Microwave absorption properties of single and double-layer absorbers based on BaFe$_{12}$O$_{19}$ and SiO$_2$

M A Marpaung1, E Handoko1*, Z Jalil2 and M Alaydrus3

1 Dept. of Physics, Universitas Negeri Jakarta, Jalan Rawamangun Muka 13220, Jakarta Indonesia

2 Dept. of Physics, Syiah Kuala University, Banda Aceh, Indonesia

3 Dept. of Electrical Engineering, Universitas Mercu Buana, Jalan Meruya Selatan No.1 Jakarta, Indonesia

*erfan@unj.ac.id

Abstract. In order to study a new microwave absorption properties of single and double layer barium hexaferrite and silica have been investigated in X-band (8.2–12.4 GHz) frequencies. Barium hexaferrite BaFe$_{12}$O$_{19}$ was synthesized by ceramic method and silica SiO$_2$ was prepared from beach sand. Barium hexaferrite and silica SiO$_2$ with a total thickness of 3 mm, 4 mm, 5 mm, 6 mm and 7 mm, were characterized at room temperature using vector network analyser (VNA) Keysight PNA-L N5232A. Reflection loss (RL) of single and double-layer absorbers of barium hexaferrite and silica were calculated and simulated using the transmit line theory. The minimum RL value (less than −10 dB) of single layer barium hexaferrite is −21 dB at 9 GHz. The minimum RL values (less than −10 dB) of single layer silica SiO$_2$ is −40 dB at 9.2 GHz with 4 mm of thickness. The results show that double layer absorbing material showed different RL values than single layer of barium hexaferrite BaFe$_{12}$O$_{19}$ and silica SiO$_2$.

1. Introduction

Nowadays, the operation of electronic devices, local internet, radar systems, and mobile communication devices affect electromagnetic (EM) noise problems [1–4] and EM interference pollution. The developing of EM wave absorbers are a very important subject to attenuate them. Barium hexaferrite BaFe$_{12}$O$_{19}$ (BHF) with superior magnetic properties has attracted considerable attention as EM wave absorbers [5–9]. the other candidate absorber, silica (SiO$_2$) is a good insulator [10,11]. A mixture of SiO$_2$ powder with a magnetic material can decrease the dielectric constant, high-permeability and results effective impedance match [12–14]. In this paper, we have investigated a new microwave absorbing properties of single and double layer barium hexaferrite BaFe$_{12}$O$_{19}$ and silica SiO$_2$. The complex permeability ($\mu = \mu' - j\mu''$) and permittivity ($\varepsilon = \varepsilon' - j\varepsilon''$) that are two important values to determine the reflection loss (RL) values [15–17], can be resulted by vector network analyser (VNA) Keysight PNA-L N5232A. For the single layer of barium hexaferrite BaFe$_{12}$O$_{19}$ and silica SiO$_2$, RL values have been calculated with different thicknesses and for double layer absorbers composed of the layer 1 (Silica) as the absorption layer and layer 2 (BHF) as the matching layer were studied in detail.
2. Experimental methods

Barium hexaferrite, \(\text{BaFe}_{12}\text{O}_{19} \) (BHF) was prepared from stoichiometric mixtures of \(\text{BaCO}_3 \) and \(\text{Fe}_2\text{O}_3 \) with high purity starting materials (≥ 99 % Aldrich) by solid state reaction method and sintering at 1100 °C for 3 hours. The powder of BHF was produced by high planetary ball mill for 1 hour. Silica \(\text{SiO}_2 \) was prepared from beach sand. Vector network analyser (VNA) Keysight PNA-L N5232A was used to analyse microwave absorbing properties in range of 8.2–12.4 GHz (X-band). For a double-layer absorber composed of the layer 1 (Silica) as the absorption layer and layer 2 (BHF) as the matching layer shown in Fig. 1. Reflection loss (RL) of double-layer can be calculated and simulated using the transmit line theory by the following Eq. 1, 2 and 3 [18–20].

\[
\text{RL (dB)} = 20 \log \left(\frac{Z_2-1}{Z_2+1} \right)
\]

\[
Z_1 = \sqrt{\frac{\mu_1}{\varepsilon_1}} \tanh \left(j \left(\frac{2\pi f d_1}{c} \right) \sqrt{\mu_1 \varepsilon_1} \right)
\]

\[
Z_2 = \frac{\sqrt{\frac{\mu_2}{\varepsilon_2} \left(Z_1 + \sqrt{\frac{\mu_2}{\varepsilon_2} \tanh \left(j \left(\frac{2\pi f d_2}{c} \right) \sqrt{\mu_2 \varepsilon_2} \right) \right)} \right) \right] \sqrt{\frac{\mu_2}{\varepsilon_2} + Z_1 \tanh \left(j \left(\frac{2\pi f d_2}{c} \right) \sqrt{\mu_2 \varepsilon_2} \right) \right]}
\]

layer 1 is the absorption layer (Silica) and layer 2 is the matching layer (BHF). \(\mu_1 \) and \(\mu_2 \) are complex permeability (\(\mu = \mu' - j\mu'' \)) and \(\varepsilon_1 \) and \(\varepsilon_2 \) are complex permittivity (\(\varepsilon = \varepsilon' - j\varepsilon'' \)), \(f \) is frequency. \(d_1 \) and \(d_2 \) are the thickness of silica and BHF, respectively. \(c \) is the velocity of light.

Figure 1. (a) Schematic and (b) electrical equivalent circuit of double-layer structure of the absorption layer (Silica) and the matching layer (BHF).

3. Results and discussion

Generally, absorbing materials are determined by the complex permeability (\(\mu = \mu' - j\mu'' \)) and permittivity (\(\varepsilon = \varepsilon' - j\varepsilon'' \)). Fig. 2a and 2b show the values of the complex permeability and permittivity of barium hexaferrite \(\text{BaFe}_{12}\text{O}_{19} \) and silica \(\text{SiO}_2 \) which are measured in the frequency range of 8.2–12.4 GHz. The real (\(\varepsilon' \)) and imaginary (\(\varepsilon'' \)) parts of the complex permittivity of silica \(\text{SiO}_2 \) are larger than
barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$. The ε' values of barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ and silica SiO_2 tend to be constant and there is polarization that occurs when given EM wave in the frequency range of 8.2 – 12.4 GHz. It’s indicate that BHF and silica have ability to store the microwave energy. The imaginary (ε'') part of the complex permittivity of silica SiO_2 are larger than barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ in frequency of 8.2 – 12.4 GHz that indicate the strong electric loss. The real (μ') and imaginary (μ'') parts of complex permeability of barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ and silica SiO_2 are shown in the figure 2a and 2b. As can be seen from the figure, the μ' and μ'' values relatively constant in the range frequency of 8.2–12.4 GHz. These results indicate the strong magnetic and electric loss are same between barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ and silica SiO_2.

In order to investigate the microwave absorption ability of single layer barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ and silica SiO_2, the complex permeability and permittivity are used to calculate and simulate the reflection loss (RL) with different thicknesses by using $Z_{in} = \mu \sqrt{\frac{\mu}{\varepsilon}} \tanh \left(j \left(\frac{2\pi f d}{c} \right) \sqrt{\mu \varepsilon} \right)$ and $\text{RL (dB)} = 20 \log \left(\frac{|Z_{in} - 1|}{|Z_{in} + 1|} \right)$ and results are shown in Fig. 3. Fig. 3a shows the RL curves of single layer hexagonal ferrite $\text{BaFe}_{12}\text{O}_{19}$ with a thickness of 1.90 mm, 1.95 mm, 2.00 mm, and 2.05 mm. The minimum RL value (less than -10 dB) of BHF is -21 dB at 9 GHz. The RL curves of single layer silica SiO_2 with a
thickness of 1 mm, 2 mm, 3 mm, 4 mm and 5 mm. The minimum RL values (less than −10 dB) of silica SiO$_2$ is −40 dB at 9.2 GHz with 4 mm of thickness (see Fig. 3b).

Figure 3. Reflection loss values of single layer (a) barium hexaferrite (BHF) and (b) silica with different thicknesses.

According to circuit and schematic (Fig.1) of double layer absorber composed of the absorption layer (Silica) and the matching layer (BHF), the reflection loss (RL) of double layer absorbers were calculated and simulated by using Eq. (1), Eq. (2), and Eq. (3). Fig. 6 shows the RL values of double layer structures with different thicknesses in the frequency range of 8.2–12.4 GHz. The results show that double layer absorbing material showed different RL values than single layer of barium hexaferrite BaFe$_{12}$O$_{19}$ and silica SiO$_2$.

Figure 4. Reflection loss values of double layer based on barium hexaferrite (BHF) and silica with different thicknesses.

4. Conclusions
In summary, Barium hexaferrite, BaFe$_{12}$O$_{19}$ (BHF) have been successfully prepared by solid state reaction method. Silica SiO$_2$ have been prepared from beach sand. The double layer structures of
composed of the absorption layer (Silica) and the matching layer (BHF) with different thicknesses have been prepared to calculate the reflection loss (RL) values. The results showed that, double layer absorbing material showed different RL values than single layer of barium hexaferrite $\text{BaFe}_{12}\text{O}_{19}$ and silica SiO_2.

Acknowledgments

This research was funded by Universitas Negeri Jakarta and Kementerian Riset, Teknologi dan Pendidikan Tinggi Republik Indonesia, Penelitian Terapan 2019 (No. 19/SP2H/DRPM/LPPM-UNJ/III/2019) and Penelitian Kompetitif UNJ (No. 41/KOMP-UNJ/LPPM-UNJ/V/2019) research grant.

References

[1] Sun Y, Liu X, Feng C, Fan J, Lv Y, Wang Y and Li C 2014 A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber *J. Alloys Compd.* **586** 688–692

[2] Tan K H, Ahmad R and Johan M R 2013 Electromagnetic and microwave absorbing properties of amorphous carbon nanotube-cadmium selenide quantum dot hybrids *Mater. Chem. Phys.* **139** (1) 66–72

[3] Wen F, Zhang F, Xiang J, Hu W, Yuan S and Liu Z 2013 Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers *J. Magn. Magn. Mater.* **343** 281–285

[4] Liu X, Wu N, Cui C, Li Y, Zhou P and Bi N 2015 Facile preparation of carbon-coated Mg nanocapsules as light microwave absorber *Mater. Lett.* **149** 12–14

[5] Ghasemi A, Hossienpour A, Morisako A, Saatchi A and Salehi M 2006 Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite *J. Magn. Magn. Mater.* **302** (2) 429–435

[6] Shams M H, Salehi S M A and Ghasemi A 2008 Electromagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite *Mater. Lett.* **62** (10–11) 1731–1733

[7] Mari P A, o-Castellanos, Anglada-Rivera J, Cruz-Fuentes A and Lora-Serrano R 2004 Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite *J. Magn. Magn. Mater.* **280** (2–3) 214–220

[8] Qiu J, Shen H and Gu M 2005 Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling *Powder Technol.* **154** (2–3) 116–119

[9] Sözeri H, Mehmedi Z, Kavas H and Baykal A 2015 Magnetic and microwave properties of $\text{BaFe}_{12}\text{O}_{19}$ substituted with magnetic, non-magnetic and dielectric ions *Ceram. Int.* **41** (8) 9602–9609

[10] Jokanovic V and Nedic Z 2010 Nano-designing of Mg doped phosphate tungsten bronzes and SiO2 composite obtained by ultrasonic spray pyrolysis method *Ultrason. Sonochem.* **17** (1) 228–233

[11] Tio N and Sio N 2014 Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core&shell structure *Phys. Chem. Chem. Phys.* **17** 2531–2539

[12] Meena R S, Bhattacharya S and Chatterjee R 2010 Complex permittivity, permeability and microwave absorbing studies of $(\text{Co}_2-x\text{Mnx})$ U-type hexaferrite for X-band $(8.2-12.4 \text{ GHz})$ frequencies *Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.* **171** (1–3) 133–138

[13] Iqbal M J, Khan R A, Takeda S, Mizukami S and Miyazaki T 2011 W-type hexaferrite nanoparticles: A consideration for microwave attenuation at wide frequency band of 0.5-10 GHz *J. Alloys Compd.* **509** (28) 7618–7624

[14] Wen F S, Hou H, Xiang J Y, Zhang X Y, Su Z B, Yuan S J and Liu Z Y 2015 Fabrication of carbon encapsulated Co_3O_4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber *Carbon N. Y.* **89** 372–377

[15] Ni Q Q, Melvin G J H and Natsuki T 2015 Double-layer electromagnetic wave absorber based on
barium titanate/carbon nanotube nanocomposites Ceram. Int. 41 (8) 9885–9892

[16] Sunny V, Kurian P, Mohanan P, Joy P A and Anantharaman M R 2010 A flexible microwave absorber based on nickel ferrite nanocomposite J. Alloys Compd. 489 (1) 297–303

[17] Chen X G, Cheng J P, Lv S S, Zhang P P, Liu S T and Ye Y 2012 Preparation of porous magnetic nanocomposites using corncob powders as template and their applications for electromagnetic wave absorption Compos. Sci. Technol. 72 (8) 908–914

[18] Handoko E, Iwan S, Budi S, Anggoro B S, Mangasi A M, Randa M, Zulkarnain J, Kurniawan C, Sofyan N and Alaydrus M 2018 Magnetic and microwave absorbing properties of BaFe12-2xCoZnxO19 (x = 0.0; 0.2; 0.4; 0.6) nanocrystalline Mater. Res. Express 5 (6) 64003

[19] Handoko E, Sugihartono I and Mangasi A 2017 Microwave Absorbing Studies of Magnetic Materials for X-Band Frequencies 19 17–20

[20] Handoko E, Mangasi A M, Iwan S, Maulana R and Mudrik A 2016 Measurement of Complex Permittivity and Permeability of Hexagonal Ferrite Composite Material Using a Waveguide in Microwave Band 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications 28–30