Research Article

Altered Expression Profile of Renal α1D-Adrenergic Receptor in Diabetes and Its Modulation by PPAR Agonists

Xueying Zhao, Yuanyuan Zhang, Michelle Leander, Lingyun Li, Guoshen Wang, and Nerimiah Emmett

Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA

Correspondence should be addressed to Xueying Zhao; xzhao@msm.edu

Received 12 December 2013; Revised 14 February 2014; Accepted 17 February 2014; Published 17 March 2014

Academic Editor: Norman Cameron

Copyright © 2014 Xueying Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alpha1D-adrenergic receptor (α1D-AR) plays important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. The present study was designed to investigate the expression profile of α1D-AR in the diabetic kidneys and its modulation by activation of peroxisome proliferator-activated receptors (PPARs). 12-week-old Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were treated with fenofibrate or rosiglitazone for 8–10 weeks. Gene microarray, real-time PCR, and confocal immunofluorescence microscopy were performed to assess mRNA and protein expression of α1D-AR in rat kidney tissue. Using microarray, we found that α1D-AR gene was dramatically upregulated in 22-week-old ZD rats compared to ZL controls. Quantitative PCR analysis verified a 16-fold increase in α1D-AR mRNA in renal cortex from ZD animals compared to normal controls. Chronic treatment with fenofibrate or rosiglitazone reduced renal cortical α1D-AR gene. Immunofluorescence staining confirmed that α1D-AR protein was induced in the glomeruli and tubules of diabetic rats. Moreover, dual immunostaining for α1D-AR and kidney injury molecule-1 indicated that α1D-AR was expressed in dedifferentiated proximal tubules of diabetic Zucker rats. Taken together, our results show that α1D-AR expression is upregulated in the diabetic kidneys. PPAR activation suppressed renal expression of α1D-AR in diabetic nephropathy.

1. Introduction

Alpha1-adrenergic receptors (α1-ARs) are a heterogeneous family of G-protein-coupled receptors that present in most human and animal tissues, and there are considerable variations in the expression levels of α1-AR subtypes in various tissues of different species [1–4]. α1-ARs play important roles in regulating physiological and pathological responses mediated by catecholamines, particularly in the cardiovascular and urinary systems. In addition to mediating catecholamine-induced vasoconstriction, the α1-ARs in vascular wall have been shown to promote proliferation and hypertrophy of arterial smooth muscle cells and adventitial fibroblasts [5, 6]. In the urinary system, the demonstration of α1-AR expression in human prostate, bladder muscle, and smooth muscles has led to the treatment of bladder outlet obstruction and ureteral stones, via blocking these receptors [7, 8].

Of the three α1-AR subtypes (α1A, α1B, and α1D), the α1D-AR has been the least studied due to difficulties in obtaining significant expression levels and poor coupling to membrane signals due to its intracellular localization [9–11]. However, recent experiments performed in α1D-AR knockout models suggest that this α1-AR subtype plays an important role in the overall regulation of blood pressure [12]. Additionally, Armenia et al. reported that α1A− and α1D-ARs are the major functional subtypes of renal α1-ARs in both normal and streptozotocin-induced diabetic Sprague-Dawley rats [13].

Using in situ hybridization, Kurooka et al. identified the gene expression of all three α1-AR subtypes in human kidney cortex [14]. They found that intense α1-AR mRNA staining was apparent especially in the smooth muscle of arterial walls, whereas weak staining of each of the α1-AR mRNAs was observed in the glomeruli and renal tubules [14]. More recently, the presence and distribution of subtypes in human renal pelvis and calyces were evaluated, and α1D-AR was most dense in both followed by α1A and α1B [8]. However, the expression and distribution patterns of α1D-AR in normal and diabetic rat kidneys remain unknown.
2. Materials and Methods

2.1. Experimental Animals. Six-week-old male Zucker lean (ZL) and Zucker diabetic fatty (ZD) rats were purchased from Charles River Laboratories (Wilmington, MA, USA). Rats were housed in a temperature-controlled room with a 12:12-hour light-dark cycle and free access to Purina 5008 rat chow and water. Blood glucose was monitored using the Accu-chek glucometer by tail-vein blood sampling. In a previous study in which we characterized the time course of blood glucose in this model [15], we showed that blood glucose of the ZD rats began to increase at week 8, reached a peak at week 12, and remained at this higher level thereafter. The rats were housed in the animal care facility at the Morehouse School of Medicine that is AAALAC accredited. All animal protocols were approved by the Institutional Animal Care and Use Committee and were in accordance with the requirements stated in the National Institutes of Health Guide for the Care and Use Laboratory Animals.

For fenofibrate treatment, 12-week-old Zucker rats were divided into 3 experimental groups: vehicle- (0.5% carboxymethylcellulose ig) treated ZL, vehicle-treated ZD, or fenofibrate- (150 mg/kg/day ig) treated ZD (F-ZD) rats for 10 weeks. For rosiglitazone treatment, 12-week-old ZD animals were treated with rosiglitazone (10 mg/kg/day in drinking water) or vehicles for 8 weeks.

2.2. Isolation of Glomeruli. Glomeruli were isolated from the kidney cortex of ZL and ZD rats at the age of 7, 12, and 20–22 weeks, respectively, by a modified procedure as described previously [16]. Briefly, the rats were anesthetized and the kidneys were rapidly removed and placed in Hanks’ balanced salt solution (HBSS) at pH 7.4. The renal cortex was dissected and cut into small pieces with a surgical blade. Glomeruli were isolated by passing the tissues successively through calibrated sieves (pore size: 200, 125, and 65 μm) and rinsed with HBSS. Isolated glomeruli, collected on the 65 μm sieve, were resuspended in HBSS. They were devoid of Bowman’s capsule. Tubular fragments were less than 3% of the total number of isolated glomeruli [16].

2.3. RNA Extraction. Total RNA was prepared from isolated glomeruli or kidney cortex by using ultrapure TRIzol reagent according to the manufacturer’s instructions (GIBCO-BRL, Grand Island, NY). The quality of the RNA samples was assessed using the Agilent 2100 Bioanalyzer (G2938A). RNA concentrations were determined spectrophotometrically (absorbance at 260 and 280 nm).

2.4. Microarray Analysis. Seven hundred and fifty nanograms of total RNA per sample were used for cRNA synthesis and amplification. Agilent Spike-In control RNA was included as an internal control. Cyanine-3-(Cy3-) labeled cRNA was purified and hybridized to Agilent Whole Rat Genome 44k Oligo Microarray chips (p/n G2519F-14870, Agilent Technologies) according to the manufacturer’s instructions. The processed microarrays were scanned with the Agilent G2565BA DNA Microarray Scanner (p/n G2505-A). The scanned images were analyzed with Agilent Feature software (version 9.5.1.1) using default parameters. The resulting text files were loaded into the Agilent GeneSpring GX software (version 7.3) for further analysis. Gene expression values of all datasets were normalized using median normalization. Significantly differentially expressed α-adrenergic receptor genes among ZL, ZD, and F-ZD groups were identified by a threshold of ≥2 fold change and \(P \leq 0.05\).

2.5. Real-Time PCR for \(\alpha_1A\), \(\alpha_1B\), and \(\alpha_1D\)-AR mRNA Expression. Reverse transcription was performed on equal amounts of total RNA by using random hexanucleotide primers to produce a cDNA library for each sample. Real-time PCR reactions were run on an iCycler iQ Real-Time PCR Detection System by using Taqman Universal PCR Master Mix (Applied Biosystems, P/N 4304437). \(\alpha_1A\), \(\alpha_1B\), and \(\alpha_1D\)-AR gene expression products. The AOD identification numbers were Rn00567876 for \(\alpha_1A\)-AR, Rn01471343 for \(\alpha_1B\)-AR, Rn00577931 for \(\alpha_1D\)-AR, and \(\beta\)-actin gene-specific Taqman probe and primer sets were obtained from Applied Biosystems as Assays-on-Demand (AOD) gene expression products. The AOD identification numbers were Rn00567876 for \(\alpha_1A\)-AR, Rn01471343 for \(\alpha_1B\)-AR, Rn00577931 for \(\alpha_1D\)-AR, and 433188 for \(\beta\)-actin endogenous control. Each sample was run in triplicate, and the comparative threshold cycle (Ct) method was used to quantify fold increase (\(2^{-\Delta\Delta Ct}\)) compared with controls.

2.6. Immunostaining. For immunofluorescent staining, 5 μm thick cryostat sections of OCT-embedded kidney samples were used. To study the localization of \(\alpha_1D\)-AR in the rat kidney, the sections were incubated with a mixture of two antibodies overnight: rabbit anti-\(\alpha_1D\)-AR antibody (1:100, Sigma-Aldrich, St. Louis, MO), mouse anti-\(\alpha\)-smooth muscle actin (\(\alpha\)-SMA, 1:100, Santa Cruz Biotechnology, Dallas, TX), or goat anti-kidney injury molecule-1 (Kim-1, 1:100, R&D Systems, Minneapolis, MN). As a negative control, the sections were exposed to nonimmune IgG (in replacement of primary antibodies) with the same secondary antibodies, and no specific staining occurred. The sections were observed and imaged by Leica confocal microscope.

2.7. Statistical Analysis. Data are expressed as mean ± SEM. Student’s t-test was used for comparison between the two groups. Comparisons among multiple groups were performed by one-way ANOVA and Newman-Keuls post hoc test. \(P < 0.05\) was considered statistically significant.

3. Results

3.1. Differential Gene Expression of Alpha-Adrenergic Receptor Subtypes in the Diabetic Kidney. We performed microarray
Table 1: Alpha-adrenergic receptor gene expression in the kidney cortex of Zucker lean (ZL), untreated Zucker diabetic fatty (ZD), and fenofibrate-treated diabetic fatty (F-ZD) rats.

Accession number	Gene name	mRNA expression ZL	ZD versus ZL	F-ZD versus ZD	
		Fold change	P value	Fold change	P value
NM_017191	α1A-adrenergic receptor (α1A-AR)	10.4 ± 2.9	NA	NA	NA
NM_016991	α1A-adrenergic receptor (α1B-AR)	137.2 ± 101.8	1.49	NS	1.26
NM_024483	α2A-adrenergic receptor (α2A-AR)	273.3 ± 142.9	6.53	<0.001	−2.75
NM_012739	α2A-adrenergic receptor (α2B-AR)	53.2 ± 15.2	−1.09	NS	1.02
NM_138505	α2A-adrenergic receptor (α2A-AR)	116.8 ± 22.8	−1.18	NS	1.05
NM_138506	α2A-adrenergic receptor (α2C-AR)	33.1 ± 7.9	1.19	NS	1.07

Data are shown in two ways: mRNA expression level presenting the relative abundance of different alpha-adrenergic receptor subtypes in normal rat kidney cortex and fold change showing the differential expression of these genes among ZL, ZD, and F-ZD groups. There is significant (P < 0.001) upregulation in renal expression of α1D-AR gene in the ZD animals, which is markedly prevented by fenofibrate treatment (P < 0.001). NA: not analyzed due to its low expression level in ZL, ZD, and F-ZD animals; NS: not significant.

3.2. Activation of PPARα or PPARγ Inhibited the Upregulation of α1D-AR mRNA Expression in the Kidney of Zucker Rats. We have previously shown that PPAR activation protects against kidney injury in Zucker diabetic fatty rats [15, 17]. Here, we further examined the effect of PPAR activation on the expression level of α1A-AR mRNAs in the diabetic kidneys. Gene microarray analysis revealed that PPAR activation inhibits the upregulation of α1D-AR gene in the diabetic kidneys. Chronic administration of fenofibrate, a PPARα agonist, resulted in a decrease in α1D-AR mRNA by 64% compared to vehicle-treated ZD animals (Table 1). qPCR analysis confirmed a reduction of α1D-AR mRNA in the kidney of F-ZD rats (Figure 1). In contrast, both microarray and qPCR analyses indicated that mRNA expression of α1A- and α1B-AR subtypes was not affected by fenofibrate in the diabetic kidneys.

Additionally, the effect of PPARγ activation on gene expression of α1-AR subtypes was examined in the ZD rats after rosiglitazone treatment. Compared to vehicle-treated ZD rats, renal cortical α1D-AR mRNA was significantly lower when rosiglitazone was administered for 8 weeks (Figure 2).

3.3. Glomerular and Cortical Expression of α1D-AR mRNA in Zucker Rats of Various Ages. In a previous study [15], we showed that blood glucose levels were not different between normal ZL and diabetic ZD rats at the age of 7 weeks. Blood glucose of the ZD rats began to increase at week 8, reached a peak at week 12, and remained at this higher level thereafter. To analyze the temporal pattern of renal expression of α1D-AR receptors, renal cortical and glomerular α1D-AR mRNA levels were compared in the Zucker rats at the ages of 7, 12, and 20–22 weeks. As shown in Figure 3, ZD rats at week 7 had slightly lower α1D-AR mRNA level in the glomeruli compared to their ZL littermates, whereas renal cortical α1D-AR mRNAs were not different between the two groups. At the age of 12, both renal glomerular (2.4-fold) and cortical (1.7-fold) α1D-AR mRNA levels were significantly higher in the ZD animals, which were further increased by 3.4-fold and 12.9-fold, respectively, at the age of 20–22 weeks.

3.4. Expression and Distribution of α1D-AR Protein in the Kidney of Zucker Rats. We performed immunofluorescence staining to correlate α1D-AR gene expression results with its protein level and distribution in the kidney of Zucker animals. As expected, α1D-AR protein was clearly detected in the renal arteries and arterioles in both normal and diabetic animals (Figure 4). The intense staining was primarily in the smooth muscle of renal arterial walls as evidenced by its colocalization with α-SMA. In normal ZL rats, weak α1D-AR staining was also detected in the glomeruli, whereas there was no obvious staining in the renal tubules (Figure 4). In consistency with the mRNA expression results, α1D-AR protein was largely induced in the diabetic ZD kidneys. Immunofluorescence staining identified increased α1D-AR signal in the glomeruli of diabetic rats, which was partially colocalized with α-SMA (Figure 4). Moreover, intense tubulo-interstitial staining of α1D-AR was apparent in the diabetic kidneys. As shown in Figure 5, α1D-AR was expressed in both tubular epithelial cells and activated interstitial fibroblasts, which was positive for α-SMA staining.
Figure 1: mRNA expression of renal cortical α_{1A}-, α_{1B}-, and α_{1D}-AR subtypes was measured by quantitative real-time PCR in 22-week-old Zucker lean (ZL), vehicle-treated Zucker diabetic (ZD), and fenofibrate-treated Zucker diabetic (F-ZD) rats. Fold changes of α_{1A}- (a), α_{1B}- (b), and α_{1D}- (c) AR genes were calculated using β-actin as an internal control. Values are mean ± SEM. $n = 5-6$ animals/group. $^{***} P < 0.001$ versus ZL; $^{###} P < 0.001$ versus ZD group.

To further characterize α_{1D}-AR expression in renal tubules of diabetic animals, we performed double staining for α_{1D}-AR and Kim-1, a sensitive tubular injury marker. Dual labeling revealed a spatial relationship between Kim-1 and α_{1D}-AR in the diabetic kidneys. As shown in Figure 6, virtually all dilated tubules expressing α_{1D}-AR were also Kim-1-positive, suggesting that α_{1D}-AR was expressed in the injured dedifferentiated proximal tubules. In these tubules, α_{1D}-AR expression was predominantly cytoplasmic, whereas Kim-1 staining was prominent at the apical membrane.

4. Discussion

In this study, the expression and distribution of α_{1D}-AR mRNA and protein were determined by the gene microarray, qPCR, and confocal immunofluorescence analyses. Although mRNA expression of all three α_{1}-AR subtypes ($\alpha_{1B} > \alpha_{1D} > \alpha_{1A}$) was detected in rat kidney cortex, only α_{1D}-AR gene was massively upregulated in the diabetic animals. Moreover, diabetes-related increase in α_{1D}-AR mRNA was inhibited when the ZD rats were treated with fenofibrate or rosiglitazone. Immunostaining for α_{1D}-AR confirmed that intense α_{1D}-AR staining was apparent especially in the smooth muscle of arterial walls in both normal and diabetic kidneys. Weak α_{1D}-AR protein staining was detected in the glomeruli of normal ZL controls, but there was no obvious staining in the normal tubular epithelium. In consistency with the gene expression results, α_{1D}-AR protein was significantly increased in the glomeruli and proximal tubules of diabetic animals.

The expression of α_{1}-AR subtype mRNAs has previously been studied in various animal and human organs, and the predominant subtype mRNA expressed differs among species and organs. For example, Kurooka et al. reported that α_{1A}-AR gene was detected more than α_{1B}-AR or α_{1D}-AR in human kidney cortex [14]. In contrast, Karabacak et al. [8] recently evaluated α_{1}-AR subtype protein expression in human renal pelvis and calyx tissues and found that α_{1D}-AR was most dense in both followed by α_{1A}- and α_{1B}-AR subtypes, respectively, where the rate of α_{1B}-AR was significantly lower than the other two. In the rat kidney, it was reported that the α_{1B}-AR is predominant when detected by
Figure 2: Effect of PPARγ activation on renal expression of α₁A-, α₁B-, and α₁D-AR subtype mRNAs. Bar graphs present the real-time PCR results of renal cortical α₁A- (a), α₁B- (b), and α₁D- (c) AR mRNAs in 20-week-old ZD rats following treatment with rosiglitazone for 8 weeks. Values are mean ± SEM. \(n = 5-6 \) animals/group. *\(P < 0.05 \) versus vehicle-treated ZD group.

Figure 3: mRNA expression of α₁D-AR in the glomeruli and cortex of normal ZL and diabetic ZD rats at different time points. α₁D-AR gene was progressively increased in both glomeruli (a) and cortex (b) of ZD rats compared to normal ZL littermates. mRNA fold changes of α₁D-AR were calculated using β-actin as an internal control. Values are mean ± SEM. \(n = 5-6 \) animals/group. *\(P < 0.05 \), **\(P < 0.01 \) versus ZL control group.
Figure 4: Representative confocal immunofluorescence images of α_{1D}-AR and α-smooth muscle actin (α-SMA) in the glomeruli of ZL and ZD rats. In normal control, colocalization of α_{1D}-AR (green) with α-SMA (dark blue) was apparent in the renal vasculature (white arrow), whereas weak staining of α_{1D}-AR was detected in the glomeruli. An increase in α_{1D}-AR staining in the diabetic glomeruli was accompanied by an increase in α-SMA signal.
Figure 5: Increased tubulointerstitial α₁D-AR staining in the kidney of 20-week-old Zucker diabetic rats. In the diabetic kidneys, an induction of α₁D-AR protein (green) was detected in the epithelium of dilated tubules as well as the surrounding interstitial cells, which are α-SMA-positive (dark blue). Images in (a′), (b′), and (c′) are enlarged from the boxed areas in (a), (b), and (c).
Figure 6: Representative confocal images of double staining for α_{1D}-AR and Kim-1 in the tubules of 20-week-old Zucker diabetic rats. Colocalization of α_{1D}-AR (green) and Kim-1 (red) was seen in the dilated proximal tubules of diabetic rats. Images in (a'), (b'), and (c') are enlarged from the boxed areas in (a), (b), and (c).
characterize α_{1D}-AR expression in renal tubules of diabetic animals, the spatial relationship between tubular α_{1D}-AR and Kim-1, a tubular injury marker, was studied by double staining. In tubulointerstitial fibrotic areas, virtually all dilated tubules expressing α_{1D}-AR were also Kim-1-positive. The selective increased expression by dedifferentiated epithelial cells and activated interstitial fibroblasts supports the potential importance of α_{1D}-AR in renal tubulointerstitial injury. Moreover, recent studies on the pulmonary circulation suggest that catecholamines may participate in the excessive muscularization and fibrosis of the arteries through ERK1/2 signaling pathway in hypoxic pulmonary hypertension [5, 20–22]. Therefore, further studies are warranted to evaluate the functional consequences of α_{1D}-AR induction in diabetic kidney injury.

In summary, the current study highlights mRNA expression of the three α_{1}-AR subtypes in rat kidney cortex. An increase in renal expression of α_{1D}-AR mRNA and protein was associated with glomerular and tubulointerstitial injury in diabetic nephropathy. Chronic treatment with PPAR agonists prevents the increase in α_{1D}-AR mRNA in the diabetic kidneys. These findings may provide new insights into the prevention and early management of diabetic kidney disease.

Conflict of Interests
The authors declare that there is no conflict of interests regarding this paper.

Acknowledgment
This work was supported by Satellite Healthcare Norman S. Coplon Extramural Research Grant, NIH SDK096441, NIH/NCRR G12-RR03034, and U54RR026137.

References
[1] M. Yono, H. E. Foster Jr., D. Shin, W. Takahashi, M. Pouresmail, and J. Latifpour, “Doxazosin treatment causes differential alterations of α_1-adrenoceptor subtypes in the rat kidney, heart and aorta,” Life Sciences, vol. 75, no. 21, pp. 2605–2614, 2004.
[2] X. F. Deng, S. Chemtob, and D. R. Varma, “Characterization of $\alpha(1D)$-adrenoceptor subtype in rat myocardium, aorta and other tissues,” The British Journal of Pharmacology, vol. 119, no. 2, pp. 269–276, 1996.
[3] J. A. García-Sáinz, J. Vázquez-Prado, and R. Villalobos-Molina, “α_1-Adrenoceptors: subtypes, signaling, and roles in health and disease,” Archives of Medical Research, vol. 30, no. 6, pp. 449–458, 1999.
[4] H. Zhong and K. P. Minneman, “α_1-Adrenoceptor subtypes,” European Journal of Pharmacology, vol. 375, no. 1–3, pp. 261–276, 1999.
[5] J. E. Faber, C. L. Szymczek, S. Cotecchia et al., “α_1-Adrenoceptor-dependent vascular hypertrophy and remodeling in murine hypoxic pulmonary hypertension,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 292, no. 5, pp. H2316–H2323, 2007.
[6] H. Zhang and J. E. Faber, “Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and
mediated by different α_1-adrenoceptor subtypes,” *Circulation Research*, vol. 89, no. 9, pp. 815–822, 2001.

[7] C. Seitz, E. Liatsikos, F. Porpiglia, H. Tiselius, and U. Zwerger, “Medical therapy to facilitate the passage of stones: what is the evidence?” *European Urology*, vol. 56, no. 3, pp. 455–471, 2009.

[8] O. R. Karabacak, D. Yilmazer, U. Ozturk et al., “The presence and distribution of α_1 adrenergic receptors in human renal pelvis and calyces,” *Urolithiasis*, vol. 41, no. 5, pp. 385–388, 2013.

[9] T. L. Theroux, T. A. Esbensen, R. D. Peavy, and K. P. Minneman, “Coupling efficiencies of human α_1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors,” *Molecular Pharmacology*, vol. 50, no. 5, pp. 1376–1387, 1996.

[10] C. Hague, Z. Chen, A. S. Pupo, N. A. Schulte, M. L. Toews, and K. P. Minneman, “The N terminus of the human α_1D-adrenergic receptor prevents cell surface expression,” *Journal of Pharmacology and Experimental Therapeutics*, vol. 309, no. 1, pp. 388–397, 2004.

[11] V. Segura, N. Flacco, E. Oliver, D. Barettino, P. D’Ocon, and M. D. Ivorra, “α_1-Adrenoceptors in the rat cerebral cortex: new insights into the characterization of α_1L- and α_1D-adrenoceptors,” *European Journal of Pharmacology*, vol. 641, no. 1, pp. 41–48, 2010.

[12] A. Tanoue, Y. Nasa, T. Koshimizu et al., “The α_1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction,” *Journal of Clinical Investigation*, vol. 109, no. 6, pp. 765–775, 2002.

[13] A. Armenia, M. A. Sattar, N. A. Abdullah, M. A. H. Khan, and E. J. Johns, “Functional subtypes of renal α_1-adrenoceptor in diabetic and non-diabetic 2K1C Goldblatt renovascular hypertension,” *Acta Pharmacologica Sinica*, vol. 29, no. 5, pp. 564–572, 2008.

[14] Y. Kurooka, N. Moriyaama, K. Nasu et al., “Distribution of α_1-adrenoceptor subtype mRNAs in human renal cortex,” *British Journal of Urology International*, vol. 83, no. 3, pp. 299–304, 1999.

[15] X. Zhao, Y. Zhang, L. Li et al., “Glomerular expression of kidney injury molecule-1 and podocytepenia in diabetic glomerulopathy,” *The American Journal of Nephrology*, vol. 34, no. 3, pp. 268–280, 2011.

[16] M. Potier, B. L’Azou, and J. Cambar, “Isolated glomeruli and cultured mesangial cells as in vitro models to study immunosuppressive agents,” *Cell Biology and Toxicology*, vol. 12, no. 4-6, pp. 263–270, 1996.

[17] L. Li, N. Emmett, D. Mann, and X. Zhao, “Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy,” *Experimental Biology and Medicine*, vol. 235, no. 3, pp. 383–391, 2010.

[18] M. D. Snavely and P. A. Insel, “Characterization of α-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of α_1- and α_2-adrenergic receptors by guanyl nucleotides and Na$^+$,” *Molecular Pharmacology*, vol. 22, no. 3, pp. 532–546, 1982.

[19] D. T. Price, R. S. Chari, D. E. Berkowitz, W. C. Meyers, and D. A. Schwinn, “Expression of α_1-adrenergic receptor subtype mRNA in rat tissues and human SK-N-MC neuronal cells; implications for α_1-adrenergic receptor subtype classification,” *Molecular Pharmacology*, vol. 46, no. 2, pp. 221–226, 1994.

[20] T. Bleeke, H. Zhang, N. Madamanchi, C. Patterson, and J. E. Faber, “Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species,” *Circulation Research*, vol. 94, no. 1, pp. 37–45, 2004.