Non-abelian resonance: product and coproduct formulas

Stefan Papadima and Alexander I. Suciu

Abstract We investigate the resonance varieties attached to a commutative differential graded algebra and to a representation of a Lie algebra, with emphasis on how these varieties behave under finite products and coproducts.

1 Introduction

Resonance varieties emerged as a distinctive object of study in the late 1990s, from the theory of hyperplane arrangements. Their usefulness became apparent in the past decade, when a slew of applications in geometry, topology, group theory, and combinatorics appeared.

The idea consists of turning the cohomology ring of a space X into a family of cochain complexes, parametrized by the first cohomology group $H^1(X, \mathbb{C})$, and extracting certain varieties $R^i_{m}(X, \mathbb{C})$ from these data, as the loci where the cohomology of those cochain complexes jumps. Part of the importance of these resonance varieties is their close connection with a different kind of jumping loci: the characteristic varieties of X, which record the jumps in homology with coefficients in rank 1 local systems.

In recent years, various generalizations of these notions have been introduced in the literature, for instance in [3, 2, 7, 5]. The basic idea now is to...
replace the cohomology ring of a space by an algebraic analogue, to wit, a commutative, differential graded algebra \((A, d)\), and to replace the coefficient group \(\mathbb{C}\) by a finite-dimensional vector space \(V\), endowed with a representation \(\theta: \mathfrak{g} \to \mathfrak{gl}(V)\), for some finite-dimensional Lie algebra \(\mathfrak{g}\). In this setting, the parameter space for the higher-rank resonance varieties, \(R^i_m(A, \theta)\), is no longer \(H^1(A)\), but rather, the space of flat, \(\mathfrak{g}\)-valued connections on \(A\), which, according to the results of Goldman and Millson from [4], is the natural replacement for the variety of rank 1 local systems on \(X\).

In a previous paper, [6, §13], we established some basic product and coproduct formulas for the classical resonance varieties. In this note, we extend those results to the non-abelian case, using some of the machinery developed in [5]. In Theorem 1, we give a general upper bound on the varieties \(R^i_1(A \otimes A, \theta)\) in terms of the resonance varieties of the factors and the space of \(\mathfrak{g}\)-flat connections on the tensor product of the two \(\text{cdga}\)'s. In Theorem 2, we improve this bound to an equality of a similar flavor, in the case when the respective \(\text{cdga}\)'s have zero differentials, and \(\mathfrak{g}\) is either \(\mathfrak{sl}_2\) or \(\mathfrak{sol}_2\). Finally, in Corollary 5 and Theorem 3 we give precise formulas for the varieties \(R^i_1(A \vee A, \theta)\) associated to the wedge sum of two \(\text{cdga}\)'s.

2 Flat connections and holonomy Lie algebras

We start by introducing some basic notions (\(\text{cdga}\)'s, flat connections, holonomy Lie algebras), following in rough outline the exposition from [5].

2.1 Differential graded algebras and Lie algebras

Let \(A = (A^*, d)\) be a commutative, differential graded algebra (\(\text{cdga}\)) over the field of complex numbers, that is, a positively-graded \(\mathbb{C}\)-vector space \(A = \bigoplus_{i \geq 0} A^i\), endowed with a graded-commutative multiplication map \(\cdot: A^i \otimes A^j \to A^{i+j}\) and a differential \(d: A^i \to A^{i+1}\) satisfying \(d(a \cdot b) = da \cdot b + (-1)^i a \cdot db\), for every \(a \in A^i\) and \(b \in A^j\).

We will assume throughout that \(A\) is connected, i.e., \(A^0 = \mathbb{C}\), and of finite \(q\)-type, for some \(q \geq 1\), i.e., \(A^i\) is finite-dimensional, for all \(i \leq q\). Let \(Z^i(A) = \ker(d: A^i \to A^{i+1})\), \(B^i(A) = \text{im}(d: A^{i-1} \to A^i)\), and \(H^i(A) = Z^i(A)/B^i(A)\). For each \(i \leq q\), the dimension of this vector space, \(b_i(A) = \dim_{\mathbb{C}} H^i(A)\), is finite.

Now let \(\mathfrak{g}\) be a Lie algebra over \(\mathbb{C}\). On the vector space \(A \otimes \mathfrak{g}\), we may define a bracket by \([a \otimes x, b \otimes y]\) = \(ab \otimes [x, y]\) and a differential given by \(\partial(a \otimes x) = da \otimes x\), for \(a, b \in A\) and \(x, y \in \mathfrak{g}\). This construction produces a differential graded Lie algebra \((\text{dglg}, A \otimes \mathfrak{g} = (A^* \otimes \mathfrak{g}, \partial))\). It is readily verified that the assignment \((A, \mathfrak{g}) \mapsto A \otimes \mathfrak{g}\) is functorial in both arguments.
2.2 Flat, g-valued connections

Definition 1. An element $\omega \in A^1 \otimes g$ is called an infinitesimal, g-valued flat connection on (A, d) if ω satisfies the Maurer–Cartan equation,

$$\partial \omega + [\omega, \omega]/2 = 0. \quad (1)$$

We will denote by $F(A, g)$ the subset of $A^1 \otimes g$ consisting of all flat connections. A typical element in $A^1 \otimes g$ is of the form $\omega = \sum_j \eta_j \otimes x_j$, with $\eta_j \in A^1$ and $x_j \in g$; the flatness condition amounts to

$$\sum_j d\eta_j \otimes x_j + \sum_{j<k} \eta_j \eta_k \otimes [x_j, x_k] = 0. \quad (2)$$

In the rank one case, i.e., the case when $g = \mathbb{C}$, the space $F(A, \mathbb{C})$ may be identified with the vector space $H^1(A) = \{ \omega \in A^1 \mid d\omega = 0 \}$. In particular, if $d = 0$, then $F(A, \mathbb{C}) = A^1$.

The bilinear map $P: A^1 \times g \to A^1 \otimes g$, $(\eta, g) \mapsto \eta \otimes g$ induces a map $P: H^1(A) \times g \to F(A, g)$. The essentially rank one part of the set of flat g-connections on A is the image of this map:

$$F^1(A, g) = P(H^1(A) \times g). \quad (3)$$

2.3 Holonomy Lie algebra

An alternate view of the parameter space of flat connections is as follows. Let $A_1 = \text{Hom}(A^1, \mathbb{C})$ be the dual vector space. Let $\nabla: A_2 \to A_1 \wedge A_1$ be the dual to the multiplication map $A_1 \wedge A_1 \to A_2$, and let $d_1: A_2 \to A_1$ be the dual of the differential $d_1: A^1 \to A^2$.

Definition 2 ([5]). The holonomy Lie algebra of a cdga $A = (A^*, d)$ is the quotient of the free Lie algebra on the \mathbb{C}-vector space A_1 by the ideal generated by $\partial_A = d_1 + \nabla$:

$$\mathfrak{h}(A) = \text{Lie}(A_1)/(\text{im}(\partial_A)). \quad (4)$$

Remark 1. In the case when $d = 0$, the above definition coincides with the classical holonomy Lie algebra $\mathfrak{h}(A) = \text{Lie}(A_1)/(\text{im}(\nabla))$ of K.T. Chen [1]. In this situation, $\mathfrak{h}(A)$ inherits a natural grading from the free Lie algebra, compatible with the Lie bracket. Consequently, $\mathfrak{h}(A)$ is a finitely-presented, graded Lie algebra, with generators in degree 1 and relations in degree 2.

In general, though, the ideal generated by $\text{im}(\partial_A)$ is not homogeneous, and the Lie algebra $\mathfrak{h}(A)$ is not graded. Here is a concrete example, extracted from [5].
Example 1. Let A be the exterior algebra on generators x, y in degree 1, endowed with the differential given by $dx = 0$ and $dy = y \wedge x$, and let \mathfrak{so}_2 be the Borel subalgebra of \mathfrak{so}_2. Then $h(A) \cong \mathfrak{so}_2$, as (ungraded) Lie algebras.

The next lemma (see [5, §4] for details) identifies the set of flat, \mathfrak{g}-valued connections on a cdga (A, d) with the set of Lie algebra morphisms from the holonomy Lie algebra of (A, d) to \mathfrak{g}.

Lemma 1. The canonical isomorphism $A^1 \otimes \mathfrak{g} \cong \text{Hom}(A_1, \mathfrak{g})$ restricts to isomorphisms $\mathcal{F}(A, \mathfrak{g}) \cong \text{Hom}_{\text{Lie}}((h(A), \mathfrak{g})$ and $\mathcal{F}^1(A, \mathfrak{g}) \cong \text{Hom}_{\text{Lie}}^1((h(A), \mathfrak{g})$.

Here, $\text{Hom}_{\text{Lie}}^1((h(A), \mathfrak{g})$ denotes the subset of Lie algebra morphisms with at most 1-dimensional image.

3 Resonance varieties

In this section, we recall the definition of the Aomoto complexes associated to a cdga (A, d) and a representation of a Lie algebra \mathfrak{g}, as well as the resonance varieties associated to these data, following the approach from [3, 2, 5].

3.1 Twisted differentials

Let $\theta: \mathfrak{g} \to \text{gl}(V)$ be a representation of our Lie algebra \mathfrak{g} in a finite-dimensional, non-zero \mathbb{C}-vector space V. For each flat connection $\omega \in \mathcal{F}(A, \mathfrak{g})$, we make $A \otimes V$ into a cochain complex,

$$(A \otimes V, d_\omega): A^0 \otimes V \xrightarrow{d_\omega} A^1 \otimes V \xrightarrow{d_\omega} A^2 \otimes V \xrightarrow{d_\omega} \cdots,$$

using as differential the covariant derivative

$$d_\omega = d \otimes \text{id}_V + \text{ad}_\omega,$$

where ad_ω is defined via the Lie semi-direct product $V \rtimes_\theta \mathfrak{g}$. The flatness condition insures that $d_\omega^2 = 0$. In coordinates, if $\omega = \sum_j \eta_j \otimes x_j$, then

$$d_\omega(\alpha \otimes v) = d\alpha \otimes v + \sum_j \eta_j \alpha \otimes \theta(x_j)(v),$$

for all $\alpha \in A$ and $v \in V$.

It is readily seen that the multiplication map

$$\mu: (A, d) \otimes (A \otimes V, d_\omega) \to (A \otimes V, d_\omega), \quad a \otimes (b \otimes v) \mapsto ab \otimes v$$
defines the structure of a differential A-module on the Aomoto complex $(A^* \otimes V, d)$. In particular, the graded vector space $H^*(A \otimes V, d)$ is, in fact, a graded module over the ring $H^*(A)$.

3.2 Resonance varieties of a cdga

Associated to the above data are the resonance varieties

$$R^i_m(A, \theta) = \{ \omega \in \mathcal{F}(A, \mathfrak{g}) \mid \dim_{\mathbb{C}} H^i(A \otimes V, d) \geq m \}. \tag{9}$$

If \mathfrak{g} is finite-dimensional, the sets $R^i_m(A, \theta)$ are Zariski closed subsets of $\mathcal{F}(A, \mathfrak{g})$, for all $i \leq q$ and $m \geq 0$. In the case when $\mathfrak{g} = \mathbb{C}$ and $\theta = \text{id}_{\mathbb{C}}$, we will simply write $R^i_m(A)$ for these varieties, viewed as algebraic subsets of $H^1(A)$. Clearly,

$$0 \in R^i_1(A, \theta) \iff 0 \in R^i_1(A) \iff H^i(A) \neq 0. \tag{10}$$

When $d = 0$, the varieties $R^i_m(A)$ are homogeneous subsets of A^1. This happens in the classical case, when X is a path-connected space, and $A = H^*(X, \mathbb{C})$ is its cohomology algebra, endowed with the zero differential.

In general, though, the resonance varieties of a cdga are not homogeneous sets, even in the rank 1 case.

Example 2. Let (A, d) be the cdga from Example 1. Then $H^1(A) = \mathbb{C}$, while $R^1_1(A) = \{0, 1\}$.

Lemma 2. Let $\omega = \eta \otimes g \in \mathcal{F}^1(A, \mathfrak{g})$.

1. If $\omega \in R^i_1(A, \theta)$, then $A^i \neq 0$.
2. Suppose $A^i \neq 0$ and $d = 0$. Then $\omega \in R^i_1(A, \theta)$ if and only if either $\eta \in R^i_1(A)$ or $\det(\theta(g)) = 0$.

Proof. The first claim is clear. When $d = 0$, recall that the rank one resonance variety $R^1_1(A)$ is homogeneous. The second claim then follows from [5, Corollary 3.6].

3.3 Resonance varieties of a Lie algebra

Let \mathfrak{h} be a finitely generated Lie algebra, and let $\theta: \mathfrak{g} \to \text{gl}(V)$ be a representation of another Lie algebra. Associated to these data are the resonance varieties

$$R^i_m(\mathfrak{h}, \theta) = \{ \varphi \in \text{Hom}_{\text{Lie}}(\mathfrak{h}, \mathfrak{g}) \mid \dim_{\mathbb{C}} H^i(\mathfrak{h}, V_{\theta \varphi}) \geq m \}. \tag{11}$$
where \(V_{\theta \varphi} \) denotes the \(\mathbb{C} \)-vector space \(V \), viewed as a module over the enveloping algebra \(U(\mathfrak{h}) \) via the representation \(\theta \circ \varphi : \mathfrak{h} \rightarrow \mathfrak{gl}(V) \).

Now suppose \(\mathfrak{g} \) is finite-dimensional. Then the resonance varieties \(R^i_m(\mathfrak{h}, \theta) \) are Zariski-closed subsets of \(\text{Hom}_{\text{Lie}}(\mathfrak{h}, \mathfrak{g}) \), for all \(i \leq 1 \) and \(m \geq 0 \).

Lemma 3 ([5]). For each \(i \leq 1 \) and \(m \geq 0 \), the canonical isomorphism \(\mathcal{F}(\mathfrak{A}, \mathfrak{g}) \cong \text{Hom}_{\text{Lie}}(\mathfrak{h}(\mathfrak{A}), \mathfrak{g}) \) restricts to an isomorphism

\[
R^i_m(\mathfrak{A}, \theta) \cong R^i_m(\mathfrak{h}(\mathfrak{A}), \theta).
\]

Example 3. Let \(x_1, \ldots, x_n \) be a basis for \(\mathfrak{A}_1 \). Using Lemma 3 and [5, Lemma 2.3], we find that

\[
R^0_0(\mathfrak{h}(\mathfrak{A}), \theta) = \left\{ \varphi \in \text{Hom}_{\text{Lie}}(\mathfrak{h}(\mathfrak{A}), \mathfrak{g}) \mid \bigcap_{i=1}^n \ker(\theta \circ \varphi(x_i)) \neq 0 \right\}.
\]

4 Products

In this section, we study the way the various constructions outlined so far behave under (finite) product operations.

4.1 Holonomy Lie algebra and products

Let \((\mathfrak{A}, d)\) and \((\mathfrak{A}, \bar{d})\) be two cdga's. The tensor product of these two \(\mathbb{C} \)-vector spaces, \(\mathfrak{A} \otimes \mathfrak{A} \), is again a cdga, with grading \((\mathfrak{A} \otimes \mathfrak{A})^q = \bigoplus_{i+j=q} \mathfrak{A}_i \otimes \mathfrak{A}_j \), multiplication \((a \otimes \bar{a}) \cdot (b \otimes \bar{b}) = (-1)^{|a||b|}(ab \otimes \bar{a}\bar{b}) \), and differential \(D \) given on homogeneous elements by \(D(a \otimes \bar{a}) = da \otimes \bar{a} + (-1)^{|a|}a \otimes \bar{d}a \).

The definition is motivated by the cartesian product of spaces, in which case the Künneth formula gives an isomorphism

\[
(H^*(X \times \overline{Y}, \mathbb{C}), D = 0) \cong (H^*(X, \mathbb{C}), d = 0) \otimes (H^*(\overline{Y}, \mathbb{C}), \overline{D} = 0).
\]

In [3, §9], we gave a product formula for holonomy Lie algebras in the 1-formal case. We now extend this formula to cdga's with non-zero differential.

Proposition 1. Let \(\mathfrak{A} \) and \(\mathfrak{A} \) be two connected cdga's. Then the Lie algebra \(\mathfrak{h}(\mathfrak{A} \otimes \mathfrak{A}) \) is generated by \(\mathfrak{A}_1 \oplus \mathfrak{A}_1 \), subject to the relations \(\partial_\mathfrak{A}(\mathfrak{A}_2) = 0 \), \(\partial_{\overline{\mathfrak{A}}}(\mathfrak{A}_2) = 0 \), and \([\mathfrak{A}_1, \mathfrak{A}_1] = 0\).

Proof. By construction, \((\mathfrak{A} \otimes \mathfrak{A})^1 = \mathfrak{A}^1 \oplus \mathfrak{A}^1 \) and \((\mathfrak{A} \otimes \mathfrak{A})^2 = \mathfrak{A}^2 \oplus \mathfrak{A}^2 \oplus (\mathfrak{A}^1 \otimes \mathfrak{A}^1) \). Plainly, \(D^1 \) restricts to \(d^1 \) on \(\mathfrak{A}^1 \) and to \(\overline{d}^1 \) on \(\mathfrak{A}^1 \). It is readily seen that the multiplication map on \(\mathfrak{A} \otimes \mathfrak{A} \) restricts to the multiplication maps on
Non-abelian resonance: product and coproduct formulas

A\^1 \land A\^1 on \bar{A}\^1 \land \bar{A}\^1, respectively, and to the identity map on A\^1 \otimes \bar{A}\^1. By taking duals, we conclude that h(A \otimes \bar{A}) has the asserted presentation.

Corollary 1. The holonomy Lie algebra of a tensor product of cdga’s is isomorphic to the (categorical) product of the respective holonomy Lie algebras,

\[h(A \otimes \bar{A}) \cong h(A) \times h(\bar{A}). \]

4.2 Flat connections and products

Proposition 1 also yields a formula for the representation variety of a tensor product of cdga’s.

Corollary 2. For any Lie algebra g,

\[
\text{Hom}_{\text{Lie}}(h(A \otimes \bar{A}), g) = \{ (\varphi, \bar{\varphi}) \in \text{Hom}_{\text{Lie}}(h(A), g) \times \\
\text{Hom}_{\text{Lie}}(h(\bar{A}), g) \mid [[\varphi(x), \bar{\varphi}(\bar{x})] = 0, \forall(x, \bar{x}) \in A_1 \oplus \bar{A}_1 \}\}.
\]

Furthermore, if g is abelian, then

\[
\text{Hom}_{\text{Lie}}(h(A \otimes \bar{A}), g) = \text{Hom}_{\text{Lie}}(h(A), g) \times \text{Hom}_{\text{Lie}}(h(\bar{A}), g).
\]

For the simple Lie algebra \(\mathfrak{sl}_2 \) and its Borel subalgebra \(\mathfrak{so}_2 \), the above corollary can be made more explicit.

Corollary 3. If \(g = \mathfrak{sl}_2 \) or \(\mathfrak{so}_2 \), then

\[
\text{Hom}_{\text{Lie}}(h(A \otimes \bar{A}), g) = \{ 0 \} \times \text{Hom}_{\text{Lie}}(h(A), g) \cup \\
\text{Hom}_{\text{Lie}}(h(A), g) \times \{ 0 \} \cup \text{Hom}_{\text{Lie}}^1(h(A \otimes \bar{A}), g).
\]

Proof. The inclusion \(\supseteq \) is clear. To prove the reverse inclusion, fix bases \(\{ x_1, \ldots, x_n \} \) and \(\{ \bar{x}_1, \ldots, \bar{x}_m \} \) for \(A_1 \) and \(\bar{A}_1 \). Let \(\varphi : h(A \otimes \bar{A}) \to g \) be a morphism of Lie algebras, and suppose there are indices \(i \) and \(j \) such that \(\varphi(x_i) \neq 0 \) and \(\varphi(\bar{x}_j) \neq 0 \). We need to prove that the family \(\{ \varphi(x_1), \ldots, \varphi(x_n), \varphi(\bar{x}_1), \ldots, \varphi(\bar{x}_m) \} \) has rank 1.

We know from Corollary 2 that \([[\varphi(x_k), \varphi(\bar{x}_l)]] = 0 \), for all \(k \in [n] \) and \(l \in [m] \). Now note that, for any \(0 \neq g, h \in g \), the following holds: \([g, h] = 0 \) if and only if \(g = \lambda h \), for some \(\lambda \in \mathbb{C}^\times \). The desired conclusion is now immediate.
4.3 Resonance and products

We now turn to the jump loci of a tensor product of cdga’s. We start with a general upper bound for the depth 1 resonance varieties.

Theorem 1. For any representation \(\theta : \mathfrak{g} \to \mathfrak{gl}(V) \),

\[
\mathcal{R}_1^q(A \otimes \tilde{A}, \theta) \subseteq \left(\bigcup_{i \leq q} \mathcal{R}_1^i(A, \theta) \right) \times \left(\bigcup_{j \leq q} \mathcal{R}_1^j(\tilde{A}, \theta) \right) \cap \mathcal{F}(A \otimes \tilde{A}, \mathfrak{g}).
\]

Proof. By Lemma 1 and Corollary 2, every element \(\Omega \in \mathcal{F}(A \otimes \tilde{A}, \mathfrak{g}) \) can be written as \(\Omega = \omega + \tilde{\omega} \), for some \(\omega \in \mathcal{F}(A, \mathfrak{g}) \) and \(\tilde{\omega} \in \mathcal{F}(\tilde{A}, \mathfrak{g}) \). Setting up a first-quadrant double complex with \(E^{i,j}_0 = A^i \otimes \tilde{A}^j \otimes V \), horizontal differential \(d_\omega : E^{i,j}_0 \to E^{i+1,j}_0 \), and vertical differential \(d_{\tilde{\omega}} : E^{i,j}_0 \to E^{i,j+1}_0 \), we obtain spectral sequences starting at

\[
\text{hor } E^{i,j}_1 = H^i(A \otimes V, d_\omega) \otimes \tilde{A}^j \quad \text{and} \quad \text{vert } E^{i,j}_1 = A^i \otimes H^j(\tilde{A} \otimes V, d_{\tilde{\omega}}),
\]

respectively, and converging to \(H^{i+j}(A \otimes \tilde{A} \otimes V, d_{\Omega}) \). See (7).

Consequently, if either \(H^{\leq q}(A \otimes V, d_\omega) \) or \(H^{\leq q}(\tilde{A} \otimes V, d_{\tilde{\omega}}) \) vanishes, then \(H^q(A \otimes \tilde{A} \otimes V, d_{\Omega}) = 0 \). In view of definition (9), this completes the proof.

In general, the inclusion from Theorem 1 is strict. We illustrate this phenomenon with a simple example.

Example 4. Let \(A \) be the exterior algebra on a single generator in degree 1, let \(\mathfrak{g} = \mathfrak{gl}_2 \), and let \(\theta = \text{id}_\mathfrak{g} \). Using Example 3 and Corollary 2, we see that \(\mathcal{R}_1^0(A, \theta) = \{ (g, h) \in \mathfrak{gl}_2 \times \mathfrak{gl}_2 \mid \det(g) = 0 \} \), yet

\[
\mathcal{R}_1^0(A \otimes \tilde{A}, \theta) = \{ (g, h) \in \mathfrak{gl}_2 \times \mathfrak{gl}_2 \mid [g, h] = 0, \rank(g \mid h) < 2 \},
\]

which is a proper subset of \((\mathcal{R}_1^0(A, \theta) \times \mathcal{R}_1^0(\tilde{A}, \theta)) \cap \mathcal{F}(A \otimes A, \mathfrak{g}) \).

4.4 Product formulas for resonance

Under certain additional hypotheses, the upper bound from Theorem 1 may be improved to an equality. First, as shown in [6, Proposition 13.1], such an equality holds in the formal, rank 1 case.

Proposition 2 ([6]). Assume both \(A \) and \(\tilde{A} \) have zero differential. Then

\[
\mathcal{R}_1^q(A \otimes \tilde{A}) = \bigcup_{i+j=q} \mathcal{R}_1^i(A) \times \mathcal{R}_1^j(\tilde{A}).
\]

Using this result, we now show that an analogous resonance formula holds for the non-abelian Lie algebras \(\mathfrak{sl}_2 \) and \(\mathfrak{so}_2 \).
Therefore, \(\eta \) and \(\bar{\eta} \) done. Otherwise, Proposition 2 implies that \(\eta \) then we must have claimed.

2. Consequently, \(H \) that \(\eta \)

5 Coproducts

In this final section, we study the way our various constructions behave under (finite) coproducts.

5.1 Holonomy Lie algebras and coproducts

Let \(A = (A^*, d) \) and \(\bar{A} = (\bar{A}^*, \bar{d}) \) be two connected cdga’s. Their wedge sum, \(A \vee \bar{A} \), is a new connected cdga, whose underlying graded vector space in
positive degrees is $A^+ \oplus \bar{A}^+$, with multiplication $(a, \bar{a}) \cdot (b, \bar{b}) = (ab, \bar{a}b)$, and differential $D = d + \bar{d}$.

The definition is motivated by the wedge operation on pointed spaces, in which case we have a well-known isomorphism

$$(H^*(X \vee \bar{X}), D = 0) \cong (H^*(X), d = 0) \vee (H^*(\bar{X}), \bar{d} = 0).$$

We now extend the coproduct formula for 1-formal spaces from [3, §9], as follows.

Proposition 3. The holonomy Lie algebra $h(A \vee \bar{A})$ is generated by $A_1 \oplus \bar{A}_1$, with relations $\partial A_2 = 0$ and $\partial \bar{A}_2 = 0$.

Proof. By construction, $(A \vee \bar{A})^1 = A^1 \oplus \bar{A}^1$, $(A \vee \bar{A})^2 = A^2 \oplus \bar{A}^2$, and $D^1 = d^1 \oplus \bar{d}^1$. Moreover, the multiplication map on $A \vee \bar{A}$ restricts to the multiplication maps on $A^1 \wedge A^1$ and $\bar{A}^1 \wedge \bar{A}^1$, respectively, and is zero when restricted to $A^1 \otimes \bar{A}^1$. The conclusion follows at once.

Corollary 4. The holonomy Lie algebra of a wedge sum of cdga’s is isomorphic to the (categorical) coproduct of the respective holonomy Lie algebras,

$$h(A \vee \bar{A}) \cong h(A) \coprod h(\bar{A}).$$

5.2 Resonance and coproducts

As shown in [6, Proposition 13.3], the classical resonance varieties behave nicely with respect to wedges of spaces. Let us recall this result, in a form adapted to our purposes.

Proposition 4 ([6]). Assume both A and \bar{A} have zero differential. Then, for all $i > 1$,

$$R^i_1(A \vee \bar{A}) = R^i_1(A) \times H^1(\bar{A}) \cup H^1(A) \times R^i_1(\bar{A}).$$

If, moreover, $b_1(A) > 0$ and $b_1(\bar{A}) > 0$, then

$$R^i_1(A \vee \bar{A}) = H^1(A) \times H^1(\bar{A}).$$

Our goal for the rest of this section will be to extend the above proposition to the non-abelian setting, for cdga’s with non-zero differential. To that end, let \mathfrak{g} be a Lie algebra, and let $\omega \in A^1 \otimes \mathfrak{g}$ and $\bar{\omega} \in \bar{A}^1 \otimes \mathfrak{g}$. Set $\Omega = \omega + \bar{\omega} \in (A \vee \bar{A})^1 \otimes \mathfrak{g}$.

Lemma 4. Ω is a flat connection if and only if both ω and $\bar{\omega}$ are flat.

Proof. By definition of multiplication in $A \vee \bar{A}$, we have that $a \cdot \bar{a} = 0$ for every $a \in A^+$ and $\bar{a} \in \bar{A}^+$. Hence, $[\omega, \bar{\omega}] = 0$, and the conclusion follows.
Now let \(\theta : g \to \mathfrak{gl}(V) \) be a representation. Given an element \(\omega \in F(A, g) \), we write \(Z^i_\omega = \ker(d_\omega: A^i \otimes V \to A^{i+1} \otimes V) \) and \(B^i_\omega = \text{im}(d_\omega: A^{i-1} \otimes V \to A^i \otimes V) \), and set \(H^i_\omega = Z^i_\omega/B^i_\omega \).

Lemma 5. For \(i > 0 \),
\[
d^i_\Omega = d^i_\omega \oplus d^i_\bar{\omega} : (A^i \otimes V) \oplus (\bar{A}^i \otimes V) \longrightarrow (A^{i+1} \otimes V) \oplus (\bar{A}^{i+1} \otimes V),
\]
while for \(i = 0 \)
\[
d^0_\Omega = (d^0_\omega, d^0_\bar{\omega}) : (A \vee \bar{A})^0 \otimes V \cong V \longrightarrow (A^1 \otimes V) \oplus (\bar{A}^1 \otimes V).
\]

Proof. Both claims follow from (7) and the construction of \(A \vee \bar{A} \), by straightforward direct computation.

Corollary 5. For each \(i > 1 \) and for any representation \(\theta : g \to \mathfrak{gl}(V) \),
\[
\mathcal{R}^i_\Omega(A \vee \bar{A}, \theta) = \mathcal{R}^i_\Omega(A, \theta) \times F(A, g) \cup F(A, g) \times \mathcal{R}^i_\Omega(\bar{A}, \theta).
\]

Proof. By Lemma 5, \(H^i_\Omega \cong H^i_\omega \oplus H^i_\bar{\omega} \). Using this isomorphism, the desired conclusion follows from Lemma 4.

5.3 A coproduct formula for degree 1 resonance

To conclude, we compute the degree 1 resonance variety of a wedge sum, \(\mathcal{R}^1_\Omega(A \vee \bar{A}, \theta) \). We start with two lemmas.

Lemma 6. There is a surjective homomorphism
\[
H^1((A \vee \bar{A}) \otimes V, d_\Omega) \overset{\Phi}{\longrightarrow} H^1(A \otimes V, d_\omega) \oplus H^1(\bar{A} \otimes V, d_{\bar{\omega}}),
\]
whose kernel is isomorphic to \((B^1_\omega + B^1_{\bar{\omega}})/\text{im}((d^0_\omega + d^0_{\bar{\omega}}) \circ \Delta) \), where \(\Delta : V \to V \oplus V \) is the diagonal map.

Proof. Follows from Lemma 5.

Lemma 7. The homomorphism \(\Phi \) is injective if and only if \(V = Z^0_\omega + Z^0_{\bar{\omega}} \).

Proof. Start by noting that \(V \oplus V = \text{im}(\Delta) \oplus (V \times 0) \). A standard linear algebra argument, then, finishes the proof.

Theorem 3. Suppose both \(b_1(A) \) and \(b_1(\bar{A}) \) are positive, and at least one of them is greater than 1. Then, for any representation \(\theta : g \to \mathfrak{gl}(V) \),
\[
\mathcal{R}^1_\Omega(A \vee \bar{A}, \theta) = F(A \vee \bar{A}, g).
\]
Proof. Set $r = \dim V$. Using our hypothesis, we may assume that $b_1(A) > 1$ and $b_1(\bar{A}) \geq 1$. Supposing $H^1_{\Omega} = 0$ for some $\Omega = \omega + \bar{\omega} \in F(A \lor \bar{A}, g)$, we derive a contradiction, as follows.

Lemma 6 implies that $Z^1_\omega = B^1_\omega$ and $Z^1_{\bar{\omega}} = B^1_{\bar{\omega}}$. Furthermore, the discussion from §3.1 shows that $Z^1(A) \otimes Z^0_\omega \subseteq Z^1_\omega$ and $Z^1(\bar{A}) \otimes Z^0_{\bar{\omega}} \subseteq Z^1_{\bar{\omega}}$. Hence,

$$r - \dim Z^0_\omega = \dim B^1_\omega = \dim Z^1_\omega \geq b_1(A) \cdot \dim Z^0_\omega,$$

and so $\dim Z^0_\omega \leq r/(b_1(A) + 1) < r/2$. Similarly, $\dim Z^0_{\bar{\omega}} \leq r/2$.

Using again Lemma 6, we deduce that Φ must be injective. By Lemma 7,

$$r = \dim(Z^0_\omega + Z^0_{\bar{\omega}}) \leq \dim Z^0_\omega + \dim Z^0_{\bar{\omega}} < r,$$

a contradiction.

Acknowledgements This work was started while the two authors visited the Max Planck Institute for Mathematics in Bonn in April–May 2012. The work was pursued while the second author visited the Institute of Mathematics of the Romanian Academy in June, 2012 and June, 2013, and MPIM Bonn in September–October 2013. Thanks are due to both institutions for their hospitality, support, and excellent research atmosphere.

References

1. K.-T. Chen, *Extension of C^∞ function algebra by integrals and Malcev completion of π_1*, Adv. in Math. 23 (1977), 181–210.
2. A. Dimca, S. Papadima, *Nonabelian cohomology jump loci from an analytic viewpoint*, to appear in Communications in Contemporary Mathematics, available at arXiv:1206.3773v3.
3. A. Dimca, S. Papadima, A. Suciu, *Topology and geometry of cohomology jump loci*, Duke Math. Journal 148 (2009), no. 3, 405–457.
4. W. Goldman, J. Millson, *The deformation theory of representations of fundamental groups of compact Kähler manifolds*, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96.
5. A. Măcinic, S. Papadima, R. Popescu, A. Suciu, *Flat connections and resonance varieties: from rank one to higher ranks*, preprint arXiv:1312.1439v1.
6. S. Papadima, A. Suciu, *Bieri–Neumann–Strebel–Renz invariants and homology jumping loci*, Proc. London Math. Soc. 100 (2010), no. 3, 795–834.
7. S. Papadima, A. Suciu, *Jump loci in the equivariant spectral sequence*, preprint arXiv:1302.4075v2.