Recent Developments in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis

Advait S. Nagle,† Shilpi Khare,‡ Arun Babu Kumar,‡ Frantisek Supek,† Andriy Buchynskyy,‡ Casey J. N. Mathison,† Naveen Kumar Chennamaneni,§ Nagendar Pendem,‖ Frederick S. Buckner,‖ Michael H. Gelb,†§ and Valentina Molteni*†

†Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
‡Departments of Chemistry,§Biochemistry, and‖Medicine, University of Washington, Seattle, Washington 98195, United States

CONTENTS

1. Introduction to Leishmaniasis 11305
2. Background of Leishmaniasis 11306
2.1. History and Biology of Leishmaniasis 11306
2.2. Clinical Description and Diagnosis of Leishmaniasis 11308
2.2.1. Visceral Leishmaniasis and Post Kala Azar Dermal Leishmaniasis 11308
2.2.2. Cutaneous and Mucocutaneous Leishmaniasis 11309
2.3. Epidemiology of Leishmaniasis 11309
2.3.1. Visceral Leishmaniasis and Post Kala Azar Leishmaniasis 11309
2.3.2. Cutaneous Leishmaniasis 11310
2.4. Current Treatments 11310
2.4.1. Pentavalent Antimonials 11311
2.4.2. Pentamidine 11312
2.4.3. Amphotericin B 11312
2.4.4. Paromomycin 11313
2.4.5. Miltefosine 11313
2.4.6. Ketoconazole 11313
2.4.7. Treatments with Drug Combinations 11313
3. Drug Discovery for Leishmaniasis 11314
3.1. Repurposing Efforts for Leishmaniasis 11315
3.1.1. Tamoxifen 11315
3.1.2. PI3 Kinase Inhibitors 11315
3.1.3. Nitromidazoles 11315
3.1.4. Nelfinavir 11315
3.1.5. Imipramine 11315
3.2. Antileishmanials from Phenotypic Efforts 11316
3.2.1. Lead Structures Resulting from Phenotypic Screens 11316
3.2.2. Natural Products 11317
3.2.3. Natural Product Derived Compounds 11318
3.2.4. Derivatives of Anti-Infective Scaffolds 11318
3.3. Targeted Approaches toward Novel Leishmaniasis Therapies 11322
3.3.1. Kinases 11323
3.3.2. Folate Biosynthesis 11323
3.3.3. Trypanothione Pathway 11324
3.3.4. Cyclophilins 11325
3.3.5. Purine Salvage Pathway 11325
3.3.6. Topoisomerase 11325
3.3.7. Proteases 11328
3.3.8. Cysteine Protease 11328
3.3.9. Aspartic Protease 11329
3.3.10. Serine Protease and Metalloprotease 11329
3.3.11. Phosphodiesterase 11329
3.3.12. Tubulin 11329
4. Introduction to Human African Trypanosomiasis (HAT) and Clinical Description 11330
5. Background of HAT 11330
5.1. History and Epidemiology of HAT 11330
5.2. Biology of HAT 11331
6. Drug Discovery for HAT 11332
6.1. Current Treatments 11332
6.2. Drug Candidates in Clinical Trials for HAT: Fexinidazole and Oxaborole SCYX-7158 11333
6.3. Amidines and Diamidines 11333
6.4. Natural Product Derived Compounds 11334
6.5. Lead Structures Resulting from Phenotypic Screens 11335
6.6. Target Based Approaches for HAT 11335
7. Concluding Remarks 11336
Author Information 11337
Corresponding Author 11337
Notes 11337
Biographies 11337
Acknowledgments 11339
References 11339

Special Issue: 2014 Drug Discovery and Development for Neglected Diseases

Received: July 10, 2014
Published: November 3, 2014
1. INTRODUCTION TO LEISHMANIASIS

Leishmaniasis is a parasitic disease that presents four main clinical syndromes: cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), visceral leishmaniasis/kala azar (VL), and post kala azar dermal leishmaniasis (PKDL). Causative Leishmania are protozoan parasites that are transmitted among mammalian hosts by phlebotomine sand flies. In mammalian hosts, parasite cells proliferate inside the host phagocytic cells as round amastigotes. Infection of sand flies with Leishmania occurs during insect feeding on infected mammalian hosts. After introduction into the insect gut together with the blood meal, Leishmania amastigotes transform into elongated flagellated promastigotes that propagate in the insect gut. A new round of infection is initiated after the infected sandfly takes a blood meal from a naive mammalian host and introduces Leishmania parasites into the bite wound in the host dermis (Scheme 1). More than 20 different Leishmania species have been found to cause human leishmaniasis (Table 1).

Leishmaniasis is endemic in 98 countries and is closely associated with poverty. More than a million new cases are reported per year and 350 million people are at risk of contracting the infection. For the most severe form of leishmaniasis, VL, ~300,000 new cases are estimated to occur annually resulting in ~40,000 deaths. Approximately 90% of all VL cases occur in 3 endemic foci: 1. India, Bangladesh, and Nepal; 2. East Africa; and 3. Brazil. In spite of the high prevalence, currently available treatments for leishmaniasis are inadequate. Pentavalent antimonials, the standard treatment for many decades, are not efficacious in Bihar (~60% of VL cases worldwide) any longer due to widespread resistance to the drug in this region. Several new VL treatments have emerged during the past 10–15 years, but each has serious shortcomings (summarized in Table 2). These include paromomycin (injectable, long treatment, region-dependent efficacy), miltefosine (cost, teratogenicity, long treatment), and liposomal amphotericin B (cost, hospitalization, region-dependent efficacy). An additional challenge is represented by patients with HIV/VL coinfections who are more difficult to cure (lower initial and final cure rates), have greater susceptibility to drug toxicity, and have higher rates of death and relapse.

Due to the limitations of the existing treatments, better drugs are urgently needed. Ideally, new VL drugs would be efficacious across all endemic regions, would affect cure in ≤10 days, and would cost <$10 per course (for a complete target product profile for new VL drugs, which was formulated by DNDi, see Table 4). Here we describe the disease history and parasite biology followed by a summary of the currently available treatments and, finally, review reports of novel small molecules with antileishmanial activity.

2. BACKGROUND OF LEISHMANIASIS

2.1. History and Biology of Leishmaniasis

Depending on the disease symptoms, leishmaniasis diagnosis typically falls into one of four major categories: visceral (VL), mucocutaneous (MC), post kala azar dermal (PKDL), or cutaneous leishmaniasis (CL). The earliest Old World records describing lesions with CL character go back to the seventh century BCE. Detailed reports from Arab physicians in the 10th century describe CL in various regions of what is today called the Middle East. Old World VL, or kala azar, characterized by an enlarged spleen, was first recognized in...
India in 1824. However, the symptoms were confused with those of malaria, and attempts were then made to treat the patients with quinine.3 Clear recognition of VL as a distinct disease was achieved in 1900 after William Leishman and Charles Donovan independently identified \textit{Leishmania donovani} parasites in the spleens of kala azar patients.4 At about the same time \textit{Leishmania} parasites were also observed in samples obtained from CL lesions. In 1908, Nicolle isolated the parasite from a cutaneous lesion and established the similarity between cutaneous and visceral forms of the disease with regard to the causative agent.5 The majority of CL cases in the Old World are caused by two \textit{Leishmania} species: \textit{L. major} and \textit{L. tropica}.

In the New World, CL and MCL cause disfiguring conditions and these have been depicted on sculptures dating back to the

Table 1. \textit{Leishmania} Species Reported to Cause Human Infections and Associated Leishmaniasis Syndromes

Species	Clinical Presentation	Epidemiology	Symptoms
\textit{L. donovani}	Visceral leishmaniasis/kala	India, Bangladesh, Nepal, East Africa; 300,000 new cases per year, with	Prolonged fever, splenomegaly, hepatomegaly, pancytopenia, progressive anemia and weight loss; Darkening of the skin
\textit{(anthropophAGIC)}	azar (VL)	India having the highest incidence; 40,000 deaths annually.	
\textit{L. infantum}	Visceral leishmaniasis	Mediterranean region, Central and South America; Primary animal reservoir: dog	Same as above
\textit{(zoontic)}			
\textit{L. siamensis}	Visceral leishmaniasis	Thailand	Same as above
\textit{(zoontic)}			
\textit{L. donovani}	Post-kala azar dermal	East Africa (Sudan), India, Bangladesh, and Nepal; Occurs in 50-60\% of	Severe dermatitis entailing parasite-containing facial skin lesions and plaques on body; Potential to lead to nerve damage or blindness
\textit{(anthropophAGIC)}	leishmaniasis	Sudanese and 10-20\% of Indian VL patients with 0.5 – 7 years of infection	
\textit{L. aethiopica}	Cutaneous leishmaniasis (CL,	Southern Europe, Middle East, and Southwest Asia and Africa; 0.7 to 1.2	Erythematous papule at the site of the sand fly bite, with eventual scarring; Potential for becoming more severe and diffuse
\textit{L. killicki}	Old World)	million cases per year, with greatest number of infected individuals residing	
\textit{L. major}		in Afghanistan, Algeria, Iran, Syria, and Ethiopia	
\textit{L. tropica}			
\textit{L. turanica}			
\textit{L. amazonensis}		Central and South America; Greatest number of infected individuals residing in Brazil,	Erythematous papule at the site of the sand fly bite (for \textit{L. mexicana}); Metastasizing lesions that can lead to MCL (for \textit{L. braziliensis}) and diffuse cutaneous leishmaniasis (DCL for \textit{L. amazonensis}); DCL or MCL are complications that occur (90\% of cases in Brazil, Bolivia, and Peru)
\textit{L. braziliensis}		Brazil, Colombia, Costa Rica, and Peru; Infected patients include military workers, international travelers, and endemic area migrants	
\textit{L. guyanensis}			
\textit{L. panamensis}			
\textit{L. major}			
\textit{L. tropica}			
\textit{L. turanica}			
\textit{L. amazonensis}			
\textit{L. braziliensis}			
\textit{L. guyanensis}			
\textit{L. panamensis}			

Table 2. Overview of Existing VL Drugs

Drug	Efficacy	Advantages	Limitations	Cost
Amphotericin B (Fungizone)	>95\%	Effective against Sb+ resistance	Deoxycholate form requires hospitalization and can cause myocarditis, hypokalemia, renal toxicity and reactions at the infusion site	~$100
Liposomal amphotericin B (Ambisome)	~100\%	No documented cases of drug resistance; Effective with low toxicity profile	High cost; Fever and rigor during infusion; Renal toxicity	$280
Miltefosine	94-97\%	Highly potent; first effective oral treatment for VL and CL	Highly toxic (liver and kidneys); Gastrointestinal complications; Not safe for pregnant patients (teratogenic)	~$70
Paromomycin sulfate	95\% (India); 46-85\% (Africa)	Low cost	Reversible ototoxicity (2\%); Pain at injection site (55\%); Highly hepatotoxic (6\%)	$10
Pentamidine	70-80\%	Potential use in combination therapy at low dosage	Renal toxicity; Myocarditis; Insulin-dependent diabetes mellitus as irreversible side effect (4-12\% patients); Hypoglycemia and hypotension; Fever	~$100
Pentavalent antimonials: Sodium stibogluconate	35-95\%	Low cost; Can be used in combination with amphotericin B in pregnant or elderly patients	Drug Resistance in Bihar, India (>60\%); Heart ventricle complications (prolonged QTc interval, premature beats, tachycardia, fibrillation, and torsades de pointes) and fatal cardiac arrhythmias; Arthralgia, myalgia, pancreatitis, elevated hepatic enzymes; Highest toxicity in HIV patients	$50-70
fifth century. References to leishmaniasis are also found in the writings of Spanish missionaries from the 16th century. In 1911, Gaspar Vianna discovered that leishmaniasis in South America was caused by a different Leishmania species from that in the Old World, and coined a new name, *L. braziliensis*, for this species. The species name was later corrected to *L. braziliensis*. In the 1960s, additional Leishmania species causing CL in Latin America, were recognized such as *L. mexicana*. In 1937, the causative agent of VL in the New World was designated as a distinct species, named *L. chagasi*. However, this species is indistinguishable from *L. infantum*, the species that causes VL in southern Europe.

Leishmania parasites are protozoa belonging to the Kinetoplastida order and Trypanosomatidae family. Over 20 species have been shown to be pathogenic in mammals, with affected hosts including domesticated and sylvatic animals. The parasites are transmitted indirectly between hosts by two different genera of hemagogous sand flies: *Phlebotomus* and *Lutzomyia* in the Old and New Worlds, respectively.

The life cycle of the Leishmania parasite is characterized by two distinct morphologies (Scheme 1): the elongated and flagellated promastigote, found in the alimentary tract of the female sand fly vector, and the round nonmotile amastigote, present in the bloodstream and tissues of the mammalian host. As an infected sand fly takes a blood meal from a naïve host, it regurgitates infective promastigotes at the bite site. The parasites are subsequently taken up by host dendritic cells and macrophages in the dermal layer of the skin. Here, they differentiate into amastigotes and multiply within phagolysosomes (via binary fission) while resisting degradation by lysosomal enzymes. Upon lysis of infected macrophage and dendritic cells, the parasites disseminate via the lymph and circulatory system and go on to infect other macrophages of the reticulo-endothelial system. The parasites persist in macrophages present in the spleen, bone marrow, liver, and lymph nodes and induce extensive inflammation and increased hematopoiesis.

Infected patients serve as parasite reservoirs and can infect naïve sandflies when infected macrophages are ingested as part of the sandfly blood meal. After the parasite-infected macrophage is ingested by the sandfly, the amastigotes transform into promastigotes in the insect midgut, multiply, and migrate to the proximal end of the gut, where they remain until the next cycle of vector–host infection and transmission.

2.2. Clinical Description and Diagnosis of Leishmaniasis

2.2.1. Visceral Leishmaniasis and Post Kala Azar Dermal Leishmaniasis. VL is the most severe form of the disease and typically results in death if left untreated. The clinical features generally manifest 2–6 months after infection, and these include prolonged fever, splenomegaly, hepatomegaly, pancytopenia, progressive anemia, and weight loss. Latent cases may remain undiagnosed until the patient becomes immunocompromised, with symptoms then appearing only several years after infection. Darkening of the skin occurs in patients (particularly in South Asia) and defines the origin of the disease synonym kala azar (black fever in the Hindi language).

VL patients are at high risk for bacterial coinfections, including pneumonia, tuberculosis, and gastrointestinal (GI) infection. Both *Leishmania* and HIV target the immune system, and coinfections are found in overlapping HIV/VL-endemic areas, specifically Ethiopia, Brazil, and India. Furthermore, the risk of developing VL is approximately 100- to 2000-times greater in patients infected with HIV compared to non-HIV individuals. HIV/VL coinfected patients have a reduced CD4+ T-cell count (below 200 cells/µL) and generally present symptoms similar to those observed in HIV-negative patients, including fever, splenomegaly, pancytopenia, lymphadenopathy, lethargy, and gastrointestinal issues. Co-infections are also more refractory to treatment and often require VL rescue therapy with an alternative drug.

Post kala azar dermal leishmaniasis, or PKDL, is a form of dermal leishmaniasis that may appear months to years after effective treatment of VL and exhibits distinct features based on geography (Indian and Sudanese PKDL). The clinical symptoms include papule skin lesions on the face, which gradually increase in size to form nodules all over the body and which can further transform into large plaques (Indian) or ulcers (Sudanese). These nodules have been shown to contain *Leishmania* parasites, so that PKDL patients become a reservoir of parasites for future transmission. While most cases of PKDL present as severe dermatitis, the spread of infection can lead to blindness (via the mucosal membranes) and to nerve damage (primarily in Indian PKDL).

Early detection and treatment are crucial determinants of the prognosis for infected patients, and for prevention of transmission. Diagnostic tests include direct parasite detection (by microscopic visualization), use of PCR for quantification and determination of the infecting species determination by PCR, serological tests, and antigen-detection tests.

The presence of amastigotes can be microscopically observed in patient lymph nodes, bone marrow, or splenic aspirates, and has been used for both diagnosis and evaluation of successful therapy. Quantitative assessment of parasite burden has been improved with use of PCR to amplify *Leishmania* gene targets such as 18S rRNA, the kinetoplast (mitochondrial) DNA, β-tubulin, and cytochrome c. While direct parasite detection is the most dependable method for disease confirmation, complications from hemorrhage during splenic aspiration (0.1% of individuals) do arise, and examination requires high fidelity, skilled expertise, and established laboratories for sample collection and evaluation. Serological tests monitor specific antileishmanial antibodies and include the direct agglutination test (DAT) or fast agglutination screening test (FAST), indirect immunofluorescence assay test (IFAT), and the rK39-based immunochromatographic test (ICT). The antigen-detection tests represent an alternative to antibody detection. KAtex, a latex agglutination test which detects a low molecular weight glycoconjugate antigen in the urine of patients, shows high selectivity for parasite, but has low sensitivity.

For HIV/VL coinfected patients, diagnosis by direct visualization and quantification are highly reliable and sensitive, as the parasite burden has been shown to be more than 10-fold higher in HIV-positive (versus HIV-negative) patients. Diagnosis of PKDL is based on previous history of VL and results from the various clinical and serological tests. As sample collection (via tissue biopsy) is quite invasive and parasite loads tend to be low in papulara, detection of infection is not always straightforward and misdiagnosis of leprosy is common. The splenic aspirate collection method is less invasive and is currently shows the greatest promise for diagnosis of PKDL in a reliable and noninvasive manner.

Overall, the diagnostic tests need to be improved for greater sensitivity and specificity, low cost and convenience, greater
throughput, and ease of sample collection and test administration.

2.2.2. Cutaneous and Mucocutaneous Leishmaniasis. The most common form of the disease, cutaneous leishmaniasis (CL) exhibits various clinical presentations dependent on the *Leishmania* species (Table 1) and the mode of transmission. CL starts with an erythematous preulcer papule at the site of the sand fly bite. This may self-cure within months or undergo slow-healing with severe scarring. Rarer manifestations of CL include diffuse cutaneous leishmaniasis (DCL) and MCL, a life-threatening condition. MCL is characterized by disfiguring and destructive lesions of the mucosal membranes and is usually observed months or even years after the CL lesions, in approximately 1–10% of CL patients. In addition to ulcerative lesions and erythema around the nose and lips, MCL patients initially present with nasal congestion and nasal septal granulomas (both anterior and posterior), lymphadenopathy, fever, hepatomegaly, and scars from previous CL incidence. Later stage MCL patients may exhibit additional complications within the nasal cavity (edema, septum perforation) and periodontitis, with eventual destruction of oronasopharyngeal mucosa and airway obstruction.

Diagnostic tests for the various forms of CL are similar to those used to identify VL and include parasite collection (cutaneous skin scraping of center/margin of ulcer) and subsequent microscopic visualization via Giemsa staining, punch biopsy, needle aspirate and parasite culturing, serological antibody detection, and PCR quantification.

2.3. Epidemiology of Leishmaniasis

2.3.1. Visceral Leishmaniasis and Post Kala Azar Leishmaniasis. There are two types of VL that are defined by the causative *Leishmania* species and the parasite reservoir. The zoonotic form, caused by *L. infantum*, occurs in the Mediterranean basin and Central and South America with dogs being the main parasite reservoir. The more common anthroponotic form is caused by *L. donovani* and is predominant in India, Bangladesh, Nepal, and East Africa. VL is endemic to rural areas of developing countries and has been reported in approximately 98 countries in the world; 90% of all cases occur in six countries in tropical/subtropical regions: India, Bangladesh, Sudan, South Sudan, Brazil, and Ethiopia. Approximately 300,000 new cases of VL occur each year leading to an estimated 40,000 deaths. India has the highest incidence of the disease with approximately 60% of all new cases occurring in Bihar state. Outbreaks are common during migration or entry of naïve hosts into endemic areas and an increase in the immunosuppressed patient population (such as with HIV) has contributed to the escalation in VL incidence in East Africa. Additionally, an absence of implementation of cost-effective control strategies makes VL a major public health concern.

PKDL is prevalent in areas where *L. donovani* is endemic (India and East Africa) and occurs in 50–60% of Sudanese and

Figure 1. Current drugs used for treatment of leishmaniasis.
18–20% of Indian VL patients within 6 months to 2–7 years after initial infection.20,21,22 Of these cases, approximately 15–
20% (India) and 8% (Sudan) of patients do not have a history of VL, indicating the existence of an asymptomatic infection.22a Few cases of PKDL caused by *L. infantum* or *L. tropica* have been reported.35 It has been previously shown that the presence of a small population of infected individuals (0.5%) may lead to a widespread epidemic of VL infection in India and other regions of Asia; therefore, PDKL patients play a major role in the spread of the disease, and parasite eradication should be a high priority.36,13

2.3.2. Cutaneous Leishmaniasis.

Approximately 0.7 to 1.2 million cases of CL occur each year in the Americas, Mediterranean Basin, the Middle East, and Central Asia. A large fraction (75%) of CL patients reside in the following ten countries: Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica, and Peru.33 The disease is caused by *L. tropica*, *L. major*, and *L. aethiopica* in the Old World (Southern Europe, Middle East, Southwest Asia, and Africa) or by *L. mexicana*, *L. braziliensis* and additional *Leishmania* species in the New World (Central and South America, Table 1).15a,52 CL cases caused by *L. major* and *L. tropica* (anthroponotic) and by *L. mexicana* are characterized by papulae that typically heal within a few months without medical intervention, whereas CL caused by *L. braziliensis* is distinguished by lesions that frequently metastasize to mucosal tissues (MCL) and are treated with antileishmanial therapeutics.15b,28a,32,37 DCL (*L. amazonensis*) and MCL are complications of CL that occur primarily in the New World (90% of cases found in Brazil, Bolivia, and Peru), respectively.28a An increasing number of CL cases have been reported in individuals that have served in the military, international travelers, and endemic area migrants.37,38 Travels to Central and South America account for approximately 40% of CL cases in tourists and workers in the USA.39 While some cases of leishmaniasis introduced into industrialized nations involve VL, greater than 80% of these are caused by CL. In fact, CL is one of the most frequent skin disorders in the New World, and accounts for around 60% of all cases in nonendemic areas.40 With increasing travel, immigration, and military work in endemic areas of this disease, the risk levels and incidence are predicted to increase hence making implementation of precautionary measures crucial in this selected group.

2.4. Current Treatments

The focus of this section is to discuss the drugs already in use for the treatment of VL. These include pentavalent antimonials,
pentamidine, various formulations of amphotericin B, paromomycin, and miltefosine (Table 2 and Figure 1). As some of the same drugs are used for treatment of CL and MCL, the corresponding regimens for these syndromes (including PKDL) are also briefly described when applicable. Treatment of VL varies from one endemic region to another; the WHO recommended regimens for major VL endemic foci are summarized in Table 3. In general, as discussed earlier, summarized in Table 2, and described in more detail in the next sections the current treatment options are inadequate and new chemical entities are urgently needed (target product profile in Table 4).

2.4.1. Pentavalent Antimonials. Antimony has been used as a therapeutic for several centuries. The first use of antimony in the modern era dates to 1905, when trivalent sodium antimonial tartrate was used to treat trypanosomiasis.51 Use of the trivalent antimonials for the treatment of CL was first reported by Vianna, and for VL by Di Cristina and Caronia in Sicily, and Rogers in India in 1915.42−44 Later this drug was found to be highly toxic and exhibited side effects such as cough, chest pain, and depression. The key breakthrough in the use of antimony for the treatment of leishmaniasis was achieved in 1925 by Brahmachari, who synthesized the pentavalent antimony compound urea stibamine and discovered it was an effective chemotherapeutic agent against VL.45 This discovery saved millions of lives in India, especially in Assam state, where many villages were depopulated by VL epidemics. Further progress in antimony therapy of VL was achieved through synthesis of antimony gluconate (Solustibosan) in 1937 and sodium stibogluconate (Pentostam) in 1945.56,47

Currently, there are two formulations of pentavalent antimonials in use: sodium stibogluconate (1) (100 mg antimony(SbV+)/100 mL) and meglumine antimoniate (2) (85 mg antimony/100 mL). Both formulations have poor oral absorption and are given via intramuscular injections or intravenous infusions.48 Common side effects of pentavalent antimonials include prolonged QTc interval, ventricular premature beats, ventricular tachycardia, ventricular fibrillation, and torsades de pointes.5b,49 Prolongation of QTc interval (>0.5 s) is often associated with serious or even fatal cardiac arrhythmias.50 Arthralgia and myalgia, elevated hepatic enzymes and pancreatitis are other common adverse events.51 Antimonial use causes more toxicity and mortality in HIV-positive patients, compared to HIV-positive patients treated with miltefosine or AmBisome, or HIV-negative patients treated with antimonials.52

In India, sodium stibogluconate was initially administered at low doses of 10 mg/kg/day for 6−10 days.53 These regimens were successful in curing most of the patients until the late seventies, when several unconfirmed reports of unresponsiveness appeared. In the eighties, clinical studies were done to determine the most effective regimen and these concluded in the recommendation in 1992 to treat VL in India with 20 mg SbV+/kg for 28−30 days.55,54 During the 1990s and 2000s, the clinical efficacy of antimonials in Bihar state (where ~90% of VL cases in India occur) gradually declined, and more than 60% of VL cases in this state are now refractory to this treatment although the drug continues to be effective in surrounding areas (e.g., Uttar Pradesh state).55 It is not established with certainty what factors drove the emergence of antimony-resistant L. donovani in Bihar. According to one hypothesis, the resistance to antimonials emerged as the result of large scale misuse of the drug in Bihar, where in one survey only 26% of patients were treated according to the WHO guidelines.56 The alternative hypothesis is based on the observation that exposure of L. donovani to low concentration of arsenic leads to emergence of parasite resistance to pentavalent antimonials. Starting in the 1970s, there was a large scale tapping of aquifers in Bihar to provide clean drinking water. The Bihari population was at risk from arsenic exposure due to contamination from naturally occurring trivalent arsenic in the groundwater. Thus, chronic exposure of the Bihar population to arsenic in drinking water could have driven emergence of antimony-resistant L. donovani strains.57 Even though pentavalent antimonials continue to be efficacious in other parts of Southeast Asia, the WHO currently recommends alternative drugs (AmBisome infusion) as the first line therapy options in this region.52

As in India, VL in Africa is caused by L. donovani with major disease foci in Sudan, South Sudan, and Ethiopia, and a lower number of cases found in Kenya and Uganda. Recommended treatment consists of 20 mg/kg of sodium stibogluconate for 30 days.58 This regimen typically yields >90% cure rates in HIV-negative patients across the East Africa region.59 However, monotherapy with pentantally antimony is not considered the first line treatment in East Africa according to the WHO, which recommends combination treatment with pentantantly antimony and paromomycin.52 Unlike in India and Africa, VL in South America is caused by L. infantum (formerly referred to as L. chagasi). There is no evidence of significant resistance to pentavalent antimonials in Brazil and meglumine antimoniate is the first choice for the treatment of mild and moderate cases of VL.60 For severe cases (age less than six months or over 65 years with signs of malnourishment, renal or hepatic insufficiency) and pregnant women, the Brazilian Health Ministry recommends treatment with liposomal amphotericin B (AmBisome).61 A recent retrospective study focusing on a cohort of children treated with 20 mg/kg per day meglumine antimoniate for 20−40 days reported efficacy of 96.9% in mild-to-moderate cases, and over 60% in severe cases.60

VL in the Mediterranean countries is caused by L. infantum as well. During the 1990s, antimonials were the first-line of treatment in most countries of this region (France, Greece, Italy, Malta, Spain, Portugal, Albania, Israel, Turkey, Morocco, Algeria, and Tunisia) with cure rates >95% in immunocompetent patients using regimens of 20 mg SbV+/kg for 20−30 days.62 More recently, pentavalent antimonials have been replaced by AmBisome as the first line of treatment in European countries.63

Most countries endemic for VL also have HIV-infected populations with the highest coinfection rates found in East Africa (up to 25−40% in parts of Ethiopia) followed by Brazil (5−10%) and India (2−5%).64 Use of pentavalent antimonials in HIV-infected patients is no longer recommended by most experts in the field due to their unacceptable toxicity in this patient group and high rates of treatment failure.52,65 However, because of their low cost, antimonials at a dose of 20 mg/kg for 28−30 days are still used when alternative treatments are prohibitively expensive. HIV infection has consistently been a predictor of poor outcome of VL treatment (e.g., only 44% cure rate in HIV-positive versus 92% in HIV-negative patients in one trial in Ethiopia) and associated with high rates of relapse (15−57%).65

Antimonials have also been used extensively as the primary treatment option for CL and ML, particularly in the New World where there is a greater risk of mucosal involvement.56
Administration is either by intravenous injections (limited to Old World CL infections - up to 5 individual doses separated by 3–7 days) or systemically (20 mg/kg for 20 days for CL and 28–30 days for MCL). Several studies of this drug therapy indicate differences in effectiveness, with 85–90% cure rates in Old World CL and 26%–100% in South America, depending on country and parasite species.67

2.4.2. Pentamidine. Pentamidine (3) has been in use since the 1940s for treatment of sleeping sickness.68 The first use for VL treatment was reported in India in 1949 and in Spain in 1950.69,70 Most regimens are based on intramuscular injection or intravenous infusion of 4 mg/kg of pentamidine (isethionate or methanosulfonate) per day for a variable number (up to 30) of days. Safety is a major concern with insulin-dependent diabetes mellitus being the most feared and irreversible adverse event.71 This complication, while not uniformly reported, occurs in 4–12% of cases. Additional side effects include hypoglycemia, hypotension, fever, myocarditis and renal toxicity.72

Pentamidine was used as the second line therapy for treatment of antimony-refractory cases of VL in India. However, due to its toxicity and rapidly emerging resistance (frequently to both pentamidine and antimonials), pentamidine use in India was abandoned in the 1990s and replaced with amphotericin B deoxycholate as the recommended treatment.73 During the early years of increased pentamidine use in India (1978), 10 injections were sufficient to effect cure in all treated patients. By the early 1990s, 15 or more injections were required to produce cure in only 67–77% patients.74 More recently, pentamidine was successfully used in several cases of HIV-positive patients to prevent VL relapse following the initial treatment with an alternative drug.75

Pentamidine is the first option for treatment of CL caused by L. guyanensis and is recommended as the first-line treatment in French Guiana, and in Suriname, where it is the only available antileishmanial. The typical treatment consists of a single intramuscular injection of 7 mg/kg of pentamidine isethionate and can be repeated 48 h later in complicated cases. In one study these regimens yielded 78.8 and 83.6% cure rates, respectively.76

2.4.3. Amphotericin B. Amphotericin B (4) is a polyene antibiotic isolated from Streptomyces nodosus in 1955, which was identified because of its antifungal activity.77 In vitro activity of amphotericin B on Leishmania was for the first time reported in 1960 and the first successful treatment of patients with VL was reported in 1963 in Brazil.78,79 The drug increases membrane treatment starting in 1990s in Bihar. Amphotericin B deoxycholate has been used with different dosing regimens, with a total dose ranging from 7 to 20 mg/kg, and treatment administered on alternate days or daily for up to 43 days at either constant or incremental dosing. Amphotericin B regimens typically produce high cure rates (close to 100%) for both antimony-sensitive and refractory infections.82 Several lipid formulations of amphotericin B (liposomal-AmBisome, lipid complex-Abelcet, colloidal dispersion-Amphocil, lipid emulsion - Amphomul) have also been tested; all enabling regimens with ~100% cure rates.83 Lipid formulations lead to the rapid concentration of the drug in organs such as liver and spleen.84 This greatly reduces adverse effects including nephrotoxicity and allows delivery of large doses of the drug over short periods of time. In an open label study in Bihar in 2010, a single dose of 10 mg/kg of AmBisome produced a 96.3% cure rate.85 The outcome prompted the WHO to recommend this regimen as the first-line treatment for VL in South Asia.32

Efficacy of amphotericin B deoxycholate in East Africa (Uganda) was extensively evaluated in 2003–2004 during an interruption in supply of antimonial drugs. The regimen consisted of slow infusion of 1 mg/kg of amphotericin B on alternate days for 30 days (total dose 15 mg/kg) and produced a 92.4% cure rate.86 Experience with AmBisome treatment in East Africa suggests that higher total doses than in India are required to achieve >90% cure rates. Treatment with 30 mg/kg AmBisome in 6 doses on alternate days in Sudan produced a 92.6% initial cure rate in HIV-negative patients but only 59.5% in HIV-positive group. AmBisome was even less effective in HIV-positive VL relapses (38.0% initial cure, 55.7% parasitological failure). Of additional interest, a study to determine the optimal single dose of AmBisome (tested doses include 7.5, 10, 12.5, and 15 mg/kg) in HIV-negative patients in East Africa was concluded and the results are expected to be published soon.87

In Latin America, there is much less data on AmBisome’s efficacy. In Brazil, a total dose of 20 mg/kg has been proven to be efficacious.88 The Pan American Health Organization guidelines for treatment of leishmaniasis in the Americas have established liposomal amphotericin B (3–5 mg/kg per day IV for 3–6 days, with a total dose of 20 mg/kg) as one of the first-line therapeutic options.

In Southern Europe, doses of 3–5 mg/kg per day, up to a total of 20 mg/kg in different regimens, have been demonstrated to be effective in up to 99–100% of patients. Total doses of 15, 18, and 24 mg/kg were tested in Italy, with response rates of 91, 98 and 100%, respectively. In Greece, one study administered a total dose of 20 mg/kg in a short regimen of 2 days, with a cure rate of 98%, versus 90%, when it was administered over 5 days. Because of the large number of published case series, there is an important accumulation of evidence regarding the use of liposomal amphotericin B in pediatric populations in Europe, with high response rates (97% with total doses of 18–24 mg/kg in different regimens).89

It has been shown that liposomal amphotericin B reduces the average duration of hospitalization when compared with antimonials and that it was effective in cases that did not respond to treatment with antimonials.90 For all of these reasons and despite the absence of randomized clinical trials, liposomal amphotericin B is considered a reference treatment for VL in the Mediterranean countries in both adults and children.

Amphotericin B deoxycholate (0.7 mg/kg per day, by infusion, for 25–30 doses) and AmBisome (2–3 mg/kg per day, by infusion, up to 20–40 mg/kg total dose) are also used for treatment of CL and MCL infections caused by L.
braziliensis and other species, including L. guanyensis, L. infantum, and L. aethiopica. In a study completed by Solomon and colleagues, a dosage of 18 mg/kg total given to patients afflicted with L. braziliensis CL resulted in an approximately 85% complete cure in patients within two months.

2.4.4. Paromomycin. Paromomycin (S) is an aminoglycoside broad-spectrum antibiotic, first isolated in the 1950s from Streptomyces krestomuceticus. Paromomycin inhibits protein synthesis by binding to 16S RNA. It was shown to be efficacious for the treatment of CL in 1966 and for VL in 1990 in Kenya. The most common adverse event with paromomycin is injection site pain (55%); however, this typically does not lead to the discontinuation of therapy. A small fraction of patients experience reversible ototoxicity (2%) and a rise in hepatic transaminases (6%).

In a phase III study in Bihar in 2003−2004, a paromomycin regimen of 11 mg/kg (15 mg/kg as the sulfate) i.m. for 21 days was shown to be noninferior to amphotericin B (1 mg/kg i.v. alternate day for 30 days) with final cure rates of 94.6 versus 98.8%, respectively. The cure rate among those previously treated with SbV+ or miltefosine was 98%. The cure rate in patients who could be traced during follow up). A phase II trial to evaluate the efficacy of miltefosine in Sudan and Kenya is ongoing.

Miltefosine is considered to be the first effective oral treatment regimen for CL, with greater accessibility and lower toxicity compared to antimonials. Miltefosine at a dose of 2 mg/kg per day for 28 days is effective against CL in Colombia caused by L. panamensis (70−90% cure rate), but has only limited effect against the disease caused by L. braziliensis and L. mexicana (<60% cure rate). Treatment extension to six months for CL in Brazil originating from L. braziliensis infection resulted in a 75% cure rate compared to the 53% cure rate following treatment with antimony, with efficacy shown to be greater in adults compared to children.

In Table 3 the WHO regimens for the treatment of VL and PKDL in various endemic regions are described.

2.4.6. Ketoconazole. Azoles are oral antifungal drugs that inhibit fungal ergosterol biosynthesis at the lanosterol demethylase step resulting in the accumulation of 14 α-methyl sterols. As Leishmania parasites rely on ergosterol for their sterol needs and share this biosynthetic pathway with fungi, azoles have been explored for their therapeutic potential against Leishmania infections. For CL, the efficacy of compounds varies depending on species. Ketoconazole (7) was tested for a month in both adults and children on CL caused by L. braziliensis (either 600 mg or 100 mg daily, respectively, for 28 days) and resulted in a 76% cure with mild side effects.

Similar testing in patients afflicted with CL caused by L. mexicana resulted in 89% cure in another study completed by Navin and colleagues. Another ergosterol biosynthesis inhibitor, fluconazole (8) (200 mg daily for 6 weeks), was also previously tested in patients with CL originating from L. major and resulted in 59% cure and shorter healing time for patients residing in Saudi Arabia. In the case of itraconazole (9), minimal response rates were observed in cases of CL resulting from L. major and in MCL originating from L. braziliensis. Among the several azole drugs tested (fluconazole, itraconazole, ketoconazole), only ketoconazole was found to be consistently efficacious and is now used for treatment of CL infections caused by L. mexicana (600 mg per day for 28 days).

2.4.7. Treatments with Drug Combinations. There are only a limited number of new chemical entities in the drug development pipeline to address the limitations of the current VL treatments. Instead, treatments with combinations of existing drugs have become the main short to medium term strategy to combat emerging drug resistance, reduce adverse events, and shorten therapy duration. The earliest attempts to explore this approach occurred in the early 1990s, with a combination of sodium stibogluconate and paromomycin tested in Kenya, Bihar state, and Sudan. A study in Bihar
evaluating combinations of various paromomycin and sodium stibogluconate doses found that a combination of 12 mg/kg of paromomycin and 20 mg/kg of sodium stibogluconate (both administered daily) for 20 days yielded an 88% cure rate.111 Seventeen day treatment with the combination of sodium stibogluconate (20 mg/kg) and paromomycin (15 mg/kg) in Sudan affected a 97% initial cure rate and was found to be superior to sodium stibogluconate alone (20 mg/kg for 30 days).112 Similar results were also observed in a subsequent East Africa multicenter trial, and this combination regimen is now the preferred treatment in this region.32,59

Another approach to combination treatment relies on sequential use of 2 different drugs. During recent trials in India it was established that a single infusion of 5 mg/kg of AmBisome followed by either 7 days of 50 mg/kg per day of miltefosine or 10 days of 11 mg/kg per day of paromomycin both yielded 97.5% cure rates 6 months after the end of treatment. As a part of this trial, a treatment arm with daily coadministration of miltefosine and paromomycin (50 mg/kg and 11 mg/kg per day, respectively) for 10 days was also evaluated and yielded a 98.7% final cure rate.101 In summary, combination therapies have been established as safe and effective treatment options and their implementation into primary treatment centers in India and East Africa is ongoing.

Another approach to combination treatment relies on sequential use of 2 different drugs. During recent trials in India it was established that a single infusion of 5 mg/kg of AmBisome followed by either 7 days of 50 mg/kg per day of miltefosine or 10 days of 11 mg/kg per day of paromomycin both yielded 97.5% cure rates 6 months after the end of treatment. As a part of this trial, a treatment arm with daily coadministration of miltefosine and paromomycin (50 mg/kg and 11 mg/kg per day, respectively) for 10 days was also evaluated and yielded a 98.7% final cure rate.101 In summary, combination therapies have been established as safe and effective treatment options and their implementation into primary treatment centers in India and East Africa is ongoing.

Combination therapy with antimonials has been used to enhance efficacy for CL.66 Allopurinol supplementation led to a 2-fold reduction in the required antimony dosage and resulted in a cure rate of 75–80% in Iranian patients infected with L. major and improved treatment outcomes for patients treated with a single agent while infected with L. tropica.113 To treat L. braziliensis, pentavalent antimony (15–20 mg/kg daily) has been used in conjunction with pentoxifylline (400 mg, three times a day) for a month to cure 90% of patients with MCL and lesions resistant to single agent therapy.114

3. DRUG DISCOVERY FOR LEISHMANIASIS

In spite of a large patient population, leishmaniasis drugs have led to poor economic returns as endemic areas are typically impoverished. As a consequence there have been limited funds available to support the research and development of new antileishmaniasis treatments to address the liabilities of the current standard of care according to the target profile shown in Table 4.

In order to bolster the pipeline a significant effort has been applied in repurposing drugs from different indications. The repurposing of drugs offers a short and fast path to reach patients and the cost of development is greatly reduced. The drug repurposing strategy has been summarized in the literature in several reviews and has been shown to be very successful. Indeed several current treatments such as miltefosine, amphotericin B, and pentamidine were previously approved or primarily designed for other indications.115,116 In section 3.1, we summarize the main drugs and compound classes that have been recently considered for repurposing in leishmaniasis.

As in other areas of infectious diseases most of the novel chemical entities are coming from phenotypic drug discovery campaigns rather than target based efforts. Until recently, the screening of large libraries using phenotypic readouts was nonexistent in the antileishmanial field because of the complexity of biology as well as lack of resources. New technological advancements have allowed the screening of large libraries using phenotypic readouts and it is anticipated that these screening efforts will yield new structurally diverse antileishmanial compounds and will help identify new critical targets. Section 3.2 will describe the recent advancements from phenotypic efforts including compounds identified from screening of synthetic compound libraries as well as natural product extracts followed by isolation and chemistry modification. Efforts related to the modification of existing anti-infective scaffolds are also described. Finally, tremendous

Figure 2. Drugs that have been repurposed for the treatment of leishmaniasis.
efforts have been put in the understanding of the *Leishmania* biology leading to identification of numerous putative targets. Section 3.3 discusses the proposed essential targets and the compounds used as tools to validate them.

3.1. Repurposing Efforts for Leishmaniasis

3.1.1. Tamoxifen. Tamoxifen (10) (Figure 2) is an estrogen receptor antagonist which has been in clinical use for the treatment of breast cancer. Tamoxifen has in vitro activity against *L. braziliensis* and *L. infantum* intracellular amastigotes with an EC$_{50}$ of 1.9 ± 0.2 and 2.4 ± 0.3 μM, respectively.

Treating of *L. braziliensis*-infected mice with tamoxifen at a dose of 20 mg/kg led to significant reductions in lesion size and a 99% decrease in parasite burden when compared with vehicle controls.

Treatment of *L. infantum*-infected hamsters with tamoxifen led to significant reductions in liver parasite load and a 95% to 98% reduction in spleen parasite burden. Furthermore, there was a 100% survival rate for all animals treated with tamoxifen. In contrast, all the vehicle-treated animals perished by 11 weeks.

In a similar experiment carried out for cutaneous leishmaniasis, the infected mice were treated with tamoxifen (10), orally, at a dose of 20 mg/kg/day for 15 days. Results indicated that untreated infected mice suffered from autoamputation of the inoculated foot pad. In comparison, the treated mice exhibited marked improvement of the cutaneous lesions and reduction of overall parasite load. However, the treated male mice showed scrotal swelling with evident histopathological changes in the testes that could seriously compromise fertility of the male mice.

In conclusion, while tamoxifen (10) is able to cure leishmaniasis infection in laboratory animals, it also causes significant side effects to the male reproductive system in the mouse model.

3.1.2. PI3 Kinase Inhibitors. A series of human phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitors were investigated for activity against the kinetoplastid parasites (*Trypanosoma brucei*, *T. cruzi*, and *Leishmania* sp). The rationale behind this study was based on the premise that both parasites and humans express similar kinase enzymes. Thus, one could exploit the extensive research on the human targets to repurpose compounds to kinetoplastid infections. Among the inhibitors examined, NVP-BEZ235 (11), was found to have potent antileishmanial activity in parasite cultures in submicromolar concentration. However, despite its activity against *L. donovani* axenic amastigotes, no efficacy was observed in in vivo mouse models at tolerated doses.

3.1.3. Nitroimidazoles. Nitroimidazoles are a well-known class of pharmacologically active compounds, most notably in the field of anaerobic bacterial and parasitic infections.

The most profiled antitrypanosomal drug candidate in this class was meglazol (12) (Figure 2), though development was stopped due to mutagenicity issues. Continuing exploration of this class of compounds led to the identification of fexinidazole (13) as an effective antitrypanosomal agent. Fexinidazole is currently in clinical trials for stage 2 HAT (see section 6.2.). Fexinidazole is rapidly oxidized in vivo in mice, dogs, and humans to the sulfone and sulfone metabolite. While the parent compound is devoid of activity, both metabolites of fexinidazole are active against intracellular *L. donovani* amastigotes. A q.d. regimen for 5 days at 200 mg/kg dose led to a 98.4% suppression of parasites in a mouse model of visceral leishmaniasis which is equivalent efficacy to that seen with miltefosine. Overexpression of the leishmanial nitroreductase homologue in *L. donovani* led to an increase in sensitivity to fexinidazole by 19-fold, indicating that reductive activation, via an NADH dependent bacterial-like nitroreductase, is responsible for the activity. Based on the impressive efficacy, fexinidazole is currently in phase II clinical trials for visceral leishmaniasis.

Bicyclic nitroimidazole derivative (R)-PA-824 (14) shows potent cidal activity against *L. donovani* with an EC$_{50}$ of 160 nM and 930 nM against promastigotes and intracellular amastigotes, respectively. In a murine model, (R)-PA-824 exhibits >99% suppression of parasite burden at a dose of 100 mg/kg b.i.d when administered orally for 5 days. In contrast to fexinidazole, transgenic parasites overexpressing the leishmania nitroreductase are not oversensitive to (R)-PA-824 indicating that this enzyme is not involved in the mechanism of action of this compound and some other unknown nitroreductase specific to leishmania species might be involved.

Thus, (R)-PA-824 offers the promise of being a potential candidate for late lead optimization for VL. Indeed, similar compound VL-2098 (15) is already in preclinical development for the treatment of visceral leishmaniasis and has the potential to further bolster the pipeline.

3.1.4. Nelfinavir. Reports of visceral leishmaniasis co-occurring in individuals infected with human immunodeficiency virus type 1 (HIV-1) are well documented. A series of protease inhibitors (nelfinavir, ritonavir, and saquinavir) were examined for their activity against various *Leishmania* species. While it was observed that these protease inhibitors do not inhibit the growth of *Leishmania infantum* promastigotes alone in culture, they were found to significantly inhibit the intracellular survival of parasites in phorbol myristate acetate-differentiated THP-1 macrophages and human primary monocyte-derived macrophages (MDMs) (65–79% inhibition). Furthermore, these compounds were found to be equally active against a field isolate of *Leishmania donovani* resistant to sodium stibogluconate (SBV), suggesting that resistance to SBV does not result in cross-resistance to protease inhibitors. Additionally, the ability of nelfinavir (16) (Figure 2) to reduce the intracellular growth of *Leishmania* parasites is also observed in MDMs infected with HIV-1. Further work into the mechanism of action suggests that nelfinavir (16) induces oxidative stress in *Leishmania* amastigotes, leading to caspase-independent apoptosis, in which DNA is degraded by endonuclease G. These studies provide a rationale to test nelfinavir (16) as a potential antileishmanial agent as well as for possible future use in Leishmania/HIV-1 coinfections.

3.1.5. Imipramine. Imipramine (17) is a cationic amphiphilic drug commonly used for the treatment of depression in humans. Previous studies have shown that this compound was able to decrease the mitochondrial transmembrane potential of *L. donovani* promastigotes and purified amastigotes as opposed to miltefosine where only a marginal change in potential was observed. Moreover it was found to inhibit trypanothione reductase, an enzyme which is upregulated in antimony resistant strains. In addition, as an effective immunomodulator, it was known to upregulate TNF-α, which plays an important role in cytokine defense. Different groups of hamsters infected with antimony sensitive and resistant isolates were treated with imipramine at doses of 0.05, 0.5, and 5 mg/kg/day respectively for 4 weeks and while there was no clearance of splenic and hepatic parasite load at 0.05 mg/kg,
50% clearance was observed at 0.5 mg/kg and there were no detectable parasites in animals dosed at 5 mg/kg. More importantly, organ parasite clearance was similar for all isolates irrespective of their sensitivity toward antimonials. No further development work has been reported on this compound.

3.2. Antileishmanials from Phenotypic Efforts

Phenotypic drug discovery has proven to be a successful approach for identifying new chemotypes and starting points for medicinal chemistry optimization.130 Moreover, the poor understanding of relevant targets in the parasite field has led to poor success rates when using a target based drug discovery approach, making a phenotypic strategy particularly attractive in this context.131 This broad approach offers the potential to identify agents acting on a previously undescribed target or by acting on multiple targets in tandem. The prospect of establishing new mechanisms of action for antileishmanial activity is of growing importance as drug treatment pressure has resulted in emerging parasite resistance.132

Advances in chemical proteomics have made subsequent target elucidation and the evaluation of therapeutic intervention via this approach a viable alternative to target-based approaches. However, it is important to discern between inhibitory activity of interest and general cytotoxicity. Complementary assays allow for the selection of candidate compounds with an adequate selectivity index (SI), where the in vitro cytotoxicity in mammalian cells is significantly less than the antiparasitic activity. However, while general cytotoxicity can be easily established via such assays, a particular drawback of phenotypic approaches is the uncertainty related to mechanism-based toxicity.

In general, the utilization of phenotypic assays and screens for the identification of novel lead structures can be of greatest use when using the appropriate parasite form under the relevant physiological conditions, allowing for a reasonable probability that efficacious compounds can be obtained.

3.2.1. Lead Structures Resulting from Phenotypic Screens. In the context of \textit{Leishmania} drug discovery efforts, compound screens using promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, and intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays offers a unique set of advantages and drawbacks. Promastigotes, axenic amastigotes, or intramacrophage amastigotes have been explored. Each of these assays o
that the vehicle (2-hydroxypropyl)-\(\beta\)-cyclodextrin solution (HP\(\beta\)CD) had antileishmanial activity on its own. In conclusion, benzothiazole-containing cyanine dyes do have some activity; however, their potential as drugs remains in question given the report of their interaction with DNA.138

In another effort, the repurposing of a narrow range of \(N\)-benzoyl-2-hydroxybenzamides from a \textit{Toxoplasma gondii} tachyzoite screen led to two salicylamide examples (22) (Figure 3) with reasonable activity (<0.5 \(\mu\)g/mL) against \textit{L. donovani} axenic amastigotes.139

A small compound library that was screened at a single concentration using \textit{L. donovani} axenic amastigotes, revealed a paullone chemotype. The initial paullone hits from this phenotypic screen, however, were found to be inactive in an \textit{L. donovani} intracellular assay. Cursory structural optimization of the parent scaffold resulted in two 9-tert-butyl-paullone chalcones (23) with demonstrated growth inhibition of \textit{L. donovani} axenic and also intracellular amastigotes, however, through the integration of a well-established antileishmanial chalcone moiety (vide infra), these specific compounds became less structurally novel.140

Based on the scarcity of literature reports so far, one could infer that to date very little progress has been made in identifying optimization-ready leads from phenotypic screens. The lack of new leads could be attributed to technological hurdles in running relevant biological screens or due to the lack of resources with which to carry out the screening of larger libraries and the subsequent synthetic follow-up necessary to achieve a development candidate. However, there are indications of active medicinal chemistry programs being pursued by various organizations including us at GNF, the University of Dundee, and DNDi. This brings hope that more starting points would be delivered from phenotypic and other approaches in the near future. Based on the public profile, DNDi is following up on numerous chemotypes in addition to backup nitroimidazoles.141

3.2.2. Natural Products. Natural products derived from plants and animals have been of great interest in the search for novel antileishmanial compounds. This interest can be attributed to the potential identification of unique chemical architectures and pharmacophores, and the often inherent “drug-like” properties of isolates. Over the last three decades, 69% of all new small molecule drugs for the treatment of
infectious diseases have been derived from, or inspired by, natural products.142 While, natural products represent interesting starting points for further follow up, the complexity of the molecules often prevents broad optimization efforts to further improve their properties. The greatest potential of natural product hits lie in the identification of novel targets which in turn can spur targeted drug discovery efforts. The extensive antileishmanial potential of plant and marine based natural products has been previously reviewed in the literature.143–145

3.2.2.1. Plant- and Fungal-Derived Natural Products. Natural products from plants and fungi have proven to be a valuable source of chemical matter for anti-infective programs. Typically, the natural product of interest is isolated using activity based fractionation. With large numbers of samples produced from typical plant extract fractionations, it can be of great benefit to proceed with the use of axenic parasites, where assays often have quick turnaround times.

In efforts searching for novel treatments for cutaneous leishmaniasis, 3(S)-16,17-didehydrocalcarinol (24) (Figure 4) was identified by the axenic bioassay-guided fractionation of the plant Sarcococca hookeriana and Tridax procumbens.146 Similarly, axenic L. amazonensis parasite-based assays demonstrated the antileishmanial potential of the natural product parthenolide,147 in addition to the two potent sesquiterpene lactones (+)-8,13-diacetyl-piptocarphol (25) and (+)-8-acetyl-13-O-ethyl-piptocarphol (26) (Figure 4), isolated from the extract of the traditional medicine Pseudelephantopus spicatus.148 As a result of described leishmanicidal potential of Calophyllum brasiliense crude extracts,149 and further investigations thereof, the coumarin natural product (−)-mammea A/BB (27) was determined to be a potent active component of C. brasiliense, with an EC50 of 0.88 μg/mL against L. amazonensis axenic amastigotes.150 Dosing of (−)-mammea A/BB (27) for 30 days intramuscularly led to significant reduction of lesion size compared to vehicle with no observed side effects.151 Efficacy in L. amazonensis-based in vivo models has also been demonstrated with (−)-epigallocatechin 3-O-gallate (28), the most abundant flavanol constituent of green tea, where dosing in mice (30 mg/kg/d, 5 d/wk. over 52 days, p.o.) resulted in substantial lesion size reduction.152 Similarly, oral dosing of γ-fagarine (29) (10 mg/kg, 14 d), from Helietta apiculata, led to a 97% reduction in parasite burden of L. amazonensis-infected mice, and treatment of L. amazonensis-infected mice with the bryophyte constituent 14-hydroxynularin (30) (Figure 4), resulted in a 93% reduction in lesion parasite load (10 mg/kg, 15 days, s.c.).153

Numerous natural products have also been reported to successfully affect in vitro those Leishmania parasites that are the causative agents of visceral leishmaniasis. Examples include the protoberberine natural product palmatine, active against L. infantum,154 and the quinonemethide natural products maytenin (31) and pristimerin (32) (Figure 4), with demonstrated activity against L. chagasi.155 Screens employing L. donovani promastigotes are also prevalent and have identified a wide range of promising antileishmanial natural products (EC50 < 1 μg/mL) from the plants Plumbago zeylanica,156 Septoria pistaciarium,157 Abrus schimperi,158 Prosepis glandulosa var. glandulosa,159 Clerodendrum eriophyllum,160 and Uvaria grandiflora.161 Reports utilizing axenic amastigotes validated the potent natural product preussomerin EG1 (33).162 A L. donovani intracellular amastigote assay revealed the potential of the taxoid 10-deacetylbaccatin III (34) (Figure 4), isolated from Taxus baccata, with demonstrated potent in vitro activity (EC50 value of 0.07 μM) and an SI value of >10, contrary to taxol, which is cytotoxic at nanomolar concentrations.163

3.2.2.2. Animal-Derived Natural Products. Among the many animal-derived isolates with observed antileishmanial activity, most are derived from marine invertebrates or associated bacteria. As a result of screening a range of marine organism extracts against L. amazonensis promastigotes, the promising natural product cristaxenicin A (36) (Figure 4) was isolated (EC50 = 0.09 μM).164 Analogous investigation of the bioactive crude extract of the sponge Pseudelephantopus spicatus afforded small amount of the natural product plakortide P, with good activity against L. chagasi intracellular amastigotes and respectable cytotoxic selectivity.165 There are also reports of antileishmanial activity from the venom of the scorpion Tityus discrepans against L. mexicana promastigotes166 and crude venom from the snake Bungarus caeruleus.167 However, no active components were isolated.

3.2.3. Natural Product Derived Compounds. Systematic exploration of the structure—activity relationship of antileishmanial natural products has led to a variety of semisynthetic efforts, where defined natural pharmacophores effectively provided a pedestal for synthetic manipulation and were leveraged for potential compound improvement. A comprehensive approach toward obtaining appropriate clinical candidates via this method is often hindered, however, by the structural complexity of isolated natural products and the relatively small amount that can be isolated in certain cases (vide supra).

Hydrogenation of the antileishmanial coumarin natural product (−)-mammea A/BB (27) (EC50 = 3.0 μg/mL), obtained from the extract of C. brasiliense, provided the more potent synthetic derivative 37 (Figure 4), with an EC50 of 0.37 μg/mL against L. amazonensis promastigotes.168 Similarly, synthetic esterification of the phenolic marine natural product isoatamptine (EC50 = 0.7 μg/mL), available from the sponge Aaptos sp. in gram quantities, resulted in two derivatives (38) with improved EC50 values (0.4 μg/mL and 0.1 μg/mL) against L. donovani.169 Due to potent activity against intracellular L. donovani amastigotes, 8,8-dialkylidihydroberberine derivatives (39) (Figure 4) were further explored in vivo. Unfortunately subpar efficacy was observed upon i.p. dosing in a murine model for 5 days likely due to poor pharmacokinetic properties.170 In many such cases further optimization is impaired by the resources required for structural modification of such complex molecular architectures.

3.2.4. Derivatives of Anti-Infective Scaffolds. Due to the limited understanding of leishmanial biology, it has been typical to proceed in the rational design of leishmanicidal agents through the inspiration and modification of structural classes already known to possess anti-infective activity.

3.2.4.1. Benzoxazoles. The report of potent antibacterial activity demonstrated by the natural product A-33853 (40) (Figure 5) prompted the hypothesis that similar compounds could be evaluated as novel anti-infective agents. Synthetic analogs of A-33853 (40) were subsequently found to be remarkably potent against L. donovani axenic amastigotes with compound 41 demonstrating an EC50 value of 0.31 μM and SI value of 99.171

3.2.4.2. Imidazoles. Imidazole-containing compounds have received considerable attention in the search for leishmaniasis chemotherapy due to the success of agents such as ketoconazole, miconazole, econazole, and clotrimazole in treating fungal infections, thus lending credence to the possible
utility of this broad class of compounds in other types of infection. Analogs of the imidazole antifungal agent clotrimazole (42) have demonstrated effective Leishmania inhibition when combined with metals. Clotrimazole (42) was incorporated into a pseudo-octahedral ruthenium-clotrimazole complex, [RuII(η6-p-cymene)Cl2(clotrimazole)] (43), (Figure 5) that was found to exhibit very good in vitro activity against L. major promastigotes (EC50 = 0.015 μM) and intracellular amastigotes (EC70 = 0.029 μM) with an SI value of >500.172

Analogs of the antifungal agents miconazole and econazole have also been explored. A report that examined the anti-infective nature of analogs of miconazole and econazole found that a range of synthesized imidazoles tested against L. donovani intracellular amastigotes provided good antileishmanial activity, with two examples (44) exhibiting EC50 values of <0.5 μg/mL. Efficacy of both of these compounds in vivo demonstrated moderate reduction of parasitemia (52% and 60%) in a hamster model (50 mg/kg, 10 d, i.p.), suggesting some potential for this compound class.173

3.2.4.3. Chalcones. Chalcones demonstrate a wide range of pharmacological anti-infective activity, making this substructure an attractive pharmacophore from which to explore antiprotozoal SAR. A small set of chloro-substituted 1-(6-methoxy-2H-chromen-3-yl)-3-phenylpropen-1-ones were found to have significant antileishmanial activity. Three such compounds (45) (Figure 6) demonstrated EC50 values of <1 μM against the promastigote form of L. major.174 A synthetic polysubstituted chalcone 46 demonstrated good activity against L. amazonensis promastigotes (EC50 = 1.1 μM) and intracellular amastigotes (EC70 = 0.9 μM). The compound was also found to be active against L. braziliensis (EC50 = 1.4 μM) and L. peruviana (EC50 = 4.0 μM). However, upon dosage in vivo, 46 led to only a 25% reduction in parasite burden in L. amazonensis-infected mice when treated for 6 weeks intraleSIONally (5 mg/kg). Compound 47 was much less active against intracellular L. amazonensis amastigotes (EC50 = 24.0 μM) but resulted in a 92% reduction in parasite burden in vivo upon intraleSIONal dosing for 4 weeks (5 mg/kg). Despite the in vivo reductions in parasite burden for this group of synthetic chalcones, no significant differences in lesion diameter were observed relative to untreated controls.175

3.2.4.4. Diamidines. The effective treatment of leishmaniasis with the diamidine drug pentamidine has led to the investigation of a wide range of diamidines for their anti-infective potential. The diamidine pharmacophore has been researched extensively and its role in medicinal chemistry has been previously reviewed.176

The synthesis of pentamidine analogs, where the amidine moiety is cyclized into a benzimidazole substructure akin to the known anthelmintic agents mebendazole and albendazole, yielded hybrid structures with antiparasitic activity (48) (Figure 7).177 In a reported antiprotozoal SAR study where the diamidine moiety was incorporated into an imidazoline substructure and a cadaverine linker was utilized, the resulting derivative 49 displayed broad antiparasitic activity.178

Conformationally restricted diamidine derivatives have also shown to inhibit Leishmania growth. Synthesized diamidine compounds with an m-terphenyl core displayed encouraging activity in vitro; however, when these promising compounds were tested in vivo in L. donovani-infected mice, two led to adverse effects in uninfected animals, and dosing with a third compound (50) resulted in only a 23% inhibition of liver parasitemia (30 mg/kg, 5 d, i.p.). Also disappointingly, two promising compounds (51) that demonstrated good activity...
against *L. donovani* axenic amastigotes, showed no activity in *L. amazonensis*-infected macrophages.

3.2.4.5. Amino and Aminoalcohol Linkers

Naphthalimide and its derivatives are generally known to have anticancer activity in a variety of human and murine cell lines. In an effort to discover antiparasitic compounds with adequate aqueous solubility, nitrogen- and oxygen-containing linkers have been utilized to enhance conformationally flat and otherwise insoluble chromophores. When this strategy was employed to join naphthalimide groups via nitrogen-containing linkers of various lengths, one compound (52) (Figure 8) was found to demonstrate selective activity against *L. infantum* promastigotes. Similarly, flavonoids are known to have a wide ranging activity and known to perturb a variety of enzymes.

The synthesis of dimers containing flavonoid chromophores joined by PEG- and amino PEG-linkers resulted in the identification of a highly active lead compound (53) with 0.13–0.21 μM activity (EC₅₀) in wild-type, sodium stibogluconate-resistant, and pentamidine-resistant *L. donovani* promastigote strains, making it an attractive foundation for the development of a visceral leishmaniasis treatment, irrespective of parasite drug sensitivity.

3.2.4.6. Nitroheterocycles

The synthesis of structural hybrids, utilizing the nitro-furan moiety as found in the antitrypanosomal agent nitifurimox and the antileishmanial benzamidine pharmacophore, yielded two highly potent derivatives (54) (Figure 9) with activity against *L. major* promastigotes and intracellular amastigotes. Additionally, the synthesis of hybrids of the nitro-containing antiprotozoal agent megazol and the antileishmanial combretastatin-type pharmacophore, yielded compound 55 that demonstrated potent activity against *L. donovani* axenic amastigotes with an EC₅₀ value of 0.08 μg/mL and an SI value of 240.

3.2.4.7. Phospholipids

The teratogenic nature of miltefosine and the potential for resistance as a result of its long half-life (extended presence of subtherapeutic concentrations) have prompted the desire to find more efficacious and/or less toxic congeners. As miltefosine was originally developed as an antitumor agent, there is only limited knowledge of miltefosine’s SAR with respect to antiparasitic activity. One of the more promising analogs is compound 56 (Figure 9), which demonstrated a >9 fold improvement in potency relative to miltefosine in the promastigote assay, as well as lower cytotoxicity and hemolysis improvements when compared to the parent drug. However, while the gains in potency of newer analogs might seem impressive, very little is known about these compounds with respect to their teratogenicity or their activity on isolates which are resistant to miltefosine.

3.2.4.8. Triphenylmethanes

The known anthelmintic and antifungal compound gentian violet (57) (Figure 10) has been previously demonstrated to exhibit antileishmanial properties. Synthetic efforts incorporating the triphenylmethane pharmacophore, have yielded a range of compounds with EC₅₀ values of <1 μM. When examined in vivo, compound 58 also demonstrated a 1000-fold in vivo reduction in parasite burden in a murine cutaneous leishmaniasis (*L. amazonensis*) model, and analogous application of gentian violet (57) led to a complete elimination of parasites (1% gel, b.i.d., 20 days, topical), highlighting the therapeutic potential of triphenylmethanes and structurally similar electron carriers.

3.2.4.9. Rhodacyanines

The antileishmanial potential of rhodacyanines has been previously described, prompting the further investigation of the SAR of this class of delocalized lipophilic cation compounds. In a recent report, synthesized rhodacyanine compounds 59 and 60 demonstrated highly potent activity in vitro against *L. donovani* intracellular amastigotes with EC₅₀ values of 0.35 and 0.08 μM, respectively. Despite being less potent, the efficacy of compound 59 was found to be superior to 60 in vivo when the compounds were dosed intraperitoneally at 50 mg/kg in *L. donovani*-infected mice (31% versus 18%). The efficacy of compound 59 could also be enhanced with intravenous administration, leading to a 97% (4.1 mg/kg, i.v.) reduction in liver parasitemia after dosing for 5 days.

3.2.4.10. β-Carbolines

The natural product canthin-6-one has been demonstrated as an active leishmanicidal agent both in vitro and in vivo, rendering the β-carboline pharmacophore attractive for the investigation of further antiparasitic SAR. Examination of a range of synthesized canthin-6-ones and 1-phenyl-β-carbolines revealed that, in general, leishmanicidal activity was more pronounced for the latter class of compounds. In particular, compound 61 (Figure 11) displayed significant antileishmanial activity, with an EC₅₀ value of 0.25 μM against *L. amazonensis* promastigotes.
3.2.4.11. Quinones and Iminoquinones. The quinone moiety and analogous derivatives are pharmacophores that have been previously shown to exhibit significant activity against Leishmania. The antileishmanial naphthoquinone compounds diospyrin, plumbagin, lapachol, and buparvaquone exemplify the potential of this structural class and have made the derivatization of quinone-type architectures alluring. In a recent report, synthesized iminoquinone compound 62 (Figure 11) resulted in 99% and 78% reductions in the murine parasite burden in the liver and spleen, respectively.

Figure 10. Antiparasitic triphenylmethane and rhodacyanine compounds.

Figure 11. Antileishmanial β-carboline and quinone derivatives.

Figure 12. Heterocyclic salts active against Leishmania.

Figure 13. Compounds containing pyrimidine/triazine pharmacophore.
mg/kg, i.p.), and was found to be relatively nontoxic. Additional iminoquinone derivatives, however, were found to be ineffective in reducing parasitemia. In another report, a small library of 2-phenoxy-1,4-anthraquinones was synthesized via a parallel approach, with the intent of combining the naphthoquinone pharmacophore with the substituted phenolic moiety present in the structure of the known antibacterial and antifungal agent triclosan. These hybrids were observed to have reasonable activity against L. donovani axenic amastigotes; however, the SI values for this group of compounds were generally poor (<1).^{195}

3.2.4.12. Heterocyclic Salts

A small set of synthesized pyridinium salts (Figure 12), similar in structure to the bioactive marine natural products viscosaline and theonelladin C, were found to be only moderately active against L. amazonensis and L. braziliensis promastigotes; however, they were remarkably specific against the intracellular form of the parasite. Similarly, an antileishmanial screen of synthetic derivatives of the bioactive natural product agelasine D led to the discovery of two potent imidazolium compounds and with EC\textsubscript{50} values of 0.09 and <0.11 μM, respectively, against L. donovani intracellular amastigotes.

3.2.4.13. Pyrimidines and Triazines

Pyrimidine- and triazine-type scaffolds have been of great interest in the search for novel antiprotozoal agents due to the successes of representative anti-infective compounds like pyrimethamine, cycloguanil, and trimethoprim. Inspiration from these architectures, and subsequent hybrids thereof, has yielded a series of promising synthetic antileishmanial derivatives. The synthesis of quinazolino-pyrimidine derivatives led to the discovery of the reasonably potent compound (Figure 13) with an EC\textsubscript{50} value of >100. Also, the synthesis of a series of 2-substituted quinoline derivatives revealed the promising compound when animals were dosed for 5 days (50 mg/kg, i.p.).^{205} Similarly, a class of 7-chloro-4-quinolinyl hydrazones was found to be broadly active against a range of Leishmania promastigotes with seven compounds demonstrating EC\textsubscript{50} values of <0.5 μg/mL. Additionally, the synthesis of 4-substituted pyrrolo[1,2-a]quinolines resulted in two compounds (73), with EC\textsubscript{50} activity against promastigotes of 0.5 (L. amazonensis) and 0.6 μM (L. infantum).^{204}

Synthesis and evaluation of N-quinolin-8-yl-arylsulfonamides, structurally similar to sitamaquine, yielded three compounds (74) with good activity against L. amazonensis (EC\textsubscript{50} = 2–3 μM) and L. chagasi (EC\textsubscript{50} = 0.4–0.6 μM) promastigotes. Moreover when a similar compound, 2,5-dichloro-N-(quinolin-8-yl)benzenesulfonamide, was employed as a ligand in the formation of a copper complex, the resulting organometallic species was found to be highly active with an EC\textsubscript{50} value of 0.35 μM on L. braziliensis intracellular amastigotes, and an SI value of >100. Also, the synthesis of a series of 2-substituted quinoline derivatives revealed the promising compound, which demonstrated an IC\textsubscript{50} of 0.22 μM against L. donovani intracellular amastigotes and was also found to inhibit parasitemia in hamsters by 84% when dosed orally (50 mg/kg, b.i.d.) over 5 days, despite exhibiting very low bioavailability in mice.

3.3. Targeted Approaches toward Novel Leishmaniasis Therapies

Species within the genus Leishmania have been the focus of target-based drug discovery by numerous groups. A large number of targets have been proposed; however, there have been relatively few medicinal chemistry campaigns. This subsection attempts to capture relevant efforts that have been reported in the literature over the last five years. Recent reviews...
describing *Leishmania* targets have also been published (Table 5).143a,156,206

Table 5. List of Targets Identified (Not Described in Review) for *Leishmania* Species

pathway/target	Leishmania species	refs
DNA binders	*L. amazonensis*, *L. mexicana*	207
protein synthesis	*L. donovani*, *L. major*	208
sterol 24-methyltransferase	*L. amazonensis*, *L. donovani*	209
CYP P450 enzyme 14-cytochrome-P pathway	*L. tropica*, *L. amazonensis*, *L. braziliensis*	116
farnesyl pyrophosphate	*L. major*	210
glycolate pathway	*L. donovani*	211
Glycosphingolipid synthase (GPI) pathway	*L. mexicana*	212
Leishmania β-1,2-mannosyltransferase	*L. mexicana*	213
oligopeptide-B	*L. donovani*	214
pyruvate kinase	*L. mexicana*	215
Leishmania MAP kinase homologue (LMPK)	*L. mexicana*	216
N-myristoyl transferase	*L. donovani*	217
nitroreductase	*L. donovani*	218
nucleoside hydrolase	*L. donovani*	219
adenosine kinase	*L. donovani*	220
nucleoside diphosphate kinase b	*L. major*	221
protein disulfide isomerase	*L. major*	222
S-adenosylhomocysteine hydrolase	*L. donovani*	223
methionyl-tRNA synthetase	*L. major*	224
tyrosyl-tRNA synthetase	*L. major*	224a
uridine-S'-monophosphate synthase	*L. donovani*	225
deoxyuridine triphosphate nucleotidohydrolase	*L. major*	226
dihydrosqualate dehydrogenase	*L. major*	227
aldolase	*L. mexicana*	228
glucose-6-phosphate isomerase	*L. mexicana*	229
glycerol-3-phosphate dehydrogenase	*L. mexicana*	230
phosphomannomutase	*L. mexicana*	231
nicotinamidase	*L. infantum*	232
triosephosphate isomerase	*L. donovani*	233
thioli-dependent reductase	*L. major*	234
cysteine synthase	*L. major*	234
deoxyhypusine synthase	*L. donovani*	206b
sphingolipid biosynthetic pathway	*L. amazonensis*	235
metacaspase	*L. donovani*	236
cytochrome-c-oxidase	*L. donovani*	237

3.3.1. Kinases. The relevance of kinases in drug discovery is well documented, particularly in the field of oncology. Aberrant activation of kinases has been linked to proliferation of certain cancer cells. For example, activation of Abelson tyrosine kinase (Abl) has been linked to chronic myeloid leukemia. Small molecules such as imatinib (77) (Figure 15) are known to inhibit Abl thus leading to cancer cell death by apoptosis. Inspired by the successes in oncology, a number of efforts have been carried out in the field of parasitic diseases targeting kinases.238 Based on homology studies, the kinome of *L. major* contains 179 genes encoding putative homologues of eukaryotic protein kinases (ePKs) and 17 encoding atypical protein kinases.239 While druggability of the kinase target is not in question, questions persist regarding achieving a selective kinase inhibitor which targets only the leishmania species and not the host. This is not an impossible task as there are recent examples from the antimalarial field where selective compounds have been achieved.240

Berberine chloride (78), a quaternary isoquinoline alkaloid, is known to have antileishmanial activity both in vitro as well as in vivo in hamster models.241 Recently, it was unraveled by Western blot phosphorylation studies that berberine chloride (78) was responsible for time dependent activation of p38 MAPK along with deactivation of ERK1/2.242 While berberine chloride has proven to be a valuable tool compound in understanding the mechanism of action its development as a drug is hampered by its poor physicochemical properties. However, validation of the MAPK pathway opens up the possibility of a target based approach in the future.

Cyclin dependent kinases or CDKs represent another interesting subclass of kinases as potential drug targets because of their ability to affect the cell cycle. Analysis of the genome from *L. major* has revealed the existence of 11 CDKs. Moreover, 11 putative cyclins (CYC2-11 and CYCA) have also been identified. Interestingly, among the kinetoplastids, only *Leishmania* possesses cyclin CYCA, acdc-2 related serine/threonine protein kinase, which is essential for transition through the G2-M phase of the *Leishmania* cell cycle. A CRK3:CYC6 protein kinase assay was developed and two groups followed up on this target leading to the identification of potent enzymatically active compounds 79 and 80 (Table 6). However, there was a poor correlation between the observed enzymatic activity and cellular potency.243

3.3.2. Folate Biosynthesis. The folate biosynthesis pathway has been a successful target for cancer and malarial chemotherapy. Folates are essential cofactors in a variety of metabolic pathways such as DNA and RNA synthesis and amino acid metabolism. Two enzymes which are of particular interest in this pathway are thymidylate synthetase (TS) and dihydrofolate reductase (DHFR). In trypanosomatids these enzymes exist as single polypeptides (DHFR-TS), with the DHFR domain on the amino terminus and the TS domain on the carboxy terminus. It was discovered that most of the known DHFR inhibitors are inactive against *Leishmania*. This can be explained by the amplification of the PTR1 gene in some mutants. PTR1 can reduce both pterins and folates and is much less susceptible to inhibition by antifolates.244

![Figure 15. Structures of imatinib (77) and berberine chloride (78).](image-url)
overcome this bypass mechanism, it was envisaged to design compounds which inhibit both DHFR-TS and PTR1 enzymes. Hardy and co-workers were able to identify compounds which were effectively able to inhibit both enzymes. However, there was little correlation between potencies on PTR1 or DHFR-TS and activity in the whole cell assay. Compounds 82 and 83 are more potent in the promastigote assay, while exhibiting mediocre potency on the targets of interest (Table 7). This suggests that there may be other targets for this class of compounds. In contrast, compound 81 exhibits whole cell potency which is in agreement with the enzymatic assays. Recently, Gilbert and co-workers were able to design and optimize 2,4-diaminoquinazolines, such as 84, as inhibitors of dihydrofolate reductase. While the synthesized compounds exhibited potent activity against L. major DHFR, there was only relatively weak inhibition of L. donovani axenic amastigotes despite activity on T. cruzi and T. brucei. Lack of cellular activity on L. donovani can possibly be explained by the low pH of the medium which prevented diffusion of basic compounds into the parasites. The activity of 84 on the PTR1 enzyme was not examined in the study (Table 7).

In order to overcome PTR1 resistance, a series of inhibitors of PTR1 (quinazolines 85 and 86) were synthesized and tested in combination with pyrimethamine (a known DHFR inhibitor) (Table 8). Both 85 and 86 were only weakly active on L. mexicana as well as other L. major strains when tested alone but showed a profound parasite reduction when tested in combination with pyrimethamine.

Leishmania protozoans are autotrophic for folates and unconjugated pteridines and rely on their host and insect vectors to provide them. Unlike other organisms there are no choke point enzymes and multiple bypass mechanisms exist. A suitable molecule has to target DHFR-TS and PTR1 enzymes simultaneously while maintaining selectivity against mammalian targets. Despite numerous efforts, such an inhibitor with good efficacy in vivo remains elusive.

3.3.3. Trypanothione Pathway. The trypanothione pathway is downstream to the polyamine pathway which synthesizes spermidine, a key molecule for the synthesis of trypanothione. Trypanothione (bis(glutathionyl) spermidine) is an essential molecule for modulating oxidative stress in parasites. Trypanothione synthesis is catalyzed by two key enzymes, trypanothione synthetase (TS) and trypanothione reductase (TR). TS is responsible for the synthesis of trypanothione from spermidine and two molecules of glutathione. Trypanothione reductase is then maintained in its reduced state by the enzyme trypanothione reductase using NADPH as the cofactor. Trypanothione in reduced form then reduces tryparedoxin (TX) which is then followed by reduction of tryparedoxin recycling enzyme tryparedoxin peroxidase (TP). It has been shown that TR, TS, and TP are essential targets for the survival as well as infectivity of parasites. However, trypanothione reductase has structural similarity with its human homologue glutathione reductase, which could make it difficult to design selective analogues against this enzyme.

The efforts on trypanothione pathway enzymes have been the focus of several past reviews. Recently pyrrole compound 87 (Figure 16) was identified to be a competitive inhibitor of trypanothione reductase with a Ki of 4.6 μM. The compound also showed activity on L. donovani intracellular amastigotes with an EC50 of 13 μM. However, the compound was equally cytotoxic on KB cells. The X-ray structure of the compound with the trypanothione complex shows that compound 87 binds to the trypanothione binding site, thereby impeding substrate entry which explains the competitive nature of its inhibition.

In a separate effort, a combinatorial library of quinone–polyamine conjugates was designed based on phenotypic T. brucei hits and conjugated with polyamine derivatives to optimize their antitrypanosomatid profile. The best compound from this series (compound 88) was found to have
trypanothione reductase activity along with the ability to reduce cytoplasmic ATP and mitochondrial potential. In addition to T. brucei activity, the compound showed activity on L. donovani amastigotes as well as promastigotes in the 2–3 μM range with a SI index of 2–3 for cytotoxicity on L6 cells.252

Mesoionic heterocycles have been linked to a variety of biological activities as a result of their ionic character and high dipole moment. Previous studies have identified this class of compounds having antitrypanocidal activity. Based on this result, mesionic 1,3,4-thiadiazolium-2-aminide derivatives were studied for trypanothione reductase activity. Among them, the nitro-containing compound 89 exhibited a non-competitive inhibition profile with an IC50 of 1.63 μM. Molecular docking studies have indicated that these mesoionic compounds effectively fit into the substrate binding site together with the substrate molecule.253 Compound 89 was also active on L. amazonensis promastigotes with an EC50 = 1.5 μM.254 The compound was used in an L. infantum murine model where it exhibited high efficacy upon intraperitoneal dosing at 20 mg/kg/day for 4 weeks. No parasites were detected in the liver or the spleen. In an L. amazonensis mouse model, intralesional topical treatment of 20 mg/kg/day led to superior therapeutic efficacy than treatment with meglumine antimoniate.253

It has been shown that the enzymes in the trypanothione pathway: trypanothione synthetase (TS), and trypanothione reductase (TR) and tryparedoxin peroxidase (TP) are absent in human hosts and are essential to parasites. While trypanothione reductase has structural similarity with its human homologue glutathione reductase, which could potentially impede the path to design selective analogues, the other two enzymes TS and TP hold the promise of delivering selective inhibitors against them.

3.3.4. Cyclophilins. Cyclophilins are groups of proteins which bind to cyclosporine (90) (Figure 16). Proteins in this family share approximately 109 amino acids which are referred to as the cyclophilin-like domain. This domain is responsible for peptidylprolyl isomerase (PPIase) which influences a number of biological processes such as protein folding, assembly of multiprotein complexes, and signal transduction. Cyclosporine (90) is known to have antileishmanial activity on intracellular L. tropica- and L. major-infected mouse macrophages. However, the repurposing of cyclosporine (90) is not feasible because of its immunosuppressive effect. Späth and co-workers have proven that cyclosporine acts on Leishmania cyclophilins and the structural differences between human and parasite orthologs, potentially enable the design of compounds to selectively act against the parasite.255

3.3.5. Purine Salvage Pathway. Leishmania species have to utilize purine from the mammalian host to synthesize purine nucleotides. While the protozoan transporters are different from their mammalian counterparts in terms of substrate specificity, there are numerous uptake mechanisms which make targeting of these transporters difficult as the nontargeted transporters provide escape mechanism.256 The most important enzyme in this pathway is phosphoribosyl transferase (PRT). There are three known homologues of PRT namely, adenine phosphoribosyl transferase, hypoxanthine-guanine phosphoribosyl transferase (HGPRT), and xanthine phosphoribosyl transferase (XPRT).206b,257 HGPRT converts hypoxanthine to inosine monophosphate and guanine to guanine monophosphate. One of the known inhibitor of HGPRT is allopurinol (91) (Figure 16), which is phosphorylated by HGPRT and incorporated into nucleic acids leading to death of the parasite. Allopurinol (91) has been shown to be efficacious against both cutaneous and visceral leishmaniasis.258 Moreover, it was found to be synergistic with other antileishmanial drugs.113a,259 However, it was found that PRTs are not essential for parasitic survival raising doubts about the validity of this target.260 Nevertheless given the orthogonal mechanism, a purine transport inhibitor might be able to provide the necessary parasite growth inhibition. This approach has not been reported in the literature.

3.3.6. Topoisomerase. DNA topoisomerases are enzymes that play an important role in numerous biological processes such as DNA replication, transcription, recombination, and repair. While topoisomerases are ubiquitous in all organisms, studies have shown that kinetoplastid topoisomerases have some distinguishing features that differentiate the parasite enzyme from its prokaryotic and eukaryotic counterparts.261 Broadly, they are classified as type I and type II topoisomerases and cleave single stranded and double stranded DNA, respectively. Both type I and type II topoisomerases have been characterized from L. donovani. The type I topoisomerase enzyme was found to be independent of ATP and is present in both the kinetoplast and nucleus. In contrast, type II topoisomerase was found to exhibit both ATP dependent and independent activity. DNA topoisomerase inhibitors have been extensively covered in the literature.261a,b,262

Based on the success of camptothecin (92) (Figure 17), a known topoisomerase inhibitor in the field of oncology,
camptothecin analogues used in therapy were evaluated for antileishmanial activity. Three compounds, namely topotecan (Hycantim, 93), gimatecan (ST1481, 94), and the pro-drug irinotecan (Camptosar, 95) as well as its active metabolite SN-38 (96) were evaluated against L. infantum. Gimatecan (94) and camptothecin (92) were most potent on L. infantum promastigotes with activity in the micromolar range (Table 9). Moreover, all these compounds except for irinotecan (95) inhibited L. infantum splenocyte-infecting amastigotes in the nanomolar potency range. The inhibitory potency of campothecin derivatives on recombinant L. infantum topoisomerase IB demonstrated that all the compounds affected topoisomerase activity, with gimatecan (94) being the most potent compound preventing the relaxation of supercoiled DNA at submicromolar concentration.263

2-Alkynoic fatty acids have been described to have broad range of biological activity including antileishmanial, antimycobacterial, antifungal, and anticancer properties. In particular, 2-hexadecynoic acid (2-HDA, 97) and 2-octadecynoic acid (2-ODA, 98) (Figure 17) demonstrated activity against L. donovani (Table 10). These fatty acids are inhibitors of the L. donovani DNA topoisomerase IB enzyme (LdTopIB) and the potency against LdTopIB is dependent on chain length.264 Also (SZ,9Z)-(±)-2-methoxy-5,9-eicosadienoic acid

Figure 17. Representative examples of topoisomerase inhibitors.
Table 10. Topoisomerase and Antiparasitic Activity on Fatty Acid Derivatives

compound	Leishmania IC_{50} (μM)	LdTopIB IC_{50} (μM)	hTopIB IC_{50} (μM)	macrophage IC_{50} (μM)
2-ODA	17.8^a	28.7	>100	>100
2-ODA (98)	11.0^a	5.3	51.9	>100
99	260^b	31	>100	>100
100	240^b	22	>100	90
101	19.8^a	activity at 50 μM		
102	165^a	62	604	

^aL. donovani promastigote assay. ^bL. infantum amastigote assay.
3.3.7. Proteases. There are a total of 154 proteases in the Leishmania genome. These proteases are in the cysteine, serine, aspartate, and metalloprotease family. Out of these proteases, cysteine proteases and metalloprotease have proven to be important in the pathogenesis of leishmaniasis.271

3.3.8. Cysteine Protease. The cysteine proteases in Leishmania exist in the gene families CPA, CPB, and CPC. It has been established that at least two of the families need to be targeted to absolutely block the parasite invasion and replication in host cells.272 In an effort to find new starting points for cysteine protease inhibitors, L. mexicana cysteine protease CPB2.8, which shows significant differences with bovine cathepsin B, was selected as a target. High throughput screening of a compound library against this enzyme and bovine cathepsin B (BtCatB) identified four novel inhibitor classes broadly classified into 3 groups depending on the warhead-types, namely thiosemicarbazones (118, 119), nitriles (120), and semicarbazones (121) (Figure 18). The thiosemicarbazone 118 showed an IC_{50} on CPB2.8ΔCTE (which is the recombinant form of the amastigote specific isoform CPB2.8 expressed without the C-terminal extension) in the nanomolar range with complete selectivity over bovine Cat B (IC_{50} >30 μM). In contrast, the thiosemicarbazone (119) was equipotent on both CPB2.8ΔCTE and on BtCatB in the nanomolar range. The nitrile 120 was approximately ten times less potent on CPB2.8ΔCTE (K_{i} = 570 nM) and had some degree of selectivity over bovine protease BtCatB (IC_{50} = 13.8 μM). The most promising hit was 121 with a K_{i} of 5 nM and an IC_{50} >30 μM for BtCatB. These chemotypes prove that reasonable starting points can be discovered for further optimization of cysteine protease inhibitors.273 In a separate effort by Augustyns and co-workers, a set of α-ketoheterocycles was designed and synthesized as cysteine protease inhibitors of L. mexicana. However, there was no correlation between the enzymatic activity and cellular activity, thus bringing into question the validity of the target.274

A series of semisynthetic morelloflavone (122) (Figure 18) analogs were evaluated. All compounds exhibited inhibition of L. amazonensis promastigotes as well as amastigote activity in nanomolar range with low cytotoxicity. In addition, compounds 123–125 were active against recombinant-CPB2.8 of L. mexicana and r-CPB3 of L. amazonensis with IC_{50} values of 0.7–1.5 μM, respectively. These results provide new starting points for lead optimization.275

Table 11. Topoisomerase and Antiparasitic Activity on Thiadiazole Derivatives

compound	R	L. major Top I (%)	L. major Top II (%)	intra am	EC_{50} (μM)
112	Ph	73	59	4.2	
112	5-Cl-2-thiophene	62	57	2.7	
113	Ph	64	76	3.7	
113	2-Cl-Ph	39	55	8	
113	3-Cl-Ph	49	51	6.8	
113	5-Br-2-thiophene	37	83	2.8	

Figure 18. Examples of protease and phosphodiesterase inhibitors.
Tellurium compounds as chemotherapeutic agents are being investigated for variety of indications. Organic telluranes are also known to be inhibitors of cysteine proteases. Based on the earlier reports of organotellurane compounds being active on promastigote and amastigote forms of *L. amazonensis*, tellurium compound RF07 (126) (Figure 18) was evaluated against *L. chagasi*, a causative agent of visceral leishmaniasis in Latin America. In vitro assays indicated that the compound was active on intracellular amastigotes with an EC$_{50}$ of 530 nM and a 10-fold cytotoxic window when compared to noninfected macrophages. Intraperitoneal injection of RF07 (126) in *L. chagasi*-infected hamsters exhibited a 99.6% reduction of parasite burden when compared to control animals which received an antimonial drug Glucantime or PBS. The effect of RF07 (126) on cathepsin B activity on *L. chagasi* amastigotes was evaluated spectrophotometrically using fluorogenic substrates and the IC$_{50}$ values were 10-fold higher suggesting the potential involvement of other targets in cells and in vivo. Inspired by this, palladacycle compound DPPE 1.2 (127) was evaluated for activity against *L. amazonensis*, which is prevalent in in the Amazon region of Brazil and is responsible for cutaneous leishmaniasis. The compound was found to be active against axenic *L. amazonensis* promastigotes with an EC$_{50}$ of 2.13 nM. It was also found to be active on intracellular parasites with an EC$_{50}$ of 128 nM, and the compound was 10-fold less toxic in macrophages (CC$_{50}$ = 1,267 nM). In an efficacy study, *L. amazonensis*-infected BALB/c mice were injected subcutaneously with DPPE 1.2 (127) at 4.8 mg/kg every other day. The treated animals showed a significant decrease in foot lesion size and a 97% reduction of parasite burden when compared to controls that were treated with PBS. DPPE 1.2 (127) inhibited the cysteine protease activity of *L. amazonensis* amastigotes and more significantly the cathepsin B activity which was determined by zymography after electrophoresis.

3.3.9. Aspartic Protease

The role of aspartic proteases in *Leishmania* was discovered when HIV aspartyl peptidase inhibitors were profiled for *L. amazonensis* proliferation. The HIV protease inhibitors affected parasite growth in a dose-dependent fashion with nelfinavir (16) (Figure 2) and lopinavir (128) (Figure 18) exhibiting an EC$_{50}$ of 15.1 μM and 16.5 μM on promastigotes. The protease activity of these compounds was established by measuring proteolytic hydrolysis of the peptide substrate in a dose dependent fashion in *L. amazonensis*. Lopinavir (128) was able to reduce the proteolytic hydrolysis of the substrate by approximately 90% at 1 μM, and demonstrated full activity at 10 μM. On the other hand, nelfinavir (16) exhibited weak activity with inhibition of 98% at 10 μM and no observable activity at 1 μM.

In a separate effort, an ortholog of the yeast Ddi1 protein was identified as the only member of the aspartic protease family in *Leishmania* parasites and was explored as a potential drug target. An enzymatic assay was developed by incorporating genes encoding Ddi1 orthologs from *L. major* and humans. Nelfinavir (16) was active on human as well as *L. major* with an IC$_{50}$ value of 3.4 and 0.44 μM, respectively. These values correlate well with observed cellular activity.

3.3.10. Serine Protease and Metalloprotease

In the serine protease family, oligopeptidase and oligopeptidase B play an important role in the interaction of pathogens with their host and are considered to be important targets. A number of medicinal chemistry efforts have been undertaken in the past which have been described previously. *Leishmania* metalloprotease GP63 is located on the surface of promastigotes and is thought to be a key player in evasion and survival from lysis prior to internalization by macrophages. However, there are no medicinal chemistry efforts reported for this target.

3.3.11. Phosphodiesterase

Phosphodiesterases (PDEs) control the cellular concentration of the second messenger cAMP and cGMP that are key regulators of many important biological processes. The human genome contains twenty-one PDE genes that are categorized into 11 families. In comparison, the genome of the protozoal parasite *L. major* contains five PDE genes encoding LmjPDEA, LmjPDEB1, LmjPDEB2, LmjPDEC, and LmjPDED. Two of these, LmjPDEB1 and LmjPDEB2, are adjacently situated on chromosome 15 and share extensive similarity in their overall architecture. Early studies showed that three human PDE inhibitors (dipyridamole (129), etazolate (130), and trequinsin (131)) (Figure 18) inhibit the proliferation of *L. major* promastigotes and *L. infantum* amastigotes with EC$_{50}$ values in the micromolar range (Table 12). Recently, the cocystal-

compound	*L. major* pro EC$_{50}$ (μM)	*L. infantum* am EC$_{50}$ (μM)
129	45	2.14
130	58	5.9
131	44	1.02
132	1000	4.0

In the *Chemical Reviews* (11347) (Figure 18) exhibited an EC$_{50}$ of 15.1 μM against *L. major* promastigotes and an EC$_{50}$ of 2.3 μM against *L. chagasi* axenic amastigotes (EC$_{50}$ = 2.3 μM) and *L. infantum* amastigotes with EC$_{50}$ values in the micromolar range (Table 12).
cellular activity against *L. donovani* axenic amastigotes with an EC₅₀ of 4.4 μM.²⁸⁹ In addition, a screen was carried out on 10 000 compounds using *L. tarentolae* tubulin which led to the identification of new chemotypes for future optimization campaigns. Inspired by the success of sulfonamides, a benzopyrazole sulfonamide (136) was designed and synthesized.²⁸⁷α Compound 136 had an EC₅₀ of 37–48 μM against promastigotes of different *Leishmania* subspecies. This cellular activity was in the same range as miltefosine (EC₅₀ = 17 μM). Furthermore, compound 136 when dosed via i.p. route was able to reduce the parasite load in the liver and spleen by 96–97% in an acute *L. infantum* mouse model.²⁹⁰ Rodrigues and co-workers have designed and synthesized a hybrid of dintroaniline and alkyl phosphocholine to attempt to combine the tubulin binding mechanism with that of miltefosine. Compound 137 has an EC₅₀ of 2.6 and 1.2 μM against *L. amazonensis* promastigotes and intracellular amastigotes, respectively. Fluorescence microscopy with alpha tubulin antibody in conjunction with scanning electron microscopy show changes in the cytoskeleton and alterations in the shape of the plasma membrane proving that the hybrid molecule is still acting on tubulin.²⁹¹

Stilbene based compounds are widely found in nature and are known for their pharmacological properties.²⁹² There are previous reports where stilbenes have been reported for their antileishmanial activity.²⁹³ A series of stilbene derivatives were also evaluated for their antileishmanial activity. Based on the SAR, it was observed that *trans*-stilbenes were more potent than cis isomers. *trans*-3,4′,5-Trimethoxy-3′-amino-stilbene (TTAS, 138) was the most active stilbene, showing a LD₅₀ value of 2.6 μg/mL in *L. infantum*. It was observed that TTAS (138) had low toxicity when tested on normal hemopoietic cells. TTAS has the ability to block *Leishmania* parasites in G(2)-M phase of cell cycle which is in line with the affinity chromatography results that identified tubulin as the putative target.²⁹⁴

4. INTRODUCTION TO HUMAN AFRICAN TRYPANOSOMIASIS (HAT) AND CLINICAL DESCRIPTION

Also known as African sleeping sickness, HAT is caused by the protozoan parasite, *Trypanosoma brucei*. Two forms of the disease exist in humans, the more common caused by the subspecies *Trypanosoma brucei gambiense*, and the less common form caused by *Trypanosoma brucei rhodesiense*. Both forms are transmitted to humans by the painful bite of blood-feeding tsetse flies. Infectious metacyclic trypomastigotes present in the salivary fluid of flies establish a primary lesion in the skin known as a trypanosomal chancre that appears 5–15 days after the initial bite. The parasites proliferate and spread to the blood where they disseminate throughout the body. During the early “hemolymphatic stage,” patients experience nonspecific symptoms of intermittent fevers, malaise, arthralgias, and headaches. The acute disease has protean manifestations including gastrointestinal complaints, cardiac features, ophthalmological complications, endocrine dysfunction, to name a few. In the form of HAT caused by *T. brucei gambiense*, the early stage evolves over a time frame of months or even years.²⁹⁵ In one of the early clinical descriptions of HAT, Thomas Winterbottom in 1803 referred to the swollen lymph nodes along the posterior neck as an important characteristic and mentioned that this finding, now known as Winterbottom’s sign, was used by Arab slave traders to exclude potential slaves.²⁹⁶ In the other form of HAT caused by *T. brucei rhodesiense*, the early stage runs a more rapid course of weeks before evolving into late-stage disease. As a zoonotic infection, the *rhodesiense* form of HAT may be less well adapted to the human host compared to the anthroponotic *gambiense* form. In both forms of HAT, late-stage disease is defined by the entry of trypanosomes into the central nervous system. A patient is judged to have late-stage HAT when trypanosomes (or elevated white blood counts) are detected in cerebral spinal fluid upon doing a spinal tap. In late-stage disease, parasites are also present within parenchymal brain tissue giving rise to the encephalitic picture for which the disease is so feared. Symptoms include psychiatric, motor, and sensory disturbances along with abnormal reflexes. Approximately three-quarters of patients have profound sleep disturbance, including nocturnal insomnia and daytime somnolence,²⁹⁷ giving rise to the disease name, sleeping sickness. Without treatment, patients inevitably progress to coma and death.

5. BACKGROUND OF HAT

5.1. History and Epidemiology of HAT

Other species of trypanosomes such as *T. congolense*, *T.vivax*, and *T. brucei brucei* infect animals and have greatly limited man’s ability to bring domesticated animals into many regions

Figure 19. Examples of tubulin inhibitors.
of Africa. The disease affecting cattle, nagana, has been recognized since antiquity. Interestingly, humans are resistant to these species due to trypanosome lytic factors circulating in their blood, which points to the long evolution of humans in the presence of these parasites in Africa. It is thought that HAT is a relatively recent event in human development. In fact, the infectivity of *T. brucei rhodesiense* to humans is due to a serum-resistance associated gene that arose as a single event and spread through East Africa by genetic exchange.

Tsetse flies were recognized to cause nagana 50 years before the Scottish microbiologist, David Bruce, first reported *Trypanosoma brucei* in the blood of cattle in 1895. The first microscopic detection of trypanosomes in human blood was made on a steamboat captain in The Gambia in 1901 by British surgeon R. M. Forde. This was named, *Trypanosoma gambiense*. The second trypanosome species causing infection in humans, *T. rhodesiense*, was identified in 1910.

Transmission of HAT is limited to the range of tsetse flies, thus the disease is confined to the African continent. In the 20th century, three major sleeping sickness epidemics have afflicted the Africa. The first epidemic at the turn of the 20th century, killed about 300,000–500,000 people in the Congo basin, Uganda, and Kenya and led to the introduction of arsenical compounds as the first treatments for HAT. Subsequent work by the German chemical/pharmaceutical company, Bayer, led to the discovery of suramin in 1916, the first truly effective treatment for HAT, and one that is still in use. The second major epidemic occurred between about 1920 and 1940. In response to these epidemics, control measures were introduced including tsetse fly control using traps and brush clearing, host reservoir control, and game destruction. Colonial powers introduced mobile teams to carry out these control measures with positive impacts on prevalence of HAT. The third major HAT epidemic occurred following the departure of colonial powers (1960–70s) with the associated political instability and interruption of control programs (exacerbated by the banning DDT in the 1970s). The most heavily impacted countries were Angola, Congo, Sudan, and Uganda with more than 300,000 cases per year occurring in the late 1990s. The WHO along with partner agencies and governments stepped in with aggressive case detection, treatment, and vector control to bring rates down to 50,000–70,000 by 2006. Reported cases dropped below 10,000 for the first time in 2009, although the factor gap between reported cases and actual cases is probably at least three. Areas with political and social instability, particularly in the Democratic Republic of the Congo and the Central African Republic continue to see high rates of HAT that help sustain the risk of future epidemics to the continent. Thirty-six countries are currently listed as endemic for HAT.

5.2. Biology of HAT

African trypanosomes have fascinated biologists since their discovery. The complex life-cycle of *T. brucei* between the vertebrate and invertebrate hosts provides reservoirs and means of transmission to ensure efficient propagation in nature. Parasites undergo dramatic morphological and biochemical adaptations when cycling between these vastly different hosts. In humans, during the early stage, the trypanosomes spend most of their time in the nutrient-rich environment of the bloodstream where normal glucose levels run about 100 mg/dL. For ATP production, bloodstream trypanosomes are entirely dependent on the conversion of the blood sugar glucose. Oxidative metabolism involving mitochondrial Krebs cycle enzymes and oxidative phosphorylation are essentially shut down. On top of this, the glycolytic pathway in trypanosomatids is organized in a unique manner: the majority of the glycolytic enzymes are sequestered inside peroxisome-like organelles known as glycosomes, presumably concentrating

Table 13. Drugs for Treating Human African Trypanosomiasis

Disease	Stage	Drug	Year introduced	Route of administration	Liabilities
Gambiense HAT	Early	Pentamidine	1941	IM or IV	No oral formulation
		Efollornithine	1981	IV	Expensive, every 6 h dosing
		Melarsoprol	1949	IV	Arsenical (toxic encephalopathy)
	Late	NECT	2009	IV + PO	Expensive, IV for efollornithine part
Rhodesiense HAT	Early	Suramin	1922	IV	No oral formulation
	Late	Melarsoprol	1949	IV	Arsenical (toxic encephalopathy)

NECT: nifurtimox/efollornithine combination therapy.

![Figure 20. Established drugs to treat HAT.](image-url)
the enzymes and their substrates for efficiency. While living in the bloodstream, trypanosomes are continually under attack by the body’s immune system, particularly antibodies directed at surface antigens. As a countermeasure, as much as 10% of *T. brucei*’s genome encodes variant surface glycoproteins (VSGs) that coat the outer membrane by attachment to glycosylphosphatidylinositol anchors. Only one VSG is expressed at a time with stochastic switching to provide antigenic variation that allows for evasion of the immune system. Due to myriad VSGs, attempts at making effective vaccines for HAT have been unsuccessful. The *T. brucei* genome of ~9000 genes has been fully sequenced and has accelerated our understanding of the biology of this sophisticated parasite. Areas of unique biology point to attractive targets for drug discovery, such as the machinery involved in extraordinary process of RNA editing that takes place in the sole mitochondrion known as the kinetoplast. Further discussion of target-based drug discovery follows later.

6. DRUG DISCOVERY FOR HAT

6.1. Current Treatments

The drugs currently recommended for treating HAT are listed in Table 13 and Figure 20. Approximately 98% of cases of HAT are due to *T. brucei gambiense* which predominates in central and western African countries. For early stage *gambiense* HAT, pentamidine (3) is considered first line treatment. This diamidine drug was developed in the 1930s by English chemist A. J. Ewins of the pharmaceutical company May and Baker. Melarsoprol for late-stage disease caused by *T. brucei gambiense*. Efornithine (difloromethylornithine, DFM), was developed as an anticancer agent. It blocks the enzyme, ornithine decarboxylase (ODC), which is integral to polyamine biosynthesis. It acts on the mammalian enzyme as well as the trypanosomal ODC, but owing to the rapid turnover of the mammalian ODC, the drug exerts much less toxicity on host cells compared to bloodstream trypanosomes. It is less effective on *T. brucei rhodesiense* so its use is restricted to cases of late stage *gambiense* HAT. Efornithine is itself is given at a dose of 100 mg/kg intravenously every 6 h for 14 days. For a typical-sized individual, this demanding regime translates to nearly a half-kilogram of drug administered while the patient is confined to a hospital. Through support from WHO, efornithine kits for two weighing 40 kg and costing US$1420 were made available for distribution in disease endemic countries. The frequent administration schedule of efornithine is necessary due to its short plasma half-life of 3 h. It is associated with side effects of fever, headache, alopecia, hypertension, rash, peripheral neuropathy, tremor, and diarrhea. Resistance, due to mutations in a putative amino acid transporter, has been shown in vitro.

An important recent advancement in HAT chemotherapy was the introduction of nifurtimox efornithine combination therapy (NECT), which is currently the first line of treatment for HAT. Nifurtimox (142) was repurposed as a drug for treating American trypanosomiasis (Chagas disease) caused by *Trypanosoma cruzi*. For HAT, nifurtimox is orally administered three times a day for 10 days in combination with intravenous efornithine. The advantage is that efornithine is given every 12 h for 7 days at 200 mg/kg rather than every 6 h for 14 days that is used in monotherapy. Although the burden of intravenous therapy is still a factor, it is considerably reduced by the longer dosing frequency and shorter total duration. Compared to efornithine alone, NECT was associated with a higher incidence of tremors, anorexia, and nausea. NECT was added to the WHO Essential Medicines List in 2009. Kits for four full treatment courses weigh 36 kg and cost US$1440, and...
are being widely adopted in disease endemic countries. Despite this positive advancement, the need for intravenous treatment coupled with the high costs of distribution, makes NECT a far cry from optimal chemotherapy for treating late stage HAT. A target product profile (TPP) for a better drug for HAT has been proposed by the Drugs for Neglected Diseases Initiative. The ideal drug would be effective against both early- and late-stage disease, orally administered over a relatively short course (i.e., 7 days), safe for all persons including children and pregnant women, and cost less than 30 euros per course. By being effective in both early and late-stage disease, the drug would obviate the need to perform lumbar punctures for staging purposes, a major advantage. Due to the large gap between the profiles of currently used HAT drugs and the ideal HAT drug, there is much work to be done in the field of drug discovery. Recent discoveries and advancements to be discussed below give us optimism that these goals are achievable in the coming decade.

6.2. Drug Candidates in Clinical Trials for HAT: Fexinidazole and Oxaborole SCYX-7158

Fexinidazole (13) was identified in a phenotypic screen of >700 nitroheterocyclic compounds against T. brucei cultures. It is originally synthesized by Hoechst in the 1970s and shown to have antitrypanosomal activity. The compound is active against T. b. rhodesiense and T. b. gambiense and cures both the acute and chronic mouse models of HAT infection. Fexinidazole is metabolized by P450 enzymes to sulfoxide and sulfone derivatives that have similar antitrypanosomal activity as the parent compound (range: 0.4–0.8 μg/mL). Oral bioavailability in mice was 41%, and the parent compound and metabolites achieved brain concentrations above IC50 values. Fexinidazole was mutagenic in the Ames test due to bacterial specific metabolism, but not genotoxic on mammalian cells. A four week repeat-dose toxicokinetic studies in rats and dogs demonstrated a no observed adverse event at 200 mg/kg/day in both species. The drug entered phase I human studies in 2009 and progressed to phase II/III safety and efficacy studies in October 2012 where it is being compared to NECT. The API is produced by Sanofi. The phase II/III studies are taking place in the Democratic Republic of the Congo and Central African Republic under direction by the Drugs for Neglected Diseases Initiative in collaboration with the Swiss TPH.

SCYX-7158 (143) (Figure 21) is the second compound for HAT that has recently entered clinical trials. It was
derived from screening a library of boron-based compounds from Anacor Pharmaceuticals against T. brucei cultures. A lead-optimization program conducted at Scynexis led to the benzoxaborole compound, SCYX-7158, with an IC50 of 0.29 μg/mL against T. brucei 427 strain. It cures both the acute and chronic mouse models of HAT infection. Oral bioavailability in mice was 55%; it is CNS permeable and highly metabolically stable in rodents. SCYX-7158 was negative in Ames and hERG channel assays. It was well tolerated in mice at doses up to 100 mg/kg twice per day. DNDi is directing the first-in-human studies in France which started in March, 2012, to assess the safety, tolerability, and pharmacokinetics in healthy volunteers of sub-Saharan origin.

6.3. Amidines and Diamidines

Tidwell and co-workers have extensively developed bisamidines patterned after pentamidine (3) for treatment of HAT. One compound entered into clinical trials but the trial was halted due to the occurrence of nephrotoxicity. These compounds have been reviewed previously. It has been previously reported that these dicationic compounds are selectively cytotoxic to T. brucei over mammalian cells due to the differences in the active transport mechanism, which aids in the accumulation of drug into parasites at levels ~1000-fold higher than in mammalian cells.

More recently, Alp et al. reported a series of amidobisbenzimidazoles including compound 144 (Figure 22). The best compound in the series (compound 144) blocked the growth of T. b. rhodesiense in vitro with an IC50 of 0.036 μg/mL and displayed cytotoxicity on mammalian cells at 29.4 μg/mL. No pharmacokinetic or efficacy studies were reported.

Dicationic flexible triaryl guanidines and imidamides were evaluated as antiprotozoal agents by Arafa et al. The most potent compound in the series 145 had an in vitro IC50 of 151 nM against T. b. rhodesiense with cytotoxicity of 11.6 μM. Although molecular modeling and DNA binding studies were reported, the detailed mode of action and animal data were not available.

Huang et al. reported the SAR of alkanediamide linked bisbenzamidines as antitrypanosomal agents. Compound 146 (Figure 22) in this series had an IC50 of 0.003 μg against T. b. brucei and an IC50 of 0.002 μg against T. b. rhodesiense. Compound 146 was found to be less cytotoxic to the A549 human lung carcinoma cell line with cytotoxicity of 1193 μM. Although the mechanism of action of bisbenzamidines is credited due to the binding to DNA, the antitrypanosomal activity of the bisbenzamidines reported did not directly correlate with the corresponding binding affinity to DNA. No animal data were provided.

Dicationic substituted bis(phenoxymethyl)arene analogues of pentamidine were evaluated for antiprotozoal activities by Bakunova et al. The most active compound against T. brucei rhodesiense was 1,3-bis(4-aminophenoxymethyl)benzene 147 (Figure 22) with an IC50 of 2.1 nM. Compound 148, the N-isopropyl derivative of 147, was identified to be active in the acute mouse model of HAT following i.p. dosing (4 × 5 mg/kg), but none of the compounds exhibited significant oral activity.

Patrick et al. reported the SAR on cationic benzyll phenyl ether derivatives for activities in vitro and in vivo against T. b. rhodesiense (STIB900). Several of the dicationic benzyl phenyl ether derivatives displayed good in vitro and in vivo activity against T. b. rhodesiense. In particular, methamidoxime derivative 149 achieved 4 out of 4 cures by oral administration (4 × 25 mg/kg) in a murine model.

The SAR on pentamidine derivatives bearing the benzofuran residue was reported by Bakunov et al. The authors reported that the potency of these compounds against T. b. rhodesiense depended upon the nature of the cationic motif, the orientation of the benzofuran residue and the length of the carbon linker. The most active compound in this series 150 (Figure 22) had

Figure 21. Structure of SCYX-7158.
an in vitro IC$_{50}$ of 0.025 μM against *T. b. rhodesiense* with cytotoxicity of 8.6 μM against L6 cells. The target of these compounds and in vivo data were not reported.

Patrick et al. reported the antiprotozoal activity of dicationic *m*-terphenyl and 1,3-dipyridylbenzene derivatives. Herein several diamidine derivatives displayed good in vitro activity against *T. b. rhodesiense* and proved to be curative in mouse model of early stage HAT. In particular, compounds 151, 152, and 153 (Figure 22) achieved 4/4 cure rate in mice infected with *T. b. rhodesiense* (STIB900) with four daily 5 mg/kg i.p. doses and also by a single i.p. dose of 10 mg/kg. Furthermore, prodrugs 154 and 155 attained a cure rate of 3/4 with four daily oral doses of 25 mg/kg. Mechanism of action and pharmacokinetic studies were not reported.

Structure activity and cytotoxicity analysis of pentamidine derivatives as antiprotozoal agents was reported by Bakunova et al. Herein they have identified several derivatives of pentamidine with potent in vitro activity and decreased cytotoxicity to mammalian cells by varying the aliphatic chain lengths, replacing the oxygen atom in the aliphatic linker with sulfur and sulfone moieties and through *N*-substitutions. Compounds 156 and 157 produced good in vivo activity in an acute mouse model of trypanosomiasis by attaining a cure rate of 4/4 with four daily i.p. doses of 5 mg/kg. Mode of action and the pharmacokinetic studies were not reported.

Nieto et al. reported the synthesis and evaluation of *N*-alkoxy analogues of 4,4′-bis(imidazolylamino)diphenylamine 158 to improve the blood-brain barrier penetration of the parent compound. Compound 159, the *N*-hydroxy analogue of 158, displayed 3 times increase in blood-brain barrier permeability compared to lucifer yellow as determined by in vitro transport assays through the hCMEC/D3 human brain endothelial cell line. While the parent compound 158 showed a 4/4 cure rate (i.p. dose of 4 × 20 mg/kg) in the STIB900 mouse model that mimics the stage-I of the disease, the *N*-hydroxy derivative 159 was only moderately active through i.p. administration.

6.4. Natural Product Derived Compounds

2-Arylpauullones as antitrypanosomal agents was reported by Ryczak et al. The initial set of 2-arylpauullones tested possessed good activity against *T. b. rhodesiense* bloodstream parasites, but they were also cytotoxic against human THP-1 macrophages. Further SAR studies on the 2-arylpauullones led to compounds with good potency against *T. b. rhodesiense* and selectivity over THP-1 macrophages. The most active compound in this series 160 (Figure 23) displayed an activity of 0.51 μM against *T. b. rhodesiense* with a selectivity index of 157 fold over human THP-1 cells. Animal studies were not carried out, and the mode of action of these compounds is unknown.
Inhibition of *T. brucei* by curcuminoid analogs was reported by Changtam et al.\(^{327}\) The naturally occurring curcuminoids exhibited low potency against *T. brucei*. To enhance the activity, the authors made several structural modifications to these curcuminoids to get 43 different analogs. Thirteen compounds from this library displayed submicromolar activity, notably compound 161 with an IC\(_{50}\) of 0.053 μM against *T. b. brucei*. Compound 161 was equally potent against *T. b. brucei* strains resistant to diamidines and melaminophenyl arsenical drugs. In addition, the compound exhibited a selectivity index of 453-fold over the human embryonic kidney (HEK) cell line.

6.5. Lead Structures Resulting from Phenotypic Screens

A high throughput screen was carried out at the Genomics Institute of the Novartis Research Foundation designed to identify new small molecules with antiparasitic activity toward *T. brucei* within a library of 700,000 compounds.\(^{328}\) Substituted 2-phenyl-imidazopyrines from this screen were studied in detail. Several compounds in this series including compound 162 (Figure 23) blocked *T. b. brucei* growth with an IC\(_{50}\) in the 2–4 nM range. Compound 162 showed good penetration into the brain which may translate into a drug candidate for stage-II infection. This compound displayed excellent oral pharmacokinetics in mice and cured mice of stage-I *T. brucei* infection when dosed twice a day at 5 mg/kg orally for 5 days.\(^{328}\) A similar lead was found independently by Ferrins et al. by a high throughput phenotypic screen of 87,000 compounds for growth arrest of *T. brucei*.\(^{328}\) The target for these compounds is not yet known.

Hwang et al. reported the optimization of chloronitrobenzamides found in a phenotypic screen against *T. brucei*.\(^{330}\) Compound 163 blocked *T. brucei* growth in vitro with an IC\(_{50}\) in the 2–10 nM range and did not inhibit mammalian cell growth at micromolar concentrations. This compound showed excellent stability to liver microsomes in vitro. No in vivo data of antiparasite efficacy was reported, and the mechanism of action of these compounds is not known.

6.6. Target Based Approaches for HAT

RNA interference knockdown studies suggested that *T. brucei* N-myristoyltransferase is a valid drug target as a decrease in this enzyme lead to parasite growth arrest in vitro and a negation of infectivity of parasites in mice.\(^{331}\) Brand et al. reported the optimization of an N-myristoyltransferase inhibitor discovered via high throughput screening.\(^{332}\) Compound 164 with an in vitro IC\(_{50}\) of 2 nM against *T. brucei* was identified. The compound cured rodents of stage-I infection with *T. b. rhodesiense* and *T. b. brucei* after oral dosing. Overexpression of N-myristoyltransferase in parasites leads to a shift of IC\(_{50}\) to higher concentration thus providing strong evidence that this enzyme is the target of these compounds. Also, compound 164 blocked incorporation of radiolabeled myristic acid into parasite proteins. Unfortunately, these compounds do not enter the brain and thus cannot be developed as stage-II drug candidates.

Gelb, Hamilton, Buckner, Van Voorhis, and their co-workers reported extensive work on *T. brucei* farnesyltransferase inhibitors as antiparasite agents.\(^{333}\) This enzyme attaches 15-carbon farnesy1 groups to the C-terminus of a specific set of parasite proteins (human cells contain a similar enzyme). Farnesyltransferase inhibitors have been extensively developed by pharma as anticancer drug candidates, and thus a wealth of farnesyltransferase inhibitors are available for repurposing to treat HAT. Unfortunately, after extensive studies, inhibitors that are potent on the parasite enzyme could not be modified.

Figure 23. Miscellaneous anti-HAT compounds.
to improve pharmacokinetic properties. Furthermore, farnesyltransferase inhibitors with good pharmacokinetic properties in humans and that entered anticancer clinical trials were not potent on the *T. brucei* ortholog. The reasons for this interspecies inhibitor specificity is not apparent since almost all of the residues in the parasite enzyme seem to be conserved with those in the active site of human farnesyltransferase, for which a crystal structure is available.

Trypanothione reductase has been extensively studied as a drug target for HAT. Recent work in this area by Martyn et al. involved a high throughput screen against a library of 134,500 compounds. One compound from this work is 165 with an IC$_{50}$ of 0.68 μM against *T. brucei* and a 59-fold selectivity for trypanothione reductase over human glutathione reductase. No in vivo studies for these compounds were reported.

Cavalli et al. reported the antitrypanosomal activity of quinazoline derivatives that target trypanothione reductase, a flavoenzyme essential for the parasite survival. The authors reported several low micromolar quinazoline based inhibitors for *T. brucei rhodesiense* which also inhibited the enzyme in vitro. The best compound in the series 166 had a potency of 0.12 μM against bloodstream *T. brucei rhodesiense* and a 23-fold selectivity over mammalian L6 cells.

Using virtual screening, Mpamhanga et al. identified two scaffolds for the inhibition of the *T. brucei* peroxidase reductase 1 (TbPTR1), an enzyme essential for parasite survival. On the basis of the crystal structure of one of these compounds bound to the enzyme, further analogs were designed to increase the potency, selectivity and favorable physicochemical properties. To fill the hydrophobic pocket near the binding site, a phenyl group was added to the parent structure to get compound 167. This compound displays an apparent K_i value of $K_{i}^{\text{app}} = 0.007$ μM on the peroxidase reductase 1 and was 100-fold more active than the parent compound and displayed good selectivity over human versus parasite enzyme. However, this compound displayed poor inhibition of *T. brucei* cell growth in culture with IC$_{50}$ of 10 μM and no animal data was reported.

Mallari et al. reported purine-derived nitriles as antitrypanosomal agents by targeting the trypanosomal cathepsin B. Through a structure guided lead development, inhibitors of this enzyme with good selectivity for the parasite enzyme over human cathepsins B and L was reported. The most potent compound in the series compound 168 had an in vitro IC$_{50}$ of 0.46 μM against *T. brucei* cathepsin B and 0.03 μM against rhodesain, a trypanosomal cathepsin L-type protease. Further it also possesses selective trypanocidal activity with an IC$_{50}$ of 0.56 μM against *T. brucei*. No animal data was reported.

Ochiana et al. reported the repurposing of a human Aurora kinase inhibitor scaffold for specifically targeting trypanosomal Aurora kinase 1. An SAR investigation was done on an established human Aurora kinase inhibitor 169 by focusing on decreasing the activity against the acute myelogenous leukemia cell line (MOLT-4) and maintaining the activity against *T. brucei rhodesiense*. The study yielded compounds with selectivity indices ranging from 2- to 23-fold. Compound 170 was the most selective with a potency of 0.61 μM against *T. brucei rhodesiense* and a selectivity ratio of 23 against MOLT-4. No animal studies were reported.

Hirth et al. reported the antitrypanosomal activity of the base modified adenosine derivatives that target S-adenosylmethionine decarboxylase (AdoMetDC), an enzyme that is essential in the synthesis of polyamines critical for trypanosomes survival. The 8-methyl adenosyl derivative 171 was the most active compound in this series with an IC$_{50}$ of 0.001 μM against *T. brucei rhodesiense* and 0.027 μM against *T. brucei brucei*. This compound was observed to possess good blood brain barrier penetration based on an intraperitoneal administration study on mice.

Peptidic Michael acceptor-based inhibitors of trypanosomal cysteine proteases, called rhodesain, exhibiting antitrypanosomal activity were reported by Breuning et al. A library of 45 fumaric acid-based peptidic analogs containing Asn, Gln, or Phe residues were synthesized and tested against rhodesain from *T. b. rhodesiense*. In general it was observed that the E isomers were more potent than the corresponding Z isomers, and most of the compounds in this series were nontoxic to mammalian macrophages. The most active compound in this series against *T. brucei brucei* was 172 with IC$_{50}$ of 0.25 μM against *T. b. brucei* and a K_i of 7.6 μM against rhodesain. No animal studies were reported.

7. CONCLUDING REMARKS

In summary, there has been significant progress in the treatment of both leishmaniasis and HAT during the past decade. Newly introduced VL treatments, which include paromomycin, miltefosine, geographic extensions of liposomal amphotericin B, and various drug combinations, have substantially improved options for patients affected by VL. This has been especially critical for treating VL cases in the state of Bihar, India, where resistance toward pentavalent antimonials is widely spread. Similarly, the treatment of stage II HAT patients dramatically improved in recent years as the result of the introduction of nifurtimox-eflornithine combination therapy (NECT). There is insufficient data to firmly establish the clinical efficacy of various regimes used for treatment of CL. Many of these infections are self-healing and the decision to initiate treatment is typically determined by the nature of lesions and risk of developing MCL.

However, in spite of this recent progress, new drugs for both leishmaniasis and HAT are still urgently needed. Treatment options for patients with VL in East Africa, HIV-VL coinfections, and those with PKDL diagnosis are still inadequate, and new drugs that are inexpensive, orally bioavailable, short acting, and do not require hospitalization, would dramatically improve the treatment of VL patients in endemic areas. For HAT, the current treatment options are even more limited, thus making the situation dire. The current target profile necessitates for drug candidates to be effective against both stage I and stage II disease. This makes the task scientifically challenging as only a small percentage of chemical leads have the potential to penetrate the BBB. Currently, the number of infected individuals is uncertain and probably lower than during other times because of public health campaigns. However, even with the low numbers, HAT disease figures in the top 10 of diseases responsible for loss of life and productivity in the African continent.

The drug pipelines for both diseases are very thin: very few compounds are in development and drug discovery efforts are limited. There are only two compounds in clinical trials for HAT (nifurtimox, SCYX-7158) and one for VL (nifurtimox) making the need for enriching the pipeline with novel chemical entities of critical importance.
Advait Nagle immigrated from Mumbai, India to the University of South Florida where he earned his Ph.D. under Professor Kyung Woon Jung. Upon graduation, Adi completed his postdoctoral studies under the mentorship of Nathanael Gray and Peter Schultz, where he made contributions in the field of kinase drug discovery. His current focus in medicinal chemistry has been in the arena of infectious diseases and oncology. He was a team member for the GNF malaria program which led to the discovery of KAF156, a novel small molecule being evaluated in clinical trials. Adi leads a chemistry effort to discover new molecules to treat leishmaniasis. His research interests include phenotypic drug discovery in the field of infectious diseases.

Shilpi Khare studied Biochemistry and Molecular Biology (B.A.) at the University of California at Berkeley. She then received her Ph.D. in Biochemistry and Molecular Biology from the University of California at Los Angeles (UCLA, Class of 2011) where she worked under the direction of Dr. Steven G. Clarke to characterize the interplay between insulin signaling and protein repair in longevity and stress resistance in the soil nematode Caenorhabditis elegans (C. elegans). She was nationally acknowledged for her collaborative work exploring the mechanisms by which small amounts of ethanol extend lifespan in C. elegans. Currently, Shilpi is working as a postdoctoral fellow at the Genomics Institute of the Novartis Research Foundation (GNF), where she has applied her knowledge in metabolism and signal transduction and experience in pharmaceutical drug discovery to uncover novel drug targets for the treatment of neglected parasitic diseases. Shilpi enjoys exploring the world of chemistry as a member of the American Chemical Society (ACS) and Association for Women in Science (AWIS).

Arun Babu Kumar was born in Chennai (India), where he received his bachelor’s and master’s degree in Chemistry from the University of Madras and Anna University, respectively. Upon graduation, he worked as a research associate at the Unilever research center in India. In 2006, he moved to the U.S. to pursue his graduate studies at the University of South Florida under the guidance of Dr. Roman Manetsch, where he worked on developing ambient light stable diazirine photolabels and received his Ph.D. in 2012. In 2013, he joined Dr. Michael Gelb’s lab at the University of Washington as a postdoctoral researcher, where his research focuses on developing molecular probes for the early detection of lysosomal storage disorders (LSD) in newborns.

Frantisek Supek is currently a Senior Research Investigator at the Genomics Institute of the Novartis Research Foundation in San Diego. Early in his scientific career Frantisek studied structure and function of vacuolar ATPases and metal ion transporters in the laboratory of Nathan Nelson (Roche Institute of Molecular Biology, Nutley, NJ) and vesicular protein trafficking in the budding yeast, Saccharomyces cerevisiae (the laboratory of Randy Schekman, Howard Hughes Medical Institute, UC Berkeley, CA). During the past 7 years his research has focused on new drug discovery for infectious diseases caused by kinetoplastid parasites Leishmania donovani and Trypanosoma cruzi and on determination of mechanism of action of new antiparasitics.
Andriy Buchynskyy obtained his Master’s degree in Chemistry from Lviv National University (Ukraine) in 1995. In 2001 he received a Ph.D. in Organic/Medicinal Chemistry from Leipzig University (Germany) under the supervision of Prof. Peter Welzel for the work on synthesis of biochemical tools based on antibiotic moenomycin A. He then conducted postdoctoral work in the Prof. Chi-Huey Wong’s laboratory at The Scripps Research Institute (2002–2004). In 2004 he joined ChemDiv Inc. (San Diego, USA) as a research scientist and worked on combinatorial libraries synthesis. Since 2011 he is a postdoctoral researcher in the group of Prof. Michael H. Gelb at University of Washington, working on the antitrypanosomal drugs discovery.

Casey J. N. Mathison was born and raised on the island of Maui, Hawaii and went on to receive his B.Sc. degree in Chemistry from the Massachusetts Institute of Technology in 2002. He received his Ph.D. from The Scripps Research Institute in 2007 under the mentorship of Prof. K. C. Nicolaou and was the recipient of a Bristol-Myers Squibb Graduate Fellowship in Synthetic Organic Chemistry. His dissertation examined the synthesis of β-tricarbonyl natural products and methodologies pertaining to hypervalent iodine(V) reagents. Upon graduation, he subsequently joined the Medicinal Chemistry department at Exelixis, and in 2010, he then went on to join the Medicinal Chemistry department at GNF. In his professional career, he has conducted research in a range of therapeutic areas, including autoimmune and inflammatory diseases, cardiovascular and metabolic disorders, infectious diseases, and oncology.

Naveen Kumar Chennamaneni was born in Telangana State, India. He received his B.Sc. (Biology and Chemistry) and M.Sc. in Chemistry from Osmania University, Hyderabad, India. In 2006, he earned his Ph.D. in Organic Chemistry under the supervision of Dr. Sadagopan Raghavan at Indian Institute of Chemical Technology (Hyderabad), during which he developed new synthetic methodologies for the synthesis of bromosulfonamides from unsaturated sulfilimines. He worked as a Postdoctoral fellow in the research group of Professor Yong Sup Lee at Kyung Hee University, Seoul, South Korea. He began his current appointment as a Research Associate at University of Washington, under Professor Michael H. Gelb in 2008. His research work involves antiparasite drug discovery and developing newborn screening methods for lysosomal storage diseases.

Nagendar Pendem is a native of Miryalguda, State of Telangana, India. He obtained his B. Sc. (1997) and M. Sc. (1999) from Osmania University, Hyderabad. He received a Ph.D. (2008) as a CSIR Research Fellow at the Indian Institute of Chemical Technology (IICT), Hyderabad, supervised by Dr. G. V. M. Sharma. During his Ph.D. studies, he worked on the design and synthesis of non-natural carbo-β-amino acids with novel helical structures. Then he worked for few months as a Research Scientist on drug development in Ogene Systems (1) Pvt. Ltd, Hyderabad, India. He started his postdoctoral research career at the IBMC, University of Strasbourg, France (2009) and IECB, University of Bordeaux, France (2009–2010) with Dr. Gilles Guichard, where he worked on the synthesis of novel urea oligomers. From 2011 onwards he has been working as a Postdoctoral Research Associate on the development of antiparasite drugs at the University of Washington, Seattle with Prof. Michael H. Gelb.
Fred Buckner, MD, is an infectious disease specialist and molecular parasitologist. His research concentrates on drug discovery for diseases caused by pathogenic protozoa. These include Trypanosoma cruzi (the cause of Chagas disease), Trypanosoma brucei (the cause of African sleeping sickness), Leishmania species (the cause of leishmaniasis), and Plasmodium falciparum (the cause of malignant malaria). His lab focuses mainly on several biochemical targets for developing antiparasitic drugs including sterol biosynthesis, protein prenylation, protein synthesis, and protein kinases.

Michael H. Gelb received his Ph.D. from Yale University working on cytochrome P450 with Stephen G. Sligar. He was a postdoctoral fellow with Robert H. Abeles (Brandeis University) working on inhibitors of proteases. In 1985 he started his own lab at the University of Washington where he works on medicinal enzymology. His major research accomplishments include: (1) Development of methods to evaluate interfacial enzymes, mainly phospholipases A2, at the lipid–water interface; (2) Discovery of protein prenylation; (3) Co-developer of the ICAT reagents for quantitative proteomics; (4) Development of several advanced drug leads for the treatment of parasitic infections; (5) Developed tandem mass spectrometry for newborn screening of lysosomal storage diseases (used worldwide).

Valentina Molteni is currently a Director of Chemistry at the Genomics Institute of the Novartis Research Foundation (GNF) in San Diego. She received her Ph.D. in Organic Chemistry in 1997 from the University of Milan in Italy and was a postdoctoral scientist at the University of California San Diego working on the identification of HIV integrase inhibitors. In her medicinal chemistry career first at Dupont Pharmaceutical and then at GNF since 2002, Valentina has been involved in many drug discovery programs delivering development candidates for a variety of indications including infectious, respiratory, cardiovascular, liver diseases and oncology.

ACKNOWLEDGMENTS

UW NIH Grants AI070218, AI54384, and AI06850; Wellcome Trust U.K. We thank Doug Quackenbush, Jaime Ballard, and Yin Lai for helping with the cover art.

REFERENCES

(1) DNDi Home Page. http://www.dndi.org/diseases-projects/diseases/vl/tpp/tpp-vl.html. (accessed 08/31/2014).
(2) Manson-Bahr, P. E. C. The Wellcome Trust illustrated history of tropical diseases; Cox, F. E. G., Ed., The Wellcome Trust: London, U.K., 1996.
(3) Ross, M. R. Report on the nature of kala azar; Office of the superintendent of government printing: Calcutta, India, 1899; pp 1–104.
(4) Hoare, C. A. Trans. R. Soc. Trop. Med. Hyg. 1938, 32, 66.
(5) Nicolle, C. C. R. Hebd. Seances Acad. Sci. 1908, 146, 842.
(6) Lainson, R. The Wellcome Trust illustrated history of tropical diseases; Cox, F. E. G., Ed., The Wellcome Trust: London, U.K., 1996.
(7) Vianna, G. Bras.-Med. 1911, 25, 411.
(8) Matta, A. A. Bull. Soc. Pathol. Exot. Sés Fil. 1916, 9, 494.
(9) Lainson, R.; Strangways-Dixon, J. Trans. R. Soc. Trop. Med. Hyg. 1964, 58, 470.
(10) Cunha, A. M.; Chagas, E. Nota Prévía Hosp., Rio de Janeiro 1937, 11, 3.
(11) Kuhls, K.; Alam, M. Z.; Cupolillo, E.; Ferreira, G. E.; Mauricio, I. L.; Oddone, R.; Feliciangeli, M. D.; Wirth, T.; Miles, M. A.; Schonian, G. PLoS Neglected Trop. Dis. 2011, 5, e1155.
(12) Cotterell, S. E.; Engwerda, C. R.; Kaye, P. M. Blood 2000, 95, 1642. (b) Pearson, R. D.; Sousa, A. Q. Clin. Infect. Dis. 1996, 22, 1.
(13) Chappuis, F.; Sundar, S.; Haifu, A.; Ghalib, H.; Rijal, S.; Peeling, R. W.; Alvar, J.; Boelaert, M. Nat. Rev. Microbiol. 2007, 5, 873. (d) van Griensven, J.; Díro, E. Infect. Dis. Clin. North Am. 2012, 26, 309.
(14) Ejaz, S. A.; Ali, N. Expert Rev. Anti-Infect. Ther. 2013, 11, 79.
(15) Berman, J. Curr. Infect. Dis. Rep. 2005, 7, 33. (b) Sundar, S.; Chakravarty, J. Expert Opin. Pharmacother. 2013, 14, 53.
(16) Dorlo, T. P.; Balasegaram, M.; Beijnen, J. H.; de Vries, P. J. J. Antimicrob. Chemother. 2012, 67, 2576.
(17) Jarvis, J. N.; Lockwood, D. N. Curr. Opin. Infect. Dis. 2013, 26, 1.
(18) (a) Rosenthal, E.; Marty, P.; Poizot-Martin, I.; Reyez, J.; Pratlong, F.; Lefaivre, A.; Jaubert, D.; Boulat, O.; Dereeve, J.; Gambarelli, F.; Gastaut, J. A.; Dujardin, P.; Dallamonica, P.; Cassuto, J. P. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 159. (b) Gradon, L.; Scalone, A.; Grammiccia, M.; Troiani, M. AIDS 1996, 10, 785.

(c) Lopez-Velez, R.; Perez-Molina, J. A.; Guerrero, A.; Baquero, F.; Villarrubia, J.; Escribano, L.; Bellas, C.; Perez-Corral, F.; Alvar, J. Am. J. Trop. Med. Hyg. 1998, 58, 436.

(19) (a) Alexandrino-de-Oliveira, P.; Santos-Oliveira, J. R.; Dorval, M. E.; Da-Costa, F.; Pereira, G. R.; da Cunha, R. V.; Paniago, A. M.; Da-Cruz, A. M. Mem. Inst. Oswaldo Cruz 2010, 105, 692. (b) Hurissa, Z.; Grieve-Silasse, S.; Hallou, W.; Tefera, T.; Laloo, D. G.; Cuevas, L. E.; Hallu, A. Trop. Med. Int. Health 2010, 15, 848. (c) Sinha, P. K.; van Griensven, J.; Pandey, K.; Kumar, N.; Verma, N.; Mahajan, R.; Kumar, P.; Kumar, R.; Das, P.; Mitra, G.; Flevaud, L.; Ferreyra, C.; Remartin, D.; Pece, M.; Palma, P. P. Clin. Infect. Dis. 2011, 53, e91.

(20) Zijlstra, E. E.; Musa, A. M.; Khalil, E. A. G.; El Hassan, I. M.; El-Hassan, A. M. Lancet Infect. Dis. 2010, 10, 919. (b) Matlashewski, G.; Arana, B.; Kroeger, A.; Battacharya, S.; Kutty, M. K.; Saeed, M. B.

David, J. R.; Maguire, J. H.; Llanos-Cuentas, A.; Berman, J. D.

(21) (a) Singh, S.; Sharma, U.; Mishra, J. Int. J. Dermatol. 2011, 50, 1099. (b) Myszkevski, G.; Arana, B.; Kroeger, A.; Battacharya, S.; Sundar, S.; Das, P.; Sinha, P. K.; Bijal, S.; Mondal, D.; Zillberstein, D.; Alvar, J. Lancet Infect. Dis. 2011, 11, 322.

(22) (a) Ramesh, V.; Mukherjee, A. Int. J. Dermatol. 1995, 34, 85. (b) Khandpur, S.; Ramam, M.; Sharma, V. K.; Salota, P.; Singh, M. K.; Malhotra, A. Acta Derm. Venereol. 2004, 84, 245.

(23) (a) Mondal, S.; Bhattacharya, P.; Ali, N. Expert Rev. Anti-Infect. Ther. 2010, 8, 919. (b) Ofdiowo, S. O.; Saad, A. A.; De Doncker, S.; Maes, L.; Laurent, T.; El Safi, M.; Mbuchi, M.; Buscher, P.; Dujardin, J. C.; Van der Auwera, G. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 209.

(24) Foulet, F.; Botterel, F.; Buffet, P.; Morizot, G.; Rivollet, D.; Deniau, M.; Pratlong, F.; Costa, J. M.; Bretagne, S. J. Clin. Microbiol. 2007, 45, 2110.

(25) Attar, Z. J.; Chance, M. L.; el-Safi, S.; Carney, J.; Azazy, A.; El-Hadi, M.; Dowarou, C.; Hommel, M. Acta Trop. 2001, 78, 11.

(26) ter Horst, R.; Tefera, T.; Assefa, G.; Dimiti, G.; Bryceson, A. D.

(27) Verma, S.; Bhandari, V.; Avishek, K.; Ramesh, V.; Salota, P. Trop. Med. Int. Health 2013, 18, 268.

(28) (a) Markle, W. H.; Makhoul, K. Am. J. Phys. 2004, 69, 1455. (b) Grogl, M.; Hickman, M.; Ellis, W.; Hudson, T.; Lazo, J. S.; Sharlow, E. R.; Johnson, J.; Berman, J.; Sciotti, R. J. Am. J. Trop. Med. Hyg. 2013, 88, 218.

(29) (a) Khandelwal, K.; Bumb, R. A.; Mehta, R. D.; Kaushal, H.; Lezama-Davila, C.; Salota, P.; Satoskar, A. R. Am. J. Trop. Med. Hyg. 2011, 85, 64. (b) Paniz Mondolfi, A. E.; Dufsey, G. B.; Horton, L. E.; Tirado, M.; Reyes James, O.; Perez-Alvarez, A.; Zerpa, O. Int. J. Dermatol. 2013, 52, 446.

(30) (a) Marsden, P. D. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 859. (b) Saravia, N. G.; Segura, I.; Holguin, A. F.; Santrich, C.; Vallderrama, L.; Ocampo, C. Am. J. Trop. Med. Hyg. 1998, 59, 86.

(31) (a) al-Gindan, Y.; Kubba, R.; el-Hassan, A. M.; Omer, A. H.; Katty, M. K.; Saeed, M. B. Int. J. Dermatol. 1989, 28, 248. (b) Franke, E. D.; Wignall, F. S.; Cruz, M. E.; Rosales, E.; Tovar, A. A.; Lucas, C. M.; Llanos-Cuentas, A.; Berman, J. D. Int. J. Dermatol. 1990, 113, 934.

(c) Sousa Ade, Q.; Parise, M. E.; Pompeu, M. M.; Coelho Filho, J. M.; Vasconcelos, I. A.; Lima, J. W.; Oliveira, E. G.; Vasconcelos, A. W.; David, J. R.; Maguire, J. H. Am. J. Trop. Med. Hyg. 1995, 53, 380.

(32) (a) Hluwalwa, S.; Lawn, S. D.; Kanagalingam, J.; Grant, H.; Lockwood, D. N. BMJ [Br. Med. J.] 2004, 329, 842. (b) Murray, H. W.; Berman, J. D.; Davies, C. R.; Saravia, N. G. Lancet 2005, 366, 1561.

(33) WHO Expert Committee on the Control of Leishmaniases, Control of the leishmaniases: WHO Tech. Rep. Ser.: Geneva, Switzerland, 2010, 949.

(34) Alvar, J.; Velez, I. D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. PLoS One 2012, 7, e35671.

(35) Zijlstra, E. E.; el-Hassan, A. M.; Ismael, A. Am. J. Trop. Med. Hyg. 1995, 52, 299.
(227) Cordeiro, A. T.; Feliciano, P. R.; Nonato, M. C. Acta Crystallogr., Sect F: Struct. Biol. Cryst. Commun. 2006, 62, 1049.
(228) Chudzik, D. M.; Michei, P. A.; de Walque, S.; Hol, W. G. J. Mol. Biol. 2000, 300, 697.
(229) Cordeiro, A. T.; Hardre, R.; Michels, P. A.; Salmon, L.; Delboni, F. L.; Thiemann, O. H. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 915.
(230) Cho, J.; Suresh, S.; Wisedchaisri, G.; Kennedy, K. J.; Gelb, M. H.; Hol, W. G. Chem. Biol. 2002, 9, 1189.
(231) Kidzierski, L.; Malby, R. L.; Smith, B. J.; Perugini, M. A.; Hodder, A. N.; Ig, T.; Colman, P. M.; Handman, E. J. Mol. Biol. 2006, 363, 215.
(232) Gazanion, E.; Garcia, D.; Silvestre, R.; Gerard, C.; Guichou, J. F.; Labesse, G.; Sevono, M.; Cordeiro-Da-Silva, A.; Ouaissi, A.; Sereno, D.; Vergnes, B. Mol. Microbiol. 2011, 82, 21.
(233) Kumar, K.; Bhargava, P.; Roy, U. Exp. Parasitol. 2012, 130, 430.
(234) Fyfe, P. K.; Westrop, G. D.; Ramos, T.; Muller, S.; Coombs, G. H.; Hunter, W. N. et Crystallogr., Sect F: Struct. Biol. Cryst. Commun. 2012, 68, 738.
(235) Suzuki, E.; Tanaka, A. K.; Toledo, M. S.; Lavery, S. B.; Strauss, A. H.; Takahashi, H. K. Biochim. Biophys. Acta 2008, 1780, 362.
(236) Lee, N.; Gannavaram, S.; Selvapandian, A.; Debrabant, A. J. Eukaryot. Cell 2007, 6, 1745.
(237) Carvalho, L.; Luque-Ortega, J. R.; Manzano, J. I.; Castanys, S.; Rivas, L.; Gamarro, F. Microbiol. Agents Chemother. 2010, 54, 5344.
(238) (a) Doering, C.; Tobin, A. B. Cell Host Microbe 2010, 8, 305. (b) Liotta, F.; Siekierka, J. J. Curr. Opin. Invest. Drugs 2010, 11, 147.
(239) Cotella, D. P. Bioorg. Med. Chem. Lett. 2012, 22, 6788.
(240) (a) McNamara, C. W.; Lee, M. C.; Lim, C. S.; Lim, S. H.; Ranjan, J.; Nallan, A.; Brun, R.; Chatterjee, A. R.; Cunningham, S. L.; Iyer, M. J.; Zeman, A. M.; Decherling, K. J.; Kumar, T. R.; Henrich, P. R.; Gagaring, K.; Ibenez, M.; Nato, K.; Kuhlen, K. F.; Fisschi, C.; Rottmann, M.; Plouffe, D. M.; Bursula, M.; Meister, S.; Rameh, L.; Trappe, J.; Haasen, D.; Timmerman, M.; Sauerwein, R. W.; Suwanarusk, R.; Russell, B.; Renia, L.; Nosten, F.; Tully, D. C.; Kocken, C. H.; Glyne, R. J.; Bodenreider, C.; Fidock, D. A.; Diagana, T. W.; Winzeler, E. A. Nature 2003, 504, 246. (b) Kato, N.; Sakata, T.; Breton, G.; Le Roch, K. G.; Nagle, A.; Andersen, C.; Bursula, B.; Henson, K.; Johnson, J.; Kumar, K. A.; Marr, F.; Mason, D.; McNamara, C.; Plouffe, D.; Ramachandran, V.; Spoooner, M.; T unst, T.; Zhou, Y.; Peters, E. E.; Chatterjee, A.; Schultz, P. G.; Ward, G. E.; Gray, N.; Harper, J.; Winzeler, E. A. Nat. Chem. Biol. 2008, 4, 347.
(241) Ghosh, A. K.; Bhattacharyya, F. K.; Ghosh, D. K. Exp. Parasitol. 1985, 60, 404.
(242) Saha, P.; Bhattacharjee, S.; Sarkar, A.; Manna, A.; Majumder, S.; Chatterjee, M. PLoS One 2011, 6, e18467.
(243) (a) Cleghorn, L. A. T.; Woodland, A.; Collie, I. T.; Torrie, L. S.; Norcross, N.; Luksh, T.; Mpamhanga, C.; Walker, R. G.; Mottram, J. C.; Brench, R.; Frearson, J. A.; Gilbert, I. H.; Wyatt, P. G. ChemMedChem 2011, 6, 2214. (b) Walker, R. G.; Thomson, G.; Malone, K.; Nowicki, M. W.; Brown, E.; Blake, D. G.; Turner, N. J.; Walkinshaw, M. D.; Grant, K. M.; Mottram, J. Chromatogr., Sect F: Struct. Biol. Cryst. Commun. 2012, 85, 130.
(285) (a) Wang, H.; Yan, Z.; Geng, J.; Kunz, S.; Seebeck, T.; Ke, H. Mol. Microbiol. 2007, 66, 1029. (b) Seebeck, T.; Sterk, G. J.; Ke, H. Future Med. Chem. 2011, 3, 1289.

(286) (a) Seligmann, J.;Twelves, C. Future Med. Chem. 2013, 5, 339. (b) Campos, S. M.; Dixon, D. S. Hematol. Oncol. Clin. North Am. 2012, 26, 607.

(287) (a) Morgan, R. E.; Werbovetz, K. A. Adv. Exp. Med. Biol. 2008, 625, 33. (b) Luis, L.; Seranno, M. L.; Hidalgo, M.; Mendoza-Leon, A. Biomed. Res. Int. 2013, 2013, 847348.

(288) (a) Chan, M. M.; Grogl, M.; Chen, C. C.; Bienen, E. J.; Fong, D. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5657. (b) Chan, M. M.; Fong, D. Science 1990, 249, 924.

(289) George, T. G.; Endeshaw, M. M.; Morgan, R. E.; Mahasenan, K. V.; Delfin, A. D.; Mukherjee, M. S.; Yakovich, A. J.; Fattie, J.; Li, C.; Werbovetz, K. A. Biog. Med. Chem. 2007, 15, 6071.

(290) Galiana-Rosello, C.; Bilbao-Ramos, P.; Dea-Ayuela, M. A.; Rolon, M.; Vega, C.; Bolas-Fernandez, F.; Garcia-Espana, E.; Alfonso, J.; Coronel, C.; Gonzalez-Rosenze, M. E. J. Med. Chem. 2013, 56, 5894.

(291) Godinho, J. L.; Georgiopoulou, K.; Calogeropoulou, T.; de Souza, W.; Rodrigues, J. C. Exp. Parasitol. 2013, 135, 153.

(292) Shen, T.; Wang, X. N.; Lou, H. X. Nat. Prod. Rep. 2009, 26, 916.

(293) (a) Duarte, N.; Kayser, O.; Abreu, P.; Ferreira, M. J. Phytother. Res. 2008, 22, 455. (b) Kedzierski, L.; Curtis, J. M.; Kaminska, M.; Jodynis-Liebert, J.; Murias, M. Parasitol. Res. 2007, 102, 91.

(294) Tolomeo, M.; Roberti, M.; Sapaować, L.; Tarantelli, C.; Giacomini, E.; Titone, L.; Saporto, L.; Di Carlo, P.; Colomba, C. Exp. Parasitol. 2013, 133, 37.

(295) Checchi, F.; Filipe, J. A.; Haydon, D. T.; Chandramohan, D.; Chappuis, F. BMC Infect. Dis. 2008, 8, 1.

(296) Stevenson, D. Parasit. Vectors 2008, 3, 1.

(297) Blum, J.; Schmid, C.; Burri, C. Acta Trop. 2006, 97, 55.

(298) Capewell, P.; Veitch, N. J.; Turner, C. M.; Raper, J.; Berriman, K. A.; Gaukel, E.; Owens, J.; Parham, R.; Randolph, R.; Beaudet, B.; Bacchi, C. J.; Yarlett, N.; Plattner, J. F.; Yeung, D.; Ding, C.; Akama, T.; Zhang, Y. K.; Brun, R.; Kaiser, M.; Scandale, I.; Don, R. PLoS Neglected Trop. Dis. 2011, 5, e1151.

(299) Alp, M.; Goker, H.; Brun, R.; Yildiz, S. Eur. J. Immunol. 2009, 44, 2002.

(300) Pandharpal, T. D.; Ismail, M. A.; Arafa, R. K.; Wenzler, T.; Zhu, X.; Pandharkar, T.; Jones, S. W.; Wenzler, K. A.; Brun, R.; Boykin, D. W.; Tidwell, R. J. Med. Chem. 2013, 56, 5473.

(301) Bakunov, S. M.; Bakunova, S. M.; Bridges, A. S.; Wenzler, T.; Barszcz, T.; Kilgore Jones, S.; Wenzler, T.; Brun, R.; Tidwell, R. J. Med. Chem. 2009, 52, 2016.

(302) Patrick, D. A.; Ismail, M. A.; Arafa, R. K.; Wenzler, T.; Zhu, X.; Pandharkar, T.; Jones, S. W.; Wenzler, K. A.; Brun, R.; Boykin, D. W.; Tidwell, R. J. Med. Chem. 2013, 56, 5473.

(303) Nieto, L.; Mascaraque, A.; Miller, F.; Glacial, F.; Martinez, C. R.; Kaiser, M.; Brun, R.; Dardonne, C. J. Med. Chem. 2011, 54, 4855.
(333) Van Voorhis, W. C.; Rivas, K.; Bendale, P.; Nallan, L.; Hornéy, C.; Barrett, L. K.; Ankala, S.; Hucke, O.; Verlinde, C. L. M. J.; Chakrabarti, D.; Strickland, C.; Yokoyama, K.; Buckner, F. S.; Hamilton, A.; Williams, D. K.; Lombardo, L. J.; Floyd, D.; Gelb, M. H. *Antimicrob. Agents Chemother.* 2007, 51, 3659.

(334) Martyn, D. C.; Jones, D. C.; Fairlamb, A. H.; Clardy, J. *Bioorg. Med. Chem. Lett.* 2007, 17, 1280.

(335) Cavalli, A.; Lizzi, F.; Bongarzone, S.; Brun, R.; Krauth-Siegel, R. L.; Bolognesi, M. L. *Bioorg. Med. Chem. Lett.* 2009, 19, 3031.

(336) Mpamhanga, C. P.; Spinks, D.; Tulloch, L. B.; Shanks, E. J.; Robinson, D. A.; Collie, I. T.; Fairlamb, A. H.; Wyatt, P. G.; Frearson, J. A.; Hunter, W. N.; Gilbert, I. H.; Brenk, R. *J. Med. Chem.* 2009, 52, 4454.

(337) Mallari, J. P.; Shelat, A. A.; Kosinski, A.; Caffrey, C. R.; Connelly, M.; Zhu, F.; McKerrow, J. H.; Guy, R. K. *J. Med. Chem.* 2009, 52, 6489.

(338) Ochiana, S. O.; Pandarinath, V.; Wang, Z.; Kapoor, R.; Ondrechen, M. J.; Ruben, L.; Pollastri, M. P. *Eur. J. Med. Chem.* 2013, 62, 777.

(339) Hirth, B.; Barker, R. H., Jr.; Celatka, C. A.; Klinger, J. D.; Liu, H.; Nare, B.; Nijjar, A.; Phillips, M. A.; Sybertz, E.; Willert, E. K.; Xiang, Y. *Bioorg. Med. Chem. Lett.* 2009, 19, 2916.

(340) Breuning, A.; Degel, B.; Schulz, F.; Buchold, C.; Stempka, M.; Machon, U.; Heppner, S.; Gilhaus, C.; Leippe, M.; Leyh, M.; Kisker, C.; Rath, J.; Stich, A.; Gut, J.; Rosenthal, P. J.; Schmuck, C.; Schirmeister, T. *J. Med. Chem.* 2010, 53, 1951.

(341) Fevre, E. M.; Wissmann, B. V.; Welburn, S. C.; Lutumba, P. *PLoS Neglected Trop. Dis.* 2008, 2, e333.