Structured Production System (extended abstract)

Yi Zhou

Abstract

In this extended abstract, we propose Structured Production Systems (SPS), which extend traditional production systems with well-formed syntactic structures. Due to the richness of structures, structured production systems significantly enhance the expressive power as well as the flexibility of production systems, for instance, to handle uncertainty. We show that different rule application strategies can be reduced into the basic one by utilizing structures. Also, many fundamental approaches in computer science, including automata, grammar and logic, can be captured by structured production systems.

1 Introduction

Production system is one of the most important approaches in AI. Simply enough, a production system contains a set of production rules of the form:

\[a_1, \ldots, a_n \rightarrow b, \]

where \(\{a_1, \ldots, a_n\} \) is a set of preconditions called the antecedent, and \(b \) is an action or a postcondition called the consequent. If the preconditions are satisfied by the current state of the world, then the production rule can be triggered and applied, and consequently, the action can be executed or the postcondition can be obtained. Production systems are widely applied in many application domains including expert systems [5, 6, 8], action selection in robotics [2, 4] and natural language processing [1].

Production system has many advantages. Firstly, although simple, production system is computationally very powerful. Many production system based computational models, e.g., Post canonical system, are Turing complete [11]. Secondly, production system is highly modular. Last but not least, production rules are very intuitive to be understood and used by human users.

Nevertheless, production system also has some critical disadvantages. One of the main concerns is that it is not expressive enough to handle sophisticated knowledge, e.g., uncertainty and logic. Another concern is flexibility, that is, traditional production systems only trigger and apply rules one-by-one, which is not flexible enough to incorporate other rule application strategies such as simultaneous rule application. Succinctness is also an issue. In some cases, it might need too many production rules to model an application domain.

Consider an application domain in automated solving intelligence test questions, including sequencing number games. We need to represent different forms of patterns...
such as cube and Fibonacci, and their potential combinations. Also, we need to deal
with probabilities because for a given sequencing number problem, the way to solve it
could be a probabilistic distribution over different patterns. For such a challenging task,
we need a production system that is not only efficient, but also flexible and expressive
eough to represent and reason about different kinds of sophisticated knowledge.

To address these issues, we propose structured production systems. Roughly speak-
ing, a structured production system is a production system augmented with a well-
formed syntactic structure, which is a rich framework to represent objects and knowl-
edge in the application domain.

The richness of syntactic structures brings a lot of benefits to production systems.
First of all, the syntactic structure can model more sophisticated objects so that, both
antecedents and consequents in production systems can represent more sophisticated
knowledge, including uncertainty information and logic sentences. Secondly, with the
syntactic structure, one can flexibly apply rules, e.g., to trigger one or many rules to be
applied at the same time. Thirdly, we show that structured production system serves
as a general framework for automated reasoning and modeling dynamics in the sense
that it can capture many existing approaches, including grammars, automata, abstract
rewriting systems, logic axiom systems and so on.

The rest of this extended abstract is organized as follows. Section 2 briefly reviews
the basic notions and notations about syntactic structures and assertions. Section 3
proposes structured production systems that contain a syntactic structure and a set of
ground and schema rules. Section 4 shows that different rule application strategies can
be reduced into the basic one by utilizing structures. Then, Section 5 shows that struc-
tured production systems provide a general framework for modeling dynamics as it
can capture many important approaches in computer science and artificial intelligence.
Section 6 shows how to handle uncertainty in structured production systems. Finally,
Section 7 discusses related issues and concludes this extended abstract.

2 Structures, Terms and Assertions

We assume the readers are familiar with some basic notions and notations in set the-
ory. A syntactic structure (structure for short) is a triple $\langle \mathcal{I}, \mathcal{C}, \mathcal{O} \rangle$, where \mathcal{I} is a class
of individuals, representing objects in an application domain; \mathcal{C} is a class of concepts,
representing groups of individuals that share something in common. Essentially, concepts
are sets in the sense that for each concept $C \in \mathcal{C}$, $C \subseteq \mathcal{I}$; \mathcal{O} is a class of operators on individuals, representing interrelationships among individuals and concepts in the application domain. Each operator is associated with a domain of the form (C_1, \ldots, C_n), representing all possible values that the operator O can operate on, where $C_i \in \mathcal{C}, 1 \leq i \leq n$. Here, n is called the arity of O. For an n-ary tuple (a_1, \ldots, a_n) matching the domain of an operator O, i.e., $a_i \in C_i, 1 \leq i \leq n$, O maps it into a new individual, denoted by $O(a_1, \ldots, a_n)$. Concepts and operators can be treated as individuals as well. In this sense, if needed, we can have a concept that is a collection of concepts, a concept that is a collection of operators and so on.
Example 1 Figure 1 depicts a simple application domain for opening/closing two doors. To formalize this domain, one can use state transition systems. There are four states in this scenario. At state 1, both doors are open. If an action a_1 is successfully executed to close door 1, then state 1 is transited into state 2, in which door 2 is still open while door 1 is closed. Nevertheless, state transition system has the state explosion problem as there could be too many states to be exhausted. Suppose that we generalize the door scenario into n doors. Then, a state transition system needs to use 2^n states, $2 \times n$ actions and $n \times 2^n$ transitions in order to model this domain.

Therefore, we need to use syntax for the sake of succinctness. Suppose that we have n doors. Each door $door_1, ..., door_n$ is an individual and they together form the concept $Door$. Each door has two status, either o (for “open”) or c (for “closed”). Then, $Status$ is an operator whose domain is $Door$ and whose value can be either individual o or individual c. For actions, there are two action operators, namely $Open$ and $Close$, whose domains are both $Door$. For a particular individual in $Door$, e.g., $door_1$, the action operator yields an action individual, e.g., $Open(door_1)$. We also introduce a specific operator Do whose domain is the concept of all actions and whose value can be either $true$ or $false$.

Terms are defined recursively as follows:

- an individual is a term;
- the result an operator O operating on a tuple $(t_1, ..., t_n)$ of terms that matches the domain of O is also a term.

Then, an assertion is of the form

$$t_1 = t_2,$$

(2)

where t_1 and t_2 are two terms. In particular, if t_2 is the individual “true” for representing true statements, we omit it and the associated equality symbol $=$ in the assertion for simplicity. Also, terms and assertions can be considered as individuals to be studied as well.
Example 2 [Example 1 continued] According to the definitions, \(door_1\), \(Status(door_1)\), \(Open(door_1)\), \(Do(Close(door_1))\) are terms. \(Status(door_1) = c\) and \(Do(Close(door_1)) = true\) are assertions, and the latter can be simplified as \(Do(Close(door_1))\).

3 Rules and Structured Production Systems

In this section, we present the formal definition of structured production systems. First of all, we define production rules. A ground rule is of the rule form (1) except that the preconditions \(a_1, \ldots, a_n\) and the postcondition \(b\) are specified to be assertions defined in Section 2.

Other than ground rules, we also introduce schema rules. Similar to concepts that group individuals, schema rules are used to group ground rules. A schema rule contains two parts:

- a set of variable declarations of the form

 \[x : C, \]

 where \(x\) is a variable ranging over all individuals in \(C\).

- a rule part of the form

 \[a_1, \ldots, a_n \rightarrow b, \]

 where \(a_1, \ldots, a_n\) and \(b\) are assertions except that individuals occurred in the rule could be replaced by variables declared in the variable declaration part.

A schema rule above is normally written as:

\[a_1, \ldots, a_n \rightarrow b, x_1 : C_1, \ldots, x_m : C_m, \]

where \(x_i, 1 \leq i \leq m\) are all variables occurred in the schema rule.

Schema rules can be grounded into ground rules by assigning all variables occurred in the schema rule to corresponding individuals. In this case, the ground rule is called a ground instance of the schema rule by the assignment. In this sense, a schema is essentially a concept (i.e., set) of ground rules, containing all its ground instances. Both ground rules and schema rules are called rules. In particular, ground rules can be considered as schema rules without variable declarations. Similarly, rules can be considered as individuals.

A structured production system (SPS for short) is a pair \(\langle S, R \rangle\), where \(S\) is a syntactic structure and \(R\) a set of (ground, schema) rules such that all syntactic objects (including individuals, concepts and operators) in \(R\) are defined in \(S\).

Example 3 [Example 2 continued] According to the definitions, the following rule is applicable:

\[Status(door_1) = o, Do(Close(door_1)) \rightarrow Status(door_1) = c. \]
Note that this rule covers the transition not only from state \(1\) to state \(2\) but also the one from state \(3\) to state \(4\). Then, the door scenario with \(n\) doors can be characterized by the following four schema rules:

\[
\begin{align*}
\text{Status}(x) &= o, \text{Do}(\text{Close}(x)) \quad \rightarrow \quad \text{Status}(x) = c, \\
\text{Status}(x) &= c, \text{Do}(\text{Close}(x)) \quad \rightarrow \quad \text{Status}(x) = c, \\
\text{Status}(x) &= o, \text{Do}(\text{Open}(x)) \quad \rightarrow \quad \text{Status}(x) = o, \\
\text{Status}(x) &= c, \text{Do}(\text{Open}(x)) \quad \rightarrow \quad \text{Status}(x) = o,
\end{align*}
\]

where \(x : \text{Door}\) is the variable declaration part.

It can be observed that using (schema) assertions and rules can be much more succinct in comparison with state transition systems. While the latter uses exponential number of symbols, we only need a linear number of ground rules and a constant number of schema rules to formalize this domain.

4 Rule Application Strategies

Rule application is a key issue in production systems. At a certain stage, if the antecedent of a rule is satisfied, then this rule can be triggered. It could be the case that many rules can be triggered at the same time. However, only one rule can be applied. Then, the consequent action will be executed or the consequent postcondition can be obtained.

Nevertheless, in some cases, one may need different rule application strategies. For instance, in cellular automata, the new status of each cell is updated simultaneously based on the current statuses of this cell itself and its neighborhood. Hence, naive rule application strategy is not flexible enough.

In this section, we show that this issue can be addressed in structured production systems by utilizing well-formed structures. We first follow the same basic rule application strategy as traditional production systems. Then, we show that, other different rule application strategies, including simultaneous rule application, constant rule and many more, can be reduced into the basic one by utilizing syntactic structures.

4.1 The basic strategy

We start with the basic rule application strategy for structured production systems. Similar to tradition production system, at each stage, only up to one ground rule can be applied. Again, a ground rule can be triggered if all the assertions in its antecedent are true under the current state. Nevertheless, the ground rule can be a genuine ground rule, or a ground instance of a schema rule with corresponding assignment. If a ground rule is applied, then its consequent \(t_1 = t_2\) needs to be satisfied by assigning the new value of \(t_1\) to be the existing value of \(t_2\).

A *derivation* \(d\) of an SPS is a sequence \(r_1, \ldots, r_n\) of ground rules triggered and applied, denoted by \(d = r_1; \ldots; r_n\), where \(;\) is an operator connecting rules.
4.2 Constant rules

In some cases, one may wish some rules to be applied at all stages. For instance, the following rule simply counts the global time clock of an SPS.

\[\rightarrow t = t + 1, \]

which means that after each stage, the counter \(t \) is increased by 1. In order to make it work, this rule has to be applied at all stages. We call them constant rules.

A constant rule can be reduced into the basic rule application strategy by attaching it to all other rules in an SPS. For this purpose, we introduce a special term structure called conditional term. A conditional term is a triple \(\langle \phi, t_1, t_2 \rangle \), where \(\phi \) is an assertion and \(t_1 \) and \(t_2 \) two terms. If the assertion \(\phi \) holds, then this conditional term equals to \(t_1 \); otherwise, it equals to \(t_2 \). By using conditional terms, each production rule of the form (1), in which the consequent \(b \) is \(t_1 = t_2 \), can be equivalently rewritten as

\[\rightarrow \langle a_1 \land \cdots \land a_n, t_2, t_1 \rangle. \] (5)

Let \(r \) and \(r' \) be two ground rules and \(\hat{r} = \rightarrow t_1 = t_2 \) and \(\hat{r}' = \rightarrow t_1' = t_2' \) their rewritten of the form (5) respectively. The rule obtained from \(r \) by attaching \(r' \), denoted by \(r \circ r' \), is the following rule

\[\rightarrow (t_1, t_1') = (t_2, t_2'). \]

Let \(\mathcal{R} \) be a set of rules and \(r' \) a rule. The rule base obtained from \(\mathcal{R} \) by attaching \(r' \), is the set \(\{ r \circ r' \mid r \in \mathcal{R} \} \).

A constant rule in an SPS is a rule attached to all other rules in the system.

4.3 Simultaneous rule application

In some cases, one may want to apply some rules simultaneously. This can be reduced to the basic rule application strategy by utilizing syntactic structures as well. We use rule grouping for this purpose. There are two different kinds of rule grouping, i.e., grouping a finite set of ground rules and grouping a schema rule.

Grouping a finite set of ground rules can be achieved by rule attaching as well. Let \(r_i, 1 \leq i \leq n \) be a finite set of ground rules. The group rule of \(r_i, 1 \leq i \leq n \), also denoted by \([r_1, \ldots, r_n] \), is the following rule

\[r_1 \circ r_2 \circ \cdots \circ r_n. \]

Once these rules are grouped together, they will be triggered and applied simultaneously.

Grouping a finite set of ground rules yields a straightforward extension of production rules to allow multiple assertions in the consequents of rules.

Grouping a schema cannot simply be done by attaching as there could be infinite number of ground instances of a schema rule. For this purpose, we need to induce an ordering on sets. Let \(S = \{a_1, a_2, a_3, \ldots, a_n, \ldots\} \) be a countable set. By \(\mathcal{S} \), we denote the following set \(\{\{a_1\}, \{a_1, a_2\}, \{a_1, a_2, a_3\}, \ldots, \{a_1, a_2, a_3, \ldots, a_n\}, \ldots\} \).

Here, we only present the case that all concepts only contain countable number of individuals.
Let r be a schema rule of the form $a_1, \ldots, a_n \rightarrow t_1 = t_2$ with variable declarations $x_i : C_i, 1 \leq i \leq m$. We first rewrite it into $\rightarrow t_1 = t$, where t denotes the conditional term $(a_1 \land \cdots \land a_n, t_2, t_1)$. Note that both t_1 and t could contain variables. Essentially, $t_1 = t$ means that for all assignments $\eta = (x_1/d_1, \ldots, x_m/d_m), t_1 \eta = t\eta$. The group rule of r, denoted by $[r]$, is the following rule

$$\rightarrow \{ t_1 \eta \mid \eta \text{ is an assignment} \} = \{ t\eta \mid \eta \text{ is an assignment} \}.$$

If the postcondition holds, then for all assignments η, $t_1 \eta = t\eta$, and vice versa.

4.4 Preference over rules

In some cases, one may wish a rule is more preferred than another. That is, if the former rule is applicable, then always trigger and apply it. Otherwise, one can check whether the latter rule is applicable or not.

Let r and r' be two rules, and r is more preferred than r', written by $r \succ r'$. In order to simulate this preference relationship, we introduce an operator Applicable over rules. $\text{Applicable}(r)$ means that the preconditions of r are all satisfied so that rule r can be triggered and applied. Then, we add a new precondition to rule r', stating that r' is applicable only if rule r is not applicable at the moment, that is, $\text{Applicable}(r)$ has to be false.

Formally, let r be a ground rule and a_1, \ldots, a_n all its preconditions. Let r' be a ground rule, a'_1, \ldots, a'_n all its preconditions and b' its postcondition. To capture the preference relationship $r \succ r'$, we group the following rules together, including rule r, rules of the form $-a_i \rightarrow \text{Applicable}(r) = \text{false}$, where $1 \leq i \leq n$, and $a'_1, \ldots, a'_n, \text{Applicable}(r) = \text{false} \rightarrow b'$.

This is a finite group of rules, which means that these rules will be triggered and applied simultaneously. Rule r is in the group, meaning that r can be triggered and applied in any circumstance if its preconditions are satisfied. The rules $a_i \rightarrow \text{Applicable}(r) = \text{false}$ mean that if one of the preconditions of r is not satisfied, then rule r is not applicable. Finally, the rule $a'_1, \ldots, a'_n, \text{Applicable}(r) = \text{false} \rightarrow b'$ means that the rule r' can be applied only if rule r is not applicable. In this sense, rule r is always more preferred than rule r'.

To extend this for schema rules, one needs to deal with the assignments, which can be included in the scope of the newly introduced operator Applicable.

4.5 Ordered rule application

Sometimes one may wish the rules to be applied in an order, i.e., a rule can be applied only if another rule is already applied. A special case is sequential rule application, i.e., rules are applied one by one. We show that ordered rule application and sequential rule application can be reduced into the basic rule application strategy as well.
We introduce a new operator \textit{Applied} over all rules, explicitly monitoring whether a rule is applied or not. Let \(r \) be a ground rule of the form (1) and \(r' \) is the rule that has to be applied before the application of \(r \), denoted by \(r' \triangleright r \). We rewrite \(r' \) as

\[
a'_1, \ldots , a'_n \rightarrow b', \text{Applied}(r').
\]

and \(r \) as

\[
a_1, \ldots , a_n, \text{Applied}(r') \rightarrow b, \text{Applied}(r).
\]

According to the construction, this rule can be triggered only if rule \(r' \) is applied. After applying this rule, rule \(r \) is set to be applied. Hence, rule \(r \) can only be applied after the application of \(r' \). Ordered rule application on schema rules can be done similarly except that one needs to deal with assignments, which can be included in the scope of the operator \textit{Applied}. Sequential rule application is a special case of ordered rule application when a total order is enforced on all rules.

5 Capturing Existing Approaches

In this section, we argue that structured production system provides a general framework for modeling dynamics and automated reasoning by showing that it can capture many existing approaches.

\textbf{Traditional production system} Clearly, traditional production systems are special cases of structured production systems. One issue in traditional production system is that the consequent could be either an action or a post-condition. In structured production systems, we can unify them together by introducing a special operator \textit{Do} on all actions to convert them into assertions, as shown in Example [1]. Although structures are used in some traditional production systems, their power are not thoroughly investigated. In this extended abstract, we further show that the richness of syntactic structures can indeed bring a lot of benefits to production systems.

\textbf{Subsumption architecture} Subsumption architecture [4] is an extension of traditional production system by allowing multi-layer of production rules to be applied simultaneously, where lower-level actions are sub-behaviors of higher-level ones. Subsumption architecture can be considered a special case of structured production systems as well in the sense that it utilizes a syntactic structure to model the hierarchical relationships among actions. Also, parallelism can be implemented in SPS by rule grouping.

\textbf{Automata and Turing machines} As the foundation of computational theory, automata and Turing machine play a critical role in computer science. An automaton (such as a Turing machine) can be reformulated as a structured production system, where each item in the transition function forms a production rule and the rest (including states and symbols) is defined by a well-formed structure.

\textbf{Abstract rewriting systems and state transition systems} Abstract rewriting systems and state transition systems are simple models for modeling dynamics. Similar to automaton, an abstract rewriting system or a state transition system can be re-formulated as a SPS, again, in which the transitions are modeled by production rules and the rest is captured by a structure.
Axiom systems Logic axiom systems are often considered as deliberative that are very different from production systems. Interestingly, logic axiom systems can be converted into structured production systems as well. For this purpose, we introduce an operator $Prove$ operating on all well defined formulas whose value can be either true or false. Then, axioms and inference rules in logic axiom systems can be translated into schema production rules with variables ranging over all well-defined formulas. For instance, the exclusive middle axiom

$$P \lor \neg P$$

is translated into a schema rule

$$\rightarrow Prove(P \lor \neg P),$$

with the variable declaration $P : \mathcal{L}$, where \mathcal{L} is the language (i.e., a concept) of all well-defined formulas. Similarly, the Modus Ponens inference rule is translated into

$$Prove(P), Prove(P \supset Q) \rightarrow Prove(Q),$$

where $P, Q : \mathcal{L}$.

Cellular automata A cellular automaton \cite{12, 13} consists of a grid of cells whose values range over a finite set. At each stage, the new value of each cell is only depending on its adjacent cells (called the neighborhood) by some fixed rules. Clearly, a cellular automaton can be regarded as a SPS in the sense that the rules governing the value change of cells can be straightforwardly converted into a production rule, while the rest, including the grid itself, can be captured by a syntactic structure. No matter the rules are applied synchronously or asynchronously, this can be captured in structured production systems with different rule application strategies discussed in Section 4.

It can be seen that many other approaches, e.g., opinion dynamics \cite{3, 7} and, can be reformulated as structured production system as well.

6 Handling Uncertainty

One of the main concerns of traditional production systems is that production rule of the form (1) is too simple to model sophisticated application domains, for instance, to handle uncertainty. In this section, we show that this issue can be addressed by utilizing the syntactic structures.

6.1 Uncertainty associated with assertions

One way to incorporate uncertainty in structured production systems is to extend assertions with uncertainty information. For instance, let ϕ be an assertion and Pr a probability function whose domain is the concept of all assertions and whose value is a real number between 0 and 1. Then, $Pr(\phi)$ is an individual. Consequently, $Pr(\phi) = 0.6$ is a probabilistic assertion, meaning that the probability of ϕ to be true is 0.6. It is easy to see that other uncertainty assertions such as fuzzy assertion can be defined in a similar way.
With uncertainty assertions, one can directly talk about uncertainty in structured production systems. For instance, the following schema rule

\[Pr(Smoke(x)) = 0.9, Pr(Cancer(Father(x))) = 0.85 \]

\[\rightarrow Pr(Cancer(x)) = 0.045, \]

where \(x : Human \), means that if the probability of a person \(x \) being a smoker is 0.9 and the probability of \(x \)'s father having a cancer is 0.85, then the probability of \(x \) getting a cancer is 0.45. The syntactic objects in the rule could vary or could be more abstract. For instance,

\[Pr(Smoke(x) = a), Pr(Cancer(Father(x)) = b) \]

\[\rightarrow Pr(Cancer(x)) = f(a, b), \]

is a more abstract schema rule for this scenario, where \(f \) is an arithmetic function.

Similar to handling logic axioms and inference rules, one can encode some theorems and axioms about uncertainty, e.g., Kolmogorov’s probability axioms, by structured production rules. As an example, Bayes’ theorem can be encoded into the following schema rule:

\[\rightarrow Pr(A \mid B) = \frac{Pr(B \mid A) Pr(A)}{Pr(B)}, \] (6)

where \(A \) and \(B \) range over all assertions and \(\mid \) is an operator for conditional assertions.

6.2 Uncertainty associated with rules

An alternative way for handling uncertainty in structured production systems is to attach uncertainty information to rules. For instance, let \(r \) be a rule. We introduce a probability function \(Pr \) whose domain is the concept of all rules and whose value is a real number between 0 and 1. Then, \(Pr(r) \) is an individual, and consequently, \(Pr(r) = 0.8 \) is a probabilistic assertion, meaning that the probability of \(r \) to be true is 0.8.

One can extend this to a probability function over derivations. For instance, we can define the following schema rule to calculate the probabilities of derivations

\[d = r_1; \ldots; r_n \rightarrow Pr(d) = Pr(r_1) \times \cdots \times Pr(r_n) \] (7)

where \(d \) ranges over all derivations and \(r_i, 1 \leq i \leq n \) ranges over all rules.

6.3 Embedding probabilistic context-free grammar

Following the above ideas of handling uncertainty in structured production system, one can see that many interesting approaches, for instance, probabilistic context-free grammar that is widely used in natural language processing [9], can be considered as structured production systems as well.
Formally, a probabilistic context-free grammar is a quintuple \(\langle M, T, R, S, P \rangle \), where \(M \) is a set of intermediate symbols including the start symbol \(S \), \(T \) a set of terminal symbols disjoint from \(M \), \(R \) a set of rules of the form
\[
A \rightarrow \alpha, \quad (8)
\]
where \(A \in M \) and \(\alpha \) a string of symbols over \(M \cup T \), and finally, \(P \) a probabilistic function from \(R \) to \([0, 1]\). A derivation is a sequence of rule applications, generating a string of terminal symbols from the start symbol \(S \). At the beginning, the string is merely the start symbol \(S \). Then, at each stage, in order to obtain the next string, one picks up a rule of the form (8) such that \(A \) is in the current string and replace \(A \) with \(\alpha \). One repeats the above process until the string only consists of terminal symbols. Finally, the probability of the derivation is the product of the probabilities of rules used in every stage.

To re-formulate probabilistic context-free grammars in structured production systems, we need to define a syntactic structure. We borrow the concepts, including \(M \) and \(T \), defined in the grammar. Specifically, \(S \) an individual. We use \textit{String} to denote a concept of all possible strings over \(M \cup T \), and \(\bullet \) the concatenation operator over strings. We also introduce a concept \(D \) of all derivations such that \(R \subseteq D \), and ; the operator that connects two derivations. Finally, we specifically introduce an individual \(cs \) to denote the current string whose initial value is \(S \), and \(cd \) to denote the current derivation whose initial value is empty.

Then, we translate a rule \(r \in R \) of the form (8) into the following schema production rule:
\[
\begin{align*}
\textit{cs} &= s \bullet A \bullet s' \rightarrow \textit{cs} = s \bullet \alpha \bullet s', \textit{cd} = cd; r,
\end{align*}
\]
where \(s, s' : \textit{String} \). Together with the schema rule (7) to calculate the probabilities of derivations, a probabilistic context-free grammar is converted into a structured production system.

To end up with this section, it is worth mentioning that one can combine these two different ways of handling uncertainty together. It is valid to state the following rule
\[
\begin{align*}
\Pr(\textit{Cancer}(\textit{Father}(x))) &= 0.7 \\
\rightarrow \Pr(\textit{Smoke}(x) \rightarrow \Pr(\textit{Cancer}(x) = 0.02)) &= 0.8,
\end{align*}
\]
where \(x : \textit{Human} \).

7 Conclusions, Discussions and Future Work

In this extended abstract, we proposed structured production systems that enhance traditional production systems with well-formed syntactic structures. For using structured production systems to model an application domain, objects in the domain are represented by individuals, concepts and operators; knowledge are formalized by assertions; finally, dynamics in the domain are captured by (schema) production rules.

Production system is one of the most important AI approaches. Nevertheless, it has been less studied in the AI community in recent decades. Perhaps one reason is that
it is considered to be too simple. We argue that simplicity should never be an issue in scientific research. On the contrary, following the Occam’s razor principle, the simpler, the better. This is the case especially for production system, providing its tremendous applications in AI including expert systems, natural language processing and robotics.

Although simple, research on production system is far from mature. There are several critical issues with traditional production systems, including succinctness, expressiveness and flexibility. In this extended abstract, we showed that these issues can be addressed by introducing well-formed syntactic structures. Due to the richness of structures, we showed that structured production systems are expressive enough to model sophisticated application domain in a succinct and flexible way. As an evidence, we showed that structured production systems can handle uncertainty information, capture different rule application strategies and many fundamental approaches in computer science.

Another critical issue of production systems is the knowledge acquisition problem, that is, how to engineer the production rules at the first place. Although not discussed in this extended abstract, it is another important motivation of our work on structured production systems. We plan to use well-structured production rules themselves to generate and learn (schema) production rules. We leave this as one of our most important future works.

Structured production systems are nondeterministic. Firstly, similar to traditional production systems, there could be many different rules applicable at a certain stage. The system needs to determine which one to trigger and apply. Secondly, schema rules may have different groundings, which leads to nondeterminism as well. To address this issue, traditional production systems often have a rule matching mechanism as well as a rule selection mechanism. Nevertheless, in structured production system, we plan to use an alternative approach that encodes rule matching and selection themselves as production rules with the help of syntactic structures. We leave this as another future direction.

Both production systems and structures are not new in the literature, neither is their integration. In fact, many existing production systems, such as context-free grammars, already use schema rules. Nevertheless, most of them only consider their integrations by schema rules. The main contribution of this work is to further advocate their marriage to show that structures can indeed bring much more benefits to production systems. In this extended abstract, we showed that structures can be used not only in schema rules but also in a more flexible way to address many key issues in production systems.

As mentioned in the introduction, one of our intended application domains is intelligence tests including sequencing number games. For such a challenging task, we need not only to represent complicated syntactic objects including different patterns and their combinations but also to effectively reason about them. We use well-formed structures for the former while production rule based reasoning for the latter. This extended abstract is focused on the theoretical part, and we will present our preliminary results on sequencing number games based on structured production systems in another paper.

Finally, we argue that structured production system has the potential to bypass the long standing curse of symbolic AI that always tries to find a balance between expres-
siveness and efficiency. In traditional symbolic AI, a critical dilemma is the tradeoff between expressiveness and efficiency (often measured by computational complexity)\cite{10}. The more expressive power a symbolic AI formalism has, the less efficiency it is, or the other way around. Then, many researches are devoted into adding or removing some building blocks in symbolic AI formalisms in order to make a good balance between them. Nevertheless, in many application domains, both expressiveness and efficiency are highly needed. We argue that structured production system suggests a promising solution for solving this dilemma. While expressiveness for representation is achieved by syntactic structures, efficiency for reasoning can be obtained by applying production rules.

Acknowledgement

The author would like to thank Prof. Fangzhen Lin for his comments on a first draft of this paper.

References

[1] James Allen. *Natural Language Understanding (2Nd Ed.)*. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1995.

[2] Ronald C. Arkin. *An Behavior-based Robotics*. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[3] David Bindel, Jon M. Kleinberg, and Sigal Oren. How bad is forming your own opinion? *Games and Economic Behavior*, 92:248–265, 2015.

[4] Rodney A. Brooks. A robust layered control system for a mobile robot. Technical report, Cambridge, MA, USA, 1985.

[5] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. *Programming Expert Systems in OPS5: An Introduction to Rule-based Programming*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[6] Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat. *Building Expert Systems*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[7] Rainer Hegselmann and Ulrich Krause. Opinion dynamics and bounded confidence: models, analysis and simulation. *J. Artificial Societies and Social Simulation*, 5(3), 2002.

[8] Peter Jackson. *Introduction to Expert Systems*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1998.

[9] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-outside algorithm. *Computer Speech and Language*, 4:35–56, 1990.
[10] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. *Computational Intelligence*, 3:78–93, 1987.

[11] Marvin L. Minsky. *Computation: Finite and Infinite Machines*. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[12] John Von Neumann. *Theory of Self-Reproducing Automata*. University of Illinois Press, Champaign, IL, USA, 1966.

[13] Joel L. Schiff. *Cellular Automata: A Discrete View of the World* (Wiley Series in Discrete Mathematics & Optimization).