Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all

Arlene L. Oei1,3†, Lianne E. M. Vriend2†, Johannes Crezee3, Nicolaas A. P. Franken1,3 and Przemek M. Krawczyk2*

Abstract
The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.

Keywords: Hyperthermia, DNA damage, DNA repair, Chemotherapy

Introduction
Hyperthermia – treatment above temperatures that are physiologically optimal – affects cells and tissues on countless levels, by directly altering the physical properties of cellular components and by evoking counteractive cellular responses. Among other effects, heat causes DNA, protein and membrane damage, interferes with cell cycle, DNA and protein synthesis and may result in cell death, either directly or by triggering apoptotic pathways [1–5].

Early research demonstrated that except for the cytotoxic potential, hyperthermia can sensitize cells to DNA damaging agents. Indeed, elevated temperature, applied in combination with various anti-cancer drugs or radiation, has been shown to eradicate transformed cells in vitro and to inhibit tumor growth in animal models [6–13]. It was also speculated, based on results obtained using biochemical methods, that heat may induce DNA damage directly [14–16]. In the subsequent decades, an extensive body of data confirmed that hyperthermia is a powerful sensitizer to many agents that interfere with DNA metabolism or cause DNA damage, suggesting that it might directly interfere with DNA repair. However, how hyperthermia sensitizes cells to DNA damaging agents remained unclear. This changed gradually during the last two decades. With the introduction of advanced fluorescence imaging and molecular biology techniques in the 1990s came deeper understanding of DNA repair networks that, in turn, facilitated interpretation of results. During the last decade a number of important findings cemented the position of hyperthermia research within the DNA repair field and first large clinical trials clearly demonstrated the benefits of hyperthermia as adjuvant in clinical treatment of cancer [17–19] and stimulated research and development of new treatment approaches, such as hyperthermia-mediated drug release [20]. Nevertheless, the effects of hyperthermia on DNA repair are still not sufficiently understood.

It is clear that cytotoxic or sensitizing effects of hyperthermia cannot be attributed to deactivation of a single DNA repair mechanism, but rather to influencing many pathways, on multiple levels. Although this may hamper the interpretation of experimental data, the pleiotropic effects of heat on DNA repair may be extremely beneficial in the clinical settings. Therefore,
understanding how heat interacts with the DNA repair networks will help in improving the existing and designing novel (combination) therapies. This review attempts to categorize the influence of hyperthermia on the known DNA repair pathways, with special attention to those pathways relevant in cancer treatment. Due to space and subject limitations, the effects of hyperthermia on other metabolic pathways or tissues and organs are not discussed, even though they might be as (or more) important in anti-cancer treatments.

It is generally accepted that hyperthermia inhibits DNA repair. However, the fundamental question whether hyperthermia directly induces DNA damage has not been definitively answered. Early studies showed that hyperthermia may induce DNA breaks and chromosomal aberrations, either by causing protein denaturation or by interfering with replication [14–16, 22–25]. Increased levels of 8-oxoguanine, apurinic sites and deaminated cytosines have also been detected after heat treatment [26]. Other studies showed that hyperthermia does not cause DNA damage in absence of additional stimuli. However, heat seemingly increased the levels of single strand breaks (SSBs) and double strand breaks (DSBs) during processing of damage induced by ionizing radiation, possibly by impairing the repair of corrupted bases [24, 27, 28].

Clearly, the question whether heat directly induces DSBs is far from resolved. The majority of studies failed to detect DSBs or chromosome aberrations in heated cells by direct methods [46]. Most reports that did confirm induction of DSBs by heat rely on indirect assays such as phosphorylation of H2AX or accumulation of repair-related proteins. Some other studies confirmed DSB induction by direct methods and showed that phosphorylation of H2AX correlates with cell killing and thermotolerance. More sensitive and specific methods to directly detect DNA DSBs and SSBs may be required to settle the long-standing dispute.
DNA damage signaling and cell cycle checkpoint activation

Even though it is far from certain whether hyperthermia can directly damage DNA, the triggered signaling resembles, to some extent, the responses caused by DNA damaging agents (see also previous section). In mammalian cells, such signaling can initiate checkpoints which interrupt the cycle progression to provide time for DNA repair and are thus essential for the maintenance of genomic integrity [47]. The mammalian checkpoints started in response to DNA damage are managed by the two master kinases, ATM and ATR [48, 49]. ATM is thought to be activated, with help of the the MRN (MRE11/RAD50/NBS1) complex, by DSBs, mainly in G1-phase [47, 50]. ATR chiefly responds to exposed single stranded DNA at stalled replication forks in S-phase, in a manner that is at least partly dependent on ATM [51, 52]. Both ATM and ATR, as well as the DNA-PK kinase, phosphorylate histone H2AX (see also previous section) and many other repair factors in chromatin domains surrounding the damaged DNA. This, in turn, triggers accumulation of multiple DNA repair-related proteins at damaged chromatin, further propagation of the damage signal and activation of the appropriate cell cycle checkpoints via mechanisms dependent on Chk1, Chk2, p53, CDC25a, WEE1 and other factors [47].

Mammalian cells display varying thermosensitivity, depending on the cell cycle phase in which they were heated [53, 54]. In general, G1-phase cells are relatively heat resistant and do not show any damage upon microscopic examination. S-phase cells are more sensitive and chromosomal damage is observed [55, 56]. The highest heat sensitivity can be observed during the M-phase, with damage of cellular mitotic apparatus leading to inefficient cell division and polyploidy. Hyperthermia induces a ‘slow mode of cell death’ in S- and M-phase, while cells heated during G1-phase may enter a ‘rapid mode of death’ [54, 57]. These variations in sensitivity between the different cell cycle phases suggest diversity of molecular mechanisms regulating cell death following hyperthermia, which may indicate involvement of various checkpoint mechanisms [53, 58, 59]. However, the influence of hyperthermia on cell cycle progression is not well understood. Early studies showed increase in length of all phases and arrest at the G1/S transition [60–62], but the underlying mechanisms were unclear. More recent work confirmed activation of cell cycle checkpoints by 42–46 °C heating [63] and implicated activation of ATM and a subset of its downstream targets, including p53, independently of the MRN complex [35, 64] (see also previous section). Another study reported activation of p53 via the thioredoxin-dependent redox state and modulation of checkpoint regulators Gadd45α and Cdc2 at 41 °C [65]. On the other hand, hyperthermia seems to disturb early steps in cellular responses to radiation-induced damage, as delayed formation of 53BP1 foci and phosphorylation of SMC and Chk2 have been reported after treatment at 43 °C [66]. This may be surprising, since ATM directly phosphorylates Chk2 in response to heat [64, 67]. Thus, while heat treatment alone may activate cell cycle checkpoints via the ATM kinase, it can apparently also delay signaling triggered by exogenously induced DNA damage.

ATR and Chk1 are also activated by heat (42.5–45 °C), reportedly to a larger extent than the ATM/Chk2 branch of the DDR, and the ensuing signaling cascade causes G2/M arrest which can be abrogated by inhibition of Chk1 [67, 68]. Chk1 activation is dependent on Rad9, Rad17, TopBP1 and Claspin, which play important roles in activation of ATR at stalled replication forks [69]. However, similarly to heat-induced ATM signaling, not all targets of ATR are activated as neither FancD2 monoubiquitination nor RPA32 phosphorylation were observed [67]. Hyperthermia (43–48 °C) also influences S-phase progression by directly inhibiting multiple processes related to replication [70–72]. Contributing to these effects is the release of nucleolin from the nucleolus which stimulates RPA-nucleolin interactions and may thus limit RPA involvement in replication. It seems feasible that this could, in turn, cause slowing or collapse of replication forks and initiate ATR signaling. In the context of S-phase, the activation of cell cycle checkpoint might therefore be a protective response mitigating the effects of hyperthermia on replication progression. Indeed, mammalian cells are exceptionally sensitive to heat in S-phase and at least part of hyperthermia-related cytotoxicity observed in S-phase cells can be alleviated by inhibition of replication [44]. Both ATM and ATR, as well as DNA-PK, seem to propagate damage signaling in response to heat by phosphorylating histone H2AX [43], with ATM/ATR responding to the presumed heat-induced DNA damage and DNA-PK reacting to heat-induced replication arrest (see also previous section). Intriguingly, the DNA-PK (but not ATR)-mediated H2AX phosphorylation may protect replication forks from collapse and DSB formation [43].

Based on the effects described above, it could be predicted that hyperthermia sensitizes cells to agents that interfere with cell cycle (checkpoints). Indeed, after treatment with hyperthermia (42 °C), antimitotic drugs like paclitaxel, nocodazole or Aurora A inhibitor showed increased toxicity. However, this was not due to activation of cell cycle checkpoints but, surprisingly, due to abrogation of the M checkpoint and forced mitotic exit, resulting in mitotic catastrophe [73]. Although hyperthermia (at 41.5 °C) also stimulates mitotic catastrophe in X-irradiated cells, this is accompanied by strengthening, rather than weakening, of radiation-induced S and G2 checkpoints [74]. It is not clear what mechanisms are responsible for the increased heat sensitivity of M-phase
cells [75], but DNA damage repair is limited in this phase [76], which could explain heat-sensitivity if DNA damage is directly caused by hyperthermia.

Concluding, the effects of hyperthermia on cell cycle progression and checkpoint activation seem to be mediated, to a large extent, by ATM and ATR, the two factors that primarily regulate checkpoints in response to DNA damage. This could indicate that heat induces DNA damage, which in turn activates the DDR cascade. The preferential activation of ATR/Chk1 [67] suggests that, if DNA lesions are indeed induced by heat, they might be related to inhibited or corrupted replication forks. On the other hand, the differences in patterns of signaling initiated by heat, as compared to signaling triggered by direct DNA damage, may suggest involvement of other unidentified mechanisms, such as those related to chromatin changes [77].

Excision repair

Excision repair in mammalian cells encompasses mechanisms that remove corrupted bases or nucleotides and fix DNA mismatches. Excision repair can be subdivided into base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR), with BER and NER proceeding via a SSB intermediate and thus sharing the final steps with SSB repair mechanisms.

BER constitutes the main pathway for the repair of DNA lesions induced by oxidizing or alkylating agents, as well as by endogenous metabolic activities. BER is active throughout the cell cycle and executed by a number of proteins that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases [78]. BER is initiated by various glycosylases which recognize and remove the damaged bases and create abasic (AP) DNA sites. AP endonucleases (APE1 in human cells) then recognize and cleave AP sites and recruit DNA polymerases to restore the gaps, via a SSB intermediate, where BER and SSB repair pathways converge. Tens of thousands of damaged bases per day must be fixed in a mammalian cell, thus BER has evolved as a fast and efficient mechanism of paramount importance for maintaining the genomic integrity [78].

It has been suggested that BER might be the main target of heat at temperatures above 43.0 °C [79, 80]. Indeed, a measurable inhibition of base excision in X-irradiated cells was observed after hyperthermia [81]. Additionally, although hyperthermia treatment (43–45 °C) did not induce DNA damage by itself, it increased the amount of damaged bases and DSBs in X-irradiated cells [27], possibly by inhibiting BER and thus indirectly stimulating conversion of damaged bases to DSBs. Hyperthermia (>41.5 °C) has also been shown to affect the activity of DNA Pol β, an important BER factor [82–86]. However, the lack of correlation between Pol β activity and hyperthermic cell killing has also been reported [87]. In contrast to Pol β, effects of hyperthermia on its partner XRCC1 that is involved in later steps of BER and in SSB repair have not been explored, but it is intriguing that the molecular chaperone HSP90, part of the cellular responses to heat shock, influences DNA repair by regulating interactions between Pol β and XRCC1 [88]. It could be speculated that upon hyperthermia treatment HSP90 is required to chaperone its other client proteins, which could result in decreased mediation of XRCC1-Pol β interactions.

Recently it has been confirmed that mild hyperthermia (42 °C) directly improves BER, at least partially by affecting the cellular glycosylase activities [89]. In particular, hyperthermia inactivates 8-oxoguanine DNA glycosylase (OGG1) by depleting it from the nucleus and eliciting its proteasome-mediated degradation. The inhibition of OGG1 then likely contributes to heat-induced radio- or chemosensitization.

On the other hand, siRNA-mediated downregulation of AP endonuclease (APE1), a critical BER enzyme, failed to influence hyperthermic radiosensitization in HeLa cells, suggesting that BER is not affected by 41.5 °C incubation [90]. It should be noted, however, that only about 70 % downregulation of APE1 was achieved in this study and the residual protein levels might be sufficient to sustain (partial) BER activities. Moreover, the contribution of APE1 to cellular radiation responses is unclear and while some studies show that decreased APE1 levels correlate with increased radiosensitivity others show the opposite effects [90, 91].

Nucleotide excision repair (NER) is involved in excision mechanisms that remove DNA damage like pyrimidine dimers and (6–4) photoproducts [92]. The influence of hyperthermia on NER has not been extensively explored, but one study showed reduced NER-associated strand incision and considerably delayed repair of thymidine dimers in cultured human fibroblasts and keratinocytes heated at 43 °C. Additionally, the repair of UV-B-damaged plasmid DNA was lower if the transfected cells were exposed to heat [93].

One argument supporting the notion that hyperthermia interferes with NER stems from studies on sensitization to platinum-based compounds. Cisplatin and its derivatives, used widely in clinical cancer treatment, produce DNA interstrand cross-links that can be either repaired by the NER machinery or, after conversion to DSBs, by replication-coupled repair [94–96]. A wide body of evidence indicates that 39–43 °C hyperthermia sensitizes cells to cisplatin [97–100], suggesting that NER may indeed be among heat targets. One study compared hyperthermia-mediated (40–41 °C) sensitization to cisplatin in cells lacking the major NER factor XPA with wild-type cells [101]. Results showed comparable sensitization in both cell lines, leading to suggestion that NER plays no major role in this process.
However, cisplatin-induced DNA lesions can also be repaired by pathways other than NER [95], which could explain these results, although these other pathways can also be affected by heat. Among modulatory effects of hyperthermia on cellular responses to cross-linkers is also suppression of cisplatin-induced XPC and XPA, as shown in human epithelial ovarian cancer xenografts incubated at 43 °C [102].

The effects of hyperthermia on MMR are even less explored. It has been shown that MMR factors hMLH1 and hMSH2 translocated from the nucleus into the cytoplasm in response to 41–42 °C heat shock [103]. This study also showed, by applying comet assay, that hyperthermia induces DNA damage. Surprisingly, in heat-shocked MMR-deficient cells less DNA damage was detected than in wild-type counterparts, for up to 4 h after treatment, but the DNA repair capacity 24 h after treatment remained unaffected. These results suggest that MMR may stimulate induction (or conversion) of DNA lesions by heat, but is not involved in repair.

The excision repair pathways interplay at restoring DNA lesions induced by many different classes of chemotherapeutics, including alkylating agents and antimetabolites [104–107]. Hyperthermia sensitizes cells to many of these agents (Table 1), providing support for the hypothesis that excision repair pathways are affected by heat. However, clear interpretation of experimental and clinical data is hampered by extensive overlap of these mechanisms during repair of various lesions. For instance, DNA damage caused by alkylating agents, either directly or during processing of the initial lesions, can be repaired by NER, BER, MMR, as well as by SSB and DSB repair pathways [92, 105, 108] (Table 1).

Non-homologous end joining

Non-homologous end joining (NHEJ) is one of the major pathways to repair DSBs in mammalian cells. NHEJ is active throughout the cell cycle and rejoins the broken DNA ends without the requirement for homology or repair template [109]. Recently, two NHEJ subpathways have been discerned: the classical and alternative (or backup) NHEJ (alt-NHEJ). During the classical NHEJ (c-NHEJ), the Ku heterodimer is among the first factors that bind DNA ends. Upon binding, it becomes a scaffold for the subsequent recruitment of the end processing nucleases and ligases. As naturally occurring DSBs rarely result in clean DNA ends suitable for direct ligation, they are first processed by the Artemis/DNA-PKcs complex that provides various nucleolytic activities, and possibly by APLF and PNK. Ligation is then performed by the XLF/XRCC4/ DNA ligase IV complex and the recently discovered XLF/ XRCC4 paralog PAXX [110]. The Ku and ligase IV-dependent alternative NHEJ may instead involve PARP1, XRCC1 and DNA ligases I or III [111]. While c-NHEJ is generally an accurate pathway, alt-NHEJ may be responsible for improper repair and formation of chromosome translocations in the absence of c-NHEJ [112, 113].

Table 1 DNA damaging chemotherapeutic agents interacting with hyperthermia

Class	Agent [with references to studies showing interaction of the agent with hyperthermia]	Type of inflicted DNA damage	Pathways involved in repair [references]
Alkylating agents	triazenes (temozolomide [182, 183]) - nitrogen mustard derivatives (cyclophosphamide [13, 185–191], melphalan [191–199]) - aziridine-containing (mitomycin C [10, 187, 191, 200–203])	strand cross-links, adducts, DSBs (indirect)	NER, BER, MMR, NHEJ, HR [108, 184]
Alkylating-like platinum compounds	cisplatin [12, 100, 101, 191, 201, 204–210], carboplatin [211–214], oxaliplatin [198, 199, 209, 215]	strand cross-links, DSBs (indirect)	NER, BER, MMR, HR [94, 95, 216, 217]
Antimetabolites	pyrimidine analogs (5-fluorouracil [218], gemcitabine [161, 199, 219]) - purine analogs (2-aminopurine [222], 6-thioguanine [222]) - dihydrofolate reductase inhibitors (methotrexate [210, 223])	SSBs, DSBs (indirect), oxidative damage	HR, MMR, NER [148, 161, 220, 221]
Topoisomerase I poisons	camptothecin [224], B-lapachone [144, 145], teniposide [199]	SSBs	BER, NER, NHEJ [225, 226]
Topoisomerase II poisons	intercalators (doxorubicin [187, 188, 227–230])	DSBs	NHEJ, HR [231–233]
Radiomimetics	enediyne (neocarzinostatin [10]) - bleomycin [6, 10, 12, 191, 210, 236, 237] - mitomycin C [10, 187, 191, 200–203]	SSBs, DSBs, oxidative damage, strand cross-links	HR, NHEJ, BER, [136, 137, 234, 235]
PARP inhibitors	olaparib [150, 153], PJ-34 [150]	SSBs, DSBs (indirect)	HR, BER [238–240]
Whether NHEJ is inhibited by hyperthermia has been a subject of long debate. The initial evidence of NHEJ involvement can be found in data showing that hyperthermia sensitizes cells to ionizing radiation in G1- and G2-phase of the cell cycle, where mostly NHEJ mechanisms are responsible for repair of DSBs, although the degree of sensitization is increased in S- and M-phases [53, 114–116]. Later studies compared the degree of hyperthermia-mediated radiosensitization in wild-type and repair deficient Xrs-5 cells in plateau phase of growth and found that these cells could no longer be radiosensitized by hyperthermia. The rationale behind these experiments was that if repair pathway X is an (exclusive) target of hyperthermia, (wild-type) cells with a proficient pathway X can be radiosensitized by hyperthermia. This is in contrast to cells with a defect in pathway X which would no longer be radiosensitized. Using this logic, it was concluded that the DNA repair pathway defective in Xrs-5 cells is targeted by 43–45 °C hyperthermia [117, 118]. The deficiency in Xrs-5 cells was later attributed to the absence of a functional Ku protein [119–121], indirectly implicating NHEJ in heat-mediated radiosensitization. However, a number of subsequent studies showed no significant difference in sensitization of wild-type and NHEJ-deficient cell lines at similar temperatures (42.5–45.5 °C) [122–126]. Further, chemical inhibition of DNA-PK activity potentiated hyperthermia-mediated radiosensitization [127] and stimulated heat–induced apoptosis [128]. To explain this discrepancy, it was proposed that the Ku-independent alt-NHEJ pathway may instead be targeted by heat [129]. In log-phase cells, both c-NHEJ and alt-NHEJ pathways are active. Thus, in log-phase c-NHEJ-deficient cells, alt-NHEJ is still operational and, if this pathway is heat-sensitive, such cells could potentially be further sensitized by hyperthermia. In contrast, in plateau-phase cells alt-NHEJ seems severely compromised [130] and innate c-NHEJ deficiency would render such cells resistant to further heat-induced radiosensitization.

Although evidence of direct effects of hyperthermia on alt-NHEJ is lacking, effects on c-NHEJ factors have been observed by several groups. Studies showed heat-mediated inactivation of DNA binding by Ku and decreased activity of DNA-PK complex that correlated with the degree of radiosensitization, at temperatures of 44–45 °C [131–133]. Additionally, incubation at 44.5 °C induced aggregation of Ku in nuclei of human cells [134]. A recent study confirmed reversible repression of DNA-PK activity by 44 °C hyperthermia and reported considerable decrease in Ku70 and Ku80 protein levels, along with a more modest decrease in levels of BRCA1 and 53BP1 [135].

Hyperthermia (>41.5 °C) sensitizes cells to radiomimetic drugs such as bleomycin and necarzinostatin that induce DSBs repaired by NHEJ mechanisms [6, 12, 136–139] (Table 1). One caveat in the interpretation of these experiments is that such drugs also induce SSBs and oxidative damage that may be repaired by other mechanisms or converted to DSBs and repaired by homologous recombination (see next paragraph) in the ensuing S/G2-phase of the cell cycle. Interestingly, even though DSBs indirectly induced by inhibitors of Topoisomerase II are primarily repaired by NHEJ [140], heat not only fails to sensitize cells to Topoisomerase II inhibitor etoposide, but exerts protective effects [141]. It has been suggested that hyperthermia may prevent formation of Topoisomerase II cleavage complexes after etoposide treatment, thereby reducing the DSB burden in treated cells [141]. This is in contrast to Topoisomerase I and II inhibitor β-lapachone [142, 143], whose cytotoxicity is potentiated by 42 °C hyperthermia [144, 145].

Thus, although indirect genetic studies do not confirm NHEJ as an exclusive target of hyperthermia, other results clearly support the notion that NHEJ is among the affected DNA repair mechanisms.

Homologous recombination
Homologous recombination (HR) is the second DSB repair pathway of major importance in mammalian cells. HR requires a homology template, usually the sister chromatid, and is thus only active during S- and G2-phases. The first step in HR is the generation of 3' single-stranded DNA overhangs, driven by the MRN complex. RPA quickly coats the exposed single-stranded DNA but is later replaced by RAD51 with help of BRCA2. The RAD51 nucleoprotein filaments are crucial for the search for the homologous duplex DNA, strand invasion, and the formation of the so-called Holliday junctions. The invading strand is extended by DNA polymerases, which copy the missing DNA sequence from the homologous template DNA, and, after dissolution of the Holliday junctions, the ends are ligated together [146].

Similarly to NHEJ, the involvement of HR in hyperthermic radiosensitization has been debated. Early studies indirectly excluded HR as a sole target of 42–45 °C hyperthermia [147], since rodent cell lines defective in XRCC2 and XRCC3, important HR factors, were normally radiosensitized by hyperthermia (43 °C) [80, 148], as were HR-deficient chicken DT40 cells (44 °C) [147, 149]. However, more direct readouts of HR later showed that hyperthermia (>41 °C) does inhibit HR, in human and mouse cells [150]. In particular, heat delays formation of IRIF by key HR proteins RAD51 and BRCA2 and inhibits HR-mediated gene targeting in mouse ES cells, possibly by inducing robust but temporary degradation of BRCA2 [150–152]. This hyperthermia-induced HR deficiency is enhanced by concomitant inhibition of HSP90 and can be used to sensitize cells to inhibitors of Poly (ADP-ribose) polymerase (PARP) [150, 153]. Heat (>41 °C) also inactivates RPA [154], reduces the levels of nuclear MRE11
protein and disrupts the interactions between the members of the MRN complex [155–158], which may be of consequence for initiation and progression of HR [159]. Interestingly, a reduction of BRCA1 protein levels is also seen upon heat exposure (42–44 °C) [135, 160] and BRCA1 seems to protect cells from effects of heat, such that overexpression of wild-type BRCA1 in cells decreases their heat sensitivity and mutant BRCA1 cells are more sensitive to treatment at 42 °C [160]. Additionally, the temperature of 42.5 °C may inhibit the recruitment of RAD51 to stalled replication forks [161].

Further evidence of targeting HR by hyperthermia can be found in studies of hyperthermic sensitization to various chemotherapeutic drugs. Nucleoside analogue gemcitabine is incorporated into the DNA during replication, leading to collapse of replication forks and generation of DSBs that are mostly restored by HR [148, 161, 162]. Hyperthermia (42.5 °C) inhibits the recruitment of RAD51 and impairs HR repair at stalled replication forks, thereby sensitizing cells to gemcitabine [161] (Table 1). HR is also involved in repair of SSBs and DSBs induced by ionizing radiation and other types of DNA damage, including cross-links induced by platinum compounds or mitomycin C, and hyperthermia can sensitize cells to all these agents (Table 1). However, multiple other pathways participate in repair of these lesions (Table 1), obscuring the importance of HR in the process.

Clinical perspective
The potential of hyperthermia to sensitize (cancer) cells to DNA damaging agents (Table 1) has been obvious for many decades. However, clear clinical benefits could only be demonstrated much later, perhaps due to technical challenges related to the development of reliable hyperthermia applicators, treatment planning and adequate dosimetry [163–165]. The effectivity of hyperthermia combined with radiation has been demonstrated in several randomized phase II/III trials for melanoma, cervix, breast, head and neck cancer, showing a significant enhancement in radiation effectivity without a significant increase in toxicity [166–170]. Also, the combination of hyperthermia and cisplatin or similar agents has been tested in a number of phase II and some phase III trials. Hyperthermia enhanced the effectiveness of mitomycin C in phase III trials for bladder cancer [171, 172] and of etoposide, ifosfamide and doxorubicin for soft tissue sarcomas [173]. A review on Hyperthermic IntraPëritoneal Chemotherapy (HIPEC) treatment for ovarian cancer showed no increase of toxicity due to hyperthermia [174]. Reviews summarizing about 30 randomized hyperthermia trials are given in [175–177]. An overview of the clinical effectiveness and toxicity of trimodality treatment schedules comprising hyperthermia, radiation and cisplatin or oxaliplatin was given by [178], listing 13 nonrandomized phase I/II trials for breast, head and neck, cervix and oesophagus cancer. Results showed that this form of trimodality treatment is feasible and effective with only moderate toxicity. Also, multiple studies in recurrent cervical cancer show that hyperthermia enhanced the uptake and cytotoxicity of cisplatin without additional side effects [19, 179–181]. Summarizing, hyperthermia has shown very significant enhancement of the effectivity of both radiotherapy and chemotherapy without increasing toxicity in various multi-modality settings. The multitude of drug combinations and treatment modalities that show positive effects in combination with hyperthermia seems to reflect the multitude of DNA repair and other pathways that are affected by heat.

Conclusions
Hyperthermia has been subject of investigations for nearly half a century, yet its numerous effects on cells and tissues still remain unclear. In particular, it is not well known how heat interacts with DNA repair pathways, which is highly relevant in clinical cancer treatment. It is apparent from studies reviewed here that in the early years of hyperthermia research many of major effects of hyperthermia on cells were observed, but mechanistic insight was lacking due to limited understanding of cellular pathways, including DDR. As this understanding deepened and new
molecular biology tools became available in the 1990s and 2000s, the search for proteins and pathways targeted by hyperthermia intensified. Major contributions were made by studies that analysed hyperthermic sensitization in DNA repair-deficient cells. However, results of these studies were generally interpreted under assumption that one major pathway is responsible for the effects of heat on DNA repair, leading to multiple conflicting hypotheses. We now only begin to see how many facets of DDR are disturbed, including direct effects on major DNA repair factors (Fig. 1), damage signaling, checkpoints, cell cycle progression and apoptosis.

Although difficult to study, these effects are highly beneficial in clinical practice. By disturbing multiple DNA repair pathways, hyperthermia sensitzes cells to a broad range of DNA-damaging agents. Recent clinical trials clearly demonstrated the benefits and safety of treatments involving hyperthermia. Although much remains to be discovered, hyperthermia is no longer the black box it once was and it is bound, in the near future, to take more central stage in clinical cancer treatment.

Competing interests
Authors declare that they have no competing interests.

Authors' contributions
PMK devised the concept, ALO, LEMV, JC, NAPF and PMK wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Dutch Cancer Society (grants # UVA 2008–4019, # UVA 2012–5540 and UVA 2011–4962), NWo Medium grant and the Mauritius en Anna de Kok foundation.

Author details
1 Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands. 2 Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. 3 Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Received: 8 May 2015 Accepted: 13 July 2015
Published online: 07 August 2015

References
1. Engin K. Biological rationale and clinical experience with hyperthermia. Control Clin Trials. 1996;17:31–42.
2. Luchetti F, Canonico B, Della Felice M, Burattini S, Battistelli M, Papa S, et al. Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol. 2002;18:1041–52.
3. Lepock JR. Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int J Hyperthermia. 2004;20:115–30.
4. Vertrees RA, Das GC, Coscio AM, Xie J, Zwischenberger JB, Boor PJ. A mechanism of hyperthermia-induced apoptosis in ras-transformed lung cells. Mol Carcinog. 2005;44(11):1–21.
5. Rott Rotti JL. Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int J Hyperthermia. 2008;24:3–15.
6. Braun J, Hahn GM. Enhanced cell killing by bleomycin and 43 degrees C hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res. 1975;35:2921–7.
7. Hill SA, Deneke Jr. The response of six mouse tumours to combined heat and X rays: implications for therapy. Br J Radiol. 1978;52:209–18.
8. Henle KJ. Sensitization to hyperthermia below 43 degrees C induced in Chinese hamster ovary cells by step-down heating. J Natl Cancer Inst. 1980;64:1479–83.
9. Stewart FA, Denekamp J. Fractionation studies with combined X rays and hyperthermia in vivo. Br J Radiol. 1980;53:346–56.
10. Mizuno S, Amagai M, Ishida A. Synergistic cell killing by antitumor agents and hyperthermia in cultured cells. Gan. 1986;71:471–8.
11. Ishida A, Mizuno S. Synergistic enhancement of bleomycin cytotoxicity toward tumor cells in culture by a combination of ethanol and moderate hyperthermia. Gan. 1981;72:455–8.
12. Herman TS, Henle KJ, Nagle WA, Moss AJ, Monson TP. Effect of step-down heating on the cytotoxicity of adriamycin, bleomycin, and cis-diaminedichloroplatinum. Cancer Res. 1984;44:1823–6.
13. Hazan G, Lurie H, Yerushalmi A. Sensitization of combined cis-platinum and cyclophosphamide by local hyperthermia in mice bearing the Lewis lung carcinoma. Oncolgy. 1984;41:68–9.
14. Warters RL, Henle KJ. DNA degradation in Chinese hamster ovary cells after exposure to hyperthermia. Cancer Res. 1982;42:4427–32.
15. Ariya H, Maehara Y, Sugimachi K. In situ nick translation method reveals DNA strand scission in Hela cells following heat treatment. Cancer Lett. 1988;40:333–5.
16. Wong RS, Dynlacht JR, Cederwall B, Dewey WC. Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int J Radiat Biol. 1995;68:141–52.
17. Van der Zee J, Gonzalez GD. The Dutch Deep Hyperthermia Trial: results in cervical cancer. Int J Hyperthermia. 2002;18:1–12.
18. Francenna M, Lutgens LC, Koper PC, Kleynen CE, van der Steen-Banasik EM, Jobsen JJ, et al. Radiotherapy and hyperthermia for treatment of primary locally advanced cervix cancer: results in 378 patients. Int J Radiat Oncol Biol Phys. 2009;73:242–50.
19. Heijkoop ST, van Doorn HC, Stalpers LJA, Boere IA, van der Veldsen J, Francenna M, et al. Results of concurrent chemotheraphy and hyperthermia in patients with recurrent cervical cancer after previous chemoradiation. Int J Hyperthermia. 2011;4:306–10.
20. Al-Ashmawy ZS, Al-Jamal WT, Bosche NJ, Bui TT, Drake AF, Mason AJ, et al. Lipid-epitope vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012;6:9335–46.
21. Yarmolenko PS, Moen EI, Landon C, Manzoor A, Hochman DW, Viglianti BL, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia. 2011;27:320–43.
22. Jonitmsra JB, Konings AW. The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res. 1984;98:198–208.
23. Jonitmsra JB, Konings AW. DNA lesions in hyperthermic cell killing: effects of temperature, time, and ethanol. Radiat Res. 1986;106:69–79.
24. Dickomey E, Franzke J. Effect of heat on induction and repair of DNA strand breaks in X-irradiated CHO cells. Int J Radiat Biol. 1992;61:221–33.
25. Wong RS, Kapp LN, Krishnaswamy G, Dewey WC. Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase. Radiat Res. 1993;133:52–9.
26. Warters RL, Brizgys LM. Apurinic site induction in mammalian cells heated at hyperthermic temperatures. J Cell Physiol. 1987;133:144–50.
27. Darm-Daphi J, Brizgys LM. Apurinic site induction in mammalian cells heated at hyperthermic temperatures. J Cell Physiol. 1987;133:144–50.
34. Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia. 1995;11:459–88.

35. Hunt CR, Pandita RK, Laslo A, Higashikubo R, Agarwal M, Kitamura T, et al. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 2007;67:3010–7.

36. Takahashi A, Mori E, Su X, Nakagawa Y, Okamoto N, Uemura H, et al. ATM is the predominant kinase involved in the phosphorylation of histone H2AX after heating. J Radiat Res. 2010;51:417–22.

37. Takahashi A, Mori E, Ohnishi T. The Foci of DNA Double Strand Break-recognition Proteins Localize with γH2AX After Heat Treatment. J Radiat Res. 2010;51:1–5.

38. Laslo A, Fleischer I. The heat-induced gamma-H2AX response does not play a role in hyperthermic cell killing. Int J Hyperthermia. 2009;25:199–209.

39. Soutoglou E, Misteli T. Activation of the cellular DNA damage response in the absence of DNA lesions. Science. 2008;320:1507–10.

40. Bencokova Z, Kaufmann NR, Pless IM, Lecane PS, Giaccia AJ, Hammond EM. ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 2009;29:526–37.

41. Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV. Pseudo-DNA damage response in senescent cells. Cell Cycle. 2009;8:4112–8.

42. Wang L, Dai W, Lu L. Osmotic stress-induced phosphorylation of H2AX by polo-like kinase 3 affects cell cycle progression in human colorectal epithelial cells. J Biol Chem. 2014;289:29827–35.

43. Velichko AK, Petrova NV, Kamilova ON, Slesareva SN, Kravchenko VN. Induction of DNA damage by hyperthermia. J Radiat Res. 2011;52:43–53.

44. Wang Y, Guan J, Wang H, Wang Y, Leeper D, Ilakis G. Regulation of DNA replication by hyperthermia. Int J Hyperthermia. 2009;25:199–209.

45. Yan S, Michael WM. TopBP1 and DNA polymerase alpha-mediated recruitment of the 9–1–1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation. Cell Cycle. 2009;8:2778–84.

46. Watters RL, Stone OL. The effects of hyperthermia on DNA replication in HELA cells. Radiat Res. 1983;97:71–84.

47. Iliakis GE, Krieg T, Guan J, Wang Y, Wang Y, Leeper D. Evidence for an S-phase cell-cycle-dependent regulation of DNA replication after heat shock: a review. Int J Hyperthermia. 2004;20:240–9.

48. Giovannetti S, Bellapu D, Morozov VM, Ishov AM. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy. Cell Cycle. 2013;12:2598–607.

49. Mackey MA, Ianzini F. Enhancement of radiation-induced mitotic catastrophe by moderate hyperthermia. Int J Radiat Biol. 2000;76:273–80.

50. Ueno M, Dousi E, Biological of Thermal Potentiation of Radiotherapy. 1989.

51. Terasawa M, Shiohara A, Shiohara M. Canonical non-homologous end joining in mitosis induces genome instability and is suppressed by M-phase-specific phosphorylation of XRCC4. PLoS Genet. 2014;10, e1004563.

52. Ilakis GE, Pantelias GE. Effects of Hyperthermia on Chromatin Condensation and Nucleolus Disintegration as Visualized by Induction of Premature Chromosome Condensation in Interphase Mammalian Cells. Cancer Res. 1989;49:1254–60.

53. Diano GL, Hübscher U. Mammalian base excision repair. The forgotten archangel. Nucleic Acids Res. 2013;41:3483–90.

54. Kampinga HH, Dikomey E. Hyperthermic radiosensitization: mode of action and cellular targets. Int J Radiat Biol. 2000;76:273–80.
Dikomey E, Jung H. Correlation between thermal radiosensitization and heat-induced loss of DNA polymerase beta activity in CHO cells. Int J Radiat Biol. 1993;63:215–21.

Jorritsma JB, Burgman P, Kampying HH, Konings AW. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Radiat Res. 1986;102:307–19.

Fang Q, Inanc B, Scharmus S, Wang X-H, Lee L, Brown AR, et al. HSPP0 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat Commun. 2014;5:5513.

Fanti D, Moritz E, Avére F, Amouroux R, Campalans A, Epe B, et al. Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments. DNA Repair. 2013;12:237–37.

Batuello CN, Kelley MR, Dynlacht JR. Role of Apel1 and Base Excision Repair in the Radiation Response and Heat-radiosensitization of HeLa Cells. Anticancer Res. 2009;29:3139–25.

Chen DS, Olokwili ZL. Biological Responses of Human Apurinic Endonuclease to Radiation-Induced DNA Damage. Ann N Y Acad Sci. 1994;725:180–8.

Martelijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15:465–81.

Schmidt-Rose T, Pollet D, Will K, Bergemann J, Wittern KP. Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells. J Photochem Photobiol B. 1999;53:144–52.

Raschle M, Knipscheer P, Knipscheer P, Enoiu M, Angelov T, Sun J, et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell. 2008;134:969–80.

Enou M, Jincki J, Schärer OD. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 2012;40:8953–64.

Zhu G, Myint M, Ang WH, Song L, Lippard SJ. Monofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells. Cancer Res. 2012;72:790–800.

Waller KE, DeGregorio MW, Li GC. Hyperthermic potentiating of cis-diamminedichloroplatinum(II) cytotoxicity in Chinese hamster ovary cells resistant to the drug. Cancer Res. 1986;46:2624–25.

Herman TS, Teicher BA, Cathcart KNS, Kaufmann ME, Lee JL, Lee M-H. Effect of hyperthermia on cis-diamminedichloroplatinum(II) (holmadine 123) 2 [tetrachloro platnum (II)] in a human squamous cell carcinoma line and a cis-diamminedichloroplatinum (II)-resistant subline. Cancer Res. 1988;48:1011–5.

Hettinga J, Koning S, Kampinga HH. Reduction of cellular cisplatin resistance by hyperthermia-a review. Int J Hyperthermia. 1997;13:439–52.

Bergs JWJ, Haveman J, Ten Cate R, Medema JP, Franken NAP, Van Bree C. Anticancer Res. 2005;25:2649–53.

Mueny C, States VA, Masters JH, Fan TW, Helm CW, States JC. Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraarterial chemotherapy (HIPEC). J Ovarian Res. 2011;4:9.

Nadin SB, Cuello-Carrion FD, Sottile ML, Ciocca DR, Vargha-Roig LM. Effects of hyperthermia on Hsp72 (HSPI), Hsp72 (HSRIA) and DNA repair proteins HMLH1 and HMLH2 in human colorectal cancer hMLH1-deficient and hMLH1-proficient cell lines. Int J Hyperthermia. 2012;28:191–201.

De Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13:768–85.

Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12:104–20.

Güçüloğlu M, Martin SA. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp Cell Res. 2014;329:110–5.

Swift LH, Golsteijn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci. 2014;15:2403–31.

Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. N J Nucl. Acids. 2010;2010:543531.

Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

Ochi T, Blackford AN, Coates J, Jhuuh S, Mehmoond S, Tamura N, et al. DNA repair. PAXX, a paralog of XRCX4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 2015;347:185–8.

Son GR, Siemann M, Grabs M, Mumtann T, Pantelas GE, Iliake G. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcx1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res. 2014;42:6380–92.

Simsek D, Jasin M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcx4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol. 2010;17:410–6.

Boboila C, Jankovic M, Yan CT, Wang JH, Wersermann DR, Zhang T, et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci U S A. 2010;107:3034–9.

Pälzer RJ, Heidelberger C. Influence of drugs and synchon on the hyperthermic killing of HeLa cells. Cancer Res. 1973;33:422–7.

Bhuyan BD, Day KJ, Edgerton CE, Ogunbaje O. Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res. 1977;37:3798–4.

Leith JT, Miller RC, Gerner BW, Boone ML. Hyperthermic potentiating: biological aspects and applications to radiation therapy. Cancer. 1977;39:766–79.

Iliake G, Seaver R, Okayasu R. Effects of hyperthermia on the repair of radiation-induced DNA single- and double-strand break-repair-deficient and repair-proficient cell lines. Int J Hyperthermia. 1990;6:813–33.

Iliake G, Seaver R A DNA double-strand break-repair-deficient mutant of CHO cells shows reduced radiosensitization after exposure to hyperthermic temperatures in the plateau phase of growth. Int J Hyperthermia. 1990;6:801–12.

Taccioli GE, Gottlieb TM, Blunt T, Priestley A, Demengot J, Mizuta R, et al. Ku80 product of the XRCXCS gene and its role in DNA repair and VDJ recombination. Science. 1994;265:1442–5.

Snyder V, Rathmell VK, Lieber MR, Chu G. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku DNA. Science. 1994;266:288–91.

Gerts RC, Stannard TO. Absence of a Ku-like DNA end binding activity in the rs double-strand DNA repair-deficient mutant. J Biol Chem. 1994;269:15981–4.

Kampying HH, Kanon B, Konings AW, Stackhouse MA, Bedford JS. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells. Int J Radiat Biol. 1993;64:225–30.

Raaphorst GP, Tshker M, Ng CE. Thermal radiosensitization in two pairs of CHO wild-type and radiation-sensitive mutant cell lines. Int J Hyperthermia. 1993;9:383–91.

Komatsu K, Kubota N, Gallo M, Okumura Y, Lieber MR. The scid factor on human chromosome 8 restores VDJ recombination in addition to double-strand break repair. Cancer Res. 1995;55:1774–9.

Woulfe EA, Konings AW, Jeggo PA, Kampying HH. Role of DNA-PK subunits in radiosensitization by hyperthermia. Radiat Res. 1999;152:214–8.

Dynlacht JR, Bittner ME, Bethel JA, Beck BD. The non-homologous end-joining pathway is not involved in the radiosensitization of mammalian cells by heat shock. J Cell Physiol. 2003;196:657–64.

Tomita M, Suzuki N, Matsumoto Y, Hirano K, Umeda N, Sakai K. Sensitization by wortmannin of heat- or X-ray induced cell death in cultured Chinese hamster V79 cells. J Radiat Res. 2000;41:193–202.

Okazawa S, Funasawa Y, Kariya A, Hassan MA, Arai M, Hayashi R, et al. Inactivation of DNA-dependent protein kinase promotes heat-induced apoptosis independently of heat-shock protein induction in human cancer cells. PLoS One. 2013;8,e58325.

Iliake G, Wu W, Wang M. DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ. Int J Hyperthermia. 2000;16:17–29.

Windhofer F, Wu W, Wang M, Singh SK, Saha J, Rosidi B, et al. Marked dependence on growth state of backup pathways of NHEJ. Int J Radiat Oncol Biol Phys. 2007;68:1462–70.

Burgman P, Ouyang H, Peterson S, Chen DJ, Li GC. Heat Inactivation of Ku autoantigen: possible role in hyperthermic radiosensitization. Cancer Res. 1997;57:2847–50.
132. Matsumoto Y, Suzuki N, Sakai K, Morimitsu A, Hirano K, Murofushi H. A possible mechanism for hyperthermic radiosensitization mediated through hyperthermic lability of Ku subunits in DNA-dependent protein kinase. Biochem Biophys Res Commun. 1997;234:568–72.

133. Ihara M, Sawu A, Komatsu K, Shimasaki T, Okachii K, Hendrickson EA, et al. Heat sensitivity of double-stranded-DNA-dependent protein kinase (DNA-PK) activity. Int J Radiat Biol. 1999;75:253–8.

134. Beck BD, Dynlacht JR. Heat-induced aggregation of XRCC5 (Ku80) in noncycling and thermotolerant cells. Radiat Res. 2001;156:767–74.

135. Ihara M, Takeshita S, Okachi K, Okumura Y, Ohsnishi T. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int J Hyperthermia. 2014;30:102–9.

136. Yuan S-F, Yang Y-K, Chen H-W, Chung Y-F, Chang H-L, Su J-H. Neocarzinostatin-induced RadiS1 nuclear focus formation is cell cycle regulated and abberant in AT cells. Toxicol Appl Pharmacol. 2003;192:231–6.

137. Mladenov E, Kalev P, Anachkova B. The complexity of double-strand break repair: is a factor in the repair pathway choice. Radiat Res. 2009;179:397–404.

138. Adachi N, Ishino T, Ishii Y, Takeda S, Koyama H. DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70. Implications for DNA double-strand break repair. Proc Natl Acad Sci U S A. 2001;98:12109–13.

139. Mohapatra S, Kawahara M, Khan IS, Yannone SM, Povirk LF. Restoration of G1 checkpoint and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis. Nucl Acids Res. 2011;39:4609–17.

140. Adachi N, Suzuki H, Iizumi S, Koyama H. Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193: implications for the repair of topoisomerase II-mediated DNA damage. J Biol Chem. 2003;278:53897–902.

141. Kampinga HH. Hyperthermia, thermotolerance and topoisomerase II inhibitors. Br J Cancer. 1995;72:233–8.

142. Li CJ, Averboukh L, Pardee AB. β-Lapachone, a novel DNA topoisomerase II inhibitor with a mode of action different from camptothecin. J Biol Chem. 1993;268:22463–8.

143. Krishnan P, Bastow KF. Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivatives-elluetherin, α-lapachone, and β-lapachone. Biochem Pharmacol. 2000;60:1367–79.

144. Park HJ, Averboukh L, Pardee AB. β-Lapachone, a novel DNA topoisomerase II inhibitor with a mode of action different from camptothecin. J Biol Chem. 1993;268:22463–8.

145. Hari T, Kondo T, Lee H, Song CW, Park H. Hyperthermia enhances the effect of β-lapachone to cause γH2AX formations and cell death in human osteosarcoma cells. Int J Hyperthermia. 2011;27:53–62.

146. Jasim M, Rothstein R. Repair of strand breaks by homologous recombination. Radiat Res. 2001;156:95–103.

147. Raaphorst GP, Maude-Leblanc J, Li L. Evaluation of repair mechanisms in pathways of thermal radiosensitization. Radiat Res. 2004;164:2151–62.

148. Wachters FM, van Putten JWG, Maring JG, Zdzienicka MZ, Groen HJM, Jasin M, Rothstein R. Repair of strand breaks by homologous recombination. Proc Natl Acad Sci U S A. 2004;101:12140–12145.

149. Krastins R, Amichiotti M, Pani G. Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys. 1998;15:345–354.

150. Overgaard J, Gonzalez Gonzalez D, Hulthoff MC, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology Lancet. 1995;345:540–3.

151. Overgaard J, Gonzalez Gonzalez D, Hulthoff MC, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology Lancet. 1995;345:540–3.

152. Vandergucht R, Amichiotti M, Pani G. Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial. Int J Radiat Oncol Biol Phys. 1998;15:533–41.

153. Johannsen P, Amichiotti M, Pani G. Randomised trial of hyperthermia and radiotherapy for superficial tumors: a multicentre, randomised, multicentre trial. Int J Hyperthermia. 1999;25:737–48.

154. Colombo R, Da Pozzo LF, Salonia A, Rigatti P, Leib Z, Daniel J, et al. Randomized study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. Scand J Urol Nephrol. 2001;35:517–22.

155. Jones RM, Kotsantis P, Stewart GS, Groth P, Petermann E. BRCA2 and RAD51 promote double-strand break formation and cell death in response to gemcitabine. Mol Cancer Ther. 2014;13:2412–21.

156. Overgaard J, Gonzalez Gonzalez D, van Rhoon GC, Creese J. Current state of the art of regional hyperthermia treatment planning: a review. Radiat Oncol. 2015;10:196.

157. Van Rhoon G, Why high quality hyperthermia is important, lessons to be learned (multi-institutional article). Radiat Oncol. 2015;10:196.

158. Overgaard J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk J, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumors: a prospective, randomised, multicentre trial. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int. J. Radiat Oncol Biol. Phys. 1996;33:571–41.

159. Van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, van Dijk J, van Putten WL, Hart AA. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. J Clin Oncol. 2005;23:3079–85.

160. Colombo R, Da Pozzo LF, Salonia A, Rigatti P, Leib Z, Daniel J, et al. Randomized study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J Clin Oncol. 2003;21:2470–6.

161. Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 2011;107:912–8.

162. Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schiem B-C, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2012;13:561–70.

163. Muler S, Cláes JP, Dieriek C, Amiel J-O, Paulsen H-J, Maresch L, et al. Survival benefit of adding Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) at the different time-points of treatment of ovarian cancer: review of evidence. Curr Pharm Des. 2012;18:793–803.

164. Horan MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19:148–26.
3000.

Van der Zee J, Vujaskovic Z, Kondo M, Sugahara T. The Kadota Fund International Forum 2004–clinical group consensus. Int J Hyperthermia. 2008;24(11–12).

Ghadjar. Int. J. Hyperthermia. 2015. in press.

Bergs JW, Franken NAP, Haveman J, Geijzen ED, Crezee J, van Bee C. Hyperthermia, cisplatin and radiation tritherapy treatment: a promising cancer treatment? A review from preclinical studies to clinical application. Int J Hyperthermia. 2007;23:329–40.

De Wit R, van der Zee J, van der Burg ME, Kruit WH, Logmans A, van Rhoo GC, et al. A phase VII study of combined weekly systemic cisplatin and locoregional hyperthermia in patients with previously irradiated recurrent carcinoma of the uterine cervix. Br J Cancer. 1999;80:387–91.

Rietbroek RC, Schilthuis MS, Bakker PJ, van Dijk JD, Postma AJ, González González D, et al. Phase II trial of weekly locoregional hyperthermia and cisplatin in patients with a previously irradiated recurrent carcinoma of the uterine cervix. Cancer. 1997;79:935–43.

Franczka M, De Wit R, Ansink AC, Notenboom A, Canters RM, Fatehi D, et al. Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int J Hyperthermia. 2007;23:443–50.

Ko SH, Ueno T, Yoshimoto Y, Yoo JS, Abdel-Wahab OI, Abdel-Wahab Z, et al. Optimizing a novel regional chemotherapeutic agent against melanoma: hyperthermia-induced enhancement of temozolomide cytotoxicity. Clin Cancer Res. 2006;12:289–97.

Pagani E, Falcinelli S, Pepponi R, Turritiziani M, Caporaso P, Caporali S, et al. Combined effect of temozolomide and hyperthermia on human melanoma cell growth and O6-methylguanine-DNA methyltransferase activity. Int J Oncol. 2007;30:443–51.

Muller C, Calso P, Salle B. The activity of the DNA-dependent protein kinase (DNA-PK) complex is determinant in the cellular response to nitrogen mustards. Biochimie. 2000;82:25–8.

Hazar G, Ben-Hur E, Yerushalmi A. Synergism between hyperthermia and cyclophosphamide in vivo: the effect of dose fractionation. Eur J Cancer. 1981;17:681–4.

Hiramoto RN, Ghanta VK, Lilly MB. Reduction of tumor burden in a murine osteosarcoma following hyperthermia combined with cyclophosphamide. Cancer Res. 1984;44:1405–8.

Haas GP, Kluger RC, Heitel FW, Barton EE, Cerny JC. The synergistic effect of hyperthermia and chemotherapy on murine transitional cell carcinoma. J Urol. 1984;93:1282–33.

Gerad H, van Echo DA, Whitacre M, Ashman M, Helrich M, Foy J, et al. Restoration of Cisplatin sensitivity by mild hyperthermia in ovarian fibrosarcomas. Int J Oncol. 1996;9:741–5.

van der Zee J, Vujaskovic Z, Kondo M, Sugahara T. The Kadota Fund International Forum 2004–clinical group consensus. Int J Hyperthermia. 2008;24(11–12).

Cohen JD, Robins HI, Javid MJ. Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. Cancer Res. 1990;50:1192–7.

Orlandi L, Zaffaroni N, Bearzatto A, Costa A, Supino R, Vaglini M, et al. Effect of melphalan and hyperthermia on cell cycle progression and cyclin B1 expression in human melanoma cells. Cell Prolif. 1995;28:617–30.

Urano M, Ling CC. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia. 2002;18:307–15.

Mohamed F, Marchetti P, Stuart OA, Urano M, Sugarbaker PH. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol. 2003;10:463–8.

Teicher BA, Koval CD, Kennedy KA, Sarto RE, AC. Enhancement by hyperthermia of the in vitro cytotoxicity of mitomycin C toward hypoxic tumor cells. Cancer Res. 1981;41:1096–9.

Wallner KE, Li GC. Effect of drug exposure duration and sequencing on hyperthermic potentiation of mitomycin-C and cisplatin. Cancer Res. 1987;47:493–5.

Wallner KE, Band A, Li GC. Hyperthermic enhancement of cell killing by mitomycin C in mitomycin-C-resistant Chinese hamster ovary cells. Cancer Res. 1987;47:1308–12.

Van der Heijden AG, Jansen CFJ, Verhaegh G, D’Odonnell MA, Schalken JA, Wijers JA. The effect of hyperthermia on mitomycin-C-induced cytotoxicity in four human bladder cancer cell lines. Eur Urol. 2004;46:570–4.

Rietbroek GP, Li LF, Yang DP, LeBlanc JM. Cisplatin sensitization by concurrent mild hyperthermia in parental and mutant cell lines deficient in homologous recombination and non-homologous end joining repair. Oncol Rep. 2005;14:281–5.

Haveman J, Bergs JW, Franken NAP, van Bee C, Stolpers LAA. Effect of hyperthermia on uptake and cytotoxicity of cisplatin in cultured murine cervical carcinoma cells. Oncol Rep. 2005;14:561–7.

Eichholz-Wirth H, Heitel B. Heat sensitization to cisplatin in two cell lines with different drug sensitivities. Int J Hyperthermia. 1990;6:47–55.

Eichholz-Wirth H. Restoration of Cisplatin sensitivity by mild hyperthermia in radiation-induced Cisplatin-resistant mouse fibrosarcoma cells. Int J Oncol. 1995;7:395–9.

Rietbroek RC, van de Vaart PJ, Haveman J, Blommaert FA, Geersdink A, Bakker PJ, et al. Hyperthermia enhances the cytotoxicity and platinum-DNA adduct formation of ifosfamide and oxaliplatin in cultured SW1573 cells. J Cancer Res Clin Oncol. 1997;123:6–12.

Herman TS, Sweets CC, White DM, Genner EW. Effect of heating on lethality due to hyperthermia and selected chemotherapeutic drugs. J Natl Cancer Inst. 1982;68:487–91.

Cohen JD, Robins HI, Javid MI. Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. J Neurooncol. 1990;51–8.

Ohro S, Siddik ZH, Baba H, Stephens LC, Stebel FR, Wondergem J, et al. Effect of carboplatin combined with whole body hyperthermia on normal tissue and tumor in rats. Cancer Res. 1991;51:2994–3000.

Murray TG, Ciccarelli N, McCabe CM, Ksander B, Feuer W, Schiffman J, et al. Enhancement by hyperthermia of cell killing and platinum-DNA adduct formation in vivo. Int J Hyperthermia. 1997;13:201–10.

Wiedemann G, Rosinski S, Biersack A, Weiss C, Wagner T. Local hyperthermia enhances cyclophosphamide, lipoamide andodis-diaminedichloroplatinum cytotoxicity on human-derived breast carcinoma and sarcoma xenografts in nude mice. J Cancer Res Clin Oncol. 1992;118:129–35.

Takemoto M, Kuroda M, Urano M, Nishimura Y, Kawasaki S, Kato H, et al. The effect of various chemotherapeutic agents with increased sensitivity to cisplatin. Cancer Chemother Pharmacol. 1995;45:4162–6.

Wiedemann G, Rosinski S, Biersack A, Weiss C, Wagner T. Local hyperthermia enhances cyclophosphamide, lipoamide andodis-diaminedichloroplatinum cytotoxicity on human-derived breast carcinoma and sarcoma xenografts in nude mice. J Cancer Res Clin Oncol. 1992;118:129–35.

Takemoto M, Kuroda M, Urano M, Nishimura Y, Kawasaki S, Kato H, et al. The effect of various chemotherapeutic agents with increased sensitivity to cisplatin. Cancer Chemother Pharmacol. 1995;45:4162–6.

Goss P, Parsons PG. The effect of hyperthermia and melphalan on survival of human fibroblast strains and melanoma cell lines. Cancer Res. 1982;42:1952–6.

Joiner MC, Steel GG, Stephens TC. Response of two mouse tumours to hyperthermia with CCNU or melphalan. Br J Cancer. 1982;45:17–26.

Hones DJ, Bleeher NM. Thermoochemotherapy with cis-platinum, CCNU, BCNU, chlorambucil and melphalan on murine marrow and two tumours: therapeutic gain for melphalan. Br J Radiol. 1985;58:653–7.

Gates DA, MacKillop WJ. The effect of hyperthermia in combination with melphalan on drug-sensitive and drug-resistant CHO cells in vitro. Br J Cancer. 1990;62:183–8.

Laskowitz DT, Elion GB, Dewhirst MW, Griffith OW, Savina PM, Blum MR, et al. Hyperthermia-induced enhancement of melphalan activity against a malignant human rhabdomyosarcoma xenograft. Radiat Res. 1992;129:218–23.
221. Martin SA, McCarthy A, Barber LJ, Burgess DJ, Parry S, Lord CJ, et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med. 2009;1:323–37.

222. Azzam EI, Vadasz JA, Raaphorst GP. Thermal sensitivity and radiosensitization in Chinese hamster V79 cells exposed to 2-aminopurine or 6-thioguanine. Radiat Res. 1991;125:233–6.

223. Herman TS, Cress AE, Sweets C, Gerner EW. Reversal of resistance to methotrexate by hyperthermia in Chinese hamster ovary cells. Cancer Res. 1981;41:3840–3.

224. Ng CE, Bussey AM, Raaphorst GP. Sequence of treatment is important in the modification of camptothecin induced cell killing by hyperthermia. Int J Hyperthermia. 1996;12:663–78. discussion 679–80.

225. Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA. Nonhomologous end joining is essential for cellular resistance to the novel antitumor agent, betalapachone. Cancer Res. 2007;67:6936–45.

226. Pommier Y, Redon C, Rao VA, Sordet O, Takemura H, et al. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res. 2003;532:173–203.

227. Ohnishi T, Ohnuma T, Beranek JT, Holland JF. Combined cytotoxicity effect of hyperthermia and anthracycline antibiotics on human tumor cells. J Natl Cancer Inst. 1985;74:275–81.

228. Supino R, Bardella L, Gibelli N, Cairo G, Schiaffonati L. Interaction of heat with chemotherapy in vitro: effect on cell viability and protein synthesis in human and murine cell lines. Tumori. 1987;73:109–16.

229. Hermisson M, Weller M. Hyperthermia enhanced chemosensitivity of human malignant glioma cells. Anticancer Res. 2000;20:1819–23.

230. Lee H, Kim S, Choi B-H, Park M-T, Lee J, Jeong S-Y, et al. Hyperthermia improves therapeutic efficacy of doxorubicin carried by mesoporous silica nanocarriers in human lung cancer cells. Int J Hyperthermia. 2011;27:688–707.

231. Adachi N, Iizumi S, So S, Koyama H. Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage. Biochem Biophys Res Commun. 2004;318:656–61.

232. Malik M, Nitiss KC, Enriquez-Rios V, Nitiss JL. Roles of nonhomologous end-joining pathways in surviving topoisomerase II-mediated DNA damage. Mol Cancer Ther. 2006;5:1405–14.

233. Treszezamsky AD, Kachnic LA, Feng Z, Zhang J, Tokadjian C, Powell SN. BRCA1- and BRCA2-deficient cells are sensitive to etoposide-induced DNA double-strand breaks via topoisomerase II. Cancer Res. 2007;67:7078–81.

234. Hahn GM, Braun J, Har-Kedar I. Thermochemotherapy: synergism between hyperthermia (42–43 degrees) and Adriamycin (of bleomycin) in mammalian cell inactivation. Proc Natl Acad Sci U S A. 1975;72:937–40.

235. Dahl O, Mella O. Enhanced effect of combined hyperthermia and chemotherapy (bleomycin, BCNU) in a neurogenic rat tumour (BT4A) in vivo. Anticancer Res. 1982;2:535–64.

236. Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

237. Bryant HE, Schultz N, Thomas HD, Parker KA, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

238. Davar D, Beumer JH, Hamieh L, Tawbi H. Role of PARP inhibitors in cancer biology and therapy. Curr Med Chem. 2012;19:3907–21.