Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans

Pratiksha Dani¹, Aman Kumar Ujaoney¹,², Shree Kumar Apte¹,², Bhakti Basu¹,²*

1 Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India, 2 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India

* bbasu@barc.gov.in

Abstract

The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.

Introduction

Potassium (K⁺) is essential for physiological functions such as regulation of intracellular pH, transmembrane electrical potential and turgor pressure in all living organisms [1]. K⁺ homeostasis is critical for adaptation to several biotic or abiotic stresses in bacteria [1–6]. Bacteria accumulate 0.1–0.6 M K⁺ intracellularly from trace amounts (0.1–10 mM) of this cation present in the environment [7] through a variety of low and high affinity K⁺ transporters. In E. coli, low affinity K⁺ transporters Trk and Kup are constitutively expressed and maintain physiological concentration of potassium in the cell [8] while high affinity ATP-dependent K⁺ uptake system (Km 2 μM), is effected by an inducible KdpATPase expressed under K⁺ limiting conditions (active below 5 mM K⁺) [5]. Ktr, a fourth constitutively expressed K⁺ uptake transporter, is absent in E. coli but encoded by several other microbes [9].

The homologs of kdp operon and its two-component signaling system are present in Gram-positive as well as Gram-negative bacteria and archaeal species [10] wherein kdp operon expression is stimulated by low K⁺ concentration and high osmolarity. In addition, its expression has also been coupled with regulation of virulence genes and pathogenesis in Staphylococcus aureus, Salmonella typhimurium, Versinia pestis, mycobacteria etc. [11, 12]Expression of kdp operon is also associated with high NaCl tolerance in S. aureus [12], phosphate limitation...
in *E. coli* [13], or drought stress in *Anabaena 7120* [14]. Thus, *kdp* operon forms a part of basic metabolism and also contributes to survival under a variety of stressful conditions.

Gram-positive *D. radiodurans* exhibits extreme resistance to gamma radiation as well as to desiccation [15], owing to its customized DNA damage repair system, enzymatic/non-enzymatic antioxidants and metabolites. A number of elegant studies reported differential expression/levels of transcriptome, small RNAs, proteome, antioxidants, metabolites etc. during the phase of DNA repair [16–21]. K⁺ is necessary for the stability of replication process and maintaining genome integrity in cells [22, 23], both the functions actively carried out by *D. radiodurans* while recovering from DNA damage. Thus, role of K⁺ homeostasis in the stress resistances of *D. radiodurans* needs detailed exploration.

The genome of *D. radiodurans* shows presence of two K⁺ uptake systems, namely, Ktr and K⁺-transporting ATPase (Kdp). The organization of *kdp* genes in *D. radiodurans* is distinct from well studied *kdp* operon in *E. coli*, especially in the two component regulatory genes (Fig 1). In *D. radiodurans*, structural genes *kdpBAC* (DR_B0083, DR_B0086, DR_B0087, respectively) were present in one operon along with a naturally truncated regulatory component *kdpD-N* (representing N-terminal half of the *E. coli kdpD*, DR_B0088) (Fig 1). The remaining regulatory components, sensor kinase (SK, representing C-terminal half of the *E. coli kdpD*, DR_B0082) and the response regulator (RR, DR_B0081) were present in a separate operon, in an opposite orientation, immediately upstream of the *kdpBACD-N* operon (Fig 1) [24]. Homologs of such truncated *kdpD* genes are found in the genomes of *Deinococcus-Thermus* group and cyanobacteria (Fig 1), that share close evolutionary relationship [25]. In cyanobacteria, that harbor 2 separate *kdp* operons in yet another distinct organization of regulatory components (Fig 1), only one *kdp* operon responds to potassium limitation, high osmolarity or

Fig 1. Comparison of organization of kdp operon in bacteria. Organization of *kdp* operon in *E. coli* (model organism), representative examples from *Deinococcus-Thermus* group and cyanobacteria (as depicted in KEGG database [29]). The promoter regions are shown with red boxes denoted by the letter ‘P’. Undefined promoter region is shown with a gray box and question mark. A, B, C, D, E and F denote *kdpA, kdpB, kdpC, kdpD, kdpE* and *kdpF* genes, respectively. RR, SK and D-N denote response regulator, sensor kinase and N-terminal half of *kdpD* gene, respectively.

https://doi.org/10.1371/journal.pone.0188998.g001
desiccation [14, 26–28]. However, the role and regulation of kdp operon in the normal physiology and stress responses of D. radiodurans remains completely unexplored.

In this study, we report that the kdp operon of D. radiodurans is induced following K+ limitation but does not respond to high osmolarity, unlike E. coli Kdp ATPase. We also demonstrate that regulation of kdp operon is effected through the cognate response regulator (RR) protein. The knockout mutant of RR (ΔRR) displayed kdp expression null phenotype even under potassium limiting conditions. In rich media, the growth of ΔRR mutant was similar to wild type D. radiodurans. Survival response of ΔRR mutant to other relevant stresses was also evaluated.

Materials and methods

Bacterial strains and growth conditions

All the strains used in this study are listed in Table 1. Wild type D. radiodurans strain R1 ATCC BAA-816 or mutant constructed therein, were grown under standard growth conditions [32˚C with 150 rpm agitation]. The cells were cultured either in TGY (1% Bacto Tryptone, 0.5% Bacto Yeast Extract, 0.1% glucose) broth, or in minimal medium adapted from previous studies [30–32] with modifications. The composition of the minimal medium was: 20mM Na/K phosphate buffer, 0.5% glucose, 0.05% casamino acids, macronutrients: 2.5mM (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}, 0.1mM CaCl\textsubscript{2}, 5μM FeSO\textsubscript{4}, 0.5mM MgCl\textsubscript{2}, micronutrients: 2mM CuSO\textsubscript{4}, 50μM MnCl\textsubscript{2}, 10mM ZnSO\textsubscript{4}, 50μM CoCl\textsubscript{2}, nicotinic acid (1μg/ml), biotin (1μg/ml). Liquid or solid (1.5% Bacto agar) media were supplemented with 10 μg/ml kanamycin when required. The plasmid constructs were maintained or propagated in E. coli JM109 while E. coli BL21(DE3) pLysS strain was used for the over-expression of recombinant proteins (Table 1). All E. coli strains were grown at 37˚C either in LB (Luria-Bertani) broth with agitation (150 rpm), or on LB agar plates supplemented with 50 μg/ml kanamycin or 100 μg/ml carbenicillin, when necessary. Alternatively, E. coli BL21(DE3)pLysS cells harboring pET29b vector with desired gene were grown in auto-induction medium [33] at 20˚C with 150 rpm agitation.

Stress conditions

D. radiodurans cells or its mutant was grown overnight in TGY medium. The cells were washed twice in either TGY, 20 mM K+ phosphate supplemented minimal medium (hereafter referred to as K20 medium) or 20 mM sodium phosphate supplemented minimal medium (hereafter referred to as K0 medium) and the washed cells were inoculated in TGY, K20 medium or K0 medium, respectively, at an initial cell density of OD\textsubscript{600} = 0.5/ml. The cultures were incubated at 32˚C with 150 rpm agitation. The cells resuspended in K0 medium experienced K+ limitation while the cells resuspended in K20 medium or TGY served as controls. For ionic or osmotic stress, K1 medium (1:20 dilution of K20 medium in K0 medium) was supplemented with either 0.1M NaCl or 0.2M sucrose. For gamma irradiation experiments, overnight grown cells of wild type or mutant D. radiodurans cells were resuspended in fresh TGY medium (OD\textsubscript{600} = 3.0), 2 μl aliquots of the cell suspensions and their serial dilutions were spotted onto the TGY plate. The plate was exposed to 5 kGy gamma irradiation (Gamma Cell 5000, Bhabha Atomic Research Centre, dose rate: 1.85 kGy/hr). Following stress, the plate was incubated at 32˚C for 24 h for recovery before the result was scored. For heat and oxidative stresses, the overnight grown cells of wild type or mutant D. radiodurans cells were resuspended in fresh TGY medium (OD\textsubscript{600} = 3.0), 2 μl aliquots of the cell suspensions and their serial dilutions were spotted onto the TGY plate. The plate was exposed to 5 kGy gamma irradiation (Gamma Cell 5000, Bhabha Atomic Research Centre, dose rate: 1.85 kGy/hr). Following stress, the plate was incubated at 32˚C for 24 h for recovery before the result was scored.
Table 1. Bacterial strains, plasmids and primers used in this study.

Bacterial strains	Description
Deinococcus radiodurans	
R1	Wild type strain ATCC BAA-816
ΔRR	ΔDR_B0081 D. radiodurans R1 strain, Kan’
E. coli	
JM109	F’traD36 proAB’ lacIq Δ(lac-proAB) glnV44 e14- gyrA96 recA1 relA1 endA1 thi-1 hsdR17 mcrB’
JM110	F’traD36 lacIq ΔM15 proAB’ rpsL thr leu thi lacY galK galT ara tonA tsx dam glnV44 Δ(lac-proAB)

Plasmids	Description
pUC4K	3.91 kb, Kan’
pBlueScript	2.96 kb phagemid cloning vector; Amp’
pET29b	5.4 kb, pBR322 origin, Kan’
pET-kdpB	7.4 kb, Ndel/XhoI fragment of DR_B0083 ORF (2028 bp) cloned in Ndel/XhoI restricted pET29b, Kan’
pET-skdpB	6.3 kb, Ndel/XhoI fragment of soluble portion of DR_B0083 ORF (914 bp) cloned in Ndel/XhoI restricted pET29b, Kan’
pET-RR	6.0 kb, Ndel/XhoI fragment of DR_B0081 ORF (630 bp) cloned in Ndel/XhoI restricted pET29b, Kan’
pΔRR1	4.08 kb, pBS carrying 0.54 kb of sequence flanking the 5’ and 3’ ends of DR_B0081 (DR_B0081-up and DR_B0081-dn); for the purpose of deleting the chromosomal copy of DR_B0081, Amp’
pΔRR2	5.33 kb, pΔRR with Kan’ cassette inserted between DR_B0081-up and DR_B0081-dn, Amp’, Kan’

Primers	Sequence
Primers for cloning DR_B0083 (kdpB) and DR_B0081 (RR) genes	
kdpB-F	5’-TTTCCGGGTACCCATATGACCAGGGCCCCCTCAG-3’ (KpnI, Ndel)
kdpB-R	5’-AACGCCCTCGAGTGCATCAATCCACC-3’ (XhoI)
skdpB-F	5’-TATAATATGATGAGGCTTGTCGAG-3’ (Ndel)
skdpB-R	5’-TCGTCTAGAGGAGAAAAATGGTCAAGGC-3’ (XhoI)
RR-F	5’-TAAACCGGTACCCATATGGCTGAGGCCCCGGCCGGC-3’ (KpnI, Ndel)
RR-R	5’-ATATGGTCGAGGCGACCCCACCAGCG-3’ (XhoI)
Primers for DR_B0081 (RR) knockout mutagenesis	
RR-up-F	5’-ACACAGTACCCATATGACCGAGGCCCCCTCAG-3’ (KpnI)
RR-up-R	5’-ACACAGATATCTCCGGGCTTTTTTGCTGAG-3’ (EcoRV)
RR-dn-F	5’-AGATAGATATCAGGATGGCCGGCGCCGGC-3’ (EcoRV)
RR-dn-R	5’-AGATAGATATCTCCGGGCTTTTTTGCTGAG-3’ (BamHI)
Primers for promoter cloning	
P200bp-F	5’-AAATATAGCTCCGGCCCGGGAAAAGACAAGCCTC-3’ (HindIII)
P200bp-R	5’-AAATATAGCTCCGGCCCGGGAAAAGACAAGCCTC-3’ (EcoRV)
P38-F	5’-AACCGGCCTATGAGTCTTCTCTCTTCTCCGGGGCCGGC-3’
P38-R	5’-GGCGGGCCACCGGAAGAAGAGGAGATCATAGCCGCTT-3’
Primers for sequencing	
kdpB-548-F_Seq	5’-CATCGTATTCGAAATATACCTC-3’
kdpB-1098-F_Seq	5’-GAGTTCATCGAATTCAGCCGCC-3’
Cloning of DR_B0083 (complete or partial) and DR_B0081 ORFs, and over-expression and purification of corresponding proteins

Genomic DNA of D. radiodurans was prepared as per the protocol reported previously [34]. The DR_B0083 (kdpB), DR_B0083/826-1740bp (skdpB), DR_B0081 (RR) ORFs were PCR amplified from the genomic DNA of D. radiodurans using gene-specific primers listed in Table 1. The PCR products were restriction digested using NdeI/XhoI and cloned into pET-29b plasmid vector at the identical sites. Correct clone was ascertained by DNA sequencing. The resultant constructs pET-kdpB, pET-skdpB or pET-RR were transformed in E. coli BL21 (DE3)pLysS and expression of corresponding proteins was induced in auto-induction medium at 20˚C. The cells were harvested after 15h of growth and the over-expressed proteins (sKdpB and RR) were purified by affinity chromatography using Ni-nitrilotriacetic acid (Ni\(^{2+}\))-NTA-agarose resin (Qiagen, Germany), as per the manufacturer’s protocol. The purified RR protein was used for promoter interaction studies. The sKdpB and RR proteins were purified by gel elution method and used to generate polyclonal antibodies in rabbit, at a commercial facility of Bangalore Genei (India).

Deletion of DR_B0081 (RR) gene and confirmation of the knockout mutant

The ΔDR_B0081 mutant was constructed as per the procedure described previously [35]. In brief, mutagenesis strategy involved complete replacement of DR_B0081 ORF with an aph cassette that conferred kanamycin resistance. For this purpose, the upstream (RR-up) and downstream (RR-dn) sequences (540 bp each) of DR_B0081 were PCR amplified using primer pairs RR-up-F/R and RR-dn-F/R, respectively (Table 1). The PCR amplified RR-up and RR-dn DNA fragments were restriction digested with KpnI/EcoRV and EcoRV/BamHI, respectively and were ligated to the KpnI/BamHI sites of pBlueSkript vector to obtain plasmid pΔRR1. To obtain aph cassette, plasmid pUC4K was restriction digested with HincII to release the 1252 bp DNA fragment harboring aph cassette. The aph cassette was cloned into the EcoRV site of pΔRR1 plasmid, by blunt end ligation. The resultant construct pΔARR2, with aph cassette inserted between the RR-up and RR-dn sequences, was used to transform WT D. radiodurans. Kanamycin resistant transformants were selected on TGY plates containing 10μg/ml kanamycin. The ΔRR knockout mutant was confirmed by PCR and western blot analysis of RR protein.

Immuno-detection of KdpB and RR proteins

The cellular extracts were prepared by sonication (Branson Digital Sonifier, Model 250). Cell debris was removed by centrifugation (10000 rpm for 10 min). The supernatant was centrifuged at 10000g for 1h. The supernatant was collected as cytosolic fraction. The pellet was washed 2 times and then collected as membrane fraction. The cellular proteins extracts, cytosolic or membrane fractions from stressed or unstressed cells were resolved by 12% SDS-PAGE and electro-blotted onto nitrocellulose membrane (Amersham Biosciences, India).
The presence of KdpB or RR proteins was probed with primary polyclonal anti-\textit{D. radiodurans}-sKdpB or anti-\textit{D. radiodurans}-RR antibodies (1:10,000 dilution), respectively, followed by goat anti-rabbit IgG tagged to alkaline phosphatase (Sigma, 1:5000 dilution). The western blots were developed using NBT-BCIP solution (Roche, Germany). The immuno-detected protein bands which appeared on the membranes were quantified using CLIQS 1D PRO (Total Labs, UK).

Electrophoretic mobility shift assay (EMSA)

The promoter region (200 bp, DNA sequence immediately upstream of DR_B0083 i.e. \textit{kdpB} gene) of \textit{kdp} operon was PCR amplified using specific primers (Table 1). Alternatively, the intergenic region (38 bp) between \textit{DR_B0082} (sensor kinase) and \textit{DR_B0083} (\textit{kdpB}) was generated \textit{in vitro} by two primer (P38-F/ P38-R) annealing (Table 1). The DNA fragments were labeled with DIG-ddUTP (Digoxigenin) as per manufacturer’s protocol (Roche, India). DIG labeled promoter fragment (45 ng of DIG-labeled 200 bp DNA) was incubated with indicated concentrations of RR protein in binding buffer [20 mM HEPES pH 7.6,10 mM (NH4)\textsubscript{2}SO\textsubscript{4}, 30 mM KCl, 1 mM EDTA, 1 mM DTT and 0.2% Tween20 (v/v)] at 37°C for 1 h. RR protein was phosphorylated using acetyl phosphate as per the procedure detailed earlier [28]. The DNA–protein complexes were resolved on 10% native polyacrylamide gel at 50 V in 0.5X TBE gel running buffer. The resolved DNA–protein complexes were electro-blotted onto nylon membrane for 30 mins. The nylon membrane was cross-linked with UV, probed with anti-DIG antibody and subsequently developed using colorimetric substrate, NBT-BCIP. Each experiment was repeated three times. The bands which appeared on membranes were quantified using gel quant software (Biochem lab solutions) and the \(K_D\) value for RR protein was obtained by fitting the data to Hill’s equation [36]. Specificity of RR interaction was confirmed by titration of DNA–protein complexes with unlabeled target-specific or non-specific DNA. Further, to determine specific interaction of RR protein with the \textit{kdp} promoter, EMSA was carried out either by replacing \textit{kdp} promoter fragment with non-specific DNA or by replacing RR with BSA protein. Non-specific DNA was a DNA sequence (153) bp from DR_0906 gene amplified using primers listed in Table 1.

Bioinformatic analyses

BLASTP [37] and ClustalW [38] tools were used to analyze sequence similarities and for phylogenetic analyses of the proteins encoded by \textit{kdp} operon of \textit{D. radiodurans}. Presence of \textit{E. coli} like gene promoter elements in the upstream sequence of \textit{kdp} operon was analyzed using BPROM software [39]. Phobius software was used to predict presence of a transmembrane domain in KdpB protein [40].

Results and discussion

The \textit{kdp} operon of \textit{D. radiodurans} responds to K+ limitation

To ascertain if the \textit{kdp} operon of \textit{D. radiodurans} responds to K+ limitation, we cloned the genes for soluble domain of KdpB (sKdpB, amino acids 277–573 of KdpB protein) and response regulator protein, and over-expressed and purified the corresponding proteins and raised polyclonal antibodies (S1 Fig). The genes for full length \textit{kdpB} and sensor kinase were also cloned but expression of corresponding proteins could not be achieved in \textit{E. coli} despite several attempts.

We probed the induction of KdpB as well as RR proteins in response to K+ limitation. The KdpB as well as RR proteins were undetectable in \textit{D. radiodurans} cells grown in TGY medium...
or K20 medium, but the cells incubated in K0 medium showed prominent induction of both KdpB and RR proteins (Fig 2A and 2B). The result shows that the kdp operon of D. radiodurans responds to K⁺ limitation. The induction of RR protein post K⁺ limitation is intriguing since in Anabaena L-31, the basal level of RR remains unaffected by K⁺ limitation [28], while in E. coli as well as in Clostridium acetobutylicum the expression of KdpE increases as a result of synthesis of a polycistronic mRNA encompassing kdpABCDE genes and a read-through effect [41, 42]. Further, we checked the kinetics of gene expression and observed that both the KdpB and RR proteins were synthesized within 30 minutes of transfer of D. radiodurans cells from TGY medium to K0 medium (Fig 2C and 2D). The response to K⁺ limitation was further assessed at different concentrations of K⁺. Both KdpB as well as RR proteins were induced in K0 medium but not in K1 medium (1 mM K⁺ phosphate added to K0 medium) (Fig 2E and 2F), indicating that unlike E. coli, the kdp operon of D. radiodurans could be induced only below 1 mM K⁺ concentration. Similar results were observed for Anabaena L-31 earlier [28]. While most of the KdpB protein localized in membrane (Fig 2G), the RR protein was entirely localized in the membranes (Fig 2H). RR is expected to be a cytosolic protein as it does not possess membrane anchoring or spanning domains. RR protein, when over-expressed in heterologous E. coli, localized entirely in the cytoplasm. In D. radiodurans, DNA is present in the nucleoid [43] and about 70% of the DNA is associated with the membranes [44]. The localization of RR protein in the membrane may be due to its possible interaction with kdp operon signaling proteins (KdpD-N and SK) localized in the membrane and its functionality can be facilitated by association of DNA with the membranes.

The kdp operon of D. radiodurans does not respond to ionic or osmotic stresses

In addition to response to K⁺ limitation, the kdp operon is also induced by high osmolarity in bacteria [45–47]. In E. coli K12, the expression of kdp operon was about 10-fold higher in response to K⁺ limitation as compared to its expression in response to increased osmolarity by 0.4M NaCl, which in turn is about 10-fold higher compared to its expression in response to 0.6M sucrose stress [48]. Expression of kdp operon was originally proposed to be in response to changes in turgor pressure, but was but later debated [49–51]. Here we show that the kdp operon of D. radiodurans does respond to K⁺ limitation but does not respond at all to increased osmolarity. We changed the osmolarity of the K1 medium either by adding 0.1M NaCl or 0.2M sucrose and checked induction of KdpB and RR proteins. Neither KdpB nor RR protein were induced upon addition of NaCl or sucrose (Fig 2I and 2J). The kdp operon of Anabaena L-31, signaling components of which are similar to those of kdp operon of D. radiodurans, does respond to NaCl stress but does not respond to sucrose [27], although, kdp operon of another cyanobacterium Anabaena torulosa does respond to sucrose [26]. In contrast, the kdp operon of D. radiodurans appears to be highly specific for K⁺ limitation alone, and free from the influences of osmolarity.

RR protein induces kdp operon under K⁺ limitation

Comparison of the RR protein encoded by DR_B0081 gene of D. radiodurans revealed 23.9% identity with KdpE of E. coli. BLAST analysis also revealed homology of RR protein with similar two-component response regulators from Deinococcus-Thermus group and cyanobacteria. Therefore, it was pertinent to ascertain if the RR protein was indeed the response regulator of the kdp operon of D. radiodurans. We constructed a knockout mutant of RR by replacing the DR_B0081 gene with aph gene conferring kanamycin resistance, by site directed mutagenesis, as per the strategy outlined in Fig 3A. The knockout mutant was confirmed by PCR analysis. When RR-up-F/RR-dn-R primer pair was used, 2.33 kb and 1.71 kb bands were amplified
Fig 2. KdpB and RR expression under different growth conditions. Expression of KdpB (A) or RR (B) proteins in D. radiodurans cells incubated in TGY, K20 or K0 media. Time course of induction of KdpB (C) or RR (D) proteins in D. radiodurans cells following shift from TGY to K0 medium. Expression of KdpB (E) or RR (F) proteins in D. radiodurans cells incubated in TGY, K0, K1 or K2 media. Localization of KdpB (G) or RR (H) proteins in D. radiodurans cells incubated in K20 or K0 media. Expression of KdpB (I) or RR (J) proteins in D. radiodurans cells grown either in K20 or K0 media, or exposed to ionic (-I, 0.1M NaCl) or osmotic (-O, 0.2M sucrose) stresses in K1 medium. The cellular proteins (100 μg) were resolved by 12% SDS-PAGE, electroblotted onto nitrocellulose membrane and immuno-stained using anti-KdpB or anti-RR antibodies as detailed in materials and methods. The top most protein band (~ 125 kDa) in the corresponding Coomassie stained gel is shown below Fig 2A, 2B, 2C, 2D, 2E, 2F, 2I and 2J, as loading control. For membrane or cytosolic protein extracts, 63 kDa protein band or 44 kDa protein band, respectively, are shown as loading controls (See S2 Fig for details on loading controls). Red bold numbers below the KdpB or RR immuno-stained bands indicate fold increase in their levels over the lanes in which these bands were not observed (denoted by 1).

https://doi.org/10.1371/journal.pone.0188998.g002
from the genomic DNA of the prospective RR knockout mutant and wild type *D. radiodurans*, respectively, thereby confirming that the 0.63 kb *DR_B0081* gene had been replaced by 1.25 kb *aph* cassette (Fig 3A and 3B). The mutant thus obtained failed to induce KdpB upon K⁺ limitation. KdpB as well as RR proteins were induced in wild type *D. radiodurans* under similar culture conditions (Fig 3C). The data confirmed that the RR protein encoded by *DR_B0081* gene was indeed responsible for expression of Deinococcal *kdp* operon under potassium limitation.
RR protein binds to an intergenic DNA sequence between structural and signaling genes of kdp operon

\([Tn]-rich region present in the kdp promoter region in E. coli has been shown to bind response regulator KdpE [52, 53]. A similar \([Tn]-rich region is present in the intergenic region (38 bp) between the kdpB and SK genes of D. radiodurans and in the upstream sequences of kdp operons in other bacteria as well [53, 54] (Fig 4A). Thus, the 38 bp intergenic region harbouring \([Tn]-rich sequence is a potential site for regulation of kdp operon. This short sequence did not possess any sequence elements essential for gene expression as analysed by BPROM software. However, several of the Deinococcal promoters are devoid of the typical E. coli type sequence elements but are still expressed constitutively [55]. Here, we chose a short (38 bp) as well as longer sequence (200 bp) for our study. We determined the binding of RR protein to the promoter sequence of kdpBACD operon (PkdpB-38/ PkdpB-200). Retardation in the mobility of PkdpB-200 incubated with increasing concentrations of RR protein confirmed binding of RR to PkdpB-200 (Fig 4B). We obtained a similar profile of retardation in the mobility of PkdpB-200 incubated with phosphorylated RR protein (S3 Fig). The apparent equilibrium dissociation constant (KD) was calculated to be 3.62 ± 0.56 μM, which signifies the amount of protein required for 50% binding to PkdpB-200. The Hill coefficient value was determined to be 1.36 ± 0.17. Thus, RR showed very low or no co-operativity in binding (Fig 4C). Similarly, the mobility of PkdpB-38 was also retarded in the presence of increasing concentrations of RR protein (S4 Fig), confirming that this small intergenic region indeed provided the site for RR binding. To probe specific interaction of RR protein with PkdpB-200, competitive EMSA was carried out by titrating the DIG-labelled PkdpB-RR complexes with unlabeled PkdpB-200. With increasing concentration of unlabelled PkdpB-200, the labelled PkdpB-200 DNA was released from the PkdpB-200-RR complexes, where the labelled free DNA was clearly visible following competition with increasing amounts of unlabeled specific DNA (Fig 4D). Non-specific interactions of RR with nsDNA or of PkdpB-200 with any protein were ruled out by either incubating RR protein with PkdpB-200 or with nsDNA, or incubating BSA with PkdpB-200 or with nsDNA. DNA-protein complexes were observed only when PkdpB-200 was incubated with RR (Fig 4E), thereby confirming the specific interaction of RR with PkdpB-200.

Relevance of kdp operon to stress resistance of D. radiodurans

Since kdp operon is reported to give survival advantage under stressful conditions in both Gram-positive as well as Gram-negative bacteria [4–12], we checked if presence of inducible kdp operon offered any advantage to D. radiodurans during stress. We used a kdp expression null ΔRR mutant to evaluate survival fitness following different stresses. The ΔRR mutant did not show any growth defect, as compared to wild type D. radiodurans, when grown in TGY medium under standard growth conditions (Fig 5A), or when exposed to 100 mM H2O2 (Fig 5B) or 42˚C heat stress (Fig 5C). However, survival of ΔRR mutant was reduced, as compared to wild type D. radiodurans, following 5 kGy gamma irradiation (Fig 5D).

The study, for the first time, reports functional characterization of the kdp operon of the radioresistant extremophile D. radiodurans, having a distinct operon organization. Unique features of the kdp operon of D. radiodurans include (a) induction of both, the structural and regulatory components, of the kdp operon under extreme potassium limitation, (b) lack of stimulation by increased osmolarity either by NaCl or sucrose, (c) expression of kdp operon through specific interaction of unphosphorylated RR protein with kdp promoter, and (d) confers a minor survival advantage to the organism while recovering from gamma radiation stress.
Fig 4. [Tₐ]-rich region present in the kdp promoter region in various bacteria. (A) [Tₐ]-rich region is shown in pale blue box. The number after the [Tₐ]-rich region indicate the number of bases between the [Tₐ]-rich region and the start codon. [Tₐ]-rich and [Aₐ]-rich KdpE binding site of E. coli and M. smegmatis, respectively, are shown in blue boxes. [Tₐ]-rich sequences in the upstream regions of kdpB gene in other bacteria are shown in red bold letters. (B) Binding of RR protein to the PkdpB-200 of D. radiodurans. The indicted concentrations of RR protein were incubated with PkdpB-200 promoter (45 ng of DIG-labeled 200 bp dsDNA) at 37˚C for 1 h and the DNA–protein complexes were resolved by 10% native PAGE. The amount of DNA-protein complexes were estimated using GelQuant software. Substrate DNA and DNA-RR complex are shown by “—” and “*”, respectively, while wells of the gels are marked by asterisk. (C) The representative graph for DNA protein complexes. The data-points were fitted into Hill’s equation (dotted line) to determine Kₐ value. (D) Titration of RR-promoter complexes with unlabeled promoter DNA. (E) Interaction of RR or non-specific protein BSA with PkdpB-200 (specific target) or non-specific DNA sequence. For (D) and (E), the DNA-protein complexes were resolved as described in legend to Fig 4B.
Supporting information

S1 Fig. Over-expression, purification of sKdpB and RR proteins. The gel image shows sKdpB and RR proteins were overexpressed in E. coli BL21(DE3)pLysS (30 μg protein/lane) and purified sKdpB and RR proteins (5 μg protein/lane) in lanes 1–2 and 3–4, respectively. Molecular weight marker (SDS-7, Sigma) are shown in lane M. The purified RR protein was used for promoter interaction studies. The sKdpB and RR protein bands (shown by arrows on right hand side) were purified by gel elution method and were further used for generation of polyclonal antibodies in rabbit.

S2 Fig. A representative gel image showing loading controls. Whole cell protein extract (Lane 1), cytosolic fraction (Lane 2) and membrane fraction (Lane 3) were resolved by 12% SDS-PAGE. Molecular weight markers (P7712L, NEB) are shown in lane M. The 125 kDa (S-layer protein, DR_2577, *), 63 kDa (ABC transporter-binding protein, DR_1571, **) and 44 kDa (Elongation factor Tu, DR_0309, ***) were used as loading controls for whole cell protein extract, membrane fraction and cytosolic fraction, respectively. For details on the protein identities, please see reference No. 16.

S3 Fig. Binding of phosphorylated RR protein to the PkdpB-200 of D. radiodurans. The indicted concentrations of phosphorylated RR protein were incubated with PkdpB-200 promoter (45 ng of DIG-labeled 200 bp dsDNA) at 37˚C for 1 h and the DNA–protein complexes were resolved by 10% native PAGE. Substrate DNA and DNA-RR complexes are shown by “—” and “~”, respectively, while wells of the gels are marked by asterisk.

Fig 5. Survival of wild type and ΔRR mutant of D. radiodurans (A) under standard growth conditions, (B) exposed to 100 mM H₂O₂, (C) exposed to 42˚ C or (D) exposed to 5 kGy gamma irradiation.

https://doi.org/10.1371/journal.pone.0188998.g005
S4 Fig. Binding of RR protein to the PkdpB-38 of D. radiodurans. The indicted concentrations of RR protein were incubated with PkdpB-38 promoter (45 ng of DIG-labeled 38 bp dsDNA) at 37˚C for 1 h and the DNA–protein complexes were resolved by 12% native PAGE. Substrate DNA and DNA-RR complexes are shown by “——” and “—”, respectively, while wells of the gels are marked by asterisk.

Author Contributions
Conceptualization: Shree Kumar Apte, Bhakti Basu.
Formal analysis: Aman Kumar Ujaoney.
Investigation: Pratiksha Dani, Aman Kumar Ujaoney.
Methodology: Pratiksha Dani, Bhakti Basu.
Supervision: Bhakti Basu.
Validation: Pratiksha Dani, Aman Kumar Ujaoney.
Writing – original draft: Bhakti Basu.
Writing – review & editing: Shree Kumar Apte, Bhakti Basu.

References
1. Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Molecular Microbiology. 2013; 89(4):760–73. https://doi.org/10.1111/mmi.12312 PMID: 23815639
2. Epstein W. The Roles and Regulation of Potassium in Bacteria. Progress in Nucleic Acid Research and Molecular Biology. 2003; 75:293–320. http://dx.doi.org/10.1016/S0079-6603(03)75008-9 PMID: 14604015
3. Su J, Gong H, Lai J, Main A, Lu S. The Potassium Transporter Trk and External Potassium Modulate Salmonella enterica Protein Secretion and Virulence. Infection and Immunity. 2009; 77(2):667–75. https://doi.org/10.1128/IAI.01027-08 PMID: 19001074
4. Checchetto V, Segalia A, Sato Y, Bergantino E, Szabo I, Uozumi N. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. Plant and Cell Physiology. 2016; 57(4):862–77. https://doi.org/10.1093/pcp/pcw032 PMID: 26880819
5. Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. Journal of Biosciences. 2007; 32(3):559–68 PMID: 17536175
6. Ochrombe I, Ott L, Krämer R, Burkovski A, Marin K. Impact of improved potassium accumulation on pH homeostasis, membrane potential adjustment and survival of Corynebacterium glutamicum. Biochimica et Biophysica Acta (BBA)—Bioenergetics. 2011; 1807(4):444–50. http://dx.doi.org/10.1016/j.bbabio.2011.01.008
7. McGlaggan D, Naprstek J, Buurman ET, Epstein W. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. Journal of Biological Chemistry. 1994; 269(3):1911–7. PMID: 7904996
8. Epstein W. Kim BS. Potassium Transport Loci in Escherichia coli K-12. Journal of Bacteriology. 1971; 108(2):639–44. PMID: 4942756
9. Gründling A. Potassium Uptake Systems in Staphylococcus aureus: New Stories about Ancient Systems. mBio. 2013; 4(5). https://doi.org/10.1128/mBio.00784-13 PMID: 24105767
10. Heermann R, Jung K. K⁺ Supply, Osmotic Stress, and the KdpD/KdpE Two-component System. Two-component systems in bacteria Caister Academic Press, Norwich, UK. 2012:181–98.
11. Freeman ZN, Dorus S, Waterfield NR. The KdpD/KdpE Two-Component System: Integrating K+ Homeostasis and Virulence. PLOS Pathogens. 2013; 9(3):e1003201. https://doi.org/10.1371/journal.ppat.1003201 PMID: 23555240
12. Price-Whelan A, Poon CK, Benson MA, Eiden TT, Roux CM, Boyd JM, et al. Transcriptional Profiling of *Staphylococcus aureus* During Growth in 2 M NaCl Leads to Clarification of Physiological Roles for Kdp and Ktr K+ Uptake Systems. mBio. 2013; 4(4). https://doi.org/10.1128/mBio.00407-13 PMID: 23963175

13. Schramke H, Laermann V, Tegetmeyer HE, Brachmann A, Jung K, Attendorf K. Revisiting regulation of potassium homeostasis in *Escherichia coli*: the connection to phosphate limitation. MicrobiologyOpen. 2017; 6(3):e00438. https://doi.org/10.1002/mbo3.438 PMID: 28097817

14. Katoh H, Ashana RK, Ohmori M. Gene Expression in the Cyanobacterium *Anabaena* sp. PCC7120 under Desiccation. Microbial Ecology. 2004; 47(2):164–74. https://doi.org/10.1016/s0028-0146(03)00043-6 PMID: 14749909

15. Battista JR. AGAINST ALL ODDS: The Survival Strategies of *Deinococcus radiodurans*. Annual Review of Microbiology. 1997; 51(1):203–24. https://doi.org/10.1146/annurev.micro.51.1.203 PMID: 9343349

16. Basu B, Apte SK. Gamma Radiation-induced Proteome of *Deinococcus radiodurans* Primarily Targets DNA Repair and Oxidative Stress Alleviation. Molecular & Cellular Proteomics. 2012; 11(1). https://doi.org/10.1074/mcp.M111.011734 PMID: 21989019

17. Dalý MJ, Gaidamakova EK, Matrosova YY, Kiang JG, Fukumoto R, Lee D-Y, et al. Small-Molecule Antioxidant Proteome-Shields in *Deinococcus radiodurans*. PLOS ONE. 2010; 5(9):e12570. https://doi.org/10.1371/journal.pone.0012570 PMID: 20838443

18. Misra HS, Khairnar NP, Barik A, Indira Priyadarssini K, Mohan H, Apte SK. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Letters. 2004; 578(1–2):26–30. https://doi.org/10.1016/j.febslet.2004.06.015 PMID: 15581610

19. Ujaoney AK, Padwal MK, Basu B. Proteome dynamics during post-desiccation recovery reveal convergence of desiccation and gamma radiation stress response pathways in *Deinococcus radiodurans*. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomes. 2017; 1865(9):1215–26. http://dx.doi.org/10.1016/j.bbapap.2017.06.014

20. Luan H, Meng N, Fu J, Chen X, Xu X, Feng Q, et al. Genome-Wide Transcriptome and Antioxidant Analyses on Gamma-Irradiated Phases of *Deinococcus radiodurans* R1. PLOS ONE. 2014; 9(1): e85649. https://doi.org/10.1371/journal.pone.0085649 PMID: 24465634

21. Tsai C-H, Liao R, Chou B, Contreras LM. Transcriptional Analysis of *Deinococcus radiodurans* Reveals Novel Small RNAs That Are Differentially Expressed under Ionizing Radiation. Applied and Environmental Microbiology. 2015; 81(5):1754–64. https://doi.org/10.1128/AEM.03709-14 PMID: 25548054

22. Durand A, Sinha AK, Dard-Dascot C, Michel B. Mutations Affecting Potassium Import Restore the Viability of the *Escherichia coli* DNA Polymerase III hоID Mutant. PLOS Genetics. 2016; 12(6):e1006114. https://doi.org/10.1371/journal.pgen.1006114 PMID: 27280472

23. Hughes FM Jr, Cidlowski JA. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Advances in Enzyme Regulation. 1999; 39(1):157–71. http://dx.doi.org/10.1016/S0065-2571(98)00010-7

24. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, et al. Genome Sequence of the Radioreistant Bacterium *Deinococcus radiodurans* R1. Science. 1999; 286(5444):1571–7. https://doi.org/10.1126/science.286.5444.1571 PMID: 10567266

25. Gupta RS, Johari V. Signature Sequences in Diverse Proteins Provide Evidence of a Close Evolutionary Relationship Between the Deinococcus-Thermus Group and Cyanobacteria. Journal of Molecular Evolution. 1998; 46(6):2620–6. https://doi.org/10.1007/s002160051043-6 PMID: 21989019

26. Alahari A, Ballal A, Apte SK. Regulation of Potassium-Dependent Kdp-ATPase Expression in the Nitrogen-Fixing Cyanobacterium *Anabaena torulosa*. Journal of Bacteriology. 2001; 183(19):5778–81. https://doi.org/10.1128/ jb.183.19.5778-5781.2001 PMID: 11544245

27. Ballal A, Apte SK. Differential Expression of the Two kdp Operons in the Nitrogen-Fixing Cyanobacterium *Anabaena* sp. Strain L-31. Applied and Environmental Microbiology. 2005; 71(9):5297–303. https://doi.org/10.1128/AEM.71.9.5297-5303.2005 PMID: 16151117

28. Ballal A, Apte SK. Characterization of a response regulator protein that binds to *Anabaena* sp. strain L-31 kdp-promoter region. Archives of Biochemistry and Biophysics. 2008; 471(1):65–71. http://dx.doi.org/10.1016/j.abb.2008.02.017 PMID: 18328254

29. Kanelhisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 2000; 28(1):27–30. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173

30. Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilienko A, Makarova K, et al. Physiologic Determinants of Radiation Resistance in *Deinococcus radiodurans*. Applied and Environmental Microbiology. 2000; 66(6):2620–6. https://doi.org/10.1128/aem.66.6.2620-2626.2000 PMID: 10831446

31. Holland AD, Rothfuss HM, Lidstrom ME. Development of a defined medium supporting rapid growth for *Deinococcus radiodurans* and analysis of metabolic capacities. Applied Microbiology and Biotechnology. 2006; 72(5):1074–82. https://doi.org/10.1007/s00253-006-0399-1 PMID: 16575566
32. Daly MJ, Gaidamakova EK, Matrosov VA, Vasilenko A, Zhai M, Venkateswaran A, et al. Accumulation of Mn(II) in *Deinococcus radiodurans* Facilitates Gamma-Radiation Resistance. Science. 2004; 306 (5698):1025–8. https://doi.org/10.1126/science.1103185 PMID: 15459345

33. Studier F.W. Stable Expression Clones and Auto-Induction for Protein Production in *E. coli*. In: Chen YW, editor. Structural Genomics: General Applications. Totowa, NJ: Humana Press; 2014. p. 17–32.

34. Battista JR, Park M-J, McLemore AE. Inactivation of Two Homologues of Proteins Presumed to Be Involved in the Desiccation Tolerance of Plants Sensitizes *Deinococcus radiodurans* R1 to Desiccation. Cryobiology. 2001; 43(2):133–9. http://dx.doi.org/10.1006/cryo.2001.2357 PMID: 11846468

35. Basu B, Apte SK. A novel serralysin metalloprotease from *Deinococcus radiodurans*. Biochimica et Biophysica Acta (BBA)—Proteins and Proteochemics. 2008; 1784(9):1256–64. http://dx.doi.org/10.1016/j.bbabio.2008.05.009

36. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology. 1910; 40:iv—vii.

37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990; 215(3):403–10. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712

38. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21):2947–8. https://doi.org/10.1093/bioinformatics/btm404 PMID: 17846036

39. Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li). Nova Science Publishers. 2011:61 –78.

40. Käll L, Krogh A, Sonnhammer ELL. A Combined Transmembrane Topology and Signal Peptide Prediction Method. Journal of Molecular Biology. 2004; 338(5):1027–36. http://dx.doi.org/10.1016/j.jmb.2004.03.016 PMID: 1511065

41. Polarek JW, Williams G, Epstein W. The products of the kdpDE operon are required for expression of the Kdp ATPase of *Escherichia coli*. Journal of Bacteriology. 1992; 174(7):2145–51. https://doi.org/10.1128/jb.174.7.2145–2151.1992 PMID: 1532387

42. Treuner-Lange A, Kuhn A, Dürre P. The kdp system of *Clostridium acetobutylicum*: cloning, sequencing, and transcriptional regulation in response to potassium concentration. Journal of Bacteriology. 1997; 179(14):4501–12. https://doi.org/10.1128/jb.179.14.4501–4512.1997 PMID: 9226259

43. Eltsov M, Dubochet J. Fine Structure of the *Deinococcus radiodurans* Nucleoid Revealed by Cryo-electron Microscopy of Vitreous Sections. Journal of Bacteriology. 2005; 187(23):8047–54. https://doi.org/10.1128/JB.187.23.8047-8054.2005 PMID: 16291678

44. Burrell AD, Feldschreiber P, Dean CJ. DNA-membrane association and the repair of double breaks in X-irradiated *Micrococcus radiodurans*. Biochimica et Biophysica Acta (BBA)—Nucleic Acids and Protein Synthesis. 1971; 247(1):38–53. http://dx.doi.org/10.1016/0005-2787(71)90805-7

45. Frymier JS, Reed TD, Fletcher SA, Csonka LN. Characterization of transcriptional regulation of the kdp operon of *Salmonella typhimurium*. Journal of Bacteriology. 1997; 179(9):3061–3. https://doi.org/10.1128/jb.179.9.3061-3063.1997 PMID: 9139930

46. Heermann R, Jung K. The complexity of the ‘simple’ two-component system KdpD/KdpE in *Escherichia coli*. FEMS Microbiology Letters. 2010; 304(2):97–106. https://doi.org/10.1111/j.1574-6968.2010.01906.x PMID: 20146748

47. Epstein W. The KdpD Sensor Kinase of *Escherichia coli* Responds to Several Distinct Signals To Turn On Expression of the Kdp Transport System. Journal of Bacteriology. 2016; 198(2):212–20. https://doi.org/10.1128/jb.00602-15 PMID: 26350129

48. Heermann R, Zigann K, Gayer S, Rodriguez-Fernandez M, Banga JR, Kremling A, et al. Dynamics of an Interactive Network Composed of a Bacterial Two-Component System, a Transporter and K+ as Mediator. PLOS ONE. 2014; 9(2):e89671. https://doi.org/10.1371/journal.pone.0089671 PMID: 24586952

49. Asha H, Gowrishankar J. Regulation of kdp operon expression in *Escherichia coli*: evidence against turgor as signal for transcriptional control. Journal of Bacteriology. 1993; 175(14):4528–37. https://doi.org/10.1128/jb.175.14.4528-4537.1993 PMID: 8331081

50. Hamann K, Zimmann P, Altendorf K. Reduction of Turgor Is Not the Stimulus for the Sensor Kinase KdpD of *Escherichia coli*. Journal of Bacteriology. 2008; 190(7):2360–7. https://doi.org/10.1128/JB.01635-07 PMID: 18245296

51. Laimins LA, Rhoads DB, Epstein W. Osmotic control of kdp operon expression in *Escherichia coli*. Proceedings of the National Academy of Sciences. 1981; 78(1):464–8.
52. Sugiura A, Nakashima K, Tanaka K, Mizuno T. Clarification of the structural and functional features of the osmoregulated kdp operon of *Escherichia coli*. Molecular Microbiology. 1992; 6(13):1769–76. https://doi.org/10.1111/j.1365-2958.1992.tb01349.x PMID: 1630316

53. Sugiura A, Nakashima K, Mizuno T. Sequence-directed DNA Curvature in Activator-binding Sequence in the *Escherichia coli* kdpABC Promoter. Bioscience, Biotechnology, and Biochemistry. 1993; 57(2):356–7. https://doi.org/10.1271/bbb.57.356 PMID: 7763498

54. Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, et al. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in *Mycobacterium smegmatis*. Frontiers in Microbiology. 2017; 8(570). https://doi.org/10.3389/fmicb.2017.00570 PMID: 28484428

55. Anaganti N, Basu B, Apte SK. In situ real-time evaluation of radiation-responsive promoters in the extremely radioreistant microbe *Deinococcus radiodurans*. Journal of Biosciences. 2016; 41(2):193–203. PMID: 27240980