Target-driven merging of Taxonomies

Salvatore Raunich, Erhard Rahm

University of Leipzig
Germany

{raunich, rahm}@informatik.uni-leipzig.de

Abstract—The proliferation of ontologies and taxonomies in many domains increasingly demands the integration of multiple such ontologies. The goal of ontology integration is to merge two or more given ontologies in order to provide a unified view on the input ontologies while maintaining all information coming from them. We propose a new taxonomy merging algorithm that, given as input two taxonomies and an equivalence matching between them, can generate an integrated taxonomy in a fully automatic manner. The approach is target-driven, i.e., we merge a source taxonomy into the target taxonomy and preserve the structure of the target ontology as much as possible. We also discuss how to extend the merge algorithm providing auxiliary information, like additional relationships between source and target concepts, in order to semantically improve the final result. The algorithm was implemented in a working prototype and evaluated using synthetic and real-world scenarios.

I. INTRODUCTION

Ontologies and taxonomies are increasingly used to semantically categorize or annotate information, especially on the web. For example, product catalogs of online shops, comparison portals or web directories categorize products or websites to help users and applications finding relevant information. In life sciences, ontologies are used to describe components and functions of organisms or objects such as genes or proteins. Since many ontologies refer to the same domain and to the same objects, there is a growing need to integrate or merge such related ontologies. The goal is to create a merged ontology providing a unified view on the input ontologies while maintaining all information coming from them.

Despite some previous work, ontology integration is still a challenge, in particular if one wants to perform the integration in a largely automatic way. The related research problem of schema integration has been studied for a long time [4] but most earlier approaches suffered from trying to solve the complex problems of matching and merging in a single approach. More recent work on schema integration builds on the research results on semi-automatic schema matching [15] and separate matching from merging. Hence, several algorithms have been proposed to merge schemas based on a pre-determined match mapping [5], [17], [12], [18], [14]. Despite this simplification, several of these merge approaches are still not fully automatic but depend on manual intervention. Previous approaches on ontology merging [11], [9], [19] are also user-controlled and do not utilize the separation of matching and merging. While user-controlled approaches provide flexibility for determining the merge result, they require the involvement of expensive data integration experts and introduce a substantial manual effort especially for large ontologies.

We therefore propose a new approach for ontology merging which is fully automatic and which utilizes a match mapping between the input ontologies. We propose a target-driven algorithm, i.e., we merge a source taxonomy into the target taxonomy. Such an asymmetric merge is highly relevant in practice and allows us to incrementally extend the target ontology by additional source ontologies. For example, the catalog of a new online shop may be merged into the catalog of a price comparison portal.

Example 1.1: Let us consider the example in Figure 1 where the source and target taxonomies represent the product catalogs of two different computer and hardware shops. We suppose that an equivalence matching between concepts is already given, automatically generated by a matching tool or manually designed by an expert user. As we can see, only some source concepts have an equivalent concept in the target. Merging requires the equivalent concepts to be combined. One of the main problems is deciding which remaining concepts should be integrated in the result and what are the best positions of these concepts in the integrated taxonomy. The example shows that the two taxonomies organize hardware products in different ways. The target initially categorizes first by manufacturer and then by product type (laptops, desktops, etc.) while the source taxonomy uses the opposite order. Maintaining both views in the merged taxonomy would introduce semantic overlap and reduce the understandability of the resulting taxonomy. We deal with such situations by giving preference to the target taxonomy. This also allows us to automatically find suitable merge decisions.

The main contribution of this work are new target-driven algorithms to automatically integrate taxonomies. The basic algorithm takes as input two taxonomies and an equivalence matching between concepts. We also present an extended algorithm that can utilize additional relationships between the input taxonomies to semantically improve the merge result. The algorithms generate taxonomies that preserve all instances of the input taxonomies as well as the structure of the target taxonomy. In contrast to previous work, we do not necessarily preserve all source concepts but aim at limiting the semantic overlap in the merged taxonomy for improved understandability. This is achieved by utilizing the input mapping and giving preference to the target taxonomy when the same concepts are differently organized in source and target. The algorithms have been implemented in a working prototype and evaluated
an ontology rule. For example, given two is-a relationships binary and semantic connection between two concepts a and b, we will use the terms with attributes Price and CPU; it is also a subclass of the concept Laptops. It is important to note that, in general, a taxonomy is a graph but we use a tree-style representation to simplify the visualization.

In this paper, we will consider only ontologies \(O = (C, C_i, I, R) \) where \(C \) is a collection of Classes or Concepts, \(C_i \subseteq C \) is the subset of concepts containing instances, \(I \) is the set of instances, possibly empty, and \(R \) is the set of relationships between concepts. A Concept represents a collection of objects with similar properties. Each Concept \(C \) has a name (or label) and a collection of attributes \(A_c \), possibly empty. Several kinds of relationships can be defined, like “is-a” or “subclass”, “part-of”, “type-of”, etc. A relationship \(r(a, b) \in R \) is a directed, binary and semantic connection between two concepts \(a \) and \(b \). It can be explicitly present in the ontology or implied by an ontology rule. For example, given two is-a relationships \(r(a, b) \) and \(r(b, c) \), the relationship \(r(a, c) \) is implied since is-a relationships are transitive.

Graphically, as we can see in Figure 1, we represent concepts with a simple label and attributes with a tagged label; we use a nesting notation to represent is-a relationships. For example, in the source ontology, Laptops Dell is a concept with attributes Price and CPU; it is also a subclass of the concept Laptops. It is important to note that, in general, a taxonomy is a graph but we use a tree-style representation to simplify the visualization.

In this paper, we will consider only ontologies \(O = (C, C_i, I, R) \) where \(C_i \) contains only leaf nodes and \(R \) contains only ”is-a” relationships between concepts. For this reason, in the following, we will use the terms ontology and taxonomy with the same meaning. Our taxonomies are acyclic but multiple inheritance is supported, i.e. a concept can have multiple parents. In the following we discuss some examples to show how the algorithm can deal with both single and multiple inheritance. Our algorithm can be extended to support instances for inner concepts but we will not provide the details here.

The equivalence mapping between two ontologies \(S = (C_s, C_{i_s}, I_s, R_s) \) and \(T = (C_t, C_{i_t}, I_t, R_t) \) is defined as a set of correspondences. We distinguish two different kinds of correspondences: concept correspondences and attribute correspondences. Given two concepts \(s \in C_s \) and \(t \in C_t \), we define a concept correspondence \((s, t)\) as an ordered pair of a source concept and a target concept. Similarly, given two attributes \(a_s \in A_s \) and \(a_t \in A_t \), we define an attribute correspondence \((a_s, a_t)\) as an ordered pair of a source attribute and a target attribute. Figure 1 shows seven example correspondences: \(eq_1, eq_2, eq_3 \) and \(eq_6 \) are concept correspondences, \(eq_4, eq_5 \) and \(eq_7 \) are attribute correspondences. In the following we will consider only 1:1 equivalence mappings but the algorithm can be extended to support, in general, m:n correspondences. In this paper we do not investigate how these correspondences are generated but we assume that a correct and complete matching is already given; it can be automatically generated by a matching tool or manually provided by a domain expert user. For the extended algorithm in Section IV we will also consider is-a and inverse-is-a mappings between the input ontologies.

A. Properties of the merge result

Based on [13], we identified, adapted and extended some properties that the solution of our merge algorithm should satisfy. Called \(S = (C_s, C_{i_s}, I_s, R_s) \) and \(T = (C_t, C_{i_t}, I_t, R_t) \) the input source and target taxonomies and \(T' = (C_v, C_{i_v}, I_v, R_v) \) the merge result, and called \(Map_{ST}, Map_{ST'} \) and \(Map_{TT'} \) the input equivalence mapping between \(S \) and \(T \) and the generated equivalence mappings between \(S \) and \(T' \) and \(T \) and \(T' \) respectively, we have as follows:

(P1) Target Element Preservation. Each element (a concept or an attribute) in the input target taxonomy \(T \) has a corresponding element in the merge result \(T' \). Formally, each concept \(c \in C_t \) corresponds to exactly one concept \(c' \in C_v \). This concept correspondence is defined as \((c, c') \in Map_{TT'} \). Similarly, each attribute \(a \in A_t \) corresponds to exactly one attribute \(a' \in A_v \). This attribute correspondence is defined as \((a, a') \in Map_{TT'} \).

(P2) Target Relationship Preservation. Each input target is-a relationship is explicitly in or implied by \(T' \). Formally, for each is-a target relationship \((s, t) \in R_t \), if \((s, s') \in Map_{TT'} \) and \((t, t') \in Map_{TT'} \), then either \((s', t') \in R_v \) or \((s', t') \) is implied in \(T' \).

(P3) Information Preservation. In addition to target maintenance, we require that all instances of both the target and the source ontology must be preserved in the merged taxonomy.

(P4) Control of semantic overlap. The merge algorithm
We aim at an automatic and target-driven merge approach that usually the evaluation of an integrated ontology is subjective. Solutions and the best one depends on the reference context; elements of the input ontologies are mapped.

We remark that if \(T \) is a tree-structured taxonomy, i.e. \(T \) has no multiple inheritance, then the result \(T' \) will remain a tree and no multiple inheritance will be introduced. In the example shown in figure 1, for the leaf concept \(\text{Laptops} \) in \(T \) we will not take over the different path in \(S \) to this concept.

\textbf{(P5) Equality preservation.} If two concepts are equal in the equivalence mapping then they are mapped to the same merged concept in the result and vice versa. Formally, \(\text{if } c, c' \in C_t \) such that there exists \((c, c') \in \text{Map}_{TT} \), called \(p \) and \(p' \) the number of different paths to \(c \) and \(c' \) respectively in \(T \) and \(T' \), then \(p = p' \).

We remark that if \(T \) is a tree-structured taxonomy, i.e. \(T \) has no multiple inheritance, then the result \(T' \) will remain a tree and no multiple inheritance will be introduced. In the example shown in figure 1, for the leaf concept \(\text{Laptops} \) in \(T \) we will not take over the different path in \(S \) to this concept.

Finally, we require that the algorithm must terminate and produce a result that is itself a taxonomy (respectively Termination and Closure) and should be scalable and able to provide good performance and acceptable execution times also for large taxonomies with many concepts and is-a relationships.

There is a certain trade-off between requirements (P3) and (P4) for inner concepts in the input taxonomies. Why we could have required that all concepts of both input taxonomies should be preserved for completeness this would often lead to a significant semantic overlap and redundancy in the merged taxonomy reducing its understandability and value. We therefore only require preservation of the target taxonomy and will drop some inner concepts from the source taxonomy that would introduce redundant paths to the leaf nodes in the merged taxonomy.

Based on these properties, we define the ontology merging problem as follows: given as input two taxonomies \(S \) and \(T \) and an equivalence mapping between them, generate as output a new taxonomy \(T' \) satisfying the requirements P1-P5. Furthermore, two mappings between \(S \) and \(T' \) and between \(T \) and \(T' \) should be determined specifying where in \(T' \) the elements of the input ontologies are mapped.

The ontology merging problem can have many possible solutions and the best one depends on the reference context; usually the evaluation of an integrated ontology is subjective. We aim at an automatic and target-driven merge approach that integrates the first (source) input ontology into the second one and gives preference to the target ontology when equivalent concepts are differently organized in the input ontologies. Our approach generates a default solution in a fully automatic way that may interactively be adapted by users if needed.

\section{III. Base Algorithm}

We propose a base algorithm that, given as input two ontologies and an equivalence mapping, produces an integrated ontology that meets the requirements introduced in Section II. For convenience, we split the description of the algorithm in two successive phases: a preliminary phase that, starting from the source ontologies and the set of correspondences, generates a so-called integrated concept graph; and a main phase that, starting from the integrated concept graph produced before, generates the final result. We focus on generating the merged taxonomy in this section; the generation of the output mappings is explained in Section V.

\subsection{A. Preliminary phase}

The preliminary phase, also called \textit{integrated concept graph generation algorithm}, takes as input two ontologies \(O_1 \) and \(O_2 \) and an equivalence matching between them, provided as a set of concept correspondences and attribute correspondences, and it generates as output an integrated concept graph \(I \). A similar algorithm was introduced in [5] for relational and XML schemas and the preliminary phase of our approach is based on it but with significant differences that we will discuss later in this section. We identify the following steps:

- \textbf{Step 1.1: Building of the Concept Graphs} \(G_1 \) and \(G_2 \)
- \textbf{Step 1.2: Building of the Matching Graph} \(M \)
- \textbf{Step 1.3: Generation of the Integrated Concept Graph} \(I \)

The pseudo-code for the two last steps is described in Algorithms 1 and 2. We omit the pseudo-code for the generation of concept graphs for the input ontologies since it is trivial.

The first step 1.1 transforms the input ontologies \(O_1 \) and \(O_2 \) into two different directed concept graphs \(G_1 \) and \(G_2 \), respectively, where nodes are concepts and edges are is-a relationships.

In the second step 1.2, a matching graph is produced according to Algorithm 1. Starting from the concept graphs \(G_1 \) and \(G_2 \) generated in the previous step, we translate all
Algorithm 1 MatchingGraphGen(G_1, G_2, Corr)
\begin{algorithmic}
\STATE Input: two concept graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and a set of equivalence correspondences Corr
\STATE Output: a Matching Graph M
\STATE 1: $M = (V, E)$ \leftarrow \text{empty}
\STATE 2: $V \leftarrow V_1 \cup V_2$
\STATE 3: for each concept correspondence $c = c_1 \leftarrow c_2$ in Corr do
\STATE 4: \hspace{1em} if E does not contain an edge between c_1 and c_2 then
\STATE 5: \hspace{2em} add a new edge in E between c_1 and c_2
\STATE 6: \hspace{1em} end if
\STATE 7: end for
\STATE 8: return M
\end{algorithmic}

Algorithm 2 ICGGen(O_1, O_2, Corr)
\begin{algorithmic}
\STATE Input: two ontologies O_1 and O_2 and a set of equivalence correspondences Corr
\STATE Output: an Integrated Concept Graph I
\STATE 1: $I = (V, E)$ \leftarrow \text{empty}
\STATE 2: $G_1 \leftarrow \text{ConceptGraphGen}(O_1)$
\STATE 3: $G_2 \leftarrow \text{ConceptGraphGen}(O_2)$
\STATE 4: $M \leftarrow \text{MatchingGraphGen}(G_1, G_2$, Corr)
\STATE 5: for each connected component CC in M do
\STATE 6: \hspace{1em} generate an integrated concept C
\STATE 7: \hspace{2em} label(C) \leftarrow genLabel(CC)
\STATE 8: \hspace{1em} atts \leftarrow genAttributeList(CC)
\STATE 9: \hspace{1em} add all attributes in atts to C
\STATE 10: \hspace{1em} add C to V
\STATE 11: end for
\STATE 12: for each edge e_1 in G_1 do
\STATE 13: \hspace{1em} generate a s-edge in I
\STATE 14: end for
\STATE 15: for each edge e_2 in G_2 do
\STATE 16: \hspace{1em} generate a t-edge in I
\STATE 17: end for
\STATE 18: return I
\end{algorithmic}

The result of the last step 1.3 is an integrated concept graph $I = (V, E)$ and it is generated according to Algorithm 2. First we identify all connected components in the matching graph M with respect to matching edges and for each connected component in M we generate an integrated concept C with a label l depending on merged source concepts. For each integrated concept we save the collections of corresponding source and target concepts. It is important to note that, in the case of 1:1 mappings, a connected component can contain only one concept, for example c, if c is not involved in any correspondence or two concepts, for example s and t (with $s \in S$ and $t \in T$), if there exists an equivalence correspondence $(s, t) \in \text{Map}_{ST}$ between them. In general, if m:n mappings are used as input, a connected component could contain also more than two concepts. As mentioned in Section II, we will concentrate on 1:1 mappings, but the algorithm can be easily extended to m:n mappings introducing slight changes.

Let $L = \{l_1, \ldots, l_n\}$ be the set of the labels of the merging source concepts, we define the label of the integrated concept C as label(C) = genLabel(l_1, \ldots, l_n). The function genLabel() can be defined in different ways but this is not the focus in this paper; for simplicity we define it as a string concatenation of the source labels and if two or more concepts have the same label, we consider their string value only once, adding a "*" symbol to mean that the label has more than one occurrence. For example, for a connected component with source labels: $L = \{\text{Computer}, \text{PC}, \text{PC}\}$, the generated label for the merged concept is $\text{label} = \text{Computer_PC}^*$. Another labeling function could return only one of the source labels (for example a target one if present) and add the remaining ones as a comment or description. A similar labeling system could be more helpful if one wants to reuse the merge result in an automatic matching task.

For two attributes involved in an attribute correspondence, we add only one attribute with a label depending on the labels of source attributes. We use a similar function to determine the label of merged attributes; e.g. for two corresponding attributes with label Price, we generate for the integrated concept only one attribute with label Price^*. In the running example, the integrated concept Laptops HP will have the following list of attributesatts = \{\text{Price}^*, \text{CPU}, \text{Display}\}. In Algorithm 2, the function genAttributeList(CC) generates the attribute list for an integrated concept starting from the set of source attributes in a connected concept CC.

At this point, for each integrated concept C we generate a new node in I.

Finally we translate the set of edges in G_1 and G_2 in a new set of labeled edges in I. In particular, for each edge $e_1 = C_1 \rightarrow C_2$ in G_1 (the source concept graph), we produce a S-labeled edge in I – in the following called s-edge – defined as $s_e = C_{11} \rightarrow C_{12}$ where C_{11} and C_{12} are respectively the corresponding integrated concepts in I of C_1 and C_2.

Similarly, for each edge $e_2 = D_1 \rightarrow D_2$ in G_2 (the target concept graph), we produce a T-labeled edge in I – in the following called t-edge – defined as $t_e = D_{11} \rightarrow D_{12}$ where D_{11} and D_{12} are respectively the correspondent integrated concepts in I of D_1 and D_2.

The integrated concept graph built for the example 1.1 is in Figure 3; S_1 and T_1 are respectively two examples of s-edge and t-edge.

It is easy to note that, given an integrated concept graph $I = (V, E)$ where V is the set of nodes and E is the set of edges, it is possible to split the set E in two subsets, called $E(S)$ and $E(T)$, such that $E(S)$ contains all S-edges in E and $E(T)$ contains all T-edges in E. Subsets $E(S)$ and $E(T)$ are a partition of the set E, since they are disjoint and their union is equal to E. This is also possible since we allow more than one edge between two nodes in I. Figure 4(a) shows an example where there exist two different edges, a s-edge and a t-edge, between the concepts A^* and B^*.
The complexity of the algorithm in the preliminary phase depends on the size and on the kind of source taxonomies. We assume an average number of concepts n and an average number of is-a relationships r per input taxonomy. If O_1 and O_2 are taxonomies with a simple hierarchy (i.e. with no multiple inheritance), the average number of relationships is $r = n - 1$. Analyzing the pseudo-code in Algorithms 1 and 2, the complexity of the preliminary phase is $O(r)$ and thus $O(n)$ if input taxonomies are hierarchies. If source taxonomies contain multiple inheritance, the number of edges can degenerate in the (highly unlikely) worst case to $\frac{n(n-1)}{2}$ resulting in complexity $O(n^2)$.

As mentioned, the preliminary phase of our algorithm is based on [5], but one of the main differences between these algorithms is the distinction in the integrated concept graph between edges coming from source and that ones coming from target. As we will discuss in the next phase of the algorithm, this distinction will be very important and helpful to visit the integrated concept graph and to automatically produce the final result.

B. Main phase

The main phase is the most important step in the integrated ontology generation process. It is based on a graph visiting algorithm and the distinction between source and target edges in the integrated concept graph plays an important role.

Before describing the details of the algorithm, we need to introduce the notions of source and target paths.

First of all, we give the definition of Path, as known in graph theory:

Definition [Path] A path P in a graph G is a sequence of nodes such that, from each node there exists an edge between this node and the next one in the sequence. P can be finite or infinite. A finite path has a start node and an end node; the other nodes are called internal nodes.

In this paper we consider only finite paths.

Definition [Top Level Concepts] An integrated concept C is a Source Top Level Concept if C has no outgoing s-edges in the graph G but at least an incoming s-edge. This is equivalent to say that C has one or more children but no parent with respect to s-edges. Similarly, C is a Target Top Level Concept if it has no outgoing t-edges in G but at least an incoming t-edge. Finally we define C as a Top Level Concept if it is either a source or a target top level concept.

For example, in the integrated concept graph shown in Figure 3, the concept with label *Hardware* is both a source and a target top level concept since it has only incoming s-edges and t-edges but no outgoing edges. As we will discuss later in this Section, Hardware can be set as root of I since there are no other top level concepts in I.

Definition [TLC Path] A finite path P is called a TLC path if its end node is a Top Level Concept in the graph.

A path P in a graph G is a cycle if the start node and the end node are the same. Obviously the choice of start and end nodes is arbitrary. The integrated concept graph in Figure 4(b) has a cycle on the set of nodes $\{A^*, E, C^*, B\}$ and on the set of edges $\{S_1, S_2, T_1, T_2\}$.

Let N be a node in a graph G and P a TLC path with start node N. P is a source-path or simply s-path if it contains only s-edges. Similarly, P is a target-path or simply t-path if it contains only t-edges. In Figure 3, for example, $P_1 = \{S_4 - S_1\}$ is a s-path, $P_2 = \{T_9 - T_4 - T_1\}$ is a t-path.

Now we are ready to discuss in detail the main phase of the algorithm. Given an integrated concept graph I, the algorithm generates an integrated taxonomy T. As for the preliminary phase, we identified several steps:

- Step 2.1: Removing cycles in I
- Step 2.2: Translation of t-edges
- Step 2.3: Translation of s-edges
- Step 2.4: Creating nesting structure

In the following we detail each step of the algorithm and we show the resulting intermediate and final results for our running example. The pseudo-code for the main phase is shown in Algorithm 3.

Step 2.1: [removing cycles; line 1 of Alg. 3] In this step we check if cycles are present in the graph I in order to remove them. If we assume that the source and the target concept graphs G_1 and G_2 are cycle-free, any cycle in I cannot involve only s-edges or t-edges. It is worth to note that there can be more than one way to solve this kind of cycles. For example, in [13] all concepts involved in a cycle are merged in a single concept since is-a relationships are transitive and a similar cycle implies equality of all its concepts. In our algorithm, for each cycle in I, we can break the cycle just deleting one of the s-edges involved in the cycle. The intuition behind this choice is that we define our algorithm as target-driven in order to preserve the target structure in the final result, and the removal of a s-edge does not modify the target structure. In this step, the user might choose which edge to remove for producing a better solution.

Figure 4(b) shows an example of a cycle in an integrated concept graph. In this example, the cycle can be broken in two different ways depending on which s-edge will be removed. The two possible results are shown in Figure 4(c): on the left side the solution obtained removing the s-edge S_1 and on the right side that one generated removing S_2. It is easy to note that the target structure is still maintained for both solutions even if the first solution seems to be better because it also maintains the position of the target top level concept.

![Integrated Concept Graph](image-url)
order to generate the first solution instead of the second one, where possible, the algorithm automatically drops the s-edge outgoing from a target top level concept, such as S_1 in our example. If a top level concept is not involved in the cycle, a random s-edge will be removed. In the last case, a user could also interact with the system choosing which s-edge to delete in order to obtain a more specific result.

Algorithm 3 IntegratedTaxGen(I)

Input: an Integrated Concept Graph $I = (V, E)$
Output: an Integrated Taxonomy T

1: RemoveCycles(I)
2: for each t-edge $e = N_1 \rightarrow N_2$ in I do
3: if \exists exactly one s-path P from N_1 to N_2 s.t. length(P) > 1 then
4: mark all edges in P as relevant
5: else
6: create an is-a relationship between N_1 and N_2 in T
7: end if
8: end for
9: candidates ← \{ $X : X \in V \land X$ has at least one outgoing s-edge but no incoming s-edges\}
10: for each X in candidates do
11: spaths ← set of s-paths with start node X
12: for each s-path P in spaths do
13: if each edge $e = C_1 \rightarrow C_2$ in P do
14: if C_1 has no outgoing t-edges then
15: mark e as relevant
16: else
17: break
18: end if
19: end if
20: end for
21: end for
22: for each relevant s-edge $e = N_1 \rightarrow N_2$ do
23: create an is-a relationship between N_1 and N_2 in T
24: end for
25: A ← set of all relevant source top level concepts in I
26: B ← set of all target top level concepts in I
27: TLCs ← $A \cup B$
28: if size(TLCs) = 1 then
29: root(T) ← TLCs[0]
30: else
31: root(T) ← create a new node R
32: for each top level concept tlc in TLCs do
33: nest tlc in root(T)
34: end for
35: end if
36: return T

Fig. 4. (a) Two edges between the same concepts - (b) Example of a cycle - (c) Possible results after removing cycles - (d) An example of a more detailed source structure

Step 2.2: [translation of t-edges; lines 2-8 of Alg. 3] Recall that, given an integrated concept graph $I = (V, E)$, it is always possible to partition the set E in two subsets $E(S)$ and $E(T)$ such that $E(S)$ contains all s-edges and $E(T)$ contains all t-edges in E. For each edge $e(t) = N_1 \rightarrow N_2$ in $E(T)$, we normally create an is-a relationship between the integrated concepts C_1 and C_2 corresponding to N_1 and N_2 in I, respectively, in order to maintain the target concepts and relationships. The only exception is when there exists exactly one source path P with start node N_1 and end node N_2 containing more than one s-edge. In the latter case we do not create a direct relationship between C_1 and C_2 but we mark all edges in P as relevant (for the merged taxonomy) so that they will be translated in the next step. The intuition behind this choice is that we want to preserve the target structure in the final result but if two concepts have a more detailed structure in the source, we want to reward it in the merged taxonomy since it preserves and extends the target structuring between N_1 and N_2, and this is possible thanks to the transitivity of is-a relationships. Let us consider, for example, the scenario shown in Figure 4(d). In the target taxonomy, concepts A and C are connected by a direct is-a relationship, while, in the source, they are connected through the concept B. It means that the source taxonomy has a higher level of detail than the target taxonomy and we want to report this in the final result, since the target relationship between A and C is still maintained, although indirectly. In fact, if $r(C, B)$ and $r(B, A)$ are two is-a relationships, the relationship $r(C, A)$ is implied.

Step 2.3: [translation of s-edges; lines 9-24 of Alg. 3] The translation of s-edges is the most important step in the algorithm, because the graph visit tries to integrate in T, in a “correct” position, the missing concepts coming from the source taxonomy. First of all, we define candidates as the set of all nodes L such that L has at least one outgoing s-edge but no incoming s-edges. Informally speaking, we are looking for all leaf nodes in I with respect to s-edges. For each node L in candidates, we find all s-paths with start node L and for each s-path P we want to check which of its edges are relevant for the merge results without introducing redundancy in addition to the target edges that will be translated. We therefore traverse each s-path P and consider its edges as relevant until one node in P has outgoing t-edge indicating that the remaining path is already covered by T. This criterion also observes the case when the remaining s-edges extend a t-edge since such edges
would have been already identified as relevant in the previous step and we do not have to translate them again. In the example shown in Figure 4(d), the set of candidate nodes is candidates = \{D, F*\}; the node D has only one s-path P = \{S_3, S_2, S_1\}. The start node of S_3 - the first edge in P - is D and since it has no outgoing t-edges we mark S_3 as relevant; then we analyze S_2, its start node is C* and since T_1 is an outgoing t-edge for it, the algorithm stop because a translation for C* has already been proposed in the previous step. The same goes for the other candidate node F*, in this case the algorithm stops at the first step since F* has an outgoing t-edge.

At this point we can decide which source nodes should be integrated in the final result and which not. We define a node X as not relevant if all outgoing and incoming s-edges are marked as not relevant. For each s-edge e = N_1 \rightarrow N_2 marked as relevant and called C_1 and C_2 respectively the integrated concepts in T corresponding to N_1 and N_2 in I, we create an is-a relationship between C_1 and C_2.

If we apply this step to our running example shown in Figure 3, the set of candidate nodes is candidates = \{Laptops HP*, Laptops Dell*, Desktops Dell*, Mouse, Webcam\}. It is easy to note that edges S_2, S_3, S_4, S_6, S_8 will be marked as relevant and the remaining s-edges (S_1, S_4, S_5, S_7) as not relevant. The node Laptops is considered not relevant and it will not be translated in the integrated ontology. On the other side, an is-a relationship will be created, for example, between Desktops and Desktops HP.

Let TLCs be the set of all Top Level Concepts. If TLCs contains only one Top Level Concept, this will be the root of T, otherwise we create an artificial root node R in T and for each concept C in TLCs we create an is-a relationship from C to R. Note that the set TLCs contains only the relevant top level concepts, a source top level concept is defined as relevant if at least one incoming s-edge is relevant.

The integrated ontology T generated by the algorithm for the Example 1.1 is shown in Figure 5. In order to keep the figure more compact, we omitted the attributes, since they were already reported in the integrated concept graph drawn in Figure 3. We observe that the target structure is fully preserved while the source taxonomy is only partially included since their concepts Laptops HP, Laptops Dell (and thus Laptops) as well as Desktops Dell are covered by corresponding target concepts.

The complexity of the main phase is also different if a single or a multiple inheritance is present in the sources. In the first case the complexity is still linear with respect to the sum of source concepts, in the latter case it is quadratic with respect to source concepts. The default result generated automatically by the system might not satisfy the subjectivity of the user. In this case, ATOM shows which concepts were considered as not relevant and the list of the target concepts with their paths that make them redundant in order to help the user to choose a different solution.

C. Multiple Inheritance

In order to show how this approach can be applied to ontologies with multiple inheritance, let us consider the example shown in Figure 6. It represents a small subset of the match scenario proposed by the Ontology Alignment Evaluation Initiative (OAEI) [1] that merges part of the subgraph describing “Eye Muscles” in the Mouse Anatomy with the subgraph describing a similar concept in the NCI Thesaurus. It is important to note that the graphs are much more complex in the original ontologies but, in order to keep this example smaller and more readable, we considered only some concepts. The merge scenario with the full ontologies will be discussed in Section VI.

The leaf concept Ciliary Muscle can be reached by different paths in the source and in the target; moreover it has multiple paths in the target ontology due to the multiple inheritance.

The integrated concept graph containing all the concepts and relationships coming from source and target taxonomies and the merge result for the given example is shown in Figure 6 (b) and (c). We highlighted with a white background the merge concepts and with a light and dark-gray color that concepts
coming only from the source or from the target respectively, i.e. the concepts that are not covered by a correspondence in the input equivalence mapping.

For example, the source leaf concept *Iris Muscle* does not have an equivalent concept in the target but is still relevant for the merge result since it is a leaf in the source and could contain instances (see property (P3)). On the other hand, source concepts such as *Tissue* were not translated in the merge result otherwise a semantic overlap, defined in terms of multiple paths (see property (P4)), would be added for the concept *Ciliary Muscle*. In fact, in this case, the number of paths for this concept in the merge result is still the same than in the target ontology. Moreover, as we discussed in Section III, the algorithm rewarded the source path \{ *S_5* – *S_3* \} since it preserves and extends the target structure between the concepts *Ciliary Muscle* and *Muscle*. In fact the target is-a relationship defined by *T_5* is implied by the is-a relationships in *S_5* and *S_3*.

It is easy to see that the proposed algorithm generates a solution that meets the requirements (P1) to (P5) introduced in Section II for both examples. In particular, all the target concepts (P1) and is-a relationships (P2) are also in the merged taxonomy, all the source and the target leaf nodes were translated so that all instances are preserved (P3) and no semantic overlap was introduced in the result (P4), since no multiple paths were added for the leaf concepts and the tree-like structure was preserved for the example with single inheritance. The generation of mappings discussed in Section V shows that each leaf concept of the input taxonomies is mapped to the merged taxonomy and that if two concepts are equal in the equivalence mapping then they are mapped to the same merged concept in the result and vice versa (P5).

D. Open Problems

By merging corresponding concepts we reduce semantic overlap compared to a simple union of the input taxonomies; furthermore we eliminate redundant inner nodes such as *Laptops* or *Tissue* for the running examples. Still there is remaining semantic overlap in the merge result determined by the base algorithm and we discuss next how to further reduce it with the extended algorithm.

Moreover, we assumed that in the ontology model only leaf nodes can contain instances and this requirement must be satisfied also for the merge result. If the input mapping contains an equivalence correspondence between a leaf node and an inner node, the corresponding merged concept in the result could be an inner node and some instances will be moved to it, which is not in accordance with the assumed model constraint. For this reason, a refinement step could be required in order to migrate these instances down the hierarchy to leaf nodes. Let us consider the example shown in Figure 7 representing two different product catalogs. In particular, the source taxonomy defines only one concept to classify the *Software* category while the target one defines different subcategories such as *Antivirus* or *Games*. As we will discuss in Section V, the generated equivalence mapping \(Map_{ST} \) between the source taxonomy and the merge result creates a correspondence \(\{ *Software*, *Software*^\prime* \} \) that would migrate the instances from the source leaf node *Software* to the merged inner node *Software*^\prime*. But this is not possible due to our assumption that instances are limited to the leaf nodes. In the next Section, we discuss how the specification of a more semantic mapping could solve these problems. For the basic algorithm we would have to extend the mappings \(Map_{ST} \) and \(Map_{TT} \) (see Section V) to move instances for concepts that are no leaf concepts in *T* to the leaf level, e.g. to migrate *Software* instances of *T* to the leaf concepts *Antivirus* and *Games*.

IV. EXTENSIONS

Inspecting the result of the base algorithm shown in Figure 5, reveals that not all concepts seem well placed and that there is still some semantic overlap due to the differences in the original taxonomies. For example the concept *Desktops* *HP* should not be in a different subtree than concept *HP*. Furthermore, there is likely overlap between the general *Mouse* concept under *Hardware*^\prime*. *Accessories* and the more specific concepts *Mouse* *HP* and *Mouse* *Dell* (similarly for *Webcams*). The base algorithm could not better deal with such cases since the semantic relationships between these concepts have not been expressed in the provided equivalence mapping (see Fig.1). Hence a prerequisite to improve the merge result is the provision of more semantic mappings between the input taxonomies, in particular is-a and inverse-is-a relationships in addition to equivalence relationships. For the running example, we can then specify that *Desktop HP* in the source taxonomy “is-a” *HP Computer* in the second taxonomy and that *Mouse* in the source represents every kind of mouse and not a mouse of a specific brand, as instead in the target is. So we could say that *Mouse* in the source is a superclass for both *Mouse HP* and *Mouse* *Dell* in the target.

The extended merge algorithm that we present in this section is based on such enriched input mappings consisting of equivalence, is-a and inverse-is-a relationships.

Figure 8 shows an is-a and an inverse-is-a mappings for the running example introduced in Section I. In order to keep the figure more readable, we omitted the equivalence mapping but it is still a necessary input for the algorithm. An is-a mapping between two ontologies is defined as a set of is-a correspondences. An is-a correspondence is an oriented correspondence from a source concept to a target concept. Similarly we define an inverse-is-a mapping as a set of inverse-is-a correspondences from source to target concepts.
Semantically we could define an “inverse-is-a” relationship as the inverse of an “is-a” relationship, e.g. the relationship Mouse inverse-is-a Mouse HP is semantically equivalent to the relationship Mouse HP is-a Mouse. However, since our algorithm is target-driven we need different approaches for dealing with is-a and inverse-is-a relationships so that we want to emphasize the distinction.

The preliminary phase of the extended algorithm is basically the same than for the base algorithm. The difference is that the integrated concept graph, output of this phase, contains not only s-edges and t-edges but also two new sets of edges: isa-edges and inv-isa-edges representing respectively is-a and inverse-is-a correspondences in the auxiliary mapping. Figure 9 shows the integrated concept graph for the Example 1.1; isa-edges and inv-isa-edges are represented by curved lines.

Because of the semantically different nature of an “is-a” and an “inverse-is-a” mapping, they will be translated in two different ways. In the following we describe how we modified the base algorithm to manage is-a and inverse-is-a mappings.

1) Translation of is-a mapping: The intuition behind the translation of an isa-edge is that it represents a subclass relationship between a source concept and a target concept and we want this relationship to be translated also in the integrated ontology.

Before describing how we changed the base algorithm, it is necessary to introduce some new definitions.

Definition [isa-path] Let N be a node in a graph I and P a TLC path with start node N. P is an isa-path if it contains only isa-edges. Let N be a node in a graph G and P a TLC path with start node N. P is a combined-path if it contains only t-edges or isa-edges. Let N be a node in a graph G and P a path with start node N. P is a combined-path or c-path if it contains only s-edges or isa-edges.

In order to translate isa-edges in the final result, we introduce a new step in the main phase after the translation of the target edges.

Step 2.2.1: [translation of isa-edges; lines 9-11 of Alg. 4] For each isa-edge $e = N_1 \rightarrow N_2$, called C_1 and C_2 respectively the integrated concepts in T corresponding to N_1 and N_2 in I, we create an is-a relationship between C_1 and C_2. If we consider the integrated concept graph shown in Figure 9, at the end of this step, we translate the single isa-edge with label “isa1” nesting the concept Desktops HP in Computers.

It is easy to note that the presence of isa-edges in the integrated concept graph influences the translation of source edges, since a source concept could have been already translated if involved in a t-path but also in an isa-path (or a mixed-path). For this reason, we changed the translation of s-edges accordingly as follows:

Step 2.3: [translation of s-edges; lines 12-27 of Alg. 4] This step is similar to that one defined in the base algorithm with the difference that for each source leaf node we have to check if there exist other paths containing at least one t-edge or one isa-edge and to mark s-edges as relevant or not relevant accordingly. In the example shown in Figure 9, the set of candidate nodes is $\text{candidates} = \{\text{Laptops HP}, \text{Laptops Dell}, \text{Desktops HP}, \text{Desktops Dell}^*, \text{Mouse, Webcam}\}$. Since only the s-paths with start nodes Mouse and Webcam have no mixed-paths, we mark the edges S_3, S_6, S_9 as relevant and the remaining s-edges ($S_1, S_2, S_4, S_5, S_7, S_8$) as not relevant.

The algorithm remains basically unchanged in the next steps, but the final result is evidently different and it is shown in Figure 10(a). As we can see, the concept Desktops HP is now correctly placed; the source concept Desktops is no more relevant and it was dropped from the final result.
Algorithm 4 ExtendedIntegratedTaxGen(I)

Input: an Integrated Concept Graph \(I = (V, E) \)

Output: an Integrated Taxonomy \(T \)

1: \(\text{RemoveCycles}(I) \)
2: \(\text{for each } t\text{-edge } e = N_1 \rightarrow N_2 \text{ in } I \) do
3: \(\text{if } \exists \text{ exactly one } c\text{-path } P \text{ from } N_1 \text{ to } N_2 \text{ s.t. } \text{length}(P) > 1 \) then
4: \(\text{mark all edges in } P \text{ as relevant} \)
5: \(\text{else} \)
6: \(\text{create an is-a relationship between } N_1 \text{ and } N_2 \text{ in } T \)
7: \(\text{end if} \)
8: \(\text{end for} \)
9: \(\text{for each } \text{isa-edge } e = N_1 \rightarrow N_2 \text{ in } I \) do
10: \(\text{create an is-a relationship between } N_1 \text{ and } N_2 \text{ in } T \)
11: \(\text{end for} \)
12: \(\text{candidates} \leftarrow \{ X : X \in V \land X \text{ has at least one outgoing s-edge but no incoming s-edges} \} \)
13: \(\text{for each } X \text{ in candidates do} \)
14: \(\text{spaths} \leftarrow \text{set of s-paths with start node } X \)
15: \(\text{for each s-path } P \text{ in } \text{spaths do} \)
16: \(\text{for each edge } e = C_1 \rightarrow C_2 \text{ in } P \) do
17: \(\text{if } C_1 \text{ has no outgoing t-edges or isa-edges then} \)
18: \(\text{mark } e \text{ as relevant} \)
19: \(\text{else} \)
20: \(\text{break} \)
21: \(\text{end if} \)
22: \(\text{end for} \)
23: \(\text{end for} \)
24: \(\text{end for} \)
25: \(\text{for each relevant edge } e = N_1 \rightarrow N_2 \text{ do} \)
26: \(\text{create an is-a relationship between } N_1 \text{ and } N_2 \text{ in } T \)
27: \(\text{end for} \)
28: \(A \leftarrow \text{set of all relevant source top level concepts in } I \)
29: \(B \leftarrow \text{set of all target top level concepts in } I \)
30: \(\text{TLCs} \leftarrow A \cup B \)
31: \(\text{if } \text{size}(\text{TLCs}) = 1 \text{ then} \)
32: \(\text{root}(T) \leftarrow \text{TLCs}[0] \)
33: \(\text{else} \)
34: \(\text{root}(T) \leftarrow \text{create a new node } R \)
35: \(\text{for each top level concept } tlc \text{ in } \text{TLCs do} \)
36: \(\text{nest } tlc \text{ in } \text{root}(T) \)
37: \(\text{end for} \)
38: \(\text{end if} \)
39: \(\text{end for} \)
40: \(\text{for each inv-isa-edge } e = N_1 \rightarrow N_2 \text{ in } I \) do
41: \(\text{create a new concept } N_{others} \text{ with } \text{label}(N_{others}) \leftarrow \text{label}(N_1) + \text{"(others)"} \) (if does not exist a similar concept)
42: \(\text{create a new is-a relationship between } N_{others} \text{ and } N_1 \)
43: \(\text{else} \)
44: \(\text{if } N_1 \text{ has not yet been renamed then} \)
45: \(\text{label}(N_1) \leftarrow \text{label}(N_1) + \text{"(others)"} \)
46: \(\text{end if} \)
47: \(\text{label}(N_2) \leftarrow \text{label}(N_2) + \text{subset}(N_1) \)
48: \(\text{end if} \)
49: \(\text{end for} \)
50: \(\text{return } T \)

2) Translation of inverse-isa mapping: In order to manage inverse-isa mapping, we introduce a final step in the main phase algorithm where we rename labels of the concepts involved in inverse-isa-correspondences.

An inverse-isa-mapping semantically describes how a source concept can be split in two or more target concepts and how its instances should be partitioned. For example, in Figure 8 the source concept Mouse representing all kinds of mouse without distinction of brand, can be split in two target concepts Mouse HP and Mouse Dell. But, in general, Mouse can also contain mice with a brand that is different both from HP and Dell (e.g. Logitech Mouse) and we must be careful to not miss this information. We add the following step to the algorithm as a final step:

Step 2.5: [translation of inv-isa edges; lines 39-49 in Alg. 4] For each inv-isa-edge defined as \(e = A \rightarrow B \), called respectively \(\text{label}(A) \) and \(\text{label}(B) \) the labels of nodes \(A \) and \(B \), we distinguish two cases: a) if there exists a s-edge or a t-edge between the same nodes but in opposite direction, a new concept with label equals to \(\text{label}(A) + \text{"(others)"} \) will be added to the result and a new is-a relationship between this concept and \(A \) will be created; b) if such an edge does not exist, we simply rename \(\text{label}(A) \) in \(\text{label}(A) + \text{"(others)"} \) and \(\text{label}(B) \) in \(\text{label}(B) + \text{subset}(A) \). The “+” operator indicates here a simple concatenation function; the \(\text{subset()} \) function indicates a subset of the original set when applied some special conditions. For example, supposing that the Mouse concept has an attribute called brand, we could apply a filter condition based on the value of the \(\text{brand} \) attribute. We will discuss this point in detail in Section V.

Let us consider the two inverse-isa-correspondences \(c_1 \) and \(c_2 \) in our example:

\[
\begin{align*}
\text{c}_1 &= \text{Mouse} \rightarrow \text{Mouse HP} \\
\text{c}_2 &= \text{Mouse} \rightarrow \text{Mouse Dell}
\end{align*}
\]

The renaming step will produce the following result:

\[
\begin{align*}
\text{Mouse} &\Rightarrow \text{Mouse (others)} \\
\text{Mouse HP} &\Rightarrow \text{Mouse HP + subset}_H(P(Mouse)) \\
\text{Mouse Dell} &\Rightarrow \text{Mouse Dell + subset}_D(P(Mouse))
\end{align*}
\]

It is easy to note that the concept Mouse (others) represents the following set:

\[
\text{Mouse(others)} \equiv M \setminus (\text{subset}_H(P(M))) \cup \text{subset}_D(P(M))
\]

where \(M \) is the original concept Mouse.

By analyzing source instances it is possible to discover if the concept Mouse(others) is empty or not. In particular, if \(\{\text{subset}_H, \text{subset}_D\} \) is a partition of the original concept Mouse, the node Mouse(others) is empty and could be removed from the merged taxonomy. But in general, if we did not consider this node, we could lose some information. A similar result is obtained for the inverse-isa-correspondences \(c_3 \) and \(c_4 \) related to the Webcam concept.

Figure 10(b) shows the integrated ontology produced by the extended algorithm, after the renaming step.

The extended merge algorithm presented in this Section can solve also the problem about the migration of instances in merged inner nodes that we addressed in Section III-D. In the example shown in Figure 7, the user might refine the input mapping defining two inverse-isa correspondences (\(\text{Software}, \text{Antivirus} \)) and (\(\text{Software}, \text{Games} \)). In such a similar case, the source instances from the leaf node \(\text{Software} \)
would be split and migrate to the merge leaf nodes Antivirus and Games. Moreover, a new concept with label Software (others) would be created as a child of the merged concept Software*. In Section V we discuss how the equivalence mappings between input taxonomies and the merged taxonomy can be automatically generated and in particular how it is possible to split instances involved in inverse-isa relationships defining specific filter conditions.

The full pseudo-code for the extended algorithm is shown in Algorithm 4. It is easy to note that steps introduced in the extended algorithm do not increase the complexity of the base algorithm.

V. MAPPING GENERATION

In this section we discuss how to automatically generate equivalence mappings between the input taxonomies and the merged taxonomy as determined by the extended algorithm. The process is fully automatic and based on the extended integrated concept graph reflecting the equivalence, isa and inverse-isa relationships between the input taxonomies. These relationships produce different edges in the integrated concept graph and consequently different concepts and relationships in the merged taxonomy. In particular, correspondences in an equivalence mapping describe how two or more source concepts should be merged in the integrated taxonomy; on the other side, an isa-mapping does not produce merged concepts in the result, but it defines a subclass relationship between a source and a target concept, describing which should be the father of a source concept in the merged taxonomy; finally, an inverse-isa-mapping describes how to split a source concept - and its instances - in two or more concepts in the final result. Algorithm 5 shows how mappings \(M_1 \) and \(M_2 \) for relating the input ontologies \(O_1 \) and \(O_2 \) to the integrated ontology, respectively, are determined. The algorithm will determine in \(M_1 \) a correspondence for every target concept (since the merge algorithm is target-maintaining) and in \(M_2 \) a correspondence for every source concept explicitly reflected in the merged taxonomy. In particular there will be a correspondence for every leaf concept specifying where instances should migrate in the merged taxonomy.

Input equivalence correspondences and isa-correspondences can be translated at the same time analyzing nodes marked as relevant in the integrated concept graph \(I \). As defined in Section III (Step 1.3), each integrated concept in \(I \) contains the collections of source and target concepts from which it was generated. In this way, given an integrated concept \(C \), it is always possible to know if \(C \) was present only in the source, only in the target or in both. In the following, we call respectively \(sc \) and \(tc \) the collections of source and target concepts for an integrated concept \(C \). It is important to note that we assume that all integrated concepts with a nonempty \(tc \) are marked as relevant by default - i.e. all concepts present in the target taxonomy are relevant and must be translated in the merged taxonomy.

As described in Algorithm 5, for each relevant integrated concept \(C \) in \(I \) such that \(C \) has no outgoing inv-isa-edges (they will be translated later in a different way), called \(sc \) and \(tc \), the sets of source and target concepts, for each concept \(C \) in \(sc \), we create a correspondence between \(C \) and \(C \); the same goes for concepts in \(tc \).

For example, if we consider the integrated concept Laptops HP* in Figure 9, the sets \(sc \) and \(tc \) are respectively \(sc_{Laptops,HP^*} = \{Laptops HP \} \) and \(tc_{Laptops,HP^*} = \{Laptops HP \} \) and we will create a correspondence between the source concept Laptops HP and the integrated concept Laptops HP* and another one between the target concept Laptops HP and Laptops HP*. If we consider, instead, the node Desktop HP, \(sc_{Desktops,HP} = \{Desktops HP \} \) while \(tc_{Desktops,HP} \) is empty and only one correspondence between the source concept Desktops HP and the integrated concept Desktops HP will be generated.

The translation of inverse-isa-correspondences is a delicate step in the mapping generation process since each correspondence describes how to move only “some” instances of a source concept and not all instances related to it. In our running example, as discussed in Subsection IV.-2, correspondences with label \(c_1 \) and \(c_2 \) state that instances in the source concept Mouse should be split in three disjoint subsets: Mouse HP, Mouse Dell and Mouse (others). As proposed in [10], a correspondence can have an attached filter - called filter condition - that states under which conditions the correspondence must be applied. For example, supposing the Mouse concept has an attribute called brand, we can define the following filter conditions respectively for correspondences \(c_1 \) and \(c_2 \):

\[
fC_1 = \{ \text{Mouse.brand} = \text{’HP’} \}
fC_2 = \{ \text{Mouse.brand} = \text{’Dell’} \}
\]

Filter conditions can be automatically generated by a matching tool when correspondences are created or they can be manually defined by a user; as discussed for correspondences, we do not investigate how filter conditions are generated since they are part of our algorithm input. At this point, we are ready to present how inverse-isa-correspondences are translated in the mapping generation process. As shown in Algorithm 5, for each node \(C_1 \) with at least one outgoing inv-isa-edge, called \(C \) the corresponding source concept and called \(c-edges \) the list of all outgoing inv-isa-edges for \(C_1 \), we create a correspondence for each edge \(e \) in \(c-edges \) and we attach the filter condition \(f_c \) defined on \(e \). Finally, we create a correspondence between \(C \) and the integrated concept with label “(others)” attaching a filter condition \(f_{\text{others}} \) defined as the negation of all filter conditions attached on inv-isa-edges outgoing from \(C_1 \).

If we consider again the concept Mouse in our running example, the set of outgoing inv-isa-edges is \(\{c_1, c_2\} \) with filter conditions \(f_{c_1} \) and \(f_{c_2} \) defined above. With respect to \(c_1 \) edge, we create a correspondence between the source concept Mouse and the integrated concept Mouse HP attaching \(f_{c_1} \) on it; similarly for \(c_2 \). Finally, we create a correspondence between Mouse and Mouse (others) and we define a new filter
The last correspondence states that all mice with a brand others = [Mouse.brand != 'HP' AND Mouse.brand != 'Dell']

The algorithms proposed in the paper have been implemented in the ATOM system [16], a working prototype written in Java offering a GUI to explore all steps of the merging generation process. ATOM has been integrated with COMA++ [3] which permits semi-automatic generation of input mappings. In this section we study the performance of our algorithm on scenarios of various kinds and sizes. We show that algorithms proposed efficiently compute a merged taxonomy even for large real-life ontologies. All experiments have been executed on an Intel Xeon machine with 2.66Ghz processors, 4 GB of RAM and a 64 bit operating system. We have used the prototype to run a number of experiments both on synthetic and real-life scenarios. Table I summarizes the list of experiments. We expressed the size of taxonomies as their number of concepts and the dimension of the integrated concept graph as the number of nodes and edges. Synthetic ontologies, named as S1, S2 and S3, have been manually created and designed to check the correctness of the algorithm and for this reason they have a small number of concepts and relationships (in Table I we reported only the most relevant ones); on the other side, real-life ontologies were chosen as very large ontologies and contain, on average, from hundreds to over 20000 concepts and they come from different domains. In particular, Dmoz- Google Freizeit and Google-Web Lebensmittel merge a part of DMoz and Google web directories; the Anatomy (Mouse-NCI) scenario merges the AdultMouseAnatomy (over 2700 concepts) and the anatomical part of the NCI Thesaurus (NCIT) (about 3300 concepts) and finally we considered different versions of eBay product catalog and we run the algorithm to merge them and find out possible differences. These versions of the catalog contain in average more than
22000 concepts and full mappings contain more than 20000 correspondences.

Experiment Name	Source size	Target size	# of correspondences	Int. Concept Graph Size (nodes/edges)	Output Dimension (# concepts)
S1	9	11	8	14/19	13
S2	12	15	12	15/20	15
S3	15	10	15	15/18	11
Dmoz-Google-Freizel	72	68	68	72/173	72
Google-Web Lebenstest	58	52	32	78/165	70
Anatomy (Mouse-NCI)	2743	3004	988	5069/9611	4996
Ebay=02-v33	24480	22513	23805	23188/44948	23123
Ebay=03-v04	22513	21034	21750	21797/41917	21713

TABLE I
SUMMARY OF EXPERIMENTS

S1 shows a scenario with a partial overlap between sources - only six target concepts are mapped. The algorithm generated a merged taxonomy with 13 concepts starting from an integrated concept graph with 14 nodes; it means that considering the 9 source concepts, 6 of them have been merged, 2 have been translated in the result and only one was recognized as not relevant and dropped. Scenario S2 is an example of full overlap - the source taxonomy is fully contained in the target one - and the result is equivalent to the target taxonomy. Finally, the experiment S3 shows a scenario where the target is fully contained in the source one; in this case the result contains all target concepts and only one coming from the source taxonomy while the remaining ones were marked as not relevant.

About the real-life scenarios, we distinguished three categories: web directories, life science and product catalogs. The web directory category contains two experiments of different nature. The first one presents a full overlap between input taxonomies; all the concepts not mapped in the source are marked as relevant and translated in the final result. The second scenario presents a partial overlap and in this case the algorithm generated a result containing about 60% of not mapped source concepts.

The scenario in life science category (Mouse-NCI) merges two medium-scale taxonomies with 3000 concepts in average. It is possible to note how the algorithm considered some source concepts as not relevant in the final result. Mouse and NCI ontologies contain both is-a and part-of relationships but, in our experiments, we considered only is-a relationships.

Finally, scenarios in product catalog category address some issues. If we consider a mapping containing only correspondences between products moved in a different category, the dimension of the merged taxonomy is exactly the same of the integrated concept graph and it means that all concepts are relevant. On the other side, if we consider a full mapping between input taxonomies as reported in Table I, the merge result is much more compact since more concepts are merged and some source concepts are marked as not relevant.

Now we discuss the scalability of the algorithm on ontologies of large size. As already discussed in previous sections, the complexity of the algorithm is theoretically linear with respect to the number of concepts for taxonomies with single inheritance and quadratic in presence of multiple inheritance. We experimentally proved that the algorithm has good performance also with real and large taxonomies. In particular, ontologies in the anatomy scenario have multiple inheritance, while each concept in eBay product catalogs has only one parent. We measured execution time for each step in the algorithm, in particular the time necessary to generate concept graphs, matching graph, integrated concept graph and finally that one necessary to visit the integrated graph and produce the final result. We also measured the execution time to generate the final equivalence mappings between input and merge result. We reported in Fig. 13 execution times for medium and large-size scenarios and we omitted the other ones since the total execution time was much lower. We also omitted the concept graphs and the matching graph generation times, since they resulted not relevant with respect to the total time. The system generated the final result in about one second for the medium-size scenario with multiple inheritance (Mouse-NCI), and in less than 10 seconds for the large-size ones (eBay product catalogs), showing a very good scalability of the algorithms.

![Fig. 13. Execution times on large-scale scenarios](image)

VII. RELATED WORK

In this section we review some related works in the fields of schema and ontology merging.

Several approaches have been proposed to merge schemas based on a pre-determined match mapping [13], [5], [17], [12], [18], [14] but, at the best of our knowledge, our approach is the first one to use more semantic mappings, like isa or inverse-isa mappings, to improve the merge result. Moreover, in contrast to previous approaches we do not try to preserve all non-matching concepts and their relationships in both input ontologies since this could introduce a semantic overlap in the merge result due to a different and overlapping structuring of the domain of interest.

In [13] the problem of merging two models given a set of correspondences is investigated. They study the problem
from a more general point of view since their approach can be applied to a generic model such as a database schema, a UML model or an ontology defining a set of properties, called Generic Merge Requirements, that a merge model should satisfy. In this paper we reuse some of these requirements adapting them to our target-driven algorithm and define new properties.

[5] introduces an interactive algorithm to generate integrated schemas. Given a set of two or more source schemas - XML or relational schemas - and an equivalence mapping, it generates and enumerates multiple integrated schemas and requires user intervention to refine the result. Our approach is similar to that one proposed in [5] since we use a similar model based on concept and matching graphs but with significant differences. One of the main differences is the distinction between source and target edges that we introduced in the integrated graph since it plays an important role to generate the merge result in a fully automatic manner. For each integrated schema returned to the user, they also generate a mapping from the source schemas to the integrated schemas.

The approach proposed in [12] takes as input a set of relational schema and an equivalence mapping expressed under the form of conjunctive queries. As in [5], the proposed algorithm generates a mapping between input schemas and mediated schema. One of the main goals is to provide a set of features that the merge result and generated mapping should have.

A more automatic approach to schema integration is proposed in [14]. The approach is based on the use of directed and weighted correspondences and they use this information to rank the integrated schemas generated by the algorithm. It also provides an interactive step where a user can add one or more constraints in order to refine the final result.

A different approach was studied in [18], based on the notion of a probabilistic mediated schema, i.e. a set of integrated schemas with a related probability; they propose an automatic pay-as-you-go approach where the system proposes a starting mapping that can be incrementally improved if necessary.

Finally, the system presented in [17], addresses both the matching and the merging problem for XML schemas. They propose an incremental approach that discovers equivalence correspondences between the sources and, at the same time, incrementally generates a merged schema and the mapping between sources and mediated schema.

Previous approaches on ontology merging [11], [9], [19] have been primarily focused on the problem of ontology alignment, or ontology matching, and do not use the separation of matching and merging.

PROMPT[11] proposes an algorithm for aligning and merging ontologies. The merging algorithm is semi-automatic since it can perform some tasks automatically, while the other tasks are suggested to the user as a list of possible operations to execute. The user intervention can generate inconsistencies in the merged ontology; the system can discover these inconsistencies and suggest to the user a possible solution.

Chimaera[9] is one of the tools implemented in the Ontolingua system [7], a tool to design and manipulate ontologies.
REFERENCES

[1] “The Ontology Alignment Evaluation Initiative,” http://oaei.ontologymatching.org.
[2] B. Alexe, W. Tan, and Y. Velegrakis, “STBenchmark: Towards a Benchmark for Mapping Systems,” Proc. of the VLDB Endowment, vol. 1, no. 1, pp. 230–244, 2008.
[3] D. Aumueller, H. Do, M. S., and E. Rahm, “Schema and Ontology Matching with COMA++,” in Proc. of ACM SIGMOD, 2005, pp. 906–908.
[4] C. Batini, M. Lenzerini, and N. S. B., “A Comparative Analysis of Methodologies for Database Schema Integration,” ACMCompLIA, vol. 18, no. 4, pp. 323–364, 1986.
[5] L. Chiticariu, P. G. Kolaitis, and L. Popa, “Interactive generation of integrated schemas,” in Proc. of ACM SIGMOD, 2008, pp. 833–846.
[6] F. Duchateau and Z. Bellahsene, “Measuring the quality of an integrated schema,” in ER, 2010, pp. 261–273.
[7] A. Farquhar, R. Fikes, and J. Rice, “The ontolingua server: a tool for collaborative ontology construction,” in International Journal of Human-Computer Studies, 1996.
[8] P. Lambrix and A. Edberg, “Evaluation of ontology merging tools in bioinformatics,” in Pacific Symposium on Biocomputing, 2003, pp. 589–600.
[9] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder, “An environment for merging and testing large ontologies,” in KR, 2000, pp. 483–493.
[10] G. Mecca, P. Papotti, and S. Raunich, “Core Schema Mappings,” in Proc. of ACM SIGMOD, 2009, pp. 655–668.
[11] N. F. Noy and M. A. Musen, “Prompt: Algorithm and tool for automated ontology merging and alignment,” in AAAI/IAAI, 2000, pp. 450–455.
[12] R. Pottinger and P. A. Bernstein, “Schema merging and mapping creation for relational sources,” in EDBT, 2008, pp. 73–84.
[13] R. A. Pottinger and P. A. Bernstein, “Merging models based on given correspondences,” in Proceedings of the 25th International Conference on Very Large Data Bases - Volume 29. VLDB Endowment, 2003, pp. 862–873.
[14] A. Radwan, L. Popa, I. R. Stanoi, and A. A. Younis, “Top-k generation of integrated schemas based on directed and weighted correspondences,” in SIGMOD Conference, 2009, pp. 641–654.
[15] E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic Schema Matching,” VLDB J., vol. 10, pp. 334–350, 2001.
[16] S. Raunich and E. Rahm, “ATOM: Automatic Target-driven Ontology Merging,” in Proc. of ICDE, 2011.
[17] K. Saleem, Z. Bellahsene, and E. Hunt, “Porsche: Performance oriented schema mediation,” Inf. Syst., vol. 33, no. 7-8, pp. 637–657, 2008.
[18] A. D. Sarma, X. Dong, and A. Y. Halevy, “Bootstrapping pay-as-you-go data integration systems,” in SIGMOD Conference, 2008, pp. 861–874.
[19] G. Stumme and A. Maedche, “Fca-merge: Bottom-up merging of ontologies,” in JICAI, 2001, pp. 225–234.
[20] D. Thau, S. Bowers, and B. Ladachers, “Merging taxonomies under rcc-5 algebraic articulations,” in ONISW, 2008, pp. 47–54.