Laboratory diagnostics of malaria

L. Siahaan

Parasitology Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
*Corresponding author: lambok_fkusu@yahoo.com

Abstract. Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages. Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

1. Introduction

Until nowadays, malaria continues to be a major health problem in the tropical and temperate regions of the world. Malaria is caused by Plasmodium parasites that infect humans through the bites of an infected female mosquito of the genus Anopheles and destroys red blood cells. Of the four known human malaria parasites, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. The first two species cause the most infections worldwide. Meanwhile, Plasmodium falciparum is the most pathogenic and frequently fatal if not promptly given treatment.

The effort to eradicate malaria is based on comprehensive interventions, including strategies to diagnosis the disease. In malaria-endemic regions, many patients are presumptively treated for malaria on the basis of symptoms alone (fever), although malaria is not the only cause of fever. Presumptive treatment of fever with antimalarials is widely practiced to reduce malaria-attributable morbidity, and mortality, especially at the primary health, carewhere microscopy is not available.

Overdiagnosis of malaria implies under-diagnosis and inappropriate treatment of nonmalarial febrile illness while a high proportion of such illnesses are self-limiting diseases and other diseases. The extensive deployment of anti-malarial drugs has provided strong selective pressure on human malaria parasites to evolve mechanisms of resistance and the increased cost of treatments. World Health Organization (WHO) is trying to eliminate presumptive drug treatment of malaria and currently makes the tentative recommendation that parasite-based diagnosis should be used in all cases. All suspected malaria cases are confirmed with a parasite-based diagnostic test prior to therapy.
unless parasitologic diagnostic capabilities are not available. Early and accurate diagnosis of malaria is needed in improving the effectiveness of malaria management. There are four principal methods for diagnosing malaria, such as symptomatic (clinical manifestation), microscopy, antigen test (RDTs) and molecular methods (PCR). All of these techniques are reviewed below.

2. Clinical diagnostic
Diagnosing malaria is mostly done by clinical diagnosis when laboratory facilities are not available everywhere in the country. Meanwhile, in other areas, symptomatic diagnosis also often used, but followed by one of the other methods. The clinical diagnosis of malaria depends almost entirely upon the competence of the examiner. A diagnosis of clinical malaria was based on fever or history of fever. The typical symptoms of malaria (fever, chills, headache, nausea, vomiting, muscle aches, malaise, etc.) are not generally typical and diagnosis by symptoms alone can mislead and even harmful. Even if the examiner happens to be extraordinarily good at identifying malaria, the clinical diagnosis comes with a very important pitfall. The accuracy of the clinical approach to diagnosing malaria is not sufficient for deciding on offering anti-malarial drugs.

Tabitha (2005) used clinical algorithms to reduce the use of drugs that are not on target. However, algorithms for diagnosing malaria are site-specific, and thus the algorithms have to be field tested before recommending their use for these purposes. The poor performance of clinical algorithms in identifying children in need of anti-malarial treatment is in line with the review by Chandramohan (2002), who suggested that their use would lead to drug wastage in areas of low endemicity and an increased failure to treat in those of high endemicity. Presumptive treatment of all fevers with anti-malarial would no more seem a logical and affordable choice. For this reason, the WHO policy changed, recommending restricting antimalarial treatment to laboratory-confirmed cases.

Presumptive treatment of all fevers with anti-malarial would no more seem a logical and affordable choice, not only for economic reasons but also because it is feared that a massive use of the new drugs might induce selection and diffusion of artemisinin-resistant. For this reason, the WHO policy changed, recommending restricting antimalarial treatment to laboratory-confirmed cases. Ideally, the decision to use an anti-malarial drug should be based on a definitive demonstration of parasites in the peripheral blood film.

3. Microscopic diagnostic
The standard method for diagnosing malaria is through microscopy. However, this form of diagnosis is not available or affordable in most of the peripheral health facilities. Simple light microscopy examinations of Giemsa-stained blood films are the most widely practiced method. Microscopic examination has many advantages, including accuracy, availability, low cost, and ability to quantify parasites and monitor parasite clearance. The others advantages are adifferentiation between species, and ability to distinguish asexual parasite stages from gametocytes.

The blood may be prepared in two ways, the so-called thick blood smear, and the thin blood smear. For a thick blood smear, a drop (approximately 6–10 mL) is spread on a clean, dry microscope slide. After drying, the thick blood smear is stained with a Giemsa stain. During the 10–60 minutes of staining in this aqueous medium, the erythrocytes lyse because of osmotic swelling, leaving the leukocytes and parasites, if present, largely (but not entirely) intact. The advantage of lysing erythrocytes is that more blood may be examined. The reported limit of detection for a thick blood smear is 4–20 parasites/μL, but this limit is higher (50–100 parasites/μL) under field conditions with many factors contributing variation and reduced sensitivity as recently summarized.

The parasite density is the number of malaria parasites in the circulation, which is usually expressed per μL (or as a percentage of infected RBC) and is usually estimated by microscopy by examining the thick film until we have counted 200 WBC, and all the infected RBC that we detect in the same microscopic fields. This is a rough estimate, of course, moreover in severe infection schizonts tend to be sequestrated in the spleen, the liver, the brain and other internal organs and therefore a very high parasite burden may not be mirrored in the peripheral circulation.
The disadvantages of thick blood smears are that the parasites are not viewed in situ within the erythrocyte, are bunched up and less morphologically recognizable, may be hidden behind or above leukocytes, and may be more easily confused with heartifact. If a smaller volume (approximately 2 mL) of blood is spread into a monolayer in the preparation of a traditional blood smear and briefly immersed in methanol, the erythrocytes are fixed and will not subsequently lyse during staining.

The resulting preparation is commonly referred to as a thin blood smear. Although the thin blood smear limits the examination to less blood, it provides the microscopist the ability to discern morphologic details of the parasite within an erythrocyte and facilitates parasite species identification. Many, if not most, diagnosticians, therefore, combine the use of both smears, thereby optimizing the probability of finding a parasite by using the thick blood smear and identifying it by using the thin blood smear. Species identification and quantification may be clinically important.

When using blood smears, parasites at lower densities may be missed by microscopy for a variety of reasons. The variation in results among unskilled slide readers can be high, particularly at low parasitemias. Manual leukocyte counts are used as the multiplier in the calculation of parasitemia in thick blood smears, and either leukocyte or erythrocyte counts can be used for thin blood smear quantitation, depending on the method.

Despite the advantages, routine microscopy is known to be of low quality due to poor training, the low skill level of laboratory staff, poor infrastructure, the inadequacy of equipment and reagents and unreliable electricity. However, good quality of microscopy is difficult to implement and maintain. It is labor intensive and requires highly skilled personnel and regular quality control. In many malaria-endemic settings, experience alone has often been relied upon to qualify technicians.

4. Rapid Diagnostic Test (RDTs)

The use of malaria rapid diagnostic tests (RDTs) is recommended by WHO when reliable microscopy is not available. RDTs identify Plasmodium antigens using immunochromatographic techniques. The test is based on the capture of parasite antigen from the peripheral blood using monoclonal antibodies prepared against malaria antigen target and conjugated to either a liposome containing selenium dye or gold particles in mobile phase. Most tests have a control line, that is the only one that appears in a negative test, while in the positive test a second line appears, usually within 15 minutes or less, making the reading straightforward and reproducible.

Malaria antigens commonly targeted by RDTs are HRP-2, parasite lactate dehydrogenase (pLDH) and Plasmodiumaldolase (PL-also). Moody (2002) demonstrated that Plasmodium species secrete these proteins thus the accuracy of RDTs are measured based on them. P. falciparum has been shown to secrete lots of HRP-2 more than HRP-1 and HRP-3 whereas pLDH and PL-also are found in other species.

RDTs based on HRP-2 protein have shown a variable accuracy for malaria infection in field studies, with microscopy taken as the gold standard. Most HRP2-based tests have been shown to have a high accuracy [pooled sensitivity: 92.7% (95% CI 91.0—94.5%) and pooled specificity: 99.2% (95% CI 98.2—99.9%)]16. A review reported results ranging from 87.5% to 100% for sensitivity and from 52%- to 99.5% for specificity. Subsequently, Plasmodium lactate dehydrogenase (pLDH), which is conserved across all Plasmodium spp., was used as a target antigen. The pLDH-based RDTs not only had lower accuracy estimates [pooled sensitivity: 67.1% (95% CI 62.8—71.3%) and pooled specificity: 98.4% (95% CI 97.5-99.6%)] but were unable to distinguish between the different Plasmodium spp.

RDT’s performance is influenced by the target antigen used, the incidence of malaria, the degree of parasitemia and the predominant Plasmodium spp. in the region. Azikiwe (2012) showed that P. falciparum, P. vivax, and P. malariae showed 94.6%, 92.9% and 94.7% degree of sensitivity using RDTs in malaria concentration of ≥1000/µL respectively, but, they showed percentages lower than an average of 58% sensitivity in malaria concentration of ≤100/µL. Another study showed that several RDTs are available which consistently detect malaria at low parasite densities (200 parasites/µL), have low false positive rates. In other studies, their sensitivity was lower than 95%, the minimum level
recommended by the WHO5,17. Over 400 parasites/μL, the sensitivity was higher than 95% and approached 100% over 4,000 parasites/μL. RDTs have a very high negative predictive value19 and can be used widely in fever case management to exclude malaria infection in malaria-endemic settings6. But vice versa, RDTs can also be used to detect asymptomatic malaria, especially by conducting periodic mass blood surveys20.

However, contrarily to traditional microscopy, RDTs do not provide an estimate of the parasite density, and their specificity for malaria-attributable fever is highly variable, being very low in some epidemiological contexts. Use of RDTs to support diagnosis resulted in a 39% reduction in anti-malarial drugs prescriptions that translates to approximately a 2-fold reduction in anti-malarial drugs prescriptions across all epidemiological settings5. But in another study showed that the adherence of health workers to the test result was poor, with many patients being treated for malaria even after a negative test result, causing an obvious waste of resources22.

5. Polymerase Chain Reaction (PCR)

In hypoendemic areas, diagnosis of malaria requires more sensitive tools such as polymerase chain reaction (PCR) capable of identifying as few as 1-10 parasites/μl. The proportion of infections missed by microscopy may increase up to 88% when PCR prevalence declines to 10%. Another meta-analysis showed that parasite prevalence was measured by both PCR and microscopy found that microscopy only detects about 50% of the parasite carriers detected by PCR, and points out that this percentage decreases even further with decreasing transmission23.

Discrepancies have often been found between microscopy and PCR results for the determination of asymptomatic Plasmodium carriage, where PCR is always superior. Baliraine (2009) reported 20.7% difference (12.6% by microscopy and 33.3% by PCR), Dal-Bianco (2007) found 25% difference (27% by microscopy and 52% by PCR) and May (1999) showed 19% difference (48.9% by microscopy and 67.9% by PCR)24.

In general, PCR assays are more sensitive than microscopic examination for malaria diagnosis, but they are labor-intensive, time-consuming, requires electric power which cost a fortune, cannot easily be considered for use than others and have amplicon contamination problems2. Numerous PCR assays for malaria diagnosis, including conventional and real-time PCR techniques, have been developed on mostly genus- or species-specific sequences of the Plasmodium 18S subunit rRNA gene25. Of the three PCR assays tested, the real-time PCR is the least time-consuming method and gives the most sensitive detection limit of the three PCR assays.

6. Conclusion

Malaria management policies cannot be the same everywhere. In highly endemic areas where laboratory support is not available, the policy of offering anti-malarial drugs to all febrile illnesses is appropriate. The consequences of delays in offering appropriate treatment for malaria probably outweigh the benefits of reducing the wasteful use of anti-malarial drugs9. RDTs are now replacing microscopy almost everywhere in endemic countries. In where malaria incidence is (or has become) low or very low, RDTs have clearly a key role in limiting unnecessary malaria prescriptions.

Asymptomatic malaria cases are known to be prevalent in endemic areas26 and are generally untreated, resulting in a significant source of gametocytes that may serve as a reservoir of disease transmission27. Efforts to control or to eradicate malaria should take into account asymptomatic Plasmodium carriers because elimination of parasites in only symptomatic patients will not be enough as long as the pool of asymptomatic carriers will continue to act as a parasite reservoir28. The reservoir is the cause of fluctuations in malaria cases in many areas29. Asymptomatic malaria could be detected when RDTs were performed in all inhabitants, not only used in symptomatic patients. Periodic mass blood surveys are necessary to identify asymptomatic malaria cases in hypoendemic areas20. Detection of asymptomatic malaria in primary health care facilities can be improved through the optimization of the routine microscopic examination and introducing serial microscopic examination in patients at a higher risk of malaria but presenting with no fever30.
The renewed efforts to eradicate malaria, require surveillance systems that strive to identify the last parasite carriers. New and even more sensitive diagnostic tools, may also be useful to identify pockets of infected people, regardless the presence of fever, and treat them, both to their benefit and that of the community31. The usefulness of PCR, RDTs, and serology was, therefore, explored as techniques for surveillance. In peripheral centers, PCR is not available, and lab technicians lack expertise in microscopy. Moreover, malaria treatment should be initiated as soon as possible.

Microscopy has traditionally been considered the standard gold test for malaria diagnosis. Under optimum conditions, microscopy can detect 50 parasites/µL of blood. Incapablehands it is very sensitive for parasitemia ≤50/µL12. Detection of asymptomatic malaria in primary health care facilities can be improved through the optimization of the routine microscopic examination and introducing serial microscopic examination in patients at a higher risk of malaria30. Many health workers consider the microscopic examination of Giemsa-stained thick and thin blood films to be the most suitable diagnostic instrument for malaria control. Not only can it differentiate between species (as many RDTs can do), but it can also provide detailed information about stages present and their counts per unit volume of blood (which no RDTs can do)12.

References
[1] Goncalves L, Subtil A, de Oliveira M R, do Rosário V and Lee P W 2012 Bayesian latent class models in malaria diagnosis PLoS ONE 7(7)
[2] Azikiwe C C A, Ifezulike C C, Siminialayi I M, Amazu L and Enye J C 2012 A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits As. Pac. J. Trop. Biomed. (2012) 307-10
[3] Murphy S C, Shott J P, Parikh S, Etter P and Prescott W R 2013 Review article: Malaria diagnostics in clinical trials Am. J. Trop. Med. Hyg. 89(5) 824–39
[4] D’Acremont V, Lengeler C, Mshinda H, Masiwa D and Tanner M 2009 Time to move from presumptive malaria treatment to laboratory confirmed diagnosis and treatment in African children with fever PLoS Med. 6 e252
[5] Zeno B, Sodimon B S, Joris M, Cristian P and Andrea A 2010 Accuracy of a rapid diagnostic test on the diagnosis of malaria infection and of malaria - attributable fever during low and high transmission season in Burkina Faso Malaria J. 9 192
[6] World Health Organization 2010 Guidelines for the treatment of malaria second edition (Geneva: World Health Organization)
[7] Siahaan L 2008a Gejala dan tanda klinis malaria di daerah endemis Majalah Kedokteran Nusantara 58(6)
[8] Tabitha W M, Mahfudh M, Hiza D, Robert W S and Kevin M 2005 Clinical algorithms for malaria diagnosis lack utility among people of different age groups Trop. Med. Int. Health 10(6) 530–6
[9] Chandramohan D, Jaffar S and Greenwood B 2002 Use of clinical algorithms for diagnosing malaria Trop. Med. Int. Health 7(1) 45-52
[10] Bloland P B 2001 Drug resistance in malaria (Geneva: World Health Organization)
[11] Payne D 1988 Use and limitations of light microscopy for diagnosing malaria at the primary health care level Bull. WHO 66 621–6
[12] Wongsrichanalai C, Barcus M J, Muth S, Sutamihardja A and Wernsdorfer W H 2007 A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT) Am. J. Trop. Med. Hyg. 77 119–27
[13] Zeno B, Federico G and Dora B 2012 Diagnosis of malaria infection Mediterr. J. Hematol. Infect. Dis. 4(1) e201
[14] Murphy S C, Prentice J L, Williamson K, Wallis C K and Fang F C 2012 Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials Am. J. Trop. Med. Hyg. 86 383–94
[15] Moody A 2002 Rapid diagnostic test for malaria parasites Clin. Microbiol. Rev. 15(1) 66-78
[16] Ochola L B, Vounatsou P, Smith T, Mabaso M L H and Newton C R J C 2006 The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard *Lancet Infect. Dis.* 6 582-8

[17] Murray C K, Gasser R A Jr, Magill A J and Miller R S 2008 Update on rapid diagnostic testing for malaria *Clin. Microbiol. Rev.* 21 97-110

[18] Siahaan L 2011 Comparative of rapid test with microscopy to diagnose malaria diseases. (Perbandingan rapid diagnostic test dan pemeriksaan mikroskopik pada diagnosis malaria) KESMAS Jurnal Kesehatan Masyarakat Nasional 5(6) 250-3

[19] Kyabayinze D J, Tibenderana J K, Odong G W, Rwakimari J B and Counihan H 2008 Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda *Malaria J.* 7 221

[20] Siahaan L, Alrasyid H, Akbari R, Panggabean M and Panggabean Y 2016 Rapid diagnostic tests to detect asymptomatic malaria in primary health care facilities in hypoendemic areas *Fam. Med. Prim. Care Rev.* 4 470-2

[21] Mosha J F, Conteh L, Tediosi F, Gesase S and Bruce J 2010 Cost implications of improving malaria diagnosis: findings from north-eastern Tanzania *PLoS One* 5 e8707

[22] Daniel J K, Caroline A, Damalie N, Jane N and Helen C 2010 Use of RDTs to improve malaria diagnosis and fever case management at primary health care facilities in Uganda *Malaria J.* 9 200

[23] Okell L C, Ghani A, Lyons E and Drakeley C 2009 Submicroscopic Plasmodium falciparum infection in endemic population surveys: a systematic review and meta-analysis *J. Infect. Dis.* 200 1509-17

[24] Bo W, Soe-Soe H, Cho C, Jin-Hee H and Yang C 2014 Comparison of microscopy, nested-PCR, and real-time-PCR assays using high-throughput screening of pooled samples for diagnosis of malaria in asymptomatic carriers from areas of endemicity in Myanmar *J. Clin. Microbiol.* 52(6) 1838–45

[25] Shokoples S E, Ndao M, Kowalewska G K and Yanow S K 2009 Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections *J. Clin. Microbiol.* 47 975–80

[26] Bottius E, Guanzirorli A, Trape J F, Rogier C and Konate L 1996 Malaria: even more chronic in nature than previously thought: evidence for subpatent parasitemia detectable by PCR *Transact. Royal Soc. Trop. Med. Hyg.* 90(1) 15–9

[27] Alves F P, Gil L H S, Marrelli M T, Ribolla P E M and Camargo E P 2005 Asymptomatic carriers of Plasmodium sp. as infection source for malaria vector mosquitoes in the Brazilian Amazon *J. Med. Entomol.* 42(5) 777–9

[28] Stresman G H, Kamanga A and Moono P 2010 A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia *Malaria J.* 9(1) 265

[29] Siahaan L 2008b Malaria pasca bencana alam di kabupaten Nias Selatan *Majalah Kedokteran Nusantara* 41(3)

[30] Siahaan L, Panggabean M and Panggabean Y 2018 Optimization of diagnostic procedures in primary health services to detect asymptomatic malaria *Fam. Med. Prim. Care Rev.* 1

[31] McMorrow M L, Aidoo M and Kachur S P 2011 Malaria rapid diagnostic tests in elimination settings—can they find the last parasite? *Clin. Microbiol. Infect.* 17(11) 1624-31

[32] Guerin P J, Olliaro P, Nosten F, Druilhe P and Laxminarayan R 2002 Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development *Lancet Infect. Dis.* 2 564–73