Cellular Tropism, Population Dynamics, Host Range and Taxonomic Status of an Aphid Secondary Symbiont, SMLS (Sitobion miscanthi L Type Symbiont)

Tong Li1,2, Jin-Hua Xiao1, Zhao-Huan Xu3, Robert W. Murphy4,5, Da-Wei Huang1,6*

1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 2 Graduate School of the Chinese Academy of Sciences, Beijing, China, 3 College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China, 4 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China, 5 Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada, 6 College of Life Sciences, Hebei University, Baoding, Hebei, China

Abstract

SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.

Citation: Li T, Xiao J-H, Xu Z-H, Murphy RW, Huang D-W (2011) Cellular Tropism, Population Dynamics, Host Range and Taxonomic Status of an Aphid Secondary Symbiont, SMLS (Sitobion miscanthi L Type Symbiont). PLoS ONE 6(7): e21944. doi:10.1371/journal.pone.0021944

Editor: Ching-Hong Yang, University of Wisconsin-Milwaukee, United States of America

Received: February 26, 2011; Accepted: June 13, 2011; Published: July 15, 2011

Copyright: © 2011 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by a Research and Demonstration of Aphid Prevention and Management Technology grant from the Ministry of Agriculture of the People’s Republic of China (No. 2008030002) and by grant No. 05299YS105 from the Key Laboratory of Zoological Systematics and Evolution, the Chinese Academy of Sciences. This research is partially supported by National Natural Science Foundation of China (NSFC grant No. 31090253, 30900137) and by the Special Fund for Agro-Scientific Research in the Public Interest of China (grant No. 201103022). Manuscript preparation was supported by a Visiting Professorship for Senior International Scientists from the Chinese Academy of Sciences to R.W. Murphy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: huangdw@ioz.ac.cn

Introduction

Almost all aphids (Hemiptera: Aphididae) harbor the bacterial endosymbiont Buchnera aphidicola, which supplements essential amino acids lacking in the aphids’ restricted diet of phloem sap [1]. The symbiont is harbored in specialized cells called bacteriocytes or mycetocytes that form an organ in the aphids’ abdominal cavity called the bacteriome [2]. The bacterium is transmitted from mother to offspring with perfect fidelity, and the obligate relationship between B. aphidicola and aphids has been maintained for about 150–230 million years [3,4].

In addition to B. aphidicola, aphids have about 12 vertically transmitted bacteria that are not essential for their survival. Most of these secondary or facultative symbionts are originally reported in Acyrthosiphon pisum [5,6,7,8,9,10,11,12,13,14]. The three main secondary symbionts, Serratia symbiotica (T type), Hamiltonella defensa (T type) and Regiella insecticola (U type) endow aphids with diverse abilities such as resistance to high temperatures [15], parasitoid wasps [16], and fungal pathogens [17], and R. insecticola also can broaden the spectrum of host plants [18]. In contrast, symbiotic Rickettsia and Spiroplasma negatively affect the fitness of A. pisum [10,19,20]. Similar in vivo localizations of S. symbiotica, H. defensa, R. insecticola and Rickettsia occur in embryonic A. pisum; they are housed in sheath cells and secondary bacteriocytes around the primary bacteriocytes that contain B. aphidicola, as well as in aphid hemolymph [20,21].

Recently, a new aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont) was detected in Sitobion miscanthi and it probably represented a new genus in the family Rickettsiaceae [14]. Little taxonomic information was extracted from the 16S rRNA sequence of SMLS. In present study, we investigated in vivo localization, population dynamics and host range, and clarified the taxonomic status of SMLS using in situ hybridization along with quantitative and diagnostic PCR techniques.

Materials and Methods

Ethics Statement

No experiment involving vertebrate samples was performed in this study. An ethics statement is not required for experiments that involve insects only. The collecting of wild aphids was permitted by wheat farmers.

Materials

Aphids examined in this study were listed in Table 1. Previously, SMLS was detected in the population of S. miscanthi ZK collected from wild wheat in Zhoukou with a high frequency of infection (18/22, 81.8%). Rickettsia was detected in populations of S. miscanthi XX collected from wild wheat in Xining with a lower frequency of infection frequency (5/17, 29.4%) [14].

An ex situ SMLS-infected isofemale ZK-strain was built using one individual of S. miscanthi ZK. Aphids were reared on wheat
were performed on the single-infection samples. Rickettsia shown). Consequently, the gene amplifications of SMLS and in the XN-population was co-infected with was detected in ZK-strain and only one using 16S rRNA ZK-strain and

Both gene fragments were amplified from the DNA of coxAR1 (5-

gltAF11 (5-

gltA

citrate synthase (ef1

ef1

genes of SMLS were amplified from the DNA of the aphid ZK-

aphids (5-

Table 1. Aphids examined in present study.

Aphid species (isofemale strain)	Collection locality	Total no. tested	SMLS \(^{b} \)	Rickettsia \(^{b} \)	Host plant
Sitobion miscanthi (ZK)	Henan, Zhoukou	NA \(^{a} \)	+		Wheat
Sitobion miscanthi	Qinghai, Xining	17	5		Wheat
Aphis spiraecola	Ningxia, Liupanshan	20			Spirea
Aphis gossypi	Ningxia, Liupanshan	5			Wormwood
Aphis craccivora	Liaoning, Xiuyan	8			Buckthorns
Aphis eugenie	Guizhou, Mayanghe	2			Firethorn
Aphis glycines	Ningxia, Liupanshan	6			Soybean
Taphopectra aurantii	Guizhou, Mayanghe	5			Prickly ash
Taphopectra odinae	Hainan, Jinfengling	12			Chinese sumac
Schizaphis graminum	Shanxi, Taiyuan	10	1		Wheat
Rhopalosiphum padi	Hubei, Wuhan	5			Wheat
	Jiangsu, Nanjing	15	14		Wheat
	Beijing	5			Wheat
	Henan, Zhengzhou	18	8		Wheat
Brachycnados sp.	Liaoning, Xiuyan	8			Buckthorns
Chattophorus populiferi	Beijing	10			Poplar tree
Stomaphis sp.	Beijing	6			Hickory nut
Cinara sp.	Ningxia, Jingyuan	6			Chinese pagoda tree

\(^{a} \) Not applicable;
\(^{b} \) detected SMLS and Rickettsia using 16S rRNA specific PCR, the number represented positive samples. SMLS = Sitobion miscanthi L type symbiont.

doI:10.1371/journal.pone.0021944.t001

DNA extraction, gene amplification, cloning, and sequencing

Total DNA was extracted from a single aphid using an EasyPure Genomic DNA Extraction Kit (TransGen, Beijing) following the manufacturer’s protocols. Aphid elongation factor-1\(\alpha \) (e\(f1\)\(\alpha \)) gene was used as a reference to evaluate DNA quality. The citrate synthase (g\(lti\)A) and cytochrome C oxidase subunit I (\(cox\)\(1\)) genes of SMLS were amplified from the DNA of the aphid ZK-strain with forward primer gltAF11 (5'-GCATTGCACGATGAGACAGA-3') and reverse primer gltAR11 (5'-CATTGTGACAGTCGACATG-3'), and forward primer coxA\(F1 \) (5'-GCTTCHGATRKGTCWTTTCG-3') and reverse primer coxA\(R1 \) (5'-CATATTCCARCCDGCAGAAG-3'), respectively. Both gene fragments were amplified from the DNA of Rickettsia-positive samples of the XN-population, with forward primer gltAF11 (5'-GGGGTTTTATGTCTACTGCTTGTG-3') [23] and reverse primer gltAR11, and forward primer coxA\(F4 \) (5'-TTTACTGGGGCGYWCAATGAT-3') and reverse primer coxA\(R3 \), respectively. Cycling conditions were 94°C for 4 min, followed by 38 cycles at 94°C for 30 s, 53°C for 45 s, 72°C for 1 min, and a final elongation for 10 min. PCR products were purified using an EasyPure PCR Purification Kit (TransGen), and cloned with the pEASY-T1 vector (TransGen). Three positive clones of each amplion were sequenced.

Molecular phylogenetic analysis

To reveal the phylogenetic position of SMLS within the Rickettsiales, nucleotide sequences of 16S rRNA, \(glti\)A and \(cox\)\(1\) representing the two main families were retrieved from GenBank for the following taxa: family Anaplasmataceae (Anaplasma marginale [NC_010206], Ehrlichia ruminantium [NC_006831], Neorickettsia risticii [NC_013009], Wolbachia pipientis [NC_010981]); family Rickettsiaceae (Rickettsia bellii [NC_007940], Rickettsia prowazekii [NC_000963], Rickettsia rickettsii [NC_010263], Rickettsia typhi [NC_006142], Orientia tsutsugamushi [NC_009483]). Based on the phylogenetic tree for the alphaproteobacteria [24], we chose two species from the Rhodospirillales, Acidiphilium cryptum [NC_009484] and Gluconacetobacter diazotrophicus [NC_011365], as the outgroup.

Sequences were initially aligned using CLUSTAL W as implemented in MEGA 4.0 [25] with the default parameters and then adjusted manually. Bayesian inference (BI) trees were constructed in MrBayes 3.1.2 [26,27]. The best-fit nucleotide substitution models were selected using jModelTest 0.1.1 [28,29] based on Akaike Information Criterion [30]. Two independent runs including four chains were performed with initial 1,000,000 generations, and stopped when the average deviation of split frequencies fell well below 0.01. Trees were sampled every 100 generations and the initial 25% of the total trees were discarded as burn-in. Compatible groups were shown in the majority rule consensus tree. Analyses involved independent gene and the concatenated data. In the latter case, the concatenated data were partitioned as independent gene. The parameters were defined as unlinked and the prior rate was set as variable. Branch support for
each node in BI trees was assessed by the frequency of nodal resolution, i.e., a Bayesian posterior probability (BPP).

Fluorescence in situ hybridization

This process was generally performed as described by Koga et al. [31]. Aphid embryos were dissected from adults of the ZK-strain in cold 70% ethanol using the hooked tip of a 0.03 insect pin (0.3 mm diameter, 40 mm length) under a stereoscopic microscope, and then fixed in Carnoy’s solution (chloroform-ethanol-acetic acid [6:3:1]) for 10 hr. The fixed embryos were decolorized overnight in alcoholic 6% H2O2 solution, then pre-hybridized in hybridization buffer (20 mM Tris-HCl [pH 8.0], 0.9 M NaCl, 0.01% sodium dodecyl sulfate; 30% formamide) for 3 times at 6 hr each. Embryos were then incubated overnight in hybridization buffer containing 100 pmol/ml of each fluorescent probe and 0.5 μg/ml 4′,6′-diamino-2-phenylindole (DAPI). Finally, the embryos were washed in a buffer (0.3 M NaCl, 0.03 M sodium citrate, 0.01% sodium dodecyl sulfate) and observed under a laser confocal microscope (LSM 510 META, Carl Zeiss). We designed two fluorescent probes that targeted *B. aphidicola* and SMLS 16S rRNA molecules in cells from known probes [20]: SMB-Cy5 (5′-Cy5-CCCTCTTTTGGTAGATCC-3′) for *B. aphidicola*, and SMLS-Cy3 (5′-Cy3-TCACACGTACCCGTATTTCGC-3′) for SMLS. Nuclei of aphid cells were counterstained with DAPI. No-probe and RNase digestion control experiments were employed to confirm the specificity of the detection. All manipulations were performed at room temperature.

SMLS detection in aphid hemolymph

Aphid hemolymph was collected from about 10 adult aphids of the ZK-strain following the methods described by Fukatsu et al. [7]. Bacterial DNA was extracted using the same DNA extraction kit. SMLS was detected with 16S rRNA diagnostic PCR, using the following primers: 16SA1 (5′-AGAGTTTGTATCMTGGCTCAG-3′) [32] and Ric16SR (5′-TCACACGTACCCGTATTTCGC-3′) [20]. Aphid DNA of the ZK-strain was used as the positive control, and sterile water was used as the template in the negative control.

Quantitative PCR

DNA was extracted from a series of aphids of the ZK-strain according to days after birth. Titers of SMLS and *B. aphidicola* were quantified in terms of the monophyly of *Anaplasmataceae* in the *Rickettsiales* was supported in all analyses, although not highly supported using 16S rRNA alone (BPP<0.9). The monophyly of *Rickettsiaceae* was supported in all analyses, while the monophyly of *Anaplasmataceae* was not supported in the *coxA* gene tree. SMLS usually clustered with *O. tsutsugamushi* in the *Rickettsiaceae*. However, SMLS also clustered with the *Anaplasmataceae* in the *gltA* tree, in which *O. tsutsugamushi* was not.
included. The close affinity between Rickettsia from S. miscanthi and R. bellii was highly supported in all analyses.

In situ hybridization of SMLS

Two patterns of infection were observed in cells (Figure 2): low density SMLS harbored in the sheath cells (Figure 2A, C; arrowhead) and high density SMLS in secondary bacteriocytes, cells larger than sheath cells (Figure 2C, D; arrow). Some secondary bacteriocytes intercalated between primary bacteriocytes (Figure 2C, arrow). Control experiments (no-probe and RNase digestion) confirmed the specificity of the observed signals (data not shown).

SMLS detection in aphid hemolymph

SMLS was detected in hemolymph. No product was amplified in negative controls, removing the possibility of contamination during amplification.

Population dynamics of SMLS and B. aphidicola

The quantitative PCR results (Figure 3) revealed that the population of B. aphidicola (Figure 3A) increased during nymphal growth, peaked at the 9 day-stage when aphids matured, declined in the active reproduction day-stages (from 9 to 11 day-stages), resurged at the 13 day-stage, and declined again in the remaining stages (from 13 to 29 day-stages). When normalized by titers of the host gene (ef1a), the density of B. aphidicola (Figure 3C) exhibited similar dynamics but declined from 5 to 9 day-stages. The population of SMLS (Figure 3B) increased from 1 to 13 day-stages, declined from 13 to 17 day-stages, then increased again to attain its highest density in the 29 day-stage. When normalized by the titers of host gene (Figure 3D), the density of SMLS exhibited the same dynamics.

Diagnostic PCR of 16S rRNA

To estimate the incidence of Rickettsia and SMLS infections across species of aphids, 141 samples of 13 species of aphids were subjected to diagnostic PCR for 16S rRNA. Taken together with the sequencing results, none of these aphids appeared to be infected with Rickettsia but SMLS was detected in S. graminum and R. padi with infection rates of 10% and 51.2%, respectively.

Discussion

In the gltA tree, O. tsutsugamushi was not included because the species lost its functional gltA gene [35]. SMLS clustered with the Anaplasmataceae, perhaps due to long branch-attraction or repulsion. Considering the robust supports in phylogenetic analyses of 16S rRNA, coxA and the concatenated data, SMLS most likely belonged to the Rickettsiaceae and had a sibling relationship with O. tsutsugamushi. The high level of sequence divergence (6%) between 16S rRNA from O. tsutsugamushi and SMLS previously indicated that SMLS might best be classified as a new genus [14]. Due to the absence of a coxA gene standard in bacterial classification, divergences of coxA sequences in Rickettsia were used to evaluate those between SMLS and O. tsutsugamushi. All 29 rickettsial coxA sequences were downloaded from GenBank on 25 Jan 2011 (Table S1). The uncorrected p-distance between the coxA sequences of SMLS and O. tsutsugamushi was 0.207, and this was much larger than the largest p-distance within Rickettsia (0.171 for R. bellii vs. R. prowazekii; Table S1). Assuming the divergence in coxA sequences of Rickettsia reflected intragenic variation in the family Rickettsiaceae, then both coxA and 16S rRNA divergences between SMLS and O. tsutsugamushi reached an intergeneric level.

In **in situ** hybridization revealed that SMLS was housed in two types of embryonic cells—sheath cell and secondary bacterio-
Figure 2. Whole-mount in situ hybridization of aphid embryos. *Buchnera aphidicola* (green), SMLS (red) and nuclei of aphid cell (blue). A, B, sheath cells and secondary bacteriocytes harbouring SMLS and primary bacteriocytes harbouring *B. aphidicola*. C, D, magnified images of A and B. Arrows, secondary mycetocytes; arrowheads, sheath cells.

doi:10.1371/journal.pone.0021944.g002

Figure 3. Population dynamics of *Buchnera aphidicola*, SMLS along with the development of *Sitobion miscanthi*. A, population dynamics of *Buchnera aphidicola* in terms of *dnaK* copies; B, population dynamics of SMLS in terms of *gltA* copies; C, density dynamics of *Buchnera aphidicola* in terms of *dnaK* copies per *ef1α* copy; D, density dynamics of SMLS in terms of *gltA* copies per *ef1α* copy. Means and positive standard deviations shown; numbers near bars show the replicates.

doi:10.1371/journal.pone.0021944.g003
cytes—both of which were located near primary bacteriocytes that contained \textit{B. aphidicola}. This discovery implied a probable interaction between SMLS and \textit{B. aphidicola}. Further, SMLS was also detected in hemolymph. The \textit{in vivo} localizations were very similar to those of other, thoroughly investigated aphid secondary symbionts, including \textit{S. symbiotica}, \textit{H. defensa}, \textit{R. insecticola} and \textit{Rickettsiella}[7,12,20,36]. Although speculative, the same mechanisms of infection, proliferation and vertical transmission may be shared by SMLS and the other secondary symbionts. \textit{In vivo} localizations indicate that aphid secondary symbionts may have identical traits. Herein, \textit{ZK}-strain aphids are discovered to be infected with SMLS only; no infection of \textit{Rickettsiella}, the other three main secondary symbionts of aphids and \textit{W. pipientis} is detected. The two controls confirmed the hybridization’s specificity. However, the probe target SMLS used in present study was designed referring to the one target \textit{Rickettsiella}, its use in distinguishing \textit{Rickettsiella} and SMLS must be taken with caution.

In general, the population of SMLS and \textit{B. aphidicola} exhibit different developmental dynamics in their hosts. \textit{Buchnera aphidicola} provides nutrition essential for aphid survival, particularly for the rapid production of embryos [1]. The population dynamics of \textit{B. aphidicola} appear to be typical of aphids, as evidenced by patterns in pea aphids [20,37]; the symbiont’s density increases during nymphal growth, peaks during the active reproduction of young adults and declines in older stages. The resurgence of \textit{B. aphidicola} at the 13 day-stage is probably due to the mismatch of rates of proliferation and consumption. When normalized with host gene titers, the density of \textit{B. aphidicola} declines during the 5 to 9 day-stages. Apparently, \textit{B. aphidicola}’s proliferation cannot match the rapid growth of young aphids in those stages. In comparison, the population of SMLS exhibits an increase-decline-increase curve, and the highest density occurs at the 29 day-stage, the last day-stage examined herein. Moreover, the same density dynamic is obtained after normalization with host gene titers. Two other aphid secondary symbionts (\textit{S. symbiotica} and \textit{Rickettsiella}) have population dynamics that differ from that of \textit{B. aphidicola} [20,37]. Whereas, the infection level of \textit{Rickettsiella} maintains in older aphids, the population of \textit{S. symbiotica} increases in older aphids and this is coincident with that of SMLS. Thus, whereas \textit{B. aphidicola} is an obligate symbiont of aphids, the secondary symbiotic relationship of SMLS differs. This difference may drive the divergent population dynamics.

In addition to \textit{S. miscanthi}, only the two wheat-feeding species (\textit{S. graminum} and \textit{R. pad}) among 13 tested species of aphids appear to be infected by SMLS, and no infection is obtained for \textit{Rickettsiella}. All three strains of SMLS have identical 16S rRNA sequences suggesting a recent horizontal transmission among the three wheat-feeding aphids. Secondary symbionts can be transferred between species of aphids [11,12], yet the mechanisms of these interspecific transmissions remains undiscovered [38]. \textit{Wolbachia pipientis} may be transferred via feeding on plants [39,40]. Because all of the three SMLS-infected aphids feed on wheat, it is possible that either feeding habits or wheat seedlings are responsible for SMLS transmission.

We collected fresh wheat seedlings and those that had been fed to aphids of the \textit{ZK}-strain and then froze them in liquid nitrogen. Extracted bacterial total DNA was subjected to 16S rRNA diagnostic PCR. SMLS was not detected on either fresh wheat seedlings or those that had been fed to \textit{ZK}-strain aphids. Thus, wheat seedlings could not be associated with the transmission of SMLS. Another route must have been responsible for the horizontal transmission of SMLS among wheat-feeding aphids.

We could not test whether SMLS specifically infected wheat-feeding aphids only or not. A large-scale survey of SMLS in aphids was not possible, and infection rates of SMLS within host species vary with geography, as documented in \textit{R. pad} (Table 1) and \textit{S. miscanthi} [14]. These tests would have required wide-scale sampling, both taxonomically and geographically. Regardless of why, SMLS widely infected wheat-feeding aphids.

In insects, vertically transmitted bacteria promote their transmission either by manipulating their host’s reproduction (\textit{e.g.} \textit{W. pipientis}) [41], or by increasing the fitness of infected hosts (\textit{e.g.} \textit{S. symbiotica}, \textit{H. defensa}, and \textit{R. insecticola}) [15,16,17,18]. SMLS is vertically transmitted from mother to offspring with high fidelity, at least under laboratory rearing conditions. \textit{Sitobion miscanthi} is largely parthenogenetic making it is unlikely that SMLS spreads by manipulating the reproductive systems of \textit{S. miscanthi}, as \textit{W. pipientis} does in arthropods. Further studies are required to investigate whether or not SMLS infections increase the fitness of \textit{S. miscanthi}.

Supporting Information

\textbf{Table S1} Matrix of uncorrected p-distance of coxl sequences in genus \textit{Rickettsiella}. (DOC)

Acknowledgments

We thank Professor Ge-Xia Qiao for supporting valuable aphid samples. Dr. Wen Xin and TransGen Biotech Company (Beijing) provided some reagents at no cost.

Author Contributions

Conceived and designed the experiments: TL D-WH. Performed the experiments: TL. Analyzed the data: TL J-HX. Contributed reagents/materials/analysis tools: Z-HX. Wrote the paper: TL J-HX RW D-WH.

References

1. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria \textit{Buchnera}. Annu Rev Entomol 43: 17–37.
2. Buchner P (1965) Symbiosis in animals which suck plant juices. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience. pp 210–432.
3. Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cooperation between bacterial endosymbioses (\textit{Buchnera}) and a recent radiation of aphids (\textit{Toxoptera}) and pitfalls of testing for phylogenetic congruence. Evolution 54: 517–525.
4. Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the host insects. Proc R Soc B 253: 167–171.
5. Unterman BM, Baumann P, McLean DL (1989) Pea aphid symbiont relationships established by analysis of 16S rRNA. J Bacteriol 171: 2970–2974.
6. Chen DG, Campbell RC, Purcell AH (1996) A new rickettsia from a herbivorous insect, the pea aphid \textit{Acrithosiphon pisum} (Harris). Curr Microbiol 33: 123–128.
7. Fukatsu T, Nikoh N, Koga R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid \textit{Acrithosiphon pisum} (Insecta: Homoptera). Appl Environ Microbiol 66: 2748–2758.
8. Jayaprakash A, Hoy MA (2000) Long PCR improves \textit{Wolbachia} DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9: 393–405.
9. Darby AC, Birkle LM, Turner SL, Douglas AE (2001) An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol Ecol 36: 43–50.
10. Fukatsu T, Touchida T, Nikoh N, Koga R (2001) \textit{Spiroplasma} symbiont of the pea aphid, \textit{Acrithosiphon pisum} (Insecta: Homoptera). Appl Environ Microbiol 67: 1294–1297.
11. Russell JA, Latorre A, Sather-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12: 1061–1075.
12. Sandstrom JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10: 217–228.
13. Graham JF, Bouchard M, Micheaud D, Choquet C (2009) Impact of environmental stress on aphid clonal resistance to parasitoidic role of \textit{Hamiltonella defensa} bacterial symbiosis in association with a new facultative symbiont of the pea aphid \textit{Acrithosiphon pisum}. J Insect Physiol 55: 919–926.
14. Li T, Xiao JH, Xu ZH, Murphy RW, Huang DW (2011) A possibly new Rickettsia-like genus symbiont is found in Chinese wheat pest aphid, *Sitobion miscanthi* (Hemiptera: Aphididae). *J Invertebr Pathol* 106: 418–421.

15. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids *Acyrthosiphon pisum* under heat stress. *Ecol Entomol* 27: 189–195.

16. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. *Proc Natl Acad Sci U S A* 100: 1803–1807.

17. Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. *Science* 310: 1781.

18. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. *Science* 303: 1803–1807.

19. Chen DQ (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, *Acyrthosiphon pisum*, and the blue alfalfa aphid, *A. kondoi*. *Entomol Exp Appl* 95: 315–323.

20. Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T (2005) *Rickettsia* symbiont in the pea aphid *Acyrthosiphon pisum*: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont *Buchnera*. *Appl Environ Microbiol* 71: 4069–4075.

21. Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. *Appl Environ Microbiol* 71: 3302–3310.

22. O'Neill SL, Gistlanto K, Colbert AME, Kur L, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. *Proc Natl Acad Sci U S A* 89: 2609–2702.

23. Davis MJ, Ying Z, Brunner BR, Pantoja A, Ferwerda FH (1998) Rickettsial relative associated with papaya bunchy top disease. *Curr Microbiol* 36: 80–84.

24. Williams KP, Sohal BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. *J Bacteriol* 189: 4578–4586.

25. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol Biol Evol* 24: 1596–1599.

26. Huelsenbeck JP, Ronquist F (2001) *MrBayes*: Bayesian inference of phylogeny. *Bioinformatics* 17: 734–745.

27. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

28. Guindon S, Gasculo O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst Biol* 52: 696–704.

29. Posada D (2008) jModelTest: phylogenetic model averaging. *Mol Biol Evol* 25: 1253–1256.

30. Akaike H (1974) A new look at statistical model identification. *IEEE Trans Automat Contr* 19: 716–723.

31. Koga R, Tsuchida T, Fukatsu T (2009) Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. *Appl Entomol Zool* 44: 281–291.

32. Fukatsu T, Nikos N (1996) Two intracellular symbiotic bacteria from the mulberry psyllid *D mumiae* (*Insecta, Homoptera*). *Appl Environ Microbiol* 64: 3599–3606.

33. Ronen S, Skaltskyy H (2000) Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol* 132: 365–386.

34. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Ver. 4. Sunderland, MA: Sinauer.

35. Min CK, Yang JS, Kim S, Choi MS, Kim IS, et al. (2008) Genome-based construction of the metabolic pathways of *Orientia tsutsugamushi* and comparative analysis within the Rickettsiales order. *Comp Funct Genomics* ID623145.

36. Tsuchida T, Koga R, Meng XY, Matsumoto T, Fukatsu T (2005) Characterization of a facultative endosymbiotic bacterium of the pea aphid *Acyrthosiphon pisum*. *Microb Ecol* 49: 126–133.

37. Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont *Buchnera* in an aphid. *Proc R Soc B* 270: 2543–2550.

38. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. *Annu Rev Entomol* 55: 247–266.

39. Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M (2002) Two novel strains of *Wolbachia* coexisting in both species of mulberry leafhoppers. *Insect Mol Biol* 11: 577–584.

40. Sintupachee S, Milne J, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related *Wolbachia* strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. *Microb Ecol* 51: 294–301.

41. Werren JH (1997) Biology of *Wolbachia*. *Annu Rev Entomol* 42: 387–609.