Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials

Armando Oliva, Lea Chua Tan, Stefano Papirio, Giovanni Esposito, and Piet N. L. Lens

8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT
Renewable energy accounted only **11%** of total final energy consumption in 2018.

Renewables made up less than one-third of demand growth from 2013 to 2018.

The world is *not on track* to limit global warming.

- **Overview**
 - Renewable energy
 - Depletion of fossil fuel
 - Global environmental quality
 - Renewable energy accounted only **11%** of total final energy consumption in 2018
 - Renewables made up less than one-third of demand growth from 2013 to 2018
 - The world is *not on track* to limit global warming

- **Biogas**
 - Few atmospheric pollutants per unit
 - Several applications
 - Line distribution already in place
 - Globally, domestic supply of biogas was 62 million Nm3 in 2017
 - Global electricity generation from biogas increased of 90% (2010-2016)
 - We are exploiting **only 1.6-2.2%** of the potential of anaerobic digestion
Lignocellulosic composition

- Most abundant bio-resource
- 2×10^5 Mt of biomass are globally produced every year
- 1000 Mt of dry matter are produced annually in the EU
- Low-cost waste materials
- No competition between food and energy production

Recalcitrance of LMs

- Protection by lignin and hemicellulose
- Cristallinity of cellulose
- Polymerization of cellulose
- Accessible surface (particle size, porosity)

(D. Muley and Boldor, 2017)
Anaerobic digestion process

Increase the efficacy of lignocellulose hydrolysis by improving the accessibility to cellulose

- Removing lignin and/or hemicellulose
- Decreasing the degree of polymerization and crystallinity of the cellulosic component of biomass
Pretreatment methods and raw substrates

Physical
- Mechanical comminution
 - Microwave
 - Ultrasound
 - Extrusion
- Dilute acid
- Alkaline
- Organosolv

Chemical
- Ionic liquid
- N-Methylmorpholine N-Oxide (NMMO)
- Steam explosion
- Hydrothermal
- Wet oxidation
- CO₂ explosion
- Ammonia fibre expansion

Physico-chemical
- Fungal species
- Microbial consortium
- Enzymatic

Biological

Almond shell
- 1.2 million tons/year
- + 24% over prior 10 year average
- ≈ 70% of the total weight is shell
 - 23% cellulose
 - 22% hemicellulose
 - 31% lignin

Spent coffee grounds
- 6 million tons/year
- + 1.3% per year in the last decades
- ≈ 50% of the fruit mass became a waste
 - 9% cellulose
 - 34% hemicellulose
 - 20% lignin

Hazelnut skin
- 0.5 million tons/year
- + 16% over prior 10 year average
- High bulk density
 - 10% cellulose
 - 4% hemicellulose
 - 40% lignin
Organosolv pretreatment

- Lignin dissolution
- Cellulose and hemicellulose in the solid phase
- Partial hemicellulose hydrolysis
- Increase of porosity
Experimental set-up: pretreatment and anaerobic digestion

Experiment	Solvent	Catalyst	Temperature (°C)	Time (min)	Substrate/Solvent (w/v)
1.1	50% Methanol	/	130	60	20/200
1.2	50% Methanol	/	160	60	20/200
1.3	50% Methanol	/	200	60	20/200
2.1	50% Methanol	0.01M H₂SO₄	130	60	20/200
2.2	50% Methanol	0.01M H₂SO₄	160	60	20/200
2.3	50% Methanol	0.01M H₂SO₄	200	60	20/200

Mesophilic AD → 37 °C
Wet AD → 2% TS
Inoculum/Substrate → 1.5 g VS/g VS
Inoculum → Granular Sludge
Substrates → Hazelnut skin
Spent coffee grounds
Almond shell

Working Volume → 150 mL
Head Space Volume → 100 mL
Methane production: Hazelnut skin

- Significant biomethane production enhancement
- Increase of methane production with catalyst addition
- Amorphous aspect of treated HS
- No VFAs accumulation
- pH range: 6.3 – 7.0
Methane production: Spent coffee grounds and almond shell

- Slight increase of biomethane yield (10%)
- High biomethane potential yield of raw SCG
- No VFAs accumulation
- pH range: 6.3 – 7.0

- No biomethane yield enhancement
- Increase of methane content in biogas from 57 to 77%
- No VFAs accumulation
- pH range: 7.0 – 7.6
Recalcitrant nature of the three raw substrates:

- **Hazelnut skin**: 40% lignin, 14% sugars
- **Spent coffee grounds**: 20% lignin, 42% sugars
- **Almond shell**: 31% lignin, 45% sugars

Pretreated hazelnut skin
- 7-12% lignin removal from hazelnut skin
- Sugar content increased from 13.7 to **17.3%**
- Strong inverse correlation between lignin content and cumulative methane production

Pretreated spent coffee grounds
- Slight increase of sugars content
- The maximum lignin removal was **10%**

Pretreated almond shell
- No significant effect
Why is the organosolv pretreatment failing for AS and SCG?

Chemical composition
- Lignin Content:
 - Almond Shell: 30.58 ± 0.13 g/g TS
 - Spent Coffee Grounds: 20.31 ± 0.29 g/g TS
- Loss of non-structural compounds during the pretreatment (sucrose, glucose, fructose)

Physical characteristics
- Porosity
 - AS = 1.40 ± 0.10 g/g
 - SCG = 2.76 ± 0.06 g/g
 - HS = 5.53 ± 0.49 g/g
- Water swelling capacity
- Surface morphology (SEM)
Conclusions and future prospective

✅ Methanol-organosolv pretreatment was particularly effective to enhance biogas production for hazelnut skin

🚫 Methanol-organosolv pretreatment was slightly effective for spent coffee grounds and ineffective for almond shell

✅ Catalyst addition enabled to gain a higher methane production from hazelnut skin with the lowest pretreatment temperature

✅ The economic viability of the pretreatment for hazelnut skin is confirmed by the energy assessment, with a net positive energy recovery of 1.35 kWh/kg VS deriving from the extra biomethane produced under the optimal pretreatment condition

💡 Maximize and optimize lignin recovery from pretreatment liquor

💡 Verify the economic viability of the recovery of valuable compounds before undergoing pretreatment and anaerobic digestion (proteins, phenolic compounds, lipids, non-structural sugars)

💡 Further studies are required to explore different pretreatments able to raise the biomethane potential of spent coffee grounds and almond shell (ionic liquid, milling)
THANK YOU

Any Questions