Biomarkers and non-invasive tests for gastrointestinal mucositis

N. S. S. Kuiken1,2 · E. H. H. M. Rings3,4 · N. M. A. Blijlevens5 · Wim J. E. Tissing1

Received: 17 October 2016 / Accepted: 12 May 2017 / Published online: 24 May 2017 © The Author(s) 2017. This article is an open access publication

Abstract Gastrointestinal mucositis is a complex inflammatory reaction of the mucous membranes, a side effect of both chemotherapy and radiotherapy. Currently, assessment scales are used to diagnose mucositis. However, a biomarker which would determine whether there is mucositis and thereby establish the severity objectively would be very useful. This will give the opportunity to evaluate studies, to determine risk factors and incidence, and it will make it possible to compare studies. Moreover, this biomarker might improve clinical management for patients. In this paper, we reviewed studies concerning potential biomarkers in blood samples and fecal samples, and potential tests in breath samples and urine samples. We include biomarkers and tests studied in animal models and/or in clinical trials, and discuss the validity, diagnostic accuracy, and applicability.

Keywords Gastrointestinal mucositis · Biomarkers · Citrulline

Introduction

Mucositis is a severe side effect of both chemotherapy and radiotherapy in several cancer treatment protocols. It comprises complex inflammatory damage to the mucosa of the complete alimentary tract. Gastrointestinal mucositis, further referred to as mucositis, is complex and the pathophysiology can be based on the five-phase pathophysiological model of oral mucositis [1, 2]. However, the exact working mechanism has not been elucidated. Patients suffer from abdominal pain, vomiting, and diarrhea, with consequently weight loss, nutritional support, and an increased risk to develop a sepsis or bacteremia [3, 4]. The incidence of mucositis is estimated at 40–100% of patients with chemotherapy, dependent of treatment and patient-related factors [4, 5]. The estimation of the incidence is such a broad range, since there is no gold standard for diagnosis and assessment of the severity of mucositis. The therapy of cancer has been changed in the past years to more targeted therapies. However, the effect of these targeted therapies on the risk, severity, and incidence of mucositis is unknown. It is thought that there is an underreporting of mucositis due to a lack of a gold standard [6]. Ideally, for the diagnosis and severity of mucositis, inspection of the small intestine microscopically would be necessary. Therefore, the gold standard would be a biopsy from the small intestine. However, an endoscopy is invasive, can be painful, the small intestine is only visible for a small part, and moreover, this test is not preferable in an immune-compromised patient since there is a high risk of infection and bleeding. The intestinal tissue is vulnerable during mucositis. Therefore, clinical practice is in need of a test to diagnose and assess the severity of mucositis. An optimal test to diagnose mucositis and establish the severity will give the opportunity to evaluate studies, to determine risk factors and incidence, and if used in all studies, it will make it possible to compare them. Moreover, this optimal test
will potentially improve management in for example prophyla-
tic antibiotic use, or diet changes for nutritional support.

The clinical way to determine the severity of mucositis to
date is the use of an assessment scale. There are a few assess-
ment scales developed to determine the severity of mucositis,
like the National Cancer Institute Common Terminology
Criteria for Adverse Events (NCI-CTCAE) scale and the
Daily Gut Score (DGS) [3, 7, 8]. These scoring scales are
based on several aspects like vomiting, diarrhea, pain, abdom-
inal complaints, and nutritional support. Moreover, several
hospitals have developed their own assessment scale for mu-
cositis; the use of these many different scales makes it difficult
to compare studies and improve the clinical practice. More
importantly, these assessment scales are subjective, based on
symptoms not very specific for mucositis, influenced by pain
relief medication, and have not been validated for the use in
young children [3]. Therefore, a biomarker which would de-
termine whether there is mucositis and thereby establish the
severity objectively would be very useful. Several potential
biomarkers and tests have been studied, both preclinical and
clinical. In a few reviews about biomarkers, several possible
biomarkers were already discussed. [9–12]. In this review, we
give an update including new studies from recent years
concerning potential biomarkers in blood samples and fecal
samples, and potential tests in breath samples and urine sam-
pies. We include biomarkers and tests studied in animal
models and/or in clinical trials.

Definition of biomarker

The terminology around biomarkers is broad. The question is
when is a measured sample a biomarker? The Biomarkers
Definition Working Group mentioned a biomarker as “a char-
acteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic process-
es, or pharmacologic responses to a therapeutic intervention”
[13]. Another, more specific recommendation for a definition
was “human or animal biological property whose in vitro
measurement or identification is useful for the prevention,
diagnosis, prognosis, treatment, and follow-up of human or
animal diseases, and for their understanding” [14]. In this
review, we will use this second definition. In respect to muco-
sitis, a biomarker should diagnose mucositis and should de-
terminate the severity of mucositis. Moreover, this biomarker
should be easily accessible, non-invasive, and sequentially
determinable. This means in our opinion that a biomarker
should be present in the human body without adding some-
thing from outside the body to measure a response. In other
words, this biomarker is present in healthy individuals and is
altered, either higher or lower, due to mucositis. We interpret
the use of a substitute that has to be administered to the patient
in any way more as a test to determine the severity of damage
to the mucosa. Therefore, we make a division in biomarkers,
which are actually present in the body, and tests, which need
the administration of any kind of substrate to the patient before
measurement. To evaluate the usefulness of a biomarker or
test in the diagnosis of a disease, three aspects should be in-
cluded. First, the validity of the biomarker or test shows if the
result matches the severity of the disease and whether it clas-
sifies the patient correctly. Second, the diagnostic accuracy
determines the chance that a patient with a positive test or
biomarker has the disease, and the chance that a patient with
a normal biomarker of test has the disease. Finally, the appli-
cability values if the biomarker or test is feasible and cost
effective in the specific patient group. Therefore, in this re-
view, we value all biomarkers and tests for mucositis on these
three points: the validity, the diagnostic accuracy, and the ap-
pliability, although this is challenging due to the absence of a
gold standard.

Potential biomarkers in blood samples

Citrulline

One of the most significant potential biomarkers for mucositis
is citrulline in blood samples, measurable in both serum and
plasma. The intestine is the primary source for the amount of
citrulline present in the blood circulation [15]. Citrulline is a
non-protein amino acid, synthesized almost exclusively by the
enterocytes of the small intestine. It is synthesized in the
enterocyte from glutamine, and only released in the circulation
as a masked form of arginine, to bypass the uptake of arginine
by the liver, and to be converted back to arginine in the kid-
neys [11]. In fact, citrulline is an intermediary product of ami-
no acid metabolism [16]. Crenn et al., showed that plasma
citrulline correlates with the small bowel length, and that it
is a potential biomarker of small intestinal enterocyte mass in
patients with celiac disease [16, 17]. Moreover, in more than
500 patients suffering from several intestinal diseases, plasma
citrulline was shown as biomarker for the enterocyte mass
reflecting the absorptive capacity of the small intestine [18].
Lastly, citrulline has been shown not to be influenced by in-
flammation or by the nutritional intake, since diet seems to be a
poor source of citrulline [11, 18, 19]. Unfortunately, plasma
citrulline level cannot be used as biomarker in case of renal
failure if creatinine clearance is below 50 ml/min, since this
increases the citrulline level in the blood [18, 20] (in clinical
practice, probably a creatinine clearance below 30 ml/min is
relevant, personal experience).

Citrulline can be accurately measured in little volumes,
even in 30 μl. It is measured by automated ion exchange
column chromatography [21, 22]. During mucositis, the
enterocyte mass significantly decreases. Therefore, citrulline
is expected to decrease during mucositis, which represents the
based assessment score. In 2013, Van der Velden and colleagues investigated the use of plasma citrulline and therapeutic interventions or nutritional support. Furthermore, it has been suggested to use a citrulline assay in combination with the daily gut score and sugar permeability test, in patients receiving hematopoietic stem cell transplantation. In another pilot study, the authors also showed that serum citrulline correlated with gastrointestinal toxicity in general, and moreover, they studied gastrointestinal toxicity in patients suffering from gastrointestinal toxicity. However, this was only a small sample size in a specific patient group, and furthermore, they studied gastrointestinal toxicity in general, of which one was mucositis. Furthermore, in pediatric oncology patients, interleukin-8 (IL-8) only correlated with the daily gut score and the NCI-CTCAE scale in patients with febrile neutropenia. Furthermore, as shown in other studies, IL-8 is effective for determining febrile neutropenia. Therefore, IL-8 is probably useful in determining infections in general.

Mucositis is a risk factor to develop fever; however, febrile neutropenia might be induced by another infection. The importance of neutrophils in the initiation of mucositis is unknown. Even more, fever is often present during mucosal barrier injury with or without an infection, due to the fact that there is an immune response irrespective of the presence of any particular microbial pathogen. Thus, in general, patients with mucositis are mostly complex patients with neutropenia, fever, and other causes of inflammation, for example graft-versus-host disease. This gives the most important disadvantage of the use of these cytokines as biomarkers; cytokines are non-specific for mucositis, but may reflect any inflammation present in the body. Due to too much influence of other mechanisms, the validity and diagnostic accuracy are low; cytokines are a non-specific marker for inflammation.

Therefore, inflammatory cytokines like TNF-α does not seem to be suitable as a biomarker for mucositis, according to the biomarker definition mentioned above.

**Cytokines**

In the pathophysiology of mucositis, which is not yet completely elucidated, pro-inflammatory cytokines like TNF-α, IL1-beta, and IL-6 are important. Increased levels of cytokines are determined during mucositis in both animal models and clinical trials. Therefore, these cytokines are also a potent biomarker for mucositis. These pro-inflammatory cytokines represent the inflammatory part of the mucositis pathophysiology.

One of the major concerns for the use of cytokines as biomarker is that the determination of cytokines during mucositis is critically time dependent. However, Bowen et al. determined in a pilot study in patients with esophageal cancer, treated with both chemotherapy and radiotherapy, the value of pro-inflammatory genes as predictive value. They concluded that mRNA of TNF-α was consistently increased in the patients suffering from gastrointestinal toxicity. However, this was only a small sample size in a specific patient group, and moreover, they studied gastrointestinal toxicity in general, of which one was mucositis. Furthermore, in pediatric oncology patients, interleukin-8 (IL-8) only correlated with the daily gut score and the NCI-CTCAE scale in patients with febrile neutropenia. Furthermore, as shown in other studies, IL-8 is effective for determining febrile neutropenia. Therefore, IL-8 is probably useful in determining infections in general.

Mucositis is a risk factor to develop fever; however, febrile neutropenia might be induced by another infection. The importance of neutrophils in the initiation of mucositis is unknown. Even more, fever is often present during mucosal barrier injury with or without an infection, due to the fact that there is an immune response irrespective of the presence of any particular microbial pathogen. Thus, in general, patients with mucositis are mostly complex patients with neutropenia, fever, and other causes of inflammation, for example graft-versus-host disease. This gives the most important disadvantage of the use of these cytokines as biomarkers; cytokines are non-specific for mucositis, but may reflect any inflammation present in the body. Due to too much influence of other mechanisms, the validity and diagnostic accuracy are low; cytokines are a non-specific marker for inflammation.

Therefore, inflammatory cytokines like TNF-α does not seem to be suitable as a biomarker for mucositis, according to the biomarker definition mentioned above.
C-reactive protein

C-reactive protein (CRP) is used in clinical practice as an acute phase protein increased in case of an inflammation. During mucositis, there is inflammation in the intestine, suggesting to increasing the CRP in the blood. However, Miedema et al. determined that CRP increases only late after onset of fever and concluded that it is a late marker for febrile neutropenia [40]. This is probably also the case for mucositis. Moreover, as already mentioned for the pro-inflammatory cytokines, the validity and diagnostic accuracy of CRP are low, since it is also influenced by many other inflammatory mechanisms often present in the patient suffering from mucositis, like infections. Therefore, CRP is probably not a valuable biomarker for mucositis.

Intestinal fatty acid binding protein and ileal-bile acid binding protein

Intestinal fatty acid binding protein (I-FABP), an endogenous cytosolic enterocyte protein, and ileal bile acid binding protein (I-BABP), present in enterocytes, are both released by dying mature enterocytes and therefore possible markers of enterocyte loss in the small intestine. I-FABP has been shown to be a possible useful plasma marker for intestinal injury shown in human tissue samples and blood samples [44]. Furthermore, I-FABP has been shown to be a possible systemic marker for Crohn’s disease [45]. In 2009, Derixx and colleagues showed in patients receiving conditioning regimen for HSCT that citrulline in combination with I-FABP and I-BABP possibly assess not only the enterocyte mass but also the enterocyte turnover in the small intestine [28]. No further studies with I-FABP or I-BABP in other animal experiments or clinical trials during mucositis have been performed. Therefore, no conclusions can be drawn concerning the validity, diagnostic accuracy, and applicability. In respect to the definition of a biomarker for mucositis, these markers need further research to draw any conclusion; however, these proteins might be potentially useful.

Potential biomarkers in feces samples

Granulocyte marker proteins

Fecal calprotectin and calgranulin (S100A12) are granulocyte marker proteins which are possible markers of intestinal inflammation [46]. Calprotectin in fecal samples has been used in many diseases concerning inflammation in the intestine. In a clinical trial with many patients with several intestinal inflammatory disorders, it was shown that fecal calprotectin levels were increased compared to healthy controls [47, 48]. Fecal calgranulin (S100A12) has also been shown to be a marker for inflammatory bowel disease [46]. Therefore, granulocyte marker proteins seem to be reliable markers of intestinal inflammation. During mucositis, there is indeed inflammation in the intestine. However, in contrast to animal models, during chemotherapy-induced mucositis in humans, there is often neutropenia; there is no influx of myeloid cells. Since there is neutropenia in most of the patients suffering from mucositis, calprotectin and calgranulin will not be increased in these patients. This has been shown in a small study with pediatric cancer patients, where fecal calprotectin was undetectable in most samples, probably due to the fact that these patients were neutropenic [30]. Therefore, during chemotherapy-induced mucositis, calprotectin and calgranulin are probably not useful biomarkers. However, the granulocyte marker protein has been shown to be a possible marker during radiation-induced mucosal damage in rats [49]. Patients receiving radiation and suffering from mucosal damage are most of the times not neutropenic; therefore, calprotectin or calgranulin might indeed be a possible biomarker for these specific patients [50, 51]. Therefore, for these biomarkers, there should be a division between radiation-induced mucositis and chemotherapy-induced mucositis. Currently, no conclusions can be drawn concerning the validity, diagnostic accuracy, and applicability. Fecal calprotectin or fecal calgranulin might be a biomarker for radiation-induced mucositis, but we are in need of clinical trials to draw any conclusion.

Ratio fecal human DNA/total DNA

Another possible biomarker in feces samples is the ratio fecal human DNA/total DNA. With this ratio, the loss of enterocytes can be measured. This ratio was studied as a possible biomarker in pediatric cancer patients suffering from mucositis. Van Vliet et al. showed no significant increase in the ratio during mucositis; however, the fecal DNA ratio did correlate with both the DGS and the NCI-CTCAE criteria in pediatric cancer patients [30]. So the ratio fecal human DNA/total DNA might indicate loss of enterocytes during mucositis; however, no further research has been performed. The fecal DNA ratio is a possible marker for mucositis, but no conclusions can be drawn concerning the validity, diagnostic accuracy, and applicability without further research.

Potential tests of intestinal damage in urine or breath samples

Sugar permeability test

The sugar permeability test was developed to test the gut barrier function using a non-invasive method. For this
test, the patient has to ingest a hypertonic solution with monosaccharide, like L-rhamnose, and disaccharide, like lactulose, sugars which are not metabolized. Monosaccharides represent the transcellular route of absorption, and disaccharides represent the paracellular route of absorption. These sugars are almost unchanged excreted in the urine. Therefore, the measured levels in urine represent the permeability of the gut, where monosaccharides represent the absorption surface area and disaccharides represent the permeability of tight junctions of the small intestine [52].

In adult HSCT patients, this sugar permeability test has shown that these patients had abnormal permeability of the gut for both sugars [53]. In another study, the sugar permeability test showed a decrease in sugars in urine [27]. However, for the sugar permeability test, urine collection during multiple hours is necessary [9, 10]. Van vliet et al. included the sugar permeability test in a clinical trial in pediatric cancer patients to compare several tests and biomarkers for mucositis. However, sugar intake and urine collecting was problematic in pediatric cancer patients due to vomiting and severe diarrhea [30].

Previously in a review about non-invasive biomarkers for mucositis, it was already concluded that the sugar permeability test may describe the barrier function, but does not necessarily determine the absorptive capacity of the small intestine [10]. No new studies have been conducted in the last years. This test might be potential to determine the barrier function of the small intestine during mucositis. However, this is not a biomarker, according to the abovementioned definition, but it might be a possible useful test to show the effect of the ingested sugars. Currently, no conclusions can be drawn concerning the validity, diagnostic accuracy, and applicability.

**Hydrogen breath test**

The hydrogen breath test is based on the principle that sugars in the small intestine are malabsorbed in a damaged intestine. This causes a consequently increased amount of sugars in the colon which are metabolized by bacteria producing hydrogen. This hydrogen reaches, via the bloodstream, the lungs and is expired in the breath. Therefore, a damaged intestine will theoretically increase the hydrogen in the breath [12]. However, this test does not only result from malabsorption of sugars in the small intestine, but is also a result from the presence of certain bacteria in the colon as mentioned in other reports [10, 12, 54]. Moreover, the hydrogen breath test is mostly used for bacterial overgrowth [55, 56]. During mucositis, the bacteria in the intestine are altered by multiple factors like diet and medication, especially antibiotics. Moreover, the bacteria might influence all phases of the pathophysiology of mucositis [57]. Therefore, the hydrogen breath test has a low validity and diagnostic accuracy, and is probably not a suitable test for gastrointestinal mucositis.

**13Clactose breath test**

For the 13C-lactose test, the lactose has to be ingested and this will be digested in the small intestine by lactase, then metabolized in the liver and expired via the breath [12]. The 13C-lactose breath test combined with the hydrogen breath test was shown to be more effective to determine mucosal damage than the hydrogen breath test alone [12, 58]. However, for the 13c lactose breath test, intestinal lactase is the most important factor, and it has been shown that a lot of people normally have low lactase activity [10, 58]. Therefore, the 13c lactose breath test is not a suitable marker for mucositis, because the validity, diagnostic accuracy, and applicability are all low.

**Sucrose breath test**

One of the possible tests is the 13C-sucrose breath test (SBT). For the SBT, patients have to ingest 13C-sucrose. This will be digested in the intestine by sucrase, in the liver metabolized, and eventually expired in the breath [10]. Therefore, SBT seems to be a possible marker for digestive enzymes and enterocytes in the small intestine, an indicator for small bowel function [10]. Mucositis is a complex mechanism, but one of the clear features is villus atrophy in the small intestine, with a consequently decreased absorption area and a decreased amount of digestive enzymes. Therefore, the SBT is a potential test to determine the severity of mucositis and will show a decreased amount of 13CO2 in the expired breath if there is damage to the intestine. A few studies in animal models have shown that SBT is a possible marker for mucositis [59–62]. Tooley et al. performed a small clinical trial in pediatric cancer patients, and concluded that SBT possibly non-invasively detect gut damage [63]. However, this was a small sample size [64]. Furthermore, so far, this is the only clinical trial performed with SBT during mucositis. To measure the SBT, breath samples have to be taken every 15 min during a few hours, multiple times during admission [9, 12]. This is for the pediatric cancer patients really invasive and difficult for the very young children. However, this test was feasible in children with diarrhea, not cancer treatment related, where the SBT value was significantly decreased compared to healthy control, suggesting a decreased absorption capacity [65]. The current knowledge shows a promising validity, an unknown diagnostic accuracy, and conflicting findings concerning the applicability. Therefore, more clinical trials are needed to draw conclusions about the validity, diagnostic accuracy, and applicability of this SBT during mucositis and thereby to determine whether it is a potential test to diagnose mucositis (Table 1).
In this review, we had a critical view, based on the validity, the diagnostic accuracy, and the applicability, on several studied biomarkers and tests to diagnose mucositis and assess the severity. As mentioned above, we made a division in biomarkers, which are actually present in the body, and tests, which need the administration of any kind of substrate to the patient beforemeasurement.

At first, we can conclude that potential biomarkers in blood samples like cytokines and CRP are not specific enough for mucositis, since there is too much influence of other inflammatory mechanisms like infections; therefore, these parameters are probably not useful as a biomarker for mucositis, in agreement with a previous review about biomarkers [9]. In contrast, the markers I-FABP and I-BABP in blood samples are indeed potentially interesting biomarkers since they are released by dying mature enterocytes; therefore, I-FABP and I-BABP are potential markers of enterocyte loss in the small intestine. However, the determination of these markers is probably critically time dependent and only of value in combination with another biomarker like citrulline for example, but further research is needed. Furthermore, in blood samples, plasma citrulline is in our opinion one of the most promising biomarker. Several studies have shown that citrulline is measurable in animal models, adult patients, and pediatric patients. It is easily detectable, sequentially measurable, and might even detect mucositis if it is not clinically overt [30].

In addition to the blood samples, the use of feces samples to measure a biomarker is interesting due to the non-invasiveness for the patient. We can conclude that the biomarkers in feces, like calprotectin and calgranulin, are promising to detect intestinal inflammation, but probably not useful in neutropenic patients. However, during radiation-induced mucositis, they

| Potential biomarker | Advantages | Disadvantages |
|---------------------|------------|---------------|
| Blood               |            |               |
| Citrulline          | Marker for enterocyte mass | Not useful in renal failure (if creatinine clearance is <50 ml/min)* |
|                     | Sequentially detectable | |
|                     | Correlates with mucosal damage in animal models and clinical trials | |
| Cytokines           | Correlates with inflammation | Non-specific marker for inflammation |
| C-reactive protein  | Correlates with inflammation | Non-specific marker for inflammation |
|                     | Late marker, increases after fever | |
| I-FABP              | Enterocyte turnover in combination with citrulline | Short half-life time |
|                     | Only of value in combination with citrulline | |
| I-BABP              | Enterocyte turnover in combination with citrulline | Short half-life time |
|                     | Only of value in combination with citrulline | |
| Feces               |            |               |
| Granulocyte marker proteins | Correlate with leucocyte count | Not useful during neutropenia |
| Calprotectin        | Correlates with inflammation | Not detectable during neutropenia, not useful in most patients with chemotherapy-induced mucositis |
| Calgranulin (S100A12) | Correlates with inflammation | Not detectable during neutropenia, not useful in most patients with chemotherapy-induced mucositis |
| Ratio fecal human DNA/total DNA | Marker for enterocyte loss | Time consuming, less useful in acute clinical phase |
| Potential tests     |            |               |
| Urine               |            |               |
| Sugar permeability test | Non-invasive | No direct measurement: collection of urine during longer duration |
|                     |            | Not absorptive measurement |
| Breath              |            |               |
| Hydrogen breath test | Simple | Dependent on certain bacteria in colon |
|                     |            | Time consuming |
| Lactose breath test | Simple | Low lactase activity ➔ only useful in small percentage of patients |
|                     |            | Time consuming |
| Sucrose breath test | Correlates with mucosal damage in the small intestine in animal experiments | Invasive: multiple breath samples during hours |
|                     | One study shows correlation in children | Specialized equipment |

*In clinical practice, probably a creatinine clearance below 30 ml/min is relevant, personal experience
are indeed promising and more research is needed. Furthermore, the ratio fecal human DNA/total DNA is also interesting and more research is needed. However, it is really time consuming to determine this ratio and therefore probably less useful as biomarker in the acute clinical phase.

Besides possible biomarkers present in the body, the use of a non-invasive test to determine mucositis is also promising. The sugar permeability test seems interesting to show the barrier function of the gut; however, in the recent years, no new studies have been performed. Other possible tests, like the hydrogen breath test and the lactose breath test, are probably not useful, since it is dependent on either certain bacteria or lactase in the intestine. In comparison, the SBT seems to be superior compared to the hydrogen breath test and the 13Clactose breath test as a possible biomarker of mucositis, as concluded previously [12]. However, although breath samples are non-invasive, due to the multiple times and long duration especially for children, this test is indeed invasive. Moreover, specialized equipment is necessary. Therefore, for the SBT, more clinical trials are necessary to draw any conclusion about the feasibility during mucositis and thereby about the usefulness.

A few studies compared several biomarkers and tests to diagnose and determine the severity of mucositis. Lutgens et al. compared the use of the sugar permeability test with citrulline for the measurement and monitoring of treatment-related gut damage and concluded that citrulline assay is the first choice and objective parameter [66]. Furthermore, citrulline and the sugar permeability test were studied in adult HSCT patients and citrulline was concluded to correlate the best with intestinal damage determined with the DGS score [27]. Even more, Van Vliet et al. compared several biomarkers and tests, like citrulline, IL-8, fecal calprotectin, and sugar permeability test, in pediatric cancer patients and concluded that citrulline correlated the strongest with the severity of mucositis based on assessment scores [30]. Moreover, in that study, fecal calprotectin was not detectable due to the absence of neutrophils, and the sugar permeability test was not feasible due to diarrhea and vomiting.

Furthermore, it was shown that there is a possible influence of entero-endocrine hormones, like glucagon-like-peptide 1 (GLP-1) and glucagon-like-peptide 2 (GLP-2), in the pathophysiology of mucositis. We speculate that future studies should determine the usefulness of one of these hormones as a biomarker for mucositis [67].

In conclusion, mucositis is still challenging to diagnose, since the gold standard biopsy of the small intestine is not optional. Many different methods to establish the diagnosis and determine the severity of mucositis in both adult and pediatric clinical oncology settings are currently used. This makes any comparison about the diagnosis and thereby about the risk, the incidence, and the severity challenging. Moreover, what are the parameters in either a clinical trial or animal experiment to answer the question if a prevention or therapy is effective? We are in need of a biomarker or test to be able to diagnose mucositis in the clinical setting and thereby determine the severity. Second, we are in need of a biomarker or test to improve the animal experiments and clinical trials for new insights in preventive and therapeutic strategies. If we have a standard method to diagnose mucositis, we can actually compare studies for the incidence and severity of mucositis in several different clinical settings. Even more, in clinical trials, we can study a prevention or treatment in patients of which we are certain that they have mucositis determined by a standard biomarker or test. In this way, we are not studying an intervention in the complete population, which will prevent unnecessary treatment of patients who will not develop mucositis. Probably this will not be possible with only one biomarker; we are possibly in need of a combination of biomarkers or tests. We conclude that plasma citrulline seems to be one of the most promising biomarkers to date, and we suggest to use this biomarker in future clinical trials and animal experiments. More research is needed to find a combination of biomarkers or tests to determine non-invasively, sequentially mucositis and its severity.

Compliance with ethical standards

Funding This work was supported by the Dutch Cancer Society (grant number RUG 2011-5272).

Disclosure The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284
2. Sonis ST (2004) A biological approach to mucositis. J Support Oncol 2:21–23, discussion 35-6
3. Kuiken NS, Rings EH, Tissing WJ (2015) Risk analysis, diagnosis and management of gastrointestinal mucositis in pediatric cancer patients. Crit Rev Oncol Hematol 94:87–97
4. Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, DB MG, Migliorati C, Nicolatou-Galitis O, Peterson DE, Raber-Durlacher JE, Sonis ST, Elad S, Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120:1453–1461
5. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein...
EB, Mucositis Study Section of the Multinational Association for Supportive Care in Cancer, International Society for Oral Oncology (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025

6. Elting LS, Chang YC, Parelkar P, Boers-Doets CB, Michelet M, Hita G, Rouleau T, Cooksley C, Halm J, Vithala M, Bossi P, Escalante C, Brennan MT, On behalf of the Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASC/CISO) (2013) Risk of oral and gastrointestinal mucosal injury among patients receiving selected targeted agents: a meta-analysis. Support Care Cancer

7. Peterson DE, Keeffe DM, Hutchins RD, Schubert MM (2006) Alimentary tract mucositis in cancer patients: impact of terminology and assessment on research and clinical practice. Support Care Cancer 14:499–504

8. National Cancer Institute (2010) Common terminology criteria for adverse events v4.0. NIH, DHHS, NIH publication #09–7473. http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf. Accessed May 29 2009

9. Gibson RJ, Bowen JM (2011) Biomarkers of regimen-related mucosal injury. Cancer Treat Rev 37:487–493

10. Tooley KL, Howarth GS, Butler RN (2009) Mucositis and non-invasive markers of small intestinal function. Cancer Biol Ther 8: 753–758

11. Barzal JA, Szczylak C, Rzepecki P, Jaworska M, Anuszewska E (2014) Plasma citrulline level as a biomarker for cancer therapy-induced small bowel mucosal damage. Acta Biochim Pol 61:615–631

12. Wardill HR, Bowen JM, Gibson RJ (2013) Biomarkers of small intestinal mucosal damage induced by chemotherapy: an emerging role for the 13C sucrose breath test. J Support Oncol 11:61–67

13. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

14. Fuentes-Arderiu X (2013) What is a biomarker? It’s time for a renewed definition. Clin Chem Lab Med 51:1689–1690

15. Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480

16. Crenn P, Couday-Lucas C, Thuillier F, Cynober L, Messing B (2000) Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 119:1496–1505

17. Crenn P, Vaheki L, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124:1210–1219

18. Crenn P, Messing B, Cynober L (2008) Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr 27: 328–339

19. Boukhellata N, Leblond J, Claeyssens S, Faure M, Le Pessot F, Leblond J, Jungers P (1990) Early alterations of plasma free amino acids in intestinal failure due to enterocyte mass reduction. Clin Pharmacol Ther 69:108–118

20. Ceballos I, Chaurave P, Guerin V, Bardet J, Parvy P, Kamoun P, Jungers P (1990) Early alterations of plasma free amino acids in chronic renal failure. Clin Chim Acta 188:101–108

21. Demacker PN, Beijers AM, van Daal H, Donnelly JP, Blijlevens NM, van den Ouweland JM (2009) Plasma citrulline measurement using UPLC tandem mass-spectrometry to determine small intestinal enterocyte pathology. J Chromatogr B Analyt Technol Biomed Life Sci 877:387–392

22. van Eijk HM, Rooyakkers DR, Deutz NE (1993) Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2-3 microns Spherisorb ODS II column. J Chromatogr 620:143–148

23. Fijlstra M, Rings EH, Verkade HJ, van Dijk TH, Kamps WA, Tissing WJ (2011) Lactose maldigestion during methotrexate-induced gastrointestinal mucositis in a rat model. Am J Physiol Gastrointest Liver Physiol 300:G283–G291

24. El-Ghazaly MA, El-Hazek RM, Khayyal MT (2015) Protective effect of the herbal preparation, STW 5, against intestinal damage induced by gamma radiation in rats. Int J Radiat Biol 91:150–156

25. Lutgens LC, Deutz NE, Gueulette J, Cleutjens JP, Berger MP, Wouters BG, von Meyenfeldt MF, Lambin P (2003) Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys 57:1067–1074

26. Fijlstra M, Tissing WJ, Stellarda F, Verkade HJ, Rings EH (2013) Reduced absorption of long-chain fatty acids during methotrexate-induced gastrointestinal mucositis in the rat. Clin Nutr 32:452–459

27. Blijlevens NM, Lutgens LC, Schattenberg AV, Donnelly JP (2004) Citrulline: a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. Bone Marrow Transplant 34:193–196

28. Derick JP, Blijlevens NM, Donnelly JP, Fuji H, Kanda T, van Bijnen AA, Heineman E, Buurman WA (2009) Loss of enterocyte mass is accompanied by diminished turnover of enterocytes after myeloablative therapy in haematopoietic stem-cell transplant recipients. Ann Oncol 20:337–342

29. Lutgens LC, Deutz N, Granzier-Peeters M, Beets-Tan R, De Ruyscher D, Gueulette J, Cleutjens J, Berger M, Wouters B, von Meyenfeldt M, Lambin P (2004) Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys 60:275–285

30. van Vliet MJ, Tissing WJ, Rings EH, Koets AE, Stellarda F, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53:1188–1194

31. Herbers AH, Blijlevens NM, Donnelly JP, de Witte TJ (2008) Bacteraemia coincides with low citrulline concentrations after high-dose melphalan in autologous HSCT recipients. Bone Marrow Transplant 42:345–349

32. Herbers AH, Feuth T, Donnelly JP, Blijlevens NM (2010) Citrulline-based assessment score: first choice for measuring and monitoring intestinal failure after high-dose chemotherapy. Ann Oncol 21:1706–1711

33. van der Velden WJ, Herbers AH, Bruggemann RJ, Feuth T, Peter Donnelly J, Blijlevens NM (2013) Citrulline and albumin as biomarkers for gastrointestinal mucositis in recipients of hematopoietic SCT. Bone Marrow Transplant 48:977–981

34. Vokurka S, Svoboda T, Rajdl D, Sedlackova T, Racek J, Koza V, Treil L (2013) Serum citrulline levels as a marker of enterocyte function in patients after allogeneic hematopoietic stem cells transplantation—a pilot study. Med Sci Monit 19:85

35. Gosselin KB, Feldman HA, Sonis AL, Bechard LJ, Kellogg MD, Gura K, Venick R, Gordon CM, Guinan EC, Duggan C (2014) Citrulline as surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

36. van den Ouweland JM, Donnelly JP, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy-induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53:1188–1194

37. van Vliet MJ, Tissing WJ, Rings EH, Koets AE, Stellarda F, Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy-induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53:1188–1194

38. Kamps WA, de Bont ES (2009) Citrulline as a marker for chemotherapy-induced mucosal barrier injury in pediatric patients. Pediatr Blood Cancer 53:1188–1194

39. van der Velden WJ, Herbers AH, Bruggemann RJ, Feuth T, Peter Donnelly J, Blijlevens NM (2013) Citrulline and albumin as biomarkers for gastrointestinal mucositis in recipients of hematopoietic SCT. Bone Marrow Transplant 48:977–981

40. Vokurka S, Svoboda T, Rajdl D, Sedlackova T, Racek J, Koza V, Treil L (2013) Serum citrulline levels as a marker of enterocyte function in patients after allogeneic hematopoietic stem cells transplantation—a pilot study. Med Sci Monit 19:81–85

41. Gosselin KB, Feldman HA, Sonis AL, Bechard LJ, Kellogg MD, Gura K, Venick R, Gordon CM, Guinan EC, Duggan C (2014) Serum citrulline as a biomarker of gastrointestinal function during hematopoietic cell transplantation in children. J Pediatr Gastroenterol Nutr 58:709–714

42. Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keeffe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathology, animal models and cytotoxic drugs. Cancer Treat Rev 33:448–460

43. de Koning BA, van Dieren JM, Lindenbergh-Kortleve DJ, van der Sluis M, Matsumoto T, Yamaguchi K, Einerhand AW, Samsom JN, Pieters R, Nieuwenhuis EE (2006) Contributions of mucosal
immune cells to methotrexate-induced mucositis. Int Immunol 18: 941–949

38. Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2008) Serum levels of NFκB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biol Ther 7:1139–1145

39. Bowen JM, White I, Smith L, Tsykin A, Kristaly K, Thompson SK, Karapetis CS, Tan H, Game PA, Irvine T, Hussey DJ, Watson DJ, Keefe DM (2015) Pre-therapy mRNA expression of TNF is associated with regimen-related gastrointestinal toxicity in patients with esophageal cancer: a pilot study. Support Care Cancer 23:3165–3172

40. Miedema KG, de Bont ES, Elferink RF, van Vliet MJ, Nijhuis CS, Miedema KG, de Bont ES, Elferink RF, van Vliet MJ, Nijhuis CS, Blijlevens NM, Logan RM, Netea MG (2009) The changing face of structural and cellular parameters of injury in experimental radiation challenge for researchers. Cancer Biol Ther 8:512–517

41. Sarikaya M, Ergul B, Dogan Z, Filik L, Can M, Arslan L (2015) Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liver Dis 37:642–647

42. van der Velden WJ, Herbers AH, Netea MG, Blijlevens NM (2014) Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. Br J Haematol 167:441–452

43. Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkwicz M, Hermsen WT, Glatz JF (2003) Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility Clin Biochem 36:529–535

44. Sarikaya M, Ergul B, Dogan Z, Filik L, Can M, Arslan L (2015) Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: a preliminary study. Clin Lab 61:87–91

45. Siddler MA, Leach ST, Day AS (2008) Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflamm Bowel Dis 14:359–366

46. Costa F, Mumolo MG, Bellini M, Romano MR, Cecarelli L, Arpe P, Sterpi C, Marchi S, Maltinti G (2003) Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liver Dis 35:642–647

47. Gibson RJ (2009) Gut microbiome and intestinal mucositis: a new challenge for researchers. Cancer Biol Ther 8:512–513

48. Richter KK, Fagerhol MK, Carr JC, Winkler JM, Sung CC, Hauer-Jensen M (1997) Association of granulocyte transmigration with structural and cellular parameters of injury in experimental radiation enteropathy. Radiat Oncol Investig 5:275–282

49. Wedlake L, McGough C, Hackett C, Thomas K, Blake P, Harrington K, Tait D, Khoo V, Deamaley D, Andreyev HJ (2008) Can biological markers act as non-invasive, sensitive indicators of radiation-induced effects in the gastrointestinal mucosa? Aliment Pharmacol Ther 27:980–987

50. Varela E, Antolin M, Guamer F, Verges R, Giralt J, Malagelada JR (2009) Faecal DNA and calprotectin as biomarkers of acute intestinal toxicity in patients undergoing pelvic radiotherapy. Aliment Pharmacol Ther 30:175–185

51. Menzies IS, Laker MF, Pounder R, Bull J, Heyer S, Wheeler PG, Creamer B (1979) Abnormal intestinal permeability to sugars in villous atrophy. Lancet 2:1107–1109

52. Keefe DM, Cummins AG, Dale BM, Kotasek D, Robb TA, Sage RE (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci (Lond) 92:385–389

53. Gilat T, Ben Hur H, Gelman-Malachi E, Terdiman R, Peled Y (1978) Alterations of the colonic flora and their effect on the hydrogen breath test. Gut 19:602–605

54. Gabrielli M, D’Angelo G, Di Rienzo T, Scarpetelli E, Ojetti V (2013) Diagnosis of small intestinal bacterial overgrowth in the clinical practice. Eur Rev Med Pharmacal Sci 17(Suppl 2):30–35

55. Saad RJ, Chey WD (2014) Breath testing for small intestinal bacterial overgrowth: maximizing test accuracy. Clin Gastroenterol Hepatol 12:1964–1972 quiz e119–20

56. van Vliet MJ, Hamsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6:e1000879

57. Koetse HA, Stellafeld F, Bijleveld CM, Elzinga H, Boverhof R, van der Meer R, Vonk RJ, Sauer PJ (1999) Non-invasive detection of low-intestinal lactase activity in children by use of a combined 13CO2/H2 breath test. Scand J Gastroenterol 34:35–40

58. Clarke JM, Pelton NC, Bajka BH, Howarth GS, Read LC, Butler RN (2006) Use of the 13C-sucrose breath test to assess chemotherapy-induced small intestinal mucositis in the rat. Cancer Biol Ther 5:34–38

59. Howarth GS, Tooley KL, Davidson GP, Butler RN (2006) A non-invasive method for detection of intestinal mucositis induced by different classes of chemotherapy drugs in the rat. Cancer Biol Ther 5:1189–1195

60. Tooley KL, Howarth GS, Lynn KA, Butler RN (2010) Optimization of the non-invasive 13C-sucrose breath test in a rat model of methotrexate-induced mucositis. Cancer Chemother Pharmacol 65:913–921

61. Yazbeck R, Howarth GS, Borges L, Geier MS, Smith CL, Davidson GP, Butler RN (2011) Non-invasive detection of a palifermin-mediated adaptive response following chemotherapy-induced damage to the distal small intestine of rats. Cancer Biol Ther 12:399–406

62. Tooley KL, Saxon BR, Webster J, Zacharakis B, McNeill Y, Davidson GP, Butler RN (2006) A novel non-invasive biomarker for assessment of small intestinal mucositis in children with cancer undergoing chemotherapy. Cancer Biol Ther 5:1275–1281

63. Keefe DM, Gibson RJ (2006) The combination of oral and small intestinal mucositis, pediatrics and biomarkers: a particularly tricky problem! Cancer Biol Ther 5:1282–1284

64. Ritchie BK, Brewster DR, Davidson GP, Tran CD, McNeill Y, Hawkes JS, Butler RN (2009) 13C-sucrose breath test: novel use of a noninvasive biomarker of environmental gut health. Pediatrics 124:620–626

65. Lutgens LC, Blijlevens NM, Deutz NE, Donnelly JP, Lambin P, de Pauw BE (2005) Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: a comparison with sugar permeability tests. Cancer 103:191–199

66. Kissow H (2015) Glucagon-like peptides 1 and 2: intestinal hormones implicated in the pathophysiology of mucositis. Curr Opin Support Palliat Care 9:196–202