The transmembrane receptor Notch, a master developmental regulator, controls gliogenesis, neurogenesis, and neurite development in the nervous system. Estradiol, acting as a hormonal signal or as a neurosteroid, also regulates these developmental processes. Here we review recent evidence indicating that estradiol and Notch signaling interact in developing hippocampal neurons by a mechanism involving the putative membrane receptor G protein-coupled receptor 30. This interaction is relevant for the control of neuronal differentiation, since the downregulation of Notch signaling by estradiol results in the upregulation of neurogenin 3, which in turn promotes dendritogenesis.

Keywords: dendritogenesis, estrogen receptors, G protein-coupled estrogen receptor, G protein-coupled receptor 30, hairy and enhancer of split, neurogenin 3
FIGURE 1 | Notch signaling represses dendritogenesis in developing hippocampal neurons by downregulating the expression of neurogenin 3. The binding of Notch ligands (Delta-like, Jagged) results in the cleavage of Notch and the release of an active intracellular domain that is translocated to the cell nucleus where it enhances the transcription of target genes, such as Hes1, that repress the transcription of Ngn3. Ngn3 encodes for a protein, neurogenin 3, which promotes dendritogenesis.

CROSS-TALK BETWEEN ESTRADIOL AND NOTCH SIGNALING
Cross-talk between estradiol and Notch signaling has been detected in breast cancer cells and endothelial cells (Soares et al., 2004; Sobrino et al., 2009). Furthermore, the estrogenic compound genistein downregulates Notch-1 in prostate cancer cells (Wang et al., 2006, 2011). In breast cancer cells, estradiol decreases Notch transcriptional activity via an estrogen receptor (ER) γ-mediated inhibition of Notch cleavage by γ-secretase (Rizzo et al., 2008). In turn, Notch-1 activates ERα-dependent transcription in these cells in the presence or absence of estradiol (Hao et al., 2010). Therefore, estradiol regulates Notch signaling and Notch signaling regulates estrogen signaling in breast cancer cells. It remains to be determined whether the cross-regulation of estrogen and Notch signaling also occurs in other cell types. Given the importance of Notch signaling for brain development, it is important to explore whether such interaction takes place in neural cells.

Recent studies have shown that estradiol reduces the levels of the intracellular transcriptionally active domain of Notch-1 in hippocampal slice cultures (Bender et al., 2010). This suggests that estradiol may decrease Notch-1 mediated transcription in hippocampal cells by reducing Notch-1 cleavage (Figure 1). In primary cultures of mice hippocampal neurons, estradiol decreases the expression of Hes1 and increases the expression of Ngn3 (Ruiz-Palmero et al., 2011). These findings further indicate that estradiol downregulates Notch signaling in hippocampal neurons (Figure 2).

G protein-coupled receptor 30 (GPR30), also known as G protein-coupled estrogen receptor (GPER), is a putative membrane associated ER (Prossnitz et al., 2008; Olde and Leeb-Lundberg, 2009; Prossnitz and Maggiolini, 2009; Langer et al., 2010). GPR30 seems to be involved in the regulation of Notch signaling in hippocampal neurons, since G1, a ligand of GPR30 that imitates the effects of estradiol in different cell types and tissues (Terasawa et al., 2009; Zhang et al., 2010) also imitates the effect of estradiol on Ngn3 expression in hippocampal neurons (Ruiz-Palmero et al., 2011). In contrast, neither the ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl) trimphenol (PPT) nor the ERβ agonist 2,3-bis-(4-Hydroxyphenyl)propionitrile (DPN) affect the expression of Ngn3 in hippocampal neurons (Ruiz-Palmero et al., 2011). In addition,
1,3-Bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole (MPP) and 4-[2-Phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-α] pyrimidin-3-yl] phenol (PHTPP), selective antagonists of ERα and ERβ mediated transcription, respectively, do not antagonize the effect of estradiol on Ngn3 expression (Ruiz-Palmero et al., 2011). Furthermore, ICI 182,780 (ICI), antagonist of both ERα and ERβ mediated transcription and agonist of GPR30 (Thomas et al., 2005), not only does not block, but even imitates, the effect of estradiol on Ngn3 expression (Ruiz-Palmero et al., 2011). Therefore, estradiol may regulate Ngn3 levels in hippocampal neurons by a non-canonical mechanism, which probably is independent of classical nuclear ER mediated transcription.

ESTRADIOL PROMOTES DENDRITOGENESIS IN HIPPOCAMPAL NEURONS BY A MECHANISM INVOLVING Ngn3

The neuritogenic action of estradiol is mediated by the activation of the mitogen activated protein kinase (MAPK) cascade among other signaling mechanisms (Carrer et al., 2003, 2005; Dominguez et al., 2004; Gorosito and Cambiasso, 2008; Miñano et al., 2008). Recent studies have assessed whether Notch signaling is also involved in the neuritogenic actions of estradiol. Estradiol promotes dendritogenesis in primary hippocampal neurons in culture; this effect is imitated by G1 and it is not blocked when Ngn3 is downregulated using Ngn3-specific siRNA oligonucleotides (Ruiz-Palmero et al., 2011). Therefore estradiol and G1 may act through common mechanisms to regulate Ngn3 expression and dendritogenesis by the inhibition of Notch signaling (Figure 2).

CONCLUSION

The studies reviewed here indicate that estradiol interacts with Notch signaling in the nervous system. Estradiol regulates dendritogenesis in developing hippocampal neurons through the modulation of Notch signaling and the upregulation of Ngn3 by a mechanism involving the putative membrane ER GPR30. Further studies are necessary to determine whether this mechanism also operates in other neuronal types. In addition, new experiments are needed to clarify the molecular mechanisms linking estrogen/GPR30 and Notch signaling in neurons.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Ministerio de Ciencia e Innovación, Spain (BFU2008-02950-C03-01/02), and from Comunidad de Madrid (CCG08-CSIC/SAL-3617).

REFERENCES

Ables, J. L., Breunig, J. J., Eisch, A. J., and Rakic, P. (2011). Not(ch) just development: notch signaling in the adult brain. *Nat. Rev. Neurosci.* 12, 269–283.

Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. (1999). Notch signaling: cell fate control and signal integration in development. *Science* 284, 770–776.

Azcoitia, I., Yagüe, J. G., and Garcia-Segura, L. M. (2011). Estradiol synthesis within the human brain. *Neuroscience* 191, 139–147.

Bakker, J., and Brock, O. (2010). Early oestrogens in shaping reproductive networks: evidence for a potential organisational role of oestradiol in female brain development. *J. Neuroendocrinol.* 22, 728–735.

Bender, R. A., Zhou, L., Wilkars, W., Fester, L., Lanowski, J. S., Paysen, D., König, A., and Rune, G. M. (2010). Roles of 17β-estradiol involve regulation of reelin expression and synaptogenesis in the dentate gyrus. *Cereb. Cortex* 20, 2985–2995.

Berezovska, O., McLean, P. A., Knowles, R., König, A., and Rune, G. M. (2010). The development of female sexual behavior requires prepubertal estradiol. *J. Neurosci.* 31, 5574–5578.

Carrer, H. F., Cambiasso, M. J., Brito, V., and Gorosito, S. (2003). Neuritogenic factors and estradiol interact to control axogenic growth in hypothalamic neurons. *Ann. N. Y. Acad. Sci.* 1007, 306–316.

Diaz, H., Lorenzo, A., Carrer, H. F., and Cáceres, A. (1992). Time lapse study of neurite growth in hypothalamic dissociated neurons in culture: sex differences and estrogen effects. *J. Neurosci. Res.* 33, 266–281.

Dominguez, R., Jalali, C., and de Lacalle, S. (2004). Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. *J. Neurosci.* 24, 982–990.

Duenas, M., Torres-Aleman, I., Naftolin, F., and Garcia-Segura, L. M. (1996). Interaction of insulin-like growth factor-I and estradiol signaling pathways on hypothalamic neural differentiation. *Neuroscience* 74, 531–539.

Ferreira, A., and Caceres, A. (1991). Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules. *J. Neurosci.* 11, 392–400.

Gorosito, S. V., and Cambiasso, M. J. (2008). Axogenic effect of estrogen in male rat hypothalamic neurons involves Ca(2+), protein kinase C, and extracellular signal-regulated kinase signaling. *J. Neurosci.* 26, 1145–1157.

Hao, L., Rizzo, P., Osipo, C., Pannuti, A., Wyatt, D., Cheung, L. W., Sonenshein, G., Osborne, B. A., and Miele, L. (2010). Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. *Oncogene* 29, 201–213.

Hu, R., Cai, W. Q., Wu, X. G., and Yang, Z. (2007). Astrocye-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. *Neuroscience* 144, 1229–1240.

Kretz, O., Fester, L., Wenhgren, U., Zhou, L., Brauckmann, S., Zhao, S., Prange-Kiel, I., Naumann, T., Jarry, H., Frotscher, M., and Rune, G. M. (2004). Hippocampal synapses depend on hippocampal estrogen synthesis. *J. Neurosci.* 24, 5913–5921.

Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. *Development* 131, 965–973.

Langer, G., Bader, B., Meoli, L., Iseensee, J., Delbeck, M., Noppenier, P. R., and Otto, C. (2010). A critical review of fundamental controversies in the field of GPR30 research. *Steroids* 75, 603–610.

Lee, J., Wu, Y., Qi, Y., Xue, H., Liu, Y., Scheel, D., German, M., Qui, M., Guilemout, F., Rao, M., and Gradwohl, G. (2003). Neurogenin3 participates in glioogenesis in the developing vertebral spine cord. *Dev. Biol.* 253, 84–98.

Lee, J. C., Smith, S. B.,Watada, H., Lin, J., Scheel, D., Wang, J., Mirmira, R. G., and German, M. S. (2001). Regulation of the pancreatic pro-endocrine gene neurogenin3. *Diabetes* 50, 926–936.

Louvi, A., and Artavanis-Tsakonas, S. (2006). Notch signaling in vertebrate neural development. *Nat. Rev. Neurosci.* 7, 93–102.

Ma, W., Yan, R. T., Mao, W., and Wang, S. Z. (2009). Neurogenin3 promotes early retinal neurogenesis. *Mol. Cell. Neurosci.* 40, 187–198.

MacLusky, N. J., and Naftolin, F. (1981). Sexual differentiation of the central nervous system. *Science* 211, 1294–1302.
Estradiol regulates Notch signaling in neurons

Arevalo et al.

Arevalo-McCready, V., Noctor, S. C., and Kriegstein, A. R. (2006). Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur. J. Neurosci. 24, 3475–3488.

Miñano, A., Xífró, X., Pérez, V., Barneda-Zahonero, B., Saura, C. A., and Rodriguez-Alvarez, J. (2008). Estradiol facilitates neurite maintenance by a Src/Ras/ERK signaling pathway. Mol. Cell. Neurosci. 39, 143–151.

Mourie, K., Pellegrini, E., Anglade, I., Menuet, A., Adrio, F., Thieulmont, M. L., Pakdel, F., and Kah, O. (2008). Synthesis of estrogens in progenitor cells of adult fish brain: evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis? Brain Res. Bull. 75, 274–280.

Olde, B., and Leeb-Lundberg, L. M. (2009). GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol. Metab. 20, 409–416.

Pelling, M., Anthwal, N., McNay, D., Gradwohl, G., Leiter, A. B., Guille-mot, F., and Ang, S. L. (2011). Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416.

Pierfelice, T., Alberi, L., and Gaiano, N. (2011). Notch/neurogenin 3 signalling is involved in the neurogenic actions of oestrogen in developing hippocampal neurons. J. Neuroendocrinol. 23, 355–364.

Rakic, P. (1999). Contact-dependent inhibition and apoptosis in the developing Purkinje cell. J. Neurosci. 27, 7408–7417.

Sestan, N., Artavasistasaikonas, S., and Rakic, P. (1999). Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746.

Soares, R., Balogh, G., Guo, S., Gartner, F., Russo, J., and Schmitt, F. (2004). Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol. Endocrinol. 18, 2333–2343.

Sobrino, A., Mata, M., Laguna-Fernandez, A., Novella, S., Oviedo, P. J., Garcia-Perez, M. A., Tarin, J. J., Cano, A., and Hermenegildo, C. (2009). Estradiol stimulates vasodilatory and metabolic pathways in cultured human endothelial cells. PLoS ONE 4, e8242. doi: 10.1371/journal.pone.0008242

Terasawa, E., Noel, S. D., and Keen, K. L. (2009). Rapid action of oestrogen in luteinising hormone-releasing hormone neurons: the role of GPR30. J. Neuroendocrinol. 21, 316–321.

Thomas, P., Pang, Y., Filaro, E. J., and Dong, J. (2005). Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146, 624–632.

Tsutsui, K. (2006). Biosynthesis and organizing action of neurosteroids in the developing Purkinje cell. Cerebellum 5, 89–96.

This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology. Copyright © 2011 Arevalo, Ruiz-Palmero, Simon-Areces, Acaz-Foressa, Ezazitza I and Garcia-Segura LM (2011) Estradiol meets Notch signaling in developing neurons. Front. Endocrin. 221. doi: 10.3389/fendo.2011.00021

This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology. Copyright © 2011 Arevalo, Ruiz-Palmero, Simon-Areces, Acaz-Foressa, Ezazitza I and Garcia-Segura LM (2011) Estradiol meets Notch signaling in developing neurons. Front. Endocrin. 221. doi: 10.3389/fendo.2011.00021

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 July 2011; accepted: 31 July 2011; published online: 11 August 2011. Citation: Arevalo MA, Ruiz-Palmero I, Simon-Areces J, Acaz-Foressa E, Ezazitza I and Garcia-Segura LM (2011) Estradiol meets Notch signaling in developing neurons. Front. Endocrin. 221. doi: 10.3389/fendo.2011.00021

This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology. Copyright © 2011 Arevalo, Ruiz-Palmero, Simon-Areces, Acaz-Foressa, Ezazitza I and Garcia-Segura LM. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.