A NOTE ON LINEABILITY

G. BOTELHO, D. DINIZ, D. PELLEGRINO AND E. TEIXEIRA

Abstract. In this note we answer a question concerning lineability of the set of non-absolutely summing operators.

1. Introduction and main result

A subset A of an infinite-dimensional vector space V is μ-lineable if $A \cup \{0\}$ contains an infinite-dimensional subspace of dimension μ. Let \aleph_0 be the countable cardinality and \aleph_1 be the cardinality of \mathbb{R}. From now on E and F denote Banach spaces, the space of absolutely p-summing linear operators from E to F will be denoted by $\Pi_p(E; F)$, the space of bounded linear operators from E to F will be represented by $L(E; F)$ and the space of compact operators from E to F is represented by $K(E; F)$. For details on the theory of absolutely summing operators we refer to [3].

In recent papers [1, 5] it was shown that under certain circumstances $L(E; F) \setminus \Pi_p(E; F)$ is \aleph_0-lineable. In [1] there is a question from the anonymous referee, asking about the possibility of proving that the set is μ-lineable, for $\mu > \aleph_0$. Our next result shows that an adaptation of the proof of [1] answers this question in the positive:

Theorem 1.1. Let $p \geq 1$ and E be superreflexive. If E contains a complemented infinite-dimensional subspace with unconditional basis or F contains an infinite unconditional basic sequence then $K(E; F) \setminus \Pi_p(E; F)$ (hence $L(E; F) \setminus \Pi_p(E; F)$) is \aleph_1-lineable.

Proof. Assume that E contains a complemented infinite-dimensional subspace E_0 with unconditional basis $(e_n)_{n=1}^{\infty}$. First consider

\[(1.1) \quad \mathbb{N} = A_1 \cup A_2 \cup \cdots \]

a decomposition of \mathbb{N} into infinitely many infinite pairwise disjoint subsets $(A_j)_{j=1}^{\infty}$. Since $\{e_n; n \in \mathbb{N}\}$ is an unconditional basis, it is well known that $\{e_n; n \in A_j\}$ is an unconditional basic sequence for every $j \in \mathbb{N}$. Let us denote by E_j the closed span of $\{e_n; n \in A_j\}$. As a subspace of a superreflexive space, E_j is superreflexive as well, so from [2, Theorem] it follows that for each j there is an operator

$$u_j: E_j \rightarrow F$$

belonging to $K(E_j; F) \setminus \Pi_p(E_j; F)$. From the proof of [1] we know that each projection $P_i: E_0 \rightarrow E_i$ is continuous and has norm $\leq \rho$ (the constant of the unconditional
basis of \(E_0 \). This also implies that each \(E_i \) is a complemented subspace of \(E_0 \). If \(\pi_0 : E \to E_0 \) denotes the projection onto \(E_0 \), for each \(j \in \mathbb{N} \) we can define the operator
\[
\tilde{u}_j : E \to F, \quad \tilde{u}_j := u_j \circ P_j \circ \pi_0.
\]
Since \((P_j \circ \pi_0)(x) = x \) for every \(x \in E_j \), it is plain that \(\tilde{u}_j \) belongs to \(\mathcal{K}(E; F) \setminus \Pi_p(E; F) \).

There is no loss of generality in supposing \(\| \tilde{u}_j \| = 1 \) for every \(j \).

Now, consider the map
\[
T : \ell_1 \to \mathcal{K}(E; F)
\]
\[
T((a_n)_{n=1}^{\infty}) = \sum_{j=1}^{\infty} a_j \tilde{u}_j.
\]

Since the supports of the \(\tilde{u}_n \) are disjoint it is clear that \(T \) is an injective linear operator, such that
\[
T(\ell_1) \subset (\mathcal{K}(E; F) \setminus \Pi_p(E; F)) \cup \{0\}.
\]
And therefore \((\mathcal{K}(E; F) \setminus \Pi_p(E; F)) \cup \{0\}\) contains a vector space with the same dimension of \(\ell_1 \) (and it is well-known that \(\dim \ell_1 = \aleph_1 \)).

Now, suppose that \(F \) contains a subspace \(G \) with unconditional basis \(\{ e_n; n \in \mathbb{N} \} \) with unconditional basis constant \(\rho \). Still considering the subsets \((A_n) \) of \(\mathbb{N} \) as above, define \(F_j \) as the closed span of \(\{ e_n; n \in A_j \} \) and let \(P_j : G \to F_j \) be the corresponding projections. Proceeding as above we conclude that \(\| P_j \| \leq \rho \). From [2, Theorem] we know that for each \(j \) there is an operator \(u_j : E \to F_j \) belonging to \(\mathcal{K}(E; F_j) \setminus \Pi_p(E; F_j) \). Now by \(\tilde{u}_j \) we mean the composition of \(u_j \) with the inclusion from \(F_j \) to \(F \). Once again consider the map
\[
T : \ell_1 \to \mathcal{K}(E; F)
\]
\[
T((a_n)_{n=1}^{\infty}) = \sum_{j=1}^{\infty} a_j \tilde{u}_j.
\]

Since the projections \(P_j : G \to F_j \) are continuous and have norm \(\leq \rho \), it follows that
\[
\| T((a_n)_{n=1}^{\infty}) (x) \| \geq \rho^{-1} \| a_j \tilde{u}_j (x) \|
\]
for every \(j \in \mathbb{N} \). It is clear that \(T \) is a linear and injective. It also follows from (1.2) that
\[
T(\ell_1) \subset (\mathcal{K}(E; F) \setminus \Pi_p(E; F)) \cup \{0\}.
\]
\[\square\]

Remark 1.2. It is not difficult to show that
\[
\dim \mathcal{L}(\ell_p; \ell_q) = \aleph_1
\]
so, for example, for \(E = \ell_p \) \((p > 1) \) and \(F = \ell_q \) the result of the previous theorem is optimal, i.e., we cannot improve the result to \(\mu \)-lineable for \(\mu > \aleph_1 \).
2. Lineability of the set of norm attaining-operators

Next we show that the same idea of the proof of Theorem 1.1 can be adapted to extend a result from [4] concerning norm-attaining operators.

In what follows $\mathcal{NA}^{x_0}(E; F)$ denotes the set of continuous linear operators from E to F that attain their norms at x_0.

Proposition 2.1. Let E and F be Banach spaces so that E contains an isometric copy of ℓ_q for some $1 \leq q < \infty$, and let $x_0 \in S_E$. Then $\mathcal{NA}^{x_0}(E; F)$ is \aleph_1-lineable in $\mathcal{L}(E; F)$.

Proof. The beginning of the proof follows the lines of the similar result from [4]. It suffices to prove for $F = \ell_q$. We can write the set of positive integers \mathbb{N} as

$$\mathbb{N} = \bigcup_{k=1}^{\infty} A_k,$$

where each

$$A_k := \{ a_1^{(k)} < a_2^{(k)} < \ldots \}$$

has the same cardinality as \mathbb{N} and the sets A_k are pairwise disjoint. For each positive integer k, we define

$$\ell_q^{(k)} := \{ x \in \ell_q : x_j = 0 \text{ if } j \notin A_k \}.$$

For each k we can find operators $u^{(k)}$ on $\mathcal{NA}^{x_0}(E; \ell_q^{(k)})$. By composing these operators with the inclusion of $\ell_q^{(k)}$ into ℓ_q we get a vector (and we maintain the same notation for the sake of simplicity) on $\mathcal{NA}^{x_0}(E; \ell_q)$. Consider the map

$$T : \ell_1 \to \mathcal{NA}^{x_0}(E; \ell_q)$$

$$T((a_n)_{n=1}^{\infty}) = \sum_{j=1}^{\infty} a_j u^{(j)}.$$

It is clear that T is linear and injective. We also have that (due the disjoint supports of the $u^{(j)}$)

$$T(\ell_1) \subset \mathcal{NA}^{x_0}(E; \ell_q).$$

Since T is injective, it follows that $T(\ell_1)$ is an infinite-dimensional space and its basis has the same cardinality of the basis of ℓ_1. Recall that $\dim(\ell_1) = \aleph_1$. \qed

References

[1] G. Botelho, D. Diniz and D. Pellegrino, Lineability of the set of bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 357 (2009), 171-175.
[2] W.J. Davis and W.B. Johnson, Compact non-nuclear operators, Studia Math. 51 (1974), 81-85.
[3] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics 43, 1995.
[4] D. Pellegrino and E. Teixeira, Norm optimization problem for linear operators in classical Banach spaces, to appear in Bull. Braz. Math. Soc.
[5] D. Puglisi, J. B. Seoane-Sepúlveda, Bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 338 (2008), 292-298.

(Geraldo Botelho) Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902 - Uberlândia, Brazil, e-mail: botelho@ufu.br., [Diogo Diniz] UAME-UFCG, Caixa Postal 10044, Cep 58109-970, Campina Grande, PB, Brazil, [Daniel Pellegrino] Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil, e-mail: dmpellegrino@gmail.com., [Eduardo Teixeira] Universidade Federal do Ceará, Depto de Matemática, Av. Humberto Monte, s/n, Fortaleza-CE, Brazil. CEP 60.455-760.