Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer *Staphylococcus aureus* by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis

Ana G. Abril 1, Mónica Carrera 2,* Karola Böhme 3, Jorge Barros-Velázquez 4,* Benito Cañas 5, José-Luis R. Rama 3, Tomás G. Villa 1* and Pilar Calo-Mata 4,*

1 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; anagonzalezabril@hotmail.com (A.G.A.); josorodrama@gmail.com (J.-L.R.R.); tomas.gonzalez@usc.es (T.G.V.)
2 Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
3 Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain; KarolaBoehme@gmx.de
4 Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain; jorge.barros@usc.es
5 Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; bcanas@quim.ucm.es
* Correspondence: mcarrera@iim.csic.es (M.C.); p.calo.mata@usc.es (P.C.-M.)

Abstract: The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing *Staphylococcus aureus* isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to *S. aureus* strains. These diagnostic peptides could be useful for the identification and characterization of *S. aureus* strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective *Staphylococcus* spp. infected.

Keywords: pathogen detection; LC-ESI-MS/MS; proteomics; mass spectrometry; phage peptide biomarker

1. **Introduction**

The vast majority of mastitis cases are due to an intramammary infection caused by a microorganism belonging to either the *Staphylococcus* or *Streptococcus* genus [1,2]. *Staphylococcus aureus* is considered one of the major foodborne pathogens that can cause serious food intoxication in humans due to the production of endotoxins; this pathogen remains a major issue in the dairy industry due to its persistence in cows, its pathogenicity, its contagiousness and its ease of colonization of the skin and mucosal epithelia [3–5].

It is well-known that *S. aureus* bacteriophages encode genes for staphylococcal virulence factors, such as Panton-Valentine leucocidin, staphylokinase, enterotoxins, chemotaxis-inhibitory proteins or exfoliative toxins [6]. These phages are usually integrated into bacterial chromosomes as prophages, wherein they encode new properties in the host, or vice versa, as transcriptions may hardly be affected by gene disruptions [7]. Phage-encoded recombinases, rather than the host recombinase, RecA, are involved in bacterial genome excisions and integrations [8,9]. These integrations may occur at specific bacterial genome sites that are identical to those present in the DNA of the phage, or, as in the case of phage...
Mu (as long as the given gene is not expressed), some phages can integrate randomly within the bacterial genome. In addition, bacteriophage and staphylococcal species interactions may substantially alter the variability of the bacterial population [10,11].

All known S. aureus phages are composed of an icosahedral capsid filled with double-stranded DNA and a thin, filamentous tail, and they belong to the order Caudovirales (tailed phages) [12,13]. Some Podoviridae family phages, such as the Staphylococcus viruses S13′ and S24-1, have been reported, characterized and used in phage therapy against S. aureus infections [14]. There are some well-known Siphoviridae phages of S. aureus, such as the prophage ϕSaBov, which is integrated into a bovine mastitis-causing S. aureus strain [15].

The interaction between bacteria and bacteriophages leads to an exchange of genetic information, which enables bacteria to rapidly adapt to challenging environmental conditions and to be highly dynamic [11,16]. As closely related phages normally occupy the same genome location in different bacteria, a specific site in different bacterial strains can be occupied by completely different phages or can be empty.

Conventional culture-based methods have been used for the detection of pathogenic bacteria [17,18] and their phages [19,20]; however, at this point, these procedures are time-consuming and laborious. For this reason, new, rapid molecular microbial diagnostic methods based on genomics and proteomics tools have been developed to achieve faster and more efficient bacterial and bacteriophage identification [1,21–24]. Specifically, phage typing is a classic technique for such purposes [25]. Moreover, biosensors based on phage nucleic acids, receptor-binding proteins (RBPs), antibodies and phage display peptides (PDPs) have been used for pathogen detection [26–30].

Mass spectrometry techniques, such as MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry), have been used for the analysis and detection of specific diagnostic peptides in pathogenic bacterial strains [31,32]. In addition, LC-ESI-MS/MS methods have been employed for the identification and detection of bacteriophages [19]. In the case of bacteriophage detection and identification by a mass spectrometry analysis, the required production of viruses may be time-consuming. The detection of prophages based on protein biomarkers can be an alternative to genomic detection, and in this sense, proteomic techniques can be cheaper and faster and can ascertain different bacteriophage species by using a single analysis [33]. Based on the specificity of many bacteriophages with their hosts, bacteriophages are considered signal amplifiers; therefore, the detection of peptides from phages is suitable for pathogen identification. For example, Serafim et al. 2017 [33] identified bacteriophage lambda by a LC-ESI-MS/MS analysis. Moreover, the identification of peptides by means of LC-ESI-MS/MS from bacteriophage-infected Streptococcus has been performed, which revealed new information on phage phylogenomics and their interactions with the bacteria they infect [19]. However, no study has been published on S. aureus phage detection and identification by LC-ESI-MS/MS or on S. aureus phage characterization without a previous phage purification step. Viral genomic detection and phage display are time-consuming methods. Here, we describe an easy, fast and accurate method for the detection of bacteriophages without the need for the pretreatment of bacterial lysis for bacteriophage replication. This method led to the identification of putative temperate and virulent phages present in the analyzed strains.

A previously published work performed by our laboratory [3] studied the global proteome of several strains of S. aureus by shotgun proteomics. Important virulence protein factors and functional pathways were characterized by a protein network analysis. In this work, and for the first time, we aimed to use proteomics to characterize phage contents in different S. aureus strains to identify the relevant phage-specific peptides of several S. aureus strains and to identify both phages and bacterial strains by LC-ESI-MS/MS.
2. Materials and Methods

2.1. Bacteria

In this study, a total of 20 different *S. aureus* strains obtained from different sources were analyzed (Table S1 in Supplemental Data 2). These strains were previously characterized by MALDI-TOF mass spectrometry [1] after being obtained from the Institute of Science of Food Production of the National Research Council of Italy (Italy) and from the Spanish Type Culture Collection (Spain). The majority of the strains are from food origins, except for strain U17, which is a human clinical strain. Strains ATCC (American Type Culture Collection) 9144 and ATCC 29213 are classified as *S. aureus* subsp. *aureus*, while strain ATCC 35845 is categorized as *S. aureus* subsp. *an aerobius*. In previous works, the species identification of *S. aureus* and the presence of enterotoxins were evaluated by multiplex polymerase chain reactions (multiplex PCRs) [3,34,35]. The strains were reactivated in a brain–heart infusion medium (BHI, Oxoid Ltd., Hampshire, UK) and incubated at 31 °C for 24 h. Bacterial cultures were then grown on plate count agar (PCA, Oxoid) at 31 °C for 24 h [1,3,36]. Tubes of broth were inoculated under aerobic conditions.

2.2. Protein Extraction and Peptide Sample Preparation

Protein extraction was prepared as described previously [37]. All analyses were performed in triplicate. Protein extracts were subjected to in-solution tryptic digestion [38].

2.3. Shotgun LC-MS/MS Analysis

Peptide digests were acidified with formic acid (FA), cleaned on a C18 MicroSpin™ column (The Nest Group, South-borough, MA, USA) and analyzed by LC-ESI-MS/MS using a Proxeon EASY-nLC II Nanoflow system (Thermo Fisher Scientific, San Jose, CA, USA) coupled to an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) [3]. Peptide separation (2 µg) was performed on a reverse-phase (RP) column (EASY-Spray column, 50 cm × 75 µm ID, PepMap C18, 2-µm particles, 100-Å pore size, Thermo Fisher Scientific, San Jose, CA, USA) with a 10-mm precolumn (Accucore XL C18, Thermo Fisher Scientific, San Jose, CA, USA) using a linear 120-min gradient from 5% to 35% solvent B (solvent A: 98% water, 2% ACN (Acetonitrile) and 0.1% FA and solvent B: 98% ACN, 2% water and 0.1% FA) at a flow rate of 300 nL/min. For ionization, a spray voltage of 1.95 kV and a capillary temperature of 230 °C were used. Peptides were analyzed in the positive mode from 400 to 1600 amu (1 µscan), which was followed by 10 data-dependent collision-induced dissociation (CID) MS/MS scans (1 µscan) using an isolation width of 3 amu and a normalized collision energy of 35%. Fragmented masses were set in dynamic exclusion for 30 s after the second fragmentation event, and unassigned charged ions were excluded from the MS/MS analysis.

2.4. LC-MS/MS Mass Spectrometry Data Processing

LC-ESI-MS/MS spectra were searched using SEQUEST-HT (Proteome Discoverer 2.4, Thermo Fisher Scientific, San Jose, CA, USA) against the *S. aureus* UniProt/TrEMBL database (208,158 protein sequence entries in July 2020). The following parameters were used: semi-tryptic cleavage with up to two missed cleavage sites and tolerance windows set at 10 ppm for the precursor ions and 0.06 Da for the MS/MS fragment ions. These additional identified semi-tryptic peptides increased the sequence coverage and confidence in protein assignments. The variable modifications that were allowed were as follows: (M*) methionine oxidation (+15.99 Da), (C*) carbamidomethylation of Cys (+57.02 Da) and acetylation of the N-terminus of the protein (+42.0106 Da). To validate the peptide assignments, the results were subjected to a statistical analysis with the Percolator algorithm [39]. The false discovery rate (FDR) was kept below 1%. The mass spectrometric data were deposited into the public database PRIDE (Proteomics Identification Database), with the dataset identifier PXD023530.
2.5. Selection of Potential Peptide Biomarkers

For each peptide identified by LC-ESI-MS/MS, we used the BLASTp program to determine the homologies and exclusiveness with protein sequences registered in the NCBI (National Center for Biotechnology Information) database [40]. For the BLASTp search, the *Staphylococcus* taxon was included and excluded with the aim of finding the peptides that belonged to the *Staphylococcus* phages, *Staphylococcus* spp. and only to *S. aureus*.

2.6. Phage Genome Comparison and Relatedness

Genomes of all studied *Staphylococcus* spp. phages were downloaded from the GenBank database, analyzed and compared using the Web server VICTOR (Virus Classification and Tree Building Online Resource, http://ggdc.dsmz.de/victor.php, accessed on 27 November 2020) for the calculation of the intergenomic distances and the construction of the phylogenomic tree [41].

3. Results

3.1. *S. aureus* Proteome Repository

Protein mixtures from each of the 20 different *S. aureus* strains (Table S1 in Supplemental Data 2) were digested with trypsin and analyzed by LC-ESI-MS/MS.

A total of 1933 nonredundant peptides corresponding to 1282 nonredundant annotated proteins were identified for all *S. aureus* strains (see the Excel dataset in Supplemental Data 1). Among them, 79 phage peptides were identified. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Figure 1 shows a comparative representation of the different types of phage proteins identified in this study. These phage peptides were selected and analyzed using the BLASTp algorithm. For the BLASTp search, *Staphylococcus* was included and excluded with the aim of finding peptides belonging to *Staphylococcus* bacteriophages.

![Figure 1](image-url)

Figure 1. Comparative representation of different types of phage proteins identified in this study for the different strains (represented by different colors). The number of each type of protein is shown in parentheses.
The obtained staphylococcal phage-specific peptides shared homology with the *Staphylococcus* phages and *Staphylococcus* spp. in the NCBI database. Among them, all shared homology with *S. aureus*; however, eighteen peptides were specific to *S. aureus* (IRLPYYDVK, LYVGVPFNPEATK, SIINGKLDWSQWTVPNEHK, M*NDSNQGLQANPQYTHYLSEQEIR, PCPALM*NKRNSIATHR, SQDNSNLPELSTKAPK, ESINANTYNQLK, VAVLSTPLVTSFESK, KDGELFRIAIDYLRNK, MPVYKDGNTGKYFSI, KTTSALKEVLSDT, EKPVP-DATGADDPLKPDDDRM*ITNFHANLVDKVSY, MSHNALTTGIGAGAG, VQHPGKLYNKVM*SGLNINFGGGGANATAK, QM*MGLSGVMDLAASVSGLASGTVDTGLTAGLKAKD, KSNVEAFSNAVK, GMVSMQMQVQVNVLTM*ELAQQNAMLTIQTELK and DIITVVC*PENGNTATDEY). Figure S1 shows the MS/MS spectra for these *S. aureus*-specific peptide biomarkers. Table 1 summarizes the list of 79 specific staphylococcal bacteriophage peptides, bacterial peptides with putative phage origins and bacteria and phages with 100% homology with respect to the NCBI protein database.

All staphylococcal phage peptides with 100% homology were found to belong to the *Siphoviridae* family: 52 staphylococcal phages belong to the *Phietavirus* genus, 37 belong to the *Biseptimavirus* genus, 30 are *Triavirus*, two are phieta-like viruses and one is a SPbeta-like virus, and the others are nonclassified *Siphoviridae* viruses (Table S2 in Supplemental Data 2). *Siphoviridae* genomes are usually organized into functional modules, such as lysogeny, DNA replication, packaging, morphogenesis and lysis modules [6,42].

Table 1. Phage origin peptides identified in *Staphylococcus aureus* strains. NCBI (National Center for Biotechnology Information).

Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database	
S4	Uncharacterized phage protein	IRLPYYDVK	*Staphylococcus aureus*	*Staphylococcus* phage StauST398-2	
S4	Uncharacterized phage protein	A VAELLKEINR	*Staphylococcus argenteus* *Staphylococcus simiae* *Staphylococcus aureus*	*Staphylococcus* virus 71 *Staphylococcus* virus 55 *Staphylococcus* virus 88	
S4	Major capsid protein	LLHALPTGNDGSGKLLFK	*Staphylococcus aureus* *Staphylococcus xylosus* *Staphylococcus muscae* *Staphylococcus haemolyticus* *Staphylococcus argenteus* *Streptococcus pneumoniae*	*Staphylococcus* phage phiSa2wa_st72 *Staphylococcus* phage phiSa2wa_st121mssa *Staphylococcus* phage vB_Sau5_phi2 *Staphylococcus* phage StauST398-2 *Staphylococcus* phage LH1 *Staphylococcus* phage phiSa2wa_st30 *Staphylococcus* virus phi12 *Staphylococcus* virus 3a *Staphylococcus* virus phiSLT *Staphylococcus* phage ip310-2 *Staphylococcus* phage vB_Sau5_JSO2 *Staphylococcus* phage R4 *Staphylococcus* phage vB_Sau5_JPSau2 *Staphylococcus* phage SA137nuMSSA ST121PVL	
S4	Major capsid protein	RVSYLDDDDDFITDVETAKELK	*Staphylococcus aureus* 12S01399 *Staphylococcus aureus* *Staphylococcus aureus* A9299 *Staphylococcus aureus* A9765 *Staphylococcus aureus* A6300 *Staphylococcus* sp. *Terrabacteria* group *Escherichia coli*	*Staphylococcus* phage LH1 *Staphylococcus* phage StauST398-2 *Staphylococcus* phage vB_Sau5_phi2 *Staphylococcus* phage R4	
S7	Major tail protein	LYVGVPFNPEATK	*Staphylococcus aureus*	*Staphylococcus* phage vB_Sau5_phi2 *Staphylococcus* virus phi12 *Staphylococcus* virus phiSLT *Staphylococcus* phage R4 *Staphylococcus* phage vB_Sau5_JSO2 *Staphylococcus* phage SH-S8 15644 *Staphylococcus* virus 3a *Staphylococcus* phage P240	
S8	Uncharacterized phage protein	M*NDSNQGLQANPQYTHYLSEQEIR	*Staphylococcus aureus*	*Staphylococcus* phage phiN315	
Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database	
--------	---------	---------	---	---	
S8	Major tail protein	AVINITGLGFAK	*Staphylococcus aureus* *Staphylococcus argenteus Pararhedinema mesophilus*	*Staphylococcus phage phiNM3* *Staphylococcus phage P262* *Staphylococcus phage StaST398-4* *Staphylococcus phage phiNN315* *Staphylococcus phage phi7247PVL* *Staphylococcus phage phiSa2wa_st22* *Staphylococcus virus 77 Staphylococcus phage P954*	
S9	Major capsid protein	IYDRNSDTLDGLPVVINLK	*Staphylococcus aureus* *Staphylococcus argenteus*	*Staphylococcus virus 85* *Staphylococcus phage SF5* *Staphylococcus virus phiTA2* *Staphylococcus virus phiNM2* *Staphylococcus virus SAP26* *Staphylococcus phage SA12* *Staphylococcus virus Baq Saul*	
S11 and S20	Phage repressor, Cro/CI family	ELAEAIQVSQPTVSNWIIQTK	*Staphylococcus aureus* *Staphylococcus argenteus* *Staphylococcus sciuri*	*Staphylococcus virus IPLA35* *Staphylococcus phage SMSAP5* *Staphylococcus phage VB_Sau56_phl2*	
S11 and S20	Phage repressor, Cro/CI family	IQQLADYFNVPK	*Staphylococcus aureus* *Staphylococcus sciuri* *Staphylococcus pseudintermedius*	*Staphylococcus phage phiSA2wa_st72* *Staphylococcus phage phiNM2* *Staphylococcus virus IPLA35*	
S12 S10 and S14	Complement inhibitor	IYNEIDEALKSK	*Staphylococcus aureus, Enterobacter sp. IF2SW-B1 Klebsiella pneumoniae*	*Staphylococcus phage 13 Staphylococcus phage phiNM3 Staphylococcus phage StaST398-1*	
S20	Major capsid protein	VSYTLDDDDFDIDVTEAK	*Staphylococcus aureus* *Staphylococcus haemolyticus* *Staphylococcus saprophyticus* *Staphylococcus variornatus* *Staphylococcus pneumoniae* *Staphylococcus sciuri*	*Staphylococcus phage phiSa2wa_st72* *Staphylococcus phage phiSa2wa_st112mssa* *Staphylococcus phage VB_Sau56_phl2* *Staphylococcus virus 73 Staphylococcus phage phi2958PVL* *Staphylococcus virus PVL* *Staphylococcus phage SA137nuMSSAST121PVL*	
S20	Phage protein (DUF2479 domain)	SIINGKLDSQWTVIPNEHK	*Staphylococcus aureus*	*Staphylococcus phage DW2 Staphylococcus virus IPLA88*	
S18	N-acetylmuramoyl-L-alanine amidase	KEAGNYTVANVK	*Bacilli, Staphylococcus argenteus Staphylococcus aureus Staphylococcus hominis*	*Staphylococcus phage tp310-1 Staphylococcus phage tp310-2 Staphylococcus phage phi2958PVL Staphylococcus phage PVL Staphylococcus phage SA137nuMSSAST121PVL Staphylococcus virus IPLA35*	
S4	Phage protein NrdI	VETLENETNQNGLAM* SGGNRRNWGTNPFAAGDTISK	*Staphylococcus haemolyticus* *Staphylococcus hominis* *Staphylococcus aureus subsp. aureus Z172*	*Staphylococcus phage StaST398-1 Staphylococcus phage StaST398-1 Staphylococcus virus 13*	
S12	Complement inhibitor	IYNEIDEALK	*Staphylococcus. Aureus Klebsiella pneumoniae Enterobacter sp. IF2SW-B1*	*Staphylococcus phage StaST398-1 Staphylococcus virus 13*	
S10	Complement inhibitor	IYNEIDEALSKY	*Staphylococcus. aureus Klebsiella pneumoniae Enterobacter sp. IF2SW-B2*	*Staphylococcus phage StaST398-1 Staphylococcus virus 13*	
S10	DDE-type integrase/transposase/recombinase	PCPAMNKRNSIATHR	*Staphylococcus aureus*	*Staphylococcus aureus, Staphylococcus haemolyticus Staphylococcus capiti Staphylococcus epidermidis*	
S9	DNA primase phage-associated	LLHHFYPENTTALSFLNLDKFKPAALIQGKLYNIAD	*Staphylococcus aureus, Staphylococcus hominis Staphylococcus capiti, Staphylococcus epidermidis*	*Staphylococcus aureus* *Staphylococcus hominis* *Staphylococcus capiti* *Staphylococcus epidermidis* *Staphylococcus varani Staphylococcus sp. HMSC077D08 Cornubacterium propinquum* *Staphylococcus sp. U Staphylococcus lugdunensis Staphylococcus sp. HMSC077B09*	Uncultured Caudovirales Phage
Table 1. Cont.

Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database
S2	Phage repressor, Cro/CI family	AAHLEGELTDEWQR	Staphylococcus haemolyticus Staphylococcus warneri Staphylococcus agnetis, Staphylococcus chromogenes Staphylococcus haemolyticus Staphylococcus sp. 58-22 Staphylococcus capitae Staphylococcus pasteuri Bacillales Staphylococcus chromogenes Staphylococcus agnetis Escherichia coli, Staphylococcus aureus	Staphylococcus virus 71 Staphylococcus phage phiSa2wa_s1 Staphylococcus phage phiSa2wa_s5 Staphylococcus phage Henu2 Staphylococcus phage ROSA Staphylococcus phage phi7401PVL
S2	Phage repressor, Cro/CI family	VLDYADYIR	Staphylococcus aureus Staphylococcus epidermidis Staphylococcus warneri Staphylococcus agnetis Staphylococcus chromogenes, Staphylococcus spp. Staphylococcus schleiferi Staphylococcus simulans Staphylococcus haemolyticus, Staphylococcus viridans Escherichia coli	Staphylococcus virus 71 Staphylococcus phage phiSa2wa_s1 Staphylococcus phage phiSa2wa_s5 Staphylococcus phage Henu2 Staphylococcus phage ROSA Staphylococcus phage phi7401PVL
S9	DNA-binding protein	SLDNM*SLK	Striga asiatica Staphylococcus aureus subsp. aureus 112608A Staphylococcus aureus A8819 Staphylococcus argenteus Staphylococcus spp. Pseudomonas aeruginosa Flectobacillus sp. BAB-3569 Escherichia coli	Staphylococcus phage vB_SauS_phi2
S19	DUF2479, Phage tail fiber, BppU family phage baseplate upper protein	HAGYVRC*KLF	Staphylococcus aureus, Staphylococcus sp. HMSC055H07 Staphylococcus argenteus, Staphylococcus sp. KY49P Staphylococcus sp. HMSC055F13 Pseudomonas aeruginosa Escherichia coli	Staphylococcus phage vB_SauS philippines Staphylococcus phage phiMR11 Staphylococcus phage SAP33 Staphylococcus phage 3MRA
S12	Phage protein (DUF493 domain)	NSPIDLNSTEISLNNLER	Staphylococcus aureus Staphylococcus spp. Staphylococcus argenteus	Staphylococcus phage SuaST398-1
S12	Phage protein (DUF669 domain)	MNFNLNLQGAQELGN	Staphylococcus capitae Staphylococcus epidermidis Staphylococcus caprai Staphylococcus dermatis Staphylococcus warneri	Staphylococcus virus phiMR11
S10	GNAT family N-acetyltransferase	INVARQNNYESLITSIVSNNIGAK	Staphylococcus aureus Staphylococcus aureus subsp. anavorus Staphylococcus aureus subsp. aureus Mu50 Staphylococcus hominis Escherichia coli	Staphylococcus aureus Staphylococcus aureus subsp. anavorus Staphylococcus aureus subsp. aureus Mu50 Staphylococcus hominis Escherichia coli
Table 1. Cont.

Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database	
S5	Holin, phage phi LC3 family	SQDSNLTPLESTKAPK	Staphylococcus aureus	Staphylococcus phage HSA84, Staphylococcus phage SPF5	
S6	ImmA/IrrE family metallo-endopeptidase	EKAKIFGDFMDNSGTVY DEENSTIIYNPPLSITR	Staphylococcus aureus subsp. aureus H19, Staphylococcus aureus	Staphylococcus aureus subsp. aureus 21204	
S16	Involved in the expression of fibronogen-binding protein phage-associated	ESINANTYINQNLK	Staphylococcus aureus		
S16	Involved in the expression of fibronogen-binding protein phage-associated	VAVLSTPLVTSFESK	Staphylococcus aureus		
S17	N-6 DNA methylase; Nc_Mtase domain-containing protein	KDGEILFDAIDYLNK	Staphylococcus aureus	Staphylococcus phage phi-42	
S4	Phage DNA-binding protein	GDPFVVITIMPMMQIK	Staphylococcus aureus, Staphylococcus warneri		
S9	Phage terminase	KLYIIEEYKQCM	Staphylococcus aureus, Staphylococcus argenteus, Staphylococcus sp. HM58E11 Allobacillus sp. SKP4-8	Staphylococcus virus Bag_Saul Staphylococcus virus phiETA2 Staphylococcus virus 69 Staphylococcus virus 11 Staphylococcus virus 80Alphap	
S14	Integrase	M*PVYKDNGTGTWYFSI	Staphylococcus aureus	Staphylococcus phage B166 Staphylococcus virus phiMR25 Staphylococcus virus 88	
S4	Phage repressor	ISKVQQLADYFENVPK	Staphylococcus aureus, Staphylococcus chromogenes, Staphylococcus hyicus	Staphylococcus virus 80	
S13	Toxin Phage protein; Pathogenicity island protein	NLGIVWLDLILIKRGLIDR	Staphylococcus aureus, Staphylococcus sp. HM58E11, Staphylococcus argenteus, Escherichia coli	Staphylococcus phage phiSa2wa_st58 Staphylococcus phage phiJF	
S16	Toxin Phage protein; Pathogenicity island protein	SDREKAGILFEELAHNK	Staphylococcus aureus, Escherichia coli	Staphylococcus phage phiSa2wa_st58 Staphylococcus phage phi7	
S6	PBSX family phage terminase	QADNTYVHHYTLNRP FRKQPQAEASAKQR	Staphylococcus aureus, Staphylococcus sp.	Staphylococcus phage phiS2wa_st58 Staphylococcus phage phiB	
S11	PBSX family phage terminase	QGVSHLFKVTSP*M*	Staphylococcus aureus, Staphylococcus ventus, Staphylococcus sciuri	Staphylococcus phage phiS2wa_st58 Staphylococcus phage phiB	
S20	Phage-related cell wall hydrolase; Peptidase CS1; CHAP domain	EVPNEPDYVIVDVC^EDYSASK	Staphylococcus argenteus, Staphylococcus sp. HM58E11	Staphylococcus viruss PLA88 Staphylococcus virus phiNM2 Staphylococcus phage SAP40 Staphylococcus phage phi53 Staphylococcus virus phiNM4 Staphylococcus phage SA12 Staphylococcus virus 69 Staphylococcus phage SA97 Staphylococcus phage TEM123 Staphylococcus virus 11 Staphylococcus virus phiMR25 Staphylococcus virus phiMR25	
S5	Phage antirepressor Ant	QDNLAMPEVLPAIR	Staphylococcus aureus, Staphylococcus simulans Staphylococcus argenteus	Staphylococcus phage SA75 Staphylococcus phage SA13	
S11	Phage capsid protein	M*PEITNSNVETEETVE	Staphylococcus aureus, Staphylococcus sp.		
S4	Phage encoded lipoprotein	IHDEKELDPSSEESIKLTQEEENSI	Staphylococcus aureus, Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus cohnii, Staphylococcus haemolyticus	Staphylococcus phage SPFbeta-like	
S2	Phage head morphogenesis protein	KDQVRISVHT	Staphylococcus aureus, Staphylococcus argenteus		
S9	Yrge/E/Pip, Phage infection protein	LNEYP^MPEIKLLN VASNDIPAGIKP	Staphylococcus aureus, Staphylococcus haemolyticus	Staphylococcus phage phiCMC02	
S14	Minor structural protein	KKTEAIKELSST	Staphylococcus aureus		
S4	Phage portal protein	EPKIPDATGADDLPLPDDRM^ITNFHANLVQDYSKSV	Staphylococcus aureus		
Strain	Protein Type	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database
--------	--------------	---------	---------	---	---
S5	Phage	VHISEFKPLYM*DFLGTKGELE	Staphylococcus aureus	Staphylococcus hominis, Staphylococcus epidermidis	
S15	Phage	MSHNAIITGGGAGAG	Staphylococcus aureus		
S2	Phage	EITDGEISSVLTM*5	Staphylococcus aureus, Staphylococcus hominis Staphylococcus epidermidis		
S20	Phage recombination	KSSTTYEVNGETVK	Staphylococcus aureus, Staphylococcus sciuri		
S2	Phage resistance	ESVDTGEITANTRTVK	Staphylococcus aureus, Staphylococcus pasteuri Staphylococcus epidermidis		
S13	Tail tape measure	GM*PTGTVNYAVKGIADK	Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus pseudogluco	Staphylococcus phage phi35a1Staphylococcus phage SH-15Staphylococcus virus 3n	
S3	Tail tape measure	QM*MEGLGVMIDLAWSGEDLG	Staphylococcus aureus		
S4	Tail tape measure	QM*MEGLGVMIDLAWSGEDLG	Staphylococcus aureus		
S2	Tail tape measure	AEEAGTVKQL	Staphylococcus aureus, Staphylococcus pasteuri, Staphylococcus epidermidis	Staphylococcus phage SFbeta-like	
S10	Phage repressor, Cro/CI family	QKNVNVYAEQILDEQNVK	Staphylococcus aureus Bacilli, Staphylococcus haemolyticus	Staphylococcus phage phiNM2Staphylococcus virus 53Staphylococcus virus 81Staphylococcus virus 89	
S13	Phage protein	KSNVEAFPNAVK	Staphylococcus aureus	Staphylococcus phage phiNM1Staphylococcus phage phiNM2	
S11	Phage protein	PYHDLSDERIM*EEELKK	Staphylococcus aureus Staphylococcus argenteus taphylococcus Schweiteri	Staphylococcus phage phiETA2Staphylococcus phage P630Staphylococcus virus SAP26Staphylococcus phage B26Staphylococcus virus 88Staphylococcus prophage phiLV83	
S4	Minor structural	LNDNISINTIV	E. coli, Parathenothemera mesophilica Staphylococcus pseudointermedius Staphylococcus epidermidis, Staphylococcus aureus		

Table 1. Cont.
Table 1. Cont.

Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database
S9	PhETA ORF58-like protein	GMVASMQMQQVVQVNLTM*ELAQQNAMLTQQTELK	**Staphylococcus aureus**	**Staphylococcus phage phi401PVL** **Staphylococcus phage phiSa2wa_st121mssa** **Staphylococcus virus 3a** **Staphylococcus virus phi2LT** **Staphylococcus phage phi310-2** **Staphylococcus phage SA137ruM65AST121PVL** **Staphylococcus phage phiSa2wa_st5** **Staphylococcus phage SH-54 15644** **Staphylococcus virus phi2958PVL** **Staphylococcus virus IPLA35** **Staphylococcus phage P240** **Staphylococcus phage vB_SauS_JS02** **Staphylococcus virus 42e** **Staphylococcus virus phi12** **Staphylococcus phage phiSa2wa_st72** **Staphylococcus phage phiSa2wa_st30** **Staphylococcus phage vB_SauS_53** **Staphylococcus phage StauST398-2**
S4	Phage portal protein	TEQLPRLLEML	Staphylococcus aureus, Staphylococcus sp. HMSC063A07, Staphylococcus lugdunensis, Staphylococcus sp. HMSC068D08, Staphylococcus sp. HMSC069E09	Staphylococcus phage phiSa2wa_st1
S4	Prophage, terminase	KDRYSSVSY	Staphylococcus aureus, Staphylococcus delphini, Staphylococcus pseudintermedius, Staphylococcus agnetis, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus, Paenibacillus sophorae	Staphylococcus phage SPBeta-like
S4	Prophage tail domain; Peptidase	VLEM*IFLGEDPK	Staphylococcus aureus	E. coli Bacilli
S15	Site-specific integrase	VEELEDSEIHKK	Staphylococcus aureus, Staphylococcus epidermidis Staphylococcus haemolyticus Staphylococcus condimenti Staphylococcus sp. HMSC035D11 Staphylococcus warneri	uncultered Caudovirales phage Sequence ID: ASN72447.1
S13	Site-specific integrase	KEAGSIINHTINNAKSA*R	Staphylococcus aureus Staphylococcus sp.	
S6	Site-specific integrase	YLRNRNFVFTNHK	Staphylococcus aureus, Staphylococcus argenteus Staphylococcus cohnii Staphylococcus haemolyticus Staphylococcus caeli Staphylococcus sp. 47.1	
S9	Terminase large subunit	KAMIKASPK	Staphylococcus aureus Escherichia coli Staphylococcus sp. HMSC74F04 Staphylococcus sp. HMSC055H07 Cutibacterium acnes Staphylococcus turneri Bacillus cluhemis Paenibacillus larvae	Staphylococcus phage vB_SauS_JS02 Staphylococcus phage phiSa2wa_st5 Staphylococcus phage phiSa2wa_st1 Staphylococcus phage phiSa2wa_st21mssa Staphylococcus virus IPLA35 Staphylococcus phage phi310-2 Staphylococcus virus phi2LT Staphylococcus phage StauST398-2 Staphylococcus phage vB_SauS_phi12 Staphylococcus phage phiSa2wa_st72 Staphylococcus phage phiSa2wa_st30 Staphylococcus phage vB_SauS_53 Staphylococcus phage SMA55 Staphylococcus phage phi2958PVL Staphylococcus virus 3a Staphylococcus phage YMC/09/04/R1988
S20	Phage repressor, Cmv/CI family	RIQQLADYFNVPK	Staphylococcus aureus Staphylococcus pettenkoferi Staphylococcus pettenkoferi Staphylococcus captitis Staphylococcus devriesi	Staphylococcus phage vB_SauS_phi12 Staphylococcus virus IPLA35
Strain	Protein	Peptide	Bacteria with 100% Homology Based on the NCBI Protein Database	Phages with 100% Homology Based on the NCBI Protein Database
--------	---------	---------	--	--
S4	Transposase B from transposon Tn554 O	WDRRN1LPDDK	Staphylococcus aureus, Staphylococcus epidermidis	Staphylococcus aureus, Staphylococcus epidermidis, Bacillus thermolatmus, Staphylococcus aureus, Staphylococcus epidermidis
S13	Uncharacterized phage protein	C*VSGIAGGAVTGGTTLGLAGAG	Staphylococcus aureus	Staphylococcus aureus
S20	Uncharacterized phage protein	QTDPWSWVPM*VLR	Staphylococcus aureus, Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis	Staphylococcus aureus, Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis
S12	Uncharacterized phage protein	IIIHDEIDLL	Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis	Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis
S14	Uncharacterized phage protein	TSIELITGFTK	Staphylococcus aureus, Staphylococcus sciuri, Staphylococcus warneri	Staphylococcus aureus, Staphylococcus sciuri, Staphylococcus warneri
S3	Uncharacterized phage protein	EFRNKLNELGADK	Staphylococcus aureus, Streptococcus pneumoniae, Terrabacteria group	Staphylococcus aureus, Streptococcus pneumoniae, Terrabacteria group
S3	Phage repressor, Cro/CI family	HLEEVDIR	Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa	Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa
S4	YhgE/Pip Phage infection protein	APQSTSVKK	Staphylococcus aureus, Staphylococcus epidermidis	Staphylococcus aureus, Staphylococcus epidermidis
S4	YhgE/Pip Phage infection protein	ALNFAADDVPAQFK	Staphylococcus aureus, Staphylococcus epidermidis	Staphylococcus aureus, Staphylococcus epidermidis
3.2. Phage Peptides Determined from the Analyzed S. aureus Strains

For strains S2 and S3, six and three phage peptides were determined, respectively. For strain S4, seventeen phage peptides were determined, and three phage peptides were determined for strain S5. For strains S6 and S7, three and one phage peptide were determined, respectively. Moreover, for strains S8 and S9, two phage peptides and seven phage peptides were determined. For strains S10 and S11, five and three phage peptides were determined, respectively. For strains S12 and S13, five phage peptides and six phage peptides were determined, respectively. For strains S14 and S15, four and two phage peptides were determined, respectively. For strain S16, three phage peptides were determined, and one phage peptide was determined for strain S17. For strains S18 and S19, one phage peptide each was determined. Finally, for strain S20, seven phage peptides were determined.

A large number of phage peptides from structural proteins were identified (Table 1). Peptides from proteins such as the major capsid protein, major tail protein, minor structural protein, phage head morphogenesis protein, tail tape measure protein and phage tail fiber protein were determined. Moreover, different phage peptides from the major capsid protein and tail protein were determined (Table 1). Identifying these phage peptides is reasonable, as the major capsid protein and major tail protein are the most abundant proteins in mature virions [6].

There are a large number of uncharacterized protein sequences in databases, and more than 20% of all protein domains are annotated as “domains of unknown function” (DUFs). Several uncharacterized phage proteins and DUFs from Staphylococcus bacteriophages were identified for the analyzed strains (Table 1) [43,44].

Different peptides from repressor-type Cro/CI were determined. For strains S11 and S20 (both potential enterotoxin C producers), the same phage peptides of repressor-type Cro/CI were identified (Table 1). CI and Cro are encoded in the lysogeny module of lambdoid bacteriophages, particularly λ bacteriophages. Together, CII and CIII (that are formed through the anti-terminator role of protein N) act as an inducer that favors the first expression of the cl gene from the appropriate promoter; if the CI repressor predominates, the phage remains in the lysogenic state, but if the Cro predominates, the phage transitions into the lytic cycle, helped by the late Q regulator. The xenobiotic XRE regulator is extended in bacteria and has similarity to the Cro λ repressor, exhibiting a helix-turn-helix (HTH) conformation [45]. Peptides of the CI/Cro-repressor types are usually named XRE family proteins in the NCBI database for bacteria.

Three phage peptides of the complement inhibitor were identified (Table 1). Staphylococcal complement inhibitors are involved in the evasion of human phagocytosis by blocking C3 convertases, and a study reported that complement inhibitor genes were also found in Staphylococcal phages [46]. Another autolysin was determined in the present results, an N-acetylmuramoyl-L-alanine amidase that plays a role in bacterial adherence to eukaryotic cells [19]. The phage protein NrdI, which is a type of ribonucleotide reductase (RNR), was also identified. Several peptides of transposases, integrases and terminases were identified along with a DNA primase phage associated protein and a DNA phage binding protein. Moreover, peptides of other proteins, such as GNAT family N-acetyltransferase, holin, peptidase, methylase, anti-repressor protein (Ant), phage-resistant protein, phage-encoded lipoprotein, phage infection protein, phage portal protein, toxin phage proteins associated with pathogenicity islands and a protein involved in fibrinogen-binding proteins, were identified. A PBSX family phage terminase peptide was determined, and this protein is involved in double-stranded DNA binding, DNA packaging and endonuclease and ATPase activities [47].

As shown in Table 1, the vast majority of phage-specific peptides are not specific to S. aureus and can be found in other species of Staphylococcus. As an exception, the same peptides, such as peptide LLHALPTGNDSGGDKLLPK from a major capsid protein, were also found in Streptococcus pneumoniae, and peptide AYINITGLGFAK from a major tail protein was also found in Pararheinheimera mesophilae; whether these examples represent...
direct recombinations between bacteria belonging to different families or whether phage-mediated recombination occurs remains to be elucidated. Furthermore, as mentioned before, eighteen identified peptides were very specific for *S. aureus* based on the NCBI database (see Figure S1).

3.3. *Staphylococcus* spp. Phage Genome Comparisons and Their Relatedness

A phylogenomic tree of *Staphylococcus* spp. phages from the NCBI database (accession numbers in Table S2 in Supplemental Data 2) with 100% similarity to those found in this study was built (Figure 2). The phages identified in this study were classified in the order *Caudovirales* and the family *Siphoviridae*. Many of these bacteriophages were classified into the genera *Phietavirus*, *Bisetimavirus*, *Triavirus* phieta-like virus, SPbeta-like virus and unclassified genera. Genomes of well-known phages of the families *Siphoviridae*, *Myoviridae* and *Podoviridae*, such as phage Lambda, T4 and T7, respectively, were added for comparison purposes. The genome analysis showed three well-defined clusters that mainly divided the phylogenomic tree into different phage genera (*Phietavirus*, *Bisetimivirus* and *Triavirus*). Two principal branches separated Clusters A, B and C from D. Cluster A was formed by *Staphylococcus Phietavirus*, two phieta-like viruses and two unclassified *Staphylococcus* phages. Cluster B was formed by *Staphylococcus* phages classified as *Bisetimivirus* and by one unclassified *Staphylococcus* phage. Cluster C was formed by enterobacterial bacteriophages and one SPbeta-like virus. Finally, cluster D was formed by *Triavirus Staphylococcus* phages and two unclassified *Staphylococcus* phages. To the best of our knowledge, this is the first time that phages from mastitis-causing staphylococci were grouped in a phylogenomic tree.

Specific peptides were found in related *Staphylococcus* spp. phages (Table 2) located closely in the phylogenomic tree (Figure 2). Peptides HAGYRC*KLF and MPVYKDGNTGKWYFSI were found in phages of cluster A. Furthermore, peptides IYDRNSDTLDGLPVVNLK, QKNVLNYANEQLEDQNKV, EVPNEPDYVIDVC*EDYSASK, KSNVEAFSNAV and KLYIIEEYKQCM were found in *Staphylococcus* phages of the A.1 subbranch in cluster A. Additionally, peptide AWAELLEKINR was found in phages of the A.2 branch. The peptide AYINITGLGFAK was found in phages of cluster B.1, and TSIELITGFK was found in phages of cluster B.2. Peptides VSYTLDDDDFITDVETAK and LLHALPTGNDSGD-KLLPK, which belong to the phage major capsid protein, were found in the same 14 *Staphylococcus* phages of cluster D. Peptides ELAEAIGVSQPTVSNWIQQTK and IQQLAYFNVPK, which belong to the phage-repressor Cro/CI family of proteins, were found in the same bacteriophages of cluster D. Moreover, peptides LYVGVFNPEAT, RVSYTLD-DDDFTDVETAKELKL, LYVGVFNPEATK, VLEMIFLGEDPK, KAMIKASP, EFRNKL-NELGAD and GMPTGTNVAKGGIAKD were also found in phages of cluster D. Peptides IHDKELDDPSEEESKTQEEEINSI, IINHDEIDLL, KDRYSSSY and AEEAGVTVKQL are specific to *Staphylococcus* phage SPbeta-like.

Table 2. Phage biomarker peptides that belong to bacteriophages and phylogenomic tree clusters. Relationships between specific phage biomarker peptides and phylogenomic tree clusters.

Protein	Peptide	Phages	Cluster Located
Major capsid protein	VSYTLDDDDFITDVETAK	*Staphylococcus* phage phiSa2wa_st72	
		Staphylococcus phage tp310-2	
		Staphylococcus phage phiSa2wa_st121mssa	
		Staphylococcus phage vB_SauS_phi2	
		Staphylococcus phage StauST398-2	
		Staphylococcus virus 3a *Staphylococcus* phage LH1 *Staphylococcus* phage phiSa2wa_st30	
		Staphylococcus virus phi12 *Staphylococcus* virus phiSLT	
		Staphylococcus phage vB_SauS_J602	
		Staphylococcus phage R4	
		Staphylococcus phage vB_SauS_FPSau02	
		Staphylococcus phage SAI37rdsRSS21T21PV1	
Table 2. Cont.

Protein	Peptide	Phages	Cluster Located
Major capsid protein	LLHALPTGNSGGDKLLPK	*Staphylococcus* phage phiSa2wa_st72	
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage VB_SauS_ph12			
Staphylococcus phage StauST398-2			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus virus phi112			
Staphylococcus virus phi 3			
Staphylococcus virus phiSLT			
Staphylococcus phage tp310-2			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage phiSa2wa_st121PVL	Cluster D		
Major capsid protein	RSVYTLDDDDFTDVEATAELKL	*Staphylococcus* phage LH1	
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus phage StauST398-2			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st30			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st30	Cluster D		
Major tail protein	LYGVFNPNEATK	*Staphylococcus* phage phiSa2wa_st72	
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage StauST398-2			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage phiSa2wa_st121PVL			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa	Cluster D		
Phage repressor, Cro/CI family	ELAEAGVSQPTVSNWIIIQTK	*Staphylococcus* virus IPLA35	
Staphylococcus phage SMSAP5			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage phiSa2wa_st121PVL			
Staphylococcus phage phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa	Cluster D		
Phage repressor, Cro/CI family	IQQ指令YENF PK	*Staphylococcus* virus IPLA35	
Staphylococcus phage SMSAP5			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus phage phiSa2wa_st121PVL			
Staphylococcus phage phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa			
Staphylococcus virus phi12			
Staphylococcus virus phiSLT			
Staphylococcus phage phiSa2wa_st121mssa	Cluster D		
Major tail protein	AYNINITGLGFAK	*Staphylococcus* phage phiNM3	
Staphylococcus phage StauST398-4			
Staphylococcus phage phiNM5			
Staphylococcus phage phiNM4			
Staphylococcus phage phiNM1			
Staphylococcus virus phiETA2			
Staphylococcus virus phiNM5			
Staphylococcus virus phiNM4			
Staphylococcus virus phiNM1			
Staphylococcus virus phiNM2	Cluster A.1		
Major capsid protein	IYDRNSDTLDGLPVNLIK	*Staphylococcus* virus 85	
Staphylococcus virus phiETA2			
Staphylococcus virus phiNM1			
Staphylococcus virus phiNM2			
Staphylococcus virus SAP26			
Staphylococcus phage phi12			
Staphylococcus phage phi12			
Staphylococcus phage phi12			
Staphylococcus phage phi12	Cluster A.1		
Phage terminase	KLYIIEEYVKQGM	*Staphylococcus* virus Baq Sau1	
Staphylococcus virus 85			
Staphylococcus virus phiETA2			
Staphylococcus virus phiNM1			
Staphylococcus virus phiNM2	Cluster A.1		
Phage-related cell wall hydrolase; Peptidase C51, CHAP domain	EVPNEPDIVIDVC*EDYSASK	*Staphylococcus* virus phi12	
Staphylococcus phage phi12
Staphylococcus phage phi12
Staphylococcus phage phi12 | Cluster A.1 |
In addition, a correlation relating bacterial species for each cluster with all peptides found in the bacteriophages with 100% similarity was found. The results showed that clustered phages were related to specific species of *Staphylococcus*. All studied phages were found to be related to *S. aureus*; however, most of them were also found to be related to additional *Staphylococcus* species. *S. argenteus* was found to be related in all clusters of the phylogenomic tree. Cluster A phage peptides were found to be mainly related to *S. simiae*. However, different *Staphylococcus* species (*S. xylosus*, *S. muscae*, *S. haemolyticus*, *S. simiae*, *S. sciuri*, *S. pseudintermedius*, *S. deversi*, *S. warneri* and *S. capitis*) were found to be related to phages of cluster D.

3.4. Identification of Peptides of Virulence Factors

In this work, 405 peptides from *S. aureus* were determined to be related to virulence factors (Excel dataset Supplemental Data). Among these peptides, proteins such as staphopain, beta-lactamase, elastin-binding protein peptides and a multidrug ATP-binding cassette (ABC) transporter were identified.
Figure 2. Phylogenomic tree generated by the Virus Classification and Tree Building Online Resource (VICTOR) using the complete genomic sequences of the determined Staphylococcus spp. phages. The access numbers of the determined phage genomes are shown in Table S2 in Supplemental Data 2. Genomes of the lambda (NC_001416.1), T4 (NC_000866.4) and T7 (NC_001604.1) phages were added for comparison purposes. The VICTOR phylogenetic tree construction was based on an intergenic distance analysis with the GBDP tool (Genome BLAST Distance Phylogeny). The significance of each branch is indicated by a pseudo-bootstrap value calculated as a percentage for 1000 subsets. Bar, 20 nt (nucleotides) substitutions per 100 nt. Clusters are represented by different colors: light blue, cluster A, red, cluster A.1, purple, cluster A.2, light green, cluster B, yellow, cluster B.1, pink, cluster B.2, black, cluster C and orange, cluster D. Specific cluster peptides are represented by different color forms: , yellow-filled diamond IQQLADYFNVPK (cluster A-specific), , brown-filled diamond HAGYVRC*KLFL (cluster A-specific), , black-outlined diamond IYDRNSDTLDGLPVVNLK (cluster A.1-specific), , red-outlined diamond AWAELKINR (cluster A.2-specific), , pink-filled diamond KSNVEAFSNAVK (cluster A.1), , gray-filled diamond KVN-VLNYANEQLDENNQK (cluster A.1), , brown-outlined diamond MPVYKDGNTGWYFF (cluster A-specific), , dark gray-filled diamond KLYIIEEYVKQGM (cluster A.1-specific), , purple-filled diamond EVPNEPDYIVIDVC*EDYSASK (cluster A.1-specific), , orange-filled diamond AYINITGLGFAK (cluster B.1-specific), , yellow-filled diamond TSIELIT-GFTK (cluster B.2-specific), , red-filled diamond VSYTLDDDHTTDVETAK (cluster D-specific), , green-filled diamond LLHALPTGNDGDKLLPK (cluster D-specific), , black-filled diamond RVSYTLDDDHTDVE*AKELKL (cluster D-specific), , purple-filled diamond LYGVFNPEATK (cluster D-specific), , blue-filled diamond ELAEAI*QSTDSWNVQOQTK (cluster D-specific); , light green-filled diamond VLEMIFLGEDPK (cluster D-specific), , orange-filled diamond KAMIKASP (cluster D-specific) and , gray-outlined diamond GMPTGTVYVAKGGLADK (cluster D-specific).
4. Discussion

LC-MS/MS-based methods for bacteriophage identification offer several advantages compared with other approaches, since bacteriophages can be directly identified with this method without using genomic tools, which provides a new strategy for drawing the appropriate conclusions. In addition, the method proposed here may be applied for further analyses without the requirement of growing bacteria, since the samples can be collected directly from foodstuffs. The study of noninduced prophages provides a fast analysis and can detect specific temperate phage proteins produced by *S. aureus* while integrated in the bacterial genome or by phages that are infecting the bacteria. Both cases provide the identification of specific *S. aureus* species or strains—in this case, an *S. aureus* mastitis producer. In the proteomic repository of the 20 different *S. aureus* strains analyzed, 79 peptides from staphylococcal bacteriophages were identified. Among them, eighteen of these phage peptides were *S. aureus*-specific. As bacteriophages are host-specific, these putative diagnostic peptides could be good diagnostic biomarkers for the detection and characterization of *S. aureus* and *S. aureus* phages.

The results show that a given specific peptide is present in closely related phages (Table 2). These bacteriophage peptides can be used as specific markers to establish *S. aureus* bacteriophage relationships (Figure 2). Additionally, phages that show the same peptides and are specific to *Staphylococcus* spp. are located close to one another in the phylogenomic tree, suggesting that a link does exist between phage phylogeny and bacteriophages that can infect the same bacterial species.

The study shown here exemplifies how phylogenomic trees based on the genome analysis provide useful information, and the study corroborates previous investigations, which suggested that viral genomic or subgenomic region analyses provide the best tool for reconstructing viral evolutionary histories [48]. Nevertheless, the lack of knowledge of the phage genomic content [49] makes a phage analysis more difficult. The first priority must be the contribution of new large amounts of data for phages infecting bacteria [12].

In addition, there is an urgent need for novel therapies to treat and prevent mastitis [50]. Bacteriophage therapy is an alternative to the antibiotic treatment of bovine mastitis [51], with a high specificity and a low probability for bacterial resistance development [52]. Many studies have demonstrated the effectiveness of bacteriophages in a variety of animal models to fight several mastitis-causing pathogenic bacteria. Some studies have shown how virulent phages such as SPW and SA phages are active against bovine mastitis-associated *S. aureus*. Moreover, SAJK-IND and MSP phages have specific lytic activity against several strains of *S. aureus* isolated from mastitis milk samples [53]. Indeed, mouse-induced mastitis models decreased their bacterial counts after treatment with a vBSM-A1 and vBSP-A2 phage cocktail [54]. Finally, several temperate phage mixtures have been shown to be more effective than using a single temperate phage for inhibiting *S. aureus*. According to the data obtained for the different models of mastitis, phage therapy using bacteriophages in this study can be considered an innovative alternative to antibiotics for the treatment of mastitis caused by *S. aureus*.

Finally, the proteomic analysis by LC-ESI-MS/MS performed in this study provides relevant insights into the search for potential phage origin diagnostic peptide biomarkers for mastitis-causing *S. aureus*. In addition, this method may be useful for searching peptide biomarkers for the identification and characterization of mastitis-causing species and for finding new *S. aureus* phages useful as possible therapies for mastitis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/foods10040799/s1: Figure S1: MS/MS spectrums for *S. aureus*-specific peptide biomarkers. The corresponding peptides were tested for specificity using the BLASTp algorithm. Excel Dataset Supplemental Data 1: Complete nonredundant peptide dataset. Supplemental Data 2: Table S1: *Staphylococcus aureus* (SA) strains used in this study. Table S2: Linage, authors and accession number of studied bacteriophages [55–88].
References

1. Böhme, K.; Morandi, S.; Cremonesi, P.; Fernández No, I.C.; Barros-Velázquez, J.; Castiglioni, B.; Brasca, M.; Cañas, B.; Calo-Mata, P. Characterization of *Staphylococcus aureus* strains isolated from Italian dairy products by MALDI-TOF mass fingerprinting. *Electrophoresis* 2012, 33, 2355–2364. [CrossRef]

2. Forsman, P.; Tälsala-Timisjärvi, A.; Alatossava, T. Identification of staphylococcal and streptococcal causes of bovine mastitis using 16S-23S rRNA spacer regions. *Microbiology* 1997, 143, 3491–3500. [CrossRef]

3. Carrera, M.; Böhme, K.; Gallardo, J.M.; Barros-Velázquez, J.; Cañas, B.; Calo-Mata, P. Characterization of foodborne strains of *Staphylococcus aureus* by shotgun proteomics: Functional networks, virulence factors and species-specific peptide biomarkers. *Front. Microbiol.* 2017, 8, 2458. [CrossRef] [PubMed]

4. Rainard, P.; Foucras, G.; Fitzgerald, J.R.; Watts, J.L.; Koop, G.; Middleton, J.R. Knowledge gaps and research priorities in *Staphylococcus aureus* mastitis control. *Transbound. Emerg. Dis.* 2018, 65, 149–165. [CrossRef]

5. Abril, A.G.; Villa, T.G.; Barros-Velázquez, J.; Cañas, B.; Sánchez-Pérez, A.; Calo-Mata, P.; Carrera, M. *Staphylococcus aureus* exotoxins and their detection in the dairy industry and mastitis. *Toxins* 2020, 12, 537. [CrossRef]

6. Xia, G.; Wolz, C. Phages of *Staphylococcus aureus* and their impact on host evolution. *Infect. Genet. Evol.* 2014, 21, 593–601. [CrossRef]

7. Fortier, L.C.; Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. *Virulence* 2013, 4, 354–365. [CrossRef] [PubMed]

8. Menoumi, R.; Hutinet, G.; Petit, M.A.; Ansaldi, M. Bacterial genome remodeling through bacteriophage recombination. *FEMS Microbiol. Lett.* 2015, 362, 1–10. [CrossRef]

9. Deghorain, M.; Van Melderen, L. The staphylococci phages family: An overview. *Viruses* 2012, 4, 3316–3335. [CrossRef]

10. Feiner, R.; Argov, T.; Rabinovich, L.; Sigal, N.; Borovok, I.; Herskovits, A.A. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria. *Nat. Rev. Microbiol.* 2015, 13, 641–650. [CrossRef]

11. Penadès, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-mediated spread of bacterial virulence genes. *Curr. Opin. Microbiol.* 2015, 23, 171–178. [CrossRef]

12. Brüssow, H.; Desiere, F. Comparative phage genomics and the evolution of *Siphoviridae*: Insights from dairy phages. *Mol. Microbiol.* 2001, 39, 213–222. [CrossRef]

13. Canchaya, C.; Fournos, G.; Brüssow, H. The impact of prophages on bacterial chromosomes. *Mol. Microbiol.* 2004, 53, 9–18. [CrossRef]

14. Uchiyama, J.; Taniguchi, M.; Kurokawa, K.; Takemura-Uchiyama, I.; Ujihara, T.; Shimakura, H.; Sakaguchi, Y.; Murakami, H.; Sakaguchi, M.; Matsuizaki, S. Adsorption of *Staphylococcus* viruses SL3' and S24-1 on *Staphylococcus aureus* strains with different glycosidic linkage patterns of wall teichoic acids. *J. Gen. Virol.* 2017, 98, 2171–2180. [CrossRef]

15. Moon, B.Y.; Park, J.Y.; Hwang, S.Y.; Robinson, D.A.; Thomas, J.C.; Fitzgerald, J.R.; Park, Y.H.; Seo, K.S. Phage-mediated horizontal transfer of a *Staphylococcus aureus* virulence-associated genomic island. *Sci. Rep.* 2015, 5, 9784. [CrossRef]

16. Koskella, B.; Brockhurst, M.A. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. *FEMS Microbiol. Rev.* 2014, 38, 916–931. [CrossRef]

17. Chakraborty, S.; Helb, D.; Burday, M.; Connell, N.; Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. *J. Microbiol. Methods* 2007, 69, 330–339. [CrossRef]
44. Goodacre, N.E.; Gerloff, D.L.; Uetz, P. Protein domains of unknown function are essential in bacteria. MBio 2014, 5, e00744-13. [CrossRef] [PubMed]

45. Duarte-Rodriguez, G.; Mancheño, J.M.; Díaz, E.; Carmona, M. Refactoring the λ phage lytic/lysogenic decision with a synthetic regulator. Microbiologica 2016, 5, 575–581. [CrossRef]

46. Van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β the innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus. J. Bacteriol. 2006, 188, 1310–1315. [PubMed]

47. Gual, A.; Camacho, A.G.; Alonso, J.C. Functional analysis of terminate large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J. Biol. Chem. 2000, 275, 35311–35319. [CrossRef] [PubMed]

48. Simmonds, P. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J. Gen. Virol. 2015, 96, 1193–1206. [CrossRef] [PubMed]

49. Argov, T.; Azulay, G.; Pasechnik, A.; Stadnyuk, O.; Ran-Sapir, S.; Borovok, I.; Sigal, N.; Herskovits, A.A. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 2017, 38, 81–87. [CrossRef] [PubMed]

50. Angelopoulou, A.; Warda, A.K.; Hill, C.; Ross, R.P. Protein domains of unknown function are essential in Bacteria. [CrossRef] [PubMed]

51. Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. Crit. Rev. Microbiol. 2019, 45, 564–580. [CrossRef]

52. Dams, D.; Briers, Y. Enzybiotics: Enzyme-based antibacterials as therapeutics. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2019; Volume 1148, pp. 233–253.

53. Ganaie, M.Y.; Qureshi, S.; Kashoo, Z.; Wani, S.A.; Hussain, M.I.; Kumar, R.; Maqbool, R.; Sikander, P.; Banday, M.S.; Malla, W.A.; et al. Isolation and characterization of two PVL-phage harbored by the human-adapted subpopulation of Staphylococcus aureus. Vet. Res. Commun. 2018, 42, 289–295. [CrossRef]

54. Geng, H.; Kou, W.; Zhang, M.; Xu, L.; Liu, F.; Li, X.; Wang, L.; Xu, Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol. 2019, 65, 339–351. [CrossRef]

55. Kwan, T.; Liu, J.; DuBow, M.; Gros, P.; Pelletier, J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages isolated from poultry/livestock farms. Proc. Natl. Acad. Sci. USA 2005, 102, 5174–5179. [CrossRef]

56. Bae, T.; Baba, T.; Hiramatsu, K.; Schneewind, O. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol. Microbiol. 2006, 62, 1035–1047. [CrossRef]

57. Kuroda, M.; Ohta, T.; Uchiyama, I.; Baba, T.; Yuzawa, H.; Kobayashi, I.; Cui, L.; Oguchi, A.; Aoki, K.; Nagai, Y.; et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 2001, 357, 1225–1240. [CrossRef]

58. Keary, R.; McAluliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage 2014, 4, e28451. [CrossRef]

59. Van der Mee-Marquet, N.; Corvaglia, A.R.; Valentí, A.S.; Hernandez, D.; Bertrand, X.; Girard, M.; Kluytmans, J.; Donnio, P.Y.; Quentin, R.; Francois, P. Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. Infect. Genet. Evol. 2013, 18, 299–308. [CrossRef]

60. García, P.; Martínez, B.; Obeso, J.M.; Lavigne, R.; Lurz, R.; Rodriguez, A. Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment. Appl. Environ. Microbiol. 2009, 75, 7663–7673. [CrossRef]

61. Yoon, H.; Yun, J.; Lim, J.A.; Roh, E.; Jung, K.S.; Chang, Y.; Ryu, S.; Heu, S. Characterization and genomic analysis of two Staphylococcus aureus bacteriophages isolated from poultry/livestock farms. J. Gen. Virol. 2013, 94, 2569–2576. [CrossRef]

62. Iandolo, J.J.; Worrell, V.; Groicher, K.H.; Qian, Y.; Tian, R.; Kenton, S.; Dorman, A.; Ji, H.; Lin, S.; Loh, P.; et al. Comparative analysis of the genomes of the temperate bacteriophages φ11, φ12 and φ13 of Staphylococcus aureus 8325. Gene 2002, 289, 109–118. [CrossRef]

63. Zhang, M.; Ito, T.; Li, S.; Jin, J.; Takeuchi, F.; Lauderdale, T.-L.Y.; Higashiode, M.; Hiramatsu, K. Identification of the third type of PVL phage in ST59 methicillin-resistant Staphylococcus aureus (MRSA) strains. FEMS Microbiol. Lett. 2011, 323, 20–28. [CrossRef] [PubMed]

64. El Haddad, L.; Moineau, S. Characterization of a novel panton-valentine leukocidin (PVL)-encoding staphylococcal phage and its naturally PVL-lacking variant. FEMS Microbiol. Lett. 2013, 79, 2828–2832. [CrossRef] [PubMed]

65. Liu, J.; Debbi, M.; Moeck, G.; Arhin, F.; Banda, P.; Bergeron, D.; Callejo, M.; Ferretti, V.; Ha, N.; Kwan, T.; et al. Antimicrobial drug discovery through bacteriophage genomes. Nat. Biotechnol. 2004, 22, 185–191. [CrossRef] [PubMed]

66. Kraushaar, B.; Hammerl, J.A.; Kienöll, M.; Heinig, M.L.; Sperling, N.; Thanh, M.D.; Reetz, J.; Jäckel, C.; Fetsch, A.; Hertwig, S. Acquisition of virulence factors in livestock-associated MRSA: Lysogenic conversion of CC398 strains by virulence gene-containing plages. Sci. Rep. 2017, 7, 1–13. [CrossRef]

67. Narita, S.; Kaneko, J.; Chiba, J.I.; Piémont, Y.; Jarraud, S.; Etienne, J.; Kamio, Y. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: Molecular analysis of a PVL-converting phage, φSLT. Gene 2001, 268, 195–206. [CrossRef]

68. Chang, Y.; Lee, J.H.; Shin, H.; Heu, S.; Ryu, S. Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage SA12. Virus Genes 2013, 47, 389–393. [CrossRef]

69. Xiao, X.M.; Ito, T.; Kondo, Y.; Cho, M.; Yoshizawa, Y.; Kaneko, J.; Katai, A.; Higashiode, M.; Li, S.; Hiramatsu, K. Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J. Clin. Microbiol. 2006, 46, 3246–3258.
70. Kaneko, J.; Kimura, T.; Narita, S.; Tomita, T.; Kamio, Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage ϕFVL carrying Panton-Valentine leukocidin genes. Gene 1998, 215, 57–67. [CrossRef] [PubMed]

71. Mariem, B.J.J.; Ito, T.; Zhang, M.; Jin, J.; Li, S.; Ilhem, B.B.B.; Adnan, H.; Han, X.; Hiramatsu, K. Molecular characterization of meticillin-resistant Panton-valentine leukocidin positive Staphylococcus aureus clones disseminating in Tunisian hospitals and in the community. BMC Microbiol. 2013, 13, 2. [CrossRef] [PubMed]

72. Christie, G.E.; Matthews, A.M.; King, D.G.; Lane, K.D.; Olivarez, N.P.; Tallent, S.M.; Gill, S.R.; Novick, R.P. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80a-Implications for the specificity of SaPI mobilization. Virology 2010, 407, 381–390. [CrossRef]

73. Frigols, B.; Quiles-Puchalt, N.; Mir-Sanchis, I.; Donderis, J.; Elena, S.F.; Buckling, A.; Novick, R.P.; Marina, A.; Penadés, J.R. Virus Satellites Drive Viral Evolution and Ecology. PLoS Genet. 2015, 11, e1005609. [CrossRef]

74. Botka, T.; Růžičková, V.; Konečná, H.; Pantuček, R.; Rychlík, I.; Zdralá, Z.; Petráš, P.; Doškař, J. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes 2015, 51, 122–131. [CrossRef]

75. Yamaguchi, T.; Hayashi, T.; Takami, H.; Nakasone, K.; Ohnishi, M.; Nakayama, K.; Yamada, S.; Komatsu, H.; Sugai, M. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 2000, 38, 694–705. [CrossRef] [PubMed]

76. Santiago-Rodriguez, T.M.; Naidu, M.; Jones, M.B.; Ly, M.; Pride, D.T. Identification of staphylococcal phage with reduced transcription in human blood through Transcriptome sequencing. Front. Microbiol. 2015, 6, 216. [CrossRef] [PubMed]

77. Matsuzaki, S.; Yasuda, M.; Nishikawa, H.; Ujihara, T.; Muraoka, A.; Daibata, M.; Wakiguchi, H.; Matsuzaki, S. Isolation and characterization of a novel Staphylococcus aureus bacteriophage, ϕMR25, and its therapeutic potential. Arch. Virol. 2010, 155, 545–552. [CrossRef] [PubMed]

78. Varş, M.; Pantuček, R.; Růžičková, V.; Doškař, J. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus. J. Gen. Virol. 2016, 97, 258–268. [CrossRef]

79. Pantuček, R.; Doškař, J.; Růžičková, V.; Kašpárek, P.; Oráčová, E.; Kvardová, V.; Rosypal, S. Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch. Virol. 2004, 149, 1689–1703. [CrossRef]

80. Chang, Y.; Shin, H.; Lee, J.-H.; Park, C.; Paik, S.-Y.; Ryu, S. Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97. Viruses 2015, 7, 5225–5242. [CrossRef] [PubMed]

81. Zou, D.; Kaneko, J.; Narita, S.; Kamio, Y. Prophage, ϕpv33-pro, carrying panton-valentine leukocidin genes, on the Staphylococcus aureus p83 chromosome: Comparative analysis of the genome structures of ϕpv33-pro, ϕpv1, ϕ11, and other phages. Biosci. Biotechnol. Biochem. 2000, 64, 2631–2643. [CrossRef] [PubMed]

82. Utter, B.; Deutsch, D.R.; Schuch, R.; Winer, B.Y.; Verratti, K.; Bishop-Lilly, K.; Sozhamannan, S.; Fischetti, V.A. Beyond the Chromosome: The prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus. PLoS ONE 2014, 9, e100502. [CrossRef]

83. Sanchini, A.; Del Grosso, M.; Villa, L.; Ammendolia, M.G.; Superti, F.; Monaco, M.; Pantosti, A. Typing of Panton-Valentine leukocidin-encoding phages carried by meticillin-susceptible and meticillin-resistant Staphylococcus aureus from Italy. Clin. Microbiol. Infect. 2014, 20, 0840–0846. [CrossRef] [PubMed]

84. Jia, H.; Bai, Q.; Yang, Y.; Yao, H. Complete genome sequence of Staphylococcus aureus siphovirus phage JS01. Genome Announc. 2013, 1, 797–810. [CrossRef] [PubMed]

85. Jeon, J.; D’Souza, R.; Hong, S.K.; Lee, Y.; Yong, D.; Choi, J.; Lee, K.; Chong, Y. Complete genome sequence of the bacteriophage YMC/09/04/R1988 MRSA BP: A lytic phage from a meticillin-resistant Staphylococcus aureus isolate. FEMS Microbiol. Lett. 2014, 359, 144–146. [CrossRef] [PubMed]

86. Zeman, M.; Mašlaňová, I.; Indráková, A.; Šiborová, M.; Mikulášek, K.; Bendičková, K.; Plevka, P.; Vrbovská, V.; Zdralá, Z.; Doškař, J.; et al. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci. Rep. 2017, 7, 46319. [CrossRef] [PubMed]

87. Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Linares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, 442–450. [CrossRef]