Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of **ABSCISIC ACID INSENSITIVE 3**

Zhilei Mao and Weining Sun*

Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Fenglin Road 300, Shanghai, 200032, People’s Republic of China

* To whom correspondence should be sent. E-mail: wnsun@sibs.ac.cn

Received 25 December 2014; Revised 9 April 2015; Accepted 1 May 2015

Editor: Gerhard Leubner

Abstract

The tonoplast intrinsic proteins TIP3;1 and TIP3;2 are specifically expressed during seed maturation and localized to the seed protein storage vacuole membrane. However, the function and physiological roles of TIP3s are still largely unknown. The seed performance of **TIP3** knockdown mutants was analysed using the controlled deterioration test. The **tip3;1/tip3;2** double mutant was affected in seed longevity and accumulated high levels of hydrogen peroxide compared with the wild type, suggesting that TIP3s function in seed longevity. The transcription factor **ABSCISIC ACID INSENSITIVE 3** (ABI3) is known to be involved in seed desiccation tolerance and seed longevity. **TIP3** transcript and protein levels were significantly reduced in **abi3-6** mutant seeds. **TIP3;1** and **TIP3;2** promoters could be activated by ABI3 in the presence of abscisic acid (**ABA**) in **Arabidopsis** protoplasts. **TIP3** proteins were detected in the protoplasts transiently expressing **ABI3** and in **ABI3**-overexpressing seedlings when treated with **ABA**. Furthermore, **ABI3** directly binds to the **RY** motif of the **TIP3** promoters. Therefore, seed-specific **TIP3**s may help maintain seed longevity under the expressional control of **ABI3** during seed maturation and are members of the **ABI3**-mediated seed longevity pathway together with small heat shock proteins and late embryo abundant proteins.

Key words: ABI3, **Arabidopsis**, hydrogen peroxide, seed longevity, **TIP3**.

Introduction

Tonoplast intrinsic proteins (**TIPs**), which belong to the major intrinsic protein family, are members of plant aquaporins (**AQP**s) and are localized in the membrane of the vacuole. These proteins play critical roles in the transport of water and small neutral substrates such as glycerol, urea, ammonia, and hydrogen peroxide (**H₂O₂**) (Liu et al., 2003; Loque et al., 2005; Bienert et al., 2007; Dynowski et al., 2008). The **TIP** family consists of five subgroups, namely **TIP1** (γ- **TIP**), **TIP2** (δ- **TIP**), **TIP3** (α- **TIP** and β- **TIP**), **TIP4** (ε- **TIP**), and **TIP5** (ζ- **TIP**). **TIP** isoforms show different temporal and spatial expression patterns. **TIP1s** (**TIP1;1** and **TIP1;2**) are vegetative **TIPs** localized to lytic vacuoles, whereas **TIP3s** are seed-specific **TIPs** localized to seed protein storage vacuoles (**PSVs**) (Hofte et al., 1992; Ludevid et al., 1992; Gattolin et al., 2011). **AtTIP1;3** and **AtTIP5;1** are thought to be specifically expressed in pollen and localized to the vegetative vacuole and sperm vacuole, respectively (Wudick et al., 2014).
α-TIP was first purified and identified from Phaseolus vulgaris cotyledons, and the water channel activity of α-TIP is regulated by its phosphorylation (Johnson et al., 1989; Maurel et al., 1995). This protein is specifically expressed during seed maturation and is most abundantly accumulated in dry mature seeds. Immunoelectron microscopy experiments revealed its specific localization to the membranes of seed PSVs in cotyledons and axes (Johnson et al., 1989). α-TIPs are highly conserved proteins that are widely distributed in dicots and monocots (Chaumont et al., 2001; Sakurai et al., 2005; Reuscher et al., 2013; Zhang et al., 2013). Arabidopsis contains two α-TIP orthologues, TIP3;1 (also known as α-TIP) and TIP3;2 (also known as β-TIP). Recently, using fluorescent protein-fused TIP3s, Gattolin et al. demonstrated that TIP3s are dual localized to both the tonoplast and plasma membrane during seed maturation and seed germination (Gattolin et al., 2011).

Single TIP gene loss-of-function mutants do not show obvious phenotypes, probably due to the functional redundancy between different TIPs. The tip1;3/tip5;1 double knockout mutant displays an abnormal rate of barren siliques, indicating that TIPs expressed specifically in pollen contribute to plant reproduction (Wudick et al., 2014). TIP3;1 and TIP3;2 are seed-specific TIP isoforms in Arabidopsis and may be the only types of AQPs in mature embryos (Gattolin et al., 2011). Screening of the directly regulated targets of ABSCISIC ACID INSSENSITIVE 3 (ABI3), which is a master regulator that controls seed maturation (Pardy et al., 1994; Suzuki and McCarty, 2008), by genome-wide chromatin immunoprecipitation (ChIP-chip) revealed 98 Arabidopsis genes including TIP3;1 and TIP3;2 as targets (Monke et al., 2012). The transcription factor ABI3 protein contains a plant-specific DNA-binding domain, designated as the B3 domain (Mccarty et al., 1991; Giraudat et al., 1992), and activates numerous seed-specific genes. abi3 mutants exhibit pleiotropic phenotypes to various degrees, depending on the ABI3 alleles, such as desiccation intolerance, decreased seed longevity, abscisic acid (ABA) insensitivity, and lack of chlorophyll degradation (Koornneef et al., 1984; Ooms et al., 1993; Rohde et al., 2000; Tesnier et al., 2002; Delmas et al., 2013). The levels of many seed-specific proteins including late embryo abundant (LEA) proteins, small heat shock proteins (sHSPs), and seed storage proteins are markedly reduced in abi3 seeds (Pardy et al., 1994; Wehmeyer et al., 1996; Wehmeyer and Vierling, 2000). These genes are directly or indirectly regulated by ABI3, and such decreases in protein expression and accumulation may result in the pleiotropic phenotypes of the abi3 mutants (Kotak et al., 2007; Roschitzttardtz et al., 2009; Park et al., 2011; Delmas et al., 2013).

Recently it was shown that HvTIP3;1 plays a key role in preventing the coalescence of small PSVs in barley aleurone cells (Lee et al., 2014). However, the function and physiological role of TIP3s in mature seeds are largely unknown. In the current work, the function of TIP3s in seed longevity was investigated. The data suggest that both TIP3 isoforms play roles in maintaining seed longevity and function under the control of ABI3.

Materials and methods

Plant materials and growth conditions

Col and Ler were used as wild types (WTs) for the experiments, as indicated. The mutants abi3-1 (CS24), abi3-4 (CS6130), fuj3-3 (CS6128), tip3;1 (SALK_053807.26.20), and tip3;2 (SALK_125353C) were obtained from the Arabidopsis Biological Resource Center (ABRC). The abi3-6 seeds were kindly provided by Dr Eiji Nambara. The homozygous seeds of abi3-4, abi3-6, and fuj3-3 were obtained by selecting green seeds. The T-DNA insertion sites in the tip3;1 and tip3;2 mutants were confirmed by PCR and sequencing analysis of the flanking regions. Homozygous plants were obtained and used in this study. The tip3;1/tip3;2 double mutant was obtained by crossing the homozygotes of tip3;1 and tip3;2 mutants, and the double mutants were selected by PCR.

Arabidopsis seeds were surface sterilized for 20 min in 10% bleach and washed five times with sterile water. Sterilized seeds were incubated for 48 h at 4 °C in the dark, followed by germination on Murashige and Skoog (MS) medium containing MS salts, 10 g l\(^{-1}\) sucrose, and 8 g l\(^{-1}\) agar, pH 5.8. One-week-old seedlings were transferred to soil and grown in a growth chamber (22 °C, with a 16 h light/8 h dark photoperiod). To collect siliques at different developmental stages, blooming flowers were first marked by tying with cotton threads on the day of pollination. Mature seeds were harvested, dried, and stored at 20 °C.

Plasmid construction and transgenic plants

Mutant TIP3;1 promoters were generated by PCR-directed mutagenesis using a construct containing the 2 kb TIP3;1 promoter as a template (primers are listed in Supplementary Table S1 available at JXB online). WT and mutant promoters were cloned into the pCambia1300 plant and transformed into Col. Ten independent T\(_2\) transgenic lines per construct were randomly selected to determine the levels of β-glucuronidase (GUS) expression using real-time PCR (RT-PCR).

For the TIP3;1-RNAi (RNA interference) construct, the PDK intron product amplified from pKannibal was cloned into the PHB vector (Mao et al., 2005) to generate the PHB-RNAi vector. Then, the 2 kb TIP3;1 promoter was cloned into the PHB-RNAi vector by replacing the 2×35S promoter to generate the PHB-Pro\(_{2\times35S}\)-RNAi vector. Then, the TIP3;1 cDNA fragment was amplified and inserted in reverse orientation into both sides of the PDK intron. The PHB-Pro\(_{2\times35S}\):TIP3;1 RNAi plasmid was transformed into the tip3;2 mutant background. RNAi transgenic lines (TIP3;1-RNAi/tip3;2) were obtained, and TIP3;1 expression levels in T\(_1\) homozygous transgenic plants were analysed by RT-PCR and western blot analysis. T\(_2\) homozygous lines were used for germination and the controlled deterioration test (CDT). For the Pro\(_{2\times35S}TIP3;1\) or Pro\(_{2\times35S}\)TIP3;2 construct, TIP3;1 cDNA or TIP3;2 cDNA was cloned into the multiple cloning site of the PHB vector.

RNA extraction and quantitative RT-PCR analyses

Total RNA was isolated from dry mature seeds, siliques, imbibed seeds, and leaves using RNAiso for Polysaccharide-rich Plant Tissue (TaKaRa, Otsu, Shiga, Japan) according to the manufacturer’s instructions. Then, 1 μg of total RNA was reverse transcribed using a Primerscript RT Reagent Kit with gDNA Eraser (TaKaRa). Quantitative RT-PCR (qRT-PCR) analyses were performed using the SYBR Green method (SYBR premix EX taq, TaKaRa) with the StepOnePlus™ Real-time PCR System (Applied Biosystems). The PCR program was as follows: 95 °C for 10 s, 60 °C for 35 s, repeated for 40 cycles.

To quantify gene expression in seed development and seed germination, geNorm 3.5 software was used to select four reference genes (PP2A, CYP5, ACT7, and ACT8) for seed development and another four reference genes (PP2A, Ef1a, CYP5, and ACT8) for seed germination from nine tested genes. The normalization factor,
normalized GOI (gene of interest) quantity, and stand deviation (SD) of the normalized GOI quantity were calculated according to the geNorm manual (Vandesompele et al., 2002).

Protein extraction and immunoblot analyses
Proteins were extracted from Arabidopsis seeds with extraction buffer [0.1 M TRIS-HCl pH 7.5, 0.15 M NaCl, 20% glycerol, 5 mM EDTA, 1% Triton X-100, 0.01 M β-mercaptoethanol, 1 mM phe- nylmethylsulphonyl fluoride (PMSF)] and denatured at 95 °C for 5 min. Seed debris was removed by centrifugation at 12 000 g for 10 min. Protein contents were determined using a Bradford assay. Then, 30 μg of protein was loaded onto a gel and separated by 12.5% SDS–PAGE. α-TIP polyclonal antibody was manufactured by ABeDonal™ Technology (Wuhan, China), using sHQLAPEDPY peptide as antigen whose sequence was the same as previously reported (Jauh et al., 1998). The γ-TIP antibody (Cat. no. AS09 495), HSP17.6 antibody (Cat. no. AS08 284), and HSP17.7 antibody (Cat. no. AS07 255) were purchased from Agrisera (Vännäs, Sweden) and the ACTIN antibody was purchased from Abmari (Shanghai, China). The horseradish peroxidase (HRP)-conjugated secondary antibody sc-2370 (Santa Cruz, Dallas, TX, USA) was used at a 1:10 000 dilution. Signals were detected using an ECL Detection Kit (Thermo Fisher Scientific, Waltham, MA, USA) and scanned with a ChemiDoc™ XRS+ Instrument (Bio-Rad, Hercules, CA, USA).

Protoplast transformation and promoter activation assays
Protoplast isolation and transformation were performed according to the protocol described previously (Yoo et al., 2007; Wu et al., 2009) with minor modifications. Protoplasts were isolated from rosette leaves of 4-week-old Arabidopsis plants using the tape method as described (Wu et al., 2009).

Promoter activation assays were performed with a dual-luciferase reporter assay system (Hellens et al., 2005). ABI3 and Fus3 cDNAs were cloned into the effector plasmid pGreenII 0800-LUC, respectively. For transfection, a plasmid mixture (12 μg of effector plasmids and 4 μg of dual-luciferase reporter plasmids) was added to 100 μl of protoplasts (~107 cells). The transfected protoplasts were incubated in the dark for >16 h in the presence or absence of 5 μM ABA. Dual-luciferases activity was assayed using Dual Luciferase Assay Reagents (Promega, Madison, WI, USA) according to the manufacturer’s instructions and measured with a Varioska Flash spectral scanning multimode reader (Thermo Fisher). For immunoblotting, 50 μg of effector plasmids were added to 500 μl of protoplasts (~105 cells) in the presence of 5 μM ABA.

Recombinant protein purification and EMSA
A partial ABI3 fragment (encoding R559-K720) including the B3 domain was cloned into pET28a (Novagen) and transformed into Escherichia coli. The recombinant protein was induced at 16 °C and purified in its native form using Ni-NTA agarose (Qiagen, Venlo, Limburg, The Netherlands) following the manufacturer’s protocol.

Electrophoretic mobility shift assays (EMSA) were performed using a LightShift Chemiluminescent EMSA Kit (Thermo Fisher). The B3 domain of recombinant ABI3 protein was incubated with biotin-labelled probes containing different RY motif fragments at 20 °C for 30 min in the binding system [1× binding buffer, 2.5% glycerol, 50 ng μl−1 poly(dI–dC), 50 mM KCl, and 0.5 mM EDTA]. DNA–protein complexes were separated by 6% TRIS/borate/EDTA PAGE and transferred onto a Hybond-N+ nylon membrane (GE Healthcare Life Sciences, USA). Biotin-labelled probes were detected by HRP-conjugated streptavidin and visualized with an ECL Detection Kit according to the manufacturer’s instructions.

Yeast one-hybrid and DNA–protein interaction ELISA
Yeast one-hybrid assays were performed with a Matchmaker One-hybrid system (Clontech, Mountain View, CA, USA). Three tandem copies of the RY2 element of ProTIP3.1 (GGCACACATGCATGCTTTAGT) and three copies of the RY element of ProTIP3.2 (CTTGGCACACATGCATGATATAT) were cloned upstream of the HIS3 reporter gene in the pHISi vector, respectively. These reporter constructs, as well as the empty pHISi vector, were linearized with Xhol and integrated into the genome of the YM4271 strain to generate reporter strains. The reporter strains were transformed again with pGAD424–ABI3 (559R–720K) or empty vector pGAD424, respectively. Yeast transformants were grown on synthetic SD-Leu-His medium, and binding activity was monitored on SD-Leu-His medium supplemented with 30 mM or 60 mM 3-amino-1,2,4-triazole (3-AT).

DNA–protein interaction–enzyme-linked immunosorbsent assay (DIPI-ELISA) was performed as described in Brand et al. (2010). Full-length glutathione S-transferase (GST)–ABI3 protein was produced in the BL21-Codon Plus strain and purified using Glutathione Superflow Resin (Qiagen). An antibody against GST conjugated with HRP was used to detect the bound proteins.

Controlled deterioration test and basal thermotolerance assay
The CDT was performed as described previously with minor modifications (Tesnier et al., 2002; Oge et al., 2008; Chen et al., 2012). Different Arabidopsis seeds for the test were harvested from plants at the same time, dried, and stored under the same conditions (20 °C in a desiccator containing blue self-indicating silica gel) for at least 2 weeks prior to the experiment unless otherwise indicated. The seeds were equilibrated for 3 d at 15 °C and 85% relative humidity (RH). After equilibration, the seeds were stored at 40 °C and 80% RH in a temperature- and humidity-controlled incubator. The temperature and RH in the incubator were corrected and monitored using a thermohygrometer (Testo 608-H1, Germany). The seeds were stored under these conditions for 1–7 d. After storage at high temperature and RH, the seeds were stored at 20 °C and 33% RH for 3 d and dried to 6% moisture content. Seed moisture content was determined by weighing the seeds before and after drying at 105 °C for 24 h.

The basal thermotolerance assay (BTA) was performed as described (Prieto-Dapena et al., 2006). Seeds used for testing were harvested at the same time, dried, and stored under the same conditions for at least 2 weeks prior to the experiment. The seeds were imbibed in Eppendorf tubes and incubated at 50 °C for 1–4 h. After treatment, the seeds were cooled to room temperature and plated on MS medium. For HgCl2 treatment, imbibed seeds were incubated at 42 °C for various times in the presence of 50 μM HgCl2 or 1 mM dithiothreitol (DTT), washed five times in sterile water, and then grown on MS medium.

All germination analyses were performed with four replicates using ~100 seeds per replicate. The germination percentage was calculated as the mean ±SD.

Tetrazolium assay and H2O2 staining
The tetrazolium assay was performed as described by Wharton (1955) with minor modifications. Embryos isolated from imbibed seeds after the CDT were soaked in a solution of 1% 2,3,5-triphenyl tetrazolium chloride (Sigma–Aldrich) and incubated at 22 °C for 12 h. Viable embryos stained red, and non-viable or dead embryos remained unstained. Seed viability was evaluated by examining the staining pattern and colour intensity.

For H2O2 staining, isolated embryos were stained with 1 mg ml−1 3,3′-diaminobenzidine (DAB, Sigma–Aldrich) solution. The embryos were incubated in DAB solution at 22 °C for 8 h. After staining, the embryos were bleached with 95% ethanol.

Hydrogen peroxide permeability assay in yeast
Yeast strains Δhur3 (MATa, ura3), Δyap1 (MATa, ura3), and Δskn7 (MATa, ura2) were transformed with pYX212 (or derivatives of
pYX212 carrying AQP cDNAs). Yeast transformants were inoculated and grown to the stationary phase. The cells were diluted to an OD$_{600}$ of 1.0 with SD-Ura liquid medium. A 10 μl aliquot of 0.1 OD cells was spotted onto SD-Ura medium containing the indicated concentration of H$_2$O$_2$. Photographs were taken 3 d after incubation at 30 °C.

For the fluorescence assays, WT (THY .AP4) cells and pYX212 or AQP transformants were grown to mid logarithmic phase, incubated with 30 μM CM-H$_2$DCFDA (Molecular Probes, Life Technologies) for 45 min, washed five times in 20 mM HEPES (pH 7.0), and finally suspended in HEPES buffer at an OD$_{600}$ value 1.0. Fluorescence was measured with the Varisia Flash spectral scanning multimode reader at excitation/emission of 492/527 nm and a temperature of 20 °C.

Hypo-osmotic yeast protoplast swelling assay
THY .AP4 yeast cells transformed with pYX212 or derivatives of pYX212 carrying AQP cDNAs were grown to mid logarithmic phase, harvested, washed twice in sterile water, and suspended in SCE buffer (1 M sorbitol, 0.1 M sodium citrate, 10 mM EDTA, 0.2 mM β-mercaptoethanol, pH 6.8) containing 200 U ml$^{-1}$ lyticase (L2524, Sigma-Aldrich) for 2 h at 30 °C. Following centrifugation, protoplasts were washed twice and resuspended in STC buffer (1 M sorbitol, 10 mM TRIS-HCl pH 7.5, 10 mM CaCl$_2$) to the same OD$_{600}$. Protoplasts were diluted to 0.5 M sorbitol with sterile water using a syringe dispenser. The change of OD$_{600}$ value was monitored per 0.1 s with the Varisia Flash spectral scanning multimode reader in a flash mode.

Results
TIP3s are specifically expressed during seed maturation
The Arabidopsis genome contains two TIP3 genes, namely TIP3;1 and TIP3;2. Using qRT-PCR, the temporal expression patterns of TIP3 genes were investigated in a precise manner. Transcripts of TIP3;1 and TIP3;2 began to be detectable in siliques at 12 days post-anthesis (DPA) (Fig. 1A). TIP3 transcript levels increased sharply throughout the maturation phase. Immunoblot analysis also indicated that TIP3s began to accumulate at the same time point (Fig. 1C). Since the antibody raised against the C-terminal peptide of TIP3;1 cannot discriminate between TIP3;1 and TIP3;2 (Supplementary Fig. S1 at JXB online), the detected signals represented both TIP3 isoforms. In germinating seeds, the levels of TIP3 transcripts decreased to <1% during the first 3 h after germination (Fig. 1B). Interestingly, the protein levels of TIP3s did not decrease significantly within 24 h, but they started to decrease sharply 48 h after germination (Fig. 1D). At the same time, TIP1s (TIP1;1 and TIP1;2) began to be detectable (Fig. 1D). Fluorescent signals were detected in the seeds of ProTIP3;1:GFP transgenic plants, but not in WT seeds (Supplementary Fig. S2). These data suggest that TIP3;1 and TIP3;2 are specifically expressed in seeds, and the TIP3;1 promoter is active in seeds.

TIP3;1 and TIP3;2 are required for seed longevity
To characterize the effects of loss of function of TIP3 genes, two T-DNA insertion mutants were obtained from the ABRC. PCR analysis of genomic DNA from the mutants confirmed the locations of the T-DNA insertions. SALK_053807 has an insertion in the promoter region between the R Y2 and R Y3 motif of TIP3;1, and SALK_125353c has an insertion in the first intron of TIP3;2 (Fig. 2A, B). The expression level of TIP3;1 in tip3;1 seeds was reduced to 30% of that in WT

Fig. 1. TIP3 genes are specifically expressed during seed maturation. (A and B) Expression analysis of TIP3;1 and TIP3;2 during seed development (A) and seed germination (B) in Arabidopsis. qRT-PCR analysis of TIP3;1 and TIP3;2 transcript abundance during seed development and seed germination. The relative expression level of each gene was normalized with four reference genes, and calculated according to the geNOM 3.5 manual. Values are means ±SD, n=3. DPA, days post-anthesis. (C and D) Immunoblot analysis of TIP3s during seed development (C) and seed germination (D). The same amounts of proteins separated by SDS-PAGE were stained with Coomassie Brilliant Blue and used as a loading control.
seeds (Fig. 2D). TIP3:2 transcripts were not detectable in tip3:2 seeds (Fig. 2D), demonstrating that the tip3:2 mutant is transcript null.

Plants of both mutants are phenotypically indistinguishable from WT plants under normal growth conditions (Supplementary Fig. S3 at JXB online). To verify whether TIP3:1 and TIP3:2 are redundant genes, a tip3:1/tip3:2 double mutant was generated (Fig. 2B). Since tip3:1 is not a null mutant, TIP3:1 was expressed at low levels in double mutant seeds (Fig. 2D). RNAi was used to reduce the level of TIP3:1 expression in the tip3:2 mutant background (Fig. 2C). Three homozygous T3 transgenic lines, R3, R7, and R8, were obtained. The expression of TIP3:1 was significantly reduced in all three RNAi lines (Fig. 2D). Immunoblot analysis showed that the levels of TIP3:1 were much lower in TIP3:1-RNAi/tip3:2 (R3, R7, and R8) transgenic seeds than in tip3:1/tip3:2 double mutant seeds (Fig. 2E).

The seed germination percentage of TIP3:1-RNAi/tip3:2 plants was tested. No significant difference was observed between TIP3:1-RNAi/tip3:2 and WT seeds which were stored for 2 weeks after harvesting (Fig. 3A). Comparing the germination percentage for 18-month-old seeds, WT and tip3:2 seeds remained at 98% and 95%, respectively. In contrast, the germination percentage of TIP3:1-RNAi/tip3:2 seeds decreased to <40% (Fig. 3A, B).

This observation prompted the study of whether seed longevity was affected by the null function of the TIP3 genes. BTAs, which partially reflect seed longevity and viability, were first performed. As a general inhibitor of AQP, mercury binds to the cysteine residue near the pore site and inhibits the channel activity of AQPs by occluding the pore (Daniels et al., 1996; Maurel and Chrispeels, 2001; Savage and Stroud, 2007). DTT can function as a scavenger to reverse the inhibitory effect of mercury (Martel et al., 2001; Vander Willigen et al., 2006). When seeds were incubated for 24 h at 22 °C in the presence of 50 μM HgCl2, seed viability was not impaired. However, the seed germination percentage decreased when incubated at 42 °C in the presence of HgCl2 (Supplementary Fig. S4A at JXB online). The effect was partially reversed by adding 1 mM DTT, suggesting that the activities of AQPs in seeds may be involved in seed longevity.

BTAs were then performed with tip3 mutant seeds. Imbibed seeds were directly incubated at 50 °C for various periods of time. After 1 h of treatment, the germination percentage of
Mao and Sun

tip3;1/tip3;2 double mutant seeds declined drastically compared with WT, **tip3;1**, and **tip3;2** seeds (Supplementary Fig. S4B at JXB online). After 2 h of treatment, the germination percentages of **tip3;1** and **tip3;2** seeds decreased significantly but were still much higher than that of the double mutant seeds (Supplementary Fig. S4B). Therefore, **tip3;1/tip3;2** double mutant seeds are more sensitive to heat stress than WT and single mutants.

Seed longevity was further estimated using the CDT. The CDT accelerates seed ageing by increasing the temperature of seed storage and the seed moisture content. The germination percentage of all untreated seeds was ~100% at 7 d after germination. When treated at 40 °C with 80% RH for 4 d, WT, **tip3;1**, and **tip3;2** seeds had a germination percentage of ~90%, whereas that of **tip3;1/tip3;2** double mutant seeds was only 30% (Fig. 3C, E). Furthermore, the germination percentages of the seeds of three **TIP3;1-RNAi/tip3;2** transgenic lines were further reduced to 1–10% (Fig. 3C, E). The seed germination percentage was <50% for **tip3;1/tip3;2** and **TIP3;1-RNAi/tip3;2** seeds after 3 d of the CDT, whereas for the **tip3;1**, **tip3;2**, and WT seeds, the germination percentage was <50% after 5 d of the CDT (Fig. 3C). Unlike the severe alleles of the **AB3** mutant, **abi3-1** and **abi3-7** seeds are desiccation tolerant but with decreased longevity.
(Ooms et al., 1993; Bies-Etheve et al., 1999; Tesnier et al., 2002). abi3-1 mutant seeds were also subjected to the CDT. The seed germination percentage decreased to 10% at 2 d after the CDT and to <1% after 3 d (Fig. 3D), which was even lower than that of tip3 knockdown mutant seeds. At 4 d after the CDT, abi3-1 seeds cannot germinate (Fig. 3F). A tetrazolium assay confirmed that the seeds of the tip3;1/tip3;2 double mutant and three TIP3;1-RNAi/tip3;2 transgenic lines began to lose viability 3 d after the CDT, which was earlier than observed in the WT, tip3;1, and tip3;2 mutants (Fig. 4A). Again, the abi3-1 mutant was the most sensitive to the CDT, as its seeds started to lose viability after 2 d. Taken together, these results show that TIP3s are required for seed longevity.

Knockdown of TIP3;1 and TIP3;2 results in the elevated accumulation of hydrogen peroxide upon CDT

One of the most critical factors that influence seed ageing is the accumulation of reactive oxygen species (ROS) in seeds (Bailly, 2004). ROS lead to lipid peroxidation, DNA damage, and inactivation of enzymes. The genes encoding proteins which can scavenge ROS or repair DNA damage and protect proteins were reported to be involved in seed longevity and seed viability (Sattler et al., 2004; Oge et al., 2008; Waterworth et al., 2010; Chen et al., 2012; Verma et al., 2013; Wang et al., 2014). DAB staining showed that the H$_2$O$_2$ contents in seeds increased during the CDT and

Fig. 4. TIP3s are involved in maintaining seed viability during the CDT. (A) Seed viability after a 0–7 d CDT. Seed viability was analysed by tetrazolium staining. (B) Staining of H$_2$O$_2$ in the embryos of Col and tip3;1/tip3;2 seeds submitted to a CDT for 0–7 d. Seeds used for the CDT were harvested at the same time and stored for 2 weeks prior to the assay.
accumulated to higher levels in tip3;1/tip3;2 seeds than in WT seeds (Fig. 4B).

TIP3;1 and TIP3;2 are activated by ABI3 during seed maturation

The transcription factor ABI3 is involved in seed desiccation tolerance and seed longevity (Ooms et al., 1993; Tesnier et al., 2002). TIP3 genes are seed-specific genes during seed maturation, and tip3 knockout mutant seeds exhibit a decrease of seed longevity similar to the seed longevity phenotype of abi3-1 and abi3-7. It was hypothesized that TIP3s may maintain seed longevity under the expressional regulation of ABI3. To test whether the seed-specific transcription factors ABI3 or FUS3 are involved in the regulation of TIP3 gene expression in seeds, the presence of TIP3 gene transcripts in the corresponding mutant seeds was investigated. As expected, TIP3;1 and TIP3;2 transcripts were not detectable in abi3-6 mutant seeds (Fig. 5A). The abi3-6 allele contains a deletion in ABI3 which causes a premature stop codon and leads to translation of a short form protein containing only the A1 domain but not the B1, B2, and B3 domains. The expression levels of TIP3 genes in the fus3-3 mutant decreased ~50% compared with those of the WT (Col) (Fig. 5A). The protein levels of TIP3s decreased significantly in the abi3-6 and fus3-3 mutants (Fig. 5B). The expression levels of ABI3 in abi3-6 and fus3-3 mutant seeds were also analysed. In fus3-3 seeds, ABI3 expression decreased to 50% compared with the WT (Supplementary Fig. S5 at JXB online). Therefore, the reduction of TIP3 gene expression in fus3-3 correlates with decreased expression of ABI3 in fus3-3 mutant seeds. The amount of TIP3 transcripts and the abundance of proteins were reduced to varying degrees in these abi3 mutants (Supplementary Fig. S6). TIP3;1 promoter activity was also reduced in the abi3-6 mutant. No green fluorescent protein (GFP) fluorescence and GFP protein expression could be detected in isolated abi3-6 embryos transformed with Pro TIP3;1:GFP (Supplementary Fig. S7). Taken together, these results suggest that ABI3 is
required for TIP3 gene expression and protein accumulation in mature seeds.

Compared with the empty vector, transient expression of ABI3 in the protoplasts slightly increased the activity of the TIP3:1 and TIP3:2 promoters (Fig. 5C). ABA alone could not activate TIP3 promoters, but addition of ABA to ABI3-expressing protoplasts caused drastic induction of TIP3:1 and TIP3:2 promoter activity by 279- and 150-fold, respectively, as indicated by the LUC/REN ratio (Fig. 5C). TIP3 proteins accumulated in ABA-treated protoplasts expressing ABI3, but not in the protoplasts expressing FUS3 (Fig. 5E). Consistent with other seed-specific genes (Parcy et al., 1994), ectopic expression of ABI3 also led to the accumulation of TIP3 transcripts as well as TIP3 proteins in vegetative tissues only when treated with ABA (Fig. 5D, F). These results suggest that ABI3 can activate the expression of TIP3 genes in the presence of ABA and is a transcriptional regulator of TIP3 genes.

ABI3 binds to the RY motifs of TIP3 promoters

The B3 domain of ABI3 has DNA binding specificity and recognizes the RY motif (CATGCA) (Suzuki et al., 1997). Promoter sequence analysis showed that TIP3:1 and TIP3:2 promoters possess three and one potential RY motif, respectively (Promoters possess three and one potential RY motif, respectively (Fig. 5C)). This result suggests that ABI3 can activate the expression of TIP3 genes in the presence of ABA and is a transcriptional regulator of TIP3 genes.

Transient expression assays were performed with the TIP3:1 promoter mutated in RY1, RY2, and RY3 motifs and the TIP3:2 promoter mutated in the RY motif, respectively. Mutations in RY motifs caused reduction of both TIP3 promoter activities (Fig. 6B), suggesting that the RY motifs are required for the promoter activities of TIP3 genes. To determine further which RY motif is important for TIP3:1 promoter activity, promoters containing mutations in the RY motif were fused to the GUS reporter gene and transgenic Arabidopsis plants were generated. GUS expression in transgenic seeds of different lines was determined by qRT-PCR. Mutation of the RY3 or RY1 motif caused a slight reduction in GUS expression, while mutation of the RY2 motif caused a more significant reduction in GUS expression (Fig. 6C). Additional mutations in RY3 or in the RY1 and RY3 motifs did not further reduce the activities of promoters containing a mutation in the RY2 motif (Fig. 6C). This result suggests that the RY2 motif is essential for TIP3:1 expression in seeds.

The EMSA was performed to test whether ABI3 directly binds to the RY2 and RY motifs in the TIP3:1 and TIP3:2 promoters, respectively. The retarded protein–nucleotide complexes were detected in the presence of the B3 domain of ABI3 protein and biotin-labelled RY motifs from TIP3:1 and TIP3:2 promoters. The binding activity increased with increasing concentration of ABI3-B3 protein (Fig. 6A). To determine whether RY motifs are critical for the activation of TIP3 promoters by ABI3, transient expression levels of retarded complexes

Fig. 6. ABI3 binds to the TIP3 promoters through their RY motifs. (A) Diagram of the TIP3:1 and TIP3:2 promoter regions. The RY motifs are shown in black boxes. (B) Transient expression assay with mutant TIP3:1 and TIP3:2 promoters. The TIP3:1 mutant promoter contains mutations in the RY1, RY2, and RY3 motifs. The TIP3:2 mutant promoter contains a mutation in the RY motif. Protoplasts were transformed with the effector plasmid containing ABI3 and treated with 5 μM ABA. Values are means ±SD, n=3. (C) Relative expression levels of the GUS reporter gene driven by the TIP3:1 promoters with or without mutations in the RY motifs. RNA was extracted from seeds of 10 independent transgenic lines carrying the WT or mutant promoters fused to GUS. Each point represents the mean of three replicates of one transgenic line, and SD values were omitted for clarity. (D and F) EMSA demonstrating the binding of the B3 domain of ABI3 to the RY2 element in the TIP3:1 promoter (D) or the RY element in the TIP3:2 promoter (F). The numbers indicate the amount of B3 domain of ABI3 protein used in the assays. (E and G) Binding specificity of ABI3 protein to the RY2 element in the TIP3:1 promoter (E) and the RY element in the TIP3:2 promoter (G). Binding specificity was demonstrated with competition experiments by adding 40- or 200-fold excessive non-labelled WT or mutant probes. Arrows indicate the gel retardation complexes formed between RY elements and the B3 domain of ABI3 protein.
decreased (Fig. 6E, G). Additionally, ABI3-B3 did not bind to unlabelled TIP3;1 or TIP3;2 probes harbouring mutations in the RY motifs, and the levels of retarded complex did not decrease. Yeast one-hybrid assays and DPI-ELISA also showed that ABI3 binds RY elements from TIP3 promoters (Supplementary Fig. S8 at JXB online).

TIP3;2 facilitates both water and hydrogen peroxide diffusion

In addition to transporting water, some TIPs and plasma membrane intrinsic proteins (PIPs) facilitate H$_2$O$_2$ diffusion across the membrane (Bienert et al., 2007, 2014; Dynowski et al., 2008; Hooijmaijers et al., 2012). In order to understand the connection between TIP3 transport activity and biological function, the water and H$_2$O$_2$ permeability of TIP3s was analysed. To test whether TIP3;1 and TIP3;2 have water channel activity, hypo-osmotic yeast protoplast swelling assays were performed. Hypo-osmotic shock causes water influx and bursting of yeast protoplasts, which could be monitored by a decrease at OD$_{600}$. The yeast protoplasts expressing TIP3;1 or TIP3;2 burst much more quickly than protoplasts transformed with empty plasmid (Supplementary Fig. S9 at JXB online), suggesting that both TIP3;1 and TIP3;2 have water channel activity.

To determine whether TIP3;1 and/or TIP3;2 is permeable to H$_2$O$_2$, yeast cells transformed with TIP3 cDNAs were grown on synthetic medium containing different concentrations of H$_2$O$_2$. TIP1;1 and PIP2;5, which can facilitate H$_2$O$_2$ diffusion across the membrane, were used as positive controls. Three yeast strains differing in H$_2$O$_2$ sensitivity, namely Δdur3, Δyap1, and Δskn7, were used. The result of the growth test showed that the expression of TIP3;2 significantly reduced cell growth and survival on medium containing H$_2$O$_2$ (Fig. 7A). When TIP3;1 was expressed in yeast, the growth of yeast cells was not significantly changed in the presence of H$_2$O$_2$ compared with the negative controls.

TIP3-mediated uptake of H$_2$O$_2$ was further confirmed by using CM-H$_2$DCFDA, a dye which was used to measure the ROS level in living cells. Upon exposure to H$_2$O$_2$, the intracellular level of accumulated ROS was higher in TIP3;2 transformants compared with cells transformed with the empty vector (Fig. 7B). TIP1;1 showed higher H$_2$O$_2$ permeability than TIP3;2 and PIP2;5. TIP3;1 yeast transformants showed almost the same increase in the intracellular level of ROS compared with cells transformed with the empty vector.

Fig. 7. TIP3;2 facilitates H$_2$O$_2$ diffusion. (A) Survival test of three different yeast strains transformed with TIP3 genes on medium containing H$_2$O$_2$. Yeast strains Δdur3, Δyap1, and Δskn7 were transformed with pXY212 (or derivatives of pXY212 carrying AQP cDNAs). Yeast cells were diluted to an OD$_{600}$ of 0.1 with SD-Ura liquid medium, and 10 μl were spotted onto SD-Ura medium containing various concentrations of H$_2$O$_2$. Numbers indicate the concentration of H$_2$O$_2$ (mM). Photographs were taken 3 d after incubation at 30 °C. (B) TIP3;2 mediates H$_2$O$_2$ diffusion across the membrane in yeast. The fluorescence of CM-H$_2$DCFDA-loaded yeast cells transformed with pXY212 or pXY212 carrying the indicated AQP cDNAs was measured 30 min after incubation with 0, 2, or 10 mM H$_2$O$_2$. Histograms represent the average increase in fluorescence for 30 min incubation. Data are means ±SD, n=3.
These results indicate that TIP3;2 but not TIP3;1 can facilitate H_2O_2 permeation.

Discussion

TIP3 proteins are involved in maintaining seed longevity and contribute to the ABI3-controlled seed longevity pathway

The AQP family is highly diverse in higher plants and is represented by >30 members in one plant species. Therefore, AQPs belonging to the same group may have functional redundancy (Li et al., 2013). This observation may explain why only a few plant AQPs possess clear phenotypes. The protein sequence of TIP3;1 shares 85% identity with that of TIP3;2, suggesting that these two proteins may be functionally redundant. Indeed, only the tip3;1/tip3;2 double mutant (and not the tip3;1 or tip3;2 single mutant) exhibited a significant difference in seed longevity compared with the WT. Seeds of the tip3;1/tip3;2 double mutant were more sensitive to prolonged storage and artificial aging than the WT (Figs 3, 4). The abundance of TIP3s in seeds appears to be positively correlated with seed longevity, as the TIP3;1-RNAi/tip3;2 lines were more sensitive to the CDT than the tip3;1/tip3;2 mutant, which exhibits higher levels of TIP3;1 (Figs 2E, 3, 4).

Seed development can be divided into several phases, namely embryogenesis, seed filling, late maturation, and pod abscission. Two important traits of seeds, desiccation tolerance (i.e. ‘the ability to survive complete drying and rehydration’) and seed longevity (i.e. ‘the ability to survive the dry state for prolonged periods of time’), are acquired at seed filling and the later maturation phase, respectively (Verdier et al., 2013). ABI3 has been shown to be involved in both desiccation tolerance and seed longevity. The severe abi3 mutant alleles such as abi3-4 and abi3-6, which have a short form of ABI3 due to a mutation-induced premature stop codon, are intolerant to seed desiccation. Two mutant alleles, abi3-1 and abi3-7, which contain one or two amino acid substitutions in the B2 and B3 domain, are tolerant to seed desiccation but show reduction in seed longevity (Ooms et al., 1993; Nambara et al., 1994; Bies-Etheve et al., 1999; Tesnier et al., 2002). Other weak abi3 alleles were not reported to have a reduction in seed longevity. The different effects may be related to the differences in downstream target genes affected.

A systematic analysis of the *Medicago* seed development process by transcriptomic and metabolomic profiling (Verdier et al., 2013), as well as studies in *Arabidopsis*, revealed that LEA proteins are more closely related to acquisition of desiccation tolerance, whereas sHSPs function in desiccation tolerance and longevity (Wehmeyer and Vierling, 2000; Prieto-Dapena et al., 2006). In *Arabidopsis*, ABI3 directly activates the expression of the transcription factor HSFA9, and HSFA9 activates the expression of sHSPs in seeds (Kotak et al., 2007). Ectopic expression of *HaHSFA9* in *Arabidopsis* leads to the activation of sHSP expression and results in increased seed longevity as well as enhanced desiccation tolerance in seedlings (Prieto-Dapena et al., 2006). Desiccation tolerance and longevity pathways are also connected and share common components. Several lines of evidence suggest that some (but not all) LEA proteins are implicated in seed longevity. In *Arabidopsis*, a reduction in the levels of three seed-expressed dehydrins results in decreased longevity (Hundertmark et al., 2011). In *Medicago*, the four most abundant seed LEA proteins are correlated with longevity (Chatelain et al., 2012). These LEA genes are highly abundant in seeds and also regulated by the ABI3 transcription factor. ABI3 therefore functions as a master regulator that regulates the expression of genes in seeds, including *LEA* and *sHSP* genes, and controls both the desiccation tolerance and longevity pathways (Prieto-Dapena et al., 2006; Hundertmark et al., 2011).

Here, TIP3;1 and TIP3;2 were identified as members of ABI3 target genes, and TIP3s were added as new components in the seed longevity regulatory network. TIP3 genes are direct targets of ABI3, as demonstrated by ChiP-chip analysis (Monke et al., 2012). Systematic analyses was carried out to demonstrate that TIP3;1 and TIP3;2 are target genes of the ABI3 transcription factor, providing evidence that the B3 domain of ABI3 can bind directly to the RY motifs in the TIP3 promoters; ABI3 is critical for the TIP3 promoter activity in response to ABA and TIP3 gene expression in mature seeds (Figs 5, 6). ABI3 therefore plays a critical role in seed longevity through the expressional regulation of TIP3, sHSP, and LEA genes.

TIP3 transport function and seed longevity

Seed longevity is an important genetic trait for preservation of seed viability and seed quality during storage. Orthodox seeds keep their capacity to germinate before and after storage, but gradually lose their viability during storage, which is influenced by genetic factors and environmental factors. Seed storage temperature and seed moisture content are the two most important factors that control seed deterioration and viability loss during storage (Roberts and Ellis, 1989; Bradford et al., 1993; McDonald, 1999). The underlying mechanism of TIP3s in maintaining seed longevity is not clear. TIP3;2 has dual activities on water and H_2O_2 permeability (Fig. 7; Supplementary Fig. S9 at JXB online). Some PIPs and TIPs possess the function to facilitate the permeation of H_2O_2 across membranes, as demonstrated by growth and survival assays with yeast cells expressing AQPs and by H_2O_2-detecting fluorescence assays (reviewed by Bienert and Chaumont, 2014). These identified AQPs are mostly expressed in vegetative tissues, but the biological significance of H_2O_2 permeation was not addressed. Here it was found that seed-specific TIP3;2 but not TIP3;1 also mediated diffusion of H_2O_2 across the membrane in the yeast system. ROS are detrimental to seed longevity due to their deteriorative effects on lipids, nucleic acids, and proteins. Vacuoles potentially have a function in ROS detoxification, but the direct evidence for this is still lacking (Mittler et al., 2004; Smirnoff, 2005). TIP3;2 may be involved in H_2O_2 permeation and detoxification in seeds. However, the tip3;1 or tip3;2 single mutant does not show a significant decrease in seed longevity and only the tip3;1/tip3;2 double mutant is very sensitive to artificial
aging and accumulates a higher amount of \(\text{H}_2\text{O}_2 \) in the CDT. This result suggests that TIP3;1 and TIP3;2 are functionally redundant in maintenance of seed longevity, and the decrease in seed longevity of the double mutant is not only caused by loss of \(\text{H}_2\text{O}_2 \) permeability of TIP3;2. The activities of TIP3s in water permeation are important for seed longevity, since the remaining 30% of TIP3;1 expression in the tip3;1/tip3;2 double mutant resulted in higher seed longevity than TIP3;1-RNAi/tip3;2 (Figs 2D, 3C, E). Consistently, a low concentration of \(\text{HgCl}_2 \), which is an inhibitor of AQP, also affect the basal thermostolerance of seeds (Supplementary Fig. S4A).

Water is an essential element during seed desiccation and seed germination, and plays a critical role in the regulation of various seed metabolic processes. Seed moisture content is an important factor for seed deterioration, and the appropriate moisture content can increase seed longevity (Roberts and Ellis, 1989; McDonald, 1999). Lipid auto-oxidation generates various ROS and causes seed deterioration at a moisture content <6%. Above a 14% moisture content, lipid oxidation may again be stimulated by the activity of hydrolytic oxidative enzymes (Labuza et al., 1972; Roberts and Ellis, 1989; McDonald, 1999; Shaban, 2013). Moreover, under a high moisture content, antioxidant enzymes (such as catalase, superoxide dismutase, and glutathione reductase) gradually lose activity and ROS will be accumulated (Bailly et al., 1996; Bailly, 2004). This suggests that changes in water relations from seed development to seed storage and stable water relations in mature seeds may be important for seed longevity. ROS generation may be caused by over-high and over-low seed moisture content. However, the seed moisture content of tip3 double mutants is not significantly changed compared with that of WT mature seeds. Along with the changes in environmental humidity, TIP3s may mediate cell-cell and intracellular water transport and help embryo cells maintain stable water relations in prolonged storage or stressed conditions. Higher \(\text{H}_2\text{O}_2 \) accumulation in tip3 double mutants might be caused by impaired water transport regulation during seed desiccation and seed storage as a result of loss of water permeability of TIP3s.

In the present study, evidence was provided that seed-specific TIP3;1 and TIP3;2 play a role in maintaining seed longevity during seed ageing. TIP3;2 but not TIP3;1 functions in \(\text{H}_2\text{O}_2 \) permeation. ABI3 plays the critical role in seed longevity through the expression regulation of seed-specific gene expression. TIP3s are new members of ABI3 target genes during seed maturation, which work together with sHSPs and LEAs to control seed longevity.

Supplementary data

Supplementary data are available at *JXB* online.

Figure S1. Immunoblot analysis of membrane proteins from yeast cells transformed with *AtTIP1;1, AtTIP2;1, AtTIP3;1, AtTIP3;2, AtTIP4;1, AtTIP5;1*, or empty vector pYYX212.

Figure S2. Detection of the GFP fluorescence in *Pro* _**TIP3;1***_GFP transgenic seeds.

Figure S3. Growth of tip3;1, tip3;2, and tip3;1/tip3;2 mutants compared with Col.

Figure S4. Basal thermotolerance assays of Col, tip3;1, tip3;2, and tip3;1/tip3;2 seeds.

Figure S5. qRT-PCR analysis of *ABI3* transcripts in abi3-6 and *fas3-3* seeds.

Figure S6. Expression analysis of some seed-expressed genes in seeds of different *abi3* alleles.

Figure S7. The TIP3;1 promoter is inactive in developing seeds and embryos of abi3-6.

Figure S8. ABI3 binds to TIP3s promoters containing RY motifs.

Figure S9. Yeast protoplast swelling assays.

Table S1. List of primers used in this study.

References

Bailly C. 2004. Active oxygen species and antioxidants in seed biology. *Seed Science Research* 14, 93–107.

Bailly C, Benamar A, Corbineau F, Come D. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. *Physiologia Plantarum* 97, 104–110.

Bienert GP, Chaumont F. 2014. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. *Biochimica et Biophysica Acta* 1840, 1596–1604.

Bienert GP, Heinen RB, Berny MC, Chaumont F. 2014. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide. *Biochimica et Biophysica Acta* 1838, 216–222.

Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schojerring JK, Jahn TP. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. *Journal of Biological Chemistry* 282, 1183–1192.

Bies-Etheve N, da Silva Conceicao A, Giraudat J, Koornneef M, Leon-Kloosterziel K, Valon C, Delseny M. 1999. Importance of the B2 domain of the Arabidopsis *ABI3* protein for Em and 25S albumin gene regulation. *Plant Molecular Biology* 40, 1045–1054.

Bradford KJ, Tarquis AM, Duran JM. 1993. A population-based threshold-model describing the relationship between germination rates and seed deterioration. *Journal of Experimental Botany* 44, 1225–1234.

Brand LH, Kirchler T, Hummel S, Chaban C, Wood D. 2010. DPL-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. *Plant Methods* 6, 25.

Chatelain E, Hundertmark M, Leprince O, Le Gall S, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J. 2012. Temporal profiling of the heat-stable proteome during late maturation of Medicago trunculata seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. *Plant, Cell and Environment* 35, 1440–1455.

Chaumont F, Barrieu F, Wojcik E, Chrisepeas MJ, Jung R. 2001. Aquaporins constitute a large and highly divergent protein family in maize. *Plant Physiology* 125, 1208–1215.

Acknowledgements

We thank Dr Eiji Nambara for providing *abi3*–6 mutant seeds, Dr Roger P. Hellens for providing the dual-luciferase reporter vectors (pGREENII 62-SK and pGREENII 0800–LUC), and Professor Nikolaus von Wirén for providing 23346c and *Abi3* yeast strains. We thank Professor S. Teng and Dr X. Cui for valuable suggestions and comments on this work. This work was supported by the National Natural Science Foundation of China (grant nos 31070229, 31270873), the Shanghai Institute of Plant Physiology & Ecology-South China Botanical Garden Joint Fund, Strategic Pioneer Project of CAS (XDA04020202-18), and the China Manned Space Program (TG-2 mission).

Supplementary data

Supplementary data are available at *JXB* online.

Figure S1. Immunoblot analysis of membrane proteins from yeast cells transformed with *AtTIP1;1, AtTIP2;1, AtTIP3;1, AtTIP3;2, AtTIP4;1, AtTIP5;1*, or empty vector pYYX212.

Figure S2. Detection of the GFP fluorescence in *Pro* _**TIP3;1***_GFP transgenic seeds.

Figure S3. Growth of tip3;1, tip3;2, and tip3;1/tip3;2 mutants compared with Col.

Figure S4. Basal thermotolerance assays of Col, tip3;1, tip3;2, and tip3;1/tip3;2 seeds.

Figure S5. qRT-PCR analysis of *ABI3* transcripts in abi3-6 and *fas3-3* seeds.

Figure S6. Expression analysis of some seed-expressed genes in seeds of different *abi3* alleles.

Figure S7. The TIP3;1 promoter is inactive in developing seeds and embryos of abi3-6.

Figure S8. ABI3 binds to TIP3s promoters containing RY motifs.

Figure S9. Yeast protoplast swelling assays.

Table S1. List of primers used in this study.
Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S. 2012. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of Experimental Botany 63, 4107–4121.

Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ. 1996. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. The Plant Cell 8, 587–599.

Delmas F, Sankaranarayanan S, Deb S, Widdup E, Bournonville C, Bollier N, Northey JG, McCourt P, Samuel MA. 2013. ABI3 controls embryo degreening through Mendel’s I locus. Proceedings of the National Academy of Sciences, USA 110, E3888–E3894.

Dykowski M, Schaaf G, Loque D, Morán O, Ludewig U. 2008. Plant plasma membrane water channels conduct the signalling molecule H₂O₂. Biochemical Journal 414, 53–61.

Gattolin S, Sorieul M, Frigerio L. 2011. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Molecular Plant 4, 180–189.

Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. The Plant Cell 4, 1251–1261.

Hellsen RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karuinahtemari S, Gleave AP, Naing WA. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13.

Hofte H, Hubbard L, Reizer J, Ludovid D, Herman EM, Chrispeels MJ. 1992. Vegetative and seed-specific forms of tonoplast intrinsic protein in the vacuolar membrane of Arabidopsis thaliana. Plant Physiology 99, 561–570.

Hooijmaijers C, Rhee J, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H. 2012. Hydrogen peroxide permeability of plasma membranes from Arabidopsis thaliana. Journal of Plant Research 125, 425–430.

Hundertmark M, Buitink J, Leprince O, Hincha DK. 2011. The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research 21, 165–173.

Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC, Park J, Lee N, Kim W, Lim S, Choi G, Shim SH. 2006. Identification of 33 rice aquaporin genes and analysis of their expression patterns. Journal of Molecular Biology 361, 681–697.

Johnson KD, Herman EM, Chrispeels MJ. 1989. An abundant, highly conserved tonoplast protein in seeds. Plant Physiology 91, 1006–1013.

Koonneef M, Reuling G, Karssen CM. 1984. The isolation and characterization of abscisic-acid insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum 61, 377–383.

Kotak S, Vierling E, Baumlein H, von Koskull-Doring P. 2013. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. The Plant Cell 6, 561–577.

Li G, Santoni V, Maurel C. 2013. Plant aquaporins: roles in plant physiology. Biochimica et Biophysica Acta 1840, 1547–1582.

Liu LH, Ludewig U, Gassert B, Frommer WB, von Wieren N. 2003. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology 133, 1220–1228.

Loque D, Ludewig U, Yuan L, von Wieren N. 2005. Tonoplast intrinsic proteins AtTIP2:1 and AtTIP2:3 facilitate NH₃ transport into the vacuole. Plant Physiology 137, 671–680.

Ludvid D, Hofte H, Himelblau E, Chrispeels MJ. 1992. The expression pattern of the tonoplast intrinsic protein gamma-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiology 100, 1633–1639.

Mao J, Zhang YC, Sang Y, Li QH, Yang HQ. 2005. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proceedings of the National Academy of Sciences, USA 102, 12270–12275.

Martre P, North GB, Nobel PS. 2001. Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiology 126, 352–362.

Maurel C, Chrispeels MJ. 2001. Aquaporins. A molecular entry into plant water relations. Plant Physiology 125, 135–138.

Maurel C, Kado RT, Guern J, Chrispeels MJ. 1995. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. EMBO Journal 14, 3028–3035.

McCarty DR, Hattori T, Carson CB, Vasil I, Lazar M, Vasil IK. 1991. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66, 895–905.

McDonald MB. 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology 27, 177–237.

Mittler R, Vanderzaan E, Góry, M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.

Monke G, Seifert M, Keilwagen J, et al. 2012. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Research 40, 8240–8254.

Nambara E, Keith K, McCourt P, Naito S. 1994. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant and Cell Physiology 35, 509–513.

Oge L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P. 2008. Protein repair l-isocapryl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell 20, 3022–3037.

Ooms J, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM. 1993. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-inensitive abi3 mutants). Plant Physiology 102, 1185–1191.

Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. The Plant Cell 6, 1567–1582.

Park J, Lee N, Kim W, Lim S, Choi G. 2011. ABI3 and PIL5 collaboratively activate the expression of Somnus by directly binding to its promoter in imibed Arabidopsis seeds. The Plant Cell 23, 1404–1415.

Prieto-Dapena P, Castano R, Almoguera C, Jordano J. 2006. Improved resistance to controlled deterioration in transgenic seeds. Plant Physiology 142, 1102–1112.

Reusch S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K. 2013. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8, e79052.

Roberts EH, Ellis RH. 1989. Water and seed survival. Annals of Botany 63, 39–52.

Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W. 2000. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. The Plant Cell 12, 35–52.

Roschitztadz H, Fuentes I, Vasquez M, Corvalan C, Leon G, Gomez I, Araya A, Holique L, Vicente-Carbajosa J, Jordana X. 2009. A nuclear gene encoding the iron–sulfur subunit of mitochondrial complex II is regulated by B3 domain transcription factors during seed development in Arabidopsis. Plant Physiology 150, 84–95.

Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology 46, 1568–1577.

Sattler SE, Gilliland LU, Magalhães-Lundback M, Pollard M, DellaPenna D. 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell 16, 1419–1432.

Savage DF, Stroud RM. 2007. Structural basis of aquaporin inhibition by mercury. Journal of Molecular Biology 368, 607–617.

Shaban M. 2013. Review on physiological aspects of seed deterioration. International Journal of Agriculture and Crop Sciences 6, 627–631.

Smirnoff N. 2005. Antioxidants and reactive oxygen species in plants. Oxford: Wiley-Blackwell Publishing.
Suzuki M, Kao CY, McCarty DR. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. *The Plant Cell* **9**, 799–807.

Suzuki M, McCarty DR. 2008. Functional symmetry of the B3 network controlling seed development. *Current Opinion in Plant Biology* **11**, 548–553.

Tesnier K, Stookman-Donkers HM, Van Pijlen JG, Van der Geest AHM, Bino RJ, Groot SPC. 2002. A controlled deterioration test for Arabidopsis thaliana reveals genetic variation in seed quality. *Seed Science and Technology* **30**, 149–165.

Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C. 2006. Expression and inhibition of aquaporins in germinating Arabidopsis seeds. *Plant and Cell Physiology* **47**, 1241–1250.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* **3**, RESEARCH0034.

Verdier J, Lalanne D, Pelletier S, et al. 2013. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. *Plant Physiology* **163**, 757–774.

Verma P, Kaur H, Petia BP, Rao V, Saxena SC, Majee M. 2013. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. *Plant Physiology* **161**, 1141–1157.

Wang YY, Hecker AG, Hauser BA. 2014. The APX4 locus regulates seed vigor and seedling growth in Arabidopsis thaliana. *Planta* **239**, 909–919.

Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE. 2010. A plant DNA ligase is an important determinant of seed longevity. *The Plant Journal* **63**, 848–860.

Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E. 1996. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. *Plant Physiology* **112**, 747–757.

Wehmeyer N, Vierling E. 2000. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. *Plant Physiology* **122**, 1099–1108.

Wharton MJ. 1955. The use of tetrazolium test for determining the viability of seeds of the genus Brassica. *Proceedings of the National Academy of Sciences, USA* **20**, 81–88.

Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS. 2009. Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. *Plant Methods* **5**, 16.

Wudick MM, Luu DT, Tournaire-Roux C, Sakamoto W, Maurel C. 2014. Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. *Plant Physiology* **164**, 1697–1706.

Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. *Nature Protocols* **2**, 1565–1572.

Zhang DY, Ali Z, Wang CB, et al. 2013. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (*Glycine max* L.). *PLoS One* **8**, e66312.