Exploring the electromagnetic information of metasurfaces

Tsai, Din-Ping

Published in:
National Science Review

Published: 01/12/2020

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1093/nsr/nwaa237

Publication details:
Tsai, D-P. (2020). Exploring the electromagnetic information of metasurfaces. National Science Review, 7(12), 1845-1846. Advance online publication. https://doi.org/10.1093/nsr/nwaa237

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 07/12/2023
Towards two-dimensional room temperature multiferroics

Hongjun Xiang

Multiferroic materials with coupled ferroelectricity (FE) and magnetism have long been sought for novel memory devices [1–3]. The co-existence of FE and magnetism is rare in nature, which can be attributed to their mutual exclusive origins (empty d shell for conventional ferroelectric order and partially filled d shell for magnetic order). Moreover, magnetoelectric (ME) coupling is weak in type-I multiferroics with FE and magnetism arising respectively from different mechanisms, while for type-II multiferroics with FE induced by magnetic ordering, their low spin-driven ferroelectric polarizations (mostly <0.01 C/m²) and Curie temperature (mostly <150 K) hinder their practical applications [4,5]. To date, almost all synthesized magnetoelectric multiferroics have been three-dimensional.

In a recent work, Zhong et al. [6] instead focused on 2D ferroelectrics [7] and predicted a room temperature multiferroic with a desirable co-existence of ferromagnetism (FM) and FE and strong magnetoelectric coupling. To be more specific, they investigated 2D thin-layer CuCrX₂ (X = S or Se). The Curie temperatures of FM and FE were both above room temperature, where the FM is stabilized by enhanced carrier density and polarization-driven orbital shifting. Moreover, the gradient of interlayer coupling parameter between adjacent layers gave rise to diversified types of magnetoelectric layers of different thicknesses. For example, tri-layer Cu-intercalated CrS₂, denoted as Cu₂(CrS₂)₃, is ferroelectric in-plane while ferrimagnetic vertically as shown in Fig. 1(a), with a net magnetization of 2.62 μB/f.u. For the ground state with polarization downward, the middle layer is antiferromagnetically coupled

![Figure 1](https://example.com/figure1.png)

Figure 1. Spin configurations and multiferroic switching for (a) Cu₂(CrS₂)₃ and (b) Cu₃(CrS₂)₄ thin films. Black and red arrows denote the directions of polarization and magnetization, respectively. Adapted from Fig. 4 of Ref. [6].
with the down layer while ferromagnetically coupled with the top layer; when the polarization is upwards, the magnetization of the middle layer will be reversed, ferromagnetically coupled with the down layer while antiferromagnetically coupled with the top layer. Hence FE switching should enable a 180-degree reversal of a considerable magnetization of 2.62 μB/f.u. The ground state for four-layer Cu-intercalated CrS2 denoted as Cu₃(CrS₂)₄ is shown in Fig. 1(b), where the upper two layers are ferromagnetically coupled while antiferromagnetically coupled with the two layers downwards. The net magnetization of 0.35 μB/f.u., which is much reduced, can also be reversed via polarization switching. The swapping of spin-up and spin-down channel in band structures during FE switching may result in a new type of ‘electrical writing + magnetic reading’ memory architecture.

The work by Zhong et al. [6] not only paves a new way to realize a room temperature ferromagnetic-ferroelectric multiferroic with strong magnetoelectric coupling [5,8,9], but may also stimulate more studies on multiferroicity in 2D systems. It remains to be seen whether the 2D multiferroic material or concept conveyed in this study can be experimentally confirmed or whether the predicted ME coupling can be confirmed in a more direct simulation of the FE switching process.

FUNDING

This work was supported by the National Natural Science Foundation of China (11825403 and 11991061), the Program for Professor of Special Appointment (Eastern Scholar) and the Qing Nian Bai Jian Program.

Conflict of interest statement. None declared.

Hongqiu Xiang 1,2,3

1 Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, China; 2 Collaborative Innovation Center of Advanced Microstructures, China and 3 Shanghai Qi Zhi Institute, China

E-mail: hxiang@fudan.edu.cn

Exploring the electromagnetic information of metasurfaces

Din-Ping Tsai

Metasurfaces, a 2D counterpart of metamaterials, are made of planar subwavelength-scale meta-atoms with designed distributions. The meta-atoms of a metasurface can be used to couple incident waves to free space with controllable amplitudes, phases and polarizations, yielding many novel photonic devices such as optical meta-lenses [1–4]. In recent years, with the bloom of information technologies, efforts have been made to braid metasurfaces with digital and information science, rendering the emergence of a digital-coding metasurface, field-programmable metasurface, information metasurface and intelligent metasurface [5–7].

In 2020, Prof. Tie Jun Cui and team members Haotian Wu, Guo Dong Bai, Shuo Liu, Xiang Wan and Qiang Cheng from Southeast University and Prof. Lianlin Li from Peking University brought new physical insights into metasurfaces from an information perspective [8]. In this work, the researchers built on the concept of observation information from the information optics [9] and developed a generalized theory to characterize the information of the digital-coding pattern (I₁) and the far-field pattern (I₂) of metasurfaces. Here, the far-field information (I₂) of a metasurface is defined as the entropy difference between the normalized radiation function and the uniformly distributed pattern. Subsequently, by leveraging the generalized uncertainty relation between two non-commuting observables [10], it is revealed that the upper bound of the far-field information is determined by the size of the meta-surface and the working frequency (Fig. 1).

As an important application, the researchers adopted the established far-field information to predict the upper limit of the number of orthogonal radiation states generated by the digital-coding metasurface, thus providing guidance for metasurface-based computational imaging, for which orthogonal...
radiation patterns are preferred for compressive-sensing imaging. They explored the information relation between the metasurface and the generated radiation pattern to determine the lower bound of metasurface size as well. Specifically, they demonstrated that, once the required radiation patterns are specified, the size of the metasurface must be larger than the value predicted by the proposed theory; otherwise, it would be impossible to realize the required radiation patterns no matter which design strategies are adopted.

More intriguingly, through investigating the information of a disordered-phase modulated metasurface (DPMM), the researchers found the information-invariance property of chaotic far-field patterns. That is to say, the far-field information of a DPMM is always equal to $1 - \gamma$ (where γ is the Euler’s constant, $\gamma \approx 0.5772$), which is independent of the size of the metasurface, the number of meta-atoms and the phase patterns. The obtained far-field information of a DPMM is close to zero and might be the theoretical lower bound, which indicates that DPMMs are preferred for stealth applications.

The proposed electromagnetic-information theory has considered both the digital world (digital-coding pattern) and the physical world (far-field pattern) and hence will have novel applications on new information theory for 5G and 6G wireless communications.

FUNDING

This work was supported by the Shenzhen Science and Technology Innovation Commission (SGDX2019081623281169).

Conflict of interest statement. None declared.

Din-Ping Tsai
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, China
E-mail: dinping.tsai@polyu.edu.hk

REFERENCES

1. Li L, Liu ZX and Ren XF et al. Science 2020; 368:1487–90.
2. Lin RJ, Su VC and Wang SM et al. Nat Nanotech 2019; 14:227–31.
3. Luo XG. Natl Sci Rev 2018; 5:137–8.
4. Kivshar Y. Natl Sci Rev 2018; 5:144–58.
5. Cui TJ, Qi MQ and Wan X et al. Light Sci Appl 2014; 3:e218.
6. Cui TJ. Natl Sci Rev 2018; 5:134–6.
7. Cui TJ, Li L and Liu S et al. iScience 2020; 23:101403.
8. Wu H, Bai GD and Liu S et al. Natl Sci Rev 2020; 7:561–71.
9. Yu FT. Entropy and Information Optics, 2nd edn. Boca Raton: CRC Press, 2017.
10. Bialynicki-Birula I and Mycielski J. Commun Math Phys 1975; 44:129–32.