Utilization of Double Random Phase Encoding for Securing Color Images

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 179
Number 40

Year of Publication: 2018

Authors:
Mohammed A. AlZain

10.5120/ijca2018916944

Abstract

This paper investigates the Double Random Phase Encoding (DRPE) implementation in encrypting color digital images. The color optical image cipher works through splitting color plainimage into red (R), green (G) and blue (B) channels. The color plainimage RGB components are multiplied with the random phase mask (RPM) and transformed with Fourier Transform (FT). The modulated RGB components are again multiplied using the second RPM and subjected again to inverse FT. A set of experimental tests using different color images has been employed to study the security of DRPE for encrypting digital color images. Experimental results demonstrated the efficiency of DRPE for encrypting digital color images and its immunity regarding the most potential attacks.

References

1. S. Kishk and B. Javidi, "Information hiding technique with double phase encoding" applied optics, 41, 5462-5470, 2002.
2. Z. Liu Z, S. Li, W. Liu, Y. Wang, S. Liu, "Image encryption algorithm by using fractional Fourier transform and pixel scrambling operation based on double random phase encoding," Opt. Lasers Eng., vol. 51, pp. 8-14, 2013.

3. M. R. Abuturab, "Color image security system based on discrete Hartley transform in gyrator transform domain," Opt. Lasers Eng., vol. 51, pp. 317-324, 2013.

4. Liu Z, Dai J, Sun X, Liu S., "Color image encryption by using the rotation of color vector in Hartley transform domains," Opt. Laser Eng., vol. 48, pp. 800–805, 2010.

5. P. Refregier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding" Opt. Lett., vol. 20, pp. 767-769, 1995.

6. R. Tao, J. Lang, Y. Wang, "Optical image encryption based on the multipleparameter fractional Fourier transform," Opt. Lett. 33, pp. 581–583, 2008.

7. Z. Liu, S. Liu, "Double image encryption based on iterative fractional Fourier transform," Opt. Commun. vol. 275, pp. 324–329, 2007.

8. Y. Frauel, A. Castro, T. J. Naughton, B. Javidi, "Security analysis of optical encryption," Proc SPIE, vol. 5986, pp. 25–34, 2005.

9. Y. Frauel, A. Castro, T. J. Naughton, B. Javidi, "Resistance of the double random phase encryption against various attacks," Opt. Express, vol. 15, pp. 10253-10265, 2007.

10. X. Peng, P. Zhang, H. Wei, B. Yu, "Known-plaintext attack on optical encryption based on double random phase keys," Opt. Lett., vol. 31, pp. 1044-1046, 2006.

11. Ensherah A. Naeem, Mustafa M. Abd Elnaby, Naglaa F. Soliman, Alaa M. Abbas, Osama S. Faragallah, Noura Semary, Mohiy M. Hadhoud, Saleh A. Alshibeili, and Fathi E. Abd El-Samie, "Efficient Implementation of Chaotic Image Encryption in Transform Domains," Journal of Systems and Software, vol. 97, pp. 118-127, 2014.

12. Z. Liu, Y. Zhang, W. Liu, F. Meng, Q. Wu, S. Liu, Optical color image hiding scheme based on chaotic mapping and Hartley transform, Optics and Lasers in Engineering, 51, pp. 967-972, 2013.

13. Ensherah A. Naeem, Mustafa M. AbdElnaby, Hala S. El-sayed, Fathi E. Abd El-Samie, and Osama S. Faragallah, "Wavelet Fusion for Encrypting Images with a Few Details," Computers and Electrical Engineering, vol. 54, pp. 450-470, 2016.

14. Heba M. Elhoseny, Hossam E. H. Ahmed, Alaa M. Abbas, Hassan B. Kazemian, Osama S. Faragallah, Sayed M. El-Rabaie, Fathi E. Abd El-Samie, "Chaotic encryption of images in the fractional Fourier transform domain using different modes of operation," Signal, Image and Video Processing Journal "Springer-Verlag" ISSN 1863-1703, 2013, DOI 10.1007/s11760-013-0490-x

15. Elsayed M. Elshamy, Sayed El-Rabaie, Osama S. Faragallah, Osama Elshakankiry, Fathi. E. Abd El-Samie, Hala S. El-sayed, and S. F. El-Zoghdy, "Efficient Audio Cryptosystem based on Chaotic Maps and Double Random Phase Encoding," International Journal of Speech Technology, vol. 18(4), pp. 619-631, 2015, Springer.

16. Osama S. Faragallah, "An Enhanced Chaotic Key-Based RC5 Block Cipher Adapted to Image Encryption," International Journal of Electronics, vol. 99(7), pp. 925-943, Taylor & Francis, 2012.

17. Joshi M, Shakher C, Singh K., "Logarithms-based RGB image encryption in the fractional Fourier domain: a non-linear approach," Opt. Lasers Eng., vol. 47, pp. 721-727, 2009.

18. Liu Z, Xu L, Liu T, Chen H, Li P, Lin C, et al., "Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains," Opt. Commun. vol.
19. Chen W, Chen X, Sheppard CJR. "Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain," Opt. Express, vol. 20, pp. 3853-3865, 2012.

20. Q. Guo, Z. Liu, S. Liu, Color image encryption by using Arnold and discrete fractional random transforms in IHS space, Optics and Lasers in Engineering, 48, 1174-1181, 2010.

21. Hu Y J, Lee H K, Chen K Y.D. "Difference expansion based reversible data hiding using two embedding direction," IEEE Trans on Multimedia, vol. 10(8), pp. 1500-1512, 2008.

22. T. Narasimmalou, R. Allen Joseph, "Discrete Wavelet Transform Based Steganography for Transmitting Images," Science And Management (ICAESM), pp. 370-375, IEEE, Villupuram, India, March 30-31, 2012.

23. Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, S. Liu, Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains, Optics and Laser Technology, vol. 47, pp. 152-158, 2012.

24. L. Zhang, D. X. Mou, FSIM: A Feature Similarity Index for Image Quality Assessment, Image Processing, IEEE Transactions on, 20 (8), 2378-2386, 2011.

25. G. N. Raut, P. L. Paikrao, D. S. Chaudhari, A Study of Quality Assessment Techniques For Fused Images, IJITEE, 2 (4) , 2013.

26. Osama S. Faragallah, "Optical Double Color Image Encryption Scheme in the Fresnel-based Hartley Domain Using Arnold Transform and Chaotic Logistic Adjusted Sine Phase Masks," Optical and Quantum Electronics, vol. 50(3):118, pp. 1-27, 2018.

Index Terms

Computer Science
Image Processing

Keywords

DRPE, Fourier Transform (FT), Color image encryption