Singularity of the Dual Curve of a Certain Plane Curve in Positive Characteristic

Kosuke Komeda

Abstract. It is well known that the Gauss map for a complex plane curve is birational, whereas the Gauss map in positive characteristic is not always birational. Let q be a power of a prime integer. We study a certain plane curve C of degree $q^2 + q + 1$ for which the Gauss map is inseparable with inseparable degree q. As a special case, we show a relation between the dual curve of the Fermat curve of degree $q^2 + q + 1$ and the Ballico-Hefez curve.

1. Introduction

Let p be a prime integer, and q a power of p. We work over an algebraically closed field k of characteristic p. We consider a plane curve C of degree $q^2 + q + 1$ defined by a homogeneous polynomial of the form

$$F = \sum_{i,j,k} a_{ijk} x_i x_j^q x_k^{q^2},$$

where a_{ijk} are coefficients in k, and $[x_0 : x_1 : x_2]$ is a homogeneous coordinate system in \mathbb{P}^2. If a_{ijk} are general, then the plane curve C is smooth. The condition that the defining polynomial of C is of the form (1) is independent of the choice of homogeneous coordinates of \mathbb{P}^2 (see Proposition 2.1).

Let C^\vee be the dual curve of the plane curve C. The Gauss map

$$\Gamma: C \to C^\vee; [x_0 : x_1 : x_2] \mapsto \left[\frac{\partial F}{\partial x_0} : \frac{\partial F}{\partial x_1} : \frac{\partial F}{\partial x_2} \right]$$

is an inseparable morphism. For every i, the partial derivative of F with respect to x_i is

$$\frac{\partial F}{\partial x_i} = \sum_{j,k} a_{ijk} x_j^q x_k^{q^2} = \left(\sum_{j,k} \alpha_{ijk} x_j^q x_k^{q^2} \right)^q,$$

where $\alpha_{ijk} = a_{ijk}^{1/q}$. Thus, if a_{ijk} are general, then the inseparable degree of the Gauss map is q. The purpose of this paper is to study singularities of the dual curve C^\vee of a plane curve C defined by a polynomial of the form (1).

We define \mathcal{C} to be a set of all the projective plane curves defined by homogeneous polynomials of the form (1). Note that \mathcal{C} is identified with \mathbb{P}^{26}.

Note that all tangent lines of the curve $C \in \mathcal{C}$ intersect C with multiplicity at least q at the tangent points. In our case, a double tangent and a flex are defined as following:

2010 Mathematics Subject Classification. Primary 14H50, Secondary 14H20.

Key words and phrases. plane curve, dual curve, positive characteristic, singularity.
Definition 1.1. Let m be an integer at least 2. We define an m-ple tangent to be a tangent line of C which has distinct m tangent points with multiplicity q, and a flex to be a point at which the tangent line intersects C with multiplicity $q + 1$. A 2-ple tangent is called a double tangent.

Theorem 1. Suppose that C is a general member of \mathcal{C}. Then

(i) the degree of the dual curve C^\vee is $(q^2 + q + 1)(q + 1)$,

(ii) the dual curve C^\vee has only ordinary nodes as its singularities,

(iii) the number of ordinary nodes of C^\vee i.e. double tangent lines of C, is

$$\frac{q(2q^2 + q + 1)(q^3 + 3q^2 + 3q - 1)}{2},$$

and

(iv) the number of flexes of C is

$$q^5 + 2q^4 + q^3 + 2q^2 + 2q + 1.$$

We compare our theorem with the classical situation. Let \tilde{C} be a general complex plane curve of degree d. Then the degree of \tilde{C}^\vee is $d(d - 1)$. Moreover, each flex of \tilde{C} corresponds to a cusp of \tilde{C}^\vee, whereas each flex of $C \in \mathcal{C}$ corresponds to a smooth point of C^\vee. The singularities of \tilde{C}^\vee consist of $3d(d - 2)$ ordinary nodes and $\frac{1}{2}d(d - 2)(d - 3)(d + 3)$ cusps.

As a special case, we consider the singularities of the dual curve of the Fermat curve $C_0 \in \mathcal{C}$ of degree $q^2 + q + 1$. We will show that the dual curve C_0^\vee is related to the Ballico-Hefez curve.

Let $\gamma_d : \mathbb{P}^2 \to \mathbb{P}^2$ be a morphism defined by $\gamma_d([x_0 : x_1 : x_2]) = [x_0^d : x_1^d : x_2^d]$, and l_0 be a line $x_0 + x_1 + x_2 = 0$ in \mathbb{P}^2.

Definition 1.2. The Ballico-Hefez curve is the image of the line l_0 of the morphism γ_{q+1}.

In [5], Hoang and Shimada define the Ballico-Hefez curve to be the image of the morphism $\mathbb{P}^1 \to \mathbb{P}^2$ defined by

$$[s : t] \mapsto [s^{q+1} : t^{q+1} : st^q + st^q].$$

Note, however, that the image of this morphism is projectively isomorphic to the image of the line l_0 of the morphism γ_{q+1}.

Theorem 2. Let B be the Ballico-Hefez curve. Let $\gamma_{q^2+q+1} : \mathbb{P}^2 \to \mathbb{P}^2$ be a morphism defined by the above. If $C_0 \in \mathcal{C}$ is the Fermat curve of the degree $q^2 + q + 1$, then

(i) the dual curve C_0^\vee is $\gamma_{q^2+q+1}^{-1}(B)$, and

(ii) the singularities of C_0^\vee consist of $(q^2 + q + 1)^2(q^3 - 1)/2$ ordinary nodes, and $3(q^2 + q + 1)$ singular points with the Milnor number $q^2(q + 1)$.

The author is grateful to Professor Ichiro Shimada for helpful comments. Part of this work was done during the author’s stay in Vietnam. He is also grateful to Professor Pho Duc Tai in Vietnam National University of Science for many helpful suggestions.
2. Preliminaries

From now, let k be an algebraically closed field of characteristic $p > 0$.

Proposition 2.1. Let C be a plane curve. The defining polynomial of C being of the form (1) is a property independent of the choice of homogeneous coordinates.

Proof. Under the coordinates change $x_i = \sum t_i y_i$ $(t_i \in k)$, a homogeneous polynomial F of the form (1) is transformed into

$$F = \sum_{i,j,k} a_{ijk} \left(\sum_{l=0}^{2} t_i y_i \right) \left(\sum_{m=0}^{2} t_{jm} y_m \right)^q \left(\sum_{n=0}^{2} t_{kn} y_n \right)^{q^2}$$

where $b_{lmn} = \sum_{i,j,k} a_{ijk} t_i t_{jm} t_{kn} y_i y_m y_n^2$.

Claim 0. The reduced Gauss map Γ_{red} of C is a morphism of separable degree 1.

Proof. See the section 5. □

We put the degree of a curve $C \in \mathcal{C}$ into $d = q^2 + q + 1$. If $C \in \mathcal{C}$ is general, then the Gauss map Γ is an inseparable morphism of inseparable degree q by \[\Box\]

Thus the degree of C^\vee is

$$\frac{d(d-1)}{q} = \frac{(q^2 + q + 1)(q^2 + q)}{q} = (q^2 + q + 1)(q + 1).$$

3. Proof of the first half of Theorem 1

We define the **reduced Gauss map** $\Gamma_{\text{red}} : C \to (\mathbb{P}^2)^\vee$ of $C \in \mathcal{C}$ by

$$\Gamma_{\text{red}}([x_0 : x_1 : x_2]) = \left[\left(\frac{\partial F}{\partial x_0}(x_0, x_1, x_2) \right)^{1/q} : \left(\frac{\partial F}{\partial x_1}(x_0, x_1, x_2) \right)^{1/q} : \left(\frac{\partial F}{\partial x_2}(x_0, x_1, x_2) \right)^{1/q} \right].$$

Claim 0. The reduced Gauss map Γ_{red} is the morphism of separable degree 1.

Proof. See the section 5. □

We put the degree of a curve $C \in \mathcal{C}$ into $d = q^2 + q + 1$. If $C \in \mathcal{C}$ is general, then the Gauss map Γ is an inseparable morphism of inseparable degree q by \[\Box\]

Thus the degree of C^\vee is

$$\frac{d(d-1)}{q} = \frac{(q^2 + q + 1)(q^2 + q)}{q} = (q^2 + q + 1)(q + 1).$$

In order to prove (ii) of Theorem 1, first we prove the following:

Claim 1. If $C \in \mathcal{C}$ is general, then the curve C has no m-ple tangent line for $m \geq 3$.

Proof. We define a variety \mathcal{X}_1 by
\[
\mathcal{X}_1 = \left\{ (Q_0, Q_1, Q_2, l) \in \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2 \times (\mathbb{P}^2)^\vee \mid Q_0 \in l, Q_1 \in l, Q_2 \in l \text{ and } Q_i \neq Q_j \text{ for } i \neq j \right\}.
\]
Then the action of $\text{PGL}_3(k)$ on \mathcal{X}_1 is transitive. Let (P_0, P_1, P_2, l_0) be a point of \mathcal{X}_1 and let $[x_0 : x_1 : x_2]$ be a homogeneous coordinate system such that $P_0 = [0 : 0 : 1]$, $P_1 = [0 : 1 : 0]$, $P_2 = [0 : 1 : 1]$ and $l_0 = \{x_0 = 0\}$. Let C be a plane curve in \mathcal{C}. We define a subspace \mathcal{D}_1 of \mathcal{C} by
\[
\mathcal{D}_1 = \left\{ Y \in \mathcal{C} \mid P_0, P_1, P_2 \text{ are smooth points of } Y, \text{ and } T_{P_0}Y = T_{P_1}Y = T_{P_2}Y = l_0 \right\}.
\]
Then a curve $C \in \mathcal{C}$ is in \mathcal{D}_1 if and only if
\[
a_{222} = 0, \ a_{122} = 0, \ a_{111} = 0, \ a_{221} = 0, \ a_{212} + a_{221} = 0, \ a_{112} + a_{121} = 0, \ a_{022} \neq 0, \ a_{011} \neq 0 \text{ and } a_{012} + a_{021} + a_{022} \neq 0.
\]
Therefore \mathcal{D}_1 is of codimension 6 in \mathcal{C}. Since $\dim \mathcal{X}_1 = 5$, we have $\dim \mathcal{X}_1 + \dim \mathcal{D}_1 < \dim \mathcal{C}$.

Thus if the curve C is general in \mathcal{C}, then C does not have any m-ple tangent line for $m \geq 3$.

Second we prove the following:

Claim 2. If $C \in \mathcal{C}$ is general, then Γ_{red} is an immersion at every point of C.

Proof. Let P_0 be the point $[0 : 0 : 1]$, and let l_0 be the line $\{x_0 = 0\}$. By linear change of coordinates, we can assume that $P_0 \in C$ and $T_{P_0}C = l_0$. Let (x, y) be affine coordinates such that $P_0 = (x, y)$ and $l_0 = \{x = 0\}$. Then up to multiple constant, the polynomial F can be written as
\[
F(x, y, 1) = f(x, y) = x + a_{202}x^2 + a_{212}y^2 + a_{002}x^q + a_{102}x^qy + a_{012}xy^q + a_{112}y^q + (\text{terms of degree } \geq q^2).
\]
Then we have a local parametrization $x = \phi(t), \ y = t$ of C at P_0 such that the power series $\phi(t)$ is written as
\[
\phi(t) = -a_{212}t^q - a_{112}t^{q+1} + a_{012}a_{212}t^{2q} + \cdots.
\]
We consider the Gauss map given by (2). Let (η, ζ) be the affine coordinates of $(\mathbb{P}^2)^\vee$ with the origin l_0 in $(\mathbb{P}^2)^\vee$ such that the point (η, ζ) corresponds to the line $x + \eta y + \zeta = 0$. Then the tangent line of C at $P_t = (\phi(t), t)$ is
\[
\frac{\partial f}{\partial x}(P_t)x + \frac{\partial f}{\partial y}(P_t)y - \frac{\partial f}{\partial x}(P_t)\phi(t) - \frac{\partial f}{\partial y}(P_t)t = 0
\]
Therefore the Gauss map locally around P_0 is written as
\[
\Gamma((\phi(t), t)) = \left(\frac{f_y(P_t)}{f_x(P_t)}, \frac{-f_y(P_t)}{f_x(P_t)}t - \phi(t) \right) \quad = \left(\frac{d\phi}{dt}(t), -\frac{d\phi}{dt}(t) - \phi(t) \right).
\]
Since
\[
-\frac{d\phi}{dt}(t) = a_{112}t^q + (\text{terms of degree } > q)
\]
and
\[t \frac{d \phi}{dt}(t) - \phi(t) = a_{212}t^q + \text{(terms of degree } q), \]
the reduced Gauss map \(\Gamma_{\text{red}} \) locally around \(P_0 \) is
\[t \mapsto (\alpha_{112}t + \text{(terms of degree } > 1), a_{212}t + \text{(terms of degree } > 1)), \]
where \(\alpha_{ijk} = a_{ijk}^{1/q} \). The reduced Gauss map \(\Gamma_{\text{red}} \) is not smooth at the point \(P_0 \) if and only if \(\alpha_{112} = \alpha_{212} = 0 \). Since the codimension of the space
\[\{ C \in \mathcal{C} | \alpha_{112} = \alpha_{212} = 0 \} \]
is 2 in \(\mathcal{C} \), the reduced Gauss map \(\Gamma_{\text{red}} \) is locally immersion at every point of a general member \(C \) of \(\mathcal{C} \).

Suppose that \(C \in \mathcal{C} \) is general. We prove that the singular points of the dual curve \(C^\vee \) are only ordinally nodes. Let \(P_0 \) and \(P_1 \) be the points in the proof of claim 1, and let \(l_0 \) be the line \(\{ x_0 = 0 \} \). Suppose that \(P_0 \) and \(P_1 \) are smooth points of \(C \) and \(T_{P_0}C = T_{P_1}C = l_0 \). Let \((x', y') \) be affine coordinates such that \(P_1 = (0, 0) \) and \(l_0 = \{ x' = 0 \} \). Similar to the proof of the claim 2, up to multiple constant, the polynomial \(F \) can be written as
\[F(x', 1, y') = g(x', y') = x' + a_{101}x'^q + a_{121}y'^q + a_{001}x'^{q+1} + a_{021}x'y'^q + a_{201}x'y'^q + a_{211}y'^{q+1} + \text{(terms of degree } \geq q^2) \]
Then we have a local parametrization \(x' = \psi(t), y' = t, \) of \(C \) at \(P_0 \) such that the power series \(\psi(t) \) is written as
\[\psi(t) = -a_{121}t^q - a_{221}t^{q+1} + a_{201}a_{121}t^{2q} + \cdots. \]
Let \((\eta', \zeta') \) be the affine coordinates of \((\mathbb{P}^2)^\vee \) with the origin \(l_0 \in (\mathbb{P}^2)^\vee \) such that the point \((\eta', \zeta') \) corresponds to the line \(x' + \eta'y' + \zeta' = 0 \). The tangent line of \(C \) at \(P'_1 = (\psi(t), t) \) is
\[\frac{\partial g}{\partial x'}(P'_1)x' + \frac{\partial g}{\partial y'}(P'_1)y' - \frac{\partial g}{\partial x'}(P'_1)\psi(t) - \frac{\partial g}{\partial y'}(P'_1)t = 0. \]
Therefore the Gauss map \(\Gamma \) locally around \(P_1 \) is written as
\[\Gamma((\psi(t), t)) = \left(\frac{g_{y'}(P'_1)}{g_{x'}(P'_1)}t - \psi(t), -\frac{g_{y'}(P'_1)}{g_{x'}(P'_1)}t - \psi(t) \right) = \left(-\frac{d\psi}{dt}(t), t\frac{d\psi}{dt}(t) - \psi(t) \right). \]
Since
\[-\frac{d\psi}{dt}(t) = a_{221}t^q + \text{(terms of degree } q) \]
and
\[t\frac{d\psi}{dt}(t) - \psi(t) = a_{121}t^q + \text{(terms of degree } q), \]
we describe the reduced Gauss map
\[t \mapsto (a_{221}t + \text{(terms of degree } > 1), a_{121}t + \text{(terms of degree } > 1)) \]
locally around \(P_1 \). We define a variety \(\mathcal{X}_2 \) by
\[\mathcal{X}_2 = \{ (Q_0, Q_1, l) | Q_0 \in l, Q_1 \in l \text{ and } Q_0 \neq Q_1 \}. \]
Then the action of $\text{PGL}_3(k)$ on \mathcal{X} is transitive and $\dim \mathcal{X} = 4$. Let (P_0, P_1, l_0) be the point of \mathcal{X} such that $P_0 = [0 : 0 : 1]$, $P_1 = [0 : 1 : 0]$ and $l_0 = \{x_0 = 0\}$. We define a subspace \mathcal{D}_2 of \mathcal{C} by

$$\mathcal{D}_2 = \{Y \in \mathcal{C} \mid P_0 \text{ and } P_1 \text{ are smooth points of } Y, \text{ and } T_{P_0}Y = T_{P_1}Y = l_0\}$$

Then $C \in \mathcal{D}_2$ if and only if

$$a_{222} = 0, \ a_{122} = 0, \ a_{111} = 0, \ a_{211} = 0, \ a_{022} \neq 0, \ a_{011} \neq 0.$$

Thus the codimension of \mathcal{D}_2 is 4. For $C \in \mathcal{D}_2$, by (4) and (5), the singularities of C^\vee at the point l_0 is not an ordinary node if and only if

$$\begin{vmatrix}
\alpha_{112} & \alpha_{212} \\
\alpha_{211} & \alpha_{121}
\end{vmatrix} = 0.$$

We define a subspace \mathcal{D}_2' of \mathcal{C} by

$$\mathcal{D}_2' = \left\{ Y \in \mathcal{C} \mid P_0 \text{ and } P_1 \text{ are smooth points of } Y, \ T_{P_0}Y = T_{P_1}Y = l_0, \text{ and } Y^\vee \text{ does not have ordinary node at } l_0 \right\}.$$

Since the codimension of \mathcal{D}_2' is 5,

$$\dim \mathcal{D}_2' + \dim \mathcal{X} < \dim \mathcal{C}.$$

Therefore, since a_{ijk} are general, the dual curve C^\vee has only ordinary nodes as its singularities.

4. Proof of (iii), (iv) of Theorem 1

4.1. **Number of the ordinary nodes of C^\vee.** Let g and g^\vee be the genera of a general curve $C \in \mathcal{C}$ and its dual curve C^\vee, respectively. Let δ be the number of the ordinary nodes of C^\vee. Then

$$g = \frac{(d-1)(d-2)}{2} = \frac{(q^2 + q + 1)(q^2 + q + 1)}{2}$$

and

$$g^\vee = \frac{(d^\vee - 1)(d^\vee - 2)}{2} - \delta \frac{(q^2 + q + 1)(q + 1)}{2} \frac{(q^2 + q + 1)(q + 1) - 2}{2}.$$

where d and d^\vee are the degree of C and C^\vee, respectively, because, by the previous section, C^\vee has only ordinary nodes. By claim 2 of section 3, the reduced Gauss map Γ_{red} is birational onto its image. Thus $g = g^\vee$ and hence we have

$$\delta = \frac{(q^2 + q + 1)(q + 1) - 1}{2} \frac{(q^2 + q + 1)(q + 1) - 2}{2}$$

$$= \frac{g(q^2 + q + 1)(q^3 + 3q^2 + 3q - 1)}{2}$$

$$= q(q^2 + q + 1)(q^3 + 3q^2 + 3q - 1)$$

$$= \frac{g(q^2 + q + 1)(q^3 + 3q^2 + 3q - 1)}{2}.$$
4.2. Number of the flexes. We denote by mult_P(D_1, D_2) the intersection multiplicity of projective plane curves D_1 and D_2 at a point P ∈ D_1 ∩ D_2.

Lemma 4.1. We suppose that C ∈ ℂ is a general plane curve in ℂ. If the multiplicity mult_u(T_uC, C) is more than q at u ∈ C, then the multiplicity mult_u(T_uC, C) is q + 1 at u ∈ C and all other intersection points of T_uC and C are not tangent points.

Proof. We use the same notation as in Section 3. We define a variety ℳ_0 by

\[ℳ_0 = \{ (Q, l) ∈ ℙ^2 × (ℙ^2)′ \mid Q ∈ l \}. \]

Then the action of PGL_3(k) on ℳ_0 is transitive and dim ℳ_0 = 3. We recall that \([x_0 : x_1 : x_2]\) are homogeneous coordinates, \(P_0 = [0 : 0 : 1], P_1 = [0 : 1 : 0]\) and \(l_0 = \{x_0 = 0\}\). We define two subspaces ℳ and \(\tilde{ℳ}_0\) of ℂ by

\[ℳ = \left\{ Y ∈ ℂ \mid P_0 \text{ is the smooth point of } Y, T_{P_0}Y = l_0 \text{ and } \operatorname{mult}_{P_0}(T_{P_0}Y, Y) = q + 1 \right\}. \]

\[\tilde{ℳ}_0 = \left\{ Y ∈ ℂ \mid P_0 \text{ is the smooth point of } Y, T_{P_0}Y = l_0 \text{ and } \operatorname{mult}_{P_0}(T_{P_0}Y, Y) > q + 1 \right\}. \]

Then the curve C ∈ ℳ if and only if

\[a_{222} = 0, a_{122} = 0, a_{212} = 0, a_{110} ≠ 0 \text{ and } a_{022} ≠ 0, \]

and C ∈ \(\tilde{ℳ}_0\) if and only if

\[a_{222} = 0, a_{122} = 0, a_{212} = 0, a_{110} = 0 \text{ and } a_{022} ≠ 0. \]

Therefore codimension of ℳ is 3 and \(\tilde{ℳ}_0\) is more than 3 in ℂ. Thus we have

\[\dim ℳ_0 + \dim \tilde{ℳ}_0 < \dim ℂ. \]

We proved the first half of the lemma. We define a subspace \(\tilde{ℳ}_2\) of ℂ by

\[\tilde{ℳ}_2 = \left\{ Y ∈ ℂ \mid P_0 \text{ and } P_1 \text{ are the smooth points of } Y, T_{P_0}Y = l_0, T_{P_1}Y = l_0 \text{ and } \operatorname{mult}_{P_0}(T_{P_0}Y, Y) = q + 1 \right\}. \]

Then the curve C ∈ \(\tilde{ℳ}_2\) if and only if

\[a_{222} = 0, a_{122} = 0, a_{111} = 0, a_{211} = 0, a_{212} = 0, a_{110} ≠ 0, a_{022} ≠ 0, a_{011} ≠ 0. \]

Therefore codimension of \(\tilde{ℳ}_2\) is 5, and we recall dim \(\tilde{ℳ}_2\) = 4. Thus, since we have

\[\dim \tilde{ℳ}_2 + \dim \tilde{ℳ}_0 < \dim ℂ, \]

the second half of the lemma is proved. \(\square\)

Let g be the genus of a general curve C ∈ ℂ. We use the notion and notation about the correspondence of a curve introduced in [2], Chap. 2, Section 5]. Let T : C → C be correspondence defined by T(u) = T_uC.C − qu, D ⊂ C × C its curve of correspondence, i.e. D = \{(u, v) \mid u ≠ v, v ∈ T_uC\}. Then the degree of T is

\[\deg T = (q^2 + q + 1) - q = q^2 + 1. \]

In order to find the degree of T⁻¹, we have to calculate the number of tangent lines to C other than T_uC passing through a general point v ∈ C. We consider the projection \(π_v : C → ℙ^1\) from the center v ∈ C onto a line. Let \(Ω_{C/ℙ^1}\) be the sheaf of
the relative differential of C over \mathbb{P}^1. By Hurwitz-formula \cite[Chap. IV, Corollary 2.4]{4},
\[
2g - 2 = -2(q^2 + q) + \deg R,
\]
where the divisor R is the ramification divisor of π_v i.e. $R = \sum_{u \in C} \text{length}(\Omega_{C/\mathbb{P}^1})_u u$.
Hence
\[
\deg R = q^4 + 2q^3 + 2q^2 + q - 2.
\]
If π_v is ramified at u, then we have
\[
\text{length}(\Omega_{C/\mathbb{P}^1})_u = \begin{cases} q & (u \neq v), \\ q - 2 & (u = v). \end{cases}
\]
Hence, we have
\[
\deg T^{-1} = \frac{(q^4 + 2q^3 + 2q^2 + q - 2) - (q - 2)}{q} = q^3 + 2q^2 + 2q.
\]

Lemma 4.2. Let $\pi_1, \pi_2 : C \times C \to C$ be the projections on first and second factors, respectively. The divisor D on $C \times C$ is algebraically equivalent to
\[
(q^3 + 2q^2 + 3q)E_u + (q^2 + q + 1)F_v - q\Delta,
\]
where $E_u = \pi_1^{-1}(u), F_v = \pi_2^{-1}(v)$ and $\Delta \subset C \times C$ is the diagonal.

Proof. For some $u_0, v_0 \in C$, we write
\[
T(u_0) + qu_0 = \sum b_i v_i
\]
and
\[
T^{-1}(v_0) + qv_0 = \sum a_i u_i.
\]
Let L be the line bundle
\[
L = D - \sum a_i E_{u_i} - \sum b_i F_{v_i} + q\Delta.
\]
For any $x \in C$, the restriction of L to E_x is trivial because the divisor $T(x) + qx$ is linearly equivalent to $T(u_0) + qu_0$. The restriction of L to F_{v_0} is also trivial. Let s be a global nonzero regular section of the restriction of L to F_{v_0}. Then, for any $u \in C$, there is a unique global regular section t_u of the restriction of L to E_u such that $t_u(u, v) = s(u, v_0)$. Set
\[
t(u, v) = t_u(u, v).
\]
Then t is a global nonzero regular section of L. Thus D is linearly equivalent to
\[
\sum a_i E_{u_i} + \sum b_i F_{v_i} - q\Delta.
\]
For any $u, v \in C$, the divisors E_{u_i} (resp. F_{v_i}) are algebraically equivalent to E_u (resp. F_v). Note that the degrees of $T(u_0) + qu_0$ and $T^{-1}(v_0) + qv_0$ are
\[
\deg(T(u_0) + qu_0) = q^2 + q + 1
\]
and
\[
\deg(T^{-1}(v_0) + qv_0) = q^3 + 2q^2 + 3q,
\]
and hence the result is proved. \qed
In order to find the number of the flexes, we should calculate the intersection number \((D \cdot \Delta)\). Since the self-intersection number of \(\Delta\) is \(2 - 2g\), the intersection number \((D \cdot \Delta)\) is
\[
(D \cdot \Delta) = \{(q^3 + 2q^2 + 3q)E_u + (q^2 + q + 1)F_v - q\Delta \} \cdot \Delta
= q^3 + 3q^2 + 4q + 1 - q(2 - 2g)
= q^6 + 2q^4 + q^3 + 2q^2 + 2q + 1.
\]

5. **Fermat curve**

Calculation method of the Milnor number for a formal power series in characteristic zero is well known. (For example, see [6].)

Lemma 5.1. Let \(a\) and \(b\) be elements in \(k \setminus \{0\}\), and let \(f \in k[[x, y]]\) be a formal power series defined by
\[
f(x, y) = ax^\alpha + by^\beta + \sum_{\alpha \beta < \alpha + \beta r} c_{r,s} x^r y^s,
\]
where \(\alpha\) and \(\beta\) satisfy \(p \not| \alpha, p \not| \beta\) and relatively prime. Then the Milnor number \(\mu(f)\) of \(f\) is
\[
\mu(f) = (\alpha - 1)(\beta - 1).
\]

Proof. By Puiseux’s theorem, \(f(x, y) = 0\) is expressed by a parametrization
\[
(t^\beta, c_0t^\alpha + \text{(terms of degree > } \alpha)),
\]
where \(c_0\) is a \(\beta\)-th root of \(-\frac{b}{a}\). Here, the partial derivative of \(f\) by \(y\) is
\[
\frac{\partial f}{\partial y} = b\beta y^{\beta - 1} + \sum_{\alpha \beta < \alpha + \beta r} sc_{r,s} x^r y^{s - 1}
= b\beta (c_0 t^\alpha + \text{(terms of degree > } \alpha))^{\beta - 1}
+ \sum_{\alpha \beta < \alpha + \beta r} sc_{r,s} t^{\beta r} (c_0 t^\alpha + \text{(terms of degree > } \alpha))^{s - 1}.
\]
Since \(\alpha \beta < \alpha s + \beta r\) in the second summation, the order of \(\frac{\partial f}{\partial y}\) is \(\text{ord}_y \frac{\partial f}{\partial y} = \alpha \beta - \alpha \)
For two power series \(g(x, y)\) and \(h(x, y)\), we denote \(\dim k[[x, y]]/ < g, h > \) by \((g, h)_0\).
Then
\[
\left(f, \frac{\partial f}{\partial y} \right)_0 = \alpha \beta - \alpha,
\]
and
\[
(f, x)_0 = \beta \not\equiv 0 \pmod{p}.
\]
By Teissier’s lemma in a positive characteristic in [2],
\[
\mu(f) = \left(f, \frac{\partial f}{\partial y} \right)_0 - (f, x)_0 + 1
= \alpha \beta - \alpha - \beta + 1
= (\alpha - 1)(\beta - 1).
\]

□
Proof of Theorem 2. The morphisms γ_{q^2+q+1} and γ_{q+1} satisfy

$$\gamma_{q^2+q+1} \circ \gamma_{q+1} = \gamma_{q+1} \circ \gamma_{q^2+q+1} = \gamma((q^2+q+1)(q+1)).$$

By the definition of the Ballico-Hefez curve and the line $l = \gamma_{q^2+q+1}(C_0)$, we have

$$B = \gamma_{q+1}(l) = \gamma_{q+1}(\gamma_{q^2+q+1}(C_0)) = \gamma_{q^2+q+1}(\gamma_{q+1}(C_0)) = \gamma_{q^2+q+1}(C'_0),$$

and hence (i) is proved.

We define $X \subset \mathbb{P}^2$ by

$$X = \{x_0 = 0\} \cup \{x_1 = 0\} \cup \{x_2 = 0\}.$$

The Ballico-Hefez curve B has $\frac{q^2+q+1}{2}$ ordinary nodes on $\mathbb{P}^2 \setminus X$ (see [1]), and no singular points on X. Let G and g be the defining polynomials of C'_0 and B, respectively. Using Proposition 1.6 of [5], if $p = 2$, then

$$g = x_0^{q+1} + x_1^{q+1} + x_2^{q+1} + x_0^q x_2 + x_0^q x_2 + x_0 x_2^q + x_1 x_2^q$$

$$+ \sum_{i=0}^{\nu-1} x_0^i x_1^i (x_0 + x_1 + x_2)^{q+1-2^{i+1}},$$

whereas if p is odd, then

$$g = x_0^{q+1} + x_1^{q+1} + x_2^{q+1} + x_0^q x_2 - x_0^q x_2 - x_0 x_2^q - x_0 x_2^q - x_1 x_2^q$$

$$+ (x_0^q + x_1^q + x_2^q - 2x_0 x_1 - 2x_1 x_2 - 2x_2 x_0)^{q+1}.$$

By (i), the polynomial G satisfies $G(x_0, x_1, x_2) = g(x_0^q + q, x_1^q + q, x_2^q + q) + 1$, and two polynomials G and g are symmetric under the permutation of coordinates x_0, x_1 and x_2. First we consider the singularities of C'_0 on $\mathbb{P}^2 \setminus X$. The morphism $\gamma_{q^2+q+1} : \mathbb{P}^2 \setminus X \to \mathbb{P}^2 \setminus X$ is étale of degree $(q^2 + q + 1)^2$. Thus, the ordinary nodes of C'_0 on $\mathbb{P}^2 \setminus X$ are $(q^2 + q + 1)^2(q^2 - q)/2$.

Next, we consider the singularities of C'_0 on X. $g(0, x_1, x_2) = 0$ if and only if $x_1 = x_2$ by (6) and (7). Moreover, the polynomial G and its partial derivatives $\partial G/\partial x_i = x_i^{q^2+q+1}(\partial g/\partial x_i)$ vanish at a point in $\{x_0 = 0\}$. Thus all the points on $C'_0 \setminus \{x_0 = 0\}$ are singular points of C'_0. The morphism $\gamma_{q^2+q+1}|_{\{x_0=0\}}$ restricted to $\{x_0 = 0\}$ is degree $q^2 + q + 1$. Thus the number of the singular points of C'_0 on $\{x_0 = 0\}$ are $q^2 + q + 1$. Therefore, by the polynomial G is symmetric, the number of the singular points of C'_0 on X are $3(q^2 + q + 1)$.

Finally, since all Milnor numbers at points in $\gamma_{q^2+q+1}(\{0 : 1 : 1\})$ are equal, we should calculate the Milnor number at the point $\{0 : 1 : 1\} \in C'_0$. If $p = 2$,

$$g(x_0^{q^2+q+1}, x_1 + 1, 1) = x_0^{q^2+q+1} + x_1^{q+1} + x_0^{q(q^2+q+1)} + x_0^{(q+1)(q^2+q+1)}$$

$$+ \sum_{i=0}^{\nu-1} (x_0^{q^2+q+1})^i (x_1 + 1)^{q^2+q+1} + x_1^{q+1-2^{i+1}},$$

whereas if p is odd,

$$g(x_0^{q^2+q+1}, x_1 + 1, 1) = -2x_0^{q^2+q+1} + x_1^{q+1} + x_0^{q(q^2+q+1)}$$

$$- x_0^{q(q^2+q+1)} x_1 - 2x_0^{q(q^2+q+1)} - x_0^{q^2+q+1} q - 2x_0^{q^2+q+1} q x_1$$

$$+ (x_0^{2(q^2+q+1)} + x_1^{2} - 2x_0^{q^2+q+1} x_1 - 4x_0^{q^2+q+1})^{+1}.$$
By Lemma 3.1, the Milnor number of \(g(x_0^{q^2+q+1}, x_1 + 1, 1) \) is

\[
g(q^2 + q) = q^2(q + 1).
\]

We confirm that the genus of the Fermat curve agree with the genus of its dual curve. The genus \(g \) of the Fermat curve \(C_0 \) of the degree \(d = q^2 + q + 1 \) is

\[
g = \frac{(d-1)(d-2)}{2} = \frac{(q^2 + q)(q^2 + q - 1)}{2}.
\]

Let \(\mu_P \) be the Milnor number and \(r_P \) be the number of the branches at a singular point of the dual curve \(C_0^\vee \). If a point \(P \in C_0^\vee \) is ordinary node, then \(\mu_P = 1 \) and \(r_P = 2 \), whereas if a point \(P \) is in \(C_0^\vee \cap X \), then \(\mu_P = q^2(q + 1) \) and \(r_P = 1 \). Thus the degree \(d^\vee \) of \(C_0^\vee \) is \((q + 1)(q^2 + q + 1)\), and the genus \(g^\vee \) of \(C_0^\vee \) is

\[
g^\vee = \frac{(d^\vee - 1)(d^\vee - 2)}{2} - \frac{1}{2} \sum_{P \in \text{Sing}C_0^\vee} (\mu_P + r_P - 1)
\]

\[
= \frac{1}{2} \frac{((q^2 + q + 1)(q + 1) - 1)((q^2 + q + 1)(q + 1) - 2)}{2}
\]

\[
- \frac{1}{2} \frac{(q^2 + q + 1)^2(q^2 - q) + 3(q^2 + q + 1)q^2(q + 1)}{2}
\]

\[
= \frac{(q^2 + q)(q^2 + q - 1)}{2}.
\]

References

[1] Satoru Fukasawa, Masaaki Homma, and Seon Jeong Kim. Rational curves with many rational points over a finite field. In Arithmetic, geometry, cryptography and coding theory, volume 574 of Contemp. Math., pages 37–48. Amer. Math. Soc., Providence, RI, 2012.
[2] Evelia R. García Barroso and Arkadiusz Ploski. On the Milnor formula in arbitrary characteristic. In Singularities, algebraic geometry, commutative algebra, and related topics, pages 119–133. Springer, Cham, 2018.
[3] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.
[4] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[5] Thanh Hoai Hoang and Ichiro Shimada. On Ballico-Hefez curves and associated supersingular surfaces. Kodai Math. J., 38(1):23–36, 2015.
[6] C. T. C. Wall. Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004.