Structural and optical properties of Cu-doped CdTe films with hexagonal phase grown by pulsed laser deposition

F. de Moure-Flores, J. G. Quiñones-Galván, A. Guillén-Cervantes, J. Santoyo-Salazar, A. Hernández-Hernández et al.

Citation: AIP Advances 2, 022131 (2012); doi: 10.1063/1.4721275
View online: http://dx.doi.org/10.1063/1.4721275
View Table of Contents: http://aipadvances.aip.org/resource/1/AAIDBI/v2/i2
Published by the American Institute of Physics.

Related Articles
Kinetic behavior of nitrogen penetration into indium double layer improving the smoothness of InN film
J. Appl. Phys. 111, 113528 (2012)
Detection of filament formation in forming-free resistive switching SrTiO3 devices with Ti top electrodes
Appl. Phys. Lett. 100, 223503 (2012)
Direct measurement of lateral macrostep velocity on an AlN vicinal surface by transmission electron microscopy
J. Appl. Phys. 111, 103529 (2012)
Structural modifications of zinc phthalocyanine thin films for organic photovoltaic applications
J. Appl. Phys. 111, 103117 (2012)
Texture and microstructure in co-sputtered Mg-M-O (M=Mg, Al, Cr, Ti, Zr, and Y) films
J. Appl. Phys. 111, 104903 (2012)

Additional information on AIP Advances
Journal Homepage: http://aipadvances.aip.org
Journal Information: http://aipadvances.aip.org/about/journal
Top downloads: http://aipadvances.aip.org/most_downloaded
Information for Authors: http://aipadvances.aip.org/authors

ADVERTISEMENTS
Structural and optical properties of Cu-doped CdTe films with hexagonal phase grown by pulsed laser deposition

F. de Moure-Flores,1,a J. G. Quiñones-Galván,1 A. Guillén-Cervantes,1 J. Santoyo-Salazar,1 A. Hernández-Hernández,1 M. de la L. Olvera,2 M. Zapata-Torres,3 and M. Meléndez-Lira1

1Physics Department, CINVESTAV-IPN, Apdo. Postal 14-740, México D.F. 07360, México
2Electrical Engineering Department, Solid State Section, CINVESTAV-IPN, Apdo. Postal 14-740, México D.F. 07360, México
3CICATA-IPN, Unidad Legaria, México D.F. 11500, México

(Received 21 February 2012; accepted 24 April 2012; published online 16 May 2012)

Cu-doped CdTe thin films were prepared by pulsed laser deposition on Corning glass substrates using powders as target. Films were deposited at substrate temperatures ranging from 100 to 300 °C. The X-ray diffraction shows that both the Cu-doping and the increase in the substrate temperature promote the presence of the hexagonal CdTe phase. For a substrate temperature of 300 °C a CdTe:Cu film with hexagonal phase was obtained. Raman and EDS analysis indicate that the films grew with an excess of Te, which indicates that CdTe:Cu films have p-type conductivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4721275]

I. INTRODUCTION

CdTe is a direct bandgap material with a value of 1.5 eV and an absorption coefficient > 10^5 cm⁻¹ in the visible region, which means that a layer thickness of few micrometers is sufficient to absorb 90% of incident photons. As grown CdTe thin films can exhibit n or p-type electrical conductivity, it has been established that cadmium excess yields n-type while telluride excess yields p-type conductivity.¹ CdTe thin-film solar cell is one of the most promising candidates for photovoltaic energy conversion. The maximum theoretical efficiency for a CdTe/CdS solar cell, at standard spectrum, is about 30%.² In this system a p-type CdTe film plays the role of absorber layer. One of the limitations to increase the efficiency is the difference between the crystal structure of CdTe and CdS that are cubic and hexagonal,³ respectively, because a large density of defects is generated in the interface. A way of reducing this would be to grow the two layers with the same phase. Because the stable phase of CdS is the hexagonal phase is very important to obtain CdTe in hexagonal phase. CdTe polycrystalline films can be prepared by several growth techniques such as close-space sublimation (CSS),⁴ chemical deposition,⁵ sputtering,⁶ pulsed laser deposition (PLD),⁷ vapor transport deposition (VTD), physical vapor deposition (PVD), spray deposition⁸ among others. Some of these techniques, such as CSS, VTD, PVD requires a high growth temperature. Due to the high deposition temperature, the CdTe films are deposited with Cd deficiency, giving rise to p-type conductivity. PLD has some advantages over other techniques, for instance; the high energy atoms and ions in the laser-induced plasma plume produces a higher surface mobility which makes it possible to grow high quality films at relatively low substrate temperature.⁸ In this work we report on the influence of the substrate temperature on the structural and optical properties of CdTe:Cu films grown by PLD. Undoped and Cu-doped CdTe films at low deposition temperature (100-300 °C) with high crystalline quality and excess of Te were obtained. For a substrate temperature of 300 °C a CdTe:Cu film with hexagonal structure and p-type conductivity was obtained.

aElectronic mail: fcomoure@hotmail.com
TABLE I. Cd and Te concentrations, crystal size, thickness and bandgap (E_g) of CdTe and CdTe-Cu films.

Sample	Cd (%)	Te (%)	Cd:Te ratio	Crystal size (nm)	Thickness (μm)	E_g (eV)
CdTe-300	42.9	57.1	0.75	28	5.03	1.49
CdTe:Cu-100	48.45	51.55	0.94	39	2.95	1.34
CdTe:Cu-200	48.30	51.70	0.93	40	4.63	1.39
CdTe:Cu-300	49.43	50.57	0.98	37	3.52	1.41

FIG. 1. XRD patterns of undoped and Cu-doped CdTe films grown at different substrate temperature. Note that the growth temperature and the Cu-doping promote the presence of CdTe in hexagonal phase.

II. EXPERIMENTAL DETAILS

Undoped and Cu-doped CdTe films were grown on Corning glass substrates by modified PLD, this technique uses powders enclosed in a glass ampoule as target. The details of the deposition system are described elsewhere. The films were prepared using a Nd:YAG laser at 1064 nm with a pulse width and frequency of 5 ns and 10 Hz, respectively. The materials employed were powders of CdTe and Cu$_2$Te with a purity of 99.99%. The powders composition used was 1 wt% Cu$_2$Te + 99 wt% CdTe. The powders were mixed by ball milling. Films were grown at substrate temperatures ranging from 100 to 300 °C. The background pressure in the deposition chamber was 10^{-4} Torr and the vacuum in the chamber was maintained during the growth. The distance between source material and substrates was 2.2 cm. The growth time was 10 min. The samples were labeled according to the substrate temperature (Table I). Four samples were prepared and studied: three Cu-doped CdTe films and one undoped CdTe film grown at 300 °C used as reference (CdTe-300 sample). The crystalline structure was determined by X-ray diffraction (XRD), with a Siemens D5000 diffractometer, using
FIG. 2. SEM images of the surface morphology of CdTe and CdTe:Cu films grown by PLD.

III. RESULTS AND DISCUSSION

XRD patterns of the undoped and Cu-doped CdTe films are shown in Fig. 1. It can be seen that all samples present two common peaks located at 23.68° and 39.26°, these peaks may correspond to the cubic or hexagonal CdTe phase and the diffraction planes are (111)C/(002)H and (220)C/(110)H, respectively. Because the CdTe stable phase is the cubic it is proposed that the CdTe-300 and CdTe:Cu-100 samples have cubic structure. The diffractogram 1c) presents three peaks located at 23.68°, 39.26° and 42.64°, the peak located at 42.64° corresponds to the hexagonal CdTe phase and the diffraction plane is (103)H, which indicates that probably the CdTe:Cu-200 sample has the hexagonal phase. The diffractogram 1d) exhibits six diffraction peaks at 22.36°, 23.68°, 25.38°, 32.76°, 39.26° and 42.64°, the peaks located at 22.36°, 25.38°, 32.76° and 42.64° correspond to the hexagonal CdTe phase and the diffraction planes are (100)H, (101)H, (102)H and (103)H. Due to the presence of these four peaks corresponding to the hexagonal phase, the peaks located at 23.68° and 39.26° can be assigned to the hexagonal phase and the diffraction planes are (002)H and (110)H. Therefore, the CdTe:Cu-300 sample has the hexagonal CdTe phase. It is important to note that the diffractograms of the CdTe-300 and CdTe:Cu-100 are very similar, while the diffractograms of the CdTe:Cu films grown at 200 and 300 °C present additional diffraction peaks which correspond to hexagonal phase. From XRD patterns it can be seen that both the incorporation of copper in the CdTe
structure and the increase in the substrate temperature cause the presence of hexagonal CdTe in films grown by pulsed laser deposition. The crystallite size was calculated from XRD using the Scherrer formula:

$$d = \frac{0.9 \lambda}{B \cos \theta_B}$$

where d is the crystallite diameter, λ is the wavelength (1.5406 Å), B is the full width at half maximum (FWHM) of the peak and θ_B is the Bragg angle. The crystallite size is between 28-40 nm (see Table I).

Fig. 2 shows the surface morphology of undoped and Cu-doped films grown at different substrate temperature. The CdTe-300 sample presents grains of arbitrary shape (Fig. 2(a)). The Fig. 2(b) shows the morphology of CdTe:Cu-100 sample which presents grains with circular shape and different grain size ranging from 100 nm to 1.2 μm. The CdTe:Cu-200 sample (Fig. 2(c)) has a smooth morphology with few particles on the surface, these particles have sizes ranging from 150 to 620 nm. The Fig. 2(d) shows the surface morphology of CdTe:Cu-300 sample, which presents a smoother surface composed of flakes. Note that the substrate temperature plays a role very important on the surface morphology of CdTe thin films grown by PLD. It should be note here that SEM images show the grain size while XRD gives the crystallite size and can be different. The XRD and SEM analysis indicate that the grains are composed of small crystallites.

Fig. 3 shows representative Raman spectra for the undoped and Cu-doped CdTe films grown at different substrate temperature. All spectra showed the CdTe longitudinal optical (LO) mode at the frequency of 166.5 cm$^{-1}$ and their second order (2LO) mode at 333 cm$^{-1}$, characteristic of CdTe.\(^6\) The LO modes of cubic and hexagonal phases of CdTe can coincide at the same frequency,\(^13\) so these measurements agree with those of XRD. The features located at 123 and 142 cm$^{-1}$ correspond to the phonon vibrations A_1 and E_1 modes, respectively, in the hexagonal Te structure.\(^6\)\(^,\)\(^14\) The Te characteristic signals appears well defined in 2a) and 2c) spectra and weaker but still noticeable in 2b) spectrum. The Raman measurements indicate that undoped and Cu-doped CdTe films grew with an excess of Te. In order to check this fact EDS measurements were performed. In Table I...
are compiled the atomic concentrations for Cd and Te obtained from EDS analysis as well as the Cd:Te ratio. It can be appreciated that all samples grew with an excess of Te. The Cd:Te ratio of the undoped CdTe-300 sample has a value of 0.75, whereas the Cd:Te ratio for the CdTe:Cu-300 sample was 0.98, note that the last sample presents lower Te excess. Both Raman and EDS measurements indicate that films grew with Te excess. It is accepted that CdTe films with Te excess have p-type conductivity.1

The Fig. 4 shows the transmittance spectra of the CdTe films. The transmission is practically zero in the visible region. The absorption coefficient (α) was calculated for each film by the equation:15

\[T = (1 - R)^2 \exp(-\alpha d) \]

where \(T \) is the transmittance, \(R \) the reflectance and \(d \) the film thickness. The thickness for the samples is found in Table I. The absorption coefficient was used to determine the bandgap (\(E_g \)) using the relation \(a h\nu \approx (h\nu - E_g)^{1/2} \), where \(h\nu \) is the photon energy, as shown in the inset of Fig. 4. The bandgap of undoped CdTe film has a value of 1.49 eV, which agree well with the 1.5 eV bandgap of CdTe at room temperature.1 The bandgap of Cu-doped CdTe films increases from 1.34 to 1.41 eV (Table I). Comparing the bandgap value of the CdTe-300 and CdTe:Cu-300 samples, it can be observed that the Cu-doping reduces the bandgap (from 1.49 to 1.41 eV) of the CdTe films. The decreasing of the bandgap probably can be attributed to the incorporation of Cu ions in the lattice giving rise to acceptor levels in the bandgap. The acceptor levels become degenerate and merge in the valence band causing the valence band to extend into the forbidden region, which reduces the bandgap, a similar behavior has been observed in other II-VI materials.16
IV. CONCLUSIONS

CdTe:Cu films with hexagonal phase at low deposition temperature were obtained by PLD. The structural, compositional and optical properties of CdTe:Cu films were investigated as a function of the substrate temperature and the Cu-doping. The structural analysis indicates that the Cu-doping and the increase in the growth temperature promote the presence of hexagonal CdTe phase. The Raman and EDS measurements indicate that undoped and Cu-doped films grew with an excess of Te, this indicates that the films probably have a p-type conductivity. For a substrate temperature of 300 °C a p-type CdTe:Cu film with hexagonal phase was obtained.

ACKNOWLEDGMENTS

We acknowledge the technical support of Marcela Guerrero, A. García-Sotelo, A.B. Soto, Zacarias Rivera and Josue Esau Romero Ibarra from CINVESTAV-IPN and the partial support by CONACyT-México.

1 Antonio Luque and Steven Hegedus, *Handbook of Photovoltaic Science and Engineering* (John Wiley & Sons Ltd, England, 2003).
2 S. M. Sze and Kwok K. Ng, *Physics of Semiconductor Devices* (John Willey & Sons, New Jersey, 2007).
3 M. Zapata-Torres, F. Chale-Lara, R. Castro-Rodríguez, O. Calzadilla Amaya, M. Meléndez-Lira, and J. L. Peña, “Producción de películas delgadas de CdS,xTe$_{1-x}$ con estructura cúbica para $0 \leq x \leq 1$,” Rev. Mex. Fís. 51(2), 138 (2005).
4 Nazar Abbas Shah, Abid Ali, and Asghari Maqsood, “Preparation and characterization of CdTe for solar cells, detectors and related thin-film materials,” *J. Electron. Mater.* 37, 145 (2008).
5 M. Sotelo-Lerma, R. A. Zingaro, and S. J. Castillo, “Preparation of CdTe coatings using the chemical deposition method,” *J. Organomet. Chem.* 623, 81 (2001).
6 A. Picos-Vega, M. Becerril, O. Zelaya-Angel, R. Ramírez-Bon, J. Espinoza-Beltrán, J. González-Hernández, and S. Jiménez-Sandoval, “Cd self-doping of CdTe polycrystalline films by co-sputtering of CdTe-Cd targets,” *J. Appl. Phys.* 83, 760 (1998).
7 M. González-Alcudia, M. Zapata-Torres, M. Meléndez-Lira, and O. Calzadilla-Amaya, “Microstructural analysis for europium in CdTe films,” *Superlattices Microstruct.* 43, 570 (2008).
8 W. P. Shen and H. S. Kwok, “Crystalline phases of II-VI compound semiconductors grown by pulsed laser deposition,” *Appl. Phys. Lett.* 68(17), 2162 (1994).
9 M. González-Alcudia, A. Márquez-Herrera, M. Zapata-Torres, M. Meléndez-Lira, and O. Calzadilla-Amaya, “Cadmium sulfide pellets for growth of thin films by pulsed laser deposition,” Adv. Tech. Mat. Mat. Proc. J. 9, 81 (2007).
10 JCPDS powder diffraction files, card number 15-0770 for cubic CdTe.
11 JCPDS powder diffraction files, card number 19-0192 for hexagonal CdTe.
12 S. K. Pandey, Umesh Tiwari, R. Raman, Chandra Prakash, Vamsi Krishna, Viresh Dutta, and K. Zimik, “Growth of cubic and hexagonal CdTe thin films by pulsed laser deposition,” *Thin Solid Films* 473, 54 (2005).
13 M. Becerril, O. Zelaya-Angel, A. C. Medina-Torres, J. R. Aguilar-Hernández, R. Ramírez-Bon, and F. J. Espinoza-Beltrán, “Crystallization from amorphous structure to hexagonal quantum dots induced by an electron beam on CdTe thin films,” *J. Cryst. Growth* 311, 1245 (2009).
14 P. M. Amirnazaraj and Fred H. Pollak, “Raman scattering study of the properties and removal of excess Te on CdTe surfaces,” *Appl. Phys. Lett.* 45(7), 789 (1984).
15 J. I. Pankove, *Optical processes in semiconductors* (Prentice-Hall, Inc, New Jersey, 1971).
16 H. Khalilaf, G. Chai, O. Lupan, L. Chow, H. Heinrich, S. Park, and A. Schulte, “In-situ boron doping of chemical-bath deposited CdS thin films,” *Phys. Status Solidi A* 206, 256 (2009).