Molecular analysis of integrons and antimicrobial resistance profile in Shigella spp. isolated from acute pediatric diarrhea patients

Molekulare Integronanalyse und antimikrobielles Resistenzprofil von aus pädiatrischen Patienten mit Diarrhoe isolierten Shigella spp.

Abstract

Introduction: Shigella spp. is a growing global health concern due to increasing multiple drug resistance, commonly resulting in therapeutic failure. Integrons are gene expression systems run by integrase genes. The aims of this study were detection of class I, II and III integrons and assessment of antimicrobial resistance in Shigella spp. isolated from acute pediatric diarrhea patients.

Materials and methods: From January to December 2015, 16 Shigella spp. were isolated from 310 non-duplicative diarrheal stool samples in Children’s Medical Center, Tehran, Iran. The isolates were analyzed for their antibiotic susceptibility using CLSI guidelines M100-S14. Multiplex PCR was used for amplification of I, II and III integron-associated integrase (intI) genes.

Results: Of 310 stool samples, 16 (5.2%) were positive for Shigella spp., in 7 of them S. sonnei and in 9 of them S. flexneri were identified. Results of the antimicrobial susceptibility test showed that 6.2%, 50%, 31.2%, 6.2%, 81.2%, 56.2% and 31.2% of the isolates were resistant to gentamicin, chloramphenicol, nalidixic acid, ciprofloxacin, tetracycline, ampicillin and trimethoprim-sulfamethoxazole, respectively. Multiplex PCR results revealed that 6.2% (1/16), 31.2% (5/16), 50% (8/16) of Shigella isolates carried intI, intII and both intI/intII genes. No class 3 integrons were detected.

Discussion: In this study, multidrug resistance was seen in Shigella isolates similar to that in isolates from other geographical areas. This is possible due to inappropriate use of antimicrobials. Furthermore, prevalence of multidrug resistance was significantly linked to the presence of integron genes.

Conclusion: A class 2 integron plays a role in presence of multidrug resistance in Shigella spp. It is vital to prevent the spread of antibiotic resistance through continuous monitoring.

Keywords: integrons, Shigella spp., acute pediatric diarrhea, multiplex PCR

Zusammenfassung

Hintergrund: Die Zunahme multiresistenter Shigella spp. ist ein globales Gesundheitsproblem wachsender Bedeutung. Integrons sind Genexpressionssysteme, die von Integrase-Genen gesteuert werden. Zielsetzung der Studie war die Detektion von Klasse 1, 2 und 3 Integrons und die Bestimmung der antimikrobiellen Resistenz von Shigella spp., die von pädiatrischen Patienten mit Diarrhoe isoliert wurden.

Material und Methoden: Von Januar bis Dezember 2015 wurden 16 Shigella spp. aus 310 nicht-duplikativen Durchfall-Stuhlproben im Children’s Medical Center, Tehran, gemäß Guideline des Clinical and Laboratory Standards Institute isoliert. Zur Amplifikation der I, II und III
Integron-assoziierten Integrase(inti)-Gene wurde die Multiplex PCR eingesetzt.

Ergebnisse: In 16 (5,2%) der 310 Stuhlproben wurden 7-mal S. sonnei und 9-mal S. flexneri isoliert. 6,2%, 50%, 31,2%, 6,2%, 81,2%, 56,2% bzw. 31,2% der Isolate waren resistent gegen Gentamicin, Chloramphenicol, Nalidixinsäure, Ciprofloxacin, Tetracycline, Ampicillin und Trimethoprim-Sulfamethoxazol. Mittels Multiplex PCR wurde nachgewiesen, dass 6,2% (1/16), 31,2% (5/16), 50% (8/16) der Shigella Isolate inti, intII bzw. beide Gene trugen. Klasse III Integrons wurden nicht detektiert.

Diskussion: Bei Shigella-Isolaten wurde ähnlich zu anderen geographischen Regionen Multiresistenz nachgewiesen. Das wird begünstigt durch nicht Leitliniengerechten Einsatz von Antibiotika. Die Prävalenz der Multiresistenz war signifikant mit dem Vorhandensein von Integron-Genen assoziiert.

Schlussfolgerung: Das Klasse 2 Integron ist von Bedeutung für die Multiresistenz von Shigella spp. Es ist wichtig, die Ausbreitung von Antibiotikaresistenzen durch kontinuierliche Überwachung zu verhindern.

Schlüsselwörter: Integrons, Shigella spp., akute pädiatrische Diarrhoe, Multiplex-PCR

Introduction

Dysentery caused by Shigella spp. is a major public concern worldwide and is responsible for approximately 5 to 10% of diarrheal diseases in many areas [1]. Recently in Asia, the number of dysentery cases was estimated at nearly 91 million, resulting in 414,000 deaths each year. In general, Shigella spp. are categorized into four serogroups, including S. dysenteriae, S. flexneri, S. boydii and S. sonnei [2]. Of these serogroups, S. flexneri is the most common, followed by S. sonnei. However, dysentery caused by Shigella spp. is usually self-limited, and antibiotic therapy is mostly effective not only in treating the dysenteric infection, but also in decreasing the duration of the disease and fecal shedding of the pathogen [3]. Over the last decades, Shigella spp. have increasingly acquired resistance to various antimicrobials, including ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole. The antibiotic resistance phenomenon in Shigella spp. commonly occurs due to mobile genetic elements (MGEs) such as R plasmids, transposons and integrons. Mobile genetic elements can mediate the distribution of resistance factors among the bacterial species, even genera. Furthermore, integrons with resistance gene cassettes have been recognized in MGEs. Resistance to antimicrobials in Shigella spp. is sometimes associated with class 1 and class 2 integrons, which comprise resistance gene cassettes. There are two types of class 1 integrons found in Shigella plasmids or chromosomes: atypical and classical integrons. These integrons are linked to gene cassettes of trimethoprim (dfrA1), esterase/lipase (estX), streptomycin (aadA1) and ampicillin (blaOxa). Class 2 integrons carrying Tn7 are frequently present in S. sonnei and their gene cassettes contain dfrA1, streptomycin-acetyl-transferase gene (sat-1) and aadA1 [4], [5], [6], [7]. The aims of the current study were molecular analysis of integrons and antimicrobial resistance profiling in Shigella spp. isolated from acute pediatric diarrhea patients at the Children’s Medical Center, Tehran, Iran.

Materials and methods

Bacterial isolation

In a cross-sectional study, 310 non-duplicative and non-reiterative diarrheal stool samples were collected from children admitted to the Children’s Medical Center in Tehran, Iran, from January to December 2015. Samples were transferred to the laboratory in Cary-Blair media (Merck, Germany). Samples were cultured, and the bacteriaisolated and identified using conventional biochemical methods as well as microbiological methods in addition to the API-20E system (BioMerieux, France). Shigella polyvalent agglutinating antisera were purchased from MAST, UK.

Antimicrobial susceptibility test

Antimicrobial susceptibility testing was carried out using Mueller-Hinton agar plates (Merck, Germany) and the Kirby-Bauer method as recommended by the Clinical and Laboratory Standards Institute (CLSI document: M100-S14). The antimicrobial agents included gentamicin (GEN 10 µg), chloramphenicol (CHL 30 µg), streptomycin (STR 10 µg), nalidixic acid (NA 30 µg), ciprofloxacin (CIP 5 µg), tetracycline (TET 30 µg), ampicillin (AMP 20 µg) and trimethoprim-sulfamethoxazole (SMZ-TMP 5 µg) (MAST, UK). Shigella flexneri ATCC 12022 and S. sonnei ATCC 9290 were used as positive and Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 as negative controls.
Integron gene detection

Multiplex PCR (M-PCR) for detection of intIi, intII and intIII genes was carried out using a Master Cycler gradient PCR machine (Eppendorf, Germany). Microbial DNA was extracted using the boiling method from the colonies grown overnight on xylose lysine deoxycholate (XLD) agar. The primer sequences used in M-PCR are described in Table 1. The PCR reaction mixture was prepared in a total volume of 20 µl, consisting of 1 µl of template DNA, 2 µl of 10x PCR buffer, 0.6 µl of 50 mM MgCl₂, 0.6 µl of 10 mM dNTPs, 0.5 µl of each primer, 0.7 µl of 5 U/µl Taq DNA polymerase (Amplicon, Denmark) and 12.1 µl of double-distilled water. The reaction mixture was transferred to a gradient thermal cycler (Eppendorf, Germany) with the following cycling program: initial denaturation at 94 °C for 2 min followed by 33 cycles; each cycle included denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s and elongation at 72 °C for 30 s. Final elongation was carried out at 72 °C for 10 min. Amplified products were visualized by electrophoresis in 1.5% agarose gels and staining with ethidium bromide.

| Gene Primer sequence (5'→3') bp Ref. |
|---|--------|
| intI F 5'-CCCTCCGACAGATGATC-3' 280 [20] |
| R 5'-TCCACGATCGTCAGG-3' |
| intII F 5'-ACCGATATCGACAAAAAGGT-3' 789 [21] |
| R 5'-GTAGCAACGGAGTGAAGAAAATG-3' |
| intIII F 5'-GCCTCCGGAGCGCATTTTGAG-3' 979 [21]|
| F 5'-ACGGATCTGCCAACCTGACT-3' |

Table 1: PCR primers used in this study

Statistical analysis

Correlation between the occurrence of intIi, intII and intIII genes and multidrug resistance was calculated using Fisher’s exact test. A P-value <0.05 was considered statistically significant.

Results

Bacterial isolation

Of 310 stool samples, 16 (5.2%) samples were positive for Shigella spp. Of these 16 positive samples, 7 (43.7%) and 9 (56.3%) samples were identified as S. sonnei and S. flexneri, respectively. The mean age of the patients was six years, with 165 (53.2%) boys and 145 (46.7%) girls participating in the study. Nine (56.2%) bacterial species were isolated from children at ages 1 month to 2 years, and 7 (43.7%) in ages ranged from 2 to 12 years.

Antimicrobial susceptibility test

The results showed that 6.2%, 50%, 31.2%, 6.2%, 81.2%, 56.2% and 31.2% of bacterial isolates were resistant to gentamicin, chloramphenicol, nalidixic acid, ciprofloxacin, tetracycline, ampicillin and trimethoprim-sulfamethoxazole, respectively (Table 2). All isolates were resistant to streptomycin. S. flexneri isolates showed high levels of resistance to streptomycin (100%), tetracycline (85.7%), ampicillin (85.7%) and chloramphenicol (71.4%), while low-level resistance was detected to ciprofloxacin (14.3%) and gentamicin (14.3%). Furthermore, 100%, 77.7%, 33.3%, 22.2% and 11.1% of S. sonnei isolates were resistant to streptomycin, tetracycline, ampicillin/chloramphenicol, nalidixic acid and trimethoprim-sulfamethoxazole, respectively. All S. sonnei isolates were fully susceptible to gentamicin and ciprofloxacin. Moreover, 55.1% (n=4/7) of S. flexneri and 33.3% (n=3/9) of S. sonnei isolates were resistant to streptomycin, tetracycline and ampicillin (Table 2).

Integron gene detection

Totally, 6.2% (1/16), 31.2% (5/16) and 50% (8/16) of the Shigella isolates carried intIi, intII and both intIi/intIII genes, respectively (Figure 1). No class III integrons were detected. The prevalence of intII was significantly higher than that of intIi and in multidrug resistant (MDR) isolates than in isolates with resistance to two or fewer two drugs (P<0.05). Furthermore, 12.5% (n=2/16) of the isolates were negative for intIi, intII and intIII genes (Table 3).

Figure 1: M-PCR products of intII genes (280/789 bp). M: 100-bp DNA ladder; C+, positive control (S. flexneri ATCC 12022/S. sonnei ATCC 9290); Lanes 1 & 2: S. flexneri; Lanes 3 & 4: S. sonnei strains; C–, negative control (E. coli ATCC 25922)

Statistical analysis

No significant difference was seen between the intIi gene and MDR (P>0.05). The correlation between the presence of intIi or intII genes and antibiotic resistance was statistically significant (Table 4).
Increased resistance of *Shigella* spp. to many antimicrobial agents presents a major threat to public health. Over the past decades, excessive use of antimicrobials and vast horizontal gene transfer have led *Shigella* spp. to become resistant to most routinely used antimicrobials. Primarily, tetracycline and sulfonamides were effective in the treatment of shigellosis, but the bacterial strains quickly established resistance to these agents. Later, ampicillin and trimethoprim-sulfamethoxazole were used to treat shigellosis. Antimicrobial resistance is common in *Shigella* spp., mostly to tetracycline, trimethoprim-sulfamethoxazole and other sulfonamides. Increased bacterial resistance to ampicillin, chloramphenicol and trimethoprim-sulfamethoxazole is a serious threat. These are low-cost antimicrobials used widely for the treatment of shigellosis [8], [9], [10]. In general, multidrug-resistant *Shigella* spp. have been reported from Africa, Europe, Asia and South America. In the current study, all isolates were resistant to streptomycin. Thirteen (81.2%) and one (6.2%) *Shigella* isolates were resistant to tetracycline and gentamicin/ciprofloxacin, respectively. Similar results have been published from other studies in developing countries [11], [12], [13]. All isolates (100%) of *S. sonnei* were fully susceptible to gentamicin and ciprofloxacin. Moreover, 77.7% (n=7/9) and 11.1% (n=1/9) of *S. sonnei* isolates were resistant to tetracycline and trimethoprim-sulfamethoxazole, respectively. The results showed that the highest and lowest resistance to ampicillin and gentamicin/ciprofloxacin in *S. flexneri* were 85.7% (n=6/7) and 14.3% (n=1/7), respectively. Pourakbari et al. reported that *S. flexneri* was more multiresistant than other species [14]. Results by Zhu et al. [15] showed that resistance of *S. sonnei* to ampicillin and ciprofloxacin varied and was relatively infrequent, while antimicrobial resistance was common in *S. flexneri*. Later, Shen et al. [16] demonstrated that resistance of *S. flexneri* (serotypes 1a) to antimicrobials was significantly higher, including 88.0%, 89.2%, 85.5% and 79.5%, to ampicillin, nalidixic acid, tetracycline and trimethoprim-sulfamethoxazole, respectively. In a similar study by Jafari et al. [17], most
Shigella isolates were reported to be resistant to tetracycline (95%) and trimethoprim-sulfamethoxazole (91.7%). The maximum resistance (60.2%) was observed in S. sonnei. In the present study, multidrug resistance was detected in 57.1% (n=4/7) of S. flexneri and 33.3% (n=3/9) of S. sonnei isolates. This was in contrast to the results of the studies by Zhu et al. [15] and Jafari et al. [17]. This conflict may be due to geographical distribution, source of samples and level of hygiene.

Of the three classes of integrons linked to antimicrobial resistance, the class I integron is the most frequently found in clinical isolates of Gram-negative bacteria [18]. The class II integron is the most predominant integron in S. sonnei [5]. In the current study, 6.2% (n=1/16), 31.2% (n=5/16), 0% (n=0/16) and 50% (n=8/16) of Shigella isolates carried intI, intII, intIII and both intI/intII genes, respectively. These results are similar to those of Shen et al. [16], Ranjbaret al. [19] and Nógrády et al. [20]. The present study has clearly shown that the prevalence of intIII is noticeably greater than that of intI. Furthermore, the prevalence rate of these genes in MDR isolates with resistance to ≥3 drugs is higher than that in MDR [6]. [15]. Zhu et al. [15] described that Shigella spp. included a high frequency of MDR and a high occurrence of classes I and II integrons at the same time; the prevalence of the intII gene was significantly associated with MDR isolates (P<0.05) [21]. Currently, the presence of class II integrons and rate of MDR are linked in Shigella spp.; therefore, class II integrons may play a role in the presence of MDR in Shigella spp. This suggests a gene linkage between class II integrons and other antimicrobially resistant genes. Furthermore, this suggests that class II integrons work together with other determinants of genetic resistance. Further studies are needed to confirm these possibilities. The possible link of class II integrons with other antimicrobial resistance genes would help to employ class II integrons as molecular biomarkers to screen MDR in Shigella spp.

Conclusion
Antimicrobial resistance of Shigella spp. in developed countries appears to be frequent, and associated with their epidemiology in developing countries. Mostly, Shigella strains that carry class I or II integrons show emergence of MDR. Preventing the distribution of antibiotic resistance and spread of integrons is a matter of general urgency. Therefore, continuous monitoring schemes must be implemented to prevent further spread of MDR Shigella spp.

Notes
Competing interests
The authors declare that they have no competing interests.

Acknowledgement
This work was supported by a Vice-Chancellor for Research grant (No. 23125), Tehran University of Medical Sciences, Tehran, Iran. We thank the Children’s Medical Center in Tehran for providing isolates and epidemiologic and demographic data.

References
1. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Fapito-Mendez A, Klugman KP. Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infect Dis. 2005 Aug;5(8):481-93. DOI: 10.1016/S1473-3099(05)70189-4
2. Ke X, Gu B, Pan S, Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Arch Microbiol. 2011 Nov;193(11):767-74. DOI: 10.1007/s00203-011-0744-3
3. Ye C, Lan R, Xia S, Zhang J, Sun Q, Zhang S, Jing H, Wang L, Li Z, Zhou Z, Zhao A, Cui Z, Cao J, Jin D, Huang L, Wang Y, Luo X, Bai X, Wang Y, Wang P, Xu Q, Xu J. Emergence of a new multidrug-resistant serotype X variant in an epidemic clone of Shigella flexneri. J Clin Microbiol. 2010 Feb;48(2):419-26. DOI: 10.1128/JCM.00614-09
4. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljestqm B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):288-81. DOI: 10.1111/j.1469-0691.2011.03570.x
5. Pan JC, Ye R, Meng DM, Zhang W, Wang HQ, Liu KZ. Molecular characteristics of class 1 and class 2 integrons and their relationships to antibiotic resistance in clinical isolates of Shigella sonnei and Shigella flexneri. J Antimicrob Chemother. 2006 Aug;58(2):288-96. DOI: 10.1093/jac/dkl228
6. Ahmed AM, Furuta K, Shimomura K, Kasama Y, Shimamoto T. Genetic characterization of multidrug resistance in Shigella spp. from Japan. J Med Microbiol. 2006 Dec;55(Pt 12):1685-91. DOI: 10.1099/jmm.0.46725-0
7. Ahmed AM, Shimamoto T. Molecular characterization of multidrug-resistant Shigella spp. of food origin. Int J Food Microbiol. 2015 Feb;194:78-82. DOI: 10.1016/j.ijfoodmicro.2014.11.013
8. Niyogi SK. Shigellosis. J Microbiol. 2005 Apr;43(2):133-43.
9. Ashkenazi S, Levy I, Kazaronovsk V, Samra Z. Growing antimicrobial resistance of Shigella isolates. J Antimicrob Chemother. 2003 Feb;51(2):427-9. DOI: 10.1093/jac/dkg080
10. Peirano G, Agerba Y, Aarestrup FM, dos Prazeres Rodrigues D. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother. 2005 Mar;55(3):301-5. DOI: 10.1093/jac/dki012
11. Pazhani GP, Sarkar B, Ramamurthy T, Bhattacharya SK, Takeda Y, Niyogi SK. Clonal multidrug-resistant Shigella dysenteriae type 1 strains associated with epidemic and sporadic dysenteries in eastern India. Antimicrob Agents Chemother. 2004 Feb;48(2):681-4. DOI: 10.1128/AAC.48.2.681-684.2004
12. Naik DG. Prevalence and antimicrobial susceptibility patterns of Shigella species in Asmara, Eritrea, northeast Africa. J Microbiol Immunol Infect. 2006 Oct;39(5):392-5.
13. Pazhani GP, Niyogi SK, Singh AK, Sen B, Taneja N, Kundu M, Yamazaki S, Ramamurthy T. Molecular characterization of multidrug-resistant Shigella species isolated from epidemic and endemic cases of shigellosis in India. J Med Microbiol. 2008 Jul;57(Pt 7):856-63. DOI: 10.1099/jmm.0.2008/000521-0

14. Pourakbari B, Mamishi S, Mashoori N, Mahboobi N, Ashtiani MH, Afsharpaiman S, Abedini M. Frequency and antimicrobial susceptibility of Shigella species isolated in Children Medical Center Hospital, Tehran, Iran, 2001-2006. Braz J Infect Dis. 2010 Mar-Apr;14(2):153-7. DOI: 10.1590/S1413-86702010000200007

15. Zhu JY, Duan GC, Yang HY, Fan QT, Xi YL. A typical class 1 integron coexists with class 1 and class 2 integrons in multi-drug resistant Shigella flexneri isolates from China. Curr Microbiol. 2011 Mar;62(3):802-6. DOI: 10.1007/s00284-010-9790-3

16. Shen Y, Qian H, Gong J, Deng F, Dong C, Zhou L, Guo H. Prevalence and antimicrobial resistance profile of integrons among Shigella isolates in Eastern China. J Antimicrob Agents Chemother. 2013 Mar;57(3):1549-51. DOI: 10.1128/AAC.02102-12

17. Jafari F, Hamidian M, Rezaehbashi M, Doyle M, Salmanzadeh-Ahrabi S, Derakhshan F, Reza Zali M. Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Can J Infect Dis Med Microbiol. 2009;20(3):e96-92. DOI: 10.1155/2009/341275

18. Kang HY, Jeong YS, Oh JY, Hae SH, Choi CH, Moon DC, Lee WK, Lee YC, Seol SY, Cho DT, Lee JC. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J Antimicrob Chemother. 2005 May;55(5):639-44. DOI: 10.1093/jac/dki076

19. Ranjbar R, Aleo A, Giammanco GM, Dionisi AM, Sadeghifard N, Mammina C. Genetic relatedness among isolates of Shigella sonnei carrying class 1 integrons in Tehran, Iran, 2002-2003. BMC Infect Dis. 2007 Jun;7:62. DOI: 10.1186/1471-2334-7-62