Design, synthesis and apoptosis inducing activity of nonsteroidal flavone-methanesulfonate derivatives on MCF-7 cell line as potential sulfatase inhibitor

Mahdiyeh H. S. Javadi1 · Aida Iraji2,3 · Maliheh Safavi4 · Hamed Montazeri5 · Parastoo Tarighi6 · Samane Eftekhari6 · Latifeh Navidpour7 · Seyyedeh Sara Mirfazli8

Received: 23 April 2021 / Accepted: 8 July 2021 / Published online: 20 July 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In recent years, focusing on new potent anticancer agents with selective activity is one of the greatest challenges in cancer therapy. Breast cancer is the most common cancer and the main cause of cancer deaths in women. The sulfatase enzyme plays an important role in converting the sulfated steroids into non-sulfate steroid hormones, which increases the growth and development of many hormone-dependent cancers, such as breast cancer. In this regard, structure-based optimization was conducted to design novel flavone-sulfonates pharmacophore as a new steroid sulfatase inhibitor. In the present work, the conventional methods for the synthesis of 4-oxo-2-phenyl-4H-chromen-7-yl methanesulfonate derivatives were reported. Their cytotoxicity was evaluated with MTT assay against a breast cancer cell line (MCF-7). The apoptosis inducing activity of the most cytotoxic compound 3c with an IC50 value of 0.615 µM was evaluated in comparison to docetaxel in the presence of estradiol which is a crucial growth factor to survive the cancerous cells. The results of double staining Annexin V-FITC/PI analysis suggested that the cytotoxic activity of this compound 3c in MCF-7 cells occurs via apoptosis. Molecular docking studies were conducted to clarify the inhibition mode of the most promising compound (3c) over the sulfatase (1P49) binding site. The analysis revealed the role of hydrogen bond interaction with Gly181 and hydrophobic interactions through the 1P49 active site in the ligand-receptor complex as significant descriptors to rationalize the potential inhibition activity.

Graphical Abstract

1 Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
3 Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
4 Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
5 Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
6 Department of Medical biotechnology, Faculty of allied medicine, Iran university of Medical sciences, Tehran, Iran
7 Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
8 Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
Introduction

Cancer is known as a chronic and noncommunicable disease [1]. In more than hundred different kinds of cancers, breast cancer is the most common cancer and the main cause of cancer deaths in women [2]. The World Health Organization (WHO) reports biologically active hormones, including estrogens, as one of the most important factors to develop breast cancer. It was reported that the steroid levels, including estrone (E1), estradiol (E2), estrone sulfate (E1S), and estradiol sulfate (E2S), are enhanced in breast tumors compared to levels in the plasma and breast normal tissue [3]. The importance of estrogen production in the pathogenesis of breast carcinoma is supported by numerous studies [4, 5]. Modern targeted cancer therapy has now focused on decreasing estrogen levels [6].

Sulfatase is widely distributed throughout the body, and it acts in physiological processes and pathological conditions. Steroid sulfatase (STS) is known as a sulfatase enzyme that catalyzes the conversion of sulfated steroid (hormone precursors) to free steroid (active form) that stimulates the growth of tumors in various tissues especially the breast. STS has a mushroom-like shape, with two hydrophobic antiparallel α-helices structures [7]. STS has been found in the membranes of the endoplasmic reticulum which anchoring the functional domain on the surface. The active site of STS is located deep in a cavity of the rounded part of the STS and rests near the membrane surface which forms four potential and two functional glycosylation sites [8]. The inhibition of STS is a novel therapeutic strategy for the treatment of estrogen-dependent tumors. Some STS inhibitors have entered clinical trials and their efficacy is under investigation in postmenopausal women with breast cancer [9]. Therefore, inhibition of this enzyme decreases the level of the active hormone to target the breast, endometrial, prostate, and other hormone-sensitive cancers [10].

In 2020, Maltais et al. reported the design of fluorescent inhibitors of STS by adding a dansyl group on an estrane scaffold. Inhibition assays on HEK-293 cells expressing exogenous STS depicted an IC50 value of 69 nM for the most potent compound [11]. Also, this compound process fluorescent properties that provide an interesting tool to evaluate the cellular changes. In the other study, a series of 3-aminocoumarin-7-O-sulfamates were designed and synthesized. Structure-activity relationship showed that substitution on 3-position of coumarin improved better STS inhibition. According to in vitro study 3-benzyl-aminocoumarin-7-O-sulfamates inhibited human placenta STS with IC50 of 0.13 μM in an irreversible manner [12]. In vitro evaluation of piperazinyl-ureido sulfamates as STS inhibitors recorded micromolar to low nanomolar potency in which employing 4-chlorophenyl pendant on the structure achieved the most potent compound with STS IC50 values of 5.1 nM [13]. Grienke et al develop three ligand-based pharmacophore models to identify STS inhibitors from natural sources and lanostanetype triterpene was predicted as STS inhibitors. In this context, piptolinic acid D (IC50 = 10.5 μM), pinicolic acid B (IC50 = 12.4 μM), and ganoderol A (IC50 = 15.7 μM) being the most pronounced and first natural STS inhibitors [14].

Results and discussion

The inhibitor design

The STS inhibitors can be classified into four main categories; including steroid sulfamate-based inhibitors, nonsteroidal sulfamate inhibitors, steroid non-sulfamate based inhibitors, and nonsteroid non-sulfamate based inhibitors. The first steroidal STS inhibitors were designed based on the similarity with the substrate parental structure. Hallmark in this regard back to 1994 in which the replacement of OH of the sulfate group (A, Fig. 1) by an NH2, generated estrone-3-O-sulfamate known as EMATE (C, Fig. 1) as an irreversible steroidal inhibitor. This compound performed a great activity in MCF-7 cells, with an IC50 value of 65 pM [15]. The overall designing strategic was based on the substitution at the steroidal 3-phenolic position with the resistance group to hydrolyze by the enzyme [16]. Therefore, the core aryl O-sulfamate pharmacophore was developed over the past few years [17]. Other steroidal inhibitors of STS containing different functional groups, for example, phosphonothioate (D), thiophosphate (E) and phosphate (F) have been developed over time [18, 19]. Unexpectedly, high estrogenicity was observed with estrogenic inhibitors and thus unsuitable effects were seen as anticancer agents. These results stimulate an intense search for orally active and non-estrogenic STS inhibitors [20].

The coumarin derivatives (containing two-ring coumarin aryl sulfamate) exhibits high activity against STS such as 4-methylcoumarin-7-O-sulfamate (G, COMUATE) with an IC50 value of 380 nM against placental microsomes. Compound H demonstrated 71% STS inhibition in rat liver after 24 h single oral dose [21]. 667-COMUATE (I) as coumarin tricyclic derivatives showed an IC50 value of 8 nM without significant estrogenic side effects. Also, compound J (flavone-based agents) efficiently inhibited the purified human
STS with IC\textsubscript{50} = 0.026 \mu M and \textit{K}\textsubscript{i} = 0.19 \mu M without estrogenic side effects on MCF-7 cells and good profile for the treatment of breast cancer [22, 23].

As a result, in this study, flavone structure as potent and irreversible STS inhibitors was selected as the backbone [7, 18]. The sulfamate group attached to the aryl ring seems to blocks STS activity via providing nonbreaking bound. Besides the structural derivatization of target compounds mainly focused on the substitution of the methanesulfonate-flavone at the various position of the B aryl ring (Table 1).

Synthesis of inhibitors

Initially, for the synthesis of desired compounds, the benzoyl chloride derivatives (1a–i) were prepared, then reacted with 2,4-dihydroxyacetophenone, after baker-vankatarman rearrangement and neutralized with HCl. The 7-hydroxy-2-phenyl-4H-chromen-4-one derivatives (2a–i) were synthesized in the presence of K\textsubscript{2}CO\textsubscript{3} in acetone under reflux conditions for 8 h. Finally, the reaction of 2a–i with methanesulfonyl chloride in the presence of triethylamine gave the corresponding products 3a–i (Scheme 1).

Cytotoxic evaluation

MCF-7 as a breast cancer cell line with the expression of STS was selected for further study. The IC\textsubscript{50}s of all compounds are shown in Table 2 comparing with Docetaxel as a reference drug. The most active compound was 3c (X = OCH\textsubscript{3}–C\textsubscript{6}H\textsubscript{4}) with an IC\textsubscript{50} value of 0.615 \mu M.

- The unsubstituted derivative (3a) showed relatively good cytotoxicity with an IC\textsubscript{50} value of 1.591 \mu M.
- Methyl substitution as a small electron-donating group on phenyl ring significantly decreased the cytotoxic potency (3b, IC\textsubscript{50} = 2.0 \mu M) compared with 3a. However, the replacement of the methyl group with para-methoxy one as a bulk-electron donating moiety led to an improvement in the cytotoxicity (3c, IC\textsubscript{50} = 0.615 \mu M) comparing with the unsubstituted one (3a).
Similarly, the introduction of the electron-withdrawing group into 3a, resulting in 3d (IC$_{50}$ = 1.057, R = para-Cl-C$_6$H$_4$) and 3e (IC$_{50}$ = 1.303, R = para-Br-C$_6$H$_4$) which led to an increase in the cytotoxic activity compared to the unsubstituted derivative. However, the smaller group (Cl) recorded better activity in comparison with the Br counterpart.

For the multi-substituted compound possessing MeO, the reduction of anticancer activity was afforded for two substituted groups. The activity of these analogs changes was in the following order: 2,3-diOMe (IC$_{50}$ = 2.60 μM) > 2,4-diOMe (IC$_{50}$ = 3.21 μM) > 3,4-diOMe (IC$_{50}$ = 5.67 μM). However, improvement in the cytotoxicity was seen in compound 3i containing 2,3,4-triOMe with an IC$_{50}$ value of 1.02 μM.

Inhibition of STS in a cell-based assay

Based on the results, compound 3c with the least IC$_{50}$ value (IC$_{50}$ = 0.615 ± 0.077 μM) was selected to measure STS inhibitory activity. In this regard, proliferation assay was done for two concentrations of the selected compound alone and in the presence of 100 nM estradiol. In these experiments, the well-known chemotherapy agent docetaxel (Doc) was used as the toxicity positive control. Based on data
indicated in Fig. 2. The control group demonstrated around 100% of viability. As can be expected exposure to estradiol increases viability to more than 100% (p value < 0.05). The results of the assay defined that the 3c was able to significantly decrease cell viability in two tested concentrations to around 58.2% and 68.3%, respectively. Also, the group which was exposed to the co-treatment of 3c and estradiol indicated more cell viability in comparison with the 3c confirming the decreased number of active steroids and the inhibition of STS. The cell viability in cell receives 500 nM of Doc were significantly decreased compared to the control group. However, cells treated with Doc+E2 showed approximately the same % viability compared to cells exposed to Doc alone proposing the other mechanism of anticancer activity, not STS inhibition. In other words, estradiol treatment diminished the toxicity of 3c but not that of Doc in MCF-7 cells. This is based on the experiment in which, estradiol could compensate the 3c toxicity but not Doc toxicity. This could be explained by different inhibitory mechanisms of 3c and Doc in cell proliferation. Doc induced anticancer activity via effects by tubulin polymerization inhibition while 3c seems to work as an STS inhibitor.

Cell apoptosis on MCF-7 cells

Analysis of the flow cytometry double staining Annexin V-FITC/PI revealed that the synthetic compounds 3c reduced cell viability and induced apoptosis in human breast cancer cells. The flow cytometry analysis was used as a quantitative method of determining early and late apoptosis in treated cancer cells. Figure 3, summarizes the data and showed an increase in the apoptotic index in MCF-7 cells

Table 2

Compound	R	IC$_{50}$ (µM)a	Compound	R	IC$_{50}$ (µM)a
3a		1.591 ± 0.433	3f		2.598 ± 0.32
3b	CH$_3$	2.359 ± 0.177	3g		3.215 ± 0.070
3c	O	0.615 ± 0.077	3h		5.669 ± 0.050
3d	Cl	1.057 ± 0.408	3i		1.024 ± 0.300
3e	Br	1.303 ± 0.410	Docetaxel	–	0.500 ± 0.108

aEach value represents the mean ± SD ($n = 3–5$)
treated with synthetic compound compared with negative control. The results of flow cytometric analysis showed that exposure of the MCF-7 cell line to the IC_{50} concentration of compound 3c induced early apoptosis in 16.3% of cells and late apoptosis in 10% of treated cells. According to Fig. 3, it was revealed that 13.5% of MCF-7 cells treated with positive control were at the early stage of apoptosis and 8.11% of the cells were at the late stage of apoptosis after 24 h treatment. The results confirmed that the cytotoxic activity of 3c breast cancer cells occurs via apoptosis.

Docking study of STS

Molecular docking was performed using smina in the Linux platform. The most potent ligand 3c was subjected to dock with the 3D structure of STS, 1P49. The interactions of the best-docked confirmation of 3c with the active site residues of STS are depicted in Fig. 4. The methanesulfonate group is well placed near the entrance to the active site with conventional hydrogen bond interaction with Gly181 (distance: 2.61 Å) and two carbon–hydrogen bonds with Thr180 and Gly181. Pi-pi T-shaped interaction was also observed between the flavone backbone of 3c and the Phe178 residue (distance: 1.94 Å). The para-methoxy pendant was surrounded with several lipophilic amino acids and demonstrated two pi-alkyl interactions with Leu185 and Val186 as well as two carbon–hydrogen bonds with Ile226 and Phe230 with 3.43 and 3.06 Å distance.

The binding energy of reference inhibitor Irosustat was found to be −8.22 kcal/mol which is comparable with the value of 3c −8.49 kcal/mol within the sulfatase. The hydrophobic interactions of the best-docked conformation of Irosustat into active site residues of 1P49 are depicted in Fig. 5 (a).

Fig. 3 Flow cytometric analysis of Annexin V-FITC/PI stained Mcf-7 cell line treated with compound 3c. The cells treated with a DMSO 1% (negative control); b IC_{50} concentration of Doc; c IC_{50} concentration of compound 3c

The superimposed structure of Irosustat as a reported reference sulfatase inhibitor and the most potent compound 3c in the active site of steroidal sulfatase (PDB ID: 1P49) was shown in Fig. 5 (b). The STS binding site is built up with catalytically important hydrophobic amino acid residues and represented a long lipophilic tunnel [24]. The orientation and favorable interactions of 3c was similar to the reference inhibitor. The binding mode of 3c and Irosustat over the 1P49 active site clearly demonstrated that chromenone backbone elongated comfortably through the hydrophobic tunnel which is in good consistency with their STS inhibitor despite the absence of a steroidal scaffold in E2.

Conclusion

4-oxo-2-phenyl-4H-chromen-7-yl methanesulfonate derivatives were designed, synthesized, and evaluated for their inhibitory activity toward STS. This led to the identification of the most potent cytotoxic agent of the series, compound
Compound 3c, with IC\textsubscript{50} of 0.615 µM. Compound 3c showed a remarkable potency as an anticancer agent on breast cancerous cell lines in the presence of estradiol via inhibiting cell proliferation through the proposed mechanism (blocking sulfatase enzyme). 3c significantly decreased the number of active estrogens by blocking STS, which can be counterbalanced by estradiol treatment. This mechanism is further authenticated by the lack of estradiol potential in decreasing Doc toxicity that exerted its effects by tubulin polymerization inhibition. Molecular modeling studies confirmed the vital structural characteristic necessary for STS inhibition and these results suggested that compound 3c accommodated well into the STS active site via forming interaction with important residues.

Material and method

Synthesis of benzoyl chloride derivatives (1a–i)

To the benzoic acid derivatives (1 mmol), thionyl chloride (4 mmol, 0.28 mL) was added dropwise at room temperature and the resulting mixture was heated under reflux for 2 h. The extra thionyl chloride was evaporated under vacuum and benzene was added 3 times to remove the remaining of thionyl chloride.

Synthesis of 7-hydroxy-2-phenyl-4H-chromen-4-one derivatives (2a–i)

Initially, 2,4-dihydroxyacetophenone (152 mg, 1 mmol) and potassium carbonate (553 mg, 4 mmol) were dissolved in dry acetone. Then the appropriate benzoyl chloride derivative (2 mmol) was added dropwise to the reflux solution for 5 min, and the resulting mixture was refluxed for 8 h. After the completion of the reaction, the solvent was evaporated under vacuum. Next, 5 ml of water and methanol (1:1) were added and the mixture was refluxed for 2 h. The progression of the reaction was monitored by TLC. Then, the mixture was cooled to room temperature and was poured into ice and then neutralized with 5% HCl solution. The precipitates were filtered and purified by preparative TLC (hexane: EtOAc, 1:1).

7-Hydroxy-2-phenyl-4H-chromen-4-one (2a)

White crystal, yield: 23%, mp: >250 °C, IR (KBr, cm-1): 3178 (OH), 1630; 1H NMR (500 MHz, DMSO-\textsubscript{d6}): \delta 10.81 (s, 1H, OH), 8.07 (d, J = 8.7 Hz, 2H, H\textsubscript{2},6'), 7.89 (d, J = 8.7 Hz, 1H, H5), 7.55–7.62 (m, 3H, H3',4',5'), 7.01 (d, J = 2.1 Hz, 1H, H8), 6.93 (dd, J = 8.7, 2.1 Hz, 1H, H6), 6.91 (s, 1H, H3. (Anal. calcd. for C\textsubscript{15}H\textsubscript{10}O\textsubscript{3}: C, 76.62; H, 4.23; O, 20.15. Found: C, 75.98; H, 4.54; O, 20.01.

Fig. 4 Compound 3c was docked to the binding pocket of the STS (PDB: 1P49)

Fig. 5 Representation of Irosustat pose over the STS (1p49) active site (a), Irosustat (burgundy) and most potent compound 3c (blue) superimposed in the active site pocket (b)
7-Hydroxy-2-(4-methylphenyl)-4H-chromen-4-one (2b)

White crystal, yield: 21%, mp: >250 °C, IR (KBr, cm⁻¹): 3069 (OH), 1628; ¹H NMR (500 MHz, DMSO-d₆): δ 10.78 (s, 1H, OH), 7.96 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.88 (d, J = 8.7 Hz, 1H, H₆), 7.38 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.0 (d, J = 2.1 Hz, 1H, H₈), 6.92 (dd, J = 8.7, 2.1 Hz, 1H, H₈), 6.85 (s, 1H, H₃), 2.36 (s, 3H, CH₃). Anal. calcd. for C₁₇H₁₄O₅: C, 68.45; H, 4.73; O, 26.82. Found: C, 68.78; H, 4.41; O, 26.82.

7-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (2c)

White crystal, yield: 32%, mp: >250 °C, IR (KBr, cm⁻¹): 2981 (OH), 1685; ¹H NMR (500 MHz, DMSO-d₆): δ 10.93 (s, 1H, OH), 8.03 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.87 (d, J = 8.7 Hz, 1H, H₃), 7.11 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.0 (d, J = 2.1 Hz, 1H, H₆), 6.92 (dd, J = 8.7, 2.1 Hz, 1H, H₈), 6.80 (s, 1H, H₃), 3.86 (s, 3H, OCH₃). Anal. calcd. for C₁₇H₁₂O₅: C, 76.18; H, 4.79; O, 19.03. Found: C, 76.33; H, 4.52; O, 18.79.

2-(4-Chlorophenyl)-7-Hydroxy-4H-chromen-4-one (2d)

White crystal, yield: 12%, mp: >250 °C, IR (KBr, cm⁻¹): 3278 (OH), 1645; ¹H NMR (500 MHz, DMSO-d₆): δ 10.79 (s, 1H, OH), 8.10 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.89 (d, J = 8.7 Hz, 1H, H₃), 7.64 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.01 (d, J = 2.1 Hz, 1H, H₆), 6.95 (s, 1H, H₃), 6.93 (d, J = 2.1 Hz, 1H, H₆). Anal. calcd. for C₁₇H₁₂ClO₅: C, 66.07; H, 3.33; O, 17.60. Found: C, 65.89; H, 3.62; O, 17.33.

2-(4-Bromophenyl)-7-Hydroxy-4H-chromen-4-one (2e)

White crystal, yield: 16%, mp: >250 °C, IR (KBr, cm⁻¹): 3301 (OH), 1607; ¹H NMR (500 MHz, DMSO-d₆): δ 10.69 (s, 1H, OH), 8.02 (d, J = 8.7 Hz, 2H, H₂₋₅), 7.88 (d, J = 8.7 Hz, 1H, H₃), 7.78 (d, J = 8.7 Hz, 2H, H₂₋₅), 6.99 (d, J = 2.1 Hz, 1H, H₆), 6.94 (s, 1H, H₃), 6.92 (dd, J = 8.7, 2.1 Hz, 1H, H₆). Anal. calcd. for C₁₇H₁₂BrO₅: C, 56.81; H, 2.86; O, 15.13. Found: C, 56.63; H, 3.07; O, 15.43.

2-(2,3-Dimethoxyphenyl)-7-Hydroxy-4H-chromen-4-one (2f)

White crystal, yield: 13%, mp: >250 °C, IR (KBr, cm⁻¹): 3005 (OH), 1627; ¹H NMR (500 MHz, DMSO-d₆): δ 10.42 (s, 1H, OH), 7.90 (d, J = 8.7 Hz, 2H, H₃), 7.32 (dd, J = 8.7, 2.1 Hz, 1H, H₆), 7.19 (dd, J = 8.7, 2.1 Hz, 1H, H₄), 6.94 (d, J = 2.1 Hz, 1H, H₆), 6.91–6.93 (m, 2H, H₂₋₅), 6.61 (s, 1H, H₃), 3.88 (s, 1H, OCH₃), 3.82 (s, 1H, OCH₃). Anal. calcd. for C₁₇H₁₄O₇: C, 68.45; H, 4.73; O, 26.82. Found: C, 68.18; H, 5.01; O, 26.65.

2-(4-Methoxyphenyl)-7-Hydroxy-4H-chromen-4-one (2g)

White crystal, yield: 15%, mp: >250 °C, IR (KBr, cm⁻¹): 2998 (OH), 1638; ¹H NMR (500 MHz, DMSO-d₆): δ 10.35 (s, 1H, OH), 8.11 (d, J = 8.7 Hz, 1H, H₃), 7.84 (d, J = 8.7 Hz, 1H, H₆), 7.08 (s, 1H, H₃), 7.01 (d, J = 8.7 Hz, 1H, H₆), 6.97 (2H, H₇), 6.60 (d, J = 8.7 Hz, 1H, H₇), 6.52 (s, 1H, H₈), 3.89 (s, 1H, OCH₃), 3.86 (s, 1H, OCH₃). Anal. calcd. for C₁₇H₁₄O₇: C, 68.45; H, 4.73; O, 26.82. Found: C, 68.76; H, 4.41; O, 27.12.

2-(3,4-Dimethoxyphenyl)-7-Hydroxy-4H-chromen-4-one (2h)

White crystal, yield: 17%, mp: >250 °C, IR (KBr, cm⁻¹): 3013 (OH), 1653; ¹H NMR (500 MHz, DMSO-d₆): δ 10.38 (s, 1H, OH), 7.94 (d, J = 8.7 Hz, 1H, H₃), 7.70 (dd, J = 8.7, 2.1 Hz, 1H, H₆), 7.59 (s, 1H, H₃), 7.37 (dd, J = 8.7, 2.1 Hz, 1H, H₆), 7.11–7.14 (m, 2H, H₂₋₅), 6.97 (s, 1H, H₈), 3.89 (s, 1H, OCH₃), 3.85 (s, 1H, OCH₃). Anal. calcd. for C₁₇H₁₄O₇: C, 68.45; H, 4.73; O, 26.82. Found: C, 68.09; H, 4.98; O, 26.86.

7-Hydroxy-2-(2,3,4-trimethoxy phenyl)-4H-chromen-7-yl methanesulfonate (3a–i)

To a solution of 2a–i (1 mmol) in dry tetrahydrofuran (5 mL) methanesulfonyl chloride (1.5 mmol) and triethylamine (2 mmol) was added dropwise in an ice bath and stirred at room temperature overnight. Then the volatiles were evaporated under vacuum. To this residue water was added and it was extracted with ethyl acetate. The organic phase was dried with sodium sulfate and the solvent was evaporated under vacuum. The product was purified by preparative TLC (hexane: EtOAc, 3:2).

4-oxo-2-phenyl-4H-chromen-7-yl methanesulfonate (3a)

White crystal, yield: 67%, mp: 120–121 °C, IR (KBr, cm⁻¹): 1638, 1335 (S = O), 1199; ¹H NMR (500 MHz, DMSO-d₆): δ 8.17 (d, J = 8.4 Hz, 1H, H₈), 8.15 (d, J = 8.4 Hz, 2H,
H₂Ot, 201 °C, yield: 71%, mp: 201 °C.

2-(4-methyl phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3b)

White crystal, yield: 69%, mp: 184–185 °C, IR (KBr, cm⁻¹):
1624, 1342 (S = O), 1177; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.15 (d, J = 8.7 Hz, 1H, H₃), 8.06 (d, J = 8.7 Hz, 2H, H₂Ot), 7.91 (d, J = 2.2 Hz, 1H, H₅), 7.48 (dd, J = 8.7, 2.2 Hz, 1H, H₇), 7.42 (dd, J = 8.7, 2.2 Hz, 1H, H₅), 7.08 (s, 1H, H₃), 3.55 (s, 3H, CH₃SO₂), 2.83 (s, 3H, CH₃), ¹³C NMR (125 MHz, DMSO-d₆): 177.0 C₄, 163.9 C₂, 156.6 C₈a, 152.9 C₇, 142.8 C₅, 130.2 C₇, 128.1 C₁, 127.5 C₇, 126.8 C₂, 122.5 C₂a, 120.4 C₈, 112.6 C₃, 106.7 C₃, 38.2 C–S, 21.4 CH₃. Anal. calcd. for C₁₆H₁₂O₅S: C, 59.21; H, 4.43; O, 24.22. Found: C, 61.48; H, 4.43; O, 24.18.

2-(4-methoxy phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3c)

White crystal, yield: 78%, mp: 208–212 °C, IR (KBr, cm⁻¹):
1637, 1363 (S = O), 1179; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.13 (d, J = 8.7 Hz, 1H, H₃), 8.09 (d, J = 8.9 Hz, 2H, H₂Ot), 7.85 (d, J = 2.2 Hz, 1H, H₅), 7.46 (d, J = 8.7 Hz, 1H, H₃), 7.13 (d, J = 8.9 Hz, 2H, H₂Ot), 6.98 (s, 1H, H₃), 3.87 (s, 3H, OCH₃), 3.52 (s, 3H, CH₂SO₂). ¹³C NMR (125 MHz, DMSO-d₆): 176.7 C₄, 163.6 C₂, 163.6 C₈a, 153 C₇, 127.8 C₂, 127.5 C₅, 123.3 C₁, 122.8 C₈a, 120.5 C₉a, 115.1 C₇, 112.7 C₈, 106.0 C₃, 56.0 C–O, 37.4 C–S. Anal. calcd. for C₁₇H₁₄O₅S: C, 58.95; H, 4.07; O, 27.72. Found: C, 59.22; H, 4.33; O, 28.10.

2-(4-chloro phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3d)

White crystal, yield: 71%, mp: 201–203 °C, IR (KBr, cm⁻¹):
1636, 1340 (S = O), 1179; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.19 (d, J = 8.7 Hz, 2H, H₂Ot), 8.16 (d, J = 8.7 Hz, 1H, H₃), 7.92 (d, J = 2.2 Hz, 1H, H₅), 7.69 (d, J = 8.7 Hz, 2H, H₂Ot), 7.50 (dd, J = 8.7, 2.2 Hz, 1H, H₃), 7.16 (s, 1H, H₃), 3.55 (s, 3H, CH₂SO₂); MS: m/z 350 [M + 1]. Anal. calcd. for C₁₉H₁₂ClO₅S: C, 54.78; H, 3.16; O, 22.81. Found: C, 54.42; H, 3.33; O, 23.01.

2-(4-bromo phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3e)

White crystal, yield: 65%, mp: 229–230 °C, IR (KBr, cm⁻¹):
1640, 1340 (S = O), 1178; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.16 (d, J = 8.7 Hz, 1H, H₃), 8.11 (d, J = 8.7 Hz, 1H, H₂Ot), 7.92 (d, J = 2.2 Hz, 1H, H₅), 7.83 (d, J = 8.7 Hz, 2H, H₂Ot), 7.50 (dd, J = 8.7, 2.2 Hz, 1H, H₃), 7.17 (s, 1H, H₃), 3.55 (s, 3H, CH₂SO₂); MS: m/z 395 [M + 1]. Anal. calcd. for C₁₉H₁₄BrO₅S: C, 48.62; H, 2.81; O, 22.24. Found: C, 48.43; H, 3.13; O, 22.56.

2-(2,3-dimethoxy phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3f)

White crystal, yield: 43%, mp: 218–220 °C, IR (KBr, cm⁻¹):
1648, 1368 (S = O), 1149; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.17 (d, J = 8.7 Hz, 1H, H₃), 7.82 (d, J = 2.2 Hz, 1H, H₃), 7.50 (dd, J = 8.9, 2.2 Hz, 1H, H₃), 7.42 (d, J = 2.2 Hz, 1H, H₅), 7.26–7.33 (m, 2H, H₂Ot), 6.83 (s, 1H, H₃), 3.89 (s, 3H, CH₃), 3.84 (s, 3H, OCH₃), 3.53 (s, 3H, CH₂SO₂); ¹³C NMR (125 MHz, DMSO-d₆): 177.2 C₄, 163.9 C₂, 161.9 C₈a, 161.0 C₉a, 157.0 C₇, 155.9 C₂, 131.1 C₈a, 120.8 C₉b, 120.6 C₅, 117.7 C₆, 114.9 C₈a, 112.5 C₈a, 110.9 C₄, 110.0 C₆, 105.1 C₈a, 59.5 C–O₂, 58.5 C–O₃, 42.0 C–S. Anal. calcd. for C₁₈H₁₆O₇S: C, 57.44; H, 4.28; O, 29.76. Found: C, 57.73; H, 4.56; O, 30.03.

2-(2,4-dimethoxy phenyl)-4-oxo-4H-chromen-7-yl methanesulfonate (3g)

White crystal, yield: 52%, mp: 215–216 °C, IR (KBr, cm⁻¹):
1659, 1349 (S = O), 1133; ¹H NMR (500 MHz, DMSO-d₆):
δ 8.06 (d, J = 8.7 Hz, 1H, H₃), 7.94 (dd, J = 8.9, 2.2 Hz, 1H, H₆), 7.62 (d, J = 2.2, 1H, H₧), 7.56 (d, J = 2.2 Hz, 1H, H₇), 7.51 (dd, J = 8.9, 2.2 Hz, 1H, H₅), 7.27 (dd, J = 8.9, 2.2 Hz, 1H, H₅), 7.12 (d, J = 8.7 Hz, 2H, H₂Ot), 6.02 (s, 3H, CH₃), 3.95 (s, 3H, OCH₃), 3.50 (s, 3H, CH₂SO₂); ¹³C NMR (125 MHz, DMSO-d₆): 178.3 C₄, 163.0 C₉a, 162.8 C₂, 160.4 C₂, 159.4 C₈a, 157.9 C₇, 130.2 C₉a, 128.7 C₈a, 117.7 C₈a, 114.4 C₇, 113.4 C₈a, 111.0 C₇, 106.1 C₉a, 105.1 C₈a, 101.2 C₈, 55.5 C–O₂, 55.4 C–O₃, 40.3 C–S. Anal. calcd. for C₁₈H₁₆O₇S: C, 57.44; H, 4.28; O, 29.76. Found: C, 57.61; H, 4.55; O, 29.98.
4-oxo-2-(2,3,4-trimethoxy phenyl)-4H-chromen-7-yl methanesulphonate (3i)

White crystal, yield: 54%, mp: 224–226 °C, IR (KBr, cm⁻¹): 1680, 1328 (S = O), 1145; ¹H NMR (500 MHz, DMSO-d₆): δ 8.15 (d, J = 8.7 Hz, 1H, H₃), 7.81 (s, 1H, H₄), 7.67 (d, J = 8.7 Hz, 1H, H₅), 7.47 (d, J = 8.9 Hz, 1H, H₆), 7.03 (d, J = 8.9 Hz, 1H, H₇), 6.84 (s, 1H, H₆), 3.89 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.53 (s, 3H, CH₃SO₂); ¹³C NMR (125 MHz, DMSO-d₆): 178.8 C₄, 168.5 C₂, 157.5 C₈α, 157 C₇, 154.6 C₄, 152.9 C₂’, 141.9 C₃’, 129.0 C₅, 122.7 C₆’, 119.5 C₁’, 118.9 C₄α, 110.3 C₃, 109.0 C₆, 107.5 C₅’, 103.0 C₈, 56.6 C–O₂, 54.9 C–O₃, 54.0 C–O₂, 38.4 C–S. Anal. calcd. for C₁₀H₁₈O₈S: C, 56.15; H, 4.46; O, 31.49. Found: C, 56.55; H, 4.87; O, 31.73.

Cell culture

A human breast cancer cell line, MCF-7, was obtained from the Iranian Biological Resource Center (Tehran, Iran) and maintained in RPMI 1640 medium (BioWest). The medium was supplemented with 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA) and 1% antibiotics (Penicillin and Streptomycin). The cells were incubated at 37 °C under the standard condition of 95% humidity and 5% CO₂ to reach 70% cell confluency [25].

Cell proliferation assay

The cytotoxicity of compounds was assessed by MTT assay which measures the percentage of viable cells. Cells were seeded in a 96-well cell culture plate at 7 × 10³ cells/well and incubated for 48 h. Then, cells were exposed to fresh medium containing different concentrations of compounds. Subsequently, the medium was replaced with tetrazolium salt (5 mg/ml of PBS) (MTT, (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (Sigma, St.Louis, MO, USA) followed by additional 4 h incubation at 37 °C. The formed formazan crystals were dissolved in 100µl of Dimethyl sulfoxide (DMSO) (Merck) and measured for absorbance at 570 nm using a plate reader (BioRad, Model 680). Also finally, IC₅₀ values were defined as the half-maximal inhibitory concentration.

Docking analysis

To determine the possible binding modes of the compound, docking analysis was carried out against the STS enzyme using the smina molecular docking. The X-ray crystal structures of STS enzyme (PID: 1P49) were extracted from the PBD site and were prepared by removing solvent molecules and the co-crystallized ligands. Polar hydrogen atoms were added to the enzymes and the Kollmann charges were assigned. The Irosustat and compound (3c) were drawn using Marvin Sketch and subjected to energy mini-
15. Purohit A, Dauvois S, Parker MG, Potter BVL, Williams GJ, Reed MJ. The hydrolysis of oestrone sulphate and dehydroepiandrosterone sulphate by human steroid sulphatase expressed in transfected COS-1 cells. J Steroid Biochem Mol Biol 1994;50:101–4.

16. Purohit A, Williams GJ, Howarth NM, Potter BV, Reed MJ. Inactivation of steroid sulfatase by an active site-directed inhibitor, estrone-3-O-sulfamate. Biochemistry. 1995;34:11508–14.

17. Thomas MP, Potter BV. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women’s Health. J Med Chem. 2015;58:7634–58.

18. Kozak W, Daśko M, Masłyk M, Pieczykolan JS, Gielniewski B, Rachon J, et al. Phosphate tricyclic coumarin analogs as steroid sulfatase inhibitors: synthesis and biological activity. RSC Adv. 2014;5:44350–44358.

19. Demkowicz S, Kozak W, Daśko M, Masłyk M, Gielniewski B, Rachon J. Synthesis of bicoumarin thiophosphate derivatives as steroid sulfatase inhibitors. Eur J Med Chem. 2015;101:358–66.

20. Nussbaumer P, Billich A. Steroid sulfatase inhibitors. Med Res Rev. 2004;24:529–76.

21. Reed MJ, Potter BVL. Compounds that inhibit oestrone sulphatase and/or aromatase and methods for making and using. 2003; US6506792B1.

22. Nussbaumer P, Lehr P, Billich A. 2-Substituted 4-(thio)chromone 6-O-sulfamates: potent inhibitors of human steroid sulfatase. J Med Chem. 2002;45:4310–20.

23. Nussbaumer P, Winiski AP, Billich A. Estrogenic potential of 2-alkyl-4-(thio) chromenone 6-O-sulfamates: potent inhibitors of human steroid sulfatase. J Med Chem. 2003;46:5091–5094.

24. Ouellet C, Maltais R, Ouellet E, Barbeau X, Laguë P, Poirier D. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem. 2016;119:169–82.

25. Edraki N, Iraji A, Firuzi Y, Mahdavi M, Foroumadi A, et al. 2-Imino 2H-chromene and 2-(phenylimino) 2H-chromene 3-aryl carboxamide derivatives as novel cytotoxic agents: synthesis, biological assay, and molecular docking study. J Iran Chem Soc. 2016;13:2163–71.

26. Saeedi M, Maleki A, Iraji A, Hariri R, Akbarzadeh T, Edraki N, et al. Synthesis and bio-evaluation of new multifunctional methylindolinone-1,2,3-triazole hybrids as anti-Alzheimer’s agents. J Mol Struct. 2021;1229:129828.