Renin–angiotensin system blockade in the COVID-19 pandemic

Jordana B. Cohen 1,2,*, Andrew M. South 3,4,5,6,*, Hossam A. Shaltout 5,6,7,8, Matthew R. Sinclair 9,10 and Matthew A. Sparks 9,11

1 Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 2 Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 3 Section of Nephrology, Department of Pediatrics, Brenner Children's Hospital, Wake Forest School of Medicine, Winston Salem, NC, USA, 4 Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA, 5 Department of Surgery, Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA, 6 Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC, USA, 7 Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, USA, 8 Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Alexandria, Egypt, 9 Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA, 10 Duke Clinical Research Institute, Durham, NC, USA and 11 Renal Section, Durham VA Health Care System, Durham, NC, USA

*These authors contributed equally to this work.

Correspondence to: Jordana B. Cohen; E-mail: jco@pennmedicine.upenn.edu; Twitter handle: @jordy_bc

ABSTRACT

In the early months of the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged suggesting that pharmacologic inhibitors of the renin–angiotensin system (RAS) may increase COVID-19 severity. This hypothesis was based on the role of angiotensin-converting enzyme 2 (ACE2), a counterregulatory component of the RAS, as the binding site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), allowing viral entry into host cells. Extrapolations from prior evidence led to speculation that upregulation of ACE2 by RAS blockade may increase the risk of adverse outcomes from COVID-19. However, counterarguments pointed to evidence of potential protective effects of ACE2 and RAS blockade with regard to acute lung injury, as well as substantial risks from discontinuing these commonly used and important medications. Here we provide an overview of classic RAS physiology and the crucial role of ACE2 in systemic pathways affected by COVID-19. Additionally, we critically review the physiologic and epidemiologic evidence surrounding the interactions between RAS blockade and COVID-19. We review recently published trial evidence and propose important future directions to improve upon our understanding of these relationships.

Keywords: angiotensin-converting enzyme 2, angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, coronavirus, COVID-19, hypertension, renin-angiotensin system, SARS-CoV-2
INTRODUCTION

Early in the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged proposing that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), inhibitors of the renin–angiotensin system (RAS), may increase the risk of development and severity of COVID-19 [1]. This hypothesis was based on limited physiologic evidence coupled with initial clinical descriptions of individuals hospitalized with COVID-19. Considering that ACEIs/ARBs are among the most prescribed medications globally [2, 3], the hypothesis of a potential interaction between RAS blockade and COVID-19 quickly gained momentum in the lay press and medical community. Several medical societies quickly reacted, unanimously recommending that patients continue to take these medications until more information became available [4, 5].

The physiologic evidence for the hypothesis was based on the role of angiotensin-converting enzyme 2 (ACE2), a counterregulatory component of the RAS, as the primary binding site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), facilitating SARS-CoV-2 entry into host cells [6–8]. Prior evidence suggested that ACEIs/ARBs upregulate ACE2 [9, 10], and individuals hypothesized that increased ACE2 expression may increase susceptibility to SARS-CoV-2 infection, increasing the risk of development and severity of COVID-19 (Figure 1) [1]. However, counter-evidence supported a protective role of ACE2 as well as possible differential effects between ACEIs and ARBs on the risk of acute lung injury [11, 12]. Epidemiologically, the hypothesis was based on findings from initial case series, which showed that a high proportion of individuals hospitalized with COVID-19 had conditions commonly treated with RAS blockade, including hypertension, diabetes, and heart disease [13–15]. These initial case series did not provide information on the frequency of ACEI/ARB use nor could they be used to draw conclusions about the relationships between these risk factors with adverse outcomes [16].

The current review aims to provide an overview of classic RAS physiology and its interaction with SARS-CoV-2. We examine the role of ACE2 in hypertension; effects in the heart, kidneys, brain, lungs and thromboembolic pathways; and how ACE2 may impact host responses to SARS-CoV-2 infection. We also evaluate the strengths and limitations of the current physiologic and epidemiologic evidence of the relationships between RAS blockade and COVID-19 and propose approaches to improve our understanding of these relationships in future studies.

ROLE OF ACE2 IN RAS PHYSIOLOGY

ACE2 in hypertension

The RAS plays a crucial role in regulating blood pressure (BP), including fluid and electrolyte balance and vascular tone. Targeting the RAS with ACEIs/ARBs constitutes a very effective strategy to treat hypertension. Since the discovery of ACE in 1956 [17], our understanding of the RAS as an endocrine system has been focused primarily on studying the interaction of angiotensin II (Ang II) with the Ang II type 1 (AT1) receptor to increase BP. However, our understanding of the RAS shifted dramatically with the identification of angiotensin 1–7 (Ang1–7) in the late 1980s as the first amino-terminal angiotensin peptide possessing biological actions that oppose those of Ang II [18–22].

ACE2 catalyzes the formation of Ang1–7 from Ang II [23, 24] and thus plays a critical role in RAS counterregulation by decreasing Ang II content and increasing Ang1–7 content, among other roles [25]. Mice lacking the ACE2 gene had an enhanced Ang II pressor response [26]. ACE2-deficient mice on the C57BL/6 background had modestly increased BP compared with controls at baseline, but acute Ang II infusion increased plasma Ang II concentrations and BP to a greater extent in the ACE2-deficient mice compared with controls [27]. In rat models of hypertension, renal ACE2 messenger ribonucleic acid (mRNA) and protein levels and expression are markedly lower than those observed in normotensive controls [28]. ACE2 enzymatic activity is not limited to the RAS; ACE2 can metabolize and inactivate other peptides such as pyr-apelin 13 and apelin 17, the dominant apelin peptides [29], which have hypotensive effects [30]. Indeed, ACE2 knockout mice had potentiated hypotensive responses from pyr-apelin 13 that corresponded to greater plasma apelin levels and that the selective ACE2 inhibitor MLN-4760 blocked [31]. On the other hand, in select models, lisinopril may increase cardiac ACE2 mRNA expression but not activity, while losartan may increase both cardiac ACE2 mRNA expression and activity, in addition to their BP-lowering effects in Lewis rats [9].

ACE2 in target organ disease. Heart. ACE2 plays a critical role in cardiovascular pathology development, especially heart failure. ACE2 is present in the membrane of most epithelial cells, cardiac myocytes, vascular smooth muscle and endothelial cells, the adventitia of large blood vessels and neural tissues [32]. ACE2-deficient mice exhibit severely reduced cardiac contractility [28]. Chronic ACE2 inhibition with MLN-4760 in transgenic rats increased cardiac Ang II content and significantly increased left ventricular anterior, posterior and relative wall thicknesses, as well as increased interstitial collagen fraction area and cardiomyocyte hypertrophy [33]. Furthermore, increasing Ang1–7 content improves heart function, reverses cardiac remodeling and restores vascular responsiveness after myocardial infarction [34, 35], while recombinant human ACE2 successfully reduced cardiac hypertrophy and dysfunction in preclinical models of heart failure [36]. On the other hand, transgenic mice with increased cardiac ACE2 expression had a high incidence of sudden death due to progressive conduction and rhythm disturbances with sustained ventricular tachycardia and terminal ventricular fibrillation [37]. Thus the exact role of ACE2 in cardiovascular disease, and in particular heart disease, remains incompletely understood.

Kidney. The ACE/Ang II and ACE2/Ang1–7 pathways are coexpressed throughout the kidney, including in the arterioles, epithelium, endothelium and podocytes of the glomerulus and throughout the tubular epithelium but particularly the proximal tubular brush border [10, 38, 39]. The ACE2/Ang1–7 pathway generally opposes Ang II’s actions to promote renal vasodilation and sodium and water excretion and to prevent or attenuate inflammation and fibrosis [40, 41]. In most experimental models and clinical studies, acute and chronic kidney injuries increase the ACE/Ang II pathway relative to decreasing the ACE2/Ang1–7 pathway [42–44]. Furthermore, there are numerous feedback loops within the RAS. For example, Ang II downregulates ACE2 expression in kidney tubular cells via extracellular regulated 1/2 and p38 mitogen-activated protein kinases [45].

In rats, ischemia–reperfusion decreased renal ACE2 mRNA and protein expression and enzymatic activity, altered renal Ang1–7 content and increased renal Mas receptor mRNA
FIGURE 1: Three proposed mechanisms of ACEI and ARB effect in COVID-19. ACE, angiotensin-converting enzyme; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; ACE2, angiotensin-converting enzyme 2; Ang I, angiotensin I; Ang II, angiotensin II; Ang-(1–7), angiotensin-(1–7); MasR, mas receptor; AT1R, angiotensin II type 1 receptor; DABK, [des-Arg9]-bradykinin; B1, G-protein-coupled receptor for DABK; B2, G-protein-coupled receptor for bradykinin. Red dashed lines: harmful effects of ACEI/ARB; blue dashed lines: beneficial effects of ACEI/ARB; black dashed lines: effects of SARS-CoV-2; black solid lines: normal pathways; red Xs: detrimental effects of ACEI on normal pathways; purple Xs: detrimental effects of SARS-CoV-2 on normal pathways. This three-panel figure shows proposed mechanisms of ACEIs and ARBs in COVID-19 infection. Mechanism 1: ACEIs and ARBs are harmful. ACEIs and ARBs upregulate ACE2 expression on respiratory epithelial cells, thus increasing available receptors to bind SARS-CoV-2 and facilitate cell entry. Mechanism 2: ACEIs and ARBs are beneficial. ACEIs inhibit conversion of Ang I into Ang II, while ARBs inhibit Ang II binding to AT1R, thereby both ACEIs and ARBs block Ang II-AT1R-mediated deleterious effects in the lungs. Also shown are SARS-CoV-2-mediated ACE2 downregulation and subsequent Ang II cleavage into Ang-1–7 and Ang-1–7-MasR-mediated anti-inflammatory and anti-fibrotic effects. In the presence of SARS-CoV-2, there is less ACE2 available to cleave Ang II and hence more Ang II is available to bind to AT1R. Additionally, less Ang-1–7 is available to bind to MasR, leading to increased inflammation and fibrosis. Mechanism 3: ACEIs are harmful and ARBs are neutral. ACEIs inhibit bradykinin breakdown into harmless products, thus increased bradykinin either binds to the B2 receptor or is converted to DABK that binds to the B1 receptor, leading to increased lung inflammation. ARBs play no role in the bradykinin cascade and are not pictured. Additionally, SARS-CoV-2 downregulates ACE2, which normally breaks down DABK. More DABK is then available to bind to the B1 receptor, further promoting lung inflammation.
expression [42, 44]. These effects were magnified in ACE2 knockout mice and mitigated in ACE2 transgenic mice [44]. Diabetes reduced renal ACE2 mRNA and protein expression and renal Ang-1–7 concentration despite increased renal and plasma ACE2 activity, effects that MLN-4760 enhanced [46]. Loss of ACE2 and the Mas receptor leads to Ang II–dependent glomerular injury and kidney dysfunction [47, 48]. Recombinant human ACE2 increased plasma ACE2 activity, increased Ang-1–7, decreased Ang II renal and plasma concentrations and improved kidney function and BP in diabetic mice [46]. Further, conditions of endogenous RAS activation likely enhance, or are required for, Ang-1–7’s counterregulatory actions [49].

Brain. The role of the brain RAS in the central regulation of cardiovascular physiology and the autonomic nervous system is clear from studies of wild-type and transgenic animals. As in other tissues, the balance between the ACE/Ang II and ACE2/Ang–1–7 pathways in the brain is crucial for cardiovascular health [50]. Ang II AT1 receptor signaling in the brain increases BP via enhanced sympathetic outflow [51, 52], vasopressin release [53] and cardiac baroreflex resetting [50, 54, 55]. In the spontaneously hypertensive rat, upregulation of brain RAS components (i.e. angiotensinogen, ACE, Ang II and AT1 receptor) preceded and sustained hypertension development, which intracerebroventricular captopril injection reversed [56].

Meanwhile, the brain ACE2/Ang–1–7 pathway counterregulates Ang II’s effects on cardiovascular function, autonomic function and cognition. ACE2 is expressed throughout the brain, including nuclei involved in central regulation of cardiovascular function in the brainstem and noncardiovascular areas such as the motor cortex and raphe [57]. In humans, ACE2 mRNA expression in the brain was at least 10-fold lower than ACE [58]. Ang-1–7 decreased BP and improved baroreflex function in animal models of hypertension [54, 59–61].

ACE2 knockout mice exhibited reduced cardiac baroreflex function compared with wild-type, which intracerebroventricular losartan injection restored [62]. ACE2 overexpression in the rostral ventrolateral medulla reduced BP in spontaneously hypertensive rats [63], which could be due to ACE2-induced Ang II degradation as well as AT1 receptor downregulation in this region. In addition, ACE2 overexpression in the subforminal organ prevented Ang II–mediated pressor and thirst responses [64]. ACE2 overexpression in select areas of the brain in transgenic mice reduced sympathetic outflow and improved autonomic function [65]. Frontal cortex ACE2 activity was reduced in an Alzheimer’s disease mouse model [66]. Intraperitoneal dimethyl arginine acetate administration, an established ACE2 activator, lowered hippocampal ACh and restored cognition in middle-aged symptomatic mice via increased ACE2 activity, restored Mas receptor levels and decreased extracellular regulated kinase 1/2 signaling [67].

ACE2 and the lung

The RAS regulates pulmonary vascular tone, the integrity of the alveolar capillaries and the immune system response to lung injury, among other functions. While several pulmonary cell types express the RAS, including alveolar epithelial cells, resident immune cells and pulmonary vascular endothelial and smooth muscle cells, ACE/Ang II pathway expression is typically much stronger than ACE2/Ang-1–7, which is predominantly limited to type II alveolar epithelial cells [32, 68]. Notably, lung injury increases ACE/Ang II but downregulates ACE2/Ang-1–7, further driving inflammation and fibrosis [69, 70]. Ang II–AT1 receptor signaling increases pulmonary vasculature permeability, promotes immune system cell migration, activation and differentiation and induces alveolar epithelial cell apoptosis and fibroblast differentiation [71–74]. Ang-1–7 acts in part through the Mas receptor to block these Ang II–mediated effects [75].

In various models of acute lung injury (acid, sepsis, endotoxin, influenza), ACE2 knockout mice had greater increases in inflammatory cell infiltration and lung edema that were associated with increased pulmonary vascular permeability, hyaline membrane formation and elastance and greater decreases in oxygenation compared with wild-type mice [76, 77]. Intraperitoneal recombinant human ACE2 administration improved elastance and edema and decreased Ang II content in acid-treated ACE2 knockout and wild-type mice [76]. Similarly, acid exposure decreased ACE2 protein expression in wild-type mice and increased lung Ang II concentrations to a greater extent in ACE2 knockout mice compared with wild-type mice [76]. SARS-CoV Spike protein binds to ACE2 on type II alveolar epithelial cells and subsequently downregulates ACE2 expression, increases lung Ang II concentration and enhances AT1 receptor–mediated injury [6]. While this has been postulated to occur in SARS-CoV-2 as a mediating factor in COVID-19, to date there have been no studies to confirm this pathophysiologic process [7]. Most cells recruited to areas of lung injury can release chymase, which could lead to further increases in Ang II [78, 79]. Loss of pulmonary ACE2 activity can also drive lung inflammation via increased [des-Arg9]-bradykinin (DABK)/bradykinin receptor B1 activation and possibly via alterations to the apelin pathway [80, 81].

In rats exposed to lipopolysaccharide plus mechanical ventilation, treatment with losartan or cyclic Ang–1–7 increased ACE2 activity and Ang–1–7 concentrations in bronchoalveolar lavage fluid, improved oxygenation and reduced lung injury compared with placebo [69]. Pretreatment or treatment with losartan or Ang–1–7 reduced acute lung injury and fibrosis, while pretreatment or treatment with the Mas receptor antagonist A–779 not only reversed this protective effect, but enhanced progression to fibrosis [82, 83]. In humans, limited clinical evidence supports the experimental evidence. ACE and ACE2 activity in bronchoalveolar lavage fluid correlated weakly with inflammatory markers in patients with acute respiratory distress syndrome [84]. In a pilot study in patients with acute respiratory distress syndrome, intravenous recombinant human ACE2 decreased Ang II levels and increased Ang–1–7 levels in plasma but did not affect lung physiology or outcomes [85].

ACE2 and thrombosis

The ACE2/Ang–1–7 pathway is crucial to maintaining vascular endothelial integrity, in part via nitric oxide release, and is expressed by platelets and thus mediates vascular inflammation and the clotting cascade [32, 86–88]. Ang II–AT1 receptor binding stimulates inflammatory cell recruitment and cytokine release to promote thrombosis, which ACE2/Ang–1–7 can mitigate in part via negatively modulating plasminogen activator inhibitor–1, extracellular signal-regulated kinase 1/2 and nicotinamide adenine dinucleotide phosphate oxidase and decreasing oxidative stress [89–93].

ACE2 knockout mice demonstrate increased expression of interleukin-6, monocyte chemoattractant protein-1 and vascular cell adhesion molecule-1, increased macrophage response
to Ang II and increased endothelial cell activation and responsiveness to tumor necrosis factor-α [94]. In a hypertension rat model, greater thrombus formation was associated with decreased ACE2 activity, and ACE2 inhibition increased thrombus weight while ACE2 activation attenuated thrombus formation and reduced platelet attachment [95]. Decreased ACE2 could also promote thrombosis via modulation of bradykinin/kallikrein [96]. SARS-CoV-2 decreased platelet ACE2 levels in vitro and patients with COVID-19 had lower platelet ACE2 levels compared with healthy controls [87]. Platelets express transmembrane protease serine 2, and SARS-CoV-2, via the Spike protein, was shown to bind directly to platelets, potentiating platelet activation, enhance platelet spread and stimulate coagulation factor and inflammatory cytokine release from platelets via mitogen-activated protein kinase pathways in vitro and in vivo, while recombinant human ACE2 suppressed these effects [87].

PROPOSED ROLE OF ACEIs AND ARBS ON ACE2 IN COVID-19.

Proposed mechanisms for adverse effects. Despite the critical roles that ACEIs/ARBs have in diminishing adverse cardiovascular and kidney outcomes, concern emerged early in the pandemic that these drugs might be leading to adverse outcomes in patients with COVID-19. These concerns stemmed from the theory that ACEIs/ARBs may promote SARS-CoV-2 viral entry into cells by increasing ACE2 expression in respiratory epithelial cells (Figure 1) [8]. Some animal model studies have shown that ACEIs/ARBs can upregulate ACE2 expression and activity in heart and kidney tissue [9, 10]. Furthermore, a 2015 study in humans found that participants taking the ARB olmesartan had higher urinary ACE2 levels compared with control participants [97], while a recent study looking at ACEI/ARB use in patients with and without COVID-19 found that plasma ACE2 activity was higher in patients with COVID-19 who were taking ACEIs compared with those with COVID-19 who were not taking ACEIs/ARBs [98]. It was thus postulated that ACEIs/ARBs may upregulate ACE2 in the lungs.

While higher ACE2 mRNA expression in the lungs has been noted in patients who have comorbidities that are frequently found in patients with severe COVID-19 [99], such as diabetes mellitus, hypertension and chronic obstructive lung disease, there have yet to be any animal or human studies to definitively demonstrate that ACEIs/ARBs upregulate ACE2 in the lungs. In fact, Wysocki et al. [100] demonstrated in a mouse model that ACEI/ARB administration had no detectable effect on ACE2 levels or activity in the lungs. Additionally, conflicting evidence exists in human studies in that there is no consistent association between ACEIs/ARBs and circulating ACE2 concentration or activity [101–103]. Furthermore, it is unclear if the overexpression of ACE2 and its theoretical effect of SARS-CoV-2 viral entry in the lungs of patients with chronic illnesses is the cause of worse outcomes in COVID-19 or if patients with these comorbidities are simply more prone to adverse outcomes because of their underlying illnesses.

Proposed mechanisms for beneficial effects. Further complicating the issue is the fact that there exists limited evidence (in both animal models and human studies) that ACEIs/ARBs may actually be beneficial in patients with various viral pneumonias. Henry et al. [104] described a cohort of >500 patients with viral pneumonia in Texas from 2011 to 2014 in which patients who continued their ACEI during hospitalization had 75% lower odds of intubation and mortality. However, patients who were taking ACEIs prior to admission had 3-fold higher odds of death compared with those not taking ACEIs, raising the question of whether ACEIs may have been preferentially continued in healthier patients (i.e. implying several sources of bias including collider and selection bias [105]). A 2005 study using a mouse model examined the original SARS-CoV, which was responsible for the SARS epidemic in 2002 [6]. The authors found that in a mouse model of acid aspiration–induced acute lung injury who were treated in vivo with the SARS-CoV Spike protein, losartan attenuated pulmonary edema and lung injury severity. This was thought to be due to losartan’s effect of blocking the AT1 receptor and hence attenuating the effect of the excess AngII generation and subsequent AT1 receptor signaling from Spike protein–induced ACE2 downregulation (Figure 1) [6].

Potential differential roles of ACEIs versus ARBs in COVID-19. Given their differential effects on the RAS, it is possible that ACEIs may be detrimental in patients with COVID-19 while ARBs may be neutral or beneficial. ACE, in addition to converting Ang I to Ang II, breaks down bradykinin. Bradykinin is a vasodepressor peptide that contributes to BP regulation and inflammation via its ability to increase vascular permeability and cause vasodilation of blood vessels throughout the body. Bradykinin and its active metabolite, DABK, act on two G-protein-coupled receptors, B1 and B2. DABK binds mainly to B1 while bradykinin binds mainly to B2 [80, 106, 107]. The B2 receptor is constitutively expressed in many cell lineages and is responsible for a number of bradykinin-mediated effects such as vasodilation, hypotension and increased vascular permeability. The B1 receptor, however, is often absent in normal tissues and is instead expressed during inflammatory states such as septic shock and lung inflammation [108]. Furthermore, B1 receptor activation can occur concomitantly with the pro-inflammatory chemokine C-X-C motif chemokine 5 (CXCL5) release and neutrophil recruitment to the lung [80]. Since ACEIs act by competitively inhibiting ACE, the addition of ACEIs can result in decreased bradykinin breakdown and elevated bradykinin levels, causing the cough and occasionally angioedema that can occur in patients taking ACEIs, along with possible lung injury [12, 109–112].

Roche et al. [113] discuss a separate bradykinin hypothesis that suggests that SARS-CoV-2-mediated ACE2 depletion may lead to bradykinin dysregulation, including increased bradykinin and DABK, leading to worsened acute lung injury and respiratory distress. Since ARBs do not competitively inhibit ACE, they have no known role in contributing to elevated bradykinin levels and thus should not precipitate further bradykinin-mediated lung injury. If dysregulated bradykinin signaling turns out to be a major mechanism by which patients with COVID-19 experience lung injury, it is plausible that concomitant ACEI use could be detrimental whereas ARB use would not (Figure 1).

CURRENT EPIDEMIOLOGIC EVIDENCE OF RAS BLOCKADE IN COVID-19

Summary of existing observational studies.

The conflicting evidence and hypotheses regarding the relationship of RAS blockade with ACE2 expression and COVID-19-related outcomes resulted in a surge of studies aiming to assess the safety of continuing and the effectiveness of initiating ACEIs/ARBs in the management of COVID-19 [4, 11, 16]. In a relatively brief time frame, dozens of observational studies, systematic reviews and meta-analyses evaluating the association between RAS blockade, SARS-CoV-2 infection and development
and/or severity of COVID-19 were published and posted on pre-print servers [114]. Notably, NephJC.com created a dynamic, open-access document that provided updates and critical reviews as new literature emerged related to the physiology and epidemiology of these relationships [4]. Similarly, Mackey et al. [115] developed a ‘living’ systematic review in the *Annals of Internal Medicine* that is continually updated as new epidemiologic evidence emerges and has identified >80 distinct observational studies at the time of submitting the current review. To date, the authors have repeatedly concluded that ACEIs/ARBs do not seem to be associated with testing positive for SARS-CoV-2 among symptomatic patients or patients with more severe COVID-19. They have also concluded that evidence remains lacking on the effect of ACEIs/ARBs on the risk for mild or asymptomatic disease or for the treatment of COVID-19. Thus most observational studies support physiologic evidence suggesting that ACEIs/ARBs do not affect ACE2 expression, concentration or activity [100–103].

Strengths and limitations of existing observational studies

Given the enormous potential public health impact, the urgency of the study question yielded a paradigm for the utility of real-world evidence in identifying safety and effectiveness of pharmacologic therapies [116]. Observational evidence can be particularly helpful for answering study questions where randomized trials are infeasible, impractical or unethical, for example, due to the need for large sample sizes, long duration of follow-up or evaluation of the natural history of a disease process [117]. Observational study designs were best suited to evaluate the safety of prior ACEI/ARB use compared with other antihypertensive therapies with regard to the risk of developing symptomatic COVID-19. This question necessitated urgent answers to guide the ongoing care of patients during the pandemic and could not be readily or quickly answered with randomized controlled trials (RCTs). Accordingly, observational studies provided rapid, crucial evidence to support the safety of continuing ACEIs/ARBs during the COVID-19 pandemic among outpatients who have already been prescribed these medications [115, 118, 119].

However, understanding the rapid pace of implementation, many of the observational studies published early in the pandemic had important limitations [105]. Table 1 defines and describes common limitations of these studies that are essential to consider when interpreting the findings. For example, many studies did not address potential major confounders [117], such as confounding by indication for use of ACEIs/ARBs as opposed to other antihypertensive agents (e.g. due to proteinuric chronic kidney disease or heart failure with reduced ejection fraction) and unmeasured confounding due to inadequate access to healthcare or SARS-CoV-2 testing. Several studies may have introduced collider bias by restricting the study samples to individuals who were hospitalized or had symptomatic COVID-19, which can result in spurious associations between ACEIs/ARBs and COVID-19 [121, 122]. Additionally, several studies reported a lower risk of COVID-19 severity among hospitalized patients on ACEIs/ARBs compared with those not on these agents; however, a number of these studies introduced time-dependent bias, or failing to adequately account for the timing and duration of ACEIs/ARBs while hospitalized [124–126, 128].

Approaches to improve upon the epidemiologic evidence and future directions

Several of the limitations of existing observational evidence can be addressed with careful considerations about study design and the use of analytic methods that facilitate causal inference [105]. For example, directed acyclic graphs are diagrams that demonstrate the causal relationships between exposures and outcomes, as well as antecedents (causes) and descendants (effects) of these factors that can be sources of several types of bias [129]. Thus directed acyclic graphs are helpful tools in visualizing and identifying potential sources of bias, such as confounding, selection bias and collider bias, which can then guide the identification of an optimal data source, study sample, study design and analytic method to appropriately address these potential sources of bias. For example, in studies of hospitalized patients, the use of methods that address ACEI/ARB use as a time-varying exposure can mitigate time-dependent bias. Sensitivity analyses, such as evaluation of carefully selected negative controls, can also provide important insights into the potential effects of biases on the primary findings [130].

Ultimately, RCT evidence provides the highest-quality evidence to identify the safety of continuing RAS blockade and the potential efficacy of treatment with RAS blockade in COVID-19 (Table 2). Similar to observational evidence, early reports from trials demonstrated no elevated risk of COVID-19 incidence or severity in interim analyses of high-risk participants randomized to ACEI versus placebo [134] or from continuation versus withdrawal of ACEIs/ARBs in patients hospitalized with COVID-19 [133, 135]. The first peer-reviewed RCT results were published from the Randomized Elimination or ProLongation of ACEI/ARBs in COVID-19 (REPLACE COVID) trial in January 2021, corroborating early reports from other trials presented at scientific meetings or via preprint [131]. In this multicenter, international study, 152 patients hospitalized with COVID-19 were randomized to continue versus discontinue their ACEI/ARB upon admission. Patients were excluded with contraindications to continuing or discontinuing ACEI/ARB therapy, such as hyperkalemia or heart failure with reduced ejection fraction, respectively. The authors observed no difference between randomization arms with regard to the primary endpoint (a hierarchical global rank score in which patients were ranked by time to death and severity of illness), death, mechanical ventilation or intensive care unit admission, length of hospitalization, length of intensive care unit admission or multiorgan dysfunction measured by the area under the curve of a modified sequential organ failure assessment score [131]. Additionally, there were no differences in blood pressure, serum potassium and serum creatinine during hospitalization across the two randomization groups [131]. Strengths of the trial include its pragmatic approach and wide scope of participants enrolled from seven countries across three continents, making the findings generalizable to a broad range of hospitalized patients with COVID-19. The main limitation is the small sample size [136]; the authors noted that the small sample size was supported by the use of the global rank score as the primary endpoint, which allows for smaller sample sizes than other commonly used endpoints [131, 132].

While RCTs provide the highest quality evidence, they have important limitations to consider, some of which are amplified during a pandemic. RCTs are often not practical or feasible to answer important study questions due to issues of cost, ethical concerns and/or rapid pace of recruitment necessary to provide answers early in the course of a pandemic. For example, while a
Table 1. Common limitations of existing observational studies examining the association of ACEI or ARB therapy with development and severity of COVID-19

Limitation	Definition	Examples
Confounding [117]	Presence of a factor that is associated with the outcome, that is not on the causal path between the exposure and outcome, and is distributed unequally across exposure levels	• Different indications for use of ACEI or ARB therapy versus another antihypertensive class that may also be associated with worse outcomes (e.g. proteinuric chronic kidney disease and heart failure with reduced ejection fraction)
Selection bias [120]	Restriction of the study sample based on a confounding factor such that the sample is not representative of the population	• Restriction of the study sample to only individuals with diabetes mellitus, hypertension, chronic kidney disease, or heart failure
Collider bias [121, 122]	Restriction of the study sample based on a descendent factor that can induce a spurious association between the exposure and outcome	• Restriction of the study sample to only individuals with a positive COVID-19 test
Information bias [123]	Error in collecting or documenting information	• Non-differential: use of invalidated administrative codes in the electronic health record to identify past medical history
Time-dependent bias [124–126]	Failure to appropriately account for the timing of the initial exposure or exposure during follow-up	• Immortal time bias: in a cohort of hospitalized patients, defining ACEI/ARB use at the time of ICU admission
Table 2 fallacy [127]	Evaluation of multiple effect estimates from the same multivariable model that confounds the interpretation of direct-effect and total-effect estimates	• Reporting the association of multiple different medications with COVID-19-related outcomes that were all analyzed in a single multivariable model

Table provides examples of common pitfalls of observational studies that were rapidly published to address concerns regarding the relationship of ACEI or ARB therapy with COVID-19-related outcomes. Most of these limitations can substantially alter the interpretability of the results but can be overcome or addressed with careful initial observational study design or ideally (but often not feasibly) by performing an RCT. Portions of the table were adapted from Cohen et al. [105].

randomized trial was initiated to evaluate the risk of continuing versus discontinuing ACEI/ARB use and testing positive for SARS-CoV-2 among outpatients (NCT04330300), the study required a very large sample size (>2400 participants) and was suspended, in part due to challenges with efficient enrollment. Additionally, randomized trials are unlikely to have adequate statistical power to be able to evaluate potentially high-risk subgroups and important effect modifiers. For example, the REPLACE COVID trial could not assess whether ACEIs have differential effects than ARBs with regard to COVID-19-related outcomes. High-quality observational studies that appropriately apply methods to facilitate causal inference have the potential to provide critical insights into these relationships.

CONCLUSION

In conclusion, the RAS plays a major role in mediating many physiological and inflammatory responses in a variety of important cardiovascular tissues. RAS blockade has an important role in treating hypertension, cardiovascular disease and kidney disease. However, mixed physiologic evidence exists regarding the role of ACEIs/ARBs in COVID-19. Observational evidence thus far has important limitations but suggests no elevated risk from continuing ACEIs/ARBs in patients already prescribed these medications. Randomized trials will provide important information on the safety and effectiveness of continuing and introducing RAS blockade in the treatment of COVID-19. Future observational studies, when carefully designed to appropriately address important sources of bias, can provide crucial information on potential differential effects of ACEIs and ARBs in acute lung injury and other adverse outcomes in COVID-19.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the resources related to this topic provided by the editors of NephJC.com. The authors would also like to thank the COVID-19 and ACE2 in Cardiovascular, Lung, and Kidney Working Group for providing critical review and discussion of the literature: Matthew A. Sparks, Swapnil Hiremath, Daniel Batlle, Andrew M. South, Paul Welling, J. Matt Luther, Jordana B. Cohen, James Brian Byrd, Louise M. Burrell, Laurie
Table 2. Registered RCTs evaluating the safety and effectiveness of ACEI or ARB therapy in COVID-19

ClinicalTrials.gov study identifier	Target N	Population	Interventions
NCT04329195 (ACORES-2)	554	France	Discontinue ACEI/ARB
NCT04338009 (REPLACE COVID) [131, 132]	152	USA/International	Discontinue ACEI/ARB during hospitalization (resumed on discharge)
NCT04351581 (RASCOVID-19)	215	Denmark	Continue ACEI/ARB at the same dose throughout hospitalization
NCT04364893 (BRACE-CORONA) [133]	500	Brazil	Continue ACEI/ARB for 30 days
NCT04353596 (ACEI-COVID)	208	Austria and Germany	Discontinue ACEI/ARB

Introduction of de novo ACEI or ARB therapy

ClinicalTrials.gov study identifier	Target N	Population	Interventions
NCT04304557	200	USA	Losartan 12.5 mg twice daily for up to 10 days
NCT04351724 (ACOVACT substudy B)	500	Austria	Candesartan titrated to BP <120/80 mm Hg
NCT04311177	580	USA	Losartan 25 mg daily
NCT04328012 (COVIDMED group 3)	4000	USA	Losartan 25 mg daily for 5–14 days
NCT04335786 (PRAEFTORIAN-COVID)	651	The Netherlands	Valsartan 160 mg twice daily up to 14 days

Table provides an overview of selected examples of registered RCTs evaluating the safety and effectiveness of continuation versus withdrawal and de novo introduction of ACEI or ARB therapy in both outpatients and inpatients with COVID-19.

Tomlinson, Vivek Bhalla, María José Soler, Michelle N. Rheault and Sundar Swaminathan.

FUNDING

J.B.C. is supported by grants K23-HL133843 and R01-HL153646 from the National Heart, Lung, and Blood Institute. A.M.S. is supported by grants K23-HL148394, R01-HL146818 and L40-HL148910 from the National Heart, Lung, and Blood Institute. H.A.S. is supported by grant SDG-27370015 from the American Heart Association, R01-AQ066910 from the National Institute on Aging, R01-DK124639 and U01-DK073974 from the National Institute of Diabetes and Digestive and Kidney Diseases and R01-HL146816 from the National Heart, Lung, and Blood Institute. The funding sources had no involvement in the preparation of this article. This article is part of a supplement supported by Fresenius Medical Care without any influence on its content.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts related to this review. J.B.C. is co-principal investigator of the REPLACE COVID trial described in this review, for which activities at the Data Coordinating Center were partially funded by the REPLACE COVID social media funding campaign. The information presented in this article has not been published previously in whole or part, except in abstract format.

DATA AVAILABILITY STATEMENT

There are no proprietary data presented in or related to this manuscript.

REFERENCES

1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8: e21
2. Derington CG, King JB, Herrick JS et al. Trends in antihypertensive medication monotherapy and combination use among US adults, National Health and Nutrition Examination Survey 2005–2016. Hypertension 2020; 75: 973–981
3. Kane SP. ClinCalc DrugStats Database, Version 21.0. https://clincalc.com/DrugStats/Top300Drugs.aspx (29 November 2020, date last accessed)
4. Sparks MA, Hiremath S, South A et al. The Coronavirus Conundrum: ACE2 and Hypertension Edition. http://www.nephjc.com/news/covidace2 (2 November 2020, date last accessed)
et al.

13. Guan WJ, Ni ZY, Hu Y et al.

12. Garvin MR, Alvarez C, Miller JI et al.

10. Soler MJ, Ye M, Wysocki J et al.

9. Ferrario CM, Jessup J, Chappell MC et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111: 2605–2610

8. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271–280 e8

7. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. J Am Soc Nephrol 2020; 318: H1084–H1090

5. Edmonston DL, South AM, Sparks MA et al.

Clinical characteristics of coronavirus disease 2019 and hypertension: the role of angiotensin-converting enzyme 2 and the renin-angiotensin system. Adv Chronic Kidney Dis 2020; 27: 404–411

Kuba K, Imai Y, Rao S et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11: 875–879

South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020; 318: H1084–H1090

Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271–280 e8

Ferrario CM, Jessup J, Chappell MC et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111: 2605–2610

Garvin MR, Alvarez C, Miller JI et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 2020; 9: e59177

Guan WJ, Ni ZY, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708–1720

Yang X, Yu Y, Xu J et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475–481

Zhang Jj, Dong X, Cao YY et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75: 1730–1741

Hanff TC, Harhay MO, Brown TS et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin Infect Dis 2020; 71: 870–874

Skeggs LT Jr, Kahn JR, Shumway NP. The preparation and function of the hypertension-converting enzyme. J Exp Med 1956; 103: 295–299

Campagnole-Santos MJ, Diz DI, Santos RA et al. Cardiovascular effects of angiotensin-(1–7) injected into the dorsal medulla of rats. Am J Physiol 1989; 257: H324–H329

Chappell MC, Brosnihan KB, Diz DI et al. Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 1989; 264: 16518–16523

Schiavore MT, Santos RA, Brosnihan KB et al. Release of vasopressin from the hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proc Natl Acad Sci USA 1988; 85: 4095–4098

Ferrario CM, Brosnihan KB, Diz DI et al. Angiotensin-(1–7): a new hormone of the angiotensin system. Hypertension 1991; 18: III126–33

Ferrario CM, Barnes KL, Block CH et al. Pathways of angiotensin formation and function in the brain. Hypertension 1990; 15: 113–22

Shaltout HA, Westwood BM, Averill DB et al. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol 2007; 292: F82–F91

Pate1 VB, Zhong JC, Grant MB et al. Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118: 1313–1326

Ferrario CM. Angiotension-(1-7) and antihypertensive mechanisms. J Nephrol 1998; 11: 278–283

Allred AJ, Donoghue M, Acton S et al. Regulation of blood pressure by the angiotensin-converting enzyme homologue ACE2 (abstract). J Am Soc Nephrol 2002

Gurley SB, Allred A, Le TH et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 2006; 116: 2218–2225

Crackower MA, Sarao R, Oudit GY et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417: 822–828

Vickers C, Hales P, Kaushik V et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002; 277: 14838–14843

Yamaleyeva LM, Shaltout HA, Varagic J. Apelin-13 in blood pressure regulation and cardiovascular disease. Curr Opin Nephrol Hypertens 2016; 25: 396–403

Wang W, McKinnie SM, Farhan M et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr- apelin-13 and apelin-17: physiological effects in the cardio-vascular system. Hypertension 2016; 68: 365–377

Hamming I, Timens W, Bulthuis ML et al. Tissue distribution of ACE2 protein, the functional receptor for SARS cor-ona virus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631–637

Trask AJ, Groban L, Westwood BM et al. Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hyper-pertrophy and fibrosis in Ren-2 hypertensive rats. Am J Hypertens 2010; 23: 687–693

Mori J, Patel VB, Abo Alrob O et al. Angiotensin 1-7 amelio-rates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation. Circ Heart Fail 2014; 7: 327–339

Loot AE, Roks AJ, Henning RH et al. Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002; 105: 1548–1550

Basu R, Poglitisch M, Yogasundaram H et al. Roles of angio- tensin peptides and recombinant human ACE2 in heart failure. J Am Coll Cardiol 2017; 69: 805–819

Donoghue M, Wakimoto H, Maguire CT et al. Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 2003; 35: 1043–1053

Lely AT, Hamming I, van Goor H et al. Renal ACE2 expres-sion in human kidney disease. J Pathol 2004; 204: 587–593

Ye M, Wysocki J, William J et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006; 17: 3067–3075

Nakamoto H, Ferrario CM, Fuller SB et al. Angiotensin-(1–7) and nitric oxide interaction in renovascular hypertension. Hypertension 1995; 25: 796–802

DelliPizzi AM, Hilchey SD, Bell-Quilley CP. Natriuretic ac-tion of angiotensin(1–7). Br J Pharmac 1994; 111: 1–3

da Silveira KD, Pomperrmay Bosco KS, Dinzir LR et al. ACE2-angiotensin-(1–7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond) 2010; 119: 385–394
43. Mizuiri S, Hemmi H, Arita M et al. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis 2008; 51: 613–623

44. Yang XH, Wang YH, Wang JJ et al. Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia-reperfusion model. Peptides 2012; 36: 60–70

45. Koka V, Huang XR, Chung AC et al. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol 2008; 172: 1174–1183

46. Tikellis C, Bialkowski K, Pete J et al. Angiotensin peptides and angiotensin-converting enzyme-2 (ACE2) imbalance on intrarenal Ang II activity. Hypertension 2012; 58: 1026–1025

47. Pinheiro SVB, Ferreira AJ, Kitten GT et al. Genetic deletion of the angiotensin-(1–7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 2009; 75: 1184–1193

48. Oudit GY, Herzenberg AM, Kassiri Z et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 2006; 168: 1808–1820

49. Burgelova M, Kramer HJ, Teplan V et al. Effects of angiotensin-(1–7) blockade on renal function in rats with enhanced intrarenal AngII activity. Kidney Int 2005; 67: 1453–1461

50. Diz DI, Arnold AC, Nautiyal M et al. Angiotensin peptides and central autonomic regulation. Curr Opin Pharmacol 2011; 11: 131–137

51. Falcon JC 2nd, Phillips MI, Hoffman WE et al. Effects of intraventricular angiotensin II mediated by the sympathetic nervous system. Am J Physiol 1978; 235: H392–H399

52. Blume A, Herdegen T, Unger T. Angiotensin II receptor and inducible transcription factors. J Mol Med (Berl) 1999; 77: 339–357

53. Unger T, Rascher W, Schuster C et al. Central blood pressure effects of substance P and angiotensin II: role of the sympathetic nervous system and vasopressin. Eur J Pharmacol 1981; 71: 33–42

54. Campagnole-Santos MJ, Heringer SB, Batista EN et al. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol 1992; 263: R89–R94

55. Zhou LM, Shi Z, Gao J et al. Angiotensin-(1–7) and angiotensin II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats. Pflugers Arch Eur J Physiol 2010; 459: 681–688

56. Okuno T, Nagahama S, Lindheimer MD et al. Attenuation of the development of spontaneous hypertension in rats by chronic central administration of captopril. Hypertension 1983; 5: 653–662

57. Doobay MF, Talman LS, Obr TD et al. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Physiol 2007; 292: R373–R381

58. Harmer D, Gilbert M, Borman R et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002; 532: 107–110

59. Garcia-Espinosa MA, Shaltout HA, Gallagher PE et al. In vivo expression of angiotensin-(1–7) lowers blood pressure and improves baroreflex function in transgenic (mRen2)27 rats. J Cardiovasc Pharmacol 2012; 60: 150–157

60. Nautiyal M, Shaltout HA, de Lima DC et al. Central angiotensin-(1–7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension 2012; 60: 1257–1265

61. Hendricks AS, Lawson MJ, Figueroa JP et al. Central ANG-(1–7) infusion improves blood pressure regulation in transnatal betamethasone-exposed sheep and reveals sex-dependent effects on oxidative stress. Am J Physiol Heart Circ Physiol 2019; 316: H1458–H1467

62. Whitaker A, Feng Y, Lazartigues E. Central AT1 receptor blockade restores baroreflex sensitivity and lowers blood pressure in ACE2 knockout mice (abstract). FASEB J 2007; 21: A889

63. Yamazato M, Yamazato Y, Sun C et al. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension 2007; 49: 926–931

64. Feng Y, Yue X, Xia H et al. Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 2008; 102: 729–736

65. Xiao L, Gao L, Lazartigues E et al. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension 2011; 58: 1057–1065

66. Kehoe PG, Wong S, Al Mulhim N et al. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res Ther 2016; 8: 24453–24461

67. Evans CE, Miners JS, Piva G et al. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol 2020; 139: 485–502

68. Ortiz ME, Thurman A, Pizzullo AA et al. Heterogeneous expression of the SARS-coronavirus-2 receptor ACE2 in the human respiratory tract. EbioMedicine 2020; 60: 102976

69. Wosten-van Asperen RM, Lutter R, Specht PA et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol 2011; 225: 618–627

70. Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol 2020; 113: 104550

71. Papp M, Li X, Zhuang J et al. Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. Am J Physiol Lung Cell Mol Physiol 2002; 282: L713–L718

72. Silva-Filho JL, Souza MC, Henriques M et al. Angiotensin-TGF-beta 1 crosstalk in heterogeneous expression of the SARS-coronavirus-2 receptor ACE2 in the human respiratory tract. FASEB J 2007; 21: 5111–5118

73. Thorley AJ, Ford PA, Giembycz MA et al. Loss of ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. J Pathol 2011; 225: 618–627

74. Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol 2020; 113: 104550

75. Papp M, Li X, Zhuang J et al. Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. Am J Physiol Lung Cell Mol Physiol 2002; 282: L713–L718

76. Silva-Filho JL, Souza MC, Henriques M et al. AT1 receptor-mediated angiotensin II activation and chemotaxis of T lymphocytes. Mol Immunol 2011; 48: 1835–1843

77. Thorley AJ, Ford PA, Giembycz MA et al. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J Immunol 2007; 178: 463–473

78. Uhal BD, Kim JK, Li X et al. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des 2007; 13: 1247–1256

79. Uhal BD, Li X, Xue A et al. Regulation of alveolar epithelial cell survival by the ACE2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol 2011; 301: L269–L274
76. Hanff Y, Kuba K, Rao S et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112–116

77. Zou Z, Yan Y, Shu Y et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun 2014; 5: 3594

78. Kishi K, Jin D, Takai S et al. Role of chymase-dependent angiotensin II formation in monocrotaline-induced pulmonary hypertensive rats. Pediatr Res 2006; 60: 77–82

79. Wei CC, Tian B, Perry G et al. Differential ANG II generation in plasma and tissue of mice with decreased expression of the ACE gene. Am J Physiol Heart Circ Physiol 2002; 282: H2254–H2258

80. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg(9) bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol 2018; 314: L17–L31

81. Zhang H, Chen S, Zeng M et al. Apelin-13 administration protects against LPS-induced acute lung injury by inhibiting NF-κB pathway and NLRP3 inflammasome activation. Cell Physiol Biochem 2018; 49: 1918–1932

82. Chen Q, Yang Y, Huang Y et al. Angiotensin-(1–7) attenuates lung fibrosis by way of Mas receptor in acute lung injury. J Surg Res 2013; 185: 740–747

83. Zambelli V, Bellani G, Borsa R et al. Angiotensin-(1–7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental acute respiratory distress syndrome. Intensive Care Med Exp 2015; 3: 44

84. Schouten LR, van Kaam AH, Kohe F et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019; 9: 55

85. Khan A, Benthin C, Zeno B et al. A pilot clinical trial of recombiant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care 2017; 21: 234

86. Lovren F, Pan Y, Quan A et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 2008; 295: H1377–H1384

87. Zhang S, Liu Y, Wang X et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13: 120

88. Heitsch H, Brovkovych S, Malinski T et al. Angiotensin-(1–7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension 2001; 37: 72–76

89. Kassiri Z, Zhong J, Guo D et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail 2009; 2: 446–455

90. Gromotowicz-Postawlska A, Stankiewicz A, Kramkowski K et al. The acute prothrombotic effect of aldosterone in rats is partially mediated via angiotensin II receptor type 1. Thromb Res 2016; 138: 114–120

91. Zhang J, Noble NA, Border WA et al. Infusion of angiotensin-(1–7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. Am J Physiol Renal Physiol 2010; 298: F579–F588

92. Sampaio WO, Henrique de Castro C, Santos RA et al. Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 2007; 50: 1093–1098

93. Hanff TC, Mohareb AM, Giri J et al. Thrombosis in COVID-19. Am J Hematol 2020; 95: 1578–1589

94. Thomas MC, Pickering RJ, Tsrorotes D et al. Genetic Ace2 deficiency accentuates vascular inflammation and atherosclerosis in the Apoe knockout mouse. Circ Res 2010; 107: 888–897

95. Fraga-Silva RA, Sorg BS, Wankhede M et al. ACE2 activation promotes antithrombotic activity. Mol Med 2010; 16: 210–215

96. Ottiaiano TF, Andrade SS, de Oliveira C et al. Plasma kallikrein enhances platelet aggregation response by sub-threshold doses of ADP. Biochimie 2017; 135: 72–81

97. Furuhashi M, Moniwa N, Mita T et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by omesartan, an angiotensin II receptor blocker. Am J Hypertens 2015; 28: 15–21

98. Kintscher U, Slagman A, Domienq O et al. Plasma angiotensin peptide profiling and ACE (angiotensin-converting enzyme)-2 activity in COVID-19 patients treated with pharmacological blockers of the renin-angiotensin system. Hypertension 2020; 76: e34–e36

99. Pinto BGG, Oliveira AER, Singh Y et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222: 556–563

100. Wysocki J, Lores E, Ye M et al. Kidney and lung ACE2 expression after an ACE inhibitor or an Ang II receptor blocker: implications for COVID-19. J Am Soc Nephrol 2020; 31: 1941–1943

101. Walters TE, Kalman JM, Patel SK et al. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling. Europace 2017; 19: 1280–1287

102. Ramchand J, Patel SK, Srivastava PM et al. Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. PLoS One 2018; 13: e0198144

103. Chirinos JA, Cohen JB, Zhao L et al. Clinical and proteomic correlates of plasma ACE2 (angiotensin-converting enzyme 2) in human heart failure. Hypertension 2020; 76: 1526–1536

104. Henry C, Zaizafoun M, Stock E et al. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent) 2018; 31: 419–423

105. Cohen JB, D’Agostino McGowan L, Jensen ET et al. Evaluating sources of bias in observational studies of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker use during coronavirus disease 2019: beyond confounding. J Hypertens 2020; doi: 10.1097/HJH.0000000000002706

106. Golas C, Charalabopoulos A, Stagikas D et al. The kinin system—bradykinin: biological effects and clinical implications. Recenti Prog Med 2001; 92: 1941–1943

107. Agostoni A, Cugno M. [The kinin system: biological mechanisms and clinical implications]. Recenti Prog Med 2001; 92: 764–773

108. Gama Landgraf R, Sirois P, Jancar S. Differential modulation of murine lung inflammation by bradykinin B1 and B2 selective receptor antagonists. Eur J Pharmacol 2003; 460: 75–83

109. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 1992; 117: 234–242
