DUAL INSTABILITY MEASURES OF A SUBSPACE OF $P^n(K)$ UNDER A SUBGROUP OF $\text{Aut}(K)$

JUN-ICHI MATSUSHITA

Abstract. Let K be a commutative field and let V be a subspace of $P^n(K)$. Let Γ be a subgroup of $\text{Aut}(K)$ and let Γ act on $P^n(K)$ by $\sigma((x_i)_{0 \leq i \leq n}) = (\sigma(x_i))_{0 \leq i \leq n}$ for $\sigma \in \Gamma$ and $(x_i)_{0 \leq i \leq n} \in P^n(K)$. In this paper, we ask ‘how much’ unstable V is under Γ by asking how much higher (or lower) dimension the join (or the meet) of $\sigma(V)$ ($\sigma \in \Gamma$) has than V, and answer it in terms of the Plücker coordinates of V and the invariant field k of Γ, through presenting dual ‘irrationality’ measures of V over k.

1. Introduction

Let K be a commutative field and let V be a subspace of $P^n(K)$ (= the standard projective space of dimension n over K). Let Γ be a subgroup of $\text{Aut}(K)$ (= the automorphism group of K) and let Γ act on $P^n(K)$ by

$$\sigma((x_i)_{0 \leq i \leq n}) = (\sigma(x_i))_{0 \leq i \leq n}$$

for all $\sigma \in \Gamma$ and $(x_i)_{0 \leq i \leq n} \in P^n(K)$. Then $\sigma(V)$ ($\sigma \in \Gamma$) are subspaces of $P^n(K)$ of the same dimension as V, and, since V is stable under Γ if and only if the join (or the meet) of $\sigma(V)$ ($\sigma \in \Gamma$) coincides with V, and hence if and only if the join (or the meet) of $\sigma(V)$ ($\sigma \in \Gamma$) has the same dimension as V, it is natural to ask ‘how much’ unstable V is under Γ by asking the following (i) or (ii):

(i) How much higher dimension does the join of $\sigma(V)$ ($\sigma \in \Gamma$) have than V?

(ii) How much lower dimension does the meet of $\sigma(V)$ ($\sigma \in \Gamma$) have than V?

In this paper, we answer these questions in terms of the Plücker coordinates of V and the invariant field of Γ, which is hereafter denoted by k. For each m-dimensional subspace X of $P^n(K)$, let $(\ldots, X_{j_0 \cdots j_m}, \ldots)$ denote the Plücker coordinates of X and define the k-irrationality degree Irr_k and the k-irrationality codegree Irr_k^* of X by taking a permutation $j_0 \cdots j_n$ of $0 \cdots n$ such that $X_{j_0 \cdots j_n} \neq 0$ and setting

$$\text{Irr}_k X = \dim_k [X]_{j_0 \cdots j_n} - \dim_k \left([X]_{j_0 \cdots j_n} \cap k^{m+1} \right),$$

$$\text{Irr}_k^* X = \dim_k [X]^*_{j_0 \cdots j_n} - \dim_k \left([X]^*_{j_0 \cdots j_n} \cap k^{n-m} \right),$$

where $[X]_{j_0 \cdots j_n}$ denotes the linear span over k of the subset

$$\left\{ \left(\frac{X_{j_0 \cdots j_{s-1}j_{s+1} \cdots j_{m}}}{X_{j_0 \cdots j_m}} \right)_{0 \leq s \leq m} : m + 1 \leq t \leq n \right\}$$

Key words and phrases. Plücker coordinates, invariant field, dual irrationality measures.
of K^{m+1}, and $\lbrack X \rbrack_{j_0 \cdots j_n}$ denotes the linear span over k of the subset
\[
\left\{ \left\{ \frac{X_{j_{0} \cdots j_{t} \cdots j_{t+1} \cdots j_{m}}}{X_{j_{0} \cdots j_{m}}} \right\} : 0 \leq t \leq m \right\}
\]
of K^{n-m}. Then our purpose is to show that Irr_k and Irr_k^* are well-defined (that is, for every subspace X of $P^n(K)$, $\text{Irr}_k X$ and $\text{Irr}_k^* X$ are independent of the choice of $j_0 \cdots j_n$) and that $\text{Irr}_k V$ and $\text{Irr}_k^* V$ are the answers to (i) and (ii), respectively, that is,
\begin{align}
\dim \bigvee_{\sigma \in \Gamma} \sigma(V) & = \dim V + \text{Irr}_k V, \\
\dim \bigwedge_{\sigma \in \Gamma} \sigma(V) & = \dim V - \text{Irr}_k^* V,
\end{align}
where \bigvee denotes the join operation and \bigwedge denotes the meet operation.

In the following sections, we actually prove that Irr_k is well-defined and (5) holds and that Irr_k^* is well-defined and (6) holds, revealing the ‘duality’ of these two.

2. Duality of (5) and (6)

For each subspace X of $P^n(K)$, let X^\perp denote
\[
\left\{ (x_i)_{0 \leq i \leq n} \in P^n(K) : \forall (a_i)_{0 \leq i \leq n} \in X, \sum_{i=0}^{n} a_i x_i = 0 \right\},
\]
which is a subspace of $P^n(K)$ of dimension $n - 1 - \dim X$ that is hereafter called the dual of X—though informally. Then, since the join of subspaces of $P^n(K)$ is the dual of the meet of their duals, we have
\[
\bigvee_{\sigma \in \Gamma} \sigma(V) = \left(\bigwedge_{\sigma \in \Gamma} \sigma(V)^\perp \right)^\perp,
\]
which is equivalent to
\begin{align}
\bigvee_{\sigma \in \Gamma} \sigma(V) & = \left(\bigwedge_{\sigma \in \Gamma} \sigma(V^\perp) \right)^\perp,
\end{align}
because every $\sigma \in \Gamma$ satisfies
\[
\sigma(V)^\perp = \left\{ (x_i)_{0 \leq i \leq n} \in P^n(K) : \forall (a_i)_{0 \leq i \leq n} \in \sigma(V), \sum_{i=0}^{n} a_i x_i = 0 \right\}
= \left\{ (x_i)_{0 \leq i \leq n} \in P^n(K) : \forall (a_i)_{0 \leq i \leq n} \in V, \sum_{i=0}^{n} \sigma(a_i) x_i = 0 \right\}
= \left\{ (x_i)_{0 \leq i \leq n} \in P^n(K) : \forall (a_i)_{0 \leq i \leq n} \in V, \sigma \left(\sum_{i=0}^{n} a_i \sigma^{-1}(x_i) \right) = 0 \right\}
= \left\{ (x_i)_{0 \leq i \leq n} \in P^n(K) : \forall (a_i)_{0 \leq i \leq n} \in V, \sum_{i=0}^{n} a_i \sigma^{-1}(x_i) = 0 \right\}
= \sigma(V^\perp).
\]
Also we have

\[
\end{align}
Proposition 1. For every m-dimensional subspace X of $P^n(K)$, for every permutation $j_0 \cdots j_m$ of $0 \cdots n$ such that $X_{j_0 \cdots j_m} \neq 0$, the right-hand side of (2) is equal to the expression obtained by replacing X by X^\perp, $j_0 \cdots j_m$, $j_{m+1} \cdots j_n$, $j_0 \cdots j_m$ and $n-m$ by $n - \dim X^\perp = n - (n-1-m) = m+1$ in the right-hand side of (3), that is, to

$$\dim_k \left([X^\perp]_{j_m+1 \cdots j_{n-m}} \right)^* - \dim_k \left(\left([X^\perp]_{j_m+1 \cdots j_{n-m}} \cap \k m+1 \right)^* \right),$$

where $[X^\perp]_{j_m+1 \cdots j_{n-m}}$ denotes the linear span over k of the subset

$$\left\{ \frac{X_{j_m+1 \cdots j_{t-1} j_t j_{t+1} \cdots j_n}}{X_{j_m+1 \cdots j_n}} : 0 \leq s \leq m \right\}$$

of K^{m+1}.

Proof. By the well-known relation between the Plücker coordinates and the dual Plücker coordinates of a space [3, Chapter VII, § 3, Theorem I], letting ε and δ be the Levi-Civita symbol and the generalized Kronecker delta symbol, respectively, we have

$$\frac{X_{j_0 \cdots j_s j_{s+1} \cdots j_m}}{X_{j_0 \cdots j_m}} = \varepsilon_{j_0 \cdots j_s j_{s+1} \cdots j_{s+t} j_{s+t+1} \cdots j_n} \frac{X^\perp_{j_m+1 \cdots j_{t-1} j_t j_{t+1} \cdots j_n}}{X_{j_m+1 \cdots j_n}}$$

for every s with $0 \leq s \leq m$ and every t with $m+1 \leq t \leq n$. Therefore (4) is equal to the subset

$$\left\{ - \frac{X^\perp_{j_m+1 \cdots j_{t-1} j_t j_{t+1} \cdots j_n}}{X_{j_m+1 \cdots j_n}} : 0 \leq s \leq m \right\}$$

of K^{m+1}, that is, to the set of additive inverses of the elements of (5), which implies

$$[X]_{j_0 \cdots j_m} = [X^\perp]_{j_m+1 \cdots j_n, j_0 \cdots j_m}$$

and hence the desired equality. \hfill \Box

Proposition 1 is easily seen to imply that if one of Irr$_k$ and Irr$_k^*$ is well-defined, then the other is also well-defined and

$$\text{Irr}_k V = \text{Irr}_k^* V^\perp$$

holds; (7) and (8) imply that (5) is equivalent to

$$\dim \left(\bigcap_{\sigma \in \Gamma} \sigma \left(V^\perp \right) \right) = \dim V + \text{Irr}_k^* V^\perp$$

and hence to

$$\dim \bigcap_{\sigma \in \Gamma} \sigma \left(V^\perp \right) = \dim V^\perp - \text{Irr}_k^* V^\perp.$$
that is, to the equality obtained by replacing V by V^\perp in (6). Therefore, to prove that Irr_k is well-defined and (5) holds and that Irr_k^* is well-defined and (6) holds, it is enough to prove one of these two, say, the latter, which we prove in the next section.

3. Proof of (10)

Hereafter a subspace of $P^n(K)$ or K^{n+1} is said to be k-rational if it is spanned by a subset of $P^n(k)$ or k^{n+1}, respectively, where (and hereafter) $P^n(k)$ denotes the image of $k^{n+1} - \{0\}$ by the canonical surjection $K^{n+1} - \{0\} \to P^n(K)$. Now let Γ act on K^{n+1} by (1) for all $\sigma \in \Gamma$ and $(x_i)_{0 \leq i \leq n} \in K^{n+1}$. Then, as is seen—though more or less indirectly—from [1, Chapter II, §8, no. 7, Theorem 1 (i)] or its specialization [2, Chapter V, §10, no. 4, Proposition 6 a]), it holds that

a subspace of K^{n+1} is k-rational if and only if it is stable under the action of Γ on K^{n+1}, which is easily shown to imply that a subspace of $P^n(K)$ is k-rational if and only if it is stable under the action of Γ on $P^n(K)$, which implies that

\[\bigcap_{\sigma \in \Gamma} \sigma(V) \text{ is } k\text{-rational} \]

because every $\tau \in \Gamma$ satisfies $\tau \Gamma = \Gamma$ and hence

\[\tau \left(\bigcap_{\sigma \in \Gamma} \sigma(V) \right) = \bigcap_{\sigma \in \Gamma} \tau \sigma(V) = \bigcap_{\sigma \in \tau \Gamma} \sigma(V) = \bigcap_{\sigma \in \Gamma} \sigma(V). \]

For each subspace X of $P^n(K)$, let \tilde{X} denote the span of $X \cap P^n(k)$ in $P^n(K)$, which is the largest k-rational subspace of $P^n(K)$ contained in X. Then, since a subspace of $P^n(K)$ is k-rational if and only if it is the largest k-rational subspace of $P^n(K)$ contained in itself, (10) is equivalent to

\[\bigcap_{\sigma \in \Gamma} \sigma(V) = \tilde{\bigcap_{\sigma \in \Gamma} \sigma(V)}, \]

which is equivalent to

\[\bigcap_{\sigma \in \Gamma} \sigma(V) = \tilde{V} \]

because

\[\left(\bigcap_{\sigma \in \Gamma} \sigma(V) \right) \cap P^n(k) = \bigcap_{\sigma \in \Gamma} (\sigma(V) \cap P^n(k)) = \bigcap_{\sigma \in \Gamma} (\sigma(V) \cap \sigma(P^n(k))) = \bigcap_{\sigma \in \Gamma} \sigma(V \cap P^n(k)) = \bigcap_{\sigma \in \Gamma} (V \cap P^n(k)) = V \cap P^n(k). \]

Also we have
Proposition 2. For every m-dimensional subspace X of $P^n(K)$, for every permutation $j_0 \cdots j_n$ of $0 \cdots n$ such that $X_{j_0 \cdots j_n} \neq 0$, the right-hand side of (3) is equal to $m - \dim \tilde{X}$.

Proof. Let μ be the k-linear map $k^{n+1} \rightarrow K^{n-m}$ defined by

$$
\mu((x_i)_{0 \leq i \leq n}) = \left(x_j - \sum_{t=0}^{m} x_{j_t} \frac{X_{j_0 \cdots j_{t-1} j_{t+1} \cdots j_m}}{X_{j_0 \cdots j_m}} \right)_{m+1 \leq s \leq n}.
$$

Then we have

$$
\text{Im} \, \mu = k^{n-m} + [X]_{j_0 \cdots j_n}^* \quad \text{and hence}
$$

$$
\dim_k \ker \mu = n + 1 - \dim_k \text{Im} \, \mu = n + 1 - \dim_k \left(k^{n-m} + [X]_{j_0 \cdots j_n}^* \right) = n + 1 - \left(n - m + \dim_k [X]_{j_0 \cdots j_n}^* - \dim_k \left(k^{n-m} \cap [X]_{j_0 \cdots j_n}^* \right) \right) = m + 1 - \dim_k \left([X]_{j_0 \cdots j_n}^* \cap k^{n-m} \right).
$$

Let X' and \tilde{X}' denote the subspaces of K^{n+1} such that $X' - \{0\}$ and $\tilde{X}' - \{0\}$ are mapped by the canonical surjection $K^{n+1} - \{0\} \rightarrow P^n(K)$ onto X and \tilde{X}, respectively. Then we can easily show that \tilde{X}' is the span of $X' \cap k^{n+1}$ in K^{n+1} and hence

$$
\dim_k \left(X' \cap k^{n+1} \right) = \dim \tilde{X}' = \dim \tilde{X} + 1 = m + 1 - \left(m - \dim \tilde{X} \right).
$$

Therefore, for the above μ and X', the desired

$$
\dim_k [X]_{j_0 \cdots j_n}^* = \dim_k \left([X]_{j_0 \cdots j_n}^* \cap k^{n-m} \right) = m - \dim \tilde{X}
$$

is equivalent to

$$
\dim_k \ker \mu = \dim_k \left(X' \cap k^{n+1} \right)
$$

and hence is implied by

$$
\ker \mu = X' \cap k^{n+1},
$$

which certainly holds since

$$
x_j - \sum_{t=0}^{m} x_{j_t} \frac{X_{j_0 \cdots j_{t-1} j_{t+1} \cdots j_m}}{X_{j_0 \cdots j_m}} = 0 \quad (s = m + 1, \ldots, n)
$$

is, as is virtually proved in [3] Chapter VII, §2, the third and fourth paragraphs], a necessary and sufficient condition for $(x_i)_{0 \leq i \leq n} \in P^n(K)$ to be in X, and hence for $(x_i)_{0 \leq i \leq n} \in K^{n+1}$ to be in X'.

Proposition 2 is immediately seen to imply that Irr_k^* is well-defined and

$$
(12) \quad \dim \tilde{V} = \dim V - \text{Irr}_k^* V
$$

holds; (11) and (12) imply (9). Therefore we have the desired result.
Remark 1. For each subspace X of $P^n(K)$, let \overline{X} denote \overline{X}^\perp, which is the dual of the largest k-rational subspace of $P^n(K)$ contained in X^\perp, that is, is the smallest k-rational subspace of $P^n(K)$ containing X. Then we have, dually to (11) and (12),

$$(13) \bigvee_{\sigma \in \Gamma} \sigma(V) = V \text{ and } \dim V = \dim V + \Irr_k V,$$

which, by (7) and (9), are respectively equivalent to

$$\left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right)^\perp = \overline{V}^\perp \text{ and } \dim \overline{V}^\perp = \dim V + \Irr_k^* V,$$

and hence to

$$\left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right)^\perp = \overline{V}^\perp \text{ and } \dim \overline{V}^\perp = \dim V^\perp - \Irr_k^* V,$$

that is, to the equalities obtained by replacing V by V^\perp in (11) and (12).

Remark 2. Since V is k-rational if and only if \overline{V} (or \overline{V}^\perp) coincides with V, and hence if and only if \overline{V} (or \overline{V}^\perp) has the same dimension as V, (12) and the latter of (13) make it natural to regard $\Irr_k^* V$ and $\Irr_k V$ as ‘k-irrationality’ measures of V.

Remark 3. We can easily see that every $\sigma \in \Gamma$ satisfies $\overline{\sigma(V)} = \overline{\sigma(V)} = \overline{V}$ as well as $\dim \sigma(V) = \dim V$, which, by (12) and the latter of (13), implies that $\Irr_k^* V$ and $\Irr_k V$ are invariants of V under Γ.

Remark 4. The part ‘every $\tau \in \Gamma$ satisfies \ldots’ of the third sentence of this section, which is valid only under our assumption that Γ is a subgroup of $\text{Aut}(K)$, can be replaced by ‘every $\tau \in \Gamma$ satisfies $\tau \Gamma \subseteq \Gamma$ and hence

$$\tau \left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right) = \bigcap_{\sigma \in \Gamma} \tau \sigma(V) = \bigcap_{\sigma \in \tau \Gamma} \sigma(V) \supseteq \bigcap_{\sigma \in \Gamma} \sigma(V),$$

which implies

$$\dim \tau \left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right) = \dim \bigcap_{\sigma \in \Gamma} \sigma(V) \implies \tau \left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right) = \bigcap_{\sigma \in \Gamma} \sigma(V),$$

and hence

$$\tau \left(\bigcap_{\sigma \in \Gamma} \sigma(V)\right) = \bigcap_{\sigma \in \Gamma} \sigma(V),$$

which, as well as all of Section 2 and this section except this part, is valid under the weaker assumption that Γ is a subsemigroup of $\text{Aut}(K)$. Therefore our results hold under this weaker assumption, which is equivalent to the original assumption when Γ is finite.

References

[1] N. Bourbaki, *Algebra I, Chapters 1–3*, translated from the French, reprint of the 1989 English translation, Elements of Mathematics (Berlin) (Springer, Berlin, 1998).

[2] N. Bourbaki, *Algebra II, Chapters 4–7*, translated from the 1981 French edition by P. M. Cohn and J. Howie, reprint of the 1990 English edition, Elements of Mathematics (Berlin) (Springer, Berlin, 2003).

[3] W. V. D. Hodge and D. Pedoe, *Methods of Algebraic Geometry, Vol. I*, reprint of the 1947 original, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1994).
Tokyo, Japan

Email address: matsu-j2@outlook.jp