68Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study

Deling Li,†,⊥ Xiaobin Zhao,‡⊥ Liwei Zhang,‡ Fang Li,‡ Nan Ji,‡ Zhixian Gao,‡ Jisheng Wang,‡ Peng Kang,‡ Zhaofei Liu,§ Jiyun Shi,§ Xiaoyuan Chen,*∥ and Zhaohui Zhu*†⊥

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing Key Laboratory of Brain Tumor, Beijing, China
2Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
3Medical Isotopes Research Center, Peking University, Beijing, China
4Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States

ABSTRACT: Integrin αβ3 is overexpressed in both neo-vasculature and glioma cells. We aimed to evaluate 68gallium-BNOTA-PRGD2 (68Ga-PRGD2) as a new reagent for noninvasive integrin αβ3 imaging in glioma patients. With informed consent, 12 patients with suspicious brain glioma, as diagnosed by enhanced magnetic resonance imaging (MRI) scanning, were enrolled to undergo 68Ga-PRGD2 PET/CT and 18F-FDG PET/CT scans before surgery. The preoperative images were compared and correlated with the pathologically determined WHO grade. Next, the expression of integrin αβ3, CD34, and Ki-67 were determined by immunohistochemical staining of the resected brain tumor tissue. Our findings demonstrated that 68Ga-PRGD2 specifically accumulated in the brain tumors that were rich of integrin αβ3 and other neovasculature markers, but not in the brain parenchyma other than the choroid plexus. Therefore, 68Ga-PRGD2 PET/CT was able to evaluate the glioma demarcation more specifically than 18F-FDG PET/CT. The maximum standardized uptake values (SUVmax) of 68Ga-PRGD2, rather than those of 18F-FDG, were significantly correlated with the glioma grading. The maximum tumor-to-brain ratios (TBRmax) of both tracers were significantly correlated with glioma grading, whereas 68Ga-PRGD2 seemed to be more superior to 18F-FDG in differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Moreover, 68Ga-PRGD2 PET/CT showed different accumulation patterns for HGG of WHO grades III and IV. This is the first noninvasive integrin imaging study, to the best of our knowledge, conducted in preoperative patients with different grades of glioma, and it preliminarily indicated the effectiveness of this novel method for evaluating glioma grading and demarcation.

KEYWORDS: integrin αβ3, glioma, 68Ga, PET/CT

INTRODUCTION

Gliomas are the most common malignant brain tumors, characterized by extensive, diffuse infiltrative growth into the surrounding brain parenchyma and different degrees of neovascularization.1 Recent studies have demonstrated the diagnostic limitations of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).2 The diagnostic accuracy of 18F-FDG PET is weakened by high physiologic glucose metabolism in the brain areas where glioma is prone to occur, such as the cerebral cortex, basal ganglia, and thalamus. This significantly limited the sensitivity for glioma detection and the specificity for border demarcation. The uses of 11C-methionine and 18F-fluorothymidine to image glioma showed better results but were still not enough for a final resolution.3 Thus, there is a need to develop a more specific radiotracer for PET to assess glioma.

Several researchers have demonstrated that the expression of the integrins αβ3, and αβ4, which are expressed in many glioma new-born vessels and glioma cells, generally increases with the grade of malignancy, and these integrins have been associated with poor prognosis,4,5 as replicated in a glioma animal model.6 Basic research showed that integrins could drive glioma progression7 and down-regulation of integrins or interference with integrin signaling pathways, which decreased migration and proliferation and improved survival in human glioblastoma cell lines.8,9 Cilengitide, an arginine-glycine-aspartic acid...
(RGD) pentapeptide integrin α_β_3 and α_β_5 inhibitor, was shown to improve glioblastoma multiforme (GBM, WHO grade IV) prognosis, based on preclinical and current clinical trials assessing angiogenesis, cell invasion, and migration, and it has been investigated in combination with standard therapy in several clinical trials in GBM patients.10–14

Glioma is known to be a highly heterogeneous disease, particularly regarding intratumoral heterogeneity, which contributes in part to drug resistance for some receptor inhibitors.15 Indeed, the premier research showed heterogeneous RGD uptake in GBM patients.16 With the advent of personalized medicine, understanding of intratumoral heterogeneity at different levels has become mandatory for improving clinical outcomes. Noninvasive RGD PET/CT imaging represents a more promising approach than 18F-FDG PET/CT for the specific visualization of integrin α_β_3 in preoperative glioma patients or for locating residual postoperative glioma; furthermore, this technique could potentially provide appropriate therapeutic guidance for anti-integrin targeted therapy and antiangiogenesis therapy, as well.

Until now, there have been only a small number of studies using RGD molecular imaging,6,17–20 including microPET studies, as well as studies using 99mTc-3P-RGD2 single-photon emission computed tomography/computed tomography (SPECT/CT) in subcutaneous tumor-bearing mice, MR relaxometry with RGD-labeled ultrasmall superparamagnetic iron oxide (USPIO), micro-SPECT/CT 99mTc-N$_2$S$_2$-Tat(49–57)-c(RGDyK) in cell lines and animal models, as well as 18F-RGD-KS whole-body PET/CT in monkeys and human. Ji et al. demonstrated binding affinity against U87MG glioma cells by 99mTc-Galacto-RGD2, the tumor uptake of which was also in agreement with high integrin α_β_3 expression on glioma cells and in the neovascularization of nude mice bearing U87MG glioma xenografts.21

Schnell et al. reported the first clinical research about 18F-Galacto-RGD2 PET/CT scans in GBM patients.16 This study found that GBM demonstrated significant but heterogeneous RGD uptake, with the maximum uptake occurring in the highly proliferating and infiltrating areas of tumors, where α_β_3 expression was prominent in tumor microvessels, as well as in glial tumor cells. However, a limitation of this research was that it included not only newly diagnosed GBM but also recurrent GBM after external beam radiation or chemotherapy, thereby reducing its reliability.

In this prospective clinical study, we developed 68gallium as a new positron emitter to label small RGD peptide antagonists of integrin $\alpha_\beta_3 \alpha_\beta_5$, and we investigated this emitter in a prospective clinical cohort covering patients with different grades of newly diagnosed brain glioma. We hypothesized that the integrin α_β_3 expression shown in 68gallium-BNOTA-PRGD2 (68Ga-PRGD2) PET/CT scans could more precisely predict the preoperative glioma grading and could determine the demarcation more specifically than 18F-FDG PET/CT scans. The results were compared with those generated with 18F-FDG PET/CT through clinical case-by-case evaluations.

MATERIALS AND METHODS

Patients. This study was approved by the Institute Review Boards of both Peking Union Medical College Hospital and Beijing Tiantan Hospital. It was conducted from November 2012 to March 2014. Written informed consent was obtained from all of the patients.

The inclusion criteria consisted of clinically based and magnetic resonance imaging (MRI)-based suspected newly diagnosed primary glioma; the patients were at least 18 years of age and had the ability to provide written and informed consent. The exclusion criteria were pregnancy, lactation, and inability to complete the needed examinations due to severe pain or claustrophobia. We evaluated all of the patients using preoperative brain 68Ga-PRGD2 PET/CT and 18F-FDG PET/CT scans within 3 days. The pathology was determined by two neuropathologists separately, and they reached in consensus by referring a third pathologist when there was any discrepancy. The criteria of pathology diagnosis are the 2007 edition of WHO classification.22 Low-grade glioma (LGG) includes grades I–II, and high-grade glioma (HGG) includes grades III–IV. This study was registered at www.clinicaltrials.gov under number NCT01801371.

68Ga-PRGD2 PET/CT Scanning. The cyclic RGD peptide was modified by PEGylated dimerization to form PEG3-E[c(RGDyK)]$_2$ (PRGD2) and was chelated with S2-(4- isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triyltriacetic acid (BNOTA).23–25 68Ga-PRGD2 was synthesized on-site (immediately before injection) with radiochemical purity exceeding 97%. A Biograph 64 TruePoint TrueV PET/CT system (Siemens Medical Solutions, Erlangen, Germany) was used for scanning. For each patient, 1.85 MBq (0.05 mCi) of 68Ga-PRGD2 per kilogram of body weight was injected intravenously. After 30 min of rest, the patients underwent the examinations. After a low-dose CT scan (120 kV, 35 mA, 3 mm layer, 52×52 matrix, 70 cm FOV), brain PET acquisition was performed (1 bed position, 10 min in duration).

18F-FDG PET/CT Scanning. The patients underwent brain 18F-FDG PET/CT within 3 days of the 68Ga-PRGD2 PET/CT scan. 18F-FDG was produced on-site using Cyclotron RDS-111 (CTI, Knoxville, TN, USA). The same PET/CT system was used for scanning. Before the examinations, each patient was asked to fast for at least 4 h. The blood glucose levels of the patient were within normal limits (less than 6.4 mmol/L) before the 18F-FDG was injected at a dosage of 5.55 MBq (0.15 mCi) per kilogram of body weight. The patients rested quietly in a warm and dark room for approximately 1 h. Subsequently, the patients underwent the examinations, using the same parameters that had been employed for the 68Ga-PRGD2 PET/CT scan.

Semiquantitative Analysis. Three experienced nuclear medicine physicians read all of the images through consensus reading. The same nuclear medicine physician examined and measured the semiquantitative values for the final analysis. A Siemens MMWP workstation was used for postprocessing. For each patient, the volume of interest (VOI) was drawn, and the maximum standardized uptake values (SUVmax) and maximum tumor-to-brain ratios (TBRmax) were recorded. TBRmax was obtained by dividing the SUVmax of the VOI by that of the unaffected contralateral brain.

Immunofluorescence and Immunohistochemical Analysis. We conducted the fluorescence staining to investigate integrin α_β_3 expression and immunohistochemical staining to see the angiogenesis of the patients and corroborated their PET/CT findings. Frozen tumor tissue sections were incubated with hamster antimouse integrin α_β_3 antibody (1:100; clone BV3, Abcam, USA) and A4bergin (10 μg/mL), and then visualized by Cy3-conjugated donkey antimouse secondary antibody (1:200; Jackson ImmunoResearch Laboratories) and FITC-conjugated donkey antihuman...
secondary antibody (1:200) under the microscope (Carl Zeiss Axiovert 200M, Carl Zeiss, Thornwood, NY). Cryosections (4-μm thick) were obtained and fixed in 95% ethanol for 10 min. Subsequently, 3% hydrogen peroxide (H2O2) was added to quench endogenous peroxidase, and 10% goat serum (Zsgb Bio, Beijing, China) was used to block the remaining epitopes. Tissue slices were subsequently incubated at room temperature with one of the following monoclonal antibodies: CD34 (clone QBEnd/10, Leica Biosystems, Germany) at a dilution of 1:50 and Ki-67 (clone EP5, Epitomics, USA) at a dilution of 1:100. The samples were incubated with homologous secondary antibodies conjugated with horseradish peroxidase (HRP) for 60 min and with diaminobenzidine (DAB) (K4065, DAKO, USA) at a dilution of 1:20 under microscopic examination. Finally, the sections were counterstained with hematoxylin.

Statistical Analysis. All of the data are expressed as means and standard deviation (SD). Spearman’s correlation coefficient was calculated to assess the correlations between the SUVmax and TBRmax of 68Ga-PRGD2 and the grading of the glioma. All of the statistical analyses were performed using GraphPad Prism software (version 5.01, GraphPad Software, Inc., Ca, USA), and p < 0.05 was considered to be statistically significant.

RESULTS

Patient Characteristics. The inclusion criteria were fulfilled by 12 patients (2 women, 10 men) with a mean age of 43 ± 13 years (range, 23–66 years). All of the patients presented with short histories of clinical symptoms or with newly diagnosed neurological deficits underwent MRI with gadolinium-DTPA enhancement suggesting a diagnosis of glioma and were last confirmed as glioma by postoperative pathology. The tumors were located in one brain lobe in 2 patients, in two lobes in 7 patients, in three lobes in 1 patient, in the thalamus in 1 patient, and in the pons in 1 patient (Table 1).

Table 1. Demographic Characteristics of the Enrolled Patients with Glioma

no.	gendera	age (years)	surgery	WHO grading	pathology	location
1	F	23	craniotomy	I	dysembryoplastic neuroepithelial tumor	putamen, globus pallidus, insula
2	M	34	craniotomy	I	neuronal-glial tumor, focal forms, rosette-forming glioneuronal tumor	tegmentum of pons
3	M	40	craniotomy	II, focal II	mixed neuronal-glial tumors (oligoastrocytoma, dysembryoplastic neuroepithelial tumor)	frontal, temporal lobe
4	M	64	stereotactic biopsy	II	diffuse astrocytoma	frontal lobe, insula
5	M	51	craniotomy	II, focal III	oligoastrocytoma, focal anaplastic	temporal, parietal lobe
6	F	40	craniotomy	II, focal III	oligoastrocytoma, focal anaplastic	frontal, parietal lobe, insula
7	M	41	craniotomy	II, focal III	astrocytoma, focal anaplastic	temporal, parietal, occipital lobe
8	M	49	craniotomy	III, focal IV	anaplastic oligoastrocytoma, focal glioblastoma	parietal, occipital lobe
9	M	46	craniotomy	III, focal IV	anaplastic oligoastrocytoma, focal glioblastoma	frontal lobe
10	M	28	craniotomy	IV	glioblastoma	temporal lobe
11	M	66	craniotomy	IV	glioblastoma	frontal, temporal lobe
12	M	31	craniotomy	IV	glioblastoma	thalamus

aM: male; F: female.
Comparison of 68Ga-PRGD2 and 18F-FDG PET/CT Scans. 68Ga-PRGD2 did not accumulate in normal brain tissue, including the white matter and cortical gray matter, with the exception of the choroid plexus. Therefore, HGG lesions were distinguished by the relatively high 18F-FDG uptake of the glioma, compared to the clean background in patients' brains (Figure 1I,J). In contrast, 18F-FDG uptake in some HGG was less than that in normal gray matter. Thus, HGG lesions were defined as low FDG uptake areas, surrounded by the relatively high 18F-FDG uptake of the normal brain tissue (Figure 1N). Therefore, 68Ga-PRGD2 PET/CT scans had much higher sensitivity for detecting glioma and higher specificity for determining tumor demarcation, compared to 18F-FDG PET/CT scans.

The 68Ga-PRGD2 accumulation pattern was different in grade III and IV glioma patients, compared with 18F-FDG uptake. For anaplastic astrocytoma (grade III), the 68Ga-PRGD2 expression had its own characteristic scattered focal area, resembling snowflakes (Figure 1H), while its uptake in GBM (grade IV) had much greater density, with a large bolus of PRGD2 accumulation (Figure 1J). In 18F-FDG PET/CT, only the necrotic center without tracer uptake was a clue to identify grade IV glioma (Figure 1N), while the tracer accumulation in the solid components of grades III and IV glioma may be similar (Figure 1M,N). Therefore, the accumulation shape and density could be clues for differentiating grade III and IV gliomas, which have completely different prognoses.

Correlation of PET/CT Images with Glioma Grading. As shown in Table 2, the SUVmax and TBRmax of 68Ga-PRGD2 PET/CT scans were significantly correlated with the glioma grading ($r = 0.67$, $p = 0.02$, and $r = 0.82$, $p = 0.001$, respectively). In this group of patients, the TBRmax of 18F-FDG was significantly correlated with the glioma grading ($r = 0.75$, $p = 0.005$), whereas the SUVmax of 18F-FDG was not correlated with the glioma grading ($r = 0.32$, $p = 0.30$). The TBRmax of 68Ga-PRGD2 and 18F-FDG were both significantly correlated with the glioma grading (Table 2). However, for differentiating the glioma grading ($r = 0.75$, $p = 0.005$), correlation coefficient to the regarded WHO grading. *p < 0.05 was considered to be significant.

Table 2. Correlation between the Glioma Grading and the Uptake of 18F-FDG and 68Ga-PRGD2

no.	regarded WHO grading	68Ga-PRGD2	18F-FDG		
		SUVmax	TBRmax	SUVmax	TBRmax
1	I (LGG)	0.79	0.80	5.90	0.57
2	I (LGG)	0.34	2.00	11.04	1.38
3	II (LGG)	0.09	0.90	10.70	1.30
4	II (LGG)	0.04	2.00	6.39	0.93
5	III (HGG)	0.75	8.33	7.73	1.31
6	III (HGG)	0.23	4.60	16.82	1.43
7	III (HGG)	0.44	4.40	6.24	1.11
8	IV (HGG)	2.31	3.55	15.76	1.36
9	IV (HGG)	1.9	10.56	8.87	2.07
10	IV (HGG)	1.21	11.00	7.69	1.77
11	IV (HGG)	0.88	4.63	37.18	4.77
12	IV (HGG)	0.5	10.00	10.43	3.02
r	0.67	0.82	0.32	0.75	
p	0.02*	0.001*	0.30	0.005*	

*Regarded WHO grading, the highest WHO grade of the total tumor when heterogeneity exists; SUVmax maximal standardized uptake value; TBRmax tumor-to-background ratio; LGG, low-grade glioma; HGG, high-grade glioma; r correlation coefficient to the regarded WHO grading. *p < 0.05 was considered to be significant.

DISCUSSION

Over the past decade, numerous studies have demonstrated that 18F-FDG PET/CT is helpful for assessing glioma grading, determining the anaplastic transformation of LGG, differentiating recurrent glioma and radiation necrosis, and even predicting the survival of patients with recurrent glioma. However, the sensitivity of glioma detection by 18F-FDG PET/CT is limited, with sensitivity and specificity of 18F-FDG PET/CT scans in patients with recurrent glioma being much lower than those of 68Ga-PRGD2 PET/CT. In this study, the high uptake of 68Ga-PRGD2 PET/CT in the LGG, 68Ga-PRGD2 PET/CT reached 100% (8/8) sensitivity and 100% (4/4) specificity in this small group of patients when the threshold of TBRmax was set between 2.00 and 3.55, whereas the sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 88% (7/8), 75% (3/4), and 83% (10/12), respectively, with the TBRmax threshold setting between 1.30 and 1.31.
To the best of our knowledge, this was the first study conducted in humans that investigated the use of integrin imaging (specifically 68Ga-PRGD2 PET/CT) for preoperative, noninvasive assessment of glioma grading. We compared the findings of this technique with 18F-FDG PET/CT findings from the same patients. We provided histopathological confirmation showing that the different levels of expression of integrin $\alpha_v\beta_3$ on glioma cells corresponded to the WHO glioma grading.

There are some limitations of the present study. First, the number of enrolled patients with glioma was small, especially in the lower grade group. However, each patient underwent 68Ga-PRGD2 PET/CT and 18F-FDG PET/CT scanning, and the preliminary results of this study support a pilot proof-of-concept study. Second, the study lacked a sufficient number of control patients with other types of brain tumors. An additional study is required to recruit a broad variety of patients with brain-occupying lesions to determine the sensitivity, specificity, and accuracy of 68Ga-PRGD2 PET/CT in assessing glioma.

Studies with more cases are needed to correlate the imaging findings related to post-treatment changes with the clinical responses and final prognoses of patients with glioma.

In conclusion, this prospective clinical study demonstrated that 68Ga-PRGD2 PET/CT is a specific method for identifying and assessing glioma neovasculature formation and glioma cells in patients with glioma. In contrast to 18F-FDG PET/CT, 68Ga-PRGD2 PET/CT is more specific for evaluating glioma demarcation. The SUVmax of 68Ga-PRGD2 is significantly correlated with glioma grading, and the TBRmax of 68Ga-PRGD2 is more superior to 18F-FDG for differentiating HGG from LGG. Therefore, 68Ga-PRGD2 PET/CT may be a useful tool for assessing glioma grading, demarcation, and neovasculature formation.

Author Information

Corresponding Authors

Correspondence. Phone: 86-13611093752. E-mail: zhuzhh@pumch.cn.

Corresponding Authors. Phone: 301-451-4246. E-mail: shawn.chen@nih.gov.

Author Contributions

† These authors (D.L. and X.Z.) contributed equally to this work.

CT is relatively low, particularly for LGG, because 18F-FDG uptake in LGG is usually similar to that of normal white matter. Even in HGG, 18F-FDG uptake varied greatly. 29 18F-FDG uptake in LGG is usually similar to that of normal white matter. In this research, the SUVmax of 18F-FDG was not significantly correlated with glioma grading, and the TBRmax of 68Ga-PRGD2 was more superior to 18F-FDG for differentiating HGG from LGG.

Figure 3. Immunohistochemical and immunofluorescence stains of the glioma of the patient (upper row A/B/C/D, patient no. 8 in Table 1; lower row E/F/G/H, patient no. 10 in Table 1; MRI and PET/CT images shown in Figure 1 E,G,O) with HGG. (A,E) Hematoxylin-eosin staining showed anaplastic oligoastrocytoma (WHO grade III) and GBM (WHO grade IV), respectively (magnification 100x). (B,F) High levels of expression of the integrin $\alpha_v\beta_3$ were observed in the tumor (magnification 200x). (C,G) The CD34 stains indicate more extensive vascular network in the tumors than in Figure 2B (magnification 200x). (D,H) Positive nuclear expression of Ki-67 indicates active proliferation (magnification 200x).
Acknowledgments

This work was supported, in part, by National Key Scientific Instrument and Equipment Development Project (2011YQ17006710), Major State Basic Research Development Program of China (973 Program) (Grant Nos. 2013CB733802 and 2014CB744503), the National Natural Science Foundation of China (81171370, 81271614, and 81371596), the Capital Special Project for Featured Clinical Application (Z121107001012119), a Beijing Key Laboratory of Brain Tumor Project, and the Intramural Research Program (IRP), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). The authors are grateful to Guijun Jia, Ming Ni, Lin Qiao, and the other related staff at Beijing Tiantan Hospital, who helped in performing this study and collecting the data. Also we thank Junmei Wang, Yun Cui, and Peng Zhang for immunohistochemical analysis.

References

(1) Plate, K. H.; Scholz, A.; Dumont, D. J. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuro-Patol. 2012, 124 (6), 763–75.

(2) la Fougere, C.; Suchorska, B.; Bartenstein, P.; Kreth, F. W.; Tonn, J. C. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncology 2011, 13 (8), 806–19.

(3) Miyake, K.; Shinomiya, A.; Okada, M.; Hatakeyama, T.; Kawai, N.; Tamiya, T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J. Biomed. Biotechnol. 2012, 2012, 205818.

(4) Schittenhelm, J.; Schwab, E. L.; Sperveslage, J.; Tatagiba, M.; Meyermann, R.; Fend, F.; Goodman, S. L.; Sipos, B. Longitudinal expression analysis of alpha integrins in human gliomas reveals upregulation of integrin alpha v beta3 as a negative prognostic factor. J. Neuropathol. Exp. Neurol. 2013, 72 (3), 194–210.

(5) Schnell, O.; Krebs, B.; Wagner, E.; Romagna, A.; Beer, A. J.; Grau, S. J.; Thon, N.; Goetz, C.; Kretzschmar, H. A.; Tonn, J. C.; Goldbrunner, R. H. Expression of integrin alpha v beta3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature. Brain Pathol. 2008, 18 (3), 378–86.

(6) Shao, G.; Zhou, Y.; Wang, F.; Liu, S. Monitoring glioma growth and tumor necrosis with the U-SPECT-II/CT scanner by targeting integrin alpha v beta3 expression using (64)Cu-labeled tetrameric RGD peptide. J. Nucl. Med. 2005, 46 (10), 1707–18.

(7) Doss, M.; Kolb, H. C.; Zhang, J.; Belanger, M. J.; Stubble, J. B.; Stabin, M. G.; Hostetter, E. D.; Alpaugh, R. K.; von Mehren, M.; Walsh, J. C.; Haka, M.; Mocharl, V. P.; Yu, J. F. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD K5 determined from whole-body PET/CT in monkeys and humans. J. Nucl. Med. 2012, 53 (5), 787–95.

(8) Ji, S.; Czerwinski, A.; Zhou, Y.; Shao, G.; Valenzuela, F.; Sawinski, P.; Chauhan, S.; Pennington, M.; Liu, S. (99mTc)-Galacto-RGD2: A novel (99mTc)-labeled cyclic RGD peptide dimer useful for tumor imaging. Mol. Pharmacol. 2013, 10 (9), 3304–14.

(9) Liu, D. N.; Ohgaki, H.; Wiestler, O. D.; Cavenee, W. K.; Burger, P. C.; Jouvet, A.; Scheithauer, B. W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114 (2), 97–109.

(10) Fisher, J. D.; Grossman, S. A. A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 2012, 118 (22), 5601–5607.

(11) Gilbert, M. R.; Kuhn, J.; Lamborn, K. R.; Lieberman, F.; Wen, P. Y.; Mehta, M.; Cloughesy, T.; Lassman, A. B.; Deangelis, L. M.; Chang, S.; Prados, M. Cilengitide in patients with recurrent glioblastoma: the results of NABTC 03-02, a phase II trial with measures of treatment delivery. J. Neurooncol. 2012, 106 (1), 147–53.

(12) Nabors, L. B.; Mikkelsen, T.; Hegi, M. E.; Ye, X.; Batchelor, T.; Lesser, G.; Peerboom, D.; Rosenfeld, M. R.; Olsen, J. B.; Brem, S.; Fisher, J. D.; Grossman, S. A. A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer 2012, 118 (22), 5601–5607.

(13) Scaringi, C.; Minniti, G.; Caporello, P.; Enri, R. M. Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res. 2012, 32 (10), 4213–23.
PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. *Bioconjugate Chem.* **2011**, 22 (12), 2415–22.

25) Richards, J.; Miller, M.; Abend, J.; Koide, A.; Koide, S.; Dewhurst, S. Engineered fibronectin type III domain with a RGDWXE sequence binds with enhanced affinity and specificity to human alphavbeta3 integrin. *J. Mol. Biol.* **2003**, 326 (5), 1475–88.

26) Santra, A.; Kumar, R.; Sharma, P.; Bal, C.; Julka, P. K.; Malhotra, A. F-18 FDG PET-CT for predicting survival in patients with recurrent glioma: a prospective study. *Neuroradiology* **2011**, 53 (12), 1017–24.

27) Nihashi, T.; Dahabreh, I. J.; Terasawa, T. Diagnostic accuracy of PET for recurrent glioma diagnosis: A meta-analysis. *Am. J. Neuroradiol.* **2012**, 34, 944–50.

28) Delbeke, D.; Meyerowitz, C.; Lapidus, R. L.; Maciunas, R. J.; Jennings, M. T.; Moots, P. L.; Kessler, R. M. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. *Radiology* **1995**, 195 (1), 47–52.

29) Chen, W. Clinical applications of PET in brain tumors. *J. Nucl. Med.* **2007**, 48 (9), 1468–81.

30) Tateishi, K.; Tateishi, U.; Sato, M.; Yamanaka, S.; Kanno, H.; Murata, H.; Inoue, T.; Kawahara, N. Application of 62Cu-diacetyl-bis (N4-methylthiosuccinimidecarboxylate) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1alpha expression in patients with glioma. *Am. J. Neuroradiol.* **2013**, 34 (1), 92–9.

31) Rapp, M.; Heinzol, A.; Galldiks, N.; Stoffels, G.; Feldberg, J.; Ewelt, C.; Sabel, M.; Steiger, H. J.; Reifenberger, G.; Beez, T.; Coenen, H. H.; Floeth, F. W.; Langen, K. J. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. *J. Nucl. Med.* **2013**, 54 (2), 229–35.

32) Jeong, S. Y.; Lim, S. M. Comparison of 3′-deoxy-3′-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. *Nucl. Med. Biol.* **2012**, 39 (7), 977–81.