Production and Economics of Hybrid Maize (Zea mays L.) under Integrated Nutrient Management Practices

D. Kalyanasundaram¹, R. Augustine¹

ABSTRACT

Background: Integrated nutrient management is considered as one of the major tools in agricultural production worldwide. occupying 3.5% of gross cropped area (GCA), maize accounts for 2.3% of total fertilizer consumption. Despite its soil status, little is known about the application and dosage of integrated nutrient in the experimental hybrid maize crop in the region. Any strategy against this nutrient deterioration must have a good knowledge of the composition and application of integrated nutrient source utilized. The field study aimed to study the integrated nutrient management in hybrid maize of this region to evaluate the performance in growth, yield and nutrient related problems.

Methods: A Field experiment was conducted during rabi season of 2018, at experimental farm, Department of Agronomy, Annamalai University, Chidambaram, Tamilnadu. India. Thirteen treatments with three replications were laid out in randomized block design. The treatments combinations were T₁: Recommended dose of fertilizer (RDF) 135:52:50 kg N:P2O5:K2O ha⁻¹, T₂: RDF + Beema green granules (25 kg ha⁻¹) as soil application, T₃: 75% RDF + Beema green granules (25 kg ha⁻¹) as soil application + Uphaar (250 gm ha⁻¹) as foliar spray twice, T₄: RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 gm ha⁻¹) foil spray twice, T₅: 75% RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 gm ha⁻¹) foil spray twice + Tracel (3.75 kg ha⁻¹) foil spray twice, T₆: RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75 kg ha⁻¹) foil spray twice, T₇: 75% RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75 kg ha⁻¹) foil spray twice, T₈: RDF + Uphaar (250 gm ha⁻¹) first and Tracel (3.75 kg ha⁻¹) second foil spray, T₉: RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 gm ha⁻¹) first and Tracel (3.75 kg ha⁻¹) second foil spray, T₁₀: 75% RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 gm ha⁻¹) first and Tracel (3.75 kg ha⁻¹) second foil spray, T₁₁: RDF + water spray twice, T₁₂: RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75 kg ha⁻¹) foil spray twice, T₁₃: RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75 kg ha⁻¹) foil spray twice. The collected samples were statistically analyzed for cob length, cob diameter, grain no. /cob, grain yield, stover yield, available Nitrogen, Phosphorus and Potassium and Post-harvest nutrient status of Nitrogen, Phosphorus and Potassium. The collected samples were statistically analyzed for cob length, cob diameter, grain no. /cob, grain yield, stover yield, available Nitrogen, Phosphorus and Potassium and Post-harvest nutrient status of Nitrogen, Phosphorus and Potassium.

Result: Our investigation in the maize hybrid crop has confirmed us with unique results. Among the treatments RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 gm ha⁻¹) first and Tracel (3.75 kg ha⁻¹) second foil spray (T₁₃) was highly significant with increased yield and yield attributes and was best in gross and net returns too. The present work will be a contribution to the comprehensive study of the integrated nutrient management in hybrid maize.

Key words: Granules, Maize, Net return, Nutrient, Organic and inorganic foliar spray, yield.

INTRODUCTION

Maize (Zea mays L.) is the most versatile crop with wider adaptability in varied agro-climatic conditions. Maize has a high genetic potential than any other cereal crop and there is no cereals on earth which has so immense potential and hence referred to as “Queen of cereals” or miracle crop (Ratuarary et al., 2013).

In India maize is the third most important food crop, cultivated in an area of 9.47 million ha with a production of 28.72 mt having productivity 3.03 t/ha. Tamilnad ranks fourth in production (0.34 million ha) and first in productivity (7.74 t/ha) among the states in India (Agriculture Statistics at a Glance, 2018).

Maize being a C₄ plant has tremendous yield potential and responds well to applied inputs however, its potential could not be exploited fully due to lack of proper management practices. Among the various agronomic management practices nutrient management plays a vital role for higher productivity of maize (Prasanna Kumar et al. 2007). It has been the practices of farmers to supply these nutrients mainly through inorganic fertilizers. Continuous use of inorganic fertilizers causes several hazards to soil health by heavy withdrawal of nutrients. Supplying plants with micronutrients, either through soil application, foliar spray or seed treatment improves yield and quality and macronutrient use efficiency up to 50% (Malakouti, 2008). For maximum production of

Experimental farm, Department of Agronomy, Chidambaram-608 002, Tamil Nadu, India.¹
¹Department of Agronomy, Annamalai University, Chidambaram-608 002, Tamil Nadu, India.

Corresponding Author: D. Kalyanasundaram, Department of Agronomy, Annamalai University, Chidambaram-608 002, Tamil Nadu, India. Email: kalyankavi@rediffmail.com

How to cite this article: Kalyanasundaram, D. and Augustine, R. (). Production and Economics of Hybrid Maize (Zea mays L.) under Integrated Nutrient Management Practices. Agricultural Science Digest. ()

Submitted: 10-07-2020 Accepted: 02-11-2020 Published:
hybrid maize judicious management is very much important. Manure and fertilizer management is one of the most important factors for securing good yield of maize. Furthermore integrated use of organic and inorganic manures sustains the productivity of soil and crops in an integrated cropping system. This approach restores and sustains soil health and productivity in the long run, besides meeting the nutritional needs of crop (Maidul Hasan et al. 2018). Among these, declining soil fertility, due to continuous cultivation with low input is a major limitation to crop production and productivity in smallholder farms (Habtamu et al. 2019).

A relatively small increase in yield may be sufficient to have a good return highest profit of micronutrient fertilization, especially when commodity prices are high. Unfortunately, little research has so far been carried out to appraise the effectiveness of soil application of slow release organic granules and foliar application of organic and inorganic nutrients along with inorganic fertilizer in hybrid maize in coastal Tamil Nadu.

Objective of the study

To study the effect of different treatments on yield and yield attributes and economics of hybrid maize in coastal Tamil Nadu.

MATERIALS AND METHOD

The field experiment carried out at experimental farm, Department of Agronomy, Annamalai University, Chidambaram, Tamil Nadu during (Rabi) October 2018. The experimental site was located between 11°24' N, 79°44' E longitude at an altitude of +5.79 meters above mean sea level. The soil of the experimental site was clay loam in texture with pH 7.2 and has 0.75% organic carbon and 14 kg/ha available P and 201.5 kg/ha mineralizable N and 174 kg/ha available K. The meteorological observatory of the Department of Agronomy, Annamalai University, Chidambaram, Tamil Nadu revealed that maximum mean monthly temperature ranged from 31°C to 32°C and minimum from 24°C to 26°C during the rabi season, year of experimentation. The relative humidity ranged between 67 per cent to 83 per cent with an average daylight of 11.9 hr. A total amount of rainfall 230 mm was received during the cropping season.

The experiment was conducted with thirteen treatments were arranged in 3 replications using randomized block design. The treatments includes, Tρ: Recommended dose of fertilizer (RDF) 135.62:55.5 kg N:P2O5:K2O ha⁻¹, Tσ: RDF + Beema green granules (25 kg ha⁻¹) as soil application, Tτ: 75% RDF + Beema green granules (25 kg ha⁻¹) as soil application, Tμ: RDF + Uphaar (250 g ha⁻¹) as foliar spray twice, Tν: RDF + Beema green granules (25 kg ha⁻¹) soil application + Uphaar (250 g ha⁻¹) foliar spray twice, Tξ: 75% RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75kg ha⁻¹) foliar spray twice, Tγ: 75% RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75kg ha⁻¹) foliar spray twice, Tζ: RDF + Uphaar (250gm ha⁻¹) first and Tracel (3.75kg ha⁻¹) second foliar spray, Tη: RDF + Beema green granules (25 kg ha⁻¹) soil application + Tracel (3.75kg ha⁻¹) foliar spray twice, Tθ: RDF + Uphaar (250gm ha⁻¹) first and Tracel (3.75kg ha⁻¹) second foliar spray, Tι: RDF + water spray twice were evaluated for rabi season 2018.

The farm yard manures (FYM: 0.53% N, 0.15% P and 0.56% K) were applied to the field 1 month before sowing of the crop as per the treatment. Maize hybrid NK 6240 was sown with using the seed rate of 20 kg/ha and row spacing of 60 cm x 20 cm. A recommended dose of fertilizers i.e. 135 kg N, 62.5 kg P and 50 kg K/ha was applied as per treatment. Full doses of P and K and half of N were applied basal and remaining N were top dressed in 2 equal splits at knee high and tassel-emergence stages. Gap-filling and thinning were done within 15 days after sowing (DAS) of crop to maintain the optimum plant population.

The Cob length, cob diameter, grains per cob, parameters were collected at harvest from random selected 5 plants. The nutrient uptake and available nutrients after harvest were analysed as per the standard procedures. Grain and stover yields of maize were recorded in kg/ha.

The data obtained from this study were analysed statistically following randomized block design as per the procedure given by Panse and Sukhatme (1978).

RESULTS AND DISCUSSION

Yield attributes

The data on yield attributes and yield are given in Table 1.

Cob length

The cob length was significantly influenced by levels of fertilizers and soil application of Beema green granules with organic and inorganic foliar nutrients in the season. Among the treatments, RDF + Beema green granules (25 kg ha⁻¹) (20 DAS) soil application + foliar application of Uphaar (250gm ha⁻¹) (30 DAS) and Tracel (3.75kg ha⁻¹) (40 DAS) foliar spray (Tη) recorded the highest cob length of 25.25 cm during Rabi 2018-2019. The rest of the treatments viz., Tρ, Tσ, Tτ, Tη, Tζ, Tξ, Tη, Tθ, Tι, and Tθ stood next in the order of ranking. The least cob length of 11.30 cm was recorded under Tρ. This may be attributed to higher water regime and better water balance, which lead to vigorous growth and more yield attributes produced (Sharma et al. 2010). Dash et al. (2010) reported that INM source has significantly increased the availability of nitrogen in soil and thus result in increasing the yield attributes like Cob length, cob diameter, Number of grains cob⁻¹ were increased in maize. Similar findings were reported by Rakesh kumar (2015). These results suggested that adequate supply of nutrients throughout vegetative growth was necessary for proper cob development in maize as reported by Samsani (2016).
Table 1: Effect of integrated nutrient management practices on hybrid maize.

Treatments	Cob length (cm)	Cob diameter (cm)	Grain number cob\(^1\)	Grain yield (kg ha\(^{-1}\))	Stover yield (kg ha\(^{-1}\))
T\(_1\) – Recommended dose of fertilizers (RDF)	19.05	5.05	403	5174.00	7764
T\(_2\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\)	19.40	5.15	406	5210.00	7815
T\(_3\) – 75 % RDF + soil application of Beema green granules @25 kg ha\(^{-1}\)	11.30	3.55	348	4056.50	6419
T\(_4\) – RDF + foliar application of Upphaar@250 gm ha\(^{-1}\) twice	15.95	4.45	381	4686.50	7230
T\(_5\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Upphaar@250 gm ha\(^{-1}\) twice	17.50	4.75	392	4980.00	7490
T\(_6\) – 75 %RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Upphaar@250 gm ha\(^{-1}\) twice	12.85	3.85	359	4255.00	6690
T\(_7\) – RDF + foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	20.45	5.35	414	5437.50	8033
T\(_8\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	22.15	5.65	426	5702.50	8302
T\(_9\) – 75 % RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	20.03	5.31	414	5372.50	8015
T\(_{10}\) – RDF + foliar application of Upphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	23.70	5.95	436	5970.00	8571
T\(_{11}\) – RDF + soil application of Beema green granules@25 kg ha\(^{-1}\) + foliar application of Upphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\)	25.25	6.25	448	6260.50	8840
T\(_{12}\) – 75 % RDF + soil application of Beema green granules@25 kg ha\(^{-1}\) + foliar application of Upphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\)	23.35	5.90	433	5900.00	8565
T\(_{13}\) – RDF + water spray	18.83	5.02	404	5170.00	7745
SEd (p=0.05)	0.235	0.033	3.819	89.14	13.371
CD	0.471	0.066	7.638	187.14	26.743

Cob diameter

The cob diameter was significantly influenced by levels of fertilizer + soil application of Beema green granules and foliar application of organic and inorganic nutrients in the season. Among the treatments, RDF + Beema green granules (25 kg ha\(^{-1}\)) (20 DAS) soil application + foliar application of Upphaar (250gm ha\(^{-1}\)) (30 DAS) and Tracel (3.75kg ha\(^{-1}\)) (40 DAS) foliar spray (T\(_{12}\)) recorded the highest cob diameter of 6.25 cm. The rest of the treatments viz., T\(_{10}\), T\(_{11}\), T\(_{12}\), T\(_9\), T\(_{10}\), T\(_{11}\), T\(_{12}\), T\(_9\), T\(_{10}\), T\(_{11}\), T\(_{12}\), T\(_9\), T\(_{10}\), T\(_{11}\), T\(_{12}\), T\(_9\), and T\(_{10}\) stood next in the order of ranking. The least cob diameter of 3.55 cm was registered under T\(_8\). Pinjari (2007) reported that yield attributes of maize viz., girth and length of cobs grain cob\(^{-1}\) and shelling percentage remarkably improved because of increased levels of N and P. Our results confirm those of Kumar et al. (2012). These results suggested that adequate supply of nutrients from both organic and inorganic source was necessary for proper cob diameter in maize as reported by Chapagain (2010) and Samsani (2016).

Grains number cob\(^{-1}\)

The grain number cob\(^{-1}\) was significantly influenced by levels of fertilizer + soil application of Beema green granules and foliar application of nutrients. Among the treatments, the treatment RDF + Beema green granules (25 kg ha\(^{-1}\)) (20 DAS) soil application + foliar application of Upphaar (250gm ha\(^{-1}\)) (30 DAS) and Tracel (3.75kg ha\(^{-1}\)) (40 DAS) foliar spray (T\(_{12}\)) recorded the higher grain number cob\(^{-1}\) of 448. It was followed by T\(_{10}\) and T\(_{12}\) with the value of 436 and 433. The above treatment was followed by T\(_8\) with value of 426. The treatments T7 and T9 were on par with each other and ranked next in order. The rest of the treatments viz., T\(_{12}\), T\(_9\), T\(_{13}\), T\(_8\), T\(_{10}\), and T\(_{11}\) stood next in the order of ranking. The least grain number cob\(^{-1}\) of 348 was observed under T\(_8\). This increase might be due to better nutrient uptake and development of the plant and cob due to combined application of mineral fertilizer and organic manure as reported by Prasad et al. (2003). Integrated use of nutrients significantly influenced the yield and yield attributing characters viz., grain weight/cob, number of grain/cob and test weight (Ravikumar, 2009).

Yield

Grain yield

Application of RDF + Beema green granules (25 kg ha\(^{-1}\)) (20 DAS) soil application + foliar application of Upphaar (250gm ha\(^{-1}\)) (30 DAS) and Tracel (3.75kg ha\(^{-1}\)) (40 DAS) foliar spray (T\(_{12}\)) registered the highest grain yield of 6260 kg ha\(^{-1}\). The rest of the treatments viz., T\(_2\), T\(_3\), T\(_5\), T\(_7\), T\(_9\), and T\(_{13}\) stood next in the order of ranking. The least grain yield of 4056.50 kg ha\(^{-1}\) was observed under T\(_8\). Further grain yield of maize mainly depends upon the final plant population and yield of individual plant, the latter in turn depends upon the number of ears per plant and the weight of grains per cob which resulted in higher grain yield in maize. Similar results were also reported by Saini and Kumar (2014) and Nasab et al. (2015).
Table 2: Effect of different treatments on nutrient uptake by maize and soil nutrient status after harvest.

Treatments	Nutrient uptake by maize (kg/ha)	Nutrient status in soil after harvesting (kg/ha)				
	Nitrogen	Phosphorus	Potassium	Nitrogen	Phosphorus	Potassium
\(T_1 \) – Recommended dose of fertilizers (RDF)	154.40	54.70	61.33	217.06	29.08	83.67
\(T_2 \) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\)	154.59	55.10	62.82	217.41	29.04	82.18
\(T_3 \) – 75 % RDF + soil application of Beema green granules @25 kg ha\(^{-1}\)	132.55	45.00	43.66	239.45	39.05	101.34
\(T_4 \) – RDF + foliar application of Uphaar@250 gm ha\(^{-1}\) twice	146.54	51.30	54.43	225.46	33.02	90.57
\(T_5 \) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Uphaar @250 gm ha\(^{-1}\) twice	150.17	53.00	57.83	221.83	31.05	87.17
\(T_6 \) – 75 % RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel @3.75 kg ha\(^{-1}\) twice	138.38	47.90	47.29	233.62	36.06	97.71
\(T_7 \) – RDF + foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	158.30	56.40	64.82	213.07	28.01	80.18
\(T_8 \) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel @3.75 kg ha\(^{-1}\) twice	162.20	58.10	68.32	209.08	26.04	76.68
\(T_9 \) – 75 % RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel @3.75 kg ha\(^{-1}\) twice	158.33	56.00	64.54	213.77	28.05	80.46
\(T_{10} \) – RDF + foliar application of Uphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	166.10	59.80	71.68	205.09	24.07	73.32
\(T_{11} \) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	170.00	60.50	75.29	202.00	24.00	69.71
\(T_{12} \) – RDF + foliar application of Uphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	166.10	59.50	71.15	205.09	25.00	73.85
\(T_{13} \) – RDF + water spray	154.23	54.30	60.99	217.77	30.02	84.01
SEd	1.786	0.338	0.303	2.072	0.867	2.016
CD (p=0.05)	3.573	0.677	0.606	4.144	1.734	4.033
Stover yield

The stover yield was significantly influenced by levels of fertilizer soil application of Beema green granules and foliar application of nutrients. Among the treatments, RDF + Beema green granules (25 kg ha\(^{-1}\)) (20 DAS) soil application + foliar application of Uphaar (250gm ha\(^{-1}\)) (30 DAS) and Tracel (3.75kg ha\(^{-1}\)) (40 DAS) foliar spray (T\(_{11}\)) was superior and recorded the highest stover yield of 8840 kg ha\(^{-1}\). The rest of the treatments viz., T\(_{2}\), T\(_{3}\), T\(_{5}\), T\(_{8}\), T\(_{9}\), and T\(_{6}\) stood next in the order of ranking. The treatment T\(_{3}\) registered the lowest stover yield of 6419 kg ha\(^{-1}\). Saini and Kumar (2014) have shown that substitution may be because of slow release of nutrient from them due to slow mineralization.

Nutrient uptake and post-harvest soil nutrient status

There was significant effect of different sources of nutrients on the Nutrient uptake of maize (Table 2).

Nutrient Uptake

Highest uptake of N, P and K was observed with application of RDF + Beema green granules (25 kg ha\(^{-1}\)) (20 DAS) soil application + foliar application of Uphaar (250gm ha\(^{-1}\)) (30 DAS) and Tracel (3.75kg ha\(^{-1}\)) (40 DAS) foliar spray (T\(_{11}\)), excelled other treatments by recording the highest nutrient uptake of 170.00 kg of N and 60.50 kg P2O\(_{5}\) and 75.29 kg K2O. The rest of the treatments viz., T\(_{12}\), T\(_{2}\), T\(_{3}\), T\(_{9}\), T\(_{10}\), T\(_{11}\), T\(_{12}\), and T\(_{13}\) stood next in the order of ranking. The treatments T\(_{2}\) and T\(_{4}\) were next in order. The least uptake of nutrients was observed under T\(_{3}\) with a value of 132.55 kg of N, 45.40 kg P2O\(_{5}\) 43.66 kg K2O ha\(^{-1}\) respectively. The application of organic and inorganic fertilizers significantly influenced the nutrient uptake by maize (Meena et al. 2006). Moreover many authors like Shukla and Tyagi (2009) and Verma et al. (2006) also reported that balance and integrated nutrient supply caused significantly higher uptake of primary nutrients. This increase in nutrient uptake might be due to adequate moisture that influenced the nutrient uptake of N, P and K. This result was also confirmed by Mudalagiriyappa et al. (2012) in sorghum. The higher nutrient uptake was due to granules that help its availability in rhizosphere as reported by Rao and Shaktawat (2002). Similar findings were reported by Rakesh Kumar (2015).

Soil available NPK after harvest

The data on post-harvest soil available NPK status are given in Table 2. All the treatments showed significant difference on post-harvest soil available nitrogen, phosphorus, and potassium Among the treatments, 75% RDF + Beema green granules + Tracel 3.75 kg ha\(^{-1}\) Application + foliar application of Uphaar 250 gm ha\(^{-1}\) twice were found to be the best treatment for nutrient uptake and post-harvest soil nutrient status.

Table 3: Effect of integrated nutrient management on productivity and economics of maize.

Treatments	Cost of cultivation (Rs ha\(^{-1}\))	Gross return (Rs ha\(^{-1}\))	Net return (Rs ha\(^{-1}\))	Return rupee\(^{-1}\) invested
T\(_{1}\) – Recommended dose of fertilizers (RDF)	24614	76318	51704	2.10
T\(_{2}\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Uphaar@250 gm ha\(^{-1}\) twice	25328	59993	34665	1.36
T\(_{3}\) – 75% RDF + soil application of Beema green granules @25 kg ha\(^{-1}\)	24913	69219	43306	1.77
T\(_{4}\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Uphaar@250 gm ha\(^{-1}\) twice	27375	73456	46090	1.68
T\(_{5}\) – 75% RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	25627	62915	37288	1.45
T\(_{6}\) – RDF + foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	25618	80134	54516	2.12
T\(_{7}\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	28081	83979	55898	1.99
T\(_{8}\) – 75% RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\) twice	26332	79215	52883	2.00
T\(_{9}\) – RDF + foliar application of Uphaar@250 gm ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\)	25917	87865	61948	2.39
T\(_{10}\) – RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\)	28380	97060	68680	2.42
T\(_{11}\) – 75% RDF + soil application of Beema green granules @25 kg ha\(^{-1}\) and foliar application of Tracel@3.75 kg ha\(^{-1}\)	26631	86882	60251	2.26
T\(_{12}\) – RDF + water spray	24940	76252	51312	2.05

Men labour: Rs.280 **Seed cost**: Rs. 250 **Urea**: Rs. 5.36

Women labour: Rs.100 **Produce cost**: Rs. 14 **SSP**: Rs. 8.4

MOP: Rs. 16.4 **Uphaar**: Rs. 530 **Tracel**: Rs. 220 **Beema green granules**: Rs. 87
grains (25 kg ha⁻¹) as soil application (T₁) recorded a highest post-harvest soil available N of 239.45 kg ha⁻¹. P of 39.05 kg ha⁻¹ and K of 101.34 kg ha⁻¹ during Rabi 2018. The rest of the treatments viz., T₆, T₅, T₄, T₃, and T₂ stood next in the order of ranking. The least post-harvest soil available N of 202 kg ha⁻¹, P of 24.00 kg ha⁻¹ and K of 69.71 kg ha⁻¹ respectively was recorded under T₁. The above result is in similar position with Sharma and Banik (2012) who reported that integration of organic and inorganic sources of nutrient improved soil fertility status. The result obtained is in line with Chaudhry et al. (2009).

ECONOMICS
The data on the economics of different treatments are presented in Table 3.

The economics parameters such as gross return, net return and return rupee⁻¹ invested were calculated based on the prevailing market price. The highest gross return of Rs 97,060 and net return of Rs 28380 were obtained under T₆. The least gross return (Rs 59,993) and net return (Rs 34665) were obtained with T₅. The highest return rupee⁻¹ invested of Rs 2.42 was obtained under RDF + Bemena green granules (25 kg ha⁻¹) (20 DAS) soil application + foliar application of Uphaar (250gm ha⁻¹) (30 DAS) and Tracel (3.75kg ha⁻¹) (40 DAS) foliar spray (T₆), might be owing to increase in yields of maize. Similar findings were also reported in maize by Sharma et al. (2011). Our results confirm with Rakesh Kumar (2015). This is followed by T₁₀ and T₁₂. On the other hand the least return rupee⁻¹ invested was obtained under T₄ with a value of Rs 1.36.

CONCLUSION
The explosions of Indian population enhance the demand of maize. The high human population needs maize production for satisfying the nutritive requirements. Maize is an exhaustive crop requires all types of macro and micro nutrients for better growth and yield potential. The main advantages of organic fertilizer are ecological balance, low cost of cultivation, clean environment and nutritious food without reducing the human health. The integrated use of organic and inorganic fertilizers not only increase mutual efficiency but also helps in the substitution of costly chemical fertilizers. Integrated use of fertilizers and organic manures not only makes higher yields possible but also provides greater quality stability. Thus significant recommended dose of 135:62:5.50 kg N:P205:K2O ha⁻¹ + Bemena green granules (25 kg ha⁻¹) at 20 DAS + Uphaar (250gm ha⁻¹) and Tracel (3.75 kg ha⁻¹) foliar spray of 30th and 40th DAS recorded highest cob length and grain numbers cob⁻¹. Such treatment also recorded highest grain and stover yield of 6260 kg ha⁻¹ and 8840 kg ha⁻¹. The highest gross return of Rs 97,060 and net return of Rs 28380 were obtained with the highest return rupee⁻¹ invested of Rs 2.42 was recorded.

ACKNOWLEDGEMENT
The authors gracefully acknowledge the advice and guidance provided by Dr M. Ganapathy, Professor and Head, Department of Agronomy, Faculty of Agriculture, Annamalai University, Chidambaram. Tamilnadu. India.

REFERENCES
Agriculture Statistics at a Glance. (2018). Ministry of Agriculture and Farmers Welfare, DAC and FW, Directorate of Economics and Statistics.

Chapagain, T. (2010). Effects of integrated plant nutrient management practices on the sustainability of maize-based hill farming system in Nepal. Journal of Agricultural Science. 2(3): 26-32. Doi:10.5539/jas.v2n3p26

Chaudhry, A.N., Jilian, G., Khan, M.A. and Iqlbal, T. (2009). Improved processing of poultry litter to reduce nitrate leaching and enhance its fertilizer quality. Asian Journal of Chemistry. 21(7): 4997: 5003.

Dash, D., Patro, H., Tiwari, R.C. and Shahid. (2010). Effect of organic and inorganic sources of N on growth attributes, grain and straw yield of rice (Oryza sativa), International Journal of Pharma and Life Sciences. 2(4): 655-660.

Habtam Yigermal, Klemu Nakachew and Fenta Assefa. (2019). Effects of integrated nutrient application on phonological vegetative growth and yield-related parameters of maize in Ethiopia: A review: Cogent food and agriculture. 5: 1567 998. Doi: https://doi.org/10.1080/23311932. 2019. 1567998

Kumar, R., Deka, B.C., Baishya, L.K., Pandey, A. and Ngachan, S.V. (2012). Effect of mulching, liming and integrated nutrient management on production potential of rabi maize under rainfed condition of Nagaland. (In) Extended Summaries, vol.2.pp.50-51. International Agronomy Congress during 26-30 November, 2012 at New Delhi, India.

Maidul Hasan, Md., Tushkar Kanti Ray, K.M., Manirul Islam, S.M., Younus Ali, Noor Muhammad, Md, Ataur Rahman and Nilay Chand Barman. (2018). Growth and Yield of Hybrid Maize as Influenced by Fertilizer Management. Turkish Journal of Agriculture-Food Science and Technology. 6(12): 1727-1733. Doi: https://doi.org/10.24925/turjaf.v 6i12.1727-1733.1965

Malakouti, M.J. (2008). The Effect of Micronutrients in Ensuring Efficient Use of Macronutrients. Turkish Journal of Agriculture culture. 32 (3): 215-220.

Meena, O., Khafi, H.R., Shekh, M.A., Mehta, A.C. and Davda, B.K. (2006). Response of rabi Maize (Zea mays L.) to vermicompost and nitrogen levels. Research on Crops. 8(1): 93-94.

Mudalagiripappu, B.K., Ramachandrappa, H.V. and Nanjappa, T. (2012). Moisture conservation practices and nutrient management on growth and yield of Rabi sorghum (Sorghum bicolor) in the vertisols of peninsular India. Agri cultural Sciences. 3(4): 588-593.

Nasab, M.V., Mobasser, H.R. and Ganjali, H.R. (2015). Effect of different levels of vermicompost on yield and quality of maize varieties. Biological forum-An international Journal. 7(1): 856-860.

Panse, V.G. and P.V. Sukhatme. (1978). Statistical methods for Agricultural workers. Indian Council for Agricultural Research, New Delhi.

Pinjari, S.S. (2007). Effect of integrated nutrient management and polythene mulch on the performance of sweet corn under latereate soils of Konakan Ph,D (Agri) Thesis Dr. Balasahab
Production and Economics of Hybrid Maize (*Zea mays* L.) under Integrated Nutrient Management Practices

Sawant Konakan Krish Viyadeeth.

Prasad, B.K., Singh, D.N. and Singh, S.N. (2003). Effect of long term use of fertilizer, lime and manures on growth and yield of sweet corn. *Journal Indian Society Soil Science*. 34(2): 271-274.

Prasannakumar, A., Halepyati, S., Pujari, B.T. and Desai, B.K. (2007). Effect of integrated nutrient management on productivity, nutrient uptake and economics of maize (*Zea mays* L.) under rainfed condition. *Karnataka Journal of Agriculture Science*. 20(3): 462-465.

Rajender kumar, Dohiya, O.R., Tyagi, N.K., and M.J. Kaledhonker. (1997). Nitrogen production functions of summer maize (*Zea mays*). *Crop Research*. 13(2): 327-332.

Rakesh Kumar (2015). Productivity, profitability and nutrient uptake of maize (*Zea mays*) as influenced by management practices in North-East India. *Indian Journal of Agronomy*. 60(2): 273-278.

Rao, S.S. and Shaktawat, M.S. (2002). Effect of organic manure, phosphorus and gypsum on groundnut (*Arachis hypogaea*) production under rainfed condition. *Indian Journal of Agronomy*. 47(2): 234-241.

Rautaray, S.K., Ghosh, B.C. and Mittra, B.N. (2013). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in rice mustard cropping sequence under acid lateritic soils. *Bioresource Technology*. 90:275-283. DOI: 10.1016/S09 60-8524(03)00132-9

Ravikumar, H.S. (2009). Effect of FYM and biodested liquid manure on growth and yield of groundnut under rainfed condition. M.Sc. (Agri) thesis, *University of Agricultural Science*. Bangalore, 2009.

Saini, J.P. and Kumar, R. (2014). Long term effect of organic sources of nutrients on productivity and soil health in maize-soybean-wheat+gram cropping system. *RAHMANN G and AKSOY U* (Eds.), *Proceedings of the 4th ISOFAR Scientific Conference*. ‘Building organic bridges’, at the Organic World Congress, 13-15 Oct., Istanbul, Turkey.

Samsami, S. (2016). Effect of vermicompost on yield and yield components of two corn cultivars, *International Journal of Environment, Agriculture and Biotechnology*. 1(3): 445-447. DOI: 10.22161/ijeab/1.3.21

Sharma, A.R., Singh, R., Dhyani, S.K. and Dube, R.K. (2010). Effect of live mulching with annual legumes on performance of maize (*Zea mays*) and residual effect on following wheat (*Triticum aestivum*). *Indian Journal of Agronomy*. 55(3): 177-184.

Sharma, P., Abrol, V. and Sharma, R.K. (2011). Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed sub humid Inceptisols, *India, European Journal of Agronomy*. 34: 46-51. DOI: 10.1016/j.eja.2010.10.003

Sharma, R.C., Banik, P. (2012). Effect of integrated nutrient management on baby corn-rice cropping system: economic yield, system productivity, nutrient-use efficiency and soil-nutrient balance. *Indian Journal of Agricultural Sciences*. 82(3): 220-224.

Shukla, L., Tyagi, S.P. (2009). Effect of integrated application of organic manures on soil parameters and growth of mungbean (*Vigna radiata*). *Indian Journal of Agricultural Sciences*. 79(3): 174-177.

Verma, A., Nepolia, A., Kanthaliya, P.C. (2006). Effect of integrated nutrient supply on growth, yield and nutrient uptake by maize (*Zea mays* L.)-Wheat (*Triticum aestivum*) cropping system. *Indian Journal of Agronomy*. 51(1): 3-6.