Generalised golden ratios over integer alphabets

Simon Baker
May 3, 2014

Abstract

It is a well known result that for $\beta \in (1, \frac{1+\sqrt{5}}{2})$ and $x \in (0, \frac{1}{\beta-1})$ there exists uncountably many $(\epsilon_i)_{i=1}^\infty \in \{0, 1\}^\mathbb{N}$ such that $x = \sum_{i=1}^\infty \epsilon_i \beta^{-i}$. When $\beta \in (\frac{1+\sqrt{5}}{2}, 2]$ there exists $x \in (0, \frac{1}{\beta-1})$ for which there exists a unique $(\epsilon_i)_{i=1}^\infty \in \{0, 1\}^\mathbb{N}$ such that $x = \sum_{i=1}^\infty \epsilon_i \beta^{-i}$. In this paper we consider the more general case when our sequences are elements of $\{0, \ldots, m\}^\mathbb{N}$. We show that an analogue of the golden ratio exists and give an explicit formula for it.

1 Introduction

Let $m \in \mathbb{N}$, $\beta \in (1, m+1]$ and $I_{\beta,m} = [0, \frac{m}{\beta-1}]$. Each $x \in I_{\beta,m}$ has an expansion of the form

$$x = \sum_{i=1}^\infty \frac{\epsilon_i}{\beta^i}$$

for some $(\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N}$. We call such a sequence a β-expansion for x. For $x \in I_{\beta,m}$ we denote the set of β-expansions for x by $\Sigma_{\beta,m}(x)$, i.e.,

$$\Sigma_{\beta,m}(x) = \left\{ (\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : \sum_{i=1}^\infty \frac{\epsilon_i}{\beta^i} = x \right\}.$$

In [6] the authors consider the case when $m = 1$, they show that for $\beta \in (1, \frac{1+\sqrt{5}}{2})$ the set $\Sigma_{\beta,1}(x)$ is uncountable for every $x \in (0, \frac{1}{\beta-1})$. The endpoints of $[0, \frac{1}{\beta-1}]$ trivially have a unique β-expansion. In [5] it is shown that for $\beta \in (\frac{1+\sqrt{5}}{2}, 2]$ there exists $x \in (0, \frac{1}{\beta-1})$ with a unique β-expansion.

For $m \in \mathbb{N}$ we define $G(m) \in \mathbb{R}$ to be a generalised golden ratio for m if for $\beta \in (1, G(m))$ the set $\Sigma_{\beta,m}(x)$ is uncountable for every $x \in (0, \frac{m}{\beta-1})$, and for $\beta \in (G(m), m+1]$ there exists $x \in (0, \frac{m}{\beta-1})$ for which $|\Sigma_{\beta,m}(x)| = 1$.

AMS Classification: 37A45, 37C45
Keywords: Beta-expansions, Dimension theory
In [11] the authors consider a similar setup. They consider the case where β-expansions are elements of $\{a_1, a_2, a_3\}^N$, for some $a_1, a_2, a_3 \in \mathbb{R}$. They show that for each ternary alphabet there exists a constant $G \in \mathbb{R}$ such that, there exists nontrivial unique β-expansions if and only if $\beta > G$. Moreover they give an explicit formula for G.

Our main result is the following.

Theorem 1.1. For each $m \in \mathbb{N}$ a generalised golden ratio exists and is equal to:

$$G(m) = \begin{cases} k + 1 & \text{if } m = 2k \\ \frac{k+1+\sqrt{k^2+6k+5}}{2} & \text{if } m = 2k+1. \end{cases}$$

Remark 1.2. $G(m)$ is a Pisot number for all $m \in \mathbb{N}$. Recall a Pisot number is a real algebraic integer greater than 1 whose Galois conjugates are of modulus strictly less than 1.

In section 6 we include a table of values for $G(m)$. We prove Theorem 1.1 in section 3. In section 4 we consider the set of points with unique β-expansion for $\beta \in (G(m), m+1]$, and in section 5 we study the growth rate and dimension theory of the set of β-expansions for $\beta \in (1, G(m))$.

2 Preliminaries

Before proving Theorem 1.1 we require the following preliminary results and theory. Let $m \in \mathbb{N}$ be fixed and $\beta \in (1, m+1]$. For $i \in \{0, \ldots, m\}$ we fix $T_{\beta,i}(x) = \beta x - i$. The proof of the following lemma is trivial and therefore omitted.

Lemma 2.1. The map $T_{\beta,i}$ satisfies the following:

- $T_{\beta,i}$ has a unique fixed point equal to $\frac{i}{\beta-1}$.
- $T_{\beta,i}(x) > x$ for all $x > \frac{i}{\beta-1}$,
- $T_{\beta,i}(x) < x$ for all $x < \frac{i}{\beta-1}$,
- $|T_{\beta,i}(x) - T_{\beta,i}(\frac{i}{\beta-1})| = \beta|x - \frac{i}{\beta-1}|$, for all $x \in \mathbb{R}$, that is $T_{\beta,i}$ scales the distance between the fixed point $\frac{i}{\beta-1}$ and an arbitrary point by a factor β.

Understanding where in $I_{\beta,m}$ these fixed points are will be important in our later analysis.

We let

$$\Omega_{\beta,m}(x) = \left\{ (a_i)_{i=1}^{\infty} \in \{T_{\beta,0} \ldots T_{\beta,m}\}^\mathbb{N} : (a_n \circ a_{n-1} \circ \ldots \circ a_1)(x) \in I_{\beta,m} \text{ for all } n \in \mathbb{N} \right\}.$$

Similarly we define

$$\Omega_{\beta,m,n}(x) = \left\{ (a_i)_{i=1}^{n} \in \{T_{\beta,0} \ldots T_{\beta,m}\}^n : (a_n \circ a_{n-1} \circ \ldots \circ a_1)(x) \in I_{\beta,m} \right\}.$$
Typically we will denote an element of \(\Omega_{\beta,m,n}(x) \) or any finite sequence of maps by \(a \). When we want to emphasise the length of \(a \) we will use the notation \(a^{(n)} \). We also adopt the notation \(a^{(n)}(x) \) to mean \((a_n \circ a_{n-1} \circ \ldots \circ a_1)(x)\).

Remark 2.2. It is important to note that if for some finite sequence of maps \(a, a(x) \notin I_{\beta,m} \) then we cannot concatenate \(a \) by any finite sequence of maps \(b \), such that \(b(a(x)) \in I_{\beta,m} \).

Remark 2.3. Let \(\beta \in (1, m+1] \), for any \(x \in I_{\beta,m} \) there always exists \(i \in \{0, \ldots, m\} \) such that \(T_{\beta,i}(x) \in I_{\beta,m} \). For \(\beta > m + 1 \) such an \(i \) does not always exist.

Lemma 2.4. \(|\Sigma_{\beta,m}(x)| = |\Omega_{\beta,m}(x)| \).

Proof. It is a simple exercise to show that

\[
\Sigma_{\beta,m}(x) = \{(e_i)_{i \in \mathbb{N}} \in \{0, \ldots, m\}^\mathbb{N} : x - \sum_{i=1}^{n} \frac{e_i}{\beta^i} \in \left[0, \frac{m}{\beta^n(\beta-1)}\right] \text{ for all } n \in \mathbb{N}\}.
\]

Following [8] we observe that

\[
\Sigma_{\beta,m}(x) = \{(e_i)_{i \in \mathbb{N}} \in \{0, \ldots, m\}^\mathbb{N} : x - \sum_{i=1}^{n} \frac{e_i}{\beta^i} \in \left[0, \frac{m}{\beta^n(\beta-1)}\right] \text{ for all } n \in \mathbb{N}\}
\]

\[
= \{(e_i)_{i \in \mathbb{N}} \in \{0, \ldots, m\}^\mathbb{N} : \beta^{-n}x - \sum_{i=1}^{n} e_i\beta^{n-i} \in I_{\beta,m} \text{ for all } n \in \mathbb{N}\}
\]

\[
= \{(e_i)_{i \in \mathbb{N}} \in \{0, \ldots, m\}^\mathbb{N} : (T_{\beta,e_1} \circ \ldots \circ T_{\beta,e_n})(x) \in I_{\beta,m} \text{ for all } n \in \mathbb{N}\}.
\]

Our result follows immediately. \(\square \)

By Lemma 2.4 we can rephrase the definition of a generalised golden ratio in terms of the set \(\Omega_{\beta,m}(x) \). This equivalent definition will be more suitable for our purposes. The set \(\Omega_{\beta,m,n}(x) \) will be useful when we study the growth rate and dimension theory of the set of \(\beta \)-expansions.

For a point \(x \in I_{\beta,m} \) we can take \(i \) to be the first digit in a \(\beta \)-expansion for \(x \) if and only if \(\beta x - i \in I_{\beta,m} \). This is equivalent to

\[
x \in \left[\frac{i}{\beta}, \frac{i \beta + m - i}{\beta(\beta-1)}\right],
\]

as such we refer to the interval \(\left[\frac{i}{\beta}, \frac{i \beta + m - i}{\beta(\beta-1)}\right] \) as the \(i \)-th digit interval. Generally speaking we can take \(i \) to be the \(j \)-th digit in a \(\beta \)-expansion for \(x \) if and only if there exists \(a \in \Omega_{\beta,m,j-1}(x) \) such that, \(a(x) \in \left[\frac{j}{\beta}, \frac{j \beta + m - j}{\beta(\beta-1)}\right] \). When \(x \) or an image of \(x \) is contained in the intersection of two digit intervals we have a choice of digit in our \(\beta \)-expansion for \(x \). Generally speaking any two digit intervals may intersect for \(\beta \) sufficiently small, however for our purposes we need only consider the case when the \(i \)-th digit interval intersects the adjacent \((i-1)\)-th or \((i+1)\)-th digit intervals, for some \(i \in \{0, \ldots, m\} \). Any intersection of this type is of the form

\[
\left[\frac{i}{\beta}, \frac{(i-1) \beta + m - (i-1)}{\beta(\beta-1)}\right],
\]
for some \(i \in \{1, \ldots, m\} \). In what follows we refer to the interval \(\left[\frac{1}{\beta}, \frac{(i-1)\beta + m - (i-1)}{\beta(\beta-1)} \right] \) as the \(i \)-th choice interval. Both \(T_{\beta,i-1} \) and \(T_{\beta,i} \) map the \(i \)-th choice interval into \(I_{\beta,m} \). These intervals always exist and are nontrivial for \(\beta \in (1, m + 1) \).

Proposition 2.5. Suppose for any \(x \in (0, \frac{m}{\beta-1}) \) there always exists a finite sequence of maps that map \(x \) into the interior of a choice interval, then \(\Omega_{\beta,m}(x) \) is uncountable.

The proof of this proposition is essentially contained in the proof of Theorem 1 in [17].

Proof. Let \(x \in (0, \frac{m}{\beta-1}) \). Suppose there exists \(n \in \mathbb{N} \) and \(a \in \Omega_{\beta,m,n}(x) \) such that \(a(x) \in (\frac{1}{\beta}, \frac{(i-1)\beta + m - (i-1)}{\beta(\beta-1)}) \), for some \(i \in \{1, \ldots, m\} \). As \(a(x) \) is an element of the interior of a choice interval both \(T_{\beta,i-1}(a(x)) \in (0, \frac{m}{\beta-1}) \) and \(T_{\beta,i}(a(x)) \in (0, \frac{m}{\beta-1}) \). As such our hypothesis applies to both \(T_{\beta,i-1}(a(x)) \) and \(T_{\beta,i}(a(x)) \), and we can assert that there exists a finite sequence of maps that map these two distinct images of \(x \) into the interior of another choice interval. Repeating this procedure arbitrarily many times it is clear that \(\Omega_{\beta,m}(x) \) is uncountable.

By Proposition 2.5 to prove Theorem 1.1 it suffices to show that for \(\beta \in (1, G(m)) \) every \(x \in (0, \frac{m}{\beta-1}) \) can be mapped into the interior of a choice interval, and for \(\beta \in (G(m), m + 1] \) there exists \(x \in (0, \frac{m}{\beta-1}) \) that never maps into a choice interval.

We define the switch region to be the interval

\[
\left[\frac{1}{\beta}, \frac{(m-1)\beta + 1}{\beta(\beta-1)} \right].
\]

The significance of this interval is that if a point \(x \) has a choice of digit in the \(j \)-th entry of a \(\beta \)-expansion, then there exists \(a \in \Omega_{\beta,m,j-1}(x) \) such that \(a(x) \in \left(\frac{1}{\beta}, \frac{(m-1)\beta + 1}{\beta(\beta-1)} \right] \). The following lemmas are useful in understanding the dynamics of the maps \(T_{\beta,i} \) around the switch region, understanding these dynamics will be important in our proof of Theorem 1.1.

Lemma 2.6. For \(\beta \in (1, \frac{m + \sqrt{m^2 + 1}}{2}) \) and \(x \in (0, \frac{m}{\beta-1}) \) there exists a finite sequence of maps that map \(x \) into the interior of our switch region.

Proof. If \(x \) is contained within the interior of the switch region we are done, let us suppose otherwise. By the monotonicity of the maps \(T_{\beta,0} \) and \(T_{\beta,m} \) it suffices to show that

\[T_{\beta,0} \left(\frac{1}{\beta} \right) < \frac{(m-1)\beta + 1}{\beta(\beta-1)} \quad \text{and} \quad T_{\beta,m} \left(\frac{(m-1)\beta + 1}{\beta(\beta-1)} \right) > \frac{1}{\beta}. \]

Both of these inequalities are equivalent to \(\beta^2 - m\beta - 1 < 0 \), applying the quadratic formula we can conclude our result.

Remark 2.7. When \(m = 1 \) the switch region is a choice interval. An application of Lemma 2.4, Proposition 2.5 and Lemma 2.6 yields the result stated in [8], i.e., for \(\beta \in (1, \frac{1 + \sqrt{5}}{2}) \) and \(x \in (0, \frac{1}{\beta-1}) \) the set \(\Sigma_{\beta,1}(x) \) is uncountable.
Lemma 2.8. For $\beta \in (1, \frac{m+2}{2})$ every x in the interior of the switch region is contained in the interior of a choice interval.

Proof. It suffices to show that for each $i \in \{1, 2, \ldots, m - 1\}$ the $(i - 1)$-th and $(i + 1)$-th digit intervals intersect in a nontrivial interval. This is equivalent to

$$\frac{i + 1}{\beta} < \frac{(i - 1)\beta + m - (i - 1)}{\beta(\beta - 1)},$$

a simple manipulation yields that this is equivalent to $\beta < \frac{m+2}{2}$. □

We refer the reader to Figure 1 for a diagram depicting the case where $\beta < \frac{m+2}{2}$. For $i \in \{1, 2, \ldots, m - 1\}$ and $\beta \geq \frac{m+2}{2}$ the interval

$$\left[\frac{(i - 1)\beta + m - (i - 1)}{\beta(\beta - 1)}, \frac{i + 1}{\beta}\right]$$

is well defined. We refer to this interval as the i-th fixed digit interval. The significance of this interval is that if a point x is contained in the interior of the i-th fixed digit interval only $T_{\beta, i}$ maps x into $I_{\beta, m}$. Similarly we define the 0-th fixed digit interval to be $[0, \frac{1}{\beta}]$ and the m-th fixed digit interval to be $[\frac{(m-1)\beta+1}{\beta(\beta-1)}, \frac{m}{\beta-1}]$. Understanding how the different $T_{\beta, i}$'s behave on these intervals will be important when it comes to constructing generalised golden ratios in the case where m is odd.
3 Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1; for ease of exposition we reduce our analysis to two cases, when \(m \) is even and when \(m \) is odd.

3.1 Case where \(m \) is even

In what follows we assume \(m = 2k \) for some \(k \in \mathbb{N} \).

Proposition 3.1. For \(\beta \in (1, k + 1) \) every \(x \in (0, \frac{m}{\beta - 1}) \) has uncountably many \(\beta \)-expansions.

Proof. By Lemma 2.4 and Proposition 2.5 it suffices to show that every \(x \in (0, \frac{m}{\beta - 1}) \) can be mapped into the interior of a choice interval. It is a simple exercise to show that \(\frac{m+2}{2} < \frac{m^2+\sqrt{m^2+4}}{2} \) for all \(m \in \mathbb{N} \), as such for \(\beta \in (1, k + 1) \) we can apply Lemma 2.6 therefore there exists a sequence of maps that map \(x \) into the interior of the switch region. By Lemma 2.8 every point in the interior of our switch region is contained in the interior of a choice interval.

Proposition 3.2. For \(\beta \in (k + 1, m + 1] \) there exists \(x \in (0, \frac{m}{\beta - 1}) \) with a unique \(\beta \)-expansion.

Proof. It suffices to show that there exists \(x \in (0, \frac{m}{\beta - 1}) \) that never maps into a choice interval.

We consider the point \(\frac{k}{\beta - 1} \), we will show that this point has a unique \(\beta \)-expansion. This point is contained in the \(k \)-th digit interval and is the fixed point under the map \(T_{\beta,k} \). To show that it has a unique \(\beta \)-expansion it suffices to show that it is not contained within the \((k - 1) \)-th or \((k + 1) \)-th digit intervals, this is equivalent to

\[
\frac{(k - 1)\beta + m - (k - 1)}{\beta(\beta - 1)} < \frac{k}{\beta - 1} < \frac{k + 1}{\beta}.
\]

Both of these inequalities are equivalent to \(\beta > k + 1 \).

Figure 2 describes the construction of our point with unique \(\beta \)-expansion for \(\beta \in (k + 1, m + 1] \). By Proposition 3.1 and Proposition 3.2 we can conclude Theorem 1.1 in the case where \(m \) is even.

3.2 Case where \(m \) is odd

The analysis of the case where \(m \) is odd is somewhat more intricate. In what follows we assume \(m = 2k + 1 \) for some \(k \in \mathbb{N} \). Before finishing our proof of Theorem 1.1 we require the following technical results.

Lemma 3.3. For \(\beta \in (1, k + 2) \) the fixed point of \(T_{\beta,i} \) is contained in the interior of the choice interval \(\left[\frac{i}{\beta}, \frac{(i-1)\beta + m - (i-1)}{\beta(\beta - 1)} \right] \) for \(i \in \{1, \ldots, k\} \), and in the interior of the choice interval \(\left[\frac{i+1}{\beta}, \frac{i\beta + m - i}{\beta(\beta - 1)} \right] \) for \(i \in \{k + 1, \ldots, m - 1\} \).
Figure 2: A point with unique β-expansion for $\beta \in (k + 1, m + 1]$.

Proof. Let $i \in \{1, \ldots, k\}$. To show that the fixed point $\frac{i}{\beta - 1}$ is contained in the interior of the interval $[\frac{i}{\beta}, \frac{(i-1)\beta + m - (i-1)}{\beta(\beta - 1)}]$ it suffices to show that

$$\frac{i}{\beta - 1} < \frac{(i-1)\beta + m - (i-1)}{\beta(\beta - 1)}.$$

This is equivalent to $\beta < m + 1 - i$, which for $\beta \in (1, k + 2)$ is true for all $i \in \{1, \ldots, k\}$. The case where $i \in \{k + 1, \ldots, m - 1\}$ is proved similarly.

Corollary 3.4. For $\beta \in \left[\frac{2k+3}{2}, k + 2\right]$ the map $T_{\beta,i}$ satisfies $T_{\beta,i}(x) = \beta(x - \frac{i}{\beta - 1})$ for all x contained in the i-th fixed digit interval for $i \in \{1, \ldots, k\}$, and $\frac{i}{\beta - 1} - T_{\beta,i}(x) = \beta(\frac{i}{\beta - 1} - x)$ for all x contained in the i-th fixed digit interval for $i \in \{k + 1, \ldots, m - 1\}$.

Proof. Let $i \in \{1, \ldots, k\}$, by Lemma 3.3 the i-th fixed digit interval is to the right of the fixed point of $T_{\beta,i}$, our result follows from Lemma 2.1. The case where $i \in \{k + 1, \ldots, m - 1\}$ is proved similarly.

Lemma 3.5. Suppose $\beta \in \left[\frac{2k+3}{2}, \frac{k+1+\sqrt{k^2+6k+5}}{2}\right]$ and x is an element of the i-th fixed digit interval for some $i \in \{1, \ldots, m - 1\}$. For $i \in \{1, \ldots, k\}$

$$T_{\beta,i}(x) < \frac{k\beta + m - k}{\beta(\beta - 1)}$$

and for $i \in \{k + 1, \ldots, m - 1\}$

$$T_{\beta,i}(x) > \frac{k+1}{\beta}.$$
Proof. By the monotonicity of the maps $T_{\beta,i}$ it is sufficient to show that

$$T_{\beta,i}\left(\frac{i+1}{\beta}\right) < \frac{k\beta + m - k}{\beta(\beta - 1)}$$

for $i \in \{1, \ldots, k\}$, and

$$T_{\beta,i}\left(\frac{(i-1)\beta + m - (i-1)}{\beta(\beta - 1)}\right) > \frac{k+1}{\beta},$$

for $i \in \{k+1, \ldots, m-1\}$. Each of these inequalities are equivalent to $\beta^2 - (k+1)\beta - (k+1) < 0$. Our result follows by an application of the quadratic formula. \qed

Proposition 3.6. For $\beta \in (1, \frac{k+1 + \sqrt{k^2 + 6k + 5}}{2})$ every $x \in (0, \frac{m}{\beta-1})$ has uncountably many β-expansions.

Proof. The proof where $\beta \in (1, \frac{2k+3}{2})$ is analogous to that given in the even case. As such, in what follows we assume $\beta \in \left[\frac{2k+3}{2}, \frac{k+1 + \sqrt{k^2 + 6k + 5}}{2}\right)$. We remark that

$$\frac{k+1 + \sqrt{k^2 + 6k + 5}}{2} \leq \frac{m + \sqrt{m^2 + 4}}{2}$$

and

$$\frac{k+1 + \sqrt{k^2 + 6k + 5}}{2} < k+2,$$

for all $k \in \mathbb{N}$. We can therefore use Lemma 2.6 and Corollary 3.4. Let $x \in (0, \frac{m}{\beta-1})$, we will show that there exists a sequence of maps that map x into the interior of a choice interval, by Lemma 2.4 and Proposition 2.5 our result follows. By Lemma 2.6 there exist a finite sequence of maps that map x into the interior of the switch region. Suppose the image of x is not contained in the interior of a choice interval, then it must be contained in the i-th fixed digit interval for some $i \in \{1, \ldots, m-1\}$. By repeatedly applying Corollary 3.4 and Lemma 3.5 the image of x must eventually be mapped into the interior of a choice interval. \qed

We refer the reader to Figure 3 for a diagram illustrating the case where $m = 2k+1$ and $\beta \in \left(\frac{2k+3}{2}, \frac{k+1 + \sqrt{k^2 + 6k + 5}}{2}\right)$.

Proposition 3.7. For $\beta \in \left(\frac{k+1 + \sqrt{k^2 + 6k + 5}}{2}, m+1\right]$ there exists $x \in (0, \frac{m}{\beta-1})$ that has a unique β-expansion.

Proof. We will show that the points

$$\frac{k\beta + (k+1)}{\beta^2 - 1} \text{ and } \frac{(k+1)\beta + k}{\beta^2 - 1}$$

have a unique β-expansion. The significance of these points is that

$$T_{\beta,k}\left(\frac{k\beta + (k+1)}{\beta^2 - 1}\right) = \frac{(k+1)\beta + k}{\beta^2 - 1}$$
To show that these points have a unique β-expansion it suffices to show that
\[
\frac{(k - 1)\beta + m - (k - 1)}{\beta(\beta - 1)} < \frac{k\beta + (k + 1)}{\beta^2 - 1} < \frac{k + 1}{\beta},
\]
(2)

and
\[
\frac{k\beta + (m - k)}{\beta(\beta - 1)} < \frac{(k + 1)\beta + k}{\beta^2 - 1} < \frac{k + 2}{\beta}.
\]
(3)

The left hand side of (2) is equivalent to $0 < \beta^2 - k\beta - (k + 2)$ which is equivalent to
\[
\frac{k + \sqrt{k^2 + 4k + 8}}{2} < \beta,
\]
however
\[
\frac{k + \sqrt{k^2 + 4k + 8}}{2} < \frac{k + 1 + \sqrt{k^2 + 6k + 5}}{2}
\]
for all $k \in \mathbb{N}$, therefore the left hand side of (2) holds. The right hand side of (2) is equivalent to $0 < \beta^2 - (k + 1)\beta - (k + 1)$. So (2) holds by the quadratic formula.

The right hand side of (3) is equivalent to $0 < \beta^2 - k\beta - (k + 2)$ which we know to be true by the above. Similarly the left hand side of (3) is equivalent to $0 < \beta^2 - (k + 1)\beta - (k + 1)$,
which we also know to be true. It follows that both \(\frac{k\beta + (k+1)}{\beta^2 - 1} \) and \(\frac{(k+1)\beta + k}{\beta^2 - 1} \) are never mapped into a choice interval and have a unique \(\beta \)-expansion for \(\beta \in \left(\frac{k+1+\sqrt{k^2+6k+5}}{2}, m + 1 \right) \).

We refer the reader to Figure 4 for a diagram describing the points we constructed with unique \(\beta \)-expansion for \(\beta \in \left(\frac{k+1+\sqrt{k^2+6k+5}}{2}, m + 1 \right) \). By Proposition 3.6 and Proposition 3.7 we can conclude Theorem 1.1.

4 The set of points with unique \(\beta \)-expansion

In this section we study the set of points whose \(\beta \)-expansion is unique for \(\beta \in (\mathcal{G}(m), m + 1] \). Let

\[
U_{\beta,m} = \left\{ x \in I_{\beta,m} \mid |\Sigma_{\beta,m}(x)| = 1 \right\}
\]

and

\[
W_{\beta,m} = \left\{ x \in \left(\frac{m + 1 - \beta}{\beta - 1}, 1 \right) \mid |\Sigma_{\beta,m}(x)| = 1 \right\}.
\]

The significance of the set \(W_{\beta,m} \) is that if \(x \in U_{\beta,m} \), then it is a preimage of an element of \(W_{\beta,m} \). In [9] the authors study the case where \(m = 1 \), they show that the following theorems hold.

Theorem 4.1. The set \(U_{\beta,1} \) satisfies the following:

1. \(|U_{\beta,1}| = \aleph_0 \) for \(\beta \in (\frac{1+\sqrt{5}}{2}, \beta_c) \).
2. \(|U_{\beta,1}| = 2^{\aleph_0}\) for \(\beta = \beta_c\).

3. \(U_{\beta,1}\) is a set of positive Hausdorff dimension for \(\beta \in (\beta_c, 2]\).

Theorem 4.2. The set \(W_{\beta,1}\) satisfies the following:

1. \(|W_{\beta,1}| = 2\) for \(\beta \in \left(\frac{1+\sqrt{5}}{2}, \beta_f\right]\), where \(\beta_f\) is the root of the equation \(x^3 - 2x^2 + x - 1 = 0, \ \beta_f = 1.75487\ldots\)

2. \(|W_{\beta,1}| = \aleph_0\) for \(\beta \in (\beta_f, \beta_c)\)

3. \(|W_{\beta,1}| = 2^{\aleph_0}\) for \(\beta = \beta_c\)

4. \(W_{\beta,1}\) is a set of positive Hausdorff dimension for \(\beta \in (\beta_c, 2]\).

Here \(\beta_c \approx 1.78723\) is the Komornik-Loreti constant introduced in [12]. It is the smallest value of \(\beta\) for which \(1 \in U_{\beta,1}\). Moreover \(\beta_c\) is the unique solution of the equation

\[
\sum_{i=1}^{\infty} \frac{\lambda_i}{\beta^i} = 1,
\]

where \((\lambda_i)_{i=0}^{\infty}\) is the Thue-Morse sequence (see [3]), i.e. \(\lambda_0 = 0\) and if \(\lambda_i\) is already defined for some \(i \geq 0\) then \(\lambda_{2i} = \lambda_i\) and \(\lambda_{2i+1} = 1 - \lambda_i\). The sequence \((\lambda_i)_{i=0}^{\infty}\) begins

\[(\lambda_i)_{i=0}^{\infty} = 0110\ 1001\ 1001\ 0110\ 1001\ \ldots\ .\]

In [2] it was shown that \(\beta_c\) is transcendental. For \(m \geq 2\) we define the sequence \((\lambda_i(m))_{i=1}^{\infty} \in \{0, \ldots, m\}^\mathbb{N}\) as follows:

\[
\lambda_i(m) = \begin{cases}
k + \lambda_i - \lambda_{i-1} & \text{if } m = 2k \\
k + \lambda_i & \text{if } m = 2k + 1.\end{cases}
\]

We define \(\beta_c(m)\) to be the unique solution of

\[
\sum_{i=1}^{\infty} \frac{\lambda_i(m)}{\beta^i} = 1.
\]

In [13] the authors proved that \(\beta_c(m)\) is transcendental and the smallest value of \(\beta\) for which \(1 \in U_{\beta,m}\). In section 6 we include a table of values for \(\beta_c(m)\). We begin our study of the sets \(U_{\beta,m}\) and \(W_{\beta,m}\) by showing that the following proposition holds.

Proposition 4.3. Let \(m \geq 2\), then \(|U_{\beta,m}| \geq \aleph_0\) for \(\beta \in (\mathcal{G}(m), m + 1]\).

Combining Proposition 4.3 with the results presented in [14] the following analogue of Theorem 4.1 is immediate.
Theorem 4.4. For \(m \geq 2 \) the set \(U_{\beta,m} \) satisfies the following:

1. \(|U_{\beta,m}| = \aleph_0 \) for \(\beta \in (G(m), \beta_c(m)) \)
2. \(|U_{\beta,m}| = 2^{\aleph_0} \) for \(\beta = \beta_c(m) \)
3. \(U_{\beta,m} \) is a set of positive Hausdorff dimension for \(\beta \in (\beta_c(m), m+1] \).

Proof of Proposition 4.3. To begin with let us assume \(m = 2k \) for some \(k \in \mathbb{N} \), in this case \(G(m) = k+1 \).

It is a simple exercise to show that for \(\beta \in (k+1, m+1] \)

\[
T_{\beta,n}\left(\frac{k}{\beta-1}\right) = \frac{k}{\beta^n(\beta-1)} < \frac{1}{\beta}
\]

for all \(n \in \mathbb{N} \). By Proposition 3.2 we know that \(k \beta - 1 \) has a unique \(\beta \)-expansion. It follows from (4) that \(T_{\beta,n}\left(\frac{k}{\beta-1}\right) \) is never mapped into a choice interval and therefore has a unique \(\beta \)-expansion. As \(n \) was arbitrary we can conclude our result. The case where \(m = 2k+1 \) is proved similarly, in this case we can consider preimages of \(\frac{k \beta + (k+1)}{\beta^2-1} \).

We also show that the following analogue of Theorem 4.2 holds.

Theorem 4.5. If \(m = 2k \) the set \(W_{\beta,m} \) satisfies the following:

1. \(|W_{\beta,m}| = 1 \) for \(\beta \in (G(m), \beta_f(m)) \), where \(\beta_f(m) \) is the root of the equation

\[
x^2 - (k+1)x - k = 0, \quad \beta_f(m) = \frac{k+1 + \sqrt{k^2 + 6k + 1}}{2}
\]

2. \(|W_{\beta,m}| = \aleph_0 \) for \(\beta \in (\beta_f(m), \beta_c(m)) \)
3. \(|W_{\beta,m}| = 2^{\aleph_0} \) for \(\beta = \beta_c(m) \)
4. \(W_{\beta,m} \) is a set of positive Hausdorff dimension for \(\beta \in (\beta_c(m), m+1] \).

If \(m = 2k+1 \) the set \(W_{\beta,m} \) satisfies the following:

1. \(|W_{\beta,m}| = 2 \) for \(\beta \in (G(m), \beta_f(m)) \), where \(\beta_f(m) \) is the root of the equation

\[
x^3 - (k+2)x^2 + x - (k+1) = 0
\]

2. \(|W_{\beta,m}| = \aleph_0 \) for \(\beta \in (\beta_f(m), \beta_c(m)) \)
3. \(|W_{\beta,m}| = 2^{\aleph_0} \) for \(\beta = \beta_c(m) \)
4. \(W_{\beta,m} \) is a set of positive Hausdorff dimension for \(\beta \in (\beta_c(m), m+1] \).

Remark 4.6. \(\beta_f(m) \) is a Pisot number for all \(m \in \mathbb{N} \).

Using Theorem 4.4 to prove Theorem 4.5 it suffices to show that statement 1 holds in both the odd and even cases and \(|W_{\beta,m}| \geq \aleph_0 \) for \(\beta > \beta_f(m) \) in both the odd and even cases. In section 6 we include a table of values for \(\beta_f(m) \).
4.1 Proof of Theorem 4.5

The proof of Theorem 4.5 is more involved than Theorem 4.4 and as we will see requires more technical results. The following is taken from [14]. Firstly let us define the lexicographic order on \(\{0, \ldots, m\}^\infty \), we say that \((x_i)_{i=1}^\infty < (y_i)_{i=1}^\infty \) with respect to the lexicographic order if there exists \(n \in \mathbb{N} \) such that \(x_i = y_i \) for all \(i < n \) and \(x_n < y_n \) or if \(x_1 < y_1 \). For a sequence \((x_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} \) we define \((x_i)_{i=1}^\infty = (m-x_i)_{i=1}^\infty \). We also adopt the notation \((\epsilon_1, \ldots, \epsilon_j)_{i=1}^\infty \) to denote the element of \(\{0, \ldots, m\}^\mathbb{N} \) obtained by the infinite concatenation of the finite sequence \((\epsilon_1, \ldots, \epsilon_j)\). Let the sequence \((d_i(m))_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} \) be defined as follows: let \(d_1(m) \) be the largest element of \(\{0, \ldots, m\} \) such that \(\frac{d_1(m)}{\beta} \leq 1 \), and if \(d_1(m) \) is defined for \(i < n \) then \(d_i(m) \) is defined to be the largest element of \(\{0, \ldots, m\} \) such that \(\sum_{i=1}^{n} \frac{d_i(m)}{\beta} = 1 \). The sequence \((d_i(m))_{i=1}^\infty \) is called the quasi-greedy expansion of 1 with respect to \(\beta \); it is trivially a \(\beta \)-expansion for 1 and the largest infinite \(\beta \)-expansion of 1 with respect to the lexicographic order not ending with \((0)_{i=1}^\infty \). We let

\[
S_{\beta,m} = \left\{ (\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : \sum_{i=1}^{\infty} \epsilon_i / \beta^i \in W_{\beta,m} \right\},
\]

it follows from the definition of \(W_{\beta,m} \) that \(|W_{\beta,m}| = |S_{\beta,m}| \) and to prove Theorem 4.5 it suffices to show that equivalent statements hold for \(S_{\beta,m} \). The following lemma which is essentially due to Parry [13] provides a useful characterisation of \(S_{\beta,m} \).

Lemma 4.7.

\[
S_{\beta,m} = \left\{ (\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : (\epsilon_i, \epsilon_{i+1}, \ldots) < (d_1, d_2, \ldots) \text{ and } (d_1, d_2, \ldots) < (\epsilon_i, \epsilon_{i+1}, \ldots) \text{ for all } i \in \mathbb{N} \right\}
\]

Remark 4.8. If \(\beta < \beta' \) then the quasi-greedy expansion of 1 with respect to \(\beta \) is lexicographically strictly less than the quasi-greedy expansion of 1 with respect to \(\beta' \). As a corollary of this we have \(S_{\beta,m} \subseteq S_{\beta',m} \) for \(\beta < \beta' \).

Proposition 4.9. For \(\beta \in (\mathcal{G}(m), \beta_f(m)) \) \(|S_{\beta,m}| = 1 \) when \(m \) is even, \(|S_{\beta,m}| = 2 \) when \(m \) is odd and \(|S_{\beta,m}| \geq 8_0 \) for \(\beta \in (\beta_f(m), m+1) \).

By the remarks following Theorem 4.5 this will allow us to conclude our result.

Proof. We begin by considering the case where \(m = 2k \). When \(\beta = \beta_f(m) \) we have \((d_i(m))_{i=1}^\infty = (k+1, k-1)^\infty \) and by Lemma 4.7

\[
S_{\beta_f(m),m} = \left\{ (\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : (\epsilon_i, \epsilon_{i+1}, \ldots) < (k+1, k-1)^\infty \right\}
\]

By our previous analysis we know that for \(\beta \in (\mathcal{G}(m), m+1) \) the point \(\frac{k}{\beta} \) has a unique \(\beta \)-expansion, the \(\beta \)-expansion of this point is the sequence \((k)_{i=1}^\infty \). By Remark 4.8 to prove \(|S_{\beta,m}| = \)
In this section we study the growth rate of the sequences

4.2 The growth rate of

for \(1\) result we firstly require the following lemma.

Clearly if \(\epsilon_i = k - 1\) then \(\epsilon_{i+1} = k + 1\). Therefore if \(\epsilon_i \neq k\) for some \(i\), then \((\epsilon_i, \epsilon_{i+1}, \ldots)\) must equal \((k - 1, k + 1)^\infty\) or \((k + 1, k - 1)^\infty\). By Lemma 4.7 this cannot happen and we can conclude that \(S_{\beta_f(m), m} = \{(k)^\infty\}\). For \(\beta \in (\beta_{f,m}, m + 1]\), we can construct a countable subset of \(S_{\beta,m}\); for example all sequences of the form \(S k - k + 1\).

Theorem 4.10. The following theorem summarises the growth rate of each of these sequences.

We now consider the case where \(m = 2k + 1\), when \(\beta = \beta_f(m)\) we have \((d_i(m))_{i=1}^\infty = (k + 1, k + 1, k, k)^\infty\) and

\[
\begin{align*}
S_{\beta_f(m), m} &= \{(\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : (\epsilon_i, \epsilon_{i+1}, \ldots) < (k + 1, k + 1, k, k)^\infty \text{ and } \\
(k, k + 1, k + 1)^\infty &< (\epsilon_i, \epsilon_{i+1}, \ldots) \text{ for all } i \in \mathbb{N}\}.
\end{align*}
\]

By our earlier analysis we know that \(\{(k, k + 1)^\infty, (k + 1, k)^\infty\} \subset S_{\beta,m} \text{ for } \beta \in (G(m), m + 1]\). By Remark 4.8 to prove \(|S_{\beta,m}| = 2\) for \(\beta \in (G(m), \beta_f(m)]\) it suffices to show that \(S_{\beta_f(m), m} = \{(k, k + 1)^\infty, (k + 1, k)^\infty\}\). By an analogous argument to that given in [9] we can show that if \((\epsilon_i)_{i=1}^\infty \in S_{\beta_f(m), m}\) then \(\epsilon_i = k\) implies \(\epsilon_{i+1} = k + 1\), and \(\epsilon_i = k + 1\) implies \(\epsilon_{i+1} = k\). Clearly any element of \(S_{\beta_f(m), m}\) must begin with \(k\) or \(k + 1\) and we may therefore conclude that \(S_{\beta_f(m), m} = \{(k, k + 1)^\infty, (k + 1, k)^\infty\}\). To see that \(|W_{\beta,m}| \geq \aleph_0\) for \(\beta > \beta_f(m)\) we observe that \((k + 1, k)^j(k + 1, k + 1, k, k)^\infty \in S_{\beta,m}\) for all \(j \in \mathbb{N}\), for \(\beta > \beta_f(m)\). \(\square\)

4.2 The growth rate of \(G(m), \beta_f(m)\) and \(\beta_c(m)\)

In this section we study the growth rate of the sequences \((G(m))_{m=1}^\infty, (\beta_f(m))_{m=1}^\infty\) and \((\beta_c(m))_{m=1}^\infty\). The following theorem summarises the growth rate of each of these sequences.

Theorem 4.10. 1. \(G(2k) = k + 1\) for all \(k \in \mathbb{N}\).

2. \(\beta_f(2k) - (k + 2) = O(1/k)\).

3. \(\beta_c(2k) - (k + 2) \to 0\) as \(k \to \infty\).

4. \(G(2k + 1) - (k + 2) = O(1/k)\).

5. \(\beta_f(2k + 1) - (k + 2) \to 0\) as \(k \to \infty\).

6. \(\beta_c(2k + 1) - (k + 2) \to 0\) as \(k \to \infty\).

The proof of this theorem is somewhat trivial but we include it for completion. To prove this result we firstly require the following lemma.

Lemma 4.11. The sequence \(\beta_c(m)\) is asymptotic to \(\frac{m}{2}\), i.e., \(\lim_{m \to \infty} \frac{\beta_c(m)}{m/2} = 1\).
Proof. Suppose \(m = 2k \). It is a direct consequence of the definition of \(\lambda_i(m) \) and \(\beta_c(m) \) that the following inequalities hold

\[
\sum_{i=0}^{\infty} \frac{k-1}{\beta_c(m)^i} \leq \beta_c(m) \leq \sum_{i=0}^{\infty} \frac{k+1}{\beta_c(m)^i},
\]

which is equivalent to

\[
\frac{k-1}{1 - \frac{1}{\beta_c(m)}} \leq \beta_c(m) \leq \frac{k+1}{1 - \frac{1}{\beta_c(m)}}.
\]

Dividing through by \(m/2 \) and using the fact that \(\beta_c(m) \to \infty \) we can conclude our result. The case where \(m = 2k + 1 \) is proved similarly.

We are now in a position to prove Theorem 4.10.

Proof of Theorem 4.10. Statements 1, 2 and 4 are an immediate consequence of Theorem 1.1 and Theorem 4.5. It remains to show statements 3 and 6 hold; statement 4 will follow from the fact that \(G(2k+1) < \beta_f(2k+1) < \beta_c(2k+1) \). It is immediate from the definition of \(\lambda_i(m) \) that if \(m = 2k \) then

\[
\beta_{c,m} = k + 1 + \frac{k}{\beta_c(m)} + \sum_{i=2}^{\infty} \frac{\lambda_{i+1}(m)}{\beta^i}.
\]

Our result now follows from Lemma 4.11 and the fact that \(\sum_{i=2}^{\infty} \frac{\lambda_{i+1}(m)}{\beta_c(m)^i} \to 0 \) as \(m \to \infty \). The case where \(m = 2k + 1 \) is proved similarly.

5 The growth rate and dimension theory of \(\Sigma_{\beta,m}(x) \)

To describe the growth rate of \(\beta \)-expansions we consider the following. Let

\[
\mathcal{E}_{\beta,m,n}(x) = \{ (\epsilon_1, \ldots, \epsilon_n) \in \{0, \ldots, m\}^n \mid \exists (\epsilon_{n+1}, \epsilon_{n+2}, \ldots) \in \{0, \ldots, m\}^{\mathbb{N}} : \sum_{i=1}^{\infty} \frac{\epsilon_i}{\beta^i} = x \},
\]

we define an element of \(\mathcal{E}_{\beta,m,n}(x) \) to be a \(n \)-prefix for \(x \). Moreover, we let

\[
\mathcal{N}_{\beta,m,n}(x) = |\mathcal{E}_{\beta,m,n}(x)|
\]

and define the growth rate of \(\mathcal{N}_{\beta,m,n}(x) \) to be

\[
\lim_{n \to \infty} \frac{\log_{m+1} \mathcal{N}_{\beta,m,n}(x)}{n},
\]
when this limit exists. When this limit does not exist we can consider the lower and upper growth rates of $N_{\beta,m,n}(x)$, these are defined to be
\[
\liminf_{n \to \infty} \frac{\log_{m+1} N_{\beta,m,n}(x)}{n} \quad \text{and} \quad \limsup_{n \to \infty} \frac{\log_{m+1} N_{\beta,m,n}(x)}{n}
\]
respectively.

In this paper we also consider $\Sigma_{\beta,m}(x)$ from a dimension theory perspective. We endow $\{0, \ldots, m\}^\mathbb{N}$ with the metric $d(\cdot, \cdot)$ defined as follows:
\[
d(x, y) = \begin{cases}
(m + 1)^{-n(x,y)} \quad &\text{if } x \neq y, \text{ where } n(x,y) = \inf\{i : x_i \neq y_i\} \\
0 \quad &\text{if } x = y.
\end{cases}
\]
We will consider the Hausdorff dimension of $\Sigma_{\beta,m}(x)$ with respect to this metric. It is a simple exercise to show that following inequalities hold:
\[
\dim_H(\Sigma_{\beta,m}(x)) \leq \liminf_{n \to \infty} \frac{\log_{m+1} N_{\beta,m,n}(x)}{n} \leq \limsup_{n \to \infty} \frac{\log_{m+1} N_{\beta,m,n}(x)}{n}. \tag{5}
\]
The case where $m = 1$ is studied in [4], [8] and [10]. In [4] and [8] the authors show that for $\beta \in (1, \frac{1+\sqrt{5}}{2})$ and $x \in (0, \frac{1}{\beta-1})$ we can bound the lower growth rate and Hausdorff dimension of $\Sigma_{\beta,1}(x)$ below by some strictly positive function depending only on β, in [10] the growth rate is studied from a measure theoretic perspective. Our main result is the following.

Theorem 5.1. For $\beta \in (1, \mathcal{G}(m))$ and $x \in (0, \frac{m}{\beta-1})$ the Hausdorff dimension of $\Sigma_{\beta,m}(x)$ can be bounded below by some strictly positive constant depending only on β.

By (5) a similar statement holds for both the lower and upper growth rates of $N_{\beta,m,n}(x)$. Replicating the proof of Lemma 2.4 it is a simple exercise to show that the following result holds.

Proposition 5.2. $N_{\beta,m,n}(x) = |\Omega_{\beta,m,n}(x)|$

By Proposition 5.2 we can identify elements of $\Omega_{\beta,m,n}(x)$ with elements of $\mathcal{E}_{\beta,m,n}(x)$, as such we also define an element of $\Omega_{\beta,m,n}(x)$ to be a n-prefix for x. To prove Theorem 5.1 we will use a method analogous to that given if [4]. We construct an interval $I_{\beta} \subset I_{\beta,m}$ such that, for each $x \in I_{\beta}$ we can generate multiple prefixes for x of a fixed length depending on β that map x back into I_{β}. As we will see Theorem 5.1 will then follow by a counting argument. As was the case in our previous analysis we reduce the proof of Theorem 5.1 to two cases.

5.1 Case where m is even

In what follows we assume $m = 2k$ for some $k \in \mathbb{N}$. To prove Theorem 5.1 we require the following technical lemma.

Lemma 5.3. For each $\beta \in (1, k+1)$ there exists $\epsilon_0(\beta) > 0$ such that, if $x \in \left[\frac{1}{\beta}, \frac{1}{\beta} + \epsilon_0(\beta)\right)$ then $T_{\beta,0}(x) \in \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta)\right]$, and similarly if $x \in \left(\frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta), \frac{(m+1)\beta+1}{\beta(\beta-1)}\right]$ then $T_{\beta,m}(x) \in \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta)\right]$.

16
Figure 5: The interval I_{β} in the case where $m = 2$ and \(\beta \in (1, 2) \).

Proof. This follows from Lemma 2.6 and a continuity argument.

For each \(i \in \{1, \ldots, m - 1\} \) we let \(\epsilon_{i}(\beta) = \frac{1}{2}\left(\frac{\beta+1}{\beta(\beta-1)} - \frac{i+1}{\beta}\right) \). If \(\beta \in (1, k + 1) \) then \(\epsilon_{i}(\beta) > 0 \) for each \(i \in \{1, \ldots, m - 1\} \). We define the interval $I_{\beta} = [L(\beta), R(\beta)]$ where $L(\beta)$ and $R(\beta)$ are defined as follows:

\[
L(\beta) = \min \left\{ T_{\beta,1} \left(\frac{1}{\beta} + \epsilon_{0}(\beta) \right), \min_{i \in \{1, \ldots, m-1\}} T_{\beta,i+1} \left(\frac{i+1}{\beta} + \epsilon_{i}(\beta) \right) \right\}
\]

and

\[
R(\beta) = \max \left\{ T_{\beta,m-1} \left(\frac{m-1}{\beta} + \frac{1}{\beta(\beta-1)} - \epsilon_{0}(\beta) \right), \max_{i \in \{1, \ldots, m-1\}} T_{\beta,i-1} \left(\frac{i+1}{\beta} + \epsilon_{i}(\beta) \right) \right\}
\]

We refer to Figure 5 for a diagram illustrating the interval I_{β} in the case where $m = 2$ and $\beta \in (1, 2)$.

Proposition 5.4. Let \(\beta \in (1, k + 1) \). There exists \(n(\beta) \in \mathbb{N} \) such that, for each \(x \in I_{\beta} \) there exists two elements \(a, b \in \Omega_{\beta,m,n(\beta)}(x) \) such that \(a(x) \in I_{\beta} \) and \(b(x) \in I_{\beta} \).
Proof. Let \(x \in \mathcal{I}_\beta \). Without loss of generality we may assume that \(\epsilon_0(\beta) \) is sufficiently small such that \(\mathcal{I}_\beta \) contains the switch region. By Lemma 2.6 there exists a sequence of maps \(a \) that map \(x \) into the interior of our switch region. By Lemma 5.3 we may assume that \(a(x) \in \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta) \right] \).

The distance between the endpoints of \(\mathcal{I}_\beta \) and the endpoints of \(I_{\beta,m} \) (the fixed points of the maps \(T_{\beta,0} \) and \(T_{\beta,m} \)) can be bounded below by some positive constant, by Lemma 2.1 \(T_{\beta,0} \) and \(T_{\beta,m} \) both scale the distance between their fixed points and a general point by a factor \(\beta \), therefore we can bound the length of our sequence \(a \) above by some constant \(n_s(\beta) \in \mathbb{N} \) that does not depend on \(x \). We will show that we can take \(n(\beta) = n_s(\beta) + 1 \).

We remark that

\[
\left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta) \right] = \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{2}{\beta} \right]
\]

\[
\cup \left[\frac{(m-2)\beta+2}{\beta(\beta-1)}, \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta) \right]
\]

\[
m-2 \sum_{i=1}^{m-2} \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)}, \frac{i+2}{\beta} \right]
\]

\[
m-1 \sum_{i=1}^{m-1} \left[\frac{i+1}{\beta}, \frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} \right]
\]

We now proceed via a case analysis.

- If \(a(x) \in \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{2}{\beta} \right] \) then \(T_{\beta,0}(a(x)) \in \mathcal{I}_\beta \) and \(T_{\beta,1}(a(x)) \in \mathcal{I}_\beta \).

- If \(a(x) \in \left[\frac{(m-2)\beta+2}{\beta(\beta-1)}, \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta) \right] \) then \(T_{\beta,m-1}(a(x)) \in \mathcal{I}_\beta \) and \(T_{\beta,m}(a(x)) \in \mathcal{I}_\beta \).

- If \(a(x) \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)}, \frac{i+2}{\beta} \right] \) for some \(i \in \{1, \ldots, m-2\} \) then \(T_{\beta,i}(a(x)) \in \mathcal{I}_\beta \) and \(T_{\beta,i+1}(a(x)) \in \mathcal{I}_\beta \).

- We reduce the the case where \(a(x) \in \left[\frac{i+1}{\beta}, \frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} \right] \) for some \(i \in \{1, \ldots, m-1\} \) to two subcases. If \(a(x) \in \left[\frac{i+1}{\beta}, \frac{i+1}{\beta} + \epsilon_i(\beta) \right] \) then by the monotonicity of our maps, both \(T_{\beta,i-1}(a(x)) \) \(\in \mathcal{I}_\beta \) and \(T_{\beta,i}(a(x)) \) \(\in \mathcal{I}_\beta \). Similarly, in the case where \(a(x) \in \left[\frac{i+1}{\beta} + \epsilon_i(\beta), \frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} \right] \) both \(T_{\beta,i}(a(x)) \) \(\in \mathcal{I}_\beta \) and \(T_{\beta,i+1}(a(x)) \) \(\in \mathcal{I}_\beta \).

We’ve shown that for any \(x \in \mathcal{I}_\beta \) there exists \(n(x) \leq n_s(\beta) + 1 \) such that two distinct elements of \(\Omega_{\beta,m,n(x)}(x) \) map \(x \) into \(\mathcal{I}_\beta \). If \(n(x) < n_s(\beta) + 1 \) then we can concatenate our two elements of \(\Omega_{\beta,m,n(x)}(x) \) by an arbitrary choice of maps of length \(n_s(\beta) + 1 - n(x) \) that map the image of \(x \) into \(\mathcal{I}_\beta \). This ensures that we can take our sequences of maps to be of length \(n_s(\beta) + 1 \).

For \(\beta \in (1, k+1) \) and \(x \in (0, \frac{m}{\beta-1}) \) we may assume that there exists a sequence of maps \(a \) that maps \(x \) into \(\mathcal{I}_\beta \). We denote the minimum number of maps required to do this by \(j(x) \). Replicating
arguments given in [4] we can use Proposition 5.4 to construct an algorithm by which we can generate two prefixes of length \(n(\beta)\) for \(a^{(j(x))}\). Repeatedly applying this algorithm to successive images of \(a^{(j(x))}\) we can generate a closed subset of \(\Sigma_{\beta,m}(x)\). We denote this set by \(\sigma_{\beta,m}(x)\) and the set of \(n\)-prefixes for \(x\) generated by this algorithm by \(\omega_{\beta,m,n}(x)\). Replicating the proofs given in [4] we can show that the following lemmas hold.

Lemma 5.5. Let \(x \in (0, \frac{m}{\beta-1})\). Assume \(n \geq j(x)\) then

\[
|\omega_{\beta,m,n}(x)| \geq 2^{\frac{n-j(x)}{n(\beta)}-1}.
\]

Lemma 5.6. Let \(x \in (0, \frac{m}{\beta-1})\). Assume \(l \geq j(x)\) and \(b \in \omega_{\beta,m,l}(x)\), then for \(n \geq l\)

\[
|\{a = (a_i)_{i=1}^n \in \omega_{\beta,m,n}(x) : a_i = b_i \text{ for } 1 \leq i \leq l\}| \leq 2^\frac{m-1}{n(\beta)+2}.
\]

With these lemmas we are now in a position to prove Theorem 5.1 in the case where \(m\) is even. The argument used is analogous to the one given in [4], which is based upon Example 2.7 of [7].

Proof of Theorem 5.1 when \(m = 2k\). By the monotonicity of Hausdorff dimension with respect to inclusion it suffices to show that \(\text{dim}_H(\sigma_{\beta,m}(x))\) can be bounded below by a strictly positive constant depending only on \(\beta\). It is a simple exercise to show that \(\sigma_{\beta,m}(x)\) is a compact set; by this result we may restrict to finite covers of \(\sigma_{\beta,m}(x)\). Let \(\{U_n\}_{n=1}^N\) be a finite cover of \(\sigma_{\beta,m}(x)\). Without loss of generality we may assume that all elements of our cover satisfy \(\text{Diam}(U_n) < (m+1)^{-j(x)}\). For each \(U_n\) there exists \(l(n) \in \mathbb{N}\) such that

\[
(m + 1)^{-l(n)+1} \leq \text{Diam}(U_n) < (m + 1)^{-l(n)}.
\]

It follows that there exists \(z^{(n)} \in \{0, \ldots, m\}^{l(n)}\) such that, \(y_i = z_i^{(n)}\) for \(1 \leq i \leq l(n)\), for all \(y \in U_n\). We may assume that \(z^{(n)} \in \omega_{\beta,m,l(n)}(x)\), if we supposed otherwise then \(\sigma_{\beta,m}(x) \cap U_n = \emptyset\) and we can remove \(U_n\) from our cover. We denote by \(C_n\) the set of sequences in \(\{0, \ldots, m\}^\mathbb{N}\) whose first \(l(n)\) entries agree with \(z^{(n)}\), i.e.

\[
C_n = \left\{(\epsilon_i)_{i=1}^\infty \in \{0, \ldots, m\}^\mathbb{N} : \epsilon_i = z_i^{(n)} \text{ for } 1 \leq i \leq l(n)\right\}.
\]

Clearly \(U_n \subset C_n\) and therefore the set \(\{C_n\}_{n=1}^N\) is a cover of \(\sigma_{\beta,m}(x)\).

Since there are only finitely many elements in our cover there exists \(J\) such that \((m + 1)^{-J} \leq \text{Diam}(U_n)\) for all \(n\). We consider the set \(\omega_{\beta,m,J}(x)\). Since \(\{C_n\}_{n=1}^N\) is a cover of \(\sigma_{\beta,m}(x)\) each \(a \in \omega_{\beta,m,J}(x)\) satisfies \(a_i = z_i^{(n)}\) for \(1 \leq i \leq l(n)\), for some \(n\). Therefore

\[
|\omega_{\beta,m,J}(x)| \leq \sum_{n=1}^N \left|\left\{a \in \omega_{\beta,m,J}(x) : a_i = z_i^{(n)} \text{ for } 1 \leq i \leq l(n)\right\}\right|.
\]
By counting elements of $\omega_{\beta,m,J}(x)$ and Lemmas 5.5 and 5.6 we observe the following:

$$2^{J_{\beta,m}(x)} - 1 \leq |\omega_{\beta,m,J}(x)|$$

$$\leq \sum_{n=1}^{N} \left| \{ a \in \omega_{\beta,m,J}(x) : a_i = z_i^{(n)} \text{ for } 1 \leq i \leq l(n) \} \right|$$

$$\leq \sum_{n=1}^{N} 2^{J_{\beta,m}(x)-2}$$

$$= 2^{J_{\beta,m}(x)-2} \sum_{n=1}^{N} 2^{-(l(n)+1)}$$

$$\leq 2^{J_{\beta,m}(x)-2} \sum_{n=1}^{N} \text{Diam}(U_n) \frac{\log m+1}{n(\beta)}.$$

Dividing through by $2^{J_{\beta,m}(x)-2}$ yields

$$\sum_{n=1}^{N} \text{Diam}(U_n) \frac{\log m+1}{n(\beta)} \geq 2^{J_{\beta,m}(x) - 3n(\beta)-1}$$

the right hand side is a positive constant greater than zero that does not depend on our choice of cover. It follows that $\dim_H(\sigma_{\beta,m}(x)) \geq \frac{\log m+1}{n(\beta)}$, our result follows. \hfill \Box

5.2 Case where m is odd

In what follows we assume $m = 2k + 1$ for some $k \in \mathbb{N}$. For $\beta \in (1, \frac{2k+3}{2})$ the proof of Theorem 5.1 is analogous to the even case for $\beta \in (1, k+1)$. As such, in what follows we assume $\beta \in \left[\frac{2k+3}{2}, k+1+\sqrt{k^2+6k+3}\right)$. The significance of $\beta \in \left[\frac{2k+3}{2}, k+1+\sqrt{k^2+6k+3}\right)$ is that for $i \in \{1, \ldots, m-1\}$ the i-th fixed digit interval is well defined.

Before defining the interval I_{β} we require the following. We let

$$\epsilon_i(\beta) = \begin{cases} \frac{1}{2} \left(\frac{(i-1)\beta + m - (i-1)}{\beta(\beta-1)} - \frac{1}{\beta-1} \right) & \text{if } i \in \{1, \ldots, k\} \\ \frac{1}{2} \left(\frac{1}{\beta-1} - \frac{i+1}{\beta} \right) & \text{if } i \in \{k+1, \ldots, m-1\} \end{cases}$$

By Lemma 5.5 $\epsilon_i(\beta) > 0$ for all $i \in \{1, \ldots, m-1\}$ for $\beta \in (1, k+2)$. Before proving an analogue of Proposition 5.4 we require the following technical lemmas. It is a simple exercise to show that the following analogue of Lemma 5.5 holds.

Lemma 5.7. For each $\beta \in \left[\frac{2k+3}{2}, k+1+\sqrt{k^2+6k+3}\right)$ there exists $\epsilon_0(\beta) > 0$ such that, if $x \in \left[\frac{1}{\beta}, \frac{1}{2}\right] + \epsilon_0(\beta)$ then $T_{\beta,0}(x) \in \left[\frac{1}{\beta}, \frac{1}{2}\right] + \epsilon_0(\beta)$, and similarly if $x \in \left(\frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} \right]$ then $T_{\beta,n}(x) \in \left[\frac{1}{\beta}, \frac{1}{2}\right] + \epsilon_0(\beta)$, $\frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta)$.
Lemma 5.8. Let $\beta \in \left[\frac{2k+3}{2}, \frac{k+1+\sqrt{k^2+6k+5}}{2}\right]$. For each $i \in \{1, \ldots, k-1\}$ there exists $\epsilon_i^*(\beta) > 0$ such that, if $x \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta), \frac{i+1}{\beta} + \epsilon_i^*(\beta)\right]$ then $T_{\beta,i}(x) < \frac{k+2}{\beta} + \epsilon_{k+1}$. Similarly for $i \in \{k+2, \ldots, m-1\}$ there exists $\epsilon_i^*(\beta) > 0$ such that, if $x \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i^*(\beta), \frac{i+1}{\beta} + \epsilon_i(\beta)\right]$ then $T_{\beta,i}(x) > \frac{(k-1)\beta+m-(k-1)}{\beta(\beta-1)} - \epsilon_k$.

Proof. By the analysis given in the proof of Lemma 3.5 for $i \in \{1, \ldots, k-1\}$ $T_{\beta,i}(\frac{i+1}{\beta}) < \frac{k^2+6k+5}{\beta(\beta-1)}$ for $\beta \in (1, \frac{k+1+\sqrt{k^2+6k+5}}{2})$. However, for $\beta \in \left[\frac{2k+3}{2}, \frac{k+1+\sqrt{k^2+6k+5}}{2}\right]$ $\frac{k^2+6k+5}{\beta(\beta-1)} \leq \frac{k+2}{\beta}$. The existence of $\epsilon_i^*(\beta)$ then follows by a continuity argument and the monotonicity of the maps $T_{\beta,i}$.

The case where $i \in \{k+2, \ldots, m-1\}$ is proved similarly. \hfill \square

We are now in a position to define the interval I_β. Let $I_\beta = [L(\beta), R(\beta)]$ where

$$L(\beta) = \min \left\{ T_{\beta,1}(\frac{1}{\beta} + \epsilon_0(\beta)), T_{\beta,k+1}\left(\frac{k\beta + k + 1}{\beta^2 - 1}\right), \min_{i \in \{2, \ldots, k\}} \left\{ T_{\beta,i}\left(\frac{i}{\beta} + \epsilon_{i-1}(\beta)\right)\right\}, \min_{i \in \{k+2, \ldots, m\}} \left\{ T_{\beta,i}\left(\frac{i}{\beta} + \epsilon_{i-1}(\beta)\right)\right\} \right\}$$

and

$$R(\beta) = \max \left\{ T_{\beta,k}\left(\frac{(k+1)\beta + k}{\beta^2 - 1}\right), T_{\beta,m-1}\left(\frac{(m-1)\beta + 1}{\beta(\beta-1)} - \epsilon_0(\beta)\right), \max_{i \in \{1, \ldots, k\}} \left\{ T_{\beta,i-1}\left(\frac{(i-1)\beta + m - (i-1)}{\beta(\beta-1)} - \epsilon_i(\beta)\right)\right\}, \max_{i \in \{k+2, \ldots, m-1\}} \left\{ T_{\beta,i-1}\left(\frac{(i-1)\beta + m - (i-1)}{\beta(\beta-1)} - \epsilon_i(\beta)\right)\right\} \right\}.$$

For ease of exposition in Figure 6 we give a diagram illustrating the interval I_β, in the case where $m = 3$ and $\beta \in \left[\frac{3}{2}, 1 + \sqrt{3}\right]$.

Proposition 5.9. Let $\beta \in \left[\frac{2k+3}{2}, \frac{k+1+\sqrt{k^2+6k+5}}{2}\right]$. There exists $n(\beta) \in \mathbb{N}$ such that, for each $x \in I_\beta$ there exists two elements $a, b \in \Omega_{\beta,m,n(\beta)}(x)$ such that $a(x) \in I_\beta$ and $b(x) \in I_\beta$.

Proof. Without loss of generality we may assume that $\epsilon_0(\beta)$ is sufficiently small such that I_β contains the switch region. By Lemma 2.6 there exists a sequence of maps a that map x into the switch region. As the endpoints of I_β are bounded away from the endpoints of $I_{\beta,m}$ we can bound the length of a above by some $n_\epsilon(\beta) \in \mathbb{N}$. Moreover, by Lemma 5.7 we may assume that $a(x) \in \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta + 1}{\beta(\beta-1)} - \epsilon_0(\beta)\right]$. As in the even case it is useful to treat $\left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m-1)\beta + 1}{\beta(\beta-1)} - \epsilon_0(\beta)\right]$ as the union of subintervals. We observe that

21
Figure 6: The interval I_β in the case where $m = 3$ and $\beta \in \left[\frac{5}{2}, 1 + \sqrt{3}\right)$.

\[
\left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{(m - 1)\beta + 1}{\beta(\beta - 1)} - \epsilon_0(\beta)\right] = \left[\frac{1}{\beta} + \epsilon_0(\beta), \frac{m}{\beta(\beta - 1)} - \epsilon_1(\beta)\right]
\]

\[
\bigcup_{i=2}^{m-1} \left[\frac{i}{\beta} + \epsilon_{i-1}(\beta), \frac{(i - 1)\beta + m - (i - 1)}{\beta(\beta - 1)} - \epsilon_i(\beta)\right]
\]

\[
\bigcup_{i=k+2}^{k-1} \left[\frac{\beta(i - 1)\beta + m - (i - 1)}{\beta(\beta - 1)} - \epsilon_i(\beta), \frac{i + 1}{\beta} + \epsilon_i(\beta)\right]
\]

\[
\bigcup_{i=k+2}^{m-1} \left[\frac{(i - 1)\beta + m - (i - 1)}{\beta(\beta - 1)} - \epsilon_i(\beta), \frac{i + 1}{\beta} + \epsilon_i(\beta)\right]
\]
Without loss of generality we may assume that $\epsilon_0(\beta), \epsilon_i(\beta), \epsilon'_i(\beta)$ are all sufficiently small such that each of the above intervals in our union are well defined and nontrivial. We now proceed via a case analysis.

- If $a(x) \in \left[\frac{a}{\beta} + \epsilon_0(\beta), \frac{m}{\beta(\beta-1)} - \epsilon_1(\beta)\right]$ then $T_{\beta,0}(a(x)) \in I_{\beta}$ and $T_{\beta,1}(a(x)) \in I_{\beta}$.

- If $a(x) \in \left[\frac{m}{\beta} + \epsilon_{m-1}(\beta), \frac{(m-1)\beta+1}{\beta(\beta-1)} - \epsilon_0(\beta)\right]$ then $T_{\beta,m-1}(a(x)) \in I_{\beta}$ and $T_{\beta,m}(a(x)) \in I_{\beta}$.

- Suppose $a(x) \in \left[\frac{(k-1)\beta+m-(k-1)}{\beta(\beta-1)} - \epsilon_k(\beta), \frac{k+2}{\beta} + \epsilon_{k+1}(\beta)\right]$. If $a(x) \in \left[\frac{k\beta+k+1}{\beta^2-1}, \frac{(k+1)\beta+k}{\beta^2-1}\right]$ then $T_{\beta,k}(a(x)) \in I_{\beta}$ and $T_{\beta,k+1}(a(x)) \in I_{\beta}$. If $a(x) \in \left[\frac{(k-1)\beta+m-(k-1)}{\beta(\beta-1)} - \epsilon_k(\beta), \frac{k\beta+k+1}{\beta^2-1}\right]$ then we are bounded distance away from the fixed point of the map $T_{\beta,k}$, by Lemma 2.1 we know that $T_{\beta,k}$ scales the distance between $a(x)$ and the fixed point of $T_{\beta,k}$ by a factor β, therefore we can bound the number of maps required to map $a(x)$ into $\left[\frac{k\beta+k+1}{\beta^2-1}, \frac{(k+1)\beta+k}{\beta^2-1}\right]$. By a similar argument, if $a(x) \in \left[\frac{(k+1)\beta+k}{\beta^2-1}, \frac{k+2}{\beta} + \epsilon_{k+1}(\beta)\right]$ we can bound the number of maps required to map $a(x)$ into $\left[\frac{k\beta+k+1}{\beta^2-1}, \frac{(k+1)\beta+k}{\beta^2-1}\right]$. By the above we can assert that when $a(x) \in \left[\frac{(k-1)\beta+m-(k-1)}{\beta(\beta-1)} - \epsilon_k(\beta), \frac{k+2}{\beta} + \epsilon_{k+1}(\beta)\right]$ there exists two distinct sequences of maps whose length we can bound above by some $n_\beta(\beta) \in \mathbb{N}$ that map $a(x)$ into I_{β}.

- If $a(x) \in \left[\frac{i}{\beta} + \epsilon_{i-1}(\beta), \frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta)\right]$ for some $i \in \{2, \ldots, k-1\}$ then $T_{\beta,i-1}(a(x)) \in I_{\beta}$ and $T_{\beta,i}(a(x)) \in I_{\beta}$.

- If $a(x) \in \left[\frac{i}{\beta} + \epsilon_i(\beta), \frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon'_i(\beta)\right]$ for some $i \in \{k+2, \ldots, m - 1\}$ then $T_{\beta,i-1}(a(x)) \in I_{\beta}$ and $T_{\beta,i}(a(x)) \in I_{\beta}$.

- If $a(x) \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta), \frac{i+1}{\beta} + \epsilon'_i(\beta)\right]$ for some $i \in \{1, \ldots, k-1\}$ then $a(x)$ is a bounded distance away from the fixed point of the map $T_{\beta,i}$, by Lemma 2.1 we know that $T_{\beta,i}$ scales the distance between $a(x)$ and its fixed point by a factor β, therefore we can bound the number of maps required to map $a(x)$ outside of the interval $\left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta), \frac{i+1}{\beta} + \epsilon'_i(\beta)\right]$ by some $n_i(\beta) \in \mathbb{N}$. If $a(x)$ has been mapped into an interval covered by one of the above cases we are done, if not it has to be mapped into another interval of the form $\left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_j(\beta), \frac{i+1}{\beta} + \epsilon'_i(\beta)\right]$. By Corollary 3.4 and Lemma 5.8 we know that $i < j \leq k + 1$. Repeating the previous step as many times as is necessary we can ensure that within $\sum_{i=1}^{k-1} n_i(\beta)$ maps, $a(x)$ has to be mapped into an interval that was addressed in one of our previous cases.

- The case where $a(x) \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta), \frac{i+1}{\beta} + \epsilon_i(\beta)\right]$ for some $i \in \{k+2, \ldots, m-1\}$ is analogous to the case where $a(x) \in \left[\frac{(i-1)\beta+m-(i-1)}{\beta(\beta-1)} - \epsilon_i(\beta), \frac{i+1}{\beta} + \epsilon'_i(\beta)\right]$ for some $i \in \{1, \ldots, k-1\}$.

We’ve shown that for any $x \in I_{\beta}$ there exists $n(x) \in \mathbb{N}$ such that, two distinct elements of $\Omega_{\beta,m,n(x)}(x)$ map x into I_{β}, moreover $n(x) \leq n_s(\beta) + n_c(\beta) + \sum_{i=1}^{k-1} n_i(\beta)$. We take $n(\beta)$ to equal $n_s(\beta) + n_c(\beta) + \sum_{i=1}^{k-1} n_i(\beta)$. If $n(x) < n(\beta)$ then as in the even case we concatenate
our image of x by an arbitrary sequence of maps of length $n(\beta) - n(x)$ that map x into \mathcal{I}_β, this ensures our sequences of maps are of length $n(\beta)$.

Repeating the analysis given in the case where m is even we can conclude Theorem 5.1 in the case where m is odd.

6 Open questions and a table of values for $G(m)$, $\beta_f(m)$ and $\beta_c(m)$

We conclude with a few open questions and a table of values for $G(m)$, $\beta_f(m)$ and $\beta_c(m)$.

- In [1] the authors study the order in which periodic orbits appear in the set of uniqueness. When $m = 1$ they show that as $\beta \nearrow 2$ the order in which periodic orbits appear in the set of uniqueness is intimately related to the classical Sharkovskii ordering. It is natural to ask whether a similar result holds in our general case.

- In [18] it is shown that when $m = 1$ and $\beta = \frac{1 + \sqrt{5}}{2}$ the set of numbers: $x = \frac{(1 + \sqrt{5})n}{2} \mod 1$ for some $n \in \mathbb{N}$ have countably many β-expansions, while the other elements of $(0, \frac{1}{\beta - 1})$ have uncountably many β-expansions. Does an analogue of this statement hold in the case of general m?

- Let p_1, \ldots, p_k be points in \mathbb{R}^d such that the polyhedra Π with these vertices is convex. Let \{\(f_i\)\}_{i=1}^{k}$ be the one parameter family of maps given by \(f_i(x) = \lambda x + (1 - \lambda)p_i\), where $\lambda \in (0, 1)$ is our parameter. As is well known there exists a unique S_λ such that $S_\lambda = \bigcup_{i=1}^{k} f_i(S_\lambda)$. We say that $(\epsilon_i)_{i=1}^{\infty} \in \{1, \ldots, k\}^\mathbb{N}$ is an address for $x \in S_\lambda$ if $\lim_{n \rightarrow \infty}(f_{\epsilon_n} \circ \ldots \circ f_{\epsilon_1})(0) = x$. We ask whether an analogue of the golden ratio exists in this case, i.e, does there exist λ^* such that for $\lambda \in (\lambda^*, 1)$ every $x \in S_\lambda \setminus \{p_1, \ldots, p_k\}$ has uncountably many addresses, but for $\lambda \in (0, \lambda^*)$ there exists $x \in S_\lambda \setminus \{p_1, \ldots, p_k\}$ with a unique address. In [16] the author shows that an analogue of the golden ratio exists in the case when $d = 2$ and $k = 3$.

Acknowledgements The author would like to thank Nikita Sidorov for much support and Rafael Alcaraz Barrera for his useful remarks.
Table 1: Table of values for $G(m)$, $\beta_f(m)$ and $\beta_c(m)$

m	$G(m)$	$\beta_f(m)$	$\beta_c(m)$
1	$\frac{1+\sqrt{5}}{2} \approx 1.61803\ldots$	1.75488\ldots	1.78723\ldots
2	2	$1+\sqrt{2} = 2.41421\ldots$	2.47098\ldots
3	$1+\sqrt{3} \approx 2.73205\ldots$	2.89329\ldots	2.90330\ldots
4	3	$\frac{3+\sqrt{17}}{2} = 3.56155\ldots$	3.66607\ldots
5	$\frac{5+\sqrt{21}}{2} \approx 3.79129\ldots$	3.93947\ldots	3.94583\ldots
6	4	$2+\sqrt{2} = 4.64575\ldots$	4.75180\ldots
7	$2+2\sqrt{2} \approx 4.82843\ldots$	4.96095\ldots	4.96496\ldots
8	5	$\frac{5+\sqrt{41}}{2} = 5.70156\ldots$	5.80171\ldots
9	$\frac{5+\sqrt{45}}{2} \approx 5.85410\ldots$	5.97273\ldots	5.97537\ldots
10	6	$3+\sqrt{4} = 6.74166\ldots$	6.83469\ldots

References

[1] J.-P. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: the Sharkovskii ordering, Ergodic Theory Dynam. Systems 29 (2009), no. 4, 1055–1074.

[2] J.-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000), no. 5, 448–449.

[3] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in C. Ding, T. Helleseth, and H. Niederreiter, eds., Sequences and their applications: Proceedings of SETA ’98, Springer-Verlag, 1999, pp. 1–16.

[4] S. Baker, The growth rate and dimension theory of beta-expansion, [arXiv:1208.6195v1 [math.DS]].

[5] Z. Daróczy and I. Katai, Univoque sequences, Publ. Math. Debrecen 42 (1993), no. 3–4, 397–407.

[6] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems, Bull. Soc. Math. Fr. 118 (1990), 377–390.

[7] K. Falconer. Fractal Geometry: Mathematical Foundation and Applications. John Wiley, Chichester, 1990.

[8] D. J. Feng, N. Sidorov, Growth rate for beta-expansions, Monatsh. Math. 162 (2011), no. 1, 41–60.

[9] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535–543.
[10] T. Kempton, Counting β-expansions and the absolute continuity of Bernoulli convolutions, Preprint.

[11] V. Komornik, A. Lai, M. Pedicini, Generalized golden ratios of ternary alphabets, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 1113–1146.

[12] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998), no. 7, 636–639.

[13] V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar. 44 (2002), no. 2, 197–218.

[14] D. Kong, W. Li, F. Dekking, Intersections of homogeneous Cantor sets and beta-expansions, Nonlinearity 23 (2010), no. 11, 2815–2834.

[15] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416.

[16] N. Sidorov, Combinatorics of linear iterated function systems with overlaps. Nonlinearity 20 (2007), no. 5, 1299–1312.

[17] N. Sidorov, Expansions in noninteger bases, Lecture notes of a graduate course at the summer school at Queen Mary, University of London, July, 2010.

[18] N. Sidorov and A. Vershik, Ergodic properties of the Erdos measure, the entropy of the golden shift, and related problems. Monatsh. Math. 126 (1998), no. 3, 215–261.