Cerebellar and cortical correlates of internal and external speech error monitoring

Elin Runnqvist 1*, Valérie Chanoine 1,2, Kristof Strijkers 1, Chotiga Patamadilok 1, Mireille Bonnard 3, Bruno Nazarian 4,5, Julien Sein 4,5, Jean-Luc Anton 4,5, Lydia Dorokhova 1, Pascal Belin 5a & F. Xavier Alario 6a

© The Author(s) 2021. Published by Oxford University Press.
1 Aix-Marseille Université, CNRS, LPL, Aix-en-Provence, France
2 Institute of Language, Communication and the Brain, France
3 Centre IRM, Marseille, France
4 Aix-Marseille Université, Inserm, INS, Marseille, France
5 Aix-Marseille Université, CNRS, INT, Marseille, France
6 Aix-Marseille Université, CNRS, LPC, Marseille, France

F.-Xavier Alario and Pascal Belin share senior authorship of the study.

*Elin Runnqvist
elin.runnqvist@univ-amu.fr
ORCID 0000-0002-0032-1168
Author contributions: E.R. and F.-X.A. contributed to the conceptualization and design. P.B., J-L.A., B.N., J.S. and C.P. contributed to the implementation of the study. V.C., P.B., and E.R. contributed to running the experiment and analyzing the data. L.D. contributed to processing and analyzing audio recordings. E.R., K.S. and F.-X.A. contributed to data interpretation. All authors contributed to writing the paper.

Abstract

An event-related fMRI study examined how speakers inspect their own speech for errors. Concretely, we sought to assess (1) the role of the temporal cortex in monitoring speech errors, linked with comprehension-based monitoring; (2) the involvement of the cerebellum in internal and external monitoring, linked with forward modeling; and (3) the role of the medial frontal cortex for internal monitoring, linked with conflict-based monitoring. In a word production task priming speech errors, we observed enhanced involvement of the right posterior cerebellum for trials that were correct, but on which participants were more likely to make a word- as compared to a non-word error (contrast of internal monitoring). Furthermore, comparing errors to correct utterances (contrast of external monitoring), we observed increased activation of the same cerebellar region, of the superior medial cerebellum, and of regions in temporal and medial frontal cortex. The presence of the cerebellum for both internal and external monitoring indicates the use of forward modeling across the planning and articulation of speech. Dissociations across internal and external monitoring in temporal and medial frontal cortex indicate that monitoring of overt errors is more reliant on vocal feedback control.

Keywords: cerebellum; error monitoring; fMRI; forward modelling; speech production
Several phenomena indicate that speakers inspect their utterances for errors. The most obvious evidence for this is that speakers can interrupt and correct themselves (self-repairs, Levelt, 1983), or accurately report having committed an error (Postma & Nordanus, 1996). Errors are sometimes interrupted or repaired almost immediately after they start to be pronounced, at a velocity indicating that error detection and repair had already been prepared internally, before the error was even audible (Levelt, 1983; Hartsuiker & Kolk, 2001). Moreover, certain types of errors such as taboo or non-words, occur below chance when they would be considered as inappropriate utterances (Baars, Motley & McKay, 1975; Nooteboom & Quené, 2008). This indicates that the monitor can filter out impending errors before articulation, thus lending further support to the notion that monitoring may also take place internally. Despite the consensus regarding the existence of both inner and external error monitoring processes, their cognitive and neural basis remains contentious (see Lind & Hartsuiker, 2020; Gauvin & Hartsuiker, 2020; and Nozari, 2020 for reviews). Here we aimed at better characterizing the presence of three different monitoring mechanisms invoked to account for both inner and external monitoring, namely (1) comprehension-based monitoring with neural correlates in temporal cortex, (2) forward modeling with neural correlates in the cerebellum and (3) conflict-based monitoring with neural correlates in medial frontal cortex. To this end, we used event-related fMRI during an overt production task eliciting speech errors.

1. Temporal cortex and comprehension-based monitoring

An influential view has been that speakers rely on speech comprehension processes to detect errors (Levelt, 1983; Hartsuiker & Kolk, 2001; Levelt, Roelofs & Meyer, 1999; Roelofs, 2020). A speaker’s own phonologically encoded internal representations and audible speech utterances would be the input of an inner and external channel, respectively, feeding into the very processing loops used when perceiving speech produced by others. This cognitive account fitted nicely with the neurobiological proposal linking monitoring processes to activity in regions of the auditory cortex (Indefrey & Levelt, 2004), which was based on the observation of enhanced bilateral activation of
posterior superior temporal gyrus (pSTG) in conditions requiring increased speech monitoring (e.g., manipulated auditory feedback, Hirano et al., 1997; auditory hallucinations, Shergill, Brammer, Williams, Murray & McGuire, 2000). Other models implement the reliance on speech perception for error detection as a feedback circuit comparing auditory perception to an internal auditory target, and the proposed locus of this comparison is also pSTG (e.g., Golfinopoulos et al., 2010) or the neighboring region SPT (sylvian fissure at the parieto-temporal boundary, e.g., Hickok, 2012). However, a recent review and meta-analysis of 17 studies argued to support the implication of the pSTG in monitoring concluded that existing neuroimaging evidence is insufficient to make such an argument (e.g., Meekings & Scott, 2021). In particular, there was a mismatch between the pSTG regions proposed as responsible for error detection in the previous literature and the regions identified in an activation likelihood estimate (ALE) analysis. Also, the studies themselves were found to be methodologically and theoretically inconsistent with one another. In addition, none of the studies on which the models were built was actually based on natural speech errors, but rather on feedback alterations. Hence, it remains an open question whether or not the pSTG has a role in the monitoring of true speech errors.

2. Cerebellum and forward modeling

The involvement of the cerebellum has been reported in studies involving manipulations of participants’ auditory feedback to their own speech (e.g., distorted or noisy feedback, Christoffels, Formisano & Schiller, 2007; Tourville, Reilly & Guenther, 2008), verbal fluency (e.g., produce as many words as possible beginning with “s”, Leggio, Silveri, Petrosini & Molinari, 2000), and error priming during speech production (e.g., “tax coal” priming the target “cap toast” into the error “tap coast”, Runnqvist, Bonnard, Gauvin, Attarain, Trébuchon, Hartsuiker & Alario, 2016). To understand this cerebellar involvement for speech production, one can turn to what is known about the monitoring of non-verbal actions. The cerebellum has been ascribed a crucial role in the monitoring of motor actions through the theoretical construct of forward modelling (also labelled “internal modelling” or “predictive coding”). In a forward modelling framework, the correction of
motor commands is ensured by producing expectations of the commands’ sensory consequences before their output is effective as physical actions (i.e., through corollary discharges or efference copies; McCloskey, 1981; Jeannerod, 1988; Wolpert, Ghahramani & Jordan, 1995). Cerebellar activity, particularly in the posterior lobules, is modulated by the predictability of the consequences of self-generated movements (Blakemore, Frith & Wolpert, 2001; Imamizu et al., 2000). Hence, the cerebellum has been proposed as an important center of this forward modelling of motor actions (Blakemore, Frith & Wolpert, 2001; Imamizu et al., 2000; Miall & King, 2008).

The hypothesis of cerebellar forward modelling has also been incorporated into theories and empirical investigations of mental activities, including language processing (Ito, 2008; Strick, Dum & Fiez, 2009; Desmond & Fiez, 1998; Pickering & Garrod, 2013; Hickok, 2012; Lesage, Hansen & Miall, 2017; Argyropoulos, 2016). For example, Ito (2008) proposed to extend the domain of forward models from sensori-motor actions to mental activities based on a review of anatomical (i.e., appropriate neural wiring between the cerebellum and the cerebral cortex), functional (appropriate mental activity in the cerebellum) and neuropsychological data (the association of some mental disorders with cerebellar dysfunction). In line with this proposal, it has been shown that a gradient within the posterolateral cerebellum supports cognitive control of both concrete, proximal actions (motor-adjacent sub-regions) and abstract future processing (motor-distal sub-regions, e.g., D’Mello et al., 2020). Several theoretical models of the motor control of speech incorporate some form of forward modeling (i.e., Gunther et al., 2006; Tourville & Gunther, 2011; Hickok, 2012; 2014; Tian & Poeppel, 2010). For example, Golfinopoulos et al. (2010) propose that auditory feedback control would be complemented by a cerebellar module (superior lateral cerebellum) and a feedforward control subsystem mediated by a trans-cerebellar pathway (anterior paravermal parts of the cerebellum). Hickok (2012) proposes that the cerebellum is in charge of the comparison (coordinate transform) between auditory and motor targets at the phonetic encoding stages of speech production. The integration of the cerebellum in these models is based on evidence from feedback manipulations as discussed previously (e.g., Ghosh, Tourville & Guenther, 2008), and on the role of the cerebellum
in ataxic dysarthria studies (e.g., Ackermann et al., 1992). A less explored hypothesis states that linguistic levels of processing that are beyond speech motor control are also monitored through forward models (Pickering & Garrod, 2013). Furthermore, this psycholinguistic proposal has not been neurobiologically specified. However, given the increasing evidence of a role of the cerebellum in cognitive processing, an extension of the mechanisms operating on speech motor aspects to language processing proper is conceivable. One study has reported an increase in the production of phonological substitution errors after rTMS (repetitive transcranial magnetic stimulation) to the right posterolateral cerebellar Crus I (e.g., Runnqvist et al., 2016). Hence, this study suggests a direct involvement of the posterior cerebellum in speech monitoring beyond articulatory aspects. However, among others, open questions that remain are whether this type of monitoring is applied during planning or articulation, and whether the same or different parts of the cerebellum would be involved for monitoring inner versus overt speech.

3. Medial frontal cortex and conflict-based monitoring

The involvement of several areas in the medial frontal cortex such as the pre-supplementary motor area (pre-SMA) and the anterior cingulate cortex (ACC) has been reported in studies investigating error related processing in language production (Gauvin, DeBaene, Brass & Hartsuiker, 2016; DeZubicaray, Wilson, McMahon & Muthiah, 2001; Möller, Jansma, Rodriguez-Fornells & Münte, 2007). These areas are the same ones that have been linked to error detection and conflict monitoring in domains other than language, such as in cognitive control (Botvinick, Braver, Barch, Carter & Cohen, 2001; Nachev, Rees, Parton, Kennard & Husain, 2005). The conflict monitoring theory holds that medial frontal structures constantly evaluate current levels of conflict and that, when a conflict threshold is passed, they relay this information on to other regions in frontal cortex responsible for control, triggering them to adjust the strength of their influence on processing. A need for greater control is thus indicated by the occurrence of conflict itself. Such theory can account both for inner and external monitoring through a single mechanism operating on a continuum of conflict on which overt errors would be the most extreme case.
The idea of conflict monitoring as a means of preventing and detecting errors has been incorporated into a model of language production (Nozari, Dell & Schwartz, 2011) that successfully simulated error-detection performance in aphasic patients. Moreover, a few studies have obtained evidence for an involvement of the ACC and pre-SMA also on correctly named trials in tasks involving the presence of explicit conflict in the stimulus to be processed for language production (e.g., semantic interference inflicted by the categorical relationship between a picture to be named and a (near-)simultaneously presented distractor; DeZubicaray et al., 2001; Abel, Dressel, Weiller & Huber, 2012). However, the available evidence only bears on the involvement of medial frontal cortex in the processing of overt errors or of conflict of the type requiring the exclusion of a competing response that is directly present in the stimulus. Hence, in the context of a task without explicit conflict in the stimulus, it remains an open question whether the medial frontal cortex has a role for monitoring in the absence of overt errors.

4. The current study

In short, three hypotheses about cognitive mechanisms with distinct neural correlates can be distilled from the literature related to internal and external speech error monitoring, namely comprehension-based monitoring through posterior temporal cortex, forward modelling through the cerebellum and conflict-based monitoring through medial frontal cortex. As evidenced by our review of the literature, many questions regarding the circumstances in which these mechanisms may be at play remain open. Here we sought to fill some of these gaps by providing independent empirical support for (1) a role of the temporal cortex in the monitoring of true speech errors; (2) an involvement of the cerebellum in inner and/or external monitoring, possibly recruiting different parts of the cerebellum for different functions (posterior for speech planning and superior medial for articulation); and (3) a role of the medial frontal cortex for inner monitoring (in the absence of overt errors). We addressed these hypotheses through an event-related fMRI study designed to examine both internal and external speech error monitoring, with a zoom on temporal, cerebellar and medial frontal regions linked to the different monitoring mechanisms discussed above.
Eleven regions of interest were selected within these three broad anatomical regions (see Table 1), corresponding to MNI coordinates reported in theoretically relevant meta-analyses, models or studies eliciting natural speech errors. In particular, our ROIs in temporal cortex correspond to pSTG regions proposed to underlie the auditory target in the DIVA model (e.g., Golfinopoulos et al., 2010) and to the region SPT that corresponds to the coordinate transform between auditory and motor targets in the HSFC model (e.g., Okada & Hickok, 2006). For the cerebellum we selected two right posterior coordinates linked to (cognitive aspects of) language processing in the meta-analysis of Stoodley and Schmahmann (2010), as well as the coordinates corresponding to the superior medial cerebellum linked to the articulatory aspects of speech in the DIVA model (e.g., Golfinopoulos et al., 2010). Finally, for medial frontal cortex we selected the coordinates reported for ACC and pre-SMA in Gauvin et al. (2016), being the only previous study that directly contrasted overt natural speech errors and correct trials. For estimates on the right ACC and pre-SMA we used the coordinates reported by the meta analysis of Hester et al. (2004) stemming from non-linguistic error-related processing.

Twenty-four healthy volunteers, native speakers of French, performed an error eliciting production task while undergoing blood-oxygen-level-dependent (BOLD) imaging. Based on evidence that a majority of overt errors involve error detection and hence monitoring (Gauvin et al., 2016), external monitoring was indexed by contrasting correct trials and trials with errors. Extending previous work, internal monitoring was indexed on correct trials by manipulating the likelihood of committing an error and hence the load on speech monitoring mechanisms in two conditions. This was achieved by priming spoonerisms that for half of the trials would result in lexical errors (e.g., “tap coast” for the target “cap toast”) and the other half in non-lexical errors (e.g., “*sost *pon” for the target “post son”, see Figure 1). Speakers are more error-prone when lexical rather than non-lexical errors are primed (Nooteboom & Quéné, 2008; Oppenheim & Dell, 2008). This effect seems to be caused by a combination of context biases (inappropriate production candidates are more easily discarded, e.g., Hartsuiker, Corley & Martensen, 2005) and of the
interactive activation dynamics inherent to speech preparation (the lexical competitor would count on both a phonological and lexical source of activation compared to the non-lexical one, e.g., Dell, 1986). Regardless of the cause of the effect, the rationale here is that to-be-articulated words with higher error-probability should reveal an enhanced involvement of the inner monitor (Severens, Kühn, Hartsuiker & Brass, 2012). Hence, lexical versus non-lexical error priming was contrasted to index internal monitoring.

Methods

Participants. The study received appropriate ethical approval (filed under id “EudraCT: 2015-A00845-344” at the regional ethical committee “Comité de Protection des Personnes Sud Méditerranée I”). Twenty-eight (18 females, 10 males) right-handed native speakers of French participated in exchange for monetary compensation. Four participants (4 males) were excluded from the analyses: three because of excessive head movements during the acquisition and one because of a misunderstanding of the task. The average age of the remaining 24 participants was 23.8 (SD 3.2). No participant reported any history of language or neurological disorders.

Materials. Target stimuli were 320 printed French nouns (those used in Runnqvist et al., 2016) to be presented in pairs. For illustrative purposes, the examples in the text are given in English. To control for differences due to physical variance of stimuli, the same words were used across participants and conditions (albeit combined differently to prime lexical and non-lexical errors, e.g., *mole sail, mole fence*). Exchanging the first letters of these combinations would result in a new word pair in one case (*sole mail*, lexical error outcome) and in a non-word pair in the other case (*pole menace*, non-lexical error outcome). All combinations for which the exchange of initial phonemes resulted in new word-pairs (*mole sail*) were used also in reversed order (*sole mail*). An orthographic criterion was used for selecting stimuli. To control for the variable of phonetic distance of the word pair onsets across the conditions of interest, these were coded for the degree of shared phonetic features (place and manner of articulation plus voicing), being assigned a number ranging from 0 (phonetically distant words) to 2 (phonetically close words). This was deemed
necessary because with decreasing phonetic distance between onsets speakers are more likely to exchange onsets (e.g., Nooteboom & Quené, 2008). We also included this variable in all analyses and we report the corresponding results in the supplementary information (see supplementary information Tables 2-4 and Figure 1). 102 pairs shared 0 features, 161 pairs shared 1 feature and 57 pairs shared 2 features. The stimuli across the lexical and non-lexical conditions did not differ in the average amount of shared features (lexical 0.9 shared features vs. non-lexical 0.8 shared features, p=.47). The words in the target pairs were selected with the criterion that they should be semantically unrelated. A given participant was only presented with one combination for each word (lexical or non-lexical outcome), and was only presented with one of the words differing in only the first sound (mole or sole). During the experiment, three priming word pairs preceded each target word pair. The first two shared the initial consonants, and the third pair had further phonological overlap with the error being primed (sun mall – sand mouth – soap mate – mole sail). To induce errors, the order of the two initial consonants (/s/ and /m/) is different for the primes and the target. Participants were also presented with 140 filler pairs that had no specific relationship to their corresponding target pairs. One to three filler pairs were presented before each prime and target sequence. Thus, each participant was presented with 460 unique word combinations (80 targets of which 40 lexical and 40 non-lexical error outcome, 240 primes and 140 fillers). Each participant completed six experimental runs in which word pairs were repeated three times in different orders. Eight lists with a different randomization of the stimuli sequences were created.

Procedure. Word pairs remained on the screen for 748 ms. Words presented for silent reading were followed by a blank screen for 340 ms. All targets and 40% of the filler items were followed by a question mark for 544 ms, replaced by an exclamation mark presented 544 ms after the presentation of the question mark and remaining for 1020 ms. Before the next trial started there was a blank screen for 544 ms in the case of filler production trials, and jittered between 544 and 1564 in the case of target production trials. The jittered inter stimulus interval was generated according to an exponential function and randomized across runs (e.g., Henson, 2007). Participants were
instructed to silently read the word pairs as they appeared, naming aloud the last word pair they had seen whenever a question mark was presented, and before the appearance of an exclamation mark. Stimulus presentation and recording of productions to be processed off-line were controlled by a custom-made presentation software compiled using the LabVIEW development environment (National Instruments).

MRI Data acquisition. Data were collected on a 3-Tesla Siemens Prisma Scanner (Siemens, Erlangen, Germany) at the Marseille MRI center (Centre IRM-INT@CERIMED, UMR7289 CNRS & AMU) using a 64-channel head coil. Functional images (EPI sequence, 54 slices per volume, multi-band accelerator factor 3, repetition time= 1.224 s, spatial resolution= 2.5x2.5x2.5 mm, echo time=30 ms, flip angle=65°) covering the whole brain were acquired during the task performance. Whole brain anatomical MRI data were acquired using high-resolution structural T1-weighted image (MPRAGE sequence, repetition time= 2.4 s, spatial resolution= 0.8x0.8x0.8 mm, echo time=2.28 ms, flip angle= 8°) in the sagittal plane. Prior to functional imaging, Fieldmap image (Dual echo Gradient-echo acquisition, repetition time= 7.06 s, spatial resolution= 2.5 mm³, echo time=59 ms, flip angle= 90°) was also acquired.

Behavioral data processing and analyses. A person naïve to the purpose of the experiment transcribed all spoken productions and inspected and codified vocal response onsets of all individual recordings using Check-vocal (Protopapas, 2007). Check-vocal is a software that allows for semi-automatic codification of the response accuracy and timing based on two sources of information: the speech waveform and the spectrogram. The transcriptions were scored as correct, dysfluencies, partial responses (e.g., only one word produced), full omissions, and erroneous productions. Errors were classified as “priming related errors” or “other errors”. “Priming related errors” included full exchanges (*mill pad* => *pill mad*), anticipations (*mill pad* => *pill pad*), perseverations (*mill pad* => *mill mad*), repaired and interrupted exchanges (*mill pad* => *pi...mill pad*), full and partial competing errors (*mill pad*=> *pant milk/pant pad*), and other related errors (*mill pad*=> *mad pill*). “Other errors” included diverse phonological substitutions that were unrelated to the priming manipulation.
(e.g., mill pad => chill pant/gri...mill pad/...pant). To assess the presence of a lexical bias and validate our assumption of a difference in monitoring load across our experimental conditions, errors were analyzed using the lme4 package (Bates et al., 2015) in R version 3.2.2 (R Development Core Team, 2015). We used generalized linear mixed models (GLMM) with a binomial link function (Jaeger, 2008), estimating the conditional probability of a response given the random effects and covariate values. For completeness, response times were also analyzed though we did not have any specific predictions for these. This was done using linear mixed models (LMM), estimating the influence of fixed and random covariates on the response. The summary output of the GLMM function of lme4 in R provides p-values based on asymptotic Wald tests, which is common practice for generalized linear models (e.g., Bolker et al., 2009). In contrast, the summary output of the LMM function only provides t-values. Consequently, we report p-values for error-rates and t-values for response times. Following common practice (e.g., Fisher 1925), we take t-values to approximate z-scores and assume that absolute values above 1.96 reflect significant effects.

To assess the effect of the manipulated variable lexical status of primed errors and the control variable phonetic distance of the word pair onsets on priming related errors, separate models were fitted for the two variables. The models included crossed random effects for subjects and items and the fixed factor lexicality or phonetic distance. Additional models including the same fixed and random variables were conducted on all errors and are reported in the supplementary information (see Table 1 and supplementary information Tables 1-3). A histogram visualization of the response time data indicated a non-normal distribution. Therefore, log transformed response times were modeled with mixed linear models. All models included the crossed random factors subject and item. For correct trials a first model included the fixed factor lexicality. Another model included the fixed factor shared phonetic features. A final model on all responses (i.e., both correct and incorrect trials) included the fixed factor accuracy.

Image processing and analyses. The fMRI data were pre-processed and analyzed using the
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) on matlab R2018b (Mathworks Inc., Natick, MA). The anatomical scan was spatially normalized to the avg152 T1-weighted brain template defined by the Montreal Neurological Institute using the default parameters (nonlinear transformation). The Fieldmap images were used during the realign and unwarp procedure for distortion and motion correction. Functional volumes were spatially realigned and normalized (using the combination of deformation field, co-registered structural and sliced functional images) and smoothed with an isotropic Gaussian kernel (FWHM=5 mm). The Artefact Detection Tools (ART implemented in the CONN toolbox (www.nitrc.org/projects/conn, RRID:SCR_009550) was used to define the regressors of no interest related to head movements and functional data outliers (see next section). Automatic ART-based identification of outlier scans used a 97th percentiles superior to normative samples in the definition of the outlier thresholds (global-signal z-threshold of 5 and subject-motion threshold of 0.9 mm).

For the univariate analysis on the whole brain, a general linear model (GLM) was generated for each subject. The GLM included, for each of the six runs, seven regressors modelling response accuracy, lexical status of error priming and phonetic distance of target pair onsets: Resp_ER, lex_Phon1_CR, lex_Phon2_CR, lex_Phon3_CR, nonlex_Phon1_CR, nonlex_Phon2_CR, nonlex_Phon3_CR (CR for correct responses and ER for errors). For the contrast targeting internal monitoring, we contrasted lex_Phon1_CR, lex_Phon2_CR, and lex_Phon3_CR, with nonlex_Phon1_CR, nonlex_Phon2_CR, and nonlex_Phon3_CR. For the contrast targeting external monitoring, we contrasted Resp_ER with lex_Phon1_CR, lex_Phon2_CR, lex_Phon3_CR, nonlex_Phon1_CR, nonlex_Phon2_CR, and nonlex_Phon3_CR. For the articulatory-phonetic control, we contrasted lex_Phon1_CR and nonlex_Phon1_CR with lex_Phon3_CR and nonlex_Phon3_CR. In the GLM, the regressors of no interest were also included using an ART text file per subject (each file described outlier scans from global signal and head movements from ART). Regressors of interest were convolved with the canonical hemodynamic response function (HRF), and the default SPM autoregressive model AR(1) was applied. Functional data were filtered
with a 128 s highpass filter. Statistical parametric maps for each experimental factor and each participant were calculated at the first level and then entered in a second-level one sample t-test analysis of variance (random effects analysis or RFX). All statistical comparisons were performed with a voxelwise threshold of \(p < .001 \) and a cluster extent threshold of 25 voxels. For the univariate analysis on regions of interest, 11 anatomical regions of interest (ROIs) were created based on the previous literature (see Table 1). ROIs with a MNI coordinates-center and a 10 mm-radius were created using the MarsBar SPM toolbox, Brett et al., 2002) and applying a mask that only extracted voxels pertaining to gray matter. For a given ROI mask and on the basis unsmoothed functional images, we extracted each subject’s percent signal changes using MarsBar software (http://marsbar.sourceforge.net/). Percent signal changes were computed from canonical events using a MarsBar’s function called ‘event_signal’ (with ‘max abs’ option) and averaged across voxels within a ROI. From each contrast (‘internal monitoring’, ‘external monitoring’ and ‘articulatory-phonetic control’), we obtained a vector of 24 percent signal changes (1 per subject) per ROI (n=11). For each ROI, we performed permutation tests (from Laurens R Krol, see https://github.com/lrkrol/permutationTest) to compare the distribution of the percent signal changes to the null hypothesis (normal distribution). Statistical tests were conducted using 2000 permutations and False Discovery Rate, FDR was used to correct for multiple comparisons (Benjamini & Hochberg, 1995).

Results

Out of the 5760 target trials across all participants, 706 resulted in errors (12.3%, MSE 0.4, SD 32.8), of which 155 (2.7%, MSE 0.2, SD 16.2) were related to the priming manipulation. For the subset of 155 priming related errors, more errors were made in the lexical outcome condition (3.9%, MSE 0.4, SD 19.4) than in the non-lexical outcome condition (1.5%, MSE 0.2, SD 11.9; \(p < .001 \); see Table 2a). This validates the assumption that, also in the present dataset, the lexical condition was more error prone and required more monitoring. As in the previous literature, no significant differences were observed in the response times between the lexical (419ms) and non-
lexical (417 ms) outcome conditions (e.g., Runnqvist et al., 2016; Hartsuiker et al., 2005). Replicating previous findings (e.g., Gauvin et al., 2016), correct trials (418 ms) were produced faster than trials with errors (506 ms; see Table 2b).

Using MNI coordinates reported in the previous literature (see Table 1), we examined percent signal change for our two contrasts in eleven pre-defined regions of interest located in temporal, cerebellar and medial frontal regions. A region of interest in the right posterior cerebellum was involved both in the contrast targeting external monitoring (q = .035, d = .82) and in the internal monitoring of words (q = .005, d = 1.22; see Figure 2). Furthermore, external monitoring was also linked to bilateral superior medial cerebellum (left q < .001, d = 2.72; right q < .001, d = 1.65), left pre-SMA (q < .001, d = 2.05), region SPT (q < .001, 2.94) and bilateral pSTG (left q < .001, d = 2.88; right q < .001, d = 3.26).

To follow up on the potential differences in internal and external monitoring, we directly compared the external monitoring contrast with the internal monitoring contrast. The effects were larger for the former compared to the latter in bilateral superior medial cerebellum (left q = .022, d = -0.94; right q = .003, d = -1.14); bilateral ACC (left q < .001, d = -2.41; right q < .001, d = -1.51), left pre-SMA (q < .001, d = -1.88), region SPT (q < .001, d = -2.61) and bilateral pSTG (left q < .001, d = -2.56; right q < .001, d = -2.90).

To examine the specificity of the findings from the ROI analyses, we also conducted a whole brain analysis (see Table 4 and Figure 3). In the internal word monitoring contrast, only the bold response of a cluster in the left posterior cerebellum (lobule VI) survived the correction for multiple comparisons. For the contrast targeting external monitoring, significant clusters of differential bold response were observed in frontal, medial frontal, temporal, insular and parietal regions in cortex as well as regions in basal ganglia. Table 3 summarizes all the analyses that were carried out.

In summary, both the contrast targeting internal monitoring of words and the contrast targeting external monitoring of errors revealed a differential percent signal change in the right
posterior cerebellum. The latter contrast also revealed a differential percent signal change in superior medial cerebellum and of temporal and medial frontal regions.

Discussion

In this study, we explored the neural basis of the cognitive mechanisms that allow speakers to monitor their speech, both internally during planning and externally during articulation. Concretely, we aimed at answering (1) whether the pSTG has a role in the monitoring of actual speech errors indicating comprehension-based monitoring; (2) whether the cerebellum would be involved in inner monitoring (posterior) and/or external monitoring (superior medial), indicating forward modeling; and (3) whether the medial frontal cortex would be involved in the presence of inner monitoring load, indicating conflict based monitoring. In the following we discuss how the results answered these questions.

Temporal cortex and monitoring of speech errors

All three ROIs in temporal cortex (bilateral pSTG and SPT) showed a differential percent signal change for speech errors compared to correct trials. Hence, some form of comprehension-based monitoring likely takes place in the case of overt speech errors (or more strongly for speech errors compared to correct utterances). The current study cannot answer whether such comprehension-based monitoring is carried out through speech comprehension processes directly, through feedback control processes (comparing auditory percepts and targets), or in the form of increased response for unexpected input (and thus connected to the cerebellar forward modelling that will be discussed later on). Importantly, this is the first study showing a role of pSTG/SPT for an overt speech production task involving the articulation of natural speech errors. The whole brain analysis of the bold response for the contrast targeting external monitoring revealed two clusters peaking in the left middle temporal gyrus and in the left inferior parietal lobule respectively that, given their extent, likely comprise the voxels targeted by the ROI coordinates. Thus, the whole brain analysis seems to further confirm the ROI results, but also sheds light on the fact that these
results are not very specific as rather large portions of temporal and parietal cortex are differentially active for errors compared to correct trials.

Cerebellum involved in both internal and external monitoring

The contrast targeting internal monitoring showed a differential percent signal change in a region in the right posterior cerebellum that has been attributed an important role in the forward modelling of self-generated actions (e.g., Blakemore et al., 2001; Imamizu et al., 2000; Miall & King, 2008; Ito, 2008; Strick et al., 2009). To our knowledge, this is the first time that the involvement of the cerebellum in the internal monitoring of an unambiguously linguistic aspect of language production has been reported. While previous studies have reported an involvement of the cerebellum for articulatory-acoustic aspects of speech, here the involvement was modulated by lexical information, a level of language processing that is distinct from the sensory-motor aspects of speech. One possibility is that this occurs because in language use sound and meaning always cooccur. Over time, this arguably leads the two dimensions to form an interconnected distributed representation (Strijkers, 2016; Fairs et al., 2021). This holistic format of linguistic representations would entail that sound and meaning dimensions would become active in parallel both when producing and understanding speech, hence over time also sharing processing dynamics. In this way, motor control processes could be directly applied to any level of language processing. Another, not mutually exclusive, possibility is that all self-generated actions, whether motor or mental, may be supervised through forward modelling enabled by cerebellar connections to different areas of cortex (Ito, 2008; Strick, Dum & Fiez, 2009). The cerebellum would generate the prediction of the sensory or mental consequences of the action (efference copying), while the cortical region in question would be in charge of inhibiting the neural response that the action is expected to generate. In the case of language, the modelling of different levels of linguistic representation might result in reaference cancellation in different areas of cortex. Regardless the exact mechanism, the link between cerebellum activity and a processing level in principle distant
from articulation calls for an extended role of the cerebellum (i.e., beyond speech motor control) in current models (Golfinopoulos et al., 2010; Hickok, 2012).

Secondly, the contrast targeting external monitoring showed a differential percent signal change of the same right cerebellar region as internal monitoring, but also a differential percent signal change bilaterally of the ROIs located in the superior medial cerebellum. This latter region has been linked to articulatory difficulties such as ataxic dysarthria and hence speech motor control troubles. An interesting possibility is that the posterior cerebellar activation might be especially due to the lexical and fluent errors (being more similar to the effect of the inner monitoring contrast) and the superior medial cerebellar activation might be especially due to non-lexical or more dysfluent errors. Unfortunately, however, while we are able to pinpoint an exact level of processing for our inner monitoring contrast thanks to the error priming manipulation, for the errors this was not possible because overt non-lexical errors are so rare that not all participants have observations for these. For the same reason, the errors included in the external monitoring contrast are also diverse in nature (i.e., all errors were pooled together and contrasted with correct responses). Finally, given that in the external monitoring contrast the cerebellar activation was accompanied by pSTG/SPT activation, a parsimonious assumption is that the less predictable auditory response associated with an error led to a lowered reafference cancellation.

Turning to the whole brain analyses of the bold response, unexpectedly, a region in the left posterior cerebellum was differentially activated in the contrast targeting internal monitoring. With the aim of guiding future hypotheses concerning language processing and monitoring in the cerebellum we visualized the peak coordinates of the cluster in an atlas viewer of the cerebellum, SUIT (e.g. Diedrichsen, 2006), allowing to overlay different task contrast maps onto an anatomical template. Nine contrasts overlapping with the observed region could be more or less directly linked to the current task contrast through the notion of (verbal) working memory (object 2 back, object 2 back +, verbal 2 back and verbal 2 back +); prediction outcome (true, violated and scrambled predictions); and response difficulty (easy and medium responses). Broadly, all three groupings are
consistent with the notion of increases in monitoring load engaging processes of forward modeling (e.g., Runnqvist et al., 2016). More generally, this result shows that the left cerebellum should not be neglected in studies of language where it is often assumed that cerebellar contributions to language processing are right lateraled. Furthermore, the results of the whole brain analysis highlight the fact that cerebellar activity is elusive, and may go undetected without an appropriate task (sufficiently demanding), analysis of different task stages (early versus late stages, e.g., Imamizu et al., 2000) or statistical approach (such as a ROI approach, see Johnson et al., 2019, for an extended argumentation).

Medial frontal cortex for external monitoring

For the contrast targeting external monitoring, we observed a differential percent signal change bilaterally for ACC as well as for left pre-SMA in our ROI analyses. Previous studies contrasting errors and correct trials have reported a similar pattern and this has been interpreted in terms of conflict-based monitoring (Gauvin et al., 2016; Ries, Janssen, Duffau, Alario & Burle, 2011). However, no such differential percent signal change in medial frontal cortex was observed for inner monitoring, and when comparing both contrasts directly the difference was significant (i.e., more ACC and pre-SMA percent signal change in external compared to internal monitoring). Consistent with this, the whole brain analyses of the bold response revealed two very broadly extended clusters in the left superior medial gyrus and one in the right ACC only for the external monitoring contrast. As for temporal cortex, given their size, they are likely to comprise the voxels targeted by our ROI, but again show that the activation is much more extended than these. While the current study cannot add much anatomical specificity to the debate, the dissociation of medial frontal activity for the internal and external monitoring contrasts hints that conflict is not the mechanism behind the differential percent signal change and bold response. One possibility is that the involvement of the medial frontal cortex observed here is related to a vocal cognitive control network shared across primates as proposed recently by Loh and colleagues (2020). These authors argue that, across primates, area 44 is in charge of cognitive control of orofacial and non-speech
vocal responses, and the midcingulate cortex is in charge of analyzing vocal non-speech feedback driving response adaptation. Furthermore, the cognitive control of human-specific speech vocal information would require the additional recruitment of area 45 and pre-SMA. In this framework, it would not be the conflict that generates the ACC and pre-SMA percent signal change and bold response observed here, but rather the feedback provided through the articulated error. An advantage of this feedback-based network account of vocal cognitive control is that it also predicts the bold response clusters in the left inferior frontal gyrus that we observed (while a conflict account would rather predict activation in dorsolateral prefrontal cortex, e.g., MacDonald et al., 2000).

In summary, monitoring for errors during speech production seems to rely on a broad network of brain regions that can be linked to different monitoring mechanisms (e.g., modelling of self-generated actions, cognitive control and sensorial perception) in accordance with previous findings reported in the literature. Importantly, however, this is the first time that multiple monitoring mechanisms are investigated simultaneously in the context of both speech planning and articulation, allowing us to show that certain regions (pSTG, SPT, ACC and pre-SMA) seem to be implicated preferentially in the context of overt errors, and thus seemingly more dependent on the sensorial feedback. However, perhaps the most striking result is that the same posterior part of the right cerebellum is involved both in inner and external monitoring, a finding that is challenging for all current brain models of language production. The results reported here show the importance of adopting a broad approach when addressing complex cognitive processes like error-monitoring of multidimensional representations (language) at the service of a combined mental and motor action (speaking). Previous studies may have failed to detect the involvement of certain monitoring regions because only one region of interest or only one manipulation of monitoring demands were examined at the same time. To be addressed in future research is whether these different functional regions are competitively or collaboratively interconnected, or whether they are instances of partially redundant cognitive mechanisms that, in an analogous way to redundant input in the
environment, could serve to increase the likelihood of detecting and correcting errors in noisy neural communication channels (Barlow, 2001).

Acknowledgements

This work was performed in the Centre IRM-INT (UMR7289, AMU-CNRS), platform member of France Life Imaging network (grant ANR-11-INBS-0006). The project leading to this publication has received funding from the “Investissements d’Avenir” French Government program managed by the French National Research Agency (reference: ANR-16-CONV-000X / ANR-17-EURE-00XX) and from Excellence Initiative of Aix-Marseille University – “A*MIDEX” through the Institute of Language, Communication and the Brain. E.R. has benefited from support from the French government, managed by the French National Agency for Research (ANR) through a research grant (ANR-18-CE28-0013). K.S. was supported by a research grant of the ANR (ANR-16-CE28-0007-01). PB was supported by ANR (ANR-16-CE37-011-01) and ERC (788240-COVOPRIM) research grants.

References

Abel S, Dressel K, Weiller C, Huber W. 2012. Enhancement and suppression in a lexical interference fMRI-paradigm. Brain and behavior, 2(2):109-127.

Ackermann H, Vogel M, Petersen D, Poremba M. 1992. Speech deficits in ischaemic cerebellar lesions. Journal of neurology, 239(4), 223-227.

Argyropoulos GP. 2016. The cerebellum, internal models and prediction in ‘non-motor’aspects of language: a critical review. Brain and language, 161:4-17.

Baars BJ, Motley MT, MacKay DG. 1975. Output editing for lexical status in artificially elicited slips of the tongue. Journal of verbal learning and verbal behavior, 14(4):382-391.

Barlow H. 2001. Redundancy reduction revisited. Network: computation in neural systems, 12(3):241-253.

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, et al. 2015. Package ‘lme4’. Convergence, 12:1.
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289-300.

Blakemore SJ, Frith CD, Wolpert DM. 2001. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12(9):1879-1884.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3):127-135.

Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive control. Psychological review, 108(3):624.

Brett M, Anton JL, Valabregue R, Poline JB. 2002. Region of interest analysis using an SPM toolbox. In 8th international conference on functional mapping of the human brain, 16(2):497.

Christoffels IK, Formisano E, Schiller NO. 2007. Neural correlates of verbal feedback processing: an fMRI study employing overt speech. Human brain mapping, 28(9):868-879.

Dell GS. 1986. A spreading-activation theory of retrieval in sentence production. Psychol Rev. 93(3):283-321.

Desmond JE, Fiez JA. 1998. Neuroimaging studies of the cerebellum: language, learning and memory. Trends in Cognitive Sciences, 2(9), 355e362.

De Zubicaray GI, Wilson SJ, McMahon KL, Muthiah M. 2001. The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human brain mapping, 14(4):218-227.

Diedrichsen J. 2006. A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127-138.

D’Mello AM, Gabrieli JD, Nee DE. 2020. Evidence for hierarchical cognitive control in the human cerebellum. Current Biology, 30(10), 1881-1892.
Fairs A, Michelas A, Dufour S, Strijkers K. 2021. The same ultra-rapid parallel brain dynamics underpin the production and perception of speech. bioRxiv.

Fisher RA. 1925. Theory of statistical estimation. In Mathematical proceedings of the Cambridge Philosophical Society. (Vol. 22, No. 05, pp. 700e725). Cambridge University Press.

Gauvin HS, De Baene W, Brass M, Hartsuiker RJ. 2016. Conflict monitoring in speech processing: an fMRI study of error detection in speech production and perception. NeuroImage, 126:96-105.

Gauvin HS, Hartsuiker RJ. 2020. Towards a new model of verbal monitoring. Journal of Cognition, 3(1).

Ghosh SS, Tourville JA, Guenther FH. 2008. A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables. Journal of Speech, Language, and Hearing Research.

Golfinopoulos E, Tourville, Guenther FH. 2010. The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Neuroimage, 52(3):862-874.

Guenther FH, Ghosh SS, Tourville JA. 2006. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and language, 96(3), 280-301.

Hartsuiker RJ, HH Kolk. 2001. Error monitoring in speech production: A computational test of the perceptual loop theory. Cognitive psychology, 42(2):113-157.

Hartsuiker RJ, Corley M, Martensen H. 2005. The lexical bias effect is modulated by context, but the standard monitoring account doesn’t fly: Related reply to Baars, Motley, and MacKay (1975) Journal of Memory and Language, 52:58–70.

Heinks-Maldonado TH, Mathalon DH, Gray M, Ford JM. 2005. Fine-tuning of auditory cortex during speech production. Psychophysiology, 42(2):180-190.

Henson R. 2007. Efficient experimental design for fMRI. Statistical parametric mapping: The analysis of functional brain images, 193-210.
Hester R, Fassbender C, Garavan H. 2004. Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cerebral Cortex, 14(9):986-994.

Hickok G. 2012. Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13(2):135-145.

Hickok G. 2014. The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29(1), 2-20.

Hirano S, Kojima H, Naito Y, Honjo I, Kamoto Y, Okazawa H, Ishizu K, Yonekura Y, Nagahama Y, Fukuyama H, Konishi J. 1997. Cortical processing mechanism for vocalization with auditory verbal feedback. NeuroReport, 8:2379–2382.

Houde JF, Nagarajan SS, Sekihara K, Merzenich MM. 2002. Modulation of the auditory cortex during speech: an MEG study. Journal of cognitive neuroscience, 14(8):1125-1138.

Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Puetz B, …Kawato M. 2000. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766):192-195.

Indefrey P, Levelt WJ. 2004. The spatial and temporal signatures of word production components. Cognition, 92(1):101-144.

Ito M. 2008. Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4):304-313.

Jaeger TF. 2008. Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4):434-446.

Jeannerod M. 1988. The neural and behavioural organization of goal-directed movements. Clarendon Press/Oxford University Press.

Johnson JF, Belyk M, Schwartz M, Pinheiro AP, Kotz SA. 2019. The role of the cerebellum in adaptation: ALE meta-analyses on sensory feedback error. Human brain mapping, 40(13), 3966-3981.
Leggio MG, Silveri MC, Petrosini L, Molinari M. 2000. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. Journal of Neurology, Neurosurgery & Psychiatry, 69(1):102-106.

Lesage E, Hansen PC, Miall RC. 2017. Right lateral cerebellum represents linguistic predictability. Journal of Neuroscience, 37(26):6231-6241.

Levelt WJ. 1983. Monitoring and self-repair in speech. Cognition, 14(1):41-104.

Levelt WJ, Roelofs A, Meyer AS. 1999. A theory of lexical access in speech production. Behavioral and brain sciences, 22(1):1-38.

Lind A, Hartsuiker RJ. 2020. Self-Monitoring in Speech Production: Comprehending the Conflict Between Conflict-and Comprehension-Based Accounts. Journal of Cognition, 3(1).

Loh KK, Procyk E, Neveu R, Lamberton F, Hopkins WD, Petrides M, Amiez C. 2020. Cognitive control of orofacial motor and vocal responses in the ventrolateral and dorsomedial human frontal cortex. Proceedings of the National Academy of Sciences, 117(9), 4994-5005.

MacDonald AW, Cohen JD, Stenger VA, Carter CS. 2000. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.

McCloskey DI. 1981. Corollary discharges: motor commands and perception. Comprehensive physiology, 1415-1447.

Meekings S, Scott SK. 2021. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. Journal of Cognitive Neuroscience, 33(3), 422-444.

Miall RC, King D. 2008. State estimation in the cerebellum. The Cerebellum, 7(4):572-576.

Möller J, Jansma BM, Rodriguez-Fornells A, Münte TF. 2007. What the brain does before the tongue slips. Cerebral Cortex, 17(5):1173-1178.

Nachev P, Rees G, Parton A, Kennard C, Husain M. 2005. Volition and conflict in human medial frontal cortex. Current Biology, 15(2):122-128.
Nootenboom S, Quené H. 2008. Self-monitoring and feedback: A new attempt to find the main cause of lexical bias in phonological speech errors. Journal of Memory and Language, 58(3):837-861.

Nozari N. 2020. A comprehension-or a production-based monitor? Response to Roelofs (2020). Journal of Cognition, 3(1).

Nozari N, Dell GS, Schwartz MF. 2011. Is comprehension necessary for error detection? A conflict-based account of monitoring in speech production. Cognitive psychology, 63(1):1-33.

Okada K, Hickok G. 2006. Left posterior auditory-related cortices participate both in speech perception and speech production: Neural overlap revealed by fMRI. Brain and language, 98(1):112-117.

Oppenheim GM, Dell GS. 2008. Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. Cognition, 106(1):528-537.

Postma A, Noordanus C. 1996. Production and detection of speech errors in silent, mouthed, noise-masked, and normal auditory feedback speech. Language and Speech, 39(4):375-392.

Protopapas A. 2007. Check Vocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior research methods, 39(4), 859-862.

Pickering MJ, & Garrod S. 2013. An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(04):329-347.

Riès S, Janssen N, Dufau S, Alario FX, Burle B. 2011. General-purpose monitoring during speech production. Journal of cognitive neuroscience, 23(6):1419-1436.

Roelofs A. 2020. Self-monitoring in speaking: In defense of a comprehension-based account. Journal of Cognition, 3(1).

Runnqvist E, Bonnard M, Gauvin HS, Attarian S, Trébuchon A, Hartsuiker RJ, Alario FX. 2016. Internal modeling of upcoming speech: A causal role of the right posterior cerebellum in non-motor aspects of language production. Cortex, 81:203-214.

Severens E, Kühn S, Hartsuiker RJ, Brass M, 2012. Functional mechanisms involved in the internal inhibition of taboo words. Social cognitive and affective neuroscience, 7(4):431-435.
Shergill SS, Brammer MJ, Williams SCR, Murray RW, McGuire PK. 2000. Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Archives of General Psychiatry, 57:1033–1038.

Stoodley CJ, Schmahmann JD. 2009. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage, 44(2):489-501.

Strick PL, Dum RP, Fiez JA. 2009. Cerebellum and nonmotor function. Annual review of neuroscience, 32:413-434.

Strijkers K. 2016. A neural assembly–based view on word production: The bilingual test case. Language Learning, 66(S2):92-131.

Tian X, Poeppel D. 2010. Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in psychology, 1, 166.

Tourville JA, Reilly KJ, Guenther FH. 2008. Neural mechanisms underlying auditory feedback control of speech. Neuroimage, 39(3):1429-1443.

Tourville JA, Guenther FH. 2011. The DIVA model: A neural theory of speech acquisition and production. Language and cognitive processes, 26(7), 952-981.

Wolpert DM, Ghahramani Z, Jordan MI. 1995. An internal model for sensorimotor integration. Science, 269(5232), 1880.
Table 1. MNI coordinates and references of the regions of interest (ROI) classified by anatomical regions and monitoring account. Asterisks indicate meta-analysis or model-based coordinates.

Comprehension-based	Forward modelling	Conflict-based
Inner monitoring (inner speech) and External monitoring (audible speech)	Inner monitoring (linguistic dimensions) and/or External monitoring (motor dimensions)	Inner monitoring (impending errors) and/or External monitoring (overt errors)

MEDIAL FRONTAL CORTEX	ro11_ACC_L	ro12_ACC_R	Gauvin et al. 2016 [6, 20, 34]
Pre-SMA	ro3_Pre-SMA_L	ro4_Pre-SMA_R	Hester et al., 2004* [1, -14, 39]
Posterior CEREBELLUM	ro5_RCB1_R	ro6_RCB2_R	Stoodley & Schmahmann, 2009* [12.5, -61.1, -32.9]
Superior	ro7_SMC_L	ro8_SMC_R	Gollinopoulos et al., 2010* [16, -59, -23]
Temporal CORTEX	ro9_SPT_L	ro10_pSTG_L	Oka-da & Hickok, 2006 [54, -30, 14]
	ro11_pSTG_R		

Coordinates			
ACC	ro1_ACC_L	ro2_ACC_R	[6, 20, 34] Gauvin et al. 2016
Pre-SMA	ro3_Pre-SMA_L	ro4_Pre-SMA_R	Hester et al., 2004* [1, -14, 39]
Posterior CEREBELLUM	ro5_RCB1_R	ro6_RCB2_R	Stoodley & Schmahmann, 2009* [12.5, -61.1, -32.9]
Superior	ro7_SMC_L	ro8_SMC_R	Gollinopoulos et al., 2010* [16, -59, -23]
Temporal CORTEX	ro9_SPT_L	ro10_pSTG_L	Oka-da & Hickok, 2006 [54, -30, 14]
	ro11_pSTG_R		
Table 2. Summary of the GLMM of priming related errors (A) and the LMMs on RTs (B).

Analysis	Contrasted variables	Purpose	
Behavioral data	Generalized mixed linear model on priming related errors	Lexical versus non-lexical error-priming	Validate monitoring load assumption underlying imaging contrast
	Linear mixed model on response times	Lexical versus non-lexical error-priming	Errors versus correct trials
Brain data

Analysis on percent signal change in 10mm spherical predefined Regions of Interest

| Univariate whole brain analysis on BOLD response | Lexical versus non-lexical error-priming | Index internal monitoring |
| Errors versus correct trials | Errors versus correct trials |

Table 4. Results of the whole brain analyses of the bold response of the external (A) and internal (B) monitoring contrasts. Local maxima of bold response separated by more than 20 mm. Regions were automatically labeled using the Anatomy Toolbox atlas. X, y and z = Montreal Neurological Institute (MNI) coordinates in the left-right, anterior-posterior and inferior-superior dimensions respectively. All peaks are significant at a voxelwise threshold of p<.001 (extent threshold = 25 voxels). Peaks that are significant at a cluster threshold of p<.05 with a FDR correction for multiple comparisons are marked with bold fonts. L = left, R = right, FDR = False Discovery Rate.

Region Label	Extent	t-value	x	y	z
A. External monitoring (errors vs. correct trials)	MNI Coordinates				
L Superior Medial Gyrus	1244	8.064	-3	22	48
L Posterior-Medial Frontal	1244	5.908	-3	2	63
R Anterior Cingulate Cortex	1244	6.373	8	27	28
L Anterior Cingulate Cortex	36	3.970	0	44	13
L Inferior Frontal Gyrus (pars Opercularis)	2343	7.592	-48	4	16
Brain Regions of Interest

Region	MNI Coordinates
L Inferior Frontal Gyrus (pars Orbitalis)	2343 7.265 -35 29 -2
R Inferior Frontal Gyrus (pars Orbitalis)	542 5.685 45 39 -10
R Inferior Frontal Gyrus (pars Triangularis)	51 5.742 48 14 28
R Superior Frontal Gyrus	135 5.538 20 52 36
L Precentral Gyrus	2343 6.923 -45 -4 51
L Middle Temporal Gyrus	195 7.248 -58 -46 8
L Middle Temporal Gyrus	65 4.829 -60 -21 1
L Thalamus proper	349 6.590 -10 -6 6
R Pallidum	349 5.750 13 4 3
Brain Stem	71 0.120 0 -29 -17
L dorsal caudal	48 4.828 -5 -14 -12
R Insula Lobe	542 5.756 35 24 3
L Inferior Parietal Lobule	334 5.662 -45 -41 41
R Cerebellum (VI)	26 4.109 30 -61 -30

B. Internal monitoring (lexical vs. non-lexical error priming)
Figure 1. Depiction of the experimental design and procedure.
Figure 2. Percent signal change in the eleven predefined Regions of Interest (location in the brain in top central panel) for (A) the internal monitoring contrast and (B) the external monitoring contrast. ROIs in medial frontal cortex are represented with blue tones, ROIs in the cerebellum in green.
tones and ROIs in temporal cortex in red tones. The asterisks indicate significant effects below .05 (*) or below .005 (**) after correcting for multiple comparisons using false discovery rate (FDR).

Figure 3. RFX results on the bold response of internal monitoring (lexical vs. non-lexical error priming; panel A) and external monitoring (errors vs. correct trials; panel B). Statistical t-maps are overlaid on MNI cortex slices (5 axial slices and 1 sagittal slice per line) using a voxelwise threshold of $p < .001$ and an extent threshold of 25 voxels.