\[\mathcal{N} = 1 \text{ SUGRA Noether Charges} \]

Rodrigo Aros
Universidad Andrés Bello, Avenida Republica 237, Santiago, Chile
(Dated: November 21, 2018)

In this work a generic set of boundary conditions for \(\mathcal{N} = 1 \) SUGRA is proposed. This conditions defines that Hamiltonian charges equals Noether ones, including supercharge.

PACS numbers: 04.65.+e

I. INTRODUCTION

The role of boundary conditions in any theory of fields is manyfold and fundamental. First the boundary conditions are necessary to solve the equations of motion. They also are necessary to have a proper action principle. Furthermore they define the ensemble in which the theory exists (for gravity see for instance \[1\]).

In general the variation of the action, as a functional of a field \(\phi(x) \), is given by
\[\delta I = \int_{\mathcal{M}} EM \delta \phi + d\Theta(\phi, \delta \phi), \]
where \(EM \) stands for the equations of motion. Now the action is called stationary whether the boundary term \(\Theta(\phi, \delta \phi) \) vanishes on shell, which only happens provided adequate boundary conditions. Only in this case one has a proper action principle.

For gravity the issue of an adequate set of boundary conditions has been certainly addressed by many authors, in many different problems and approaches (\[2, 3, 4, 5, 6\], etc. See also \[7\]). In \[7, 8\] for locally asymptotical AdS spaces was introduced a new set of boundary condition at the asymptotical space region. As a result of these new boundary conditions Noether and Hamiltonian charges for diffeomorphisms agree. The intensification of this work was extend the results in \[7, 8\] to four dimensional \(\mathcal{N} = 1 \) supergravity (SUGRA). The results obtained are analogous.

To simplify the calculations only \(\mathcal{N} = 1 \) SUGRA will be discussed, however most the computations can be readily extended to \(\mathcal{N} > 1 \) SUGRA’s. This particular supergravity in four dimensions is a simpler laboratory to test technics to later be applied in higher dimensions or \(\mathcal{N} > 1 \). In eleven dimensions, for instance, although no standard SUGRA with a negative cosmological constant \[9\] there is the eleven dimension Chern-Simons SUGRA \[10\].

The space to be discussed in this work is given by \(\mathcal{M} = \mathbb{R} \times \Sigma \) where \(\Sigma \) corresponds to a 3-dimensional spacelike hypersurface and \(\mathbb{R} \) stands for the time direction. The space possesses an asymptotical locally AdS region, which defines the boundary \(\mathbb{R} \times \partial \Sigma_{\infty} \).

For simplicity in this work the differential forms language will be used, and \(\wedge \) product between differential forms will be omitted.

II. SUPERGRAVITY

The four dimensional \(\mathcal{N} = 1 \) supergravity action with negative cosmological constant is defined by the Lagrangian \[1\]
\[L = \frac{l^2}{64\pi} \bar{R}^{ab} \bar{R}_{abcd} \epsilon_{abcd} + \bar{\Psi} \gamma_5 \gamma_a e^a D\Psi, \]
where \(D = d + \frac{1}{2} \bar{\omega}^{ab} \gamma_{ab} + \frac{1}{2} \bar{\epsilon} \gamma_a \) and \(\bar{R}^{ab} = R^{ab} + l^2 e^a e^b \). Here \(e^a \) is the vierbein and \(\bar{\omega}^{ab} \) the spin connection, \(R^{ab} \) is the two form of curvature defined as
\[R^{ab} = de^{ab} + \omega^a \epsilon^b = \frac{1}{2} R^{ab}_{cd} e^c e^d \]
where \(R^{ab}_{cd} \) is the Riemann Tensor. \(\Psi \) stands for the Ravita Schwinger field.

From the Lagrangian \[1\] one obtains the equations of motion
\[\frac{l^2}{32\pi} R^{ab} e^c \epsilon_{abcd} + \bar{\Psi} \gamma_5 \gamma_a D\Psi - \frac{1}{2} \bar{\Psi} \gamma_5 \gamma_a e^a \gamma_a D\Psi = 0, \]
\[\frac{l^2}{32\pi} D(\bar{R}^{cd} \epsilon_{abcd}) + \frac{1}{2} \bar{\Psi} \gamma_5 \gamma_c e^c \gamma_{ab} \bar{\Psi} = 0, \]
\[\gamma_5 \gamma_c e^c D\Psi = 0, \]
and the boundary term
\[\Theta = \frac{l^2}{32\pi} (\delta_0 \omega_{ab} \bar{R}^{cd} \epsilon_{abcd}) + \bar{\Psi} \gamma_5 \gamma_a e^a \delta_0 \Psi. \]

Remarkably Eq. (2) can be rewritten in terms of the torsion two form \(T^a = de^a + \omega^a b^{eb} \) simply as
\[T^a = -4\pi \bar{\Psi} \gamma^a \Psi. \]

The torsion two form contains the torsion tensor, \(T^a_{bc} \), as
\[T^a = \frac{1}{2} T^a_{bc} e^b e^c. \]

III. BOUNDARY CONDITIONS

In order to solve the equations of motion \[2\] is obviously necessary to provide boundary conditions. In Ref. \[7\] a new set boundary conditions was introduced for the bosonic sector of action \[1\], namely the ALAdS
condition. This boundary conditions is based on that for any asymptotically locally AdS space one can define a pseudo connection $W = 1/2 W^{AB} J_{AB}$, with

$$W^{AB} = \begin{pmatrix}
\omega^{ab} & l^{-1}e^a \\
-l^{-1}e^a & 0
\end{pmatrix},$$

whose field strength $F = 1/2 F^{AB} J_{AB} = dA + A \wedge A$, with

$$F^{AB} = \begin{pmatrix}
\tilde{R}^{ab} & l^{-1}T^a \\
-l^{-1}T^a & 0
\end{pmatrix},$$

vanishes on the asymptotic spatial region. Since for the standard solutions $T^a = 0$ everywhere, the condition restricts only the curvature \tilde{R}^{ab}.

To incorporate the fermionic sector one option is to follow the same underlying idea, namely that the (super)-connection $A = 1/2 \omega^{ab} J_{ab} + l^{-1}e^a J_a + \bar{\Psi} Q$ whose field strength reads

$$F = \frac{1}{2} \left(\tilde{R}^{ab} + \bar{\Psi} \gamma^{ab} \Psi \right) J_{ab} + \left(\frac{T^a}{l} + \frac{1}{2} \bar{\Psi} \gamma^a \Psi \right) J_{a5} + D\bar{\Psi} Q.$$

(5)

It is direct to see that to impose the vanishing of the field strength (5) at the asymptotical region in turn implies that asymptotically $\tilde{R}^{ab} \rightarrow -\frac{1}{2} \bar{\Psi} \gamma^{ab} \Psi$, $T^a \rightarrow -\frac{1}{2} \bar{\Psi} \gamma^a \Psi$ and $D\bar{\Psi} \rightarrow 0$. Unfortunately these boundary conditions do not imply the vanishing of the boundary term (4). To overcome this one can also impose that Ψ vanish at the asymptotical region. This condition was determined in (4) in another approach (See also (2)). From the point of view of the gauge super group Ψ is part of the connection, therefore to impose $\Psi = 0$ at the asymptotical region can be regarded as a gauge fixing.

The vanishing of Ψ together with the vanishing of F imply that at the asymptotic region

$$\tilde{R}^{ab} \rightarrow 0 \text{ and } T^a \rightarrow 0,$$

namely that \mathcal{M} is actually an asymptotically locally anti de Sitter space.

Now it is straightforward to prove that under these boundary conditions just proposed, i.e.,

$$F(x) \rightarrow 0 \text{ as } x \rightarrow \mathbb{R} \times \partial \Sigma_{\infty},$$

the boundary term (3) vanishes for arbitrary variations of the fields.

IV. DIFFEOMORPHISMS NOETHER CURRENT

The invariance under diffeomorphisms of the Lagrangian (1) yields a Noether current (See Appendix) which, after a straightforward computation, reads

$$\ast J_\xi = -d \left(\frac{1}{32\pi} \bar{\iota}_\xi \omega^{ab} \tilde{R}^{cd} \varepsilon_{abcd} + \bar{\Psi} \gamma_5 \gamma^a e^a \Psi \right).$$

(6)

To define a conserved charge from the current in Eq. (6) one must restrict ξ to be a global isometry, namely a Killing vector. On the other hand, since Eq. (6) is an exact form the conserved charge to be obtained form it, through integration, depends only on its asymptotical value.

Note that the boundary condition at the asymptotical spatial region requires that Ψ vanish yielding the vanishing of the second term in Eq. (6). The same result can be obtained smoothly by proposing for the gravitino a fall-off behavior as $\Psi \sim r^{-3/2}$ (See Ref. [4]). This implies that any conserved charge associated with the global diffeomorphisms reads

$$Q_\xi = -\frac{1}{32\pi} \int_{\Sigma_{\infty}} I_\xi \omega^{ab} \tilde{R}^{cd} \varepsilon_{abcd}.$$

Remarkably this result is the same obtained in Ref. [2] for only the bosonic part of Eq. (1). This result indicates that the value of mass or angular momenta as the asymptotical value of an integral should encode the presence of the gravitinos. This not usual, for instance, in the case of Reissner Nordström solution the expression of the charge associated time symmetry reads

$$Q \left(\frac{\partial}{\partial t} \right) \sim M - \frac{r^2}{r},$$

which obviously only equals M, the mass, as $r \rightarrow \infty$.

This result also might let room for the detection of gravitinos as a correction to the value of the mass at short distance.

V. SUPERSYMMETRIC NOETHER CURRENT

It is well known that the Lagrangian (1) is (on-shell) also invariant under the supersymmetry transformation

$$\begin{align*}
\delta e^a &= 8\pi \bar{\epsilon} \gamma^a \Psi; \\
\delta \Psi &= D\epsilon; \\
\delta \omega^{ab}_\mu &= \pm \frac{1}{2} \epsilon^{abcd} \bar{\epsilon} \gamma_5 \gamma_c E^a_d (D(\Psi))_{\mu

\nu},
\end{align*}$$

(7)

where ϵ is a Grassmann valued 0-form and E^a_d is the inverse of e^a_{μ}.

After some manipulations it can be shown the Lagrangian (1) changes under the supersymmetric transformation (7) in the boundary term

$$\alpha = \frac{l^2}{32\pi} (\delta \omega^{ab}_d \tilde{R}^{cd} \varepsilon_{abcd}) + \bar{\epsilon} \gamma_5 \gamma^a e^a D\Psi,$$

and thus this supersymmetric transformation give rise to the Noether current $\ast J_\xi = \Theta - \alpha$ which reads

$$\ast J_\xi = -d (\bar{\epsilon} \gamma_5 \gamma^a e^a \Psi).$$

(8)
Similarly one can define a charge associated with Eq. (8) by integrating at the asymptotical spatial region as

\[Q_\xi = - \int_{\partial \Sigma_\infty} (e^{5 \gamma_a \epsilon^a} \bar{\Psi}) . \]

(9)

Remarkably, after some algebraic manipulations, Eq. (9) reproduces the Hamiltonian prescription for the supergravity in four dimensions.

VI. HAMILTONIAN VERSUS NOETHERIAN

As far it has been found expressions for the Noether charges associated diffeomorphisms and supersymmetry. However charges as mass and angular momenta or supercharges associated diffeomorphisms and supersymmetry.

This results is not surprising since Eq. (9) corresponds to the Lie derivative a along the vector field \(\xi \), thus \(\delta \phi = \delta_0 \phi + L_\xi \phi \). For any Lagrangian this yields

\[\delta L = (E.M.) \delta_0 \phi + d \Theta(\phi, \delta_0 \phi) + dI_\xi L . \]

(12)

A symmetry is defined as a change in the field configuration that does not alter the field equations. To satisfy that \(\delta \phi \) has to be such that the Lagrangian changes in a total derivative, i.e., \(\delta L = d \alpha \), thus on shell the current

\[*J_\xi = \Theta(\delta_0 \phi, \phi) + I_\xi L - \alpha, \]

(13)

satisfies \(*J_\xi = 0 \), which is usually called the Noether current.

APPENDIX B: DEFINING THE ADS ALGEBRA

In this work we used the algebra definition

\[[J_{AB}, J_{CD}] = -\delta^{EF}_{AB} \delta^{GH}_{CD} \eta_{EG} J_{FH} \]

\[[Q^\alpha, J_{CD}] = (\gamma_{CD})^\alpha_{\beta} Q^\beta \]

\[\{Q^\alpha, Q^\beta\} = \frac{1}{2} (\gamma^{AB} C^{-1})^{\alpha \beta} J_{AB} \]

Additionally since the Clifford algebra is realized by the \(\gamma \) matrices as \(\{\gamma_\alpha, \gamma_\beta\} = 2 \eta_{\alpha \beta} \), the AdS generators have the representation given by

\[J_{ab} = \frac{1}{2} \gamma_{ab} \text{ and } J_{a5} = \frac{1}{2} \gamma_{a} \]
with $\gamma_{ab} = \frac{1}{2}[\gamma_a, \gamma_b]$.

In addition the representation satisfies that,

$$C^T = -C$$

$$C\gamma_a C^{-1} = -\gamma_a^T.$$

APPENDIX C: USEFUL RELATIONS

During the calculations in this work the useful identity of the commutator the covariant derivative $D = d + \frac{1}{4}\omega_{ab}\gamma^{ab} + \frac{1}{2}e^a\gamma_a$ and the lie derivative, which reads,

$$[\mathcal{L}_\xi, D]\Psi = (\mathcal{L}_\xi\omega^{ab}) J_{ab} \Psi = (D(I_\xi\omega^{ab}) + I_\xi R^{ab}) \Psi$$

was necessary.

In addition these other identities

$$\gamma^5 = \gamma^0\gamma^1\gamma^2\gamma^3$$

$$\epsilon^{abcd}\gamma_{cd} = 2\gamma^5\gamma^{ab}$$

$$\gamma_{ab}\gamma_c = (\eta_{bc}\gamma_a - \eta_{ac}\gamma_b) + \epsilon_{ab}c\gamma^5\gamma^d$$

$$\gamma_c\gamma_{ab} = (\eta_{ca}\gamma_b - \eta_{ab}\gamma_a) + \epsilon_{ab}c\gamma^5\gamma^d$$

$$\gamma_a\gamma_{cd} = 0$$

$$\gamma_{cd}\gamma^a\gamma^d = 0$$

for the gamma matrices were necessary as well.

[1] J. D. Brown and J. W. York, The microcanonical functional integral. 1. the gravitational field, Phys. Rev. D47 (1993) 1420–1431, http://arXiv.org/abs/gr-qc/9209014.

[2] L. F. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B195 (1982) 76.

[3] C. Teitelboim, Manifestly positive energy expression in classical gravity: Simplified derivation from supergravity, Phys. Rev. D29 (1984) 2763–2765.

[4] M. Henneaux and C. Teitelboim, Asymptotically anti-de sitter spaces, Commun. Math. Phys. 98 (1985) 391–424.

[5] M. Henneaux, B. Julia, and S. Silva, Noether superpotentials in supergravities, Nucl. Phys. B563 (1999) 448–460, [hep-th/9904003](http://arXiv.org/abs/hep-th/9904003).

[6] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B633 (2002) 3–82, http://arXiv.org/abs/hep-th/0112246.

[7] R. Aros, M. Contreras, R. Ólea, R. Troncoso, and J. Zanelli, Conserved charges for gravity with locally ads asymptotics, Phys. Rev. Lett. 84 (2000) 1647, [gr-qc/9909015](http://arXiv.org/abs/gr-qc/9909015).

[8] R. Aros, Analyzing charges in even dimensions, Class. Quant. Grav. 18 (2001) 5359–5369, [gr-qc/0011009](http://arXiv.org/abs/gr-qc/0011009).

[9] K. Bautier, S. Deser, M. Henneaux, and D. Seminara, No cosmological $d = 11$ supergravity, Phys. Lett. B406 (1997) 49–53, [hep-th/9704131](http://arXiv.org/abs/hep-th/9704131).

[10] R. Troncoso and J. Zanelli, Chern-simons supergravities with off-shell local superalgebras, http://arXiv.org/abs/hep-th/9902003.

[11] P. G. O. Freund, INTRODUCTION TO SUPERSYMMETRY. CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS. Cambridge Univ. Pr., Cambridge U.K., 1986. 152 P.

[12] C. Teitelboim, Surface integrals as symmetry generators in supergravity theory, Phys. Lett. B69 (1977) 240–244.

[13] J. Lee and R. M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725.

[14] P. Ramond, FIELD THEORY: A MODERN PRIMER.FRONTIERS IN PHYSICS, 74. ADDISON-WESLEY, REDWOOD CITY, USA, 1989.