Synthesis and Characterization of ZNO/MN Nanocomposite by using Sol-Gel Method

S K W Ningsih*, B Bahrizal, E Nasra, U K Nizar, R Farisya

Chemistry Department, Faculty of Mathematics and Science, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang 25131, Indonesia

*sherly14@fmipa.unp.ac.id

Abstract

Zink oxide doped Mn nanocomposites were synthesized by simple sol-gel method at low temperature by using combination of aquadest with methanol as the solvent and ethylene glycol as the additive. Zink acetate dehydrate and manganese chloride tetrahydrate were used as the precursors. Composition dopants were 1,3,5, and 7%. The crystals were formed by drying at 110°C for 1 hour, after which they were heated at ±500°C for 2 hours. The as-prepared ZnO/Mn nanocomposites were characterized by X-ray diffraction (XRD) and UV Diffuse Reflectance Spectrometer (UVDRS). The XRD patterns of the ZnO nanocrystals showed that they are mostly hexagonal wurtzite with specific peaks at 2θ = 31, 34, 36, 47, 56, 63, 66 dan 69. The sizes of the ZnO doped Mn particles produced with 1%, 3%, 5%, and 7% were 18-95; 17-87; 18-96; 19-98 nm, respectively. UVDRS analysis showed that the band gap of the ZnO were 2.60; 2.90; 2.99 dan 3.01 eV for 1%, 3%, 5%, and 7% Mn respectively.

1. Introduction

Nanoparticles are particles measuring between 1-100 nanometers[1]. These particles are part of nanotechnology that is very popular and growing rapidly since early 2000[2]. Nano-sized materials have been applied in various fields as catalysts, coatings, semiconductors, pharmaceutical and electronic products[3].

One of the most widely synthesized materials into nanoparticles is Zinc Oxide (ZnO). ZnO exhibits exciting optical, acoustic and electrical properties that have a number of potential applications in the fields of electronics, optoelectronics and sensors. In addition, ZnO has several advantages including a stable chemical structure, non-toxic, and can be used as an additive into various materials, and availability in nature is very abundant so that the price is cheap[4].

Zinc Oxide (ZnO) is an important semiconductor material because it has a wide band gap, so it is widely used for applications such as transparent conductors, solar cell windows, gas sensors, photovoltaic devices[5] and photocatalysts[6]. The semiconductor material is a good photocatalyst for the degradation of pollutants as well as toxic compounds namely Zinc Oxide (ZnO), Titania (TiO2), Tungsten Oxide (WO3), Zinc Stannate (Zn2SnO4)[7]. ZnO has a relatively large size and a small surface area.

The process of forming a nanomaterial will affect the properties of the material itself, in addition additive addition will also modify its properties. Additives are additives used to control yield morphology. With the addition of these additives, materials obtained that have microstructural homogenisity and small particle size are generated so that material reactivity increases[8].

Doping is an effective method for changing physical properties (e.g. optical, magnetic and electrical properties) in materials and will extend their application to the material from its basic
properties[9]. Doping with 3d metals such as Mn, Ni, Fe, Co, Cr and the like will increase the surface area and reduce the particle size of ZnO nanoparticles. In this study, ZnO nanoparticles doped with Mn2+ (Manganese). Various studies have shown that Mn doped semiconductors have affected the physical, chemical and structural properties of pure ZnO nanoparticles. For example, the optical properties of pure ZnO nanoparticles especially on band gap tunings can be greatly increased at the nanoscale with doped Mn.

There are several parameters that will surely affect the particle size, shape and optical properties of ZnO doped Mn nanoparticles such as the effect of dopant ion concentration of manganese, pH and surfactant[10]. In this study only focused on the effect of dopant Mn concentration with percent weight per volume (w / w) of 1%, 3%, 5% and 7%.

This manganese metal is usually not used in a pure state but as a mixture. Manganese is metallic with a melting point of about 1244 °C and a boiling point of 1962 °C. In pure state, manganese metal is hard, breakable, and silver-white. Manganese is easily oxidized by air, reacts slowly with water, and forms various compounds with varying degrees of oxidation from +2 to +7. In this study, other materials of relatively cheap price such as MnCl2.4H2O are found.

Attempts to synthesize nano ZnO have been widely practiced. Some of the most commonly used methods are Co-Precipitation[11], solvothermal[12], wet-chemical[13]. These methods have advantages and disadvantages of each. One other method that has been developed is the sol-gel method. Sol gel technique is more commonly used in nanoparticle synthesis because it has several advantages as follows: based on the product produced by sol-gel process obtained better homogeneity. High purity and fast crystallinity formation process[14]. Based on the energy used, the sol-gel technique is quite economical[15]as it can take place at low temperatures. Because the reaction takes place at low temperatures, the separation phase and the process of rapid crystal formation hence in terms of operational costs on the sol-gel process is quite economical. In terms of environmental process sol-gel including environmentally friendly[16]because the waste generated is quite low[17].

Zinc oxide (ZnO) is one of the popular semiconductor that have a wide band gap of 3.37 eV with large exciton binding energy of 60 meV. ZnO have extensive application due to its electrical and optical properties. ZnO can be applied in many applications, including gas sensors, generators, field emission transistors, ultraviolet photodetectors, in biomedical systems, biosensors, electronic materials, light emitting diode, solar cellsand piezoelectric transducer.

There are several ways to produce ZnO nanoparticles such as thermal decomposition, carbothermal reduction process, solid sate method, hydrothermal process, sonochemical methods, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MO-CVD), polymerization method, precipitation process, and sol-gel method. Sol-gel process is one of the simplest and lowest cost (inexpensive).

Here, the synthesized ZnO doped Mn nanoparticles prepared by sol-gel method. Zinc acetate dihydrate was used as precursor, combination of aquades and methanol was used as solvent, and ethylene glicol as the additives. The various compositions were used 1, 3, 5 and 7%. Sol-gel method has a number of advantages over other methods such as inexpensive equipment, will produce small particle size and uniform distribution particle with highest homogenity[8].

2. Material
All the reagents were analytical reagent grade and were used without further purification. The precursors used in this research were zinc acetate hydrate[Zn(CH3COO)2.2H2O] (Merck) and manganese chloride tetrahydrate[MnCl2.4H2O] (Merck). Combination of aquades and methanol was used as the solvent and ethylene glicol was used the additive.

3. Synthesis of ZnO nanoparticles
A total of 2.744 g Zn(CH3COO)2.2H2O was dissolved with 50 mL of aquades and methanol mixture with a ratio of 1: 4 in a 50 mL beaker. Closed with aluminum foil paper and stirred using a magnetic stirrer for 40 minutes. In the solution was added manganese chloridatetrahydrathidrat[MnCl2.4H2O] as dopan with 1% concentration and distirer for 40 min. Mixed the positive is 1.4 mL of ethylene glicol and stirred for 90 minutes. The solution is allowed for one night. The second solution is made by adding 3%, 5% and 7% dopants in the same way. The soles obtained after stirring are then dried in the
oven at 110 °C for 1 hour. The results obtained are included in the furnace at a temperature of 500°C for 2 hours. The samples obtained are then crushed using mortar and pestle. Finally, the dried powder was ground in agate mortar. The synthesized ZnO nanoparticles were analyzed by using X-ray Diffraction (XRD) with a diffractometer by using monochromatic CuKα with λ = 1.5406 and band gap study was carried out by Ultra Violet Diffuse Reflectance Spectrometer (UVDRS).

4. Results and discussion

4.1. Sol ZnO doped Mn with various composition preparations

Composition of ZnO doped Mn	Observations
1% Zinc acetate dihydrate easily dissolved in the solvent mixture produces a clear solution, after addition of manganese chloride tetrahydrate 1% yields clear color of solution, continued with ethylene glycol is added the color of the solution becomes clear.	
3% Zinc acetate dihydrate easily dissolved in the solvent mixture produces a clear solution, after addition of manganese chloride tetrahydrate 3% yields clear color of solution, continued with ethylene glycol is added the color of the solution becomes clear.	
5% Zinc acetate dihydrate easily dissolved in the solvent mixture produces a clear solution, after addition of manganese chloride tetrahydrate 5% yields clear color of solution, continued with ethylene glycol is added the color of the solution becomes clear.	
7% Zinc acetate dihydrate easily dissolved in the solvent mixture produces a clear solution, after addition of manganese chloride tetrahydrate 7% yields clear color of solution, continued with ethylene glycol is added the color of the solution becomes clear.	

Characterization of ZnO nanoparticles, XRD patterns

![Figure 1. XRD pattern of ZnO doped Mn 1% nanoparticle synthesized by using ethylene glycol as additive](image)

The X-ray diffraction pattern of the ZnO synthesized by using ethylene glycol as additive was shown in Fig.1. This data clearly shows distinct peaks at 2θ = 31.72; 34.38; 36.19; 47.48; 56.67;
62.84; 67.87 and 69.07. The peaks have been identified as peaks of hexagonal ZnO (wurtzite) crystallites with various diffracting planes [100], [002], [101], [102], [110], [103], [112] and [201], respectively. ZnO nanoparticle posses a high crystallinity since all the peaks was very sharp. All of the reflections in this pattern can be readily indexed to a hexagonal phase of ZnO which is in good agreement with the literature result(ICCD No. 01-080-0075). The average crystalline size of the synthesized ZnO doped 1% Mn nanoparticle prepared by using ethylene glycol as additive was calculated by using Scherrer to be about 32.15- 95.37 nm (Table 2).

Table 2. XRD data of ZnO doped Mn 1% nanoparticle prepared by using ethylene glycol as additive

Pos.[^2Th.		Height	FWHML	d-spacing	Rel. Int.	Crystallite size (nm)
31.7229	3929.51	0.2047	2.82072	58.66	39.90	
34.3811	2787.33	0.2558	2.60848	41.61	32.15	
36.1984	6698.23	0.2303	2.48158	100.00	32.31	
47.4852	1465.44	0.2184	1.91476	21.88	37.27	
56.6755	2382.91	0.0936	1.62685	27.77	95.37	
62.8493	1911.73	0.2808	1.47743	28.54	32.79	
67.8753	1633.39	0.1872	1.37975	24.39	50.59	
69.0721	810.16	0.1872	1.35873	12.10	50.95	

Figure 2. XRD pattern of ZnO doped Mn 3% nanoparticle synthesized by using ethylene glycol as additive

The X-ray diffraction pattern of the ZnO doped 3% Mn synthesized by using ethylene glycol as additive was shown in Fig.2. This data clearly shows distinct peaks at 2θ = 31.71; 34.37; 36.18; 47.48; 56.54; 62.79; 67.88 and 69.03. The peaks have been identified as peaks of hexagonal ZnO (wurtzite) crystallites with various diffracting planes [100], [002], [101], [102], [110], [103], [112] and [201], respectively. ZnO nanoparticle posses a high crystallinity since all the peaks was very sharp. All of the reflections in this pattern can be readily indexed to a hexagonal phase of ZnO which is in good agreement with the literature result(ICCD No. 01-079-0207). The average crystalline size of the synthesized ZnO doped 3% Mn nanoparticle prepared by using ethylene glycol as additive was calculated by using Scherrer to be about 35.47-87.20 nm (Table 3).
Table 3. XRD data of ZnO doped Mn 3% nanoparticle prepared by using ethylene glycol as additive

Pos. [°2Th.]	Height [cts]	FWHMLeft [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Crystallite size (nm)
31.7126	2570.15	0.2303	2.82161	53.36	35.47
34.3740	2081.06	0.1535	2.60900	43.20	43.58
36.1846	4816.87	0.2047	2.48250	100.00	40.38
47.4844	1163.64	0.1791	1.91479	24.16	47.93
56.5411	1840.70	0.1023	1.62770	38.21	87.20
62.7995	1439.20	0.1535	1.47971	29.88	59.97
67.8886	1214.39	0.1535	1.38065	25.21	61.70
69.0344	651.42	0.2558	1.36051	13.52	37.28

Figure 3. XRD pattern of ZnO doped Mn 5% nanoparticle synthesized by using ethylene glycol as additive

The X-ray diffraction pattern of the ZnO doped 5% Mn synthesized by using ethylene glycol as additive was shown in Fig.3. This data clearly shows distinct peaks at 2θ = 31.72; 34.40; 36.17; 47.48; 56.53; 62.77; 67.90 and 69.01. The peaks have been identified as peaks of hexagonal ZnO (wurtzite) crystallites with various diffracting planes [100], [002], [101], [102], [110], [103], [112] and [201], respectively. ZnO nanoparticle possesses a high crystallinity since all the peaks was very sharp. All of the reflections in this pattern can be readily indexed to a hexagonal phase of ZnO which is in good agreement with the literature result (ICCD No. 01-080-0074). The average crystalline size of the synthesized ZnO doped 5% Mn nanoparticle prepared by using ethylene glycol as additive was calculated by using Scherrer to be about 40.18-101.20 nm (Table 4).

Table 4. XRD data of ZnO doped Mn 5% nanoparticle prepared by using ethylene glycol as additive

Pos. [°2Th.]	Height [cts]	FWHMLeft [°2Th.]	d-spacing [Å]	Rel. Int. [%]	Crystallite size (nm)
31.7263	2275.97	0.1791	2.82043	55.80	45.61
34.4053	2626.48	0.2047	2.60670	64.40	40.18
36.1766	4078.59	0.1791	1.91485	23.85	41.93
47.4828	972.56	0.2047	1.62789	29.78	58.12
56.5341	1214.47	0.1535	1.47971	29.88	59.97
62.7771	1350.67	0.1791	1.38065	25.21	61.70
67.9081	404.11	0.2047	1.36051	13.52	37.28
69.0110	922.63	0.0936	1.37916	22.62	101.20
The X-ray diffraction pattern of the ZnO doped 7% Mn synthesized by using ethylene glycol as additive was shown in Fig. 4. This data clearly shows distinct peaks at 2θ = 31.70; 34.37; 36.18; 47.45; 56.51; 62.78 and 67.87. The peaks have been identified as peaks of hexagonal ZnO (wurtzite) crystallites with various diffracting planes [100], [002], [101], [102], [110], [103], [112] and [201], respectively. ZnO nanoparticle possesses a high crystallinity since all the peaks was very sharp. All of the reflections in this pattern can be readily indexed to a hexagonal phase of ZnO which is in good agreement with the literature result (ICCD No. 01-076-0704). The average crystalline size of the synthesized ZnO doped 7% Mn nanoparticle prepared by using ethylene glycol as additive was calculated by using Scherrer to be about 40.18-101.85 nm (Table 5).

Table 5. XRD data of ZnO doped Mn 7% nanoparticle prepared by using ethylene glycol as additive

Pos.[°2Th.]	Height [cts]	FWHM[°2Th.]	d-spacing [Å]	Rel. Int. [%]	Crystalite size (nm)
31.7017	3504.03	0.1791	2.82256	54.78	45.60
34.3701	3013.57	0.2047	2.60929	47.11	40.18
36.1802	6396.43	0.1535	2.48279	100.00	46.15
47.4540	1312.93	0.1535	1.91595	20.53	55.91
56.5164	2018.06	0.1791	1.62835	31.55	49.80
62.7865	1750.14	0.1279	1.47998	27.36	71.97
67.8713	1302.54	0.1535	1.38096	20.36	61.69
68.9944	677.51	0.0936	1.36007	10.59	101.85
Figure 5 depicts the band gap data of ZnO doped Mn. The effect of various compositions were studied in order to obtain the band gap values of ZnO. The synthesized ZnO doped Mn nanoparticles prepared by using 1, 3, 5 and 7% dopant composition were 2.60, 2.90, 2.99 and 3.01 respectively. The composition dopant of 1% Mn has been the smallest band gap energy data.

5. Conclusion
ZnO doped Mn nanocomposites were successfully prepared by sol-gel method with various composition of dopants. The additives play a significant role on the crystalline size and morphology of the ZnO nanoparticles. XRD data for ZnO doped 1, 3, 5, 7% Mn prepared by using ethylene glycol shows the hexagonal (wurtzite) structure of ZnO with crystalline sizes in the range of 32.15-95.37; 35.47-87.20; 40.18-101.20 and 40.18-101.85 nm, respectively. The band gap data of ZnO doped 1, 3, 5, 7% were 2.60, 2.90, 2.99 and 3.01 respectively.

Acknowledgements
The authors would like to thank Ministry of Research and Higher Education, Indonesia for providing financial support through of decentralization research, Penelitian Produk Terapan, 2017.
References

[1] Shahmiri, M., Nor, A.I., Norhazlin, Z., Nilofar, A., Bakhtyar, B., Zaharim, A & Sopian, K. 2013. Effect of pH on the Synthesis of CuO Nanosheets by Quick Precipitation Method. Vol. 9, Hal. 137-146, 2013 ISSN 2224-3496. Malaysia: Universiti Putra Malaysia.

[2] Suwanda, R. & Syamsul, M.M. 2013. Pengembangan Inovasi Teknologi Nanopartikel Berbasis Pat Untuk Menciptakan Produk Yang Berdaya Saing. Jurnal Teknik Industri ISSN: 1411-6340 Volume 3 Nomor 2, Juli 2013. Departemen Teknologi Industri Pertanian, Fakta IPB Bogor.

[3] Saez, V & Mason T.J. 2009. Sonoelectrochemical Synthesis of Nanoparticles, Molecules 14 2009 pp 4284-4299.

[4] Z. H. Astuti. 2003. Kebergantungan Ukuran Nanopartikel TerhadapWarna yang Dipancarkan pada Proses Deeksisasi, Skripsi DepartemenFisika ITB. Bandung.

[5] Bizarro, M. 2010. High Photocatalytic Activity Of Zno And Zno:Al Nanostructured Film Deposited by Spray Pyrolysis. Applied Catalysis B: Environmental, pp. 198-203.

[6] Bizarro, M., Sanches-Arches A., Garduno-Wilches I., Alonso J.C., Ortiz, A. 2011. Synthesis and Characterization of ZnO and ZnO:Al by Spray Pyrolysis with High Photocatalytic Properties, Catalysis Today, pp. 129-134.

[7] Baruah, S., Pal, S.K., Dutta, J. 2012. Nanostructure Zinc Oxide for water treatment, Nanoscience & Nanotechnology-Asia. Vol.2 No.2, pp. 90-102.

[8] Ningsih, S. K. W. 2016. Sintesis Anorganik. Padang: UNP Press.

[9] Li, Y., Meng, J. 2014. Al-doping effects on structure and optical properties of ZnO nanostructures. MaterialsLetters, pp. 260-262.

[10] Ling, Tan Tong. 2012. Synthesis and Characterization of Mn-doped ZnO Nanoparticles. Program of Resource Chemistry. Faculty of Resource Science and Technology,University Malaysia Sarawak.

[11] Noonuruk, R., Iw, Mekprasart, T., Suparattanasamai, W. Techitdheera, 1221, T. Kanyapan, and W. 2014. Pecharapa College of Nanotechnology. King Mongkut’s Institute of technology ladkrabang, Bangkok, 10520 Thailand.

[12] Viswanatha, R., Y. Arthoba, Nayak, T.G. Venkatesha, C.C Vidyasagar. 2013. Characterization and Optical Properties of Sn-ZnO Nanoparticle. Universal Research Publication. ISSN : 2278-1374.

[13] Ullah, R., Dutta, J. 2008. Photocatalytic Degradation of Organic Dyes with Manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, 156 (1-3), 194-200.

[14] Ningsih, S. K. W., Miftahul K., and Silvi V. 2015. Synthesis and Characterization of ZnO Nanoparticles by Sol-Gel Method with Various Additives. The International Conference on Mathematics, Sciences, Education and Technology.

[15] Ningsih, S. K. W. and Miftahul K. 2017. Synthesis and Characterization of NiO Nanocrystals by using Sol-Gel Method with Various Precursors.Makara Journal of Science, 19-24.

[16] Sookman, c., paisan, k, & waraporn, t. 2005. “The effect of calcined temperature on the property of nickel oxide catalyst synthesized by sol-gel method”.international symposium eco-energy and material science and engineering symposium. Chiangmai, thailand.