The equivalences among p-capacity, p-Laplace-capacities and Hausdorff measure

XIAOJING LIU* and TOSHIO HORIUCHI**

Abstract
Let Ω be a smooth bounded domain of \mathbb{R}^N. In this paper, we study the equivalences among three capacities and Hausdorff measure. First we present the equivalence between p-capacity $C_p(K)$ and p-Laplace-capacity $C_{\Delta_p}(K)$ relative to Ω for any compact set $K \subset \Omega$. Secondly we establish the equivalence between p-Laplace capacity $C_p(K, \partial \Omega)$ relative to $\partial \Omega$ and Hausdorff measure $H^{N-1}(K)$ for any compact set $K \subset \partial \Omega$.

1. Introduction
Let Ω be a smooth bounded domain of \mathbb{R}^N ($N \geq 2$) and given a compact set $K \subset \Omega$. In this paper, we shall study the relations among three capacities and Hausdorff measure on the boundary.

First, we shall establish the equivalence of two capacities between C_{Δ_p} and C_p, where Δ_p denotes the so-called p-Laplace operator Δ_p defined by

$$\Delta_p u = \text{div} (|\nabla u|^{p-2} \nabla u),$$

(1.1)

where $\nabla u = (\partial u/\partial x_1, \partial u/\partial x_2, \ldots, \partial u/\partial x_N)$.

By $C_p(K)$ we denote a usual p-capacity of a compact set $K \subset \Omega$, that is

$$C_p(K) = \inf \left\{ \int_{\Omega} |\nabla \varphi|^p; \varphi \in W^{1,p}_0(\Omega) \cap C_c^0(\Omega), \varphi \geq 1 \text{ in some neighborhood of } K \right\},$$

where by $C_c^0(\Omega)$ we denote the space of all continuous functions having compact supports in Ω. On the other hand the capacity C_{Δ_p} is defined in Definition 2.3. When $p = 2$, the equation $C_{\Delta_2}(K) = 2C_2(K)$ was established by Brezis and Marcus and Ponce [3]. Here we extend their result to the case where $p \in (1, \infty)$.

Received 9 Dec 2017
2010 Mathematics Subject Classification. 35J62, 35J70, 35J92.
Key Words and Phrases. p-capacity, p-Laplace-capacity, Hausdorff measure, nonlinear Neumann problem.

*Ibaraki University, Mito, Ibaraki, 310-8512, Japan (liuxiaomao1234@hotmail.com)
**Ibaraki University, Mito, Ibaraki, 310-8512, Japan (toshio.horiuchi.math@vc.ibaraki.ac.jp)
***Partially supported by Grant-in-Aid for Scientific Research (C), No. 16K05189 and Grant-in-Aid for Scientific Research (B) No. 15H03621, Japan Society for the Promotion of Science.
Theorem 1.1. For every compact set $K \subset \Omega$, we have
\[C_{\Delta_p}(K) = 2C_p(K). \] (1.2)

Secondly, we shall establish the equivalence of a capacity $C_{\Delta_p}(K, \partial \Omega)$ relate to the boundary and Hausdorff measure H^{N-1}, where $C_{\Delta_p}(K, \partial \Omega)$ is defined in Definition 2.4. In the linear case ($p=2$), Brezis and Ponce [1] have proved the result. Here we extend their result to the case where $p \in (1, \infty)$. The result is the following.

Theorem 1.2. For every compact set $K \subset \partial \Omega$, we have
\[H^{N-1}(K) = C_{\Delta_p}(K, \partial \Omega). \] (1.3)

Remark 1.1. For the sake of simplicity we assumed the smoothness of the domain Ω. By a technical reason we used solutions to certain Neumann boundary value problems involving p-Laplacian, hence in Theorem 1.2 we need C^2 regularity of the boundary $\partial \Omega$. But in Theorem 1.1, it suffices to assume that Ω is bounded in \mathbb{R}^N.

2. Preliminaries

In this section, we collect some fundamental definitions in the present article together.

It will be convenient to write
\[C^k_b(\overline{\Omega}) = \{ u \in C^k_b(\overline{\Omega}) : u = 0 \text{ on } \partial \Omega \} \quad (k = 0, 1, 2, \cdots). \]

Let $L^p(\Omega)$, $1 \leq p < \infty$, denote the space of Lebesgue measurable functions, defined on Ω, for which
\[||f||_{L^p(\Omega)} = \left(\int_{\Omega} |f|^p \right)^{1/p} < \infty. \]

By $L^p_{\text{loc}}(\Omega)$ we mean the space of functions locally integrable with power p in Ω, and by $L^\infty(\Omega)$ we mean the space of essentially bounded Lebesgue measurable functions. As a norm of f in $L^\infty(\Omega)$ we take its essential supremum, i.e.,
\[||f||_{L^\infty(\Omega)} = \inf \{ c > 0 : |f(x)| \leq c \text{ for almost all } x \in \Omega \}. \]

Then we define the following Sobolev spaces:

Definition 2.1. $(W^{1,p}(\Omega), W^{1,p}_{\text{loc}}(\Omega) \text{ and } W^{1,p}_{0}(\Omega))$

For each $1 \leq p < \infty$, we set
\[W^{1,p}(\Omega) = \{ f : \Omega \to R : f \in L^p(\Omega), \partial_i f \in L^p(\Omega) \text{ for } i = 1, \ldots, N \}, \] (2.1)
\[W^{1,p}_{\text{loc}}(\Omega) = \{ f : \Omega \to R : f \in L^p_{\text{loc}}(\Omega), \partial_i f \in L^p_{\text{loc}}(\Omega) \text{ for } i = 1, \ldots, N \}, \] (2.2)
where $\partial_i f$ is taken as a distributional derivative of f for x_i with $i = 1, \ldots, N$. The space $W^{1,p}(\Omega)$ is equipped with the norm
\[||u||_{W^{1,p}(\Omega)} = |||\nabla u|||_{L^p(\Omega)} + ||u||_{L^p(\Omega)}. \] (2.3)

By $W^{1,p}_{0}(\Omega)$ we denote the completion of $C_0^\infty(\Omega)$ in the norm $|| \cdot ||_{W^{1,p}(\Omega)}$.

Definition 2.2. $(M(\Omega), M_b(\Omega) \text{ and } M_b(\partial \Omega))$

1. By $M(\Omega)$ we denote the space of all Radon measures on Ω.

2. By $M_b(\Omega)$ we denote the space of all Radon measures $\mu \in M(\Omega)$ having bounded variation on Ω.

3. By $M_b(\partial \Omega)$ we denote the space of all Radon measures $\mu \in M(\partial \Omega)$ having bounded variation on $\partial \Omega$.

Definition 2.3. (A p-Laplace-capacity relative to Ω)

$$C_{\Delta_p}(K) = \inf \left\{ \int_{\Omega} |\Delta_p \varphi|; \varphi \in W^{1,p}_0(\Omega) \cap C_0^\infty(\Omega), \varphi \geq 1 \text{ in some neighborhood of } K, \Delta_p \varphi \in M_b(\Omega) \right\}.$$

Definition 2.4. (A p-capacity relative to $\partial \Omega$)

Let $1 < p < \infty$. For each compact set $K \subset \Omega$ we define a p-capacity of K relative to $\partial \Omega$ by

$$C_{\Delta_p}(K, \partial \Omega) = \inf \left\{ \int_{\Omega} |\Delta_p \varphi|; \varphi \in C_0^1(\Omega), \Delta_p \varphi \in C(\Omega), -|\nabla \varphi|^{p-2} \partial \varphi \partial n \geq 1 \text{ in some neighborhood of } K, \right\}$$

where n denotes the unit outer normal.

Definition 2.5. (Quasicontinuity)

We say that a function $u: \Omega \to \mathbb{R}$ is quasicontinuous if there exists a sequence of open subsets $\omega_n \subset \subset \Omega$ such that $u|_{\Omega \setminus \omega_n}$ is continuous for $n \geq 1$ and $C_p(\omega_n) \to 0$ as $n \to \infty$.

Lastly we recall that any Radon measure μ can be uniquely decomposed as a sum of two Radon measures on Ω (see e.g. [2, 4]):

Definition 2.6. (Decomposition of Radon measure)

For any $\mu \in M(\Omega)$, we set $\mu = \mu_a + \mu_s$ (μ_a is the absolutely continuous part and μ_s is singular part of μ), where

$$\begin{cases}
\mu_a(A) = 0 & \text{for any Borel measurable set } A \subset \Omega \text{ such that } C_p(A) = 0, \\
|\mu_s|(\Omega \setminus F) = 0 & \text{for some Borel measurable set } F \subset \Omega \text{ such that } C_p(F) = 0.
\end{cases}$$

(2.4)

Here by $C_p(K)$ we denote a p-capacity of a Borel set K relative to Ω. We note that $(\mu_a)^\pm = (\mu^\pm)_a$, $(\mu_s)^\pm = (\mu^\pm)_s$, $|\mu_a| = |\mu|_a$ and $|\mu_s| = |\mu|_s$ hold by the definition, where $\nu^- = \max[\nu, 0] = (-\nu)^+$ and $|\nu| = \nu^+ + \nu^-$ for a Radon measure ν on Ω.

3. Proof of Theorem 1.1

In order to establish Theorem 1.1 we will need a preliminary result.

Lemma 3.1. Let $K \subset \Omega$ be a compact set. Given any $\varepsilon > 0$, there exists $\psi \in W^{1,p}_0(\Omega) \cap C^\infty(\Omega)$ such that $0 \leq \psi \leq 1$ in Ω, $\psi = 1$ in some neighborhood of K, and

$$\int_{\Omega} |\Delta_p \psi| \leq 2C_p(K) + \varepsilon. \quad (3.1)$$
Proof of Lemma 3.1:
Firstly we assume that $K = \omega$ for a smooth open set ω. Let u denote the capacitary potential of K. More precisely, let $u \in W^{1,p}_0(\Omega)$ be such that $u = 1$ on K and
$$\int_{\Omega} |\nabla u|^p \, dx = C_p(K).$$
Note that u is super p-harmonic in Ω and p-harmonic in $\Omega \setminus K$. In particular, $0 \leq u \leq 1$. Since $\text{supp} \Delta_p u \subset [u = 1]$ and u is of class $C^{1,\sigma}$ with some $\sigma \in (0,1)$ near the boundary as a p-harmonic function, we have
$$||\Delta_p u||_{M_\delta} = -\int_{\Omega} \Delta_p u = \int_{\Omega} |\nabla u|^p = C_p(K).$$
Given $\delta > 0$ small, set
$$v = \frac{(u - \delta)^+}{1 - \delta}.$$
Since v has compact support in Ω, we have
$$\int_{\Omega} \Delta_p v = 0 \quad (3.2)$$
Since $v \in W^{1,p}_0(\Omega)$, it is to see that $\Delta_p v$ is absolutely continuous with respect to p-capacity C_p. Moreover we have
$$\text{supp} \Delta_p v \subset [v = 1] \cup [v = 0]. \quad (3.3)$$
By Kato’s inequalities for p-Laplace operator Δ_p in [5] (Theorem 1.1 and Corollary 1.1), we can easily deduce the following inequalities in the sense of distribution.
$$\Delta_p v \geq 0 \text{ in } [v = 0] \text{ and } \Delta_p v \leq 0 \text{ in } [v = 1]. \quad (3.4)$$
For the sake of selfcontainedness we prove (3.4) in Appendix. It then follows from (3.2) - (3.4) that
$$||\Delta_p v||_{M_\delta} = 2 \int_{[v = 1]} |\Delta_p v|. \quad (3.5)$$
Since $\Delta_p v = \frac{1}{1 - \delta} \Delta_p u$ in $[v = 1]$, we conclude that
$$||\Delta_p v||_{M_\delta} \leq \frac{2}{1 - \delta} ||\Delta_p u||_{M_\delta}. \quad (3.5)$$
Since K is smooth, we have
$$||\Delta_p v||_{M_\delta} \leq \frac{2}{1 - \delta} ||\Delta_p u||_{M_\delta} = \frac{2}{1 - \delta} C_p(K).$$
Choosing $\delta > 0$ so that
$$\frac{\delta}{1 - \delta} C_p(K) < \frac{\varepsilon}{4},$$
we have
$$2(1 + \frac{\delta}{1 - \delta})C_p(K) \leq 2C_p(K) + \varepsilon.$$ Then we have (3.1).
Secondly we prove (3.1) when \(K \) is a compact set. For any \(\varepsilon > 0 \), let \(\omega \subset\subset \Omega \) be open and smooth such that \(K \subset \omega \) and
\[
C_p(K) \leq C_p(\omega) \leq C_p(K) + \frac{\varepsilon}{4}.
\] (3.6)

Let \(u \) denote the capacitary potential of \(\omega \). More precisely, let \(u \in W^{1,p}_0(\Omega) \) be such that \(u = 1 \) on \(\omega \) and
\[
\int_{\Omega} |\nabla u|^p dx = C_p(\omega).
\]

Note that \(u \) is super \(p \)-harmonic in \(\Omega \) and \(p \)-harmonic in \(\Omega \setminus \omega \) and
\[
||\Delta_p u||_{M_b} = -\int_{\Omega} \Delta_p u = \int_{\Omega} |\nabla u|^p = C_p(\omega).
\]

In a similar way, we also have (3.5), then we have
\[
||\Delta_p u||_{M_b} \leq \frac{2}{1-\delta} ||\Delta_p u||_{M_b} = 2(1 + \frac{\delta}{1-\delta})C_p(\omega)
\]
Choosing \(\delta > 0 \) so that
\[
\frac{\delta}{1-\delta}C_p(K) < \frac{\varepsilon}{4},
\]
we have
\[
||\Delta_p u||_{M_b} \leq 2C_p(\omega) + \frac{\varepsilon}{2},
\]
and
\[
||\Delta_p u||_{M_b} \leq 2C_p(K) + \varepsilon.
\]

Thus we have the desired estimate (3.1). \(\square \)

Proof of Theorem 1.2:

In view of Lemma 3.1, it suffices to show that
\[
C_p(K) \leq \frac{1}{2} C_{\Delta_p}(K).
\] (3.7)

Let \(\phi \in W^{1,p}_0(\Omega) \cap C^0(\Omega) \) satisfy \(0 \leq \phi \leq 1 \), \(\Delta_p \phi \in M_b(\Omega) \) and \(\phi = 1 \) in some neighborhood of \(K \). Then we have
\[
C_p(K) \leq \int_{\Omega} |\nabla \phi|^p = \int_{\Omega} |\nabla \phi|^{p-2} \nabla \phi \nabla \phi = -\int \phi \Delta_p \phi.
\]

Note that \(\phi \) has a compact support and \(0 \leq \phi \leq 1 \). Hence \(\int \Delta_p \phi = 0 \) and we have
\[
C_p(K) \leq -\int (\phi - \frac{1}{2}) \Delta_p \phi \leq \frac{1}{2} \int |\Delta_p \phi|.
\]

Since \(\phi \) is arbitrary, we have
\[
C_p(K) \leq \frac{1}{2} C_{\Delta_p}(K).
\] \(\square \)

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we prepare two lemmas which are similar to those in Brezis and Ponce [1] provided that \(p = 2 \). They are proved on a basis of PDE theory.
Lemma 4.1. Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon > 0$, there exists $\psi \in C^1_0(\Omega)$ such that $\psi \geq 0$ in Ω, $\Delta_p \psi \in C(\Omega)$, $-|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K and
\[
\int_{\Omega} |\Delta_p \psi| \leq C_{\Delta_p}(K, \partial \Omega) + \varepsilon. \tag{4.1}
\]

Proof of Lemma 4.1:
Given $\varepsilon > 0$, let $\xi \in C^1_0(\Omega)$ be such that $\xi \geq 0$ in Ω, $\Delta_p \xi \in C(\Omega)$, $-|\nabla \xi|^{p-2} \frac{\partial \xi}{\partial n} \geq 1$ in some neighborhood of K and
\[
\int_{\Omega} |\Delta_p \xi| \leq C_{\Delta_p}(K, \partial \Omega) + \varepsilon. \tag{4.2}
\]
Let ψ be the unique solution of
\[
\begin{cases}
-\Delta_p \psi = |\Delta_p \xi| & \text{in } \Omega, \\
\psi = 0 & \text{on } \partial \Omega.
\end{cases}
\]
By a standard theory we see $\psi \in C^{1, \sigma}(\Omega)$ with some $\sigma \in (0, 1)$ and by the maximum principle, $\xi \leq \psi$ in Ω. Since $\xi = \psi = 0$ on $\partial \Omega$, we have
\[-\frac{\partial \xi}{\partial n} \leq -\frac{\partial \psi}{\partial n} \quad \text{on } \partial \Omega.\]
Since $|\nabla \psi| = |\frac{\partial \psi}{\partial n}|$ on $\partial \Omega$, we have
\[-|\nabla \xi|^{p-2} \frac{\partial \xi}{\partial n} \leq -|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \quad \text{on } \partial \Omega. \tag{4.3}\]
Therefore we see that
\[-|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \geq 1 \quad \text{in some neighborhood of } K. \tag{4.4}\]
Hence we have
\[
\int_{\Omega} |\Delta_p \psi| = \int_{\Omega} |\Delta_p \xi| \leq C_{\Delta_p}(K, \partial \Omega) + \varepsilon. \tag{4.5}\]
□

Lemma 4.2. Let $K \subset \partial \Omega$ be a compact set. Given $\varepsilon > 0$, there exists $\psi \in C^1_0(\Omega)$ such that $0 \leq \psi$ in Ω, $\Delta_p \psi \in C(\Omega)$, $-|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \geq 1$ in some neighborhood of K and
\[
\int_{\Omega} |\Delta_p \psi| \leq \mathcal{H}^{N-1}(K) + \varepsilon. \tag{4.6}\]

Proof of Lemma 4.2:
Let $\delta > 0$ be such that
\[
\mathcal{H}^{N-1}(N_{\delta}(K) \cap \partial \Omega) \leq \mathcal{H}^{N-1}(K) + \varepsilon, \tag{4.7}\]
where $N_{\delta}(K)$ is an open set of \mathbb{R}^N consisting of all points with distance from K being less than δ.
We fix $\xi \in C^\infty(\partial \Omega)$ such that $\xi = 1$ in $N_{\frac{\delta}{2}} \cap \partial \Omega$, $\xi = 0$ in $\partial \Omega \setminus N_{\frac{\delta}{2}}(K)$ and $0 \leq \xi \leq 1$ on $\partial \Omega$. Let $f \in C^\infty_c(\Omega)$ satisfy $f \geq 0$ and $\int_{\Omega} f = \int_{\partial \Omega} \xi$. Now let ψ be one of solutions the following Neumann problem:
\[
\begin{cases}
-\Delta_p \psi = f & \text{in } \Omega, \\
-|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} = \xi & \text{on } \partial \Omega. \tag{4.8}
\end{cases}
\]
Again we see that $\psi \in C^{1,\sigma}(\Omega)$ with some $\sigma \in (0, 1)$. Replacing ψ by $\psi - \min_{\Omega} \psi$, we may assume that $\psi \geq 0$ in Ω. Then

$$||\Delta_p \psi||_{M_b} = \int_{\Omega} |\Delta_p \psi| = - \int_{\Omega} \Delta_p \psi$$

$$= - \int_{\Omega} |\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} = \int_{\partial \Omega} \xi$$

$$\leq \mathcal{H}^{N-1}(N_\delta(K) \cap \partial \Omega) \leq \mathcal{H}^{N-1}(K) + \varepsilon.$$

Thus, we have our result.

Now we present Proof of Theorem 1.2:

Given $\varepsilon > 0$, let $\psi \in C^1_0(\Omega)$ be the function given by Lemma 4.1. Since $\psi \geq 0$ in Ω, we have $-|\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \geq 0$ on $\partial \Omega$. Hence integrating by parts and using (4.1) we have

$$\mathcal{H}^{N-1}(K) \leq - \int_{\partial \Omega} |\nabla \psi|^{p-2} \frac{\partial \psi}{\partial n} \leq - \int_{\partial \Omega} \Delta_p \psi \leq \int_{\partial \Omega} |\Delta_p \psi| \leq C_{\Delta_p}(K, \partial \Omega) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we deduce that

$$\mathcal{H}^{N-1}(K) \leq C_{\Delta_p}(K, \partial \Omega).$$

From Lemma 4.2 we have the reverse inequality,

$$C_{\Delta_p}(K, \partial \Omega) \leq \mathcal{H}^{N-1}(K).$$

5. Appendix (Proof of the inequalities in (3.4))

We begin with recalling the admissible class in $W^{1,p}_\text{loc}(\Omega)$ and improved Kato’s inequalities; Theorem 1.2 in [5] (See also [6]).

Definition 5.1. (Admissible class in $W^{1,p}_\text{loc}(\Omega)$) Let $1 < p < \infty$ and $p^* = \max[1, p-1]$. A function $u \in W^{1,p}_\text{loc}(\Omega)$ is said to be admissible if $\Delta_p u \in M(\Omega)$ and there exists a sequence $\{u_n\}_{n=1}^\infty \subset W^{1,p}_\text{loc}(\Omega) \cap L^{\infty}(\Omega)$ such that:

1. $u_n \to u$ a.e. in Ω and $u_n \to u$ in $W^{1,p^'}(\Omega)$ as $n \to \infty$.
2. $\Delta_p u_n \in L^1_{\text{loc}}(\Omega)$ ($n = 1, 2, \cdots$) and

$$\sup_n |\Delta_p u_n|_\omega = \sup \int_\omega |\Delta_p u_n| < \infty \quad \text{for every } \omega \subset \subset \Omega. \quad (5.1)$$

For the admissible class we showed the following fundamental properties in [6] (See also [5]).

Proposition 5.1. Let $N \geq 1$, $1 < p < \infty$, $p^* = \max[1, p-1]$ and Ω be a bounded domain of \mathbb{R}^N.

1. Assume that a function $u \in W^{1,p^'}(\Omega)$ is admissible. Then $u^+ = \max[u, 0]$ and $u^- = \max[-u, 0]$ are also admissible.
2. Assume that \(p = 2 \). Then a function \(u \in W^{1,1}_{\text{loc}}(\Omega) \) is admissible if \(\Delta u \in M(\Omega) \).

3. A function \(u \in W^{1,p}_{0}(\Omega) \) is admissible if \(\Delta_p u \in M(\Omega) \).

Under these preparation we have proved in [5] the following:

Theorem 5.1. Let \(N \geq 1 \), \(1 < p < \infty \), \(p' = \max[1,p-1] \) and \(\Omega \) be a bounded domain of \(\mathbb{R}^N \). Let \(\Phi \) be a \(C^1 \) convex function in \(\mathbb{R} \) such that \(\Phi' \geq 0 \) in \(\mathbb{R} \) and \(\Phi' \in L^\infty(\mathbb{R}) \).

When \(p = 2 \), assume that \(u \in L^1_{\text{loc}}(\Omega) \) and \(\Delta u \) is a Radon measure on \(\Omega \).

When \(p \neq 2 \), assume that \(u \in W^{1,p'}_{\text{loc}}(\Omega) \) and \(u \) is admissible in the sense of Definition 5.1.

Then we have

\[
\Delta_p \Phi(u) \geq \Phi'(u)^{p-1}(\Delta_p u)_a - ||\Phi'||^{p-1}_{L^\infty(\mathbb{R})}(\Delta_p u)_s \quad \text{in} \; D'(\Omega). \tag{5.2}
\]

Let \(\{\Phi_n\} \) be a sequence of \(C^1 \) convex functions in \(\mathbb{R} \) such that \(\Phi_n(t) = t \) if \(t \geq \frac{1}{n} \), \(\Phi(t) = \frac{1}{2n} \) if \(t < 0 \), \(0 \leq \Phi'_n \leq 1 \) in \(\mathbb{R} \). Then it follows from Theorem 5.1 that

\[
\Delta_p \Phi_n(u) \geq \Phi'_n(u)^{p-1}(\Delta_p u)_a - (\Delta_p u)_s \quad \text{in} \; D'(\Omega). \tag{5.3}
\]

By taking a limit as \(n \to \infty \) we have

\[
\Delta_p (u^+) \geq \chi_{\{u>0\}}(\Delta_p u)_a - (\Delta_p u)_s \quad \text{in} \; D'(\Omega). \tag{5.4}
\]

Taking the absolutely continuous part of both sides,

\[
\Delta_p (u^+)_a \geq \chi_{\{u>0\}}(\Delta_p u)_a \quad \text{in} \; D'(\Omega). \tag{5.5}
\]

In particular if \(u \geq 0 \) a.e. in \(\Omega \), then we conclude that

\[
(\Delta_p u)_a|_{\{u=0\}} \geq 0. \tag{5.6}
\]

Now we are in a position to prove (3.4).

Proof of (3.4)

Since \(0 \leq v \in W^{1,p}_{0}(\Omega) \), It follows from Proposition 5.1 that \(v \) is admissible, and it is easy to see that \(\Delta_p v \) is absolutely continuous with respect to \(p \)-capacity so that the concentrated part \((\Delta_p v)_s = 0 \). Therefore it is clear from (5.6) that the first inequality of (3.4) holds on \([v=0] \). The second one also follows if we consider \(1-v \) instead. \(\square \)

References

[1] H. Brezis, A. Ponce, Reduced measures on the boundary, Journal of Functional Analysis 229(2005), 95-120.

[2] H. Brezis, A. Ponce, Kato’s inequality when \(\Delta u \) is a measure, C. R. Acad. Sci. Paris, Ser. I 338 (2004),599-604.

[3] H. Brezis, M. Marcus, A. Ponce, Nonlinear elliptic equations with measures revisited, in Mathematical Aspects of Nonlinear Dispersive Equations (J. Bourgain, C. Kenig, and S. Klainerman, eds.), Annals of Mathematics Studies, 163 Princeton University Press, Princeton, NJ 2007, p. 55-110.
The equivalences among p-capacity, p-Laplace-capacities and Hausdorff measure

[4] L. Dupaigne and A. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.) 10, (2004), 341-358.

[5] X. Liu, T. Horiuchi, Remarks on Kato’s inequality when $\Delta_p u$ is a measure, Mathematical Journal of Ibaraki University vol. 48(2016), 45-61.

[6] X. Liu, T. Horiuchi, Remarks on the strong maximum principle involving p-Laplacian, Hiroshima Mathematical Journal Vol.46, vo. 3(2016), 311-331.