Data and non-linear models for the estimation of biomass growth and carbon fixation in managed forests
Arnaud Helias, Pierre Collet, Anthony Benoist, Arnaud Elias, Ariane Albers

To cite this version:
Arnaud Helias, Pierre Collet, Anthony Benoist, Arnaud Elias, Ariane Albers. Data and non-linear models for the estimation of biomass growth and carbon fixation in managed forests. Data in Brief, Elsevier, 2019, 23, pp.103841. 10.1016/j.dib.2019.103841. hal-02118935v2

HAL Id: hal-02118935
https://hal-ifp.archives-ouvertes.fr/hal-02118935v2
Submitted on 15 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Data Article

Data and non-linear models for the estimation of biomass growth and carbon fixation in managed forests

Ariane Albersa, b, c, *, Pierre Colleta, Anthony Benoistc, d, Arnaud Héliasb, c, e

a IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
b LBE, Montpellier SupAgro, INRA, UNIV Montpellier, Narbonne, France
c Elsa, Research Group for Environmental Lifecycle and Sustainability Assessment, Montpellier, France
d CIRAD – UPR BioWooEB, Avenue Agropolis, F-34398, Montpellier, France
e Chair of Sustainable Engineering, Technische Universität Berlin, Berlin, Germany

Abstract

The data and analyses presented support the research article entitled “Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France” (Albers et al., 2019). Carbon sequestration and storage in forestry products (e.g. transport fuels) is sought as a climate change mitigation option. The data presented support and inform dynamic modelling approaches to predict biomass growth and carbon fixation dynamics, of a tree or forest stand, over specific rotation lengths. Data consists of species-specific yield tables, parameters for non-linear growth models and allometric equations. Non-linear growth models and allometric equations are listed and described. National statistics and surveys of the wood supply chain serve to identify main tree species, standing wood volumes and distributions within specific geographies; here corresponding to managed forests in France. All necessary data and methods for the computation of the annual fixation flows are presented.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The data presented provides the basis for a non-linear forestry biomass growth model, whose outputs were used for modelling time-dependent carbon fixation in forest biomass [1]. This data article aggregates data from various datasets, including national statistics and surveys, yield tables, non-linear growth parameters and allometric relations (Table 1). The wood supply chain in France is represented by 12 main forest tree species (Table 2). National surveys and statistical results describe the distribution per tree species, used for weighted mean estimates (Table 3). Yield tables tabulate the age-dependent mean tree development and productivity of fully stocked managed stands, measured largely from long-standing experimental forest stand surveys. Yield table data is used to estimate i) initial parameters to fit non-self-starting non-linear regression growth parameters included). ii) age-dependent growth variables, and iii) site-dependent management practices (e.g. thinning periods, rotation cycles). Allometric models are used for volume estimation. All data sources primary originate from French studies,
Table 3
National inventory (2012–2016) and distribution of living standing volume per forest tree species in France.

Common name	Species botanical name	Distribution standing volume [Bm³]	Distribution standing volume [%]
Douglas fir	Pseudotsuga menziesii	106	4
Norway spruce	Picea abies	213	8
Maritime pine	Pinus pinaster	133	5
Silver fir	Abies alba	213	8
Scots pine	Pinus sylvestri	160	6
Sweet chestnut	Castanea sativa	146	6
Hornbeam	Carpinus betulus	135	5
Ash	Fraxinus excelsior	108	4
European beech	Fagus sylvatica	108	4
Sessile oak	Quercus petraea	297	11
English oak	Quercus robur	297	11
White oak	Quercus pubescens	108	4
Other broadleaved	Fagaceae spp	365	14

Source: Global TRY Plant Trait Database [3].

Table 4
Specifications on analysed yield tables per forest tree species.

Common name	Species botanical name	Country	Eco-region	Geographical specifications	Yield class	Source	Page in source document
Douglas fir	P. menziesii	France	West Massif Central	Creuse, Corrèze et Haute-Vienne 2 [9]	2	[9]	50
Norway spruce	P. abies	France	South Massif Central	Montagne Noire, Monts de Lacune-Sommall-Espinouse, Levezou and Aigoual 16 [9]	16	[9]	134
Maritime pine	P. pinaster	France	South-West Jura	Landes de Gascogne 3 [9]	3	[9]	54
Silver fir	A. alba	France	Sologne	N/A 12 [9]	12	[9]	112
Scots pine	P. sylvestri	France	North Spain	N/A 3 [9]	3	[9]	20
Other conifers	C. sativa	Spain	European part	N/A 4 [10]	4	[10]	131
Sweet chestnut	C. betulus	N/A	European part	N/A 2 [11]	2	[11]	375
Hornbeam	F. excelsior	N/A	Northern Eurasia	N/A 2 [11]	2	[11]	108
Ash	F. sylvatica	France	North-West Loire	N/A 6 [9]	6	[9]	84
European beech	Q. petraea	France	European part	N/A 1a [11]	1a	[11]	294
Sessile oak	Q. robur	N/A	European part	N/A 2 [11]	2	[11]	295
English oak	Q. pubescens	N/A	European part	N/A 1a [11]	1a	[11]	294

Source: [4].
for geographical coherence. However, adequate European studies were retained when French data was unavailable (Table 4). Biomass yield and carbon content were obtained by applying specific conversion factors (Table 5). The Supplementary Material provides technical guidance and data for all assessed tree species concerning selected yield tables, regression analysis and parameters, biomass yield calculations, and annual carbon stocking factors. It includes a R [2] script to compute the regression parameters for running the growth model, applicable to future studies.

2. Experimental design, materials, and methods

The presented data is used to inform the models described in the following sub-sections.

2.1. Modelling non-linear growth

The cumulative tree growth is represented by the non-linear Chapman-Richards (CR) curve. The CR equation (Eq. (1)) is based on species- and site-dependent parameters and one independent variable, with the following notation [13]:

Common name	Species	Wood density [t·m⁻³]	Carbon content [C·t⁻¹]
Douglas fir	*P. menziesii*	0.4533	0.5280
Norway spruce	*P. abies*	0.3700	0.4980
Maritime pine	*P. pinaster*	0.4140	0.5212
Silver fir	*A. alba*	0.3530	0.4750
Scots pine	*P. sylvestri*	0.4219	0.5036
Other conifers	*Pinaceae spp*	0.4024	0.5052
Sweet chestnut	*C. sativa*	0.4400	0.5010
Hornbeam	*C. betulus*	0.7060	0.4899
Ash	*F. excelsior*	0.5597	0.4918
European beech	*F. sylvestri*	0.5855	0.4709
Sessile oak	*Q. petraea*	0.5597	0.4970
English oak	*Q. robur*	0.5597	0.5016
White oak	*Q. pubescens*	0.5997	0.4948
Other broadleaved	*Fagacea spp*	0.5672	0.4942

Note: General recommended factors are 0.5 t·m⁻³ for conifers/evergreen and 0.6–0.7 t·m⁻³ for broadleaves/deciduous. The carbon content for all tree organs (different tree compartments), can be estimated with a factor of 0.5, by neglecting the lower carbon concentration in the needles/leaves [12].

Table 6

Common name	Species	Initial parameters	A	k	p
Douglas fir	*P. menziesii*	140	0.03	2	
Norway spruce	*P. abies*	172	0.03	2	
Maritime pine	*P. pinaster*	140	0.03	2	
Silver fir	*A. alba*	326	0.03	2	
Scots pine	*P. sylvestri*	180	0.03	2	
Other conifers	*Pinaceae spp*	172	0.03	2	
(Sweet) Chestnut	*C. sativa*	120	0.03	2	
Hornbeam	*C. betulus*	200	0.02	2	
Ash	*F. excelsior*	320	0.03	2	
European Beech	*F. sylvestri*	300	0.02	2	
White oak	*Q. petraea*	240	0.04	2	
English oak	*Q. robur*	320	0.02	2	
Sessile oak	*Q. pubescens*	400	0.04	2	
Other broadleaves	*Fagacea spp*	300	0.04	2	

Sources: A. Pommerening, pers. comm.; H. Pretzsch, pers. comm.
Table 7
Overview of retained allometric equations for volume estimations.

Species	Allometric equation	Coefficients	Volume	Location	Creator	Source
		α	β	γ	δ	ϵ
$P.$ menziesii	$V_{\text{above}} = (a + \beta \times Ci) \times (1 + \delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	5.3E-1	-5.3E-4	-	5.7E+1	-
$P.$ abies	$V_{\text{above}} = (a + \beta \times Ci) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	6.3E-1	-9.5E-4	-	-	-
$P.$ pinaster	$V_{\text{above}} = (a + \beta \times Ci) + \gamma \times Ci^2 / H \times (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4E + 04^4 \times \pi)$	2.4E-1	9.7E-4	4.0E-1	2E+2	-
A. alba	$V_{\text{stem}} = (a + \beta \times (Ci / \pi)^2) \times H + \frac{1}{\gamma} \times (Ci^2 / \pi^2)$	-2.8E+0	3.4E-2	8.4E-2	-	-
$P.$ sylvestri	$V_{\text{above}} = (a + \beta \times Ci) + \gamma \times Ci^2 / H \times (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	3.0E-1	3.2E-4	3.8E-1	2E+2	-
Pinaceae spp	$V_{\text{above}} = (a + \beta \times Ci) \times Ci^2 + \gamma \times H / (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	3.0E-1	3.2E-4	3.8E-1	2E+2	-
C. sativa	$V_{\text{stem}} = \alpha \times (Ci / \pi)^2 \times H + \beta$	3.8E-2	8.5E-1	-	-	-
$C.$ betulus	$V_{\text{stem}} = \alpha \times (Ci / \pi)^2 \times H + \beta$	3.8E-2	3.0E+0	-	-	-
F. excelsior	$V_{\text{stem}} = (Ci / \pi)^2 \times H^0 \times e^{-\gamma} 1$	2.0E+0	7.7E-1	2.5E+0	-	-
F. sylvatica	$V_{\text{above}} = (a + \beta \times Ci) + \gamma \times Ci^2 / H \times (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	4.0E-1	2.7E-4	4.2E-1	4.5E+1	-
Q. petraea	$V_{\text{above}} = (a + \beta \times Ci) + \gamma \times Ci^2 / H \times (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	4.7E-1	-3.5E-4	3.8E-1	-	-
Q. robur	$V_{\text{stem}} = (Ci / \pi)^2 \times H^0 \times e^{-\gamma}$	2.0E+0	8.6E-1	2.9E+0	-	-
Q. pubescens	$V_{\text{stem}} = \alpha \times 10^0 \times \log(Ci / \pi) \times \gamma \times \log(Ci / \pi)^2 \times \delta \times \log(H) + \epsilon \times \log(H)^2$	3.5E-4	1.1E+0	3.1E-1	5.4E-1	2.1E-1
Fagaceae spp	$V_{\text{above}} = (a + \beta \times Ci) + \gamma \times Ci^2 / H \times (1 + (\delta / (Ci^2)) \times Ci^2 \times H / (4 \times 10^4 \times \pi)$	4.7E-1	3.5E-4	3.8E-1	-	-

Acronyms: H: top height; DBH: Diameter breast height; Ci: Circumference; Total AG: total aboveground; Stem UB: stem under bark; FRA: France; ITA: Italy; NDL: Netherlands; ROU: Romania.

Note: Equations are all expressed in Ci and the given units needed respective conversions to be expressed in common units. The volume is expressed in stem under bark (i.e. bark and wood) or total aboveground tree volume. The total aboveground volume includes stem under bark, needles/leaves and branches. The group "other conifers" (Pinaceae spp) and "other broadleaved" (Fagaceae spp) use the same volume relations as Scots pine and sessile oak respectively, due to their representativeness.

Source: Allometric equations analysed and selected from Ref. [6]; and respective references in the table.
where ω expresses the potential growth of a tree species i in height and circumference (response growth variables) at age t (independent variable), A, β, k, p are parameters, exp is the basis of natural logarithm and ϵ the term for random error; with β is fixed to 1 [14], and the allometric constant m fixed to 0.5 ($0 < m < 1$) [13]. CR forms a sigmoid and asymptotic curve with a point of inflection determined by the allometric constant p, approaching a maximum threshold of the response variable, the asymptote A. The empirical growth parameter k scales the absolute growth, governing the rate at which A approaches its potential maximum.

2.2. Initial parameters to fit non-self-starting non-linear regression model

The statistical model using the CR curve $[\omega \sim f(t_i, \theta) + \epsilon]$ fits the vector of parameters θ to the growth variable ω_i, whereby the function f represents a non-linear combination of the parameters. Initial parameters to fit the non-self-starting non-linear regression model (Table 6) were developed for k and p. Values for k lie between 0.02 and 0.04, depending on the studied species and for p 2. The acceptable values for k range between 0.2 and 2.5. A is estimated as twice the maximum value given for age in the species-specific yield tables.

2.3. Allometric equations and specifications

Allometric models presented in Table 7 are used for tree volume estimation.

2.4. Mean biomass growth development of all species

Fig. 1 shows the non-linear mean biomass growth per tree species. For the computation of annual C_{bio} fixation flows [t C_{bio}·yr$^{-1}$] in biomass (as presented with the stocking factors in the Supplementary material) see section 2.3.1. in the companion research article [1]. Data from Table 3 to Table 7 are used for these calculations.
Acknowledgments

The authors would like to acknowledge the valuable inputs from Prof. Hans Pretzsch (TU Munich) and Prof. Arne Pommerening (Swedish University of Agricultural Sciences). This work is part of a Ph.D. research work of Ariane Albers supported by IFP Energies nouvelles doctoral grant.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103841.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103841.

References

[1] A. Albers, P. Collet, D. Lorne, A. Benoist, A. Héliax, Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France, Appl. Energy 239 (2019) 316–330, https://doi.org/10.1016/j.apenergy.2019.01.186.
[2] R Core Team, R: A Language and Environment for Statistical Computing, R Found. Stat. Comput., 2018. http://www.r-project.org/.
[3] J. Kattge, S. Diaz, S. Lavorel, I.C. Prentice, P. Leadlay, G. Bönisch, E. Garnier, M. Westoby, P.B. Reich, I.J. Wright, J.H.C. Cornelissen, C. Violle, S.P. Harrison, P.M. Van Bodegom, M. Reichstein, B.J. Enquist, N.A. Soudzilovskaia, D.D. Ackerly, M. Anand, O. Atkin, M. Bahn, T.R. Baker, D. Baldocchi, R. Bekker, C.C. Blanco, B. Blonder, W.J. Bond, R. Bradstock, D.E. Bunker, F. Casanoves, J. Lavorel-Bares, J.Q. Chambers, F.S. Chapin, J. Chave, D. Coomes, W.K. Cornwell, J.M. Craine, B.H. Doblin, L. Duarte, W. Durka, J. Elser, G. Esser, M. Etiarte, W.F. Fagan, J. Fang, F. Fernández-Méndez, A. Fidelis, B. Finegan, O. Flores, H. Ford, D. Frank, G.T. Frenshet, N.M. Fyllas, R.V. Gallagher, W.A. Green, A.G. Gutierrez, T. Hickler, S.I. Higgins, J.G. Hodgson, A. Jalil, S. Jansen, C.A. Joly, A.J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J.M.H. Knops, K. Kurokawa, D. Laughlin, T.D. Lee, M. Leishman, F. Lens, T. Lenz, S.L. Lewis, J. Lloyd, J. Llusia, F. Louault, S. Ma, M.D. Mahecha, P. Manning, T. Massard, B.E. Medlyn, J. Messi, A.T. Moles, S.C. Müller, K. Nadrowski, S. Naeem, Ü. Niinemets, S. Nollert, A. Nüske, R. Ogaya, J. Oleksyn, V.G. Onipchenko, Y. Onoda, J. Ordonez, G. Overbeck, W.A. Ozinga, S. Patino, S. Paula, J.G. Pausas, J. Penuelas, O.L. Phillips, V. Pillar, H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Ramming, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negret, J. Sardans, S. Shihooda, B. Shipley, A. Sievert, E. Sosinski, J.F. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weihre, M. White, S. White, S.J. Wright, B. Yguel, S. Zaehle, A.E. Zanne, C. Wirth, TRY - a global database of plant traits, Glob. Chang. Biol. 17 (2011) 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x.
[4] IGN, Le méménto inventaire forestier 2017, IGN-institut Natl. L’information Géographique for. 2017, 2017, p. 360. https://inventaire-forester.sciencesconf.org/img/pdf/memento_2017.pdf. (Accessed 20 July 2018).
[5] A. Zanne, G. Lopez-Gonzalez, D. Coomes, J. Ilic, S. Jansen, S. Lewis, R. Miller, N. Swenson, M. Wiemann, J. Chave, D. Coomes, W.K. Cornwell, J.M. Craine, B.H. Doblin, L. Duarte, W. Durka, J. Elser, G. Esser, M. Etiarte, W.F. Fagan, J. Fang, F. Fernández-Méndez, A. Fidelis, B. Finegan, O. Flores, H. Ford, D. Frank, G.T. Frenshet, N.M. Fyllas, R.V. Gallagher, W.A. Green, A.G. Gutierrez, T. Hickler, S.I. Higgins, J.G. Hodgson, A. Jalil, S. Jansen, C.A. Joly, A.J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J.M.H. Knops, K. Kurokawa, D. Laughlin, T.D. Lee, M. Leishman, F. Lens, T. Lenz, S.L. Lewis, J. Lloyd, J. Llusia, F. Louault, S. Ma, M.D. Mahecha, P. Manning, T. Massard, B.E. Medlyn, J. Messi, A.T. Moles, S.C. Müller, K. Nadrowski, S. Naeem, Ü. Niinemets, S. Nollert, A. Nüske, R. Ogaya, J. Oleksyn, V.G. Onipchenko, Y. Onoda, J. Ordonez, G. Overbeck, W.A. Ozinga, S. Patino, S. Paula, J.G. Pausas, J. Penuelas, O.L. Phillips, V. Pillar, H. Poorter, L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Ramming, S. Reinsch, B. Reu, L. Sack, B. Salgado-Negret, J. Sardans, S. Shihooda, B. Shipley, A. Sievert, E. Sosinski, J.F. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M. Waldram, E. Weihre, M. White, S. White, S.J. Wright, B. Yguel, S. Zaehle, A.E. Zanne, C. Wirth, TRY - a global database of plant traits, Glob. Chang. Biol. 17 (2011) 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x.
[6] M. Henry, A. Bombelli, C. Trotta, A. Alessandrini, L. Birigazzi, G. Sola, G. Vieilledent, P. Santenöfo, F. Longuetaud, R. Valdarnini, C. Wirth, TRY - a global database of plant traits, Glob. Chang. Biol. 17 (2011) 2905–2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x.
[7] E.S. Domalski, T.L. Jobe Jr., T.A. Milne, Thermodynamic Data for Biomass Conversion and Waste Incineration, Report SP-271-2839, NREL-Solar Energy Research Institute, Lakewood, 1986. https://www.nrel.gov/docs/legosti/old/2839.pdf.
[8] G. Matthews, The Carbon Content of Trees: Technical Paper 4, Crown, Edinburgh, 1993 doi:ISBN 0 85538 317 8.
[9] INRA/ONF, Tables de production pour les forêts françaises, 2e édition, INRA-Centre National de Recherche Forêstière, ONF- Office National des Forêts, EGFRE- Ecole Nationale du Génie rural, des Eaux et des Forêts, Nancy, 1984.
[10] M. Menéndez-Miguelez, P. Alvarez-Álvarez, J. Majada, E. Canga, Management tools for Castanea sativa coppice stands in northwestern Spain [Spanish: Herramientas de gestión para masas de monte bajo de Castanea sativa en el noroeste de España], Bosque 37 (2016) 119–133, https://doi.org/10.4067/S0717-92002016000100012.
[11] A. Shvidenko, D. Schepaschenko, S. Nilsson, Y. Boului, Federal Agency of Forest Management International Institute for Applied Systems Analysis Tables of Growth and Productivity of Forests of Major Forest Forming Species of Northern Eurasia (Standard and Reference Materials), Moscow, 2008. http://webarchive.iiasa.ac.at/Research/FOREST/cdrom/Articles/THK.pdf.
[12] H. Pretzsch, Forest Dynamics, Growth and Yield- from Measurement to Model, Springer-Verlag, Berlin Heidelberg, 2009, https://doi.org/10.1007/978-3-540-88307-4.
[13] D. Fekedulegn, M.P. Mac Siurtain, J.J. Colbert, Parameter estimation of nonlinear growth models in forestry, Silva Fenn. 33 (1999) 327–336, https://doi.org/10.14214/sf.653.
[14] L. Pummerening, A. Muszta, Relative plant growth revisited: towards a mathematical standardisation of separate approaches, Ecol. Model. 320 (2016) 383–392, https://doi.org/10.1016/j.ecolmodel.2015.10.015.
[15] J. Vallet, J.F. Dhote, G. Le Moguedec, M. Ravart, G. Pignard, Development of total aboveground volume equations for seven important forest tree species in France, For. Ecol. Manag. 229 (2006) 98–110, https://doi.org/10.1016/j.foreco.2006.03.013.
[16] P. Gasparini, M. Nocetti, G. Tabacchi, V. Tosi, Biomass equations and data for forest stands and shrublands of the Eastern Alps (Trentino, Italy), in: IUFRO Conf. (Sustainable for. Theory Pract. 5-8 April 2005, Sustainable Forestry in Theory and Practice USDA General Technical Report PNW-GTR-688, Edinburgh, 2006. http://www.fs.fed.us/pnw/pubs/pnw_gtr688/papers/Stats & Mod/session1/Gasparini.pdf.

[17] G. Hollinger, Synthèse des expérimentations réalisées sur les différents chantiers, Annales de mécanisation forestière, Paris, 1987.

[18] E.J. Dik, Estimating the Wood Volume of Standing Trees in Forestry Practice, Uitvoerige verslagen, Wageningen, 1984.

[19] V. Giurgiu, O Expresie Matematica Unica a Relatiei Diametru - Inaltime - Volum, Pentru Majoritatea Speciilor Forestiere Din Romania, 1974.