Capacitive storage in mycelium substrate

Alexander E. Beasley∗, Anna L. Powell, and Andrew Adamatzky

Unconventional Computing Laboratory, UWE, Bristol, UK

March 18, 2020

Abstract

The emerging field of living technologies aims to create new functional hybrid materials in which living systems interface with artificial ones. Combining research into living technologies with emerging developments in computing architecture has enabled the generation of organic electronics from plants and slime mould. Here, we expand on this work by studying capacitive properties of a substrate colonised by mycelium of grey oyster fungi, Pleurotus ostreatus. Capacitors play a fundamental role in traditional analogue and digital electronic systems and have a range of uses including sensing, energy storage and filter circuits. Mycelium has the potential to be used as an organic replacement for traditional capacitor technology. Here, we show that the capacitance of mycelium is in the order of hundreds of pico-Farads. We also demonstrate that the charge density of the mycelium ‘dielectric’ decays rapidly with increasing distance from the source probes. This is important as it indicates that small cells of mycelium could be used as a charge carrier or storage medium, when employed as part of an array with reasonable density.

Keywords: fungi, capacitance, mycelium, storage, biocomputing

1 Introduction

The study of novel substrates for sensing, storing and processing information draws on work from the fields of unconventional computing, living technology and organic electronics. The field of unconventional computing aims to define the principles of information processing in living, physical and chemical systems and applies this knowledge to the development of future computing devices and architectures [1]. Research into living technologies is focused on the co-functional integration of animate and non-organic systems [9]. Finally, organic electronics [54, 31] looks to use naturally occurring materials as analogues to traditional semi-conductor circuits [57], which often requires functionalisation using polymers or metallic compounds to exploit ionic movement [34]. The development of organic electronics promises a technology that is low-cost and has low production temperature requirements [37]. However, difficulties such as relatively low gain of organic transistors (approx. 5), and the behavioural variability inherently means that there is a large amount of research effort being placed into organic thin film transistors [66, 59, 24, 58], organic LEDs [52, 40], and organic capacitors [35, 51, 41]. The capacitive properties of a device allows it to either store energy or react to AC/DC signals differently. There are a number of applications in which this property may be utilised, such as energy harvesting [7], memory [60], or filter circuits [10]. Hybrid electronic circuits are a concept that looks to combine traditional silicon, semi-conductor devices with elements found in nature [36, 8].

The capacitive properties of living tissues [38] have a wide range of potential applications, e.g. the estimation of a plan root system size [18, 45], quantifying the DNA content of eukaryotic cells [59], analysing water transport pathways in plants [13], measuring heat injury in plants [65], measuring contents of minerals in bones [62], gauging firmness of apples [11], sugar contents of citrus fruits [12], maturity of avocados [64], estimating depth of epidermal barriers [15], studies of endo- and exocytosis of single cells [48], and approximating mass and morphology of microbial colonies [25, 12, 63].

∗Corresponding author: Alexander Beasley, alex.beasley@uwe.ac.uk
In the present study we focus on the capacitive properties of the mycelium of the grey oyster fungi *Pleurotus ostreatus* for several reasons.

Firstly, research into the capacitive properties of fungi is lacking, despite their huge potential for bioelectronic applications. Fungi are the largest, most widely distributed and oldest group of living organisms on the planet [17]. The smallest fungi are microscopic single cells, the largest, *Armillaria bulbosa*, occupies 15 hectares and weighs 10 tons [55]. Fungi sense light, chemicals, gases, gravity and electric fields [14] as well as demonstrating mechanosensing behaviour [32]. Thus, their electrical properties can be tuned via various inputs.

Secondly, fungi have the potential to be used as distributed living computing devices, i.e. large-scale networks of mycelium, which collect and analyse information about environment and execute some decision making processes [2].

Finally, there is a growing interest in developing buildings from pre-fabricated blocks of substrates colonised by fungi [50, 4, 20]. A recent initiative aims to grow monolithic constructions in which living mycelium coexists with dried mycelium, functionalised with nanoparticles and polymers [3]. In such a case, fungi could be act as optical, tactile and chemical sensors, fuse and process information and perform decision making computations [2].

Providing local charge to areas of mycelium allows the storage of information inside the substrate. Identifying the area around which the induced charge can be detected allows the construction of an array in the substrate where each cell can contain individual bits of information. Determining the capacitive properties of fungi takes a step towards the realisation of fungal analogue circuits — circuits that use fungi to replace traditional semiconductors.

The rest of this paper is organised as follows. Section 2 describes the experimental methods used for the analysis of the substrate. Section 3 presents the results with discussions. Finally, conclusions are drawn in Sect. 4.

2 Experimental method

Mycelium of the grey oyster fungi *Pleurotus ostreatus* (Ann Miller’s Speciality Mushrooms Ltd, UK) was cultivated on damp wood shavings (Fig. 1(a)). Control samples of the growth medium, woodshavings, were not colonised by mycelium. Iridium-coated stainless steel sub-dermal needles with twisted cables (Spes Medica SRL, Italy) were inserted in the colonised substrate. An LCR meter (BK Precision, *model number*) was used to provide a nominal reading of the capacitance of the sample with probes at 10 mm, 20 mm, 40 mm and 50 mm separation.

The samples were charged using a bench top DC power supply (BK precision 9206) to 50 V. The power supply output was de-activated and the discharge curve was measured using a bench top digital multi-meter (DMM) Fluke 8846A (Fig. 1(b)). To fully characterise the capacitance of the samples, both the charge and discharge curves were monitored [23] with a number of probe separations (e.g. 10 mm, 20 mm, 40 mm, and 50 mm). Measurements from the DMM were automated through a serial terminal from a host PC. All bench-top equipment was high impedance to limit power lost through leakage in the test equipment. All plots were generated using MATLAB. The sample interval was approximately 0.33 s.

3 Results

Capacitance measurement

Samples of the growth medium and mycelium were measured for their capacitance using a standard bench top LCR meter (Tab. 1). The measured capacitance value of the mycelium substrate was two to four fold greater than that of the growth medium alone. The values of capacitance were also effected by the moisture content such that, if the capacitance of the mycelium was measured straight after it is sprayed with water, the capacitance typically increased compared to that of dry substrate.
Figure 1: Experimental setup. (a) A sample of the mycelium under test. (b) Voltage discharge measuring set up for mycelium samples.
Table 1: Capacitance of mycelium and growth mediums.

Sample	Electrode spacing	Capacitance (pF)
Dry wood shavings	10 mm	37.6
	20 mm	37.4
Damp wood shavings	10 mm	57
	20 mm	58.6
Mycelium (drying)	10 mm	184
	20 mm	144
	30 mm	146
	40 mm	120
	50 mm	118
Mycelium (freshly watered)	10 mm	193
	20 mm	186
	30 mm	134
	40 mm	125
	50 mm	139

Figure 2: Discharge of a substrate after being charged to 50 V with probes separation of 10 mm. (a) Dry wood shavings. (b) Damp wood shavings — shavings are immersed in water for half an hour after which excess water is drained. Data are discrete. Line is for eye guidance only.

Figure 3: Mycelium sample is charged to 50 V then allowed to discharge. Electrode spacing is varied (10 mm, 20 mm, 40 mm and 50 mm). Data are discrete. Line is for eye guidance only.
Table 2: Discharge curve fitness approximation coefficients (with 95% confidence bounds)

Sample	a	b
Dry wood shavings	104.9 (102.6, 107.2)	-0.4079 (-0.4151, -0.4007)
Damp wood shavings	6205 (5164, 7245)	-0.6261 (-0.6464, -0.6058)
Mycelium w/10 mm probe separation	2276 (2198, 2354)	-0.4446 (-0.4481, -0.441)
Mycelium w/20 mm probe separation	2688 (2544, 2833)	-0.4639 (-0.4695, -0.4583)
Mycelium w/40 mm probe separation	1569 (1458, 1680)	-0.3948 (-0.4021, -0.3875)
Mycelium w/50 mm probe separation	1413 (1311, 1516)	-0.3817 (-0.3891, -0.3743)

Discharge characteristics

Discharge characteristics of the growth medium and mycelium samples are shown in Figs. 2-3. Discharge curves were produced by setting up the DC power supply and DMM in parallel with each other. The substrate being tested is then charged to 50 V and the power supply output is disabled. The DMM continued to periodically measure the remaining charge in the substrate for a period of time. The sample interval was approximately 0.33 s.

The discharge curves for both the growth medium and the mycelium are very steep - approximated by an exponential (1).

\[f(x) = a \cdot e^{b \cdot x} \]

Where the parameters for 95% fitness for different mediums can be found in Table 2.

The discharge time is governed by equation \(\tau = RC \), where \(\tau \) is the time constant, \(R \) is a resistance, and \(C \) is a capacitance.

With capacitance in the order of pico-Farads, and input impedance of the source and measurement equipment in the order of mega-Ohms, it is expected that the discharge will be in the order of seconds.

Comparing the discharge curves of the growth medium to that of the mycelium samples, it is evident that the discharge was not as steep in the mycelium due to the increase in capacitance over the growth medium. However, it was still in the pico-Farad range and, therefore, the majority of charge was lost after just over 5 s. Increasing the separation distance of the probes (Fig. 3) had only a minimal effect on the capacitance of the substrate (shown in Tab. 1), and therefore minimal effect on the discharge curve.

Observing the charging and discharging behaviour of the sample around the source electrodes helps to build a better picture of the current density of the mycelium substrate. Figure 4 shows how we placed the measurement equipment electrodes 10 mm away from the source electrodes in the mycelium, in three different...
locations shown in Fig. 5. The sample was then charged for approximately 10 mins before the supply was turned off. The electrodes placed in ‘series’ (locations (a) and (b) on Fig. 5) with the charge electrodes (Fig. 4(a)) show minimum voltage detected beyond the supply electrodes in the horizontal plane, when the supply is active. Placing the measurement probes in ‘parallel’ (location (c) on Fig. 5) with the supply probes (Fig. 4(b)) demonstrates the fact that considerably more current is conducted between the supply probes in the vertical plane. When the supply is de-activated, the voltage around the supplies collapses almost instantly.

Charge characteristics

The charge curves in the specimens around the supply electrodes provide an insight into the ability of the substrate to conduct current. The sense electrodes were distanced from the source electrodes by varying amounts. Initially, the growth medium was studied on its own (Fig. 6). The dry wood shavings (Fig. 6(a)) showed very low voltage across the sense electrodes placed 10 mm away from the source electrodes (parallel). The dry shavings essentially acted as an open circuit and the measurement electrodes picked up noise. Damp wood shavings form a more contiguous mass and the introduction of the water helped to conduct current (Fig. 6(b)). From a 50 V source a maximum voltage of approx. 15 V was reached across the measurement electrodes. Although a different charge curve was generated for the two repeated runs with electrodes at different distances, we were primarily interested in the maximum observed voltage over the period Fig. 6(c) superimposes the charge curves from both dry and damp growth medium on to the same axis and Fig. 8 shows all charge curves for growth medium and mycelium.

Performing similar experiments with the mycelium substrate (Fig. 7), it was observed that moving the measurement electrodes further from the supply reduced the measured V_{max} over the 22 min measurement window. Figure 9 shows that the maximum measured voltage dropped rapidly as the distance from the source electrodes increased. At 10 mm away from the source, less than $1/5^{th}$ of the supply was measured over 22 mins, decreasing to less than $1/10^{th}$ at 15 mm separation. Figure 10 shows that, for the shortest paths between the two source electrodes, there was a higher current density, indicated by the field lines being closer together. As we move further away from the centre of the two probes, the current density decreased (arrows are shown further apart). Beyond the two probes in the ‘y–direction’, we would expect to experience very little current flow, however there are still fringing field effects which give rise to the small voltages shown in Fig. 4(a).

Additionally, the moisture content of the mycelium had an impact on its ability to conduct current. Figure 11 shows that, if the sample of mycelium is continually charged over a period where it is also drying out, the conducted charge can decrease rapidly as the water content vanishes. The measurement electrodes for this sample are 5 mm away from the source, however we see a decrease in measured voltage of almost 15 V over the measurement window.
Figure 6: Charge dynamics of growth substrate with measurement equipment set in parallel with charge electrodes. Electrode pairs were 10 mm apart. (a) Dry wood shavings. (b) Damp wood shavings. (c) Dry and damp wood shavings. Data are discrete. Line is for eye guidance only.

Figure 7: Charging of mycelium sample with measurement equipment set to measure at different distances from supply (5 mm, 10 mm, 15 mm, 20 mm, and 50 mm). Supply electrodes and measurement electrodes were arranged in parallel with each other.
Figure 8: Charge characteristics of wet and dry growth medium and mycelium with measurement probes at different distances from source probes.

Figure 9: Maximum measured voltage at increasing distance from supply probes in mycelium. Data are discrete. Line is for eye guidance only.
Figure 10: Current density between the two source electrodes. Current flow is shown in the physical direction rather than convention.

Figure 11: Mycelium charge measured 5 mm away from 50 V source while mycelium sample starts to dry out. Data are discrete. Line is for eye guidance only.
4 Conclusions

Mycelium exhibits traditional capacitive characteristics. The capacitance of the substance is in the order of 100’s of pico-Farads. Whilst this does not represent vast amounts of storage, it is up to four fold more than that of the growth medium alone. Most noticeably, the charge carrying capability of the substance drops off rapidly when measurements are taken away from the source electrodes. This shows great potential for the use of mycelium networks to conduct or store charge in local ‘hot spots’ that are isolated from other areas in the immediate vicinity. However, it is crucial that the moisture content of the mycelium is kept constant since the ability to carry charge is strongly influenced by moisture content.

Any potential analogue circuits implemented with live mycelium will be vulnerable to environmental conditions, especially humidity, availability of nutrients and removal of metabolites. Ideally, the mycelium networks should be stabilized so they continue functioning whilst drying. This stabilization can be achieved either by coating or priming the mycelium with polyaniline (PANI) or poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate (PEDOT-PSS). This approach has been proven to be successful in experiments with slime mould P. polycephalum [6, 6, 19], and thus it is likely that a similar technique may be applied to fungi. Moreover, PABI and PEDOT-PSS incorporated in, or interfaced with, mycelium can bring additional functionality in terms of conductive pathways [63], memory switches [30, 21] and synaptic-like learning [10, 33]. An optional route toward the functional fixation of mycelium would be doping the networks with substances that affect the electrical properties of mycelium, such as carbon nanotubes, graphene oxide, aluminium oxide, calcium phosphate. Similar studies conducted in our laboratory using slime mould and plants have shown that such an approach is feasible [28, 27]. Moreover using a combination of PANI and carbon nanotubes in the mycelium network afford it supercapacitive properties [22, 26]. Another potential direction of future studies would be to increase the capacity of the mycelium as a result of modifying the network geometry by varying nutritional conditions and temperature [14, 29, 46, 47], concentration of nutrients [49] or with chemical and physical stimuli [5]. With regards to the impact of our finding for the field of unconventional computing, we believe further research on experimental laboratory implementation of capacitive threshold logic [43, 39], adiabatic capacitive logic [44] and capacitive neuromorphic architectures [61] will yield fruitful insights.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme FET OPEN “Challenging current thinking” under grant agreement No 858132.

Author contributions

A.B. conceived the idea of experiments. A.A. and A.P. prepared the substrate colonised by mycelium. A.B. performed experiments, collected data and produced all plots in the manuscript. A.B. and A.A. prepared manuscript (wrote and reviewed all contents). A.P. reviewed manuscript.

References

[1] Andrew Adamatzky. Advances in Unconventional Computing. Springer, 2016.

[2] Andrew Adamatzky. Towards fungal computer. Interface focus, 8(6):20180029, 2018.

[3] Andrew Adamatzky, Phil Ayres, Gianluca Belotti, and Han Wosten. Fungal architecture. arXiv preprint arXiv:1912.13262, 2019.

[4] Freek VW Appels, Serena Camere, Maurizio Montalti, Elvin Karana, Kaspar MB Jansen, Jan Dijkstra-muis, Pauline Krijgsheld, and Han AB Wösten. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials & Design, 161:64–71, 2019.
Yong-Sun Bahn, Chaoyang Xue, Alexander Idnurm, Julian C Rutherford, Joseph Heitman, and Maria E Cardenas. Sensing the environment: lessons from fungi. Nature Reviews Microbiology, 5(1):57, 2007.

Silvia Battistoni, Alice Dimonte, and Victor Erokhin. Organic memristor based elements for bio-inspired computing. In Advances in Unconventional Computing, pages 469–496. Springer, 2017.

A. E. Beasley, C. R Bowen, D. A Zabek, and C. T. Clarke. Use it or lose it: The influence of second order effects of practical components on storing energy harvested by pyroelectric effects. Technisches Messen, 85(9):522–540, 2017.

Raymond G Beausoleil, Philip J Kuekes, Gregory S Snider, Shih-Yuan Wang, and R Stanley Williams. Nanoelectronic and nanophotonic interconnect. Proceedings of the IEEE, 96(2):230–247, 2008.

Mark A Bedau, John S McCaskill, Norman H Packard, and Steen Rasmussen. Living technology: Exploiting life’s principles in technology. Artificial Life, 16(1):89–97, 2010.

Tatiana Berzina, Anteo Smerieri, Marco Bernabò, Andrea Pucci, Giacomo Ruggeri, Victor Erokhin, and MP Fontana. Optimization of an organic memristor as an adaptive memory element. Journal of Applied Physics, 105(12):124515, 2009.

A. A. Bhosale and K. K. Sundaram. Firmness prediction of the apple using capacitance measurement. Procedia Technology, 12:163–167, 2014.

Ajit. A. Bhosale. Detection of sugar contents in citrus fruits by capacitance method. In 10th international conference interdisciplinarity in engineering, INTER-ENG 2016, pages 466–471, 2016.

Chris J Blackman and Tim J Brodribb. Two measures of leaf capacitance: insights into the water transport pathway and hydraulic conductance in leaves. Functional Plant Biology, 38(2):118–126, 2011.

Lynne Boddy, John M Wells, Claire Culshaw, and Damian P Donnelly. Fractal analysis in studies of mycelium in soil. Geoderma, 88(3):301–328, 1999.

Steven T Boyce, Andrew P Supp, M Dana Harriger, William L Pickens, R Randall Wickett, and Steven B Hoath. Surface electrical capacitance as a noninvasive index of epidermal barrier in cultured skin substitutes in athymic mice. Journal of investigative dermatology, 107(1):82–87, 1996.

Robert W Brodersen, Paul R Gray, and David A Hodges. Mos switched-capacitor filters. Proceedings of the IEEE, 67(1):61–75, 1979.

Michael John Carlile, Sarah C Watkinson, and Graham W Gooday. The fungi. Gulf Professional Publishing, 2001.

Oldrich Chloupek. Evaluation of the size of a plant’s root system using its electrical capacitance. Plant and Soil, 48(2):525–532, 1977.

Angelica Cifarelli, Tatiana Berzina, and Victor Erokhin. Bio-organic memristive device: polyaniline–physarum polycephalum interface. physica status solidi (c), 12(1-2):218–221, 2015.

Joseph Dahmen. Soft matter: Responsive architectural operations. Technoetic Arts, 14(1-2):113–125, 2016.

VA Demin, VV Erokhin, PK Kashkarov, and MV Kovalchuk. Electrochemical model of polyaniline-based memristor with mass transfer step. In AIP Conference Proceedings, volume 1648, page 280005. AIP Publishing LLC, 2015.

Bin Dong, Ben-Lin He, Cai-Ling Xu, and Hu-Lin Li. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Materials Science and Engineering: B, 143(1-3):7–13, 2007.

M. Dulik and S. Jurecka. Measuring capacitance of various types of structures. In 2014 ELEKTRO, pages 640–644, May 2014.
[24] H. Endoh, S. Toguchi, and K. Kudo. High performance vertical-type organic transistors and organic light emitting transistors. In Polytronic 2007 - 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, pages 139–142, Jan 2007.

[25] R Fehrenbach, M Comberbach, and JO Petre. On-line biomass monitoring by capacitance measurement. Journal of biotechnology, 23(3):303–314, 1992.

[26] Elzbieta Frackowiak, Volodymyd Khomenko, Krzysztof Jurewicz, Katarzyna Lota, and Francois Béguin. Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 153(2):413–418, 2006.

[27] N Gizzie, R Mayne, S Yitzchaik, M Ikbal, and A Adamatzky. Living wires — effects of size and coating of gold nanoparticles in altering the electrical properties of Physarum polycephalum and lettuce seedlings. Nano LIFE, 1(6):1650001, 2015.

[28] Nina Gizzie, Richard Mayne, David Patton, Paul Kendrick, and Andrew Adamatzky. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms’ electrical characteristics. Biosystems, 147:28–34, 2016.

[29] Ha Thi Hoa and Chun-Li Wang. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(1):14–23, 2015.

[30] Gerard David Howard, Larry Bull, Ben de Lacy Costello, Andrew Adamatzky, and Victor Erokhin. A spice model of the peo-pani memristor. International Journal of Bifurcation and Chaos, 23(06):1350112, 2013.

[31] Hagen Klauk. Organic electronics: materials, manufacturing, and applications. John Wiley & Sons, 2006.

[32] Ching Kung. A possible unifying principle for mechanosensation. Nature, 436(7051):647, 2005.

[33] DA Lapkin, AV Emelyanov, VA Demin, TS Berzina, and VV Erokhin. Spike-timing-dependent plasticity of polyaniline-based memristive element. Microelectronic Engineering, 185:43–47, 2018.

[34] J. M. Leger. Organic electronics: The ions have it. Advanced Materials, 20(4):837–841, 2008.

[35] Wen-Hua Li, Kui Ding, Han-Rui Tian, Ming-Shui Yao, Bhaskar Nath, Wei-Hua Deng, Yaobing Wang, and Gang Xu. Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater, 27:1702067, 2017.

[36] Wei Lu and Charles M Lieber. Nanoelectronics from the bottom up. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, pages 137–146. World Scientific, 2010.

[37] Hagen Marien, Michiel Steyaert, and Paul Heremans. Analog Organic Electronics. Springer, 2013.

[38] ET McAdams and J Jossinet. Tissue impedance: a historical overview. Physiological measurement, 16(3A):A1, 1995.

[39] Alejandro Medina-Santiago, Mario Alfredo Reyes-Barranca, Ignacio Alguero-Badillo, Alfonso Martinez Cruz, Kelsey Alejandra Ramírez Gutiérrez, and Adrián Eleazar Cortés-Barrón. Reconfigurable arithmetic logic unit designed with threshold logic gates. IET Circuits, Devices & Systems, 13(1):21–30, 2018.

[40] M. Mizukami, S. Cho, K. Watanabe, M. Abiko, Y. Suzuri, S. Tokito, and J. Kido. Flexible organic light-emitting diode displays driven by inkjet-printed high-mobility organic thin-film transistors. IEEE Electron Device Letters, 39(1):39–42, Jan 2018.

[41] T. Morimoto, M. Tsushima, M. Suhara, K. Hiratsuka, Y. Sanada, and T. Kawasato. Electric double-layer capacitor using organic electrolyte. MRS Proceedings, 496:627, 1997.
[42] André A Neves, Dora A Pereira, Luís M Vieira, and José C Menezes. Real time monitoring biomass concentration in streptomyces clavuligerus cultivations with industrial media using a capacitance probe. *Journal of biotechnology*, 84(1):45–52, 2000.

[43] Hakan Ozdemir, Asim Kepkep, Banu Pamir, Yusuf Leblebici, and Ugur Cilingiroglu. A capacitive threshold-logic gate. *IEEE Journal of Solid-State Circuits*, 31(8):1141–1150, 1996.

[44] Gaël Pillonnet, Hervé Fanet, and Samer Houri. Adiabatic capacitive logic: a paradigm for low-power logic. In *2017 IEEE International Symposium on Circuits and Systems (ISCAS)*, pages 1–4. IEEE, 2017.

[45] Kálmán Rajkai, KR Végh, and T Nacs. Electrical capacitance as the indicator of root size and activity. *Agrokémia és Talajtan*, 51(1-2):89–98, 2002.

[46] Alan DM Rayner. The challenge of the individualistic mycelium. *Mycologia*, pages 48–71, 1991.

[47] CM Regalado, JW Crawford, K Ritz, and BD Sleeman. The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. *Mycological Research*, 100(12):1473–1480, 1996.

[48] Boštjan Rituper, Alenka Guček, Jernej Jorgačevski, Ajda Flšker, Marko Kreft, and Robert Zorec. High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. *Nature protocols*, 8(6):1169, 2013.

[49] Karl Ritz. Growth responses of some soil fungi to spatially heterogeneous nutrients. *FEMS Microbiology Ecology*, 16(4):269–279, 1995.

[50] Philip Ross. Your rotten future will be great. *The Routledge Companion to Biology in Art and Architecture*, page 252, 2016.

[51] Marco Sangermano, Alessandra Vitale, Nicolo Razza, Alain Favetto, Marco Paleari, and Paolo Ariano. Multilayer UV-cured organic capacitors. *Polymer*, 56:131–134, 2015.

[52] T. Sano, Y. Suzuri, M. Koden, T. Yuki, H. Nakada, and J. Kido. Organic light emitting diodes for lighting applications. In *2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)*, volume 26th, pages 1–4, July 2019.

[53] M Sarra, AP Ison, and MD Lilly. The relationships between biomass concentration, determined by a capacitance-based probe, rheology and morphology of saccharopolyspora erythraea cultures. *Journal of Biotechnology*, 51(2):157–165, 1996.

[54] Jane M Shaw and Paul F Seidler. Organic electronics: introduction. *IBM Journal of Research and Development*, 45(1):3–9, 2001.

[55] Myron L Smith, Johann N Bruhn, and James B Anderson. The fungus Armillaria bulbosa is among the largest and oldest living organisms. *Nature*, 356(6368):428, 1992.

[56] LL Sohn, OA Saleh, GR Facer, AJ Beavis, RS Allan, and Daniel A Notterman. Capacitance cytometry: Measuring biological cells one by one. *Proceedings of the National Academy of Sciences*, 97(20):10687–10690, 2000.

[57] Eleni Stavrinidou, Roger Gabrielsson, Eliot Gomez, Xavier Crispin, Ove Nilson, Daniel T. Simon, and Magnus Berggren. Electronic plants. *Scientific Advances*, 1(10):1–8, 2015.

[58] W. Tang, J. Zhao, Q. Li, and X. Guo. Highly sensitive low power ion-sensitive organic thin-film transistors. In *2018 9th International Conference on Computer Aided Design for Thin-Film Transistors (CAD-TFT)*, pages 1–1, Nov 2018.

[59] S. Tokito. Flexible printed organic thin-film transistor devices and integrated circuit applications. In *2018 International Flexible Electronics Technology Conference (IFETC)*, pages 1–2, Aug 2018.

[60] L. L. Vadasz, H. T. Chua, and A. S. Grove. Semiconductor random-access memories. *IEEE Spectrum*, 8(5):40–48, May 1971.
[61] Zhongrui Wang, Mingyi Rao, Jin-Woo Han, Jiaming Zhang, Peng Lin, Yunning Li, Can Li, Wenhao Song, Shiva Asapu, Rivu Midya, et al. Capacitive neural network with neuro-transistors. *Nature communications*, 9(1):1–10, 2018.

[62] Paul Allen Williams and Subrata Saha. The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content. *Annals of biomedical engineering*, 24(2):222–233, 1996.

[63] Joung Eun Yoo, Tracy L Bucholz, Suyong Jung, and Yueh-Lin Loo. Narrowing the size distribution of the polymer acid improves pani conductivity. *Journal of Materials Chemistry*, 18(26):3129–3135, 2008.

[64] Gerald Zachariah and Louis C. Erickson. *Evaluation of some physical methods for determining avocado maturity*, volume 49. California Avocado Society, 1965.

[65] MIN Zhang, JHM Willison, MA Cox, and SA Hall. Measurement of heat injury in plant tissue by using electrical impedance analysis. *Canadian journal of botany*, 71(12):1605–1611, 1993.

[66] Ute Zschieschang and Hagen Klauk. Organic transistors on paper: a brief review. *J. Mater. Chem. C*, 7:5522–5533, 2019.