Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis

Faraz Bishehsari,1 Phillip A. Engen,1 Robin M. Voigt,1 Garth Swanson,1 Maliha Shaikh,1 Sherry Wilber,1 Ankur Naqib,1,2 Stefan J. Green,2,3 Brandon Shetuni,4 Christopher B. Forsyth,1 Abdulrahman Saadalla,5 Abu Osman,5 Bruce R. Hamaker,6 Ali Keshavarzian,1,7,8 and Khashayarsha Khazaie5

1Department of Internal Medicine, Division of Gastroenterology,7Department of Physiology, Rush University Medical Center, Chicago, Illinois;2Sequencing Core, Research Resources Center,3Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois;4Northwestern Medicine, Central DuPage Hospital, Winfield, Illinois;5Department of Immunology, Mayo Clinic, Rochester, Minnesota;6Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana;7Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands

SUMMARY
Abnormal eating patterns as characterized by eating during a rest period causes circadian rhythm disruption in mice. In the mouse polyposis model, eating during rest exacerbates alcohol-associated colon tumor formation by altering intestinal microbiota and causing a protumorigenic mucosal inflammation.

BACKGROUND & AIMS: Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis.

METHODS: The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A.

RESULTS: Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid–producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol–induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas.
CONCLUSIONS: Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141. (Cell Mol Gastroenterol Hepatol 2020;9:219–237; https://doi.org/10.1016/j.jcmgh.2019.10.011)

Keywords: Colon Cancer; Circadian; Alcohol; Food Time; Microbiota; Butyrate.

Colon cancer (CRC) is the third most common cancer in the world. Modern-lifestyle-specific factors increase the risk of CRC, as evidenced by dramatic differences in CRC rates between developed and developing nations, increasing CRC rates in populations with recent economic growth who have adopted a modern lifestyle, and the ongoing increase in early onset CRC correlating with lifestyle transitions in younger populations in our 24-hour/7-days-a-week society.12 Even limited alcohol consumption increases the risk of colonic premalignant lesions (polyps) and CRC.3,4 Nonetheless, only a subset of alcohol consumers develops CRC. The presence of multiple risk factors has been shown to increase CRC risk drastically.5 Thus, additional factors may promote CRC-related mechanisms in the context of alcohol intake.5 Our group and others have shown that one such mechanism promoted by alcohol use is the alteration of the intestinal microbiota.6,7 Therefore, lifestyle factors potentially impact CRC risk by altering the intestinal microbiota and causing fluctuations in intestinal inflammation and tissue microenvironment.3,12

We previously identified circadian rhythm disruption (CRD), another hallmark of the modern lifestyle and of chronic disease pathogenesis, as an additional factor modulating alcohol-dependent intestinal damage.13,14 CRD promotes inflammation-mediated diseases,15 including CRC with our data indicating a role for light/dark shifting in promoting alcohol-induced CRC.17

Although the central circadian clock in the suprachiasmatic nucleus is regulated by the light/dark cycle, circadian rhythms in peripheral tissues, including those in the gastrointestinal tract, can be entrained by external factors independently of the central clock.18,19 Time-restricted feeding during rest time can shift circadian oscillation of the peripheral clocks in the liver and colon independently of light effects.18,19 Therefore, abnormal eating patterns can cause CRD through central and peripheral circadian misalignment without disrupting central rhythms. Abnormal eating patterns, characterized by eating late at night or eating large meals close to the biological rest time, are very common in modern society.20–23 We hypothesize that these patterns cause a central-intestinal CRD that alters the microbiome and enhances alcohol-induced intestinal inflammation and colon carcinogenesis.

Results
Eating During Rest Time Induces Intestinal CRD and Promotes Alcohol-Induced Polyposis

We first investigated whether rest time eating (wrong-time eating [WTE]) causes CRC in mice. B6 PER2:LUC mice were fed a regular chow diet during light/rest or dark/active phases for 7 days (Figure 1A). WTE for 7 days significantly shifted the acrophase (time of peak expression) (Figure 1B), as well as the circadian rhythm–adjusted mean (Figure 1C) of the colonic rhythm, as measured via the Per2 promoter activity. The central circadian rhythm was not affected significantly by WTE (Figure 1D). Therefore, WTE disrupts circadian rhythms by causing peripheral–central circadian dys synchrony.

To model CRC, we used TS4Cre × APC^D468 (TS4/APC) mice, with disruption of the adenomatous polyposis coli gene and increased polyposis in the colon and distal ileum.24 Mice were exposed to WTE or right-time eating (RTE) regimes, either alcohol-treated (RTE + alcohol or WTE + alcohol) or water-treated (RTE + water, WTE + water, and water ad libitum) (Figure 2A). Feeding time did not affect weight or alcohol intake (Figure 2B). No differences in polyp numbers were observed among the water-treated groups, suggesting that the feeding protocol did not impact polyp numbers of water-treated animals (Figure 2C). Compared with water-treated animals, WTE + alcohol mice had a higher tumor burden with more polyps in general, and a higher number of large polyps in particular (Figure 2D). Histologically, lesions in the WTE + alcohol group were more advanced: tumors frequently showed features of high-grade dysplasia/carcinoma in situ, with stratified prominent nuclei, back-to-back glands, and cribriforming gland formation (Figure 2E). These results indicate that CRD caused by WTE predisposes CRC-susceptible mice to alcohol-induced colon cancer.

Accelerated Polyposis Correlates With Intestinal Dysbiosis

Intestinal microbiota can mediate susceptibility to environment-induced colon inflammation and cancer. We have shown that alcohol and CRC can interact to promote dysbiosis.13 Thus, we next tested whether the exacerbation of polyposis in WTE + alcohol mice is associated with gut microbial dysbiosis when compared with the RTE + alcohol and RTE + water–treated group (hereinafter referred to as

Abbreviations used in this paper: ANOSIM, analysis of similarity; ANOVA, analysis of variance; CCL, Chemokine ligand; CRC, colorectal cancer; CRD, circadian rhythm disruption; eTreg, extrathymically induced FOXP3^+ regulatory T cell; GPR, G-protein-coupled receptor; RORγ^+, RAR-related orphan receptor γ-positive; RTE, right-time eating; eating during active phase; SCFA, short-chain fatty acid; STAT3, signal transducer and activator of transcription 3; Th, T-helper; Treg, regulatory T cell; TS4/APC, TS4Cre × APC^D468; WTE, wrong-time eating; eating during rest phase; ZT, Zeitgeber time.

Most current article © 2020 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2352-346X https://doi.org/10.1016/j.jcmgh.2019.10.011
control water/\(H_2O\) fecal samples. Alpha diversity measures, including the Shannon Index (1-way analysis of variance [ANOVA]: \(F(2, 12) = 6.279; P = .014\)) and evenness (1-way ANOVA: (treatment) \(F(2, 12) = 11.20; P = .002\)) were significantly lower in WTE + alcohol treatment relative to other treatments (Figure 3A). Richness and Simpson's index were not significantly different between groups (data not shown).

The similarity of samples within treatment groups and between treatment groups was assessed using the Bray–Curtis similarity index at the taxonomic level of genus. Analysis of within-group Bray–Curtis similarity showed greater within-treatment variability between animals in the...
WTE + alcohol treatment group relative to both other treatments (WTE + alcohol vs control water, \(P = .059 \); WTE + alcohol vs RTE + alcohol, \(P = .035 \), unpaired t test) (Figure 3C). A similar level of within-treatment variability in the microbial community was observed for control water and RTE + alcohol treatments (\(P = .800 \), unpaired t test). In addition, microbial community structure was most similar between animals in control water and RTE + alcohol treatments, as assessed by between-group Bray–Curtis similarity (Figure 3C). Conversely, the similarity of microbial community structure was lowest between RTE + alcohol treatments and WTE + alcohol treatments (Figure 3C). The ratio of putative butyrate-producing genera to total putative SCFA-producing genera was decreased significantly in WTE + alcohol mice relative to mice from both other treatment groups (Kruskal–Wallis: \(P < .007 \)), indicating a significant feeding effect (Figure 3D). The decrease in SCFA-producing bacterial abundance was consistent with direct metabolite measurements because WTE + alcohol mice showed a reduction in the absolute as well as the relative abundance of cecum butyrate levels (ratio of butyrate to total SCFAs) compared with the control water group (Figure 3E). The relative abundance of cecum butyrate levels could be an indicator of colonic butyrate production. Butyrate is taken up by the colonocytes as a cellular energy source, and the absolute fecal butyrate are not reflective of actual amounts being produced by the butyrate producers at the mucosal surface of the colon.27

Intestinal Dysbiosis Precedes Polyposis

Next, we determined whether the observed dysbiosis preceded or followed polyposis by subjecting mice to shorter
durations (for 6 and 8 weeks) of WTE + alcohol treatment in a time course experiment (Figure 4A). Compared with control water, WTE + alcohol mice showed increased numbers of tumors only after 12 weeks, but not after 6 or 8 weeks of treatment (Figure 4B). The effect of the WTE + alcohol regimen on the overall microbial community structure, however, was observed by week 6 (ANOSIM: R = 0.632; P < .016), and also was observed at week 8 (ANOSIM: R = 0.292;
The interaction effect of time and treatment on genus-level taxonomic richness was significant at week 8 in WTE + alcohol animals (2-way ANOVA: $F(1,16) = 4.933, P = .041$; week 8: FDR $= 0.021$) (Table 2). The effects of the WTE + alcohol regimen over time on individual taxa are shown at the taxonomic level of genus (Figure 4D). Differential abundances of individual family level taxa across time and multiple group comparisons were assessed (Figure 4E). The relative abundance of Erysipelotrichaceae (FDR $= 0.030$) and Coriobacteriaceae (FDR $= 0.030$) was significantly higher in WTE + alcohol mice relative to control animals. Conversely, the relative abundance of Bacteroidaceae (FDR $= 0.036$), Clostridiales unclassified ($P = .045$), and Lachnospiraceae ($P = .047$) were significantly or trending lower in WTE + alcohol mice relative to control animals. We also used the software package Linear Discriminant Analysis Effect Size to identify significant microbial features most associated with feeding and strongly differentiating microbial communities in control water vs WTE + alcohol treatments across all time (Figure 4F). Finally, a decrease in the overall relative abundance of total putative butyrate-producing genera was observed in feces from WTE + alcohol animals relative to control animals (2-way ANOVA: $F(1,16) = 7.335, P = .016$; week 8: FDR $= 0.020$) (Figure 4G). These results suggest dysbiosis as marked by reductions in the levels of butyrate-producing bacteria preceded exacerbation of tumorigenesis.

Prebiotic Treatment Corrects Dysbiosis, Increases Butyrate Levels, and Decreases Polyposis in WTE + Alcohol Mice

We hypothesized that targeting dysbiosis to improve butyrate production would ameliorate WTE +

Figure 4. Dysbiosis in wrong time eating plus alcohol TS4/APC mice precedes polyposis. (A) TS4/APC mice were given access to standard chow and alcohol (15% in water) with a light-period feeding schedule (WTE + alcohol) or feeding access to chow but no alcohol (control water) for the indicated periods of time. (B) The total number of tubular adenomas was compared at treatment completion *$P < .05$. (C) Multidimensional scaling (MDS) plot of fecal microbial community structure from treatment groups at weeks 6 and 8 (taxonomic level of genus). A significant effect of treatment was observed as early as week 6 (ANOSIM: global R $= 0.632; P = .016$), and was maintained at week 8 (ANOSIM: global R $= 0.292; P = .024$). (D) Stacked column plots depicting the average number of rarefied microbial reads (>1%) at the genus level, between WTE + alcohol and control water mice at weeks 6 and 8, with significantly different taxa bolded (FDR < 0.05). (E) Average relative abundance for family level taxa that were significantly different between treatment groups. Significance was assessed using the Kruskal–Wallis test on centered log ratio transformed data: WTE + alcohol had higher relative abundances of Erysipelotrichaceae (FDR: $P = .030$) and Coriobacteriaceae (FDR: $P = .030$); WTE + alcohol had lower relative abundances of Bacteroidaceae (FDR: $P = .036$), Clostridiales unclassified ($P = .045$), and Lachnospiraceae ($P = .047$). Multiple-group comparison between the 4 mice time groups are indicated (*FDR < 0.05, **FDR < 0.01, #P $< .05$). (F) Linear discriminant analysis (LDA) effect size results showing which microbial taxa (family level) most likely explain differences between WTE + alcohol and control water, across both weeks 6 and 8 samples. (G) Average relative abundance of total butyrate-producing genera at 6 and 8 weeks. A 2-way ANOVA (treatment: $P < .016$) with multiple-comparison FDR correction (week 8: *FDR < 0.05) was used to determine significance. Data are expressed as means ± SD for n = 5 mice per treatment group.
alcohol–associated tumorigenesis. TS4/APC mice were subjected to the WTE$^+$alcohol regimen with or without TD160445, a prebiotic that increases SCFA-producing bacterial levels28 (Figure 5A). Without impacting weight or alcohol intake (Figure 5B), prebiotic TD160445 significantly affected the overall microbial community structure in WTE$^+$alcohol mice (ANOSIM: $R = 0.512; P = .016$) (Figure 5C). No significant differences between a diversity indices between the 2 treatment conditions were observed (data not shown).

The overall relative abundances of microbial taxa (>1%; taxonomic level of genus) between the 2 mice groups is shown in Figure 5D. The prebiotic TD160445 increased the relative abundance of bacteria from the SCFA-producing genus *Bifidobacterium* ($P = .009$) in WTE$^+$alcohol mice (Figure 5E). The average relative abundance of total butyrate-producing genera to total SCFA-producing genera taxa increased (Mann–Whitney U test: $P = .032$) in the WTE$^+$alcohol mice after TD160445 treatment (Figure 5F).

Metabolite analysis confirmed that TD160445 significantly increased relative butyrate levels (Figure 5G).

Table 1. Group ANOSIM Results for Mouse Fecal Microbiota Compositions Between Weeks 6 and 8 Control Water and Wrong Time Eating Alcohol, at the Genus Taxonomic Level

Comparison	Taxonomic level	Global R	P valuea
Between-week comparison: control water 6- vs 8-week control water	Genus	0.180	.127
Between-week comparison: WTE alcohol 6- vs 8-week WTE alcohol	Genus	-0.02	.524
Across-treatment comparisons 6 weeks: control water vs WTE alcohol	Genus	0.632	.016
8 weeks: control water vs WTE alcohol	Genus	0.292	.024

NOTE. Twenty total fecal samples for analysis: the number of fecal samples per time point/per group = 5; collection weeks: 6 and 8. Boldface indicates statistical significance.

$^aP < .05$, global R comparison was based on ANOSIM and P values were calculated based on a permutational analysis, using 126 permutations. Data were square-root transformed.

Table 2. Effect of Treatment and Time on Mouse Fecal α Diversity Indices at Different Taxonomic Levels (Control Water and Wrong Time Eating Alcohol) at Weeks 6 and 8

Taxonomic level α diversity	Interactiona	Treatmenta	Timea	Time point comparisonsb
Phylum Shannon	0.218	0.097	0.363	NS
Phylum Simpson	0.370	0.067	0.412	NS
Phylum Richness	0.360	1.000	0.360	NS
Phylum Evenness	0.137	0.112	0.339	NS
Class Shannon	0.410	**0.008**	0.835	Week 6*
Class Simpson	0.844	**0.005**	0.743	NS
Class Richness	0.191	0.103	0.424	NS
Class Evenness	0.207	**0.024**	0.886	Week 6*
Order Shannon	0.426	**0.008**	0.800	Week 6*
Order Simpson	0.897	**0.005**	0.796	NS
Order Richness	**0.046**	0.231	0.557	NS
Order Evenness	0.109	**0.021**	1.000	Week 6*
Family Shannon	0.200	0.309	0.505	NS
Family Simpson	0.333	1.000	0.333	NS
Family Richness	**0.016**	0.345	0.383	Week 8*
Family Evenness	0.082	0.220	0.649	NS
Genus Shannon	0.239	0.337	0.656	NS
Genus Simpson	0.306	0.897	0.518	NS
Genus Richness	**0.041**	0.173	0.538	Week 8*
Genus Evenness	0.138	0.269	0.759	NS

NOTE. Twenty total fecal samples for analysis: the number of fecal samples per time point/per group = 5; collection weeks: 6 and 8. Boldface indicates statistical significance.

aTwo-way ANOVA: $P < .05$, factors included interaction, treatment, time.

bFalse discovery rate multiple comparisons: *$P < .05$ for FDR time point comparisons.
indicating comparatively higher colonic butyrate production during prebiotic treatment. Moreover, the prebiotic treatment significantly reduced tumor numbers in the WTE + alcohol mice (Figure 5H).

Dysbiosis From Rest-Time Food and Alcohol Access Coincides With Colon Inflammation

Butyrate has been proposed to modulate colon carcinogenesis, in part via induction of colonic FOXP3+ T cells and dampening of intestinal inflammation.25,26 Mucosal inflammatory processes in the colon compromise mucosal barrier function, resulting in increased intestinal permeability, which has been implicated in carcinogenesis.29,30 Intestinal permeability also is promoted by alcohol and CRD.13

To test whether the observed exacerbated polyposis was associated with a hyperpermeable state, we estimated colonic permeability by measuring sucralose excretion in urine.21 Compared with control water, WTE + alcohol mice showed higher sucralose excretion (Figure 6A), indicating impaired mucosal permeability that potentially increased permeation of luminal proinflammatory factors, resulting in mucosal immune dysregulation or inflammation.32

Enhanced lymphocytic infiltration in CRC has been associated with a favorable clinical prognosis,33,34 with effector T cells thought to invade cancerous tissue. To characterize the overall lymphocytic profile in our model, we assessed the abundance of total CD3+ and CD4+ lymphocytes. We observed reduced polyp infiltration by CD3+ T cells, both in their overall and relative abundance to CD4+ cells, in the WTE + alcohol group (Figure 6B and C), consistent with increased inflammation and a weakened effector T-cell profile reported in CRC.35,36 There was a significant effect of alcohol (F = 27.1; P < .01) and a positive interaction between alcohol and WTE (F = 8.4; P < .01) in reducing the densities of colon-infiltrating CD3+...
cells. Thus, the higher colonic permeability in WTE + alcohol mice correlated with increased inflammation and an overall lower effector profile in the polyp mucosa.

Dysbiosis in WTE + Alcohol Mice Affects the Balance Between T-Helper 17 Cells and Regulatory T Cells

CRC is characterized by a proinflammatory state, with higher densities of proinflammatory T-helper 17 (Th17) cells and a lower abundance of regulatory T cells (Tregs). Extrathymically induced FOXP3+ Tregs (eTregs) are influenced by the intestinal microbiota and by the respective bacterial metabolites, including butyrate. Butyrate-producing bacteria are among the strongest inducers of eTregs. Considering the reduced levels of butyrate and butyrate-producing bacteria and increased colonic permeability, we next tested whether polyposis in the WTE + alcohol mice was associated with a CRC-like immune profile in the mucosa. By using immunofluorescent staining, we quantified polyph-infiltrating FOXP3+ Treg and Retinoic Acid Receptor (RAR)-related orphan receptor γ-positive (RORγT+) Th17 cell densities. Relative to control, WTE + alcohol mice harbored significantly lower densities of polyph-infiltrating Tregs, higher Th17 densities, and an increased RORγT/FOXP3 ratio (Figure 6D–F). However, the abundance of FOXP3+ and RORγT+ cells, as well as the RORγT/FOXP3 ratio, in the mesenteric lymph nodes was

Figure 6. Rest-time food and alcohol access promote tumor-associated inflammation. (A) Colon permeability increased in WTE + alcohol mice using urine excretion ratios of sucralose. (B and C) By using immunofluorescence, (B) polyp-associated CD3+ cell density per surface area as well as (C) the CD3+/CD4+ cell density ratio was determined for each polyp and compared between the groups. (D and E) The density of (D) FOXP3+ and (E) RORγT+ cells in the peripolyp surface areas was lower and higher, respectively, in the WTE + alcohol mice vs the control water group (N = 99 polyp images were used for quantification). Representative stained slide images are shown for (B) CD3, (D) FOXP3, and (E) RORγT at 20× magnification, with the inset at 40× magnification. Between-group comparisons of the RORγT+/FOXP3+ ratio in the mucosa and (G) mesenteric lymph nodes as determined by flow cytometry are shown. Representative gating scheme of 1 mouse for CD4+ T-cell intracellular FOXP3 and RORγT cytometry is shown. No significant differences in FOXP3+ and RORγT+ T-cell abundance were observed among the tested groups. (H) Correlation between the urine excretion ratio of sucralose and the polyph-associated RORγT+/FOXP3+ ratio. (I) TD160445 treatment increased mucosal FOXP3+ and decreased RORγT+ cell density, as well as the RORγT/FOXP3+ ratio in WTE + alcohol–treated mice (N = 48 polyp images were used for the quantification of the 2 groups in the prebiotic experiment). *P < .05. MLN, mesenteric lymph node.
comparable in all experimental groups (Figure 6G). These results suggest that the inflammatory changes occur mainly at the tumor sites within the mucosa, further underscored by a significant correlation between the polyp-associated RORγt/FOXP3 ratio and intestinal permeability (Figure 6H).

Microbial Recovery Resets the Mucosal Immune Profile

We next examined whether recovery of relative butyrate levels suppressed the proinflammatory profile of WTE + alcohol mice. TD160445 prebiotic significantly increased tumor-associated Treg densities and decreased the RORγt/FOXP3 ratio in WTE + alcohol mice (Figure 6I). Thus, correction of the microbiota profile by TD160445 (Figure 5C–F) restored relative butyrate levels in the colon (Figure 6I), resetting the pathogenic immune environment and decreasing tumorigenesis.

Butyrate Signaling and the Proinflammatory Circuit Are Linked in Polyposis-Prone WTE + Alcohol Mice

SCFAs regulate mucosal inflammation and carcinogenesis in part via G-protein-coupled receptor (GPR) signaling. Expression of GPR109A, a butyrate receptor that plays a protective role in colonic inflammation and CRC was lowest in WTE + alcohol TS4/APC mice (Figure 7A). Expression of another butyrate receptor, GPR43, also decreased in this group, but not significantly (Figure 7A). These results were consistent with decreased butyrate signaling in WTE + alcohol mice. In addition, with GPR109A inducing the differentiation of CD4 T cells into FOXP3 Tregs, the reduced expression of GPR109A was consistent with the reduced abundance of poly-p-FOXP3 cells in WTE + alcohol mice. The lack of effect on mesenteric lymph node Treg abundance (Figure 6G) indicates local and tumor-specific GPR109A effects. Immuno-staining confirmed reduction of GPR109A expression within the polyp and poly margins relative to distant healthy colon tissue (Figure 7B), consistent with the proposed tumor-suppressive role of butyrate stimulation of GPR109A.

Excessive signal transducer and activator of transcription 3 (STAT3) activity reduces Treg recruitment, dysregulates mucosal immunity, and promotes colon carcinogenicity. Staining for phosphorylated STAT3 indicated enhanced epithelial STAT3 activation in WTE + alcohol mice (Figure 7C), consistent with a potential link between STAT3 epithelial signaling and the tumor-associated immune imbalance in these polyposis-prone mice. Knockdown of GPR109A in Caco2 colon epithelial cells increased nuclear phosphorylated STAT3 levels (Figure 7D). STAT3 activation upon GPR109A knockdown decreased Chemokine ligand (CCL)28 (Figure 7D), a STAT3-regulated epithelial chemokine that is involved in Treg recruitment. These results suggest that loss of GPR109A in the colon of WTE + alcohol polyposis-prone mice likely is linked mechanistically to increased inflammation and colon carcinogenesis.

Butyrate Signaling and Proinflammatory Profiles Are Linked in Human CRC

We next assessed whether our findings are pertinent to human CRC by analyzing data available in The Cancer Genome Atlas. A negative correlation between the expression of genes encoding RORγt (RORC) and FOXP3 (FOXP3) in human CRC support their opposing effects on colon carcinogenesis (Figure 7E). Furthermore, GPR109A-encoding HCAR2 messenger RNA levels correlated inversely with RORC expression (Figure 7F) and positively with FOXP3 expression (Figure 7G). These results support the inverse correlation between butyrate signaling and a proinflammatory profile in human CRC.

Discussion

CRC is among the top causes of cancer-related deaths worldwide. Although screening has reduced CRC rates in older populations in developed countries, younger adults currently are experiencing a rapid increase in CRC rates, likely owing to lifestyle habit changes. Epidemiologic studies have supported a clinical association between environmental risk factors and CRC, with elements of the modern lifestyle causing pathogenic inflammation, which in turn facilitates colonic tumorigenesis. The intestinal microbiota and associated metabolites further mediate environmental effects on colon inflammation and CRC.

CRD, a common aspect of the modern lifestyle in our 24-hours/7-days-a-week society, has long been overlooked as a risk factor for a variety of chronic diseases including cancer. We previously showed that CRD induced by altering the light/dark cycles promoted mucosal inflammation in an animal model of colitis. When combined with alcohol consumption, CRD promoted dysbiosis, intestinal hyperpermeability, and inflammation, with light/dark shifts enhancing alcohol-induced CRC.

Despite much focus on light/dark phase shifts, other forms of CRD have not been widely studied. Eating near or during the physiologic rest time is a common habit in our society. Dinner tends to be the highest-calorie-containing meal more than 4 times per week among healthy individuals in the United States. Consistent with earlier findings showing that time-restricted feeding dissociates central and peripheral liver and colon clocks, our data showed that eating during the rest phase can cause CRD by dissociating central and colonic rhythms.

To assess the interaction of WTE with alcohol consumption in facilitating protumorigenic colon inflammation and carcinogenesis, we used a polyposis model that mimics human CRC and allows analysis of the colon microbiota. We showed a positive interaction of alcohol with WTE in colon polyposis and carcinoma development. The exacerbated tumorigenesis was associated with a hyperpermeable state, reduced polyp infiltration by CD3 T cells both in their overall and relative abundance to CD4 cells, lower polyp-associated densities of Tregs, and an increased RORγt/FOXP3 ratio. Alcohol and WTE reduced the levels of butyrate-producing bacteria and consequently of butyrate levels in the colon. The associated intestinal
hyperpermeability and mucosal inflammation in the colon of polyp-prone WTE + alcohol mice was dampened by TD160445, a prebiotic that expands butyrate-producing bacterial populations. Inference of functional differences using predictive assessment of the microbial community functional potential also showed a significant decrease in inferred metagenome SCFA pathways in the WTE + alcohol group relative to other treatments (FDR < 0.05), and an increase in 9 predicted SCFA pathways in response to TD160445 (data not shown).

Figure 7. Reduced butyrate signaling is associated with a proinflammatory circuit in wrong time eating plus alcohol mice, as well as in human colorectal cancers. (A) Normalized GPR109A and GPR43 protein levels in the proximal colon tissue of WTE + alcohol TS4/APC mice were determined using immunoblotting. A representative GPR109A Western blot is shown. Quantification includes n = 5/group. (B) Tissue distribution of GPR109A in the proximal colon of TS4/APC mice was assessed using immunofluorescence staining; a 20× magnification representative image per field is shown. Quantification was performed on 20 size-matched polyps, peripolyps, and normal areas of TS4/APC mice proximal colon; 3 images per area were used for quantification. (C) Immunofluorescence staining for phosphorylated STAT3 (p-STAT3) showed increased nuclear p-STAT3 levels in polyp epithelial cells of WTE + alcohol relative to control water/H2O mice. Representative images show 20× magnification of the polyp area. Bars represent the average positive p-STAT3 nuclear signals per area. For each group, 17 tumors were imaged, and 3–5 images from each tumor and peritumor area were quantified. (D) GPR109A was knocked down in Caco2 cells using small interfering RNA (SiRNA) (see the Materials and Methods section). Expressions of P-Stat3 and CCL28 was assessed by Western blot; P-Stat3 and CCL28 expression was quantified after normalization to actin in GPR109A-deficient and GPR109A-proficient cells (results of 3 independent experiments were used for quantification). RORγt/FOXP3 status and GPR109A expression in human colorectal cancers: inverse correlation between gene expressions of FOXP3 and RORC is seen in (Ei) 439 cases from the PanCancer Atlas and (Eii) 244 cases from the Nature 2012 databases. (F and G) GPR109A (HCAR2) gene expression is correlated with the proinflammatory (RORγt+/FOXP3+) profile. (Fi and Fii) Inverse correlation between RORC and HCAR2 gene expression, and (Gi and Gii) positive correlation between FOXP3 and HCAR2 gene expression. The data and graph were from The Cancer Genome Atlas. Graphs that were generated from the PanCancer Atlas database are shown. *P < .05, **P < .01.
Mucosal inflammation in WTE + alcohol mice coincided with lower FOXP3+ and higher RORγt+ cell abundances. FOXP3+ Tregs suppress proinflammatory cytokine production by other immune cells, such as RORγt+ cells. During early carcinogenesis, Tregs can suppress proinflammatory immune cells.24 High FOXP3+ and low RORγt+ cell densities within tumors are associated with improved survival of CRC patients. The Cancer Genome Atlas analysis confirmed the inverse correlation between FOXP3 and RORC expression in human CRC.

Despite defending against pathogens, intestinal immunity also can promote tumorigenic inflammatory processes. Longitudinal maintenance of mucosal immunity balance depends on microbiota-driven signaling,25,26 with bacteria-derived SCFAs44,54 maintaining mucosal immune homeostasis. In particular, butyrate signaling through GPR109A induces FOXP3+ Tregs in the intestine;45 with butyrate dampening polyposis.45 Our data showed that the proinflammatory bacterial profile and exacerbated polyposis in WTE + alcohol mice could be driven at least in part by a reduction in butyrate-producing bacterial populations.

Both alcohol and CRD can cause intestinal dysbiosis.25–61 We observed that alcohol-induced dysbiosis is augmented by WTE. Microbial changes were associated with decreased levels of relative abundance of butyrate-producing bacteria and of its receptor GPR109A in the colon of WTE + alcohol mice. Reduced abundance of butyrate-producing bacteria preceded exacerbated polyposis. Microbiota recovery using the prebiotic TD160445 restored the colonic butyrate levels, reset the environment, and decrease tumorigenesis. Previously, probiotic treatment also was shown to increase FOXP3+ Treg and decrease RORγt+ proinflammatory cell levels, reducing colon polyposis.62 Our present prebiotic data have potentially important clinical implications considering the correlations between HCAR2, RORC, and FOXP3 expression in human CRCs.

Butyrate-GPR109A signaling can induce differentiation of intestinal FOXP3+ Tregs through innate immune cells, such as macrophages and dendritic cells.14 Treg numbers also can be boosted by butyrate via epigenetic-dependent differentiation of eTregs.26 Presently, we observed no significant changes in Treg numbers in the lymph nodes draining the proximal colon where polyposis occurred. Furthermore, we observed no variation in FOXP3+ cell densities in normal non-polyp-bearing mucosa between different treatment groups. These findings suggest that the polyap-associated proinflammatory profile in our model, despite butyrate responsiveness, likely depends on recruitment rather than an overall differentiation of FOXP3+ cells at the intestinal level. We observed increased STAT3 activation in polyp epithelial cells of WTE + alcohol mice.

STAT3 activation reduces FOXP3+ Treg recruitment by inhibiting expression of Treg-recruiting chemokines, including CCL19, CCL28, and CCL5, and promotes tumor progression by inducing mucosal immune dysregulation.48 We found that decreased GPR109A expression in the colon epithelium led to increased activation of STAT3, and decreased CCL28. In vivo, expression of GPR109A was lowest in WTE + alcohol TS4/APC mice consistent with the loss of Treg cells and enhanced epithelial STAT3 activation in this group. However, it is unclear whether butyrate can affect epithelial STAT3 via GPR109A-independent pathways. These data suggest that microbiota-derived butyrate inhibits STAT3 activation, improving the tumor-associated effector profile.

Our results show a novel role for eating times in inducing CRD and in promoting alcohol-associated colonic inflammation and tumorigenesis. This interaction is particularly important because circadian misalignments and alcohol use disorders are increasing and commonly are associated with young individuals.63 This interaction promotes colon carcinogenesis by inducing a protumorigenic mucosal inflammatory profile, at least in part by altering the intestinal butyrate levels.

In addition to SCFA, several studies have shown the potential importance of other bacterial metabolites in CRC. Indeed, several studies have suggested the importance of bile acids in carcinogenesis. However, we did not find any differences in the stool bile acid profiles between WTE + alcohol and the control water groups (Table 3). Nonetheless, our results do not preclude the role for other commensal bacteria or bacteria metabolites in mediating environmental effects on tumor immunity. Our findings also suggest that intersubject heterogeneity in alcohol-associated CRC risk may arise from predisposing factors such as CRD and variations in gut microbiome composition. Thus, microbial intervention represents a potential strategy for CRC prevention in individuals with a high-risk lifestyle profile. Additional studies are required to further characterize pathways linking bacterial metabolites with environment-modulated mechanisms driving carcinogenesis in the colon mucosa.

Materials and Methods

Animal Experiments

Unless otherwise indicated, all animals were acquired from Jackson Laboratories (Bar Harbor, ME) and bred and genotyped in-house. Animals, individually housed in cages inside ventilated light-tight cabinets, were maintained on a 12-hour light/dark cycle. Envigo 2018 standard rodent chow (Teklad, Madison, WI) was used as the animals’ diet, unless otherwise specified. The time lights were turned on was referred to as Zeitgeber time (ZT)0, with lights turned off at ZT12. All experiments were conducted at Rush University Medical Center (Chicago, IL) with approval of the Institutional Animal Care and Use Committee.

PER2::LUC reporter experiments

Eight-week-old B6 PER2::LUC mice were assigned randomly to a regular chow diet given during the dark (RTE, n = 5) or light (WTE, n = 5) periods (Figure 1). Locomotor activity was measured throughout the experiment using infrared beam breaks.13 For PER2::LUC reporter activity monitoring, colons were harvested after cervical dislocation. After Krebs solution rinsing, four 2- to 3-mm2 sections were excised and placed lumen-side-up onto an insert in luciferin-containing recording medium. Luciferase activity was monitored every 4 hours for 7 days
using bioluminescence imaging (IVIS/Lumina; PerkinElmer, Waltham, MA).

Eating Regimen, Alcohol, and Polyposis Experiments

TS4/APC mice were from a B6 background and were double heterozygous for the deletion of Apc in the colon and terminal ileum epithelium and were used to model CRC. In the initial phase (Figure 2), 4-week-old male TS4/APC mice (n = 5 per experimental group) were subjected to one of the following food and alcohol access regimens for 12 weeks: food access during the dark/active period (RTE) or light/inactive period (WTE), with access to alcohol or water. Final groups included RTE + alcohol, WTE + alcohol, vs water-treated groups of RTE + water, WTE + water, as well as water ad libitum. Access to alcohol was provided during the feeding period, with water provided during the nonfeeding time; nonalcohol (water)-treated groups had 24-hour access to water. Alcohol was introduced at 3% and gradually increased to 15% by week 6. To mimic human conditions, animals had unrestricted access to food and liquids during the weekends.

For the time course study (Figure 4), TS4/APC mice (n = 5 per group) were subjected to the control water/H2O (RTE + water) or WTE + alcohol regimens for 6, 8, and 12 weeks.

For the prebiotic (TD160445) treatment study (Figure 5), TS4/APC mice were subjected to a WTE + alcohol regimen with standard rodent chow or with the TD160445 high-fiber diet (n = 10 per group). The prebiotic TD160445 diet was based on Envigo 2018, modified with 20% insoluble fermentable fiber by weight.

To eliminate the immediate effects of food timing on the tissue read-outs, animals had free access to food and water 24 hours before death, which occurred at week 12 at ZT0. Body weight and average food and liquid intake were measured weekly. Two weeks before the termination of each experiment, mice were placed into empty nonbedded cages for 24 hours for microbial analysis stool collection, followed by permeability testing as described later. At termination time points, animals were killed by decapitation and their intestinal tissues were collected. Intestine was removed, opened longitudinally, and polyps were counted under a dissection microscope. Polyp diameters were measured in 2 perpendicular directions and averaged.

Table 3. Quantification and Comparison of Bile Acid Metabolites per Nanogram/Gram of Stool in Control Water Vs Wrong Time Eating + Alcohol

Bile acid metabolites, means ± SD	Control water	WTE + alcohol	P value	Significancea
Sulfobidenthocholic acid	3.62 (0.7)	4.96 (1.6)	.13	NS
Cholic acid	36,969 (34,913)	26,479 (14,397)	.55	NS
Chenodeoxycholic acid	894 (576)	438 (293)	.16	NS
Ursodeoxycholic acid	6233 (6074)	6013 (11,972)	.97	NS
Hyodeoxycholic acid	3120 (1686)	4459 (2113)	.3	NS
Deoxycholic acid	225,038 (138,771)	207,850 (118,455)	.83	NS
7α-Hydroxy-3-oxo-5β cholan-24-oic acid	60,548 (34,305)	65,314 (47,859)	.86	NS
Lithocholic acid	129,624 (75,022)	67,925 (95,275)	.28	NS
Nutriacholic acid	6973 (6269)	4733 (5455)	.56	NS
3-Oxocholic acid	1674 (1290)	1303 (483)	.56	NS
3α-6 5b-6b-trihydroxycholenoic acid	216,010 (167,821)	153,004 (66,865)	.46	NS
Glycodeoxycholic acid	53.6 (60.1)	30.4 (8.5)	.42	NS
Glycocholic acid	125.4 (44.8)	183.8 (64.5)	.14	NS
Taurodeoxycholic acid	2560 (2438)	893.6 (734)	.18	NS
Taurocholic acid	7526 (3499)	4973 (2591)	.23	NS

NOTE. Ten total fecal samples for analysis: the number of fecal samples per group = 5. aP < .05 was considered significant.
4′,6-diamidino-2-phenylindole–stained and mounted using Fluoromount Aqueous Mounting Medium (F4680; Sigma-Aldrich, St. Louis, MO). RORγt detection comprised the following steps: blocking with 10% horse serum for 1 hour; 1:25-diluted anti-RORγt (14-6988-82; eBioscience) for 45 minutes; 1:500-diluted cross-absorbed Alexa Fluor donkey anti-rat 488 (A21208; Invitrogen) for 45 minutes; blocking with 10% rat serum (2337141; Jackson ImmunoResearch) for 1 hour; 1:200-diluted cross-absorbed tertiary Anti-Fluorescein/Oregon Green 488 (A11090; Invitrogen) for 45 minutes; 1:200-diluted cross-absorbed quaternary Alexa Fluor donkey anti-rabbit 488 (A21206; Invitrogen) antibody for 45 minutes; and 4′,6-diamidino-2-phenylindole staining and mounting.

Immunoperoxidase staining was performed as previously described,26 using 1:400 anti-CD4 (NBP1-19371; Novus Biologicals, Centennial, CO) and 1:500 biotinylated goat anti-rabbit (BA-1000; Vector Laboratories, Burlingame, CA). After a 75-minute incubation in ABC Complex (Vector Laboratories), diaminobenzidine (D5637-IG; Sigma-Aldrich) was used for color development in the presence of hydrogen peroxide for 6–7 minutes. The slides were counterstained with hematoxylin and bluing solution for light-field microscopy.

Microscopic Analysis

Immunofluorescence images were acquired using an Olympus IX81 microscope (Tokyo, Japan) at 40× magnification. Cells fluorescing both green and red were eliminated as false positives. Manual counting was performed by individuals blinded to the treatments. The surface area of the tissues was determined using BioPix (BioPix AB, Göteborg, Sweden), excluding the background and adventitia, resulting in a number of positive cells per square millimeter. Unless specified, for each immune marker in the TS4/APC polyp, images were taken from various fields of the polyp to represent the tumor.

Immunoperoxidase images were obtained using a Leica DMR microscope at 63.3× magnification. ImageJ software (National Institutes of Health, Bethesda, MD) was used to enhance positive cells for manual counting. BioPix was used to determine the surface area by eliminating background and obtaining the tissue per image, resulting in positive cells per square millimeter.

Flow Cytometry

Cells from mesenteric lymph nodes were prepared and suspended in phosphate-buffered saline containing 2% fetal calf serum. A total of 2 × 106 cells per 100-μL staining volume were transferred to a 96-well V-shaped plate (lot 26218040; Corning, Kennebunk, ME), and pelleted by centrifugation for 5 minutes at 4°C at 300g. All single cells were incubated with culture supernatant from the 2.4G2 hybridoma (a gift from Dr Tom Beito, Antibody Hybridoma Core, Mayo Clinic, Rochester, MN) to block nonspecific binding of antibodies before staining for 20 minutes on ice and washed with phosphate-buffered saline. Cells then were incubated for 30 minutes on ice with antibodies against cell surface markers. CD4-Peridinin chlorophyll protein-Cyanine5.5 (dilution: 1:300; lot: B273144; clone: RM4-5), CD8–fluorescein isothiocyanate (dilution: 1:200; lot: B217242; clone: 53-6.7), CD25-Brilliant Violet 650 (dilution: 1:200; lot: B266126; clone: PC61), and PE/Cy7 anti-human/mouse/rat CD278 (ICOS) Antibody (dilution: 1:200; lot: B213626; clone: C398.4A) were purchased from BioLegend (San Diego, CA). Dead cells were excluded using the Live/Dead Violet Dead cell Stain kit (dilution: 1:750; lot: 2008657; Invitrogen by Thermo Fisher Scientific). For intracellular staining, cells were fixed and permeabilized using a Foxp3/Transcription Factor Staining Buffer kit (lot: 1920793; eBioscience by Thermo Fisher Scientific). An intracellular antibody mixture, 100 μL per sample, was prepared in 1× wash/Permeabilization Buffer (cat. 00-8222, eBioscience by Thermo Fisher Scientific) and incubated for 2 hours on ice at 4°C. Intracellular antibodies included Foxp3-APC (dilution: 1:200; lot: 1936921; FJK-16s; eBioscience) and RORγt-PE (dilution: 1:200; lot: 7201863; clone: Q31-378; BD Biosciences, San Jose, CA). Cells then were centrifuged and washed twice using the wash/perm buffer, and samples were transferred in a 250-μL volume, and run on a BD LSFRFortessa X20 flow cytometer (BD Biosciences). Data were analyzed using FlowJo software (Tree Star, Inc, Ashland, OR).

Colon Permeability

In vivo colon permeability was assessed as previously described.13 Briefly, mice were fasted for 8 hours before test initiation at ZT0. Solution (200 μL) containing sucralose (0.45 mg) was gavaged, followed by subcutaneous saline injection to promote urine output. Mice were placed in metabolic cages and urine was collected for 5 hours. Permeability was calculated by measuring urinary sugar concentrations via gas chromatography and was expressed as the percentage excretion of the oral sugar dose.31

Microbiota Profiling and Bioinformatics Analysis

DNA extraction, 16S ribosomal RNA V4 variable region amplification,16 sample preparation, and modified 2-step targeted amplicon sequencing17 using an Illumina MiSeq (Illumina, San Diego, CA) were performed. Sequence processing, quality assessment, clustering, and biological observation matrix analysis were performed as previously described.17,28 Raw biological sequence text-based format and its corresponding quality scores (FASTQ) data were deposited in the NCBI Sequence Read Archive.

The α (within-sample) and β (between-sample) diversity indices and ANOSIM calculations were used to examine differences in microbial community composition as previously described.30 Differences in the relative abundance of individual taxa were assessed using Quantitative Insights Into Microbial Ecology (QIIME),68 as previously described.28

Fecal Metabolite Determination

Murine fecal content samples collected after treatment were processed as previously described.28 Briefly, stool was homogenized in carbonate–phosphate buffer (1 part feces
with 3 parts buffer), followed by centrifugation. Internal standard (5% phosphoric acid, containing 50 nmol/L of 4-methylvaleric acid and 8% of copper sulfate) was loaded with the supernatant.

SCFA analysis was performed by gas chromatography equipped with a Nukol-fused silica capillary column (Sigma-Aldrich) and a flame ionization detector (GC-FID 7890A; Agilent), as described previously. Total butyrate, acetyl, propionate, and 100 mmol/L sodium hydroxide followed by protein precipitation with acetonitrile and the addition of internal standards. Supernatant was analyzed on a Waters Acquity Ultra Performance Liquid Chromatography coupled to a Waters Xevo TQ-S triple quadrupole mass spectrometer (Milford, MA). A calibration curve was generated using authentic standards for each compound, and their corresponding stable isotope labeled internal standards in neat solution. Peak areas extracted for target compounds were normalized to the peak area of the appropriate internal standard in each sample.

Cell Culture and Western Blot

Caco2 cells (~10^5 cells) were combined with 50 pmol of small interfering RNA in 100 μL Lipofectamine (Invitrogen) and 100 μL Opti-MEM (Invitrogen). GPR109A small interfering RNA (sc105529) and control (sc37007) small interfering RNA were used for GPR109A knockdown. Protein extraction and Western blot were performed as previously described.

Blots were probed overnight with anti-GPR109A (1:1000, sc-377292; Santa Cruz Biotechnology, Dallas, TX), CCL28 (1:1000, LS-C379500; LifeSpan Biosciences, Seattle, WA), phospho-Stat3 (1:2000, 9145; Cell Sciences, Seattle, WA), and rabbit IgG (7074S; Cell Signaling). A densitometry analysis determined by the residuals of the fitted wave. Based on a 24-hour period, a multivariate Wald test was used to test the null hypothesis that the mesor, amplitude, or acrophase differed by the covariate (right time or wrong time feeding). Circular plots were computed on Oriana (Kovach Computing Services, Wales, UK). Statistics were performed in R (version 3.5.2) in the cosiner package.

For nonmicrobial data, numeric results were compared using an unpaired t test with GraphPad Prism 8 and are shown as means ± SD. P < .05 was considered significant.

All authors had access to the study data and had reviewed and approved the final manuscript.

References

1. Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol 2014;20:6055–6072.
2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683–691.

3. Fedirko V, Tramacere I, Bagnardi V, Romieu I, La Vecchia C, Boffetta P, Jenab M. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 2011;22:1958–1972.

4. Zhu JZ, Wang YM, Zhou QY, Zhou KF, Yu CH, Li YM. Systematic review with meta-analysis: alcohol consumption and the risk of colorectal adenoma. Aliment Pharmacol Ther 2014;40:325–337.

5. Shukla PK, Chaudhry KK, Mir H, Gangwar R, Yadav N, Soerjomataram I, Laversanne M, Sierra MS, Arnold M, Fedirko V, Bagnardi V, Tramacere I, Rota M, Scotti L, Paino S, Siersema PD, Peeters PH, Ljuslinder I, Johansson I, Ericson U, Krogh V, Tumino R, Naccarati A, Panico S, Turek FW, Vitaterna MH, Chirlaque MD, Wimberly AL, Forsyth CB, Shaikh M, Pemberton A, Khan MW, Lei J, Flyvbjerg A, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 2007;133:1250–1260.

20. Reid KJ, Baron KG, Zee PC. Meal timing influences daily caloric intake in healthy adults. Nutr Res 2014;34:930–935.

21. Hoogerwerf WA, Hellmich HL, Cornelissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. Clock gene expression promotes alcohol-induced colon carcinogenesis: possible role of intestinal inflammatory milieu and microbiota. Int J Mol Sci 2016;17.

25. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyachi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe–derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446–450.

26. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013;504:451–455.
27. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 2002;217:133–139.

28. Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 2018;9.

29. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138:2101–2114 e5.

30. Moossavi S, Bishehsari F. In Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 2018;9.

31. Shaikh M, Rajan K, Forsyth CB, Voigt RM, Keshavarzian A. Simultaneous gas-chromatographic urinary measurement of sugar probes to assess intestinal permeability: use of time course analysis to optimize its use to assess regional gut permeability. Clin Chir Acta 2015;442:24–258.

32. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Varovsky S, Cheroutre H, Eckmann L, Trinchieri G, Karin M. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012;491:254–258.

33. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco CB, Lugli A, Zlobec I, Lugli A, Zong J, Sergott C, Hahnel F, Schiller H, Maier D, Gnilka B, Oertel D, Kettelhack L, Tagliaferri P. Regulatory (FoxP3+) T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2010;28:1860–1868.

34. Hanyuda A, Ogino S, Mima K, Inamura K, Masugi Y, Wu K, Meyerhardt JA, Kirchhoff DD, Sim MS, Lee DJ, Bilichik AJ. Prognostic utility of immunoprofiling in colon cancer: results from a prospective, multicenter nodal ultrastaging trial. J Am Coll Surg 2016;223:134–140.

35. Lavotshkin S, Jals JR, Torisu-Itakura H, Oza-Choiz J, Lee JH, Sim MS, Stojadinovic A, Wainberg Z, Bifulco CB, Fox BA, Bilichik AJ. Immunoprofiling for prognostic assessment of colon cancer: a novel complement to ultrastaging. J Gastrointest Surg 2015;19:999–1006.

36. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Plateil C, Iacopetta B. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2009;27:186–192.

37. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, Tsang KY, Licchetta A, Mannucci S, Loiaco L, Tassone P, Francini G, Tagliaferri P. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemoradiotherapy. J Immunother 2010;33:435–441.

38. Frey DM, Drosler RA, Viehl CT, Zlobec I, Lugli A, Zingg U, Oertli D, Kettelhack L, Terracciano L, Tornillo L. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-deficient colorectal cancer patients. Int J Cancer 2010;126:2635–2643.

39. Matera L, Sandrucci S, Mussa A, Bozza C, Castellano I, Cassoni P, Low Foxp3 expression in negative sentinel lymph nodes is associated with node metastases in colorectal cancer. Gut 2010;59:419–420.
Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 2009;69:2826–2832.

Nguyen AV, Wu YY, Liu Q, Wang D, Nguyen S, Loh R, Pang J, Friedman K, Orlofsky A, Augenlicht L, Pollard JW, Lin EY. STAT3 in epithelial cells regulates inflammation and tumor progression to malignant state in colon. Neoplasia 2013;15:998–1008.

Rossi M, Mirbagheri S, Keshavarzian A, Bishehsari F. Nutraceuticals in colorectal cancer: a mechanistic approach. Eur J Pharmacol 2018;833:396–402.

Preuss F, Tang Y, Laposky AD, Arble D, Keshavarzian A, Turek FW. Adverse effects of chronic circadian desynchronization in animals in a "challenging" environment. Am J Physiol Regul Integr Comp Physiol 2008;295:R2034–R2040.

Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010;10:490–500.

De Simone V, Pallone F, Monteleone G, Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology 2013;2:e26617.

Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, De Simone V, Pallone F, Monteleone G, Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology 2013;2:e26617.

Park JH, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, Usui Y, Hatano N, Shinohara M, Saito Y, Murata Y, Matozaki T. Promotion of intestinal epithelial cell turnover by commensal bacteria: role of short-chain fatty acids. PLoS One 2016;11:e0156334.

Hamer HM, Jonkers D, Venema K, Vanhouwlin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008;27:104–119.

Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009;33:1836–1846.

Engen PA, Green SJ, Voigt RM, Forsythe CB, Keshavarzian A. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 2015;37:223–236.

Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, Turek FW, Keshavarzian A. Circadian disorganization alters intestinal microbiota. PLoS One 2014;9:e97500.

Thaisser CA, Zeevi D, Levy M, Zilberman-Schapiro G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159:514–529.

Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A. The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 2016;40:335–347.

Rosselet AE, Hong CI, Moore SR. Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections. Curr Opin Gastroenterol 2016;32:7–11.

Khazaie K, Zadeh M, Khan MW, Bere P, Gounari F, Dennis K, Blatner NR, Owen JI, Klaenhammer TR, Mohamadzadeh M. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 2012;109:10462–10467.

Touitou Y, Touitou D, Reinberg A. Disruption of adolescents' circadian clock: the vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol 2016;110:467–479.

Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ. The significant role of mast cells in cancer. Cancer Metastasis Rev 2011;30:45–60.

Bishehsari F, Saadalla A, Khazaie K, Engen PA, Voigt RM, Shetuni BB, Forsyth CB, Shaikh MW, Vitaterna MH, Turek FW, Keshavarzian A. Light/dark shifting promotes alcohol-induced colon carcinogenesis: possible role of intestinal inflammatory milieu and microbiota. Int J Mol Sci 2017;17.

Coporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012;6:1621–1624.

Naqib A, Poggi S, Wang W, Hyde M, Kunstman L, Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012;6:1621–1624.

Coporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QiIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–336.
Received March 18, 2019. Accepted October 28, 2019.

Correspondence
Address correspondence to: Faraz Bishehsari, MD, PhD, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Professional Building, 1725 West Harrison Street, Suite 207, Chicago, Illinois 60612. e-mail: Faraz_Bishehsari@rush.edu; fax: (312) 563–3945; or Khashayarsha Khazaie, PhD, DSc, Department of Immunology, Guggenheim 3–42-B, Mayo Clinic, Rochester, Minnesota 55901. e-mail: Khazaie@mayo.edu; fax: (507) 284–1637.

Acknowledgment
Ali Keshavarzian would like to thank Mr and Mrs Larry Field, Mr and Mrs Glass, Mr Keehn, and the Alvin Baum Family fund for their philanthropic funding. The authors thank Mrs Nailliw Zanini Preite for her assistance with animal studies.

Author contributions
FB, KK, AK conceived and designed the experiments; FB, PAE, RMV, MS, SW, AN, SJG, CF, EG, AS, AO, and BRH were involved in acquisition of data; BBS reviewed histopathology slides; FB, PAE, AN, SJG, GS analyzed the data; FB, KK and AK interpreted the data; FB drafted the manuscript; PAE, KK and AK edited the manuscript; FB, AK, KK obtained funding; all the authors approved the final draft.

Conflicts of interest
This author discloses the following: Ali Keshavarzian and Bruce Hamaker are a co-owner of Nutrabiotics, Inc, and BetterBiotics, LLC, which are prebiotic-focused companies. The TD160445 prebiotic used in this study is not a product of either company. The remaining authors disclose no conflicts.

Funding
Supported by National Institutes of Health grant AA025387 and a Rush Translational Sciences Consortium/Swim Across America Organization grant (F.B.); and by National Institutes of Health grants AA023417 and AA026801 (A.K.), and grant AA023417 (K.K.).