EFFECT OF AMELANCHIER EXTRACT ON LIPID OXIDATION AND SENSORY FEATURES OF PORK SAUSAGES

Lukáš Jurčaga 1, Marek Bobko 1, Ondrej Bučko 2, Andrea Mendelová 1, Peter Beláš 1, Miroslav Kročko 1, Judita Lidíková 1, Alica Bobková 1, Alžbeta Demianová 1, Katárina Poláková 1, Andrea Mesárošová 1

Address(es):
1 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Institute of Food Science, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.
2 Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Institute of Animal Husbandry, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia.

*Corresponding author: xjurcaga@uniag.sk

ARTICLE INFO

Received 9. 9. 2022
Revised 18. 10. 2022
Accepted 18. 10. 2022
Published 21. 12. 2022

Regular article

ABSTRACT

The meat industry in recent years leaning towards the replacement of synthetic antioxidants, such as BHT, for natural, mostly plant-based alternatives. For such purpose, polyphenol-rich plant species are selected and researched. Amelanchier (Amelanchier alnifolia) fruit seems to be an interesting option for adding to meat products to increase oxidative stability. In our study, we incorporate 3 and 5 mL of Amelanchier extract into pork sausage and observed changes in pH, color, sensory, and oxidative stability for 21 days period of vacuum storage. During storage period we measured pH values, color (expressed as cieLab coordinates), malondialdehyde concentration. Also, sensory evaluation was conducted. We compared those experimental meat products with sausages without any antioxidant and commercially used synthetic vitamin C. In our study we did not observe negative effects of Amelanchier extract addition compared to control groups in terms of pH, color and sensory properties. Regarding oxidative stability, Amelanchier extract was able to retard oxidation processes at comparable rate as vitamin C. Amelanchier therefore shows promising possibilities for food industry. However, further study of this natural resource is still needed.

Keywords: pork, meat product, lipid oxidation, sensory quality, antioxidant, Amelanchier

INTRODUCTION

The meat industry in the 21st century is facing many challenges. Creating safe, nutritional valuable, tasty, and healthy products is the highest priority of all manufacturers (Estévez, 2017). Meat plays a significant role in human development and is an integral part of a healthy and balanced humans’ diet because of its nutritional composition. The current meat industry is trying to sum up the role and importance of meat in a balanced human diet and research some of the pejorative convictions about meat consumption. The growing occurrence of certain chronic diseases, such as cancer or cardiovascular diseases, motivated extensive research of food believed to be associated with the rising incidence of such diseases. Despite being nutritionally rich, meat consumption is often connected to a higher risk of previously mentioned diseases (Pereira & Vincente, 2013). Lipid oxidation creates unpleasant flavors and supports color changes of muscle food during storage, even in a cooler or fridge. Besides that, compounds possibly causing severe health problems are also created and stored in those products (Lorenzo & Gómez, 2012).

For over a decade, natural oxidation gained more and more attention from the broad public and food manufacturers. Generally, customers will choose food without additives. If that is not possible, he is more likely to select the one with natural additives than with synthetic ones (Carocho et al., 2015). The new, attractive, and unconventional fruit of small fruit with considerable potential is Amelanchier (Amelanchier spp., Rosaceae family). Amelanchier includes about 25 types of bushes and small deciduous trees. It’s native to North America. However, Slovakia offers favorable weather conditions for its growth and cultivation (Gajdošová & Libiaková, 2015).

Amelanchier leaves and fruits are a rich resource of nutrients, antioxidants, and other compounds that may have a protective effect on living organisms (Męczarska et al., 2017). Research of the chemical composition of Amelanchier fruit revealed water to be the major component (82 – 84 %), followed by carbohydrates (15 – 20 %). Fruits contain low levels of proteins and fats, enough dietary fiber, and a relatively high amount of potassium, iron, magnesium, and phosphorus. The Vitamin composition of Amelanchier includes vitamin C, thiamine, riboflavin, pantothenic acid, vitamin B6, folate, vitamin A and vitamin E. Phenolic compounds, especially anthocyanins, are the main functional components of Amelanchier fruits (Mazza & Cottrell, 2008). Fruits of Amelanchier are a rich source of phenols for potential usage in the food industry. In recent years there is an increasing demand of customers for food without synthetic antioxidants, such as BHT. Producers, however, still need antioxidants for elongating the shelf life of their products. One of the best resources of naturally occurring antioxidants are phenols of various fruits (De Souza et al., 2019). As mentioned, the meat industry faces a great challenge to fulfill customer demand for products synthetic addition-free products. On the other hand, meat products with high-fat content are susceptible to oxidation changes. Therefore, antioxidant addition is necessary. Antioxidants from natural sources, such as plants becoming more and more interesting for the industry. Experiments were conducted with several potential plant sources and various versions. In our study, we present another option as a source, Amelanchier, in the form of extract. We believe this plant offers suitable properties for meat products and should be considered in the future for further studies and, potentially, for commercial use.

MATERIAL AND METHODS

Extract preparation

The extraction of Amelanchier berries was carried out according to Shirahigue et al. (2010). Dried and homogenized Amelanchier alnifolia fruits (20 g) were mixed with 100 mL of 80% ethanol in a shaker and let rest for 24 hours in the dark at room temperature. The supernatants were vacuum filtered and concentrated in a vacuum rotary evaporator at 65 °C until total solvent evaporation. The residues were dissolved in water to a final volume of 50 mL.

Total polyphenol content

Amelanchier extract was prepared and tested for polyphenol content and antioxidant activity. Total phenolic content was determined by Folin–Ciocalteu reagent method according to Fu et al. (2011). The content was expressed as grams of Gallic acid equivalents (GAE) in kilogram of wet fruit weight.

Total Antioxidant activity

Total Antioxidant Capacity was measured using the radical-scavenging method by Brand-Williams (1995) with DPPH radical - 2,2-diphenyl-1-picrylhydrazyl (C18H12N5O6, Sigma-Aldrich).

Sausage preparation

We used same meat product and recipe as in our previous work Jurčaga et al. (2021). Ingredients for sausage preparation were homogenized and mixed together.
This meat batter was divided into groups and incorporated with selected antioxidants. All products were heat treated to 70 °C in core for 10 minutes.

pH measurement

Measurement of pH was carried out using calibrated Orion Star™ A211 Benchtop pH meter (China) with piercing probe.

Color determination

All sausages were sliced, and color measurement was conducted on cut surface using spectrophotometer Konica Minolta CM-2600d (Japan). D65 light source and a 10° observer, with an 8 mm diameter port were used. Setting Specular Component Included (SCI) option setting was used due to matt character of samples. Results are expressed as a* (redness), b* (yellowness) and L* (lightness) coordinates.

Sensory evaluation

A sensory panel of evaluators performed the sensory evaluation of products on the 21st day after preparing, at the end of the storage period. All samples were heated before evaluating. Five sensory parameters were observed: appearance (surface and on a cut), color, aroma, consistency, and taste. Every parameter was evaluated on a 5-point scale where 5 is best, and 1 is the worst rate of selected parameter. Together, the product can obtain 25 points at best. The sensory panel consisted of 10 evaluators of both genders aged from 25 to 60 years. All evaluators are from the Department of Technology and Quality of Animal Products.

Oxidative stability

Oxidative stability was measured using the previously published TBARS methodology in Jurčaga et al. (2021) using UV spectrophotometry. Final results were calculated using a calibration curve and expressed as the quantity of malondialdehyde (MDA) (mg) present in 1 kg of sample.

pH measurement

The value of pH affects many properties during food processing. For example, protein properties as denaturing, gelification, enzymatic activities, the growth and mortality of microorganisms, the germinating or inactivation of bacterial spores and various chemical reactions, such as Maillard reaction (Stippl et al., 2004). The pH of most food products varies between 3.5 and 7. The pH has an important effect on pigments (e.g., chlorophyll, carotenoids, anthocyanins, etc.) responsible for the color of fruits, vegetables, and meat. Thus, knowledge of pH is necessary to produce safe, high-quality, and value-added products (André-Bello et al., 2013). Measurement of pH was performed on the 1st, 7th, 14th, and 21st day of storage at 4 °C. Results from Table 2 show that with any additional antioxidant (Con-0) pH decreased over the first 14 days in the control group. After that subtle increase was observed. This could be explained by initial decomposition changes in meat products. With the addition of vitamin (Con-0), the group shows the lowest pH value at the end of the storage period. Both groups with additional content of Amelanchier (Ext-3 and Ext-5) show very similar progress of pH change. Values of pH of those groups after the initial drop stay stable for the entire observation duration. Also, both experimental groups showed similar results to the Con-C group, statistically varying from the 7th day measurement.

Results and Discussion

Extract Examination

To examine properties of Amelanchier extract, two characteristics were observed. The DPPH scavenging activity and Total Polyphenol Content (TPC) were measured first day after the preparation. TAC results of Amelanchier extract were determined as $89.89 \pm 0.12\%$ of DPPH radical inhibition. Total polyphenol content of selected extract was measured 5.93 ± 0.12 g GAE kg$^{-1}$.

Statistical analysis

Statistical analysis was performed using XLSTAT software (Data Analysis and Statistical Solution for Microsoft Excel, Addinsoft, Paris, France, 2017). To compare the results of the individual analyzed groups, ANOVA analysis with Duncan test was used. For all the tests, the level of signification α was set to 0.05.

Table 1 pH of sausage samples during storage

Group	Day 1	Day 7	Day 14	Day 21
Con-0	6.33 ± 0.02a	6.26 ±0.01a	6.23 ± 0.04a	6.28 ± 0.01a
Con-C	6.27 ± 0.02a	6.15 ± 0.02a	6.16 ± 0.02a	6.15 ± 0.03b
Ext-3	6.30 ± 0.02a	6.22 ± 0.03b	6.18 ± 0.01a	6.20 ± 0.04b
Ext-5	6.29 ± 0.02a	6.20 ± 0.02bc	6.21 ± 0.02a	6.17 ± 0.02b

Note: Con-0 – negative control, no antioxidant; Con-C – 0.5 g kg$^{-1}$ vit. C addition; Ext-3 – 3ml kg$^{-1}$ Amelanchier extract addition; Ext-5 – 5 ml kg$^{-1}$ Amelanchier extract addition. Values are expressed as pH ± S.D.; a,b,c as upper index represent a statistically significant differences between samples in column.

Color determination

Appearance determines how consumers perceive quality and significantly influences purchasing behavior. In the study of four European countries the most important product characteristic which consumers base their quality evaluations on are the appearance attributes: fat content and color (Resurreccion, 2004). Color measurement was carried out for every group on 1st, 7th, 14th, and 21st days of storage. No significant visible change of color occurred during the observation period. When compared coordinates of color determination, all results are closely related. Measurement of color was carried out for every group on 1st day after preparing, at the end of the storage period. All samples were heated on a cut, before evaluating. Five sensory parameters were observed: appearance (surface on a cut), color, aroma, consistency, and taste. Every parameter was evaluated on a 5-point scale where 5 is best, and 1 is the worst rate of selected parameter. Together, the product can obtain 25 points at best. The sensory panel consisted of 10 evaluators of both genders aged from 25 to 60 years. All evaluators are from the Department of Technology and Quality of Animal Products.

Sensory evaluation

We did not observe any statistical difference by comparing average scores for all experimental parameters (Appearance, Color, Aroma, Consistency, and Taste) ($\alpha = 0.05$). However, it is important to note that both experimental groups with Amelanchier extract (with 3 and 5 ml) obtained a lower score in all parameters, except taste, compared to control groups. Also, overall acceptability by panelists was highest for Con-0, then Con-C, followed by Ext-3 and Ext-5 group samples. Graphic visualization of sensory evaluation is shown in Figure 1. In the past, a major obstacle to the use of natural plant extracts in foods has been the imposition of undesirable flavors and odors. However, technological developments have enabled food ingredient manufacturers to produce extracts with non-interfering sensory characteristics while maintaining antioxidant properties (McBride et al., 2007). In our study, we did not observe the appearance of any unpleasant flavors. Moreover, the experimental group with 3 ml extract addition obtained a higher score than the Con-0 group.
addition. Therefore, Amelanchier should be considered in future discussions for food antioxidants in the meat industry. Before application in commercial use, detailed research from various fields, such as food chemistry or food technology, is necessary.

Acknowledgment: This work was financially supported by the Slovak Research and Development Agency under contract no. APVV-18-0312 and by the Operational program Integrated Infrastructure within the project: Demand-driven research for the sustainable and innovative food. Drive4School:313011V336, co-financed by the European Regional Development Fund.

REFERENCES

Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Bel, J., & Martínez-Moncó, J. (2013). Effect of pH on Color and Texture of Food Products. Food Engineering Reviews, 3(3), 158–170. https://doi.org/10.1007/s12393-013-9067-2

Brand-Williams, W., Cuvelier, M. E., & Bertset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/0022-3299(95)00008-3

Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284–295. https://doi.org/10.1016/j.tifs.2015.06.007

de Souza, D. R., Willems, J. L., & Low, N. H. (2019). Phenolic composition and antioxidant activities of saskatoon berry fruit and pomace. Food Chemistry, 290, 108–117. https://doi.org/10.1016/j.foodchem.2019.03.077

Devatkal, S. K., Narsaiah, K., & Borah, A. (2010). Anti-oxidant effect of extracts of kinnon rind, pomegranate seed and seed powders in cooked goat meat patties. Meat Science, 85(1), 155–159. https://doi.org/10.1016/j.meatsci.2009.12.019

Echegaray, N., Gómez, B., Barba, J. F., Franco, D., Estévez, M., Carballo, J., Marszalek, K., & Lorentzen, J. M. (2018). Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends in Food Science & Technology, 82, 110–122. https://doi.org/10.1016/j.tifs.2018.10.005

Estévez M. (2017). ¿Qué’s New in Meat Oxidation? In: New Aspects of Meat Quality: From Genes to Ethics. Cambridge : Woodhead Publishing, pp. 91-109.

Fu, L., Xu, B.-T., Xu, X.-R., Gan, R.-Y., Zhang, Y., Xia, E.-Q., & Li, H.-B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129(2), 345–350. https://doi.org/10.1016/j.foodchem.2011.04.079

Gajdošová A., Libiaková G. (2015). Efektívne množenie vybraných druhov domácnych a iných rostlin. Available at: prubina.savva.sk/ugbr/files/download/Titulka_vystupy_UGBR%20-%20202.pdf (accessed 03 November 2020).

Jiménez-Colmenero, F. (2007). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science & Technology, 18(11), 567–578.

Jurča, L., Bobko, M., Kolesárová, A., Bobková, A., Demianová, A., Čap, P., Belej, Ľ., Mendelová, A., Bučko, O., Kročko, M., & Čech, M. (2021). Blackcurrant (Ribes nigrum L.) and Kamchatska Honey suckle (Lonicera caerulea var. Kamtschatska) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Products (Frankfurters). Foods, 10(12), 2957. https://doi.org/10.3390/foods10122957

Karre, L., Lopez, K., & Getty, K. J. K. (2013). Natural antioxidants in meat and poultry products. Meat Science, 94(2), 220–227. https://doi.org/10.1016/j.meatsci.2013.01.007

Lorenzo, J. M., & Gómez, M. (2012). Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Science, 92(4), 610–618. https://doi.org/10.1016/j.meatsci.2012.06.008

Lorenzo, J. M., Pateiro, M., Domínguez, R., Barba, F. J., Putnik, P., Kováčević, D. B., Chipigelman, A., Granato, D., & Franco, D. (2018). Berries extracts as natural antioxidants in meat products: A review. Food Research International, 106, 1095–1104. https://doi.org/10.1016/j.foodres.2017.12.005

Maizza, G., & Cottrell, T. (2008). Carotenoids and cyanoglicosides in saskatoon berries (Amelanchier alnifolia Nutt.). Journal of Food Composition and Analysis, 21(3), 249–254. https://doi.org/10.1016/j.jfca.2007.11.003

McBride, N. T. M., Hogan, S. A., & Kerry, J. P. (2007). Comparative additive effect of rosemary extract and additives on sensory and antioxidant properties of retail packaged pork. International Journal of Food Science & Technology, 42(10), 1201–1207. https://doi.org/10.1111/j.1365-2621.2006.01342.x

Męczarska K., Cyboran-Mikolajczyk S., Włoch A., Bonarska-Kujawa D., Oszmianski D., Kleszczyńska R. POLYPHENOL CONTENT AND BIOACTIVITY OF SASKATOON (AMELANCHIER ALNIFOLIA NUTT.) LEAVES AND BERRIES. Acta Pol Pharm. 2017 Mar;74(2):660-669. PMID: 29624272.

Perreira, P. M. de C. C., & Vicente, A. F. dos R. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science, 93(3), 586–592. https://doi.org/10.1016/j.meatsci.2012.09.018

Qi, S., Huang, H., Huang, J., Wang, Q., & Wei, Q. (2015). Lychee (Litchi chinensis Sonn.) seed water extract as potential antioxidant and anti-obese natural additive.
in meat products. *Food Control, 50*, 195–201. https://doi.org/10.1016/j.foodcont.2014.08.047

Resurreccion, A. V. A. (2004). Sensory aspects of consumer choices for meat and meat products. *Meat Science, 66*(1), 11–20. https://doi.org/10.1016/s0309-1740(03)00021-4

Rop, O., Mleek, J., Jurikova, T., Sochor, J., & Kizek, R. (2013). Antioxidant properties of saskatoon berry (Amelanchier alnifolia(Nutt.) fruits. *Fruits, 68*(5), 435–444. https://doi.org/10.1051/fruits/2013087

Shah, M. A., Bosco, S. J. D., & Mir, S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. *Meat Science, 98*(1), 21–33. https://doi.org/10.1016/j.meatsci.2014.03.020

Shirahigue, L. D., Plata-Oviedo, M., De Alencar, S. M., D’Arce, M. A. B. R., De Souza Vieira, T. M. F., Oldoni, T. L. C., & Contreras-Castillo, C. J. (2010). Wine industry residue as antioxidant in cooked chicken meat. *International Journal of Food Science & Technology, 45*(5), 863–870. https://doi.org/10.1111/j.1365-2621.2010.02201.x

Stippl, V. M., Delgado, A., & Becker, T. M. (2004). Development of a method for the optical in-situ determination of pH value during high-pressure treatment of fluid food. *Innovative Food Science & Emerging Technologies, 5*(3), 285–292. https://doi.org/10.1016/j.ifset.2004.05.002