Conformal invariance of the writhe of a knot

R. Langevin
Institut de Mathématiques de Bourgogne, Université de Bourgogne

J. O’Hara*
Department of Mathematics, Tokyo Metropolitan University

March 14, 2008

Abstract
We give a new proof of the conformal invariance of the writhe of a knot from a conformal geometric viewpoint.

Key words and phrases. writhe, conformal invariant.
2000 Mathematics Subject Classification. Primary 57M25, Secondary 53A30.

1 Introduction
Suppose K is a framed knot, i.e. there is a unit normal vector field e_2 along K. A 2-component link $K \cup K + \varepsilon e_2$ ($|\varepsilon| \ll 1$) can be considered a closed ribbon. Let Lk and Tw be the linking number and the total twist of $K \cup K + \varepsilon e_2$, and Wr the writhe of K. Then we have

$$Lk = Wr + Tw.$$ (1)

When the knot K has nowhere vanishing curvature and e_2 is the principal normal vector, Lk is called the self-linking number of the knot and denoted by Sl. The equation (1) was proved in this case in [Ca1, Ca2, Ca3, Po], and in [Wh] in general. It plays an important role in the application of the knot theory to molecular biology ([Fu1, Fu2, Wr-Ba]).

When the knot K is given by $K = f(S^1)$ the writhe is given by the Gauss integral:

$$Wr(f) = \frac{1}{4\pi} \iint_{S^1 \times S^1} \frac{\det(f'(s), f'(t), f(s) - f(t))}{|f(s) - f(t)|^3} \, ds \, dt.$$ (2)

*This joint work was done during the second author’s stay in Dijon which was supported by JSPS.
(the reader is referred to [AKT] for the details concerning writhe). Banchoff and White showed that the absolute value of the writhe is conformally invariant ([BW]). To be precise, they showed

Theorem 1.1 ([BW]) Suppose I is an inversion in a sphere. Then we have

$$\text{Wr}(I(K)) = -\text{Wr}(K).$$

It is a corollary of

Theorem 1.2 ([BW]) Suppose I is an inversion in a sphere. Then we have

$$\text{Tw}(I(K)) \equiv -\text{Tw}(K) \pmod{\mathbb{Z}}.$$ \hspace{1cm} (4)

In this paper, using techniques in conformal geometry, we give new proofs of Theorem 1.1 and a special case of Theorem 1.2 when K has nowhere vanishing curvature and e_2 is the unit principal normal vector field.

2 Notations

Throughout the paper we use the following notations.

We assume that a knot $K = f(S^1)$ is oriented. We denote the positive tangent vector \dot{f} by $v = v(x)$.

We denote the circle through $x, y,$ and z by $\Gamma(x, y, z)$. When one of $x, y,$ and z, say z is ∞, $\Gamma(x, y, \infty)$ means the line through x and y. When x is a point on a knot K, $\Gamma(x, x, y)$ denotes the circle (or line) which is tangent to K at x that passes through y. We assume that it is oriented by v at x. Especially, when $y = x$ $\Gamma(x, x, x)$ denotes the oriented osculating circle. (We consider lines as circles through ∞.)

The union of osculating circles $\bigcup_{x \in K} \Gamma(x, x, x)$ is called the curvature tube ([BW]).

Suppose x is a point on a knot K. We denote a sphere through the osculating circle $\Gamma(x, x, x)$ and y ($y \neq x$) by $\Sigma(x, x, x, y)$. It is uniquely determined generically, i.e., unless $y \in \Gamma(x, x, x)$. When $y = \infty$ $\Sigma(x, x, x, \infty)$ means the plane through $\Gamma(x, x, x)$.

3 Proof of Theorem 1.2 in special case

In this section we assume that a knot $K = f(S^1)$ has nowhere vanishing curvature and the unit normal vector field e_2 along K is given by the principal normal vectors. In this case the total twist is equal to $\frac{1}{2\pi}$ times the total torsion which we denote by $T\omega$:

$$T\omega = \frac{1}{2\pi} \int_K \tau dx,$$

where τ denotes the torsion of the knot. We will show in this section

2
Proposition 3.1 If both K and $I(K)$ have nowhere vanishing curvatures then
\[T\omega(I(K)) \equiv -T\omega(K) \pmod{\mathbb{Z}}, \] (5)
where I is an inversion in a sphere.

We remark that the above proposition can be proved by Theorem 6.3 of [CSW] which gives
\[T\omega(K) = \frac{1}{2\pi} \int_K \tau dx \equiv \frac{1}{2\pi} \int_K Td\rho \pmod{\mathbb{Z}}, \]
where T is the conformal torsion and ρ is the conformal arc-length.

Lemma 3.2 Suppose a point P does not belong to the osculating circle $\Gamma(x_0, x_0, x_0)$ of a knot K at x_0. (We allow $P = \infty$.) Then, infinitesimally speaking, the sphere $\Sigma(x, x, x, P)$ rotates around the circle $\Gamma(x_0, x_0, P)$ at $x = x_0$ as x travels in K. In other words,
\[\lim_{x_1 \to x_0} (\Sigma(x_0, x_0, x_0, P) \cap \Sigma(x_1, x_1, x_1, P)) \supset \Gamma(x_0, x_0, P). \] (6)

Proof: Let $\Sigma(x, y, z, w)$ denote a sphere through $x, y, z,$ and w. Then
\[
\lim_{x_1 \to x_0} (\Sigma(x_0, x_0, x_0, P) \cap \Sigma(x_1, x_1, x_1, P)) \\
= \lim_{x_1 \to x_0} \left(\lim_{y_1 \to x_1} (\Sigma(y_0, x_0, x_1, P) \cap \Sigma(x_0, x_1, y_1, P)) \right) \\
\supset \lim_{x_1 \to x_0} \Gamma(x_0, x_1, P) = \Gamma(x_0, x_0, P).
\]

There is an alternative computational proof using the Lorentzian exterior product introduced in [LO].

□

We show that the total torsion of the image of K by an inversion in a sphere with center P is equal to the total angle variation of the rotation of the sphere $\Sigma(x, x, x, P)$ as x goes around in K. In order to take into account the sign of the torsion, we have to consider the orientations.

Fix $P \notin \Gamma(x, x, x)$, where we allow $P = \infty$. The osculating circle $\Gamma(x, x, x)$ divide the sphere $\Sigma(x, x, x, P)$ into two domains. Let D_1 be one of the two that does not contain P (gray disc of Figure 1 left). Assume $\Sigma(x, x, x, P)$ is given the orientation such that the restriction to D_1 induces the same orientation to the boundary ∂D_1 as that of $\Gamma(x, x, x)$ which is fixed in the previous section. Let $n(x)$ and $n_P(x)$ be the positive unit normal vectors to $\Sigma(x, x, x, P)$ at x and P respectively (Figure 1 left). Let $\Pi(x)$ and $\Pi_P(x)$ be the normal planes to $\Gamma(x, x, P)$ at x and P respectively. We assume that $\Pi(x)$ (or $\Pi_P(x)$) is oriented so that the algebraic intersection number of $\Gamma(x, x, P)$ and $\Pi(x)$ (or $\Pi_P(x)$) at x (or respectively, at P) is equal to $+1$.

Since $\Pi(x) \perp \Gamma(x, x, P)$, Lemma 3.2 implies
Corollary 3.3 Infinitesimally, the normal vector $n(x)$ to the sphere $\Sigma(x, x, x, P)$ rotates in the plane $\Pi(x)$ to K:

$$\frac{d}{dx} n(x) \in \Pi(x).$$ \hfill (7)

Let I be an inversion in a sphere with center P. We denote $I(x)$ and $I(K)$ by \tilde{x} and \tilde{K}. Then I maps the osculating circle $\Gamma(x, x, x)$ to the osculating circle $\Gamma(\tilde{x}, \tilde{x}, \tilde{x})$ of \tilde{K} at \tilde{x}, and the sphere $\Sigma(x, x, x, P)$ to the plane $\Sigma(\tilde{x}, \tilde{x}, \tilde{x}, \infty)$. Let $\tilde{n}(\tilde{x})$ be the positive unit normal vector to $\Sigma(\tilde{x}, \tilde{x}, \tilde{x}, \infty)$. Then

$$\tilde{n}(\tilde{x}) = -n_P(x)$$ \hfill (8)

(Figure 1).

![Diagram of geometric transformation](image)

Figure 1:

The above convention of orientation implies that $\tilde{n}(\tilde{x})$ is equal to the unit binormal vector of \tilde{K}. Lemma 3.2 implies that $\tilde{n}(\tilde{x})$ rotates in $\Pi(\tilde{x})$ at \tilde{x}. Our convention of the orientation of $\Pi(\tilde{x})$ implies

Lemma 3.4 The torsion of \tilde{K} is equal to the angle velocity of \tilde{n} with respect to the arc-length \tilde{s}:

$$\tau(\tilde{K})(\tilde{x}) = \varepsilon(\tilde{x}) \left| \frac{d\tilde{n}}{d\tilde{s}}(\tilde{x}) \right| \quad (\varepsilon(\tilde{x}) \in \{+1, -1\}),$$ \hfill (9)

where $\varepsilon(\tilde{x})$ is the signature of the rotation of \tilde{n} at \tilde{x} with respect to the orientation of $\Pi(\tilde{x})$.

In other words, we have

$$\tau(\tilde{K})(\tilde{x}) = \tilde{v} \cdot \left(\tilde{n} \times \frac{d\tilde{n}}{d\tilde{s}} \right),$$

4
where \(\tilde{v} \) denotes the positive unit tangent vector to \(\tilde{K} \).

Since the positive unit tangent vector to \(\Gamma(x, x, P) \) at \(P \) is equal to \(-\tilde{v}(\tilde{x})\), the orientations of \(\Pi_P(x) \) is opposite to that of \(\Pi(\tilde{x}) \). Therefore, (8) and Lemma 3.4 imply

\[
\tau(\tilde{K})(\tilde{x}) = -\varepsilon_P \left| \frac{ds}{ds} \left| \frac{dn_P}{ds} \right| \right. (\varepsilon_P \in \{+1, -1\}),
\]

where \(\varepsilon_P \) is the signature of the rotation of \(n_P \) with respect to the orientation of \(\Pi_P(x) \). Then Lemma 3.2 implies

\[
\left| \frac{ds}{ds} \right| = \left| \frac{dn}{ds} \right| \quad \text{(Figure 3)},
\]

therefore we have

Lemma 3.5 *The torsion of \(\tilde{K} \) at \(\tilde{x} \) is equal to the negative of the angle velocity of \(n \) in \(\Pi(x) \) with respect to the arc-length \(s \) of \(K \) up to the multiplication by the Jacobian:*

\[
\tau(\tilde{K})(\tilde{x}) = -\varepsilon(x) \left| \frac{ds}{ds} \right| \left| \frac{dn}{ds} \right| (\varepsilon(x) \in \{+1, -1\}),
\]

where \(\varepsilon(x) \) is the signature of the rotation of \(n \) at \(x \) with respect to the orientation of \(\Pi(x) \).

In other words, we have

\[
\tau(\tilde{K})(\tilde{x}) = -\left| \frac{ds}{ds} \right| v \cdot \left(n \times \frac{dn}{ds} \right).
\]

Thus we are led to
Figure 3: $\angle n(x) \cdot n(x_1) = \angle n_P(x) \cdot n_P(x_1) = \angle \Sigma(x, x, x, P) \cdot \Sigma(x_1, x_1, x_1, P)$

Proposition 3.6 Let K be a knot with nowhere vanishing curvature, I an inversion in a sphere with center P, and $\widetilde{K} = I(K)$. Assume that \widetilde{K} has nowhere vanishing curvature, which happens if and only if P is not contained in the curvature tube of K. Then the total torsion of \widetilde{K} is the negative of the total angle variation of the positive unit normal vector $n(x)$ to the sphere $\Sigma(x, x, x, P)$ as x goes around in K:

$$\int_I \tau(K)(\tilde{x}) d\tilde{x} = -\int_K \varepsilon |dn| = -\int_K v \cdot (n \times dn).$$

(11)

Corollary 3.7 Let K be a knot with nowhere vanishing curvature, and I_j ($j = 1, 2$) an inversion in a sphere with center P_j which is not contained in the curvature tube of K. Then the total torsion of $I_1(K)$ and $I_2(K)$ coincide modulo $2\pi \mathbb{Z}$:

$$\int_{I_1(K)} \tau d\tilde{x}_1 \equiv \int_{I_2(K)} \tau d\tilde{x}_2 \pmod{2\pi \mathbb{Z}}.$$

In other words,

$$T\omega(I_1(K)) - T\omega(I_2(K)) \in \mathbb{Z}.$$

Proof: Let n_j ($j = 1, 2$) be the positive unit normal vector to $\Sigma(x, x, x, P_j)$ at x, and θ_{21} the angle from n_1 to n_2 in the oriented plane $\Pi(x)$. Then Corollary 3.4 and the above Proposition imply

$$\int_{I_1(K)} \tau d\tilde{x}_1 - \int_{I_2(K)} \tau d\tilde{x}_2 = \int_K \varepsilon \theta_{21},$$

which is equal to $2\pi k$ ($k \in \mathbb{Z}$) since K is closed.

Proof of Proposition 3.1 Put $P_2 = \infty$ in the above Corollary.
4 Proof of Theorem 1.1

We first prove the following fact in our context, which implies Theorem 3.1 in the case when the knot has nowhere vanishing curvature.

Proposition 4.1 (Ch1, Pd) Suppose K has nowhere vanishing curvature. Then

$$4\pi \text{Wr}(K) = -2\int_K \tau + 4\pi k$$

for some $k \in \mathbb{Z}$.

In other words, $\text{Wr} + T\omega$ is an integer.

Proof: Assume $K = f(S^1)$ is parametrized by the arc-length. Suppose $S^1 = [0, L]/\sim$, where L is the length of K. Let φ be a map from $S^1 \times S^1 \setminus \Delta$ to S^2 given by

$$\varphi(s, t) = \frac{f(s) - f(t)}{|f(s) - f(t)|} (s \neq t).$$

Then the integrand of the writhe is equal to the pull-back of the standard area element of S^2 by φ:

$$\det(f'(s), f'(t), f(s) - f(t)) |f(s) - f(t)|^3 = \varphi \cdot (\varphi_s \times \varphi_t),$$

where $\varphi_s = \frac{\partial \varphi}{\partial s}$ and $\varphi_t = \frac{\partial \varphi}{\partial t}$. Therefore, 4π times the writhe is equal to the signed area of the image of

$$D = \{(s, t) | 0 \leq s \leq L, s < t < s + L\}$$

by φ. Let S be the closure of $\varphi(D)$. Then S is an oriented “surface” (a continuous image of $S^1 \times [0, L]$) possibly with self-overlaps in S^2 whose “boundary” (the image of $S^1 \times \{0, L\}$) is given by

$$\partial S = C_+ \cup (-C_-),$$

where C_+ and C_- denote the positive and negative tangential indicatrices:

$$C_+ = \varphi(\Delta_+) = \{v(s) = \hat{f}(s) | 0 \leq s \leq L\},$$

$$C_- = \varphi(\Delta_-) = \{-v(s) = -\hat{f}(s) | 0 \leq s \leq L\}.$$

We assume that the indicatrices are oriented so that s increases in the positive direction.

Let $\Gamma(s)$ denote a great circle in S^2 which is tangent to C_+ at $v(s)$ (and to C_- at $-v(s)$). We remark that C_+ has nowhere vanishing tangent vector since the knot has nowhere vanishing curvature. Note that $C_+ \cup C_-$ is the envelope of the family $\{\Gamma(s)\}_{0 \leq s \leq L}$. We assume that $\Gamma(s)$ has an orientation compatible with that of C_+ at $v(s)$. Let $\Gamma_+(s)$ be a semi-circle of $\Gamma(s)$ from $v(s) \in C_+$ to
\[-v(s) \in C_- \] in the positive direction of \(\Gamma(s) \), and \(S' \) a region in \(S^2 \) swept by \(\Gamma_+(s) \) as \(s \) varies in \([0, L] \). Then \(S' \) is given by
\[
S' = \{ w(s, t) = (\cos t)v(s) + (\sin t)\frac{\dot{v}}{|\dot{v}|}(s) \mid 0 \leq s \leq L, 0 \leq t \leq \pi \}.
\]

It is an oriented “surface” (a continuous image of \(S^1 \times [0, \pi] \)) possibly with self-overlaps in \(S^2 \) whose “boundary” (the image of \(S^1 \times \{0, \pi\} \)) is \(C_+ \cup (-C_-) \).

The signed area of \(S' \) is given by
\[
\text{Area}(S') = \int_0^L \int_0^\pi w \cdot (w_s \times w_t)\, ds\, dt.
\]

Since \(\frac{\dot{v}}{|\dot{v}|} \) is equal to the principal normal vector \(e_2 \) of the knot \(K \), we have
\[
w \cdot (w_s \times w_t) = \det ((\cos t)e_1 + (\sin t)e_2, (\cos t)\kappa e_2 + (\sin t)e_1, -(\sin t)e_1 + (\cos t)e_2) = -\tau \sin t,
\]

which implies
\[
\text{Area}(S') = -2 \int_0^L \tau \, ds = -4\pi T \omega(K).
\]

Since both \(S \) and \(S' \) have the boundary \(C_+ \cup (-C_-) \), \(S \cup (-S') \) is a cycle of \(S^2 \), i.e. an oriented “surface” (a continuous image of a torus) possibly with self-overlaps without a boundary. Therefore, the signed area of \(S \cup (-S') \) is equal to \(4\pi k \) for some integer \(k \). It follows that
\[
\text{Area}(S \cup (-S')) = \text{Area}(S) - \text{Area}(S') = 4\pi \text{Wr} + 4\pi T \omega = 4\pi k \ (k \in \mathbb{Z}),
\]

which completes the proof. \(\square \)

Corollary 4.2 If both \(K \) and \(I(K) \) have nowhere vanishing curvatures then
\[
\text{Wr}(I(K)) = -\text{Wr}(K).
\]

Proof: Let \(I_j \ (j = 0, 1) \) be an inversion in a sphere with center \(P_j \) which is not contained in the curvature tube of \(K \). Then Proposition \ref{prop} implies that
\[
\text{Wr}(I_0(K)) + T\omega(I_0(K)) \in \mathbb{Z},
\]
\[
\text{Wr}(I_1(K)) + T\omega(I_1(K)) \in \mathbb{Z}.
\]

Then Corollary \ref{cor} implies
\[
\text{Wr}(I_0(K)) - \text{Wr}(I_1(K)) \in \mathbb{Z}.
\]

Join \(P_0 \) and \(P_1 \) by a smooth path \(P_t \). Let \(I_t \) be an inversion in a sphere with center \(P_t \). Then \(\text{Wr}(I_t(K)) \) is a continuous function of \(t \) (\ref{prop}), and hence
\[
\text{Wr}(I_0(K)) = \text{Wr}(I_1(K)).
\]
When \(P_1 \) goes to \(\infty \) and the radius of the sphere of the inversion also goes to \(+\infty \), \(I_1(K) \) approaches the mirror image of \(K \) and hence \(\text{Wr}(I_1(K)) \) approaches \(-\text{Wr}(K) \), which completes the proof. \(\square \)

Proof of Theorem 1.1 Suppose the curvature of \(K \) vanishes somewhere. We have only to show that \(K \) can be approximated, with respect to the \(C^2 \)-topology, by a knot with non-vanishing curvature. This can be done as follows. The curvature tube of \(K \) is non-compact as it contains a line. But we can still find a point \(P \) with a very big distance from \(K \) which is not contained in the curvature tube. Let \(I \) be an inversion in a sphere with center \(P \) and radius approximately equal to the distance between \(P \) and \(K \). We can get a desired knot by taking the mirror image of \(I(K) \) thus constructed. \(\square \)

References

[AKT] J. Aldinger, I. Klapper, and M. Tabor, *Formulae for the calculation and estimation of writhe*, J. Knot Theory Ramifications. 4 (1995), 343–372.

[BW] T. Banchoff and J. H. White, *The behavior of the total twist and self-linking number of a closed space curve under inversions*, Math. Scand. 36 (1975), 254–262.

[Că1] G. Călugăreanu, *L’intégrale de Gauss et l’analyse des nœuds tridimensionnels*, Rev. Math. Pures Appl. 4 (1959), 5–20.

[Că2] G. Călugăreanu, *Sur les classes d’isotopie des nœuds tridimensionnels et leur invariants*, Czechoslovak Math. J. 11 (1961), 588–625.

[Că3] G. Călugăreanu, *O teoremă asupra înălțuirilor tridimensionale de curbe închise*, Comm. Acad. R. P. Romîne (1961), 829–832.

[CSW] G. Cairns, R. W. Sharpe and L. Webb, *Conformal invariants for curves and surfaces in three dimensional space forms*, Rocky Mountain Journal of Math. 24 (1994), 933–959.

[Ful1] F. B. Fuller, *The writhing number of a space curve*, Proc. Natl. Acad. Sci. USA 68 (1971), 815–819.

[Ful2] F. B. Fuller, *Decomposition of the linking of a closed ribbon: a problem from molecular biology*, Proc. Natl. Acad. Sci. USA 75 (1978), 3557–3561.

[LO] R. Langevin and J. O’Hara, *Conformally invariant energies of knots*, J. Inst. Math. Jussieu 4 (2005), 219–280

[Po] W. F. Pohl, *The self-linking number of a closed space curves*, J. of Math. Mech. 17 (1968), 975–985.

[Wh] J. H. White, *Self-linking and the Gauss integral in higher dimensions*, Amer. J. Math. 91 (1969), 693–728.
[Wh-Ba] J. H. White and W. R. Bauer, *Calculation of the twist and the writhe for representative models of DNA*, J. Mol. Biol. **189** (1989), 329–341.