Mathematical model to determine the runoff coefficient based on precipitation and curve number data, in the Manabi hydrographic demarcation, Ecuador

X H V Zambrano¹, A F Campos Cedeno¹, J O Mendoza Alava², J J Mendoza Cedeno¹, E K Sinichenko²* and I I Gritsuk²,³,⁴

¹Universidad Tecnica de Manabi, Portoviejo, Ecuador
²Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
³Russian Academy of Sciences Water Problems Institute, Moscow, Russia
⁴Moscow Automobile and Road Construction State Technical University, Moscow, Russia

Email: sinichenko_ek@pfur.ru

Abstract. During the last five decades, the forests and natural resources have been highly disrupted by human activities, causing a significant decrease of the plant coverage, consequently resulting in an increase runoff and soil erosion. Likewise, since 1989 non-basic information related to these topics has been obtained from the field, which does not allow appropriate hydraulic structure design. The purpose of the current paper is to determine the relation between the Curve Number CN and runoff coefficient C, from information of the 34 meteorological stations located in the Manabi Hydrographic Demarcation (MHD), during the period 1963-2013. This work is developed using information provided by several State institutions, and support of Geographic Information System. The information is processed using lineal correlation analysis to find an equation that relates the CN a C values.

Key words: rainfall, runoff coefficient, curve number, multiple lineal correlation.

1. Introduction

The capacity of the planet to support all the human activities is getting smaller. It is estimate that about 47 % of the Ecuadorian land has soil degradation problems, caused basically by erosion, overgrazing, deforestation and changed land-uses. The current percentage, 22.9 % corresponds to soil susceptible to desertification, part of which belongs to the coastal zone, specially Esmeraldas and Manabi provinces. In fact, according to United Nations, Manabi is one of the most affected regions by desertification.

Manabi is the only province of Ecuador which does not receive water from the hydrographic network of the snow-capped Andes [1]. In addition to this, geographical characteristics, such as the non-temporary rainfall distribution has led to serious economics and environmental effects on this region. In fact, more of the 70% of the rainfall take place in the period from January to April [2]. As a result, agriculture, the more important socioeconomic practice for the population, has been affected by this phenomenon. Public and private institutions have considered this situation to apply several measures to full fill their roles.

Due to many reasons, during the last five decades, the forests and natural resources have been highly disrupted by human activities, causing a significant decrease of the plant coverage resulting in an increase runoff and soil erosion. In this sense, since 1989 , there has not been enough studies to support and update the Hydraulic Plan [3], because non-basic information has been obtained from the countryside. For this reason, in order to design hydraulic structures, planners have to use parameters and coefficients belong to others geographic realities of the world.
The purpose of the current paper is to determine the relation between the Curve Number \(CN \) and runoff coefficient \(C \), from information of the 34 meteorological stations located in the Manabi Hydrographic Demarcation (MHD), for the period 1963-2013.

The figure 1 shows the location of the MHD [4, 5].

![Figure 1. Location of Manabi Hydrographic Demarcation – Ecuador.](image)

2. Materials and method

To develop this study, MHD is as a regional planning unit considering the following materials: 1) monthly rainfall corresponding to 34 meteorological stations for the period 1963-2013 [6], taken from Meteorological and Hydrological National Institute (INAMHI). 2) digital information developed by the institution in charge of water resources, SENAGUA, Ministry of Agriculture and Livestock (MAG), Ministry of Environment and Geographic Military Institute (IGM) [7].

For the period and the data sets mentioned, the tasks were completed according the following steps: 1) by using the orthogonal correlation method [8, 9], missing information of rain was filled; 2) average annual precipitations were calculated; 3) for making morphologic study 56 water sheets were considered, which are distributed on 11484.00 km\(^2\) approximately, subdivided according Pfafstetter methodology. The morphologic parameters were obtained using both, digital elevation model with 3.00 m of resolution and vegetation coverage information provided by MAG. 4) with the aid of Soil Conservation Service [10, 11] method the values of runoff and maximum potential difference between \(P \) and \(Q \) were calculated by applying the following equations [12]:

\[
Q = \frac{(P - 0.2S)^2}{P + 0.8S}
\]
(1)

\[
S = \frac{25400}{CN} - 254
\]
(2)

\[
S = \frac{25400}{CN} - 254
\]
(2)
where Q - Surface runoff height, mm; P – Rainfall, mm; S - Maximum potential difference between P and Q, mm. CN - Curve Number.

Using scale 1:100000, on the base of vegetation coverage and soil use maps of Ecuador 2013-2014 developed by MAG and MAE [13], CN values corresponding to each micro basin, are obtained.

The runoff coefficient C, is calculated as the relation between surface runoff Q and rainfall P, as follows:

$$C = \frac{Q}{P}$$ \hspace{1cm} (3)

Once C and CN values have been determined, lineal correlation is applied to these two parameters. And, in order to analyze rainfall influences, multiple lineal correlation was carried out, considering runoff coefficient C as dependent variable [14], being rainfall P and CN independent variables [15, 16].

3. Results and discussion

The values of the results of rainfall P, runoff Q and curve number CN obtained are showed in the following table 1.

Code. Basin	1513	1514	1515	1516	1517	1518	1519
1	350.00	276.92	78.08	550.00	485.53	81.28	400.00
	250.00	174.18	75.98	400.00	298.39	71.15	300.00
	850.00	805.64	86.88	1325.00	1261.93	82.37	800.00
	575.00	525.93	85.39	550.00	476.21	78.92	400.00
2	750.00	676.82	79.52	850.00	682.81	80.82	550.00
	900.00	796.84	75.21	950.00	781.69	77.03	1250.00
3	1000.00	1229.63	817.60	1372.37	1047.98	86.95	650.00
	1300.00	1203.79	86.95	1563.18	1303.79	86.95	1205.38
4	1229.63	902.16	70.00	400.00	347.56	84.08	1000.00
	297.79	203.61	85.68	300.00	203.61	71.00	400.00
	948.59	751.23	85.11	800.00	313.83	71.00	800.00
	585.86	313.83	75.03	550.00	463.19	75.03	1250.00
5	1000.00	1203.79	86.95	1563.18	1303.79	86.95	1205.38
	750.00	682.81	75.21	950.00	682.81	77.03	650.00
6	1000.00	1229.63	817.60	1372.37	1047.98	86.95	1205.38
	1300.00	1203.79	86.95	1563.18	1303.79	86.95	1205.38
7	527.28	933.06	-	898.25	84.08	83.24	1000.00
	933.06	186.33	-	898.25	83.24	81.43	400.00
	998.06	186.33	-	898.25	83.24	74.42	1200.00
8	79.33	81.28	-	85.00	600.00	80.22	1250.00
	81.28	186.33	-	898.25	80.22	74.42	425.00
	85.00	85.00	-	85.00	80.22	74.42	950.00
9	323.87	1162.77	1277.16	618.24	77.64	76.88	1050.00
	1162.77	618.24	993.48	993.48	76.88	75.12	1050.00
	338.41	618.24	993.48	993.48	76.88	75.12	1250.00
	388.14	618.24	993.48	993.48	76.88	75.12	1250.00

Code of basin	1050.00
15136	991.0
3	Runoff Q, mm
	83.24
The equations obtained from correlation methods are showed below.

\[C = 0.0126CN - 0.1255 \quad R^2 = 0.4852 \] (4)

\[C = -0.0007CN^2 + 0.1266CN - 4.6239 \quad R^2 = 0.52 \] (5)

\[C = 0.2033 + 0.0001P - 0.00777CN \quad \text{multiple corr. coef.} = 0.92 \] (6)

The multiple correlation equation (6) demonstrate that, when the precipitation values are less than 100 mm, the runoff coefficient variation is not significant relative with the burden of Curve Number CN. Considering this condition, the following figure shows the curves corresponding to each equation.

![Correlations of data C and CN.](image)

Figure 2. Correlations of data C and CN.

In comparison with the data set used, the lineal correlation equation (4) underestimates the runoff coefficient values when the curve number CN range between 70 and 90.

Low values of runoff coefficient are produced from the polynomic equation (5) when CN values are less than 60, while negatives values of C are obtained for values of CN less than 52. In the same way, when curve number CN range between 70 and 90, equation (5) fit the original data set quite well, but when the CN values are greater than 90, the runoff coefficient tends to decrease, which is contradictory.

The multiple correlation equation (6) presents no restrictions for any CN value. Moreover, the multiple correlation coefficient is acceptable and for CN values ranging between 70 and 90, as showed in the figure, the line of equation fits the data very closely.

4. Conclusions

On the basis of data filled by applying orthogonal correlation method and using multiple correlations techniques, the equation \(C = 0.2033 + 0.0001P - 0.00777CN \) is obtained to estimate the runoff coefficient C, where \(P \) multi-annual average precipitation mm, and \(CN \) is Curve Number.

The above equation offers more advantages than the others, because their results are consistent in the whole CN values range. Furthermore, it allows the addition of the variable \(P \) to determine the runoff coefficient \(C \), which is a basic parameter of Rational Method to perform the water runoff calculation in small river basins. Therefore, this equation is recommended to be used in Manabi Hydrographic Demarcation MHD.
The inclusion of variable Precipitation P sustains the idea that low values of precipitation do not affect the runoff coefficient results and for high values the impact is not significant. Therefore, the increased dependence on runoff coefficient lies on the curve number CN.

From the previous conclusion, it can be said that soil of MHD does not have enough forest cover, becoming a severe state of human intervention in the territory, which confirms the high runoff coefficient values obtained of the record data analyzed, as can be seen in figure 2.

5. Acknowledgment
The publication has been prepared with the support of the “RUDN University Program 5-100”.

6. References
[1] Centro de Rehabilitacion de Manabi, et al 1989 Plan Integral de Desarrollo de los Recursos Hídricos de la Provincia de Manabi (PHIMA) (Manabi, Ecuador: Centro de Rehabilitación de Manabi)
[2] Campos A F and Sinichenko E K 2017 Características de Sistemas Fluviales Pequeños y Recursos Hidríticos de la Demarcación Hidrográfica de Manabi, Perspectivas de Desarrollo. (Moscow: Publishing house of the RUDN University)
[3] Muñoz H B 2019 Los Recursos Hídricos son bienes naturales, que forman parte del patrimonio natural del Estado, de dominio público, y de libre acceso para satisfacer esa necesidad vital de la humanidad (Loja, Ecuador: Universidad Técnica Particular de Loja) https://dialoguemos.ec/2019/05/que-son-los-recursos-hidricos-y-cuales-son-los-principales-del-ecuador/
[4] Campos A F, Sinichenko E K and Gritsuk I I 2015 Analysis of data of meteorological stations of the province of Manabi RUDN Journal of Engineering Researches 3 41-49
[5] Librada M 2004 Evaluación de la relación precipitación escorrentía de largo plazo en la cuenca del río Geul Revista UIS Ingenierías 3(1) 61-72.
[6] Anuarios Meteorológicos 2017 (Quito, Ecuador: Instituto Nacional de Meteorología e Hidrología)
[7] Anuarios Meteorológicos 2015 (Quito, Ecuador: Instituto Nacional de Meteorología e Hidrología)
[8] Maronna R 2005 Principal Components and Orthogonal Regression Based on Robust Scales. 47(3) 264-273
[9] Hidrologia: para estudiantes de ingeniería civil 1989 (San Miguel, Peru: Pontifical Catholic University of Peru)
[10] USDA Natural Resources Conservation Soil Survey 2015 (Department of Agriculture, USA)
[11] Tapia R P, et al 2006 Coeficientes de escorrentía instantáneos para la cuenca del río Tutuvén, VII Región del Maule, Chile [Instantaneous runoff coefficients for Tutuvén river basin, Maule Region, Chile] 27(2) 83-91
[12] De Mello, C R, et al 2003 Abstracción inicial da precipitação en microbacia hidrográfica com escoamento efêmero [Initial abstraction of small watersheds of ephemeral flood] Revista Brasileira de Engenharia Agrícola e Ambiental 7(3) 494-500
[13] Mapa de coberturas y uso de tierras 2018 [Ministerio de Agricultura, G., Acuacultura y Pesca, and Ministerio del Ambiente]
[14] Métodos para la determinación del coeficiente de escorrentía 2020 (Escuela Técnica Superior de IngenieríaAgronómica y del Medio Natural) URL: https://docplayer.es/54734051-Metodos-para-la-determinacion-del-coeficiente-de-escorrentia-c.html
[15] Soares M R, et al 2017 Eficiência Do Método Curve Number De Retenção De Águas Pluviais Mercator Fortaleza 16 e16001
[16] Duarte R J, Cury J, Oliveira L C N and Srougi M. 2013 Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve International Braz J Urol 39(5) 712-719.