Rational gRNA design based on Transcription Factor Binding Data

David Bergenholm¹,²#, Yasaman Dabirian¹,²#, Raphael Ferreira¹,²#, Verena Siewers¹,², Florian David¹,², and Jens Nielsen¹,²,³,*

¹Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
²Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
³BioInnovation Institute, Ole Maaløes Vej 3, 200 Copenhagen N, Denmark

*Corresponding author: Jens Nielsen (nielsenj@chalmers.se)

#These authors contributed equally
Abstract

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of Saccharomyces cerevisiae transcription factor binding data to obtain a better understanding of the interplay between transcription factor binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9-VPR towards binding sites of Gcr1-Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9-VPR was targeted next to a transcription factor binding motif, whereas downregulation or no change was observed when dCas9 was bound on a transcription factor motif. This suggests a steric competition between dCas9 and the specific transcription factor. Integrating transcription factor binding data, therefore, proved to be useful for designing gRNAs for CRISPRi/a applications.

Keywords: Transcription factor binding, CRISPRa, Saccharomyces cerevisiae, Glycolytic promoters, gRNA design.
Introduction

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas system, a defense mechanism involved in phage immunity in many bacteria (1), has received considerable attention for its application in genome engineering (2, 3). There are different types of CRISPR systems (4), and the one being mainly employed for genome editing and gene regulation is based on the type II system from *Streptococcus pyogenes*, which uses a single Cas protein, Cas9 together with a single guide RNA (gRNA) (5, 6). The Cas9 protein has been extensively characterized and engineered in several studies, resulting in Cas9 variants with different catalytic properties (7, 8). In one approach, the two nuclease domains were mutated (RuvC^{D10A} and HNH^{H840A}), resulting in a catalytically inactive Cas9, which is often referred to as dCas9 (endonuclease-deficient Cas9) (9, 10). This variant has been widely used as a programmable tool for gene regulation, referred to as CRISPR interference or CRISPR activation (CRISPRa). Such regulation enables both repression of the target gene when dCas9 is expressed as it is or when fused to a repressor domain, such as the mammalian transcriptional repressor domain Mxi (11), or activation when fused to an activator domain, such as the tripartite VPR composed of the three transcriptional activators VP64, p65 and Rta (12), resulting in a CRISPR-based transcription factor (crisprTF) system. Depending on where in the promoter region the crisprTF binds, different transcriptional regulation can be achieved (13). The impact of crisprTF binding is influenced by several parameters, including the distance to the TATA-box (or the TATA-like sequence) or the transcription start site (TSS), nucleosome occupancy and interference with the binding of other TFs in the same region. Achieving predictive and precise gene regulation is, however, challenging, and this is mainly due to the complexity of the regulatory processes and our limited understanding of them (14, 15).

Most transcription factors in *S. cerevisiae* act as activators (16, 17) and are involved in the recruitment of the pre-initiation complex and RNA polymerase II, leading to the initiation of gene transcription. Gcr1, Gcr2, Tye7 are all extensively studied transcriptional activators in yeast. Gcr1 and Gcr2 act as heterodimers where Gcr1 includes the DNA binding domain and Gcr2 the activating domain. The heterodimer binds to the consensus motif GGAWGC. Notably, the Gcr1-Gcr2
heterodimer has most of its targets identified in the glycolytic pathway (18-20). Tye7 is a basic helix-loop-helix transcriptional activator with the consensus binding motif (CAT)CACGTG. Most of its targets are also identified in the glycolytic pathway (21). The co-localization of Gcr1-Gcr2 and Tye7, especially in the glycolytic pathway, has previously been reported (22, 23). One interesting aspect of the TF-DNA interaction is to identify which binding event constitutes a change in gene expression. In combinatorial studies investigating deletion of both a specific TF gene and its binding sites (BSs), only 10-20% of the TF-targeted genes showed changes in expression levels upon TF gene deletion (24). One reason might be redundancies in the system as many TFs have a paralogue, for example, the genes encoding the transcription factors Fkh1p and Fkh2p. However, with the usage of CRISPRi/a the importance of a specific TF binding event could potentially be identified through the competition between the TF and dCas9.

In this study, we use previously established high-resolution binding profiles (chromatin immunoprecipitation (ChIP-exo) for Gcr1-Gcr2 and Tye7. We then use CRISPRa (dCas9-VPR) to target their identified binding sites and analyze the effect of this competition.

Material and Methods

Chemicals and Reagents

DNA gel extraction- and plasmid purification kits were purchased from Thermo Fischer Scientific. The Gibson Assembly® Master mix was purchased from New England Biolabs. Phusion High-Fidelity DNA Polymerase (ThermoFisher Scientific) was used for PCR amplification. All reagents used for media preparation were purchased from Formedium unless otherwise noted.

Plasmid and Strain Construction

S. cerevisiae strain CEN.PK113-11C (MATa SUCMAL2-8′ his3Δ1 ura3-52) was used as the background strain for transformation with the promoter-GFP cassettes and the corresponding gRNA
plasmids targeting the specific promoters. For standard cloning procedures, competent *E. coli* cells, DH5α, were routinely used. YPD medium, containing 10 g/L yeast extract, 20 g/L casein peptone and 20 g/L glucose, was used when preparing yeast competent cells. For selection of yeast transformants carrying *URA3*-based plasmids and a *HIS3*-based cassette, synthetic complete medium plates without uracil and histidine (SC-URA-HIS) containing 6.7 g/L yeast nitrogen base (YNB) without amino acids, 0.77 g/L complete supplement mixture without uracil and histidine (CSM-URA-HIS), 20 g/L agar and 20 g/L glucose were used. For fluorescence measurements, yeast strains were cultured in defined minimal medium containing 7.5 g/L (NH₄)₂SO₄, 14.4 g/L KH₂PO₄, 0.5 g/L MgSO₄·7H₂O, 20 g/L glucose, 2 mL/L trace metal- and 1 mL/L vitamin solution (25). The pH was adjusted to 6.5 with KOH. For culturing *E. coli* cells, lysogenic broth (LB) supplemented with 100 mg/L ampicillin was used.

The plasmid containing dCas9-VPR (pERA-109) (26), was used for all the dCas9-based experiments. The gRNAs were designed using Benchling (www.benchling.com), and the sequences can be seen in Table S1 in Supporting Information. The promoter sequences were based on the 1000 bp region upstream the start codon of their respective genes. The promoters were ordered from Twist Bioscience (San Francisco, CA, USA), and cloned into the integrative vector p395 (27) together with GFP and an N-degron, which provided GFP with a half-life of around 70 min, as described previously (28). The N-degron and GFP were ordered as a fragment from Twist Bioscience (San Francisco, CA, USA) and amplified using primers 1 and 2, and the backbone, p395 vector, was amplified using primers 3 and 4 (Table S2, Supporting Information). The respective promoters, N-degron tag and GFP were assembled into the backbone p395 using the Gibson Assembly Master Mix (New England Biolabs). These resulted in the plasmids pDYR01-10 (Table S3, Supporting Information). All plasmids were verified through restriction digestion and sequencing. The plasmids were then digested with NotI for 1 h and the fragments were transformed into the CEN.PK113-11C background strain. The transformation of the dCas9-VPR based plasmids pDYR11-55 (Table S3, Supporting Information) resulted in the strains DYR001-055 (Table S4, Supporting Information).
Fluorescence measurements

All strains were analyzed in a 48-well FlowerPlate at 1200 rpm, employing a Biolector (m2p-labs GmbH). Cultures were started from a preculture grown for 24 h, at an OD$_{600}$ of 0.1 in 1 mL minimal medium. For calculating the biomass, scattered light is measured using excitation at 488 nm and emission at 600 nm as well as a gain of 20. For measuring the GFP signal, excitation at 488 nm and emission at 520 nm was used as well as a gain of 20. Biological triplicates were used in all experiments, to be able to ensure that the GFP readout was comparable between runs we included triplicates of several promoters (P_{TDH3} run 1 and 2, P_{PGK1} run 1 and 2, P_{GPM1} run 1 and 3).
Results and Discussion

The aim of the study was to better understand the interplay between dCas9 and TF binding in a promoter region. This knowledge could be used to direct the design of gRNAs for CRISPRi/a. In addition, it could also provide information on the importance of specific TF binding sites for gene regulation.

To answer this, we used the toolbox T-rEx developed in our lab (www.sysbio.se/tools/trex) to analyze the binding of TFs and to perform statistical analysis on the TF bindings. A TF binds to the genome and was assigned a position (peak) if the signal (reads) was higher than the noise (signal-to-noise ratio), the value of this signal-to-noise ratio is then called the peak strength (29). A motif can be identified based on the peak position. Analysis of peak and binding motifs were performed on samples taken either from glucose- or ethanol-limited chemostats as these conditions are most comparable to that of batch cultures in mid log phase and ethanol phase. We identified three TFs, Gcr1, Gcr2 and Tye7, targeting an overlapping set of genes within the central carbon metabolism (CCM). Out of the 18 genes targeted by all of the three TFs Gcr1-Gcr2 and Tye7, we sought to focus on 10 of these genes distributed across the CCM (Figure 1) for further analysis.

Based on this peak and motif identification of the selected genes (Table S5, Supporting Information), we targeted these identified TF binding sites with dCas9-VPR using 3-5 rationally designed gRNAs per promoter. These gRNAs either overlapped with the motif of Gcr1-Gcr2 or Tye7 or bound outside of it (Figure 2a). Depending on the location of the protospacer adjacent motif (PAM) site, the gRNA fully or partially covered the TF binding motif. Additionally, a gRNA target site (20 bp) is commonly longer than the typical motif (8-10 bp), and thus the gRNA covered not only a motif but also much of the entire binding region and potentially other binding sites. The gRNA and dCas9-VPR were co-expressed in strains containing one of the selected promoters coupled to a gene encoding green fluorescent protein (GFP) (Figure 2a). An example of how the gRNAs were located is shown for the ENO1 promoter (Figure 2b) where gRNA1 is located on top of a Gcr1-Gcr2 binding site, gRNA2 and gRNA3 are located outside of any binding site, gRNA4 is located on top of a Tye7 (and Ino2-
Ino4) binding site and gRNA0 is located close to TATA box. Cells were grown in batch cultivations for 35 h and their fluorescence was analyzed over time and normalized to the OD. A typical GFP profile of 6 different strains, 5 of which were expressing gRNAs, can be seen in Figure 2c. While some gRNAs had no effect (ENO1-21), others resulted in upregulation (ENO1-31) or in downregulation (ENO1-11 and ENO1-41) of GFP expression, where the control represents the expression profile using the ENO1 promoter with dCas9-VPR expressed but without any gRNA. The normalized fluorescence curves for the remaining promoters can be seen in Supporting Information (Figure S1) and the raw data be found in Supporting Information 2.

To investigate the overall gRNA effect, GFP fluorescence data of the strains expressing gRNAs targeted to one of the motifs and strains expressing the non-motif targeted gRNAs were separately pooled. Figure 3 shows the fluorescence fold-change (FC) of the strains expressing gRNAs binding motifs and non-motif regions, respectively. A Student's t-test was used on the log2FC to verify whether the binding of gRNAs on certain areas within a promoter resulted in significant changes in fluorescence output. When a gRNA was targeted to one of the motifs, the GFP expression level was either unchanged or decreased, while if bound to a non-motif region the GFP expression was increased (Figure 3a). These results indicate the importance of choosing the gRNA site in relation to other TF binding sites as they show that binding of dCas9-VPR either on top or outside a TF binding site can drastically change its influence on gene transcription. We wanted to look further into the relationship of the GFP expression and gRNA binding site by taking the binding strength into account.

The peak strength of a TF, i.e. the measure of probability that a TF will occupy a specific site during the ChIP-exo experiment, seems to be correlated to the resulting fold change in gene expression when the site was targeted with dCas9-VPR. When a gRNA was targeted close to a high peak strength region it resulted in a positive FC, while targeting a gRNA to block a high peak strength region resulted in a negative FC and the effect increased with increasing peak strength of the TF at this site (Figure 3b). For example, gRNAs bound on Tye7 motifs with peaks strength 41 and 192 resulted in a log2FC of -0.8 and -4.3, respectively, while gRNAs bound next to Tye7 motifs with peaks strength 55 and 105 resulted in a log2FC of 0.6 and 1.7, respectively. This means that the...
dCas9-VPR acts as a *de facto* repressor the stronger the occupancy of the TF binding is, and it drives out the endogenous transcriptional activator. This indicates that dCas9-VPR cannot compensate for the strong activation observed from the native activators. The correlation of the log2FC and the peak strength in the ethanol phase is rather strong while for the glucose phase it is weaker although the same trend can be observed. One should note that the cultivation method for the ChIP-exo experiment (chemostat) and the CRISPRi/a analysis (batch culture) were not the same, however, the same genes were targets under batch cultivations (18-20).

Nevertheless, these results indicate that there is a direct connection between the binding strength of a TF and the gene expression change resulting from CRISPRi/a, where a negative effect can be seen if the gRNA is bound on top of a TF binding site while we can see a positive effect if the gRNA is bound outside of an activating TF binding site. To investigate if the nucleosome occupancy had any effect on the resulting fold change we overlaid nucleosome data adapted from (30) with our gRNA binding sites, and this showed that there was no difference in nucleosome occupancy between the non-motif-targeted gRNAs and the motif-targeted gRNAs. Overall, the nucleosome occupancy was low in the tested promoters. Thus, the gRNA binding was most likely not affected by the nucleosome occupancy, and we can, therefore, rule nucleosome occupancy out as an explanation for why the motif targeting led to lower expression levels compared to the targeting of non-motif regions (Figure S2, Supporting Information). To investigate whether dCas9 perturbs transcription initiation or if there is indeed competition occurring, we looked into the gRNAs that resulted in overexpression to investigate their placement in comparison with the closest motif. If all gRNA target sites that resulted in overexpression were upstream of a motif this would suggest that the dCas9 was perturbing the transcription. However, we found no such evidence. The gRNAs resulting in overexpression were located both upstream and downstream of motifs (Table S5, Supporting Information). One should note that there are now duplicated promoters in the cell (the endogenous and the inserted reporter promoter), which could cause transcription factor dilution. In a study using the *TDH3* promoter for 2 different reporters (mRuby2 and Venus) there was, however, no effect seen compared to only using one reporter (mRuby2) (31). The number of gene targets of the transcription factors ranges from 50-330, and we are therefore confident that one additional promoter will have low to no dilution effect. It
is reported that the residence time of dCas9 and its target DNA is approximately 206 min (32). This indicates that the dissociation of dCas9 from its DNA target is very weak, whereas a TF has a more dynamic, transient behavior where the dissociation ranges from milliseconds to seconds (33). Thus, a competitive state occurs between the TF and dCas9.

Conclusions

We demonstrate that by integrating peak and motif identification from TF data into the gRNA design, one can move one step closer to predictable up- or downregulation of genes, even with dCas9 fused to a strong activator system. The strategies used in our study can also be further employed to obtain a more fundamental understanding of the role the activators Gcr1, Gcr2 and Tye7 play and their impact on a given promoter.

Upon its binding to the promoter, a TF helps to stabilize the chromatin structure (34), and competition between the TF and the dCas9 might destabilize such structure. The dissociation of TFs is transient and thus very fast while the dCas9 has a very slow dissociation. Many TFs act together in a cooperative manner to increase their binding to DNA (35). dCas9-activator has also shown to be cooperative, in the same manner as TFs, when multiple gRNAs have been introduced on the same promoter (36). Similar cooperative mechanisms might be taking place if the dCas9 is bound close to the TF binding site, together increasing the expression even further (37). However, if dCas9 competes with the TF, the TF is most likely outcompeted by the dCas9 due to the significant differences in dissociation (33, 38). The activation domains of VPR might play an important role in why we observe a decrease in expression. In our case, activation mediated by VPR seems to be weaker than the activation from the individual TFs and so we see less activation when dCas9 is bound on top of TF binding site. Taken these factors together, we propose the model presented in Figure 4.

The underlying principle when designing gRNAs for activation is to bind in close proximity to a TF motif to obtain a positive effect and far upstream of the TATA box in order to avoid steric hindrance of the TATA-binding protein, which thereby can prevent the RNA polymerase from initiating transcription. The peak strength of the closest TF is influential to what degree the dCas9-activation can occur, the stronger the peak strength the more significant the increase in expression.
This might be due to chromatin stabilization from the combined effect, cooperativity, of the TF and dCas9 binding. Binding dCas9 directly on top of a TF binding site results in competition and outcompetes the activating TF resulting in decreased expression.

Supplementary data

Supplementary data is available online. The supplementary datasets include supplementary tables and figure, raw data from fluorescence and OD measurements, gRNA sequences as well as plasmid sequences.

Funding

This work was supported by the Novo Nordisk Foundation (grant no. NNF10CC1016517) and the Knut and Alice Wallenberg Foundation.

Conflict of interest

The authors declare no conflict of interest.
References

1. Jinek M, et al. (2012) A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (New York, N.Y.) 337(6096):816.
2. Jinek M, et al. (2013) RNA-programmed genome editing in human cells. eLife 2:e00471.
3. Mali P, et al. (2013) RNA-Guided Human Genome Engineering via Cas9. Science (New York, N.Y.) 339(6121):823.
4. Makarova KS, et al. (2011) Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9(6):467-477.
5. Hsu Patrick D, Lander Eric S, & Zhang F (2014) Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 157(6):1262-1278.
6. Doudna JA & Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science (New York, N.Y.) 346(6213):1258096.
7. Hu JH, et al. (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57.
8. Slaymaker IM, et al. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science (New York, N.Y.) 351(6268):84.
9. Qi Lei S, et al. (2013) Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 152(5):1173-1183.
10. Perez-Pinera P, et al. (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nature Methods 10:973.
11. Bernards R (1995) Transcriptional Regulation: Flipping the Myc switch. Current Biology 5(8):859-861.
12. Chavez A, et al. (2015) Highly efficient Cas9-mediated transcriptional programming. Nature methods 12(4):326-328.
13. Farzadfard F, Perli SD, & Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. Acs Synth Biol 2(10):604-613.
14. Jensen MK (2018) Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS yeast research 18(4).
15. Deaener M, Mejia J, & Alper HS (2017) Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae. Acs Synth Biol 6(10):1931-1943.
16. Rando OJ, & Winston F (2012) Chromatin and transcription in yeast. Genetics 190(2):351-387.
17. Hahn S & Young ET (2011) Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189(3):705-736.
18. Sasaki H & Uemura H (2005) Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Yeast 22(2):111-127.
19. Uemura H & Fraenkel DG (1990) gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae. Mol Cell Biol 10(12):6389-6396.
20. Baker HV (1986) Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol Cell Biol 6(11):3774-3784.
21. Löhning C & Ciriacy M (1994) The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Tyl-mediated gene expression. *Yeast* 10(10):1329-1339.
22. Nishi K, *et al.* (1995) The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SG1 gene, which encodes a novel basic-helix-loop-helix protein. *Mol Cell Biol* 15(5):2646.
23. Holland P, Bergenholm D, Borlin CS, Liu G, & Nielsen J (2019) Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions. *Nucleic Acids Res*.
24. Gitter A, *et al.* (2009) Backup in gene regulatory networks explains differences between binding and knockout results. *Mol Syst Biol* 5:276.
25. Verduyn C, Postma E, Scheffers WA, & Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. *Yeast* 8(7):501-517.
26. Jensen ED, *et al.* (2017) Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. *Microbial Cell Factories* 16(1):46.
27. Jensen NB, *et al.* (2014) EasyClone: method for iterative chromosomal integration of multiple genes Saccharomyces cerevisiae. *FEMS yeast research* 14(2):238-248.
28. Hackett EA, Esch RK, Maleri S, & Errede B (2006) A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. *Yeast* 23(5):333-349.
29. Bergenholm D, Liu G, Holland P, & Nielsen J (2018) Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion. *mSystems* 3(4).
30. Dang W, *et al.* (2014) Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of caloric restriction via induction of genotoxic stress response. *Cell Metab* 19(6):952-966.
31. Lee ME, DeLoache WC, Cervantes B, & Dueber JE (2015) A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. *ACS synthetic biology* 4(9):975-986.
32. Ma H, *et al.* (2016) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. *The Journal of cell biology* 214(5):529-537.
33. Swift J & Coruzzi GM (2017) A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. *Gene regulatory mechanisms* 1860(1):75-83.
34. Yan C, Chen H, & Bai L (2018) Systematic Study of Nucleosome-Displacing Factors in Budding Yeast. *Mol Cell* 71(2):294-305 e294.
35. Adams CC & Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. *Mol Cell Biol* 15(3):1405-1421.
36. Perez-Pinera P, *et al.* (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. *Nature methods* 10(10):973-976.
37. Angelici B, Mailand E, Haefliger B, & Benenson Y (2016) Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells. *Cell Reports* 16(9):2525-2537.
38. Jones DL, *et al.* (2017) Kinetics of dCas9 target search in Escherichia coli. *Science (New York, N.Y.)* 357(6358):1420-1424.
Figure 1. T-rEx assisted TF identification and targets. We were interested in TFs involved in the central carbon metabolism and found a high correlation between several TFs and respective genes, where especially Gcr1-Gcr2 and Tye7 showed to be bound to several overlapping genes. 18 genes were identified in the core glycolytic pathway, where 10 of these (underscored) were followed up on in further experiments.
Figure 2. **Experimental design and output.** a) Promoter-GFP constructs were co-expressed together with dCas9-VPR in three different scenarios; 1) with no gRNA, 2) with a gRNA targeting a binding site of the transcription factors Gcr1-Gcr2 or Tye7 (BS) or 3) with a gRNA targeting a region outside of a TF BS. b) The ENO1 promotor with the gRNA target sites and the binding sites of either Gcr1-Gcr2 or Tye7 completely or partially covered as well as gRNA sites not located on any binding site. c) Example of fluorescence level over time normalized to OD using GFP couple to the ENO1 promoter and the gRNAs expressed from a plasmid encoding also dCas9-VPR.
Figure 3. Gene expression changes when targeting dCas9-VPR to a TF motif or non-motif position. The log2 fold change (log2FC) of the GFP signal is designated to either the motif or the non-motif group. a) gRNAs were designed to target motif or non-motif positions within 10 glycolytic promoters placed upstream of GFP. These motifs are bound by either Gcr1, Gcr2 or Tye7. p designates the log2FC p-value of the student’s t-test. b) Correlation of the peak strength to the closest transcription factors binding site and the fluorescence, log2FC[GFP], output in each case with binding of gRNA to a motif or non-motif.
Figure 4. Proposed model of binding cooperativity and competition between dCas9-VPR and an activating TF. a) The gRNA site and the TF binding site are in close proximity to each other. Cooperativity between the two helps to stabilize the DNA, which leads to a higher activation. The higher the likelihood of TF binding to the BS, the higher the cooperativity effect leading to increased GFP expression. b) Targeting the gRNA to the TF binding site leads to an instability in the system where the TF and dCas9 compete. The dissociation of dCas9 with the promoter is significantly slower than the dissociation of the TF, which might lead to an almost complete abolishment of TF binding. A lowered expression level for many of these cases indicates that the VPR activation domain is not as efficient as the activation domains on the native TFs.