Toll-like receptor-targeted anti-tumor therapies: Advances and challenges

Yang Yang1†, Hongyi Li1†, Christina Fotopoulou2, Paula Cunnea3 and Xia Zhao1*
1Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China, 2Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom

Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and clinical trials targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.

KEYWORDS
toll-like receptors, cancer, targeted therapy, immunotherapy, clinical trials

Introduction

Toll-like receptors (TLRs) are type I transmembrane glycoproteins (1) with evolutionarily conserved structures, existing in a wide variety of species from plants to vertebrates (2). Since the discovery in 1996 of Toll receptor protein that contributes to Drosophila’s anti-fungal response and embryonic development (3, 4), 13 functionally active homologs of Toll receptor-TLRs, have been identified in humans and mice, of which TLR1-9 and TLR11 are conserved in both species (5–7). However, TLR11 is non-functional in human, presented only by a pseudogene (8). TLR12 and 13 do not exist in humans, while TLR10 in mice is non-functional due to a retrovirus insertion (6).
Pattern recognition receptors (PRRs) are key components of innate immunity because of their ability to sense infection, elicit intracellular signaling cascades and initiate immune responses that ultimately eliminate pathogens and infected cells (9). As a group of important PRRs (3), TLRs recognize diverse microbial pathogens (e.g., lipids, peptides, carbohydrates, and nucleic acids) by their conserved molecular patterns, indicated as pathogen-associated molecular patterns (PAMPs), and initiate immune responses (10, 11). Almost all cells of the immune system (e.g., macrophages, B lymphocytes, dendritic cells, mast cells, neutrophils, etc.) as well as epithelial cells, endothelial cells, adipocytes, and cardiomyocytes recognize pathogens via TLRs (9). Recognition of microbial products by TLRs activates the innate immune response and triggers the activation of downstream signaling pathways in which myeloid differentiation factor 88 (MyD88) and toll-IL-1 receptor structural domain (TRIF) lead to the activation of NF-kB and subsequent transcription of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), IL-1 and IL-6 (12). TLRs also recognize conserved molecular structures of host-derived molecules, often referred to as damage-associated molecular patterns (DAMPs) (13), derived after cell death and extracellular matrix (ECM) degradation from tissue damage caused by trauma or infection. TLRs have also been found to play critical roles in many other activities, including adaptive immune responses (14), differentiation and development (15, 16), tissue regeneration (17–19), cell cycle regulation (20, 21), and metabolism (22, 23).

As a group of regulators of various cellular functions, it is unsurprising that TLRs also exert their versatility in the process of carcinogenesis and tumor development, where their functions are augmented or dysregulated, resulting in either anti-tumor or pro-tumor responses (24–26). The exploitation of TLR anti-tumor activities has shown great promise in cancer immunotherapies, with some synthesized TLR agonists already approved by FDA for clinical use (27); however, problems still exist relating to their use, including limited translation rate from bench to bedside, possible immunosuppression induced by TLR agonists, and safety issues (28, 29).

In this article, we review the basic features of TLRs. We report on the applications of TLR-targeted treatment in anti-cancer therapies in clinical trials, encompassing various combinatorial therapeutic strategies. Lastly, we review the challenges facing TLR-targeted therapy at present.

TLR structures and ligands

TLR structures

TLRs are membrane-spanning proteins (3) with an extracellular N-terminal domain consisting of 19-25 tandem leucine-rich repeat motifs (2), displaying a horseshoe tertiary structure (30, 31), which is responsible for ligand recognition (2). Next to the ectodomain is a transmembrane region (3), connecting the intracellular portion: the Toll/IL-1 receptor (TIR) domain in the C-terminal tail, which is homologous to IL-1 receptor family’s cytoplasmic region (32) and required for downstream signaling (10).

All the TLRs are synthesized in the endoplasmic reticulum (ER), then transferred to Golgi apparatus, and finally migrate to the plasma membrane or intracellular endosomes (33).

Human TLRs can be classified into two groups by subcellular localization: 1) the cell surface TLRs, TLR1, 2, 4, 5, 6, and 10, which reside on the plasma membrane (4), traveling to phagosomes when activated (34), 2) the intracellular TLRs, TLR7, 8, 9, which are expressed on endosomes inside the cells, with the LRR domain facing the inner cavity of the compartment, sampling their ligands (31). TLR3 are also primarily expressed on endosomes, yet it has been reported to express on the cell surface of fibroblasts, epithelial cells, and macrophages as well (35, 36).

In the ligand-binding, namely, activated status, TLRs tend to be dimerized (31). TLR2 alternatively forms heterodimers with TLR1, 6, or 10 (37, 38); each combination is associated with the specificity for recognizing a particular group of ligands, making TLR2 the most competent TLR in sensing a diverse range of PAMPs. Other TLRs tend to form homodimers (Figure 1) (39).

LR ligands

TLRs do not necessarily distinguish between self and non-self, but they respond to “danger signals” in general; as long as the “signals” are encompassed within certain molecular patterns, both no matter whether exogenous or endogenous ligands (40). TLR ligands (TLRLs) primarily fall into three categories (1): natural exogenous ligands (PAMPs) (2); natural endogenous ligands (DAMPs and secreted ligands) (3); synthesized agents. Exogenous ligands, namely, PAMPs originate from broadly expressed components in bacteria, fungi, protozoa, parasites, and viruses (10, 41, 42); they are common and genetically conserved because of their significance to microbial survival and infectivity (1, 43). As sentinels of the host’s defense system, TLRs sense PAMPs as invading dangers and directly activate the innate immune system (44), meanwhile indirectly activating the adaptive immune system (43), thereby providing indispensable protection against pathogens. Studies on mice lacking each TLR have shown that each TLR has a different function in PAMP recognition and immune response (45). Cell surface TLRs mainly recognize microbial membrane components such as lipids, lipoproteins, and proteins. TLRs expressed in intracellular components, such as endosomes, recognize viral or bacterial nucleic acids (46, 47). Specifically, TLR1/2 recognizes triacylated lipopeptides from Gram negative bacteria (38, 39), TLR2/6 recognizes diacylated lipopeptide from mycoplasma (38, 48), and TLR2/10 recognizes microbial components shared by TLR1 (37). TLR3 ligands are double-
stranded RNAs (dsRNAs) emerging from cytosol virus replication (13, 39). TLR4 binds lipopolysaccharide (LPS) from Gram negative bacteria (39, 49) and fungal mannanes (48). TLR5 ligates with bacterial flagellin (13). TLR7 and 8 ligands are both single-stranded RNAs (ssRNAs) from viruses (13, 39). TLR9 recognizes nonmethylated CpG motifs normally found in bacterial and viral DNA (13, 39).

On the other hand, endogenously derived DAMPs from cells and ECM also activate TLRs. DAMPs are generated from cellular components or fragments of extracellular macromolecules, which are typically inaccessible to TLR ligand-binding regions in homeostasis, yet exposed to TLRs in the case of cell necrosis (passive release), apoptosis (pulsative release) or extracellular matrix degradation (5, 16, 43, 50) following trauma, inflammation and tissue remodeling during development (43). Specifically, TLR2 recognizes HMGB1, β-defensin-3, serum amyloid A, and biglycan (51); TLR4 recognizes HMGB1, fibrinogen, saturated fatty acids, and hyaluronic acid fragments (51); TLR3 recognizes mRNA (52); TLR7 and TLR8 recognize ssRNA (53) and antiphospholipid antibody (54); TLR9 recognizes IgG-chromatin complexes (55).

In the tumor microenvironment (TME), DAMPs can be abundantly released by solid tumors (5, 56) and have a significant impact in the TME by adopting mechanisms of tissue repair [such as cell proliferation (57, 58), angiogenesis (56), and tissue remodeling (59)], contributing to tumor

FIGURE 1

TLR ligands and signaling pathways Physiologically, TLRs are expressed on the cell membrane (TLR 1, 2, 4, 5, 6, 10) or the endosome (TLR3, 7, 8, 9). TLRs recognize a wide range of pathogen-associated molecular patterns (PAMPs). Upon ligation, dimerized TLRs can activate either MyD88 or TRIF pathways. TLR4 can activate MyD88 (with adaptor protein TIRAP) and TRIF (with adaptor protein TRAM) pathways; TLR5 activates TRIF alone, and TLR1/2, TLR2/6, TLR2/10, TLR5 as well as TLR7–9 activate MyD88 alone, all without the need of an adaptor protein. As a result, type I IFNs are induced via IRF3 and IRF7 activation and inflammatory cytokines via NF-κB, MAPKs, and IRF5 stimulation, which thus initiates a wide range of inflammatory and immune activities, giving the basis for therapeutic exploration on TLRs in tumor therapies. (This figure is created with BioRender.com).
progression. Alternatively, just as PAMPs, DAMPs can also act as stimulators of immune responses, showing antitumor potential in vitro as well (56).

Synthetic TLRLs on the other hand have varied levels of similarity to natural ligands (41), designed for the purpose of disease treatment by manipulating different aspects of TLR functions. The synthetic TLRLs are in active pre-clinical and clinical investigation. The advances of TLRLs, including synthetic TLRLs, in therapeutic research are reviewed in the following section 5 and Tables 1–3.

TLR signaling

TLR signaling is initiated after TLR-ligand binding, which causes conformational changes, leading to the recruitment of four major adaptor proteins (Figure 1) (41). Each of these proteins contain a TIR domain that is homologous to the intracellular region of TLRs; all TLRs transmit signals through at least one of those proteins: myeloid differentiation factor 88 (MyD88), TIR domain-containing adaptor protein (TIRAP, also identified as MyD88 adaptor-like protein, MAL), TIR domain-containing adaptor protein-inducing interferon (IFN)-β (TRIF, also identified as TIR domain-containing adaptor molecule 1, TICAM1), and TRIF-related adaptor molecule (TRAM, also identified as TICAM2 and TIR-containing protein, TIRP) (1, 10, 41, 224, 225). A fifth TIR-domain exists, containing adaptor protein-sterile alpha and HEAT/armadillo motif protein (SARM), but contrary to the other four adaptors with functions of TLR signaling stimulation, it negatively regulates TLR signaling by inhibiting the downstream of TRIF pathway (225, 226).

TLR signaling can be divided into two pathways according to the TIR-containing adaptor used: the MyD88 pathway (MyD88-dependent pathway) and the TRIF pathway (MyD88-independent pathway) (227). TLR4 is the only TLR that activates both pathways; TLR3 relies only on the TRIF pathway; the remaining TLRs, TLR1-2, TLR5-10, activate solely the MyD88 pathway (10, 24, 37, 227). When initiating these pathways, some TLRs require an accompanying adaptor molecule. TLR4 and TLR2 (after dimerized with TLR1 or TLR6 but not TLR10) require TIRAP to recruit MyD88. TLR4 requires TRAM to bridge to TRIF (227–229). However, TLR5 and TLR7-9 can independently interact with MyD88 (227), and TLR3 depends solely on TRIF (228, 230).

In the MyD88 pathway, a series of downstream molecules are sequentially activated following recruitment of MyD88, including but not limited to interleukin-1 receptor-associated kinases (IRAKs), tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), interferon (IFN) regulatory factor 5 (IRF5), receptor-interacting protein kinase 1 (RIP1), nuclear factor κB (NF-κB) inhibitor (IκB) kinase (IKK) complex, finally leading to the activation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, p38) and NF-κB, which induces a wide range of pro-inflammatory cytokines (227, 228). In addition, in a cell-specific manner, following TLR7-9 ligation, the stimulated MyD88 pathway in plasmacytoid dendritic cells (pDCs) can activate IRF7, which subsequently leads to IFNα production (227).

In the TRIF pathway, IRF3 is activated and translocated into the nucleus, consequently resulting in IFNβ induction (227, 228). TLR3 and TLR4 can signal through the IRF3/IFNβ pathway (231, 232). In addition, TRIF can also stimulate RIP1 and TRAF6, leading to activation of MAPKs and NF-κB to induce pro-inflammatory cytokine production (227, 228).

Besides typeIIFN (IFNα, IFNβ) and inflammatory cytokines (TNFα, interleukin-1 (IL-1), IL-6, IL-10, IL-12, etc.), TLRs also induce many different chemokines (IL-8, macrophage inflammatory protein (MIP)-1, IP-10, etc.) and microRNAs (miRNAs) (10, 41, 233–235). In cells, TLR activation may lead to apoptotic, proliferative, or differentiative responses (41). In tissues, TLR signaling can result in inflammation, immune responses, and tissue repair (236).

TLR expression

In humans, TLRs have a broad expression in various tissues, with the most diversity in locations involved in immune function, such as the spleen and peripheral blood, and locations in constant contact with microbes, such as the lung and the gastroenterological tract (237). Other locations expressing TLRs include the female reproductive tract, urinary tract, skin, neural system, and vascular system (238–240).

Specific to cell types, TLRs can typically be found in immune cells, such as DCs, monocytes, macrophages, granulocytes, NK cells, mast cells, and lymphocytes. Other non-immune cells also express TLRs, including endothelial cells, epithelial cells, fibroblasts, glial cells, astrocytes, keratinocytes, vascular smooth muscle cells, and sperm cells (3, 10, 33, 238, 239, 241, 242).

Recent evidence has shown that TLRs are expressed in diverse tumor cell populations (including tumor stem cells) together with cancer-associated fibroblasts, tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and adipocytes in the TME, participating in both promotion and inhibition in tumor growth (4, 10, 243).

During the process of malignant transformation, the level of TLR expression tend to elevate in transformed cells (including tumor cells) (24, 238, 244); meanwhile, the expression of TLR2, 4, 5, which is normally on cell membrane, increases in cytosol in a diffused manner (25, 245).

The expression patterns of TLRs and the downstream molecules are varied and regulated by multiple factors (237). Understanding these factors is vital for better exploitation in preclinical/translational research in TLR-targeted anti-tumor therapies.
TLR	Ligand	Molecular nature	Treatment strategy	Condition	Therapeutic feature	Reference
TLR1/2	SMU-Z1	synthetic chemical compound	TLRa	leukemia	increased CD8+ T cells, NK cells and DCs	(60, 61)
	Pam3CSK4	triacylated lipopeptide	TLRa+ICB	melanoma	enhanced depletion of Tregs in tumor microenvironment	(62)
	Amplivant	triacylated lipopeptide	TLRa+vaccine+chemo/PDT	HPV16-related tumors	Better immune stimulatory effect compared to normal Pam3CSK4	(63)
	Diprovicim	synthetic chemical compound	TLRa+vaccine+ICB	melanoma	long-term antitumor memory, high frequencies of tumor-infiltrating leukocytes	(64)
TLR2	acGM-1.8	glucomannan polysaccharide	TLRa	sarcoma, melanoma	enhanced M1-polarization of macrophages; improved safety profile	(65)
	WCCP-N-b	galactan	TLRa	melanoma	enhanced M1-polarization of macrophages; reduced tumor cell viability	(66)
	HSV-1	inactivated virus	TLRa+ACT	acute myeloid leukemia	direct NK cell activation	(67)
TLR3	poly (I:C)	ds RNA mimic	TLRa	breast cancer	a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers	(68)
			TLRa	colon cancer, breast cancer	induction of cell death; increased CD8+ tumor infiltrating lymphocytes and CD8/Treg ratios	(69)
			TLRa+chemo	oral squamous cell carcinoma	down-regulated drug transporters P-gp and MRP-1; raised cytoplasmic concentration of cisplatin	(70)
			TLRa+chemo	lung cancer	impaired paclitaxel induced c-FLIP reduction; restored cancer cell apoptosis	(71)
			TLRa+CTT+ICB	multiple types of tumor	increased treatment sensitivity to ICB treatment	(72)
			TLRa+vaccine	leukemia, thymoma	induction of systemic cross-priming, systemic tumor-specific adaptive immunity, intratumoral CTL infiltration	(73)
			TLRa+vaccine+CD40 Ab	colon cancer	increased ratio of tumor-specific T cell population, reduced side effects	(74)
			TLRa+vaccine+CD40 Ab	prostate cancer	elevated antigen-specific cellular and humoral immunity	(75)
			TLRa (NP incorporated)	melanoma	elevated pro-inflammatory macrophage infiltration, decreased MDSCs, macrophage M1 polarization	(76)
			TLRa (NP incorporated)	melanoma	ROS generation, macrophage M1 polarization, elevated activated NK cells and T lymphocytes	(77)
			TLRa+vaccine (NP incorporated)	thymoma	lymph node targeted, higher uptake of drug in APCs, greater natural killer cell expansion/activation and CTL response	(78)
			TLRa+vaccine (NP incorporated)	HPV-induced malignancy	enhanced population of antigen-specific CD8+ T cells, reduced adverse effects	(79)
			TLRa+vaccine+GT (NP incorporated)	thymoma	induction of TADC maturation and activation, decreased STAT3 expression, abrogated immunosuppression, potent anti-tumor immune responses	(80)
			TLRa+vaccine (NP incorporated)	thymoma	enhanced infiltration of CD8+ T Cells and CD8α+ DCs, enhanced Th1 type anti-tumor immunity	(81)
	ARNAX	DNA-capped dsRNA	TLRa+vaccine	thymoma	augmented activity of adoptively transferred CDM(+) T cells	(82)
TLR4	LPS	lipopolysaccharide	TLRa+RT+ACT	melanoma	extensive upregulation of systemic and intratumoral APCs and NK cells	(83)
	MPLA	monophosphoryl lipid A	TLRa+CTT	breast cancer	stimulation of B-1 cells, rapid production of high levels of natural IgM reactive against tumor-associated antigens	(84)

(Continued)
TLR Ligand Molecular nature	Treatment strategy	Condition	Therapeutic feature	Reference
TLRa + proteasome inhibition	leukemia	enhanced tumor cell death	(85)	
TLRa + vaccine + NKTa	HPV-induced malignancy	elevated levels of lymphocyte proliferation, CTL activity, IFN-gamma, IL-4 and IL-12 responses	(86)	
TLRa + vaccine + CD4 Ta	breast cancer	enhanced tumor inhibition effect	(87)	
TLRa (NP incorporated)	melanoma	DC-targeting; induction of DC maturation and activation, promotion of anti-tumour T cell responses, and enhanced antigen cross-presentation	(88)	
TLRa + vaccine (NP incorporated)	melanoma	enhanced anti-tumor effects	(89)	
TLRa + vaccine (NP incorporated)	melanoma	promoted antigen retention in draining lymph nodes	(90)	
PELA pentaerythritol lipid A	TLRa + vaccine (NP incorporated)	thymoma	enhanced stimulation of co-stimulatory molecules CD80/CD86 on DCs, significant expansion of the tumor-specific T cell population, enhanced Th1-biased immune response	(91)
RGP rehmannia glutinosa polysaccharide	TLRa + vaccine	melanoma, colon cancer	increased IFN-γ secretion and CD8+ T cell response	(92)
CIRP protein	TLRa + vaccine ± ICB	melanoma, thymoma, colon cancer	CD8-dependent tumor rejection, improved survival	(93)
API5 protein	TLRa + DC vaccine	thymoma, cervical cancer, colon cancer	generation of antigen-specific CD8 + T cells and memory T cells	(94)
HMGN1 protein	TLRa + vaccine	melanoma	tumor-specific, Th1-polarized immune responses	(95)
TLR5 flagellin protein	TLRa + vaccine	genital cancer	local administration, induction of CD4+ and CD8+ cell recruitment as well as T cell activation-related gene expression in draining lymph nodes, systemic antigen-specific IFN-γ production	(96)
flagellin protein	TLRa + ACT	melanoma	cell therapy-bacterial flagellin-secreting DMF3(TLR5L) T cells: augmentation of T cell effector function and expansion, reduction of immunosuppressive cells	(97)
Entolimod protein	TLRa	colon cancer, breast cancer	stimulation of the NK-DC-CD8+ T-cell axis	(98)
TLR7 imiquimod imidazoquinoline	TLRa	lymphoma	NK cell activation, induction and intra-tumoral infiltration of tumor-specific CD4(+), T cells	(99)
TLRa + vaccine	HPV-induced malignancy	induction and recruitment of tumor-specific CD8+ T cells	(100)	
TLRa + chemo + ICB (NP incorporated)	breast cancer	induction of tumor-specific immune responses, enhanced DC maturation, elevated CD8(+) CTLs/Treg and CD4 (+) Teff/Treg ratios	(101)	
TLRa + ICB + DCSti (NP incorporated)	melanoma	localized immunotherapy, safe antitumoral responses	(102)	
TLRa + PTD + ICB (NP incorporated)	colorectal cancer	generation of a pool of tumor-associated antigens, strong antitumor immunity and long-term immune memory	(103)	
TLRa + PTD + ICB (NP incorporated)	breast tumor	abscopal effects, tumors infiltrated by CD45(+) leukocytes	(104)	

(Continued)
TLR Agonism	Ligand Nature	Treatment Strategy	Condition	Therapeutic Feature	Reference
TLRa+PTT+ICB (NP incorporated)	breast cancer, colon cancer	enhanced DC activation, increased TILs, decreased Tregs, induction of immune memory, inhibition of metastasis	(105)		
TLRa+RT+ICB (NP incorporated)	colon cancer	relieved tumor hypoxia, effective inhibition of tumor metastases, long term immune memory	(106)		
TLRa+vaccine+ICB (NP incorporated)	melanoma	enhanced drug uptake by APCs, enhanced immune stimulation	(107)		
gardiquimod	imidazoquinoline	TLRa+ACT	liver cancer	direct activation of NK cells, enhanced maturation of DCs, promotion of NK-DC cross-talk	(108)
		TLRa+vaccine+aOX40/CD40 Ab	melanoma	induction of anti-tumor CD4 T-cell responses, overcome immune tolerance to a self-tumor-associated antigen, enhancement of proliferative and antiapoptotic activities of CD4 T cells	(109)
1V270	synthetic small molecule	TLRa	breast cancer, melanoma, lung cancer	activation of NK cells and tumor-specific CD8+ cell, inhibition of metastasis	(110)
		TLRa+ICB+IRE	pancreatic cancer	induction of abscopal effects	(111)
SC1	synthetic small molecule	TLRa	murine tumor models	systemic induction of IFN I and activation of immune cells, increased leukocyte infiltration and activation, induction of tumor-specific CD8+ T cells	(112)
		TLRa	lymphoma	reversion of NK cell anergy and restoration of NK cell-mediated tumor cell killing	(113)
SZU-101	synthetic small molecule	TLRa+chemo	lymphoma	strong cytokine production and enhanced cytotoxic T lymphocyte response	(114)
let-7b (miRNA mimic)	RNA	TLRa (NP incorporated)	breast cancer	reversion of suppressive TME by reprogramming TAM and TIDC	(115)
antigen-encoding RNAs	RNA	TLRa+vaccine (NP incorporated)	melanoma, colon cancer, lung cancer	high efficiency of drug uptake and encoded antigen expression by DC and macrophages, activating both innate and tumor-specific adaptive immunity	(116)
TLR7/8 resiquimod	imidazoquinoline	TLRa+ICB	colon cancer	generation of immune memory, induction of anti-tumor intratumoral myeloid cells	(117)
		TLRa+CD20 Ab	lymphoma	activation of NK cells, CD4+ T cells, CD8+ T cells and generation of immune memory	(118)
		TLRa+surgery	breast cancer, lung cancer	administration at the tumor resection site, increased NK, DC, and T cell activation, induction of IFN I	(119)
		TLRa (NP incorporated)	oral cancer, mast cell tumor	prolonged drug release and limited systemic immune toxicity	(120)
		TLRa+ICB (NP incorporated)	colon cancer, melanoma	increased the proportion of TILs and sensitization of tumors to ICB	(121)
		TLRa+ICB (NP incorporated)	colon cancer, melanoma	incuction of M1 polarization of TAMs, generation of immune memory and reversion of anti-PD-1 resistance	(122)
resiquimod+imiressiquimod	imidazoquinoline derivative	TLRa+vaccine+ICB (NP incorporated)	melanoma, cervical cancer	M1 polarization of TAMs, stimulation of NK cells, increased TILs, and generation of immune memory	(123)
522	imidazoquinoline derivative	TLRa+vaccine (NP incorporated)	melanoma	strong induction of antigen-specific CD8 T cell and NK cell responses	(124)
TABLE 1 Continued

TLR	Ligand	Molecular nature	Treatment strategy	Condition	Therapeutic feature	Reference
TLR9	Cpg ODN	DNA	TLRa	pancreatic cancer	enhanced macrophages antitumor activity	(127)
TLRa	BTKi	lymphoma	TLRa+BTKi	lymphoma, colon cancer, breast cancer, melanoma	induction of local and systemic T-cell dependent tumor eradication, generation of immune memory	(131)
TLRa	chemo	glioma	TLRa+chemo	glioma melanoma	increased tumor infiltration of macrophages and B cells, increased CTLs and generation of immune memory	(132)
TLRa	ICB	lung cancer	TLRa+ICB	lung cancer	formation of tertiary lymphoid structures adjacent to the tumors, infiltration of CTLs, DC expansion, activation of CTL supporting Th cells	(133)
TLRa	ICB	breast cancer, colon cancer	TLRa+ICB	breast cancer, colon cancer	reversion of PD-1 blockade resistance, enhanced CTL expansion and infiltration	(134)
TLRa+ICB	aOX40 Ab	lymphoma	TLRa+ICB+aOX40 Ab	lymphoma	depletion of tumor-infiltrating Tregs and induction of local and systemic anti-tumor responses	(135)
TLRa+IReg	colon cancer	TLRa+IReg	colon cancer	reduced infiltration of Tregs and increased CTL	(136)	
TLRa+RFA	thymoma	TLRa+RFA	thymoma	CpG enhanced RFA-induced CTL responses	(137)	
TLRa+RFA	liver cancer	TLRa+RFA	liver cancer	enhanced antitumor T cell responses and Th1 cytokine production	(138)	
TLRa+STAT3i	leukemia	TLRa+STAT3i	leukemia	reduced arginase expression, restored T cell responses, elimination of leukemia stem/progenitor cells	(139)	
TLRa+STAT3i	lymphoma	TLRa+STAT3i	lymphoma	generation of tumor-specific CD8/CD4 T cell immunity and immune memory	(140)	
TLRa+vaccine	renal cancer	TLRa+vaccine	renal cancer	rapid induction of tumor-specific CD8(+) T cells, induction of memory lymphocyte infiltration, and Th1-type immune response	(141)	
TLRa+vaccine	thymoma	TLRa+vaccine	thymoma	neutrophil recruitment, activation of cDCs, T-cell priming in draining lymph nodes, increased CTL infiltration	(142)	
TLRa+vaccine	breast cancer	TLRa+vaccine	breast cancer	enhanced antigen-specific CD8(+) T cell cytotoxicity	(143)	
TLRa+vaccine	melanoma	TLRa+vaccine	melanoma	intracellular drug delivery, enhanced T cell response	(144)	
TLRa+vaccine+t-chemo	HPV-induced malignancies	TLRa+vaccine+t-chemo	HPV-induced malignancies	reduced infiltration of MDSC and TAMs, increased antigen-specific CTL	(145)	
TLRa+vaccine+ICB	ovarian cancer	TLRa+vaccine+ICB	ovarian cancer	enhanced activation and expansion of antigen-specific CTLs, induction of memory precursor T cells, inhibition of Tregs and MDSCs	(146)	
TLRa+vaccine+NKTa	melanoma	TLRa+vaccine+NKTa	melanoma	optimized expansion of NKs and antigen-specific CTLs, increase of serum IL-12	(147)	
TLRa+vaccine (NP incorporated)	melanoma	TLRa+vaccine (NP incorporated)	melanoma	TAM-targeted, M1 polarization of macrophages, increased T cell intra-tumoral infiltration and activation	(148)	
TLRa+vaccine (NP incorporated)	thymoma	TLRa+vaccine (NP incorporated)	thymoma	potent CTL response	(149)	

(Continued)
TLR Ligand	Molecular nature	Treatment strategy	Condition	Therapeutic feature	Reference
Agonism					
TLRa+vaccine (NP incorporated)	thymoma	efficient delivery to DCs, induction of antigen-specific immune responses	(150)		
TLRa+vaccine (NP incorporated)	lymphoma	professional APC-targeted, induction of long-lasting, cytotoxic, antigen-specific T cell responses	(147)		
TLRa+PTT (NP incorporated)	breast cancer	good safety profile, superior effectiveness towards the suppression of both primary and metastatic tumor over either single therapy alone.	(151)		
TLRa (NP incorporated)	melanoma	increased expression of proinflammatory factors and co-stimulatory factors	(152)		
TLRa+vaccine (NP incorporated)	melanoma	induction of ADCC, CTL responses	(153)		
TLRa+vaccine (NP incorporated)	melanoma	increased ROS generation, enhanced CTL proliferation	(154)		
TLRa+vaccine (NP incorporated)	melanoma	lymph node-targeted, effective drug delivery to endosomal TLR9 in APCs, enhanced cellular and humoral immune responses	(155)		
TLRa + ICB (NP incorporated)	colon cancer	activation of intra-tumoral CD8 T cells, Th1-related gene induction	(156)		
TLRa+vaccine (NP incorporated)	melanoma	enhanced antibody response, Th1 polarization of Th responses	(157)		
TLRa+PDT (NP incorporated)	breast cancer	induction of continuous secretion of proinflammatory cytokines, maturation of DCs, activation and infiltration of T lymphocytes	(158)		
TLRa+vaccine (NP incorporated)		efficient intake by APCs, tumor-specific immune stimulation, minimal toxicity	(159)		
TLRa+chemo (NP incorporated)	glioblastoma	significantly enhanced tumor regression, prolonged survival, and generated immunological memory.	(160)		
TLRa+vaccine (NP incorporated)	prostate cancer	increased co-stimulatory molecule expression on DCs	(161)		
TLRa+vaccine (NP incorporated)	melanoma	lymph node-targeted, efficient DC delivery, induction of CTL expansion	(162)		
TLRa+vaccine (NP incorporated)	melanoma	enhanced tumor-specific Th1 and CTL responses, decreased splenic MDSCs and their intra-tumoral infiltration	(163)		
X-DNA	DNA	TLRa	colon cancer, melanoma, lymphoma, breast cancer	increased intra-tumoral T cell infiltration, generation of immune memory	(164)
dSLIM	DNA	TLRa			
Multi-TLRs					
TLR2, 3	Pam3CSK4, triacylated lipopeptide, dsRNA mimic	TLRa+vacine +aCD40 Ab	melanoma	efficient and selective delivery to DCs, improved priming of antigen-specific CD8+T cells	(167)

(Continued)
TLR	Ligand nature	Molecular nature	Treatment strategy	Condition	Therapeutic feature	Reference
Agonism						
TLR2, 3, 7/8	LTA, poly (I:C), resiquimod	lipoteichoic acid, dsRNA mimic, imidazoquinoline	TLRa+αCS	pheochromocytoma generation of immune memory and systemic anti-tumor immunity	(168)	
TLR3, 7	poly (I:C), imiquimod	dsRNA mimic, imidazoquinoline	TLRa	pancreatic cancer, head and neck squamous cancer, lung cancer	increased cytotoxicity and granzyme A/B production in γδ T cells	(169)
TLR3, 9	Poly (I:C), CpG ODN	dsRNA mimic, DNA	TLRa+chemo	melanoma	enhanced macrophage and DC functions, enhanced humoral and cellular immune responses, generation of immune memory	(170)
TLR3, 8, 9	CU-CPT17c engineered bacteria components	synthetic small molecule	TLRa	cervical cancer, breast cancer	strong cytokine production and immune activation, effective inhibition of tumor cell proliferation	(174)
TLR4, 5	engineered bacteria		TLRa	colon cancer	engineered flagellin-secreting bacteria, TLR4- and TLR5-mediated immune activation, infiltration of abundant immune cells, M1 polarization	(175)
TLR4, 7	MPLA, imiquimod	monophosphoryl lipid A, imidazoquinoline	TLRa+chito/anti-MDSC Ab	thymoma	improved DC cross-presentation, Th1-biased cytokine production, strengthened lymphocytes priming, generation of immune memory	(176)
TLR4, 9	MPLA, CpG ODN	monophosphoryl lipid A, DNA	TLRa+Vaccine (NP incorporated)	melanoma	improved T, NKT, and NK cell infiltration, improved systemic immune stimulation	(179)
TLR7, 9	imiquimod, CpG ODN	imidazoquinoline, DNA	TLRa+ICB (NP incorporated)	cervical cancer	enhanced DC activation and humoral responses, improved antigen-specific CD8+ T cell responses	(180)
TLR7, 9	IV270, SD-101	synthetic small molecule	TRLa+ICB	HPV-induced malignancy	intra-cheek immunization resulting in higher mobilization of mucosal CD8+ specific effector T cells in TDLNs and TME induction of systemic adaptive immunity, increase M1, tumor-specific CTL infiltration	(181)
Antagonism						
TLR2	OPN-301	protein	TLRant	gastric cancer	impeded initiation and growth of gastric cancer, significant suppression of CXCL2 and TNF-α genes	(183)
TLR7, 9	IRS-954	DNA	TLRant	liver cancer	significant prohibition of tumor growth	(184)
			TLRant	cholangiocarcinoma	inhibition of cancer cell proliferation in vitro and tumor growth in vivo	(185)
HJ901	DNA	TLRant	diffuse large B cell lymphoma			(186)
TABLE 1 Continued

Ligand	Molecular nature	Treatment strategy	Condition	Therapeutic feature
chloroquine	chloroquine	TLRant	liver cancer	significantly reduced TLR7- and TLR9-mediated cell proliferation
				in cell lines carrying a certain MyD88 mutation, prevention of tumor growth in mouse
			cholangiocarcinoma	inhibition of cancer cell proliferation in vitro and tumor growth in vivo

Note: aCD40 Ab, agonistic anti-CD40 antibody; aCS, activation of complement system; ACT, adoptive cell therapy; ADCC, antibody-dependent cellular cytotoxicity; anti-MDSC Ab, antibody to myeloid-derived suppressor cells; aOX40 Ab, agonistic anti-OX40 antibody; APCs, antigen-presenting cells; API5, apoptosis inhibitor 5; BTKi, Bruton's tyrosine kinase inhibition; CD20 Ab, anti-CD20 antibody; CD4Ta, CD4+ T cell activation; cDC, conventional dendritic cell; chemo, chemotherapy; CLR, C-type lectin receptor (CLR) agonism; CTL, cytotoxic T lymphocyte; CTIT, cytokine-targeted therapy; DCs, dendritic cells; DCsti, DC cell stimulation; dSLIM, double stem loop immunomodulator with nonmethylated CG motifs; EnanDIM®, Enantiomeric DNA-based ImmunoModulator with nonmethylated CG motifs; ICB, immune checkpoint blockade; IFN, interferon; iMATE, intrahepatic myeloid aggregation for T cell expansion; IRE, irreversible electroporation; iTreg, inhibition of regulatory T cells; LTA, lipoteichoic acid; MDSC, myeloid-derived suppressor cell; NK cells, natural killer cells; NKTa, natural killer T cell activation; NP incorporated, nanoparticle incorporated in drug delivery; ODN, oligodeoxynucleotide; PDT, photodynamic therapy; PTT, photothermal therapy; RFA, radiofrequency ablation; RT, radiotherapy; STAT3i, STAT3 inhibition; TADCs, tumor-associated DCs; TAM, tumor-associated macrophage; TdLNs, tumor-draining lymph nodes; TIDC, tumor-infiltrated dendritic cell; TIL, tumor-infiltrated lymphocytes; TILs, tumor-infiltrated lymphocytes; TLRa, TLR agonism; TLRant, TLR antagonism; TME, tumor microenvironment; vaccine, tumor antigen; vaccine, tumor antigen only vaccine. Tumor suppression has been observed in all of the listed studies, therefore not written in therapeutic features.

TABLE 2 Completed clinical trials applying TLR agonists.

TLR	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Results	Trial number	Reference
TLR2	Hespecta	(modified Amplivant)	I	HPV16-positive tumors or premalignant lesions	single use	intradermal	safe, induction of robust specific T-cell immunity	NCT02821494	(187)
TLR3	Poly ICLC Hiltonol		II	melanoma, SCCHN, sarccoma, non-melanoma skin cancers	single use	intratumoral/intramuscular	well tolerated, systemic immune responses, achieving clinical benefit	NCT02423863	(188)
			II	solid tumors	+ vaccine	intramuscular	activating humoral and T cell immunity	NCT02873819	
			I/I	Melanoma	+ vaccine + IFA	subcutaneous	inducing tumor antigen expression and cytotoxic antigen-specific T cells	NCT01079741	
			I/I	Recurrent Glioblastoma	+ vaccine + Bevacizumab	intramuscular	n.a.	NCT02078648	
			I/I	solid tumors	+ Durvalumab+ Tremelimumab	intratumoral/intramuscular	a good safety profile, induction of immune responses in nonsquamous NSCLC, needing future patient enrichment	NCT02643303	
			I	AML, myelodysplastic syndrome	+ vaccine + chemotherapy	subcutaneous	n.a.	NCT01854248	(187)
			I	AML	+ vaccine + Nivolumab+ chemotherapy	subcutaneous	n.a.	NCT03358719	
			I	lung cancer	+ vaccine + Pembrolumab+ chemotherapy	subcutaneous	safe and effective, IFA enhanced T cell responses to peptide vaccines when added to TLR agonists.	NCT03380871	(189)
			I	melanoma	+ vaccine + IFA	intratumoral/intramuscular	n.a.	NCT01583350	(190)
			I	pancreatic adenocarcinoma	+ vaccine	intratumoral	n.a.	NCT01677962	
			I	solid tumors	+ vaccine	n.a.	n.a.	NCT02721043	(187)

(Continued)
TLR	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Results	Trial number	Reference
I	solid tumors	+ vaccine + Nivolumab	I	melanoma	subcutaneous		good safety profile and immunogenicity	NCT02897765	(191)
I	solid tumors	+ vaccines + Tadalafil	I	recurrent ovarian, fallopian tube or peritoneal cancer	intramuscular		well-tolerated, reducing PD-L1 + macrophages, increasing activated tumor infiltrating T cells	NCT02544880	(192)
	Rintatolimod	Ampligen, Atvogen	I/II	colorectal carcinoma with metastatic disease to the liver	+ vaccines + IFA	intravenous		NCT01312389	
	GLA-SE	G100	I	melanoma	+ vaccine	intramuscular	safe and effective vaccine adjuvant, IFA enhanced T cell responses to peptide vaccines when added to TLR agonists	NCT01585350	(190)
	Merkel Cell Carcinoma sarcoma	+ surgery + RT	I	melanoma	intratumoral		good safety profile, promising clinical efficacy	NCT02035657	(193)
	I	LPS	LPS	melanoma	+ vaccine	intradermal/subcutaneous		NCT02320305	
	GLA-SE	G100	I	melanoma	+ vaccine	intramuscular	well-tolerated, good immunogenicity	NCT02320305	
	Merkel Cell Carcinoma sarcoma	+ RT	I	melanoma	intratumoral		effective local control of sarcoma, induction of local and systemic CD4+ T cell response	NCT02180698	(194)
	IDC-G305	II/III	CIN 2/3	vulvar Paget disease	single use	topical	82.6% response rate, painkillers needed in 80% patients for side effects	NCT02385188	(197)
	GSK1795091	CRX-601	I	melanoma, ovarian, renal cell or non-small cell lung cancer	+ pembrolizumab ± GLS-3174998 ± GSK3359609	intravenous		NCT03447314	
	TriMix DC	I/II	melanoma	+ vaccine	Intranodal	Safe, but limited immunological and clinical response	NCT01929589	(196)	
	TLR5	entolimod	CBLB502	solid tumors	+ vaccine	intramuscular/subcutaneous		NCT01527136	
	Mobilian	M-VM3	I	prostate cancer	single use	intraprostate		NCT02654938	
	TLR7	Imiquimod	R837, Aldara	vulvar Paget disease	+ paracetamol + lidocaine	topical	82.6% response rate, painkillers needed in 80% patients for side effects	NCT02385188	(197)
	III	VIN	III	VIN	single use	topical	a safe, effective alternative to surgery for HSIL patients; recommended as first-line treatment	NCT02813535	(198)
	II/III	CIN 2/3	single use	(compare conization)	topical	inferior to conization in HPV clearance	NCT02130323	(199)	
	II	CIN2/3	II	CIN2/3	+ surgery	topical	promoting regression of cervical HSIL	NCT03233412	(200)
	II	single use	II	single use	topical		NCT00899574	(201)	

(Continued)
TLR	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Results	Trial number	Reference
TLR7	852A		II	breast carcinoma; ovarian cancer; endometrial cancer; cervical cancer	single use	n.a	safe, inducing both humoral and CD4+ T cell responses, insufficient to induce consistent NY-ESO-1-specific CD8+ T-cell responses	NCT00319748	(206)
TLR8	R848, S28463		I	melanoma	+ vaccine + IFA	topical		NCT00821652	(206)
		Resiquimod II	epithelial ovarian cancer, fallopian tube cancer or primary peritoneal cancer	+ chemotherapy	subcutaneous	no improvement of clinical outcomes with adding Motolimod compared to placebo, subpopulation with ISR had longer OS compared to those without ISR in motolimod treated group	NCT01666444	(207)	
		Motolimod	SCCHN	+ chemotherapy + Cetuximab	intravenous	no improvement in PFS or OS, whereas significant benefit in HPV-positive patients and those with ISR	NCT01836029	(208)	

(Continued)
TLR	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Results	Trial number	Reference	
I/II	ovarian cancer	+ Durvalumab + chemotherapy	subcutaneous					NCT02431559	(209)	
I	squamous cell carcinoma	± anti-PD-1 (Nivolumab)	subcutaneous/intratumoral					NCT03906526		
I	SCCHN	+ Cetuximab	subcutaneous					NCT01334177		
I	ovarian tumors	+ chemotherapy	subcutaneous	no dose-limiting toxicities, 2 subjects (15%) with complete responses, 7 subjects (53%) with disease stabilization				NCT01294293	(210)	
TLR9	SD-101							NCT02254772		
I/II	lymphoma	+ Ipilimumab + RT	intratumoral					NCT03322384		
I/II	solid tumors; lymphoma melanoma	+ Epacadostat + RT	intratumoral					NCT03084640		
I	Vidutolimod	+ Pembrolizumab + RT	subcutaneous/intratumoral					NCT03438318		
I	melanoma	+ Atezolizumab + RT	subcutaneous					NCT03052205	(213)	
I/II	Mantle cell lymphoma	+ vaccine+ autologous ACT + Rituximab + chemotherapy + Filgrastim	subcutaneous	safe, inducing antitumor CD8 T cell immune responses in 40% of patients, which were associated with favorable clinical outcomes				NCT00490529	(211)	
I/II	recurrent lymphomas refractory solid tumors	+ local RT	intratumoral	inducing systemic tumor-reactive memory CD8+ T cells well tolerated, inducing immune checkpoint upregulation, activation of dendritic cells, and induction of Type 1 IFN signaling.				NCT00185965	(212)	
I	Tilsotolimod	IMO-2125	single use	intratumoral	well tolerated, inducing immune checkpoint upregulation, activation of dendritic cells, and induction of Type 1 IFN signaling.				NCT03052205	(213)
II	small-cell lung cancer	+ chemotherapy (platinum-based)	subcutaneous	well tolerated, no significance difference induced in main efficacy end point OS by leftolimod				NCT02200081	(214)	
EMD 1201081				lack of clinical efficacy				NCT01049832	(215)	
Dv281				well tolerated				NCT03326752	(216)	
Multi-TLRs				well tolerated, 3/17 patients had 4 month disease stabilization				NCT01800812	(217)	
TLR2, 4	OM-174							NCT01373294	(215)	
TLR2, 4, 9	BCG	Bacille Calmette-Guérin, Mycobacterium bovis						NCT02015104		
II	bladder carcinoma	+ Lenalidomide	intravesical	combination therapy associated with less recurrence and progression, no serious adverse effects				NCT00794950	(218)	
II	bladder carcinoma	+ vaccine	intravesical					NCT02792192		
II	lower urinary tract urothelial carcinoma	+ Sunitinib	intravesical					NCT02753309	(219)	
I/II	bladder carcinoma	+ Atezolizumab	intravesical	well-tolerated, combination therapy enhancing BCG-specific γδ T cell immunity and increasing urinary cytokines						
I	bladder carcinoma	+ Rapamycin	intravesical							

(Continued)
TABLE 2 Continued

TLR Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Results	Trial number	Reference
TLR3, TLR7/8	poly-ICIC; resiquimod	I/II	advanced tumor refractory to conventional treatment	+ vaccine	epidermal topical/ subcutaneous	safe, inducing both NY-ESO-1-specific humoral and cellular immunity in NY-ESO-1 expressing patients, disease stabilization or tumor regression observed	NCT00948961 (220)	
TLR3, TLR7	poly-ICLC; imiquimod	I	glioblastoma	+ autologous glioma lysate-pulsed DC	intradermal	safe, mesenchymal gene expression profile associated with responsiveness to immunotherapies	NCT00068510 (221)	
TLR4, 9	MPL, QS-21, CpG ODN	I/II	metastatic melanoma	+ vaccine + high-dose IL-2	intramuscular	25% response rate; similar toxicity to high-dose IL-2 therapy alone; increased infiltrating T cells in the untreated tumor relates with patient responsiveness	NCT01266663 (222)	

ACT, adoptive cell therapy; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; Autologous hematopoietic stem cell transplant (HSCT); CIN, Cervical intraepithelial neoplasia; CLL, Chronic lymphocytic lymphoma; DCIs, donor lymphocyte infusions; HSIL, High Grade Squamous Intraepithelial Lesion; ICB, immunocheckpoint blockade; IFA, incomplete Freund’s adjuvant; ISR, injection site reactions; NSCLC, non-small cell lung cancer; RFA, Radiofrequency ablation; RT, radiotherapy; SCCHN, squamous cell cancer of the head and neck; VIN, Vulvar Intraepithelial Neoplasias.

TABLE 3 Active and currently recruiting clinical trials incorporating TLR agonism.

TLR Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Status	Trial number	Reference
TLR2 XS15	1928T2z CAR-T cells	I	CLL ± multi-peptide vaccine + Ibrutinib	n.a.	recruiting	NCT04688385		
TLR3 Poly ICLC	Hiltonol	I	B-cell lymphoma	single use	intravenous	recruiting	NCT04049513	
TLR3 Poly ICLC	Hiltonol	II	brain tumors	+ vaccine	n.a.	active, not recruiting	NCT01204684	
TLR3 Poly ICLC	Hiltonol	I/II	melanoma	+ vaccine±Tetanus peptide ± IFA	intradermal/ subcutaneous	active, not recruiting	NCT02126579	
TLR3 Poly ICLC	Hiltonol	I/II	recurrent ovarian, fallopian tube, or primary peritoneal cancer	+ vaccine+ GauDecitabine + Atezolizumab	subcutaneous	active, not recruiting	NCT03206947	
TLR3 Poly ICLC	Hiltonol	I/II	B-cell Lymphoma	+ rhuFlt3L/CDX-301 + RT	intratumoral	active, not recruiting	NCT01976585	
TLR3 Poly ICLC	Hiltonol	I/II	melanoma	+ vaccine +aCD40 Ab	subcutaneous/ intradermal	active, not recruiting	NCT04364230	
TLR3 Poly ICLC	Hiltonol	I/II	metastatic colon cancer	+ Pembrolizumab	intramuscular	recruiting	NCT02834052	
TLR3 Poly ICLC	Hiltonol	I	multiple myeloma	+ vaccine+ Citarinostat ± Lenaldomide	n.a.	recruiting	NCT02886065	
TLR3 Poly ICLC	Hiltonol	I	breast carcinoma	+ vaccine + Durvalumab	intramuscular	active, not recruiting	NCT02826434	
TLR3 Poly ICLC	Hiltonol	I	breast carcinoma	+ vaccine + Pembrolizumab	n.a.	active, not recruiting	NCT03362060	

(Continued)
TLR	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Status	Trial number	Reference
1	glioma	+ a peptide vaccine ± aCD27 Ab	subcutaneous	active, not recruiting	NCT02924038				
1	glioma	+ a peptide vaccine	n.a.	active, not recruiting	NCT02960230				
1	glioma	+ vaccine + surgery	subcutaneous	active, not recruiting	NCT02549833				
1	lung cancer	+ vaccine	subcutaneous	active, not recruiting	NCT03300817				
I	prostate cancer	+ surgery	intramuscular	recruiting	NCT03262103				
I/II	recurrent platinum-sensitive ovarian cancer	+ Pembrolizumab + chemotherapy	intraperitoneal	recruiting	NCT03734692				
I/II	cancer patients with mild or moderate COVID-19 infection	+ IFN α-2b	recruiting	NCT04379518					
BO-112	melanoma	+ Pembrolizumab	intratumoral	active, not recruiting	NCT04570332				
TLR7	Imiquimod	R837, Aldara, UGN-201	III	anal intraepithelial neoplasia (HIV patients)	single use	topical	recruiting	NCT02059499	
III	basal cell carcinoma	+ curettage	topical	active, not recruiting	NCT02242929				
III	basal cell carcinoma at high risk (prevention study)	single use	topical	not yet recruiting	NCT05212246				
II	basal cell carcinoma	+ sonidegib ± surgery	topical	recruiting	NCT03534947				
II	CIN	single use/ + vaccine	topical	recruiting	NCT02864147				
II	CIN	+ vaccine + Lenalidomide	topical	recruiting	NCT02802943				
I	bladder cancer	+ surgery	intravesical	recruiting	NCT05055050				
I	recurrent bladder cancer	+ zalzefilimab	Intravesical	recruiting	NCT05375983				
I	CIN	+ chemotherapy	topical	active, not recruiting	NCT03196180				
I	oral cancer	single use	topical	recruiting	NCT04883645				
I	solid tumors	single use	topical	recruiting	NCT04116320				
I	solid tumors	+ ultrasound ablation ± Pembrolizumab/Atezolizumab	topical	recruiting	NCT03872947				
I	squamous cell carcinoma	+ chemotherapy	topical	recruiting	NCT03370406				
I	melanoma	+ vaccine + Toripalimab + GM-CSF	topical	recruiting	NCT04072900				
I	melanoma	+ Pembrolizumab	topical	active, not recruiting	NCT03276832				
I	recurrent glioblastoma	+ vaccine + hP1A8	topical	active, not recruiting	NCT04642937				
I	melanoma								

(Continued)
TLR name	Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Status	Trial number	Reference
SHR2150	glioma (Newly Diagnosed H3-mutated Glioma) + vaccine + Atezolizumab	I/II	metastatic solid tumor	oral	not yet recruiting	NCT04588324			
DSP-0509	neoplasms ± Pembrolizumab	I/II	± chemotherapy ± anti-PD-1 ab / anti-CD47 ab	intravenous	recruiting	NCT03416335			
BNT411	solid tumors ± chemotherapy ± Atezolizumab	I/II	± vaccine +	intravenous	recruiting	NCT04101357			
RO7119929	HCC, biliary tract cancer, secondary liver cancer ± Tocilizumab	I/II	oral	active, not recruiting	NCT04338685				
LHC165	solid Tumors ± PDE081	I	± PDE081	intratumoral	active, not recruiting	NCT03301896			
RNA-	melanoma patients single use	I	± PDE081	intravenous	active, not recruiting	NCT02410733 (116)			
Lipoplexes R848, S28463	Resiquimod II	I/II	brain tumors + vaccine	n.a	active, not recruiting	NCT01204684			
TransCon prodrug of resiquimod	melanoma + vaccines ± IFA	I/II	melanoma	intradermal/subcutaneous	active, not recruiting	NCT02124579			
BDC-1001	HER2 positive solid tumors + vaccine ± Pembrolizumab	I/II	solid tumors	intratumoral	n.a	recruiting	NCT04799054		
BDB001	HER2 positive solid tumors + vaccine ± Pembrolizumab	I	solid tumors single ± Pembrolizumab	n.a	active, not recruiting	NCT03486301			
BDB018	advanced solid tumor ± Pembrolizumab	I	solid tumors + Atezolizumab	n.a	active, not recruiting	NCT04196530			
TLR8	sbt-6050	I	HER2 positive solid tumors ± Pembrolizumab	n.a	active, not recruiting	NCT04840394			
TLR9	SD-101	II	prostate cancer + Pembrolizumab + radiation	intratumoral	recruiting	NCT03007322			
	lymphoma + Ibrutinib + RT	I/II	lymphoma	intratumoral	active, not recruiting	NCT02927964			
	pancreatic adenocarcinoma + Nivolumab + radiation	I	solid malignancies ± BMS 986178	intratumoral	active, not recruiting	NCT03410980			
	liver metastatic uveal melanoma + Nivolumab/ Ipilimumab	I	liver metastatic uveal melanoma pressure-enabled hepatic artery infusion/ intrahepatic	active, not recruiting	NCT04935229				

(Continued)
TLR Drug name	Other name	Phase	Indication	Therapeutic strategy	Route	Status	Trial number	Reference
Tilsotolimod IMO-2125		II	malignant melanoma	single use + Ipilimumab + Nivolumab	intradermal	recruiting	NCT04126876	NCT03865082
		II	solid tumors	intratumoral		active, not recruiting	NCT04270864	
		I	advanced solid malignancies	intratumoral		active, not recruiting		
CMP-001 Vidutolimod, ARB-1598, CMP-001, CYT-003		III	multiple types of tumors	+ Avelumab + Utomilumab + PF04518600	subcutaneous/intratumoral	recruiting	NCT04695977	
		II/III	melanoma	+ Nivolumab	intratumoral	active, not recruiting	NCT04916082	
		II	advanced cancer	+ Avelumab + Utomilumab + PF-04518600	n.a	active, not recruiting	NCT04401995	
		II	melanoma	+ Nivolumab	subcutaneous/intratumoral	recruiting	NCT04708418	
		II	melanoma	+ surgery + Pembrolizumab	subcutaneous	recruiting	NCT04633278	
		II	squamous cell carcinoma of head and neck	+ Pembrolizumab	subcutaneous/intratumoral	active, not recruiting	NCT0468187	
		II	melanoma	+ Nivolumab	intratumoral	active, not recruiting	NCT04387071	
		II	multiple tumor types	+ Cemiplimab-rwc	subcutaneous/intratumoral	recruiting	NCT04916082	
		II	Triple Negative Breast Cancer	+ RT	subcutaneous	recruiting	NCT04807192	
		II	melanoma, lymphnode cancer	+ Nivolumab	intratumoral	active, not recruiting	NCT03618641	
		I/II	advanced pancreatic cancer and other solid tumors	+ Ipilimumab	subcutaneous/intratumoral	recruiting	NCT03507699	
		I	lymphoma	+ Pembrolizumab	intratumoral	recruiting	NCT02452697	
		I	colorectal neoplasms malignant, liver metastases	+ Nivolumab+ Ipilimumab ± RT	subcutaneous/intratumoral	Active, not recruiting	NCT02668770	
		I	melanoma	+ Pembrolizumab	intratumoral	recruiting	NCT0280184	
DUK-CPG-001	Lefitolimod MGN1703	II	myeloid malignancies, lymphoid malignancies	+ NK cell enriched DCIs	intravenous	recruiting	NCT03983668	
		I	advanced cancers, melanoma	+ Ipilimumab	subcutaneous	active, not recruiting	NCT03519256	
TLR2, 4, 9 BCG Bacille Calmette-Guérin, Mycobacterium bovis		III	bladder carcinoma	single use	intravesical/intradermal	active, not recruiting	NCT03091660	
		II	bladder carcinoma	+ Nivolumab ± BMS-986205	intravesical	active, not recruiting	NCT03022825	
		II	bladder carcinoma		intravesical	recruiting		

(Continued)
TLR expression varies among distinctive species. For example, in humans, TLR9 is primarily expressed in B cells, whereas in mice, it can be found in B cells, monocytes, macrophages, and plasmacytid DCs (pDCs) (246). Thus, cross-species interpretation of TLR research data should be carried out with caution.

Cell differentiation and activation status can also influence TLR expression. The differentiated human mononuclear cell line THP-1 expresses increased TLR1, 4, 6, 7, 8, and MyD88 compared to undifferentiated THP-1 cells (33). E. coli-stimulated monocytes and granulocytes present different expression profiles of TLR1-10 (237). Phorbol myristate acetate/ionomycin-activated cytotoxic T cells (CTLs) showed increased TLR2 expression compared to unstimulated CTLs (247).

Ligands are another major factor affecting TLR expression. A specific TLR agonist may influence the expression of the TLR that it is ligating to and other TLRs as well. For example, the TLR4 agonist LPS elevated TLR1-8 expression in THP-1 cells, that it is ligating to and other TLRs as well. For example, the unstimulated CTLs (247).

Cytokines are also engaged in the regulation of TLR expression. Many cytokines have been reported to increase TLRs expression level, including IL-6 and IFN-γ (237).

TLR activation can initiate negative feedback on TLR expression (237), and there is also internal balance among different expression of different TLRs (250, 251).

The factors discussed above indicate a complex network regulating TLR expression. This results in varied spectrums of TLR expression in respective cell groups and varied TLR-mediated responses, contributing to the heterogeneity of neoplasia, while also providing the basis for understanding the evidence for both anti-tumor and pro-tumor TLR-mediated activities. TLRs expressing in cancer cells could lead to tumor cell proliferation and induce cytokines that suppress immune activities; TLRs expressing on immune cells, however, could elicit Th1-based immunity, immune memory, and suppress tumor metastasis (252). The TLR expression in different tumor tissues is associated with patients’ outcome. Urban-Wojciuk et al. (252) have reviewed the association. In their review, the same TLR expressing in different types of cancers, could show opposite clinical correlations. TLR5, 7, 8, and 9 correlate with better clinical outcomes (high immune cell marker expression and/or longer survival), while TLR4, 7, and 9 are associated with poorer outcomes (advanced tumor stage, poor differentiation, and shorter survival) (252).

Recent advances of TLR-targeted tumor therapies

TLR-targeted therapies exert anti-tumor effects mainly by exploiting the potential of TLRs in the enhancement of both innate and adaptive immunity, and the induction of apoptosis in TLR-expressing tumor cells (41).

In this section, we introduce advances in pre-clinical (mainly from the past decade) as well as clinical research in tumor therapies targeting TLR. The TLR-targeting strategies and treatment modalities applied in both pre-clinical and clinical tumor therapeutic studies are summarized in Figure 2.
Pre-clinically, classic TLR agonists are being further explored in novel treatment strategies, and newly synthesized or naturally extracted TLR-stimulating agents are reported for improved immune activation ability and lowered toxicity; novel strategies of TLR agonism, aside from TLR agonists, have also been investigated (Table 1).

There have been many clinical trials completed involving TLRs, and some with promising results (Table 2). The ongoing
clinical trials are continuously pushing the boundary of TLR-targeted therapy from bench to bedside (Table 3). Recent advances in clinical trials focusing on therapeutic interventions of tumors were summarized from critically reviewing clinicaltrials.gov and ncbi.nlm.nih.gov/pubmed.

TLR 2

In tumors, TLR2 has been found to enhance T cell immunity (253, 254) and suppress the accumulation of immunosuppressive T regulatory cells (Tregs) (62) and MDSCs (255). TLR2 also induces the anti-tumor M1-like macrophage polarization (66). The immune stimulating potential of TLR2 has been utilized in both basic and clinical therapeutic research.

Recently, there has been pre-clinical data (Table 1) demonstrating tumor inhibition effects by different TLR2Ls, including triacylated lipopeptides, synthetic chemical compounds, glucomannan polysaccharide, naturally extracted compound, and inactivated virus. In those studies, TLR2Ls are either investigated alone or in combination with tumor vaccines, immune checkpoint inhibition (ICB), chemotherapy, photodynamic therapy (PDT), or adoptive cell transfusion (ACT). In general, enhanced immune activation and suppressed tumor cell viability were observed in these studies (Table 1).

The number of clinical trials with sole TLR2 agonism in tumor immunotherapy is limited. It is noteworthy that Amplivant, the modified Pam3CSK4, can conjugate synthetic long peptides (SLPs) and elicit stronger DC and T cell stimulation in preclinical models compared to Pam3CSK4 (63). In 2021 the first-in-human phase I clinical trial NCT02821494 showed HPV16 E6 SLP-conjugated Amplivant induced robust HPV16-specific T cell immunity with good safety profile (187). XS15 is a TLR1/2 agonist, applied as an adjuvant to a multi-peptide vaccine scheme is in currently active phase I trial NCT04688385 (256).

TLR2 agonism has been applied in chimeric antigen receptor T cell (CAR-T) technology. In trial NCT02822326, a TLR2 Toll/IL-1 domain is incorporated in CAR-T, and the results showed that the tumor-targeting CD19-CAR-T2 cells augmented anti-leukemia responses in relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) patients with extramedullary involvement, competent in the eradication of extramedullary leukemia cells (257). Another similar phase I trial NCT04049513 is currently investigating the efficacy of 1928T2z CAR-T cells in treating B cell lymphoma.

In general, the Amplivant-SLP compounds are promising for further research for their early clinical data in terms of safety and efficacy of immune stimulation. Also, they have a great potential in treating different tumors as SLPs can be highly variable. Clinical trials with multi-TLR activation, including TLR2, are discussed in the below sections.

TLR 3

TLR3 actively regulates multiple aspects of tumor development. Either directly or indirectly, TLR3 triggers both innate and adaptive immune responses (258, 259); it suppresses tumor cell proliferation and promotes tumor cell apoptosis (260–262); it regulates tumor angiogenesis (263); it has also been found to enhance chemosensitivity (70) and radiosensitivity (264). By initiating these mechanisms, TLR3 agonists have shown promising therapeutic value.

In recent years, pre-clinical investigations of TLR3-targeted therapy (Table 1) have focused on combination therapy of TLR3 agonism with other treatment modalities, including chemotherapy, tumor vaccines, and ICB. There have also been studies examining nanoparticle incorporated TLR3 targeted therapies. Poly (I:C) has been used in most studies as the TLR3-targeting agent, while ARNAX, a new DNA-capped dsRNA, has also been applied. These treatment strategies aim to improve immune stimulation and reduce treatment side effects, thus achieving better therapeutic results.

Three TLR3 agonists, Poly ICLC (Hiltonol), Rintatolimod (Ampligen), and BO-112 have progressed for assessment in clinical trials (Tables 2 and 3) as cancer treatments. Poly ICLC is mostly used in combination with traditional therapies (surgery, chemotherapy, or radiotherapy), immunotherapies (tumor vaccine, immune co-stimulation, or ICB), or other synthesized anti-tumor agents. Most of the trials are active or undergoing recruitment. One completed phase II trial (NCT02423863) aiming at multiple solid tumors applied Poly ICLC intratumorally (i.t.) or intramuscularly (i.m.), or subcutaneously (s.c.) in cancer treatments of different malignant stages, including primary, recurrent, and metastatic. The various types of cancer involved range from hematopoietic malignancies, skin cancers, sarcoma, squamous cell carcinomas, breast cancer, neurological malignancies, gastroenterological tumors, female reproductive tract malignancies, and urinary tumors (Tables 2 and 3). In these cancer treatments, Poly ICLC is mostly used in combination with traditional therapies (surgery, chemotherapy, or radiotherapy), immunotherapies (tumor vaccine, immune co-stimulation, or ICB), or other synthesized anti-tumor agents. Most of the trials are active or undergoing recruitment. One completed phase II trial (NCT01079741) has also been completed with available results: in phase I/II trial NCT01079741, poly ICLC was combined with NY-ESO-1 protein vaccine and Montanide to treat melanoma, effectively activating humoral and T cell immunity in patients. In phase I trial NCT01585350, poly ICLC together with peptide vaccine and incomplete Freund’s adjuvant (IFA) markedly enhanced T cell responses (190). Phase I trial NCT01834248 also combined poly ICLC with NY-ESO-1 vaccine and Decitabine in treating myelodysplastic syndrome, which showed success in the induction of NY-ESO-1-specific
TLR 4

In tumor studies, TLR4 has been reported to enhance the function of antigen-presenting cells (APCs) (267), increase the production of pro-inflammatory cytokines as well as IFNs (268–270), and boost cytotoxic responses of CTLs and NK cells (267, 271). These immune stimulating mechanisms can be initiated by TLR4 agonists in cancer treatment.

Recently, lipopolysaccharide, lipid A derivatives, polysaccharides, and protein TLR4 agonists were investigated in therapeutic studies (Table 1). These TLR4 agonists have been mostly used in combination with tumor vaccines, including DNA-, peptide- and DC-based vaccines; they have also been used in combination with radiotherapy and different kinds of immune-stimulating agents. Notably, many TLR4 agonists are engineered into nanoparticles, which have improved drug delivery efficiency and reduced off-target effects (88–91).

Several TLR4 agonists have completed clinical studies (Table 2), including LPS, GLA-SE(G100), IDC-G305, GSK1795091 (CRX-601), and the TriMix DC vaccine.

The completed phase I trial NCT01585350, investigated LPS in combination with a peptide vaccine and incomplete Freund’s adjuvant (IFA) to treat melanoma, which showed that this treatment was well tolerated and stimulated marked T cell responses (190).

GLA-SE is a glucopyranosyl lipid A-stable oil-in-water emulsion, tested in lymphoma, skin cancers, sarcoma, lung cancer, and colorectal cancer, either applied alone or in combination with surgery, chemotherapy, radiotherapy, ICB, or a tumor vaccine. In these trials, GLA-SE is administered i.t. or i.m. A phase I trial NCT02035657 applying GLA-SE in treatment against Merkel cell carcinoma has been completed. Treatment withintratumoral GLA-SE as an adjuvant to surgery and radiotherapy demonstrated safety and feasibility in Merkel cell carcinoma with increased intratumoral infiltration of CD8+ and CD4+ T cells, activation of immune-related genes, and local tumor regression (193).

IDC-G305 is a combination of NY-ESO-1 recombinant protein and GLA-SE, that has been tested in melanoma, ovarian cancer, renal cell cancer, and non-small cell lung cancer(NSCLC) (NCT02015416). This phase I trial showed that intramuscular administration of IDC-G305 was well-tolerated and can generate antigen-specific immunity (195). On the contrary, another two phase I trials NCT02387125 and NCT02609984, where NY-ESO-1 recombinant protein-GLA-SE was used with a DC-targeting tumor vaccine in treating solid tumors including sarcoma, melanoma, NSCLC, and ovarian cancer, were terminated because of lack of efficacy.

GSK1795091, a synthetic aminoalkyl glucosaminide 4-phosphate, in conjunction with anti-PD-1 pembrolizumab was investigated in advanced solid tumor treatment in trial NCT03447314; the results of this trial are yet to come.

TriMix DCs are autologous DCs incorporating mRNA encoding, CD40 ligand, CD70, and a constitutively active TLR4. The phase I/II trial NCT01358719 showed TriMix DCs, further electroporated with a tumor antigen encoding mRNA, administered intranodally, was safe but with only narrow immunological and clinical response.

In general, recent clinical trials using TLR4 agonists did show clinical or immune stimulating efficacy in solid tumor treatment. However, there are contradictory results about the same agent in different studies.
different trials. For those agents that showed promising results in early phase trials, future studies should pay attention to the optimal treatment conditions, including the therapy combination strategy and the route of administration.

TLR 5

TLR5 can be activated by bacterial flagellin and plays a key role in the immune homeostasis of pathogen-host interactions (272, 273). In addition, TLR5 is associated with decreased tumor cell proliferation, invasion, and metastasis (274, 275). Several drugs targeting TLR5 are under investigation.

Recently, protein-based TLR5 agonists have been investigated pre-clinically: in combination with a tumor vaccine (96), incorporated into the adoptive cell therapy (97), or used alone (98). All yielded enhanced therapeutic effects (Table 1).

Entolimod and Mobilan are administered in two phase I trials (Table 2). Entolimod, namely, CBLB502 is a derivative of Salmonella flagellin. In trial NCT01527136, i.m. or s.c. administration of Entolimod was used to treat locally advanced or metastatic solid tumors that cannot be removed by surgery. Results of this trial are yet to be available. While having the advantage of avoiding the dangerous inflammatory “cytokine storm” (276), Entolimod has a drawback that it can induce a rapid antibody neutralization (277), leading to its efficacy limitation. Pharmacological modification could be one solution to this problem. Mett et al. (277) identified and eliminated the epitopes leading to Entolimod’s neutralizing immunogenicity and refined its structure to get GP532 as a new TLR5 agonist. GP532 reduced neutralizing antibody response while preserving pro-inflammatory capacity. However, the anti-tumor potential of GP532 has not been verified in any therapeutic studies yet.

To extend the application of TLR5 agonism in TLR5 negative tumors, an adeno virus carrying TLR5 receptor and its agonist’s gene called Mobilan (M-VM3) was designed (276). In preclinical prostate cancer models, Mobilan displayed promising therapeutic efficacy (276). In phase I clinical trial NCT02654938, Mobilan was used intratumorally to treat prostate cancer; no results are available yet. A similar study showed Mobilan was well-tolerated in prostate cancer patients (278); however, more data is needed to verify its clinical benefit.

TLR 7 and TLR 8

TLR 7 and 8 serve as important sentinels in response to infection, which makes them irreplaceable in the activation of mammalian innate immune cells (279). These two receptors have also been found to participate in the regulation of the host adaptive immunity (280–283). The emergence of novel small molecular agents targeting these two receptors in the last decade has greatly facilitated cancer immunotherapy studies by adopting their immune activation potential.

Since many agonists exert dual activation to both TLR7 and TLR8, we will summarize TLR7 and TLR8 agonists together in one section.

Following pre-clinical investigations TLR7 or TLR7/8 agonists can be classified by molecular nature into imidazoquinoline and its derivatives, novel synthetic small molecules, and RNA-based agents (Table 1). These agonists are studied either with traditional therapies, such as chemotherapy, radiotherapy, surgery, or novel therapies, such as tumor vaccines, immune checkpoint blockade, adoptive cell therapy, and photothermal therapy (Table 1). It is noteworthy that nanotechnology has become a hot research topic in the drug delivery of therapies applying TLR7/8 agonists. TLR7/8 agonists are incorporated into multi-functional nanoparticles that overcome drug solubility limitations (120, 122) or improve tumor-specific environment-targeting ability (115, 124, 125), thus improving drug delivery efficiency.

A number of TLR7 agonists that have undergone clinical investigation include imiquimod, TMX-101, RNA-LPX, BNT411, DSP-0509, LHC165, SHR2150, TQ-A3334, and RO7119929 (Tables 2 and 3).

Imiquimod has already been clinically applied in the treatment for genital warts (284), low-risk superficial basal cell carcinoma (285), and Bowen’s disease (cutaneous squamous cell carcinoma in situ) (286). In clinical trials initiated in the decade, Imiquimod has been utilized in a wide range of clinical trials targeting different tumor types. There are studies attempting to widen the utilization of Imiquimod based on the current standard of care.

Many clinical studies of Imiquimod focus on Skin cancer. In basal cell carcinoma, a phase III trial (NCT05212246) is going to use Imiquimod as a single treatment in high risk populations to prevent tumor occurrence; imiquimod is also applied in two active trials in combination with curettage (NCT02242929, phase III), and sonidegib together with surgery (NCT03534947, phase II) to treat basal cell carcinoma. In an active phase I trial (NCT03370406), Imiquimod together with 5-fluorouracil is applied to treat squamous cell carcinoma. Two active phase I trial are investigating melanoma, where Imiquimod is combined with either Pembrolizumab (NCT03276832) or tumor vaccine (NCT04072900). A completed phase III trial NCT02385188 found imiquimod together with paracetamol and lidocaine induced 82.6% response rate in vulvar Paget disease but 80% of patients needed painkiller to mitigate side effects (197).

Imiquimod is also studied in intraepithelial neoplasia. In grade 2/3 cervical intraepithelial neoplasia (CIN), a phase II/III trial (NCT02130323) showed that Imiquimod induced lower HPV clearance rate compared to large loop excision (43% vs 64%), which made conization remain the standard care when intervention is needed (199). However, trial NCT03233412
showed that when adjuvant to the loop excision procedure, weekly application of imiquimod can promote regression of high-grade squamous intraepithelial lesions (200). Two active trials are investigating Imiquimod combining HPV vaccine (phase II, NCT02864147) or topical Fluorouracil (phase I, NCT03196180) in treating CIN2/3. In vaginal intraepithelial neoplasia (VIN), the results of the phase III trial NCT01861535 demonstrated that Imiquimod is safe and effective in treating VIN and should be considered as a first-line treatment alternative to surgery (198). In the active phase III trial NCT02059499, single use of Imiquimod is applied in HIV patients who have an anal intraepithelial neoplasia.

In glioma, results of phase I trial NCT02454634 recently published in *Nature* (202) showed that topical Imiquimod combined with IDH1 peptide vaccine induced 93.3% immune responses in IDH1R132H-mutated patients while adverse effects are within grade I. The immune responses induced by the treatment were represented by enhanced IL-17 production and increased IDH1-specific T cells (202). Trial NCT00899574 focused on breast carcinoma; the results showed that single topical use of imiquimod proved beneficial for breast cancer metastasis to skin/chest wall and has been well-tolerated; additionally, this trial proved that imiquimod could induced a pro-immunogenic TME (201). There are also completed phase I/II trials using Imiquimod with radiotherapy, chemotherapy or tumor vaccine to treat breast cancer (NCT01421017, NCT02276300).

In prostate cancer, Imiquimod is applied topically with different tumor vaccines (NCT02293707, NCT02234921). The phase II trial NCT02293707 showed the combination of Imiquimod, telomerase peptide-based vaccine, and Montanide ISA-51 VG was safe in prostate cancer patients. The number of treatments was positively associated with immunological response (204). Bladder cancer is another type of malignancy where Imiquimod displayed its therapeutic potential. TMX-101 is the intravesical formulation for Imiquimod; single use of TMX-101 induced significant increase in urinary cytokines, including IL-6, IL-18, IL-1β, IL-1 receptor antagonist (IL-1ra), and vascular endothelial growth factor (VEGF), in non-muscle invasive bladder cancer, despite accompanied with mild adverse effects (phase II, NCT01731652) (205).

In general, Imiquimod showed its potential in cancer treatment, and also an increasing number of active trials using it has been initiated.

A trial with RNA-LPX (NCT02410733) showed early results with effective quick induction of IFNα and IFN-α, and the induction of *de novo* antigen-specific T-cell responses. In this study, i.v. administration of RNA-LPX proved to be well-tolerated (116). SHR2150 and RT7119929 are oral TLR7 agonists, currently in trials in combination with other therapies in metastatic solid tumors (SHR2150, NCT04588324), and liver/biliary tract cancer (RO7119929, NCT04338685). BNT411 and DSP-0509 are synthetic small molecular TLR7 agonists administered i.v. that are being investigated in multiple types of tumors. LHC165 is a benzonaphthyridine TLR7 agonist, which has been used in combination with anti-PD-1 (PDR001) to treat solid tumors.

TLR8 agonist VTX-2337, also known as Motolimod, has been tested in ovarian cancer and squamous cell cancer patients combined with chemotherapy, ICB, or small molecular inhibitors; in most studies, Motolimod was applied subcutaneously. Four studies have since completed with published results. In the first trial, a phase I trial (NCT01294293) with different histological subtypes of ovarian cancer, Motolimod was combined with doxorubicin, showing 15% patients with a complete response and 53% with stable disease (210). A similar phase II trial (NCT01666444), however, showed that the supplement of Motolimod to doxorubicin did not improve clinical outcomes in patients with recurrent or persistent epithelial ovarian, fallopian tube or primary peritoneal cancer, compared with placebo (207). Motolimod was demonstrated to augment clinical responses in patients with HNSCC of advanced stages, who have also been treated with the epidermal growth factor receptor inhibitor cetuximab (phase I trial NCT01341177) (209). However, in a trial of recurrent or metastatic SCCHN patients, the addition of Motolimod to platinum-based chemotherapy and cetuximab did not improve progression free survival (PFS) or OS; nevertheless, remarkable benefit was presented in HPV-positive patients and those with injection site reaction, suggesting the application potential of Motolimod in subset- and biomarker-selected patients (phase II trial NCT01836029) (287). Recently, a strong TLR8 agonist, combined with a HER2 monoclonal antibody was designed (sbt-6050), aiming to activate myeloid cells with the presence of HER2 positive tumor cells, and it is under investigation now in HER2 positive solid tumors with pembrolizumab (NCT04460456).

In terms of dual TLR7/8 agonists, Resiquimod, TransCon, 852A, BDB001, BDB018, NKTR-262, and BDC-1001 have undergone clinical investigation. Resiquimod has been examined by topical use in melanoma and brain tumors in combination treatment with a tumor vaccine and/or other adjuvants, however the addition of Resiquimod to NY-ESO-1 protein vaccine and IFA failed to elicit steady antigen-specific CD8+ T cell response (NCT00821652) (206). TransCon is a type of Resiquimod prodrug, now under investigation in combination with pembrolizumab in solid tumors (NCT04799054). 852A is also an imidazoquinoline TLR7/8 agonist, which has previously been tested in multiple tumors types (including renal cell carcinoma, melanoma, lung cancer, hematologic malignancies, breast cancer, ovarian cancer, and cervical cancer), showing acceptable tolerability, evident immune stimulation, and clinical benefit in some patients (288–291). The i.v. administered TLR7/8 agonist BDB001 and its refined analog BDB018 (designed to enhance immune stimulation while preserving the safety profile of BDB001) are both investigated in solid tumor treatment (NCT03486301, NCT04196530, NCT04840394). BDC-1001 is an immune stimulating antibody conjugate of an anti-HER2 monoclonal antibody with a TLF7/8 dual agonist, currently...
recruiting a trial enrolling patients with HER2 positive solid tumors (NCT04278144).

In summary, TLR7/8 agonists have drawn most research attention among other TLR ligands; despite that preclinical data indicate promising prospects, none of the TLR7/8 agonists has gained regulatory approval to treat cancer in human except Imiquimod. Future study could focus on optimizing delivery routes, administration schedule, and the vaccine itself (where vaccines are applied) (292).

TLR 9

TLR9 is preferentially expressed on the endosomal membrane of B cells and plasmacytoid dendritic cells (pDCs), and its primary ligand is unmethylated cytidine phosphoguanosine (CpG) oligonucleotides (ODNs) (293). TLR9 activation can lead to potent activation of innate (133, 294, 295) and adaptive immunity (both cell and humoral immunity) (133).

TLR9 agonists previously evaluated in pre-clinical studies are all DNA-based agents containing non-methylated CpG motifs (Table 1). Most of these agonists are CpG ODNs, while some have more complex DNA structures designed for better protection from drug degradation and enhanced TLR9 stimulation capacity (164–166). The therapeutic enhancing effect of TLR9 agonists has been studied with chemotherapy, photodynamic therapy, radiofrequency ablation, vaccines, ICB, and other immune stimulatory agents. (Table 1) Interestingly, in two studies (139, 140) the CpG motif has been used as myeloid cell targeting sequence, incorporated into decoy ODNs that contain STAT3-specific sequence, which can inhibit STAT3 transcription. Both studies showed the decoy ODNs effectively suppressed tumors in animal models of hematological malignancies. Similar to TLR7/8 agonists, many studies have also looked into the design of nanoparticles for TLR9 agonist drug delivery. These versatile nanoparticles have improved the ability for TME-targeting (159), specific cell-targeting (148, 150, 163), and even sub-cellular compartment-targeting (147); they have also protected against drug degradation (152, 156), plus, some conjugated to drug tracers to monitor drug tracking after administration in vivo (152, 155).

Currently the most clinically investigated TLR9 agonists (Tables 2, 3) are SD-101, CMP-001, IMO-2125. SD-101 is a class C CpG oligonucleotide, applied intratumorally in trials for advanced (metastatic, refractory, or recurrent) malignancies such as pancreatic adenocarcinoma, prostate cancer, liver metastatic uveal melanoma, and multiple lymphoma subtypes. In these early phase trials, SD-101 will be administrated in combination with ICB, radiotherapy, small molecular inhibitors, or an anti-OX40 antibody.

Two phase I/II trials applying SD-101 in combination with radiotherapy and immunotherapy in treating lymphoma and other solid tumors just completed, and the results are not yet available. CMP-001, also named as Vidutolimod, is a short DNA piece packaged in protein, mimicking the virus structure. It has been administrated subcutaneously or intratumorally with ICB, an OX40 agonist, an IgG2 agonist, surgery, and radiotherapy in multiple types of primary and metastatic solid tumors. The completed phase I trial NCT03084640 is completed, which combined Pembrolizumab with CMP-001, and compared the safety together with response rates of CMP-001 administered in different routes in intreating melanoma. Another completed phase I trial NCT03438318 combined CMP-001 with Atezolizumab and radiotherapy to treat NSCLC. In both of the above trials, CMP-001 elicited antitumor-related transcriptional signatures (2022 AACR Abstract #: LB107); more results from trial on CMP-001 are yet to be published. IMO-2125, also known as Tilisotolimod, a synthetic phosphorothioate oligodeoxynucleotides, has shown a good safety profile with effective activation of dendritic cells, induction of type I IFN signaling, and up-regulation of multiple immune checkpoint pathways in a phase I trial (NCT03052205) (213), where IMO-2125 was used as a monotherapy administered intratumorally in refractory solid tumors. However, a phase III trial (NCT03445533), where IMO-2125 and Ipilimumab were combined for treating melanoma, was terminated for lack of efficacy. Other phase I to II trials with intratumor administration of IMO-2125 are actively recruiting, either alone or with the combination of ICB in solid tumors (Table 3).

MGN1703 (Lefilotelimod) is a DNA-based molecular alternative to a CpG-ODN, administrated subcutaneously in trials and currently under investigation in combination with anti-CTLA4 in advanced cancers (NCT02668770). In trial NCT02200081, MGN1703 was used with platinum-based chemotherapy in advanced stage small-cell lung cancer where it was well tolerated but showed no impact on the main efficacy of treatment and overall survival of patients (214). DUK-CPG-001 a CpG-based TLR9 agonist is being evaluated in the treatment of myeloid and lymphoid malignancies combined with donor lymphocyte infusion enriched with NK cells in a phase II trial (NCT02452697).

Other TLR9 agonists, all CpG-based, have been assessed in clinical trials, with results available. Inhaled DV281 was tested with anti-PD-1 in advanced NSCLC, with no results publicly available yet (NCT03326752). CpG-MCL vaccine, combining CpG7909 and autologous mantle cell lymphoma-derived tumor cells, was studied to treat mantle cell lymphoma in combination with immunochemotherapy and an autologous hematopoietic stem cell transplant (NCT00490529). The trial showed moderate response to the vaccine among patients (40% developed anti-tumor CD8 T cell response, associated with favorable clinical outcomes), good treatment efficacy (89% were minimal residual disease negative), and a good safety profile (211). CpG7910 was applied in combination with local radiotherapy to treat recurrent low-grade lymphoma in a phase I/II trial (NCT00185965), where local administration of this agent systemically induced tumor-
reactive memory CD8+ T cells. This regimen showed clinical feasibility (212). EMD 1201081 combined with EGFR inhibitor, however, showed no improvement to the clinical efficacy of HNSCC treatment (215).

In summary, despite that there are trials showing the immunogenicity and good tolerability of CpG-based agents, low translational rate remains an issue. This may due to the difference in TLR9 expression in animal models and humans (296). Pre-clinical models of human origins are necessary, such as primary tumor organoids. Also, one safety concern is that CpG motifs are potential to induce autoreactivity (297). There need to be trials with larger sample sizes, longer follow-up durations, and stratified patient subgroups to verify the safety and the suitable patient groups that can benefit from CpG ODN adjuvanted therapies.

Multi-TLR

In addition to single TLR activation, multi-TLR agonism is also under both pre-clinical and clinical investigation for many cancers. Multi-TLR agonism can be realized by a single agent or by a combination of several TLR agonists.

Preclinically, the most studied treatment modality with multi-TLR activation is with tumor vaccines (Table 1). There is also a trend of applying nanotechnology in drug delivery in multi-TLR stimulating treatments for improved APC-targeting (173, 179) and drug tracing (170).

In clinical trials, Bacillus Calmette-Gue (BCG), an attenuated live Mycobacterium bovis, is the most studied multi-TLR agonist. It can activate TLR2, TLR4, and TLR9 (298); it was originally applied as a vaccine against tuberculosis and later broadened its application as an adjuvant in the standard care of a part of bladder cancer patients (298). Currently, BCG is still investigated in bladder carcinoma patients in combination with other drug treatments, including an anti-PD-1/PD-L1 antibody, small molecule inhibitors, and a neutralizing encoding gene vaccine. A completed trial NCT02753309 combined ramapycin with BCG in bladder cancer treatment, which showed good tolerability in high-grade non-muscle invasive bladder cancer patients and induction of antigen-specific γδ T cell response as well as urinary cytokine production (219). BCG has also been assessed for the treatment of upper or lower urinary tract carcinoma. In treating urinary tract urothelial carcinoma, the trial NCT00794950 investigated combination therapy of BCG and sunitinib, a novel anti-angiogenesis drug. This trial has since been completed, and results showed the combination treatment was associated with a lower rate of progression and recurrence with an acceptable safety profile (218). Besides malignancies in the urinary system, BCG combined with chemotherapy, radiofrequency ablation, and GM-CSF have been evaluated in the treatment of liver metastatic colorectal cancer (NCT04062721).

OM-174 is a lipid A analog, which activates both TLR2 and TLR4. In a phase I trial (NCT01800812) with solid tumor patients, OM-174 as a monotherapy was well tolerated and proved to be effective for the induction of IL-8, IL-10, TNF-α, and IL-6 (despite that TNF-α and IL-6 decreased progressively in repeated treatment). Progressively increased NK cells and NK cell activity were observed in patients who received the highest dose, 1000 μg/m² (217). AS-15 is an adjuvant system, comprised of a TLR4 agonism system (MPL and QS-21) and a TLR9 agonist (CpG 7909) in a liposomal formulation. In the completed phase II trial NCT01266603, AS-15 was combined with the MAGE-A3 tumor antigen and high dose IL-2 to treat metastatic melanoma. This treatment achieved 25% response rate, which was associated with increased infiltrating T cells in the primary tumor tissue (222).

TLR3 agonist poly-ICIC and TLR7/8 agonist Resiquimod have been combined with tumor vaccines in the treatment of melanoma (NCT0216579) and advanced tumors refractory to conventional treatment (NCT00948961). In the completed trial NCT00948961, poly-ICIC and/or Resiquimod combined with NY-ESO-1-targeting DC cell vaccine. The combination therapy induced NY-ESO-1-specific IgG titers in 79% patients and NY-ESO-1-specific T cell responses in 56% patients, leading to disease stabilization and tumor regression in 15/70 patients (220).

A phase I trial NCT00068510, where poly-ICLC or imiquimod used in conjunction with an autologous tumor-pulsed DC vaccine, has reported that this regimen was safe and effective in prolonging survival for glioblastoma patients (221).

TLR antagonists

Considering the versatility of TLRs in cancer, some of which can promote tumor growth, there is also rationale for exploring TLR antagonists as a cancer therapy.

In several types of cancers arising from the digestive system, pre-clinical studies have demonstrated the therapeutic potential of TLR antagonists. OPN-301, an inhibitory anti-TLR2 antibody, suppressed tumor initiation and growth in a gastric animal model, which was associated with gene suppression of CXCL2 and TNF-α (183). Another two studies reported that IRS-954, an inhibitory DNA sequence against TLR7 and 9, and chloroquine, which inhibits TLR7 and 9 activation, significantly impeded tumor development and growth in vivo and in vitro in liver cancer (184) and cholangiocarcinoma models (185).

A subset of diffuse large B cell lymphoma patients carry the MyD88 L265P mutation, associated with overactivation of the TLR7/9/MyD88 pathway (186). A TLR7/8/9 antagonist IMO-8400 was previously used in this subset of lymphoma patients in a completed clinical trial NCT02252146, which, showed limited therapeutic efficacy. Similarly, trial NCT02099209, studying IMO-8400 in treating Waldenstrom’s macroglobulinemia, also showed insufficient efficacy of IMO-8400, and hence it was terminated.
Recently, another synthesized ODN-based TLR7/9 antagonist HJ901 was shown to significantly inhibit tumor cell proliferation and tumor growth in cell lines or animal models carrying the MyD88 L265P mutation (186). However, these data warrant further investigation before it can be translated to the establishment of an early phase trial.

There are obviously fewer published studies on anti-cancer TLR antagonists, which generally showed less efficacy than TLR agonists.

TLR-targeted therapy: Challenges and future perspectives

Simultaneous activation of anti-/pro-tumor mechanisms

As TLRs regulate a wide range of functions, initiating signaling pathways that may lead to both anti-tumor and pro-tumor effects, there is a concern regarding whether the application of TLR agonists will promote tumor growth or whether the anti-tumor effect will be counteracted by the pro-tumor effect they simultaneously initiated. For example, Theodoraki and colleagues have found that TLR3 agonists stimulate the TLR3-TRAF3/IRF3 pathway, which leads to the production of CTL attractants and activate MAVS/helicase pathway, which elicits Treg chemotaxis (299).

Two directions may be feasible for further investigation into this challenge. On one hand, choosing the agonist that specifically activates the anti-tumor pathways but leaves no effect on the pro-tumor pathway could help (Figure 3). Theodoraki et al. (299) further discovered the difference of pathway stimulation potential in different TLR3 agonists: dsRNA Sendai Virus, Poly (I:C), and Rintatolimod. Rintatolimod can activate the TLR3 pathway only, resulting in the induction of CTL attracting cytokines IFNα, ISG-60, and CXCL10, and avoid the initiation of MAVS/helicase pathway, which then prevents Treg accumulation. In the future, more focus to elucidate how drug conformation of TLR-targeting agents influences downstream signaling is necessary, which can then guide future drug synthesis or discovery.

On the other hand, combination therapy is of utmost significance in TLR-targeted therapy. Combined therapies can enhance therapeutic effects in many cases and potentially diminish the pro-tumor impact elicited by TLR agonists. Feng et al. (300) discovered that poly (I:C) could inhibit HCC cell proliferation and lead to cell apoptosis while promoting cell migration and invasion at the same time. When combined with the toad venom constituent bufalin, cell migration and invasion were inhibited, whereas cell apoptosis and suppressed proliferation.

FIGURE 3

Challenges and Future Perspective of TLR-targeting tumor therapies Due to the versatile nature of TLRs, simultaneous activation of both anti-tumor and pro-tumor effects can arise; future work may involve combination therapy and further exploration of the association between ligand conformation and specific pathway activation as well as the development of pathway-specific drugs. To resolve the inefficacy and toxicity of TLR-targeting drugs, identifying an appropriate patient population is of great significance; combination therapy again can be considered; systemic drug administration can shift to localized delivery; the incorporation of polymer and nanotechnology is an emerging field. TLR tolerance could be a major obstacle preventing the TLR-targeting therapies from achieving their full potential; thus, more effort should be put into studying cyclical changes in TLR-TLRL interaction and investigating the optimal treatment dose and schedule. (This figure is created with BioRender.com).
remained unaffected (300), indicating the potential of combination therapy of the two in eliminating poly (I:C)-initiated pro-tumor effect.

Inefficacy and toxicity

Despite numerous promising results emerging from pre-clinical research with TLR-targeted therapies, many failed to advance to clinical implementation. Lack of efficacy and toxicity has been an issue for TLR-targeting therapy (28, 301).

To address this, first, precise identification and investigation of patient sub-populations that respond to TLR-targeting strategies is important (Figure 3). Some treatments may not have shown significant efficacy in the overall study population, but do in a subset of patients. Monk et al. (207) and Ferris et al. (208) both found in their clinical trial studies that adding Motolimod to chemotherapy did not improve survival in the overall patient population. In contrast, the sub-population with injection site reactions did significantly benefit from Motolimod. The evidence above suggests 1) lack of significance in the overall analysis does not reject the potential of a certain TLR-targeting drug; 2) there are certain groups of patients that may be more responsive to TLR-targeting agents than others. Future work calls for more translational studies incorporated into the trial designs to examine any associations between treatment responsiveness and patient characteristics, including gene expression patterns, biomarker levels, local treatment reaction, etc., thus providing clues for the screening of the target patient population.

Secondly, both lab and clinical research data support that the optimal treatment potency of immunotherapy requires combinatory approaches (27, 28), which continues to be the trend for TLR-targeted therapy. As discussed in section 5 (Tables 1–3), many studies showed that the combination of TLR agonists with other therapies enhanced tumor retardation compared to a single treatment alone. However, there is still a gap in our knowledge regarding the timing and dosing to be applied to each treatment to achieve the optimal therapeutic result. For example, in the combinatory treatment of poly (I:C) and radiation in Lewis lung carcinoma models, Yoshida et al. (264) found using poly (I:C) one day ahead of radiotherapy yielded better tumor suppression than to use after radiation.

Pharmaceutical modification of targeting agents has great potential to improve efficacy and lower toxicity as well. Furthermore, polymer and nanoparticle formulations incorporating TLR agonists are promising avenues to explore as they may potentially increase the specificity of targeting and prevent the drug from early degradation, thereby reducing systemic toxicity. Those formulations can now be designed to load multiple agents and be multi-functional (Figure 3), including but not limited to pH-specific drug-releasing (115, 124), in vivo drug tracing (152, 155), and tumor hypoxia relief (106). The advancement of nanotechnology utilized in TLR-targeted therapy has been reviewed comprehensively elsewhere (302). However, careful attention should be paid to these new biomaterials as the bioactivities they may incur in vivo remain to be fully elucidated. Meanwhile, reducing the financial and timing costs is also a formidable challenge to face.

Besides refinement of the drug delivery system, choosing a localized delivery route may also have an influence on efficacy. This can avoid systemic inflammation to a great extent and improve intratumoral efficacy (300), especially for solid tumors.

TLR Tolerance

TLR tolerance arises due to the unresponsiveness or hyporesponsiveness of TLRs upon TLR agonist stimulation after repeated, prolonged, or chronic activation, which also includes TLR cross-tolerance, where a pre-used TLR agonist incurs tolerance of another TLR (303, 304). There have been studies showing TLR tolerance in TLR2, 3, 4, 5, 7/8, and 9 (304–309). This mechanism physiologically prevents uncontrolled inflammation and autoimmunity, thus protecting healthy tissues from inflammatory damage (303, 304). In cancer, however, such tolerance leads to impaired tumoricidal effect.

To overcome this phenomenon, Bourquin et al. (310) found cycles of repeated low dose TLR7/8 agonist injection within 24h with intervals every five days, compared to one high dose injection every three days, significantly suppressed tumor growth in a mouse model (310), indicating the potential of circumventing TLR tolerance by adjusting treatment dose and time. Similarly, Tsitoura et al. (311) found the minimum and optimal dosing interval to maintain a TLR agonists’ pharmacological responsiveness. Future research needs to further explore the cyclical changes in specific TLR-TLRL induced responsiveness and consider cross-tolerance as new cancer therapies incorporating multi-TLR agonism continue to emerge (Figure 3).

Discussion

The pattern recognition receptor family of TLRs, widely expressed on both healthy cells and tumor cells, play versatile roles in both physical and pathological conditions. Each TLR influences multiple aspects of tumor development, with both anti- and pro-tumor potentials. TLR-targeted cancer therapies have been widely studied, with some TLR agonists (Imiquimod and BCG) approved for clinical use to treat cancers (312). Pre-clinical studies are currently focusing on developing novel TLR-targeting agents, incorporating nanotechnology into TLR drug manufacturing.
and delivery, and novel approaches activating TLRs apart from using agonists (e.g. inactivated virus (67), engineered bacteria (175), and modified T cells (97)). (Figure 2) Increasing evidence demonstrates the insufficiency of single intervention in circumventing immunosuppression incurred by tumor progression, hence leading to both pre-clinical and clinical research focusing on multi-agent and multi-modality treatment at present (312). (Figure 2) In addition, TLR antagonists also showed therapeutic potential in pre-clinical models with tumors in the digestive system, but the potency of this group of agents in human remains to be fully elucidated.

Future research into TLR-targeting therapies must tackle several challenges, including the control of simultaneous activation of both anti- and pro-tumor effect elicited by TLR activation. TLR tolerance, and insufficient efficacy and toxicity. Additionally, due to the heterogeneous nature of different types of tumors and the consequent influence on TLR activities in the TME, better research models, which preserve the important genetic mutations that affect tumor growth and treatment response, should be developed (313). Instead of using cell lines, bulk tumors derived from the real patient could be an ideal source for research models (252), from where the primary TME cell components– tumor cells, stromal cells, and immune cells–can be extracted.

Furthermore, with the trend of precision medicine and the deepening of research, there is a need for patient stratification according to their disease profile and treatment responsiveness to treat each patient with the most suitable strategy, providing them with the optimal benefit both therapeutically and economically. We speculate that addressing the challenges described above will elevate TLR-targeted therapies to their full potential and augment the efficacy of immunotherapies for patients.

Author contributions

YY and HL drafted the manuscript and organized the tables. YY designed the figures. XZ raised the article topic and designed the original manuscript structure. CF and PC modified the manuscript and proofread the language. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81821002), National Natural Science Foundation of China (No.81902662), and Sichuan Science and Technology Program 2021YJ0011.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer (2009) 9(11):57–65. doi: 10.1038/nrc2841
2. Loiarro M, Ruggiero V, Sette C. Targeting Tlr/Il-1r signalling in human diseases. Mediators Inflammation (2010) 2010:674363. doi: 10.1155/2010/674363
3. Gnjatic S, Sawhney NB, Bhardwaj N. Toll-like receptor agonists: Are they good adjuvants? Cancer J (Sadbury Mass) (2010) 16(4):382–91. doi: 10.1097/PPO.0b013e3181eaac65
4. Chang ZL. Important aspects of toll-like receptors, ligands and their signaling pathways. Inflammation research. Off J Eur Histamine Res Soc [et al] (2010) 59 (10):791–808. doi: 10.1007/s00011-010-0208-2
5. Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. Damp-Tlr-Cytokine axis dictates the fate of tumor. Cytokine (2018) 104:114–23. doi: 10.1016/j.cytto.2017.10.004
6. Kawai T, Akira S. The role of pattern-recognition receptors in immune immunity: Update on toll-like receptors. Nat Immunol (2010) 11(5):373–84. doi: 10.1038/ni.1863
7. Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in toll-like receptor targeting therapeutics. Medicinal Res Rev (2019) 39(3):1053–90. doi: 10.1002/med.25553
8. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, et al. The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U.S.A. (2005) 102 (27):9577–82. doi: 10.1073/pnas.0502272102
9. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell (2010) 140(6):805–20. doi: 10.1016/j.cell.2010.01.022
10. Bayraktar R, Bertilaciao MTS, Calin GA. The interaction between two worlds: Microms and toll-like receptors. Front Immunol (2010) 1:1053. doi: 10.3389/fimmu.2010.01053
11. Bourquin C, Pommier A, Hotz C. Harnessing the immune system to fight cancer with toll-like receptor and rig-I-like receptor agonists. Pharmacol Res (2019) 154:104192. doi: 10.1016/j.phrs.2019.03.001
12. Takeda K, Akira S. Tlr Signaling Pathways. Seminars in immunology (2004) 16(1):3–9. doi: 10.1016/s1076-7598(04)00303-5
13. Hennessy EJ, Parker AE, O’Neill LA. Targeting toll-like receptors: Emerging therapeutics? Nat Rev Drug Discovery (2010) 9(4):293–307. doi: 10.1038/nrd3203
14. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Sci (New York NY) (2010) 327(5963):291–5. doi: 10.1126/science.1183021
15. Hua Z, Hou B. Tlr signaling in b-cell development and activation. Cell Mol Immunol (2013) 10(2):103–6. doi: 10.1038/cmi.2012.61
16. Haage V, Elmadany N, Roll L, Faissner A, Gutmann DH, Semmter M, et al. Tenascin c regulates multiple microbial functions involving Tlr4 signaling and Hdac1. Brain behavior Immun (2019) 81:470–83. doi: 10.1016/j.bbi.2019.06.047
Yang et al. (2011) [10.3389/fimmu.2012.1049340]
The Tlr3 agonist poly (I: C) promote melanoma regression. Macrophages activated by ferumoxytol combined or surface-functionalized with 5472.Can-16-2089 can sensitize tumor-associated macrophages to Tlr3 stimulation for potent immunotherapy. Cell Death Dis 2018; 9(9):874. doi:10.1038/s41419-018-0850-0

Aznar MA, Planells I, Perez-Olivares M, Molina C, Garasa S, Etxeberria I, et al. Immunotherapeutic effects of intratumoral nanopolystyrene poly I:C. J Immunotherapy Cancer 2017; 6(3):2162402x.2017.1409321 doi: 10.1016/j.jconrel.2019.04.019

Zemek RM, De Jong E, Chin WL, Schuster IS, Fear VS, Casey TH, et al. Sensitization to immune checkpoint blockade through activation of a Stat1/NK axis in the tumor microenvironment. Sci Transl Med 2011; 3(110):eaqv7816. doi:10.1126/scitranslmed.aaq7816

Aznar MA, Takeda Y, Nakajima H, Ebihara T, Oshiumi H, et al. Bifunctional flagellin poly I:C adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncomunology 2015; 6(8):s12929-016-0238-3.

Zhao J, Zhang Z, Xue Y, Wang G, Cheng Y, Pan Y, et al. Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the Tlr3 agonist poly(I:C) promote melanoma regression. Theranostics 2018; 8(22):6307–21. doi:10.7150/thno.29746

Liu L, He H, Liang R, Yi H, Meng X, Chen Z, et al. Ros-inducing micelles of polymeric micelle-based chemo-immunotherapy with immune checkpoint blockade for efficient treatment of orthotopic and metastatic breast cancer. Cancer Immunol Res 2017; 5(10):4149321. doi:10.1158/2326-6066.Cir-16-0334

Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, et al. The altered HmlgN contributes to antitumor immunity and is a potent immunodovivant. Cancer Res 2014; 74(21):5989–98. doi:10.1158/0008-5472.Can-13-2042

Lee SH, Shin HJ, Kim EJ, Lee JG, Jung ID, et al. A novel function of ApoD (Apoisotonin inhibitor). Tlr4-dependent activation of antigen presenting cells. Oncomunology 2018; 7(14):e419321. doi:10.1016/j.jconrel.2019.04.019

Brackett CM, Kojozhovar B, Verne J, Gollnick SO, Fang-Yen MW, et al. Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces antitumor immunity by stimulating an NK-Dendritic-Cd8+ T-cell axis. Cancer Res 2017; 77(20):5989–98. doi:10.1158/0008-5472.Can-17-2099

Yang et al. 10.3389/fimmu.2020.1049340
antimicrobial responses. Advanced materials (Deerfield Beach, Fla.) (2018) 30(45): e1803397. doi: 10.1002/adma.201803397.

103. Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, et al. Near-Infrared-Triggered photodynamic therapy with multistalking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano (2017) 11(3):4465–74. doi: 10.1021/acsnano.7b00715.

104. Ge R, Liu C, Zhang X, Wang W, Li B, Liu J, et al. Photothermal-activatable Fe3O4 superparamagnetic carriers with pd-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy. ACS Appl materials interfaces (2018) 10(24):20342–55. doi: 10.1021/acsami.8b05876.

105. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immunoadjuvant nanoparticles to enhance checkpoint blockade for effective cancer immunotherapy. Nat Commun (2017) 8:13193. doi: 10.1038/ncomms13193.

106. Chen Q, Chen J, Yang Z, Xu L, Liang C, et al. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Advanced materials (Deerfield Beach, Fla.) (2018) 31(1):e1802228. doi: 10.1002/adma.201802228.

107. Yang R, Xu J, Xu L, Sun X, Chen Q, Zhan Y, et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. Nano (2018) 12(6):5211–9. doi: 10.1039/c8nj00941j.

108. Zhou Z, Yu X, Zhang J, Tian Z, Zhang C. Tlr/7 agonists promote nk-de cross-talk to enhance nk cell anti-tumor effects in hepatocellular carcinoma. Cancer Lett (2015) 369(2):298–306. doi: 10.1016/j.canlet.2015.09.017.

109. Kuma T, Lee S, Cho HI, Koh Y, Kobayashi H, Harabuchi Y, et al. Optimization of peptide vaccines to induce robust antitumor Cdc4 T-cell responses. Cancer Immunol Res (2021) 9(1):174–86. doi: 10.1158/2326-6066.Cir-19-0011.

110. Narayanan ISS, Ray P, Hayashi T, Whisnant TC, Vicente D, Carson DA, et al. Irreversible electroporation combined with checkpoint blockade and Tlr7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol Res (2019) 7(10):1714–26. doi: 10.1158/2326-6066.Cir-19-0011.

111. Vaccaro F, Peschka J, Walterz KC, Vormehr M, Bricik A, Strobl S, et al. Intravenous delivery of the toll-like receptor 7 agonist Sc1 confers tumor control by inducing a Cdc8+ T cell response. Oncoimmunology (2019) 8(7):1601480. doi: 10.1080/2162402X.2019.1601480.

112. Wiedemann GM, Jacobi SJ, Chaloupka M, Krachan A, Hamm S, Strobl S, et al. A novel Tlr7 agonist reverses nk cell anergy and cures rma-s lymphoma immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials (2018) 164:38–53. doi: 10.1016/j.biomaterials.2018.02.034.

113. Yang et al. 10.3389/fimmu.2020.1049340.

114. Vascotto F, Petschenka J, Walzer KC, Vormehr M, Brkic M, Strobl S, et al. Prophylactic Tlr7 ligand in mouse lymphoma. PloS Biol (2018) 16(4):e2004204. doi: 10.1126/pbio.306.e329.

115. Sagiv-Bar I, Zervinski DK, Levy S, Alam IS, Mayer AT, Gambari SS, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Trans Med (2018) 10(426):eaan4488. doi: 10.1126/scitranslmed.aan4488.

116. Sagiv-Bar I, Kohrt HE, Burkhardt K, Zervinski DK, Levy R. Brutinib enhances the antitumor immune response induced by intratumoral injection of a Tlr4 ligand in mouse leukemia. Blood (2015) 125(13):2079–86. doi: 10.1182/blood-2014-08-593137.

117. Jordan M, Waxman DJ. Cpg-1826 immunotherapy potentiates chemotherapeutic and anti-tumor immune responses to metronomic cyclophosphamide in a preclinical glioma model. Cancer Lett (2017) 373(1):88–96. doi: 10.1016/j.canlet.2015.11.029.

118. Calleja JA, Camacho CA, Calvo MA, de la Rúa M, Sola-Cubero J, et al. Serum-resistant cpg-Stat3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Sci Transl Med (2018) 10(426):eaan4488. doi: 10.1126/scitranslmed.aan4488.

119. Zhang Q, Hossain DM, Duttagupta P, Moreira D, Zhao X, Won H, et al. Additive antitumour response to the rabbit Vx2 hepatoma by combined radiotherapy to trigger robust cancer immunotherapy. J Controlled release: Off J Controlled Release Soc (2016) 216:1–10. doi: 10.1016/j.jconrel.2016.03.009.

120. Lu R, Groer C, Trefely S, Graham K, Snyder NW, Beatty GL. Lipopolyplex potentiates antitumor immunity of mRNA-based vaccination. Mol therapy: J Am Soc Gene Ther (2018) 26(3):695. doi: 10.1038/s41397-017-0084-4.

121. Zhao X, Zhang L, Yuan J, Babiker F, Freywald A, Chibbar R, et al. Tlr7 agonist enhances radiofrequency ablation-induced cll responses, leading to the potent inhibition of primary tumor growth and lung metastasis. Cell Med Immunol (2019) 16(10):820–32. doi: 10.1186/s41423-018-0184-y.

122. Behn B, Di Fazio P, Michl P, Neureiter KM, Merknel RA, Hahn EG, et al. Additive antitumor response to the rabbit Vx2 hepatoma by combined radiofrequency ablation and tol like receptor 9 stimulation. Gut (2016) 65(1):134–43. doi: 10.1136/gutjnl-2015-308286.

123. Yang Q, Hossain DM, Duttagupta P, Moreira D, Zhao X, Won H, et al. Serum-resistant cpg Stat3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood (2016) 127(13):1687–70. doi: 10.1182/blood-2015-08-665604.

124. Zhao X, Zhang Z, Moreira D, Su YL, Won H, Adams T, et al. B cell lymphoma immunotherapy using Tlr9-targeted oligonucleotide Stat3 inhibitors. Mediyation: J Am Soc Gene Ther (2018) 26(3):955–97. doi: 10.1016/j.jmuy.2018.01.007.

125. Feng L, Gartiel-Scheikl T, Kintz J, Gantzer M, Schaedler E, Rittner K, et al. Intravenous injection of mva virus targets Cdc8+ lymphocytes to tumors to control tumor growth upon combinational treatment with a Tlr9 agonist. Cancer Immunol Res (2012) 2(12):1163–74. doi: 10.1158/2326-0666.Cir-14-0050.
Chimeric peptide containing both β and T cells epitope of tumor-associated hybrid nanovaccine for cancer immunotherapy.

Bacteriophage θ29 nanoparticles of type-a CpG D35 suppress tumor growth by changing tumor photothermal and immune cancer therapy using chitosan-coated hollow copper sensitive polymer-modified liposome-based immunity-inducing system: Effects of Cpg-Dna. J Controlled Release (2017) 259:33–42. doi:10.1016/j.carlife.2017.05.057

Kramer K, Shields NJ, Poppe V, Young SL, Walker GF. Intracellular cleavable cpg oligodeoxynucleotide-antigen conjugate enhances anti-tumor immunity. Mol therapy: J Am Soc Gene Ther (2017) 18(1):11–20. doi:10.1038/mtm.2016.10001

Domingos-Pereira S, Galliverti G, Hanahan D, Nardelli-Haefliger D. Carboplatin/Paclitaxel, E7-vaccination and intravaginal cpg as tri-therapy towards efficient regression of genital HPV16 tumors. J immunotherapy Cancer (2019) 7(1):122. doi:10.1186/s40425-019-0593-1

Davarisawmy J, Freeman GJ, Coukos G. Therapeutic pd-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res (2013) 73(23):6900–12. doi:10.1158/0008-5472.CAN-13-1550

Haabeth OA, Blake TR, McKinlay CJ, Waymouth RM, Wender PA, Levy R. MsrA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci U.S.A. (2018) 115(39):E9153–61. doi:10.1073/pnas.1801002115

Han S, Wang W, Wang S, Wang S, Ji R, Pan Z, et al. Multifunctional biomimetic nanoparticles loading bicalutin for polarization tumor-associated macrophages. Nanoscale (2019) 11:22060–20. doi:10.1039/c9nr02753j

Mohracher S, Morishita H, Kobiyama K, Arshad I, Kakiuchi K. Immunization with antigenic peptides complexed with beta-glucan induces potent cytotoxic T lymphocyte activity in combination with cpg-odn. J Controlled Release: Off J Controlled Release Soc (2015) 220(Pt A):495–502. doi:10.1016/j.jconrel.2015.11.008

Yoshizaki Y, Yuba E, Sakaguchi K, Okai K, Katsuura K. Pheromone-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and cpg-DNA. Biomedicals (2017) 141:272–83. doi:10.1016/biomedicals.2017.07.001

Guo L, Yan DD, Yang M, Li Y, Wang X, Zalewski O, et al. Combinatorial photothermal and immune cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano (2014) 8(6):5670–81. doi:10.1021/nn5010212

Zhu G, Liu Y, Yang F, Yin YH, Zhang H, Ju R, et al. DNA-Inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale (2016) 8(12):6884–92. doi:10.1039/C5NR08821F

Lin SI, Huang MH, Chang YW, Chen HJ, Roﬄer S, Chen BM, et al. β-Carotene containing both β and T cells epitope of tumor-associated antigen 16 enhances anti-tumor effects in b1a2 transgenic mice. Cancer Lett. (2016) 377(2):126–33. doi:10.1016/j.canlet.2016.04.031

Li Y, Yang G, Zhang L, Song H, Xiang G, et al. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials (2018) 175:82–92. doi:10.1016/j.biomaterials.2018.01.025

Ruiz-de-Angulo A, Zabaleta A, Gomez-Vallejo V, Llop J, Mareque-Rivas M, et al. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human γδ T cells. Mol Ther oncolytics (2016) 3:15023.

Cai Z, Wang W, Wang S, Wang S, Ju R, Pan Z, et al. In vivo delivery of peptides and toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor responses. Biomaterials (2015) 40:88–97. doi:10.1016/j.biomaterials.2014.10.053

Casimiro DA, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira V, et al. Controlled Release Soc (2015) 198:91. doi:10.1016/j.jconrel.2014.11.033

Han S, Wang W, Wang S, Wang S, Ji R, Pan Z, et al. Multifunctional biomimetic nanoparticles loading bicalutin for polarization tumor-associated macrophages. Nanoscale (2019) 11:22060–20. doi:10.1039/c9nr02753j

Mochizuki S, Morishita H, Kobiyama K, Aoshi T, Ishii KJ, Sakurai K. Phagocytic activity of human Kupffer cells by Cpg-DNA. J. Microbiol. (2015) 53(1):e00047-15. doi:10.1007/s12275-015-0151-7

Zhong X, Zhang Y, Tan L, Zheng T, Hou Y, Hong X, et al. An aluminum adjuvant-integrated nano-mol of antigen delivery system to induce strong humoral and cellular immune responses. J Controlled Release: Off J Controlled Release Soc (2019) 333:1–10. doi:10.1016/j.jconrel.2019.01.004

Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, et al. Co-Delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid hybrid polymersomes for enhanced vaccination. Biomaterials (2019) 206:25–40. doi:10.1016/j.biomaterials.2019.03.012

Yang et al. 10.3389/fimmu.2022.1049340
a strong tumor suppressive effect in melanoma. Acta biomaterialia (2018) 76 193–207. doi: 10.1016/j.actbio.2018.06.029.

10. Kuai R, Sun X, Yuan W, Ochoy LL, Xu Y, Hassan Najafi-Fahadi A, et al. Dual Tlr agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. I Controlled release: Off J Controlled Release Soc (2018) 282:131–9. doi: 10.1016/j.ctlre.2018.04.041.

11. Macado R, Rochejof J, Gallo-Dest M, Taraka K, Le Moignic A, Nozat C, et al. Intra-echi infiltration as a novel vaccination route for therapeutic vaccines of head and neck squamous cell carcinomas using plasma virus-like particles. Oncoimmunology (2016) 5(7):e1164636. doi: 10.1080/21624020.2016.1164636.

12. Sato Kaneko F, Yasa A, Amban A, Zhang SS, Hossaya T, Kaneda MM, et al. Combination immunotherapy with tlr agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight (2017) 2(18):e93937. doi: 10.1172/ jci.insight.93937.

13. Tye H, Kennedy CL, Nadjovska M, McLendon L, McCormack W, Hughes N, et al. Star1-driven upregulation of Tlr2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell (2012) 22(4):466–78. doi: 10.1016/j.ccr.2012.02.010.

14. Mohamed FE, Al-Jehani RM, Minogue SS, Andreae F, Winstanley A, Olde Damink SW, et al. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver international: Off J Int Assoc Study Liver (2015) 35(3):1063–76. doi: 10.1111/j.1440-2465.2012.05973.x.

15. Mohamed FEZ, Jalan R, Minogue S, Andreae F, Habtezion A, Hall A, et al. inhibition of TLR7 and TLR9 reduces human cholangiocarcinoma cell proliferation and tumor development. Digestive Dis Sci (2021) 66:1806–21. doi: 10.1007/s10620-021-09697-3.

16. An B, Zhu S, Li T, Wu Z, Yang G, Lv X, et al. A dual TLR7/TLR9 inhibitor HJ901 inhibits ab-dbcbl expressing the Myxoth L265p mutation. Front Cell Dev Biol (2020) 8:362. doi:10.3389/fcell.2020.00362.

17. Speetjens FM, Welters MP, Slingerland M, de Vos van Steenwijk P, Rozen ICEM, Boekestijn S, et al. Phase I trial to determine safety and immunogenicity of amplivant, a synthetic toll-like receptor 2 ligand, conjugated to two HIV2 envelope antigen long peptides. J Clin Oncol (2021) 39(15_suppl):2614–26. doi: 10.1200/JCO.2021.39.15_suppl.2614.

18. Kry C, Roudilko V, Sabado R, Saenger Y, Loging W, Mandeli J, et al. Therapeutic immune modulation against solid cancers with intratrophic poly-iodc: A pilot study of treatment efficacy: an Off J Am Assoc Cancer Res (2018) 24(20):4937–48. doi: 10.11078/0342-1716-8166.

19. Aw MD, Govindan R, Sipgl DR, Garon EB, Kohler K, Vyasamneni R, et al. A phase 1b study of personalized neonantigen therapy plus anti-Pd-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell Immunotheraphy (2019) 71(1):163. doi:10.1044/2015-0162-0562-x.

20. Ott PA, Hu Lieszkon S, Chmielowski B, Govindan R, Naing A, Bhardwaj N, et al. A phase Ib trial of personalized neonantigen therapy plus anti-Pd-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell (2020) 183(2):472–41.e24. doi: 10.1016/j.cell.2020.08.053.

21. Weed DT, Zilio S, Reis IM, Sargi Z, Abouyared M, Gomez-Fernandez CR, et al. The reversal of immune exclusion mediated by tadala cells enhances antitumor T cell responses in patients with mantle cell lymphoma: A phase I/Ii trial. J Clin Oncol (2018) 36(21):2001. doi:10.1200/jco.2018.36.15_suppl.2001.

22. Filaci G, Fenoglio D, Nole F, Zanardi E, Tomasselli L, Aglietta M, et al. Telomerase-based Gx301 cancer vaccine in patients with metastatic castration-resistant prostate cancer: A randomized phase ii trial. Cancer immunology immunotherapy (2021) 70(12):3679–92. doi: 10.1007/s00262-021-05524-4.

23. Donin NM, Chamie K, Lenis AT, Pantuck AJ, Reddy M, Kirvin D, et al. A phase 2 study of tnx-101, intravesical imiquimod, for the treatment of carcinoma in situ bladder cancer. Urologic Oncol (2017) 35(2):39. doi: 10.1016/j.juro.2016.09.006.

24. Saba RD, Pavlick A, Gnjatic S, Cruz CM, Venghi O, Hasan F, et al. Resiquimod as an immunologic adjuvant for ny-Eso-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res (2015) 3(3):278–87. doi: 10.1158/2326-6066.Cir-14-0022.

25. Monik BI, Brady MF, Aghajanian C, Lankes HA, Rizkta T, Leach J, et al. A phase 2, randomized, double-blind, placebo- controlled study of chemotherapeutic immunotherapy combination using motolimod with pegylated liposomal doxorubicin in recurrent or persistent ovarian cancer: A gynecologic oncology group partners study. Ann oncology: Off J Eur Soc Med Oncol (2017) 28(5):996–1004. doi: 10.1093/annonc/mdx649.

26. Ferris RL, Saba NF, Gitlitz BI, Haddad R, Sukari A, Neupane P, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: The Acrivolt randomized clinical trial. JAMA Oncol (2018) 4(11):1583–8. doi: 10.1001/jamaoncol.2018.1888.

27. Detsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Diu ML, et al. Coordinated activation of toll-like Receptors (TLR8 and TLR9) by the TLR agonist, vtx-2337, ignites tumoricidal natural killer cell activity. PloS One (2016) 11(2): e0148764. doi:10.1371/journal.pone.0148764.

28. Monik BI, Facciabene A, Brady WE, Aghajanian CA, Fracasso PM, Walker JL, et al. Integrative development of a Tlr8 agonist for ovarian cancer chemotherapeutic immunotherapy. Clin Cancer research: an Off J Am Assoc Cancer Res (2017) 23(8):1955–66. doi: 10.1158/1078-0432.Cir-16-1453.

29. Frank MJ, Khodadoust MS, Czerwinski DK, Haabeth OAW, Chu MP, Mikkos DB, et al. Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma. A phase I/II trial. J Exp Med (2020) 217(5):e20191712. doi:10.1084/jem.20191712.

30. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy MJ, Advani RH, et al. In situ vaccination with a Tlr9 agonist induces systemic lymphoma regression: A phase I study. J Exp Med (2020) 217(5):e20191712. doi:10.1084/jem.20191712.
215. Ruzza A, Sen M, Evans M, Lee JW, Higheghty K, Rottey S, et al. Phase 2, open-label, I/IIA/III controlled trial exploring the safety and tolerability of mdc1 in combination with cetuximab in second-line cetuximab-naive patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M smcc). Investigational New Drugs (2014) 32(6):1278–84. doi: 10.1007/s10637-014-0117-2

216. Garen E, Spira AI, Johnson M, Banerthoa I, Leach J, Candia A, et al. Abstract C224: Phase I/IIb, open label, multicenter study of inhaled D2b1a, a toll-like receptor agonist, in combination with niobulb in patients with advanced or metastatic non small cell lung cancer (N0c). Cancer Res (2019) 79(13 Supplement):C224–CT. doi: 10.1158/1535-7455.Am2019-c224

217. Isambert N, Fumoleau P, Paul C, Ferrand C, Zanetta S, Bauer J, et al. Phase I study of om-174, a liposome analog, as an assessment of immunological response, in patients with refractory solid tumors. BMC Cancer (2013) 13:172. doi: 10.1186/1471-2407-13-172

218. Helland AM, Lee CT, Hafez K, Hussain M, Liebert D, Mairg S, et al. Distinct pathways of lps-induced nf-kappa b activation and cytokine results from an ongoing clinical trial. Curr Opin Immunol (2002) 14(1):129–35. doi: 10.1016/s0952-7915(01)00308-9

219. Sabroe I, Parker LC, Dower SK, Whyte MK. The role of tlr activation in inflammation. J Pathol (2008) 214(2):126–35. doi: 10.1002/path.2224

220. Zaremba KA, Godowski PJ. Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, and cytokines. J Immunol (2002) 168(2):554–61. doi: 10.4049/jimmunol.168.2.554

221. Ridnour LA, Cheng RY, Switzer CH, Heinecke JL, Ambs S, Glynn S, et al. Molecular pathways. Toll-like receptors in the tumor microenvironment–poor prognosis or new therapeutic opportunity. Clin Cancer Research: an Off J Am Assoc Cancer Res (2013) 19(6):1340–6. doi: 10.1158/1078-0432.Ccr-12-0408

222. Fellner I,irschick R, Schanda K, Reinild M, Klimaschewski I, Poeoe W, et al. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia. Glia (2013) 61(3):349–60. doi: 10.1002/gia.22437

223. Ayari C, Bergeron A, LaRue H, Menad C, Frader Y. Toll-like receptors in normal and malignant human bladders. J Urol (2011) 185(5):1915–21. doi: 10.1016/j.juro.2010.12.097

224. Kadowaki N, Ho S, Antonenko S, Malefyt RD, Kastelein RA, Baaren F, et al. Subsets of human dendritic cell precursors express different toll-like receptor ligands and respond to different microbial antigens. J Exp Med (2001) 194(6):863–9. doi: 10.1084/jem.194.6.863

225. Fujita Y, Mihara T, Okazaki T, Shtanalka M, Kushino R, Iida C, et al. Toll-like receptors (Tlr) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod (England) (2011) 26(10):2799–806. doi: 10.1093/humrep/der234

226. Chen X, Cheng F, Liu Y, Zhang L, Song L, Cai X, et al. Toll-like receptor 2 and toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. Elife (2019) 8:40. doi: 10.7554/eLife.2018.12.016

227. Yu L, Chen S. Toll-like receptor expressed in tumor cells. Targets for therapy. Cancer immunology immunotherapy: CII Therapy. (2008) 57(9):1271–8. doi: 10.1007/s12027-008-0459-8

226. Jouhi L, Renkonen S, Atula T, Makitie A, Haghstrom J. Different toll-like receptor expression patterns in progression toward cancer. Front Immunol (2014) 5:638. doi: 10.3389/fimmu.2014.00638

228. Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined tlir ligands as adjuvants within human vaccines. Immunol Rev (2011) 239(1):178–96. doi: 10.1111/j.1600-065x.2010.00978.x

229. Sobek V, Birkner N, Falk I, Wurch A, Kirschning CJ, Wagner H, et al. Toll-like receptor 4-mediated toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther (2004) 6(5):R433–46. doi: 10.1186/ar1212

230. Ganley-Leal LM, Liu X, Wetzler ML. Toll-like receptor 2-mediated human b cell differentiation. Clin Immunol (2006) 120(3):272–84. doi: 10.1016/j.clim.2006.04.571

231. Manoson A, Adner M, Hockerfelt U, Cardell LO. A distinct toll-like receptor repertoire in human tonsillar b cells, directly activated by pmcuc, r-837 and cpg-2006 stimulation. Immunology (2006) 118(4):539–48. doi: 10.1111/j.1365-2567.2006.02392.x

232. Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG. The functional effects of physical interactions among toll-like receptors 7, 8, and 9. J Biol Chem (2008) 283(49):37427–34. doi: 10.1074/jbc.M006351200

233. Fucu K, Saito S, Matsumo F, Kozuka-Hata H, Oyama M, Tabeta K, et al. Unc93b1 has a critical role in toll-like receptor responses to nucleic acid in dendritic cells toward DNA. but against RNA-sensing. J Exp Med (2009) 206(16):3389–50. doi: 10.1084/jem.20082316

234. Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, et al. The role of tlrs in anti-cancer immunity and tumor rejection. Front Immunol (2019) 10:2388. doi: 10.3389/fimmu.2019.02388

235. Lowe EL, Crother TR, Rambadah S, Hu B, Wang H, Chen S, et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. Plos One (2011) 6(9):e23072. doi: 10.1371/journal.pone.0013027

236. Asproditos N, Zheng L, Geng D, Velasco-Gonzalez C, Sanchez-Perez L, Davila E. Engagement in exosomes indicate heptocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatol (Baltimore Md) (2012) 56(5):1946–57. doi: 10.1002/hep.25873

237. Galli R, Faone A, Fabbri M, Zanesi N, Calore F, Caschione L, et al. Toll-like receptor 3 (Tlr3) activation induces microrna-dependent reexpression of functional rarbata and tumor regression. Proc Natl Acad Sci U S A. (2013) 110(24):9812–7. doi: 10.1073/pnas.1304611110

238. Luster AD. The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol (2002) 14(1):129–35. doi: 10.1016/s0952-7915(01)00308-9
255. Li, S, Sun, R, Chen, Y, Wei, H, Tian, Z. Tlr7 limits development of hepatocellular carcinoma by reducing IIB-mediated immunosuppression. Cancer Res (2015) 75(6):986–95. doi:10.1158/0008-5472.CAN-14-2371

256. Nelde A, Maringer Y, Bilha T, Salh HR, Roerden M, Heitmann JS, et al. Immunopotentiatenguide with waveform design for peptide-based immunotherapy in chronic lymphocytic leukemia. Front Immunol (2021) 12:705974. doi:10.3389/fimmu.2021.705974

257. Weng J, Lai P, Qin L, Lai Y, Jiang Z, Luo C, et al. A novel generation 1928rt2 car T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J Hematol Oncol (2018) 11(1):25. doi:10.1186/s10064-018-0572-x

258.Matsumoto M, Takeda Y, Tatekawa S, Saya T. Toll-like receptor 3 in dendritic cells benefits cancer immunotherapy. Front Immunol (2017) 8:1897. doi:10.3389/fimmu.2017.01897

259. Takemura R, Takaki H, Okada S, Shime H, Adazawa T, Oshiumi H, et al. PolyC-induced, TLR3/RIp3-dependent necrosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol Res (2015) 3(8):902–14. doi:10.1158/2326-6066.CIR-14-0219

260. Fan L, Zhou P, Hong Q, Chen AX, Liu GY, Yu KD, et al. TLR7-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression. A two-stage association study and functional validation. Oncoimmunology (2019) 8(6):e1593801. doi:10.21264/oonc.2019.1593801

261. Yoneya K, Sugimoto K, Shiraki K, Tanaka J, Beppu T, Fuke H, et al. Toll-like receptor 3-mediated signaling of Thm3-induced K-ras activation and apoptosis. Int J Oncol (2008) 33(5):829–36. doi:10.3892/ijo_00000080

262. Gambarra G, Desideri M, Stoppacciaro A, Padula F, De Cesaris P, Starace D, et al. Th3 engagement induces an 3-D dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo. J Cell Mol Med (2015) 19(12):327–39. doi:10.1111/jcmm.12379

263. Berg M, Bonnin P, Sulpece E, Vilar J, Allain D, Silverstrate JS, et al. Small interfering rnas induce target-independent inhibition of tumor growth and vasculature remodeling in a mouse model of hepatocellular carcinoma. Am J Pathol (2017) 186:1719–21. doi:20.2353/apajp.2010.1001157

264. Yoshida S, Shime H, Takeda Y, Nam JM, Takashima K, Matsumoto M, et al. Toll-like receptor3 signal augments radiation-induced tumor growth retardation in a murine model. Cancer Sci (2018) 109(4):926–65. doi:10.1111/cas.13543

265. Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Koerner J, et al. Nyo-Eso-1 vaccination in combination with dectinib induces antigen-specific T lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer research: an Off J Am Assoc Cancer Res (2021) 27(4):1719–29. doi:10.1158/1078-0432.Ccr-17-1792

266. Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Dillon PM, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-I:C in early stage breast cancer. Clin Cancer Res (2010) 16(12):3160–7. doi:10.1158/1078-0432.CIR-10-0214

267. Cheng CY, Huang TL, Hsueh EC, Jeng CH, Lin JH, Lin WH, et al. TLR4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Commun (2019) 10(1):4862. doi:10.1038/s41467-019-12657-w

268. Ye J, Ma C, Hsieh EC, Jou M, Wu L, Liu S, et al. TLR8 signaling enhances tumor immunity by down-regulation of vascular e-selectin and recruitment of regulatory T cells. J Exp Med (2008) 205(10):2221–34. doi:10.1084/jem.200711190

269. Matsuda K, Norgard MA, Zhi X, Levasseur PR, Sivagnam S, Lindow SM, et al. The Tlr7/8 agonist 8484 remodels tumor and host responses to promote survival in pancreatic cancer. Nat Commun (2019) 10(1):4862. doi:10.1038/s41467-019-12657-w

270. Clark RA, Huang SJ, Murphy GF, Mollet IG, Hjener D, Muthukur M, et al. Human squamous cell carcinomas evade the immune response by down-regulation of vascular e-selectin and recruitment of regulatory T cells. J Exp Med (2008) 205(10):2221–34. doi:10.1084/jem.200711190

271. Michaelis KA, Norgard MA, Zhi X, Levasseur PR, Sivagnam S, Lindow SM, et al. The Tlr7/8 agonist 8484 remodels tumor and host responses to promote survival in pancreatic cancer. Nat Commun (2019) 10(1):4862. doi:10.1038/s41467-019-12657-w

272. Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB, et al. Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines. J Eur J Cancer (2019) 11810–34. doi:10.1016/j.ejca.2019.06.003

273. Patel GK, Goodwin R, Chavla M, Laider P, Price PE, Finlay AY, et al. Immunoglobulin M+ B cells drive memory B cell differentiation and contribute to plasma cell survival in patients with chronic lymphocytic leukemia. Leukemia (2017) 31(2):272–9. doi:10.1038/leu.2016.207

274. Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, et al. Phase ib trial of the toll-like receptor 8 agonist, motolisin (Vix-2337), combined with cetuximab in patients with recurrent or metastatic sccln. Clin Cancer research: an Off J Am Assoc Cancer Res (2017) 23(14):3462–50. doi:10.1158/1078-0432.Ccr–16-1934

275. Dummer R, Hauschuld A, Becker JC, Grob JJ, Schadendorf D, Tebbs V, et al. Toll-like receptor-7 agonist administered subcutaneously in a prolonging dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer immunotherapy: immuoniology: can(2010)10(12):1877–84. doi:10.1158/2042-0104-ir

276. Weigel BJ, Cooley S, Defor T, Weisdorf DJ, Panoskaltsis-Mortari A, Chen W, et al. Prolonged subcutaneous administration of 852a, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced hematologic malignancies. Am J Hematol (2016)87(10):953–6. doi:10.1002 ajh2.32380

277. Didek AZ, Yunits C, Harrison LL, Kumar S, Hawkins R, Cooley S, et al. First-in-human phase 1 trial of 852a, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin Cancer research: an Off J Am Assoc Cancer Res (2017) 23(13):3719–25. doi:10.1158/1078-0432.Ccr–17-0398

278. Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, et al. Trial watch. Experimental Tlr7/Tlr8 agonists for oncological indications. Oncovinmunology (2020) 9(1):1796002. doi:10.1002/126402x.2020.1796002
Yang et al. 10.3389/fimmu.2022.1049340

Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. *Advanced Drug delivery Rev* (2008) 60(7):795–804. doi: 10.1016/j.addr.2007.12.004

Kang TH, Mao CP, Kim YS, Kim TW, Yang A, Lam B, et al. TLR9 acts as a sensor for tumor-released DNA to modulate anti-tumor immunity after chemotherapy. *J Immunotherapy Cancer* (2019) 7(1):260. doi: 10.1186/s40425-019-0738-2

Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. *Oncogene* (2008) 27(2):161–7. doi: 10.1038/sj. onc.1210911

Karyakulov N, Horuhruoglu B, Kliman DM. Cpg oligonucleotides as vaccine adjuvants. *Methods Mol Biol* (2021) 2197:51–85. doi: 10.1007/978-1-0716-0872-2_4

Leonard JP, Link BK, Emmanouilides C, Gregory SA, Weisdorf D, Andrey J, et al. Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non-Hodgkin’s lymphoma. *Clin Cancer research: an Off J Am Assoc Cancer Res* (2007) 13(20):6168–74. doi: 10.1186/1078-0432.Ccr-07-0815

van Puffelen JH, Keating ST, Oosterwijk E, van der Heijden AG, Netea MG, Joosten LAB, et al. Trained immunity as a molecular mechanism for BCG vaccine adjuvants. *Cell Mol Immunol* (2012) 9(5):699–739. doi: 10.4161/cmi.2011.26

Feng Y, Chen Y, Meng Y, Cao Q, Liu Q, Ling C, et al. Bufalin suppresses inflammation in the human tumor microenvironment. *Cancer Res* (2018) 78(15):4292–302. doi: 10.1158/0008-5472.CAN-17-3985

Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch. *Oncoimmunology* (2012) 1(5):699–739. doi: 10.4161/ oncimmunol.20696

Tran TH, Tran TTP, Truong DH, Nguyen HT, Pham TT, Yong CS, et al. Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. *Acta biomaterialia* (2019) 94:82–96. doi: 10.1016/j.actbio.2019.05.043

Kondo T, Kawai T, Akira S. Dissecting negative regulation of toll-like receptor signaling. *Trends Immunol* (2012) 33(9):449–58. doi: 10.1016/j.ti.2012.05.002

Bhagchandani S, Johnson JA, Irvine DJ. Evolution of toll-like receptor 7/8 agonist therapeutics and their delivery approaches. From antiviral formulations to vaccine adjuvants. *Advanced Drug delivery Rev* (2021) 175:113803. doi: 10.1016/j.addr.2021.05.013

Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, et al. Mydd88-dependent and Mydd88-independent pathways in synergy, priming, and tolerance between TLR agonists. *J Immunol* (Baltimore Md: 1950) (2007) 178(2):1164–71. doi: 10.4049/jimmunol.178.2.1164

Michaels KA, Norgard MA, Levassor PR, Olson B, Burfeind KG, Buena AC, et al. Persistent toll-like receptor 7 stimulation induces behavioral and molecular innate immune tolerance. *Brain behavior Immun* (2019) 82:338–53. doi: 10.1016/j.bbi.2019.09.004

Hayashi T, Gray CS, Chan M, Tawatao RL, Ronacher L, McGargill MA, et al. Prevention of autoimmune disease by induction of tolerance to toll-like receptor 7. *Proc Natl Acad Sci U.S.A.* (2009) 106(8):2764–9. doi: 10.1073/pnas.0813037106

Butcher SK, O’Carroll CE, Wells CA, Carmody RJ. Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages. *Front Immunol* (2018) 9:933(933). doi: 10.3389/fimmu.2018.00933

Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. *Cell Mol Immunol* (2011) 8(5):388–403. doi: 10.1038/cmi.2011.26

Bourquin C, Hotz C, Noorenberg D, Voelkl A, Heidegger S, Roether LC, et al. Systemic cancer therapy with a small molecule agonist of toll-like receptor 7 can be improved by circumventing TLR tolerance. *Cancer Res* (2011) 71(15):5123. doi: 10.1158/0008-5472.CAN-10-3903

Tsitsoura D, Ambrey C, Price M, Powley W, Garthside S, Rigadiké K, et al. Early clinical evaluation of the intranasal TLR7 agonist GSK2245035. Use of translational biomarkers to guide dosing and confirm target engagement. *Clin Pharmacol Ther* (2019) 98(4):369–80. doi: 10.1002/cpt.157

Vanpouille-Box C, Hoffmann JA, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. *Nat Rev Drug Discovery* (2019) 18:845–67. doi: 10.1038/s41573-019-0043-2

Mitra A, Mishra I, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. *Trends Biotechnol* (2013) 31(6):347–54. doi: 10.1016/j.tibtech.2013.03.006