Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance etoxazole. EFSA Journal 2017;15(15):4988, 31 pp. doi:10.2903/j.efsa.2017.4988

© European Food Safety Authority, 2017

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) No 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Etoxazole (BSI, ISO)
Function (e.g. fungicide)	Acaricide
Rapporteur Member State	Greece
Co-rapporteur Member State	United Kingdom

Identity (Regulation (EU) No 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	(RS)-5-tert-butyl-2-[2-(2,6-difluorophenyl)-4,5-dihydro-1,3-oxazol-4-yl]phenetole
Chemical name (CA)	2-(2,6-difluorophenyl)-4-[4-(1,1-dimethylethyl)-2-ethoxyphenyl]-4,5-dihydrooxazole
CIPAC No	623
CAS No	153233-91-1
EC No (EINECS or ELINCS)	Not allocated
FAO Specification (including year of publication)	None
Minimum purity of the active substance as manufactured	min. 948g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	None
Molecular formula	C_{21}H_{23}F_{2}NO_{2}
Molar mass	359.42 g/mol
Structural formula	![Structural formula](image)
Physical and chemical properties (Regulation (EU) No 283/2013, Annex Part A, point 2)

Property	Value/Description
Melting point (state purity)	101.5 - 102.5°C (99.85% pure)
Boiling point (state purity)	The boiling point cannot be determined due to decomposition of etoxazole.
Temperature of decomposition (state purity)	Decomposed (as indicated by discoloration), at about 293°C (99.86% pure)
Appearance (state purity)	Pure: White, free flowing, crystalline powder at 20°C (99.85% pure)
	Active substance as manufactured: white lumpy powder at 20°C (95.4 %, technical)
Vapour pressure (state temperature, state purity)	7.0 x 10^{-6} Pa at 25°C (99.85% pure)
Henry’s law constant (state temperature)	3.6 x 10^{-2} Pa.m^3/mole at 20 – 25°C
Solubility in water (state temperature, state purity and pH)	7.04 x 10^{-5} g/l in distilled water at 20°C (99.85% pure)
	6.69 x 10^{-5} g/l in distilled water at 30°C (99.85% pure)
	The effect of pH was not determined as the test material has no ionisable groups or dissociation constant.
Solubility in organic solvents (state temperature, state purity)	Acetone: 309 g/l at 20°C
	1,2-dichloroethane: 402 g/l at 20°C
	Ethyl acetate: 249 g/l at 20°C
	n-heptane: 18.7 g/l at 20°C
	Methanol: 104 g/l at 20°C
	Xylene: 252 g/l at 20°C
	(95.4 %, technical)
Surface tension (state concentration and temperature, state purity)	Not applicable (solid with low water solubility).
Partition coefficient (state temperature, pH and purity)	Log Pow = 5.52 ± 0.58 at 20°C (99.85% pure)
	The effect of pH was not determined as the test material has no ionisable groups or dissociation constant.
Dissociation constant (state purity)	Not measurable (99.85 % pure)
UV/VIS absorption (max.) incl. \(\varepsilon \) (state purity, pH)

Solution Type	\(\lambda_{\text{max}} \) (\(\varepsilon \))	\(\lambda_{\text{max}} \) (\(\varepsilon \))
Neutral solution (methanol)	220 nm (17379 L mol\(^{-1}\) cm\(^{-1}\))	222.5 nm (16670 L mol\(^{-1}\) cm\(^{-1}\))
Acidic solution (methanol/HCl)		
Alkaline solution (methanol/NaOH)		

No absorption between 300 and 350 nm.

* RMS EL has noticed that in the UV spectrum in alkaline solution in the study of DAR (Betteley, 1997), a peak (the highest) at about 219nm was observed in the spectrum, however, this peak was not mentioned in the study results (neither data on its molar extinction coefficient (\(\varepsilon \)) were provided).

UV/vis spectra (recorded between 190-750 nm) (99.64% pure):

Solution Type	\(\lambda_{\text{max}} \) (\(\varepsilon \))	\(\lambda_{\text{max}} \) (\(\varepsilon \))
Unadjusted solution (methanol)	219.33 nm (18351 L mol\(^{-1}\) cm\(^{-1}\))	
At \(\lambda = 290 \) nm, \(\varepsilon \) = 387 L mol\(^{-1}\) cm\(^{-1}\)		
Acidic solution (methanol/HCl)	224.66 nm (25789 L mol\(^{-1}\) cm\(^{-1}\))	
At \(\lambda = 290 \) nm, \(\varepsilon \) = 3859 L mol\(^{-1}\) cm\(^{-1}\)		
Basic solution (methanol/NaOH)	221.19 nm (20195 L mol\(^{-1}\) cm\(^{-1}\))	
At \(\lambda = 290 \) nm, \(\varepsilon \) = 390 L mol\(^{-1}\) cm\(^{-1}\)		

Flammability (state purity) Not flammable (95.4% technical)

Explosive properties (state purity) Not explosive (95.4% technical)

Oxidising properties (state purity) It is not considered as an oxidising substance (95.4% technical)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (name of active substance or the respective variant)
(Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Memb er State or Countr y	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (day s) (m)	Remarks					
Pome fruit	SEU/NEU	ETOX AZOLE 11 SC'	F	mites	SC	Foliar application from infestation	1 Not applicable	0.0027-0.011	500-1500	Max 0.055	28	-		
Plum	SEU/NEU	ETOX AZOLE 11 SC'	F	mites	SC	Foliar application from infestation until BBCH 77	1 Not applicable	0.0027-0.005	500-1500	Max 0.055	42 (N), 3(S)	-		
Peach, nectarine, apricot	SEU	ETOX AZOLE 11 SC'	F	mites	SC	Foliar application from infestation	1 Not applicable	0.0027-0.0011	500-1500	Max 0.055	14	-		
Cherry	SEU	ETOX AZOLE 11 SC'	F	mites	SC	Foliar application from infestation	1 Not applicable	0.0025-0.0055	1000-1400	Max 0.055	3	-		
Citrus	SEU	ETOX AZOLE 11 SC'	F	mites	SC	Foliar application from infestation	1 Not applicable	0.0014-0.0092	600-3000	Max 0.055	14	-		
Grape	SEU/NEU	ETOX AZOLE	F	mites	SC	Foliar application from infestation	1 Not applicable	0.0027-0.00275	150-1000	Max 0.0275	28	-		
Plant	Origin	Active substance	Formulation	Active concentration	Application timing	FRAC code	Crop protection	Max application rate	Comments					
-------	--------	------------------	-------------	----------------------	-------------------	------------	----------------	------------------	----------					
Grape	SEU/NEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application from infestation until BBCH 79	1	Not applicable	0.0027 - 0.0366	150-200 Max 0.055	110					
Cotton	SEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application before boll opening, upon appearance of the first mobile stages	1	Not applicable	0.0033 - 0.00825	500-800 Max 0.04125	35					
Tomato/Eggplant	SEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application from infestation - until BBCH 89	1	Not applicable	0.0027 - 0.0275	200-1500 Max 0.055	3					
Cucumber edible peel	SEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application from infestation - until BBCH 89	1	Not applicable	0.0027 - 0.0275	200-1000 Max 0.055	3					
Strawberry	SEU/NEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application from infestation - until BBCH 89	1	Not applicable	0.0027 - 0.0275	200-1500 Max 0.055	3					
Ornamental plants	SEU/NEU	ETOX AZOL E 11 SC’	F mites SC 110 g/L	Foliar application from infestation	1	Not applicable	0.0037 - 0.0055	1000-1500 max 0.055	n.a.					
Tomato/Eggplant	NEU/SEU	ETOX AZOL	G mites SC 110 g/L	Foliar application from infestation	1	Not applicable	0.0027 - 0.0275	200-2000 max 0.055	3					
Fruit	NEU/SEU	E 11 SC’	SC	110 g/L	Foliar application	until BBCH 89	1	Not applicable	0.0027	200-1500	max 0.055	3	-	
--------------	---------	----------	----	---------	--------------------	--------------	---	----------------	--------	---------	----------	---	---	
Strawberry	NEU/SEU	ETOXAZOLE 11 SC’	G mites	SC	110 g/L	Foliar application	from infestation - until BBCH 89	1	Not applicable	0.0027	200-1500	max 0.055	3	-
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)
Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F or G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (days) (m)	Remarks					
					Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s./ha min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	
MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)														
Not relevant														

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

| Considering that the substance is approved and also that plant protection products containing etoxazole have been evaluated according to Uniform Principles, no other efficacy documentation is deemed to be necessary at this stage. |
| More detailed evaluation will be made in the context of subsequent applications for products authorisation. |

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

| No data were submitted. However, considering that the substance is approved and also that plant protection products containing etoxazole have been evaluated according to Uniform Principles, no other efficacy documentation is deemed to be necessary at this stage. |
| More detailed evaluation will be made in the context of subsequent applications for products authorisation. |

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

| No data were submitted. However, considering that the substance is approved and also that plant protection products containing etoxazole have been evaluated according to Uniform Principles, no other efficacy documentation is deemed to be necessary at this stage. |
| More detailed evaluation will be made in the context of subsequent applications for products authorisation. |

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

| Activity against target organism |
For representative uses, no metabolites trigger consideration.
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	Validated method VAM-15o-001: int. std HPLC-UV 254 nm
Impurities in technical a.s. (analytical technique)	Validated method VAM-15p-001 for the specified impurities: HPLC-UV and GC-FID
Plant protection product (analytical technique)	Validated HPLC/UV 270nm

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Etoxazole (sum of isomers) – restricted to fruit crops, pulses and oilseeds - Foliar application.
Food of animal origin	Not proposed and not required for the representative uses.
Soil	Etoxazole
Sediment	Etoxazole
Water surface	Etoxazole
drinking/ground	Etoxazole
Air	Etoxazole (sum of isomers)
Body fluids and tissues	Etoxazole (sum of isomers)

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

GC/MS method [based on the multi residue method L 00.00-34 (extented and revised version of the DFG method S19)]
Substrates: melon (with extraction module E1)
Analysis: GC-MS (m/z 204)
Determined analyte: etoxazole
LOQ: 0.01mg/kg for melon
Method fully validated (reference CA 4.2/02)
Confirmation by monitoring two additional ions with m/z>100 (m/z 141 & m/z 300) in melon, providing also their validation data. (reference CA 4.2/02)
ILV submitted for apples (with extraction module E3 instead of E1 i.e. with addition of sodium hydrogen carbonate prior to extraction to adjust the pH at least 8):
Substrates: apples
Analysis: GC-MS (m/z 204)

Determined analyte: etoxazole

LOQ: 0.01 mg/kg for apples

Method fully validated (reference CA 4.2/04)

Confirmation by monitoring two additional ions with m/z > 100 (m/z 300 & m/z 187) in apples, providing also their validation data (reference CA 4.2/04)

NOTE: As declared/clarified by the applicant, although not included in the validation using melon, *the pH adjustment using sodium hydrogen carbonate should be included in the enforcement method for crops with high water content as a precaution*, as a number of crops in this group are also acidic. The acceptable recoveries from the study demonstrate that the pH adjustment was not necessary for melon, but the pH adjustment was included in the high water ILV (apple).

GC-MS method

[based on the multi residue method L 00.00-34 (extended and revised version of the DFG method S19)]:

Substrates: mandarin pulp and peel (with extraction module E3)

Analysis: GC-MS (m/z 204)

Determined analyte: etoxazole

LOQ: 0.01 mg/kg for mandarin pulp and peel

Method fully validated (reference CA 4.2/03)

Confirmation: For the confirmation ions m/z 141, m/z 187 and m/z 300 no validation data were provided within the study CA 4.2/03.

However, the validation data in the study conducted with apple (using m/z 300 & m/z 187 as confirmatory) (reference CA 4.2/04) can be acceptable as confirmatory data for high acid content matrices, given that the watery matrix (apple) was extracted at a controlled pH (pH ≥ 8) (extraction module E3).

ILV submitted for mandarin pulp (with extraction module E3):

Analysis: GC-MS (m/z 204)

Determined analyte: etoxazole

LOQ: 0.01 mg/kg for mandarin pulp

Method fully validated (reference CA 4.2/05)

LC-MS/MS method

[based on the multi residue analytical method L 00.00-115 (QuEChERS)]:

Substrates

- **hops (dry cones) and wheat grain.**

Analysis

- LC-MS/MS (m/z → m/z: 360→141)

Determined analyte

- etoxazole

LOQ: 0.01mg/kg for hops (dry cones) and wheat grain.

- Method fully validated (reference CA 4.2/01)

- Confirmation by monitoring a second mass transition, (m/z → m/z: 360→113), providing also validation data. (reference CA 4.2/01)

ILV submitted for hops (dry cones) and wheat grain:

- **Analysis:** LC-MS/MS (m/z → m/z: 360→141)

- **Determined analyte:** etoxazole

- **LOQ:** 0.01mg/kg for hops (dry cones) and wheat grain

- Method fully validated (reference CA 4.2/04)

- A fully validated monitoring method for high oil content commodities should be submitted (included confirmatory and ILV data) (data gap).

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

LC-MS/MS method

- (Derived from the multi residue analytical method QuEChERS (EN 15662)):

Substrates: milk, meat, liver, egg and fat.

Analysis

- LC-MS/MS (m/z → m/z: 360→141)

Determined analyte: etoxazole

LOQ: 0.01mg/kg for milk, meat, liver, egg and fat.

- Method fully validated (reference CA 4.2/06)

- Confirmation for milk, meat, liver, egg and fat by monitoring a second mass transition, (m/z → m/z: 360→113), providing also validation data. (reference CA 4.2/06)

ILV submitted for liver and fat:

- **Analysis:** LC-MS/MS (m/z → m/z: 360→141)

- **Determined analyte:** etoxazole

- **LOQ:** 0.01mg/kg for liver and fat.

- Method fully validated (reference CA 4.2/07)

Soil (analytical technique and LOQ)

LC-MS/MS method:

Substrate: soil

Analysis

- LC-MS/MS (m/z → m/z: 360→113)

Determined analyte: etoxazole

LOQ: 0.004 mg/kg for soil

- Method fully validated (reference CA 4.2/08)

- Confirmation for soil by monitoring a second mass transition, (m/z → m/z: 360→141), providing also validation data. (reference CA 4.2/08)
Water (analytical technique and LOQ)

ILV not required for soil
LC-MS/MS method:
Substrate: surface water
Analysis: LC-MS/MS (m/z → m/z: 360 → 113)
Determined analyte: etoxazole
LOQ: 0.1µg/L in surface water
Method fully validated (reference CA 4.2/09)
Confirmation for surface water by monitoring a second mass transition, (m/z → m/z: 360 → 141), providing also validation data. (reference CA 4.2/09)

ILV submitted for surface water:
Analysis: LC-MS/MS (m/z → m/z: 360 → 113)
Determined analyte: etoxazole
LOQ: 0.1µg/L in surface water
Method fully validated (reference CA 4.2/10)
Given that the method has been acceptable validated for surface water at the LOQ required for drinking water (LOQ 0.1µg/L), the method is considered acceptable (without further validation) also for drinking water.

Air (analytical technique and LOQ)

GC-NPD method:
Substrate: air
Analysis: GC/NPD
Determined analyte: etoxazole
LOQ: 0.4 µg/m³ in air
Method fully validated (reference CA 4.2/11)

No confirmatory method is required for the determination of etoxazole in air (given that sufficient confirmatory methods are available for its determination in soil and water).

Body fluids and tissues (analytical technique and LOQ)

A fully validated analytical method for monitoring purpose for analysis of the active substance and relevant metabolites in body fluids should be submitted (included confirmatory data) (data gap).

The requirement for body tissues is considered covered by the method in products of animal origin.

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance
Etoxazole
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

	No classification

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

	None

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapidly, 52% based on recovery in bile, urine and carcass within 48 h after single dose administration. Correction is considered appropriate for the AOEL.
Toxicokinetics	Widely and rapidly distributed; Peak plasma concentrations 2-4 hrs after administration of 5 mg/kg of [14C-t-butylphenyl]etoxazole or [14C-oxazole] etoxazole. Terminal half-lives of 52.9 hours and 61.3 hours for male and female rats, respectively after administration of [14C-t-butylphenyl] etoxazole. Terminal half-lives of 71.4 hours and 88.8 hours for male and female rats, respectively after administration of [14C-oxazole] etoxazole.
Distribution	Highest residues in the liver, GI tract and fat after 7 days
Potential for bioaccumulation	Low evidence for accumulation
Rate and extent of excretion	Rapidly excreted within 48 h, mainly via faeces

[^14C-t-butylphenyl]etoxazole: 7.55-8.49% via urine, 86.8-88.3% via faeces within 7 days (single low dose 5 mg/kg bw);
[^14C-oxazole]etoxazole: 14.2-16.6% via urine, 77% via faeces, within 7 days (single low dose 5 mg/kg bw)
[^14C-t-butylphenyl]etoxazole (bile-cannulated rats): 40.25-53.95% via bile, 12.13-13.53% via urine, 33.99-46.55% via faeces, within 48 hrs (single low dose 5 mg/kg bw)
[^14C-oxazole]etoxazole (bile-cannulated rats): 29.80-36.80% via bile, 18.37-24.11% via urine, 39.14-50.46% via faeces, within 48 hrs (single low dose 5 mg/kg bw)

Metabolism in animals

Extensively metabolised, principally by hydroxylation of the 4,5-dihydrooxazole ring followed by cleavage of the molecule and hydroxylation of the tertiary-butyl side chain.

In vitro metabolism

M9 (R-2) major metabolite in humans and male rats. Minor metabolites in humans also detected in rats. M10 major metabolite in male and female rats. The major metabolic pathway of humans was similar to that of rats. No unique metabolites detected in humans.

Toxicologically relevant compounds (animals and plants)

Parent compound.

Toxicologically relevant compounds (environment)

Parent compound.
Peer review of the pesticide risk assessment of the active substance etoxazole

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

	Value
Rat LD₅₀ oral	>5000 mg/kg bw
Rat LD₅₀ dermal	>2000 mg/kg bw
Rat LC₅₀ inhalation	>1.09 mg/l (whole body, max. attainable concentration)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Non-Sensitising
Phototoxicity	Not phototoxic under the examined conditions*

* The 3T3 NRU-PT test might not be appropriate test for UVB absorbers as etoxazole.

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Value
Dog, rat, mouse: Liver	(indications of liver toxicity)
Relevant oral NOAEL	Dog: 90-d & 1-yr, dog: 5 mg/kg bw per day
	Rat: 6.1 mg/kg bw per day (male).
	Mouse:55.1 mg/kg bw per day (male).
Relevant dermal NOAEL	28-d, rat: 100 mg/kg bw per day
Relevant inhalation NOAEL	No data (no study required)

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies

- Reverse gene mutation assay (*Salmonella typhimurium* and *Escherichia coli*): negative
- Mammalian cell gene mutation (Mouse lymphoma L5178Y cells): Positive (+ S9)
- *In vitro* chromosome aberration assay (Chinese hamster lung cells): negative

In vivo studies

- Mouse micronucleus chromosome aberration assay: negative
- Unscheduled DNA Synthesis (rat): negative
- Comet assay in rat liver and glandular stomach: negative

Photomutagenicity

No study regarding photomutagenicity submitted – not required

Potential for genotoxicity

Non-genotoxic *in vivo*

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Value
Rat, mouse: Liver (indications of liver toxicity)	
Relevant long-term NOAEL

	2-year, rat: 4 mg/kg bw per day
	18-month, mouse: 242 mg/kg bw per day

Carcinogenicity (target organ, tumour type)

	Rat: no tumours
	Mouse: no tumours
	Etoxazole is unlikely to pose a carcinogenic hazard to humans

Relevant NOAEL for carcinogenicity

	2 years rat: 400 mg/kg bw per day
	18-month, mouse: 480 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	Parental toxicity: increased relative liver weight.
	Reproductive toxicity: none.
	Offspring toxicity: Decreased viability and slight decrease in body weight of pups.

Relevant parental NOAEL	24.5 mg/kg bw per day
Relevant reproductive NOAEL	140 mg/kg bw per day (highest dose level)
Relevant offspring NOAEL	24.5 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect	Rat:
	Maternal toxicity: ↓ food consumption
	Developmental toxicity: no effects
Rabbit:	Maternal toxicity: ↓ body weight & body weight gain, ↓ food consumption; liver enlargement
	Developmental toxicity: statistically significant increased incidence of 27 presacral vertebrae with 13th ribs

Relevant maternal NOAEL	Rat: 200 mg/kg bw/day
Rabbit:	200 mg/kg bw/day
Relevant developmental NOAEL	Rat: 1000 mg/kg bw/day
	Rabbit: 200 mg/kg bw/day

* Preliminary teratology study, rabbit

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

	Acute neurotoxicity: NOAEL rat: 2000 mg/kg b.w.
	Repeated neurotoxicity: NOAEL rat: 858 mg/kg per day (males)
	Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity): Not submitted; not required

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Effects on immunotoxicity:
4-week oral (dietary) immunotoxicity study, rat: no immuno-toxicological effects

Endocrine disrupting properties

The only evidence of potential endocrine disruption properties was coming from studies in dogs where the effects on prostate were observed at the highest dose level tested; however no further evidence from other species were observed. Results from ToxCast showed no exhibit androgenic, estrogenic and thyroid activities.

Studies performed on metabolites or impurities

Metabolite R-3: acute oral toxicity in rats (LD₅₀ >5000 mg/kg bw), bacterial reverse mutation test (negative).

Metabolite R-7 (HCl salt): acute oral toxicity in rats (LD₅₀ >5000 mg/kg bw), bacterial reverse mutation test (negative).

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No findings of adverse effects at the periodical examinations considered related to etoxazole production. No reports of any health problems related to the manufacturing/packaging operations from the workers, and no incident of intoxication.

Summary (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Value (mg/kg bw per day)	Study	Uncertainty factor	
Acceptable Daily Intake (ADI) (a)	0.04	rat, 2-year	100
Acute Reference Dose (ARID) (a)	Not allocated-not necessary	-	-
Acceptable Operator Exposure Level (AOEL) (a)	0.03(b)	dog, 90-day and 1-year study	100
Acute Acceptable Operator Exposure Level (AAOEL)	Not allocated-not necessary	-	-
(a) Same as previously set by EC (2004)
(b) Including correction by oral absorption of 52%.

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (Etoxazole 11SC, 110 g/L).

Etoxazole 11SC:
In vitro human skin data (1st Tier):
0.6% for the concentrated commercial formulation (110 g/L) &
26.7% for the in-use spray dilution (1:8000 – 0.014 g/L)
Triple-pack in vivo rat-in vitro rat/human (2nd Tier):
0.04% for the concentrated commercial formulation (110 g/L) &
5% for the in-use spray dilution (1:8000 – 0.014 g/L)

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

Use:
Outdoor: pome fruit, plum, peach, nectarine, apricot, cherry, citrus, grapes, strawberry, tomato/eggplant, cucurbit, cotton, ornamentals
• Tractor mounted broadcast air-assisted sprayer application outdoors to high crops:
German model (No PPE): 65%
UKPOEM (PPE): 141%
UKPOEM (0.04 % & 5% dermal absorption as refinement, No PPE): 39%
• Hand-held sprayer application outdoors to high crops:
German model (No PPE): 32%
• Tractor mounted broadcast air-assisted sprayer application outdoors to grapes:
German model (No PPE): 65%
EUROPOEM database (No PPE): 68%
• Hand-held sprayer application outdoors grapes:
German model (No PPE): 32%
• Tractor boom sprayer application outdoors to low crops:
German model (No PPE): 29%
UKPOEM (PPE: gloves during M&L): 28%
• Hand-held sprayer application outdoors to low crops:
UKPOEM (PPE: Gloves during M&L & gloves and impermeable coverall during A): 79%
Indoor: tomato, eggplant, strawberry
• Hand-held application indoors to high crops:
NL Glasshouse model (PPE: gloves & coverall): 17%
Workers

EUROPOEM II:	% of AOEL
Without PPE	
(5% dermal absorption as refinement):	44.37

Bystanders and residents

Martin et al. (2008):	% of AOEL
	10 m
	5 m
	3 m
Bystander (adult):	9.6
Bystander (child):	7.5
Resident (adult):	0.7
Resident (child):	1.0

UK Approach:	% of AOEL
Bystander exposure to vapour (adult)	13
Bystander exposure to vapour (child)	28
Bystander exposure to spray drift (adult)	20
Children’s/Residents’ exposure to fallout (grapes)	1
Children’s/Residents’ exposure to fallout (pome fruits)	2

Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance:
Etoxazole

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]³:

None

Peer review proposal ⁴ for harmonised classification according to Regulation (EC) No 1272/2008:

None

³ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.
⁴ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
OECD Guideline 501	Fruit crops			
		Apples	Foliar spray, 1x 0.15 kg a.s./ha.	0, 14, 15, 21, 30
		Oranges	Foliar spray, 1x 0.4 kg a.s./ha.	0, 21, 30, 60, 90
		Aubergines	Foliar spray, 1x 0.2 kg a.s./ha.	0, 1, 14, 27
	Pules/Oilseeds	Cotton	Foliar spray, 1x 0.113 kg a.s./ha + 1x0.115 kg a.s./ha	42, 21 relative to the first and second applications respectively
		Citrus, Cotton and Eggplants	Foliar spray, 1x 0.055 kg a.s./ha	0, 7, 14, 28, 42

Metabolism data submitted on the leafy parts of the fruits and pulses and oilseeds crops cannot be used as a surrogate to metabolism data on representative leafy crops.

Rotational crops (metabolic pattern)	Crop groups	Crop(s)	PBI (days)	Comments
OECD Guideline 502	Root/tuber crops	radish	30	1x112 g a.s./ha to bare soil. (ca. 2.7 N rate)
	Leafy crops	lettuce	30	
	Cereals (small grain)	wheat	30	
	Other			

Rotational crop and primary crop metabolism similar?

Processed commodities (standard hydrolysis study)	Conditions	Total Recovery	Etoxazole	R-7	R-13	R-4
OECD Guideline 507	20 min, 90°C, pH 4	97.4	72.2	23.7	1.6	-
	60 min, 100°C, pH 5	97.4	62.8	28.7	1.3	1.5
	20 min, 120°C, pH 6	88.2	59.5	-	1.2	26.4

Residue pattern in processed commodities similar to residue pattern in raw commodities? No

| Plant residue definition for monitoring (RD-Mo) | Etoxazole (sum of isomers) – restricted to fruit crops, pulses and oilseeds - Foliar application. | OECD Guidance, series on pesticides No 31 |

www.efsa.europa.eu/efsajournal 20 EFSA Journal 2017;15(9):4988
Plant residue definition for risk assessment (RD-RA)

Primary crops: Etoxazole (sum of isomers) – restricted to fruit crops, pulses and oilseeds – Foliar application. Processed commodities: Etoxazole, R-4 and R-7 (provisional) Rotational crops: open

Conversion factor (monitoring to risk assessment)

Open

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duratio n (days)	N rate/comment
Animals covered	Laying hen	5.8 ([14C-difluorophenyl]-etoxazole)	4.5	Not triggered based on the representative uses.
		6.3 ([14C-t-butylphenyl]-etoxazole)		
	Goat/Cow	0.3 (both labelled compounds)	4	
	Pig	-		Not required – Metabolism in rat and ruminants is similar.
	Fish	-		Not required

Time needed to reach a plateau concentration in milk and eggs (days)	Eggs: Plateau not reached Milk: Dosing day 2, 0.002 mg/kg
Animal residue definition for monitoring (RD-Mo)	Not proposed; not required
OECD Guidance, series on pesticides No 31	
Animal residue definition for risk assessment (RD-RA)	Not proposed; not required
Conversion factor (monitoring to risk assessment)	Not applicable
Metabolism in rat and ruminant similar (Yes/No)	Yes
Fat soluble residues (Yes/No) (FAO, 2009)	Yes (Log P_{ow} = 5.52 at 20°C) Total residues higher in fat compared to fat free muscle.

Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) OECD Guideline 502

In the different crops investigated with [14C-etoxazole and at 30 days PBI, the total radioactive residues were <0.01 mg/kg and no further analysis were conducted. Data gap: Confined rotational crops metabolism studies addressing the fate of R-3, R-7 and R-8 in leafy crops, small grains crops and root crops are required.
Field rotational crop study	Not provided.
OECD Guideline 504	
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Months)			
			Etoxazole	R-4	R-7	R-3
High water content						
Cucumber	-20°C		5			
Tomato	-20°C		7			
Apple	-18°C		4			
Apricot	-18°C		6			
High oil content						
Cotton seed			17			
High acid content						
Mandarin Peel	-18°C		12			
Mandarin Pulp	-18°C		6			
Grape (berries)	-20°C		8			
Strawberry	-18°C		3			
Processed commodities						
Grape (juice)	-20°C		5			
Raisin	-20°C		3			
Apple (juice)	-18°C		1.5			
Apple (purée)	-18°C		1.5			
Apple (dry pomace)	-18°C		1.5			
Tomato (juice)	-18°C		3			
Tomato (paste)	-18°C		6			
Tomato (canned)	-18°C		3			
Tomato paste	-18°C		Not stable	5	5	
Cotton gin trash	-20°C				6	

No storage stability data available for animal products.
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Citrus fruits	SEU	Mandarins: 1x 0.01, 2x 0.02, 2x 0.04, 3x 0.05 Oranges: 3x 0.01, 4x 0.02, 0.05	MRL, STMR and HR derived from the merged datasets on mandarins and oranges.	0.1	0.05	0.02
Pome fruits	SEU	Apples: 5x <0.01, 0.04 Pears: 2x <0.01	Extrapolation to the whole group of pome fruits.	0.05	0.04	0.01
	NEU	Apples: 4x <0.01, 2x 0.01 Pears: 2x <0.01	MRL, STMR and HR derived from the merged NEU and SEU datasets on apples and pears.			
Peaches, apricots, nectarines	SEU	Peaches: 2x <0.01, 5x 0.02, 2x 0.04, 0.06 Apricots: <0.01, 0.02, 0.03, 0.04	Extrapolation to the peaches, apricots and nectarines	0.09	0.06	0.02
Cherries (sweet)	SEU	0.03, 2x 0.04, 0.11		0.2	0.11	0.04
Plums	SEU	6x <0.01, 0.01, 0.02, 0.03, 0.07		0.1	0.07	0.01
	NEU	8x <0.01, 0.01		0.02	0.01	0.01
Table grapes ** Wine grapes	SEU	10x <0.01, 0.02	MRL, STMR and HR derived from the merged NEU and SEU datasets	0.04	0.03	0.01
	NEU	7x <0.01, 0.01, 0.03				
	SEU	8x <0.01				
	NEU	8x <0.01				
Strawberries	SEU	0.01, 3x 0.03, 2x 0.04, 2x 0.05, 0.06, 0.10, 0.16		0.3	0.16	0.04
Peer review of the pesticide risk assessment of the active substance etoxazole

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(9):4988

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
NEU	2x 0.01, 2x 0.02, 2x 0.03, 2x 0.04	Residue trials on tomatoes extrapolated to aubergines/eggplants	0.08	0.04	0.03	
Indoor	2x 0.01, 0.04, 2x 0.05, 0.06, 0.07, 0.09		0.2	0.09	0.05	

Crop Region/Indoor (a) Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b) |

| Tomatoes/aubergines | SEU | Tomatoes: 4x <0.01, 2x 0.01, 2x 0.02, 0.03, 0.04 | Residue trials on tomatoes extrapolated to aubergines/eggplants | 0.06 | 0.04 | 0.01 |

| Indoor | Tomatoes: 0.01, 0.02, 6x 0.03, 0.06 | | 0.09 | 0.06 | 0.03 |

| Cucurbits inedible peel | SEU | Melon: 4x <0.01, 2x 0.02, 2x 0.03 | Extrapolation to the whole group of cucurbits inedible peel | 0.06 | 0.03 | 0.02 |

| Cotton seeds | SEU | 4x <0.01 | 0.01* | 0.01 | 0.01 |

Summary of the data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Data gap: Determination of the residues in pollen and bee products for human consumption resulting from residues taken up by honeybees from crops at blossom with regard to etoxazole and metabolites residues

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}):

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).

(*) Indicates that the MRL is set at the limit of analytical quantification.
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Maximum dietary burden (mg/kg)
	Comment	Comment
Citrus (dried pulp)	0.022 STMR * PF¹	0.022 STMR * PF¹
Apple pomace, wet	0.033 STMR * PF²	0.033 STMR * PF²
Cotton seed meal	0.0005 STMR * PF³	0.0005 STMR * PF³

1. Processing trials on citrus not available. Default PF (10).
2. Median PF for apple pomace, wet: 3.6.
3. Mean PF for cotton seed meal: 0.05.
4. Provisional livestock dietary burden calculation considering etoxazole residues only in processed feed commodities and should be finalised once the magnitude of R-4 and R-7 residues in relevant processed commodities has been addressed and their toxicological profile (data gap).
Residues from livestock feeding studies

Regulation (EU) No 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL Calculations

Ruminant	Pig/Swine	Poultry	Fish		
Beef cattle	0.00040	0.0003	Breeding	0.001	
Dairy cattle	0.002	Lamb	0.0004	Finishing	0.00000

Highest Expected Intake

(mg/kg bw/d)	Beef cattle	Ram/Ewe	Ewe/Breeding	Broiler	Layer	Turkey
(mg/kg DM for fish)	0.00040	0.0003	0.001	0.00000	0.00000	0.00000

Intake >0.004 mg/kg bw

- No
- No
- No
- No
- No

Feeding Study Submitted

- Not required

Representative Feeding Level

Level	Beef: N	Lamb: N	Broiler: N
Level	N	N	N

N Rates

- Estimated HR at 1N
- MRL proposals

Method of Calculation

- Estimated HR calculated at N level (estimated mean level for milk).
- HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.
- The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations

Median expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle (mg/kg bw/d)	0.00040	Breeding	0.001	Broiler 0.00000
Dairy cattle (mg/kg DM for fish)	0.0017	Finishing	0.00000	Layer 0.00000
Ruminant				Turkey 0.00000
Pig/Swine				Fish 0.00000
Poultry				
Fish				

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates	Level	Beef: N	Level	Lamb : N	Level	N rate	Level	B or T: N	Level	N rate
Mean level in feeding level		Estimated STMR\(^{(b)}\) at 1N	Mean level in feeding level	Estimated STMR\(^{(b)}\) at 1N	Mean level in feeding level	Estimated STMR\(^{(b)}\) at 1N	Mean level in feeding level	Estimated STMR\(^{(b)}\) at 1N	Mean level in feeding level	Estimated STMR\(^{(b)}\) at 1N
Muscle										
Fat	-	-	-	-	-	-	-	-	-	-
Meat\(^{(a)}\)	-	-	-	-	-	-	-	-	-	-
Liver	-	-	-	-	-	-	-	-	-	-
Kidney	-	-	-	-	-	-	-	-	-	-
Milk	-	-	-	-	-	-	-	-	-	-
Eggs	-	-	-	-	-	-	-	-	-	-

Method of calculation\(^{(c)}\):

\(^{(a)}\): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.

\(^{(b)}\): When the mean level is set at the LOQ, the STMR is set at the LOQ.

\(^{(c)}\): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)(5)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies	Processing Factor (PF)	Conversion Factor (CF_P) for RA	
		Individual values	Median PF	
Representative uses				
Apple washed^a	2	1.2, 0.33	-	
Apple juice	4	<0.05, <0.08, 0.009, 0.012	<0.038	
Apple puree	2	<0.05, <0.08	<0.07	
Canned apples (canned after pasteurisation)	2	<0.05, <0.08	<0.07	
Apple baby puree	1	<0.08	<0.08	
Apples dried	1	1.1	1.1	
Apple wet poamce	2	5.8, 5.6	5.7	
Tomato (washed)	2	0.25, 0.83	0.54	
Tomato juice (finished)	2	<0.25, <0.18	<0.22	
Tomato puree	2	<0.25, <0.18	<0.22	
Tomato paste	2	<0.25, <0.18	<0.22	
Tomato (canned)	2	<0.25, <0.18	<0.22	
Tomato (sun-dried)¹⁾	2	1.0, 4.7	-	
Tomato ketchup	2	<0.25, <0.18	<0.22	
Cotton meal	2	0.04, 0.06	0.05	
Cotton hulls¹⁾	2	0.32, 0.12	-	
Cotton oil	2	0.20, 0.12	0.16	

^aDue to the significant difference of the 2 two values no robust processing factor can be derived for washed apples, sun-dried tomatoes and cotton hulls.

(5): Provisional processing factors to be reconsidered pending the finalisation of the residue definition for risk assessment for processed commodities.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)(6)

Including all uses (representative uses and uses related to an MRL application).

Factor	Value
ADI	0.04 mg/kg bw per day
TMIDI according to EFSA PRIMo	Highest TMIDI: 3.8% ADI (DE child)
NTMIDI, according to (to be specified)	Not applicable
IEDI (% ADI), according to EFSA PRIMo	Calculation not triggered (TMIDI well below 100% ADI)
NEDI (% ADI), according to (to be specified)	Not applicable
Factors included in the calculations	none

Factor	Value
ARfD	Not applicable – Not allocated
IESTI (% ARfD), according to EFSA PRIMo	Not applicable
NESTI (% ARfD), according to (to be specified)	Not applicable
Factors included in IESTI and NESTI	none
A provisional consumer dietary risk assessment can only be conducted considering the outstanding data to finalise the residue definition for risk assessment for processed commodities and the fate of high persistent soil metabolites in rotational crops.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)\(^{(7)}\)

Code\(^{(a)}\)	Commodity/Group	MRLs\(^{(b)}\) (mg/kg) and Comments
Plant commodities		
0110000	Citrus fruits	0.1
0130000	Pome fruit	0.05
0140020	Cherries (sweet)	0.2
0140010	Apricots	0.09
0140030	Peaches	0.09
0140040	Plums	0.1
0151010	Table grapes	0.04
0151020	Wine grapes	0.04
0152000	Strawberries	0.3
0231010	Tomatoes	0.09
0231030	Aubergines/eggplants	0.09
0233000	Cucurbits with inedible peel	0.06
0401090	Cotton seeds	0.01*
MRL application		
0140040	Plums	0.1
0152000	Strawberries	0.3
0231010	Tomatoes	0.09
0231030	Aubergines/eggplants	0.09
0233000	Cucurbits with inedible peel	0.06
Animal commodities		
1000000	Products of animal origin -Terrestrial animals	Not relevant based on the representative uses.

\(\text{a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005}
\(\text{b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.}
\(\text{(7): Provisional proposed MRLs.}\)
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

| Mineralisation after 100 days | 5.7-12.8 % after 120 d, [14C-butyphenyl]-label (n=3)
50.34 % after 120 d, [14C-difluorophenyl]-label (n=1) |
|---|---|
| Non-extractable residues after 100 days | 10.2-32.9 % after 120 d, [14C-butyphenyl]-label (n=6)
25.66 % after 120 d, [14C-difluorophenyl]-label (n=1) |
| Metabolites requiring further consideration
- name and/or code, % of applied (range and maximum) |
- R-3 (max. 1.5-10.4% butylphenyl)
- R-4 (max. 2.6-12.4% butylphenyl)
- R-7 (max. 8.1-24% butylphenyl, max. 21.6% difluorophenyl)
- R-8 (max. 33.0-44.8% butylphenyl)
- R-12 (max. 4-8.5% butylphenyl)
- R-13 (max. 11.7-23.1%, butylphenyl, max. 10.9% difluorophenyl) |

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

| Mineralisation after 100 days | 2.16 % after 120 d, [13C- butyphenyl]-label (n=1)
aqueous layer
22.39 % after 120 d, [13C- difluorophenyl]-label (n=1) |
|---|---|
| Non-extractable residues after 100 days | 12.45 % after 120 d, [13C- butyphenyl]-label (n=1)
4.24 % after 120 d, [13C- difluorophenyl]-label (n=1) |
| Metabolites that may require further consideration
for risk assessment - name and/or code, % of applied (range and maximum) |
- R-8 (max 24.6% butylphenyl)
- R-11 (max 38.2% difluorophenyl)
- R-7 (max 5.2% difluorophenyl) |

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

| Metabolites that may require further consideration
for risk assessment - name and/or code, % of applied (range and maximum) |
- R-3 (max. 9% butylphenyl, max. 11.7% difluorophenyl)
- R-11 (max. 12% difluorophenyl)
- R-12 (max. 7.9% butylphenyl) |
|---|---|
| Mineralisation at study end | 6.6 % after 294 h, [13C- butyphenyl]-label (n=1)
8.7 % after 295 h, [13C- difluorophenyl]-label (n=1) |
| Non-extractable residues at study end | 13.05 % after 294 h, [13C- butyphenyl]-label (n=1)
12.35 % after 295 h, [13C- difluorophenyl]-label (n=1) |
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark aerobic conditions						
Soil type	pH\(^a\)	t. °C / % MWHC	DT\(_{50}\)/DT\(_{90}\) (d)	alpha/beta or \(k_1, k_2, g\)	DT\(_{50}\) (d)	St. (\(\chi^2\))	Method of calculation
Aldhams 20°C Sandy loam	5.1	20 °C / 40% MWHC	10.4 / 34.5	-	9.3	5.97	SFO
Speyer 2.1 Sand	6.7	20 °C / 40% MWHC	18.6 / 61.75	-	15.1	12.68	SFO
Speyer 2.2 Loamy sand	6.7	20 °C / 40% MWHC	24.5 / 81.3	-	24.5	9.25	SFO
Evesham 3 Clay loam	7.4	20 °C / 40% MWHC	47.7\(^e\) / 158.6	-	30.5	3	SFO
Aldhams 10°C Sandy loam	5.1	10 °C / 40% MWHC	31.9 / 105.8	-	11	10.1	SFO
Aldhams 30°C Sandy loam	5.1	30 °C / 40% MWHC	1.8 / 19.88	0.77485 (alpha) 0.0.06633 (beta)	13.2\(^d\)	3.36	FOMC
Chelmorton Silt loam	5.9	20 °C / pF2	10.8 / 35.8	-	10.8	4.6	SFO
Speyer 5M Sandy loam	7.0	20 °C / pF2	74.1\(^f\) / 246.2	-	74.1	4.5	SFO

Geometric mean (if not pH dependent): 19.31\(^f\)

pH dependence, Yes or No: No

\(\alpha\) Measured in water

\(\beta\) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

\(\chi\) For Aldhams soils (at 10° and 30° C) geometric mean has been derived first before the calculation of geometric mean for the whole data set

\(\delta\) DT90/3.32 (normalised)

\(\epsilon\) Normalised using a Q10 of 2.58 to 12 °C the DT50 in Speyer 5M Sandy loam is 157.4 days. When normalised to 12 °C the DT50 of all the other soils are < that of Evesham 3 clay loam which is 101.3 days. For the purpose of the application of Guidance on Information Requirements and Chemical Safety Assessment. Chapter R11: PBT/vPvB assessment (ECHA, November 2014 & June 2017) values at 12°C are considered.
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Soil type	pH\(^a\)	t. °C / % MWHC	DT\(_{50}\)/ DT\(_{90}\) (d)	alpha/ beta or k\(_1\), k\(_2\), k\(_g\)	f. f. k\(_{\ell}\) / k\(_{dp}\)	DT\(_{50}\) (d) 20 °C pF2/10kPa\(^b\)	St. (\(\chi^2\))	Method of calculation
Longwoods	7.7	20°C/38.9%	9.25/91.94	0.9226 (alpha) 8.2612 (beta)	27.7 \(^c\)	5.285	FOMC	
Loamy sand								
Farditch	6.5	20°C/68%	18.29/107.8	1.6163 (alpha) 34.1473 (beta)	32.5 \(^c\)	4.758	FOMC	
Silt loam								
Warsop	4.8	20°C/30.1%	89.14/296.1	-	89.1	3.202	SFO	
Sand								
Geometric mean (if not pH dependent)						**43.1**		
Arithmetic mean						**I**		

pH dependence, Yes or No
a) Measured in water
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
c) DT\(_{90}\)/3.32 (normalised)

Soil type	pH\(^a\)	t. °C / % MWHC	DT\(_{50}\)/ DT\(_{90}\) (d)	alpha/beta or k\(_1\), k\(_2\), k\(_g\)	f. f. k\(_{\ell}\) / k\(_{dp}\)	DT\(_{50}\) (d) 20 °C pF2/10kPa\(^b\)	St. (\(\chi^2\))	Method of calculation
Longwoods	7.7	20°C/38.9%	7.09/23.57	-	7.1	11.02	SFO	
Loamy sand								
Farditch	6.5	20°C/68%	10.49/34.84	-	10.5	5.434	SFO	
Silt loam								
Warsop	4.8	20°C/30.1%	1.03502 (alpha) 8.01403 (beta)	19.9 \(^f\)	1.9	FOMC		
Sand								
Geometric mean (if not pH dependent)						**11.4**		
Arithmetic mean						**I**		

pH dependence, Yes or No
a) Measured in water
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
f) DT\(_{90}\)/3.32 (normalised)
R-13

Soil type	pH^a	t. ºC / % MWHC	DT₅₀/DT_{x0} (d)	alpha/beta or k₁, k₂, g	f. f. k_f/k_{dp}	DT₅₀ (d) 20 ºC pF2/10kPa^b	St. (χ²)	Method of calculation
Longwoods Loamy sand	7.7	20ºC/38.9%	205.7/812.4	0.07783 (k₁) 0.002653 (k₂) 0.136965 (g)	261.3ⁱ	1.866	DFOP	
Farditch Silt loam	6.5	20ºC/68%	41.7/444.3	0.114 (k₁) 0.00398 (k₂) 0.414 (g)	174.2ⁱ	3.314	DFOP	
Warsop Sand	4.8	20ºC/30.1%	95.8/318.2	-	95.8	4.248	SFO	

| Geometric mean (if not pH dependent) | **163.4** |
| Arithmetic mean | 1 |

pH dependence. Yes or No

- a)Measured in water
- b)Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
- i)Ln2/k_{slow} (normalised)

R-12

Soil type	pH^a	t. ºC / % MWHC	DT₅₀/DT₉₀ (d)	alpha/beta or k₁, k₂, g	f. f. k_f/k_{dp}	DT₅₀ (d) 20 ºC pF2/10kPa^b	St. (χ²)	Method of calculation
Chelmorton Silt loam	5.9	20ºC/44.7%	1.33/4.43	-	1.33	4.135	SFO	
Speyer 2.2 Loamy sand	5.9	20ºC/20.3%	1.13/3.75	-	1.13	7.8	SFO	
Speyer 5M Sandy loam	7.0	20ºC/21.2%	3.69/26.77	1.23131 (alpha) 4.878 (beta)	8.07ⁱⁱ	3.366	FOMC	

| Geometric mean (if not pH dependent) | **2.3** |
| Arithmetic mean | 1 |

pH dependence. Yes or No

- a)Measured in water
- b)Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
- i)DT90/3.32 (normalised)

R-8

Soil type	pH^a	t. ºC / % MWHC	DT₅₀/DT₉₀ (d)	alpha/beta or k₁, k₂, g	f. f. k_f/k_{dp}	DT₅₀ (d) 20 ºC pF2/10kPa^b	St. (χ²)	Method of calculation
Dark aerobic conditions Metabolite dosed study (ff from parent aerobic degradation studies)

Soil type	pH	t. °C / % MWHC	DT50/DT90 (d)	alpha/beta or k1, k2, g	f. f. kf/kdp	DT50 (d) 20 °C pF2/10kPab	St. (χ²)	Method of calculation
Chelmorton Silt loam	5.9	20°C/44.7%	5.75/167.4	0.2397 (k1) 0.007505 (k2) 0.6486 (g)		92.36⁰i 4.972	DFOP	
Speyer 2.2 Loamy sand	5.9	20°C/20.3%	6.53/71.77	0.8568 (alpha) 5.2410 (beta)		21.62⁰i 4.674	FOMC	
Speyer 5M Sandy loam	7.0	20°C/21.2%	2.17/7.21	-		3.11 7.174	SFO	

| Geometric mean (if not pH dependent) | 18.4 |
| Arithmetc mean | 1 |

pH dependence, Yes or No

- a) Measured in water
- b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
- o) Ln2/k_{slow} (normalised)
- p) DT90/3.32 (normalised)
| Soil type | pH^a | t. °C / % MWHC | DT₅₀/ DT₉₀ (d) | f. f. k_f / k_{dp} | DT₅₀ (d) 20 °C pF2/10kPa^b | St. (χ²) | Method of calculation |
|-------------------|----------------|----------------|-----------------------------------|--------------------------------|---|-------------------|----------------------|
| Tollebeek sandy clay | 7.3 | 24 °C/n.r. | 14.5/48 | | 20.8 | 4.32 | SFO |
| Heino humous sand | 4.8 | 24 °C/n.r. | 7.91/26.3 | | 11.4 | 4.75 | SFO |

Geometric mean (if not pH dependent)
Arithmetic mean
PpH dependence, Yes or No

^aMeasured in [medium to be stated, usually calcium chloride solution or water]
^bNormalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Field studies

Parent	Aerobic conditions	Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pH	Depth (cm)	DT$_{50}$ (d) actual	DT$_{90}$(d) actual	St. (χ^2)	Method of calculation
Silty clay loam		St Martin des Bois, Tours	4.2	0-10	8.13 (9.4)*	31.1	12.6	DFOP K1 0.09091 K2 3.51x10$^{-12}$ g 0.9569	
Clay loam		Montech, Montauban	7.1	0-10	7.89 (8.7)*	28.8	1.81	DFOP K1 0.09213 K2 2.37x10$^{-2}$ g 0.9682	
Clay loam		Senas, Provence	7.2	0-10	3.14 (7.56)*	25.1	3.64	FOMC $(\alpha$: 1.111, β: 3.618)	
Silt loam		Schleithal, Alsace	5.4	0-10	9.26	30.8	10.4	SFO	
Sandy loam		California	6.9	0-7.5	4.02 (18.6 d)*	61.8	7.41	FOMC $(\alpha$: 0.6978, β: 2.367)	
Sandy loam		Idaho	7.2	0-7.5	11.1 (12.3)*	41	8.57	DFOP K1 0.06579 K2 6.32x10$^{-4}$ g 0.9648	
Silt loam		Mississippi	6.4	0-7.5	0.479 (2.53 d)*	8.4	6.51	FOMC $(\alpha$: 0.6516, β: 0.2526)	
Sandy silt loam		UK	6.7	0-10	23.2	77.2	14.6	SFO	
Silt loam		Belgium	6.8	0-10	5.9	19.7	15.3	SFO	
Clay loam		Spain	7.6	0-10	5.97 (17.1)*	56.7	7.53	FOMC $(\alpha$: 0.9564, β: 1.659)	
Sandy silt loam		Italy	5.0	0-10	1.64 (4.8)*	15.8	9.64	HS K1 0.423 K2 0.07753 Tb 3.128	

Geometric mean (if not pH dependent)

pH dependence, Yes or No

No

* Measured in calcium chloride solution

* DT$_{90}$/3.32
Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent

Soil type	pH^a	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	St. (%²)	Method of calculation
Sandy loam	5.6	20°C/40.4% water content at 0 bar	105/349	1.7	SFO

^a Measured in water
Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parent	Soil photolysis				
Soil type	pH	t. °C / % MWHC	DT50 / DT90 (d) calculated at 40°N	St. (χ²)	Method of calculation
Clay loam	7.8	20/57.5% MWHC	23.2/77.1 (mean value from the two labels)	n.r.	n.r.

*a) Measured in water

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parent	Soil Type	OC %	Soil pH	Kd (mL/g)	Kdoc (mL/g)	KF (mL/g)	KFoc (mL/g)	1/n
Speyer 2.1 (Sand)	0.6	5.1	-	-	66	11000	1.01	
Speyer 2.2 (Loamy sand)	2.1	7.4	-	-	103	4910	0.91	
Evesham 3 (Clay loam)	1.3	6.7	-	-	68	5230	0.94	
Aldhams Farm (Sandy loam)	2.4	6.7	-	-	131	5460	0.87	
Geometric mean (if not pH dependent)*					6267			
Arithmetic mean (if not pH dependent)					0.933			

*a) Measured in water
* Only relevant after implementation of the published EFSA guidance.

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parent	Soil Type	OC %	Soil pH	Kd (mL/g)	Kdoc (mL/g)	KF (mL/g)	KFoc (mL/g)	1/n
Aldhams farm (Sandy loam)	2.4	5.1						
Evesham 3 (Clay loam)	1.3	7.4	877	36540	0.84			
Speyer 2.1 (Sand)	0.6	6.7	1082	83230	1.00			
Geometric mean (if not pH dependent)*					34642			
Arithmetic mean (if not pH dependent)					0.853			

*a) Measured in water
* Only relevant after implementation of the published EFSA guidance.

R-8

Parent	Soil Type	OC %	Soil pH	Kd (mL/g)	Kdoc (mL/g)	KF (mL/g)	KFoc (mL/g)	1/n
Aldhams farm (Sandy loam)	2.4	5.1	2.48	103	0.79			
Peer review of the pesticide risk assessment of the active substance etoxazole

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{soc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Evesham 3 (Clay loam)	1.3	7.4	4.56	351	0.86		
Speyer 2.1 (Sand)	0.6	6.7	1.24	207	0.84		

Geometric mean (if not pH dependent)* 196

Arithmetic mean (if not pH dependent) 0.83

pH dependence, Yes or No

R-7

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{soc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Aldhams farm (Sandy loam)	2.4	5.1	27	1125	0.87		
Evesham 3 (Clay loam)	1.3	7.4	98	7540	0.91		
Speyer 2.1 (Sand)	0.6	6.7	14	2330	0.93		

Geometric mean (if not pH dependent)* 2704

Arithmetic mean (if not pH dependent) 0.903

pH dependence, Yes or No

R-11

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{soc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Farditch Farm (Silt loam)	3.4	6.5	1.336	46.1	0.671		
Warsop (Sand)	1.4	4.8	0.975	28.7	0.649		
Lockington (Clay loam)	2.9	6.6	0.320	22.9	0.909		

Geometric mean (if not pH dependent)* 31

Arithmetic mean (if not pH dependent) 0.743

pH dependence, Yes or No

* Measured in water
* Only relevant after implementation of the published EFSA guidance.
R-3

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	l/n
Farditch Farm (Silt loam)	3.4	6.5	178	6143	0.927		
Warsop (Sand)	1.4	4.8	47	3359	0.957		
Lockington (Clay loam)	2.9	6.6	183	6295	0.921		
Geometric mean (if not pH dependent)*				5064			
Arithmetic mean (if not pH dependent)				0.935			

pH dependence, Yes or No

* Measured in water
* Only relevant after implementation of the published EFSA guidance.

R-4

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	l/n
Farditch Farm (Silt loam)	3.4	6.5	10.45	307	0.917		
Warsop (Sand)	1.4	4.8	3.02	216	0.935		
Lockington (Clay loam)	2.9	6.6	10.40	360	0.901		
Geometric mean (if not pH dependent)*				288			
Arithmetic mean (if not pH dependent)				0.918			

pH dependence, Yes or No

* Measured in water
* Only relevant after implementation of the published EFSA guidance.

R-12

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_doc (mL/g)	K_F (mL/g)	K_Foc (mL/g)	l/n
SK961089	5	7.5	0.28	6	0.9362		
SK104691	2.5	5.9	0.6	24	0.9418		
SK179618	3.7	5	3.52	95	0.9936		
Geometric mean (if not pH dependent)*				24			
Arithmetic mean (if not pH dependent)				0.957			

pH dependence, Yes or No

* Measured in calcium chloride solution
* Only relevant after implementation of the published EFSA guidance.
Mobility in soil column leaching active substance (Regulation (EU) No 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.2.1)

Column leaching
No column leaching study was conducted

Lysimeter / field leaching studies (Regulation (EU) No 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) No 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies
No lysimeter study was conducted

Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %
pH 5: 9.57 d at 20 °C
R-7: 65.6 % AR (21 d)
R-13: 5.7 % AR (14 d)
pH 7: 147-161 d at 20 °C (n=2)
R-4/R-7 (could not be separated): 13.9 % AR (30 d)
pH 9: 165-217 d at 20 °C (n=2)
R-4/R-7 (could not be separated): 16.9 % AR (30 d)

Aqueous photochemical degradation (Regulation (EU) No 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %
DT₅₀: 130.1 h (mean of two radiolabels)
Natural light, 40°N; DT₅₀ 16.7 days (mean of two radiolabels)
- R-11: max. 64 % AR (38.24 d equiv.)
- R-3: max. 12.1 % AR (47 d equiv.)
- R-12: max. 30.6 % AR (47 d equiv.)
- R-15: max. 29.5 % AR (47 d equiv.)
Quantum yield of direct phototransformation in water at Σ > 290 nm
0.026 mol · Einstein⁻¹

‘Ready biodegradability’ (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)
Not readily biodegradable (no evidence of biodegradation after 28 days of the experiment)
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	t. °C	DT50 / DT90 whole sys. (suspended sediment test)	St. (χ²)	DT50 / DT90 Water	St. (χ²)	Method of calculation
Rhine (fresh water) High (30 μg/L)	8.06	21	37.1/123	86.4/286.3	9.66			SFO
Rhine (fresh water) Low (10 μg/L)	8.06	21	35.2/117	81.9/272.3	11.6			SFO
Rhine (fresh water) Combined (30 and 10 μg/L)	8.06	21	36.1/120	84/279.3	10.4			SFO

Mineralisation and non extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study).	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)
Rhine (fresh water) High (30 μg/L)	8.06	/	Max 3% at the end of the study (difluorophenyl label)/0.1% (tert-butylphenyl label)	13% after 28 d (tert-butylphenyl label)	11.4% at the end of the study
Rhine (fresh water) Low (10 μg/L)	8.06	/	Max 2.3% at the end of the study (difluorophenyl label)/0.1% (tert-butylphenyl label)	10.2% after 28 days/13.7% after 28 d (tert-butylphenyl label)	

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Water / sediment system	pH water phase	pH sed	t. °C	DT50 / DT90 whole sys.	St. (χ²)	DT50 / DT90 water	St. (χ²)	Method of calculation
Water / sediment system								

Measured in water

Temperature of incubation

Normalised using a Q10 of 2.58 to 12 °C for the purpose of the application of Guidance on Information Requirements and Chemical Safety Assessment. Chapter R11: PBT/vPvB assessment (ECHA, November 2014 & June 2017)
Bury pond

pH	Water phase	pH	Sediment	Mineralisation	Non-extractable residues	Non-extractable residues in sed. max x % after n.d. (end of the study)	
7.12	8	20	60.1/199.8	3.3	3.4/27.8	7.4	SFO (system) DFOP (water)

Houghton meadow

pH	Water phase	pH	Sediment	Mineralisation	Non-extractable residues	Non-extractable residues in sed. max x % after n.d. (end of the study)	
7.58	7.5	20	107.5/357.3	2.5	1.8/42.7	21.2	SFO (system) FOMC (water)

Geometric mean at 20°C

80.4	1000 (default)	

Metabolites

- R13 Distribution: Max. 13.2% in sediment (100 days) Max 1.7% in water (day 0)
- R4 Distribution: Max. 2.9% in sediment (100 days) Max 3.4% in water (100 days)

Mineralisation and non-extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sediment	Mineralisation x % after n.d. (end of the study)	Non-extractable residues in sed. max x % after n.d	Non-extractable residues in sed. max x % after n.d. (end of the study)
Bury pond	7.12	8	6.8% after 60 d (butylphenyl label)/13.8% at the end of the study (difluorophenyl label)	11.3% at the end of the study (butylphenyl label)/12% at the end of the study (difluorophenyl label)	
Houghton meadow	7.58	7.5	2.4% after the end of the study (butylphenyl label)/13.9% at the end of the study (difluorophenyl label)	8.6% at the end of the study (butylphenyl label)/11.5% at the end of the study (difluorophenyl label)	

Fate and behaviour in air (Regulation (EU) No 283/2013, Annex Part A, point 7.3.1)

- Direct photolysis in air: Not studied - no data requested
- Photochemical oxidative degradation in air: DT₅₀ of 1.7 hours (Atkinson model-AOPWIN version 1.92). OH (12h) concentration assumed = 1.5x10⁶
- Volatilisation: VP < 10⁵ Pa (trigger value), no volatilisation expected
- Metabolites: -

Residues requiring further assessment (Regulation (EU) No 283/2013, Annex Part A, point 7.4.1)

- Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure:
 - Soil: Parent (etoxazole), R-3, R-7, R-8, R-11 and R-13
 - Surface water: Parent (etoxazole), R-3, R-4, R-7, R-8, R-11, R-12, R-13 and R-15
 - Sediment: Parent (etoxazole), R-3, R-4, R-7, R-8, R-11, R-12, R-13 and R-15
 - Ground water: Parent (etoxazole), R-3, R-7, R-8, R-11, R-4, R-12 and R-13
 - Air: Parent (etoxazole)
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Location Type	Data Available
Soil	Not available
Surface water	Not available
Ground water	Not available
Air	Not available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent

Method of Calculation	DT₅₀ (d): 74.1 days
	Kinetics: SFO
Field or Lab:	worst case lab

Application data

Crop:	strawberry (worst case scenario)
Depth of soil layer:	5cm
Soil bulk density:	1.5 g/cm³
% plant interception:	30% (BBCH 10-from infestation)
Number of applications:	1
Interval (d):	-
Application rate(s):	55 g a.s./ha

PEC(s) (mg/kg)

PEC(s) (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Initial Actual	Time weighted average	Actual Time weighted average	
Initial	0.051	-	-	
Short term	24h 0.051	0.051	-	
	2d 0.050	0.051	-	
	4d 0.049	0.050	-	
Long term	7d 0.048	0.050	-	
	28d 0.040	0.045	-	
	50d 0.032	0.041	-	
	100d 0.020	0.033	-	
Plateau	concentration	0.002 mg/kg (5 cm)		
after 2 yr		after 2 yr		

Metabolite R-3

Method of calculation	Molecular weight relative to the parent: 361.38/359.4
	DT₅₀ (d): 89.1 days
	Kinetics: SFO
	Field or Lab: worst case lab

Application data

| Application rate assumed | 5.75 g/ha (assumed R-3 is |
formed at a maximum of 10.4% of the applied dose

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0054	-	-	-
Short term	24h	0.0053 0.005	-	-
	2d	0.0053 0.005	-	-
	4d	0.0052 0.005	-	-
Long term	7d	0.0051 0.005	-	-
	28d	0.0043 0.005	-	-
	50d	0.0036 0.004	-	-
	100d	0.0025 0.004	-	-
Plateau	concentration	0.0003 mg/kg (5 cm) after 2 yr	-	-
Metabolite R-7
Method of calculation

PEC(s) (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.0129	-	-	-
Short term 24h	0.0106	0.012	-	-
2d	0.0086	0.011	-	-
4d	0.0058	0.009	-	-
Long term 7d	0.0031	0.007	-	-
28d	0.0000	0.002	-	-
50d	0.0000	0.001	-	-
100d	0.0000	0.001	-	-

Plateau concentration -

Molecular weight relative to the parent: 377.4/359.4
DT50 (d): 3.43 days
Kinetics: SFO
Field or Lab: worst case lab

Application rate assumed: 13.86 g/ha (assumed R-7 is formed at a maximum of 24% of the applied dose)
Metabolite R-8

Method of calculation

- Molecular weight relative to the parent: 237.17/359.4
- DT50 (d): 92.36 days
- Kinetics: SFO
- Field or Lab: worst case lab

Application data

Application rate assumed: 16.26 g/ha (assumed R-8 is formed at a maximum of 44.8% of the applied dose)

PEC(s)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
(mg/kg)				
Initial	0.0152	-	-	
Short term				
24h	0.0151	0.015	-	-
2d	0.0149	0.015	-	-
4d	0.0147	0.015	-	-
Long term				
7d	0.0144	0.015	-	-
28d	0.0123	0.014	-	-
50d	0.0104	0.013	-	-
100d	0.0072	0.011	-	-
Plateau				
concentration	0.001 mg/kg (5 cm) after 2 yr			
Molecular weight relative to the parent: 158.02/359.4
DT50 (d): 20.8 days
Kinetics: SFO
Field or Lab: worst case lab

Application rate assumed: 2.92 g/ha (assumed R-11 is formed at a maximum of 12% of the applied dose)

PEC(s)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.0027	-	-	-
Short term				
24h	0.0026	0.003	-	-
2d	0.0025	0.003	-	-
4d	0.0024	0.003	-	-
Long term				
7d	0.0021	0.002	-	-
28d	0.0011	0.002	-	-
50d	0.0005	0.001	-	-
100d	0.0001	0.001	-	-

Plateau concentration -
Metabolite R-13

Method of calculation

- Molecular weight relative to the parent: 357.4/359.4
- DT50 (d): 261.3 days
- Kinetics: SFO
- Field or Lab: worst case lab

Application data

Application rate assumed: 12.63 g/ha (assumed R-13 is formed at a maximum of 23.1% of the applied dose)

PEC(s)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.0118		-	-
Short term				
24h	0.0118	0.012	-	-
2d	0.0117	0.012	-	-
4d	0.0117	0.012	-	-
Long term				
7d	0.0116	0.012	-	-
28d	0.0109	0.011	-	-
50d	0.0103	0.011	-	-
100d	0.0090	0.010	-	-
Plateau concentration	0.007 mg/kg (5 cm) after 5 yr			
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (modelling)

Scenario	Parent	Metabolites (µg/L)

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model(s) used: FOCUS PELMO 5.5.3 & FOCUS PEARL 4.4.4

Crop: Pome/Stone fruits, Citrus, Grapes, Fruiting Vegetables, Strawberries, Cotton

Crop uptake factor: 0

Water solubility (mg/L): 0.07 (parent), 1000 (default for all metabolites) at pH 7 and 20°C

Vapour pressure: 7*10^{-6} Pa at 20°C (parent), 1*10^{-8} Pa (for metabolites)

Geometric mean parent DT_{50,lab} 19.3 d (normalisation to 10kPa or pF2, 20 °C with Q_{10} of 2.58 and Walker equation coefficient 0.7).

Metabolites:
- R-3: 43.1 d,
- R-7: 1.5 d,
- R-8: 18.4 d,
- R-11: 20.8 d,
- R-13: 163.4 d,
- R-4: 11.4 d,
- R-12: 2.3 d

K_{OC}: 6267 L/kg (geometric mean), 1/n= 0.933

Metabolites:
- R-3: 5064 L/kg, 1/n= 0.935,
- R-7: 2704 L/kg, 1/n=0.903,
- R-8: 196 L/kg, 1/n=0.83,
- R-11: 31 L/kg, 1/n=0.743,
- R-13: 34642 L/kg, 1/n=0.853,
- R-4: 288 L/kg, 1/n=0.918,
- R-12: 24 L/kg, 1/n=0.957

Kinetic formation fractions for all metabolites were set to 1. In the modelling, the precursor for all metabolites was the parent compound.

Application rate

Gross application rate: 55 g/ha.

Crop growth stage: from infestation

Canopy interception %: model estimated

No. of applications: 1

Time of application (absolute or relative application dates): 15 April

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)
Scenario	Parent (µg/L)	Metabolites (µg/L)					
	R-3	R-7	R-8	R-11	R-13	R-4	R-12
Chateaudun	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Hamburg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Jokioinen	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Kremsmunster	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Okehampton	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Piacenza	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Porto	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Sevilla	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thiva	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

All crops/scenarios PELMO

Scenario	Parent (µg/L)	Metabolites (µg/L)					
	R-3	R-7	R-8	R-11	R-13	R-4	R-12
Chateaudun	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Hamburg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Jokioinen	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Kremsmunster	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Okehampton	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Piacenza	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Porto	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Sevilla	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Thiva	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2	Version control no. of FOCUS calculator: Step 1-2, v.3.2
Molecular weight (g/mol): 359.4	
KOC/KOM (mL/g): 6650/3857	
DT_{50} soil (d): 19.3 days (Lab geometric. In accordance with FOCUS SFO)	
DT_{50} water/sediment system (d): 1000 d (default)	
DT_{50} water (d): 1000 d (default)	
DT_{50} sediment (d): 80.4 d (geometric from sediment water studies)	
Crop interception (%): minimal crop cover	

Parameters used in FOCUSsw step 3/4

Version control no.’s of FOCUS software: FOCUS SWASH version 5.3, FOCUS PRZM v4.3.1, FOCUS MACRO v5.5.4, TOXSWA v4.4 and SWAN 4.0.1
Water solubility (mg/L): 0.07
Vapour pressure: 7×10^{-6} Pa at 20°C
Kom/Koc (mL/g): 6267/3635
$1/n$: 0.933
$Q_{10} = 2.58$, Walker equation coefficient 0.7
Crop uptake factor: 0

Application rate

Crop and growth stage: Pome/Stone fruits - BBCH 10
Number of applications: 1
Interval (d): -
Application rate(s): 55 g a.s./ha
Application window: 14 days before emergence to 16 days after emergence (early or late)

Crop and growth stage: Citrus - BBCH 10
Number of applications: 1
Interval (d): -
Application rate(s): 55 g a.s./ha
Application window: 14 days before emergence to 16 days after emergence

Crop and growth stage: Vines - BBCH 8
Number of applications: 1
Interval (d): -
Application rate(s): 55 g a.s./ha
Application window: 1 June-1 July

Crop and growth stage: Fruiting vegetables - BBCH 10
Number of applications: 1
Interval (d): -
Application rate(s): 55 g a.s./ha
Application window: 14 days before emergence to 16 days after emergence
Crop and growth stage: *Legume (surrogate crop for tomatoes, eggplant)* - BBCH 10
Number of applications: 1
Interval (d): -
Application rate(s): 55 g a.s./ha
Application window: 14 days before emergence to 16 days after emergence

Crop and growth stage: *Cotton* - BBCH 10
Number of applications: 1
Interval (d): -
Application rate(s): 41.25 g a.s./ha
Application window: 14 days before emergence to 16 days after emergence
PECsw/sed for Etoxazole calculated with STEP 3 and STEP 4

Etoxazole

Pome/stone fruit early applications

Water-body	Application date	Main route of entrance at STEP 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)						
		Step 3	Step 4: 10 m no spray Buffer	Step 4: 20 m no spray Buffer	Step 4: 25 m no spray Buffer	Step 4: 10 m no spray Buffer	Step 4: 15 m no spray Buffer	Step 4: 25 m no spray Buffer		
D3 Ditch	4 April	Drift	4.240	2.045	0.467	0.276	3.012	1.459	0.336	0.199
D4 Pond	18 April	Drift	0.258	0.159	0.051	0.035	2.205	1.374	0.454	0.309
D4 Stream	18 April	Drift	3.987	2.103	0.481	0.283	0.144	0.076	0.017	0.010
D5 Pond	8 April	Drift	0.258	0.159	0.051	0.035	2.264	1.411	0.466	0.317
D5 Stream	8 April	Drift	4.208	2.219	0.507	0.299	0.130	0.068	0.016	0.009
R1 Stream	26 April	Drift	0.258	0.159	0.051	0.035	2.076	1.296	0.430	0.293
R1 Pond	26 April	Drift	3.430	1.809	0.413	0.244	0.443	0.234	0.053	0.038
R2 Stream	1 March	Drift	4.544	2.397	0.548	0.323	0.284	0.150	0.086	0.082
R3 Stream	28 March	Drift	4.830	2.548	0.582	0.343	0.980	0.517	0.120	0.101
R4 Stream	05 March	Drift	3.430	1.809	0.414	0.244	0.446	0.235	0.096	0.093

Etoxazole

Pome/stone fruit late applications

Water-body	Application date	Main route of entrance at STEP 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)				
		Step 3	Step 4: 10 m no spray Buffer	Step 4: 15 m no spray Buffer				
D3 Ditch	4 April	Drift	1.999	0.602	0.304	1.426	0.433	0.219
D4 Pond	18 April	Drift	0.090	0.057	0.036	0.785	0.502	0.324
D4 Stream	18 April	Drift	1.777	0.620	0.313	0.064	0.022	0.011
D5 Pond	8 April	Drift	0.090	0.057	0.036	0.806	0.515	0.333
D5 Stream	8 April	Drift	1.876	0.654	0.330	0.058	0.020	0.010
R1 Stream	26 April	Drift	0.090	0.057	0.036	0.742	0.475	0.308
R1 Pond	26 April	Drift	1.529	0.533	0.269	0.198	0.069	0.039
R2 Stream	1 March	Drift	2.026	0.706	0.357	0.127	0.089	0.083
Peer review of the pesticide risk assessment of the active substance etoxazole

Citrus

Water-body	Application date	Main route of entrance at STEP 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)
R3 Stream	28 March	Drift	2.153	0.751
R4 Stream	05 March	Drift	1.529	0.533

Vines late applications

Water-body	Application date	Main route of entrance at STEP 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)
D6 Ditch	14 January	Drift	2.016	0.608
R4 Stream	05 March	Drift	1.525	0.532

Fruiting Vegetables

Water-body	Application date	Main route of entrance at STEP 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)
R2 Stream	04 Jun	Drift	0.921	0.243
R3 Stream	02 Jun	Drift	0.965	0.255
R4 Stream	08 Jun	Drift	0.687	0.181

Cotton

www.efs.europa.eu/efsajournal

EFSA Journal 2017;15(9):4988
Etoxazole

Legumes (surrogate for strawberries, cucurbits and ornamentals)

Water-body	Application date	Main route of entrance at STEP 3	Step 3	Initial PECsw (µg/l)	Initial PECsed (µg/kg)
D3 Ditch	4 Apr	Drift		0.286	0.186
D4 Pond	18 Apr	Drift		0.012	0.104
D4 Stream	18 Apr	Drift		0.229	0.008
D5 Pond	7 Mar	Drift		0.012	0.108
D5 Stream	7 Mar	Drift		0.238	0.007
D6 Ditch	9 Mar	Drift		0.286	0.231
R1 Pond	26 Apr	Drift		0.012	0.127
R1 Stream	26 Apr	Drift		0.198	0.251
R2 Stream	22 Apr	Drift		0.263	0.300
R3 Stream	11 Apr	Drift		0.280	7.135
R4 Stream	8 Apr	Drift		0.198	4.590
The input parameters used for SW modelling are summarized below:

Compound	Molar mass	Soil DT$_{50}$ (d)	Koc (L/kg)	Max. % in soil	Max. % in water
R-3	361.38	43.1	5266	10.4	12.1
R-4	377.4	11.4	288	12.4	8.4
R-7	377.4	1.5	2704	24.0	not observed*
R-8	237.17	19.0	220	44.8	not observed*
R-11	158.02	20.8	31	12.0	64.0
R-12	222.3	2.3	24	8.5	30.6
R-13	357.4	163	44480	23.1	16.7
R-15	221.3	1000 (default*)	10	not observed*	29.5

n.r. = not required

* A default DT50 in water/sediment (days) of 1000 days and a default water solubility of 1000 mg/L was used for all metabolites

* For modelling purposes a value of 0.01 was used.

Parameters used in FOCUSsw step 3 (if performed)

No step 3-4 modelling conducted.

Application rate

Crop and growth stage: Pome/Stone fruits (worst case) BBCH 10 (minimal crop cover 20% interception)

Number of applications: 1

Interval (d): -

Application rate(s): 55 g a.s./ha (transformed according to the molar fraction and max. occurrence)

Application window: June-Sept (STEP2)

Main routes of entry

Drift
FOCUS Step 1 PECsw and PECsed for R-3 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	0.8903		12.5862	
1	0.3200	0.6051	16.8500	14.7181
2	0.3198	0.4625	16.8383	15.7811
4	0.3193	0.3910	16.8150	16.3039
7	0.3186	0.3601	16.7801	16.5155
14	0.3171	0.3390	16.6989	16.6275
21	0.3156	0.3315	16.6180	16.6378
28	0.3140	0.3273	16.5376	16.6228
42	0.3110	0.3224	16.3779	16.5677
50	0.3093	0.3204	16.2873	16.5301
100	0.2988	0.3122	15.7325	16.2692

FOCUS Step 1 PECsw and PECsed for R-4 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed(µg/kg)		
	Actual	TWA	Actual	TWA
0	3.3654	--	8.3327	
1	3.2322	3.2988	9.3087	8.8207
2	3.2300	3.2650	9.3023	9.0631
4	3.2255	3.2463	9.2894	9.1795
7	3.2188	3.2360	9.2701	9.2225
14	3.2032	3.2235	9.2252	9.2351
21	3.1877	3.2141	9.1806	9.2243
28	3.1723	3.2056	9.1362	9.2078
42	3.1416	3.1894	9.0479	9.1692
50	3.1243	3.1803	8.9979	9.1458
100	3.0178	3.1255	8.6914	8.9948

FOCUS Step 2 PECsw and PECsed for R-4 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	North EU (June-Sept)	South EU (June-Sept)		
	PECsw (µg/L)	PECsed(µg/kg)	PECsw (µg/L)	PECsed(µg/kg)
	Actual	TWA	Actual	TWA
	Actual	TWA	Actual	TWA
0	0.7532	--	0.9424	--
1	0.7180	0.7356	2.0679	2.0672
2	0.7175	0.7267	2.0651	2.0651
4	0.7165	0.7219	2.0622	2.0651

www.efsa.europa.eu/efsajournal 59 EFSA Journal 2017;15(9):4988
FOCUS Step 1 PECsw and PECsed for R-7 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	1.0042		27.1396	
1	1.0031	1.0037	27.1241	27.1318
2	1.0024	1.0032	27.1053	27.1232
4	1.0010	1.0025	27.0677	27.1049
7	0.9989	1.0014	27.0115	27.0769
14	0.9941	0.9990	26.8808	27.0115
21	0.9893	0.9965	26.7506	26.9462
28	0.9845	0.9941	26.6212	26.8811
42	0.9750	0.9893	26.3641	26.7515
50	0.9696	0.9866	26.2183	26.6779
100	0.9366	0.9698	25.3252	26.2235

FOCUS Step 2 PECsw and PECsed for R-7 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	North EU (June-Sept)	South EU (June-Sept)						
	PECsw (µg/L)	PECsed (µg/kg)	PECsw (µg/L)	PECsed (µg/kg)				
	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
0	0.0255	---	0.6881	---	0.0382	---	1.0307	---
1	0.0254	0.0255	0.6880	0.6880	0.0381	0.0381	1.0303	1.0305
2	0.0254	0.0255	0.6875	0.6879	0.0381	0.0381	1.0296	1.0302
4	0.0254	0.0254	0.6865	0.6875	0.0380	0.0381	1.0282	1.0296
7	0.0253	0.0254	0.6851	0.6868	0.0379	0.0380	1.0260	1.0285
14	0.0252	0.0253	0.6818	0.6851	0.0378	0.0379	1.0211	1.0260
21	0.0251	0.0253	0.6785	0.6835	0.0376	0.0379	1.0161	1.0235
28	0.0250	0.0252	0.6752	0.6818	0.0374	0.0378	1.0112	1.0211
42	0.0247	0.0251	0.6687	0.6785	0.0370	0.0376	1.0014	1.0162
50	0.0246	0.0250	0.6650	0.6767	0.0368	0.0375	0.9959	1.0134
100	0.0238	0.0246	0.6423	0.6651	0.0356	0.0368	0.9620	0.9961
FOCUS Step 1 PECsw and PECsed for R-8 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	4.1911	9.2196		
1	4.1881	9.2138		
2	4.1852	9.2075		
4	4.1794	9.1947		
7	4.1707	9.1756		
14	4.1505	9.1312		
21	4.1304	9.0870		
28	4.1105	9.0430		
42	4.0708	8.9557		
50	4.0483	8.9062		
100	3.9104	8.6028		

FOCUS Step 1 PECsw and PECsed for R-11 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg)		
	Actual	TWA	Actual	TWA
0	2.2785	---	0.6998	---
1	2.2575	2.2680	0.6994	0.6996
2	2.2560	2.2624	0.6989	0.6994
4	2.2529	2.2584	0.6979	0.6989

FOCUS Step 2 PECsw and PECsed for R-11 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	North EU (June-Sept)	South EU (June-Sept)				
	PECsw (µg/L)	PECsed(µg/kg)	PECsw (µg/L)	PECsed(µg/kg)		
	Actual	TWA	Actual	TWA	Actual	TWA
0	2.2785	---	---	0.6998	---	0.8263
1	2.2575	2.2680	0.6994	0.6996	2.6656	2.6762
2	2.2560	2.2624	0.6989	0.6994	2.6637	2.6704
4	2.2529	2.2584	0.6979	0.6989	2.6601	2.6662
FOCUS Step 1 PECsw and PECsed for R-12 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	5.3095	1.0311		
1	5.2744	5.2919	1.2659	1.1485
2	5.2707	5.2823	1.2650	1.2070
4	5.2634	5.2747	1.2632	1.2355
7	5.2525	5.2675	1.2606	1.2468
14	5.2271	5.2537	1.2545	1.2522
21	5.2018	5.2406	1.2484	1.2520
28	5.1766	5.2277	1.2424	1.2503
42	5.1266	5.2023	1.2304	1.2457
50	5.0983	5.1880	1.2236	1.2427
100	4.9246	5.0994	1.1819	1.2227

FOCUS Step 2 PECsw and PECsed for R-12 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	North EU (June-Sept)	South EU (June-Sept)						
	PECsw (µg/L)	PECsed(µg/kg)	PECsw (µg/L)	PECsed(µg/kg)				
	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
0	1.5000	---	0.3573	---	1.7553	---	0.4185	---
1	1.4887	1.4943	0.3570	0.3572	1.7439	1.7496	0.4182	0.4184
2	1.4877	1.4913	0.3568	0.3570	1.7427	1.7465	0.4180	0.4182
4	1.4856	1.4890	0.3563	0.3568	1.7403	1.7440	0.4174	0.4180
7	1.4825	1.4869	0.3556	0.3564	1.7367	1.7416	0.4165	0.4175
14	1.4754	1.4829	0.3538	0.3556	1.7283	1.7370	0.4145	0.4165
21	1.4682	1.4792	0.3521	0.3547	1.7199	1.7327	0.4125	0.4155
28	1.4611	1.4756	0.3504	0.3538	1.7116	1.7285	0.4105	0.4145
42	1.4470	1.4684	0.3470	0.3521	1.6950	1.7201	0.4065	0.4125
50	1.4390	1.4643	0.3451	0.3512	1.6857	1.7153	0.4043	0.4114
100	1.3900	1.4393	0.3334	0.3452	1.6283	1.6861	0.3905	0.4044
FOCUS Step 1 PECsw and PECsed for R-13 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	0.9588		31.0620	
1	0.0845	0.5216	37.5924	34.3272
2	0.0845	0.3031	37.5664	35.9533
4	0.0843	0.1937	37.5143	36.7468
7	0.0842	0.1468	37.4364	37.0591
14	0.0838	0.1154	37.2552	37.2024
21	0.0834	0.1048	37.0749	37.1899
28	0.0829	0.0994	36.8954	37.1387
42	0.0821	0.0938	36.5391	36.9981
50	0.0817	0.0919	36.3371	36.9085
100	0.0789	0.0861	35.0993	36.3116

FOCUS Step 1 PECsw and PECsed for R-15 following etoxazole application on Pome fruit, early applications (1 x 55 g a.s./ha)

Time (d)	PECsw (µg/L)	PECsed (µg/kg dry sediment)		
	Actual	TWA	Actual	TWA
0	0.9734		0.0001	
1	0.9600	0.9667	0.0960	0.0481
2	0.9593	0.9632	0.0959	0.0720
4	0.9580	0.9609	0.0958	0.0839
7	0.9560	0.9592	0.0956	0.0890
14	0.9514	0.9564	0.0951	0.0922
21	0.9467	0.9540	0.0947	0.0931
28	0.9422	0.9516	0.0942	0.0934
42	0.9331	0.9469	0.0933	0.0935
50	0.9279	0.9443	0.0928	0.0935
100	0.8963	0.9282	0.0896	0.0923
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

Etoxazole has a low vapour pressure ($7.0 \times 10^{-6} \text{ Pa at } 25^\circ\text{C}$) and has a DT50 in air of 0.140 day. Therefore it is considered that predicted concentrations from airborne transport will be negligible. No other route of exposure is also expected to occur.

PEC

Maximum concentration

-
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity
Birds				
Mallard duck *(Anas platyrhynchos)*	Etoxazole	Acute	LD₅₀	> 2000 mg/kg bw
Bobwhite quail *(Colinus virginianus)*	Etoxazole	Short-term	LC₅₀	> 5200 ppm (equivalent to 1268 mg/kg bw/day)
Mallard duck *(Anas platyrhynchos)*	Etoxazole	Long-term	LD₅₀/10	> 200 mg/kg bw/day
Bobwhite quail *(Colinus virginianus)*	Etoxazole	Long-term	NOEC	300 ppm (equivalent to 28.6 mg/kg bw/day)
Mammals				
Rat	Etoxazole	Acute	LD₅₀	> 5000 mg/kg bw
Rat	Etoxazole 11SC	Acute	LD₅₀	> 5000 mg/kg bw
Rat	Etoxazole	Long-term	NOAEL	24.5 mg/kg bw/day

Endocrine disrupting properties (Annex Part A, points 8.1.5)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that etoxazole is an endocrine disruptor in mammals; however, no firm conclusion can be drawn regarding fish, birds and amphibians.

Additional higher tier studies (Annex Part A, points 10.1.1.2):

No additional higher-tier studies were submitted.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

No additional studies on other terrestrial vertebrates are required. The literature search carried out by the applicant did not reveal any additional studies on terrestrial vertebrates including reptiles and amphibians.
Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) No 284/2013, Part A, Annex point 10.1)

Orchards at 1 x 55 g a.s./ha (from infestation)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds) – Active substance etoxazole					
All	Small insectivorous bird	Acute	2.57	> 777	10
All	Small insectivorous bird	Long-term	0.53	54	5
Screening Step (Birds) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small insectivorous bird	Acute	1.13	> 178	10
All	Small insectivorous bird	Long-term	0.23	12	5
Screening Step (Mammals) – Active substance etoxazole					
All	Small herbivorous mammal	Acute	7.50	> 666	10
All	Small herbivorous mammal	Long-term	2.11	12	5
Screening Step (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small herbivorous mammal	Acute	3.28	> 152	10
All	Small herbivorous mammal	Long-term	0.92	2.7	5
Tier 1 (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
< 10	Large herbivorous mammal “lagomorph”	Long-term	0.182	14	5
< 10	Small herbivorous mammal “vole”	Long-term	0.921	2.7	5
< 10	Small insectivorous mammal “shrew”	Long-term	0.024	102	5
< 10	Small omnivorous mammal “mouse”	Long-term	0.099	25	5
10-19	Large herbivorous mammal “lagomorph”	Long-term	0.147	17	5
10-19	Small herbivorous mammal “vole”	Long-term	0.737	3.3	5
10-19	Small omnivorous mammal “mouse”	Long-term	0.079	31	5
20-40	Large herbivorous mammal “lagomorph”	Long-term	0.110	22	5
20-40	Small herbivorous mammal “vole”	Long-term	0.553	4.4	5
20-40	Small omnivorous mammal “mouse”	Long-term	0.060	41	5
≥ 40	Large herbivorous mammal “lagomorph”	Long-term	0.055	45	5
≥ 40	Small herbivorous mammal “vole”	Long-term	0.277	9	5
≥ 40	Small omnivorous mammal “mouse”	Long-term	0.029	85	5
71-79	Frugivorous mammal “dormouse”	Long-term	0.289	9	5

Higher tier (Mammals) – Metabolite DFB (2,6-difluorobenzamide)

No higher-tier data were available to address the long-term risk to wild mammals from etoxazole metabolite DFB (2,6-difluorobenzamide).
Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances.

The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC.

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Active substance etoxazole				
Earthworm-eating birds	Long-term	0.877	33	5
Earthworm-eating mammals	Long-term	1.07	23	5
Fish-eating birds	Long-term	1.92	11	5
Fish-eating mammals	Long-term	1.71	11	5
Metabolite R-3				
Earthworm-eating birds	Long-term	0.0036	784	5
Earthworm-eating mammals	Long-term	0.0044	557	5
Fish-eating birds	Long-term	0.0353	81	5
Fish-eating mammals	Long-term	0.0316	94	5
Metabolite R-4				
Earthworm-eating birds	Long-term	0.0139	206	5
Earthworm-eating mammals	Long-term	0.0170	144	5
Fish-eating birds	Long-term	0.158	18	5
Fish-eating mammals	Long-term	0.141	223	5
Metabolite R-7				
Earthworm-eating birds	Long-term	0.0149	192	5
Earthworm-eating mammals	Long-term	0.0182	135	5
Fish-eating birds	Long-term	0.220	13	5
Fish-eating mammals	Long-term	0.196	54.4	5
Metabolite R-13				
Earthworm-eating birds	Long-term	0.588		
Earthworm-eating mammals	Long-term	0.717		
Fish-eating birds	Long-term	0.182		
Fish-eating mammals	Long-term	0.163		
Higher tier:				
No higher-tier data to address the risk to earthworm-eating birds and mammals from metabolite R-13 via secondary poisoning were available.				

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	$\text{PEC}_{\text{dw}} \times \text{DWR}$	TER	Trigger
Leaf scenario	Birds	leaf scenario does not apply to the use of Etoxazole 11SC			
Puddle scenario, Screening step					
Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed					
Ornamental plants at 1 x 55 g a.s./ha (from infestation)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step (Birds) – Active substance etoxazole	All	Small insectivorous bird	Acute	2.57	> 777	10
	All	Small insectivorous bird	Long-term	0.53	54	5
Screening Step (Birds) – Metabolite DFB (2,6-difluorobenzamide)	All	Small insectivorous bird	Acute	1.13	> 178	10
	All	Small insectivorous bird	Long-term	0.23	12	5
Screening Step (Mammals) – Active substance etoxazole	All	Small herbivorous mammal	Acute	7.50	> 666	10
	All	Small herbivorous mammal	Long-term	2.11	12	5
Screening Step (Mammals) – Metabolite DFB (2,6-difluorobenzamide)	All	Small herbivorous mammal	Acute	3.28	> 152	10
	All	Small herbivorous mammal	Long-term	0.92	2.7	5
Tier 1 (Mammals) – Metabolite DFB (2,6-difluorobenzamide)	Application to crop – exposure to underlying ground	Small insectivorous mammal “shrew”	Long-term	0.024	102	5
	10-49	Small omnivorous mammal “mouse”	Long-term	0.099	25	5
	40-49	Small herbivorous mammal “vole”	Long-term	0.050	49	5
	≥ 50	Small omnivorous mammal “mouse”	Long-term	0.460	5.3	5
	≥ 50	Small herbivorous mammal “vole”	Long-term	0.921	2.7	5
Higher tier (Mammals) – Metabolite DFB (2,6-difluorobenzamide)						

No higher-tier data were available to address the long-term risk to wild mammals from etoxazole metabolite DFB (2,6-difluorobenzamide).

Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances.

The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC. Please refer to the calculations presented above for orchards.

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	leaf scenario does not apply to the use of Etoxazole 11SC			
Puddle scenario, Screening step					

Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Vineyard at 1 x 55 g a.s./ha (from infestation)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds) – Active substance etoxazole					
All	Small omnivorous bird	Acute	5.24	> 382	10
All	Small omnivorous bird	Long-term	1.13	25	5
Screening Step (Birds) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small omnivorous bird	Acute	2.29	> 87	10
All	Small omnivorous bird	Long-term	0.50	5.8	5
Screening Step (Mammals) – Active substance etoxazole					
All	Small herbivorous mammal	Acute	7.50	> 666	10
All	Small herbivorous mammal	Long-term	2.11	12	5
Screening Step (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small herbivorous mammal	Acute	3.28	> 152	10
All	Small herbivorous mammal	Long-term	0.92	2.7	5
Tier 1 (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
10-19	Small herbivorous mammal	Long-term	0.553	4.4	5
10-19	Small omnivorous mammal	Long-term	0.60	41	5
10-19	Small insectivorous mammal	Long-term	0.054	45	5
10-19	Large herbivorous mammal	Long-term	0.085	29	5
≥ 20	Small insectivorous mammal	Long-term	0.024	102	5
20-39	Small herbivorous mammal	Long-term	0.460	5.3	5
20-39	Small omnivorous mammal	Long-term	0.050	49	5
20-39	Large herbivorous mammal	Long-term	0.070	35	5
≥ 40	Large herbivorous mammal	Long-term	0.042	58	5
≥ 40	Small herbivorous mammal	Long-term	0.277	9	5
≥ 40	Small omnivorous mammal	Long-term	0.029	85	5

Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances.

The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC. Please refer to the calculations presented above for orchards.

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC$_{in}$×DWR	TER	Trigger
Leaf scenario	Birds	leaf scenario does not apply to the use of Etoxazole 11SC			5

Puddle scenario, Screening step

Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed
Fruiting vegetables at 1 x 55 g a.s./ha (from infestation until BBCH 89)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds) – Active substance etoxazole					
All	Small omnivorous bird	Acute	8.73	> 229	10
All	Small omnivorous bird	Long-term	1.89	15	5
Screening Step (Birds) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small omnivorous bird	Acute	3.82	> 52	10
All	Small omnivorous bird	Long-term	0.83	3.5	5
Tier 1 (Birds) – Metabolite DFB (2,6-difluorobenzamide)					
10-19	Small insectivorous bird “wagtail”	Long-term	0.144	20	5
10-49	Small granivorous bird “finch”	Long-term	0.145	20	5
10-49	Small omnivorous bird “lark”	Long-term	0.139	21	5
≥ 20	Small insectivorous bird “wagtail”	Long-term	0.124	23	5
≥ 50	Small granivorous bird “finch”	Long-term	0.043	66	5
≥ 50	Small omnivorous bird “lark”	Long-term	0.042	68	5
71-89	Frugivorous bird “crow”	Long-term	0.408	7.0	5
71-89	Frugivorous bird “Starling”	Long-term	0.264	11	5
Screening Step (Mammals) – Active substance etoxazole					
All	Small herbivorous mammal	Acute	7.50	> 666	10
All	Small herbivorous mammal	Long-term	2.11	12	5
Screening Step (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
All	Small herbivorous mammal	Acute	3.28	> 152	10
All	Small herbivorous mammal	Long-term	0.92	2.7	5
Tier 1 (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
10-19	Small insectivorous mammal “shrew”	Long-term	0.054	45	5
10-49	Small herbivorous mammal “vole”	Long-term	0.921	2.7	5
10-49	Small omnivorous mammal “mouse”	Long-term	0.099	25	5
≥ 20	Small insectivorous mammal “shrew”	Long-term	0.024	102	5
≥ 50	Small herbivorous mammal “vole”	Long-term	0.277	9	5
≥ 50	Small omnivorous mammal “mouse”	Long-term	0.029	85	5
71-89	Frugivorous mammal “rat”	Long-term	0.321	8	5
Higher tier (Mammals) – Metabolite DFB (2,6-difluorobenzamide)					
No higher-tier data were available to address the long-term risk to wild mammals from etoxazole metabolite DFB (2,6-difluorobenzamide).					
Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances. The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC. Please refer to the calculations presented above for orchards.

Strawberry at 1 x 55 g a.s./ha (from infestation until BBCH 89)

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC$_{dw} \times$DWR	TER	Trigger
Leaf scenario	Birds	leaf scenario does not apply to the use of Etoxazole 11SC			

Puddle scenario, Screening step

Application rate (g a.s./ha)/relevant endpoint <3000 (koc ≥ 500 L/kg), TER calculation not needed

Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances. The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC. Please refer to the calculations presented above for orchards.
Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Leaf scenario	Birds		leaf scenario does not apply to the use of Etoxazole 11SC		

Puddle scenario, Screening step

Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed.

Cotton at 1 x 41.25 g a.s./ha (before boll opening, upon appearance of the first mobile stages)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step (Birds) – Active substance etoxazole	All	Small omnivorous bird	Acute	6.61	> 302	10
	All	Small omnivorous bird	Long-term	1.43	20	5
Screening Step (Birds) – Metabolite DFB (2,6-difluorobenzamide)	All	Small omnivorous bird	Acute	2.89	> 69	10
	All	Small omnivorous bird	Long-term	0.63	4.6	5
Tier 1 (Birds) – Metabolite DFB (2,6-difluorobenzamide)	10-19	Medium insectivorous bird “pranticole”	Long-term	0.022	130	5
	10-49	Small omnivorous bird “sparrow”	Long-term	0.107	27	5
	≥ 20	Medium insectivorous bird “pranticole”	Long-term	0.011	272	5
	≥ 50	Small omnivorous bird “sparrow”	Long-term	0.027	107	5
Screening Step (Mammals) – Active substance etoxazole	All	Small herbivorous mammal	Acute	5.63	> 889	10
	All	Small herbivorous mammal	Long-term	1.58	16	5
Screening Step (Mammals) – Metabolite DFB (2,6-difluorobenzamide)	All	Small herbivorous mammal	Acute	2.46	> 203	10
	All	Small herbivorous mammal	Long-term	0.69	4	5
Tier 1 (Mammals) – Metabolite DFB (2,6-difluorobenzamide)	≥ 20	Small insectivorous mammal “shrew”	Long-term	0.018	136	5
	≥ 50	Small herbivorous mammal “vole”	Long-term	0.174	14	5
	≥ 50	Small omnivorous mammal “mouse”	Long-term	0.018	136	5
10-19	Small insectivorous mammal “shrew”	Long-term	0.040	61	5	
10-49	Small omnivorous mammal “mouse”	Long-term	0.075	33	5	
Higher tier (Mammals) – Metabolite DFB (2,6-difluorobenzamide)

No higher-tier data were available to address the long-term risk to wild mammals from etoxazole metabolite DFB (2,6-difluorobenzamide).

Risk from bioaccumulation and food chain behaviour

The log octanol-water partition coefficients (log P_{ow}) for etoxazole and its metabolites R-3, R-4, R-7 and R-13 exceed the trigger of 3 indicating that the potential for accumulation via the aquatic and terrestrial food chain should be assessed for these substances.

The risk assessment for earthworm- and fish-eating predators (including birds and mammals) has been conducted on the basis of the worst-case soil and surface water exposure estimations resulting from the proposed use pattern of the formulated product Etoxazole 11SC. Please refer to the calculations presented above for orchards.

Risk from consumption of contaminated water

Toxicity data for all aquatic tested species (Regulation (EU) Nº 283/2013, Annex Part A, points 8.2 and Regulation (EU) Nº 284/2013 Annex Part A, point 10.2)*
Group

Test substance	Time-scale	End point	Toxicity *	
Lepomis macrochirus	Metabolite R-4	Acute 96 h – static-renewal	Mortality, LC$_{50}$	>0.99 mg metab/L (nom)
Lepomis macrochirus	Metabolite R-7	Acute 96 h – static-renewal	Mortality, LC$_{50}$	>0.96 mg metab/L (nom)
Lepomis macrochirus	Metabolite R-8	Acute 96 h – static-renewal	Mortality, LC$_{50}$	>0.99 mg metab/L (nom)
Lepomis macrochirus	Metabolite R-13	Acute 96 h – static-renewal	Mortality, LC$_{50}$	>1 mg metab/L (nom)
Oncorhynchus mykiss	Etoxazole	Chronic 89 d – flow-through, ELS	Mortality, NOEC	0.015 mg a.s./L (mm)

Aquatic invertebrates

Test substance	Time-scale	End point	Toxicity *	
Daphnia magna	Etoxazole	Acute 48 h – flow-through	Immobilization, EC$_{50}$	0.0071 mg a.s./L (mm)
Daphnia magna	R-isomer of Etoxazole	Acute 48 h – static	Immobilization, EC$_{50}$	0.026 mg a.s./L (mm)
Daphnia magna	S-isomer of Etoxazole	Acute 48 h – static	Immobilization, EC$_{50}$	0.005 mg a.s./L (mm)
Americamysis bahia	Etoxazole	Acute 96 h – flow-through	Mortality, LC$_{50}$	0.0044 mg a.s./L (mm)
Crassostrea virginica	Etoxazole	Acute 96 h – flow-through	Mortality, LC$_{50}$	0.0043 mg a.s./L (mm)
Daphnia magna	Metabolite R-3	Acute 48 h – static	Immobilization, EC$_{50}$	>1 mg metab/L (nom)
Daphnia magna	Metabolite R-4	Acute 48 h – static	Immobilization, EC$_{50}$	>1.3 mg metab/L (mm)
Daphnia magna	Metabolite R-7	Acute 48 h – static	Immobilization, EC$_{50}$	>7.4 mg metab/L (nom)
Daphnia magna	Metabolite R-8	Acute 48 h – static	Immobilization, EC$_{50}$	>0.99 mg metab/L (nom)
Daphnia magna	Metabolite R-11	Acute 48 h – static	Immobilization, EC$_{50}$	>11 mg metab/L (mm)
Daphnia magna	Metabolite R-12	Acute 48 h – static	Immobilization, EC$_{50}$	>9.3 mg metab/L (mm)
Daphnia magna	Metabolite R-13	Acute 48 h – static	Immobilization, EC$_{50}$	>1 mg metab/L (nom)
Daphnia magna	Metabolite R-15	Acute 48 h – static	Immobilization, EC$_{50}$	>2.7 mg metab/L (mm)
Group	Test substance	Time-scale (Test type)	End point	Toxicity 1
-------------------------------	----------------	-----------------------	-------------------	---
Daphnia magna	Etixazole 11SC	Acute 48 h – static	Immobilization, EC$_{50}$	0.015 mg prep./L (0.0016 mg a.s./L) (mm)
	$[^{14}]$etixazole	Chronic 21 d – flow-through	NOEC	0.0002 mg a.s./L (mm)
	$[^{14}]$etixazole	Chronic 21 d – flow-through	NOEC	0.00013 mg a.s./L (mm)
Americamysis bahia	$[^{14}]$etixazole	Chronic 28 d – flow-through	NOEC	0.00032 mg a.s./L (mm)
Sediment-dwelling organisms				
Chironomus riparius	$[^{14}]$etixazole	Chronic 10 d – static-renewal	NOEC	25 mg a.s./kg dry sediment (mm)
	Etixazole	Chronic 28 d – static	NOEC	26 mg a.s./kg dry sediment (mm) (0.28 mg a.s./L in pore water and 0.016 mg a.s./L in overlying water)
	Etixazole	Chronic 10 d – static-renewal	NOEC	11 mg a.s./kg dry sediment (mm)
Leptochaerus plumulosus	Etixazole	Chronic 28 d – static-renewal	NOEC	0.86 mg a.s./kg dry sediment (mm)
Chironomus riparius	Metabolite R-13	Chronic 28 d – static	NOEC	75 mg metab/kg dry sediment (mm) (0.079 mg/L in pore water and 0.073 mg/L in overlying water)
Algae				
Selenastrum capricornutum	Etixazole	Chronic 72 d – static	Growth rate: $E_{C_{50}}$ (NOEC) [Biomass: $E_{B_{C_{50}}}$ (NOEC)]	>10 mg a.s./L (mm)
	Metabolite R-3	Chronic 72 d – static	Growth rate: $E_{C_{50}}$ (NOEC) [Biomass: $E_{B_{C_{50}}}$ (NOEC)]	>0.84 mg metab/L (mm)
Group	Test substance	Time-scale (Test type)	End point	Toxicity 1
-------	----------------	------------------------	-----------	---------------
Selenastrum capricornutum	Metabolite R-4	Chronic 72 d – static	Growth rate: E_rC_{50} (NOEC) [Biomass: E_bC_{50} (NOEC)]	$>$0.98 mg metab/L (mm)
Selenastrum capricornutum	Metabolite R-13	Chronic 72 d – static	Growth rate: E_rC_{50} (NOEC) [Biomass: E_bC_{50} (NOEC)]	$>$0.81 mg metab/L (mm)

Further testing on aquatic organisms: Mesocosm (indoor) study for Etoxazole 11SC

The microcosm could be used for refining the risk assessment only for SEU due to the high temperatures (Pesticides Peer Review meeting July 2017). To further consider this study, the exposure profile in the microcosm should be compared with the FOCUS scenarios. This comparison should rely on the concentration of the active substance and on the water temperature. The representativeness of study by Schanné and Gries (2004) should be considered further at MS level.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that etoxazole is an endocrine disruptor in mammals; however, no firm conclusion can be drawn regarding fish, birds and amphibians.

1: (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance; metab: metabolite
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance	R-3 metabolite		
logP_{OW}				
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	*2500-3300 (whole fish); 1100-1600 (edible tissue); 4100-4700 (non-edible tissue)	*202.4		
Annex VI Trigger for the bioconcentration factor	100			
Clearance time (days) (CT₅₀)	5.0-6.3 days (whole fish) 2.6-2.6 days (edible) 4.6-6.2 days (non-edible)	-		
(CT₉₀)	7.6-9.3 days (whole fish) 4.5-7.0 days (edible) 10.3-13.1 days (non-edible)	-		
Level and nature of residues (%) in organisms after the 14 day depuration phase	70-80% radioactivity (after 5 days) 94-96% radioactivity (after 20 days)	-		
		* based on total ¹⁴C or on specific compounds		
		BCF_{fish} estimated via QSAR analysis (EpiSuite BCFBAF 3.01 calculation program)		
Metabolite	Description	Value		
------------	-------------	-------		
R-4 metabolite	log P_{OW}	R-4 metabolite	log P_{OW}	*28.2
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	100			
Clearance time (days) (CT_{50})	-			
(CT_{90})	-			
Level and nature of residues (%) in organisms after the 14 day depuration phase	*BCF$_{fish}$ estimated via QSAR analysis (EpiSuite BCFBAF 3.01 calculation program)			
R-7 metabolite	log P_{OW}	*407.1		
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	100			
Clearance time (days) (CT_{50})	-			
(CT_{90})	-			
Level and nature of residues (%) in organisms after the 14 day depuration phase	*BCF$_{fish}$ estimated via QSAR analysis (EpiSuite BCFBAF 3.01 calculation program)			
R-13 metabolite	log P_{OW}	*10920		
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	100			
Clearance time (days) (CT_{50})	-			
(CT_{90})	-			
Level and nature of residues (%) in organisms after the 14 day depuration phase	*BCF$_{fish}$ estimated via QSAR analysis (EpiSuite BCFBAF 3.01 calculation program)			
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUSsw step 1 and 2 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (early application) at 55 g a.s./ha (worst case Step 1 and 2 values)

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint	LC50	NOEC	LC50	NOEC	EC50/EyEC50	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario PECgl-max (µg/L) PECgl-max (µg/kg)

Step 1	PECgl-max (µg/L)	PECgl-max (µg/kg)
	7.31	157.3
	4.56	1.83
	4.87	
	170	
	562	
	0.007	

Step 2 Northern Europe

PECgl-max (µg/L)	PECgl-max (µg/kg)
5.35	157.3
3.34	1.83
3.57	
124	
411	
0.005	
51.48	
0.60	

Step 2 Southern Europe

PECgl-max (µg/L)	PECgl-max (µg/kg)
5.35	157.3
3.34	1.83
3.57	
124	
411	
0.005	
68.35	
0.79	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUSsw step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (late application) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Peer review of the pesticide risk assessment of the active substance etoxazole

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(9):4988

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint	LC₅₀	NOEC	LC₅₀	NOEC	LC₅₀	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10

RAC (µg/L)	PEC₉₅/µL	1.6	1.5	0.043	0.013	1000

FOCUS Scenario	PEC₉₅ (µg/L)	PEC₉₅ (µg/kg)						
Step 3 D3/ditch	1.999	1.2	1.3	46.5	153.8	< 0.002	1.426	< 0.02
D4/pond	0.090	0.1	0.1	2.1	6.9	< 0.002	0.785	< 0.02
D4/stream	1.777	1.1	1.2	41.3	136.7	< 0.002	0.064	< 0.02
D5/pond	0.090	0.1	0.1	2.1	6.9	< 0.002	0.806	< 0.02
D5/stream	1.876	1.2	1.3	43.6	144.3	< 0.002	0.058	< 0.02
R1/ stream	0.090	1.0	1.0	2.1	6.9	< 0.002	0.742	< 0.02
R1/pond	1.529	0.1	0.1	35.6	117.6	< 0.002	0.198	< 0.02
R2/stream	2.026	1.3	1.4	47.1	155.8	< 0.002	0.127	< 0.02
R3/stream	2.153	1.3	1.4	50.1	165.6	< 0.002	0.437	< 0.02
R4/stream	1.529	1.0	1.0	35.6	117.6	< 0.002	0.199	< 0.02

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUS_{sw} step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (early application) at 55 g a.s./ha, single application
Peer review of the pesticide risk assessment of the active substance etoxazole

Table: Test Species and Endpoint Data

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirch. subcapitata	Leptocheirus plumulosus
Endpoint (µg/L)	LC$_{50}$	NOEC	LC$_{50}$	NOEC	E$_{10}$/E$_{10}$/C$_{50}$	NOEC
	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario

Step 3	PEC$_{gl}$-max (µg/L)	PEC$_{gl}$-max (µg/kg)						
D3/ditch	4.240	2.7	2.8	98.6	326.2	< 0.005	3.012	< 0.03
D4/pond	0.258	0.2	0.2	6.0	19.8	< 0.005	2.205	< 0.03
D4/stream	3.987	2.5	2.7	92.7	306.7	< 0.005	0.144	< 0.03
D5/pond	0.258	0.2	0.2	6.0	19.8	< 0.005	2.264	< 0.03
D5/stream	4.208	2.6	2.8	97.9	323.7	< 0.005	0.130	< 0.03
R1/ stream	0.258	0.2	0.2	6.0	19.8	< 0.005	2.076	< 0.03
R1/pond	3.430	2.1	2.3	79.8	263.8	< 0.005	0.443	< 0.03
R2/stream	4.544	2.8	3.0	105.7	349.5	< 0.005	0.284	< 0.03
R3/stream	4.830	3.0	3.2	112.3	371.5	< 0.005	0.980	< 0.03
R4/stream	3.430	2.1	2.3	79.8	263.8	< 0.005	0.446	< 0.03

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS\textsubscript{sw} step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Citrus at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species						
Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchner. subcapitata	Leptocheirus plumulosus	
Endpoint	LC\textsubscript{50} NOEC	LC\textsubscript{50} NOEC	E\textsubscript{C}\textsubscript{50}/E\textsubscript{C}\textsubscript{50} NOEC	NOEC		
(µg/L)	160 15 4.3 0.13	> 10000	860			
AF	100 10 10	10	10			
RAC (µg/L)	1.6 1.5 0.043 0.013	1000	86			

PEC/RAC Scenario

Step 3	PEC \textsubscript{gl-max} (µg/L)	PEC \textsubscript{gl-max} (µg/kg)	FOCUS Scenario
D6/ditch	2.016 1.26 1.34 46.9 155 < 0.002 5.866 <0.002	PEC \textsubscript{gl-max} (µg/kg)	
R4/stream	1.525 0.95 0.95 35.5 117 < 0.002 0.1855 0.002	FOCUS Scenario	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUS\textsubscript{sw} step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Vines at 27.5 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species						
Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchner. subcapitata	Leptocheirus plumulosus	
Endpoint	LC\textsubscript{50} NOEC	LC\textsubscript{50} NOEC	E\textsubscript{C}\textsubscript{50}/E\textsubscript{C}\textsubscript{50} NOEC	NOEC		
(µg/L)	160 15 4.3 0.13	> 10000	860			
AF	100 10 10	10	10			
RAC (µg/L)	1.6 1.5 0.043 0.013	1000	86			
FOCUS Scenario step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Legumes (surrogate for strawberries, cucurbits and ornamentals) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint	LC₅₀	NOEC	LC₅₀	NOEC	E_{C50}/E_yC₅₀	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS_sw step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Fruiting Vegetables (surrogate for tomato, eggplant) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged		
D3/ditch	0.286	0.18	0.19	6.65	22.0	< 0.0003	0.186	<0.08
D4/pond	0.012	0.01	0.01	0.28	0.9	< 0.0003	0.104	<0.08
D4/stream	0.229	0.14	0.15	5.33	17.6	< 0.0003	0.008	<0.08
D5/pond	0.012	0.01	0.01	0.28	0.9	< 0.0003	0.108	<0.08
D5/stream	0.238	0.15	0.16	5.53	18.3	< 0.0003	0.007	<0.08
D6/ditch	0.286	0.18	0.19	6.65	22.0	< 0.0003	0.231	<0.08
R1/pond	0.012	0.01	0.01	0.28	0.9	< 0.0003	0.127	<0.08
R1/stream	0.198	0.12	0.13	4.60	15.2	< 0.0003	0.251	<0.08
R2/stream	0.263	0.16	0.18	6.12	20.2	< 0.0003	0.300	<0.08
R3/stream	0.280	0.18	0.19	6.51	21.5	< 0.0003	7.135	<0.08
R4/stream	0.198	0.12	0.13	4.60	15.2	< 0.0003	4.590	<0.08

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
Peer review of the pesticide risk assessment of the active substance etoxazole

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(9):4988

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
FOCUS Scenario	PEC gl-max (µg/L)	PEC gl-max (µg/kg)				
Step 3						
D6/ditch	0.343	0.21	0.23	7.98	26.4	< 0.0003
						0.141
						<0.02
R2/stream	0.302	0.19	0.20	7.02	23.2	< 0.0003
						5.525
						0.06
R3/stream	0.322	0.20	0.21	7.49	24.8	< 0.0003
						0.210
						<0.01
R4/stream	0.228	0.14	0.15	5.30	17.5	< 0.0003
						4.594
						0.05

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUS_{sw} step 3 - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Cotton at 41.25 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptochirus plumulosus
Endpoint	LC₅₀	NOEC	LC₅₀	NOEC	E₁C₅₀/E₂C₅₀	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86
FOCUS Scenario	PEC gl-max (µg/L)	PEC gl-max (µg/kg)				
Step 3						
D6/ditch	0.2145	0.13	0.14	4.99	16.5	<0.0002
						0.1739
						0.002
AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUS \(_{sw}\) step 4 (10m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (late application) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint	LC\(_{50}\)	NOEC	LC\(_{50}\)	NOEC	E\(_{1C_{50}}\)/E\(_{2C_{50}}\)	NOEC
(µg/L)						860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario

Scenario	PEC \(_{gl-max}\) (µg/L)	PEC \(_{gl-max}\) (µg/kg)

Step 4: 10 m buffer zone (BZ)

Scenario	PEC \(_{gl-max}\) (µg/L)	PEC \(_{gl-max}\) (µg/kg)

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS_{sw} step 4 (10m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (early application) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhychinus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint	LC₅₀	NOEC	LC₅₀	NOEC	E₁C₅₀/E₂C₅₀	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario

PEC_{gl-max} (µg/L)	PEC_{gl-max} (µg/kg)

Step 4: 10 m buffer zone

Scenario	PEC_{gl-max} (µg/L)
D3/ditch	2.045 1.3 1.4 47.6 157.3
D4/pond	0.159 OK at Step 3 3.7 12.2 1.374 OK at Step 3
D4/stream	2.103 1.3 1.4 48.9 161.8 0.076 OK at Step 3
D5/pond	0.159 OK at Step 3 3.7 12.2 1.411 OK at Step 3
D5/stream	2.219 1.4 1.5 51.6 170.7 0.068 OK at Step 3
R1/ stream	0.159 OK at Step 3 3.7 12.2 1.296 OK at Step 3
R1/pond	1.809 1.1 1.2 42.1 139.2 0.234 OK at Step 3
R2/stream	2.397 22:00 1.6 55.7 184.4 0.150 OK at Step 3
R3/stream	2.548 1.6 1.7 59.3 196.0 0.517 OK at Step 3
R4/stream	1.809 1.1 1.2 42.1 139.2 0.235 OK at Step 3

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS \textsubscript{sw} step 4 (20 m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (early application) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocirhus plumulosus
Endpoint	LC\textsubscript{50}	NOEC	LC\textsubscript{50}	NOEC	E\textsubscript{C_{50}}/E\textsubscript{C_{50}}	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	86
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86
FOCUS Scenario	PEC \textsubscript{gl-max} (µg/L)	PEC \textsubscript{gl-max} (µg/kg)				
Step 4: 20 m buffer zone						
D3/ditch	0.467	0.3	0.3	10.9	35.9	OK at Step 3 - OK at Step 3
D4/pond	0.051	OK at Step 3	OK at Step 3	1.2	3.9	OK at Step 3 - OK at Step 3
D4/stream	0.481	0.3	0.3	11.2	37.0	OK at Step 3 - OK at Step 3
D5/pond	0.051	OK at Step 3	OK at Step 3	1.2	3.9	OK at Step 3 - OK at Step 3
D5/stream	0.507	0.3	0.3	11.8	39.0	OK at Step 3 - OK at Step 3
R1/ stream	0.051	OK at Step 3	OK at Step 3	1.2	3.9	OK at Step 3 - OK at Step 3
R1/pond	0.413	0.3	0.3	9.6	31.8	OK at Step 3 - OK at Step 3
R2/stream	0.548	0.3	0.4	12.7	42.2	OK at Step 3 - OK at Step 3
R3/stream	0.582	0.4	0.4	13.5	44.8	OK at Step 3 - OK at Step 3
R4/stream	0.414	0.3	0.3	9.6	31.8	OK at Step 3 - OK at Step 3

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS step 4 (25 m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Pome/stone fruit (early application) at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptochaerus plumulosus
Endpoint	LC₅₀	NOEC	LC₅₀	NOEC	E₅₀/E₅₀	NOEC
(µg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario	PEC gl-max (µg/L)	PEC gl-max (µg/kg)
Step 4: 25 m buffer zone		
D3/ditch	0.276	OK at Step 3
	(20 m)	OK at Step 3
	6.4	OK at Step 3
	21.2	OK at Step 3
D4/pond	0.035	OK at Step 3
	0.8	OK at Step 3
D4/stream	0.283	OK at Step 3
	6.6	OK at Step 3
D5/pond	0.035	OK at Step 3
	0.8	OK at Step 3
D5/stream	0.299	OK at Step 3
	7.0	OK at Step 3
R1/ stream	0.035	OK at Step 3
	0.8	OK at Step 3
R1/pond	0.244	OK at Step 3
	5.7	OK at Step 3
R2/stream	0.323	OK at Step 3
	7.5	OK at Step 3

Step 3 is passed if the PEC is at least 4 times lower than the RAC.
FOCUS_{sw} step 4 (10m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Citrus at 55 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged		
R3/stream	0.343	OK at Step 4 (20 m)	OK at Step 4 (20 m)	8.0	26.4	OK at Step 3	-	OK at Step 3
R4/stream	0.244	OK at Step 4 (20 m)	OK at Step 4 (20 m)	5.7	18.8	OK at Step 3	-	OK at Step 3

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

FOCUS_{sw} step 4 (10m buffer zone) - PEC/RAC for etoxazole for the use of Etoxazole 11SC in Vines at 27.5 g a.s./ha, single application

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint (μg/L)	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (μg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario
PEC_{gl-max} (μg/L):
PEC_{gl-max} (μg/kg):

Step 4: 10 m buffer zone (BZ)

| D6/ditch | 0.608 | 0.38 | 0.40 | 14.1 | 46.69 | OK at Step 3 | 1.798 | OK at Step 3 |
| R4/stream | 0.532 | OK at Step 3 | OK at Step 3 | 12.4 | 40.9 | OK at Step 3 | 0.1547 | OK at Step 3 |

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
Peer review of the pesticide risk assessment of the active substance etoxazole

Group	Fish acute	Fish prolonged	Inverteb. acute	Inverteb. prolonged	Algae	Sed. dwell. prolonged
Test species	Cyprinodon variegatus	Oncorhynchus mykiss	Crassostrea virginica	Daphnia magna	Pseudokirchn. subcapitata	Leptocheirus plumulosus
Endpoint (µg/L)	LC₅₀	NOEC	LC₅₀	NOEC	E₅₀/C₅₀/E₅₀/C₅₀	NOEC
	160	15	4.3	0.13	> 10000	860
AF	100	10	100	10	10	10
RAC (µg/L)	1.6	1.5	0.043	0.013	1000	86

FOCUS Scenario	PEC gl-max (µg/L)	PEC gl-max (µg/kg)
Step 4: 10 m buffer zone (BZ)		
D6/ditch	0.205	OK at Step 3
	4.8	OK at Step 3
	15.8	OK at Step 3
	0.580	OK at Step 3
R1/pond	0.021	OK at Step 3
	0.189	OK at Step 3
R1/stream	0.181	OK at Step 3
	0.259	OK at Step 3
R2/stream	0.243	OK at Step 3
	0.5	OK at Step 3
	1.6	OK at Step 3
	0.189	OK at Step 3
R3/stream	0.254	OK at Step 3
	4.2	OK at Step 3
	13.9	OK at Step 3
	0.259	OK at Step 3
R4/stream	0.181	OK at Step 3
	4.2	OK at Step 3
	13.9	OK at Step 3

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
FOCUS\textsubscript{sw} step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-3 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged		
Test species	Lepomis macrochirus	Daphnia magna	Pseudokirchn. subcapitata	Chironomus riparius		
Endpoint	LC\textsubscript{50}	EC\textsubscript{50}	E\textsubscript{r}C\textsubscript{50}/E\textsubscript{y}C\textsubscript{50}	NOEC		
(µg/L)	> 1000	> 1000	> 840	n.r.		
AF	100	100	10	10		
RAC (µg/L)	10	10	84	n.r.		
FOCUS Scenario	PEC\textsubscript{gl-max} (µg/L)			PEC\textsubscript{gl-max} (µg/kg)		
Step 1	0.8903	0.089	0.089	0.01	12.5862	n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS\textsubscript{sw} step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-4 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged
Test species	Lepomis macrochirus	Daphnia magna	Pseudokirchn. subcapitata	Chironomus riparius
Endpoint	LC\textsubscript{50}	EC\textsubscript{50}	E\textsubscript{r}C\textsubscript{50}/E\textsubscript{y}C\textsubscript{50}	NOEC
(µg/L)	> 990	> 1300	> 980	n.r.
AF	100	100	10	10
RAC (µg/L)	9.9	13	98	n.r.
FOCUS Scenario	PEC\textsubscript{gl-max} (µg/L)			PEC\textsubscript{gl-max} (µg/kg)
Step 1				
Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged
------------------	------------	-----------------	---------	----------------------
	3.3654	0.34	0.26	0.034
				8.3327
				n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS_{sw} step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-7 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged
Test species	*Lepomis macrochirus*	*Daphnia magna*	*Pseudokirchn. subcapitata*	*Chironomus riparius*
Endpoint	LC₅₀	EC₅₀	E_C₅₀/E_yC₅₀	NOEC
(µg/L)	> 960	> 7400	> 990	n.r.
AF	100	100	10	10
RAC (µg/L)	9.6	74	99	n.r.

FOCUS_{sw} Scenario

PEC_{gl-max} (µg/L)	PEC_{gl-max} (µg/kg)
1.0042	27.1396

Step 1
0.105
0.013
0.010
27.1396
n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS_{sw} step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-8 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged
Test species	*Lepomis macrochirus*	*Daphnia magna*	*Pseudokirchn. subcapitata*	*Chironomus riparius*
Endpoint	LC₅₀	EC₅₀	E_C₅₀/E_yC₅₀	NOEC
(µg/L)	> 990	> 990	> 1000	n.r.
Peer review of the pesticide risk assessment of the active substance etoxazole

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged		
AF	100	100	10	10		
RAC (µg/L)	9.9	9.9	100	n.r.		
FOCUS Scenario	PEC gl-max (µg/L)					
Step 1	4.1911	0.42	0.42	0.0419	9.2196	n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS_sw step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-11 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged		
Test species	Lepomis macrochirus	Daphnia magna	Pseudokirchn. subcapitata	Chironomus riparius		
Endpoint	LC₅₀	EC₅₀	E₁C₅₀/E₂C₅₀	NOEC		
(µg/L)	n.r.	> 11000	n.r.	n.r.		
AF	100	100	10	10		
RAC (µg/L)	n.r.	110	n.r.	n.r.		
FOCUS Scenario	PEC gl-max (µg/L)					
Step 1	7.3892	n.r.	0.067	n.r.	1.8237	n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant
FOCUS sw step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-12 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged	
Test species	*Lepomis macrochirus*	*Daphnia magna*	*Pseudokirchn. subcapitata*	*Chironomus riparius*	
Endpoint	LC₃₀	EC₃₀	E₅ₐ×₅/O₅ₐ×₅₀	NOEC	
(µg/L)	n.r.	> 9300	n.r.	n.r.	
AF	100	100	10	10	
RAC (µg/L)	n.r.	93	n.r.	n.r.	
FOCUS Scenario	PEC gl-max (µg/L)			PEC gl-max (µg/kg)	
Step 1	5.3095	n.r.	0.057	1.0311	n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS sw step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-13 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged
Test species	*Lepomis macrochirus*	*Daphnia magna*	*Pseudokirchn. subcapitata*	*Chironomus riparius*
Endpoint	LC₃₀	EC₃₀	E₅ₐ×₅/O₅ₐ×₅₀	NOEC
(µg/L)	> 1000	> 1000	> 810	75000
AF	100	100	10	10
RAC (µg/L)	10	10	81	7500
FOCUS Scenario	PEC gl-max (µg/L)			PEC gl-max (µg/kg)

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant
Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged		
Step 1	0.9588	0.096	0.096	0.01	31.062	0.004

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant

FOCUS step 1 (worst case application scenario) - PEC/RAC for etoxazole metabolite R-15 for the use of Etoxazole 11SC

Group	Fish acute	Inverteb. acute	Algae	Sed. dwell. prolonged		
Test species	*Lepomis macrochir*	*Daphnia magna*	*Pseudokirchn. subcapitata*	*Chironomus riparius*		
Endpoint	LC$_{50}$	EC$_{50}$	E$_{C_{50}}$/E$_{J_{C_{50}}}$	NOEC		
(μg/L)	n.r.	> 2700	n.r.	n.r.		
AF	100	100	10	10		
RAC (μg/L)	n.r.	27	n.r.	n.r.		
FOCUS Scenario	PEC$_{gl-max}$ (μg/L)					
Step 1	0.9734	n.r.	0.036	n.r.	0.0001	n.r.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold; n.r.: not relevant
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees (EFSA, 2013) which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	Toxicity
Apis mellifera	a.s.	Acute	Oral toxicity (LD₅₀)	> 200 µg/beeᵃ
			Contact toxicity (LD₅₀)	> 200 µg/beeᵃ
Apis mellifera	Etoxazole 11SC	Chronic	10 d-LC₅₀; 10 d-LDD₅₀	1504 mg a.s./kg food > 32.9 µg a.s./bee/day
			NOEC	752 mg a.s./kg food 18.8 µg a.s./bee/day
Apis mellifera	Etoxazole 11SC	Bee brood development	NOECᵇ,c	110 mg a.s./L (application solution of 55 g a.s./ha in 500L/ha)
Bombus terrestris	Etoxazole 11SC	Oralᵈ	LC₅₀	4.4 mg a.s./L
Bombus terrestris	Etoxazole 11SC	Reproduction	NOEC	0.55 mg a.s./L

a Endpoint included in the Review Report for etoxazole, 2004 (SANCO/4054/2001 – rev.3)
b Endpoint included in the DAR (2005)
c NOEC for toxic effects on egg/larvae and pupae; effects on adults were recorded at this dose level
d Oral exposure via drinking treated sugar water; the exposure period is not clearly defined in the report

Semi-field test (Cage and tunnel test)
Tunnel test (Flowering Phacelia, France) 1st Trial: Increase in mean daily mortality of honeybees from D+3 up to D+5. Decrease of the foraging activity at D+3 and D+4. 2nd Trial: No toxicity and no effect on foraging activity. The toxic reference Zolone Flo (phosalone) did not demonstrate any lethal or sub-lethal effects on honeybees and colony development.
Tunnel test (Spring rape; France) No toxicity observed. Transient effect on foraging activity just after treatment. The toxic reference Zolone Flo (phosalone) did not demonstrate any lethal or sub-lethal effects on honeybees and colony development.
Tunnel test (Spring rape; France) No toxicity and no effect on foraging activity. The toxic reference Zolone Flo (phosalone) did not demonstrate any lethal or sub-lethal effects on honeybees and colony development.

Risk assessment for orchards, grape, field crops, grape and ornamentals, at 55 g a.s./ha

Species	Test substance	Risk quotient	HQ	Trigger
Apis mellifera	a.s.	HQcontact	< 0.275	50
Apis mellifera	a.s.	HQoral	< 0.275	50
Apis mellifera	Etoxazole 11SC	HQcontact	< 0.550	50
Apis mellifera	Etoxazole 11SC	HQoral	< 0.550	50

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species
Peer review of the pesticide risk assessment of the active substance etoxazole

Species, Test Substance, End point, and Toxicity

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Etoxazole SC 110	Mortality, LR₅₀	> 0.05 L/hL
		Mortality, LR₅₀	> 55 g a.s./ha
		Reproduction	100% reduction in reproduction at 55 g a.s./ha
		Reproduction	0% offspring viability at 55 g a.s./ha
Aphidius rhopalosiphi	Etoxazole SC 110	Mortality, LR₅₀	> 55 g a.s./ha
		Mortality	18.4% mortality
		Reproduction	No effects on fecundity

Additional species

Species	Test Substance	End point	Toxicity
N. californicus	Etoxazole SC 110	Mortality, Reproduction	23.75% corrected mortality at 0.05 L f.p./hL No effects on fecundity at 0.05 L f.p./hL
Chrysoperla carnea	Etoxazole SC 110	Mortality	85% corrected mortality at 55 g a.s./ha
A. bilineata	Etoxazole SC 110	Mortality, Reproduction	10% corrected mortality at 55 g a.s./ha 14% reduction in reproduction at 55 g a.s./ha
Orius laevigatus	Etoxazole SC 110	Mortality, Reproduction	79.9% corrected mortality at 55 g a.s./ha 100% reduction in fecundity at 55 g a.s./ha

First tier risk assessment for orchards, grape, field crops, grape and ornamentals, at 55 g a.s./ha

Test substance	Species	Effect^a (LR₅₀ g/ha)	HQ in-field	Trigger
Etoxazole SC 110	Typhlodromus pyri	> 55	< 1	2
Etoxazole SC 110	Aphidius rhopalosiphi	> 55	< 1	2

^a Only lethal effects are considered

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Dose (g/ha)	End point	% effect
Extended laboratory studies					
Typhlodromus pyri	Protonymphs	(R)-Etoxazole/ vine leaves	Dose Response Test (0.010, 0.030, 0.10, 0.30 and 1.0 g a.s./ha)	Mortality Reproduction	LR₅₀ > 1.0 g a.s./ha 54.3% effect on reproduction at 0.30 g a.s./ha
	Protonymphs	(S)-Etoxazole/ vine leaves	Dose Response Test (0.010, 0.030, 0.10, 0.30 and 1.0 g a.s./ha)	Mortality Reproduction	LR₅₀ 0.020 g a.s./ha 58.0% effect on reproduction at 0.010 g a.s./ha
	Protonymphs	Etoxazole 11SC/ bean leaves	Dose Response Test (0.014, 0.035, 0.088, 0.22 and 0.55 g a.s./ha)	Mortality Reproduction	LR₅₀ 0.27 g a.s./ha ER₅₀ 0.10 g a.s./ha

Aged residue studies
Insect Family	Life Stage	Active Substance	Application Details	Corrected Mortality	Effect on Reproduction
Aphidius rhopalosiphi	Adults	Etoxazole 11SC/	10 g a.s./ha, 55 g a.s./ha	3.3%	25.1%
		barley plants	0 DAT		
			10 g a.s./ha, 55 g a.s./ha		
Typhlodromus pyri	Protonymphs	Etoxazole 11SC/	10 g a.s./ha, 55 g a.s./ha	95.2%	63.6%
		vine plants	0 DAT		
			10 g a.s./ha, 55 g a.s./ha	57.6%	10.3%
			28 DAT		
			10 g a.s./ha, 55 g a.s./ha	59.8%	
Orius laevigatus	Nymphs	Etoxazole 11SC/	10 g a.s./ha, 55 g a.s./ha	2.2%	-
		vine plants	0 DAT		
			10 g a.s./ha, 55 g a.s./ha	20.0%	-
Chrysoperla carnea	Larvae	Etoxazole 11SC/	10 g a.s./ha, 55 g a.s./ha	2.5%	-
		vine plants	0 DAT		
			10 g a.s./ha, 55 g a.s./ha	7.5%	-
			0 DAT		
Risk assessment for pome fruit, plum, peach, nectarine, apricot, cherry, citrus, at 55 g a.s./ha based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate (2-D)^a
Typhlodromus pyri	0.10	55	8.03 @ 3 m 0.08 @ 50 m

*correction factor of 2

Risk assessment for grapevine, at 55 g a.s./ha based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate (2-D)^a
Typhlodromus pyri	0.10	55	2.21 @ 3 m 0.06 @ 30 m

*correction factor of 2

Risk assessment for strawberry, tomato, aubergine, cucurbit with inedible peel, ornamentals, at 55 g a.s./ha based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate (2-D)^a
Typhlodromus pyri	0.10	55	0.76 @ 1 m 0.08 @ 10 m

*correction factor of 2

Risk assessment for cotton, at 55 g a.s./ha based on extended lab test or aged residue tests

Species	ER₅₀ (g/ha)	In-field rate	Off-field rate (2-D)^a
Typhlodromus pyri	0.10	41.25	0.57 @ 1 m 0.06 @ 10 m

*correction factor of 2

Field studies

-
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity
Earthworms					
Eisenia fetida andrei	Etoxazole	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 1000 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-3	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 9.8 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-4	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 9.9 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-7	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 9.6 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-8	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 9.9 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-13	Mixed into soil 10 % peat	Acute, 14 d	mortality	LC50 > 9.9 mg a.s./kg d.w.soil
Eisenia fetida andrei	Etoxazole	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 5 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-3	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-4	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-7	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-8	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Test organism	Test substance	Application method of test a.s./OM¹	Time scale	End point	Toxicity
------------------------	----------------	-------------------------------------	------------	--------------------	---
Eisenia fetida andrei	Metabolite R-11	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-12	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 0.8 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Eisenia fetida andrei	Metabolite R-13	Mixed into soil 5 % peat	Chronic, 56 d	reproduction body weight	NOEC = 10 mg a.s./kg d.w.soil NOEC = 10 mg a.s./kg d.w.soil
Other soil macroorganisms					
Folsomia candida	Etoxazole	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 1.0 mg a.s./kg d.w.soil EC₁₀ = 0.60 mg a.s./kg d.w.soil
Folsomia candida	Metabolite R-3	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Folsomia candida	Metabolite R-4	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 1.0 mg/kg d.w.soil
Folsomia candida	Metabolite R-7	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Folsomia candida	Metabolite R-8	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Folsomia candida	Metabolite R-11	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Folsomia candida	Metabolite R-12	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Folsomia candida	Metabolite R-13	Mixed into soil 5 % peat	Chronic, 28 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Hypoaspis aculeifer	Etoxazole	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 0.2 mg a.s./kg d.w.soil
Hypoaspis aculeifer	Metabolite R-3	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Test organism

Test organism	Test substance	Application method of test a.s./OM¹	Time scale	End point	Toxicity
Hypoaspis aculeifer	Metabolite R-4	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 1.0 mg/kg d.w.soil
Hypoaspis aculeifer	Metabolite R-7	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Hypoaspis aculeifer	Metabolite R-8	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Hypoaspis aculeifer	Metabolite R-11	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Hypoaspis aculeifer	Metabolite R-12	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 10 mg/kg d.w.soil
Hypoaspis aculeifer	Metabolite R-13	Mixed into soil 5 % peat	Chronic, 14 d	Reproduction	NOEC = 1.0 mg/kg d.w.soil

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

Higher tier testing (e.g. modelling or field studies)

- Nitrogen transformation

 Etoxazole

 Maximum tested rate of 0.07 mg a.s./kg d.w. soil (equivalent to 52.5 g/ha with no foliage interception)

 No significant effects (> 25 %) on N transformation at day 28 at a concentration of 0.07 mg a.s./kg dry soil

Toxicity/exposure ratios for soil organisms*²

*²A correction factor of 2 was applied to the acute and chronic endpoints of etoxazole and metabolites R-3, R-7, R-8 and R-13.

[Use in grapes, tomatoes /cucurbit and ornamentals at 55 g a.s./ ha]

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Eisenia fetida andrei	Etoxazole	Acute	0.037 mg a.s./d.w. soil initial	13513.5	10
Eisenia fetida andrei	Metabolite R-3	Acute	0.0038 mg a.s./d.w. soil initial	1289.5	10
Eisenia fetida andrei	Metabolite R-7	Acute	0.0092 mg a.s./d.w. soil initial	521.7	10
Eisenia fetida andrei	Metabolite R-8	Acute	0.0108 mg a.s./d.w. soil initial	458.3	10
Test organism	Test substance	Time scale	Soil PEC1	TER	Trigger
---------------------------------	----------------	------------	-----------------------------------	------	---------
Eisenia fetida andrei	Metabolite R-13	Acute	0.0084 mg a.s./d.w. soil initial	589.3	10
Eisenia fetida andrei	Etoxazole	Chronic	0.037 mg a.s./d.w. soil initial	67.6	5
Eisenia fetida andrei	Metabolite R-3	Chronic	0.0038 mg a.s./d.w. soil initial	1315.8	5
Eisenia fetida andrei	Metabolite R-7	Chronic	0.0092 mg a.s./d.w. soil initial	543.5	5
Eisenia fetida andrei	Metabolite R-8	Chronic	0.0108 mg a.s./d.w. soil initial	462.9	5
Eisenia fetida andrei	Metabolite R-11	Chronic	0.0019 mg a.s./d.w. soil initial	5263.2	5
Eisenia fetida andrei	Metabolite R-13	Chronic	0.0084 mg a.s./d.w. soil initial	595.2	5
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.037 mg a.s./d.w. soil initial	8.1	5
Folsomia candida	Metabolite R-3	Chronic	0.0038 mg a.s./d.w. soil initial	1315.8	5
Folsomia candida	Metabolite R-7	Chronic	0.0092 mg a.s./d.w. soil initial	543.5	5
Folsomia candida	Metabolite R-8	Chronic	0.0108 mg a.s./d.w. soil initial	462.9	5
Folsomia candida	Metabolite R-11	Chronic	0.0019 mg a.s./d.w. soil initial	5263.2	5
Folsomia candida	Metabolite R-13	Chronic	0.0084 mg a.s./d.w. soil initial	595.2	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.037 mg a.s./d.w. soil initial	2.7	5
Hypoaspis aculeifer	Metabolite R-3	Chronic	0.0038 mg a.s./d.w. soil initial	1315.8	5
Hypoaspis aculeifer	Metabolite R-7	Chronic	0.0092 mg a.s./d.w. soil initial	543.5	5
Hypoaspis aculeifer	Metabolite R-8	Chronic	0.0108 mg a.s./d.w. soil initial	462.9	5
Hypoaspis aculeifer	Metabolite R-11	Chronic	0.0019 mg a.s./d.w. soil initial	5263.2	5
Hypoaspis aculeifer	Metabolite R-13	Chronic	0.0084 mg a.s./d.w. soil initial	59.5	5

1indicate which PEC soil was used (e.g. plateau PEC)

In **bold** the TER values that do not meet the trigger of 5.
[Use in pome/stone fruit at 55 g a.s./ha]

Test organism	Test substance	Time scale	Soil PEC[^1]	TER	Trigger
Earthworms					
Eisenia fetida andrei	Etoxazole	Acute	0.029 mg a.s./d.w. soil initial	17241.4	10
Eisenia fetida andrei	Metabolite R-3	Acute	0.0031 mg a.s./d.w. soil initial	1580.6	10
Eisenia fetida andrei	Metabolite R-7	Acute	0.0074 mg a.s./d.w. soil initial	648.6	10
Eisenia fetida andrei	Metabolite R-8	Acute	0.0087 mg a.s./d.w. soil initial	568.9	10
Eisenia fetida andrei	Metabolite R-13	Acute	0.0067 mg a.s./d.w. soil initial	738.8	10
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.029 mg a.s./d.w. soil initial	86.2	5
Folsomia candida	Metabolite R-3	Chronic	0.0031 mg a.s./d.w. soil initial	1612.9	5
Folsomia candida	Metabolite R-7	Chronic	0.0074 mg a.s./d.w. soil initial	675.7	5
Folsomia candida	Metabolite R-8	Chronic	0.0087 mg a.s./d.w. soil initial	574.7	5
Folsomia candida	Metabolite R-11	Chronic	0.0015 mg a.s./d.w. soil initial	6666.7	5
Folsomia candida	Metabolite R-13	Chronic	0.0067 mg a.s./d.w. soil initial	746.3	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.029 mg a.s./d.w. soil initial	**3.5**	5
Hypoaspis aculeifer	Metabolite R-3	Chronic	0.0031 mg a.s./d.w. soil initial	1612.9	5
Hypoaspis aculeifer	Metabolite R-7	Chronic	0.0074 mg a.s./d.w. soil initial	675.7	5
Hypoaspis aculeifer	Metabolite R-8	Chronic	0.0087 mg a.s./d.w. soil initial	574.7	5
Hypoaspis aculeifer	Metabolite R-11	Chronic	0.0015 mg a.s./d.w. soil initial	6666.7	5
Hypoaspis aculeifer	Metabolite R-13	Chronic	0.0067 mg a.s./d.w. soil initial	74.6	5

[^1]: indicate which PEC soil was used (e.g. plateau PEC)

In **bold** the TER values that do not meet the trigger of 5.
[Use in citrus at 55 g a.s./ha]

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Earthworms					
Eisenia fetida andrei	Etoxazole	Acute	0.015 mg a.s./d.w. soil initial	3333.3	10
Eisenia fetida andrei	Metabolite R-3	Acute	0.0015 mg a.s./d.w. soil initial	3266.7	10
Eisenia fetida andrei	Metabolite R-7	Acute	0.0037 mg a.s./d.w. soil initial	1297.3	10
Eisenia fetida andrei	Metabolite R-8	Acute	0.0043 mg a.s./d.w. soil initial	1151.2	10
Eisenia fetida andrei	Metabolite R-13	Acute	0.0034 mg a.s./d.w. soil initial	1455.9	10
Eisenia fetida andrei	Etoxazole	Chronic	0.015 mg a.s./d.w. soil initial	166.7	5
Eisenia fetida andrei	Metabolite R-3	Chronic	0.0015 mg a.s./d.w. soil initial	3333.3	5
Eisenia fetida andrei	Metabolite R-7	Chronic	0.0037 mg a.s./d.w. soil initial	1351.4	5
Eisenia fetida andrei	Metabolite R-8	Chronic	0.0043 mg a.s./d.w. soil initial	1162.8	5
Eisenia fetida andrei	Metabolite R-11	Chronic	0.0008 mg a.s./d.w. soil initial	12500	5
Eisenia fetida andrei	Metabolite R-13	Chronic	0.0034 mg a.s./d.w. soil initial	1470.6	5
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.015 mg a.s./d.w. soil initial	20	5
Folsomia candida	Metabolite R-3	Chronic	0.0015 mg a.s./d.w. soil initial	3333.3	5
Folsomia candida	Metabolite R-7	Chronic	0.0037 mg a.s./d.w. soil initial	1351.4	5
Folsomia candida	Metabolite R-8	Chronic	0.0043 mg a.s./d.w. soil initial	1162.8	5
Folsomia candida	Metabolite R-11	Chronic	0.0008 mg a.s./d.w. soil initial	12500	5
Folsomia candida	Metabolite R-13	Chronic	0.0034 mg a.s./d.w. soil initial	1470.6	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.015 mg a.s./d.w. soil initial	6.7	5
Hypoaspis aculeifer	Metabolite R-3	Chronic	0.0015 mg a.s./d.w. soil initial	3333.3	5
Hypoaspis aculeifer	Metabolite R-7	Chronic	0.0037 mg a.s./d.w. soil initial	1351.4	5
Hypoaspis aculeifer	Metabolite R-8	Chronic	0.0043 mg a.s./d.w. soil initial	1162.8	5
Hypoaspis aculeifer	Metabolite R-11	Chronic	0.0008 mg a.s./d.w. soil initial	12500	5
Hypoaspis aculeifer	Metabolite R-13	Chronic	0.0034 mg a.s./d.w. soil initial	147.1	5

\(^1\) indicate which PEC soil was used (e.g. plateau PEC)

In **bold** the TER values that do not meet the trigger of 5.
[Use in strawberry at 55 g a.s./ha]

Test organism	Test substance	Time scale	Soil PEC\(^1\)	TER	Trigger
Earthworms					
Eisenia fetida andrei	Etoxazole	Acute	0.051 mg a.s./d.w. soil initial	9803.9	10
	Metabolite R-3	Acute	0.0054 mg a.s./d.w. soil initial	907.4	10
	Metabolite R-7	Acute	0.0129 mg a.s./d.w. soil initial	372.1	10
	Metabolite R-8	Acute	0.0152 mg a.s./d.w. soil initial	325.7	10
	Metabolite R-13	Acute	0.0118 mg a.s./d.w. soil initial	419.5	10
	Etoxazole	Chronic	0.051 mg a.s./d.w. soil initial	49.0	5
	Metabolite R-3	Chronic	0.0054 mg a.s./d.w. soil initial	925.9	5
	Metabolite R-7	Chronic	0.0129 mg a.s./d.w. soil initial	387.6	5
	Metabolite R-8	Chronic	0.0152 mg a.s./d.w. soil initial	328.9	5
	Metabolite R-11	Chronic	0.0027 mg a.s./d.w. soil initial	3703.7	5
	Metabolite R-13	Chronic	0.0118 mg a.s./d.w. soil initial	423.7	5
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.051 mg a.s./d.w. soil initial	5.9	5
	Metabolite R-3	Chronic	0.0054 mg a.s./d.w. soil initial	925.9	5
	Metabolite R-7	Chronic	0.0129 mg a.s./d.w. soil initial	387.6	5
	Metabolite R-8	Chronic	0.0152 mg a.s./d.w. soil initial	328.9	5
	Metabolite R-11	Chronic	0.0027 mg a.s./d.w. soil initial	3703.7	5
	Metabolite R-13	Chronic	0.0118 mg a.s./d.w. soil initial	423.7	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.051 mg a.s./d.w. soil initial	1.96	5
	Metabolite R-3	Chronic	0.0054 mg a.s./d.w. soil initial	925.9	5
	Metabolite R-7	Chronic	0.0129 mg a.s./d.w. soil initial	387.6	5
	Metabolite R-8	Chronic	0.0152 mg a.s./d.w. soil initial	328.9	5
	Metabolite R-11	Chronic	0.0027 mg a.s./d.w. soil initial	3703.7	5
	Metabolite R-13	Chronic	0.0118 mg a.s./d.w. soil initial	42.4	5

\(^1\) indicate which PEC soil was used (e.g. plateau PEC)
In **bold** the TER values that do not meet the trigger of 5.
[Use in cotton 41.2 g a.s./ha]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
Eisenia fetida andrei	Etoxazole	Acute	0.039 mg a.s./d.w. soil initial	12820.5	10
Eisenia fetida andrei	Metabolite R-3	Acute	0.0040 mg a.s./d.w. soil initial	1225	10
Eisenia fetida andrei	Metabolite R-7	Acute	0.0097 mg a.s./d.w. soil initial	494.9	10
Eisenia fetida andrei	Metabolite R-8	Acute	0.0114 mg a.s./d.w. soil initial	434.2	10
Eisenia fetida andrei	Metabolite R-13	Acute	0.0088 mg a.s./d.w. soil initial	562.5	10
Eisenia fetida andrei	Etoxazole	Chronic	0.039 mg a.s./d.w. soil initial	64.1	5
Eisenia fetida andrei	Metabolite R-3	Chronic	0.0040 mg a.s./d.w. soil initial	1250	5
Eisenia fetida andrei	Metabolite R-7	Chronic	0.0097 mg a.s./d.w. soil initial	515.5	5
Eisenia fetida andrei	Metabolite R-8	Chronic	0.0114 mg a.s./d.w. soil initial	438.6	5
Eisenia fetida andrei	Metabolite R-11	Chronic	0.0020 mg a.s./d.w. soil initial	5000	5
Eisenia fetida andrei	Metabolite R-13	Chronic	0.0088 mg a.s./d.w. soil initial	568.2	5
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.039 mg a.s./d.w. soil initial	7.7	5
Folsomia candida	Metabolite R-3	Chronic	0.0040 mg a.s./d.w. soil initial	1250	5
Folsomia candida	Metabolite R-7	Chronic	0.0097 mg a.s./d.w. soil initial	515.5	5
Folsomia candida	Metabolite R-8	Chronic	0.0114 mg a.s./d.w. soil initial	438.6	5
Folsomia candida	Metabolite R-11	Chronic	0.0020 mg a.s./d.w. soil initial	5000	5
Folsomia candida	Metabolite R-13	Chronic	0.0088 mg a.s./d.w. soil initial	568.2	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.039 mg a.s./d.w. soil initial	2.6	5
Hypoaspis aculeifer	Metabolite R-3	Chronic	0.0040 mg a.s./d.w. soil initial	1250	5
Hypoaspis aculeifer	Metabolite R-7	Chronic	0.0097 mg a.s./d.w. soil initial	515.5	5
Hypoaspis aculeifer	Metabolite R-8	Chronic	0.0114 mg a.s./d.w. soil initial	438.6	5
Hypoaspis aculeifer	Metabolite R-11	Chronic	0.0020 mg a.s./d.w. soil initial	5000	5
Hypoaspis aculeifer	Metabolite R-13	Chronic	0.0088 mg a.s./d.w. soil initial	56.8	5

1indicates which PEC soil was used (e.g. plateau PEC)
In bold the TER values that do not meet the trigger of 5.
Toxicity/exposure ratios for soil organisms for use in strawberries considering PEC\textsubscript{plateau} calculations.

Test organism	Test substance	Time scale	Soil PEC1	TER	Trigger
Earthworms					
Eisenia fetida andrei	Etoxazole	Acute	0.0527 mg a.s./d.w. soil accumulation	9487.7	10
Eisenia fetida andrei	Metabolite R-3	Acute	0.0057 mg a.s./d.w. soil accumulation	859.6	10
Eisenia fetida andrei	Metabolite R-8	Acute	0.0162 mg a.s./d.w. soil accumulation	305.6	10
Eisenia fetida andrei	Metabolite R-13	Acute	0.0188 mg a.s./d.w. soil accumulation	263.3	10
Eisenia fetida andrei	Etoxazole	Chronic	0.0527 mg a.s./d.w. soil accumulation	47.4	5
Eisenia fetida andrei	Metabolite R-3	Chronic	0.0057 mg a.s./d.w. soil accumulation	877.2	5
Eisenia fetida andrei	Metabolite R-8	Chronic	0.0162 mg a.s./d.w. soil accumulation	308.6	5
Eisenia fetida andrei	Metabolite R-13	Chronic	0.0188 mg a.s./d.w. soil accumulation	265.9	5
Other soil macroorganisms					
Folsomia candida	Etoxazole	Chronic	0.0527 mg a.s./d.w. soil accumulation	5.7	5
Folsomia candida	Metabolite R-3	Chronic	0.0057 mg a.s./d.w. soil accumulation	877.2	5
Folsomia candida	Metabolite R-8	Chronic	0.0162 mg a.s./d.w. soil accumulation	308.6	5
Folsomia candida	Metabolite R-13	Chronic	0.0188 mg a.s./d.w. soil accumulation	265.9	5
Hypoaspis aculeifer	Etoxazole	Chronic	0.0527 mg a.s./d.w. soil accumulation	1.9	5
Hypoaspis aculeifer	Metabolite R-3	Chronic	0.0057 mg a.s./d.w. soil accumulation	877.2	5
Hypoaspis aculeifer	Metabolite R-8	Chronic	0.0162 mg a.s./d.w. soil accumulation	308.6	5
Hypoaspis aculeifer	Metabolite R-13	Chronic	0.0188 mg a.s./d.w. soil accumulation	26.6	5

1Indicate which PEC soil was used (e.g. plateau PEC). For PEC accumulation, strawberries have been considered for PEC\textsubscript{plateau} calculations at 5 cm soil depth.

In **bold** the TER values that do not meet the trigger of 5.

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER\textsubscript{50} tests should be provided

Laboratory dose response tests

Species	Test substance	ER\textsubscript{50} (g/ha)2 vegetative vigour	ER\textsubscript{50} (g/ha)2 emergence	Exposure1 (g/ha)2	TER	Trigger
Species	Test substance	ER_{50} (g/ha)2 vegetative vigour	ER_{50} (g/ha)2 emergence	Exposure1 (g/ha)3	TER	Trigger
---------	----------------	--	--------------------------------------	--------------------------	-----	---------
Pome fruit and citrus: 55 g a.s./ha (drift rate = 15.73% at 3m)	Etoxazole	> 67.2	> 67.2	8.65	> 7.77	5
Glycine max	Lactuca sativa					
Raphanus sativus	Lycopersicon					
esculentum	Cucumis sativus					
Brassica oleracea	Avena sativa					
Lolium perenne	Zea mays					
Allium cepa						
Pome fruit and citrus: 55 g a.s./ha (drift rate = 29.2% at 3m)	Etoxazole	> 67.2	> 67.2	16.06	> 4.18	5
Glycine max	Lactuca sativa					
Raphanus sativus	Lycopersicon					
esculentum	Cucumis sativus					
Brassica oleracea	Avena sativa					
Lolium perenne	Zea mays					
Allium cepa						
Pome fruit and citrus: 55 g a.s./ha (drift rate = 29.2% at 3m with 50% drift reduction)	Etoxazole	> 67.2	> 67.2	8.03	8.37	5
Glycine max	Lactuca sativa					
Raphanus sativus	Lycopersicon					
esculentum	Cucumis sativus					
Brassica oleracea	Avena sativa					
Lolium perenne	Zea mays					
Allium cepa						
Pome fruit and citrus: 55 g a.s./ha (drift rate = 29.2% at 5m)	Etoxazole	> 67.2	> 67.2	10.94	> 6.1	5
Glycine max	Lactuca sativa					
Raphanus sativus	Lycopersicon					
esculentum	Cucumis sativus					
Brassica oleracea	Avena sativa					
Lolium perenne	Zea mays					
Allium cepa						
Grape: 55 g a.s./ha (drift rate = 8.02% at 3m)	Etoxazole	> 67.2	> 67.2	4.41	> 15.2	5
Species	Test substance	ER\textsubscript{50} (g/ha)2	ER\textsubscript{50} (g/ha)2	Exposure1 (g/ha)2	TER	Trigger
-------------------------------	----------------	---------------------------------	---------------------------------	---------------------------------	-----	---------
esculentum						
Cucumis sativus						
Brassica oleracea						
Avena sativa						
Lolium perenne						
Zea mays						
Allium cepa						
Vegetable: 55 g a.s./ha (drift rate = 2.77% at 1m)	Etoxazole	> 67.2	> 67.2	1.52	> 44.1	5
Glycine max						
Lactuca sativa						
Raphanus sativus						
Lycopersicon esculentum						
Cucumis sativus						
Brassica oleracea						
Avena sativa						
Lolium perenne						
Zea mays						
Allium cepa						
Cotton: 41.2 g a.s./ha (drift rate = 2.77% at 1m)	Etoxazole	> 67.2	> 67.2	1.14	> 58.8	5
Glycine max						
Lactuca sativa						
Raphanus sativus						
Lycopersicon esculentum						
Cucumis sativus						
Brassica oleracea						
Avena sativa						
Lolium perenne						
Zea mays						
Allium cepa						

Extended laboratory studies: not required.
Semi-field and field test: not required.

1 explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)

2 for preparations indicate whether dose is expressed in units of a.s. or preparation

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	NOEC = 1000 mg Etoxazole/L

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

No monitoring data available concerning adverse effect of the a.s. or the preparation.
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds

Compartment	
soil	Parent (etoxazole)
water	Parent (etoxazole)
sediment	Parent (etoxazole)
groundwater	Parent (etoxazole)

1 metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process (Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended)\(^5\):

Peer review proposal\(^6\) for harmonised classification according to Regulation (EC) No 1272/2008:

Substance	Aquatic Acute 1 – H400 (M=100)	Aquatic Chronic 1 – H410 (M=100)
Etoxazole		
	Aquatic Acute 1 – H400 (M=100)	Aquatic Chronic 1 – H410

\(^5\) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

\(^6\) It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.