Game theoretic analysis of a three-stage interconnected forward and reverse supply chain

Manojit Das¹ · Dipak Kumar Jana² · Shariful Alam¹

Received: 5 June 2021 / Accepted: 13 August 2021 / Published online: 8 September 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
The dynamic economic scenario of today ensures that industrial and environmental policies that contribute to greener supply chain are incorporated. This paper considers an interconnected three-stage forward and reverse supply chain, which provides green products to a green conscious market. The procurement of raw materials is responsible for the first stage of the supply chain; the second manufacturing/remanufacturing process; and the third stage of marketing the products to the consumer. There is one supplier, one manufacturer, and one retailer in the forward supply chain. New raw materials are used in this supply chain, and new products are manufactured and sold. There is also a market for remanufactured products, and in this market, the same retailer also sells remanufactured products. There is one collector, one remanufacturer, and one retailer in the reverse supply chain. From consumers, the collector collects used products, processes and sells the remanufacturable ones to the remanufacturer. If the raw materials supplied by the collector are not adequate to satisfy the demand, the remanufacturer purchases the remainder from the seller. Both the manufacturer and the remanufacturer use green manufacturing processes. Two models, namely centralized model and decentralized model, are formulated. A numerical example is taken to illustrate the two model and perform sensitivity analysis.

Keywords Supply chain management · Green supply chain · Green sensitive · Remanufacturing · Game theory

1 Introduction

Nowaday, humanity is under a wonderful danger due to speedy environmental deterioration, global warming, population density, rapid urbanization and additionally usage of environmental resources. So, many industries are giving a great deal significance to sustainability for the sake of existing and even for future generations. There are a number of
approaches reachable for sustainable improvement in exercise; one of the most effective seems to be green purchasing (Dubey et al., 2013; Kumar et al., 2012). In order to save resources and reduce the environmental impact, green purchasing has become highly essential (Luthra et al., 2016). Sekem is a well-known company which has a major emphasis on sustainability, and Sekem has emerged as a leading producer of organic foods in Egypt. From 2006 to 2011, the company experienced annual growth of 14%. Therefore, the integration of environmental and industrial strategies is now becoming extremely relevant. Although staying competitive in the business, companies also have to implement such plans to minimize negative impacts on the environment. However, if environmental conservation precautions are not taken nowadays, the cost of atmospheric emissions would, throughout the near future, rise even more, even contributing to an unlivable climate. In order to raise demand for green goods and services, this recognition has also impacted customers. As a result, companies are focusing hard to overcome the possible impacts of their products or services. There are many companies that introduce greening practices in their supply chains, Walmart, Dell, Toyota, Honda, Nestle, Coca-Cola, etc., for example (Bag et al., 2017). The above examples demonstrate that in both real life and literature, management of green supply chain (GSCM) is receiving a lot of attention nowadays. In multiple phases of forward and reverse supply chain management, GSCM combines environmental consideration, such as product design, supplier selection and partnership (Van Hoof & Thiell, 2014), manufacturing and remanufacturing processes, forward and reverse logistics (Liu et al., 2020) and management of end-of-life products (Srivastava, 2007). Even with that environmental point of view, economic and social dimensions are often taken into account, and at various levels of supply chain management, it seeks to combine all three aspects (Hart, 1997).

There have been few studies that look at forward as well as reverse supply chains with various connectivity. As far as we know it’s the first analysis of an interconnected forward as well as reverse green supply chain comprising three stages, five participants, and five links. The responses to the relevant research questions are analyzed throughout this study. When does the greening level of a product in a supply chain increase or decrease? Which system possesses the maximum level of product greening? Which system seems to be more affordable to customers? Which system seems to have the maximum demand for the product? When does the product’s demand increase or decrease? Which system significantly increases the amount of profit for the entire supply chain? How is the supply chain able to succeed both economically and ecologically?

The research issue in this work is based on green procurement strategies both forward and reverse and is motivated by such examples already given. Companies in a supply chain work collaboratively with the other participants to focus on making the supply chains more environment friendly and sustainable. A centralised supply chain is one that has an only one decision maker that keeps trying to optimise the entire structure. However, when every individual with this same supply chain wants to consider optimising its own framework, the system is said to be decentralized. In most instances, the members in a supply chain possess competing objectives. As a result, when a member only possesses her strategy, she will respond individually rather than the optimal for the entire supply chain. This study analyzes an interconnected three-stage supply chain forward as well as reverse, which delivers green products to the market of green awareness. The procurement of raw materials is liable for the first stage of the supply chain; the second stage of manufacturing/remanufacturing; as well as the third stage of the marketing of products to the consumer. There is one supplier, one manufacturer, and one retailer in the forward supply chain. New raw materials are used in this supply chain, and new goods are manufactured and sold.
There has also been a demand for remanufactured products and even the same retailer also sells remanufactured products on this market. There is one collector, one remanufacturer, and one retailer in the reverse supply chain. From consumers, the collector stores the products used, processes and delivers to the remanufacturer the re-manufacturable items. Even when the raw materials provided by the collector are not adequate to satisfy the requirement, the remanufacturer purchases the remainder from the seller. Green manufacturing techniques are used by both the manufacturer and the remanufacturer.

The remaining part of this paper is as follows: Three distinct sources of research paper are reviewed in Sect. 2. In Sect. 3, two models, namely centralized model and decentralized model, are formulated, and the solutions obtained from the two models (centralized and decentralized) are compared. In Sect. 4, a numerical example is taken to illustrate the two models and perform sensitivity analysis. Conclusion and recommendations for future research are presented in Sect. 5.

2 Literature review

In this segment, we are going to review the various literature in consideration of three distinct sources of research paper: reverse supply chain, Stackelberg game, and sustainable development in supply chain.

2.1 The literature on reverse supply chain

Throughout the last three decades, supply chain management (SCM) has gained considerable interest from both corporate and academic research. Almost all of the SCM paper focuses upon on forward movement and conversion of products from manufacturers to end users. However, there has not been much interest in the reverse transport of resources from customers to upstream manufacturers. Reverse flow management is an extension to conventional supply chains of reused goods or services that either return to or being discarded by reprocessing companies. Management of the reverse supply chain (RSCM) is identified as the proper management of the sequence of processes needed to acquire and distribute goods from a customer or to regain value. Prahinski and Kocabasoglu (2006) have shown managers can enhance productivity improvements, customer support, negotiation of contracts, product development, post market sales volume with after service through proper planning of the RSC. In recent decades, significant attention has been given to return of products, reuse of products and obsolete products’ re-distribution due to growing environmental concern. Reverse logistics (RL) relating to the distribution operations regarding product returns have gained significant attention and many industries use it to support their customers as a marketing weapon and therefore can deliver significant revenues. Sasikumar and Kannan (2008) have analysed the RL studies and recommended a classification primarily focused on the issues with reverse distribution. The outcome of this study offers a deeper idea of RL and identifies several new approaches for advanced visualization research. de la Fuente et al. (2008) have investigated supply chain management as incorporated in organizations that operate with forward and reverse logistics simultaneously. They have investigated the processes involved, indicating that the IMSCM (Integrated Model for Supply Chain Management) integrated model requires new reverse logistics processes. Mokhtar et al. (2019) have analysed the role of supply chain management styles in the outcome measures of suppliers relevant to reverse processes. In addition, the mediating position in this relationship is explored by two governance
structures (i.e. trust and legal-legitimate power). The results of this studies are explained using systemic equation designing from 190 Malaysian manufacturing companies. The article demonstrated that change and transactional leadership are relevant and constructive contributors to the reverse higher level of performance of suppliers; trust and power initiate these interactions dramatically. Doan et al. (2019) have shown that in developing countries, product flow amounts to reverse supply chain (RSC) facilities, and also other parameters, are uncertain and vague. In this research, a fuzzy approach to address all ambiguous parameters to help electronics enterprises set up more powerful RSCs. In order, to make it more systematic, risk factors are implemented into the model. Gorji et al. (2020) have considered a supply chain including an end-of-life vehicles (ELV) take-back centre, an inspection centre, and a repair centre. Three decision variables seem to be the purchase price of the ELVs, the sales price of the repaired vehicle and the reconstructed level of vehicle. The influence of government subsidies on stability values of its choice variables of the centres in the supply chain of the ELV was evaluated in different scenarios using the game theory technique. Taleizadeh and Sadeghi (2019) have considered two accumulating reverse supply chains which contains one retailer and one manufacturer. One of these chains aims to accelerate the collection process and achieve greater market share through the use of direct and conventional networks. One of the others only uses the conventional channel. To obtain the optimal channels rewards, they have applied three game theory structures, and using numerical analysis, the outcomes of the decision variables as well as the profit function of its participants are compared throughout all three structures.

2.2 The literature on Stackelberg game

Dastidar (2004) put together all the traditional results of Stackelberg quantity games in a homogeneous product party system with concave demand and purely convex costs. They include some new results with Stackelberg price games and compare the equilibrium structure of the quantity games with the price games. Yang and Zhou (2006) have considered the price and quantity preferences of a two-stage system with a manufacturer who provides two successful retailers with a single commodity. They have assumed a Stackelberg structure, wherein the manufacturer functioning as a leader specifies its wholesale price to every retailers and retailers operating like followers individually set their selling prices and corresponding inventory levels under the price structure of the manufacturer. Almehdawe and Mantin (2010) have constructed a model in which the inventory system is controlled by the Stackelberg game under two scenarios. In this system, the supply chain is composed of a single manufacturer and many retailers. They implement the conventional approach in which the manufacturer is the dominant participant in the supply chain, followed by retailers. Include a game-theoretical model consists of three stages (Sheu & Chen, 2012) have analysed the impact of governmental financial interference on rivalry in sustainable development. For government and chain member decisions, they formulated Nash equilibrium solutions. Huang et al. (2013) discuss optimal closed-loop supply chain (CLSC) strategies for two separate recycling streams. In the forward supply chain, the manufacturer sells products via the retailer and the retailer as well as a third party compete to collect used products in the reverse supply chain. With the approach of game theory, they interpret the efficiency of the supply chain function of pricing choices and recycling methods in both of the decentralized and centralized cases. Li and Chen (2018) have considered a retailer’s Stackelberg supply chain and developed a model with the approach of game theory. By introducing a comparatively overall market demand feature, Chaab and
Rasti-Barzoki (2016) analyse supply chain management through cooperative advertising and pricing. They have explained four potential game scenarios, consisting of the nash, retailer Stackelberg, manufacturer Stackelberg, and cooperative games.

2.3 The literature on sustainable development

Green supply chain management has been recognized as an important management style for reducing environmental problems. Using an interpretive structural modelling (ISM) system, Diabat and Govindan (2011) have considered a model of the drivers influencing the effectiveness of green supply chain management. Awan et al. (2018) have investigated the influence of ambidextrous power structure on the connection for both contract management and relational management in terms of social sustainable development. According to this research, ambidextrous decision making and contractual management practices meet the demands of industrial companies while also serving as a way of enhancing sustainable development. Focused on literature and consultations from the GSM with industry leaders, the numerous generators of green supply chain management (GSCM) are described. Li et al. (2016) have considered a dual-channel supply chain in which the manufacturer produces green goods that become eco-friendly. Both for centralized and decentralized scenarios, while using Stackelberg control strategy, they have investigated the pricing and greening strategies for the chain members. In the development of effective supply chain networks, Nagurney and Nagurney (2010) have constructed a comprehensive analysis and research model. They have considered a company involved in evaluating the capacities of its various supply chain operations, i.e. the manufacturing, storage and transport of the commodity to the locations of demand. Golroudbary et al. (2019) have demonstrated that logistic control is a crucial issue for industrial companies. This study demonstrates how to integrate two simulation methodologies to construct a structure in new ways, resulting in a system which is effective for logistics services. The research design provides decision-makers with such an alternative method of managing logistics. The natural ecosystem has a subdiscipline called industrial ecology. The goals of industrial ecology are to reconstruct its industrial ecosystem in terms of controlling and developing straight to closed-loop commercial manufacturing and consumption processes. Awan (2020) has shown that industrial ecology highlights the importance of an idea generation approach in decision-making, considering resource utilisation in approaches that indicate systemic limitations. The suggested research could help to clarify the procedure of promoting and reinforcing industrial ecology in business firms, as well as the processes in which enterprises in systems can realise social, environmental and financial advantages. The company is considered to have been a decision-maker with multiple requirements who not only seeks to minimize the overall costs associated with design/construction and service, but also to minimize the generated emissions. The reduction of carbon emissions is a hot issue for environmental protection, and the implementation of limits is considered an appropriate way to improve the environment. Sustainable products indicate, as per practical world standards, that the manufacturing processes encourage the impact on carbon emissions and actually respond to consumer demand. Dong et al. (2016) have studied sustainable investment in sustainable goods with awareness of pollution control for decentralized and centralized supply chains. Using the innovative valence theory (VT) approach, Dhir et al. (2021) have examined how customers consider their choices for recycling e-waste. The research results have significant importance for decision-makers, governments, and academics interested in understanding more about consumer attitudes toward e-waste.
recycling. Within this dual supply chain with three echelons comprising one collector, one recycler, and one manufacturer, Jafari et al. (2017) have considered the waste recycling process. The game-theoretical models are developed among the members under its different power structures. Then, the solutions of equilibrium are derived, and different leadership perspectives are identified. They have shown that the manufacturer gets a larger advantage when the collector and recycler have similar decision-making powers than when they make decisions with individuals who have different powers. In the case of environmental contamination, prevention seems preferable to cure. Awan et al. (2019) have explained that industrial enterprises should consider zero-pollution choice criteria and environmentally friendly material handling as significant marketing tactics. Making the supply chain of a greener product, Ghosh et al. (2021) have formulated an organized structure on the advanced payment policy of the manufacturer and the retailer’s trade credit facility. They have proposed a model that enhances the sales effort of the retailer, the wholesale price required by the manufacturer, the green procurement level, and also the retailers’ selling price.

3 Model formulation

In this paper, we consider a three-stage interconnected supply chain in both directions (forward and reverse), wherein green products, both new as well as remanufactured are shipped to the marketplace. Figure 1 represents the three-stage interconnected forward and reverse supply chain. We have used some notation throughout the paper which are given in the Table 1. In the forward flow, the supply chain is composed of a single raw material supplier, a single manufacturer, and a single retailer. At a unit price of c_1, new raw materials are purchased and processed by the supplier and sold at such unit price of s_1 to the manufacturer. The manufacturer produces new product using green manufacturing process with a greening level of θ_1, where $\theta_1 \geq 0$. The manufacturer takes an increasing quadratic function $I\theta^2_2$ as the green investment cost, where the green investment parameter is I and $I > 0$. Compared with green investment costs, all other production costs are
ignored. At such wholesale price per unit of w_1, the manufacturer sells new products to the retailer; then, the retailer sells the new products to the customers at a price of p_1 per unit.

In the reverse supply chain, the retailer also sells remanufactured products to the same market. In the reverse flow, the supply chain is composed of a single collector, a single remanufacturer, and a single retailer. From customers, used products are collected by the collector and processed at a unit cost c_2 and it is sold at such a price per unit s_2 to the remanufacturer. The probability to meet the demand of the raw materials of the remanufacturer supplied by the collector is β, where $0 < \beta \leq 1$. If the collector is unable to satisfy the remanufacturer’s requirement, the remanufacturer purchases the remainder from the seller at such price per unit of s_1. Then, the probability of buying raw materials from seller by the remanufacturer is $1 - \beta$. The remanufacturer produces product using green manufacturing process with a greening level of θ_2, where $\theta_2 \geq 0$. The remanufacturer takes an increasing quadratic function $I\theta_2^2$ as the green investment cost, where I indicates the parameter for green investment and $I > 0$. Compared with green investment costs, all other remanufacturing expenditures are ignored. At a wholesale price of w_2 per unit, the retailer purchases products from the remanufacturer; the remanufactured products are sold to the consumer at a price of p_2 per unit by the retailer.

Table 1 Model notation

Notations	Definition
Parameters	
a	Total market potential
b	Price sensitivity of consumer demand
d_1	Sensitivity of consumers to new product’s greening level
d_2	Sensitivity of consumers to remanufactured product’s greening level
c_1	The supplier’s unit cost
c_2	The collector’s unit cost
I	Green investment parameter
β	Probability of receiving adequate raw materials from the collector to satisfy the demand of the remanufacturer
Decision variables	
D_1	Demand in the market for new products
D_2	Demand in the market for remanufactured products
p_1	The retailer’s unit selling price for new products
p_2	The retailer’s unit selling price for remanufactured products
s_1	The supplier’s unit selling price
s_2	The collector’s unit selling price
w_1	Manufacturer’s unit wholesale price
w_2	Remanufacturer’s unit wholesale price
θ_1	Manufacturer’s greening level
θ_2	Remanufacturer’s greening level
Q	Total sales volume
π_R	Profits of the supply chain member, where R denotes retailer; M denotes manufacturer; RM denotes remanufacturer; S denotes supplier; and C denotes collector
π_{SC}	Profit of the entire supply chain
Market demand takes the following functional form:

\[D_j = a - bp_j + d_j \theta_j, \quad j = 1, 2. \]

(1)

where \(a \) (\(> 0 \)) is the total market potential, \(b \) (\(> 0 \)) is the price sensitivity of consumer demand. The consumer sensitivity to the greening level of new products is \(d_1 \), and the consumer sensitivity to the greening level of re-manufactured products is \(d_2 \) and \(d_j > 0 \) for \(j = 1, 2 \).

Some of assumptions in this paper are listed below:

1. It is expected that the reverse supply chain will have more positive impact than the forward supply chain on the environment. It is also believed that consumers are more susceptible than new products to the greening level of re-manufactured products, i.e. \(d_2 > d_1 \).

2. \(c_2 \leq c_1 \), i.e. the unit cost of the collector, is considered to be less than or equal to the seller’s unit cost.

3. To avoid the trivialities, the following assumptions are made throughout the paper.

 (i) \(2bl - d_1^2 \geq 0 \) to ensure that \(p_1 > 0 \)

 (ii) \(2bl - d_2^2 \geq 0 \) to ensure that \(p_2 > 0 \)

 (iii) \(a \geq bc_1 \) to ensure that \(\theta_1 \geq 0, \theta_2 \geq 0 \)

3.1 The centralized model

Let us consider maximizing the profit supply chain model with the retailer (R), the manufacturer (M), the remanufacturer (RM), the supplier (S), and the collector (C). Decision variables are the retailer’s unit sale rates for new and remanufactured products; and the greening levels of the manufacturer as well as remanufacturer. The supply chain members’ profit functions are as follows.

\[\pi_R(p_1, p_2) = (p_1 - w_1)D_1 + (p_2 - w_2)D_2 \]

(2)

\[\pi_M(\theta_1, w_1) = (w_1 - s_1)D_1 - I\theta_1^2 \]

(3)

\[\pi_{RM}(\theta_2, w_2) = (w_2 - \beta s_2 - (1 - \beta)s_1)D_2 - I\theta_2^2 \]

(4)

\[\pi_S(s_1) = (s_1 - c_1)(D_1 + (1 - \beta)D_2) \]

(5)

\[\pi_C(s_2) = (s_2 - c_2)\beta D_2 \]

(6)

Therefore, the entire supply chain’s (SC) profit function is

\[\pi_{SC}(p_1, p_2) = (p_1 - c_1)D_1 + (p_2 - \beta c_2 - (1 - \beta)c_1)D_2 - I(\theta_1^2 - \theta_2^2) \]

(7)

For maximizing the profit function of the overall supply chain given in Eq. (7), the unique global optimal solution is are as follows.

\[p_1^* = \frac{2al + c_1(2bl - d_1^2)}{4bl - d_1^2} \]

(8)
The optimal values of demands for the new products and remanufactured products are as follows.

\[D_1^* = \frac{2bl(a - bc_1)}{4bl - d_1^2} \] (12)

\[D_2^* = \frac{2bl(a - \beta bc_2 - (1 - \beta)bc_1)}{4bl - d_2^2} \] (13)

The optimal profit of the entire supply chain is given by,

\[\pi_{SC}^* = \frac{1}{2} \left[\frac{(a - bc_1)^2}{4bl - d_1^2} + \frac{(a - \beta bc_2 - (1 - \beta)bc_1)^2}{4bl - d_2^2} \right] \] (14)

Proof See 5.1 “Appendix 1”.

It is easy to understand from the solution that the manufacturer’s (remanufacturer’s) greening level and the retailer’s unit selling price for new (remanufactured) products increase, while customer sensitivity to the greening level of new as well as remanufactured products increases. Moreover, the demand for new (remanufactured) products increases, and the entire supply chain obtains greater profit as consumers become more receptive to new (remanufactured) product’s greening levels. Contrarily, if the price sensitivity of consumer demand and the green investment parameter increase, then the retailer’s selling price per unit for new (remanufactured) products, the demands of both products, the manufacturer’s (remanufacturer’s) greening level and the overall supply chain profit decrease. It turns out that the remanufacturer decides a higher greening level as the sufficiency of the collector to satisfy the demand of the remanufacturer rises, and the customers can purchase the remanufactured products for a cheaper price. As a consequence, the demand for remanufactured products increases and the entire supply chain obtains more profit.

3.2 The decentralized model

Each supply chain member tries to maximize their own profit in the decentralized model. Equations (2)–(6) are the profit functions of the retailer, the manufacturer, the remanufacturer, the supplier and the collector, respectively. Considering game theoretical approach, in the first stage, the supplier determines the selling prices of their unit to the manufacturer and the collector determines the selling prices of their unit to the remanufacturer at the same time, i.e. with the expectation of manufacturer’s action the supplier determines \(s_1 \) and collector determines \(s_2 \) in expectation of remanufacturer’s action. In the
second step, with the expectation of retailer’s actions the manufacturer and the remanufacturer determine their unit wholesale prices and greening levels simultaneously. The manufacturer determines greening levels and unit wholesale prices θ_1 and w_1; the remanufacturer determines greening levels and unit wholesale prices θ_2 and w_2. In the final step, the retailer decides the unit sale prices for new and remanufactured products, p_1 and p_2, respectively.

Using backward induction method, we have solved this model. After computing hessian matrix, we get retailer profit function as specified in Eq. (2) is strictly concave. We get the retailer’s best response functions by using first order conditions with respect to p_1 and p_2 simultaneously.

\[p_1^d(\theta_1, w_1) = \frac{a + d_1 \theta_1 + bw_1}{2b} \]
\[p_2^d(\theta_2, w_2) = \frac{a + d_2 \theta_2 + bw_2}{2b} \]
where superscript stands for the decentralised case.

Then, we substitute these values into the profit functions of the manufacturer and remanufacturer, which are given in Eqs. (3) and (4), respectively.

By computing hessian matrix we get, manufacturer’s profit function is strictly concave. Using first order conditions with respect to θ_1 and w_1 simultaneously, we get the best response functions of the manufacturer as follows:

\[\theta_1^d(s_1) = \frac{d_1(a - bs_1)}{8bI - d_1^2} \]
\[w_1^d(s_1) = \frac{4aI + s_1(4bI - d_1^2)}{8bI - d_1^2} \]
Similarly, remanufacturer’s profit function is strictly concave. Using first order conditions with respect to θ_2 and w_2 simultaneously, we get the best response functions of the remanufacturer as follows:

\[\theta_2^d(s_1, s_2) = \frac{d_2(a - \beta bs_2 - (1 - \beta)bs_1)}{8bI - d_2^2} \]
\[w_2^d(s_1, s_2) = \frac{4aI + (\beta s_2 + (1 - \beta)s_1)(4bI - d_2^2)}{8bI - d_2^2} \]
In the final step, we put the Eqs. (15)–(20) into the seller’s profit function given in Eq. (5) and Eqs. (16), (19), (20) into the collector’s profit function given in Eq. (6).

Similarly, we get seller’s and collector’s profit functions are concave. Using first order condition with respect to s_1 of Eq. (5) and first order condition with respect to s_2 of Eq. (6) simultaneously, we get

\[s_1^d = \frac{2(8bI - d_2^2)(a + bc_1) + (8bI - d_1^2)(1 - \beta)(a - \beta bc_2 + 2(1 - \beta)bc_1)}{b(4(8bI - d_2^2) + 3(8bI - d_1^2)(1 - \beta)^2)} \]
\[
s^d_2 = \frac{a + \beta bc_2 - (1 - \beta) \left[\frac{2(8bl - d^d_2)(a + bc_1) + (8bl - d^d_2)(1 - \beta)(a - \beta bc_2 + 2(1 - \beta)bc_1)}{4(8bl - d^d_2) + 3(8bl - d^d_2)(1 - \beta)^2} \right]}{2\beta b}
\] (22)

For the retailer, the manufacturer, the remanufacturer, the seller, and the collector, the unique global optimal solutions for decentralized models are as follows. The supplier and collector decide \(s^d_1 \) and \(s^d_2 \) according to Eqs. (20) and (21). After that the manufacturer determines \(\theta^d_1(s_1) \) and \(w^d_1(s_1) \) and the remanufacturer determines \(\theta^d_2(s_1, s_2) \) and \(w^d_2(s_1, s_2) \) according to Eqs. (17)–(20). In the end, retailer decides \(p^d_1(\theta_1, w_1) \) and \(p^d_2(\theta_2, w_2) \) according to Eqs. (15) and (16). The optimal values of demands for the new products and remanufactured products as follows.

\[
D^d_1 = \frac{2bl(a - bs^d_1)}{8bl - d^d_1}
\] (23)

\[
D^d_2 = \frac{2bl(a - b(\beta s^d_2 + (1 - \beta)s^d_1))}{8bl - d^d_2}
\] (24)

The optimal profit of the overall supply chain is

\[
\pi^d_{sc} = \frac{1}{2} \left(\frac{(a - bs_1)\psi_1}{(8bl - d^d_1)^2} + \frac{(a - \beta bs_2 - (1 - \beta)bs_1)\psi_2}{(8bl - d^d_2)^2} \right)
\] (25)

where

\[
\psi_1 = a(12bl - d^d_1) - 2bc_1(8bl - d^d_1)^2 + b(4bl - d^d_1)s_1
\]

\[
\psi_2 = a(12bl - d^d_2) - 2bc_1(8bl - d^d_2)(1 - \beta)
\]

\[
+ b(4bl - d^d_2)(s_1(1 - \beta) - (2c_2 - s_2)\beta) - 8b^2\beta c_2
\]

\textbf{Proof} \ See 5.1 “Appendix 2”.

In the forward supply chain, it can be noticed that \(c_1 \leq s^d_1 \leq w^d_1 \leq p^d_1 \). In a similar way in the reverse supply chain \(c^d_2 \leq s^d_2 \) and \(\beta s^d_2 + (1 - \beta)s^d_1 \leq w^d_2 \leq p^d_2 \), where \(\beta s^d_2 + (1 - \beta)s^d_1 \) is the purchasing price of the remanufacturer. \(\square \)

3.3 Comparison between the solutions of the centralized model and decentralized model

After obtaining centralized and decentralized solutions, comparing it gives the following observations:

1. The greening level of the manufacturer in the centralized solution is greater than or equal to the greening level in the decentralized solution, i.e. \(\theta^c_1 \geq \theta^d_1 \)

 \textbf{Proof}: \(c_1 \leq s^d_1 \Rightarrow a - bc_1 \geq a - bs^d_1 \) (Since \(b > 0 \))

 Since, \(4bl - d^d_1 < 8bl - d^d_1 \) and \(d^d_1 > 0 \)

 Therefore, \(\frac{d_1(a - bc_1)}{4bl - d^d_1} \geq \frac{d_1(a - bs^d_1)}{8bl - d^d_1} \) i.e. \(\theta^c_1 \geq \theta^d_1 \)

2. The greening level of the remanufacturer in the centralized solution is greater than or equal to the greening level in the decentralized solution, i.e. \(\theta^c_2 \geq \theta^d_2 \)

\(\copyright \) Springer
Proof: \(c_1 \leq s_1^d \text{ and } c_2 \leq s_2^d \Rightarrow a - \beta bc_2 - (1 - \beta)bc_1 \geq a - \beta bs_2^d - (1 - \beta)bs_1^d \) (Since \(b > 0 \))

Since, \(4bl - d_2^2 < 8bl - d_2^2 \) and \(d_2 > 0 \)

Therefore, \(\frac{d_2 \{a - bc_2(1 - \beta) - bc_1\}}{4bl - d_2^2} \geq \frac{d_2 \{a - bs_2^d(1 - \beta) - bs_1^d\}}{8bl - d_2^2} \) i.e. \(\theta_2^* \geq \theta_2^d \)

3. The unit selling price in the decentralized solution for the retailer’s new products is greater than or equal to the unit selling price in the centralized solution, i.e. \(p_1^d \geq p_1^* \)

Proof: \(p_1^* = \frac{2al + c_1 (2bl - d_1^2)}{4bl - d_1^2} \)

\(p_1^d = \frac{a + d_1 \theta_1^d + bn_1^d}{2b} \) where \(\theta_1^d = \frac{d_1 (a - bs_1^d)}{8bl - d_1^2} \) and \(w_1^d = \frac{4a + s_1^d (4bl - d_1^2)}{8bl - d_1^2} \)

Therefore,

\[
p_1^d = \frac{a + d_1 \frac{d_1 (a - bs_1^d)}{8bl - d_1^2} + b \frac{4a + s_1^d (4bl - d_1^2)}{8bl - d_1^2}}{2b} = \frac{6a + s_1^d (2bl - d_1^2)}{8bl - d_1^2}
\]

Now,

\[
p_1^d - p_1^* = \frac{6a + s_1^d (2bl - d_1^2)}{8bl - d_1^2} - \frac{2al + c_1 (2bl - d_1^2)}{4bl - d_1^2}
\]

\[
= \frac{(2bl - d_1^2) [4I(a - bc_1) + (s_1^d - c_1) (4bl - d_1^2)]}{(8bl - d_1^2) (4bl - d_1^2)}
\]

As \(2bl - d_1^2 \geq 0, a \geq bc_1 \) and \(s_1^d \geq c_1 \)

Therefore, \(p_1^d - p_1^* \geq 0, \) i.e. \(p_1^d \geq p_1^* \)

4. The unit selling price in the decentralized solution for the retailer’s remanufactured products is greater than or equal to the unit selling price in the centralized solution, i.e. \(p_2^d \geq p_2^* \)

Proof: \(p_2^* = \frac{2al + (bc_2 + (1 - \beta)c_1) (2bl - d_2^2)}{4bl - d_2^2} \)

\(p_2^d = \frac{a + d_1 \theta_2^d + bn_2^d}{2b} \) where, \(\theta_2^d = \frac{d_2 (a - bs_2^d(1 - \beta)bc_1)}{8bl - d_2^2} \) and \(w_2^d = \frac{4a + (bs_2^d + (1 - \beta)s_1^d) (4bl - d_2^2)}{8bl - d_2^2} \)

Therefore,

\[
p_2^d = \frac{a + \frac{d_2 (a - bs_2^d(1 - \beta)bc_1)}{8bl - d_2^2} + b \frac{4a + (bs_2^d + (1 - \beta)s_1^d) (4bl - d_2^2)}{8bl - d_2^2}}{2b} = \frac{6a + (bs_2^d + (1 - \beta)s_1^d) (2bl - d_2^2)}{8bl - d_2^2}
\]

Now,

\[
p_2^d - p_2^* = \frac{6a + (bs_2^d + (1 - \beta)s_1^d) (2bl - d_2^2)}{8bl - d_2^2} - \frac{2al + (bc_2 + (1 - \beta)c_1) (2bl - d_2^2)}{4bl - d_2^2}
\]

\[
= \frac{(2bl - d_2^2) [4I((a - bc_1) + \beta(c_1 - c_2)) + (\beta s_1^d - c_2) + (1 - \beta)(s_1^d - c_1) (4bl - d_2^2)]}{(8bl - d_2^2) (4bl - d_2^2)}
\]

As \(2bl - d_2^2 \geq 0, a \geq bc_1, c_2 \geq c_2, s_2^d \geq c_2 \) and \(s_1^d \geq c_1 \)

Therefore, \(p_2^d - p_2^* \geq 0 \) i.e. \(p_2^d \geq p_2^* \)

5. In the centralized solution, new product demand is greater than or equal to demand in the decentralized solution, i.e. \(D_1^* \geq D_1^d \)

\(\text{Springer} \)
Proof: $c_1 \leq s_1^d \Rightarrow a - bc_1 \geq a - bs_1^d$ (Since $b > 0$)

Since $4bI - d_1^2 < 8bI - d_2^2$, $b > 0, I > 0$

Therefore, $\frac{2bI(a - bc_1)}{4bI - d_1^2} \geq \frac{2bI(a - bc_1^d)}{8bI - d_2^2}$, i.e. $D_1^e \geq D_1^d$

6. In the centralized solution, remanufactured product demand is greater than or equal to demand in the decentralized solution, i.e. $D_2^c \geq D_2^d$

Proof: $D_2^c = \frac{2bI(a - \beta bc_2 - (1 - \beta)bc_1)}{4bI - d_2^2}$ and $D_2^d = \frac{2bI(a - \beta bs_2 - (1 - \beta)bs_1^d)}{8bI - d_2^2}$

Now,

$$D_2^c - D_2^d = \frac{2bI(a - \beta bc_2 - (1 - \beta)bc_1) - 2bI(a - \beta bs_2 - (1 - \beta)bs_1^d)}{8bI - d_2^2} = \frac{2b^2I[4I((a - bc_1) + \beta(c_1 - c_2)) + (\beta(s_2^d - c_2) + (1 - \beta)(s_1^d - c_1))(4bI - d_2^2)]}{(8bI - d_2^2)(4bI - d_2^2)}$$

As $2bI - d_2^2 \geq 0$, $a \geq bc_1, c \geq c_2$, $s_2^d \geq c_2$ and $s_1^d \geq c_1$

Therefore, $D_2^c - D_2^d \geq 0$, i.e. $D_2^c \geq D_2^d$

7. In the centralized solution, the profit of the entire supply chain is greater than or equal to the profit in the decentralized solution, i.e. $\pi_{SC}^* \geq \pi_{SC}^d$

Proof:

$$\pi_{SC}^* = I \left[\frac{(a - bc_1)^2}{4bI - d_1^2} + \frac{(a - \beta bc_2 - (1 - \beta)bc_1)^2}{4bI - d_2^2} \right]$$

$$\pi_{SC}^d = I \left[\frac{(a - bs_1)\psi_1}{(8bI - d_1^2)^2} + \frac{(a - \beta bs_2 - (1 - \beta)bs_1^d)\psi_2}{(8bI - d_2^2)^2} \right]$$

where

$$\psi_1 = a(12bI - d_1^2) - 2bc_1(8bI - d_1^2) + b(4bI - d_1^2)s_1$$

$$\psi_2 = a(12bI - d_2^2) - 2bc_1(8bI - d_2^2)(1 - \beta) + b((4bI - d_2^2)(s_1(1 - \beta) - (2c_2 - s_2)\beta)) - 8b^2I\beta c_2$$

Now,
\[\pi^*_{\text{SC}} - \pi^d_{\text{SC}} = I \left(\frac{(a - b c_1)^2}{4bl - d_z^2} + \frac{(a - b) c_2 - (1 - \beta) b c_1)^2}{4bl - d_z^2} \right) \]

\[- I \left(\frac{(a - b c_1)(a)(2bl - d_z^2) - 2bc_1(8bl - d_z^2) + b(4bl - d_z^2) (s_1)}{(8bl - d_z^2)^2} \right) \]

\[+ \frac{(a - b) c_2 - (1 - \beta) b c_1}{(8bl - d_z^2)^2} \times \frac{(a)(2bl - d_z^2) - 2bc_1(8bl - d_z^2)}{(8bl - d_z^2)^2} \]

\[(1 - \beta) + b((4bl - d_z^2)(s_1(1 - \beta) - (2c_2 - s_2)\beta)) - b^2fCfc_2 \]

\[= - (a - b c_1)^2 d_z^2 + \frac{2b(a - b c_1)f}{(4bl - d_z^2)^2} \left(-c_1 + \frac{c_2 - 2a - b c_1}{d_z^2} \right) \]

\[+ d_z^2 f(a - b c_1)^2 \left(\frac{8bl - d_z^2}{d_z^2} + \frac{2b(a - b c_1)(-1 + \beta - b c_1)^2}{(4bl - d_z^2)^2} \right) \]

\[+ d_z^2 f(a - b c_1)^2 \left(\frac{8bl - d_z^2}{d_z^2} + \frac{2b(a + b c_1)(-1 + \beta - b c_1)^2}{(4bl - d_z^2)^2} \right) \]

\[+ \frac{d_z^2 f(a - b c_1)^2}{(4bl - d_z^2)^2} \left(\frac{8bl - d_z^2}{d_z^2} + \frac{2b(a + b c_1)(-1 + \beta - b c_1)^2}{(4bl - d_z^2)^2} \right) \]

\[= I \left(\frac{(a - b c_1)^2}{(4bl - d_z^2)^2} + \frac{4b(a - b c_1)^2}{(4bl - d_z^2)^2} \right) \]

\[+ \frac{2b(a - b c_1)(a)(6sl + c_1(d_2 - 8bl) - d_z^2 + 2bl_1)}{(d_2 - 8bl)^2} \]

\[+ \frac{2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

\[+ \frac{2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

\[+ \frac{2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

\[+ \frac{(2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

\[+ \frac{(2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

\[+ \frac{(2b(a + b c_1)(a)(-1 + \beta - b c_1)^2}{(d_2 - 8bl)^2} \]

Since, \(4bl - d_z^2 > 0\) and \(4bl - d_z^2 > 0\)

Therefore, \(\pi^*_{\text{SC}} - \pi^d_{\text{SC}} \geq 0\), i.e. \(\pi^*_{\text{SC}} \geq \pi^d_{\text{SC}}\)
4 Results and discussion

In order to understand the outcomes, this section provides a numerical analysis. Sensitivity analysis is carried out for the profit functions of the members of the green supply chain, product’s greening level, unit selling price and market demand. The initial parameters are adjusted as follows: \(a = 200, b = 2.5, c_1 = 10, c_2 = 8, I = 40, \beta = 0.90, d_1 = 2 \) and \(d_2 = 3 \). The values of the initial parameters are changed for sensitivity analysis in such a way that all the assumptions are fulfilled in the paper. Table 2 represents the change in the level of greening and retailer selling prices w.r.t. % change of \(a, b, c_1, c_2, I \) and \(\beta \). Table 3

Parameter	% Change	\(\theta_1 \)	\(\theta_2 \)	\(p_1 \)	\(p_2 \)
\(a \)	-20	1.130430, 0.255732	1.75318, 0.377122	39.1304, 58.3739	38.8544, 58.591
	-10	1.30435, 0.295334	2.00726, 0.431436	43.3043, 65.5026	43.2102, 65.812
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.65217, 0.37454	2.51543, 0.540062	51.6522, 79.7601	51.9216, 80.254
	20	1.82609, 0.414143	2.76951, 0.594376	55.8261, 86.8889	56.2773, 87.475
\(b \)	-20	2.51811, 0.563935	3.36855, 0.708655	64.5595, 100.655	66.5003, 101.719
	-10	2.19165, 0.492712	3.01408, 0.434697	43.5591, 66.1082	43.327, 66.3818
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.31496, 0.298403	2.01408, 0.434697	43.5591, 66.1082	43.327, 66.3818
	20	1.17986, 0.268057	1.81103, 0.392453	40.3165, 60.6801	39.8462, 60.8546
\(c_1 \)	-20	1.53043, 0.34783	2.27659, 0.487592	46.3304, 72.3478	47.3472, 73.0065
	-10	1.50435, 0.341383	2.26897, 0.48667	46.9043, 72.4896	47.4566, 73.0198
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.45217, 0.328491	2.25372, 0.484828	48.0522, 72.7732	47.6752, 73.0462
	20	1.42609, 0.322045	2.2461, 0.483906	48.6261, 72.915	47.7845, 73.0594
\(c_2 \)	-20	1.47826, 0.334263	2.302, 0.495383	47.4783, 72.6462	46.9828, 72.8948
	-10	1.47826, 0.3346	2.28167, 0.490566	47.4783, 72.6388	47.2743, 72.9639
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.47826, 0.335274	2.24102, 0.480932	47.4783, 72.624	47.8574, 73.1021
	20	1.47826, 0.335612	2.22069, 0.476115	47.4783, 72.615	48.149, 73.1712
\(I \)	-20	1.86813, 0.420735	2.89095, 0.613693	47.8681, 72.7634	48.4473, 73.302
	-10	1.65049, 0.372965	2.53768, 0.542276	47.6505, 72.6899	47.9527, 73.1518
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.33858, 0.303946	2.03928, 0.439894	47.3386, 72.5837	47.255, 72.9366
	20	1.22302, 0.278204	1.85693, 0.40195	47.223, 72.5441	46.9997, 72.8568
\(\beta \)	-20	1.47826, 0.331612	2.24102, 0.435613	47.4783, 72.7045	47.8574, 73.7521
	-10	1.47826, 0.331352	2.25118, 0.460391	47.4783, 72.7103	47.7117, 73.3967
	0	1.47826, 0.334937	2.26134, 0.485749	47.4783, 72.6314	47.5659, 73.033
	10	1.47826, 0.342599	2.27151, 0.511047	47.4783, 72.4628	47.4201, 72.6701
	20	1.47826, 0.354352	2.28167, 0.535585	47.4783, 72.2042	47.2743, 72.3182
represents the change of greening levels and retailer selling prices w.r.t. % change of d_1 and d_2. The change of unit selling prices of manufacturer, remanufacturer, seller, collector and market demand for both new and remanufactured products w.r.t. % change of a, b, c_1, c_2, I and β are presented in Table 4. In Table 5, the change of unit selling prices of manufacturer, remanufacturer, seller, collector and market demand for both new and remanufactured products w.r.t. % change of d_1 and d_2 are presented. The change of different profit functions w.r.t. % change of d_1 and d_2 are presented. In Table 6, the change of different profit functions w.r.t. % change of d_1 and d_2 are presented. It’s in Figs. 2, 3, 4, 5, we investigate the influence of consumer sensitivity on the level of greening of new (remanufactured) products, the green investment parameter and the probability of receiving adequate raw materials from the collector for the profit of the entire supply chain. The findings indicate that in centralized as well as decentralized models, entire profit increases as customers have become more sensitive to the level of greening, entire profit increases as the probability that the collector will meet the demand of the remanufacturer increases, entire profit decreases as green investment wages increase. The importance of increasing profits for the centralized system seems to be effective, and the supply chain gains more profit in the centralized system. It’s in Fig. 6, we investigate the effect of sensitivity of the consumer to the green investment parameter on the manufacturer’s (remanufacturer’s) greening level. The findings indicate that in both centralized and decentralised systems, if the consumer demand price sensitivity and green investment parameter increase, the greening level of the manufacturer (remanufacturer) decreases. In addition, it is noticed that in both centralized and decentralized systems, remanufacturer determines a higher greening level than the manufacturer. In Fig. 7, the effect of sensitivity of the consumer to the green investment parameter on the manufacturer’s greening level is analysed. In Fig. 8, the effect of sensitivity of the consumer to the greening level of remanufactured products and green investment parameters on the remanufacturer’s greening level is analysed. In both cases, we observed that as consumer sensitivity to the greening level of new (remanufactured) products increases so does the manufacturer’s (remanufacturer’s) greening level and while the green investment parameter increases, the manufacturer’s (remanufacturer’s) greening level decreases. In all the above cases, the importance of increasing the greening level of manufacturer’s

Para.	θ_1	θ_2	p_1	p_2					
	C	D	C	D	C	D	C	D	
d_1	20	1.16438	0.265755	2.26134	0.485721	46.9315	72.4526	47.5659	73.0334
	10	1.31953	0.300136	2.26134	0.485734	47.1876	72.5366	47.5659	73.0332
	0	1.47826	0.334937	2.26134	0.485749	47.4783	72.6314	47.5659	73.033
	10	1.64107	0.370213	2.26134	0.485766	47.8052	72.7371	47.5659	73.0327
	20	1.80851	0.406017	2.26134	0.485784	48.1702	72.8541	47.5659	73.0325
d_2	20	1.47826	0.335329	1.75295	0.382778	47.4783	72.6228	46.3633	72.655
	10	1.47826	0.335146	2.00139	0.433693	47.4783	72.6268	46.9218	72.8321
	0	1.47826	0.334937	2.26134	0.485749	47.4783	72.6314	47.5659	73.033
	10	1.47826	0.334703	2.53482	0.539107	47.4783	72.6365	48.3036	73.2588
	20	1.47826	0.334442	2.82412	0.593939	47.4783	72.6423	49.1445	73.5108
Table 4 Change of unit selling prices and market demand w.r.t. % change of a, b, \ldots

Para.	w_1	w_2	s_1	s_2	D_1	D_2			
	%	C	D	C	D	C	D	C	D
a	20	52.2363	52.126	39.9612	39.0048	67.8261	15.3439	75.1361	16.1624
	10	58.4146	58.4159	44.2386	43.4702	78.26.9	17.7201	86.0254	18.4901
	0	64.5929	64.7058	48.5159	47.9355	88.6957	20.0962	96.9147	20.8178
	10	70.7712	70.9958	52.7933	52.4008	99.1304	22.4724	107.804	23.1455
	20	76.9494	77.2857	57.0706	56.8662	109.565	24.8486	118.693	25.4732
b	20	99.6934	100.754	72.6245	73.0469	96.6953	21.6551	106.557	22.2336
	10	88.8296	89.5702	65.1794	65.297	94.6791	21.2852	103.86	21.8671
	0	64.5929	64.7058	48.5159	47.9355	88.6957	20.0962	96.9147	20.8178
	10	58.9465	58.9299	44.6232	43.8766	86.7874	19.6946	94.9493	20.4929
	20	54.2467	54.1269	41.38	40.4942	84.9496	19.3001	93.1386	20.1833
c_1	20	63.9998	64.6478	47.304	48.087	91.8261	20.8698	97.5681	20.8968
	10	64.2964	64.6768	47.91	48.0113	90.2609	20.483	97.2414	20.8573
	0	64.5929	64.7058	48.5159	47.9355	88.6957	20.0962	96.9147	20.8178
	10	64.8894	64.7349	49.1219	47.8598	87.1304	19.7095	96.588	20.7783
	20	65.1859	64.7639	49.7278	47.784	85.5652	19.3227	96.2613	20.7388
c_2	20	64.6239	64.4025	48.5793	47.1276	88.6957	20.0558	98.657	21.2307
	10	64.6084	64.5542	48.5476	47.5315	88.6957	20.076	97.7858	21.0243
	0	64.5929	64.7058	48.5159	47.9355	88.6957	20.0962	96.9147	20.8178
	10	64.5774	64.8575	48.4842	48.3395	88.6957	20.1165	96.0436	20.6114
	20	64.5619	65.0092	48.4525	48.7434	88.6957	20.1367	95.1724	20.4049
Para.	%	\(w_1 \)	\(w_2 \)	\(s_1 \)	\(s_2 \)	\(D_1 \)	\(D_2 \)		
-------	-----	--------	--------	--------	--------	--------	--------		
	C	D	C	D	C	D	C	D	
\(I \)	–20	–64.6853	–64.8856	–48.529	–47.9339	89.6703	20.1953	99.1183	21.0409
	–10	–64.6338	–64.7853	–48.5217	–47.9348	89.1262	20.1401	97.8819	20.9164
	0	–64.5929	–64.7058	–48.5159	–47.9355	88.6957	20.0962	96.9147	20.8178
	10	–64.5595	–64.6414	–48.5112	–47.9361	88.3465	20.0604	96.1375	20.7379
	20	–64.5319	–64.5881	–48.5073	–47.9366	88.0576	20.0307	95.4993	20.6717
\(\beta \)	–20	–64.7458	–66.2844	–48.8284	–52.767	88.6957	19.8967	96.0436	18.6691
	–10	–64.7578	–65.5043	–48.8529	–50.0564	88.6957	19.8811	96.4791	19.7311
	0	–64.5929	–64.7058	–48.5159	–47.9355	88.6957	20.0962	96.9147	20.8178
	10	–64.2404	–63.9093	–47.7957	–46.1957	88.6957	20.5559	97.3503	21.902
	20	–63.6998	–63.1367	–46.6909	–44.6939	88.6957	21.2611	97.7858	22.9536
Table 5 Change of unit selling prices and market demand w.r.t. % change of d_1, d_2

Para.	w_1	w_2	s_1	s_2	D_1	D_2						
	C	D	C	D	C	D	C	D	C	D	C	D
d_1												
-20	-	64.4799	-	64.7067	-	48.5346	-	47.9332	87.3288	19.9316	96.9147	20.8166
-10	-	64.533	-	64.7063	-	48.5258	-	47.9343	87.969	20.009	96.9147	20.8172
0	-	64.5929	-	64.7058	-	48.5159	-	47.9355	88.6957	20.0962	96.9147	20.8178
10	-	64.6597	-	64.7053	-	48.505	-	47.9369	89.5129	20.1934	96.9147	20.8185
20	-	64.7337	-	64.7047	-	48.4931	-	47.9384	90.42555	20.3009	96.9147	20.8193
d_2												
-20	-	64.5749	-	64.4527	-	48.479	-	47.9401	88.6957	20.1198	93.9083	20.5059
-10	-	64.5833	-	64.5713	-	48.4963	-	47.938	88.6957	20.1087	95.3044	20.652
0	-	64.5929	-	64.7058	-	48.5159	-	47.9355	88.6957	20.0962	96.9147	20.8178
10	-	64.6037	-	64.8571	-	48.5379	-	47.9328	88.6957	20.0822	98.7599	21.0042
20	-	64.6157	-	65.0259	-	48.5625	-	47.9297	88.6957	20.0665	100.861	21.2121
Table 6 Change of different profit functions w.r.t. % change of \(a, b, \ldots\)

Para.	%	\(\pi_{SC}\)		\(\pi_R\)		\(\pi_M\)		\(\pi_{RM}\)		\(\pi_S\)		\(\pi_C\)																	
	C	D		C	D			C	D			C	D																
\(a\)	-20	3837.24	1503.84	-	198.663	-	184.424	-	200.445	-	519.418	-	400.89																
	-10	5066.23	1985.83	-	262.354	-	245.967	-	262.339	-	690.488	-	524.678																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	8035.99	3150.65	-	416.29	-	395.59	-	411.072	-	1105.56	-	822.145																
	20	9776.77	3833.5	-	506.535	-	483.67	-	497.912	-	1349.56	-	995.824																
\(b\)	-20	11654.3	4487.03	-	602.047	-	567.099	-	578.49	-	1582.41	-	1156.98																
	-10	10004.9	3874.19	-	517.348	-	488.832	-	501.167	-	1364.51	-	1002.33																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	5670.1	2228.97	-	293.758	-	276.749	-	294.086	-	776.208	-	588.173																
	20	5016.77	1976.61	-	259.953	-	244.018	-	262.336	-	685.633	-	524.671																
\(c_1\)	-20	6729.12	2639.75	-	348.889	-	341.179	-	335.076	-	944.453	-	670.151																
	-10	6596.49	2586.84	-	341.832	-	328.65	-	333.811	-	914.926	-	667.621																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	6337.1	2483.52	-	328.081	-	304.296	-	331.288	-	857.279	-	662.576																
	20	6210.34	2433.11	-	321.386	-	292.47	-	330.03	-	829.159	-	660.06																
\(c_2\)	-20	6590.98	2582.83	-	341.191	-	315.083	-	345.87	-	888.947	-	691.741																
	-10	6528.12	2558.68	-	338.026	-	315.719	-	339.176	-	887.407	-	678.353																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	6404.07	2511.08	-	331.8	-	316.993	-	325.985	-	884.331	-	651.97																
	20	6342.88	2487.63	-	328.739	-	317.631	-	319.487	-	882.795	-	638.975																
Para.	%	π_{SC}	π_R	π_M	π_{RM}	π_S	π_C																						
-------	----	------------	--------	--------	-----------	--------	--------																						
		C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D	C	D
I	-20	6577.4	2557.74	-	340.227	-	317.782	-	336.098	-	891.435	-	672.196																
	-10	6514.89	2544.92	-	337.248	-	316.988	-	334.116	-	888.333	-	668.233																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	6426.27	2526.52	-	332.992	-	315.839	-	331.276	-	883.863	-	662.552																
	20	6393.73	2519.7	-	331.419	-	315.41	-	330.223	-	882.2	-	660.446																
β	-20	6404.07	2390.49	-	297.766	-	310.106	-	267.443	-	980.286	-	534.887																
	-10	6434.87	2455.93	-	313.829	-	309.619	-	298.734	-	936.278	-	597.468																
	0	6465.82	2534.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096																
	10	6496.9	2626.05	-	360.898	-	330.995	-	368.088	-	829.894	-	736.175																
	20	6528.12	2727.93	-	391.562	-	354.095	-	404.285	-	769.419	-	808.569																
Table 7 Change of different profit functions w.r.t. % change of d_1, d_2

Para.	%	π_{SC}	π_R	π_M	π_{RM}	π_S	π_C						
		C	D	C	D	C	D	C	D	C	D	C	D
d_1	-20	6419.34	252.365	-	332.24	-	313.578	-	332.509	-	880.299	-	665.018
	-10	6441.11	252.87	-	333.487	-	314.884	-	332.528	-	882.918	-	665.055
	0	6465.82	253.76	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096
	10	6493.6	254.34	-	336.474	-	317.996	-	332.571	-	889.157	-	665.142
	20	6524.63	254.82	-	338.228	-	319.809	-	332.596	-	892.793	-	665.191
d_2	-20	6358.79	251.35	-	330.119	-	317.097	-	327.604	-	885.557	-	655.208
	-10	6408.49	252.35	-	332.347	-	316.75	-	329.92	-	884.639	-	659.84
	0	6465.82	253.47	-	334.896	-	316.356	-	332.548	-	885.868	-	665.096
	10	6531.47	254.77	-	337.787	-	315.913	-	335.502	-	887.251	-	671.003
	20	6606.31	256.15	-	341.047	-	315.42	-	338.797	-	888.795	-	677.595
Fig. 2 Entire supply chain (SC) profit in the centralized model and decentralized model

Fig. 3 Entire supply chain (SC) profit in the centralized model and decentralized model

Fig. 4 Entire supply chain (SC) profit in the centralized model and decentralized model

Fig. 5 Entire supply chain (SC) profit in the centralized model and decentralized model
(remanufacturer’s) for the centralized system is significant and the manufacturer (remanufacturer) takes into account higher levels of greening in the centralized system. Figure 9 shows that the effect of sensitivity of the consumer to the greening level of new (remanufactured) products on the manufacturer’s (remanufacturer’s) greening level in the decentralised system. Results indicate that the greening level of manufacturer (remanufacturer) is proportional to the sensitivity of the consumer to the greening level of new (remanufactured) products. The effect of the probability that the collector meets the demand of the remanufacturer and green invest parameter on the manufacturer’s greening level is analysed in Fig. 10. Results indicate that the greening level of remanufacturer increases if the probability of receiving adequate raw materials from the collector increases and decreases if the green investment parameter increases. And also, the remanufacturer determines higher greening levels in the centralized system. Figures 11 and 12 show how consumer sensitivity to the level of greening on new (remanufactured) products and green investment parameters impact the retailer’s unit selling price for new (remanufactured)
products. It seems that when customers are more concerned about the greening level of new (remanufactured) products, the retailer’s unit selling price for new (remanufactured) products increases. And as a result of rising green investment parameter, the retailer’s unit selling price for new (remanufactured) products increases. Figure 13 shows how the probability of receiving adequate raw materials from the collector and green investment parameter impact the retailer’s unit selling price for new (remanufactured) products. The analysis showed that if the probability of the collector meeting the demand of the remanufacturer increases, the retailer can set a lower unit retail price for remanufactured products. In all of the above cases, the retail price per unit for new as well as remanufactured products in the centralized scenario is relatively low. In Fig. 14, we investigate the influence of sensitivity of customer on the level of greening of new and remanufactured products to the total sales volume of the supply chain. Results indicate that the total sales volume of the supply chain is proportional to the sensitivity of the consumer to the
greening level of new (remanufactured) products. Figure 15 shows how the probability of the collector meeting the demand of the remanufacturer and green investment parameter impact the total sales volume of the supply chain. The analysis revealed that if the possibility of the collector to fulfill the needs of the remanufacturer increases, then the total supply chain sales volume increases, and if the green investment parameter increases, the total supply chain sales volume decreases. In both cases, the sales volume is relatively high in the centralized system. We consider forward and reverse supply chains which are interconnected in three stages, where both new as well as remanufactured products are shipped to the marketplace. The manufacturer and the remanufacturer both invest and decide their greening levels in green manufacturing processes. Each supply chain member tries to maximize their own profit in the decentralized model, and lower greening levels are
decided by both the manufacturer and the remanufacturer than the optimum solution, i.e. the solution in centralized scenario. Therefore, both products’ demand is lower than the optimal demand; as a result, less profit is obtained by the supply chain than the optimum. The production of eco-friendly products or services is becoming ever more relevant because of deteriorating environmental conditions. The customer is also being impacted by such a consciousness. On the other hand, for eco-friendly products, green-conscious customers have to pay higher. Therefore, governments should offer certain incentives to green companies to lower selling prices to raise demand for environmentally friendly products with a more sustainable environment. From this viewpoint, when the results in this study are evaluated, it has been demonstrated that as customers become more conscious of the environmental impact of new and remanufactured products, greening levels are increased by the manufacturer and the remanufacturer; the demands for both kinds of green products are therefore going to increase; and also the entire supply chain gains more. As demand rises, more green products are sold, which already enhances the collector’s ability to purchase used products from the market. The remanufacturer decides a higher greening standard, while the collector’s sufficiency increases. The demand for remanufactured products and the profit of the entire supply chain are therefore going to increase. As a result, the sustainable green approach throughout the supply chain provokes others to and it also contributes to a greener and more sustainable and therefore more financial gains.

5 Conclusion

The purpose of this investigation is to examine how the decisions of the supply chain leader affects social sustainable development. As per this research, having one decision controller in a supply chain can contribute to enhancing sustainability objectives. Improving product greening levels, lowering product retail prices, and increasing entire supply chain profit are generally considered significant objectives for a sustainable supply chain. Members of the supply chain should have to follow the centralized model in order to achieve these objectives. Certain policies should be implemented by the government to ensure that supply chain members must follow the centralised model. As a consequence, the supply chain has been both economically and ecologically able to succeed.

5.1 Practical implications, limitations and future research

This new study has important practical applications for all supply chain decision-makers. Supply chain decision-makers should utilize these research outcomes to properly understand the advantages of such a centralized structure. The results of the study demonstrate
how to maximise the profit of the entire supply chain. This study indicates how to increase products’ greening levels and how consumers can get green products at lower prices without comprising the overall profit of the supply chain representatives. Using the findings of this study, supply chain members can promote an even more sustainable environment.

The current study has certain limitations, even after its significance and usefulness. For example, product delivery time is not taken into account; thus, an improved approach to evaluate the influence of product delivery time would be beneficial. The ideas discussed in this study can be developed in a number of different ways. It might be useful to include a competition between supply chain members, in a future research. Throughout this supply chain, the impact of the retailer’s strategic inventory also can be investigated. Within different game systems, such as Stackelberg games with various leaders, this supply chain can be analysed. Including probabilistic demand functions will become another very possible future research suggestion in such a topic.

Appendix 1

The Hessian matrix of the objective function \(\pi_{SC}(p_1, p_2, \theta_1, \theta_2) \) of the centralized model given in Eq. (7) is calculated as

\[
H(p_1, p_2, \theta_1, \theta_2) = \begin{bmatrix}
\frac{\partial^2 \pi_{SC}}{\partial p_1^2} & \frac{\partial^2 \pi_{SC}}{\partial p_1 \partial p_2} & \frac{\partial^2 \pi_{SC}}{\partial p_1 \partial \theta_1} & \frac{\partial^2 \pi_{SC}}{\partial p_1 \partial \theta_2} \\
\frac{\partial^2 \pi_{SC}}{\partial p_2 \partial p_1} & \frac{\partial^2 \pi_{SC}}{\partial p_2^2} & \frac{\partial^2 \pi_{SC}}{\partial p_2 \partial \theta_1} & \frac{\partial^2 \pi_{SC}}{\partial p_2 \partial \theta_2} \\
\frac{\partial^2 \pi_{SC}}{\partial \theta_1 \partial p_1} & \frac{\partial^2 \pi_{SC}}{\partial \theta_1 \partial p_2} & \frac{\partial^2 \pi_{SC}}{\partial \theta_1^2} & \frac{\partial^2 \pi_{SC}}{\partial \theta_1 \partial \theta_2} \\
\frac{\partial^2 \pi_{SC}}{\partial \theta_2 \partial p_1} & \frac{\partial^2 \pi_{SC}}{\partial \theta_2 \partial p_2} & \frac{\partial^2 \pi_{SC}}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \pi_{SC}}{\partial \theta_2^2}
\end{bmatrix}
\]

The leading principal minors \(\Delta_k \) of \(H(p_1, p_2, \theta_1, \theta_2) \) of order \(k \) are given by

\[
\Delta_1 = -2b, \Delta_2 = 4b^2, \Delta_3 = -2b(4bI - d_1^2), \Delta_4 = (4bI - d_1^2)(4bI - d_2^2)
\]

From assumptions 3(i) and 3(ii), we get \(4bI - d_1^2 > 0 \) and \(4bI - d_2^2 > 0 \). Therefore, \((-1)^k \Delta_k > 0\) for all leading principle minors of \(H(p_1, p_2, \theta_1, \theta_2) \). Thus, \(H(p_1, p_2, \theta_1, \theta_2) \) is negative definite and \(\pi_{SC}(p_1, p_2, \theta_1, \theta_2) \) is strictly concave. Using the first order conditions of Eq. (7) simultaneously, we get the unique global optimal solution to the centralized model as given in Eqs. (8)–(11). Putting the Eqs. (7)–(10) into Eq. (1), we get the optimal values of demands for the new and remanufactured products as given in Eqs. (12)–(13). Finally, putting the Eqs. (8)–(10) into Eq. (7), we get the optimal profit of the entire supply chain as given in Eq. (14).
Appendix 2

In decentralized model, first we consider retailer’s profit function. The Hessian matrix of the objective function \(\pi_R(p_1, p_2) \) given in Eq. (2) is calculated as

\[
H(p_1, p_2) = \begin{bmatrix}
\frac{\partial^2 \pi_R}{\partial p_1^2} & \frac{\partial^2 \pi_R}{\partial p_1 \partial p_2} \\
\frac{\partial^2 \pi_R}{\partial p_2 \partial p_1} & \frac{\partial^2 \pi_R}{\partial p_2^2}
\end{bmatrix} = \begin{bmatrix}
-2b & 0 \\
0 & -2b
\end{bmatrix}
\]

The leading principal minors \(\Delta_k \) of \(H(p_1, p_2) \) of order \(k \) are given by,

\[
\Delta_1 = -2b, \Delta_2 = 4b^2
\]

Therefore, \((-1)^k \Delta_k > 0\) for all leading principle minors of \(H(p_1, p_2) \). Thus, \(H(p_1, p_2) \) is negative definite and \(\pi_R(p_1, p_2) \) is strictly concave. Using the first order conditions of Eq. (2) with respect to \(p_1 \) and \(p_2 \), we get the retailer’s optimum response functions as given in Eqs. (15)–(16).

Next, we consider the manufacturer’s and the remanufacturer’s profit functions. We first substitute the retailer’s optimum response function given in Eq. (15) into the manufacturer’s profit function given in Eq. (3). The Hessian matrix of the objective function \(\pi_M(\theta_1, \omega_1) \) given in Eq. (3) is calculated as

\[
H(\theta_1, \omega_1) = \begin{bmatrix}
\frac{\partial^2 \pi_M}{\partial \theta_1^2} & \frac{\partial^2 \pi_M}{\partial \theta_1 \partial \omega_1} \\
\frac{\partial^2 \pi_M}{\partial \omega_1 \partial \theta_1} & \frac{\partial^2 \pi_M}{\partial \omega_1^2}
\end{bmatrix} = \begin{bmatrix}
-2I & d_1 \\
\frac{d_1}{2} & -b
\end{bmatrix}
\]

The leading principal minors \(\Delta_k \) of \(H(\theta_1, \omega_1) \) of order \(k \) are given by,

\[
\Delta_1 = -2I, \Delta_2 = 2bI - \frac{d_1^2}{4}
\]

From assumptions 3(i), we get \(2bI - \frac{d_1^2}{4} > 0 \). Therefore, \((-1)^k \Delta_k > 0\) for all leading principle minors of \(H(\theta_1, \omega_1) \). Thus, \(H(\theta_1, \omega_1) \) is negative definite and \(\pi_M(\theta_1, \omega_1) \) is strictly concave. Using the first order conditions of Eq. (3) with respect to \(\theta_1 \) and \(\omega_1 \), we get the manufacturer’s optimum response functions as given in Eqs. (17)–(18).

In a similar way, we substitute the retailer’s optimum response function given in Eq. (16) into the remanufacturer’s profit function given in Eq. (4). The Hessian matrix of the objective function \(\pi_{RM}(\theta_2, \omega_2) \) given in Eq. (4) is calculated as

\[
H(\theta_2, \omega_2) = \begin{bmatrix}
\frac{\partial^2 \pi_{RM}}{\partial \theta_2^2} & \frac{\partial^2 \pi_{RM}}{\partial \theta_2 \partial \omega_2} \\
\frac{\partial^2 \pi_{RM}}{\partial \omega_2 \partial \theta_2} & \frac{\partial^2 \pi_{RM}}{\partial \omega_2^2}
\end{bmatrix} = \begin{bmatrix}
-2I & d_2 \\
\frac{d_2}{2} & -b
\end{bmatrix}
\]

The leading principal minors \(\Delta_k \) of \(H(\theta_2, \omega_2) \) of order \(k \) are given by,

\[
\Delta_1 = -2I, \Delta_2 = 2bI - \frac{d_2^2}{4}
\]
From assumptions 3(ii), we get $2bI - d_2^2 > 0$. Therefore, $(-1)^k\Delta_k > 0$ for all leading principle minors of $H(\theta_2, w_2)$. Thus, $H(\theta_2, w_2)$ is negative definite and $\pi_{RM}(\theta_2, w_2)$ is strictly concave. Using the first order conditions of Eq. (4) with respect to θ_2 and w_2, we get the remanufacturer’s optimum response functions as given in Eqs. (19)–(20).

In the last step, we consider the supplier’s and the collector’s profit functions. We first substitute the optimum response functions of the retailer, manufacturer, remanufacturer given in Eqs. (15)–(20) into the supplier’s profit function given in Eq. (5). Then, the second order derivative of the supplier’s objective function $\pi_S(s_1)$ given in Eq. (5) with respective to s_1 is calculated as

$$\frac{\partial^2 \pi_S}{\partial s_1^2} = -\frac{4b^2I}{8bl - d_1^2} - \frac{4b^2I(1 - \beta)^2}{8bl - d_2^2}$$

From assumptions 3(i) and 3(ii), we get $8bl - d_1^2 > 0$ and $8bl - d_2^2 > 0$. And since $I > 0$, it can be seen that $-\frac{4b^2I}{8bl - d_1^2} - \frac{4b^2I(1 - \beta)^2}{8bl - d_2^2} < 0$. Therefore, $\frac{\partial^2 \pi_S}{\partial s_1^2} < 0$, i.e. $\pi_S(s_1)$ is a strictly concave function.

In a similar way, we first substitute the optimum response functions of the retailer, remanufacturer given in Eqs. (16), (19) and (20) into the collector’s profit function given in Eq. (6). Then, the second order derivative of the collector’s objective function $\pi_C(s_2)$ given in Eq. (5) with respective to s_2 is calculated as

$$\frac{\partial^2 \pi_C}{\partial s_2^2} = -\frac{4b^2I\beta^2}{8bl - d_2^2}$$

From assumptions 3(ii), we get $8bl - d_2^2 > 0$. And since $I > 0$, it can be seen that $-\frac{4b^2I\beta^2}{8bl - d_2^2} < 0$. Therefore, $\frac{\partial^2 \pi_C}{\partial s_2^2} < 0$, i.e. $\pi_C(s_2)$ is a strictly concave function.

Finally, simultaneously solving the first order condition of Eq. (5) with respect to s_1 and first order condition of Eq. (6) with respect to s_2 gives the optimal unit selling prices of the supplier and the collector as given in Eqs. (21) and (22). Putting the Eqs. (15)–(22) into Eq. (1), we get the optimal values of demands for the new and remanufactured products as given in Eqs. (23)–(24). Finally, putting the Eqs. (15)–(22) into Eq. (7), we get the optimal profit of the overall supply chain as given in Eq. (25).

Authorship contributions Prof.(Dr.) Dipak Kumar Jana has formulated the models. Mr. Manojit Das has solved the models and compared the solutions of the models and drawn the figures. Dr. Shariful Alam has done the Numerical part. This paper is written by Mr. Manojit Das.

Declarations

Conflict of interest There have been no conflicts of interest declared by the authors.

Ethical approval Any of the authors’ investigations with human participants or living creatures are not included in this article.

Informed consent Each individual participant in the research has given their informed consent.
References

Almehdawe, E., & Mantin, B. (2010). Vendor managed inventory with a capacitated manufacturer and multiple retailers: Retailer versus manufacturer leadership. International Journal of Production Economics, 128(1), 292–302.

Awan, U. (2020). Industrial ecology in support of sustainable development goals. In Responsible consumption and production (pp. 370–380). Springer.

Awan, U., Kraslawski, A., & Huiskonen, J. (2019). Progress from blue to the green world: Multilevel governance for pollution prevention planning and sustainability. In Handbook of environmental materials management.

Awan, U., Kraslawski, A., & Huiskonen, J. (2018). The effects of an ambidextrous leadership on the relationship between governance mechanism and social sustainability. Procedia-Social and Behavioral Sciences, 238, 398–407.

Bag, S., Anand, N., & Pandey, K. K. (2017). Green supply chain management model for sustainable manufacturing practices. In: Green supply chain management for sustainable business practice (pp. 153–189). IGI Global.

Chaab, J., & Rasti-Barzoki, M. (2016). Cooperative advertising and pricing in a manufacturer–retailer supply chain with a general demand function; A game-theoretic approach. Computers & Industrial Engineering, 99, 112–123.

Dastidar, K. G. (2004). On stackelberg games in a homogeneous product market. European Economic Review, 48(3), 549–562.

de la Fuente, M. V., Ros, L., & Cardos, M. (2008). Integrating forward and reverse supply chains: Application to a metal-mechanic company. International Journal of Production Economics, 111(2), 782–792.

Dhir, A., Malodia, S., Awan, U., Sakashita, M., & Kaur, P. (2021). Extended valence theory perspective on consumers’ e-waste recycling intentions in Japan. Journal of Cleaner Production, 312, 127443.

Diabat, A., & Govindan, K. (2011). An analysis of the drivers affecting the implementation of green supply chain management. Resources, Conservation and Recycling, 55(6), 659–667.

Doan, L. T. T., Amer, Y., Lee, S.-H., Phuc, P. N. K., & Dat, L. Q. (2019). A comprehensive reverse supply chain model using an interactive fuzzy approach—a case study on the Vietnamese electronics industry. Applied Mathematical Modelling, 76, 87–108.

Dubey, R., Bag, S., Ali, S. S., & Venkatesh, V. G. (2013). Green purchasing is key to superior performance: An empirical study. International Journal of Procurement Management, 6(2), 187–210.

Ghosh, P. K., Manna, A. K., Dey, J. K., & Kar, S. (2021). Supply chain coordination model for green product with different payment strategies: A game theoretic approach. Journal of Cleaner Production, 290, 125734.

Golroudbary, S. R., Zahraee, S. M., Awan, U., & Kraslawski, A. (2019). Sustainable operations management in logistics using simulations and modelling: A framework for decision making in delivery management. Procedia Manufacturing, 30, 627–634.

Gorji, M.-A., Jamali, M.-B., & Iranpoor, M. (2020). A game-theoretic approach for decision analysis in end-of-life vehicle reverse supply chain regarding government subsidy. Waste Management, 120, 734–747.

Hart, S. L. (1997). Beyond greening: Strategies for a sustainable world. Harvard Business Review, 75(1), 66–77.

Huang, M., Song, M., Lee, L. H., & Ching, W. K. (2013). Analysis for strategy of closed-loop supply chain with dual recycling channel. International Journal of Production Economics, 144(2), 510–520.

Jafari, H., Hejazi, S. R., & Rasti-Barzoki, M. (2017). Sustainable development by waste recycling under a three-echelon supply chain: A game-theoretic approach. Journal of Cleaner Production, 142, 2252–2261.

Kumar, S., Teichman, S., & Timpernagel, T. (2012). A green supply chain is a requirement for profitability. International Journal of Production Research, 50(5), 1278–1296.

Li, W., & Chen, J. (2018). Backward integration strategy in a retailer stackelberg supply chain. Omega, 75, 118–130.

Liu, H., Long, H., & Li, X. (2020). Identification of critical factors in construction and demolition waste recycling by the grey-dematel approach: A Chinese perspective. Environmental Science and Pollution Research, 27(8), 8507–8525.

Li, B., Zhu, M., Jiang, Y., & Li, Z. (2016). Pricing policies of a competitive dual-channel green supply chain. Journal of Cleaner Production, 112, 2029–2042.
Luthra, S., Garg, D., & Haleem, A. (2016). The impacts of critical success factors for implementing green supply chain management towards sustainability: An empirical investigation of Indian automobile industry. *Journal of Cleaner Production, 121*, 142–158.

Mokhtar, A. R. M., Genovese, A., Brint, A., & Kumar, N. (2019). Improving reverse supply chain performance: The role of supply chain leadership and governance mechanisms. *Journal of Cleaner Production, 216*, 42–55.

Nagurney, A., & Nagurney, L. S. (2010). Sustainable supply chain network design: A multicriteria perspective. *International Journal of Sustainable Engineering, 3*(3), 189–197.

Prahinski, C., & Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chains. *Omega, 34*(6), 519–532.

Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part II: Reverse distribution issues—An overview. *International Journal of Sustainable Engineering, 1*(4), 234–249.

Sheu, J.-B., & Chen, Y. J. (2012). Impact of government financial intervention on competition among green supply chains. *International Journal of Production Economics, 138*(1), 201–213.

Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. *International Journal of Management Reviews, 9*(1), 53–80.

Taleizadeh, A. A., & Sadeghi, R. (2019). Pricing strategies in the competitive reverse supply chains with traditional and e-channels: A game theoretic approach. *International Journal of Production Economics, 215*, 48–60.

Van Hoof, B., & Thiell, M. (2014). Collaboration capacity for sustainable supply chain management: Small and medium-sized enterprises in Mexico. *Journal of Cleaner Production, 67*, 239–248.

Yang, S.-L., & Zhou, Y.-W. (2006). Two-echelon supply chain models: Considering duopolistic retailers’ different competitive behaviors. *International Journal of Production Economics, 103*(1), 104–116.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.