General Equation to Express Changes in the Physicochemical Properties of Organic Homologues

Chao-Tun Cao and Chenzhong Cao*

ABSTRACT: Changes in various physicochemical properties \((P(n))\) of organic compounds with the number of carbon atoms \((n)\) can be roughly divided into linear and nonlinear changes. To date, there has been no general equation to express nonlinear changes in the properties of organic homologues. This study proposes a general equation expressing nonlinear changes in the physicochemical properties of organic homologues, including boiling point, viscosity, ionization potential, and vapor pressure, named the “NPOH equation”, as follows: \(P(n) = P(1)\alpha^n + \beta\sum^{n-1}(i-1)\) where \(\alpha\) and \(\beta\) are adjustable parameters, and \(P(1)\) represents the property of the starting compound (pseudo-value at \(n = 1\)) of each homologue. The results show that various nonlinear changes in the properties of homologues can be expressed by the NPOH equation. Linear and nonlinear changes in the properties of homologues can all be correlated with \(n\) and the “sum of carbon number effects”, \(\sum^{n-1}(1/i - 1)\). Using these two parameters, a quantitative correlation equation can be established between any two properties of each homologue, providing convenient mutual estimation of the properties of a homologue series. The NPOH equation can also be used in property correlation for structures with functionality located elsewhere along a linear alkyl chain as well as for branched organic compounds. This work can provide new perspectives for studying quantitative structure-property relationships.

1. INTRODUCTION

In 2021, Kontogeorgis et al.\(^1\) investigated the industrial requirements for thermodynamic and transport properties, reporting that: “In terms of models, companies ideally wish for a single universal model for all/many applications, but there is understanding that this is possibly utopian. The second major wish is the need for predictive models validated on extensive experimental databases and not only on just a few available experimental data points.” This shows the importance of molecular modeling. The quantitative structure–property relationship (QSPR) method is important for understanding and predicting compound properties and it has seen rapid development.\(^2\) Recently, molecular dynamics and machine learning have also been used in drug design.\(^3\)

The two key steps for developing successful QSPR models are molecular descriptor calculations and equation selection. Generally, the development of validated QSPR models first involves calculating the molecular descriptors and then, based on experimental data, selecting an appropriate number of descriptors from a large number of calculated molecular descriptors to establish the QSPR equation.\(^2,5,9\) In this method, descriptor screening and equation optimization are time-consuming, and the physical meaning of the resulting equations is unclear and difficult to interpret. Other methods are also available for predicting the physicochemical properties of compounds. In these methods, theoretical equations are first proposed and molecular characteristic parameters are extracted for specific compounds. Data fitting is then used to form specific application equations, such as in state equation 1\(^2\)

\[
P = \frac{RT}{V - b} - \frac{a(T)}{V^2 + uVb + wb^2} \tag{1}
\]

where \(u\) and \(w\) are characteristics of the equation \((u = 1\) and \(w = 0\) or \(u = 2\) and \(w = -1\) for Redlich-Kwong\(^5\) or Peng–Robinson (PR),\(^1\) respectively), and \(a\) and \(b\) are parameters computed using critical pressure \((P_c)\) and temperature \((T_c)\), as shown in eqs 2 and 3

\[
a = \Omega_a \frac{RT_c^2}{P_c} \alpha(T) \tag{2}
\]

\[
b = \Omega_b \frac{RT_c}{P_c} \tag{3}
\]

Received: May 13, 2022
Accepted: July 12, 2022
Published: July 25, 2022
where \(\Omega_a \) and \(\Omega_b \) have specific values depending on the selected equation, and the temperature function, \(\alpha(T) \), is equal to 1 for \(T = T_c \). Similar to eq 1, these theoretical equations have clear physical meanings, allowing molecular descriptors to be calculated in a targeted manner. However, this type of equation is not easy to propose.

The aforementioned methods show that a QSPR equation can be established more easily if the general regularity of changes in compound properties is known in advance and then molecular descriptors are selected. Therefore, we have considered classifying chain organic compounds and discussing the regularity of changes in their properties, which is more conducive to establishing QSPR equations. Accordingly, organic compounds with different functional groups were first divided into homologues and then into isomers. Following the concept of homologue–isomer property correlation, we can establish a structure–property correlation equation for chain organic compounds with different functional groups.

Changes in the properties (\(P \)) of organic homologues are known to be related to the number of carbon atoms (\(n \)), allowing a theoretical equation between \(P \) and \(n \), \(P = f(n) \), to be established. On this basis, the characteristic parameter of the molecular structure of an isomer (\(s \)) can be extracted using the molecular descriptor calculation in the QSPR method, and then the property-change equation of the chain organic compound (\(P = f(n, s) \)) can be established. This accounts for the advantages of the two aforementioned methods and reduces the difficulty of establishing structure–property correlation equations. This study aimed to explore a general equation for expressing changes in the physicochemical properties of organic homologues.

Much research has focused on expressing the regularity of property changes in organic homologues, with four types of empirical expression having been proposed. As early as 1961, Kreglewsky\(^{12}\) proposed eq 4 to evaluate the boiling points of \(n \)-paraffin compounds in the range of \(C_1-C_{100} \). This work pioneered the quantitative correlation of homologue properties

\[
Y = Y_\infty - (Y_\infty - Y_0) \exp(-\beta n^{2/3})
\]

where \(Y \) is the boiling point value at carbon number \(n \) and \(Y_0 \) is the boiling point pseudo-value at \(n = 0 \), \(Y_\infty = 1078 \), and \(\beta = 4.999 \times 10^{-3} \).

In 1985, Gasem and Robinson et al.\(^{13,14}\) proposed eq 5 for evaluating the critical properties of \(n \)-paraffins, known as the ABC equation

\[
Y^c = Y_\infty^c - (Y_\infty^c - Y_0^c) \exp(-\alpha(n - 1))
\]

where variables \(Y, Y_\infty, Y_0 \) are property values at carbon number \(n \), the limiting property value as \(n \) becomes very large,
and the property pseudo-value at \(n = 1 \), respectively, and \(\beta \) and \(\alpha \) are adjustable parameters.

In 1997, Marano and Holder\(^{15} \) proposed eq 6 to correlate the thermodynamic and transport properties of \(n \)-paraffins and other homologous series, which can be used for a wide range of different thermophysical properties

\[
Y = Y_\infty - \Delta Y \exp(-\beta(n \pm n_0))
\]

where five adjustable parameters, \(n_0 \), \(Y_0 \), \(Y_\infty \), \(\beta \), and \(\gamma \), are employed.

In 2009, Zenkevich\(^{16} \) employed a recurrent function to correlate the properties of homologous series, as shown in eq 7

\[
A(n+1) = aA(n) + b
\]

where \(A(n+1) \) is the physicochemical property value for homologues with \((n+1) \) carbon atoms, \(A(n) \) is the property value for homologues with \(n \) carbon atoms, and coefficients \(a \) and \(b \) are calculated by the least squares method. Equation 7 is different from eqs 4–6 because the parameter \(Y_\infty \) is not required.

Notably, eq 4 was proposed more than 60 years ago, and the inherent change regularity of homologue properties with carbon number \(n \) remains unknown. The equations proposed previously provide great insight, but two problems remain: (i) Their physical meaning is unclear, making them difficult to explain; and (ii) they cannot correlate one property to another property for a series of homologues. Therefore, this study investigated the change regularity of homologue properties with carbon atom number \(n \) to explore the relationship between the properties of homologues.

2. RESULTS AND DISCUSSION

2.1. Theoretical Analysis

Changes in the physicochemical properties \((P) \) of organic homologues with carbon atom number \(n \) can be roughly divided into linear and nonlinear changes. The linear change of a property is relatively simple and will not be discussed in detail here. This study focuses on the complex nonlinear change of a property. Using \(n \)-paraffins \((H-(CH_2)_n-H) \) as an example, some \(P \) values increase with an increasing \(n \) value, while some \(P \) values decrease with an increasing \(n \) value. The \(P \) changes show significant differences, as shown in Figure 1. We investigated how these different changes are dominantly affected by \(n \), and whether all of these changes follow a common rule, through theoretical analysis. Usually, organic homologues can be represented as \(X-(A)_n-Y \), where \(A \) is a repeating structural unit, \(n \) is the number of repeating structural units, and \(X \) and \(Y \) are end groups. For \(n \)-paraffins, \(A \) is \(CH_2 \) and both \(X \) and \(Y \) are \(H \) atoms, represented by \(H-(CH_2)_n-H \). In a series of organic homologues, the property of compound \(X-(A)_n-Y \) containing \(n \) repeating structural units is represented by \(P(n) \), and the property of another compound containing \(n-1 \) repeating structural units \(X-(A)_{n-1}-Y \) is represented by \(P(n-1) \). The molecular structure of \(X-(A)_n-Y \) is known to be formed by adding repeating structural unit \(A \) to molecule \(X-(A)_{n-1}-Y \), namely, \(X-(A)_n-Y \) becomes \(X-(A)_{n-1}-A-Y \). The addition of unit \(A \) causes a change of property \(P(n-1) \) of \(X-(A)_{n-1}-Y \) to property \(P(n) \) of \(X-(A)_n-Y \). Therefore, property \(P(n) \) of \(X-(A)_n-Y \) can be considered a perturbation based on property \(P(n-1) \) of \(X-(A)_{n-1}-Y \). This perturbation effect must be related to the original molecular chain length \((A)_{n-1} \). Assuming that the perturbation effect acts in the form of an exponential, \(\exp(\beta/(n-1)) \), then, the relationship between \(P(n) \) and \(P(n-1) \) can be expressed by eq 8

\[
P(n) = P(n-1)\alpha\exp(\beta/(n-1))
\]

where \(\alpha \) is the proportional coefficient of the property change and \(\beta \) is an adjustable parameter of the perturbation effect.
Table 2. Correlation Equations of Properties for n-Paraffins H–(CH₂)n–H (Model Equation: \(\ln(P_{(a)}) = a + b(n-1) + cS_{CNE} \))

no.	property\(^a\)	range of \(n\)\(^b\)	ref	\(a\)	\(b\)	\(c\)	\(R\)	\(S\)	\(N\)\(^c\)	\(F\)
1	\(T_g\)	2–100	17	4.6973	-0.004569	0.51040	0.9999	0.0057	34	73 691.18
2	\(T_c\)	2–20	20	5.2972	-0.008981	0.42758	0.9999	0.0030	19	65 747.43
3	\(P_g\)	2–20	20	1.9097	-0.50147	-0.24698	0.9992	0.0191	19	5084.85
4	\(C_p\)	4–16	21	3.6382	0.025666	0.66368	0.9997	0.0099	11	7888.46
5	\(\lambda\)	5–16	22	-2.7579	-0.016467	0.30762	0.9944	0.0107	17	774.44
6	\(S_f\)	5–16	22	1.1369	-0.048077	0.86717	0.9990	0.0108	7	978.56
7	\(\mu\)	5–35	18	-5.6286	0.043485	1.79992	0.9996	0.0448	28	14 301.74
8	\(\eta_0\)	4–20	21	0.15997	-0.003447	0.076226	0.9987	0.0012	16	2534.24
9	\(P_v\)	2–16	21	7.4528	-0.461790	-0.36834	1.0000	0.0103	15	347 794.19
10	\(\omega\)	2–20	23	-3.2314	-0.006594	0.90514	0.9997	0.0158	19	13 904.65
11	\(I_p\)	2–11	19	2.5643	0.004981	-0.12156	0.9996	0.0020	10	4094.40
12	\(D\)	5–16	19	-1.0445	-0.016174	0.30966	0.9994	0.0025	12	3850.05
13	\(T_p\)	3–16	24 and 25	4.4783	0.000031	0.45456	0.9970	0.0213	14	915.62
14	\(P_a\)	2–8	26	1.1261	0.536478	0.12495	0.9990	0.0716	6	7363.35

\(\text{CNE}\) is the abbreviation of “carbon number effect”. Based on eq 8, expressions for \(P_{(2)}\), \(P_{(3)}\), \(P_{(4)}\), ..., can be deduced as follows:

\[
P_{(2)} = P_{(n-1)}a\exp(\beta/(2-1))
\]

\[
P_{(3)} = P_{(2)}a\exp(\beta/(3-1)) = [P_{(1)}a^{2}\exp(\beta/(2-1))]|a
\]

\[
\ exp(\beta/(3-1)) = P_{(1)}a^{2}\exp[(\beta/(2-1)) + (\beta/(3-1))]
\]

\[
P_{(4)} = P_{(3)}a\exp(\beta/(4-1)) = [P_{(1)}a^{3}\exp[(\beta/(2-1)) + (\beta/(3-1)))]a
\]

\[
\ exp(\beta/(4-1)) = P_{(1)}a^{3}\exp[(\beta/(2-1)) + (\beta/(3-1)) + (\beta/(4-1))]
\]

From eqs 9–11, eq 8 can also be expressed as eq 12:

\[
P_{(n)} = P_{(1)}a^{n-1}S_{CNE}^{\beta/(n-1)}
\]

Equation 12 expresses the relationship between the property of organic homologues \(X-(A)_{n-1}Y\) and the number of repeating structural units, \(n\). If the logarithm is taken, eq 12 can be expressed as eq 13:

\[
\ln(P_{(n)}) = \ln(P_{(1)}) + (n-1)\ln(a) + b\sum_{i=2}^{n}\left(\frac{1}{i-1}\right)
\]

where \(a = \ln(P_{(1)})\), \(b = \ln(\alpha)\), and \(c = \beta\). These are characteristic coefficients related to the properties of each homologue and can be obtained by regression analysis. For convenience, term \(\sum_{i=2}^{n}\left(\frac{1}{i-1}\right)\) in eqs 12 and 13 is subsequently denoted as \(S_{CNE}\) (abbreviation of “sum of carbon number effects”). Accordingly, eqs 12 and 13 can be written in compact forms of eqs 14 and 15, respectively, named the “NPOH equation” (that is, the abbreviation of “Nonlinear Properties of Organic Homologues equation”):

\[
P_{(n)} = P_{(1)}a^{n-1}S_{CNE}^{\beta}
\]

\[
\ln(P_{(n)}) = a + b(n-1) + cS_{CNE}
\]

In contrast to eqs 4–7, eqs 12 and 14 show that property \(P_{(n)}\) of homologue \(X-(A)_{n-1}Y\) is related to the starting compound property \(P_{(1)}\) (property pseudo-value at \(n = 1\)) of each homologue, as well as the number of repeating structural units, \(n\), and the cumulative perturbation effect, \(S_{CNE}\), of repeating structural units.

2.2. Applicability of NPOH Equation. 2.2.1. Correlation with the Properties of n-Paraffins. To test the applicability of NPOH equations 14 or 15, quantitative correlation analysis was conducted using various physicochemical properties (nonlinear changes) of \(n\)-paraffins. First, the \(S_{CNE}\) value was calculated, as listed in Table 1, and then eq 15 was employed as a model to perform regression analysis of properties \(P_{(n)}\) of \(n\)-paraffins. The results are listed in Table 2.

The results listed in Table 2 show that the correlation coefficients \(R\) were all above 0.99 for the correlation equations of 14 properties of \(n\)-paraffins, indicating that eq 15 can be used to express the regularity of property changes among homologues using the carbon atom number \(n\). That properties with different change regularities can have the same expression is surprising and has not been reported previously.

We noted that a value of boiling point \(T_g\) in eq 2 (no. 1) is 4.6973, indicating that \(\ln(P_{(1)})\) is 4.6973, and the starting compound boiling point (pseudo-value at \(n = 1\)) \(P_{(1)}\) of methane is known to be 109.15 K, which is very close to 109.65 K.

Interestingly, for the linear change property, \(P_{LC(n)}\) of homologues, it was only necessary to directly replace term \(\ln(P_{(n)})\) in eq 15 with term \(P_{LC(n)}\) as shown in eq 16:

\[
P_{LC(n)} = a + b(n-1) + cS_{CNE}
\]

For example, for the critical volume \(V_c\) of \(n\)-paraffins \((n = 2–18)\), \(n\) was used directly to perform regression against \(V_c\), giving eq 17, while eq 16 was used as the model equation to perform regression against \(V_c\) to obtain eq 18. Equation 18 showed better correlation compared with eq 17, and the standard error \(S\) was greatly reduced.
Table 3. Correlation Equations of Properties for Cycloalkanes, Alkenes, Alkynes, Alcohols, 2-Methylparaffins, 2,2-dimethylparaffins, 2,3-Dimethylparaffins, and 1-Cyclopentylparaffins (Model Equation: \(\ln(P_{(a)}) = a + b(n-1) + cS_{\text{CNE}} \))

No.	Compound Property \(^a\)	Range of \(n\)	Ref.	\(a\)	\(b\)	\(c\)	\(R\)	\(S\)	\(N\) \(^b\)	\(F\)
1	\((\text{CH}_2)_n\)	3-10	21	4.7511	0.006929	0.47897	0.9997	0.0065	8	4590.39
2	\(\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{H}\)	1-17	21	5.2695	0.009698	0.29085	0.9993	0.0102	14	3915.56
3	\(\text{CH _CH}_2\text{CH}_2\text{H}\)	1-17	21	5.3542	0.011878	0.25439	0.9991	0.0115	13	2708.88
4	\(\text{CH}_2\text{CH}_2\text{OH}\)	2-11	17	5.7578	0.030027	0.06825	0.9994	0.0053	10	2848.36
5	\(\text{CH}_2\text{CH}_2\text{OH}\)	2-12	26	-1.0990	0.487986	0.29408	0.9997	0.0535	7	3594.10
6	\(\text{CH}_2\text{CH}_2\text{H}_2\text{H}\)	2-18	19	5.43851	0.010514	0.23966	0.9991	0.0100	17	2840.39
7	\(\text{CH}_2\text{C}_n\text{CH}_2\text{H}\)	2-8	19	5.6199	0.030735	0.124720	0.9999	0.0028	7	6901.03
8	\(\text{CH}_2\text{C}_n\text{HCH}_2\text{CH}_2\text{H}\)	2-16	19	5.7210	0.016366	0.144791	0.9992	0.0075	15	3654.84
9	\(\text{c-C}_n\text{H}_4\text{CH}_2\text{H}\)	2-15	19	5.7676	0.0168246	0.137968	0.9993	0.0062	13	3866.60

\(^a\) \(P_{(w)}\) partition coefficient (regression in the form of \(\log P_{(w)}\)); other symbols are defined in Table 1. These properties data are listed in the Supporting Information. \(^b\) Carbon atom number range. \(^c\) Number of data points.

\[V_v = -14.0111 + 66.100n \]
\[R = 0.9989, \ S = 15.90, \ N = 17, \ F = 6838.68 \] \((17) \)

\[V_v = 146.95 + 73.8684(n - 1) - 66.1187S_{\text{CNE}} \]
\[R = 0.9999, \ S = 5.95, \ N = 17, \ F = 24449.43 \] \((18) \)

As another example, the vaporization enthalpy \(^2\) \((H_v)\) of \(n\)-paraffins \((n = 2-20)\) was regressed with the methods used in eqs 17 and 18, giving eqs 19 and 20. The correlation of eq 20 was better than that of eq 19, and the standard error \((S)\) of eq 20 was greatly reduced

\[H_v = -0.4826 + 5.1475n \]
\[R = 0.9989, \ S = 1.357, \ N = 18, \ F = 7229.01 \] \((19) \)

\[H_v = -2.7756 + 4.5303(n - 1) + 4.9545S_{\text{CNE}} \]
\[R = 0.9997, \ S = 0.714, \ N = 18, \ F = 130868.83 \] \((20) \)

The above regression analysis results show that eq 16 is more suitable for expressing the linear change properties of homologues compared with directly using \(n\). However, for some linear change properties of homologues, such as molar mass \((M_{\text{mol}})\), coefficient \(c\) in eq 16 was equal to zero, meaning that the term \(S_{\text{CNE}}\) did not need to be used in such cases.

2.2.2. Correlation with the Properties of Other Homologues. Regarding whether eq 15 was applicable to other homologues, cycloalkanes, terminal alkenes, terminal alkynes, linear alcohols, 2-methylparaffins, 2,2-dimethylparaffins, 2,3-dimethylparaffins, and 1-cyclopentylparaffins were selected as model compounds for testing. Using the boiling points \(T_b\) of cycloalkanes, terminal alkenes, terminal alkynes, linear alcohols, 2-methylparaffins, 2,2-dimethylparaffins, 2,3-dimethylparaffins, and 1-cyclopentylparaffins and the partition coefficient \(P_{(w)}\) of alcohols as verification examples, quantitative correlation analysis was conducted using model equation15. The results are listed in Table 3, showing that the property correlation was very good for each homologue, and that the correlation coefficients \((R)\) of the nine equations were all greater than 0.999. These results showed that eq 15 is a general equation that can be used to express the change regularity of properties \(P\) of various homologues using carbon atom number \(n\).

The results obtained in Sections 2.2.1 and 2.2.2 show that, regardless of whether the properties of homologues vary linearly or nonlinearly with carbon atom number \(n\), they can be related using variables \((n - 1)\) and \(S_{\text{CNE}}\).

2.2.3. Relationship between Nonlinear Properties of Homologues. Equation 15 not only expresses the change regularity of the properties of homologues with the carbon atom number \(n\), but can also link the change regularities of different properties of homologues. If one property of homologue is \(P_{(a)}\) and the other property is \(P_{(a')}\), basing on eq 15, we can theoretically deduce eqs 21 and 22

\[\ln(P_{(a)}) - \ln(P_{(a')}) = \ln(P_{(a)}) - \ln(P_{(1)}) + (n-1)\ln(\alpha) - \ln(\alpha') + (\beta - \beta')S_{\text{CNE}} \]
\[a_t + b_t(n-1) + c_tS_{\text{CNE}} \] \((21) \)

\[\ln(P_{(a)}) + \ln(P_{(a')}) = \ln(P_{(a)}) + \ln(P_{(1)}) + (n-1)\ln(\alpha) + \ln(\alpha') + (\beta + \beta')S_{\text{CNE}} \]
\[a_s + b_s(n-1) + c_sS_{\text{CNE}} \] \((22) \)
In eq 21, \(a_i = \ln(P_{(i)}) - \ln(P'_{(i)}) \), \(b_i = \ln(\alpha) - \ln(\alpha') \), and \(c_i = \beta - \beta' \), while in eq 22, \(a_i = \ln(P_{(i)}) + \ln(P'_{(i)}) \), \(b_i = \ln(\alpha) + \ln(\alpha') \), and \(c_i = \theta + \beta' \). For the two specific physicochemical properties, \(P_{(a)} \) and \(P'_{(a)} \), of the same series of compounds, parameters \(a_{(a)}, b_{(a)}, c_{(a)}, a_{(b)}, b_{(b)}, \) and \(c_{(b)} \) can be obtained using the regression method.

When the logarithms of eqs 21 and 22 are removed, they return to eqs 23 and 24:

\[
P_{(a)} = P'_{(a)} e^{b_i (\epsilon^{(b_i)} - 1)} e^{c_i \epsilon^{S_{CN}}} = P'_{(a)} k_{(a)}^{(a-1)} e^{c_i \epsilon^{S_{CN}}}
\]

(23)

\[
P_{(a)} = [P'_{(a)}]^{1-1} e^{b_i (\epsilon^{(b_i)} - 1)} e^{c_i \epsilon^{S_{CN}}} = [P'_{(a)}]^{1-1} m_{(a)}^{(a-1)} e^{c_i \epsilon^{S_{CN}}}
\]

(24)

Equations 23 and 24 express the relationship between two properties of a homologous series, where \(k_{(a)}, l, c_{(a)}, m, q, \) and \(c_i \) are all coefficients. Therefore, one property of homologues can be

Table 4. Experimental and Calculated Critical Temperature, \(T_c (K) \), for n-Paraffins \(H-(CH_2)_n-H \)

no.	\(T_{c,exp} \)	\(T_{c,cal} \)	\(T_{c,cal} \)	\(n \)	\(T_{c,exp} \)	\(T_{c,cal} \)	\(T_{c,cal} \)	\(n \)	\(T_{c,exp} \)	\(T_{c,cal} \)	\(T_{c,cal} \)
2	184.55	305.6	307.84	13	508.29	676.1	678.36	24	664.29	973.90	973.90
3	231.05	369.2	368.85	14	526.69	693.1	694.86	25	747.29	978.76	978.76
4	272.65	425.2	421.91	15	543.59	708.1	709.23	26	685.19	804.63	804.63
5	309.25	469.9	466.84	16	559.99	722.1	722.82	27	695.09	809.28	809.28
6	342.15	507.7	505.80	17	574.79	734.1	734.23	28	704.59	813.41	813.41
7	371.55	540.7	539.25	18	589.09	747.1	744.90	29	713.79	817.16	817.16
8	398.85	568.9	569.35	19	601.99	755.4	753.71	30	722.69	820.52	820.52
9	423.92	594.6	596.00	20	615.99	767.6	763.81	31	731.69	823.96	823.96
10	447.27	617.8	620.00	21	629.49	773.2	773.20	32	740.09	826.68	826.68
11	468.79	639.1	641.24	22	641.59	780.7	780.7				
12	489.29	658.2	660.90	23	653.19	787.6	787.6				

\(^a\)Number of carbon atoms. \(^b\)Experimental boiling point (K), from ref 17. \(^c\)Experimental critical temperature (K), from ref 20. \(^d\)Critical temperature calculated using eq 25.
correlated with another using eqs 23 and 24, providing convenient correlation of the homologue properties.

For example, the relationship between the critical temperature \((T_c)\) and boiling point \((T_b)\) of \(n\)-paraffins is shown in eq 25

\[
T_c(n) = T_b(n) \times 1.810869 \times 0.994369^{(n-1)} \times e^{-0.0765054S_{CNE}}
\]

Equation 25 expresses the quantitative relationship between \(T_b\) and \(T_c\) for \(n\)-paraffins. Using eq 25, the critical temperatures of \(n\)-paraffins can be calculated from their boiling points. Table 4 shows the results of critical temperature calculations for \(n\)-paraffins with \(n = 2-32\), where the average absolute error between the experimental value \((T_{c,exp})\) and the calculated value \((T_{c,cal})\) was 1.84 K for the 19 compounds \((n = 2-20)\). Figure 2 shows a plot of the calculated and experimental values of critical temperature versus the boiling point of \(n\)-paraffins.

As further examples, eqs 23 and 24 were used as model equations to quantitatively correlate the boiling point of \(n\)-paraffins with other properties in Table 2. The results are listed in Table 5, showing that any nonlinear change property of \(n\)-paraffins could be correlated with the boiling point. As another example, the liquid viscosity \((\mu)\) equation in Table 5 (no. 6) was used to calculate the \(\mu\) values (at 300 K) of \(n\)-paraffins using boiling points \((T_b)\), with the results shown in Figure 3. The calculated values were in good agreement with the experimental values.

2.2.4. Relationship between Nonlinear and Linear Properties of Homologues. Equation 16 expresses the change regularity of the linear properties of homologues, while eq 15 expresses the change regularity of the nonlinear properties of homologues. Comparing eq 16 with eq 15 showed that they had the same variables \((n - 1)\) and \(S_{CNE}\). Therefore, a correlation between the nonlinear and linear properties of the homologues can be established by combining eqs 16 and 15, as shown in eq 26

\[
\ln(P_{(n)}) - P_{LC(n)} = a' + b'(n-1) + c'S_{CNE}
\]

where, for the two specific physicochemical properties, \(P_{(n)}\) and \(P_{LC(n)}\) of the same series of homologues, parameters \(a'\), \(b'\), and \(c'\) can be obtained by the regression method.

Using the boiling point \((T_b)\) and critical volume \((V_c)\) of \(n\)-paraffins as an example

\[
\ln(T_b) - V_c = a' + b'(n-1) + c'S_{CNE}
\]

Therefore

\[
\ln(T_b) = a' + V_c + b'(n-1) + c'S_{CNE}
\]

Here, taking \(V_c\) \((n - 1)\), and \(S_{CNE}\) as variables, regression equation 29 can be obtained for \(\ln(T_b)\)

\[
\ln(T_b) = 4.825708 - 0.00079288V_c + 0.05614184(n-1) + 0.4465892476S_{CNE}
\]

\[
R = 1.0000, \quad S = 0.003466, \quad N = 17, \quad F = 51117.71
\]

Equation 29 can be rewritten as eq 30

\[
T_b = 124.67 \times (0.999207)^V_c \times (1.057748)^{n-1} \times (1.562792)^S_{CNE}
\]

Using eq 30 and employing parameters \(V_c\) \((n - 1)\), and \(S_{CNE}\) of \(n\)-paraffins, the \(T_b\) values of \(n\)-paraffins can be calculated. The average absolute error between the experimental and calculated \(T_b\) values was 0.94 K for the 17 \(n\)-paraffins with \(n = 2-18\).

2.2.5. Simplification of Equation. Equations 12 and 13 contain the term \(\sum_{i=2}^{n} \left(\frac{1}{i} \right)\), which is inconvenient to use. This section discusses the simplification of this term. According to mathematical principles, for the infinite series \(SS[1, 1/2, 1/3, \ldots, 1/n]\), the sum of the first \(n\) terms is shown in eq 31

\[
SS_n = 1 + 1/2 + 1/3 + \ldots + 1/n
\]

Equation 31 can also be approximately expressed as eq 32

\[
SS_n \approx \int_1^n \frac{1}{X} \, dx = \ln(n)
\]

Therefore, the term \(\sum_{i=2}^{n} \left(\frac{1}{i} \right)\) can be expressed as follows

\[
\sum_{i=2}^{n} \left(\frac{1}{i} \right) = \int_1^n \frac{1}{X} \, dx = \ln(n-1)
\]

Therefore, eqs 12 and 13 can be simplified to eqs 34 and 35

\[
P_{(n)} = \frac{P_{(2)}a^{n-1}}{e^{\ln(n-1)}}
\]
\[
\ln(P_{\text{cal}}) = a + b(n-1) + c(n-1) + d(n-1) + \epsilon
\]
(35)

For example, using eq 35 as a model equation to perform regression analysis of \(T_b\) and \(T_c\) values of \(n\)-paraffins, respectively, afforded eqs 36 and 37.

For the boiling point \((T_b)\):

\[
\ln(T_{b(n)}) = 5.149022 - 0.00321026(n-1)
\]
\[
+ 0.451589\ln(n-1)
\]
\[
R = 0.9990, \quad S = 0.0175, \quad N = 34, \quad F = 7869.27
\]
(36)

For the critical temperature \((T_c)\):

\[
\ln(T_{c(n)}) = 5.70368 - 0.00197920(n-1)
\]
\[
+ 0.334542\ln(n-1)
\]
\[
R = 0.9994, \quad S = 0.0092, \quad N = 19, \quad F = 7102.50
\]
(37)

Equations 36 and 37 still show good correlation, which is only slightly worse than that of the corresponding equations (nos. 1 and 2 of Table 2). However, eqs 36 and 37 are more convenient to use than eqs 12 and 13.

2.2.6. Relationship between \(S_{\text{CNE}}\) and the Parameter \(c(G)\)

Recently, Mukwembi et al.\(^{27}\) proposed a new graph parameter \(c(G)\), called the conducton of a graph, and exploited the conducton of a graph to develop a single parameter model for predicting the boiling point of any given alkane. This work is very meaningful, which simplifies the parameters for estimating the boiling point of alkanes. It is interesting to compare and contrast the \(S_{\text{CNE}}\) parameter with the parameter \(c(G)\). Here, we made a plot of \(\exp(S_{\text{CNE}})\) versus the parameter \(c(G)\) of \(n\)-paraffins \((n = 4–14)\), and obtained Figure 4. From Figure 4, we can see that there is a good linear correlation of \(\exp(S_{\text{CNE}})\) with the parameter \(c(G)\). It means that the parameter \(\exp(S_{\text{CNE}})\) is intrinsically related to the parameter \(c(G)\) for \(n\)-paraffins. Whether there is a relationship of \(\exp(S_{\text{CNE}})\) to other graph theoretical parameters or not is worth studying, and the interested readers can pursue this area.

2.2.7. Application of NPOH Equation in Branched Alkanes and Alcohol

For the branched alkanes and organic compounds with functionality located elsewhere along a linear alkyl chain, their physical properties are first affected by the number of carbon atoms in the structure, and second by their molecular structure differences. Therefore, we can establish an estimation model of their properties by adding structural parameters that characterize the molecular carbon atomic skeleton to the NPOH equation. We take the boiling points of alkanes and alcohols for example.

2.2.7.1. Example 1, Boiling Point of Alkanes

Alkane molecules are almost nonpolar, and their boiling points are affected by both the number of carbon atoms and the molecular carbon atomic skeleton in the molecule. The effect of the number of carbon atoms on the boiling point can be expressed with the parameters \((n-1)\) and \(S_{\text{CNE}}\), while that of the molecular carbon atomic skeleton can be expressed using the Odd–Even Index (OEI) difference, \(\Delta\text{OEI}\).\(^{21}\) That is, for the alkane molecule with \(n\) carbon atoms, \(\Delta\text{OEI} = \text{OEI} - \text{OEI}_{-\text{paraffin}}\) (branched alkane) – \(\text{OEI}_{\text{normal alkane}}\). Based on Yuan’s method,\(^{21}\) the OEI values of 2-methylpropane and butane are 4,5000 and 5,2222, respectively. Thus, \(\Delta\text{OEI}(2\text{-methylpropane}) = 4.5000 - 5.2222 = -0.7222; \Delta\text{OEI}(\text{butane}) = 4.5000 - 4.5000 = 0.0\). It means that \(\Delta\text{OEI} = 0\) for any normal alkane. Then, we employed \((n-1), S_{\text{CNE}}, \text{and } \Delta\text{OEI}/n\) as variables to perform the regression analysis of boiling points, \(T_{b(n)}\), of alkanes and obtained eq 38 in which the boiling points for all alkanes were taken from a listing by Cao et al.\(^{28}\) These data are listed in the Supporting Information.

\[
\ln(T_{b(n)}) = 4.6730 - 0.000463(n-1) + 0.516835S_{\text{CNE}}
\]
\[
+ 0.196248(\Delta\text{OEI}/n)
\]
\[
R = 0.9990, \quad S = 0.0096, \quad N = 210, \quad F = 35459.68
\]
(38)

In eq 38, the 210 alkanes involve all isomers of \(C_2-C_{10}\), and the carbon atoms are in the range of \(C_2-C_{100}\). The average absolute error between the experimental value \((T_{b,\text{exp}})\) and the calculated value \((T_{b,\text{cal}})\) was 3.07 K, and the average percentage error was 0.69%.

2.2.7.2. Example 2, Boiling Point of Alcohols

The molecular structure of alcohol is different from that of alkane in which there is a polar functional group OH. Thus, the boiling points of alcohols are affected by the number of carbon atoms, molecular carbon atomic skeleton, and position of group OH located at the alkyl chain in a molecule. The effect of the latter two factors on the boiling point can be expressed by the polarization effect index \(\text{PEI}_{\text{OH}}\) difference, \(\Delta\text{PEI}_{\text{OH}}\), because the \(\text{PEI}_{\text{OH}}\) of the alcohol is related to the alkyl skeleton and the position of the OH group in the molecule. That is, for the alcohol molecule with \(n\) carbon atoms, \(\Delta\text{PEI}_{\text{OH}} = \text{PEI}_{\text{OH}}\) (branched alcohol) – \(\text{PEI}_{\text{OH}}\) (normal alcohol). Taking 2-propanol \((\text{CH}_3)\text{CH}_2\text{OH}\) and 1-propanol...
CH₃CH₂CH₂OH (PrOH), for example, the PEIₒH values of i-
Pr and Pr are 1.2811 and 1.1887, respectively. Hence, the
difference in PEIₒH of i-PrOH is ΔPEIₒH(i-PrOH) = 1.2811 −
1.1887 = 0.0924, and the difference in PEIₒH of PrOH is
ΔPEIₒH(PrOH) = 1.1887 − 1.1887 = 0. It means that ΔPEIₒH
= 0 for any normal alcohol. For the detailed calculation
method of PEIₒH, one can refer to Cao’s report. 28 Thus, we
employed (n − 1), S_CNE, and (ΔPEIₒH/n) as variables to
perform regression analysis of boiling points Tₛ(n) of alcohols
and obtained eq 39 in which the boiling points for all alcohols
were taken from a listing by Cao et al. 35 These data are listed in
the Supporting Information

\[\ln(T_s(n)) = 5.7785 + 0.031339(n-1) + 0.051561S_{CNE} \]
\[- 1.74757(\Delta PEI_{oH}/n) \]
\[R = 0.9864, \quad S = 0.0124, \quad N = 105, \quad F = 1212.06 \]

(39)

In eq 39, the 105 alcohols involving the carbon atoms are in
the range of C₂–C₁₄. The average absolute error between the
experimental value \(T_{s(e,x)} \) and the calculated value \(T_{s(cal)} \) was 4.40 K, and the average percentage error was 1.01%.

The results indicate that eqs 38 and 39 provide very
satisfactory results. We noted that it is difficult to compare the
results of this work with those of other works because different
data sets and different number of variables were employed in
various works. In particular, many of the other works only
include alkanes with below 11 carbon atoms. Nevertheless, it is
 instructive that Allison et al. 29 in 2022, used a graph
convolutional neural network to predict the normal boiling
point and obtained an average absolute error of 6 K
(corresponding to an average percentage error of 1.32%).
Cordes and Rarey 30 compared some group contribution
methods for predicting the boiling points of acyclic alkanes
and found that these methods produced average absolute
errors ranging from 6.5 to 26.7 K. Palatinus et al. 31 proposed
eq 40 to calculate the Yₗ parameter and then used the
calculated \(Y_\ell \) values and eq 41 to predict the boiling point for
linear and branched alkanes in which the average absolute
deviation between experimental and predicted boiling points
was 1.45 K, and the average percentage error was 0.32%. Liu et
al. 32 used the QSAR method to predict the boiling points of
alcohols and obtained the standard error of 5.69 K

\[Y_\ell = 1.726 + 2.779C + 1.716M_3 + 1.564M + 4.204E_3 \]
\[+ 3.905E + 5.007P - 0.329D + 0.241G + 0.479V \]
\[+ 0.967T + 0.574S \]

(40)

\[BP(K) = aY_{BP}^{2/3} + bY_{BP}^{1/3} + c \]

(41)

The above two examples show that the NPOH equation can also be
used in property correlation for structures with
functionality located elsewhere along a linear alkyl chain as well
as for branched organic compounds.

3. CONCLUSIONS

This research shows that various nonlinear change properties
of homologues can be expressed using a general equation,
named the NPOH equation (eqs 14 or 15), while various
linear change properties of homologues can be expressed by
general equation 16. Therefore, both linear and nonlinear
change properties of homologues can be correlated with the
number of carbon atoms (n) and the “sum of carbon number
effects” \(S_{CNE} \). Furthermore, using the two parameters n and
\(S_{CNE} \), a quantitative correlation equation can be established
between any two properties of each homologue, providing
convenient mutual estimation of properties of a series of
homologues. Finally, for nonstraight-chain isomers, using the
NPOH equation, we can add structural parameters that
characterize the molecular carbon atomic skeleton to establish
an estimation model for their properties. The study on the
properties of branched chain organic compounds will be
reported in a subsequent paper.

This work can provide a new perspective for studying
quantitative structure–property relationships (QSPRs).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c02828.

Physicochemical properties of n-alkanes (Table S1);
physicochemical properties of cycloalkanes, alkenes,
alkynes, alcohols, 2-methylparaffins, 2,2-dimethylparaf-
fins, 2,3-dimethylparaffins, and 1-cyclopentylparaffins
(Table S2); boiling points of 210 alkanes (Table S3);
and boiling points of 105 alcohols (Table S4) (PDF)

AUTHOR INFORMATION

Corresponding Author

Chenzhong Cao — Key Laboratory of Theoretical Organic
Chemistry and Function Molecule, Ministry of Education,
School of Chemistry and Chemical Engineering, Hunan
University of Science and Technology, Xiangtan 411201,
China; orcid.org/0000-0001-5224-7716;
Email: czcao@hnust.edu.cn

Author

Chao-Tun Cao — Key Laboratory of Theoretical Organic
Chemistry and Function Molecule, Ministry of Education,
School of Chemistry and Chemical Engineering, Hunan
University of Science and Technology, Xiangtan 411201,
China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c02828

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The project was supported by the Hunan Natural Science
Foundation (2020JJ5155), the Research Foundation of
Education Bureau of Hunan Province, China (Grant Nos.
20B224 and 18C0327), and the National Natural Science
Foundation of China (21672058). The authors thank Simon
Partridge, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.
cn/) for editing the English text of a draft of this manuscript.

REFERENCES

1. Kontogeorgis, G. M.; Dohrn, R.; Economou, I. G.; Hemptinne,
J.-C.; Kate, A.; Kuitunen, S.; Moolijer, M.; Žitnik, L. F.; Vesić, V.
Industrial Requirements for Thermodynamic and Transport Proper-
ties: 2020. Ind. Eng. Chem. Res. 2021, 60, 4987–5013.

2. Nieto-Drighi, C.; Fayet, G.; Creton, B.; Rozanska, X.; Rotureau,
P.; Hemptinne, J.-C.; Ungerer, P.; Rousseau, B.; Adamo, C. A General
Guidebook for the Theoretical Prediction of Physicochemical

26678
https://doi.org/10.1021/acsomega.2c02828
ACS Omega 2022, 7, 26670–26679
Properties of Chemicals for Regulatory Purposes. Chem. Rev. 2015, 115, 13093–13164.
(3) Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chem. Rev. 2010, 110, 5714–5789.
(4) Leidner, F.; Yilmaz, N. K.; Schiffer, C. A. Deciphering Antifungal Drug Resistance in Pneumocystis Jirovecii DHFR with Molecular Dynamics and Machine Learning. J. Chem. Inf. Model. 2021, 61, 2537–2541.
(5) Zhang, Y.; Wei, S. C.; Dong, C. F.; Wang, B.; Liang, Y.; Wang, Y. J.; Chen, Q. Progress in QSRR Modelling Methods. Chin. Sci. Bull. 2021, 66, 2832–2844.
(6) Needham, D. E.; Wei, L.-C.; Seybold, P. G. Molecular Modeling of the Physical Properties of the Alkanes. J. Am. Chem. Soc. 1988, 110, 4186–4194.
(7) Cao, C.-T.; Chen, M.; Fang, Z.; Au, C.; Cao, C. Relationship investigation between C(sp^3)-X and C(sp^2)-X bond energies based on substituted benzene and methane. ACS Omega 2020, 5, 19304–19311.
(8) Cao, C.-T.; Yan, L.; Cao, C.; Qu, J. Influence of substituent and push-pull effect on the chemical shifts of the carbon in bridging bond of 1-aryl/thienyl-2-arylethylene. J. Phys. Org. Chem. 2021, 34, No. e4160.
(9) Cao, C. T.; Cao, C.; Qu, J. Quantifying and Fine Adjusting the Solid-state Fluorescence Wavelength of 1-Thienyl-2-arylethylene. J. Lumin. 2021, 233, No. 117895.
(10) Redlich, O.; Krong J. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev. 1949, 44, 233–244.
(11) Peng, D.-Y.; Robinson, D. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64.
(12) Kreglewsky, A.; Zwolinsky, B. J. A New Relation for Physical Properties of n-Alkanes and n-Alkyl Compounds. J. Phys. Chem. A 1961, 65, 1050–1052.
(13) Gasem, K. A. M.; Robinson, R. L., Jr. In Prediction of Phase Behavior for CO_2 + Heavy Normal Paraffins Using Generalized-Parameter Soave and Peng–Robinson Equations of State, AIChE Annual Meeting, Houston, TX, March 26, 1985.
(14) Gasem, K. A. M.; Ross, C. H.; Robinson, R. L., Jr. Prediction of Ethane and CO2 Solubilities in Heavy Normal Paraffins Using Generalized-Parameter Soave and Peng-Robinson Equation of State. Can. J. Chem. Eng. 1993, 77, 805–816.
(15) Marano, J. J.; Holder, G. D. General Equation for Correlating the Thermophysical Properties of n-Paraffins, n-Olefin, and Other Homologous Series. I. Formalism for Developing Asymptotic Behavior Correlations. Ind. Eng. Chem. Res. 1997, 36, 1887–1894.
(16) Zenkevich, I. G. Approximation of any Physicochemical Constants of Homologues with the use of Recurrent Functions. J. Math. Chem. 2009, 46, 913–933.
(17) Cao, C.; Liu, S.; Li, Z. On Molecular Polarizability: 2. Relationship to the Boiling Point of Alkanes and Alcohols. J. Chem. Inf. Comput. Sci. 1999, 39, 1105–1111.
(18) Cai, G.; Liu, Z.; Zhang, L.; Zhao, S.; Xu, C. Quantitative Structure–Property Relationship Model for Hydrocarbon Liquid Viscosity Prediction. Energy Fuels 2018, 32, 3290–3298.
(19) CRC Handbook of Chemistry and Physics, 91st ed.; Haynes, W. M., Ed.; CRC Press, 2011; pp 199–216.
(20) Wu, K.; Chen, Z.; Li, J.; Lei, Z.; Xu, J.; Wang, K.; Li, R.; Dong, X.; Peng, Y.; Yang, S.; Zhang, F.; Chen, Z.; Gao, Y. Nanoconfinement Effect on n-Alkane Flow. J. Phys. Chem. C 2019, 123, 16456–16461.
(21) Yuan, H.; Cao, C. Topological Indices Based on Vertex, Edge, Ring, and Distance: Application to Various Physicochemical Properties of Diverse Hydrocarbons. J. Chem. Inf. Comput. Sci. 2003, 43, 501–512.
(22) Kauffman, G. W.; Jurs, P. C. Prediction of Surface Tension, Viscosity, and Thermal Conductivity for Common Organic Solvents Using Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 2001, 41, 408–418.