SUFFICIENT CONDITIONS AND RADIUS PROBLEMS FOR A STARLIKE CLASS INVOLVING A DIFFERENTIAL INEQUALITY

LATEEF AHMAD WANI AND A. SWAMINATHAN

Abstract. Let A_n be the class of analytic functions $f(z)$ of the form $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$, $n \in \mathbb{N}$ and let

$$\Omega_n := \left\{ f \in A_n : |zf'(z) - f(z)| < \frac{1}{2}, z \in \mathbb{D} \right\}.$$

We make use of differential subordination technique to obtain sufficient conditions for the class Ω_n, and then employ these conditions to construct functions which involve double integrals and members of Ω_n. We also consider a subclass $\hat{\Omega}_n \subset \Omega_n$ and obtain subordination results for members of $\hat{\Omega}_n$ besides a necessary and sufficient condition. Writing $\Omega_1 = \Omega$, we obtain inclusion properties of Ω with respect to functions defined on certain parabolic regions and as a consequence, establish a relation connecting the parabolic starlike class S_p and the uniformly starlike UST. Various radius problems for the class Ω are considered and the sharpness of the radii estimates is obtained analytically besides graphical illustrations.

1. Introduction

Let C be the set of complex numbers and let $H = H(\mathbb{D})$ be the totality of functions $f(z)$ that are analytic in the open unit disc $\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}$. For $a \in \mathbb{C}$ and $n \in \mathbb{N} := \{1, 2, 3, \ldots \}$, we define the function classes $H_n(a)$ and A_n as follows:

$$H_n(a) := \left\{ f \in H : f(z) = a + \sum_{k=n}^{\infty} a_k z^k, a_k \in \mathbb{C} \right\}$$

and

$$A_n := \left\{ f \in H : f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, a_k \in \mathbb{C} \right\}.$$

In particular, we write $A := A_1$. For $0 \leq \alpha < 1$, let $S^*(\alpha)$ and $C(\alpha)$ be the subclasses of A which consist of functions that are, respectively, starlike and convex of order α. Analytically,

$$S^*(\alpha) := \left\{ f : \text{Re}\left(\frac{zf''(z)}{f'(z)}\right) > \alpha \right\} \text{ and } C(\alpha) := \left\{ f : \text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \right\}.$$

Further, $S^* := S^*(0)$ and $C := C(0)$ are the well-known classes of starlike and convex functions in \mathbb{D}. We note that $f \in C$ if and only if $zf' \in S^*$ and $C \subseteq S^* \subseteq S$, where S is the collection of all functions $f \in A$ that are univalent in \mathbb{D}. For further details related to these classes, we refer to the monograph of Duren [5]. In our discussion, we make use of the following concepts from the literature.

2010 Mathematics Subject Classification. 30C45, 30C80.

Key words and phrases. Differential subordination; Hadamard product; Subordinating factor sequence; Parabolic and Uniform Starlikenss; Radius problems; Cardioid.
Definition 1.1 (Subordination [10]). Let \(f, g \in \mathcal{H} \). We say that \(f \) is subordinate to \(g \), written as \(f \prec g \), if there exists a function \(w \), analytic in \(D \) with \(w(0) = 0 \) and \(|w(z)| < 1\), such that \(f(z) = g(w(z)) \).

Moreover, if the function \(g(z) \) is univalent in \(D \), then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(D) \subset g(D) \).

Definition 1.2 (Hadamard product). Let \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in \mathcal{A} \) and \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in \mathcal{A} \), then the Hadamard product (convolution) of \(f \) and \(g \) is denoted by \(f \ast g \) and is defined as the analytic function
\[
h(z) = (f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k, \quad z \in D.
\]

Under the operation of Hadamard product, the function \(\ell(z) = z/(1-z) = z + \sum_{k=2}^{\infty} z^k \), which maps \(D \) onto the right-half plane \(\text{Re}(w) > -1/2 \), plays the role of identity element. That is, for any function \(f \in \mathcal{A} \),
\[
(f \ast \ell)(z) = f(z) = (\ell \ast f)(z).
\]

Definition 1.3 (Subordinating Factor Sequence [19]). A sequence \(\{s_k\}_{k=1}^{\infty} \) of complex numbers is said to be a subordinating factor sequence if for every convex function \(\nu(z) = z + \sum_{k=2}^{\infty} c_k z^k \), \(z \in D \) we have the subordination given by
\[
\sum_{k=1}^{\infty} s_k c_k z^k \prec \nu(z), \quad (c_1 = 1).
\]

Let \(\psi : \mathbb{C}^2 \times D \to \mathbb{C} \) be a complex function, and let \(h : D \to \mathbb{C} \) be univalent. If \(p \in \mathcal{H} \) satisfies the first-order differential subordination
\[
\psi(p, zp' ; z) \prec h(z), \quad z \in D,
\]
then \(p \) is called a solution of the differential subordination. If \(q \) is univalent and \(p \prec q \) for all \(p \) satisfying (1.1), then \(q(z) \) is said to be a dominant of (1.1). A dominant \(\hat{q} \) that satisfies \(\hat{q} \prec q \) for all dominants \(q \) of (1.1) is called the best dominant of (1.1). The best dominant is unique up to the rotations of \(D \). For further details related to results on differential subordinations, we refer to the monograph of Miller and Mocanu [14] (see also [3]).

Lemma 1.1 ([14, Theorem 3.1b, p. 71]). Let \(h(z) \) be a convex function in \(D \) with \(h(0) = a \), \(\gamma \neq 0 \) and \(\text{Re}\gamma \geq 0 \). If \(p(z) \in \mathcal{H}_n(a) \) and
\[
p(z) + \gamma^{-1} zp'(z) \prec h(z),
\]
then
\[
p(z) \prec q(z) \prec h(z),
\]
where
\[
q(z) = \frac{\gamma}{n z^{n-1}} \int_0^z h(\xi)\xi^{n-1} d\xi.
\]

The function \(q(z) \) is convex and is the best dominant.
Given $n \in \mathbb{N}$, we define a new function class Ω_n as follows

$$\Omega_n := \left\{ f \in A_n : |zf'(z) - f(z)| < \frac{1}{2}, \ z \in D \right\}.$$

For $n = 1$, the class $\Omega_1 := \Omega$ was recently introduced and studied by Peng and Zhong [16]. The authors in [16] have shown that Ω is a subset of S^*, and hence established that the members of Ω are univalent in D. Besides discussing several geometric properties of the members of Ω, they [16] proved that the radius of convexity for Ω is $\frac{1}{2}$, and that Ω is closed under the Hadamard product, i.e., if $f_1, f_2 \in \Omega$, then $f_1 * f_2 \in \Omega$. The closedness under Hadamard product makes the class Ω more important, as this is not true, in general, for several subclasses of S (e.g., S^*). Recently, Obradović and Peng [15] considered the class Ω and gave two sufficient conditions for functions $f \in A$ to belong to the class Ω.

In this paper, we consider the class Ω_n, which is in some sense, a natural generalization of Ω. The paper is organized as follows: In Section 2, we use differential subordination to obtain sufficient conditions for the functions $f \in A_n$ to be in the class Ω_n. Moreover, we use these results to construct functions of the form

$$f(z) = \int_{0}^{1} J(s, t, z) ds dt,$$

and obtain conditions on the kernel function J so that $f \in \Omega_n$. In Section 3, we consider a subclass $\Omega_n \subset \Omega_n$, for which the sufficient conditions obtained in Section 2 become necessary also, and prove a subordination result for the elements of Ω_n. In Section 4 and Section 5 we restrict ourselves to the class Ω (i.e., we fix $n = 1$). In Section 4 inclusion relations between Ω, the parabolic starlike class S_p and the uniformly starlike class UST are studied, and as a consequence a remarkable result connecting S_p and UST is derived. In Section 5 several newly constructed starlike classes are introduced and the corresponding radius problems for the class Ω are settled. Also, sharpness of the radii estimates is illustrated graphically. Interesting problems for future work are proposed in Section 6.

2. SUFFICIENT CONDITIONS FOR THE CLASS Ω_n

In this section, we consider some conditions on the functions $f \in A_n$, so that they belong to the class Ω_n.

Theorem 2.1. Let $n \in \mathbb{N}$ and $\gamma \geq 1$. If $f \in A_n$ satisfies

$$\left| zf''(z) + (\gamma - 1) \left(f'(z) - \frac{f(z)}{z} \right) \right| < \frac{n + \gamma}{2},$$

then $f \in \Omega_n$. The result is sharp for the function

$$\hat{f}_{n, \mu}(z) = z + \frac{\mu}{2n} z^{n+1}, \ |\mu| = 1.$$

Proof. We rewrite the inequality (2.1) in terms of subordination as

$$zf''(z) + (\gamma - 1) \left(f'(z) - \frac{f(z)}{z} \right) < \frac{n + \gamma}{2} z.$$

(2.2)

Setting

$$p(z) = f'(z) - \frac{f(z)}{z} = \sum_{k=n}^{\infty} (ka_{k+1})z^k \in H_n(0),$$

and obtain conditions on the kernel function J so that $f \in \Omega_n$. In Section 3, we consider a subclass $\Omega_n \subset \Omega_n$, for which the sufficient conditions obtained in Section 2 become necessary also, and prove a subordination result for the elements of Ω_n. In Section 4 and Section 5 we restrict ourselves to the class Ω (i.e., we fix $n = 1$). In Section 4 inclusion relations between Ω, the parabolic starlike class S_p and the uniformly starlike class UST are studied, and as a consequence a remarkable result connecting S_p and UST is derived. In Section 5 several newly constructed starlike classes are introduced and the corresponding radius problems for the class Ω are settled. Also, sharpness of the radii estimates is illustrated graphically. Interesting problems for future work are proposed in Section 6.
the subordination (2.2) takes the form
\[\gamma p(z) + zp'(z) < \frac{n + \gamma}{2} z := h(z). \]

It can be easily seen that \(h(z) \) is convex in \(\mathbb{D} \) and \(h(0) = 0 = p(0) \). Hence it follows from Lemma 1.1 that
\[p(z) < \frac{1}{nz^n} \int_0^z \left(\frac{n + \gamma}{2} \xi \frac{\xi^{-1}}{2} \right) d\xi = \frac{1}{2} z. \]

This further implies that
\[\left| f'(z) - f(z) \right| < \frac{1}{2}. \]

(2.3)

Now making use of (2.3), and the fact that \(f(0) = 0 \), it follows that
\[|zf'(z) - f(z)| = |z| \left| f'(z) - f(z) \right| < \frac{1}{2}. \]

This proves that \(f \in \Omega_n \). For the function \(\hat{f}_{n,\mu}(z) = z + \frac{\mu}{2n} z^{n+1} \) with \(|\mu| = 1 \), we have
\[\left| z \hat{f}_{n,\mu}'(z) + (\gamma - 1) \left(\hat{f}_{n,\mu}'(z) - \frac{\hat{f}_{n,\mu}(z)}{z} \right) \right| = \left| \frac{n + \gamma}{2} \mu z^n \right| < \frac{n + \gamma}{2}. \]

That is, \(\hat{f}_{n,\mu}(z) \) satisfies the condition of Theorem 2.1 and hence belongs to \(\Omega_n \). Indeed, for \(z \in \mathbb{D} \), we have
\[\left| z \hat{f}_{n,\mu}'(z) - \hat{f}_{n,\mu}(z) \right| = \left| \left(z + \mu \frac{n + 1}{2n} z^{n+1} \right) - \left(z + \mu \frac{1}{2n} z^{n+1} \right) \right| = \left| \frac{1}{2} z^{n+1} \right| < \frac{1}{2}. \]

Letting \(\gamma = 1 \) in Theorem 2.1 yields the following result.

Corollary 2.1. If \(f \in A_n \) satisfies
\[|zf^n(z)| < \frac{n + 1}{2}, \]
then \(f \in \Omega_n \). The result is sharp.

Fixing \(n = 1 \), and then taking \(\gamma = 1 \) and \(\gamma = 2 \) in Theorem 2.1 respectively, we obtain the following sufficient conditions proved by Obradović and Peng [15].

Corollary 2.2 ([15] Theorem 2]). If \(f \in A \) satisfies \(|zf^n(z)| < 1\), then \(f \in \Omega \). The number 1 is best possible.

Corollary 2.3 ([15] Theorem 3]). Let \(f \in A \). If
\[\left| z^2 f''(z) + zf'(z) - f(z) \right| < \frac{3}{2}, \]
then \(f \in \Omega \). The number \(\frac{3}{2} \) is best possible.

Note. For brevity, we fix \(\hat{f}_{n,\mu}(z) = z + \frac{\mu}{2n} z^{n+1} (|\mu| = 1) \) and write \(\hat{f}_1(z) = \hat{f}_{1,1}(z) = z + \frac{1}{2} z^2 \).

Theorem 2.2. Let \(\gamma \geq 1, n \in \mathbb{N} \), and let
\[f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \in A_n, \quad z \in \mathbb{D}. \]
If
\[\sum_{k=n+1}^{\infty} (k-1)(k+\gamma-1)|a_k| \leq \frac{n+\gamma}{2}, \tag{2.4} \]
then \(f \in \Omega_n \). Equality holds for the function \(\tilde{f}_{n,\mu}(z) \).

Proof. Suppose that (2.4) holds, then for \(z \in \mathbb{D} \), we have
\[
\left| z f''(z) + (\gamma - 1) \left(\frac{f'}{f} - \frac{f(z)}{z} \right) \right| = \left| \sum_{k=n+1}^{\infty} k(k-1)a_k z^{k-1} + (\gamma - 1) \left(\sum_{k=n+1}^{\infty} (k-1)a_k z^{k-1} \right) \right|
= \left| \sum_{k=n+1}^{\infty} (k-1)[k+\gamma-1]a_k z^{k-1} \right|
< \sum_{k=n+1}^{\infty} (k-1)[k+\gamma-1]|a_k|
\leq \frac{n+\gamma}{2}.
\]
Now, \(f(z) \) is in the class \(\Omega_n \) follows from Theorem 2.1.

It is clear that for \(\tilde{f}_{n,\mu}(z) \), we have \(a_{n+1} = \frac{\mu}{2n} \) and \(a_k = 0 \) for all \(k \geq n+2 \), so that
\[
\sum_{k=n+1}^{\infty} (k-1)[k+\gamma-1]|a_k| = (n+1-1)[n+1+\gamma-1] \frac{1}{2n} = \frac{n+\gamma}{2}.
\]

For \(\gamma = 1 \), Theorem 2.2 gives...
Corollary 2.4. If \(f(z) = z + \sum_{k=n+1}^\infty a_k z^k \in A_n \) satisfies
\[
\sum_{k=n+1}^\infty k(k-1)|a_k| \leq \frac{n+1}{2},
\]
then \(f \in \Omega_n \). The result is sharp.

If we fix \(n = 1 \), and then take \(\gamma = 1 \) and \(\gamma = 2 \) in Theorem 2.2 respectively, we obtain the following sufficient conditions for the function class \(\Omega \).

Corollary 2.5. Let \(f(z) = z + \sum_{k=2}^\infty a_k z^k \in A \). If
\[
\sum_{k=2}^\infty k(k-1)|a_k| \leq 1,
\]
then \(f \in \Omega \) and the result is sharp.

Corollary 2.6. Let \(f(z) = z + \sum_{k=2}^\infty a_k z^k \in A \) satisfies
\[
\sum_{k=2}^\infty (k^2-1)|a_k| \leq 3/2.
\]
Then \(f \in \Omega \) and the result is sharp.

Remark 1. In both the results, Corollary 2.5 and Corollary 2.6, the equality holds for the function \(\hat{f}_{1,\mu}(z) = z + \frac{\mu}{2}z^2 \) with \(|\mu| = 1 \).

Example 2.1. Consider the function
\[
\vartheta_n(z) = z - \frac{3}{20(n+1)}z^{n+1} + \frac{6}{25(n+2)}z^{n+2} + \frac{1}{10(n+3)}z^{n+3}.
\]
We have
\[
\sum_{k=n+1}^\infty k(k-1)|a_k| = n(n+1)\left[-\frac{3}{20(n+1)} + (n+1)(n+2)\left\{ \frac{6}{25(n+2)} \right\}
+ (n+2)(n+3)\left\{ \frac{1}{10(n+3)} \right\} \right]
= \frac{3n}{20} + \frac{6(n+1)}{25} + \frac{(n+2)}{10}
= \left(\frac{n+1}{2} \right) \left(\frac{3}{10} + \frac{12}{25} + \frac{1}{5} \right)
+ \left(\frac{1}{10} - \frac{3}{20} \right)
= \left(\frac{n+1}{2} \right) \left(\frac{49}{50} \right) - \frac{1}{20}
< \frac{n+1}{2}.
\]
That is \(\vartheta_n(z) \) satisfies the conditions of Corollary 2.4 and hence \(\vartheta_n \in \Omega_n \). Indeed, for \(z \in \mathbb{D} \), we have
\[
|z\vartheta_n'(z) - \vartheta_n(z)| = \left| -\frac{3n}{20(n+1)}z^{n+1} + \frac{6(n+1)}{25(n+2)}z^{n+2} + \frac{(n+2)}{10(n+3)}z^{n+3} \right|
< \frac{3n}{20(n+1)} + \frac{6(n+1)}{25(n+2)} + \frac{(n+2)}{10(n+3)}
\leq \frac{3}{20} + \frac{6}{25} + \frac{1}{10} = \frac{49}{100} < \frac{1}{2}.
\]
We now use Theorem 2.1 to construct functions involving double integrals that are members of the function class Ω_n.

Theorem 2.3. Let $\gamma \geq 1$, $n \in \mathbb{N}$, and let $\mathcal{J}(z)$ be analytic in \mathbb{D} such that

$$|\mathcal{J}(z)| \leq \frac{n + \gamma}{2}. \tag{2.5}$$

Then the function

$$f(z) = z + z^{n+1} \int_0^1 \int_0^1 \mathcal{J}(stz)s^{n-1}t^{n+\gamma-1} dsdt \tag{2.6}$$

belongs to the class Ω_n. Moreover, if equality holds in (2.5), then the function in (2.6) becomes $\hat{f}_{n,\mu} \in \Omega_n$.

Proof. Let us consider the function $f \in A_n$ satisfying the second-order differential equation

$$zf''(z) + (\gamma - 1) \left(f' - \frac{f(z)}{z} \right) = z^n \mathcal{J}(z). \tag{2.7}$$

From (2.5) and (2.7), we have

$$\left| zf''(z) + (\gamma - 1) \left(f' - \frac{f(z)}{z} \right) \right| < \frac{n + \gamma}{2}.$$

Therefore, in view of Theorem 2.1, it follows that the solution of the differential equation (2.7) must lie in the function class Ω_n. We show that the solution of (2.7) is the function given in (2.6). Writing

$$q(z) = f'(z) - \frac{f(z)}{z},$$

the equation (2.7) reduces to the form

$$z^{1-\gamma} (z^\gamma q(z))' = z^n \mathcal{J}(z).$$

This, on solving, gives

$$q(z) = z^n \int_0^1 \mathcal{J}(tz)t^{n+\gamma-1} dt,$$

or, equivalently

$$f'(z) - \frac{f(z)}{z} = z^n \int_0^1 \mathcal{J}(tz)t^{n+\gamma-1} dt. \tag{2.8}$$

Now the differential equation (2.8) can be written as

$$z \left(\frac{f(z)}{z} - 1 \right)' = z^n \int_0^1 \mathcal{J}(tz)t^{n+\gamma-1} dt,$$

whose solution is

$$f(z) = z + z^{n+1} \int_0^1 \int_0^1 \mathcal{J}(stz)s^{n-1}t^{n+\gamma-1} dsdt.$$

If equality holds in (2.5), then we have

$$\mathcal{J}(z) = \mu \frac{n + \gamma}{2} \text{ with } |\mu| = 1.$$

Substituting this in (2.6), we obtain the function $\hat{f}_{n,\mu}(z)$. \qed
Corollary 2.7. Let $J \in \mathcal{H}$ such that $|J(z)| \leq 1$. Then the function

$$f(z) = z + z^2 \int_0^1 J(stz)tdsdt$$

belongs to the class Ω.

We conclude this section by showing that for each $n \in \mathbb{N}$ and for each $\mu \in \mathbb{C}$ with $|\mu| = 1$, the function $\hat{f}_{n,\mu}(z)$ is an extreme point of Ω_n. We prove it by showing that $\hat{f}_{n,\mu}(z)$ satisfies the condition established by Peng and Zhong [16, Theorem 3.14]. Observe that

$$\hat{f}_{n,\mu}(z) = z + \frac{\mu}{2n}z^{n+1} = z + \frac{1}{2}z \int_0^\pi \phi(\xi),$$

where $\phi(\xi) = \mu \xi^{n-1}$ satisfies

$$\int_0^{2\pi} \log \left[1 - |\phi(e^{i\theta})|\right] d\theta = -\infty.$$
where
\[\tau = \frac{n}{2n + 1}. \]

The number \(\tau \) is the best possible estimate.

Proof. Since \(f \in \hat{\Omega}_n \), we have
\[\sum_{k=n+1}^{\infty} k(k-1)|a_k| \leq \frac{n + 1}{2}. \]
(3.5)

Also, from the given representations of \(f(z) \) and \(\nu(z) \), and the definition of Hadamard product, we have
\[\tau(f * \nu)(z) = \tau \left(z + \sum_{k=n+1}^{\infty} a_k c_k z^k \right) = \sum_{k=1}^{\infty} s_k c_k z^k, \]
where \(c_1 = 1 \) and
\[s_k = \begin{cases}
\tau & \text{for } k = 1 \\
0 & \text{for } 2 \leq k \leq n \\
\tau a_k & \text{for } k \geq n + 1.
\end{cases} \]

Clearly, the subordination (3.3) will hold if we prove that \(\{s_k\}_{k=1}^{\infty} \) is a subordinating factor sequence. In view of Lemma 3.1, it is sufficient to prove that
\[\text{Re} \left(1 + 2 \sum_{k=1}^{\infty} s_k z^k \right) > 0. \]

Now using (3.5) and the fact that the sequence \(\{k(k-1)\}_{k=n+1}^{\infty} \) is an increasing sequence, we have for \(|z| = r < 1 \),
\[\text{Re} \left(1 + 2 \sum_{k=1}^{\infty} s_k z^k \right) = \text{Re} \left(1 + 2\tau z + 2 \sum_{k=n+1}^{\infty} \tau a_k z^k \right) \geq 1 - 2\tau |z| - 2\tau \sum_{k=n+1}^{\infty} |a_k||z|^k \]
\[= 1 - 2\tau r - 2\tau \sum_{k=n+1}^{\infty} |a_k| r^k \]
\[\geq 1 - 2\tau r - 2\tau \frac{1}{n(n+1)} \sum_{k=n+1}^{\infty} k(k-1)|a_k| r \]
\[\geq 1 - 2\tau r - 2\tau \frac{1}{n(n+1)} \frac{n + 1}{2} r \]
\[= 1 - r \left(2\tau + \frac{\tau}{n} \right) \]
\[= 1 - r > 0. \]

Thus (3.3) holds true for every function \(f \in \hat{\Omega} \). If we choose the function \(\nu(z) \) as the convex function \(\ell(z) = z/(1 - z) \) the inequality (3.4) follows. A simple observation shows that the function
\[\hat{f}_{n-1}(z) = z - \frac{1}{2n} z^{n+1} \in \Omega_n \]
which guarantees that the number \(\tau \) cannot be replaced by any larger one. \(\square \)
The following subordination result for Ω is an immediate consequence of Theorem 3.1.

Corollary 3.1. Let $f \in \hat{\Omega}$. Then for every convex function $\nu(z)$ in \mathbb{D}, we have

$$
\frac{1}{3} (f * \nu)(z) \prec \nu(z)
$$

and

$$
\text{Re}(f(z)) > \frac{3}{2}.
$$

(3.6)

The sharpness of the estimate $\frac{1}{3}$ is guaranteed by the function $\hat{f}_{1,-1}(z) = z - z^2/2 \in \Omega$ (see Figure 2).

Remark 2. The validity of the inequality (3.6) for functions in Ω is evident from the growth theorem [16, Theorem 3.1].

![Figure 2](image)

Figure 2. C_1 is the Boundary curve of $\hat{f}_{1,-1}(\mathbb{D})$ and C_2 is that of $\frac{1}{3} \hat{f}_{1,-1}(\mathbb{D})$, where $\hat{f}_{1,-1}(z) = z - z^2/2$.

4. **Inclusion Properties of Ω**

We start this section by stating a necessary condition for a function $f \in \mathcal{A}$ to be in the function class Ω.

Lemma 4.1 ([16, Corollary 3.12]). If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ is in Ω, then

$$
|a_k| \leq \frac{1}{2(k - 1)}, \quad k \geq 2.
$$

(4.1)
As mentioned earlier, \(\Omega \subset S^* \) \cite[Theorem 3.1]{16}, the fact that the Koebe function \(z/(1 - z)^2 = z + \sum_{k=2}^{\infty} k z^k \in S^* \) does not satisfy the necessary condition (4.1) implies that this containment is proper. In this section, we discuss some inclusion type relations existing between \(\Omega, S_p \) and \(\text{UST} \).

Definition 4.1 (Parabolic Starlike Functions \((S_p)\) \cite{17}). A function \(f \in A \) is said to be in the class \(S_p \subset S^* \) if and only if

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) > \left| \frac{z}{f(z)} - 1 \right|, \quad z \in \mathbb{D}.
\]

These functions were introduced by Ronning \cite{17} and later studied and generalized by many authors (see \cite{2, 8, 9}). Geometrically, \(f \in S_p \) if and only if all the values taken by the expression \(zf'(z)/f(z) \) lie in the parabolic region

\[
R_p := \{ w = u + iv \in \mathbb{C} : v^2 < 2u - 1 \}.
\]

Lemma 4.2 (\cite[Theorem 3]{17}). The function \(f_k(z) = z + a_k z^k \) is in \(S_p \) if and only if

\[
|a_k| \leq \frac{1}{(2k - 1)}, \quad k \geq 2.
\]

Lemma 4.3 (\cite[Corollary 2.4]{9}). Let \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in A \). If

\[
\sum_{k=2}^{\infty} (2k - 1)|a_k| \leq 1,
\]

then \(f \in S_p \).

Lemma 4.4. The function \(f_k(z) = z + a_k z^k \) is in \(\Omega \) if and only if

\[
|a_k| \leq \frac{1}{2(k - 1)}, \quad k \geq 2. \quad (4.2)
\]

Proof. The necessary part easily follows from Lemma 4.1. We now suppose (4.2) holds, then

\[
|zf_k'(z) - f_k(z)| = |(k - 1)a_k z^k| < (k - 1)|a_k| \leq \frac{1}{2}.
\]

Hence, \(f_k \in \Omega \).

\(\square \)

If we consider the function \(\hat{f}_{1, \mu}(z) = z + \frac{\mu}{2} z^2 \in \Omega \), then it easily follows from Lemma 4.2 that \(\Omega \not\subset S_p \). For the other direction, we give the following result.

Theorem 4.1. If \(f_k(z) = z + a_k z^k \) belongs to \(S_p \), then \(f_k \in \Omega \) for every \(k \geq 2 \).

Proof. As \(f_k(z) = z + a_k z^k \in S_p \), Lemma 4.2 gives that

\[
|a_k| \leq \frac{1}{(2k - 1)}, \quad k \geq 2.
\]

Since,

\[
\frac{1}{(2k - 1)} < \frac{1}{2(k - 1)} \quad \text{for all } k \geq 2,
\]

the desired result follows from Lemma 4.4.

\(\square \)

The following result holds for the functions in \(\hat{\Omega} \subset \Omega \) with certain restrictions.
Theorem 4.2. Let \(f(z) = z + \sum_{k=3}^{\infty} a_k z^k \in \hat{\Omega} \) (i.e., \(a_2 = 0 \)). Then \(f \in S_p \).

Proof. \(f \in \hat{\Omega} \) gives

\[
\sum_{k=2}^{\infty} k(k-1)|a_k| \leq 1. \tag{4.3}
\]

Making use of (4.3), we have

\[
\sum_{k=2}^{\infty} (2k-1)|a_k| = \sum_{k=3}^{\infty} (2k-1)|a_k| \leq \sum_{k=3}^{\infty} k(k-1)|a_k| = \sum_{k=2}^{\infty} k(k-1)|a_k| \leq 1.
\]

Therefore, it follows from Lemma 4.3 that \(f \in S_p \). \(\square \)

Definition 4.2 (Uniformly Starlike Functions (UST) [7]). A function \(f \in A \) is said to be in the class \(UST \subset S^* \) if and only if

\[
\text{Re} \left(\frac{(z - \xi)f'(z)}{f(z) - f(\xi)} \right) \geq 0
\]

for every pair \((\xi, z) \in \mathbb{D} \times \mathbb{D} \).

This class of functions was introduced by Goodman [7]. These functions have the property that for every circular arc \(\gamma \) contained in \(\mathbb{D} \), with center \(\zeta \) also in \(\mathbb{D} \), the arc \(f(\gamma) \) is starlike with respect to \(f(\zeta) \).

Lemma 4.5 ([13, Theorem 5]). If

\[
|a_k| \leq \sqrt{\frac{k+1}{2k^3}}, \quad k \geq 2,
\]

then the function \(f_k(z) = z + a_k z^k \) is in \(UST \).

Using Lemma 4.5, we prove the following theorem.

Theorem 4.3. Let \(f_k(z) = z + a_k z^k \) be in \(\Omega \). Then, for all \(k \geq 3 \), \(f(z) \) is in \(UST \).

Proof. Given \(f_k(z) = z + a_k z^k \in \Omega \), we have from Lemma 4.4 that

\[
|a_k| \leq \frac{1}{2(k-1)}, \quad k \geq 2.
\]

Since,

\[
\frac{1}{2(k-1)} \leq \sqrt{\frac{k+1}{2k^3}} \text{ for all } k \geq 3,
\]

it follows from Lemma 4.5 that \(f_k(z) = z + a_k z^k \) is in \(UST \) for all \(k \geq 3 \). \(\square \)

We note that \(S_p \not\subset UST \) and \(UST \not\subset S_p \) (cf. [1, page 21]). In view of Theorem 4.1 and Theorem 4.3, we remark the following important result which is not available in the literature. This result gives a kind of inclusion relation between \(S_p \) and \(UST \).

Remark 3. If \(f_k(z) = z + a_k z^k \) is in \(S_p \), then \(f_k \in UST \) for all \(k \geq 3 \).
5. Radii Problems for Ω

By a radius problem, we mean the following: For two families $\mathcal{F}_1, \mathcal{F}_2$ in A, we say that the number $\rho (0 < \rho \leq 1)$ is the \mathcal{F}_1-radius for \mathcal{F}_2, if ρ is the largest number such that for every r satisfying $0 < r \leq \rho$ we have

$$\frac{1}{r}f(rz) \in \mathcal{F}_1$$

for all $f \in \mathcal{F}_2$.

We note that it has been proved [16, Theorem 3.4] that the C-radius for Ω is $\frac{1}{2}$. In this section, we will prove some more radii results for the class Ω. Before proceeding, we list out some lemmas that are useful for our discussion.

Lemma 5.1 ([16, Theorem 3.1]). If $f \in \Omega$, then

$$|z| - \frac{1}{2}|z|^2 \leq |f(z)| \leq |z| + \frac{1}{2}|z|^2,$$

(5.1)

and

$$1 - |z| \leq |f'(z)| \leq 1 + |z|.$$

(5.2)

Further, for each $0 \neq z \in \mathbb{D}$, equality occurs in both the estimates if and only if

$$f(z) = \hat{f}_{1,\mu}(z) = z + \frac{\mu}{2}z^2$$

with $|\mu| = 1$.

(5.3)

Lemma 5.2. Let $f \in \Omega$. Then for $|z| = r < 1$, we have the sharp estimate

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{r}{2 - r}.$$

Proof. Since $f \in \Omega$, we have

$$|zf'(z) - f(z)| < \frac{1}{2}.$$

This can be equivalently written in the equation form as

$$zf'(z) - f(z) = \frac{1}{2}z^2 \phi(z),$$

where $\phi(z) \in \mathcal{H}$ and $|\phi(z)| \leq 1$. This further implies that

$$|zf'(z) - f(z)| \leq \frac{1}{2}|z|^2.$$

(5.4)

Inequality (5.4) along with (5.1) yields

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \frac{1}{|f(z)|} |zf'(z) - f(z)| \leq \frac{\frac{1}{2}|z|^2}{|z| - \frac{1}{2}|z|^2} = \frac{r}{2 - r}.$$

The sharpness of the estimate follows from Lemma 5.1.

$S^*(\alpha)$-radius of Ω.

Theorem 5.1. The $S^*(\alpha)$-radius for the class Ω is $r(\alpha) = \frac{2(1-\alpha)}{2-\alpha}$, where $0 \leq \alpha < 1$.

Proof. It is easy to see that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1 - \alpha \implies \text{Re} \frac{zf'(z)}{f(z)} > \alpha.$$
If \(f \in \Omega \) and \(|z| = r \), then we conclude from Lemma 5.2 that
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1 - \alpha \quad \text{if} \quad \frac{r}{2 - r} \leq 1 - \alpha.
\]
The later inequality holds true if \(r \leq 2(1 - \alpha)/(2 - \alpha) = r(\alpha) \). For sharpness, we consider the function \(\hat{f}_1(z) = z + z^2/2 \in \Omega \). At the point \(z_0 = -2(1 - \alpha)/(2 - \alpha) \) lying on the circle \(|z| = r(\alpha) \), we have
\[
\frac{z_0\hat{f}_1'(z_0)}{\hat{f}_1(z_0)} = \frac{1 + z_0}{1 + z_0/2} = \alpha.
\]
This proves that the result is sharp. \(\square \)

Remark 4. The \(S^* \left(\frac{1}{2} \right) \)-radius for the class \(\Omega \) is \(\frac{2}{3} \).

\(S_p \)-radius of \(\Omega \).

Theorem 5.2. The \(S_p \)-radius for the class \(\Omega \) is \(\frac{2}{3} \).

![Figure 3](https://example.com/figure3.png)

Figure 3. Sharpness of \(S_p \)-radius: \(\hat{F}_1(z) = z\hat{f}_1(z)/\hat{f}_1(z) \) with \(\hat{f}_1(z) = z + z^2/2 \).

Proof. Let \(f \in \Omega \). Then by a well known result [1] p. 21 we get that
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| < \frac{1}{2} \implies f \in S_p.
\]
In view of Lemma 5.2, this inequality is true if \(r/(2-r) < 1/2 \), that is if \(r < 2/3 \). Further, we note that \(f \in S_p \) implies (see [17])

\[
\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \frac{1}{2}.
\]

We now show that there exists at least one function \(f \in \Omega \) for which \(\text{Re} (zf'(z)/f(z)) = 1/2 \) at some point on the circle \(|z| = 2/3 \). This can be easily shown if we take \(f(z) = \hat{f}_1(z) = z + z^2/2 \in \Omega \) and \(z = -2/3 \). Hence the result is sharp (see Figure 3).

Remark 5. For \(\Omega \), we have \(S^* \left(\frac{1}{2} \right) - \text{radius} = S_p - \text{radius} = \frac{2}{3} \).

In 1992, Ma and Minda [11] introduced a general method of constructing function classes \(S^*(\varphi) \subset S^* \) as

\[
S^*(\varphi) := \left\{ f \in A : \frac{zf'(z)}{f(z)} < \varphi(z) \right\},
\]

where the function \(\varphi : D \to \mathbb{C} \) satisfies (i) \(\varphi(z) \) is univalent with positive real part, (ii) \(\varphi(z) \) maps \(D \) onto a region that is starlike with respect to \(\varphi(0) = 1 \), (iii) \(\varphi(D) \) is symmetric about the real axis and (iv) \(\varphi'(0) > 0 \). In the recent past, using this approach a number of starlike classes have been introduced and studied along with their geometric properties. Here, we first mention a few of them and then solve the corresponding radius problem for the class \(\Omega \).

S\(^*\)e-radius of \(\Omega \). In 2015, the class \(S^*_e = S^*(e^z) \) was introduced by Mendiratta et al. [12]. Thus, \(S^*_e \) is the collection of all functions \(f \in A \) satisfying \(zf'(z)/f(z) < e^z \). Equivalently, the function \(f \in S^*_e \) if and only if \(zf'(z)/f(z) \) lies in the region

\[
R_e := \{ w \in \mathbb{C} : |\log w| < 1 \}.
\]

Further, if \(f \in S^*_e \), then

\[
\frac{1}{e} < \text{Re} \left(\frac{zf'(z)}{f(z)} \right) < e.
\]

Lemma 5.3 ([12, Lemma 2.2]). For \(1/e < a < e \), let \(r_a \) be given by

\[
r_a = \begin{cases}
 a - \frac{1}{e}, & \frac{1}{e} < a \leq \frac{1}{2}(e + \frac{1}{e}) \\
 e - a, & \frac{1}{2}(e + \frac{1}{e}) \leq a < e.
\end{cases}
\]

Then \(\{ w \in \mathbb{C} : |w - a| < r_a \} \subset R_e \).

Theorem 5.3. The \(S^*_e \)-radius for the class \(\Omega \) is \(r_e = \frac{2(1-e^{-1})}{2-e^{-1}} \approx 0.774600032643 \).

Proof. Let \(f \in \Omega \). Then, for \(|z| = r < 1 \), Lemma 5.2 gives

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{r}{2-r},
\]

which is a disk centered at \((1,0) \) and radius \(r/(1-r) \). It follows from Lemma 5.3 that this disk will be contained in \(R_e \) if and only if

\[
\frac{r}{2-r} < 1 - \frac{1}{e}.
\]
This is true if and only if
\[r < \frac{2 \left(\frac{1 - \frac{1}{r}}{r} \right)}{2 - \frac{1}{e}} = r_e. \]

If we consider the function \(\hat{f}_1(z) = z + z^2/2 \in \Omega \), then it is easy to see that at the point \(z = -r_e \), we have
\[\frac{z \hat{f}_1'(z)}{\hat{f}_1(z)} = \frac{1}{e}. \]

This proves that the result is sharp (see Figure 4).

Figure 4. Sharpness of \(S_e^* \)-radius: \(\hat{F}_1(z) = z \hat{f}_1'(z)/\hat{f}_1(z), \hat{f}_1(z) = z + z^2/2. \)

S\(_e^*\)-radius of \(\Omega \). In 2016, Sharma et al. \[18\] introduced and discussed the class \(S_e^* \subset S^* \) defined as

\[
S_e^* := \left\{ f \in A : \frac{zf'(z)}{f(z)} < 1 + \frac{4}{3} z + \frac{2}{3} z^2 \right\}.
\]

A function \(f \in A \) is in the class \(S_e^* \) if and only if \(zf'(z)/f(z) \) lies in the region bounded by the cardioid \((9u^2 - 18u + 9v^2 + 5)^2 - 16(9u^2 - 6u + 9v^2 + 1) = 0 \). We let

\[
R_C := \left\{ u + iv : \left(9u^2 - 18u + 9v^2 + 5\right)^2 - 16\left(9u^2 - 6u + 9v^2 + 1\right) < 0 \right\}.
\]

Lemma 5.4 (\[18\] Lemma 2.5). For \(1/3 < a < 3 \), let \(r_a \) be given by

\[
r_a = \begin{cases}
\frac{3a-1}{3}, & \frac{1}{3} < a \leq \frac{5}{3} \\
3 - a, & \frac{5}{3} \leq a < 3.
\end{cases}
\]

Then \(\{ w \in \mathbb{C} : |w - a| < r_a \} \subset R_C \).
Theorem 5.4. The S^*_C-radius for the class Ω is $\frac{4}{5}$.

Proof. In view of Lemma 5.2 and Lemma 5.4, it follows that for any $f \in \Omega$, the disk (5.5) will lie inside the region R_C if and only if
\[\frac{r}{2 - r} < \frac{2}{3} \iff r < \frac{4}{5}. \]

Again, from Lemma 5.4, it can be easily seen that the largest disk with center at $(1,0)$ and lying completely inside R_C is $\{ w : |w - 1| < \frac{2}{3} \}$.

Clearly the left diametric end point of this disk is $\frac{1}{3}$. The sharpness of our result will follow if we can find at least one function $f \in \Omega$ and a point on the circle $|z| = \frac{4}{5}$, say z_0, such that the value of $zf'(z)/f(z)$ at z_0 is $\frac{1}{3}$. We see that one such function in Ω is $\hat{f}_1(z) = z + \frac{z^2}{2}$, and the corresponding point on the circle $|z| = \frac{4}{5}$ is $z_0 = -\frac{4}{5}$ (see Figure 5). \square

\[\gamma_C : \left(9u^2 - 18u + 9v^2 + 5\right)^2 - 16 \left(9u^2 - 6u + 9v^2 + 1\right) = 0. \]

\[\gamma_0 : |w - 1| = \frac{2}{3}. \]

\[D_C : \hat{F}_1 \left(|z| < \frac{4}{5} \right), \text{ where } \hat{F}_1(z) = \frac{zf_1(z)}{f(z)} \]

with $f_1(z) = z + \frac{z^2}{2}$.

$A = 1/3$.

Figure 5. Sharpness of S^*_C-radius.

S^*_S-radius of Ω. In 2019, using the same Ma-Minda’s construction [11], Cho et al. [4] introduced another important class of starlike functions S^*_S defined as

\[S^*_S := \left\{ f \in A : \frac{zf'(z)}{f(z)} < 1 + \sin z \right\}. \]

Let us set $R_S := \varphi_S(\mathbb{D})$, where $\varphi_S(z) = 1 + \sin z$.

Lemma 5.5 ([4, Lemma 3.3]). For $1 - \sin 1 \leq a \leq 1 + \sin 1$, let r_a be given by

\[r_a = \sin 1 - |a - 1|. \]

Then $\{ w \in \mathbb{C} : |w - a| < r_a \} \subset R_S$.

Using Lemma 5.5, the following theorem can be proved.
Theorem 5.5. The S^*-radius for the class Ω is $r_S = \frac{2\sin 1}{1+\sin 1} \approx 0.91391174962$ (see Figure 6).

γ_S: Boundary curve of $\varphi_s(\mathbb{D})$, where $\varphi_s(z) = 1 + \sin z$.

$D_S : \hat{F}_1(|z| < r_S), \hat{F}_1(z) = \frac{\hat{f}_1(z)}{f_1(z)}$ with $\hat{f}_1(z) = z + \frac{z^2}{2}$.

$B = 1 - \sin 1$.

Figure 6. Sharpness of S^*-radius.

S^*-radius of Ω. Lately, Goel and Kumar [6] introduced the starlike class $S^*_SG = S^*(\varphi)$, where $\varphi(z) = 2/(1 + e^{-z})$ is the modified sigmoid function. The following radius result can be easily verified by applying [6, Lemma 2.2].

Theorem 5.6. The S^*_SG-radius for the class Ω is $r_{SG} = \frac{e^{-1}}{e} \approx 0.632120558828577$.

6. Concluding Remarks and Some Open Problems

Since the members of Ω are starlike, it easily follows from the Alexander’s theorem that the members of the class

$$\Upsilon := \left\{ f \in A : |z^2 f''(z)| < \frac{1}{2} \right\}.$$

are convex.

The following result of Kanas and Wisniowska [8, Corollary 3.2] follows immediately.

Corollary 6.1. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in A$ satisfies

$$\sum_{k=2}^{\infty} k(k-1)|a_k| \leq \frac{1}{2},$$

(6.1)

then $f(z)$ is convex.

Remark 6. If $\hat{\Upsilon}$ denotes all functions $f \in A$ satisfying (6.1), then we have the inclusion $\hat{\Upsilon} \subset C$. Also, from the definition (3.2), it follows that $\hat{\Upsilon} \subset \Omega \subset \Omega$.
The fact that Ω is closed with respect to Hadamard product [16, Theorem 3.7], which is true for the convex class \mathcal{C} also [5, Theorem 8.6, p. 247], gives the intuition of some interesting relationship between Ω and \mathcal{C}. Also, we have been successful in finding a class $\hat{\mathcal{T}}$ such that $\hat{\mathcal{T}} \subset \mathcal{C}$ and $\hat{\mathcal{T}} \subset \Omega$ (see, Remark [4]), which further strengthens the above intuitional claim of some kind of relationship between the two. We conjecture the following result regarding the Hadamard product between the members of Ω.

Conjecture. Let $f_1, f_2 \in \Omega$. Then $f_1 \ast f_2 \in \mathcal{C}$.

Using the sufficiency condition (6.1), the truthfulness of the above result can be easily verified for the function $\hat{\tilde{f}}_{1,\mu}(z) = z + \frac{\mu}{2}z^2 \in \Omega$ with $|\mu| = 1$, which serves as the extremal for many problems in Ω [16] (see also [15]). Indeed, for $\hat{\tilde{g}}_{\mu}(z) = \hat{\tilde{f}}_{1,\mu}(z) \ast \hat{\tilde{f}}_{1,\mu}(z) = z + \frac{\mu^2}{4}z^2$,

we have

$$\sum_{k=2}^{\infty} k(k-1)|a_k| = 2\left(\frac{1}{4}\right) = \frac{1}{2}.$$

Hence $\hat{\tilde{g}}_{\mu}(z) \in \mathcal{C}$.

Strongly Starlike Functions. A function $f \in \mathcal{A}$ is said to be strongly starlike of order β ($0 < \beta \leq 1$) if and only if

$$\left|\arg\left(\frac{zf'(z)}{f(z)}\right)\right| < \frac{\beta \pi}{2}, \quad z \in \mathbb{D}.$$

We usually denote this class of functions by $SS^*(\beta)$. Observe that $SS^*(1) = S^*$, and for $0 < \beta < 1$, the class $SS^*(\beta)$ consists only of bounded starlike functions, and hence in this case the inclusion $SS^*(\beta) \subset S^*$ is proper.

Problem. To find the $SS^*(\beta)$-radius for the class Ω.

References

[1] R. M. Ali and V. Ravichandran, Uniformly convex and uniformly starlike functions. Math. Newsletter 21 (2011), no. 1, 16-30.

[2] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17–32.

[3] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

[4] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232.

[5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.

[6] P. Goel and S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. (2) (2019). https://doi.org/10.1007/s40840-019-00784-y.

[7] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364–370.

[8] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327–336.

[9] S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647–657 (2001).

[10] J. E. Littlewood, On Inequalities in the Theory of Functions, Proc. London Math. Soc. (2) 23 (1925), no. 7, 481–519.

[11] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge.
[12] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. **38** (2015), no. 1, 365–386.

[13] E. Merkes and M. Salmassi, Subclasses of uniformly starlike functions, Internat. J. Math. Math. Sci. **15** (1992), no. 3, 449–454.

[14] S. S. Miller and P. T. Mocanu, *Differential subordinations*, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[15] M. Obradović and Z. Peng, Some new results for certain classes of univalent functions, Bull. Malays. Math. Sci. Soc. **41** (2018), no. 3, 1623–1628.

[16] Z. Peng and G. Zhong, Some properties for certain classes of univalent functions defined by differential inequalities, Acta Math. Sci. Ser. B (Engl. Ed.) **37** (2017), no. 1, 69–78.

[17] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. **118** (1993), no. 1, 189–196.

[18] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. **27** (2016), no. 5-6, 923–939.

[19] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. **12** (1961), 689–693.

Department of Mathematics, Indian Institute of Technology, Roorkee-247 667, Uttarakhand, India

E-mail address: lateef17304@gmail.com

Department of Mathematics, Indian Institute of Technology, Roorkee-247 667, Uttarkhand, India

E-mail address: swamifma@iitr.ac.in, mathswami@gmail.com