Characterization of a New Transposon, Tn6696, on a bla_{NDM−1}-Carrying Plasmid From Multidrug-Resistant Enterobacter cloacae ssp. dissolvens in China

(Qichao Chen1†, Yanfeng Lin1,2†, Zhonghong Li1,3†, Lanfen Lu4†, Peihan Li1,2†, Kaiying Wang1,2, Lang Yang1,2, Hui Ma5*, Peng Li1* and Hongbin Song1*)

1 Center for Disease Control and Prevention of People’s Liberation Army, Beijing, China, 2 Academy of Military Medical Sciences, Beijing, China, 3 College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China, 4 Department of Laboratory Diagnosis, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, China, 5 The Sixth Medical Center of People’s Liberation Army General Hospital, Beijing, China

Background: Enterobacter cloacae is an opportunistic pathogen which is responsible for serious nosocomial infections. A gene which plays an important role in resistance to carbapenems is the New Delhi metallo-β-lactamase 1 (NDM-1). Currently, the spread of NDM-1-producing E. cloacae strains is a serious public threat.

Methods: A multidrug-resistant E. cloacae ssp. dissolvens strain CBG15936 was recovered in 2017 in Guangzhou, China. PCR, S1-pulsed-field gel electrophoresis, and Southern blotting were performed to locate the bla_{NDM−1} gene. Susceptibility testing and conjugation experiments were also performed. Illumina HiSeq and Nanopore sequencers were used to perform whole-genome sequencing.

Results: Strain CBG15936 belongs to ST932 and is resistant to carbapenems. The bla_{NDM−1} gene was found on a ∼62-kb plasmid, which has a conjugation frequency of 1.68 × 10−3 events per donor cell. Genome sequencing and analysis revealed that the NDM-1-carrying IncN1 plasmid contained a new transposon Tn6696, which consists of an intact qnrS1-carrying Tn6292 element, an inverted 8.3-kb Tn3000 remnant, IS kp19, tnpA, and IS26.

Conclusion: A new transposon, Tn6696, has been detected on a bla_{NDM−1}-carrying plasmid recovered from multidrug-resistant E. cloacae ssp. dissolvens CBG15936 from China. This finding provides a new perspective regarding the potential for bla_{NDM−1} to undergo horizontal transfer among drug-resistant bacteria.

Keywords: Enterobacter cloacae, carbapenem resistance, bla_{NDM1}, Tn6696, whole genome sequencing

INTRODUCTION

Enterobacter cloacae is a gram-negative opportunistic pathogen which belongs to Enterobacteriaceae. Previous studies have reported that E. cloacae are ubiquitous in nature and can be isolated from clinical samples (Davin-Regli et al., 2019). With the extensive use of antibiotics, carbapenem-resistant E. cloacae have become an important nosocomial pathogen
which can cause septicemia and lower respiratory tract infections (Mayhall et al., 1979; Daw et al., 1989). In recent years, carbapenem-resistant *E. cloacae* isolates have been reported worldwide (Davin-Regli and Pagès, 2015). New Delhi metallo-β-lactamase 1 (NDM-1) was first detected in a Swedish patient transferred from India, and it plays a major role in the appearance and dissemination of carbapenem-resistant gram-negative bacteria (Yong et al., 2009; Jamal et al., 2013). NDM-1 has become a burden on the health care system especially in intensive care units (Ahmad et al., 2018; Khalid et al., 2019). The detection rate of NDM-1 in *E. cloacae* has been increasing globally (Karlowsky et al., 2017). Prevalence of NDM-1-carrying *E. cloacae* was observed in France (Perry et al., 2011) and Mexico (Torres-Gonzalez et al., 2015). Genome sequencing and analysis also revealed an NDM-1 *E. cloacae* outbreak in a hospital in the UK (Fairley et al., 2019). In the southwest region of China, 132 carbapenem-resistant *E. cloacae* isolates were obtained from patients between 2012 and 2016. Twenty (15.2%) of these strains were identified as NDM-1 positive (Jia et al., 2018). It is important to monitor the spread of blanNDM−1 among *E. cloacae* strains.

Transposons are mobile genetic elements which are able to translocate chromosome or plasmids. Transposons have been shown to carry drug resistance genes and provide antibiotic resistance in pathogenic bacteria (Whittle et al., 2002). Tn6292 is a Tn-family unit transposon which belongs to the Tn3-family and has an IS26 at the right end. In addition, Tn6292 contains a quinolone resistance region qnrS1 (Feng et al., 2016). Multidrug-resistant (MDR) *E. cloacae* bacteria containing Tn6292 have been reported many times in China (Li et al., 2018). Tn3000 is bracketed by IS3000 at both ends and contains the blanNDM−1 gene. Tn3000 has been shown to be responsible for transmission of the blanNDM−1 gene in various parts of the world (Campos et al., 2015). Thus, it is important to elucidate the genetic features of transposons in order to explore possible mechanisms of bacterial resistance.

Therefore, in this study, we report a carbapenem-resistant *E. cloacae* ssp. *dissolvens* strain and the genetic features of the blanNDM−1-harboring plasmid it carries. In addition, we identify a new transposon, Tn6696, present in this plasmid. These findings provide a new perspective regarding possible mechanisms of gene transmission to mediate drug resistance.

MATERIALS AND METHODS

Bacterial Identification

Strain CBG15936 was recovered from the sputum of a patient in Guangzhou, China, in 2017. The strain was identified by using the Vitek 2 Compact System (BioMérieux, France) and confirmed with 16S rRNA gene sequencing. The blanNDM−1 gene was detected by PCR amplification as previously described (Zhang et al., 2013). This isolate was collected through routine surveillance, and verbal consent was obtained as no personally identifiable data were included. The ethics of the study was reviewed and supervised by the Center for Disease Control and Prevention of PLA. All experiments were performed in the biosafety cabinet following the standard procedure.

S1-Pulsed-Field Gel Electrophoresis (PFGE) and Conjugation Experiments

Genomic DNA was prepared in agarose plugs and digested with the S1 endonuclease (Takara, Dalian, China). DNA fragments were electrophoresed on a CHEF-DR III system (Bio-Rad, Hercules, United States) for 15 h at 14°C with run conditions of 6 V/cm and pulse times from 0.22 to 26.29 s. The *Salmonella enterica* serotype Breamenderup H9812 was used as the size marker. To determine the location of the blanNDM−1 gene, DNA was transferred to a positively charged nylon membrane (Roche) and then hybridized with digoxigenin-labeled blanNDM−1. Conjugation experiments were carried out in LB broth cultures. Azide-resistant *Escherichia coli* strain J53 [F− met pro Azi(+)](recipient) and strain CBG15936 (donor) were mixed at a 1:3 ratio and then incubated at 37°C (Yi et al., 2012). After 18 h, transconjugants were selected for 12 h on MacConkey agar plates supplemented with meropenem (4 µg/ml) and sodium azide (150 µg/ml). Horizontal transferability of drug resistance was confirmed with antimicrobial susceptibility testing. Transconjugant-carrying plasmids were subsequently confirmed by PCR amplification and PFGE.

Susceptibility Testing

The minimum inhibitory concentrations (MICs) of amikacin, aztreonam, nitrofurantoin, ciprofloxacin, piperacillin, gentamicin, cefepime, ceftriaxone, ceftazidime, cefotetan, ceftazolin, tobramycin, imipenem, and levofloxacin were determined with the Vitek 2 Compact System (Bobenchik et al., 2015). *E. coli* reference strain ATCC25922 was used as quality control. The MIC value of meropenem was determined using an E-test. The results were interpreted according to Clinical and Laboratory Standards Institute [CLSI] (2018) guidelines.

Whole-Genome Sequencing and Comparative Genome Analysis

Genomic DNA was extracted by using the High Pure PCR Template Preparation Kit (Qiagen, Inc., Valencia, CA, United States). Whole-genome sequencing was subsequently performed by using Illumina HiSeq according to the 350-bp paired-end protocol available from Novogene Company (Beijing, China) and MinION in our lab. The genome was assembled de novo by using a Unicycler (Li et al., 2010). RAST 2.0 was used to annotate the genome sequences obtained (Aziz et al., 2008). ResFinder v3.2 was used to identify acquired antibiotic resistance genes (Jia et al., 2016). Plasmid replicon type was analyzed by using PlasmidFinder (Carattoli et al., 2014). IS sequences were analyzed by using ISFinder (Sigueri et al., 2006). Sequences of pNDM1-CBG and three similar plasmids were compared by using BLAST and Easyfig software (Sullivan et al., 2011). Whole-genome sequences of CBG15936 were used to determine multilocus sequence typing (MLST) based on detection of seven housekeeping genes (*arcA*, *aspC*, *clpX*, *dnaG*, *fadD*, *lysP*, and *mdh*) in pubMLST1 (Larsen et al., 2012). Twenty-nine sequences of the *hsp60* gene of eight *Enterobacter* clusters were retrieved

1https://pubmlst.org/mlst/
from NCBI and used for phylogenetic analysis to identify the species of the strain.

Nucleotide Sequence Accession Numbers
The entire sequence of strain, CBG15936, as well as plasmids, pTEM-CBG and pNDM1-CBG, have been deposited in GenBank under accession numbers CP046116, CP046117, and CP046118, respectively.

RESULTS

Microbiological and Genetic Features of *E. cloacae* ssp. *dissolvens* CBG15936
Strain CBG15936 was identified as *E. cloacae* using Vitek and 16S rRNA and further classified as *E. cloacae* ssp. *dissolvens* based on hsp60 genotyping (Figure 1). Susceptibility testing showed that *E. cloacae* ssp. *dissolvens* strain CBG15936 exhibits resistance to amikacin, aztreonam, piperacillin, cefepime, ceftiaxone, ceftazidime, cefotetan, cefazolin, and imipenem (Table 1). The E-test showed that strain CBG15936 (MIC ≥ 16) and transconjugants (MIC > 32) both exhibit resistance to meropenem. The strain was found positive for the bla_{NDM}-1 gene by PCR. S1-PFGE showed that this strain contains two different plasmids ~60 and 75 kb in length (Figure 2). Southern blotting indicated that the bla_{NDM}-1 gene is present in the ~60-kb plasmid. S1-PFGE and conjugation assays revealed that transfer of the plasmid carrying the bla_{NDM}-1, qnrS1, and dfrA14 genes from strain CBG15936 to *E. coli* J53 occurs at a frequency of 1.68 × 10⁻³ events per donor cell (Figure 2). And the transconjugants were observed to acquire resistance to piperacillin, cefepime, ceftiaxone, ceftazidime, cefotetan, cefazolin, and imipenem (Table 1).

According to MLST, strain CBG15936 is Sequence Type 932. Unicycler assembly results showed that this strain contains two plasmids with lengths of 75,044 and 62,663 bp. The ~75-kb plasmid was designated pTEM-CBG, and it contains four drug resistance genes: pTEM-CBG, and it contains four drug resistance genes: fosA3 (confering fosfomycin resistance), rmtB (confering aminoglycosides resistance),
Tn
6696
transposon designated Tn
CBG
(which contains
\textit{dfrA14}
191
downstream of the type IV secretion region) with In
stability region. Replacement of In
of the antirestriction region, yet it is present before the
ardA
with p378-IMP, pNDM1-CBG is missing
deletion of IS
26
virB
system
(\textit{klcA}
is composed of replication (\textit{repA}) and a variable multidrug resistance region. The backbone
∼
Both plasmids are composed of a similar
Chongqing, which was identified in 2013 (Feng et al., 2016).
Pseudomonas aeruginosa
\textit{pNDM1-CBG} shares 100% identity and 83% coverage with
\textit{E. coli}
with plasmid pNDM-BTR, carried by
\textit{E. coli}
J53
is located in \textDelta
Tn3000 between a truncated IS\textit{Aba125} and the \textit{ble} gene. Compared with Tn3000, IS3000 is deleted in
\textDelta
Tn3000, which is organized as IS3000–\textDelta\textit{ISAb125-blaNDM–1}–\textit{ble-trpF-tat-\textDelta\textit{cutA1-groES-groEL}}. Tn6292 was first identified in p378-IMP and organized as \textit{orf1393-trpR-orf591-\textDelta\textit{trpA-trpR-\textit{qnrS1-insA-\textDelta\textit{insA-\textDelta\textit{insB-IS26}}}.
Tn6696 is a combination of Tn6292 and a truncated Tn3000 and is similar to Tn6360, which was first identified in pNDM-BTR. Meanwhile, an
\textDelta
Tn3000 and deletion of IS\textit{kp19} characterize Tn6360 (Figure 3B).

\section*{DISCUSSION}

\textit{E. cloacae} have a broad range of hosts and have been isolated from wastewater, patients, and soil microcosms (Osborn et al., 2000; Chen et al., 2014; Zhang et al., 2014). Here, we report an NDM-1-producing MDR \textit{E. cloacae} ssp. \textit{dissolvens} strain, CBG15936, recovered from China. Our previous study showed that the expression of \textit{blaNDM–5} differed in plasmids and that the transconjugants with one plasmid exhibited higher-level carbapenem resistance than those with two plasmids or

\begin{table}[h]
\centering
\caption{Antibiotic susceptibilities of CBG15936, transconjugants, and recipients.}
\begin{tabular}{llll}
\hline
Antibiotic & CBG15936 & Transconjugants & Recipients (\textit{E. coli} J53) \\
\hline
\textit{Amikacin} & \geq 64 & \leq 2 & \leq 2 \\
\textit{Aztreonam} & 32 & \leq 1 & \leq 1 \\
\textit{Nitrofurantoin} & 32 & \leq 16 & \leq 16 \\
\textit{Ciprofloxacin} & \leq 4 & \leq 1 & \leq 0.25 \\
\textit{Piperacillin} & \geq 128 & \geq 128 & \geq 4 \\
\textit{Gentamicin} & 16 & \leq 1 & \leq 1 \\
\textit{Cefepime} & \geq 64 & \geq 64 & \geq 4 \\
\textit{Carbapenems} & \geq 64 & \geq 64 & \geq 4 \\
\textit{Ceftazidime} & \geq 64 & \geq 64 & \geq 1 \\
\textit{Cefotetan} & \geq 64 & \geq 64 & \leq 1 \\
\textit{Cefazolin} & \leq 64 & \leq 64 & \leq 1 \\
\textit{Tobramycin} & 16 & \leq 1 & \leq 1 \\
\textit{Piperacillin} & \leq 8 & \leq 1 & \leq 0.25 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{S1-PFGE pattern and Southern blotting for strain CBG15936 and \textit{E. coli} J53 transconjugants. Lanes: Marker, \textit{Salmonella} serotype Braenderup strain H9812 as a reference size standard. (A) PFGE result for S1-digested plasmid DNA of strain CBG15936. (B) Southern blot hybridization with probes specific to \textit{blaNDM–1}. (C) PFGE result for S1-digested plasmid DNA of strain \textit{E. coli} J53 transconjugants.}
\end{figure}
larger plasmids (Yang et al., 2020). Resistance to meropenem of transconjugants and strain CBG15936 may be affected by different NDM expressions and numbers of plasmids. This strain contains a novel transposon, Tn6696, carrying blaNDM−1 and located on the IncN1 plasmid pNDM1-CBG. Considering broad-host-range plasmids generally occurs at a variable frequency from 10^{-3} to 10^{-6} (Grohmann et al., 2003), pNDM1-CBG exhibited a relatively high transfer frequency. Our results support the potential for cross-species transmission to occur.

The novel transposon, Tn6696, identified in pNDM1-CBG contains an inverted Tn3000 remnant and an intact Tn6292. The latter is a Tn3-family transposon with an IS26 at the right end and has previously been found in a pP378-IMP plasmid obtained from *P. aeruginosa* recovered in China (Feng et al., 2016). Tn3000 was first located in a pEh1A plasmid from *Enterobacter hormaechei* E0083033-1 and in pEc2A from *E. coli* E0083033-2 recovered from Brazil (Campos et al., 2015). Therefore, a reorganization event involving fusion of Tn3000 and Tn6292 may have created Tn6696. The NDM-1 gene in Tn6696 is bracketed by two copies of the insertion sequence, ISkpn19. It is hypothesized that the resulting special structure has the potential to mobilize a drug resistance gene (Wu et al., 2016). However, Tn6696 had an additional copy of ISkpn19 and an inverted ΔTn3000 compared with Tn6360, suggesting that the former may originate from the latter through transposition and inversion of the ISkpn19-ΔTn3000 structure.
Plasmid pNDM1-CBG also shares high similarity, yet lower coverage, with plasmid V1 from *E. coli*. The main difference between these plasmids is the quite variable MDR regions, which are all inserted in the *fipA* gene at the same position. In a previous study, *fipA* was shown to be interrupted into two fragments by MDRs in many different plasmids (Zhao et al., 2017; Yang et al., 2018). Thus, *fipA* may serve as a “hot spot” for integration of mobile genetic elements.

CONCLUSION

Here, we report a new transposon, Tn6696, in the IncN1 plasmid, pNDM1-CBG, from a ST932 MDR *E. cloacae* ssp. *dissolvens* strain recovered in China. We describe the structures of both pNDM1-CBG and Tn6696 in detail. Our work provides a new perspective regarding the potential for a novel horizontal transfer of NDM-1 via Tn6696 to occur among IncN1 plasmids. The latter finding is of great significance for future studies of the dissemination of bla_{NDM}-1 in different species and its monitoring.

REFERENCES

Ahmad, N., Khalid, S., Ali, S. M., and Khan, A. U. (2018). Occurrence of blaNDM variants among *Enterobacteriaceae* from a neonatal intensive care unit in a northern india hospital. *Front. Microbiol.* 26:92.

Aziz, R. K., Bartels, D., Best, A. A., DeLongh, M., Disz, T., and Edwards, R. A. (2008). The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 9:75. doi: 10.1186/1471-2164-9-75

Bobenchik, A. M., Deak, E., Hindler, J. A., Charlton, C. L., and Humphries, R. M. (2015). Performance of vitek 2 for antimicrobial susceptibility testing of *Enterobacteriaceae* with vitek 2 (2009 FDA) and 2014 CLSI breakpoints. *J. Clin. Microbiol.* 53, 816–823. doi: 10.1128/JCM.02697-14

Campos, J. C., da Silva, M. I., dos Santos, P. R., Barros, E. M., and Pereira, M. D. O. (2015). Characterization of Tn3000, a transposon responsible for blaNDM-1 dissemination among *Enterobacteriaceae* in Brazil, Nepal, Morocco and India. *Antimicrob. Agents Chemother.* 59, 7387–7395. doi: 10.1128/AAC.01458-15

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen, M., Lund, O., Villa, L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob. Agents Chemother.* 58, 3895–3903. doi: 10.1128/AAC.02412-14

Chen, L., Hu, H., Chavda, K. D., Zhao, S., Liu, R., Liang, H., et al. (2014). Complete sequence of a KPC-Producing IncN1 multidrug-resistant plasmid from an epidemic *Escherichia coli* sequence type 131 strain in China. *Antimicrob. Agents Chemother.* 58, 2422–2425. doi: 10.1128/AAC.02587-13

Clinical and Laboratory Standards Institute [CLSI] (2018). *M100 S28 Performance Standards for Antimicrobial Susceptibility Testing*. Wayne, PA: Clinical Laboratory Standards Institute.

Davin-Regli, A., Lavigne, J. P., and Pagès, J. M. (2019). *Enterobacter* spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. *Clin. Microbiol. Rev.* 32:e00002-19. doi: 10.1128/CMR.00002-19

Davin-Regli, A., and Pagès, J. M. (2015). *Enterobacter* aerogenes and *Enterobacter cloacae*; versatile bacterial pathogens confronting antibiotic treatment. *Front. Microbiol.* 6:392. doi: 10.3389/fmicb.2015.00392

Daw, M. A., Munnelly, P., McCann, S. R., Daly, P. A., and Keane, C. T. (1989). Value of surveillance cultures in the management of neutropenic patients. *Eur. J. Clin. Microbiol.* 7, 742–747. doi: 10.1007/BF01975040

Fairley, D., Protaschik, Y., Finn, R., Turton, J., and Doumith, M. (2019). Investigation of a hospital *Enterobacter cloacae* NDM-1 outbreak using whole genome sequencing. *Microbiol. Soc.* 1:1. doi: 10.1099/acm.2019.pe0391

Feng, W., Zhou, D., Wang, Q., Luo, W., Zhang, D., and Sun, Q. (2016). Dissemination of IMP-4-encoding plMP-ZH1-related plasmids among *Klebsiella pneumoniae* and *Pseudomonas aeruginosa* in a Chinese teaching hospital. *Sci. Rep.* 6:33419. doi: 10.1038/srep33419

Großmann, E., Muth, G., and Espinosa, M. (2003). Conjugal plasmid transfer in gram-positive bacteria. *Microbiol. Mol. Biol. Rev.* 67, 277–301. doi: 10.1128/ mbr.72.2.277-301.2003

Jamal, W., Rotimi, V. O., Albert, M. J., Khodakhast, F., Nordmann, P., and Poirel, L. (2013). High prevalence of VIM-4 and NDM-1 metallo-β-lactamase among carbapenem-resistant *Enterobacteriaceae*. *J. Med. Microbiol.* 62, 1239–1244. doi: 10.1099/jmm.0.059915-0

Jia, B., Raphenya, A. R., Akcock, B., Waglechner, N., Guo, P., Tsang, K. K., et al. (2016). CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 45, D566–D573. doi: 10.1093/nar/gkw1004

Jia, X., Dai, W., Ma, W., Yan, J., He, J., Li, S., et al. (2018). Carbapenem-Resistant *E. cloacae* in Southwest China: molecular analysis of resistance and risk factors for infections caused by NDM-1-producers. *Front. Microbiol.* 9:658. doi: 10.3389/fmicb.2018.00658

Kar lowskey, J. A., Lob, S. H., Kazmierzak, K. M., Badal, R. E., Young, K., and Motyl, K. R. (2017). In vitro activity of imipenem against carbapenemase-positive *Enterobacteriaceae* isolates collected by the SMART global surveillance program from 2008 to 2014. *J. Clin. Microbiol.* 55, 1638–1649. doi: 10.1128/JCM.02316-16

Khalid, S., Ahmad, N., Ali, S. M., and Khan, A. U. (2019). Outbreak of efficiently transferred carbapenem-resistant blaNDM-producing gram-negative *Bacilli* isolated from neonatal intensive care unit of an indian hospital. *Microb. Drug Resist.* 26, 284–289. doi: 10.1089/mdr.2019.0092

Larsen, M. V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R. L., et al. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. *J. Clin. Microbiol.* 50, 1355–1361. doi: 10.1128/JCM.06094-11

Li, B., Feng, J., Zhan, Z., Yin, Z., Jiang, Q., and Wei, P. (2018). Dissemination of KPC-2-encoding IncX6 plasmids among multiple *Enterobacteriaceae* species in a single chinese hospital. *Front. Microbiol.* 9:478. doi: 10.3389/fmicb.2018.00478

Li, R., Zhu, H., Ruan Qian, W., Fang, X., Shi, Z., Li, Y., et al. (2010). De novo assembly of human genomes with massively parallel short read sequencing. *Genome Res.* 20, 265–272. doi: 10.1101/gr.097261.109

Mayhall, C. G., Lamb, V. A., Gayle, W. E., and Haynes, B. W. (1979). *Enterobacter cloacae* septicemia in a bum center: epidemiology and control of an outbreak. *J. Infect. Dis.* 139, 166–171. doi: 10.1093/infectdis/139.2.166

Osborn, A. M., Pickup, R. W., and Saunders, J. R. (2000). Development and application of molecular tools in the study of IncN-related plasmids from lakewater sediments. *FEMS Microbiol. Lett.* 186, 203–208. doi: 10.1111/j.1574-6968.2000.tb09105.x

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the CP046116, CP046117, and CP046118.

AUTHOR CONTRIBUTIONS

PL, HM, and HS conceived and designed the experiments. QC, LL, YL, and KW performed the experiments. ZL, PHL, and LY analyzed the data. QC and PL wrote the manuscript. All authors read and approved the final manuscript.

FUNDING

The study was supported by the grants from the National Science and Technology Major Project (Grant No. 2018ZX10712001-002-002) and the Beijing Nova Program (Grant No. Z181100006218110).
Chen et al. Characterization of New Transposon Tn6696

Perry, J. D., Naqvi, S. H., Mirza, I. A., Alizai, S. A., Hussain, A., Ghirardi, S., et al. (2011). Prevalence of faecal carriage of *Enterobacteriaceae* with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. *J. Antimicrob. Chemother.* 66, 2288–2294. doi: 10.1093/jac/dkr299

Siguer, P., Perochon, J., Lestrade, L., Mahillon, J., and Chandler, M. (2006). ISfinder: the reference centre for bacterial insertion sequences. *Nucleic Acids Res.* 34(Suppl. 1), 32–36. doi: 10.1093/nar/gkj014

Sullivan, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: a genome comparison visualizer. *Bioinformatics* 27, 1009–1010. doi: 10.1093/bioinformatics/btr039

Torres-Gonzalez, P., Bobadilla-Del Valle, M., Tovar-Calderon, E., Leal-Vega, F., Hernandez-Cruz, A., Martinez-Gamboa, A., et al. (2015). Outbreak caused by *Enterobacteriaceae* harboring NDM-1 metallo-β-lactamase carried in an IncFII plasmid in a tertiary care hospital in Mexico City. *Antimicrob. Agents Chemother.* 59, 7080–7083. doi: 10.1128/AAC.00555-15

Whittle, G., Shoemaker, N. B., and Salyers, A. A. (2002). The role of *Bacteroides* conjugative transposons in the dissemination of antibiotic resistance genes. *Cell. Mol. Life Sci.* 59, 2044–2054. doi: 10.1007/s00018-002-0004

Wu, W., Espedido, B., Feng, Y., and Zong, Z. (2016). Citrobacter freundii carrying blαKPC-2 and blαNDM-1: characterization by whole genome sequencing. *Sci. Rep.* 6:30670. doi: 10.1038/srep30670

Yang, L., Li, P., Liang, B., Hu, X., Li, J., and Xie, J. (2018). Multidrug-resistant *Citrobacter freundii* ST1 carrying blαKPC-2 and blαCMY-42 among Escherichia coli strains in China. *Antimicrob. Agents Chemother.* 62. doi: 10.1128/AAC.00984-17

Yang, L., Lin, J., Li, L., Xue, M., Ma, H., and Guo, H. (2020). Coexistence of two blαNDM-1 genes carried on IncN1 and IncFII plasmids in an *Escherichia coli* isolate revealed by illumina and nanopore sequencing. *Front Microbiol.* 11:195. doi: 10.3389/fmicb.2020.00195

Yi, H., Cho, Y.-J., Yong, D., and Chun, J. (2012). Genome sequence of *Escherichia coli* J53, a reference strain for genetic studies. *J. Bacteriol.* 194, 3742–3743. doi: 10.1128/JB.00641-12

Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., et al. (2009). Characterization of a New Metallo-β-lactamase gene, blαNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. *Antimicrob. Agents Chemother.* 53, 5046–5054. doi: 10.1128/AAC.00774-09

Zhang, G. Q., Yao, Y. H., Yu, X. L., and Niu, J. J. (2014). A survey of five broad-host-range plasmids in gram-negative bacilli isolated from patients. *Plasmid* 74, 9–14. doi: 10.1016/j.plasmid.2014.05.002

Zhang, X., Lou, D., Xu, Y., Shang, Y., Li, D., Huang, X., et al. (2013). First identification of coexistence of blαNDM-1 and blαCMY-42 among *Escherichia coli* ST167 clinical isolates. *BMC Microbiol.* 13:282. doi: 10.1186/1471-2180-13-282

Zhao, Y., Wang, L., Zhang, Z., Feng, J., Kang, H., Fang, L., et al. (2017). Structural genomics of pNDM-BTR harboring Inc191 and Tn6360, and other bla NDM - carrying IncN1 plasmids. *Future Microbiol.* 12, 1271–1281. doi: 10.2217/fmb-2017-0067

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Chen, Lin, Li, Lu, Li Wang, Yang, Ma, Li and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.