Modeling and Analysis of Delta Kinematics FDM Printer

O V Zakharov 1,6, K G Pugin 2,3, T N Ivanova 4,5
1 Yuri Gagarin State Technical University of Saratov, Saratov, Russia
2 Perm National Research Polytechnic University, Perm, Russia
3 Perm State Agro-Technological University named after Academician D.N. Pryanishnikov, Perm, Russia
4 Institute of Mechanics, Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
5 Tchaikovsky branch Perm National Research Polytechnic University, Chaykovsky, Russia
6 Corresponding author zov20@mail.ru

Abstract. Additive manufacturing makes it possible to speed up the process of manufacturing a product using a CAD model many times over. This advantage is effectively used in the manufacture of small batches of products with complex surfaces in the automotive and aviation industries. Improvements in printers are needed to improve accuracy and productivity. Traditionally, delta kinematics are considered to have advantages over sequential linear kinematics due to their high travel speed and relatively low cost. However, delta kinematics has received limited application, mainly for personal FDM printers. The article attempts to understand the advantages and disadvantages of delta kinematics for use in 3D printers. For this, the displacements and velocities were simulated for four examples of motion trajectories. The analysis showed that the average speed of movement of the extruder is approximately equal to, and in some cases less than the linear speeds of movements along the rods. At the same time, to ensure a uniform speed of the extruder, significant accelerations are required along the individual rods. This leads to vibrations and ultimately limits the maximum speeds.

1. Introduction
In recent years, there has been a significant demand for additive technologies in industry, in particular in mechanical engineering. A key advantage of additive technologies is the ability to increase design complexity without proportionally increasing the cost of manufacturing a part, which is impossible in traditional manufacturing. Much research has been devoted to the development of additive manufacturing methods [1-5]. For example, in article [6], the features of multi-axis deposition technology are considered and studies are performed to improve the generation of the deposition trajectory. There are a number of studies devoted to the development of techniques and instruments for measuring the geometric specifications and roughness of additive manufacturing products [7-11]. For mechanical engineering products, as a rule, an additional technological operation is required to reduce the roughness. For this, abrasive processing is traditionally used [12-16].

Currently used 3D printers can be divided into three groups according to their kinematic structure. The article [19] provides a review of publications on additive manufacturing and 3D printer designs depending on the number of degrees of freedom. The first group has traditional kinematics with successive linear displacements along the axes of the Cartesian coordinate system [17, 18]. The second group uses a kinematic diagram of robots with successive rotary links. The third group of printers is...
2. Mathematical Model of Inverse Kinematics

In the general case, two problems of kinematics are solved: forward and inverse. These tasks were first solved for the delta robot. The delta kinematics of the robot was originally described in [27]. Another more modern study of kinematics is the work [28]. Then similar mathematical models were obtained for the delta 3D printer.

The mechanism (robot or 3D printer) consists of fixed and small moving platforms, connected by three pairs of passive arms (Fig. 1). Each pair of levers forms a parallelogram, the tops of which are connected by spherical joints. One of the arms of each lever moves along the rods from a separate engine. The other arm of the lever is pivotally connected to the movable platform. Structurally, the parallelogram moves in such a way that one side is always parallel to the plane of the base. Therefore, the movable platform will also always be parallel to the base. In a delta robot, three motors are located at the top and each of them rotates one of three levers. In a delta 3D printer, the motors are located at the bottom and linearly move the arms along the rods through the belt drives.

In the direct problem, the coordinates of the position of the three rods determine the Cartesian coordinates of the extruder in the fixed platform system. This task is more difficult, than inverse kinematics. The solution to this problem is necessary for modeling trajectories and calculating the working area of a 3D printer. We described such a problem in [29]. Inverse kinematics consists in determining
the z coordinate of the three rods at a known position of the extruder. This article uses inverse kinematics for modeling.

Consider the solution to the inverse kinematics problem. It is required to find the distances \(h_1, h_2, h_3 \) of points \(A_1, A_2, A_3 \) of the attachment of the levers on the rods. Cartesian coordinates \(X_c, Y_c, Z_c \) of the center of the circle \(C \) of the movable platform are given. The geometrical dimensions of the platforms (radii \(r, R \)) and the length of the rods \(l \) are known.

The distances of the attachment points of the levers on the rods are determined by the dependencies:

\[
\begin{align*}
 h_1 &= \sqrt{l^2 - (X_{A1} - X_{B1})^2 + (Y_{A1} - Y_{B1})^2 + Z_c}; \\
 h_2 &= \sqrt{l^2 - (X_{A2} - X_{B2})^2 + (Y_{A2} - Y_{B2})^2 + Z_c}; \\
 h_3 &= \sqrt{l^2 - (X_{A3} - X_{B3})^2 + (Y_{A3} - Y_{B3})^2 + Z_c},
\end{align*}
\]

where \(l \) is the length of the rods; \(X_{A1}, X_{A2}, X_{A3}, Y_{A1}, Y_{A2}, Y_{A3} \) are Cartesian coordinates of the attachment points of the levers on the rods at points \(A_1, A_2, A_3 \); \(X_{B1}, X_{B2}, X_{B3}, Y_{B1}, Y_{B2}, Y_{B3} \) are Cartesian coordinates of the levers attachment points at points \(B_1, B_2, B_3 \) on the movable platform.

It is possible to determine the Cartesian coordinates of points \(A_1, A_2, A_3, B_1, B_2, B_3 \), based on the assumption that the movable platform does not have the ability to rotate. Then the Cartesian coordinates of points \(A_1, A_2, A_3 \) of the attachment of the levers on the rods are found from the following geometric relations:

\[
\begin{align*}
 X_{A1} &= 0; & Y_{A1} &= R; \\
 X_{A2} &= R\cos(\pi/6); & Y_{A2} &= -R\sin(\pi/6); \\
 X_{A3} &= -R\cos(\pi/6); & Y_{A3} &= -R\sin(\pi/6);
\end{align*}
\]

where \(r \) is the radius of the moving platform; \(R \) is the radius of the fixed platform.

The Cartesian coordinates of the points \(B_1, B_2, B_3 \) of the attachment of the levers on the movable platform are found from the following geometric relationships:

\[
\begin{align*}
 X_{B1} &= X_c; & Y_{B1} &= Y_c + r; \\
 X_{B2} &= X_c + r\cos(\pi/6); & Y_{B2} &= Y_c - r\sin(\pi/6); \\
 X_{B3} &= X_c - r\cos(\pi/6); & Y_{B3} &= Y_c - r\sin(\pi/6).
\end{align*}
\]

Substituting the obtained expressions for \(X_{A1}, X_{A2}, X_{A3}, Y_{A1}, Y_{A2}, Y_{A3}, X_{B1}, X_{B2}, X_{B3}, Y_{B1}, Y_{B2}, Y_{B3} \) into the equations for \(h \), you can simply calculate inverse kinematics.

The considered mathematical model is implemented in the MATLAB (Fig. 2).

Figure 1. Mathematical model of 3D printer.
Figure 2. Simulation model of 3D printer.
3. Kinematics simulation

The basis for modeling the linear velocities of the levers and the extruder is the considered mathematical model of inverse kinematics. The movements and speeds of the extruder, fixed on the movable platform of the printer, and the arms along the three rods are investigated. Of all the variety of possible extruder trajectories, four are singled out the most characteristic. Modeling was performed for four examples (Fig. 3): a – straight line on the horizontal plane XOY, b – vertical straight line parallel to Z, c – circular arc on the XOY plane, d – an arbitrary straight line in the printer’s working area. Black represents the extruder path, and red, green, and blue represent the paths of the individual arms. Most often, when printing, the trajectories of Fig. 3 a and b, which ensure the formation of one layer over the entire area. Trajectories in Fig. 3 c and d are usually used to move the extruder to the next position to form a new layer in height.

![Extruder trajectories: a – straight line on the XOY plane, b – straight line parallel to Z, c – circular arc on the XOY plane, d – an arbitrary straight line in space.](image)

The calculated displacements of the three levers are given in Fig. 4 depending on the time t. It was set, that displacements along the trajectories in Fig. 3 are performed in 10 s. Used the same colors for the three levers. As can be seen from Fig. 4, the displacements have a non-linear form. In addition to nonlinearity, the movements are characterized by a sign reversal, that is, in one cycle, movements are carried out both up and down the rods. For the given examples, one of the three levers has alternating signs. An exception is option b (vertical movement of the extruder). In this case, the movements of all levers are linear.

The design speeds of the extruder and three arms are shown in Fig. 5 depending on the time t. The velocities are obtained by numerical differentiation of displacements in time. Same color coding used for extruder and arms. In Fig. 5 b all speeds are straight lines and are superimposed on each other.

Analysis of Fig. 5 and other simulation results showed the following. Lever speeds vary significantly over time up to 30 times. The average speed of movement of the extruder is commensurate, and in some cases less than the linear speed of movement along the arms. For only one variant (Fig. 5 b), the speeds are equal. Significant acceleration of the individual arms is required to maintain a uniform extruder speed. This leads to uneven friction conditions on the individual rods and ultimately to vibrations. It is not possible to provide uniformity of speeds and accelerations for arbitrary trajectories with delta kinematics only at the design level. Structural solutions of a 3D printer are required that provide vibration resistance at significant accelerations on one or two supports.
Figure 4. Extruder trajectories: a – straight line on the X0Y plane, b – straight line parallel to Z, c – circular arc on the X0Y plane, d – an arbitrary straight line in space.

Figure 5. Speeds of the extruder and arms for options a, b, c, d.
4. Summary
The article presents the results of modeling a delta 3D printer based on the developed mathematical model of inverse kinematics. The calculation was performed for four examples of trajectories in the form of a straight line and an arc of a circle within the working area of the printer. The movements and speeds of the extruder and the rods were calculated. The analysis showed that the average speed of movement of the extruder is comparable, and in some cases less than the linear speed of movement along the rods. Significant accelerations on individual rods are required to ensure uniform extruder speed. Given the low rigidity of the delta printer, this leads to vibrations. Therefore, despite the small masses of the moving parts of the printer, it is not possible to use the maximum speeds of the motors. Thus, in terms of performance, no advantages of delta kinematics over sequential kinematics have been identified. To realize high speeds of the extruder, constructive solutions of a 3D printer are required to increase rigidity or vibration resistance.

References
[1] Rojek I, Mikołajewski D, Macko M, Szczechpański Z and E. Dostatni 2021 Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development Materials vol 14 pp 2737
[2] Gusev V, Grigoriev S N, Volosova M A, Melnik Y A, Laskin A, Kotoban D V and Okunkova A A 2018 On productivity of laser additive manufacturing Journal of Materials Processing Technology vol 261 pp 213–232
[3] Walker J, Harris E, Lynagh C, Beck A, Lonardo R, Vukansovich B, Thiel J, Rogers K, Conner B and MacDonald E 2018 3D Printed Smart Molds for Sand Casting International Journal of Metalcasting vol 12 pp 785–796
[4] Saprykin A A, Saprykina N A and Saprykin A A 2018 Analysis and prediction of copper surface roughness obtained by selective laser melting IOP Conf. Ser.: Mater. Sci. Eng. vol 441 pp 012044
[5] Kaščak J, Gašpár Š, Paško J, Knapčíková L, Husár J, Baron P and Török J 2021 Design of an Atypical Construction of Equipment for Additive Manufacturing with a Conceptual Solution of a Printhead Intended for the Use of Recycled Plastic Materials Applied Sciences vol 11 pp 2928
[6] Chalvin M, Reichler A-K, Gerbers R, Dröder K, Hugel V and Dietrich F 2018 A framework for future CAM software dedicated to additive manufacturing by multi-axis deposition Procedia CIRP vol 78 pp 79–84
[7] Zakharov O V, Balaev A F and Kochetkov A V 2017 Modeling Optimal Path of Touch Sensor of Coordinate Measuring Machine Based on Traveling Salesman Problem Solution Procedia Engineering vol 206 pp 1458–1463
[8] Bolotov M A, Pechenin V A and Ruzanov N V 2014 Modeling of coordinate measuring geometrical parameters form and location complexity profile of compressor blade GTE Research Journal of Applied Sciences vol 9 pp 1143–1148
[9] Grechnikov F V, Rezchikov A F and Zakharov O V 2018 Iterative Method of Adjusting the Radius of the Spherical Probe of Mobile Coordinate-Measuring Machines When Monitoring a Rotation Surface Measurement Techniques vol 61 pp 347–352
[10] Pechenin V A, Rusanov N V and Bolotov M A 2018 Model and software module for predicting uncertainties of coordinate measurements using the NX OPEN API Journal of Physics: Conference Series vol 1096 pp 012162
[11] Zakharov O V, Kochetkov A V, Bobrovskij N M, Bobrovskij I N and Melnikov P A 2016 Analysis of Stationary Means of Measurement Filters with Optimum Sensitivity International Conference on Actual Problems of Electronic Instrument Engineering vol 1 p 241–244
[12] Koshuro V, Fomina M, Voyko A, Rodionov I, Zakharevich A, Skaptsov A and Fomin A 2018 Surface morphology of zirconium after treatment with high-frequency currents Composite Structures vol 202 pp 210–215
[13] Gusev V G and Fomin A A 2017 Multidimensional Model of Surface Waviness Treated by
Shaping Cutter Procedia Engineering vol 206 pp 286–292
[14] Salova D P, Nosov N V and Salov P M 2020 Modeling of an equal-wear shape of grinding wheel when working with longitudinal feed IOP Conf. Ser.: Mater. Sci. Eng. vol 971 pp 022012
[15] D’Emilia G, Di Ilio A, Gaspari A, Natale E and Stamopoulos A G 2020 Uncertainty assessment for measurement and simulation in selective laser melting: a case study of an aerospace part ACTA IMEKO vol 9 pp 96–105
[16] Fomin A A, Gusev V G and Sadrtdinov A R 2019 Assurance of Accuracy of Longitudinal Section of Profile Surfaces Milled at High Feeds Proceedings of the 4th International Conference on Industrial Engineering. Lecture Notes in Mechanical Engineering p 527–536
[17] Keaveney S, Connolly P and O’Cearbhaill E D 2018 Kinematic error modeling and error compensation of desktop 3D printer Nanotechnology and Precision Engineering vol 1 pp 180–186
[18] Jinhua X, Xueqing F, Jun C and Shuyou Z 2020 Precision forward design for 3D printing using kinematic sensitivity via Jacobian matrix considering uncertainty Int. J. Adv. Manuf. Technol. vol 110 pp 3257–3271
[19] Jiang J, Zhong R and Newman S T 2021 A Review of Multiple Degrees of Freedom for Additive Manufacturing Machines Int. J. Comput. Integr. Manuf. vol 34 pp 195–211
[20] Bolotov M A, Pechenin V A, Ruzanov N V and Grachev I A 2018 Predicting geometric parameters of assemblies with neural network models Journal of Physics: Conference Series vol 1096 pp 012198
[21] Li Y, Shang D and Liu Y 2019 Kinematic modeling and error analysis of Delta robot considering parallelism error International Journal of Advanced Robotic Systems vol 16 pp 172988141987892
[22] Zhao R, Wu L and Chen Y-H 2016 Robust Control for Nonlinear Delta Parallel Robot with Uncertainty: An Online Estimation Approach IEEE Access vol 8 pp 97604–97617
[23] Liu X-J, Wang J, Oh K-K and Kim J 2004 A New Approach to the Design of a DELTA Robot with a Desired Workspace Journal of Intelligent and Robotic Systems vol 39 pp 209–225
[24] Rodriguez E, Riaco C, Alvaeres A and Bonnard R 2019 Design and dimensional synthesis of a Linear Delta robot with single legs for additive manufacturing Journal of the Brazilian Society of Mechanical Sciences and Engineering vol 41 pp 536
[25] Song X, Pan Y and Chen Y 2015 Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing J. Manuf. Sci. Eng. vol 137 pp 021005
[26] Schmitt B M, Zirbes C F, Bonin C, Lohmann D, Lencina D C and da Costa Sabino Netto A 2018 A Comparative Study of Cartesian and Delta 3D Printers on Producing PLA Parts Mat. Res. vol 20
[27] Vischer P and Clavel R 1998 Kinematic calibration of the parallel Delta robot Robotica vol 16 pp 207–218
[28] Hadfield H, Wei L and Lasenby J 2020 The Forward and Inverse Kinematics of a Delta Robot In: Advances in Computer Graphics. Lecture Notes in Computer Science pp 12221
[29] Kochetkov A V, Ivanova T N, Seliverstova L V and Zakharov O V 2021 Kinematic Error Modeling of Delta 3D Printer Materials Science Forum vol 1037 pp 77–83