Two types of electronic states in one dimensional crystals of finite length

Shang Yuan Ren
Department of Physics, Peking University
Beijing 100871, People's Republic of China
Abstract

Exact and general results on the electronic states in one dimensional crystals bounded at τ and $\tau + L$ - where $L = Na$, N is a positive integer and a is the potential period - are presented. Corresponding to each energy band of the Bloch wave, there are $N - 1$ states in the finite crystal and their energies are dependent on the crystal length L but not on the crystal boundary τ and map the energy band exactly; There is always one and only one electronic state corresponding to each band gap of the Bloch wave, whose energy is dependent on the crystal boundary location τ but not on the crystal length L. This state is either a constant energy confined band edge state or a surface state in the band gap. A slight change of the boundary location τ could change the property and the energy of this state dramatically.

PACS numbers: 73.21.-b, 71.15.-m, 73.61.-r, 71.18.+y
Bloch theorem plays a central role in our current understanding on the electronic structures in modern solid state physics. However, any real crystal always has a finite size and does not have a hypothetical infinite size or the periodic boundaries which Bloch theorem is based on [1]. The difference between the electronic structure of a real crystal of finite size and the electronic structure obtained based on the translational invariance becomes more significant as the crystal size decreases. A clear understanding of the properties of electronic states in real crystals of finite size has both theoretical and practical significant importance. A straightforward way is to obtain exact solutions for crystals of finite size. However, to obtain exact solutions of the Schrödinger equation with a general periodic potential for a finite crystal with boundaries has been considered as a rather difficult problem: the lack of translational invariance in the crystal of finite size is a major obstacle. It is the use of the translation invariance that greatly simplifies the mathematics in solving the Schrödinger equation with a periodic potential. Without a such simplification the corresponding problem for finite crystals with boundaries could become rather difficult mathematically. Thus most previous theoretical investigations on this subject were based on approximate and/or numerical approaches and were usually on a specific material and/or on a specific model [2].

Historically, many of our current fundamental understandings on the electronic structures of crystals were obtained through the analysis of one dimensional crystals [3, 4, 5]. Among the most well known examples are the Kronig-Penney model [6], Kramers’ analysis of on the band structure of one dimensional infinite crystals [7], the Tamm’s surface state [8], etc. Kramers’ analysis on the solutions of the one dimensional Schrödinger equation with periodic potential - based on a differential equation theory approach - provided a thorough and general understanding on the band structure of one dimensional crystals [4, 5, 9].

In this work we present exact and general results on the electronic states in one dimensional crystals of finite length \(L = Na \) - where \(a \) is the potential period and \(N \) is a positive integer - in comparison with the band structure of one dimensional infinite crystal, using a differential equation theory approach [10]. It also shows that the obstacle or mathematical difficulty due to the lack of translation invariance in fact can be circumvented. Different from Kramers’ work, the understanding on the zeros of solutions
of one dimensional Schrödinger differential equation with periodic potential [10] plays a
g fundamental role in this work.

The one dimensional Schrödinger differential equation with a periodic potential can
be written as

\[- y''(x) + [v(x) - \lambda]y(x) = 0, \quad -\infty < x < +\infty \quad (1)\]

where

\[v(x + a) = v(x).\]

We assume (1) is solved, all solutions are known. The eigenvalues are energy bands \(\varepsilon_n(k)\)
and the corresponding eigenfunctions are Bloch functions \(\phi_n(k, x)\), where \(n = 0, 1, 2, \ldots\).

For a one dimensional crystal with two boundaries at \(\tau\) and \(\tau + L\), we assume the
potential inside the crystal is still \(v(x)\) as in (1) and all electronic states in the crystal
are confined in the finite size of the crystal. We are looking for the eigenvalues \(\Lambda\) and
eigenfunctions \(\psi(x, \Lambda)\), which are solutions of

\[- y''(x) + [v(x) - \Lambda]y(x) = 0, \quad \tau < x < \tau + L \quad (2)\]

and

\[y(x) = 0, \quad x \leq \tau \text{ or } x \geq \tau + L \quad (3)\]

where \(\tau\) is a real number, \(L = Na\) and \(N\) is a positive integer.

By using a differential equation approach we found that all solutions of (2) and (3)
can be obtained if all solutions of (1) are known (See Appendix A) and the electronic
states in one-dimensional finite crystals can be classified into two types:
1. Inside an energy band, there are \(N - 1\) electronic states whose energy is dependent
on the crystal length \(L\) and given by:

\[k(\Lambda_j) = j \pi / L, \quad j = 1, 2, \ldots N - 1. \quad (4)\]

Correspondingly, there are \(N - 1\) eigenfunctions \(\psi(x, \Lambda_j)\). Each eigenvalue for this case
is a function of \(L\), the crystal length. But they all do not depend on the location of the
crystal boundary \(\tau\) or \(\tau + L\). For simplicity, we call these states as \(L\)-dependent states,
although only the eigenvalue of a such state is dependent on only L, the wavefunction of a such state is dependent on both τ and L.

The eigenvalues $k(\Lambda_j)$ map the dispersion relation $k(\varepsilon_n)$ of the original equation (1) exactly. Many authors noted that there is an approximate correspondence between the bulk energy dispersion and the energy levels in crystals of finite size[1, 2, 3], from Eq. (4) we see that this is in fact an exact correspondence for the electronic states in general one dimensional crystals of finite length. Furthermore this exact correspondence does not depend on the crystal boundary τ. Pedersen and Hemmer[2] investigated the non-bandedge electronic states in one dimensional finite crystals with a Kronig-Penney model and also found that the energy spectrum is independent on the crystal boundary.

2. For each band gap, there is always one and only one electronic states, whose energy Λ is given by a necessary and sufficient condition:

$$\psi(\tau + a, \Lambda) = \psi(\tau, \Lambda) = 0.$$ (5)

(5) does not contain the crystal length L, thus the energy Λ corresponding to a band gap is dependent on the boundary of the crystal τ, but not on the crystal length. For simplicity, we call these solutions as τ-dependent states, although only the eigenvalue of a such state is dependent on only τ, the wavefunction of a such state is dependent on both τ and L. The energy Λ of these τ-dependent states can be labeled as $\Lambda_{\tau,2m}$ or $\Lambda_{\tau,2m+1}$, corresponding to the band gap at $k = \pi/a$ or $k = 0$. $\Lambda_{\tau,2m}$ is in $[\varepsilon_{2m}(\pi/a), \varepsilon_{2m+1}(\pi/a)]$ and $\Lambda_{\tau,2m+1}$ is in $[\varepsilon_{2m+1}(0), \varepsilon_{2m+2}(0)]$.

How these τ dependent eigenvalues change as the crystal boundary τ changes can be seen in Fig. 1, using $\Lambda_{\tau,1}$ as an example. The details can be found in Appendix B. In Fig. 1 the zeros of band edge wavefunctions $\phi_1(0, x)$ and $\phi_2(0, x)$ are shown as circles.

If τ is equal to a zero of a band edge wavefunction $\phi_1(0, x)$ or $\phi_2(0, x)$, $\Lambda_{\tau,1}$ is equal to $\varepsilon_1(0)$ or $\varepsilon_2(0)$. In any one of these cases, we have an electronic state whose energy is the corresponding band edge energy of (1), independent on the crystal length L. Zhang and Zunger first observed a state with such behavior in their numerical investigations on Si quantum films[11]. Franceschetti and Zunger also observed a such state in their calculations on the free standing GaAs quantum film[14]. The author has pointed out that the existence of the band edge states with such behavior in fact could be quite
general in one dimensional symmetric finite crystals15. From this work we understand that for the electronic states in one dimensional finite crystals, without any requirement on the symmetry of the periodic potential or of the system, \textit{as long as a boundary is a zero of a band edge wavefunction of (1), there always is a confined state whose energy is the band edge energy, independent on the crystal length }L.\textit{ Due to the inversion symmetry of the finite crystals treated in 15, for each band gap there is always one band edge wavefunction which is zero at the lattice boundaries.}

If \(\tau\) is not a zero of either one of the two band edge wavefunctions, i.e, \(\tau\) is in the dotted line region or in the dashed line region in Fig. 1, then the electronic state \(\psi(x, \Lambda)\) will have the form of either \(e^{\beta(\Lambda)x}p_1(x, \Lambda)\) or \(e^{-\beta(\Lambda)x}p_2(x, \Lambda)\) with an energy \(\Lambda\) \textit{inside} the band gap. This is a surface state.

Many years ago, by using a Kronig-Penney model Tamm8 showed that the termination of the periodic potential at the surface of a crystal can cause a surface state existing in the band gap for each band gap of the Bloch wave. More than sixty years later, Zhang and Zunger11 and Franceschetti and Zunger14 observed the existence of the constant energy confined band edge state in their numerical calculations. Now we understand that in the one dimensional case, the surface state in the gap and the constant energy confined state at a band edge are two different results of the termination of the periodic potential, depending on whether the boundary \(\tau\) is a zero of a band edge wavefunction. It may be noticed that a Tamm’s surface state is an extra ”added” state, the \(\tau\)-dependent states in this work comes from a unified solving of the all states.

An interesting question is: Why a finite one dimensional crystal of \textit{two ends} can only have \textit{at most one} surface state in each gap? This is due to that the two ends of a finite crystal in general are not equivalent, except in a \textit{symmetric} finite crystal16. A symmetric one dimensional finite crystal requires: (1) The crystal potential has an inversion symmetry center. (2) The two ends of the crystal are symmetric to the same symmetry center and thus are equivalent. If any one of these two is not true, then the two ends of the finite crystal are in fact not equivalent. For a symmetric finite one dimensional crystal, it has one constant energy confined band edge state, rather than a surface state, in each gap. That is the result obtained in 15.

A little further thinking can also help to understand this unexpected result. For
simplicity we assume a monoatomic crystal of \(L = Na \) here. If there are \(N - 1 \) bulk states in each band, and there are altogether \(N \) atoms, there is only one, not two, more state which can be the either the surface state or at the band edge. In the case of \(N = 1 \), there is one state for each energy band. Similarly, one monolayer of atoms also can have only one two-dimensional energy band for each atomic state, even it has two surfaces. The author has also worked out a similar problem on three dimensional finite crystals\[17]\. For a finite crystal of parallelogram shape which has \(N_1a_1, N_2a_2 \) and \(N_3a_3 \) forming the sides which meet at a corner, for each energy band there are \((N_1 - 1)(N_2 - 1)(N_3 - 1)\) bulk states, \((N_1 - 1)(N_2 - 1) + (N_2 - 1)(N_3 - 1) + (N_3 - 1)(N_1 - 1)\) surface states, \((N_1 - 1) + (N_2 - 1) + (N_3 - 1)\) ”side states” and one ”conner state” in spite of that the crystal has six faces, twelve sides and eight corners: The sum of these numbers is exact \(N_1N_2N_3 \). Any change of these numbers will not give the correct sum.

A slight change of the boundary location \(\tau \) can change the properties of the \(\tau \) dependent state dramatically, this can be clearly seen in Fig. 1: If \(\tau \) is in the region corresponding to a dotted line, the surface state is near one end of the crystal. If \(\tau \) is in the region corresponding to a dashed line, the surface state is near the other end of the crystal. If \(\tau \) is a zero of a band edge wavefunction (either a solid circle or an open circle), then \(\tau + L \) is also a zero of the same band edge wavefunction and thus the boundary \(\tau \) dependent state is a constant energy confined band edge state.

As an example, in Fig. 2 is shown a comparison between the the energy bands and the eigenvalues of the electronic states in an one dimensional crystal of length \(L = 8a \). In Fig. 3. are shown the energies of three electronic states in crystals of finite length near or in the lowest band gap of the Bloch wave as functions of the crystal length \(L \).

In summary, by using a differential equation theory approach, we have obtained exact and general results on all electronic states in one dimensional crystals of finite length in comparison with the electronic states in a periodic potential obtained from (1). For one dimensional crystals bounded at \(\tau \) and \(\tau + L \), there are two different types of electronic states: There are \(N - 1 \) states corresponding to each energy band of (1). Their eigenvalues \(\Lambda \) are given by (4), thus are dependent on the crystal length \(L \) but not on the crystal boundary location \(\tau \) and map the energy band exactly; There is always one and only one electronic state corresponding to each band gap of (1), whose eigenvalue \(\Lambda \) is dependent
on the boundary location τ but not on the crystal length L. Such a τ-dependent state can be either a constant energy confined band edge state (if the crystal boundary τ is a zero of a band edge wavefunction of (1)) or a surface state in the band gap (if the crystal boundary τ is not a zero of either band edge wavefunction of (1)). A slight change of the crystal boundary location could change the properties and the energy of this boundary dependent state dramatically[18].

The results obtained in [15] are a special case of the more general results obtained here.

Acknowledgment:

The author is grateful to Professors Kun Huang, Lo Yang, W. A. Harrison and Peter Y. Yu and Dr. L. W. Wang for stimulating discussions. This research is supported by the National Natural Science Foundation of China (Project No. 19774001).
Appendix A

The Schrödinger differential equation (1) can be considered as a special case of the more general Hill’s equation[10]. This work is mainly based on the general properties of solutions of Hill’s equation.

We are mainly interested in the cases for which there is always a gap between two consecutive energy bands of (1)[19]. For these Bloch waves, the band edges $\varepsilon_n(0)$ and $\varepsilon_n(\pi/a)$ occur in the order

$$\varepsilon_0(0) < \varepsilon_0(\pi/a) < \varepsilon_1(\pi/a) < \varepsilon_1(0) < \varepsilon_2(0) < \varepsilon_2(\pi/a) < \varepsilon_3(\pi/a) < \varepsilon_3(0) < \varepsilon_4(0) <
$$

The band gaps are between $\varepsilon_{2m}(\pi/a)$ and $\varepsilon_{2m+1}(\pi/a)$ or between $\varepsilon_{2m+1}(0)$ and $< \varepsilon_{2m+2}(0)$.

Suppose $y_1(x,\lambda)$ and $y_2(x,\lambda)$ are two linearly independent solutions of (1), in general, a solution of (2) and (3) if it exists, can be expressed as

$$\psi(x,\Lambda) = f(x,\Lambda), \quad \text{if} \quad \tau < x < \tau + L
$$

$$= 0, \quad \text{if} \quad x \leq \tau \text{ or } x \geq \tau + L$$

where

$$f(x,\lambda) = c_1y_1(x,\lambda) + c_2y_2(x,\lambda) \quad (A.1)$$

is a non-trivial solution of (1) and satisfies

$$f(\tau,\Lambda) = f(\tau + L,\Lambda) = 0. \quad (A.2)$$

The non-trivial solutions of (2) and (3) can be found through (A.2) based on the general properties of solutions of (1).

The properties of linearly independent solutions of (1) are determined by a real number $D(\lambda)$ called its discriminant[10]: Suppose $\eta_1(x,\lambda)$ and $\eta_2(x,\lambda)$ are two linearly independent solutions of (1), which satisfy the initial conditions $\eta_1(0,\lambda) = 1, \quad \eta_1'(0,\lambda) = 0; \quad \eta_2(0,\lambda) = 0, \quad \eta_2'(0,\lambda) = 1$. The real number $D(\lambda)$ defined by $D(\lambda) = \eta_1(a,\lambda) + \eta_2(a,\lambda)$ is called the discriminant of (1).

As λ increases from $-\infty$ to $+\infty$, the value of $D(\lambda)$ changes as the following ($m = 0, 1, 2,$)[10, 7, 4]:

9
(i) In the intervals \([\epsilon_{2m}(0), \epsilon_{2m}(\pi/a)]\), \(D(\lambda)\) decreases from 2 to -2.

(ii) In the intervals \([\epsilon_{2m+1}(\pi/a), \epsilon_{2m+1}(0)]\), \(D(\lambda)\) increases from -2 to 2.

(iii) In the intervals \((-\infty, \epsilon_0(0))\) and \((\epsilon_{2m+1}(0), \epsilon_{2m+2}(0))\), \(D(\lambda) > 2\).

(iv) In the intervals \((\epsilon_{2m}(\pi/a), \epsilon_{2m+1}(\pi/a))\), \(D(\lambda) < -2\).

The existence of and the properties of non-trivial solutions \(\Lambda\) and \(f(x, \Lambda)\) in (A.2) can be determined on this basis.

For solutions of (2) and (3), both the permitted and the forbidden eigenvalue ranges of (1) cannot be excluded. We should consider solutions of (A.2) for \(\lambda\) in \((-\infty, +\infty)\). However, according to the Theorem 3.2.2 of [10], there is not a nontrivial solution of (A.2) for which \(\Lambda\) in \((\epsilon_0(0), 0)\). Thus we need only to consider \(\lambda\) in \((\epsilon_0(0), +\infty)\). Depending on \(\lambda\), the value of \(D(\lambda)\) may have five different cases [10]:

Case A. \(|D(\lambda)| < 2\).

In this case \(\lambda\) is inside an energy band of (1). Two linearly independent solutions of (1) can be expressed as [10]

\[y_1(x, \lambda) = e^{ik(\lambda)x}p_1(x, \lambda), \quad y_2(x, \lambda) = e^{-ik(\lambda)x}p_2(x, \lambda), \]

where \(k(\lambda)\) is a real number depending on \(\lambda\) and

\[0 < k(\lambda)a < \pi \]

and \(p_1(x, \lambda)\) and \(p_2(x, \lambda)\) have period \(a\): \(p_1(x + a, \lambda) = p_1(x, \lambda)\). All \(k(\lambda)\) and \(p_1(x, \lambda)\) are functions of \(\lambda\).

If there is a non-trivial solution \(f(x, \Lambda)\) of (A.2), simple mathematics gives that we must have either

\[e^{ik(\Lambda)L} - e^{-ik(\Lambda)L} = 0, \] \hspace{1cm} (A.A.1)

or

\[c_1p_1(\tau, \Lambda) = 0, \quad \text{and} \quad c_2p_2(\tau, \Lambda) = 0. \] \hspace{1cm} (A.A.2)

We can easily prove that neither \(p_1(\tau, \Lambda)\) nor \(p_2(\tau, \Lambda)\) can be zero. Suppose \(p_1(\tau, \Lambda) = 0\), we must have \(p_1(\tau + a, \Lambda) = 0\) and thus \(y_1(\tau, \Lambda) = y_1(\tau + a, \Lambda) = 0\). Then according to theorem 3.1.3 of [10], \(\Lambda\) must be in \([\epsilon_{2m}(\pi/a), \epsilon_{2m+1}(\pi/a)]\) or in \([\epsilon_{2m+1}(0), \epsilon_{2m+2}(0)]\), in which \(|D(\Lambda)| \geq 2\). This is in contradictory to \(|D(\lambda)| < 2\) for the Case A. Similarly \(p_2(\tau, \Lambda)\) can not be zero. Thus no non-trivial solution obtained from (A.A.2) exists.
Therefore non-trivial solutions in this case can only be obtained by (A.A.1). Note (A.A.1) does not contain \(\tau \). The non-trivial solutions can be obtained if

\[k(\Lambda)L = j\pi, \]

Thus in each energy band \(k(\varepsilon_n) \), there are \(N - 1 \) values of \(\Lambda_j \), where \(j = 1, 2, \ldots, N - 1 \), for which

\[k(\Lambda_j) = j\pi / L. \]

This is Eq. (4) in the text.

Case B. \(D(\lambda) = 2 \).

In this case \(\lambda \) is at a band edge at \(k = 0 \): \(\lambda = \varepsilon_{2m+1}(0) \) or \(\lambda = \varepsilon_{2m+2}(0) \).

Two linearly independent solutions of (1) can be expressed as

\[y_1(x, \lambda) = p_1(x, \lambda), \quad y_2(x, \lambda) = xp_1(x, \lambda) + p_2(x, \lambda), \]

and \(p_1(x, \lambda) \) and \(p_2(x, \lambda) \) have period \(a \).

Due to the Sturm Separation Theorem[20], the zeros of \(p_1(x, \lambda) \) are separated from the zeros of \(p_2(x, \lambda) \). Simple mathematics leads to that the existence of non-trivial solution (A.2) in this case requires

\[p_1(\tau, \Lambda) = 0 \text{ and } c_2 = 0. \quad (A.B.1) \]

Case C. \(D(\lambda) > 2 \).

In this case \(\lambda \) is inside a band gap at \(k = 0 \): \(\varepsilon_{2m+1}(0) < \lambda < \varepsilon_{2m+2}(0) \). Two linearly independent solutions of (1) can be expressed as

\[y_1(x, \lambda) = e^{\beta(\lambda)x}p_1(x, \lambda), \quad y_2(x, \lambda) = e^{-\beta(\lambda)x}p_2(x, \lambda), \]

where \(\beta(\lambda) \) is a positive real number depending on \(\lambda \) and \(p_1(x, \lambda) \) and \(p_2(x, \lambda) \) have period \(a \).

Again due to the Sturm Separation Theorem[20], the zeros of \(p_1(x, \lambda) \) are separated from the zeros of \(p_2(x, \lambda) \). If there is a non-trivial solution \(f(x, \Lambda) \) in this case, simple mathematics from (A.1) and (A.2) gives that we must have either

\[p_1(\tau, \Lambda) = 0, \quad \text{and} \quad c_2 = 0 \quad (A.C.1) \]
or
\[p_2(\tau, \Lambda) = 0, \quad \text{and} \quad c_1 = 0. \] (A.C.2)

Note that (A.C.1) and (A.C.2) cannot be true simultaneously.

From the discussion on Case B and Case C, we can see that if we have a non-trivial solution of (A.2) for a band gap at \(k = 0 \) (\(\varepsilon_{2m+1}(0) \leq \lambda \leq \varepsilon_{2m+2}(0) \)), either one of (A.B.1), (A.C.1) or (A.C.2) must be true. Since all functions \(p_i(x, \lambda) \) in (A.B.1), (A.C.1) and (A.C.2) are periodic functions, we always have \(f(\tau + a, \Lambda) = 0 \) if we have \(f(\tau, \Lambda) = 0 \). Therefore the following equation is a necessary condition for having a solution \(\Lambda \) in (A.2) for a band gap at \(k = 0 \):

\[f(\tau + a, \Lambda) = f(\tau, \Lambda) = 0. \] (A.3)

It is easy to see that (A.3) is also a sufficient condition for having a solution (A.2): From (A.3) one can obtain \(f(\tau + n a, \Lambda) = 0 \), where \(n = 0, \ldots, N \).

Corresponding to a band gap at \(k = \pi/a \), the Case D (\(D(\lambda) = -2 \)) and the Case E (\(D(\lambda) < -2 \)) can be very similarly discussed as the Case B and the Case C. The major difference is there we have semi-periodic functions \(s_i(x + a, \Lambda) = -s_i(x, \Lambda) \) instead of periodic functions. We are led to the same equation (A.3) as a necessary and sufficient condition for having a solution (A.2) for a band gap at \(k = \pi/a \). Thus (A.3) is a necessary and sufficient condition for having a solution (A.2) corresponding to a band gap. (A.3) is essentially the same as Eq. (5) in the text.

The Theorem 3.1.3 of [10] indicates that for an arbitrary real number \(\tau \), there is always one and only one \(\Lambda \) for which (A.3) is true for each band gap \([\varepsilon_{2m}(\pi/a), \varepsilon_{2m+1}(\pi/a)]\) or \([\varepsilon_{2m+1}(0), \varepsilon_{2m+2}(0)]\).

Therefore for any real number \(\tau \) there is always one and only one \(\Lambda \), which is a solution of (A.2) and dependent on \(\tau \) but not \(L \), for each band gap \([\varepsilon_{2m}(\pi/a), \varepsilon_{2m+1}(\pi/a)]\) or \([\varepsilon_{2m+1}(0), \varepsilon_{2m+2}(0)]\).
Appendix B

How these τ-dependent eigenvalues Λ change as τ changes can be obtained from differential equation theory. Here we discuss $\Lambda_{\tau,2m+1}$ as an example. $\Lambda_{\tau,2m}$ can be very similarly discussed.

According to the theorem 3.1.2 of [10], $\phi_{2m+1}(0, x)$ and $\phi_{2m+2}(0, x)$ have exact $2m + 2$ zeros in $[0, a)$. Then according to the Sturm Comparison Theorem[20], the zeros of $\phi_{2m+1}(0, x)$ and $\phi_{2m+2}(0, x)$ must be distributed alternatively: There is always one and only one zero of $\phi_{2m+2}(0, x)$ between two consecutive zeros of $\phi_{2m+1}(0, x)$, and there is always one and only one zero of $\phi_{2m+1}(0, x)$ between two consecutive zeros of $\phi_{2m+2}(0, x)$.

We treat τ as a variable and let τ go continuously from a (any) zero $x_{1,2m+1}$ of $\phi_{2m+1}(0, x)$ to $x_{1,2m+2}$, the zero of $\phi_{2m+2}(0, x)$ that is next to $x_{1,2m+1}$. Since $\Lambda_{\tau,2m+1}$ is a continuous function of τ, the corresponding $\Lambda_{\tau,2m+1}$ will also go continuously from $\varepsilon_{2m+1}(0)$ to $\varepsilon_{2m+2}(0)$. Similarly if τ goes continuously from $x_{1,2m+2}$ to $x_{2,2m+1}$, the next zero of $\phi_{2m+1}(0, x)$, the corresponding $\Lambda_{\tau,2m+1}$ will also go back continuously from $\varepsilon_{2m+2}(0)$ to $\varepsilon_{2m+1}(0)$. In Figure 1 is shown $\Lambda_{\tau,1}$ as function of τ in the interval $[x_{1,1}, x_{1,1} + a]$, where $x_{1,1}$ is a zero of $\phi_1(0, x)$.

If we consider as τ goes from $x_{1,2m+1}$ to $x_{1,2m+2}$ and then to $x_{2,2m+1}$, the corresponding $\Lambda_{\tau,2m+1}$ as function of τ goes up from $\varepsilon_{2m+1}(0)$ to $\varepsilon_{2m+2}(0)$ and then back to $\varepsilon_{2m+1}(0)$ as a basic undulation, in this basic undulation the function $f(x, \Lambda)$ has different forms. We know for any solution (A.2) in each band gap $[\varepsilon_{2m+1}(0), \varepsilon_{2m+2}(0)]$, either one of (A.B.1), (A.C.1) or (A.C.2) must be true. When $\Lambda = \varepsilon_{2m+1}(0)$ or $\Lambda = \varepsilon_{2m+2}(0)$, (A.B.1) is true. For the two sections (end points excluded) of this basic undulation either (A.C.1) or (A.C.2) is true. In one section $f(x, \Lambda)$ has the form $c_1 e^{\beta(\Lambda) x} p_1(x, \Lambda)$ (A.C.1 is true) and in the other section $f(x, \Lambda)$ has the form $c_2 e^{-\beta(\Lambda) x} p_2(x, \Lambda)$ (A.C.2 is true). In which section it has which form is dependent on $v(x)$ in (1). In Fig. 1 the two sections of a basic undulation are shown as a dashed line and a dotted line, indicating two different forms of $f(x, \Lambda)$. Since in the interval $[0, a)$, both $\phi_{2m+1}(0, x)$ and $\phi_{2m+2}(0, x)$ have exactly $2m + 2$ zeros, then in general $\Lambda_{\tau,2m+1}$ as function of τ will always complete $2m + 2$ basic undulations in an interval of length a. Similarly $\Lambda_{\tau,2m}$ as function of τ will always complete $2m + 1$ basic undulations in an interval of length a.
A function with the form of \(c_1 e^{\beta(x)} p_1(x, \Lambda) \) or \(c_2 e^{-\beta(x)} p_2(x, \Lambda) \), in which \(\beta(\Lambda) > 0 \), is mainly distributed near either one of the two boundaries of the finite crystal, due to the exponential factor. Thus these \(\tau \)-dependent states are in fact the surface states introduced by the termination of the periodic potential. These surface states are introduced into the band gaps when the boundary \(\tau \) is not a zero of either band edge wavefunction of the original Bloch waves. Of course, for the band gaps at \(k = \pi/a \left(\varepsilon_{2m}(\pi/a) < \Lambda < \varepsilon_{2m+1}(\pi/a) \right) \), a surface state has the form of either \(c_1 e^{\beta(x)} s_1(x, \Lambda) \) or \(c_2 e^{-\beta(x)} s_2(x, \Lambda) \) inside the crystal, where \(s_1(x, \Lambda) \) and \(s_2(x, \Lambda) \) are semi-period functions.
References

[1] See for example, J. Callaway, *Quantum theory of the solid state*, Second edition, Academic Press, London (1991).

[2] See for example, A. D. Yoffe, Adv. Phys. 42, 173 (1993); A. D. Yoffe, Adv. Phys. 50, 1 (2001); M. Kelly, *Low Dimensional Semiconductors: Materials, Physics, Devices and Applications*, Oxford University Press, Oxford (1996); Peter Y. Yu and Manuel Cardona, *Fundamentals of Semiconductors, Physics and Materials Properties*, Springer Verlag, Berlin (1999).

[3] C. Kittel, *Introduction to Solid State Physics*, Seventh edition, John Wiley & Sons, New York (1996).

[4] F. Seitz, *The Modern Theory of Solids*, McGraw-Hill, New York (1940).

[5] H. Jones, *The Theory of Brillouin Zones and Electronic States in Crystals*, North-Holland, Amsterdam (1960).

[6] R. L. Kronig and W. G. Penney, Proc. Roy. Soc. London. Ser. A. 130, 499 (1931).

[7] The nature of the solutions of Eq. (1) was first investigated by Kramers. See, von H. A. Kramers, Physica, 2, 483 (1935). In his paper, Kramers showed \(f(E) \), which is the same as \(D(\lambda) \) in this work, as function of \(E \) in a figure. See also [9].

[8] I. Tamm, Physik. Z. Sowj., 1, 733 (1932).

[9] W. Kohn, Phys. Rev. 115, 809 (1959).

[10] M. S. P. Eastham, *The Spectral Theory of Periodic Differential Equations*, Scottish Academic Press, Edinburgh (1973) and references therein.

[11] S. B. Zhang and A. Zunger, Appl. Phys. Lett. 63, 1399 (1993).

[12] F. B. Pedersen and P. C. Hemmer, Phys. Rev. B50, 7724 (1994).
[13] For example, Z. V. Popovic, H. J. Trodahl, M. Cardona, E. Richter, D. Strauch and K. Ploog, Phys. Rev. B40, 1202 (1989); Z. V. Popovic, M. Cardona, E. Richter, D. Strauchi, L. Tapfer and K. Ploog, Phys. Rev. B40, 1207 (1989); Z. V. Popovic, M. Cardona, E. Richter, D. Strauchi, L. Tapfer and K. Ploog, Phys. Rev. B40, 3040 (1989); P. Malinasmata and M. Cardona, Superlattices and Microstructures 10, 39 (1991).

[14] A. Franceschetti and A. Zunger, Appl. Phys. Lett. 68, 3455 (1996).

[15] S. Y. Ren, Phys. Rev. B64, 035322, (2001).

[16] For a specific band gap, if in the finite crystal τ is closer to a zero of the higher band edge wavefunction, then $\tau + L$ will be closer to a zero of the lower band edge wavefunction, and vice versa. Only if τ is a zero of a band edge wavefunction, then $\tau + L$ will also be a zero of the same band edge wavefunction. If this happens, we will have a constant energy confined band edge state rather than a surface state for this band gap.

[17] S. Y. Ren, unpublished.

[18] By using a nearest neighbor tight binding model, Hatsugai and Iguchi found that in one dimensional chains of finite length corresponding to each band gap there is only one confined state. See, Y. Hatsugai, Phys. Rev. B 48, 11851 (1993); K. Iguchi, Int. J. Mod. Phys. B 11, 2157 (1997).

[19] For the more general cases, we may have $\varepsilon_{2m}(\pi/a) = \varepsilon_{2m+1}(\pi/a)$ or $\varepsilon_{2m+1}(0) = \varepsilon_{2m+2}(0)$. In those cases, it is easy to prove that there always is a solution Λ in (5) which is dependent on neither L nor τ: $\Lambda = \varepsilon_{2m}(\pi/a)$ or $\Lambda = \varepsilon_{2m+1}(0)$. $f(x, \Lambda)$ will be either a semi-periodic function (when $\varepsilon_{2m}(\pi/a) = \varepsilon_{2m+1}(\pi/a)$) or a periodic function (when $\varepsilon_{2m+1}(0) = \varepsilon_{2m+2}(0)$).

[20] See, for example, M. S. P. Eastham, Theory of ordinary differential equations, Van Nostrand Reinhold, (1970).
Figure Captions

Fig. 1. $\Lambda_{\tau,1}$ as function of τ in the interval $[x_{1,1}, x_{1,1} + a]$. The zeros of $\phi_1(0, x)$ are shown as solid circles and the zeros of $\phi_2(0, x)$ are shown as open circles. Note that $\Lambda_{\tau,1}$ completes two basic undulations in $[x_{1,1}, x_{1,1} + a]$. The dashed lines and dotted lines can be considered as the surface state is located near two different ends of the finite crystal.

Fig. 2. A comparison between the energy bands $\varepsilon_n(k)$ of (1) (solid lines) and the eigenvalues Λ of the electronic states in a crystal of length $L = 8a$ (solid circles, L-dependent; open circles, τ-dependent). Note that: the L-dependent eigenvalues map the energy bands exactly and satisfy (4); the τ-dependent eigenvalues are in a band gap or at a band edge of (1).

Fig. 3. The eigenvalues of three electronic states in finite crystals near or in the lowest band gap of (1) as functions of the crystal length L, while τ is fixed. Note the eigenvalue of the τ-dependent electronic state (open circles) in the gap is independent on L, the eigenvalues of the two L-dependent electronic states (solid circles) change as L changes.
