DISCOVERY OF RADIO EMISSION FROM THE TIGHT M8 BINARY LP 349–25

NGOC PHAN-BAO,1 RACHEL A. OSEN,2,3 JEREMY LIM,4 EDUARDO L. MARTÍN,1,5 AND PAUL T. P. HO4,6

Received 2006 October 2; accepted 2006 November 16

ABSTRACT

We present radio observations of eight ultracool dwarfs with a narrow spectral type range (M8–M9.5) using the Very Large Array at 8.5 GHz. Only the tight M8 binary LP 349–25 was detected. LP 349–25 is the tenth ultracool dwarf system detected in radio wavelengths and its trigonometric parallax \(\pi = 67.6 \) mas, recently measured by Gatewood and coworkers, makes it the furthest ultracool system detected by the Very Large Array to date, and the most radio luminous outside of obvious flaring activity or variability. With a separation of only 1.8 AU, masses of the components of LP 349–25 can be measured precisely without any theoretical assumptions, allowing us to clarify their fully convective status and hence the kind of magnetic dynamo in these components, which may play an important role in explaining our detection of radio emissions from these objects. This also makes LP 349–25 an excellent target for further studies with better constraints on the correlations between X-ray, and radio emission and stellar parameters such as mass, age, temperature, and luminosity in ultracool dwarfs.

Subject headings: radio continuum: stars — stars: activity — stars: coronae — stars: individual (LP 349–25) — stars: low-mass, brown dwarfs

1. INTRODUCTION

Main-sequence stars are expected to be fully convective if their mass lies below a certain value, about 0.3–0.4 \(M_\odot \) (M3–M4 spectral types), as suggested by standard models; this probably shifts toward lower masses (0.1–0.2 \(M_\odot \)) due to the influence of the magnetic field (Mullan & MacDonald 2001). In fully convective stars, a turbulent dynamo, which differs from the shell dynamo at the solar surface and what the field properties are is clearly important.

The atmospheres of such ultracool, very low mass stars are predominantly cool, dense, and highly neutral, apparently precluding the buildup of magnetic stresses thought to provide magnetic heating. Yet, detections of observational signatures commonly associated with magnetic activity in Sunlike stars and fully convective stars (Liebert et al. 2003; Berger et al. 2001; Stelzer et al. 2006) suggest that the production mechanism is the same, or nearly the same, in very low mass stars as it is for low-mass and Sunlike stars. Further study of the X-ray emissions (Neuhauser et al. 1999; Stelzer et al. 2006) and H\(\alpha \) emissions (Gizis et al. 2000; Mohanty & Basri 2003) is one way to delimit the properties of magnetic heating in very low mass stars and indirectly investigate the influence of the magnetic field. Recent detections and studies of radio emission from ultracool dwarfs (Berger et al. 2001, 2005; Krishnamurthi et al. 1999; Berger 2002, 2006; Burgasser & Putman 2005; Blank 2004; Audard et al. 2005; Osten et al. 2006; Osten & Jayawardhana 2006; Hallinan et al. 2006) also offer us another important approach to understanding the properties of magnetic fields in fully convective stars, as the magnetic field is likely intimately involved in the production mechanism of the radio radiation from these objects.

In this paper, we present our radio observation of a sample of eight ultracool dwarfs, and the detection of the M8 binary LP 349–25 using the Very Large Array. In § 2 we present the observation and the data reduction; the properties of the radio emission from LP 349–25 are given in § 3; and we in particular discuss radio emission from LP 349–25 and its radio mechanism in § 4.

2. SAMPLE, OBSERVATION, AND DATA REDUCTION

2.1. Sample

We selected a sample of nearby ultracool field dwarfs with spectral types ranging over a narrow band of M8–L0, since five of the nine ultracool dwarfs detected at radio wavelengths are M8–M9.5 dwarfs, giving a significant fraction of \(\approx 56\% \) (see Table 1 in Berger 2006, and references therein). The rotational velocities of the stars range from 4 to 35 km s\(^{-1}\), and the H\(\alpha \) equivalent width ranges from 0 to 21 A. Some known binary systems are also added, including the new tight M8 binary LP 349–25, whose binary status was recently reported by Forveille et al. (2005).

In this paper, we present our radio observation results for eight of these dwarfs. Their properties are listed in Table 1.

2.2. Observations and Data Reduction

We observed the eight dwarfs from 2005 December 22 to 2006 January 2 with the NRAO Very Large Array (VLA)7 when...
Density calibrators were 3C 48, 3C 147, and 3C 286, and the continuum mode with 2\(^{\text{h}}\) the array was in the D configuration, except the observation of 2M 0140+27 in DnC, at 8.5 GHz (3.6 cm) using the standard continuum mode with 2 \(\times\) 50 MHz contiguous bands. The flux density calibrators were 3C 48, 3C 147, and 3C 286, and the phase calibrators were selected to be within 10\(^{\circ}\) of the targets. The data were reduced and analyzed with the Astronomical Image Processing System (AIPS). Only LP 349–25 was detected at the observed frequency of 8.5 GHz (Fig. 1). In order to examine the emission from this object, we subtracted the visibilities of other radio sources in the field and reimaged the visibility data set. We extracted the position and flux of the source in total intensity and made an image of the data set in circular polarization (Stokes \(V\)). In addition, we investigated the time variation of the source using the task DFTPL within AIPS.

2.3. Analysis

Table 1 gives the flux and upper limits for the detections/non detections, respectively. The position of the radio source near the center of the map of the field around LP 349–25 coincides with the expected position of LP 349–25 at the epoch of our observations (2005.967) with its proper motion included (\(\mu\text{RA} = 0.408''\text{yr}^{-1}, \mu\text{decl.} = -0.174''\text{yr}^{-1}\), Lépine 2005). We therefore conclude that the detected radio emission is from LP 349–25. Our initial examination of maps made in total intensity (Stokes \(I\)) and circular polarization (Stokes \(V\)) show the existence of a weak source in the Stokes \(V\) map near this same position. Further investigation, however, reveals that the location of the source in the Stokes \(V\) map is offset with respect to the position of the source in the Stokes \(I\) map by \(\approx 10''\). The right (RCP) and left (LCP) circularly polarized primary beams of the VLA are separated by about 6\(^{\circ}\) of the half-width at half-maximum of the antenna beam. This gives rise to a phenomenon known as “beamsquint” (Cotton 1999), and for observations at 8.5 GHz the magnitude of the offset is 10.3\(^{\circ}\). This makes the detection of circular polarization intrinsic to the source suspect. Finally, reimaging of this field in Stokes \(V\) after subtracting the visibilities in total intensity produces a lower significance (<3 \(\sigma\)) of the source. Based on the fluctuations in the Stokes \(V\) image, we deduce a 3 \(\sigma\) upper limit of 48 \(\mu\text{Jy}\), or a circular polarization percentage <13\%.

The total extent of the observations of LP 349–25 was only \(\sim 1.7\) hr, precluding the possibility of searching for rotational modulations, as this would correspond to one rotation period only for very rapidly rotating objects (e.g., TVLM 513–46546; Osten et al. 2006; Hallinan et al. 2006). We extracted light curves of total intensity from the visibility data set using time bins of 300 and 60 s to search for short-timescale transient brightenings. No obvious evidence of flare variability presented itself on visual inspection of either light curve. Using the one-sided Kolmogorov-Smirnov (KS) statistic, we tried to see if we could reject the null hypothesis that the fluxes are distributed uniformly in time and thereby establish evidence for variability. We compared the cumulative distribution function of the fluxes to that of a uniform distribution in time and conclude that the data are consistent with being drawn from a uniform distribution of events with KS

![Fig. 1.—VLA map of the LP 349–25 field at 8.5 GHz. The gray-scale image is the map of total intensity. Contours of total intensity are overplotted as multiples of the 1 \(\sigma\) flux uncertainty; the 3, 5, and 8 \(\sigma\) contour levels are shown. The beam size is also shown at the bottom left of the map.](http://www.vla.nrao.edu/astro/guides/vlas/current/node34.html)
statistics of 0.05 and 0.01 for the 300 and 60 s time binnings, respectively. The KS probabilities are unity in both cases, thus we find no evidence for variability.

3. PROPERTIES OF THE RADIO EMISSION FROM LP 349–25

The flux detected from LP 349–25 together with the parallax measurement of 67.6 mas (Gatewood et al. 2005) imply a radio luminosity of 9.6 × 10^{11} ergs s^{-1} Hz^{-1}. This is ≃3 times larger than the steady luminosities of previously detected single very low mass dwarfs with similar spectral types (M8–M9). The makeup of the binary system in LP 349–25 is likely M7.5 V + M8.5 V or M8 V + M9 V (according to Forveille et al. 2005), and thus if the two components are equal contributors to the radio flux, the radio luminosity of each dwarf would be comparable to or slightly brighter than the steady flux levels of the brightest apparently single dwarf previously detected. The projected separation of the binary is 0.12'' or 1.78 AU at the distance of 14.8 pc, derived from its recently measured trigonometric parallax (Gatewood et al. 2005). The beam size of the image from our D array observations is 9.2'' × 8.0'' (major axis × minor axis), with a position angle of 76°; thus we cannot spatially resolve the two components.

With only one observed frequency of 8.5 GHz, we cannot constrain an emission mechanism. Previous papers have discussed two mechanisms: gyrosynchrotron emission from a population of mildly relativistic accelerated particles (Berger 2002, 2006; Burgasser & Putman 2005; Osten et al. 2006), and cyclotron maser emission (Hallinan et al. 2006). The brightness temperature of the emission is fundamental to constraining the emission mechanism, but with two dwarfs both being potential sources of the radiation, there are two unknowns in converting flux to brightness temperature: the fraction of the total flux that each component contributes, and the size of the emitting region (being possibly different for each dwarf). We consider two simplifying cases: (1) each dwarf contributes half the observed flux, with characteristic length scale the radius of the dwarf (where the radius is ≃0.1 R$_{*}$) as suggested by the previous observations (Leto et al. 2000; Berger 2006); and (2) one dwarf contributes all of the emission, with length scale one-tenth of the dwarf radius as observed in a few M dwarfs (Lang et al. 1983; Bastian et al. 1990). Application of the relationship between brightness temperature, frequency, flux density, and source size (Leto et al. 2000)

$$ T_b = \frac{4.33 \times 10^{10} \frac{S_{\mu Jy}}{\nu \text{GHz}}}{\theta_{\text{mas}}^2} \text{K}, \quad (1) $$

where $S_{\mu Jy}$ is the source flux in μJy, ν GHz is the observing frequency in GHz, and θ_{mas} is the angular size of the source in mas, yields for the first case $T_b = 1.1 \times 10^{10}$ K, and in the second case $T_b = 2.2 \times 10^{11}$ K. The high brightness temperatures indicate that the emission is nonthermal and could be consistent with gyrosynchrotron emission (Dulk 1985). One should note that larger size scales reduce the estimated brightness temperatures. In the second case, with $T_b \approx 10^{11}$ K, a coherent mechanism, such as cyclotron maser emission, is also applicable. Such a mechanism has been suggested by Hallinan et al. (2006) to account for the periodic variation of flux density and circular polarization in two other dwarfs. Hallinan et al. (2006) noted that the unmodulated flux of their target, TVLM 513–40546, could be attributable to gyrosynchrotron emission with undetected circular polarization. Clearly, more observations of LP 349–25 are needed to determine its characteristics better.

4. DISCUSSION

Our sample of eight late-M dwarfs with spectral types ranging from M8.0 to M9.5 produced only one detection, that of a binary consistent with two M8 dwarfs. Including the objects in our survey with previous reports on late M-T dwarfs (Krishnamurthi et al. 1999; Berger et al. 2001; Berger 2002, 2006; Burgasser & Putman 2005; Audard et al. 2005; Osten & Jayawardhana 2006), the fraction of late-M and brown dwarfs detected at radio wavelengths is ≃10% so far (see Table 1 in Berger 2006, and references therein; Osten & Jayawardhana 2006). Interestingly, over a narrower range of spectral types, −M8 ≤ SpT ≤ M9.5, a larger fraction (18%) of objects have been detected at radio wavelengths, including our sample.

Berger (2002) suggested that rotation may play a role in influencing which objects are detected at radio wavelengths, by noting that the few objects with radio detections were among those with the largest values of $v \sin i$. The relationship between rotation and the existence of large-scale magnetic fields, which may be necessary to influence the production of radio emission, has been suggested for fully convective stars by Phan-Bao et al. (2006), based on measurements of longitudinal magnetic fields in the active dM3.5e star EV Lac ($v \sin i = 4.5$ km s$^{-1}$) and their absence in the slower rotator dM5.5 HH And ($v \sin i < 1.2$ km s$^{-1}$). The fact that none of the fast rotators in our sample ($7 \leq v \sin i \leq 12$ km s$^{-1}$) provided radio detections suggests that $v \sin i$ is not the dominant factor controlling the production of detectable levels of radio emission. Only the binary LP 349–25 was detected, but unfortunately the rotational velocities of its components have not been measured so far. Thus, the correlation between radio emission and rotation is still unclear.

The ambiguous relationship between rotation and radio emission is strengthened by considering the field M stars VB 8 and LHS 3003 (both spectral type M8), which have similar rotational velocities (8 km s$^{-1}$ for VB 8 and 9 km s$^{-1}$ for LHS 3003), and are located at $d \sim 6.5$ pc. Despite the similarities in spectral type, $v \sin i$, and distance (which produces similar sensitivities), only LHS 3003 has shown radio quiescent emission (Burgasser & Putman 2005; Krishnamurthi et al. 1999). One possible explanation is that they were observed at different radio frequencies: Krishnamurthi et al. (1999) observed VB 8 at 8.5 GHz, and Burgasser & Putman (2005) observed LHS 3003 at frequencies of 4.8 and 8.6 GHz, but they only detected the star at 4.8 GHz. This might suggest that the spectral peak of radio emission from ultra-cool and brown dwarfs is closer to 4.8 GHz rather than 8.5 GHz, as discussed in Osten et al. (2006). Another possible explanation lies in the bias that inclination can introduce in estimating rotation rates from $v \sin i$. Photometric periods combined with spectroscopic rotation velocities have the potential to nail down this discrepancy (e.g., Bailer-Jones 2004).

There is no explicit dependence between emission mechanism proposed so far for radio emission from very low mass dwarfs and rotation. For two cases where radio emission has been detected and rotational modulation of the emission has been determined, Hallinan et al. (2006) proposed a model whereby a large-scale dipole or multipole with magnetic field strength of a few kG at the stellar surface can produce cyclotron maser emission in regions where the strong-field condition $\nu_p/\nu_B \leq 0.1$ is satisfied, where ν_p is the plasma frequency ($\approx 9000 \nu_B$ Hz), and ν_B is the gyro-frequency ($\approx 2.8 \times 10^9 B(G) Hz$), i.e., in regions of low electron density and high magnetic field strength. The recent detection of a strong and large-scale axisymmetric magnetic field on a rapidly rotating M4 dwarf (V374 Peg, $v \sin i = 36$ km s$^{-1}$) bolsters the suggestion of a link between large-scale fields, rapid
rotation, and detectable levels of varying radio emission, but provides only a post hoc explanation for why some objects are detected at radio wavelengths. Clearly, a detailed investigation of those objects that do show evidence of radio emission is needed, along with suitable samples of objects with similar properties but lacking in radio detections, to tease out any controlling parameters.

So far, there are no clear correlations between radio emission from ultracool and brown dwarfs and their properties such as rotation, spectral type, and chromospheric activity; and radio emission mechanisms are possibly gyrosynchrotron or coherent electron cyclotron maser emission.

5. Conclusion

We present our radio observations of a sample of eight late-M dwarfs, with spectral types ranging over a narrow band of M8.0–M9.5. Only one of them has been detected, the M8 binary LP 349–35. We have observed LP 349–25 at only 8.5 GHz; thus incoherent gyrosynchrotron or coherent electron cyclotron maser emission could be applicable. Observation of multiple radio frequencies will clarify the radio emission mechanism of the binary, and measurement of $v \sin i$ of each component will also be required to test whether any correlation with rotation is implied by this radio detection. The lack of detections of the fast rotators in our sample suggest a murky picture of the relationship between radio emission and rotation (as measured by $v \sin i$). Finally, with a separation of only 1.8 AU, derived from an angular separation of 0.12" and $\pi = 67.6$ mas (Forveille et al. 2005; Gatewood et al. 2005), dynamical masses of each component of LP 349–25 are currently being measured (T. Forveille 2006, private communication). As the masses of the components of LP 349–25 can be measured precisely without any theoretical assumptions, this will therefore allow us to clarify their fully convective status (e.g., $0.1–0.2 M_\odot$; Mullan & MacDonald 2001) and hence the kind of magnetic dynamo in these ultracool dwarf components, which may play an important role in explaining our detection of radio emission from these objects. This also makes the system an excellent target for further studies with better constraints on the correlations between X-ray, radio emission, and stellar parameters such as mass, age, temperature, and luminosity in ultracool dwarfs.

This paper presents the result of VLA project AP495. N. P.-B. and E. L. M. acknowledge financial support from NSF grant AST 0440520. N. P.-B. thanks Y.-N. Su for help in preparing the observation scripts, and P.-G. Gu for useful discussions. Work by R. A. O. was supported by NASA through Hubble Fellowship grant HF-01189.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation, and the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory/California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the ALADIN, VIZIER, and SIMBAD databases operated at CDS, Strasbourg, France.

REFERENCES

Audard, M., Brown, A., Briggs, K. R., Güdel, M., Telleschi, A., & Gizis, J. E. 2005, ApJ, 625, L63
Bailer-Jones, C. A. L. 2004, A&A, 419, 703
Bastian, T. S., Bookbinder, J., Dulk, G. A., & Davis, M. 1990, ApJ, 353, 265
Berger, E. 2002, ApJ, 572, 503
———. 2006, ApJ, 648, 629
Berger, E., et al. 2001, Nature, 410, 338
———. 2005, ApJ, 627, 960
Blank, D. L. 2004, MNRAS, 354, 913
Burgasser, A. J., & Putman, M. E. 2005, ApJ, 626, 486
Chabrier, G., & Kükü, M. 2006, A&A, 446, 1027
Cotton, W. D. 1999, in ASP Conf. Ser. 180, Synthesis Imaging in Radio Astronomy II, ed. G. B. Taylor, C. L. Carilli, & R. A. Perley (Charlottesville: ASP), 111
Dobler, W., Stix, M., & Brandenburg, A. 2006, ApJ, 638, 336
Donati, J.-F., Forveille, T., Cameron, A. C., Barnes, J. R., Delfosse, X., Jardine, M. M., & Valenti, J. A. 2006, Science, 311, 633
Dulk, G. A. 1985, ARA&A, 23, 169
Duney, B. R., De Young, D. S., & Roxburgh, I. W. 1993, Sol. Phys., 145, 207
Forveille, T., et al. 2005, A&A, 435, L5
Gatewood, G., Boss, A., Weinberger, A. J., Thompson, I., Majewski, S., Patterson, R., & Cohen, L. 2005, BAAS, 37, 1269
Gizis, J. E., Monet, D. G., Reid, I. N., Kirkpatrick, J. D., Liebert, J., & Williams, R. J. 2000, AJ, 120, 1085
Hallinan, G., Antonova, A., Doyle, J. G., Bourke, S., Brisken, W. F., & Golden, A. 2006, ApJ, 653, 690
Krishnamurthi, A., Leto, G., & Linsky, J. 1999, AJ, 118, 1369
Lang, K. R., Bookbinder, J., Golub, L., & Davis, M. M. 1983, ApJ, 272, L15
Lépine, S. 2005, AJ, 130, 1680
Leto, G., Pagano, I., Linsky, J. L., Rodonò, M., & Umana, G. 2000, A&A, 359, 1035
Liebert, J., Kirkpatrick, J. D., Cruz, K. L., Reid, I. N., Burgasser, A., Tinney, C. G., & Gizis, J. E. 2003, AJ, 125, 343
Mohanty, S., & Basri, G. 2003, ApJ, 583, 451
Mullan, D. J., & MacDonald, J. 2001, ApJ, 559, 535
Neuhäuser, R., et al. 1999, A&A, 343, 883
Osten, R. A., Hawley, S. L., Bastian, T. S., & Reid, I. N. 2006, ApJ, 637, 518
Osten, R. A., & Jayawardhana, R. 2006, ApJ, 644, L67
Phan-Bao, N., Martin, E. L., Donati, J.-F., & Lim, J. 2006, ApJ, 646, L73
Reid, I. N., Kirkpatrick, J. D., Liebert, J., Gizis, J. E., Dahn, C. C., & Monet, D. G. 2002, AJ, 124, 519
Stelzer, B., Micela, G., Flaccomio, E., Neuhäuser, R., & Jayawardhana, R. 2006, A&A, 448, 293