On the maximum number of minimum total dominating sets in forests

Michael A. Henning1* Elena Mohr2 Dieter Rautenbach2

\begin{itemize}
 \item 1 Department of Pure and Applied Mathematics, University of Johannesburg, South Africa
 \item 2 Institute of Optimization and Operations Research, Ulm University, Germany
\end{itemize}

received 19th Aug. 2018, revised 18th Dec. 2018, accepted 11th Jan. 2019.

We propose the conjecture that every tree with order n at least 2 and total domination number γ_t has at most \[\left(\frac{n-\gamma_t}{n}\right)^{\frac{\gamma_t}{2}} \] minimum total dominating sets. As a relaxation of this conjecture, we show that every forest F with order n, no isolated vertex, and total domination number γ_t has at most
\[\min \left\{ \left(8\sqrt{\pi}\right)^n \left(\frac{n-\gamma_t}{n}\right)^{\frac{\gamma_t}{2}}, (1+\sqrt{2})^{n-\gamma_t}, 1.4865^n \right\} \]
minimum total dominating sets.

Keywords: Tree, forest, total domination, domination

1 Introduction

A set D of vertices of a graph G is a dominating set of G if every vertex of G that is not in D has a neighbor in D, and D is a total dominating set of G if every vertex of G has a neighbor in D. The minimum cardinalities of a dominating set of G and a total dominating set of G are the well studied domination number $\gamma(G)$ of G and the total domination number $\gamma_t(G)$ of G, respectively. A (total) dominating set is minimal if no proper subset is a (total) dominating set. A dominating set of G of cardinality $\gamma(G)$ is a minimum dominating set of G, and a total dominating set of G of cardinality $\gamma_t(G)$ is a minimum total dominating set or γ_t-set of G. For a graph G, let $\sharp\gamma_t(G)$ be the number of minimum total dominating sets of G.

Providing a negative answer to a question of Fricke et al. [6], Bien [2] showed that trees with domination number γ can have more than 2^γ minimum dominating sets. In fact, Bien’s example allows to construct forests with domination number γ that have up to 2.0598^γ minimum dominating sets. In [1] Alvarado et al. showed that every forest with domination number γ has at most 2.4606^γ minimum dominating sets, and they conjectured that every tree with domination number γ has $O\left(\frac{\gamma^2}{\ln \gamma}\right)$ minimum dominating sets.

*Research supported in part by the University of Johannesburg.

ISSN 1365–8050 © 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License
In the present paper we consider analogous problems for total domination, which turns out to behave quite differently. As shown by the star $K_{1,n-1}$ which has total domination number 2 but $n-1$ minimum total dominating sets, the number of minimum total dominating sets of a tree is not bounded in terms of its total domination number alone, but in terms of both the order and the total domination number. In Figure 1 we illustrate what we believe to be the structure of trees T with given order n at least 2 and total domination number γ_t that maximize $\sharp\gamma_t(T)$.

![Diagram](image)

Fig. 1: For the tree T_{even} on the left, we have $k = \frac{n}{\gamma_t + 1}$, $1 \leq \ell_1, \ldots, \ell_k$, and $(\ell_1 + 1) + \ldots + (\ell_k + 1) = n - k$, while for the tree T_{odd} on the right, we have $k = \frac{n}{\gamma_t + 2}$, $1 \leq \ell_1, \ldots, \ell_k$, and $(\ell_1 + 1) + \ldots + (\ell_k + 1) = n - k - 2$.

If γ_t is even, say $\gamma_t = 2k$, then the tree T_{even} in the left of Figure 1 satisfies

$$\sharp\gamma_t(T_{\text{even}}) = \prod_{i=1}^{k} (\ell_i + 1) \leq \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}} \right)^{\gamma_t/2},$$

where we use that the geometric mean is at most the arithmetic mean. Similarly, if γ_t is odd, say $\gamma_t = 2k + 1$, then the tree T_{odd} in the right of Figure 1 satisfies

$$\sharp\gamma_t(T_{\text{odd}}) = \sum_{i=1}^{k} \prod_{j=1}^{i-1} \ell_j \prod_{j=i+1}^{k} (\ell_j + 1) \leq \frac{k}{2} \left(\frac{n - \frac{\gamma_t - 1}{2}}{\frac{\gamma_t - 1}{2}} \right)^{k} \left(\frac{n - \frac{\gamma_t + 7}{2}}{\frac{\gamma_t + 7}{2}} \right)^{\gamma_t/2}.$$

In view of these estimates, we pose the following.

Conjecture 1. If a tree T has order n at least 2 and total domination number γ_t, then

$$\sharp\gamma_t(T) \leq \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}} \right)^{\gamma_t/2}.$$

As our first result, we show that Conjecture 1 holds up to a constant factor for bounded values of γ_t. More precisely, we show the following.

Theorem 2. If a forest F has order n, no isolated vertex, and total domination number γ_t, then

$$\sharp\gamma_t(F) \leq \left(8\sqrt{e} \right)^{\gamma_t} \left(\frac{n - \frac{\gamma_t}{2}}{\frac{\gamma_t}{2}} \right)^{\gamma_t/2}.$$
On the maximum number of minimum total dominating sets in forests

The well known estimate $1 + x \leq e^x$ implies

$$\left(\frac{n - \gamma t}{\gamma t}\right)^{\frac{\gamma t}{\gamma t}} = \left(1 + \frac{n - \gamma t}{\gamma t}\right)^{\frac{\gamma t}{\gamma t}} \leq e^{n - \gamma t}.$$

In the following theorem we can show an upper bound that is a little better. But since $1 + x \ll e^x$ for large x, the estimate is not good for fixed γt and large values of n. In this case Theorems 2 and 4 give better upper bounds.

Theorem 3. If a forest F has order n, no isolated vertex, and total domination number γt, then

$$\#\gamma_t(F) \leq (1 + \sqrt{2})^{n - \gamma t},$$

with equality if and only if every component of F is K_2.

Note that Theorem 3 is only tight for $\gamma t = n$, which corresponds to the fact that $1 + x = e^x$ only for $x = 0$. For n divisible by 5, the disjoint union of $\frac{n}{5}$ stars of order 5 yields a forest F with $\#\gamma_t(F) = 4^{\frac{n}{5}} \approx 1.3195^n$. Our third result comes close to that value.

Theorem 4. If a forest F has order n and no isolated vertex, then $\#\gamma_t(F) \leq 1.4865^n$.

Before we proceed to the proofs of our results, we mention some related research. Connolly et al. [4] gave bounds on the maximum number of minimum dominating sets for general graphs. The maximum number of minimal dominating sets was studied by Fomin et al. [5], and the maximum number of general dominating sets by Wagner [12] and Skupień [11], and by Bród and Skupień [3] for trees. Krzywkowski and Wagner [9] study the maximum number of total dominating sets for general graphs and trees. For similar research concerning independent sets we refer to [10, 13, 14].

The next section contains the proofs of our results. We use standard graph theoretical terminology and notation. An endvertex is a vertex of degree at most 1, and a support vertex is a vertex that is adjacent to an endvertex.

2 Proofs

For the proof of Theorem 2, we need the following lemma.

Lemma 5. If T is a tree of order n at least 2, and B is a set of vertices of T such that

(i) $|B \cap \{u, v\}| \leq 1$ for every $uv \in E(T)$, and

(ii) $|B \cap N_T(u)| \leq 1$ for every $u \in V(T),$

then $|B| \leq \frac{n}{2}$.

Proof: The proof is by induction on n. If T is a star, then (i) and (ii) imply $|B| \leq 1 \leq \frac{n}{2}$. Now, let T be a tree that is not a star; in particular, $n \geq 4$. Let $uw \ldots$ be a longest path in T. By (i) and (ii), we have $|B \cap (N_T[v] \setminus \{w\})| \leq 1$. By induction applied to the tree $T' = T - (N_T[v] \setminus \{w\})$ and the set $B' = B \cap V(T')$, we obtain $|B| \leq |B'| + |B \cap (N_T[v] \setminus \{w\})| \leq \frac{n(T')}{2} + 1 \leq \frac{n}{2}$. \(\square\)

We are now in a position to present the proof of Theorem 2.
Proof of Theorem 2: Let F be a forest of order n and total domination number γ_t such that $\sharp \gamma_t(F)$ is as large as possible. Let D be a γ_t-set of F. Let F' arise by removing from F all endvertices of F that do not belong to D. For every $u \in D$, let $L(u) = N_F(u) \setminus N_{F'}(u)$ and $\ell(u) = |L(u)|$, that is, $L(u)$ is the set of neighbors of u in D that are endvertices of F that do not belong to D. We call a vertex u in D big if $\ell(u) \geq 2$, and we assume that – subject to the above conditions – the forest F and the set D are chosen such that the number k of big vertices is as small as possible.

Claim 1. No two big vertices are adjacent.

Proof of Claim 1: Suppose, for a contradiction, that u and v are adjacent big vertices. Let L' be a set of $\ell(u) - 1$ vertices in $L(u)$, and let $F' = F - \{ux : x \in L'\} + \{vx : x \in L'\}$, that is, we shift $\ell(u) - 1$ neighbors of u in $L(u)$ to v. Clearly, the vertices u and v both belong to every γ_t-set of F and also to every γ_t-set of F'. This easily implies that a set of vertices of F is a γ_t-set of F if and only if it is a γ_t-set of F'. It follows that D is a γ_t-set of F' and that $\sharp \gamma_t(F) = \sharp \gamma_t(F')$. Since F' and D lead to less than k big vertices, we obtain a contradiction to the choice of F and D. □

Claim 2. No two big vertices have a common neighbor in D.

Proof of Claim 2: Suppose, for a contradiction, that u and w are big vertices with a common neighbor v in D. Let

- $\sharp u$ be the number of γ_t-sets of F that contain a vertex from $L(u)$,
- $\sharp w$ be the number of γ_t-sets of F that contain a vertex from $L(w)$, and
- $\sharp u, w$ be the number of γ_t-sets of F that contain no vertex from $L(u) \cup L(w)$.

In view of v, no γ_t-set of F contains a vertex from both sets $L(u)$ and $L(w)$, which implies

$$\sharp \gamma_t(F) = \sharp u + \sharp w + \sharp u, w.$$

Note that $\frac{\sharp u}{\ell(u)}$ is the number of subsets of $V(F) \setminus L(u)$ that can be extended to a γ_t-set of F by adding one vertex from $L(u)$. By symmetry, we may assume that $\frac{\sharp u}{\ell(u)} \leq \frac{\sharp w}{\ell(w)}$. Again, let L' be a set of $\ell(u) - 1$ vertices in $L(u)$, and let $F'' = F - \{ux : x \in L'\} + \{vx : x \in L'\}$. Similarly as before, the vertices u and w both belong to every γ_t-set of F and also to every γ_t-set of F'. It follows that D is a γ_t-set of F'', and that

$$\sharp \gamma_t(F') = \frac{\sharp u}{\ell(u)} + \frac{\sharp w}{\ell(w)} (\ell(u) + \ell(w) - 1) + \sharp u, w \geq \sharp u + \sharp w + \sharp u, w = \sharp \gamma_t(F).$$

Since F' and D lead to less than k big vertices, this contradicts the choice of F and D. □

Claim 3. $k \leq \frac{\gamma_t}{2}$.

Proof of Claim 3: This follows immediately by applying Lemma 5 to each component of $F[D]$, choosing B as the set of big vertices in that component. □
On the maximum number of minimum total dominating sets in forests

Let \(n' = n(F') \), let \(V_1' \) be the set of endvertices of \(F' \), let \(n_1' = |V_1'| \), and let \(m \) be the number of edges of \(F' \) between \(D \) and \(V(F') \setminus D \). Since the vertices in \(V_1' \) are either endvertices of \(F \) that belong to \(D \) or are adjacent to an endvertex of \(F' \), we obtain that \(V_1' \subseteq D \). Since \(D \) is a total dominating set, we obtain

\[
n' - \gamma_t = |V(F') \setminus D| \leq m \leq \sum_{u \in D} (d_{F'}(u) - 1). \tag{1}
\]

Since \(F' \) is a forest with, say, \(\kappa \) components,

\[
n_1' = 2\kappa + \sum_{u \in V(F') : d_{F'}(u) \geq 2} (d_{F'}(u) - 2) \geq \sum_{u \in D : d_{F'}(u) \geq 2} (d_{F'}(u) - 2) = \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u) - 2(\gamma_t - n_1'),
\]

which implies

\[
2\gamma_t - n_1' \geq \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u). \tag{2}
\]

Now, we obtain

\[
n' \leq \sum_{u \in D} d_{F'}(u) = \sum_{u \in D : d_{F'}(u) \geq 2} d_{F'}(u) + n_1' \leq 2\gamma_t. \tag{3}
\]

Let \(u_1, \ldots, u_k \) be the big vertices. By (3), the forest \(F'' = F - \bigcup_{i=1}^k L(u_i) \) has order at most \(3\gamma_t \). Let \(D'' \) be a set of vertices of \(F'' \) that is a subset of some \(\gamma_t \)-set \(D \) of \(F \). For every \(i \in \{1, \ldots, k\} \), if \(u_i \) has a neighbor in \(D'' \), then \(D \) contains no vertex from \(L(u_i) \), otherwise, the set \(D \) contains exactly one vertex from \(L(u_i) \). This implies that each of the \(2^n(F'') \) subsets of \(V(F'') \) can be extended to a \(\gamma_t \)-set of \(F \) in at most \(\prod_{i=1}^k \ell(u_i) \) many ways.

Since

(i) \(n(F'') \leq 3\gamma_t \),

(ii) the geometric mean is less or equal the arithmetic mean,

(iii) \(\sum_{i=1}^k \ell(u_i) = n - n(F'') \leq n - \gamma_t \leq n - \frac{\gamma_t}{2} \),

(iv) \(\left(1 + \frac{\gamma_t}{2k}\right)^k \leq e^\frac{\gamma_t}{2} - k \leq e^\frac{\gamma_t}{2} \), and

(v) \(\frac{\gamma_t}{2} \leq 1 \),
we obtain

\[\sharp_{\gamma_t}(F) \leq 2^{n(F')} \prod_{i=1}^{k} \ell(u_i) \]

\begin{align*}
\leq & \quad 2^{3\gamma_t} \prod_{i=1}^{k} \ell(u_i) \\
\leq & \quad 2^{3\gamma_t} \left(\frac{1}{k} \sum_{i=1}^{k} \ell(u_i) \right)^k \\
\leq & \quad 2^{3\gamma_t} \left(\frac{n - \gamma_t}{k} \right)^k \\
= & \quad 2^{3\gamma_t} \left(1 + \frac{\gamma_t - k}{k} \right)^k \left(\frac{n - \gamma_t}{n - \gamma_t^2 n} \right)^{\frac{\gamma_t - k}{2}} \left(\frac{n - \gamma_t}{2} \right)^{\frac{\gamma_t}{2}} \\
\leq & \quad 2^{3\gamma_t} e^{\frac{3\gamma_t}{2}} \left(\frac{n - \gamma_t}{n - \gamma_t^2 n} \right)^{\frac{\gamma_t}{2}} \\
\leq & \quad (8\sqrt{e})^{\gamma_t} \left(\frac{n - \gamma_t}{2} \right)^{\frac{\gamma_t}{2}},
\end{align*}

which completes the proof.

There is clearly some room for lowering \(8\sqrt{e}\) to a smaller constant. Since the dependence on \(\gamma_t\) would still be exponential, we did not exploit this for the sake of simplicity. It would be interesting to see whether the bound can be improved to

\[\left(1 + o \left(\frac{n}{\gamma_t} \right) \right) \left(\frac{n - \gamma_t}{2} \right)^{\frac{\gamma_t}{2}}. \]

Note that Theorem 2 implies

\[\sharp_{\gamma_t}(T) \leq \left(\frac{n - \gamma_t}{2} \right)^{\frac{\gamma_t}{2} + o(\gamma_t)}. \]

We proceed to our next proof.

Proof of Theorem 3: We proceed by induction on \(n\). If \(n = 2\), then \(F = K_2, \gamma_t = 2\), and \(\sharp_{\gamma_t}(F) = 1 = (1 + \sqrt{2})^0 = (1 + \sqrt{2})^{n - \gamma_t}\). Now, let \(n \geq 3\).

Claim 1. If \(F\) contains a component \(T\) that is a star, then \(\sharp_{\gamma_t}(F) \leq (1 + \sqrt{2})^{n - \gamma_t}\), with strict inequality if \(T\) has order at least 3.

Proof of Claim 1: Suppose that \(F\) contains a component \(T\) that is a star. Thus, \(T = K_{1,t}\) for some \(t \geq 1\). The forest \(F' = F - V(T)\) has order \(n' = n - t - 1\), no isolated vertex, and total domination number
On the maximum number of minimum total dominating sets in forests

\(\gamma'_t = \gamma_t - 2 \). By induction, we obtain

\[
\sharp \gamma_t(F) = t \cdot \sharp \gamma_t(F') \leq t(1 + \sqrt{2})^{n'-\gamma'_t} = t(1 + \sqrt{2})^{n-t-1-(\gamma_t-2)}
\]

\[
= (1 + \sqrt{2})^{n-\gamma_t} (t(1 + \sqrt{2})^{1-t}) \leq (1 + \sqrt{2})^{n-\gamma_t},
\]

where we use \(t(1 + \sqrt{2})^{1-t} \leq 1 \) for \(t = 1 \) and \(t \geq 2 \). Furthermore, if \(t \geq 2 \), then \(t(1 + \sqrt{2})^{1-t} < 1 \), in which case \(\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}. \)

\[\square\]

Claim 2. If \(F \) contains a component \(T \) of diameter 3, then \(\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}. \)

Proof of Claim 2: Suppose that \(F \) contains a component \(T \) of diameter 3. Note that \(T \) has a unique minimum total dominating set. The forest \(F' = F - V(T) \) has order \(n' \leq n - 4 \), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 2 \). By induction, we obtain

\[
\sharp \gamma_t(F) = \sharp \gamma_t(F') \leq (1 + \sqrt{2})^{n'-\gamma'_t} \leq (1 + \sqrt{2})^{n-\gamma_t-2} < (1 + \sqrt{2})^{n-\gamma_t}.
\]

\[\square\]

By Claim 1 and Claim 2, we may assume that there is a component of \(F \) that has diameter at least 4, for otherwise the desired result follows. Let \(T \) be such a component of \(F \). Let \(uvwxxy \ldots r \) be a longest path in \(T \), and consider \(T \) as rooted in \(r \). For a vertex \(z \) of \(T \), let \(V_z \) be the set that contains \(z \) and all its descendants.

Claim 3. If \(d_F(w) \geq 3 \), then \(\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}. \)

Proof of Claim 3: Suppose that \(d_F(w) \geq 3 \), which implies that \(w \) belongs to every \(\gamma_t \)-set of \(F \), because either \(w \) is a support vertex or \(w \) is the only neighbor of two support vertices, that is no leaf. Let \(v' \) be a child of \(w \) distinct from \(v \). Let \(F' = F - V_{v'}. \) If \(v' \) is an endvertex, then \(F' \) has order \(n' = n - 1 \), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 1 \). By induction, we obtain

\[
\sharp \gamma_t(F) \leq \sharp \gamma_t(F') \leq (1 + \sqrt{2})^{n'-\gamma'_t} = (1 + \sqrt{2})^{n-\gamma_t-1} < (1 + \sqrt{2})^{n-\gamma_t}.
\]

If \(v' \) is not an endvertex, then \(F' \) has order \(n' \leq n - 2 \), no isolated vertex, and total domination number \(\gamma'_t = \gamma_t - 1 \). Note that if \(T \) is a minimum total dominating set of \(F \), \(T - \{v\} \) is a total dominating set of \(F' \), since \(v' \) is a support vertex and \(v \) and \(w \) are part of every minimum total dominating set of \(F \). By induction, we obtain

\[
\sharp \gamma_t(F) \leq \sharp \gamma_t(F') \leq (1 + \sqrt{2})^{n'-\gamma'_t} \leq (1 + \sqrt{2})^{n-\gamma_t-1} < (1 + \sqrt{2})^{n-\gamma_t}.
\]

In both cases, \(\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}. \)

\[\square\]

By Claim 3, we may assume that \(d_F(w) = 2 \), for otherwise the desired result holds.

Claim 4. If \(d_F(v) \geq 3 \), then \(\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}. \)

Proof of Claim 4: Suppose that \(\ell = d_F(v) - 1 \geq 2 \). Let \(F' = F - V_w \), \(F'' = F - (N_F(v) \setminus \{w\}) \), and \(F''' = F - (V_w \cup \{x\}). \) See Figure 2 for an illustration.
The forest F

The forest F'

The forest F''

The forest F'''

Fig. 2: The important details of the forests F, F', F'', and F'''.

- There are at most $\ell \cdot \#\gamma_t(F')$ many γ_t-sets of F that contain v and a child of v but do not contain w. Furthermore, if such a γ_t-set exists, then F' has order $n' = n - \ell - 2$, no isolated vertex, and total domination number $\gamma'_t = \gamma_t - 2$.

- There are at most $\#\gamma_t(F'')$ many γ_t-sets of F that contain v, w, and x. Furthermore, if such a γ_t-set exists, then F'' has order $n'' = n - \ell$, no isolated vertex, and total domination number $\gamma''_t = \gamma_t - 1$.

- There are at most $\#\gamma_t(F''')$ many γ_t-sets of F that contain both v and w but do not contain x. Furthermore, if such a γ_t-set exists, then F''' has order $n''' = n - \ell - 3$, no isolated vertex, and total domination number $\gamma'''_t = \gamma_t - 2$.

Since all γ_t-sets of F are of one of the three considered types, we obtain, by induction,

$$
\#\gamma_t(F) \leq \ell \cdot \#\gamma_t(F') + \#\gamma_t(F'') + \#\gamma_t(F''') \\
\leq \ell(1 + \sqrt{2})^{n-\ell-2-(\gamma_t-2)} + (1 + \sqrt{2})^{n-\ell-(\gamma_t-1)} + (1 + \sqrt{2})^{n-\ell-3-(\gamma_t-2)} \\
= (1 + \sqrt{2})^{n-\gamma_t}(1 + \sqrt{2})^{-\ell-1}(\ell(1 + \sqrt{2}) + (1 + \sqrt{2})^2 + 1) \\
< (1 + \sqrt{2})^{n-\gamma_t},
$$

where we use $\ell(1 + \sqrt{2}) + (1 + \sqrt{2})^2 + 1 < (1 + \sqrt{2})^{\ell+1}$ for all $\ell \geq 2$.

By Claim 4, we may assume that $d_F(v) = 2$, for otherwise the desired result holds.

Claim 5. If x is a support vertex, then $\#\gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}$.

Proof of Claim 5: Suppose that x is a support vertex, which implies that v and x belong to every γ_t-set of F. Let $F' = F - V_w$ and $F'' = F - (N_F[v] \cup N_F[x])$.

On the maximum number of minimum total dominating sets in forests

- There are at most $\sharp \gamma_t(F')$ many γ_t-sets of F that contain w but do not contain u. Furthermore, if such a γ_t-set exists, then F' has order $n' = n - 3$, no isolated vertex, and total domination number $\gamma_t' = \gamma_t - 2$.

- There are at most $\sharp \gamma_t(F')$ many γ_t-sets of F that contain w and at least one other neighbour of x. Furthermore, if such a γ_t-set exists, then F' has order $n' = n - 3$, no isolated vertex, and total domination number $\gamma_t' = \gamma_t - 2$.

- There are at most $\sharp \gamma_t(F'')$ many γ_t-sets of F that contain w and no other neighbour of x. Furthermore, if such a γ_t-set exists, then F'' has order $n'' = n - 5$, no isolated vertex, and total domination number $\gamma_t'' = \gamma_t - 3$.

Since all γ_t-sets of F are of one of the three considered types, we obtain, by induction,

$$\sharp \gamma_t(F) \leq \sharp \gamma_t(F') + \sharp \gamma_t(F'') < 2(1 + \sqrt{2})^{n-3-(\gamma_t-2)} + (1 + \sqrt{2})^{n-5-(\gamma_t-3)}$$

$$= (1 + \sqrt{2})^{n-\gamma_t}(1 + \sqrt{2})^{-2}(2(1 + \sqrt{2}) + 1) = (1 + \sqrt{2})^{n-\gamma_t},$$

where we use $2(1 + \sqrt{2}) + 1 = (1 + \sqrt{2})^2$. Note that in F' there is a component that contains a path of length two, in particular not every component of F' is a K_2.

By Claim 5, we may assume that x is not a support vertex, for otherwise the desired result holds.

Claim 6. If x has a child that is a support vertex, then $\sharp \gamma_t(F) < (1 + \sqrt{2})^{n-\gamma_t}$.

Proof of Claim 6: Suppose that x has a child w' that is a support vertex. Clearly, the vertex w' is distinct from w and belongs to every γ_t-set of F. The forest $F' = F - V_w$ has order $n' = n - 3$, no isolated vertex, and total domination number $\gamma_t' = \gamma_t - 2$. By induction, we obtain

$$\sharp \gamma_t(F) = 2\sharp \gamma_t(F') \leq 2(1 + \sqrt{2})^{n-3-(\gamma_t-2)} = (1 + \sqrt{2})^{n-\gamma_t}2(1 + \sqrt{2})^{-1} < (1 + \sqrt{2})^{n-\gamma_t},$$

where we use $2 < (1 + \sqrt{2})$.

By Claim 6, we may assume that no child of x is a support vertex, for otherwise the desired result holds. Together with Claims 3 and 4, we may assume that the subforest of F induced by V_x arises from a star $K_{1,q}$ for some $q \geq 1$ by subdividing every edge twice. Let $F' = F - V_x$, $F'' = F - (V_x \cup \{y\})$, and $F''' = F - (V_x \cup N_F[y])$.

- There are at most $2\sharp \gamma_t(F')$ many γ_t-sets of F that do not contain x. Furthermore, if such a γ_t-set exists, then F' has order $n' = n - 3q - 1$, no isolated vertex, and total domination number $\gamma_t' = \gamma_t - 2q$.

- There are at most $(2q - 1)\sharp \gamma_t(F'')$ many γ_t-sets of F that contain x but do not contain y. Furthermore, if such a γ_t-set exists, then F'' has order $n'' = n - 3q - 2$, no isolated vertex, and total domination number $\gamma_t'' = \gamma_t - 2q - 1$.

- There are at most $2\sharp \gamma_t(F''')$ many γ_t-sets of F that contain both x and y. Furthermore, if such a γ_t-set exists, then F''' has order $n''' \leq n - 3q - 3$, no isolated vertex, and total domination number $\gamma_t''' = \gamma_t - 2q - 2$.

Since all γ_t-sets of F are of one of the three considered types, we obtain, by induction,
\[
\sharp\gamma_t(F) \leq 2^q\sharp\gamma_t(F') + (2^q - 1)\sharp\gamma_t(F'') + 2^q\sharp\gamma_t(F''') \\
\leq 2^q(1 + \sqrt{2})^{n-3q-1-(\gamma_t-2q)} + (2^q - 1)(1 + \sqrt{2})^{n-3q-2-(\gamma_t-2q-1)} + 2^q(1 + \sqrt{2})^{n-3q-3-(\gamma_t-2q-2)} \\
= (1 + \sqrt{2})^{n-\gamma_t} + (1 + \sqrt{2})^{-q-1}(2^q + 2^q - 1 + 2^q) \\
< (1 + \sqrt{2})^{n-\gamma_t},
\]
where we use $3 \cdot 2^q - 1 < (1 + \sqrt{2})^{q+1}$ for all $q \geq 1$. This completes the proof of Theorem 3.

We proceed to the proof of Theorem 4, which uses exactly the same approach as Theorem 3.

Proof of Theorem 4: By induction on n, we show that $\sharp\gamma_t(F) \leq \beta^n$, where β is the unique positive real solution of the equation $2\beta + \beta^3 + 1 = \beta^5$, that is, $\beta \approx 1.4865$. If $n = 2$, then $F = K_2$ and $\sharp\gamma_t(F) = 1 < \beta^2$. Now, let $n \geq 3$.

Claim 1. If F contains a component T that is a star, then $\sharp\gamma_t(F) \leq \beta^n$.

Proof of Claim 1: Suppose that F contains a component T that is a star. Thus, $T = K_{1,t}$ for some $t \geq 1$. The forest $F' = F - V(T)$ has order $n' = n - t + 1$ and no isolated vertex. By induction, we obtain $\sharp\gamma_t(F') = t \cdot \sharp\gamma_t((F')) \leq t\beta^{n-t-1} \leq \beta^n$, where we use $t \leq \beta^{1+1}$.

Claim 2. If F contains a component T of diameter 3, then $\sharp\gamma_t(F) \leq \beta^n$.

Proof of Claim 2: Suppose that F contains a component T of diameter 3. The forest $F' = F - V(T)$ has order $n' = n - 4$ and no isolated vertex. By induction, we obtain $\sharp\gamma_t(F') = \sharp\gamma_t((F')) \leq \beta^{n'} < \beta^n$.

By Claim 1 and Claim 2, we may assume that every component of F has diameter at least 4, for otherwise the desired result follows. Let T be an arbitrary component of F. Let $uvwxy\ldots r$ be a longest path in T, and consider T as rooted in r. For a vertex z of T, let V_z be the set that contains z and all its descendants.

Claim 3. If $d_F(w) \geq 3$, then $\sharp\gamma_t(F) \leq \beta^n$.

Proof of Claim 3: Suppose that $d_F(w) \geq 3$, which implies that w belongs to every γ_t-set of F. Let v' be a child of w distinct from v. The forest $F' = F - V_v$ has order $n' < n$ and no isolated vertex. Since $\sharp\gamma_t(F') \leq \sharp\gamma_t((F'))$, we obtain, by induction, $\sharp\gamma_t(F') \leq \beta^{n'} < \beta^n$.

By Claim 3, we may assume that $d_F(w) = 2$, for otherwise the desired result holds.

Claim 4. If $d_F(w) \geq 3$, then $\sharp\gamma_t(F) \leq \beta^n$.

Proof of Claim 4: Suppose that $\ell = d_F(v) - 1 \geq 2$. Arguing exactly as in the proof of Claim 4 in the proof of Theorem 3 using the forests F', F'', and F''', we obtain, by induction,
\[
\sharp\gamma_t(F) \leq \ell \cdot \sharp\gamma_t(F') + \sharp\gamma_t(F'') + \sharp\gamma_t(F''') \\
\leq \ell\beta^{n-\ell-2} + \beta^{n-\ell} + \beta^{n-\ell-3} \\
= \beta^n \beta^{-\ell-3}(\ell + \beta^3 + 1) \\
\leq \beta^n,
\]
On the maximum number of minimum total dominating sets in forests

where we use \(\ell \beta + \beta^3 + 1 \leq \beta^{\ell + 3} \) for all \(\ell \geq 2 \); in fact, this inequality is the reason for the specific choice of \(\beta \).

By Claim 4, we may assume that \(d_F(v) = 2 \), for otherwise the desired result holds.

Claim 5. If \(x \) is a support vertex, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 5: Suppose that \(x \) is a support vertex. Arguing exactly as in the proof of Claim 5 in the proof of Theorem 3 using the forests \(F' \) and \(F'' \), we obtain, by induction,

\[
\sharp \gamma_t(F) \leq 2^q \gamma_t(F') + \sharp \gamma_t(F'') \leq 2\beta^{n-3} + \beta^{n-5} = \beta^n \beta^{-5}(2\beta^2 + 1) \leq \beta^n,
\]

where we use \(2\beta^2 + 1 \leq \beta^5 \).

By Claim 5, we may assume that \(x \) is not a support vertex, for otherwise the desired result holds.

Claim 6. If \(x \) has a child that is a support vertex, then \(\sharp \gamma_t(F) \leq \beta^n \).

Proof of Claim 6: Suppose that \(x \) has a child \(w' \) that is a support vertex. Arguing exactly as in the proof of Claim 6 in the proof of Theorem 3 using the forest \(F' \), we obtain, by induction,

\[
\sharp \gamma_t(F) = 2^q \gamma_t(F') \leq 2\beta^{n-3} = \beta^n 2\beta^{-3} \leq \beta^n,
\]

where we use \(2 < \beta^3 \).

Now, arguing exactly as at the end of the proof of Theorem 3 using the forests \(F', F'', \) and \(F''' \), we obtain, by induction,

\[
\sharp \gamma_t(F) \leq 2^q \gamma_t(F') + (2^q - 1)\gamma_t(F'') + 2^q \gamma_t(F''')
\leq 2^q \beta^{n-3q-1} + (2^q - 1)\beta^{n-3q-2} + 2^q \beta^{n-3q-3}
= \beta^n \beta^{-3q-3} (2^q \beta^2 + (2^q - 1)\beta + 2^q)
\leq \beta^n \beta^{-3q-3} 2^q (\beta^2 + \beta + 1)
\leq \beta^n,
\]

where we use \(2^q (\beta^2 + \beta + 1) \leq \beta^{3q+3} \) for all \(q \geq 1 \).

References

[1] J.D. Alvarado, S. Dantas, E. Mohr, and D. Rautenbach, On the maximum number of minimum dominating sets in forests, Discrete Mathematics 342 (2019) 934–942.

[2] A. Bień, Properties of gamma graphs of trees, presentation at the 17th Workshop on Graph Theory Colourings, Independence and Domination (CID 2017), Piechowice, Poland.

[3] D. Bród and Z. Skupień, Trees with extremal numbers of dominating sets, The Australasian Journal of Combinatorics 35 (2006) 273–290.

[4] S. Connolly, Z. Gabor, A. Godbole, B. Kay, and T. Kelly, Bounds on the maximum number of minimum dominating sets, Discrete Mathematics 339 (2016) 1537–1542.
[5] F.V. Fomin, F. Grandoni, A.V. Pyatkin, and A.A. Stepanov, Bounding the number of minimal dominating sets: a measure and conquer approach, Lecture Notes in Computer Science 3827 (2005) 573–582.

[6] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, and K.R. Hutson, γ-graphs of graphs, Discussiones Mathematicae Graph Theory 31 (2011) 517–531.

[7] T.W. Haynes, S.T. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.

[8] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer 2013.

[9] M. Krzywkowski and S. Wagner, Graphs with few total dominating sets, Discrete Mathematics 341 (2018) 997–1009.

[10] K.M. Koh, C.Y Goh, and F.M. Dong, The maximum number of maximal independent sets in unicyclic connected graphs, Discrete Mathematics 308 (2008) 3761–3769.

[11] Z. Skupień, Majorization and the minimum number of dominating sets, Discrete Applied Mathematics 165 (2014) 295–302.

[12] S. Wagner, A note on the number of dominating sets of a graph, Utilitas Mathematica 92 (2013) 25–31.

[13] I. Włoch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Mathematics 308 (2008) 4768–4772.

[14] J. Zito, The structure and maximum number of maximum independent sets in trees, Journal of Graph Theory 15 (1991) 207–221.