The Role of Apoptosis Signal-regulating Kinase 1 in Lymphotoxin-β Receptor-mediated Cell Death*

Mei-Chieh Chen,1,a Ming-Jing Hwang,1 Yang-Chieh Chou,1 Wei-Hsu Chen,2,d Genhong Cheng,1 Hiroyasu Nakano,1,a,b Tien-Yau Luh,a Shen-Chih Mai,1,a,b and Shie-Liang Hsieh1,a,j

From the 1Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan, the 2Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, the 3Immunology Research Center, National Yang-Ming University, Taipei 11221, Taiwan, the 4Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, UCLA, Los Angeles, California 90095, the 5Department of Immunology, Juntendo University School of Medicine, Tokyo 113, Japan, and the 6Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

LIGHT (homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes) is a member of the tumor necrosis factor superfamily that can interact with lymphotoxin-β receptor (LTβR), herpes virus entry mediator, and decoy receptor (DcR3). In our previous study, we showed that LIGHT is able to induce cell death via the non-death domain containing receptor LTβR to activate both caspase-dependent and caspase-independent pathways. In this study, a LIGHT mutein, LIGHT-R228E, was shown to exhibit similar binding specificity as wild type LIGHT to LTβR, but lose the ability to interact with herpes virus entry mediator. By using both LIGHT-R228E and agonistic anti-LTβR monoclonal antibody, we found that signaling triggered by LTβR alone is sufficient to activate both caspase-dependent and caspase-independent pathways. Cross-linking of LTβR is able to recruit TRAF3 and TRAF5 to activate ASK1, whereas its activity is inhibited by free radical scavenger carboxyfullerenes. The activation of ASK1 is independent of caspase-3 activation, and kinase-inactive ASK1-KE mutant can inhibit LTβR-mediated cell death. This suggests that ASK1 is one of the factors involved in the caspase-independent pathway of LTβR-induced cell death.

Lymphotoxin-β receptor (LTβR)1 is a member of the tumor necrosis factor receptor (TNFR) superfamily and is ubiquitously

This paper is available on line at http://www.jbc.org

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 278, No. 18, Issue of May 2, pp. 16073–16081, 2003

Printed in U.S.A.

Published, JBC Papers in Press, February 3, 2003, DOI 10.1074/jbc.M208661200

LIGHT (homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes) is a member of the tumor necrosis factor superfamily that can interact with lymphotoxin-β receptor (LTβR), herpes virus entry mediator, and decoy receptor (DcR3). In our previous study, we showed that LIGHT is able to induce cell death via the non-death domain containing receptor LTβR to activate both caspase-dependent and caspase-independent pathways. In this study, a LIGHT mutein, LIGHT-R228E, was shown to exhibit similar binding specificity as wild type LIGHT to LTβR, but lose the ability to interact with herpes virus entry mediator. By using both LIGHT-R228E and agonistic anti-LTβR monoclonal antibody, we found that signaling triggered by LTβR alone is sufficient to activate both caspase-dependent and caspase-independent pathways. Cross-linking of LTβR is able to recruit TRAF3 and TRAF5 to activate ASK1, whereas its activity is inhibited by free radical scavenger carboxyfullerenes. The activation of ASK1 is independent of caspase-3 activation, and kinase-inactive ASK1-KE mutant can inhibit LTβR-mediated cell death. This suggests that ASK1 is one of the factors involved in the caspase-independent pathway of LTβR-induced cell death.

Lymphotoxin-β receptor (LTβR)1 is a member of the tumor necrosis factor receptor (TNFR) superfamily and is ubiquitously

* This work was mainly supported by National Science Council, Taiwan, Grants NSC 91-2320-B-010-053, NSC 91-2320-B010-092. Additional support came from the National Health Research Institute, Taiwan (NHRI-CN-BP-8902) and the Ministry of Education (89-B-PA22-2-4) under the Program for Promoting Academic Excellence of Universities. This work was also supported by Chi-Mei Foundational Hospital, Tainan, Grant CMYM 8902. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Present address: Department of Microbiology and Immunology, Taipei Medical University, Taipei 110, Taiwan.

‡ Present address: United Biomedical, Inc., New York, NY 11788.

§ Present address: Anawrahta Biotechnology, Taipei 251, Taiwan.

7 To whom all correspondence should be addressed: Institute of Microbiology and Immunology, National Yang-Ming University, ShihPai, Taipei 11221, Taiwan. Tel.: 886-2-82867161; Fax: 886-2-82821380; E-mail: shieh@ym.edu.tw.

8 Supported by Purscercery Research for Embryonic Science and Technology, Japan Science and Technology Corporation, and a grant from Human Frontier Science Program.

9 The abbreviations used are: LTβR, lymphotoxin-β receptor; ASK1, apoptosis signal-regulating kinase 1; IFN-γ, interferon-γ; HVEM, herpes virus entry mediator; TRAF, tumor necrosis factor receptor-associated factor; ROS, reactive oxygen species; C60, carboxyfullerenes; HA, influenza hemagglutinin; TNFR, tumor necrosis factor receptor; LTα, lymphotoxin-α; MEKK5, mitogen-activated protein kinase/extracellular signal-regulated kinase 6, JNK, c-Jun N-terminal kinase; mAb, monoclonal antibody; MEF, mouse embryonic fibroblast; MRP, myelin basic protein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; PIPES, 1,4-piperazineethanesulfonic acid; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid; VAD-FMK, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone; hLTβR, human LTβR.
duced cell death (15, 16, 18, 19), whereas TRAF2 and TRAF5 have been shown to be involved in the activation of NF-kB (17). Moreover, two serine/threonine protein kinases (p50 and p80) are reported to be associated with cytoplasmic region of LTβR (20), but their roles in LTβR-mediated signaling have not been elucidated yet.

Apoptosis signal-regulating kinase 1 (ASK1), also called mitogen-activated protein kinase/extracellular signal-regulated kinase 5 (MEKK5), can be activated in response to various stress signals, including genotoxic stress (21), oxidative stress, reactive oxygen species (ROS) (22), and laminar flow (23). Furthermore, the kinase-inactive mutant of ASK1 inhibits cell death induced by tumor necrosis factor, Fas ligation, anti-cancer drugs, or withdrawal of trophic factors (21, 24–27). ASK1 functions as an upstream component of the kinase cascades and interacts with a variety of molecules involved in stress-induced signaling pathways (21, 24). ASK1 phosphorylates and activates MKK4/7, which then activates the c-Jun NH2-terminal protein kinases (JNKs), also known as the stress-activated protein kinases. JNK activation requires phosphorylation at a specific motif (TPY). Moreover, ASK1 phosphorylates and activates MKK3 and MKK6, leading to activation of the p38 mitogen-activated protein kinases (24, 28, 29). It has been reported that JNK and p38 activations are abolished in kinase-inactive mutant (21, 24, 28, 29). It has been reported that JNK and p38 activations are abolished in kinase-inactive mutant (21, 24).

Plasmids and Transfection—Plasmids containing the hLTβR and hLTβR-CD proteins have been described (19). The hemagglutinin (HA)-tagged expression constructs of ASK1, catalytically inactive ASK1-KE (21), were kindly provided by Dr. Wen-Chen Yeh (32). The dominant negative TRAF mutants were provided by Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants) and Dr. Wen-Chen Yeh (32). The dominant negative TRAF mutants were provided by Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants) and Dr. Wen-Chen Yeh (32).

TABLE I

Ligand	LTβR-Fc	HVEM-Fc	
Ka (μM)	Kd (μM)	Ki (μM)	
LIGHT	2.99 ± 0.24	2.65 ± 0.50	8.72 ± 3.21
LIGHT-R	2.65 ± 0.50	2.99 ± 0.24	8.72 ± 3.21

Plasmids and Transfection—Plasmids containing the hLTβR and hLTβR-CD proteins have been described (19). The hemagglutinin (HA)-tagged expression constructs of ASK1, catalytically inactive ASK1-KE-HA, were kindly provided by Dr. Wen-Chen Yeh (32). The dominant negative TRAF mutants were provided by Dr. Wen-Chen Yeh (32, 35). The dominant negative TRAF mutants were provided by Dr. Wen-Chen Yeh (32, 35). The dominant negative TRAF mutants were provided by Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants) and Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants) and Dr. Wen-Chen Yeh (32). The dominant negative TRAF mutants were provided by Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants) and Dr. Bharat B. Aggarwal (TRAF3, -5, and -6 mutants).

Generation of Anti-LTβR Monoclonal Antibody—Monoclonal antibodies were prepared by immunizing Balb/c mice with recombinant human lymphotixin β receptor-Fe (hLTβR-Fe) protein (6). Spleen cells were fused with NS-1 cells, and hybridomas were screened by enzyme-linked immunosorbent assay. Anti-hLTβR monoclonal antibodies were selected by their specific binding to hLTβR but not to the Fe portion of human IgG1.

Generation of LIGHT Mutein—The cDNA of extracellular region of LIGHT was cloned into plZV5-His-FLAG (Invitrogen). Substitution of Arg five by glutamic acid was performed by overlap extension using polymerase chain reaction (33). The primers used for polymerase chain reaction were designed to introduce an Asn site as described in the followings: 5'GAGGTGATGCACCCGTTCACTC-3' (sense) and 5'GAGTGCACCCGTTCACTC-3' (antisense). The PCR products were digested with XhoI by E. coli. The digested PCR products were ligated at the XhoI site of pLZV5-His-FLAG-LIGHT to create pLZV5-His-FLAG-LIGHT(R228E). The construct was autosequenced and transfected into H9252 cells.
MB Mission Biotech) for verification of the mutation. The pIZ/5-His-FLAG-LIGHT(R228E) construct was transfected into SF21 cells by Lipofectamine™ (Invitrogen). Stable transfectants were selected with 500 μg/ml Zeocin (Invitrogen). Protein was purified by agarose beads conjugated with anti-FLAG antibody (M2) and followed by dialysis in phosphate-buffered saline as described (30).

Generation of ASK1-KE Stable Transfectants—ASK1-KE DNA construct (a gift from Dr. Wen-Chen Yeh) was transfected into Hep3B cells seeded in 96-well flat bottom plates at a density of 5 × 10^4 cells/well. After 25 h of transfection, cells were fixed and then stained with 5-bromo-4-chloro-3-indolyl-D-galactopyranoside (X-gal) to determine the percentage of apoptotic cells as described previously (19). The survival assay was equilibrated with phosphate-buffered saline, and sensorgrams were determined by surface plasmon resonance using BIAcore 2000. Hep3B2 cells were incubated with 50 ng/ml wild type LIGHT (upper panel) or LIGHT-R228E (lower panel) in conjunction with IFN-γ (100 units/ml). The LTβR-Fc, HVEM-Fc, DcR3-Fc, and human IgG1 (ranging from 10^-5 to 10 μg/ml) were added to culture medium, respectively, and incubated for 72 h to determine their inhibitory effect on LIGHT and LIGHT-R228E-mediated cell death.

Immunoblot Analysis—The expression of ASK1 in LTβR-mediated cell death was detected by autoradiography and quantified by a densitometer (Amersham Biosciences). ASK1 in LTβR-mediated cell death was detected by autoradiography and quantified by a densitometer (Amersham Biosciences).

Surface Plasmon Resonance—Association and dissociation rates of the interaction of LIGHT or LIGHT-R228E with human LTβR-Fc or HVEM-Fc were determined by surface plasmon resonance using a Biacore 2000. The LTβR-Fc, HVEM-Fc, DcR3-Fc, and human IgG1 (ranging from 10^-5 to 10 μg/ml) were added to culture medium, respectively, and incubated for 72 h to determine their inhibitory effect on LIGHT and LIGHT-R228E-mediated cell death.

Immunoblot Analysis—Cell lysates were prepared by the addition of lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% (v/v) Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride, 2 μg/ml leupeptin, and 2 μg/ml aprotinin). Equal amounts of protein were subjected to electrophoresis, transferred onto nitrocellulose membrane (Hybond-C extra, Amersham Biosciences), and reacted with appropriate antibodies in phosphate-buffered saline containing 5% nonfat dry milk, 0.02% Tween 20. Blots were then incubated with horseradish peroxidase-conjugated secondary antibodies and reacted with enhanced chemiluminescence reagents subsequently (Amersham Biosciences).

Surface Plasmon Resonance—Association and dissociation rates of the interaction of LIGHT or LIGHT-R228E with human LTβR-Fc or HVEM-Fc were determined by surface plasmon resonance using a Biacore 2000. The LTβR-Fc, HVEM-Fc, DcR3-Fc, and human IgG1 (ranging from 10^-5 to 10 μg/ml) were added to culture medium, respectively, and incubated for 72 h to determine their inhibitory effect on LIGHT and LIGHT-R228E-mediated cell death.

Immunoblot Analysis—Cell lysates were prepared by the addition of lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% (v/v) Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride, 2 μg/ml leupeptin, and 2 μg/ml aprotinin). Equal amounts of protein were subjected to electrophoresis, transferred onto nitrocellulose membrane (Hybond-C extra, Amersham Biosciences), and reacted with appropriate antibodies in phosphate-buffered saline containing 5% nonfat dry milk, 0.02% Tween 20. Blots were then incubated with horseradish peroxidase-conjugated secondary antibodies and reacted with enhanced chemiluminescence reagents subsequently (Amersham Biosciences).

Surface Plasmon Resonance—Association and dissociation rates of the interaction of LIGHT or LIGHT-R228E with human LTβR-Fc or HVEM-Fc were determined by surface plasmon resonance using a Biacore 2000. The LTβR-Fc, HVEM-Fc, DcR3-Fc, and human IgG1 (ranging from 10^-5 to 10 μg/ml) were added to culture medium, respectively, and incubated for 72 h to determine their inhibitory effect on LIGHT and LIGHT-R228E-mediated cell death.
Fig. 3. Activation of ASK1 induced by cross-linking of LTβR. HeLa cells were transfected with HA-tagged ASK1, followed by incubation with 10 μg/ml anti-LTβR antibody 31G4D8 (A) or 100 ng/ml LIGHT-R228E (B) for various time intervals. ASK1 was immunoprecipitated by anti-HA antibody, whereas the ASK1 kinase activity contained in the immunocomplex was determined by incubation with MBP as a substrate by in vitro kinase assay. C, the endogenous ASK1 of HeLa cells was precipitated by polyclonal anti-ASK1 antibody after treatment with 10 μg/ml 31G4D8 mAb, whereas its activity was determined by incubation with MBP as a substrate by in vitro kinase assay.

After treatment, 10 μl of 5 mg/ml MTT per well was added and incubated at 37°C for 4 h. Cells were then lysed by the addition of 50 μl of 10% SDS in 0.4 N HCl per well and incubated at 37°C for another 16 h. The optical density of each sample was determined by measuring the absorbance at 570 versus 650 nm using an enzyme-linked immunosorbent assay reader (TECAN; RainBow) (30).

Measurement of Caspase Activity—Cytosolic extracts were prepared by freezing and thawing of cells in extraction buffer (50 mM PIPES-NaOH, pH 7.0, 50 mM KCl, 5 mM EGTA, 2 mM MgCl2, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml leupeptin, 1 μg/ml pepstatin A) as described (34). Cell lysates (50 μg) were diluted with 500 μl of ICE standard buffer (100 mM HEPES-KOH buffer, pH 7.5, 10% sucrose, 0.1% CHAPS, 10 mM dithiothreitol, 0.1 mM/ml ovalbumin) and incubated at 30°C for 60 min with 20 μM fluorescent substrates. Fluorescence intensity was measured using a fluorescence spectrophotometer (Hitachi F-4500) at an excitation wavelength of 325 nm and emission wavelength of 392 nm.

RESULTS

Characterization of Agonistic Anti-LTβR-mAb (31G4D8) and LIGHT-R228E Mutein—Cross-linking of cell surface receptor by ligand or by agonistic antibodies can trigger signal transduction, and members of the TNFR superfamily are reported to be activated by agonistic antibodies, such as anti-human Fas antibody (CH11) and anti-mouse Fas antibody (Jo2). To study the signaling transduced by LTβR, monoclonal antibodies against human LTβR were raised. One of the selected clones, 31G4D8, is found to bind to LTβR specifically. Anti-LTβR mAb 31G4D8 does not have any cytotoxic effect to Hep3B2T2 or HT29, which are sensitive to LIGHT/IFN-γ-mediated cell death. However, in conjunction with IFN-γ, 31G4D8 mAb is able to induce cell death with similar extent as that induced by wild type LIGHT (Fig. 1). This observation is in agreement with the previous observation that overexpression of LTβR is able to induce cell death (19), and LIGHT mutein incapable of binding to LTβR loses its ability to induce cell death (35).

To further confirm this argument, we designed a recombinant LIGHT mutein to bind LTβR but not HVEM, using a strategy of molecular modeling. A three-dimensional model for the interaction of LIGHT and its receptors (LTβR, HVEM, and DcR3) was generated by homology modeling (Molecular Simulation Inc., San Diego, CA) based on the crystallographic complex structure of LTα and TNFRI (Protein Data Bank code 1TNR) (36–38). Residues of the receptor-binding sites of this system, conventionally denoted as the A-R interaction domain and the A-S interaction domain, were identified. A few charge or polar residues were chosen for site-specific mutagenesis with the prediction that their mutations would, depending on the type of receptor, either enhance or interrupt receptor binding through altered electrostatic interactions. One of the LIGHT muteins that we have substantially characterized, the mutation at amino acid 228 from arginine to glutamic acid (LIGHT-R228E) at the A-R interaction domain (see the model in Table 1), met the modeling objective of the present study.

The association and dissociation rates of wild type LIGHT and LIGHT-R228E to LTβR and HVEM were determined by surface plasmon resonance. As shown in Fig. 2 and Table I, the binding affinity of wild type LIGHT to both HVEM (KD = 8.81 ± 3.2 nM) and LTβR (KD = 8.72 ± 3.21 nM) is similar, whereas the binding affinity of LIGHT-R228E to HVEM is almost undetectable, and its binding affinity to LTβR (KD = 77.8 ± 41 nM) is reduced from that of the wild type but is clearly evident (Fig. 2B). The reduction in affinity of R228E for
LTβR-Fc was due to a decrease in association rate and an increase in dissociation rate (Table I). The binding of LIGHT-R228E to LTβR and the lack of it to HVEM were further confirmed by a competition analysis using LTβR-Fc or HVEM-Fc to inhibit wild type LIGHT and LIGHT-R228E-mediated cell death (Fig. 2C). Namely, wild type LIGHT/IFN-γ-induced cell death could be blocked by either LTβR-Fc or HVEM-Fc in a dose-dependent manner (Fig. 2C, upper panel), whereas LIGHT-R228E/IFN-γ-induced cell death was only blocked by LTβR-Fc and not by HVEM-Fc (Fig. 2C, lower panel). These observations provided direct evidence that the amino acid arginine 228 is essential for the interaction between LIGHT and HVEM, and LTβR alone is sufficient for LIGHT-mediated cell death.

Activation of ASK1 by 31G4D8 mAb and LIGHT-R228E — Oxidative stress was reported to disrupt the ASK1-thioredoxin complex and thereby to activate ASK1 (39). It has been shown that ROS play essential roles in LIGHT/IFN-γ-induced cell death (30); thus, we ask whether signaling through LTβR alone is enough to activate ASK1 activation to induce cell death. To address this question, HeLa cells were transfected with HA-tagged ASK1, followed by incubation with agonistic 31G4D8 mAb (Fig. 3A) or LIGHT-R228E (Fig. 3B) to test their ability to activate HA-tagged ASK1 in vitro kinase assay. As shown in Fig. 3A, a rapid increase of ASK1 activity was observed at 5 min after 31G4D8 treatment and observed to last for at least 60 min (Fig. 3A). LIGHT-R228E had a similar effect as 31G4D8 mAb in ASK1 activation but with distinct kinetics. ASK1 activity increased at 15 min, peaked at 60 min, and returned to basal level at 90 min when stimulated with LIGHT-R228E. The kinetics of endogenous ASK1 activation in Hep3B cells was similar to that of transfected HA-tagged ASK1 after 31G4D8 mAb stimulation (Fig. 3C). This demonstrated that ASK1 could be activated by LTβR-transduced signaling.

Inhibition of ASK1 Activation by TRAF Mutants — ASK1 has been implicated in transmitting TRAF-dependent signaling (32, 40). In order to investigate the roles of TRAFs on ASK1 activation induced by LTβR, we examined the effects of TRAF dominant negative (TRAF-DN) mutants in ASK1 activation. To address this question, HeLa cells were transfected with ASK1-KE (clones 5, 12, 13, and 52) and control vector were treated with LIGHT (50 ng/ml)/IFN-γ (100 units/ml) (B) or LIGHT-R228E (50 ng/ml)/IFN-γ (100 units/ml) (C) for 72 h. Cell viability was determined by MTT assays, whereas the percentage of survival rate was determined by measurement of A290 for cells treated with cytokines compared with cells cultured in medium alone.

Inactivation of ASK1 was further confirmed by a competition analysis using LTβR-Fc (Fig. 2C, lower panel) or HVEM-Fc (Fig. 2C, lower panel). These observations provided direct evidence that the amino acid arginine 228 is essential for the interaction between LIGHT and HVEM, and LTβR alone is sufficient for LIGHT-mediated cell death.

To further confirm this observation, we investigated the endogenous ASK1 activation induced by LIGHT in traf2−/−, traf3−/−, and traf5−/− MEFs. The ASK1 activation induced by TNFα is impaired in traf2−/− MEFs, which is consistent with previous report that TNFα-induced ASK1 activation is TRAF2-dependent (32). In contrast, the activation of ASK1 by LIGHT is not affected in traf2−/− MEFs (Fig. 4C, upper panel). However, the activation of endogenous ASK1 is inhibited in either traf3−/− or traf5−/− MEFs (Fig. 4C, lower panel), suggesting that LTβR-mediated ASK1 activation is via TRAF3 and TRAF5 but not TRAF2.

Involvement of ASK1 in LTβR-mediated Cell Death — We further asked whether activation of ASK1 is involved in LTβR-mediated cell death. It has been shown that overexpression of LTβR could induce HeLa cell death (19); thus, we co-transfected ASK1-KE, LTβR, and β-galactosidase to test its effect in LTβR-mediated cell death. At 24 h after transfection, the percentage of cell death in cells overexpressing full-length LTβR or cytoplasmic LTβR was ~56.6 and 53.7%, respectively, whereas the co-expression of ASK1-KE reduced the percentage of apo-

FIG. 5. Effects of ASK1 dominant negative mutant (ASK1-DN) on LTβR-mediated cell death. A, HeLa cells were co-transfected with DNA constructs expressing full-length LTβR (pFLAG-LTβR) or its cytoplasmic domain (FLAG-LTβR-CD), in conjunction with dominant mutants of ASK1, TRAF3, and pCMV-β-gal in a ratio of 7:1:7. Cells were stained with X-gal at 24 h after transfection, followed by examination under a phase-contrast microscope. The percentage of apoptotic cells was calculated as the number of blue cells with apoptotic morphology divided by the total number of blue cells. At least 1000 blue cells were counted for each sample. The data shown here are the averages ± S.D. of triplicate experiments. B and C, Hep3B2 cells overexpressing ASK1-KE (clones 5, 12, 13, and 52) and control vector were treated with LIGHT (50 ng/ml)/IFN-γ (100 units/ml) (B) or LIGHT-R228E (50 ng/ml)/IFN-γ (100 units/ml) (C) for 72 h. Cell viability was determined by MTT assays, whereas the percentage of survival rate was determined by measurement of A290 for cells treated with cytokines compared with cells cultured in medium alone.
ptotic cells to 19% (Fig. 5A). This suggests that ASK1 is involved in LTβR-mediated cell death. ASK1-KE and TRAF3-DN are not toxic to HeLa cells under the same condition.

We further examined the relationship between ASK1 activation and cell death induced by LIGHT/IFN-γ/H9253. Hep3BT2 cells stably expressing ASK1-KE were incubated with 100 ng/ml LIGHT, 100 ng/ml LIGHT-R228E, or 10 μg/ml 31G4D8 in conjunction with 100 units/ml IFN-γ for 6 h, Hep3BT2 cells or ASK1-KE/Hep3BT2 cells were stained with 5 μM 2′,7′-dihydrodichlorofluorescein diacetate at 37 °C for 15 min, followed by flow cytometry analysis to determine their fluorescence intensity. Line, medium; shadow, LIGHT/IFN-γ or 31G4D8 mAbs; mean fluorescence intensity is indicated. Hep3BT2 cells or ASK1-KE/Hep3BT2 were incubated with 100 ng/ml LIGHT, 100 ng/ml LIGHT-R228E, or 10 μg/ml 31G4D8 in conjunction with 100 units/ml IFN-γ, and caspase activities were determined by incubating the cell lysates with fluorescence substrate MCA-DEVD-APK (7-methoxy-coumarin-4-yl)acetyl-Asp-Glu-Val-Asp-Ala-Pro-Lys(2,4-dinitrophenyl)-OH). D, Hep3BT2 cells pretreated with 100 μM z-VAD-FMK were stimulated with 100 ng/ml LIGHT-R228E for 30 min, followed by immunoprecipitation using polyclonal anti-ASK1 antibody to determine endogenous ASK1 activity by an in vitro kinase assay. E, failure of caspase inhibitors to protect ASK1-KE/Hep3BT2 cells from LIGHT-R228E/IFN-γ-mediated cell death. Hep3BT2 and ASK1-KE/Hep3BT2 cells were pretreated with 100 μM z-VAD-FMK or 20 μM C60 (C3 form) for 1 h, followed by incubation in medium supplemented with 100 units/ml IFN-γ and 50 ng/ml LIGHT-R228E for 72 h. Cell viability was determined by MTT assay.

ASK1 Is Inhibited by ROS Scavenger but Not Caspase Inhibitor—It has been shown that ROS can induce dimerization of ASK1 and cause its activation in TNFα signaling (22), and inhibition of ROS production by C60 can inhibit LIGHT/IFN-γ-mediated cell death (30); thus, we are interested to know whether C60 can inhibit LTβR-mediated ASK1 activation. As shown in Fig. 6A (upper panel), pretreatment of C60 completely inhibits ASK1 activation in Hep3BT2 cells treated with LIGHT-R228E. This indicates that LTβR-mediated ASK1 activation is regulated by ROS. Moreover, the production of ROS induced by LTβR activation is not affected by ASK1-KE mutant; this further suggests that production of ROS is upstream to ASK1 activation in LTβR-mediated signaling (Fig. 6B).

It has been reported that ASK1-mediated cell death is via either a caspase-dependent or caspase-independent pathway (41, 42); thus, we ask whether caspase-3 activation is dependent on ASK1 activation induced by IFN-γ/LIGHT, IFN-γ/LIGHT-R228E, or IFN-γ/31G4D8. In Hep3BT2 cells stably expressing ASK1-KE, activation of caspase-3 by IFN-γ/LIGHT, IFN-γ/LIGHT-R228E, or IFN-γ/31G4D8 is partially inhibited (50%) (Fig. 6C), but ASK-KE does not have any effect on
caspase activation induced by transforming growth factor-β (data not shown). This demonstrated the important role of ASK1 for caspase-3 activation in LTβR-mediated signaling pathway. Moreover, caspase-3 inhibitor does not have any effect on ASK1 activation in Hep3BT2 cells when treated with LIGHT-R228E, suggesting that ASK1 is upstream to caspase-3 activation (Fig. 6D). To further determine the role of ASK1 in LTβR-mediated cell death, wild type Hep3BT2 and Hep3BT2/ASK-KE cells were incubated with LIGHT-R228E in the presence or absence of caspase inhibitor z-VAD-FMK. Compared with wild type Hep3BT2 cells, cells overexpressing ASK-KE (Hep3BT2/ASK-KE) are more resistant to LIGHT-R228E-mediated cell death (Fig. 6E). Moreover, the addition of z-VAD-FMK provides partial protective effect in both wild type Hep3BT2 and Hep3BT2/ASK-KE cells. The protective effect of caspase inhibitor z-VAD-FMK is less than the ASK1-KE dominant negative mutant, indicating that ASK1 plays a more important role than caspase-3 activation in LTβR-mediated cell death. In contrast, C60 could fully protect both wild type Hep3BT2 and Hep3BT2/ASK-KE cells from LTβR-mediated cell death. Since the activation of ASK1 is regulated by free radicals, we conclude that ASK1 is one of the factors activated by free radicals contributing to LTβR-induced cell death.

LTβR-induced ROS Release Is Not Affected in Caspase-3-deficient Cells or by z-VAD-FMK—After confirming the role of ROS in ASK1 activation, we further ask whether caspase acti-
ASK1 in LTβR-mediated Cell Death

In a previous study, we have demonstrated that LIGHT/IFN-γ can induce the production of free radicals, which in turn induce cell death via both caspase-dependent and -independent pathways (30). Moreover, signaling triggered by LTβR overexpression or agonistic anti-LTβR mAb is shown to be sufficient for LIGHT/IFN-γ-mediated cell death (19, 35). However, it is unclear whether signaling triggered by LTβR is still able to activate both caspase-dependent and caspase-independent pathways to induce cell death. Previously we have demonstrated that the caspase-dependent pathway plays a minor role in LIGHT/IFN-γ-mediated cell death, since caspase inhibitor z-VAD-FMK only provides partial protective effect to LIGHT/IFN-γ-induced cell death. In this study, we further ask whether signaling triggered by LTβR alone is enough to activate a caspase-dependent pathway and/or caspase-independent pathway to induce cell death. To clarify this issue, LIGHT mateines and agonistic antibody against LTβR were generated to test the questions raised above. Among the LIGHT-mateines generated, we find that the amino acid arginine 228 is crucial for LIGHT-HVEM interaction, since mutation of arginine 228 to glutamic acid 228 abolished the interaction between LIGHT and HVEM (Fig. 2). It has been shown that amino acid glycine 119 is critical for LIGHT-LTβR interaction (35); in complementation, we showed here that amino acid arginine 228 is essential for LIGHT-HVEM interaction. According to the homology model (shown in Table 1), both glycine 119 and arginine 228 interact with the receptor in the A-R interaction domain, but from different regions of LIGHT; whereas glycine 119 is located in the N-terminal A-A’ loop of LIGHT, arginine 228 is located in the G-H loop of the C-terminal. It will be of interest, and also of considerable use, for further studies to identify amino acid residues that are essential for LIGHT-DecR3 interactions.

Moreover, we further demonstrate that both LIGHT-R228E and agonistic antibody against LTβR still have the ability, like wild type LIGHT, to induce the production of free radicals and activate both caspase-dependent and -independent pathways to induce cell death. We find that LTβR-transduced signaling is able to activate ASK1 via the induction of free radicals (Fig. 6A), and activation of ASK1 also contributes to LTβR-mediated cell death (Fig. 6E); this observation thus reveals one of the mechanisms of LTβR-mediated caspase-independent pathway to induce cell death. Although ASK1 activity is not required in the caspase-independent caspase-dependent pathway in the ASK1 overexpression system (42), the kinase activity of ASK1 is essential for LTβR-mediated cell death, since the kinase-inactive ASK1-KE can inhibit the cell death triggered by LTβR activation (Fig. 6E). Previous study has shown that kinase-inactive mutant of ASK1 is capable of inhibiting cell death induced by genotoxic stress, Fas, and tumor necrosis factor α overexpression (21, 24, 25); this implies that catalytic active ASK1 may contribute to a kinase-dependent, but caspase-independent, mechanism to cell death triggered by various cell death-inducing signals. In our recent study, we also demonstrate that signaling transduced by LTβR induces the secretion of IL-8 in HEK 293 via the activation of ASK1-MKK4/5/MKT-JNK1/2-AP1 and NIK-IKK-NF-κB signaling cascades (44). Since activation of JNK/stress-activated protein kinase also contributed to cell death (28, 45, 46), the ASK-1-dependent cell death in our model system might be mediated by a JNK/stress-activated protein kinase signaling cascade.

The ROS has been demonstrated to play a crucial role in stress-activated mitogen-activated protein kinase kinase kinase signaling pathway (22, 39), and the activation of ASK1 by LTβR activation further provides an example of how free radical-regulated mitogen-activated protein kinase kinase kinase can mediate cell death. Recently, thioredoxin, a redox-sensing protein, has been shown to associate with ASK1 in its reduced form. Tumor necrosis factor can stimulate the production of ROS to activate ASK1 via the dissociation of ASK1 from thioredoxin, followed by binding to TRAF2 to form a TNFR-TRAF2-ASK1 complex (47). In our study, we find that the LTβR-mediated ASK1 activation is dependent on TRAF3 and TRAF5, but not on TRAF2 and TRAF6 (Fig. 4). This is consistent with the previous finding that the LTβR-mediated signaling cascade is transduced by TRAF3 and TRAF5 (17, 18) and that the dominant negative mutant of TRAF3 provides partial protection to LTβR-mediated cell death (19).

Although TRAF2 is essential for TNF-induced ASK1 activation (47), LIGHT-induced ASK1 activation is apparently independent of TRAF2. It has been shown that overexpression of TRAF2 or TRAF5, but not TRAF3, is able to activate ASK1 directly (40). However, we found that ASK1 activation is impaired not only in traf5−/− MEF cells but also in traf3−/− MEF cells (Fig. 4C). This suggests that even TRAF3 could interact with ASK1 directly (40), but TRAF3 alone is not enough to activate ASK1. Therefore, TRAF3-dependent ASK1 activation after LTβR activation might be via its interaction with TRAF5 to recruit ASK1, and further investigation is needed to clarify this question.

In a previous study, we demonstrated that activation of LTβR can trigger both a caspase-3-dependent and -independent pathway to induce cell death (30). Moreover, free radical scavenger C60 can completely inhibit LTβR-mediated cell death, whereas general caspase inhibitor z-VAD-FMK has only a partial protective effect, suggesting the important role of ROS in LTβR-mediated cell death (30). Here we provide further evidence that LTβR-mediated ROS release is apparently independent from caspase-3 and other caspases that are sensitive to z-VAD-FMK, such as caspase-1, -3, -5, -6, -7, -8, and -9 (43). Whether caspase-2, -4, and -10 or other newly identified caspases affect LTβR-induced ROS needs to be tested in the future.

Unlike ROS inhibitor, ASK1 only provides a partial effect on LTβR-mediated cell death, although ASK1-KE is more potent than caspase inhibitor z-VAD-FMK. This indicates that a caspase-independent or z-VAD-sensitive caspase-independent pathway distinct from ASK1 activation is also responsible for LTβR activation. Fig. 7C summarizes our current understanding to LTβR-mediated cell death; HVEM apparently is dispensable for LIGHT-mediated free radical production as well as the activation of ASK1 and caspase-3. The recruitment of TRAF3 and TRAF5 to LTβR induces the production of free radicals to activate both caspase-3-dependent and z-VAD-sensitive caspase-independent pathways. Since IFN-γ enhances LTβR-mediated cell death, an IFN-γ-regulated pathway dis-
distinct from ASK1 activation might be one of the major pathways responsible for LTBR-mediated cell death. Identification of an IFN-γ-regulated pathway distinct from ASK1 activation might be very helpful to elucidate the caspase-independent pathway transduced by LTBR and other members of the TNFR superfamily.

Acknowledgments—We gratefully acknowledge Dr. Wen-Chen Yeh (Amgen, Inc.) and Dr. Bharat B. Aggarwal for providing traf2 Knockout mouse embryonic fibroblasts and TRAF-dominant negative constructs, respectively. We also thank Dr. Chi-Ying F. Huang (NHRI) for BIAcore technical support. We also thank Dr. Nien-Jung Chen for fluorescence-activated cell sorting analysis.

REFERENCES
1. Force, W. R., Walter, B. N., Hession, C., Tizard, R., Kozak, C. A., Browning, J. L., and Ware, C. F. (1995) J. Immunol. 155, 5280–5288
2. Ware, C. F., VanArsdale, T. L., Crowe, P. D., and Browning, J. L. (1995) Curr. Top. Microbiol. Immunol. 196, 175–218
3. Browning, J. L., Douglas, I., Ngiem-ek, A., Boudron, P. R., Ehrenfels, B. N., Miatkowski, K., Zafari, M., Yampaglia, A. M., Lawton, P., and Meier, W. (1995) J. Immunol. 154, 33–46
4. Crowe, P. D., VanArsdale, T. L., Walter, B. N., Ware, C. F., Hession, C., Ehrenfels, B., Browning, J. L., and Din, W. S., Goodwin, R. G., and Smith, C. A. (1994) Science 264, 707–710
5. Mauri, D. N., Ehner, R., Montgomery, R. I., Kochel, K. D., Cheung, T. C., Yu, G. L., Ruben, S., Murphy, M., Eisenberg, R. C., Chen, T. C., Yu, J., Tan, J., Ugustus, M., Carter, K., Rosjas, Z., Fujii, M., Lincoln, C., Endres, G., Xing, L., Wang, S., Oh, K. O., Gentz, R., Ruben, S., Linzen, S. M., Eich, S. L., and Yang, D. (1998) J. Clin. Invest. 102, 1142–1151
6. De Togni, P., Goellner, J., Ruddle, N. H., Streeter, P. R., Mariathasan, S., Smith, S. C., Carlson, R., Shornick, L. P., and Strauss-Schoenberger, J. (1993) Science 261, 573–707
7. Koni, P. A., and Pavell, R. A. (1998) J. Exp. Med. 187, 1977–1983
8. Futterer, A., Mink, K., Luz, A., Kocso-Vilbois, M. H., and Pfeffer, K. (1998) Immunity 9, 59–70
9. Bennett, P. D., Browning, J. L., and Hochman, P. S. (1997) Int. Immunol. 9, 1627–1639
10. Mackay, F., Majeau, G. R., Lawton, P., Hochman, P. S., and Browning, J. L. (1997) Eur. J. Immunol. 27, 2023–2042
11. Puglielli, M. T., Browning, J. L., and Brewer, A. W., Schreiber, R. D., Shieh, W. J., Altman, J. D., Oldstone, M. B., Zaki, S. R., and Ahmed, R. (1999) Nat. Med. 5, 1370–1374
12. Dohi, T., Rennert, P. D., Fujishashi, K., Kyowho, H., Shirai, Y., Kawamura, Y. I., Browning, J. L., and McGhee, J. R. (2000) J. Biol. Chem. 275, 2781–2790
13. Wajant, H., Henker, F., and Schueppel, P. (2001) Cell. Signal. 13, 389–400
14. Force, W. R., Cheung, T. C., and Ware, C. F. (1997) J. Biol. Chem. 272, 30835–30840
15. Force, W. R., Glass, A. A., Benedict, C. A., Cheung, T. C., Lampa, J., and Ware, C. F. (2000) J. Biol. Chem. 275, 11121–11129
16. Nakano, H., Oshima, H., Chung, W., Williams-Abbott, L., Ware, C. F., Yagita, H., and Okumura, K. (1996) J. Biol. Chem. 271, 14661–14664
17. VanArsdale, T. L., VanArsdale, S. L., Force, W. B., Walter, B. N., Musiles, G., Kieff, E., Reed, J. C., and Ware, C. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2460–2465
18. Wu, C. M., Wang, Y., Han, S. H., and Hsieh, S. L. (1997) J. Biol. Chem. 272, 17154–17159
19. Chen, Z., Seimiya, H., Naito, M., Washida, T., Kizaki, A., Dan, S., Inaizumi, M., Ichijo, H., Miyazono, K., and Tsuchiya, T. (1999) Oncogene 18, 173–180
20. Gotoh, Y., and Cooper, J. A. (1998) J. Biol. Chem. 273, 17477–17482
21. Liu, Y., Yin, G., Surapraditjat, J., Berk, B. C., and Min, W. (2001) J. Clin. Invest. 107, 917–922
22. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moronaga, T., Takagi, M., Matsutomo, K., Miyazono, K., and Gotoh, Y. (1997) Science 275, 90–94
23. Chang, H. Y., Nishihara, H., Yang, X., Ichijo, H., and Baltimore, D. (1998) Science 281, 1860–1863
24. Wang, T. H., Popp, D. M., Wang, S. H., Saitoh, M., Moral, J. G., Henley, D. C., Ichijo, H., and Wimalasena, J. (1999) J. Biol. Chem. 274, 8208–8216
25. Kanamoto, T., Mota, M., Takeda, K., Rubin, L. M., Miyazono, K., Ichijo, H., and Bazan et, C. E. (2000) Mol. Cell. Biol. 20, 196–204
26. Yamaa, S., Takeda, A., Takanishi, T., Nishihara, M., Morita, K., Takeda, K., Minowa, Y., Miyazono, K., Noda, T., and Ichijo, H. (2001) EMBO Rep. 2, 222–228
27. Wang, X. S., Diener, K., Jannuzzi, D., Trelle, D., Tan, T. H., Lichtenstein, H., Zukowski, M., and Yao, T. (1996) J. Biol. Chem. 271, 31607–31611
28. Chen, M. C., Hsu, T. L., Luh, T. Y., and Hsieh, S. L. (2000) J. Biol. Chem. 275, 38794–38801
29. Adler, V., Yin, Z., Tew, K. D., and Ronai, Z. (1999) Oncogene 18, 6104–6111
30. Hochedlinger, K., Wagner, E. F., and Sabapathy, K. (2002) EMBO Rep. 3, 6111–6115
31. Chang, H. Y., Nishihara, H., Fujii, M., Takeda, K., Tsuchiya, T., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998) EMBO J. 17, 2598–2606
32. Nishihara, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998) Mol. Cell 2, 389–395
33. Hatai, T., Matsuazawa, A., Inohsaka, M., Mochida, Y., Kuroda, T., Sakamaki, K., Kusa, K., Yonehara, S., Ichijo, H., and Takeda, K. (2000) J. Biol. Chem. 275, 26576–26581
34. Charette, S. J., Lambert, H., and Landry, J. (2001) J. Biol. Chem. 276, 36071–36074
35. Garcia-Cavallo, M., Peterson, E. P., Leitn, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A. (1998) J. Biol. Chem. 273, 32608–32613
36. Chang, H. Y., Saitoh, M., Fujii, M., Takeda, K., Tsuchiya, T., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998) EMBO J. 17, 2598–2606
37. Nishihara, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998) Mol. Cell 2, 389–395
38. Herr, I., Wilhelm, D., Meyer, E., Jeremias, I., Angel, P., and Debatin, K. M. (1999) Cell Death Differ. 6, 130–135
39. Liu, H., Nishihara, H., Ichijo, H., and Kryaki, J. M. (2000) Mol. Cell. Biol. 20, 2198–2208
