Characterizing Sterol Defect Suppressors Uncovers a Novel Transcriptional Signaling Pathway Regulating Zymosterol Biosynthesis*

Received for publication, May 5, 2005, and in revised form, July 11, 2005 Published, JBC Papers in Press, August 24, 2005, DOI 10.1074/jbc.M504978200

Melody Germann1,2, Christina Gallo1,3, Timothy Donahue2, Reza Shirzadi2, Joseph Stukey2, Silvia Lang4, Christoph Ruckenstuhl4, Simonetta Oliaro-Bosso5, Virginia McDonough5, Friederike Turnowsky6, Gianni Balliano†, and Joseph T. Nickels, Jr. ‡1,2

From the 1Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the 2Department of Biology, Hope College, Holland, Michigan 49422, the 3Institute of Molecular Biology, Biochemistry and Microbiology, Karl-Franzens-University Graz, A-8010 Graz, Austria, and the 4Dipartimento di Scienze e Tecnologia del Farmaco, Facoltà di Farmacia, Università degli Studi di Torino, Corso Raffaello 31, I-10125, Turin, Italy

erg26-1ts cells harbor defects in the 4α-carboxysterol-C3 dehydrogenase activity necessary for conversion of 4,4-dimethylzymosterol to zymosterol. Mutant cells accumulate toxic 4-carboxysterols and are inviable at high temperature. A genetic screen aimed at cloning recessive mutations remedying the temperature sensitive growth defect has resulted in the isolation of four complementation groups, ets1-4 (erg26-1ts temperature sensitive suppressor). We describe the characterization of ets1-1 and ets2-1. Gas chromatography/mass spectrometry analyses demonstrate that erg26-1ts ets1-1 and erg26-1ts ets2-1 cells do not accumulate 4-carboxysterols, rather these cells have increased levels of squalene and squalene epoxide, respectively. ets1-1 and ets2-1 cells accumulate these same sterol intermediates. Chromosomal integration of ERG1 and ERG7 at their loci in erg26-1ts ets1-1 and erg26-1ts ets2-1 mutants, respectively, results in the loss of accumulation of squalene and squalene epoxide, re-accumulation of 4-carboxysterols and cell inviability at high temperature. Enzymatic assays demonstrate that mutants harboring the ets1-1 allele have decreased squalene epoxidase activity, while those containing the ets2-1 allele show weakened oxidosqualene cyclase activity. Thus, ETS1 and ETS2 are allelic to ERG1 and ERG7, respectively. We have mapped mutations within the erg1-1/ets1-1 (G247D) and erg7-1/ets2-1 (D530N, V615E) alleles that suppress the inviability of erg26-1ts at high temperature, and cause accumulation of sterol intermediates and decreased enzymatic activities. Finally using erg1-1 and erg7-1 mutant strains, we demonstrate that the expression of the ERG25/26/27 genes required for zymosterol biosynthesis are coordinately transcriptionally regulated, along with ERG1 and ERG7, in response to blocks in sterol biosynthesis. Transcriptional regulation requires the transcription factors, Upc2p and Ecm22p.

Sterols play crucial roles in the physiology of all eukaryotes. They are essential for membrane fluidity and function (1, 2) and have emerged as important second messenger lipids involved in proper developmental signaling (3, 4). The vertebrate sterol end product, cholesterol, can be synthesized de novo from acetyl coenzyme A through a multistep pathway (2), or obtained through the uptake of exogenous dietary choles-terol via the low density lipoprotein receptor (5, 6). An exquisite transcriptional signaling pathway comprised of a specific promoter SRE3 and various SREBP isofoms regulates mammalian sterol gene expression in response to changes in sterol levels, thus maintaining cholesterol homeostasis (7). HMG-CoA reductase is the rate-limiting enzyme in higher eukaryotic sterol biosynthesis (2). It is regulated both at the transcriptional and protein stability levels in response to changes in sterol levels. The protein is rapidly degraded by a proteasome-dependent mechanism when sterol levels are high (8, 9).

The sterol biosynthetic pathway in the budding yeast Saccharomyces cerevisiae is highly conserved with mammals (10, 11). The only difference is that ergosterol is synthesized as the end product sterol rather than cholesterol. All of the genes have been cloned that are required for the biosynthesis of yeast ergosterol (11–13). Additional regulators of sterol metabolism and transport have been isolated and characterized, such as Erg28p (14) and the putative lipid transporter, Arv1p (15, 16). Physiological characterization of various erg mutants has revealed roles for yeast sterols in endocytosis (17), lipid raft formation and function (18, 19), cation and amino acid uptake (19, 20), and cell cycle regulation (21).

Yeast sterols have the ability to regulate endogenous sterol biosynthesis, presumably by a transcriptional feedback mechanism. Genes regulated by sterol availability include those encoding HMG-CoA reductase (HMGR1), squalene synthase (ERG9), sterol C-5 desaturase (ERG3), and acetocacetyl-CoA thiolase (ERG10) (Fig. 1). The ERG10 promoter contains an active SRE-like element that has seven of the eight nucleotides that are found in the core mam-malian SRE-1 consensus sequence (22). In addition, the ERG3 promoter contains a 22-bp region that is involved in the sterol regulation of transcription (23). Vik and Rine (24) have uncovered a 7-bp SRE that regulates ERG2 (sterol C-8 isomerase) and ERG3, which is shared among several ERG genes, as well as other genes needed for lipid metabolism, including the LCB1/2 serine palmitoyltransferase genes, which are required for the first step in sphingolipid biosynthesis (10). The Upc2p and Ecm22p transcription factors bind to this SRE and most likely regulate sterol responsive gene transcription (24). Thus, the paradigm of transcriptional feedback regulation by a sterol product extends to S. cerevisiae, making this single cell

© 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

3 The abbreviations used are: SRE, sterol response element; SREBP, sterol response element-binding protein; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; CPRG, chlorophenol red-β-D-galactopyranoside; TLC, thin layer chromatography; ERG, ergosterol; WT, wild type; MES, 4-morpholineethanesulfonic acid; GC/MS, gas chromatography/mass spectroscopy.

* This work was supported by National Institutes of Health Grant HL67401 (to J. T. N.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Both authors contributed equally to this work.

‡1 Both authors contributed equally to this work.

‡2 Received for publication, May 5, 2005, and in revised form, July 11, 2005.
Regulation of Zymosterol Biosynthesis

EXPERIMENTAL PROCEDURES

Strains, Media, and Miscellaneous Microbial Techniques—The parental yeast strains used in this study are W303 (MATa leu2-3,112 trp1-1 ura3-1 his3-11,15 can1-100) or BY4741 (MATa his3 leu2 met15 ura3). Yeast strains were grown in either YEPD (1% yeast extract, 2% bacto-peptone, 2% glucose) or in synthetic minimal medium containing 0.67% Yeast Nitrogen Base (Difco) supplemented with the appropriate amino acids, adenine, and uracil. Antifungal drugs were either added directly to liquid YEPD medium or added to YEPD plates at the indicated concentrations. Lovastatin treatment was for 16 h, fluconazole, amphotericin B, and nystatin treatment was for 3 h. Yeast transformation was performed using the procedure described by Ito et al. (34). For routine propagation of plasmids, Escherichia coli XL1Blue cells were used and grown in LB medium supplemented with ampicillin (150 μg/ml). Bacterial transformations were carried out by electroporation methods.

Strain Construction and Plasmids—Haploid strains harboring the erg1::kan’, erg2::kan’, erg6::kan’, and erg24::kan’ deletion alleles were constructed using heterozygous null diploid strains obtained from the Research Genetics Deletion Collection and PCR. pRS416-ERG1 and pRS416-ERG7 were transformed into heterozygous diploids, and these cells were sporulated to obtain the necessary haploid strains. pRS416-ERG1, pRS416-ERG7, pRS416-erg1-1, and pRS416-erg7-1 were constructed using the URA3 containing centromeric plasmid, pRS416 (35). Yeast strains harboring individual deletions were verified by PCR analysis. All genomic sequences that were subcloned into vectors were obtained by PCR amplification using the high fidelity pfu polymerase. Mutations in erg1-1 (G-A and T-A, nucleotides 740 and 1588 and 1844, respectively) were determined by DNA sequencing of multiple overlapping pfu polymerase-generated fragments. The recombinant erg1-1 and erg7-1 alleles were constructed using the QuikChange® Multisite-directed Mutagenesis kit (Stratagene, La Jolla, CA) and were verified by DNA sequencing. All DNA sequences that were generated by PCR were sequenced and compared with the yeast genome data base. The yeast-integrating vector, YIp353, was used to construct all promoter-LacZ plasmids. YIp-ERG1, YIp-ERG7, YIp353-ERG25, YIp353-ERG26, and YIp353-ERG27 were integrated at the LRA3 locus of each strain by digestion with Stul. The following promoter sequences were used: ERG1, −650 to +2; ERG7, −500 to +2; ERG25 and ERG27, −1500 to +2; ERG26, −450 to +2.

Isolation of erg26-1ts Suppressors—To obtain recessive ts suppressors, MATa and MATa haploid erg26-1ts cells were streaked onto prewarmed YEPD plates and grown for 3–6 days at 37 °C. 29 MATa and 30 MATa ts revertants were obtained. All individual MATa revertants were mated to each MATa and diploids were tested for growth at 27 °C and 37 °C. MATa/MATa diploids that grew at 37 °C were considered homozygous for a single mutation suppressing the ts phenotype. Complementation groups were then assigned based on the results of the diploid growth assays. To obtain haploid strains harboring only the erg1-1/ets1-1 or erg7-1/ets2-1 allele, first a single haploid from each complementation group was selected, and the erg26-1ts allele was replaced with erg26-1ts::erg26-1ts::LRA3 in order to be able to track the ts allele through genetic crosses. Second, the resulting haploid strain was backcrossed to the opposite wild-type mating partner, the diploid was then induced to sporulate and haploid spores were selected based on their harboring the erg26-1ts::erg26-1ts::LRA3 allele and showing growth at 37 °C. This selection process was repeated five times. Spores harboring erg1-1/ets1-1 or erg7-1/ets2-1 alleles were then obtained from ascI-containing tetratype spores.
Regulation of Zymosterol Biosynthesis

Metabolic Radiolabeling and Analysis of Sterols and Neutral Lipids—For steady state labeling of sterols, cultures were incubated at 30 °C with 5 mCi/ml [14C]acetate (51 mCi/mmol) for 3 h. Radiolabeled sterols were extracted using chloroform, methanol (2:1) and analyzed by one-dimensional TLC using hexane, diethyl ether, acetic acid (80:20:2). Neutral lipid radiolabeling and TLC analysis using petroleum ether, diethyl ether, acetic acid (70:30:1) were performed as described previously (25). Sterol intermediates were visualized by autoradiography using Kodak XAR film.

GC/MS Analysis of Sterols—Sterols were extracted as part of the nonsaponifiable fraction essentially as described (36). Washed cells were resuspended in 1.5 ml of methanol, 1.0 ml of 60% potassium hydroxide, 1.0 ml 0.5% pyrogallol, and heated for 2 h at 85 °C. The nonsaponified material was extracted twice with petroleum ether, hexane (1:1). Cholesterol (20 µl of 0.5 mg/ml stock) was added to each sample for use as an internal standard. Samples were dried down under nitrogen and reconstituted in 200 µl of a 1:1 (v/v) mixture of pyridine, bis(trimethylsilyl)trifluoroacetamide, 1% trimethylchlorosilane for trimethylsilylation (TMS) of free hydroxy groups (37, 38). Each TMS treatment extract was diluted by addition of 0.5 ml of petroleum ether, hexane (1:1) and passed over a silica gel minicolumn that was pretreated with hexane, petroleum ether (1:1, v/v) (39). Sterols were eluted with hexane, ethyl acetate (1:1, v/v). The pooled flow-through and eluant fractions were dried down under nitrogen and reconstituted in 200 µl of cyclohexane, chloroform (1:1, v/v). Sterol samples were analyzed by gas chromatography on a Hewlett-Packard model 6890 gas chromatograph using a 30-m HP-5 column. Standard instrument conditions were as follows: injection port temperature 250 °C, detector temperature 300 °C, initial oven temperature at 250 °C. After a 30-min hold at 250 °C, the oven temperature was increased at 2 °C/min up to 280 °C, held for 15 min, and then increased at 5 °C/min to 310 °C and held for 5 min. Cellular sterol species were identified by comparison of peak position retention times to those of standard compounds (ergosterol, lanosterol, cholesterol (internal standard), and squalene) and/or relative to the cholesterol internal standard peak position (40–42) and by GC/MS analysis using data base files of sterol spectra. GC/MS analysis was performed on a Hewlett-Packard model 6890 gas chromatograph equipped with a HP-5MS capillary column and Hewlett-Packard model 5973 Mass Selective Detector. GC/MS run conditions were essentially the same as that described above for analysis of sterols by gas liquid chromatography.

Squalene Epoxidase Assays—Yeast strains were grown aerobically in YEPD medium at 25 °C to late-log phase (A660 between 1.5 and 2). Cells were harvested, washed with 10 mM Tris-HCl, pH 7.4, and disrupted in a glass bead mill. Cell extracts were prepared by centrifugation at 12,000 × g for 20 min at 4 °C. Protein concentration was determined by the method of Bradford using bovine serum albumin as standard. 3 mg of total protein were incubated with the cofactor-substrate mix (5 mM NADPH, 10 mM sodium phosphate buffer, pH 7.4, containing 25 mM glucose 6-phosphate, 0.04 mM FAD, 2 units of glucose-6-phosphate dehydrogenase, 10 mM MgCl2, 5 mM mevalonic acid lactone, and 0.5 µCi of [14C]mevalonic acid) at 30 °C for 2 h. The enzymatic reaction was stopped by addition of 15% (v/v) KOH in methanol and incubated at 80 °C for 10 min. The enzymatic reaction was stopped by addition of 15% (v/v) KOH in methanol and incubated at 80 °C for 10 min. The enzymatic activity was analyzed with Image Quant 5.1. Lipid species were identified by using respective standards on the same silica plates. Values of each lipid species represent percent of the total intensity/lane. The values represent the average of three independent experiments.

[2-14C]Acetate Incorporation into Sterols for Oxidosqualene Cyclase Activity—Sterol biosynthesis in whole yeast cells was followed by incorporation of [2-14C]acetate into nonsaponifiable lipids as previously described (43). Briefly, washed cells (2–4 × 106 cells) were resuspended in 1 ml of YPD, containing 0.1 mg/ml Tween 80, incubated with 0.2 µCi of [2-14C]acetate (50 mCi/mM) and shaken for 30 min or 3 h at 30 °C. Then, cells were harvested by centrifugation and saponified in 50% ethanol containing 15% KOH for 2 h at 80 °C. Nonsaponifiable lipids were extracted twice with 1 ml of light petroleum and separated on silica gel plates (Merck) using n-hexane/ethyl acetate (85:15, v/v) as developing solvent. Authentic standards of ergosterol, lanosterol, dioxidosqualene, oxidosqualene, and squalene were run with each sample. Radioactivity in separated bands was measured using a System Imaging Scanner (Packard).

Oxidosqualene Cyclase Assays—3S-2,3-[14C]Oxidosqualene was prepared by incubating a pig liver S10 preparation with [14C]mevalonate as described (44), in the presence of 0.1 mM of the oxidosqualene cyclase (OSC) inhibitor U14266A (U14, 3β(2-dimethylaminoethoxy)-androstan-5-on-17-one) (45). After 3 h of incubation, the reaction was stopped by adding 1 volume of 15% KOH in methanol, and lipids were saponified at 80 °C for 30 min. The nonsaponifiable lipids were extracted three times with 2 volumes of light petroleum and separated by TLC on silica gel plates. The plates were first developed in light petroleum to a height of ~10 cm above the origin. After drying, the plates were developed to 15 cm above the origin with n-hexane/ethyl acetate (90:10, v/v). Radioactive bands corresponding to 2,3-oxidosqualene were scraped off and eluted with dichloromethane. The extract was brought to dryness under a stream of nitrogen and 3S-2,3-[14C]oxidosqualene was dissolved in benzene.

OSC activity in total yeast homogenate (6 mg of protein/ml) was determined as described elsewhere (43). Yeast cells were grown at 30 °C to early stationary phase in YPD medium. Cells were then pelleted at 3000 × g for 10, resuspended (0.15 g of wet cells/ml) in 0.02 M KH2PO4 buffer, pH 7.4 containing 1.2 M sorbitol, and treated with lyticase (1 mg/g wet cells) for 60 min at 30 °C. The spheroplasts obtained after lysis were pelleted at 3000 × g for 10 min, washed twice in 0.02 M KH2PO4 buffer, pH 7.4 containing 1.2 M sorbitol, and homogenized with a Potter device in 10 mM MES/Tris buffer, pH 6.9 containing 0.2 mM EDTA and 1 mM phenylmethylsulfonyl fluoride. 0.5 ml of the homogenate were incubated with 3S-2,3-[14C]oxidosqualene (5000 cpm, 25 µM) in the presence of Tween 80 (0.2 mg/ml) and Triton X-100 (1 mg/ml) in 10 mM MES/Tris, pH 6.9, and 0.2 mM EDTA for 30 min at 30 °C under vigorous shaking in a water bath. The reaction was stopped by adding 1 ml of 15% KOH in methanol, and lipids were saponified at 80 °C for 30 min. The nonsaponifiable lipids were extracted twice with 1 ml of light petroleum and separated on silica gel plates using dichloromethane as developing solvent. Radioactivity in 2,3-oxidosqualene and lanosterol was counted using a System Scanner (Packard). The amount of product formed was used for the calculation of the enzyme activity.

Liquid β-Galactosidase Assays—LacZ assays were performed as described in the Yeast Protocols Handbook (BD Biosciences Clontech) using the substrate, CPRG. Briefly, five independent colonies from a single strain were inoculated in minimal medium containing the appropriate amino acids and grown to exponential phase (A660 ~ 0.5–0.8). Cells were pelleted from 1.5 ml of the growing culture and resuspended in 300 µl of buffer 1 (100 mM HEPES, pH 7.3 containing 150 mM NaCl, 4.5 mM l-aspartate (hemimagnesium salt), 2.0 g of bovine serum albumin, and 100 µl of Tween 20). 100 µl of cells in buffer 1 were then subjected to three rounds of freeze/thawing using a dry ice/ethanol water bath. 700 µl of buffer 2 (20 ml of buffer 1 containing 27.1 mg of
CPRG) were added, and the reaction was allowed to proceed until color development became visible. The reaction was terminated by the addition of 500 µl of 3.0 mM ZnCl₂. Cellular debris was pelleted by centrifugation, and β-galactosidase activity was measured at A₅₇₄ using the resulting supernatant. Miller units were calculated as described (46).

The Miller units represented are the average values of five independent experiments.

mRNA Expression Analysis—Cells were grown to exponential phase at 30 °C in YEPD. Total RNA was extracted from 3 × 10⁷ cells using glass beads, SDS and buffered-saturated hot phenol. Total RNA was denatured in formaldehyde-SSPE (10 mM NaH₂PO₄ buffer, pH 7.7, containing 0.18 M NaCl and 1 mM EDTA) for 15 min at 65 °C. 20 µg of denatured RNA was applied to a nylon membrane using a slot blot apparatus (Bio-Rad). Membranes were washed in SSPE, UV cross-linked and hybridized to gel-purified PCR products that were obtained using pfu polymerase. The hybridization buffer consisted of SSPE containing Denhardt’s solution. Post-hybridization, membranes were washed several times with SSPE containing 0.1% SDS. Hybridization and all washes were performed at 65 °C. PCR products were [³²P] radio-labeled by random priming (Takara, Madison, WI). The level of U12 mRNA expression was used as a loading control. ERG gene expression levels were determined by autoradiography (Kodak XAR5) followed by densitometry using a Bio-Rad model GS-670 Imaging Densitometer and Molecular Analyst software, version 1.4.1, or using a Storm 840 PhosphorImaging system and Storm Scanner Control software (Fig. 5E).

Western Analysis of Erg1p Levels—Strains were grown at 25 °C in YEPD medium to late-log phase and subsequently disrupted in a glass bead mill. Lysed cells were centrifuged at 12,000 × g for 20 min to obtain a total cell-free extract. 20 µg of total cell extract protein from various ERG strains were resolved by SDS-PAGE and transferred onto a polyvinylidene difluoride membrane. Western blot analysis was performed using polyclonal anti-Erg1p antibodies and anti-Sui2p antibodies, respectively, and horseradish peroxidase-conjugated secondary antibodies as previously described (47). Erg1p migrates at 55 kDa and Sui2p, which serves as a loading standard, migrates at ~35 kDa.

RESULTS

Isolation of ets Suppressors—We were interested in uncovering coordinate sterol/sphingolipid regulatory mechanisms in eukaryotes. Our approach was to isolate second site recessive mutations remediating the ts phenotype of erg26-1ts cells. We isolated four gene groups, ets1-4 (erg26-1ts suppressors) (Fig. 2A, ts suppression by ets1-1 and ets2-1 are shown). The four groups fell into two separate categories, depending on their ability to eliminate the production of 4-carboxysterols in erg26-1ts cells (Fig. 2B, erg26-1ts versus erg26-1ts ets1-1 and erg26-1ts ets2-1). erg26-1ts ets1-1 and erg26-1ts ets2-1 cells lacked the accumulation of these toxic intermediates (Fig. 2B), whereas 4-carboxysterols still accumulated in erg26-1ts ets3-1 and erg26-1ts ets4-1 (not shown). erg26-1ts ets2-1 cells also accumulated a [¹⁴C]acetate-radiolabeled lipid not seen in other strains analyzed (Fig. 2B, asterisk). Based on these results, we characterized together the ets1-1 and ets2-1 mutant strains. Multiple genetic backcrosses were used to generate ets1-1 and ets2-1 haploid strains. The characterization of ets3-1 and ets4-1 will be discussed elsewhere. ⁴

Characterization of ets Suppressors—Antifungal drugs, such as fluconazole and terbinafine, suppress the ts growth phenotype of erg26-1ts cells by decreasing the production of 4-carboxysterols; these target the Erg1p and Erg1p enzymes upstream of Erg26p, respectively (Fig. 1) (25). We reasoned that ets1-1 and/or ets2-1 cells might carry erg mutations upstream of ERG26, since these alleles cause the loss of 4-carboxysterol accumulation and remediate the ts phenotype of erg26-1ts cells (25). If so, they may show altered sensitivity to certain antifungal drugs targeting the sterol pathway. Many erg mutations have been isolated through drug resistance/sensitivity screens (10, 11).

We grew ets1-1 and ets2-1 cells in the absence and presence of various antifungal drugs and growth rate was determined over time. Both strains had an increased sensitivity to azole drugs (fluconazole and itraconazole) targeting the lanosterol C-14 demethylase (Fig. 1). Erg11p (Fig. 3, A and B), whereas they were resistant to the ergosterol binding agent, amphotericin (Fig. 3C). ets 1-1 cells also were sensitive to the allylamine, terbinafine (Fig. 3D), which targets the squalene epoxidase, Erg1p, but were resistant to the morpholine antifungal drug, fenpropimorph (Fig. 3E). ets2-1 cells were mildly resistant to terbinafine (Fig. 3D), but showed normal sensitivity to fenpropimorph (Fig. 3E). Thus, ets1-1 and ets2-1 cells had antifungal drug resistance profiles that were different than wild-type cells.

erg mutations may also cause the accumulation of specific sterol intermediates, so we analyzed sterol and neutral lipid compositions of

⁴ M. Germann, C. Gallo, and J. T. Nickels, Jr, manuscript in preparation.
ets1-1 and ets2-1 cells. Using GC/MS, we observed that erg26-1ts ets1-1 and ets1-1 cells accumulated squalene, whereas they contained lower levels of most other sterol intermediates and the sterol end product, ergosterol (TABLE ONE). erg26-1ts ets2-1 and ets2-1 cells accumulated squalene epoxide and also contained much lower levels of ergosterol than wild-type cells. Neutral lipid composition demonstrated that ets2-1 cells synthesize less sterol esters than wild type, whereas the sterol esters produced by ets1-1 cells migrated differently than those seen in either wild-type or erg26-1ts cells (Fig. 2C). ets2-1 also accumulated two lipid species not seen in wild type, one of which migrated similar to fatty acid alcohols (Fig. 2C, asterisk, ets2-1). ets1-1 cells accumulated a minor species that migrated similar to fatty acids (Fig. 2C, asterisk, ets1-1). The exact molecular species of these lipids is not known. Thus, ets1-1 and ets2-1 cells harbor defects in sterol metabolism.

ets1-1 and ets2-1 cells may accumulate squalene and squalene epoxide, respectively, because they harbor recessive mutations in the sterol epoxidase, Erg1p, and oxidosqualene cyclase, Erg7p. To test this, we assayed Erg1p or Erg7p enzyme activities in wild-type and mutant cells. For squalene epoxidase activity, we determined the percent conversion of \([^{14}C]\)mevalonic acid to squalene, squalene epoxide, lanosterol, and ergosterol in cell extracts (TABLE TWO). For oxidosqualene cyclase, we determined the conversion of \([^{14}C]\)acetate to squalene, oxidosqualene, dioxidosqualene, and lanosterol \(in vivo\) (TABLE THREE), and we directly assayed for oxidosqualene cyclase activity using \([^{14}C]\)oxidosqualene as a substrate.

Cell extracts from ets1-1 cells accumulated radiolabeled squalene, the substrate for the Erg1p reaction, and were much less efficient at converting this sterol intermediate to the product of the reaction, squalene epoxide (TABLE TWO, W303, WT versus erg26-1ts ets1-1 and ets1-1). erg26-1ts ets1-1 cell extracts also had a reduced ability to catalyze this reaction; albeit the efficiency was higher than either erg26-1ts ets1-1 or ets1-1 cells. Thus, cells carrying the ets1-1 allele had decreased Erg1p activity. When ets2-1 cells were fed \([^{14}C]\)acetate it accumulated in the sterol intermediates, oxido- and dioxidosqualene, whereas in wild-type cells both were efficiently converted to lanosterol (TABLE THREE, WT versus erg26-1ts ets2-1 and ets2-1). The accumulation of these Erg7p substrates was seen for up to 3 h. Assaying for Erg7p activity in cell extracts using 35-2,3-[\(^{14}C\)]oxidosqualene as a substrate demonstrated that erg26-1ts ets2-1 (0.15 nmol h\(^{-1}\) mg\(^{-1}\)) and ets2-1 (0.19 nmol h\(^{-1}\) mg\(^{-1}\)) cells contained reduced enzymatic activity when compared with wild type (1.0 nmol h\(^{-1}\) mg\(^{-1}\)). Interestingly, erg26-1ts cells (0.32 nmol h\(^{-1}\) mg\(^{-1}\)) also contained less Erg7p activity. Thus, cells harboring the ets2-1 allele had severely weakened Erg7p activity.

Our data suggested that ets1-1 and ets2-1 were allelic to ERG1 and ERG7, respectively. If so, the replacing the ERG1 chromosomal locus in erg26-1ts ets1-1 and the ERG7 chromosomal locus in erg26-1ts ets2-1 with the corresponding wild-type genes should revert the temperature resistance and cause the re-accumulation of 4-carboxysterol intermediates in these cells. We found that this was the case. Thus, we conclude that ets1-1 and ets2-1 are recessive alleles of ERG1 and ERG7, respectively. Therefore, we have renamed ets1-1 as erg1-1 and ets2-1 as erg7-1 for the remainder of the report.

erg1-1 and erg7-1 Alleles Harbor Mutations That Affect Activity—To gain more insight into domains required for Erg1p and Erg7p activity, we sequenced erg1-1 and erg7-1 alleles. erg1-1 carried a single G-A nucleotide change at +740 (G247N), resulting in a glycine to aspartic acid change. erg7-1 harbored two mutations, G-A at +1588 (D530N) and T-A at +1844 (V615E), causing aspartic acid to asparagine and valine to glutamic changes, respectively. We constructed plasmids carrying these alleles (pRS416-erg1-1 and pRS416-erg7-1) and characterized their activities in erg1-1 and erg7-null strains. An erg1p pRS416-erg1-1 and erg7 pRS-erg7-1 cells were viable and accumulated squalene (TABLE TWO, BY4741) and squalene epoxide, respectively, to levels similar to those seen in erg1-1 and erg7-1 cells. These mutant alleles were also able to suppress the ts phenotype of erg26-1ts cells, as erg26-1ts erg1p pRS416-erg1-1 and erg26-1ts erg7 pRS416-erg7-1 cells were viable at high temperature.

Terbinafine-treated cells show elevated levels of Erg1p (48). The erg26-1ts erg1-1 and erg1-1 mutants isolated in our study show sensitivity to terbinafine (Fig. 3D and Fig. 4B, W303, 1–2 versus 3–4). These mutants also have elevated levels of Erg1p (Fig. 4A; W303, 1–2 versus 3–4). erg1 and erg26-1ts erg1 strains carrying pRS416-erg1-1 show similar terbinafine sensitivity (Fig. 4B, 5 versus 6–7) and elevated levels of Erg1p (Fig. 4A, BY4741, 5 versus 6–7). Drug sensitivity differences between strains carrying the original erg1-1 and those harboring pRS416-erg1-1 (Fig. 4B, 3–4 versus 6–7) were caused by strain background, as BY4741 shows increased resistance to terbinafine in comparison to W303 (Fig. 4C). Thus, null strains harboring recombinant pRS416-erg1-1 and pRS416-erg7-1 alleles behave identical to those carrying the original erg1-1 and erg7-1 mutations.

ERG1, ERG7, and ERG25/26/27 Expression Levels Are Coordinate Regulated in erg Mutants—The fact that we observed elevated Erg1p levels in erg1-1 strains suggests that sterol gene expression may be regulated in response to squalene accumulation (Fig. 4). To test this idea and also determine whether cells respond to the accumulation of squa-
Regulation of Zymosterol Biosynthesis

TABLE ONE
Sterol intermediate accumulation in various ERG26 strains

Sterol intermediate	ERG26	erg26-1	erg26-1ets1-1	erg26-1ets2-1	ets1-1	ets-1
Squalene	0.8	2.0	61.3	0.32	73.7	0.7
Squalene epoxide	ND*	ND	ND	ND	ND	ND
Zymosterol	19.4	2.8	38.2	45.1	25.8	35.2
Ergosterol	63.1	51.2	32	ND	ND	ND
Fecosterol	4.3	1.0	ND	ND	ND	ND
Episterol	4.1	2.1	ND	ND	1.1	0.2
Lanosterol	4.1	2.1	ND	ND	1.4	0.5
Di-methylzymosterol	1.4	1.2	ND	ND	ND	ND
4-Carboxy-zymosterol	ND	8.0	ND	ND	ND	ND
4-Methyl-4-carboxy-zymosterol	ND	18.1	ND	ND	ND	ND
Other	3.3	9.5	0.6	4.7	0.2	0.1

* Not detected.

TABLE TWO
Erg1p squalene epoxidase activity in various ERG26 strains

Sterol	WT	erg26-1^{ts}	erg26-1^{ts}ets1-1	ets1-1	erg1pRS416-ERG1	erg1pRS416-erg1-1	erg26-1^{ts}erg1pRS416-erg1-1
Squalene	30 ± 2	54 ± 1	94 ± 3	94 ± 2	47 ± 2	93 ± 4	93 ± 5
Squalene epoxide	7.4 ± 0.4	2.0 ± 0.1	0.3 ± 0.1	0.7 ± 0.1	22 ± 4	2.5 ± 0.4	2.5 ± 0.5
Lanosterol	43 ± 1	33 ± 2	1.3 ± 0.1	1.2 ± 0.2	24 ± 3	1.9 ± 0.2	2.7 ± 0.4
Ergosterol	7.8 ± 0.2	2.5 ± 0.2	2.3 ± 0.1	3.0 ± 0.3	ND*	ND	ND

* Genetic background.

TABLE THREE
In vivo Erg7p oxidosqualene cyclase activity in various ERG26 strains

Strain	Time	Squalene	Oxidosqualene	Dioxidosqualene	Lanosterol	4-Mono methyl sterols	Ergosterol
	h						
WT	0.5	82.9	3.6	0.8	10.5	1.2	1.0
	3.0	59.9	3.4	1.3	29.5	2.9	2.9
erg26-1^{ts}	0.5	35.9	7.2	0.6	24.3	5.5	3.4
	3.0	22.2	5.3	2.7	18.8	11.1	39.8
erg26-1^{ts} ets2-1	0.5	15.9	58.1	16.4	6.8	1.1	1.6
	3.0	10.9	19.8	44.1	15.8	3.3	6.5
ets2-1	0.5	11.0	42.1	30.2	9.9	1.5	5.6
	3.0	9.5	14.8	46.0	18.7	4.1	6.9

In vivo expression levels were determined using promoter-LacZ fusion constructs and/or Northern analysis.

ERG-LacZ fusion assays demonstrated that ERG1 and ERG25/26/27 expression levels were induced in erg26-1^{ts}, erg1-1, and erg7-1 cells, whereas ERG7-LacZ induction was observed only in erg7-1 cells (Fig. 5, A and B, wild type, hatched bars; erg26-1^{ts}, black bars; erg1-1, gray bars; erg7-1, white bars). Northern analysis confirmed these results, while revealing that ERG7 expression was actually regulated similarly to other ERG genes tested (Fig. 5C). Thus ERG1, ERG7, and ERG25/26/27 expression levels are coordinately regulated in response to squalene, squalene epoxide, and 4-carboxysterol accumulation. More importantly, we found that ERG expression regulation extends to and is activated by blocks in erg2p (erg2), Erg6p (erg6), Erg24p (erg24), Hmg1p/ Hmg2p (lovastatin), and Erg11p (fluconazole) functions (Fig. 5, D and E). ERG1, ERG7, and ERG25/26/27 expression levels were induced to varying degrees in null strains or in wild-type cells treated with lovastatin or fluconazole. Induction was not observed in cells treated with amphotericin B or nystatin (Fig. 5E).

Sterol Responsive ERG Expression Induction Requires Upr2p and Ecm22p Transcription Factors—We wanted to begin to define the cell factors functioning to regulate ERG expression in response to blocks in sterol biosynthesis. We initiated these studies by examining lovastatin-
induced expression induction in cells lacking either one or both transcription factors, Upc2p and Ecm22p, lacking the transcriptional repressor, Mot3p (49–51), or lacking the nuclear protein, Yer064cp, previously shown to be required for ERG induction (52). Cells lacking both Upc2p and Ecm22p, or those lacking Yer064cp, were no longer able to induce the expression of ERG1/7/25/26/27 in response to lovastatin treatment (Fig. 6). The loss of Mot3p, Upc2p, or Ecm22p functions alone had no effect. Identical results were obtained when we examined fluconazole-induced expression induction. Thus, the loss of both Upc2p and Ecm22p functions, and not either alone, was required to eliminate sterol responsive expression regulation.

DISCUSSION

Our results demonstrate that the expression of yeast ERG1, ERG7, and ERG25/26/27 genes are coordinately regulated in response to multiple blocks in sterol biosynthesis. Strikingly, Northern analysis revealed that the degree of induction was not the same for all mutant strains tested. These results suggest the possibility that the pathway controlling expression of these and other ERG genes may have the ability to be activated to different levels, depending on what specific sterol intermediate accumulates, or to what extent ergosterol levels are depleted. By using the HMG-CoA reductase inhibitor, lovastatin, we showed that the transcription factors, Upc2p and Ecm22p are required for expression regulation.

The genes and/or cDNAs for human ERG1 and ERG7 have been cloned and the Erg7 oxidosqualene cyclase protein has been crystallized (53–57). The hERG1 promoter contains a consensus SRE that acts as an activator sequence in cells overexpressing SREBP, and a nuclear factor Y binding site that is required for sterol-dependent regulation (58). Whether these sequences act together in response to sterol levels or independently is not known. M’Baye et al. (59) has shown that yeast ERG1 is regulated in response to changes in sterol levels. ERG1 contains a Vik and Rine (24) 7-bp SRE, and a sterol responsive promoter sequence, comprised of two 6-bp direct repeats, that is required for terbinafine- and ketoconazole-dependent induction of ERG1 expression (60). Presently, little is known about the transcriptional regulation of ERG7 in yeast. Interestingly, the ERG7 promoter does not contain a “putative” consensus yeast SRE element.

The cDNAs or genes for human and mouse ERG25/26/27 have been cloned (61–65). There is a report that ERG25 is regulated through an SREBP-dependent mechanism in the vascular wall of pigs, but little else is known about expression regulation of mammalian ERG25/26/27 (66).

We showed that a sterol responsive pathway coordinately regulates the expression of these genes. ERG25 does contain three yeast SRE sites (24), while ERG26 and ERG27 lack this sequence. The transcription factors, Ecm22p and Upc2p were shown to bind to the SREs of ERG2 and ERG3, and they most likely regulate the expression of these genes in response to lovastatin treatment and inhibition of HMG-CoA reductase activity (24).

These results suggest that ERG25 expression should be regulated in the same manner, through the binding of Upc2p/Ecm22p to SREs in the ERG25 promoter. So then how can we reconcile the fact that ERG26 and ERG27 lack SREs, yet they are coordinately regulated along with ERG25 in response to changes in sterol levels? One possibility is that ERG26 and ERG27 contain a novel Ecm22p and/or Upc2 binding site(s) that has yet to be elucidated. Another explanation is that two independent pathways exist that both converge on ERG genes to regulate their expression in response to changes in sterol levels. Recall that hERG1 contains both SRE and nuclear factor Y binding sites that may act independently to regulate expression in response to changes in sterol levels. We are currently determining the promoter sequences within ERG26 and ERG27 required for sterol responsive expression regulation.

The Erg1p squalene epoxidase converts squalene to 2,3-oxidosqualene (2, 11). The reaction requires oxygen and FAD. The Erg7p oxidosqualene cyclase then converts the Erg1p product, 2,3-oxidosqualene, to lanosterol (2, 11). We mapped a single mutation in the yeast ERG1 gene (G247D) that causes increased ERG1 expression, elevated levels of Erg1p, altered SBI sensitivities and weakened enzymatic activity. Some of these phenotypes have been seen in other erg1 mutants or in cells treated with terbinafine (47, 48). The G247D mutation resides within a conserved domain of Erg1p that is necessary for monooxygenase activity (67, 68). Interestingly, a terbinafine resistant mutant of Erg1p (L251F) in S. cerevisiae has been isolated, which carries a mutation within this same region (67). Thus, terbinafine resistance and sensitivity can map within the same conserved region. We mapped two mutations in Erg7p (D530N, V615E) that together were necessary for suppressing the ts and 4-carboxysterol accumulation of erg26-1 mutant cells. erg7 alleles harboring either mutation alone were unable to suppress these phenotypes. The
mutations reside within a large conserved domain required for sterol cyclization (57).

Our in vitro enzymatic assays demonstrated that erg26-1ts cells had weakened Erg1p and Erg7p activities (TABLES TWO and THREE). In the case of Erg1p, we found that mutant cell extracts accumulated ~2-fold higher levels of the Erg1p substrate, squalene, and produced less lanosterol than wild-type cells. Mammalian mevalonate kinase is inhibited by specific cholesterol biosynthetic and nonsterol isoprene intermediates (69). Multiple studies have demonstrated that yeast and mammalian phospholipid biosynthetic enzyme activities are regulated by numerous lipid species (70–75). Thus, the 4-carboxysterols accumulating in erg26-1ts cells could be directly interacting with and competitively or non-competitively inhibiting Erg1p activity. Our results bring up the possibility that regulation of ERG26 mRNA levels and/or Erg26p enzymatic activity may represent a temporally efficient way for yeast cells to regulate other sterol biosynthetic enzymes through changes in the levels of 4-carboxysterols in cells. Lipid-dependent regulation of Ergp activities adds a second level of sophistication to mechanisms reg-

FIGURE 5. Multiple ERG genes are coordinately regulated by a sterol responsive pathway. A, steady state levels of ERG1-LacZ and ERG7-LacZ promoter activities were assayed in the indicated strains using the substrate, CPRG. B, steady state levels of ERG25-LacZ, ERG26-LacZ, and ERG27-LacZ promoter activities were assayed in the indicated strains using the substrate, CPRG. C and D, mRNA expression levels were determined for the indicated ERG genes by Northern slot blot hybridization. E, mRNA expression levels were determined in wild-type cells grown in the absence and presence of 50 μg/ml lovastatin for 12 h, or 16 μg/ml fluconazole, 0.25 μg/ml amphotericin B, or 10 μg/ml nystatin for 3 h. Wild type, hatched bars; erg26-1ts, black bars; erg1-1, gray bars; erg2-1, white bars; U2, loading control. The numbers represent relative density values for U2, where all values are compared with the wild-type control. erg24-null cells require 200 mM CaCl2 for viability.
Regulation of Zymosterol Biosynthesis

Figure 6. Upc2p and Ecm22p function to regulate ERG1, ERG7, and ERG25/26/27. mRNA expression levels were determined for the indicated ERG genes by Northern slot blot hybridization. Lovastatin concentration was 50 μg/ml. U2, loading control. The numbers represent relative density values for U2, where all values are compared with the wild-type control in the absence of lovastatin.

It may also help to explain why ERG25/26/27 are coordinately regulated with other sterol biosynthetic genes.

Gachotte et al. (28) showed that erg27 mutants do not accumulate the predicted 3-ketosteroids, but rather those intermediates that are seen in cells harboring defects in Erg7p activity. In fact, erg27 mutants have decreased levels of Erg7p activity, which can be partially suppressed by ectopic expression of an Erg27p-HA chimera (76). Moreover, Erg7p associates with Erg27p in lipid particles, and this association seems to be necessary for organelle localization and for protein stability. Thus, Erg27p and Erg7p may form a complex necessary for organelle localization and for protein stability. Therefore, the loss of this complex (76).

With the interaction between Erg27p and Erg7p, causing decreased degradation of the protein because of the loss of this complex (76). Studies have demonstrated physical interactions between Erg25p/ Erg26p/Erg27p (25, 77). The erg26–1′ allele could interfere in some way with the interaction between Erg27p and Erg7p, causing decreased activity. However, erg26 cells do not accumulate those sterols seen in erg27 cells (25, 26). An alternative explanation is that the 4-carboxysterols in erg26–1′ cells directly interact with Erg7p and inhibit its activity. If this type of lipid-dependent regulation is subtle, it may only be unmasked using in vitro enzymatic assays. Enzymatic assays using purified Erg1p and Erg7p preparations will help to resolve these issues.

Acknowledgments—Terbinafine was a gift from A. Stutz (Novartis, Vienna) (to F. T.). We thank Dr. Bill Bergman for YIp353. We thank the members of the Bergman, Haines, and Edlund laboratories for many helpful discussions. We acknowledge the help of Lama Smith in performing the Northern analysis.

REFERENCES

1. Brown, D. A., and London, E. (2000) J. Biol. Chem. 275, 17221–17224
2. Faust, J. R., Trzaskos, J. M., and Gaylor, J. L. (1988) Biology of Cholesterol, pp. 20–35, CRC Press, Boca Raton, FL.
3. Farese, R. V., J., and Herz, J. (1998) Trends Genet. 14, 115–120
4. Incardona, J. P., and Eaton, S. (2000) Curr. Opin. Cell Biol. 12, 193–203
5. Liscum, L., and Dahl, N. K. (1992) J. Lipid Res. 33, 1239–1254
6. Sato, R., and Takano, T. (1995) Cell Struct. Funct. 20, 421–427
7. Brown, M. S., and Goldstein, J. L. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11041–11048
8. Jingami, H., Brown, M. S., Goldstein, J. L., Anderson, R. G., and Luskey, K. L. (1987) J. Cell Biol. 104, 1693–1704
9. Ravid, T., Doolman, R., Avner, R., Harats, D., and Roitelman, J. (2000) J. Biol. Chem. 275, 35840–35847
10. Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998) Yeast 14, 1471–1510
11. Lees, N. D., Bard, M., and Kirsch, D. R. (1997) Biochemistry and Function of Sterols, pp. 85–99, CRC Press, Boca Raton, FL.
12. Parks, L. D., Smith, S. J., and Crowley, J. H. (1979) Lipids 14, 115–120
13. Lechner, M., Reiter, B., and Lorbeer, E. (1999) Biochim. Biophys. Acta 1419, 107–117
14. Rodriguez, R. J., and Parks, L. W. (1983) Arch. Biochem. Biophys. 225, 861–871
15. Dinster-Denk, D., and Rine, J. (1996) Mol. Cell. Biol. 16, 3981–3989
16. Arthington-Skaggs, B. A., Crowell, D. N., Yang, H., Sturley, S. L., and Bard, M. (1996) FEBS Lett. 392, 161–165
17. Viń, A., and Rine, J. (2001) Mol. Cell. Biol. 21, 6395–6405
18. Baudry, K., Swain, E., Rahier, A., Germann, M., Batta, A., Rondet, S., Mandala, S., Henry, K., Tint, G. S., Edlin, T., Kurtz, M., and Nickels, J. T. J. (2001) J. Biol. Chem. 276, 12702–12711
19. Gachotte, D., Barbuch, R., Gaylor, J., Nickell, E., and Bard, M. (1998) Natl. Acad. Sci. U. S. A. 95, 13794–13799
20. Liscum, L., and Dahl, N. K. (1992) J. Biol. Chem. 267, 1193–1200
21. Lees, N. D., Bard, M., and Dickson, R. (1998) Yeast 14, 1617–1631
22. Daum, G., Lees, N. D., Bard, M., and Dickson, R. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12655–12660
23. Storey, M. K., Byers, D. M., Cook, H. W., and Ridgway, N. D. (1998) Biochem. J. 336, 246–257
24. Slotte, J. P., and Bierman, E. L. (1988) Biochim. J. 250, 653–658
25. Phillips, K. M., Ruggio, D. M., and Bailey, J. A. (1991) J. Chromatogr. Biomed. Sci. Appl. 732, 17–29
26. Shiba, S., and Hetherington, T. (1999) Methods Mol. Biol. 1471–1510
27. Muller, H., Zewitick, D., Leber, R., Turnowsky, F., and Daum, G. (2004) Biochim. Biophys. Acta 1663, 9–13
28. Grishin, A. V., Rothenberg, M., Downa, M. A., and Blumer, K. J. (1998) Genetics 149, 879–892
29. Hongay, C., Jia, N., Bard, M., and Winston, F. (2002) EMBO J. 21, 4114–4124
30. Refs, R. V., J., and Herz, J. (1998) Trends Genet. 14, 115–120
31. Arthington-Skaggs, B. A., Crowell, D. N., Yang, H., Sturley, S. L., and Bard, M. (1996) FEBS Lett. 392, 161–165
32. Wesolowska, K., and Rine, J. (2001) Mol. Cell. Biol. 21, 6395–6405
33. Storey, M. K., Byers, D. M., Cook, H. W., and Ridgway, N. D. (1998) Biochem. J. 336, 246–257
34. Slotte, J. P., and Bierman, E. L. (1988) Biochim. J. 250, 653–658
35. Phillips, K. M., Ruggio, D. M., and Bailey, J. A. (1991) Chromatogr. Biomed. Sci. Appl. 732, 17–29
36. Shiba, S., and Hetherington, T. (1999) Methods Mol. Biol. 1471–1510
37. Muller, H., Zewitick, D., Leber, R., Turnowsky, F., and Daum, G. (2004) Biochim. Biophys. Acta 1663, 9–13
38. Grishin, A. V., Rothenberg, M., Downa, M. A., and Blumer, K. J. (1998) Genetics 149, 879–892
39. Hongay, C., Jia, N., Bard, M., and Winston, F. (2002) EMBO J. 21, 4114–4124

FIGURE 6. Upc2p and Ecm22p function to regulate ERG1, ERG7, and ERG25/26/27. mRNA expression levels were determined for the indicated ERG genes by Northern slot blot hybridization. Lovastatin concentration was 50 μg/ml. U2, loading control. The numbers represent relative density values for U2, where all values are compared with the wild-type control in the absence of lovastatin.
52. Kennedy, M. A., Barbach, R., and Bard, M. (1999) Biochim. Biophys. Acta 1445, 110–122
53. Baker, C. H., Matsuda, S. P., Liu, D. R., and Corey, E. J. (1995) Biochem. Biophys. Res. Commun. 213, 154–160
54. Laden, B. P., Tang, Y., and Porter, T. D. (2000) Arch. Biochem. Biophys. 374, 381–388
55. Nagai, M., Sakakibara, J., Fukui, K., Fukushima, Y., Igarashi, S., Tsuji, S., Arakawa, M., and Ono, T. (1997) Genomics 44, 141–143
56. Sung, C. K., Shibuya, M., Sankawa, U., and Ebizuka, Y. (1995) Biol. Pharm. Bull. 18, 1459–1461.
57. Thoma, R., Schulz-Gasch, T., D’Arcy, B., Benz, J., Aebi, J., Dehmlow, H., Hening, M., Stihle, M., and Ruf, A. (2004) Nature 432, 118–122
58. Nagai, M., Sakakibara, J., Nakamura, Y., Gejyo, F., and Ono, T. (2002) Biochim. Biophys. Res. Commun. 295, 74–80
59. M’Baya, B., Fegueur, M., Servouse, M., and Karst, F. (1989) Lipids 24, 1020–1103
60. Leber, R., Zenz, R., Schrottner, K., Fuchsbichler, S., Puhringer, B., and Turnowsky, F. (2001) Eur. J. Biochem. 268, 914–924
61. Marjanovic, Z., Laubner, D., Møller, G., Gege, C., Husen, B., Adamski, J., and Breitling, R. (2003) Mol. Endocrinol. 17, 1715–1725
62. Liu, X. Y., Dangel, A. W., Kelley, R. L., Zhao, W., Denney, P., Botcherby, M., Cattanach, B., Peters, J., Hunsicker, P. R., Mallon, A. M., Strivens, M. A., Bate, R., Miller, W., Rhodes, M., Brown, S. D., and Herman, G. E. (1999) Nat. Genet. 22, 182–187
63. Konig, A., Happle, R., Bornholdt, D., Engel, H., and Grzeschik, K. H. (2000) Am. J. Med. Genet. 90, 339–346
64. Li, L., and Kaplan, J. (1996) J. Biol. Chem. 271, 16927–16933
65. Strausberg, R. L., et al., (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 16899–16903
66. Rodriguez, C., Raposo, B., Martinez-Gonzalez, J., Ilorente-Cortes, V., Vilahur, G., and Badimon, L. (2003) Cardiov. Res. 58, 178–185
67. Leber, R., Fuchsichlser, S., Klebucnikova, V., Schweighofer, N., Pitters, E., Woolfzter, K., Lederer, M., Landl, K., Rukenstuhl, C., Hapala, I., and Turnowsky, F. (2003) Antimicrob. Agents Chemother. 47, 3890–3900
68. Klebucnikova, V., Kohut, P., Leber, R., Fuchsichlser, S., Schweighofer, N., Turnowsky, F., and Hapala, I. (2003) Biochem. Biophys. Res. Commun. 309, 666–671
69. Hinson, D. D., Chambliss, K. L., Toth, M. J., Tanaka, R. D., and Gilson, K. M. (1997) J. Lipid Res. 38, 2216–2223
70. Wu, W. I., and Carman, G. M. (2000) Methods Enzymol. 312, 373–380
71. Oshiro, J., Rangaswamy, S., Chen, X., Han, G. S., Quinn, J. E., and Carman, G. M. (2000) J. Biol. Chem. 275, 40887–40896
72. Nickels, J. T. J., Buxeda, R. J., and Carman, G. M. (1994) J. Biol. Chem. 269, 11018–11024
73. Carman, G. M., and Zeimet, G. M. (1996) J. Biol. Chem. 271, 13293–13296
74. Coleman, R. A., and Lee, D. P. (2004) Prog. Lipid Res. 43, 134–176
75. Kuge, O., and Nishijima, M. (2003) J. Biochem. 133, 397–403
76. Mo, C., Milla, P., Athenstaedt, K., Ott, R., Balliano, G., Daum, G., and Bard, M. (2003) Biochim. Biophys. Acta 1633, 68–74
77. Mo, C., Valachovic, M., Randall, S. K., Nickels, J. T., and Bard, M. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 9739–9744
78. To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102. Tel: 215-762-1941; Fax: 215-762-4452; E-mail: JN27@drexel.edu.
Characterizing Sterol Defect Suppressors Uncovers a Novel Transcriptional Signaling Pathway Regulating Zymosterol Biosynthesis
Melody Germann, Christina Gallo, Timothy Donahue, Reza Shirzadi, Joseph Stukey, Silvia Lang, Christoph Ruckenstuhl, Simonetta Oliaro-Bosso, Virginia McDonough, Friederike Turnowsky, Gianni Balliano and Joseph T. Nickels, Jr.

J. Biol. Chem. 2005, 280:35904-35913.
doi: 10.1074/jbc.M504978200 originally published online August 24, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M504978200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 75 references, 34 of which can be accessed free at http://www.jbc.org/content/280/43/35904.full.html#ref-list-1