Andressa Santos Pereira

Cumulative effect of cardiovascular risk factors on regulation of AMPK/SIRT1-PGC-1α-SIRT3 pathway in the human erectile tissue
Andressa Santos Pereira

Cumulative effect of cardiovascular risk factors on regulation of AMPK/SIRT1-PGC-1α-SIRT3 pathway in the human erectile tissue

FEVEREIRO, 2020
Eu, Andressa Santos Pereira, abaixo assinado, nº mecanográfico 201405435, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido, confirmo que **NÃO** incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria de um determinado trabalho intelectual, ou partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores, foram referenciadas, ou redigidas com novas palavras, tendo colocado, neste caso, a citação da fonte bibliográfica.

Faculdade de Medicina da Universidade do Porto, 13/02/2020

Assinatura conforme cartão de identificação:
NOME
Andressa Santos Pereira

NÚMERO DE ESTUDANTE E-MAIL
201405435 andressasp16@gmail.com

DESIGNAÇÃO DA ÁREA DO PROJECTO
Ciências exatas e naturais: Ciências biológicas

TÍTULO DISSERTAÇÃO
Cumulative effect of cardiovascular risk factors on regulation of AMPK/SIRT1-PGC-1α-SIRT3 pathway in the human erectile tissue

ORIENTADOR
Delminda Rosa Gamelas Neves Lopes de Magalhães

COORIENTADOR (se aplicável)
Adriana Raquel Campos Rodrigues

ASSINALE APENAS UMA DAS OPÇÕES:

- É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTE TRABALHO APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE. □

- É AUTORIZADA A REPRODUÇÃO PARCIAL DESTE TRABALHO (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRAÇÕES, GRÁFICOS, ETC.) APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE. □

- DE ACORDO COM A LEGISLAÇÃO EM VIGOR, (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRAÇÕES, GRÁFICOS, ETC.) NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTE TRABALHO. X

Faculdade de Medicina da Universidade do Porto, 13/02/2020

Assinatura conforme cartão de identificação: Andressa Santos Pereira
Agradecimentos

Agradeço à minha tutora, professora Delminda Neves, por ter tornado possível a minha entrada no grupo de investigação “Ageing & Stress da Unidade de Biologia Experimental”, pertencente ao Departamento de Biomedicina e i3S, e pela sua dedicação e disponibilidade ao longo da investigação. Assim como, à minha coorientadora, doutora Adriana Rodrigues, por todo o seu excelente feedback e apoio.

A todos os investigadores do departamento um sincero obrigada pela partilha do vosso espaço de trabalho, por toda a ajuda e pelo vosso incentivo.

Aos meus amigos e familiares, agradeço pelo suporte incondicional que facilitou todo o percurso ao longo desses anos.

Obrigada a todos que tornarem esse pequeno passo realidade.
Cumulative effect of cardiovascular risk factors on regulation of AMPK/SIRT1-PGC-1α-SIRT3 pathway in the human erectile tissue

Andressa S. Pereira,1,2 Alexandra M. Gouveia,1,2,4 Nuno Tomada,2,3 Adriana R. Rodrigues,1,2 and Delminda Neves 1,2

1 Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
2 Instituto de Investigação e Inovação em Saúde (I3S), 4200-135 Porto, Portugal.
3 Department of Urology, Hospital da Luz Arrábida, 4400-346 Vila Nova de Gaia, Portugal
4 Faculty of Nutrition and Food Sciences, University of Porto, 4200-465 Porto, Portugal.

Correspondence should be addressed to Delminda Neves; delmagal@med.up.pt.
Abstract

Cardiovascular disease risk factors (CVDRF), especially diabetes mellitus (DM), disrupts oxidative stress response. This condition underlies endothelial dysfunction, early manifested in men as erectile dysfunction. Current study aims to elucidate the impact of CVDRF in the oxidation responsive AMPK/SIRT1-PGC-1α-SIRT3 pathway and related miRNAs in human corpus cavernosum. Human penile tissue fragments from individuals submitted to programmed urological surgeries (n=27), aged 43-63 years, were clustered depending on the presence of CVDRF; control group included samples from patients without CVDRF, groups A and B included samples from patients with DM and additional CVDRF, totaling ≤2 CVDRF (group A) and ≥3 CVDRF (group B). Dual immunolabelling of SIRT3, SOD2 or GPX1 with α-actin in tissue sections was carried out. The assessment of expression levels of NOX1, phospho-AMPKα, total AMPKα, SIRT1, PGC-1α, SIRT3, SOD2 and GPX1 was performed by Western blotting and of miR-200a, miR-34a, miR-421 and miR-206 by real-time PCR. Phospho-AMPKα and SIRT3 expression was found significantly increased in group B relatively to other groups, suggesting a marked influence of CVDRF, additional to DM, in the regulation of these enzymes. NOX1 was also increased in group B relatively to controls. Only an increasing tendency was observed in phospho-AMPKα/total AMPKα ratio, SIRT1 and PGC-1α expression in groups A and B when compared with controls. Concerning anti-oxidant enzymes, GPX1 expression was found incremented in group A but, SOD2 expression was decreased in groups A and B, comparatively with controls. Group B presented significantly diminished levels of miR-421 and miR-200a, but only a decreasing trend on miR-34 and miR-206 expression was observed. Taken together, our findings demonstrated that besides DM, additional CVDRF presented a cumulative effect in the cellular response to oxidative unbalance, contributing to AMPK/SIRT1-PGC-1α-SIRT3 pathway activation. SOD2, a major mitochondrial anti-oxidant defence, didn’t follow the same variation.

Keywords

Cardiovascular disease risk factors; endothelial dysfunction; oxidative stress; AMPK/SIRT1-PGC-1α-SIRT3 pathway, GPX1; SOD2; miR-200a; miR-34a; miR-421; miR-206.
Introduction

Reactive oxygen species (ROS) are generated by multiple reactions within the cell. While in physiological concentrations ROS could be protective or functional, as in the innate immunological response, in unbalanced concentrations, a condition named oxidative stress, ROS provoke cellular toxicity and impairment [1, 2]. Accordingly, increased ROS levels contribute not only to ageing phenotype but also to cardiovascular, neurological and metabolic diseases and cancer [2-4].

ROS are abundantly formed in the mitochondria and the enzymes of the family of NADPH oxidases (NOX) were identified as important contributors to their formation [5, 6]. This family includes five NOX (1-5) and two Dual oxidase proteins (Duox 1-2) isoforms that present functional and tissue specificity [3, 7]. NOX1, expressed in vascular smooth muscle tissue and endothelial cells, is apparently an important target in diabetes-associated atherosclerosis considering that its inhibition significantly reduces ROS production and vasculopathy [8].

Opposing to ROS formation, detoxifying enzymes and uncoupling proteins intervene in essential pathways to mitigate oxidative stress [9]. One of such enzymes, mitochondrial superoxide dismutase-2 (SOD2) catalyses superoxide conversion into H$_2$O$_2$ that is subsequently reduced into innocuous products by enzymes, such as, glutathione peroxidase 1 (GPX1), a member of glutathione peroxidases family, located in the cytosol, mitochondria or even peroxisome [10, 11]. Actually, the modulation of the antioxidant enzymes was found to be crucial for the protection against ROS.

As an upstream regulator of mitochondrial biogenesis and function, the AMP-activated protein kinase (AMPK)/Sirtuin (SIRT)1-Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) - SIRT3 pathway has been considered an important intervenient in the mitigation of the oxidative stress. Its activation depends on cellular metabolic status. AMPK, a heterotrimer composed of catalytic α- and regulatory β- and γ- subunits, is a nutrient sensor responsive to AMP:ATP ratio increment, conditions of metabolic stress (exercise, glucose deprivation and hypoxia) and exposure to some hormones and drugs like metformin [12, 13]. The activation of this intracellular serine/threonine protein kinase leads to direct phosphorylation of downstream elements and to regulation of target gene expression, through increment of expression and activation of the transcription factor PGC-1α [14, 15]. Interestingly, SIRT1, a mammalian
homolog of the yeast Sir2 that belongs to a family of 7 NAD+-dependent histone deacetylases regulates energy metabolism through PGC-1α activation [16]. PGC-1α modulates the expression of genes involved in energy homeostasis and mitochondria biogenesis through specific regulators, such as, estrogen related receptors (ERRs), PPARs, or nuclear respiratory factors (NRFs)[17]. In addition, Kong et al. demonstrated that PGC-1α-ERRs pathway regulates SIRT3 expression and that SIRT3 itself stimulates PGC-1α, completing a positive feedback loop [18]. SIRT3 is a mitochondrial matrix enzyme involved in energy homeostasis, mitochondrial biogenesis and oxidative stress control. Multiple SIRT3 targets have been identified, such as Acetyl-CoA synthetase 2, Glutamate dehydrogenase, Ku70, Forkhead transcription factor FOXO3a and antioxidant enzymes [19, 20]. Previous studies demonstrated that ROS production upregulates SIRT3 that further activates SOD2 through deacetylation of the Lysine 122 [21-23]. Moreover, SIRT3 was reported to deacetylate FOXO3a and stimulate expression of target genes: SOD2 and GPX1 [19, 20]. SIRT3 plays indeed a major role in downstream pathways of PGC-1α, and its impaired function leads to a toxic environment within the cell, potentiating ageing features and multiple diseases. In fact, low levels of SIRT3 were observed in the muscle of mice models of type 1 and 2 diabetes mellitus (DM) [24, 25], in line with data obtained in testes of pre-diabetic rats that demonstrated decrement of both PGC-1α and SIRT3 levels [26]. As well, Freitas et al. found reduced SIRT3 levels in corpus cavernosum (CC) of aged individuals with metabolic syndrome, supporting the notion that metabolic impairment results in unbalanced ROS levels associated with failure in antioxidant defences [27].

DM, dyslipidaemia, hypercholesterolemia, hypertension and obesity are cardiovascular disease risk factors (CVDRF), clustered in the metabolic syndrome, long known to be associated with mitochondrial dysregulation, ROS imbalance and endothelial dysfunction [28]. Endothelial dysfunction, despite being an asymptomatic condition, precipitates atherosclerotic plaques formation and vascular insufficiency that progresses to cardiovascular disease. An early manifestation of endothelial dysfunction in men is erectile dysfunction (ED) [29], which indicates the CC as a proper tissue to study cardiovascular disease-associated molecular modifications.

We thus hypothesize that the AMPK/SIRT1-PGC-1α-SIRT3 pathway could suffer disruption in individuals with CVDRF and that modifications could be early detected in the CC. We also consider that not only the elements of this pathway, but also MicroRNAs
(miRNAs), small non-coding RNAs that repress expression of target mRNAs, modify its expression and activity with disease. Expression of different miRNAs associated with the regulation of AMPK/SIRT1-PGC-1α-SIRT3 pathway has been already identified in the CC of aged or diabetic rodent models and in the CC and serum of nondiabetic patients [30-33]. SIRT1-PGC-1α pathway was reported to be negatively regulated by miR-34a and -200a [33-35] and SIRT3-FOXO3 pathway by miR-421 [36], whereas miR-200a and miR-206 were found increased in erectile dysfunction (ED) [31].

Herein, we aimed to study the impact of CVDRF in the AMPK/SIRT1-PGC-1α-SIRT3 pathway and in the expression of miRNAs presumably involved in its regulation in the human CC. For this, we used samples collected from individuals with different levels of CVDRF and healthy counterparts, to elucidate if a cumulative effect is present.
Materials and Methods

Human Penile Tissue Collection and Processing

Penile samples were obtained from organ donors during organ harvesting for transplant program or, alternatively, from patients submitted to programmed surgeries for correction of penile deviation or implantation of penile prosthesis [37] after informed consent. Patient’s age was comprised between 43 and 63 years.

Penile fragments were divided in 3 groups according to the presence, in patients, of CVDRF recognized on Framingham Heart Study [38], such as, DM, dyslipidemia, hypercholesterolemia, hypertension and obesity. Control group included samples from individuals without ED or CVDRF aged 52.5 ± 5.6 years (n=10). Groups A and B included fragments collected from patients with DM; patients in group A, could present an additional CVDRF, on a maximum of two CVDRF (56.6 ± 5.3 years) (n=9) while those included in group B presented two or more CVDRF besides DM (55.4 ± 6.2 years) (n= 8).

Briefly, tissue fragments from each patient were excised and divided in two portions; one was immediately frozen at -80 °C for molecular analysis and the other fixed in 10% buffered formaldehyde solution and embedded in paraffin for immunofluorescence analysis.

Immunofluorescence

Five μm thick sections of selected samples cut in a microtome (RM 2145, Leica Microsystems GmbH, Wetzlar, Germany) were deparaffinized in xylene and hydrated in a series of aqueous ethanol solutions with decreasing concentration (100%, 90% and 70% v/v) until water and then submitted to the epitope retrieval in 1M HCl solution, followed by neutralization with 0.1 M borax solution. Afterwards, sections were incubated with blocking solution (1% w/v bovine serum albumin (BSA) in phosphate-buffered saline (PBS)) for 1 h and incubated overnight at 4 °C in a humidity chamber with a mixture of primary antibodies diluted in the blocking solution: mouse anti-α-actin (Millipore, Billerica, MA, USA, 1/400 diluted), combined with rabbit anti-SIRT3 (Cell Signaling technology, Danvers, MA, USA, 1/200 diluted), anti-SOD2 (Santa Cruz Biotechnology Inc., Paso Robles, CA, USA, 1/250 diluted), or anti-GPX1 (Abcam, Cambridge, UK,
1/600 diluted). After washing, the tissue sections were incubated for 1 h in a humidity chamber with the secondary antibodies anti-mouse conjugated with Alexa Fluor A568 (red) and anti-rabbit conjugated with Alexa Fluor A488 (green) (Molecular Probes, Leiden, Netherlands) both diluted 1/1000 in PBS-0.1% Triton X-100. Sections were mounted in glycerol 50% v/v in PBS after nuclei staining with 4′-6-diamino-2-phenylindole (DAPI) (Molecular Probes). Finally, the sections were observed in an ApoTome fluorescence microscope (Imager Z1, Carl Zeiss MicroImaging GmbH, Göttingen, Germany) and the images were acquired with AxionVision® software (Carl Zeiss MicroImaging GmbH). Representative images of each group were selected. To exclude nonspecific antibody reactivity or autofluorescence, negative controls were prepared without primary or secondary antibodies, respectively.

Western blotting

Each penile sample was homogenized in lysis buffer (50 mM Tris pH 7.2, 0.1 M NaCl, 5 mM EDTA, 0.5% (v/v) Triton X-100 and 1 mM β-glycerophosphate) supplemented with Protease Inhibitor and Phosphatase Inhibitor Cocktails (Sigma Aldrich Co, Dorset, UK, diluted 0.5% v/v and 0.2% v/v, respectively). After quantification of total protein by the method of Bradford [39], 20 μg of protein from each sample were separated by electrophoresis in a 12% SDS-polyacrylamide gel in a Laemmli’s discontinuous buffer system (Bio-Rad Laboratories, Inc., Hercules, CA, EUA) during approximately 90 min, at a constant current of 30 mA per gel [40].

Afterwards, proteins were transferred to a nitrocellulose membrane with pore of 0.45 μm (Bio-Rad Laboratories) for 90 min under a constant voltage of 30V. The image of Ponceau S labelled protein bands in the membrane was captured in a ChemiDoc TM XRS (Bio-Rad Laboratories, Inc.). The membrane was then washed, incubated with a blocking solution (Tris-buffer saline (TBS) with 0.1% v/v Tween-20 and 5% w/v BSA) for 30 min, and then incubated for 48h with primary rabbit antibodies diluted as indicated: anti-NOX1 1/500 (Santa Cruz Biotechnology Inc.), anti-Phospho-AMPKα 1/1000 (Cell Signaling technology), anti-AMPKα 1/1000 (Cell Signaling technology), anti-SIRT1 1/700 (ProteinTech, Chicago, IL, USA), anti-PGC-1α 1/500 (Abcam), anti-SIRT3 1/500 (Cell Signaling technology), anti-SOD2 1/1000 (Santa Cruz Biotechnology Inc.) and anti-GPX1 1/1250 (Abcam).
Lastly, several washes and incubation with appropriated secondary antibody coupled to horseradish peroxidase for 1 h were carried out. Labelled bands were detected using chemiluminescent peroxidase substrate (SuperSignal West Pico Chemiluminescent Substrate, Pierce Biotechnology, Rockford, IL, USA) and intensity was quantified with The Image Lab® software (Bio-Rad Laboratories); normalization of protein expression levels was accomplished using Ponceau S staining in the respective lane. The membranes incubated with the anti-phospho-AMPKα were further incubated with the rabbit antibody anti-AMPKα, after membrane stripping with 10% w/v SDS for 30 min. The intensity of bands of phosphorylated protein was normalized with the respective total protein band in each penile sample. An n= 4-6 per group was employed and each experiment was repeated at least three times.

MicroRNA quantification by real-time polymerase chain reaction (PCR)

Three 15 μm thick sections of each paraffin embedded tissue, n= 6-9 per group, were cut in a microtome (Leica Microsystems GmbH) and total RNA was extracted using the commercial RecoverALL total nucleic acid isolation kit (Ambion, Austin, Texas, USA) according to the method described by Liu and Xu [41]. In brief, sections were deparaffinized with xylene and then washed with 100% ethanol. Afterwards, sections were incubated with a protease solution for 2h at 50°C, followed by 15 min at 75°C. Total RNA was isolated and DNA enzymatically digested to purify the RNA extract.

MystiCqTM microRNA cDNA Synthesis Mix (Sigma-Aldrich Co.) was employed to convert RNA into cDNA. The method consists of two steps, in the first one, a mix of 7 μL of RNA sample, 2 μL of Poly (A) Tailing Buffer (5X) and 1 μL of Poly (A) Polymerase was employed to catalyse the transfer of adenosine deoxynucleotides to the 3′-end of all RNAs, including miRNAs. In the second one, 10 μL Poly (A) Tailing Buffer (5X) and 1 μL of Reverse Transcriptase (RT) was added to the microRNA cDNA Reaction Mix for the conversion of RNA into cDNA with incorporation of an unique sequence recognized by a Universal primer at the 5′-end of each DNA strand. The amplification of cDNAs by real-time PCR reactions required 1 μL of cDNA from each sample, 0.25 μL of Universal primer, 1.2 μL of specific primer, 6 μL of PowerUpTM SYBR® Green Master Mix (Invitrogen, Carlsbad, CA, EUA) and 3.55 μL of nuclease-free water. Specific primers (RNx) for miR-200a, miR-34a, miR-421 and miR-206 (Qiagen, Hilden, Germany) were employed. Two control reactions were performed, one
excluded Poly A Polymerase and the other excluded RT. Reactions were prepared in duplicated in 96-well thin-wall PCR plates and took place in a StepOnePlus™ Real-time PCR system (Life Technologies, CA, USA), with amplification conditions starting with 95 °C for 10 min; followed by 45 cycles of 95 °C for 15s, 55 °C for 30s and 60°C for 30s. Finally, the data from each amplification reaction was normalized with the internal control RNU1A, using the RNU1A primer assay (Qiagen) and the formula $2^{\Delta \Delta CT}$ (CT RNU1A – CT RNx).

Statistical analysis

The results are presented as mean ± standard error of the mean (SEM). Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test using GraphPad PRISM 7 (version 7.05). A p value <0.05 was considered as statistically significant. Outliers were identified and removed using the ROUT test (GraphPad Software, Inc), setting Q to 1.0%.
Results

Dual immunolabelling of SIRT3, SOD2 and GPX1 with α-actin

Dual-immunolabelling was carried out to detect expression of SIRT3, SOD2 or GPX1 (green) combined with α-actin (red), a specific marker of fusiform smooth muscle cells (Figure 1). Whilst SIRT3 and SOD2 presented a dotted labelling compatible with their mitochondrial localization (Figure 1 a-c, d-f), GPX1 was detected in dots and also diffusely in the cytoplasm (Figure 1 g-i). Nuclei were stained with DAPI (blue).

SIRT3 and α-actin co-expression (yellow) was rarely detected in tissues from all groups (Figure 1 a-c), but an increased labelling of SIRT3 was observed in the group B (Figure 1 c). Interestingly, our data evidenced higher labelling of SOD2 in smooth muscle in the control group (yellow) (Figure 1d). In the groups of patients with DM (groups A and B) no co-localization between SOD2 and α-actin was observed, but a green labelling corresponding to SOD2 expression in non-muscular cells, such as fibroblasts or endothelium was found (Figure 1 e-f). Concerning GPX1 and α-actin, co-expression (yellow) was detected in all groups (Figure 1 g-i).
Figure 1. Representative images of dual-immunolabelling of SIRT3/α-actin, SOD2/α-actin or GPX1/α-actin in human penile tissue from controls, group A (≤2 CVDRF) and group B (≥3 CVDRF). SIRT3 (a-c), SOD2 (d-f) and GPX1 (g-i) were labelled green, α-actin red and nuclei were stained blue (DAPI). Co-localization of SIRT3, SOD2 or GPX1 with α-actin in smooth muscle was detected in yellow. The isolated blue, green and red channels were shown for all images. CVDRF- cardiovascular disease risk factors; GPX1- glutathione peroxidase 1; SIRT3- Sirtuin 3; SOD2- superoxide dismutase-2.
Western Blotting of NOX1, AMPKα, SIRT1, PGC-1α, SIRT3, SOD2 and GPX1α

To elucidate if the exposure to CVDRF deregulate AMPKα/SIRT1-PGC-1α-SIRT3 pathway, the expression levels of the intervenient proteins were semi-quantified by Western blotting. Bands with the expected molecular weight were identified for each studied protein: NOX1 65-68kDa, AMPKα 62kDa, SIRT1 140kDa, PGC-1α 105kDa, SIRT3 28kDa, SOD2 25kDa and GPX1 22kDa. Representative blots selected per group and the correspondent Ponceau S staining were shown in Figure 2 a. The quantification of expression of each protein was shown in the correspondent graphic (Figure 2 b-j).

NOX1 levels were increased in CC samples of individuals belonging to the group B, with a significant increment relatively to controls (p=0.008) and group A (p=0.0001). However, no difference was found between group A and control (p=0.086).

Regarding AMPKα expression, both the phosphorylated and total forms were semi-quantified. A significant increase in phospho-AMPKα, but not of total AMPKα, was found in group B relatively to controls (p=0.028) and group A (p=0.038). However, the phospho-AMPKα/total AMPKα ratio only presented an increasing tendency in group B comparatively with the others (group B vs group A, p=0.314, or controls, p=0.072). While SIRT1 expression was equivalent in control and group A (p=0.787), an almost significant increase was found in group B relative to controls (p=0.050) and group A (p=0.099).

As well, a 3-fold increment in PGC-1α was observed in CVDRF groups compared with controls, but owning to the inter-individual variation in groups, no statistical differences were found among them (Control vs group A p=0.451, or group B p=0.532). SIRT3 expression instead, was significantly increased in group B, when compared with control (p=0.018) and group A (p=0.0254). SIRT3 expression did not vary between group A and controls (p=0.858). GPX1 expression was increased in groups with CVDRF compared with controls, but only between control and group A was reached a significant difference (p=0.032). Interestingly, SOD2 expression was found decreased in group A (p=0.004) and group B (p=0.038) comparatively with the control group.
Figure 2. Western blotting semi-quantification of NOX1, phospho-AMPKα, AMPKα, phospho-AMPKα/AMPKα ratio, SIRT1, PGC-1α, SIRT3, SOD2 and GPX1 levels. a) Representative blots of each studied protein and respective representative Ponceau S protein staining. b-j) Graphic representation of densitometric quantification of each band relatively to Ponceau S staining (n=4-6 per group). AMPK- AMP-activated protein kinase; GPX1- glutathione peroxidase 1; NOX- NADPH oxidases; PGC-1α- Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α; SIRT1- Sirtuin 1, SIRT3- Sirtuin 3; SOD2- superoxide dismutase-2; *p<0.05 relatively to control; *p<0.05 relatively to group A. Error bars represent standard error of the mean.
MiR-421, miR-34a, miR-200a and miR-206 quantification by real-time PCR

Quantification of miRNA levels in the human penile fragments was performed by real-time PCR (Figure 3). While miR-421 was found significantly decreased in group B relatively to controls (p=0.043), no significant difference was achieved when comparing controls to group A (p=0.219) or groups A and B (0.771). Additionally, miR-34a levels showed a decreasing tendency in groups of CVDRF patients comparatively with controls without statistical significance, a probability t-test of p=0.097 was found when comparing control with group B. MiR-200a quantification by real-time PCR showed an overt decrease in groups A and B opposed to the control group (p=0.084 and p=0.046 respectively). Meanwhile, miR-206 levels tended to decrease in groups of CVDRF patients but no statistical significance was obtained (Control vs group A p=0.121, or group B p=0.123).

Figure 3. MiR-421, miR-34a, miR-200a and miR-206 levels quantification by real-time polymerase chain reaction in human penile tissue sections. The formula $2^{\Delta \Delta Ct}$ (CT RNU1A – CT RNx) was employed. *p<0.05 relatively to control. Error bars represent standard error of the mean.
Discussion

DM induces noticeable oxidative modifications in cells, which in extension could be equivalent to those induced by the combination of two other CVDRF (smoking, hypertension, dyslipidaemia and obesity) [42]. The risk factors associated to DM only explain about 25% of the additional oxidative burden in cardiovascular disease [42]. Hence, in the present study, the samples were firstly selected according to the presence of DM in patients, and secondly according to the number of extra CVDRF, to identify the relative burden of DM and of the additional risk factors in oxidative damage response.

The pro-oxidative effects of hyperglycaemic states have been associated with NADPH oxidases activity increment [43], which agrees with our data, considering that a significant increment in NOX1 expression in group B, comparatively to controls (p=0.008) was found. The extra DM risk factors presented by the individuals of group B apparently have a relevant contribution to the NOX1 up-regulation because, relatively to group A, these patients also present higher levels of NOX1 (p=0.0001).

In contrast with previous studies [24-27], we found SIRT3 expression increased in the presence of CVDRF, considering the 3.6-fold increment observed in the patients exposed to a higher number of metabolic risk factors relatively to controls (p=0.018). This was an unexpected finding, taking into account that a decay of the levels of this enzyme, but not of the respective mRNA, was found in the CC of old patients with metabolic syndrome compared with the healthy counterparts [27]. We can speculate that middle-aged individuals, as those included in the current study, present cellular mechanisms able to mitigate SIRT3 degradation, possibly by preservation of functional mitochondria [44]. This in part could own to the availability of high levels of melatonin, a pineal hormone that confers a strong anti-oxidative protection of mitochondria and markedly decays along ageing [45]. The levels of SIRT3 protein also depend on mechanisms of silencing/degradation of the respective mRNA, for which the miRNA-421 has an important contribution. Cheng et al reported miRNA-421 to negatively regulate SIRT3 by suppressing its translation and FOXO3 phosphorylation [36]. The higher levels of SIRT3 observed in group B agree with the low levels of miRNA-421 found in this group. In short, we can consider that in the middle-aged patients with multiple CVDRF, the higher levels of SIRT3 comparatively with those found in controls constitute a
compensatory mechanism of defence against oxidative damage that could fail in older individuals [27].

Overexpression of SIRT3 has been demonstrated to increase SOD2 levels and activity, to defeat ROS-mediated damage through FOXO3 activation and ensuing gene expression, or, direct deacetylation of SOD2 [19, 21-23]. Interestingly, SOD2 was found decreased in both groups of patients with CVDRF relatively to controls. Considering that in the individuals of group B an increment of SIRT3 and a correspondent decrement in miR-421 was observed, we could expect that the SIRT3/FOXO3 signalling pathway would be activated, which should result in FOXO3 phosphorylation and increased SOD2 expression [36]. Taking into account that in this study only the expression, but not the activity, of SIRT3 was measured, we cannot exclude that the downregulation of SOD2 could be strictly related with the activity of SIRT3. Additional studies to evaluate SIRT3 activity, will be necessary to support this hypothesis.

The SOD2 downregulation in patients with CVDRF is partially in agreement with the findings of Chen et al. that reported a significant decline of SOD2 in diabetic mice aorta [46]. In the same study, however, a preserved expression of SOD2 was found in transgenic mice that overexpress SIRT1. The crosstalk between SIRT1 and SOD2 is yet to be determined, despite some studies reported a relationship between them through FOXO family (FOXO1 and 3a). Actually, Zhang et al. considered SIRT1/FOXO/SOD2 pathway a major defence mechanism against ROS overproduction [47]. Our data did not show differences in the expression of SIRT1 among groups. Only an increasing trend that almost achieved a statistical significance was observed in group B, when compared with controls (p=0.05). This finding opposes to previous studies that evidenced SIRT1 expression constitutively depressed in metabolic diseases like obesity and DM and in aged animals, while upregulated in starvation states [48-50]. However, it is in line with the previous study in the CC of aged patients that did not demonstrate differences among healthy individuals of several ages and aged with metabolic syndrome [27].

In a tentative to clarify the regulatory mechanisms involved in SIRT1 expression, two miRNAs were studied: miR-34a and miR-200a. Actually, miR-34a-5p was found to directly target SIRT1 mRNA disrupting its pathway [34, 35]. As well, miR-34a was identified as the most upregulated miRNA in obesity conditions [34]. In our study, a decreasing tendency represented by a 54% reduction in miR-34a levels, that almost reached statistical significance was observed between controls and group B (p=0.097).
This finding correlates with the increasing trend of SIRT1 found in group B. An additional support to this result, is the significant downregulation in miR-200a that also targets SIRT1 mRNA, found in the patients with CVDRF, group B. Pan and colleagues reported, in contrary, a miR-200a upregulation in CC of rats with age-related erectile dysfunction associated with a decrement in SIRT1 [33]. But, differences along ageing could be expected as observed for SIRT3, because ageing is a multifactorial process that leads to progressive accumulation of defects that disturb the function of tissues, organs and organisms. Regarding CC, ageing was demonstrated to be the single most significant risk factor for ED [51].

Additionally, we studied miR-206, a miRNA which levels highly relate with ED, and a decreasing tendency was observed in patients of group B, still no statistical differences were stablshed. Nonetheless, despite the equivalent variation observed for miR-200a and miR-206, our findings disagree with data from Bai et al. and GamalEl et al. that reported an upregulation of both miR-200a and miR-206 in the CC of rats with obesity-related ED and in patients with non-metabolic veno-occlusive ED, respectively [30, 31].

Besides SOD2, GPX1 is an important intracellular antioxidant enzyme, which expression and activity depends on multiple signalling pathways, including SIRT3, PGC-1α and AMPK [52, 53]. As well, modulation of GPX1 in the skeletal muscle of the mouse is suggested to be mediated by nuclear factor kB (NFkB) [54] and p53 transcription factors, both regulated through SIRT1-catalysed deacetylation [55]. Interestingly, GPX1 has been been associated with contradictory mechanisms in DM [10]; while some studies support a protective function for GPX1 in the preservation of pancreatic β-cells islets and hyperglycaemia reduction [56], others indicate that high levels of GPX1 in muscle skeletal cells contribute to insulin resistance [57]. In our study, GPX1 was found significantly increased in human CC samples from individuals with CVDRF, suggesting a compensatory defence mechanism against ROS overproduction supported by the rise in SIRT3. The increment of GPX1 relatively to SOD2 levels, also suggest that the produced ROS could be efficiently degraded to innocuous products, owing to the sequential conversion to H2O2 by SOD2 and ultimately to H2O by GPX1. However, considering the controversy mentioned above, a deleterious effect of the increment in GPX1 on the muscle cells and on insulin regulation could not be excluded.

In line with the upregulation in SIRT3, an increment in phospho-AMPKα was found in group B. But we did not find a significant difference neither in total AMPKα and
phospho-AMPKα/ total AMPKα ratio nor in PGC-1α expression among groups, yet an increment tendency was observed in patients with metabolic diseases. Taken together, the increasing trends in total AMPKα, SIRT1, PGC-1α and the increment of phospho-AMPKα and SIRT3 observed in patients of group B indicate a compensatory mechanism for the oxidative burden associated with the increase in NOX1.

The current study presents some limitations that may explain the absence of statistical differences in the levels of the studied proteins among the groups of patients. The main reason is the low number of patients in each group. In addition, the CC samples were obtained in programmed surgeries or during organ harvesting for transplants, which implies that unknown putative confounders such as, exercise practice, diet, uncertain alcohol or abusive substance use and prescription of drugs that interfere with AMPK/SIRT1-PGC-1α-SIRT3 pathway, such as metformin that activates AMPK [58], may differ among patients of the same group. Differences in lifestyle could affect the oxidative burden and the cellular responses to oxidative damage. Third, the CVDRF in patients were established as a qualitative attribute, which implies that the grade of the exposure to CVDRF was not entirely quantified in each individual. For further studies, it would be interesting to detail the metabolic profile and quantify parameters such as, the obesity index, HbA1c and levels of oxidised LDL and oxidised proteins in blood. As well, additional clinical information, such as time of diagnosis, medication protocol, presence of complications associated with DM and hypertension, cardiac resistance test, as well as, lifestyle habits through a questionnaire, could help refining our data.

Conclusions

In summary, the AMPK/SIRT1-PGC-1α-SIRT3 pathway and miR-421, miR-34a, miR-200a and miR-206 were studied for the first time in penile tissue from diabetic middle-aged men, demonstrating that CVDRF additional to DM, have a major impact in the response to oxidative damage. The accumulation of multiple CVDRF resulted in AMPK/SIRT1-PGC-1α-SIRT3 pathway activation, as a protective mechanism. The overall increment of SIRT3 expression, however, was not reflected in the expression of SOD2, considering that a downregulation of this enzyme was found. Hence, further analysis will be necessary to identify the regulatory mechanisms behind SOD2 and its implications in the response to clinically used drugs.
Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Funding Statement

Adriana R. Rodrigues is supported by Portuguese Government and European Union [DL57/2016/CP1355/CT009].

References

1. Dai, D.F., P.S. Rabinovitch, and Z. Ungvari, *Mitochondria and cardiovascular aging*. Circ Res, 2012. **110**(8): p. 1109-24.
2. Ray, P.D., B.W. Huang, and Y. Tsuji, *Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling*. Cell Signal, 2012. **24**(5): p. 981-90.
3. Brandes, R.P., N. Weissmann, and K. Schroder, *NADPH oxidases in cardiovascular disease*. Free Radic Biol Med, 2010. **49**(5): p. 687-706.
4. Rolo, A.P. and C.M. Palmeira, *Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress*. Toxicol Appl Pharmacol, 2006. **212**(2): p. 181-9.
5. Balaban, R.S., S. Nemoto, and T. Finkel, *Mitochondria, oxidants, and aging*. Cell, 2005. **120**(4): p. 483-95.
6. Lambeth, J.D., *NOX enzymes and the biology of reactive oxygen*. Nat Rev Immunol, 2004. **4**(3): p. 181-9.
7. Panday, A., et al., *NADPH oxidases: an overview from structure to innate immunity-associated pathologies*. Cell Mol Immunol, 2015. **12**(1): p. 5-23.
8. Gray, S.P., et al., *NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis*. Circulation, 2013. **127**(18): p. 1888-902.
9. Arsenijevic, D., et al., *Disruption of the uncoupling protein-2 gene reveals a role in immunity and reactive oxygen species production*. Nat Genet, 2000. **26**(4): p. 435-9.
10. Lubos, E., J. Loscalzo, and D.E. Handy, *Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities*. Antioxid Redox Signal, 2011. **15**(7): p. 1957-97.
11. Zelko, I.N., T.J. Mariani, and R.J. Folz, *Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression*. Free Radic Biol Med, 2002. **33**(3): p. 337-49.
12. Hardie, D.G., *AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy*. Nat Rev Mol Cell Biol, 2007. **8**(10): p. 774-85.
13. Ruderman, N.B., et al., Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes, 2006. 55 Suppl 2: p. S48-54.

14. Terada, S., et al., Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun, 2002. 296(2): p. 350-4.

15. Jager, S., et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A, 2007. 104(29): p. 12017-22.

16. Rodgers, J.T., et al., Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 2005. 434(7029): p. 113-8.

17. Finck, B.N. and D.P. Kelly, PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest, 2006. 116(3): p. 615-22.

18. Kong, X., et al., Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One, 2010. 5(7): p. e11707.

19. Jacobs, K.M., et al., SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci, 2008. 4(5): p. 291-9.

20. Kops, G.J., et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 2002. 419(6904): p. 316-21.

21. Ozden, O., et al., Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY), 2011. 3(2): p. 102-7.

22. Candas, D. and J.J. Li, MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal, 2014. 20(10): p. 1599-617.

23. Tao, R., et al., Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell, 2010. 40(6): p. 893-904.

24. Jing, E., et al., Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A, 2011. 108(35): p. 14608-13.

25. Yechoor, V.K., et al., Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci U S A, 2004. 101(47): p. 16525-30.

26. Rato, L., et al., Pre-diabetes alters testicular PGC1-alpha/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta, 2014. 1837(3): p. 335-44.

27. Freitas, M., et al., Effects of Aging and Cardiovascular Disease Risk Factors on the Expression of Sirtuins in the Human Corpus Cavernosum. J Sex Med, 2015. 12(11): p. 2141-52.

28. Solomon, H., J.W. Man, and G. Jackson, Erectile dysfunction and the cardiovascular patient: endothelial dysfunction is the common denominator. Heart, 2003. 89(3): p. 251-3.

29. Guay, A.T., ED2: erectile dysfunction = endothelial dysfunction. Endocrinol Metab Clin North Am, 2007. 36(2): p. 453-63.

30. Bai, Y., et al., Identification and Functional Verification of MicroRNAs in the Obese Rat With Erectile Dysfunction. Sex Med, 2017. 5(4): p. e261-e271.
31. GamalEl Din, S.F., et al., Are the Cavernous Tissue and Serum Levels of Micro RNAs 200a and 206 Elevated in Patients With Refractory Veno-occlusive Erectile Dysfunction? A Comparative Study. Urology, 2017. 108: p. 108-113.

32. He, Y., et al., A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. Int J Mol Sci, 2017. 18(3).

33. Pan, F., et al., MicroRNA-200a is up-regulated in aged rats with erectile dysfunction and could attenuate endothelial function via SIRT1 inhibition. Asian J Androl, 2016. 18(1): p. 74-9.

34. Choi, S.E. and J.K. Kemper, Regulation of SIRT1 by microRNAs. Mol Cells, 2013. 36(5): p. 385-92.

35. Wang, G., et al., miR-34a-5p Inhibition Alleviates Intestinal Ischemia/Reperfusion-Induced Reactive Oxygen Species Accumulation and Apoptosis via Activation of SIRT1 Signaling. Antioxid Redox Signal, 2016. 24(17): p. 961-73.

36. Cheng, Y., et al., MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochem Biophys Res Commun, 2016. 474(1): p. 57-63.

37. Morgado, A., M.R. Morgado, and N. Tomada, Penile lengthening with porcine small intestinal submucosa grafting in Peyronie's disease treatment: long-term surgical outcomes, patients' satisfaction and dissatisfaction predictors. Andrology, 2018. 6(6): p. 909-915.

38. Hajar, R., Framingham contribution to cardiovascular disease. Heart views: the official journal of the Gulf Heart Association, 2016. 17(2): p. 78.

39. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.

40. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.

41. Liu, A. and X. Xu, MicroRNA isolation from formalin-fixed, paraffin-embedded tissues. Methods Mol Biol, 2011. 724: p. 259-67.

42. Folli, F., et al., The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev, 2011. 7(5): p. 313-24.

43. Guzik, T.J., et al., Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 2002. 105(14): p. 1656-62.

44. Torrens-Mas, M., et al., Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am J Physiol Cell Physiol, 2019. 317(2): p. C398-c404.

45. Reiter, R.J., et al., Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci, 2017. 74(21): p. 3863-3881.

46. Chen, H., et al., Endothelium-specific SIRT1 overexpression inhibits hyperglycemia-induced upregulation of vascular cell senescence. Science China Life Sciences, 2012. 55(6): p. 467-473.

47. Zhang, W., et al., Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. Oxid Med Cell Longev, 2017. 2017: p. 7543973.
48. Guarente, L., Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol, 2011. 76: p. 81-90.

49. Rodgers, J.T. and P. Puigserver, Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A, 2007. 104(31): p. 12861-6.

50. Zhou, S., et al., Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res, 2011. 109(6): p. 639-48.

51. Ghalayini, I.F., et al., Erectile dysfunction in a Mediterranean country: results of an epidemiological survey of a representative sample of men. Int J Impot Res, 2010. 22(3): p. 196-203.

52. Gounden, S., et al., Increased SIRT3 Expression and Antioxidant Defense under Hyperglycemic Conditions in HepG2 Cells. Metab Syndr Relat Disord, 2015. 13(6): p. 255-63.

53. Rabinovitch, R.C., et al., AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species. Cell Rep, 2017. 21(1): p. 1-9.

54. Zhou, L.Z., A.P. Johnson, and T.A. Rando, NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med, 2001. 31(11): p. 1405-16.

55. Tatone, C., et al., Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Human Reproduction Update, 2018. 24(3): p. 267-289.

56. Harmon, J.S., et al., beta-Cell-specific overexpression of glutathione peroxidase preserves intranuclear MafA and reverses diabetes in db/db mice. Endocrinology, 2009. 150(11): p. 4855-62.

57. Loh, K., et al., Reactive oxygen species enhance insulin sensitivity. Cell Metab, 2009. 10(4): p. 260-72.

58. Zhou, G., et al., Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest, 2001. 108(8): p. 1167-74.
Anexos

Normas da revista “Oxidative Medicine and Cellular Longevity”
For authors

Language editing

Hindawi has partnered with Editage to provide an English-language editing service to authors prior to submission. Authors that wish to use this service will receive a 10% discount on all editing services provided by Editage. To find out more information or get a quote, please click here.

Submission

Manuscripts should be submitted by one of the authors of the manuscript through the online manuscript tracking system. Only electronic PDF (.pdf) or Word (.doc, .docx, .rtf) files can be submitted through the MTS, and there is no page limit. Submissions by anyone other than one of the authors will not be accepted. The submitting author takes responsibility for the manuscript during submission and peer review. For technical help contact help@hindawi.com.

Terms of submission

Manuscripts must be submitted on the understanding that they have not been published elsewhere and are only being considered by this journal. The submitting author is responsible for ensuring that the article’s publication has been approved by all the other coauthors. It is also the submitting author’s responsibility to ensure that the article has all necessary institutional approvals. Only an acknowledgment from the editorial office officially establishes the date of receipt. Further correspondence and proofs will be sent to the author(s) before publication, unless otherwise indicated. It is a condition of submission that the authors permit editing of the manuscript for readability. All inquiries concerning the publication of accepted manuscripts should be addressed to help@hindawi.com. All submissions are bound by the Hindawi's terms of service.

Peer review

All submitted articles are subject to assessment and peer review to ensure editorial appropriateness and technical correctness. In order for an article to be accepted for publication, the assigned Editor will first consider if the manuscript meets minimum editorial standards and fits within the scope of the journal. If an article is within scope, then the Editor will ideally solicit at least two external peer reviewers (whose identities will remain anonymous to the authors) to assess the article before confirming a decision to accept. Decisions to reject are at the discretion of the Editor.

Our Research Integrity team will occasionally seek advice outside standard peer review, for example, on submissions with serious ethical, security, biosecurity, or societal implications. We may consult experts and the academic editor before deciding on appropriate actions, including but not limited to: recruiting reviewers with specific expertise, assessment by additional editors, and declining to further consider a submission.

Concurrent submissions

In order to ensure sufficient diversity within the authorship of the journal, authors will be limited to having three manuscripts under review at any point in time. If an author already has three manuscripts under review in the journal, they will need to wait until the review process of at least one of these manuscripts is complete before submitting another manuscript for
consideration. This policy does not apply to Editorials or other non-peer reviewed manuscript types.

Article Processing Charges

The journal is Open Access. Article Processing Charges (APCs) allow the publisher to make articles immediately available online to anyone to read and reuse upon publication.

Preprints

Hindawi supports the deposition of manuscripts in preprint servers, and does not consider this to compromise the novelty of the results. Articles based on content previously made public only on a preprint server, institutional repository, or in a thesis will be considered. The preprint should be cited.

Article types

The journal will consider the following article types:

Research Articles

Research articles should present the results of an original research study. These manuscripts should describe how the research project was conducted and provide a thorough analysis of the results of the project. Systematic reviews may be submitted as research articles.

Clinical Studies

A clinical study presents the methodology and results of a study that was performed within a clinical setting. These studies include both clinical trials and retrospective analyses of a body of existing cases. In all cases, clinical studies should include a description of the patient group that was involved, along with a thorough explanation of the methodology used in the study and the results that were obtained.

When publishing clinical trials, Hindawi aims to comply with the recommendations of the International Committee of Medical Journal Editors (ICMJE) on trial registration. Therefore, authors are requested to register the clinical trial presented in the manuscript in a public trial registry and include the trial registration number at the end of the abstract. Trials initiated after July 1, 2005, must be registered prospectively before patient recruitment has begun. For trials initiated before July 1, 2005, the trial must be registered before submission.

Reviews

A review article provides an overview of the published literature in a particular subject area.

Formatting

An optional research article manuscript template can be downloaded here. We recommend that all manuscripts include line numbers and follow the structure below:

Title and Authorship Information

The following information should be included:

- Manuscript title
- Full author names
Affiliations. Hindawi Limited remains neutral with regard to jurisdictional claims in institutional affiliations. Responsibility for affiliations ultimately rests with the author, although Hindawi may request changes be made to countries listed in affiliations to ensure consistency across published output (for indexing and discovery reasons).

Abstract

The manuscript should contain an abstract. The abstract should be self-contained, citation-free, and should not exceed 300 words.

Introduction

This section should be succinct, with no subheadings.

Materials and Methods

The methods section should provide enough detail for others to be able to replicate the study. If you have more than one method, use subsections with relevant headings, e.g. different models, in vitro and in vivo studies, statistics, materials and reagents, etc.

Hindawi journals have no space restriction on methods. Detailed descriptions of the methods (including protocols or project descriptions) and algorithms may also be uploaded as supplementary information or a previous publication that gives more details may be cited. If the method from a previous article is used then this article must be cited and discussed. If wording is reused from a published article then this must be noted, e.g. This study uses the method of Smith et al. and the methods description partly reproduces their wording [1].

If a method or tool is introduced in the study, including software, questionnaires, and scales, the license this is available under and any requirement for permission for use should be stated. If an existing method or tool is used in the research, the authors are responsible for checking the license and obtaining any necessary permission. If permission was required, a statement confirming permission was granted should be included in the Materials and Methods section.

Publishing Protocols. We encourage authors describing any methodology, in particular laboratory-based experiments in the life sciences but also computational and bioinformatics protocols, to upload details of their methods to protocols.io. This is an Open Access website that allows researchers to record their methods in a structured way, obtain a DOI to allow easy citation of the protocol, collaborate with selected colleagues, share their protocol privately for journal peer review, and choose to make it publicly available. Once published, the protocol can be updated and cited in other articles.

You can make your protocol public before publication of your article if you choose, which will not harm the peer-review process of your article and may allow you to get comments about your methods to adapt or improve them before you submit your article (see also the protocols.io FAQ page).

Protocols in the Clinical Sciences. We encourage authors of clinical trials and other clinical studies to upload the detailed plan of their study that was approved by the ethics committee as supplementary materials. If there is a published version of the protocol, this should also be cited in the methods section.

Results and Discussion

This section may be divided into subsections or may be combined.
Main Text (Review only)

This section may be divided into subsections or may be combined.

Conclusions

This should clearly explain the main conclusions of the article, highlighting its importance and relevance.

Data Availability

This statement should describe how readers can access the data supporting the conclusions of the study and clearly outline the reasons why unavailable data cannot be released.

Conflicts of Interest

Authors must declare all relevant interests that could be perceived as conflicting. Authors should explain why each interest may represent a conflict. If no conflicts exist, the authors should state this. Submitting authors are responsible for coauthors declaring their interests.

Funding Statement

Authors must state how the research and publication of their article was funded, by naming financially supporting body(s) (written out in full) followed by associated grant number(s) in square brackets (if applicable), for example: “This work was supported by the Engineering and Physical Sciences Research Council [grant numbers xxxx, yyyy]; the National Science Foundation [grant number zzzz]; and a Leverhulme Trust Research Project Grant”.

If the research did not receive specific funding, but was performed as part of the employment of the authors, please name this employer. If the funder was involved in the manuscript writing, editing, approval, or decision to publish, please declare this.

Acknowledgments

All acknowledgments (if any) should be included at the very end of the manuscript before the references. Anyone who made a contribution to the research or manuscript, but who is not a listed author, should be acknowledged (with their permission).

References

Authors may submit their references in any style. If accepted, these will be reformatted in Chicago style by Hindawi. Authors are responsible for ensuring that the information in each reference is complete and accurate. All references should be numbered consecutively in the order of their first citation. Citations of references in the text should be identified using numbers in square brackets e.g., “as discussed by Smith [9]”; “as discussed elsewhere [9, 10]”. All references should be cited within the text and uncited references will be removed.

Date formatting

Hindawi recommends writing dates out fully to avoid confusion with different all-numeral date styles. For example, 11/10/2018 could be 10 November 2018 or 11 October 2018 depending on the reader, therefore, the date should be written out in full. For example, the date September 1, 2018 can be used rather than 01/09/2018 or 09/01/2018.

Units of measurement
Units of measurement should be presented simply and concisely using the International System of Units (SI).

Preparation of figures

Upon submission of an article, authors should include all figures and tables in the PDF file of the manuscript. Figures and tables should not be submitted in separate files. If the article is accepted, authors will be asked to provide the source files of the figures. Each figure should be supplied in a separate electronic file. All figures should be cited in the manuscript in a consecutive order. Figures should be supplied in either vector art formats (Illustrator, EPS, WMF, FreeHand, CorelDraw, PowerPoint, Excel, etc.) or bitmap formats (Photoshop, TIFF, GIF, JPEG, etc.). Bitmap images should be of 300 dpi resolution at least unless the resolution is intentionally set to a lower level for scientific reasons. If a bitmap image has labels, the image and labels should be embedded in separate layers.

Maps. Hindawi Limited remains neutral with regard to jurisdictional claims in published maps. For reasons of consistency, authors are requested to use accepted standard maps as the basis for map figure drawing, for example using the latest standard base-map of Map Press. Responsibility for maps rests with the author and it is their responsibility to also provide any copyright or licence information when using maps that are not owned or created by the author (e.g. Google Maps, etc.)

Preparation of tables

Tables should be cited consecutively in the text. Every table must have a descriptive title and if numerical measurements are given, the units should be included in the column heading. Vertical rules should not be used.

Supplementary materials

Supplementary materials are the additional parts to a manuscript, such as audio files, video clips, or datasets that might be of interest to readers. Authors can submit one file of supplementary material along with their manuscript through the Manuscript Tracking System. If there is more than one file, they can be uploaded as a .ZIP file.

A section titled “Supplementary Material” should be included before the references list with a concise description for each supplementary material file. Supplementary materials are not modified by our production team. Authors are responsible for providing the final supplementary materials files that will be published along with the article.

Proofs

Corrected proofs must be returned to the publisher within two to three days of receipt. The publisher will do everything possible to ensure prompt publication.

Copyright and permissions

Authors retain the copyright of their manuscripts, and all Open Access articles are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided that the original work is properly cited.

The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations. The submitting author is responsible for securing any permissions needed for the reuse of copyrighted materials included in the manuscript.
While the advice and information in this journal are believed to be true and accurate on the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Reporting guidelines

Authors are strongly encouraged to use appropriate reporting guidelines when preparing and submitting manuscripts, to maximise transparency and reproducibility. Our editors and reviewers are also encouraged to use them in the review process. Completed checklists should be provided in the supplementary files on submission. We particularly encourage the use of:

- **CONSORT** for randomized controlled trials
- **TREND** for non-randomized trials
- **PRISMA** for systematic review and meta-analyses
- **CARE** for case reports
- **STROBE** for observational studies
- **STREGA** for genetic association studies
- **SRQR** for qualitative studies
- **STARD** for diagnostic accuracy studies
- **ARRIVE** for animal experiments

Conflicts of interest

Conflicts of interest (COIs, also known as ‘competing interests’) occur when issues outside research could be reasonably perceived to affect the neutrality or objectivity of the work or its assessment. For more information, see our publication ethics policy. Authors must declare all potential interests – whether or not they actually had an influence – in a ‘Conflicts of Interest’ section, which should explain why the interest may be a conflict. If there are none, the authors should state “The author(s) declare(s) that there is no conflict of interest regarding the publication of this article.” Submitting authors are responsible for coauthors declaring their interests. Declared conflicts of interest will be considered by the editor and reviewers and included in the published article.

Authors must declare current or recent funding (including for Article Processing Charges) and other payments, goods or services that might influence the work. All funding, whether a conflict or not, must be declared in the “Funding Statement”. The involvement of anyone other than the authors who 1) has an interest in the outcome of the work; 2) is affiliated to an organization with such an interest; or 3) was employed or paid by a funder, in the commissioning, conception, planning, design, conduct, or analysis of the work, the preparation or editing of the manuscript, or the decision to publish must be declared.

You may be asked to make certain changes to your manuscript as a result of your declaration. These requests are not an accusation of impropriety. The Editor or reviewer is helping you to protect your work against potential criticisms.

If you are in any doubt about declaring a potential conflict, remember that if it is revealed later – especially after publication – it could cause more problems than simply declaring it at the time of submission. Undeclared conflicts of interest could lead to a corrigendum or, in the most serious cases, a retraction.

Ethical guidelines

In any studies on human or animal subjects, the following ethical guidelines must be observed. For any experiments on humans, all work must be conducted in accordance with the
Declaration of Helsinki (1964). Manuscripts describing experimental work which carries a risk of harm to human subjects must include a statement that the experiment was conducted with the human subjects’ understanding and consent, as well as a statement that the responsible Ethical Committee has approved the experiments. In the case of any animal experiments, the authors must provide a full description of any anesthetic or surgical procedure used, as well as evidence that all possible steps were taken to avoid animal suffering at each stage of the experiment.

Appeals

Authors may appeal if they feel that the decision to reject was based on: i) a major misunderstanding over a technical aspect of the manuscript, or ii) a failure understand the scientific advance shown by the manuscript. Appeals requesting a second opinion without sufficient justification will not be considered. To lodge an appeal, please contact the journal by email, quoting your manuscript number. Appeals will only be considered from the original submitting author.