The diameter game

Ryan Martin
rymartin@iastate.edu

Mathematics Department
Iowa State University
Ames, Iowa 50010

Joint work with
József Balogh, UIUC
András Pluhár, U of Szeged
Maker/Breaker games

A positional game is one in which players
Maker/Breaker games

A **positional game** is one in which players **Maker**
Maker/Breaker games

A positional game is one in which players Maker and Breaker
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph.
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph in turns.
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph in turns.

Maker’s goal is to occupy each vertex in some hyperedge.
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph in turns.

Maker’s goal is to occupy each vertex in some hyperedge.

Breaker’s goal is to prevent this.
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph in turns.

Maker’s goal is to occupy each vertex in some hyperedge.

Breaker’s goal is to prevent this; i.e., occupy at least one vertex from **each** hyperedge.
Maker/Breaker games

A **positional game** is one in which players **Maker** and **Breaker** occupy vertices of a hypergraph in turns.

Maker’s goal is to occupy each vertex in some hyperedge.

Breaker’s goal is to prevent this; i.e., occupy at least one vertex from **each** hyperedge. There is no draw.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
MAKER and **BREAKER** in turns occupy edges of K_n.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
Maker and **Breaker** in turns occupy edges of K_n.

- **Maker** gets to choose one edge not already taken.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
MAKER and *BREAKER* in turns occupy edges of K_n.

- *MAKER* gets to choose one edge not already taken.
- *BREAKER* then chooses one edge not already taken.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
Maker and **Breaker** in turns occupy edges of K_n.

- **Maker** gets to choose one edge not already taken.
- **Breaker** then chooses one edge not already taken.

Most properties we want are monotone properties (\mathcal{P}).
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
Maker and **Breaker** in turns occupy edges of K_n.

- **Maker** gets to choose one edge not already taken.
- **Breaker** then chooses one edge not already taken.

Most properties we want are monotone properties (\mathcal{P}).

THE PROPERTY \mathcal{P} GAME:
- **Maker** wins if his graph has property \mathcal{P}.
(1:1) diameter 2 game

We often leave the hypergraph imagery behind.

GRAPH GAMES:
Maker and **Breaker** in turns occupy edges of K_n.

- **Maker** gets to choose one edge not already taken.
- **Breaker** then chooses one edge not already taken.

Most properties we want are monotone properties (\mathcal{P}).

THE DIAMETER 2 GAME:
- **Maker** wins if his graph is a diameter two graph.
We often leave the hypergraph imagery behind.

GRAPH GAMES:
MAKER and *BREAKER* in turns occupy edges of K_n.

- *MAKER* gets to choose one edge not already taken.
- *BREAKER* then chooses one edge not already taken.

Most properties we want are monotone properties (\mathcal{P}).

THE DIAMETER 2 GAME:
- *MAKER* wins if his graph is a diameter two graph.
- *BREAKER* wins if he can prevent this.
We often leave the hypergraph imagery behind.

\textbf{GRAPH GAMES:} Maker and Breaker in turns occupy edges of K_n.

- Maker gets to choose one edge not already taken.
- Breaker then chooses one edge not already taken.

Most properties we want are monotone properties (\mathcal{P}).

\textbf{THE DIAMETER 2 GAME:}
- Maker wins if his graph is a diameter two graph.
- Breaker wins if he can prevent this.

\textit{Does anyone have a winning strategy?}
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first!
Winning the game

If $n \geq 4$, it doesn’t matter who goes first!
BREAKER always has a winning strategy!
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first! **Breaker** always has a winning strategy!

Even if **Maker** goes first,
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first! \textbf{Breaker} always has a winning strategy!

Even if \textbf{Maker} goes first, \textbf{Breaker} can choose an edge \(\{x, y\} \) not incident to it.
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first! \textcolor{red}{\textsc{Breaker}} always has a winning strategy!

Even if \textcolor{blue}{\textsc{maker}} goes first, \textcolor{red}{\textsc{breaker}} can choose an edge \(\{x, y\} \) not incident to it.

Then \textcolor{red}{\textsc{breaker}} plays a mimic strategy, keeping \(x \) and \(y \) apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! \textbf{Breaker} always has a winning strategy!

Even if \textbf{Maker} goes first, \textbf{Breaker} can choose an edge $\{x, y\}$ not incident to it.

Then \textbf{Breaker} plays a mimic strategy, keeping x and y apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! \textsc{Breaker} always has a winning strategy!

Even if \textsc{Maker} goes first, \textsc{Breaker} can choose an edge $\{x, y\}$ not incident to it.

Then \textsc{Breaker} plays a mimic strategy, keeping x and y apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! Breaker always has a winning strategy!

Even if Maker goes first, Breaker can choose an edge $\{x, y\}$ not incident to it.

Then Breaker plays a mimic strategy, keeping x and y apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! **Breaker** always has a winning strategy!

Even if **Maker** goes first, **Breaker** can choose an edge $\{x, y\}$ not incident to it.

Then **Breaker** plays a mimic strategy, keeping x and y apart.
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first! \(\text{BREAKER} \) always has a winning strategy!

Even if \(\text{MAKER} \) goes first, \(\text{BREAKER} \) can choose an edge \(\{x, y\} \) not incident to it.

Then \(\text{BREAKER} \) plays a mimic strategy, keeping \(x \) and \(y \) apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! **Breaker** always has a winning strategy!

Even if **Maker** goes first, **Breaker** can choose an edge $\{x, y\}$ not incident to it.

Then **Breaker** plays a mimic strategy, keeping x and y apart.
Winning the game

If \(n \geq 4 \), it doesn’t matter who goes first! **Breaker** always has a winning strategy!

Even if **Maker** goes first, **Breaker** can choose an edge \(\{x, y\} \) not incident to it.

Then **Breaker** plays a mimic strategy, keeping \(x \) and \(y \) apart.
Winning the game

If $n \geq 4$, it doesn’t matter who goes first!
BREAKER always has a winning strategy!

Even if **MAKER** goes first, **BREAKER** can choose an edge $\{x, y\}$ not incident to it.

Then **BREAKER** plays a mimic strategy, keeping x and y apart.

BREAKER wins!
Winning the game

If $n \geq 4$, it doesn’t matter who goes first! \textsc{Breaker} always has a winning strategy!

Even if \textsc{Maker} goes first, \textsc{Breaker} can choose an edge $\{x, y\}$ not incident to it.

Then \textsc{Breaker} plays a mimic strategy, keeping x and y apart.

\textsc{Breaker} wins! There is no way for \textsc{Maker} to create a path of length at most 2 between x and y.
(a:b) games

We often generalize games, so that \textbf{Maker} gets to make \(a\) moves in each turn and \textbf{Breaker} gets to make \(b\) moves in each turn.
(a:b) games

We often generalize games, so that Maker gets to make a moves in each turn and Breaker gets to make b moves in each turn.

- **Erdős-Selfridge-Beck**: Breaker wins the hypergraph game on \mathcal{H} if
(a:b) games

We often generalize games, so that **Maker** gets to make a moves in each turn and **Breaker** gets to make b moves in each turn.

- **Erdős-Selfridge-Beck**: **Breaker** wins the hypergraph game on \mathcal{H} if

$$
\sum_{A \in E(\mathcal{H})} (1 + a)^{-|A|/b} < \frac{1}{b + 1}
$$
(a:b) games

We often generalize games, so that Maker gets to make a moves in each turn and Breaker gets to make b moves in each turn.

- **Erdős-Selfridge-Beck**: Breaker wins the hypergraph game on \mathcal{H} if

 $$\sum_{A \in E(\mathcal{H})} (1 + a)^{-|A|/b} < \frac{1}{b + 1}$$

- **Chvátal-Erdős**: Maker wins the connected graph game if $a = 1$ and $b \leq cn / \ln n$ for some c.
(a:b) games

We often generalize games, so that Maker gets to make \(a \) moves in each turn and Breaker gets to make \(b \) moves in each turn.

- **Erdős-Selfridge-Beck**: Breaker wins the hypergraph game on \(\mathcal{H} \) if
 \[
 \sum_{A \in E(\mathcal{H})} (1 + a)^{-|A|/b} < \frac{1}{b + 1}
 \]

- **Chvátal-Erdős**: Maker wins the connected graph game if \(a = 1 \) and \(b \leq cn/\ln n \) for some \(c \).

- **Beck**: Maker wins the Hamiltonian graph game if \(a = 1 \) and \(b \leq cn/\ln n \) for some \(c \).
(a:b) games

- **CHVÁTAL-ERDŐS**: Maker wins the connected graph game if $a = 1$ and $b \leq cn/\ln n$ for some c.

- **BECK**: Maker wins the Hamiltonian graph game if $a = 1$ and $b \leq cn/\ln n$ for some c.

- **ŁUCZAK-BEDNARSKA**: If $a = 1$ and $b = n - s$, then Maker can guarantee the size of the largest component is $s + O(\sqrt{n})$.
(a:b) games

- **Chvátal-Erdős**: Maker wins the connected graph game if $a = 1$ and $b \leq cn/\ln n$ for some c.

- **Beck**: Maker wins the Hamiltonian graph game if $a = 1$ and $b \leq cn/\ln n$ for some c.

- **Łuczak-Bednarska**: If $a = 1$ and $b = n - s$, then Maker can guarantee the size of the largest component is $s + O(\sqrt{n})$.

- **Frieze-Krivelevich-Pikhurko-Szabó**: Maker can create a pseudo-random graph if $a = b = 1$.
(a:b) games

- **Chvátal-Erdős**: Maker wins the connected graph game if \(a = 1 \) and \(b \leq cn / \ln n \) for some \(c \).

- **Beck**: Maker wins the Hamiltonian graph game if \(a = 1 \) and \(b \leq cn / \ln n \) for some \(c \).

- **Łuczak-Bednarska**: If \(a = 1 \) and \(b = n - s \), then Maker can guarantee the size of the largest component is \(s + O(\sqrt{n}) \).

- **Frieze-Krivelevich-Pikhurko-Szabó**: Maker can create a pseudo-random graph* if \(a = b = 1 \).

 * Degrees approximately \(n/2 \), codegrees approximately \(n/4 \).
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$
- fails to have property \mathcal{P} with probability $\rightarrow 1$.
Probabilistic intuition

These graph games seem to confirm the \textit{probabilistic intuition}:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$

- fails to have property \mathcal{P} (\texttt{whp})
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \(\mathcal{P} \), there is a threshold probability \(p_0 \) such that the random graph \(G(n, p) \)

- fails to have property \(\mathcal{P} \) (whp) if \(p \ll p_0 \) and
- has property \(\mathcal{P} \).
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$

- fails to have property \mathcal{P} \textit{(whp)} if $p \ll p_0$ and
- has property \mathcal{P} \textit{(whp)}.\[\]
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$

- fails to have property \mathcal{P} (whp) if $p \ll p_0$ and
- has property \mathcal{P} (whp) if $p \gg p_0$.

Recall $p_0 = \Theta(\ln n/n)$ for both connectivity and Hamiltonicity.
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*: For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$

- fails to have property \mathcal{P} (whp) if $p \ll p_0$ and
- has property \mathcal{P} (whp) if $p \gg p_0$.

Recall $p_0 = \Theta(\ln n / n)$ for both connectivity and Hamiltonicity.

Let $p = \frac{a}{a+b}$, the proportion of edges belonging to *Maker* when the game is over. In the connectivity and Hamiltonicity games, *Maker* wins if $p \gg p_0$.

The diameter game – p. 6/14
Probabilistic intuition

These graph games seem to confirm the *probabilistic intuition*:

For every monotone property \mathcal{P}, there is a threshold probability p_0 such that the random graph $G(n, p)$
- fails to have property \mathcal{P} (whp) if $p \ll p_0$ and
- has property \mathcal{P} (whp) if $p \gg p_0$.

Recall $p_0 = \Theta(\ln n/n)$ for both connectivity and Hamiltonicity.

Let $p = \frac{a}{a+b}$, the proportion of edges belonging to Maker when the game is over. In the connectivity and Hamiltonicity games, Maker wins if $p \gg p_0$.

In fact, the graph games all seem to follow probabilistic intuition.
Until now!

We know that $G(n, p)$ has diameter 2 if $p \gg \ln n / \sqrt{n}$.
Until now!

We know that $G(n, p)$ has diameter 2 (whp) if $p \gg \ln n / \sqrt{n}$.
Until now!

We know that $G(n, p)$ has diameter 2 (whp) if $p \gg \ln n / \sqrt{n}$.

But that says that $G(n, 1/2)$ has diameter 2 and Maker should win the (1:1)-game!
Until now!

We know that $G(n, p)$ has diameter 2 (whp) if $p \gg \ln n / \sqrt{n}$.

But that says that $G(n, 1/2)$ has diameter 2 and MAKER should win the (1:1)-game!

More strongly, Frieze, et al. said that MAKER can create a pseudo-random graph in the (1:1)-game. However, BREAKER can ensure that at least one pair is of distance at least 3.

Probabilistic Intuition Fails!
(a:b) diameter 2 game

What if $a > b$?
What if $a > b$?

Lemma. If $a \leq n/(4 \ln n)$ and n is large enough
What if $a > b$?

Lemma. If $a \leq n/(4 \ln n)$ and n is large enough then \textsc{Maker} wins the (a:b)-minimum-degree $\geq k$ game on K_n if
(a:b) diameter 2 game

What if $a > b$?

Lemma. If $a \leq n/(4 \ln n)$ and n is large enough then Maker wins the $(a:b)$-minimum-degree $\geq k$ game on K_n if

$$k \leq \frac{a}{a + b} n - \frac{6ab}{(a + b)^{3/2}} \sqrt{n \ln n}.$$
(a:b) diameter 2 game

What if \(a > b \)?

Lemma. If \(a \leq n/(4 \ln n) \) and \(n \) is large enough then Maker wins the \((a:b)\)-minimum-degree \(\geq k \) game on \(K_n \) if

\[
k \leq \frac{a}{a + b} n - \frac{6ab}{(a + b)^{3/2}} \sqrt{n \ln n}.
\]

I.e., if \(b < a < \frac{n}{4 \ln n} \), then Maker can ensure that his graph has minimum-degree at least \((n - 1)/2\), if \(n \) is large enough.
(a:b) diameter 2 game

What if \(a > b \)?

Lemma. If \(a \leq n/(4 \ln n) \) and \(n \) is large enough then **Maker** wins the \((a:b)\)-minimum-degree \(\geq k \) game on \(K_n \) if

\[
k \leq \frac{a}{a + b}n - \frac{6ab}{(a + b)^{3/2}} \sqrt{n \ln n}.
\]

I.e., if \(b < a < \frac{n}{4 \ln n} \), then **Maker** can ensure that his graph has minimum-degree at least \((n - 1)/2\), if \(n \) is large enough.

Consider the \((2:2)\)-diameter 2 game. This is called *accelerating the game*.
(a:b) diameter 2 game

What if \(a > b \)?

Lemma. If \(a \leq n/(4 \ln n) \) and \(n \) is large enough then **Maker** wins the \((a:b)\)-minimum-degree \(\geq k \) game on \(K_n \) if

\[
k \leq \frac{a}{a + b} n - \frac{6ab}{(a + b)^{3/2}} \sqrt{n \ln n}.
\]

I.e., if \(b < a < \frac{n}{4 \ln n} \), then **Maker** can ensure that his graph has minimum-degree at least \((n - 1)/2\), if \(n \) is large enough.

Consider the \((2:2)\)-diameter 2 game.
This is called *accelerating the game*.

The mimic strategy doesn’t work, here.
Solution to (a:b) diameter 2 game

THEOREM.
Solution to (a:b) diameter 2 game

THEOREM.

MAKER wins the \(2 : c \left(\frac{n}{\ln^3 n}\right)^{1/5}\)-diameter 2 game and
Solution to (a:b) diameter 2 game

THEOREM.

-maker wins the \(\left(2 : c \left(\frac{n}{\ln^3 n}\right)^{1/5}\right)\)-diameter 2 game and

breaker wins the \(\left(2 : 3 \sqrt{\frac{n}{\ln n}}\right)\)-diameter 2 game,
Solution to (a:b) diameter 2 game

Theorem.

Maker wins the $\left(2 : c \left(\frac{n}{\ln^3 n}\right)^{1/5}\right)$-diameter 2 game and **Breaker** wins the $\left(2 : 3 \sqrt{n/\ln n}\right)$-diameter 2 game, for some c, if n is big enough.
Solution to \((a:b)\) diameter 2 game

Theorem.

Maker wins the \(\left(2 : c \left(\frac{n}{\ln^3 n}\right)^{1/5}\right)\)-diameter 2 game and

Breaker wins the \(\left(2 : 3 \sqrt{\frac{n}{\ln n}}\right)\)-diameter 2 game,

for some \(c\), if \(n\) is big enough.

The upper bound is close to probabilistic intuition.
Other results

THEOREM.
Let $d \geq 3$ and $a > 1$.
Other results

THEOREM.
Let \(d \geq 3 \) and \(a > 1 \).

MAKER wins the
- \((1 : c_1 n^{1 - \lfloor d/2 \rfloor^{-1}} / \ln n)\)-diameter \(d \) game.
Other results

THEOREM.
Let $d \geq 3$ and $a > 1$.

Maker wins the
- $\left(1 : c_1n^{1-\lceil [d/2]^{-1} \rceil} / \ln n \right)$-diameter d game.

Breaker wins the
- $\left(1 : c_2n^{1-(d-1)^{-1}} \right)$-diameter d game and the
- $\left(a : c_3n^{1-d^{-1}} \right)$-diameter d game,
Other results

Theorem.
Let $d \geq 3$ and $a > 1$.

Maker wins the
- $(1 : c_1 n^{1-\left[\frac{d}{2}\right]-1} / \ln n)$-diameter d game.

Breaker wins the
- $(1 : c_2 n^{1-(d-1)^{-1}})$-diameter d game and the
- $(a : c_3 n^{1-d^{-1}})$-diameter d game,

for absolute constants $c_1, c_2, c_3 > 0$, if n is big enough.
Diameter 3

For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.
Diameter 3

For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,
Diameter 3

For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,

- **Maker** wins the $(a : O(an^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(a : \Omega(n^{2/3}))$-diameter 3 game.
For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,

- **Maker** wins the $(a : O(an^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(a : \Omega(n^{2/3}))$-diameter 3 game.

For probabilistic intuition, note that $G(n, p)$:
Diameter 3

For \(d = 3 \),
- **Maker** wins the \((1 : O(n^{1/2} / \ln n)) \)-diameter 3 game and
- **Breaker** wins the \((1 : \Omega(n^{1/2})) \)-diameter 3 game.

But we can only guarantee that, for \(a > 1 \),
- **Maker** wins the \((a : O(an^{1/2} / \ln n)) \)-diameter 3 game and
- **Breaker** wins the \((a : \Omega(n^{2/3})) \)-diameter 3 game.

For probabilistic intuition, note that \(G(n, p) \):
- has diameter 3 if \(p \gg \frac{\ln n}{n^{2/3}} \)
For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,

- **Maker** wins the $(a : O(an^{1/2}/\ln n))$-diameter 3 game and
- **Breaker** wins the $(a : \Omega(n^{2/3}))$-diameter 3 game.

For probabilistic intuition, note that $G(n, p)$:

- has diameter 3 if $p \gg \frac{\ln n}{n^{2/3}}$
- fails to have diameter 3 if $p \ll \frac{\ln n}{n^{2/3}}$.
Diameter 3

For $d = 3$,
- **Maker** wins the $(1 : O(n^{1/2} / \ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,
- **Maker** wins the $(a : O(an^{1/2} / \ln n))$-diameter 3 game and
- **Breaker** wins the $(a : \Omega(n^{2/3}))$-diameter 3 game.

This means the probabilistic intuition would give $\frac{a}{a+b}$ should be about $n^{-2/3}$. So, diameter 3 violates probabilistic intuition for $a = 1$.
Diameter 3

For $d = 3$,

- **Maker** wins the $(1 : O(n^{1/2} / \ln n))$-diameter 3 game and
- **Breaker** wins the $(1 : \Omega(n^{1/2}))$-diameter 3 game.

But we can only guarantee that, for $a > 1$,

- **Maker** wins the $(a : O(an^{1/2} / \ln n))$-diameter 3 game and
- **Breaker** wins the $(a : \Omega(n^{2/3}))$-diameter 3 game.

This means the probabilistic intuition would give $\frac{a}{a+b}$ should be about $n^{-2/3}$. So, diameter 3 violates probabilistic intuition for $a = 1$.

But *acceleration*; i.e., increasing a, seems not to contradict probabilistic intuition.
Proof ideas

To show, for example, that Maker wins the \((2, n^{1/5})\)-diameter two game,
Proof ideas

To show, for example, that Maker wins the \((2, n^{1/5})\)-diameter two game, we divide Maker’s strategy into two phases, playing alternating subgames in each phase.
Proof ideas

To show, for example, that MAKER wins the $(2, n^{1/5})$-diameter two game, we divide MAKER’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:
Proof ideas

To show, for example, that Maker wins the $(2, n^{1/5})$-diameter two game, we divide Maker’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.**
Proof ideas

To show, for example, that \textsc{Maker} wins the \((2, n^{1/5})\)-diameter two game, we divide \textsc{Maker}'s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- \textbf{Degree Game}. \textsc{Maker} can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right)\).
Proof ideas

To show, for example, that \textsc{Maker} wins the \((2, n^{1/5})\)-diameter two game, we divide \textsc{Maker}'s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** \textsc{Maker} can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right) \).

- **Expansion Game.**
Proof ideas

To show, for example, that Maker wins the \((2, n^{1/5})\)-diameter two game, we divide Maker’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** Maker can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right)\).

- **Expansion Game.** Maker can ensure that second neighborhoods are large.
Proof ideas

To show, for example, that \textsc{Maker} wins the \((2, n^{1/5})\)-diameter two game, we divide \textsc{Maker}'s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** \textsc{Maker} can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right) \).

- **Expansion Game.** \textsc{Maker} can ensure that second neighborhoods are large.

- **Ratio Game.**
Proof ideas

To show, for example, that Maker wins the \((2, n^{1/5})\)-diameter two game, we divide Maker’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** Maker can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O(\sqrt{n \ln n})\).

- **Expansion Game.** Maker can ensure that second neighborhoods are large.

- **Ratio Game.** If Breaker occupies many edges incident to a vertex, so does Maker.
Proof ideas

To show, for example, that **Maker** wins the \((2, n^{1/5}) \)-diameter two game, we divide **Maker**’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** **Maker** can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right) \).

- **Expansion Game.** **Maker** can ensure that second neighborhoods are large.

- **Ratio Game.** If **Breaker** occupies many edges incident to a vertex, so does **Maker**.

- **Connecting High Vertices.**
Proof ideas

To show, for example, that Maker wins the \((2, n^{1/5})\)-diameter two game, we divide Maker’s strategy into two phases, playing alternating subgames in each phase.

For example: The subgames of Phase I:

- **Degree Game.** Maker can ensure that the minimum degree of his graph is \(\frac{an}{a+b} - O\left(\sqrt{n \ln n}\right)\).

- **Expansion Game.** Maker can ensure that second neighborhoods are large.

- **Ratio Game.** If Breaker occupies many edges incident to a vertex, so does Maker.

- **Connecting High Vertices.** Vertices with many incident edges chosen will connect to each other.
Proof structure for degree game

For the **DEGREE GAME**, we use a potential function argument, choosing the weights carefully.
Proof structure for degree game

For the **DEGREE GAME**, we use a potential function argument, choosing the weights carefully.

There is a function T_i, computed after the i^{th} step, with the following properties:
Proof structure for degree game

For the Degree Game, we use a potential function argument, choosing the weights carefully.

There is a function T_i, computed after the i^{th} step, with the following properties:

(a). If Breaker wins in the i^{th} step, then $T_i \geq 1$,
Proof structure for degree game

For the **DEGREE GAME**, we use a potential function argument, choosing the weights carefully.

There is a function T_i, computed after the i^{th} step, with the following properties:

(a). If **BREAKER** wins in the i^{th} step, then $T_i \geq 1$,

(b). $T_{i+1} \leq T_i$,
Proof structure for degree game

For the **DEGREE GAME**, we use a potential function argument, choosing the weights carefully.

There is a function T_i, computed after the i^{th} step, with the following properties:

(a). If **BREAKER** wins in the i^{th} step, then $T_i \geq 1$,
(b). $T_{i+1} \leq T_i$,
(c). $T_0 < 1$.
Proof structure for degree game

For the **Degree Game**, we use a potential function argument, choosing the weights carefully.

There is a function T_i, computed after the i^{th} step, with the following properties:

(a). If **Breaker** wins in the i^{th} step, then $T_i \geq 1$,
(b). $T_{i+1} \leq T_i$,
(c). $T_0 < 1$.

Clearly, the existence of such a $\{T_i\}$ gives that **Breaker** cannot win the degree game.
Thanks

Thanks to József Beck for reading the early draft, and giving valuable advice.

We were supported by the following funds:
DMS-0302804, OTKA grants T034475 and T049398, and NSA grant H98230-05-1-0257.

rymartin@iastate.edu

http://www.math.iastate.edu/rymartin/