Case study

Infective endocarditis following urinary tract infection caused by *Globicatella sanguinis*

Saeko Takahashi\(^a,1\), Chieko Xu\(^a,1\), Tetsuya Sakai\(^a,1\), Kotaro Fujii\(^b,1\), Morio Nakamura\(^a,1\)

\(^a\) Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Japan

\(^b\) Division of Clinical Microbiology, Tokyo Saiseikai Central Hospital, Japan

A R T I C L E I N F O

Keywords:

Globicatella sanguinis

Infective endocarditis

Urinary tract infection

Rapid ID 32 strep

16S rRNA sequencing

A B S T R A C T

We report the first case of infective endocarditis following urinary tract infection (UTI) caused by *Globicatella sanguinis* in an 87-year-old Japanese woman with recurrent episodes of UTI. We identified the pathogen using the Rapid ID32 Strep system. Accurate identification of this infection is important and essential for the effective antimicrobial coverage to this pathogen.

Introduction

G. sanguinis was described in 1992 as a new genus and species of catalase-negative, facultatively anaerobic, non-motile, non-hemolytic, Gram-positive cocci (GPC) forming short chains or pairs by Collins, et al. [1]. Only 42 isolates from clinical specimens and 13 case reports about UTI, bacteremia, or meningitis have been reported (Table 1). These reports suggest that *G. sanguinis* can colonize inguinal skin [2] and aged female patients with a history of cerebrovascular disease are susceptible to *G. sanguinis*. However, the epidemiology and the clinical significance of this pathogen remain largely unknown. *G. sanguinis* is an unusual pathogen that it could be misidentified or misdiagnosed with viridans streptococci (or may be overlooked) due to its colonial morphology [3]. We successfully identified the organism using the Rapid ID32 Strep system. We present the first case of an infective endocarditis by *G. sanguinis* following a UTI.

Case report

An 87 year-old Japanese woman was admitted to our hospital with recurrent episode of UTI, with a fever higher than 38.5 °C for 5 days, and with hematuria despite taking oral levofloxacin 500 mg and acetaminophen 1200 mg daily. She had been bedridden at nursing home since a subarachnoid hemorrhage and surgical construction of ventriculo-peritoneal shunt, and she had gastrostomy 10 years ago. On examination, she had body temperature of 36.5 °C, blood pressure 92/35 mmHg, pulse 84 bpm, respiratory rate 16 breaths/min, and pulse oxygen saturation 98% on room air. Physical examination showed Glasgow Coma Scale (GCS) of 7 (E2, V2, M3), inner lip bleeding, and systolic murmur at cardiac apex. Laboratory data at the admission was leucocyte count 35,600/mL, hemoglobin level 10.7 g/dL, platelet count 4.3000/mL, C-reactive protein 21.1 mg/dL, procalcitonin level 20.5 ng/mL, albumin 1.9 mg/dL, blood urea nitrogen 212 mg/dL, creatinine 3.9 mg/mL, uric acid 11.1 mg/dL, and lactate dehydrogenase 299 IU/L. Urine microscopy showed the presence of leukocytes and numerous bacteria. Abdominal CT scans revealed bilateral hydronephrosis and hydroureretres besides distended urinary bladder. After inserting urinary bladder catheter, pyuria and hematuria were obtained. Urinary gram stain showed GPC (1 +) in pairs and short chains and Gram negative rods (GNR) (2+). She was diagnosed with infected hydronephrosis due to neurogenic bladder and started to receive ceftriaxone (CTRX) 2 g every 24 h empirically.

On day 3, her blood cultures from admission were growing aerobic, a-hemolytic GPC in short chains in 2 of 4 bottles (Fig. 1A, B). On day 4, the isolates were identified as *G. sanguinis* with a high certainty (98.8%) by Rapid ID32 Strep (bioMerieux, Lyon, France). In order to double-
check the results, we performed 16S rRNA sequencing because the species is rare and for confirmation of the diagnosis. Extended-spectrum b-lactamase producing *Escherichia coli* (ESBL-producing *E. coli*) simultaneously was observed in the two sets of blood culture bottles. *G. sanguinis* and ESBL-producing *E. coli* in her urine culture were also identified. She was diagnosed with bacteremia due to UTI caused by both of the organisms. The antimicrobial treatment was altered to meropenem 0.5 g every 12 h, for a 14-day course, considering

Reference	Country	Age	Gender	Underlying conditions	Presenting signs and symptoms	Site of isolation	Infection	Identification	Antibiotic treatment	Outcome
[2] France 56 F N/A meningitis	CSF meningitis	16S rRNA sequencing	CTX, FOM	alive						
[3] USA N/A F N/A blood bacteremia	Rapid ID 32 Strept + BBL	N/A N/A	Crystal Rapid Gram-Positive ID kit + BBL	Crystal Gram-Positive ID kit + RapI d STR	N/A N/A					
[3] USA N/A M N/A urine urinary bacteremia	same as above	N/A N/A								
[3] USA N/A N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 69 M N/A N/A N/A urine urinary bacteremia	same as above	N/A N/A								
[3] USA 85 F N/A N/A urine urinary bacteremia	same as above	N/A N/A								
[3] USA N/A N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 84 F N/A N/A N/A blood sepsis	same as above	N/A N/A								
[3] Canada N/A F N/A N/A urine N/A bacteremia	same as above	N/A N/A								
[3] USA 90 F N/A N/A blood urosepsis	same as above	N/A N/A								
[3] USA 68 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 82 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 79 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA N/A N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 1 M N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 58 M N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 82 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] Canada 2 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 92 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] Canada N/A F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 70 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] Canada 43 F N/A N/A N/A CSF N/A bacteremia	same as above	N/A N/A								
[3] USA 85 M N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] Canada 1 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[3] USA 3 F N/A N/A N/A blood N/A bacteremia	same as above	N/A N/A								
[4] Japan 80 F colon cancer, brain stroke, dementia, HTN	fever, pyuria urinary bacteremia	16S rRNA sequencing	ABPC alive							
[5] Korea 85 F parkinson's disease, asthma, hypertension, staying at nursing home	pain and swelling of left arm, fever	bacteremia	partial 16S rRNA sequencing	VCM + CTRX alive						
[7] USA 72 F obesity, gastric bypass, tabacco	Hip pain Hip synovium prostatic joint infection	ABI 20TREP + Vitek 2 g-Positive ID card + MALDI-TOF MS	VCM alive							
[7] USA 54 F obesity, DM, gastric bypass, tabacco	fatigue and fever	bacteremia	MALDI-TOF MS	LIZD alive						
[12] Taiwan 80 F chronic diarrhea, DM	cardiac arrest	bacteremia	16S rRNA sequencing	N/A died						
[12] Taiwan 92 F intravenous drug use, DM	pneumonia	bacteremia	16S rRNA sequencing	CXM = > CAZ	alive					
[12] Denmark 23 F Right-sided endocarditis, hepatitis vaccitata	blood	bacteremia	Rapid ID32 Strept, partial	16S rRNA sequencing	CXM = > PC	alive				
[13] Denmark 82 F alcoholism's disease, hypertension	dehydration	blood urosepsis	Rapid ID32 Strept, partial	16S rRNA sequencing	PC	alive				
[13] Denmark 56 M Crohn's disease, atrial fibrillation	erysipelas, fever back pain, fever	bacteremia	Rapid ID32 Strept, partial	16S rRNA sequencing	CXM	alive				
[14] Japan 94 M dementia, CHF, nephrolithiasis	VPS meningitis	meningitis	Rapid ID32 Strept, phoenic PMIC/ID-56	SBT = > VCM	CTRX	alive				
[15] Germany 69 F VPS meningitis	meningitis	Rapid ID32 Strept,	Vitek 2 ID	LVFX, CPZ, SBT, AMK = > VCM, LVFX	alive					
[16] India 70 M Craniectomy	meningitis	meningitis	Rapid ID32 Strept,	Vitek 2 ID	LVFX, CPZ, SBT, AMK = > VCM, LVFX	alive				

DM, diabetes mellitus; CHF, chronic heart failure; VPS, ventriculoperitoneal shunt; CSF, cerebrospinal fluid; VCM, vancomycin; CTRX, ceftriaxone; LIZD, linezolid; CXM, cefuroxime; CAZ, cefazidime; PC, penicillin; ABPC/SBT, ampicillin/subbactam; ABPC,levofoxacin ampicillin; CTX, cefotaxime; FOM, fosfomycin; LVFX, levofloxacin; CPZ, cefoperazone; SBT, sulbactam; AMK,amikacin; MEP, meropenem

Table 1 Clinical reported 42 cases of *G. sanguinis* infections.
antimicrobial susceptibility testing results (Table 2) by WalkAway 40 SI system (Beckman Coulter, California, USA) and her renal function test results. Urine culture obtained before treating with meropenem showed the growth of \textit{G. sanguinis} again, but her repeated blood and urine cultures after treatment were negative.

On day 6 of the treatment with meropenem, transthoracic echocardiography revealed a 3 mm (in diameter) vegetation (Fig. 2A) on the mitral valve besides mild aortic, mitral and tricuspid regurgitation. Meeting with Duke’s criteria (1 major and 3 minor criteria), she was eventually diagnosed with IE due to UTI-associated bacteremia. Her CT scans showed there was no abscess formation on the entire body. On day 10 of meropenem, a 2 mm vegetation on left coronary cusp of aortic valve was discovered by transesophageal echocardiography (TEE) (Fig. 2B). We presumed that \textit{G. sanguinis} caused the endocarditis and administered her a 2 week of ampicillin 2 g every 8 h intravenously after completion of the meropenem treatment. After the 2 weeks of ampicillin, no vegetation was detected on TEE. She showed improvement and was discharged from the hospital to a nursing facility. She was in the hospital for 40 days.

Table 2

**Susceptibility Testing Results of \textit{G. sanguinis}.

MIC mg/mL	Interpretation
AMPC/CVA	\(< = 0.25\) *
ABPC	\(< = 0.06\) S
A2M	\(< = 0.25\) S
CDTR-PI	1 *
CPFPM	1 S
CTX	2 I
CTM	\(< = 4\) *
CTRX	2 I
CZOP	1 S
CP	\(< = 4\) S
CLDM	\(< = 0.12\) S
EM	\(< = 0.12\) S
LVFX	8 R
MEPFM	0.25 S
MINO	\(< = 0.5\) S
PG	0.06 S
ST	\(< = 4\) *
VCM	0.25 S

Discussion

We believe that this is the first case of having IE followed with UTI caused \textit{G. sanguinis} complicated with ESBL-producing \textit{E.coli} infection. \textit{G. sanguinis} looks like viridans streptococci in Gram-stain morphology and colonial morphology including hemolysis pattern on sheep blood agar but has difference in not producing leucine aminopeptidase (LAP) and growth in the presence of 6.5% NaCl. Susceptibility to the third-generation cephalosporins is also different: \textit{G. sanguinis} is resistant while a-streptococcus is susceptible [3]. Although we successfully identified \textit{G. sanguinis} by rapid ID32 Strep with a high certainty (98.8%), there are some past cases that failed \textit{G. sanguinis} identification by the same methods [4]. There may be two reasons; one is that \textit{G. sanguinis} shows various biochemical reaction depending on strain [5] and the other is that the data of \textit{G. sanguinis} had not been collected on the database of the rapid ID32 Strep system until 2006. If rapid ID32 Strep fails to identify \textit{G. sanguinis}, 16S rRNA sequencing is required. We additionally attempted Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Bremen, Germany) with MBT Compass software using MALDI Biotyper library version 5.0. The identification process suggested not \textit{G. sanguinis} but \textit{G. sulfidifaciens} with cutoff score of 1.97 (Table 3). \textit{G. sulfidifaciens}, first described in 2001 isolated only from animals, has 99.2% similarity in 16S rRNA gene sequencing to \textit{G. sanguinis} [6] but is different in biochemical reaction. Although, Miller et al. succeeded to identify \textit{G. sanguinis} with Bruker MALDI-TOF MS with MBT 6903 MSP library database [7], MALDI-TOF MS is not so useful to identify the organism because there are only 3 \textit{G. sanguinis} strains appeared in the database. An update of the database is needed.

In our case, both \textit{G. sanguinis} and \textit{E. coli} were found in blood culture when the patient was admitted. IE caused by \textit{E. coli} is rare (< 1%) and \textit{G. sanguinis} has been reported to be an opportunistic pathogen [8–10]. Patients diagnosed with \textit{E.coli} IE are reported to be often diabetic with...
underlying heart disease or have prosthetic valves. Surgery is often necessary and the mortality rate is high (17%) [11]. Therefore, we speculated that IE caused by \textit{G. sanguinis} followed a subacute clinical course, similar to viridans streptococcus, and her IE was caused by \textit{G. sanguinis}. In order to verify our speculation, identifying \textit{G. sanguinis} IE correctly with Rapid ID 32 Strep, collecting more cases of \textit{G. sanguinis} IE, and then revealing clinical feature of \textit{G. sanguinis} IE are required.

Ethics statement

Written informed consent to publish clinical details was obtained from the patient. A copy of the consent form is available for review by the Editor of this journal.

Conflict of interest

We have no conflict of interest to disclose.

Acknowledgements

We thank for the diligent and thorough critical reading of our manuscript by Masami Yoshihara, the medical interpreter and the medical coordinator, Tokyo Saiseikai Central Hospital.

Table 3

Results of Bruker MALDI-TOF MS analysis.

Rank (Quality)	Matched Pattern	Score value
1 (+)	Globicatella sulfidifaciens 11, 0100356,001,01 LGL	1.97
2 (−)	Stenotrophomonas maltophilia 10942 CHB	1.44
3 (−)	Pseudomonas boreopolis LMG 979T HAM	1.39
4 (−)	Stenotrophomonas sp 109,Neb28 NFI	1.37
5 (−)	Lactobacillus pentosus DSM 16366 DSM	1.33

Fig. 2. (A) Parasternal long axis view on transthoracic echocardiogram shows a vegetation on posterior leaflet of mitral valve (arrow). (B) Parasternal long axis view on transesophageal echocardiogram shows a vegetation on left coronary cusp of aortic valve (arrow).

References

[1] Collins MD, Aguirre M, Facklam RR. \textit{Globicatella sanguis} gen-nov, a new Gram-positive catalase bacterium from human sources. \textit{J Appl Bacteriol} 1992;73:433–7.

[2] Héry-Arnaud G, Doloy A, Ansari S. \textit{Globicatella sanguinis} meningitis associated with human carriage. \textit{J Clin Microbiol} 2001;39:4052–7.

[3] Kurogi S. A case of urinary tract infection caused by \textit{Globicatella sanguinis}. \textit{J Jpn Soc Clin Microbiol} 2016;26:27–31.

[4] Yang HS, Kim YJ, Lee MS. \textit{Globicatella sanguinis} bacteremia in a non-immunocompromised patient identified by 16S rRNA gene sequencing: first case in korea. \textit{Clin Lab} 2016;62:1825–7.

[5] Vandamme P, Hommez J, Snauwaert C. \textit{Globicatella sulfitodifaciens} sp. nov., isolated from purulent infections in domestic animals. \textit{Int J Syst Evol Microbiol} 2001;51:1745–9.

[6] Miller AO, Buckwalter SP, Henry MW. \textit{Globicatella sanguinis} osteomyelitis and bacteremic review of an emerging human pathogen with an expanding spectrum of disease. \textit{Open Forum Infect Dis} 2017;19:277.

[7] Micol R, Lortholary O, Jaureguy F. \textit{Escherichia coli} native valve endocarditis. \textit{Clin Microbiol Infect} 2006;12:401–3.

[8] Abdul-Redha RJ. \textit{Globicatella sanguinis} bacteremia identified by partial 16S rRNA gene sequencing. \textit{Scand J Infect Dis} 2007;39:575–8.

[9] Matsunami M. Urosepsis caused by \textit{Globicatella sanguinis} and \textit{Corynebacterium riegelii} in an adult: case report and literature review. \textit{J Infect Chemother} 2012;18:552–4.

[10] Ruoß KL. Miscellaneous catalase negative Gram-positive cocci emerging opportunists. \textit{J Clin Microbiol} 2002;40:1129–33.

[11] Branger S. \textit{Escherichia coli} endocarditis: seven new cases in adults and review of the literature. \textit{Eur J Clin Microbiol Infect Dis} 2005;24:537–41.

[12] Lau Woo SKPC, Li NK. \textit{Globicatella bacteremia} identified by 16S ribosomal RNA gene sequencing. \textit{J Clin Pathol} 2006;59:303–7.

[13] Seegmüller I. \textit{Globicatella sanguinis} is an etiological agent of ventriculoperitoneal shunt-associated meningitis. \textit{J Clin Microbiol} 2007;45:666–7.

[14] Jain N. \textit{Globicatella sanguinis} meningitis in a post head trauma patient: first case report from Asia. \textit{J Infect Dev Ctries} 2012;6:592–4.

[15] Branger S. \textit{Escherichia coli} endocarditis: seven new cases in adults and review of the literature. \textit{Eur J Clin Microbiol Infect Dis} 2005;24:537–41.