Efecto de PROCAMPO sobre la producción y las importaciones de granos forrajeros en México*

The effect of PROCAMPO on the production and imports of forage grain in Mexico

Jorge Nery Molina-Gómez1§, José Alberto García-Salazar1, Luis Eduardo Chalita-Tovar1 y Francisco Pérez-Soto2

1Campus Montecillo. Colegio de Postgraduados. Carretera México-Texcoco, km. 36.5. C. P. 56230. Montecillo, Texcoco, Estado de México. Tel. 01 595 9520200. Ext. 1836. (jsalazar@colpos.mx), (chalita@colpos.mx). 2Universidad Autónoma Chapingo. División de Ciencias Económico Administrativas. Carretera México-Texcoco, km. 38.5. C. P. 56230. Chapingo, Estado de México (fperezsoto@hotmail.com). §Autor para correspondencia: molina.jorge@colpos.mx.

Resumen

Para medir los efectos PROCAMPO sobre la producción e importaciones de maíz (Zea mays L.) y sorgo (Sorghum bicolor L. Moench.) se estimaron dos funciones de oferta usando series de 1980 a 2009, y se construyó un sistema de ecuaciones en 2007 a 2009. Los resultados indican que el maíz y el sorgo tienen una respuesta inelástica ante el pago de PROCAMPO con elasticidades de 0.24 y 0.22 para maíz y sorgo. Si PROCAMPO no hubiera existido, la producción de maíz y sorgo hubiera sido menor en 17 y 9.1%, respecto al nivel observado en 2007-2009. Un aumento de 50% en el pago de PROCAMPO aumentaría la producción de maíz y sorgo en 1 924 y 286 mil toneladas, y disminuiría las importaciones en esa cantidad. La evolución de los precios internacionales del sorgo y maíz y del precio del fertilizante en el periodo 1993-1995 y de 2007-2009 permiten concluir que el Tratado de Libre Comercio de América del Norte (TLCAN) no ha beneficiado a los productores ya que oferta de maíz y sorgo observada en 2007 a 2009 fue menor en 1 656 y 27 mil toneladas por la disminución en los precios internacionales de ambos granos. De manera similar, la producción de maíz y sorgo observada en 2007 a 2009 fue menor en 455 y 254 mil toneladas por efecto del aumento

Abstract

To measure the effects of PROCAMPO on the production and importation of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench.), two supply functions were estimated using the series 1980 to 2009, and constructing a system of equations from 2007 to 2009. The results indicated that maize and sorghum have an inelastic response when faced with the PROCAMPO payment and with elasticity of 0.24 and 0.22 for maize and sorghum. If PROCAMPO would not have existed, the production of maize and sorghum would have been less in 17 and 9.1%, when considering the observed level in 2007-2009. An increase of 50% in the PROCAMPO payment would increase the production of maize and sorghum to 1 924 and 286 thousand tons, and lessen the imports of those crops. The evolution of the international maize and sorghum prices and of the fertilizer prices from the period of 1993-1995 and from 2007-2009, allows us to conclude that the North American Free Trade Agreement (NAFTA) has not benefited producers, as the supply of maize and sorghum observed from 2007-2009 was less than 1 656 and 27 thousand tons because of the decline of international prices for both grains. Similarly, the maize and sorghum production that was observed from 2007-2009 was

* Recibido: agosto de 2011
Aceptado: julio de 2012
en el precio del fertilizante. Debido a los efectos positivos del PROCAMPO, y a los efectos negativos que ha tenido el TLCAN sobre el mercado de los dos granos, se recomienda que el programa continúe, y se aumente el apoyo otorgado.

Palabras clave: *Zea mays* L., *Sorghum bicolor* L. *Moench*., modelo de ecuaciones simultáneas, TLCAN, importaciones.

Introducción

Las reformas en la política agrícola de México practicadas desde mediados de la década de los ochenta han tenido un fuerte impacto sobre la producción de granos, sobre el empleo en el campo y sobre los ingresos de los productores agrícolas. Dentro de las reformas agrícolas implementadas en el país destaca el Programa de Apoyos Directos al Campo (PROCAMPO) vigente desde 1994, el cual transformó la orientación de los subsídios agrícolas en México (ASERCA, 2009).

PROCAMPO fue creado con la finalidad de fomentar la participación de los sectores social y privado en el campo, mejorar la competitividad interna y externa, elevar el nivel de vida de las familias rurales, y modernizar el sistema de comercialización (DOF, 1994). El programa fue planeado para una vigencia de 15 años a partir de 1994 (SARH, 1993); sin embargo, en el Plan Nacional de Desarrollo (PND) 2007-2012 se determinó su continuación hasta el 2012 (ASERCA, 2008).

Durante el periodo en que ha tenido vigencia el programa, el pago de PROCAMPO se ha incrementado en términos nominales en los ciclos primavera-verano y otoño-invierno; por ejemplo, en el ciclo otoño-invierno 1993 a 1994 fue de 350 pesos por ha, en 1999-2000 fue de 708 pesos por ha, y en el ciclo 2009-2010 fue de 963 pesos por ha (Presidencia de la República, 2010); sin embargo, el crecimiento del pago no ha sido suficiente para compensar el crecimiento de la inflación, lo cual ha determinado que el subsidio haya disminuido en términos reales.

PROCAMPO ha tenido efectos sobre el ingreso de los productores, sobre la diversificación de la superficie agrícola, sobre la migración y sobre la producción de los productos agrícolas más importantes en el sector agrícola de México. La producción de maíz y sorgo, los dos granos forrajeros más importantes de México, ha sido beneficiada por el subsidio otorgado por el programa. Instituciones del gobierno reportan que la producción de maíz aumentó de less than 455 and 254 thousand tons because of the effect of the increase in fertilizer price. Given the positive effects of PROCAMPO, and the negative effects that NAFTA has had on the grain market, it is recommended that the PROCAMPO not only continue but increases its bestowment of support.

Key words: *Zea mays* L., *Sorghum bicolor* L. *Moench*., simultaneous evaluation models, NAFTA, importaciones.

Introduction

The agricultural policy reforms in México, practiced since the middle of the 80’s have had a strong impact on the production of grains, on employment in the field, and on the income of agricultural producers. Amongst the agricultural reforms that were implemented in the country, the Program of Direct Support to the Field (PROCAMPO) stands out; it has been active since 1994 and has transformed the orientation of agricultural subsidies in México (ASERCA, 2009).

PROCAMPO was created with objective of encouraging participation from the social and private sector in the field, improving the internal and external competitiveness, elevating the livelihoods of rural families, and modernizing the commercialization system (DOF, 1994). The program was planned for a period of 15 years, starting from 1994 (SARH, 1993); however, the National Plan of Development (PND) 2007-2012 established its continuation until 2012 (ASERCA, 2008).

During the period that PROCAMPO has been active, there has been an increase in nominal terms for the planting cycles Spring-Summer and Fall-Winter. For example, the 1993-1994 cycle of fall-winter was 350 Mexican Pesos per hectare, in the 1999-2000 cycle it was 708 pesos per hectare, and in the 2009-2010 cycle it was 963 pesos per hectare (Presidencia de la República, 2010); however, the growth in in payment has not been sufficient to compensate for the growth in inflation, which means that the subsidy has diminished in real terms.

PROCAMPO has had effects on producers’ incomes, diversification of agricultural areas, migration, and on the production of the most important agricultural products in the Mexican agricultural sector. The production of maize and sorghum, the two most important forage grains in Mexico, has benefited because of the subsidy given by the
18 a 23 millones de toneladas en el periodo 1994-2010. La producción de sorgo también aumentó de 3 a 7 millones de toneladas en el periodo 1994-2010 (SIACON, 2011). Seguramente el crecimiento que experimentó la producción de sorgo y maíz ha sido favorecido por la existencia de PROCAMPO.

Considerando la importancia del maíz y del sorgo en la generación de valor y empleo en el medio rural de México, y en su uso como ingrediente principal en la elaboración de las dietas usadas para alimentación del ganado, esta investigación tiene como objetivo principal analizar los efectos que PROCAMPO ha tenido sobre la producción y el saldo de comercio exterior de los dos granos forrajeros.

Materiales y métodos

La metodología usada para alcanzar el objetivo de la investigación consistió de dos etapas. En la primera se estimaron dos funciones de oferta, una para maíz y otra para sorgo, para determinar los factores que explican el comportamiento de la producción de los dos cultivos. Con las funciones estimadas se obtuvieron elasticidades que miden la relación entre la oferta y los factores que determinan la producción (entre ellos PROCAMPO). Para dicha estimación se utilizaron series de 1980 a 2009. Los modelos de oferta estimados son los siguientes:

\[QPM_t = \beta_{10} + \beta_{15}PPM_t + \alpha_{15}PPS_t + \beta_{13}PFERM_t + \beta_{11}PROC_M + \beta_{17}SMG_t + \beta_{16}PP_t + \beta_{18}DAR_t + \beta_{19}PPF_t + \varepsilon_{1t} \]

(1)

\[QPS_t = \beta_{50} + \beta_{51}PPS_t + \beta_{52}PFERS_t + \beta_{53}PROC_S + \beta_{55}SMG_t + \beta_{56}PP_t + \beta_{57}DAR_t + \varepsilon_{2t} \]

(2)

Donde: para el año \(t \) \(QPM \) es la cantidad producida de maíz en toneladas; \(PPM \) es el precio real al productor de maíz en pesos por tonelada; \(PPS \) es el precio real al productor de sorgo en pesos por tonelada; \(PFERM \) precio real del fertilizante de maíz en pesos por tonelada; \(PROC \), es el pago real de PROCAMPO en maíz, en pesos por tonelada; \(SMG \), es el salario mínimo real general en pesos, \(PP \), es la precipitación pluvial en mm; \(DAR \), es la disponibilidad de agua de riego en millones de m³; \(PPF \), es el precio real al productor de frijol en pesos por tonelada; \(QPS \), es la cantidad producida de sorgo en toneladas; \(PFERS \), es el precio real del fertilizante de sorgo en pesos por tonelada; \(PROC \), es el precio real de PROCAMPO de sorgo en pesos por tonelada.

El comportamiento de la producción de los dos cultivos fue explicado con modelos de oferta, que calcularon las elasticidades de la oferta y determinaron la producción (entre ellos PROCAMPO). Para dicha estimación se utilizaron series de 1980 a 2009. Los modelos de oferta estimados son los siguientes:

Where: for year \(t \) \(QPM \) is the quantity of maize that is produced in tons; \(PPM \) is the real price for maize producers in pesos/ton; \(PPS \) is the real price for sorghum producer in pesos/ton; \(PFERM \) is the real price of maize fertilizer in pesos/ton; \(PROC \) is the real payment of PROCAMPO for maize in pesos/ton; \(SMG \) is the real, general minimum salary in pesos; \(PP \) is the precipitation in mm; \(DAR \) is the availability of irrigation in millions of m³. \(PPF \) is the real price to the bean producer in pesos/ton. \(QPS \) is the quantity of sorghum produced in tons; \(PFERS \) is the real price of sorghum fertilizer in pesos/ton.

Materials and methods

The methodology used to achieve the objective of the investigation consisted of two phases. In the first phase, two functions of supply were analyzed, one for maize and the other for sorghum in order to determine the factors that explain the production behavior of the two crops. With the calculated functions, elasticity was obtained to measure the relation between the supply and the factors that determine production (among these, PROCAMPO). For the said calculation, the 1980-2009 series was used. The supply models estimated the following:

\[QPM = \beta_{10} + \beta_{15}PPM + \alpha_{15}PPS + \beta_{13}PFERM + \beta_{11}PROC_M + \beta_{17}SMG + \beta_{16}PP + \beta_{18}DAR + \beta_{19}PPF + \varepsilon_{1t} \]

(1)

\[QPS = \beta_{50} + \beta_{51}PPS + \beta_{52}PFERS + \beta_{53}PROC_S + \beta_{55}SMG + \beta_{56}PP + \beta_{57}DAR + \varepsilon_{2t} \]

(2)

Where: for year \(t \) \(QPM \) is the quantity of maize that is produced in tons; \(PPM \) is the real price for maize producers in pesos/ton; \(PPS \) is the real price for sorghum producer in pesos/ton; \(PFERM \) is the real price of maize fertilizer in pesos/ton; \(PROC \) is the real payment of PROCAMPO for maize in pesos/ton; \(SMG \) is the real, general minimum salary in pesos; \(PP \) is the precipitation in mm; \(DAR \) is the availability of irrigation in millions of m³. \(PPF \) is the real price to the bean producer in pesos/ton.

\(QPS \) is the quantity of sorghum produced in tons; \(PFERS \) is the real price of sorghum fertilizer in pesos/ton.
Con la finalidad de analizar el efecto de PROCAMPO sobre las importaciones de maíz y sorgo, en la segunda etapa se construyó un modelo de ecuaciones simultáneas, dicho modelo se integró por dos funciones de oferta, dos de demanda, cuatro de transmisión de precios y dos identidades de saldo de comercio exterior. Para la construcción del modelo se usaron las elasticidades relacionadas con la oferta, previamente estimadas, las elasticidades relacionadas con la demanda proveniente de literatura y estimadas por otros autores, las cantidades producidas y consumidas, y los valores observados de las variables incluidas en el modelo. La construcción del modelo de ecuaciones simultáneas usó datos promedio a nivel nacional y anual en el periodo 2007-2009. El modelo propuesto es el siguiente:

$$QPM_t = a_{10} + a_{11} PPM_t + a_{12} PPS_t + a_{13} PFERM_t + a_{14} PROC_t + a_{15} SMG_t + a_{16} PP_t + a_{17} DAR_t + a_{18} PPF_t$$ (3)

$$QDM_t = a_{20} + a_{21} PCM_t + a_{22} PCS_t + a_{23} POBC_t + a_{24} IND_t$$ (4)

$$PCM_t = a_{30} + a_{31} PPM_t$$ (5)

$$PPM_t = a_{40} + a_{41} PIM_t$$ (6)

$$SCE_t = QDM_t - QPM_t$$ (7)

$$QPS_t = a_{50} + a_{51} PPS_t + a_{52} PPM_t + a_{53} PFERM_t + a_{54} PCS_t + a_{55} SMG_t + a_{56} PP_t + a_{57} DAR_t$$ (8)

$$QDS_t = a_{60} + a_{61} PCS_t + a_{62} PCM_t + a_{63} POBC_t + a_{64} IND_t$$ (9)

$$PCS_t = a_{70} + a_{71} PPS_t$$ (10)

$$PPS_t = a_{80} + a_{81} PIS_t$$ (11)

$$SCES = QDS_t - QPS_t$$ (12)

Donde: para el año t QDM_t es la cantidad demandada de maíz en toneladas; PCM_t es el precio al mayoreo de maíz en pesos por tonelada; PCS_t es el precio real al mayoreo de sorgo en pesos por tonelada; $POBC_t$ es la población animal consumidora de alimento balanceado de maíz y sorgo en millones de cabezas de ganado (porcino y aves); IND_t es el ingreso nacional disponible real en millones de pesos; PIM_t es el precio real internacional del maíz en pesos por tonelada; $SCEM_t$ es el saldo de comercio exterior de maíz en toneladas; QDS_t es la cantidad demandada de sorgo en toneladas; PIS_t es el precio real internacional del sorgo en pesos por tonelada; $SCES_t$ es el saldo de comercio exterior de sorgo en toneladas.

With the objective of analyzing the effect of PROCAMPO on the maize and sorghum imports, the second phase consisted in a model of simultaneous equations; the said model was using two supply functions, two demand functions, 4 functions for transmission of prices, and two credit identifiers for foreign trade. For the construction of the model, elasticity of the supply relations (previously calculated), the elasticity realism to demand that came from literature and was calculated by other authors, the produced and consumed quantity, and the observed values of the variables included in the model. The construction of the simultaneous equation model used the national and annual average data from the period of 2007-2009. The proposed model is the following:

$$QPM_t = a_{10} + a_{11} PPM_t + a_{12} PPS_t + a_{13} PFERM_t + a_{14} PROC_t + a_{15} SMG_t + a_{16} PP_t + a_{17} DAR_t + a_{18} PPF_t$$ (3)

$$QDM_t = a_{20} + a_{21} PCM_t + a_{22} PCS_t + a_{23} POBC_t + a_{24} IND_t$$ (4)

$$PCM_t = a_{30} + a_{31} PPM_t$$ (5)

$$PPM_t = a_{40} + a_{41} PIM_t$$ (6)

$$SCE_t = QDM_t - QPM_t$$ (7)

$$QPS_t = a_{50} + a_{51} PPS_t + a_{52} PPM_t + a_{53} PFERM_t + a_{54} PCS_t + a_{55} SMG_t + a_{56} PP_t + a_{57} DAR_t$$ (8)

$$QDS_t = a_{60} + a_{61} PCS_t + a_{62} PCM_t + a_{63} POBC_t + a_{64} IND_t$$ (9)

$$PCS_t = a_{70} + a_{71} PPS_t$$ (10)

$$PPS_t = a_{80} + a_{81} PIS_t$$ (11)

$$SCES = QDS_t - QPS_t$$ (12)

Where: the year t QDM_t is the demanded quantity of maize in tons; PCM_t is the wholes price of maize in pesos/ton. PCS_t is the real wholesale price of sorghum in pesos/ton. $POBC_t$ is the animal population that consumes feed balanced with maize in sorghum in millions of heads of livestock (pigs and poultry); IND_t is the national revenue with real availability in millions of pesos. PIM_t is the real international price of maize in pesos/ton. $SCEM_t$ is the revenue of foreign trade of maize in tons; QDS_t is the demanded quantity of sorghum in tons; PIS_t is the real international sale price of sorghum in pesos/ton; $SCES_t$ is the foreign commercial credit of sorghum in tons.
La justificación de la formulación del modelo que se presenta a continuación está basada en la teoría económica y en evidencia empírica. En teoría, la oferta de un producto agrícola depende de los siguientes factores: el precio del producto, precio de los insumos, precio de los productos competitivos, precio de los productos asociados, inventarios del producto, número de hectáreas, intervención del gobierno y las expectativas del productor (García et al., 2003). El agricultor producirá maíz (o sorgo) tomando en cuenta el precio esperado del producto al considerarlo como indicador para cosechar o abandonar la producción. En México es común cultivar el maíz de manera asociada con el frijol, de ahí que el precio esperado del frijol afecta de manera directa la producción de maíz y cambios en el precio esperado de maíz afectan de manera directa la producción de frijol (García et al., 2003). Otro factor que afecta la producción es el precio de los productos competidores; a nivel nacional el sorgo es el más fuerte competidor del maíz por los recursos productivos (García, 1992; García, 2001). Por lo tanto, se incluye al precio del sorgo como factor que determina la producción de maíz y viceversa, al precio del maíz como factor que afecta la producción de sorgo.

Los precios de los insumos y las condiciones climáticas influyen en la producción de maíz. Los salarios y el precio de los fertilizantes son factores importantes en la producción de maíz y sorgo a nivel nacional (García, 1992; García, 2001; Hernández y Martínez, 2009); la precipitación pluvial y la disponibilidad de agua por captación influyen en la producción de maíz y sorgo (García, 1992; García, 2001).

Desde 1994 se estableció según García (2001) un apoyo para más de 3 millones de productores por lo que el pago por ton se introdujo como un factor que intentara explicar el comportamiento de la producción. Puesto que el pago del programa es a nivel nacional y por ciclo agrícola, esa variable se incluye en las dos ecuaciones de oferta.

Los consumidores de maíz y sorgo responden de manera diferente a los factores que influyen en el consumo dependiendo del uso final del grano, por lo que se consideran las funciones de demanda para maíz y sorgo. Teóricamente, la demanda de un producto está en función de su cantidad, del precio del bien sustituto, de la población y del ingreso de los consumidores (García, 1992; García, 2001; Hernández y Martínez, 2009).

Los servicios de comercialización como transporte, almacenamiento e industrialización que se agregan al producto agrícola original son costos que paga el productor. El pago del productor son costos que paga el productor.}

The justification of the formulation of the model that will next be presented is a continuation and is based on the economic theory and empirical evidence. In theory the supply of an agricultural product depends on the following factors: product price, input prices, price of competitive products, price of associated product, inventory of product, number of hectares, government intervention, and expectations of the producer (García et al. 2003). The farmer will produce maize (or sorghum) taking into account the expected price of the product as an indicator of whether plant or whether abandon production. In Mexico, it is common to cultivate maize and beans simultaneously; in this case, the expected price of the beans directly affect the production of maize and vice versa, the changes in the expected price of maize directly affects the bean production (García et al., 2003). Other factors that affect production is the price of competitors’ products. At the national level sorghum is a stronger competitor than corn because of its productive resources (García, 1992; García, 2001). Therefore, the price of sorghum is included as a determining factor in the production of maize, and vice versa, the price of maize is seen as factor that affects the production of sorghum.

The prices of the inputs and the climatic conditions influence the production of maize. The salaries and the price of fertilizers are important factors in the production of maize and sorghum at the national level (García, 1992; García 2001; Hernández et al., 2009); the rainfall and the availability of water by capture also influences the production of maize and sorghum (García, 1992; García 2001).

Since 1994, according to García (2001) a type of support was established for more than 3 million producers who whose payment gate was introduced as a factor that would try to explain production behavior. Given that the payment of the program is at a national level and by agricultural cycle this variable includes two equations of supply.

Consumers of maize and sorghum respond differently to the factors that influence the consumption, depending on the final use of the grain, which is considered the function of demand for maize and sorghum. Theoretically, the demand of a product is in the function of its quantity, the price of a substitute good, the demographics and the salary of the consumers (García, 1992; García 2001; Hernández and Martínez et al., 2009).

The commercialization services like transport, storage and industrialization that are added to the original agricultural product are costs that the consumer pays. These costs determine various levels of prices that begin the functional
consumidor; estos gastos determinan varios niveles de precios que originan las relaciones funcionales que se incluyen en el modelo. Finalmente, las ecuaciones del cierre del modelo se presentan a través de las ecuaciones de saldo de comercio exterior.

Las series de tiempo usadas para la estimación de las ecuaciones (1) y (2) provinieron de las fuentes que se mencionan a continuación. La serie de producción fue tomada del Servicio de Información Agrícola y Pecuaria (SIACON, 2011). Los datos internacionales de maíz y sorgo como producción, importación, exportación, valor de la importación, valor de la exportación, precio internacional, provinieron de la FAO (2011). El precio internacional en dólares por tonelada fue multiplicado por la tasa de cambio para obtenerlo en pesos. La tasa de cambio se obtuvo de la CEFP (2011).

El pago del PROCAMPO fue calculado para cada ciclo de producción en el periodo 1994-2009. La información se obtuvo de la Presidencia de la República (2010), y del SIACON (2011). Las series del precio de los fertilizantes, la disponibilidad de agua de riego y la precipitación pluvial provinieron de Tlapa (2005), de García (1992) y de CONAGUA (2010).

El salario mínimo general se obtuvo de la STPS (2011) y se promediaron las tres zonas consideradas, de García (1992) y Tlapa (2005). El ingreso nacional disponible se obtuvo del Instituto Nacional de Estadística, Geografía e Informática (INEGI, 2011). La población consumidora de alimento balanceado se obtuvo de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA, 2011), de Tlapa (2005) y de García (1992).

Para la construcción del modelo de ecuaciones simultáneas se utilizaron elasticidades provenientes del FAPRI (2011), Hernández (2007), Tlapa (2005) y de García (1992).

Todas las variables monetarias fueron expresadas en términos reales con índices de precios tomados del Banco de México (BM). Para la estimación de los modelos de oferta se utilizó el método de mínimos cuadrados en dos etapas utilizando el paquete computacional SAS (Statistical Analysis System). La construcción del modelo de ecuaciones simultáneas se realizó en Excel.

Results and discussion

La estructura de las ecuaciones de oferta muestra que los factores que afectan la producción de maíz y sorgo. El coeficiente determinante (R^2) para maíz fue de 0.87 y 0.47 para sorgo.

El pago del PROCAMPO fue calculado para cada ciclo de producción en el periodo 1994-2009. La información se obtuvo de la Presidencia de la República (2010), y del SIACON (2011). Las series del precio de los fertilizantes, la disponibilidad de agua de riego y la precipitación pluvial provinieron de Tlapa (2005), de García (1992) y de CONAGUA (2010).

El salario mínimo general se obtuvo de la STPS (2011) y se promediaron las tres zonas consideradas, de García (1992) y Tlapa (2005). El ingreso nacional disponible se obtuvo del Instituto Nacional de Estadística, Geografía e Informática (INEGI, 2011). La población consumidora de alimento balanceado se obtuvo de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA, 2011), de Tlapa (2005) y de García (1992).

Para la construcción del modelo de ecuaciones simultáneas se utilizaron elasticidades provenientes del FAPRI (2011), Hernández (2007), Tlapa (2005) y de García (1992).

Todas las variables monetarias fueron expresadas en términos reales con índices de precios tomados del Banco de México (BM). Para la estimación de los modelos de oferta se utilizó el método de mínimos cuadrados en dos etapas utilizando el paquete computacional SAS (Statistical Analysis System). La construcción del modelo de ecuaciones simultáneas se realizó en Excel.

Results and discussion

The structural form of the supply equations shows that the factors that affect maize and sorghum production. The determining coefficient (R^2) for maize was 0.87 and 0.47 for sorghum.
Resultados y discusión

La forma estructural de las ecuaciones de oferta muestra los factores que afectan la producción de maíz y sorgo. El coeficiente de determinación (R^2) para el maíz fue de 0.87 y para el sorgo de 0.47 lo cual evidencia un ajuste aceptable en las ecuaciones mencionadas. La prueba de t indica que la mayoría de las variables explicativas resultaron significativas.

Para estimar el efecto de PROCAMPO sobre la producción se calculó la elasticidad que relaciona ambas variables, obteniéndose un valor de 0.17 para maíz y de 0.09 para sorgo. Dichos resultados indican que ante un incremento de 10% en el pago de PROCAMPO, la cantidad producida de maíz (QPM) incrementará 1.7%, y de sorgo 0.9%, manteniendo constante los demás factores que afectan la oferta. El resultado anterior indica que PROCAMPO tiene mayor impacto sobre la producción de maíz, que sobre la producción de sorgo. Los resultados anteriores son similares a los encontrados por García (2001) para el maíz. Dicho autor encontró que la producción de maíz responde de manera inelástica al pago de PROCAMPO en todas las regiones productoras de maíz (Cuadro 1).

Cuadro 1. Resultados estadísticos de las funciones de oferta de maíz y sorgo.
Table 1. Statistical results of the supply functions for maize and sorghum.

Función	Intercepto	Variables explicativas	R2	Prob $< F$
QPM				
Coeficiente	8 026 170	1 912 -1852 -291	961	-57 027 3 570 161
Error Std.	3 833 802	1 199 1082 563	240	23 520 3 540 107 193
Razón de t	2.1	1.6 -1.7 -0.5	4.0	-2.4 1.0 1.5 0.1
Elasticidad	0.24 -0.23 -0.03	0.17	-0.20 0.16 0.30 0.01	
QPS				
Coeficiente	424 887	-44 641 -221	190	-1 446 3 097 79
Error Std.	2 036 285	416 594 330	128	11 339 1 706 52
Razón de t	0.2	-0.1 1.1 -0.7	1.5	-0.1 1.8 1.5
Elasticidad	-0.03 0.22 -0.06	0.09	-0.02 0.42 0.44	

Las elasticidades de la oferta previamente estimadas, las elasticidades de la demanda provenientes de literatura citada, las cantidades ofertadas y los precios permitieron la construcción de un modelo de ecuaciones del mercado de maíz y sorgo. Dicho modelo permite ver el efecto de PROCAMPO sobre las importaciones.

The reduced form of the model express the endogenous variables in exogenous variable terms, or rather, it allows us to directly see the total repercussions of the changes of exogenous variables and their interaction with the endogenous variables. In Table 2 there is the reduced form of the model and it can be clearly seen that the coefficients agree with the economic theory.
La forma reducida del modelo expresa a las variables endógenas en términos de variables exógenas, es decir, permite apreciar directamente la repercusión total de las alteraciones de las variables exógenas y su interacción con las variables endógenas. En el Cuadro 2 se presenta la forma reducida del modelo y se observa que todos los coeficientes concuerdan con la teoría económica.

Variables endógenas	Intercepto	Variables exógenas
QPM	-210	692
QCM	194 930	0
PCM	903	0
PPM	229	0
SCEM	-13 035 606	210
QPS	904 553	-117
QCS	-2 790 695	0
PCS	399	0
PPS	205	0
SCES	-3 695 248	0

El coeficiente que relaciona la producción de maíz y el pago de PROCAMPO fue de 692, lo cual indica que si el pago de PROCAMPO aumenta en 100 pesos por tonelada, entonces la producción de maíz crecerá en 69 mil toneladas, manteniendo los demás factores constantes. De manera similar, al ampliar 100 pesos por tonelada el precio internacional de maíz, la producción del grano se acentuaría en 349 mil toneladas y la de sorgo en 97 mil toneladas. Si el precio del fertilizante aumentara en 100 pesos por tonelada la producción de maíz experimentaría una reducción de 21 mil toneladas, y en el caso de sorgo de 11.7 mil toneladas (Cuadro 2).

En el lapso 2007-2009 México importó, en promedio, 8.1 millones de toneladas de maíz y 1.9 millones de toneladas de sorgo. En esa misma etapa 28.5%; y 23.9% del consumo de maíz y sorgo fue abastecido con importaciones provenientes del exterior.

El PROCAMPO beneficia a los agricultores con restricciones de capital a que inviertan en la producción agrícola y obtengan retornos más altos. Cada peso transferido a un agricultor puede aumentar su ingreso en más de un peso generando así un efecto multiplier (BID, 2010). Davis et al. (2000), indicando que PROCAMPO genera aproximadamente 2 pesos en el total income through economic activities of the house.

PROCAMPO beneficait the farmers with capital constraints so that they invest in agricultural productions and obtain higher returns. Each peso that is transferred to a farmer can increase his income by more than a peso generating as a multiplier effect (BID, 2010). Davis et al. (2000), indicating that PROCAMPO generates approximately 2 pesos in the total income through economic activities of the house.

The coefficient that relates to the production of maize and the payment of PROCAMPO was 692, which indicated that the PROCAMPO payment increases 100 MXP per ton, so the maize production will increase by 69 million tons, maintaining the other factors as constant. In a similar fashion, upon increasing the international price of maize to 100 pesos/ton, the production of grains would be increased by 349 million tons and the sorghum by 97 million tons. If the price of fertilizer increases by 100 MXP/ton, the production of maize could experience a decline of 21 million tons and the production of sorghum a reduction of 11.7 million tons (Table 2).

The disappearance of PROCAMPO would affect the production, having a great impact on the supply of maize. Such a decrease would directly affect the income of the...
La disminución en el pago de PROCAMPO en términos reales justifica un aumento. En el Cuadro 3 se presentan los efectos de un incremento de 50% en el pago de PROCAMPO. Los resultados indican que ante un aumento de 50% en el pago directo la cantidad producida de maíz mejoraría en 1 923 mil toneladas, y las importaciones descenderían en esa misma magnitud. De manera similar, la producción de sorgo se multiplicaría en 286 mil toneladas y las importaciones descenderían en esa misma magnitud. Por el aumento en el apoyo de PROCAMPO las importaciones de maíz se reducirían 31.3%, y las de sorgo 14.5%, respecto al valor observado en el modelo base.

Cuadro 3. Efectos de PROCAMPO sobre la producción de maíz y sorgo.
Table 3. Effects of PROCAMPO on production of maize and sorghum.

Datos observados (2007-2009)	Desaparición de PROCAMPO	Dif.	Dif.	Aumento de PROCAMPO de 50%	Dif.	Dif.	
/parser/Miles de t y $ t	Miles de t y $ t (%)	Miles de t y $ t (%)					
QPM	22 689	18 842	-3 847	-17.0	24 612	1 923	8.5
QCX	28 833	28 833	0	0	28 833	0	0.0
PCM	2 442	2 442	0	0	2 442	0	0.0
PPS	1 802	1 802	0	0	1 802	0	0.0
SCEM	6 144	9 991	3 847	62.6	4 221	-1 923	-31.3
QPS	6 301	5 730	-571	-9.1	6 587	286	4.5
QCX	8 278	8 278	0	0	8 278	0	0.0
PCS	2 069	2 069	0	0	2 069	0	0.0
PPS	1 431	1 431	0	0	1 431	0	0.0
SCES	1 976	2 547	571	28.9	1 691	-286	-14.5

The decrease in the PROCAMPO payment in real terms warrants an increase. In Table 3, the effects of a 50% increase in the PROCAMPO payment is shown. The results indicate the in light of a 50% increase in the direct payment, the produced quantity of corn would improve by 1 923 thousand tons, and the imports would decrease by the same magnitude. In a similar way, the production of sorghum would multiply by 286 thousand tons and the maize imports would be reduced by 31.3% and the sorghum by 14.5% with respect to the observed value in the base model.

With the vigorous entrance of NAFTA, the trade between the three integrated countries has increased substantially. The impact of NAFTA on internal production and on livestock trade balances has been different for each market. Since the implementation of NAFTA, the Mexican government realized that the producer prices for grains, as a result of their pegging to international prices, were decreasing. It
Con la entrada en vigor del TLCAN el comercio entre los tres países integrantes se incrementó de manera sustancial. El impacto del TLCAN en la producción interna y en las balanzas comerciales agropecuarias ha sido diferente para cada mercado. Desde la implementación del TLCAN se reconoció por parte del gobierno de México que disminuirían los precios al productor de los granos cómo consecuencia de su alineación a los precios internacionales. Se planteaba también que dicho efecto negativo sobre la producción de granos básicos se compensaría por la disminución en el precio de los insumos, como el precio de los fertilizantes.

Una comparación de precios permite ver la evolución de los precios al productor y el precio de los fertilizantes, el insumo más importante en la producción de maíz. En el ejercicio 1993-1995, el precio real promedio al productor de maíz, sorgo y fertilizantes fue de 2 418; 1 673, y 1 237 pesos por tonelada, respectivamente. Para el año promedio 2007-2009 dichos precios se ubicaron en 1 803; 1 431; y 3 408 pesos reales por tonelada, respectivamente. Los datos anteriores indican una disminución en los precios al productor de maíz y sorgo, y un incremento en el precio de los fertilizantes.

Es probable que la disminución de los precios al productor sea consecuencia de la tendencia de los precios internacionales. En el periodo 1993-1995 se tuvo un precio internacional real promedio de 2 860 y 2 080 pesos por tonelada para maíz y sorgo, posteriormente dichos precios disminuyeron hasta ubicarse en 2 028 y 1 936 pesos por tonelada en 2007-2009.

En el Cuadro 4 se presentan los efectos del TLCAN por efecto de los cambios en los precios internacionales, y por los cambios en el precio del fertilizante. Considerando el precio internacional de maíz y sorgo observado en 1993-1995 (periodo en que inicia TLCAN) se obtiene el nivel de producción y consumo que hubiera existido sin TLCAN, si se compara dicho resultado con la producción y demanda estimadas en 2007-2009 (periodo con TLCAN) entonces se puede determinar los efectos sobre el mercado de ambos granos por efecto de la tendencia en los precios internacionales. Considerando los precios de 1993-1995, la producción de maíz hubiera sido 1 656 mil toneladas mayor al nivel observado en 2007-2009, lo cual indica que el TLCAN no ha sido benéfico para los productores de maíz. En el caso de sorgo, la producción estimada usando los precios de 1993-1995 fue mayor en 27 mil toneladas, en relación al nivel observado en 2007-2009, lo cual indica que el efecto TLCAN no favoreció la producción de sorgo.

Los precios al productor de los granos básicos se compensaría por el descenso del precio de los fertilizantes. Considerando los precios de 1993-1995, el nivel observado en 2007-2009, lo cual indica que el efecto TLCAN no favoreció la producción de sorgo.

A comparison of prices allows one to see the evolution of producer prices and fertilizer prices, the most important input of maize production. In the fiscal 1993-1995 years, the real average price to the producer of maize, sorghum, and fertilizers was 2 418; 1 673; and 1 237 MXP/ton respectively. For the average of the years 2007-2009, these prices were around 1 803; 1 431; and 3 408 MP/ ton respectively. The previous data indicates a decrease in the producer price for maize and sorghum and increase in the price of fertilizers.

It is probable that the decrease of producer prices is a consequence of the international price trend. In the period from 1993-1995, the average international real price was from 2 860 and 2 080 pesos/ton for maize and sorghum. Later, these prices decreased until they were at 2 028 and 1 936 pesos/ton in 2007-2009.

In Table 4, the effects of NAFTA are presented by showing the effect of changes in international prices and because of these changes, the price of fertilizer. Considering that the international price for maize and sorghum that was observed from 1993-1995 (the period that NAFTA initiated), the level of production and consumption that should have existed without NAFTA was observed- that is, if these results are compared with the calculations of production and demand in the years 2007-2009 (period with NAFTA). Then, one can observe the effects on the market for both grains by the effect of the international price trend. Considering that the prices from 1993-1995, the maize production should have been 1 656 thought tons higher than what was observed in 2007-2009; this indicates that the NAFTA has not benefited maize producers. In the case of sorghum, the calculated production that used the prices from 1993-1995 were greater than 27 thousand tons, related to the level observed from 2007-2009; this indicated the effect of NAFTA did not favor sorghum production either.

Considering the price of the fertilizers from 1993-1995, the following results were obtained: the production of maize should have been greater by 455 thousand tons, as related to the level that was observed from 2007-2009, which indicated that NAFTA did not favor the production of maize over the inputs. In the case of sorghum, the production should have been greater by 254 thousand tons, which indicates that this crop was also not favored by the price evolution of fertilizers.
Considerando el precio de los fertilizantes de 1993-1995 se obtienen los siguientes resultados, la producción de maíz hubiera sido mayor en 455 mil toneladas, en relación al nivel observado en 2007-2009, lo cual indica que el TLCAN no ha favorecido la producción de maíz por la vía de los insumos, en el caso del sorgo, la producción hubiera sido mayor en 254 mil de toneladas, lo cual indica que tampoco este cultivo fue favorecido por la evolución del precio del fertilizante.

La crisis energética global, y la fuerte demanda de maíz para la producción de etanol en los Estados Unidos de América, permiten especular sobre una probable elevación en el precio internacional del maíz y sorgo. Considerando un aumento 20% en el precio del maíz se tendrían los siguientes resultados: la producción de maíz crecería en 464 mil toneladas, y las importaciones disminuirían de igual forma.

Conclusiones

Se encontró una respuesta positiva e inelástica entre la producción de maíz y sorgo y el pago de PROCAMPO, lo cual indica que el programa sí ha favorecido la oferta de los dos granos forrajeros. La desaparición de PROCAMPO tendría consecuencias negativas en la producción, provocando un mayor abasto del consumo con importaciones. Un aumento en el pago de PROCAMPO desarrollaría la producción de maíz y sorgo, reduciendo las importaciones.

The global energy crisis and the strong demand maize for the production of ethanol in the United States of America has allowed for speculation about a possible increase of the international price for maize and sorghum. Considering a 20% increase in the price of maize would produce the following results: the production of maize would increase by 464 thousand tons, and the imports would decrease in the same way.

Conclusions

A positive and inelastic response was found between the production of maize and sorghum and the PROCAMPO payment, which indicates that the program has favored the supply of the two forage grains. The disappearance of PROCAMPO would have negative consequences on production, provoking a major increase supply of consumer imports. The increase in the PROCAMPO payment would develop the maize and sorghum production and reduce imports.

The increase in the price of fertilizers and the decrease in the international prices of maize and sorghum in the period that NAFTA has been active, there have been negative effects on the production of both grains. Such tendencies could change if in the future, there is an increase in the international price of maize.
El aumento en el precio de los fertilizantes, y la disminución en los precios internacionales de maíz y sorgo en el periodo de vigencia del TLCAN, han tenido un efecto negativo sobre la producción de ambos granos. Dicha tendencia podría cambiar si en el futuro se presenta una elevación en el precio internacional del maíz.

Literatura citada

Apoyos y Servicios a la Comercialización Agropecuaria (ASERCA) 2008. Claridades Agropecuarias. Núm. 180 México, D. F. 60 p.

Apoyos y Servicios a la Comercialización Agropecuaria (ASERCA). Programas: PROCAMPO (consultado octubre, 2009). URL:http://www.aserca.gob.mx. 98 p.

Centro de Estudios de las Finanzas Públicas 2011 Cámara de Diputados (CEFP). Indicadores y estadísticas de México, con datos del Banco de México y del Federal Reserve Bank of St. Louis, E. U. México D. F. 173 p.

Comisión Nacional del Agua (CONAGUA) 2010. Climatología (consultado febrero, 2010). Disponible en la web: http://smn.cna.gob.mx. 633 p.

Davis, B.; Janvri, A.; Sadoulet, E. and Diehl, T. 2000. Policy reforms and poverty in the Mexican ejido sector. Paper presented at the 5th annual meeting of the Agricultural and Food Policy Section of the Farm Foundation, United States. 345 pp.

Diario Oficial de la Federación (DOF). 1994. Decreto que regula el Programa de Apoyos Directos al Campo denominada PROCAMPO. México 25 de julio de 1994. 4 p.

Organización de las Naciones Unidas para la Agricultura y Alimentación FAO Statical Database (FAO-FAOSTAT). Matriz detallada de comercio (consultado agosto, 2011). Disponible en la web: URL: http://faostat.fao.org. 89 p.

The Food and Agricultural Policy Research Institute (FAPRI) 2011. Basededatosmundialperspectivasdelagricultura Disponible en la web: URL: http://www.fapri.iastate.edu/. Iowa State University, Ames, Iowa. 269 p.

García, S. J. A. 1992. Intervención del gobierno en el mercado del maíz considerando la demanda para tortilla y alimentos balanceados y la producción en riego y temporal. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Chapingo, Estado de México. 128 p.

García, S. J. A. 2001. Efecto de PROCAMPO sobre la producción y saldo de comercio exterior de maíz. Agrociencia. 35(006):671-683.

García, M. R.; García, S. J. y García, S. R. 2003. Teoría del mercado de productos agrícolas. Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Chapingo, Estado de México. 375 p.

Hernández, O. J. 2007. Determinación del efecto de las importaciones en precios internos de granos básicos utilizando un sistema inverso de demanda. Tesis de Doctorado en Ciencias. Instituto de Socioeconomía, Estadística e Informática (ISEI). Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Chapingo, Estado de México. 145 p.

Hernández, O. y Martínez, D. M. A. 2009 Efectos del cambio de precios de garantía a PROCAMPO en precios al productor, sin incluir efecto de importaciones. Sociedad Mexicana de Filogenética, A. C. México. Rev. Fitotec. Mex. 32:153-159.

Instituto Nacional de Estadística, Geografía e Informática (INEGI) 2011. Sistema de cuentas nacionales de México 1980-2009. México, D. F. 162 p.

Presidencia de la República (PR) 2010. Cuarto informe de gobierno del Presidente de la República Mexicana: Felipe Calderón Hinojosa. México, D. F. Anexo estadístico. 686 p.

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) 2011. Estudio de gran visión y factibilidad económica y financiera para el desarrollo de infraestructura de almacenamiento y distribución de granos y oleaginosas para el mediano y largo plazo a nivel nacional. México, D. F. 284 p.

Secretaría de Agricultura y Recursos Hidráulicos (SARH) 1993 Solidaridad-SARH PROCAMPO, vamos al grano para progresar México, D. F. 26 p.

Statistical Analysis System (SAS) Institute Inc. 2002-2004. Version 9.1.3. SAS institute Inc., Cary, NC, USA.

Sistema de Información Agroalimentaria de Consulta (SIACON) 2011. Producción Agrícola Nacional por Entidad Federativa de los años 1980 a 2010. (consultado 29 agosto, 2011). Disponible en la web: http://www.siap.gob.mx.

Secretaría del Trabajo y Previsión Social (STPS) 2011. Comisión nacional de los salarios mínimos salarios mínimos generales por área geográfica 1980-2011. México D. F. 563 pp.

Tlapa, R. C. C. 2005. El mercado del sorgo en México 1977-2003. Tesis de Maestría en Ciencias. Instituto de Socioeconomía, Estadística e Informática (ISEI). Colegio de Postgraduados en Ciencias Agrícolas. Montecillo, Estado de México. 101 p.