ON A RANKIN-SELBERG INTEGRAL OF THE \(L \)-FUNCTION FOR \(\widetilde{SL}_2 \times GL_2 \)

QING ZHANG

Abstract. We present a Rankin-Selberg integral on the exceptional group \(G_2 \) which represents the \(L \)-function for generic cuspidal representations of \(SL_2 \times GL_2 \). As an application, we show that certain Fourier-Jacobi type periods on \(G_2 \) are non-vanishing.

1. Introduction

Let \(F \) be a global field with the ring of adeles \(\mathbb{A} \). We assume that the characteristics of \(F \) is not 2. We present in this paper a Shimura type integral on the exceptional group \(G_2 \) which represents the \(L \)-function

\[
L(s, \pi \times (\chi \otimes \tau))L(s, \pi \otimes (\chi \otimes \omega_\tau)),
\]

where \(\pi \) is an irreducible genuine cuspidal representation of \(\widetilde{SL}_2(\mathbb{A}) \), \(\tau \) is an irreducible generic cuspidal representation of \(GL_2(\mathbb{A}) \) and \(\chi \) is the quadratic character of \(F^\times \backslash \mathbb{A}^\times \) defined by \(\chi(a) = \prod_v (a_v, -1)_{F_v} \), where \(a = (a_v)_v \in \mathbb{A}^\times \) and \((,)_F \) is the Hilbert symbol on \(F_v \).

To give more details about the integral, we introduce some notations. The group \(G_2 \) has two simple roots and we label the short root by \(\alpha \) and the long root by \(\beta \). Let \(P = MV \) (resp. \(P' = M'V' \)) be the maximal parabolic subgroup of \(G_2 \) such that the root space of \(\beta \) is in the Levi \(M \) (resp. the root space of \(\alpha \) is in the Levi \(M' \)). The Levi subgroups \(M \) and \(M' \) are isomorphic to \(GL_2 \).

Let \(J \) be the subgroup of \(P \) which is isomorphic to \(SL_2 \times V \). Let \(\widetilde{SL}_2(\mathbb{A}) \) be the metaplectic double cover of \(SL_2(\mathbb{A}) \). There is a Weil representation \(\omega_\psi \) of \(\widetilde{SL}_2(\mathbb{A}) \) for a nontrivial additive character \(\psi \) of \(F \backslash \mathbb{A} \). Let \(\tilde{\theta}_\phi \) be a corresponding theta series associated with a function \(\phi \in S(\mathbb{A}) \). Let \(\tau \) be an irreducible cuspidal automorphic representations of \(GL_2(\mathbb{A}) \). For \(f_s \in \text{Ind}_{P_0(\mathbb{A})}^{SL_2(\mathbb{A})} (\tau \otimes \delta_{P_0}) \), we can form an Eisenstein series \(E(g, f_s) \) on \(G_2(\mathbb{A}) \). Let \(\pi \) be an irreducible genuine cuspidal automorphic forms of \(\widetilde{SL}_2(\mathbb{A}) \). For a cusp form \(\tilde{\varphi} \in \pi \), we consider the integral

\[
I(\tilde{\varphi}, \phi, f_s) = \int_{SL_2(F) \backslash SL_2(\mathbb{A})} \int_{V(F) \backslash V(\mathbb{A})} \bar{\varphi}(g) \tilde{\theta}_\phi(vg) E(vg, f_s) dv dg.
\]

Our main result is the following

Theorem 1.1. The above integral is absolutely convergent for \(\text{Re}(s) \gg 0 \) and can be meromorphically continued to all \(s \in \mathbb{C} \). When \(\text{Re}(s) \gg 0 \), the integral \(I(\tilde{\varphi}, \phi, f_s) \) is Eulerian. Moreover, at an unramified place \(v \), the local integral represents the \(L \)-function

\[
\frac{L(3s - 1, \pi_v \times (\chi_v \otimes \tau_v))L(6s - 5/2, \pi_v \otimes (\chi_v \otimes \omega_{\tau_v}))}{L(3s - 1/2, \tau_v)L(6s - 2, \omega_{\tau_v})L(9s - 7/2, \tau_v \otimes \omega_{\tau_v})}.
\]

Here \(\chi_v \) is the unramified nontrivial quadratic character of \(F_v^\times \).

This is Theorem 3.1 and Proposition 4.6. We remark that Ginzburg-Rallis-Soudry gave integral representations for \(L \)-functions of generic cuspidal representations of \(\text{Sp}_{2n} \times GL_m \) in \([GRS98]\) using symplectic groups. It is still interesting to have different integral representations. As an application of Theorem 1.1, we show that if \(Wd_{\psi}(\pi) = \chi \otimes \tau \), then a Shimura type period with respect to \(\pi \) and the residue of Eisenstein series on \(G_2 \) is non-vanishing, where \(Wd_{\psi} \) is the Shimura-Waldspurger lift. It is an interesting theme in number theory to investigate the relations between poles of \(L \)-functions and non-vanishing of automorphic periods. There are many examples of this kind relations. See
[JS, Gi93, GRS97] for some examples. The non-vanishing results of automorphic periods have many interesting applications in automorphic forms. We expect the non-vanishing period in our case would be useful on problems related to the residue spectrum of G_2.

There are several known Rankin-Selberg integrals on G_2 which represents different L-functions and have many applications, see [Gi91, Gi93, Gi95] for example. The integral $I(\tilde{\varphi}, \phi, f_s)$ can be viewed as a dual integral of the standard G_2 L-function integral in [Gi93] in the following sense. The integral $I(\tilde{\varphi}, \phi, f_s)$ is an integral of a triple product of a cusp form on $SL_2(\A)$, a theta series and an Eisenstein series on $G_2(\A)$, while the integral in [Gi93] is an integral of a triple product of a cusp form on $G_2(\A)$, a theta series and an Eisenstein series on $SL_2(\A)$. The integral in [Gi95] is also in a similar pattern, which is an integral of a triple product of a cusp form on $SL_2(\A)$, a theta series and an Eisenstein series on a cover of $G_2(\A)$. The results presented here were known for D. Ginzburg. But we still think that it might be useful to write up the details.

Acknowledgements

I would like to thank D. Ginzburg for helpful communications and pointing out the reference [Gi95]. The debt of this paper to Ginzburg’s papers [Gi93, Gi95] should be evident for the readers. I also would like to thank Joseph Hundley and Baiying Liu for useful discussions. I appreciate Jim Cogdell and Clifton Cunningham for encouragement and support. I also would like to thank the anonymous referee for his/her careful reading and useful suggestions. This work is supported by a fellowship from Pacific Institute for Mathematical Sciences (PIMS) and NSFC grant 11801577.

2. The group G_2

2.1. Roots and Weyl group for G_2. Let G_2 be the split algebraic reductive group of type G_2 (defined over \mathbb{Z}). The group G_2 has two simple roots, the short root α and the long root β. The set of the positive roots is $\Sigma^+ = \{\alpha, \beta, \alpha + \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\}$. Let \langle , \rangle be the inner product in the root system and \langle , \rangle be the pair defined by $\langle \gamma_1, \gamma_2 \rangle = \frac{2 \langle \gamma_1, \gamma_2 \rangle}{\langle \gamma_2, \gamma_2 \rangle}$. For the root space G_2, we have the relations:

$$\langle \alpha, \beta \rangle = -1, \langle \beta, \alpha \rangle = -3.$$

For a root γ, let s_γ be the reflection defined by γ, i.e., $s_\gamma(\gamma') = \gamma' - \langle \gamma', \gamma \rangle \gamma$. We have the relation

$$s_\alpha(\beta) = 3\alpha + \beta, s_\beta(\alpha) = \alpha + \beta.$$

The Weyl group $W = W(G_2)$ of G_2 has 12 elements, which is explicitly given by

$$W = \{1, s_\alpha, s_\beta, s_\alpha s_\beta, s_\beta s_\alpha, s_\beta s_\alpha s_\beta, s_\alpha s_\beta s_\alpha, (s_\alpha s_\beta)^2, (s_\beta s_\alpha)^2, s_\beta(s_\alpha s_\beta)^2, s_\alpha(s_\beta s_\alpha)^2, (s_\alpha s_\beta)^3\}.$$

For a root γ, let $U_\gamma \subset G$ be the root space of γ, and let $x_\gamma : F \to U_\gamma$ be a fixed isomorphism which satisfies various Chevalley relations, see Chapter 3 of [St]. Among other things, x_γ satisfies the following commutator relations:

\begin{align*}
[x_\alpha(x), x_\beta(y)] &= x_{\alpha + \beta}(-xy)x_{2\alpha + \beta}(-x^2y)x_{3\alpha + \beta}(x^3y)x_{3\alpha + 2\beta}(-2x^3y^2) \\
[x_\alpha(x), x_{\alpha + \beta}(y)] &= x_{2\alpha + \beta}(-2xy)x_{3\alpha + \beta}(3x^2y)x_{3\alpha + 2\beta}(3xy^2) \\
[x_\beta(x), x_{3\alpha + \beta}(y)] &= x_{3\alpha + 2\beta}(xy) \\
[x_{\alpha + \beta}(x), x_{2\alpha + \beta}(y)] &= x_{3\alpha + 2\beta}(3xy) \\
[& (2.1)] \\
[x_{\alpha + \beta}(x), x_{3\alpha + \beta}(y)] &= x_{3\alpha + 2\beta}(3xy).
\end{align*}

For all the other pairs of positive roots γ_1, γ_2, we have $[x_{\gamma_1}(x), x_{\gamma_2}(y)] = 1$. Here $[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2$ for $g_1, g_2 \in G_2$. For these commutator relationships, see [Re].

Following [St], we denote $w_\gamma(t) = x_{\gamma}(t)x_{-\gamma}(-t^{-1})x_{\gamma}(t)$ and $w_\gamma = w_\gamma(1)$. Note that w_γ is a representative of s_γ. Let $h_\gamma(t) = w_\gamma(t)w_{-1}$. Let T be the subgroup of G which consists of elements of the form $h_\alpha(t_1)\tilde{h}_\beta(t_2), t_1, t_2 \in T$ and U be the subgroup of G_2 generated by U_γ for all $\gamma \in \Sigma^+$. Let $B = TU$, which is a Borel subgroup of G_2.
For \(t_1, t_2 \in \mathbb{C}_m \), denote \(h(t_1, t_2) = h_\alpha(t_1 t_2)h_\beta(t_1^2 t_2). \) From the Chevalley relation \(h_{\gamma_1}(t) \tau_{\gamma_1}(r)h_{\gamma_1}(t)^{-1} = \tau_{\gamma_2}(t^{(\gamma_2 \gamma_1)} r) \) (see [St, Lemma 20, (c)]), we can check the following relations

\[
\begin{align*}
 h^{-1}(t_1, t_2)\tau_\alpha(r)h(t_1, t_2) &= \tau_\alpha(t_2^{-1} r), \\
 h^{-1}(t_1, t_2)\tau_\beta(r)h(t_1, t_2) &= \tau_\beta(t_1^{-1} t_2 r), \\
 h^{-1}(t_1, t_2)\tau_{\alpha + \beta}(r)h(t_1, t_2) &= \tau_{\alpha + \beta}(t_1^{-1} r), \\
 h^{-1}(t_1, t_2)\tau_{2\alpha + \beta}(r)h(t_1, t_2) &= \tau_{2\alpha + \beta}(t_1^{-1} t_2^{-1} r), \\
 h^{-1}(t_1, t_2)\tau_{3\alpha + 2\beta}(r)h(t_1, t_2) &= \tau_{3\alpha + 2\beta}(t_1^{-1} t_2^{-1} r).
\end{align*}
\]

(2.2)

Thus the notation \(h(a, b) \) agrees with that of [Gi93].

One can also check that \(w_\alpha h(t_1, t_2)w_\alpha^{-1} = h(t_1 t_2, t_2^{-1}), \quad w_\beta h(t_1, t_2)w_\beta^{-1} = h(t_2, t_1). \)

2.2. Subgroups. Let \(F \) be a field and denote \(G = G_2(F) \). The group \(G \) has two proper parabolic subgroups. Let \(P = M \times V \) be the parabolic subgroup of \(G \) such that \(U_\beta \subset M \cong \text{GL}_2 \). Thus the unipotent subgroup \(V \) consists of root spaces of \(\alpha, \alpha + \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta \), and a typical element of \(V \) is of the form

\[
\tau_\alpha(r_1)\tau_{2\alpha + \beta}(r_2)\tau_{3\alpha + 2\beta}(r_3)\tau_{3\alpha + 3\beta}(r_4)\tau_{3\alpha + 4\beta}(r_5), \quad r_i \in F.
\]

To ease the notation, we will write the above element as \([r_1, r_2, r_3, r_4, r_5]\). Denote by \(J \) the following subgroup of \(P \)

\[
J = \text{SL}_2(F) \ltimes V.
\]

Let \(V_1 \) (resp. \(Z \)) be the subgroup of \(V \) which consists root spaces of \(3\alpha + \beta \) and \(3\alpha + 2\beta \) (resp. \(2\alpha + \beta, 3\alpha + \beta \) and \(3\alpha + 2\beta \)). Note that \(P \) and hence \(J \) normalizes \(V_1 \) and \(Z \). We will always view \(\text{SL}_2(F) \) as a subgroup of \(G \) via the inclusion \(\text{SL}_2(F) \subset M \). Denote by \(A_{\text{SL}_2}, \ N_{\text{SL}_2} \) and \(B_{\text{SL}_2} \) the standard torus, the upper triangular unipotent subgroup and the upper triangular Borel subgroup of \(\text{SL}_2(F) \). Note that the torus element \(h(a, b) \) can be identified with

\[
\begin{pmatrix} a \\ b \end{pmatrix} \in \text{GL}_2(F) \cong M,
\]

and thus \(A_{\text{SL}_2} = \{ h(a, a^{-1}) | a \in F^\times \} \) and \(B_{\text{SL}_2} = A_{\text{SL}_2} \times U_\beta \).

Let \(P' = M' \ltimes V' \) be the other maximal parabolic subgroups of \(G \) with \(U_\alpha \) in the Levi subgroup \(M' \). The Levi \(M' \) is isomorphic to \(\text{GL}_2(F) \), and from relations in \((2.2) \), one can check that one isomorphism \(M' \cong \text{GL}_2(F) \) can be determined by

\[
\begin{align*}
 \tau_\alpha(r) &\mapsto \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}, \\
 h(a, b) &\mapsto \begin{pmatrix} ab & 1 \\ 0 & a \end{pmatrix}.
\end{align*}
\]

In particular, we see that \(h(a, 1) \in T \subset M' \) can be identified with \(\text{diag}(a, a) \). Let \(\delta_{P'} \) be the modulus character of \(P' \). One can check that \(\delta_{P'}(m') = |\det(m')|^3 \) for \(m' \in M' \), where \(\det(m') \) can be computed using the above isomorphism \(M' \cong \text{GL}_2(F) \).

2.3. Weil representation of \(\tilde{\text{SL}}_2(\mathbb{A}) \ltimes V(\mathbb{A}) \). In this subsection, we assume that \(F \) is a global field and \(\mathbb{A} \) is its ring of adeles. In \(\text{SL}_2(F) \), we denote \(t(a) = \text{diag}(a, a^{-1}), a \in F^\times \) and

\[
n(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad b \in F.
\]

Denote \(w^1 = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \), which represents the unique nontrivial Weyl element of \(\text{SL}_2(F) \). Under the embedding \(\text{SL}_2(F) \subset M \subset G \), the element \(w^1 \) can be identified with \(w_\beta \).
Let $\widetilde{SL}_2(\mathbb{A})$ be the metaplectic double cover of $SL_2(\mathbb{A})$. Then we have an exact sequence
\[0 \to \mu_2 \to \widetilde{SL}_2(\mathbb{A}) \to SL_2(\mathbb{A}) \to 0,\]
where $\mu_2 = \{\pm 1\}$.

We will identify $SL_2(\mathbb{A})$ with the symplectic group of \mathbb{A}^2 with symplectic structure defined by
\[
\langle (x_1, y_1), (x_2, y_2) \rangle = -2x_1y_2 + 2x_2y_1.
\]

Let $\mathcal{H}(\mathbb{A})$ be the Heisenberg group of the symplectic space $(\mathbb{A}^2, \langle , \rangle)$, i.e., $\mathcal{H}(\mathbb{A}) = \mathbb{A}^3$ with group law
\[
(x_1, y_1, z_1)(x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 - x_1y_2 + y_1x_2).
\]

Let $SL_2(\mathbb{A})$ act on $\mathcal{H}(\mathbb{A})$ from the right side by
\[
(x_1, y_1, z_1)g = ((x_1, y_1)g, z_1), g \in SL_2(\mathbb{A}),
\]
where $(x_1, y_1)g$ is the usual matrix multiplication.

We then can form the semi-direct product $SL_2(\mathbb{A}) \ltimes \mathcal{H}(\mathbb{A})$, where the product is defined by
\[
(g_1, h_1)(g_2, h_2) = (g_1g_2, (h_1g_2)h_2), g_1, g_2 \in SL_2(\mathbb{A}), h_1, h_2 \in \mathcal{H}(\mathbb{A}), i = 1, 2.
\]

Let ψ be a nontrivial additive character of $F^\times \mathbb{A}$. Then there is a Weil representation ω_ψ of $\widetilde{SL}_2(\mathbb{A}) \ltimes \mathcal{H}(\mathbb{A})$. The space of ω_ψ is $S(\mathbb{A})$, the Bruhat-Schwartz functions on \mathbb{A}.

For $\phi \in S(\mathbb{A})$, we have the well-know formulas:
\[
\omega_\psi(n(b))\phi(x) = \psi(bx^2)\phi(x), b \in \mathbb{A}
\]
\[
(\omega_\psi(r_1, r_2, r_3)\phi)(x) = \psi(r_3 - 2xr_2 - r_1r_2)\phi(x + r_1), (r_1, r_2, r_3) \in \mathcal{H}(\mathbb{A}).
\]

The above formulas could be found in [Ku].

Recall that for $r_1, r_2, r_3, r_4, r_5 \in \mathbb{A}$, the notation $[r_1, r_2, r_3, r_4, r_5]$ is an abbreviation of
\[
x_{\alpha}(r_1)x_{\alpha + \beta}(r_2)x_{\alpha + 2\beta}(r_3)x_{3\alpha + \beta}(r_4)x_{3\alpha + 2\beta}(r_5) \in V(\mathbb{A}).
\]

Define a map $\text{pr} : V(\mathbb{A}) \to \mathcal{H}(\mathbb{A})$
\[
\text{pr}([r_1, r_2, r_3, r_4, r_5]) = (r_1, r_2, r_3 - r_1r_2).
\]

From the commutator relation (2.1), we can check that pr is a group homomorphism and defines an exact sequence
\[0 \to V_1(\mathbb{A}) \to V(\mathbb{A}) \to \mathcal{H}(\mathbb{A}) \to 0.
\]

Recall that V_1 is the subgroup of V which is generated by the root space of $3\alpha + \beta, 3\alpha + 2\beta$. Note that there is a typo in the formula of the projection map pr in [Gi93, p.316].

For $g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(F) \subset M$, we can check that
\[
g^{-1}[r_1, r_2, r_3, 0, 0]g = [r_1', r_2', r_3', r_4', r_5'],
\]
where $r_1' = ar_1 - cr_2, r_2' = -br_1 + dr_2, r_3' = r_3 - r_1r_2$.

Consider the map $\text{pr} : J(\mathbb{A}) = SL_2(\mathbb{A}) \times V(\mathbb{A}) \to SL_2(\mathbb{A}) \ltimes \mathcal{H}(\mathbb{A})$
\[
(g, v) \mapsto (g^*, \text{pr}(v)), g \in SL_2(\mathbb{A}), v \in V(\mathbb{A}).
\]

where $g^* = \left(\begin{array}{cc} a & -b \\ -c & d \end{array} \right) = d_1gd_1^{-1}$, where $d_1 = \text{diag}(1, -1) \in \text{GL}_2(F)$. From the above discussion, the map pr is a group homomorphism and its kernel is also $V_1(\mathbb{A})$. We will also view pr as a homomorphism $\widetilde{SL}_2(\mathbb{A}) \ltimes V(\mathbb{A}) \to \widetilde{SL}_2(\mathbb{A}) \ltimes \mathcal{H}(\mathbb{A})$.

In the following, we will also view ω_ψ as a representation of $\widetilde{SL}_2(\mathbb{A}) \ltimes V(\mathbb{A})$ via the projection map pr. For $\phi \in S(\mathbb{A})$, we form the theta series
\[
\tilde{\theta}_{\phi}(vg) = \sum_{\xi \in F} \omega_\psi(vh)\phi(\xi), v \in V(\mathbb{A}), g \in \widetilde{SL}_2(\mathbb{A}).
\]

Note that given a genuine cusp form $\tilde{\varphi}$ on $\widetilde{SL}_2(\mathbb{A})$, the product
\[
\tilde{\varphi}(g)\tilde{\theta}_{\phi}(vg), v \in V(\mathbb{A}), g \in \widetilde{SL}_2(\mathbb{A})
\]
can be viewed as a function on \(J(\mathbb{A}) = SL_2(\mathbb{A}) \ltimes V(\mathbb{A}) \).

2.4. **An Eisenstein series on** \(G_2 \). Let \(\tau \) be a cuspidal automorphic representation on \(GL_2(\mathbb{A}) \).

We will view \(\tau \) as a representation of \(M'(\mathbb{A}) \) via the identification \(M' \cong GL_2 \). We then consider the induced representation \(I(s, \tau) = Ind_{M'(\mathbb{A})}^{G_2(\mathbb{A})} (\tau \otimes \delta_P) \). A section \(f_s \in I(s, \tau) \) is a smooth function satisfying

\[
f_s(v'm'g) = \delta_P(m')^{s} f_s(g), \forall v' \in V'(\mathbb{A}), m' \in M'(\mathbb{A}), g \in G_2(\mathbb{A}).
\]

For \(f_s \in I(s, \tau) \), we consider the Eisenstein series

\[
E(g, f_s) = \sum_{\delta \in P'(F) \backslash G_2(F)} f_s(\delta g), g \in G_2(\mathbb{A}).
\]

3. **A global integral**

Let \(\tilde{\pi} \) be a genuine cuspidal automorphic representation on \(\tilde{SL}_2(\mathbb{A}) \), and \(\tau \) be a cuspidal automorphic representation of \(GL_2(\mathbb{A}) \). For \(\tilde{\varphi} \in \tilde{V}_\tau, \phi \in S(\mathbb{A}) \) and \(f_s \in I(s, \tau) \), we consider the integral

\[
I(\tilde{\varphi}, \phi, f_s) = \int_{SL_2(\mathbb{A}) \backslash SL_2(\mathbb{A})} \int_{U_{\alpha, \beta}(\mathbb{A}) \backslash V(\mathbb{A})} \tilde{\varphi}(g) \tilde{\theta}_\phi(vg) E(vg, f_s) dv dg.
\]

Let \(\gamma = w_\beta w_\alpha w_\beta w_\alpha \in G_2(\mathbb{F}) \).

Theorem 3.1. The integral \(I(\tilde{\varphi}, \phi, f_s) \) is absolutely convergent when \(\Re(s) \gg 0 \) and can be meromorphically continued to all \(s \in \mathbb{C} \). Moreover, when \(\Re(s) > 0 \), we have

\[
I(\tilde{\varphi}, \phi, f_s) = \sum_{\delta \in P'(F) \backslash G_2(F)} \int_{\tilde{SL}_2(\mathbb{F}) \backslash SL_2(\mathbb{A})} \int_{V^\delta(\mathbb{F}) \backslash V(\mathbb{A})} \tilde{\varphi}(g) \tilde{\theta}_\phi(vg) f_s(\delta vg) dv dg,
\]

where \(W_{\tilde{\varphi}}(g) = \int_{F \backslash \mathbb{A}} \tilde{\varphi}(x_{\beta}(r)g) \psi(r) dr \), and

\[
W_{f_s}(\gamma vg) = \int_{F \backslash \mathbb{A}} f_s(x_{\alpha}(r)\gamma vg) \psi(-2r) dr.
\]

Proof. The first assertion is standard. We only show that the above integral is Eulerian when \(\Re(s) > 0 \). Unfolding the Eisenstein series, we can get

\[\begin{align*}
I(\tilde{\varphi}, \phi, f_s) &= \sum_{\delta \in P'(F) \backslash G_2(F) \cap P(F)} \int_{\tilde{SL}_2(\mathbb{F}) \backslash SL_2(\mathbb{A})} \int_{V^\delta(\mathbb{F}) \backslash V(\mathbb{A})} \tilde{\varphi}(g) \tilde{\theta}_\phi(vg) f_s(\delta vg) dv dg,
\end{align*}\]

where \(X^\delta = \delta^{-1} P \delta \cap X \) for \(X \subset G_2(\mathbb{F}) \). We can check that a set of representatives of the double coset \(P'(\mathbb{F}) \backslash G_2(\mathbb{F}) / P(\mathbb{F}) \) can be taken as \(\{1, w_\beta w_\alpha, \gamma = w_\beta w_\alpha w_\beta w_\alpha\} \). For \(\delta = 1, w_\beta w_\alpha \), or \(\gamma = w_\beta w_\alpha w_\beta w_\alpha \), denote

\[\begin{align*}
I_\delta &= \int_{\tilde{SL}_2(\mathbb{F}) \backslash SL_2(\mathbb{A})} \int_{V^\delta(\mathbb{F}) \backslash V(\mathbb{A})} \tilde{\varphi}(g) \tilde{\theta}_\phi(vg) f_s(\delta vg) dv dg.
\end{align*}\]

If \(\delta = 1 \), the above integral \(I_1 \) has an inner integral

\[
\int_{U_{2\alpha + \beta}(\mathbb{F}) \backslash U_{2\alpha + \beta}(\mathbb{A})} \tilde{\theta}_\phi(x_{2\alpha + \beta}(r)vg) f_s(x_{2\alpha + \beta}(r)vg) dr,
\]

which is zero because \(f_s(x_{2\alpha + \beta}(r)vg) = f_s(vg), \tilde{\theta}_\phi(x_{2\alpha + \beta}(r)vg) = \psi(r) \tilde{\theta}_\phi(vg) \) and \(\int_{F \backslash \mathbb{A}} \psi(r) dr = 0 \). The last equation follows from the fact that \(\psi \) is non-trivial.

We next consider the term when \(\delta = w_\beta w_\alpha \). We write

\[
\tilde{\theta}_\phi(vg) = \omega_\psi(vg) \phi(0) + \sum_{\xi \in F^*} \omega_\psi(vg) \phi(\xi).
\]

The contribution of the first term to the integral \(I_\delta \) is

\[
\int_{\tilde{SL}_2(\mathbb{F}) \backslash SL_2(\mathbb{A})} \int_{V^\delta(\mathbb{F}) \backslash V(\mathbb{A})} \tilde{\varphi}(g) \omega_\psi(vg) \phi(0) f_s(\delta vg) dv dg.
\]
Note that $\delta x_\beta(r)\delta^{-1} \subset U_{2\alpha+\beta} \subset V'$, we have $f_s(\delta x_\beta(r)g) = f_s(\delta x_\beta(-r)v x_\beta(r)g)$. On the other hand, we have $\omega_\psi(x_\beta(r)vg)\phi(0) = \omega_\psi(vg)\phi(0)$. After a changing variable on v, we can see that the above integral contains an inner integral
\[\int_{F \setminus A} \bar{\varphi}(x_\beta(r)vg) dr, \]
which is zero since $\bar{\varphi}$ is cuspidal. Thus the contribution of the term $\omega_\psi(vg)\phi(0)$ is zero when $\delta = w_\beta w_a$. The contribution of $\sum_{\xi \in F^\times} \omega_\psi(vg)\phi(\xi)$ is
\[\int_{SL_2(F) \setminus SL_2(A)} \int_{V^\times(F) \setminus V(A)} \bar{\varphi}(g) \sum_{\xi \in F^\times} \omega_\psi(vg)\phi(\xi) f_s(\delta vg) dvg. \]
We consider the inner integral on $U_{\alpha+\beta}(F) \setminus U_{\alpha+\beta}(A)$. Note that $U_{\alpha+\beta} \subset V$ and $\delta U_{\alpha+\beta} \delta^{-1} = U_{2\alpha+\beta} \subset V'$, we get $f_s(\delta x_{\alpha+\beta}(r)vg) = f_s(\delta vg)$. On the other hand, we have $\omega_\psi(x_{\alpha+\beta}(r)vg)\phi(\xi) = \psi(-2r\xi)\omega_\psi(vg)\phi(\xi)$. Thus the above integral has an inner integral
\[\int_{F \setminus A} \int_{\xi \in F^\times} \psi(-2r\xi)\omega_\psi(vg)\phi(\xi) dr \]
Thus when $\delta = w_\beta w_a$, the corresponding term is zero. Thus we get
\[I(\bar{\varphi}, \phi, f_s) = \int_{SL_2(F) \setminus SL_2(A)} \int_{V^\times(F) \setminus V(A)} \bar{\varphi}(g) \tilde{\theta}_\phi(vg) f_s(\gamma vg) dvg. \]
We have $SL_2^* = B_{SL_2}$ and $V^\gamma = U_{\alpha+\beta}$. We decompose $\tilde{\theta}_\phi$ as
\[\tilde{\theta}_\phi(vg) = \omega_\psi(vg)\phi(0) + \sum_{\xi \in F^\times} \omega_\psi(vg)\phi(\xi) = \omega_\psi(vg)\phi(0) + \sum_{\alpha \in F^\times} \omega_\psi(t(a)vg)\phi(1). \]
Recall that $t(a) = \text{diag}(a, a^{-1}).$ Since $\gamma U_{\beta}\gamma^{-1} \subset U_{3\alpha+\beta} \subset V'$, we have
\[f_s(\gamma v x_\beta(r)g) = f_s(\gamma x_\beta(-r) v x_\beta(r)g). \]
On the other hand we have $\omega_\psi(v x_\beta(r)g)\phi(0) = \omega_\psi(x_\beta(-r) v x_\beta(r)g)\phi(0)$. Thus after a changing variable on v, we can get that the contribution of $\omega_\psi(vg)\phi(0)$ to $I(\bar{\varphi}, \phi, f_s)$ has an inner integral
\[\int_{F \setminus A} \bar{\varphi}(x_\beta(r)g) dr, \]
which is zero by the cuspidality of $\bar{\varphi}$. Thus we get
\[I(\bar{\varphi}, \phi, f_s) = \int_{B_{SL_2}(F) \setminus SL_2(A)} \int_{U_{\alpha+\beta}(F) \setminus V(A)} \bar{\varphi}(g) \sum_{\alpha \in F^\times} \omega_\psi(t(a)vg)\phi(1) f_s(\gamma vg) dvg. \]
Collapsing the summation with the integration, we then get
\[I(\bar{\varphi}, \phi, f_s) \]

\[= \int_{N_{SL_2}(F) \setminus SL_2(A)} \int_{U_{\alpha+\beta}(F) \setminus V(A)} \bar{\varphi}(g) \omega_\psi(vg)\phi(1) f_s(\gamma vg) dvg \]
\[= \int_{N_{SL_2}(A) \setminus SL_2(A)} \int_{U_{\alpha+\beta}(A) \setminus V(A)} \int_{F \setminus A} \bar{\varphi}(x_\beta(r)g) \omega_\psi(v x_\beta(r)g)\phi(1) f_s(\gamma v x_\beta(r)g) drdvg. \]
Note that we have $\omega_\psi(v x_\beta(r)g)\phi(1) = \omega_\psi(x_\beta(r) v x_\beta(-r) v x_\beta(r)g)\phi(1) = \psi(r)\omega_\psi(x_\beta(-r) v x_\beta(r)g)\phi(1).$ On the other hand, we have $\gamma x_\beta(r)\gamma^{-1} \subset U_{3\alpha+\beta} \subset V'$. Thus $f_s(\gamma v x_\beta(r)g) = f_s(\gamma x_\beta(-r) v x_\beta(r)g).$ After a changing of variable on v, we get
\[I(\bar{\varphi}, \phi, f_s) = \int_{N_{SL_2}(A) \setminus SL_2(A)} \int_{U_{\alpha+\beta}(F) \setminus V(A)} W_{\bar{\varphi}}(g) \omega_\psi(vg)\phi(1) f_s(\gamma vg) dvg, \]
where
\[W_{\bar{\varphi}}(g) = \int_{F \setminus A} \bar{\varphi}(x_\beta(r)g) \psi(r) dr. \]
We can further decompose the above integral as

\[I(\bar{f}, \phi, f_s) = \int_{N_{\tilde{S}L_2}(\mathfrak{A})/SL_2(\mathfrak{A})} \int_{U_{\alpha + \beta}(\mathfrak{A})/V(\mathfrak{A})} W_{\bar{f}}(g) \omega_\psi(x_{\alpha + \beta}(r)vg) \phi(1)f_s(\gamma x_{\alpha + \beta}(r)vg) \, dr \, dv. \]

Note that \(\omega_\psi(x_{\alpha + \beta}(r)vg) \phi(1) = \psi(-2r)\omega_\psi(vg) \phi(1) \) and \(f_s(\gamma x_{\alpha + \beta}(r)vg) = f_s(x_{\alpha}(r)\gamma vg) \) since \(\gamma x_{\alpha + \beta}(r) \gamma^{-1} = x_{\alpha}(r). \) We then get

\[I(\bar{f}, \phi, f_s) = \int_{N_{\tilde{S}L_2}(\mathfrak{A})/SL_2(\mathfrak{A})} W_{\bar{f}}(g) \omega_\psi(vg) \phi(1)W_{f_s}(\gamma vg) \, dv \, gdg. \]

where

\[W_{f_s}(\gamma vg) = \int_{F\setminus A} f_s(x_{\alpha}(r)\gamma vg) \psi(-2r) \, dr. \]

This concludes the proof. \(\square \)

4. Unramified calculation

In this section, let \(F \) be a \(p \)-adic field with \(p \neq 2 \). Let \(\mathfrak{o} \) be the ring of integers of \(F \), and let \(p \) be a uniformizer of \(\mathfrak{o} \) by abuse of notation. Let \(q \) be the cardinality of the residue field \(\mathfrak{o}/(p) \).

4.1. Local Weil representations

Let \(\psi \) be an additive character of \(F \) and let \(\gamma(\psi) \) be the Weil index and let \(\mu_\psi(a) = \frac{\gamma(\psi)}{\gamma(\psi_2)}. \) Let \(\omega_\psi \) be the Weil representation of \(\tilde{S}L_2(F) \ltimes V \) on \(S(F) \) via the projection \(\tilde{S}L_2(F) \ltimes V \to \tilde{S}L_2(F) \ltimes \mathcal{H}. \) For \(\phi \in S(F) \), we have the well-know formulas:

\[
\begin{align*}
(\omega_\psi(w^1)\phi)(x) &= \gamma(\psi)\hat{\phi}(x), \\
(\omega_\psi(n(b))\phi)(x) &= \psi(bx^2)\phi(x), \quad b \in F \\
(\omega_\psi(t(a))\phi)(x) &= |a|^{1/2}\mu_\psi(a)\phi(ax), \quad a \in F^\times \\
(\omega_\psi((v_1, v_2))\phi)(x) &= \psi(r_3 - 2xv_2 - r_1v_3)\phi(x + r_1), \quad (r_1, r_2, r_3) \in \mathcal{H}(F).
\end{align*}
\]

where \(\hat{\phi}(x) = \int_{F} \phi(y)\psi(2xy) \, dy \) is the Fourier transform of \(\phi \) with respect to \(\psi \). Note that under the embedding \(S\tilde{L}_2(F) \to G_2(F) \), we have \(w^1 = w_\beta, n(b) = x_\beta(b) \) and \(t(a) = h(a, a^{-1}) \).

4.2. Unramified calculation

In this subsection, we compute the local integral in last section. The strategy is similar as the unramified calculation in [Gi95].

Let \(\pi \) be an unramified genuine representation of \(S\tilde{L}_2(F) \) with Satake parameter \(a \), and let \(\tau \) be an unramified irreducible representation of \(GL_2(F) \) with Satake parameters \(b_1, b_2 \). Let \(\bar{W} \in \mathcal{W}(\pi, \psi) \) with \(\bar{W}(1) = 1 \). Let \(v_0 \in V_\tau \) be an unramified vector and \(\lambda \in \text{Hom}_\mathbb{C}(V_\tau, \psi) \) such that \(\lambda(v_0) = 1 \). Let \(f_s : G_2 \to V_\tau \) be the unramified section in \(I(s, \tau) \) with \(f_s(e) = v_0 \). Let

\[W_{f_s} : G_2 \times GL_2(F) \to \mathbb{C} \]

be the function \(W_{f_s}(g, a) = \lambda(\tau(a)f_s(g)) \). We will write \(W_{f_s}(g) \) for \(W_{f_s}(g, 1) \) in the following. By assumption and Shintani formula, we have

\[
W_{f_s}(h(p^k, p^l)) = q^{-3s(2k+l)}\lambda(\tau(\text{diag}(p^{k+l}, p^k)v_0))
= q^{-3s(2k+l)}W_{v_0}(\text{diag}(p^{k+l}, p^k))
= \begin{cases}
q^{-3s(2k+l)}\frac{(b_1b_2)^{k+l}}{b_1^{k+l}b_2^{k+l}}(b_1^{k+l} - b_2^{k+l}), & \text{if } l \geq 0, \\
0, & \text{if } l < 0.
\end{cases}
\]

Let \(\phi \in S(F) \) be the characteristic function of \(\mathfrak{o} \). We need to compute the integral

\[I(\bar{W}, W_{f_s}, \phi) = \int_{N_{\tilde{S}L_2}(F)\setminus \tilde{S}L_2(F)} \int_{U_{\alpha + \beta} \setminus V} \bar{W}(g)\omega_\psi(vg)\phi(1)W_{f_s}(\gamma vg) \, dv \, gdg. \]

In the following, we fix the Haar measure such that \(\text{vol}(dr, \mathfrak{o}) = 1 \). Thus \(\text{vol}(d^*r, \mathfrak{o}^*) = 1 - q^{-1} \).
Using the Iwasawa decomposition $\text{SL}_2(F) = N_2(F)A_2(F)\text{SL}_2(\mathfrak{o})$, we have

$$
I(\tilde{W}, W_f, \phi) = \int_{F^\times} \int_{F^3} \tilde{W}(t(a))\omega_\psi([r_1, 0, r_3]t(a))\phi(1)W_f(\gamma(r_1, 0, r_3, r_4, r_5)t(a))|a|^{-2}dr_3 dr_4 dr_5 d^\times a
$$

$$
= \int_{F^\times} \int_{F^3} \tilde{W}(t(a))\omega_\psi(t(a)[r_1, 0, r_3])\phi(1)W_f(\gamma(t(a)(r_1, 0, r_3, r_4, r_5))|a|^{-3}dr_3 dr_4 dr_5 d^\times a
$$

If $\tilde{W}(t(a)) \neq 0$, then $|a| \leq 1$. On the other hand, we have

$$
\omega_\psi(t(a)[r_1, 0, r_3])\phi(1) = \mu_\psi(a)|a|^{1/2}\psi(r_3)\phi(a + r_1).
$$

If $\phi(a + r_1) \neq 0$ and $a \in \mathfrak{o}$, then $r_1 \in \mathfrak{o}$. Thus the domain for a and r_1 in the above integral is $\{a \in F^\times \cap \mathfrak{o}, r_1 \in \mathfrak{o}\}$. Note that $\gamma(t(a) = h(1, a)\gamma = h(1, a)w_\beta w_\alpha w_\alpha$. Thus, if we conjugate $w_\alpha x_\alpha(r_1)$ to the right side, we can get

$$
h(1, a)\gamma[r_1, 0, r_3, r_4, r_5] = h(1, a)w_\beta w_\alpha w_\beta x_\alpha + (r_3)x_\beta(-r_4 - 3r_1 r_3)x_3 + 2\beta(r_5)w_\alpha x_\alpha(r_1).
$$

Since $w_\alpha x_\alpha(r_1) \in K$ for $r_1 \in \mathfrak{o}$, by changing of variables, we get

$$
I(\tilde{W}, W_f, \phi) = \int_{|a|\leq 1} \tilde{W}(t(a))|a|^{-5/2}\mu_\psi(a)
$$

$$
\cdot \int_{F^3} W_f(h(1, a)w_\beta w_\alpha w_\beta x_\alpha + (r_3)x_\beta(r_4)x_3 + 2\beta(r_5))\psi(-r_3)dr_3 dr_4 dr_5 d^\times a
$$

$$
= \sum_{n \geq 0} \tilde{W}(t(p^n))q^{5n/2}\mu_\psi(p^n)J(n),
$$

where

$$
J(n) = \int_{F^3} W_f(h(1, p^n)w_\beta w_\alpha w_\beta x_\alpha + (r_3)x_\beta(r_4)x_3 + 2\beta(r_5))\psi(-r_3)dr_3 dr_4 dr_5.
$$

By dividing the domain of r_3 into two parts, we can write $J(n) = J_1(n) + J_2(n)$, where

$$
J_1(n) = \int_{|r_3|\leq 1} \int_{F^2} W_f(h(1, p^n)w_\beta w_\alpha w_\beta x_\alpha + (r_3)x_\beta(r_4)x_3 + 2\beta(r_5))\psi(-r_3)dr_3 dr_4 dr_5
$$

$$
= \int_{F^2} W_f(h(1, p^n)w_\beta w_\alpha w_\beta x_\beta(r_4)x_3 + 2\beta(r_5))dr_4 dr_5,
$$

and

$$
J_2(n) = \int_{|r_3|> 1} \int_{F^2} W_f(h(1, p^n)w_\beta w_\alpha w_\beta x_\alpha + (r_3)x_\beta(r_4)x_3 + 2\beta(r_5))\psi(-r_3)dr_3 dr_4 dr_5.
$$

Lemma 4.1. Set

$$
I(n) = \int_F W_f(h(1, p^n)w_\beta x_\beta(r))dr.
$$

Then

$$
I(n) = \frac{q^{-3(n+1/2)}}{b_1 - b_2}\left\{[b_1^{n+1} - b_2^{n+1}] +(1 - q^{-1})\frac{b_1 b_2 X}{(1 - b_1 X)(1 - b_2 X)}(b_1^n - b_2^n - b_1^{n+1}X + b_2^{n+1}X + b_1 X(b_1b_2 X)^n - b_2 X(b_1b_2 X)^n)\right\},
$$

where $X = q^{-(3n-3/2)}$.
Proof. We have
\[I(n) = \int_F W_{f_\tau}(h(1,p^n)w_{\beta}x_\beta(r))dr \]
\[= \int_{|r|\leq 1} W_{f_\tau}(h(1,p^n)w_{\beta}x_\beta(r))dr \]
\[+ \int_{|r|> 1} W_{f_\tau}(h(1,p^n)w_{\beta}x_\beta(r))dr \]
\[= W_{f_\tau}(h(1,p^n)) + \int_{|r|> 1} W_{f_\tau}(h(1,p^n)w_{\beta}x_\beta(r))dr. \]

To deal with the integral when $|r| > 1$, we consider the following Iwasawa decomposition of $w_{\beta}x_\beta(r)$:

\[w_{\beta}x_\beta(r) = x_\beta(-r^{-1})h(-r^{-1}, -r)x_{-\beta}(r^{-1}). \]

Since $x_{-\beta}(r^{-1})$ is in the maximal compact subgroup for $|r| > 1$, we have

\[W_{f_\tau}(h(1,p^n)w_{\beta}x_\beta(r)) = W_{f_\tau}(h(1,p^n)x_{-\beta}(r^{-1})h(-r^{-1}, -r)) = W_{f_\tau}(h(1,p^n)h(r^{-1}, r)), \]

where we used $U_\beta \subset V'$. For $|r| > 1$, we can write $r = p^{-m}u$ for some $m \geq 1$ and $u \in \mathfrak{o}^\times$. We then have $dr = q^m du$. Note that $\text{vol}(\mathfrak{o}^\times) = 1 - q^{-1}$. Thus we have

\[I(n) = W_{f_\tau}(h(1,p^n)) + \sum_{m \geq 1} (1 - q^{-1})q^m W_{f_\tau}(h(p^m,p^{n-m})). \]

Note that $h(p^m,1) \mapsto \text{diag}(p^m,p^m)$ under the isomorphism $M' \cong \text{GL}_2$. Thus we have

\[W_{f_\tau}(h(p^m,1)h(1,p^{n-m})) = q^{-6sm} \omega_r(p)^m W_{f_\tau}(h(1,p^{n-m})). \]

Thus we get

\[I(n) = W_{f_\tau}(h(1,p^n)) + \sum_{m \geq 1} (1 - q^{-1})q^{(-6s+1)m} \omega_r(p)^m W_{f_\tau}(h(1,p^{n-m})). \]

By (4.1), we have

\[W_{f_\tau}(h(1,p^{n-m})) = \begin{cases} q^{-(3s+1)/2} b_{1-b_2}^n (b_1^{n-m+1} - b_2^{n-m+1}), & \text{if } n \geq m, \\ 0, & \text{if } n < m. \end{cases} \]

Thus for $n \geq 1$, we have

\[I(n) = \frac{q^{-(3s+1)/2} n b_2}{b_1-b_2} \left(b_1^{n+1} - b_2^{n+1} \right) + \sum_{m=1}^{n} (1 - q^{-1})q^{-(3s+3/2)m} (b_1^{n+1} b_2^m - b_2^{n+1} b_1^m). \]

Thus result can be computed using the geometric summation formula. One can check that the given formula also satisfies $I(0) = 1$. \qed

Lemma 4.2. We have

\[J_1(n) = \frac{1 - q^{-6s+1}b_1b_2}{1 - q^{-6s+2}b_1b_2} I(n). \]

Proof. To compute $J_1(n)$, we break up the domain of integration in r_4 and get

\[J_1(n) = \int_F \int_{|r_4| \leq 1} W_{f_\tau}(h(1,p^n)w_{\alpha}w_{\beta}x_\beta(r_4)x_{3\alpha+2\beta}(r_5))dr_4dr_5 \]
\[+ \int_F \int_{|r_4| > 1} W_{f_\tau}(h(1,p^n)w_{\alpha}w_{\beta}x_\beta(r_4)x_{3\alpha+2\beta}(r_5))dr_4dr_5 \]
\[:= J_{11}(n) + J_{12}(n), \]
where

\[J_{11}(n) = \int_F \int_{|r_4| \leq 1} W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta x_\beta(r_4) x_{3\alpha+2\beta}(r_5)) dr_4 dr_5 \]
\[= \int_F \int_{|r_4| \leq 1} W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta x_{3\alpha+2\beta}(r_5) w_\beta^{-1} w_\alpha^{-1} w_\alpha w_\beta x_\beta(r_4)) dr_4 dr_5 \]
\[= \int_F W_{f_4}(h(1, p^n)w_\beta x_\beta(r_5)) dr_5 \]
\[= I(n), \]
and

\[J_{12}(n) = \int_F \int_{|r_4| > 1} W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta x_\beta(r_4) x_{3\alpha+2\beta}(r_5)) dr_4 dr_5 \]
\[= \int_F \int_{|r_4| > 1} W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta x_{3\alpha+2\beta}(r_5) w_\beta^{-1} w_\alpha^{-1} w_\alpha w_\beta x_\beta(r_4)) dr_4 dr_5 \]
\[= \int_F \int_{|r_4| > 1} W_{f_4}(h(1, p^n)w_\beta x_\beta(r_5) w_\alpha w_\beta x_\beta(r_4)) dr_4 dr_5. \]

We have the Iwasawa decomposition of \(w_\beta x_\beta(r_4) \):

\[w_\beta x_\beta(r_4) = x_\beta(-r_4^{-1})h(-r_4^{-1}, -r_4)x_{-\beta}(r_4^{-1}). \]

Since \(x_{-\beta}(r_4^{-1}) \) is in the maximal compact subgroup for \(|r_4| > 1\), we then get

\[J_{12}(n) = \int_F \int_{|r_4| > 1} W_{f_4}(h(1, p^n)w_\beta x_\beta(r_5) w_\alpha x_\beta(-r_4^{-1})h(r_4^{-1}, r_4)) dr_4 dr_5 \]
\[= \int_F \int_{|r_4| > 1} W_{f_4}(h(1, p^n)h(r_4^{-1}, 1)w_\beta x_\beta(r_4^{-1} r_5)) dr_4 dr_5 \]
\[= \int_F \int_{|r_4| > 1} |r_4| W_{f_4}(h(1, p^n)h(r_4^{-1}, 1)w_\beta x_\beta(r_5)) dr_4 dr_5 \]
\[= \sum_{m \geq 1} (1-q^{-1})q^{2m} \int_F W_{f_4}(h(p^m, 1)h(1, p^n)w_\beta x_\beta(r_5)) dr_5, \]

where in the second equality, we conjugated \(x_{-\beta}(r_4^{-1})h(r_4^{-1}, r_4) \) to the left, and in the third equality, we wrote \(r_4 = p^{-m}u \) for \(m \geq 1, u \in \mathfrak{o}^\times \) and used \(dr_4 = q^{m} du, \text{vol}(\mathfrak{o}^\times) = 1-q^{-1} \). Note that \(h(p^m, 1) \) is in the center of \(M' \), and thus

\[W_{f_4}(h(p^m, 1)g) = q^{-6sm} \omega_\tau(p)^m W_{f_4}(g), \]

we get

\[J_{12}(n) = (1-q^{-1}) \sum_{m \geq 1} q^{-6sm+2m} \omega_\tau(p)^m \int_F W_{f_4}(h(1, p^n)w_\beta x_\beta(r_5)) dr_5. \]

Thus we get

\[J_1(n) = I(n) + \sum_{m \geq 1} (1-q^{-1})q^{(-6s+2)m}(b_1 b_2)^m I(n). \]

A simple calculation gives the formula of \(J_1(n) \). \(\square \)

We next consider the term

\[J_2(n) = \int_{|r_3| > 1} \int_{F^2} W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta x_{\alpha+\beta}(r_3)x_\beta(r_4) x_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5. \]

For \(|r_3| > 1\), we can write \(r_3 \in p^{-m}u \) with \(m \geq 1, u \in \mathfrak{o}^\times \). We then have,

\[J_2(n) = \int_{F^2} \sum_{m \geq 1} q^m W_{f_4}(h(1, p^n)w_\beta w_\alpha w_\beta (p^{-m}u)x_{\alpha+\beta}(p^{-m}u)x_\beta(r_4) x_{3\alpha+2\beta}(r_5)) \psi(-p^{-m}u) du dr_4 dr_5. \]
Write $x_{\alpha + \beta}(p^{-m}u) = h(u, u^{-1})x_{\alpha + \beta}(p^{-m})h(u^{-1}, u)$, and by conjugation and changing of variables, we get

$$J_2(n) = \int_{F^2} \sum_{m \geq 1} q^m W_{f_s}(h(u^{-1}, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-m})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) \psi(-p^{-m}u) du dr_4 dr_5,$$

where we used $h(u, u^{-1})$ is in the maximal compact subgroup of $G_2(F)$. Since $h(u^{-1}, 1)$ maps to the center of M' and $|\omega_\tau(u)| = 1$, we have

$$W_{f_s}(h(u^{-1}, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-m})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) = W_{f_s}(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-m})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)).$$

Thus we get

$$J_2(n) = \int_{F^2} \sum_{m \geq 1} q^m W_{f_s}(h(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-m})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) \psi(-p^{-m}u) du dr_4 dr_5.$$

Since

$$\int_{\mathbf{A}^*} \psi(p^k u) du = \begin{cases} 1 - q^{-1}, & \text{if } k \geq 0, \\ -q^{-1}, & \text{if } k = -1, \\ 0, & \text{if } k \leq -2, \end{cases}$$

we get $J_2(n) = -R(n)$, where

$$R(n) = \int_{F^2} W_{f_s}(h(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-1})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) du dr_4 dr_5.$$

To evaluate $R(n)$, we split the domain of r_4, and write $R(n) = R_1(n) + R_2(n)$, where

$$R_1(n) = \int_{|r_4| \leq 1} \int_{F} W_{f_s}(h(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-1})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) dr_4 dr_5,$$

$$= \int_{F} W_{f_s}(h(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-1})x_{3\alpha + 2\beta}(r_5)) dr_5,$$

and

$$R_2(n) = \int_{|r_4| > 1} \int_{F} W_{f_s}(h(1, p^n)w_{\beta}w_{\alpha}x_{\alpha + \beta}(p^{-1})x_\beta(r_4)x_{3\alpha + 2\beta}(r_5)) dr_4 dr_5.$$

We now compute $R_1(n)$. We conjugate $w_{\alpha}w_{\beta}x_{\alpha + \beta}(p^{-1})$ to the right and then get

$$R_1(n) = \int_{F} W_{f_s}(h(1, p^n)w_{\beta}x_\beta(r_5)w_{\alpha}w_{\beta}x_{\alpha + \beta}(p^{-1})) dr_5$$

$$= \int_{F} W_{f_s}(h(1, p^n)w_{\beta}x_\beta(r_5)w_{\alpha}(-p^{-1})) dr_5$$

Next, we use the Iwasawa decomposition of $w_{\alpha}x_\alpha(p^{-1})$:

$$w_{\alpha}x_\alpha(-p^{-1}) = x_\alpha(p)h(p^{-1}, p^2)x_{-\alpha}(-p)$$

to get

$$R_1(n) = \int_{F} W_{f_s}(h(1, p^n)w_{\beta}x_\beta(r_5)x_\alpha(p)h(p^{-1}, p^2)) dr_5.$$

Next, we use the commutator relation

$$x_\beta(r_5)x_\alpha(p) = x_{\alpha + \beta}(pr_5)ux_\alpha(p)x_\beta(r_5),$$

where u is in the root space of $2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta$. Then we get

$$R_1(n) = \int_{F} W_{f_s}(h(1, p^n)w_{\beta}x_{\alpha + \beta}(pr_5)ux_\alpha(p)x_\beta(r_5)h(p^{-1}, p^2)) dr_5.$$
Note that \(w_\beta x_\alpha(r)w_\beta(1) \in V\), and \(h(1, p^n)w_\beta x_{\alpha+\beta}(pr_5)(h(1, p^n)w_\beta)^{-1} = x_\alpha(-p^{n+1}r_5)\), and
\(W_{f_\alpha}(x_\alpha(r)g) = \psi(2r)W_{f_\alpha}(g)\), we get
\[
R_1(n) = \int_F W_{f_\alpha}(h(1, p^n)w_\beta x_\beta(r_5)h(p^{-1}, p^2))\psi(-2p^{n+1}r_5)dr_5 = \int_F W_{f_\alpha}(h(p^2, 1)h(1, p^{n-1})w_\beta x_\beta(p r_5))\psi(-2p^{n+1}r_5)dr_5
\]
\[
= q^{-12s+3}\omega_\tau(p^2) \int_F W_{f_\alpha}(h(1, p^{n-1})w_\beta x_\beta(r_5))\psi(-2p^{n-2}r_5)dr_5,
\]
where the last equality comes from a changing of variable on \(r_5\) and the fact that \(h(p^2, 1) \mapsto \text{diag}(p^2, p^2)\) under the isomorphism \(M' \cong \text{GL}_2\). We next break up the integral on \(r_5\) and get
\[
R_1(n) = q^{-12s+3}\omega_\tau(p^2)W_{f_\alpha}(h(1, p^{n-1})) \int_{|r_5| \leq 1} \psi(-2p^{n-2}r_5)dr_5 + q^{-12s+3}\omega_\tau(p^2) \int_{|r_5| > 1} W_{f_\alpha}(h(1, p^{n-1})w_\beta x_\beta(r_5))\psi(-2p^{n-2}r_5)dr_5.
\]
Using the Iwasawa decomposition of \(w_\beta x_\beta(r_5)\), we have
\[
R_1(n) = q^{-12s+3}\omega_\tau(p^2) \left(W_{f_\alpha}(h(1, p^{n-1})) \int_{|r_5| \leq 1} \psi(-2p^{n-2}r_5)dr_5 + \sum_{m=1}^{\infty} W_{f_\alpha}(h(p^m, p^{n-m-1}))q^m \int_{q^m} \psi(-2p^{n-m-2}u)du \right).
\]

Lemma 4.3. We have \(R_1(n) = 0\) if \(n \leq 1\), and
\[
R_1(n) = q^{-12s+3}\omega_\tau(p^2)I(n-1) - q^{-6s(n+1)+n+2}\omega_\tau(p)I(n^2),
\]
for \(n \geq 2\).

Proof. Note that \(\int_{|r| \leq 1} \psi(p^kr)dr = 0\) if \(k < 0\) and \(\int_{|r| \leq 1} \psi(p^kr)dr = 1\) if \(k \geq 0\). Moreover, we have
\[
\int_{q^m} \psi(p^k u)du = \begin{cases} 1 - q^{-1}, & \text{if } k \geq 0, \\ -q^{-1}, & \text{if } k = -1, \\ 0, & \text{if } k \leq -2. \end{cases}
\]
Thus we get \(R_1(n) = 0\) for \(n \leq 1\). For \(n \geq 2\), we have
\[
R_1(n) = q^{-12s+3}\omega_\tau(p^2)
\]
\[
\cdot \left(W_{f_\alpha}(h(1, p^{n-1})) + \sum_{m=1}^{n-2} (1 - q^{-1})q^m W_{f_\alpha}(h(p^m, p^{n-m-1})) - q^{-1}q^{n-1}W_{f_\alpha}(h(p^{n-1}, 1)) \right).
\]
\[
= q^{-12s+3}\omega_\tau(p^2)
\]
\[
\cdot \left(W_{f_\alpha}(h(1, p^{n-1})) + \sum_{m=1}^{n-1} (1 - q^{-1})q^m W_{f_\alpha}(h(p^m, p^{n-m-1})) - q^{-1}q^{n-1}W_{f_\alpha}(h(p^{n-1}, 1)) \right)
\]
\[
= q^{-12s+3}\omega_\tau(p^2)I(n-1) - q^{-12s+3+n-1}\omega_\tau(p^2)W_{f_\alpha}(h(p^{n-1}, 1)),
\]
where in the last equation, we used the formula in the computation of \(I(n)\). Since \(h(p^{n-1}, 1)\) is in the center of \(M'\), we have \(W_{f_\alpha}(h(p^{n-1}, 1)) = q^{-6s(n+1)\omega_\tau(p)}I^{n-1}\). The result follows.

We next consider
\[
R_2(n) = \int_{|r_4| > 1} \int_F W_{f_\alpha}(h(1, p^{n})w_\beta x_\alpha w_\beta x_{\alpha+\beta}(p^{-1})x_\beta(r_4)x_{3\alpha+2\beta}(r_5))dr_4 dr_5.
\]
Conjugating \(w_\beta\) to the right side and using the Iwasawa decomposition of \(w_\beta x_\beta(r_4)\), we can get
\[
R_2(n) = \int_F \int_{|r_4| > 1} W_{f_\alpha}(h(1, p^{n})w_\alpha x_\alpha(p^{-1})x_{3\alpha+\beta}(r_4)h(r_4^{-1}, r_4))dr_4 dr_5.
\]
From the commutator relation, we have
\[
x_\alpha(p^{-1})x_\beta(r_4^{-1}) = x_\beta(r_4^{-1})x_\alpha(p^{-1})x_{2\alpha + \beta}(p^{-2}r_4^{-1})u,
\]
for some u in the group generated by roots subgroups of \(\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\). Like in the computation of \(R_1(n)\), we have
\[
R_2(n) = \int_{F} \int_{|r_4| > 1} W_{f_4}(h(1, p^n) w_\beta w_\alpha x_\alpha(p^{-1})x_{3\alpha + \beta}(r_5) h(r_4^{-1}, r_4)) \psi(-2p^{-2}r_4^{-1}) dr_4 dr_5
\]
\[
= \int_{F} \int_{|r_4| > 1} W_{f_4}(h(1, p^n) h(r_4^{-1}, 1) w_\beta x_\beta(r_5 r_4^{-1}) w_\alpha x_\alpha(p^{-1} r_4^{-1})) \psi(-2p^{-2}r_4^{-1}) dr_4 dr_5
\]
\[
= \int_{F} \int_{|r_4| > 1} |r_4| W_{f_4}(h(1, p^n) h(r_4^{-1}, 1) w_\beta x_\beta(r)) \psi(-2p^{-2}r_4^{-1}) dr_4 dr
\]
\[
= I(n) \int_{|r_4| > 1} |r_4|^{-6s+1} \omega_r(r_4^{-1}) \psi(-2p^{-2}r_4^{-1}) dr_4
\]
\[
= I(n) \sum_{m=1}^{\infty} q^{(-6s+2)m} \omega_r(p)^m \int_{E^*} \psi(-2p^{m+n-2}u) du.
\]

Lemma 4.4. We have
\[
R_2(n) = \begin{cases}
I(0)q^{-6s+2} \omega_r(p) \left(-q^{-1} + (1 - q^{-1}) \frac{q^{-6s+2} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)} \right), & n = 0, \\
I(n)(1 - q^{-1}) \frac{q^{-6s+2} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)}, & n \geq 1.
\end{cases}
\]

Proof. If \(n \geq 1\), then \(\int_{E^*} \psi(p^{m+n-2}u) du = (1 - q^{-1})\) for \(m \geq 1\). Thus, we have
\[
R_2(n) = I(n) \sum_{m=1}^{\infty} q^{(-6s+2)m} \omega_r(p)^m (1 - q^{-1})
\]
\[
= I(n)(1 - q^{-1}) \frac{q^{-6s+2} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)}.
\]
If \(n = 0\), then \(\int_{E^*} \psi(p^{m+n-2}u) du = (1 - q^{-1})\) for \(m \geq 2\), and \(\int_{E^*} \psi(p^{m+n-2}u) du = -q^{-1}\) for \(m = 1\). Thus, we have
\[
R_2(0) = I(0)(-q^{-1} q^{-6s+2} \omega_r(p) + (1 - q^{-1}) \sum_{m=2}^{\infty} q^{(-6s+2)m} \omega_r(p)^m)
\]
\[
= I(0)q^{-6s+2} \omega_r(p) \left(-q^{-1} + (1 - q^{-1}) \frac{q^{-6s+2} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)} \right).
\]
The completes the proof of the lemma. \(\square\)

Combining the above results, we get the following

Lemma 4.5. We have
\[
R(n) = \begin{cases}
-I(0)q^{-6s+1} \omega_r(p) \frac{1 - q^{-6s+3} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)}, & n = 0, \\
I(1)(1 - q^{-1}) \frac{q^{-6s+2} \omega_r(p)}{1 - q^{-6s+2} \omega_r(p)}, & n \geq 1,
\end{cases}
\]
and
\[
J(n) = J_1(n) - R(n)
\]
\[
= \begin{cases}
1 + Y, & n = 0 \\
I(1), & n = 1,
I(n) - q^{-1} Y^2 I(n - 1) + q^{-n} Y^{n+1}, & n \geq 2.
\end{cases}
\]
where \(Y = q^{-6s+2} \omega_r(p)\)
By the main result of [BFH], we have
\[
\tilde{W}(t(p^n)) = \frac{\mu_\psi(p^n)q^{-n}}{a - a^{-1}} \left(1 - \chi(p)q^{-1/2}a^{-1}\right)a^{n+1} - (1 - \chi(p)q^{-1/2}a)a^{-(n+1)},
\]
where \(\chi(p) = (p,p)_F = (p,-1)_F\). Note that the notation \(\gamma(a)\) in [BFH] is our \(\mu_\psi(a)^{-1}\). Note that \(\mu_\psi(p^n)\mu_\psi(p^n) = (p^n,p^n)_F = \chi(p^n)\). Thus
\[
I(\tilde{W}, W_{f,s}, \phi) = \sum_{n \geq 0} \frac{g^{3n/2}\chi(p)^n}{a - a^{-1}} \left(1 - \chi(p)q^{-1/2}a^{-1}\right)a^{n+1} - (1 - \chi(p)q^{-1/2}a)a^{-(n+1)} \right)J(n).
\]
Plugging the formula \(J(n)\) into the above equation, we can get that
\[
I(\tilde{W}, W_{f,s}, \phi) = \frac{(1 - b_1q^{-1}X)(1 - b_2q^{-1}X)(1 - b_1b_2q^{-1}X^2)(1 - b_1^2b_2q^{-1}X^3)(1 - b_1b_2^2q^{-1}X^3)}{(1 - \chi(p)a^{-1}b_1b_2q^{-1/2}X^2)(1 - \chi(p)ab_1b_2q^{-1/2}X^2)}
\]
\[
\prod_{i=1}^2(1 - \chi(p)a^{-1}b_iq^{-1/2}X) \prod_{i=1}^2(1 - \chi(p)ab_iq^{-1/2}X)
\]
\[
L(3s - 1, \bar{\pi} \times (\chi \otimes \tau))L(6s - 5/2, \bar{\pi} \otimes (\chi \otimes \omega_\tau)).
\]
Here
\[
L(s, \bar{\pi} \otimes (\chi \otimes \tau)) = \frac{1}{(1 - a\chi(p)b_1b_2q^{-s})((1 - a^{-1}\chi(p)b_1b_2q^{-s})}
\]
is the \(L\) function of \(\bar{\pi}\) twisted by the character \(\chi \otimes \omega_\tau\), and
\[
L(s, \bar{\pi} \times (\chi \otimes \tau)) = \frac{1}{\prod_{i=1}^2(1 - \chi(p)a^{-1}b_iq^{-s}) \prod_{i=1}^2(1 - \chi(p)ab_iq^{-s})}
\]
is the Rankin-Selberg \(L\)-function of \(\bar{\pi}\) twisted by \(\chi \otimes \tau\).

We record the above calculation in the following

Proposition 4.6. Let \(\tilde{W} \in W(\bar{\pi}, \psi)\) be the normalized unramified Whittaker function, \(f_s\) be the normalized unramified section in \(I(s, \tau)\) and \(\phi \in S(F)\) is the characteristic function of \(\varnothing\), we have
\[
I(\tilde{W}, W_{f,s}, \phi) = \frac{L(3s - 1, \bar{\pi} \times (\chi \otimes \tau))L(6s - 5/2, \bar{\pi} \otimes (\chi \otimes \omega_\tau))}{L(3s - 1/2, \tau)L(6s - 2, \omega_\tau)L(9s - 7/2, \tau \otimes \omega_\tau)}
\]

5. Some local theory

In this section, let \(F\) be a local field, which can be archimedean or non-archimedean. If \(F\) is non-archimedean, let \(\varnothing\) be the ring of integers of \(F\), \(p\) be a uniformizer of \(\varnothing\) and \(q = \varnothing/(p)\). Let \(\bar{\pi}\) be an irreducible genuine generic representation of \(SL_2(F)\), \(\tau\) be an irreducible generic representation of \(GL_2(F)\). Let \(\psi\) be a nontrivial additive character of \(F\).

Lemma 5.1. Let \(\tilde{W} \in W(\bar{\pi}, \psi), f_s \in I(s, \tau), \phi \in S(F)\), then the integral \(I(\tilde{W}, W_{f,s}, \phi)\) converges absolutely for \(\text{Re}(s)\) large and has a meromorphic continuation to the whole \(s\)-plane. Moreover, if \(F\) is a \(p\)-adic field, then \(I(\tilde{W}, W_{f,s}, \phi)\) is a rational function in \(q^{-s}\).

The proof is similar to [Gi93, Lemma 4.2-4.7] and [Gi95, Lemma 3.10, Lemma 3.3]. We omit the details.

Lemma 5.2. Let \(s_0 \in \mathbb{C}\). Then there exists \(\tilde{W} \in W(\bar{\pi}, \psi), f_{s_0} \in I(s_0, \tau), \phi \in S(F)\) such that \(I(\tilde{W}, W_{f_{s_0}, \phi}) \neq 0\).

Proof. The proof is similar to the proof of [Gi93, Lemma 4.4.4.7], [Gi95, Proposition 3.4]. We omit the details.
6. Nonvanishing of certain periods on G_2

6.1. Poles of Eisenstein series on G_2. Let τ be a cuspidal unitary representation of $GL_2(\mathbb{A}) \cong M'(\mathbb{A})$. Let K be a maximal compact subgroup of $G_2(\mathbb{A})$. Given a $K \cap GL_2(\mathbb{A})$-finite cusp form f in τ, we can extend f to a function $\tilde{f} : G_2(\mathbb{A}) \rightarrow \mathbb{C}$ as in [Sh, §2]. We then define

$$\Phi_{\tilde{f},s}(g) = \tilde{f}(g)\delta_P(m')s^{3+1/2},$$

for $g = v'm'k$ with $v' \in V'(\mathbb{A}), m' \in M'(\mathbb{A}), k \in K$. Then $\Phi_{\tilde{f},s}$ is well-defined and $\Phi_{\tilde{f},s} \in I(\hat{d}, \tau)$. Then we can consider the Eisenstein series

$$E(s, \tilde{f}, g) = \sum_{P'(F) \backslash G_2(F)} \Phi_{\tilde{f},s}(\gamma g).$$

Proposition 6.1. The Eisenstein series $E(s, \tilde{f}, g)$ has a pole on the half plane $\text{Re}(s) > 0$ if and only if $s = \frac{3}{4}, \omega_\tau = 1$ and $L(\frac{3}{4}, \tau) \neq 0$.

For a proof of the above proposition, see [Za, §1] or [Kim, §5]. If $\omega_\tau = 1$ and $L(\frac{3}{4}, \tau) \neq 0$, denote by $\mathcal{R}(\frac{3}{4}, \tau)$ the space generated by the residues of Eisenstein series $E(s, \tilde{f}, g)$ defined as above. Note that an element $R \in \mathcal{R}(\frac{3}{4}, \tau)$ is an automorphic form on $G_2(\mathbb{A})$.

6.2. On the Shimura-Waldspurger lift. Let π be a genuine cuspidal automorphic representation of $\tilde{SL}_2(\mathbb{A})$. Let $Wd_\psi(\pi)$ be the Shimura-Waldspurger lift of π. Then $Wd_\psi(\pi)$ is a cuspidal representation of $\text{PGL}(\mathbb{A})$. A cuspidal automorphic representation τ is in the image of Wd_ψ if and only if $L(\frac{1}{2}, \tau) \neq 0$. Moreover, the correspondence $\pi \mapsto Wd_\psi(\pi)$ respects the Rankin-Selberg L-functions. For these assertions, see [Wald] or [G].

6.3. A period on G_2.

Theorem 6.2. Let π be a genuine cuspidal automorphic representation of $\tilde{SL}_2(\mathbb{A})$ and τ be a unitary cuspidal automorphic representation of $GL_2(\mathbb{A})$. Assume that $\omega_\tau = 1$ and $L(\frac{1}{2}, \tau) \neq 0$. In particular, τ can be viewed as a cuspidal automorphic representation of $\text{PGL}(\mathbb{A})$. If $Wd_\psi(\pi) = \chi \otimes \tau$, then there exists $\bar{\varphi} \in \mathcal{V}_{\pi}, \phi \in \mathcal{S}(\mathbb{A}), R \in \mathcal{S}(\frac{1}{2}, \tau)$ such that the period

$$\mathcal{P}(\bar{\varphi}, \bar{\theta}_\phi, R) = \int_{\tilde{SL}_2(F) \backslash \tilde{SL}_2(\mathbb{A})} \int_{V(F) \backslash V(\mathbb{A})} \bar{\varphi}(g)\bar{\theta}_\phi(vg)R(vg)dvgd\psi$$

is non-vanishing.

Proof. For $\bar{\varphi} \in \mathcal{V}_{\pi}, \phi \in \mathcal{S}(\mathbb{A})$ and a good section $\Phi_{\tilde{f},s}$ as in §6.1, by Theorem 3.1 and Proposition 4.6, we have

$$I(\bar{\varphi}, \phi, \tilde{f}, s) = \int_{\tilde{SL}_2(F) \backslash \tilde{SL}_2(\mathbb{A})} \int_{V(F) \backslash V(\mathbb{A})} \bar{\varphi}(g)\bar{\theta}_\phi(vg)E(vg, \Phi_{\tilde{f},s})dvgd\psi$$

$$= \int_{\tilde{SL}_2(\mathbb{A})} \int_{U(\mathbb{A})} W_\varphi(g)\omega_\psi(\phi) \phi(1) W_{\Phi_{\tilde{f},s}}(\gamma vg)dvgd\psi$$

$$= I_S \cdot L^S(s + \frac{1}{2}, \chi \otimes \tau)L^S(2s + \frac{1}{2}, \chi \otimes \omega_\tau).$$

Here S is a finite set of places of F such that for $v \notin S$, π_v, τ_v are unramified, and I_S is the product of the local zeta integrals over all places $v \in S$ and L^S denotes the partial L-function which is the product of all local L-function as the place v runs over $v \notin S$. Note that $\tau \cong \tau^\vee$ since $\omega_\tau = 1$. Suppose that $Wd_\psi(\pi) = \chi \otimes \tau = \chi \otimes \tau^\vee$, then $L^S(s + 1/2, \chi \otimes \tau)$ has a pole at $s = 1/2$. Note that at $s = 3/4$, $L^S(2s + 1/2, \chi \otimes (\chi \otimes \omega_\tau))$ is holomorphic and nonzero, while $L^S(s + 1, \tau)L^S(2s + 1, \omega_\tau)L^S(3s + 1, \tau \otimes \omega_\tau)$ is holomorphic. Moreover, I_S can be chosen to be nonzero. Thus we get that $I(\bar{\varphi}, \phi, \tilde{f}, s)$ has a pole at $s = 1/2$, which means that there exists a residue $R(g, \tilde{f})$ of $E(s, \tilde{f}, g)$ such that

$$\mathcal{P}(\bar{\varphi}, \bar{\theta}_\phi, R) = \int_{\tilde{SL}_2(F) \backslash \tilde{SL}_2(\mathbb{A})} \int_{V(F) \backslash V(\mathbb{A})} \bar{\varphi}(g)\bar{\theta}_\phi(vg)R(vg, \tilde{f})dvgd\psi \neq 0.$$
This completes the proof. □

Remark 6.3. For an L^2-automorphic form $\eta \in L^2(G_2(F)\backslash G_2(\mathbb{A}))$, one can form the period

$$\eta_{\tilde{\phi}, \tilde{\theta}}(g) = \int_{SL_2(F)\backslash SL_2(\mathbb{A})} \int_{V(F)\backslash V(\mathbb{A})} \tilde{\varphi}(h)\tilde{\theta}(v)\eta(vhg)dvdh,$$

for a genuine cusp form $\tilde{\phi}$ of $\tilde{\SL_2}(\mathbb{A})$ and $\phi \in S(\mathbb{A})$. Theorem 6.2 says that if η varies in $S(\frac{1}{2}, \tau)$, then under the condition $Wd_\psi(\tilde{\pi}) = \chi \otimes \tau$, the period $\eta_{\tilde{\varphi}, \tilde{\theta}}$ is non-vanishing for certain $\tilde{\varphi} \in V_\mathbb{A}$ and $\phi \in S(\mathbb{A})$. For general η, one can ask under what conditions the period $\eta_{\tilde{\varphi}, \tilde{\theta}}$ is not identically zero as $\tilde{\phi}$ varies in $V_\mathbb{A}$ and $\phi \in S(\mathbb{A})$. In the classical group case, this is the global Gan-Gross-Prasad conjecture for Fourier-Jacobi case, see [GGP]. It is natural to ask if it is possible to extend the GGP-conjecture to the G_2-case.

References

[BFH] D. Bump, S. Friedberg, J. Hoffstein, p-adic Whittaker functions on metaplectic groups, Duke Math Journal, 63 (1991), 379-397.

[G] W.T. Gan, The Shimura Correspondence, À la Waldspurger, preprint, link

[GGP] W.T. Gan, B. H. Gross, and D. Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups (English, with English and French summaries), Astérisque 346 (2012), 1-109.

[Gi91] D. Ginzburg, A Rankin-Selberg integral for the adjoint representation of GL_3, Invent. Math. 105 (1991), no. 3, 571-588.

[Gi93] D. Ginzburg, On the standard L-function for G_2, Duke Mathematical Journal, 69 (1993), 315-333.

[Gi95] D. Ginzburg, On the symmetric fourth power L-function of GL_2, Israel Journal of Mathematics 92 (1995), 157-184.

[GRS97] D. Ginzburg, S. Rallis, D. Soudry, Periods, poles of L-functions and symplectic-orthogonal theta lifts. J. Reine Angew. Math. 487 (1997), 85-114.

[GRS98] D. Ginzburg, S. Rallis, D. Soudry, L-functions for symplectic groups, Bull. Soc. math. France, 126 (1998), 181-244.

[JS] H. Jacquet, J. Shalika, Exterior square L-functions, in “Automorphic forms, Shimura varieties, and L-functions, Vol. II” (Ann Arbor, MI, 1988), 143-226, Perspect. Math., 11, Academic Press, Boston, MA, 1990.

[Kim] H. Kim, The residue spectrum of G_2, Can. J. Math., 48.6 (1996), 1245-1272.

[Ku] S. Kudla, Notes on the local theta correspondence, preprint, available at http://www.math.toronto.edu/skudla/castle.pdf

[Re] R. Ree, A Family of Simple Groups Associated with the Simple Lie Algebra of Type G_2, American Journal of Math. 83, (1961), 432-462.

[Sh] F. Shahidi, Functional equations satisfied by certain L-functions, Compositio Math. 37 (1978), 171-208.

[St] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.

[Wald] J.P. Waldspurger, Correspondance de Shimura. J. Math. Pures Appl. (9) 59 (1980), no. 1, 1-132.

[Za] S. Zampera, The residue spectrum of the group of type G_2, J. Math. Pures Appl., 76(1997), 805-835.

Department of Mathematical Sciences, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
E-mail address: qingzhang0@gmail.com