Effects of nuclear factor I phosphorylation on calpastatin (CAST) gene variant expression and subcellular distribution in malignant glioma cells

The Minh Vo, Rebecca Burchett, Miranda Brun, Elizabeth A. Monckton, Ho-Yin Poon, and Roseline Godbout

From the Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada

Edited by Xiao-Fan Wang

Malignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the CAST gene is a target of NFI and has NFI-binding sites in its intron 3 region. We also found that NFI-mediated regulation of CAST depends on NFI's phosphorylation state. We noted that occupation of CAST intron 3 by hypophosphorylated NFI results in increased activation of an alternative promoter. This activation resulted in higher levels of CAST transcript variants, leading to increased levels of CAST protein that lacks the N-terminal XL domain. CAST was primarily present in the cytoplasm of NFI-hypophosphorylated MG cells, with a predominantly perinuclear immunostaining pattern. NFI knockdown in MG cells of NFI-hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells. Calcineurin is cleaved and thereby activated by calpain proteases, which are, in turn, inhibited by calpastatin (CAST). Here, we show that the CAST gene is a target of NFI and has NFI-binding sites in its intron 3 region. We also found that NFI-mediated regulation of CAST depends on NFI's phosphorylation state. We noted that occupation of CAST intron 3 by hypophosphorylated NFI results in increased activation of an alternative promoter. This activation resulted in higher levels of CAST transcript variants, leading to increased levels of CAST protein that lacks the N-terminal XL domain. CAST was primarily present in the cytoplasm of NFI-hypophosphorylated MG cells, with a predominantly perinuclear immunostaining pattern. NFI knockdown in MG cells

Malignant glioma (MG), encompassing World Health Organization grade III (anaplastic astrocytoma) and IV (glioblastoma) astrocytomas, is the most common and deadly form of adult primary brain tumor (1). Despite aggressive treatment by surgical resection, radiation therapy, and adjuvant chemotherapy, patient prognosis remains dismal, with a median survival time of less than 5 years for anaplastic astrocytoma and 15 months for glioblastoma (2, 3). Tumor recurrence and inevitable treatment failure are, at least in part, due to the highly infiltrative nature of MG cells (4, 5). Post-mortem examination often reveals the dissemination of tumor cells into normal brain parenchyma, frequently found distal from the original tumor mass and at early stages of the disease (6). Early infiltration of tumor cells, together with the inherent resistance of MG cells to cytotoxic drugs and radiation therapy, severely limits the efficacy of conventional focal and systemic treatments (7–9). Whereas targeting infiltrative MG cells would likely be of clinical benefit, molecular mechanisms underlying MG cell migration and infiltration remain poorly characterized.

Our laboratory has previously shown that the expression of brain fatty acid–binding protein (FABP7, B-FABP) is associated with increased MG cell migration in vitro (10). FABP7 is found at sites of infiltration in glioblastoma tumors, with elevated levels of FABP7 correlating with decreased survival in glioblastoma patients (11–13). FABP7 expression is regulated by nuclear factor I (NFI), a family of four transcription factors (NFIA, NFIB, NFIC, and NFIX) (14, 15). NFIs bind to the consensus recognition sequence, 5′-TTGCGN_5-3′GCCAA-3′, as either homodimers or heterodimers through their highly conserved N-terminal DNA-binding domains (16, 17). NFIs can also interact with half of the consensus palindromic sequence, albeit at reduced affinity (18). The variable C-terminal transactivation domain of NFI can either inhibit or activate its target genes, depending on tissue and promoter context (19), with different NFIs able to elicit distinct effects on the same promoter (14). In addition to FABP7, a neural progenitor/stem cell marker, NFI regulates genes involved in glial cell differentiation, such as the glial fibrillary acidic protein (GFAP) gene (14, 19, 20).

NFI is differentially phosphorylated in MG cells, with the hypophosphorylated form of NFI correlating with FABP7 and GFAP expression (15). Dephosphorylation of NFI is mediated by calcineurin, a calcium-dependent serine/threonine phosphatase (21). Calcineurin, in turn, is cleaved and activated by calpain, a family of calcium-dependent nonsosomosomal cysteine proteases (22, 23). The best characterized mechanism for controlling calpain activity is through its endogenous inhibitor, calpastatin, which is encoded by a single gene, CAST (24). Calpastatin has a complex expression

This work was supported by Canadian Institutes of Health Research Grant 130314. The authors declare that they have no conflicts of interest with the contents of this article.

This article contains Figs. S1–S4.

1 To whom correspondence should be addressed: Dept. of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Ave., Edmonton, Alberta T6G 1Z2, Canada. Tel.: 780-432-8901; Fax: 780-432-8892; E-mail: rgodbout@ualberta.ca.

2 The abbreviations used are: MG, malignant glioma; NFI, nuclear factor I; FABP7, brain fatty acid-binding protein; NE, nuclear extract; 5′-RLM RACE, 5′-RNA ligase-mediated rapid amplification of cDNA ends; CP, canonical promoter; ALT, alternative promoter; CAST, calpastatin; HA, hemagglutinin; qPCR, quantitative PCR; Pol II, polymerase II; CSA, cyclosporin A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

This is an Open Access article under the CC BY license.
profile, both at the RNA and protein levels, a consequence of multiple promoters and alternative splicing (25–27). Based on sequence and structure analyses, full-length murine and bovine calpastatins have four repetitive calpain-inhibitory domains (I–IV) with each domain able to bind to one calpain molecule (28). The function(s) of two extension regions at the N terminus of the calpastatin polypeptide, domains XL (encoded by different combinations of exons 1xₐ, 1xₜ, 1y, and 1z) and L (encoded by exons 2–8), remains poorly understood (25, 29). Four different types of calpastatin have been identified to date based on which domains they contain (30). Three major CAST RNA variants have been identified by Northern blot analysis in bovine heart, including two that encode XL-containing and XL-less calpastatin isoforms (25).

Direct binding is required for calpastatin inhibition of calpain activity, with sequestration of calpastatin away from calpain postulated to control local calpain activity (31). Similar to calpain, calpastatin is often found at the plasma membrane and surrounding the nucleus (32). Aggregation of calpastatin in the perinuclear region of the cell may be a mechanism to prevent calpastatin binding to calpain at the plasma membrane (33). In contrast, calpastatin localization at the plasma membrane is believed to inhibit calpain activity through direct binding of calpastatin to calpain. As many known targets of calpain involved in cell migration are found at the plasma membrane, a consequence of calpastatin localization to the plasma membrane may be decreased cell migration (34). Whereas nuclear localization of calpastatin has also been described, its significance remains unclear (35).

ChIP-on-chip experiments to identify targets of NFI in MG cells revealed CAST as a putative NFI target gene. Our data indicate that NFI binds to an alternative promoter located upstream of CAST exon 4 and affects the relative levels of CAST variants transcribed from the canonical versus alternative promoters. We show that binding of hypophosphorylated NFI to CAST intron 3 results in (i) increased transcriptional activity of CAST alternative promoter, (ii) a higher ratio of XL-less to XL-containing CAST transcript variants, (iii) loss of calpastatin at the plasma membrane, and (iv) accumulation of calpastatin in the perinuclear region. These findings suggest a key role for NFI in the transcriptional regulation of different CAST variants, with accompanying effects on the subcellular distribution of calpastatin.

Results

In vitro occupancy of putative CAST NFI-binding sites

All four NFIs are expressed in cells of glial origin as well as glioblastoma cells, with a number of NFI targets identified in these glial-like cell types (14, 15, 19). An antibody that recognizes all four NFIs was used to identify additional NFI targets in MG cells (36). Analysis of ChIP-on-chip data obtained with this pan-specific NFI antibody and FABP7/GFAP-expressing U251 MG cells resulted in the identification of CAST as a putative target of NFI (36). Sequence analysis of DNA bound by NFI revealed three putative NFI recognition sites located within the intronic region upstream of exon 4: C1 (−3928 to −3915 bp), C2 (−3663 to −3628 bp), and C3 (−3469 to −3453 bp) with +1 defined as the first nucleotide of exon 4 (Fig. 1, A and B). To verify protein binding to these three putative NFI recognition sites, we performed gel shift assays with nuclear extracts prepared from U87 and U251 MG cells. C1, C2, and C3 double-stranded oligonucleotides radiolabeled with [α-32P]dCTP were incubated with (+) or without (−) nuclear extracts and separated on native polyacrylamide gels. Although protein–DNA complexes were detected with all three probes, the shifted bands observed with C1 were considerably weaker than those observed with C2 and C3 probes (see Fig. 2A for U87 results). Weak binding to C1 is likely due to poor conservation of the first palindromic half of the NFI consensus sequence, with one of the two conserved guanine residues missing from this site (Fig. 1B). We therefore focused on the C2 and C3 NFI recognition sites in subsequent experiments.

Protein binding to the C2 and C3 oligonucleotides was examined using nuclear extracts prepared from both NFI-hyperphosphorylated U87 and NFI-hypophosphorylated U251 MG cells (14, 15). These cell lines express all four NFIs, with similar amounts of NFIA RNA and higher levels of NFIB, NFI C, and NFIX RNA in U251 compared with U87 MG cells (Fig. S1A) (14). Similar overall levels of NFI protein are observed in U87 and U251 MG cells using a pan-specific antibody (14).

As observed previously for the FABP7 promoter (14, 15), protein–DNA complexes are formed using both U87 and U251 nuclear extracts. U87 protein–DNA complexes migrate more slowly than those in U251, in keeping with the hyperphosphorylated state of NFIs in U87 MG cells (Fig. 2B) (14). A 100-fold molar excess of either cold C2 or C3 oligonucleotide competitively prevented binding of proteins to the C2 probe in both U251 and U87 MG cells. Similar results were obtained with the C3 probe, except that the lower band was competed out with excess C3, but not excess C2, oligonucleotides. Excess mutated C2* oligonucleotides (mutated at two conserved G residues in the first half of the palindrome; Fig. 1C) competed to some extent with the radiolabeled C2 probe, resulting in a reduced signal compared with cold C2 (WT) competitor (Fig. 2B). Excess mutated C3* oligonucleotides (mutated at two conserved G residues in the first half of the palindrome and two C residues in the second half of the palindrome; Fig. 1C) failed to compete with the C3 probe (Fig. 2B). As expected, oligonucleotides containing a consensus NFI-binding site effectively competed with the C2 and C3 probes for protein binding, but oligonucleotides containing a consensus AP2-binding site did not compete with either probe. These data indicate that (i) an intact NFI consensus binding site is required for protein binding to C2 and C3 probes and (ii) the lower C3–protein complex (indicated by the asterisk), although specific to the C3 oligonucleotide, does not involve NFI binding.

In vitro binding of NFI to C2 and C3 oligonucleotides

To investigate whether NFI is a component of the C2 or C3 oligonucleotide–protein complexes observed in Fig. 2, we carried out supershift assays using antibodies targeting each of the four NFIs. As there are no reliable sources for some of the NFI antibodies, we generated our own anti-NFI antibodies. These NFI antibodies showed moderate (anti-NFIA, -NFIB, -NFIC, and -NFIG) or without (−) nuclear extracts and separated on native polyacrylamide gels. Although protein–DNA complexes were detected with all three probes, the shifted bands observed with C1 were considerably weaker than those observed with C2 and C3 probes (see Fig. 2A for U87 results). Weak binding to C1 is likely due to poor conservation of the first palindromic half of the NFI consensus sequence, with one of the two conserved guanine residues missing from this site (Fig. 1B). We therefore focused on the C2 and C3 NFI recognition sites in subsequent experiments.

Protein binding to the C2 and C3 oligonucleotides was examined using nuclear extracts prepared from both NFI-hyperphosphorylated U87 and NFI-hypophosphorylated U251 MG cells (14, 15). These cell lines express all four NFIs, with similar amounts of NFIA RNA and higher levels of NFIB, NFI C, and NFIX RNA in U251 compared with U87 MG cells (Fig. S1A) (14). Similar overall levels of NFI protein are observed in U87 and U251 MG cells using a pan-specific antibody (14).

As observed previously for the FABP7 promoter (14, 15), protein–DNA complexes are formed using both U87 and U251 nuclear extracts. U87 protein–DNA complexes migrate more slowly than those in U251, in keeping with the hyperphosphorylated state of NFIs in U87 MG cells (Fig. 2B) (14). A 100-fold molar excess of either cold C2 or C3 oligonucleotide competitively prevented binding of proteins to the C2 probe in both U251 and U87 MG cells. Similar results were obtained with the C3 probe, except that the lower band was competed out with excess C3, but not excess C2, oligonucleotides. Excess mutated C2* oligonucleotides (mutated at two conserved G residues in the first half of the palindrome; Fig. 1C) competed to some extent with the radiolabeled C2 probe, resulting in a reduced signal compared with cold C2 (WT) competitor (Fig. 2B). Excess mutated C3* oligonucleotides (mutated at two conserved G residues in the first half of the palindrome and two C residues in the second half of the palindrome; Fig. 1C) failed to compete with the C3 probe (Fig. 2B). As expected, oligonucleotides containing a consensus NFI-binding site effectively competed with the C2 and C3 probes for protein binding, but oligonucleotides containing a consensus AP2-binding site did not compete with either probe. These data indicate that (i) an intact NFI consensus binding site is required for protein binding to C2 and C3 probes and (ii) the lower C3–protein complex (indicated by the asterisk), although specific to the C3 oligonucleotide, does not involve NFI binding.

In vitro binding of NFI to C2 and C3 oligonucleotides

To investigate whether NFI is a component of the C2 or C3 oligonucleotide–protein complexes observed in Fig. 2, we carried out supershift assays using antibodies targeting each of the four NFIs. As there are no reliable sources for some of the NFI antibodies, we generated our own anti-NFI antibodies. These NFI antibodies showed moderate (anti-NFIA, -NFIB,
and -NFIC) to high specificity (anti-NFIX) toward their intended targets (Fig. S1B). Importantly, this panel of NFI antibodies did not cross-react with other members of the NFI family (Fig. S1B). Supershifted bands were observed when anti-NFIC antibody was incubated with either the C2 or C3 probe in the presence of either U87 or U251 nuclear extracts, indicating that NFIC is present in both C2– and C3–protein complexes (Fig. 3A). Weak supershifted bands were also observed with the anti-NFIX antibody. Although no supershifted band was detected in the presence of anti-NFIA antibody, there was a reduction in the intensity of the protein–DNA complex, suggesting interference with the binding of NFIA to the DNA probe in the presence of anti-NFIA antibody. The addition of anti-NFIB antibody to both U251 and U87 nuclear extracts resulted in faster-migrating C2– and C3–protein complexes, suggesting that binding of NFIB to anti-NFIB antibody results in the dissociation of an NFIB co-factor. Supershift experiments with anti-AP2 antibody had no effect on the migration of either the C2–protein or C3–protein complexes. These results suggest that all four NFIs may bind to C2 and C3 oligonucleotides or interact with protein–C2 or –C3 complexes, in both U87 and U251 MG cells. To verify the binding of NFIs to C2 and C3 oligonucleotides, we transiently transfected U87 and U251 MG cells with siRNA targeting NFIC and repeated the gel shift experiments. NFIC was chosen for this analysis, as it produced the strongest supershifted band. Depletion of NFIC resulted in the loss (or reduction in signal intensity) of both the shifted and supershifted bands (Fig. S2A), supporting the binding of NFIC to both C2 and C3 NFI-binding sites located in CAST intron 3.

As not all antibodies can supershift, we transiently transfected U87 and U251 MG cells with hemagglutinin (HA)-tagged NFI expression constructs and repeated the supershift assay with an anti-HA antibody. The latter antibody has previously been shown to supershift HA-tagged NFI proteins in gel shift assays (14). Western blot analysis of nuclear extracts prepared from cells transfected with each of the four HA-tagged NFI constructs revealed successful expression of HA-tagged NFIs (Fig. 3B). The presence of supershifted bands in extracts prepared from all four NFI transfectants indicates that C2 and C3 oligonucleotides are recognized by all four members of the NFI family in both U87 or U251 MG cells, at least when NFIs

Figure 1. Schematic representation of CAST promoters and location of predicted NFI-binding sites.

A, the canonical and alternative CAST promoters located upstream of exon 1 and exon 4, respectively. The relative position of the three putative NFI-binding sites (C1, C2, and C3; not to scale) found within intron 3 are shown. B, comparison of the three NFI recognition elements and NFI consensus binding site. Conserved nucleotide sequences are indicated in boldface type. C, C2* and C3* represent mutated C2 and C3 NFI-binding sites, with substitutions indicated in lowercase type. NFI and AP2 recognition sites are positive and negative competitors, respectively, for gel shift experiments.

NFI	Consensus Binding Sequence
TTGGC	(N3-6) GCCAA
C1	AGGGAA CATGC ACGCA GCCCA GTG
TT	GTACG TGGT CGGGT CACAAGAA
C2	GGTGC CTGGC AAGAG GCCAG GAGGA
G	GACGG TTCTC CGGTC CTCTGCAC
C3	CCCATC CTGGC TCACCT GCCAG GAC
AG	GACGG AGTGAA CGGTC CTGACG

| C2* | GG TGC CTaaC AAGAG GCCAG GAG GA |
| G GTAaG TTCTC CGGTC CTC CTG CAC |
| C3* | CCC ATC CTaaC TCACTT GaaAG GAC |
| AG GTAaG AGTGAA CTTTC CTG GAC G |
| NFI | ATT TTGGC TTGAA GCCAA TAT G |
| TAA AACGG AACTT CGGTT ATA C |
| AP2 | GAT CGA ACT GAC CGC CGG CCC GT |
| CTA GCT TGA CTG GCG GCC GCC GGG CA |
are ectopically expressed (Fig. 3C). The migration patterns of the shifted complexes were similar in both U87 and U251 MG cells, suggesting that exogenous NFIs are not subjected to the same phosphorylation/dephosphorylation process as endogenous NFIs.

Binding of NFI to CAST in intact chromatin

To explore the binding of NFI to CAST intron 3 in the context of native chromatin, we performed ChIP analysis using two NFI-hyperphosphorylated (U87 and T98) and two NFI-hypophosphorylated (M049 and U251) MG cell lines (15). Cells were cross-linked with formaldehyde to capture DNA–protein interactions. NFI-bound DNA was then immunoprecipitated with an anti-NFI antibody (obtained from Dr. Naoko Tanese, New York University Medical Center) that preferentially recognizes NFIC but also binds to the other NFIs (14). The rationale for using this antibody is that NFIC appears to be a major component of both the protein–C2 and protein–C3 complexes based on supershift (Fig. 3C) and NFIC-knockdown experiments (Fig. S2A). Rabbit IgG served as the negative control for these ChIP experiments. ChIP DNA was purified and PCR-amplified with primers flanking C2 or C3 NFI recognition sites (Table 1). DNA bands were detected in all four cell lines using primers flanking C3; however, PCR products were only detected in T98 and U87 using primers flanking C2 (Fig. 4A). The absence of DNA bands in the IgG control lanes combined with the absence of DNA bands using GAPDH primers in the NFI lanes, supports specific interaction between the anti-NFI antibody and the C2 and C3 NFI-binding sites.

For quantitative analysis of ChIP products, we performed quantitative PCR (qPCR) on chromatin immunoprecipitated DNA using primers flanking C2 and C3 recognition sites (Table 1). Primers to the GAPDH promoter served as the negative control. In agreement with our qualitative analysis, binding to C3 oligonucleotides was observed in all four cell lines, whereas binding to C2 was only observed in T98 and U87 MG cell lines (Fig. S2B). As both C2 and C3 reside in intron 3, our results suggest that NFI occupies an alternative promoter upstream of CAST exon 4, with NFI binding C3 regardless of its phosphorylation status. In contrast, C2 is only bound by hyperphosphorylated NFI based on both qualitative and quantitative ChIP data.
Binding of RNA polymerase II to CAST canonical promoter and intron 3 region in intact chromatin

To assess the transcriptional states of the CAST canonical (CP) and putative alternative (ALT) promoters in U87 (NFI-hyperphosphorylated) versus U251 (NFI-hypophosphorylated) MG cells, we performed ChIP analysis with an antibody to RNA polymerase II (Pol II) that specifically recognizes a phosphorylated Ser-5 residue in its C-terminal domain repeats (YSPTSPS). This phosphorylated form of RNA Pol II occupies the proximal promoter regions of transcriptionally active genes (37). We used mouse IgG as a control for antibody specificity. We also included two additional controls: a region of the active GAPDH proximal promoter that contains the TATA box bound by RNA Pol II (positive control) and an upstream region of the GAPDH promoter that is not bound by RNA Pol II (negative control).

In U87 MG cells, RNA Pol II showed significantly increased occupancy at the canonical CAST promoter compared with the alternative CAST promoter in intron 3. In U251 MG cells, RNA Pol II occupied both the canonical (primers flanking a proximal TATA box upstream of exon 1) and alternative (primers flanking a proximal TATA box upstream of exon 4) CAST promoters (Fig. 4B; primers listed in Table 1). These results indicate that the alternative CAST gene regulation in glioblastoma cells

CAST gene regulation in glioblastoma cells

Figure 3. Binding of NFIs to the two CAST NFI-binding sites in intron 3. A, supershift assays were carried out with 4 μg of nuclear extracts prepared from U87 or U251 MG cells and 32P-labeled C2 and C3 oligonucleotides. NFIA, NFIB, NFIC, or NFIX antibodies were added to the reactions as indicated. Anti-AP2 antibody served as a nonspecific control. Samples were electrophoresed in a 6% polyacrylamide gel in 0.5× TBE buffer to separate free DNA probes and DNA–protein complexes. Gels are representative of three independent experiments.

B, Western blot analysis of U87 and U251 MG cells transiently transfected with HA-tagged NFI expression constructs. Empty vector (pCH) served as negative control. Nuclear extracts were prepared using the NE-PER nuclear and cytoplasmic extraction kit (Thermo Fisher Scientific). Proteins were transferred to nitrocellulose membranes and immunoblotted with anti-HA antibody. C, nuclear extracts were prepared from U87 or U251 cells transfected with the indicated HA-tagged NFI expression constructs. Four μg of nuclear extracts were incubated with 32P-labeled C2 and C3 oligonucleotides, and anti-HA antibody was included where indicated. Anti-AP2 antibody served as a negative control. Samples were electrophoresed in a 6% polyacrylamide gel in 0.5× TBE buffer to separate free DNA probes and DNA–protein complexes. Gels are representative of two independent experiments.

Binding of RNA polymerase II to CAST canonical promoter and intron 3 region in intact chromatin

To assess the transcriptional states of the CAST canonical (CP) and putative alternative (ALT) promoters in U87 (NFI-hyperphosphorylated) versus U251 (NFI-hypophosphorylated) MG cells, we performed ChIP analysis with an antibody to RNA polymerase II (Pol II) that specifically recognizes a phosphorylated Ser-5 residue in its C-terminal domain repeats (YSPTSPS). This phosphorylated form of RNA Pol II occupies the proximal promoter regions of transcriptionally active genes (37). We used mouse IgG as a control for antibody specificity. We also included two additional controls: a region of the active GAPDH proximal promoter that contains the TATA box bound by RNA Pol II (positive control) and an upstream region of the GAPDH promoter that is not bound by RNA Pol II (negative control).

In U87 MG cells, RNA Pol II showed significantly increased occupancy at the canonical CAST promoter compared with the alternative CAST promoter in intron 3. In U251 MG cells, RNA Pol II occupied both the canonical (primers flanking a proximal TATA box upstream of exon 1) and alternative (primers flanking a proximal TATA box upstream of exon 4) CAST promoters (Fig. 4B; primers listed in Table 1). These results indicate that the alternative CAST
CAST gene regulation in glioblastoma cells

Table 1
Primer sequences

Assay	Target	Sense primer	Antisense primer
RT-(q)PCR NFIA	CTCCACAAAGCGCCTCAAG	CATCACGAGCAGACATGG	
NFIB	GAAGTCCAAGCCACAATGTC	GATACAGCTGAAAAAGTG	
NFIC	GATGCGAGGCAAGCACTGG	CATCTGACATCCCTGG	
NFIX	GTTCACCAACAGACAGGATG	CTGCACTAAGGCGCTCTC	
ACTB	CTGAGCACCAACTTTTCTAC	CTAACCTCTGGCTGCTG	
qPCR CAST exon 1--exon 2	ACAAAGCTGAGCTAGTG	CTTTTTTTCCTCTGTG	
CAST exon 4--exon 5	GTTGCTGAGCTTCCCTG	CTTTTTTTTTTTTTTTTTTTTTTT	
CAST exon 16--exon 18	AATGACGTGAGGATGAG	TTTTTTTTTTTTTTTTTTTT	
GAPDH	GAGATCCCTCCAAAATCAA	ACACACACACACACACAC	
ChIP CAST C2	TGTCACAGTCCAGAGC	TACGACGAGATGCAGC	
CAST C3	GTATGCGGCAAGAAATG	CCGGCGGCAAGAAGAA	
CAST canonical promoter	GTTTCTCCTCCCCAATAAGTT	AGGACAGGCAATCAGACAA	
CAST alternative promoter	ATTCTAGTGAAGGATGTT	AATTCACTAGGAGGATGTT	
GAPDH positive control	TACTAGCCGTTCAGGATG	TCACAACAGGAGCAGAGCA	
GAPDH negative control	GACACAGGACGAGCAC	CACCCGAGGTCTG	
RLM RACE	Outer RNA adapter	GCTGGAGGAGGAGGAGGAGGAGG	
Inner RNA adapter	CGCGGATCCGAACACTGCGTTTGCTTTG		
CAST exon 4	CCGGACAAGGAGGAGGAGG	TACGACGAGATGCAGC	
CAST exon 8	ACTTCCTGTACATGAGTT	AATTCACTAGGAGGATGTT	
CAST exon 14	CTTCTCCACCTTTTCTT	TCACAACAGGAGCAGAGCA	

Figure 4. Binding of NFIs to the two CAST NFI-binding sites in intron 3. ChIP analyses were performed with 2 μg of a pan-specific anti-NFI (from Dr. Naoko Tanese) antibody (A) or an anti-RNA polymerase II antibody (B) using some or all of the following cell lines: NFI-hyperphosphorylated T98 and U87 and NFI-hypophosphorylated M049 and U251 MG cell lines. A, primers targeting C2 and C3 were used for PCR amplification of CAST NFI-binding sites (Table 1). Primers to a nonrelevant region of GAPDH promoter served as a negative control. Input consists of genomic DNA obtained after sonication but before immunoprecipitation. The band in input DNA is of the expected size and serves as a positive control. B, specific primers were used to qPCR-amplify either the CAST CP or ALT promoter region, each of which contains a TATA box (Table 1). Primers to an upstream region of the GAPDH proximal promoter served as a negative control (Table 1). Primers to the GAPDH proximal promoter region containing the TATA box served as a positive control (Table 1). Scatter plots in B were generated by normalizing signals obtained with NFI or RNA Pol II antibodies against those generated by IgG. Each ChIP experiment was carried out three times. qPCR data are presented as mean ± S.D. (error bars). **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant.

promoter located in intron 3 is active primarily in NFI-hypophosphorylated U251 MG cells. Thus, our combined ChIP data suggest that engagement of hypophosphorylated NFI at C3 activates CAST intron 3 alternative promoter, whereas occupation of C2 and C3 by hyperphosphorylated NFI inactivates CAST intron 3 alternative promoter.
CAST variant expression in MG cells

Our combined gel shift and ChIP data indicate that C2 and C3 are bona fide NFI-binding sites. To address the possibility of an alternative CAST transcription start site downstream of these binding sites, we carried out 5′-ligated outer and inner primers and antisense primers targeting exons 8 and 4 of the CAST gene, respectively. PCR products were electrophoresed in 3% Metaphor (FMC Bioproducts) agarose gel, visualized with ethidium bromide, excised, purified, and sequenced using the BigDye Terminator version 3.1 cycle sequencing kit (Thermo Fisher Scientific). Exon composition of the isolated DNA products based on sequence analysis is indicated on the right.

CAST promoter activity in MG cells

To further examine the utilization of the two promoters controlling the expression of class 1 and class 2 CAST variants, we transfected T98 and U251 MG cells with pGL3 luciferase reporter gene constructs driven by either the CP (−1990 to +50 with +1 indicating the start of exon 1) or ALT promoter.

CAST gene regulation in glioblastoma cells

J. Biol. Chem. (2019) 294(4) 1173–1188

Figure 5. CAST promoter activity and calpastatin isoform expression in MG cells. A, RLM RACE was carried out using 5 μg of total RNA isolated from NFI-hyperphosphorylated (T98) or NFI-hypophosphorylated (U251) MG cells. Antisense primer targeting exon 14 of the CAST gene was used for reverse transcription. Nested PCR amplification was carried out with 5′-ligated outer and inner primers and antisense primers targeting exons 1 and 4 of the CAST gene, respectively. PCR products were electrophoresed in 3% Metaphor (FMC Bioproducts) agarose gel, visualized with ethidium bromide, excised, purified, and sequenced using the BigDye Terminator version 3.1 cycle sequencing kit (Thermo Fisher Scientific). Exon composition of the isolated DNA products based on sequence analysis is indicated on the right. B, domain composition of XL-containing (full-length/type II) and XL-less (type III) calpastatin isoforms. T98 (C) and U251 (D) MG cells were transiently transfected with luciferase reporter constructs containing the CP (−2000 bp upstream of CAST exon 1), ALT (in intron 3 containing the NFI-binding sites; −4000 bp upstream of CAST exon 1), or empty vector (CNT). Luciferase activity was measured using the Luciferase Assay System (Promega) and the FLUOSTar microplate reader (BMG LABTECH). Relative fold change was calculated relative to the empty vector control. Scatter plots show data from three independent experiments. E, U251 MG cells were transiently transfected with luciferase reporter constructs containing the WT ALT or constructs containing mutation at C2 (ALT-C2*), C3 (ALT-C3*), or both C2 and C3 (ALT-C2*C3*) NFI-binding sites. Luciferase activity was measured 48 h post-transfection as described above. p values were obtained from one-way analysis of variance statistical analysis of three independent experiments. *, p < 0.05; **, p < 0.01; ****, p < 0.0001; ns, not significant.
CAST gene regulation in glioblastoma cells

The 135 kDa band is a translational product of class 2 CAST/H11011 (32). The absence of the latter in U87 MG cells suggests that the 145 kDa to 135 kDa bands is consistent with all four NFIs playing some role in regulating the complement of CAST variants expressed in NFI-hypophosphorylated T98 cells and (ii) similar utilization of both canonical and alternative promoters in NFI-hypophosphorylated U251 MG cells.

Next, we tested the effect of mutating the C2 and C3 NFI-binding sites on luciferase activity. For these experiments, we generated luciferase reporter constructs with NFI-binding site mutations at C2 (ALT-C2*), C3 (ALT-C3*), or both C2 and C3 (ALT-C2*C3*). In U251 MG cells, luciferase activity driven by the ALT-C2* promoter was not statistically significantly different from that of WT alternative promoter, in agreement with our ChIP results indicating that C2 is not bound by NFI in these cells (Fig. 5E). Mutation of C3 resulted in lower luciferase activity (0.56-fold) compared with WT alternative promoter (p < 0.0001), suggesting that C3 is required for NFI-mediated positive regulation of CAST alternative promoter activity. Mutating both the C2 and C3 sites resulted in a slight decrease (p < 0.05) in luciferase activity compared with mutating C3 alone. These results are in agreement with C3 being the main effector of CAST alternative promoter activity in NFI-hypophosphorylated U251 MG cells, in keeping with our ChIP data (Fig. 4).

Expression of calpastatin isoforms in MG cells

To understand how the regulation of CAST by NFI affects calpastatin protein, we examined expression of different calpastatin isoforms in NFI-hypophosphorylated (U87) and NFI-hypophosphorylated (U251) MG cells using a pan-specific anticalpastatin antibody. U87 MG cells primarily expressed the full-length calpastatin (indicated by an asterisk in Fig. 6A), which has been shown to migrate as a ~145 kDa band in SDS-PAGE (32). The full-length calpastatin is a translational product of class 1 CAST variants, which in turn is directed by the canonical promoter. In contrast, U251 MG cells expressed both the full-length and XL-less isoform (indicated by the arrow in Fig. 6A), which has been shown to migrate as a ~135 kDa band (32). The absence of the latter in U87 MG cells suggests that the ~135 kDa band is a translational product of class 2 CAST variants, which is directed by the alternative promoter. The ratio of the 145 kDa to 135 kDa bands is ~1:1 (Fig. 6A). In agreement with our previous observations, these results support (i) preferential utilization of the CAST canonical promoter in NFI-hyperphosphorylated MG cells and (ii) utilization of both the CAST alternative and canonical promoters in MG cells with hypophosphorylated NFI. To test the specificity of the calpastatin antibody, we transfected U251 MG cells with siRNAs targeting different regions of CAST RNA (exon 4 or exon 16). Western blot analysis shows one strong band at ~140 kDa, along with several weaker bands, all of which disappear upon CAST siRNA transfection (Fig. 6B).

Regulation of CAST by NFI

We also examined how NFI regulates endogenous CAST mRNA levels by depleting U251 and U87 MG cells of specific NFIs using siRNAs to each of the four NFIs (Fig. 6C). Endogenous CAST variant analysis was carried out using primers that span CAST exons 1 and 2 (E1-E2) to measure class 1 CAST variants, primers that target exons 4 and 5 (E4-E5) to measure levels of combined class 1 and 2 CAST variants, and primers that target exons 16 and 18 (E16-E18) to measure levels of all calpastatin variants as this region encodes domain II (second inhibitory domain) of calpastatin, which is commonly found in brain calpastatin isoforms (see Table 1 for primer sequences).

There was no significant difference in levels of class 1 CAST transcripts upon knockdown of any of the NFIs in U87 MG cells (Fig. 6D). Knockdown of either NFIB or NFIC in U87 MG cells significantly reduced the levels of combined class 1 and 2 CAST transcripts to 0.55-fold (p < 0.0001) or 0.73-fold (p < 0.001) of control levels, respectively (Fig. 6E). Depletion of NFIB, but not NFIA, NFIC, or NFIX, reduced total CAST RNA levels in U87 MG cells to 0.61-fold (p < 0.0001) of control levels (Fig. 6F). These data indicate that NFIB may act as a positive regulator of class 2 CAST transcript levels in NFI-hyperphosphorylated U87 MG cells. However, the interpretation of these data is confounded by the following factors: (i) the complex expression profile of CAST RNAs, (ii) cross-talk between the different NFIs (e.g. knockdown of NFIB decreases NFIC levels) (Fig. 6C), and (iii) the low levels of NFIB in U87 MG cells based on Northern blot analysis (14) and RT-qPCR (Fig. S1A).

Depletion of either NFIC or NFIX in NFI-hypophosphorylated U251 MG cells had no significant effect on levels of class 1 CAST transcripts (Fig. 6G). However, NFIA- and NFIB-depleted cells showed a small increase in class 1 transcripts, by 1.48 (p < 0.05) and 1.22-fold (p < 0.05), respectively. Depletion of NFIA, but not NFIB, NFIC, and NFIX, in U251 MG cells significantly reduced levels of combined class 1 and 2 CAST transcripts (0.47-fold decrease compared with control; p < 0.01) (Fig. 6H). Knocking down either NFIC or NFIX was accompanied by increased levels of total (E16-E18-containing) CAST transcripts, by 1.34-fold (p < 0.05) and 1.99-fold (p < 0.05), respectively (Fig. 6I). Overall, our data in U251 MG cells are consistent with all four NFIs playing some role in regulating the complement of CAST variants expressed in NFI-hypophosphorylated MG cells. NFIA in particular appears to act as a weak negative regulator of class 1 CAST transcripts and a strong positive regulator of class 2 CAST transcripts.

Changes in calpastatin subcellular localization upon NFI depletion

One of the best-characterized roles of calpastatin is inhibition of calpain protease activity. In turn, the subcellular location of calpain determines its physiological functions, with calpain
Figure 6. CAST variants and calpastatin isoform expression in MG cells. Whole-cell extracts from nontransfected U87 and U251 cells (A) or U251 MG cells transiently transfected with scrambled (control; CNT) or siRNAs targeting CAST exon 4 (si-CAST-1) and exon 16 (siCAST-2) (B) were electrophoresed in a 15% SDS-polyacrylamide gel at 180 V for 75 min and then transferred to a nitrocellulose membrane. Blots were immunostained with rabbit polyclonal anti-calpastatin antibody (1:10,000; Santa Cruz Biotechnology) or mouse anti-α-tubulin antibody (1:100,000; Hybridoma Bank) followed by horseradish peroxidase–conjugated secondary antibody (1:50,000). The signal was detected using the Immobilon Western detection reagent.

C, RT-PCR showing the knockdown efficiencies of siRNAs targeting specific NFIs in U87 and U251 MG cells. D–I, quantitative PCR analysis using cDNAs prepared from U87 (D–F) or U251 (G–I) MG cells transiently transfected with siRNAs targeting specific NFIs as indicated. cDNAs were amplified with primers targeting exons 1 and 2 (D and G), exons 4 and 5 (E and H), or exons 16 and 18 (F and I) of the CAST gene. GAPDH was used as a control for variation in cDNA concentration. Scatter plots show -fold changes relative to scrambled siRNA control (set at 1) in three independent experiments. Bars, mean ± S.D. (error bars) for three independent experiments. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
frequently found at the plasma membrane, where it cleaves downstream targets, many of which are migration-related effectors (38, 39). Because direct binding of calpastatin to calpain is required to inhibit calpain’s protease activity (24), we examined the effect of NFI depletion on calpastatin subcellular localization in NFI-hypophosphorylated U251 MG cells, which express both full-length and XL-less calpastatin.

In U251 MG cells, calpastatin was primarily present in the nucleus and cytoplasm, with increased immunostaining in the perinuclear region (Fig. 7A) (Fig. S3). NFIA and NFIC knockdown resulted in increased accumulation of calpastatin at the plasma membrane. NFIB- and NFIX-depleted U251 cells showed increased calpastatin immunostaining at the plasma membrane in structures resembling lamellipodia as well as higher levels of nuclear calpastatin.

To examine the importance of NFI phosphorylation state for calpastatin subcellular localization, we treated U251 MG cells with 1 μM cyclosporin A (CSA), an inhibitor of calcineurin that promotes NFI hyperphosphorylation (21). CSA-treated U251 MG cells showed increased levels of hyperphosphorylated NFI (indicated by the asterisks) (Fig. 7B). Immunostaining analysis revealed a perinuclear localization for calpastatin in U251 MG cells treated with DMSO vehicle. CSA-treated cells showed a more diffuse calpastatin immunostaining pattern in the cytoplasm with accumulation at the plasma membrane (Fig. 7C and Fig. S4A). For comparison, we immunostained U87 MG cells transfected with scrambled (control) siRNAs (D) were fixed, immunostained, and visualized as described in A. Bars, 20 μm (C) or 10 μm (D). All images are representative of three independent experiments.
some similarity with that of NFI-hyperphosphorylated U87 MG cells.

When combined with our NFI promoter analyses, these immuno- staining data support a regulatory link between NFI hypophosphorylation and (i) utilization of the CAST alternative promoter, (ii) transcription of class 2 CAST variants, (iii) expression of XL-less calpastatin, (iv) loss of calpastatin at the plasma membrane, and (v) perinuclear localization of calpastatin.

Discussion

Many studies have demonstrated the importance of NFIs in the development of the central nervous system, including the regulation of neural cell differentiation and gliogenesis (40, 41). In particular, NFIA and NFIB are required for the initiation of gliogenesis and later promote the differentiation of astrocytes (42, 43). In MG, NFI regulates FABP7, the expression of which coincides with increased tumor cell migration, tumor infiltration, and worse clinical prognosis (10, 12, 13, 44). In the context of MG cells, NFI transcriptional activity is regulated by its phosphorylation state (45), with dephosphorylation of NFI mediated by the calcineurin phosphatase, a well-known target of calpain (21, 46, 47).

We show here that NFI regulates transcription of the CAST gene, which encodes calpastatin, a highly specific inhibitor of calpain (24). Similar to NFI, the calpains also play a role in brain development, with μ-calpain (calpain 1) suppressing neural differentiation and m-calpain (calpain 2) inducing glial differentiation (48). Furthermore, limited proteolysis of calpain targets is required for many aspects of tumor cell migration, including focal adhesion turnover (49), cytoskeleton remodeling (50), invadopodia formation (51), and lamellipodia stabilization at the migration edge (52). Notably, m-calpain is essential for MG infiltration of the brain in zebrafish (53). The convergence of NFI and calpastatin/calpain in normal brain development and regulation of cell migration suggests possible cross-talk between these two pathways, with NFI regulating expression of specific CAST variants and calcineurin regulating NFI activity.

Overexpression of calpastatin protects cells from both calpain-mediated oxidative and proteolytic stress (54, 55), whereas depletion of calpastatin is associated with human neurodegenerative disorders, including Alzheimer’s disease (56). Whereas these reports highlight the importance of calpastatin, little is known about the regulation of calpastatin itself in the cell. Our combined data, including gel shift assays, supershift assays, ChIP analysis, reporter gene assays, and analysis of CAST mRNA variants and calpastatin isoform expression, reveal a complex NFI-mediated mechanism for regulation of CAST in human MG cells. In particular, we identified two NFI-binding sites located in human CAST intron 3, ~4 kb upstream of exon 4, that drive expression of a CAST transcript variant that excludes the XL domain of calpastatin.

Bovine and murine CAST genes have five exons (1x,y, 1x,y, 1z, and 1u) located upstream of exon 2, with the latter showing homology with human exon 4 (NCBI numbers NG_029490, NC_000079, AC_000164). Human exons 1, 2, and 3 share sequence homology with exons 1x,y, 1y, and 1z, respectively. A functional promoter has been identified upstream of exons 1x,y in both bovine and murine species (25, 30). The location of NFI-binding sites upstream of human CAST exon 4 suggests that this intronic region may also contain an NFI-bound alternative promoter. We present evidence that the two NFI-binding sites (C2 and C3) located upstream of exon 4 are differentially occupied by NFIs in different MG cell lines. NFI binding to C2 is confined to MG cell lines with hyperphosphorylated NFI, whereas NFI binding to C3 is observed in both NFI hyper- and hypophosphorylated cell lines. The core binding palindromic sequence is identical in both C2 and C3; however, the two sites differ in the spacing between the two halves of the palindrome: 5 bp for C2 and 6 bp for C3. The length of the spacer region has been shown to influence the binding affinity of NFI to its target genes (57) and may explain differential NFI binding to C2 and C3 binding sites.

Data from RNA Pol II ChIP, luciferase reporter gene, and Western blotting analyses indicate that differential utilization of NFI-binding sites in CAST intron 3 results in a significantly higher ratio of XL-less calpastatin (a translational product of class 2 variants directed by the alternative promoter) versus full-length calpastatin (a translational product of class 1 variants directed by the canonical promoter) in migratory NFI-hypophosphorylated (U251) MG cells compared with nonmigratory NFI-hyperphosphorylated (T98 and U87) MG cells. The subcellular localization of calpastatin isoforms encoded by these variants may help explain what drives increased cell migration in MG cells. It has already been shown that calpain and calpastatin co-localize in the cytoplasm (35). When cells are treated with a Ca²⁺ ionophore, calpain relocates to the plasma membrane, where it regulates many migratory processes; however, calpastatin remains in the cytoplasm (35, 58). These findings suggest that release of calpain from calpastatin is important for calpain activation. Full-length human calpastatin, which contains domains XL and L and four inhibitory repeats (I–IV), is encoded by class 1 variant and shares homology with the ~145-kDa type II bovine calpastatin. The latter harbors three protein kinase A phosphorylation sites in the XL domain (25). Phosphorylation of calpastatin by protein kinase A in vivo increases the amount of membrane-associated calpastatin from 6 to 30% (59). Thus, one would predict that calpastatin isoforms that contain domain XL (encoded by class 1 variants; Fig. 5B) are more likely to localize to and inhibit calpain at the plasma membrane compared with the XL-less calpastatin isoform (encoded by class 2 variants), resulting in lower cell migration capacity.

In keeping with the idea that disassociation of calpain from calpastatin at the plasma membrane drives migration, calpastatin was primarily observed in the cytoplasmic perinuclear region of NFI-hypophosphorylated (migratory) U251 MG cells. It is noteworthy that perinuclear localization has been associated with increased calpastatin aggregation, with aggregated calpastatin showing reduced binding to calpain (60). Depletion of NFIs in U251 MG cells (accompanied by reduced class 2 CAST variants and increased class 1 CAST variants in the case of NFIA depletion) resulted in increased plasma membrane localization of calpastatin. In addition, knockdown of NFIB and NFIX was accompanied by increased nuclear localization of calpastatin (61). Nuclear calpain is believed to promote cell survival through various signaling pathways, including Ku80,
NF-κB, and phosphatidylinositol 3-kinase/Akt (62–64). As calpastatin is a calpain inhibitor, one may reason that the accumulation of calpastatin in the nucleus of MG cells antagonizes the prosurvival effects mediated by nuclear calpain. Thus, NFIB and NFIX may promote either cell migration or cell death, depending on the ratio of membrane to nuclear calpastatin in MG cells. Such an effect would be consistent with NFIB’s paradoxical role, acting either as an oncogene or tumor suppressor, in different types of cancer (65).

We propose that there is regulatory cross-talk between NFIs and the calpain/calpastatin signaling pathway in MG cells that involves the following steps (Fig. 8): (i) calcineurin is cleaved and activated by calpain in the cytoplasm (23); (ii) activated calcineurin translocates to the nucleus and dephosphorylates NFI (21); (iii) hypophosphorylated NFI regulates its target genes (14, 15) including CAST through its alternative promoter, which enhances the expression of cytosolic XL-less calpastatin isoforms, with concomitant suppression of plasma membrane-associated full-length calpastatin; and (iv) in the absence of full-length calpastatin at the plasma membrane, calpain cleaves its cell migration-enhancing effectors, resulting in the increased cell migration associated with NFI-hypophosphorylated MG cells.

In summary, our results indicate that NFIs control the subcellular localization of calpastatin in MG cells through usage of an alternative CAST promoter located upstream of exon 4. Binding of hypophosphorylated NFI to CAST intron 3 results in increased utilization of the alternative promoter and a higher ratio of class 2 (encoding for XL-less calpastatin isoforms) to class 1 (encoding for full-length calpastatin) CAST variants. Depletion of NFIs in NFI-hypophosphorylated MG cells results in accumulation of calpastatin at the plasma membrane. Because calpastatin directly binds and inhibits calpain, regulation of CAST variant expression by NFI with accompanying alterations in calpastatin subcellular localization may ultimately control calpain activity. Future work will involve a more in-depth examination of the NFI–calpain signaling pathway, how it affects MG cell migration, and whether it can be exploited to reduce MG infiltration through the inhibition of calpain.

** Experimental procedures

Cell lines, constructs, transfections, and treatments

The origins of the MG cell lines used in this study have been described previously (14, 66). Cells were cultured in Dulbecco's...
modified Eagle's minimum essential medium supplemented with 10% fetal calf serum, streptomycin (50 μg/ml), and penicillin (50 units/ml). NFI expression constructs, including pCH (empty vector), pCHNFIA, pCHNFIB, pCHNFIC, and pCHNFIX, were a gift from Dr. R. Gronostajski (Case Western Reserve University). Constructs were introduced into MG cells using polyethyleneimine (Polysciences)-mediated transfection with a ratio of 5:1 (μl of polyethyleneimine/µg of DNA). The DNA was removed 18 h after transfection, and cells were harvested 60 h post-transfection.

For CSÅ treatment, nearly confluent U251 MG cells were treated with either DMSO (negative control) or 1 μM CSÅ for 1 h at 37 °C. Cells were either harvested for Western blot analysis or fixed for immunofluorescence analysis as described below.

Gel shift assay

Gel shift assays were performed as described previously (15, 67). Probes (C1, C2, and C3) were prepared by annealing complementary oligonucleotides with 5′- and 3′-overhangs, followed by filling in the overhangs with Klenow polymerase and [α-32P]dCTP. Cold competitors were prepared by annealing complementary oligonucleotides in the absence of [α-32P]dCTP. Cold competitors with mutated NFI-binding sites (C2* and C3*) were prepared by replacing the two conserved G residues at positions 3 and 4 with A residues. In addition, C residues at positions 12 and 13 were replaced with A residues in C3* (Fig. 1). NFI and AP2 consensus competitor oligonucleotides were synthesized by annealing 5′-ATTTTGGCTTGAAGCCAATATG-3′ and 5′-CATATTTGGCTTGAAGCCAATATG-3′ (NFI consensus binding site is underlined) and 5′-GATCGAAGTCGACCCGCCCCGCGGCCGT-3′ and 5′-ACGGGCGCGCGGCGGCTGACAGTTCGATC-3′ (AP2 consensus binding site underlined). U87 and U251 MG cells were transiently transfected with 7 μg of each of the HA-tagged NFI expression constructs (pCH, pCHNFIA, pCHNFIB, pCHNFIC, and pCHNFIX) or siRNA targeting NFIIC as described below. Nuclear extracts were prepared using NE-PER nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific). Four μg of nuclear extracts prepared from NFI or pCH-transfected cells were precleared in binding buffer (20 mM Hepes, pH 7.9, 1 mM spermine, 10 mM DTT, 20 mM KCl, 0.1% Nonidet P-40, 10% glycerol) in the presence of 1 μg of poly(dI-dC) for 10 min at room temperature. Where indicated, a 100-fold molar excess of unlabeled competitor oligonucleotide was added to the reaction. For supershift experiments, 0.5 μg of anti-AP2 (Santa Cruz Biotechnology, Inc.), anti-HA (Roche Applied Science), pan-specific anti-NFI (obtained from Dr. Naoko Tanese), anti-NFIA (custom polyclonal antibody, antigen CPDKPTPTTS-TGGGA; GenScript), anti-NFIB (custom polyclonal antibody, antigen CSGPSHNPDKNNP; GenScript), anti-NFIC (custom polyclonal antibody, antigen CDQEDSKPTLTD; GenScript), or anti-NFIX (custom polyclonal antibody, antigen CDGSQAT-GQH5QRO; GenScript) antibodies were included during the pre-incubation stage. Next, radiolabeled oligonucleotides were added, followed by an incubation period of 20 min at room temperature. Reactions were then electrophoresed in a 6% nondenaturing polyacrylamide gel in 0.5× TBE (Tris-borate EDTA). The gels were dried and exposed to X-ray film.

Knockdown of endogenous NFIs and CAST

U87, T98, and/or U251 MG cells were transfected with the following NFI-targeting Stealth® siRNAs: control scrambled siRNA (catalog nos. 12935-200 and 12935-300 (Invitrogen)), NM_005595_stealth_919 (5′-GAAAGGUUCUCAUCAUCAACAUGA-3′ of NFI), NM_005596_stealth_1020 (5′-AAGGC-ACAUAAGUACUCGAAGAA-3′ of NFIB), NM_005597_stealth_1045 (5′-CAGAGAUGGCAACAAUCAAAC-3′ of NFIC), NM_002501_stealth_752 (5′-GAGAGUACAGACUUCCUGUGCA-3′ of NFIX), NM_001042440_stealth_486 (5′-UCUCUGGUGCAACACGAGACUGCU-3′ of CAST), and NM_001904421_stealth_1264 (5′-ACAUAACACUGAGUACAGAUAA-3′ of CAST). Cells were transfected with a 10 nM concentration of each siRNA using the RNAiMAX Lipofectamine reagent (Invitrogen) according to the manufacturer's protocol. After 48 h, cells were split in 6 and transfected with another round of siRNA. Cells were harvested 60 h after the second transfection.

RT-qPCR

Total RNA was isolated from transfected cells using the TRIzol® reagent (Thermo Fisher Scientific). First-strand cDNA was synthesized using Superscript II® reverse transcriptase (Invitrogen). For RT-PCR, cDNAs were amplified using primers to the different NFIs or β-actin, which served as the loading control (see Table 1 for a list of primers). For qPCR, cDNAs were amplified using primer pairs targeting specific regions of the CAST gene and the BrightGreen® qPCR master mix (ABM Scientific). qPCR results were normalized to GAPDH. Relative-fold change was generated by normalizing each treatment to the respective scrambled siRNA control.

ChIP

ChIP was carried out as previously described (68). Briefly, MG cells were cross-linked with 1% formaldehyde for 20 min at room temperature. Cross-linking was terminated using glycine to a final concentration of 0.125 M. Cells were then collected in 1× PBS supplemented with 0.5 mM phenylmethylsulfonyl fluoride, washed, and resuspended in lysis buffer (44 mM Tris–HCl, pH 8.0, 10 mM EDTA, 1% SDS, 1× Complete® protease inhibitors (Roche Applied Science)). Cells were sonicated twice at 4 °C for 10 cycles (1 min/cycle, 30 s power on and 30 s power off) with output level set to high (Bioruptor 300). After 48 h, cells were split 1 in 6 and transfected with another round of siRNA. Cells were harvested 60 h after the second transfection.

CAST gene regulation in glioblastoma cells

Knockdown of endogenous NFIs and CAST

U87, T98, and/or U251 MG cells were transfected with the following NFI-targeting Stealth® siRNAs: control scrambled siRNA (catalog nos. 12935-200 and 12935-300 (Invitrogen)), NM_005595_stealth_919 (5′-GAAAGGUUCUCAUCAUCAACAUGA-3′ of NFI), NM_005596_stealth_1020 (5′-AAGGC-ACAUAAGUACUCGAAGAA-3′ of NFIB), NM_005597_stealth_1045 (5′-CAGAGAUGGCAACAAUCAAAC-3′ of NFIC), NM_002501_stealth_752 (5′-GAGAGUACAGACUUCCUGUGCA-3′ of NFIX), NM_001042440_stealth_486 (5′-UCUCUGGUGCAACACGAGACUGCU-3′ of CAST), and NM_001904421_stealth_1264 (5′-ACAUAACACUGAGUACAGAUAA-3′ of CAST). Cells were transfected with a 10 nM concentration of each siRNA using the RNAiMAX Lipofectamine reagent (Invitrogen) according to the manufacturer's protocol. After 48 h, cells were split in 6 and transfected with another round of siRNA. Cells were harvested 60 h after the second transfection.

RT-qPCR

Total RNA was isolated from transfected cells using the TRIzol® reagent (Thermo Fisher Scientific). First-strand cDNA was synthesized using Superscript II® reverse transcriptase (Invitrogen). For RT-PCR, cDNAs were amplified using primers to the different NFIs or β-actin, which served as the loading control (see Table 1 for a list of primers). For qPCR, cDNAs were amplified using primer pairs targeting specific regions of the CAST gene and the BrightGreen® qPCR master mix (ABM Scientific). qPCR results were normalized to GAPDH. Relative-fold change was generated by normalizing each treatment to the respective scrambled siRNA control.
CAST gene regulation in glioblastoma cells

GAPDH promoter (negative control) were amplified (Table 1) using the following parameters: 95 °C for 3 min; 35 cycles at 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s; 72 °C for 7 min. Amplified DNA was resolved in 1.5% agarose gels and visualized using ethidium bromide. For quantitative analysis, chromatin-immunoprecipitated DNA was amplified by qPCR using the primers listed in Table 1. Results are presented as relative -fold change compared with IgG negative control.

Western blot analysis

Nuclear extracts were prepared using the NE-PER® nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific). Whole-cell lysates were prepared by syringing cells 15–20 times (23-gauge needles) at 4 °C in lysis buffer (50 mM Tris-HCl, pH 7.5, 1% sodium deoxycholate, 1% Triton X-100, 150 mM NaCl, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 10 mM EDTA, 0.1% SDS, 1 × Complete protease inhibitor (Roche Applied Science), and 1 × PhosSTOP phosphatase inhibitor (Roche Applied Science). Proteins were resolved in SDS-polyacrylamide gels and electrophorased onto polyvinylidene fluoride or nitrocellulose membranes. Blots were immunostained with rabbit pan-specific anti-calpastatin antibody (1:10,000; Santa Cruz Biotechnology), mouse anti-β-actin antibody (1:100,000; Sigma-Aldrich), mouse anti-HA antibody (1:5000; Roche Applied Science), mouse pan-specific anti-NFI antibody (1:1000; Santa Cruz Biotechnology), or α-tubulin (1:50,000; Hybridoma Bank) followed by detection with horseradish peroxidase–conjugated secondary antibody (Jackson ImmunoResearch Biotech) using the Immobilon® Western chemiluminescent horseradish peroxidase substrate (EMD Millipore).

Immunofluorescence analysis

Cells were transfected with the indicated siRNAs and plated onto glass coverslips 48 h after transfection. Twenty-four h later, cells were fixed with 4% paraformaldehyde for 10 min and permeabilized with 0.25% Triton X-100 for 4 min, followed by blocking with 3% BSA for 45 min at room temperature. Cells were immunostained with rabbit anti-calpastatin (1:100; Santa Cruz Biotechnology) primary antibody, followed by Alexa 488–conjugated donkey anti-rabbit antibody (1:400; Life Technologies, Inc.). To reduce background signal, the coverslips were washed with 0.01% Tween 20 in PBS 5 min followed by two 5-min washes with PBS alone after each antibody incubation. Coverslips were mounted onto microscope slides with polyvinyl alcohol–based medium containing 1 µg/ml 4,6-diamidino-2-phenylindole (Calbiochem). Images were captured with a ×40/1.3 numerical aperture oil immersion lens on a Zeiss LSM 710 confocal microscope using the ZEN software (Zeiss).

Author contributions—T. M. V., R. B., and R. G. conceptualization; T. M. V. and R. G. resources; T. M. V. and R. G. data curation; T. M. V., R. B., M. B., E. A. M., H.-Y. P., and R. G. formal analysis; T. M. V. and R. G. supervision; T. M. V. and R. G. writing-review and editing.

Acknowledgments—We thank Dr. R. Gronostajski (Case Western Reserve University) and Dr. Naoko Tanese (New York University Medical Center) for the NFI expression constructs and anti-NFI antibody, respectively. We are grateful to Xuejun Sun, Gerry Barron, and the Cross Cancer Institute Cell Imaging Facility for support with imaging MG cells.
References

1. Omuro, A., and DeAngelis, L. M. (2013) Glioblastoma and other malignant gliomas: a clinical review. *JAMA* 310, 1842–1850 CrossRef Medline

2. Ostrom, Q. T., Gittleman, H., Fulop, J., Liu, M., Blanda, R., Kromer, C., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J. S. (2015) CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. *Neuro Oncol.* 17, iv–iv62 CrossRef Medline

3. Mason, W. P., Maestro, R. D., Eisenat, D., Forsyth, P., Fulton, D., Lapere, N., Macdonald, D., Perry, J., Thiesen, B., Canadian GBM Recommendations Committee (2007) Canadian recommendations for the treatment of glioblastoma multiforme. *Curr. Oncol.* 14, 110–117 CrossRef Medline

4. Claes, A., Idena, A. J., and Wesseling, P. (2007) Diffuse glioma growth: a guerrilla war. *Acta Neuropathol.* 114, 443–458 CrossRef Medline

5. de Groot, J. F., Fuller, G., Kumar, A. J., Piao, Y., Eterovic, K., Ji, Y., and Conrad, C. A. (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. *Neuro Oncol.* 12, 233–242 CrossRef Medline

6. Kallenberg, K., Goldmann, T., Menke, J., Strik, H., Bock, H. C., Stockham, F., Buhk, J. H., Frahm, J., Dechent, P., and Knauth, M. (2013) Glioma infiltration of the corpus callosum: early signs detected by DTI. *J. Neurooncol.* 112, 217–222 CrossRef Medline

7. Norden, A. D., Young, G. S., Setayesh, K., Muzikansky, A., Klufas, R., Ross, S. H., and Jung, Y. K. (2002) Calpain-dependent cleavage of cain/cabin1 activates calcinulin to mediate calcium-triggered cell death. *Proc. Natl. Acad. Sci. U.S.A.* 99, 9870–9875 CrossRef Medline

8. Wu, H. Y., Tomizawa, K., Oda, Y., Wei, F. Y., Lu, Y. F., Matsushita, M., Li, S. T., Moriwaki, A., and Matsui, H. (2004) Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. *J. Biol. Chem.* 279, 4929–4940 CrossRef Medline

9. Lee, W. J., Ma, H., Takano, E., Yang, H. Q., Hatanaka, M., and Maki, M. (1992) Molecular diversity in amino-terminal domains of human calpastatin with calpain: a review. *J. Biol. Chem.* 267, 8437–8442 Medline

10. Perrin, B. J., and Huttenlocher, A. (2002) Calpain. *J. Biol. Chem.* 277, 39451–39459 CrossRef Medline

11. Lee, W., Ma, H., Takano, E., Yang, H. Q., Hatanaka, M., and Maki, M. (2002) Changes in intracellular calpastatin localization are associated with the intracellular distribution of the endogenous inhibitor for calcium-dependent protease independently retain inhibitory activity: expression of the cDNA fragments in *Escherichia coli*. *J. Biol. Chem.* 276, 2364–2370 CrossRef Medline

12. Lane, R. D., Allan, D., and Meilgren, R. L. (1992) A comparison of the intracellular distribution of μ-calpain, m-calpain, and calpastatin in proliferating human A431 cells. *Exp. Cell Res.* 203, 5–16 CrossRef Medline

13. Goll, D. E., Thompson, V. F., Li, H., and Cong, J. (2003) The calpain system. *Physiol. Rev.* 83, 731–801 CrossRef Medline

14. Avila, D., de Tullio, R., Passalacqua, M., Salamino, F., Pontremoli, S., and Melloni, E. (2001) Changes in intracellular calpain localization are associated with the intracellular distribution of the endogenous inhibitor for calcium-dependent protease independently retain inhibitory activity: expression of the cDNA fragments in *Escherichia coli*. *J. Biol. Chem.* 276, 2364–2370 CrossRef Medline

15. Conneally, P. M., and Hannay, H. J. (1980) The proliferative response to calpain. *J. Biol. Chem.* 255, 12214–12218 CrossRef Medline

16. Perrin, B. J., and Huttenlocher, A. (2002) Calpain. *J. Biol. Chem.* 277, 39451–39459 CrossRef Medline

17. Gil-Parrado, S., Popp, O., Knoch, T. A., Zahler, S., Bestver, F., Felgenträger, M., Holloschi, A., Fernández-Montalvan, A., Auerswald, E. A., Fritz, H., Fuentes-Prior, P., Machleidt, W., and Spiess, E. (2003) Subcellular localization and in vivo subunit interactions of ubiquitinous μ-calpain. *J. Biol. Chem.* 278, 16336–16346 CrossRef Medline

18. Brun, M., Jain, S., Monckton, E. A., and Godbout, R. (2018) Nuclear Factor I Represses the Notch Effector HEY1 in Glioblastoma. *Neoplasia* 20, 1023–1037 CrossRef Medline
CAST gene regulation in glioblastoma cells

37. Komarnitsky, P., Cho, E. J., and Buratowski, S. (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 CrossRef Medline

38. Leloup, L., Shao, H., Bae, Y. H., Deasy, B., Stolz, D., Roy, P., and Wells, A. (2010) m-Calpain activation is regulated by its membrane localization and by its binding to phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 285, 33549–33566 CrossRef Medline

39. Shao, H., Chou, J., Baty, C. J., Burke, N. A., Watkins, S. C., Stolz, D. B., and Wells, A. (2006) Spatial localization of m-calpain to the plasma membrane by phosphoinositol biphosphate binding during epidermal growth factor receptor-mediated activation. Mol. Cell. Biol. 26, 5481–5496 CrossRef Medline

40. Deneen, B., Ho, R., Lukasiewicz, A., Hochstain, C. J., Gronostajski, R. M., and Anderson, D. J. (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 CrossRef Medline

41. Namihira, M., Kohyama, J., Semi, K., Sanosaka, T., Deneen, B., Taga, T., and Nakashima, K. (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245–255 CrossRef Medline

42. Mason, S., Piper, M., Gronostajski, R. M., and Richards, L. J. (2009) Nuclear factor one transcription factors in CNS development. Mol. Neurobiol. 39, 10–23 CrossRef Medline

43. Kang, P., Lee, H. K., Glasgow, S. M., Finley, M., Donti, T., Gaber, Z. B., Graham, B. H., Foster, A. E., Novitch, B. G., Gronostajski, R. M., and Deneen, B. (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74, 79–94 CrossRef Medline

44. Mita, R., Beaulieu, M. J., Field, C., and Godbout, R. (2010) Brain fatty acid-binding protein and ω-3/ω-6 fatty acids: mechanistic insight into malignant glioma cell migration. J. Biol. Chem. 285, 37005–37015 CrossRef Medline

45. Alevizopoulos, A., Dusserre, Y., Ruegg, U., and Mermod, N. (1997) Regulation of the transforming growth factor β-responsive transcription factor CT-1 by calcineurin and calcium/calmodulin-dependent protein kinase IV. J. Biol. Chem. 272, 23597–23605 CrossRef Medline

46. Wu, H. Y., Tomizawa, K., and Matsu, H. (2007) Calpain-calcinurine signaling in the pathogenesis of calcium-dependent disorder. Acta Med. Okayama 61, 123–137 Medline

47. Ding, F., Li, X., Li, B., Guo, J., Zhang, Y., and Ding, J. (2016) Calpain-mediated cleavage of calcineurin in puromycin aminonucleoside-induced podocyte injury. PLoS One 11, e0155504 CrossRef Medline

48. Santos, D. M., Xavier, I. M., Morgado, A. L., Sold, S., and Rodrigues, C. M. (2012) Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One 7, e33468 CrossRef Medline

49. Chan, K. T., Bennin, D. A., and Huttenlocher, A. (2010) Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J. Biol. Chem. 285, 11418–11426 CrossRef Medline

50. Lebart, M. C., and Benyamin, Y. (2006) Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J. 273, 3415–3426 CrossRef Medline

51. Cortesio, C. L., Chan, K. T., Perrin, B. J., Burton, N. O., Zhang, S., Zhang, Z. Y., and Huttenlocher, A. (2008) Calpain 2 and FIP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180, 957–971 CrossRef Medline

52. Franco, S., Perrin, B., and Huttenlocher, A. (2004) Isoform specific function of calpain 2 in regulating membrane protrusion. Exp. Cell Res. 299, 179–187 CrossRef Medline

53. Lal, S., La Du, J., Tanguay, R. L., and Greenwood, J. A. (2012) Calpain 2 is required for the invasion of glioblastoma cells in the zebrafish brain microenvironment. J. Neurosci. Res. 90, 769–781 CrossRef Medline

54. Tangmansakulchai, K., Abubakar, Z., Kitiyanant, N., Suwanjung, W., Leepiyasakulchai, C., Govitrapong, P., and Chetsawang, B. (2016) Calpain overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human glioblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 30, 151–161 CrossRef Medline

55. Schoch, K. M., Evans, H. N., Brelsford, J. M., Madathil, S. K., Takano, J., Saito, T. C., and Saatman, K. E. (2012) Calpain overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury. Exp. Neurol. 236, 371–382 CrossRef Medline

56. Nilsson, E., Alafuzoff, I., Blenno, K., Blomgren, K., Hall, C. M., Janson, I., Karlsson, I., Wallin, A., Gottfries, C. G., and Karlsson, J. O. (1990) Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol. Aging 11, 425–431 CrossRef Medline

57. Gronostajski, R. M. (1987) Site-specific DNA binding of nuclear factor I: effect of the spacer region. Nucleic Acids Res. 15, 5545–5559 CrossRef Medline

58. Stifanese, R., Averna, M., De Tullio, R., Pedrazzi, M., Beccaria, F., Salamino, F., Milanese, M., Bonanno, G., Pontremoli, S., and Melloni, E. (2010) Adaptive modifications in the calpain/calpastatin system in brain cells after persistent alteration in Ca2+ homeostasis. J. Biol. Chem. 285, 631–643 CrossRef Medline

59. Adachi, Y., Takano, E., Murachi, T., and Hatanaka, M. (1988) Distribution and expression of calpastatin in human hematopoietic system cells. Biol. Chem. Hoppe Seyler 369, 223–227 Medline

60. Averna, M., De Tullio, R., Capini, P., Salamino, F., Pontremoli, S., and Melloni, E. (2003) Changes in calpastatin localization and expression during calpain activation: a new mechanism for the regulation of intracellular Ca2+-dependent proteolysis. Cell Mol. Life Sci. 60, 2669–2678 CrossRef Medline

61. Perrin, B. J., Amann, K. J., and Huttenlocher, A. (2006) Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol. Biol. Cell 17, 239–250 CrossRef Medline

62. Baek, K. H., Yu, H. V., Kim, E., Na, Y., and Kwon, Y. (2016) Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway. Oncotarget 7, 30831–30844 Medline

63. Baghdiguian, S., Martin, M., Richard, L., Pons, F., Astier, C., Bourg, N., Hay, R. T., Chemaly, R., Halaby, G., Loiselet, J., Anderson, L. V., Lopez de Munain, A., Fardeau, M., Mangeat, P., Beckmann, J. S., and Lefranc, G. (1999) Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the 1kb αNF-kB pathway in limb-girdle muscular dystrophy type 2A. Nat. Med. 5, 503–511 CrossRef Medline

64. Tremper- Wells, B., and Vallano, M. L. (2005) Nuclear calpain regulates Ca2+-dependent signaling via proteolysis of nuclear CalCa2+/calmodulin-dependent protein kinase type IV in cultured neurons. J. Biol. Chem. 280, 2165–2175 CrossRef Medline

65. Becker-Santos, D. D., Lonergan, K. M., Gronostajski, R. M., and Lam, W. L. (2017) Nuclear factor I/B: a master regulator of cell differentiation with paradoxical roles in cancer. EBioMedicine 22, 2–9 CrossRef Medline

66. Godbout, R., Bisgrove, D. A., Skolny, D., and Day, R. S., 3rd (1998) Correlation of B-FABP and GFAP expression in malignant glioma. Oncogene 16, 1955–1962 CrossRef Medline

67. O’Brien, R. M., Noisin, E. L., Suwanichkul, A., Yamasaki, T., Lucas, P. C., Wang, J. C., Powell, D. R., and Granner, D. K. (1995) Hepatic nuclear factor one transcription factors in CNS development. Mol. Cell. Biol. 15, 1747–1758 CrossRef Medline

68. Pillai, S., Dasgupta, P., and Chellappan, S. P. (2009) Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol. Biol. 523, 323–339 CrossRef Medline