Case Report

Alveolar adenoma and coexisting atypical adenomatous hyperplasia: a case report and literature review

Yen-Wen Lu1, Shih-Lung Chang1, Yi-Chen Yeh2, Yei-San Hsieh3

1 Department of Pathology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan; 2 Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; 3 Department of Chest Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan

Summary

Alveolar adenoma is a rare tumour of the lung. It is typically found in asymptomatic adults as a peripheral or subpleural nodule on imaging examination. Microscopically, the tumour is composed of admixture of epithelial and mesenchymal component in variable sized cystic or alveolar structures. The tumour shows a benign nature. There have been no reported recurrences or metastases. Malignant transformation of alveolar adenoma and coexisting with lung carcinoma have been rarely described. In this article, we report a case of an alveolar adenoma and coexisting atypical adenomatous hyperplasia. This case, contributing to the limited numbers of cases described to date, illustrates the importance of awareness on the possibility of alveolar adenoma being associated with lung carcinoma and its precursor lesions especially when diagnosed by small biopsy specimens.

Key words: alveolar adenoma, atypical adenomatous hyperplasia, lung carcinoma

Introduction

Alveolar adenoma (AA) is a rare pulmonary tumour with proliferation of alveolar epithelium and septal mesenchyme. Yousem and Hochholzer described the first six cases of AA in 19861. To date, approximately 57 cases have been reported in the literature. AA represents one type of adenoma of lung in the 2021 World Health Organization classification2. There are only few articles about coexistence of AA with other neoplasms3-6. Here, we report a rare case of an AA coexisting with atypical adenomatous hyperplasia (AAH). We also review the clinical, radiologic, pathologic and molecular features of AAs.

Case report

A 52-year-old woman, a non-smoker, was incidentally found to have a solitary pulmonary nodule during a regular medical examination. The computed tomography (CT) of the chest revealed a 1.2 cm subpleural nodule in the right upper lobe. The positron emission tomography (PET) scan showed no definite uptake in the nodule. She underwent a wedge resection of the right upper lobe lesion. Frozen section analysis indicated a benign lesion.

The pathological examination of the wedged lung tissue showed a well-demarcated grey white nodule grossly. Microscopic examination
disclosed a well-fined tumour containing multiple cystic spaces filled with eosinophilic granular material and lined by flattened to cuboid epithelial cells without significant atypia (Fig. 1A). The associated stroma between the cystic spaces consisted of bland spindle cells, inflammatory cells and myxoid matrix (Fig. 1B). Immunohistochemically, the lining epithelial cells were positive for pan-cytokeratin (CK), CK7 and thyroid transcription factor 1 (TTF-1) (Fig. 1C). The interstitial cells were focally positive for cluster of differentiation 34 (CD34) (Fig. 1D), while negative for TTF-1 and CK. Both the histopathological and immunohistochemical studies confirmed the lesion to be an AA. Incidentally, an AAH, 1 mm in size, was identified in

Figure 1. (A) In low-power view, the tumour was well defined, containing multiple variable-sized cystic spaces filled with eosinophilic granular material. (haematoxylin-eosin, original magnifications 40X) (B) The epithelial cells lining the cystic spaces were bland, flat to cuboidal. The stroma between the cysts consisted of inflammatory cells, bland spindle shaped cells and loose, myxoid matrix. (haematoxylin-eosin, original magnifications 200X) (C) TTF-1 immunoreactivity was observed in the epithelial cells and negative in the interstitial cells. (original magnifications 200X) (D) The interstitial cells were partially immunoreactive for CD34. (original magnifications 200X) (E) An atypical adenomatous hyperplasia was incidentally identified in the surrounding lung parenchyma. (haematoxylin-eosin, original magnifications 100X) (F) In high-power view, the atypical adenomatous hyperplasia revealed cytological atypia of the proliferative pneumocytes. (haematoxylin-eosin, original magnifications 400X)
the surrounding lung parenchyma. Cytological atypia was found (Figs. 1E, F). There was no parenchymal inflammation or fibrosis in the background. No recurrence or metastasis was observed after 3-year follow up.

Discussion

AAs occur more commonly in women than in men (M:F ratio about 1:2) (Tab. I). The tumour usually presents in the five to sixth decade of life. Most often, patients are asymptomatic. Other symptoms, such as cough, chest pain, dyspnoea and haemoptysis, have been reported. Chest plain film and computed tomography typically show a peripherally or subpleurally located, well circumscribed nodular lesion with occasional central cavitation. There is usually no or minimal, thin-rim contrast enhancement. More central location of the lesions has been described. The most common location was the left lower lung field. The reported size ranges from 2 mm to 98 mm (average 24 mm). Most of the cases are solitary; however, two cases of multiple occurrences have been reported. Few reported cases with follow-up imaging studies have shown slight size enlargement. Positron emission tomography (PET) scan often shows no or faint uptake. AAs are grossly well-circumscribed, grey-white or yellow-brownish nodules with a soft, spongy or glistening cut surface. Occasionally they may be cystic or haemorrhagic. Prominent cystic change had been reported. Microscopic examination typically shows a well-defined lesion that contains admixture of epithelial and mesenchymal component in variable sized cystic or alveolar structure. Proteinaceous, eosinophilic granular material can be observed in the cysts,

Table I. Clinical features of reported cases of AA. (Continues)

Author	Cases	Age (y) /Sex	Imaging	Location	Size (cm)	Treatment	F/U (mo.)
Yousem1	6	45/F	Solitary nodule	LLL	2	Wedge	13
54/F	Solitary nodule	RUL	2.5	Lobectomy	12		
59/F	Solitary nodule	RUL	1.3	Lobectomy	13		
74/F	Solitary nodule	RML	2.5	Lobectomy	120		
58/M	Solitary nodule	LLL	1.5	Wedge	56		
64/M	Solitary nodule	RUL	1.2	Lobectomy	N/A		
Al-Hilli31	1	60/F	Solitary nodule	LUL	1	Wedge	N/A
Semeraro1	1	67/F	Solitary nodule	RML	2.8	Enucleation	3
Oliveira29	1	55/F	Solitary nodule	RLL	6	Segmentectomy	32
Böhm32	1	52/F	Solitary nodule	LLL	2	Wedge	12
Burke28	10	41/F	Solitary nodule	LLL	1.1	N/A	N/A
41/F	Solitary lesion	LLL	2.5	N/A	N/A		
46/F	Round shadow	N/A	N/A	N/A	N/A		
52/F	Solitary lesion	LLL	3	N/A	N/A		
39/M	Solitary nodule	RLL	2	N/A	N/A		
45/M	N/A	LUL	1.5	N/A	N/A		
50/M	Solitary lesion	LLL	N/A	N/A	N/A		
58/M	Solitary nodule	LLL	1.9	N/A	N/A		
68/M	Coin lesion	LLL	1.8	N/A	N/A		
N/A	Shadow	Right	3	N/A	N/A		
Fujimoto7	1	47/F	Three nodules	LLL*2, RUL	2,1,1	Wedge (largest nodule)	15
Yilmaz33	1	51/F	Solitary nodule	RUL	1.8	Wedge	24
Cakan12	1	34/F	Solitary nodule	LUL	1.6	Wedge	12
Palpa34	2	54/M	Solitary nodule	Right	2.5	Wedge	144
66/F	Solitary nodule	RML	1.4	Resection	N/A		
Hartman9	1	51/F	Solitary nodule	RUL	3.4	Wedge	18
Golubovic13	1	64/F	Solitary nodule	LUL	4	Resection	N/A
Cavazzz14	1	69/M	Solitary, cystic nodule	RUL	3.5	Wedge	13
Halldorsson25	1	43/M	Solitary nodule	LLL	1.1	Wedge	18
Saito35	1	35/F	Solitary nodule	RUL	2	Wedge	N/A
Sak27	2	62/M	Solitary nodule	LLL	1.5	Wedge	22
54/M	Solitary nodule	LLL	4	Wedge	32		
some of which may also contain macrophages, fresh blood with cholesterol clefts or hemosiderin-laden macrophages. The larger cysts tend to be concentrated towards the centre of the lesion. Small lymphoid aggregates could be seen at the periphery of the lesion. Microcystic formation and follicular growth pattern, morphologically mimicking thyroid tissue, has been described.

The cystic spaces are separated by varying thickness of stroma containing mostly bland spindle cells, loose or myxoid matrix, capillaries and scattered inflammatory cells including lymphocytes, plasma cells, and eosinophils. Round-shaped cells as well as spindle-shaped interstitial cells over the septal mesenchyme has been mentioned in one report. Foci of interstitial haemorrhage and hemosiderin deposition can be observed. One reported case showed presence of mature adipocytes within the tumour. High power examination of the cystic lining shows single layer of flat, cuboidal or hobnail epithelial cells. Nuclear atypia, mitotic activity, and necrosis are absent. Immunohistochemical analysis of AAs typically shows positive immunoreactivity for CK, CK7, carcinoembryonic antigen (CEA), epithelial membrane antigen (EMA), TTF-1 and surfactant apoprotein in the epithelial component with expression of CK20 in one reported case. There is variable immunoreactivity for CD34, smooth muscle actin and S100 in the mesenchymal component. The eosinophilic granular material within the cysts is PAS-positive. The proliferation

Table I. Clinical features of reported cases of AA. (Follows)

Reference	Age	Gender	Tumor Type	Size	Procedure	Follow-up
Nakamura	58/F	Solitary nodule	LUL	0.8	Wedge	3
González	71/M	Solitary nodule	RLL	1.7	Segmentectomy	N/A
Petrella	38/F	Giant cystic mass	LUL	9.8	Resection	N/A
Kondo	61/F	Solitary nodule	LUL	2.4	Segmentectomy	12
Bhavsar	59/M	Undetected	RUL	0.2	Lobectomy	N/A
Panagiotou	42/F	Solitary nodule	RLL	1.5	Wedge	12
Nosti	54/F	Solitary nodule	LLL	2	Lobectomy	12
De Rosa	24/M	Solitary nodule	LLL	1.8	Wedge	7
Wang X	60/F	Solitary nodule	RLL	7.3	Wedge	6
Wang L	48/F	Solitary nodule	RLL	4	Lobectomy	48
Kazerouni	41/F	Solitary nodule	LLL	1.2	Lobectomy	N/A
Lee	57/F	Two nodules	LLL	1.6	Wedge	N/A
Yamamoto	65/F	Double barrel-shaped nodule	LLL	1.3	Wedge	N/A
Tang	47/F	Solitary nodule	RLL	4	Segmentectomy	52
Hsiai	67/M	Solitary, cystic	RLL	4	Wedge	N/A
Okada	83/M	Solitary nodule	LUL	1.8	Segmentectomy	48
Gan	48/F	Solitary nodule	LLL	3.5	Lobectomy	60
Zhang	40/M	Solitary nodule	LLL	5.2	Lobectomy	26
Kavas	36/M	Solitary nodule	LLL	2.6	Resection	34
Volk	26/F	Multicystic	LUL	N/A	Lobectomy	N/A
Roshkovan	48/F	Solitary nodule	LUL	1.2	Wedge	N/A
Present case	52/F	Solitary nodule	RUL	1.2	Wedge	36

Abbreviations: y, years; mo., month; F/U, follow up; F, female; M, male; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; N/A, not available

* The size of 18mm includes both components of alveolar adenoma and adenocarcinoma.
index (Ki-67) is less than 1%. Absence of p53 immunohistochemical expression is found. Based on the immunohistochemical profiles and some ultrastructural studies, the epithelial component of AA is considered to be type II pneumocytes. Additionally, the interstitial cellular component is thought to be made up of fibroblasts or fibroblast-like cells. The exact histogenesis of AA is uncertain. It is unclear if both the epithelial and mesenchymal components are neoplastic. It has been postulated that the cell origin of AA is probably primitive mesenchymal cells with the capacity to differentiate towards type II pneumocytes. Some authors thought of the CD34 immunoreactivity in the interstitial cells as a manifestation of the primitive mesenchymal nature being able to differentiate into specific lineages, such as adipocytes. By contrast, the hypothesis that the mesenchymal proliferation is secondary to the epithelial proliferation and stimulated by the epithelial growth has also been proposed. Limited studies have described the molecular alterations of AA. Cavazza et al. used microsatellite instability analysis to show that the stromal and epithelial components are genetically unrelated, supporting the dual nature of the lesions. Flow cytometric studies of the AAs in some reports showed a diploid DNA pattern. Roque et al. reported a non-balanced translocation demonstrated by fluorescence in situ hybridisation analysis. The importance of the chromosomal abnormality on the pathogenesis of AA is still unknown. Lack of EGFR mutation and anaplastic lymphoma kinase (ALK) protein expression was shown in one report.

The differential diagnosis of AA comprises both benign and malignant lesions, including sclerosing pneumocytoma (SP), lymphangioma, AAH, adenocarcinoma in situ (AIS) and lepidic predominant adenocarcinoma. Proliferation of both epithelial and stromal component of SP can resemble AA. The absence of diverse growth patterns as well as negative TTF-1 and EMA staining in the mesenchymal component in AA can help one distinguish between these two considerations. Lymphangioma might be confused with AA because both tumours contain cystic structure and proteinaceous material. The flat lining cells of AA may resemble endothelial cells. However, unlike AA, lymphangioma does not contain the mesenchymal component. The absence of CK immunoreactivity in the lining cells of lymphangioma also helps to differentiate. Other diagnostic considerations include AAH, AIS and lepidic predominant adenocarcinoma. Areas of small cystic or glandular spaces with regular lining cells in AA might simulate these three entities. Lack of cytologic atypia and infiltrative growth in AA can be helpful features in the differential diagnosis.

The reported cases of AA have had an indolent clinical course. Regardless of the type of surgical intervention, no recurrences or metastases have been reported with up to 15 years of follow-up. However, one patient presented with malignant transformation of an AA to an adenocarcinoma in one report. Borderline and transitional areas between the AA and adenocarcinoma has been shown in the case. There are two reported cases of AA with a concurrent lung carcinoma or AIS. To the best of our knowledge, our case is the first description of coexisting AA and AAH. AAH is a putative precursor of AIS or lung adenocarcinoma. The above-mentioned cases including ours, albeit in limited numbers, remind us of the possibility of AA with the potential for malignant transformation or being associated with lung carcinoma and its precursor lesions especially when diagnosed by small biopsy specimens.

Conclusion

In summary, AA is a rare pulmonary tumour often found in asymptomatic adults in their five to sixth decade of life. No recurrences or metastases have been reported to date. It should be considered in the differential diagnosis of a solitary pulmonary nodule. Our case demonstrates the rare occurrence of coexisting AA and AAH. Further molecular analyses might assist in clarifying its pathogenesis and nature.

Conflict of interest

The authors declare no conflicts of interest.

Funding

There is no relevant financial interest in the products or companies described in this article.

Ethical consideration

The report complied with ethical standards. The report was approved by the Institutional Review Board/Ethics in the Taoyuan General Hospital, Ministry of Health and Welfare. (IRB NO: TYGH110-05).

Author contributions

All listed authors contributed to the production of this manuscript and are listed in the appropriate order.

References

1. Yousem SA, Hochholzer L. Alveolar adenoma. Hum Pathol 1986;17:1066-1071. https://doi.org/10.1016/s0046-8177(86)80092-2
2. Beasley MB and Sauter JL. Alveolar adenoma. In: WHO Classification of Tumours Editorial Board. Thoracic tumours. Lyon (France): International Agency for Research on Cancer 2021. pp. 44-45.
3 Bhavsar T, Uppal G, Travailine JM, et al. An unusual case of a microscopic alveolar adenoma coexisting with lung carcinoma: a case report and review of the literature. J Med Case Rep 2011;5:187. https://doi.org/10.1186/1752-1947-5-187

4 Tang X, Wu Z, Shen Y. Coexistence of lung alveolar adenoma with cerebral arteriovenous malformations: a case report and literature review. Oncol Lett 2015;10:250-254. https://doi.org/10.3892/ol.2015.3225

5 Gan M, Weng S, Zheng H, et al. Coexistence of lung alveolar adenoma with bronchogenic cyst: a case report and literature review. Int J Clin Exp Pathol 2017;10:747-749.

6 Yamamoto Y, Toyazaki T, Kosaka S. A surgical case of alveolar adenoma with Tis adenocarcinoma in the same lobe of the lung in a patient with breast cancer. Jpn J Lung Cancer 2015;55:228-232. https://doi.org/10.2482/haianggan.55.228

7 Fujimoto K, Müller NL, Sadohara J, et al. Alveolar adenoma of the lung: computed tomography and magnetic resonance imaging findings. J Thorac Imaging 2002;17:163-166. https://doi.org/10.1097/00005382-200204000-00011

8 Nosotti M, Mendogni P, Rosso L, et al. Alveolar adenoma of the lung: unusual diagnosis of a lesion positive on PET scan. A case report. J Cardiothor Surg 2012;7:1. https://doi.org/10.1186/1749-8090-7-1

9 Hartman MS, Epstein DM, Geyer SJ, et al. Alveolar adenoma of lung: a clinicopathologic, immunohistochemical, and molecular study of an unusual case. Int J Surg Pathol 2004;12:155-159. https://doi.org/10.1177/106689690401200212

10 Lee DS, Hwang MS, Lim JM, et al. A case of alveolar adenoma involving multiple lung nodules. Korean J Med 2014;86:623-626.

11 Semeraro D, Epstein DM, Geyer SJ, et al. Alveolar adenoma of the lung: a clinicopathological description of a case of this very unusual tumour. J Clin Pathol 2005;58:1211-1214. https://doi.org/10.1136/jcp.2004.020800

12 Köpp f, Feuerbrunn N, Berwanger I, et al. Alveolar adenoma of the lung. Immunohistochistic characterization of type II pneumocytes. Pathologe 1996;17:150-153. https://doi.org/10.1007/s002920050149

13 Sak SD, Koseoglu RD, Demirag F, et al. Alveolar adenoma of the lung. Immunohistochistic and flow cytometric characteristics of two new cases and a review of the literature. J Med Case Rep 2007;11:1443-1449. https://doi.org/10.1186/1752-1947-5-183

14 Burke LM, Rush WI, Khoor A, et al. Alveolar adenoma of the lung: a histological, immunohistochistic, and ultrastructural analysis of 17 cases. Hum Pathol 1999;30:158-167. https://doi.org/10.1016/s0146-9241(99)00309-6

15 Oliveira P, Moura Nunes JF, Clode AL, et al. Alveolar adenoma of the lung. Histopathology 1987;11:979-980. https://doi.org/10.1111/j.1600-0463.2007.00764.x

16 Yilmaz A, Bayramgüler B, Aksoy F et al. Alveolar adenoma: a rare benign tumour of the lung. Tuberkuloz ve Toraks Dergisi 200250:78-80.

17 Petrell T, Rizzo S, Pelosi G, et al. Giant alveolar adenoma causing severe dyspnoea. J Thorac Oncol 2010;5:1088-1090. https://doi.org/10.1097/JTO.0b013e3181d93ca5

18 Hsieh MS, Tseng YH, Hua SF et al. Cystic alveolar adenoma: an unusual clinical presentation of a rare lung neoplasm. Pathology 2015;47:78-80. https://doi.org/10.1097/PAT.0000000000000201

19 Volk L, Minerowicz C, Saadat S, et al. Multicystic alveolar adenoma in a symptomatic adult with extensive bullae and mediastinal shift. Surgical Case Reports 2020;20:2-3. https://doi.org/10.31487/scri.2020.03.03

20 Halldorsson A, Dissanaike S, Kaye KS. Alveolar adenoma of the lung: a clinicopathological description of a case of this very unusual tumour. J Thorac Dis 2020;12:6847-6853. https://doi.org/10.21037/jtd.2016.03.37

21 Hamid Kazerooni A, Chetty R. Alveolar adenoma of the lung. Diagnostic Histopathology. 2013:19:311-313. https://doi.org/10.1016/j.mpdp.2013.06.012

22 Ka Sw X, Bai Y, Wang X, et al. Alveolar adenoma with the round-shaped mesenchymal cells: a rare case and review of literature. Int J Clin Exp Med 2017;10:3936-3939.

23 De Rosa N, Maiorino A, De Rosa I, et al. CD34 Expression in the stromal cells of alveolar adenoma. Case Rep Med 2012;2012:913517. https://doi.org/10.1155/2012/913517

24 Cavazz A, Paci M, De Marco L, et al. Alveolar adenoma of the lung: a clinicopathologic, immunohistochemical, and molecular study of an unusual case. Int J Surg Pathol 2004;12:155-159. https://doi.org/10.1177/10689690401200212

25 Köpp I, Feuerbrunn N, Berwanger I, et al. Alveolar adenoma of the lung: unusual diagnosis of a lesion positive on PET scan. A case report. J Cardiothor Surg 2012;7:1. https://doi.org/10.1186/1749-8090-7-1

26 Hamid Kazerooni A, Chetty R. Alveolar adenoma of the lung: unusual diagnosis of a lesion positive on PET scan. A case report. J Cardiothor Surg 2012;7:1. https://doi.org/10.1186/1749-8090-7-1

27 Sak SD, Koseoglu RD, Demirag F, et al. Alveolar adenoma of the lung. Immunohistochistic and flow cytometric characteristics of two new cases and a review of the literature. J Med Case Rep 2007;11:1443-1449. https://doi.org/10.1186/1752-1947-5-183

28 Burke LM, Rush WI, Khoor A, et al. Alveolar adenoma of the lung: a histological, immunohistochistic, and ultrastructural analysis of 17 cases. Hum Pathol 1999;30:158-167. https://doi.org/10.1016/s0146-9241(99)00309-6

29 Oliveira P, Moura Nunes JF, Clode AL, et al. Alveolar adenoma of the lung. Histopathology 1987;11:979-980. https://doi.org/10.1111/j.1600-0463.2007.00764.x

30 Yilmaz A, Bayramgüler B, Aksoy F, et al. Alveolar adenoma: a rare benign tumour of the lung. Tuberkuloz ve Toraks Dergisi 200250:78-80.

31 Papia B, Malinowski E. Alveolar adenoma of the lung - a report of two cases. Pol J Pathol 2003;54:147-152.

32 Saït EH, de Araujo LR, Carneiro LH, et al. Alveolar adenoma. J Bras Pneumol 2006;32:267-269. https://doi.org/10.1590/s1806-37132006000300014

33 Nakamura H, Adachi Y, Arai T, et al. A small alveolar adenoma resected by thoraoscopic surgery. Ann Thorac Surg 2009;87:956-957. https://doi.org/10.1016/j.athoracsur.2008.07.078

34 González ET, Sánchez-Yuste R, Jiménez-Heffernan JA. Cytologic features of pulmonary alveolar adenoma. Acta Cytol 2008;52:739-740. https://doi.org/10.1159/000325634

35 Panagiotou I, Kostikas K, Sampaziottis D, et al. Alveolar adenoma: an extremely rare innocent coin lesion. Interact Cardiovasc Thorac Surg 2012;14:335-337. https://doi.org/10.1093/icvts/ivr040

36 Wang L, Wang X, Rustam A, et al. Alveolar adenoma resected by thoracosopic surgery. Ann Thorac Cardiovasc Surg 2013;19:489-491. https://doi.org/10.5761/atcs.cr.13-00118

37 Kavas M, Öztürk A, Derdiyok O, et al. Rare lung tumours: alveo lar adenoma-four case reports. Turk Thorac J 2019;20:203-205. https://doi.org/10.5152/TurkThoracJ.2018.19015