Some Applications of Higher Moments of the Linear Gaussian White Noise Process

I. S. Iwueze¹, C. O. Arimie², H. C. Iwu¹, E. Onyemachi¹

¹Department of Statistics, Federal University of Technology, Owerri, Nigeria
²Department of Mathematics and Statistics, University of Portharcourt, Portharcourt, Nigeria
Email: isiwueze@yahoo.com, codarimie@yahoo.com, iwuchuk@yahoo.com, elesuccess@yahoo.com

Abstract

The Linear Gaussian white noise process is an independent and identically distributed (iid) sequence with zero mean and finite variance with distribution $\mathcal{N}(0, \sigma^2)$. Hence, if X_1, X_2, \cdots, X_n is a realization of such an iid sequence, this paper studies in detail the covariance structure of $X_1^d, X_2^d, \cdots, X_n^d, d = 1, 2, \cdots$. By this study, it is shown that: 1) all powers of a Linear Gaussian White Noise Process are iid but, not normally distributed and 2) the higher moments (variance and kurtosis) of $X_i^d, d = 2, 3, \cdots$ can be used to distinguish between the Linear Gaussian white noise process and other processes with similar covariance structure.

Keywords

Stochastic Process, Linear Gaussian White Noise Process, Covariance Structure, Stationarity, Test for White Noise Process, Test for Normality

1. Introduction

The objective of estimation procedures is to produce residuals (the estimated noise sequence) with no apparent deviations from stationarity, and in particular with no dependence among these residuals. If there is no dependence among these residuals, then we can regard them as observations of independent random variables; there is no further modeling to be done except to estimate their mean and variance. If there is significant dependence among the residuals, then we need to look for the noise sequence that accounts for the dependence [1].

In this paper, we examine the covariance structure of powers of the noise sequence when the noise sequence is assumed to be independent and identically distributed normal (Gaussian) random variates with mean zero and finite va-
The variance, \(\sigma^2 > 0 \). Some simple tests for checking the hypothesis that the residuals and their powers are observed values of independent and identically distributed random variables are also considered. Also considered are tests for normality of the residuals and their powers.

The stochastic process \(X, t \in T \) is said to be strictly stationary if the distribution function is time invariant. That is:

\[
F(x_1, x_2, \cdots, x_n) = F(x_{1+k}, x_{2+k}, \cdots, x_{n+k})
\]

(1.1)

where

\[
F(x_1, x_2, \cdots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \cdots, X_n \leq x_n)
\]

(1.2)

That is, the probability measure for the sequence \(\{X_t\} \) is the same as that for \(\{X_{t+k}\} \) for all \(k \). If a series satisfies the next three equations, it is said to be weakly or covariance stationary.

\[
\begin{align*}
1. & \quad E(X_t) = \mu, t = 1, 2, \cdots, \infty \\
2. & \quad E[(X_t - \mu)(X_s - \mu)] = \sigma^2 < \infty \\
3. & \quad E[(X_t - \mu)(X_{t+k} - \mu)] = R(t, t+k)
\end{align*}
\]

(1.3)

If the process is covariance stationary, all the variances are the same and all the covariances depend on the difference between \(t_1 \) and \(t_2 \). The moments

\[
E[(X_t - \mu)(X_{t+k} - \mu)] = R(k), k = 0, 1, 2, \cdots
\]

(1.4)

are known as the autocovariance function. The autocorrelations which do not depend on the units of measurements of \(X_t \) are given by

\[
\rho(k) = \frac{R(k)}{R(0)}, k = 0, 1, 2, \cdots
\]

(1.5)

A stochastic process \(X, t \in Z \), where \(Z = \{\cdots, -1, 0, 1, \cdots\} \), is called a white noise if with finite mean and variance all the autocovariances (1.4) are zero except at lag zero \(R(k) = 0 \) for \(k \neq 0 \). In many applications, \(X, t \in Z \) is assumed to be normally distributed with mean zero and variance, \(\sigma^2 < \infty \), and the series is called a linear Gaussian white noise process if:

\[
\begin{align*}
E(X_t) &= 0 \\
\text{var}(X_t) &= \sigma^2 \\
R(k) &= \begin{cases}
\sigma^2, & k = 0 \\
0, & \text{otherwise}
\end{cases} \\
\rho(k) &= \begin{cases}
1, & k = 0 \\
0, & \text{otherwise}
\end{cases}
\end{align*}
\]

(1.6)

and

\[
\phi_k = \text{corr}(X_t, X_{t+k}) = \begin{cases}
1, & k = 0 \\
0, & \text{otherwise}
\end{cases}
\]

(1.7)

where \(\phi_k \) is known as the partial autocorrelation function. For large \(n \), the
sample autocorrelations:

\[
\hat{\rho}_X(k) = \frac{\sum_{i=1}^{n-k} (X_i - \bar{X})(X_{i+k} - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

(1.8)

of an iid sequence \(X_1, X_2, \cdots, X_n\) with finite variance are approximately distributed as \(N\left(0, \frac{1}{n}\right)\) [1] [2] [3]. We can use this to do significance tests for the autocorrelation coefficients by constructing a confidence interval. Here \(X_1, X_2, \cdots, X_n\) is a realization of such an iid sequence, about \(100(1-\alpha)\%\) of the sample autocorrelations should fall between the bounds:

\[
\pm \frac{Z_{\alpha/2}}{\sqrt{n}}
\]

(1.9)

where \(Z_{\alpha/2}\) is the \(1 - \frac{\alpha}{2}\) quartile of the normal distribution. If the null and alternative hypothesis are:

\[
H_0 : \rho_X(k) = 0 \quad \forall k \neq 0 \quad \text{and} \quad H_1 : \rho_X(k) \neq 0 \quad \text{for some} k \neq 0
\]

(1.10)

where \(\rho_X(k)\) are autocorrelations at lag \(k\) computed for \(X_1, X_2, \cdots, X_n\).

We can also test the joint hypothesis that all \(m\) of the \(\rho_X(k)\) correlation coefficients are simultaneously equal to zero. The null and alternative hypothesis are:

\[
H_0 : \rho_X(1) = \rho_X(2) = \cdots = \rho_X(m) = 0 \quad \text{and} \quad H_1 : \rho_X(i) \neq 0 \quad \text{for} \quad i = 1, 2, \cdots, m
\]

(1.11)

The most popular test for (1.11) is the [4] portmanteau test which admits the following form

\[
Q_{ab}(m) = n \sum_{k=1}^{m} \left[\hat{\rho}_X(k)\right]^2
\]

(1.12)

where \(m\) is the so-called lag truncation number [5] and (typically) assumed to be fixed [6]. Under the assumption that \(X_1, X_2, \cdots, X_n\) is an iid sequence, \(Q_{ab}(m)\) is asymptotically a chi-squared random variable with \(m\) degree of freedom. [7] modified the \(Q(m)\) statistic to increase the power of the test in finite samples as

\[
Q_{ls}(m) = n(n + 2) \sum_{k=1}^{m} \left[\frac{\hat{\rho}_X(k)}{n-k}\right]^2
\]

(1.13)

Several values of \(m\) are often used and simulation studies suggest that the choice of \(m \approx \ln(n)\) provides better power performance [8].

Another Portmanteau test formulated by [9] can be used as a further test for iid hypothesis, since if the data are iid, then the squared data are also iid. It is based on the same statistic used for the Ljung-Box test as
\[Q_{ML}(m) = n(n+2) \sum_{k=1}^{n} \left(\frac{\hat{\rho}_{X^2}(k)}{n-k} \right)^2 \] \hspace{1cm} (1.14)

where the sample autocorrelations of the data are replaced by the sample autocorrelations of the squared data, \(\hat{\rho}_{X^2}(k) \).

According to [6], the methodology for testing for white noise can be roughly divided into two categories: time domain tests and frequency domain tests. Other time domain tests include the turning point test, the difference-sign test, the rank test [1]. Another time domain test is to fit an autoregressive model to the data and choosing the order which minimizes the AICC statistic. A selected order equal to zero suggests that the data is white noise [1].

Let

\[f_s(\omega) = \frac{1}{2\pi} \sum_{k=0}^{\infty} \rho_s(k) e^{ik\omega}, \omega \in [-\pi, \pi] \] \hspace{1cm} (1.15)

be the normalized spectral density of \(X, t \in Z \). The normalized spectral density function for the linear Gaussian white noise process is

\[f_s(\omega) = \frac{1}{2\pi}, \omega \in [-\pi, \pi] \] \hspace{1cm} (1.16)

The equivalent frequency domain expressions to \(H_0 \) and \(H_1 \) are

\[H_0: f_s(\omega) = \frac{1}{2\pi}, \omega \in [-\pi, \pi] \text{ and } H_1: f_s(\omega) \neq \frac{1}{2\pi}, \omega \in [-\pi, \pi] \] \hspace{1cm} (1.17)

In the frequency domain, [10] proposed test statistics based on the famous \(U_p \) and \(T_p \) processes [6], and a rigorous theoretical treatment of their limiting distributions was provided by [11]. Some contributions to the frequency domain tests can be found in [12] and [13], among others. This study will concentrate on the time domain approach only.

A stochastic process \(X, t \in Z \) may have the covariance structure (1.6) even when it is not the linear Gaussian white noise process. Examples are found in the study of bilinear time series processes [14] [15]. Researchers are often confronted with the choice of the linear Gaussian white noise process for use in constructing time series models or generating other stationary processes in simulation experiments. The question now is, “How do we distinguish between the linear Gaussian white noise process from other processes with similar covariance structure”? Additional properties of the linear Gaussian white noise process are needed for proper identification and characterization of the process from other processes with similar covariance structure. Therefore, the ultimate aim of this study is on the use of higher moments for the acceptability of the linear Gaussian white noise process. The first moment (mean) and second or higher moments (variance, covariances, skewness and kurtosis) of powers of the linear Gaussian white noise process was established in Section 2. The methodology was discussed in Section 3, the results are contained in Section 4 while Section 5 is the conclusion.
2. Mean, Variance and Covariances of Powers of the Linear Gaussian White Noise Process

2.1. Mean of Powers of the Linear Gaussian White Noise Process

Let \(Y_t = X_t^d, d = 1, 2, 3, \ldots \), where \(X_t, t \in Z \) is the linear Gaussian white noise process. The expected value of \(Y_t, t \in Z \) \(\left[E(Y_t) = E(X_t^d) \right] \) are needed for the effective determination of the variance and covariance structure of \(Y_t \). Lemma 2.1 gives the required result.

Lemma 2.1: Let \(X_t, t \in Z \) be a linear Gaussian white noise process with mean zero and variance \(\sigma^2 > 0 \) \((X_t \text{ follows iid } \mathcal{N}(0, \sigma^2))\), then

\[
E(X_t^d) = \begin{cases}
\sigma^m (2m-1)!!, & d = 2m, m = 1, 2, \ldots \\
0, & d = 2m + 1, m = 0, 1, 2, \ldots
\end{cases} \tag{2.1}
\]

where \([16]\)

\[
(2m-1)!! = 1 \times 3 \times 5 \times \cdots \times (2m-1) = \prod_{k=1}^{m} (2k-1) \tag{2.2}
\]

Proof:

Let \(X_t = Z \sim \mathcal{N}(0, \sigma^2) \), then

\[
f(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2\sigma^2}}; -\infty < z < \infty; \sigma^2 > 0 \tag{2.3}
\]

Note that

\[
E(Z^d) = \int_{-\infty}^{\infty} z^d f(z) dz \tag{2.4}
\]

\[
= \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2\sigma^2}} dz \tag{2.5}
\]

1) Case 1: \(d = 2m \) (even)

Equation (2.5) reduces to

\[
E(Z^d) = 2 \int_{0}^{\infty} z^d \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2\sigma^2}} dz \tag{2.6}
\]

Let \(y = \frac{z^2}{2\sigma^2} \Rightarrow z^2 = 2\sigma^2 y \Rightarrow z = (\sigma \sqrt{2}) y^{\frac{1}{2}} \)

\[
\frac{dz}{dy} = (\sigma \sqrt{2}) \cdot \frac{1}{2} y^{-\frac{1}{2}} \Rightarrow \left(\frac{\sqrt{2}}{2}\right) \sigma y^{-\frac{1}{2}} = \left(\frac{1}{\sqrt{2}}\right) \sigma y^{-\frac{1}{2}} = \left(\frac{\sigma}{\sqrt{2}}\right) y^{-\frac{1}{2}}
\]

\[
dz = \left(\frac{\sigma y^{-\frac{1}{2}}}{\sqrt{2}}\right) dy \tag{2.7}
\]

\[
E(Z^d) = \frac{2}{\sigma \sqrt{2\pi}} \int_{0}^{\infty} \left[(\sigma \sqrt{2}) y^{\frac{1}{2}} \right]^{2m} e^{-y} \left(\frac{\sigma y^{-\frac{1}{2}}}{\sqrt{2}}\right) dy
\]

\[
= \frac{2^m \sigma^{2m}}{\sqrt{\pi}} \int_{0}^{\infty} y^{-\frac{1}{2}} e^{-y} dy \tag{2.8}
\]
The integral in Equation (2.8) is a gamma function
\[\int_0^\infty w^{m-1} e^{-w} dw = \Gamma(t) \]
\[\text{[17]} \]
and by definition
\[E(Z^d) = \frac{2^m \sigma^2}{\sqrt{\pi}} \Gamma\left(m + \frac{1}{2}\right) \]
(2.9)
\[\Gamma\left(m + \frac{1}{2}\right) = \frac{1 \times 3 \times 5 \times 7 \times \cdots \times (2m-1)}{2^m} \]
\[\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \]
(2.10)
\[\frac{1 \times 3 \times 5 \times 7 \times \cdots \times (2m-1)}{2^m} \sqrt{\pi} \]
Thus
\[E(Z^d) = \frac{2^m \sigma^2}{\sqrt{\pi}} \sqrt{\pi} (2m-1)!! = \sigma^2 (2m-1)!! \]
(2.11)
2) Case II: \(d = 2m+1 \) (odd)
\[E(Z^d) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{\infty} z^d e^{-\frac{z^2}{2\sigma^2}} dz \]
\[= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{0} z^d e^{-\frac{z^2}{2\sigma^2}} dz + \frac{1}{\sigma \sqrt{2\pi}} \int_{0}^{\infty} z^d e^{-\frac{z^2}{2\sigma^2}} dz \]
(2.12)
\[= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{0} z^d e^{-\frac{z^2}{2\sigma^2}} dz - \frac{1}{\sigma \sqrt{2\pi}} \int_{0}^{\infty} z^d e^{-\frac{z^2}{2\sigma^2}} dz = 0 \]
Thus
\[E(Z^d) = E(X_i^d) = \begin{cases} \sigma^{2m} (2m-1)!! & d = 2m, m = 1,2,\cdots \\ 0 & d = 2m+1 \end{cases} \]

2.2. Variances of Powers of the Linear Gaussian White Noise Process

Theorem 2.2: Let \(X_t, t \in Z \) be a linear Gaussian white noise process with mean zero and variance \(\sigma^2 > 0 \) \(\left(X_t \text{ follows iid } N(0, \sigma^2) \right) \), then
\[\text{Var}(Y_i) = \text{Var}(X_i^d) = \begin{cases} \sigma^{4m} \left[\prod_{k=1}^{2m} (2k-1) - \left(\prod_{k=1}^{m} (2k-1) \right)^2 \right], & d = 2m \\ \sigma^{2(2m+1)} \prod_{k=1}^{2m+1} (2k-1), & d = 2m+1 \end{cases} \]
(2.13)

Proof:
Let \(X_t \sim \text{iid } N(0, \sigma^2) \), then the expected value of \(Y_i = X_i^d, d=1,2,3,\cdots \) is given by Equation (2.1).

Case I: \(d = 2m, m = 1,2,3,\cdots \) (d even)

Now
\[Y_i = X_i^{2m} \Rightarrow Y_i^2 = X_i^{2(2m)} = X_i^{4m} \]
From Equation (2.1)

\[E(Y_t) = \sigma^{2m} \prod_{k=1}^{m} (2k-1) \quad (2.14) \]

and

\[E(Y_t^2) = \sigma^{4m} \prod_{k=1}^{2m} (2k-1) \quad (2.15) \]

\[\text{Var}(Y_t) = E\left(Y_t^2\right) - E^2(Y_t) \]

\[= \sigma^{4m} \prod_{k=1}^{2m} (2k-1) - \left[\sigma^{2m} \prod_{k=1}^{m} (2k-1) \right]^2 \quad (2.16) \]

Case II \(d = 2m+1, m = 0, 1, 2, \cdots \) (d odd)

\[Y_t = X_t^d = X_t^{2m+1} \Rightarrow Y_t^2 = X_t^{2d} = X_t^{2(2m+1)} \]

From Equation (2.1)

\[E(Y_t) = 0 \]

\[E(Y_t^2) = \sigma^{2(2m+1)} \prod_{k=1}^{2m+1} (2k-1) \quad (2.17) \]

and

\[\text{Var}(Y_t) = E\left(Y_t^2\right) - E^2(Y_t) = E\left(Y_t^2\right) \]

\[= \sigma^{2(2m+1)} \prod_{k=1}^{2m+1} (2k-1) \quad (2.18) \]

Generally

\[\text{Var}(Y_t) = \text{Var}(X_t^d) = \begin{cases} \sigma^{4m} \left[\prod_{k=1}^{2m} (2k-1) - \left(\prod_{k=1}^{m} (2k-1) \right)^2 \right], & d = 2m \\ \sigma^{2(2m+1)} \prod_{k=1}^{2m+1} (2k-1), & d = 2m+1 \end{cases} \quad (2.19) \]

Table 1 summarizes the mean and variances of \(Y_t = X_t^d, d = 1, 2, 3, \cdots, 10 \). The standard deviation of \(Y_t = X_t^d, d = 1, 2, 3, \cdots, 10 \) is also included when \(\sigma = 1.0 \). A plot of \(\sigma_{Y_t} = \sqrt{\text{Var}(Y_t)} \) against \(d \) for fixed \(\sigma = 1 \) is given in **Figure 1**. From **Figure 1**, we note that for fixed \(\sigma \), increase in \(d \) leads to an exponential increase in the standard deviation.

The specific objective of this paper is to investigate if powers of \(X_t, t \in Z \) are also iid and to determine the distribution of \(Y_t = X_t^d, d = 1, 2, 3, \cdots \), especially for \(d = 2 \). The analytical proofs are provided in Section 2.3.

2.3. Covariances of Powers of the Linear Gaussian White Noise Process

Theorem 2.3: If \(X_t, t \in Z \) is a linear Gaussian white noise process then
I. S. Iwueze et al.

Table 1. Mean, variance and standard deviation of \(Y_i = X_i^d (\sigma_i) \) for fixed \(\sigma = 1 \).

\(d \)	\(Y_i \)	\(E(Y_i) = \mu_i \)	\(\text{var}(Y_i) = \sigma_i^\star \)	\(\sigma_i \) when \(\sigma = 1.0 \)
1	\(X_i \)	0	\(\sigma^2 \)	1.0000
2	\(X_i^2 \)	\(\sigma^2 \)	2\(\sigma^4 \)	1.4142
3	\(X_i^3 \)	0	15\(\sigma^6 \)	3.8730
4	\(X_i^4 \)	3\(\sigma^4 \)	96\(\sigma^8 \)	9.7980
5	\(X_i^5 \)	0	945\(\sigma^{10} \)	30.7409
6	\(X_i^6 \)	15\(\sigma^6 \)	10170\(\sigma^{12} \)	100.8464
7	\(X_i^7 \)	0	135135\(\sigma^{14} \)	367.6071
8	\(X_i^8 \)	105\(\sigma^8 \)	2016000\(\sigma^{16} \)	1419.8591
9	\(X_i^9 \)	0	34459425\(\sigma^{18} \)	5870.2151
10	\(X_i^{10} \)	10395\(\sigma^{10} \)	653836050\(\sigma^{20} \)	25570.2180

Higher powers of \(\{ Y_i = X_i^d, d = 1,2,3,\ldots \} \) are also white noise processes (iid) but not normally distributed.

Proof:
Since \(X_i, i \in T \) are iid and \(Y_i = X_i^d, d = 1,2,3,\ldots \), we consider for \(k \neq 0 \).

\[
R_y(k) = \text{cov}(Y_{i-k}, Y_i) = \text{cov}(X_i^d, X_{i-k}^d) \\
= E(X_i^d X_{i-k}^d) - E(X_i^d) E(X_{i-k}^d) \\
= E(X_i^d) E(X_{i-k}^d) - E(X_i^d) E(X_{i-k}^d) = 0, k \neq 0
\]

However, for \(k = 0 \), \(R_y(0) = \text{var}(Y_i) = \text{var}(X_i^d) \). Hence
\[
R_j(\ell) = \begin{cases}
\sigma^{4n} \left[\prod_{k=1}^{2m} \left(2k-1\right) - \left(\prod_{k=1}^{n} \left(2k-1\right) \right)^2 \right], & d = 2m, \ell = 0 \\
\sigma^{2(2m+1)} \prod_{k=1}^{2m+1} \left(2k-1\right), & d = 2m+1, \ell = 0 \\
0, & \ell \neq 0
\end{cases}
\] (2.20)

It is clear from Equation (2.20) that when \(X_i, t \in Z \) are iid, the powers \(Y_i = X_i^d, d = 1, 2, 3, \ldots \) of \(X_i, t \in Z \) are also iid. That is,
\[
R_j(\ell) = \begin{cases}
\text{var}(Y_i), & \ell = 0 \\
0, & \ell \neq 0
\end{cases}
\] (2.21)

The probability distribution function (p.d.f) of \(Y_i = X_i^d, d = 1, 2, 3, \ldots \) can be obtained to enable a detailed study of the series. Theorem 2.4 gives the p.d.f of \(Y_i = X_i^2 \).

Theorem 2.4: If \(X_i, t \in Z \) is a linear Gaussian white noise process, then \(Y_i = X_i^2 \) has the p.d.f
\[
g(y) = \begin{cases}
\frac{1}{\sigma \sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2\sigma^2}}, & 0 < y < \infty \\
0, & \text{otherwise}
\end{cases}
\] (2.22)

Proof:
If \(X_i = X \sim N\left(0, \sigma^2\right) \) and \(Y_i = X_i^2 = X^2 \), the distribution function of \(Y \) is, for \(y \geq 0 \),
\[
G(y) = P\left(X^2 \leq y\right) = P\left(-\sqrt{y} \leq X \leq \sqrt{y}\right)
\]
\[
= \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx = 2 \int_{0}^{\sqrt{y}} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx
\]

Let \(x = \sqrt{v} \), then since \(dx = \left(\frac{1}{2\sqrt{v}}\right) dv \), we have
\[
G(y) = 2 \int_{0}^{y} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{v}{2\sigma^2}} \left(\frac{1}{2\sqrt{v}}\right) dv = \int_{0}^{y} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{v}{2\sigma^2}} \frac{1}{2\sqrt{v}} dv
\]

Of course \(G(y) = 0 \), where \(y < 0 \). The p.d.f of \(Y \) is \(g(y) = G'(y) \) and by one form of the fundamental theorem of calculus [17]
\[
g(y) = \begin{cases}
\frac{1}{\sigma \sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2\sigma^2}}, & 0 < y < \infty \\
0, & \text{otherwise}
\end{cases}
\]

Note that the p.d.f of \(Y_i = X_i^2 \) is the p.d.f of a gamma distribution with parameters \(\alpha = \frac{1}{2}, \beta = 2\sigma^2 \). That is, \(Y_i = X_i^2 \sim G(\alpha, \beta) \).

However, for a more detailed study on the behavioral of the linear Gaussian white noise process, the coefficient of symmetry and kurtosis for powers of the process are provided in Section 2.4.
2.4. Coefficient of Symmetry and Kurtosis for Powers of the Linear Gaussian White Noise Process

Non-normality of higher powers of \(X_t, t \in \mathbb{Z} \) \((d = 2, 3, \ldots) \) can also be confirmed by the coefficient of symmetry and kurtosis defined by

\[
\beta_1 = \frac{\mu_3(d)}{(\mu_2(d))^{3/2}} \tag{2.23}
\]

\[
\beta_2 = \frac{\mu_4(d)}{(\mu_2(d))^2} \tag{2.24}
\]

where

\[
\mu_2(d) = E\left(\left(X_t^d - E(X_t^d) \right)^2 \right) = \text{var}(X_t^d) \tag{2.25}
\]

\[
\mu_3(d) = E\left(\left(X_t^d - E(X_t^d) \right)^3 \right) \tag{2.26}
\]

and

\[
\mu_4(d) = E\left(\left(X_t^d - E(X_t^d) \right)^4 \right) \tag{2.27}
\]

Note that

\[
\mu_3(d) = E\left(X_t^{3d}\right) - 3E\left(X_t^{2d}\right)E(X_t^d) + 2E^3\left(X_t^d\right) \tag{2.28}
\]

\[
\mu_4(d) = E\left(X_t^{4d}\right) - 4E\left(X_t^{3d}\right)E\left(X_t^d\right) + 6E\left(X_t^{2d}\right)E^2\left(X_t^d\right) - 3E^4\left(X_t^d\right) \tag{2.29}
\]

The kurtosis for \(d = 1, 2, 3, 4, 5 \) and 6 are given in Table 2. A plot of \(\beta_2 = \frac{\mu_4(d)}{(\mu_2(d))^2} \) against \(d = 1, 2, 3, 4, 5 \) is given in Figure 2. From Figure 2, we note that increase in \(d \) leads to an exponential increase in the kurtosis.

![Figure 2](image.png)

Figure 2. Plot of kurtosis coefficient against power of the linear Gaussian white noise process.
Table 2. Coefficient of symmetry and kurtosis for $Y = X^d, d = 1, 2, 3, \ldots, 6$.

d	Y_i	$E(Y_i)$ (µ)	$\mu_i(d)$	$\mu_i(d)$	β_i	β_i	
1	X^d	0	σ^2	0	3σ^2	0	3.000
2	X^d	σ^2	2σ^4	8σ^4	60σ^4	2.828	15.000
3	X^d	$15\sigma^2$	0	10395σ^2	0	46.200	
4	X^d	3σ^4	96σ^4	9504σ^4	1907712σ^4	10.104	207.00
5	X^d	945σ^{10}	0	654729075σ^{10}	0	733.159	
6	X^d	10170σ^{12}	33998400σ^{12}	3.142$\times 10^{13}$	33.150	3037.836	

3. Methodology

3.1. Checking for Normality

If the noise process is Gaussian (that is, if all of its joint distributions are normal), then stronger conclusions can be drawn when a model is fitted to the data. We have shown that all powers of the linear Gaussian process are non-normal. The only reasonable test is the one that enables us to check whether the observations are from an iid normal sequence. The Jarque-Bera (JB) test [18] [19] [20] for normality can be used. The JB test is based on the assumption that the normal distribution (with any mean or variance) has skewness coefficient of zero, and a kurtosis coefficient of three. We can test if these two conditions hold against a suitable alternative and the JB test statistic is

$$JB = n \left(\frac{\hat{\beta}_1^2}{6} + \frac{(\hat{\beta}_2 - 3)^2}{24} \right)$$ \hspace{1cm} (3.1)$$

where

$$\hat{\beta}_1 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^3$$ \hspace{1cm} (3.2)$$

$$\hat{\beta}_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^4$$ \hspace{1cm} (3.3)$$

n is the sample size while $\hat{\beta}_1$ and $\hat{\beta}_2$ are the sample skewness and kurtosis coefficients. The asymptotic null distribution of JB is χ^2 with 2 degrees of freedom.

3.2. White Noise Testing

We have shown that the sample autocorrelations of $X^d_1, X^d_2, \ldots, X^d_n, d = 1, 2, 3, \ldots$.

DOI: 10.4236/am.2017.812136
are those of the white noise series if the sample autocorrelations of \(X_1, X_2, \ldots, X_n \) are also iid. We will adopt the Ljung-Box test by replacing the sample autocorrelations of the data \(X_1, X_2, \ldots, X_n \) with those of \(X_1^d, X_2^d, \ldots, X_n^d \), \(d = 1, 2, 3, \ldots \) and use the statistic

\[
Q^*(m) = n(n+2)\sum_{k=1}^{m} \left(\frac{\hat{\rho}_X^d(k)}{n-k} \right)^2
\]

(3.4)

The hypothesis of iid data is then rejected at level \(\alpha \) if the observed \(Q^*(m) \) is larger than the \(1 - \frac{\alpha}{n} \) quartile of the \(\chi^2(m) \) distribution.

3.3. Determining the Optimal Value of \(d \)

Figure 1 suggests two growth models: 1) the quadratic growth model and 2) exponential growth model. We are going to use the behavior of the variance and kurtosis coefficient to determine the optimal value of \(d \). The optimal value is that value of \(d \) that gives a perfect fit for either the quadratic or exponential growth curves. Using the standard deviation for \(5 \leq d \leq 10 \), the exponential growth curve performs better than the quadratic growth curve. The quadratic growth curve fitted negative values to positive values at the different data points while the exponential curve fitted only positive values. However, the residual of the resulting exponential curve is very large as measured by the following accuracy measures [21].

Mean Absolute Error (MAE)

\[
\text{MAE} = \frac{1}{m} \sum_{i=1}^{m} |\hat{e}_i|
\]

(3.5)

Mean Absolute Percentage Error (MAPE)

\[
\text{MAPE} = \frac{1}{m} \sum_{i=1}^{m} \left| \frac{\hat{e}_i}{Z_i} \right| \times 100
\]

(3.6)

Mean Squared Error (MSE)

\[
\text{MSE} = \frac{1}{m} \sum_{i=1}^{m} \hat{e}_i^2
\]

(3.7)

where \(m \) is the value of \(d \) used in the trend analysis and,

\[
\hat{e}_i = \begin{cases}
\hat{\sigma}_{Y_i} - \sigma_{Y_i} & \text{for the standard deviation of } Y_i = X_i^d \\
\hat{\beta}_2 - \beta_2 & \text{for the Kurtosis coefficient of } Y_i = X_i^d
\end{cases}
\]

(3.8)

Table 3 gives the accuracy measures for the trend analysis of the standard deviation of \(Y_i = X_i^d \) when \(\sigma = 1 \) while **Table 4** gives detailed results for optimality.

When \(d = 4 \), the quadratic growth curve performs better than the exponential curve with minimal residual. Both curves fitted positive values at different data points. We also observed from **Table 3** that with \(d = 3 \), the quadratic
Table 3. Summary of accuracy measures for the exponential and quadratic curves using the standard deviation of $Y = X^d$ for $d = 3, 4, \cdots, 10$.

d	10	9	8	7	6	5	4	3
MAD	1192.79	270.02	63.70	15.80	4.14	1.44	0.43	0.29
MAPE	30.28	27.92	25.50	22.58	19.87	18.42	14.92	15.17
MSE	1,1265.334	518,067.00	25291.80	1385.29	75.87	5.70	0.31	0.10

Quadratic Curve

d	10	9	8	7	6	5	4	3
MAD	3136.76	697.92	154.93	36.78	7.94	1.73	0.14	0.00
MAPE	91,218.00	11,088.40	3059.10	872.67	240.26	63.46	7.10	0.00
MSE	14,342,392.00	664,288.00	31,868.30	1610.77	74.10	3.66	0.03	0.00

Table 4. Fitting exponential and quadratic curves to the standard deviation of powers of linear Gaussian white noise process when $\sigma = 1$ and $d = 3, 4$.

d^*	σ_c								
	(\(\sigma = 1\))								
1	1.0000	0.8333	0.1667	1.0711	-0.0711	0.8957	0.1043	1.0000	0.0000
2	1.4142	1.8276	-0.4134	1.2010	0.2132	1.7627	-0.3485	1.4142	0.0000
3	3.8730	4.0084	-0.1354	4.0862	-0.2132	3.4690	0.4040	3.8730	0.0000
4	9.7980	8.7916	1.0064	9.7269	0.0711	9.7269	0.0711	9.7269	0.0711
5	30.7409								
6	100.8464								
7	367.6071								
8	1419.8591								
9	5870.2151								
10	25,570.2180								

Fit to 4 points	Fit to 3 points						
Exponential	Quadratic	Exponential	Quadratic				
Fits	Residual	Fits	Residual	Fits	Residual	Fits	Residual
MAPE	14.9181	7.1044	15.1664	0.0000			
MAD	0.4305	0.1422	0.2856	0.0000			
MD	0.3075	0.0253	0.0986	0.0000			

*Exponential and Quadratic trend analysis cannot be possible for $d = 2$ or $d = 1$.

growth curve performs optimally than the exponential growth curve. The resulting quadratic curve yielded zero residual. The implication of the result is that we obtain a perfect fit for the data point when $d = 3$ for the quadratic curve only. Hence, the optimal value of d is 3 when we use the standard deviation curve.

Figure 2 also suggests two growth models: 1) the quadratic growth model and 2) exponential growth model. Using the kurtosis coefficient for $4 \leq d \leq 6$, the
exponential growth curve performs better than the quadratic growth curve. The quadratic growth curve fitted negative values to positive values at the different data points while the exponential curve fitted only positive values.

When \(d = 3 \), the quadratic growth curve performs optimally than the exponential growth curve. The resulting quadratic curve yielded zero residual as that of the standard deviation curve. The implication of these results is that we obtain a perfect fit for the data point when \(d = 3 \) for the quadratic curve only. Hence, the optimal value of \(d \) is 3. Therefore, we recommend that in order to stop the variance from exploding, the order of the data points should not be raised to power greater than three.

3.4. On the Use of Higher Moment for the Acceptability of the Linear Gaussian White Noise Process

We have shown that if \(X_t, t \in Z \) is a linear Gaussian white noise process, \(Y_t = X_t^d; d = 1,2,\ldots \) is also iid but not normally distributed. Using the variances and kurtosis of \(Y_t = X_t^d \), we were able to establish that the optimal value of \(d \) is three. Variances and kurtosis of \(Y_t = X_t^d \) have been given in Table 5 and Table 6 respectively. It is also clear from Equation (2.24) that the kurtosis itself is a function of variances. We, therefore, insist that for a stochastic process to be accepted as a linear Gaussian white noise process, the following variances must be true:

\[
\text{var}(X_t) = \sigma^2 \\
\text{var}(X_t^2) = 2\sigma^4 \\
\text{var}(X_t^3) = 15\sigma^6
\]

and

\[
\text{var}(X_t^4) = \sigma^4
\]

Table 5. Summary of accuracy measures for the exponential and quadratic curves using the Kurtosis Coefficient of \(Y_t = X_t^d \) for \(d = 3,4,5,6 \).

	Exponential			
d	6	5	4	3
MAD	4.14	1.44	0.43	0.29
MAPE	19.87	18.42	14.92	15.17
MSE	75.87	5.70	0.31	0.10

	Quadratic			
d	6	5	4	3
MAD	7.94	1.73	0.14	0.00
MAPE	240.26	63.46	7.10	0.00
MSE	74.10	3.66	0.03	0.00

*Exponential and Quadratic trend analysis cannot be possible for \(d = 2 \) or \(d = 1 \).
Table 6. Fitting exponential and quadratic curves to the kurtosis coefficient of powers of linear Gaussian white noise process when \(\sigma = 1 \) and \(d = 3, 4 \).

\(d \)	\(\beta_d \)	\(\sigma = 1 \)	\(\sigma = 1 \)				
1	3.000	3.21	−0.2188	8.52	−5.52	3.2523	−0.2523
2	15.000	12.829	2.1708	−1.56	16.56	12.7630	2.2370
3	46.200	51.134	−4.9342	62.76	−16.56	50.0855	−3.8855
4	207.000	203.808	3.1922	201.48	5.52		
5	733.157	6 3037.836					
6							

MAPE 8.4966 83.2277 10.5780 0.00
MAD 2.6290 11.0400 2.1229 0.00
MD 9.8239 152.3520 6.7217 0.00

In view of these, we suggest that the two following null hypothesis be tested before a stochastic process is accepted as a linear Gaussian white noise process:

\[
H_{01} : \text{var} \left(X_d^2 \right) = 2 \sigma_0^4 \quad (3.12)
\]

and

\[
H_{02} : \text{var} \left(X_d^3 \right) = 15 \sigma_0^6 \quad (3.13)
\]

Then, the chi-square test statistic [22] for testing (3.12) is

\[
\chi^2_{cal} = \frac{(n-1)S^2_{X_d^2}}{2\sigma_0^4} \quad (3.14)
\]

while that for (3.13) is

\[
\chi^2_{cal} = \frac{(n-1)S^2_{X_d^3}}{15\sigma_0^6} \quad (3.15)
\]

where \(S^2_{X_d^2} \) and \(S^2_{X_d^3} \) are the estimated variance of the second and third power of the stochastic process, \(\sigma_0^2 \) is the null value for the true variance of the stochastic process and \(n \) is the number of observations of the random digits. The null hypothesis is rejected at level \(\alpha \) if the observed value of \(\chi^2_{cal} \) is larger than \(1 - \frac{\alpha}{2} \) quartile of the chi-square distribution with \(n-1 \) degree of freedom.

4. Results

For an illustration, six (6) random digits were simulated using Minitab 16 series (see Appendix). The simulated series met the following conditions: 1) The simulated series \(\left(X_d \right) \) are normal and 2) Powers of \(X_d^{d}, d = 1, 2, 3, 4, 5 \) are shown to be iid but not normally distributed (see Table 7).
Table 7. Descriptive statistics and estimate of the test statistic for rejecting the null hypothesis of equality of the variance of higher moment for six simulated series, \(X_t = e_t e_t^* \sim N(0, 1) \), as linear Gaussian white noise process.

Series S/No	Statistic	True Value	Estimated Value	Skewness	Kurtosis	JB value	Q* Estimate of Test Statistic	Decision at 5% level	
		Mean	Median	Min	Max	\(\gamma_1 \)	\(\gamma_2 \)	\(\frac{2}{2d^2} \) \(S_{2d}^2 \)	
	\(X_t \)	0.0000	0.0000	1.0000	0.0000	2.05	2.39	0.11	1.70
	\(X_t \)	0.9900	0.5866	2.0000	1.3546	5.71	1.82	3.60	63.64
1	\(X_t \)	0.1079	0.0000	15.0000	7.8106	8.60	13.66	8.73	361.84
	\(X_t \)	0.0000	0.0000	1.0000	0.0000	2.09	2.43	0.08	2.09
	\(X_t \)	0.9900	0.4951	2.0000	1.2681	5.90	1.72	3.39	97.19
2	\(X_t \)	0.0753	0.0000	15.0000	7.1472	9.12	14.32	10.53	384.98
	\(X_t \)	0.0000	0.2008	1.0000	0.0000	2.29	2.07	0.16	1.98
	\(X_t \)	0.9900	0.5060	2.0000	1.3493	5.25	1.79	2.74	64.84
3	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0543	1.0000	0.0000	3.07	2.88	0.06	0.41
	\(X_t \)	0.9900	0.4760	2.0000	1.3493	5.25	1.79	2.74	64.84
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30
	\(X_t \)	0.0000	0.0000	15.0000	7.0745	12.03	8.93	0.74	6.30

The value of the chi-square test statistic for testing (3.12) and (3.13) are also shown in Table 7. We observed that the null hypothesis is rejected at level \(\alpha \) equals 5% for two simulated series and is not rejected for the other four. The result clearly showed that testing the variance of higher moments for \(Y_t = X_t^d, d = 2, 3 \) is a necessary condition for accepting the linear Gaussian white noise process.

5. Conclusion

We have been able to show that if \(X_t, t \in Z \) are iid then, all powers of \(X_t, t \in Z \) are also iid but, non-normal. Hence, we computed the kurtosis of some higher powers of \(X_t, t \in Z \) and established that an increase in the powers of \(X_t, t \in Z \) leads to an exponential increase on the kurtosis. We recommend that stochastic processes (white noise processes) and processes with similar covariance structure should be considered for normality, white noise testing and for test of the variance of higher moments being equal to the theoretical values of Table 1 with \(d = 1, 2, 3 \).
References

[1] Brockwell, P.J. and Davies, R.A. (2002) Introduction to Time Series and Forecasting. 2nd Edition, Springer, New York. [https://doi.org/10.1007/b97391]

[2] Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994) Time Series Analysis: Forecasting and Control. 3rd Edition, John Wiley and Sons Inc. Publication, Hoboken.

[3] Fuller, W.A. (1976) Introduction to Statistical Time Series. 2nd Edition, Wiley, New York.

[4] Box, G.E.P. and Pierce, D.A. (1970) Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models. *Journal of the American Statistical Association*, 65, 1509-1526. [https://doi.org/10.1080/01621459.1970.10481180]

[5] Hong, Y. (1996) Consistent Testing for Serial Correlation of Unknown Form. *Econometrica*, 64, 837-864. [https://doi.org/10.2307/2171847]

[6] Shao, X. (2011) Testing for White Noise under Unknown Dependence and Its Applications to Goodness-of-Fit for Time Series Models. *Econometric Theory*, 27, 1-32. [https://doi.org/10.1017/S0266466610000253]

[7] Ljung, G.M. and Box, G.E.P. (1978) On a Measure of Lack of Fit in Time Series Model. *Biometrika*, 65, 297-303. [https://doi.org/10.1093/biomet/65.2.297]

[8] Tsay, R.S. (2002) Analysis of Financial Time Series. John Willey & Sons, New York.

[9] Mcleod, A.I. and Li, W.K. (1983) Diagnostic Checking ARMA Time Series Models using Squared Residuals Autocorrelations. *Journal of Time Series Analysis*, 4, 269-273.

[10] Bartlett, M.S. (1956) An Introduction to Stochastic Processes: With Special Reference to Methods and Applications. University Press, Cambridge.

[11] Genander, U. and Rosenblast, M. (1957) Statistical Analysis of Stationary Time Series. Wiley, New York.

[12] Durlauf, S. (1991) Spectral Based Testing for the Martingale Hypothesis. *Journal of Econometrics*, 50, 355-376. [https://doi.org/10.1016/0304-4076(91)90025-9]

[13] Deo, R.S. (2000) Spectral Test of the Martingale Hypothesis under Conditional Heteroscedasticity. *Journal of Econometrics*, 99, 291-315. [https://doi.org/10.1016/S0304-4076(00)00027-0]

[14] Granger, C.W. and Anderson, A.P. (1978) An Introduction to Bilinear Time Series Model. Vandenhoek and Ruprecht, Gutingen.

[15] Iwueze, I.S. (1988) Bilinear White Noise Processes. *Nigerian Journal of Mathematics and Applications*, 1, 51-63.

[16] Ibrahim, A.M. (2013) Extension of Factorial Concept to Negative Numbers. *Notes on Number Theory and Discrete Mathematics*, 19, 30-42.

[17] Grossman, S.I. (1981) Calculus. 2nd Edition, Academic Press, Inc., New York.

[18] Jarque, C.M. and Bera, A.K. (1980) Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals. *Economics Letters*, 6, 255-259. [https://doi.org/10.1016/0165-1765(80)90024-5]

[19] Jarque, C.M. and Bera, A.K. (1981) Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals: Monte Carlo Evidence. *Economics Letters*, 7, 313-318. [https://doi.org/10.1016/0165-1765(81)90035-5]

[20] Jarque, C.M. and Bera, A.K. (1987) A Tests for Normality of Observations and Regression Residuals. *International Statistical Review*, 55, 163-172. [https://doi.org/10.2307/1403192]
[21] Hyndman, R.J. and Athanasopoulos, G. (2012) Forecasting: Principles and Practice. OTexts. https://otexts.com/fpp

[22] Milton, J.S. and Jesse, C.A. (1995) Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences. McGraw Hill Inc., New York.
Appendix

Table A1. Six simulated white noise series: $X_i = e_i, e_i \sim N(0,1)$ data.

S/No	X_1	X_2	X_3	X_4	X_5	X_6	
1	-0.27398	-1.02796	-0.04443	0.67426	-0.84334	0.42972	
2	-1.02993	-0.97605	0.49527	1.43828	-1.89952	1.03306	
3	0.38807	-1.30594	1.95275	-0.40151	0.34148	0.80854	
4	0.68088	0.09151	-1.04181	-3.07185	3.12580	-0.10717	
5	-0.96843	0.62066	-0.57864	0.109	-0.23441	-0.9846	
6	1.39035	1.05129	0.28400	-1.52629	-1.40929	-2.04065	
7	1.81134	-0.6788	-1.40899	-0.53151	-0.17057	1.12873	
8	-1.3766	0.97448	0.89222	1.57008	1.01262	-0.11163	
9	-0.24121	1.77527	0.02342	0.72712	-0.17059	-0.80648	
10	-1.45076	-0.13678	0.29285	-0.10475	0.66291	-1.08512	
11	-0.25423	-0.46946	-1.95159	-0.08747	0.20546	0.07242	
12	0.21163	0.82766	-0.68752	1.07637	-1.34176	-2.50489	
13	1.34799	-0.56029	0.78114	-1.89811	-0.95515	0.17464	
14	-0.29782	0.01628	-0.66970	-0.2508	-0.56939	-0.86345	
15	0.62809	0.20895	-0.44001	0.93703	0.65664	0.77652	
16	-1.6913	-0.946	-0.04784	-0.3515	0.91394	0.49688	
17	0.4933	0.96825	-1.13509	1.44387	-1.35495	0.38705	
18	-0.51967	0.22284	-0.04708	0.48667	0.02011	-0.35363	
19	0.6396	0.76324	1.23312	0.84948	0.20669	0.37068	
20	-0.82868	0.58037	0.29271	-1.27291	-0.60221	0.51689	
21	-1.11643	0.65455	-0.50167	-0.46987	-0.03738	0.73852	
22	-1.44951	-1.59485	-0.73051	0.31361	0.78300	0.22635	
23	-1.16781	-0.83839	-0.89062	0.86961	1.02946	-0.30452	
24	0.5073	-0.68632	1.32991	-0.62985	-0.48457	0.75797	
25	0.87357	0.52189	0.46167	-1.7023	1.26638	0.58846	
26	0.92886	0.00997	-0.67989	-0.13366	-0.37355	-0.58715	
27	-0.19538	1.14368	-0.64697	0.8744	1.00173	0.39232	
28	-0.89347	-0.27941	0.44869	-0.76926	-1.04180	-1.36701	
29	0.22841	1.19672	-2.29155	-0.98832	-0.03484	0.63325	
30	-0.41321	0.66025	-0.62024	0.81164	-2.27280	0.91453	
31	0.24934	1.75558	-1.96544	0.9269	-2.36826	0.79198	
32	2.24352	0.061	-1.14678	0.23412	0.58710	0.62407	
33	-0.43648	-1.90088	-0.59296	-1.43724	-0.83297	0.91071	
34	-0.47532	1.40511	-1.98847	-0.94486	1.61033	1.14803	
35	-1.26658	-0.24919	1.49152	1.36682	0.39868	-1.06265	
---	-----	-----	-----	-----	-----	-----	
36	0.46604	−0.46125	0.99116	−0.86239	0.84830	0.33544	
37	−0.26797	−0.64382	1.57322	0.97428	−0.28943	−0.90818	
38	−1.8616	−1.20993	0.31967	−1.22535	0.14880	−0.15342	
39	−0.79105	0.60132	0.09620	0.10762	0.05979	−1.01534	
40	−0.7376	−0.12083	−1.23366	−0.80141	−0.13743	−2.73551	
41	−0.54908	−2.08959	−0.96486	1.57005	−0.24971	−0.24047	
42	0.75899	−0.0693	0.98989	−1.94304	1.48971	0.83852	
43	0.87974	0.39937	0.66662	−0.33209	0.11830	−0.13159	
44	−1.56767	−1.2644	0.25153	0.25179	0.57021	0.3024	
45	0.88676	−0.17061	0.73065	−1.12438	0.21618	−0.7871	
46	−0.83478	−0.96567	−1.49011	−0.70519	−0.01597	−0.87175	
47	−0.09571	−0.44299	−0.98312	−0.92953	−0.43570	−0.63546	
48	0.08933	−0.41813	0.61319	−1.00549	1.60558	−1.20903	
49	1.03336	−0.72059	0.91105	−0.04879	−0.88526	0.18635	
50	−1.63874	1.65666	1.05754	−0.10511	−0.73240	0.11214	
51	0.13195	0.24313	0.83947	−0.37358	0.94916	−1.12998	
52	0.13345	1.67588	0.34752	0.23772	−2.75144	0.22946	
53	−0.04943	−0.68234	−0.69456	−0.08023	1.32076	1.74814	
54	−0.18236	0.26408	1.23475	0.47796	−0.55622	0.52767	
55	−0.26388	1.14863	−2.04852	−0.51304	−0.25991	0.17793	
56	−0.12861	0.54258	−0.54983	0.91927	−0.29258	2.04162	
57	−0.70432	−0.65895	0.52073	0.52957	0.27476	−0.26149	
58	−1.72085	−0.08292	1.08228	−0.94107	0.20609	−0.29193	
59	−1.32903	0.13364	1.20236	−0.02343	0.57154	−0.51553	
60	−1.20925	−0.87405	−1.04843	2.88022	0.12533	−1.2401	
61	0.49597	0.02139	0.15003	1.47823	0.67854	−0.15581	
62	0.95511	−0.21064	0.87717	0.33566	0.10858	−0.08128	
63	0.25296	−1.26454	−0.30127	0.73055	0.43881	0.18683	
64	0.81087	1.29401	−1.00489	0.57767	−1.16929	1.07444	
65	2.06072	1.4557	0.32523	−0.32369	−0.54597	−0.8368	
66	2.39035	−0.727	−0.07202	0.41405	1.18591	0.44699	
67	−1.38261	0.97672	0.72710	−0.61505	1.21889	−0.26585	
68	−0.76678	−1.25025	−1.10466	−0.67036	1.72606	1.26778	
69	1.16598	0.66914	−0.49042	−0.40702	−0.98953	0.05222	
70	1.45608	0.22788	−1.19467	0.28835	−0.04517	1.44719	
71	0.03912	−0.64965	0.68138	1.18748	1.77876	−1.28748	
72	0.41341	0.81042	0.46675	−0.86381	0.26484	−1.61369	
	73	0.20976	−1.30694	0.39714	−0.10127	−0.83961	0.53758
----	------	---------	----------	---------	----------	----------	---------
	74	0.54664	1.62919	−0.63787	−0.49827	−0.21413	−0.75779
	75	0.2277	1.47017	0.33296	0.38573	1.54837	1.49182
	76	0.43397	2.42827	0.90047	−0.08696	1.11924	0.74011
	77	1.03468	−1.77708	−0.03324	−1.33189	−1.16183	−0.06952
	78	0.92753	0.07674	1.36678	−0.0266	−0.12475	0.8712
	79	−2.04885	0.59972	−0.41621	−0.32919	−1.21666	−0.57515
	80	1.23434	−0.39571	2.07453	1.93271	−0.37863	1.49873
	81	1.74502	−0.67093	0.69519	−0.30482	0.17154	0.52483
	82	−0.3303	−1.15588	−0.91268	1.10958	−1.03211	−1.69178
	83	1.22417	−1.19194	0.60643	0.81764	1.04171	0.14834
	84	−1.39076	0.27032	−0.29833	0.16774	0.90110	1.72858
	85	1.2308	1.00547	1.75159	0.8735	0.06824	−0.76692
	86	−1.01361	0.32435	0.54000	0.19267	0.52393	1.39012
	87	1.31721	0.96086	0.60794	−0.24791	1.59886	−1.60376
	88	0.0169	0.66278	0.45064	−1.2737	−1.18518	−0.51405
	89	0.68989	−1.13499	1.32501	−0.05978	0.21521	−2.13481
	90	−0.44958	−0.61601	0.11542	−1.41891	0.21991	0.04175
	91	−0.89708	1.06236	0.28849	1.87618	0.37278	−0.94765
	92	0.38987	1.84019	−1.67447	−2.01358	−0.97390	0.78005
	93	−0.73121	0.29223	1.03518	−0.88304	−1.43246	0.37597
	94	−0.68488	−1.8725	−1.02913	0.62784	−0.92247	0.32093
	95	−0.01909	−0.4742	−0.89422	0.04727	0.13853	3.06963
	96	1.45817	−1.07199	−1.32477	1.92723	−0.36939	−1.28983
	97	0.89708	−1.69795	−1.37860	0.06466	1.08810	−0.22214
	98	0.79947	−1.33792	0.30006	0.66493	−1.27345	0.51469
	99	−0.76504	1.23803	0.43708	0.75755	−1.22752	0.20206
	100	0.61205	−0.15894	2.02864	−0.0729	−0.02931	0.06008