Receptor protein tyrosine phosphatases and cancer
New insights from structural biology

Roman M. Nikolaienko, Boadi Agyekum and Samuel Bouyain*
Division of Molecular Biology and Biochemistry; School of Biological Sciences, University of Missouri-Kansas City; Kansas City, MO USA

Keywords: cell adhesion, phosphorylation, phosphatase, inactivating somatic mutations, tumor suppressor, oncogene, receptor overexpression, crystal structure, receptor protein tyrosine phosphatase

Introduction

Tumor development and progression is associated with changes in cell proliferation, adhesion and migration, which are themselves tightly regulated by manifold signaling pathways. Tyrosine phosphorylation is a key molecular mechanism for most of these regulatory pathways. Mutations in protein tyrosine kinases have often been associated with aberrant cellular functions that lead to cancers because their altered activities create an imbalance in the phosphorylation states of key signaling molecules. On the other hand, changes in adhesive properties due to the loss of expression of cell adhesion molecules (CAMs) (see LeBras, Taubenslag and Andl, in this issue) are required for cancer cell migration and invasion. The loss of CAM expression is also associated with alterations in downstream signaling pathways. Kiefel et al. in this special focus discuss how altering the expression of L1CAM alters intracellular signaling. Hence, it is perhaps no surprise that molecules such as receptor protein tyrosine phosphatases (RPTPs), which combine CAM-like extracellular regions and intracellular tyrosine phosphatase domains, have been associated with human cancers (Fig. 1).

There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. To understand how alterations in downstream signaling pathways. Kiefel et al. in this special focus discuss how altering the expression of L1CAM alters intracellular signaling. Hence, it is perhaps no surprise that molecules such as receptor protein tyrosine phosphatases (RPTPs), which combine CAM-like extracellular regions and intracellular tyrosine phosphatase domains, have been associated with human cancers (Fig. 1).

Twenty-one RPTPs have been identified in humans since the initial characterization of CD45 and those receptors are involved in critical processes including immune regulation, nervous system development and vascular development. Unfortunately, RPTPs are not as well understood as receptor tyrosine kinases. A general mechanism that would account for the control of their catalytic activities by extracellular cues is lacking and most RPTPs remain orphan receptors. Nevertheless, their potential roles in cancer were described soon after their discovery when it was shown that the gene encoding a family member called PTPRG mapped to a chromosomal region deleted in lung and kidney cancer cell lines and thus could be a potential tumor suppressor. At first glance it appears logical that the absence or inactivation of a protein that antagonizes tyrosine kinase activity would be linked to tumor growth and indeed, many RPTPs are tumor suppressors. Yet, it quickly appeared that overexpression of RPTPs may play a role in tumor progression as well when Krueger and colleagues discovered that a PTPRG homolog called PTPRZ was overexpressed in glioblastoma cells. Data accumulated in the past few years now indicates clearly that RPTPs can fulfill both tumor suppressing and oncogenic roles.

In this review, we will focus on the three classes of RPTPs for which structural information is available, which will in turn help us understand their functions in cell adhesion and cancer progression (Fig. 1). We will consider the importance of the some of the somatic mutations identified in type IIa and IIb RPTPs to illustrate the roles of RPTPs as tumor suppressors, particularly in the case of type IIb receptors. We will also focus on the potential oncogenic effect of type V receptors, especially in the case of PTPRZ. However, we will not discuss comprehensively the alterations of RPTP function that occur in cancer as these have already been reviewed elsewhere.

Type IIb RPTPs and Homophilic Interactions

The prototypical member of the type IIb subgroup of RPTP, PTPRM, was identified in 1991 from a mouse brain library. This subgroup now includes four members in vertebrates.
aggregation and the identities of its potential extracellular binding partners are as of yet unknown.17

One of the most interesting aspects of type IIb RPTPs is their relationship with cadherins and intracellular components of cadherin adhesion complexes called catenins.18 Cadherins are Ca2+-dependent homophilic-binding molecules that mediate adhesive interactions between adjacent cells and are central to the development and maintenance of stable tissues.18 Critically, alterations in the assembly of cadherin-catenin adhesion complexes are linked to the disassociation of adherent epithelial cells and their subsequent migration, a process that can be part of the normal aspect of tissue development, but is also a hallmark of cancer growth and metastasis.18,19 (the effects of E- and N-cadherin in cancer progression and epithelial-mesenchymal transitions are discussed by LeBras, Taubenslag and Andl in this issue). These transitions can be brought about by enhanced tyrosine phosphorylation of β-catenin,20,21 which explains why the association of type IIb RPTPs with components of cadherin-catenin adhesion complexes has been of particular interest.22-28 For example, PTPRM associates with E-cadherin23 and dephosphorylates p120 catenin.26 Yet, the role played by type IIb RPTPs in cadherin-mediated cell adhesion may not be solely attributed to their catalytic activity. Indeed, expression of PTPRM in a prostate cancer cell line could restore cadherin-dependent adhesion of these cells, but so did a catalytically inactive form of PTPRM,29 highlighting the importance of additional intracellular effectors of PTPRM signaling.

Consistent with their association with cadherins and catenins, type IIb RPTPs have been linked to the progression of human cancers. Downregulation of PTPRM in glioma cells due to proteolysis correlates with increased cell movement and tumor invasiveness.30 Similarly, cell surface cleavage of PTPRK favors the dispersion of colon cancer cells.31,32 These findings strongly suggest that shedding of these RPTPs is involved in cancer progression and recent results indicate that this process may not be limited to type IIb family members.33 On the other hand, PTPRT associates with E-cadherin and is linked to the stability of cadherin-catenin adhesion complexes27 so that a decrease of PTPRT adhesiveness due to mutations in its ectodomain found in cancer cells15,34 may in turn promote the migration of these cells. Hence, the picture that emerges is that impairing type IIb-mediated cell adhesion can favor the dispersion of cells expressing these receptors and thus promote tumor progression. Because of the increased interest in the roles of RPTPs in cancer, several groups have worked to identify mutations in genes encoding RPTPs in several human cancers. In particular, mutational analysis of colorectal cancer cells has highlighted PTPRT has a frequently mutated gene in this cancer35 and mice lacking PTPRT are more susceptible to cancer development.36

The recent availability of the crystal structure of the PTPRM ectodomain37 provides us with an opportunity to evaluate the effects of mutations in the ectodomains of type IIb receptors that have been identified in cancer patients. Given the sequence identity between type IIb RPTPs, this structure likely recapitulates the structures of all members of this family. PTPRM adopts an extended, rod-like conformation and the short linker segments
between the individual modules of the extracellular region presumably contributes to the rigidity of this structure.37 The MAM-Ig segment forms a single structural unit in which the MAM and Ig domains interact extensively.38 Importantly, the homophilic contacts between PTPRM molecules expressed on apposing cells involve the four N-terminal domains of PTPRM37 (MAM, Ig, FN1 and FN2) and analysis of the contact residues accounted for the absence of heterophilic contacts between type IIb family members.

Visualization of the homophilic PTPRM interface allowed mapping of the cancer mutations found in type IIb family members that have been identified in multiple human cancers39-49 and can be accessed via the COSMIC database.50 Missense mutations locate at the homophilic interface between two opposing type IIb molecules,15,34,37 suggesting that disruption in these contacts may be linked to tumor growth, in line with the notion that loss of adhesiveness can favor the progression of cancers (Fig. 2). A second set of mutations is localized at interfaces between modules of PTPRM. The potential effect of these mutations could be to reduce the rigidity of the entire extracellular region, which would in turn impair homophilic interactions in much the same way that removal of the Ca2+ ions that rigidify the interfaces of successive cadherin modules inhibits homophilic interactions between cadherins.51 Finally, a third set of mutated amino acid residues were found in buried portions of the PTPRM ectodomain and may impair its folding or processing, thus reducing or even preventing receptor presentation at the cell surface52 (Fig. 2).

Importantly, the common effect of the changes found in cancers would be to inhibit the formation of homophilic contacts. This notion was confirmed by assessing the ability of non-adherent \textit{Spodoptera frugiperda} S9 cells to form clusters when transfected with wild-type or mutated PTPT.15,34 In these experiments, the aggregation of PTPRT-transfected S9 cells was impaired when cancer missense mutations were introduced in the PTPRT ectodomain, thus providing a clear relationship between amino acid changes at these positions and reduced cellular adhesion. However, little can be inferred from a fourth group of mutations include amino acid residues at the protein surface that are located away from the homophilic interface (Fig. 2). It is tempting to speculate that these may affect the association of a given type IIb RPTP with itself on the same cell surface53 or with another cell surface receptor such as cadherins,24 or may render the receptor ectodomain more susceptible to proteolysis, but evidence of this is lacking.
on the development of the Drosophila nervous system that demonstrated that Dlar plays an important role in the guidance of motor axons, which paved the way for investigating the specific physiological functions of RPTPs during neural development. Since then, vertebrate type IIA members have been linked to neurogenesis (PTPRS), axon guidance (PTPRS) and synaptogenesis (LAR, PTPRD and PTPRS).

The physiological roles of type IIA RPTPs in neural development are mediated, at least in part, by interactions with chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs). HSPGs bind to PTPRS in chick retina and the sole type IIA Drosophila RPTP Dlar binds to heparan sulfate (HS) chains on syndecan and dally-like protein to drive the formation of synapses at neuromuscular junctions. The interactions between these receptors and proteoglycans depend on their N-terminal Ig module and in particular on the presence of a cluster of basic residues in a loop region, which is conserved in Dlar and its vertebrate orthologs. On the other hand, this region interacts functionally with CSPGs, at least in the case of PTPRS. Critically, the physiological outcomes of the interactions with these two classes of ligands are distinct since interactions with HSPGs promote axonal outgrowth whereas interactions with CSPGs impair outgrowth. These radically different outcomes are linked to the different oligomeric state of PTPRS in the presence of HS or CS chains. The current model proposes that PTPRS aggregates in the presence of HS chains expressed on the same cell leading to an uneven distribution of phosphatase activity at the cell surface because of the presence of PTPRS clusters. This redistribution would be reversed when PTPRS interacts with CS chains expressed on a different cell as PTPRS would revert to its monomeric state. The molecular basis accounting for the distinct oligomeric state of PTPRS in the presence of its glycosaminoglycan ligands remains unclear, however.

Evidence for the involvement of type IIA RPTPs in cancer came in 2004 when somatic mutations were identified in the PTPRD gene in colorectal tumors. Soon after, deletions in the PTPRD gene were found in human cancer cell lines and more recent data indicate that this gene is inactivated in glioblastoma multiforme, malignant melanoma and lung carcinoma as well as head and neck carcinoma. Similarly, PTPRS is frequently deleted in head and neck squamous cell carcinoma. Whole genome studies aiming to document the genetic variations existing in human cancers uncovered several missense mutations in the genes encoding type IIA family members. Although most of these mutations are located in the phosphatase region where they presumably lead to a loss of phosphatase activity, some of the changes localize to the extracellular region and in particular to the N-terminal Ig region for which structural data were obtained recently (Figs. 1 and 3).

The structures of the first two Ig repeats of LAR, PTPRD and PTPRS revealed unusual features. Although there are little differences between the topologies of each Ig domain and Ig modules found in other cell surface receptors, the Ig1-Ig2 pair adopts an antiparallel arrangement giving this region the appearance of a horseshoe. This conformation is conserved in the Drosophila family member Dlar and resembles the structure of FNIII tandem repeats found in the extracellular region of the Drosophila hedgehog co-receptor iHog. It is however distinct from horseshoe conformations recently identified in contactins, Dscams and neurofascin. These structural analyses also revealed the nature of the glycosaminoglycan-binding site and confirmed earlier biochemical experiments that had mapped it to the first Ig domain.

Interestingly, several of the cancer somatic mutations map to this region and in particular to residues at the interface between Ig1 and Ig2 in both PTPRF (G123E in malignant melanoma and R206H in ovarian tumor) and PTPRS (V224M in colorectal cancer) and may disrupt the interdomain interface (Fig. 3, residues are shown as green spheres). Furthermore, a glutamate residue is found in place of a conserved glycine residue in the PTPRD-glycosaminoglycan binding site in malignant melanomas. This change (G61E, colored red on Fig. 3) introduces a negative charge and would be expected to weaken the interaction between this usually positively-charged region conserved in all type IIA receptors and the negative charge on the glycosaminoglycan chains. Finally, a proline to serine change at position 141 in PTPRS is found in malignant melanomas. This proline is buried and conserved in type IIA family members so that this change may impair the folding of this region altogether (Fig. 3, residue is depicted as yellow spheres). Inferring the potential roles of these mutations in tumor progression is more
challenging, however, because the effect these changes have on protein function have not been assessed. In particular, binding of HS chains to the Ig1-Ig2 region of Dlar appears to be solely mediated by Ig1 and is seemingly unaffected by mutations that are expected to impair the formation of the Ig1-Ig2 interface, although this particular set of experiments did not examine the roles of the mutations within the context of the full-length protein nor if the physiological properties were altered after mutations. Assessment of the biochemical properties of changes in the Ig region of type IIa RPTPs is warranted and may provide yet another clear link between control of cell adhesion by phosphatases and regulation of intracellular signal transduction pathways.

The potential mechanisms by which the absence of type IIa RPTPs would promote tumor progression have been studied in more detail. Inactivation of PTPRD results in activation of the oncoprotein signal transducer and activator of transcription 3 (STAT3) and in turn expression of STAT3-target genes that promote tumorogenesis. The implication of STAT3 in this pathway is particularly interesting because it had already been identified as a substrate of the type IIb receptor PTPRT by Zhang and colleagues and because inactivation of PTPRT leads to enhanced expression of STAT3 target genes as is now the case for PTPRD. Activation of STAT3 is not the only change associated with type IIa inactivation. Indeed, deletion of PTPRS in head and neck squamous cell carcinomas results in activation of the PI3K/epidermal growth factor receptor pathway presumably because PTPRS is required to antagonize the epidermal growth factor receptor kinase activity. Although speculative, an additional mechanism for type IIa-dependent tumor progression may be associated with cadherin-catenin adhesion complexes as both LAR and PTPRS associate with cadherins and dephosphorylate β-catenin. Moreover, inducing expression of LAR in migrating epithelial cells, in which tyrosine phosphorylation of β-catenin is enhanced, inhibits their migration. The structural basis for the association of type IIa receptors with cadherins and β-catenin is not known, but it will be very interesting to determine if some of the somatic mutations identified in LAR or PTPRS map to these potential binding interfaces.

Overexpression of Type V RPTPs

The receptors PTPRG and PTPRZ can be considered somewhat like oddities among RPTPs. Instead of the combination of multiple Ig and FNIII modules that are found in the ectodomains of most RPTPs, PTPRG and PTPRZ include an N-terminal inactive carboxic anhydrase (CA), a single FNIII repeat and a long spacer region that is presumably heavily glycosylated. PTPRG and PTPRZ were initially cloned in the early 1990s and were quickly linked to human tumors as PTPRG was mapped to a chromosomal region frequently deleted in kidney and lung cancers whereas a glioblastoma cell line (U373MG) was found to express high levels of PTPRZ. Both receptors are expressed mostly in the nervous system during embryogenesis and adulthood, but their respective localization differs as PTPRG is expressed mostly on neurons and PTPRZ on glial cells. Despite their similar architectures, PTPRG and PTPRZ appear to have distinct roles in neural development as PTPRG inhibited nerve growth factor-induced neurite outgrowth when expressed recombinantly in PC12D cells whereas PTPRZ had no effect on this process. However, PTPRZ mediates the outgrowth of neurites when bound to its ligand contactin-1 (CNTN1) expressed on neurons and this complex also plays an important role in the maturation of oligodendrocytes. The role of PTPRG in vivo is less well described although it has recently been shown to be involved in spinal cord neurogenesis in chicken, which is somewhat in contrast with the results obtained in PC12D cells and underscores the potentially complex role that this receptor may have in neural development.

Although the search for an extracellular binding partner for PTPRG was not initially successful, several ligands for PTPRZ have been found, including the neural CAM contactin-1 (CNTN1) mentioned above and the growth factor pleiotrophin (PTN). The latter proved instrumental in our understanding of how tyrosine phosphatase activity can be regulated by extracellular cues and also shed light into the role of PTPRZ in tumor progression. Initial insights on the effect of PTN on PTPRZ activity came in 2000 when Meng and colleagues demonstrated that PTN binds to and inactivates PTPRZ expressed on the surface of the glioblastoma cells U373MG, leading to an increase in the tyrosine phosphorylation of β-catenin. Furthermore, another series of experiments extended those initial findings by demonstrating that PTPRZ is catalytically active in its monomeric state, but is inactivated after it dimerizes following treatment with PTN resulting in the enhanced phosphorylation of its substrates. In parallel experiments, the role played by PTPRZ in glioblastoma was examined because it is typically overexpressed in these tumors. PTN stimulates migration of glioblastoma cells. When PTPRZ expression is reduced by siRNA, PTN no longer stimulates the migration of these cells. This demonstrates that PTPRZ mediates the stimulatory effect of PTN on glioblastoma cell migration. These migratory properties were explained in part by enhanced tyrosine phosphorylation of β-catenin after PTPRZ is inactivated by PTN, which then promotes disassembly of cadherin-catenin adhesion complexes and thus a loss of cell adhesiveness. Consistent with this notion, aberrant β-catenin signaling has recently been linked to the etiology of astrocytomas.

The previous observations hinged on the fact that PTN was able to induce dimerization of PTPRZ and that this change of oligomeric state inactivated the intracellular phosphatase activity. A model implicating the dimerization/inhibition of RPTPs has been favored since the crystal structure of a dimeric form of the D1 domain of PTPTA was determined and showed that a helix-turn-helix motif (called a wedge) of one protomer was inserted into the active site of a second protomer and blocked its active site. The influence of RPTP dimerization on phosphatase activity had already been suggested by experiments demonstrating that the phosphatase activity of an EGF-CD45 chimera could be inhibited upon EGF binding so that it was hypothesized that the formation of dimers implicating the wedge region could be an attractive model to explain the control of phosphatase activity. However, the crystal structures of the active phosphatase domain of PTPRM and of the tandem phosphatase domains of LAR
It is not yet known what the precise physiological functions of CNTN/PTPRG interactions are, but based on their localization in the nervous system it is speculated that these proteins could be involved in the development and function of the nervous system. Interestingly, as is the case for PTPRZ, PTPRG is overexpressed in gliomas, hinting that PTPRG/CNTN signaling could play a role in tumor progression in much the same way that PTPRZ/CNTN1 may especially since β-catenin is an in vitro PTPRG substrate.

Concluding Remarks

The architecture of RPTPs has long suggested that these receptors are able to mediate both cell adhesion and cell signaling. Since the progression of tumors is often characterized by changes in both adhesion and signaling properties, recent work has been aimed at characterizing the alterations in RPTP activity that are associated with human cancers. Even though it is now clear that RPTPs can both suppress or activate the growth of tumors, our understanding is still limited by the fact that the in vivo substrates of RPTPs are not well described and the extracellular cues to which they respond remain poorly defined. A significant progress in the RPTP field will undoubtedly come from the availability of crystal structures of full RPTP ectodomains in the absence and presence of their ligands, which will explain how RPTP ligands control receptor dimerization and phosphatase activity. Until then, renewed efforts to identify RPTP ligands and to obtain structural information on RPTPs have already helped bridge the gap between the description of RPTP alterations in cancer and the role these changes may have at a molecular level. This trend will continue and will likely set the stage for the development of new cancer therapies based on RPTP biology.
References

1. Hunter T, Sefton BM. Transforming gene product of Rasus sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 1980; 77:1311-5; PMID:6246487; http://dx.doi.org/10.1073/pnas.77.5.1311

2. Orsman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006; 6: 307-20; PMID:16557282; http://dx.doi.org/10.1038/nrc1837

3. Julian SG, Dubi N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatase. Nat Rev Cancer 2011; 11:35-49; PMID:21179176; http://dx.doi.org/10.1038/nrc2980

4. Charbonneau H, Tonks NK, Walsh KA, Fischer EH. The leukocyte common antigen (CD43): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A 1988; 85:7182-6; PMID:2845400; http://dx.doi.org/10.1073/pnas.85.19.7182

5. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, et al. Protein tyrosine phosphatases in the human genome. Cell 2004; 117:699-713; PMID:15186772; http://dx.doi.org/10.1016/j.cell.2004.05.018

6. Hendriks WJAJ, Elson A, Harroch S, Snoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816-30; PMID:18298790; http://dx.doi.org/10.1111/j.1742-4658.2008.06249.x

7. Johnson KG, Van Vactor D. Receptor protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

8. Rousar S, Miravet S, Piedra J, Garcia de Heretos A, Duñach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274:7693-40; PMID:10593980; http://dx.doi.org/10.1074/jbc.274.51.36734

9. Yang C, Iyer RR, Yu ACH, Yong RL, Park DM, Weil Rotter A. Intracellular substrates of brain-enriched protein-tyrosine phosphatase RPTPmu binds to and regulates neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481-92; PMID:17275081; http://dx.doi.org/10.1016/j.mcn.2006.12.002

10. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

11. Del Vecchio RL, Tonks NK. The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor-protein-tyrosine phosphatase mu. J Biol Chem 1996; 271:16712-9; PMID:8663337; http://dx.doi.org/10.1074/jbc.271.28.16712

12. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

13. Fuchi M, Müller T, Lerch MM, Ulrich A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 1996; 271:16712-9; PMID:8663337; http://dx.doi.org/10.1074/jbc.271.28.16712

14. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

15. Del Vecchio RL, Tonks NK. The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor-protein-tyrosine phosphatase mu. J Biol Chem 1996; 271:16712-9; PMID:8663337; http://dx.doi.org/10.1074/jbc.271.28.16712

16. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

17. Becka S, Zhang P, Craig SEL, Lodowski DT, Wang Z, Brady-Kalnay SM. Characterization of the adhesive properties of the type IIb subfamily receptor protein tyrosine phosphatases. Cell Comm Adhes 2010; 17:34-47; PMID:20521994; http://dx.doi.org/10.1049/itarm1609

18. Beppu M, Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005; 6:622-34; PMID:16025097; http://dx.doi.org/10.1038/nrm1699

19. Ben G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 2009; 1:1-31; PMID:20457567; http://dx.doi.org/10.1101/cshperspect.a003129

20. Rousar S, Miravet S, Piedra J, Garcia de Heretos A, Duñach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274:7693-40; PMID:10593980; http://dx.doi.org/10.1074/jbc.274.51.36734

21. Yang C, Iyer RR, Yu ACH, Yong RL, Park DM, Weil Rotter A. Intracellular substrates of brain-enriched protein-tyrosine phosphatase RPTPmu binds to and regulates neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481-92; PMID:17275081; http://dx.doi.org/10.1016/j.mcn.2006.12.002

22. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

23. Del Vecchio RL, Tonks NK. The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor-protein-tyrosine phosphatase mu. J Biol Chem 1996; 271:16712-9; PMID:8663337; http://dx.doi.org/10.1074/jbc.271.28.16712

24. Brady-Kalnay SM, Mouton T, Nixon JP, Pietz GE, Kirch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherin in vivo. J Cell Biol 1998; 141:287-96; PMID:9531566; http://dx.doi.org/10.1083/jcb.141.1.287

25. Del Vecchio RL, Tonks NK. The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor-protein-tyrosine phosphatase mu. J Biol Chem 1996; 271:16712-9; PMID:8663337; http://dx.doi.org/10.1074/jbc.271.28.16712

26. Zondag GC, Koningstein GM, Jiang YP, Sap J, Becka S, Zhang P, Zhang X, Brady-Kalnay SM, Wang Z. Tumor-derived extracellular mutations of PTPRT/PTPrho are defective in cell adhesion. Mol Cancer Res 2008; 6:1106-13; PMID:18644975; http://dx.doi.org/10.1158/1541-7786.MCR-07-2123
39. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807-12; PMID:18772397; http://dx.doi.org/10.1126/science.1164382

40. Stranks NY, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Swansonen A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333:1517-60; PMID:21728983; http://dx.doi.org/10.1126/science.1208130

41. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC-H, et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331:435-9; PMID:21623964; http://dx.doi.org/10.1126/science.1189056

42. Dalgleish GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463:360-5; PMID:20504297; http://dx.doi.org/10.1038/nature08672

43. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321:889-92; PMID:18772397; http://dx.doi.org/10.1126/science.1164368

314:268-74; PMID:16959974; http://dx.doi.org/10.1074/jbc.M109.061127

44. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474:609-15; PMID:21720365; http://dx.doi.org/10.1038/nature09816

45. Stransky N, Egloff AM, Tward AD, Kostic AD, Parsons DW, Jones S, Zhang X, Lin JC-H, et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 333:1517-60; PMID:21728983; http://dx.doi.org/10.1126/science.1208130

46. Stransky N, Egloff AM, Tward AD, Kostic AD, Parsons DW, Jones S, Zhang X, Lin JC-H, et al. The genomic landscapes of human breast and colorectal cancers. Science 2010; 330:228-31; PMID:20826749; http://dx.doi.org/10.1126/science.1198056

47. Parsons DW, Jones S, Lin JC-S, Cronin JC, Sibenaller ZA, Ryken T, Rosenberg SA, et al. Mutational inactivation of PTEN in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68:10300-6; PMID:19074898; http://dx.doi.org/10.1158/0008-5472.CAN-08-3272

48. Ahn S, Kim S, Lee G, Hwang J, Park EK, Kwon SY, et al. Analysis of the mutational landscape of cancer. Science 2011; 333:1148-53; PMID:21720374; http://dx.doi.org/10.1126/science.1197516

49. Parsons DW, Jones S, Lin JC-S, Cronin JC, Sibenaller ZA, Ryken T, Rosenberg SA, et al. Mutational inactivation of PTEN in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68:10300-6; PMID:19074898; http://dx.doi.org/10.1158/0008-5472.CAN-08-3272

50. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Parry J, et al. A high-throughput SNP-based association study in breast and ovarian cancer. Hum Mol Genet 2008; 17:2464-74; PMID:18628888; http://dx.doi.org/10.1093/hmg/ddn151

51. Tian SS, Tsoulias P, Zinn K. Three receptor-linked proteins in A5-protein-tyrosine phosphatase mu. J Biol Chem 2004; 279:26922-31; PMID:15084579; http://dx.doi.org/10.1074/jbc.M313152500

52. Quesada V, Conde L, Villamor N, Ordóñez GR, Jares E, et al. The splicing factor SF3B1 gene is recurrently mutated in the childhood cancer medulloblastoma. Science 2011; 331:1807-11; PMID:21720365; http://dx.doi.org/10.1126/science.1198056

53. Cismasiu VB, Denes SA, Reiländer H, Michel F, Szedlacsek SE. The MAM (meprin/A5-protein-tyrosine phosphatase mu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J Biol Chem 2004; 279:26922-31; PMID:15084579; http://dx.doi.org/10.1074/jbc.M313152500

54. Strelau M, Krueger NX, Hall LR, Schlossman SF, Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to rho leukocyte common antigen. J Exp Med 1988; 168: 1523-30; PMID:2972792; http://dx.doi.org/10.1084/jem.168.5.1523

55. Tian SS, Tsoulias P, Zinn K. Three receptor-linked proteins in A5-protein-tyrosine phosphatase mu. J Biol Chem 2004; 279:26922-31; PMID:15084579; http://dx.doi.org/10.1074/jbc.M313152500

56. Ahn S, Kim S, Lee G, Hwang J, Park EK, Kwon SY, et al. Analysis of the mutational landscape of cancer. Science 2011; 333:1148-53; PMID:21720374; http://dx.doi.org/10.1126/science.1197516

57. Parsons DW, Jones S, Lin JC-S, Cronin JC, Sibenaller ZA, Ryken T, Rosenberg SA, et al. Mutational inactivation of PTEN in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68:10300-6; PMID:19074898; http://dx.doi.org/10.1158/0008-5472.CAN-08-3272

58. Meirholz K, Adamek T, Batt J, Rotin D, Doering LC. Protein tyrosine phosphatase sigma-deficient mice show altered synaptic plasticity and structural abnormalities in the central nervous system. J Neurosci Res 2002; 70:24-35; PMID:12237861; http://dx.doi.org/10.1002/jnr.10382

59. Deng L, Gerz G, Wheeler DA, Mardis ER, McLaughlin MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069-75; PMID:18948947; http://dx.doi.org/10.1038/nature07423

60. Meijers R, Puettmann-Holgado R, Skiniotis G, Liu J, Stow J, Bignell G, et al. Analysis of the mutational landscape of cancer. Science 2011; 333:1148-53; PMID:21720374; http://dx.doi.org/10.1126/science.1197516

61. Woo J, Kwon S-K, Choi S, Kim S, Lee J-R, Dunah AW, et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009; 12:428-37; PMID:19252495; http://dx.doi.org/10.1038/nn.2279

62. Liu K, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. J Biol Chem 2010; 285:13966-78; PMID:20139422; http://dx.doi.org/10.1074/jbc.M110.1880509

63. Ji H, Butler A, et al. NISC Comparative Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442-6; PMID:21949924; http://dx.doi.org/10.1038/ng.10810

64. Ji H, Butler A, et al. NISC Comparative Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442-6; PMID:21949924; http://dx.doi.org/10.1038/ng.10810

65. Ji H, Butler A, et al. NISC Comparative Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442-6; PMID:21949924; http://dx.doi.org/10.1038/ng.10810

66. Ji H, Butler A, et al. NISC Comparative Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442-6; PMID:21949924; http://dx.doi.org/10.1038/ng.10810
Kaplan R, Morse B, Huebner K, Croce C, Howk R, Muise AM, Walters T, Wine E, Griffiths AM, Turner R, Siu R, Fladd C, Rotin D. N-cadherin is an in vivo transmembrane protein tyrosine phosphatase gamma (RPTPgamma), but not RPTPzeta/RPTPbeta, inhibits nerve-growth-factor-induced neurite outgrowth in PC12D cells. Dev Neurosci. 2001; 23:55-69; PMID:11175927; http://dx.doi.org/10.1007/115900004896

Peles E, Naiv M, Campbell PL, Sakurai T, Martinez R, Lev S, et al. Knockdown of contactin-1 expression suppresses tumour neurogenesis. Mol Cell Neurosci. 2011; 46:469-82; PMID:21568432; http://dx.doi.org/10.1084/jem.20041890

Kraeger NN, Strndi M, Saino H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 1990; 9:4251-2; PMID:2170109

Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, et al. Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain. Proc Natl Acad Sci U S A 1990; 87:7000-4; PMID:2160617; http://dx.doi.org/10.1073/pnas.87.18.7000

Barnea G, Silvennoinen O, Shaanan B, Honegger AM, Cannold PD, D'Eustachio P, et al. Identification of a carboxy anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Mol Cell Biol 1993; 13:1497-506; PMID:8382771

Harroch S, Palmeri M, Rosenbluth J, Custer A, Okagaki M, Shragger P, et al. No obvious abnormality in mice deficient in receptor tyrosine phosphatase beta. Mol Cell Biol 2000; 20:7706-15; PMID:11003666; http://dx.doi.org/10.1128/MCB.20.20.7706-7715.2000

Kaminsa S, Vracere S, Suzuki Y, Meziane H, Buxbaum JD, Schlessinger J, et al. Receptor protein tyrosine phosphatase gamma is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol 2006; 26:5106-19; PMID:16782895; http://dx.doi.org/10.1128/MCB.00101-06

Shintani T, Maeda N, Noda M. Receptor-like protein tyrosine phosphatase gamma (RPTPgamma), but not RPTPzeta/RPTPbeta, inhibits nerve-growth-factor-induced neurite outgrowth in PC12D cells. Dev Neurosci 2001; 23:55-69; PMID:11175927; http://dx.doi.org/10.1007/115900004896

Peles E, Naiv M, Campbell PL, Sakurai T, Martinez R, Lev S, et al. Knockdown of contactin-1 expression suppresses tumour neurogenesis. Mol Cell Neurosci. 2011; 46:469-82; PMID:21568432; http://dx.doi.org/10.1084/jem.20041890

Barr AJ, Ugochukwu E, Lee WH, King ONF, Filipakopoulos P, Alafano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatase family. Cell 2009; 136:352-63; PMID:19167335; http://dx.doi.org/10.1016/j.cell.2008.11.038

Filippakopoulos P, Alfano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatase family. Cell 2009; 136:352-63; PMID:19167335; http://dx.doi.org/10.1016/j.cell.2008.11.038

Eicker C, Zapf S, Ulbricht U, Muller S, Illbrandt R, Westphal M, et al. Contactin is expressed in human astrocytic gliomas and mediates reparative effects. Gli 2006; 53:1-12; PMID:16678236; http://dx.doi.org/10.1016/j.glia.2006.02.041

Muller S, Kunzel P, Lamszus K, Ulbricht U, Lorentz GA, Nelson AM, et al. A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 2003; 22:6661-8; PMID:1455979; http://dx.doi.org/10.1038/sj.onc.1206765

Perez-Pinera P, Alcantara S, Dimitrov T, Vega JA, Deuel TF. Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2006; 103:17795-800; PMID:17098867; http://dx.doi.org/10.1073/pnas.0607299103

Iwabu AM, den Hertog J, Hunter T, Noel JP. Structural basis for inhibition of receptor protein tyrosine phosphatase-alpha by dimerization. Nature 1996; 382:535-9; PMID:8490965; http://dx.doi.org/10.1038/00098674;90141-1C

Hoffmann KM, Tonks NK, Barford D. The crystal structure of domain 1 of receptor protein-tyrosine phosphatase mu. J Biol Chem 1997; 272:27505-8; PMID:9346878; http://dx.doi.org/10.1074/jbc.ed.272.4.27505

Nam HJ, Poy F, Krueger NX, Saino H, Frederick CA. Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 1999; 97:449-57; PMID:10338209; http://dx.doi.org/10.1016/S0092-8674(00)08755-2

Nam HJ, Poy F, Saino H, Frederick CA. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 2005; 204:441-52; PMID:15684325; http://dx.doi.org/10.1084/jem.20041890

Barr AJ, Ugochukwu E, Lee WH, King ONF, Filipakopoulos P, Alafano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatase family. Cell 2009; 136:352-63; PMID:19167335; http://dx.doi.org/10.1016/j.cell.2008.11.038

Su Ji, Yang CY, Shi JY, Wei LH, Huish C-Y, Ji Y-M, et al. Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma. Cancer Res 2006; 66:2553-61; PMID:1651972; http://dx.doi.org/10.1158/0008-5472.CAN-05-2645

Mauerer A, Roessch A, Hafner C, Stempf T, Wild P, Meyer S, et al. Identification of new genes associated with melanoma. Exp Dermatol 2011; 20:502-7; PMID:21410771; http://dx.doi.org/10.1111/j.1600-0625.2011.01254.x

Eicker C, Zapf S, Ulbricht U, Muller S, Illbrandt R, Westphal M, et al. Contactin is expressed in human astrocytic gliomas and mediates reparative effects. Gli 2006; 53:1-12; PMID:16678236; http://dx.doi.org/10.1016/j.glia.2006.02.041

Vezzalini M, Mombello A, Menedrina F, Mafficini A, Delta Peruta M, van Niekerk C, et al. Expression of transmembrane protein tyrosine phosphatase gamma (PTPgamma) in normal and neoplastic human tissues. Histopathology 2007; 50:615-28; PMID:17394498; http://dx.doi.org/10.1111/j.1365-2559.2007.02661.x