BRCA1 and BRCA2 mRNA-expression prove to be of clinical impact in ovarian cancer

Irina Tsibulak1, Verena Wieser1, Christine Degasper1, Giridhar Shivalingaiah2,5, Sören Wenzel6, Susanne Sprung2, Sigurd F. Lax4, Christian Marth1, Heidelinde Fiegl1 and Alain G. Zeimet1

BACKGROUND: Mutations in BRCA1 and BRCA2 are associated with better survival in ovarian cancer (OC) patients due to a better response to platinum-based chemotherapy. However, the impact of the BRCA1/2 mRNA-expression is not well characterized in OC.

PATIENTS AND METHODS: We investigated BRCA1/2 mRNA-expression in 12 non-neoplastic fallopian tubes and 201 epithelial OCs in relation to their clinical characteristics.

RESULTS: We found higher BRCA1/2 mRNA-expression in OCs compared to controls (P = 0.011, P < 0.001, respectively). BRCA1 mutated OCs exhibited lower BRCA1 (P = 0.014) but higher BRCA2 mRNA-expression (P = 0.001). Low BRCA1-expression was associated with favorable overall survival (OS) (P = 0.012) and low BRCA2-expression with better progression-free survival (PFS) and OS (P = 0.004, P = 0.001, respectively). A subgroup-analysis showed that this effect was confined only to the BRCA1-wildtype cancers. Cox-regression confirmed the prognostic significance of BRCA1-expression for OS (P = 0.028). Independence of the prognostic value of BRCA2-expression for PFS (P = 0.045) and OS (P = 0.015) was restricted to high-grade serous OCs. Fully platinum-sensitivity was characterized by lower BRCA1/2 mRNA-expression in BRCA1-wildtype cancers in comparison to platinum-refractory OC.

CONCLUSION: Our findings may reflect higher platinum-sensitivity due to reduced capacity of DNA damage repair in tissues with low BRCA1/2-expression. In this context, especially in BRCA-wildtype cancers both parameters could also be potential predictors for PARP-sensitivity.

British Journal of Cancer (2018) 119:683–692; https://doi.org/10.1038/s41416-018-0217-4

INTRODUCTION

BRCA1 and BRCA2 are tumor suppressor genes that are involved in cell growth inhibition, apoptosis, regulation of gene transcription and DNA damage repair through homologous recombination.1 Thus, germ line mutations in BRCA genes are considered to be associated with cancer susceptibility, especially with an increased risk of developing ovarian and breast cancer.2,3 Epithelial ovarian cancer (OC) is one of the leading causes of cancer death in women in the western world3–5 Approximately 5–10% of all epithelial OC are hereditary and at least two-third of them are due to BRCA1/2 mutations.6,7

The current opinion is that OC patients who carry a pathogenic BRCA mutation show better survival rates possibly due to a better response to platinum-based chemotherapy and inhibitors of poly(ADP)-ribose polymerase (PARP).6,9 However, there are also conflicting data, showing worse survival in hereditary OC cases or no significant difference in survival rates between patients with BRCA associated and sporadic epithelial OC.10–12 Such discrepancies could be due to different duration of follow-up, different histological type or a death caused by secondary malignancies.

Besides BRCA mutation-status, the expression of these genes could contribute to the tumor pathogenesis and therapeutical response. Currently there is lack of data on BRCA1/2 expression and their clinical significance in epithelial OC patients. The implication of BRCA-expression in BRCA-wildtype epithelial OC is also poorly studied but could be clinically relevant. We wondered whether the expression of BRCA1/2 on the transcriptome level could be a reliable predictor for platinum response and thus for the clinical outcome in OC patients.

In our study, we evaluated BRCA1/2-mRNA-expression in frozen tissues of 201 epithelial OC patients. We analyzed progression-free survival (PFS), overall survival (OS), the association between the BRCA-expression and mutation-status and methylation-status as well as FIGO stage and achievement of a complete resection during debulking surgery.

PATIENTS AND METHODS

Patients and samples

Ovarian tissue samples from 201 patients with OC obtained at primary debulking (patients were 24–90 years old; median age at

1Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria; 2Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; 3Institute of Pathology, Medical University of Innsbruck, Innsbruck, Austria and 4Department of Pathology, Hospital Graz Süd-West, Academic Teaching Hospital of the Medical University Graz, Graz, Austria

Correspondence: Heidelinde Fiegl (Heidelinde.Fiegl@i-med.ac.at) or Alain G. Zeimet (Alain.Zeimet@i-med.ac.at)

Received: 26 April 2018 Revised: 12 July 2018 Accepted: 16 July 2018
Published online: 15 August 2018

© Cancer Research UK 2018
diagnosis was 62 years) and non-neoplastic tubal tissues from 12 patients obtained by elective salpingo-oophorectomy for benign conditions (patients were 30–73 years old, median age: 50 years) were collected and processed at the Department of Obstetrics and Gynecology of the Medical University of Innsbruck between 1989 and 2015 as described recently. Systemic treatment of OC patients consisted of six adjuvant cycles of platinum-based chemotherapy. We used a categorization which defines "platinum-refractory" as disease progressing during therapy or within one month after the last dose, "platinum-resistant" as disease progressing within 6 months, "partially platinum-sensitive" as disease progressing between 6 and 12 months, and "platinum-sensitive" as disease progressing with an interval of more than 12 months. Written informed consent was obtained from all patients before enrolment. The study was reviewed and approved by the Ethics committee of the Medical University of Innsbruck (reference number: AN2015-0038 346/4.17) and conducted in accordance with the Declaration of Helsinki. The median observation period of all patients was 1.6 years (0.03–73 years old, median age: 50 years) concerning the median overall survival. Clinicopathological characteristics are shown in Table 1.

RNA isolation and reverse transcription
Total cellular RNA extraction from and reverse transcription were performed as previously described. Primers and probes for BRCA2 [GenBank: NM_000059.3] were determined with the assistance of the computer program Primer Express (Life Technologies, Carlsbad, CA, USA). BRCA2 forward primer: 5′-GAA AAT CAA GAA AAA TCC TTA AAG GCT-3′; BRCA2 reverse-primer: 5′-GTA ATC GGC TCT AAA GAA ACA TGA TG-3′; BRCA2 TaqMan probe: 5′-FAM-AGC ACT CCA GAT GGC ACA ATA AAA GAT-3′-BHQ1. Primer sequences were selected from literature, also primers and probes for BRCA1 were purchased from Applied Biosystems (Foster City, CA, USA). DNA-methylation analysis an additional MethyLight reaction was selected from literature, also primers and probes for BRCA2 were selected from literature. Cases were scored as positive if a percentage of methylated reference (PMR) value of ≥4.0% was obtained, according to studies published in the literature.

Statistical analysis
To compare clinicopathological characteristics and BRCA1/2 mRNA-expression or BRCA1/2 mutation-status, the non-parametric Mann-Whitney U test or Kruskal-Wallis test or Chi-squared test were applied. The correlations between BRCA1/2 mRNA-expression were assessed by Spearman-rank correlation analyses. Progression-free survival (PFS) was defined as the time from diagnosis of the primary tumor to the histopathological confirmation of recurrence or metastases and overall survival (OS) as the time from diagnosis of the primary to tumor to death from any cause or to the last clinical inspection. Univariate Kaplan-Meier analyses and multivariable Cox survival analyses were used to explore the association of BRCA1/2 expression or with PFS and OS. For survival analyses, patients were dichotomized into low and high mRNA-expression level groups by the optimal cut-off expression value calculated by the Youden’s index based on a receiver operating characteristic curve analysis for overall survival. P-values less than 0.05 were considered as statistically significant. Statistical analysis was performed using SPSS statistical software (version 20.0.0; SPSS Inc., Chicago, IL, USA).

RESULTS
We analyzed BRCA1/2 mRNA-expression levels in 201 OC tissues and 12 non-neoplastic fallopian tubes. We found 1.6-fold higher BRCA1 and 5.0-fold higher BRCA2 mRNA-expression levels in OC samples in comparison to control tissues (P = 0.011, P < 0.001, Fig. 1a, b).

Molecular and clinicopathological characteristics
Associations of BRCA1/2 mRNA-expression with clinicopathological characteristics are shown in Table 2. We found that BRCA2 mRNA-expression was associated with poor tumor differentiation as it increases with tumor grade (P < 0.001; Table 1). Higher BRCA2 mRNA-expression was observed in patients with any residual disease (P = 0.032; Table 1) in comparison to patients with no residual disease. The highest BRCA1/2 mRNA-expression levels were identified in endometrioid OCs in comparison to the other histologic subtypes (P = 0.025, and P = 0.005, respectively; Table 1). Ninety-one percent of the patients included in this study had type II tumors (N = 183) which showed higher, intratumoral BRCA1/2 mRNA-expression compared to type I tumors (P = 0.034 and P = 0.001, respectively; Table 1).

OC tissues with BRCA1-mutations showed lower BRCA1 mRNA-expression (P = 0.014) but higher BRCA2 mRNA-expression (P = 0.001) (Table 1; Fig. 1c, d) in comparison to tissues without BRCA1 mutations. No association between BRCA2 mutation-status and BRCA1/2 mRNA-expression was identified (Table 1). Among 201 OC patients 36 patients (18%) presented BRCA1-mutations, 11 patients (6%) BRCA2-mutations. Interestingly, there was no correlation between BRCA1 mutation-status and any clinicopathological characteristics. In the herein investigated cohort, no differences in the expression of BRCA-1/2-mRNA could be revealed for the various subtypes of mutations detected in the BRCA1/2 genes (data not shown).

As expected, we found an inverse association between BRCA1 DNA-methylation-status and BRCA1 mRNA-expression (P < 0.001;
Table 1. Association of BRCA1 and BRCA2 mRNA-expression and mutations with clinicopathological characteristics in 201 ovarian cancer patients

Variable	Number (%)	mRNA expression values (arbitrary units)	Somatic mutations	DNA methylation status											
		BRCA1 Median (IQR)	P value	BRCA2 Median (IQR)	P value	Non-mutated (%)	Mutated (%)	P value	BRCA1	Non-mutated (%)	Mutated (%)	P value	Unmethylated (%)	Methylated (%)	P value
Age															
≤62.3 years	101 (50%)	0.81 (0.53–1.30)	0.491	3.72 (2.14–6.15)	0.875	73 (73%)	27 (27%)	0.001	95 (94%)	5 (5%)	0.743	88 (88%)	12 (12%)	0.504	
>62.3 years	100 (50%)	0.86 (0.55–1.37)		3.65 (2.47–6.01)		90 (90%)	9 (9%)		93 (93%)	6 (6%)	0.943	90 (91%)	9 (9%)		
FIGO stage															
I/II	50 (25%)	0.91 (0.57–1.35)	0.361	3.22 (2.08–4.87)	0.089	42 (84%)	7 (14%)	0.426	48 (96%)	1 (2%)	0.219	48 (96%)	2 (4%)	0.081	
III/IV	151 (75%)	0.80 (0.53–1.30)		4.02 (2.67–6.17)		121 (80%)	29 (19%)		140 (93%)	10 (7%)	0.871	130 (87%)	19 (13%)		
Tumor grade															
1	14 (7%)	0.52 (0.43–1.01)	0.099	2.07 (1.19–2.92)	<0.001	12 (86%)	2 (14%)	0.789	14 (100%)	0 (0%)	0.624	13 (93%)	1 (7%)	0.004	
2	90 (45%)	0.85 (0.56–1.26)		3.55 (2.22–5.35)		71 (80%)	18 (20%)		84 (94%)	5 (6%)	0.871	87 (97%)	3 (3%)		
3	95 (47%)	0.82 (0.58–1.55)		4.51 (3.00–7.30)		78 (83%)	16 (17%)		88 (94%)	6 (6%)	0.943	76 (82%)	17 (18%)		
n.a.	2 (1%)	–		–		–			–	–	–	–		–	
Residual disease															
Macroscopically tumor-free	100 (50%)	0.87 (0.58–1.34)	0.261	3.36 (2.04–5.16)	0.032	82 (82%)	17 (17%)	0.588	92 (92%)	7 (7%)	0.399	94 (95%)	5 (5%)	0.013	
Any tumor residual	95 (47%)	0.78 (0.51–1.33)		3.99 (2.82–6.23)		75 (79%)	19 (20%)		90 (95%)	4 (4%)	0.743	79 (84%)	15 (16%)		
n.a.	6 (3%)	–		–		–			–	–	–	–		–	
Histology															
HGSOC	129 (64%)	0.79 (0.55–1.31)		4.13 (2.59–6.16)	0.025	102 (79%)	25 (19%)	0.848	117 (91%)	10 (8%)	0.314	114 (89%)	14 (11%)	0.993	
LGSOC	12 (6%)	0.48 (0.38–0.67)		2.05 (1.16–2.87)		10 (83%)	2 (17%)		12 (100%)	0 (0%)	0.621	11 (92%)	1 (8%)		
Endometrioid	45 (22%)	1.05 (0.68–1.48)		4.44 (2.91–6.40)		37 (82%)	8 (18%)		44 (98%)	1 (2%)	0.340	40 (89%)	5 (11%)		
Clear cell	11 (5%)	0.97 (0.74–1.44)		2.88 (2.00–4.56)		10 (91%)	1 (9%)		11 (100%)	0 (0%)	0.290	9 (90%)	1 (10%)		
Unknown	4 (2%)	–		–		–			–	–	–	–		–	
Ovarian cancer type															
Type I	14 (7%)	0.52 (0.43–1.00)		2.07 (1.19–2.92)	0.034	12 (86%)	2 (14%)	0.676	14 (100%)	0 (0%)	0.342	13 (93%)	1 (7%)	0.650	
Type II	183 (91%)	0.85 (0.57–1.36)		4.09 (2.63–6.16)	0.001	147 (80%)	34 (19%)		170 (93%)	11 (6%)	0.743	161 (89%)	20 (11%)		
Variable	Number (%)	mRNA expression values (arbitrary units)	Somatic mutations	DNA methylation status											
-------------------	------------	--	-------------------	------------------------											
		BRCA1 Median (IQR)	BRCA2 Median (IQR)	BRCA1 Non-mutated (%)	BRCA2 Non-mutated (%)	BRCA1 Mutated (%)	BRCA2 Mutated (%)	Unmethylated (%)	Methylated (%)	P value					
Unknown	4 (2%)	0.90 (0.57–1.40)	–	–	–	–	–	–	–	–					
BRCA1 mutation			–	–	–	–	–	–	–	–					
Wild type	163 (81%)	0.90 (0.57–1.40)	3.48 (2.23–5.48)	0.014	0.001	141 (87%)	21 (13%)	0.024							
Mutate	36 (18%)	0.66 (0.42–0.89)	5.92 (3.27–8.38)	–	–	35 (100%)	0 (0%)	–	–	–					
n.a.	2 (1%)	–	–	–	–	–	–	–	–	–					
BRCA2 mutation			–	–	–	–	–	–	–	–					
Wild type	188 (94%)	0.82 (0.53–1.29)	3.84 (2.46–6.16)	0.073	0.346	166 (89%)	20 (11%)	0.862							
Mutate	11 (6%)	1.59 (0.59–2.39)	3.40 (1.97–4.18)	–	–	10 (91%)	1 (9%)	–	–	–					
n.a.	2 (1%)	–	–	–	–	–	–	–	–	–					
BRCA1/2 mutation			–	–	–	–	–	–	–	–					
Wild type	152 (76%)	0.88 (0.55–1.33)	3.48 (2.26–5.51)	0.178	0.015	131 (87%)	20 (13%)	0.033							
Mutate	47 (24%)	0.68 (0.44–1.35)	5.14 (2.80–7.55)	–	–	45 (98%)	1 (2%)	–	–	–					
n.a.	2 (1%)	–	–	–	–	–	–	–	–	–					
BRCA1 DNA methylation		Unmethylated 178 (89%)	0.88 (0.58–1.35)	<0.001	0.001	–	–	–	–	–					
Methylated	21 (11%)	0.20 (0.14–0.46)	5.52 (3.99–8.21)	–	–	–	–	–	–	–					
BRCA2 DNA methylation		Unmethylated 168 (100%)	0.78 (0.53–1.28)	3.68 (2.36–6.01)	–	–	–	–	–	–					
Methylated	0 (0%)	–	–	–	–	–	–	–	–	–					

Bold values indicate $P < 0.05$
Table 2. Univariate survival analysis in 201 ovarian cancer patients

Variable	Progression-free survival	Overall survival		
	Median, years (95% CI)	P value		
		Median, years (95% CI)	P value	
A				
Age ≤62.3 years	2.05 (1.47–2.63)	0.805	8.20 (5.63–10.78)	**0.006**
Age >62.3 years	1.81 (1.13–2.50)		3.35 (2.68–4.02)	
FIGO stage				
I/II	n.r.	**<0.001**	n.r.	
III/IV	1.48 (1.10–1.86)	3.62 (3.06–4.18)		
Tumor grade				
1/2	2.05 (1.23–2.87)	6.24 (2.82–9.67)	0.057	
3	1.97 (1.16–2.78)	3.62 (3.03–4.21)		
Residual disease				
Macroscopically tumor-free	n.r.	**<0.001**	13.03 (n.r.)	**<0.001**
Any tumor residual	1.25 (1.06–1.44)	2.68 (1.83–3.53)		
Histology				
HGSOC	1.77 (1.35–2.18)	**0.027**	3.62 (3.13–4.12)	**0.006**
LGSOC	n.r.		n.r.	
Endometrioid	5.98 (n.r.)	11.06 (n.r.)		
Clear cell	1.81 (1.10–2.53)	2.72 (n.r.)		
Ovarian cancer type				
Type I	n.r.	0.068	n.r.	0.022
Type II	1.91 (1.52–2.29)	3.82 (2.11–5.52)		
BRCA1 DNA methylation				
No	2.00 (1.41–2.59)	4.54 (2.55–6.53)	0.521	
Yes	1.95 (0.46–3.45)	4.89 (2.25–7.53)		
BRCA1 mRNA expression				
Low	2.02 (1.38–2.65)	5.74 (3.63–7.85)	**0.012**	
High	0.87 (0.00–1.82)	1.66 (0.00–5.00)		
Subgroup analysis				
BRCA1 non-mutated				
Low	2.06 (1.03–3.10)	0.169	4.89 (2.88–6.90)	**0.023**
High	0.87 (0.00–1.82)		1.67 (0.00–5.00)	
BRCA1 mutated				
Low	2.00 (1.60–2.39)		8.20 (4.52–11.88)	–
High	–	–	–	–
BRCA2 mRNA expression				
Low	n.r.	**0.004**	n.r.	**0.001**
High	1.81 (1.41–2.22)	3.70 (2.78–4.62)		
B				
Age ≤62.3 years	1.98 (1.34–2.62)	0.590	6.86 (4.23–9.50)	**0.012**
Age >62.3 years	1.77 (1.27–2.26)		3.32 (2.63–4.01)	
FIGO stage				
I/II	n.r.	**<0.001**	n.r.	**<0.001**
III/IV	1.47 (1.10–1.84)	3.43 (3.01–3.85)		
Tumor grade				
2	1.90 (1.40–2.41)	5.74 (2.79–8.68)	0.177	
3	1.95 (1.20–2.71)	3.55 (3.01–4.08)		
Residual disease				
Macroscopically tumor-free	5.98 (n.r.)	**<0.001**	13.03 (n.r.)	**<0.001**
Any tumor residual	1.25 (1.06–1.44)	2.55 (1.58–3.51)		
Histology				
HGSOC	1.77 (1.35–2.18)	3.62 (3.13–4.12)	**0.029**	
HGEOC	5.11 (1.10–2.53)	8.94 (5.85–12.02)		
HGCCOC	1.81 (1.10–2.53)	2.72 (n.r.)		
BRCA1 DNA methylation				
No	1.91 (1.35–2.47)	3.92 (2.09–5.76)	0.531	
Yes	1.95 (0.51–3.40)	3.71 (1.65–5.77)		
BRCA1 mRNA expression				
Low	1.98 (1.34–2.62)	4.89 (2.74–7.04)	**0.004**	
High	0.87 (0.02–1.72)	1.65 (0.68–2.63)		
Subgroup analysis				
BRCA1 non-mutated				
Low	1.95 (1.07–2.84)	0.094	3.94 (1.94–5.94)	**0.011**
High	0.87 (0.02–1.72)	1.65 (0.68–2.63)		
BRCA1 mutated				
Low	2.00 (1.80–2.19)		8.20 (3.28–13.12)	–
Table 2 continued

Variable	Progression-free survival	Overall survival		
	Median, years (95% CI)			
	P value	Median, years (95% CI)	P value	
BRCA2 mRNA expression				
Low	n.r.	0.006	n.r.	0.002
High	1.81 (1.40–2.23)	3.62 (2.97–4.27)		
Subgroup analysis				
BRCA1 non-mutated				
Low	n.r.	0.022	n.r.	0.005
High	1.65 (1.19–2.11)	3.43 (2.96–3.90)		
BRCA1 mutated				
Low	7.49 (n.r.)	12.58 (n.r.)	0.461	
High	1.98 (1.62–2.34)	6.03 (0.28–11.78)		
C				
Age ≤62.3 years	1.81 (1.20–2.42)	5.74 (2.89–8.58)	0.035	
>62.3 years	1.68 (1.07–2.29)	3.32 (2.74–3.89)		
FIGO stage				
I/II	n.r.	<0.001	7.78 (1.38–14.18)	0.049
III/IV	1.47 (1.09–1.84)	3.55 (3.15–3.94)		
Tumor grade				
1/2	1.65 (1.10–2.20)	3.82 (3.15–6.29)	0.257	
3	1.95 (1.49–2.42)	3.55 (3.10–3.99)		
Residual disease				
Macroscopically tumor-free	3.57 (0.00–7.23)	<0.001	8.17 (2.26–14.08)	<0.001
Any tumor residual				
BRCA1 DNA methylation				
No	1.77 (1.33–2.21)	3.62 (3.07–4.17)	0.750	
Yes	1.95 (0.92–2.99)	3.71 (2.02–5.40)		
BRCA1 mRNA expression				
Low	1.84 (1.51–2.17)	3.71 (2.73–4.69)	0.027	
High	0.87 (0.14–1.60)	1.65 (0.42–2.88)		
Subgroup analysis				
BRCA1 non-mutated				
Low	1.68 (1.20–2.17)	3.62 (3.07–4.18)	0.051	
High	0.87 (0.14–1.60)	1.65 (0.42–2.88)		
BRCA1 mutated				
Low	1.98 (1.70–2.26)	–	6.03 (1.35–10.71)	
High	–	–	–	
BRCA2 mRNA expression				
Low	n.r.	0.006	n.r.	0.005
High	1.67 (1.31–2.03)	3.39 (3.01–3.77)		
Subgroup analysis				
BRCA1 non-mutated				
Low	n.r.	0.016	n.r.	0.001
High	1.46 (1.06–1.87)	3.39 (2.87–3.91)		
BRCA1 mutated				
Low	7.49 (n.r.)	12.58 (n.r.)	0.571	
High	1.98 (1.69–2.27)	4.08 (0.00–9.78)		

The significance level (P) was determined by log-rank test HGCCCOC high grade clear cell ovarian cancer, HGEOC high grade endometrioid ovarian cancer, HGSOCSO high grade serous ovarian cancer, LGSOCL low grade serous ovarian cancer, n.r. not reached A: Progression free and overall survival in 201 ovarian cancer patients B: Subgroup analysis: progression free and overall survival in 183 high grade OC patients C: Subgroup analysis: progression free and overall survival in 129 high grade serous OC patients. The optimal cutoff points for BRCA1/2 mRNA expression were calculated by the Youden index for overall survival (BRCA1 expression: low/ high; <90th percentile; BRCA2 expression: low/ high; >21st percentile). Bold values indicates P < 0.05.

Table 1; Fig. 1e). Interestingly we observed a direct association between BRCA1 DNA-methylation and BRCA2 mRNA-expression (P = 0.001; Table 1; Fig. 1f). Eighteen percent of undifferentiated tumors (tumor grade 3, N = 17) and 16% of tumors from patients with any residual disease (N = 15) were positive for BRCA1 DNA-methylation (P = 0.004, and P = 0.013; respectively; Table 1). Epigenetic silencing of BRCA1 was mutually exclusive with BRCA1 mutations (Table 1). No BRCA2 DNA-methylation was detected in the analyzed OC tissue samples.

Survival analysis of BRCA1 and BRCA2 mRNA-expression and DNA-methylation-status

In order to investigate the prognostic value of BRCA1/2 mRNA-expression levels we identified the optimal threshold for “high” and “low” expression using Youden’s index. Univariate survival analysis in the entire cohort showed that a lower BRCA1 mRNA-expression (<90th percentile) was associated with a favorable OS (P = 0.012; Table 2A; Fig. 2a). This was also observed in the subgroups of high grade OC (P = 0.004; Table 2B) and high grade serous OC (P = 0.027; Table 2C). A detailed analysis revealed that these prognostic effects were only observed in patients with BRCA1 non-mutated (wildtype) tumors in all patients (P = 0.023; Table 2A; Fig. 2b) and in high grade OC patients (P = 0.011; Table 2B). Lower BRCA2-expression levels (<21st percentile) were associated with favorable PFS and OS in the entire cohort (P = 0.004; P = 0.001; Table 2A; Fig. 3a, b), in high grade OC (P = 0.006; P = 0.002; Table 2B) and in high grade serous OC (P = 0.006; P = 0.001; Table 2C). A detailed analysis showed again the prognostic relevance of low BRCA2 mRNA-expression only in patients with BRCA1 non-mutated tumors. This was true for the entire patient cohort (PFS: P = 0.012; OS: P = 0.002; Table 2A; Fig. 3c, d), high grade OC (PFS: P = 0.022; OS: P = 0.005; Table 2B) and high grade
serous OC (PFS: $P = 0.016$; OS: $P = 0.001$; Table 2C). No impact of $BRCA1$ gene promoter methylation-status on progression-free survival and overall-survival rates was found (Table 2).

Cox-regression survival analysis confirmed the prognostic significance of $BRCA1$ mRNA-expression for OS in the whole cohort (HR$_{death}$ 2.0 (1.1–3.7), $P = 0.028$; Table 3A) but not in high grade serous OC (Table 3B). However, independency of the prognostic value of $BRCA2$ mRNA-expression was approved in patients with high grade serous OC, representing 64% of the entire cohort, as well for PFS (HR$_{progression}$ 2.4 (1.0–5.7), $P = 0.045$) as for OS (HR$_{death}$ 2.9 (1.2–6.8), $P = 0.015$); (Table 3B).

To answer the question whether the identified favorable survival in tumors with low $BRCA1/2$-mRNA expression may be interpreted by platinum-sensitivity we compared the expression levels in $BRCA1$-wildtype tumors from platinum-refractory and fully platinum-sensitive patients. We found statistically significant lower $BRCA1$- and $BRCA2$ mRNA-expression levels in platinum-sensitive tumors ($P = 0.004$ and $P = 0.045$; Supplemental Fig. 1).

DISCUSSION

$BRCA1/2$ belong to genes that play key roles in the homologous recombination repair, which represents the main mechanism to repair DNA double-strand breaks. While $BRCA1$ is multifunctional, $BRCA2$ functions almost exclusively in homologous recombination by recruiting an essential homologous recombination protein RAD51C to double-strand break sites. Our investigations revealed higher $BRCA1/2$-expression on the transcriptome level in OC tissues in comparison with non-neoplastic fallopian tube tissue. The cause of this finding may be the higher proliferation

Fig. 1 $BRCA1$ and $BRCA2$ mRNA-expression in ovarian tissues. **a** $BRCA1$ mRNA-expression in 12 non-neoplastic fallopian tubes and 192 OC tissues, **b** $BRCA2$ mRNA-expression in 11 non-neoplastic fallopian tubes and 168 OC tissues. **c** $BRCA1$ and **d** $BRCA2$ mRNA-expression according the $BRCA1$ mutation-status. **e** $BRCA1$ and **f** $BRCA2$ mRNA-expression according the $BRCA1$ DNA-methylation-status.
rate in malignant tissues which together with genetic instability may increase the need for more DNA damage repair. In accordance higher BRCA1/2-expression was also found in high-grade (Type II) tumors. This notion is supported by Gudas et al. who suggest that the upregulation of BRCA1-expression by steroid hormones is caused indirectly by increasing proliferation of breast cancer cells.21

Multivariate Cox-regression analysis showed a favorable OS for low BRCA1-expression in the whole cohort of included patients. For BRCA2-expression in the subgroup of high grade serous OC an independent, prognostic value in terms of PFS and OS was confirmed. These findings could be explained by a reduced capacity of DNA damage repair via homologous recombination in cancers with low BRCA1/2 expression, enhancing the therapeutic effects of DNA-crosslinking agents such as platinum compounds. In fact, low BRCA1/2 mRNA-expression in BRCA1-wildtype cancers was associated with fully platinum-sensitive disease and high expression was evidenced in platinum-refractory disease. These BRCA mRNA-expression data are in line with the plethora of data showing that OC patients carrying a BRCA1 or 2 germline mutation exhibit high responsiveness to platinum-based chemotherapy consecutively associated with an improved clinical outcome. In recurrent OC, similar beneficial therapeutic effects in BRCA mutation carriers have been reported for PARP-inhibitors and for trabectedin a drug that is crosslinking the DNA in the minor groove.

Until to date there are only very few studies on BRCA-expression in OC and these are only dealing with the expression of BRCA1 but not with that of BRCA2. In a retrospective analysis of OC specimens obtained from patients included in the GOG-172 study comparing intraperitoneal (IP) with intravenous (i.v.) platinum/taxane chemotherapy, Lesnock et al. assessed BRCA1-expression on the protein level with regard to clinical outcome and responsiveness to chemotherapy considering especially the efficacy of the high loco-regional platinum doses reached by IP administration. The authors revealed that patients with cancers exhibiting BRCA1-immunostaining in less than 10% of the tumor cells was the only subgroup exhibiting a significant benefit in OS from a platinum-based IP chemotherapy.22 In addition, Carser et al. found also a strong response improvement to classical i.v. platinum-based chemotherapy in tumors with absent or low BRCA1-expression in immunohistochemistry. This effect was translated into a favorable PFS and OS in affected patients and the predictive value of BRCA1-immunostaining was confirmed in the multivariate analysis.23 These considerations were indirectly confirmed by Swisher et al., showing that in primary BRCA1-mutated OCs, recurrent platinum-resistant tumors exhibited secondary genetic changes within the BRCA1 gene, which interestingly were accompanied by restored expression of BRCA1-protein.24 Furthermore, Quinn et al. reported from an in vitro and in vivo approach that inhibition of BRCA1-expression via siRNA knock-down leads to increased sensitivity to platinum therapy but impaired responsiveness to anti-microtubule agents such as taxanes. In a small series of patients, they corroborated their in vitro data by showing a significant improved OS in patients with tumors exhibiting low levels of BRCA1-mRNA.25 Also in this study BRCA2-expression has not been accessed.

In breast cancers exhibiting low BRCA2 mRNA-levels, a significantly higher 5-year disease free survival rate was shown.26 Interestingly, our study emerged that in BRCA1-mutated OC the expression of BRCA1-transcripts was lower, but in contrary those of BRCA2 were significantly higher as compared with BRCA1-wildtype cancers. Furthermore, also down regulation of BRCA1-transcripts by methylation of the BRCA1-promotor was associated with increased BRCA2 mRNA levels. In contrast in cancers carrying a BRCA2-mutation, no up- or down-regulation of the BRCA1/2 mRNA was found. However, the latter findings should be interpreted with caution due to the low number of BRCA2-mutated cancers within our cohort. The reason of the “compensatory” upregulation of BRCA2-mRNA in low BRCA1-expressing cancers remains speculative because there is no exact knowledge on how the BRCA protein expression is regulated either in normal or in malignant tissues. High BRCA-expression could determine a distinct phenotype with a high constitutive expression or could reflect a transitory upregulation triggered by various situations (e.g., proliferative or genomic stress). Thus, it is theoretically possible that the functional loss of multifunctional BRCA1 is leading to genetically instable cancers requiring higher BRCA2 recruitment for repeated double-strand break repair.

In BRCA1 we found DNA-methylation in 11% of all tumors, which is in accordance with previously published data.27 We could not identify a prognostic relevance of BRCA1 DNA-methylation for PFS and OS consistent with recent studies.28,29 Our data show that low BRCA1/2 mRNA-expression confers platinum-hypersensitivity to OCs. As clinical studies in recurrent OC recently evidenced that the sensitivity of high grade serous OC to PARP-inhibitor maintenance therapy is particularly related to
Fig. 3 Kaplan Meier survival analysis and BRCA2 mRNA-expression in OC patients according the 21st percentile as cut-off value. a Progression-free survival and b overall survival in 168 OC patients. c Progression-free survival and d overall survival in 136 patients with BRCA1-wildtype tumors.

Table 3. Multivariable analysis in ovarian cancer patients

Variable	Progression-free survival	Overall survival		
	HR of progression (95% CI)	P value	HR of death (95% CI)	P value
A				
Age				
Low vs. high (<or>median age)	–	–	1.9 (1.3–2.9)	0.001
FIGO stage I/III vs. III/IV	2.6 (1.2–5.5)	0.013	1.1 (0.6–2.1)	0.692
Residual disease after surgery	2.7 (1.6–4.6)	<0.001	3.5 (2.1–6.0)	<0.001
Histology HGSOC vs. Others	0.9 (0.6–1.5)	0.675	0.6 (0.4–1.1)	0.087
Ovarian cancer type				
Type I vs. Type II	–	–	0.9 (0.3–2.7)	0.829
BRCA1 mRNA expression	Low vs. high (<or>optimal cut-off)	1.7 (0.8–3.5)	0.028	
BRCA2 mRNA expression	Low vs. high (<or>optimal cut-off)	1.9 (1.0–3.7)	0.058	
B				
Age	Low vs. high (<or>median age)	–	2.1 (1.3–3.4)	0.002
FIGO stage I/III vs. III/IV	2.3 (0.8–6.3)	0.119	1.1 (0.5–2.4)	0.812
Residual disease after surgery	2.4 (1.3–4.7)	0.008	3.2 (1.7–6.0)	<0.001
BRCA1 mRNA expression	Low vs. high (<or>optimal cut-off)	–	1.7 (0.8–3.5)	0.151
BRCA2 mRNA expression	Low vs. high (or>optimal cut-off)	2.4 (1.0–5.7)	0.045	

The significance level was determined by Cox regression analysis HR hazard ratio. Bold values indicates P < 0.05.
the response to the actual platinum-based chemotherapy. Our data are tempting to speculate that BRCA1/2 mRNA levels may be reliable biomarkers to also predict responsiveness of cancers to PARP-inhibitors. The same may be true for other drugs whose effectiveness is related to platinum-sensitivity such as trabectedin.

ACKNOWLEDGEMENTS
We thank Inge Gaugg, Martina Fleischer and Annemarie Wiedemair for excellent technical assistance. This work was supported by the Verein zur Krebsforschung in der Frauenheilkunde (no grant number is applicable), the Österreichische Krebshilfe - Krebsgesellschaft Tirol (15010/2015) and AstraZeneca (NCR-15-11443).

AUTHOR CONTRIBUTIONS
H.F., A.G.Z., and C.M. developed the study concept, H.F., A.G.Z., C.M., and I.T. designed the project and edited the manuscript, I.T., V.W., C.D., G.S., S.W., S.S., and S.F.L. were involved in data acquisition, I.T., V.W., C.D., G.S., S.W., S.S., S.F.L., and H.F. performed quality control of data and algorithms, I.T., V.W., C.D., G.S., S.W., S.S., S.F.L., C.M., H.F., and A.G.Z. analyzed and interpreted data and reviewed the final manuscript, I.T. and H.F. performed statistical analyses, I.T., H.F., and A.G.Z. prepared the manuscript.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41416-018-0217-4.

COMPETING INTERESTS
The authors declare no competing interests.

DATA AVAILABILITY
The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

ETHICAL APPROVAL
The study was reviewed and approved by the Ethics committee of the Medical University of Innsbruck (reference number: AN2015-0038 346/4.17) and the Medical University of Innsbruck (reference number: AN2015-0038 346/4.17) and conducted in accordance with the Declaration of Helsinki.

NOTE
This work is published under the standard license to publish agreement. After 12 months the work will be freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

REFERENCES
1. Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2011).
2. Saha, S. et al. Decreased expression of BRCA2 accelerates sporadic breast cancer progression. Indian J. Surg. Oncol. 6, 378–383 (2015).
3. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. Cancer J. Clin. 67, 7–30 (2017). CA.
4. Holschneider, C. H. & Berek, J. S. Ovarian cancer: epidemiology, biology, and prognostic factors. Semin. Surg. Oncol. 19, 3–10 (2000).
5. Johannsson, O. T., Ranstam, J., Borg, A. & Olsson, H. Survival of BRCA1 breast and ovarian cancer patients: a population-based study from southern Sweden. J. Clin Oncol. 16, 397–404 (1998).
6. Risch, H. A. et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am. J. Hum. Genet. 68, 700–710 (2001).
7. Permutt-Wey, J. & Sellers, T. A. Epidemiology of ovarian cancer. Methods Mol. Biol. 472, 413–437 (2009).
8. Harter, P. et al. BRCA1/2 mutations associated with progression-free survival in ovarian cancer patients in the AGO-OVAR 16 study. Gyn. Oncol. 140, 443–449 (2016).
9. Ledermann, J. A. PARP inhibitors in ovarian cancer. Ann. Oncol. 27, i40–i44 (2016).
10. Pharoah, P. D., Easton, D. F., Stockton, D. L., Gayther, S. & Ponder, B. A. Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer Res. 59, 868–871 (1999).
11. Sabatier, R. et al. Ovarian cancer patients at high risk of BRCA mutation: the constitutional genetic characterization does not change prognosis. Fam. Cancer 15, 497–506 (2016).
12. Kotsopoulos, J. et al. Ten-year survival after epithelial ovarian cancer is not associated with BRCA mutation status. Gyn. Oncol. 140, 42–47 (2016).
13. Goebel, G. et al. Elevated mRNA expression of CHAC1 splicing variants is associated with poor outcome for breast and ovarian cancer patients. Br. J. Cancer 106, 189–198 (2012).
14. Notaro, S. et al. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers. BMC Cancer 16, 589 (2016).
15. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).
16. Press, J. Z. et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8, 17 (2008).
17. Eads, C. A. et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 61, 3410–3418 (2001).
18. Youden, W. J. Index for rating diagnostic tests. Cancer 3, 32–35 (1950).
19. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).
20. Takaoka, M. & Mihi, Y. BRCA1 gene: function and deficiency. Int. J. Clin. Oncol. 23, 36–44 (2017).
21. Gudas, J. M., Nguyen, H., Li, T. & Cowan, K. H. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 55, 4561–4565 (1995).
22. Lesnok, J. L. et al. BRCA1 expression and improved survival in ovarian cancer patients treated with intraperitoneal cisplatin and paclitaxel: a Gynecologic Oncology Group Study. Br. J. Cancer 108, 1231–1237 (2013).
23. Carser, J. E. et al. BRCA1 is both a prognostic and predictive biomarker of response to chemotherapy in sporadic epithelial ovarian cancer. Gyn. Oncol. 123, 492–498 (2011).
24. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).
25. Quinn, J. E. et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin. Cancer Res. 13, 7413–7420 (2007).
26. Egawa, C., Miyoshi, Y., Taguchi, T., Tarnaki, Y. & Noguchi, S. High BRCA2 mRNA expression predicts poor prognosis in breast cancer patients. Int. J. Cancer 98, 879–882 (2002).
27. Cunningham, J. M. et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status. Sci. Rep. 4, 4026 (2014).
28. Yang, D. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306, 1557–1565 (2011).
29. Ruscito, I. et al. BRCA1 gene promoter methylation status in high-grade serous ovarian cancer patients—a study of the tumour Bank ovarian cancer (TOC) and ovarian cancer diagnosis consortium (OVCAD). Eur. J. Cancer 50, 2090–2098 (2014).
30. Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).