Irrigation Scheduling through Drip/Surface Method: A Review on Growth, Yield, Nutrient Uptake and Water Productivity of Wheat

Sachin Himmatrao Malve, Ashok Saini, Praveen V. Rao

ABSTRACT

Water is one of the most essential natural resource, which is often costly and limiting input particularly in arid and Semi-arid. Since water is the life line for accruing desired yield levels, its time of application, method of application and quantity applied levels besides saving water. Further, there is a need for judicious use of water to reap the maximum benefit from this limiting resource. Off late, amongst irrigation methods, drip irrigation plays a vital role in economizing irrigation water, higher water use efficiency and enhancing crop yield in water scarce areas. Many research findings also confirm considerable saving in irrigation water through adoption of precise irrigation method like drip irrigation. The response of wheat to surface check basin and drip irrigation is reviewed.

Key words: Drip irrigation, Growth, Nutrient uptake, Water productivity, Wheat, Yield.

Globally, wheat is the leading cereal crop cultivated in 226.45 million ha with a production of 765.41 million tonnes (CMIE 2019). In India, wheat production is about 106.21 million tonnes from an area of 29.80 million ha (CMIE 2019). Out of total cultivated wheat area in India, 92% area is under irrigation. Presently in changing climatic condition, water scarcity and increasing crop water requirements limit food grain production in India. Off late due to erratic behavior of monsoon and uncontrolled exploitation of ground water (1 m per year over the last 20 years) caused scarcity of water resources (Perveen et al. 2012). The scarce water resources in the country necessitate its economic use which will be possible only by efficient water management practices by adopting advanced technology of irrigation like micro-irrigation. Among different irrigation method, drip irrigation is often preferred because of its high (90-95%) water application efficiency (Rajput and Patel, 2006, Payero et al., 2008 and Anu and Habeeburrahman, 2015), increased water productivity (Yenesew and Tilahun, 2009) and still regulated deficit irrigation through drip technology can helps in developing practical recommendations for optimizing crop water productivity (WP) under conditions of scarce water supply (Schahbazian et al., 2007 and Silungwe et al., 2010).

Effect of irrigation (drip/surface) on growth components of wheat

Plant growth depends on cell division and cell expansion for which adequate water supply is essential (Singh and Singh, 1977). Further availability of sufficient amount of moisture optimizes the metabolic process in plant cells and increases the effectiveness of the mineral nutrient. Several report stated that there was a progressive and significant increase in growth parameter with increase in method of irrigation, number of irrigation and quantity of water applied (Mahdi et al., 1997, Verma et al., 2003, Dilip and Madakini, 1993). Dawood and Kheiralla (1994) recorded higher irrigation treatment had significant effect on plant height, leaf area index and dry matter production. Hence plants were taller and healthier due to increase in irrigation level (Hooda and Agrawal, 1987). Drip irrigation method recorded highest plant height, leaf area index and tillers production of wheat as compared to surface check basin irrigation (Mahdi et al., 1997). Further, he reported that growth parameters in spring wheat increased significantly with the increase in water application rate, up to 1.0 ET. Malve et al (2017) observed that higher level of pan evaporation replenishment from Drip irrigation @ 0.6 to 1.2 Epan produced significantly higher growth parameters, i.e. plant height, leaf area index, number of tillers m⁻² and dry matter production over its lower level except that the difference between D1 - 1.0 and 1.2 Epan was statistically non-significant in 2012-13 and 2013-14, respectively. Likewise, Abd El-Rahman (2009) in Cario, Egypt conducted experiment under drip irrigation with 4 Lph
drippers on one line (S1), two lines (S3) and 8 Lph drippers on one line (S2), two lines (S4) and revealed that the magnitude of increase in plant height and leaf area index in order of S3 > S4 > S1. These results can be ascribed to the maintenance of higher soil water potential contributing favourable plant water balance as compared to other treatments (Mahdi et al. 1997; Vijaykumar 2009).

In case of surface check basin irrigation at IW:CPE ratio of 1.0 recorded growth parameters which was on par with 0.8 and significantly superior to 0.6 in Srigandanganagar (Bhalya et al., 1983, Singh et al., 2003, Kumar et al., 1994). Similarly, Singh and Bhan (1998) on clay soil of Jabalpur observed that the significant increase in plant height and dry matter production of wheat during 1990-91 and 1991-92 under IW:CPE ratio of 1.2 as compared to 0.3, 0.6 and 0.9. Contrary to this, IW:CPE ratio of 0.8 recorded maximum growth parameters which was at par with IW:CPE ratio 0.6 in clay loam soil of Kota (Yadav and Verma, 1991). Further number of irrigation and quantity of water applied had significant effect on growth parameters of wheat. Higher observation was recorded with more irrigation water levels i.e. 4 irrigations applied at CRI, tillering, flowering and dough stage of wheat than that of 3 and 2 irrigations in deep sandy soil of IARI, New Delhi (Kibe and Singh, 2003). Similarly result was noted by Brahma et al., (2007), Abd El-Ghany (2012), Mohamed (1999), Hassan (2003) and Kassab and El-Zeiny (2005). On the other hand Saren and Jana (2001) revealed that application of 1FC (6 cm) quantity of irrigation water produced maximum plant height, leaf area index and dry matter production and it was the lowest under ¾ FC levels (4.5 cm). Idnani and Kumar, (2012) found maximum leaf area index and dry matter production was found in irrigation scheduling at CRI + 100 mm than irrigation scheduled at CRI + 150, CRI + 200 mm. Bandyopadhyay and Mallick (2003) pointed higher observations of wheat under IW:CPE 1.2 as compared to 0.9 and 0.6 irrigation regime. Irrigation at 50% ASM increased LAI significantly over 25% ASM at all growth stages. Wide precision planting with 60 mm irrigation at both jointing and heading stages (W2) recorded the highest growth observation followed by same planting method with low irrigation treatment (W1: 60 mm at heading stage) than that of conventional planting with high and low irrigation levels (Dandan et al., 2013).

Effect of irrigation (drip/surface) on yield components of wheat

Yield components, *viz.* ear m², ear length, number of fertile spikelets ear⁻¹, number of grains ear⁻¹ and test weight were significantly higher with drip irrigation at 1.0 Epan over the lower levels but it was statistically on par with higher level of irrigation level (DI - 1.2 Epan) in 2012-13 and 2013-14, respectively (Malve et al., 2017). These findings are corroborated with the observations by Mahdi et al. (1997) with drip irrigation at 1.0 ET compared to deficit irrigation (0.33 and 0.67 ET). Likewise, Abd El-Rahman (2009) highlighted under drip irrigation with 4 Lph drippers on one line (S1), two lines (S3) and 8 Lph drippers on one line (S2), two lines (S4) and recorded more number of kernels ear⁻¹ in 4 Lph drippers on one line followed by two lines. In case of surface check basin irrigation, IW:CPE ratio of 1.0 recorded higher yield components which was on par with 1.2 and significantly higher over 0.6 and 0.8 in clayey soil in Junagadh (Bhalya et al., 1983). This is the tune of Singh et al. (2003). On the other hand, IW:CPE ratio of 0.6 produced significantly higher yield components which was at par with IW:CPE ratio of 0.8 but it was significantly superior to 0.4 in clay loam soil of Kota (Yadav and Verma, 1991).

Idnani and Kumar (2012) recorded maximum number of ear m² and grains ear⁻¹ with irrigation scheduled at CRI + 100 mm CPE as compared with CRI + 150 mm CPE (40.1), CRI + 200 mm CPE (38.4). Similar kinds of observation was recorded under 1 FC irrigation depth than that of insufficient irrigation water applied at 3/4 and 3/2 FC and over irrigation 2 FC were not conducive for proper crop growth and development (Saren and Jana, 2001). Crop receiving 4 irrigations at CRI, maximum tillering, boot and milk stage produced significantly more fertilizer spikelet ear⁻¹, grains ear⁻¹ and test weight than that receiving 2 and 3 irrigations only in sandy loam soil of Ranchi (Verma et al., 2003). Similarly, Brahma et al. (2007) conceived that significantly higher yield component was recorded in 5 irrigation treatment but it was on par with 3 and 4 irrigation. These results are in accordance with the findings of Mohamed (1999), Sharan et al. (2000), Abo-Warda (2002) and Hassan (2003) and Abd El-Ghany et al. (2012).

Effect of irrigation (drip/surface) on grain yield of wheat

Many studies have shown that irrigation method (micro-irrigation and surface check basin), irrigation levels (deficient and surplus) and number of irrigation affects the grain yield of wheat (Rao et al., 2014, Malve et al. 2017, Verma et al., 2003). Kamilov et al. (2004) stated that drip irrigation increased grain yield of winter wheat by 4.9 to 6.5% in comparison to furrow irrigation. Drip irrigation at 100 ETc recorded highest grain yield of wheat as compared with deficit irrigation levels (60% ETc) but it was at par with 80% ETc (Clinton et al., 2005). Similarly, Malve et al., (2017) and Mahdi et al. (1997) reported same results with drip irrigation scheduled at 1.0 ET and compared to deficit irrigation levels. Further, laterals spacing and number of laterals in drip irrigated wheat had significant impact on grain yield of wheat. Abd El-Rahman (2009) conducted an experiment on wheat in Cario, Egypt under drip irrigation with 4 Lph drippers on one line (S1), two lines (S3) and 8 Lph drippers on one line (S2), two lines (S4), the results revealed that the magnitude of increase in grain yield, straw yield and biological yield was S₄ > S₃ > S₂ > S₁.

Likewise, in case of surface check basin irrigation at IW:CPE ratio of 1.0 recorded higher grain yield of 32.2 q ha⁻¹ which was statistically at par IW:CPE ratio of 1.2 but significantly superior over lower ratios of 0.6 and 0.8 in clayey
soil of Junagadh (Bhalia et al., 1983). Significantly higher grain yield of wheat at 1.2 IW:CPE ratio indicated that frequent irrigation was essential for obtaining good yield in sodic soil. These results confirm with those of Gupta et al. (1990), Bandyopadhyay and Mallick (2003) and Parihar and Tiwari (2003). In the same line, Kiani and Abbasi (2009) highlighted that 100 and 125% of crop water requirement recorded higher grain yield of wheat (4777 and 4839 kg ha⁻¹) and it was followed by 75 and 50% CWR in surface irrigation method. Singh et al. (2003) at Siigganganagar, irrigation applied deficit irrigation at 0.6 or 0.9 IW:CPE ratio gave significantly lower yield than in former irrigation schedules (IW:CPE ratio of 1.0 and 1.2). The results collaborated with the findings of Singh and Bhan (1998) and Kumar et al. (1994).

On the other hand in surface check basin irrigation systems, increasing number of irrigations increased the grain yield progressively and significantly over no irrigation. Crop receiving 4 irrigations at CRI, maximum tilling, boot and milk stage gave 13.7 and 29% more grain yield than crop grown with 3 irrigations (CRI, boot and milk) and 2 irrigation (CRI and boot) in sandy loam soils of Ranchi (Verma et al., 2003). This finding was in consonance with Pal et al. (2001) in sandy loam soil of Ranchi in Jharkhand, in deep sandy soil of IARI, New Delhi (Kibe and Singh, 2003). Similarly, irrigation scheduled at five critical growth stages (I₁) resulted in significantly higher grain yield (2545 kg ha⁻¹) over I₁, I₂ and I₃ irrigation scheduling but was on par with I₄ irrigation scheduling (Brahma et al., 2007). These results are in corroboration with those of Mallick et al. (1981), Tomar et al. (1993) and Abd El-Ghany et al. (2012). Pandey et al. (2000) demonstrated that when deficit irrigation during the vegetative period was imposed, grain yield was reduced by 7 to 11%. However, 20 to 45% increase in grain yield of spring wheat by reducing irrigation by 30 to 60 mm during the jointing stage (Kang et al., 2002); Zhang et al. (2006) demonstrated that grain yield, harvest index and water use efficiency greatly improved under regulated deficit as compared to the non-stressed treatment.

Effect of irrigation (drip/surface) on Nutrient Uptake of wheat

Irrigation along with nutrient application had profound influence on the concentration and uptake of nutrients both in grain and stover yield of wheat. There was a progressive and significant increase in NPK uptake with increase in irrigation levels (drip and surface check basin). Malve et al., (2017) stated that drip irrigation at 1.0 Epan recorded significantly highest NPK uptake as compared with 0.6, 0.8 Epan and surface check basin irrigation at IW/CPE 1 treatment. These results are in consonance with the finding of Shyamnaa et al. (2009) opined that more nutrient content and uptake due more dry matter production in higher irrigation level. This was due to better availability of moisture that maintained the soil always at field capacity and availability nutrients throughout the growth stages in drip system leading to better uptake of nutrients. However, Parihar and Tiwari (2003) revealed that N content decreased in grain and straw, while P and K content increased with the increase in number of irrigations from 0.6 to 1.2 IW:CPE ratio. Higher N content under lower moisture regime may be attributed to lower total dry matter (grain and straw). On the other hand, P and K content increased under wetter treatment owing to greater availability of these nutrients than at lower levels of soil moisture. Reddy and Shastry (1983) attributed reduced uptake of phosphorous and potassium under restricted moisture supply to their reduced mobility at low moisture level. Since total biomass was significantly more with higher moisture regime, total nutrient uptake was increased as compared to lower moisture regime. Similarly, 50% of depletion of ASM shows higher N and K concentration and uptake in grain and straw. However, P concentration and uptake was more in grain and less in straw than that of 65% depletion of ASM (Singh and Singh, 1983). Contrary to this, the highest uptake of N, P and K in grain and straw recorded with irrigation up to 1 FC and the lowest observed under ¾ FC irrigation (Saren and Jana, 2001).

Water productivity

Generally water productivity decreases with increases in irrigation as yield gain is less than proportional increase in ET. Drip irrigation recorded highest water productivity over surface check basin irrigation method (Lokhande et al., 2019 and Bhowmik et al., 2018, Malve et al., 2017, Abd El-Rahman, 2009, Liao et al., 2008 and Sivanappan, 2004). However, water productivity decreases with increases in irrigation as yield gain is less than proportional increase in ET. Malve et al., (2017) noted that application of water through drip at DI - 0.8 Epan registered highest water productivity (1.02 and 1.11 kg/m3) which was superior over 0.6, 1.0 and 1.2 Epan. These findings are in agreement with (Mahdi et al., 1997, Clinton et al., 2005). Likewise, Arora et al. (2007) highlighted water productivity of wheat decreases with increase in irrigation at high initial soil water (75% EW), while at low initial soil water (25% EW), water productivity increase from no irrigation to partial irrigation regime and decrease thereafter with more irrigation. The water productivity curve exhibits a negative correlation and the results indicate that reduced water application increase water productivity. This means that the water productivity indices were influenced by irrigation strategies and deficit irrigation effectively boosted productivity of irrigation water.

Kamilov et al. (2004) stated that drip irrigation resulted in saving up to 22% of irrigation water and increased the WP by 10.1 to 35% in comparison with furrow irrigation at irrigation Total water use efficiency (TWUE) and irrigation water efficiency (IWUE) for grain yield under drip irrigation were considerably greater at 0.33 ET than for other rates, whereas TWUE and IWUE for dry matter yield followed the order 0.33 ET > 1.0 ET > 0.67 ET > 1.33 ET > 0 ET (Mahdi et al., 1997). Sandhu et al. 2019 reported that Drip irrigation with residue retention increased irrigation water productivity by 259% in maize and 66% in wheat compared to furrow irrigation. Mostafa et al. (2018) investigated on effect of...
lateral arrangement and irrigation intervals on WUE of wheat in clay soil in arid condition of Egypt. He stated that highest value of water use efficiency of grain yield was 7.4 at 8-day followed by 6.62, 5.50 and 1.58 kgm⁻³ for 12-day, 4-day and surface irrigation, respectively performed for double lines a bed with water saving 6.7% and 65% compared to 12-day and surface irrigation respectively. At Sriganganagar the water use efficiency decreased with increase in irrigation levels and the highest WUE was observed in IW:CPE ratio of 0.6 (8.9 and 7.25 kg ha⁻¹ mm⁻¹) as compared to 0.8 and 1.0 IW:CPE ratio (Singh et al., 2003). Mishra et al. (1994) in sandy loam soil of Ambikapur (MP), revealed that the water consumption was the highest under 1.0 IW:CPE ratio followed by 0.75 and 0.50 but water use efficiency was maximum in 0.75 IW:CPE ratio during 1986-1987 and 0.50 IW:CPE ratio during 1987-88. IW:CPE of 0.50, 0.75 and 1.00 caused decreasing pattern in water use efficiency and the WUE acquired from IW:CPE of 0.75 and 0.50 increased about to a tune of 20.6 and 43.6% as compared to that of IW:CPE ratio of 1.0 (Nasser and Fallahi, 2007). Parihar and Tiwari (2003) found higher water use efficiency under lower IW:CPE ratio (73.10 kg ha⁻¹ mm⁻¹ at 0.6) followed by 0.9 and 1.2 IW:CPE ratio (63.65 and 59.22 kg ha⁻¹ mm⁻¹). Similarly, Singh et al. (1981) concluded that water use efficiency decreased from low IW:CPE ratio (126.3 to 142.8 kg ha⁻¹ mm⁻¹ at 0.6) to high IW:CPE ratio (82.2 to 98.5 kg ha⁻¹ mm⁻¹ at 1.05). Similar results were reported by Jat and Das (1983) and Agarwal et al. (2000).

Water requirement

The rate of consumptive water use (mm day⁻¹) increased with crop age and reached its peak during first fortnight of February (boot to flowering) and declined thereafter indicating that the boot to flowering period of wheat growth must match its adequate irrigation supply. Water use rate at different growth stages depends not only on the transpiration but also on the evaporative demand of the atmosphere (Pal et al., 1996, 2001). A field experiment was conducted by Abd El-Rahman (2009) on wheat in Cairo, Egypt under drip irrigation with 4 Lph discharge rate drippers on one line (S1), two lines (S3) and 8 Lph drippers on one line (S2), two lines (S4), the results revealed that the magnitude of increasing the consumptive use of water (m³/ha) was S₄ > S₃ > S₂ > S₁ treatments. Similar results were obtained by Ehdai (1995) and Allen et al. (1998). Mahdi et al. (1997) reported that drip irrigation at 70-70-60% FC consume less amount of water (202 mm) and saved 22% of water than furrow irrigation at 70-80-70% FC (248 mm).

Panda et al. (1988) at Chiplima, in sandy loam soil of Uttarak Pradesh revealed that the consumptive use of water varied from 25.65 to 33.81 cm within the range of moisture regime from 0.6 to 1.0 IW:CPE ratio. The highest water requirement of 33.18 cm, 37.33 cm and 37.91 cm were recorded from the treatment where irrigation was applied at 1.0 IW:CPE ratio during 1980, 1981 and 1982 respectively. Optimum water requirement was about 35 cm. However, a ratio of 1.0 IW:CPE with 6 cm depth of irrigation was recommended as optimum for scheduling of irrigation to wheat after the first irrigation applied at the CRI stage in the sandy loam soil of Roorkee, UP (Singh et al., 2012). In 1998-99, the water use was 30.2, 36.1 and 42.2 cm water and with the soil moisture regime of IW:CPE ratio 0.6, 0.8 and 1.0 respectively and in 1999-2000 it was 33.1, 39.1 and 39.1 cm water in Sriganganagar (Singh et al., 2003). Similarly, Singh et al. (1981) also opined that 18 to 24 cm water consumption with 0.60 IW:CPE ratio and 32 to 40 cm with 1.05 IW:CPE ratio and Parihar and Tiwari (2003) 49.39 cm water use (IW:CPE ratio 1.2) than 29.70 cm (IW:CPE ratio 0.6) and 39.86 cm (IW:CPE ratio 0.9). Likewise, 120% of crop water requirement produced maximum grain yield with seasonal water use of 468 mm followed by 100, 80% of crop water use and the lowest in 60% crop water use with 278 mm of seasonal water use in Pakdaht, Iran (Montazar and Azadegan, 2012). Shao et al. (2009) observed that seasonal water use of winter wheat under limited water supply had range of 330-340 mm in 2002-03, 470-520 mm in 2003-04, 340-390 mm in 2004-05, 310-330 mm in 2005-06 mm and 390-440 mm in 2006-07. Likewise, 323 mm with five irrigation schedule (Iₕ) was more due to frequent irrigation closely followed by 300 mm (Iₕ), 256 mm (Iₕ), 216 mm (Iₕ) and 158 mm (Iₕ) irrigation schedule was reported by Pal et al. (1996).

CONCLUSION

The efficient use of water by modern irrigation system is becoming increasingly important in Arid and Semi-arid region with limited water resources. To mitigate the water scarce condition in agricultural crop, resorting to the scientific water management is one the best alternative rather indiscriminate use of precious resource. Use of modern technology backed up by scientific knowledge will definitely enhance the crop productivity, water productivity and also leads to to maintain the soil health at optimum conditions. The outcome of this review paper is useful to draft guidelines on irrigation scheduling (drip and surface method) for scientist, farmers, stakeholders and policy makers under different models for profit maximization and resource conservation.

REFERENCES

Abd El-Ghany, H.M., Abd El-Salam, M.S., Hozyen, M and Afifi, M.H.M. (2012). Effect of deficit irrigation on some growth stages of wheat. Journal of Applied Sciences Research. 8(5): 2776-2784.
Abd El-Rahman, G. (2009). Water use efficiency of wheat under drip irrigation systems at Al-Maghara area, North Sinai, Egypt. American-Eurasian Journal of Agriculture and Environmental Science. 5(5): 664-670.
Abo-Warda, A.M.A., (2002). Evaluation of some wheat genotypes under different irrigation treatments and nitrogen levels in sandy soil. Journal of Agricultural Research. Minufiya University, Egypt. 21(2): 181-196.
Agarwal, P., Garg, R.N., Singh, A.K., Singh, S., Yadav, A.L and Sharma, A.M. (2000). Assessment of bed planting system in maize for enhancing water use efficiency. In: Proceedings
Irrigation Scheduling through Drip/Surface Method: A Review on Growth, Yield, Nutrient Uptake and Water Productivity of Wheat

of International Conference on Managing Natural Resources for Sustainable Agricultural Production in 21st Century, IARI, Indian Society of Soil Sciences, New Delhi, India, February 14-18, pp. 175-176.

Allen, R.G., Pereira, L.S., Raes, D and Smith, M. (1998). Crop Evapotranspiration- Guideline for Computing Crop Water Requirement. FAO Irrigation and Drainage Paper. 56, Rome Italy, pp. 299.

Anu Varughese and Habeeburrahman, P.V. (2015). Fertigation and plastic mulching in tomato and brinjal – A review. Agricultural Reviews. 36(3): 246-249.

Arora, V.K., Harbakshinder Singh and Bijay Singh (2007). Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural Water Management. 94: 1-3, 22-30.

Bandyopadhyay, P.K and Mallick, S. (2003). Actual evapotranspiration and crop coefficient of wheat (Triticum aestivum L.) under varied moisture levels of humid tropical canal command area. Agricultural Water Management. 59: 33-47.

Bhaliya, P.J. Parmar, M.T and Patel, J.C. (1983). Response of wheat to irrigation based on IW/CPE ratio under different nitrogen levels. Indian Journal of Agronomy. 28(3): 311-312.

Brahma, R., Janawade, A.D and Pallad, Y.B. (2007). Effect of irrigation schedules, mulch and antitranspirant on growth, yield and economics of wheat (cv. DWR-1006). Karnataka Journal of Agriculture Science. 20(1): 6-9.

Clinton, C., Shock Erik, Feibert, B.G., Lamont, D and Saunders (2005). Water management for drip irrigated spring wheat. Malheur Experiment Station, Oregon State University Ontario, Dept. of Crop and Soil Science.

Dandan, Z., Shen Jiayin, Lang Kun, Liu Quanru and Li Quanqi (2013). Effects of irrigation and wide-precision planting on water use, radiation interception and grain yield of winter wheat in the North China Plain. Agricultural Water Management. 118(C): 87-92.

Dawood, R.A and Khieralla, K.A. (1994). Effect of watering regime and nitrogen fertilization on the productivity and quality of bread and durum wheat cultivars. Ass. Journal of Agriculture Science. 25: 1.

Dilip, H and Madakini. (1993). Micro irrigation- An advanced technique on sugarcane. National Workshop on Micro Irrigation Techniques in Sugarcane. Vasantada Sugar Institute. pp: 4-7.

Ehdaie, B. (1995). Variation in water use efficiency and its components in wheat II. Pot and field experiments. Crop Science. 35: 1617-1626.

Gupta, P.K., Paradkar, V.K., Raghuvanshi, R.K.S. and Rande, D.H. (1990). Effect of depth and frequency of irrigation on performance of wheat grown in sodic type command. Journal of Indian Society of Soil Science. 38: 1-5.

Harby Mostafa, Reham, El-Nady, Montaser Awad, Mohamed El-Ansary (2018). Drip irrigation management for wheat under clay soil in arid conditions. Ecological Engineering. 121(1): 35-43.

Hassan, R.K. (2003). Effect of drought stress on yield and yield components of some wheat and triticale genotypes. Annals of Agricultural Science. Ain Shams Univ. Egypt. 48(1): 117-129.

Hooda, I.S and Agarwal, S.K. (1987). Studies on irrigation, weed control and fertility levels on growth and yield of wheat. Indian Journal of Agronomy. 32: 261-264.

Ilnani, L.K and Ashok Kumar. (2012). Relative efficiency of different irrigation schedules for conventional, ridge and raised bed seeding of wheat (Triticum aestivum L.). Indian Journal of Agronomy. 57(2): 148-151.

Jat, R.L and Das, D.K. (1983). Soil water flux and water use by wheat as influenced by different soil moisture regimes and nitrogen levels. J. Nucl. Agric. Biol. 12: 10-12.

Kamilov, B., Evett, S., Ibragimov, N., Bezbodorov, G., Esanbekov, Y and Lamers, J. (2004). Water use of winter wheat for two irrigation and scheduling methods in Uzbekistan. Uzbekistan National Cotton Growing Research Institute, poster presentation.

Kang, S., Zhang, L., Ling, Y., Hu, X., Cai, H and Gu, B. (2002). Effects of limited irrigation on yield and water use efficiency of winter wheat in the loess plateau of China. Agricultural Water Management. 55: 203-216.

Kassab, O.M and El-Zeiny, H.A. (2005). Effect of water stress and paclobutrazol application on growth and yield of wheat plants. Journal of Agricultural Science. Mansoura Univ. Egypt. 30(4): 1881-1888.

Kiani, A.R and Abbasi, F. (2009). Assessment of the water-salinity crop production function of wheat using experimental data of the Golestan Province, Iran. Irrigation and Drainage. 58: 445-455.

Kibe, A.M and Singh, S. (2003). Influence of irrigation, nitrogen and zinc on productivity and water use by late sown wheat (Triticum aestivum L.). Indian Journal of Agronomy. 48(3): 186-191.

Kumar, A., Sharma, D.K and Sharma, H.C. (1994). Growth, yield and water use efficiency of wheat (Triticum aestivum L.) as influenced by irrigation and nitrogen in sodic soils. Indian Journal of Agronomy. 39(2): 220-224.

Liao, L., Zhang, L. and Bengtsson, L. (2008). Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigation and Drainage Systems. 22(3-4): 253-270.

Lokhande, J.N., Deshmukh, M.M., Bal Krishna and Wadatkar, S.B. (2019). Maximizing yield and water use efficiency of wheat crop using drip irrigation systems. International Journal Current Microbiology and Applied Science. 8(7): 2647-2655.

Mahdi, M. Al-Kasi., Abdel Berrada and Mark Stack. (1997). Evaluation of irrigation scheduling programme and spring wheat yield response in southwestern Colorado. Agricultural Water Management. 34: 137-148.

Mallick, S., Naveen Kalra and Nagarajarao, (1981). Field water balance and water use efficiency of wheat under shallow water table condition. Indian Journal of Agronomy. 26(4): 435-441.

Malve S.H., Rao P. V and Dhake A. (2017). Impact of drip irrigation and N-fertigation scheduling on wheat (Triticum aestivum L.) under semi-arid tropical environment. Indian Journal of Agricultural Science. 87(5): 580-588.

Malve S.H., Rao P. V and Dhake A. (2017). Yield and nutrient uptake of drip irrigated wheat under varying irrigation and nitrogen levels. Multilogic in Science. VII, XXIV, 2017: 21-25.
Mishra, R.K., Pandey, N and Bajpai, R.P. (1994). Influence of irrigation and nitrogen on yield and water use pattern of wheat (Triticum aestivum L.). Indian Journal of Agronomy. 39(4): 560-564.

Mohamed, A.I.S. (1999). Promising durum wheat genotypes under normal and stress growing conditions northern Sudan. Rachis. C.F.P.B. Abstract. 18(2): 64-66.

Montazer, A and Azadegan, B. (2012). Effect of seasonal water use and applied N fertilizer on wheat water productivity indices. Irrigation and Drainage. 61: 52-59.

Nasseri, A and Fallahi, H.A. (2007). Water use efficiency of winter wheat under deficit irrigation. Journal of Biological Sciences. 7: 19-26.

Pal, S.K., Thakur, R., Verma, U.N and Singh, M.K. (1996b). Water requirement of wheat as influenced by irrigation, seeding time and fertilizer. Indian Journal of Agricultural Sciences. 66(6): 328-332.

Pal, S.K., Thakur, U.N., Verma, Singh, M.K and Upsani, R.R. (2001). Water requirement of late sown wheat (Triticum aestivum) under limited water availability in Jharkhand plateau. Indian Journal of Agronomy. 46(3): 468-474.

Panda, S.C., Gulati, J.M.L and Mishra, B. (1988). Effect of water regime and nitrogen on wheat. Indian Journal of Agronomy. 33: 364-367.

Pandey, R.K., Maranville, J.W. and Admou, A. (2000). Deficit irrigation and nitrogen effects on maize in a Sahelian environment: Grain yield and yield components. Agricultural Water Management. 46: 1-13.

Parihar S.S and Tiwari, R.B. (2003). Effect of irrigation and nitrogen level on yield, nutrient uptake and water use of late sown wheat (Triticum aestivum L.). Indian Journal of Agronomy. 48: 103-107.

Payero, J.O., David, D., Tarkanion, Suat Irmak, Don Davison, James, L and Petersen (2008). Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency and dry matter production in semiarid climate. Agricultural Water Management, Doi: 10.1016/j.agwat.

Peneven, S., Krishnamurthy, C.K., Sidhu, R.S., Vatta, K., Balljinder, K., Modi, V., Fishman, R., polycarpous, L and Lall, U. (2012). Restoring groundwater in Punjab, India’s bread basket: Finding agricultural solution for water sustainability. Columbia water centre white paper. pp. 12.

Rajput, J.B.S and Patel, N. (2006). Water and nitrate movement in drip irrigated onion under fertigation and irrigation treatments. Agricultural Water Management. 79(3): 293-311.

Rao, P.V., Rao, P.R. and Ramanjanayulu, A.V. (2014). Micro Irrigation Technique for Improved and Sustainable Crop Production. Advance in Agro-technology [eds.] Rodrigaez, Hg NC Sarkar Ramajan R. Mayti, Published by Pushpa Publishing House, Kolkata, India. 166 - 202.

Reddy, M.S and Shastry, V.V.K. (1983). Effect of irrigation level of phosphorus and potassium movement in red loam soil of Andhra Pradesh. Journal of Indian Society of Soil Science. 31: 8-12.

Sandhu, O.S., Gupta, R.K., Thind, H.S., Jat, M.L., Sidhu, H.S. and Singh, Y. (2019). Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. Agricultural Water Management. Volume 219, 20 June 2019. Pages 19-26.

Saren, B.K. and Jana, P.K. (2001). Effect of depth of irrigation and level and time of nitrogen application on growth, yield and nutrient uptake by wheat (Triticum aestivum). Indian Journal of Agronomy. 46(2): 227-232.

Schahbazian, N., Eitzinger, J., Montazar, A., Akban, G and Allahdadi, I. (2007). Using simulation models to improve irrigation on water application. Pakistan Journal of Water Resources. 11: 2.

Shao, L., Xiyi Zhang, Suying Chen, Hongyong Sun and Zhenhua Wang. (2009). Effect of irrigation frequency under limited irrigation on root water uptake, yield and water use efficiency of winter wheat. Irrigation and Drainage. 58: 393-405.

Sharan, A.N., Abd El - Samie, F.S and Abd El-Gawad, I.A. (2000). Response of wheat varieties (Triticum aestivum L.) to some environmental influence: Effect of planting date and drought at different plant stages on yield and its components. In: Proc. 9th Conf. Agron. Minofiya Univ., Egypt. pp: 1-5.

Shaymaa, I., Shedeed, Sahar, M. and Yassen, A.A. (2009). Effect of method and rate of fertilizer application under drip irrigation on yield and nutrient uptake by tomato. Ozean Journal of Applied Science. 2(2): 139–147.

Silungwe, F.R., Mahoo, H.F and Kashaigili, J.J. (2010). Evaluation of water productivity for maize under drip irrigation. Second RUFORUM Biennial Meeting. 20-24, September 2010, Entebbe, Uganda. 725-728.

Singh, L., Singh C.M and Singh, G.R. (2012). Response of bed planted wheat (Triticum aestivum L.) under the different moisture regime on water use and it’s efficiency. Journal of Chemical and Pharmaceutical Research. 4(11): 4941-4945.

Singh, R.D., Singh, J.P and Kailash Prasad. (1981). Irrigation to wheat in relation to open pan evaporation in the Sone command area of Bihar. Indian Journal of Agronomy. 26 (1): 59-61.

Singh, S and Bhan, V.M. (1998). Response of wheat (Triticum aestivum L.) sown after rice (Oryza sativa L.). Indian Journal of Agronomy. 39(1): 162-166.

Singh, S.K. and Singh, N.P. (1977). Monograph 4. Water technology centre. Indian Agriculture Research Institute. New Delhi.

Singh, V. Bhunia, S. R and Chauhan R.P.S. (2003). Response of late sown wheat (Triticum aestivum L.) to row spacing cum population densities and levels of nitrogen and irrigation in Northern Western Rajasthan. Indian Journal of Agronomy. 48(3): 178-181.

Singh, V.P and Singh, M. (1983). Effect of soil moisture regime and flag leaf removal on nutrient uptake by wheat. Indian Journal of Agronomy. 28(4): 383-388.

Sivanappan, R.K. (1996). Studies on the Use of Micro Irrigation System in Crop Production. In: Micro Irrigation and Fertilization. Ravi Publications, Bangalore: 16-35.

Tanmooy Bhowmik, A.K. Bhardwaj, T. Pandiaraj and Arnab Roy (2018). Productivity, water use efficiency and profitability of drip irrigated wheat (Triticum aestivum) in Indo-Gangatic Plains of Uttarakhand, India. International
Irrigation Scheduling through Drip/Surface Method: A Review on Growth, Yield, Nutrient Uptake and Water Productivity of Wheat

Journal Current Microbiology and Applied Science. 7(2): 3185-3191.
Tomar, R.K.S., Raghu, J.S., Yadav, L.N. and Ghuraya, R.S. (1993). Response of wheat (Triticum aestivum L.) varieties to irrigation under different fertility levels. Indian Journal of Agronomy. 38(2): 291-293.
Verma, S.U., Sanjeev Kumar, Pal, S.K. and Thakur, R. (2003). Growth analysis of wheat cultivars under different seedlings dates and irrigation levels in Jharkhand. Indian Journal of Agronomy. 48(4): 282-286.
Vijaykumar, P. (2009). Optimization of water and nutrient requirement for yield maximization in hybrid rice under drip fertigation system rice (Oryza sativa L.). M.Sc. (Agri.) Thesis, Tamil Nadu Agricultural University, Coimbatore.
Yadav, G.L. and Verma, J.K. (1991). Effect of irrigation regime, nitrogen and zinc fertilization on growth and yield of late sown wheat (Triticum aestivum L.). Indian Journal of Agronomy. 36(1): 50-56.
Yenesew, M and Tilahun, K. (2009). Yield and water use efficiency of deficit irrigated maize in semi-arid region of Ethiopia. School of Agricultural and Wine Sciences. Australia. 1651.
Zhang, B., Li, F.M., Gaobao, H., Cheng, Z.Y. and Zhang, Y. (2006). Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management. 79: 28-42.