Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis

Masahiro Nakano
Kyoto University
https://orcid.org/0000-0003-4247-9008

Yukihiko Sugita
Kyoto University
https://orcid.org/0000-0001-6861-4840

Noriyuki Kodera
Kanazawa University

Sho Miyamoto
Kyoto University

Yukiko Muramoto
Kyoto University

Matthias Wolf
Okinawa Institute of Science and Technology Graduate University, Japan

Takeshi Noda (t-noda@infront.kyoto-u.ac.jp)
Kyoto University

Article

Keywords: influenza virus, viral RNA synthesis

Posted Date: February 16th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-198950/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Communications Biology on October 27th, 2021. See the published version at https://doi.org/10.1038/s42003-021-02388-4.
Ultrastructure of influenza virus ribonucleoprotein complexes during viral RNA synthesis

Masahiro Nakano¹,², Yukihiko Sugita¹,³,⁴, Noriyuki Kodera⁵, Sho Miyamoto¹, Yukiko Muramoto¹,², Matthias Wolf⁴, and Takeshi Noda¹,²,⁶*

¹Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ²Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ³Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan. ⁴Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-soen, Kunigami-gun, Okinawa 904-0495, Japan. ⁵Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan. ⁶PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

*correspondence to: t-noda@infront.kyoto-u.ac.jp
The single-stranded, negative-sense, viral genomic RNA (vRNA) of influenza A virus is encapsidated by viral nucleoproteins and an RNA polymerase to form a ribonucleoprotein complex (vRNP) with a helical, rod-shaped structure. The vRNP is responsible for transcription and replication of the vRNA. However, the vRNP conformation during viral RNA synthesis is not well understood. Here, using high-speed atomic force microscopy and cryo-electron microscopy, we investigated the native structure of influenza A vRNPs during RNA synthesis in vitro. Two distinct types of vRNPs were observed in association with newly synthesized RNAs: an intact, helical rod-shaped vRNP connected with a structured viral RNA product and a deformed vRNP associated with a looped, double-stranded RNA, composed of a template vRNA and a nascent RNA. These results suggest that while some vRNPs keep their helical structures during viral RNA synthesis, probably for the repeated cycle of transcription and/or replication, others accidentally become structurally deformed, which probably results in failure to commence or continue RNA synthesis. Thus, our findings provide the ultrastructural basis of viral RNA synthesis and advance our knowledge of the mechanism of viral transcription and replication.
Influenza A virus, a member of the Orthomyxoviridae, has eight, single-stranded, negative-sense RNA segments (vRNAs) as its genome. Transcription and replication of influenza A virus are carried out by ribonucleoprotein complexes called vRNPs in the nucleus of infected cells. A vRNP consists of a vRNA, multiple copies of nucleoprotein (NP), and a heterotrimeric, RNA-dependent RNA polymerase complex comprising PB2, PB1, and PA subunits (1–4). Each vRNP adopts a helical, rod-shaped structure, in which an NP-vRNA strand is folded back on itself and coiled, forming a double-stranded helix with a loop structure at one end (5, 6). The heterotrimeric RNA polymerase is located opposite to the loop end of the helical rod-shaped vRNP (7–9).

Although influenza virus vRNPs conduct both transcription and replication of the vRNAs, mechanisms of the two processes are quite different. During transcription, the PB2 subunit binds to the 5'-terminal methylated cap structure (\(m^7\)GpppXm) of host pre-mRNAs (10, 11), and the PA subunit cleaves the pre-mRNA 10–13 nucleotides downstream from the cap with its endonuclease activity (12–14). The resultant capped RNA fragment is directed to the PB1 active site where it is used as a primer (15). After elongation, a poly(A) tail is added to the 3' end of the transcript by stuttering of the polymerase on the oligo-U stretch of the template vRNA (16–18). Hence, the 5'-capped and 3'-polyadenylated viral mRNAs are synthesized in a primer-dependent manner. In
contrast, genome replication is thought to be primer-independent (19). Replication involves generation of positive-sense complementary RNAs (cRNAs), which are replication intermediates that act as templates for vRNA synthesis. Elongation of a nascent cRNA by cis-acting RNA polymerase proceeds concomitantly with sequential binding of free NPs, forming a rod-shaped, double-helical cRNP complex (20–22). Afterward, trans-acting or trans-activating RNA polymerase generates vRNAs from intermediate cRNAs (21, 23, 24).

Great progress has been made in delineating the molecular mechanisms by which the RNA polymerase conducts transcription and replication based on its atomic structure (15, 18, 24–30). However, it is the vRNP rather than the RNA polymerase that accomplishes viral genome transcription and replication. Recently, Coloma et al. investigated the structure of the vRNP during in vitro transcription using cryo-electron microscopy (cryo-EM) and concluded that the vRNPs maintain their double helical structures during transcription (31). However, because nascent RNAs were barely visible together with potentially transcribing vRNPs, it remains unclear whether the vRNPs observed were producing nascent RNA. Here, to further characterise transcription and replication from an ultrastructural perspective, we analysed virion-derived vRNPs producing nascent viral RNAs during in vitro RNA synthesis, using high-speed atomic
force microscopy (HS-AFM) and cryo-EM. The combination of these two techniques enabled us to clearly visualize and characterise the native structures of vRNPs producing nascent viral RNAs.
Results

Virion-derived vRNPs produce both mRNA and cRNA *in vitro*

It has been reported that vRNPs isolated from influenza virions synthesize both mRNA and cRNA *in vitro* by adding ApG or globin mRNA as a primer (32). To investigate the structure of vRNP during transcription and replication, we purified vRNPs from influenza A virions and performed *in vitro* RNA synthesis using primers. Autoradiography of the RNA products after electrophoresis showed bands corresponding to the eight vRNAs of influenza A virus in a 15-min incubation after the reactions (Fig. 1a, Supplementary Fig. 1a, b). Treatment of an influenza virus RNA polymerase inhibitor, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide-4-ribofuranosyl-5'-triphosphate (T-705RTP) (33), decreased the band intensity in a dose-dependent manner (Fig. 1b), confirming that viral RNAs are synthesized from virion-derived vRNPs.

Then, to determine whether vRNPs produce both cRNA and mRNA, we performed strand-specific reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) for the NP and NA genes (34). Here, because 5' capped mRNA cannot be generated using ApG as a primer, we defined positive-strand viral RNA containing poly(A) tail at its 3’ end as mRNA. Non-specific amplification was barely detectable (Supplementary Fig. 2a, b). In the absence of the primers, cRNA and mRNA were hardly
detected, except for NP mRNA (Supplementary Fig. 2c, d). Addition of either ApG or globin mRNA primer resulted in production of 1×10^5–5×10^6 copies μL$^{-1}$ of cRNA and mRNA of both NP and NA segments (Supplementary Fig. 2c, d). These results demonstrated that virion-derived vRNPs produce both cRNA and mRNA in the presence of primers. Since there was no significant difference in the level of viral RNA production between ApG-primed and globin mRNA-primed samples, we used ApG as a primer in subsequent ultrastructural analysis.

During viral RNA synthesis, vRNPs show two distinctive structures

Although vRNPs are helical rod-shaped structures in a static state, it is possible that they may change their conformations during viral RNA synthesis. To investigate near-native vRNP structures producing nascent viral RNA, we employed HS-AFM, which can provide topographic images in solution by scanning sample surfaces with a probe tip, without fixation or staining (35). After *in vitro* RNA synthesis, vRNPs were adsorbed onto a mica substrate and were visualized in solution. Without the primer, after *in vitro* RNA synthesis, vRNPs appeared as rod-shaped structures with helical grooves (Fig. 1c), which is typical of vRNP structures visualized by negative-staining EM (5). Immediately after adding ApG primer (0 min), vRNPs maintained helical rod-shaped structures (Fig.
However, after a 15-min incubation with ApG primer, vRNPs showed distinctive structures that were associated with potentially nascent viral RNA. On the basis of their configurations, we classified vRNP-RNA complexes into two groups: helical rod-shaped vRNPs associated with a structured RNA (Fig. 1e, f, Supplementary Fig. 3), and deformed vRNPs associated with a looped RNA (Fig. 1g, h). The configuration of vRNPs bound to the structured RNA appeared similar to those of control vRNPs (Fig. 1c). Their diameters were almost uniform and helical grooves could be observed along entire rod-shaped vRNPs, suggesting no apparent conformational changes. Structured RNAs, which seem to contain some secondary structures, were associated not only with the tip (Fig. 1e, Supplementary Fig. 3a), but also with the bodies of helical rod-shaped vRNPs (Fig. 1f, Supplementary Fig. 3b). By contrast, the configuration of vRNPs associated with looped RNAs was substantially deformed, such that helical grooves of the vRNPs had disappeared (Fig. 1g, h). vRNPs associated with looped RNA comprised 30.2% of all vRNP-RNA complexes (N = 96).

To exclude the possibility that vRNPs became physically deformed after being tapped with the AFM probe tip, we observed unstained frozen-hydrated samples of vRNP-RNA complexes using cryo-EM. Both helical rod-shaped vRNPs associated with structured RNA (Fig. 2a) and deformed vRNPs associated with looped RNA (Fig. 2b)
appeared similar to those observed with HS-AFM, suggesting that deformation of vRNPs occurs during RNA synthesis. To further investigate the configuration of vRNP-RNA complexes in more detail, we performed low-dose cryo-electron tomography (cryo-ET) to analyse their three-dimensional structure. A vRNP without in vitro RNA synthesis showed a double helical structure with several grooves (Fig. 2c), consistent with vRNPs reconstructed by single-particle cryo-EM (7, 8, 31). The tomographic reconstruction of a deformed vRNP was able to resolve the continuous RNA loop associated with the deformed vRNP (Fig. 2d), where both ends of the loop structure were located relatively close to each other on the deformed vRNP, suggesting that the viral RNA polymerase exists at the looped RNA-binding site, although its structure was not resolved. Interestingly, we found that the vRNP partially maintained a double helical structure at one end, and only the portion to which both ends of the looped RNA were bound was deformed (Fig. 2d), suggesting that deformation of the helical rod-shaped vRNP is likely participating in RNA synthesis. Unfortunately, the helical rod-shaped vRNP associated with a structured RNA could not be technically reconstructed, because RNAs with pleomorphic structure were not visible enough for cryo-ET due to low-contrast images of cryo-EM, as shown previously (31).
Both structured and looped RNAs associated with vRNPs are viral RNA products

Next, to determine whether the observed structured and looped RNAs are products synthesized by vRNPs, we used a nucleotide analogue, 5-bromo-UTP (Br-UTP), for in vitro RNA synthesis. When Br-UTP was used for in vitro RNA synthesis instead of UTP, both structured and looped RNAs associated with vRNPs were similarly observed (Fig. 3a, b, respectively). On incubation with the antibody, which reacts with Br-UTP present only in a single-strand RNA, specific binding of the antibody to the structured RNAs was observed (Fig. 3c, Supplementary Fig. 4), whereas the antibody did not react with structured RNAs produced by in vitro RNA synthesis using UTP (Fig. 3e), indicating that the structured RNAs are single-strand, nascent RNAs synthesized by the associated vRNPs. By contrast, the antibody did not bind to looped RNAs produced during in vitro RNA synthesis using Br-UTP (Fig. 3d) or UTP (Fig. 3f). Since the looped RNA has no secondary structure, we presumed that it might be double-stranded RNA (dsRNA). To test this hypothesis, RNase for digesting either single-stranded RNA (RNase A) or dsRNA (RNase III) was added to the looped RNAs and examined in situ using HS-AFM. With RNase A treatment, one end of the looped RNA was often detached from the vRNP and became straight, but the looped RNA itself was not digested, suggesting that it is double-stranded except at one end (Fig. 4a, Supplementary movie 1). In contrast, RNase III
digested looped RNAs (Fig. 4b, Supplementary movie 2). Upon binding, the RNase III molecule immediately digested the RNA, which was further shortened by sequential binding of more RNase III molecules, confirming that the looped RNA was dsRNA. This finding was further verified using anti-dsRNA antibody. The antibodies efficiently recognised the looped RNA associated with vRNPs (Fig. 4c, Supplementary movie 3), while only a few antibody molecules were bound to parts of the structured RNA, probably through stem-loop regions within the single-stranded RNA (Fig. 4d, Supplementary movie 4). Then, do influenza viruses generate dsRNA during the transcription and replication? To address this question, Vero cells were infected with PR8 virus and were subjected to immunofluorescence assay (IFA) by using anti-dsRNA antibody. At 10 h post infection, dsRNAs were detected in the nucleus of infected cells (Fig. 4e), but not in mock-infected cells, suggesting that influenza viruses produce dsRNA and that the deformed vRNP structures associating with the looped RNA may also be produced in the infected cells.

Next, to determine whether double-stranded, looped RNA contains nascent RNA, we used 5-ethynyl-UTP (EUTP) for *in vitro* RNA synthesis and evaluated its incorporation into looped RNAs using Click chemistry. A Click reaction with biotin-azide was followed by incubation with streptavidin, and specific binding of streptavidin to
looped RNAs was confirmed with HS-AFM (Fig. 3g). However, without streptavidin (Supplementary Fig. 5a) or a Click reaction (Supplementary Fig. 5b), during *in vitro* RNA synthesis using UTP as a substrate (Fig. 3h), binding of streptavidin to the looped RNAs was not observed, suggesting that double-stranded, looped RNAs encompass nascent viral RNAs produced by associated vRNPs. Taken together, these results indicate that both structured and double-stranded looped RNAs associated with vRNPs are viral RNA products formed during *in vitro* RNA synthesis.

vRNA is partially dissociated from deformed vRNP associated with looped dsRNA

Given that looped dsRNA contains a single-strand nascent viral RNA, it is likely that its counterpart is the template vRNA dissociated from the deformed vRNP during RNA synthesis. Hence, it is expected that deformed vRNPs have lower structural stability than intact vRNPs due to loss of its vRNA as a structural component. To determine whether deformed vRNPs lose the vRNA, at least in part, we examined the structural stability of vRNPs by applying force with the cantilever tip during HS-AFM imaging (Fig. 5). Since vRNAs within vRNPs are sensitive to RNase (36), vRNPs treated with a low concentration of RNase A were prepared as control vRNPs that lacked intact residential vRNA (Supplementary Fig. 6). Although vRNPs treated with RNase A maintained their
helical rod-shaped structures, they were easily broken with significantly less force (Fig. 5a, the bottommost panel) than those vRNPs untreated with RNase A (Fig. 5a, the uppermost panel). vRNPs associated with structured viral RNA were physically stable, much as intact vRNPs, whereas vRNPs associated with double-stranded, looped viral RNA were broken with significantly less force, as is the case with RNase A-treated vRNPs (Fig. 5a, b). Collectively, these results strongly suggest that at least some parts of template vRNA are detached from NPs of vRNP during RNA synthesis, resulting in formation of double-stranded, looped RNA with nascent viral RNA, and consequent deformation of helical rod-shaped vRNPs.
Discussion

vRNP is responsible for transcription and replication of the influenza virus genome. Thus far, details of its structure during viral RNA synthesis have been largely unknown due to technical limitations. Here, we employed HS-AFM and cryo-EM to visualise near-native vRNP structures during viral RNA synthesis. By virtue of combining these techniques, we unambiguously demonstrated that two different types of vRNP-RNA complexes are produced during RNA synthesis: helical rod-shaped vRNPs with structured RNA and deformed non-helical vRNPs with looped dsRNA. Our results suggest that some vRNPs probably maintain their helical structures for repetitive transcription and/or replication; however, some vRNPs probably fail repetitive RNA synthesis due to deformation of their helical structures.

vRNP synthesizing structured viral RNA was not greatly deformed, and maintained its helical rod-shaped structure (Fig. 1e, f). The helical rod-shaped configuration of vRNP associated with structured RNA was very similar to that of the vRNPs in a static state. However, we presume that these two structures are essentially different. In vRNP in a static state, the RNA polymerase complex exists at the tip of the helical, rod-shaped vRNP, as reported (7–9). However, in vRNP synthesizing structured RNA, localization of the RNA polymerase was likely not limited to the tip of the helical
rod-shaped vRNP, since the structured viral RNA was not only associated with the tip, but also with the body of the rod-shaped vRNP (Fig. 1, Supplementary Fig. 3). In support of this observation, Coloma et al. recently reported localization of RNA polymerase on the body of the helical rod-shaped vRNP during transcription (31). Although the nascent RNA structures in their cryo-EM images were not well resolved, vRNPs they observed would correspond to vRNPs producing structured RNAs in our observations.

Although we could not determine whether structured RNA associated with the helical vRNPs was mRNA or cRNA, the vRNPs with structured RNA are consistent with the progressive helical track transcription model proposed by Coloma et al (31). Therefore, we propose that helical vRNPs with structured RNA represent the correct transcription mode, because maintenance of the helical, rod-shaped vRNP structure is favourable to commence the next round of RNA synthesis (Fig. 6). Assuming that the structured RNA is an mRNA, the 5'-terminus of vRNA is associated with RNA polymerase throughout transcription (25, 37). If the 3' end of vRNA was released from RNA polymerase in this process, the helical structure of the vRNP would be largely loosened (Supplementary Fig. 7, pattern A). However, such a loosened vRNP structure has never been observed, suggesting that the 3' end of the vRNA is not detached, which is consistent with a recent finding that the 3' end of vRNA binds to the secondary binding
site of RNA polymerase after transcription (18). Therefore, we propose that in transcription, vRNPs maintain the double-helical structure in which both 3' and 5' ends of the vRNA are bound by the RNA polymerase throughout mRNA synthesis (Supplementary Fig. 7, pattern B), which is consistent with a model that Coloma et al. recently proposed (31).

In contrast, the structure of vRNP associated with the looped RNA was largely deformed into non-helical structures, probably because the vRNA is at least partially detached from the NPs of the vRNP (Fig. 1, 2). For the next round of transcription and/or the next replication cycle, the looped dsRNA should be separated and the template vRNA should rebind to the NPs of the vRNP, so that the deformed vRNP is refolded into its native double-helical structure. Considering these complicated events, it is reasonable to presume that deformed vRNPs associated with looped RNA represent a failure of RNA synthesis (Fig. 6). If deformation of vRNPs sometimes occurs in virus-infected cells, some vRNPs would fail to produce nascent RNAs and the encoded viral proteins, while other vRNPs are successful in transcription and/or replication. Indeed, when influenza viruses are infected at low multiplicity of infection, one or more virus proteins are not expressed in some cells (38, 39). Deformation of vRNPs during transcription and/or replication might be related to such observations.
Interestingly, looped RNAs associated with deformed vRNPs were dsRNAs, which are probably composed of nascent RNA and template vRNA (Fig. 3–5). Although it was previously thought that influenza viruses do not produce dsRNA in infected cells (40, 41), dsRNAs were detected in the nuclei of virus-infected cells (Fig. 4e), suggesting that in some cases dsRNAs can be generated during transcription and replication. Although further analysis is needed, this finding suggests that looped dsRNAs observed in this study may be produced in the nuclei of influenza virus-infected cells.

In conclusion, by combining HS-AFM and cryo-EM, we found two morphologically different vRNPs during viral RNA synthesis. Our results suggest that helical structures are prerequisite for successful repetitive transcription and replication, while deformation of helical structures would represent abortive RNA synthesis. There are still many questions to be resolved. Future investigations will attempt to identify the determinants of looped RNA formation and of structured RNA synthesis, and to clarify whether certain host factors prevent abortive dsRNA formation. Our present findings provide novel insights into viral transcription and replication with strong evidence regarding the composition and mechanism of production of viral RNAs.
Methods

Purification of vRNP

Influenza A virus, A/Puerto Rico/8/34 (H1N1) (PR8), was prepared as previously reported (9). Purified PR8 virions (~5 mg mL\(^{-1}\)) were lysed in 50 mM Tris-HCl buffer (pH 8.0) containing 100 mM KCl, 5 mM MgCl\(_2\), 1 mM dithiothreitol (DTT), 2% Triton X-100, 5% glycerol, 2% lysolecithin, and 1 U \(\mu\)L\(^{-1}\) RNasin Plus RNase inhibitor (Promega) for 1 h at 30°C. The sample was ultracentrifuged through a 30–70% (w/v) glycerol gradient in Tris-NaCl buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) at 45,000 rpm for 3 h at 4°C in a SW55Ti rotor (Beckman). Collected fractions were mixed with 2× Tris-glycine SDS sample buffer (Novex) and then subjected to SDS-PAGE, in which a 4–15% Mini Protean TGX precast gel (Bio-rad) was used.

In vitro RNA synthesis using virion-derived RNPs

Purified vRNP (1–2 mg mL\(^{-1}\) for cryo-EM and 0.01 mg mL\(^{-1}\) for the other experiments) was incubated in 50 mM Tris-HCl buffer (pH 7.9) containing 5 mM MgCl\(_2\), 40 mM KCl, 1 mM DTT, 10 \(\mu\)g mL\(^{-1}\) actinomycin D, 1 mM each of ATP, CTP, GTP, and UTP, 1 U \(\mu\)L\(^{-1}\) RNasin Plus RNase inhibitor with a primer, 1 mM ApG (Iba). In some experiments, 10 \(\mu\)g mL\(^{-1}\) rabbit globin mRNA (Sigma) was used as a primer instead of ApG. The
reaction was performed at 30°C for 15 min (for ApG primer) or 30 min (for globin mRNA primer) unless otherwise noted. For detection of newly synthesized RNA by radioisotope, the same reaction mixture was used with the exception that 0.25 μCi μL⁻¹ [α-³²P] UTP and 0.05 mM UTP were added. After in vitro RNA synthesis, RNA was purified with an RNeasy Mini kit (Qiagen), mixed with equal volume of 2× RNA Loading Dye (New England Biolabs), heated at 90°C for 2 min and immediately chilled on ice. The sample was electrophoresed on 4% polyacrylamide gel containing 7 M urea in 0.5x TBE buffer (Nacalai Tesque) at 120 V for 5 h. The gel was dried at 80°C for 2 h, exposed to an imaging plate (BAS-MS 2025, Fujifilm) for 12–24 h and scanned with a Typhoon 3000 Phosphorimager (GE Healthcare). Labelling of nascent RNA with a nucleotide analogue was also performed in the same reaction mixture using 1 mM 5-bromo-UTP (Br-UTP, Sigma) or 1 mM 5-ethynyl-UTP (EUTP, Abcam) instead of UTP. Inhibition of RNA synthesis was evaluated by adding 0.1–100 μM of 6-fluoro-3-hydroxy-2-pyrazinecarboxamide-4-ribofuranosyl-5'-triphosphate (T-705RTP; kindly provided by Furuta Y., Fujifilm Toyama Chemical Co., Ltd.) to the reaction mixture.

Preparation of viral RNAs with T7 RNA polymerase

RNA standards for NP and NA segments of PR8 virus were prepared as described
previously (34). Templates containing a T7 phage promoter sequence (TAATACGACTCACTATAGGG) were amplified by PCR using sets of primers listed in Supplementary Table 1 and pPolII plasmid harbouring the sequence of each segment (42). PCR products were purified with a Min Elute Gel Extraction kit (Qiagen) and were transcribed *in vitro* with RiboMAX Large Scale RNA Production System-T7 (Promega) according to the supplier’s protocol. After RQ1 DNase I (Promega) treatment for 30 min at 37°C, transcripts were purified using an RNeasy Mini kit. The concentration of purified RNA was determined by spectrophotometry and the copy number was calculated from the molecular weight of each RNA. 1 × 10^{10} copies of RNA were subjected to electrophoresis (a 4% polyacrylamide gel containing 7 M urea) and visualised with silver staining using a Silver Staining II kit (Wako). In addition, all 8 vRNA segments of influenza A virus (A/WSN/33 strain) were similarly prepared and used as markers for electrophoresis. Template DNAs were amplified with the primers listed in Supplementary Table 2 and transcribed by T7 RNA polymerase using 0.25 μCi μL^{-1} [α-^{32}P] UTP. Transcribed RNAs were purified and mixed before electrophoresis.

Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) RT-qPCR was performed according to the protocol of Kawakami *et al.* (34). RNA
standard or in vitro transcribed virus RNA was mixed with a quarter volume of 10 μM tagged primer (for the sequence see Supplementary Table 3) and incubated at 65°C for 10 min. After immediately chilling on ice for 5 min, the mixture was pre-heated at 60°C for 5 min. Then 3 volumes of the reaction mixture (final concentration of 1× First Strand buffer (Invitrogen), 5 mM DTT, 0.5 mM each dNTP mix, 10 U μL⁻¹ Superscript III reverse transcriptase (Invitrogen), 1 U μL⁻¹ RNasin Plus RNase inhibitor: prepared with saturated trehalose and preheated at 60°C for 5 min) were added to the RNA solution at 60°C, and the mixture was further incubated for 1 h at 60°C. The reaction was stopped by heating the mixture at 85°C for 5 min, and the cDNA solution was stored on ice until use. Fifty-fold diluted cDNA solution was mixed with forward and reverse qPCR primers (each final 1 μM, for sequences see Supplementary Table 3), and an equal volume of Thunderbird SYBR qPCR mix (Toyobo) was added. The qPCR reaction was performed on Rotor-Gene Q (Qiagen) and the conditions were 95°C for 1 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 30 sec. For absolute quantitation, 10-fold serial dilutions (1 × 10⁹–1 × 10⁴ copies μL⁻¹) of synthetic RNA standards prepared as described above were used to generate a standard curve. The copy number was calculated from the standard curve with a strong linear correlation (R² > 0.99) and amplification efficiency between 95 and 105%.
High-speed atomic force microscopy (HS-AFM)

Samples for HS-AFM imaging were prepared in a microcentrifuge tube, dropped onto freshly cleaved mica without surface modification, and incubated for the desired time (generally 1–5 min) at room temperature. The mica surface was then washed sufficiently with imaging buffer (50 mM Tris-HCl (pH 7.9), 5 mM MgCl₂, 40 mM KCl, 1 mM DTT). The sample was observed in the imaging buffer at room temperature using an HS-AFM System (Nano Explorer, RIBM). Images were taken at 2 images s⁻¹ using cantilevers with a 0.1 N m⁻¹ spring constant and a resonance frequency in water of 0.6 MHz (BL-AC10DS, Olympus). In order to acquire high-resolution images, the electron beam-deposited tips were fabricated using phenol or ferrocene powder, as described in Uchihashi et al (43). Incorporation of Br-UTP into nascent RNA was confirmed by incubating in vitro transcripts with 0.1 mg mL⁻¹ monoclonal anti-5-bromodeoxyuridine antibody (SAB4700630, Sigma) for 2 h at 4°C in a microcentrifuge tube and imaging the sample with HS-AFM. Production of the dsRNA was examined by adding 1 μg mL⁻¹ J2 antibody (10010200, Scicons) to the reaction mixture in a microcentrifuge tube, incubating for 2 h at 4°C, and observing it by HS-AFM. In situ observation of RNA digestion by each RNase was performed by adding 1/10 volume of the indicated concentration of RNase A
(Epicentre) or ShortCut RNase III (New England Biolabs) to the AFM liquid cell during imaging. At least five independent experiments were performed for each RNase. All HS-AFM images were viewed and analysed with Kodec 4.4.7.39 (44). A low-pass filter and a flattening filter were applied to individual images to remove spike noise and to make the xy-plane flat, respectively.

Cryo-electron microscopy (Cryo-EM)

One microliter of reaction solution of the vRNP was applied to a glow-discharged holey carbon grid (Quantifoil R1.2/1.3, Cu 300 mesh) and blotted manually, followed by application of 2 μL of reaction solution, blotting and rapid freezing in liquid ethane on a Vitrobot Mark IV (Thermo Fisher Scientific). Images were recorded close to focus with a Volta phase plate on a Talos Arctica electron microscope equipped with a Falcon III camera (Thermo Fisher Scientific) in integrating mode. The total dose during a single exposure was ~40 electrons/Å².

For cryo-electron tomography, 2 μL of reaction solution of the vRNP mixed with colloidal gold (1.9 nm or 5 nm diameter) were applied to glow-discharged holey carbon grids (C-Flat CF-MH-2C, Protochips Inc.) and rapidly frozen in liquid ethane on a Vitrobot Mark IV (Thermo Fisher Scientific). Images were recorded on a Titan Krios electron
microscope equipped with a Falcon II camera (Thermo Fisher Scientific). Tilt series were acquired from −60° to 60° with 2° steps using the Leginon System (45). The total dose during a single tilt series was 120 electrons/Å². Tilt series data were processed in IMOD (46) by using gold particles as fiducial markers for manual image registration after 2× binning (final voxel size 4.4 Å³). A tomogram of the entire field of view was reconstructed using SIRT (Simultaneous Iterative Reconstruction Technique). Volumes of interest were extracted from the reconstructed 3D tomogram and visualised with IMOD and AMIRA 6.1 (Thermo Fisher Scientific). Consecutive Z-projections were generated using ImageJ (47).

Modification of RNA using Click chemistry

A Click-iT RNA Imaging kit was purchased from Invitrogen. After in vitro RNA synthesis with EUTP, the sample was deposited on mica and incubated for 3 min at room temperature. The mica surface was washed with imaging buffer and the following reactions were all performed on mica without drying the surface. Imaging buffer on the mica surface was replaced with Click-iT reaction cocktail (Click-iT RNA reaction buffer containing 4 mM CuSO₄, 0.02 mg mL⁻¹ biotin azide (Thermo Fisher Scientific), and 0.1× Click-iT reaction buffer additive) and incubated for 30 min under light-shielding. The
mica surface was then washed with imaging buffer and the buffer was replaced with 0.1 mg mL\(^{-1}\) of streptavidin solution (Jackson ImmunoResearch). After 15 min of incubation at room temperature, the mica surface was washed again with imaging buffer for the HS-AFM observation.

Immunofluorescence assay (IFA)

Vero cells (ATCC CCL-81) were grown in Eagle’s minimum essential medium and seeded on 35-mm glass bottom dish (Matsunami Glass) coated with rat collagen I (Corning) one day before infection. Cells were infected with PR8 virus at MOI of 0.1 and incubated for 10 h in minimum essential medium (Gibco) containing 0.3% BSA. Infected cells were fixed in 4% paraformaldehyde (Nacalai Tesque) for 10 min and permeabilized with 0.1% Triton X-100 in PBS for 10 min. Cells were then washed with PBS and blocked with Blocking One (Nacalai Tesque) for 30 min. After blocking, cells were incubated with anti-NP rabbit polyclonal (GTX125989, GeneTex) and anti-dsRNA mouse monoclonal antibody J2 (10010200, Scicons) overnight at 4°C. Cells were washed with PBS and incubated in Alexa Fluoro 488-conjugated anti-mouse antibody (A11001, Thermo Fisher Scientific) and Hoechst 33342 (Thermo Fisher Scientific) for 1 h at 4°C. After incubation, cells were washed with PBS and incubated in Alexa Fluoro 555-conjugated anti-rabbit
antibody (A21248, Thermo Fisher Scientific) for 1 h at room temperature. All antibodies were diluted in PBS with 10% Blocking One. Section images were recorded and deconvolved using DeltaVision Elite system (GE healthcare) with a 60× oil immersion objective on an Olympus IX71 microscope.

Force measurement by HS-AFM

To measure the force applied to the sample surface, two types of HS-AFM images were taken simultaneously: topographic images and amplitude images. By measuring the thermal noise and the InvOLS (inverse optical lever sensitivity) value [nm V⁻¹] of deflection signal of a cantilever, we determined the spring constant \(k_c \) [pN nm⁻¹] and quality factor \(Q_c \) of the cantilever as described previously (48). Determined \(k_c \) values were in good agreement with nominal values reported by the manufacturer. During observation, the vRNP was destroyed by gradually lowering the set point. Whether the vRNP was destroyed was judged from the apparent change in the height of the vRNP. After imaging, the amplitude value [V] at the frame in which vRNP was destroyed was measured from the amplitude image, and the obtained value was converted into \(A_{sp} \) [nm] using the InvOLS value described above. The free cantilever oscillation amplitude \(A_0 \) was measured by releasing the cantilever from the sample surface. The average tip-sample
interaction force $<F_{ts}>$ was calculated using the following equation, $<F_{ts}> = k_c (A_0^2 - A_{sp}^2)^{1/2} / Q_c$ (49). For preparation of the control vRNP, we treated 0.01 mg mL$^{-1}$ of vRNP with 0.05 μg mL$^{-1}$ of RNase A for 10 min at 37°C. Degradation of the vRNA was confirmed by RT-PCR using primers for detecting the full-length NP segment.
References

1. Eisfeld, A.J., Neumann, G. & Kawaoka, Y. At the centre: influenza A virus ribonucleoproteins. *Nat. Rev. Microbiol.* **13**, 28–41 (2015).

2. Ortin, J. & Martin-Benito, J. The RNA synthesis machinery of negative-stranded RNA viruses. *Virology* **479–480**, 532–544 (2015).

3. te Velthuis, A.J. & Fodor, E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. *Nat. Rev. Microbiol.* **14**, 479–493 (2016).

4. Pflug, A., Lukarska, M., Resa-Infante, P., Reich, S. & Cusack, S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. *Virus Res.* **234**, 103–117 (2017).

5. Compans, R.W., Content, J. & Duesberg, P.H. Structure of the ribonucleoprotein of influenza virus. *J. Virol.* **10**, 795–800 (1972).

6. Jennings, P.A., Finch, J.T., Winter, G. & Robertson, J.S. Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? *Cell* **34**, 619–627 (1983).

7. Moeller, A., Kirchdoerfer, R.N., Potter, C.S., Carragher, B. & Wilson, I.A. Organization of the influenza virus replication machinery. *Science* **338**, 1631–1634 (2012).
8. Arranz, R. et al. The structure of native influenza virion ribonucleoproteins. *Science* **338**, 1634–1637 (2012).

9. Sugita, Y., Sagara, H., Noda, T. & Kawaoka, Y. Configuration of viral ribonucleoprotein complexes within the influenza A virion. *J. Virol.* **87**, 12879–12884 (2013).

10. Blaas, D., Patzelt, E. & Kuechler, E. Identification of the cap binding protein of influenza virus. *Nucleic Acids Res.* **10**, 4803–4812 (1982).

11. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. *Nat. Struct. Mol. Biol.* **15**, 500–506 (2008).

12. Plotch, S.J., Bouloy, M., Ulmanen, I. & Krug, R.M. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. *Cell* **23**, 847–858 (1981).

13. Yuan, P. et al. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. *Nature* **458**, 909–913 (2009).

14. Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. *Nature* **458**, 914–918 (2009).

15. Reich, S. et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. *Nature* **516**, 361–366 (2014).
16. Robertson, J.S., Schubert, M. & Lazzarini, R.A. Polyadenylation sites for influenza virus mRNA. *J. Virol.* **38**, 157–163 (1981).

17. Poon, L.L., Pritlove, D.C., Sharps, J. & Brownlee, G.G. The RNA polymerase of influenza virus, bound to the 5’ end of virion RNA, acts in cis to polyadenylate mRNA. *J. Virol.* **72**, 8214–8219 (1998).

18. Wandzik, J.M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. *Cell* **181**, 877–893 (2020).

19. Hay, A.J., Skehel, J.J. & McCauley, J. Characterization of influenza virus RNA complete transcripts. *Virology* **116**, 517–522 (1982).

20. Honda, A., Ueda, K., Nagata, K., & Ishihama, A. RNA polymerase of influenza virus: Role of NP in RNA chain elongation. *J. Biochem.* **104**, 1021–1026 (1988).

21. York, A., Hengrung, N., Vreede, F.T., Huiskonen, J.T. & Fodor, E. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. *Proc. Natl. Acad. Sci. USA* **110**, E4238–4245 (2013).

22. Turrell, L., Lyall, J.W., Tiley, L.S., Fodor, E. & Vreede, F.T. The role and assembly mechanism of nucleoprotein in influenza A virus ribonucleoprotein complexes. *Nat. Commun.* **4**, 1591 (2013).

23. Jorba, N., Coloma, R. & Ortin, J. Genetic trans-complementation establishes a
new model for influenza virus RNA transcription and replication. *PLoS Pathog*. **5**, e1000462 (2009).

24. Fan, H. et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. *Nature* **573**, 287–290 (2019).

25. Pflug, A., Guilligay, D., Reich, S. & Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. *Nature* **516**, 355–360 (2014).

26. Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. *Nature* **527**, 114–117 (2015).

27. Lukarska, M. et al. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. *Nature* **541**, 117–121 (2018).

28. Serna Martin, I. et al. A mechanism for the activation of the influenza virus transcriptase. *Mol. Cell* **70**, 1101–1110 (2018).

29. Kouba, T., Drncova, P. & Cusack, S. Structural snapshots of actively transcribing influenza polymerase. *Nat. Struct. Mol. Biol.* **26**, 460–470 (2019).

30. Peng, Q. et al. Structural insight into RNA synthesis by influenza D polymerase. *Nat. Microbiol*. **4**, 1750–1759 (2019).

31. Coloma, R. et al. Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. *Nat. Microbiol*. **5**, 727–734
32. Vreede, F.T. & Brownlee, G.G. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. *J. Virol.* **81**, 2196–2204 (2007).

33. Furuta, Y. et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. *Antiviral Res.* **100**, 446–454 (2013).

34. Kawakami, E. et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. *J. Virol. Methods* **173**, 1–6 (2011).

35. Ando, T. High-speed atomic force microscopy. *Curr. Opin. Chem. Biol.* **51**, 105–112 (2019).

36. Baudin, F., Bach, C., Cusack, S. & Ruigrok, R.W. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. *EMBO J.* **13**, 3158–3165 (1994).

37. Pritlove, D.C., Poon, L.L., Fodor, E., Sharps, J. & Brownlee, G.G. Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5' conserved sequences. *J. Virol.* **72**, 1280–1286 (1998).

38. Martin, K. & Helenius, A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. *Cell* **67**, 117–130 (1991).
39. Brooke, C.B. et al. Most influenza a virions fail to express at least one essential
viral protein. *J. Virol.* **87**, 3155–3162 (2013).

40. Weber, F., Wagner, V., Rasmussen, S.B., Hartmann, R. & Paludan, S.R. Double-
stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in
detectable amounts by negative-strand RNA viruses. *J. Virol.* **80**, 5059–5064 (2006).

41. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA
bearing 5′-phosphates. *Science* **314**, 997–1001 (2006).

42. Neumann, G. et al. Generation of influenza A viruses entirely from cloned
cDNAs. *Proc. Natl. Acad. Sci. USA* **96**, 9345–9350 (1999).

43. Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure
dynamics and dynamic processes of proteins by high-speed atomic force microscopy.

Nat. Protoc. **7**, 1193–1206 (2012).

44. Ngo, K.X., Kodera, N., Katayama, E., Ando, T. & Uyeda, T.Q. Cofilin-induced
unidirectional cooperative conformational changes in actin filaments revealed by high-
speed atomic force microscopy. *Elife* **4**, e04806 (2015).

45. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. *J.
Struct. Biol.* **151**, 41–60 (2005).

46. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of
three-dimensional image data using IMOD. *J. Struct. Biol.* **116**, 71–76 (1996).

47. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* **9**, 671–675 (2012).

48. Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M. & Scheuring, S. High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. *Science* **342**, 741–743 (2013).

49. Garcia, R. *Amplitude modulation Atomic Force Microscopy* (Wiley, 2010).
Acknowledgements

We thank Yousuke Furuta for providing us with T-705RTP; Yoshihiro Kawaoka for providing us with plasmids; Ichiro Taniguchi, Keiko Shindo, Akiko Makino, and Keizo Tomonaga for technical assistance; Akira Ishihama for helpful discussion; Toshio Ando and Takayuki Uchihashi for technical support and valuable discussions at Bio-AFM Summer School 2014 held at Kanazawa University. We also thank Editage (www.editage.com) for English language editing. We thank Steven D. Aird for technical editing (www.sda-technical-editor.org). This work was supported by a JSPS Grant-in-Aid for Scientific Research (C) (16K08808, 19K07575) (to MN), a JSPS Grant-in-Aid for Early-Career Scientists (19K16667), a Research Grant from the Kazato Research Encouragement Prize (to YS), an AMED Platform project for Supporting Drug Discovery and Life Science Research (BINDS) (JP18am0101076) (to MW), a Japan Science and Technology Agency PRESTO grant (JPMJPR13L9), a JSPS Grant-in-Aid for Scientific Research (B) (17H04082, 20H03494), a JSPS Grant-in-Aid for Challenging Research (Exploratory) (19K22529), JSPS Core-to-Core Program A, a MEXT Grant-in-Aid for Scientific Research on Innovative Area (19H04831), an AMED Research Program on Emerging and Re-emerging Infectious Disease grants (19fk0108113, 20fk0108270h0001), a Grant from the Daiichi Sankyo Foundation of Life Science, and
the Uehara Memorial Foundation (to TN), and grants from the Joint Research Project of
the Institute of Medical Science, the University of Tokyo, the Joint Usage/Research
Center program of Institute for Frontier Life and Medical Sciences Kyoto University, and
the Takeda Science Foundation (to YS and TN). MW was supported by direct funding
from Okinawa Institute of Science and Technology Graduate University.

Author contributions
MN and TN designed the study. MN, YS, NK, SM, and YM performed the experiments.
MN, YS, NK, and TN analysed data. MN, YS, MW, and TN wrote the manuscript. All
authors reviewed and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://
Correspondence and requests for materials should be addressed to T.N.
Reprints and permission information are available at www.nature.com/reprints.
Fig. 1. HS-AFM observation of vRNPs during RNA synthesis.

a, Primer-dependent in vitro RNA synthesis using virion-derived vRNPs. RNA was synthesized in vitro using ApG or globin mRNA as a primer with 30 min incubation. As a negative control, the reaction mixture was used without primer. A mixture of eight influenza A virus vRNA segments (Pols indicates 3 polymerases, PB2, PB1, and PA) transcribed by T7 RNA polymerase was loaded in the leftmost lane (T7) for evaluation of sizes of the newly synthesized RNAs.

b, Inhibition of in vitro RNA synthesis by T-705RTP. RNA was synthesized in vitro using ApG in the presence of the indicated concentration of T-705RTP. All purified RNA samples were analysed on a 4% polyacrylamide gel containing 7 M urea and detected by autoradiography.

c, As a negative control for the HS-AFM observation, the reaction mixture omitting a primer was used.

d–h, Virion-derived vRNPs were subjected to in vitro RNA synthesis using ApG as a primer. After incubation for 0 min (d) or 15 min (c, e–h), samples were observed with HS-AFM. Structured and looped RNAs associated with the helical (e, f) and deformed vRNPs (g, h), respectively, were observed as indicated by arrows at the different positions in the same samples. Scale bars on all images represent 50 nm.
Fig. 2. Cryo-EM observation of vRNPs during RNA synthesis.
An in vitro RNA synthesis reaction was performed in the presence of ApG, and was observed with cryo-EM in vitreous ice. Structured RNAs (a, arrows) and looped RNAs (b, arrows) associated with vRNPs were observed. Scale bars represent 50 nm. (c, d) Cryo-ET analysis of vRNPs during RNA synthesis. c, Cryo-ET observations of vRNP without RNA synthesis. d, Cryo-ET observations of vRNP with RNA synthesis. Left panels: Consecutive Z-projections generated from tomograms; Thickness in Z is 44 nm (c) and 88 nm (d). Right panels: 3D reconstruction of vRNP segmented from the tomograms. The vRNP and RNA are coloured in blue and red, respectively. Scale bars on all images represent 20 nm.
Fig. 3. Incorporation of nucleotide analogues into newly synthesized RNAs.

a-d, Br-UTP was used for in vitro RNA synthesis instead of UTP and HS-AFM images were taken without (a, b) or with (c, d) adding an antibody against Br-UTP. Binding of anti-Br-UTP antibodies was confirmed on structured RNAs (c, arrows) while no binding was observed on looped RNAs (d). Section analysis of the image (c) is shown in Fig. S4. e, f, vRNPs were in vitro transcribed using UTP and anti-Br-UTP antibody was added to the mixture. g, Confirmation of the incorporation of EUTP into looped RNA using Click chemistry. Streptavidin molecules binding to looped RNA are indicated by arrows. h, Negative control of the Click reaction. The sample was prepared using UTP instead of EUTP. Each of these results was reproduced at least 3 times. Scale bars, 50 nm.
Fig. 4. Production of a double-stranded RNA by vRNP.

a, b, Digestion of looped RNAs with RNases. During HS-AFM observation of looped RNA associated with vRNP, RNase A (a) or RNase III (b) was added to the liquid chamber at a final concentration of 0.5 μg mL\(^{-1}\) or 0.02 U μL\(^{-1}\), respectively. Five images were arbitrarily selected from each movie at the indicated times. One end of the looped RNA was detached from vRNP by adding RNase A at the position indicated by arrows (a). By contrast, RNase III digested looped RNA where the RNase bound (b, arrows). Scale bars represent 100 nm.

c, d, Binding of anti-dsRNA antibodies to RNA associated with the vRNP. Antibodies bound to looped RNA (c) and to structured RNA (d) are indicated by arrows. Results were reproduced at least 5 times. Scale bars in c, d represent 50 nm.

e, Detection of dsRNA in virus-infected cells by IFA. Vero cells were infected with influenza virus PR8 strain at MOI of 0.1. Infected cells were fixed at 10 h post-infection and double-stained with anti-NP and anti-dsRNA antibodies. Cell nuclei were stained with Hoechst. Scale bars, 20 μm.
Fig. 5. Deformation of vRNP by releasing the residential vRNA.

a, Deformation of vRNPs with the AFM probe tip. vRNP without a nascent RNA, with a structured RNA or with a looped RNA was deformed by applying force with the cantilever tip during the HS-AFM observation. As a control for the vRNP lacking its intact vRNA, the vRNP pre-treated with RNase A was also deformed. When the vRNP was confirmed as deformed (arrows), the force was measured as described in the Methods. Image sets are representative of 5 vRNPs of each sample and average forces required for deforming vRNPs are calculated.

b, Structural stability of vRNP during RNA synthesis. The force required for deforming the vRNP without nascent RNA was set as 100% and the relative force of each sample is shown. Significance was determined using the Tukey-Kramer multiple comparison test (*, $P < 0.05$) in R software. Error bars represent the standard deviation of five independent measurements (n.s. = “not significant”).
Fig. 6. Model for synthesis of nascent viral RNAs by influenza vRNPs.
When structured viral RNA is synthesized, the vRNP keeps its helical rod-shaped structure and the vRNP is used in next round of transcription and/or replication (upper). In contrast, when looped dsRNA is produced, the vRNP disrupts its helical rod-shaped structure because it loses the residential vRNA. As a result, such deformed vRNP cannot proceed to the next round of transcription and/or replication cycle (lower).
Figure 1

HS-AFM observation of vRNPs during RNA synthesis. a, Primer-dependent in vitro RNA synthesis using virion-derived vRNPs. RNA was synthesized in vitro using ApG or globin mRNA as a primer with 30 min incubation. As a negative control, the reaction mixture was used without primer. A mixture of eight
influenza A virus vRNA segments (Pols indicates 3 polymerases, PB2, PB1, and PA) transcribed by T7 RNA polymerase was loaded in the leftmost lane (T7) for evaluation of sizes of the newly synthesized RNAs. b, Inhibition of in vitro RNA synthesis by T-705RTP. RNA was synthesized in vitro using ApG in the presence of the indicated concentration of T-705RTP. All purified RNA samples were analysed on a 4% polyacrylamide gel containing 7 M urea and detected by autoradiography. c, As a negative control for the HS-AFM observation, the reaction mixture omitting a primer was used. d–h, Virion-derived vRNPs were subjected to in vitro RNA synthesis using ApG as a primer. After incubation for 0 min (d) or 15 min (c, e–h), deformed vRNPs (g, h), respectively, were observed as indicated by arrows at the different positions in the same samples. Scale bars on all images represent 50 nm.
Cryo-EM observation of vRNPs during RNA synthesis. An in vitro RNA synthesis reaction was performed in the presence of ApG, and was observed with cryo-EM in Scale bars represent 50 nm. (c, d) Cryo-ET analysis of vRNPs during RNA synthesis. c, Cryo-ET observations of vRNP without RNA synthesis. d, Cryo-ET observations of vRNP with RNA synthesis. Left panels: Consecutive Z-projections generated from tomograms; Thickness in Z is 44 nm (c) and 88 nm (d). Right panels: 3D reconstruction of vRNP segmented from the tomograms. The vRNP and RNA are coloured in blue and red, respectively. Scale bars on all images represent 20 nm.
Figure 3

Incorporation of nucleotide analogues into newly synthesized RNAs. a-d, Br-UTP was used for in vitro RNA synthesis instead of UTP and HS-AFM images were taken without (a, b) or with (c, d) adding an antibody against Br-UTP. Binding of anti-Br-UTP antibodies was confirmed on structured RNAs (c, arrows) while no binding was observed on looped RNAs (d). Section analysis of the image (c) is shown in Fig. S4. e, f, vRNPs were in vitro transcribed using UTP and anti-Br-UTP antibody was added to the mixture. g, Confirmation of the incorporation of EUTP into looped RNA using Click chemistry. Streptavidin molecules binding to looped RNA are indicated by arrows. h, Negative control of the Click reaction. The sample was prepared using UTP instead of EUTP. Each of these results was reproduced at least 3 times. Scale bars, 50 nm.
Figure 4

Production of a double-stranded RNA by vRNP. a, b, Digestion of looped RNAs with RNases. During HS-AFM observation of looped RNA associated with vRNP, RNase A (a) or RNase III (b) was added to the liquid chamber at a final concentration of 0.5 μg mL⁻¹ or 0.02 U μL⁻¹, respectively. Five images were arbitrarily selected from each movie at the indicated times. One end of the looped RNA was detached from vRNP by adding RNase A at the position indicated by arrows (a). By contrast, RNase III digested...
looped RNA where the RNase bound (b, arrows). Scale bars represent 100 nm. c, d, Binding of anti-dsRNA antibodies to RNA associated with the vRNP. Antibodies bound to looped RNA (c) and to structured RNA (d) are indicated by arrows. Results were reproduced at least 5 times. Scale bars in c, d represent 50 nm. e, Detection of dsRNA in virus-infected cells by IFA. Vero cells were infected with influenza virus PR8 strain at MOI of 0.1. Infected cells were fixed at 10 h post-infection and double-stained with anti-NP and anti-dsRNA antibodies. Cell nuclei were stained with Hoechst. Scale bars, 20 μm.

Figure 5

Deformation of vRNP by releasing the residential vRNA. a, Deformation of vRNPs with the AFM probe tip. vRNP without a nascent RNA, with a structured RNA or with a looped RNA was deformed by applying force with the cantilever tip during the HS-AFM observation. As a control for the vRNP lacking its intact vRNA, the vRNP pre-treated with RNase A was also deformed. When the vRNP was confirmed as deformed (arrows), the force was measured as described in the Methods. Image sets are representative of 5 vRNPs of each sample and average forces required for deforming vRNPs are calculated. b, Structural stability of vRNP during RNA synthesis. The force required for deforming the vRNP without nascent RNA
was set as 100% and the relative force of each sample is shown. Significance was determined using the Tukey-Kramer multiple comparison test (*, P < 0.05) in R software. Error bars represent the standard deviation of five independent measurements (n.s. = “not significant”).

Figure 6

Model for synthesis of nascent viral RNAs by influenza vRNPs. When structured viral RNA is synthesized, the vRNP keeps its helical rod-shaped structure and the vRNP is used in next round of transcription and/or replication (upper). In contrast, when looped dsRNA is produced, the vRNP disrupts its helical rod-shaped structure because it loses the residential vRNA. As a result, such deformed vRNP cannot proceed to the next round of transcription and/or replication cycle (lower).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymovie1.mp4
- Supplementarymovie2.mp4
- Supplementarymovie3.mp4
- Supplementarymovie4.mp4
- 210202NakanoSupplementalInformationCommunBiolXXXXXXX.pdf