Non-local order parameters for the 1D Hubbard model

Arianna Montorsi1 and Marco Roncaglia1

1Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, corso Duca degli Abruzzi 24, I-10129 Torino, Italy

(Dated: May 5, 2014)

We characterize the Mott insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These non-local quantities order in the corresponding gapped phases and vanish at the critical point $U_c = 0$. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U_c. The behavior of the parity correlators can be captured by an effective free spinless fermion model.

PACS numbers: 71.10.Hf, 71.10.Fd, 05.30.Rt

The Hubbard model and its extensions have been widely used to investigate the behavior of strongly correlated electrons in several condensed matter systems ranging from Mott insulators (MI) to high-T_c superconducting materials. Recently, the progress in ultracold gas experiments that use fermionic atoms trapped into optical lattices has opened the way to the direct simulation of such systems. In this Letter we address the study of nonlocal string correlators that measure the parity of spin and charge strings along the chain.

One of these parameters is related to the parity correlator of the Heisenberg Hamiltonian, for which the parity string correlator reduces trivially to the identity, the wavefunction being frozen to the sector with only one electron per site. Since in the MI phase the number of doubly occupied sites (doublons) and empty sites (holons) is non-vanishing at any finite value of the interaction (as also observed experimentally), it is reasonable to expect that an appropriate parity parameter could characterize the crossover from the Heisenberg to the Luttinger liquid limit, marking the existence of the MI phase.

The local 4-dimensional vector space on which an electron Hamiltonian acts is typically generated by applying the operator $\sum_i c_i^{\dagger} c_i$ to the vacuum operators forming a $su(4)$ algebra, with three Cartan generators. Consequently, we can introduce two independent parity correlators $O_P^{(\nu)}$, defined as:

$$O_P^{(\nu)}(r) = \left\langle e^{2\pi i \sum_{j<i} S_j^{(\nu)}} \right\rangle$$

with index $\nu = c, s$, namely the “charge” and “spin” generalizations of the parity correlator $O_P(r)$. Here $S_j^{(\nu)}$ are the spin and pseudospin operators defined respectively as $S_j^{(\nu)} = \frac{1}{2} (n_j - \nu)$ and $S_j^{(\nu)} = \frac{1}{2} (n_j - 1)$, with $n_j = c_j^{\dagger} c_j$, $\sigma = \uparrow, \downarrow$, $c_i^{\dagger \sigma}$ creating a fermion at site i with spin σ. By means of bosonization and DMRG analysis, we will show that each $O_P^{(\nu)}$ orders in the corresponding gapped phase: MI for $\nu = c$, with open charge gap, and Luther Emery (LE) for $\nu = s$, with open spin gap. The $O_P^{(c)}$ vanish with the gap at the BKT transition point.

The Hubbard model is described by the Hamiltonian

$$\mathcal{H} = - \sum_{\langle \nu \rangle} (c_\nu^{\dagger} c_\nu + c^{\dagger}_\nu c_\nu) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

where the overlap integral U gives the on-site contribution of Coulomb repulsion, and energy is expressed in units of the tunneling amplitude.

The bosonized form of the half-filled Hubbard Hamiltonian at low-energy is known to give rise to two continuum models describing separately the spin and charge sectors. The latter is described by the Hamiltonian

$$H_c = \int dx \left\{ \frac{\nu_c}{2\pi} \left[K_c \pi \Pi_c^2 + \frac{1}{K_c} (\partial_x \Phi_c)^2 \right] - \frac{2U}{(2\pi \alpha)^2} \cos(\sqrt{8} \Phi_c) \right\}$$

where ν_c is the charge gap, Π_c the charge order parameter, K_c the charge correlation length, Φ_c the charge field, α the on-site repulsion.
with\[
 v_c = v_F \left(1 + \frac{U}{\pi v_F} \right)^{1/2}
 K_c = \left(1 + \frac{U}{\pi v_F} \right)^{-1/2}.
 \tag{4}
\]

Here Φ_s is the compactified boson describing the charge excitations with velocity v_c, and $\Pi_s = \partial_s \Theta_s / \pi$ is its conjugate momentum (α is a cutoff). At the BKT transition point $U = 0$, we have $K_c = 1$. The bosonic field in the spin sector Φ_s is characterized by nonzero point U that the parity operators become [5, 9]

The spin-charge transformation $c_{i\uparrow} \rightarrow (-1)^j c_{i\downarrow}$, that implies $S_{z,j}^{(c)} \rightarrow S_{z,j}^{(s)}$, in the present bosonization analysis corresponds simply to the change $\Phi_s \leftrightarrow \Phi_c$. In fact, we have used the continuum prescriptions used in Ref. [8] where $S^s(x) = \frac{\partial_s \Phi_s(x)}{\sqrt{4\pi}}$ and $J^s(x) = \frac{\partial_{ss} \Phi_s(x)}{\sqrt{4\pi}}$.

For $U > 0$, we get $K_s > 1$: the cosine term in H_s is (marginally) irrelevant and the spin excitations are gapless and governed by an ordinary Gaussian model. Meanwhile, $K_c < 1$ and a charge gap is generated by the relevant cosine term in H_c. As a consequence, the field Φ_c is pinned in one of the classical minima of the cosine term, i.e. $\Phi_c = 2m \pi$, $m \in \mathbb{Z}$, while Φ_s does not order. For $U < 0$, just the same occurs with inverted roles $\Phi_c \leftrightarrow \Phi_s$. In the continuum limit one can realize that the parity operators become [5, 9]

$$O_P^{(c)}(r) \approx \langle \cos(\sqrt{2} \Phi_c(r)) \cos(\sqrt{2} \Phi_c(0)) \rangle.$$

Hence in the MI phase at $U > 0$, $O_P^{(c)}$ turns out to be non vanishing. In the $U < 0$ case instead the LE phase is characterized by nonzero $O_P^{(s)}$. The two Haldane type string correlators $O_P^{(c)}(r)$ and $O_P^{(s)}(r)$ give instead $O_P^{(s)}(r) \approx \langle \sin(\sqrt{2} \Phi_s(0)) \rangle \sin(\sqrt{2} \Phi_s(0)) \rangle$ where the same argument suggests that these are both asymptotically vanishing in the two gapped phases. From the above derivation, we can conjecture that a necessary and sufficient condition for having an asymptotically non vanishing charge (spin) parity correlator in the Hubbard model is the opening of a gap in the charge (spin) sector, so that $O_P^{(c)}$ do configure as order parameters for the gapped phases of the Hubbard model.

Below we support our previous argument providing a quantitative estimation of the parity string parameter in the MI phase. This is achieved by means of numerical analysis using the density matrix renormalization group (DMRG) algorithm on finite size chains with periodic boundary conditions (PBC’s). The analysis requires very precise and reliable data; in fact, the computing effort is significant due to both the slowdown caused by PBC’s and the high sensitivity of the correlations contained in $O_P^{(c)}(r)$ with respect to numerical errors. Hence we have chosen to consider chain sizes from $L = 10$ to $L = 50$ and 1024 DMRG states. The curves of $O_P^{(c)}(r)$ plotted in Fig.1 for $L = 50$ evidence clearly a fast convergence to the asymptotic values for high interactions as well as a progressive increase of the parity order with U. The presence of two sequences for even and odd r that tend toward the same asymptotic limit also signals that the spin parity correlator $O_P^{(s)}(r) \sim O_P^{(s)}(r)$ has a uniform part $[O_P^{(s)}(2r + 1) + O_P^{(s)}(2r)]/2$ that goes smoothly to zero for $U > 0$. The opposite mechanism holds for negative values of the interaction.

Exactly at $U = 0$ both parity orders are absent and $O_P^{(c)}(r) = O_P^{(s)}(r)$ as required by the spin-charge symmetry. Here, an analytic calculation of $O_P^{(s)}(r)$ can be performed independently for both spin species by using the Wick theorem and evaluating Toeplitz determinants. An estimation of the asymptotic behavior gives $O_P^{(c)}(r) \sim r^{-1}$ at $U = 0$ [10].

We have explicitly evaluated the order parameter $O_P^{(c)}$ in the MI phase and plotted it in Fig.2 for several values of U. The asymptotic values have been extrapolated from the finite-size scaling of the quantity $O_P^{(c)}(L/2)$ in a periodic chain of length L. For the fits, we have made use of functions $O_P^{(c)}(r) = O_P^{(c)} + A r^{-n} e^{-r/\xi}$ obtaining a good convergence. Interestingly, as evidenced in the inset of Fig.2, for small U we get $\gamma = 1$ and $A > 0$, and for strong interactions we obtain $\gamma = 1/2$ and $A < 0$; while for intermediate values the best fit seems to be a combination of the two functions.

The non-vanishing of $O_P^{(c)}$ implies the existence of bound doublon-holon pairs; their correlation length increases by decreasing U becoming infinite at the transition, when pairs finally unbind. The quasi long-range AF order of the MI phase suggests that such pairs are diluted in an AF background of single electrons. The spin-charge transformation that maps positive U Hamiltonian at half-filling into negative U case at zero magnetization allows to extend the same type of analysis to

![Figure 1: Parity correlator $O_P(r)$ for a periodic chain with $L = 50$ as a function of the string length r. The sequences of data refer to $U = 0.1, 1.0, 2.0, 3.0, 5.0, 10.0$ (in ascending order).](Image)
the LE phase, which is then characterized at any filling by bound pairs of single electrons with opposite spin.

Based on the above scenario, we construct an approximation scheme that aims at isolating the relevant degrees of freedom (charges) to describe the actual role of \(O_p^{(i)} \) in the Hubbard model. Since the operator \(e^{i\pi n_{ij}} = (-1)^{n_{ij}} \) changes sign whenever the site \(j \) is singly occupied, no matter its spin orientation, we choose to represent the original electronic creation operators \(c_{\downarrow i}^\dagger \) in terms of a spinless fermion \(f_i^\dagger \) and Pauli operators \(\sigma_i^a \), \(a = x, y, z \) acting on a spin part. The mapping, schematized in Table 1, is identified by the unitary transformation

\[
\begin{align*}
c_{\downarrow i}^\dagger & = c_{\downarrow i}^\dagger (1 - n_{i\downarrow}) + c_{\uparrow i}^\dagger n_{i\downarrow} = f_i^\dagger P_i^+ + (-1)^i f_i^\dagger P_i^- \\
c_{\uparrow i}^\dagger & = c_{\uparrow i}^\dagger (1 - n_{i\uparrow}) + c_{\downarrow i}^\dagger n_{i\uparrow} = (f_i^\dagger - (-1)^i f_i) \sigma_i^z
\end{align*}
\]

with \(P_i^\pm = \frac{1 \pm \sigma_i^z}{2} \). Interestingly, the interaction term for the c-fermions simply becomes a chemical potential shift for \(f \)-fermions, namely \(U \sum_i n_{i\uparrow} n_{i\downarrow} = U(N - \sum n_i^f)/2 \), where \(N = \sum_i n_{i\sigma} \). According to this picture, the spin and pseudospin operators are \(S_i^{(s)} = f_i^\dagger f_i \sigma_j \) and \(S_i^{(c)} = f_i^\dagger f_i \sigma_j^z \); conversely, we have \(\sigma_j = S_j + J_j \).

After the mapping the model in Eq. (4) becomes

\[
H = - \sum_{i,j} \left[f_i^\dagger f_j Q_{ij} - 2(-1)^i f_i^\dagger f_j^\dagger R_{ij} + \text{H.c.} \right] + \frac{U}{2} \left(N - \sum_i f_i^\dagger f_i \right),
\]

where \(Q_{ij} = (\sigma_i^+ \cdot \sigma_j + 1)/2 \) is just the swap operator in the \(\sigma \)-spin state and \(P^{(S)}_{ij} = (1 - \sigma_i \cdot \sigma_j)/4 \) is the projector onto the singlet. Notice that (5) is invariant under global \(\sigma \)-spin rotations.

The form (5) for the Hubbard model holds in arbitrary dimension, and its terms are quadratic with respect to \(f \)-fermions. Since \(O_p^{(i)} \) can be entirely expressed in terms of \(f_i \), a possible strategy consists on tracing out the \(\sigma \)-spins by some mean-field approximation. In fact, exploiting the symmetries of the Hubbard model one can easily realize that \(Q_{ij} = 1/2 \) is an exact identity on the states on which the hopping term in (5) is non-vanishing. Moreover, we set the parameter \(\alpha \equiv (R_{ij}) \) in a phenomenological way by equating the ground state (GS) energy obtained from the spinless quadratic model with the exact energy coming from the Bethe-Ansatz solution [11]. Within this approximation Eq. (5) is diagonalized in Fourier space, obtaining

\[
H = \sum_{k \in BZ} \Lambda_k \left[\eta_k \eta_k - \frac{1}{2} \right] + \frac{U(2N - L)}{4},
\]

with spectrum \(\Lambda_k = -\cos k + \sqrt{16\alpha^2 \cos^2 k + U^2/4} \) and \(\eta_k \) are the new fermionic modes. In the thermodynamical limit (TL), the energy density \(e_{GS} \) at half-filling \(\nu = 1 \) is given by \(e_{GS} = U - \frac{1}{2\pi} \int \frac{d\eta}{\eta^2} \) by \(\sqrt{16\alpha^2 \cos^2 k + U^2/4} \). It is interesting to observe that the model is gapless only for \(U = 0 \), where for \(\alpha = 1 \) \(e_{GS} \) assumes the exact value of the non-interacting case. For \(U > 0 \) the number of singly occupied states \(\nu_f \) is increasing and the pair-singlet states start to interact.

We are interested in calculating the parity operator \(O_p^{(c)}(r) = \langle \alpha^\pi \sum_{i,i'=1}^{-1}(n_{i'-1}) \rangle \), that can be rewritten as

\[
O_p^{(c)}(r) = \left\langle \prod_{j=1}^{1+r} \left(2f_j^\dagger f_j - 1 \right) \right\rangle = \left\langle \prod_{j=1}^{1+r} A_j B_j \right\rangle
\]

having defined \(A_j = (f_j^\dagger + f_j) \) and \(B_j = (f_j - f_j^\dagger) \). Making use of the Wick theorem, \(O_p^{(c)}(r) \) can be expressed as a determinant [12]

\[
O_p^{(c)}(r) = \begin{vmatrix} G_0 & G_1 & G_2 & \cdots & G_{i+r} \\ -G_1 & G_0 & -G_1 & \cdots & \vdots \\ G_2 & G_1 & G_0 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ G_{i+r} & \vdots & \vdots & \cdots & G_0 \end{vmatrix} = \det(G).
\]
where G is a block Toeplitz matrix of dimension $(r+1) \times (r+1)$, whose entries are the one-body correlation functions $G_{rr} = \langle (f^\dagger_j - f_j)(f^\dagger_{j+r} + f_{j+r}) \rangle$, whose expressions in the TL are

$$G_{rr} = \begin{cases} \frac{U}{\pi} \int_0^\infty \frac{\cos(k)}{\sqrt{16a^2 \cos^2(k) + U^2/4}}, & r \text{ even} \\ (-1)^{r+1} \frac{4a}{\pi} \int_0^\infty \frac{\cos(k) \cos(\alpha)}{\sqrt{16a^2 \cos^2(k) + U^2/4}}, & r \text{ odd} \end{cases}$$

with the property that $G_0 = 2\nu_{\text{eff}} - 1$, $G_r = 2\Re(\langle f^\dagger_j f_{j+r} \rangle)$ for r even and $G_r = 2\Re(\langle f^\dagger_j f_{j+r} \rangle)$ for r odd. The blocks $O_{\nu_{\text{eff}}}^{(c)}$ are of size 2×2. We must distinguish the cases of r even or odd, since they give rise to two different sequences. In particular, here we stick to the case r odd, where the block matrix is of even dimension.

The analytical calculation of $O_{\nu_{\text{eff}}}^{(c)}$ in the TL for some high-T_c materials: the presence of bound doublon-hole pairs in the undoped insulator could play a role upon doping in the onset of the superconducting phase.

The present analysis could be further exploited to extended Hubbard models, to describe other topologically ordered phases; noticeably, the fully gapped phase characterized by non vanishing charge and spin gaps should correspond to the non vanishing of both $O_{\nu_{\text{eff}}}^{(c)}$'s. Work is in progress along these lines.

M.R. acknowledges support from the EU-ERC project no. 267915 (OPTINF).

[1] R. Jördens et al., Nature (London) 455, 204 (2008); U. Schneider et al., Science 322, 1520 (2008).
[2] R. Resta, and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).
[3] M. Nakamura, and J. Voit, Phys. Rev. B 65 153110 (2002).
[4] E.G. Dalla Torre, E. Berg, and E. Altman, Phys. Rev. Lett. 97, 260401 (2006).
[5] E. Berg, E. G. Dalla Torre, T. Giamarchi, and E. Altman, Phys. Rev. B 77, 245119 (2008).
[6] M. Endres et al., Science 334, 200 (2011).
[7] H.V. Kruis, I.P. McCulloch, Z. Nussinov, and J. Zaanen, Phys. Rev. B 70, 075109 (2004).
[8] T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, Oxford, 2004.
[9] M. Nakamura, Physica B 329-333, 1000 (2003).
[10] A.G. Abanov, D.A Ivanov, and Y. Qian, J. Phys. A: Math. Theor. 44, 485001 (2011).
[11] E. H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[12] E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961).
[13] M. Roncaglia, C. Degli Esposti Boschi, and A. Montorsi, Phys. Rev. B 82, 233105 (2010).
[14] F. Dolcini, and A. Montorsi, Nucl. Phys. B 592, 563 (2001).

[15] A. Aligia, et al., Phys. Rev. Lett. 99, 206401 (2007).