Modelling Nonlinear Sequence Generators in terms of Linear Cellular Automata

Amparo Fúster-Sabater(1) and Dolores de la Guía-Martínez(2)

(1) Instituto de Física Aplicada, C.S.I.C.
Serrano 144, 28006 Madrid, Spain
amparo@iec.csic.es

(2) Centro Técnico de Informática, C.S.I.C.
Pinar 19, 28006 Madrid, Spain
lola@cti.csic.es

Abstract

In this work, a wide family of LFSR-based sequence generators, the so-called Clock-Controlled Shrinking Generators (CCSGs), has been analyzed and identified with a subset of linear Cellular Automata (CA). In fact, a pair of linear models describing the behavior of the CCSGs can be derived. The algorithm that converts a given CCSG into a CA-based linear model is very simple and can be applied to CCSGs in a range of practical interest. The linearity of these cellular models can be advantageously used in two different ways: (a) for the analysis and/or cryptanalysis of the CCSGs and (b) for the reconstruction of the output sequence obtained from this kind of generators.

Keywords: Cellular automata, Clock-controlled generators, Pseudo-random sequence, Linear modelling

1 Introduction

Cellular Automata (CA) are discrete dynamic systems characterized by a simple structure but a complex behavior, see [9], [13], [15], [19] and [21]. They are built up by individual elements, called cells, related among them in many varied ways. CA have been used in application areas so different as physical system simulation, biological process, species evolution, socio-economical models or test pattern generation. Their simple, modular, and cascable structure makes them very attractive for VLSI implementations. CA can be characterized by several parameters which determine their behavior e.g. the number of states per cell,
the function Φ (the so-called rule) under which the cellular automaton evolves to the next state, the number of neighbor cells which are included in Φ, the number of preceding states included in Φ, the geometric structure and dimension of the automaton (the cells can be arranged on a line or in a square or cubic lattice in two, three or more dimensions), ... etc.

On the other hand, Linear Feedback Shift Registers (LFSRs) are electronic devices currently used in the generation of pseudorandom sequences. The inherent simplicity of LFSRs, their ease of implementation, and the good statistical properties of their output sequences turn them into natural building blocks for the design of pseudorandom sequence generators with applications in spread-spectrum communications, circuit testing, error-correcting codes, numerical simulations or cryptography.

CA and LFSRs are special forms of a more general mathematical structure: finite state machines. In recent years, one-dimensional CA have been proposed as an alternative to LFSRs in the sense that every sequence generated by a LFSR can be obtained from one-dimensional CA too. Pseudorandom sequence generators currently involve several LFSRs combined by means of nonlinear functions or irregular clocking techniques. Then, the question that arises in a natural way is: are there one-dimensional CA able to produce the sequence obtained from any LFSR-based generator? The answer is yes and, in fact, this paper considers the problem of given a particular LFSR-based generator how to find one-dimensional CA that reproduce its output sequence. More precisely, in this work it is shown that a wide class of LFSR-based nonlinear generators, the so-called Clock-Controlled Shrinking Generators (CCSGs), can be described in terms of one-dimensional CA configurations. The automata here presented unify in a simple structure the above mentioned class of sequence generators. Moreover, CCSGs that is generators conceived and designed as nonlinear models are converted into linear one-dimensional CA. Once the generators have been linearized, all the theoretical background on linear CA found in the literature can be applied to their analysis and/or cryptanalysis. The conversion procedure is very simple and can be realized in a range of practical interest.

The paper is organized as follows: in section 2, basic concepts e.g. one-dimensional CA, CCSGs or the Cattel and Muzio cellular synthesis method are introduced. A simple algorithm to determine the pair of CA corresponding to a particular shrinking generator and its generalization to Clock-Controlled Shrinking Generators are given in sections 3 and 4, respectively. A simple approach to the reconstruction of the generated sequence that exploits the linearity of the CA-based model is presented in section 5. Finally, conclusions in section 6 end the paper.

2 Basic Structures

In the following subsections, we introduce the general characteristics of the basic structures we are dealing with: one-dimensional cellular automata, the shrinking...
generator and the class of clock-controlled shrinking generators. Throughout the work, only binary CA and LFSRs will be considered. In addition, all the LFSRs we are dealing with are maximal-length LFSRs whose output sequences are PN-sequences [10].

2.1 One-Dimensional Cellular Automata

One-dimensional cellular automata can be described as n-cell registers [9], whose cell contents are updated at the same time according to a particular rule; that is to say a k-variable function denoted by Φ. If the function Φ is a linear function, so is the cellular automaton. When k input binary variables are considered, then there is a total of 2^k different neighbor configurations. Therefore, for cellular automata with binary contents there can be up to 2^{2^k} different mappings to the next state. Moreover, if $k = 2r + 1$, then the next state x_{i+1}^t of the cell x_i^t depends on the current state of k neighbor cells $x_i^t = \Phi(x_{i-r}^t, \ldots, x_i^t, \ldots, x_{i+r}^t)$ ($i = 1, \ldots, n$).

CA are called uniform whether all cells evolve under the same rule while CA are called hybrid whether different cells evolve under different rules. At the ends of the array, two different boundary conditions are possible: null automata when cells with permanent null contents are supposed adjacent to the extreme cells or periodic automata when extreme cells are supposed adjacent.

In this paper, all the automata considered will be one-dimensional null hybrid CA with $k = 3$ and linear rules 90 and 150. Such rules are described as follows:

\[
\begin{align*}
\text{Rule 90} & \quad x_{i+1}^t = x_{i-1}^t \oplus x_{i+1}^t \\
\text{Rule 150} & \quad x_{i+1}^t = x_{i-1}^t \oplus x_i^t \oplus x_{i+1}^t
\end{align*}
\]

For an one-dimensional null hybrid cellular automaton of length $n = 10$ cells, configuration rules (90, 150, 150, 150, 90, 150, 150, 90, 150, 90) and initial state (0, 0, 0, 1, 1, 1, 0, 1, 1, 0), Table 1 illustrates the formation of its output sequences (binary sequences read vertically) and the succession of states (binary configurations of 10 bits read horizontally). For the above mentioned rules, the different states of the automaton are grouped in closed cycles. The number of different output sequences for a particular cycle is $\leq n$ as the same sequence (although shifted) may appear simultaneously in different cells. At the same time, all the sequences in a cycle will have the same period and linear complexity [13] as well as any output sequence of the automaton can be produced at any cell provided that we get the right state cycle.

2.2 The Shrinking Generator

The shrinking generator is a binary sequence generator [7] composed by two LFSRs: a control register, called R_1, that decimates the sequence produced by the other register, called R_2. We denote by L_j ($j = 1, 2$) their corresponding lengths and by $P_j(x) \in GF(2)[x]$ ($j = 1, 2$) their corresponding characteristic polynomials [10].
Table 1: An one-dimensional null hybrid linear cellular automaton of 10 cells with rule 90 and rule 150 starting at a given initial state

90	150	150	150	90	90	150	150	150	90
0	0	0	1	1	1	0	1	1	0
0	0	1	0	0	1	0	0	0	1
0	1	1	1	1	0	1	0	1	0
1	0	1	1	1	0	1	1	1	1
0	0	0	1	1	0	1	0	1	1
0	0	1	0	0	1	0	1	1	0
0	1	1	0	0	0	0	1	0	1
1	0	0	1	0	0	1	1	0	0
0	1	1	1	1	1	0	0	1	0
1	0	1	1	0	1	1	1	1	1

The sequence produced by the LFSR \(R_1 \), that is \(\{a_i\} \), controls the bits of the sequence produced by \(R_2 \), that is \(\{b_i\} \), which are included in the output sequence \(\{c_j\} \) (the shrunken sequence), according to the following rule \(P \):

1. If \(a_i = 1 \Rightarrow c_j = b_i \)
2. If \(a_i = 0 \Rightarrow b_i \) is discarded.

A simple example illustrates the behavior of this structure.

Example 1: Let us consider the following LFSRs:

1. Shift register \(R_1 \) of length \(L_1 = 3 \), characteristic polynomial \(P_1(x) = 1 + x^2 + x^3 \) and initial state \(IS_1 = (1, 0, 0) \). The sequence generated by \(R_1 \) is \(\{a_i\} = \{1, 0, 0, 1, 1, 1\} \) with period \(T_1 = 2^{L_1} - 1 = 7 \).
2. Shift register \(R_2 \) of length \(L_2 = 4 \), characteristic polynomial \(P_2(x) = 1 + x + x^4 \) and initial state \(IS_2 = (1, 0, 0, 0) \). The sequence generated by \(R_2 \) is \(\{b_i\} = \{1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1\} \) with period \(T_2 = 2^{L_2} - 1 = 15 \).

The output sequence \(\{c_j\} \) is given by:

- \(\{a_i\} \rightarrow 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 \ldots \)
- \(\{b_i\} \rightarrow 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 \ldots \)
- \(\{c_j\} \rightarrow 1 0 1 0 1 1 0 1 1 0 0 1 0 \ldots \)

The underlined bits 0 or 1 in \(\{b_i\} \) are discarded. In brief, the sequence produced by the shrinking generator is an irregular decimation of \(\{b_i\} \) from the bits of \(\{a_i\} \).
According to [7], the period of the shrunken sequence is
\[T = (2^{L_2} - 1) 2^{(L_1-1)} \] (1)
and its linear complexity [17], notated LC, satisfies the following inequality
\[L_2 2^{(L_1-2)} < LC \leq L_2 2^{(L_1-1)}. \] (2)
In addition, it can be proved [7] that the output sequence has some nice distributional statistics too. Therefore, this scheme is suitable for practical implementation of stream cipher cryptosystems and pattern generators.

2.3 The Clock-Controlled Shrinking Generators

The Clock-Controlled Shrinking Generators constitute a wide class of clock-controlled sequence generators [12] with applications in cryptography, error correcting codes and digital signature. An CCSG is a sequence generator composed of two LFSRs notated \(R_1 \) and \(R_2 \). The parameters of both registers are defined as those of subsection 2.2. At any time \(t \), the control register \(R_1 \) is clocked normally while the second register \(R_2 \) is clocked a number of times given by an integer decimation function notated \(X_t \). In fact, if \(A_{i_0}(t), A_{i_1}(t), \ldots, A_{i_{L_1-1}}(t) \) are the binary cell contents of \(R_1 \) at time \(t \), then \(X_t \) is defined as
\[X_t = 1 + 2^{i_0} A_{i_0}(t) + 2^{i_1} A_{i_1}(t) + \ldots + 2^{w-1} A_{i_{w-1}}(t) \] (3)
where \(i_0, i_1, \ldots, i_{w-1} \in \{0, 1, \ldots, L_1-1\} \) and \(0 < w \leq L_1 - 1 \).

In this way, the output sequence of an CCSG is obtained from a double decimation. First, \(\{b_i\} \) the output sequence of \(R_2 \) is decimated by means of \(X_t \) giving rise to the sequence \(\{b'_i\} \). Then, the same decimation rule \(P \), defined in subsection 2.2, is applied to the sequence \(\{b'_i\} \). Remark that if \(X_t = 1 \) (no cells are selected in \(R_1 \)), then the proposed generator is just the shrinking generator. Let us see a simple example of CCSG.

Example 2: For the same LFSRs defined in the previous example and the function \(X_t = 1 + 2^0 A_{i_0}(t) + 2^1 A_{i_1}(t) + \ldots + 2^{w-1} A_{i_{w-1}}(t) \)
\[\text{where } i_0, i_1, \ldots, i_{w-1} \in \{0, 1, \ldots, L_1-1\} \text{ and } 0 < w \leq L_1 - 1. \]

According to the decimation function \(X_t \), the underlined bits 0 or 1 in \(\{b_i\} \) are discarded in order to produce the sequence \(\{b'_i\} \). Then the output sequence \(\{c_j\} \) of the CCSG output sequence is given by:

- \(\{a_i\} \rightarrow 1\underline{0}\underline{0}\underline{0}\underline{1}\underline{0}\underline{0}\underline{1}\underline{1}\underline{0}\underline{1}\underline{0}\underline{0}\underline{1}\underline{1} \ldots. \)
- \(X_t \rightarrow 2\underline{1}\underline{1}\underline{2}\underline{2}\underline{2}\underline{1}\underline{2}\underline{1}\underline{2}\underline{2}\underline{2}\underline{1}\underline{1}\underline{1}\underline{2} \ldots. \)
- \(\{b'_i\} \rightarrow 1\underline{0}\underline{0}\underline{1}\underline{0}\underline{1}\underline{1}\underline{1}\underline{0}\underline{1}\underline{0}\underline{1}\underline{0}\underline{1}\underline{1}\underline{1} \ldots. \)
- \(\{c_j\} \rightarrow 1\underline{0}\underline{0}\underline{1}\underline{0}\underline{0}\underline{1}\underline{0}\underline{0}\underline{1}\underline{0}\underline{1} \ldots. \)
$\{c_j\} \rightarrow 1101010110111...$

The underlined bits 0 or 1 in $\{b'_i\}$ are discarded.

In brief, the sequence produced by an CCSG is an irregular double decimation of the sequence generated by R_2 from the function X_1 and the bits of R_1. This construction allows one to generate a large family of different sequences by using the same LFSR initial states and characteristic polynomials but modifying the decimation function. Period, linear complexity and statistical properties of the generated sequences by CCSGs have been established in [12].

2.4 Cattel and Muzio Synthesis Algorithm

The Cattell and Muzio synthesis algorithm [4] presents a method of obtaining two CA (based on rules 90 and 150) corresponding to a given polynomial. Such an algorithm takes as input an irreducible polynomial $Q(x) \in GF(2)[x]$ defined over a finite field and computes two reversal linear CA whose output sequences have $Q(x)$ as characteristic polynomial. Such CA are written as binary strings with the following codification: 0 = rule 90 and 1 = rule 150. The theoretical foundations of the algorithm can be found in [5]. The total number of operations required for this algorithm is listed in [4] (Table II, page 334). It is shown that the number of operations grows linearly with the degree of the polynomial, so the method does not suffer from any sort of exponential blow-up. The method is efficient for all practical applications (e.g. in 1996 finding a pair of length 300 CA took 16 CPU seconds on a SPARC 10 workstation). For cryptographic applications, the degree of the irreducible (primitive) polynomial is $L_2 \approx 64$, so that the consuming time is negligible.

Finally, a list of One-Dimensional Linear Hybrid Cellular Automata of Degree Through 500 can be found in [6].

3 CA-Based Linear Models for the Shrinking Generator

In this section, an algorithm to determine the pair of one-dimensional linear CA corresponding to a given shrinking generator is presented. Such an algorithm is based on the following results:

Lemma 3.1 The characteristic polynomial of the shrunken sequence is of the form $P(x)^N$, where $P(x) \in GF(2)[x]$ is a L_2-degree polynomial and N is an integer satisfying the inequality $2^{L_1-2} < N \leq 2^{L_1-1}$.

Sketch of proof. The idea of the proof consists in demonstrating the uniqueness of the polynomial $P(x)$ that defines the linear recurrence relation satisfied by $\{c_j\}$ for both the upper and lower bounds on the linear complexity. The values of such bounds are given in equation (2).
Lemma 3.2 Let $P_2(x) \in GF(2)[x]$ be the characteristic polynomial of R_2 and let α be a root of $P_2(x)$ in the extension field $GF(2^{L_1})$. Then, $P(x) \in GF(2)[x]$ is the characteristic polynomial of cyclotomic coset $2^{L_1} - 1$, that is

$$P(x) = (x + \alpha^E)(x + \alpha^{2E}) \ldots (x + \alpha^{2^{L_1-1}E})$$

being E an integer given by

$$E = 2^0 + 2^1 + \ldots + 2^{L_1-1}.$$

Sketch of proof. The shrunken sequence can be written as an interleaved sequence [11] made out of an unique PN-sequence repeated $2^{(L_1-1)}$ times where $2^{(L_1-1)}$ is the number of 1’s in a full period of $\{a_i\}$. Such a PN-sequence is obtained from $\{b_i\}$ taking digits separated a distance $2^{L_1} - 1$. That is the PN-sequence is the characteristic sequence associated with the cyclotomic coset $2^{L_1} - 1$ whose characteristic polynomial is $P(x).$

Remark that $P(x)$ depends exclusively on the characteristic polynomial of the register R_2 and on the length L_1 of the register R_1. In addition, the polynomial $P(x)$ will be the input to the Cattell and Muzio synthesis algorithm [4]. Based on such an algorithm, the following result is derived:

Proposition 3.3 Let $Q(x) \in GF(2)[x]$ be a polynomial defined over a finite field and let s_1 and s_2 two binary strings codifying the two linear CA obtained from the Cattell and Muzio algorithm. Then, the two binary strings corresponding to the polynomial $Q(x) \cdot Q(x)$ are:

$$S'_i = S_i \ast S'_i \quad i = 1, 2$$

where S_i is the binary string s_i whose least significant bit has been complemented, S'_i is the mirror image of S_i and the symbol \ast denotes concatenation.

Sketch of proof. The result is just a generalization of the Cattell and Muzio synthesis algorithm, see [4] and [5]. The concatenation is due to the fact that rule 90 (150) at the end of the array in null automata is equivalent to two consecutive rules 150 (90) with identical sequences.

According to the previous results, the following linearization algorithm is introduced:

Input: A shrinking generator characterized by two LFSRs, R_1 and R_2, with their corresponding lengths, L_1 and L_2, and the characteristic polynomial $P_2(x)$ of the register R_2.

Step 1: From L_1 and $P_2(x)$, compute the polynomial $P(x)$ as

$$P(x) = (x + \alpha^E)(x + \alpha^{2E}) \ldots (x + \alpha^{2^{L_1-1}E})$$

with $E = 2^0 + 2^1 + \ldots + 2^{L_1-1}$.

7
Step 2: From $P(x)$, apply the Cattell and Muzio synthesis algorithm [4] to determine the two linear CA (with rules 90 and 150), notated s_i, whose characteristic polynomial is $P(x)$.

Step 3: For each s_i separately, we proceed:

3.1 Complement its least significant bit. The resulting binary string is notated S_i.
3.2 Compute the mirror image of S_i, notated S_i^*, and concatenate both strings
$$S_i' = S_i * S_i^*.$$
3.3 Apply steps 3.1 and 3.2 to each S_i' recursively $L_1 - 1$ times.

Output: Two binary strings of length $n = L_2 2^{L_1-1}$ codifying the linear CA corresponding to the given shrinking generator.

Remark 3.4 The characteristic polynomial of the register R_1 is not needed. Thus all the shrinking generators with the same R_2 but different registers R_1 (all of them with the same length L_1) can be modelled by the same pair of one-dimensional linear CA.

Remark 3.5 It can be noticed that the computational requirements of the linearization algorithm are minimum. In fact, it just consists in the application of the Cattell and Muzio synthesis algorithm whose consuming time is negligible plus $(L_1 - 1)$ concatenations of binary strings. Both procedures can be carried out on a simple PC.

In any case, thanks to this simple algorithm a linear model producing the output sequence of the shrinking generator is obtained. In order to clarify the previous steps a simple numerical example is presented.

Input: A shrinking generator characterized by two LFSRs R_1 of length $L_1 = 3$ and R_2 of length $L_2 = 5$ and characteristic polynomial $P_2(x) = 1 + x + x^2 + x^4 + x^5$. Now $E = 2^3 - 1$

Step 1: $P(x)$ is the characteristic polynomial of the cyclotomic coset 7. Thus,
$$P(x) = 1 + x^2 + x^5.$$

Step 2: From $P(x)$ and applying the Cattell and Muzio synthesis algorithm, two reversal linear CA whose characteristic polynomial is $P(x)$ can be determined. Such CA are written in binary format as:

$$
\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}
$$
Step 3: Computation of the required pair of CA.

For the first automaton:

\[
\begin{align*}
0 & \ 1 \ 1 \ 1 \ 1 \\
0 & \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \\
0 & \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ \text{(final automaton)}
\end{align*}
\]

For the second automaton:

\[
\begin{align*}
1 & \ 1 \ 1 \ 1 \ 0 \\
1 & \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \\
1 & \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \text{(final automaton)}
\end{align*}
\]

For each automaton, the procedure in Step 3 has been carried out twice as \(L_1 - 1 = 2\).

Output: Two binary strings of length \(n = 20\) codifying the required CA.

In this way, we have obtained a pair of linear CA among whose output sequences we can obtain the shrunken sequence corresponding to the given shrinking generator. Remark that the model based on CA is a linear one. In addition, for each one of the previous automata there are state cycles where the shrunken sequence is generated at any one of the cells.

4 CA-Based Linear Models for the Clock-Controlled Shrinking Generators

In this section, an algorithm to determine the pair of one-dimensional linear CA corresponding to a given CCSG is presented. Such an algorithm is based on the following results:

Lemma 4.1 The characteristic polynomial of the output sequence of a CCSG is of the form \(P'(x)^N\), where \(P'(x) \in GF(2)[x]\) is a \(L_2\)-degree polynomial and \(N\) is an integer satisfying the inequality \(2^{(L_1-2)} < N \leq 2^{(L_1-1)}\).

Sketch of proof. The idea of the proof is analogous to that one developed in Lemma 3.1. \(\Box\)

Remark that, according to the structure of the CCSGs, the polynomial \(P'(x)\) depends on the characteristic polynomial of the register \(R_2\), the length \(L_1\) of the register \(R_1\) and the decimation function \(X_t\). Before, \(P(x)\) was the characteristic polynomial of the cyclotomic coset \(E\), where \(E = 2^0 + 2^1 + \ldots + 2^{L_1-1}\) was a fixed separation distance between the digits drawn from the sequence \(\{b_i\}\). Now, this distance \(D\) is variable and is a function of \(X_t\). The computation of \(D\) gives rise to the following result:
Lemma 4.2 Let \(P_2(x) \in GF(2)[x] \) be the characteristic polynomial of \(R_2 \) and let \(\alpha \) be a root of \(P_2(x) \) in the extension field \(GF(2^{L_2}) \). Then, \(P'(x) \in GF(2)[x] \) is the characteristic polynomial of cyclotomic coset \(D \), where \(D \) is given by

\[
D = 2^{L_1-w} \left(\sum_{i=1}^{2^w} i \right) - 1 = (1 + 2^w) 2^{L_1-1} - 1. \tag{7}
\]

Sketch of proof. The idea of the proof is analogous to that one developed in Lemma 3.2. In fact, the distance \(D \) can be computed taking into account that the function \(X_t \) takes values in the interval \([1, 2, \ldots, 2^w]\) and the number of times that each one of these values appears in a period of the output sequence is given by \(2^{L_1-w} \). A simple computation, based on the sum of the terms of an arithmetic progression, completes the sketch.

From the previous results, it can be noticed that the algorithm to determine the CA corresponding to a given CCSG is analogous to that one developed in section 3; just the expression of \(E \) in equation (4) must be here replaced by the expression of \(D \) in equation (7). A simple numerical example is presented.

Input: A CCSG characterized by: Two LFSRs \(R_1 \) of length \(L_1 = 3 \) and \(R_2 \) of length \(L_2 = 5 \) and characteristic polynomial \(P_2(x) = 1 + x + x^2 + x^4 + x^5 \) plus the decimation function \(X_t = 1 + 2^0A_0(t) + 2^1A_1(t) + 2^2A_2(t) \) with \(w = 3 \).

Step 1: \(P'(x) \) is the characteristic polynomial of the cyclotomic coset \(D \). Now \(D \equiv 4 \mod 31 \), that is we are dealing with the cyclotomic coset 1. Thus, the corresponding characteristic polynomial is:

\[
P'(x) = 1 + x + x^2 + x^4 + x^5.
\]

Step 2: From \(P'(x) \) and applying the Cattell and Muzio synthesis algorithm, two reversal linear CA whose characteristic polynomial is \(P'(x) \) can be determined. Such CA are written in binary format as:

\[
\begin{align*}
1 & 0 0 0 0 \\
0 & 0 0 0 1
\end{align*}
\]

Step 3: Computation of the required pair of CA.

For the first automaton:

\[
\begin{align*}
1 & 0 0 0 0 \\
1 & 0 0 0 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \quad \text{(final automaton)}
\end{align*}
\]

For the second automaton:

\[
\begin{align*}
0 & 0 0 0 1 \\
0 & 0 0 0 0 & 0 & 0 & 0 & 0 \\
0 & 0 0 0 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \quad \text{(final automaton)}
\end{align*}
\]
For each automaton, the procedure in Step 3 has been carried out twice as $L_1 - 1 = 2$.

Output: Two binary strings of length $n = 20$ codifying the required CA.

Remark 4.3 From a point of view of the CA-based linear models, the shrinking generator or any one of the CCGS are entirely analogous. Thus, the fact of introduce an additional decimation function does neither increase the complexity of the generator nor improve its resistance against cryptanalytic attacks since both kinds of generators can be linearized by the same class of CA-based models.

5 A Simple Approach to the Output Sequence Reconstruction for this Class of Sequence Generators

Since CA-based linear models describing the behavior of CCSGs have been derived, a cryptanalytic attack that exploits the weaknesses of these models has been also developed. It consists in reconstructing the CCSG output sequence from an amount of such a sequence (the intercepted subsequence). The key idea of this attack is based on the study of the repeated sequences in the automata under consideration and the relative shifts among such sequences. In fact, the sequence at a extreme cell of the automaton is repeated on average once out of L_2 cells. In order to determine these shifts, the algorithm of Bardell [2] to phase-shift analysis of CA is applied. The approach is composed by several steps:

- **Step 1:** The portion of M intercepted bits of the output sequence is placed at the most right (left) cell of one of the automata. This provides shifted portions of the same output sequence produced at different cells. The lengths of these subsequences are (on average) $(M - L_2), (M - 2L_2), (M - 3L_2), \ldots, (M - pL_2)$ where $p = \lfloor M/L_2 \rfloor$.

- **Step 2:** The locations of the different cells that generate the same output sequence as well as the relative shifts among these sequences are detected via Bardell’s algorithm.

- **Step 3:** Repeat Steps 1 and Step 2 for every one of the subsequences obtained above.

Summing up the contributions of the bits provided by each automaton, we obtain that the total number of bits reconstructed is

$$N_T \approx Mp^2 = M(M/L_2)^2 \quad (8)$$

We know not only this number of bits but also the precise location of such bits along the sequence. Notice that we have two different CA plus an additional
pair of CA corresponding to the reverse version of the output sequence (the pair associated to the reciprocal polynomial of $P_2(x)$). In addition, for each automaton the intercepted M-bit sequence can be placed either at the most right cell or the most left cell producing different locations of the same sequence. Thus, each one of the different automata will contribute to the reconstruction of the output sequence with a number of bits given by the equation (8). Moreover, remark that the output sequence for these generators is an interleaved sequence made out of a fixed PN-sequence. Hence, the portions of the reconstructed subsequence allow us to fix the starting point of many of these PN-sequences. The rest of the bits of each PN-sequence can be easily derived.

Once the previous steps are accomplished, the original output sequence can be reconstructed by concatenating all different reconstructed subsequences.

Example 3: Let us consider a cellular automaton with the following characteristics:

- Number of cells $n = 10$
- Automaton under study in binary format: 0011001100
- Characteristic polynomial $(1 + x + x^3 + x^4 + x^5)^2$.

Let S be the shift operator defined on X_i ($i = 1, \ldots, 10$), the state of the i-th cell, such as follows:

$$SX_i(t) = X_i(t + 1).$$

Thus, the corresponding difference equation system for the previous automaton can be written as follows:

$$SX_1 = X_2 \quad SX_2 = X_1 + X_3 \quad \ldots \quad SX_{10} = X_9.$$

Next expressing each X_i as a function of X_{10}, we obtain the following system:

$$X_1 = (S^9 + S^4 + S^3 + S^2 + S + 1)X_{10} \quad X_2 = (S^8 + S^6 + S^5 + S^4 + S^3 + S + 1)X_{10} \quad \vdots \quad X_9 = (S)X_{10}.$$

Analogous results can be obtained expressing each X_i as a function of X_1. Now taking logarithms in both sides of the equalities,

$$\log(X_1) = \log(S^9 + S^4 + S^3 + S^2 + S + 1) + \log(X_{10}) \quad \log(X_2) = \log(S^8 + S^6 + S^5 + S^4 + S^3 + S + 1) + \log(X_{10}) \quad \vdots \quad \log(X_9) = \log(S) + \log(X_{10}).$$

12
The base of the logarithm is \(R(S) \) and the values of the logarithms are integers over a finite domain. According to the Bardell’s algorithm, we determine the integers \(m \) (if there exist) such that \(S^m \mod R(S) \) equal the different polynomials in \(S \) included in the above system. For instance,

\[
S^{26} \mod R(S) = S^2 + 1.
\]

Or simply, \(S^{26} = S^2 + 1 \) and \(26 \log(S) = \log(S^2 + 1) \) with \(\log(S) \equiv 1 \). Now substituting in the previous system, the following equations can be derived:

\[
\begin{align*}
\log(X_9) - \log(X_{10}) &= 1 \\
\log(X_8) - \log(X_{10}) &= 26 \\
\log(X_4) - \log(X_{10}) &= 6 \\
\log(X_2) - \log(X_1) &= 1 \\
\log(X_3) - \log(X_1) &= 26 \\
\log(X_7) - \log(X_1) &= 6.
\end{align*}
\]

The phase-shifts of the outputs 9, 8 and 4 relative to cell 10 are 1, 26 and 6 respectively. Similar values are obtained in the other group of cells, that is cells 2, 3 and 7 relative to cell 1. The other cells generate different sequences. Further contributions to phase-shift analysis of CA based on 90/150 rules can be found in [16] and [8].

6 Conclusions

A wide family of LFSR-based sequence generators, the so-called Clock-Controlled Shrinking Generators, has been analyzed and identified with a subset of linear cellular automata. In this way, sequence generators conceived and designed as complex nonlinear models can be written in terms of simple linear models. An easy algorithm to compute the pair of one-dimensional linear hybrid cellular automata that generate the CCSG output sequences has been derived. A cryptanalytic approach based on the phase-shift of cellular automata output sequences is proposed. From the obtained results, we can create linear cellular automata-based models to analyse/cryptanalyse the class of clock-controlled generators.

References

[1] Bao, F.: Crytanalysis of a New Cellular Automata Cryptosystem. In: 8th Australasian Conference on Information Security and Privacy–ACISP 2003. Lecture Notes in Computer Science, Vol. 2727. Springer Verlag, Berlin Heidelberg New York (2003) 416-427
[2] Bardell, P.H.: Analysis of Cellular Automata Used as Pseudorandom Pattern Generators. Proceedings of the IEEE International Test Conference. Paper 34.1 (1990) 762-768

[3] Blackburn, S., Merphy, S., Paterson, K.: Comments on 'Theory and Applications of Cellular Automata in Cryptography'. IEEE Transactions on Computers. 46 (1997) 637-638

[4] Cattell K., Muzio, J.: Synthesis of One-Dimensional Linear Hybrid Cellular Automata. IEEE Transactions on Computer-Aided Design. 15 (1996) 325-335

[5] Cattell K., Muzio, J.: A Linear Cellular Automata Algorithm: Theory. Dept. of Computer Science. University of Victoria, Canada, Tech. Rep. DCS-161-IR, 1991.

[6] Cattell K., Shujian, Z.: Minimal Cost One-Dimensional Linear Hybrid Cellular Automata of Degree Through 500. J. of Electronic Testing: Theory and Applications. 6 (1995) 255-258

[7] Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Advances in Cryptology–CRYPTO'93. Lecture Notes in Computer Science, Springer Verlag, Berlin Heidelberg New York. 773 (1994) 22-39

[8] Cho, S., et al.: Computing Phase Shifts of 90/150 Cellular Automata Sequences. In: ACRI 2004. Lecture Notes in Computer Science, Vol. 3305. Springer Verlag, (2004) 31-39

[9] Das, A.K., Ganguly, A., Dasgupta, A., Bhawmik, S., Chaudhuri, P.P.: Efficient Characterisation of Cellular Automata. IEE Proc., Part E. 1 (1990) 81-87

[10] Golomb, S.: Shift-Register Sequences (revised edition). Aegean press (1982)

[11] Gong, G.: Theory and Applications of q-ary interleaved sequences. IEEE Transactions on Information theory. 41 (1995) 400-411

[12] Kanso, A.: Clock-Controlled Shrinking Generator of Feedback Shift Registers. In: 8th Australasian Conference on Information Security and Privacy–ACISP 2003. Lecture Notes in Computer Science, 2727 (2003) 443-451

[13] Martin, O., Odlyzko, A.M., Wolfram, S.: Algebraic Properties of Cellular Automata. Commun. Math. Phys. 93 (1984) 219-258

[14] A.J. Menezes et al. Handbook of Applied Cryptography, CRC Press, New York, 1997

[15] Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and Applications of Cellular Automata in Cryptography. IEEE Transactions on Computers. 43 (1994) 1346-1357
[16] Nandi, S., Chaudhuri, P.P.: Additive Cellular Automata as an on-chip test pattern generator. Test Symposium 1993. Proc. of the Second Asian. (1993) 166-171

[17] Rueppel, R.A.: Stream Ciphers, in Gustavus J. Simmons, Editor, Contemporary Cryptology, The Science of Information. IEEE Press (1992) 65-134

[18] Stone, H.S.: Discrete mathematical Structures and Their Applications. Chicago, IL. Science Research (1973)

[19] Wolfram, S.: Cellular Automata as Models of Complexity. Nature. 311 (1984) 419

[20] Wolfram, S.: Cryptography with Cellular Automata. In: Advances in Cryptology–CRYPTO’85. Lecture Notes in Computer Science, 218 (1994) 22-39

[21] Wolfram, S.: Random Sequence generation by Cellular Automata. Advances in Applied Mathematics. 7 123 (1986)