Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer

Bikash K. Behera1 · Swarnadeep Seth1,2 · Antariksha Das1,3 · Prasanta K. Panigrahi1

Received: 1 September 2018 / Accepted: 21 February 2019 / Published online: 1 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019, corrected publication 2019

Abstract
Quantum communication is a secure way to transfer quantum information and to communicate with legitimate parties over distant places in a network. Although communication over a long distance has already been attained, technical problem arises due to unavoidable loss of information through the transmission channel. Quantum repeaters can extend the distance scale using entanglement swapping and purification scheme. Here we demonstrate the working of a quantum repeater by the above two processes. We use IBM’s real quantum processor ‘ibmqx4’ to create two pair of entangled qubits and design an equivalent quantum circuit which consequently swaps the entanglement between the two pairs. We then develop a novel purification protocol which enhances the degree of entanglement in a noisy channel that includes combined errors of bit-flip, phase-flip and phase-change error. We perform quantum state tomography to verify the entanglement swapping between the two pairs of qubits and working of the purification protocol.

Keywords Quantum repeater · Quantum communication · IBM quantum experience

Prasanta K. Panigrahi
pprasanta@iiserkol.ac.in
Bikash K. Behera
bkb18rs025@iiserkol.ac.in
Swarnadeep Seth
swarnadeep@knights.ucf.edu
Antariksha Das
a.das-1@tudelft.nl

1 Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
2 Department of Physics, University of Central Florida, Orlando, FL 32186, USA
3 QuTech, Delft University of Technology (TU Delft), Lorentzweg 1, 2628 CJ Delft, The Netherlands
1 Introduction

Quantum communication [1–4] is one of the secure ways to send unknown quantum states from one place to another and transfer secret messages among the parties. Photonic channels [5–11] have been found a significant attraction for the physical implementation of quantum communication. The secret messages can be potentially transmitted through the photonic channel by using quantum cryptography [12–14] that plays a key role in building a quantum network [15–17]. The mechanism of quantum communication lies in generating entangled states [18–22] between distant parties, which is a difficult task to achieve practically [23]. Using entangled channel, quantum teleportation protocol [24–28] can be performed securely over a long distance. However, the degree of entanglement between distant parties decreases exponentially over a photonic channel even after using a purification scheme [29]. Hence, it becomes nearly impossible to keep intact the entangled state over a large-scale distance.

Efficient long distance communication over the distances of the order 1000 km has remained an outstanding challenge due to loss errors in the communication channel. Quantum repeaters (QRs) have been proposed as promising candidates to overcome this problem. The purpose is to divide the whole distance into smaller segments with a length comparable to the attenuation length of the channel and establishing Quantum repeater stations [30–34] at each segment. This requires generation and purification of the entanglement for each segment and then transmission of the purified entanglement [35] to the next segment through entanglement swapping [5,24,36,37]. The process of entanglement swapping and purification between two consecutive segments need to be repeated a large number of times until the entangled channel has been prepared with a high fidelity. To increase the fidelity of entangled state through the channel, quantum repeaters are introduced by Briegel, Dür, Cirac and Zoller (BDCZ) [6], which could in principle be used to preserve the entangled state with a fidelity close to unity. Quantum concentration protocols [38–40] have been applied for enhancing entanglement in the channel. Other useful techniques such as heralded entanglement generation (HEG) [6,41] or quantum error correction (QEC) [32,33,42,43] have been applied to get rid of loss or operational errors [44] in the communication channel. Muralidharan et al. [44] have listed a number of methods to overcome loss or operation errors and have classified three generations of quantum repeaters. Among all the methods, quantum error correction is a novel one as it can be used in all the generations of quantum repeaters as a purification protocol. Illustration of entanglement swapping and purification at each node fails to provide a complete demonstration of a quantum repeater protocol [45,46]. A quantum memory [47,48] is in fact needed to store the entangled state of each repeater station, which is a great challenge to establish. However, Yuan et al. [49] have developed the scheme of a quantum memory while realizing the BDCZ quantum repeater, where the process of entanglement swapping has been integrated with quantum memory for storage and retrieval of each segment state after the process of purification.

IBM has developed prototypes of 5-, 16-, 20- and 50-qubit quantum computer [50], which has attracted the attention of a large number of researchers working in various sub-field of quantum computation and quantum information. A number of experiments
Table 1 The table shows the parameters of the device ibmqx4

Qubits	ω_R^i $/2\pi$ (GHz)	ω_i^\dagger $/2\pi$ (GHz)	δ_i^\dagger $/2\pi$ (MHz)	χ^\dagger $/2\pi$ (kHz)	T_1^\parallel (μs)	T_2^\perp (μs)
Q0	6.52396	5.2461	−330.1	410	35.2	38.1
Q1	6.48078	5.3025	−329.7	512	57.5	40.5
Q2	6.43875	5.3025	−329.7	408	36.6	54.8
Q3	6.58036	5.4317	−327.9	434	43.0	42.1
Q4	6.52698	5.1824	−332.5	458	49.5	19.2

*Resonance frequency, †Qubit frequency, ‡Anharmonicity, §Qubit-cavity coupling strength, ‖Relaxation time, ‭Coherence time

have been tested and verified using 5-qubit and 16-qubit quantum computer [51–69]. Here, we use IBM’s 5 qubit quantum processor ‘ibmqx4’ to demonstrate the working of a quantum repeater. We entangle two pairs of superconducting qubits [70] and design a quantum circuit which could in principle equivalently perform the main operations of a quantum repeater, i.e., entanglement swapping and entanglement purification. We introduce errors in the channel for generating unpurified entangled state and apply purification protocol on the erroneous channel that leads to the enhancement in the fidelity of the entangled state. It is to be mentioned that the entangled state is stored in the qubits of ibmqx4. The information about the entangled state can be retrieved by using an ancilla [71] representing another superconducting qubit. Hence, ibmqx4 can act as a quantum memory for storage and retrieval of information about the entangled state at each repeater node. In the transmission channel, if at every station, a quantum computer could be placed then that can act as a quantum repeater node. Therefore, quantum communication can be securely achieved by the help of quantum computers connected over the quantum internet [15–17] in a quantum networking environment.

2 Results

2.1 Experimental setup

The experimental parameters of ibmqx4 chip are presented in Table 1, where ω_R^i, ω_i, δ_i, χ, T_1 and T_2 represent the resonance frequency, qubit frequency, anharmonicity, qubit-cavity coupling strength, relaxation time and coherence time, respectively, for the readout resonator. The connectivity and control of five superconducting qubits (Q_0, Q_1, Q_2, Q_3 and Q_4) are depicted in Fig. 1b. The single-qubit and two-qubit controls provided by the coplanar wave guides (CPWs) are shown by black and white lines, respectively. The device is cooled in a dilution refrigerator at temperature 0.021 K. The qubits are coupled via two superconducting CPWs, one coupling Q_2, Q_3 and Q_4 and the other coupling Q_0, Q_1, Q_2 with resonator frequencies 6.6 GHz and 7.0 GHz, respectively. The qubits are controlled and read out by individual CPWs.
Fig. 1 The figure illustrates the chip layout of 5-qubit quantum processor ibmqx4. The chip is stored in a dilution refrigerator at temperature 0.021 K. Here, all the 5 transmon qubits (charge qubits) are connected by two coplanar waveguide (CPW) resonators. The two CPWs couple Q2, Q3 and Q4 qubits with resonating frequency around 6.6 GHz and Q0, Q1 and Q2 qubits are coupled with 7.0 GHz frequency. Each qubit is controlled and readout by a particular CPW. The coupling map for the CNOTS is represented as, \{Q_1 \rightarrow [Q_0], Q_2 \rightarrow [Q_0, Q_1, Q_4], Q_3 \rightarrow [Q_2, Q_4]\}, where \(a \rightarrow [b]\) means \(a\) is the control qubit and \(b\) is the target qubit for the implementation of CNOT gate. The gate and readout errors are of the order of \(10^{-2}\) to \(10^{-3}\).

2.2 Entanglement swapping

Entanglement swapping and purification of entanglement are the two main operations of a quantum repeater. We present the two schemes along with their experimental realization in the IBM quantum computer, ibmqx4. Entanglement swapping between two repeater stations is an essential condition for transferring information to distant places. This process can be understood by considering three parties, Alice, Bob and Charlie. We consider two entangling pairs of qubits, \(A_1–B_1, A_2–B_2\), where \(A_1, A_2\) denote the qubits of Alice and Bob, respectively, and \(B_1, B_2\) correspond to Charlie’s qubits. Initially, the qubits of Alice and Bob, \(A_1, A_2\) are entangled with Charlie’s qubits \(B_1, B_2\), respectively. After the swapping process, the qubits of Alice and Bob, \(A_1, A_2\) get entangled, which is the key idea of entanglement swapping. In our experiment, we model the same scenario by means of superconducting qubits [70] in IBM quantum experience interface [50]. It is clearly seen from Figs. 2 and 3 that initially, \(A_1, B_1\) and \(A_2, B_2\) are entangled by the Bell channel, \(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\), meaning the entanglement between Alice and Charlie, and Bob and Charlie, respectively. We design an equivalent quantum circuit that performs entanglement swapping between the above two pairs of qubits so that \(A_1, A_2\) and \(B_1, B_2\) get entangled. Now, Alice and Bob get entangled while Charlie’s two qubits also get entangled. The above scheme is clearly depicted in Fig. 3.

The process of entanglement swapping is presented as the following calculation. The initial state of the whole system is denoted as,
Fig. 2 The schematic diagram illustrates the performance of a Quantum Repeater (QR). The entanglement between the pair of qubits A₁–B₁ and A₂–B₂ is being swapped (using entanglement swapping protocol) to generate entanglement between A₁–A₂ and B₁–B₂ qubit pairs, which is an essential mechanism of a QR. A purification protocol is introduced to improve the fidelity of the entanglement between the above two pairs. These two mechanisms are applied to inherently represent the working of the QR.

\[|/Psi_1 \rangle = \left(\frac{|0_A_1 0_B_1 \rangle + |1_A_1 1_B_1 \rangle}{\sqrt{2}} \right) \otimes \left(\frac{|0_A_2 0_B_2 \rangle + |1_A_2 1_B_2 \rangle}{\sqrt{2}} \right) \]

(1)

After sequentially applying CNOT₂→₁, CNOT₁→₂ and CNOT₀→₃, the final state is obtained as,

\[|/Psi_f \rangle = \left(\frac{|0_A_1 0_A_2 \rangle + |1_A_1 1_A_2 \rangle}{\sqrt{2}} \right) \otimes \left(\frac{|0_B_1 0_B_2 \rangle + |1_B_1 1_B_2 \rangle}{\sqrt{2}} \right) \]

(2)

Here, CNOTᵢ→ⱼ is applied on the target qubit [ⱼ], where [ᵢ] acts as the control qubit, and \(H_i \) is applied on the [ᵢ] qubit. The quantum circuit for the above operation is shown in Fig. 3. It is to be pointed that the two protocols given in Ref. [62] have been used to design the quantum circuit in ibmqx4. The qubits of Alice (A₁) and Charlie (B₁), [₀] and [₁] are initially entangled by the Bell channel, \(|00 \rangle + |11 \rangle \sqrt{2} \) by applying the gates \(H_0, CNOT[0]→[1] \). Here due to the constraint in the architecture (See Fig. 1), CNOT[0]→[1] cannot be applied directly. Hence we apply \(H_0, H_1, CNOT[1]→[0], H_0, H_1 \) according to protocol I given in Ref. [62]. The similar procedure has been applied to the qubits of Bob (A₂) and Charlie (B₂) to entangle [₂] and [₃]. Similarly, for applying CNOT₁→₂ operation, \(H_1, H_2, CNOT₂→₁, H_1 \) and H₂ gates are used. It can be mentioned that CNOT₀→₃ cannot be directly applied to qubits [₀] and [₁] as observed from the configuration of the quantum chip (Fig. 1). Thus, the qubits [₂] and [₃] are swapped using sequential application of CNOT₃→₂, \(H_3, H_2, CNOT₃→₂, H_3, H_3 \) and CNOT₂→₃ gates. Then the operations of \(H_0, H_2, CNOT₂→₀, H_0, H_2 \) are applied meaning the application of CNOT₀→₂. Finally the qubits [₂] and [₃] are swapped back. By following the above procedure, the operation of CNOT₀→₃ is performed.

We perform quantum state tomography to characterize the quantum states [69, 72, 73] obtained in our experiment. This technique includes a comparison between theoretical and experimental density matrices.

The theoretical density matrix of the initially prepared quantum state |ψ⟩ is given by,

\[\rho^T = |\Psi⟩⟨Ψ| \]

(3)
Fig. 3 The figure depicts the quantum circuit for entanglement swapping protocol. Initially, the qubits $q[0]$, $q[1]$ and $q[3]$ are each entangled by the Bell channel, $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$. The pairs represent the entanglement between Alice and Charlie, and Bob and Charlie. After the entanglement swapping protocol, $q[0], q[2]$ and $q[1], q[3]$ are entangled, illustrating the entanglement between Alice and Bob, and Charlie’s two qubits, respectively. The experimental results showing the entanglement between the above parties are depicted in Figs. 4 and 5.

and the expression for the experimental density matrix for two-qubit system is represented as,

$$
\rho^E = \frac{1}{2^2} \sum_{i_1, i_2=0}^{3} T_{i_1 i_2} (\sigma_{i_1} \otimes \sigma_{i_2})
$$

where

$$
T_{i_1 i_2} = S_{i_1} \times S_{i_2}
$$

and the indices i_1 and i_2 can take values 0, 1, 2 and 3 corresponding to I, X, Y and Z Pauli matrices, respectively. The Stokes parameters are described as, $S_0 = P_{00} + P_{11}$, $S_1 = P_{00} - P_{11}$, $S_2 = P_{00} - P_{11}$, $S_3 = P_{00} - P_{11}$, where P represents the probability for the corresponding bases given in the subscript.

The fidelity [74] between ideal and prepared arbitrary states of qubits A and B is calculated from,

$$
F(\rho^T, \rho^E) = \text{Tr} \left(\sqrt{\sqrt{\rho^T} \rho^E \sqrt{\rho^T}} \right) = \sqrt{\langle \Psi | \rho^E | \Psi \rangle}
$$

The comparison among the density matrices for the above two cases is illustrated in Figs. 3 and 4. The fidelity of this experiment is calculated to be $F_{A_1 A_2} = 0.8086$ and $F_{B_1 B_2} = 0.7840$.

2.3 Purification protocol

For different generation of quantum repeaters [44], quantum error correction codes are used as entanglement purification protocol. In this scheme, we introduce noise in the channel to replicate the loss and operational errors which occur in a realistic situation. All types of errors i.e., combined error of bit-flip, phase-flip and phase-change errors...
Demonstration of entanglement purification and swapping…

Fig. 4 The figure depicts both the real and imaginary parts of ideal, simulated and experimental density matrices for the A_1–A_2 entangled state. a, b Ideal case; c, d simulated case; e, f experimental case. The entanglement between A_1 and A_2 confirms the entanglement between Alice and Bob. The results are obtained after applying the entanglement swapping protocol shown in Fig. 3 and measuring the qubits $|0\rangle$ and $|1\rangle$ are taken into account to make the channel noisy. Three single-qubit gates X, $U_1(\pi)$ and $U_1(0.125)$ are used for introducing bit-flip, phase-flip and phase-change errors, respectively (Fig. 6). The purification protocol is designed such that it can correct all types of errors in the noisy channel. The scheme uses Hadamard gates (H), phase gate ($U_1(0.125)$) and CNOT gates and more importantly a single ancilla qubit to rectify the introduced errors. The calculation for the above scheme is explicitly provided.

Initially, we prepare the quantum state, $|\Psi_{\text{Initial}}\rangle$ by applying H_1 and $\text{CNOT}_{1\rightarrow 0}$ on the qubits, $|0\rangle$ and $|1\rangle$ as shown in Fig. 6.

$$|\Psi_{\text{Initial}}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$ (7)
The figure depicts both the real and imaginary parts of ideal and experimental density matrices for the B_1–B_2 entangled state.

(a) Ideal case.
(b) Simulated case.
(c) Experimental case.

The entanglement between B_1 and B_2 confirms the entanglement between Alice and Bob. The results are obtained after applying the entanglement swapping protocol shown in Fig. 3 and measuring the qubits $[1]$ and $[3]$.

The channel is then made noisy by introducing a bit-flip error, phase-flip error and arbitrary-phase change error by applying X_1, $U_{10}(\pi)$ and $U_{10}(0.125)$ gates on the above state, respectively, where $U_{1}(\theta)$ denotes the application of $U_{1}(\theta)$ operation on the $[i]$ qubit and X_{i} denotes the application of X gate on $[i]$ qubit. The unpurified state then becomes,

$$|\Psi_{\text{Unpurified}}\rangle = \frac{|01\rangle - e^{i\phi}|10\rangle}{\sqrt{2}}$$

(8)

where the value of ϕ is taken to be 0.125 in the experiment. The bit-flip error correction protocol [64] is then applied by using H_{0}, H_{1}, H_{2}, CNOT$_{2\rightarrow0}$, CNOT$_{2\rightarrow1}$, H_{0}, H_{1}, H_{2} and CNOT$_{2\rightarrow1}$ gates (See Fig. 6). Now the state takes the following form,

Springer
Fig. 6 The figure illustrates the quantum circuit for purification protocol. The entanglement channel is unpurified by introducing noise, which includes all types of combined errors of bit-flip, phase-flip, and phase-change error. Three gates X, $U1(\pi)$ and $U1(0.125)$ are used to introduce bit-flip, phase-flip and phase-change errors, respectively. All the errors are then removed by the application of purification protocol, which uses only one ancilla qubit $|2\rangle$. The experimental results are obtained by measuring the first two qubits $|0\rangle$ and $|1\rangle$, which clearly show the enhancement in the degree of entanglement of the channel. The results are depicted in Fig. 7. This protocol can be applied to any of the entangled channel between Alice and Bob and Charlie’s qubits.

Fig. 7 The figure depicts both the real and imaginary parts of unpurified and purified density matrices for the entangled state $|00\rangle + |11\rangle$. a, b Before purification. c, d After purification. The fidelity of the unpurified state was 0.3571, and after purification fidelity improves to 0.7421, which clearly demonstrates the successful implementation of the purification protocol.
\[
\frac{|00\rangle - e^{i\phi}|11\rangle}{\sqrt{2}} \text{ (bit-flip error correction)} \tag{9}
\]

It is interesting to note that the phase-flip error correction protocol as given in Ref. [64] is applied to the quantum state that yields the purified state after removing both the phase-flip error and arbitrary phase-change errors. The protocol is designed with the application of \(H_2, \text{CNOT}_{2\rightarrow1}, \text{CNOT}_{2\rightarrow0}, H_1, H_2, \text{CNOT}_{2\rightarrow0}\) and \(H_1\) gates. Through the purification process the arbitrary-phase error is removed after applying the above first three gates. Then the last three gates remove the phase-flip error from the unpurified state. Hence the calculation follows as given below.

\[
|\Psi_{\text{Purified}}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \text{ (phase-flip error correction)} \tag{10}
\]

The fidelity before purification was \(F_{\text{BP}} = 0.3571\) and after purification it improves to \(F_{\text{AP}} = 0.7421\). The experimental result (See Fig. 7) confirms that there is a high degree of entanglement in the channel after purification.

It is observed that the fidelities for both the protocols are far from unity. The imperfection in the experiment comes from the errors associated with the quantum chip architecture. Table 1 shows all the device parameters.

3 Conclusions

To conclude, we have explicated here the efficient processes of entanglement swapping [5,24,36,37] and entanglement purification scheme [32,33,42,43], two integral components of a Quantum Repeater, using superconducting qubits in IBM quantum computer (ibmqx4). Firstly, we have designed a quantum circuit which essentially swaps the entanglement between Alice, Bob and Charlie where Alice–Charlie and Bob–Charlie are initially entangled. After the entanglement swapping, Alice and Bob get entangled along with generating entanglement between Charlie’s qubits. The entanglement between the parties Alice–Bob and Charlie’s two qubits is experimentally observed with fidelities \(F_{A_1A_2} = 0.8086\), \(F_{B_1B_2} = 0.7840\), respectively. During the process, the degree of entanglement substantially decreases due to the loss and operational errors in the channel. Hence, we have developed a robust purification protocol which can correct all types of operational errors [61] i.e., bit-flip, phase-flip and phase-change error that can occur in a noisy channel. The successful application of the purification protocol enhances the fidelity of entanglement from 0.3571 to 0.7421. Furthermore, establishing quantum memory to store the entangled state is a challenging task [6]. Here, IBM quantum computer serves the purpose of a quantum memory by storing and retrieving the entangled states at each repeater node. Hence, we have successfully demonstrated a scheme of a Quantum Repeater for secure communication over a long distance in a quantum network.
Acknowledgements B.K.B., S.S. and A.D. are financially supported by DST Inspire Fellowship. We are extremely grateful to IBM team and IBM Quantum Experience project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

Author contributions BKB has developed the quantum circuits and guided SS and AD to design the quantum circuits on the IBM’s quantum processor and perform the experiments. BKB, SS and AD have written the paper. AD has drawn all the figures in vector graphics format. BKB, SS and AD have completed the project under the guidance of PKP

Compliance with ethical standards

Conflict of interest The authors declare no competing financial as well as non-financial interests.

References

1. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)
2. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)
3. Song, S., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57, 4694–4700 (2012)
4. Orieux, A., Diamanti, E.: Recent advances on integrated quantum communications. J. Opt. 18, 083002 (2016)
5. Žukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)
6. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)
7. Peng, C.-Z., et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)
8. Rosenberg, D., et al.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)
9. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)
10. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Robust long-distance quantum communication with atomic ensembles and linear optics. Phys. Rev. Lett. 98, 240502 (2007)
11. Ursin, R., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)
12. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
13. Simon, C., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
14. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014)
15. Elliott, C.: Building the quantum network. New J. Phys. 4, 46 (2002)
16. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)
17. Tang, J.-S., Zhou, Z.-Q., Li, C.-F.: Towards a quantum network. Nat. Sci. Rev. 4, 168–169 (2017)
18. Matsuoka, F., Tomita, A., Okamoto, A.: Entanglement generation by communication using phase-squeezed light with photon loss. Phys. Rev. A 93, 032308 (2016)
19. Aspelmeyer, M., et al.: Long-distance free-space distribution of entangled photons. Science 301, 621–623 (2003)
20. Aspelmeyer, K.J., et al.: Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005)
21. Peng, C.-Z., et al.: Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005)
22. Das, S., Khatri, S., Dowling, J.P.: Robust quantum network architectures and topologies for entanglement distribution. Phys. Rev. A 97, 012335 (2018)
23. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2016)
24. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 73, 3081–3084 (1993)
25. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
26. Riebe, M., et al.: Experimental quantum teleportation with atoms. Nature 429, 734–737 (2004)
27. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–73 (2004)
28. Ursin, R., et al.: Quantum teleportation link across the Danube. Nature 430, 849 (2004)
29. Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1991)
30. Dür, W., Briegel, H.-J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999)
31. Loock, P.V., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)
32. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. Lett. 96, 032325 (2006)
33. Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Meter, R.V., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)
34. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)
35. Chou, C.-W., et al.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1318 (2007)
36. Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)
37. Riebe, M., Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Henrich, M., Blatt, R.: Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008)
38. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030 (2011)
39. Sheng, Y.B., Deng, F.G., Zhou, Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)
40. Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)
41. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)
42. Munro, W.J., Harrison, K.A., Stephens, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photon. 4, 792–796 (2010)
43. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)
44. Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016)
45. Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)
46. Sangouard, N., et al.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)
47. Trugenberger, C.A.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)
48. Gouët, J.-L.L., Moiseev, S.: Quantum memory. J. Phys. B At. Mol. Opt. Phys. 45, 120201 (2012)
49. Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)
50. IBM Quantum Experience. http://research.ibm.com/ibm-q/
51. Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Quantum Tunneling in IBM Quantum Computer. arXiv preprint arXiv:1712.07326 (2017)
52. Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv preprint arXiv:1707.07460 (2017)
53. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)
54. Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer. arXiv preprint arXiv:1710.05196 (2017)
55. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)
56. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)
57. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)
58. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)
59. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)
60. García-Martín, D., Sierra, G.: Five Experimental Tests on the 5-Qubit IBM Quantum Computer. arXiv preprint arXiv:1712.05642 (2017)
61. Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv preprint arXiv:1712.04925 (2017)
62. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2016)
63. Yalçinkaya, I., Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)
64. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)
65. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)
66. Gangopadhyay, S., Manabputra Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)
67. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum Artificial Life in an IBM Quantum Computer. arXiv preprint arXiv:1711.09442 (2017). Saipriya Satyajit, Karthik Srinivasan,
68. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL 119, 60002 (2017)
69. Sisodia, M., et al.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)
70. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)
71. Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2007)
72. Xin, T., et al.: Quantum state tomography via reduced density matrices. Phys, Rev. Lett. 118, 020401 (2008)
73. Cramer, M., et al.: Efficient quantum state tomography. Nat. Comm. 1, 1147 (2010)
74. Wimberger, S.: Applications of fidelity measures to complex quantum systems. Philos. Trans. A Math. Phys. Eng. Sci. 13, 20150153 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.