A Decision Procedure for Guarded Separation Logic
Complete Entailment Checking for Separation Logic with Inductive Definitions

CHRISTOPH MATHEJA, Technical University of Denmark and ETH Zurich
JENS PAGEL and FLORIAN ZULEGER, TU Wien

We develop a doubly exponential decision procedure for the satisfiability problem of guarded separation logic—a novel fragment of separation logic featuring user-supplied inductive predicates, Boolean connectives, and separating connectives, including restricted (guarded) versions of negation, magic wand, and septraction. Moreover, we show that dropping the guards for any of the preceding connectives leads to an undecidable fragment.

We further apply our decision procedure to reason about entailments in the popular symbolic heap fragment of separation logic. In particular, we obtain a doubly exponential decision procedure for entailments between (quantifier-free) symbolic heaps with inductive predicate definitions of bounded treewidth (SL\text{btw})—one of the most expressive decidable fragments of separation logic. Together with the recently shown 2ExpTime-hardness for entailments in said fragment, we conclude that the entailment problem for SL\text{btw} is 2ExpTime-complete—thereby closing a previously open complexity gap.

CCS Concepts: • Theory of computation → Automated reasoning; Separation logic; Abstraction; Logic and verification; Problems, reductions and completeness;

Additional Key Words and Phrases: Decision procedures, entailment, magic wands, inductive predicates

ACM Reference format:
Christoph Matheja, Jens Pagel, and Florian Zuleger. 2023. A Decision Procedure for Guarded Separation Logic Complete Entailment Checking for Separation Logic with Inductive Definitions. ACM Trans. Comput. Logic 24, 1, Article 1 (January 2023), 76 pages.
https://doi.org/10.1145/3534927

1 INTRODUCTION
Separation logic (SL) [Ish-tiaq and O’Hearn 2001; Reynolds 2002] is a popular formalism for Hoare-style verification of imperative, heap-manipulating programs. At its core, SL extends first-order logic with two connectives—the separating conjunction \(\star \) and the separating implication \(\star \) (a.k.a. magic wand)—for concisely specifying how resources, such as program memory, can be split-up and extended, respectively. Based on these connectives, SL enables local reasoning, i.e., sound verification of program parts in isolation, about the resources employed by a program—a key property responsible for SL’s broad adoption in static analysis [Berdine et al. 2007; Calcagno and Distefano]
Regardless of the flavor of formal reasoning, any automated approach based on SL ultimately relies on a solver for discharging either the satisfiability problem—does the SL formula ϕ have a model?—or the entailment problem—is every model of ϕ also a model of ψ, or, equivalently, is $\phi \land \neg \psi$ unsatisfiable? Although both problems are undecidable (and equivalent) in general [Calcagno et al. 2001], various decidable SL fragments, in which entailments cannot be reduced to the (un)satisfiability problem because negation is forbidden, have been proposed in the literature, e.g., Berdine et al. [2004], Cook et al. [2011], Echenim et al. [2020a], and Iosif et al. [2013].

In particular, the symbolic heap fragment—an idiomatic form of SL formulas with \star but without $\neg\star$ that is often encountered when manually writing program proofs [Berdine et al. 2005b]—has received a lot of attention. Symbolic heaps appear, for instance, in the automated tools Infer [Calcagno and Distefano 2011], Sleek [Chin et al. 2012], Songbird [Ta et al. 2016], Grasshopper [Piskac et al. 2014a], Verifast [Jacobs et al. 2011], SLS [Ta et al. 2018], and Spen [Enea et al. 2017]. To support complex data structure specifications, symbolic heaps are often enriched with systems of inductive predicate definitions (SIDs). For example, Figure 1 depicts an SID specifying trees with linked leaves as well as an illustration of a model (nil-pointers have been omitted for readability).

The precise form of permitted SIDs has a significant impact on the decidability and complexity of reasoning about symbolic heaps: Brotherston et al. [2014] showed that satisfiability is ExpTime-complete for symbolic heaps over arbitrary SIDs, whereas the entailment problem is undecidable in general (cf. [Antonopoulos et al. 2014; Iosif et al. 2014]). To deal with entailments, tools rely on specialized methods for fixed predicates [Berdine et al. 2004; Cook et al. 2011; Piskac et al. 2013, 2014b], decision procedures for restricted classes of SIDs [Iosif et al. 2013, 2014], or incomplete approaches, e.g., fold/unfold reasoning [Chin et al. 2012] or cyclic proofs [Brotherston et al. 2011].

Among the largest decidable classes of symbolic heaps with user-supplied SIDs is the fragment of symbolic heaps with bounded treewidth (SL_{btw}) developed by Iosif et al. [2013], which supports rich data structure definitions, such as the one in Figure 1. Further examples include doubly linked lists and binary trees with parent pointers. Decidability is achieved by imposing three syntactic conditions on SIDs, which allow reducing the entailment problem for SL_{btw} to the (decidable) satisfiability problem for monadic second-order logic (MSO) over graphs of bounded treewidth (cf. [Courcelle and Engelfriet 2012]). This reduction yields an elementary decision procedure (by analyzing the resulting quantifier depth, it is in 4ExpTime). However, it is infeasible in practice. Furthermore, there is a “complexity gap” between the preceding decision procedure and a recent result proving that the entailment problem for SL_{btw} is at least 2ExpTime-hard [Echenim et al. 2020b].

The goal of this article is twofold. First, we look beyond symbolic heaps and study guarded separation logic (GSL)—a novel SL fragment featuring both standard Boolean and separating connectives (including restricted forms of negation and magic wand) as well as SIDs supported
by SL\textsubscript{btw}. In particular, we develop a doubly exponential decision procedure for the \textit{satisfiability problem} of GSL. Second, we show that the \textit{entailment problem} for SL\textsubscript{btw} can be reduced to the satisfiability problem for GSL because an SL\textsubscript{btw} formula ϕ entails an SL\textsubscript{btw} formula ψ iff the GSL formula $\phi \land \neg \psi$ is unsatisfiable. Consequently, we close the aforementioned complexity gap and conclude that the entailment problem for SL\textsubscript{btw} is 2ExpTime-complete.

Guarded separation logic. Inspired by work on first-order logic with \textit{guarded negation}, we propose the fragment GSL of \textit{guarded separation logic}. GSL supports negation \neg, magic wand \star and \textit{separation} \bowtie [Brochenin et al. 2012] but requires each of these connectives to appear in conjunction with another GSL formula ϕ, i.e., $\phi \land \neg \psi$, $\phi \land (\psi \star \theta)$, or $\phi \land (\psi \bowtie \theta)$, acting as its \textit{guard}; hence, the name. By construction, a guard is never equivalent to true and thus cannot be dropped.

While we consider the satisfiability problem of quantifier-free GSL formulas, we admit arbitrary inductive predicates as long as they can be defined in SL\textsubscript{btw}, which supports existential quantifiers. Hence, the formulas that follow belong to GSL and are thus covered by our decision procedure.

\[
\begin{align*}
\text{tll}(x, y, z) & \land \neg x \mapsto (\text{nil}, \text{nil}, z) & & \text{(a tree with linked leaves and at least three nodes)} \\
(x \mapsto (y, z) & \star \text{tll}(y, \ell, r) \star \text{tll}(z, r, \text{nil})) & \land \neg \text{tll}(x, \ell, \text{nil}) & \text{(encoding of an entailment in SL\textsubscript{btw})} \\
(x \mapsto (y, z) & \star \text{tll}(z, r, \text{nil})) & \land (\text{tll}(y, \ell, r) & \star \text{tll}(x, \ell, \text{nil})) & \text{(the root’s left subtree is missing)}
\end{align*}
\]

Abstraction-based satisfiability checking. Our decision procedure for GSL satisfiability—and thus also for SL\textsubscript{btw} entailments—is based on the \textit{compositional computation} of an abstraction of program states, i.e., the universe of potential models, that \textit{refines} the satisfaction relation \models of GSL.\footnote{We will properly formalize all notions mentioned in this section in the remainder of this article.} In other words, we will develop an abstract domain \mathcal{A} and an abstraction function $\text{abst}: \text{States} \rightarrow \mathcal{A}$ with the following three key properties:

1. \textit{Refinement:} Whenever $\text{abst}(\sigma) = \text{abst}(\sigma')$ holds for two states σ and σ', then σ and σ' satisfy the same GSL formulas, i.e., the equivalence relation induced by our abstraction function,

 \[
 \sigma \equiv_{\text{abst}} \sigma' \iff \text{abst}(\sigma) = \text{abst}(\sigma'),
 \]

 refines the satisfaction relation \models of GSL.

2. \textit{Compositionality:} For each logical connective supported by GSL, the abstraction function abst can be computed compositionally from already known abstractions. For example, for the separating conjunction \star, this means that there exists an effectively computable operation $\bullet: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ such that for all states σ and σ',

 \[
 \text{abst}(\sigma \bowtie \sigma') = \text{abst}(\sigma) \bullet \text{abst}(\sigma'),
 \]

 where $\sigma \bowtie \sigma'$ denotes the “disjoint union” of two states used to assign semantics to the separating conjunction.

3. \textit{Finiteness:} The abstract domain \mathcal{A} has only finitely many elements after fixing the number of free variables.

Put together, refinement and compositionality allow lifting the abstraction function over states

\[
\text{abst}: \text{States} \rightarrow \mathcal{A}
\]

to a function over models of GSL formulas

\[
\text{abst}_{\text{GSL}}: \text{GSL} \rightarrow \mathcal{A}, \quad \phi \mapsto \{\text{abst}(\sigma) \mid \sigma \in \text{States}, \sigma \models \phi\}.
\]
Provided we can compute the abstraction \(\text{abst}_{\text{GSL}} \) of every atomic GSL formula, we can then use \(\text{abst}_{\text{GSL}} \) for satisfiability checking: the GSL formula \(\phi \) is satisfiable iff \(\text{abst}_{\text{GSL}}(\phi) \neq \emptyset \). Finiteness then ensures that the set \(\text{abst}_{\text{GSL}}(\phi) \) is finite; it can thus be computed and checked for emptiness.

We will provide a more detailed overview in Section 6 of our abstraction once we have precisely defined the semantics of guarded separation logic formulas.

Contributions. The main contributions of this article can be summarized as follows:

- We study the decidability of (quantifier-free) guarded separation logic (GSL)—a novel separation logic fragment that goes beyond symbolic heaps with user-defined inductive definitions by featuring restricted (guarded) versions of the magic wand, septraction, and negation.
- We show that omitting the guards for any of the three operators—magic wand, septraction, and negation—leads to an undecidable logic. Together with our decidability results, this yields an almost tight decidability delineation between separation logics that admit user-defined inductive predicate definitions.
- We present a decision procedure for the satisfiability problem of GSL based on the compositional computation of finite abstractions, called \(\Phi \)-types, of potential models.
- We analyze the complexity of the preceding decision procedure and show that satisfiability of GSL is decidable in 2ExpTime.
- We apply our decision procedure for GSL to decide, again in 2ExpTime, the entailment problem for (quantifier-free) symbolic heaps with user-defined inductive definitions of bounded-tree; in light of the recently shown 2ExpTime-hardness by Echenim et al. [2020b], we obtain that said entailment problem is 2ExpTime-complete—thereby closing an existing complexity gap.

This article unifies and revises the results of two conference papers [Katelaan et al. 2019; Katelaan and Zuleger 2020]. We note that both papers only sketch the main ideas and most of the proofs were omitted. In this article, we dedicate a whole section to the careful motivation of our abstraction (see Section 6) and present all proofs (an early version of this article was put on arXiv [Pagel et al. 2020] to convince reviewers of the work by Katelaan and Zuleger [2020] of the correctness of our results). We remark that we have significantly improved the presentation and reworked all of the technical details in comparison to our earlier technical report [Pagel et al. 2020].

Organization of the article. After agreeing on basic notational conventions in Section 2, we briefly recap separation logic in Section 3. In particular, we consider user-defined inductive definitions and the bounded treewidth fragment upon which our own SL fragments are based.

We introduce the novel fragment of guarded separation logic in Section 4. Section 5 shows that even small extensions of guarded separation logic lead to an unsatisfiable satisfiability problem. The remainder of this article is concerned with developing a decision procedure for guarded separation logic and, by extension, the entailment problem for symbolic heaps with inductive definitions of bounded treewidth. Section 6 informally discusses the main ideas underlying our decision procedure. The formal details are worked out in Sections 7 through 9. In particular, in Section 9, we present the decision procedure itself and analyze its complexity. Finally, we conclude in Section 10. To improve readability, some technical proofs have been moved to the appendix at the end of this article.

2 **NOTATION**

Throughout this article, we adhere to the following basic notational conventions.
Sequences. Finite sequences are denoted either in boldface, e.g., \(\mathbf{x} \), or by explicitly listing their elements, e.g., \((x_1, \ldots, x_k) \); the empty sequence is \(\emptyset \). The length of the sequence \(x \) is \(|x|\). We call \(x \) repetition free if its elements are pairwise different. To reduce notational clutter, we often omit the brackets around sequences of length one, i.e., we write \(x \) instead of \((x) \). The sequence \(x \cdot y \) is obtained from concatenating the sequences \(x \) and \(y \). \(A^* \) is the set of all finite sequences over some set \(A \); \(A^+ \) is the set of all non-empty finite sequences over \(A \).

Sets from sequences. We frequently treat sequences as sets if the ordering of elements is irrelevant. For example, \(x \in \mathbf{x} \) states that the sequence \(\mathbf{x} \) contains the element \(x \), \(\mathbf{x} \cup \mathbf{y} \) is the set consisting of all elements of the sequences \(\mathbf{x} \) and \(\mathbf{y} \), and so forth.

Partial functions. We denote by \(f : A \rightarrow B \) a (partial) function with domain \(\text{dom}(f) \triangleq A \) and image \(\text{img}(f) \triangleq B \). If \(f \) is undefined on \(x \), i.e., \(x \notin \text{dom}(f) \), we write \(f(x) = \bot \). Moreover, \(f \circ g \) is the composition of the functions \(f \) and \(g \) mapping every \(x \) to \(f(g(x)) \). We interpret the size \(|f|\) of a partial function \(f \) as the cardinality of its domain, i.e., \(|f| \triangleq |\text{dom}(f)|\); \(f \) is finite if \(|f| \) is finite.

We often describe finite partial functions as sets of mappings. The set \(\{x_1 \mapsto y_1, \ldots, x_k \mapsto y_k\} \), for example, represents the partial function that, for every \(i \in \{1, k\} \), maps \(x_i \) to \(y_i \); it is undefined for all other values. Furthermore, \(f \cup g \) denotes the (not necessarily disjoint) union of \(f \) and \(g \); it is defined iff \(f(x) = g(x) \) holds for all \(x \in \text{dom}(f) \cap \text{dom}(g) \). Formally,

\[
(f \cup g)(x) = \begin{cases}
 f(x), & \text{if } x \in \text{dom}(f), \\
 g(x), & \text{if } x \in \text{dom}(g) \setminus \text{dom}(f), \\
 \bot, & \text{otherwise.}
\end{cases}
\]

We write \(f \uplus g \) instead of \(f \cup g \) whenever we additionally require that \(\text{dom}(f) \cap \text{dom}(g) = \emptyset \). Furthermore, we denote by \(f[x/v] \) the updated partial function in which \(x \) maps to \(v \), i.e.,

\[
f[x/v](y) = \begin{cases}
 v, & \text{if } y = x, \\
 f(y), & \text{otherwise.}
\end{cases}
\]

In particular, if \(f(x) \) is undefined, \(f[x/v] \) adds \(x \) to the domain of the resulting function. By slight abuse of notation, we write \(f[x/\bot] \) to denote the function in which \(x \) is removed from the domain of \(f \). To compare partial functions, we say that function \(g \) subsumes function \(f \), written \(f \subseteq g \), if (1) \(g \) is at least as defined as \(g \) and (2) \(g \) agrees with \(f \) on their common domain. Formally,

\[
f \subseteq g \text{ iff } \text{dom}(f) \subseteq \text{dom}(g) \text{ and } \forall x \in \text{dom}(f) : f(x) = g(x).
\]

Whenever \(f \) and \(g \) map to sets or functions, we also use a weaker ordering. The relation \(f \subseteq g \) is defined as \(f \subseteq g \) but only requires that \(g(x) \) subsumes \(f(x) \) if both are defined on \(x \), i.e.,

\[
f \subseteq g \text{ iff } \text{dom}(f) \subseteq \text{dom}(g) \text{ and } \forall x \in \text{dom}(f) : f(x) \subseteq g(x).
\]

Functions over sequences. We implicitly lift partial functions \(f : A \rightarrow B \) to functions \(f : A^* \rightarrow B^* \) over sequences by pointwise application. In other words, for a sequence \((a_1, \ldots, a_k) \in A^* \), we define

\[
f((a_1, \ldots, a_k)) \triangleq f(a_1, \ldots, a_k) \triangleq (f(a_1), \ldots, f(a_k)),
\]

where, as indicated previously, we omit the brackets indicating sequences to improve readability.

Finally, we lift the update \(f[x/v] \) of a single value to sequences of values \(x = (x_1, \ldots, x_k) \) and \(v = (v_1, \ldots, v_k) \) by setting \(f[x/v] \triangleq f[x_1/v_1][x_2/v_2] \ldots [x_k/v_k] \).
Fig. 2. The syntax of a first-order separation logic with user-defined predicates (SL).

3 SEPARATION LOGIC WITH INDUCTIVE DEFINITIONS

We briefly recapitulate the basics of first-order separation logic with user-defined predicates. In other words, we introduce the syntax and semantics of both separation logic and systems of inductive definitions, the symbolic heap fragment, and the bounded treewidth fragment originally studied by Iosif et al. [2013]. Most of the presented material is fairly standard (cf., among others, [Brotherston et al. 2014; Iosif et al. 2014; Ishtiaq and O’Hearn 2001; Reynolds 2002]) with the notable exception that our semantics of pure formulas enforces the heap to be empty. A reader familiar with separation logic may skim over this section to familiarize herself with our notation.

3.1 The Syntax of Separation Logic

Figure 2 defines the syntax of first-order separation logic with user-defined predicates (SL for short), where x is drawn from a countably infinite set Var of variables, u and v are either variables or locations drawn from the countably infinite set Loc, and w is a finite sequence whose elements can be both variables and locations. In particular, notice that any location in Loc may appear as a constant in formulas. Moreover, ϕ is taken from a finite set Preds of predicate identifiers; each predicate pred is equipped with an arity $\ar(\text{pred}) \in \mathbb{N}$ that determines its number of parameters.

Informally, the meaning of the atomic formulas is as follows:

- The empty-heap predicate emp denotes the empty heap.
- The equality $u \equiv v$ and the disequality $u \not\approx v$ express that u and v alias and that they do not alias in the current program state (whose heap needs to be empty), respectively.
- The points-to assertion $u \mapsto w$ states that the address u points to a heap-allocated object consisting of $|w| > 0$ fields, where the i-th field stores the i-th location of the sequence w.
- The predicate call $\text{pred}(w)$ allows to refer to user-defined data structures, e.g., lists and trees.

The SL formulas emp and $u \mapsto v$ are called spatial atoms because they describe the spatial layout of the heap, whereas (dis-)equalities are called pure atoms [Ishtiaq and O’Hearn 2001] because they do not depend on the heap. Apart from atoms, SL formulas are built from

- classical propositional connectives (i.e., conjunction (\land), disjunction (\lor), and negation (\neg)),
- existential (\exists) and universal (\forall) quantifiers, and
- separating connectives (i.e., separating conjunction \star and implication (or magic wand) \rightarrow).

As usual, one can derive additional operators such as standard implication $\phi \rightarrow \psi \triangleq \neg\phi \lor \psi$ and septraction $\phi \otimes \psi \triangleq \neg(\phi \star \neg \psi)$ (cf. [Brochenin et al. 2012; Thakur et al. 2014]).

The semantics of the classical connectives is standard. Let us briefly compare their meaning with the intuition underlying the separating connectives. Whereas $\phi \land \psi$ means that the program state satisfies both ϕ and ψ simultaneously, $\phi \star \psi$ denotes that (the heap component of) the program state can be split into two disjoint parts that separately satisfy ϕ and ψ. Similarly, whereas $\phi \rightarrow \psi$ means that every program state satisfying ϕ also satisfies ψ, $\phi \star \psi$ means that the extension of the program state with any program state that satisfies ϕ yields a program state that satisfies ψ.

The magic wand is useful for weakest-precondition reasoning, e.g., to express memory allocation [Batz et al. 2019; Ishtiaq and O’Hearn 2001; Reynolds 2002]. However, automated verification
tools often do not or only partially support the magic wand, because its inclusion quickly leads to undecidability [Appel 2014; Blom and Huisman 2015; Schwerhoff and Summers 2015].

3.1.1 Substitution. Various constructions in this article involve syntactically replacing variables and locations—we thus give a generic definition that allows performing multiple substitutions at once. Let \(y, z \in (\text{Var} \cup \text{Loc})^* \) be sequences of the same length, where \(y \) is repetition free. We denote by \(\phi[y/z] \) the formula obtained from \(\phi \) through (simultaneous) substitution of each element in \(y \) by the element in \(z \) at the same position; Appendix A.1 provides a formal definition. For example,

\[
(\exists x. x \mapsto (y, 7) \star \text{ls}(y, x))[\langle y, 7 \rangle / \langle 3, x \rangle] = \exists x. (x \mapsto (3, x)) \star \text{ls}(3, x).
\]

Moreover, we write \(\phi(z) \) as a shortcut for the substitution \(\phi[\text{vars}(\phi)/z] \).

3.2 The Stack-Heap Model

We interpret SL in terms of the widely used stack-heap model, which already appears in the seminal papers of Ishtiaq and O’Hearn [2001] and Reynolds [2002]. A stack-heap pair \(\langle s, h \rangle \) consists of a stack \(s \) assigning values in \(\text{Val} \) to variables and a heap \(h \) assigning values in \(\text{Val} \) to allocated memory locations taken from \(\text{Loc} \subseteq \text{Val} \).

We fix the set of locations \(\text{Loc} \triangleq \mathbb{N}_{>0} \). To simplify the technical development, we will work with the sets of values \(\text{Val} = \text{Loc} \) and \(\text{Val} = \text{Loc} \cup \{\text{nil}\} \), where the latter extends the former with the null pointer \(\text{nil} \).

We will mostly work with \(\text{Val} = \text{Loc} \) (and generally prefer the term locations over values), which simplifies the presentation of our decision procedure. However, we will use \(\text{Val} \triangleq \text{Loc} \cup \{\text{nil}\} \) in examples and in the undecidability proofs (in these examples and proofs, one could also replace \(\text{nil} \) by a fresh variable that refers to a location that is never allocated; hence, the use of \(\text{nil} \) in these places has been a decision of taste and presentational convenience). We later present a reduction that extends our decision procedure to the extended set of values that includes the null pointer (see Corollary 9.4). We note, however, that it would not be difficult to extend our decision procedure to directly deal with \(\text{Val} \triangleq \text{Loc} \cup \{\text{nil}\} \). We summarize that everywhere, where \(\text{nil} \) is not explicitly mentioned, the reader should identify values with locations—that is, assume \(\text{Val} = \text{Loc} \triangleq \mathbb{N}_{>0} \); in such cases, we will prefer the term locations over values. The set \(\text{Stacks} \) of stacks then consists of all finite partial functions mapping variables to locations, i.e.,

\[
\text{Stacks} \triangleq \{s \mid s: V \rightarrow \text{Val}, V \subseteq \text{Var}, |V| < \infty, \}.
\]

To treat both evaluations of variables and constant locations uniformly, we slightly abuse notation and set \(s(\nu) \triangleq \nu \) for all values \(\nu \in \text{Val} \).\(^2\) The set \(\text{Heaps} \) of heaps consists of all finite partial functions mapping allocated memory locations to sequences of locations, i.e.,

\[
\text{Heaps} \triangleq \{h \mid h: L \rightarrow \text{Val}^*, L \subseteq \text{Loc}, |L| < \infty\}.
\]

By mapping locations to sequences rather than single locations, the heap assigns every allocated memory location to the entire structure allocated at this location. This is a fairly standard—but far from ubiquitous [Calcagno et al. 2006; Reynolds 2002]—abstraction of the actual memory layout; it simplifies the memory model without losing precision as long as we do not use pointer arithmetic.

We frequently refer to stack-heap pairs \(\langle s, h \rangle \) as (program) states.

\(^2\)This convention does not affect the formal definition of stacks; in particular, their domain and image remains unchanged.
3.2.1 Location Terminology. We denote by $\text{locs}(\phi)$ the set of all locations in Loc that explicitly appear as constants symbols in SL formula ϕ. Similarly, the set of all locations appearing in heap h is $\text{locs}(h) \triangleq \text{dom}(h) \cup \bigcup_{v \in \text{img}(h)} v$; we lift this set to states $\langle s, h \rangle$ by setting $\text{locs}(\langle s, h \rangle) \triangleq \text{img}(s) \cup \text{locs}(h)$.

We often distinguish between allocated, referenced, and dangling locations $\ell \in \text{Loc}$: ℓ is allocated in heap h if $\ell \in \text{dom}(h)$; it is referenced if $\ell \in \text{img}(h)$. Finally, ℓ is dangling if it appears in h but is not allocated.

We call a variable $x \in \text{Var}$ allocated, referenced, or dangling if the location $s(x)$ is allocated, referenced, or dangling, respectively. We collect all allocated variables and all referenced variables in state $\langle s, h \rangle$ in the sets $\text{alloced}(s, h) \triangleq \{ x \mid s(x) \in \text{dom}(h) \}$ and $\text{refed}(s, h) \triangleq \{ x \mid s(x) \in \text{img}(h) \}$.

3.3 The Semantics of Separation Logic

Figure 3 defines the semantics of SL in terms of a satisfaction relation \models_{ϕ}, where the sole purpose of Φ—explained in Section 3.3.1—is to assign semantics to user-defined predicate calls. A state $\langle s, h \rangle$ that satisfies an SL formula ϕ, i.e., $\langle s, h \rangle \models_{\phi} \phi$, is called a model of ϕ.

The empty-heap predicate emp holds iff the heap is empty; equalities and disequalities between variables hold iff the stack maps the variables to identical and different locations, respectively. For (dis-)equalities, we additionally require that the heap is empty. This is non-standard, but not unprecedented [Piskac et al. 2013], and will simplify the technical development.

A points-to assertion $x \mapsto \langle y_1, \ldots, y_k \rangle$ holds in the singleton heap that allocates exactly the location $s(x)$ and stores the locations $s(y_1), \ldots, s(y_k)$ at this location. This interpretation of points-to assertions is often called a precise [Yang 2001; Colcagno et al. 2007] semantics, because the heap contains precisely the object described by the points-to assertion, and nothing else.

For the separating conjunction, $\langle s, h \rangle \models \psi \star \theta$ holds iff there exist domain-disjoint heaps h_1, h_2 such that their union (\cup, see Section 2) is h and both $\langle s, h_1 \rangle \models_{\psi} \psi$ and $\langle s, h_2 \rangle \models_{\theta} \theta$ hold. Whereas the separating conjunction is about splitting the heap, the magic wand is about extending it: $\langle s, h \rangle \models_{\phi} \phi \star \psi$ holds iff all ways to extend h with a disjoint model of ϕ yields a model of ψ.

The semantics of the Boolean connectives and the quantifiers is standard. In particular, as justified by the following lemma, the semantics of quantifiers can also be interpreted in terms of syntactic substitution rather than updating the stack (which is formally defined in Section 2).

Lemma 3.1 (Substitution Lemma). For all SL formulas ϕ, states $\langle s, h \rangle$, variables $x \in \text{fvars}(\phi)$, and locations $\ell \in \text{Loc}$, we have $(s[x/\ell], h) \models_{\phi} \phi$ iff $\langle s, h \rangle \models_{\phi} \phi[x/\ell]$.
Example 3.2.

1. \((x \mapsto y) \star (y \mapsto \text{nil})\) states that the heap consists of exactly two objects, one pointed to by \(x\), the other pointed to by \(y\); that the object pointed to by \(x\) contains a pointer to the object pointed to by \(y\); and that the object pointed to by \(y\) contains a null pointer. Put less precisely but more concisely, \(x\) points to \(y\), \(y\) points to \(\text{nil}\), and \(x\) and \(y\) are separate objects on the heap. The precise semantics of assertions guarantees that there are no other objects in the heap.

2. \((x \mapsto y) \land (z \mapsto y)\) states that (a) the heap consists of a single object \(x\) that points to \(y\) and that simultaneously (b) the heap consists of a single object \(z\) that points to \(y\). This formula is only satisfiable for stacks \(s\) with \(s(x) = s(z)\).

3. \((x \mapsto y) \star (z \mapsto y)\) states that after adding a pointer from \(x\) to \(y\) to the heap, we obtain a heap that contains a single pointer from \(z\) to \(y\). This formula is only satisfiable for the empty heap and for stacks \(s\) with \(s(x) = s(z)\).

4. \(\forall x. (x \mapsto \text{nil}) \star ((\neg \text{emp}) \star (\neg \text{emp}))\) states that the heap contains at least one pointer: no matter which variable we additionally allocate, the resulting heap can be split into two non-empty parts, so the original heap must itself have been non-empty—the formula is equivalent to \(\neg \text{emp}\).

3.3.1 Systems of Inductive Definitions. Predicates are interpreted in terms of a user-supplied SID. An SID is a finite set \(\Phi\) of rules of the form \(\text{pred}(x) \iff \phi(x)\), where \(\text{pred} \in \text{Preds}\) is a predicate symbol, \(\text{fvars}(\text{pred}) = x \in \text{Var}^*\) are the formal parameters of \(\text{pred}\) with \(|x| = \text{ar}(\text{pred})\), and \(\phi\) is an SL formula with free variables \(x\); the size \(|\Phi|\) of \(\Phi\) is the sum of the sizes of the formulas in its rules. We collect all predicates that occur in \(\Phi\) in the set \(\text{Preds}(\Phi)\). Moreover, we assume that all rules with the same predicate \(\text{pred}\) on the left-hand side have the same (repetition-free) sequence of parameters \(x\).

A stack-heap pair \(\langle s, h \rangle\) satisfies the predicate call \(\text{pred}(y)\) with respect to SID \(\Phi\) iff \(\Phi\) contains a rule \(\text{pred}(x) \iff \phi\) such that \(\langle s, h \rangle\) satisfies the rule’s right-hand side once we instantiate its formal parameters with the arguments passed to the predicate call, i.e., \(\langle s, h \rangle \models \phi(y)\).

Notice that rules involving arbitrary SL formulas—e.g., \(\text{pred}(x) \iff \neg \text{pred}(x)\)—do not necessarily lead to a well-defined semantics of predicate calls. We will restrict the formulas allowed to appear in SIDs in Section 3.4.2 to ensure that our semantics is always well defined.

Example 3.3 (Inductive Definitions).

1. Let \(\Phi_{ls}\) be the SID given by the following rules.

\[
\begin{align*}
\text{lseg}(x_1, x_2) & \iff x_1 \mapsto x_2 & \text{ls}(x_1) & \iff x_1 \mapsto \text{nil} \\
\text{lseg}(x_1, x_2) & \iff \exists y. x_1 \mapsto y \star \text{lseg}(y, x_2) & \text{ls}(x_1) & \iff \exists y. (x_1 \mapsto y) \star \text{ls}(y)
\end{align*}
\]

The predicate \(\text{lseg}(x_1, x_2)\) describes non-empty singly linked list segments with head \(x_1\) and tail \(x_2\); the predicate \(\text{ls}(x_1)\) describes those list segments that are terminated by a null pointer. Hence, the formulas \(\text{lseg}(x_1, \text{nil})\) and \(\text{ls}(x_1)\) are equivalent with respect to the SID \(\Phi_{ls}\).

2. The following SID \(\Phi_{\text{odd/even}}\) defines all non-empty list segments of odd and even length, respectively.

\[
\begin{align*}
\text{odd}(x_1, x_2) & \iff x_1 \mapsto x_2 & \text{even}(x_1, x_2) & \iff \exists y. (x_1 \mapsto y) \star \text{odd}(y, x_2) \\
\text{odd}(x_1, x_2) & \iff \exists y. (x_1 \mapsto y) \star \text{even}(y, x_2)
\end{align*}
\]

3. The SID \(\Phi_{\text{tree}}\) below defines null-terminated binary trees with root \(x_1\).

\[
\text{tree}(x_1) \iff x_1 \mapsto \langle \text{nil}, \text{nil} \rangle & & \text{tree}(x_1) \iff \exists \langle l, r \rangle. (x_1 \mapsto \langle l, r \rangle) \star \text{tree}(l) \star \text{tree}(r)
\]
3.3.2 Satisfiability and Entailment. An SL formula ϕ is satisfiable with respect to Φ iff there exists a state $\langle s, h \rangle$ such that $\langle s, h \rangle \models_{\Phi} \phi$. Moreover, the SL formula ϕ entails the SL formula ψ given SID Φ, written $\phi \models_{\Phi} \psi$, iff for all states $\langle s, h \rangle$, we have $\langle s, h \rangle \models_{\phi} \phi$ implies $\langle s, h \rangle \models_{\Phi} \psi$.

3.3.3 Isomorphic States. Our decision procedure will exploit that SL formulas cannot distinguish between individual locations—as long as formulas do not explicitly use constant locations. More formally, formulas cannot distinguish isomorphic states.

Definition 3.4 (Isomorphic States). Two states $\langle s, h \rangle$ and $\langle s', h' \rangle$ are isomorphic, written $\langle s, h \rangle \cong \langle s', h' \rangle$, iff there exists a bijection $\sigma : \text{locs}(\langle s, h \rangle) \to \text{locs}(\langle s', h' \rangle)$ such that

1. for all x, $\sigma(s(x)) = \sigma(s'(x))$, and
2. $h' = \{\sigma(l) \mapsto \sigma(h(l)) \mid l \in \text{dom}(h)\}$.

Lemma 3.5. Let ϕ be an SL formula with $\text{locs}(\phi) = \emptyset$. Then, for all states $\langle s, h \rangle$ and $\langle s', h' \rangle$,

$\langle s, h \rangle \cong \langle s', h' \rangle$ implies $\langle s, h \rangle \models_{\phi} \phi$ iff $\langle s', h' \rangle \models_{\phi} \phi$.

Proof. By induction on the structure of SL formulas. \hfill \Box

3.4 The Bounded Treewidth Fragment

Our main goal is to develop a decision procedure for entailments in an SL fragment that extends the so-called bounded treewidth fragment (SL_{btw}) of Iosif et al. [2013]. In this section, we briefly recapitulate that fragment as we will rely on similar restrictions for SIDs.

3.4.1 Symbolic Heaps. Formulas in SL_{btw} are restricted to symbolic heaps with user-supplied predicates—a popular fragment of SL that is both expressive for specifying complex heap shapes and suitable to serve as an abstract domain for program analyses (cf. [Berdine et al. 2005b, 2007; Calcagno et al. 2011]). A **symbolic heap** is a formula of the form

$$
\exists x_1, \ldots, x_k. \phi_{\text{atom}} \star \cdots \star \phi_{\text{atom}}.
$$

Notice that negation, disjunction, universal quantifiers, and magic wands are not allowed in symbolic heaps. In particular, this means—since pure formulas are evaluated in the empty heap—that there is no symbolic heap that is always satisfied, i.e., equivalent to true.

When working with symbolic heaps, it is convenient to group the atoms into (1) a spatial part collecting all points-to assertions, (2) a part collecting all predicate calls, and (3) a pure part collecting all equalities and disequalities (in that order). Hence, the set SH^2 of symbolic heaps ϕ_{sh} is given by

$$
\phi_{\text{sh}} := \exists e_\epsilon. \left((u_1 \mapsto v_1) \star \cdots \star (u_k \mapsto v_k) \star \text{pred}_{\epsilon}(w_1) \star \cdots \star \text{pred}_{\epsilon}(w_l) \right)
$$

with

$$
\begin{align*}
\epsilon & \in \text{Var}^* \\
\text{spatial part, emp for } k=0 & \text{ and } \\
\text{predicate calls, emp for } l=0 \text{ and } \\
\star u_1 \simeq v_1 \star \cdots \star u_m \simeq v_m \star u'_1 \neq v'_1 \star \cdots \star u'_n \neq v'_n. & \text{pure part, emp for } m=0, n=0, \text{ respectively}
\end{align*}
$$

3.4.2 Symbolic Heap SIDs. Our semantics of predicate calls (see Figure 3) is well defined as long as all formulas appearing in the underlying SID are symbolic heaps—a requirement that we impose throughout the remainder of this article. For instance, all SIDs in Example 3.3 only use symbolic heaps in their rules. The restriction of SID rules to symbolic heaps is standard. In fact, our semantics coincides with other semantics from the separation logic literature that—instead of replacing predicates by rules step by step—are based on least fixed points [Brotherston 2007;
3.4.3 The Bounded Treewidth Fragment. Since negation is not available, the entailment problem for symbolic heaps is genuinely different from the satisfiability problem: it is impossible to solve an entailment $\phi \models_\Phi \psi$ by checking the unsatisfiability of $\phi \land \neg \psi$, because the latter formula is not a symbolic heap. In fact, the satisfiability problem for symbolic heaps is decidable in general [Brotherston et al. 2014], whereas the entailment problem is not [Antonopoulos et al. 2014; Iosif et al. 2014]. However, various subclasses of symbolic heaps with a decidable—and even tractable [Cook et al. 2011]—entailment problem have been studied in the literature, e.g., Berdine et al. [2004], Iosif et al. [2013, 2014], and Le et al. [2017]; as such, the symbolic heap fragment has been the main focus of a recent competition of entailment solvers (SL-COMP) [Sighireanu et al. 2019]. The largest of these fragments has been developed by Iosif et al. [2013]; it achieves decidability by imposing three restrictions—progress, connectivity, and establishment—on SIDs to ensure that all models of predicates are of bounded treewidth.³

Local allocation and references. To formalize the preceding three assumptions for SIDs, we need two auxiliary definitions: we collect all variables and locations that appear on the left-hand side of points-to assertions in formula ϕ in the local allocation set $\text{lalloc}(\phi)$; analogously, the local references set $\text{lref}(\phi)$ collects all variables and locations appearing on the right-hand side of points-to assertions.

We now present the three aforementioned conditions imposed on SIDs Φ to ensure decidability of the entailment problem for symbolic heaps.

Progress. A predicate pred satisfies progress iff there exists a free variable $x \in \text{fvars}(\text{pred})$ such that, for all rules $(\text{pred}(x) \iff \phi) \in \Phi$, (1) ϕ contains exactly one point-to assertion, and (2) x is allocated in ϕ, i.e., $\text{lalloc}(\phi) = \{x\}$. In this case, we call x the root of pred. Moreover, if the i-th parameter of pred, say x_i, is its root, then we set $\text{predroot}(\text{pred}(x)) \doteq x_i$.

Connectivity. A predicate pred satisfies connectivity iff for all rules of pred, all variables that are allocated in the recursive calls of the rule are also referenced in the rule. Formally, for all rules $(\text{pred} \iff \phi) \in \Phi$ and for all calls $\text{pred}'(y)$ appearing in ϕ, we have $\text{predroot}(\text{pred'}(y)) \subseteq \text{lref}(\phi)$.

Establishment. A predicate pred is established iff all existentially quantified variables across all rules of pred are eventually allocated, or equal to a parameter. Formally, for all rules $(\text{pred}(x) \iff \exists y. \phi) \in \Phi$ and for all states (s, h), if $\langle s, h \rangle \models_\Phi \phi$, then $s(y) \subseteq \text{dom}(h) \cup s(x)$.

3.4.4 SIDs of Bounded Treewidth. We denote by ID_{btw} the set of all SIDs in which all predicates satisfy progress, connectivity, and establishment. For example, the SIDs given in Example 3.3 belong to ID_{btw}.

Theorem 3.6 (Iosif et al. 2013; Echenim et al. 2020b). The entailment problem for symbolic heaps over SIDs in ID_{btw} is decidable, of elementary complexity, and 2-EXPTIME hard.

In the remainder of this article, we strengthen the preceding theorem in two ways: first, we give a larger decidable SL fragment, and, second, we develop a 2-EXPTIME decision procedure that, by the preceding lower bounds, is of optimal asymptotic complexity. Moreover, we show that even small extensions of our fragments lead to an undecidable entailment problem.

³More precisely, when viewed as graphs, all models of the SIDs satisfying the three aforementioned restrictions have bounded treewidth. For a formal definition of treewidth, we refer the reader to the work of Diestel [2016].
3.4.5 Global Assumptions about SIDs. Unless stated otherwise, we assume that all SIDs considered in this article belong to ID_{btw}. Moreover, to avoid notational clutter, Φ always refers to an arbitrary but fixed SID in ID_{btw} unless it is explicitly given. Without loss of generality, we make two further assumptions about the rules in SIDs to simplify the technical development.

First, we assume that non-recursive rules do not contain existential quantifiers because they can always be eliminated: due to progress and establishment, all existentially quantified variables in a non-recursive rule must be provably equal to either a constant or a parameter of the predicate.

Second, to avoid dedicated reasoning about points-to assertions, we may add dedicated predicates simulating points-to assertions to every SID; we call the resulting SIDs pointer-closed.

Definition 3.7 (Pointer-closed SID). An SID Φ is pointer-closed w.r.t. ϕ iff it contains a predicate ptr_k and a single rule $\text{ptr}_k(\langle x_1, \ldots, x_{k+1} \rangle) \iff x_1 \mapsto \langle x_2, \ldots, x_{k+1} \rangle$ for all points-to assertions mapping to structures of length k in ϕ.

Since all predicates introduced by transforming an SID into a pointer-closed one satisfy progress, connectivity, and establishment, we can safely assume that SIDs in ID_{btw} are pointer-closed. As a consequence of this assumption, we consider the number of formal parameters of predicates to be at least as large as the number of fields of points-to assertions whenever we analyze complexities.

4 THE GUARDED FRAGMENT OF SEPARATION LOGIC

To obtain fragments of SL with both support for complex data structure predicates and a decidable entailment problem, we rely on the same restrictions on user-defined predicates as Iosif et al. [2013]: the semantics of predicate calls needs to be determined by SIDs taken from the bounded treewidth fragment ID_{btw}. In contrast to Iosif et al. [2013], however, we do not limit to entailments between symbolic heaps over the predicates at hand. Rather, we additionally consider reasoning about a novel (quantifier-free) guarded fragment of separation logic (GSL) featuring restricted variants of negation \neg, magic wand \ast, and septraction \oslash.

Intuitively, the guarded fragment enforces that the aforementioned connectives \neg, \ast, and \oslash only appear in conjunction with another formula restricting the possible shapes of the heap. We will show in Section 5 that this restriction is crucial: lifting it for any of these connectives yields an undecidable entailment problem—even if the remaining connectives are removed.

4.1 Guarded Formulas

The set GSL of formulas in (quantifier-free) guarded separation logic is given by the grammar

$$\phi ::= \phi_{\text{atom}} \quad (::= \text{emp} \mid u \equiv v \mid u \not\equiv v \mid u \mapsto w \mid \text{pred}(w)) \quad \text{(same atoms as SL)}$$

$$\mid \phi \ast \phi \mid \phi \land \phi \mid \phi \lor \phi \quad \text{(standard connectives)}$$

$$\mid \phi \land \neg \phi \mid \phi \land (\phi \ast \phi) \mid \phi \land (\phi \oslash \phi) \quad \text{(guarded connectives)}$$

The atoms as well as the connectives \ast, \land, and \lor are the same as for the full logic SL introduced in Section 3.1. Moreover, negation \neg, magic wand \ast, and septraction \oslash may only appear in guarded form, i.e., in conjunction with another guarded formula ϕ. Since GSL is a syntactic fragment of SL, the semantics of GSL is given by the semantics of SL presented in Section 3.3.

Example 4.1. Assume the predicate $\text{lseg}(x_1, x_2)$ represents all non-empty list segments from x_1 to x_2; a formal definition is found in Example 3.3. Moreover, consider the following guarded formulas:

1. $\text{lseg}(x, y) \land \neg x \mapsto y$ states that the heap consists of a list of length at least two.
2. $\text{lseg}(x, y) \land (\text{lseg}(y, z) \oslash \text{lseg}(x, x))$ states that the heap consists of a list segment from x to y that can be extended to a cyclic list by adding a list from y to z; it entails that x and z are aliases.
In contrast to variants of separation logic in the literature (cf. [Calcagno et al. 2011; Reynolds 2002]), our separation logic SL does not contain an atom true, which is always satisfied. Although true is, of course, definable in SL, e.g., emp ∨ ¬emp, it is not definable in GSL. In particular, x ≈ x is not equivalent to true, as our semantics of equalities and disequalities requires the heap to be empty. This is crucial: if true were definable, GSL would coincide with the set of all quantifier-free SL formulas, because we could choose true for all guards.

4.2 Guarded States and Dangling Pointers

The decision procedure developed in this article exploits that all models of guarded formulas are themselves guarded in the sense that they have only a limited amount of dangling pointers. We recall from Section 3.2.1 that a dangling pointer is a location that is not allocated; the set of all dangling locations in heap h is thus given by dangling(h) = dom(h) \ locs(h).

In the following, we first define guarded states, then show that establishment implies a models of atomic predicates to be guarded, and finally lift this result to arbitrary guarded formulas.

Definition 4.2 (Guarded State). The set GStates of guarded states is given by

\[\text{GStates} \triangleq \{ \langle s, h \rangle \mid s \in \text{Stacks}, h \in \text{Heaps}, \text{dangling}(h) \subseteq \text{img}(s) \}. \]

Guarded states are well behaved with regard to taking the union of heaps.

Lemma 4.3. Let \(\langle s, h_1 \rangle, \langle s, h_2 \rangle \in \text{GStates} \) with \(h_1 \uplus h_2 \neq \bot \). Then, \(\langle s, h_1 \uplus h_2 \rangle \in \text{GStates} \).

Proof. We observe that dangling(h₁ ∪ h₂) ⊆ dangling(h₁) ∪ dangling(h₂) ⊆ img(s). □

Furthermore, due to establishment (cf. Section 3.4.5), models of predicate calls are guarded.

Lemma 4.4. For all predicates \(\text{pred} \in \text{Preds}(\Phi) \) and all states \(\langle s, h \rangle \), we have

\(\langle s, h \rangle \models_\Phi \text{pred}(x) \) implies \(\langle s, h \rangle \in \text{GStates} \).

Proof. By induction on the number of rule applications needed to establish \(\langle s, h \rangle \models_\Phi \text{pred}(x) \); a detailed proof is found in Appendix A.2. □

We now lift the result from Lemma 4.4 from atomic predicates to arbitrary guarded formulas. We will use the following result that every model of a guarded formula satisfies a finite number of predicates conjoined by the separating conjunction.

Lemma 4.5. Let \(\phi \in \text{GSL} \) be a guarded formula with \(\text{fvars}(\phi) = x \). Then, for every state \(\langle s, h \rangle \models_\Phi \phi \), there are predicates \(\text{pred}_1 \in \text{Preds}(\Phi) \) and variables \(z_1 \subseteq x \) such that \(\langle s, h \rangle \models_\Phi \bigoplus_{1 \leq i \leq k} \text{pred}_i(z_i) \).

Proof. By structural induction on \(\phi \); see Appendix A.4 for details. □

Corollary 4.6. For all \(\phi \in \text{GSL} \) and all states \(\langle s, h \rangle \models_\Phi \phi \), we have \(\langle s, h \rangle \in \text{GStates} \).

Proof. Immediate from Lemmas 4.4 and 4.5. □

On the importance of guardedness. The fact that all appearances of negation, magic wand, and septraction in GSL are guarded by a conjunction with another GSL formula is crucial for limiting the number of dangling pointers in the preceding lemma.

For the negation and the magic wand, this is straightforward: without guards, both can be used to define true, e.g., emp ∨ ¬emp and ((x → nil) ★ (x → nil)) ★ emp. Since true is satisfied by all states, the number of dangling locations is unbounded. For the septraction ⊗, consider the following SID:

\[
\begin{align*}
\text{tl}(r, l, t) &\iff l \rightarrow t \star r \approx l \\
\text{tl}(r, l, t) &\iff \exists \langle u, v, m \rangle . (r \rightarrow \langle u, v \rangle) \star \text{tl}(u, l, m) \star \text{tl}(s_2, m, r) \\
\text{lseg}(l, t) &\iff l \rightarrow t.
\end{align*}
\]
encoding derivations of the CFGs

\[N(x_1, x_2, x_3) \iff \exists \alpha. (a \mapsto \langle \alpha, \rangle) \star A(l, x_2, m) \star B(r, m, x_3), \quad j \in \{1, 2\}, (N \rightarrow AB) \in R_j \]

\[word(x, y) \iff \exists \beta. (x \mapsto \langle \beta, \rangle) \star letter_i(a), \quad 1 \leq i \leq n \]

The \(\text{tl} \) predicate encodes a binary tree with root \(r \) and leftmost leaf \(l \) overlaid with a singly linked list segment from \(l \) to \(t \) whose nodes are the leaves of the tree. Now, assume a state \(\langle s, h \rangle \) satisfying the unguarded formula \(\text{ls}eg(l, t) \otimes \text{tl}l(l, t, t) \). In other words, there exists a heap \(h_l \) with \(\langle s, h_l \rangle \models \Phi \text{ls}eg(l, t) \) and \(\langle s, h \cup h_l \rangle \models \Phi \text{tl}l(l, t, t) \). Since each list element is a leaf of the tree in heap \(h \), we have dangling \((h) = \text{dom}(h_l) \)– a finite but unbounded set of dangling pointers.

5 BEYOND GUARDED SEPARATION LOGIC: UNDECIDABILITY PROOFS

Before we develop our decision procedure for the fragment GSL of guarded separation logic with inductive definitions of bounded treewidth, we further justify the need for guarding negation, magic wand, and separation. More precisely, we show in this section that omitting the guards for any of the preceding three operators leads to an undecidable logic. Together with our decidability results presented afterward, this yields an almost tight delineation between undecidability of separation logics that allow arbitrary SIDs in ID\(_{\text{btw}}\).

5.1 Encoding Context-Free Language in SIDs

All of our undecidability results, which are presented in Section 5.2, rely on a novel encoding of the language-intersection problem for context-free grammars—a well-known undecidable problem.

Definition 5.1 (Context-free Grammar). A context-free grammar (CFG) in Chomsky normal form is a 4-tuple \(G = \langle N, T, R, S \rangle \), where \(N \) is a finite set of non-terminals; \(T \) is a finite set of terminals, which is disjoint from \(N \); \(R \subseteq N \times (N^2 \cup T) \) is a finite set of production rules mapping non-terminals to two non-terminals or a single terminal; and \(S \in N \) is the start symbol. CFG is the set of all CFGs.

We often denote production rules \(\langle a, b \rangle \) by \(a \rightarrow b \) to improve readability. Since we assume all CFGs to be in Chomsky normal form, all rules are either of the form \(N \rightarrow AB \) or \(N \rightarrow a \), where \(N, A, B \) are non-terminals in \(N \) and \(a \) is a terminal in \(T \).

Definition 5.2. Let \(G = \langle N, T, R, S \rangle \in \text{CFG} \) and let \(u, w \in (N \cup T)^* \). We write \(u \Rightarrow w \) if there exist strings \(u_1, u_2 \in (N \cup T)^* \) and a rule \(a \rightarrow b \) such that \(u = u_1 \cdot a \cdot u_2 \) and \(w = u_1 \cdot b \cdot u_2 \). We write \(\Rightarrow^+ \) for the transitive closure of \(\Rightarrow \). The language of \(G \) is given by \(L(G) \triangleq \{ w \in T^* \mid S \Rightarrow^+ w \} \).

In the following, we exploit the following classic undecidability result (cf. [Bar-Hillel et al. 1961]).

Theorem 5.3 (Undecidability of Language Intersection). Given two CFGs \(G_1 \) and \(G_2 \), it is undecidable whether \(L(G_1) \cap L(G_2) \neq \emptyset \) holds—even if neither \(G_1 \) nor \(G_2 \) accept the empty string \(\langle \rangle \).

Encoding CFGs as SIDs. Throughout the remainder of this section, we fix a set \(T = \{a_1, \ldots, a_n\} \) of terminals and two CFGs \(G_1 \) and \(G_2 \), where we assume that their sets of non-terminals do not overlap, i.e., \(N_1 \cap N_2 = \emptyset \). Figure 4 depicts the SID \(\Phi \) encoding \(G_1 \) and \(G_2 \); for each terminal symbol \(a_i \), we introduce a predicate \(\text{letter}_i(a) \). Moreover, for each non-terminal \(N \in N_1 \cup N_2 \), there is a 4

\(^4\)It is convenient to model each terminal \(a_i \) through a single points-to assertion mapping \(a \) to \(i \) null pointers; however, it is noteworthy that, in principle, points-to assertions mapping to at most two locations suffice.
corresponding predicate encoding the derivations of G_1 and G_2 as trees with linked leaves (TLL), similar to the SID in Figure 1. The predicate word overapproximates the possible front, i.e., the list of linked leaves of the TLL; we will need it later to prove undecidability of individual fragments.

By construction, every word in $L(G_i)$ corresponds to at least one state $\langle s, h \rangle$ with $\langle s, h \rangle \models \Phi S_i(x_1, x_2, x_3)$. Furthermore, every model $\langle s, h \rangle$ of $S_i(x_1, x_2, x_3)$ corresponds to both a derivation tree5 and a word in $L(G_i)$, where the inner nodes of the TLL correspond to the derivation tree and its front corresponds to the word in $L(G_i)$.

Example 5.4. Figure 5 illustrates both a derivation tree (Figure 5(b)) and a model of our encoding (Figure 5(c)) for the CFG $G = \langle \{S, A, B, C\}, \{a_1, a_2\}, R, S \rangle$ whose rules are provided in Figure 5(a). We observe that the depicted model encodes the aforementioned derivation tree: every non-terminal is translated to a node in a binary tree (blue). The leaves of the tree are linked. They each have a successor that encodes a terminal symbol of the derivation (orange): the node contains k pointers to nil to represent terminal a_k. The list of linked leaves and orange nodes together form the induced word, i.e., $a_2 a_2 a_1 a_1 a_1$.

To show that our encoding is correct, i.e., it adequately captures the language of a given CFG, we need to refer to the word induced by a given model. We first define the terminals of such a word, which are given by the letter predicates in the models’ list of linked leaves.

Definition 5.5 (Induced Letters). Let $G = \langle N, T, R, S \rangle$ and let Φ be the corresponding SID encoding. Let $\langle s, h \rangle \models \Phi \text{ word}(x, y)$ and let $j_1, \ldots, j_m \in \{1, \ldots, n\}$ be such that

$$\langle s, h \rangle \models \Phi \forall n_1, \ldots, n_{m-1}, b_1, \ldots, b_m. ((x \mapsto \langle n_1, b_1 \rangle) \star \text{ letter}_{j_1}(b_1))$$

$$\star ((n_1 \mapsto \langle n_2, b_2 \rangle) \star \text{ letter}_{j_2}(b_2))$$

$$\star \cdots \star ((n_{m-1} \mapsto \langle y, b_m \rangle) \star \text{ letter}_{j_m}(b_m)).$$

We define the induced letters of $\langle s, h \rangle$ and x, y as $\text{ letters}(s, h, x, y) := a_{j_1} a_{j_2} \cdots a_{j_m}$.

Every model of the predicate $N(x_1, x_2, x_3)$ contains a subheap satisfying the word predicate.

Lemma 5.6. Let $G = \langle N, T, R, S \rangle$ and let Φ be its SID encoding. Let $x_1, x_2, x_3 \in \text{ Var}$, $N \in N$ and let $\langle s, h \rangle \models \Phi N(x_1, x_2, x_3) \star t$. Then there exists a unique heap $h_w \subseteq h$ with $\langle s, h_w \rangle \models \Phi \text{ word}(x_2, x_3)$.

5We do not formally define derivation trees for CFGs, as they are not required for the formal development; we refer the reader to the work of Hopcroft et al. [2007] for a thorough introduction to CFGs.
Proof. A straightforward induction shows that the models of the predicate call \(N(x_1, x_2, x_3) \) are trees with linked leaves with root \(s(x_1) \), leftmost leaf \(s(x_2) \), and successor of rightmost leaf \(s(x_3) \). We pick as \(h_w \) the heap that contains \(s(x_2) \) as well as all locations reachable from \(s(x_2) \) in \(h \). This gives us precisely the list from \(s(x_2) \) to \(s(x_3) \). Moreover, every leaf satisfies a formula of the form \(\exists a. (y \mapsto \langle z, a \rangle) \ast \text{letter}_k(a) \). Consequently, \(\langle s, h_w \rangle \models \phi \text{ word}(x_2, x_3) \). \qed

Lemma 5.6 ensures that models of our encoding of CFGs induce a word over the given alphabet.

Definition 5.7 (Induced Word). Let \(G = \langle N, T, R, S \rangle \) and let \(\Phi \) be its SID encoding. Let \(x_1, x_2, x_3 \in \text{Var} \), \(N \in \text{N} \) and let \(\langle s, h \rangle \models \Phi N(x_1, x_2, x_3) \). Let \(h_w \subseteq h \) be the unique heap with \(\langle s, h_w \rangle \models \phi \text{ word}(x_2, x_3) \). The induced word of \(\langle s, h \rangle \) and \(N \) is wordof \(N(s, h, x_2, x_3) \) \(\triangleq \) letters \(s(h_w, x_2, x_3) \).

Every word \(w \in \mathcal{L}(G) \) is then the induced word of a model of the corresponding SID encoding.

Lemma 5.8 (Completeness of the Encoding). Let \(G = \langle N, T, R, S \rangle \) and let \(\Phi \) be the corresponding SID encoding. Let \(x_1, x_2, x_3 \in \text{Var} \) and let \(w \in \mathcal{L}(G) \). Then there exists a model \(\langle s, h \rangle \) of \(S(x_1, x_2, x_3) \) with wordof \(s(h, x_2, x_3) = w \).

Proof. By mathematical induction on the number of \(\Rightarrow \) steps; see Appendix A.5. \qed

Likewise, every induced word of a model of the corresponding SID encoding is in \(\mathcal{L}(G) \).

Lemma 5.9 (Soundness of the Encoding). Let \(G = \langle N, T, R, S \rangle \) and let \(\Phi \) be its SID encoding. Let \(x_1, x_2, x_3 \in \text{Var} \) and let \(\langle s, h \rangle \models \Phi S(x_1, x_2, x_3) \). Then wordof \(S(s, h, x_2, x_3) \) \(\in \mathcal{L}(G) \).

Proof. By induction on the height \(h \) of the tree contained in \(h \); see Appendix A.6. \qed

5.2 Undecidability of Unguarded Fragments

We are now ready to prove that omitting guards leads to undecidable SL fragments. To conveniently describe these fragments, we write \(\text{SL}_{\text{btw}}(\cdot, \ldots, \cdot, \cdot) \) for the restriction of quantifier-free formulas in \(\text{SL}_{\text{btw}} \) to formulas built from all atoms as well as the additional symbols and connectives \(\cdot, 1, \ldots, k \). For example, formulas in \(\text{SL}_{\text{btw}}(\land, \ast, t) \) are built from atomic predicates, the predicate \(t \) (true), and the binary connectives \(\ast, \land \). As usual, \(t \) holds in all models, i.e., \(\langle s, h \rangle \models \Phi t \) for all states \(\langle s, h \rangle \).

First, we show that allowing \(t \) as well as both standard and separating conjunction \(\land \) and \(\ast \), i.e., \(\text{GSL} \) without disjunction or any of the guarded connectives, immediately leads to undecidability.

Theorem 5.10. The satisfiability problem for the fragment \(\text{SL}_{\text{btw}}(\land, \ast, t) \) is undecidable.

Proof. Let \(\Phi \) be the encoding of the CFGs \(G_1 = \langle N_1, T, R_1, S_1 \rangle \) and \(G_2 = \langle N_2, T, R_2, S_2 \rangle \) as described in Section 5.1. Moreover, consider the \(\text{SL}_{\text{btw}}(\land, \ast, t) \) formula \(\phi \triangleq (S_1(a, x, y) \ast t) \land (S_2(b, x, y) \ast t) \). Then \(\phi \) is satisfiable iff \(\mathcal{L}(G_1) \cap \mathcal{L}(G_2) \neq \emptyset \); see Appendix A.7 for details. \qed

Corollary 5.11. The satisfiability problem of \(\text{SL}_{\text{btw}}(\land, \ast, \neg) \) is undecidable.

Proof. This follows directly from the undecidability of \(\text{SL}_{\text{btw}}(\land, \ast, t) \) (Theorem 5.10), because \(t \) is definable in \(\text{SL}_{\text{btw}}(\land, \ast, \neg) \); for example, \(t \triangleq \neg(\text{emp} \land \neg \text{emp}) \). \qed

Corollary 5.12. The satisfiability problem of \(\text{SL}_{\text{btw}}(\land, \ast, \ast) \) is undecidable.

Proof. Follows directly from the undecidability of \(\text{SL}_{\text{btw}}(\land, \ast, t) \) (Theorem 5.10), because \(t \) is definable in \(\text{SL}_{\text{btw}}(\land, \ast, \ast) \); for example, \(t \triangleq (x \neq x) \ast \text{emp} \). \qed

Our final undecidability proof concerns unguarded septractions. We need one more auxiliary result before we can prove this result.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Lemma 5.13. Let $G_2 = \langle N_2, T, R_2, S_2 \rangle$ be the CFG fixed in Section 5.1. Moreover, let Φ be the corresponding SID encoding, word$_2(x, y) \triangleq \text{word}(x, y) \otimes S_2(a, x, y)) \otimes S_2(a, x, y)$, and let $\langle s, b \rangle$ be a state. Then $\langle s, b \rangle \models \Phi$ word$_2(x, y)$ iff $\langle s, b \rangle \models \text{word}(x, y)$ and letters$(s, b, x, y) \in L(G_2)$.

Proof. See Appendix A.8.

To prove the undecidability of separation logic in the presence of unguarded septractions, we show that $\psi \triangleq \text{word}_2(x, y) \otimes S_1(a, x, y)$ is satisfiable iff $L(G_1) \cap L(G_2) \neq \emptyset$. Intuitively, this holds because ψ is satisfiable if it is possible to replace the “word part” of models of $S_1(a, x, y)$ with the “word part” of models of $S_2(b, x, y)$.

Theorem 5.14. The satisfiability problem of $\text{SL}_{btw}(\otimes)$ is undecidable.

Proof. $\psi \triangleq \text{word}_2(x, y) \otimes S_1(a, x, y)$ is satisfiable iff $L(G_1) \cap L(G_2) \neq \emptyset$; see Appendix A.9.

We have shown that all extensions of the guarded fragment GSL, in which one of the guards is dropped, lead to an undecidable satisfiability problem. In the remainder of this article, we develop a decision procedure for GSL, keeping all guards thus indeed ensures decidability.

6 Toward a Compositional Abstraction for GSL

In Section 1, we sketched our goal of using a finite compositional abstraction that refines the satisfaction relation to decide the satisfiability problem for the separation logic fragment GSL. The same procedure then also allows deciding entailments between (quantifier-free) symbolic heaps in SH^3 with user-defined predicates (defined by rules that may, of course, contain quantifiers). The key challenge is to develop an abstraction mechanism that can deal with arbitrary user-defined predicates from the ID_{btw} fragment. To get an abstraction that satisfies refinement, we need to be able to deduce from the abstraction which predicate calls hold in the underlying model. To this end, we will abstract every state by a set of formulas that relates the state to predicates of the SID.

In the following, we introduce our abstraction, starting with a simple but insufficient idea, and then incrementally improve on it.

Purpose of this section. This section serves as a roadmap; it outlines the main concepts underlying our decision procedure and explains them informally by means of examples. We will formalize all of these concepts in follow-up sections—references to the formal details are provided where appropriate. Similarly, the remaining sections will frequently refer back to this section to either give further details on the examples or to pin-point the progress of our formalization.

6.1 First Attempt: Abstracting States by Symbolic Heaps

Our first idea is to abstract a state by the quantifier-free symbolic heaps that it satisfies:

$$\text{abst}_1(s, b) \triangleq \{ \phi \in \text{SH}^3 \mid \phi \text{ quantifier-free, } (s, b) \models \phi \}.$$

Let us analyze the properties of this abstraction function. (For the moment, we ignore whether we can actually compute this abstraction.)

6.1.1 Finiteness. The abstraction abst_1 is finite (for a fixed number of variables, given by the domain of the stack s), because there are only finitely many quantifier-free symbolic heaps up to logical equivalence: Since $\Phi \in \text{ID}_{btw}$, every predicate call in a symbolic heap ϕ has to allocate at least one free variable due to the progress property (cf. Section 3.4.3); the same holds for every points-to assertion. Consequently, every satisfiable quantifier-free formula can contain at most $|\text{fvars}(\phi)|$ many predicate calls and points-to assertions. In principle, we can, of course, “blow up”
a satisfiable formula ϕ to arbitrary size by adding \mathbf{emp} atoms and (dis-)equalities, but any fixed-aliasing constraint over $\text{fvars}(\phi)$, i.e., any fixed relationship between the free variables of formula ϕ, can be expressed with at most $|\text{fvars}(\phi)|^2$ such atoms. Hence, we are able to obtain a bound on the size of the symbolic heaps that need to be considered for constructing the abstraction.

6.1.2 Refinement. Recall that our abstraction satisfies refinement iff states leading to the same abstraction satisfy the same formulas. This immediately holds for abst_1—at least on the quantifier-free symbolic-heap fragment of GSL.

6.1.3 Compositionality. Can we also compose abstractions, i.e., can we find a (computable) operator \bullet with $\text{abst}_1(s, b_1) \bullet \text{abst}_1(s, b_2) = \text{abst}_1(s, b_1 \cup b_2)$? Unfortunately, the following example demonstrates that finding such an operator is quite challenging. Assume that Φ defines the list-segment predicate lseg (cf. Example 3.3). Moreover, consider a state $(s, b_1 \cup b_2)$ such that

- $s(u) \neq s(v)$ for all $u, v \in \{x, y, z\}$ with $u \neq v$,
- $\text{abst}_1(s, b_1) = \{\text{lseg}(x, y)\}$, $\text{abst}_1(s, b_2) = \{\text{lseg}(y, z)\}$, and $\text{abst}_1(s, b_1 \cup b_2) = \{\text{lseg}(x, z)\}$,

where we omit pure constraints in the sets $\text{abst}_1(\cdots)$ for readability. We highlight that it is a priori unclear how to infer that $\text{lseg}(x, z)$ holds in the composed state, i.e., that $\text{abst}_1(s, b_1 \cup b_2) = \{\text{lseg}(x, z)\}$—at least by relying solely on the assumptions $\text{abst}_1(s, b_1) = \{\text{lseg}(x, y)\}$ and $\text{abst}_1(s, b_2) = \{\text{lseg}(y, z)\}$. In particular, it is unclear how to derive this fact by a syntactic argument. One might turn toward an argument based on the semantics, i.e., considering the definition of lseg in Φ. However, then the preceding composition operator \bullet boils down to an entailment check $\text{lseg}(x, y) \bullet \text{lseg}(y, z) \models_{\Phi} \text{lseg}(x, z)$. Hence, we end up with a chicken-and-egg problem: we need an entailment checker to implement the composition operator \bullet that we would like to use in the implementation of our abstraction-based (satisfiability and) entailment checker.

6.2 Second Attempt: Unfolding Predicates into Forests

Next, we attempt to extend the abstraction abst_1 to get a “more syntactic” composition operation. To this end, we need to take a step back and reflect on the semantics of SIDs.

6.2.1 Unfolding Predicate Calls. According to the SL semantics (Section 3.3), $(s, b) \models_{\Phi} \text{pred}(z)$ holds iff there exists a rule $\text{pred}(x) \leftarrow \psi(x) \in \Phi$ such that $(s, b) \models_{\Phi} \psi(z)$. We say that we have unfolded the predicate pred by the preceding rule. In general, ψ may itself contain predicate calls. To prove $(s, b) \models_{\Phi} \psi(z)$, we must continue unfolding the remaining predicate calls according to rules of the respective predicates until no predicate calls remain.

It is natural to visualize an unfolding process as a tree. In fact, defining the semantics of inductive predicates based on such unfolding trees is a common approach in the literature (cf. [Iosif et al. 2013, 2014; Jansen et al. 2017; Matheja 2020]). In this article, we use a variant of unfolding trees, called Φ-trees, which we will formally introduce in Definition 7.1.

Example 6.1 (Φ-Tree). Recall the SID Φ from Figure 1, which defines the predicate tll. Figure 6(a) depicts a state (s, b) with $(s, b) \models_{\Phi} \text{tll}(x, y, z)$. Each node is labeled with a location and the stack variable evaluating to the location (if any). The depicted state (s, b) thus corresponds to

\[
s = \{x \mapsto 1, y \mapsto 4, z \mapsto 8, a \mapsto 5, b \mapsto 6, c \mapsto 7\}, \text{ and}
\]

\[
b = \{1 \mapsto \langle 2, 3, \text{nil} \rangle, 2 \mapsto \langle 4, 5, \text{nil} \rangle, 5 \mapsto \langle 6, 7, \text{nil} \rangle, 4 \mapsto \langle \text{nil}, \text{nil}, 6 \rangle, 6 \mapsto \langle \text{nil}, \text{nil}, 7 \rangle, 7 \mapsto \langle \text{nil}, \text{nil}, 3 \rangle, 3 \mapsto \langle \text{nil}, \text{nil}, 8 \rangle\}.
\]

Figure 6(b) shows a Φ-tree t corresponding to this state. Each node of t is labeled with a rule instance, i.e., a rule of the SID in which all variables—both formal parameters and existentially
A Decision Procedure for Guarded Separation Logic

Recall the entailment \models with partial Φ.

Our next abstraction attempt is to encode the existence (cf. Definition 6.1), i.e., sets of partial Φ-trees that can be combined into an unfolding tree of $\text{Iseg}(x, z)$. A partial Φ-tree is obtained by prematurely stopping the unfolding process. Consequently, such a tree may contain holes—predicate calls that have not been unfolded.

Example 6.2 (Φ-Trees with Holes). Recall the entailment $\text{Iseg}(x, y) \circ \text{Iseg}(y, z) \models \Phi \text{Iseg}(x, z)$ from earlier. Figure 7(a) shows states $\langle s, b_1 \rangle, \langle s, b_2 \rangle$ with $\langle s, b_1 \rangle \models \Phi \text{Iseg}(x, y)$ and $\langle s, b_2 \rangle \models \Phi \text{Iseg}(y, z)$. By the semantics of \circ, it holds for $b \vDash b_1 \uplus b_2$ that $\langle s, b \rangle \models \Phi \text{Iseg}(x, y) \circ \text{Iseg}(y, z)$.

How can Φ-trees be used to argue that $\langle s, b \rangle \models \Phi \text{Iseg}(x, z)$? Figure 7(b) shows a Φ-forest—a set of Φ-trees—consisting of the partial Φ-trees t_1 and t_2 with $\text{heap}(t_1) = b_1$ and $\text{heap}(t_2) = b_2$, respectively. Notice that t_1 contains a hole: since the predicate call $\text{Iseg}(4, 6)$ is not unfolded, the hole, location 4, is not allocated in the tree, even though it is the root parameter of the hole predicate $\text{Iseg}(4, 6)$. We can merge t_1 and t_2 into a larger tree by plugging t_2 into the hole of t_1, i.e., we add an edge from the hole of t_1 to the root of t_2. This is possible because the root of t_2 is labeled with the aforementioned hole predicate, $\text{Iseg}(4, 6)$. The resulting tree is a Φ-tree for $\text{Iseg}(x, z)$. In other words, it is a tree without holes whose root is labeled with a rule instance of the predicate call $\text{Iseg}(s(x), s(z))$. By merging the two trees, we verified the preceding entailment: every model of $\text{Iseg}(x, y) \circ \text{Iseg}(y, z)$ is also a model of $\text{Iseg}(x, z)$.

In fact, we go one step further and consider Φ-forests (cf. Definition 7.4), i.e., sets of partial Φ-trees. For example, the set $\{t_1, t_2\}$ illustrated in Figure 7 is a Φ-forest.

Example 6.3 (Φ-Forest). Continuing Example 6.1, Figure 8 depicts a Φ-forest $\uparrow = \{t_1, t_2, t_3, t_4\}$ that encodes one way to obtain the state $\langle s, b \rangle$ through iterative unfolding of predicate calls. Both t_1 and t_2 only partially unfold the predicates at their roots, leaving locations 5 (respectively, 6 and 7) as holes. By merging the four trees, we get the tree t from Example 6.1.
Fig. 7. States $\langle s, b_1 \rangle \models \text{seg}(x, y)$ and $\langle s, b_2 \rangle \models \text{seg}(y, z)$ and Φ-trees t_1, t_2 corresponding to the states. The tree t_1 contains one predicate call that is not unfolded, $\text{seg}(4, 6)$. We say that 4, the root of this folded predicate call, is a hole of the tree.

Fig. 8. A Φ-forest $\hat{f} = \{t_1, t_2, t_3, t_4\}$ for the state from Example 6.1, used in Example 6.3.

Our second idea toward a suitable abstraction is to abstract a state by computing all Φ-forests consisting of trees whose combined heap matches the heap of the state:

$$\text{abst}_2(s, b) \triangleq \left\{ \hat{f} \left| \hat{f} \text{ is a } \Phi\text{-forest of } (s, b) \text{ with } b = \bigcup_{t \in \hat{f}} \text{heap}(t) \right. \right\}.$$

6.2.3 Compositionality. We can define a suitable composition operation $\text{abst}_2(s, b_1) \cdot \text{abst}_2(s, b_2)$ by computing all ways to merge the Φ-forests of $\text{abst}_2(s, b_1)$ and $\text{abst}_2(s, b_2)$. This approach yields precisely the set of all Φ-forests of $\langle s, b_1 \cup b_2 \rangle$, i.e., the set $\text{abst}_2(s, b_1 \cup b_2)$ from earlier, as required.

6.2.4 Finiteness. Unfortunately, abst_2 results in an infinite abstraction due to two main issues:

Issue 1: The tree nodes are labeled with concrete locations, so the result of abst_2 differs even if the states are isomorphic, i.e., identical up to renaming of locations. Apart from leading to an infinite abstraction, distinguishing such states is undesirable as they satisfy the same GSL formulas as long as we do not explicitly use constant locations.

Issue 2: If we keep track of all Φ-forests, the size of $\text{abst}_2(s, b)$ grows with the size of b—it is unbounded. For example, the abstraction of a list segment of size n contains the forest that
consists of a single tree with \(n \) nodes, the forest that consists of \(n \) one-node trees, and all possibilities in between.

6.3 Third Attempt: Forest Projections

Our first attempt yields a finite abstraction that is not compositional, whereas our second attempt is compositional but not finite. We now construct a finite and compositional abstraction by considering an additional abstraction—called the projection—on top of \(\Phi \)-forests with holes. To this end, we denote by \(\text{rootpred}(t) \) the root and by \(\text{allholepreds}(t) \) the hole predicates of a \(\Phi \)-tree \(t \).

Example 6.4.

1. Let \(t_1, t_2 \) be the \(\Phi \)-trees from Example 6.2, which are illustrated in Figure 7(b). Then,
 - \(\text{rootpred}(t_1) = \text{lseg}(1, 6) \), \(\text{allholepreds}(t_1) = \{ \text{lseg}(4, 6) \} \), and
 - \(\text{rootpred}(t_2) = \text{lseg}(4, 6) \), \(\text{allholepreds}(t_2) = \emptyset \).
2. Let \(t_1, t_2, t_3, t_4 \) be the \(\Phi \)-trees from Example 6.3, which are illustrated in Figure 8. Then,
 - \(\text{rootpred}(t_1) = \text{tll}(1, 4, 8) \), \(\text{allholepreds}(t_1) = \{ \text{tll}(5, 6, 3) \} \),
 - \(\text{rootpred}(t_2) = \text{tll}(5, 6, 3) \), \(\text{allholepreds}(t_2) = \{ \text{tll}(6, 6, 7), \text{tll}(7, 7, 3) \} \),
 - \(\text{rootpred}(t_3) = \text{tll}(6, 6, 7) \), \(\text{allholepreds}(t_3) = \emptyset \), and
 - \(\text{rootpred}(t_4) = \text{tll}(7, 7, 3) \), \(\text{allholepreds}(t_4) = \emptyset \).

The projection of a \(\Phi \)-forest \(\dagger \) can be viewed as a GSL formula encoding, for each tree \(t \in \dagger \), a model of \(\text{rootpred}(t) \) from which models of \(\text{allholepreds}(t) \) have been subtracted, i.e.,

\[
\star_{\dagger \text{ef}} [(\star_{\text{allholepreds}(t)}) \star \text{rootpred}(t)].
\]

The goal of the projection operation is to combat Issue 2 identified previously: to restore finiteness, we keep only limited information about each unfolding tree, and remember only its root predicate and its hole predicates. The magic wand introduced by the projection operation in the formula (\(\dagger \)) allows us to maintain the compositional property of the abstraction.

Example 6.5 (Forest Projection—with Locations). Recall from Example 6.2, the states \(\langle s, h_1 \rangle \models_{\Phi} \text{lseg}(x, y), \langle s, h_2 \rangle \models_{\Phi} \text{lseg}(y, z) \), and the corresponding \(\Phi \)-trees \(t_1, t_2 \). The projection of stack \(s \) and \(\Phi \)-forest \(\{ t_1, t_2 \} \) is then the formula \((\text{lseg}(4, 6) \star \text{lseg}(1, 6)) \star (\text{emp} \star \text{lseg}(4, 6)) \).

6.3.1 Abstracting from Locations

Our goal, which we will soon complete, has been to define a compositional abstraction over states. To this end, we introduced (partial) unfolding trees. These trees are naturally defined through the instantiation of SID rules with locations. Unfortunately, locations present an obstacle toward obtaining a finite abstraction (Issue 1): we get a different abstraction even for \(\Phi \)-forests that encode the same model up to isomorphism! However, after having projected unfolding trees to formulas, we are able to reverse the instantiation of variables with locations. We in fact define the projection operation (\(\dagger \)) to output variables instead of locations: say \(t \) is a \(\Phi \)-tree of the state \(\langle s, h \rangle \). Then we replace the locations in the formula (\(\dagger \)) as follows:

1. Every location \(v \in \text{img}(s) \) is replaced by a variable \(x \) satisfying \(s(x) = v \).
2. Every location in \(\text{dom}(h) \setminus \text{img}(s) \) is replaced by an existentially quantified variable, because there exists a location in the heap \(h \) that corresponds to the location in the formula (\(\dagger \)).
3. All other locations are replaced by universally quantified variables, because these locations do not occur in the heap \(h \) (this holds because we will always assume \(\langle s, \text{heap}(t) \rangle \in \text{GStates} \) and can thus be picked in an arbitrary way.

\(^6\)Recall that \(\star \{ \phi_1, \ldots, \phi_n \} \) is a shortcut for \(\phi_1 \star \ldots \star \phi_n \).
We remark that the formal definition of projection uses non-standard quantifiers E and A in projections (further discussed in the following). For the moment, this difference does not matter; it is safe to replace them with the usual first-order quantifiers \exists and \forall for intuition.

Example 6.6 (Forest Projection—with Variables (Without Quantifiers)). Continuing Example 6.5, the projection of s and Φ-forest $\{t_1, t_2\}$ using the preceding replacement is

$$(\text{lseg}(y, z) \rightarrow \text{lseg}(x, z)) \star (\text{emp} \rightarrow \text{lseg}(y, z)).$$

We will later prove that the projection operation is sound (Lemma 7.25), i.e., for the given example,

$$(s, b_1 \cup b_2) \models \Phi \ (\text{lseg}(y, z) \rightarrow \text{lseg}(x, z)) \star (\text{emp} \rightarrow \text{lseg}(y, z)).$$

We further note that the idea of connecting holes with corresponding roots in Φ-trees is mirrored on the level of formulas: since the magic wand \rightarrow is the left adjoint of the separating conjunction \star, an application of modus ponens\(^7\) (formalized in Lemma 7.18) suffices to establish that

$$(s, b_1 \cup b_2) \models \Phi \ emp \rightarrow \text{lseg}(x, z).$$

Example 6.7 (Forest Projection—with Variables (and Quantifiers)). We consider a Φ, consisting of the list segment predicate lseg (see Example 3.3) and the following additional predicate:

$$\text{cyclic}(x, y, z) \iff \exists a. x \mapsto \langle a, y, z \rangle \star \text{lseg}(a, a).$$

Figure 9(b) depicts a model $\langle s, h \rangle$ of $\text{cyclic}(x, y, z)$ and Φ-trees t_1, t_2, t_3 with $h = \text{heap}(t_1) \cup \text{heap}(t_2) \cup \text{heap}(t_3)$. The projection of stack s and Φ-forest $\{t_1, t_2, t_3\}$ is

$$\exists a. (\text{lseg}(y, a) \rightarrow \text{cyclic}(x, y, z)) \star (\text{lseg}(z, a) \rightarrow \text{lseg}(y, a)) \star \text{lseg}(z, a).$$

We will later prove that the projection operation is sound (Lemma 7.25), i.e., for the given example,

$$\langle s, h \rangle \models \Phi \ \exists a. (\text{lseg}(y, a) \rightarrow \text{cyclic}(x, y, z)) \star (\text{lseg}(z, a) \rightarrow \text{lseg}(y, a)) \star \text{lseg}(z, a).$$

Equipped with this extended projection operation, we are now in a position to specify the third (and almost final) abstraction function:

$$\text{abst}_3(s, h) \triangleq \left\{ \phi \left| \phi \text{ is the projection of a } \Phi \text{-forest } f \text{ of } (s, h) \text{ with } h = \bigcup_{t \in f} \text{heap}(t) \right. \right\}.$$
6.3.2 **Compositionality.** As already hinted at in Example 6.6, the projection of formulas allows us to define a (computable) operator \bullet with $\text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2) = \text{abst}_3(s, b_1 \uplus b_2)$ such that

1. We have $\phi \star \psi \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2)$ for all $\phi \in \text{abst}_3(s, b_1)$ and $\psi \in \text{abst}_3(s, b_2)$.
2. The set of formulas $\text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2)$ is closed under application of modus ponens.
3. The set $\text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2)$ is closed under certain rules for manipulating quantifiers.

Example 6.8 (Composition Operation on Projections).

1. We recall the states $(s, b_1) \models_\Phi \text{lseg}(x, y)$ and $(s, b_2) \models_\Phi \text{lseg}(y, z)$ from Example 6.2, and the Φ-trees t_1, t_2. The projection of s and $\{t_1\}$ is $\text{lseg}(y, z) \star \text{lseg}(x, z)$, and the projection of s and $\{t_2\}$ is $\text{emp} \star \text{lseg}(y, z)$. Hence,

$$\text{lseg}(y, z) \star \text{lseg}(x, z) \star (\text{emp} \star \text{lseg}(y, z)) \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2).$$

By applying modus ponens, we get $\text{emp} \star \text{lseg}(x, z) \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2)$. The preceding reasoning approach will lead to a compositional proof of the entailment

$$\text{lseg}(x, y) \star \text{lseg}(y, z) \models_\Phi \text{lseg}(x, z).$$

2. Let (s, b) be the model and let t_1, t_2, t_3 be the Φ-trees from Example 6.7. We set $b_1 = \text{heap}(t_1) \cup \text{heap}(t_2)$ and $b_2 = \text{heap}(t_2)$. The projection of s and $\{t_1, t_3\}$ is

$$\exists a. (\text{lseg}(y, a) \star \text{cyclic}(x, y, z)) \star \text{lseg}(z, a),$$

and the projection of s and $\{t_2\}$ is $\forall a'. \text{lseg}(z, a') \star \text{lseg}(y, a')$. Hence, we have

$$[\exists a. (\text{lseg}(y, a) \rightarrow \text{cyclic}(x, y, z)) \star \text{lseg}(z, a)]\star$$

$$[\forall a'. \text{lseg}(z, a') \star \text{lseg}(y, a')] \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2).$$

By instantiating a' with a and moving $\exists a$. to the front of the formula, we get that

$$\exists a. (\text{lseg}(y, a) \rightarrow \text{cyclic}(x, y, z)) \star \text{lseg}(z, a)\star$$

$$(\text{lseg}(z, a) \star \text{lseg}(y, a)) \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2).$$

By applying modus ponens (twice), we get $\exists a. \text{cyclic}(x, y, z) \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2)$. As the variable a does not appear free anymore, the quantifier can be dropped, and we get

$$\text{cyclic}(x, y, z) \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2).$$

The preceding reasoning approach will lead to a compositional proof of the entailment

$$\text{fork}(x, y, z) \star \text{lseg}(y, z) \models_\Phi \text{cyclic}(x, y, z),$$

where Φ extends the SID from Example 6.7 by the predicate

$$\text{fork}(x, y, z) \iff \exists a. (x \mapsto \langle a, y, z \rangle) \star \text{lseg}(a, y) \star \text{lseg}(z, a).$$

3. Let t_1, t_2, t_3, t_4 be the Φ-trees from Example 6.3 for the state (s, b) of Example 6.1. We set $b_1 = \text{heap}(t_1) \cup \text{heap}(t_3) \cup \text{heap}(t_4)$ and $b_2 = \text{heap}(t_2)$. The projection of s and $\{t_1, t_3, t_4\}$ is

$$\exists r. (\text{tll}(a, b, c) \star \text{tll}(x, y, z)) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle),$$

and the projection of s and $\{t_2\}$ is $\forall r'. ((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r' \rangle)) \star \text{tll}(a, b, c).$ Hence,

$$[\exists r. (\text{tll}(a, b, c) \rightarrow \text{tll}(x, y, z)) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle)]\star$$

$$[\forall r'. ((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r' \rangle)) \star \text{tll}(a, b, c)] \in \text{abst}_3(s, b_1) \bullet \text{abst}_3(s, b_2).$$
By instantiating \(r' \) with \(r \) and moving \(\exists r. \) to the front of the formula, we get that

\[
\exists r. \left(\text{tll}(a, b, c) \rightarrow \text{tll}(x, y, z) \right) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle) \star \\
\left((((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle)) \rightarrow \text{tll}(a, b, c) \right) \in \text{abst}_3(s, h_1) \cdot \text{abst}_3(s, h_2).
\]

By applying modus ponens for the magic wand (twice), we get that

\[
\exists r. \text{tll}(x, y, z) \in \text{abst}_3(s, h_1) \cdot \text{abst}_3(s, h_2).
\]

As the variable \(r \) does not appear free anymore, the quantifier can be dropped and we get

\[
\text{tll}(x, y, z) \in \text{abst}_3(s, h_1) \cdot \text{abst}_3(s, h_2).
\]

The preceding reasoning approach will lead to a compositional proof of the entailment

\[
\text{tll}\text{Hole}(x, y, z, a, b, c) \star (a \mapsto \langle b, c, \text{nil} \rangle) \models \Phi \text{ tll}(x, y, z),
\]

where \(\Phi \) extends the TLL SID from Figure 1 by the predicates

\[
\begin{align*}
\text{tll}\text{Hole}(x, y, z, a, b, c) & \iff \exists l, r. (x \mapsto \langle l, r, \text{nil} \rangle) \star \text{helper}(l, r, y, z, a, b, c) \\
\text{helper}(l, r, y, z, a, b, c) & \iff (l \mapsto \langle y, a, \text{nil} \rangle) \star \text{list}4(y, b, c, r, z) \\
\text{list}4(y, b, c, r, z) & \iff (y \mapsto \langle \text{nil}, \text{nil}, y \rangle) \star \text{list}3(b, c, r, z) \\
\text{list}3(b, c, r, z) & \iff (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star \text{list}2(c, r, z) \\
\text{list}2(c, r, z) & \iff (c \mapsto \langle \text{nil}, \text{nil}, r \rangle) \star \text{ptr}(r, z).
\end{align*}
\]

6.3.3 Guarded Quantifiers

We now discuss the semantics of the special quantifiers \(\exists \) and \(\forall \) used in the projection operation. We rely on a non-standard semantics because we want our approach to directly support SIDs with (dis-)equalities. If one would disallow (dis-)equalities in SIDs, one could use the usual \(\exists \) and \(\forall \) quantifiers instead of \(\exists \) and \(\forall \) (which is sufficient for the SIDs in Example 6.8). We motivate our non-standard semantics with the SID \(\Phi \) given by the following predicates:

\[
p(x, a, b) \iff \exists y. (x \mapsto y) \star q(y, a) \star x \neq a \star a \neq b \quad q(y, a) \iff (y \mapsto \text{nil}) \star y \neq a.
\]

We consider the stack \(s = \{ x \mapsto 1 \} \) and the heap \(h = \{ 1 \mapsto 2, 2 \mapsto \text{nil} \} \). We further consider the unfolding tree consisting of the root \(p(1, 4, 5) \iff (1 \mapsto 2) \star q(2, 4) \star 1 \neq 4 \star 4 \neq 5 \) with the single child \(q(2, 4) \iff (2 \mapsto \text{nil}) \star 2 \neq 4 \); note that heap(1) = b. The projection of this unfolding tree is the formula \(\forall a, b. p(x, a, b) \). As discussed earlier, we want that the projection operation is sound, i.e., \(\langle s, h \rangle \models \Phi \forall a, b. p(x, a, b) \). However, using the standard quantifier \(\forall \) instead of \(\exists \) does not work:

\[
(1) \langle s, h \rangle \not\models \Phi p(1, 1, 5) \quad (2) \langle s, h \rangle \not\models \Phi p(1, 1, 5) \quad (3) \langle s, h \rangle \models \Phi p(1, 2, 5).
\]

The preceding example shows that we need to prevent instantiating universally quantified variables with

1. identical locations (see \(\langle s, h \rangle \not\models \Phi p(1, 5, 5) \)),
2. locations that are in the image of the stack (see \(\langle s, h \rangle \not\models \Phi p(1, 1, 5) \)), and
3. locations that are existentially quantified (see \(\langle s, h \rangle \not\models \Phi p(1, 2, 5) \)),

For the semantics of \(\forall \) we use that in SL_{btw} all existentially quantified variables (that are not equal to a parameter) are allocated because of the establishment requirement, and set

\[
\langle s, h \rangle \models \forall \langle a_1, \ldots, a_k \rangle. \Phi \text{ iff for all pairwise different locations}
\]

\[
\{ v_1, \ldots, v_k \} \subseteq \text{Loc} \setminus (\text{dom}(h) \cup \text{img}(s)) \text{ it holds that } \langle s \cup \{ a_1 \mapsto v_1, \ldots, a_k \mapsto v_k \}, h \rangle \models \Phi.
\]

Our main requirement for giving semantics to the \(\exists \) quantifier is the correctness of the following entailment, which we already used in Example 6.8: \((\exists \varepsilon. \Phi) \star (\forall a. \psi) \models_{\Phi} \exists \varepsilon. \Phi \star \psi[a/e]. \) \((\dagger) \).
This is ensured by the following semantics for \exists:

$\langle s, b \rangle \models \exists \langle e_1, \ldots, e_k \rangle . \phi$ iff for all pairwise different locations

$v_1, \ldots, v_k \in \text{dom}(b) \setminus \text{img}(s)$ such that $\langle s \cup \{e_i \mapsto v_i, \ldots, e_k \mapsto v_k\}, b \rangle \models \phi$.

We call our quantifiers \exists and \forall guarded because they exclude the instantiation of variables with certain locations. We note that our quantifiers are not dual, i.e., $\exists x. \phi$ is not equivalent to $\neg \forall x. \neg \phi$.

However, we believe that our semantics is sufficiently motivated by our considerations on the soundness of the projection and the entailment (†).

6.3.4 Finiteness. Did we solve Issues 1 and 2 from the second attempt? Unfortunately, not completely. However, one additional restriction on unfolding forests will be sufficient to guarantee the finiteness of the abstraction. We first explain the issue by means of an example.

Example 6.9. Let Φ be an SID that defines the list-segment predicate lseg. Let $\langle s, h \rangle \models \text{lseg}(x, \text{nil})$ with $|b| > n$. Then, there exists a forest t such that $h = \bigcup_{i \in 1} \text{heap}(t)$ and whose projection is

$\exists y_1, \ldots, y_n. \text{lseg}(y_n, \text{nil}) \cdot (\text{lseg}(y_n, \text{nil}) \cdot \text{lseg}(y_{n-1}, \text{nil})) \cdot \ldots \cdot (\text{lseg}(y_2, \text{nil}) \cdot \text{lseg}(y_1, \text{nil})) \cdot (\text{lseg}(y_1, \text{nil}) \cdot \text{lseg}(x, \text{nil})).$

As there exist such models $\langle s, h \rangle$ for arbitrary $n \in \mathbb{N}$, there are infinitely many (non-equivalent) formulas resulting from projections of unfolding forests.

Fortunately, we do not need to consider all unfolding forests for deciding the satisfiability of the considered separation logic GSL. We recall that our goal is to define a compositional abstraction:

$\text{abst}_3(s, b_1) \cdot \text{abst}_3(s, b_2) = \text{abst}_3(s, b_1 \cup b_2).$

Hence, we need to ensure that every unfolding tree of $\langle s, b_1 \cup b_2 \rangle$ can be composed via \cdot from unfolding trees of $\langle s, b_1 \rangle$ and $\langle s, b_2 \rangle$. In our approach, we will have the guarantee that $\langle s, b_1 \rangle$ and $\langle s, b_2 \rangle$ are guarded (cf. Corollary 8.19). With this in mind, let us consider an unfolding tree of $\langle s, b_1 \cup b_2 \rangle$ that is composed of some trees of $\langle s, b_1 \rangle$ and $\langle s, b_2 \rangle$, i.e., w.l.o.g. there is a pointer that is allocated in $\langle s, b_1 \rangle$ and points to a location in $\langle s, b_2 \rangle$. Then, this pointer is dangling for the state $\langle s, b_1 \rangle$ and the target of this pointer is in the image of the stack. Now, we recall from the definition of composition that the target of the pointer is a hole of an unfolding tree of $\langle s, b_1 \rangle$ and the root of an unfolding tree of $\langle s, b_2 \rangle$. Thus, we can restrict our attention to unfolding trees whose roots and holes are in the image of the stack! This motivates the following definition:

An unfolding tree t is s-delimited, if the root and holes of t are in the image of the stack s.

Equipped with this definition (which we will formalize in Definition 8.10), we restrict the abstraction function abst_3 to forests of delimited unfolding trees. This guarantees the finiteness of the abstraction: the formulas resulting from the projection of such forests have the property that (1) all root parameters of predicate calls are free variables and every variable occurs at most once as a root parameter, and (2) all root parameters of predicate calls on the left-hand side of a magic wand are free variables and every variable occurs at most once as a root parameter. Because the number of free variables is bounded, finiteness easily follows.

6.4 Summary of Overview

To sum up, we propose abstracting the state $\langle s, b \rangle$ in the following way:

(1) We compute all s-delimited Φ-forests of $\langle s, b \rangle$.
(2) We project these forests onto formulas.
(3) The abstraction of $\langle s, b \rangle$ is the set of all of these formulas; we call this set the type of $\langle s, b \rangle$.
The resulting abstraction is (1) finite (the set of types is finite), (2) compositional (we have \(\text{abst}_3(s, b_1) \ast \text{abst}_3(s, b_2) = \text{abst}_3(s, b_1 \cup b_2)\)), and (3) computable (we only need to apply rules for modus ponens and for manipulating quantifiers as illustrated in Example 6.8).

Outline of the following sections. In the remainder of this article, we give the technical details for the material overviewed in this section. In Section 7, we formalize \(\Phi\)-forests (Section 7.1), their projections (Section 7.2), and how to compose forest projections (Section 7.3). The type abstraction is introduced in Section 8. We discuss how the satisfiability problem for guarded \(\text{SL}\) formulas can be reduced to computing types in Section 8.1. We formalize \(s\)-delimited forests in Section 8.3 and discuss how types can be computed compositionally in Sections 8.4 and 8.5. Finally, in Section 9, we present algorithms for computing the types of \(\text{GSL}\) formulas, summarize our overall decision procedure, and discuss our decidability and complexity results.

7 FORESTS AND THEIR PROJECTIONS

We now start formalizing the concepts that have been informally introduced in Section 6: \(\Phi\)-forests (Section 7.1), their projection onto formulas (Section 7.2), and how to compose them (Section 7.3).

7.1 Forests

Our main objects of study in this section are \(\Phi\)-forests (Definition 7.4) made up of \(\Phi\)-trees (Definition 7.1). As motivated in Section 6, a \(\Phi\)-tree encodes one fixed way to unfold a predicate call by means of the rules of the SID \(\Phi\). The differences among the unfolding trees of Iosif et al. [2013, 2014], Jansen et al. [2017], and our \(\Phi\)-trees are that (1) we instantiate variables with locations, and (2) \(\Phi\)-trees can have holes, i.e., we allow that one or more of the predicate calls introduced (by means of recursive rules) in the unfolding process remain folded.

7.1.1 Rule Instances. We annotate every node of a \(\Phi\)-tree with a rule instance of the SID \(\Phi\), i.e., a formula obtained from a rule of the SID by instantiating both the formal arguments of the predicates and the existentially quantified variables of the rule with locations:

\[
\text{RuleInst}(\Phi) \triangleq \{ \text{pred}(v) \leftarrow \phi[x \cdot y/v \cdot w] \mid (\text{pred}(x) \leftarrow \exists y. \phi) \in \Phi, v \in \text{Loc}^{\text{ar}(\text{pred})}, w \in \text{Loc}^{\text{y}}, \text{and all (dis-)equalities in } \phi[x \cdot y/v \cdot w] \text{ are valid}\}.
\]

In the preceding definition, we refer only to those (dis-)equalities that occur explicitly in the formula, not those implied by recursive calls or by the separating conjunction. Validity of these (dis-)equalities is straightforward to check because all variables have been instantiated with concrete locations.

The notion of a rule instance is motivated as follows: whenever \(\langle s, h \rangle \models_{\phi} \text{pred}(v)\), there is at least one rule instance \((\text{pred}(v) \leftarrow \psi) \in \text{RuleInst}(\Phi)\) such that \((s, h) \models_{\phi} \psi\).

7.1.2 \(\Phi\)-Trees. We represent a \(\Phi\)-tree as a partial function \(t : \text{Loc} \rightarrow (2^{\text{Loc}} \times \text{RuleInst}(\Phi))\), where the set \(\text{Loc}\) of locations serves as the nodes of the tree; every node is mapped to its successors in the (directed) tree and to its label, a rule instance. Moreover, for \(t\) to be a \(\Phi\)-tree, it must satisfy additional consistency criteria. To formalize these criteria, we fix some SID \(\Phi\) and a node

\[
t(l) = \langle v, (\text{pred}(v) \leftarrow (a \mapsto b) \ast \text{pred}_1(v_1) \ast \cdots \ast \text{pred}_m(v_m) \ast \Pi) \rangle,
\]

where \(\Pi\) is a set of equalities and disequalities. Notice that all rule instances are of the preceding form because—by our global assumptions in Section 3.4.5—\(\Phi\) satisfies the progress property. We introduce the following shortcuts for the node at location \(l\) to simplify working with \(\Phi\)-trees:
succl(l) ≡ v (locations corresponding to the successors of node l)
headl(l) ≡ pred(v) (the predicate on the lhs of the rule instance)
healp(l) ≡ \{a \mapsto b\} (the unique heap satisfying the points-to assertion in the rule instance)
callsl(l) ≡ \{pred₁(v₁), ..., predₘ(vₘ)\} (the predicate calls in the rule instance)
rulel(l) ≡ pred(v) \iff (a \mapsto b) \ast pred₁(v₁) \ast \cdots \ast predₘ(vₘ) \ast \Pi. (the rule instance)

Moreover, we define the hole predicates of l as those predicate calls in callsl(l) whose root does not occur in succl(l); the holes of l are the corresponding locations:

- holepreds₁(l) ≡ \{pred’(z’) \in callsl(l) \mid \forall c \in succl(l). head_l(c) \neq pred’(z’)\}, and
- holesl(l) ≡ \{predroot(pred’(z’)) \mid pred’(z’) \in holepreds₁(l)\}.

We lift some of the preceding definitions from individual locations to entire trees t:

heap(t) ≡ \bigcup_{c \in dom(t)} heapₜ(c) (the heap satisfying exactly the points-to Assertions in t)
ptrlocs(t) ≡ \bigcup_{(c \mapsto d) \in heap(t)} \{c\} \cup d (all locations that appear in points-to Assertions in t)
allholepreds(t) ≡ \bigcup_{c \in dom(t)} holepreds₁(c) (all hole predicates in t)
allholes(t) ≡ \bigcup_{l \in dom(t)} holesl(l). (all holes in t)

We denote by graph(t) the directed graph induced by the successors of locations in t. In other words,

\text{graph}(t) ≡ \langle \text{dom}(t), \{(x, y) \mid x \in \text{dom}(t), y \in succl(x)\}\rangle.

The height of t is the length of the longest path in the directed graph graph(t).

\textbf{Definition 7.1 (Φ-Tree).} A partial function \(t : \text{Loc} \to (2^{\text{Loc}} \times \text{RuleInst}(Φ))\) is a Φ-tree iff

1. Φ is in the fragment of SIDs of bounded treewidth, i.e., \(Φ \in \text{ID}_{btw}\).
2. \text{graph}(t) is a directed tree, and
3. t is Φ-consistent, i.e., for all locations \(l \in \text{dom}(t)\), we have
 - l is the single allocated location in its rule instance, i.e., \(\text{healp}(l) = \{l \mapsto \ldots\}\),
 - l points to its successors in t, i.e., \(\text{healp}(l) = \{l \mapsto b\}\) implies \(\text{succl}(l) \subseteq b\), and
 - the predicate calls associated with the successors \(\text{succl}(l) = \langle v₁, \ldots, v_k \rangle\) of l appear in the rule instance at location l, i.e., \(\{\text{head}_l(v₁), \ldots, \text{head}_l(v_k)\} \subseteq \text{callsl}(l)\).

Since every Φ-tree t is a directed tree, it has a root, which we denote by root(t); the corresponding predicate call is rootpred(t) ≡ headₜ(root(t)).

\textbf{Example 7.2 (Φ-Tree).}

1. A Φ-tree over the SID \(\Phi_{\text{odd/even}}\) (cf. Example 3.3) is given by

\[
t(l) ≡ \begin{cases}
(b, \text{even}(l₁, a) \iff (l₁ \mapsto b) \ast \text{odd}(b, a)) & \text{if } l = l₁ \\
(\emptyset, \text{odd}(b, a) \iff (b \mapsto l₂) \ast \text{even}(l₂, a)) & \text{if } l = b \\
\bot & \text{otherwise}.
\end{cases}
\]

Formally, t is defined over the locations \(\text{dom}(t) = \{l₁, b\}\). Moreover, we have \(\text{succl}(l₁) = \{b\}\), \(\text{head}_l(l₁) = \text{even}(l₁, a)\), \(\text{callsl}(l₁) = \{\text{odd}(b, a)\}\), \(\text{heap}(t) = \{l₁ \mapsto b, b \mapsto l₂\}\), \(\text{healp}(l₁) = \{l₁ \mapsto b\}\), \(\text{ptrlocs}(t) = \{l₁, b, l₂\}\), \(\text{allholes}(t) = \{l₂\}\), and \(\text{allholepreds}(t) = \{\text{even}(l₂, a)\}\).
(2) All of the trees considered in Section 6 are \(\Phi \)-trees.

We remark that the preceding definition of \(\Phi \)-trees does not account for rule instances in which the same predicate call appears multiple times. Similarly, we do not account for multiple predicate calls with the same root parameter. As we will see in Section 8.3, such cases do not need to be considered. We can thus ignore these cases in favor of a simpler formalization.

Our main motivation for considering \(\Phi \)-trees is that they give a more structured view on models of predicate calls. In particular, every such model corresponds to (at least one) \(\Phi \)-tree without holes.

Lemma 7.3. Let \(\langle s, h \rangle \) be a state and \(\text{pred} \in \text{Preds}(\Phi) \). Then, \(\langle s, h \rangle \models \Phi \text{ pred}(z_1, \ldots, z_k) \) iff there exists a \(\Phi \)-tree \(t \) with \(\text{rootpred}(t) = \text{pred}(s(z_1), \ldots, s(z_k)) \), allholepreds\((t) = \emptyset \), and \(\text{heap}(\{t\}) = h \).

Proof. The statement directly follows by induction on the number of rules applied to derive \(\langle s, h \rangle \models \Phi \text{ pred}(z_1, \ldots, z_k) \) (respectively, the height of the tree \(t \)).

7.1.3 \(\Phi \)-Forests. We combine zero or more \(\Phi \)-trees into \(\Phi \)-forests.

Definition 7.4 (\(\Phi \)-Forest). A \(\Phi \)-forest \(\tilde{t} \) is a finite set of \(\Phi \)-trees \(\tilde{t} = \{t_1, \ldots, t_k\} \) with pairwise disjoint locations, i.e., \(\text{dom}(t_i) \cap \text{dom}(t_j) = \emptyset \) for \(i \neq j \).

We assume that all definitions are lifted from \(\Phi \)-trees to \(\Phi \)-forests, i.e., for \(\tilde{t} = \{t_1, \ldots, t_k\} \), we define

- the induced heap of \(\tilde{t} \) as \(\text{heap}(\tilde{t}) = \bigcup_{t \in \tilde{t}} \text{heap}(t) \); if \(l \in \text{dom}(t_i) \), then \(\text{rule}(l) = \text{rule}(t_i)(l) \);
- \(\text{graph}(\tilde{t}) = \left\{ \left(\text{dom}(t), \{ (x, y) \mid 1 \leq i \leq k, x \in \text{dom}(t_i), y \in \text{succ}_i(x) \} \right) \right\} \); and
- \(\text{dom}(\tilde{t}) = \bigcup_{i = 1}^{k} \text{dom}(t_i) \); roots(\(\tilde{t} \)) \(= \{ \text{root}(t_i) \mid 1 \leq i \leq k \} \); allholes(\(\tilde{t} \)) \(= \bigcup_{1 \leq i \leq k} \) allholes(\(t_i \)).

Example 7.5 (\(\Phi \)-Forest). Both Examples 6.3 and 6.6 define a \(\Phi \)-forest.

7.1.4 Composing Forests. As motivated in Section 6.2.3, \(\Phi \)-forests are composed by (1) taking their disjoint union and (2) optionally merging pairs of trees of the resulting forest by identifying the root of one tree with a hole of another tree.

Disjoint union of forests. The union of two \(\Phi \)-forests corresponds to ordinary set union, provided no location is in the domain of both forests; otherwise, it is undefined.

Definition 7.6 (Union of \(\Phi \)-Forests). Let \(f_1, f_2 \) be \(\Phi \)-forests. The union of \(f_1, f_2 \) is given by

\[
 f_1 \cup f_2 = \begin{cases} f_1 \cup f_2 & \text{if } \text{dom}(f_1) \cap \text{dom}(f_2) = \emptyset, \\ \bot, & \text{otherwise}. \end{cases}
\]

Lemma 7.7. Let \(\tilde{t} = f_1 \cup f_2 \). Then \(\text{heap}(\tilde{t}) = \text{heap}(f_1) \cup \text{heap}(f_2) \).

Proof. \(\text{heap}(\tilde{t}) = \bigcup_{t \in \tilde{t}} \text{heap}(t) = (\bigcup_{t \in f_1} \text{heap}(t)) \cup (\bigcup_{t \in f_2} \text{heap}(t)) = \text{heap}(f_1) \cup \text{heap}(f_2) \). (Where we have \(\cup \) rather than \(\cup \) because \(f_1 \cup f_2 \) is defined.)

Splitting forests. We formalize the process of merging \(\Phi \)-trees in a roundabout way: we first define a way to split the trees of a forest into subtrees at a fixed set of locations—the inverse of merging forests. This may seem like an arbitrary choice, but it will simplify the technical development in follow-up sections. We first consider two examples of splitting before formalizing it in Definition 7.9.

Example 7.8 (Splitting Forests).

1. Let \(t \) be the \(\Phi \)-tree from Example 7.2. The \(\{b\} \)-split of \(\{t\} \) is given by \(\{t_1, t_2\} \), for the trees \(t_1 = \{l_1 \mapsto (\emptyset, \text{even}(l_1, a) \leftarrow (l_1 \mapsto b \star \text{odd}(b, a))) \} \) and \(t_2 = \{b \mapsto (\emptyset, \text{odd}(b, a) \leftarrow (b \mapsto l_2 \star \text{even}(l_2, a))) \} \). \(\{t_1, t_2\} \) is the \(l \)-split of \(\{t\} \) for all \(l \supseteq \{b\} \): in our definition of \(l \)-split, we will not require for the locations in \(l \) to actually occur in the forest.
(2) Recall the forest $\top = \{t_1, t_2, t_3\}$ from Example 6.3 and the tree t from Example 6.1. Then \top is the $(2, 4)$-split of $\{t\}$. Likewise, \top is the $\{1, 2, 4, 7\}$-split of $\{t\}$, because 1 is the root of a tree and 7 does not occur in the forest. In contrast, \top is not the $\{1, 2, 5\}$-split of $\{t\}$, because $5 \in \text{dom}(\top) \setminus \text{roots}(\top)$.

Definition 7.9 (I-Split). Let $\top, \tilde{\top}$ be Φ-forests and $I \subseteq \text{Loc}$. Then $\tilde{\top}$ is an I-split of \top if

(1) both forests cover the same locations, i.e., $\text{dom}(\top) = \text{dom}(\tilde{\top})$,
(2) both forests contain the same rule instances, i.e., $\text{rule}_r(d) = \text{rule}_r(d)$ for all $d \in \text{dom}(\top)$, and
(3) the graph of $\tilde{\top}$ is obtained from the graph of \top by removing edges leading to locations in I, i.e., $\text{graph}(\tilde{\top}) = \text{graph}(\top) \setminus \{(a, b) \mid a \in \text{Loc}, b \in I\}$.

Lemma 7.10 (Uniqueness of I-split). For all $I \subseteq \text{Loc}$, every Φ-forest has a unique I-split split(\top, I).

Proof. See Appendix A.10.

To formalize how we merge trees, we define a derivation relation \triangleright^* between forests in which we iteratively split trees at suitable locations. Intuitively, $\top \triangleright^* \tilde{\top}$ holds if splitting the trees in $\tilde{\top}$ at zero or more locations yields \top, or, equivalently, if ”merging” zero or more trees of \top yields $\tilde{\top}$.

Definition 7.11 (Forest Derivation). The forest $\tilde{\top}$ is one-step derivable from the forest \top, denoted by $\top \triangleright \tilde{\top}$, iff there exists a location $l \in \text{dom}(\top)$ such that $\top = \text{split}(\tilde{\top}, \{l\})$.

The reflexive-transitive closure of \triangleright is denoted by \triangleright^*.

Example 7.12. Let \bot denote the everywhere undefined partial function. Then, consider the forests $\top \triangleq \{t_1, t_2\}$ and $\tilde{\top} \triangleq \{t\}$ given by the following trees. Then $\top \triangleright \tilde{\top}$ because $\top = \text{split}(\tilde{\top}, l_2)$:

$$\begin{align*}
t_1 & \triangleq \langle l_1 \mapsto \bot, \text{odd}(l_1, l_4) \Leftrightarrow (l_1 \mapsto l_2 \star \text{even}(l_2, l_4)) \rangle, \\
t_2 & \triangleq \langle l_2 \mapsto \langle l_3, \text{even}(l_2, l_4) \Leftrightarrow (l_2 \mapsto l_3 \star \text{odd}(l_3, l_4)) , \\
 & \quad l_5 \mapsto \langle \bot, \text{odd}(l_3, l_4) \Leftrightarrow (l_3 \mapsto l_4) \rangle \rangle, \\
\tilde{\top} & \triangleq \langle l_1 \mapsto \langle l_2, \text{odd}(l_1, l_4) \Leftrightarrow (l_1 \mapsto l_2 \star \text{even}(l_2, l_4)) , \\
 & \quad l_2 \mapsto \langle l_3, \text{even}(l_2, l_4) \Leftrightarrow (l_2 \mapsto l_3 \star \text{odd}(l_3, l_4)) , \\
 & \quad l_5 \mapsto \langle \bot, \text{odd}(l_3, l_4) \Leftrightarrow (l_3 \mapsto l_4) \rangle \rangle. \\
\end{align*}$$

We note that multiple steps of \triangleright correspond to splitting at multiple locations, because

$$\text{split}(\top, \{l_1, \ldots, l_k\}) = \text{split}(\ldots \text{split}(\text{split}(\top, \{l_1\}), \{l_2\}), \ldots, \{l_k\}).$$

Lemma 7.13. $\top \triangleright^* \tilde{\top}$ iff there exists a set of locations l with $\top = \text{split}(\tilde{\top}, \{l\})$.

Moreover, forests in the \triangleright^* relation describe the same states.

Lemma 7.14. Let \top be a Φ-forest and $\tilde{\top} \triangleright^* \top$. Then $\text{heap}(\tilde{\top}) = \text{heap}(\top)$.

Proof. Since $\tilde{\top} \triangleright^* \top$, there exists—by Lemma 7.13—a set of locations l with $\tilde{\top} = \text{split}(\top, l)$. By definition of I-splits, we have (1) $\text{dom}(\tilde{\top}) = \text{dom}(\top)$ and (2) $\text{rule}_r(l) = \text{rule}_r(l)$ for every location $l \in \text{dom}(\tilde{\top})$. Consequently, $\text{heap}(\tilde{\top}) = \text{heap}(\top)$.

Based on the \triangleright^*, we define the composition operation on pairs of forests as motivated in Section 6.2.

Definition 7.15 (Forest Composition). The composition of \top and $\tilde{\top}$ is $\top \circ \tilde{\top} \triangleq \{\{t\} : \top \triangleright \tilde{\top}\}$.
7.2 Forest Projections

In Section 6.3, we informally presented the projection of Φ-forests onto GSL formulas and discussed the need for using guarded quantifiers. As a reminder, we repeat here the informal definition of the projection: given a stack s and a Φ-forest $t = \{t_1, \ldots, t_k\}$,

1. we compute the formula $\phi \triangleq \forall 1 \leq i \leq k (\forall \text{allholepreds}(t_i)) \rightarrow \text{rootpred}(t_i)$, in which all parameters of all predicate calls are locations;
2. we replace in ϕ every location $v \in \text{img}(s)$ by an arbitrary but fixed variable x with $s(x) = v$ holds;
3. we replace every location $v \in \text{dom}(t) \setminus \text{img}(s)$ by a guarded existential; and
4. we replace every other location by a guarded universal.

(We point out that any occurrence of nil in ϕ would not be replaced during steps (2) through (4) by the projection operation because it is not a location.) Now we make the preceding definitions precise. First, we introduce the projection of trees and forests (Section 7.2.1). Then, we state the definition of guarded quantifiers (in Section 7.2.2). Finally, we introduce the stack-projection (in Section 7.2.3).

7.2.1 Tree and Forest Projections. We are now ready to define the forest projection outlined in Section 6.3. We begin with defining the projection of a tree.

Definition 7.16 (Projection of a Tree). The projection $\text{project}^\text{Loc}(t)$ of a Φ-tree t is given by

$$\text{project}^\text{Loc}(t) \triangleq (\forall \text{allholepreds}(t)) \rightarrow \text{rootpred}(t).$$

Example 7.17. Recall from Example 7.2 the Φ-tree t over an SID describing lists of even and odd length. This tree admits the tree projection $\text{project}^\text{Loc}(t) = \text{even}(l_2, a) \rightarrow \text{even}(l_1, a)$.

Tree projections are sound in the sense that the induced heap of a tree satisfies its tree projection. To prove this result, we need the following variant of modus ponens (cf. [Reynolds 2002]).

Lemma 7.18 (Generalized Modus Ponens).

$$((\text{pred}_2(x_2) \ast \psi) \ast \text{pred}_1(x_1)) \ast (\psi' \ast \text{pred}_2(x_2)) \text{ implies } (\psi \ast \psi') \ast \text{pred}_1(x_1)$$

Lemma 7.19 (Soundness of Tree Projections). Let t be a Φ-tree. Then, we have $\langle _ , \text{heap}(t) \rangle \models _ \text{ project}^\text{Loc}(t)$ (where $_$ denotes an arbitrary stack).

Proof. By mathematical induction on the height of t; see Appendix A.12 for details. □

7.2.2 Guarded Quantifiers. As motivated in Section 6.3.3, we introduce guarded quantifiers, which we denote by \exists and \forall, respectively. Specifically, we consider formulas $\exists \varepsilon. (\forall a. (\phi_qf \ast \cdots \ast \phi_qf))$, where ϕ_{qf} denotes quantifier-free SL formulas (cf. Section 3.1). We collect all formulas of the preceding form in the set $\text{SL}^\varepsilon_{btw}$. Our guarded quantifiers have the following semantics:

- $\langle s, h \rangle \models s \exists \varepsilon \langle e_1, \ldots, e_k \rangle . \phi$ iff there exist pairwise different locations $v_1, \ldots, v_k \in \text{dom}(h) \setminus \text{img}(s)$ such that $\langle s \cup \{ e_1 \mapsto v_1, \ldots, e_k \mapsto v_k \} , h \rangle \models \phi$.
- $\langle s, h \rangle \models s \forall \langle a_1, \ldots, a_k \rangle . \phi$ iff for all pairwise different locations $v_1, \ldots, v_k \in \text{Loc} \setminus (\text{dom}(h) \cup \text{img}(s))$, we have $\langle s \cup \{ a_1 \mapsto v_1, \ldots, a_k \mapsto v_k \} , h \rangle \models \phi$.

Notice that our guarded quantifiers differ from the standard ones in three aspects. First, guarded quantifiers cannot be instantiated with locations that are already known, i.e., not with any location that is already in the stack. Second, we require that the quantified locations are pairwise different. Third, our quantifiers are not dual, i.e., $\exists x. \phi$ is not equivalent to $\neg \forall x. \neg \phi$. For guarded states,
Fig. 10. A set of rules for rewriting SL^tw formulas into equivalent formulas.

location terms in a formula can be replaced by a guarded universal quantifier as long as they do not appear in the state in question.

Lemma 7.20. Let $(s, h) \in \text{GStates}$ and ϕ be a quantifier free SL formula with $(s, h) \models_{\Phi} \phi$. Moreover, let $v \in (\text{Loc})(\text{dom}(h) \cup \text{img}(s))^*$ be a repetition-free sequence of locations. Then, for every set $a \cup \{a_1, a_2, \ldots \}$ of fresh variables, i.e., $a \cap \text{dom}(s) = \emptyset$, we have $(s, h) \models_{\Phi} \forall a. \phi[v/a]$.

Proof. See Appendix A.11. \square

Many standard equivalences of separation logic continue to hold for formulas with guarded quantifiers; we list corresponding rewriting rules in Figure 10. These rules establish the rewriting equivalence \equiv, which preserves logical equivalence—we will only consider formulas up to \equiv.

Lemma 7.21 (Soundness of Rewriting Equivalence). If $\phi_1 \equiv \phi_2$ then $\phi_1 \models_{\Phi} \phi_2$.

7.2.3 Stack-Projection. We now abstract from locations in projections (cf. Section 6.3.1), replacing every location l in the projection of a forest f by a variable: a stack variable if l is in the image of the stack, an existentially quantified one if $l \in \text{dom}(f)$, and a universally quantified one otherwise.

Aliasing and variable order. In case of aliasing, i.e., if there are multiple variables that are mapped to the same location l, there are multiple choices for replacing l by a stack variable x with $s(x) = l$. This has the consequence that the projection would not be unique. To avoid this problem, we assume an arbitrary, but fixed, linear ordering of the variables Var. We then choose the variable among all aliases of a variable that is maximal according to this variable ordering. Formally, we have the following definition.

Definition 7.22 (Stack-choice Function s_{max}^{-1}). Let s be a stack. Then, the stack-choice function of s maps a location $l \in \text{img}(s)$ to $s_{\text{max}}^{-1}(l) = \max\{x \in \text{dom}(s) \mid s(x) = l\}$.

Quantified variables. We (mostly) maintain the convention that we denote (guarded) universally (respectively, existentially) quantified variables by a_1, a_2, \ldots (respectively, e_1, e_2, \ldots). We will always assume that $\{a_1, a_2, \ldots\} \cap \{e_1, e_2, \ldots\} = \emptyset$ and that $\text{dom}(s) \cap (\{a_1, a_2, \ldots\} \cup \{e_1, e_2, \ldots\}) = \emptyset$ for any stack s. We are now ready to give the main definition of this section.

Definition 7.23 (Stack-projection). Let $\hat{f} = \{t_1, \ldots, t_k\}$ be a Φ-forest, s be a stack, and

- let $\phi = \bigstar_{1 \leq i \leq k} \text{project}^{\text{Loc}}(t_i)$ be the projection of trees of \hat{f} conjoined by \bigstar,
- let $w = \text{locs}(\phi) \cap (\text{dom}(\hat{f}) \setminus \text{img}(s))$ be some (arbitrarily ordered) sequence of locations that occur in the formula ϕ and are allocated in heap(\hat{f}) but are not the value of any stack variable,
- and let $v = \text{locs}(\phi) \setminus (\text{img}(s) \cup \text{dom}(\hat{f}))$ be some (arbitrarily ordered) sequence of locations that occur in the formula ϕ and are neither allocated nor the value of any stack variable.
Then, we define the *stack-projection* of s and f as

$$
\text{project}(s, f) \triangleq \exists e. \forall a. \phi([\text{dom}(s^{-1})] \cdot v \cdot w / \text{img}(s^{-1}) \cdot a \cdot e).
$$

where $e \triangleright= (e_1, e_2, \ldots, e_{|w|})$ and $a \triangleright= (a_1, a_2, \ldots, a_{|v|})$ denote disjoint sets of fresh variables.

The stack-projection is well defined because $\text{dom}(s^{-1})$, w and v form a partitioning of $\text{locs}(\phi)$. Notice that the stack-projection is *unique* (w.r.t. the rewriting equivalence \equiv defined in Figure 10): although the stack-projection involves picking an (arbitrary) order on the trees t_1, \ldots, t_k and a choice of the fresh variables e and a, this does not matter because of the commutativity and associativity of \star and the possibility to rename quantified variables, which is allowed for by the rules of the rewriting equivalence \equiv.

Example 7.24 (Stack-projection). We consider three examples of stack-projections:

1. Let t be the Φ-tree from Example 7.2. Then, for $f = \{t\}$ and $s = \{x_1 \mapsto l_1, x_2 \mapsto l_2\}$, we have

$$
\text{heap}(f) = \{l_1 \mapsto b, b \mapsto l_2\}
$$

and

$$
\text{project}^\text{Loc}(f) = \forall a_1. \text{even}(l_2, a_1) \rightarrow \text{oDD}(l_1, a_1).
$$

As all locations in this formula are in the image of the stack, we have

$$
\text{project}(s, f) = \text{project}^\text{Loc}(f)[\text{dom}(s^{-1})/\text{img}(s^{-1})] = \forall a_1. \text{even}(x_2, a_1) \rightarrow \text{oDD}(x_1, a_1).
$$

2. Let $\langle \sigma, h \rangle$ be the model and let t_1, t_2, t_3 be the Φ-trees from Example 6.7. Then,

$$
\text{project}(s, \{t_1, t_3\}) = \exists a. (\text{lseg}(y, a) \rightarrow \text{cyclic}(x, y, z)) \star \text{lseg}(z, a),
$$

and

$$
\text{project}(s, \{t_2\}) = \forall a'. \text{lseg}(z, a') \rightarrow \text{lseg}(y, a').
$$

3. Let t_1, t_2, t_3, t_4 be the Φ-trees from Example 6.3 for the state $\langle \sigma, h \rangle$ of Example 6.1. Then,

$$
\text{project}(s, \{t_1, t_3, t_4\}) = \exists r. (\text{tl}(a, b, c) \star \text{tl}(x, y, z)) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle),
$$

and

$$
\text{project}(s, \{t_2\}) = \forall r'. ((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r' \rangle)) \star \text{tl}(a, b, c).
$$

In each of the preceding examples, we observe that $\langle \sigma, \text{heap}(f) \rangle \models_\Phi \text{project}(s, f)$. This is not a coincidence, as eliminating locations preserves the soundness of forest projections.

Lemma 7.25 (Soundness of Stack-projection). Let $\langle \sigma, h \rangle \in \text{GStates}$. Moreover, let t be a Φ-forest with $\text{heap}(f) = h$. Then, we have $\langle \sigma, h \rangle \models_\Phi \text{project}(s, t)$.

Proof. See Appendix A.13. \qed

Example 7.26 (Why We Need Guarded Quantifiers). We now have the machinery available to discuss why guarded quantifiers are needed. To this end, let us revisit the motivating example in Section 6.3.3: we consider the state $\langle s, b \rangle$, given by the stack $s = \{x \mapsto 1\}$ and the heap $h = \{1 \mapsto 2, 2 \mapsto \text{nil}\}$, and the SID Φ given by the following predicates:

$$
p(x, a, b) \iff \exists y. (x \mapsto y) \star q(y, a) \star x \neq a \star a \neq b \quad q(y, a) \iff (y \mapsto \text{nil}) \star y \neq a.
$$

We further consider the unfolding tree t consisting of the rule instance $p(1, 4, 5) \iff (1 \mapsto 2) \star q(2, 4) \star 1 \neq 4 \star 4 \neq 5$ at the root with a single child for the rule instance $q(2, 4) \iff (2 \mapsto \text{nil}) \star 2 \neq 4$. Hence, we have $\text{rootpred}(t) = p(1, 4, 5), \text{allholepreds}(t) = \emptyset$, and $\text{locs}(p(1, 4, 5)) \setminus (\text{dom}(h) \cup \text{img}(s)) = \{4, 5\}$. By Definition 7.16, we then obtain the tree projection

$$
\text{project}(s, t) = \forall a, b. ((\star \text{allholepreds}(p(1, a, b))) \star \text{rootpred}(t))[(1, 4, 5) / \langle x, a, b \rangle] = \forall a, b. \text{emp} \star p(x, 4, 5)[(4, 5) / \langle a, b \rangle] = \forall a, b. p(x, a, b).
$$

By Lemma 7.19, we have $\langle \sigma, h \rangle \models_\Phi \forall a, b. p(x, a, b)$. In particular, the semantics of \forall guarantees that a and b refer to distinct locations that are neither allocated and nor the value of any stack variable. This is crucial to ensure soundness of the stack-projection: if we would use a standard
universal quantifier instead of a guarded one, ⟨s, h⟩ would not be a model of project^Loe(t) as neither ⟨s, h⟩ ⊨_φ p(x, 1, 5), ⟨s, h⟩ ⊨_φ p(x, 2, 5) nor ⟨s, h⟩ ⊨_φ p(x, 5, 5) hold.

7.3 Composing Projections

7.3.1 Motivation. Recall from Section 6.1.3 that our goal is the definition of a composition operator for the projections of forests. This operation should collect exactly those projections of forests f ∈ f_1 •_F f_2 (see Definition 7.15) that can be derived from project(s, f_1) and project(s, f_2), i.e.,

\[\text{project}(s, f_1) •_P \text{project}(s, f_2) = \{ \text{project}(s, f) \mid f \in f_1 •_F f_2 \} \].

Put differently, we are looking for an operation •_P such that project(s, ·) is a homomorphism from the set of trees and •_P to the set of projections and •_P.

How can we define such an operation •_P? Intuitively, we need to conjoin the projections via • to simulate the operation f_1 ⊔ f_2 and apply the generalized modus ponens rule (see Lemma 7.18) to simulate the operation • on trees. There is, however, one complication: our forest projections contain quantifiers. In particular, project(s, f_1) • project(s, f_2) is of the form (s[e_1, v_a, ϕ_1] • s[e_2, v_a, ϕ_2]), whereas project(s, f_1 ⊔ f_2) is of the form s[e]. v_a. ϕ, where ϕ_1, ϕ_2, and ϕ do not contain guarded quantifiers. In other words, •_P has to push the guarded quantifiers to the front before the modus ponens rule can be applied.

7.3.2 Definition of the Composition Operation. We will define •_P in terms of two operations: (1) an operator • that captures all sound ways to move the guarded quantifiers to the front of the formula project(s, f_1) • project(s, f_2), i.e., “re-scopes the guarded quantifiers,” and (2) a derivation operator • that rewrites formulas based on the generalized modus ponens rule (Lemma 7.18).

Definition 7.27 (Re-scoping). We say χ is a re-scoping of s[e_1, v_a, ϕ_1] and s[e_2, v_a, ϕ_2], in signs χ ∈ (s[e_1, v_a, ϕ_1] • (s[e_2, v_a, ϕ_2]), if there are repetition-free sequences of variables a, d_i and u_i ⊆ a ∪ d_{3-i}, for i = 1, 2, such that (1) a, d_1 and d_2 are pairwise disjoint, and (2) χ = s[d_1 ∪ d_2, v_a. ϕ_1[e_1, a_1/d_1, u_1] • ϕ_2[e_2, a_2/d_2, u_2].

The re-scoping operation is sound with regard to the semantics of separation logic.

Lemma 7.28 (Soundness of Re-scoping). Let s[e_1, v_a, ϕ_1] and s[e_2, v_a, ϕ_2] be some formulas whose predicates are defined by some SID Φ. Then,

χ ∈ (s[e_1, v_a, ϕ_1] • (s[e_2, v_a, ϕ_2]) implies (s[e_1, v_a, ϕ_1] • (s[e_2, v_a, ϕ_2]) ⊨_φ χ.

Proof. Follows directly from the semantics of the guarded quantifiers s[e] and v_a. □

Definition 7.29 (Derivability). We say χ can be derived from s[e]. v_a. ϕ, in signs s[e]. v_a. ϕ ▶ χ, if χ can be obtained from s[e]. v_a. ϕ by applying Lemma 7.18 and the rewriting equivalence ≡ (see Figure 10), formally, if there are predicates pred_1(x_1), pred_2(x_2), and formulas ψ, ψ′, ζ such that

(1) ϕ ≡ (pred_1(x_1) ⊔ψ) • pred_1(x_1)) • (ψ′ • pred_2(x_2)) • ζ, and
(2) χ ≡ s[e]. v_a. (ψ ′ • ψ) • pred_1(x_1) • ζ.

The derivability relation is sound with regard to the semantics of separation logic.

Lemma 7.30 (Soundness of Derivability). Let s[e]. v_a. ϕ be some formula whose predicates are defined by some SID Φ. Then, s[e]. v_a. ϕ ▶ χ implies s[e]. v_a. ϕ ⊨_φ χ.

Proof. Follows directly from the soundness of the generalized modus ponens rule (see Lemma 7.18) and the soundness of the rewriting equivalence ≡. □
We now define composition based on the re-scoping and derivation operations.

Definition 7.31 (Composition Operation). We define the composition of ϕ_1 and ϕ_2 by

$$\phi_1 \circ \phi_2 = \{ \phi \mid \exists \zeta. \phi \Rightarrow^* \phi \text{ for some } \zeta \in \phi_1 \circ \phi_2 \}.$$

Corollary 7.32 (Soundness of \circ). $\phi \in \phi_1 \circ \phi_2$ implies $\phi_1 \circ \phi_2 \models \phi$.

Proof. Follows immediately from Lemmas 7.28 and 7.30.

Example 7.33.

- For $\phi_1 = \text{ls}(x_2, x_3) \star \text{ls}(x_1, x_3)$ and $\phi_2 = \text{emp} \star \text{ls}(x_2, x_3)$, it holds that $\phi_1 \circ \phi_2 \models \text{emp} \star \text{ls}(x_1, x_3)$.

Hence, $(\text{emp} \star \text{ls}(x_1, x_3)) \in \phi_1 \circ \phi_2$.

- For $\phi_1 = \forall a. \text{ls}(x_2, a) \star \text{ls}(x_1, a)$ and $\phi_2 = \forall b. \text{ls}(x_3, b) \star \text{ls}(x_2, b)$, we have $\forall c. (\text{ls}(x_2, c) \star \text{ls}(x_1, c)) \star (\text{ls}(x_3, c) \star \text{ls}(x_2, c)) \Rightarrow^* \forall c. (\text{ls}(x_3, c) \star \text{ls}(x_1, c)) \in \phi_1 \circ \phi_2$. With $\forall c. (\text{ls}(x_2, c) \star \text{ls}(x_1, c)) \star (\text{ls}(x_3, c) \star \text{ls}(x_2, c)) \Rightarrow^*$ $\forall c. (\text{ls}(x_3, c) \star \text{ls}(x_1, c))$, we have $\forall c. (\text{ls}(x_3, c) \star \text{ls}(x_1, c)) \in \phi_1 \circ \phi_2$.

Let us also revisit our informal exposition in Example 6.8 and make it precise.

Example 7.34 (Composition Operation on Projections).

- Let t_1, t_2, t_3 be the Φ-trees from Example 6.7. We set $f_1 = \{t_1, t_3\}$ and $f_2 = \{t_2\}$. We then have

$\text{project}(s, f_1) = \forall a. (\text{lseg}(y, a) \star \text{cyclic}(x, y, z)) \star \text{lseg}(z, a)$, and

$\text{project}(s, f_2) = \forall a'. \text{lseg}(z, a') \star \text{lseg}(y, a')$. Then,

$\forall a. (\text{lseg}(y, a) \star \text{cyclic}(x, y, z)) \star \text{lseg}(z, a) \star (\text{lseg}(z, a) \star \text{lseg}(y, a))$

$\in \text{project}(s, f_1) \star \text{project}(s, f_2)$. Further,

$\forall a. (\text{lseg}(y, a) \star \text{cyclic}(x, y, z)) \star \text{lseg}(z, a) \star (\text{lseg}(z, a) \star \text{lseg}(y, a)) \Rightarrow^* \text{cyclic}(x, y, z)$.

Hence, we have $\text{cyclic}(x, y, z) \in \text{project}(s, f_1) \circ \text{project}(s, f_2)$.

- Let t_1, t_2, t_3, t_4 be the Φ-trees from Example 6.3. We set $f_1 = \{t_1, t_3, t_4\}$ and $f_2 = \{t_2\}$. We have

$\text{project}(s, f_1) = \exists r. (\text{tll}(a, b, c) \star \text{tll}(x, y, z)) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle)$, and

$\text{project}(s, f_2) = \forall r'. ((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r' \rangle) \mapsto \text{tll}(a, b, c))$. Then,

$\exists r. (\text{tll}(a, b, c) \star \text{tll}(x, y, z)) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \mapsto (c \mapsto \langle \text{nil}, \text{nil}, r \rangle)$

$((b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \star (c \mapsto \langle \text{nil}, \text{nil}, r \rangle) \mapsto \text{tll}(a, b, c)) \in \text{project}(s, f_1) \star \text{project}(s, f_2)$. Further,

$\exists r. (\text{tll}(a, b, c) \star \text{tll}(x, y, z)) \star (b \mapsto \langle \text{nil}, \text{nil}, c \rangle) \mapsto (c \mapsto \langle \text{nil}, \text{nil}, r \rangle) \Rightarrow^*$ $\text{tll}(a, b, c)$.

Hence, we have $\text{tll}(x, y, z) \in \text{project}(s, f_1) \circ \text{project}(s, f_2)$.

7.3.3 Relating the Composition of Forests and of Projections. Recall from Section 7.3.1 our design goal that the projection function $\text{project}(s, \cdot)$ should be a homomorphism from forests and forest composition \circ_{Φ} (Definition 7.15) to projections and projection composition \circ_{Φ} (Definition 7.31), i.e.,

$$\text{project}(s, f_1) \circ_{\Phi} \text{project}(s, f_2) \models \{ \text{project}(s, f) \mid f \in f_1 \circ_{\Phi} f_2 \}.$$

Indeed, our composition operation yields a homomorphism in one direction.

Lemma 7.35. Let s be a stack and let f_1, f_2 be Φ-forests such that $f_1 \uplus f_2 \neq \bot$. Then,

$\forall \ f \in f_1 \circ_{\Phi} f_2 \Rightarrow \text{project}(s, f) \in \text{project}(s, f_1) \circ_{\Phi} \text{project}(s, f_2)$.

Proof. See Appendix A.14.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Unfortunately, as demonstrated in the following, the homomorphism breaks in the other direction.

Example 7.36 (Projection is Not Homomorphic). Consider the Φ-forests \(f_1 = \{t_1\} \) and \(f_2 = \{t_2\} \) and the stack \(s \triangleq \{x_1 \mapsto l_1, x_2 \mapsto l_2, x_3 \mapsto l_3\} \), where

\[
\begin{align*}
t_1 &= \{l_1 \mapsto \langle 0, \text{odd}(l_1, m_1) \leq (l_1 \mapsto l_2) \star \text{even}(l_2, m_1) \rangle \}, \\
t_2 &= \{l_2 \mapsto \langle 0, \text{even}(l_2, m_2) \leq (l_2 \mapsto l_3) \star \text{odd}(l_3, m_2) \rangle \}.
\end{align*}
\]

The corresponding projections are

\[
\text{project}(s, f_1) = \forall a. \text{odd}(x_1, a) \star \text{odd}(x_2, a) \quad \text{and} \quad \text{project}(s, f_2) = \forall a. \text{even}(x_3, a) \star \text{even}(x_2, a).
\]

Moreover, we have \(\forall a. \text{odd}(x_3, a) \star \text{odd}(x_1, a) \in \text{project}(s, f_1) \circ \text{project}(s, f_2) \).

However, since different locations, namely \(m_1 \) and \(m_2 \), are unused in the two forests, there is only one forest in \(f_1 \circ f_2 \triangleq \{t_1, t_2\} \). It is not possible to merge the trees, because the hole predicate of the first tree, \(\text{even}(l_2, m_1) \), is different from the root of the second tree, \(\text{even}(l_2, m_2) \). In particular, there does not exist a forest \(\tilde{f} \) with \(\tilde{f} \in f_1 \circ f_2 \) and \(\text{project}(s, f) \equiv \forall a. \text{odd}(x_3, a) \star \text{odd}(x_1, a) \).

The essence of Example 7.36 is that while \(\circ \) allows renaming quantified universals, \(\circ \) does not allow renaming locations, breaking the homomorphism. To get a correspondence between the two notions of composition, we therefore allow renaming all locations that do not occur as the value of any stack variable. We capture this in the notion of s-equivalence.

Definition 7.37 (s-Equivalence). Two Φ-forests \(f_1, f_2 \) are s-equivalent, denoted by \(f_1 \equiv_s f_2 \), iff there is a bijective function \(\sigma \colon \text{Loc} \to \text{Loc} \) such that \(\sigma(l) = l \) for all \(l \in \text{img}(s) \), and \(\sigma(f_1) = f_2 \), where

- \(\sigma(t_1, \ldots, t_k) \triangleq \{\sigma(t_1), \ldots, \sigma(t_k)\} \),
- \(\sigma(l) \triangleq \{\sigma(l) \mapsto \langle \sigma(\text{succ}_l(l)), \text{rule}_l(l)[\text{dom}(\sigma)/\text{img}(\sigma)] \mid l' \in \text{dom}(l)\} \}, \) and
- \((\text{pred}(l) \leq \phi)/[v/w] \triangleq \text{pred}(l[v/w]) \leq \phi[v/w] \) for sequences of locations \(v \) and \(w \).

Note that \(f_1 \equiv_s f_2 \) implies that \(\langle s, \text{heap}(f_1) \rangle \) and \(\langle s, \text{heap}(f_2) \rangle \) are isomorphic.

Lemma 7.38. If \(f_1 \) and \(f_2 \) are Φ-forests with \(f_1 \equiv_s f_2 \), then \(\text{project}(s, f_1) \equiv \text{project}(s, f_2) \).

Proof. Direct from the definition of s-equivalence and the stack-projection.

With the definition of s-equivalence in place, we indeed obtain the desired composition.

Theorem 7.39. If \(f_1, f_2 \) be Φ-forests with \(f_1 \cup f_2 \neq \bot \). Then,

\[
\text{project}(s, f_1) \circ \text{project}(s, f_2) = \{\text{project}(s, f) \mid f \in f_1 \circ f_2, f_1 \equiv_s f_1, f_2 \equiv_s f_2\}.
\]

Proof. See Appendix A.15.

8 THE TYPE ABSTRACTION

We now formally introduce the abstraction on which our decision procedure for GSL will be built. As motivated in Section 6.4, we abstract every (guarded) state to a Φ-type, which is a set of stack-forest projections. To ensure the finiteness of the abstraction, we need to restrict Φ-types to certain kinds of stack-forest projections. Let us denote by \(\text{forests}_h(\Phi) \triangleq \{f \mid \text{heap}(f) = h\} \) the set of all Φ-forests whose induced heap is \(h \). We will then abstract a state \(\langle s, h \rangle \) to a subset of the stack-forest projections whose induced heap is \(h \), i.e., \(\{\text{project}(s, f) \mid f \in \text{forests}_h(\Phi)\} \).

We call the formulas \(\text{project}(s, f) \) **unfolded symbolic heaps (USHs)** with respect to SID \(\Phi \) because any such stack-forest projection can be obtained by “partially unfolding” a symbolic heap (which might require adding appropriate (guarded) quantifiers). Intuitively, the USHs satisfied by a state \(\langle s, h \rangle \) capture all ways in which \(\langle s, h \rangle \) relates to the predicates in SID \(\Phi \). Although the entire
set of USHs is finite for every fixed state \(\langle s, h \rangle \), the set of all USHs w.r.t. an SID \(\Phi \) is infinite in general.

Example 8.1. Assume the SID \(\Phi \) defines the list-segment predicate \(\text{lsig} \) (see Example 3.3). Moreover, let \(\langle s, h \rangle \) be a state with \(|h| > n \in \mathbb{N} \) such that \(\langle s, h \rangle \models \text{lsig}(x, \text{nil}) \). Then there exists a forest \(f \) with \(\text{heap}(f) = h \) whose projection consists of \(n \) components, i.e.,

\[
\text{project}(s, f) = \exists y_1, \ldots, y_n. \text{lsig}(y_n, \text{nil}) \star (\text{lsig}(y_{n-1}, \text{nil}) \star \cdots \star (\text{lsig}(y_2, \text{nil}) \star \text{lsig}(y_1, \text{nil})) \star (\text{lsig}(y_1, \text{nil}) \star \text{lsig}(x, \text{nil})).
\]

As there exist such states \(\langle s, h \rangle \) for arbitrary natural numbers \(n \), there are infinitely many USHs w.r.t. \(\Phi \).

To obtain a *finite* abstraction, we restrict ourselves to **delimited unfolded symbolic heaps (DUSHs)**, in which (1) all root parameters of predicate calls are free variables and (2) every variable occurs at most once as a root parameter on the left-hand side of a magic wand.

Definition 8.2. A USH \(\phi \) is delimited iff

1. for all \(\text{pred}(z) \in \phi \), \(\text{predroot}(\text{pred}(z)) \in \text{fvars}(\phi) \), and
2. for every variable \(x \) there exists at most one predicate call \(\text{pred}(z) \in \phi \) such that \(\text{pred}(z) \) occurs on the left-hand side of a magic wand and \(x = \text{predroot}(\text{pred}(z)) \).

The notion of DUSHs is motivated as follows: (1) for every guarded state, the targets of dangling pointers are in the image of the stack, and (2) that every variable occurs at most once as the root of a predicate on the left-hand side of a magic wand is a prerequisite for “eliminating” the magic wand through the generalized modus ponens rule.

Example 8.3. Recall from Example 3.3 the SID \(\Phi_{\text{tree}} \) that defines binary trees. We consider the stack \(s = \{ x \mapsto l_1, y \mapsto l_2, z \mapsto l_3 \} \):

1. We consider the following trees and corresponding forest projections:

 \[
 t_1 \triangleq \{ l_1 \mapsto \langle \emptyset, \text{tree}(l_1) \rangle \leftarrow (l_1 \mapsto \langle l_2, l_3 \rangle \star \text{tree}(l_2) \star \text{tree}(l_3)) \}
 \]

 \[
 t_2 \triangleq \{ l_2 \mapsto \langle \emptyset, \text{tree}(l_2) \rangle \leftarrow (l_2 \mapsto \langle \text{nil}, \text{nil} \rangle) \}, \quad t_3 \triangleq \{ l_3 \mapsto \langle \emptyset, \text{tree}(l_3) \rangle \leftarrow (l_3 \mapsto \langle \text{nil}, \text{nil} \rangle) \}
 \]

 \[
 \text{project}(s, \{ t_1, t_2, t_3 \}) = ((\text{tree}(y) \star \text{tree}(z)) \star \text{tree}(x)) \star \text{tree}(y) \star \text{tree}(z)
 \]

 \[
 \bar{t} \triangleq \{ l_1 \mapsto (\langle l_2, l_3 \rangle, t_1(l_1)) \} \cup t_2 \cup t_3 \quad \text{project}(s, \{ \bar{t} \}) = \text{tree}(x).
 \]

 We observe that \(\text{project}(s, \{ t_1, t_2, t_3 \}) \) and \(\text{project}(s, \{ \bar{t} \}) \) are delimited. \(\text{project}(s, \{ \bar{t} \}) \) can be obtained from \(\text{project}(s, \{ t_1, t_2, t_3 \}) \) by two applications of modus ponens.

2. We consider the following trees and the projection of the corresponding forest:

 \[
 t_1 \triangleq \{ l_1 \mapsto \langle \emptyset, \text{tree}(l_1) \rangle \leftarrow (l_1 \mapsto \langle l_2, l_3 \rangle \star \text{tree}(l_2) \star \text{tree}(l_3)) \}
 \]

 \[
 t_2 \triangleq \{ l_2 \mapsto \langle \emptyset, \text{tree}(l_2) \rangle \leftarrow (l_2 \mapsto \langle \text{nil}, \text{nil} \rangle) \}
 \]

 \[
 \text{project}(s, \{ t_1, t_2 \}) = ((\text{tree}(y) \star \text{tree}(y)) \star \text{tree}(x)) \star \text{tree}(y).
 \]

 We note that \(\text{project}(s, \{ t_1, t_2 \}) \) is not delimited because the variable \(y \) appears twice on the left-hand side of a magic wand; at most one occurrence of \(y \) can be eliminated using modus ponens.

We collect the set of all DUSHs over the SID \(\Phi \) in

\[
\text{DUSH}_\Phi \triangleq \{ \text{project}(s, f) \mid s \in \text{Stacks}, f \text{ is a } \Phi \text{-forest, } \text{project}(s, f) \text{ is delimited} \}.
\]

We are now ready to introduce the type abstraction. Given a state \(\langle s, h \rangle \) and an SID \(\Phi \), we call the set of all projections of \(\Phi \)-forests capturing the heap \(h \) in the DUSH fragment the \(\Phi \)-**type** of \(\langle s, h \rangle \).
Definition 8.4 (Φ-Type). The Φ-type (type for short) of a state $\langle s, b \rangle$ and an SID Φ is given by
\[
type_{\Phi}(s, b) \triangleq \{\text{project}(s, f) \mid f \in \text{forests}_{\Phi}(b)\} \cap \text{DUSH}_{\Phi}.
\]

In the remainder of this section, we discuss the main results and building blocks required for turning the type abstraction into a decision procedure for guarded separation logic (GSL).

8.1 Understanding Satisfiability as Computing Types

The main idea underlying our decision procedure is to reduce the satisfiability problem for GSL—“given a GSL formula ϕ, does ϕ have a model $\langle s, b \rangle \models \phi$?”—to the question of whether some type T can be computed from a model of ϕ, i.e., $T = \text{type}_{\Phi}(s, b)$ should hold for some $\langle s, b \rangle \models \phi$; the set of all such types will be formally defined further in the following.

8.1.1 Aliasing Constraints. To conveniently reason about sets of types, we require that types in the same set have the same free variables and the same aliases, i.e., we will group types by aliasing constraint—an equivalence relation $ac \subseteq \text{Var} \times \text{Var}$ representing all aliases under consideration. More formally, every stack s induces an aliasing constraint $\text{aliasing}(s)$ given by
\[
\text{aliasing}(s) \triangleq \{(x, y) \mid x, y \in \text{dom}(s) \text{ and } s(x) = s(y)\}.
\]

We denote the domain of an aliasing constraint ac by $\text{dom}(ac) \triangleq \{x \mid (x, x) \in ac\}$. Furthermore, we write $ac(x)$ for the set of aliases of x given by the aliasing constraint ac, i.e., the equivalence class $ac(x) \triangleq \{y \mid (x, y) \in ac\}$ of ac that contains x. To obtain a canonical formalization, we frequently represent the equivalence class of x by its largest\(^6\) member; formally, $[x]_{ac}^\text{max} \triangleq \max ac(x)$.

8.1.2 From GSL Satisfiability to Types. As outlined at the beginning of Section 8.1, our decision procedure will be based on computing sets of types of the following form.

Definition 8.5 (ac-Types). Let ac be an aliasing constraint (cf. Section 8.1.1). Then the set $\text{Types}^\text{ac}_{\Phi}(\phi)$ of ac-types of GSL formula ϕ is defined as
\[
\text{Types}^\text{ac}_{\Phi}(\phi) \triangleq \{\text{type}_{\Phi}(s, b) \mid s \in \text{Stacks}, b \in \text{Heaps}, \text{aliasing}(s) = ac, \langle s, b \rangle \models \phi\}.
\]

By the preceding definition, a GSL formula ϕ with at least one non-empty set of ac-types is satisfiable: some type coincides with $\text{type}_{\Phi}(s, b)$, where $\langle s, b \rangle \models \phi$. Conversely, if ϕ is satisfiable, then there exists a model $\langle s, b \rangle \models \phi$ and the set $\text{Types}^\text{aliasing}(s)_{\Phi}(\phi)$ is non-empty. In summary,
\[
\phi \text{ is satisfiable } \iff \exists ac. \text{Types}^\text{ac}_{\Phi}(\phi) \neq \emptyset.
\]

On a first glance, finding a suitable aliasing constraint ac and proving non-emptiness of $\text{Types}^\text{ac}_{\Phi}(\phi)$ might appear as difficult as finding a state $\langle s, b \rangle$ such that $\langle s, b \rangle \models \phi$ holds due to three concerns:

1. There are, in general, both infinitely many aliasing constraints and infinitely many Φ-types, because the size of stacks—and thus the number of free variables to consider—is unbounded.
2. Even if the set $\text{Types}^\text{ac}_{\Phi}(\phi)$ is finite, effectively computing it is non-trivial.
3. Deciding whether a type T belongs to $\text{Types}^\text{ac}_{\Phi}(\phi)$ is non-trivial: assume that $\langle s, b \rangle \models \phi$, $\langle s', b' \rangle \not\models \phi$, and both states yield the same type, i.e., $T = \text{type}_{\Phi}(s, b) = \text{type}_{\Phi}(s', b')$. Determining that $T \in \text{Types}^\text{ac}_{\Phi}(\phi)$ would then require us to know that T can be computed from a specific state, namely $\langle s, b \rangle$.

As informally motivated in Section 6, our type abstraction can deal with each of the preceding concerns; we provide the formal details addressing each concern in the remainder of this section.

\(^6\)With respect to the linear ordering over variables we assume throughout this article; notice that the maximum is well defined as long as the set of aliases of a variable is finite.
Regarding (1), we discuss in Section 8.2 how both aliasing constraints and types can safely be restricted to finite subsets. Determining whether \(\exists\sigma. \text{Types}^\sigma_{\Phi}(\phi) \neq \emptyset\) holds thus amounts to computing finitely many finite sets. This corresponds to achieving finiteness in Section 6.

Regarding (2), we introduce operations for effectively computing \(\Phi\)-types from existing ones in Sections 8.3 and 8.4; they will be the building blocks of our decision procedure. This corresponds to achieving compositionality in Section 6.

Regarding (3), we show in Section 8.5 that one can decide whether a type \(\mathcal{T}\) belongs to \(\text{Types}^{\text{ac}}_{\Phi}(\phi)\) without reverting to any state underlying \(\mathcal{T}\). In particular, we will show that states yielding the same \(\Phi\)-type satisfy the same GSL formulas. This corresponds to achieving refinement in Section 6.

8.2 Finiteness

To ensure finiteness of the type abstraction, we only consider stacks with variables taken from some arbitrary, but fixed, finite set \(x\) of variables. In particular, we denote by \(\text{DUSH}^{x}_{\Phi}\) the restriction of \(\text{DUSH}\) (\(\text{DUSH}_{\Phi}\)) to formulas \(\phi\) with free variables in \(x\), i.e., \(\text{fvars}(\phi) \subseteq x\). With this restriction in place, we are immediately able to argue the finiteness of the DUSH fragment based on the following observation: every variable can appear at most twice (once as the projection of a hole and once as the projection of a tree).

Lemma 8.6. Let \(n \triangleq |\Phi| + |x|\), where \(x\) is a finite set of variables. Then \(|\text{DUSH}^{x}_{\Phi}| \in 2^{O(n^2 \log(n))}\).

Proof. See Appendix A.16. \(\square\)

Analogously to \(\text{DUSH}^{x}_{\Phi}\), we only consider aliasing constraints and types over the finite set \(x\), i.e., we consider the finite set of aliasing constraints \(\text{AC}^{x} \triangleq \{\text{aliasing}(s) \mid s \in \text{Stacks}, \text{dom}(s) = x\}\). We note that the number of aliasing constraints in \(\text{AC}^{x}\) equals the \(|x|\)-th Bell number, bounded by \(n^n \in O(2^n \log(n))\), where \(n = |x|\). Furthermore, we collect in \(\text{Types}^{\text{ac}}_{\Phi}\) all \(\text{ac}\)-types over \(\Phi\) and \(x\), i.e.,

\[
\text{Types}^{\text{ac}}_{\Phi} \triangleq \bigcup_{\text{ac} \in \text{AC}^{x}} \bigcup_{\phi \in \text{GSL}} \text{Types}^{\text{ac}}_{\Phi}(\phi).
\]

The preceding restriction of types to variables in \(x\) indeed ensures finiteness.

Theorem 8.7. Let \(x \subseteq \text{Var}\) be finite and \(n \triangleq |\Phi| + |x|\). Then \(|\text{Types}^{x}_{\Phi}| \in 2^{2O(n^2 \log(n))}\).

Proof. Recall from Lemma 8.6 that the set \(\text{DUSH}^{x}_{\Phi}\) of DUSHs over \(\Phi\) with free variables taken from \(x\) is of size \(2^{O(n^2 \log(n))}\). We show in the following that every type \(\mathcal{T} \in \text{Types}^{x}_{\Phi}\) is a subset of \(\text{DUSH}^{x}_{\Phi}\). Hence, the size of \(\text{Types}^{x}_{\Phi}\) is bounded by the number of subsets of \(\text{DUSH}^{x}_{\Phi}\), i.e., \(|\text{Types}^{x}_{\Phi}| \in 2^{2O(n^2 \log(n))}\).

It remains to show that, for every \(\mathcal{T} \in \text{Types}^{x}_{\Phi}\), we have \(\mathcal{T} \subseteq \text{DUSH}^{x}_{\Phi}\); by definition of \(\text{Types}^{x}_{\Phi}\), there exists an aliasing constraint \(\text{ac} \in \text{AC}^{x}\) and a GSL formula \(\phi\) such that \(\mathcal{T} \in \text{Types}^{\text{ac}}_{\Phi}(\phi)\). By Definition 8.5, there exists a state \((s, h)\) such that \(\text{dom}(s) = \text{dom}(\text{ac}) \subseteq x\), \((s, h) \models \phi\), and \(\mathcal{T} = \text{type}_{\Phi}(s, h)\). By Definition 8.4, \(\mathcal{T} = \{\text{project}(s, f) \mid f \in \text{forest}_{\Phi}(h)\} \cap \text{DUSH}_{\Phi} \subseteq \text{DUSH}^{x}_{\Phi}\). \(\square\)

8.3 s-Delimited Forests

To introduce the forests that correspond to DUSHs, we make use of the notions of an interface of a \(\Phi\)-forest, which is the set of locations that appear in some tree either as the root or as a hole.

Definition 8.8 (Interface). The interface of a \(\Phi\)-forest \(\vdash = \{t_1, \ldots, t_k\}\) is given by

\[
\text{interface}(\vdash) \triangleq \bigcup_{1 \leq i \leq k} (\{\text{root}(t_i)\} \cup \text{allholes}(t_i)).
\]
Example 8.9 (Interface). Recall the forest \(f \) from Example 7.5. We have interface\((f) = \{l_1, l_2, l_3\}: \) the locations \(l_1, l_2, l_3 \) all occur as the roots of a tree; \(l_2 \) and \(l_3 \) additionally occur as holes (of \(t_3 \) and \(t_1 \), respectively); and \(l_4 \) occurs neither as root nor as hole of a tree and is thus not part of the interface.

An \(s \)-delimited forest is a \(\Phi \)-forest whose interface consists only of locations covered by some stack variable and which does not have any duplicate holes.

Definition 8.10 (\(s \)-Delimited \(\Phi \)-forest). A \(\Phi \)-forest \(f \) is \(s \)-delimited iff (1) interface\((f) \subset \text{img}(s)\), and (2) for every \(l \in \text{allholes}(f) \) in some tree \(t \in f \), there is exactly one rule instance (for \(l' \in \text{dom}(l)\))

\[
\text{rule}_l(l') = \text{pred}(v) \iff (a \rightarrow b) \ast \text{pred}_l(v_1) \ast \cdots \ast \text{pred}_m(v_m) \ast \Pi
\]

and exactly one index \(i \in [1, m] \) such that \(\text{predroot}((v_i)) = l \).

Example 8.11. We consider the forests from Example 8.3: we note that \(\{t_1, t_2, t_3\} \) from (1) is \(s \)-delimited, whereas \(\{t_1, t_2\} \) from (2) is not.

A \(\Phi \)-forest is \(s \)-delimited precisely when its projection is delimited (see Appendix A.17 for a proof).

Lemma 8.12. Let \(f \) be a forest and let \(s \) be a stack. Then \(f \) is \(s \)-delimited iff project\((s, f)\) is delimited.

We now state that the \(s \)-delimitedness of forests is preserved under decomposition; this result will allow us to lift the composition formulas (respectively, \(s \)-delimited forests) to types.

Theorem 8.13. Let \(\langle s, h_1 \rangle, \langle s, h_2 \rangle \in G\text{States} \) be guarded states, and let \(f \) be an \(s \)-delimited forest with \(f \in \text{forests}_h_0(h_1 \cup h_2) \). Then, there exist \(s \)-delimited forests \(f_1, f_2 \) with heap\((f_i) = h_i \) and \(f \in \{f_1 \bullet f_2\} \).

Proof. See Appendix A.18.

8.4 Operations on Types

Type composition, renaming of variables, forgetting variables, and type extension operations will be the building blocks of our decision procedure for GSL.

8.4.1 Type Composition. We define an operation \(\bullet \) on the level of \(\Phi \)-types such that \(\text{type}_\Phi(s, h_1 \cup h_2) = \text{type}_\Phi(s, h_1) \bullet \text{type}_\Phi(s, h_2) \), i.e., \(\text{type}_\Phi(s, \cdot) \) is a homomorphism w.r.t. to the operation \(\cup \) on heaps and the operation \(\bullet \) on types. As justified in the following, we can define \(\bullet \) by applying our composition operation for forest projections, \(\bullet_P \) (cf. Definition 7.31), to all elements of the involved types.

Theorem 8.14 (Compositionality of \(\Phi \)-types). For all guarded states \(\langle s, h_1 \rangle \) and \(\langle s, h_2 \rangle \) with \(h_1 \cup h_2 \neq \bot \), \(\text{type}_\Phi(s, h_1 \cup h_2) \) can be computed from \(\text{type}_\Phi(s, h_1) \) and \(\text{type}_\Phi(s, h_2) \) as follows:

\[
\text{type}_\Phi(s, h_1 \cup h_2) = \{\phi \in \text{DUSH}_\Phi \mid \text{ex. } \psi_1 \in \text{type}_\Phi(s, h_1), \psi_2 \in \text{type}_\Phi(s, h_2) \text{ such that } \phi \in \psi_1 \bullet_P \psi_2\}.
\]

Proof. See Appendix A.19.

Our second consideration for defining the composition operation \(\bullet \) on \(\Phi \)-types is that the operation \(\cup \) is only defined on disjoint heaps. To be able to express a corresponding condition on the level of types, we will make use of the following notion.

Definition 8.15 (Allocated Variables of a Type). The set of allocated variables of \(\Phi \)-type \(T \) is

\[
\text{allocated}(T) = \{x \mid \text{there ex. } \phi \in T \text{ and } (\psi \ast \text{pred}(z)) \text{ in } \phi \text{ s.t. } x = \text{predroot}(\text{pred}(z))\}.
\]

The preceding notion is motivated by the fact that, for each non-empty type, the allocated variables of the type agree with the allocated variables of every state having that type.

Lemma 8.16. Let \(\langle s, h \rangle \) be a state with \(\text{type}_\Phi(s, h) \neq \emptyset \). Then, \(\text{allocated}(s, h) = \text{allocated}(\text{type}_\Phi(s, h)) \).
PROOF. See Appendix A.20. □

We note that, for every model ⟨s, h⟩ of some predicate call \(\text{pred}(z_1, \ldots, z_k) \), there is at least one tree \(t \) with \(\text{heap}(\{t\}) = h \) (see Lemma 7.3); hence, \(\text{project}(s, \{t\}) \in \text{type}_\Phi(s, h) \) and the non-emptiness requirement of Lemma 8.16 is fulfilled—a fact that generalizes to all models of guarded formulas.

Lemma 8.17. Let \(\phi \in \text{GSL} \) and let \(⟨s, h⟩ \) be a state with \(⟨s, h⟩ \models \phi \). Then, \(\text{type}_\Phi(s, h) \neq \emptyset \).

Proof. See Appendix A.21. □

We are now ready to state our composition operation \(\cdot \) on \(\Phi \)-types.

Definition 8.18 (Type Composition). The composition \(T_1 \cdot T_2 \) of \(\Phi \)-types \(T_1 \) and \(T_2 \) is given by

\[
T_1 \cdot T_2 \triangleq \begin{cases}
\bot, & \text{if } \text{allocated}(T_1) \cap \text{allocated}(T_2) \neq \emptyset, \\
\left(\bigcup_{\phi_1 \in T_1, \phi_2 \in T_2} \phi_1 \cdot_p \phi_2 \right) \cap \text{DUSH}_\Phi, & \text{otherwise.}
\end{cases}
\]

We now state two results that \(\cdot \) has the desired properties, i.e., that \(\text{type}_\Phi(s, \cdot) \) is a homomorphism w.r.t. to the operation \(\otimes \) on heaps and the operation \(\cdot \) on types (cf. Appendices A.22 and A.23).

Corollary 8.19 (Compositionality of Type Abstraction). For guarded states \(⟨s, h_1⟩ \) and \(⟨s, h_2⟩ \) with \(h_1 \uplus h_2 \neq \bot \), we have \(\text{type}_\Phi(s, h_1) \otimes \text{type}_\Phi(s, h_2) = \text{type}_\Phi(s, h_1 \cdot_\Phi s, h_2) \).

Lemma 8.20. For \(i \in \{1, 2\} \), let \(⟨s, h_i⟩ \) be states with \(\text{type}_\Phi(s, h_i) = T_i \neq \emptyset \) and \(T_i \cdot T_2 \neq \bot \). Then, there are states \(⟨s, h'_i⟩ \) such that \(\text{type}_\Phi(s, h'_i) = T_i \) and \(\text{type}_\Phi(s, h'_i \uplus h'_2) = T_i \cdot T_2 \).

8.4.2 Renaming Variables. To compute the types of predicate calls \(\text{pred}(y) \) compositionally, we need a mechanism to rename variables in \(\Phi \)-types: once we know the types of a predicate call \(\text{pred}(x) \) over the formal arguments \(x = \text{fvars}({\text{pred}}) \), we can compute the types of \(\text{pred}(y) \) by renaming \(x \) to \(y \). Such a renaming amounts to a simple variable substitution.

Definition 8.21 (Variable Renaming). Let \(x \) be a sequence of pairwise distinct variables, let \(y \) be an arbitrary sequence of variables with \(|y| = |x| \), and let \(\text{ac} \) be an aliasing constraint with \(y \subseteq \text{dom}(\text{ac}) \). Moreover, let \(y' \) be the sequence obtained by replacing every variable in \(y \subseteq y \) by the maximal variable in its equivalence class, i.e., by \(\left[y \right]_{\text{ce}} \). Then, the \([x/y]-\text{renaming} \) of type \(T \) w.r.t. aliasing constraint \(\text{ac} \) is given by \(T[\text{ac} : x/y] \triangleq \{ \phi[x/y'] \mid \phi \in T \} \).

Variable renaming is compositional as it corresponds to first renaming variables at the level of stacks and then computing the type of the resulting state. More formally, assume a state \(⟨s, h⟩ \), where we already renamed \(x \) to \(y \) in stack \(s \); in particular, \(x \cap \text{dom}(s) = \emptyset \). Computing \(\text{type}_\Phi(s, h) \) then coincides with the \([x/y]-\text{renaming} \) of \(\text{type}_\Phi(s', h) \), where \(s' = [s[x/y] \uplus s[x/s(y)]] \) is the stack \(s \) in which the variables \(x \) have not been renamed to \(y \) yet (cf. Appendix A.24).\(^9\)

Lemma 8.22. For \(x, y \) as earlier and a stack \(s \) with \(y \subseteq \text{dom}(s) \) and \(x \cap \text{dom}(s) = \emptyset \), we have

\[
\text{type}_\Phi(s[x/y], b)[\text{aliasing}(s) : x/y] = \text{type}_\Phi(s, h).
\]

8.4.3 Forgetting Variables. Our third operation on types removes a free variable \(x \) from a type \(T \). Intuitively, for every formula \(\phi \in T \), there are two cases:

1. If \(x \) aliases with some free variable, then we replace \(x \) by its largest alias.
2. If \(x \) does not alias with any free variable, then we remove it from the set of free variables by introducing a (guarded) existential quantifier.

\(^9\)Recall that \(s[u/v] \) denotes a stack update in which variables in \(u \) are added to the domain of stack \(s \) if necessary.
Formally, we fix an aliasing constraint \(ac\) (cf. Section 8.1.1) characterizing which free variables are aliases. Forgetting a variable \(x\) in a formula \(\phi\) with respect to \(ac\) is then defined as follows:

\[
\text{forget}_{ac,x}(\phi) \equiv \begin{cases}
\phi[x/\max(ac(x)\setminus \{x\})], & \text{if } x \in \text{fvars}(\phi) \text{ and } ac(x) \neq \{x\}, \\
\exists y. \phi, & \text{if } x \in \text{fvars}(\phi) \text{ and } ac(x) = \{x\}, \\
\phi, & \text{if } x \notin \text{fvars}(\phi).
\end{cases}
\]

Forgetting a variable in a type \(\mathcal{T}\) corresponds to applying the preceding operation to all \(\phi \in \mathcal{T}\). However, \(\text{forget}_{ac,x}(\phi)\) does—in general—not belong to the fragment \(\Phi\) because we might existentially quantify over a root variable of \(\phi\). Hence, we additionally intersect the result with \(\Phi\).

Definition 8.23 (Forgetting a Variable). The \(\Phi\)-type obtained from forgetting variable \(x\) in \(\Phi\)-type \(\mathcal{T}\) w.r.t. aliasing constraint \(ac\) is defined by \(\text{forget}_{ac,x}(\mathcal{T}) \triangleq \{\text{forget}_{ac,x}(\phi) \mid \phi \in \mathcal{T}\} \cap \Phi\).

The preceding operation is compositional as forgetting an allocated variable in the type of a guarded state coincides with first removing the variable from the state and then computing its type.

Lemma 8.24. Let \(\langle s, h \rangle\) be a guarded state such that \(s(x) \in \text{dom}(h)\) holds for some variable \(x\). Then,

\[
\text{forget}_{\text{aliasing}(s),x}(\text{type}_a(s, h)) = \text{type}_a(s[x/\bot], h).
\]

Proof. See Appendix A.25. \(\square\)

8.4.4 Type Extension.

Our fourth and final operation is concerned with extending types to stacks over larger domains. To this end, we instantiate universally quantified variables with free variables that do not appear in the type so far. Formally, let \(\phi = \exists_e. \forall (a \cdot u \cdot b). \psi\) be a formula and let \(x\) be a fresh variable, i.e., \(x \notin \text{fvars}(\phi)\). We call the formula \(\exists_e. \forall (a \cdot b). \psi[u/x]\) an \(x\)-instantiation of \(\phi\). Extending a type by a variable \(x\) then corresponds to adding all \(x\)-instantiations of its members.

Definition 8.25 (x-Extension of a Type). The \(x\)-extension of a \(\Phi\)-type \(\mathcal{T}\) by a fresh variable \(x\) is

\[
\text{extend}_x(\mathcal{T}) \triangleq \mathcal{T} \cup \{\phi' \mid \phi \in \mathcal{T}\}.
\]

As for the other operations, the \(x\)-extension of a type is compositional in the sense that it coincides with computing the type of a state with an already extended stack (cf. Appendix A.26).

Lemma 8.26. For every state \(\langle s, h \rangle\), variable \(x\) with \(s(x) \notin \text{locs}(h)\) and aliasing(s)(x) = \{x\},

\[
\text{extend}_x(\text{type}_a(s[x/\bot], h)) = \text{type}_a(s, h).
\]

Rather than extending a type by a single variable, it will be convenient to extend it by all variables in an aliasing constraint that are not aliases of an existing variable.

Definition 8.27 (Extension of a Type with Regard to An Aliasing Constraint). Let \(ac \subseteq ac'\) be aliasing constraints. Let \(y\) be a repetition-free sequence of all maximal variables in \(\text{dom}(ac)\), and let \(y'\) be the sequence obtained by replacing every variable in \(y \in \text{dom}(y)\) by the corresponding maximal variable in \(ac'\), i.e., by \([y]_{ac'}\). Moreover, let \(z = (z_1, \ldots, z_n)\), \(n \geq 0\), be a repetition-free sequence of all maximal variables in \(\text{dom}(ac')\) that are not aliases of variables in \(\text{dom}(ac)\). Then the \(ac'\)-extension of a \(\Phi\)-type \(\mathcal{T}\) w.r.t. aliasing constraint \(ac\) is defined as \(\text{extend}_{ac'}(\mathcal{T}) \triangleq \mathcal{T}_n\), where

\[
\mathcal{T}_k = \begin{cases}
\{\phi[y/y'] \mid \phi \in \mathcal{T}\}, & \text{if } k = 0 \\
\text{extend}_{z_k}(\mathcal{T}_{k-1}), & \text{if } 0 < k \leq n.
\end{cases}
\]

\(^{10}\)We recall that we need maximal variables for maintaining canonical projections, i.e., type representations.

\(^{11}\)In other words, \(z \in z\) if \(x \in \text{dom}(ac')\), \(z = [z]_{ac'}\) and \(z \notin ac'(y)\) for all \(y \in \text{dom}(ac)\).
The preceding operation preserves compositionality as it boils down to multiple type extensions.

Lemma 8.28. Let \(\langle s, b \rangle \) be a state and \(\text{ac} \) be an aliasing constraint with \(\text{ac} \subseteq \text{aliasing}(s) \). Let \(s' \) be the restriction of \(s \) to the domain \(\text{dom}(\text{ac}) \). If \(s(x) \notin \text{locs}(b) \) for every variable \(x \in \text{dom}(s) \) that is not an alias of a variable in \(\text{dom}(\text{ac}) \), then \(\text{extend}_{\text{aliasing}(s)}(\text{type}_\phi(s', b)) = \text{type}_\phi(s, b) \).

Proof. Let \(k \geq 0 \) be the number of variables in \(\text{dom}(s) \) that are no aliases of variables in \(\text{dom}(\text{ac}) \). By Definition 8.27, we have \(\text{extend}_{\text{aliasing}(s)}(\text{type}_\phi(s', b)) = \mathcal{T}_k \), i.e., we need to apply \(k \) type extensions. The claim then follows from Lemma 8.26 by induction on \(k \).

8.5 Type Refinement

The main insight required for effectively deciding whether a type \(\mathcal{T} \) belongs to \(\text{Types}_\phi^{\text{ac}}(\phi) \) is that states with identical \(\Phi \)-types satisfy the same GSL formulas—a statement we formalize in the following. This property is perhaps surprising, as types only contain formulas from the DUSH fragment, which is largely orthogonal to GSL. For example, GSL formulas allow guarded negation and guarded separation, but neither quantifiers nor unguarded magic wands, whereas DUSHs allow limited use of guarded quantifiers and unguarded magic wands, but neither Boolean structure nor separation.

Theorem 8.29 (Refinement Theorem). For all stacks \(s \), heaps \(b_1 \), \(b_2 \), and GSL formulas \(\phi \),

\[
\text{type}_\phi(s, b_1) = \text{type}_\phi(s, b_2)
\]

implies \(\langle s, b_1 \rangle \models_\Phi \phi \) iff \(\langle s, b_2 \rangle \models_\Phi \phi \).

Proof. See Appendix A.27.

Theorem 8.29 immediately implies that, if the type of a state \(\langle s, b \rangle \) is equal to some already-known type of some other state \(\langle s', b' \rangle \) satisfying formula \(\phi \), then \(\langle s, b \rangle \) satisfies \(\phi \).

Corollary 8.30. If there is a type \(\mathcal{T} \in \text{Types}_\phi^{\text{aliasing}(s)}(\phi) \) with \(\text{type}_\phi(s, b) = \mathcal{T} \), then \(\langle s, b \rangle \models_\Phi \phi \).

Moreover, recall that GSL formulas are quantifier free (although quantifiers may appear in predicate definitions). As demonstrated in the following, this limitation is crucial for upholding Theorem 8.29.

Example 8.31. Recall \(\Phi_{ls} \) from Example 3.3. Moreover, let \(\langle s, b_k \rangle, k \in \mathbb{N} \), be a list of length \(k \) from \(x_1 \) to \(x_2 \). It then holds for all \(i, j \geq 2 \) that \(\text{type}_\phi(s, b_i) = \text{type}_\phi(s, b_j) \). However,

\[
\langle s, b_2 \rangle \not\models_\Phi \exists y_1, y_2. \text{ls}(x_1, y_1) \star \text{ls}(y_1, y_2) \star \text{ls}(y_2, x_2) \quad \text{and} \quad \langle s, b_j \rangle \models_\Phi \exists y_1, y_2. \text{ls}(x_1, y_1) \star \text{ls}(y_1, y_2) \star \text{ls}(y_2, x_2).
\]

Hence, the refinement theorem does not hold if we admit quantifiers in GSL formulas.

9 ALGORITHMS FOR COMPUTING TYPES

As discussed in Section 8.1, deciding whether a GSL formula \(\phi \) is decidable boils down to computing finite sets of types \(\text{Types}_\phi^{\text{ac}}(\phi) \) for suitable aliasing constraints \(\text{ac} \). We now present two algorithms for effectively computing \(\text{Types}_\phi^{\text{ac}}(\phi) \): Section 9.1 deals with computing types of predicate calls defined by SIDs and Section 9.2 shows how to compute types of GSL formulas, respectively.\(^{12}\)

\(^{12}\)Recall that the formulas in SIDs are symbolic heaps and not GSL formulas; for example, they may contain quantifiers.
\[
\begin{align*}
\text{ptypes}_p^\Phi(x \approx y, \alpha) & \triangleq \begin{cases}
\{\text{emp}\} & \text{if } \langle x, y \rangle \in \alpha \\
\emptyset & \text{else}
\end{cases} \\
\text{ptypes}_p^\Phi(x \neq y, \alpha) & \triangleq \begin{cases}
\{\text{emp}\} & \text{if } \langle x, y \rangle \notin \alpha \\
\emptyset & \text{else}
\end{cases} \\
\text{ptypes}_p^\Phi(a \mapsto b, \alpha) & \triangleq \{\text{type}_{\Phi}(\text{ptrmodel}_{\alpha}(a \mapsto b))\} \\
\text{ptypes}_p^\Phi(\text{pred}(y), \alpha) & \triangleq \{\text{let } z \triangleq \text{fvars}(\text{pred}) \text{ in } \}
\begin{align*}
& \text{extend}_{\alpha}[z/y] \vdash (p(\text{pred}, \alpha[z/y]^{-1}_{\text{fvars}[y]})[\alpha : z/y]) \\
\text{ptypes}_p^\Phi(\phi_1 \star \phi_2, \alpha) & \triangleq \text{ptypes}_p^\Phi(\phi_1, \alpha) \bullet \text{ptypes}_p^\Phi(\phi_2, \alpha), \\
\text{ptypes}_p^\Phi(\exists y. \phi, \alpha) & \triangleq \bigcup_{\alpha' \in \text{AC}_{\text{dom}(\phi) \cup \{y\}}} \text{with } \alpha'[\text{dom}(\phi)] = \alpha \text{ forget}_{\alpha', y} \left(\text{ptypes}_p^\Phi(\phi, \alpha')\right)
\end{align*}
\end{align*}
\]

Fig. 11. Computing (a subset of) the \(\Phi\)-types of existentialy quantified symbolic heap \(\phi \in \text{SH}^2\) for stacks with aliasing constraint \(\alpha\) under the assumption that \(p\) maps every predicate symbol \(\text{pred}\) and every aliasing constraint to (a subset of) the types \(\text{Types}^\Phi_{\text{ac}}(\text{pred})\). Here, \(\alpha[u/v]^{-1}\) denotes the addition of the variables \(u\) into the aliasing constraint \(\alpha\) such that the variables \(u\) are aliases of the variables \(v\), respectively; see Definition 9.1. We denote by \(\text{ac}_y\) the restriction of \(\alpha\) to the variables in \(y\), i.e., \(\alpha / y \triangleq \alpha \cap (y \times y)\).

9.1 Computing the Types of Predicate Calls

We first compute, for every predicate \(\text{pred} \in \text{Preds}(\Phi)\), the set of all \(\alpha\)-types of \(\text{pred}\). Specifically, for every aliasing constraint \(\alpha \in \text{AC}^{x \cup \text{fvars}(\text{pred})}\), where \(x \subseteq \text{Var}\) finite, we will compute

\[
\text{Types}^\Phi_{\text{ac}}(\text{pred}) \triangleq \text{Types}^\Phi_{\text{ac}}(\text{pred}(\text{fvars}(\text{pred}))).
\]

Once we have a way to compute these types, we can also compute types for any GSL formula with free variables \(x\), as we will see in Section 9.2.

9.1.1 Assumptions

Throughout this section, we fix a pointer-closed SID \(\Phi \in \text{ID}_{\text{btw}}\) and a finite set of variables \(x\); we assume w.l.o.g. that \(x \cap \text{fvars}(\text{pred}) = \emptyset\) for all predicates \(\text{pred} \in \text{Preds}(\Phi)\).

9.1.2 A Fixed-Point Algorithm for Computing the Types of Predicates

We compute \(\text{Types}^\Phi_{\text{ac}}(\text{pred})\) for all choices of \(\alpha\) and \(\text{pred}\) by a simultaneous fixed-point computation. Specifically, our goal is to compute a (partial) function \(p: \text{Preds}(\Phi) \times \text{AC} \rightarrow 2^{\text{Types}^\Phi_{\text{ac}}}\) that maps every predicate \(\text{pred}\) and every aliasing constraint \(\alpha \in \text{AC}^{x \cup \text{fvars}(\text{pred})}\) to the set of types \(\text{Types}^\Phi_{\text{ac}}(\text{pred})\). We start off the fixed-point computation with \(p(\text{pred}, \alpha) = \emptyset\) for all \(\text{pred}\) and \(\alpha\); each iteration adds to \(p\) some more types such that \(p(\text{pred}, \alpha) \subseteq \text{Types}^\Phi_{\text{ac}}(\text{pred})\); and when we reach the fixed point, \(p(\text{pred}, \alpha) = \text{Types}^\Phi_{\text{ac}}(\text{pred})\) will hold for all \(\text{pred}\) and \(\alpha\). Each iteration amounts to applying the function \(\text{ptypes}_p^\Phi(\phi, \alpha)\) defined in Figure 11 to all rule bodies \(\phi \in \text{SH}^2\) of the SID \(\Phi\) and all aliasing constraints \(\alpha\). Here, \(p\) is the pre-fixed point from the previous iteration.

The function \(\text{ptypes}\) operates on sets of types. Hence, we need to lift \(\bullet, [\cdot : /\cdot /\cdot], \text{forget}\) and \(\text{extend}\) from types to types of sets in a point-wise manner, i.e.,

\[
\begin{align*}
\{T_1, \ldots, T_m\} \bullet \{T'_1, \ldots, T'_n\} & \triangleq \{T_i \bullet T'_j | 1 \leq i \leq m, 1 \leq j \leq n, T_i \bullet T'_j \neq \perp\}, \\
\{T_1, \ldots, T_m\}[\alpha : x/y] & \triangleq \{T_i[\alpha : x/y], \ldots, T_m[\alpha : x/y]\}, \\
\text{forget}_{\alpha, y}(\{T_1, \ldots, T_m\}) & \triangleq \left\{\text{forget}_{\alpha, y}(T_1), \ldots, \text{forget}_{\alpha, y}(T_m)\right\}, \text{ and} \\
\text{extend}_{\alpha}(\{T_1, \ldots, T_m\}) & \triangleq \left\{\text{extend}_{\alpha}(T_1), \ldots, \text{extend}_{\alpha}(T_m)\right\}.
\end{align*}
\]

Further \(\text{ptypes}\) uses the following operation on aliasing constraints.

Definition 9.1 (Reverse Renaming of Aliasing Constraints). Let \(x\) be a sequence of pairwise distinct variables and let \(y\) be a sequence of (not necessarily pairwise distinct) variables with \(|y| = |x|\). Moreover, let \(\alpha\) be an aliasing constraint with \(x \cap \text{dom}(\alpha) = \emptyset\) and \(y \subseteq \text{dom}(\alpha)\). Then, the reverse renaming \(x\) to \(y\) in \(\alpha\) is given by the aliasing constraint \(\alpha[x/y]^{-1} \in \text{AC}^{\text{dom}(\alpha) \cup x}\) defined
Informally, the function $\text{ptypes}^x_\Phi(\phi, ac)$ works as follows:

- If $\phi = x \equiv y$ or $\phi = x \not\equiv y$, we use the aliasing constraint ac to check whether the (dis)equality ϕ holds and then return either the type of the empty model or no type. This is justified because our semantics enforces that (dis)equalities only hold in the empty heap.
- If $\phi = a \mapsto b$, there is—up to isomorphism—only one state with aliasing constraint ac that satisfies ϕ. We denote this state by $\text{ptrmodel}_{ac}(a \mapsto b)$ and return its type.
- If $\phi = \text{pred}(y)$, we look up the types of $\text{pred}(\text{fvars}(\text{pred}))$ in the pre-fixed point p and then appropriately rename the formal parameters $\text{fvars}(\text{pred})$ to the actual arguments y:
 - For the look-up we use the aliasing constraint $ac[x/y]^{-1}$, which is obtained from the aliasing constraint ac by adding the formal parameters $z \equiv \text{fvars}(\text{pred})$ to ac such that the z are aliases of the variables y, respectively; see Definition 9.1 for details.
 - Crucially, we restrict $ac[x/y]^{-1}$ to the variables $x \cup z$ before we look up the types of $\text{pred}(\text{fvars}(\text{pred}))$. This restriction guarantees that the computation of $\text{ptypes}^x_\Phi(\phi, ac)$ does not diverge by considering larger and larger aliasing constraints in recursive calls. (An illustration of the problem as well as an argument why our solution does not lead to divergence can be found in Appendix A.29.2.)
 - After the loop-up we extend the types over aliasing constraint $ac[z/y]^{-1}|_{x \cup z}$ to types over aliasing constraint $ac[z/y]^{-1}$, undoing the earlier restriction.
 - Finally, we rename the formal parameters z of the recursive call with the actual parameters y and obtain types over aliasing constraint ac.
- If $\phi = \phi_1 \star \phi_2$, we apply the type composition operator developed in previous sections.
- If $\phi = \exists y. \phi'$, we consider all ways to extend the aliasing constraint ac with y and recurse.

Our treatment of predicate calls outlined previously guarantees that this does not lead to divergence.

Fixed-point computation. We use the following wrapper for ptypes:

\[
\text{unfold}_x : (\text{Preds}(\Phi) \times \text{AC} \rightarrow \text{2Types}_\Phi) \rightarrow (\text{Preds}(\Phi) \times \text{AC} \rightarrow \text{2Types}_\Phi),
\]

\[
\text{unfold}_x(p) = \lambda(\text{pred}, \text{ac}). p(\text{pred}, \text{ac}) \cup \bigcup_{(\text{pred}(y) = \phi) \in \Phi} \text{ptypes}^x_\Phi(\text{ac}, \phi).
\]

We observe that unfold_x is a monotone function defined over a finite complete lattice:

1. The considered order \sqsubseteq of $\text{Preds}(\Phi) \times \text{AC} \rightarrow \text{2Types}_\Phi$ is the point-wise comparison of functions:

\[
f \sqsubseteq g \iff \forall \text{pred} \forall \text{ac}. f(\text{pred}, \text{ac}) \sqsubseteq g(\text{pred}, \text{ac}).
\]

2. $\text{Preds}(\Phi) \times \text{AC} \rightarrow \text{2Types}_\Phi$ is a finite lattice because the image 2Types_Φ and the domain $\{(\text{pred}, \text{ac}) \mid \text{pred} \in \text{Preds}(\Phi), \text{ac} \in \text{AC}^{x \cup \text{fvars}(\text{pred})}\}$ of the considered functions are finite.

3. $\text{Preds}(\Phi) \times \text{AC} \rightarrow \text{2Types}_\Phi$ is complete because the image 2Types_Φ of the considered functions is a complete lattice (the subset lattice over Types_Φ).
By Tarski’s and Knaster’s fixed-point theorem the least fixed point of unfold exists. This fixed point can be obtained infinitely many steps by Kleene iteration:

\[\text{lfp}(\text{unfold}_x) \triangleq \lim_{n \in \mathbb{N}} \text{unfold}_n x (\lambda (\text{pred}', \text{ac}'). \emptyset). \]

Moreover, since the lattice is finite, finitely many iterations suffice to reach the least fixed point.

Correctness and complexity. We analyze the correctness of our construction, i.e., for all \(\text{pred} \in \text{Preds}(\Phi) \) and \(\text{ac} \in \text{AC}_x \), \(\text{lfp}(\text{unfold}_x)(\text{pred}, \text{ac}) = \text{Types}^{\text{ac}}_x(\text{pred}) \), as well as its complexity in three steps, which can be found in Appendix A.29:

1. We show \(\text{lfp}(\text{unfold}_x)(\text{pred}, \text{ac}) \subseteq \text{Types}^{\text{ac}}_x(\text{pred}). \)
2. We show \(\text{lfp}(\text{unfold}_x)(\text{pred}, \text{ac}) \supseteq \text{Types}^{\text{ac}}_x(\text{pred}). \)
3. We show that \(\text{lfp}(\text{unfold}_x) \) is computable in \(2^{2^{O(n^2 \log(n))}} \), where \(n \triangleq |\Phi| + |x|. \)

9.2 Computing the Types of Guarded Formulas

After we have established how to compute the types of predicate calls, we are now ready to define a function \(\text{types}(\phi, \text{ac}) \) that computes the types of arbitrary GSL formulas \(\phi \)—i.e., quantifier-free guarded formulas—for some fixed stack-aliasing constraint \(\text{ac} \); the function is defined in Figure 12.

Theorem 9.2 (Correctness and Complexity of the Type Computation). Let \(\phi \in \text{GSL} \) with \(\text{fvars}(\phi) = x \) and \(\text{locs}(\phi) = \emptyset. \) Further, let \(\text{ac} \in \text{AC}_x. \) Then, \(\text{Types}^{\text{ac}}_x(\phi) = \text{types}(\phi, \text{ac}). \) Moreover, \(\text{types}(\phi, \text{ac}) \) can be computed in \(2^{2^{O(n^2 \log(n))}} \), where \(n \triangleq |\Phi| + |x|. \)

We now state the main result of this article.

Theorem 9.3 (Decidability of GSL). Let \(\phi \in \text{GSL} \) and \(n \triangleq |\Phi| + |\phi|. \) It is decidable in time \(2^{2^{O(n^2 \log(n))}} \) whether \(\phi \) is satisfiable.

Proof. Let \(x \triangleq \text{fvars}(\phi). \) Note that \(|x| \leq n. \) The formula \(\phi \) is satisfiable iff there exists a state \((s, b) \) with \((s, b) \models_{\phi} \phi. \) By Lemma 8.17, \(\text{type}_0(s, b) \neq \emptyset. \) Hence, it is sufficient to compute \(\text{Types}^{\text{ac}}_0(\phi) \) for all aliasing constraints \(\text{ac} \) with \(\text{dom}(\text{ac}) = x \) and check whether \(\text{Types}^{\text{ac}}_0(\phi) \neq \emptyset. \)

13To be precise, we invoke a constructive version of Tarski’s and Knaster’s fixed-point theorem [Cousot and Cousot 1979], which supports the computation of the least fixed point by transfinite induction; the finiteness of the lattice, however, ensures that the fixed point is already reached after finitely many steps.
By Theorem 9.2, we can compute $\text{Types}^\text{ac}_\phi(\phi) = \text{types}(\phi, \text{ac})$ in $2^{2O(n^2 \log(n))}$ for a fixed-aliasing constraints ac. Since there are at most $n^n \in O(2^n \log(n))$ stack-aliasing constraints, we can conclude that we can perform the satisfiability check in time $O(2^n \log(n)) = 2^{2O(n^2 \log(n))}$. \hfill \square

Since the entailment query $\phi \models \psi$ is equivalent to checking the unsatisfiability of $\phi \land \neg \psi$, and the negation in $\phi \land \neg \psi$ is guarded, we obtain an entailment checker with the same complexity.

Corollary 9.4 (Decidability of Entailment for GSL). Let $\phi, \psi \in \text{GSL}$ and $n \triangleq |\Phi| + |\phi| + |\psi|$. The entailment problem $\phi \models \psi$ is decidable in time $2^{2O(n^2 \log(n))}$.

Proof. If $\phi, \psi \in \text{GSL}$, then $\phi \land \neg \psi \in \text{GSL}$. The entailment $\phi \models \psi$ is valid iff $\phi \land \neg \psi$ is unsatisfiable. Since 2ExpTime is closed under complement, the claim follows from Theorem 9.3. \hfill \square

Example 9.5. The entailments in Example 6.8 can be proven using our decision procedure.

Finally, our decision procedure is also applicable to (quantifier-free) symbolic heaps over inductive predicate definitions of bounded treewidth, because these formulas are always guarded.\(^\text{14}\) Hence, we also obtain a tighter complexity bound for the original decidability result of Iosif et al. [2013].

Corollary 9.6 (Decidability of Entailment for SL\text{btw}). Let $\phi, \psi \in \text{SL}_{\text{btw}}$ be quantifier-free and $n \triangleq |\Phi| + |\phi| + |\psi|$. The entailment problem $\phi \models \psi$ is decidable in time $2^{2O(n^2 \log(n))}$.

Proof. Follows from Corollary 9.4, since every quantifier-free SL\text{btw} formula is in GSL. \hfill \square

Corollary 9.7 (Decidability Over Values with Null-pointer). Let $\phi, \psi \in \text{GSL}$ with $\text{locs}(\phi) \cup \text{locs}(\psi) \subseteq \{\text{nil}\}$. Then, the satisfiability of ϕ (respectively, the entailment $\phi \models \psi$) over $\text{Val} \triangleq \text{Loc} \cup \{\text{nil}\}$ is decidable in $2^{2O(n^2 \log(n))}$ for $n \triangleq |\Phi| + |\phi|$ (respectively, $n \triangleq |\Phi| + |\phi| + |\psi|$).

10 Conclusion

We have given a unified and revised presentation of the decision procedures developed in the work of Katelaan et al. [2019] and Katelaan and Zuleger [2020] covering (1) the satisfiability of quantifier-free guarded separation logic and (2) the entailment problem of (quantifier-free) symbolic heaps over SIDs of bounded treewidth. In particular, we have established a 2ExpTime upper bound for both problems. A corresponding lower bound has been proven recently [Echenim et al. 2020b]. Hence, we can conclude that our decision procedures have optimal computational complexity.

To the best of our knowledge, our decision procedure for GSL is the first decision procedure to support an SL fragment combining user-supplied inductive definitions, Boolean structure, and magic wands. We obtained an almost tight delineation between decidability and undecidability: we showed that any extension of GSL in which one of the guards is dropped leads to undecidability.

In this article, we considered the quantifier-free fragment of GSL; quantifiers can only appear in SID rules. An interesting question for future research is to what extent quantifiers can also be admitted in GSL formulas without sacrificing decidability. This question is also of practical interest as quantifiers naturally appear in entailments obtained from verification condition generators.

We mention that recent follow-up work by Echenim et al. [2021] generalizes the decidability of the entailment problem for SL\text{btw} by weakening the establishment requirement. The result employs an abstraction inspired by the type abstraction presented in this article. It is an interesting

\(^{14}\)Notice that only the formulas in the entailment query need to be quantifier free; quantifiers are permitted in inductive definitions. Since we can use an arbitrary number of free variables at the top level, this is a mild restriction.
question whether this result can be lifted to guarded separation logic as well. Further, our undecidability results require an unbounded number of dangling pointers. Although Echenim et al. [2021] support classes of structures with unbounded treewidth, the entailment needs only to be checked for so-called normal structures of bounded treewidth. It would be interesting to interpret this result in terms of the number of dangling pointers that need to be considered to understand whether a bounded number of dangling pointers is fundamental for decidability.

Finally, apart from implementing our decision procedure, it would be interesting whether one can extract a proof certificate from our type abstraction that can also be checked independently by other proof systems based on separation logic.

APPENDIX

A ELECTRONIC APPENDIX

A.1 Formal Definition of Substitution

For \(y = \langle y_1, \ldots, y_k \rangle \) and \(z = \langle z_1, \ldots, z_k \rangle \), the substitution \(\phi[y/z] \) is defined by the following table. Since quantified variables can be renamed before performing a substitution, we assume w.l.o.g. that \(y \) contains no variables that are bound by a quantifier in \(\phi \).

\(\phi \)	\(\phi[y/z] \)
\(y_i \)	\(z_i \) \quad 1 \leq i \leq k
\(u \)	\(u \) \quad u \not\in y
\(\langle v_1, \ldots, v_n \rangle \)	\(\langle v_1[y/z], \ldots, v_n[y/z] \rangle \)
\(\text{emp} \)	\(\text{emp} \)
\(u \approx v \)	\(u[y/z] \approx v[y/z] \)
\(u \neq v \)	\(u[y/z] \neq v[y/z] \)
\(u \mapsto v \)	\(u[y/z] \mapsto v[y/z] \)
\(\text{pred}(x) \)	\(\text{pred}(x[y/z]) \)
\(\neg \psi \)	\(\neg\psi[y/z] \)
\(\psi \oplus \theta \)	\(\psi[y/z] \oplus \theta[y/z] \) \quad \Theta \in \{\land, \lor, \ast, \star\}
\(\exists x. \psi \)	\(\exists x. \psi[y/z] \) \quad x \not\in y
\(\forall x. \psi \)	\(\forall x. \psi[y/z] \) \quad x \not\in y

A.2 Proof of Lemma 4.4

Claim. For all predicates \(\text{pred} \in \text{Preds}(\Phi) \) and all states \(\langle s, h \rangle \), we have

\[
\langle s, h \rangle \models_{\Phi} \text{pred}(x) \quad \text{implies} \quad \langle s, h \rangle \in \text{GStates}.
\]

Proof. Let \(\langle s, h \rangle \) be a state such that \(\langle s, h \rangle \models_{\Phi} \text{pred}(x) \) for some predicate \(\text{pred} \in \text{Preds}(\Phi) \). The proof proceeds by strong mathematical induction on the number of rule applications needed to establish \(\langle s, h \rangle \models_{\Phi} \text{pred}(x) \).

According to the semantics, there is a rule \(\text{pred}(x) \iff \phi \in \Phi \), for some \(\phi = \exists e. \phi' \) with \(\phi' = (y \mapsto z) \ast \text{pred}_1(z_1) \ast \cdots \ast \text{pred}_k(z_k) \ast \Pi \). By the (I.H.), we have \(\langle s', h_1 \rangle \in \text{GStates} \). Hence, dangling\((h_0) \subseteq \text{img}(s') \) for all \(0 \leq i \leq k \). By the definition of establishment (see Section 3.4.3), we have \(s'(e) \subseteq \text{dom}(h) \cup s(x) \cup \{0\} \). Because of \(h_i \subseteq h \) and dangling\((h) = \text{locs}(h) \setminus \text{dom}(h) \), we get that
dangling\((h_i) \subseteq s(x)\). Hence, \(\langle s, h \rangle \in \text{GStates}\) because
\[
\text{dangling}(h) = \text{dangling}(h_0 \cup h_1 \cup \ldots \cup h_k) \\
\subseteq \text{dangling}(h_0) \cup \text{dangling}(h_1) \cup \ldots \cup \text{dangling}(h_k) \\
\subseteq s(x) = \text{img}(s).
\]

\section*{A.3 Proof of Corollary 4.6}

\textbf{Claim.} For all \(\phi \in \text{GSL}\) and all states \(\langle s, h \rangle\), we have
\[
\langle s, h \rangle \models \phi \quad \text{implies} \quad \langle s, h \rangle \in \text{GStates}.
\]

\textbf{Proof.} Let \(\phi \in \text{GSL}\) be a guarded formula and let \(\langle s, h \rangle\) be a state with \(\langle s, h \rangle \models \phi\). The proof proceeds by structural induction on \(\phi\):

\textbf{Case} \(\phi = \text{emp}\), \(\phi = x \approx y, x \neq y\): Clearly, there are no dangling pointers in the empty heap.
\textbf{Case} \(\phi = x \mapsto y\): Immediate because of dangling\((h) \subseteq s(y) \subseteq \text{img}(s)\).
\textbf{Case} \(\phi = \text{pred}(s)\). By Lemma 4.4.
\textbf{Case} \(\phi = \phi_1 \star \phi_2\). Since \(\langle s, h \rangle \models \phi\), there exist heaps \(h_1, h_2\) with \(h = h_1 \uplus h_2\) and \(\langle s, h_i \rangle \models \phi_i\). By the I.H., we have \(\langle s, h_i \rangle \in \text{GStates}\), i.e., dangling\((h_i) \subseteq \text{img}(s)\). Thus, dangling\((h) = dangling(h_1 \uplus h_2) \subseteq dangling(h_1) \cup dangling(h_2) \subseteq \text{img}(s)\). Hence, \(\langle s, h \rangle \in \text{GStates}\).
\textbf{Case} \(\phi = \phi_1 \land \phi_2\). By the semantics of \(\land\), this in particular means \(\langle s, h \rangle \models \phi_1\). By the I.H., it then follows that \(\langle s, h \rangle \in \text{GStates}\). Notice that this case covers all standard conjunctions including the guarded negation, the guarded magic wand, and the guarded separation.
\textbf{Case} \(\phi = \phi_1 \lor \phi_2\). Assume w.l.o.g. that \(\langle s, h \rangle \models \phi_1\). By the I.H., we have \(\langle s, h \rangle \in \text{GStates}\). □

\section*{A.4 Proof of Lemma 4.5}

\textbf{Claim.} Let \(\phi \in \text{GSL}\) be a guarded formula with \(\text{fvars}(\phi) = \{x\}\). Then, for every state \(\langle s, h \rangle \models \phi\), there are predicates \(\text{pred}_i \in \text{Preds}(\Phi)\) and variables \(z_i \subseteq x\) such that \(\langle s, h \rangle \models \phi_1 \star_{1 \leq i \leq k} \text{pred}_i(z_i)\).

\textbf{Proof.} By structural induction on \(\phi\):

\textbf{Case} \(\phi = \text{emp}\). This case is immediate because, for \(k = 0\), \(\text{emp}\) coincides with \(\star_{1 \leq i \leq k} \ldots\).
\textbf{Case} \(\phi = x \approx y\). Since, in our semantics, the equality \(x \approx y\) entails \(\text{emp}\), we immediately obtain \(\langle s, h \rangle \models \phi\) \in \text{GStates}. The case for disequalities \(x \neq y\) is analogous.
\textbf{Case} \(\phi = x \mapsto y\). Since \(\Phi\) is pointer-closed, there exists a predicate \(\text{pred} \in \Phi\) such that \(\langle s, h \rangle \models \phi, \text{pred}(x \cdot y)\).
\textbf{Case} \(\phi = \text{pred}(x)\). Clearly, the claim holds.
\textbf{Case} \(\phi = \phi_1 \star \phi_2\). Since \(\langle s, h \rangle \models \phi\), there exist domain-disjoint heaps \(h_1, h_2\) with \(h = h_1 \cup h_2\) such that \(\langle s, h_1 \rangle \models \phi_1\) and \(\langle s, h_2 \rangle \models \phi_2\). By the I.H., there exist predicate calls \(\text{pred}_{1,1}(x_1), \ldots, \text{pred}_{1,m}(x_m)\) and \(\text{pred}_{2,1}(y_1), \ldots, \text{pred}_{2,n}(y_n)\) such that
\[
\langle s, h_1 \rangle \models \phi_1 \star_{1 \leq i \leq m} \text{pred}_{1,i}(x_i) \quad \text{and} \quad \langle s, h_2 \rangle \models \phi_2 \star_{1 \leq j \leq n} \text{pred}_{2,j}(y_j).
\]

The semantics of the separating conjunction \(\star\) and the fact \(h = h_1 \cup h_2\) then yield
\[
\langle s, h \rangle \models \phi \star_{1 \leq i \leq m} \text{pred}_{1,i}(x_i) \star_{1 \leq j \leq n} \text{pred}_{2,j}(y_j).
\]
\textbf{Case} \(\phi = \phi_1 \land \phi_2\). By the semantics of \(\land\), this in particular means \(\langle s, h \rangle \models \phi_1\). By the I.H., the claim then holds for \(\langle s, h \rangle\) and \(\phi_1\). Notice that this case covers all standard conjunctions including the guarded negation, the guarded magic wand, and the guarded separation.
\textbf{Case} \(\phi = \phi_1 \lor \phi_2\). Assume w.l.o.g. that \(\langle s, h \rangle \models \phi_1\). By the I.H., the claim then holds for \(\langle s, h \rangle\) and \(\phi_1\). □
A.5 Proof of Lemma 5.8

Claim (Completeness of the Encoding). Let $G = \langle N, T, R, S \rangle$ and let Φ be the corresponding SID encoding. Let $1 \leq i \leq 2$, $x_1, x_2, x_3 \in \text{Var}$, and let $w \in \mathcal{L}(G)$. Then there exists a model $\langle s, h \rangle$ of $S(x_1, x_2, x_3)$ with wordof$_S(s, h, x_3) = w$.

Proof. We show the stronger claim that, for all $x_1, x_2, x_3 \in \text{Var}$, $w \in \mathcal{L}(G)$, and $N \in \mathbb{N}$, if $N \Rightarrow^+ w$, then there exists a model $\langle s, h \rangle$ of $N(x_1, x_2, x_3)$ with wordof$_N(s, h, x_2, x_3) = w$. We proceed by mathematical induction on the number m of \Rightarrow steps in a (minimal-length) derivation $N \Rightarrow^+ w$.

If $m = 1$, $w = a_i$ for some $1 \leq i \leq n$ and there exists a rule $N \rightarrow a_i$. Let $\langle s, h \rangle$ be a model of $\exists a_i. (x_1 \mapsto \langle x_3, a \rangle) \star \text{letter}_i(a) \star x_1 \approx x_2$. Note that this is a rule of the predicate N, so it holds that $\langle s, h \rangle \models_\Phi N(x_1, x_2, x_3)$. Moreover, wordof$_N(s, h, x_2, x_3) = a_i$.

If $m > 1$, there exists a rule $N \rightarrow AB$ such that $N \Rightarrow AB \Rightarrow^+ w$. Then, there exist words w_A, w_B with $w = w_A \cdot w_B$, $A \Rightarrow^+ w_A$, and $B \Rightarrow^+ w_B$.

Observe that both of the preceding derivations consist of strictly fewer than m steps. Now, fix some variables $l, m, r \in \text{Var}$. By the I.H., there exist states $\langle s_1, h_1 \rangle$ and $\langle s_2, h_2 \rangle$ such that

- $\langle s_1, h_1 \rangle \models_\Phi A(l, x_2, m)$ and wordof$_A(s_1, h_1, x_2, m) = w_A$ as well as
- $\langle s_2, h_2 \rangle \models_\Phi B(r, m, x_3)$ and wordof$_B(s_2, h_2, m, x_3) = w_B$.

Assume w.l.o.g. that (1) $\text{dom}(s_1) \cap \text{dom}(s_2) = m$, (2) $s_1(m) = s_2(m)$, and (3) $h_1 \cup h_2 \neq \bot$; if this is not the case, simply replace $\langle s_1, h_1 \rangle$ and $\langle s_2, h_2 \rangle$ with the appropriate isomorphic models. We choose some location $k \in \text{Loc}$ such that $k \notin \text{loc}(h_1 \cup h_2)$.

Let $s \triangleq s_1 \cup s_2 \cup \{x_1 \mapsto k\}$ and $h \triangleq h_1 \cup h_2 \cup \{k \mapsto \langle s(l), s(r) \rangle\}$. We obtain $\langle s, h \rangle \models_\Phi (x_1 \mapsto \langle l, r \rangle) \star A(l, x_2, m) \star B(r, m, x_3)$ and thus also $\langle s, h \rangle \models_\Phi \exists (l, r, m). (x_1 \mapsto \langle l, r \rangle) \star A(l, x_2, m) \star B(r, m, x_3)$.

By definition of Φ, we conclude $\langle s, h \rangle \models_\Phi N(x_1, x_2, x_3)$. Furthermore, observe that

$$\text{wordof}_N(s, h, x_2, x_3) = \text{wordof}_A(s_1, h_1, x_2, m) \cdot \text{wordof}_N(s, h_2, m, x_3) = w_A \cdot w_B = w.$$

\[\square \]

A.6 Proof of Lemma 5.9

Claim (Soundness of the Encoding). Let $G = \langle N, T, R, S \rangle$ and let Φ be the corresponding SID encoding. Let $x_1, x_2, x_3 \in \text{Var}$ and let $\langle s, h \rangle \models_\Phi S(x_1, x_2, x_3)$. Then wordof$_S(s, h, x_2, x_3) \in \mathcal{L}(G)$.

Proof. We show the stronger claim that for all $x_1, x_2, x_3 \in \text{Var}$, all models $\langle s, h \rangle$, and all $N \in \mathbb{N}$, if $\langle s, h \rangle \models_\Phi N(x_1, x_2, x_3)$, then $N \Rightarrow^+ \text{wordof}_N(s, h, x_2, x_3)$. Observe that h is a tree overlaid with a linked list. We proceed by mathematical induction on the height h of the tree in h.

If $h = 0$, then Φ contains a rule

$$N(x_1, x_2, x_3) \Leftarrow \exists a_i. (x_1 \mapsto \langle x_3, a \rangle) \star \text{letter}_i(a) \star x_1 \approx x_2$$

whose right-hand side is satisfied by $\langle s, h \rangle$. Then wordof$_N(s, h, x_2, x_3) = a_k$. By definition of Φ, this implies $N \rightarrow a_k \in \text{Rule}_1 \cup \text{Rule}_2$ and, consequently, $N \Rightarrow a_k$. Hence, $N \Rightarrow^+ a_k = \text{wordof}_N(s, h, x_2, x_3)$.

If $h > 0$, there exists a rule $N(x_1, x_2, x_3) \models_\Phi \psi$ in Φ such that $\langle s, h \rangle \models_\Phi \psi$, where ψ is of the form

$$\exists l, r, m. (x_1 \mapsto \langle l, r \rangle) \star A(l, x_2, m) \star B(r, m, x_3).$$

Recall that by definition of Φ, we have $N \rightarrow AB \in \text{Rule}_1 \cup \text{Rule}_2 \ (\dagger)$.

By the semantics of \exists and \star there then are a stack s' with dom(s') = dom(s) $\cup \{l, r, m\}$ and heaps b_0, b_A, b_B such that $h = b_0 \cup b_A \cup b_B$, $\langle s', b_0 \rangle \models_\Phi (x_1 \mapsto \langle l, r \rangle)$, $\langle s', b_A \rangle \models_\Phi A(l, x_2, m)$, and $\langle s', b_B \rangle \models_\Phi B(r, m, x_3)$. Note that the height of the trees in b_A and b_B is at most $h - 1$, so we can...
apply the I.H. for these models to obtain
\[A \Rightarrow^+ \text{wordof}_A(s', b_1, x_2, m) \quad \text{and} \quad B \Rightarrow^+ \text{wordof}_B(s', b_2, m, x_3). \]
Together with (†), we derive
\[N \Rightarrow AB \]
\[= \Rightarrow^+ \text{wordof}_A(s', b_1, x_2, m) \cdot \text{wordof}_B(s', b_2, m, x_3) \]
\[= \text{wordof}_N(s', b, x_2, x_3) \]
\[= \text{wordof}_N(s, b, x_2, x_3). \]

A.7 Proof of Theorem 5.10

Claim. The satisfiability problem for the fragment \(\text{SL}_{\text{btw}}(\wedge, \star, t) \) is undecidable.

Proof. Let \(\Phi \) be the encoding of the CFGs \(G_1 = \langle N_1, T, R_1, S_1 \rangle \) and \(G_2 = \langle N_2, T, R_2, S_2 \rangle \) as described in Section 5.1. Moreover, consider the \(\text{SL}_{\text{btw}}(\wedge, \star, t) \) formula
\[\phi = (S_1(a, x, y) \star t) \land (S_2(b, x, y) \star t). \]

We claim that \(\phi \) is satisfiable iff \(\mathcal{L}(G_1) \cap \mathcal{L}(G_2) \neq \emptyset \); both implications are proven separately.

If \(\phi \) is satisfiable, there exists a state \(\langle s, b \rangle \) with \(\langle s, b \rangle \models \phi \). By Lemma 5.6, there exist heaps \(b_{w_1}, b_{w_2} \subseteq b \) such that \(\text{wordof}_{S_i}(s, b_{w_i}, x, y) = \text{letters}(s, b_{w_i}, x, y) \) for \(i \in \{1, 2\} \).

Observe that both \(\langle s, b_{w_1} \rangle \models \phi \) word(x, y) and \(\langle s, b_{w_2} \rangle \models \phi \) word(x, y). Hence, \(b_{w_1} = b_{w_2} \) and thus
\[w = \text{wordof}_{S_1}(s, b, x, y) = \text{wordof}_{S_1}(s, b, x, y). \]

By Lemma 5.9, we have \(w \in \mathcal{L}(G_1) \) and \(w \in \mathcal{L}(G_2) \), i.e., \(w \in \mathcal{L}(G_1) \cap \mathcal{L}(G_2) \).

Conversely, assume \(\mathcal{L}(G_1) \cap \mathcal{L}(G_2) \neq \emptyset \). Then there exists a word \(w \in \mathcal{L}(G_1) \cap \mathcal{L}(G_2) \). By Lemma 5.8, there exist states \(\langle s, b_1 \rangle, \langle s, b_2 \rangle \) with \(\langle s, b_1 \rangle \models \phi \) \(S_1(a, x, y) \) and \(\langle s, b_2 \rangle \models \phi \) \(S_2(b, x, y) \). Let \(b_{w_1} \subseteq b_1, b_{w_2} \subseteq b_2 \) be the unique heaps with \(\text{wordof}_{S_i}(s, b_{w_i}, x, y) = \text{letters}(s, b_{w_i}, x, y) = w = \text{letters}(s, b_{w_i}, x, y) = \text{wordof}_{S_i}(s, b_{w_i}, x, y) \).

Observe that \(\langle s, b_{w_1} \rangle \models \phi \) \(S_1(a, x, y) \) \(\star t \); similarly, \(b_{w_2} \subseteq b_1 \) and \(\langle s, b_{w_2} \rangle \models \phi \) \(S_2(a, x, y) \), we have that \(\langle s, b \rangle \models \phi \) \(S_2(b, x, y) \). Consequently, \(\langle s, b \rangle \models \phi \) \(S_2(b, x, y) \).

A.8 Proof of Lemma 5.13

Claim. Let \(G_2 = \langle N_2, T, R_2, S_2 \rangle \) be the CFG fixed in Section 5.1. Moreover, let \(\Phi \) be the corresponding SID encoding, \(\text{word}_2(x, y) \triangleq (\text{word}(x, y) \otimes \text{word}_2(a, x, y)) \otimes \text{word}_2(a, x, y) \), and let \(\langle s, b \rangle \) be a state. Then \(\langle s, b \rangle \models \phi \) \(\text{word}_2(x, y) \) iff \(\langle s, b \rangle \models \phi \) \(\text{word}(x, y) \) and \(\text{letters}(s, b, x, y) \in \mathcal{L}(G_2) \).

Proof. Assume \(\langle s, b \rangle \models \phi \) \(\text{word}_2(x, y) \). By the semantics of \(\otimes \), there exists a heap \(b_1 \) with \(\langle s, b_1 \rangle \models \phi \) \(\text{word}(x, y) \otimes \text{word}_2(a, x, y) \) such that \(\langle s, b \uplus b_1 \rangle \models \phi \) \(\text{word}_2(a, x, y) \). Observe that \(b_1 \) contains precisely the inner nodes of \(\langle s, b \uplus b_1 \rangle \), i.e., everything except the part of the state that induces the word. Consequently, \(b \) is the part of the state that induces the word, i.e., \(\text{wordof}_{S_1}(s, b \uplus b_1, x, y) = \text{letters}(s, b, x, y) \) and \(\langle s, b \rangle \models \phi \) \(\text{word}(x, y) \). Lemma 5.9 then yields \(\text{letters}(s, b, x, y) \in \mathcal{L}(G_2) \).
Conversely, assume a state \(\langle s, h \rangle \) be such that \(w \models \) letters\((s, h, x, y) \in \mathcal{L}(G_2) \). As a consequence of Lemma 5.8, there exists a heap \(h_0 \) with \(\langle s, h \cup h_0 \rangle \models \Phi S_2(a, x, y) \). Because \(\langle s, h \rangle \models \psi \), word\((x, y) \) by assumption, the semantics of \(\Psi \) yields that \(\langle s, h_1 \rangle \models \Phi \) word\((x, y) \). Because \(\langle s, h \cup h_0 \rangle \models \Phi S_2(a, x, y) \), we obtain by the semantics of \(\Psi \) that \(\langle s, h \rangle \models \Phi \) (word\((x, y) \) \(\Psi S_2(a, x, y) \) \(\Psi S_2(a, x, y) \)) \(\Psi S_2(a, x, y) \).

A.9 Proof of Theorem 5.14

Claim. The satisfiability problem of \(\text{SL}_{\text{h,tw}}(\Psi) \) is undecidable.

Proof. We claim that \(\psi \models \text{word}_2(x,y) \) \(\Psi S_1(a,x,y) \) is satisfiable iff \(L(G_1) \cap L(G_2) \neq \emptyset \).

Assume \(\psi \) is satisfiable, i.e., there exists a state \(\langle s, h \rangle \models \Phi \psi \). By the semantics of \(\Psi \), there exists a heap \(h_0 \subseteq h \) with \(\langle s, h \cup h_0 \rangle \models \Phi \) word\((x,y) \) and \(\langle s, h \cup h_0 \rangle \models \Phi S_1(a,x,y) \). As letters\((s,h_0,x,y) \in L(G_2) \), by Lemma 5.13, we have that \(\langle s, h_0 \rangle \models \Phi \) word\((x,y) \). It follows that \(h_0 \) is the unique subheap of \(h \cup h_0 \) with words\(S_1(s,h) \) \(\Psi \) \(\text{lettre}(s,b_0,x,y) \). By Lemma 5.9, letters\((s,h_0,x,y) \in L(G_1) \). Together with Lemma 5.13, we thus have that letters\((s,h_0,x,y) \in L(G_1) \cap L(G_2) \).

Conversely, assume there exists a word \(w \in L(G_1) \cap L(G_2) \). As shown in the proof of Theorem 5.10, there exist states \(\langle s, h_1 \rangle, \langle s, h_2 \rangle, \langle s, h \rangle \) with \(\langle s, h_1 \rangle \models \Phi S_1(a,x,y) \), \(\langle s, h_2 \rangle \models \Phi S_2(b,x,y) \) and \(\text{loc}(s) \cap \text{loc}(s_2) = \text{loc}(h) \) such that

\[
\text{words}_S(s,h_1,x,y) = \text{words}_S(s,h_2,x,y) = \text{letters}(s,b_0,x,y) = w.
\]

Let \(h_0 \subseteq h \) be the subheap of \(h_0 \) with \(h_0 \cup h_0 = h_1 \). By Lemma 5.13, \(\langle s, h \rangle \models \Phi \) word\((x,y) \). Consequently, \(\langle s, h \rangle \models \Phi \psi \), i.e., \(\psi \) is satisfiable.

A.10 Proof of Lemma 5.10

Claim. For all \(I \subseteq \text{Loc} \), every \(\Phi \)-forest has a unique I-split split\((\mathfrak{f}, I) \).

Proof. Let \(\mathfrak{f} \) be a \(\Phi \)-forest with graph\((f) = \langle V_G, E_G \rangle \). Moreover, consider the graph

\[
\mathcal{G} \triangleq \langle V_G, E_G \setminus \{a, b \mid a \in \text{Loc}, b \in I\} \rangle.
\]

Since graph\((f) \) is a forest and \(\mathcal{G} \subseteq \text{graph}(f) \), \(\mathcal{G} \) is a forest, i.e., all connected components \(C_1, \ldots, C_k \) of \(\mathcal{G} \) are trees. Formally, let \(\text{loc}(C_i) \) be all locations in \(C_i \) and let \(\text{succ}_{C_i}(a) \) be the largest set of locations such that every edge in \(\{a\} \times \text{succ}_{C_i}(a) \) appears in \(C_i \). We then define the following:

\[
t_{\mathfrak{f}} \triangleq \{a \mapsto \langle \text{succ}_{C_i}(a), \text{rule}_{C_i}(a) \rangle \mid a \in \text{loc}(C_i)\}, \quad (\text{tree induced by component } C_i)
\]

\[
\mathfrak{f} \triangleq \{t_1, \ldots, t_n\}. \quad (\Phi\text{-forest induced by the connected components})
\]

By construction, the forest \(\mathfrak{f} \) is an I-split of \(\mathfrak{f} \). Moreover, since every I-split must have the same domain and the same rule instances as \(\mathfrak{f} \) and because every connected component gives rise to a single \(\Phi \)-tree, the I-split split\((\mathfrak{f}, \{I\}) = \mathfrak{f} \) is unique.

A.11 Proof of Lemma 7.20

Let \(\langle s, h \rangle \in \text{GStates} \) and \(\phi \) be a quantifier-free \(\text{SL} \) formula with \(\langle s, h \rangle \models \Phi \phi \). Moreover, let \(v \in (\text{Loc} \setminus \text{dom}(h) \cup \text{img}(s))^* \) be a repetition-free sequence of locations. Then, for every set \(a \triangleq \{a_1, \ldots, a_{|v|}\} \) of fresh variables (i.e., \(a \cap \text{dom}(s) = \emptyset \)), we have \(\langle s, h \rangle \models \Phi \forall a. \phi[v/a] \).

Proof Sketch. Let \(w \in (\text{Loc} \setminus \text{dom}(h) \cup \text{img}(s))^* \) be a repetition-free sequence of locations with \(|v| = |w| \). We note that dangling\((h) \subseteq \text{img}(s) \) because of \(\langle s, h \rangle \in \text{GStates} \). Hence, neither \(v \) nor \(w \) intersect with \(\text{loc}(h) \) or \(\text{img}(s) \). Thus, it follows that \(\langle s, h \rangle \models \Phi \phi[v/w] \). Since \(w \) was arbitrary, \(\langle s, h \rangle \models \Phi \forall a. \phi[v/a] \) by the semantics of \(\forall \).

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
A.12 Proof of Lemma 7.19

Claim. Let \(t \) be a \(\phi \)-tree. Then, \(\langle _, \text{heap}(t) \rangle \models_\phi \text{project}^{\text{Loc}}(t) \) (where \(_ \) denotes an arbitrary stack).

Proof. We prove the claim by mathematical induction on the height of \(t \).

By construction, \(t \) has a root \(r = \text{root}(t) \) with \(m \geq 0 \) successors that are the root of subtrees \(t_1, \ldots, t_m \). Hence, there is a rule instance \(\text{rule}_i(r) \) (up to applying commutativity of \(\star \)) of the form

\[
\text{rootpred}(t) \iff (a \mapsto b) \star (\bigstar 1 \leq i \leq m \text{rootpred}(t_i)) \star \bigstar \text{holepred}_i(r).
\]

By the semantics of \(\star \) and \(\lnot \star \), we have

\[
\langle _, \{a \mapsto b\} \rangle \models_\phi \left((\bigstar 1 \leq i \leq m \text{rootpred}(t_i)) \star \bigstar \text{holepred}_i(r) \right) \star \text{rootpred}(t).
\]

We apply the I.H. for each tree \(t_i \) and obtain

\[
\langle _, \text{heap}(t_i) \rangle \models_\phi (\bigstar \text{allholepreds}(t_i)) \star \text{rootpred}(t_i).
\]

On the level of heaps, we have \(\text{heap}(t) = \{a \mapsto b\} \cup \text{heap}(t_1) \cup \ldots \cup \text{heap}(t_m) \). Applying the semantics of \(\star \) and the definition of \(\psi_i \) then yields

\[
\langle _, \text{heap}(t) \rangle \models_\phi \left((\bigstar 1 \leq i \leq m \text{rootpred}(t_i)) \star \bigstar \text{holepred}_i(r) \right) \star \text{rootpred}(t)
\]

\[
\quad \star \bigstar 1 \leq i \leq m ((\bigstar \text{allholepreds}(t_i)) \star \text{rootpred}(t_i)).
\]

Applying Lemma 7.18 \(m \) times, we then obtain

\[
\langle _, \text{heap}(t) \rangle \models_\phi \left((\bigstar 1 \leq i \leq m (\bigstar \text{allholepreds}(t_i))) \star \bigstar \text{holepred}_i(r) \right) \star \text{rootpred}(t)
\]

\[
= (\bigstar \text{allholepreds}(t)) \star \text{rootpred}(t). \quad \text{(Def. of allholepreds(t))}
\]

\[\square\]

A.13 Proof of Lemma 7.25

Claim (Soundness of Stack-projection). Let \(\langle s, b \rangle \in \text{GStates} \). Moreover, let \(f \) be a \(\Phi \)-forest with \(\text{heap}(f) = b \). Then, we have \(\langle s, b \rangle \models_\phi \text{project}(s, f) \).

Proof. Let \(f = \{t_1, \ldots, t_k\} \) and \(\phi = \bigstar 1 \leq i \leq k \text{ project}^{\text{Loc}}(t_i) \). By Lemma 7.19, we know for each \(i \) that \(\langle s, \text{heap}(t_i) \rangle \models_\phi \text{project}^{\text{Loc}}(t_i) \). By definition, \(\text{heap}(f) = \text{heap}(t_1) \cup \ldots \cup \text{heap}(t_k) \). Applying the semantics of \(\star \) then yields \(\langle s, b \rangle \models_\phi \phi \) (\(\checkmark \)).

Let \(w = \text{locs}(\phi) \cap (\text{dom}(f) \setminus \text{img}(s)) \) be the locations that occur in \(\phi \) and are allocated in \(\text{heap}(f) \) but are not the value of any stack variable, and let \(v = \text{locs}(\phi) \setminus (\text{img}(s) \cup \text{dom}(f)) \) be the locations that occur in the formula \(\phi \) and are neither allocated nor the value of any stack variable.

Then, we have

\[
\text{project}(s, f) = \exists e. \forall a. \phi[\text{dom}(s^{-1}_{\text{max}}) \cdot v \cdot w / \text{img}(s^{-1}_{\text{max}}) \cdot a \cdot e],
\]

where \(e \triangleq \langle e_1, e_2, \ldots, e_{\mid w \mid} \rangle \) and \(a \triangleq \langle a_1, a_2, \ldots, a_{\mid v \mid} \rangle \) denote some disjoint sets of fresh variables.

\[\text{For height}(t) = 0, \text{there are no successors, i.e., } \bigstar 1 \leq i \leq m \text{rootpred}(t_i) \text{ is equivalent to emp.}\]
The claim then follows by the following implications:

\[\langle s, h \rangle \models_{\phi} \phi \]
by (†)

\[\implies \langle s, h \rangle \models_{\phi} \phi[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \]
(stack–heap semantics)

\[\implies \langle s, h \rangle \models_{\phi} \phi[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})][v \cdot w/a \cdot e][a \cdot e/v \cdot w] \]
(a and e are disjoint sets of fresh variables)

\[\implies \langle s, h \rangle \models_{\phi} \forall a. \phi[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot a \cdot e] \]
(by Lemma 7.20)

\[\implies \langle s, h \rangle \models_{\phi} \forall e. \forall a. \phi[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot a \cdot e] \]
(semantics of \(\forall \))

\[\implies \langle s, h \rangle \models_{\phi} \text{project}(s, f). \]

\section*{A.14 Proof of Lemma 7.35}
Before we prove Lemma 7.35, we need two auxiliary results.

Lemma A.1. Let \(s \) be a stack and let \(f_1, f_2 \) be \(\Phi \)-forests with \(f_1 \cup f_2 \neq \bot \). Then, project\((s, f_1 \cup f_2) \in \text{project}(s, f_1) \bullet \text{project}(s, f_2) \).

Proof. We set \(f_0 \triangleq f_1 \cup f_2 \). For \(i \in \{0, 1, 2\} \), let \(\phi_i = \bigstar_{t \in f_i} \text{project}^{\text{Loc}}(t) \), let \(w_1 = \text{locs}(\phi_i) \cap (\text{dom}(f_i) \setminus \text{img}(s)) \) be the locations that occur in the formula \(\phi_i \) and are allocated in heap\((f_i) \) but are not the value of any stack variable, and let \(v_1 = \text{locs}(\phi_i) \setminus (\text{img}(s) \cup \text{dom}(f_i)) \) be the locations that occur in the formula \(\phi_i \) and are neither allocated nor the value of any stack variable. Then, we have

\[\text{project}(s, f_i) = [e_i]_{\forall a_i. \phi_i[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot v_i \cdot w_i/a_i \cdot e_i} \]

where \(e_i \triangleq < e_1, e_2, \ldots, e_{|w|_i} > \) and \(a_i \triangleq < a_1, a_2, \ldots, a_{|v|_i} > \) denote some disjoint sets of fresh variables. Because of \(f_0 = f_1 \cup f_2 \), we have \(w_0 = w_1 \cup w_2 \) and hence can choose \(e_0 \) such that \(e_0 = e_1 \cup e_2 \).

We now argue that we can find sequences of variables \(u_i \subseteq a_0 \cup e_{3-i} \), for \(i = 1, 2 \), such that

\[\phi_0[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot v_0 \cdot w_0/a_0 \cdot e_0] \equiv \phi_1[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot v_1 \cdot w_2/a_1 \cdot e_1]\star \phi_2[\text{dom}(s_{\max}^{-1})/\text{img}(s_{\max}^{-1})] \cdot v_2 \cdot w_2/a_2 \cdot e_2]\star \]

We consider a location \(l \in v_i \) for \(i \in \{1, 2\} \). If \(l \in \text{dom}(f_{3-i}) \), then there is a variable \(e \in e_{3-i} \) that replaces \(l \) in the projection project\((s, f_0) \). If \(l \notin \text{dom}(\text{heap}(f_{3-i})) \), then there is a variable \(a \in a_0 \) that replaces \(l \) in the projection projection\((s, f_0) \). Hence, we can choose sequences of variables \(u_i \subseteq a_0 \cup e_{3-i} \), for \(i \in \{1, 2\} \), such that the following holds for all \(l \in v_i \) and \(i \in \{1, 2\} \):

\[l[v_0 \cdot w_0/a_0 \cdot e_0 | = l[v_1/a_1][a_i/u_i] \]

The preceding then implies (†). \(\square \)

Lemma A.2. Let \(s \) be a stack and let \(f_1, f_2 \) be \(\Phi \)-forests with \(f_1 \triangleright f_2 \). Then, project\((s, f_1) \triangleright \text{project}(s, f_2) \).

Proof. Since \(f_1 \triangleright f_2 \), there exists a forest \(f \) and trees \(t_1, t_2, t \) such that

(1) \(f_1 = f \cup \{ t_1, t_2 \} \),
(2) \(f_2 = f \cup \{ t \} \),
(3) \(\text{rootpred}(t_1) \in \text{allholepreds}(t_2) \),
(4) \(\text{rootpred}(t) = \text{rootpred}(t_2) \), and
(5) \(\text{allholepreds}(t) = \text{allholepreds}(t_1) \cup (\text{allholepreds}(t_2) \setminus \{ \text{rootpred}(t_1) \}) \).

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Intuitively, this implies that the projections of t_1 and t_2 can be merged into the projection of t via the generalized modus ponens (see Lemma 7.18). In the following, we make this claim formal.

For $i \in \{1, 2\}$, let $\phi_i = \mathbf{\bigstar}_{t \in f_i} \text{project}^\text{Loc}(t)$, let $w_i = \text{locs}(\phi_i) \cap \text{dom}(f_i) \setminus \text{img}(s)$ be the locations that occur in the formula ϕ and are allocated in heap(f_i) but are not the value of any stack variable, and let $v_i = \text{locs}(\phi_i) \setminus (\text{img}(s) \cup \text{dom}(f_i))$ be the locations that occur in the formula ϕ_i and are neither allocated nor the value of any stack variable. Then, we have

$$\text{project}(s, f_i) = \exists e_i. \forall a_i. \phi_i[\text{dom}(s_{\max}^{-1}) \cdot v_i \cdot w_i/\text{img}(s_{\max}^{-1}) \cdot a_i \cdot e_i],$$

where $e_i \triangleq \langle e_1, e_2, \ldots, e_{|w_i|} \rangle$ and $a_i \triangleq \langle a_1, a_2, \ldots, a_{|v_i|} \rangle$ denote some disjoint sets of fresh variables. We note that

$$\phi_1 \equiv \mathbf{\bigstar}_{t' \in f} \text{project}^\text{Loc}(t') \ast (\mathbf{\bigstar} \text{allholepreds}(t_1)) \ast \text{rootpred}(t_1) \ast (\mathbf{\bigstar} \text{allholepreds}(t_2)) \ast \text{rootpred}(t_2)$$

and

$$\phi_2 \equiv \mathbf{\bigstar}_{t' \in f} \text{project}^\text{Loc}(t') \ast (\mathbf{\bigstar} \text{allholepreds}(t_1)) \ast (\mathbf{\bigstar} \text{allholepreds}(t_2)) \setminus (\text{rootpred}(t_1)) \ast \text{rootpred}(t_2).$$

In particular, we have locs(ϕ_2) \subseteq locs(ϕ_1). Hence, we can assume w.l.o.g. that $e_2 \subseteq e_1$ and $a_2 \subseteq a_1$. By (\ast), we have

$$\text{project}(s, f_1) \equiv \exists e_1. \forall a_1. \mathbf{\bigstar}_{t' \in f} \text{project}^\text{Loc}(t') \ast (\mathbf{\bigstar} \text{allholepreds}(t_1)) \ast \text{rootpred}(t_1) \ast (\mathbf{\bigstar} \text{allholepreds}(t_2)) \ast \text{rootpred}(t_2)[\text{dom}(s_{\max}^{-1}) \cdot v_1 \cdot w_1/\text{img}(s_{\max}^{-1}) \cdot a_1 \cdot e_1]$$

and

$$\text{project}(s, f_2) \equiv \exists e_1. \forall a_1. \mathbf{\bigstar}_{t' \in f} \text{project}^\text{Loc}(t') \ast (\mathbf{\bigstar} \text{allholepreds}(t_1)) \ast (\mathbf{\bigstar} \text{allholepreds}(t_2)) \setminus (\text{rootpred}(t_1)) \ast \text{rootpred}(t_2)[\text{dom}(s_{\max}^{-1}) \cdot v_1 \cdot w_1/\text{img}(s_{\max}^{-1}) \cdot a_1 \cdot e_1].$$

We now recognize that project(s, f_2) can be obtained from project(s, f_1) by applying the generalized modus ponens rule and dropping the quantified variables $e_1 \setminus e_2$ and $a_1 \setminus a_2$, which is supported by our rewriting rules (see Figure 10) because these variables do not appear in ϕ_2.

Claim (Lemma 7.35). Let s be a stack and let f_1, f_2 be Φ-forests such that $f_1 \cup f_2 \neq \bot$. Then,

$$f \in f_1 \bullet_f f_2 \quad \text{implies} \quad \text{project}(s, f) \in \text{project}(s, f_1) \bullet_p \text{project}(s, f_2).$$

Proof. The claim is an immediate consequence of Lemmas A.1 and A.2. □

A.15 Proof of Theorem 7.39

Before we prove Theorem 7.39, we need two auxiliary results.

Lemma A.3. Let s be a stack, let f_1, f_2 be Φ-forests with $\text{dom}(f_1) \cap \text{dom}(f_2) \cap \text{img}(s) = \emptyset$, and let $\chi \in \text{project}(s, f_1) \bullet_p \text{project}(s, f_2)$. Then, there exist forests f_1', f_2' with $f_1 \equiv_s f_1', f_2 \equiv_s f_2'$ and project($s, f_1' \cup f_2'$) $\equiv \chi$.

Proof. For $i \in \{1, 2\}$, let $\phi_i = \mathbf{\bigstar}_{t \in f_i} \text{project}^\text{Loc}(t)$, let $w_i = \text{locs}(\phi_i) \cap \text{dom}(f_i) \setminus \text{img}(s)$ be the locations that occur in the formula ϕ and are allocated in heap(f_i) but are not the value of any stack variable, and let $v_i = \text{locs}(\phi_i) \setminus (\text{img}(s) \cup \text{dom}(f_i))$ be the locations that occur in the formula ϕ_i and are neither allocated nor the value of any stack variable. Then, we have

$$\text{project}(s, f_i) = \exists e_i. \forall a_i. \phi_i[\text{dom}(s_{\max}^{-1}) \cdot v_i \cdot w_i/\text{img}(s_{\max}^{-1}) \cdot a_i \cdot e_i],$$

where $e_i \triangleq \langle e_1, e_2, \ldots, e_{|w_i|} \rangle$ and $a_i \triangleq \langle a_1, a_2, \ldots, a_{|v_i|} \rangle$ denote some disjoint sets of fresh variables.

By the definition of the re-scoping operation, we have $\chi = \exists e. \forall a. \phi$, where

1. $e = e_1 \cdot e_2$, and
(2) \(\phi = \phi_1[\text{dom}(s_{\text{max}}^{-1}) \cdot v_1 \cdot w_1 / \text{img}(s_{\text{max}}^{-1}) \cdot a_1 \cdot e_1][a_1/u_1] \star \phi_2[\text{dom}(s_{\text{max}}^{-1}) \cdot v_2 \cdot w_2 / \text{img}(s_{\text{max}}^{-1}) \cdot a_2 \cdot e_2][a_2/u_2] \) for some sequences \(u_i \subseteq a \cup e_{3-i} \).

We can now choose bijective functions \(\sigma_1 : \text{Loc} \rightarrow \text{Loc} \) and \(\sigma_2 : \text{Loc} \rightarrow \text{Loc} \) such that

- \(\sigma_1(l) = \sigma_2(l) = l \) for all \(l \in \text{img}(s) \),
- \(\sigma_1(l) = \sigma_2(k) \) if \(l[v_1 \cdot w_1 / a_1 \cdot e_1][a_1/u_1] = k[v_2 \cdot w_2 / a_2 \cdot e_2][a_2/u_2] \) for all \(l \in v_1 \cdot w_1, k \in v_2 \cdot w_2 \), and
- \(\text{dom}(\sigma_1(f_1)) \cap \text{dom}(\sigma_1(f_2)) = \emptyset \).

We set \(f_1' = \sigma_1(f_1) \) and \(f_2' = \sigma_2(f_2) \). By the preceding, we have \(f_1 \equiv s \), \(f_2 \equiv s \) and \(f_1' \cup f_2' \neq \perp \). Further, we get that \(\\text{proj}_{\text{loc}}(f_1') \cup \text{proj}_{\text{loc}}(f_2') \equiv \text{proj}_{\text{loc}}(f_1)[\text{dom}(\sigma_1)/\text{img}(\sigma_1)] \star \text{proj}_{\text{loc}}(f_2)[\text{dom}(\sigma_2)/\text{img}(\sigma_2)] \).

Finally, we get that \(\text{proj}(s, f_1' \cup f_2') \equiv \mathbb{E} e. \forall a. \phi \) because we can appropriately rename the quantified variables by rewrite equivalence \(\equiv \). \(\square \)

We note that the following lemma does not require the notion of \(s \)-equivalence.

Lemma A.4. Let \(f_1 \) be a \(\emptyset \)-forest and let \(\chi \) be a formula such that \(\text{proj}(s, f_1) \triangleright \chi \). Then, there exist a forest \(f_2 \) with \(f_1 \triangleright f_2 \) and \(\text{proj}(s, f_2) \equiv \chi \).

Proof. Let \(\phi_1 = \bigstar_{e \in f_1} \text{proj}_{\text{loc}}(e), \) let \(w_1 = \text{locs}(\phi_1) \cap (\text{dom}(f_1) \setminus \text{img}(s)) \) be the locations that occur in the formula \(\phi \) and are allocated in heap(\(f_1 \)) but are not the value of any stack variable, and let \(v_1 = \text{locs}(\phi_1)[\text{img}(s) \cup \text{dom}(f_1)] \) be the locations that occur in the formula \(\phi_1 \) and are neither allocated nor the value of any stack variable. Then, we have

\[
\text{proj}(s, f_1) = \mathbb{E} e_1. \forall a_1. \phi_1[\text{dom}(s_{\text{max}}^{-1}) \cdot v_1 \cdot w_1 / \text{img}(s_{\text{max}}^{-1}) \cdot a_1 \cdot e_1].
\]

where \(e_1 \triangleq \langle e_1, e_2, \ldots, e_{|w_1|} \rangle \) and \(a_1 \triangleq \langle a_1, a_2, \ldots, a_{|v_1|} \rangle \) denote some disjoint sets of fresh variables. By definition of the projection of forests, we have

\[
\phi_1 \equiv \bigstar_{e \in f_1} ((\bigstar \text{allholphred}(e)) \star \text{rootpred}(e)).
\]

By the definition of \(\triangleright \), we have that there are predicates \(\text{pred}_1(x_1), \text{pred}_2(x_2), \) and formulas \(\psi, \psi', \zeta \) such that

1. \(\phi_1 \equiv (\text{pred}_1(x_2) \star \psi \star \text{pred}_1(x_1)) \star (\psi' \star \text{pred}_2(x_2)) \star \zeta \), and
2. \(\chi \equiv \mathbb{E} e_1. \forall a_1. \phi_1[\psi \star \psi' \star \text{pred}_1(x_1)] \star \zeta \).

Hence, there must be a forest \(f \) and trees \(t_1, t_2 \) such that

1. \(f_1 = f \cup \{t_1, t_2\} \),
2. \(\text{rootpred}(t_2) \in \text{allholphred}(t_1) \), and
3. \(\text{rootpred}(t_2)[\text{dom}(s_{\text{max}}^{-1}) \cdot v_1 \cdot w_1 / \text{img}(s_{\text{max}}^{-1}) \cdot a_1 \cdot e_1] = \text{pred}_2(x_2) \).

Let \(l = \text{root}(t_2) \). Then, there is a tree \(t \) with \(\{t_1, t_2\} = \text{split}(\{t\}, \{l\}) \). We set \(f_2 = f \cup \{t\} \). We note that \(f_1 \triangleright f_2 \). It remains to argue that \(\text{proj}(s, f_2) \equiv \chi \).

Let \(\phi_2 = \bigstar_{e \in f_2} \text{proj}_{\text{loc}}(e), \) let \(w_2 = \text{locs}(\phi_2) \cap (\text{dom}(f_2) \setminus \text{img}(s)) \) be the locations that occur in the formula \(\phi \) and are allocated in heap(\(f_2 \)) but are not the value of any stack variable, and let \(v_2 = \text{locs}(\phi_2)[\text{img}(s) \cup \text{dom}(f_2)] \) be the locations that occur in the formula \(\phi_2 \) and are neither allocated nor the value of any stack variable. Then, we have

\[
\text{proj}(s, f_2) = \mathbb{E} e_2. \forall a_2. \phi_2[\text{dom}(s_{\text{max}}^{-1}) \cdot v_2 \cdot w_2 / \text{img}(s_{\text{max}}^{-1}) \cdot a_2 \cdot e_2],
\]

where \(e_2 \triangleq \langle e_1, e_2, \ldots, e_{|w_1|} \rangle \) and \(a_2 \triangleq \langle a_1, a_2, \ldots, a_{|v_2|} \rangle \) denote some disjoint sets of fresh variables. We now note that \(\text{locs}(\phi_2) \cup \{l\} = \text{locs}(\phi_1) \). Hence, we can assume w.l.o.g. that \(e_2 \subseteq e_1 \) and
a_2 \subseteq a_1. Thus, we have (ψ ⋆ ψ') \rightarrow pred_i(x_1) ⋆ ζ \equiv ϕ_2[\text{dom}(s_{\text{max}}^{-1}) \cdot v_2 \cdot w_2 / \text{img}(s_{\text{max}}^{-1}) \cdot a_2 \cdot e_2]. Finally, we note that

\[χ \equiv \exists e_1. \forall a_1. ϕ_2[\text{dom}(s_{\text{max}}^{-1}) \cdot v_2 \cdot w_2 / \text{img}(s_{\text{max}}^{-1}) \cdot a_2 \cdot e_2] \equiv \exists e_2. \forall a_2. ϕ_2[\text{dom}(s_{\text{max}}^{-1}) \cdot v_2 \cdot w_2 / \text{img}(s_{\text{max}}^{-1}) \cdot a_2 \cdot e_2],\]

because we can drop the quantified variables e_1 \setminus e_2 and a_1 \setminus a_2, which is supported by our rewriting rules (see Figure 10) because these variables do not appear in ϕ_2.

Claim (Theorem 7.39). If \(\tilde{f}, \tilde{f}'\) be \(Φ\)-forests with \(\tilde{f}_1 \equiv_s \tilde{f}_2\), then

\[\text{project}(s, \tilde{f}_1) \circ_p \text{project}(s, \tilde{f}_2) = \{\text{project}(s, f) | f \in \tilde{f}_1 \circ_p \tilde{f}_2, \tilde{f}_1 \equiv_s \tilde{f}_1, \tilde{f}_2 \equiv_s \tilde{f}_2\} \].

Proof. The claim is an immediate consequence of Lemmas 7.35, A.3, and A.4. □

A.16 Proof of Lemma 8.6

Claim. Let \(n \triangleq |Φ| + |x|\), where \(x\) is a finite set of variables. Then \(|\text{DUSH}_Φ^x| \in 2^{O(n^2 \log(n))}\).

Proof. We first show the following claim (†): every element of \(\text{DUSH}_Φ^x\) can be encoded as a string of length \(O(n^2)\) over the alphabet \(Z \triangleq \text{Preds}(Φ) \cup x \cup \{e_1, \ldots, e_{n^2}\} \cup \{a_1, \ldots, a_{n^2}\} \cup \{\text{emp}, \star, \rightarrow, (,)\}\) where \(e_1, \ldots, e_{n^2}\) and \(a_1, \ldots, a_{n^2}\) are fresh variables.

By definition, every \(\text{DUSH}_Φ^x\) is of the form

\[ϕ = \exists e. \forall a. ψ_1 \star \cdots \star ψ_m, \quad ψ_i = ζ_j \star \text{pred}_i(z_i) \text{ for } 1 \leq i \leq m.\]

Since \(ϕ\) is delimited, \(\text{predroot(}\text{pred}_i(z_i))\) \(\in x\). Moreover, \(ϕ\) is the projection of a \(Φ\)-forest \(\tilde{f}\). Hence, every variable \(x \in x\) can appear as a root parameter in at most one subformula \(ψ_i\)—otherwise, the value corresponding to \(x\) would be in the domain of two trees in \(\tilde{f}\), which contradicts the fact that \(\tilde{f}\) is a \(Φ\)-forest. Consequently, the number \(m\) of subformulas \(ψ_i\) is bounded by \(|x| \leq n\).

Next, consider the subformulas \(ζ_i\) appearing on the left-hand side of magic wands. For every predicate call \(\text{pred}'(z')\) in \(ζ_i\), \(\text{predroot(}\text{pred}'(z'))\) is a hole. Since the forest \(\tilde{f}\) is delimited, it follows that \(\text{predroot(}\text{pred}'(z')) \in x\). Since no hole may occur more than once in a DUSH, the total number of predicate calls across all \(ζ_i\) is also bounded by \(|x| \leq n\).

Overall, \(ϕ\) thus contains at most \(2n \in O(n)\) predicate calls. Each predicate call takes at most \(|Φ| \leq n\) parameters. Since there are no superfluous quantified variables, this means that \(ϕ\) contains at most \(n^2 - |x| \leq n^2\) different variables. We can thus assume w.l.o.g. that all existentially quantified variables in \(ϕ\) are among the variables \(e_1, \ldots, e_{n^2}\) and all universally quantified variables are among \(a_1, \ldots, a_{n^2}\). There then is no need to include the quantifiers explicitly in the string encoding. After dropping the quantifiers, we obtain a formula \(ϕ'\) that consists exclusively of letters from the alphabet \(Z\). Moreover, this formula consists of at most \(O(n^2)\) letters. This concludes the proof of (†).

Now observe that \(|Z| \in O(n^2)\). Consequently, every letter of \(Z\) can be encoded by \(O(\log(n^2)) = O(\log(n))\) bits. Therefore, every \(ϕ \in \text{DUSH}_Φ^x\) can be encoded by a bit string of length \(O(n^2 \log(n))\). Since there are \(2^{O(n^2 \log(n))}\) such strings, the claim follows. □

A.17 Proof of Lemma 8.12

Claim. Let \(\tilde{f}\) be a forest and let \(s\) be a stack. Then \(\tilde{f}\) is \(s\)-delimited iff \(\text{project}(s, \tilde{f})\) is delimited.
A Decision Procedure for Guarded Separation Logic 1:57

Proof. Recall that the projection contains predicate calls corresponding to the roots and holes of the forest. It thus holds for all forests that

\[
\text{interface}(\bar{f}) = \{\text{predroot}(\text{pred}(z)) \mid \text{pred}(z) \in \text{project}(\bar{f})\}.
\]

We show that if \(\bar{f}\) is \(s\)-delimited, then \(\text{project}(s, \bar{f})\) is delimited. The proof of the other direction is completely analogous.

If \(\bar{f}\) is \(s\)-delimited, then \(\text{interface}(\bar{f}) \subseteq \text{img}(s)\), and thus, by (†),

\[
\{\text{predroot}(\text{pred}(z)) \mid \text{pred}(z) \in \text{project}(\bar{f})\} \subseteq \text{img}(s).
\]

Trivially, the set of root locations in the projection is a subset of the set of all locations in the projection.

\[
\{\text{predroot}(\text{pred}(z)) \mid \text{pred}(z) \in \text{project}(\bar{f})\} \subseteq \text{locs}(\text{project}(\bar{f}))
\]

Combining the preceding two observations, we conclude

\[
\{\text{predroot}(\text{pred}(z)) \mid \text{pred}(z) \in \text{project}(\bar{f})\} \subseteq \text{img}(s) \cap \text{locs}(\text{project}(\bar{f})).
\]

We apply \(s^{-1}_{\text{max}}\) on both sides to obtain that

\[
s^{-1}_{\text{max}}(\{\text{predroot}(\text{pred}(z)) \mid \text{pred}(z) \in \text{project}(\bar{f})\}) \subseteq \text{dom}(s) \cap \text{fvars}(\text{project}(s, \bar{f})).
\]

Moreover, since there are no duplicate holes in \(\bar{f}\), and the holes of \(\bar{f}\) are mapped to the predicate calls on the left-hand side of magic wands in \(\text{project}(s, \bar{f})\), no variable can occur twice as a root parameter on the left-hand side of magic wands in \(\text{project}(s, \bar{f})\).

Consequently, \(\text{project}(s, \bar{f})\) is delimited. \(\square\)

A.18 Proof of Theorem 8.13

We first some auxiliary definitions and results. Recall that we described how \(\Phi\)-forests are merged in terms of splitting them at suitable locations (cf. Definition 7.9). Every split adds these locations to the interface of the resulting forest—provided they did not appear in the forest to begin with.

Lemma A.5. Let \(\bar{f}\) be a forest and \(I \subseteq \text{Loc}\). Then, \(\text{interface}(\text{split}(\bar{f}, I)) = \text{interface}(\bar{f}) \cup (I \cap \text{dom}(\bar{f}))\).

Proof. In the following, let \(\text{locs}(\text{graph}(\bar{f}))\) denote all those locations that occur in the relation \(\text{graph}(\bar{f})\).

\[
\begin{align*}
\text{roots}(\text{split}(\bar{f}, I)) &= \text{roots}(\bar{f}) \cup \{b \in I \mid \exists a. (a, b) \in \text{graph}(\bar{f})\} \\
&= \text{roots}(\bar{f}) \cup \{b \in I \cap \text{dom}(\bar{f}) \mid \exists a. (a, b) \in \text{graph}(\bar{f})\} \quad \text{(locs}(\text{graph}(\bar{f})) \subseteq \text{dom}(\bar{f})) \\
&= \{b \in \text{dom}(\bar{f}) \mid \forall a. (a, b) \notin \text{graph}(\bar{f})\} \\
&\quad \cup \{b \in I \cap \text{dom}(\bar{f}) \mid \exists a. (a, b) \in \text{graph}(\bar{f})\} \quad \text{(all and only roots have no predecessor)} \\
&= \{b \in \text{dom}(\bar{f}) \mid \forall a. (a, b) \notin \text{graph}(\bar{f})\} \\
&\quad \cup \{b \in I \cap \text{dom}(\bar{f}) \mid \forall a. (a, b) \notin \text{graph}(\bar{f})\} \\
&\quad \cup \{b \in I \cap \text{dom}(\bar{f}) \mid \exists a. (a, b) \in \text{graph}(\bar{f})\} \quad \text{(second set subset of first set)} \\
&= \text{roots}(\bar{f}) \cup \{b \in I \cap \text{dom}(\bar{f}) \mid \forall a. (a, b) \notin \text{graph}(\bar{f})\}
\end{align*}
\]
\[\{ b \in l \cap \text{dom}(f) \mid \exists a. (a, b) \in \text{graph}(f) \} \]

= \text{roots}(f) \cup \{ b \in l \cap \text{dom}(f) \}

Similarly,

\[\text{allholes}((f, l)) = \text{allholes}(f) \cup \{ b \in l \mid \exists a. (a, b) \in \text{graph}(f) \} \]

= \text{allholes}(f) \cup \{ b \in l \cap \text{dom}(f) \}.

By definition of interfaces, we thus obtain

\[\text{interface}((f, l)) = \text{roots}((f, l)) \cup \text{allholes}((f, l)) \]

= \text{roots}(f) \cup \{ t \in l \cap \text{dom}(f) \}

\[\cup \text{allholes}(f) \cup \{ b \in l \cap \text{dom}(f) \} \]

= \text{interface}(f) \cup \{ b \in l \cap \text{dom}(f) \}. \quad \square

Definition A.6. Let \(f \) be an \(s \)-delimited forest. We call \(\text{split}(f, \text{img}(s)) \) the \(s \)-decomposition of \(f \).

Lemma A.7. The \(s \)-decomposition of an \(s \)-delimited forest is \(s \)-delimited.

Proof. Let \(\bar{f} \) be the \(s \)-decomposition of an \(s \)-delimited forest \(f \). By definition, \(\bar{f} = \text{split}(f, \text{img}(s)) \). By Lemma A.5, we have \(\text{interface}(\bar{f}) \subseteq \text{interface}(f) \cup \text{img}(s) \). Since \(f \) is \(s \)-delimited, \(\text{interface}(f) \subseteq \text{img}(s) \). Overall, we thus obtain \(\text{interface}(\bar{f}) \subseteq \text{img}(s) \), \(\text{i.e.
}, \bar{f} \) is \(s \)-delimited. \(\square \)

We observe that, since the \(s \)-decomposition of a forest is obtained by splitting the trees of the forest at all locations in \(\text{img}(s) \), only the roots of the trees in an \(s \)-decomposition of forest \(f \) can be locations in \(\text{img}(s) \).

Lemma A.8. For every \(\Phi \)-tree \(\bar{f} \) in an \(s \)-decomposition, we have \(\text{img}(s) \cap \text{dom}(\bar{f}) = \{ \text{root}(\bar{f}) \} \).

Proof. Let \(\bar{f} \) be an \(s \)-decomposition and let \(\bar{f} \in \bar{f} \). Since \(\bar{f} \) is \(s \)-delimited by Lemma A.7, we have \(\{ \text{root}(\bar{f}) \} \subseteq \text{img}(s) \). Since \(\text{root}(\bar{f}) \in \text{dom}(\bar{f}) \), \(\{ \text{root}(\bar{f}) \} \subseteq \text{img}(s) \cap \text{dom}(f) \).

Conversely, since \(\bar{f} = \text{split}(f, \text{img}(s)) \), we have \(\text{roots}(\bar{f}) = \text{roots}(f) \cup (\text{img}(s) \cap \text{dom}(f)) \), \(\text{i.e., every location in } \text{img}(s) \cap \text{dom}(f) \) is a root of \(f \). Consequently, \(\text{img}(s) \cap \text{dom}(\bar{f}) \subseteq \{ \text{root}(\bar{f}) \} \). \(\square \)

Lemma A.9. Let \(\langle s, b_1 \rangle, \langle s, b_2 \rangle \in \text{GStates} \) be guarded states, and let \(f \) be a \(s \)-delimited forest with \(f \in \text{forests}_{\Phi}(b_1 \cup b_2) \). Then, there exist forests \(f_1, f_2 \) with \(f_1 \cup f_2 = f \) and \(\text{heap}(f_1) = b_1 \), where \(f \) is the \(s \)-decomposition of \(f \).

Proof. We let \(f_i = \{ \bar{f} \in \bar{f} \mid \text{root}(\bar{f}) \in \text{dom}(b_i) \} \). Since \(f_1 \cup f_2 = f \) and \(\text{heap}(f_1) \cup \text{heap}(f_2) = \text{heap}(f) \) by Lemma 8.7, it suffices to show that for every tree \(\bar{f} \) in \(f_i \) that \(\text{heap}(\bar{f}) \subseteq b_i \).

To this end, let \(\bar{f} \in f_i \). Assume toward a contradiction that \(\text{dom}(\bar{f}) \cap \text{dom}(b_{3-i}) \neq \emptyset \). Then there exist locations \(l_1 \in \text{dom}(l) \cap \text{dom}(b_i) \) and \(l_2 \in \text{dom}(l) \cap \text{dom}(b_{3-i}) \) with \(l_2 \in \text{succ}(l_1) \). In particular, \(l_2 \in \text{img}(b_i) \) and \(l_2 \in \text{dom}(b_{3-i}) \), implying that \(l_2 \in \text{dangling}(b_i) \). However, since \(\langle s, b_1 \rangle, \langle s, b_2 \rangle \in \text{GStates} \), we have that \(l_2 \in \text{img}(s) \). Since \(l_2 \neq \text{root}(t) \), this contradicts Lemma A.8. \(\square \)

We restate the claim of Theorem 8.13: Let \(\langle s, b_1 \rangle, \langle s, b_2 \rangle \in \text{GStates} \) be guarded states, and let \(f \) be a \(s \)-delimited forest with \(f \in \text{forests}_{\Phi}(b_1 \cup b_2) \). Then there exist \(s \)-delimited forests \(f_1, f_2 \) with \(\text{heap}(f_1) = b_1 \) and \(f \in f_1 \oplus_F f_2 \).

Proof. Let \(f \) be the \(s \)-decomposition of \(f \). In particular, we then have \(f \oplus^* f \) by definition of \(\oplus^* \). Let \(f_1, f_2 \) be such that \(f_1 \cup f_2 = f \) and \(\text{heap}(f_1) = b_1 \). Such forests exist by Lemma A.9. Then \(f_1 \cup f_2 = f \oplus^* f \), \(\text{i.e., } f \in f_1 \oplus_F f_2 \). Since \(f \) is \(s \)-delimited (by Lemma A.7), so are \(f_1 \) and \(f_2 \). \(\square \)

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
A.19 Proof of Theorem 8.14

Claim. For all guarded states \(\langle s, b_1 \rangle \) and \(\langle s, b_2 \rangle \) with \(b_1 \uplus b_2 \neq \perp \), type\(_b(s, b_1 \uplus b_2) \) can be computed from type\(_b(s, b_1) \) and type\(_b(s, b_2) \) as follows:

\[
\text{type}_b(s, b_1 \uplus b_2) = \{ \phi \in \text{DUSH}_b \mid \exists \psi_1 \in \text{type}_b(s, b_1), \psi_2 \in \text{type}_b(s, b_2) \text{ such that } \phi \in \psi_1 \bullet_p \psi_2 \}.
\]

Proof. Let \(\phi \in \text{type}_b(s, b_1 \uplus b_2) \). By Definition 8.4, we know that (1) \(\phi = \text{project}(s, f) \) for some forest \(f \in \text{forest}_s \) and (2) \(\phi \) is delimited. By (2) and Lemma 8.12, \(f \) is delimited as well. Moreover, by Theorem 8.13, there exist s-delimited forests \(f_1 \) and \(f_2 \) with \(f = f_1 \bullet_p f_2 \), and for \(i \in \{1, 2\} \), \(\text{heap}(f_i) = b_i \). By Lemma 8.12, both \(\psi_1 = \text{project}(s, f_1) \) and \(\psi_2 = \text{project}(s, f_2) \) are delimited—hence, \(\psi_1 \in \text{type}_b(s, b_1) \) and \(\psi_2 \in \text{type}_b(s, b_2) \). Furthermore, by Theorem 7.39, we have \(\phi = \text{project}(s, f) = \psi_1 \bullet_p \psi_2 \).

\(\Box \)

A.20 Proof of Lemma 8.16

We first show an auxiliary result, namely that the stack-allocated variables of a state \(\langle s, b \rangle \) correspond precisely to the roots of the s-decomposed forests of \(b \).

Lemma A.10. Let \(\langle s, b \rangle \) be a state and let \(f \in \text{forest}_b \) an s-delimited forest. Then, we have \(\text{allocated}(s, b) = \{ x \mid s(x) \in \text{roots}(f) \} \), where \(f \) is the s-decomposition of \(f \).

Proof. By Lemma 7.14, \(\text{heap}(f) = b \) and thus, in particular, \(\text{dom}(f) = \text{dom}(b) \). Consequently,

\[
\text{s(allocated}(s, b)) = \text{img}(s) \cap \text{dom}(f).
\]

By Lemma A.8, we have \(\text{img}(s) \cap \text{dom}(f) = \{ \text{root}(f) \} \) for all \(f \in f \). Hence,

\[
\text{img}(s) \cap \text{dom}(f) = \text{roots}(f).
\]

Overall, we thus have \(\text{s(allocated}(s, b)) = \text{roots}(f) \). By taking the inverse \(s^{-1} \) on both sides of the equation, we obtain that \(\text{allocated}(s, b) = \{ x \mid s(x) \in \text{roots}(f) \} \).

We restate the claim of Lemma 8.16: Let \(\langle s, b \rangle \) be a state with \(\text{type}_b(s, b) \neq \emptyset \). Then, \(\text{allocated}(s, b) = \text{allocated(type}_b(s, b)) \).

Proof. By definition of DUSHs, all root parameters of all DUSHs in \(\text{allocated(type}_b(s, b)) \) are in \(\text{img}(s) \). Consequently, \(\text{allocated}(s, b) \supseteq \text{allocated(type}_b(s, b)) \).

For the other implication, let \(f \) be a forest with \(\text{heap}(f) = b \) and \(\text{project}(s, f) \in \text{type}_b(s, b) \). Such a forest must exist, as \(\text{type}_b(s, b) \neq \emptyset \) by assumption. Let \(f \) be the s-decomposition of \(f \). By Lemma A.7, \(f \) is delimited, and by Lemma 7.14, \(\text{heap}(f) = b \), implying \(\text{project}(s, f) \in \text{type}_b(s, b) \), and we can apply Lemma A.10 to obtain that

\[
\text{allocated}(s, b) = \{ x \mid s(x) \in \text{roots}(f) \}.
\]

Consequently, all variables in \(\text{allocated}(s, b) \) occur as root parameters on the right-hand side of magic wands in \(\text{project}(s, f) \). Therefore, \(\text{allocated}(s, b) \subseteq \text{allocated(type}_b(s, b)) \).
A.21 Proof of Lemma 8.17

Claim. Let \(\phi \in \text{GSL} \) and let \(\langle s, b \rangle \) be a state with \(\langle s, b \rangle \models \phi \). Then, \(\text{type}_\phi(s, b) \neq \emptyset \).

Proof. By Corollary 4.6, \(\langle s, b \rangle \) is a guarded state. Lemma 4.5 then yields that there exist \(k \geq 1 \) predicate calls such that \(\langle s, b \rangle \models \phi \star_{1 \leq i \leq k} \text{pred}_i(x_i) \).

We split the heap \(h \) into disjoint heaps \(h_1 \sqcup \cdots \sqcup h_k \) such that \(\langle s, b \rangle \models \text{pred}_i(x_i) \) for each \(i \in [1,k] \). Next, consider the forest \(f \triangleq \{ t_1, \ldots, t_k \} \), where each \(t_i \) is a \(\Phi \)-tree with \(\text{heap}(t_i) = b_i \); such trees exist by Lemma 7.3. Observe further that each of these trees is delimited, because they do not have holes and their root is in \(s(x_i) \). By Lemma 7.7, we have \(\text{heap}(f) = h \). Finally, Lemma 7.25 yields \(\langle s, f \rangle \models \text{project}(s, f) \) and thus \(\text{project}(s, f) \in \text{type}_\phi(s, b) \). Hence, \(\text{type}_\phi(s, b) \neq \emptyset \). \(\square \)

A.22 Proof of Corollary 8.19

Claim. For guarded states \(\langle s, b_1 \rangle \) and \(\langle s, b_2 \rangle \) with \(b_1 \uplus b_2 \neq \bot \), we have \(\text{type}_\phi(s, b_1 \uplus b_2) = \text{type}_\phi(s, b_1) \bullet \text{type}_\phi(s, b_2) \).

Proof. We need to show that \(\text{type}_\phi(s, b_1) \bullet \text{type}_\phi(s, b_2) \neq \bot \). Assume that \(\text{type}_\phi(s, b_i) = \emptyset \) for \(i = 1 \) or \(i = 2 \). Then, \(\text{alloced}(T_i) = \emptyset \) and we get that \(\text{alloced}(T_1) \cap \text{alloced}(T_2) = \emptyset \). Otherwise, we have \(\text{type}_\phi(s, b_i) \neq \emptyset \) for \(i = 1 \) or \(i = 2 \). Then, \(\text{alloced}(s, b_i) = \text{alloced}(\text{type}_\phi(s, b_i)) \). \(b_1 \uplus b_2 \neq \bot \) then implies that \(\text{alloced}(T_1) \cap \text{alloced}(T_2) = \emptyset \). The claim then follows from Theorem 8.14. \(\square \)

A.23 Proof of Lemma 8.20

Claim. For \(i \in \{1,2\} \), let \(\langle s, b_i \rangle \) be states with \(\text{type}_\phi(s, b_i) = T_i \neq \emptyset \) and \(T_i \bullet T_2 \neq \bot \). Then, there are states \(\langle s, b'_i \rangle \) such that \(\text{type}_\phi(s, b'_i) = T_i \) and \(\text{type}_\phi(s, b'_1 \uplus b'_2) = T_1 \bullet T_2 \).

Proof. We choose some states \(\langle s, b'_i \rangle \) that are isomorphic to \(\langle s, b_i \rangle \) such that \(\text{locs}(b'_1) \cap \text{locs}(b'_2) \subseteq \text{img}(s) \). We have that \(\langle s, b'_i \rangle = \text{type}_\phi(s, b_i) = T_i \) because isomorphic states have the same types (observe that the stack-projection replaces location that are not in the image of the stack by quantified variables). By Lemma 8.16, we have \(\text{alloced}(T_1) = \text{alloced}(\langle s, b'_1 \rangle) = \text{alloced}(s, b'_1) \). Thus, we get \(b'_1 \uplus b'_2 \neq \bot \) from \(T_1 \bullet T_2 \neq \bot \) and \(\text{locs}(b'_1) \cap \text{locs}(b'_2) \subseteq \text{img}(s) \). Then, Theorem 8.14 yields that \(\text{type}_\phi(s, b'_1 \uplus b'_2) = \text{type}_\phi(s, b'_1) \bullet \text{type}_\phi(s, b'_2) \). \(\square \)

A.24 Proof of Lemma 8.22

Claim. For \(x, y \) as presented earlier and a stack \(s \) with \(y \subseteq \text{dom}(s) \) and \(x \cap \text{dom}(s) = \emptyset \), we have \(\text{type}_\phi(s[x/y], b)[\text{aliasing}(s) : x/y] = \text{type}_\phi(s, b) \).

Proof. Let \(y' \) be the sequence obtained by replacing every variable in \(y \subseteq y \) by the maximal variable \(y' \) with \(s(y') = s(y) \). We consider some \(\phi \in \text{type}_\phi(s[x/y], b) \). Then, there exists a forest \(f \in \text{forests}_\phi(h) \) such that \(\phi = \text{project}(s[x/y], f) \). By construction of stack-projections (cf. Definition 7.23), we obtain that

\[
\phi[x/y'] = \text{project}(s[x/y], f)[x/y'] = \text{project}(s, f) \in \text{type}_\phi(s, b).
\]

The converse direction is analogous. \(\square \)

A.25 Proof of Lemma 8.24

Claim. Let \(\langle s, b \rangle \) be a guarded state such that \(s(x) \in \text{dom}(b) \) holds for some variable \(x \). Then,

\[
\text{forget}_{\text{aliasing}(s), x}(\text{type}_\phi(s, b)) = \text{type}_\phi(s[x/\bot], b) .
\]
A Decision Procedure for Guarded Separation Logic

Proof. We will use the following fact (†) based on the construction of projections (cf. Definition 7.23): if \(\bar{\Phi} \in \text{forests}_{\Phi}(\bar{h}) \), then \(s(x) \) is replaced in \(\text{project}(s[x/\bot], f) \) by an existentially quantified variable \(x \) if \(x \) is replaced in \(\text{forget}_{\text{aliasing}}(s, x)(\text{project}(s, f)) \) by an existentially quantified variable.

Now, consider some \(\phi \in \text{type}_{\Phi}(s[x/\bot], h) \). Then, there is some \(\bar{\Phi} \in \text{forests}_{\Phi}(\bar{h}) \) such that \(\text{project}(s[x/\bot], f) = \phi \in \text{DUSH}_{\Phi} \). Clearly, we have \(\text{project}(s, f) = \Phi_{\text{DUSH}} \) and hence \(\text{project}(s, f) \in \text{type}_{\Phi}(s, h) \). Applying (†), we conclude that
\[
\phi = \text{forget}_{\text{aliasing}}(s, x)(\text{project}(s, f)) \in \text{forget}_{\text{aliasing}}(s, x)(\text{type}_{\Phi}(s, h)).
\]

Conversely, let \(\phi \in \text{forget}_{\text{aliasing}}(s, x)(\text{type}_{\Phi}(s, h)) \). By construction, \(\phi \in \text{DUSH}_{\Phi} \) and there is some \(\bar{\Phi} \in \text{forests}_{\Phi}(\bar{h}) \) such that \(\text{forget}_{\text{aliasing}}(s, x)(\text{project}(s, f)) = \phi \). Applying (†), we can conclude that
\[
\phi = \text{project}(s[x/\bot], f) \in \text{type}_{\Phi}(s[x/\bot], h).
\]

\(\square \)

A.26 Proof of Lemma 8.26

Claim. For every state \(\langle s, h \rangle \), variable \(x \) with \(s(x) \not\in \text{locs}(h) \) and \(\text{aliasing}(s)(x) = \{ x \} \),
\[
\text{extend}_x(\text{type}_{\Phi}(s[x/\bot], h)) = \text{type}_{\Phi}(s, h).
\]

Proof. Assume \(\phi \) is the \(x \)-extension of some \(\phi' \in \text{type}_{\Phi}(s[x/\bot], h) \). Then there exists some \(\bar{\Phi} \in \text{forests}_{\Phi}(\bar{h}) \) such that \(\phi' = \text{project}(s[x/\bot], f) \in \text{DUSH}_{\Phi} \). We can now choose a forest \(\bar{\Phi}' \) with \(\bar{\Phi} \equiv_s \bar{\Phi}' \) such that \(\phi = \text{project}(s, f) \). Because of \(\bar{\Phi} \equiv_s \bar{\Phi}' \) and \(\text{project}(s[x/\bot], f) \in \text{DUSH}_{\Phi} \), we get that \(\text{project}(s, f) \in \text{DUSH}_{\Phi} \). Hence, \(\phi \in \text{type}_{\Phi}(s, h) \).

Conversely, let \(\phi \in \text{type}_{\Phi}(s, h) \). Then there exists some \(\bar{\Phi} \in \text{forests}_{\Phi}(\bar{h}) \) such that \(\phi = \text{project}(s, f) \in \text{DUSH}_{\Phi} \). We note that \(s(x) \not\in \text{interface}(f) \) since \(s(x) \not\in \text{locs}(h) \). Hence, project(s[x/\bot], f) \in \text{type}_{\Phi}(s[x/\bot], h) \). We distinguish two cases. First, if \(x \not\in \text{fvars}(\phi) \), then \(\phi = \text{project}(s, f) = \text{project}(s[x/\bot], f) \in \text{type}_{\Phi}(s[x/\bot], h) \). Second, if \(x \in \text{fvars}(\phi) \), then \(s(x) \) corresponds to a universally quantified variable in \(\text{project}(s[x/\bot], f) \). Hence, \(\phi \) is an \(x \)-instantiation of \(\text{project}(s[x/\bot], f) \). By Definition 8.25, this means \(\phi \in \text{extend}_x(\text{type}_{\Phi}(s[x/\bot], h)) \).

\(\square \)

A.27 Proof of Theorem 8.29

For a concise formalization, we assume—in addition to our global assumptions stated in Section 3.4.5—that all formulas \(\phi \) under consideration are GSL formulas without constant locations.

We will prove Theorem 8.29 by structural induction on the syntax of GSL formulas. For most base cases—those that involve the heap—we rely on the fact that a state satisfies all formulas in its type.

Lemma A.11. If \(\phi \in \text{type}_{\Phi}(s, h) \) for some state \(\langle s, h \rangle \), then \(\langle s, h \rangle \vdash_{\Phi} \phi \).

Proof. Since \(\phi \in \text{type}_{\Phi}(s, h) \), there exists a \(\Phi \)-forest \(\bar{\Phi} \) with heap(\(f \)) = \(h \) and \(\text{project}(s, f) = \phi \). By Lemma 7.25, we have \(\langle s, \text{heap}(f) \rangle \vdash_{\Phi} \text{project}(s, f) \) and thus also \(\langle s, h \rangle \vdash_{\Phi} \phi \).

Finally, to deal with the separating conjunction, we need another auxiliary result. In Corollary 8.19, we showed how two types can be composed into a single one, i.e.,
\[
\text{type}_{\Phi}(s, h_1) \bullet \text{type}_{\Phi}(s, h_2) = \text{type}_{\Phi}(s, b_1 \cup b_2).
\]
To prove Theorem 8.29, we need the reverse: given a composed type, say \(\text{type}_{\Phi}(s, h) = \bar{T}_1 \bullet \bar{T}_2 \), we need to decompose \(h \) into two heaps whose types (in conjunction with stack \(s \)) are \(\bar{T}_1 \) and \(\bar{T}_2 \).

Lemma A.12 (Type Decomposability). Let \(\langle s, h \rangle \) be a state with \(\emptyset \neq \text{type}_{\Phi}(s, h) = \bar{T}_1 \bullet \bar{T}_2 \). Then, there exist \(h_1, h_2 \) such that \(h = h_1 \cup h_2 \), \(\bar{T}_1 = \text{type}_{\Phi}(s, h_1) \), and \(\bar{T}_2 = \text{type}_{\Phi}(s, h_2) \).

Since proving type decomposability involves a bit more technical machinery, we refer the interested reader to Appendix A.28 for a detailed proof.

With the preceding three lemmas at hand, we can now prove the refinement theorem.
Claim (Refinement Theorem). For all stacks s, heaps b_1, b_2, and GSL formulas ϕ,

$$\text{type}_\phi(s, b_1) = \text{type}_\phi(s, b_2) \quad \text{implies} \quad \langle s, b_1 \rangle \models_\phi \phi \; \text{iff} \; \langle s, b_2 \rangle \models_\phi \phi.$$

Proof. We only show that if $\langle s, b_1 \rangle \models_\phi \phi$, then $\langle s, b_2 \rangle \models_\phi \phi$; the converse direction is symmetric. We proceed by induction on the structure of the GSL formula ϕ. Let us assume that $\langle s, b_1 \rangle \models_\phi \phi$.

Case $\phi = \text{emp}$. By the semantics of emp, we have $b_1 = \emptyset$. Let \tilde{f} be the empty forest. Then $\tilde{f} \in \text{forest}_\phi(b_1)$ and thus $\text{emp} = \text{project}(s, \tilde{f}) \in \text{type}_\phi(s, b_1) = \text{type}_\phi(s, b_2)$. Hence, by Lemma A.11, we have $\langle s, b_2 \rangle \models_\phi \text{emp}$.

Cases $\phi = x = y, \phi = x \neq y$. We observe that the states $\langle s, b_1 \rangle$ and $\langle s, b_2 \rangle$ have the same stack.

Then we proceed as in the case for $\phi = \text{emp}$.

Case $\phi = x \mapsto \langle y_1, \ldots, y_k \rangle$. By assumption, Φ is pointer-closed (see Definition 3.7), i.e., $\langle s, b_1 \rangle \models_\phi \text{ptr}_k(x, y_1, \ldots, y_k)$. We define a Φ-forest $\tilde{f} = \{1\}$, where t is

$$t = \{ s(x) \mapsto \langle 0, \text{ptr}_k(s(x), s(y_1), \ldots, s(y_k)) \rangle \leftarrow s(x) \mapsto \langle s(y_1), \ldots, s(y_k) \rangle \}.$$

Observe that $\tilde{f} \in \text{forest}_\phi(b_1)$ and

$$\text{ptr}_k(x, y_1, \ldots, y_k) = \text{project}(s, \tilde{f}) \in \text{type}_\phi(s, b_1) = \text{type}_\phi(s, b_2).$$

Hence, by Lemma A.11, we have $\langle s, b_2 \rangle \models_\phi \text{ptr}_k(x, y_1, \ldots, y_k)$. By definition of the predicate ptr_k, we conclude that $\langle s, b_2 \rangle \models_\phi x \mapsto \langle y_1, \ldots, y_k \rangle$.

Case $\phi = \text{pred}(z_1, \ldots, z_k)$. By Lemma 4.6, there exists a Φ-tree t such that $\text{rootpred}(t) = \text{pred}(s(z_1), \ldots, s(z_k))$, allholepreds($t$) = 0, and heap($\{t\}$) = b_1. Let

$$\psi \triangleq \text{pred}(s(z_1), \ldots, s(z_k))[\text{dom}(s^{-1}_{\text{max}})/\text{img}(s^{-1}_{\text{max}})] = \text{project}(s, \{1\}).$$

Then, $\psi \in \text{type}_\phi(s, b_1) = \text{type}_\phi(s, b_2)$ and, by Lemma A.11, $\langle s, b_2 \rangle \models_\phi \psi$. Observe that while $\psi \neq \text{pred}(z)$ is possible, we have by definition of s^{-1}_{max} that the parameters of the predicate call in ψ evaluate to the same locations as the parameters z. Hence, $\langle s, b_2 \rangle \models_\phi \text{pred}(z_1, \ldots, z_k)$.

Case $\phi = \phi_1 \lor \phi_2$. We then have $\langle s, b_1 \rangle \models_\phi \phi_1$ and $\langle s, b_1 \rangle \models_\phi \phi_2$. By the I.H., $\langle s, b_2 \rangle \models_\phi \phi_1$ and $\langle s, b_2 \rangle \models_\phi \phi_2$. Hence, $\langle s, b_2 \rangle \models_\phi \phi_1 \land \phi_2$.

Cases $\phi = \phi_1 \lor \phi_2, \phi = \phi_1 \land \neg \phi_2$. Analogous to the previous case.

Case $\phi = \phi_1 \star \phi_2$. By the semantics of \star, there exist heaps $b_{1,1}$ and $b_{1,2}$ such that $\langle s, b_{1,i} \rangle \models_\phi \phi_i$ for $1 \leq i \leq 2$. Let $T_{\tilde{f}} = \text{type}_\phi(s, b_{1,1})$. By Corollary 4.6, we have that $\langle s, b_{1,i} \rangle \in \text{GStates}$ for $1 \leq i \leq 2$. By Corollary 8.19, we have that $\text{type}_\phi(s, b_1 \uplus b_2) = T_{\tilde{f}} \cdot T_{\tilde{g}}$. By Lemma 8.17, we have that $\text{type}_\phi(s, b_1) \neq 0$. We can then apply Lemma A.12 to $\langle s, b_2 \rangle, T_{\tilde{f}}$ and $T_{\tilde{g}}$ to obtain states $\langle s, b_{2,1} \rangle$ and $\langle s, b_{2,2} \rangle$ with $b_2 = b_{2,1} \uplus b_{2,2}$, $\text{type}_\phi(s, b_{2,1}) = T_{\tilde{f}}$, and $\text{type}_\phi(s, b_{2,2}) = T_{\tilde{g}}$.

We can thus apply the I.H. to both $b_{2,1}, b_{2,1}, \phi_1$ and $b_{2,1}, b_{2,2}, \phi_2$ to conclude that $\langle s, b_{2,1} \rangle \models_\phi \phi_1$ and $\langle s, b_{2,2} \rangle \models_\phi \phi_2$. Since $b_{2,1} \uplus b_{2,2} = b_2$, the semantics of \star then yields $\langle s, b_2 \rangle \models_\phi \phi$.

Case $\phi = \phi_0 \land (\phi_1 \otimes \phi_2)$. Then there exists a heap b_0 with $\langle s, b_0 \rangle \models_\phi \phi_1$ and $\langle s, b_1 \uplus b_0 \rangle \models_\phi \phi_2$. Since $\langle s, b_1 \rangle$ and $\langle s, b_2 \rangle$ have the same type, we have allocated(s, b_1) = allocated(s, b_2). We can therefore assume w.l.o.g. that $b_2 \uplus b_0$ is defined—if this is not the case, simply replace b_0 with a heap b'_0 such that $\langle s, b'_0 \rangle \equiv \langle s, b_0 \rangle$ and both $b_1 \uplus b'_0$ and $b_2 \uplus b'_0$ are defined. Then, by Lemma 3.5, we can conclude that $\langle s, b_1 \uplus b'_0 \rangle \models_\phi \phi$.

By Corollary 4.6, we have $\langle s, b_0 \rangle, \langle s, b_1 \rangle \in \text{GStates}$. Corollary 8.19 then yields that

$$\text{type}_\phi(s, b_1 \uplus b_0) = \text{type}_\phi(s, b_1) \cdot \text{type}_\phi(s, b_0)$$
$$= \text{type}_\phi(s, b_0)$$
$$= \text{type}_\phi(s, b_2 \uplus b_0).$$
Now, we apply the I.H. for ϕ_0, b_1 and b_2 to conclude that $\langle s, b_2 \rangle \models_\phi \phi_0$, as well as for ϕ_2, $\langle s, b_1 \cup b_2 \rangle$ and $\langle s, b_2 \cup b_0 \rangle$ to conclude that $\langle s, b_2 \cup b_0 \rangle \models_\phi \phi_2$. Hence, by the semantics of \otimes and \land, we have $\langle s, b_2 \rangle \models_\phi \phi_0 \land (\phi_1 \otimes \phi_2)$.

Case $\phi = \phi_0 \land (\phi_1 \star \phi_2)$. Analogous to the previous case for guarded separation, except that we must consider arbitrary models b_0 with $\langle s, b_0 \rangle \models_\phi \phi_1$ and $\langle s, b_1 \cup b_0 \rangle \models_\phi \phi_2$.

A.28 Proof of Lemma A.12 (Type Decomposability)

We need a couple of auxiliary definitions and lemmas before we can show this result in Lemma A.12 at the end of this section.

Definition A.13. We call \mathfrak{f} s-decomposed iff $\mathfrak{f} = \text{split}(\mathfrak{f}, \text{img}(s))$.

Lemma A.14. Let $\langle s, h \rangle$ be a state with $\emptyset \neq \text{type}_\phi(s, h)$ and let $\mathcal{T}_1, \mathcal{T}_2 \in \text{Types}_{\phi}^{\text{aliasing}(s)}$ be types with $\text{type}_\phi(s, h) = \mathcal{T}_1 \cdot \mathcal{T}_2$ Then there exist s-decomposed, s-delimited Φ-forests $\mathfrak{f}, \mathfrak{f}_1, \mathfrak{f}_2$ such that

1. $\text{project}(s, \mathfrak{f}_i) \in \mathcal{T}_i$, $1 \leq i \leq 2$,
2. $\mathfrak{f}_1 \cup \mathfrak{f}_2 = \mathfrak{f}$, and
3. $\text{heap}(\mathfrak{f}) = h$.

Proof. By assumption, we have $\emptyset \neq \text{type}_\phi(s, h)$. Take an arbitrary forest \mathfrak{f} with project(s, \mathfrak{f}) \in type$_\phi(s, h)$. By definition, \mathfrak{f} is s-delimited. Let $\mathfrak{f} \triangleq \text{split}(\mathfrak{f}, \text{img}(s))$ be the s-decomposition of \mathfrak{f}. By Lemma A.7, \mathfrak{f} is s-delimited. By Lemma 7.13, $\mathfrak{f} \triangleright^* \mathfrak{f}$. Lemma 7.14 thus gives us that heap(\mathfrak{f}) $= h$. Hence, project(s, \mathfrak{f}) \in type$_\phi(s, h)$.

By definition of \bullet, there exist formulas $\psi_1 \in \mathcal{T}_1, \psi_2 \in \mathcal{T}_2$ with project(s, \mathfrak{f}) \in $\psi_1 \cdot \mathfrak{f} \psi_2$. By definition, there exist Φ-forests $\mathfrak{g}_1, \mathfrak{g}_2$ with project(s, \mathfrak{g}_1) $= \psi_1$. Because $\mathcal{T}_1 \cdot \mathcal{T}_2$ is defined, we have alloced(\mathcal{T}_1) \cap alloced(\mathcal{T}_2) $= \emptyset$, allowing us to assume w.l.o.g. that $\mathfrak{g}_1 \cup \mathfrak{g}_2 \neq \emptyset$. By Theorem 7.39, there then exist forests $\mathfrak{f}_1, \mathfrak{f}_2$ with project(s, \mathfrak{f}_i) $= \psi_i$ and $\mathfrak{f} \triangleq \mathfrak{f}_1 \cup \mathfrak{f}_2$. Because \mathfrak{f} is s-decomposed, this implies that zero \triangleright-steps were taken by \bullet_F, i.e., $\mathfrak{f} \triangleq \mathfrak{f}_1 \cup \mathfrak{f}_2$. Moreover, because \mathfrak{f} is s-decomposed and s-delimited, we get that \mathfrak{f}_1 and \mathfrak{f}_2 are s-decomposed and s-delimited as well.

Definition A.15 (Roots of a DUSH). Let $\phi = \exists ! x. \forall 1 \leq i \leq k(\zeta_i \star \text{pred}_i(z_i))$ be a DUSH. The roots of ψ are the set $\text{dushroots}_s(\phi) \triangleq \bigcup_{1 \leq i \leq k} \text{aliasing}(s)(\text{predroot}(%(\text{pred}_i(z_i))))$.

Clearly, the roots of a forest are connected to the roots of a DUSH via the stack.

Lemma A.16. Let \mathfrak{f} be a Φ-forest. Then, $\text{dushroots}_s(\text{project}(s, \mathfrak{f})) = \{ x \mid s(x) \in \text{roots}(\mathfrak{f}) \}$.

Proof. Let $\phi \triangleq \text{project}(s, \mathfrak{f})$. By definition of DUSHs, roots(s) \subseteq img(s). Every root $l \in$ roots(\mathfrak{f}) is therefore replaced by a variable in $s^{-1}_{\text{max}}(l)$ by stack-forest projection. Since $\text{dushroots}_s(\phi)$ closes the set of roots under all $\text{aliasing}(s)(\cdot)$, we obtain that $\text{dushroots}_s(\phi)$ contains all variables x with $s(x) \in$ roots(\mathfrak{f}).

Lemma A.17. Let \mathcal{T} be a Φ-type and $\psi \in \mathcal{T}$. There exists a formula $\psi' \in \mathcal{T}$ such that $\psi' \triangleright^* \psi$ and alloced(\mathcal{T}) $= \text{dushroots}_s(\psi')$.

Proof. Let $\langle s, h \rangle$ be such that $\text{type}_\phi(s, h) = \mathcal{T}$. By Lemma 8.16, we then have that alloced(s, h) $= \text{alloced}($ alloced(\mathcal{T}) $)$ (\mathfrak{f}). By definition of Φ-types, there then exists a Φ-forest \mathfrak{f} with heap(\mathfrak{f}) $= h$ and project(s, \mathfrak{f}) $= \psi$. Let $\mathfrak{f} \triangleq \text{split}(\mathfrak{f}, \text{img}(s))$ be the s-decomposition of \mathfrak{f} and write $\psi' \triangleq \text{project}(s, \mathfrak{f})$. We show that ψ' has the desired properties.

First, $\mathfrak{f} \triangleright^* \mathfrak{f}$ by Lemma 7.13. Observe that $\mathfrak{f} \in \mathfrak{f} \circ_F \emptyset$ (where \emptyset is the empty forest). Lemma 7.35 therefore guarantees that $\psi \in \psi' \circ_F \text{emp}$ and thus $\psi' \triangleright^* \psi$.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Second, by Lemma 7.14, heap(\(\tilde{f}\)) = heap(f) and thus \(\psi' \in T\). Moreover, by Lemma A.10, \(\text{allocated}(s, h) = \{x \mid s(x) \in \text{roots}(\tilde{f})\}\). We combine the preceding with (†) to derive \(\text{allocated}(T) = \{x \mid s(x) \in \text{roots}(f)\}\). Lemma A.16 then yields that \(\text{allocated}(T) = \text{dushroots}_s(\psi')\).

\[\square\]

Claim (Lemma A.12). Let \((s, b)\) be a state with \(\emptyset \neq \text{type}_g(s, b) = T_1 \bullet T_2\). Then, there exist \(b_1, b_2\) such that \(b = b_1 \cup b_2\), \(T_1 = \text{type}_g(s, b_1)\), and \(T_2 = \text{type}_g(s, b_2)\).

Proof. Let \(T' = \text{type}_g(s, b)\). By Lemma A.14, there exist \(s\)-decomposed, \(s\)-delimited forests \(f_1, f_2\) with

1. \(\text{project}(s, f_i) \in T_i, 1 \leq i \leq 2\),
2. \(f_1 \cup f_2 = f\), and
3. \(\text{heap}(f) = b\).

Define \(b_1 = \text{heap}(f_1), b_2 = \text{heap}(f_2)\). Then, \(b_1 \cup b_2 = b\) because of \(\text{heap}(f_1 \cup f_2) = b\). Because the \(f_i\) are \(s\)-delimited, we have dangling(b1) \(\subseteq\) img(s). Hence, \((s, b_1), (s, b_2) \in \text{GStates}\). By Lemmas A.10 and 8.16, we have

\[
\text{allocated}(s, b) = \{x \mid s(x) \in \text{roots}(f)\} = \text{allocated}(T) \quad (*)
\]

Further, we have

\[
\text{allocated}(s, b_i) = \{x \mid s(x) \in \text{roots}(f_i)\} = \text{allocated}(T_i) \quad (†)
\]

where the first equality follows from Lemma A.10, and the second equality follows by (\(\ast\)) and because the \(f_i\) are \(s\)-decomposed.

We will show that \(T_1 = \text{type}_g(s, b_1)\); the argument for \(T_2 = \text{type}_g(s, b_2)\) is symmetrical. We prove the inclusions \(T_1 \subseteq \text{type}_g(s, b_1)\) and \(T_2 \supseteq \text{type}_g(s, b_1)\) separately.

\(T_1 \subseteq \text{type}_g(s, b_1)\):" Let \(\psi'_1 \in \text{type}_g(s, b_1)\). By Lemma A.17, there exists a formula \(\psi'_1 \in \text{type}_g(s, b_1)\) such that \(\psi'_1 \supseteq^* \psi'_1\), where we can assume w.l.o.g. that \(e_1, e_2, a_1, a_2\) are pairwise disjoint. By definition of type composition, \(\bullet\), it follows that \(\psi = \exists e_1, e_2, \forall a_1, a_2, \phi_1 \bullet \phi_2 \in T\). Then, there is an \(\Phi\)-forest \(g \in \text{forest}_s(b, h)\) such that \(\text{project}(g, g) = \psi\). From (\(\ast\)), (\(\ast\)), and (†), we obtain that \(\text{allocated}(s, h) = \text{dushroots}_s(\psi)\). By Theorem 8.13, there exist \(\Phi\)-forests \(g_1, g_2\) with \(g = g_1 \cup g_2\), \(\text{heap}(g_1) = b_1\), and \(g \in g_1 \bullet g_2\). With project(s, g1) \(\cup\) project(s, g2) = \(\exists e_1, e_2, \forall a_1, a_2, \phi_1 \bullet \phi_2\), we then must have that project(s, g1) = \(\psi'_1\). Therefore, \(\psi'_1 \in \text{type}_g(s, b_1)\). Since \(\psi'_1 \supseteq^* \psi'_1\), Lemma A.4 then gives us a forest \(g'_1\) s.t. \(g_1 \supseteq^* g'_1\) and project(s, g'_1) = \(\psi'_1\). Because also \(\text{heap}(g'_1) = \text{heap}(g_1)\) by Lemma 7.14, \(g'_1 \in \text{forest}(s, b_1)\) and \(\text{project}(s, g'_1) \in \text{type}_g(s, b_1)\).

Thus, \(\psi'_1 \in \text{type}_g(s, b_1)\).

\(T_2 \supseteq \text{type}_g(s, b_1)\):" Let \(\psi_1 \in \text{type}_g(s, b_1)\). By Lemma A.17, there exists a formula \(\psi'_1 \in \text{type}_g(s, b_1)\) such that \(\psi'_1 \supseteq^* \psi_1\), and \(\text{allocated}(T_1) = \text{dushroots}_s(\psi'_1)(\#)\). Let \(\psi'_2 \in \text{project}(s, f_2)\) \(\in \text{type}_g(s, b_2)\). By the definition of projections, we have \(\psi'_2 = \exists e_1, e_2, a_1, a_2, \phi_1 \bullet \phi_2 \in \text{allocated}(T_1)\). Then, there is an \(\Phi\)-forest \(g \in \text{forest}_s(b, h)\) such that \(\text{project}(g, g) = \psi\). From (\#), (\(\ast\)), and (†), we obtain that \(\text{allocated}(s, h) = \text{dushroots}_s(\psi)\). By Theorem 8.14, there exist \(\Phi\)-forests \(g_1, g_2\) with \(g = g_1 \cup g_2\), \(\text{heap}(g_1) = b_1\), and \(g \in g_1 \bullet g_2\). With project(s, g1) \(\cup\) project(s, g2) = \(\exists e_1, e_2, \forall a_1, a_2, \phi_1 \bullet \phi_2\), we then must have that project(s, g1) = \(\psi'_1\). Therefore, \(\psi'_1 \in \text{type}_g(s, b_1)\). Since \(\psi'_1 \supseteq^* \psi_1\), Lemma A.4 then gives us a forest \(g'_1\) s.t. \(g_1 \supseteq^* g'_1\) and project(s, g'_1) = \(\psi'_1\). Because also \(\text{heap}(g'_1) = \text{heap}(g_1)\) by Lemma 7.14, we get that project(s, g1) \(\in \text{type}_g(s, \text{heap}(g_1))\). Hence, \(\psi_1 \in T_1\).

\[\square\]
A.29 Correctness of the Fixed-Point Algorithm for Computing Types of Predicate Calls

A.29.1 Soundness of the Type Computation. We organize the soundness proof into a sequence of simple lemmas about the base cases of the fixed-point algorithm and about the operations •, [· : ·]/[·], forget and extend. The soundness of the overall algorithm is then a direct consequence of these lemmas. We first characterize the types of atomic formulas.

Lemma A.18. For all aliasing constraints ac, $\text{Types}_{ac}(\text{emp}) = \{\{\text{emp}\}\}$.

Proof. Let (s, h) be a state with $\text{type}_φ(s, h) \in \text{Types}_{ac}(\text{emp})$ and aliasing$(s) = \text{ac}$. By definition, $(s, h) \models_φ \text{emp}$ and thus $h = ϕ$. We now argue that $\text{type}_φ(s, h) = \{\{\text{emp}\}\}$.

We note that $∅ \in \text{forest}_φ(h)$ ($∅$ is the forest that does not contain any trees) and $\text{emp} = \text{project}(s, \{∅\})$. Hence, $\text{emp} \in \text{type}_φ(s, h)$.

Conversely, let $ψ \in \text{type}_φ(s, h)$. By definition, there is a Φ-forest $\dag = \{t_1, \ldots, t_k\}$ with $\text{project}(s, t) = ψ$ and $\text{heap}(t) = h$. Since $h = ϕ$, we have $\text{heap}(t_i) = ϕ$ and $\text{heap}(t_i) = ϕ$ for all $i \in [1, k]$. Hence, $k = 0$. By Definition 7.23 (stack-projections), then we have $ψ = \text{emp}$. □

Lemma A.19. Let ac be an aliasing constraint and $x, y \in \text{dom}(ac)$:

- If $(x, y) \in \text{ac}$, then $\text{Types}_{ac}^x(y \approx y) = \{\{\text{emp}\}\}$ and $\text{Types}_{ac}^x(x \neq y) = \emptyset$.
- Otherwise, $\text{Types}_{ac}^x(x \neq y) = \{\{\text{emp}\}\}$ and $\text{Types}_{ac}^x(x \approx y) = \emptyset$.

Proof. We only consider the case $x \approx y$ as the argument for $x \neq y$ is completely analogous. If $(x, y) \in \text{ac}$, our semantics of equalities enforces $\text{Types}_{ac}^x(\text{emp}) = \text{Types}_{ac}^x(x \approx y)$. The claim then follows from Lemma A.18. If $(x, y) \notin \text{ac}$, it holds for all s with aliasing$(s) = \text{ac}$ that $s(x) \neq s(y)$. The semantics of $x \approx y$ then yields, for all heaps h, that $(s, h) \not\models_φ x \approx y$. Hence, $\text{Types}_{ac}^x(x \approx y) = \emptyset$. □

Lemma A.20. Let ac be an aliasing constraint, let $a \in \text{dom}(ac)$, and let $b ∈ \text{Var}^*$ with $b \subseteq \text{dom}(ac)$. Then, $\text{Types}_{ac}^x(a \mapsto b) = \{\text{type}_φ(\text{ptrmodel}_{ac}(a \mapsto b))\}$.

Proof. “⊇” Let $(s, h) \models_φ a \mapsto b$. By definition, $(s, h) \models_φ a \mapsto b$. Hence, $\text{type}_φ(s, h) \in \text{Types}_{ac}^x(a \mapsto b)$.

“⊆” Let (s, h) be a state such that $\text{type}_φ(s, h) \in \text{Types}_{ac}^x(a \mapsto b)$ and aliasing$(s) = \text{ac}$. By definition, $(s, h) \models_φ a \mapsto b$ and thus, by the semantics of points-to assertions, $h = \{s(a) \mapsto s(b)\}$. Consequently, $(s, h) \models_φ \text{ptrmodel}_{ac}(a \mapsto b)$ and $\text{type}_φ(s, h) = \text{type}_φ(\text{ptrmodel}_{ac}(a \mapsto b))$. Since (s, h) was an arbitrary model of ϕ with $\text{type}_φ(s, h) \in \text{Types}_{ac}^x(a \mapsto b)$ and aliasing$(s) = \text{ac}$, we have $\text{Types}_{ac}^x(a \mapsto b) \subseteq \{\text{type}_φ(\text{ptrmodel}_{ac}(a \mapsto b))\}$. □

We next consider the operations • (type composition), [· : ·]/[·] (variable renaming), forget and extend (lifted to sets of types). The lemmas for the operations that follow are more general than what is needed for the soundness of our fixed-point algorithm because we will also use them for proving the correctness of our algorithm dealing with guarded formulas (see Section 9.2).

Lemma A.21 (Type Composition). For $\phi_1, \phi_2 \in \text{GSL}$, $\text{Types}_{ac}^x(\phi_1 \star \phi_2) = \text{Types}_{ac}^x(\phi_1) \star \text{Types}_{ac}^x(\phi_2)$.

Proof. We show each inclusion separately:

- Let $\mathcal{T} \in \text{Types}_{ac}^x(\phi_1 \star \phi_2)$. Moreover, fix a state (s, h) such that $(s, h) \models_φ \phi_1 \star \phi_2$ and $\mathcal{T} = \text{type}_φ(s, h)$. Then, there exist heaps b_1, b_2 such that $(s, b_1) \models_φ \phi_1$ and $b = b_1 \cup b_2$. By Corollary 4.6, we have $(s, b_1), (s, b_2) \in \text{GStates}$. By Corollary 8.19, $\mathcal{T} = \text{type}_φ(s, b_1) \star \text{type}_φ(s, b_2)$. Since $(s, b_1) \models_φ \phi_1$, we have $\text{type}_φ(s, b_1) \in \text{Types}_{ac}^x(\phi_1)$. Hence, $\mathcal{T} \in \text{Types}_{ac}^x(\phi_1) \star \text{Types}_{ac}^x(\phi_2)$.
Let $\mathcal{T} \in \text{Types}^{\text{ac}}(\phi_1)$ • $\text{Types}^{\text{ac}}(\phi_2)$. Then, there are $\mathcal{T}_1 \in \text{Types}^{\text{ac}}(\phi_1)$ and $\mathcal{T}_2 \in \text{Types}^{\text{ac}}(\phi_2)$ such that $\mathcal{T} = \mathcal{T}_1$ • \mathcal{T}_2. Moreover, there are states $\langle s, b_i \rangle$ such that $\text{aliasing}(s) = \text{ac}$, $\text{type}_\phi(s, b_i) = \mathcal{T}_1$ and $\langle s, b_i \rangle \models \phi_1$. By Lemma 4.5, we have $\mathcal{T}_1 \neq \emptyset$. By Lemma 8.20, there are states $\langle s, b_i' \rangle$ such that $\text{type}_\phi(s, b_i') = \mathcal{T}_2$ and $\text{type}_\phi(s, b_i' \cup b_i) = \mathcal{T}_1$ • \mathcal{T}_2. By Corollary 8.30, we have $\langle s, b_i' \cup b_i \rangle \models \phi_1 \star \phi_2$. Hence, $\mathcal{T} \in \text{Types}^{\text{ac}}(\phi_1 \star \phi_2)$.

Lemma A.22 (Renaming of Type Sets). Let x and y be sequences of variables as in Definition 9.1 from earlier. Then, for every GSL formula ϕ, we have

$$\text{Types}^{\text{ac}}[x/y]^{-1}(\phi)[\text{ac} : x/y] = \text{Types}^{\text{ac}}(\phi[x/y]).$$

Proof. Let $\text{type}_\phi(s, b) \in \text{Types}^{\text{ac}}(\phi[x/y])$. By definition, this means aliasing$(s) = \text{ac}$. Moreover, we note that $\text{ac}[x/y]^{-1} = \text{aliasing}(s[x/y])$. By Lemma 8.22, we have $\text{type}_\phi(s[x/y], b)[\text{ac} : x/y] = \text{type}_\phi(s, b)$, i.e., $\text{type}_\phi(s, b) \in \text{Types}^{\text{ac}}[x/y]^{-1}(\phi)[\text{ac} : x/y]$. The converse direction is analogous.

Lemma A.23 (Forgetting a Variable in Type Sets). Let $\phi \in \text{GSL}$ be a formula with free variables $x \cup \{y\}$ such that $y \notin x$. Moreover, assume that, for every state $\langle s, b \rangle$, $\langle s, b \rangle \models \phi$ implies $s(y) \in \text{dom}(b)$. Then, for every aliasing constraint ac with $\text{dom}(\text{ac}) = x$, we have

$$\text{Types}^{\text{ac}}(\exists y. \phi) = \bigcup_{\text{ac}' \in \text{AC}^{x \cup \{y\}}} \text{forget}_{\text{ac}', y}(\text{Types}^{\text{ac}}(\phi)).$$

Proof. Let $\mathcal{T} \in \text{forget}_{\text{ac}', y}(\text{Types}^{\text{ac}}(\phi))$, where $\text{ac}' \in \text{AC}^{x \cup \{y\}}$ is an aliasing constraint satisfying $\text{ac}'[x] = \text{ac}$. Then there exists a state $\langle s, b \rangle$ such that $\mathcal{T} = \text{forget}_{\text{ac}', y}(\text{type}_\phi(s, b))$. By assumption, $\langle s, b \rangle \models \phi$, $\text{dom}(s) = x$, and aliasing$(s)|_{\text{dom}(\text{ac})} = \text{ac}$. By assumption, $s(y) \in \text{dom}(b)$. Lemma 8.24 then yields

$$\text{type}_\phi(s[y/\bot], b) = \text{forget}_{\text{ac}', y}(\text{type}_\phi(s, b)) = \mathcal{T}.$$

By the semantics of existential quantifiers, we have $\langle s[y/\bot], b \rangle \models \phi \forall y. \phi$. Hence, $\mathcal{T} \in \text{Types}^{\text{ac}}(\exists y. \phi)$.

Conversely, let $\mathcal{T} \in \text{Types}^{\text{ac}}(\exists y. \phi)$. Then, there is a state $\langle s, b \rangle$ such that $\langle s, b \rangle \models \phi \forall y. \phi$. $\mathcal{T} = \text{type}_\phi(s, b)$, $\text{dom}(s) = x \setminus \{y\}$, and aliasing$(s)$ is such that $\text{ac}' = \text{aliasing}(s[y/\bot]) \in \text{AC}^{x \cup \{y\}}$. Lemma 8.24 yields

$$\mathcal{T} = \text{forget}_{\text{ac}', y}(\text{type}_\phi(s[y/\bot], b)) = \text{type}_\phi(s, b) = \text{forget}_{\text{ac}', y}(\text{Types}^{\text{ac}}(\phi)).$$

Lemma A.24 (Extending Type Sets). Let $\phi \in \text{GSL}$ be a formula with free variables x. Moreover, let $\text{ac} \subseteq \text{ac}'$ be alias constraints with $\text{dom}(\text{ac}) = x$. Then, $\text{Types}^{\text{ac}}(\phi) \subseteq \text{extend}_{\text{ac}}(\text{Types}^{\text{ac}}(\phi)).$

Proof. We consider some $\mathcal{T} \in \text{Types}^{\text{ac}}(\phi)$. Then, there is a state $\langle s, b \rangle$ such that $\text{dom}(s) = x = \text{dom}(\text{ac})$ and $\text{type}_\phi(s, b) = \mathcal{T}$. We now choose some extension s' of s to $\text{dom}(\text{ac}')$ such that $s(x) \notin \text{locs}(b)$ for every variable x in $\text{dom}(\text{ac}')$ that is not an alias of a variable in $\text{dom}(\text{ac})$. By Lemma 8.28, we then have $\text{type}_\phi(s', b) = \text{extend}_{\text{ac}'}(\text{type}_\phi(s, b))$. Hence, $\text{extend}_{\text{ac}}(\mathcal{T}) = \text{extend}_{\text{ac}'}(\text{Types}^{\text{ac}}(\phi))$.

We are now ready to prove the soundness of the fixed-point computation, i.e.,

$$\text{lfp}(\text{unfold}_d(\text{pred}, \text{ac})) \subseteq \text{Types}^{\text{ac}}(\text{pred}).$$

We first need to establish that $\text{ptypes}_x^p(\text{ac}, \phi)$ is sound when ϕ is a rule of predicate pred, i.e., that $\text{ptypes}_x^p(\phi, \phi) \subseteq \text{Types}^{\text{ac}}(\phi)$ holds, under the assumption that p maps every pair of predicate identifier and aliasing constraint to a subset of the corresponding types. As SID rules are guaranteed to be existentially quantified symbolic heaps, it suffices to prove this result for arbitrary $\phi \in \text{SH}^3$:
Lemma A.25. Let $\phi \in \mathsf{SH}^3$ and $ac \in \mathsf{AC}$ with $\text{dom}(ac) \supseteq \mathsf{fvars}(\phi)$. Moreover, let

$$p : \mathsf{Preds}(\phi) \times \mathsf{AC} \to 2^{\mathsf{Types}_\phi}$$

be such that for all $\text{pred} \in \mathsf{Preds}(\phi)$ and all $ac' \in \mathsf{AC}^{x:\mathsf{fvars}(\text{pred})}$, it holds that $p(\text{pred}, ac') \subseteq \mathsf{Types}_\phi^{ac} (\text{pred})$. Then $\mathsf{ptypes}_p^x(\phi, ac) \subseteq \mathsf{Types}_\phi^{ac} (\phi)$.

Proof. We proceed by induction on the structure of ϕ and apply the lemmas from earlier:

Cases $\phi = x = y$, $\phi = x \neq y$. The claim follows from Lemma A.19.

Case $\phi = a \mapsto b$. The claim follows from Lemma A.20.

Case $\phi = \text{pred}(y)$, $z = \mathsf{fvars}(\text{pred})$. By the I.H., we have

$$p(\text{pred}, ac[z/y]\downarrow_{\text{ac}}) \subseteq \mathsf{Types}_\phi^{ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}} (\text{pred})}.$$

By Lemma A.24, we have

$$\text{extend}_{ac[z/y]}^{\downarrow_{\text{ac}}} (\mathsf{Types}_\phi^{ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}} (\text{pred})) \subseteq \mathsf{Types}_\phi^{ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}} (\text{pred})}.$$}

Moreover, by Lemma A.22, we have

$$\mathsf{Types}_\phi^{ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}} (\text{pred})[ac : z/y = \mathsf{Types}_\phi^{ac} (\text{pred}[z/y])]}.$$

Hence, we get

$$\text{extend}_{ac}(p(\text{pred}, ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}} (\text{pred})[ac : z/y]) \subseteq \mathsf{Types}_\phi^{ac} (\text{pred}[z/y]).$$}

Case $\phi = \phi_1 \circ \phi_2$. The claim follows from Lemma A.21 and the I.H.

Case $\phi = \exists y. \phi$. The claim follows from Lemma A.23 and the I.H.

Lemma A.26 (Soundness of Type Computation). If $\mathsf{fp} (\mathsf{unfold}_\phi)(\text{pred}, ac) \subseteq \mathsf{Types}_\phi^{ac} (\text{pred}).$

Proof. A straightforward induction on top of Lemma A.25.

A.29.2 Completeness of the Type Computation. We now establish the completeness of the fixed-point computation, i.e., $\mathsf{fp} (\mathsf{unfold}_\phi)(\text{pred}, ac) \supseteq \mathsf{Types}_\phi^{ac} (\text{pred}).$ The main challenge is our treatment of predicate calls $\mathsf{ptypes}_p^x(\text{pred}(y), ac)$, for which the recursive look-up $p(\text{pred}, ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}})$ restricts the stack-aliasing constraint $ac[z/y]\downarrow_{\text{ac}}^{\downarrow_{\text{ac}}}$ to $x \cup z$, where $z \supseteq \mathsf{fvars}(\text{pred})$. This restriction of the variables is necessary to avoid having to consider larger and larger sequences of variables, which would lead to divergence as we illustrate in the following. Hence, our goal will be to establish that ptypes discovers all types even though we restrict the variables in the recursive look-up.

We now illustrate the need for restricting the variables in the recursive look-up: we assume a stack s with $\text{dom}(s) = x \cup y$ and pick a rule

$$\text{pred}(\mathsf{fvars}(\text{pred})) \iff \exists e. (a \mapsto b) \ast \text{pred}_1(z_1) \ast \cdots \ast \text{pred}_k(z_k).$$

We extend s to a stack s' with $\text{dom}(s') = \text{dom}(s) \cup e$ and are left with computing the types of

$$((a \mapsto b) \ast \text{pred}_1(z_1) \ast \cdots \ast \text{pred}_k(z_k))[\mathsf{fvars}(\text{pred})/y].$$

At first glance, this implies recursively computing the types of the calls, $\text{pred}_i(z_i)$, w.r.t. the variables $x' \uplus x \cup y \cup e$, i.e., we additionally have to consider the existentially quantified variables e. We attempt to do so by picking a rule for each predicate, say we first pick a rule for predicate pred_i. Then, we need to consider an extension s'' of s' with $\text{dom}(s'') = \text{dom}(s') \cup e_i$ for the existentially quantified variables e_i on the right-hand side of the picked rule. Continuing in this fashion, the computation diverges as we have to extend the set of considered variables x again and again.
However, a more careful analysis reveals that restricting the aliasing constraints to $a_c[z/y]\uparrow\downarrow_{x, y}$ for the recursive look-up (followed by extending and renaming the obtained set of types) is sufficient. This is a consequence of the establishment property, which we require for all SID$s in ID_{btw}$. We formalize this insight in the notion of a tree closure, which restricts the locations a subtree can share with the variables appearing in the rule instance of its parent node.

Definition A.27 (Tree Closure). Let u be a set of locations and let t be a Φ-tree. Moreover, let t_{sub} be a proper subtree of t and let $\text{pred}(w) = \text{rootpred}(t_{sub})$. Let $\ell \in \text{dom}(t)$ be the parent location of the root of t_{sub} and let $\text{rule}_t(\ell) = \text{pred}(v) \iff \phi[\text{fvars}(\text{pred}) \cdot e/v \cdot m]$ be the rule instance at location ℓ. We say t is u-closed for t_{sub}, if $\text{ptrlocs}(t_{sub}) \cap (v \cup m) \subseteq w \cup u$.

Furthermore, we say t is u-closed if t is u-closed for all proper subtrees of t.

Example A.28. The tree from Figure 6(b) is ()-closed, where () is the empty sequence. If we replace location 8 everywhere in the tree with location 7, then the resulting tree is not ()-closed anymore (consider the subtree rooted at location 2), but 7-closed.

Lemma A.29. Let t be some Φ-tree with allholepreds(t) = \emptyset and $\text{pred}(u) = \text{rootpred}(t)$. Let $\ell \in \text{dom}(t)$ be some location and let $\text{rule}_t(\ell) = \text{pred}(v) \iff \phi[\text{fvars}(\text{pred}) \cdot e/v \cdot m]$ be the rule instance at location ℓ of t. Then, we have $v \cup m \subseteq \text{dom}(t) \cup u$.

Proof. A direct consequence of establishment.

Recall that, by Lemma 7.3, we have $(s, b) \models_{\Phi} \text{pred}(\text{fvars}(\text{pred}))$ iff there exists a Φ-tree t with rootpred(t) = $\text{pred}(s(\text{fvars}(\text{pred})))$, allholes($t$) = \emptyset, and heap($\{t\}$) = b. The completeness of our fixed-point algorithm relies on the observation that such trees t are $s(\text{fvars}(\text{pred}))$-closed.

Lemma A.30. Every Φ-tree t with allholepreds(t) = \emptyset and $\text{pred}(u) = \text{rootpred}(t)$ is u-closed.

Proof. Let t_{sub} be a proper subtree of t and let $\text{pred}(w) = \text{rootpred}(t_{sub})$. Let $\ell \in \text{dom}(t)$ be the parent location of the root of t_{sub} and let $\text{rule}_t(\ell) = \text{pred}(v) \iff \phi[\text{fvars}(\text{pred}) \cdot e/v \cdot m] = \text{the rule instance at location } \ell$. We consider some $k \in \text{ptrlocs}(t_{sub}) \cap (v \cup m)$. Then k is either dangling or an allocated location in heap(t_{sub}).

Assume k is dangling in heap(t_{sub}): We define the stack $s : \text{fvars}(\text{pred}) \rightarrow \text{Loc}$ by setting $s(\text{fvars}(\text{pred}_{t_{sub}})) = w$. By Lemma 7.3, we have $(s, \text{heap}(t_{sub})) \models_{\Phi} \text{pred}(\text{fvars}(\text{pred}))$. By Lemma 4.4, we have $(s, \text{heap}(t_{sub})) \in \text{GStates}$. Hence, $k \in \text{img}(s) = w$. In other words, dangling locations do not invalidate that t is u-closed.

Assume k is allocated in heap(t_{sub}), i.e., $k \in \text{dom}(t_{sub})$: To prove that t is u-closed, it is sufficient that $k \notin w$ implies that $k \in u$. Hence, let us assume that $k \notin w$. Let $t_{rem} = t \setminus t_{sub}$ be the remainder of t after splitting off t_{sub}, i.e., split($\{t\} \cup \text{root}(t_{sub})\} = \{t_{sub}, t_{rem}\}$. We note that $k \notin \text{dom}(t_{rem})$ because a location cannot be allocated in two subtrees. We choose a fresh location $k' \in \text{Loc} \setminus \text{ptrlocs}(t)$ and then create a tree t_{sub}' as a copy of t_{sub} except that we replace every occurrence of location k in t_{sub} with k'. We note that rootpred(t_{sub}') = pred$_{t_{sub}}(w)$ = rootpred(t_{sub}) because of $k \notin w$. Hence, there is a tree t' such that split($\{t'\} \cup \{t\}$) = $\{t_{sub}', t_{rem}\}$. We note, by construction of t', we have that $(1) k' \notin \text{dom}(t')$, (2) rootpred(t') = rootpred(t) = $\text{pred}(u)$, (3) allholepreds(t') = \emptyset, (4) ℓ is the parent of t_{sub}' in t', and (5) $\text{rule}_t(\ell) = \text{pred}(v) \iff \phi[\text{fvars}(\text{pred}) \cdot e/v \cdot m]$. Lemma A.29 then yields $v \cup m \subseteq \text{dom}(t') \cup u$. Since k is allocated, this means $k \in \text{dom}(t') \cup u$. With (1), we then obtain $k \in u$.

We are now ready to prove the completeness of our fixed-point algorithm for computing types. We will show that the fixed-point algorithm discovers, for all predicates pred and aliasing
constraints $\text{ac} \in \text{AC}^{\text{X}/fvars(\text{pred})}$, all types in the following set:

$$\{\text{type}_\Phi(s, \text{heap}(t)) \mid \text{aliasing}(s) = \text{ac}, \text{rootpred}(t) = \text{pred}(s(fvars(\text{pred}))), \text{allholes}(t) = \emptyset\},$$

where—as shown previously—we can rely on the assumption that the considered trees t are $s(x)$-closed.

Lemma A.31. Let s be a stack with $\text{dom}(s) = x \cup fvars(\text{pred})$ and $s(fvars(\text{pred})) = v$. Let t be an $s(x)$-closed Φ-tree with $\text{rootpred}(t) = \text{pred}(v)$ and allholespreds$(t) = \emptyset$. Then,

$$\text{type}_\Phi(s, \text{heap}(t)) \in \text{unfold}^{\text{height}(t)+1}(\lambda(\text{pred}', \text{ac}'). \emptyset)(\text{pred}, \text{aliasing}(s)).$$

Proof. We prove the claim by strong mathematical induction on $\text{height}(t)$.

Let $b \doteq \text{heap}(t), r \doteq \text{root}(t)$, and $\text{ac} \doteq \text{aliasing}(s)$. Since t is an Φ-tree with $\text{rootpred}(t) = \text{pred}(v)$, there is a rule $(\text{pred}(x) \iff \phi) \in \Phi$ with $\phi = \exists e. \phi', \phi' = (y \mapsto z) \star \text{pred}_1(z_1) \star \cdots \star \text{pred}_k(z_k) \star \Pi$. Π pure,\(^{16}\) such that rule$(r) = \text{pred}(v) \iff \Phi'[fvars(\text{pred}) \cdot e/v \cdot m]$ for some $m \in \text{Loc}^+$(i.e., the root r of t is labeled with an instance of the rule).

Let $s' = s[fvars(\text{pred})/v][e/m]$. Moreover, for $1 \leq i \leq k$, let t_i be the subtree of t such that rootpred$(t_i) = \text{pred}_i(z_i)[fvars(\text{pred}) \cdot e/v \cdot m]$; let $b_i = \text{heap}(t_i)$. By Lemma 7.3, we have $(s', b_i) \models_{\Phi} \text{pred}_i(z_i)$, and by Lemma 4.4, we have $(s', b_0) \in \text{GStates}$. Finally, we denote by b_0 the unique heap such that $(s', b_0) \models_{\Phi} y \mapsto z$. Clearly, $(s', b_0) \in \text{GStates}$ and $b_0 = b_0 \cup \cdots \cup b_k$.

We use the following abbreviations:

$$\begin{align*}
\text{ac}' & \doteq \text{aliasing}(s'), \\
T_0 & \doteq \text{type}_\Phi(\text{ptrmodel}_{\text{ac}}(y \mapsto z)), \\
T_i & \doteq \text{type}_\Phi(s', b_i), i \geq 1.
\end{align*}$$

Since t is $s(x)$-closed, we have that ptrlocs$(t_1) \cap (v \cup m) \subseteq s'(z_i) \cup s(x) = s'(z_i) \cup s'(x)$. Furthermore, due to $\text{img}(s') = v \cup m$, we have $s'(x) \notin \text{ptrlocs}(t_1) \supseteq \text{locs}(b_i)$ for all $x \in \text{dom}(\text{ac}')$ for which there is no $y \in z_i \cup x$ with $s'(x) = s'(y)$. Let s_i be the restriction of s' to $x \cup z_i$. Lemma 8.28 then yields

$$\text{type}_\Phi(s', b_i) = \text{extend}_{\text{ac}}(\text{type}_\Phi(s_i, b_i)). \quad (\dagger)$$

We introduce some more abbreviations:

$$\begin{align*}
s_i' & \doteq s \cup \{fvars(\text{pred}_i) \mapsto s'(z_i)\}, \\
T_i' & \doteq \text{type}_\Phi(s_i', b_i), \\
\text{ac}_i & \doteq \text{aliasing}(s_i').
\end{align*}$$

Observe that $s_i = s_i'[fvars(\text{pred}_i)/z_i]$. By Lemma 8.22, $T_i'[fvars(\text{pred}_i)/z_i] = \text{type}_\Phi(s_i, b_i)$. We then apply (\dagger) to obtain

$$\begin{align*}
T_i = \text{type}_\Phi(s', b_i) = \text{extend}_{\text{ac}}(\text{type}_\Phi(s_i, b_i)) = \text{extend}_{\text{ac}}(T_i'[fvars(\text{pred}_i)/z_i]). \quad (\ddagger)
\end{align*}$$

\(^{16}\)In case of $\text{height}(t) = 0$, the rule $(\text{pred}(x) \iff \phi)$ is non-recursive, and we have $k = 0$ and there are no existentially quantified variables, i.e., $e = \epsilon$.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Finally, we note that t_i is $s_i'(x)$-closed, rootpred(t_i) = pred($s_i'(fvars(pred_j)))$, and allholepreds(t_i) = \emptyset. Since height(t_i) < height(t), we can then apply the I.H. and conclude that

$$T_i' = \text{type}_\Phi(s_i', h_i)$$

$$\in \text{unfold}_x^{\text{height}(t_i)+1}(\lambda(\text{pred'}, \text{ac'}) \rightarrow \text{pred}, \text{aliasing}(s'_i))$$

$$\subseteq \text{unfold}_x^{\text{height}(t)}(\lambda(\text{pred'}, \text{ac'}), \emptyset)(\text{pred}, \text{ac}).$$

To finish the proof, we set $p \triangleq \text{unfold}_x^{\text{height}(t)}(\lambda(\text{pred'}, \text{ac'}), \emptyset)$ and proceed as follows:

$$\text{unfold}_x^{\text{height}(t)+1}(\lambda(\text{pred'}, \text{ac'}), \emptyset)(\text{pred}, \text{ac})$$

$$= \bigcup_{(\text{pred})(\text{fvars})(\text{pred})=\phi(\Phi)} \text{ptypes}_p^x(\text{ac}, \phi) \quad \text{(by definition)}$$

$$\supseteq \text{ptypes}_p^x(\text{ac}, \exists e. \phi') \quad \text{(} \phi = \exists e. \phi' \text{)}$$

$$\supseteq \text{forget}_{ac', e}(\text{ptypes}_p^x(\text{ac}, \phi')) \quad \text{(Lemma A.23)}$$

$$= \text{forget}_{ac', e}(\text{ptypes}_p^x(y \mapsto z, \text{ac'}) \bullet \text{ptypes}_p^x(\text{pred}_i(z_1), \text{ac'}))$$

$$\bullet \ldots \bullet \text{ptypes}_p^x(\text{pred}_i(z_k), \text{ac'}))$$

$$= \text{forget}_{ac', e}((\{T_0\} \bullet \text{extend}_{ac'}(p(\text{pred}_k, \text{ac}))(fvars(\text{pred}_k) : z_1)) : z_1))$$

$$\supseteq \text{forget}_{ac', e}(\{\{T_1\} : z_1\})$$

$$\subseteq \text{forget}_{ac', e}(\{\{T_k\} : z_k\})$$

$$\subseteq \{\text{type}_\Phi(s', h)\}$$

$$\supseteq \text{type}_\Phi(s, h).$$

Read from bottom to top, we have $\text{type}_\Phi(s, h) \in \text{unfold}_x^{\text{height}(t)+1}(\lambda(\text{pred'}, \text{ac'}). \emptyset)(\text{pred}, \text{ac}).$ □

Completeness then follows by exploiting the one-to-one correspondence between $s(x)$-closed Φ-trees without holes and the models of a predicate.

Lemma A.32 (Completeness of Type Computation). Let $\text{pred} \in \text{Preds}(\Phi)$ such that $\text{fvars}(\text{pred}) = z = \langle z_1, \ldots, z_k \rangle \subseteq x$. Moreover, let $\langle s, h \rangle \models_{\Phi} \text{pred}(z)$ for some state $\langle s, h \rangle$ with $x = \text{dom}(s)$. Then,

$$\text{type}_\Phi(s, h) \in \text{lfp}(\text{unfold}_x)(\text{pred}, \text{aliasing}(s)).$$

Proof. By Lemma 7.3, there exists a Φ-tree t such that rootpred(t) = pred($s(z)$), allholepreds(t) = \emptyset, and heap($\{t\}$) = h. By Lemma A.30, the tree t is $s(z)$-closed. Since $z \subseteq x$, t is also $s(x)$-closed. By Lemma A.31, we know that

$$\text{type}_\Phi(s, \text{heap}(t)) \in \text{unfold}_x^{\text{height}(t)+1}(\lambda(\text{pred'}, \text{ac'}). \emptyset)(\text{pred}, \text{aliasing}(s)).$$

Recalling that $\text{lfp}(\text{unfold}_x) = \lim_{n \in \mathbb{N}} \text{unfold}_x^0(\lambda(\text{pred'}, \text{ac'}). \emptyset)$ and $h = \text{heap}(t)$, we conclude that

$$\text{type}_\Phi(s, h) \in \text{lfp}(\text{unfold}_x)(\text{pred}, \text{aliasing}(s)).$$

□
A.29.3 Complexity of the Fixed-Point Computation. We now establish that the types of predicates can be computed in doubly exponential time. As a first step, we consider a special case: the complexity of computing the types of single points-to assertions $a \mapsto b$. Intuitively, single points-to assertions correspond to Φ-trees of size one. To compute their types, we systematically enumerate all such trees and check for each tree whether the points-to assertion in the tree node coincides with $s(a) \mapsto s(b)$.

Lemma A.33. Let Φ be an aliasing constraint, let $a \in \text{dom}(\Phi)$, and let $b \in \text{Var}^\ast$ with $b \subseteq \text{dom}(\Phi)$. Let $n \triangleq \max\{|\Phi|, |\text{dom}(\Phi)|\}$. Then, $\text{type}_\Phi(\text{ptmodel}_\Phi^{\text{ac}}(a \mapsto b))$ is computable in $2^{O(n \log(n))}$.

Proof. Let $(s, b) = \text{ptmodel}_\Phi^{\text{ac}}(a \mapsto b)$. Without loss of generality, we can assume that $\text{img}(s) \subseteq \{1, \ldots, n\}$ (otherwise, we can select an isomorphic model with this property). We observe that a single location is allocated in b. Hence, to compute the type of (s, b), we need to consider exactly those forests that consist of a single tree with a single rule instance whose points-to assertion agrees with $a \mapsto b$. We collect those rules instances in the set R:

$$R \triangleq \{\text{pred}(l) \Leftarrow ((v \mapsto w) \ast \text{pred}_1(z_1) \ast \cdots \ast \text{pred}_k(z_k) \ast \Pi)[\text{fvars}(\text{pred}) \cdot e / l \cdot m] \in \text{RuleInst}(\Phi) \mid l \cdot m \in L^a, v[\text{fvars}(\text{pred}) \cdot e / l \cdot m] = s(a), w[\text{fvars}(\text{pred}) \cdot e / l \cdot m] = s(b)\}.$$

We note that $|l \cdot m| \leq n$ for all rule instances. Then, $\text{type}_\Phi(s, b)$ is given by the projections of the forests that consists of a single tree with a rule instance from R:

$$\text{type}_\Phi(s, b) = \{\text{project}(s, \{\{a \mapsto \langle \emptyset, R \rangle\}\}) \mid R \in R \cap \text{DUSH}_\Phi\}.$$

For computing $\text{type}_\Phi(s, b)$, we only need those rules instances in R such that $l \cdot m \subseteq \{1, \ldots, n\}$: we have $\text{img}(s) \subseteq \{1, \ldots, n\}$ and we can rename locations not in $\{1, \ldots, n\}$ to obtain a s-equivalent forest with the desired property; such forests have the same projections due to Lemma 7.38. Thus, we can compute $\text{type}_\Phi(s, b)$ by considering $n \cdot n^k \in 2^{O(n \log(n))}$ rule instances. □

Theorem A.34 (Complexity of Type Computation). Let $n \triangleq |\Phi| + |x|$. Then, one can compute the set $\text{lfp}(\text{unf}_{\text{ac}}^{\Phi})$ assigning sets of types to predicates in $2^{2^{O(n^2 \log(n))}}$.

Proof. Theorem 8.7 gives us a bound on the the size of all types over aliasing constraints in AC^\ast: $|\text{Types}_\Phi^\ast| \in 2^{2^{O(n^2 \log(n))}}$. Moreover, the number of predicates of Φ is bounded by n. Consequently, the number of functions with signature $\text{Preds}(\Phi) \times \text{AC} \rightarrow 2^{\text{Types}_\Phi}$ is bounded by

$$n \cdot 2^{2^{O(n^2 \log(n))}} = 2^{2^{O(n^2 \log(n)) + 1}} = 2^{2^{O(n^2 \log(n))}}.$$

Since every iteration of the fixed-point computation discovers at least one new type, the computation terminates after at most $2^{2^{O(n^2 \log(n))}}$ many iterations. We will show that each iteration takes at most $2^{2^{O(n^2 \log(n))}}$ steps. This is sufficient to establish the claim because

$$\frac{2^{2^{O(n^2 \log(n))}}}{\text{number of iterations}} \cdot \frac{2^{2^{O(n^2 \log(n))}}}{\text{cost per iteration}} = 2^{2^{O(n^2 \log(n))}}.$$

We now study the time spent in each iteration: given some predicate $\text{pred} \in \text{Preds}(\Phi)$ and aliasing constraint $\text{ac} \in \text{AC}^\ast$, we need to compute

- the function $\text{ptypes}_\Phi^\ast(\phi, \text{ac})$ for each rule $\text{pred}(\text{fvars}(\text{pred})) \Leftarrow \phi \in \Phi$, where p is the pre-fixed point from the previous iteration, and
- the union of the results of these function calls (note that we need to compute at most one union operation per rule $\phi \in \Phi$).
We argue in the following that each call $\text{ptypes}_p^x(\phi, ac)$ can be done in at most $2^{O(n^2 \log(n))}$ many steps. We further observe that the union over a set of types is linear in the number of types, i.e., linear in $2^{O(n^2 \log(n))}$. Hence, each iteration takes at most $2^{O(n^2 \log(n))}$ many steps because

$$\frac{n}{\text{number of rules}} \cdot \frac{n}{\text{number of aliasing constraints}} \cdot \frac{2^{O(n^2 \log(n))}}{\text{cost for a fixed rule and aliasing constraint}} = 2^{O(n^2 \log(n))}.$$

To conclude the proof, we consider the cost of evaluating $\text{ptypes}_p^x(\phi, ac)$ for a fixed rule body ϕ and aliasing constraint ac. Since the type for each right-hand side of a rule is computed at most once, we note that the recursive calls of ptypes lead to at most $|\phi| \leq n$ evaluations of base cases, i.e., (dis-)equalities and points-to assertions, and operations \bullet, $[\cdot : \cdot / \cdot]$, forget and extend. It remains to establish the cost of these operations:

1. Evaluating a (dis-)equality takes constant time.
2. The evaluation of a points-to assertions can be done in time $O(2^{n \log(n)})$ by Lemma A.33 (observing that $|\text{dom}(ac)| \leq |\phi| + |x| = n$).
3. The evaluation of the operations \bullet, $[\cdot : \cdot / \cdot]$, forget and extend each takes time polynomial in the size of the types, i.e., $2^{O(n^2 \log(n))}$ (see Lemma 8.6). For $[\cdot : \cdot / \cdot]$, and forget this is trivial. For the composition operation, \bullet, the polynomial bound follows because (1) the number of formulas that can be obtained by re-scoping is bounded by the number of types, and (2) the number of formulas that can be obtained by \Rightarrow steps is also bounded by the number of types. Similarly, the number of formulas that can be obtained by extend is bounded by the number of types. As the number of types to which each function is applied is bounded by $2^{O(n^2 \log(n))}$, we obtain the following cost for each \bullet, $[\cdot : \cdot / \cdot]$, forget and extend:

$$\frac{\text{poly}(2^{O(n^2 \log(n))})}{\text{cost of operation for a single type}} \cdot \frac{2^{O(n^2 \log(n))}}{\text{number of types}} = 2^{O(n^2 \log(n))}.$$

Hence, the cost of evaluating $\text{ptypes}_p^x(\phi, ac)$ for a fixed rule body ϕ and aliasing constraint ac is

$$\frac{n}{\text{size of the rule } \phi} \cdot \frac{2^{O(n^2 \log(n))}}{\text{cost of each of the } n \text{ operations}} = 2^{O(n^2 \log(n))}. \quad \square$$

A.30 Correctness of the Algorithm for Computing the Types of Guarded Formulas

The correctness of types is almost immediate from our previous results established for computing types of predicates; we only need two additional lemmas, which we state next.

Lemma A.35. Let $\phi_1, \phi_2 \in \text{GSL}$ be two formulas and let ac be a stack-aliasing constraint. Then, $\text{Types}_{\phi}^{ac}(\phi_1 \land \phi_2) = \text{Types}_{\phi}^{ac}(\phi_1) \cap \text{Types}_{\phi}^{ac}(\phi_2)$, $\text{Types}_{\phi}^{ac}(\phi_1 \lor \phi_2) = \text{Types}_{\phi}^{ac}(\phi_1) \cup \text{Types}_{\phi}^{ac}(\phi_2)$ and $\text{Types}_{\phi}^{ac}(\phi_1 \land \neg \phi_2) = \text{Types}_{\phi}^{ac}(\phi_1) \backslash \text{Types}_{\phi}^{ac}(\phi_2)$

Proof. We only show the first claim, the other two claims are shown analogously.

By definition of types, the inclusion $\text{Types}_{\phi}^{ac}(\phi_1 \land \phi_2) \subseteq \text{Types}_{\phi}^{ac}(\phi_1) \cap \text{Types}_{\phi}^{ac}(\phi_2)$ is straightforward. For the converse direction, we consider some $\mathcal{T} \in \text{Types}_{\phi}^{ac}(\phi_1) \cap \text{Types}_{\phi}^{ac}(\phi_2)$. Because of $\mathcal{T} \in \text{Types}_{\phi}^{ac}(\phi_1)$, there is a state $\langle s, b \rangle$ with $\mathcal{T} = \text{type}_{\phi}(s, b)$ and $\langle s, b \rangle \models_{\phi} \phi_1$. By Corollary 4.6, we have $\langle s, b \rangle \in \text{GStates}$. Thus, Corollary 8.30 yields $\langle s, b \rangle \models_{\phi} \phi_2$. Hence, $\langle s, b \rangle \models_{\phi} \phi_1 \land \phi_2$ and we obtain that $\mathcal{T} \in \text{Types}_{\phi}^{ac}(\phi_1 \land \phi_2)$. \quad \square
Lemma A.36. Let $\phi_0, \phi_1, \phi_2 \in \text{GSL}$ be three formulas and let ac be a stack-aliasing constraint. Then,

$$\text{Types}^\text{ac}_\phi(\phi_0 \land (\phi_1 \otimes \phi_2)) = \{ T \in \text{Types}^\text{ac}_\phi(\phi_0) | \exists T' \in \text{Types}^\text{ac}_\phi(\phi_1). T \land T' \in \text{Types}^\text{ac}_\phi(\phi_2) \},$$

$$\text{Types}^\text{ac}_\phi(\phi_0 \land (\phi_1 \rightarrow \phi_2)) = \{ T \in \text{Types}^\text{ac}_\phi(\phi_0) | \forall T' \in \text{Types}^\text{ac}_\phi(\phi_1). T \land T' \in \text{Types}^\text{ac}_\phi(\phi_2) \}.$$

Proof. We only show the first claim, the second claim is shown analogously.

Let $T \in \text{Types}^\text{ac}_\phi(\phi_0 \land (\phi_1 \otimes \phi_2))$. Then, there is a state (s, b) with $T = \text{type}_\phi(s, b)$, $(s, b) |=_\phi \phi_0$, and $(s, b) \not|=_\phi \phi_1 \otimes \phi_2$. By the semantics of \otimes, there exists a heap b_1 with $(s, b_1) |=_\phi \phi_1$ and $(s, b_1 \cup b_1) |=_\phi \phi_2$. Let $T_1 = \text{type}_\phi(s, b_1)$ and $T_2 = \text{type}_\phi(s, b \cup b_2)$. By Corollary 8.19, $T_2 = T \land T_1$. Hence, $T \in \text{Types}^\text{ac}_\phi(\phi_0 \land (\phi_1 \otimes \phi_2))$.

Conversely, let $T \in \text{Types}^\text{ac}_\phi(\phi_0)$ such that there is an $T' \in \text{Types}^\text{ac}_\phi(\phi_1)$ with $T \land T' \in \text{Types}^\text{ac}_\phi(\phi_2)$. Then, there is a state (s, b) with $T = \text{type}_\phi(s, b)$ and $(s, b) |=_\phi \phi_0$. Further, there is a state (s, b_1) with type$_\phi(s, b_1) = T'$ and $(s, b_1) |=_\phi \phi_1$. We can assume w.l.o.g. that $b \cup b_1 = 1$—otherwise, replace b_1 with an isomorphic heap that has this property. Corollary 8.19 yields type$_\phi(s, b \cup b_1) = T \land T_1 \in \text{Types}^\text{ac}_\phi(\phi_2)$. Since $\phi_0, \phi_1 \in \text{GSL}$, we have $(s, b) \in \text{GStates}$ and $(s, b_1) \in \text{GStates}$ by Corollary 4.6. Thus, also $(s, b \cup b_1) \in \text{GStates}$. Corollary 8.30 then gives us that $(s, b \cup b_1) |=_\phi \phi_2$. Therefore, $(s, b) |=_\phi \phi_1 \otimes \phi_2$, which implies that $T \in \text{Types}^\text{ac}_\phi(\phi_1 \otimes \phi_2)$. Hence, $T \in \text{Types}^\text{ac}_\phi(\phi_0 \land (\phi_1 \otimes \phi_2))$.

We restate the claim of Theorem 9.2: Let $\phi \in \text{GSL}$ with $\text{fvars}(\phi) = x$ and $\text{locs}(\phi) = \emptyset$. Further, let $\text{ac} \in \text{AC}^x$. Then, $\text{Types}^\text{ac}_\phi(\phi) = \text{types}(\phi, \text{ac})$. Moreover, $\text{types}(\phi, \text{ac})$ can be computed in $2^{O(n^2 \log(n))}$, where $n \triangleq |\phi| + |\phi|$.

Proof. We first prove that $\text{Types}^\text{ac}_\phi(\phi) = \text{types}(\phi, \text{ac})$. The proof proceeds by induction on ϕ:

Case $\phi = \text{emp}$. By Lemma A.18.

Case $\phi = x \approx y, \phi = x \neq y.$ By Lemma A.19.

Case $\phi = a \leftrightarrow b$. By Lemma A.20.

Case $\phi = \text{pred}(y)$. By Lemma A.22, Lemma A.26, and Lemma A.32.

Case $\phi = \phi_1 \land \phi_2$. By Lemma A.21 and the I.H.

Case $\phi = \phi_1 \land (\phi_1 \otimes \phi_2), \phi = \phi_1 \land (\phi_1 \rightarrow \phi_2)$. By Lemma A.35 and the I.H.

We now turn to the complexity claim.

We recall that the number of types in $\text{Types}^\text{ac}_\phi(\phi)$ is bounded by $2^{O(n^2 \log(n))}$ (see Theorem 8.7). The evaluation of $\text{types}(\phi, \text{ac})$ consists of at most $|\phi| \leq n$ invocations of the form $\text{types}(-, \text{ac})$. We will show that each of these invocations can be evaluated in time at most $2^{O(n^2 \log(n))}$; this is sufficient to establish the claim because of $n \cdot 2^{O(n^2 \log(n))} = 2^{O(n^2 \log(n))}$:

- For emp and (dis-)equalities, the evaluation time is constant.
- For points-to assertions, this follows from Lemma A.33.
- For predicate calls, this follows from Theorem A.34.
- For $\land, \lor,$ and \neg, the bound follows because each of these operations can be implemented in linear time in terms of the number of types.
- For \otimes, \rightarrow, this follows because (1) \odot is applied to at most $2^{O(n^2 \log(n))} \cdot 2^{O(n^2 \log(n))} = 2^{O(n^2 \log(n))}$ many types and (2) the composition $\mathcal{T}_1 \odot \mathcal{T}_2$ takes time at most $\text{poly}(2^{O(n^2 \log(n))})$, as argued in the proof of Theorem A.34. Hence, the cost of \otimes is $\text{poly}(2^{O(n^2 \log(n))} \cdot 2^{O(n^2 \log(n))}) = 2^{O(n^2 \log(n))}$.
- For septraction and the magic wand, this is analogously to the cases for \land (respectively, \lor) and \otimes.

A.31 Correctness of the Reduction over Values with the Null Pointer to Values without the Null Pointer (Corollary 9.7)

We only show the claim about satisfiability. The claim about entailment follows from the first claim as in the proof of Corollary 9.4.

The proof of the first claim proceeds by a reduction to the satisfiability of a formula over the set of values $\text{Val} \triangleq \text{Loc} = \mathbb{N} \cup \{\text{nil}\}$. Let x be a fresh variable that does not appear in ϕ and Φ. Let ϕ' be the formula $x \mapsto x \star (\phi^0 \star x \mapsto x)$, where ϕ^0 is obtained from ϕ by replacing every occurrence of nil by x. Further, let Φ' be the SID obtained from Φ by replacing every occurrence of nil by x and adding x as an additional parameter to every predicate. We now claim that ϕ is satisfiable over $\text{Val} \triangleq \text{Loc} \cup \{\text{nil}\}$ w.r.t. SID Φ iff ϕ' is satisfiable over $\text{Val} \triangleq \text{Loc}$ w.r.t. SID Φ'. Let (s, h) be a state with $(s, h) \models \phi$. Let $s' = s | x/\ell$ be the stack s extended by the mapping of x to some fresh location $\ell \in \text{Loc}\setminus(\text{img}(s) \cup \text{locs}(h))$ (in particular, ℓ does not appear as a constant in ϕ) and let h' be the heap obtained from h by mapping all locations that map to nil to ℓ. Then it is easy to verify that $(s', h') \models \phi^0$. Moreover we have that $(s', h') \models x \mapsto x \star (\phi^0 \star x \mapsto x)$ because of $\ell \notin \text{dom}(h)$ (since ℓ has been chosen as a fresh location). For the other direction, let $(s, h) \models (s, h) \models \phi'$. We observe that $(s, h) \models \phi^0$ and $s(x) \notin \text{dom}(h)$ because of $(s, h) \models x \mapsto x \star (\phi^0 \star x \mapsto x)$. Let s' be the stack obtained from s by removing the mapping for x and let h' be the heap obtained from h by mapping all locations that map to $s(x)$ to nil. Then it is easy to verify that $(s', h') \models \phi$.

The claim then follows from Theorem 9.3 and the observation that $|\Phi'| + |\phi'| = O(|\Phi| + |\phi|).

ACKNOWLEDGMENTS

We thank Mnacho Echenim, Radu Iosif, and Nicolas Peltier for their outstandingly thorough study of Katelaan et al. [2019], which presented the originally proposed abstraction-based decision procedure, and their help in discovering an incompleteness issue, which we were able to fix in our follow-up work [Katelaan and Zuleger 2020; Pagel et al. 2020].

REFERENCES

Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ouaknine. 2014. Foundations for decision problems in separation logic with general inductive predicates. In Proceedings of FOSSACS’14. 411–425.

Andrew W. Appel. 2014. Program Logics—For Certified Compilers. Cambridge University Press.

Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. 1961. On formal properties of simple phrase structure grammars. Sprachtypologie und Universalienforschung 14 (1961), 143–172.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative separation logic: A logic for reasoning about probabilistic pointer programs. Proceedings of the ACM on Programming Languages 3, POPL (2019), Article 34, 29 pages.

Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn, Thomas Wies, and Hongseok Yang. 2007. Shape analysis for composite data structures. In Proceedings of CAV’07. 178–192.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A decidable fragment of separation logic. In Proceedings of FSTTCS’04. 97–109.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005a. Smallfoot: Modular automatic assertion checking with separation logic. In Proceedings of FMCO’05. 115–137.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005b. Symbolic execution with separation logic. In Proceedings of APLAS’05. 52–68.

Josh Berdine, Byron Cook, and Samin Ishtiaq. 2011. SLayer: Memory safety for systems-level code. In Proceedings of CAV’11. 178–183.

Stefan Blom and Mariëlle Huisman. 2015. Witnessing the elimination of magic wands. International Journal on Software Tools for Technology Transfer 17, 6 (2015), 757–781.

Rémi Brochenin, Stéphane Demri, and Étienne Lozes. 2012. On the almighty wand. Information and Computation 211 (2012), 106–137.

James Brotherston. 2007. Formalised inductive reasoning in the logic of bunched implications. In Static Analysis. Lecture Notes in Computer Science, Vol. 4634. Springer, 87–103.
A Decision Procedure for Guarded Separation Logic

James Brotherston, Dino Distefano, and Rasmus Lerche Dahl Petersen. 2011. Automated cyclic entailment proofs in separation logic. In Proceedings of CADE’11. 131–146.

James Brotherston, Carsten Fuhs, Juan Antonio Navarro Pérez, and Nikos Gorogiannis. 2014. A decision procedure for satisfiability in separation logic with inductive predicates. In Proceedings of ICFP’14. Article 25, 10 pages.

Cristiano Calcagno and Dino Distefano. 2011. Infer: An automatic program verifier for memory safety of C programs. In Proceedings of NFM’11. 459–465.

Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dul ma Rodriguez. 2015. Moving fast with software verification. In Proceedings of NFM’15. 3–11.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2006. Beyond reachability: Shape abstraction in the presence of pointer arithmetic. In Proceedings of SAS’06. 182–203.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional shape analysis by means of bi-abduction. Journal of the ACM 58, 6 (2011), Article 26, 66 pages.

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local action and abstract separation logic. In Proceedings of LICS’07. 366–378.

Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. 2001. Computability and complexity results for a spatial assertion language for data structures. In Proceedings of APLAS’01. 289–300.

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. 2012. Automated verification of shape, size and bag properties via user-defined predicates in separation logic. Science of Computer Programming 77, 9 (2012), 1006–1036.

Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell. 2011. Tractable reasoning in a fragment of separation logic. In Proceedings of CONCUR’11. 235–249.

Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic—A Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications, Vol. 138. Cambridge University Press.

Patrick Cousot and Radhia Cousot. 1979. Constructive versions of Tarski’s fixed point theorems. Pacific Journal of Mathematics 82, 1 (1979), 43–57.

Reinhard Diestel. 2016. Graph Theory (5th ed.). Graduate Texts in Mathematics, Vol. 173. Springer.

Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2020a. The Bernays-Schönfinkel-Ramsey class of separation logic with uninterpreted predicates. ACM Transactions on Computational Logic 21, 3 (2020), Article 19, 46 pages.

Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2020b. Entailment checking in separation logic with inductive definitions is 2-EXPTIME hard. In Proceedings of LPAR’20. 191–211.

Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2021. Decidable entailments in separation logic with inductive definitions: Beyond establishment. In Proceedings of CSL’21.

Constantin Enea, Ondrej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. 2017. SPEN: A solver for separation logic. In Proceedings of NFM’17. 302–309.

Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. 2007. Thread-modular shape analysis. In Proceedings of PLDI’07. 266–277.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley.

Radu Iosif, Adam Rogalewicz, and Jiri Simácek. 2013. The tree width of separation logic with recursive definitions. In Proceedings of CADE’13. 21–38.

Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. 2014. Deciding entailments in inductive separation logic with tree automata. In Proceedings of ATVA’14. 201–218.

Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BL as an assertion language for mutable data structures. In Proceedings of POPL’01. 14–26.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In Proceedings of NFM’11. 41–55.

Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. 2017. Unified reasoning about robustness properties of symbolic-heap separation logic. In Proceedings of ESOP’17. 611–638.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018), e20.

Jens Katelaan, Christoph Matheja, and Florian Zuleger. 2019. Effective entailment checking for separation logic with inductive definitions. In Proceedings of TACAS’19. 319–336.

Jens Katelaan and Florian Zuleger. 2020. Beyond symbolic heaps: Deciding separation logic with inductive definitions. In Proceedings of LPAR’20. 390–408.

Quang Loc Le, Makoto Tatsuta, Jun Sun, and Wei-Ngan Chin. 2017. A decidable fragment in separation logic with inductive predicates and arithmetic. In Proceedings of CAV’17. 495–517.

ACM Transactions on Computational Logic, Vol. 24, No. 1, Article 1. Publication date: January 2023.
Christoph Matheja. 2020. *Automated Reasoning and Randomization in Separation Logic*. Ph.D. Dissertation. RWTH Aachen University.

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2017. Viper: A verification infrastructure for permission-based reasoning. In *Dependable Software Systems Engineering*. IOS Press, 104–125.

Jens Pagel, Christoph Matheja, and Florian Zuleger. 2020. Complete entailment checking for separation logic with inductive definitions. *CoRR* abs/2002.01202 (2020).

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating separation logic using SMT. In *Proceedings of CAV’13*. 773–789.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014a. GRASShopper—Complete heap verification with mixed specifications. In *Proceedings of TACAS’14*. 124–139.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014b. Automating separation logic with trees and data. In *Proceedings of CAV’14*. 711–728.

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In *Proceedings of LICS’02*. 55–74.

Malte Schwerhoff and Alexander J. Summers. 2015. Lightweight support for magic wands in an automatic verifier. In *Proceedings of ECOOP’15*. 614–638.

Mihaela Sighireanu, Juan A. Navarro Perez, Andrey Rybalchenko, Nikos Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, et al. 2019. SL-COMP: Competition of solvers for separation logic. In *Tools and Algorithms for the Construction and Analysis of Systems*. Lecture Notes in Computer Science, Vol. 11429. Springer, 116–132.

Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2016. Automated mutual explicit induction proof in separation logic. In *Formal Methods*. Lecture Notes in Computer Science, Vol. 9995. Springer, 659–676.

Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2018. Automated lemma synthesis in symbolic-heap separation logic. *Proceedings of the ACM on Programming Languages* 2, POPL (2018), Article 9, 29 pages.

Aditya V. Thakur, Jason Breck, and Thomas W. Reps. 2014. Satisfiability modulo abstraction for separation logic with linked lists. In *Proceedings of SPIN’14*. 58–67.

Hongseok Yang. 2001. *Local Reasoning for Stateful Programs*. Ph.D. Dissertation. University of Illinois at Urbana–Champaign, Champaign, IL.

Received 11 January 2021; revised 25 November 2021; accepted 30 April 2022.