A HUGE DROP IN THE X-RAY LUMINOSITY OF THE NONACTIVE GALAXY RX J1242.6–1119A, AND THE FIRST POSTFLARE SPECTRUM: TESTING THE TIDAL DISRUPTION SCENARIO

Stefanie Komossa,1 Jules Halpern,2 Norbert Schartel,3 Günther HASINGER,1 Maria Santos-Lleo,3 and Peter Predehl1

Received 2003 November 10; accepted 2003 December 15; published 2004 February 20

ABSTRACT

In recent years, indirect evidence has emerged suggesting that many nearby nonactive galaxies harbor quiescent supermassive black holes. Knowledge of the frequency of occurrence of black holes, of their masses and spins, is of broad relevance for studying black hole growth and galaxy and active galactic nuclei formation and evolution. It has been suggested that an unavoidable consequence of the existence of supermassive black holes, and the best diagnostic of their presence in nonactive galaxies, would be occasional tidal disruption of stars captured by the black holes. These events manifest themselves in the form of luminous flares powered by accretion of debris from the disrupted star into the black hole. Candidate events among optically nonactive galaxies emerged in the past few years. For the first time, we have looked with high spatial and spectral resolution at one of these most extreme variability events ever recorded among galaxies. Here we report measuring a factor of ~200 drop in luminosity of the X-ray source RX J1242–1119 with the X-ray observatories Chandra and XMM-Newton, and perform tests of the favored outburst scenario, tidal disruption of a star by a supermassive black hole. We show that the detected “low-state” emission has properties such that it must still be related to the flare. The power-law shaped postflare X-ray spectrum indicates a “hardening” compared to outburst. The inferred black hole mass, the amount of liberated energy, and the duration of the event favor an accretion event of the form expected from the (partial or complete) tidal disruption of a star.

Subject headings: galaxies: individual (RX J1242.6–1119) — galaxies: nuclei — X-rays: galaxies

1. INTRODUCTION

The X-ray luminous nuclei of active galaxies (AGNs) are believed to be powered by accretion of gas onto supermassive black holes. There is now growing evidence that many nearby nonactive galaxies harbor quiescent supermassive black holes. There are (see reviews by Kormendy & Gebhardt 2001; Richstone 2002). Studies of the abundance of black holes, of their masses and their spins, shed light on the mechanisms of black hole growth and of galaxy and AGN formation and evolution. Possibly the most direct means of detecting supermassive black holes at the centers of galaxies, and an unavoidable consequence of their existence, would be occasional tidal disruption of stars and subsequent accretion of their debris by these supermassive black holes (e.g., Hills 1975; Gurzadyan & Ozeranoi 1979; Carter & Luminet 1982; Rees 1988, 1990; Wang & Merritt 2004). The events would appear as luminous flares of radiation emitted when the stellar debris is accreted by the black hole.

Stellar capture and disruption is—in addition to accretion of gas and black hole merging—one of the three major processes studied in the context of black hole growth (e.g., Frank & Rees 1976). The relative importance of these processes in feeding black holes is still under investigation. Zhao, Haehnelt, & Rees (2002) and Merritt & Poon (2003) recently pointed out that tidal capture may play an important role in explaining the observable $M_{\bullet} - \sigma$ relation of galaxies. Given the intense theoretical attention the topic of stellar tidal disruption receives (see § 3 of Komossa 2002, and references therein), it is of great interest to see whether these events do occur in nature, and how frequent they are.

Making use of the unique capability provided by the All-Sky Survey (RASS; Voges et al. 1999) of the X-ray satellite ROSAT, giant X-ray flares from the directions of a few nearby galaxies were discovered (Komossa & Bade 1999; Komossa & Greiner 1999; Grupe, Leighly, & Thomas 1999; Greiner et al. 2000). These flares were characterized by huge peak X-ray luminosities reaching ~10^{45} erg s$^{-1}$, large amplitudes of decline, ultrasoft X-ray spectra, and absence of Seyfert activity in ground-based optical spectra (see Komossa 2002 for a review). The target of the present study, RX J1242–1119, was first detected by ROSAT in 1992 (Komossa & Greiner 1999) during a pointed observation with the Position Sensitive Proportional Counter (PSPC). At that time it showed a very soft X-ray spectrum with $kT_{\text{ref}} = 0.06$ keV, and an X-ray luminosity of $L_X \sim 9 \times 10^{43}$ ergs s$^{-1}$, which is exceptionally large, given the absence of any signs of Seyfert activity of RX J1242–1119 in ground-based (Komossa & Greiner 1999) and Hubble Space Telescope (HST; Gezari et al. 2003) optical spectra. The association with one of the two previously unstudied nonactive galaxies at redshift $z = 0.05$ located in the X-ray position error circle (named RX J1242–1119A and RX J1242–1119B, for lack of a better designation), however, remained uncertain because of the large ROSAT positional uncertainty, in this case 40′′ (Fig. 1).

Considering the extraordinary properties of this and a few similar X-ray events, particularly their enormous luminosity output, it is of utmost importance to understand what is happening in these systems. For the first time, we have now looked at one of these flare events with high spatial and spectral resolution in order to confirm the counterpart, follow the long-term temporal behavior, study the spectral evolution, and measure the postflare spectrum, and to use these results to test the favored outburst model: tidal disruption of a star by a super-
massive black hole. Among the few known X-ray–flaring galaxies, RX J1242−1119 was our target of choice for follow-up X-ray observations because it flared most recently, so the probability of catching the source in the declining phase was highest. Also, because there were two galaxies in the Chandra data, the correct counterpart needed to be confirmed. A Hubble constant of 50 km s$^{-1}$ Mpc$^{-1}$ is used throughout this Letter.

2. DATA REDUCTION AND RESULTS

2.1. Chandra

We observed the field of RX J1242−1119 with the Advanced CCD Imaging Spectrometer (ACIS-S) instrument on board the Chandra X-Ray Observatory (Weisskopf et al. 2002) for 4.5 ks on 2001 March 9. The X-ray photons from the target source were collected on the back-illuminated S3 chip of ACIS.

The Chandra data allow us to precisely locate the counterpart of the X-ray source. We find that the X-ray emission peaks at coordinates R.A. = 12h42m38.55, decl. = −11$^\circ$19′20′′/J2000). Within the errors, this position is coincident with the center of the optically brighter of the two galaxies, RX J1242−1119A (Fig. 1). An offset in position of ≈1″ in R.A. can be traced to residual uncertainties in the absolute pointing accuracy of the X-ray telescope. Neither Chandra nor XMM-Newton detected any other X-ray source within the ROSAT X-ray position error circle, including from the optically fainter galaxy RX J1242−1119B.

We do not find evidence for significant source extent. The photons detected by Chandra from RX J1242−1119A fall within a radius of 1″, and the radial profile is consistent with a point source. This indicates that we are still seeing late-phase flare-related emission rather than persistent, extended X-ray emission originating from the host galaxy itself.

A further result, immediately obvious upon inspection of the Chandra data, is the huge drop in X-ray flux of RX J1242−1119, compared to its last observation by ROSAT. Only 18 source photons were detected by Chandra; the implied amplitude of variability is quantified below.

2.2. XMM-Newton

Given the strong indications, based on the Chandra observation, that the X-ray emission from RX J1242−1119A is still flare dominated, we asked for a target-of-opportunity observation with XMM-Newton in order to obtain, for the first time, a good quality X-ray spectrum of one of the flaring sources, and to follow the long-term spectral evolution before the source had declined to nondetectability. While the strength of Chandra is its high spatial resolution of better than 1″, XMM-Newton has higher throughput (the 18 source photons registered with Chandra do not allow spectral fitting).

The XMM-Newton (Jansen et al. 2001) observation of RX J1242−1119 was performed on 2001 June 21−22, with a duration of 24.3 ks. Data from the EPIC pn, MOS1, and MOS2 detectors were used for analysis. The observation was first checked for flares in the background radiation; none were detected. Photons were then extracted from a circular area of radius 0.3 centered on the target source. For the MOS cameras the background was determined in an annulus around the source, with an inner radius of 1″ and an outer radius of 3″. The background counts for the pn observation were selected in a circular region close to the target source. The total source count rate, measured in the EPIC pn detector, amounts to 0.0137 counts s$^{-1}$ in the 0.3−5 keV energy band. No systematic decrease (or increase) of the count rate is present during the observation.

The X-ray spectrum yields important information on the physics governing the postflare evolution. X-ray emission from RX J1242−1119A is detected in all three of the following energy intervals: 0.3−0.75 keV, 0.75−1.5 keV, and 1.5−5 keV, with count rates of 0.0073, 0.0040, and 0.0024 counts s$^{-1}$, respectively. For spectral analysis, source photons were binned such that each spectral bin contains more than 25 photons. The resulting spectrum is best described by a power law with photon index $\Gamma_x = −2.5 ± 0.2$ ($\chi^2 = 1.1$; Fig. 2). We do not find evidence for strong excess cold absorption. The absorption toward RX J1242−1119A is consistent with the Galactic value of $N_H = 3.74 \times 10^{20}$ cm$^{-2}$. Thermal (Raymond-Smith and
MEKAL) X-ray emission models yield significantly worse spectral fits if the metal abundance of the X-ray-emitting gas is constrained not to fall significantly below 0.1 times the solar value.

Using the best-fit power-law spectral model, the XMM-Newton “low-state” luminosity of RX J1242−1119 is $L_X = 4.5 \times 10^{31}$ ergs s$^{-1}$ in the 0.1–2.4 keV band. Compared to the peak luminosity of 9×10^{31} ergs s$^{-1}$ measured with ROSAT, this corresponds to a factor of ~200 decline.

Finally, we used the optical monitor (OM) data to estimate the B and U magnitudes of RX J1242−1119A (and B). The OM observations were performed in standard image mode, with U, B, and two broadband UV filters. Five high- and one low-resolution image per filter were collected, with an exposure time of 1000 s each. The data files were processed with SAS version 5.4.1 and with the task omichain to perform required corrections for tracking, bad pixels, fixed pattern, and flat field. Both galaxies are detected in the U, B, and UVW filter bands, and their angular separation is large enough to avoid confusion. Total source counts were measured for each galaxy in an aperture radius of 12 pixels, as recommended to account for the broad wings of the OM point-spread function. Corrections for coincidence losses and dead time were applied to the total count rates, and then background was subtracted. A mean corrected count rate was then computed for each filter band. To estimate the magnitudes, the most recent zero-point corrections (as of 2003 November) were applied. This yielded the following B and U magnitudes for RX J1242−1119A (B): $m_B = 17.56 \pm 0.05$ (18.72 ± 0.06) mag and $m_U = 17.80$ (18.83) mag.

3. DISCUSSION

We have utilized the complementary abilities of the X-ray observatories Chandra and XMM-Newton to study the peculiar ROSAT source RX J1242−1119. With Chandra we found that the source of the bright X-ray emission detected by ROSAT is the galaxy RX J1242−1119A. The flare emission has declined dramatically by a factor of ~200, but has not yet faded away completely. XMM-Newton then provided us with the best postflare spectrum ever taken of any of the few flaring, optically inactive galaxies. The spectrum has a power-law shape; there is no evidence for excess absorption, and the postflare spectrum is harder than the flare maximum.

There is an additional argument that the detected pointlike, low-state X-ray emission does not arise from the interstellar medium of the host galaxy, but is related to the mechanism that produced the flare itself. Compared with the blue luminosity of RX J1242−1119A, inferred from the extinction-corrected blue magnitude $m_{B,0} = 17.43$ mag measured with the OM, the X-ray emission of this galaxy is still very high, even in its low state. Its ratio of X-ray to blue luminosity, $log (L_X/L_B) \approx 31.6$, is above the upper end observed so far for field early-type galaxies (Irwin & Sarazin 1998; O’Sullivan, Forbes, & Ponman 2001).

While the X-ray observations presented here demonstrate that the postflare emission is associated with the galaxy RX J1242−1119A, it was established previously that the optical spectrum of RX J1242−1119A is that of a nonactive galaxy (Komossa & Greiner 1999; Gezari et al. 2003). In addition to other arguments presented earlier, the absence of any significant excess X-ray absorption above the galactic value argues against the scenario of an extremely X-ray variable active galactic nucleus that is completely obscured optically. We find that the galaxy RX J1242−1119A is not detected in the NRAO VLA Sky Survey (Condon et al. 1998) at 1.4 GHz, which is also consistent with the absence of a permanent (hidden) active nucleus.

The X-ray observations reported here place important constraints on the total duration of the flare maximum. The source was not detected in 1990 in a short exposure during the RASS. It was “on” in 1992 and had dropped dramatically in flux during the Chandra and XMM-Newton observations in 2001, limiting the “on-state” to $\leq 10^4$ yr. The high outburst luminosity and amplitude of variability strongly suggest that a supermassive black hole at the center of RX J1242−1119A is the ultimate power source. The new observations presented here are consistent with and corroborate the previously favored tidal disruption scenario explaining this flare event.

Independent of the X-ray properties of RX J1242−1119A, its blue magnitude measured by the OM can be used to estimate the mass of the black hole at the center of the galaxy. The correlation between the absolute blue magnitude of the bulge of an elliptical galaxy and the mass of the central black hole (Ferrarese & Merritt 2000) predicts a black hole mass of $\approx 2 \times 10^8 M_\odot$. This estimate is uncertain by a factor of several, given the scatter in the relation between bulge luminosity and black hole mass (e.g., Ferrarese & Merritt 2000; McLure & Dunlop 2002). The observations are consistent with either partial disruption of a giant star, or complete disruption of a solar-type star, in which only part of the debris from the solar-type star is accreted while the rest becomes unbound, or else part of the debris is accreted in a radiatively inefficient mode.

To estimate (a lower limit on) the amount of stellar debris accreted by the black hole, we forced the high- and low-state luminosities to follow a $t^{-5/3}$ law expected for the “fallback” phase (e.g., Rees 1990; Li, Narayan, & Menou 2002) of tidal disruption. The integral $\int L(t) \, dt$ then gives the total emitted energy, $E = 1.6 \times 10^{51}$ ergs. We started the integration at the time the source was first observed in the high state by ROSAT. This requires accretion of $M = 0.01 \eta_3^{-1} M_\odot$ of stellar material, where $\eta = 0.1 \eta_3$ is the efficiency.

Although the X-ray emission of RX J1242−1119A dropped substantially, does this necessarily mean that the total accretion luminosity declined, or is it possible that the emission just shifted out of the X-ray band? Part of the flux may have softened into the unobservable extreme-ultraviolet (EUV) part of the spectrum, as expected in some tidal disruption models (e.g., Cannizzo, Lee, & Goodman 1990), but it is more likely that the total luminosity has declined since outburst. Otherwise, we might expect to see optical emission lines excited by the hypothesized bright EUV continuum; such emission lines do not appear in HST spectra of RX J1242−1119A taken several years after the outburst (Gezari et al. 2003).

With all possible observational tests now performed, more detailed comparison with theory has to await refined model calculations of stellar disruption.

4. CONCLUDING REMARKS

The results presented here demonstrate the effectiveness of combining the abilities of the two most powerful X-ray observatories in orbit to study one of the most extreme variability
events ever recorded among galaxies. In our interpretation of these observations, we are seeing the postdisruption phase of a close encounter of a star with a central supermassive black hole, into which some of the tidal debris is accreting. Continued X-ray monitoring of RX J1242−1119A will enable us to follow the expected further decline in luminosity.

Future X-ray (all) sky surveys planned for missions like DUO, ROSITA, LOBSTER, and MAXI will be very useful for finding new flare events, while their detailed study will become possible with future high-throughput X-ray missions like XEUS and Constellation-X. We may then be able to probe the regime of strong gravity, since the temporal evolution of the flare X-ray emission is expected to depend on relativistic precession effects in the Kerr metric.

The results presented here will impact further model calculations of the tidal disruption process, which are still complex and challenging and are expected to motivate new studies of the flare host galaxies as well as an expanded search for similar flare events in existing and future Chandra and XMM-Newton archives, including the deep fields.

Such observations of flares open up a new window into the study of supermassive black holes and their environment, and the physics of accretion events in otherwise inactive galaxy nuclei.

This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and on observations obtained with the NASA mission Chandra. In Germany, the XMM-Newton project is supported by the Bundesministerium für Bildung und Forschung through the Deutsches Zentrum für Luft und Raumfahrt, the Max Planck Society and the Heidenhain Stiftung. We thank the XMM-Newton and Chandra teams for their help, which made these observations possible, and Peter Edmonds, Joachim Trümper, and an anonymous referee for their useful comments. I (S. K.) gratefully remember Hartmut Schulz for ongoing discussions on many topics in astrophysics, including the flares, for sharing his broad knowledge and deep insight into physics, for patiently listening when I needed somebody to talk to, for intense collaborations on NGC 6240 ever since I started in astrophysics, and for sharing his enthusiasm for NGC 4151. Hartmut passed away in August 2003.

REFERENCES

Beloborodov, A. M., Illarionov, A. F., Ivanov, P. B., & Polnarev, A. G. 1992, MNRAS 259, 209
Cannizzo, J. K., Lee, H. M., & Goodman, J. 1990, ApJ, 351, 38
Carter, B., & Luminet, J. P. 1982, Nature, 296, 211
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Frank, J., & Rees, M. 1976, MNRAS, 176, 633
Gezari, S., Halpern, J. P., Komossa, S., Grupe, D., & Leighly, K. 2003, ApJ, 592, 42
Greiner, J., Schwarz, R., Zharikov, S., & Orio, M. 2000, A&A, 362, L25
Grupe, D., Leighly, K., & Thomas, H. 1999, A&A, 351, L30
Gurzadyan, V. G., & Ozernoi, L. M. 1979, Nature, 280, 214
Hills, J. G. 1975, Nature, 254, 295
Irwin, J., & Sarazin, C. 1998, ApJ, 499, 650
Jansen, F., et al. 2001, A&A, 365, L1
Komossa, S. 2002, Rev. Mod. Astron., 15, 27
Komossa, S., & Bade, N. 1999, A&A, 343, 775
Komossa, S., & Greiner, J. 1999, A&A, 349, L45
Kormendy, J., & Gebhardt, K. 2001, in AIP Conf. Proc. 586, 20th Texas Symp. on Relativistic Astrophysics, ed. J. C. Wheeler & H. Martel (Melville: AIP), 363
Li, L.-X., Narayan, R., & Menou, K. 2002, ApJ, 576, 753
McLure, R. J., & Dunlop, J. S. 2002, MNRAS, 331, 795
Merritt, D., & Poon, M. Y. 2003, preprint (astro-ph/0302296)
O'Sullivan, E., Forbes, D. A., & Ponman, T. J. 2001, MNRAS, 328, 461
Rees, M. 1988, Nature, 333, 523
———. 1990, Science, 247, 817
Richstone, D. O. 2002, Rev. Mod. Astron., 15, 57
Voges, W., et al. 1999, A&A, 349, 389
Wang, J., & Merritt, D. 2004, ApJ, 600, 149
Weisskopf, M. C., Brinkmann, B., Canizares, C., Garmire, G., Murray, S., & van Speybroeck, L. P. 2002, PASP, 114, 1
Zhao, H. S., Haehnelt, M. G., & Rees, M. 2002, NewA, 7, 385