ORCID number: Yan-Hong Deng 0000-0003-0540-1842; Yi-Mei Yang 0000-0002-9600-3761; Jian Ruan 0000-0003-1524-4448; Lin Mu 0000-0001-6042-4495; Shi-Qiang Wang 0000-0002-1295-1490.

Author contributions: Deng YH and Yang YM contributed equally to this manuscript and should be considered as co-first authors; Deng YH, Yang YM, Ruan J, Mu L, and Wang SQ designed the study and wrote the manuscript; all authors approved the revised version of the manuscript.

Institutional review board statement: The study was reviewed and approved by the Chongqing University Cancer Hospital Institutional Review Board.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: There is no conflict of interest to disclose.

Data sharing statement: No additional data are available.

STROBE statement: The authors have read the STROBE Statement

Abstract

BACKGROUND
The brain is the most complex organ in the human body. Treatment for a glioma always involves a multi-disciplinary team. Nursing care in fast-track surgery or enhanced recovery after surgery is such kind of work implemented by an interdisciplinary team to provide services to patients to improve their outcomes.

AIM
To explore the effects of nursing care in fast-track surgery on postoperative pain, psychological state, and patient satisfaction with nursing for glioma.

METHODS
From June 2018 to June 2020, 138 patients who underwent operation for glioma at Cancer Hospital Affiliated to Chongqing University were selected. They were categorized into groups according to different nursing care that they received. Of them, 69 patients receiving nursing care in fast-track surgery were included in an experimental group, and 69 patients receiving conventional postoperative nursing were included in a control group. Visual analogue scale was used to evaluate postoperative pain in the two groups immediately after the operation and at 3 d after the operation. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were used to evaluate the psychological status of patients immediately after operation and on the 3rd postoperative day. A self-made satisfaction scale for patient satisfaction with nursing was used to evaluate and compare patient satisfaction with nursing between the two groups.
INTRODUCTION

Glioma is a common central nervous system disorder and represents nearly 50% of all central nervous system diseases[1-3]. The complex condition of gliomas raises high demand on operation and its rapid postoperative progression places high demand on nursing strategies[4-7]. Nursing care in fast-track surgery also known as enhanced recovery after surgery is an ideal choice for nursing due to its characteristics of phased and early rehabilitation intervention, recovery of function, correcting disturbance to homeostasis, and maintaining function for organs to improve the efficacy of surgical treatment, increase the success rate of treatment, and reduce the clinical mortality[8,9]. Nursing care in fast-track surgery applied after the surgery can effectively promote postoperative rehabilitation, lessen postoperative trauma and stress disorder, relieve the effect of anesthesia-induced injury on psychological and emotional health, and accelerate early rehabilitation[10-13]. The present study investigated nursing care in fast-track surgery in patients with glioma and discuss its effects on postoperative pain, psychological state, and patient satisfaction.

RESULTS

Time to excretion, time to out-of-bed activities, and length of hospital stay were significantly shorter in the observation group than in the control group (P < 0.05). There was no significant difference in duration of operative time or intraoperative bleeding between the two groups (P > 0.05). There was no significant difference in postoperative pain score between the two groups (P > 0.05). The pain score was significantly lower in the observation group than in the control group at 3 d after the operation (P < 0.05). There was no significant difference in postoperative SAS or SDS score between the two groups (P > 0.05). SAS and SDS scores were significantly lower in the observation group than in the control group at 3 d after operation (P < 0.05). The rate of patient satisfaction with nursing was 94.2% in the observation group, which was significantly higher than that (81.2%) of the control group (P < 0.05).

CONCLUSION

Nursing care in fast-track surgery can relieve postoperative pain, anxiety, and depression, and improve patient satisfaction with nursing in patients with glioma, which is worthy of clinical application.

Key Words: Nursing care in fast-track surgery; Glioma; Visual analogue scale; Self-rating anxiety scale; Self-rating depression scale

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Surgery is the most common initial treatment for gliomas. How to reduce patients’ surgical stress response, optimize organ function, and facilitate their recovery is an important question. Nursing care in fast-track surgery may help to solve the problem. The present study reported the benefits of nursing care in fast-track surgery in patients with glioma. It was found that this kind of service shortened the time to excretion, time to out-of-bed activities, and length of hospital stay, relieved pain, lessened unhealthy emotions, and improved patient satisfaction.

Citation: Deng YH, Yang YM, Ruan J, Mu L, Wang SQ. Effects of nursing care in fast-track surgery on postoperative pain, psychological state, and patient satisfaction with nursing for glioma. World J Clin Cases 2021; 9(20): 5435-5441

URL: https://www.wjgnet.com/2307-8960/full/v9/i20/5435.htm

DOI: https://dx.doi.org/10.12998/wjcc.v9.i20.5435
MATERIALS AND METHODS

General information
One hundred and thirty-eight patients who underwent surgery for glioma at Cancer Hospital Affiliated to Chongqing University were selected between June 2018 and June 2020. They were categorized into groups based on nursing care that they received. Of them, 69 patients receiving nursing care in fast-track surgery were included in an experimental group and 69 patients receiving conventional nursing after the surgery were included in a control group. All the patients were diagnosed with glioma by imaging examination and laboratory test. Patients in fair condition without communication or perception disorders or other major illnesses were eligible for this study. All the participants provided written informed consent. The exclusion criteria included patients with complications of severe cardiopulmonary or kidney discorders, patients who cannot tolerate surgery, patients with severe psychological disorders or poor compliance, and patients with other malignant tumors. In the experimental group, 39 patients were male with an average age of 39.22 ± 10.21 (range, 20 to 56) years. In terms of tumor sites, 33 patients had glioma of the right frontal lobe, 20 had glioma of the right temporal pole, 9 had glioma of the right polar occipital lobe, and 7 had glioma of the left frontal lobe. The tumor had an average size of 4.78 ± 0.11 (range, 2 to 6) cm in diameter. The average course of disease was 157.41 ± 37.55 (range, 11 to 272) d. In the control group, 37 patients were male and the average age was 39.73 ± 11.09 (range, 21 to 57) years. For the tumor sites, 34 patients had glioma of the right frontal lobe, 19 had glioma of the right temporal pole, 7 had glioma of the right polar occipital lobe, and 9 had glioma of the left frontal lobe. The average tumor size was 5.11 ± 0.35 (range, 2 to 6) cm. The average course of disease was 163.17 ± 38.04 (range, 12 to 285) d. There was no statistically significant difference in variables such as gender, age, tumor sites, and course of disease between the two groups (P > 0.05).

Nursing care delivery strategies
In both groups, patients underwent surgery for glioma. Based on this, the experimental group received nursing care in fast-track surgery and the control group received conventional nursing. Nursing care in fast-track surgery included: (1) Preoperative health education. Before the operation, an effective communication was carried out between clinicians and nurses and patients and their family members, informing the latter information on their diseases such as causes of diseases, potential operational risks, necessity of surgery, potential complications, and corresponding interventions. By communication, the patients’ psychological state was known well, their personality traits were analyzed, and their knowledge about their disease was assessed pertinently to let them keep an optimistic attitude toward the treatment outcomes; (2) Intraoperative cooperation. During the operation, the patients should cooperate with clinicians and nurses’ treatment and clinicians and nurses should closely monitor the changes in vital signs, protect patient privacy, and maintain appropriate body temperature for the patients; and (3) Postoperative nursing care. First, urinary catheter was removed as early as possible based on the recovery of patients. Generally, extubation was feasible at 6 h after the surgery. Second, patient consciousness, heart rate, blood pressure, and breathing, as well as the color, nature, and volume of drainage, were primarily observed to discover the occurrence of possible complications promptly. Third, prophylactic patient controlled analgesia pump combined with nonsteroidal anti-inflammatory drugs was administered to patients for postoperative analgesia before the anesthetic effect disappeared completely. Moreover, pain was assessed regularly. In patients whose pain score was above 3 to 4, analgesia strategies should be adjusted timely. Fourth, patients received a volume-controlled infusion with daily intake not exceeding 1500 mL. Fifth, patients should recover oral feeding as early as possible based on the rehabilitation efficacy. Nursing care in the control group included wound care, urinary catheter care, and gastric tube care, and meanwhile postoperative complication monitoring, such as postoperative bleeding and pulmonary infection. Intensive monitoring was provided by the nurses who should report any abnormality without delay and help the clinicians with the management[14,15].

Measures
First, postoperative rehabilitation outcomes and pain score were compared between the two groups. Visual analogue scale was used to assess pain score at 3 d after the surgery on a 0 to 10 scale to assume 0 represents no pain and 10 represents unbearable pain. Second, postoperative psychological state was compared between the two
groups. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were used to evaluate psychological state immediately and at 3 d after the surgery. The higher the SAS and SDS scores, the more severe the symptoms. Third, patient satisfaction with nursing was compared between the two groups. For patient satisfaction survey, the patients rated the nursing that they received based on their feeling involving the attitude of the nurses, their operating skills, knowledge mastery, comfort, satisfaction with the environment, etc. The survey included 25 questions and every question had four options, namely, dissatisfied, partly satisfied, satisfied, and highly satisfied on a 1 to 4 scale. The maximum score on this survey was 100 points. Scores of ≤ 59, > 59 but ≤ 79, and > 79 represented dissatisfaction, satisfaction, and high satisfaction, respectively. Satisfaction rate was calculated as (number of satisfied patients + number of highly satisfied patients)/total number of patients × 100%.

Statistical analysis

SPSS22.0 was used to analyze the data in the study. Quantitative data are reported as the mean ± SD and Student’s t test was used to compare the difference between the two groups. Dichotomous data are reported as percentages and χ² test was used to compare the difference between the two groups. P < 0.05 represented that there was a significant difference.

RESULTS

In terms of postoperative rehabilitation outcome, time to excretion, time to out-of-bed activities, and length of hospital stay were significantly shorter in the observation group than in the control group (P < 0.05; Table 1). However, there was no significant difference in intraoperative bleeding between the two groups (P > 0.05).

For pain score immediately after the operation, there was no significant difference between the two groups (P > 0.05). At 3 d after the operation, pain score was significantly lower in the observation group than in the control group (P < 0.05; Table 2).

No significant difference was observed in SAS and SDS scores between the two groups immediately after the operation (P > 0.05). However, SAS and SDS scores were significantly lower in the observation group than in the control group (P < 0.05; Table 3).

With regard to patient satisfaction, the satisfaction rate was 94.2% in the observation group, which was significantly higher than that (81.0%) of the control group (P < 0.05; Table 4).

DISCUSSION

The effects of glioma may be devastating due to its complicated condition and fast progression[16,17]. Currently, the primary clinical therapy for glioma was surgical treatment. However, patients are prone to negative emotions including anxiety and depression because of postoperative injuries and this may lead to poor treatment and rehabilitation efficacy and outcomes. Nursing care in fast-track surgery can provide preoperative, intraoperative, and postoperative nursing by using effective comprehensive interventions perioperatively to promote postoperative rehabilitation[18,19]. Moreover, patients’ subjective perception of disease was improved by preoperative health education so that patient fear of disease and operation was relieved and patient negative emotions were reduced. At last, patient compliance with treatment was increased[20].

The present study applied nursing care in fast-track surgery in patients undergoing surgery for glioma. The results showed that time to excretion, time to out-of-bed activities, and length of hospital stay were significantly shorter in the observation group than in the control group. Furthermore, pain score and SAS and SDS scores were significantly lower in the observation group than in the control group immediately after the surgery and at 3 d after the surgery. These data imply that nursing care in fast-track surgery can promote postoperative rehabilitation, shorten length of hospital stay, relieve pain and negative emotions, and improve patient satisfaction in patients with glioma. Nursing care in fast-track surgery is a new method in nursing. Based on conventional nursing, it raises correct perception of disease in patients and their family members in different aspects, relieve patient fear of disease, improve quality of nursing, and help patient adapt and recover as soon as possible. In addition, nursing
Table 1 Comparison of postoperative rehabilitation outcomes

Group	n	Duration of operative time (min)	Intraoperative bleeding (mL)	Time to excretion (d)	Time to out-of-bed activities (d)	Length of hospital stay (d)
Control	69	73.25 ± 12.35	79.21 ± 17.33	4.82 ± 2.19	5.44 ± 1.02	14.76 ± 4.52
Experimental	69	71.67 ± 11.09	76.45 ± 21.05	3.36 ± 1.06	1.97 ± 0.67	9.53 ± 3.22
t	0.733	0.549	7.655	8.054	12.093	
P value	0.454	0.378	0.021	0.017	0.001	

Table 2 Pain score immediately after the operation and at 3 d after the operation

Group	n	Immediately after operation	3 d after operation
Control	69	4.65 ± 1.52	3.21 ± 0.73
Experimental	69	4.37 ± 1.63	1.25 ± 0.54
t	0.635	5.673	
P value	0.364	0.037	

Table 3 Differences in psychological status immediately after the operation and at 3 d after the operation

Group	n	SAS Immediately after operation	3 d after operation	SDS Immediately after operation	3 d after operation
Control	69	44.32 ± 11.63	33.04 ± 10.64	41.25 ± 9.53	26.43 ± 6.75
Experimental	69	41.21 ± 13.98	21.67 ± 9.45	38.95 ± 9.16	15.73 ± 5.33
t	0.635	12.112			
P value	0.364	0.001			

Table 4 Comparison of patient satisfaction with nursing between the two groups, n (%)

Group	n	Dissatisfied	Partly satisfied	Satisfied	Highly satisfied	Satisfaction rate (%)
Control	69	5 (7.2)	8 (11.6)	29 (42.0)	27 (39.1)	81.2
Experimental	69	1 (1.4)	3 (4.3)	30 (43.5)	35 (50.7)	94.2
χ^2						6.793
P value						0.031

care in fast-track surgery promote patient recovery in many ways including comprehensively assessing patient condition and emotion, monitoring changes in progression, extubating, encouraging patient to get out of bed and recover patient oral feeding as early as possible, and reducing infusion volume to shorten the length of stay in the hospital[21,22].

To sum up, nursing care in fast-track surgery can relieve postoperative pain and negative emotions of anxiety and depression and raise patient satisfaction with nursing in patients undergoing surgery for glioma. It deserves clinical promotion.

CONCLUSION

The present study explored the effects of nursing care in fast-track surgery on patients with glioma. These interventions implemented in the preoperative, intraoperative, and postoperative periods show benefits ranging from relieving pain and bad emotions to shortening time to recovery in patients with glioma undergoing surgery.
ARTICLE HIGHLIGHTS

Research background
Considerable evidence exists demonstrating that nursing care in fast-track surgery can bring a serial of benefits in patients undergoing surgery. Surgery is an initial treatment for glioma. Nursing care is essential for the postoperative recovery of patients with glioma. To what extent the patients with glioma can benefit from fast-track recovery technique deserves to be discussed.

Research motivation
To find evidence on the role of nursing care implemented in fast-track surgery in reducing length of hospital stay, time to function recovery, pain, bad emotions, and surgery associated complications in patients with glioma.

Research objectives
To report the efficacy of nursing care in fast-track surgery in patients with glioma.

Research methods
The study enrolled 138 patients who underwent surgery for glioma. They were categorized into an experimental group and a control group with 69 patients in each group. The experimental group was given nursing care in fast-track surgery including preoperative patient education, intraoperative patient-clinician-nurse cooperation, and postoperative nursing care and the control group was given conventional nursing after the surgery. Patient outcomes were compared between the two groups.

Research results
Nursing care in fast-track surgery shortened the time to excretion, time to out-of-bed activities, and length of hospital stay and relieved pain and psychological state at 3 d after the surgery. Moreover, it improved patient satisfaction.

Research conclusions
Benefits of the enhanced recovery programs were showed and it further improves quality of life in long term post-surgical periods in patients with glioma.

Research perspectives
In the future, studies should focus on the long-term functional recovery of patients undergoing surgery for glioma under fast-track recovery technique settings.

REFERENCES
1 Li J, Cheng LL, Wang HP. Observation of postoperative complications and nursing in patients with malignant glioma. Huli Yu Jiankang 2016; 15: 337-339 [DOI: 10.3969/j.issn.1671-9875.2016.04.010]
2 Sun Z, Yang G. Effects of multidisciplinary care on psychological status, family function and quality of life. Zhongguo Yiya Daobao 2019; 16: 158-161, 166
3 Lyu HG, Raut CP. Enhanced recovery after surgery pathway in patients with soft tissue sarcoma. Br J Surg 2020; 107: e568 [PMID: 3266282 DOI: 10.1002/bjs.12000]
4 ZH. Efficacy of nursing in fast-track surgery in the perioperative management of ruptured intracranial aneurysm. Zhongguo Dangdai Yiya 2020; 27: 238-240
5 Wang T, Cao L, Dong X, Wu F, De W, Huang L, Wan Q. LINC01116 promotes tumor proliferation and neutrophil recruitment via DDX5-mediated regulation of IL-1β in glioma cell. Cell Death Dis 2020, 11: 302 [PMID: 32358484 DOI: 10.1038/s41419-020-2506-0]
6 García-Romero N, Palacin-Aliana I, Esteban-Rubio S, Madurga R, Riur-Rocabert S, Carrión-Navarro J, Presa J, Cuadrado-Castano S, Sánchez-Gómez P, Garcia-Sastre A, Nistal-Villan E, Ayuso-President J. Newcastle Disease Virus (NDV) Oncolytic Activity in Human Glioma Tumors Is Dependent on CDKN2A-Type I IFN Gene Cluster Codeletion. Cells 2020; 9 [PMID: 32516884 DOI: 10.3390/cells9061405]
7 Brighi C, Reid L, Genovesi LA, Kojic M, Millar A, Brace Z, White AL, Day BW, Rose S, Whittaker AK, Pattick S. Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity. Theranostics 2020, 10: 6361-6371 [PMID: 32483457 DOI: 10.7150/thno.46468]
8 Balakrishnan A, Roy S, Fleming T, Leong HS, Schuermann C. The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance. Cancers (Basel) 2020; 12 [PMID: 32707733 DOI: 10.3390/cancers12071964]
9 Montgomery MK, Kim SH, Dovas A, Zhao HT, Goldberg AR, Xu W, Yagielski AJ, Cambarer MK, Patel KB, Mela A, Humala N, Thibodeaux DN, Shaik MA, Ma Y, Grinband J, Chow DS, Schevon C, Canoll P, Hillman EMC. Glioma-Induced Alterations in Neuronal Activity and Neurovascular Coupling during Disease Progression. Cell Rep 2020; 31: 555-567 [PMID: 32044961 DOI: 10.1016/j.celrep.2020.03.064]

10 Gao YL, Di LX, Zhang Q. Efficacy of nursing in fast-track surgery in patients with intracranial tumors. Zhongguo Zhongliu Linchuang Yu Kangfu 2019; 26: 617-620

11 Liu B, Liu S, Wang Y, Lu D, Chen L, Zheng T, Ma T, Zhang Y, Gao G, Qu Y, He S. Impact of neurosurgical enhanced recovery after surgery (ERAS) program on health-related quality of life in glioma patients: a secondary analysis of a randomized controlled trial. J Neurooncol 2020; 148: 107500 [PMID: 32294436 DOI: 10.1016/j.jneurooncol.2020.03.064]

12 Bernard H, Foss M. The impact of the enhanced recovery after surgery (ERAS) programme on community nursing. Br J Community Nurs 2014; 19: 184, 186-188 [PMID: 24385535 DOI: 10.12968/bjcn.2014.19.4.184]

13 Liang TR, Xie CF, Chen Q. Efficacy of nurses orientated nursing in fast-track surgery in patients with glioma. Shiyong Xinnaofeixueguanbing Zazhi 2018; 26: 162-164

14 Jia WC, Qi M, Tian YQ. Nursing in operating room for prevention and control of postoperative infection in patients with glioma. Zhongguo Zhongliu Linchuang Yu Kangfu 2020; 27: 464-466

15 Boitano TKL, Smith HJ, Rushton T, Johnston MC, Lawson P, Leath CA 3rd, Xhaja A, Guthrie MP, Straughn JM Jr. Impact of enhanced recovery after surgery (ERAS) protocol on gastrointestinal function in gynecologic oncology patients undergoing laparotomy. Gynecol Oncol 2018; 151: 282-286 [PMID: 30244961 DOI: 10.1016/j.ygyno.2018.09.009]

16 Miralpeix E, Nick AM, Meyer LA, Cata J, Lasala J, Mena GE, Gottumukkala V, Iniesta-Donate M, Salvo G, Ramirez PT. A call for new standard of care in perioperative gynecologic oncology practice: Impact of enhanced recovery after surgery (ERAS) programs. Gynecol Oncol 2016; 141: 371-378 [PMID: 26906066 DOI: 10.1016/j.ygyno.2016.02.019]

17 Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, Rockall TA, Young-Fadok TM, Hill AG, Snop M, de Boer HD, Urman RD, Chang GJ, Fichera A, Kessler H, Grass F, Whang EE, Fawcett WJ, Carli F, Lobo DN, Rollins KE, Balfour A, Baldini G, Riedel B, Ljungqvist O. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery after Surgery (ERAS®) Society Recommendations: 2018. World J Surg 2019; 43: 659-695 [PMID: 30426190 DOI: 10.1007/s00268-018-4844-y]

18 Bergstrom JE, Scott ME, Alimi Y, Yen TT, Hobson D, Machado KK, Tanner EJ 3rd, Fader AN, Temkin SM, Wellington S, Levinson K, Sokolinsky S, Lau B, Stone RL. Narcotics reduction, quality and safety in gynecologic oncology surgery in the first year of enhanced recovery after surgery protocol implementation. Gynecol Oncol 2018; 149: 554-559 [PMID: 29661495 DOI: 10.1016/j.ygyno.2018.04.003]

19 Cai Y, Yang G. Effect of systemic interventions on postoperative quality of life in patient with glioma. Zhongguo Zhongliu Linchuang Yu Kangfu 2018; 25: 331-333

20 Gentry ZL, Boitano TKL, Smith HJ, Eads DK, Russell JF, Straughn JM Jr. The financial impact of an enhanced recovery after surgery (ERAS) protocol in an academic gynecologic oncology practice. Gynecol Oncol 2020; 156: 284-287 [PMID: 31776038 DOI: 10.1016/j.ygyno.2019.11.017]

21 Chen B, Chen H. Efficacy of nursing care in fast-track surgery in patients undergoing surgery for glioma. Shiyong Xinnaofeixueguanbing Zazhi 2018; 26: 167-169

22 Zhao BF, Wang L, Wang Y, Ma L, Li MJ, Zheng M. Nursing care in fast-track surgery in patients with glioma. Zhongguo Linchuang Shenjing Waike Zazhi 2019; 24: 57-58
