Beauty Production at HERA

Martin Brinkmann, DESY
for the H1 and ZEUS Collaborations

LOWX2011

3rd - 7th June 2011
Kinematic Quantities:

- Center of mass Energy squared: \(s = (P + k)^2 \)
- Photon virtuality: \(Q^2 = -q^2 = (k - k')^2 \)
- Inelasticity: \(y = \frac{Pq}{Pk} \)
- Bjorken Variable: \(x = \frac{Q^2}{2Pq} \)

Kinematic Regimes:

- \(Q^2 \approx 0 \text{ GeV}^2 \) : Photoproduction (PHP)
- \(Q^2 \geq 1 \text{ GeV}^2 \) : Deep inelastic scattering (DIS)
Production of Beauty Quarks

- Predominantly via boson gluon fusion

- Always hard scale given by mass (in addition to Q^2, p_t^2, ...)

- Problem in pQCD with more than one hard scale \rightarrow need different schemes in pQCD to consider scales

QCD factorisation:

$$\sigma_B \propto \text{PDF} \otimes \text{hard ME} \otimes \text{fragmentation}$$
• Fractions shown here from a H1 lifetime tag analysis

• Beauty fraction of total cross section only 0.001 – 0.01

• Beauty analyses at HERA statistically limited (cross section measurements via full reconstruction of B hadrons not possible)
Methods for Beauty Tagging

Semileptonic decay:
• Reconstruction of decay leptons with particle identification

Large Mass:
• Make use of mass effects of b quark: decay leptons with high \(p_{t,rel} \) (lepton, jet), high \(m_{jet} \),...

Long lifetime:
• Reconstruct secondary vertex and use decay length significance: \(S_d = d/\sigma_d \)
• Impact parameter significance of displaced tracks \(S_\delta = \delta/\sigma_\delta \)
Tagging of beauty:

- Reconstruct two low p_t electrons from semileptonic decays ($1 \text{ GeV} < p_t^e < 5 \text{ GeV}$)
- Analysis possible due to very good electron identification at all (π misidentification rate only a few per mille!)

→ Access to lowest $p_t(b)$ values ever measured in ep
→ Agreement between data and NLO calculation (FMNR)
Beauty in PHP using Secondary Vertex

- Reconstruction of secondary vertices (belonging to jet)
- Use decay length significance and invariant mass of tracks

\[\mathcal{L} = 133 \text{ pb}^{-1} \]

- Predicted Cross sections from NLO QCD calculation (FMNR) in \(p_T^{\text{jet}} \) and \(\eta^{\text{jet}} \)
 in agreement with data
- Theoretical uncertainties larger than experimental ones

DESY-11-067
→ Measurements consistent with each other over a wide $p_t(b)$ range

→ In general good agreement between data and NLO calculation (FMNR)
Beauty Jets in DIS

$\mathcal{L} = 189 \text{ pb}^{-1}$

- Use sensitivity to lifetime
- Compare data with NLO calculation

• HVQDIS

$Q^2 > 6 \text{ GeV}^2, \ 0.07 < y < 0.6$

$E_T^{\text{jet}} > 6 \text{ GeV}, -1 < \eta^{\text{jet}} < 1.5$

$Q^2 > 6 \text{ GeV}^2, \ 0.07 < y < 0.6$

$E_T^{\text{jet}} > 6 \text{ GeV}, -1 < \eta^{\text{jet}} < 1.5$

- NLO QCD calculation describes data well for both scales
Beauty in DIS using Secondary Vertex

\[\mathcal{L} = 354 \text{ pb}^{-1} \]

- Compare data with LO MC RAPGAP and NLO calculation HVQDIS

- Reasonable agreement with NLO QCD (except low \(Q^2 \) and low \(x \))
Beauty in DIS using $b \rightarrow e$ Decays

$\mathcal{L} = 363$ pb$^{-1}$

$Q^2 > 10$ GeV2, $0.05 < y < 0.7$

$0.9 < p_t^e < 8$ GeV, $|\eta^e| < 1.5$

Tagging of beauty:

- Reconstruction of a jet ($p_t^{\text{jet}} > 2.5$ GeV) together with secondary vertex
- Requirement of electron candidate associated with the jet ($p_t^{\text{jet}} > 2.5$ GeV)

\rightarrow Good agreement between data and NLO QCD calculation (HVQDIS) observed

\rightarrow Also LO + PS MC RAPGAP describes data well in shape
Beauty in DIS using $b \rightarrow \mu$ Decays

$\mathcal{L} = 114$ pb$^{-1}$

$Q^2 > 2 \text{ GeV}^2$, $0.05 < y < 0.7$

$E_{t,\text{jet}} > 5 \text{ GeV}$, $-2 < \eta^{\text{jet}} < 2.5$

$p_{t,\mu} > 1.5 \text{ GeV}$, $\eta^{\mu} > -1.6$, belonging to jet

Tagging of beauty:

- Reconstruction of a jet ($p_{t,\text{jet}} > 5 \text{ GeV}$)
- Requirement of a muon candidate in cone of $\Delta R < 0.7$ around jet axis

→ Reasonable agreement between data and NLO QCD calculation (HVQDIS) within errors
One way to summarize beauty measurements

Definition of F_2^{bb}:

\[
\frac{d^2 \sigma^{bb}}{dx dQ^2} = \frac{2 \pi \alpha_{em}^2}{Q^4 x} \left[(1 + (1 - y)^2) F_2^{bb}(x, Q^2) - y^2 F_L^{bb}(x, Q^2) \right]
\]

Extracted from measured double differential cross sections

Measurements consistent with each other and with NLO QCD predictions

Gain in precision with HERAII - data

Contribution of F_L^{bb} small!
Summary

- Beauty cross sections measured in PHP and DIS from different final states

- Measurements in good agreement with each other where for PHP differential cross sections in p_t^b and for DIS F_2^{bb} are compared

- Predictions from NLO QCD calculations describe measurements well