Metnase Mediates Resistance to Topoisomerase II Inhibitors in Breast Cancer Cells

Justin Wray1, Elizabeth A. Williamson1, Melanie Royce1, Montaser Shaheen1, Brian D. Beck2, Suk-Hee Lee2, Jac A. Nickoloff3*, Robert Hromas1*

1 Division of Hematology-Oncology, Cancer Research and Treatment Center, Department of Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America, 2 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 3 Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America

Abstract

DNA replication produces tangled, or catenated, chromatids, that must be decatenated prior to mitosis or catastrophic genomic damage will occur. Topoisomerase IIα (Topo IIα) is the primary decatentating enzyme. Cells monitor catenation status and activate decatentation checkpoints when decatentation is incomplete, which occurs when Topo IIα is inhibited by chemotherapy agents such as the anthracyclines and epidiphollotoxins. We recently demonstrated that the DNA repair component Metnase (also called SETMAR) enhances Topo IIα-mediated decatentation, and hypothesized that Metnase could mediate resistance to Topo IIα inhibitors. Here we show that Metnase interacts with Topo IIα in breast cancer cells, and that reducing Metnase expression significantly increases metaphase decatentation checkpoint arrest. Repression of Metnase sensitizes breast cancer cells to Topo IIα inhibitors, and directly blocks the inhibitory effect of the anthracycline adriamycin on Topo IIα-mediated decatentation in vitro. Thus, Metnase may mediate resistance to Topo IIα inhibitors, and could be a biomarker for clinical sensitivity to anthracyclines. Metnase could also become an important target for combination chemotherapy with current Topo IIα inhibitors, specifically in anthracycline-resistant breast cancer.

Introduction

Topo IIα inhibitors such as anthracyclines or epidiphollotoxins are important agents in the treatment of human malignancy [1–3]. These agents cause DNA damage by two mechanisms, locking Topo IIα in a cleavage complex producing DNA double-strand breaks (DSBs), and inhibiting chromatic deacentation [3]. While the former mechanism is well understood, far less is known about the latter, yet it can be just as catastrophic to the cell. Failure of decatentation results in DSBs at anaphase, and to prevent this cells probably monitor decatentation at two positions in the cell cycle, at the G2/M boundary and at the metaphase to anaphase transition [4–10]. These decatentation checkpoints are activated independently of the G2/M DNA damage-dependent checkpoint [3,9,11,12]. Interestingly, lung and bladder cancers proceed through the decatentation checkpoints even in the presence of high levels of Topo IIα inhibitors, and this was thought to be secondary to a failure of the cell cycle arrest machinery [13,14].

We recently isolated and characterized a human protein with SET and transposase domains called Metnase [15]. Metnase promotes non-homologous end joining DNA repair [15–18], enhances plasmid and viral DNA integration [18], and cleaves but does not degrade supercoiled plasmid DNA [19]. We recently showed that Metnase interacts with Topo IIα and enhances its function in chromosomal decatentation [19]. Therefore, we hypothesized that Metnase may mediate the resistance of malignant cells to Topo IIα inhibitors, and chose to test this in breast cancer cells because anthracyclines are among the most important agents in the treatment of this disease [1,20–22]. We report here that Metnase interacts with Topo IIα in breast cancer cells, promotes progression through metaphase in breast cancer cells treated with a Topo IIα inhibitor, sensitizes breast cancer cells to the anthracycline adriamycin and the epidiphollotoxin VP-16, and directly blocks Topo IIα inhibition by adriamycin in vitro. These data indicate that Metnase levels may be one reason why some breast cancer cells treated with Topo IIα inhibitors can progress through mitosis without catastrophe resulting in drug resistance.

Results and Discussion

Previously, we showed that Metnase expression directly correlates with Topo IIα mediated decatentation in Human Embryonic Kidney cells. To determine if this finding would
further apply to neoplasia, we evaluated Metnase and Topo IIα expression in four breast cell lines. MCF-10A is a cell line isolated from a benign hyperplastic breast lesion, T-47D from an infiltrating ductal carcinoma, HCC1937 from a primary ductal carcinoma, and MDA-MB-231 from a metastatic adenocarcinoma. As shown in Figure 1A, all of the cell lines express both Metnase and Topo IIα, though the HCC1937 have significantly reduced Topo IIα levels. Interestingly, MDA-MB-231 cells are the only cell line shown here derived from metastatic breast tissue. They have both an elevated Topo IIα level and significant Metnase expression. Because of this, we chose these cells to determine if Metnase and Topo IIα interact in breast cancer. In Figure 1B, we show that Metnase does co-immunoprecipitate (co-IP) with Topo IIα and that Topo IIα co-IPs with Metnase. Together, this provides evidence that Metnase could play a role in the pathogenesis and resistance of metastatic breast cancer to Topo IIα inhibiting therapies.

Since Metnase enhances Topo IIα-mediated decatenation, and enhances resistance to ICRF-193 and VP-16 in non-malignant human cells [19], we hypothesized that Metnase might also promote resistance to the anthracyclines and epidophyllotoxins in MDA-MB-231 cells. We first investigated whether reducing Metnase would affect ICRF-193-mediated metaphase arrest. MDA-MB-231 cells were treated with ICRF-193, which inhibits Topo IIα after DNA religation, and therefore does not induce DNA but does inhibit decatenation, allowing for discrimination between DNA damage and metaphase arrest [3]. The increase in cells arrested at metaphase in the presence of ICRF-193 compared to vehicle controls provides a measure of cells arrested due to failure of decatenation. Using β-tubulin immunofluorescence microscopy, we determined the fraction of cells in metaphase after exposure to ICRF-193. Cells with reduced Metnase expression (Fig. 2A) showed a significantly higher percentage of metaphase arrested cells when treated with ICRF-193 and cytopsin onto slides to retain all cells (Fig. 2C). After 18 hour treatments with 2 or 10 µM ICRF-193, or 4 hours with 10 µM ICRF-193, cells with reduced Metnase showed 4.9-fold (p-value = 0.0016), 2.2-fold (p-value = 0.027), and 2.6-fold (p-value = 0.0015) increased metaphase arrest, respectively, as compared to vector control and evaluated by student’s t-test (Fig. 2B). This result suggests that Metnase promotes decatenation in ICRF-193-treated MDA-MB-231 cells, allowing them to proceed through metaphase even in the presence of this Topo IIα specific inhibitor.

Prior studies revealed that bladder and lung cancer cells progress through the decatenation checkpoints when Topo IIα is inhibited by high concentrations of ICRF-193 [13,14]. The conclusion from those studies was that these cancer cells failed to arrest because they had inactivated the decatenation checkpoints. While the ability to progress through mitosis even when Topo IIα is inhibited may be a general feature of malignancy, it may be due to the presence of Metnase alone, or Metnase in combination with checkpoint inactivation. Thus, the decatenation checkpoint may be intact in these malignant cells, but Metnase promotes continued Topo IIα function despite the presence of inhibitors, and the decatenation checkpoint is not activated.

The Topo IIα inhibitor ICRF-193 does not induce significant DNA damage, and therefore is not relevant in the clinical therapy of breast cancer. To determine whether altering Metnase levels would affect resistance to clinically relevant Topo IIα inhibitors, such as VP-16 and adriamycin [1,2], we determined the cytotoxicity of these agents in MDA-MB-231 cell lines that stably under-expressed Metnase using colony formation assays. Decreased Metnase expression increased sensitivity 7.5-fold to VP-16, and 3.5-fold to adriamycin [Fig. 3A and B]. Together, these results indicate that Metnase expression levels directly correlate with cell survival after exposure to these clinically relevant Topo IIα inhibitors. Adriamycin is an important agent in both adjuvant therapy and in the treatment of metastatic breast adenocarcinoma [1], so this finding is of relevance for current clinical regimens. It raises the possibility that treatment efficacy could be improved if the drug was used in combination with a future Metnase inhibitor, or if Metnase levels could be measured and possibly account for variance in responsiveness to adriamycin based chemotherapy regimens. Altogether, these results provide further support for the hypothesis that Metnase plays a key role in Topo IIα function.
To determine the mechanism for the ability of Metnase to mediate sensitivity to Topo IIα inhibitors, we investigated whether Metnase levels affected the cellular apoptotic response to adriamycin. We exposed MDA-MB-231 cells to adriamycin for 24 hrs and then evaluated annexin-V/FITC fluorescence by flow cytometry. We found that shRNA down-regulation of Metnase levels markedly sensitized these breast cancer cells to adriamycin-induced apoptosis (Fig. 3C). Compared to vector controls, cells with reduced Metnase levels showed a 17-fold higher frequency of apoptosis after adriamycin exposure. This finding suggests that Metnase suppresses adriamycin-induced apoptosis, contributing to the increased resistance of breast cancer cells to this drug.

To define the underlying mechanism of Metnase-dependent adriamycin resistance, we examined the effect of Metnase on adriamycin inhibition of Topo IIα-mediated decatenation using a kinetoplast DNA (kDNA) in vitro decatenation assay (Fig. 4). Topo IIα decatenates kDNA (lanes 2–4) and adriamycin completely inhibits this activity (lane 5). As shown previously [19], purified Metnase does not decatenate kDNA on its own (lane 6), but enhances Topo IIα-dependent kDNA decatenation by 4-fold (lane 8). Importantly, when Metnase is present, it overcomes the inhibition of Topo IIα by adriamycin, and this is true whether Metnase is added to the reaction before or after adriamycin (lanes 9–10). Note also that in the presence of Metnase, there is a greater level of decatenation in the presence of adriamycin than with Topo IIα alone in the absence of adriamycin (compare lanes 9 and 10 with lane 4).

Metnase is a known component of the DSB repair pathway, and may enhance resistance to Topo IIα inhibitors by two mechanisms, enhancing DSB repair [15,16] or enhancing Topo IIα function [19]. The data presented here suggest that the ability of Metnase to interact with Topo IIα, and enhance Topo IIα-

Figure 3. Metnase levels predict breast cancer cell sensitivity to Topo IIα inhibitors. Cells stably transfected with vector control, or Metnase shRNA were treated with VP-16 (A) or adriamycin (B) and colony survival was measured as described. Values are averages ±SEM for three determinations. (C) Cells transfected with control (shGFP) or Metnase shRNA were treated with 1 μM adriamycin for 24 hrs and apoptosis (annexin-V) and cell death (propidium iodide) were analyzed by FACS. Values are averages (+SEM) for three determinations. doi:10.1371/journal.pone.0005323.g003

Figure 4. Metnase blocks the inhibitory effect of adriamycin on Topo IIα decatenation of kDNA. kDNA was incubated with varying amounts of Topo IIα (lanes 1–4), Topo IIα and adriamycin (lane 5), Metnase alone (lane 6), Metnase and adriamycin (lane 7), or Topo IIα and Metnase (lane 8). In lanes 9 and 10, kDNA was incubated with Topo IIα, Metnase and adriamycin with different orders of addition as indicated below. doi:10.1371/journal.pone.0005323.g004
dependent decatenation in vivo and in vitro may be at least as important as its ability to promote DSB repair in surviving exposure to clinical Topo II\(\alpha\) inhibitors. It is possible that Metnase could bind Topo II\(\alpha\) and physically block binding by adriamycin. In this model, Metnase would be bound to Topo II\(\alpha\) on DNA, and prevent adriamycin from stabilizing the Topo II\(\alpha\)/DNA cleavage complex, allowing Topo II\(\alpha\) to complete re-ligation. Alternatively, Metnase may function as a co-factor or chaperone to increase Topo II\(\alpha\) reaction kinetics. Here Metnase would bind transiently to Topo II\(\alpha\) and increase its reaction rate regardless of adriamycin binding. The mechanism may also be a functional combination of these two mechanisms where Metnase increases Topo II\(\alpha\) kinetics while also blocking further binding of the drug.

Our interpretation of these data is that Metnase increases the intrinsic function of Topo II\(\alpha\) via one of the above mentioned molecular mechanisms, and that this will result in fewer DSBs, not necessarily from enhanced DNA repair, but from Topo II\(\alpha\) directly resisting adriamycin inhibition and thus inhibiting the production of DSBs. This model is supported by our findings that Metnase significantly blocks breast cancer cell metaphase arrest induced by ICRF-193, and that cellular resistance to Topo II\(\alpha\) inhibitors is directly proportional to the Metnase expression level.

Our data reveal a novel mechanism for adriamycin resistance in breast cancer cells that may have important clinical implications. Metnase may be a critical biomarker for predicting tumor response to Topo II\(\alpha\) inhibitors. By monitoring Metnase levels, treatments with Topo II\(\alpha\) inhibitors may be tailored to improve efficacy. In addition, since reduced Metnase levels increase sensitivity to clinical Topo II\(\alpha\) inhibitors, inhibiting Metnase with a small molecule could improve response in combination therapies. Metnase inhibition may be especially important in a recurrent breast tumor that was previously exposed to Topo II\(\alpha\) inhibitors, since resistance to these agents may be due to upregulation of Metnase and/or Topo II\(\alpha\). In summary, Metnase mediates the ability of Topo II\(\alpha\) to resist clinically relevant inhibitors, and may itself prove clinically useful in the treatment of breast cancer.

Materials and Methods

Cell culture, manipulating Metnase levels and co-immunoprecipitation

MDA-MB-231, T47, and HCC1937 breast cancer cell lines were cultured in Dulbecco’s modified medium fully supplemented with 1% antimycotic/antibiotic (Cellgro, Manassas, VA), and 10% Fetal Bovine Serum (Atlanta Biologicals, Lawrenceville, GA). The MCF10-A cell line was cultured in DMEM/F12 (Invitrogen, Carlsbad, CA) fully supplemented with 5% horse serum (Invitrogen, Carlsbad, CA) and catenated kinetoplast DNA (kDNA, Topogen, Port Orange, FL) were used according to the manufacturers’ instructions. Recombinant Metnase was purified as described previously [24]. Adriamycin was added to specific reactions at a final concentration of 20 \(\mu\)M and kDNA decatenation was visualized by agarose gel electrophoresis.

Cytotoxicity of topoisomerase II inhibitors and analysis of apoptosis

Cells expressing various levels of Metnase were treated with VP-16 for 8 hr or adriamycin for 4 hr in growth medium, washed twice, fresh growth medium replaced, and incubated at 37°C with 5% CO\(_2\) for 10–14 days. Plating efficiencies were calculated by plating untreated cells in a similar manner. Colonies were stained with 1% methylene blue (Sigma, St. Louis, MO) and counted and percent survival was calculated after normalization to plating efficiency of untreated control cells. Apoptosis was analyzed by measuring annexin-V expression in cells treated with 1.0 \(\mu\)M adriamycin for 24 hr using the Annexin V-FTTC Apoptosis Detection Kit I (BD Pharmingen, NJ).

Kinetoïplast DNA decatenation

Purified recombinant Topo II\(\alpha\) (GE Healthcare, Piscataway, NJ) and catenated kinetoïplast DNA (kDNA, Topogen, Port Orange, FL) were used according to the manufacturers’ instructions. Recombinant Metnase was purified as described previously [24]. Adriamycin was added to specific reactions at a final concentration of 20 \(\mu\)M and kDNA decatenation was visualized by agarose gel electrophoresis.

Author Contributions

Conceived and designed the experiments: RH. Performed the experiments: JW EW. Analyzed the data: EW MR MS JAN. Contributed reagents/materials/analysis tools: BDB SHL. Wrote the paper: JW JAN RH.

References

1. Garces CA, Cance WG (2004) Neoadjuvant chemotherapy of breast cancer. The American Surgeon 70: 565–569.
2. Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 5: 363–372.
3. Damelin M, Bestor TH (2007) The decatenation checkpoint. British Journal of Cancer 96: 201–205.
4. Clarke DJ, Gimenez-Abian JF (2000) Checkpoints controlling mitosis. Bioessays 22: 351–363.
5. Clarke DJ, Vas AC, Andrews CA, Diaz-Martinez LA, Gimenez-Abian JF (2006) Topoisomerase II checkpoints: universal mechanisms that regulate mitosis. Cell Cycle 5: 1925–1928.
6. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews 3: 430–440.
7. Downes CS, Clarke DJ, Mullinger AM, Gimenez-Abian JF, Crichton AM, Johnson RT (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372: 467–470.
8. Mikhailov A, Shinozawa M, Riedler CL (2004) Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. J Cell Biol 166: 317–326.
9. Skonias DA, Lacroix FB, Andreassen PR, Wilson L, Margolis RL (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Molecular Cell 15: 977–990.
10. Toyoda Y, Yanagida M (2006) Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Molecular Biology of the Cell 17: 2287–2302.

11. Deming PB, Cistulli CA, Zhao H, Graves PR, Fienica-Worms H, et al. (2001) The human decatenation checkpoint. Proc Natl Acad Sci U S A 98: 12044–12049.

12. Deming PB, Flores KG, Downes CS, Paules RS, Kaufmann WK (2002) ATR enforces the topoisoenzyme II-dependent G2 checkpoint through inhibition of PI3 kinase. J Biol Chem 277: 26832–26838.

13. Nakagawa T, Hayashita Y, Maeno K, Masuda A, Sugito N, et al. (2004) Identification of decatenation G2 checkpoint impairment independently of DNA damage G2 checkpoint in human lung cancer cell lines. Cancer Res 64: 4826–4832.

14. Doherty SC, McKeown SR, Mckelvey-Martin V, Downes CS, Atala A, et al. (2003) Cell cycle checkpoint function in bladder cancer. Journal of the National Cancer Institute 95: 1059–1060.

15. Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, et al. (2005) The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci U S A 102: 18075–18080.

16. Hromas R, Wray J, Lee YH, Martinez L, Farrington J, et al. (2008) The human set and transposase domain protein Metnase interacts with DNA Ligase IV and enhances the efficiency and accuracy of non-homologous end-joining. DNA Repair (Amst) 7: 1927–1937.

17. Beck BD, Park SJ, Lee YJ, Roman Y, Hromas RA, et al. (2008) Human Poi1 is a Metnase (SETMAR)-binding partner that regulates Metnase function in DNA repair. J Biol Chem 283: 9021–9030.

18. Williamson EA, Farrington J, Martinez L, Ness S, O’Rourke J, et al. (2006) Expression levels of the human DNA repair protein metnase influence lentiviral genomic integration. Biochimie 90: 1422–1426.

19. Williamson EA, Rasila KK, Corwin LK, Wray J, Beck BD, et al. (2008) The SET and transposase domain protein Metnase enhances chromosome decatenation: regulation by autoacetylation. Nucleic Acids Res 36: 5022–5031.

20. Richardson DS, Johnson SA (1997) Anthracyclines in haematology: preclinical studies, toxicity and delivery systems. Blood reviews 11: 201–223.

21. Binaschi M, Bigioni M, Cipollone A, Rossi C, Goso C, et al. (2001) Anthracyclines: selected new developments. Curr Med Chem Anticancer Agents 1: 113–130.

22. Felix CA (2001) Leukemias related to treatment with DNA topoisomerase II inhibitors. Medical and Pediatric Oncology 36: 525–535.

23. Ishida R, Miki T, Naito T, Yui R, Sato M, et al. (1991) Inhibition of intracellular topoisomerase II by antitumor bis(2,6-dioxopiperazine) derivatives: mode of cell growth inhibition distinct from that of cleavable complex-forming type inhibitors. Cancer Res 51: 4909–4916.

24. Roman Y, Oshige M, Lee YJ, Goodwin K, Georgiadis MM, et al. (2007) Biochemical characterization of a SET and transposase fusion protein, Metnase (SETMAR) for its DNA binding and DNA cleavage activity. Biochemistry 46: 11369–11376.