Abstract

We develop an asymptotic theory for L^2 norms of sample mean vectors of high-dimensional data. An invariance principle for the L^2 norms is derived under conditions that involve a delicate interplay between the dimension p, the sample size n and the moment condition. Under proper normalization, central and non-central limit theorems are obtained. To facilitate the related statistical inference, we propose a plug-in calibration method and a re-sampling procedure to approximate the distributions of the L^2 norms. Our results are applied to multiple tests and inference of covariance matrix structures.

MSC Subject Classifications (2010): 62G20, 62H15, 62G10.

Key words and phrases: L^2 asymptotics, Gaussian approximation, invariance principle, large p small n, multiple testing.

1 Introduction

Let $X, X_i, i \in \mathbb{Z}$, be independent and identically distributed (i.i.d.) p-dimensional random vectors with mean $\mathbb{E}X_i = \mu$ and covariance matrix $\text{cov}(X_i) = \Sigma$. Given the sample X_1, \ldots, X_n, we can estimate the mean μ
by the sample mean $\bar{X}_n = \sum_{i=1}^{n} X_i/n$. The primary goal of the paper concerns the asymptotic distribution of $|\bar{X}_n - \mu|^2 = (\bar{X}_n - \mu)^T(\bar{X}_n - \mu)$. The latter problem has a range of important applications in statistics including multiple tests and inference of covariance structures. Unless otherwise specified, assume throughout the paper that $\mu = 0$.

In the classical setting with fixed dimension p, due to the Central Limit Theorem, we have $\sqrt{n}\bar{X}_n \Rightarrow N(0, \Sigma)$. Hence, letting $Y \sim N(0, \Sigma)$, we have by Slutsky’s Theorem that

$$\sup_{u \in \mathbb{R}} |\mathbb{P}(n\bar{X}_n^T\bar{X}_n \leq u) - \mathbb{P}(Y^TY \leq u)| \rightarrow 0. \quad (1.1)$$

In this paper we shall discuss the validity of (1.1) in situations in which p can be unbounded. In modern problems, the dimension p can be larger than the sample size n. In this case, the traditional methods may not work. For example, Portnoy [34] showed that the CLT is generally no longer valid when p is large such that $\sqrt{n} = o(p)$. For other contributions see Bentkus [5, 6]. Thus different methods are needed to prove (1.1). The latter problem in the high dimensional setting and the corresponding statistical inference issues are challenging and have attracted wide attention. For linear processes, by Bai and Saranadasa [2], one can prove that $n\bar{X}_n^T\bar{X}_n - \text{tr}(X_nX_n^T)/n$, where $X_n = (X_1, \ldots, X_n)$ is the data matrix, is asymptotically Gaussian, assuming that p/n tends to a finite constant and the largest eigenvalue of Σ is negligible relative to its Frobenius norm. The latter condition can be violated in cases such as factor models, as discussed in Katayama et al. [27], who studied the asymptotic distribution of $Z^T Z - \text{tr}(\Sigma)$ over different types of Σ under $Z \sim N(0, \Sigma)$.

In this paper, we shall develop an asymptotic theory for $\bar{X}_n^T\bar{X}_n$ for a generally distributed X, without requiring normality or linearity assumption. In particular, we shall apply the normal comparison method of Stein type and show that $\bar{X}_n^T\bar{X}_n$ can be approximated by a mixture of independent χ^2 distributions. The approximate distribution may or may not be asymptotically
normal. Specifically, we shall establish the following equivalent form of (1.1):

\[\sup_{u \in \mathbb{R}} \left| \mathbb{P}(n \bar{X}_n^T X_n \leq u) - \mathbb{P}(n \bar{Y}_n^T Y_n \leq u) \right| \to 0, \]

(1.2)

where \(Y_i, i \in \mathbb{Z}, \) are i.i.d. \(N(0, \Sigma) \) random vectors and \(\bar{Y}_n = \sum_{i=1}^n Y_i/n. \) We can view (1.2) as an invariance principle in a general sense since the distributions of functions of non-Gaussian random vectors can be approximated by those of Gaussian vectors with the same covariance structure. The invariance principle in the narrow sense refers to the Gaussian approximation of partial sum processes of non-Gaussian random variables; cf Berkes et al. [7].

As an immediate application of (1.1) or (1.2), one can perform the multiple test for the hypothesis

\[H_0 : \mu = \mu_0 \]

(1.3)

for some pre-specified vector \(\mu_0. \) Assume without loss of generality that \(\mu_0 = 0. \) A classical approach is to use the Hotelling \(T^2 \) statistic

\[T_n = n \bar{X}_n^T \hat{\Sigma}_n^{-1} \bar{X}_n, \]

(1.4)

where \(\hat{\Sigma}_n = (n - 1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)(X_i - \bar{X}_n)^T \) is the sample covariance matrix. In the high dimensional setting with \(p > n, \) \(\hat{\Sigma}_n \) is singular and then \(T_n \) is not well-defined. Bai and Saranadasa [2] pointed out that this test lacks power. There is a large literature accommodating the Hotelling \(T^2 \) type statistic into the high-dimensional situation; see for example, Dempster [16, 17], Bai and Saranadasa [2], Chen and Qin [12], Srivastava et al. [43], among others. Dempster [16, 17], Srivastava et al. [43] considered Gaussian vectors. For the non-Gaussian random vectors, existing works assume linear forms. Central limit theorems for quadratic forms of sample mean vectors were proved in Bai and Saranadasa [2], Chen and Qin [12], Katayama and Kano [26].

We test the hypothesis \(H_0 \) by directly using the test statistic \(n \bar{X}_n^T X_n. \) Given the significance level \(\alpha \in (0, 1), \) let \(u_{1-\alpha} \) be the \((1 - \alpha) \)th quantile of
Namely $\mathbb{P}(Y^TY \leq u_{1-\alpha}) = 1 - \alpha$. Then H_0 is rejected if $n\bar{X}_n^T\bar{X}_n > u_{1-\alpha}$. By (1.1), the latter test has an asymptotic level α.

If Σ is known, the cutoff value $u_{1-\alpha}$ can be easily computed, either numerically or analytically, since the distribution of Y^TY is completely known. In most applications, however, Σ is not known. We consider two approaches. The first one is to use an estimate of Σ. With the estimated covariance matrix, we can simulate a cutoff value. To access the goodness of the cutoff value with estimated covariance matrices, we shall introduce a new matrix convergence criterion: the normalized consistency. It is closely related, but different from the widely used spectral norm convergence. From modern random matrix theory, it is now well-known that the sample covariance matrix Σ_n is not a (spectral norm) consistent estimator of Σ when p is large; see Marčenko and Pastur [31], Bai and Silverstein [3], Wachter [45], Geman [21], Yin et al. [49], Johnstone [25], El Karoui [18], to name a few. However, our results indicate that the sample covariance matrix can be normalized consistent in spectral norm, and hence the corresponding estimated cutoff value is consistent. The normalized consistency guarantees the validity of resampling procedures. Details are given in Section 3.1. As our second approach, we use the subsampling technique, which avoids estimating Σ or its eigenvalues; see Section 3.2.

Another type of approach for testing (1.3) is to use the maximum or L^∞ norm $|\bar{X}_n|_{\infty} = \max_{j \leq p} |\bar{X}_{nj}|$ or the studentized version $\max_{j \leq p} |\bar{X}_{nj}|/\hat{\sigma}_j$, where $\hat{\sigma}_j^2$ are estimates for the marginal variances $\sigma_j^2 = \text{var}(X_{ij})$. Kosorok and Ma [28] considered the uniform consistency problem, and Fan et al. [19] performed the L^∞ test via Bonferroni correction, thus completely ignoring dependencies between entries of X_i. In a recent work, Chernozhukov et al. [14] derived a Gaussian approximation for $|\bar{X}_n|_{\infty}$ in the high-dimensional setting. In comparison with the marginal testing procedures, the procedure in Chernozhukov et al. [14] is dependence-adjusted. Liu and Shao [30] established a deep Cramér-type moderate deviation principle for Hotelling’s
statistic under mild moment condition. The L^2-based test can be more powerful if the alternative consists of many small but non-zero signals that are of similar magnitudes.

This paper is organized as follows. In Section 2, we present the Gaussian approximation result. Section 3 provides a plug-in calibration of the Gaussian analogue when Σ is unknown. We introduce normalized consistency, a new matrix convergence criterion. A sub-sampling procedure is also introduced there. In Section 4 we apply our result to the mean inference problem for linear processes. Section 5 deals with the covariance matrix structure inference for linear processes. Proofs are given in Sections 7.

We now introduce some notation. For a vector $x = (x_1, \ldots, x_m)^T$, let the length $|x| = |x|_2 = (x^T x)^{1/2}$. Here $x^T x = \sum_{i=1}^m x_i^2$. Let X be a random vector. Write $X \in \mathcal{L}^q, q > 0$, if $\|X\|_q := (E|X|^q)^{1/q} < \infty$. For a matrix $A = (a_{jk})_{j,k}, \rho(A) = \max_x |Ax|/|x|$ (resp. $|A|_F = (\sum_{jk} a_{jk}^2)^{1/2}$) denotes its spectral (resp. Frobenius) norm. Write the $p \times p$ identity matrix as Id_p.

Denote by C a positive constant whose value may vary from place to place.

2 Main Result

Consider i.i.d. random vectors $X, X_i \in \mathbb{R}^p, i \in \mathbb{Z}$, with $EX_i = 0$ and covariance matrix $\text{cov}(X_i) = \Sigma$. Let $\Sigma = Q \Lambda Q^T$ be its eigen-decomposition, where Q is an orthonormal matrix with $Q^T Q = \text{Id}_p$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)$, with $\lambda_1 \geq \ldots \geq \lambda_p \geq 0$. Given data X_1, \ldots, X_n, let $\hat{\Sigma} = n^{-1} X_n X_n^T$, where $X_n = (X_1, \ldots, X_n)$, be the sample covariance matrix; let $\hat{\lambda}_1 \geq \ldots \geq \hat{\lambda}_p \geq 0$ be the eigenvalues of $\hat{\Sigma}$. Define

$$f_k := [\text{tr}(\Sigma^k)]^{1/k} \quad \text{and} \quad \hat{f}_k := [\text{tr}(\hat{\Sigma}^k)]^{1/k}, \quad k = 1, 2, \ldots.$$

Then $f_k^k = \sum_{i=1}^p \lambda_i^k$ and $\hat{f}_k^k = \sum_{i=1}^p \hat{\lambda}_i^k$. For the Frobenius norm with $k = 2$, we simply write $f = f_2$ and $\hat{f} = \hat{f}_2$.

Our main result is Theorem 2.2 which asserts that under suitable conditions the distributions of quadratic functions of $\bar{X}_n^T \bar{X}_n$ and $\bar{Y}_n^T \bar{Y}_n$ are asym-
totically close. In our asymptotic relation, we let \(n \to \infty \) and view the dimension \(p = p_n \) which satisfies \(p_n \to \infty \) as \(n \to \infty \). To state the theorem, we need to impose the following condition on \(X \).

Condition 1. Let \(\delta > 0 \). Assume that

\[
K_\delta(X)^{2+\delta} := \mathbb{E} \left| \frac{|X_1|^2 - f_1}{f} \right|^{2+\delta} < \infty; \tag{2.1}
\]

\[
D_\delta(X)^{2+\delta} := \mathbb{E} \left| \frac{X_1^T X_2}{f} \right|^{2+\delta} < \infty. \tag{2.2}
\]

In conditions (2.1) and (2.2), \(K_\delta(X) \) and \(D_\delta(X) \) depend on the distribution of \(X \). In the sequel for notational convenience we abbreviate them as \(K_\delta \) and \(D_\delta \), respectively. Note that \(D_0 = 1 \). In Sections 4 and 5 we shall bound \(K_\delta \) and \(D_\delta \) for mean and covariance matrix inference problems arising from linear processes. Remark 2.5 provides an upper bound for moments of sums of dependent random variables using Rosenblatt transforms. Proposition 2.1 shows that for Gaussian vectors we can have explicit upper bounds.

Proposition 2.1. Let \(Y_i \) be i.i.d. \(N(0, \Sigma) \) and \(\delta \geq 0 \). Then

\[
\mathbb{E} \left| |Y_1|^2 - f_1 \right|^{2+\delta} \leq c_\delta^{2+\delta}, \quad \tag{2.3}
\]

\[
\mathbb{E} \left| \frac{Y_1^T Y_2}{f} \right|^{2+\delta} \leq d_\delta^{2+\delta}, \quad \tag{2.4}
\]

where \(c_\delta = (1 + \delta)^{1/2} \| \xi^2 - 1 \|_{2+\delta} \), \(d_\delta = (1 + \delta)^{1/2} \| \xi \|_{2+\delta} \) and \(\xi \sim N(0, 1) \).

Based on (2.1) and (2.2), we have the following asymptotic result. Let \(\eta_i, i \in \mathbb{Z} \), be i.i.d. \(\chi_1^2 \) random variables. Consider the normalized version

\[
R_n = \frac{n|\bar{X}_n|^2 - f_1}{f}. \tag{2.5}
\]
Theorem 2.2. Assume that (2.1) and (2.2) hold with $0 < \delta \leq 1$. Then

$$\sup_t |\mathbb{P}(R_n \leq t) - \mathbb{P}(V \leq t)| = O(\psi_n^{-1/2}), \text{ where } V = \sum_{j=1}^{p} \frac{\lambda_j}{f}(\eta_j - 1).$$

Here ψ_n is the solution to the equation $L_\delta(n, \psi) = \psi^{-1/2}$ with

$$L_\delta(n, \psi) = \psi^2\left(\frac{\hat{K}_0^2}{n} + \frac{\hat{K}_\delta}{n^{1/2}}\right) + \psi^q\left[\frac{\hat{K}_\delta^q}{n^{q-1}} + \frac{\mathbb{E}(X_1^T \Sigma X_1)^{q/2}}{n^{\delta/2} f^q} + \frac{\hat{D}_\delta^q}{n^{\delta}}\right],$$

where $q = 2 + \delta$, $\hat{K}_\delta = K_\delta + c_\delta$, $\hat{D}_\delta = D_\delta + d_\delta$, and c_δ and d_δ are given in Proposition 2.1. In particular, we have $\psi_n \to \infty$ if

$$\frac{\hat{K}_0^2}{n} + \frac{\hat{K}_\delta^q}{n^{q-1}} + \frac{\mathbb{E}(X_1^T \Sigma X_1)^{q/2}}{n^{\delta/2} f^q} + \frac{\hat{D}_\delta^q}{n^{\delta}} \to 0 \text{ as } n \to \infty.$$ (2.7)

Consequently the left hand side of (2.6) converges to 0.

Note that $\mathbb{E}(\eta_i - 1)^2 = 2$. By Lindeberg’s Central Limit Theorem,

$$V = \sum_{j=1}^{p} f^{-1} \lambda_j (\eta_j - 1) \Rightarrow N(0, 2)$$

holds if and only if $\lambda_1/f = \rho(\Sigma)/f \to 0$. In this case by Theorem 2.2, R_n is also asymptotically $N(0, 2)$. In the previous literature, the primary focus is on the asymptotic normality of $X_n^T \bar{X}_n$ or its modified version; see for example Bai and Saranadasa [2], Srivastava [42], Chen and Qin [12]. As an exception, Katayama et al. [27] considered situations in which the CLT fails. If λ_1/f does not converge to 0, R_n may not have a Gaussian limit. When the dependence between entries of X is strong, the asymptotic distribution of R_n can be non-normal. For example, suppose $Y \sim N(0, \Sigma)$ and Σ is Toeplitz with diagonal 1 and $\sigma_{j,k} \sim |k - j|^{-D}$ for some $0 < D < 1/2$ as $|k - j| \to \infty$. Then $(Y^T Y - f_1)/f \Rightarrow \sum_{j=1}^{\infty} c_j (\eta_j - 1)$, the Rosenblatt distribution, with $c_j \sim c_j^{D-1}$ as $j \to \infty$, and c is a constant; see Veillette and Taqqu [44].
Remark 2.3. Since $X_1^T \Sigma X_1 = \mathbb{E}(X_1^T X_2 X_2^T X_1 | X_1)$, by Jensen’s inequality,
\[
\mathbb{E}(X_1^T \Sigma X_1)^{q/2} \leq \mathbb{E}(|X_1^T X_2 X_2^T X_1|^{q/2}) = \mathbb{E}(|X_1^T X_2|^{q}) = D_q^f.
\] (2.8)
So (2.7) follows from $\tilde{K}_0^2/n + \tilde{K}_0^q/n^{q-1} + \tilde{D}_q^2/n^{q/2} \to 0$ as $n \to \infty$. Namely if n is sufficiently large such that $\tilde{K}_0^2 + \tilde{K}_0^{q/(q-1)} + \tilde{D}_q^{2q/\delta} = o(n)$, then the left
hand side of (2.6) holds with rate $\psi_n^{-1/2} \to 0$. □

Remark 2.4. If Conditions (2.1) and (2.2) hold with K_δ and D_δ bounded,
then we can choose $\psi_n \approx n^{\delta/(5+2\delta)}$ and the corresponding convergence rate
in (2.6) is $O(n^{-\delta/(10+4\delta)})$. □

Remark 2.5. Using the Rosenblatt transform ([36]), we can find measurable
functions G_1, \ldots, G_p and i.i.d. standard uniform random variables U_1, \ldots, U_p such that
X_1 and the random vector $(G_1(U_1), \ldots, G_p(U_p))^T$ are identically
distributed. Here $U_j = (U_1, \ldots, U_j)$. Following Wu [46], define the pre-
dictive dependence measure $\theta_{i,j,q} = \|P_i G_j^2(U_j)\|_q$, where $P_i \cdot = \mathbb{E}(\cdot|U_i) - \mathbb{E}(\cdot|U_{i-1})$ is the projection operator. Since $X_1^T X_1 - f_1 = \sum_{i=1}^p P_i X_1^T X_1 = \sum_{i=1}^p \sum_{j=i}^p P_i G_j^2(U_j)$, we have by Burkholder’s inequality (p. 396 in [15]) that
\[
\frac{\|X_1^T X_1 - f_1\|_q^2}{q-1} \leq \sum_{i=1}^p \|P_i X_1^T X_1\|_q^2 \leq \sum_{i=1}^p \left(\sum_{j=i}^p \theta_{i,j,q} \right)^2.
\]
A similar upper bound also holds for the L^q norm $\|X_1^T X_2\|_q$. □

To estimate the quantity $|\mu|^2 = \mu^T \mu$ based on i.i.d. vectors X_1, \ldots, X_n
with $\mathbb{E}X_i = \mu$, besides the natural plug-in estimator $\bar{X}_n^T \bar{X}_n$, we can also use
the unbiased estimator $(n(n-1))^{-1} \sum_{i\neq j \leq n} X_i^T X_j$; see also Chen and Qin [12]. This leads to the following variant of (2.5):
\[
\tilde{R}_n = \frac{\sum_{i\neq j \leq n} X_i^T X_j}{(n-1)f}
\] (2.9)
Using the arguments in the proof of Theorem 2.2, without essential extra
difficulties, we have the Gaussian approximation result:
Corollary 2.6. Assume Condition (2.2) and $\mu = 0$. Further assume

\[L_\delta^\dagger := \frac{\mathbb{E}(X_1^T \Sigma X_1)^{q/2}}{n^{q/2} f^q} + \frac{\tilde{D}_\delta^q}{n^\delta} \to 0. \tag{2.10} \]

Then $\psi_n := (L_\delta^\dagger)^{-1/(q+1/2)} \to \infty$ and, recall $V = \sum_{j=1}^p f^{-1} \lambda_j(n_j - 1)$,

\[\sup_t |\mathbb{P}(\tilde{R}_n \leq t) - \mathbb{P}(V \leq t)| = O(\psi_n^{-1/2}) \to 0. \tag{2.11} \]

By (2.8), a simple sufficient condition for (2.10) is $D_\delta^q = o(n^{\delta/2})$. Then the rate in (2.11) becomes $D_\delta^q/(5+2\delta)n^{-\delta/(10+4\delta)}$. Notice that in Corollary 2.6 Condition (2.1) is not needed since \tilde{R}_n does not involve the diagonal terms $X_i^T X_i$. Consequently the weaker moment condition $X_i \in \mathcal{L}_4^{+\delta}$ suffices. In comparison, (2.1) necessarily requires the stronger moment condition $X_i \in \mathcal{L}_4^{+2\delta}$. For linear processes, applying the results in Bai and Saranadasa [2], one can have a CLT for \tilde{R}_n by assuming the existence of 4th moments, p/n tends to a finite constant and $\rho(\Sigma)/f \to 0$. Since $\rho(\Sigma)^4 \leq f_4^4 \leq \rho(\Sigma)^2 f_4^2$, the latter condition is equivalent to $f_4^4/f_4^4 = o(1)$, which is also imposed in [12, 13]. In comparison, by (4.3) of Theorem 4.1, it suffices to impose a weaker $(2+\delta)$th moment condition, and our result (2.11) can allow non-Gaussian limiting distributions.

Remark 2.7. In general the condition $L_\delta^\dagger \to 0$ in (2.10) is not relaxable for the following result

\[\sup_t |\mathbb{P}(\tilde{R}_n \leq t) - \mathbb{P}(V \leq t)| \to 0. \tag{2.12} \]

Let $\ell = p^\beta$, $\beta > 1/2$, and let $B_{ij}, i, j \in \mathbb{Z}$, be i.i.d. Bernoulli($\ell^{-1}$) random variables; let $X_{ij} = (\ell B_{ij} - 1)(\ell - 1)^{-1/2}$. Then $\mathbb{E}X_{ij} = 0$, $\mathbb{E}X_{ij}^2 = 1$, $\mathbb{E}|X_{ij}|^q \sim \ell^{q/2-1}$, $\Sigma = \text{Id}_p$ and $f^2 = p$. By Burkholder’s inequality, $\mathbb{E}|X_1^T X_2|^{q/2} \leq c_q \mathbb{E}\sum_{j=1}^p X_{1j}|^q$. By Rosenthal’s inequality ([37]), $\mathbb{E}\sum_{j=1}^p X_{1j}|^q \leq c_q(p\mathbb{E}|X_{11}|^q + p^{\beta/2})$ and $\mathbb{E}|X_1^T X_2|^q \leq c_q(p\mathbb{E}|X_{11}X_{21}|^q + p^{\beta/2})$. Then (2.10) requires that

\[\ell = o(np^{1/2}), \text{ or } p^{\beta-1/2} = o(n). \tag{2.13} \]
We remark that Condition (2.13) is also necessary for (2.12). By (2.12),

\[
\frac{(n - 1)f \tilde{R}_n}{np^{1/2}} = \sum_{i=1}^p Q_i \Rightarrow N(0, 2), \quad \text{where} \quad Q_i = \sum_{i \neq j \leq n} X_{ii} X_{jj}.
\]

(2.14)

By the Linderberg-Feller central limit theorem, (2.14) holds if and only if

\[
p \mathbb{E}\{[Q_1/(np^{1/2})]^2 1_{|Q_1| \geq \theta np^{1/2}}\} = \mathbb{E}\{n^{-2}Q_1^2 1_{|Q_1| \geq \theta np^{1/2}}\} \to 0
\]

(2.15)

holds for every \(\theta > 0 \). Note that \(W := \sum_{i=1}^n B_{i1} \) is binomial \((n, \ell^{-1})\). If \(np^{1/2} = O(\ell) \),

\[
\text{then for all large } n, \text{ the event } \{|Q_1| < \theta np^{1/2}\} \text{ implies } \{W \leq 1\}, \text{ and}
\]

\[
\mathbb{E}\{n^{-2}Q_1^2 1_{|Q_1| < \theta np^{1/2}}\} \leq \mathbb{E}\{n^{-2}Q_1^2 1_{W \leq 1}\} \leq \frac{n^2}{\ell^2} + \frac{n}{\ell} \to 0,
\]

(2.17)

by noting that \(\mathbb{E}\{n^{-2}Q_1^2 1_{W=0}\} \leq n^2 \ell^{-2} \text{ and } \mathbb{E}\{n^{-2}Q_1^2 1_{W=1}\} \leq n \ell^{-1} \). Clearly (2.17) violates (2.15) since \(n^{-2} \mathbb{E}Q_1^2 \to 2 \).

\[\square\]

Remark 2.8. A careful check of the proof of Theorem 2.2 indicates that the result therein still holds for independent, but not identically distributed random vectors \(X_i \) with mean 0, (same) covariance matrix \(\Sigma \): we need to replace the quantities \(K_\delta, D_\delta \) and \(\mathbb{E}(X_1^T \Sigma X_1)^{q/2} \) therein by \(K_{\delta,n} := \max_{i \leq n} \|X_i^T X_i - f_1\|_q/f, \ D_{\delta,n} := \max_{i \leq n} \|X_i^T X_i\|_q/f \) and \(\max_{i \leq n} \mathbb{E}(X_i^T \Sigma X_i)^{q/2} \), respectively.

\[\square\]

3 Re-sampling Calibration Procedures

To test the hypothesis \(H_0 : \mu = 0 \) (say) at level \(\alpha \in (0, 1) \) using Theorem 2.2, we need to compute the \((1 - \alpha)\)th quantile of the approximate distribution

\[
V = \sum_{j=1}^p f^{-1} \lambda_j (\eta_j - 1).
\]

(3.1)

In practice, however, \(\Sigma \) and hence \(\lambda_j \) are not known. Section 3.1 proposes an approach based on estimated \(\lambda_j \). An alternative subsampling approach is given in Section 3.2 which avoids estimating eigenvalues.
3.1 A Plug-in Procedure and Normalized Consistency

As a natural way to approximate the distribution of V, one can replace λ_j’s in (3.1) by their estimates. Let $\tilde{\Sigma}$ be an estimate of Σ based on the data $X_n = (X_1, \ldots, X_n)$; let $\tilde{\lambda}_1 \geq \ldots \geq \tilde{\lambda}_p \geq 0$ be the eigenvalues of $\tilde{\Sigma}$ and $\tilde{f} = (\sum_{j=1}^p \tilde{\lambda}_j)^{1/2}$. Let $\tilde{V} = \sum_{j=1}^p \tilde{f}^{-1}\tilde{\lambda}_j(\tilde{\eta}_j - 1)$, where $\tilde{\eta}_j$ are i.i.d. χ_1^2 random variables that are independent of X_n. By Lemma 3.1, if

$$\max_{j \leq p} |f^{-1}\lambda_j - \tilde{f}^{-1}\tilde{\lambda}_j| \to 0 \text{ in probability},$$

(3.2)

then with probability converging to 1, we have

$$\sup_t |\mathbb{P}(V \leq t) - \mathbb{P}^*(\tilde{V} \leq t)| \to 0,$$

(3.3)

where \mathbb{P}^* is the conditional probability given X_n. With (3.3), the distribution of V can be approximated by that of \tilde{V} via extensive simulations.

Lemma 3.1. Let $a_{p,1} \geq a_{p,2} \geq \ldots \geq a_{p,p} \geq 0$ and $b_{p,1} \geq b_{p,2} \geq \ldots \geq b_{p,p} \geq 0$ be two sequences of real numbers satisfying $\sum_{j=1}^p a_{p,j}^2 = \sum_{j=1}^p b_{p,j}^2 = 1$. Assume $\max_{j \leq p} |a_{p,j} - b_{p,j}| \to 0$. Let η_j be i.i.d. χ_1^2 random variables and $\eta'_j = \eta_j - 1$. Let $V_a = \sum_{j=1}^p a_{p,j}\eta'_j$ and $V_b = \sum_{j=1}^p b_{p,j}\eta'_j$. Then

$$\sup_x |\mathbb{P}(V_a \leq x) - \mathbb{P}(V_b \leq x)| = o(1).$$

(3.4)

Interestingly, there is a simple sufficient condition for (3.2). By Weyl’s theorem (Golub and Van Loan [22, Theorem 8.1.5]), (3.2) follows from

$$\rho(\tilde{\Sigma}/\tilde{f} - \Sigma/f) = o_p(1).$$

(3.5)

We say that an estimate $\tilde{\Sigma}$ of Σ is *normalized consistent* if (3.5) holds. It is closely related to, but quite different from the classical definition of spectral norm consistency in the sense of

$$\rho(\tilde{\Sigma} - \Sigma) = o_p(1).$$

(3.6)
Normalized consistency does not generally imply the spectral norm consistency (3.6). For example, let \(n = p \) and \(X_i \) be i.i.d. standard \(N(0, \text{Id}_p) \) random vectors. By the random matrix theory, (3.6) does not hold for the sample covariance matrix \(\hat{\Sigma} = n^{-1} \sum_{i=1}^{n} X_i X_i^T \), which is not a consistent estimate of \(\Sigma = \text{Id}_p \); see Marčenko and Pastur [31], Wachter [45], Geman [21]. Indeed, the largest eigenvalue of \(\tilde{\Sigma} \) converges to 4, while the smallest one converges to 0. However the normalized consistency (3.5) holds since both \(\rho(\hat{\Sigma} / \hat{f}) = O_p(p^{-1/2}) \rightarrow 0 \). Without further conditions, the spectral norm consistency (3.6) does not imply the normalized consistency either. Proposition 3.2 relates these two types of convergence.

Proposition 3.2. For an estimate \(\tilde{\Sigma} \) of \(\Sigma \) with \(\tilde{f} = (\text{tr}(\tilde{\Sigma}^2))^{1/2} \), assume that \(\tilde{f} / f \rightarrow 1 \) in probability. Then the normalized consistency (3.5) holds if and only if \(\rho(\tilde{\Sigma} - \Sigma) = o_p(f) \).

Let \(\tilde{\Sigma} \) be a normalized consistent estimate of \(\Sigma \). Given \(\alpha \in (0,1) \), let \(\tilde{v}_{1-\alpha} \) be such that the conditional probability \(\mathbb{P}^*(\tilde{V} \leq \tilde{v}_{1-\alpha}) = 1 - \alpha \); cf (3.3). Then at level \(\alpha \) we reject the null hypothesis \(H_0 : \mu = 0 \) if the test statistic \(\hat{R}_n := (n|\bar{X}_n|^2 - \hat{f}_1)/\hat{f}^\dagger \) satisfies \(\hat{R}_n > \tilde{v}_{1-\alpha} \), where \(\hat{f}^\dagger \) is a ratio consistent estimate of \(f \), namely \(\hat{f}^\dagger / f - 1 = o_p(1) \); see Bai and Saranadasa [2], Chen and Qin [12], and \(\hat{f}_1 = (n - 1)^{-1} \sum_{i=1}^{n}(X_i - \bar{X}_n)^T(X_i - \bar{X}_n) \) is an unbiased estimate of \(f_1 \). Note that, interesting, the numerators of \(\hat{R}_n \) and \(\tilde{R}_n \) in (2.9) are equivalent in view of \(n|\bar{X}_n|^2 - \hat{f}_1 = (n - 1)^{-1} \sum_{i \neq j \leq n} X_i^T X_j \). It is easily seen that, if \(\mu \) satisfies \(n\mu^T \mu / f \rightarrow \infty \), then \(H_0 : \mu = 0 \) is rejected with probability going to 1.

Under certain structural assumptions such as bandedness and sparsity, various regularized procedures have been proposed so that the spectral norm consistency (3.6) holds; see Wu and Pourahmadi [47], Bickel and Levina [9, 8?] among others. In our setting we do not make such structural assumptions, and therefore simply use the sample covariance matrix \(\hat{\Sigma} \). Its normalized consistency is dealt with in Theorem 3.3. It is interesting to study whether other covariance matrix estimates are normalized consistent.
Theorem 3.3. (i) Assume \(\mathbb{E}[(X_1^T X_1)^2] = o(n f^2) \). Then
\[
\mathbb{E}[\hat{\Sigma}/\hat{f} - \Sigma/f]^2_F = o(1),
\] (3.7)
which further implies the normalized consistency (3.5). (ii) Assume \(nf^2 = o\{\mathbb{E}[(X_1^T X_1)^2]\} \), (2.1) holds with \(K_2 = O(n^{3/4}) \), and
\[
\mathbb{E}[(X_1^T X_2)^4] = o\{\mathbb{E}^2[(X_1^T X_1)^2]\}. \tag{3.8}
\]
Then \(\rho(\hat{\Sigma}/\hat{f}) = o_p(1) \), and (3.5) holds if and only if \(\rho(\Sigma) = o(f) \).

Theorem 3.3(i) requires that \(n \) is big enough such that \(\mathbb{E}[(X_1^T X_1)^2]/f^2 = o(n) \), and the approximate distribution \(V \) in (3.1) may or may not be asymptotically normal. The latter condition trivially holds if the entries of \(X_1 \) are strongly dependent in the sense that \(f^2 = \sum_{j,k \leq p} \sigma_{j,k}^2 \approx p^2 \) and \(\max_{j \leq p} \|X_1j\|_4 \leq C \) for some constant \(C \). In this case \(\mathbb{E}[(X_1^T X_1)^2] \leq p^2 C^4 \) and the condition \(\mathbb{E}[(X_1^T X_1)^2]/f^2 = o(n) \) reduces to the natural one \(n \rightarrow \infty \). As a simple example, let \(X_{1j} = a_j Z + \xi_j \), where \(Z, \xi_1, \ldots, \xi_p \) are i.i.d. \(N(0, 1) \) and \(a_j \) are real coefficients. If \(\sum_{j=1}^p a_j^2 \approx p \), then \(\mathbb{E}[(X_1^T X_1)^2]/f^2 \approx 1 \) and the condition \(n \rightarrow \infty \) suffices. In this case \(\Sigma \) has \(p - 1 \) eigenvalues 1 and 1 eigenvalue \(1 + \sum_{j=1}^p a_j^2 \), hence \(V \Rightarrow \chi^2_1 - 1 \). Under Case (ii) with smaller \(n \), however, normalized consistency of \(\hat{\Sigma} \) necessarily requires that \(\rho(\Sigma) = o(f) \).

Proposition 3.4 provides an expression for the quantity \(\mathbb{E}[(X_1^T X_2)^4] \) in (3.8). Its proof is routine and the details are omitted.

Proposition 3.4. We have the cumulants expression
\[
\mathbb{E}[(X_1^T X_2)^4] = 3f^4 + 6f_4^4 + 6 \sum_{1 \leq j,k,m,q \leq p} \text{cum}(X_{1j}, X_{1k}, X_{1m}, X_{1q}) \sigma_{km} \sigma_{qj} + \sum_{1 \leq j,k,m,q \leq p} \text{cum}(X_{1j}, X_{1k}, X_{1m}, X_{1q})^2.
\]

3.2 A Subsampling Procedure

Let \(m = m_n \in \mathbb{N} \) be such that \(m \rightarrow \infty \) and \(m = o(n) \); let the index set \(B_j = \{l \in \mathbb{Z} : (j - 1)m < l \leq jm\} \), \(j = 1, \ldots, L \), where \(L = \lceil n/m \rceil \).
and $\lfloor u \rfloor = \max\{k \in \mathbb{Z} : k \leq u\}$. For a set $B \subset \{1, \ldots, n\}$, let $|B|$ be its cardinality. Define the empirical subsampling distribution function

$$
\hat{F}(t) = \frac{1}{L} \sum_{j=1}^{L} 1_{m|X_{B_j} - \bar{X}|_2^2 \leq t(1-m/n)}, \quad \text{where } \bar{X}_B = \frac{\sum_{b \in B} X_b}{|B|}.
$$

(3.9)

As a slightly different version, let A_1, \ldots, A_J be i.i.d. uniformly sampled from the class $\mathcal{A} := \{A : A \subset \{1, \ldots, n\}, |A| = m\}$. Assume that the sampling process $(A_j)_{j \geq 1}$ and $(X_i)_{i \geq 1}$ are independent. Define

$$
\hat{F}(t) = \frac{1}{J} \sum_{j=1}^{J} 1_{m|X_{A_j} - \bar{X}|_2^2 \leq t(1-m/n)}.
$$

(3.10)

Theorem 3.5. Let $0 < \delta \leq 1$. Assume (2.1), (2.2), $m \to \infty$, $m = o(n)$, and (2.7) holds with n therein replaced by m. Then (i)

$$
\sup_t |\hat{F}(t) - \mathbb{P}(n|\bar{X} - \mu|_2^2 \leq t)| \to 0 \text{ in probability.}
$$

(3.11)

(ii) If $J \to \infty$, then the convergence (3.11) also holds for $\hat{F}(t)$.

Proof of Theorem 3.5. (i) Assume without loss of generality that $\mu = 0$. For a set $B \subset \{1, \ldots, n\}$ define $W_B^\circ = (|B||\bar{X}_B|_2^2 - f_1)/f$ and $W_B = ||B||\bar{X}_B - \bar{X}|_2^2/(1 - |B|/n) - f_1)/f$. Using the identity $n\bar{X} = |B|\bar{X}_B + (n - |B|)\bar{X}_{B^c}$, where $B^c = \{1, \ldots, n\} - B$, we have by elementary manipulations that

$$
W_B = \frac{n - |B|}{n} W_B^\circ + \frac{|B|}{n} W_{B^c}^\circ - 2|B| \frac{n - |B|}{n} \frac{\bar{X}_B^T \bar{X}_{B^c}}{f}.
$$

(3.12)

Then for any $\theta > 0$, we have by the triangle inequality that

$$
\mathbb{P}(W_{B_j}^\circ \leq \frac{t - \theta}{1-m/n}) - \tau \leq \mathbb{P}(W_{B_j} \leq t) \leq \mathbb{P}(W_{B_j}^\circ \leq \frac{t + \theta}{1-m/n}) + \tau,
$$

(3.13)
where \(\tau = \mathbb{P}(|R_j| \geq \theta) \), \(R_j = (m/n)W_{B_j} - 2m(1-m/n)^{-1}f^{-1}X_{B_j}B_{c_j} \). Note that \(\mathbb{E}|X_{B_j}B_{c_j}|^2 = f^2/(m(n-m)) \). Since \(m = o(n) \), by Theorem 2.2, we have \(R_j = o_{\mathbb{P}}(1) \) and \(\tau \to 0 \). Hence by Theorem 2.2, Lemma 7.2 and (3.13),

\[
\mathbb{P}(W_{B_j} \leq t) - \mathbb{P}(W_{B_j}^0 \leq t) \to 0. \tag{3.14}
\]

A similar argument implies that, for \(j \neq j' \), the joint probability

\[
\mathbb{P}(W_{B_j} \leq t, W_{B_j'} \leq t) - \mathbb{P}(W_{B_j}^0 \leq t, W_{B_j'}^0 \leq t) \to 0. \tag{3.15}
\]

Therefore, by Theorem 2.2, we have

\[
\mathbb{E}\left|\hat{F}(t) - \mathbb{P}(V \leq t)\right|^2 \to 0,
\]

which implies the uniform version (3.11) via the standard Glivenko–Cantelli argument in view of the continuity result Lemma 7.2.

We now prove (ii). Following the argument in (i), it suffices to show that

\[
\mathbb{E}\left|\mathbb{P}(W_{A_j}^0 \leq t, W_{A_j'}^0 \leq t) - \mathbb{P}^2(V \leq t)\right| \to 0. \tag{3.16}
\]

For sets \(A, A' \in \mathcal{A} \), let \(A \cap A' = D_1 \), \(A - D_1 = D_2 \) and \(A' - D_1 = D_3 \). Then

\[
W_{A_j}^0 = (1-k/m)W_{D_2}^0 + (k/m)W_{D_1}^0 + 2k(1-k/m)X_{D_1}^T X_{D_2} / f,
\]

where \(k = |D_1| \). A similar expression exists for \(W_{A_j'}^0 \). Choose a sequence \(\rho_n \to 0 \) with \(m/n = o(\rho_n) \). If \(k \leq m\rho_n \), similarly as in part (i), we have \(|\mathbb{P}(W_{A_j}^0 \leq t, W_{A_j'}^0 \leq t) - \mathbb{P}(W_{D_2}^0 \leq t, W_{D_3}^0 \leq t)| \to 0 \) and \(|\mathbb{P}(W_{D_2}^0 \leq t) - \mathbb{P}(V \leq t)| \to 0 \). Note that \(\mathbb{E}|A_j \cap A_{j'}| \leq m^2/n \). Then \(\mathbb{P}(|A_j \cap A_{j'}| \geq m\rho_n) \leq m/(n\rho_n) \to 0 \). Then (3.16) follows by conditioning on \(|A_j \cap A_{j'}| \leq m\rho_n \).

4 Applications to Linear Processes

In this section we shall apply our main result to the linear process

\[
X_i = A\xi_i = A(\xi_{i1}, \ldots, \xi_{ip})^T, \tag{4.1}
\]

where \(\xi_{ij}, i, j \in \mathbb{Z} \), are i.i.d. random variables with mean 0 and variance 1 and \(A \) is a coefficient matrix. The linear form (4.1) is natural and rich. Similar
forms were also used in [2, 12], among others. Proposition 4.1 generalizes Proposition 2.1 and it concerns conditions (2.1) and (2.2) where X_i is of form (4.1).

Proposition 4.1. Assume (4.1) and that $\|\xi_1\|_{4+2\delta} < \infty$ for some $\delta > 0$. Let $\bar{D}_\delta = (1 + \delta) \|\xi_1\|_{2+\delta}^2$ and $\bar{K}_\delta = 2\|\xi_1^2\|_{2+\delta}$. Then

$$E \left| \frac{X^T_1 X_1 - f_1}{f} \right|^{2+\delta} \leq \bar{K}_\delta^{2+\delta},$$ \hspace{1cm} (4.2)

$$E \left| \frac{X^T_1 X_2}{f} \right|^{2+\delta} \leq \bar{D}_\delta^{2+\delta}. \hspace{1cm} (4.3)$$

Proof of Proposition 4.1. Let $q = 2 + \delta$. Since ξ has covariance matrix Id_p, $\Sigma = AA^T$. Denote $(b_{jk})_{j,k} = B = A^T A$. Write $\xi_1 = (\xi_1, \ldots, \xi_p)^T$ and $\xi_2 = (\zeta_1, \ldots, \zeta_p)^T$. By Burkholder’s inequality, (4.3) follows from

$$\|X^T_1 X_2\|_q^2 = \left\| \sum_{j=1}^p \xi_j \sum_{k=1}^p b_{jk} \zeta_k \right\|_q^2 \leq (q - 1) \sum_{j=1}^p \|\xi_j\|_q^2 \left\| \sum_{k=1}^p b_{jk} \zeta_k \right\|_q^2 \leq (q - 1)^2 \|\xi_1\|_q^2 \sum_{j=1}^p \sum_{k=1}^p b_{jk}^2 \|\zeta_k\|_q^2 = (q - 1)^2 \|\xi_1\|_q^4 f^2. \hspace{1cm} (4.4)$$

Since $\xi_j \sum_{k<j} b_{jk} \xi_k$ are martingale differences, we similarly have

$$\|X^T X - f_1\|_q^2 \leq 2\left\| \sum_{j=1}^p b_{jj} (\xi_j^2 - 1) \right\|_q^2 + 2\left\| \sum_{j \neq k} b_{jk} \xi_j \xi_k \right\|_q^2 \leq 2(q - 1) \|\xi_1^2 - 1\|_q^2 \sum_{j=1}^p b_{jj}^2 + (q - 1)^2 \|\xi_1\|_q^4 \sum_{k<j} b_{jk}^2 \leq 4q^2 \|\xi_1^2\|_q^2 f^2, \hspace{1cm} (4.5)$$

which implies (4.2). \qed
We remark that (4.3) actually holds under the weaker moment condition $\xi_i \in L^{2+\delta}$. Proposition 4.1 implies that the Gaussian approximation (2.6) of Theorem 2.2 holds with convergence rate $O(n^{-\delta/(10+4\delta)})$ for linear processes.

5 Inference of Covariance Matrices

In this section we shall apply our results to test hypotheses on covariance matrices. The latter problem has been extensively studied in the literature. Earlier papers focus on lower-dimensional case; see Anderson [1], Roy [38], Nagao [32], John [24]. The traditional likelihood ratio test can fail in the high-dimensional setting (cf. Bai et al. [4]). Under the assumption that p/n is bounded, or $p = O(n)$, Bai et al. [4], Schott [40], Srivastava [41] considered test of identity, sphericity, and diagonal covariance matrices. Recently, Chen et al. [13] proposed test statistics for sphericity and identity, and proved the normality with no condition on p/n, with $f_4 = o(f)$. Qiu and Chen [35] considered testing whether a covariance matrix is banded. Zhang et al. [50] applied the empirical likelihood ratio test. Other contributions can be found in Cai and Ma [11], Onatski et al. [33], Birke and Dette [10], Fisher et al. [20], Jiang et al. [23], Ledoit and Wolf [29]. In many of those papers it is assumed that X_1 is Gaussian.

Given the data X_1, \ldots, X_n, which are i.i.d. with mean 0 and covariance matrix Σ, we test the null hypothesis $H_0 : \Sigma = \Sigma_0 = (\sigma_{0,jk})_{j,k \leq p}$. Let $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T$ be the sample covariance matrix. Xiao and Wu [48] considered the L^∞ test statistic $\max_{j,k \leq p} |\hat{\sigma}_{jk} - \sigma_{0,jk}|$. The latter test is not powerful if the alternative hypothesis consists of many small but non-zero covariances. Here we shall study the test statistic

$$T_n = \sum_{j,k=1}^{p} (\hat{\sigma}_{jk} - \sigma_{0,jk})^2.$$ \hspace{1cm} (5.1)

We reject H_0 if T_n exceeds certain cutoff values. The problem of deriving asymptotic distribution of T_n has been open. In many of earlier papers it
is assumed that Σ_0 has special structures such as being diagonal or spheric and/or X_i is Gaussian or has independent entries. Here we shall obtain an asymptotic theory for T_n for linear processes of form (4.1).

We shall apply Theorem 2.2. For $u = (u_1, \ldots, u_p)^T$, let

$$W(u) = \begin{pmatrix} u_1^2 - \sigma_{11} \\ u_1 u_2 - \sigma_{12} \\ \vdots \\ u_1 u_p - \sigma_{1p} \\ u_2 u_1 - \sigma_{12} \\ \vdots \\ u_p^2 - \sigma_{pp} \end{pmatrix}$$

(5.2)

be a p^2-dimensional vector. Let $W_i = W(X_i)$ and $\bar{W}_n = \sum_{i=1}^{n} W_i/n$. Then $T_n = \bar{W}_n^T \bar{W}_n$. Let $\mathcal{I} = \{(i, j), 1 \leq i, j \leq p\}$; let the random vector $U = (U_1, \ldots, U_p)^T$ be identically distributed as X_i. Then the covariance matrix

$$\Gamma = (\gamma_{a,a'}), a,a' \in \mathcal{I}$$

for $W = W(U)$ is $p^2 \times p^2$ with entries

$$\gamma_{(i,j),(k,l)} = E((U_i U_j - \sigma_{ij})(U_k U_l - \sigma_{kl}))$$

$$= E(U_i U_j U_k U_l) - \sigma_{ij} \sigma_{kl}$$

$$= \text{cum}(U_i, U_j, U_k, U_l) + \sigma_{ik} \sigma_{jl} + \sigma_{il} \sigma_{jk}.$$

Let U^* and U be i.i.d. and $W^* = W(U^*)$. Observe that

$$W^T W = (U^T U)^2 - 2U^T \Sigma U + f^2,$$

$$W^T W^* = (U^T U^*)^2 - U^T U^* + f^2.$$

(5.3)

In the sequel we shall deal with conditions (2.1) and (2.2) for the process $W_i = W(X_i)$ for X_i satisfying (4.1). Lemma 5.1 provides a lower bound for $f^2_W = \text{tr}(\Gamma^2) = |\text{E}(WW^T)|_F^2$, and Theorem 5.2 leads to a bound for the quantities K_δ and D_δ for the W vector.

Lemma 5.1. Let $\nu = \text{Var}(\xi_1^2)$. For (X_i) in (4.1), we have

$$f^2_W := \sum_{a,b \in \mathcal{I}} \gamma_{ab}^2 = \text{tr}(\Gamma^2) \geq \min(2, \nu^2/2) f^4.$$

(5.4)
To apply Theorem 2.2 on the random vectors $W = W(X)$; see (5.2), we will need to find bounds K^W_δ and D^W_δ so that

\[
\mathbb{E} \left| \frac{W}{f_W} \right|^2 - \text{tr} \left[\mathbb{E} \left(WW^T \right) \right] \leq (K^W_\delta)^{2+\delta},
\]

(5.5)

\[
\mathbb{E} \left| \frac{W^T W_*}{f_W} \right|^2 \leq (D^W_\delta)^{2+\delta}.
\]

(5.6)

By Lemma 5.1 and Theorem 5.2 below, if ξ_i’s are not Bernoulli(1/2), we can have explicit bounds for K^W_δ and D^W_δ.

Theorem 5.2. Let $W_i = W(A\xi_i)$. Suppose $\|\xi_1\|_{4q} < \infty$, where $q = 2 + \delta$ and $\delta > 0$. Let $\bar{C}_\delta = 2(4q\|\xi_1\|_{2q})^{2q}$ and $\bar{D}_\delta = (4q)^q \|\xi_1\|_{2q}^{2q} + (2q)^{2q} \|\xi_1\|_{4q}^{2q}$. Then

\[
\mathbb{E} \left| \frac{W_1}{f_W} \right|^2 - \text{tr} \left[\mathbb{E} \left(W_1 W_1^T \right) \right] \leq \bar{C}_\delta (f_1 f)^{2+\delta},
\]

(5.7)

\[
\mathbb{E} \left| \frac{W_1^T W_2}{f_W} \right|^2 \leq \bar{D}_\delta f^{4+2\delta}.
\]

(5.8)

Thus if $\nu > 0$, let $\theta = \min(2, \nu)/\sqrt{2}$, then (5.5) and (5.6) hold with $K^W_\delta = (\bar{C}_\delta/\theta)^{1/q} f_1 f$ and $D^W_\delta = \bar{D}_\delta/\theta$, respectively.

Remark 5.3. A careful check of the proof of Theorem 5.2 indicates that (5.8) holds under the milder moment condition $\xi_i \in \mathcal{L}^{4+2\delta}$. Instead of using T_n in (5.1), in view of (2.9) we introduce the following quantity

\[
\tilde{T}_n = \frac{1}{n(n-1)} \sum_{i \neq i'} \sum_{j,k \leq p} (X_{ij}X_{ik} - \sigma_{jk})(X_{i'j}X_{i'k} - \sigma_{jk})
\]

(5.9)

By (2.11), under $\xi_i \in \mathcal{L}^{4+2\delta}$, we have

\[
\sup_t \left| \mathbb{P}(n\tilde{T}_n \leq f_W t) - \mathbb{P} \left(\sum_{a \in A} \frac{\theta_a}{f_W} (\eta_a - 1) \leq t \right) \right| = O(n^{-\delta/(10+4\delta)}),
\]

where θ_a are eigenvalues of Γ and η_a are i.i.d. χ^2_1. Chen et al. [13] consider testing the hypothesis $H_0 : \Sigma = \text{Id}_p$ vs $H_1 : \Sigma \neq \text{Id}_p$. They obtained a central limit theorem for a test statistic closely related to \tilde{T}_n under the stronger
moment assumption that η_i has finite 8th moment and $f_{i}\rightarrow f$. Our results relaxes the moment condition and can lead to a non-central limit theorem in that the asymptotic distribution may not be Gaussian. Additionally we have the rate of convergence of the approximate distribution.

6 A simulation study

In this section we will provide a simulation study for the finite sample performances of the invariance principle Theorem 2.2, the plug-in and the subsampling procedures described in Sections 3.1 and 3.2, respectively. We consider the following two data generating models.

Model 1 (Linear Process): Let $\xi_{i,k}, i, k \in \mathbb{Z}$ are i.i.d. Student t_5; let

$$X_{i,j} = \sum_{k=0}^{\infty} (k + 1)^{-\beta} \xi_{i,j-k}, \text{ where } \beta > 1/2. \quad (6.1)$$

If $\beta < 1$, then the process $(X_{i,j})_j$ is long memory, thus having strong cross-sectional dependence. In our simulations we choose $p = 200$ and $n = 50, 200$ and truncate the sum in (6.1) to $\sum_{k=0}^{2000}$, and choose two levels of β: $\beta = 2$ and $\beta = 0.6$, which correspond to short and long memory, respectively.

Model 2 (Factor Model): Let

$$X_{i,j} = \sqrt{4 + U_i^2} \xi_{i,j} + a(2Z_i + Z_i^2 - 1), \quad 1 \leq i \leq n, 1 \leq j \leq p, \quad (6.2)$$

where $U_i \sim Uniform[-1, 1]$, $\xi_{i,j}, Z_i \sim N(0, 1)$ and they are all independent. We consider two cases: $a = 0.05$ and $a = 0.5$, which imply weak and strong factors, respectively. We also let $p = 200$ and $n = 50, 200$.

We shall use QQ plots to measure the closeness of the approximations. Recall (2.6) for V. Figures 1(a)-4(a) show the QQ plots of the distributions of R_n and V. In the literature majority of papers deal with central limit theorems for R_n. The normal QQ plots in Figures 1(b)-4(b) indicate that the Gaussian approximation of R_n can be quite bad if the cross-sectional dependence (among entries of X_1) is strong, see for example Model 1 with
\(\beta = 0.6 \) and Model 2 with \(a = 0.5 \). In Figures 1(c)-4(c), we make QQ plots for \(\hat{V} \) vs \(\hat{R}_n \). Here \(\hat{V} = \sum_{j=1}^{p} \hat{f}^{-1} \hat{\lambda}_j (\eta'_j - 1) \), where \(\eta'_j \) are i.i.d. \(\chi^2_1 \) random variables that are independent of \(X_n \) and \(\hat{\lambda}_j \) are eigenvalues of the sample covariance matrix \(\hat{\Sigma} = (n - 1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)(X_i - \bar{X}_n)^T \), and \(\hat{R}_n = (n|\bar{X}_n|_2^2 - \hat{f}_1)/f^1 \), where \(\hat{f}_1 = \text{tr}(\hat{\Sigma}) \), and \(f^1 = [\text{tr}(\hat{\Sigma}^2) - \hat{f}_1^2/n]^{1/2} \); see [2]. To obtain (c), the following steps are repeated for \(N = 100 \) times: in each realization, data is generated according to the above models. Then given \(\hat{\Sigma} \), we obtain \(K = 100 \) realizations of \(\hat{V} \) by generating 100 i.i.d. \(\chi^2_1 \) r.v. \(\eta'_j \). Figures 1(c)-4(c) suggest that, for the plug-in procedure, larger \(n \) leads to better approximations. Figures 1(d)-4(d) show the subsampling procedure (cf. Theorem 3.5(ii)). As in (c), we perform in (d) the QQ plots of \(N = 100 \) repetitions of \(n|\bar{X}_n|_2^2 \) and the subsample values \(m(1 - m/n)^{-1}|\bar{X}_{A_j} - \bar{X}|_2^2 \) with \(J = 100 \) and \(m = \lfloor n/\log n \rfloor \). The subsampling distribution provides an excellent approximation of the distribution of \(n|\bar{X}_n|_2^2 \). For the subsampling approach one needs to choose an \(m \). In our simulation study for other models (not reported here) with bounded \(K_\delta \) and \(D_\delta \), the rule-of-thumb choice \(m = \lfloor n/\log n \rfloor \) can often have a satisfactory performance. We leave it as a future problem on designing a data-driven choice of \(m \).

7 Proof

Proof of Proposition 2.1. Note that \(\boldsymbol{\xi} = \Lambda^{-1/2}Q^TY_1 \sim N(0, \text{Id}_p) \). Then \(Y_1^TY_1 = \sum_{j=1}^{p} \lambda_j \xi_j^2 \), where \(\xi_j \) are entries of \(\boldsymbol{\xi} \) and are i.i.d. \(N(0, 1) \). Let \(q = 2 + \delta \). By Burkholder’s inequality (Chow and Teicher [15]),

\[
\|Y^TY - f_1\|_q^2 \leq (q - 1) \sum_{j=1}^{p} \lambda_j^2 \|\xi_j^2 - 1\|_q^2.
\]

Then (2.3) holds. Let \(\boldsymbol{\zeta} = \Lambda^{-1/2}Q^TY_2 \). Then \(Y_1^TY_2 = \sum_{j=1}^{p} \lambda_j \xi_j \zeta_j \) and (2.4) similarly follows. \(\square \)
Figure 1: Model 1 with $\beta = 2$. (a) QQ-plot of V v.s. R_n (cf. Theorem 2.2); (b) QQ-normal plot of R_n; (c) QQ-plot of \hat{V} v.s. \hat{R}_n; (d) QQ-plot of the subsampling distribution v.s. $n|\bar{X}|_2^2$ (cf. Theorem 3.5(ii)). Red: $n = 200$; black: $n = 50$.

22
Figure 2: Model 1 with $\beta = 0.6$. See Figure 1 for the caption.
Figure 3: Model 2 with $a = 0.05$. See Figure 1 for the caption.
Figure 4: Model 2 with $a = 0.5$. See Figure 1 for the caption.
In Lemma 7.1 and in the proof of Theorem 2.2, we define
\[g_0(u) = (1 - \min(1, \max(u, 0)))^4. \] (7.1)
Any non-increasing function \(g_0(\cdot) \) with \(g_0(\cdot) \in \mathbb{C}^3, \ g_0(u) = 1 \) if \(u \leq 0 \), and \(g_0(u) = 0 \) if \(u \geq 1 \), will meet our requirements. To make the calculations explicit, we can choose \(g_0 \) in the form of (7.1). Then
\[g_* = \max_u [|g_0'(u)| + |g_0''(u)| + |g_0'''(u)|] < \infty. \] (7.2)

Proof of Theorem 2.2. Let \(Y_i \in \mathbb{R}^p \) be i.i.d. \(N(0, \Sigma) \) random vectors and \(Y = \sum_{i=1}^p Y_i/n \). Then \(\sum_{j=1}^p \lambda_j n \) and \(n|\bar{Y}_n|^2 \) are identically distributed. Note that \(f_1 = \sum_{j=1}^p \lambda_j \). Hence, to show (2.6), since \(L_\delta(n, \psi) \) is increasing in \(\psi \), it suffices to prove the following relation holds for every \(\psi \):
\[\sup_{t} |\mathbb{P}(R_n \leq t) - \mathbb{P}(R_n^* \leq t)| = O(L_\delta(n, \psi) + \psi^{-1/2}), \] (7.3)
where \(R_n^* \) is the Gaussian version of \(R_n \) in (2.5):
\[R_n^* = \frac{n|\bar{Y}_n|^2 - f_1}{f}. \] (7.4)

Recall (7.1) for \(g_0 \). We first approximate the indicator function \(h(x) = \mathbb{I}\{x \leq t\} \) the \(\mathbb{C}^3 \) function \(g_{\psi,t}(x) = g_0(\psi(x-t)) \) for \(t \) fixed. By (7.2),
\[\mathbb{I}\{x \leq t\} \leq g_{\psi,t}(x) \leq \mathbb{I}\{x \leq t + \psi^{-1}\}, \]
\[\sup_{x,t} |g'_{\psi,t}(x)| \leq g_* \psi, \sup_{x,t} |g''_{\psi,t}(x)| \leq g_* \psi^2, \sup_{x,t} |g'''_{\psi,t}(x)| \leq g_* \psi^3. \]
Then \(\mathbb{P}(R_n \leq t) \leq \mathbb{E}g_{\psi,t}(R_n) \). By Lemma 7.1,
\[\mathbb{E}g_{\psi,t}(R_n) \leq \mathbb{E}g_{\psi,t}(R_n^*) + CL_\delta(n, \psi) \leq \mathbb{P}(R_n^* \leq t + \psi^{-1}) + CL_\delta(n, \psi). \] (7.5)
The reverse direction is similar: by applying Lemma 7.1 again, we have
\[\mathbb{P}(R_n \leq t) \geq \mathbb{P}(R_n^* \leq t - \psi^{-1}) - CL_\delta(n, \psi). \] (7.6)
By (7.5), (7.6) and (7.12) in Lemma 7.2, we have (7.3). \(\square \)
Lemma 7.1. Assume (2.1) and (2.2). Let \tilde{K}_δ and \tilde{D}_δ be specified as in Theorem 2.2. Let $g_{\psi,t}(x) = g_0(\psi(x-t))$, where $g_0(\cdot)$ is given by (7.1). Recall (7.4) for R_n and R_n°. Then we have

$$\sup_t |E g_{\psi,t}(R_n) - E g_{\psi,t}(R_n^\circ)| = O[L_\delta(n,\psi)].$$

(7.7)

Proof of Lemma 7.1. Let

$$H_i = \sum_{j=1}^{i-1} X_j + \sum_{j=i+1}^n Y_j$$

and

$$L_i = \frac{H_i^T H_i - (n - 1) f_1}{nf},$$

$$\Delta_i = \frac{2H_i^T X_i + X_i^T X_i - f_1}{nf},$$

$$\Gamma_i = \frac{2H_i^T Y_i + Y_i^T Y_i - f_1}{nf}.$$

Note that H_i is independent of X_i and Y_i. Let

$$I = g'_{\psi,t}(L_i)(\Delta_i - \Gamma_i),$$

$$II = \frac{1}{2} g''_{\psi,t}(L_i)(\Delta_i^2 - \Gamma_i^2),$$

$$III = [g_{\psi,t}(L_i + \Delta_i) - g_{\psi,t}(L_i + \Gamma_i)] - I - II.$$

Note that X_i and Y_i both have mean 0 and covariance matrix Σ. Then

$$EI = E \mathbb{E} [g'_{\psi,t}(L_i)(\Delta_i - \Gamma_i) | X_i, Y_i]$$

$$= \frac{1}{nf} E \mathbb{E} [2(X_i^T - Y_i^T)E(g'_{\psi,t}(L_i)H_i) + (X_i^T X_i - Y_i^T Y_i)E(g'_{\psi,t}(L_i))] = 0.$$

For II, by (7.2), $|g''_{\psi,t}(u)| \leq g_* \psi^2$. Then for $C_1 = g_* / 2$,

$$|EII| = \frac{1}{2} \mathbb{E} |g''_{\psi,t}(L_i)(\Delta_i^2 - \Gamma_i^2)|$$

$$= \frac{1}{2} \mathbb{E} \left[g''_{\psi,t}(L_i) \mathbb{E} \left(\Delta_i^2 - \Gamma_i^2 \mid H_i \right) \right]$$

$$\leq C_1 \psi^2 \mathbb{E} \left[\mathbb{E} \left(\Delta_i^2 - \Gamma_i^2 \mid H_i \right) \right].$$

27
The term $n^2 f^2 \mathbb{E}\left(\Delta_i^2 - \Gamma_i^2 \right| H_i)$ can be decomposed into

$$4 \mathbb{E}\left[H_i^T X_i X_i^T H_i - H_i^T Y_i Y_i^T H_i \right] + \mathbb{E}\left[(X_i^T X_i - f_1)^2 - (Y_i^T Y_i - f_1)^2 \right]$$

$$+ 4 \mathbb{E}\left[H_i^T X_i (X_i^T X_i - f_1) - H_i^T (Y_i^T Y_i - f_1) \right| H_i],$$

where $\mathbb{E}\left(H_i^T X_i X_i^T H_i - H_i^T Y_i Y_i^T H_i \right| H_i) = 0$. By (2.1),

$$\mathbb{E}\left| (X_i^T X_i - f_1)^2 - (Y_i^T Y_i - f_1)^2 \right| \leq f^2 (K_0^2 + c_0^2) \leq f^2 \tilde{K}_0^2.$$

Since Y_i is Gaussian, $\mathbb{E}\left[H_i^T Y_i (Y_i^T Y_i - f_1) \right| H_i] = 0$. By the Cauchy-Schwarz inequality and (2.1), since $\|H_i^T X_i\|^2 = (n-1) \text{tr}(\Sigma^2) = (n-1) f^2$,

$$\mathbb{E}\left(\mathbb{E}\left(\Delta_i^2 - \Gamma_i^2 \right| H_i) \right) \leq \frac{\tilde{K}_0^2}{n^2} + \frac{\mathbb{E}[H_i^T X_i (X_i^T X_i - f_1) \right| H_i]^{2}}{n^2 f^2}$$

$$\leq \frac{\tilde{K}_0^2}{n^2} + \frac{\|H_i^T X_i\||X_i^T X_i - f_1|}{n^2 f^2}$$

$$\leq \frac{\tilde{K}_0^2}{n^2} + \frac{K_0}{n^{3/2}}.$$

So

$$|\mathbb{E} I| \leq C \psi^2 (n^{-2} \tilde{K}_0^2 + n^{-3/2} \tilde{K}_0). \quad (7.8)$$

Since $0 \leq g(t) \leq 1$ for all t, and $|g_{\psi,t}(u)| \leq g_r \psi^3$. We have that

$$\mathbb{E} \left| I \right| \leq \mathbb{E} \min \left\{ 1 + |I| + |II|, g_r \psi^3 (|\Delta_i|^3 + |\Gamma_i|^3) \right\}$$

$$\leq C \mathbb{E} \min \left\{ 1 + \psi(|\Delta_i| + |\Gamma_i|) + \psi^2(|\Delta_i|^2 + |\Gamma_i|^2), \psi^3(|\Delta_i|^3 + |\Gamma_i|^3) \right\}$$

$$\leq C \psi^q \left(\mathbb{E} |\Delta_i|^q + \mathbb{E} |\Gamma_i|^q \right),$$

where $q = 2 + \delta$. Let $x \in \mathbb{R}^p$ be a fixed vector. By Rosenthal's inequality,

$$\mathbb{E} |H_i x|^q \leq c_q [m \|X_i^T x\|^q + (n - m) \|X_n^T x\|^q + n^{q/2} (x^T \Sigma x)^{q/2}], \quad (7.9)$$

where c_q and $c_{q,1}, \ldots$ hereafter are constants only depend on q and they may take different values at different appearances. Note that $Y_n^T x \sim N(0, x^T \Sigma x)$. Let $c_{q,1} = \|\xi_1\|^q, \xi_1 \sim N(0, 1)$. Then $\mathbb{E} |Y_n^T x|^q = c_{q,1} (x^T \Sigma x)^{q/2}$ and

$$\|H_i^T X_i\|^q \leq c_q (m \|X_i^T x\|^q + n^{q/2} \mathbb{E}(X_i^T \Sigma X_i)^{q/2}) \quad (7.10)$$
Hence by (2.2) and (2.4), we have

$$
\mathbb{E}\left|\Delta_i\right|^q \leq C \frac{\mathbb{E}|H_i^T X_i|^q + \mathbb{E}|X_i^T X_i - f_1|^q}{n^q f^q} \\
\leq C \frac{nD_i^q f^q + n^{q/2} \mathbb{E}(X_i^T X_i)^{q/2} + K_i^q f^q}{n^q f^q}.
$$

(7.11)

By (7.9),\(||H_i^T Y_i||_q^q \leq c_q(n \mathbb{E}(X_i^T \Sigma X_i)^{q/2} + n^{-q/2})\), which implies that \(\mathbb{E}|\Gamma_i|^q \leq c_q(n \mathbb{E}(X_i^T \Sigma X_i)^{q/2} + n^{-q/2})\). Observe that \(||H_i + X_i||_2^2 - nf_1)/(nf) = L_i + \Delta_i \) and \(||H_i + Y_i||_2^2 - nf_1)/(nf) = L_i + \Gamma_i \). We write the telescope sum

$$
g_{\psi,t}(R_n) - g_{\psi,t}(R_n^0) = \sum_{i=1}^n \left[g_{\psi,t}(L_i + \Delta_i) - g_{\psi,t}(L_i + \Gamma_i) \right],
$$

which entails (7.7) in view of (7.8), (7.11) and \(\mathbb{E} I = 0 \).

\[\square\]

Lemma 7.2. Let \(a_1 \geq \ldots \geq a_p \geq 0 \) be such that \(\sum_{i=1}^p a_i^2 = 1 \); let \(\eta_i \) be i.i.d. \(\chi_1^2 \) random variables. Then for all \(h > 0 \),

$$
\sup_t \mathbb{P}(t \leq a_1 \eta_1 + \ldots + a_p \eta_p \leq t + h) \leq h^{1/2} \sqrt{4/\pi}.
$$

(7.12)

Proof of Lemma 7.2. Write \(V = \sum_{i=1}^p a_i \eta_i \). Assume \(a_1 \leq 1/2 \). Then its characteristic function \(\phi_V(s) = \mathbb{E} \exp(\sqrt{-1} s V), s \in \mathbb{R} \), satisfies

$$
|\phi_V(s)| = \left| \prod_{j=1}^p (1 - 2\sqrt{-1} a_j s)^{-1/2} \right| \\
= \prod_{j=1}^p (1 + 4a_j^2 s^2)^{-1/4} \\
\leq (1 + 4s^2 + 8b_4 s^4 + 32/3 b_6 s^6)^{-1/4},
$$

(7.13)

where \(b_4 = \sum_{j \neq k} a_j^2 a_k^2 = 1 - \sum_{k=1}^p a_k^4 \geq 1 - a_1^2 \geq 3/4 \) and

$$
b_6 = \sum_{j,k,l} a_j^2 a_k^2 a_l^2 = 1 - 3 \sum_{j \neq k} a_j^4 a_k^2 - \sum_{j=1}^p a_j^6 \\
\geq 1 - 3 \sum_{j=1}^p a_j^4 \left(\sum_{k \neq j} a_k^2 + a_j^2 \right) \geq 1 - 3a_1^2 \geq 1/4.
$$

29
By the inversion formula and (7.13), the density function \(f_V(\cdot) \) of \(V \) satisfies
\[
 f_V(v) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{1}{2}v^2} \phi_V(s) ds \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |\phi_V(s)| ds < 1
\]

Now we shall deal with the case that \(a_1 > 1/2 \). Note that for all \(w > 0 \), \(\sup_u \mathbb{P}(u \leq \eta_1 \leq u + w) \leq w^{1/2} \sqrt{2/\pi} \). Then \(\sup_t \mathbb{P}(t \leq V \leq t + h) \leq (2h)^{1/2} \sqrt{2/\pi} \). Combining with the case \(a_1 \leq 1/2 \), we obtain the upper bound \(\max(h^{1/2} \sqrt{4/\pi}, h) \). Note that (7.12) trivially holds if \(h \geq 1 \). \(\square \)

Proof of Proposition 3.2. Note that \(\rho(\Sigma/f) \leq |\Sigma/f|_F = 1 \). Since \(\tilde{f}/f - 1 = o_{\mathbb{P}}(1) \), \(\rho(\Sigma/f)(f/\tilde{f} - 1) = o_{\mathbb{P}}(1) \). Hence for the ”if” part,
\[
\rho(\tilde{\Sigma}/f - \Sigma/f) \leq \rho(\tilde{\Sigma} - \Sigma)/\tilde{f} + \rho(\Sigma/f)|f/\tilde{f} - 1| = o_{\mathbb{P}}(1)
\]
The ”only if” part can be similarly proved. \(\square \)

Proof of Lemma 3.1. Let \(\rho_p = \max_j |a_{p,j} - b_{p,j}| \). Choose an integer sequence \(K = K_p \) such that \(K_p \to \infty \) and \(K_p \rho_p \to 0 \). Let \(W = \sum_{j=1}^{K-1} a_{p,j} \eta_j', W^o = \sum_{j=K}^{p} a_{p,j} \eta_j', S = \sum_{j=1}^{K-1} b_{p,j} \eta_j', S^o = \sum_{j=K}^{p} b_{p,j} \eta_j', w = 2 \sum_{j=K}^{p} a_{p,j}^2 \) and \(s = 2 \sum_{j=K}^{p} b_{p,j}^2 \). Let \(u_K = a_{p,K}^{1/4} \). By the Gaussian approximation result in [39], on a richer probability space, we can construct a random variable \(Z \sim N(0,1) \), independent of \((\eta_i)_{i=1}^{K-1} \), such that
\[
\mathbb{P}(|W^o - w^{1/2}Z| \geq u_K) \leq \frac{c_4}{u_K^4} \sum_{j=K}^{p} a_{p,j}^4 \leq \frac{c_4}{u_K^4} a_{p,K}^2 = c_4 u_K^4, \quad (7.14)
\]
where \(c_4 > 0 \) is an absolute constant. Since \(u_K \to 0 \), by Lemma 7.2,
\[
\sup_x |\mathbb{P}(|W + W^o| \leq x) - \mathbb{P}(|W + w^{1/2}Z| \leq x)| \to 0. \quad (7.15)
\]
Similarly, for \(v_K = b_{p,K}^{1/4} \), we can also construct a probability space with a r.v. \(Z^* \sim N(0,1) \) such that \(\mathbb{P}(|S^o - w^{1/2}Z^*| \geq v_K) \leq c_4 v_K^4 \), and
\[
\sup_x |\mathbb{P}(|S + S^o| \leq x) - \mathbb{P}(|S + s^{1/2}Z^*| \leq x)| \to 0. \quad (7.16)
\]
Let $T = (W + w^{1/2}Z) - (S + s^{1/2}Z)$. Since $w - s = 2 \sum_{j=1}^{K-1} (b_{p,j}^2 - a_{p,j}^2)$,

$$\mathbb{E}|T| \leq 2(K-1)\rho_p + |w^{1/2} - s^{1/2}| \leq 2K\rho_p + |w - s|^{1/2} \leq 2K\rho_p + (4K\rho_p)^{1/2} \to 0. \quad \text{(7.17)}$$

Hence, by (7.15), (7.16) and Lemma 7.2, (3.4) follows. \hfill \Box

Proof of Theorem 3.3. (i) Since X_i are i.i.d., we have

$$\mathbb{E}|\hat{\Sigma} - \Sigma|^2_F = \mathbb{E} \sum_{j,k=1}^{p} (\hat{\sigma}_{jk} - \sigma_{jk})^2$$

$$= \frac{1}{n} \sum_{j,k=1}^{p} \mathbb{E} (X_{1j}^2X_{1k}^2 - \sigma_{jk}^2)$$

$$= \frac{1}{n} \mathbb{E} \left[\left(\sum_{j=1}^{p} X_{1j}^2 \right)^2 - \frac{1}{n} f^2 \right]$$

$$= \frac{1}{n} \mathbb{E} [(X_1^T X_1)^2] - \frac{1}{n} f^2,$$

which, by the assumption $\mathbb{E}[(X_1^T X_1)^2] = o(nf^2)$, implies $\mathbb{E}|\hat{\Sigma} - \Sigma|^2_F = o(f^2)$. Then $||\Sigma||_F - ||\hat{\Sigma}||_F = 0(nf^2)$ implies $\mathbb{E}|\hat{\Sigma} - \Sigma||_F = o(f)$. or $||f - \hat{f}||_F = o(f)$, and

$$||\hat{\Sigma}/f - \Sigma/f||_F = ||(\hat{\Sigma} - \Sigma)/f||_F + ||\hat{\Sigma}/f||_F(1 - \hat{f}/f)|| = o(1).$$

(ii) Let $g = ||X_1^T X_1||$. Since $nf^2 = o(g^2)$, by Schwarz’s inequality,

$$\mathbb{E}[(X_1^T \Sigma X_1)^2] \leq \mathbb{E}[(X_1^T \Sigma^2 X_1 X_1^T X_1)] = \mathbb{E}[\text{tr}((X_1 X_1^T)^2 \Sigma^2)]$$

$$\leq \mathbb{E}[\text{tr}(\Sigma^4)](X_1^T X_1)^2] \leq f^2g^2 = o\left(\frac{g^4}{n}\right). \quad \text{(7.18)}$$

Since (2.1) holds with $K_2 = O(n^{3/4})$ and $\mathbb{E}(X_1^T X_1) = f_1 \leq g$, we have

$$||X_1^T X_1||^4_4 \leq 8 ||X_1^T X_1 - f_1||^4_4 + 8f_1^4 \leq 8K_2^4f^4 + 8f_1^4 = o(n^4). \quad \text{(7.19)}$$

By (7.19) and (7.18), we have

$$\mathbb{E}[(X_1^T X_1)^2 X_1^T \Sigma X_1] \leq \{\mathbb{E}[(X_1^T X_1)^4] \mathbb{E}[(X_1^T \Sigma X_1)^2]\}^{1/2} = o(g^4). \quad \text{(7.20)}$$
Since $\mathbb{E}[(X_1^T X_1)^2(X_2^T X_2)^2] = \mathbb{E}[(X_1^T X_1)^2X_1^T \Sigma X_1]$, by (7.20), we have

\[
\mathbb{E}[X_1^T X_1 (X_1^T X_2)^2 X_2^T X_2] \leq \mathbb{E}[(X_1^T X_1)^2 (X_2^T X_2)^2] = o(g^4) \tag{7.21}
\]

Since $(\rho(\hat{\Sigma})/\hat{f})^4 \leq \hat{f}_4^4 / \hat{f}_4^4 \leq (\rho(\hat{\Sigma})/\hat{f})^2$, it suffices to show that $\hat{f}_4^4 / \hat{f}_4^4 = o(1)$. Clearly the latter follows from

\[
\mathbb{E}(\hat{f}_4^4) = o(\mathbb{E}^2(\hat{f}^2)) \text{ and } \mathbb{E}(\hat{f}_4^4 / \mathbb{E}(\hat{f}^2) - 1)^2 = o(1). \tag{7.22}
\]

An expansion of $\hat{f}_4^4 = \sum \sigma_{jk}^2$ yields that

\[
n^2 \mathbb{E}(\hat{f}_4^4) = \sum_{1 \leq i \neq l \leq n, 1 \leq j, k \leq p} \mathbb{E}(X_{ij} X_{ik} X_{lj} X_{lk}) + \sum_{1 \leq i \leq n, 1 \leq j, k \leq p} \mathbb{E}(X_{ij}^2 X_{ik}^2)
= n(n-1) \sum_{j,k=1}^p \sigma_{jk}^2 + n \sum_{j,k=1}^p \mathbb{E}(X_{ij}^2 X_{ik}^2)
= (n^2 - n) f^2 + n \mathbb{E}[(X_1^T X_1)^2].
\]

Since $nf^2 = o(g^2)$, we have $\mathbb{E}(\hat{f}_4^4) \asymp n^{-1} g^2$. Write

\[
n^4 \mathbb{E}(\text{tr}(\hat{\Sigma}^4)) = \sum_{1 \leq j, k, m, q \leq p, 1 \leq i, l, s, t \leq n} \mathbb{E}(X_{ij} X_{ik} X_{lk} X_{lm} X_{sm} X_{sq} X_{tq} X_{tj})
= I + II + III + IV + V + VI + VII,
\]
where, based on the number of distinct indexes in \(\{i, l, s, t\} \),

\[
\begin{align*}
I &= n(n - 1)(n - 2)(n - 3) \sum_{1 \leq j, k, m, q \leq p} \sigma_{jk} \sigma_{km} \sigma_{mq} \sigma_{qj} \\
II &= 4n(n - 1)(n - 2) \sum_{1 \leq j, k, m, q \leq p} \mathbb{E}(X_{1j}X_{1k}^2X_{1m}) \sigma_{mq} \sigma_{qj} \\
III &= 2n(n - 1)(n - 2) \sum_{1 \leq j, k, m, q \leq p} \mathbb{E}(X_{1j}X_{1k}X_{1m}X_{1q}) \sigma_{km} \sigma_{qj} \\
IV &= 2n(n - 1) \sum_{1 \leq j, k, m, q \leq p} \mathbb{E}(X_{1j}X_{1k}^2X_{1m}) \mathbb{E}(X_{1m}X_{1q}^2X_{1j}) \\
V &= n(n - 1) \sum_{1 \leq j, k, m, q \leq p} \left[\mathbb{E}(X_{1j}X_{1k}X_{1m}X_{1q}) \right]^2 \\
VI &= 4n(n - 1) \sum_{1 \leq j, k, m, q \leq p} \sigma_{jk} \mathbb{E}(X_{1j}X_{1k}X_{1m}^2X_{1q}) \\
VII &= n \sum_{1 \leq j, k, m, q \leq p} \mathbb{E}(X_{1j}^2X_{1k}^2X_{1m}^2X_{1q}) .
\end{align*}
\]

Note that \(\text{tr}(\Sigma^k/f^k) \leq \rho(\Sigma/f)^{k-2} = o(1) \) for \(k > 2 \). By (3.8) and (7.18)–(7.21), we obtain by elementary manipulations that \(\mathbb{E}(\hat{f}_4^4) = o(\mathbb{E}^2(\hat{f}^2)) \). To prove the second assertion of (7.22), we similarly write

\[
n^4 \mathbb{E}\hat{f}_4^4 = \sum_{1 \leq j, k, m, q \leq p} \sum_{1 \leq i, l, s, t \leq n} \mathbb{E}(X_{ij}X_{ik}X_{lj}X_{lk}X_{sm}X_{sq}X_{tm}X_{tq}) \\
= I' + II' + III' + IV' + V' + VI' + VII',
\]

\[33\]
where

\[I' := n(n-1)(n-2)(n-3) \sum_{1 \leq j,k,m,q \leq p} \sigma_{jk}^2 \sigma_{mq}^2 \]

\[II' := 2n(n-1)(n-2) \sum_{1 \leq j,k,m,q \leq p} \mathbb{E} (X_{ij}^2 X_{ik}^2) \sigma_{mq}^2 \]

\[III' := 4n(n-1)(n-2) \sum_{1 \leq j,k,m,q \leq p} \mathbb{E} (X_{ij} X_{ik} X_{1m} X_{1q}) \sigma_{jk} \sigma_{mq} \]

\[IV' := 4n(n-1) \sum_{1 \leq j,k,m,q \leq p} \sigma_{jk} \mathbb{E} (X_{ij} X_{1k} X_{1m}^2 X_{1q}^2) \]

\[V' := n(n-1) \sum_{1 \leq j,k,m,q \leq p} \mathbb{E} (X_{ij} X_{1k} X_{1m} X_{1q}) \mathbb{E} (X_{1m}^2 X_{1q}^2) \]

\[VI' := 2n(n-1) \sum_{1 \leq j,k,m,q \leq p} \mathbb{E} (X_{ij} X_{1k} X_{1m} X_{1q})^2 \]

\[VII' := n \sum_{1 \leq j,k,m,q \leq p} \mathbb{E} (X_{ij} X_{1k} X_{1m} X_{1q})^2. \]

Then the second assertion of (7.22) similarly follows from (3.8), (7.18)–(7.21).

\[\square \]

Proof of Theorem 5.2. Write \(W \) and \(W^* \) for \(W_1 \) and \(W_2 \), respectively. Let \(B = A^T A \) and \(U = A \xi \). Then \(f_1 = \text{tr}(B) \), \(U^T \Sigma U = \xi^T B^2 \xi \) and \(U^T U = \xi^T B \xi \). By the argument in (4.5), we have \(\|U^T U - f_1\|^2_2 \leq 4q^2 \|\xi_1\|_2^2 f^2 \),

\[\|U^T \Sigma U - f^2\|_2^2 \leq 4q^2 \|\xi_1\|_2^2 \text{tr}(B^4) \leq 4q^2 \|\xi_1\|_2^2 f^4, \]

\[\|U^T U - f_1\|^2_2 = \|U^T U - f_1\|^2_{2q} \leq 4(2q)^2 \|\xi_1\|_2^2 f^2 \]

By the identity in (5.3), note that \((U^T U)^2 = (U^T U - f_1)^2 + 2f_1(U^T U - f_1) + f_1^2 \), we obtain (5.7) with \(\bar{C}_5 = 2(4q\|\xi_1\|_2^2)_{2q} \).

Let \(U^* = A \zeta \), where \(\zeta \) and \(\xi \) are i.i.d. Then \(U^T U^* = \xi^T B \zeta \). By (4.4),

\[\|\xi^T B \zeta\|_{2q}^2 \leq (2q-1)^2 \|\xi_1\|_{2q}^4 f^2, \]

which similarly implies (5.8) with \(\bar{D}_5 = (4q)^q \|\xi_1\|_{2q}^2q + (2q - 1)^2 \|\xi_1\|_{2q}^4 f^2 \) in view of the second identity in (5.3). \[\square \]
Proof of Lemma 5.1. Let $B = \{(i, j), 1 \leq i \leq j \leq p\}$ and $\omega = (\omega_b)_{b \in B} \in \mathbb{R}^{p(p+1)/2}$, where $\omega_b = \xi_i \xi_j - \mathbb{I}\{i = j\}$ for $b = (i, j)$, that is

$$\omega = (\varrho_1 \xi_1 \xi_2, \ldots, \xi_1 \xi_p, \varrho_2, \xi_2 \xi_3, \ldots, \varrho_p)^T,$$

where $\varrho_k = \xi_k^2 - 1$.

Let V_W be the covariance matrix of ω. Then $V_W = \text{diag}\{v_{b,b}\}_{b \in B}$, where for $b = (i, l)$, $v_{b,b} = \text{Var}(\xi_i^2)$ if $l = i$ and $v_{b,b} = 1$ if $l \neq i$. Also define $G = (g_{a,b})_{a \in I, b \in B} \in \mathbb{R}^{p^2 \times [p(p+1)/2]}$, where for $a = (j, k), b = (i, l)$,

$$g_{a,b} = \begin{cases} a_{ji}a_{ki}, & \text{if } l = i; \\ a_{ji}a_{kl} + a_{jl}a_{ki}, & \text{if } i < l. \end{cases}$$

Note that $X_j X_k = g_{a,a}^T \omega$, where $g_{a,a}$ is the a'th row of G. Then $W = G\omega$ and

$$\mathbb{E} (WW^T) = (\gamma_{a,a'})_{a,a' \in I},$$

where for $a = (j, k), a' = (m, q)$,

$$\gamma_{a,a'} = \text{cov}(X_j X_k, X_m X_q) = g_{a,a}'^T V_W g_{a,a'}$$

$$= \nu \sum_i a_{ji}a_{ki}a_{mi}a_{qi} + \sum_{i<l} (a_{ji}a_{kl} + a_{jl}a_{ki}) (a_{qi}a_{ml} + a_{mi}a_{ql})$$

$$= (\nu - 2) \sum_i a_{ji}a_{ki}a_{mi}a_{qi} + \sigma_{jm}\sigma_{kq} + \sigma_{jq}\sigma_{km}. \quad (7.23)$$

Let $B = A^T A = (b_{il})_{i,l}$, $L_0 = 2f^4 + 2f_1^4$, $L_1 = \sum_i b_{il}^4$ and $L_2 = \sum_i (\sum_l b_{il}^2)^2$.

By (7.23),

$$f_W^2 = \sum_{a, a' \in I} \gamma_{a,a'}^2$$

$$= \sum_{1 \leq j,k,m,q \leq p} \left[(\nu - 2) \sum_i a_{ji}a_{ki}a_{mi}a_{qi} + \sigma_{jm}\sigma_{kq} + \sigma_{jq}\sigma_{km}\right]^2$$

$$= L_1(\nu - 2)^2 + 4L_2(\nu - 2) + L_0.$$

Clearly $f_W^2 \geq 2f^4$ if $\nu \geq 2$. Note that $4L_1 - 8L_2 + L_0 \geq 0$. Since $L_1 \leq L_2$, $L_0 \geq 8L_2 - 4L_1 \geq 4L_1.$ If $0 < \nu < 2$, then the quantity

$$f_W^2 - \frac{L_0 b_{il}^2}{4} = \left(L_1 - \frac{L_0}{4}\right) \nu^2 + 4(L_2 - L_1)\nu + L_0 + 4L_1 - 8L_2$$

35
is larger than the minimum of its value at $\nu = 0$ and $\nu = 2$, which are both nonnegative. Therefore, $f_W^2 \geq \nu^2 f^4/2$ for any $\nu \in (0, 2)$.

References

[1] T. W. Anderson. *An introduction to multivariate statistical analysis*. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, third edition, 2003. ISBN 0-471-36091-0.

[2] Zhidong Bai and Hewa Saranadasa. Effect of high dimension: by an example of a two sample problem. *Statist. Sinica*, 6(2):311–329, 1996. ISSN 1017-0405.

[3] Zhidong Bai and Jack W. Silverstein. *Spectral analysis of large dimensional random matrices*. Springer Series in Statistics. Springer, New York, second edition, 2010. ISBN 978-1-4419-0660-1. doi: 10.1007/978-1-4419-0661-8. URL http://dx.doi.org/10.1007/978-1-4419-0661-8.

[4] Zhidong Bai, Dandan Jiang, Jian-Feng Yao, and Shurong Zheng. Corrections to LRT on large-dimensional covariance matrix by RMT. *Ann. Statist.*, 37(6B):3822–3840, 2009. ISSN 0090-5364. doi: 10.1214/09-AOS694. URL http://dx.doi.org/10.1214/09-AOS694.

[5] V. Bentkus. On the dependence of the Berry-Esseen bound on dimension. *J. Statist. Plann. Inference*, 113(2):385–402, 2003. ISSN 0378-3758. doi: 10.1016/S0378-3758(02)00094-0. URL http://dx.doi.org/10.1016/S0378-3758(02)00094-0.

[6] V. Bentkus. A Lyapunov type bound in \mathbb{R}^d. *Teor. Veroyatn. Primen.*, 49(2):400–410, 2004. ISSN 0040-361X. doi: 10.1137/S0040585X97981123. URL http://dx.doi.org/10.1137/S0040585X97981123.
[7] István Berkes, Weidong Liu, and Wei Biao Wu. Komlós-Major-Tusnády approximation under dependence. *Ann. Probab.*, 42(2):794–817, 2014. ISSN 0091-1798. doi: 10.1214/13-AOP850. URL http://dx.doi.org/10.1214/13-AOP850.

[8] Peter J. Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. *Ann. Statist.*, 36(1):199–227, 2008. ISSN 0090-5364. doi: 10.1214/009053607000000758. URL http://dx.doi.org/10.1214/009053607000000758.

[9] Peter J. Bickel and Elizaveta Levina. Covariance regularization by thresholding. *Ann. Statist.*, 36(6):2577–2604, 2008. ISSN 0090-5364. doi: 10.1214/08-AOS600. URL http://dx.doi.org/10.1214/08-AOS600.

[10] Melanie Birke and Holger Dette. A note on testing the covariance matrix for large dimension. *Statist. Probab. Lett.*, 74(3):281–289, 2005. ISSN 0167-7152. doi: 10.1016/j.spl.2005.04.051. URL http://dx.doi.org/10.1016/j.spl.2005.04.051.

[11] T. Tony Cai and Zongming Ma. Optimal hypothesis testing for high dimensional covariance matrices. *Bernoulli*, 19(5B):2359–2388, 2013. ISSN 1350-7265. doi: 10.3150/12-BEJ455. URL http://dx.doi.org/10.3150/12-BEJ455.

[12] Song Xi Chen and Ying-Li Qin. A two-sample test for high-dimensional data with applications to gene-set testing. *Ann. Statist.*, 38(2):808–835, 2010. ISSN 0090-5364. doi: 10.1214/09-AOS716. URL http://dx.doi.org/10.1214/09-AOS716.

[13] Song Xi Chen, Li-Xin Zhang, and Ping-Shou Zhong. Tests for high-dimensional covariance matrices. *J. Amer. Statist. Assoc.*, 105(490):810–819, 2010. ISSN 0162-1459. doi: 10.1198/jasa.2010.tm09560. URL http://dx.doi.org/10.1198/jasa.2010.tm09560.
[14] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. *Ann. Statist.*, 41(6):2786–2819, 2013. ISSN 0090-5364. doi: 10.1214/13-AOS1161. URL http://dx.doi.org/10.1214/13-AOS1161.

[15] Yuan Shih Chow and Henry Teicher. *Probability theory*. Springer Texts in Statistics. Springer-Verlag, New York, third edition, 1997. ISBN 0-387-98228-0. doi: 10.1007/978-1-4612-1950-7. URL http://dx.doi.org/10.1007/978-1-4612-1950-7. Independence, interchangeability, martingales.

[16] A. P. Dempster. A high dimensional two sample significance test. *Ann. Math. Statist.*, 29:995–1010, 1958. ISSN 0003-4851.

[17] A. P. Dempster. A significance test for the separation of two highly multivariate small samples. *Biometrics*, 16:41–50, 1960. ISSN 0006-341X.

[18] Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory. *Ann. Statist.*, 36(6):2757–2790, 2008. ISSN 0090-5364. doi: 10.1214/07-AOS581. URL http://dx.doi.org/10.1214/07-AOS581.

[19] Jianqing Fan, Peter Hall, and Qiwei Yao. To how many simultaneous hypothesis tests can normal, Student’s t or bootstrap calibration be applied? *J. Amer. Statist. Assoc.*, 102(480):1282–1288, 2007. ISSN 0162-1459. doi: 10.1198/016214507000000969. URL http://dx.doi.org/10.1198/016214507000000969.

[20] Thomas J. Fisher, Xiaoqian Sun, and Colin M. Gallagher. A new test for sphericity of the covariance matrix for high dimensional data. *J. Multivariate Anal.*, 101(10):2554–2570, 2010. ISSN 0047-259X. doi: 10.
[21] Stuart Geman. A limit theorem for the norm of random matrices. *Ann. Probab.*, 8(2):252–261, 1980. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198004)8:2<252:ALTFTN>2.0.CO;2-4&origin=MSN.

[22] Gene H. Golub and Charles F. Van Loan. *Matrix computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013. ISBN 978-1-4214-0794-4; 1-4214-0794-9; 978-1-4214-0859-0.

[23] Dandan Jiang, Tiefeng Jiang, and Fan Yang. Likelihood ratio tests for covariance matrices of high-dimensional normal distributions. *J. Statist. Plann. Inference*, 142(8):2241–2256, 2012. ISSN 0378-3758. doi: 10.1016/j.jspi.2012.02.057. URL http://dx.doi.org/10.1016/j.jspi.2012.02.057.

[24] S. John. The distribution of a statistic used for testing sphericity of normal distributions. *Biometrika*, 59:169–173, 1972. ISSN 0006-3444.

[25] Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. *Ann. Statist.*, 29(2):295–327, 2001. ISSN 0090-5364. doi: 10.1214/aos/1009210544. URL http://dx.doi.org/10.1214/aos/1009210544.

[26] Shota Katayama and Yutaka Kano. A new test on high-dimensional mean vector without any assumption on population covariance matrix.

[27] Shota Katayama, Yutaka Kano, and Muni S. Srivastava. Asymptotic distributions of some test criteria for the mean vector with fewer observations than the dimension. *J. Multivariate Anal.*, 116:410–421,
[28] Michael R. Kosorok and Shuangge Ma. Marginal asymptotics for the "large p, small n" paradigm: with applications to microarray data. *Ann. Statist.*, 35(4):1456–1486, 2007. ISSN 0090-5364. doi: 10.1214/009053606000001433. URL http://dx.doi.org/10.1214/009053606000001433.

[29] Olivier Ledoit and Michael Wolf. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. *Ann. Statist.*, 30(4):1081–1102, 2002. ISSN 0090-5364. doi: 10.1214/aos/1031689018. URL http://dx.doi.org/10.1214/aos/1031689018.

[30] Weidong Liu and Qi-Man Shao. A Carmér moderate deviation theorem for Hotelling’s T^2-statistic with applications to global tests. *Ann. Statist.*, 41(3):1204–1231, 2013. ISSN 0090-5364. doi: 10.1214/13-AOS1082. URL http://dx.doi.org/10.1214/13-AOS1082.

[31] Vladimir A Marčenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of random matrices. *Sbornik: Mathematics*, 1(4):457–483, 1967.

[32] Hisao Nagao. On some test criteria for covariance matrix. *Ann. Statist.*, 1:700–709, 1973. ISSN 0090-5364.

[33] Alexei Onatski, Marcelo J. Moreira, and Marc Hallin. Asymptotic power of sphericity tests for high-dimensional data. *Ann. Statist.*, 41(3):1204–1231, 2013. ISSN 0090-5364. doi: 10.1214/13-AOS1100. URL http://dx.doi.org/10.1214/13-AOS1100.

[34] Stephen Portnoy. On the central limit theorem in \mathbb{R}^p when $p \to \infty$. *Probab. Theory Related Fields*, 73(4):571–583, 1986. ISSN 0178-
[35] Yumou Qiu and Song Xi Chen. Test for bandedness of high-dimensional covariance matrices and bandwidth estimation. *Ann. Statist.*, 40(3):1285–1314, 2012. ISSN 0090-5364. doi: 10.1214/12-AOS1002. URL http://dx.doi.org/10.1214/12-AOS1002.

[36] Murray Rosenblatt. Remarks on a multivariate transformation. *Ann. Math. Statistics*, 23:470–472, 1952. ISSN 0003-4851.

[37] Haskell P. Rosenthal. On the subspaces of L^p ($p > 2$) spanned by sequences of independent random variables. *Israel J. Math.*, 8:273–303, 1970. ISSN 0021-2172.

[38] S. N. Roy. *Some aspects of multivariate analysis*. John Wiley and Sons Inc., New York; Indian Statistical Institute, Calcutta, 1957.

[39] A. I. Sakhanenko. Estimates in the invariance principle in terms of truncated power moments. *Sibirsk. Mat. Zh.*, 47(6):1355–1371, 2006. ISSN 0037-4474. doi: 10.1007/s11202-006-0119-1. URL http://dx.doi.org/10.1007/s11202-006-0119-1.

[40] James R. Schott. Testing for complete independence in high dimensions. *Biometrika*, 92(4):951–956, 2005. ISSN 0006-3444. doi: 10.1093/biomet/92.4.951. URL http://dx.doi.org/10.1093/biomet/92.4.951.

[41] Muni S. Srivastava. Some tests concerning the covariance matrix in high dimensional data. *J. Japan Statist. Soc.*, 35(2):251–272, 2005. ISSN 1882-2754. doi: 10.14490/jjss.35.251. URL http://dx.doi.org/10.14490/jjss.35.251.

[42] Muni S. Srivastava. A test for the mean vector with fewer observations than the dimension under non-normality. *J. Multivariate Anal.*, 100(3):
518–532, 2009. ISSN 0047-259X. doi: 10.1016/j.jmva.2008.06.006. URL http://dx.doi.org/10.1016/j.jmva.2008.06.006.

[43] Muni S. Srivastava, Shota Katayama, and Yutaka Kano. A two sample test in high dimensional data. *J. Multivariate Anal.*, 114:349–358, 2013. ISSN 0047-259X. doi: 10.1016/j.jmva.2012.08.014. URL http://dx.doi.org/10.1016/j.jmva.2012.08.014.

[44] Mark S. Veillette and Murad S. Taqqu. Properties and numerical evaluation of the Rosenblatt distribution. *Bernoulli*, 19(3):982–1005, 2013. ISSN 1350-7265. doi: 10.3150/12-BEJ421. URL http://dx.doi.org/10.3150/12-BEJ421.

[45] Kenneth W. Wachter. The strong limits of random matrix spectra for sample matrices of independent elements. *Ann. Probability*, 6(1):1–18, 1978.

[46] Wei Biao Wu. Nonlinear system theory: another look at dependence. *Proc. Natl. Acad. Sci. USA*, 102(40):14150–14154 (electronic), 2005. ISSN 1091-6490. doi: 10.1073/pnas.0506715102. URL http://dx.doi.org/10.1073/pnas.0506715102.

[47] Wei Biao Wu and Mohsen Pourahmadi. Nonparametric estimation of large covariance matrices of longitudinal data. *Biometrika*, 90(4):831–844, 2003. ISSN 0006-3444. doi: 10.1093/biomet/90.4.831. URL http://dx.doi.org/10.1093/biomet/90.4.831.

[48] Han Xiao and Wei Biao Wu. Asymptotic theory for maximum deviations of sample covariance matrix estimates. *Stochastic Process. Appl.*, 123(7):2899–2920, 2013. ISSN 0304-4149. doi: 10.1016/j.spa.2013.03.012. URL http://dx.doi.org/10.1016/j.spa.2013.03.012.

[49] Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah. On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. *Probab.*
[50] Rongmao Zhang, Liang Peng, and Ruodu Wang. Tests for covariance matrix with fixed or divergent dimension. *Ann. Statist.*, 41(4):2075–2096, 2013. ISSN 0090-5364. doi: 10.1214/13-AOS1136. URL http://dx.doi.org/10.1214/13-AOS1136.