ARTIGO ORIGINAL

Bacteriology of peritonsillar abscess: the changing trend and predisposing factors

Yi-Wen Tsaia, Yu-Hsi Liub e Hsing-Hao Sub,c,*

a Kaohsiung Veterans General Hospital, Department of Medical Education and Research, Kaohsiung, Taiwan
b Kaohsiung Veterans General Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Kaohsiung, Taiwan
c Tajen University, Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Pingtung, Taiwan

Recebido em 1 de maio de 2017; aceito em 16 de junho de 2017
Disponível na Internet em 5 de outubro de 2017

KEYWORDS
Anaerobic bacteria; Bacterial infections; Klebsiella pneumoniae; Peritonsillar abscess; Viridans streptococci

Abstract
Introduction: Peritonsillar abscess is the most common deep neck infection. The infectious microorganism may be different according to clinical factors. Objective: To identify the major causative pathogen of peritonsillar abscess and investigate the relationship between the causative pathogen, host clinical factors, and hospitalization duration. Methods: This retrospective study included 415 hospitalized patients diagnosed with peritonsillar abscess who were admitted to a tertiary medical center from June 1990 to June 2013. We collected data by chart review and analyzed variables such as demographic characteristics, underlying systemic disease, smoking, alcoholism, betel nut chewing, bacteriology, and hospitalization duration. Results: A total of 168 patients had positive results for pathogen isolation. Streptococcus viridans (28.57%) and Klebsiella pneumoniae (23.21%) were the most common microorganisms identified through pus culturing. The isolation rate of anaerobes increased to 49.35% in the recent 6 years (p = 0.048). Common anaerobes were Prevotella and Fusobacterium spp. The identification of K. pneumoniae increased among elderly patients (age > 65 years) with an odds ratio (OR) of 2.76 (p = 0.03), and decreased in the hot season (mean temperature > 26 °C) (OR = 0.49, p = 0.04). No specific microorganism was associated with prolonged hospital stay. Conclusion: The most common pathogen identified through pus culturing was S. viridans, followed by K. pneumoniae. The identification of anaerobes was shown to increase in recent

DOI se refere ao artigo: http://dx.doi.org/10.1016/j.bjorl.2017.06.007
* Como citar este artigo: Tsai Y-W, Liu Y-H, Su H-H. Bacteriology of peritonsillar abscess: the changing trend and predisposing factors. Braz J Otorhinolaryngol. 2018;84:532-39.
* Autor para correspondência. E-mail: shsu@vghks.gov.tw (H. Su).
A revisão por pares é da responsabilidade da Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.

2530-0539 © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob uma licença CC BY (http://creativecommons.org/licenses/by/4.0/).
PALAVRAS-CHAVE

Bactérias anaeróbicas; Infecções bacterianas; *Klebsiella pneumoniae*; Abscesso peritonsilar; *Viridans streptococi*.

Bacteriologia do abscesso peritonsilar: tendência de mudança e fatores predisponentes

Resumo

Introdução: O Abscesso Peritonsilar é a infecção cervical profunda mais comum. O microrganismo infeccioso pode ser diferente de acordo com os fatores clínicos.

Objetivo: Identificar o principal agente causador do abscesso peritonsilar e investigar a relação entre o patógeno causador, os fatores clínicos do hospedeiro e a duração da hospitalização.

Método: Este estudo retrospectivo incluiu 415 pacientes hospitalizados diagnosticados com abscesso peritonsilar que foram internados em um centro médico terciário de junho de 1990 a junho de 2013. Coletamos dados através da análise dos arquivos médicos dos pacientes e analisamos variáveis como características demográficas, doença sistêmica subjacente, tabagismo, alcoolismo, hábito de mascar noz de betel, bacteriologia e duração da hospitalização.

Resultados: Um total de 168 pacientes apresentaram resultados positivos para isolamento de patógenos. *Streptococcus viridans* (28,57%) e *Klebsiella pneumoniae* (23,21%) foram os microrganismos mais comuns identificados pela cultura da secreção. A taxa de isolamento de anaeróbios aumentou para 49,35% nos últimos 6 anos (p = 0,048). Os anaeróbios comuns foram *Prevotella* e *Fusobacterium spp*. A identificação de *K. pneumoniae* aumentou em pacientes idosos (idade > 65 anos) com razão de chances (Odds Ratio - OR) de 2,76 (p = 0,03) e diminuiu na estação do calor (temperatura média > 26 °C) (OR = 0,49, p = 0,04). Nenhum microrganismo específico foi associado à hospitalização prolongada.

Conclusão: O patógeno mais comumente identificado através da cultura de secreção foi *S. viridans*, seguido por *K. pneumoniae*. A identificação de anaeróbios mostrou ser aumentado nos últimos anos. Os antibióticos selecionados inicialmente devem ser efetivos contra aeróbios e anaeróbios. A identificação bacteriana pode estar associada a fatores clínicos e fatores ambientais do hospedeiro.

© 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cervico-Facial. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob uma licença CC BY (http://creativecommons.org/licenses/by/4.0/).

Introdução

O abscesso peritonsilar (APT), ou periamigdalianlo, é a infecção cervical profunda mais comum.¹ O abscesso pode se espalhar para o espaço parafaringe de outros espaços cervicais profundos, para a estrutura adjacente e para a corrente sanguínea. Isso raramente ocorre, mas o APT é potencialmente fatal. O diagnóstico precoce é extremamente crucial e são necessários antibióticos adequados e intervenção cirúrgica para o tratamento do abscesso.² Os antibióticos resultam em uma redução substancial na progressão da doença. O antibiótico empírico utilizado deve ser eficaz contra o possível agente causador do APT.

Nossos objetivos foram investigar a microbiologia do APT e identificar sua relação com variáveis clínicas, incluindo a doença sistêmica subjacente dos pacientes; hábitos como tabagismo, alcoolismo e o hábito de mascar noz de betel; e duração da hospitalização.

Método

Desenho do estudo e amostra da população

Este estudo retrospectivo incluiu 415 pacientes com APT que foram admitidos em um centro médico terciário localizado no sul de Taiwan de junho de 1990 a junho de 2013. Os critérios de inclusão foram pacientes hospitalizados, clinicamente diagnosticados com APT (código CID-9 475) por aspiração de secreção purulenta ou imagem de tomografia computadorizada (TC). Revisamos os arquivos médicos de cada paciente para coletar os seguintes dados: data de admissão, idade, sexo, altura, peso, fatores clínicos do hospedeiro (Diabetes Melito [DM], hipertensão, tabagismo, alcoolismo, e hábito de mascar noz de betel), resultado da cultura de pus, antibiótico terapia, cirurgia, e duração da hospitalização. O estudo foi aprovado pelo conselho de ética institucional.
Classificamos as bactérias em diferentes categorias de acordo com as características da coloração de Gram e propriedades anaeróbias. Hospitalização prolongada foi definida como aquela com duração maior que 6 dias. Obesidade foi definida como um índice de massa corporal superior a 27, e paciente idoso foi definido como pacientes com idade superior a 65 anos. A estação do calor foi definida como os meses de maio a outubro, quando a temperatura média no sul de Taiwan foi superior a 26 °C de acordo com o registro do Central Weather Bureau de R.O.C., em Taiwan.

Análise estatística

Todos os dados foram analisados utilizando-se o software estatístico SPSS (IBM Corp., Armonk, NY, EUA), exceto pelo teste de Cochran-Armitage, que foi realizado utilizando-se o software SAS (SAS Institute, Cary, NC, EUA). A associação com cada variável independente foi analisada estatisticamente entre os diferentes grupos. As variáveis categóricas foram comparadas usando o teste Qui-quadrado de Pearson ou o teste exato de Fisher, conforme apropriado. As razões de chances (odds ratio) e seus Intervalos de Confiança de 95% (IC 95%) foram calculados. As tendências dos patógenos isolados foram analisadas utilizando-se o teste de Cochran-Armitage. Um valor de p < 0,05 foi considerado estatisticamente significante.

Declaração de ética

Este estudo foi aprovado pelo Conselho de Ética institucional; o número do protocolo de aprovação é VGHKS14-CT7-01.

Resultados

Características demográficas

Este estudo incluiu 415 pacientes. Os resultados das culturas obtidas da secreção purulenta de amostras cirúrgicas ou aspiração com agulha estavam disponíveis para 266 pacientes. Ajustes para a amostra submetida à cirurgia de amigdalas ou drenagem do APT foram realizados, como mostrado na tabela 1. Não havia nenhum paciente com histórico de AIDS ou infecção por HIV neste estudo.

Bacteriologia

Dos pacientes com amostra de secreção purulenta, 230 (230 de 266, 86,47%) mostraram crescimento bacteriano na cultura. A cultura dos 36 pacientes restantes não apresentou crescimento bacteriano. Dos 230 pacientes, 132 (132-230, 57,39%) apresentaram vários agentes isolados (polimicrobiano), incluindo 62 casos relatados como “flora normal” apenas ou “flora mista” (62 de 230, 26,96%). As culturas de 168 pacientes (168 de 266, 63,15%) mostraram resultados positivos para isolamento de patógenos. Mais de um patógeno foi isolado em 64 pacientes (64 de 168, 38,10%). Bactérias aeróbias foram isoladas de 85,7% (144/168) das culturas positivas, enquanto bactérias anaeróbias ou aeróbias facultativas foram isoladas em 44,0% (74 de 168) e bactérias aeróbias e anaeróbias misturadas em 29,8% (50 de 168).

O patógeno mais comum identificado através da cultura foi o Streptococcus viridans (48 de 168, 28,57%), seguido por Klebsiella pneumoniae (39 de 168, 23,21%) e o Streptococcus beta hemolítico (17 de 168, 10,12%), como mostrado na tabela 2. Os pacientes foram divididos em 2 períodos de 1990 a 1995, 1996 a 2001, 2002 a 2007 e 2008 a 2013; e a taxa de isolamento dos anaeróbios foi de 25%, 31,21%, 45,45% e 49,35%, respectivamente. A taxa de isolamento de patógenos anaeróbios aumentou significativamente entre 1990 e 2013 (teste de Cochran-Armitage, p = 0,048), como mostrado na tabela 3 e figura 1. As taxas de isolamento de bactérias gram-positivas e gram-negativas nesses 4 períodos foram 100% e 25%, 57,14% e 48,62%, 62,12% e 48,48% e 51,95% e 49,35%, respectivamente. A maioria dos patógenos anaeróbios era Prevotella spp. (24 de 168, 14,29%) e Fusobacterium spp. (16 de 168, 9,52%), como mostrado na tabela 2.

Os fatores clínicos do hospedeiro foram associados a vários patógenos isolados. O hábito de fumar noz de betel foi associado ao isolamento de Cocos Gram-Positivos (CGP) (OR = 2,67, p = 0,04). A associação do isolamento bacteriano com o hábito de fumar e alcoolismo não foi estatisticamente
significante. Pacientes idosos (idade > 65 anos) apresentaram menor taxa de isolamento de *K. pneumoniae* (OR = 2,76, p = 0,03). A obesidade (IMC > 27) foi associada a um maior isolamento de *Peptostreptococcus* (OR = 4,19, p = 0,04), como mostrado na tabela 4.

Além disso, na estação do calor, observamos que o risco de isolamento de Bacilos Gram-Positivos (GBP) aumentou (OR = 3,22, p = 0,02), mas que o isolamento de *K. pneumoniae* diminuiu (OR = 0,49, p = 0,04), conforme demonstrado na tabela 4. Não houve microrganismo específico associado à internação prolongada.

Pesquisando a partir do banco de dados PubMed, identificamos 30 estudos envolvidos na bacteriologia do APT entre 1980 e 2016. As datas, as localizações geográficas e as espécies bacterianas predominantes identificadas nestes estudos foram listadas na tabela 5.

Vários antibióticos de amplo espectro, como penicilina ou cefazolina combinados com Gentamicina (GM) e metronidazol, clindamicina com GM ou amoxicilina-clavulanato, foram utilizados em nossa série. Todos esses antibióticos foram efetivos sem diferença significativa.
Discussão

Em nosso estudo, o patógeno mais comum identificado através da cultura de secreção em pacientes com APT foi *S. viridans*, seguido de *K. pneumoniae*; os anaeróbios comumente isolados em nosso estudo foram *Prevotella* e *Fusobacterium* spp. Revisamos os dados da bacteriologia de estudos anteriores, como mostra a tabela 5. A maioria dos estudos relataram *Streptococcus* do grupo A como o patógeno aeróbio mais comum no APT; alguns estudos relataram que os patógenos aeróbios mais comuns foram *S. viridans*, seguido por *Streptococcus* beta hemolítico do grupo A. A prevalência de *K. pneumoniae* foi raramente relatada em estudos anteriores. Em estudos anteriores, *Fusobacterium nucleatum*; *Prevotella*, *Bacteroides* e *Streptococcus* foram os agentes patogênicos anaeróbios mais comuns. As divergências das culturas bacterianas podem ser devidas a diferentes localizações geográficas. Com as diferenças em dietas e estilo de vida, a flora bacteriana de cada pessoa também pode ser diferente.

K. pneumoniae e *Streptococcus* spp. são parte da flora oral normalmente encontrada na boca e são patógenos odontogênicos de infecção cervical profunda. O grupo *S. viridans* é o agente etiológico de cáries dentárias, periodontite ou, se introduzido na circulação sanguínea, endocardite. Em Taiwan, *K. pneumoniae* tem sido associado à infecção pulmonar em pacientes com aspiração ou abscesso hepático, em pacientes imunocomprometidos ou com diabetes.

Pacientes idosos ou com diabetes mellitus são considerados imunocomprometidos e têm mais chance de desenvolver infecções. Pacientes com DM e idosos também estão associados à maior número de complicações e taxa de mortalidade em infecções cervicais profundas. Assim, os pacientes com APT com as características acima necessitam hospitalização mais prolongada. Relatamos a microbiologia do APT nestes pacientes imunocomprometidos. Pacientes com DM não apresentaram risco aumentado de isolamento de *K. pneumoniae* como agente causador do APT. Em contraste, pacientes idosos com APT na série atual apresentaram maior risco de isolamento de *K. pneumoniae*.

A tendência para uma maior taxa de isolamento de anaeróbios foi observada durante o período de 2002 a 2013 (p=0,048). Garvriel relatou um aumento significativo no crescimento anaeróbio durante o período de 1996 a 1999 e, em seguida, um declínio lento e não significativo até 2002. Takenaka não relatou nenhuma alteração na porcentagem de casos com crescimento anaeróbio entre 2 períodos (2005 a 2007 e 2008 a 2009). Tal fenômeno pode resultar de uma mudança real nos patógenos; da alteração de antibióticos utilizados ou métodos de cultura melhorados para patógenos anaeróbios. Em nossa série, não foi observada nenhuma alteração importante dos antibióticos utilizados ou melhoria dos métodos de cultura. Os médicos devem prescrever antibióticos empíricos para incluir anaeróbios.

O APT é frequentemente uma infecção polimicrobiana. O crescimento de agentes polimicrobianos foi observado nas culturas de 57,39% dos pacientes. A razão para o uso de antibióticos empíricos seria para incluir CGP, BGN e anaeróbios respiratórios. Se necessário, os antibióticos adequados devem ser escolhidos com base nos resultados da cultura. No entanto, o manejo da maioria dos pacientes não-complicados não necessariamente é afetado pelo resultado da cultura. Repanos et al. sugeriram que o uso de antibióticos de amplo espectro, como cefalosporina ou penicilina combinada com metronidazol, é efetivo. Em nosso estudo, nenhuma diferença significativa foi encontrada entre várias combinações de antibióticos de amplo espectro.

O tabagismo tem sido comumente observado em pacientes com APT em vários estudos, os quais relataram o tabagismo como fator de risco para APT. Marom et al. relataram uma incidência significativamente maior para *S. viridans*, outros cocos gram-positivos e anaeróbios. Em nosso estudo, não houve significância estatística no patógeno causador entre fumantes e não fumantes com APT, semelhante aos achados do estudo de Klug.

Mascar noz de betel é um hábito popular no Sudeste Asiático. Que seja de nosso conhecimento, nenhum estudo encontrou uma associação entre a bacteriologia do APT e o hábito de mascar noz de betel. Em nossa série, esse hábito foi associado a um maior risco de apresentar CGP como patógenos. No estudo de Ling et al., ele foi associado a uma probabilidade de infecção subengelar por *Actinobacillus actinomycetemcomitans* e *Porphyromonas gingivalis*.

Tabela 4	Associação entre os fatores predisponentes e o patógeno a			
Fatores predisponentes	Patógeno causador	OR	IC 95%	p-valor
Idoso b	KP	2,76	1,10–6,93	0,03 c
Obesidade c	Peptostreptococos	4,19	0,98–17,88	0,04 d
Estação do calor d	BGP	3,22	1,13–9,19	0,02 e
Masca noz de betel	CGP	0,49	0,23–1,01	0,04 e

a Não foi observada diferença estatisticamente entre isolados bacterianos e tabagismo, alcoolismo e DM.

b Idoso indica que a idade do paciente era mais de 65 anos.

c A obesidade indica que o índice de massa corporal do paciente era superior a 27.

d Estação do calor indica que a data de admissão foi entre maio e outubro, período no qual a temperatura média no sul de Taiwan foi superior a 27 °C.

e Denota para p-valor < 0,05.

IC, intervalo de confiança; DM, Diabetes Melito; BGP, Bacilos Gram-Positivos; CGP, Cocos Gram-Positivos; HTN, Hipertensão; KP, Klebsiella pneumoniae; OR, Odds Ratio (Razão de chances).
Investigador	País	Ano	Cultura posíva	Aeróbios predominantes	anaeróbios predominantes
Brook, L. et al., 1981	EUA	-	16	Streptococcus gama-hemolíticos	Bacteroides sp.
Jokipii, A. M. et al., 1988	Finlândia	-	42	Streptococcus do Grupo A	C. GP anaeróbios
Brook, L. et al., 1991	EUA	1978-1985	34	Staphylococcus aureus	Peptostreptococcus sp.
Snow et al., 1991	RU	-	55	Streptococcus beta-hemolíticos	Peptostreptococcus sp.
Jousimies-Somer et al., 1993	Finlândia	-	122	Streptococcus pyogenes	Peptostreptococcus sp.
Mitchelmore et al., 1995	RU	1982-1992	45	Streptococcus do Grupo A	Peptostreptococcus sp.
Muir et al., 1995	Nova Zelândia	1990-1992	39	Streptococcus do Grupo A	Prevotella
Prior A et al., 1995	RU	1990-1999	45	Streptococcus do Grupo A	-
Cherukuri, S., 2002	EUA	1990-1999	82	Streptococcus sp.	-
Matsuda, A. et al., 2002	Japão	1988-1999	386	Streptococcus do grupo milleri	-
Hanna, B.C. et al., 2006	Irlanda do Norte	2001-2002	37	Neisseria sp.	-
Sakae et al., 2006	Brasil	2001	26	Streptococcus viridans	Peptostreptococcus sp.
Zagolski, O. et al., 2007	Polônia	-	12	Streptococcus pyogenes	Peptostreptococcus sp.
Megalamanii et al., 2007	Índia	2003-2006	39	Streptococcus do Grupo A	Peptostreptococcus sp.
Sunnergren et al., 2008	Suécia	2000-2006	67	Streptococcus do Grupo A	Bacteroides sp.
Klug et al., 2009	Dinamarca	2001-2006	405	Streptococcus do Grupo A	-
Gavriel, H. et al., 2009	Israel	1996-2002	137	Streptococcus dos Grupos C ou G	-
Segal, N. et al., 2009	Israel	2004-2007	64	Streptococcus pyogenes	-
Repanos, C. et al., 2009	RU	1998-2005	107	Streptococcus do Grupo A	-
Rusan et al., 2009	Dinamarca	2001-2006	623	Streptococcus do Grupo A	-
Acharya, A. et al., 2010	Nepal	2007-2008	18	Streptococcus pyogenes	-
Marom, T. et al., 2010	Canadá	1998-2007	180	Streptococcus do Grupo A	-
Hidaka, H. et al., 2011	Japão	2002-2007	65	Streptococcus do grupo milleri	-
Klug et al., 2011	Dinamarca	2005-2009	36	Streptococcus do Grupo A	-
Love, R. L. et al., 2011	Nova Zelândia	2006-2008	147	Streptococcus do Grupo A	-
Albertz, N et al., 2012	Chile	2000-2012	112	Streptococcus do Grupo A	-
Tabela 5 (Continuação)

Investigador	País	Ano	Cultura positiva	Aeróbios predominantes	Anaeróbios predominantes
Takenaka, Y. et al., 2012¹	Japão	2005-2009	50	Streptococcus pyogenes	Anaeróbios
					Streptococcus
					Anginosus
					Streptococcus pyogenes
Sowerby, L. J. et al., 2013¹⁴	Canadá	2009-2010	42	Streptococcus do Grupo A	Fusobacterium sp.
				Prevotella sp.	
				Peptostreptococcus sp.	
				Fusobacterium sp.	
				Prevotella sp.	
Mazur, E. et al., 2015¹⁸	Polônia	2003-2013	45	Streptococcus do grupo viridans	
				Streptococcus pyogenes	
				Streptococcus milleri	
				em adultos	
Plum, A. W. et al., 2015¹⁶	EUA	2002-2012	69	Streptococcus beta-hemolíticos em crianças	
Lepelletier, D. et al., 2016¹⁶	França	2009-2012	412	Streptococcus do Grupo A	Fusobacterium sp.
Tachibana, T. et al., 2016⁴⁵	Japão	2008-213	100	Streptococcus viridans	Fusobacterium sp.
Vaikjarv, R. et al., 2016⁴⁵	Estônia	2011-2012	22	Streptococcus sp.	
Presente estudo, 2017	Taiwan	1990-2013	168	Streptococcus viridans	Prevoatella sp.
				Klebsiella pneumoniae	Fusobacterium sp.

«, Indica ''não relatado''.

Em nosso estudo, pacientes idosos (com idade superior a 65 anos) apresentaram alto risco de isolamento de *K. pneumoniae*. O estudo de Marom¹⁷ relatou uma taxa de isolamento significativamente maior para infecção por CGP (espécies mistas de *Streptococcus*) e bastonetes gram-negativos em pacientes mais velhos (40 anos ou mais) do que em pacientes mais jovens.

A estação do calor aumentou o risco de infecção por BGP e reduziu o risco de infecção por K. pneumoniae em pacientes com APT em nosso estudo atual. Nosso instituto está localizado em uma região tropical que tem aproximadamente seis meses (maio a outubro) de clima quente, com uma temperatura média de 27°C. Em contraste, Klug et al.,¹⁵ de outro instituto localizado em uma zona temperada, relataram maior incidência de infecção por *F. nucleatum* durante o verão do que durante o inverno. Também relataram que *Streptococcus* do Grupo A foram significativamente mais frequentemente identificados no inverno e na primavera. Um estudo francês³⁶ relatou que APT causado por *S. pyogenes* ou anaeróbios foi mais prevalente no inverno e na primavera do que no verão. Essa flutuação na microbiologia do APT pode estar relacionada ao clima.

Em nossa série, nenhum microrganismo específico foi associado a prognóstico ruim do APT. Essa descoberta é consideravelmente semelhante aos relatos de Marom¹⁷ e Mazur.¹⁸

Nosso estudo tem várias limitações. Como coletamos dados retrospectivamente através de análise de arquivos médicos, os dados do registro médico podem ter sido perdidos durante os primeiros anos. Como utilizamos populações pequenas de patógenos isolados, é necessário um tamanho amostral maior para determinar a relação entre o patógeno isolado e os fatores predisponentes.

Conclusões

O patógeno causativo mais comum do APT foi *S. viridans*, seguido por *K. pneumoniae*. O isolamento de anaeróbios aumentou significativamente nos últimos anos. Os mais comuns foram *Prevotella* e *Fusobacterium* spp. Os antibióticos empíricos que têm como alvo aeróbios e anaeróbios provavelmente são adequados como tratamento. O isolamento bacteriano pode estar associado a fatores clínicos do hospedeiro, fatores ambientais e duração da hospitalização.

Conflitos de interesse

Os autores declaram não haver conflitos de interesse.

Agradecimentos

Os autores agradecem ao Professor Hsueh-Wen Chang (Departamento de Ciências Biológicas, National Sun Yat-sen University, Kaohsiung, Taiwan) por sua ajuda na análise estatística.

Referências

1. Galioto NJ. Peritonsillar abscess. Am Fam Physician. 2008;77:199–202.
2. Steyer TE. Peritonsillar abscess: diagnosis and treatment. Am Fam Physician. 2002;65:93–6.
Changing trend and factors in bacteriology of PTA

3. Takenaka Y, Takeda K, Yoshii T, Hashimoto M, Inohara H. Gram staining for the treatment of peritonsillar abscess. Int J Otolaryngol. 2012;2012:1–5.

4. Segal N, El-Saied S, Puterman M. Peritonsillar abscess in children in the southern district of Israel. Int J Pediatr Otorhinolaryngol. 2009;73:1148–50.

5. Acharya A, Gurung R, Khanal B, Ghimire A. Bacteriology and antibiotic susceptibility pattern of peritonsillar abscess. JNMA J Nepal Med Assoc. 2010;49:139–42.

6. Gavriiel H, Lazarevitch T, Pomortsev A, Eviatar E. Variations in the microbiology of peritonsillar abscess. Eur J Clin Microbiol Infect Dis. 2009;28:27–31.

7. Sunnergren O, Swanberg J, Molstad S. Incidence, microbiology and clinical history of peritonsillar abscesses. Scand J Infect Dis. 2008;40:752–5.

8. Jokipi AM, Jokipi L, Sipila P, Jokinen K. Semiquantitative culture results and pathogenic significance of obligate anaerobes in peritonsillar abscesses. J Clin Microbiol. 1988;26:957–61.

9. Mitchelmore IJ, Prior AJ, Montgomery PQ, Tabaqchali S. Microbiological features and pathogenesis of peritonsillar abscesses. Eur J Clin Microbiol Infect Dis. 1995;14:870–7.

10. Matsuda A, Tanaka H, Kanaya T, Kamata K, Hasegawa M. Peritonsillar abscess: a study of 724 cases in Japan. Ear Nose Throat J. 2002;81:384–9.

11. Ehlers Klug T, Rusan M, Fuursted K, Ovesen T. Fusobacterium necrophorum: most prevalent pathogen in peritonsillar abscess in Denmark. J Clin Infect Dis. 2009;49:1467–72.

12. Klug TE, Henriksen JJ, Fuursted K, Ovesen T. Significant pathogens in peritonsillar abscesses. Eur J Clin Microbiol Infect Dis. 2011;30:619–27.

13. Love RL, Allison R, Chambers ST. Peritonsillar infection in Christchurch 2006–2008: epidemiology and microbiology. N Z Med J. 2011;124:16–23.

14. Sowerby LJ, Hussain Z, Husein M. The epidemiology, antibiotic resistance and post-discharge course of peritonsillar abscesses in London, Ontario. J Otolaryngol Head Neck Surg. 2013;42:1–7.

15. Klug TE. Incidence and microbiology of peritonsillar abscess: the influence of season, age, and gender. Eur J Clin Microbiol Infect Dis. 2014;33:1163–7.

16. Albertz N, Nazar G. Peritonsillar abscess: treatment with immediate tonsillectomy – 10 years of experience. Acta Otolaryngol. 2012;132:1102–7.

17. Marom T, Cinamon U, Itskovich D, Roth Y. Changing trends of peritonsillar abscess. Am J Otolaryngol. 2010;31:162–7.

18. Mazur E, Czerwinska E, Korona-Glowniak I, Grochowska A, Kozioł-Montewka M. Epidemiology, clinical history and microbiology of peritonsillar abscess. Eur J Clin Microbiol Infect Dis. 2015;34:549–54.

19. Broek I. Aerobic and anaerobic bacteriology of peritonsillar abscess in children. Acta Paediatr Scand. 1981;70:831–5.

20. Jousimies-Somer H, Savolainen M, Makitie A, Ylikoski J. Bacteriological findings in peritonsillar abscesses in young adults. Clin Infect Dis. 1993;16 Suppl. 4:S292–8.

21. Broek I. The role of anaerobic bacteria in tonsillitis. Int J Pediatr Otorhinolaryngol. 2005;69:9–19.

22. Parhiscar A, Har-El G. Deep neck abscess: a retrospective review of 210 cases. Ann Otol Rhinol Laryngol. 2001;110:1051–4.

23. Huang TT, Tseng FY, Yeh TH, Hsu CJ, Chen YS. Factors affecting the bacteriology of deep neck infection: a retrospective study of 128 patients. Acta Otolaryngol. 2006;126:396–401.

24. Rega AJ, Aziz SR, Ziccardi VB. Microbiology and antibiotic sensitivities of head and neck space infections of odontogenic origin. J Oral Maxillofac Surg. 2006;64:1377–80.

25. Siu LK, Yeh KM, Lin JC, Fung CP, Chang FY. Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis. 2012;12:881–7.

26. Wang JH, Liu YC, Lee SS, Yen MY, Chen YS, Wang JH, et al. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis. 1998;26:1434–8.

27. Castle SC. Clinical relevance of age-related immune dysfunction. Clin Infect Dis. 2000;31:578–85.

28. Geerlings SE, Hoepelman AIM. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26:259–65.

29. Huang TT, Liu TC, Chen PR, Tseng FY, Yeh TH, Chen YS. Deep neck infection: analysis of 185 cases. Head Neck. 2004;26:854–60.

30. Huang TT, Tseng FY, Liu TC, Hsu CJ, Chen YS. Deep neck infection in diabetic patients: comparison of clinical picture and outcomes with nondiabetic patients. Otolaryngol Head Neck Surg. 2005;132:943–7.

31. Herzon FS, Harris P. Mosher Award thesis. Peritonsillar abscesses: incidence, current management practices, and a proposal for treatment guidelines. Laryngoscope. 1995;105:1–17.

32. Repanos C, Mukherjee P, Alwahab Y. Role of microbiological studies in management of peritonsillar abscess. J Laryngol Otol. 2009;123:877–9.

33. Powell EL, Powell J, Samuel JR, Wilson JA. A review of the pathogenesis of adult peritonsillar abscess: time for a re-evaluation. J Antimicrob Chemother. 2013;68:1941–50.

34. Klug TE, Rusan M, Clemmensen KK, Fuursted K, Ovesen T. Smoking promotes peritonsillar abscess. Eur Arch Otorhinolaryngol. 2013;270:3163–7.

35. Ling LJ, Hung SL, Tseng SC, Chen YT, Chi LY, Wu KM, et al. Association between betel quid chewing, periodontal status and periodontal pathogens. Oral Microbiol Immunol. 2001;16:364–9.

36. Lepelletier D, Pinaud V, Le Conte P, Bourgault C, Assery N, Ballereau F, et al. Peritonsillar abscess (PTA): clinical characteristics, microbiology, drug exposures and outcomes of a large multicenter cohort survey of 412 patients hospitalized in 13 French university hospitals. Eur J Clin Microbiol Infect Dis. 2016;35:867–73.

37. Brook I, Frazier EH, Thompson DH. Aerobic and anaerobic microbiology of peritonsillar abscess. Laryngoscope. 1991;101:289–92.

38. Snow DG, Campbell JB, Morgan DW. The microbiology of peritonsillar sepsis. J Laryngol Otol. 1991;105:553–5.

39. Muir DC, Papesch ME, Allison RS. Peritonsillar infection in Christchurch 1990–2: microbiology and management. N Z Med J. 1995;108:53–4.

40. Prior A, Montgomery P, Mitchelmore I, Tabaqchali S. The microbiology and antibiotic treatment of peritonsillar abscesses. Clin Otolaryngol Allied Sci. 1995;20:219–23.

41. Hanna BC, McMullan R, Gallagher G, Hedderwick S. The epidemiology of peritonsillar abscess disease in Northern Ireland. J Infect. 2006;52:247–53.

42. Sakae FA, Imamura R, Sennes LU, Araujo Filho BC, Tsuji DH. Microbiology of peritonsillar abscesses. Braz J Otorhinolaryngol. 2006;72:247–51.

43. Hidaka H, Kuriyama S, Yano H, Tsuji I, Kobayashi T. Precipitating factors in the pathogenesis of peritonsillar abscess and bacteriological significance of the Streptococcus milleri group. Eur J Clin Microbiol Infect Dis. 2011;30:527–32.

44. Plum AW, Mortelliti AJ, Walsh RE. Microbial flora and antibiotic resistance in peritonsillar abscesses in Upstate New York. Ann Otol Rhinol Laryngol. 2015;124:875–80.

45. Tachibana T, Orita Y, Takao S, Ogawara Y, Matsuyma Y, Shimizu A, et al. The role of bacteriological studies in the management of peritonsillar abscess. Auris Nasus Larynx. 2016;43:648–53.

46. Vaikjarv R, Kasehom P, Jaaninae L, Kivistid A, Roop T, Sepp E, et al. Microbiology of peritonsillar abscess in the South Estonian population. Microb Ecol Health Dis. 2016;27:27787.