Fast Track Communication

Mott insulator-to-metal transition in yttrium-doped CaIrO$_3$

J Gunasekera, Y Chen, J W Kremenak, P F Miceli and D K Singh

Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
E-mail: singhdk@missouri.edu

Received 3 November 2014, revised 29 November 2014
Accepted for publication 9 December 2014
Published 21 January 2015

Abstract

We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO$_3$. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO$_3$, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO$_3$ does not necessarily possess $j = \frac{1}{2}$ ground state due to structural distortion. The insulator-to-metal transition in CaIrO$_3$ will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

Keywords: insulator-to-metal transition, iridates, spin-orbital coupling effect

Iridium oxide based compounds are generating strong research interest because of intriguing physical properties, arising due to the incorporation of the spin–orbit coupling to the Heisenberg Hamiltonian, that includes unusual Mott insulating state and (possible) Kitaev spin–liquid state [1–5]. One recent proposal has suggested the application of 5d iridium oxide compound in the spin-current detection [6]. The ground state in majority of these materials, A_2IrO$_3$ and BIrO$_3$ (where $A =$ alkali metals and $B =$ alkaline earth metals), is often described as a Mott insulating state, where the Ir$^{4+}$ ion with a $(t_{2g})^5$ electronic configuration splits into a fully occupied $j = \frac{3}{2}$ state and a half-filled $j = \frac{1}{2}$ states [7–11]. While the quantum-mechanical nature of the spin–orbit coupling is considered key to the quantum Hall effect in topological insulating materials [12], its interaction with cubic crystal field in Ir 5d transition element ensures a $j = \frac{1}{2}$ ground state in Mott insulator iridates [10, 13, 14]. The bandwidth of the $j = \frac{1}{2}$ state $w \approx N/t$, where N is the coordination number and t is the Ir–Ir hopping matrix, is found to be comparable to the Coulomb repulsion potential U in BIrO$_3$; thus on the verge of attaining the metallic character [15]. Therefore, a simple modification in the structural properties or, the change in the hopping integral achieved via higher carrier density can induce a highly desirable metallic behavior in iridium oxide compounds of 1-1-3 phase.

In this report, we present new results on the presence (absence) of insulator-to-metal transition in the hole-doped CaIrO$_3$ (BaIrO$_3$). In a novel observation, it is found that the yttrium substitution of calcium leads to an onset of metallic behavior at $x = 0.3$ in Y_xCa_{1-x}IrO$_3$, which is not the case in Y_xBa_{1-x}IrO$_3$. Both compounds, however, preserve magnetic characteristic irrespective of the chemical doping. In another notable observation, the dimensionality analysis of the electrical transport data below the magnetic transition demonstrates a quasi-2D electronic pattern ($d = 2.4$) in CaIrO$_3$, which is in stark contrast to 3D electronic transport in BaIrO$_3$. CaIrO$_3$ and BaIrO$_3$ manifest Mott insulating behavior with charge gap of $\approx 0.17\text{eV}$ and $\approx 50\text{meV}$, respectively [11, 16]. While CaIrO$_3$ crystallizes primarily in the orthorhombic phase of crystallographic group $Cmcm$.
Figure 1. Phase-diagram of insulator-to-metal transition in yttrium doped CaIrO$_3$ (a) Electrical resistivity as a function of temperature for various chemical doping percentage of Y$_x$Ca$_{1-x}$IrO$_3$. Clearly, a plateau is observed below $T \approx 120$ K for $x = 0.3$. Further substitution of Ca by Y leads to an onset of insulator-metal transition in this system. (b) Qualitative phase-diagram indicating insulator-metal transition as a function of yttrium chemical doping percentage in Y$_x$Ca$_{1-x}$IrO$_3$. A change in slope in the resistivity curve of Y$_{0.4}$Ca$_{0.6}$IrO$_3$ is highlighted in the inset. (c) Fitting of electrical resistivity data, below $T \approx 110$ K, using variable range hopping model (see text for detail). Best fit of the data is obtained for $d = 2.4$, thus indicating fractional electronic dimension in this system. For comparison purposes, plots for integer dimensions are also illustrated. (d) Similar analysis for BaIrO$_3$ reveals three dimensional electronic pattern.

The high purity polycrystalline samples of Y$_x$Ca$_{1-x}$IrO$_3$ and Y$_x$Ba$_{1-x}$IrO$_3$ were synthesized by conventional solid state reaction method using ultra-pure ingredients of IrO$_2$, CaCO$_3$, BaCO$_3$ and Y$_2$O$_3$. Starting materials were mixed in stoichiometric composition, with ten percent extra CaCO$_3$ (or, BaCO$_3$) to compensate for their rapid evaporation, palletized and sintered at 950$^\circ$C for three days. The furnace cooled samples were grinded, palletized and sintered at 1000$^\circ$C for another three days. Resulting samples were characterized using Siemens D500 powder x-ray diffractometer and Rigaku high resolution x-ray diffractometer, confirming the single phase of materials. Detailed electrical and magnetic measurements on pallets of polycrystalline samples were performed using Quantum Design Physical Properties Measurement System with a temperature range of 2 K–350 K and magnetic field application range of 7 T. Four probe technique was employed to elucidate electrical properties of Y$_x$Ca$_{1-x}$IrO$_3$ and Y$_x$Ba$_{1-x}$IrO$_3$.

Electrical resistivity as a function of temperature for various chemical doping percentages of Y$_x$Ca$_{1-x}$IrO$_3$ are plotted in figure 1(a). As we can see, CaIrO$_3$ is a strong insulator in stoichiometric composition. A small but observable change in slope of the resistivity curve around $T \approx 110$ K is identified with an antiferromagnetic (AFM) transition in this compound (as discussed below in latter...
Figure 2. Electrical transport data in applied magnetic field for two characteristic chemical doping percentages, $x = 0$ and 0.5. (a) Characteristic plots of electrical resistivity as a function of temperature of CaIrO$_3$ at few different values of applied magnetic field are shown here. No change in the insulating behavior is observed in this compound even for magnetic field application to the tune of 7 T. (b) A very weak field dependence in similar measurements on the metallic phase of Y$_{0.5}$Ca$_{0.5}$IrO$_3$ is observed. However, no quantitative analysis can be carried out as the resulting magnetoresistance is indistinguishable from the background. (c) and (d) Similar measurements on stoichiometric BaIrO$_3$ and Y$_{0.3}$Ba$_{0.7}$IrO$_3$ do not exhibit any field dependence of resistivity either. However, a sharp upturn in resistivity at $T \approx 175$ K is observed in both compounds.

paragraphs). After gradual substitution of Ca by Y, a flat plateau in electrical resistivity is found to develop below ≈ 120 K at $x = 0.3$, before ushering into completely metallic state at $x = 0.5$. The insulator-to-metal transition temperature for various yttrium doping percentages is estimated from the change in slope in the resistivity data of that sample. While no change in the slope of resistivity curve is observed for $x = 0.25$ doping percentage, a clear change in the slope of resistivity is observed for $x = 0.3$ doping at $T \approx 120$ K (see figure 1(a)). The insulator-to-metal transition temperature increases as a function of the chemical doping coefficient x. As shown in the inset of figure 1(b), a small change in slope is observed at $T \approx 199$ K in the resistivity data of $x = 0.4$ doping. The insulator-to-metal transition is described in a qualitative phase diagram of temperature versus chemical doping percentage in figure 1(b). In order to gain more information about electronic dimension, electrical resistivity data is fitted using variable range hopping (VRH) model [19]. Fitting of electrical resistivity data below the magnetic transition temperature using VRH model, $
ho(T) = \rho_0 \exp((T_0/T)^{1/d+1})$, where T_0 is the characteristic hopping temperature and d is the dimensionality of hopping, reveals a fractional dimension of $d = 2.4$ in CaIrO$_3$, figure 1(c). Similar analysis of electrical data of BaIrO$_3$ demonstrates three dimensional electronic pattern, figure 1(d). The fitted value of T_0 in CaIrO$_3$ and BaIrO$_3$ are found to be 1.5×10^4 K and 4.6×10^5 K, respectively. The quasi-2D electronic behavior in CaIrO$_3$ is different from previous assertion of quasi-1D magnetic behavior in this system [15]. Apparently, these two phenomena are not coupled to each other. Fractional dimensionality in a system also suggests a path-like electrical transport [20], compared to surface-like propagation of charge carrier in integral dimension systems. Since path-like electrical transport derives from the underlying fractal-type chemical structure, the disparity in electrical dimensions can be attributed to the arrangement of the IrO$_6$ octahedra surrounding alkaline earth ions in these compounds.

Yttrium substitution of Ba in BaIrO$_3$ does not change the insulating behavior found in the stoichiometric composition, as noted earlier. In figure 2, characteristic plots of electrical resistivity as a function of temperature at various applied magnetic field values are depicted for two different compositions ($x = 0$ and $x = 0.5$) of CaIrO$_3$ and BaIrO$_3$. It is immediately noticed that the magnetic field application does not affect electrical resistivity in either of the compounds. Basically, no magnetoresistance, distinguishable form the background, is recorded. A downward cusp in the electrical data of BaIrO$_3$, figure 2(c), at $T \approx 175$ K is most likely associated to the charge density wave (coexisting with weak ferromagnetism), as recent reports
CaIrO$_3$, as highlighted in the inset, suggests that the underlying crystal structure is preserved. Similar behavior is observed in yttrium-doped BaIrO$_3$. We note that the underlying crystal structure in CaIrO$_3$ and BaIrO$_3$ are orthorhombic and monoclinic, respectively. The monoclinic structure of BaIrO$_3$ is, arguably, key to its insulating properties. Yttrium substitution of alkaline earth ions does not alter the crystal structure drastically. For illustration purposes, x-ray diffraction patterns of CaIrO$_3$ and Y$_{0.5}$Ca$_{0.5}$IrO$_3$ are plotted in figure 3, where expected small shifts in the peak positions of Y$_{0.5}$Ca$_{0.5}$IrO$_3$ with respect to CaIrO$_3$ are observed. Lattice parameters for both sets of compounds are tabulated in table 1. As we can see, the net change in lattice parameters is less than 2%. Hence, the crystal structure remains intact even at 50% substitution of Ba (Ca) by yttrium.

Next, we have performed detailed ac magnetic susceptibility measurements on both sets of compounds. AC susceptibility measurements provide information about static and dynamic properties of correlated spins at the same time. Static and dynamic susceptibilities at two characteristic frequencies (103 and 104 Hz) for two doping percentages, x = 0 and 0.5, of Y$_x$Ca$_{1-x}$IrO$_3$ and Y$_x$Ba$_{1-x}$IrO$_3$ are plotted in figure 4. In CaIrO$_3$, a very sharp peak develops around $T_N \approx$ 110 K in both static and dynamic susceptibilities. The location of the χ' peak (in temperature) is consistent with a small change in slope of the resistivity profile, thus can be attributed to the onset of long range AFM order. At the same time, an equally sharp peak in dynamic susceptibility hints about resonance of paramagnetic ions with a single relaxation time that coincides with the onset of long range AFM order in this compound [22]. Another noticeable feature in figures 4(a) and (b) is the lack of frequency dependence of peak location of static and dynamic susceptibilities, which rules out any spin freezing behavior or, the presence of multiple relaxation times among small paramagnetic clusters [23]. Magnetic measurements on Y$_{0.5}$Ca$_{0.5}$IrO$_3$ reveal an upturn in (addition to the sharp peak in χ', perhaps weaker compared to CaIrO$_3$) in both static and dynamic susceptibilities at low temperature, figures 4(c) and (d). While the gradual increment in susceptibilities at low temperatures can be related to a new dynamic magnetic order, diminishing peak intensity at higher frequencies in dynamic susceptibilities (figure 4(d)) hints of magnetic fluctuations at very low energy in this compound. Similar magnetic measurements of BaIrO$_3$ confirm the onset of weak ferromagnetism at $T \approx$ 175 K, as evidenced by slightly broader peaks as a function of temperature in χ' and χ'', figures 4(e) and (f). A broad peak in static susceptibility is often associated to the formation of small magnetic clusters in a system. The peak value of static susceptibility in BaIrO$_3$ is at least an order of magnitude smaller than its calcium counterpart. Together these observations constitute an argument about the presence of small cluster-type ferromagnetic phenomenon in this compound. Yttrium substitution of Ba in Y$_{0.5}$Ba$_{0.5}$IrO$_3$ removes the broad feature in susceptibilities peaks of BaIrO$_3$, as shown in figures 4(g) and (h). In addition to a sharp peak, an upturn in static susceptibility at low temperature is also observable in this case. Similar observations are recorded in the magnetic susceptibility measurements of other yttrium doping percentages of barium and calcium iridates.

Table 1. Lattice parameters and angles, as derived from the refinement of powder x-ray diffraction data, for both sets of compounds. While the underlying lattice in CaIrO$_3$ is orthorhombic, the monoclinic structure of BaIrO$_3$ is monoclinic. The monoclinic structure of BaIrO$_3$ is preserved. Similar behavior is observed in yttrium-doped BaIrO$_3$. We note that the underlying crystal structure in CaIrO$_3$ and BaIrO$_3$ are orthorhombic and monoclinic, respectively. The monoclinic structure of BaIrO$_3$ plays crucial role in stabilizing the insulating state despite the presence of additional charge carriers.

Compound	a (Å)	b (Å)	c (Å)	α (degree)	β	γ
CaIrO$_3$	3.145	9.863	7.297	90	90	90
Y$_{0.5}$Ca$_{0.5}$IrO$_3$	3.148	9.875	7.30	90	90	90
BaIrO$_3$	10.012	5.762	15.178	90	103.28	90
Y$_{0.5}$Ba$_{0.5}$IrO$_3$	10.006	5.752	15.178	90	103.28	90
Figure 4. AC susceptibility measurements of $x = 0$ and 0.5 chemical dopings of Y$_x$Ca$_{1-x}$IrO$_3$ and Y$_x$Ba$_{1-x}$IrO$_3$. (a) and (b) Static (χ') and dynamic (χ'') susceptibilities of CaIrO$_3$ as a function of temperature at two different characteristic frequencies (1000 and 10 000 Hz). A sharp peak in χ' around $T_N \simeq 110$ K is attributed to the onset of long range AFM order in this compound. No frequency dependence of the peak position rules out any glassiness. A sharp frequency-independent peak is also observed in dynamic susceptibility, χ'', around the same temperature, indicating strong magnetic resonance associated to the AFM order in CaIrO$_3$. (c) and (d) In addition to a sharp peak around $T \simeq 110$ K, a gradual increment in both static and dynamic susceptibilities of Y$_{0.5}$Ca$_{0.5}$IrO$_3$ is observed below $T \simeq 50$ K. Also observable is the weakness in the dynamic susceptibility at higher frequency. (χ'' at different frequencies are separated by 0.002 emu.mol$^{-1}$.G$^{-1}$ to highlight this observation.) (e) and (f) A broad peak as a function of temperature, centered around $T \simeq 175$ K, is observed in the ac susceptibility measurements of BaIrO$_3$. (g) and (h) Unlike BaIrO$_3$, the peak in χ' is sharper in Y$_{0.5}$Ba$_{0.5}$IrO$_3$. Also an upturn in χ' is observed below $T \simeq 100$ K. Once again, there is little or no frequency dependence of susceptibility peak intensity or location as a function of temperature.

An important difference between the stoichiometric composition and yttrium substituted compounds lies in the observation of an upturn in static susceptibility at low temperature, which in principle suggests the occurrence of new magnetic order in Y$_x$M$_{1-x}$IrO$_3$ ($M = \text{Ca, Ba}$). While it is not possible to rule out the development of another minor magnetic phase due to yttrium doping, powder x-ray data confirms high purity of Y$_x$M$_{1-x}$IrO$_3$ for all chemical doping percentages (figure 3). We also note that the electrical resistivity exhibits little or no field dependence in any of these materials. In Y$_x$Ba$_{1-x}$IrO$_3$, however, two notable behaviors are observed: first, a sharp downward cusp at the characteristic temperature, $T \simeq 175$ K and second, steep rise in resistivity below $T \simeq 80$ K. While former phenomenon is found to be associated to the development of coexisting charge density wave and weak ferromagnetism [9, 11, 18, 24], the latter observation is reported for the first time in this letter and requires further investigations.

Our studies of Y$_x$M$_{1-x}$IrO$_3$, where $M = \text{Ca, Ba}$, using electrical and magnetic measurements show unambiguous new results on the presence (absence) of insulator-to-metal transition in post-perovskite (perovskite) iridium oxide compounds. In stoichiometric compositions, both CaIrO$_3$ and BaIrO$_3$ are Mott insulators with (t_{2g})5 electronic configuration, leading to $j_{\text{eff}} = 1/2$ state. The unexpected Mott insulating ground state, in fact, arises due to an interaction between the spin–orbit coupling ($\zeta \simeq 0.5$ eV) and the cubic crystal field ($10D_q \simeq 3$ eV) [16, 25, 26]. In the absence of strong spin–orbit coupling, these compounds should exhibit metallic properties. In addition to these two terms, a tetragonal distortion, Δ ($\simeq -0.01$ eV), to the cubic crystal field is suggested to play an important role [16, 26]. The Mott insulating $j = 1/2$ state is possible as long as $\Delta \ll \zeta$. This additional term is especially important in CaIrO$_3$, which undergoes significant structural distortion [27]. The tetragonal distortion Δ ($\simeq -0.7$ eV) in CaIrO$_3$ is found to be stronger than the spin–orbit coupling strength ζ ($\simeq 0.5$ eV), as recent measurements of resonant inelastic x-ray scattering (RIXS) have demonstrated. It is still debated whether CaIrO$_3$ exhibits a $j = 1/2$ ground state or not. Nonetheless, the structural distortion giving rise to stronger Δ perhaps diminishes the spin-orbital interaction strength in CaIrO$_3$, thus
making it an easier candidate for manipulation of electronic properties. It is speculated that the structural distortion also leads to the fractional electronic dimension, indicating path-like electrical transport, in this compound. Unlike CaIrO$_3$, BaIrO$_3$ does not undergo strong structural distortion. At the same time, the underlying crystal structure in CaIrO$_3$ and BaIrO$_3$ are different. While CaIrO$_3$ is orthorhombic, BaIrO$_3$ is monoclinic. Although not much is known about various competing energy terms in BaIrO$_3$, it is reasonable to argue that the robustness against the monoclinic structure distortion makes it unlikely to exhibit the insulator-to-metal transition due to the additional charge carrier. The yttrium substitution of alkaline earth metals does not seem to affect the magnetic transition temperature in Y$_x$M$_{1-x}$IrO$_3$. It suggests that the electrical transport and magnetic properties are two parallel phenomena, where the structural distortion influences former strongly. More experimental and theoretical research are highly desirable to further understand these anomalous properties. We also note that if doping of Mott insulator is the physics of high temperature superconductivity, as argued by some researchers in the case of cuprate superconductors [28], then our results provide a new platform to test this hypothesis.

Acknowledgments

We want to thank W Montfrooij for helpful discussion. DKS acknowledges support from the University of Missouri Research Board and IGERT research program, funded by NSF under grant number DGE-1069091.

References

[1] Pesin D and Balents L 2010 Nat. Phys. 6 376
[2] Kim B J et al 2009 Science 323 1329
[3] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[4] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[5] Laguna-Marco M A et al 2010 Phys. Rev. Lett. 105 216407
[6] Fujiwara K et al 2013 Nat. Commun. 4 2893
[7] You Y-Z, Kimchi I and Vishwanath A 2012 Phys. Rev. B 86 085145
[8] Singh Y et al 2012 Phys. Rev. Lett. 108 127203
[9] Cao G et al 2000 Solid State Commun. 113 657
[10] Ohgushi K et al 2012 Phys. Rev. Lett. 110 217212
[11] Maiti K et al 2005 Phys. Rev. Lett. 95 016404
[12] Hasan M Z et al 2010 Rev. Mod. Phys. 82 3045
[13] Ohgushi K et al 2006 Phys. Rev. B 74 241104
[14] Moretti Sala M et al 2014 Phys. Rev. Lett. 112 026403
[15] Bogdanov N A et al 2012 Phys. Rev. B 85 235147
[16] Moretti Sala M et al 2014 Phys. Rev. Lett. 112 176402
[17] Murakami M et al 2004 Science 304 855
[18] Lindsay R et al 1993 Solid State Commun. 86 759
[19] Bremholm M et al 2011 J. Solid State Chem. 184 601
[20] Gordon J M 1987 Phys. Rev. Lett. 59 2311
[21] Cao G et al 2004 Phys. Rev. B 69 174418
[22] Wu J and Leighton C 2003 Phys. Rev. B 67 174408
[23] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[24] Nakano T and Terasaki I 2006 Phys. Rev. B 73 195106
[25] Zhang H, Haule K and Vanderbilt D 2013 Phys. Rev. Lett. 111 246402
[26] Boseggia S et al 2013 J. Phys.: Condens. Matter 25 422202
[27] Hirai S et al 2009 Z. Kristallogr. 224 345
[28] Lee P A, Nagaosa N and Wen X-G 2006 Rev. Mod. Phys. 78 17