Comparative risk for intracranial hemorrhage related to new oral anticoagulants
A network meta-analysis

Tao Ma, MM, Chunbo Liu, MM, Tianwei Jiang, MD, Huaping Qin, MM, Ruhong Wu, MD, Peng Zhou, MM

Abstract
Background: The intracranial hemorrhage (ICH) risk of oral anticoagulants/non-vitamin K antagonist oral anticoagulants (NOACs) remains largely unknown. Patients who need oral anticoagulants such as aspirin or warfarin often suffer from obvious complications.

Methods: This network meta-analysis intended to assess the ICH risk in patients taking NOACs. The data from PubMed, the Cochrane database, and Embase were reviewed. All phase III randomized controlled trials of NOACs (apixaban, edoxaban, dabigatran, rivaroxaban), aspirin and warfarin were reviewed.

Results: Twenty-three trials involving 137,713 participants were included, involving 6 regimens. Warfarin had the first risk of ICH (surface under the cumulative ranking area: 0.82), followed by dabigatran, edoxaban, aspirin, apixaban, rivaroxaban, and placebo. Dabigatran had the lowest risk of all-cause mortality (surface under the cumulative ranking area: 0.63), followed by apixaban, edoxaban, warfarin, rivaroxaban, aspirin, and placebo.

Conclusion: Warfarin significantly increased the risk of ICH in patients taking oral anticoagulants compared with 4 NOACs (dabigatran, edoxaban, apixaban, rivaroxaban) and aspirin. Apixaban is least likely to induce all-cause mortality.

Abbreviations: ACS = acute coronary syndrome, AF = atrial fibrillation, CI = confidence interval, DTI = direct thrombin inhibitor, FXa = factor Xa, ICH = intracranial hemorrhage, INR = international normalized ratio, NOAC = non-vitamin K antagonist oral anticoagulant, OR = Odds ratio, PE = pulmonary embolism, RCT = randomized controlled trial, SUCRA = surface under the cumulative ranking curve, VKA = vitamin K antagonist, VTE = venous thromboembolism.

Keywords: anticoagulation, intracranial hemorrhage, network meta-analysis, new oral anticoagulants, vitamin K antagonists

1. Introduction
Anticoagulants have been widely used in the prevention and treatment of thromboembolic diseases, such as stroke, atrial fibrillation (AF), acute coronary syndrome (ACS), pulmonary embolism (PE), disseminated intravascular coagulation, rheumatic heart disease after valve replacement surgery, and postoperative venous thromboembolism (VTE). However, the long-term application of antithrombotic drugs can cause abnormal coagulation function in patients. The serious complication of antithrombotic drugs is intracranial hemorrhage (ICH). Once ICH occurs, these patients are more prone to hematoma enlargement, operative hemostasis, and postoperative rebleeding.

Vitamin K antagonists (VKA) including warfarin are effective for preventing stroke in patients with AF. They have the limitations of unpredictable pharmacodynamics or pharmacokinetics and narrow therapeutic index, requiring laboratory monitoring (international normalized ratio [INR]) to adjust the dose. They have also more than doubled the risk of spontaneous intraparenchymal hemorrhage,[1] being associated with 12% to 14% of all ICH cases.[2] ICH accounts for 90% of all VKA-associated deaths.[3] For VKA-related ICH, both mortality rate and functional prognosis are poor.[4] NOACs selectively inhibit factors IIa or Xa and overcome the limitations associated with traditional oral anticoagulants.

Traditional head-to-head meta-analyses only compare the effects of 2 individual interventions. A network analysis allows the combination of direct and indirect evidences to compare the effects of 2 interventions and to establish the best intervention measures.[5] Therefore, we intended to perform a network analysis to assess the relative effectiveness of apixaban, enoxaparin, edoxaban, dabigatran, rivaroxaban, warfarin, and aspirin on the risk of ICH and mortality.

2. Methods
This is a meta-analysis, so ethical approval or informed consent was not necessary.
2.1. Search strategy
We searched PubMed, the Cochrane database, and the EMBASE.com database for all randomized controlled trials (RCTs) that investigated the treatments up to May 2020. The following search terms were applied: (“new oral anticoagulants” OR “NOAC” OR “non-vitamin K oral anticoagulants”) and (“Apixaban” OR “Enoxaparin” OR “Dabigatran” OR “Rivaroxaban” OR “Edoxaban” OR “Aspirin” OR “Warfarin”) and (“randomized controlled trials” OR “RCT”) without language restriction. We also manually searched reference lists from cited articles for additional eligible trials.

2.2. Eligibility criteria
The studies included in this network meta-analysis met the following criteria:
(1) NOAC phase III studies.
(2) Trials comparing any pair of the following interventions: apixaban, dabigatran, enoxaparin, edoxaban, and rivaroxaban against other anticoagulants.
(3) Trials reporting one of the following outcomes. The primary outcome was ICH.
(4) RCTs reported in English language.

The following studies were excluded:
(1) NOAC phase II studies, non-RCTs.
(2) Duplicated publications from the same author with different interventions.
(3) Controlled group that did not contain any of apixaban, dabigatran, enoxaparin, edoxaban, and rivaroxaban.
(4) Research subjects not in accordance with the inclusion criteria.

2.3. Data extraction and analysis
Two investigators (Ma and Peng) independently examined publications that met the inclusion criteria. Data of interest were extracted, including report authors, year of publications, study arms, study sample, median age, ICH, and mortality. The Cochrane Collaboration’s tool was adopted to assess the risks of bias as follows: random sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, etc. Any disagreement with respect to data extraction and integration was discussed with a third researcher (Wu).

2.4. Statistical analysis
Pairwise meta-analysis was performed by STATA software (Version 16.0; Stata Corporation, College Station, TX). ICH was defined as the primary endpoint. Mortality was defined as the secondary endpoint. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using the random-effects model or fixed-effects model for investigating treatment effects. Statistical heterogeneity was assessed by $I^2$ using the Higgins–Thompson method [6]; $I^2 < 25\%$ was no heterogeneity, 25% to 50% was low heterogeneity, 50% to 75% was moderate heterogeneity, and >75% was high heterogeneity.

Node-splitting network meta-analysis was developed in a Bayesian framework using Markov chain Monte Carlo simulation methods provided by Aggregate Data Drug Information System v1.16.6 (Drugis, Groningen, NL). Moreover, the surface under the cumulative ranking curve (SUCRA) was obtained to rank corresponding interventions. As a transformation of the mean rank, SUCRA provides a hierarchy of treatments and represents the location and variance of treatment effects. Higher accumulative SUCRA value indicates higher possible ranking of the treatment, which is equal to 1 when the treatment is certainly the best.

3. Results

3.1. Characteristics of included studies
This review included 23 RCTs reporting at least one ICH event (Fig. 1). After retrieving the titles and abstracts, 202 articles were excluded as unrelated studies, 16 as non-RCTs, 43 as non-relevant interventions, 31 as non-included outcomes, and 21 as non-available data. These randomized controlled articles met the inclusion criteria of this network meta-analysis, which were from different countries and published between 1990 and 2018. These studies evaluated a total of 137,713 patients with a mean age ranging from 52 to 78 years. The characteristics of the eligible studies are presented in Table 1. [7-29] The included trials evaluated NOACs in the presence of different clinical conditions and settings: patients with venous thromboembolic disease (n = 4 RCTs), non-valvular atrial fibrillation (NVAF) (n = 14 RCTs), ACS (n = 1 RCTs), patients undergoing orthopedic surgery (n = 2 RCTs), and patients hospitalized for medical illnesses (n = 2 RCTs) (Fig. 2). The risks of bias of the included RCTs are exhibited in Figure 3.

3.2. Pairwise meta-analysis
The sum ORs of the corresponding results for each direct comparison were calculated. The results of pairwise meta-analysis are shown in Table 2 and Figure 4. Patients administered with rivaroxaban had an increased risk of ICH compared to those taking placebo (Odds ratio [OR] = 3.21, 95% confidence interval (CI) = 1.25–8.23, $P < .001$). In contrast, patients administered with rivaroxaban had a significantly lower risk of ICH than those taking edoxaban (OR = 0.25, 95% CI = 0.07–0.88, $P < .001$). Moreover, patients using warfarin were associated with an increased risk of ICH compared to those administered with apixaban (OR = 2.37, 95% CI = 1.71–3.29, $P < .001$), while those taking edoxaban were associated with a lower risk of ICH than patients using warfarin (OR = 2.46, 95% CI = 2.02–3.00, $P < .001$). Furthermore, both dabigatran (OR = 1.12, 95% CI = 1.00–1.25, $P < .001$) and edoxaban (OR = 1.12, 95% CI = 1.03–1.23, $P = .05$) were more effective than warfarin in reducing the mortality. Finally, patients taking rivaroxaban had a lower risk of mortality than those administered with placebo (OR = 0.80, 95% CI = 0.65–0.98, $P < .001$).

The heterogeneity between some studies was not significant, so the fixed-effect model was utilized for comparisons. However, when significant heterogeneity existed in some comparisons (apixaban vs placebo, $P = 82.1\%$; warfarin vs rivaroxaban, $P = 91.9\%$, in ICH; apixaban vs placebo, $P = 97.2\%$; rivaroxaban vs placebo, $P = 100.0\%$, in mortality), the random-effects model was employed.

3.3. Network meta-analysis
Regarding primary outcome, the pairwise meta-analysis showed that apixaban was more likely to cause ICH than rivaroxaban...
Records identified through database searching (n=468)

Screening title and abstract (n=336)

Full-text studies assessed for eligibility (n=134)

Excluded for duplication (n=132)

Excluded for unrelated studies (n=202)

Non-RCTs (n=16)
Not relevant intervention (n=43)
Not included outcome (n=31)
No available data (n=21)

Finally inclusion of studies (n=23)

Figure 1. Flow chart of RCT selection. RCT = randomized controlled trial

Table 1

Main characteristics of included studies.

| Author          | Study         | Year   | Clinical condition       | Intervention and dose                  | Age (yr) | ICH (n) | Mortality (n) | Patients (n) | Double blind | Follow-up |
|-----------------|---------------|--------|--------------------------|----------------------------------------|----------|---------|---------------|--------------|--------------|-----------|
| Goldhaber SZ    | ADOPT [7]     | 2011   | Medical illnesses        | Apixaban 2.5 mg twice daily            | 66.8±12  | 0       | 0             | 3184         | Yes          |           |
| Lassen MR       | ADVANCE-2 [8] | 2010   | Orthopedic surgery       | Enoxaparin 40 mg once daily            | 66.7±12  | 2       | 70            | 3217         |             |           |
| Agnelli G       | AMPLIFY-EXT [9]| 2013   | Venous thromboembolism   | Apixaban 2.5 mg twice daily            | 67       | 0       | 0             | 1528         | Yes          |           |
| Alexander JH    | APPRAISE-2 [10]| 2011  | Acute coronary syndrome  | Placebo                                | 56.4     | 3       | 66            | 1853         | Yes          | 12 mo     |
| Granger CB      | ARISTOTLE [11]| 2013   | Atrial fibrillation      | Placebo                                | 70       | 52      | 488           | 9088         | Yes          | 1.8 yr    |
| Singer DE       | BATAF [12]    | 1990   | Atrial fibrillation      | Placebo                                | 68.5±8.5 | 1       | 11            | 202          | No           |           |
| Conolly SJ      | CAF [13]      | 1991   | Atrial fibrillation      | Warfarin INR 2–3                       | 68.4±0.6 | 0       | 26            | 208          | No           |           |
| Avilesнеес EFG | 2009          | 2009   | Atrial fibrillation      | Placebo                                | 71±8.7   | 3       | 123           | 4024         |             |           |
| RE-LV [14]     | 2013          | 2013   | Atrial fibrillation      | Placebo                                | 67±7     | 1       | 102           | 404          | Yes          | 2.3 yr    |
| Giugliano RP    | ENGAGE AF-TIMI [15]| 2013 | Atrial fibrillation      | Placebo                                | 72       | 177     | 1510          | 14,014       | Yes          | 2.8 yr    |
| Ezekewitz MD    | 1992          | 2013   | Atrial fibrillation      | Placebo                                | 67±7     | 1       | 15            | 280          | Yes          | 1.8 yr    |
| Büller HR       | Hokusai-VTE  [16]| 2013 | Venous thromboembolism  | Placebo                                | 55.7±16.3| 5       | 20            | 4118         | Yes          | 12 mo     |

(continued)
The other groups had similar risks of ICH. The results of direct comparisons are shown in Table 3 and Figure 5.

The SUCRA probabilities of different intervention methods were estimated. Figure 6 shows the ranking of different risks of ICH. The results of indirect comparisons are shown in the lower triangles of Table 3. The absolute effects and rank test indicated that warfarin ranked the first (SUCRA: 0.82), followed by dabigatran, edoxaban, aspirin, apixaban, rivaroxaban, and placebo.

As to secondary outcome, the pairwise meta-analysis showed that apixaban was more likely to reduce mortality than placebo (OR = 1.57, 95% CI: 1.07, 2.37). The other groups had similar risks of mortality. The results of indirect comparisons are shown in Table 3.

The SUCRA probabilities of different intervention methods were estimated. Figure 7 shows the ranking of different risks of mortality. The results of indirect comparisons are shown in the upper triangles of Table 3. The absolute effects and rank test indicated that dabigatran ranked the lowest (SUCRA: 0.63), followed by apixaban, edoxaban, warfarin, rivaroxaban, aspirin, and placebo.

4. Discussion

ICH is a well-known serious complication of antithrombotic drugs. Many previous RCTs have not been analyzed in head-to-head comparisons or network meta-analysis. In this study, direct pairwise meta-analysis and network meta-analysis were conducted to compare the risks of 6 regimens (apixaban, edoxaban, dabigatran, rivaroxaban, aspirin, and placebo) as OACs and placebo/control. Treatment was selected to match the individual risk of ICH events with specific pharmacokinetic and pharmacodynamic of suppository therapy.

In this network meta-analysis, warfarin had the highest probability of ICH risk among all anticoagulant regimens. Direct pairwise meta-analysis results showed that warfarin augmented the probability of ICH risk than apixaban and edoxaban. After ICH in patients taking VKA, hematoma easily expands and the mortality and disability rates increase obviously than those of the general population.[10] Patients should stop using VKA immediately and take vitamin K to correct coagulation dysfunction. Prothrombin complex concentrates, which can correct INR rapidly with milder complications, should be the first choice. The target value of INR should be lower than 1.4.[11]

For patients with NVAF, venous thrombosis and PE, direct factor Xa inhibitors (FXas) (including apixaban, edoxaban, and rivaroxaban) can inhibit both free factor Xa (FXa) factor of plasma and FXa factor combination of prothrombinase complexes. The required concentration range for coagulation activation of FXa is wider than that of thrombin, which can reduce the requirement of monitoring the blood coagulation function, because this kind of drug is superior to warfarin. Our direct pairwise meta-analysis results showed that warfarin elevated the probability of mortality risk than dabigatran and edoxaban. Thus, the SUCRA ranking plot did not reveal obvious winners of 4 NOACs (apixaban, edoxaban, rivaroxaban, dabigatran) for ICH.
Figure 3. Risks of bias of included RCTs.
Table 2
Pairwise meta-analyses of comparisons.

| Endpoints | Direct comparisons | I² | P values | OR (95%CI) |
|-----------|--------------------|----|----------|------------|
| ICH       | Aspirin vs Apixaban| N/A| 0.00     | 1.19 (0.53,2.66) |
|           | Apixaban vs Placebo| 82.1% | 5.58 | 0.79 (0.08,8.00) |
|           | Warfarin vs Apixaban| N/A | 0.00 | 2.37 (1.71,3.29) |
|           | Aspirin vs Placebo| N/A | 0.00 | 0.48 (0.09,2.61) |
|           | Warfarin vs Aspirin| 0.0% | 0.06 | 2.66 (0.70,10.14) |
|           | Rivaroxaban vs Edoxaban| N/A | 0.00 | 0.25 (0.07,0.88) |
|           | Warfarin vs Edoxaban| 0.0% | 0.00 | 2.46 (2.02,3.00) |
|           | Rivaroxaban vs Placebo| N/A | 0.00 | 3.21 (1.25,8.23) |
|           | Warfarin vs Rivaroxaban| 91.9% | 12.41 | 5.96 (0.82,43.57) |
| Mortality | Aspirin vs Apixaban| N/A | 0.00 | 1.28 (0.90,1.66) |
|           | Apixaban vs Placebo| 97.2% | 36.16 | 1.00 (0.51,1.56) |
|           | Warfarin vs Apixaban| N/A | 0.00 | 1.03 (0.91,1.18) |
|           | Aspirin vs Placebo| 0.0% | 0.78 | 1.10 (0.86,1.41) |
|           | Warfarin vs Aspirin| 0.0% | 0.63 | 0.96 (0.64,1.42) |
|           | Warfarin vs Dabigatran| 0.0% | 0.00 | 1.12 (1.00,1.25) |
|           | Rivaroxaban vs Edoxaban| 0.0% | 0.03 | 1.17 (0.81,1.69) |
|           | Warfarin vs Edoxaban| 0.0% | 0.05 | 1.12 (1.03,1.23) |
|           | Rivaroxaban vs Placebo| 100.0% | 0.00 | 0.80 (0.65,0.96) |
|           | Warfarin vs Placebo| 26.4% | 4.08 | 0.66 (0.41,1.07) |
|           | Warfarin vs Rivaroxaban| N/A | 0.00 | 0.71 (0.22,2.26) |

CI = confidence interval, ICH = intracranial hemorrhage, OR = Odds ratio.

Figure 4. Contribution plot of included RCTs. The columns refer to direct comparisons and the rows refer to all possible pairwise comparisons. 1: Apixaban; 2: dabigatran; 3: rivaroxaban; 4: edoxaban; 5: aspirin; 6: warfarin; 7: placebo.
Direct thrombin inhibitors (DTIs) can inhibit thrombin to exert an antithrombotic effect and suppress free thrombin binding to blood clots, without needing auxiliary factors. They do not react with the fourth factor of platelets, and thus have no risk of thrombocytopenia. The incidence rate of ICH is low in treatment. Direct pairwise meta-analysis results showed that dabigatran reduced the probability of mortality risk of warfarin. As suggested by the SUCRA ranking plot, dabigatran may give the lowest mortality rate among all regimens.

This network meta-analysis still has some limitations related to included studies and analysis methods. For instance, it is based on research rather than the data analysis of individual patient. The collection of data from patients under different clinical conditions is always a methodological concern and should be considered as a limitation.

This network meta-analysis compares different types of treatments including apixaban, edoxaban, dabigatran, rivaroxaban, aspirin, and warfarin. Our findings suggested that warfarin had the most probability of causing ICH with SUCRA value of 82% and dabigatran had the most probability of reducing mortality with SUCRA value of 63%. Due to the limitations in the quantity of currently available evidence, high-quality RCTs with large numbers of participants should be conducted to explore the preferred options for clinical practice.

In conclusion, this network meta-analysis showed that warfarin significantly increased the risk of ICH in patients taking oral anticoagulants compared with 4 NOACs (dabigatran, edoxaban, apixaban, rivaroxaban) and aspirin. Dabigatran had the lowest probability of causing mortality among NOACs. We recommend that future studies focus on the ICH risk to clarify the incidence rate and associated risk.

**Table 3**

| Treatment     | Warfarin | Aspirin | Rivaroxaban | Edoxaban | Apixaban | Placebo |
|---------------|----------|---------|-------------|-----------|----------|---------|
| Apixaban      | 1.30 (0.82, 2.04) | 0.99 (0.48, 2.02) | 1.02 (0.55, 1.93) | 1.57 (1.07, 2.37) | 1.26 (0.69, 2.41) | 1.10 (0.71, 1.72) |
| Aspirin       | 0.78 (0.46, 1.32) | 0.76 (0.43, 1.35) | 0.79 (0.43, 1.43) | 1.20 (0.82, 1.77) | 0.97 (0.54, 1.81) | 0.84 (0.56, 1.28) |
| Rivaroxaban   | 0.49 (0.34, 0.71) | 0.63 (0.46, 0.90) | 1.03 (0.50, 2.16) | 1.60 (0.83, 3.09) | 1.28 (0.60, 2.78) | 1.12 (0.65, 1.97) |
| Edoxaban      | 0.60 (0.47, 0.79) | 0.77 (0.60, 0.95) | 1.20 (0.62, 2.38) | 1.52 (0.83, 2.63) | 1.23 (0.67, 2.30) | 1.07 (0.67, 1.69) |
| Placebo       | 0.09 (0.05, 0.17) | 0.09 (0.06, 0.12) | 0.09 (0.05, 0.15) | 0.09 (0.05, 0.14) | 0.09 (0.05, 0.14) | 0.09 (0.05, 0.14) |

**Figure 5.** Comparison-adjusted funnel plot for the network meta-analysis. 1: Apixaban; 2: dabigatran; 3: rivaroxaban; 4: edoxaban; 5: aspirin; 6: warfarin; 7: placebo.

**Figure 6.** Ranking of different risks of ICH. Rank 1 is worst and Rank 7 is best.
Figure 7. Ranking of different risks of mortality. Rank 1 is worst and Rank 7 is best.

Author contributions
Conceptualization: Tao Ma, Peng Zhou.
Data curation: Chunbo Liu.
Investigation: Chunbo Liu, Tianwei Jiang, Huaping Qin, Ruhong Wu.
Methodology: Chunbo Liu, Tianwei Jiang, Huaping Qin, Ruhong Wu.
Supervision: Peng Zhou.
Writing – original draft: Tao Ma.
Writing – review & editing: Peng Zhou.

References
[1] Hart RG, Tonarelli SB, Pearce LA. Avoiding central nervous system bleeding during antithrombotic therapy: recent data and ideas. Stroke J Cereb Circ 2003;36:1388–93.
[2] Ansell J, Hirsh J, Hylek E, et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008;133:1605–88.
[3] Fang MC, Go AS, Chang Y, et al. Death and disability from warfarin-associated intracranial and extracranial hemorrhages. Am J Med 2007;120:700–5.
[4] Berwaerts J, Webster J. Analysis of risk factors involved in oral anticoagulant-related intracranial haemorrhages. QM Mon J Assoc Phys 2000;93:513–21.
[5] Salanti G, Ades AE, Ioannidis JP, et al. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011;64:163–71.
[6] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
[7] Goldhaber SZ, Leizorovicz A, Kakkar AK, et al. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients. N Engl J Med 2011;365:699–708.
[8] Lassen MR, Raskob GE, Gallus A, et al. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial. Lancet 2010;375:807–15.
[9] Agnelli G, Buller HR, Cohen A, et al. Apixaban for extended treatment of venous thromboembolism. N Engl J Med 2013;368:699–708.
[10] Alexander JH, Lopes RD, James S, et al. Apixaban with antiplatelet therapy after acute coronary syndrome. N Engl J Med 2011;365:699–708.
[11] Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–92.
[12] Mega JL, Braunwald E, Wiviott SD, et al. Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med 2012;366:9–19.
[13] Büllner HR, Prins MH, Lensin AW, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med 2012;366:1287–97.
[14] Singer DE, Hughes RA, Gress DR, et al. The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. N Engl J Med 1990;323:1503–11.
[15] Connolly SJ, Laupacis A, Gent M, et al. Canadian atrial fibrillation anticoagulation (CAFA) study. J Am Coll Cardiol 1991;18:349–55.
[16] Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;364:806–17.
[17] Connolly SJ, Ezekowitz MD, Yusuf S, et al. Rivaroxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–51.
[18] EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. Lancet 1993;342:1255–62.
[19] Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:2093–104.
[20] Ezekowitz MD, Bridges SL, James KE, et al. Warfarin in the prevention of stroke associated with nonrheumatic atrial fibrillation. Veterans affairs stroke prevention in nonrheumatic atrial fibrillation investigators. N Engl J Med 1992;327:1406–12.
[21] Buller HR, Decousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med 2013;369:1406–15.
[22] Sato H, Ishikawa K, Kitabatake A, et al. Low-dose aspirin for prevention of stroke in low-risk patients with atrial fibrillation: Japan Atrial Fibrillation Stroke Trial. Stroke 2006;37:447–51.
[23] Hori M, Matsumoto M, Tanahashi N, et al. Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation the J-ROCKET AF study. Circ J 2012;76:11.
[24] Turpie AG, Lassen MR, Davidson BL, et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. Lancet 2009;373:1673–80.
[25] Schulman S, Kearon C, Kakkar AK, et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med 2013;368:709–18.
[26] Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883–91.
[27] Gullov AL, Kofoed BG, Petersen P, et al. Fixed mindose warfarin and aspirin alone and in combination vs adjusted-dose warfarin for stroke prevention in atrial fibrillation: Second Copenhagen Atrial
[28] Stroke Prevention in Atrial Fibrillation Investigators. Stroke Prevention in Atrial Fibrillation Study. Final results. Circulation 1991;84:527–39.

[29] Stroke Prevention in Atrial Fibrillation Investigators. Warfarin versus aspirin for prevention of thromboembolism in atrial fibrillation: Stroke Prevention in Atrial Fibrillation II Study. Lancet 1994;343:687–91.

[30] Parry-Jones AR, Di Napoli M, Goldstein JN, et al. Reversal strategies for vitamin K antagonists in acute intracerebral hemorrhage. Ann Neurol 2015;78:54–62.

[31] Frontera JA, Lewin JJ III, Rabinstein AA, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the neurocritical care society and society of critical care medicine. Neurocrit Care 2016;24:6–46.