Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process

Olga Kyrchanova, Tatiana Ivlieva, Stepan Toshchakov, Alexander Parshikov, Oksana Maksimenko and Pavel Georgiev*

Department of the Control of Genetic Processes; Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334 Russia

Received August 7, 2010; Revised November 4, 2010; Accepted November 17, 2010

ABSTRACT

Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex.

INTRODUCTION

The large cis-regulatory region of the bithorax complex (BX-C) is divided into nine parasegment-specific chromatin domains that control the expression of three homeotic genes, Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) (1). These genes are responsible for specifying the identity of parasegments 5–14 (PS5—PS14), which form the posterior half of the thorax and all abdominal segments of the adult fly (2–5). The PStspecific expression patterns of Ubx, abd-A and Abd-B are determined by a complex cis-regulatory region that spans a 300-kb DNA segment (5–7). Genetic analysis has indicated that this large regulatory region can be divided into nine discrete segment-specific domains, which are aligned on the chromosome in the same order as the body segments in which they operate (2,5,8–10). For example, Abd-B expression in PS10, PS11, PS12 and PS13 is controlled by the iab-5, iab-6, iab-7 and iab-8 cis-regulatory domains, respectively (2,11–16). Each iab domain appears to contain at least one enhancer that initiates Abd-B expression in the early embryo, as well as a PRE silencer element that maintains the expression pattern throughout development (9,16–24).

Boundary elements of a specific class are proposed to exist between each iab domain to allow their autonomy in properly specifying segmental identity (4,16,24–26). Only four out of the nine postulated boundaries have been identified genetically. The Miscadastral (Mcp), Frontadominal-7 (Fab-7) and Frontadominal-8 (Fab-8) elements have been functionally identified by deletion analysis within the bithorax complex (24,25,27). In addition, characterization of genomic deficiencies covering part of the iab-5 and iab-6 cis-regulatory domains (16) and experiments with transgenic enhancer-blocking assays (28,29) provided evidence for the existence of the Fab-6 boundary. All these boundaries display insulator activity. Generally, insulators are defined by two properties: enhancer-blocking activity, preventing communication between an enhancer and a promoter separated by the insulator, and boundary function (barrier activity), preventing repressive chromatin spreading (30–35). It has been shown that boundaries from BX-C are capable of...
suppressing reporter gene expression when placed between an enhancer and a promoter in a transgenic insulator assay (18,23,24,28,29,36–41).

Recently, binding sites for the Drosophila homolog of vertebrate insulator protein CTCF were identified in the bithorax complex (29,42–44), and dCTCF was suggested to be the key protein involved in organization of chromatin domains within this complex (43,44). Binding sites for dCTCF were found in the Mcp, Fab-6 and Fab-8 insulators (29,42,43). At the same time, the Fab-7 boundary proved to be devoid of dCTCF binding sites. Strikingly, the distribution of dCTCF protein within the BX-C coincides almost perfectly with the regions in which boundary elements were predicted (Figure 1). In particular, dCTCF binding sites were found in the regions mapped as putative Fab-3 and Fab-4 boundaries (5,16,43,45). Fab-6, Fab-7 and Fab-8 flank the iab domains that activate the Abd-B gene, while Fab-3 and Fab-4 belong to the regulatory system of the abd-A gene. Mcp is located at the boundary of the Abd-B and abd-A regulatory regions.

In mammals, CTCF supports long-distance interactions (35). Previously, we have shown that dCTCF can support the distant interaction between two Fab-8 boundaries (46). However, Fab-8 failed to interact with the Fab-7 boundary (lacking dCTCF binding sites), whereas the composite element consisting of two neighboring regulatory elements Fab-8 and PTS (promoter-targeting sequences) (15) could interact with the Fab-7 boundary and the upstream region of Abd-B promoter A (46).

The main purpose of this study was to examine interactions between dCTCF-containing boundaries and to reveal the role of dCTCF in such interactions. We also tested whether the boundaries other than Fab-7 and PTS/F8 are capable of interacting with the upstream promoter region of the Abd-B promoter A.

MATERIALS AND METHODS

Plasmid construction

The 3-kb SalI–BamHI fragment containing the yellow regulatory region was cloned into BamHI–XhoI-cleaved pGEM7 (yr plasmid). Ten binding sites for GAL4 (G4) were cloned into the yr plasmid cleaved by NcoI and Eco47III (G4–Δyr). The pCaSpe15(+RI) plasmid was constructed by inserting an additional EcoRI site at +3291 of the mini-white gene in the pCaSpe15 plasmid. An insulator located on the 3′ side of the mini-white gene (Wari insulator) was deleted from pCaSpe15(+RI) by digestion with EcoRI to produce the pCaSpeR700 plasmid. The 5-kb BamHI–BglII fragment of the yellow coding region was cloned into pCaSpeR700 (C700-yc).

Fragments PTS/F8 (64 038 to 64 374), Fab-8 (63 683 to 64 291), PTS (64 292 to 64 916), Fab-7 (83 647 to 84 504), A^{CTCF} (48 350 to 48 724), Fab-6 (100 464 to 100 888), Mcp (113 993 to 114 332), Fab-4 (125 859 to 126 642) and Fab-3 (148 340 to 148 965) were obtained by polymerase chain reaction (PCR) amplification and sequenced. The coordinates are from the sequences of the bithorax complex presented in (6).

The PCR-amplified fragments (X or Y) were cloned between either two frt (frt(X)) or two lox (lox(Y)) sites.

All constructs were made by the same general scheme. A fragment flanked by frt sites (frt(X)) was inserted in the direct or reverse orientation into the G4–Δyr plasmid cleaved by KpnI (G4–Δyr-frt(X)). A fragment flanked by lox sites (lox(Y)) was cloned into C700-yc between the yellow and white genes (C2-lox(Y)-yc). Next, G4–Δyr-frt(X) fragments were cloned into the corresponding C700-lox(Y)-yc plasmids.

To mutate both dCTCF binding sites in the 425-bp F6 fragment (F6ⁿ), two pairs of oligonucleotides carrying the

![Figure 1](https://example.com/figure1.png)

Figure 1. Schemes of the distal part of the bithorax complex including the abd-A and Abd-B loci. The horizontal line represents the bithorax DNA sequence marked off in kilobases according to the coordinates given in (6). The only class A Abd-B transcript that is required for morphogenesis in PS 10 to 13 is drawn above the DNA line. Arrows marked ‘Proximal’ and ‘Distal’ point toward the centromere and the telomere, respectively. Positions of the boundaries and dCTCF-containing regions are indicated by vertical lines. The Abd-B promoter region is shown below the DNA line. Locations of regulatory elements are shown relative to the Abd-B transcription start site (+1). The PTE identified previously (61) is located at –40 relative to the Abd-B transcription start site. The A^{CTCF} region is located at –474 relative to the Abd-B transcription start site. The DNA fragments tested are shown as differently marked boxes. Black circles represent functional binding sites for dCTCF.
described mutant sequences (5′-cgacgccagatcttttactaa ccggc-3′)-(5′-ccggcagatcttttacta ccggc-3′) within the EcoRI restriction site for mutation in F6 CTCF1 and (5′-gcagtccgccagttccccgcctggc-3′)-(5′-gcagtccgccagtt ttccccgcctggc-3′) within the HindIII restriction site for mutation in F6 CTCF2, were used to amplify PCR products. Three mutated parts of Fab-6 were then assembled in pBluSK (F6m). The resulting DNA fragment was sequenced to confirm that the intended mutant sequences had been introduced and that other PCR-induced mutations were absent. As a result, the first site (cgagcgcagatctttttacta ccggc) was changed to (aaaaaaagatattttttct), and the second site (ctcggacatagatggcgctgtgg) was mutated by the in vitro technique (Promega). The primer sequences were: 5′-gtggtgctgctagggttggatattggct3′ and 5′-gccggagatctttttttgtgccg-3′. The resulting DNA fragment was sequenced to confirm that the intended mutant sequences had been introduced by PCR. As a result, the first site (cgagcgcagatctttttacta ccggc) was changed to (aaaaaaagatattttttct), and the second site (ctcggacatagatggcgctgtgg) was mutated by the in vitro technique (Promega). The primer sequences were: 5′-gtggtgctgctagggttggatattggct3′ and 5′-gccggagatctttttttgtgccg-3′. The resulting DNA fragment was sequenced to confirm that the intended mutant sequences had been introduced by PCR.

Electrophoretic mobility shift assay

For the purpose of synthesizing dCTCF in vitro, the cDNA of dCTCF (kindly provided by J. Zhou) was cloned into the pET 23a plasmid (Novagen). The dCTCF protein was synthesized in vitro in the TNT-coupled transcription/translation reticulocyte lysate (Promega) from a T7 promoter. In vitro translated protein (6 μl) was added to 25 fmol of a radioactively labeled DNA probe in 20 μl (final volume) of binding reaction mixture in a phosphate-buffered saline (PBS) buffer containing 5 mM MgCl2, 0.1 mM ZnCl2, 1 mM DTT, 0.1% Nonidet P-40 and 10% glycerol. The mixture was incubated at room temperature for 30 min and then resolved in 5% nondenaturing polyacrylamide gel with 0.5× TBE buffer at 5 V/cm.

Chromatin Immunoprecipitation

Chromatin was prepared from mid-late pupae. A 500-ng sample was ground in a mortar in liquid nitrogen and resuspended in 10 ml of buffer A (15 mM HEPES-KOH, pH 7.6; 60 mM KCl, 15 mM NaCl, 13 mM EDTA, 0.1 mM EGTA, 0.15 mM spermine, 0.5 mM spermidine, 0.5% NP-40, 0.5 mM DTT) supplemented with 5 mM PMSF and Complete (EDTA-free) Protease Inhibitor Cocktail V (Calbiochem, United States). The suspension was then homogenized in a Dounce homogenizer with pestle B and filtered through Nylon Cell Strainer (BD Biosciences, United States). The homogenate was transferred to 3 ml of buffer A with 10% sucrose (AS), and the nuclei were pelleted by centrifugation at 4000g, 4°C for 5 min. The pellet was resuspended in 5 ml of buffer A, homogenized again in a Dounce homogenizer, and transferred to 1.5 ml of buffer AS to collect the nuclei by centrifugation. The nuclear pellet was resuspended in wash buffer (15 mM HEPES-KOH, pH 7.6; 60 mM KCl, 15 mM NaCl, 1 mM EDTA, 0.1 mM EGTA, 0.1% NP-40, protease inhibitors) and cross-linked with 1% formaldehyde for 15 min at room temperature. Cross-linking was stopped by adding glycin to a final concentration of 125 mM. The nuclei were washed with three 10-ml portions of wash buffer and resuspended in 1.5 ml of nuclei lysis buffer (15 mM HEPES-KOH, pH 7.6; 140 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 0.5 mM DTT, 0.1% sodium deoxycholate, 0.1% SDS, protease inhibitors). The suspension was sonicated on ice with a Branson Sonifier 150 (Branson Instruments, United States) for 5 × 20 s at 1-min intervals. Debris was removed by centrifugation at 14 000 g, 4°C for 10 min, and
chromatin was pre-cleared in protein G agarose (Pierce, United States) blocked with BSA and salmon sperm DNA. Aliquot of such pre-cleared chromatin was used as the input samples. These samples were incubated overnight, at 4°C, with rat antibodies against dCTCF (1:200) and nonspecific IgG purified from rat pre-immune serum, and chromatin–antibody complexes were collected using blocked protein G agarose at 4°C over 5 h. After several rounds of washing with lysis buffer (as such and with 500 mM NaCl), LiCl buffer (20 mM tris–HCl, pH 8; 250 mM LiCl, 1 mM EDTA, 0.5% NP-40, 0.5% sodium deoxycholate, protease inhibitors) and TE buffer, the DNA was eluted with elution buffer (50 mM tris–HCl, pH 8; 1 mM EDTA, 1% SDS), the cross-links were reversed, and the precipitated DNA was extracted by the phenol–chloroform method.

The enrichment of specific DNA fragments was analyzed by real-time PCR, using a StepOne Plus Thermal Cycler (Applied Biosystems, United States). The primers used for PCR in ChIP experiments for genome fragments were as follows: tub (5’-gcttctccacagaagctctca-3’, 5’-ggtctagccgcatcgtcag-3’), rpl32 (5’-ctggcataacgtgatgtt-3’, 5’-cgatccgtatccgatcctg-3’), M_G (5’-aaatgtgggtcgtcgaataag-3’, 5’-gttaaagctcgtaaaagaaac-3’), A_G (5’-cacaagaacagcaataactac-3’, 5’-tgaaaaaagcaagggtaaac-3’); for construct fragments: PTS/F8_C and PTS/F8_m_C (5’-gagcaacaaagcccaagctg-3’, 5’-cccaagcatctgctgctgctg-3’), M_C and Mm_C (5’-gctgcccagtgggagataaagat-3’, 5’-ctgtacgcaaccttacg-3’); for G4 and the other, flanked by lox sites (50), was inserted near functional interaction between two regulatory elements, one element flanked by frt sites (49) was inserted near G4 and the other, flanked by lox sites (50), was inserted near the white promoter. The presence of the frt and lox sites made it possible to delete the DNA fragments tested and to compare stimulation of transcription by GAL4 in transgenic lines before the deletion of the regulatory elements and after it (control).

Initially, we tested whether the interaction between two Fab-3 (Figure 2B) or Fab-4 elements (Figure 2C) could facilitate white stimulation by GAL4 across the yellow gene. The test DNA fragments were inserted in opposite orientations, since we previously found that other

RESULTS
dCTCF-containing regions corresponding to Fab-3, Fab-4 and Fab-6 can support distant interactions in the GAL4/white assay.

Previously (43), dCTCF sites were identified in the regions that might be putative boundaries between lab-4 and lab-3 and between lab-3 and lab-2 domains (Figure 1). Here, these regions are referred to as Fab-4 and Fab-3 elements, respectively. Fab-4 contains only one dCTCF binding site, while Fab-3 contains two such sites. As shown in our previous study (46), dCTCF binding sites can support long-distance interaction and are essential for communication between the Fab-8 boundaries. To find out whether all dCTCF-containing regions are capable of such interaction, we tested Fab-3 (626 bp) and Fab-4 (784 bp) in the GAL4/white assay, which is based on the finding that the yeast GAL4 activator bound to sites located upstream of the yellow gene fails to stimulate the white promoter placed downstream of the yellow 3’ end (40). In the test constructs (Figure 2A), 10 GAL4 binding sites (G4) were inserted at ~893 relative to the yellow transcription start site. As a result, the distance between the white promoter and G4 was almost 5 kb. To examine the functional interaction between two regulatory elements, one element flanked by frt sites (49) was inserted near G4 and the other, flanked by lox sites (50), was inserted near the white promoter. The presence of the frt and lox sites made it possible to delete the DNA fragments tested and to compare stimulation of transcription by GAL4 in transgenic lines before the deletion of the regulatory elements and after it (control).

Initially, we tested whether the interaction between two Fab-3 (Figure 2B) or Fab-4 elements (Figure 2C) could facilitate white stimulation by GAL4 across the yellow gene. The test DNA fragments were inserted in opposite orientations, since we previously found that other
boundaries in such a configuration supported white stimulation by GAL4 more effectively (orientation-dependent pairing) (40,41,46).

The white promoter usually accounts for the basal level of expression, with eye pigmentation ranging from pale yellow to dark yellow. To simplify further presentation of the results, we designated white stimulation by GAL4 as strong, moderate or weak when flies from more than half of corresponding transgenic lines acquired eye pigmentation in the ranges of brown to red, orange to dark orange or dark yellow to orange, respectively.

To express the GAL4 protein, we used a transgenic line carrying the GAL4 gene under control of the ubiquitous tubulin promoter (40). These experiments showed that the pairs of Fab-3 and Fab-4 elements provided for moderate and weak white stimulation by GAL4, respectively (Figure 2 Band C).

To demonstrate that white stimulation by GAL4 was supported by either the Fab-3 or Fab-4 pair, we deleted these DNA fragments from transgenic lines. As a result, GAL4 lost the ability to stimulate white expression in most of the lines tested. Thus, the interaction between either Fab-3 or Fab-4 elements allowed GAL4 to stimulate transcription of the white gene.

We then examined the interaction between the 425-bp Fab-6 boundaries mapped with the aid of transgenic assays (28,29). This DNA fragment contains two dCTCF binding sites and functions as a silencer (Figure 1). It was suggested that the Fab-6 boundary and PRE silencer overlap with each other. In accordance with the silencing activity of Fab-6, we obtained only two transgenic lines carrying two Fab-6 boundaries inserted in opposite orientations (Figure 2D). Both of them showed repression of yellow (variegated bristles, data not shown) and white (pale yellow eyes). Deletion of the Fab-6 boundaries restored yellow (data not shown) and white expression. In both transgenic lines (Figure 2D), GAL4 strongly induced white expression. When the boundaries were deleted from these transgenic lines, GAL4 lost the ability to stimulate white expression.

Thus, all dCTCF-containing elements tested in these experiments proved to support distant interaction between the GAL4 activator and the white promoter.

All tested regulatory elements containing dCTCF binding sites are able to interact with each other

Next, we examined whether different dCTCF-containing regulatory elements can interact with each other. In addition to Fab-3, Fab-4 and Fab-6, we tested Mcp and PTS/F8 (Figure 1), the latter consisting of 254 bp from the Fab-8 insulator and 83 bp from the promoter targeting sequence (PTS).

The boundaries were inserted pairwise, in different combinations, near the white promoter and GAL4 binding sites (Figure 3). The level of white stimulation by GAL4 in the majority of transgenic lines was weak in all variants except for those with the Fab-3/Mcp and Fab-4/Fab-6R pairs, in which it was classified as moderate. These results suggest that all tested boundaries containing dCTCF binding sites interact with each other with different efficiency.

dCTCF is not critical for self-pairing of the Mcp, Fab-6 and PTS/F8 boundaries

The results of our previous study (46) show that two closely spaced binding sites for the dCTCF protein are required for the interaction between the Fab-8 insulators. However, the observation that PTS/F8 interacts with Fab-7, which contains no dCTCF binding sites, suggest that additional protein(s) are involved in the interaction between boundaries. To check this possibility, we mutated binding sites for dCTCF in the Mcp, Fab-6 and PTS/F8 DNA fragments. The results of electrophoretic mobility shift assay confirmed dCTCF binding to the Mcp, Fab-6 and PTS/F8 fragments but not to the Mcpm, Fab-6m and PTS/F8m fragments (Supplementary Figure S1). The binding of dCTCF to Mcp and PTS/F8 in the transgenic

white	R	Br	Br	dOr	Or	dY	pY	W	N/T
G4(F3)Y(F4R)W + GAL4	8	7	15						
G4(F3)Y(F4R)W + GAL4	5	5	5	13/15					
G4(F3)Y(PTS/F8R)W + GAL4	1	4	2	7					
G4(F3)(M)W + GAL4	1	2	4	7/7					
G4(F3)Y(M)W + GAL4	3	5	1	9					
G4(F3)(M)W + GAL4	1	1	3	2	2	8/9			
G4(F4)(F6R)W + GAL4	3	8	4	15					
G4(F4)(F6R)W + GAL4	2	2	1	2	4	4	15/15		
G4(F4)(PTS/F8R)W + GAL4	2	7	3	12					
G4(F4)(PTS/F8R)W + GAL4	1	3	4	10/12					
G4(M)Y(PTS/F8R)W + GAL4	2	10	7	19					
G4(M)Y(PTS/F8R)W + GAL4	1	4	2	5	6	1	16/19		
G4(M)Y(PTS/F8R)W + GAL4	1	3	2	6					
G4(M)Y(PTS/F8R)W + GAL4	2	2	2	3/6					
G4(F6)Y(M)W + GAL4	1	4	6	11					
G4(F6)Y(M)W + GAL4	2	2	1	1	1	1	1	9/11	
G4(F6)Y(PTS/F8R)W + GAL4	1	3	4						
G4(F6)Y(PTS/F8R)W + GAL4	2	1	1	4/4					

Figure 3. Testing the functional interaction between regulatory elements containing dCTCF binding sites. For designations, see Figures 1 and 2.
constructs was confirmed by immunoprecipitation with chromatin isolated from pupae (Supplementary Figure S2). At the same time, chromatin immunoprecipitation (ChIP) showed that dCTCF did not bind to Mcp, Fab-6m and PTS/F8m in transgenic pupae.

Two fragments of the mutated Mcp (Figure 4A) or Fab-6m boundary (Figure 4B) were inserted in opposite orientations relative to each other.

Previously (40), we observed a strong interaction between the Mcp elements inserted in opposite orientations (Figure 4A). In transgenic lines carrying the McpM–McpM pair (Figure 4B), GAL4 induced only a moderate level of white expression. Thus, inactivation of dCTCF binding sites partially affected the interaction between Mcp elements. At the same time, the interaction between the mutant McpM elements suggests that additional proteins are involved in the interaction between the Mcp boundaries.

Two copies of the Fab-6m element still strongly repressed yellow and white expression, indicating that dCTCF binding sites are not required for the activity of the silencer (data not shown). For this reason, we selected transgenic lines by crossing F0 males grown from injected embryos with yw; P[w+, tubGAL4]117/TM3,Sb females carrying the tubGAL4 gene. It is noteworthy that, in the F1 generation, TM3,Sb/+ males carrying the construct with Fab-6 displayed normal yellow and white expression, but in the next generation these genes were strongly repressed in approximately half of the transgenic lines (data not shown). This observation may be explained by the fact that GAL4 expression in embryos can counteract PRE silencing (51). In all transgenic lines tested, we observed moderate levels of white stimulation by GAL4 (Figure 4C). These results suggest that dCTCF is not critical as for PcG-mediated repression as for distant interaction between the Fab-6 boundaries.

We have found previously that PTS/F8 boundaries interact in an orientation dependent manner, with the pairing of the insulators located in opposite orientations providing for a strong level of white stimulation by GAL4 (46). Here, we inserted the mutated PTS/F8m boundaries either in opposite orientations (Figure 4D) or in the same orientation (Figure 4E) and observed a weak level of white stimulation by GAL4 in both series of transgenic lines. As a control, we inserted two wild-type PTS/F8 elements in the opposite orientation relative to each other (Figure 4F) like in the construct with the PTS/F8m elements shown in Figure 4D. As a result, GAL4 induced strong white activation in six transgenic lines tested (Figure 4F).

This is evidence that dCTCF is required for the orientation-dependent pairing between the PTS/F8 boundaries.

Fab-7 selectively interacts with the Fab-6 and PTS/F8 boundaries

The dCTCF protein does not bind to the Fab-7 boundary (43), but we observed interaction between Fab-7 and PTS/F8 (46). To test whether dCTCF is required for this interaction, we examined the combination of Fab-7 with the PTS/F8m fragment in which dCTCF binding sites were mutated, with Fab-7 and PTS/F8m being inserted in opposite orientations (Figure 5A). In eight transgenic lines tested, GAL4 induced a moderate level of white expression, which was indicative of interaction between Fab-7 and PTS/F8m. Thus, dCTCF is not required for the functional interaction between Fab-7 and PTS/F8.

Next, we examined interactions of the Fab-7 boundary with Fab-3 (Figure 5B and C), Fab-4 (Figure 5D), Mcp (Figure 5E and F) and Fab-6 (Figure 5G). The boundaries tested in pairwise combinations were inserted either in the same or in opposite orientations relative to each other. The Fab-6/Fab-7 combination accounted for a moderate level of white activation by GAL4, which was indicative of interaction between the Fab-6 and Fab-7 boundaries. By contrast, only weak stimulation of white expression by GAL4 in minor proportions of transgenic lines was observed when Fab-7 was combined with Fab-3, Fab-4 or Mcp. Therefore, Fab-7 does not interact with these three elements.

Analysis of interactions between the upstream region of the Abd-B promoter and the PTS/F8 and Fab-7 boundaries

As we found previously, the 375-bp regulatory element with a dCTCF binding site (ACTCF) located upstream of the Abd-B promoter A (Figure 1) can functionally interact with PTS/F8 and Fab-7 boundaries (46). To test the role of the dCTCF binding site in ACTCF in the interaction with the boundaries, we mutated this site (ACTCFm). An electrophoretic mobility shift assay confirmed dCTCF protein binding to ACTCF but not to

Figure 4. Role of dCTCF in self-pairing of (A, B) Mcp, (C) Fab-6 and (D–F) PTS/F8 boundaries. The results presented in (A) are from ref. 40. For designations, see Figures 1 and 2.
Unexpectedly, immunoprecipitation with chromatin isolated from pupae of two different transgenic lines confirmed weak dCTCF binding to the endogenous ACTCF region but not to the same region in the transgenic constructs (Supplementary Figure S3).

The ACTCF (Figure 6A) or ACTCFm (Figure 6B) element was inserted near the GAL4 binding sites in direct orientation. In both constructs, Fab-7 was inserted in reverse orientation near the white promoter. In the control transgenic lines carrying the ACTCF/Fab-7 pair, a moderate level of white activation by GAL4 was observed (Figure 6A). By contrast, the combination of Fab-7 with ACTCFm provided for only weak white stimulation by GAL4 (Figure 6B). Thus, the dCTCF binding site in ACTCF is essential but not critical for the functional interaction between ACTCF and Fab-7.

We have shown previously (46) that the ACTCF element inserted in direct orientation near the GAL4 binding sites strongly interacted with PTS/F8 inserted near the white promoter in reverse orientation (Figure 6A). By contrast, the combination of Fab-7 with ACTCFm provided for only weak white stimulation by GAL4 (Figure 6B). Thus, the dCTCF binding site in ACTCFm is essential but not critical for the functional interaction between ACTCF and Fab-7.

We have shown previously (46) that the ACTCF element inserted in direct orientation near the GAL4 binding sites strongly interacted with PTS/F8 inserted near the white promoter in reverse orientation (Figure 6A). By contrast, the combination of Fab-7 with ACTCFm provided for only weak white stimulation by GAL4 (Figure 6B). Thus, the dCTCF binding site in ACTCFm is essential but not critical for the functional interaction between ACTCF and Fab-7.

We also addressed the question as to which part of the PTS/F8 boundary is responsible for the interaction with ACTCF. To test the role of the Fab-8 insulator (609 bp, including two dCTCF binding sites), ACTCF and Fab-8 were placed in the same positions and orientations as in the construct carrying ACTCFm and PTS/F8 (Figure 6F). GAL4 failed to stimulate white transcription in all of the transgenic lines tested, suggesting the absence of the functional interaction between the Fab-8 insulator and ACTCFm.

and the upstream promoter region (data not shown). In addition, the mutated PTS/F8m boundary with the inactivated dCTCF binding sites interacted with ACTCF with the same efficiency as the wild-type PTS/F8 boundary (Figure 6E), suggesting that dCTCF is not required for this interaction. Taken together, these results confirm that an unidentified protein binds to the dCTCF binding site in the upstream Abd-B promoter region and this protein contributes to effective distant interactions between ACTCF and PTS/F8.

We also tested the role of the Fab-7 boundary with (A) PTS/F8m, (B and C) Fab-3, (D) Fab-4, (E and F) Mcp and (G) Fab-6. For designations, see Figures 1 and 2.

Figure 5. Testing the interaction of the Fab-7 boundary with (A) PTS/F8m, (B and C) Fab-3, (D) Fab-4, (E and F) Mcp and (G) Fab-6. For designations, see Figures 1 and 2.

Figure 6. Analysis of interactions between the ACTCF region of the Abd-B promoter and the Fab-7 and PTS/F8 boundaries. Experiments were performed to compare the interactions of (A) normal ACTCF and (B) mutant ACTCFm with Fab-7. Similar experiments were performed to study the interactions of PTS/F8 with (C) ACTCF and (D) ACTCFm, as well as (E) of PTS/F8m with ACTCF. In addition, ACTCF was tested in combinations with (F and G) the Fab-8 insulator and (H) PTS. The results presented in (C) are from ref. (46). For designations, see Figures 1 and 2.
Similar results were obtained when \(A^{CTCF} \) and Fab-8 were inserted in the same orientation (Figure 6G).

In the same way (Figure 6H), we tested the functional interaction between \(A^{CTCF} \) and PTS (625 bp). Once again, GAL4 was able to weakly stimulate \(white \) transcription in only one out of nine transgenic lines tested. These results indicate that both parts of the PTS/F8 boundary are required for its functional interaction with \(A^{CTCF} \).

The upstream region of the \(Abd-B \) promoter selectively interacts with boundaries

To test whether the \(A^{CTCF} \) element is able to interact with other dCTCF-containing regulatory regions, we examined the interaction of \(A^{CTCF} \) with Fab-6 (Figure 7A and B), Fab-3 (Figure 7C and D), Fab-4 (Figure 7E) and Mcp (Figure 7F–H).

In experiments with the \(A^{CTCF} / \text{Fab-6} \) combination, GAL4 stimulated \(white \) expression in 23 out of 25 transgenic lines, suggesting that Fab-6 interacts with the upstream promoter region A. Inactivation of both dCTCF binding sites in the Fab-6 boundary had no effect on its interaction with \(A^{CTCF} \) (Figure 7B). These results confirm that dCTCF is not essential for the interaction of the Fab-6 boundary with the upstream region of the \(Abd-B \) promoter.

By contrast, we observed no \(white \) stimulation by GAL4 in most transgenic lines carrying either the \(A^{CTCF} / \text{Fab-3} \) (Figure 7C and D) or the \(A^{CTCF} / \text{Fab-4} \) (Figure 7E) combination of boundaries.

To test the interaction between \(A^{CTCF} \) and Mcp, we made three constructs with different combinations of these elements (Figure 7F–7H). No appreciable \(white \) stimulation by GAL4 was observed in any of the three series of transgenic lines. Thus, the Mcp boundary separating the \(Abd-B \) and \(abd-A \) regulatory regions fails to interact with the upstream promoter region of the \(Abd-B \) gene.

DISCUSSION

The results of this study show that the putative Fab-3 and Fab-4 boundaries containing dCTCF binding sites are able to support distance interactions. However, we have no evidence whether additional proteins bound to these boundaries are involved in distant interactions such as in the case of the Mcp, Fab-6 and PTS/F8 boundaries.

As follows from our previous data (40,46), the relative orientation of two Mcp or PTS/F8 elements defines the mode of loop formation that either allows or blocks stimulation of the \(white \) promoter by the GAL4 activator. This phenomenon is explained by the model suggesting that when the insulators are located in opposite orientations, the loop configuration is favorable for communication between regulatory elements located beyond the loop. The loop formed by two insulators located in the same orientation juxtaposes two elements located within and beyond the loop, which leads to partial isolation of the GAL4 binding sites and the \(white \) promoter placed on the opposite sides of the insulators. Supposedly, this orientation-dependent interaction is accounted for by at least two insulator-bound proteins that are involved in specific protein–protein interactions. In accordance with this model, the results of this study show that dCTCF is required for orientation-dependent pairing of the PTS/F8 boundaries.

As expected, we observed cross interactions between all dCTCF-containing boundaries included in analysis. However, only Fab-6 and PTS/F8 interacted with the Fab-7 boundary (which lacks dCTCF binding sites). It is noteworthy that dCTCF failed to bind to the upstream region of the \(Abd-B \) promoter A at the pupa stage, which probably accounted for the inability of Fab-3, Fab-4 and Mcp to interact with \(A^{CTCF} \). At the same time, strong interactions were observed between the upstream promoter region and Fab-6, Fab-7, PTS/F8 or the mutant Fab-6m and PTS/F8m boundaries lacking dCTCF binding sites. Thus, as yet unidentified protein(s) other than dCTCF are involved in supporting specific interactions of the Fab-6, Fab-7 and PTS/F8 boundaries with the upstream region of the \(Abd-B \) promoter.
It appears that one of such proteins was recently identified in the Fab-7 boundary (52).

Inactivation of the dCTCF binding site in the A^{CTCF} region considerably reduced A^{CTCF}/Fab-7 and A^{CTCF}/PTS/F8 interactions, suggesting a role for the dCTCF binding site in these processes. Since no dCTCF binding takes place in the transgenic construct, it is likely that some as yet unidentified protein binds to this site, thereby either supporting enhancer–promoter communication or recruiting other transcription factors to the upstream promoter region.

The above-described results are in accordance with the model that boundaries (Fab-6, Fab-7 and PTS/F8) are required for specific interaction with the region located upstream of the promoter A that facilitates contact between the iab enhancer and the Abd-B promoter itself (1,43,53,54). As shown recently, the Fab-7 boundary interacts with a region near the Abd-B promoter in vivo (55). The Fab-7 boundary is capable of almost complete substitution of the Fab-8 boundary, which is indicative of similarity in the mechanism of boundary function (56). On the other hand, the minimal Fab-8 insulator lacking PTS sequencing can only partially substitute for the Fab-7 boundary (56), with the resulting loss of Abd-B activation by iab-6. These findings are in agreement with our observation that the Fab-7 boundary (but not the Fab-8 insulator or PTS) can interact with the A^{CTCF} region. It appears that proteins required for the interaction with A^{CTCF} effectively bind only to the composite PTS/F8 element. This conclusion is supported by several studies demonstrating that PTS can support long-distance enhancer–promoter interaction in transgenic lines only when combined with a Fab-8- or Su(Hw)-containing insulator (57–60). It may well be that the insulator functions as an auxiliary element helping in opening chromatin and recruiting transcriptional factors to PTS. Thus, our results support the model (60) that the PTS elements in cooperation with corresponding insulators facilitate proper interaction between iab enhancers and promoters in the Abd-B locus.

Recently, a 255-bp element, named promoter-tethering element (PTE), was found at a distance of 40 bp from the Abd-B transcriptional start site (61,62) (Figure 1). This element, located between the Abd-B promoter and the A^{CTCF} region used in this study, is capable of selectively recruiting iab enhancers to the Abd-B promoter in a transgenic assay (62) and supposedly improves the specificity of interaction between the iab enhancers and the Abd-B promoter (61).

Thus, it seems likely that the boundaries, PTS and PTE cooperate in organizing proper interactions between enhancers and promoters in the BX-C. Identification of new proteins (other than dCTCF) bound to the boundaries, PTS and PTE is required for elucidating the mechanism of enhancer–promoter communication in the BX-C.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are grateful to Tatyana Gerasimova for providing us with flies mutant in the dCTCF gene and to N.A. Gorgolyuk for his help in preparing the manuscript.

FUNDING

The Russian Foundation for Basic Research (project no. 10-04-00474-a); Molecular and Cell Biology Program of the Russian Academy of Sciences (grant to O.K.); Ministry of Science and Education of the Russian Federation (project no. 02.740.11.0289); Ministry of Science and Education of the Russian Federation. Funding for open access charge: Molecular and Cell Biology Program of the Russian Academy of Sciences.

Conflict of interest statement. None declared.

REFERENCES

1. Maeda,R.K. and Karch,F. (2009) The bithorax complex of Drosophila: an exceptional Hox cluster. *Curr. Top. Dev. Biol.*, **88**, 1–33.
2. Lewis,E.B. (1978) A gene complex controlling segmentation in Drosophila. *Nature*, **276**, 565–570.
3. Sanchez-Herrero,E., Vernos,I., Marco,R. and Morato,G. (1985) Genetic organization of Drosophila bithorax complex. *Nature*, **313**, 108–113.
4. Mihaly,J., Hogga,I., Barges,S., Galloni,M., Mishra,R.K., Hagstrom,K., Muller,M., Shedl,P., Sipos,L., Gausz,J. et al. (1998) Chromatin domain boundaries in the bithorax complex. *Cell Mol. Life Sci.*, **54**, 60–70.
5. Maeda,R.K. and Karch,F. (2006) The ABC of the BX-C: the bithorax complex explained. *Development*, **133**, 1413–1422.
6. Martin,C.H., Mayeda,C.A., Davis,C.A., Ericsson,C.L., Knafer,J.D., Mathog,D.R., Celniker,S.E., Lewis,E.B. and Palazzozi,M.J. (1995) Complete sequence of the bithorax complex of Drosophila. *Proc. Natl Acad. Sci. USA*, **92**, 8398–8402.
7. Sipos,L. and Gyurkovics,H. (2005) Long-distance interactions between enhancers and promoters. The case of the Abd-B domain of the Drosophila bithorax complex. *FEBS J.*, **272**, 3253–3259.
8. Celniker,S.E., Sharma,S., Keelan,D.J. and Lewis,E.B. (1999) The molecular genetics of the bithorax complex of Drosophila: cis-regulation in the Abdominal-B domain. *EMBO J.*, **9**, 4227–4286.
9. McCall,K., O’Connor,M.B. and Bender,W. (1994) Enhancer traps in the Drosophila bithorax complex mark parasegmental domains. *Genetics*, **138**, 387–399.
10. Akhari,O.S., Bousum,A., Bae,E. and Drewell,R.A. (2006) Unraveling cis-regulatory mechanisms at the abdominal-A and Abdominal-B genes in the Drosophila bithorax complex. *Dev. Biol.*, **293**, 294–304.
11. Karch,F., Weissenbach,B., Peifer,M., Bender,W., Duncan,I., Celniker,S., Crosby,M. and Lewis,E.B. (1985) The abdominal region of the bithorax complex. *Cell*, **43**, 81–96.
12. Duncan,I. (1987) The bithorax complex. *Annu. Rev. Genet.*, **21**, 285–319.
13. Boulet,A.M., Lloyd,A. and Sakonju,S. (1991) Molecular definition of the morphogenetic and regulatory functions and the cis-regulatory elements of the Drosophila Abd-B homeotic gene. *Development*, **111**, 393–405.
14. Sanchez-Herrero,E. (1991) Control of the expression of the bithorax complex abdominal-A and Abdominal-B by cis-regulatory regions in Drosophila embryos. *Development*, **111**, 437–448.
15. Chen,Q., Lin,L., Smith,S., Lin,Q. and Zhou,J. (2005) Multiple promoter targeting sequences exist in Abdominal-B to regulate long-range gene activation. *Dev. Biol.*, **286**, 629–636.
16. Mihaly,J., Barges,S., Sipos,L., Maeda,R., Cleard,F., Hogga,I., Bender,W., Gyurkovics,H. and Karch,F. (2006) Dissecting the
regulatory landscape of the Abd-B gene of the bithorax complex. Development, 133, 2983–2993.
17. Busturia, A. and Bienz, M. (1993) Silencers in abdominal-B, a homeotic Drosophila gene. EMBO J., 12, 1415–1425.
18. Hagstrom, K., Muller, M. and Schedl, P. (1996) Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev., 10, 3202–3215.
19. Busturia, A., Wightman, C.D. and Sakonju, S. (1997) A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development, 124, 4343–4350.
20. Hangstrom, K., Muller, M. and Schedl, P. (1997) A Polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics, 146, 1365–1380.
21. Mihaly, J., Hogg, J., Gyurkovics, H. and Karch, F. (1997) In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development, 124, 1809–1820.
22. Muller, M., Hagstrom, K., Gyurkovics, H., Pirrotta, V. and Schedl, P. (1999) The Mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics, 153, 1333–1356.
23. Zhou, J., Asher, H., Burks, C. and Levine, M. (1999) Characterization of the transversion mediating region of the Abdominal-B locus in Drosophila. Development, 126, 3057–3065.
24. Bargues, S., Mihaly, J., Galloni, M., Hagstrom, K., Muller, M., Shanower, G., Schedl, P., Gyurkovics, H. and Karch, F. (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and isolates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development, 127, 779–790.
25. Gyurkovics, H., Gausz, J., Kummer, J. and Karch, F. (1999) The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J., 9, 2579–2585.
26. Galloni, M., Gyurkovics, H., Schedl, P. and Karch, F. (1993) The bithorax complex: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J., 12, 1087–1097.
27. Karch, F., Galloni, M., Sipos, L., Gausz, J., Gyurkovics, H. and Schedl, P. (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res., 22, 3138–3146.
28. Perez-Lluch, S., Cuartero, A., Azorin, F. and Espinas, M.L. (2008) Characterization of new regulatory elements within the Drosophila bithorax complex. Nucleic Acids Res., 36, 6926–6933.
29. Smith, S., Wickramasinghe, P., Olson, A., Loukinov, D., Lin, L., Deng, J., Xiong, R., Xu, J., Sachidanandam, R., Sun, H. et al. (2009) Genome-wide ChIP analyses reveal important roles for CTCF in Drosophila genome organization. Dev. Biol., 328, 518–528.
30. Kuhn, E.J. and Geyer, P.K. (2003) Genomic insulators: connecting properties to mechanism. Curr. Opin. Cell Biol., 15, 259–265.
31. Brasett, E. and Vauruy, C. (2005) Insulators are fundamental components of the euchromatic genomes. Heredity, 94, 571–576.
32. Zhao, H. and Dean, A. (2005) Organizing the genome: enhancers and insulators. Biochem. Cell Biol., 83, 516–524.
33. Maksimenko, O.G., Chevetina, D.A. and Georgiev, P.G. (2006) Insulators of higher eukaryotes: properties, mechanisms of action, and role in transcription regulation. Genetika, 42, 1029–1044.
34. Valenzuela, L. and Kamakaka, R.T. (2006) Chromatin insulators. Annu. Rev. Genet., 40, 107–138.
35. Wallace, J.A. and Felsenfeld, G. (2007) We gather together: insulators and genome organization. Curr. Opin. Genet. Dev., 17, 400–407.
36. Zhou, J., Barolo, S., Szymanski, P. and Levine, M. (1996) The Fab-7 element of the bithorax complex attenuates enhancer–promoter interactions in the Drosophila embryo. Genes Dev., 10, 3195–3201.
37. Schweinsberg, S., Hagstrom, K., Goh, D., Schedl, P., Kumar, R.P., Mishra, R. and Karch, F. (2004) The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. Genes, 168, 1371–1384.
38. Schweinsberg, S. and Schedl, P. (2004) Developmental modulation of Fab-7 boundary function. Development, 131, 4743–4749.
39. Gruzdeva, N., Kyrchano, O., Parshikov, A., Kulyev, A. and Georgiev, P. (2005) The Mcp element from the bithorax complex contains an insulator that is capable of pairwise interactions and can facilitate enhancer–promoter communication. Mol. Cell. Biol., 25, 3682–3689.
40. Kyrchano, O., Toshchakov, S., Parshikov, A. and Georgiev, P. (2007) Study of the functional interaction between Mcp insulators from the Drosophila bithorax complex: effects of insulator pairing on enhancer–promoter communication. Mol. Cell. Biol., 27, 3035–3043.
41. Rodin, S., Kyrchano, O., Pomerantsevva, E., Parshikov, A. and Georgiev, P. (2007) New properties of Drosophila Fab-7 insulator. Genetics, 177, 113–121.
42. Moon, H., Filippova, G., Loukinov, D., Pugaicheva, E., Chen, Q., Smith, S.T., Munhall, A., Grewe, B., Bartkuhn, M., Arnold, R. et al. (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep., 6, 165–170.
43. Holohan, E.E., Kwong, C., Adrian, B., Bartkuhn, M., Herold, M., Renkawitz-R, Russel, S. and White, R. (2007) CTCF genomic binding sites in Drosophila and the organization of the bithorax complex. PLoS Genetics, 3, e112.
44. Mohan, M., Bartkuhn, M., Herold, M., Philippen, A., Heinl, N., Bardenhagen, I., Leers, J., White, R.A.H., Renkawitz-Pohl, R., Saumweber, H. et al. (2007) The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J., 26, 4203–4214.
45. Bender, W. and Hudson, A. (2000) P element homing to the Drosophila bithorax complex. Development, 127, 3981–3992.
46. Kyrchano, O., Toshchakov, S., Podstreshnaya, Y., Parshikov, A. and Georgiev, P. (2008) Functional interaction between the Fab-7 and Fab-8 boundaries and the upstream promoter region in the Drosophila Abd-B gene. Mol. Cell. Biol., 28, 4188–4195.
47. Kares, R.E. and Rubin, G.M. (1984) Analysis of P transposable element functions in Drosophila. Cell, 38, 135–146.
48. Gerasimova, T.I., Lei, E.P., Bushey, A.M. and Corces, V.G. (2007) Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol. Cell, 28, 761–772.
49. Golic, K.G. and Lindquist, S. (1989) The FLP recombinase of yeast catalyzes site-specific recombinase in the Drosophila genome. Cell, 59, 499–509.
50. Siegal, M.L. and Hartl, D.L. (2000) Application of Cre/IoxP in Drosophila. Site-specific recombination and transgene co-placement. Methods Mol. Biol., 136, 487–495.
51. Cavalli, G. and Paro, R. (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell, 93, 505–518.
52. Aoki, T., Schweinsberg, S., Manasson, J. and Schedl, P. (2008) A stage-specific factor confers Fab-7 boundary activity during early embryogenesis in Drosophila. Mol. Cell. Biol., 28, 1047–1060.
53. Sipos, L., Mihaly, J., Karch, F., Schedl, P., Gausz, J. and Gyurkovics, H. (1998) Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics, 149, 1031–1050.
54. Maeda, R.K. and Karch, F. (2007) Making connections: boundaries and insulators in Drosophila. Curr. Opin. Genet. Dev., 17, 394–399.
55. Zhou, J. and Levine, M. (1999) A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell, 99, 567–575.
58. Lin, Q., Wu, D. and Zhou, J. (2003) The promoter targeting sequence facilitates and restricts a distant enhancer to a single promoter in the Drosophila embryo. Development, 130, 519–526.
59. Lin, Q., Chen, Q., Lin, L. and Zhou, J. (2004) The promoter targeting sequence mediates epigenetically heritable transcription memory. Genes Dev., 18, 2639–2651.
60. Lin, Q., Chen, Q., Lin, L., Smith, S. and Zhou, J. (2007) Promoter targeting sequence mediates enhancer interference in the Drosophila embryo. Proc. Natl Acad. Sci. USA, 104, 3237–3242.
61. Akbari, O.S., Schiller, B.J., Goetz, S.E., Ho, M.C.W. and Drewell, R.A. (2007) The Abdominal-B promoter tethering element mediates promoter-enhancer specificity at the Drosophila bithorax complex. Fly, 1, 337–339.
62. Akbari, O.S., Bae, E., Johnsen, H., Villaluz, A., Wong, D. and Drewell, R.A. (2008) A novel promoter-tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo. Development, 135, 123–131.