/fellows) [22,23,25,27,29,31,32], clinician sonographers used the visual estimation method to assess L VSF and reported adequate data to conduct the meta-analyses. The primary data were extracted from the original articles for statistical analysis (Supplementary Table 5 in Supplemental Digital Content 1, http://links.lww.com/EJEM/A318). The remaining five studies [24,26,28,30,33] had inadequate data for meta-analysis and we were unable to obtain sufficient data from the authors. There were insufficient studies to conduct a meta-analysis for EPSS or VTI assessment of L VSF. Weighted kappa was calculated in five studies [22,23,25,27,32] where the L VSF was categorised as normal, reduced, or severely reduced. In one study [25] where L VSF ranked as hyperdynamic, we include this as normal function for analysis. In two studies [29,31] where L VSF was categorised as normal or abnormal, simple kappa was calculated from primary data. Then, an overall simple kappa was calculated for the seven studies [22,23,25,27,29,31,32] by combining the reduced and severe reduced function as normal. Combined data were then used to calculate sensitivity and specificity to identify normal or abnormal L VSF. A ‘positive’ finding is defined as abnormal L VSF and a ‘negative’ finding is defined as normal L VSF.

The meta-analysis of the seven studies [22,23,25,27,29,31,32] yielded simple Kappa, sensitivity, specificity, positive and negative likelihood ratio of 0.68 (95% CI, 0.57–0.79), 89% (95% CI, 80%–94%), 85% (95% CI, 80%–89%), 5.98 (95% CI, 4.13–8.68), and 0.13 (95% CI, 0.06–0.24), respectively. The weighted kappa for five studies [22,23,25,27,32] was 0.70 (95% CI, 0.61–0.80). The forest plots of the previous results are shown in Figs. 2 and 3, and in Supplementary Figs. 4 and 5 in the Supplemental Digital Content 1, http://links.lww.com/EJEM/A318.

The subgroup meta-analysis regarding the year of publication before or after 2010, yielded simple Kappa of κ = 0.70 (95% CI, 0.55–0.84) for the studies published after 2010 [25,27,29,31,32] and κ = 0.64 (95% CI, 0.46–0.84) for those published before 2010 [22,23]. There was no evidence of publication bias with significant asymmetry in Deeks’ funnel plot of the seven studies (P = 0.95) (Supplementary Fig. 6 in Supplemental Digital Content 1, http://links.lww.com/EJEM/A318).

Discussion

The results of this systematic review suggest that ED-based clinician sonographers (56% trainees, 44% attendings, with or without study-specific training) are able to interpret visual estimation of L VSF with a substantial agreement as compared to expert sonographer, with a pooled κ = 0.68 (seven studies) and κ = 0.70 (five studies). Visual estimation of L VSF is a rapidly performed, widely acceptable method and in experienced hands may be superior to formal measurements for assessment of L VSF [38–41], but requires considerable experience to perform accurately. The sensitivity (true positive rate for detection of abnormal L VSF), specificity (true negative
rate for detection of normal LVSF), positive and negative likelihood ratios in seven studies were 89%, 85%, 5.98, and 0.13, respectively, suggesting that clinician sonographer can correctly identify normal or abnormal LVSF sufficiently for clinical practice when compared to expert sonographer’s interpreted echocardiography as the reference standard.

For every 100 patients classified as having normal LVSF by expert sonographer, and clinician sonographer identified 85 patients. For every 100 patients identified as having abnormal LVSF by the expert sonographer, the clinician sonographer correctly identified 89 patients. Clinician sonographer classified 11% wrongly as abnormal and 15% wrongly as normal. A narrative review of the twelve included studies suggests that there is a high agreement in identifying LVSF as normal as compared to severely reduced function. However, the agreement was moderate in identifying mildly/moderately reduced LVSF function.

Other methods to assess LVEF (not considered in this review) such as mitral annular plane systolic excursion and tissue doppler imaging may offer more precise assessment and have been reported as having good inter-observer reliability between untrained sonographers and experts [42–44].

Measuring EPSS is a much simpler and quicker method to assess LVSF than the SBT technique and is easily taught to novice sonographers [45]. However multiple factors may cause an over or underestimate in the LVSF measurement, such as valvular disease or septal hypertrophy. In this systematic review, EPSS was used in three studies [24,28,30]. The level of agreement and correlation were variably expressed, and no meta-analysis was possible. These three individual studies reported a moderate to a high level of agreement between clinician sonographers and expert sonographer.

VTI assesses the volume of blood ejected via the aortic outflow tract and may be used to calculate the stroke volume, cardiac index and guide fluid therapy [46]. VTI depends on ejection fraction, LV filling pressures and vascular resistance, and so offers different data to clinicians as compared to ejection fraction and EPSS (and other assessments of LV function). One study included in this systematic review assessed cardiac index using VTI and IVOT diameter by clinician sonographer and expert sonographer (κ=0.40) [26].

SBT method is widely used by cardiologists, but this technique is time-consuming to perform in the resuscitation phase of care and includes A4C and A2C views, with
the latter not widely taught to clinician sonographers. None of the included studies used this method by clinician sonographer for LVSF assessment.

A 2019 narrative review [21] described the assessment of LVSF by emergency physicians and general practitioners with varying POC echocardiography experience. The authors reported an overall raw agreement of 84–93% (10 studies) [22–24,26–30,47,48], based on visual estimation, EPSS and VTI. This review had no a priori defined research question, clear protocol, critical appraisal, or meta-analysis of included studies. The authors included eight studies which are included in the systematic review reported here [22–24,26–30] and two studies that were excluded [47,48]. Shah et al. [47] enrolled adult and paediatric patients in ED and outpatient settings with POC echocardiography performed by internal medicine and social service doctors followed by expert review of the recorded images (cardiologist or emergency medicine ultrasound fellow). This study reported almost perfect agreement for LVSF (κ = 0.98). Dehbozorgi et al. [48] studied the diagnostic accuracy of thoracic and cardiac POCUS for acute heart failure as compared to clinetet between clinician sonographers and expert sonographers. Therefore, these two articles did not meet the inclusion criteria for the work reported in this article.

Visual estimation of LVSF is well described in the cardiology literature [39,40,49,50]. However, there are few studies that investigate the interobserver agreement between cardiologists or between cardiologists and sonographers. One study including 136 patients with suspected left ventricular dysfunction explored agreement between echocardiograms performed by cardiology trainees using portable ultrasound machines and hospital-based echocardiograms performed by senior cardiac technicians using a floor-based ultrasound machine. The authors reported the excellent agreement (κ = 0.87) for the detection of LV systolic dysfunction [51]. Testuz et al. compared echocardiography performed by certified cardiologists using hand-held devices to departmental echocardiography interpreted by blinded cardiologists, again with excellent agreement for LVSF (κ = 0.89) [52]. Several studies have evaluated POC echocardiography for the assessment of LVSF in an ICU setting. Amiel et al. reported the substantial agreement (κ = 0.75) in assessing LVSF between two experienced intensivists trained in critical care echocardiography using handheld POC echocardiography as compared to cardiology reported departmental echocardiography [53]. Bias et al. reported excellent agreement (κ = 0.87) in assessed LVSF between two different expert intensivist sonographers using handheld POC echocardiography in ED and departmental echocardiography [54]. Two studies assessed the ability of trainees in internal medicine to assess LVSF and departmental echocardiography [55,56]. An ICU-based pilot study reported that following 8 h of focused training to assess LVSF using POC echocardiography by non-cardiologist trainees (two anaesthesia and two internal medicine) recorded substantial agreement (κ = 0.76) as compared to expert intensivist sonographers using floor-based devices [57].

Table 3. Quality assessment using QUADAS-2 of the included studies: ☹; high risk of bias, ☺; low risk of bias, ?; unclear

Author	Patient selection	Index test	Reference standard	Flow and timing	Applicability
Moore et al. [22]	☹	☹	☉	☹	☹
Randazzo et al. [26]	☹	☹	☐	☐	☙
Secco et al. [27]	☹	☐	☐	☉	☙
Weekes et al. [28]	☹	☐	☐	☐	☙
Dinh et al. [29]	☹	☒	☐	☐	☙
Bustam et al. [30]	☹	☐	☐	☐	☙
McKaigney et al. [31]	☹	☐	☐	☐	☙
Ünlüer et al. [32]	☹	☒	☐	☐	☙
Farsi et al. [33]	☹	☐	☐	☐	☙
Balderston et al. [23]	☹	☐	☐	☐	☙
Monsomboon et al. [24]	☹	☐	☐	☐	☙
Lafon et al. [25]	☹	☒	☐	☐	☙

Percentage %

Summary of QUADAS-2 results

Bias	Patient selection	Index test	Reference standard	Flow and timing
☹	8.5%	33.5%	91.5%	50%
☺	91.5%	58%	0%	41.5%
?	0%	8.5%	8.5%	8.5%

QUADAS-2, Quality Assessment Tool for Diagnostic Accuracy Studies-2.
There was significant heterogeneity identified among the included studies. The level of POC echocardiography experience for clinician sonographers ranged from no previous significant experience [27,32,33], <25 scans [24], 100 scans [28], completed an US workshop [23], ACEP certified [31], and not clearly described [22,25,26,29,30]. However, the level of experience of clinician sonographers did not predict the level of agreement with expert sonographers in this systematic review. Three studies enrolled only novice clinician sonographers with no significant previous experience in ultrasound and reported substantial agreement for visual estimation, $\kappa = 0.61$ to 0.79 [27,32,33]. In three studies [22,25,29], the clinician sonographers were all attending emergency physicians but the level of POC echocardiography experience was not clearly defined, and these studies reported widely different levels of agreement for visual estimation of LVSF. In two studies the clinician sonographers were a mixture of trainees and attendings [23,31]. In this systematic review, emergency physician attending did not have higher levels of agreement with expert sonographers than emergency medicine trainees. There was also heterogeneity in additional training in POC echocardiography offered by the study teams prior to enrolment. Ten studies [22,23,25–30,32,33] offered study-specific training in POC echocardiography to clinician sonographer participants ranging from 10 min to 16 h (theoretical and hands-on training). In one study, the clinician sonographer did not receive any additional training with a calculated $\kappa = 0.49$; however, the clinician sonographers were credentialed to the standards defined by ACEP [31]. Implementing additional, targeted training in POC echocardiography is associated with an improvement in image acquisition and interpretation [58–61].

POC echocardiography technology has advanced considerably in the past two decades, with better quality machines at a reduced cost. Five studies that used visual estimation by clinician sonographers and published after 2010 [25,27,29,31,32] showed higher pooled agreement compared to those two studies before 2010 [22,23]: $\kappa = 0.7$ (95% CI, 0.55–0.84) vs. $\kappa = 0.64$ (95% CI, 0.46–0.84). This may reflect the improvement in technology and training for clinician sonographers [62].

Limitations

This systematic review has several limitations. All the data are from small, single centre observational studies. The study design, patient population, statistical analysis, clinician sonographer selection, POC echocardiography training and experience varied considerably. The risk of bias for included studies was high, mainly a consequence of convenience sampling, patient exclusion and selected clinician sonographers. However, this reflects the clinical use for POC echocardiography where images are not always attainable and not all clinicians are trained in ultrasound/POC echocardiography. ED performed POC echocardiography involves critically unwell patients who may be challenging to position.

Fig. 2

Study	Effect Size with 95% CI	Weight (%)
Moore 2002	0.52 [0.28, 0.76]	10.26
Randazzo 2003	0.71 [0.58, 0.84]	15.58
Weekes 2011	0.67 [0.47, 0.87]	12.10
Bustam 2014	0.81 [0.67, 0.96]	14.85
Unluer 2014	0.86 [0.77, 0.95]	17.67
Baiderston 2019	0.49 [0.37, 0.61]	16.17
Monsomboon 2019	0.62 [0.44, 0.79]	13.37
Overall	0.68 [0.57, 0.79]	

Heterogeneity: $I^2 = 0.02$, $I^2 = 75.73\%$, $H^2 = 4.12$

Test of $\theta \neq 0$: $Q(6) = 29.81$, $p = 0.00$

Test of $\theta = 0$: $z = 12.10$, $p = 0.00$

Forest plot of agreement of POC echocardiography by clinician sonographer for the assessment of LVSF as normal/abnormal using Simple kappa statistics as compared to expert sonographer. LVSF, left ventricular systolic function; POC, point-of-care.
optimally. Many emergency medicine training schemes do not include assessment of LVSF and in 10 studies [22,23,25–30,32,33] additional training was provided for clinician sonographers. This work is not generalisable to clinician sonographers without additional POC echocardiography training. Two studies [29,31] classified LVSF as normal or abnormal, a very blunt tool for clinical assessment. Classification of LVSF as normal, reduced, and severely reduced function may offer a more useful clinical approach. Only two studies assessed the inter-observer agreement between the expert sonographer [22,24], which was similar to the agreement between clinician sonographer and expert sonographer. There were insufficient data to allow meta-analysis for EPSS and VTI methods and meta-analysis was not possible. There is considerable heterogeneity among studies with limited generalisability. A standardised training curriculum for LVSF assessment is needed. The quality of the included studies was low. Further studies are warranted.

Acknowledgements

Open Access funding provided by the Qatar National Library.

Conflicts of interest

There are no conflicts of interest.

References

1. Labovitz AJ, Noble VE, Bierig M, Goldstein SA, Jones R, Kort S, et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. *J Am Soc Echocardiogr* 2010; 23:1225–1230.
2. Breitkreutz R, Price S, Steiger HV, Seeger FH, Ipler H, Ackermann H, et al; Emergency Ultrasound Working Group of the Johann Wolfgang Goethe-University Hospital, Frankfurt am Main. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients. *Resuscitation* 2010; 81:1527–1533.
3. Nowak RM, Sen A, Garcia AJ, Wilke H, Yang J, Nowak MR, et al. The inability of emergency physicians to adequately clinically estimate the underlying hemodynamic profiles of acutely ill patients. *Am J Emerg Med* 2012; 30:954–960.
4. Hautz WE, Kämmer JE, Hautz SC, Sauter TC, Zwaan L, Exadaktylos AK, et al. Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room. *Scand J Trauma Resusc Emerg Med* 2010; 27:54.
5. Ray P, Birologe S, Lefort Y, Becquemin MH, Beigelman C, Isnard R, et al. Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. *Crit Care* 2006; 10:R82.

Fig. 3

Study	Effect Size with 95% CI	Weight (%)
Moore 2002	0.61 [0.39, 0.83]	12.00
Randazzo 2003	0.71 [0.53, 0.89]	15.50
Weekes 2011	0.57 [0.41, 0.73]	18.29
Bustam 2014	0.79 [0.76, 0.82]	35.92
Monsomboon 2019	0.73 [0.58, 0.89]	18.29
Overall	0.70 [0.61, 0.80]	

Heterogeneity: $\tau^2 = 0.01$, $I^2 = 58.04\%$, $H^2 = 2.38$

Test of $\theta = 0$: Q(4) = 10.39, p = 0.03

Test of $\theta = 0$: z = 14.98, p = 0.00

Forest plot of agreement of POC echocardiography by clinician sonographer for the assessment of LVSF as normal, reduced or severely reduced using weighted Kappa statistics as compared to expert sonographer. LVSF, left ventricular systolic function; POC, point-of-care.

Conclusion

Clinician sonographer (trainee or attending) had a substantial agreement with an expert sonographer for the POC echocardiography assessment of LVSF as ‘normal or abnormal’ and as ‘normal, reduced and severely reduced’ by visual estimation. Few studies assessed the agreement between clinician sonographer and expert sonographer for EPSS and VTI methods and meta-analysis was not possible. There is considerable heterogeneity among studies with limited generalisability. A standardised training curriculum for LVSF assessment is needed. The quality of the included studies was low. Further studies are warranted.
49 Martin RP. Real time ultrasound quantification of ventricular function: has the eyeball been replaced or will the subjective become objective. J Am Coll Cardiol 1992;19:321–323.

50 Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al; ACC; AHA; ASE. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Soc Echocardiogr 2003;16:1091–1110.

51 Jeyaseelan S, Goudie BM, Pringle SD, Donnan PT, Sullivan FM, Struthers AD. Agreement between community echocardiography and hospital echocardiography in patients suspected of having left ventricular systolic dysfunction. Postgrad Med J 2005;81:777–779.

52 Testuz A, Müller H, Keller PF, Meyer P, Stampfli T, Sekoranja L, et al. Diagnostic accuracy of pocket-size handheld echocardiographs used by cardiologists in the acute care setting. Eur Heart J Cardiovasc Imaging 2013;14:38–42.

53 Amiel JB, Grümann A, Lhéritier G, Clavel M, François B, Pichon N, et al. Assessment of left ventricular ejection fraction using an ultrasonic stethoscope in critically ill patients. Crit Care 2012;16:R29.

54 Blais M, Carrière C, Delaunay F, Morel N, Revel P, Janvier G. Evaluation of a new pocket echoscopic device for focused cardiac ultrasonography in an emergency setting. Crit Care 2012;16:R82.

55 Johnson BK, Tierney DM, Rosborough TK, Harris KM, Newell MC. Internal medicine point-of-care ultrasound assessment of left ventricular function correlates with formal echocardiography. J Clin Ultrasound 2016;44:92–99.

56 Alexander JH, Peterson ED, Chen AY, Harding TM, Adams DB, Kisslo JA Jr. Feasibility of point-of-care echocardiography by internal medicine house staff. Am Heart J 2004;147:476–481.

57 Vignon P, Dugard A, Abraham J, Belcour D, Gondran G, Pepino F, et al. Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med 2007;33:1795–1799.

58 Kerwin C, Tommaso L, Kulstad E. A brief training module improves recognition of echocardiographic wall-motion abnormalities by emergency medicine physicians. Emerg Med Int 2011;2011:483242.

59 Jacob M, Shokoohi H, Moideen F, Pousson A, Boniface K. An echocardiography training program for improving the left ventricular function interpretation in emergency department; a brief report. Emerg (Recran) 2017;5:x70.

60 Frederiksen CA, Juhi-Olsen P, Nielsen DG, Eika B, Sloth E. Limited intervention improves technical skill in focus assessed transthoracic echocardiography among novice examiners. BMC Med Educ 2012;12:65.

61 Jones AE, Tayal VS, Kline JA. Focused training of emergency medicine residents in goal-directed echocardiography: a prospective study. Acad Emerg Med 2003;10:1054–1058.

62 Lee L, DeCara JM. Point-of-care ultrasound. Curr Cardiol Rep 2020;22:149.