Barrenechea, Gabriel R. and Bosy, Michał and Dolean, Victorita (2018)
Numerical assessment of two-level domain decomposition preconditioners for incompressible Stokes and elasticity equations.
ETNA - Electronic Transactions on Numerical Analysis, 49. pp. 41-63.
ISSN 1068-9613 , http://dx.doi.org/10.1553/etna_vol49s41

This version is available at https://strathprints.strath.ac.uk/64642/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Numerical assessment of two-level domain decomposition preconditioners for incompressible Stokes and elasticity equations

Gabriel R. Barrenechea¹, Michal Bosy ª¹, and Victorita Dolean¹

¹Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, G1 1XH
Glasgow, United Kingdom

June 30, 2017

Abstract

Solving the linear elasticity and Stokes equations by an optimal domain decomposition method derived algebraically involves the use of non standard interface conditions. The one-level domain decomposition preconditioners are based on the solution of local problems. This has the undesired consequence that the results are not scalable, it means that the number of iterations needed to reach convergence increases with the number of subdomains. This is the reason why in this work we introduce, and test numerically, two-level preconditioners. Such preconditioners use a coarse space in their construction. We consider the nearly incompressible elasticity problems and Stokes equations, and discretise them by using two finite element methods, namely, the hybrid discontinuous Galerkin and Taylor-Hood discretisations.

Key words. Stokes problem, nearly incompressible elasticity, Taylor-Hood, hybrid discontinuous Galerkin methods, domain decomposition, coarse space, optimized restricted additive Schwarz methods

1 Introduction

In [BBD+16] the one-level domain decomposition methods for Stokes equations were introduced in conjunction with the non standard interface conditions. Although it can be observed there the lack of scalability with respect to the number of subdomains. It means that by splitting the problem in a larger number of subdomains leads to the increase of size of the plateau region in the convergence of an iterative method (see Figure 1) when using the one-level domain decomposition methods. This is caused by the lack of global information, as subdomains can only communicate with their neighbours. Hence, when the number of subdomains increases in one direction, the length of the plateau also increases. Even in cases when the local problems are of the same size, the iteration count grows with the increase of the number of subdomain. This can be also observed in all experiments in this manuscript in case of one-level methods.

The remedy for this is the use of a second level in the preconditioner or a coarse space correction that adds the necessary global information. Two-level algorithms have been analysed for several classes of problems in [TW05]. The key point of these kind of methods is to choose the appropriate coarse space. The classical coarse space introduced by Nicolaides in [Nic87] is defined by vectors that support is in each subdomain. Hence the coarse space has the size equal to a number of

*Corresponding author: E-mail: michal.bosy@strath.ac.uk
subdomains. A coarse space construction, named spectral coarse space, was motivated by the complexity of the problems that classical coarse space performance was not satisfying. This construction allows to enrich a bigger size of the coarse space, but can be also reduced to the classical one. This idea was introduced for the first time in [BHMV99] in the case of multigrid methods. It relies on solving local generalised eigenvalue problems allowing to choose suitable vectors for the coarse space.

For overlapping domain decomposition preconditioners, a similar idea was introduced in the case of Darcy equations in [GE10a, GE10b]. The authors of [NXD10] consider also the heterogeneous Darcy equation and presented a different generalised eigenvalue problem based on local Dirichlet-to-Neumann maps. The method has been analysed in [DNSS12] and proved to be very robust in the case of small overlaps. The same idea was extended numerically to the heterogeneous Helmholtz problem in [CDKN14]. The authors of [LNS15] apply the coarse space associated with low-frequency eigenfunctions of the subdomain Dirichlet-to-Neumann maps for the generalisation of the optimised Schwarz methods, named 2-Lagrange multiplier methods.

The first attempt to extend this spectral approach to general symmetric positive definite problems was made in [EGLW12] as an extension of [GE10a, GE10b]. Since some of the assumptions of the previous framework are hard to fulfil, authors of [SDH14] proposed slightly different approach for symmetric positive definite problems. Their idea of constructing partition of unity operator associated with degrees of freedom allows to work with various finite element spaces. An overview of different kinds of two-level methods can be found in [DJN15, Chapters 5 and 7].

Despite the fact that all these approaches provide satisfying results, there is no universal treatment to build efficient coarse spaces in the case of non definite problems such as Stokes equations. The spectral coarse spaces that we use in this work are inspired by those proposed in [HJN15]. The authors introduced and tested numerically symmetrised two-level preconditioners for overlapping algorithms which use Robin interface conditions between the subdomains (see (5.27) for details). They have applied these preconditioners to solve saddle point problems such as nearly incompressible elasticity and Stokes discretised by Taylor-Hood finite elements. In our case, we use non standard interface conditions. Therefore the use of spectral coarse spaces could lead to an important gain.

In this work, we test this improvement in case of nearly incompressible elasticity and Stokes equations that are discussed in Section 2. As the discretisations we use the Taylor-Hood [GR86, Chapter II, Section 4.2] and hybrid discontinuous Galerkin method [CGL09, CG09] presented in Section 3. In Section 4 we introduce the two-level domain decomposition preconditioners. Sections 5 and 6 present the two and three dimensional numerical experiments, respectively. Finally, a summary is outlined in Section 7.
2 The differential equations

Let Ω be an open polygon in \mathbb{R}^2 or an open Lipschitz polyhedron in \mathbb{R}^3, with Lipschitz boundary $\Gamma := \partial \Omega$. We use $d = 2, 3$ to denote the dimension of the space. We use bold for tensor or vector variables. In addition we denote normal and tangential components as follows $u_n := u \cdot n$, and $u_t := u - u_n n$, where n is the outward unit normal vector to the boundary Γ.

For $D \subset \Omega$, we use the standard $L^2(D)$ space and $C^0(\bar{D})$ denotes the set of all continuous functions on the closure of a set D. Let us define the following Sobolev spaces

\begin{align*}
H^m(D) & := \{ v \in L^2(D) : \forall |\alpha| \leq m \partial^\alpha v \in L^2(D) \} \quad \text{for } m \in \mathbb{N}, \\
H^2(\partial D) & := \{ \tilde{v} \in L^2(\partial D) : \exists v \in H^1(D) \quad \tilde{v} = \text{tr}(v) \}, \\
H(\text{div}, D) & := \{ v \in [L^2(D)]^d : \nabla \cdot v \in L^2(D) \},
\end{align*}

where, for $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{N}^d$ and $|\alpha| = \sum_{i=1}^d \alpha_i$ we denote $\partial^\alpha = \frac{\partial^{\alpha_1}}{\partial x_1} ... \frac{\partial^{\alpha_d}}{\partial x_d}$, and $\text{tr} : H^1(\Omega) \rightarrow H^2(\partial \Omega)$ is the trace operator. In addition, we use the following notation of the space including boundary and average conditions

\begin{align*}
L^2_0(D) & := \{ v \in L^2(D) : \int_D v \, dx = 0 \}, \\
H^1_0(D) & := \{ v \in H^1(D) : v = 0 \text{ on } \bar{\Gamma} \},
\end{align*}

where $\bar{\Gamma} \subset \partial D$. If $\bar{\Gamma} = \partial D$, then $H^1_0(D)$ is denoted $H^1_0(D)$.

Now we present the two differential problems considered in this work.

2.1 Stokes equation

Let us start with d-dimensional, $d = 2, 3$, Stokes problem

\begin{equation}
\begin{aligned}
-\nu \Delta u + \nabla p &= f \quad \text{in } \Omega \\
\nabla \cdot u &= 0 \quad \text{in } \Omega,
\end{aligned}
\end{equation}

where $u : \bar{\Omega} \rightarrow \mathbb{R}^d$ is the velocity field, $p : \bar{\Omega} \rightarrow \mathbb{R}$ the pressure, $\nu > 0$ the viscosity which is considered to be constant and $f \in [L^2(\Omega)]^d$ is a given function. We define the stress tensor $\sigma := \nu \nabla u - pI$ and the flux as $\sigma_n := \sigma \cdot n$. For $u_D \in [H^2(\Gamma)]^d$ and $g \in L^2(\Gamma)$ we consider three types of boundary conditions:

- Dirichlet (non-slip)
 \begin{equation}
 u = u_D \text{ on } \Gamma;
 \end{equation}

- tangential-velocity and normal-flux (TVNF)
 \begin{equation}
 \begin{aligned}
 u_t &= 0 \quad \text{on } \Gamma \\
 \sigma_{nn} &= g \quad \text{on } \Gamma.
 \end{aligned}
 \end{equation}

- normal-velocity and tangential-flux (NVTF)
 \begin{equation}
 \begin{aligned}
 u_n &= 0 \quad \text{on } \Gamma \\
 \sigma_{nt} &= g \quad \text{on } \Gamma.
 \end{aligned}
 \end{equation}

The third type of boundary condition has already been considered for the Stokes problem in [AdDBM+14].
2.2 Nearly incompressible elasticity equation

From a mathematical point of view, the nearly incompressible elasticity problem is very similar to the Stokes equations. The difference is that instead of considering the gradient ∇v, the symmetric gradient $\varepsilon(v) := \frac{1}{2}(\nabla v + \nabla^T v)$ is used. We want to solve the following d-dimensional, $d = 2, 3$, problem

\[
\begin{cases}
-2\mu \nabla \cdot \varepsilon(u) + \nabla p = f \quad \text{in } \Omega \\
- \nabla \cdot u = \frac{1}{\lambda} p \quad \text{in } \Omega
\end{cases}
\]

where $u : \bar{\Omega} \to \mathbb{R}^d$ is the displacement field, $p : \Omega \to \mathbb{R}$ the pressure, $f \in [L^2(\Omega)]^d$ is a given function, λ and μ are the Lamé coefficients defined by

$$
\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)},
$$

where E is the Young modulus and ν the Poisson ratio. We define the stress tensor as $\sigma^{sym} := 2\mu\varepsilon(u) - pI$ and its normal component as $\sigma^{sym}_n := \sigma^{sym} n$. For $g \in L^2(\Gamma)$ we consider three types of boundary conditions:

- mixed such that $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$

\[
\begin{cases}
u = 0 \text{ on } \Gamma_D \\
\sigma^{sym}_n = 0 \text{ on } \Gamma_N
\end{cases}
\] (2.6)

- tangential-displacement and normal-normal-stress (TDNNS)

\[
\begin{cases}
\nu_t = 0 \text{ on } \Gamma \\
\sigma^{sym}_{nn} = g \text{ on } \Gamma
\end{cases}
\] (2.7)

- normal-displacement and tangential-normal-stress (NDTNS)

\[
\begin{cases}
\nu_n = 0 \text{ on } \Gamma \\
\sigma^{sym}_{nt} = g \text{ on } \Gamma
\end{cases}
\] (2.8)

The second type of boundary condition has already been considered for linear elasticity equation in [PS11].

3 The numerical methods

Let $\{T_h\}_{h>0}$ be a regular family of triangulations of $\bar{\Omega}$ made of simplices. For each triangulation T_h, E_h denotes the set of its facets (edges for $d = 2$, faces for $d = 3$). In addition, for each element $K \in T_h$, $h_K := \text{diam}(K)$, and we denote $h := \max_{K \in T_h} h_K$. We define the following broken Sobolev spaces on the set of all edges in E_h (for $d = 2$)

$$L^2(E_h) := \{ v : v|_E \in L^2(E) \forall E \in E_h \}.$$

Moreover, for $D \subset \Omega$, $\mathbb{P}_k(D)$ denotes the space of polynomials of total degree smaller than, or equal to, k on the set D.

We now present the two discretisations to be used in the numerical experiments.

3.1 Taylor-Hood discretisation

We first consider the Taylor-Hood discretisation using the following approximation spaces

$$\mathbf{TH}_h^k := \{ v_h \in [H^1(\Omega)]^d : v_h|_K \in [\mathbb{P}_k(K)]^d \quad \forall K \in T_h \},$$

$$R_{h-1}^k := \{ q_h \in C^0(\Omega) : q_h|_K \in \mathbb{P}_{k-1}(K) \quad \forall K \in T_h \}.$$
where \(k \geq 2 \) (see [GR86, Chapter II, Section 4.2]).

If (2.1) is supplied with the homogeneous boundary conditions (2.2), then the discrete problem reads:

\[
\begin{aligned}
\text{Find } (u_h, p_h) & \in (TH_h^k \cap [H^1_0(\Omega)]^d) \times (R_h^{k-1} \cap L_2^0(\Omega)) \\
\text{s.t. for all } (v_h, q_h) & \in (TH_h^k \cap [H^1_0(\Omega)]^d) \times (R_h^{k-1} \cap L_2^0(\Omega))
\end{aligned}
\]

\[
\int_{\Omega} \nu \nabla u_h : \nabla v_h \, dx - \int_{\Omega} p_h \nabla \cdot v_h \, dx = \int_{\Omega} f v_h \, dx
\]

\[
- \int_{\Omega} \nabla \cdot u_h q_h \, dx = 0.
\]

(3.9)

In case of TVNF boundary conditions (2.3), we define \(V_t := \{ v \in [H^1(\Omega)]^d : v_t = 0 \text{ on } \Gamma \} \), and the discrete problem reads:

\[
\begin{aligned}
\text{Find } (u_h, p_h) & \in (TH_h^k \cap V_t) \times R_h^{k-1} \\
\text{s.t. for all } (v_h, q_h) & \in (TH_h^k \cap V_t) \times R_h^{k-1}
\end{aligned}
\]

\[
\int_{\Omega} \nu \nabla u_h : \nabla v_h \, dx - \int_{\Omega} p_h \nabla \cdot v_h \, dx = \int_{\Omega} f v_h \, dx + \int_{\Gamma} g(v_h)_t \, ds
\]

\[
- \int_{\Omega} \nabla \cdot u_h q_h \, dx = 0.
\]

(3.10)

If NVTF boundary conditions (2.4) are used, then we define the following space \(V_n := \{ v \in [H^1(\Omega)]^d : v_n = 0 \text{ on } \Gamma \} \), and the discrete problem reads:

\[
\begin{aligned}
\text{Find } (u_h, p_h) & \in (TH_h^k \cap V_n) \times (R_h^{k-1} \cap L_2^0(\Omega)) \\
\text{s.t. for all } (v_h, q_h) & \in (TH_h^k \cap V_n) \times (R_h^{k-1} \cap L_2^0(\Omega))
\end{aligned}
\]

\[
\int_{\Omega} \nu \nabla u_h : \nabla v_h \, dx - \int_{\Omega} p_h \nabla \cdot v_h \, dx = \int_{\Omega} f v_h \, dx + \int_{\Gamma} g(v_h)_n \, ds
\]

\[
- \int_{\Omega} \nabla \cdot u_h q_h \, dx = 0.
\]

(3.11)

In similar way, if the problem (2.5) is supplied with the boundary conditions (2.6), then the discrete problem reads

\[
\begin{aligned}
\text{Find } (u_h, p_h) & \in (TH_h^k \cap [H^1_{1,D}(\Omega)]^d) \times R_h^{k-1} \\
\text{s.t. for all } (v_h, q_h) & \in (TH_h^k \cap [H^1_{1,D}(\Omega)]^d) \times R_h^{k-1}
\end{aligned}
\]

\[
\int_{\Omega} 2\mu \varepsilon (u_h) : \varepsilon (v_h) \, dx - \int_{\Omega} p_h \nabla \cdot v_h \, dx = \int_{\Omega} f v_h \, dx
\]

\[
- \int_{\Omega} \nabla \cdot u_h q_h \, dx - \frac{1}{\chi} \int_{\Omega} p_h q_h \, dx = 0.
\]

(3.12)

The rest of the discrete problems associated with (2.5) that is supplied with TDNNS boundary conditions (2.7) or NDTNS boundary conditions (2.8) are similar to (3.10) or (3.11), respectively.
3.2 Hybrid discontinuous Galerkin discretisation

We restrict the discussion of this to two dimensional case $d = 2$. This method has been presented and analysed in [BBD+16]. The velocity is approximated using the Brezzi-Douglas-Marini spaces (see [BBF13, Section 2.3.1]) of degree k given by

$$BDM^k_{h,i} := \left\{ \mathbf{v}_h \in H(div; \Omega) : \mathbf{v}_h|_K \in [P_k(K)]^2 \forall K \in T_h \right\},$$

$$BDM^{k,1}_{h,i} := \left\{ \mathbf{v}_h \in H(div; \Omega) : \mathbf{v}_h|_K \in [P_k(K)]^2 \forall K \in T_h \wedge (\mathbf{v}_h)_n = 0 \text{ on } \bar{\Gamma} \right\},$$

where $\bar{\Gamma} \subset \partial \Omega$. If $\bar{\Gamma} = \partial \Omega$, then $\text{BDM}^{k,1}_{h,i}$ is denoted $\text{BDM}^{k,0}_{h,i}$.

Finally, a Lagrange multiplier, aimed at approximating the tangential component of the velocity is introduced. The space where this multipliers is sought are given by

$$\text{Q}^{k-1}_h := \{ q_h \in L^2(\Omega) : q_h|_K \in P_{k-1}(K) \forall K \in T_h \}.$$

The pressure is approximated in the space

$$\text{M}^{k-1}_h := \{ \tilde{\mathbf{v}}_h \in L^2(\mathcal{E}_h) : \tilde{\mathbf{v}}_h|_E \in P_{k-1}(E) \forall E \in \mathcal{E}_h \},$$

$$\text{M}^{k-1}_{h,i} := \{ \tilde{\mathbf{v}}_h \in M^{k-1}_h : \tilde{\mathbf{v}}_h = 0 \text{ on } \bar{\Gamma} \},$$

where $\bar{\Gamma} \subset \partial \Omega$. If $\bar{\Gamma} = \partial \Omega$, then M^{k-1}_h is denoted $M^{k-1}_{h,0}$. Furthermore, we introduce for all $E \in \mathcal{E}_h$ the $L^2(E)$-projection $\Phi^{k-1}_E : L^2(E) \to P_{k-1}(E)$ defined by

$$\int_E \Phi^{k-1}_E(\tilde{\mathbf{w}}) \tilde{\mathbf{v}}_h \, ds = \int_E \tilde{\mathbf{w}} \tilde{\mathbf{v}}_h \, ds \quad \forall \tilde{\mathbf{v}}_h \in P_{k-1}(E),$$

and we denote $\Phi^{k-1} : L^2(\mathcal{E}_h) \to M^{k-1}_h$ defined as $\Phi^{k-1}|_E := \Phi^{k-1}_E$ for all $E \in \mathcal{E}_h$.

If (2.1) is supplied with the homogeneous boundary conditions (2.2), then the discrete problem reads:

Find $(\mathbf{u}_h, \tilde{\mathbf{u}}_h, p_h) \in \text{BDM}^{k,0}_{h,0} \times M^{k-1}_{h,0} \times (\text{Q}^{k-1}_h \cap L^2(\Omega))$

s.t. for all $(\mathbf{v}_h, \tilde{\mathbf{v}}_h, q_h) \in \text{BDM}^{k,0}_{h,0} \times M^{k-1}_{h,0} \times (\text{Q}^{k-1}_h \cap L^2(\Omega))$

$$(3.14) \quad \left\{ \begin{array}{l}
a ((\mathbf{u}_h, \tilde{\mathbf{u}}_h), (\mathbf{v}_h, \tilde{\mathbf{v}}_h)) + b ((\mathbf{v}_h, \tilde{\mathbf{v}}_h), p_h) = \int_\Omega f \mathbf{v}_h \, dx, \\
b ((\mathbf{u}_h, \tilde{\mathbf{u}}_h), q_h) = \int_0^\Omega \mathbf{v}_h \cdot \mathbf{f} \, dx,
\end{array} \right.$$

where

$$a ((\mathbf{w}_h, \tilde{\mathbf{w}}_h), (\mathbf{v}_h, \tilde{\mathbf{v}}_h)) := \sum_{K \in T_h} \left(\int_K \nu \nabla \mathbf{w}_h : \nabla \mathbf{v}_h \, dx \
- \int_{\partial K} \nu (\mathbf{\mathbf{n}} \mathbf{w}_h)_t \left((\mathbf{v}_h)_t - \tilde{\mathbf{v}}_h \right) \, ds \right.$$

$$\left. + \nu \tau \sum_{K \in T_h} \int_{\partial K} \Phi^{k-1}((\mathbf{w}_h)_t - \tilde{\mathbf{w}}_h) \Phi^{k-1}((\mathbf{v}_h)_t - \tilde{\mathbf{v}}_h) \, ds \right),$$

and $\tau > 0$ is a stabilisation parameter, and

$$b ((\mathbf{v}_h, \tilde{\mathbf{v}}_h), q_h) := - \sum_{K \in T_h} \int_K q_h \nabla \cdot \mathbf{v}_h \, dx.$$

If TVNF boundary conditions (2.3) are used, then the discrete problem reads:
Find \((u_h, \tilde{u}_h, p_h) \in BDM_h^k \times M_h^{k-1} \times Q_h^{k-1}\)

s.t. for all \((v_h, \tilde{v}_h, q_h) \in BDM_h^k \times M_h^{k-1} \times Q_h^{k-1}\)

\[
\begin{align*}
\left\{ \begin{array}{ll}
a((u_h, \tilde{u}_h), (v_h, \tilde{v}_h)) + b((v_h, \tilde{v}_h), p_h) &= \int_{\Omega} f v_h \, dx + \int_{\Gamma} g (v_h)_n \, ds, \\
b((u_h, \tilde{u}_h), q_h) &= 0,
\end{array} \right.
\end{align*}
\]

(3.17)

In case of NVTF boundary conditions (2.4), the discrete problem reads:

Find \((u_h, \tilde{u}_h, p_h) \in BDM_h^k \times M_h^{k-1} \times (Q_h^{k-1} \cap L_0^2(\Omega))\)

s.t. for all \((v_h, \tilde{v}_h, q_h) \in BDM_h^k \times M_h^{k-1} \times (Q_h^{k-1} \cap L_0^2(\Omega))\)

\[
\begin{align*}
\left\{ \begin{array}{ll}
a((u_h, \tilde{u}_h), (v_h, \tilde{v}_h)) + b((v_h, \tilde{v}_h), p_h) &= \int_{\Omega} f v_h \, dx + \int_{\Gamma} g \tilde{v}_h \, ds, \\
b((u_h, \tilde{u}_h), q_h) &= 0.
\end{array} \right.
\end{align*}
\]

(3.18)

In similar way, if the problem (2.5) is supplied with the mixed boundary conditions (2.6), then the discrete problem reads:

\[
\begin{align*}
\left\{ \begin{array}{ll}
a_s((u_h, \tilde{u}_h), (v_h, \tilde{v}_h)) + b((v_h, \tilde{v}_h), p_h) &= \int_{\Omega} f v_h \, dx \\
b((u_h, \tilde{u}_h), q_h) + c(p_h, q_h) &= 0,
\end{array} \right.
\end{align*}
\]

(3.19)

where

\[
\begin{align*}
a_s((w_h, \tilde{w}_h), (v_h, \tilde{v}_h)) &:= \sum_{K \in \mathcal{T}_h} \left(\int_{K} 2\mu \varepsilon(w_h) : \varepsilon(v_h) \, dx
ight. \\
&\left. - \int_{\partial K} 2\mu \varepsilon_n(w_h)_t \cdot (v_h)_t - \tilde{v}_h \right) ds \\
&\left. - \int_{\partial K} 2\mu (w_h)_t - \tilde{w}_h \cdot (\varepsilon_n(v_h))_t ds \\
&\left. + 2\mu \tau \int_{\partial K} \Phi^{k-1}((w_h)_t - \tilde{w}_h)\Phi^{k-1}((v_h)_t - \tilde{v}_h) ds \right),
\end{align*}
\]

(3.20)

\(b\) is defined by (3.16), and

\[
c(r_h, q_h) := -\frac{1}{\lambda} \int_{\Omega} r_h q_h \, ds.
\]

4 The domain decomposition preconditioners

Let us assume that we have to solve the following linear system \(AU = F\) where \(A\) is the matrix arising from discretisation of the Stokes or linear elasticity equation on the domain \(\Omega\), \(U\) is the vector of unknowns, and \(F\) is the right hand side. To accelerate the performance of an iterative Krylov method [DKN15, Chapter 3] applied to this system we will consider domain decomposition preconditioners which are naturally parallel. They are based on an overlapping decomposition of the computational domain.
Let \(\{ T_{h,i} \}_{i=1}^{N} \) be a partition of the triangulation \(T_h \) (see examples in Figure 2). For an integer value \(l \geq 0 \), we define an overlapping decomposition \(\{ T_{l,h,i} \}_{i=1}^{N} \) such that \(T_{l,h,i} \) is a set of all triangles from \(T_{h,i} \) and all triangles from \(T_h \setminus T_{h,i} \) that have non-empty intersection with \(T_{h,i} \), and \(T_{h,i}^0 = T_{h,i} \). With this definition the width of the overlap will be of \(2l \). Furthermore, if \(W_h \) stands for the finite element space associated to \(T_h \), \(W_{l,h,i} \) is the local finite element spaces on \(T_{l,h,i} \), which is a triangulation of \(\Omega_i \).

Let \(N \) be the set of indices of degrees of freedom of \(W_h \) and \(N_{l,i} \) the set of indices of degrees of freedom of \(W_{l,h,i} \) for \(l \geq 0 \). Moreover, we define the restriction operator \(R_i : W_h \rightarrow W_{l,h,i} \) as a rectangular matrix \(|N_i| \times |N| \) such that if \(V \) is the vector of degrees of freedom of \(v_h \in W_h \), then \(R_i V \) is the vector of degrees of freedom of \(v_{l,i} \in W_{l,h,i} \) in \(\Omega_i \). The extension operator from \(W_{l,h,i} \) to \(W_h \) and its associated matrix are both given by \(R_i^T \). In addition we introduce a partition of unity \(D_i \) as a diagonal matrix \(|N_{l,i}| \times |N_{l,i}| \) such that

\[
\text{Id} = \sum_{i=1}^{N} R_i^T D_i R_i,
\]

where \(\text{Id} \in \mathbb{R}^{|N| \times |N|} \) is the identity matrix.

We first recall the Modified Restricted Additive Schwarz (MRAS) preconditioner introduced in [BBD+16] for the Stokes equation. This preconditioner is given by

\[
M_{MRAS}^{-1} = \sum_{i=1}^{N} R_i^T B_i^{-1} R_i,
\]

where \(B_i \) is the matrix associated to a discretisation of Stokes equation (2.1) in \(\Omega_i \) where we impose either TVNF (2.3) or NVTF (2.4) boundary conditions in \(\Omega_i \). In case of a discretisation of elasticity equation (2.5) in \(\Omega_i \), we impose either TDNNS (2.7) or NDTNS (2.8) boundary conditions in \(\Omega_i \).

We new introduce a symmetrised variant of (4.22) called Symmetrised Modified Restricted Additive Schwarz (SMRAS), given by

\[
M_{SMRAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i B_i^{-1} D_i R_i.
\]
4.1 Two-level methods

A two-level version of the SMRAS and MRAS preconditioners will be based on a spectral coarse space obtained by solving the following local generalised eigenvalue problems

\[
\text{Find } (V_{jk}, \lambda_{jk}) \in \mathbb{R}^{|\mathcal{N}_j|} \setminus \{0\} \times \mathbb{R} \text{ s.t.}
\]

\[
\tilde{A}_j V_{jk} = \lambda_{jk} B_j V_{jk},
\]

where \(\tilde{A}_j\) are local matrices associated to a discretisation of local Neumann boundary value problem in \(\Omega_j\). Let \(\theta > 0\) be a user-defined threshold. We define \(Z_{\text{GenEO}} \subset \mathbb{R}^{|\mathcal{N}|}\) as the vector space spanned by the family of vectors \((R_j^T D_j V_{jk})_{\lambda_{jk} < \theta}, 1 \leq j \leq N\), corresponding to eigenvalues smaller than \(\theta\). The value of \(\theta\) is chosen such that for a given problem and preconditioner, the behaviour of the method should be robust in the sense that, its convergence should not depend, or depends very weakly, on the number of subdomains.

We are now ready to introduce the two-level method with coarse space \(Z_{\text{GenEO}}\). Let \(P_0\) be the \(A\)-orthogonal projection onto the coarse space \(Z_{\text{GenEO}}\). The two-level SMRAS preconditioner is defined as

\[
M_{\text{SMRAS},2}^{-1} = P_0 A^{-1} + (\text{Id} - P_0) M_{\text{SMRAS}}^{-1} (\text{Id} - P_0^T).
\]

Furthermore, if \(R_0\) is a matrix whose rows are a basis of the coarse space \(Z_{\text{GenEO}}\), then

\[
P_0 A^{-1} = R_0^T \left(R_0 A R_0^T \right)^{-1} R_0.
\]

In similar way, we can introduce the two-level MRAS preconditioner

\[
M_{\text{MRAS},2}^{-1} = P_0 A^{-1} + (\text{Id} - P_0) M_{\text{MRAS}}^{-1} (\text{Id} - P_0^T).
\]

5 Numerical results for two dimensional problems

In this section we assess the performance of the preconditioners defined in Section 4.1. We will compare the newly introduced ones with that of ORAS and SORAS introduced in [HJN15]. These kind of preconditioners are associated with the Robin interface conditions and require an optimised parameter as it can be seen in (5.27) below. The big advantage of SMRAS and MRAS preconditioners from the previous section is that they are parameter-free. We consider the partial differential equation model for nearly incompressible elasticity and Stokes flow as problems of similar mixed formulation. Each of these problems is discretised by using the Taylor-Hood methods from Section 3.1 and the hdG discretisation from Section 3.2.

Our experiments will be based on the classical weak scaling test. This test is built as follows. A domain \(\Omega\) is split into a triangulation \(T_h\). For each of element \(K \in T_h\), \(h_K = \text{diam}(K)\), and we denote the mesh size by \(h := \max_{K \in T_h} h_K\). Then, this triangulation is split into overlapping subdomains of size \(H\), in such a way \(\frac{H}{h}\) remains constant. In the absence of a second level in the preconditioner, if the number of subdomains grows, then the convergence gets slower. A coarse space provides a global information and leads to a more robust behaviour.

The simplest way to build a coarse space is to consider the zero energy modes. More precisely they are the eigenvectors associated with the zero eigenvalues of (4.24) on a floating subdomains. Hence, by a floating subdomain we mean a subdomain without Dirichlet boundary condition on any part of the boundary. Then the matrix on the left hand side of (4.24) is singular and there are zero eigenvalues. These zero energy modes are the rigid body motions (three in two dimensions, six in three dimensions) for the elasticity problem, and the constants (two in two dimensions, three in three dimensions) for the Stokes equations. Unfortunately for some cases, this choice is not sufficient, so we have collected the smallest \(M\) eigenvalues for each subdomain and build a coarse
space by including the eigenvectors associated to them. The different values of M are presented in the table in brackets.

All experiments have been made by using FreeFem++ [Hec12], which is a free software specialised in variational discretisations of partial differential equations. We use GMRES [SS86] as an iterative solver. Generalized eigenvalue problems to generate the coarse space are solved using ARPACK [LSY98]. The overlapping decomposition into subdomains can be uniform (Unif) or generated by METIS (MTS) [KK98]. In each of the examples in this section we consider decomposition with two layers of mesh size h in the overlap. Tables show the number of iterations needed to achieve a relative l^2 norm of the error smaller than 10^{-6}, $\frac{\|U - U_m\|_{l^2}}{\|U_0\|_{l^2}} < 10^{-6}$, where U is the solution of global problem given by direct solver and U_m denotes m-th iteration of the iterative solver. In addition, DOF stands for number of degrees of freedom and N for the number of subdomains in all tables.

5.1 Taylor-Hood discretisation

In this section we consider the Taylor-Hood discretisation from Section 3.1 with different values of $k \geq 2$ for nearly incompressible elasticity and Stokes equations.

5.1.1 Nearly incompressible elasticity

Since we consider the preconditioners with various interface conditions we need to comment the way of imposing them. ORAS and SORAS preconditioners follow [HJN15] and use Robin interface conditions. This means, the weak formulation of the linear elasticity problem contains the following term

$\int_{\partial \Omega \setminus \Gamma} \sigma_n^{ym} \cdot (v_h)_n \, ds + \int_{\partial \Omega \setminus \Gamma} 2\alpha \frac{\mu (2\mu + \lambda)}{\lambda + 3\mu} \mu_h v_h \, ds$

where again, following [HJN15] we choose $\alpha = 10$. Fortunately, the MRAS and SMRAS preconditioners are parameter-free. For all numerical experiments associated in this section we use zero as an initial guess for the GMRES iterative solver. Moreover, the overlapping decomposition into subdomains is generated by METIS.

![Figure 3: L-shaped domain problem.](image)

Test case 1 (The L-shaped domain problem). We consider the L-shaped domain $\Omega = (-1,1)^2 \setminus \{(0,1) \times (-1,0)\}$ clamped on the left side and partly from a top and bottom as it is depicted in
Figure 3a. This example is similar to the one in [CS15]. The associated boundary value problem is
\[
\begin{aligned}
-2\mu \nabla \cdot \varepsilon(u) + \nabla p &= (0,-1)^T \quad \text{in } \Omega \\
-\nabla \cdot u &= \frac{1}{\lambda} p \quad \text{in } \Omega \\
\mathbf{u}(x,y) &= (0,0)^T \quad \text{on } \Gamma_D \\
\sigma_{\text{sym}}^N(x,y) &= (0,0)^T \quad \text{on } \Gamma_N
\end{aligned}
\]

The physical parameters are \(E = 10^5\) and \(\nu = 0.4999\) (nearly incompressible). In Figure 3b we plot the mesh of the bent domain.

We choose \(k = 3\) for the Taylor-Hood discretisation. In Figure 4 we plot the eigenvalues of one floating subdomain. The clustering of small eigenvalues of the generalised eigenvalue problem defined in (4.24) suggests the number of eigenvectors to be added to the coarse space. The three zero eigenvalues correspond to the zero energy modes.

Table 1: Comparison of preconditioners for Taylor-Hood discretisation \((TH^3_h, R^2_h)\) - the L-shaped domain problem.

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
124 109	4	26	60	26	60	30	59
478 027	16	57	131	69	143	65	140
933 087	32	84	180	109	221	104	211
1 899 125	64	130	293	181	362	161	312
3 750 823	128	209	412	302	568	251	510

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
124 109	4	18	40	19	36	24	41
478 027	16	37	52	40	57	46	56
933 087	32	49	57	56	67	53	66
1 899 125	64	65	64	70	75	61	74
3 750 823	128	83	64	74	77	75	72

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
124 109	4	15	32	17	35	24	37
478 027	16	31	41	31	47	42	47
933 087	32	40	48	38	52	53	51
1 899 125	64	49	51	45	53	64	56
3 750 823	128	69	54	49	54	70	53

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
124 109	4	14	33	16	30	24	35
478 027	16	26	41	25	38	42	44
933 087	32	31	43	25	42	49	46
1 899 125	64	39	47	30	39	59	50
3 750 823	128	58	49	30	43	61	50

The results of Table 1 show a clear improvement in the scalability of the two-level preconditioners over the one-level ones. In fact, using five eigenvectors per subdomain, the number of iterations is virtually unaffected by the number of subdomains. All two-level preconditioners show a comparable performance. For this case, increasing the dimension of the coarse space beyond \(5 \times N\) eigenvectors does not seem to improve the results dramatically.

Test case 2 (The heterogeneous beam problem). We consider a heterogeneous beam with ten layers of steel and rubber. Five layers are made from steel with the physical parameters \(E = 210 \cdot 10^9\) and \(\nu = 0.3\), and other five are made from rubber with the physical parameters \(E = 10^8\) and \(\nu = 0.4999\) as it is depicted in Figure 5a. A similar example was considered in [HJN15]. The computational domain is the rectangle \(\Omega = (0, 5) \times (0, 1)\). The beam is clamped on its left side,
Figure 4: Eigenvalues on one of the floating subdomains in case of uniform decomposition and Taylor-Hood discretisation \((TH^3_h, R^2_h)\) - the L-shaped domain problem.

Figure 5: Heterogeneous beam.

hence we consider the following problem

\[
\begin{cases}
-2\mu \nabla \cdot \varepsilon(u) + \nabla p = (0, -1)^T & \text{in } \Omega \\
- \nabla \cdot u = \nabla p & \text{in } \Omega \\
u(x, y) = (0, 0)^T & \text{on } \partial\Omega \cap \{x = 0\} \\
\sigma_{sym}(x, y) = (0, 0)^T & \text{on } \partial\Omega \setminus \{x = 0\}
\end{cases}
\]

(5.29)

In Figure 5b we plot the mesh of the bent beam. Because of the heterogeneous nature of the problem, we do not notice a clear clustering of the eigenvalues (see Figure 6). In such case it is well known that coarse space including only three zero energy modes is not sufficient [DNSS12]. That is why we consider a coarse space built using 5 or 7 eigenvectors per subdomain.

Figure 6: Eigenvalues on one of the floating subdomains in case of METIS decomposition and Taylor-Hood discretisation \((TH^3_h, R^2_h)\) - the heterogeneous beam.

As in the previous example, the introduction of a coarse space provides a significant improvement in the number of iterations needed for convergence. Due to the high heterogeneity of this problem, more eigenvectors per subdomain are needed to obtain scalable results. We notice an important improvement of the convergence when using two-level methods (see Table 2). Although we get a stable number of iterations only when considering a coarse space which is sufficiently big,
Table 2: Comparison of preconditioners for Taylor-Hood discretisation (TH^3_h, R^2_h) - the heterogeneous beam.

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
44 963	8	109	160	147	148	136	
87 587	16	136	192	200	181	184	
177 923	32	193	296	275	326	276	
347 651	64	260	363	282	491	299	
707 843	128	412	420	369	601	346	
1 385 219	256	379	448	400	711	317	

Two-level (5 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
44 963	8	76	118	124	113	103	
87 587	16	106	146	166	138	123	
177 923	32	157	202	203	185	214	
347 651	64	178	191	225	170	182	
707 843	128	140	114	153	112	122	
1 385 219	256	119	86	118	77	94	

5.1.2 Stokes equation

We now turn to the Stokes discrete problem given in Sections 3.1. Once again in case of ORAS and SORAS we choose $\alpha = 10$ as in [HJN15] for the Robin interface conditions (5.27). In the first case we consider a random initial guess for the GMRES iterative solver. Later with the second example we use zero as an initial guess.

Figure 7: Numerical solution of the driven cavity problem - the driven cavity problem.

(a) Velocity field (b) Pressure

Test case 3 (The driven cavity problem). The test case is the driven cavity. We consider the
following problem on the unit square $\Omega = (0,1)^2$

\[
\begin{align*}
-\Delta u + \nabla p &= f \quad \text{in } \Omega \\
- \nabla \cdot u &= 0 \quad \text{in } \Omega \\
\begin{array}{ll}
\mathbf{u}(x, y) &= (1, 0)^T \quad \text{on } \partial \Omega \cap \{y = 1\} \\
\mathbf{u}(x, y) &= (0, 0)^T \quad \text{on } \partial \Omega \setminus \{y = 1\}
\end{array}
\end{align*}
\] (5.30)

In Figure 7 we plot the vector field and pressure, after solving numerically the problem.

We start with the two energy modes only (see Figure 8). This already provides some improvement. Then, we add more eigenvectors to see if they bring improvement.

Figure 8: Eigenvalues on one of the floating subdomains in case of uniform decomposition and Taylor-Hood discretisation (TH^2_h, R^1_h) - the driven cavity problem.

Table 3: Comparison of preconditioners for Taylor-Hood discretisation (TH^2_h, R^1_h) - the driven cavity problem.

DOF N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS						
	Unif MTS											
91 003 4	12	17	24	34	22	22	34	40	22	25	50	40
362 003 16	28	35	56	67	52	53	90	106	54	53	70	84
813 003 36	39	75	92	103	85	91	165	185	91	88	118	136
1 444 003 64	53	91	120	144	120	135	254	283	132	132	169	206
2 728 003 121	80	278	180	212	182	280	412	580	199	213	251	439
5 768 003 256	>1000	>1000	271	317	303	452	917	955	322	319	397	695
	Unif MTS											
91 003 4	10	14	18	22	19	17	26	30	27	20	21	26
362 003 16	20	25	32	37	33	34	50	62	60	40	42	51
813 003 36	27	33	36	44	47	49	62	86	79	53	59	63
1 444 003 64	31	42	38	53	104	66	85	114	85	52	62	79
2 728 003 121	39	103	39	51	74	81	85	133	92	86	62	93
5 768 003 256	300	849	46	54	109	108	146	132	91	78	63	90
	Unif MTS											
91 003 4	9	12	13	16	16	15	18	20	25	20	16	18
362 003 16	16	20	21	24	27	22	28	37	56	37	26	35
813 003 36	23	37	25	26	33	30	39	40	65	41	28	37
1 444 003 64	26	36	27	29	29	34	35	45	77	45	28	42
2 728 003 121	35	41	29	32	43	38	34	48	84	72	29	47
5 768 003 256	66	60	32	33	56	41	60	49	88	61	29	44

The conclusions remain the same as for the L-shaped domain problem for the nearly incompressible elasticity equation discretised by Taylor-Hood method (TH^3_h, R^1_h) since Tables 3 and 1 show similar results.
Test case 4 (The T-shaped domain problem). Finally, we consider a T-shaped domain $\Omega = (0, 1.5) \times (0, 1) \cup (0.5, 1) \times (-1, 1)$, and we impose mixed boundary conditions given by

\[
\mathbf{u}(x, y) = \begin{cases}
(4y(1- y), 0)^T & \text{if } x = 0 \text{ or } x = 1.5 \\
(0, 0)^T & \text{otherwise}.
\end{cases}
\]

The numerical solution of this problem is depicted in Figure 9. The overlapping decomposition into subdomains is generated by METIS.

Once again a clustering of small eigenvalues of generalised eigenvalue problem defined in (4.24) is a motivation of the size of the coarse space (see Figure 10).

![Figure 9: Numerical solution - the T-shaped problem.](image)

![Figure 10: Eigenvalues on one of the floating subdomains in case of METIS decomposition and Taylor-Hood discretisation (TH^3_h, R^2_h) - the T-shaped problem.](image)

The same as in all examples for Taylor-Hood discretisation we notice an important improvement of the convergence when using two-level methods. Although from Table 4 we can see that the coarse spaces containing five eigenvectors seem to be sufficient.
Table 4: Comparison of preconditioners for Taylor-Hood discretisation (TH^3_h, R^2_h) - the T-shaped problem.

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
33 269	4	13	20	12	19	13	19
138 316	16	36	51	33	52	31	45
269 567	32	59	85	52	85	49	75
553 103	64	92	132	83	136	78	115
1 134 314	128	146	208	132	223	117	188
2 201 908	256	232	328	209	357	189	293

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
33 269	4	10	14	9	15	12	15
138 316	16	21	27	19	24	22	24
269 567	32	29	35	30	38	25	30
553 103	64	35	45	34	43	33	35
1 134 314	128	42	52	47	58	34	41
2 201 908	256	47	56	69	76	38	45

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
33 269	4	8	13	8	13	12	14
138 316	16	15	16	14	16	20	18
269 567	32	14	19	20	22	24	19
553 103	64	16	20	18	19	29	20
1 134 314	128	17	22	23	24	30	22
2 201 908	256	16	21	34	37	35	24

5.2 hdG discretisation

In this section we discretise nearly incompressible elasticity equation and the Stokes flow by using the lowest order hdG discretisation introduced in Section 3.2.

5.2.1 Nearly incompressible elasticity

In case of ORAS and SORAS we consider the Robin interface conditions as in [HJN15] with $\alpha = 10$. For all numerical experiments in this section we use zero as an initial guess for the GMRES iterative solver. Moreover, the overlapping decomposition into subdomains is generated by METIS.

Test case 5 (The L-shaped domain problem). We consider the L-shaped domain discrete problem (5.28).

Table 5 shows an important improvement of the convergence that is brought by the two-level methods. We cannot conclude that SMRAS preconditioners are much better than SORAS. Although we can note that coarse space improvement is visible for MRAS preconditioners and not for ORAS. For symmetric preconditioners (SMRAS and SORAS) five eigenvectors seem to lead already to satisfying results. While for the non-symmetric ones a bigger coarse space is required. On the other hand, we state the fact that the new preconditioners are parameter-free, which makes them easier to use as no parameter is required.
Table 5: Comparison of preconditioners for hdG discretisation - the L-shaped domain problem.

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
238	8	61	158	64	174	77	177
466	16	123	232	101	259	109	306
948	32	267	331	160	415	179	473
1 874	64	622	477	243	685	254	657
3 856	128	>1000	752	479	>1000	523	>1000

Two-level (3 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
238	8	48	98	52	96	46	116
466	16	89	99	71	123	75	148
948	32	250	130	110	158	118	173
1 874	64	535	135	135	155	129	159
3 856	128	>1000	152	172	176	181	192

Two-level (5 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
238	8	43	81	44	74	61	94
466	16	77	82	51	92	63	103
948	32	197	100	79	119	96	121
1 874	64	429	103	102	122	110	138
3 856	128	>1000	118	122	129	141	167

Two-level (7 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
238	8	35	67	38	71	44	82
466	16	77	82	51	92	63	103
948	32	153	90	95	95	74	115
1 874	64	423	95	71	93	72	111
3 856	128	>1000	118	122	129	141	167

Test case 6 (The heterogeneous beam problem). We consider the heterogeneous beam with ten layers of steel and rubber that is defined as a problem (5.29).

Table 6: Comparison of preconditioners for hdG discretisation - the heterogeneous beam.

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
46	8	196	440	159	402	186	463
88	16	317	602	330	582	326	666
179	32	537	>1000	574	>1000	587	>1000
353	64	899	>1000	847	>1000	846	>1000
704	128	>1000	>1000	>1000	>1000	>1000	>1000
1 410	256	>1000	>1000	>1000	>1000	>1000	>1000

Two-level (5 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
46	8	188	255	182	230	161	275
88	16	244	313	273	299	262	346
179	32	385	525	442	458	469	587
353	64	514	444	551	526	590	558
704	128	>1000	>1000	>1000	>1000	>1000	>1000
1 410	256	>1000	>1000	>1000	>1000	>1000	>1000

Two-level (7 eigenvectors)

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
46	8	148	197	149	192	158	231
88	16	205	201	286	187	283	273
179	32	318	337	385	301	433	419
353	64	403	262	397	247	460	389
704	128	490	168	447	182	558	443
1 410	256	>1000	116	397	138	473	298

We notice an improvement only when using a coarse space which is sufficiently big (see Table 6).
Furthermore, we get a stable number of iterations only for the symmetric preconditioners (SMRAS and SORAS), and the coarse space improvement in case of ORAS preconditioner is much less visible than in case of MRAS preconditioners. This may be due to the fact we have not chosen an optimized parameter in the Robin interface conditions (5.27).

5.2.2 Stokes equation

We now turn to the Stokes discrete problem given in 3.2. Once again in case of ORAS and SORAS we choose $\alpha = 10$ as in [HJN15] for the Robin interface conditions (5.27). In the first case we consider a random initial guess for the GMRES iterative solver. Later with the second example we use zero as an initial guess.

Test case 7 (The driven cavity problem). We consider the driven cavity defined as a problem (5.30).

Table 7: Comparison of preconditioners for hdG discretisation - the driven cavity problem.

DOF	N	ORAS Unif MTS	SORAS Unif MTS	NVTF-MRAS Unif MTS	NVTF-SMRAS Unif MTS	TVNF-MRAS Unif MTS	TVNF-SMRAS Unif MTS						
93 656	4	17	18	37	38	24	22	44	44	32	25	48	50
373 520	16	76	122	75	84	52	54	107	111	68	67	122	126
839 592	36	152	327	120	133	91	96	194	200	112	115	266	210
1 491 872	64	261	587	162	176	130	143	294	303	159	158	292	286
2 819 432	121	364	>1000	229	256	199	213	504	649	238	251	628	643
5 963 072	256	592	>1000	367	398	326	477	>1000	>1000	392	404	995	740

Two-level (2 eigenvectors)

DOF	N	ORAS Unif MTS	SORAS Unif MTS	NVTF-MRAS Unif MTS	NVTF-SMRAS Unif MTS	TVNF-MRAS Unif MTS	TVNF-SMRAS Unif MTS						
93 656	4	12	14	30	28	18	18	33	32	40	23	38	37
373 520	16	81	80	47	57	36	40	61	73	100	49	85	82
839 592	36	236	228	61	60	57	65	97	104	132	66	112	107
1 491 872	64	395	463	67	71	79	85	139	129	142	70	128	122
2 819 432	121	840	>1000	73	86	113	127	188	178	157	86	127	139
5 963 072	256	592	>1000	80	87	171	179	283	287	167	108	132	148

Two-level (5 eigenvectors)

DOF	N	ORAS Unif MTS	SORAS Unif MTS	NVTF-MRAS Unif MTS	NVTF-SMRAS Unif MTS	TVNF-MRAS Unif MTS	TVNF-SMRAS Unif MTS						
93 656	4	10	12	28	24	14	16	24	22	12	22	29	26
373 520	16	27	35	38	37	27	29	38	41	117	39	53	53
839 592	36	135	84	45	41	35	37	51	50	145	49	64	61
1 491 872	64	278	212	49	45	44	42	58	55	157	59	64	64
2 819 432	121	607	584	56	49	46	56	58	62	162	81	65	75
5 963 072	256	>1000	>1000	62	55	52	64	57	69	166	75	65	75

The conclusions remain the same as in the case of nearly incompressible elasticity equation for the L-shaped domain. Although Table 7 shows that coarse spaces containing five eigenvectors seem to decrease the number of iteration even in the case of MRAS preconditioners that are not fully scalable.

Test case 8 (The T-shaped domain problem). Finally, we consider a T-shaped domain $\Omega = (0,1.5) \times (0,1) \cup (0.5,1) \times (-1,1)$, and we impose mixed boundary conditions (5.31). The numerical solution of this problem is depicted in Figure 9.

In this case scalable results can be only observed for the preconditioners associated with the non standard interface conditions (MRAS and SMRAS), and when using a coarse space which is sufficiently big (see Table 8). In the case of ORAS or SORAS, one possibility is to choose a different parameter α, but the proof of this, and even the question of whether this would have a positive impact, are open problems.
Table 8: Comparison of preconditioners for hdG discretisation - the T-shaped problem.

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
38 803	4	22	45	36	49	22	51
154 606	16	111	98	83	172	83	182
311 369	32	265	144	133	262	130	266
616 772	64	568	238	212	410	195	412
1 246 136	128	>1000	494	333	665	313	602
2 451 365	256	>1000	712	464	477	889	

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
38 803	4	16	35	31	37	21	38
154 606	16	113	69	73	75	38	75
311 369	32	254	99	103	176	93	162
616 772	64	510	153	171	273	121	140
1 246 136	128	>1000	221	242	252	155	138
2 451 365	256	>1000	286	343	515	189	231

6 Numerical results for three dimensional problems

In this section we again assess the performance of the preconditioners as in Section 5, but this time in case of three dimensional problems. We consider the partial differential equation model for nearly incompressible elasticity and Stokes flow as three dimensional problems of similar mixed formulation. Each of these problems is discretised by using the Taylor-Hood methods from Section 3.1. In addition, we use the same tools as in Section 5. For both test cases we use zero as an initial guess.

6.1 Taylor-Hood discretisation

In this section we consider the Taylor-Hood discretisation from Section 3.1 with \(k = 2 \) for nearly incompressible elasticity and Stokes equations.

6.1.1 Nearly incompressible elasticity

In three dimensional space, ORAS and SORAS preconditioners also require an optimized parameter. We follow [HJN15] and use Robin interface conditions (5.27) with \(\alpha = 10 \).

Test case 9 (The homogeneous beam problem). We consider a homogeneous beam with the physical parameters \(E = 10^8 \) and \(\nu = 0.4999 \). The computational domain is the rectangle \(\Omega = (0,5) \times (0,1) \times (0,1) \). The beam is clamped on one side, hence we consider the following problem

\[
\begin{align*}
-2\mu \nabla \cdot \varepsilon(u) + \nabla p &= (0,0,-1)^T \quad &\text{in } \Omega \\
\nabla \cdot u &= \frac{1}{\lambda} p \quad &\text{in } \Omega \\
\u(x,y) &= (0,0,0)^T \quad &\text{on } \partial \Omega \cap \{ x = 0 \} \\
\sigma_{nn}^{sym}(x,y) &= (0,0,0)^T \quad &\text{on } \partial \Omega \setminus \{ x = 0 \}
\end{align*}
\]

(6.32)

The results of Table 9 show a clear improvement in the scalability of the two-level preconditioners over the one-level ones. In fact, using only zero energy modes, the number of iterations
Table 9: Comparison of preconditioners for Taylor-Hood discretisation (TH_h^2, R_h^1) - the homogeneous beam.

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
32 446	8	21	45	29	36	27	37
73 548	16	31	70	38	64	26	67
139 794	32	43	99	74	94	66	91
299 433	64	55	143	161	140	149	139
549 396	128	78	192	314	192	229	199

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
32 446	8	10	17	13	18	12	17
73 548	16	11	22	16	25	16	22
139 794	32	13	26	25	28	17	26
299 433	64	15	27	19	27	24	28
549 396	128	17	28	20	25	21	26

DOF	N	ORAS	SORAS	NDTNS-MRAS	NDTNS-SMRAS	TDNNS-MRAS	TDNNS-SMRAS
32 446	8	9	16	12	17	12	16
73 548	16	10	19	15	24	14	20
139 794	32	11	21	17	23	17	21
299 433	64	14	24	17	24	21	23
549 396	128	16	27	18	23	20	22

is virtually unaffected by the number of subdomains. All two-level preconditioners show a comparable performance. For this case, increasing the dimension of the coarse space beyond $6 \times N$ eigenvectors does not seem to improve the results dramatically.

6.1.2 Stokes equation

We now turn to the Stokes discrete problem given in 3.1. Once again in case of ORAS and SORAS we choose $\alpha = 10$ as in [HJN15] for the Robin interface conditions (5.27).

Test case 10 (The driven cavity problem). The test case is the three-dimensional version of the driven cavity problem. We consider the following problem on the unit cube $\Omega = (0, 1)^3$

\[
\begin{align*}
-\Delta u + \nabla p &= f \quad \text{in } \Omega \\
- \nabla \cdot u &= 0 \quad \text{in } \Omega \\
\mathbf{u}(x, y) &= (1, 0, 0)^T \quad \text{on } \partial \Omega \cap \{y = 1\} \\
\mathbf{u}(x, y) &= (0, 0, 0)^T \quad \text{on } \partial \Omega \setminus \{y = 1\}.
\end{align*}
\]

The conclusions remain the same as for the homogeneous beam example for the nearly incompressible elasticity equation discretised by Taylor-Hood method (TH_h^2, R_h^2) since Tables 10 and 9 show similar results.
Table 10: Comparison of preconditioners for Taylor-Hood discretisation \((TH^2_h, R^1_h)\) - the driven cavity problem.

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
38	229	12	24	12	22	11	23
76	542	18	34	18	31	15	31
158	818	23	45	20	45	19	45
325	293	28	60	36	64	25	60
643	137	37	79	64	91	33	88

Two-level (3 eigenvectors)

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
38	229	10	17	10	18	11	18
76	542	11	20	11	19	14	19
158	818	13	24	13	24	16	23
325	293	15	27	15	27	19	26
643	137	18	31	17	32	22	31

Two-level (7 eigenvectors)

DOF	N	ORAS	SORAS	NVTF-MRAS	NVTF-SMRAS	TVNF-MRAS	TVNF-SMRAS
38	229	9	16	9	16	12	17
76	542	10	17	10	18	15	17
158	818	11	19	11	20	17	20
325	293	13	19	13	21	20	20
643	137	15	21	16	22	22	22

7 Conclusion

We tested numerically two-level preconditioners with spectral coarse spaces for nearly incompressible elasticity and Stokes equations. We considered two finite element methods, namely, Taylor-Hood (Section 3.1) and the hdG (Section 3.2) discretisations.

In the case of the homogeneous nearly incompressible elasticity the two-level methods coupled with SORAS preconditioner defined in [HJN15] and SMRAS preconditioner defined by (4.23) allowed us to achieve good scalability results for both discretisations. Furthermore, for these symmetric preconditioners coarse spaces containing only zero energy modes seem to be enough for two and three dimensional problems. For the heterogeneous problem we also achieved scalability for two-level SORAS and SMRAS preconditioners, but, as expected, only in the case when the size of the coarse space is sufficiently big.

The improvement of the convergence in the case of the Stokes flow is visible only when the coarse space contains more eigenvectors than only constants. For the Taylor-Hood discretisation, taking sufficient big coarse space we were able to achieve good scalability for all preconditioners. It is remarkable that these good results occur even when using the hdG discretisation, despite the fact the optimized parameter to be used in SORAS and ORAS is not available.

We can conclude that the two-level preconditioners associated with non standard interface conditions are at least as good as the two-level ones in conjunction with Robin interface conditions using optimised parameters. It shows an important advantage of newly introduced preconditioners as they are parameter-free.

Numerical tests have shown that the coarse spaces bring an important improvement in the convergence, but the size of the coarse space depends on the problem. Building as small as possible coarse spaces is important from computational point of view. Thus, it is necessary to investigate what could be an optimal criterion for choosing the eigenvectors for a coarse space.

As we mentioned before, the theoretical foundation of the two-level preconditioners has not been extended to saddle point problems. Hence, future research will be devoted to this topic.
Acknowledgements

This research was supported by the Centre for Numerical Analysis and Intelligent Software (NAIS). We thank Frédéric Nataf and Pierre-Henri Tournier for many helpful discussions and insightful comments, and Ryadh Haerssas and Frédéric Hecht for their assistance with the FreeFem++ codes.

References

[AdDBM+14] B. Ayuso de Dios, F. Brezzi, L. D. Marini, J. Xu, and L. Zikatanov. A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. *Journal of Scientific Computing*, 58(3):517–547, 2014.

[BBD+16] G. R Barrenechea, M. Bosy, V. Dolean, F. Nataf, and P.-H. Tournier. Hybrid discontinuous Galerkin discretisation and preconditioning of the Stokes problem with non standard boundary conditions. preprint, https://arxiv.org/abs/1610.09207, October 2016.

[BBF13] D. Boffi, F. Brezzi, and M. Fortin. *Mixed finite element methods and applications*, volume 44 of *Springer Series in Computational Mathematics*. Springer, Heidelberg, 2013.

[BHMV99] M. Brezina, C. I Heberton, J. Mandel, and P. Vanek. An iterative method with convergence rate chosen a priori, ucd/ccm report 140. Technical report, Center for Computational Mathematics, University of Colorado at Denver, 1999.

[CDKN14] L. Conen, V. Dolean, R. Krause, and F. Nataf. A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator. *J. Comput. Appl. Math.*, 271:83–99, 2014.

[CG09] B. Cockburn and J. Gopalakrishnan. The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. *SIAM J. Numer. Anal.*, 47(2):1092–1125, 2009.

[CGL09] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. *SIAM J. Numer. Anal.*, 47(2):1319–1365, 2009.

[CS15] C. Carstensen and M. Schedensack. Medius analysis and comparison results for first-order finite element methods in linear elasticity. *IMA J. Numer. Anal.*, 35(4):1591–1621, 2015.

[DJN15] V. Dolean, P. Jolivet, and F. Nataf. *An introduction to domain decomposition methods*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015. Algorithms, theory, and parallel implementation.

[DNSS12] V. Dolean, F. Nataf, R. Scheichl, and N. Spillane. Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. *Comput. Methods Appl. Math.*, 12(4):391–414, 2012.

[EGLW12] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. *ESAIM Math. Model. Numer. Anal.*, 46(5):1175–1199, 2012.

[GE10a] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high-contrast media. *Multiscale Model. Simul.*, 8(4):1461–1483, 2010.
[GE10b] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. *Multiscale Model. Simul.*, 8(5):1621–1644, 2010.

[GR86] V. Girault and P. A. Raviart. *Finite element methods for Navier-Stokes equations*, volume 5 of *Springer Series in Computational Mathematics*. Springer-Verlag, Berlin, 1986. Theory and algorithms.

[Hec12] F. Hecht. New development in FreeFem++. *J. Numer. Math.*, 20(3-4):251–265, 2012.

[HJN15] R. Haferssas, P. Jolivet, and F. Nataf. An additive Schwarz method type theory for Lions' algorithm and Optimized Schwarz Methods. preprint, https://hal.archives-ouvertes.fr/hal-01278347, December 2015.

[KK98] G. Karypis and V. Kumar. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report, University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN, 1998.

[LNS15] Sébastien Loisel, Hieu Nguyen, and Robert Scheichl. Optimized Schwarz and 2-Lagrange multiplier methods for multiscale elliptic PDEs. *SIAM J. Sci. Comput.*, 37(6):A2896–A2923, 2015.

[LSY98] R. B. Lehoucq, D. C. Sorensen, and C. Yang. *ARPACK users’ guide*, volume 6 of *Software, Environments, and Tools*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods.

[Nic87] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems. *SIAM J. Numer. Anal.*, 24(2):355–365, 1987.

[NXD10] F. Nataf, H. Xiang, and V. Dolean. A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps. *C. R. Math. Acad. Sci. Paris*, 348(21-22):1163–1167, 2010.

[PS11] A. Pechstein and J. Schöberl. Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. *Math. Models Methods Appl. Sci.*, 21(8):1761–1782, 2011.

[SDH+14] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. *Numer. Math.*, 126(4):741–770, 2014.

[SS86] Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal Residual algorithm for solving nonsymmetric linear systems. *SIAM J. Sci. Statist. Comput.*, 7(3):856–869, 1986.

[TW05] A. Toselli and O. Widlund. *Domain Decomposition Methods - Algorithms and Theory*, volume 34 of *Springer Series in Computational Mathematics*. Springer, 2005.