(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guangxi 541004, People’s Republic of China
13 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
15 Henan Normal University, Xinxiang 453007, People’s Republic of China
16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
18 Hunan Normal University, Changsha 410081, People’s Republic of China
19 Hunan University, Changsha 410082, People’s Republic of China
20 Indian Institute of Technology, Mumbai, 400076, India
21 Indiana University, Bloomington, Indiana 47405, USA
22 INFN Laboratori Nazionali di Frascati, (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy
23 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
24 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
25 Joint Institute for Nuclear Research, 14198 Dubna, Moscow region, Russia
26 Kuopio University, Kuopio, Finland
27 Lanzhou University, Lanzhou 730000, People’s Republic of China
28 Lanzhou University, Lanzhou 730000, People’s Republic of China
29 Liaoning Normal University, Dalian 116029, People’s Republic of China
30 Liaoning University, Shenyang 110036, People’s Republic of China
31 Liao University, Yushu 827000, China
32 Nanjing Normal University, Nanjing 210023, People’s Republic of China
33 Nanjing University, Nanjing 210093, People’s Republic of China
34 Nanjing University, Nanjing 210093, People’s Republic of China
35 Nankai University, Tianjin 300071, People’s Republic of China
36 National Centre for Nuclear Research, Warsaw 02-093, Poland
37 National Institute of Technology, New Delhi, India
38 North China Electric Power University, Beijing 102206, People’s Republic of China
39 Peking University, Beijing 100871, People’s Republic of China
40 Qufu Normal University, Qufu 273165, People’s Republic of China
41 Shandong Normal University, Jining 250014, People’s Republic of China
42 Shandong University, Jining 250014, People’s Republic of China
43 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
44 Shantou University, Shantou 515063, People’s Republic of China
45 Shennong University, Shennong 515063, People’s Republic of China
46 Sichuan University, Chengdu 610064, People’s Republic of China
47 Sichuan University, Chengdu 610064, People’s Republic of China
48 South China Normal University, Guangzhou 510006, People’s Republic of China
49 Southeast University, Nanjing 211100, People’s Republic of China
50 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Heifei 230026, People’s Republic of China
51 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
52 Suranaree University of Technology, University Avenue 111, Nakhon Ratwichasima 30000, Thailand
53 Tsinghua University, Beijing 100084, People’s Republic of China
54 Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, HEP Res. Cent., 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
55 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
56 University of Groningen, NL-9747 AA Groningen, The Netherlands
57 University of Hawaii, Honolulu, Hawaii 96822, USA
58 University of Jinan, Jinan 250022, People’s Republic of China
59 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
The origin of mass is one of the most important questions in physics. The masses of the fundamental particles are generated through spontaneous breaking of electroweak symmetry by the Higgs mechanism [1]. The Higgs mechanism implies the existence of at least one neutral Standard Model (SM) particle. It was discovered in July 2012 and has a profound effect on our fundamental understanding of matter.

Many models beyond the SM, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [3–5], extend the Higgs sector to include additional Higgs fields. The NMSSM adds an additional singlet chiral superfield to the Minimal Supersymmetric Standard Model (MSSM) [6] to alleviate the so-called "little hierarchy problem" [7]. It contains three CP-even, two CP-odd, and two charged Higgs bosons [3, 4]. The mass of the lightest Higgs boson, $A^0$, may be smaller than twice the mass of the charmed quark, thus making it accessible via $J/\psi \rightarrow \gamma A^0$ [8].

The branching fraction of $V \rightarrow \gamma A^0 (V = \Upsilon, J/\psi)$ is expressed as [8–10]

$$\frac{B(V \rightarrow \gamma A^0)}{B(V \rightarrow l^+ l^-)} = \frac{G_F m_e^2 g_Y^2 C_{\text{QCD}}}{\sqrt{2} \pi \alpha} \left( - \frac{m_{A^0}^2}{m_V^2} \right),$$

where $\alpha$ is the fine structure constant, $G_F$ is the Fermi coupling constant, $l \equiv e$ or $\mu$, $m_q$ is the quark mass, $C_{\text{QCD}}$ includes the leptonic width of $B(V \rightarrow l^+ l^-)$ [11] as well as $m_{A^0}$ dependent QCD and relativistic corrections to $B(V \rightarrow \gamma A^0)$ [10], and $g_Y$ is the effective Yukawa coupling to the Higgs field to the up- or down-type quark pair. In the NMSSM, $g_c = \cos \theta_A / \tan \beta$ ($q = c$) for the charm quark and $g_b = \cos \theta_A \tan \beta$ ($q = b$) for the bottom quark, where $\tan \beta$ is the ratio of up- and down-type Higgs doublets, and $\cos \theta_A$ is the fraction of the nonsinglet component of the $A^0$ [13, 14]. The value of $\cos \theta_A$ is zero for a pure $A^0$ singlet state [15].
branching fraction of $J/\psi \rightarrow \gamma A^0$ is predicted to be in the range of $10^{-9} - 10^{-7}$ depending upon the $A^0$ mass and the NMSSM parameters [13]. The branching fraction of $A^0 \rightarrow \mu^+\mu^-$ is predicted to be much larger for $\tan \beta \gtrsim 1$ [13]. An experimental study of such a low-mass Higgs boson is desirable to test the SM [10] and to look for new physics beyond the SM [3] [14] [17].

The BaBar [15], CLEO [19], and CMS [20] experiment have searched for di-muon decays of $A^0$, and placed a strong exclusion upper limit on $g_a$. On the other hand, the BESIII measurements, sensitive on $g_a$, is complementary to those by considering $g_a$. The recent BESIII measurement [21], based on 225 million $J/\psi$ events, is slightly lower than the BaBar measurement [18] in the low-mass region for $\tan \beta \lesssim 0.6$. The combined measurements of the BESIII and BaBar have revealed that the $A^0$ is mostly singlet in nature because of obtained upper limit on $\cos \theta_A (=|\sqrt{g_a g_{\gamma}}|) \times \sqrt{B(A^0 \rightarrow \mu^+\mu^-)}$, independent of $\tan \beta$, is very close to zero especially in the low-mass region [21]. However, this BESIII limit [21] is still an order of magnitude above the theoretical predictions [4]. BESIII has recently accumulated about 39 times more $J/\psi$ events in comparison to the previous measurement [21], and these can be utilized to discover the $A^0$ or exclude parameter space of the NMSSM [22].

This paper describes the search for di-muon decays of a $CP$-odd light Higgs boson in radiative decays of $J/\psi$ using 9 billion $J/\psi$ events collected by the BESIII detector in 2009, 2018, and 2019 [22]. Because muon particle identification (PID) was not available for the $J/\psi$ data collected in 2012, we exclude this data sample for the $A^0$ search.

I. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector [23] records symmetric $e^+e^-$ collisions provided by the BEPCII storage ring [24], which operates with a peak luminosity of $1 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$ in the center-of-mass (CM) energy range from 2.0 to 4.95 GeV. BESIII has collected large data samples in this energy region [25]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The MDC measures the momentum of charged particles with a resolution of 0.5% at 1 GeV/$c$. The EMC measures the photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end-cap) region. The time resolution of the TOF in the barrel region is 68 ps. The time resolution of the TOF in the endcap region was 110 ps before 2015 and was improved to be 60 ps after upgrading with the multi-gap resistive plate chambers. Muons with momentum above 0.5 GeV/$c$ are identified by the iron flux return of the magnet instrumented with about 1272 $m^2$ of resistive plate muon counters (MUC) arranged in nine (eight) layers in the barrel (endcaps).

Simulated Monte Carlo (MC) events based on GEANT4 [26] are used to optimize the event selection criteria, to study the potential backgrounds, and to determine the detector acceptance. A MC sample of 9.0 billion inclusive $J/\psi$ events is used for the background studies with the generic TopoAna tool [27]. The known $J/\psi$ decay modes are generated by the EVTGEN generator [28] with branching fractions taken from the Particle Data Group (PDG) [29], and the remaining unknown decay modes by LUNDCHARM [30]. The final state radiation corrections are included in the MC simulation using LIGHTS [31]. The production of the $J/\psi$ resonances through $e^+e^-$ annihilation including the beam-energy spread and the initial-state-radiation (ISR) is simulated by the KKMC [32]. A 2.93 $fb^{-1}$ $\psi(3770)$ data sample [33] [34] is used to study the background from the quantum electrodynamics (QED) process of $e^+e^- \rightarrow \gamma \mu^+\mu^-$. To compute the detection efficiency, we generate 0.12 million simulated signal MC events at 23 different Higgs mass points ranging from 0.212 to 3.0 GeV/$c^2$ with a phase-space model for the $A^0 \rightarrow \mu^+\mu^-$ decay and a $P$-wave model for the $J/\psi \rightarrow \gamma A^0$ decay [28].

II. DATA ANALYSIS

We select events with two oppositely charged tracks and at least one photon candidate. A photon candidate, reconstructed with clusters of energy deposited in the EMC, is selected with a minimum energy of 25 MeV in the barrel region ($|\cos \theta| < 0.8$) or 50 MeV in the end-cap region ($0.86 < |\cos \theta| < 0.92$). The energy deposited in the nearby TOF is included to improve the energy resolution and reconstruction efficiency. The angle between a photon and the nearest extrapolated track in the EMC is required to be larger than 10 degrees to remove bremsstrahlung photons. The EMC timing is required to be within 700 ns relative to the event start time to suppress electronic noise and energy deposits unrelated to the signal events.

Charged tracks are reconstructed from the ionization signals measured by the MDC and are required to be in the MDC detection acceptance region of $|\cos \theta| < 0.93$, where $\theta$ is the angle of the charged track with the z axis, which is the axis of the MDC. Further, their points of closest approach to the z-axis must be within $\pm 10 \text{ cm}$ from the interaction point along the z direction and within $\pm 1 \text{ cm}$ in the plane perpendicular to z. To suppress contamination by electrons and pions, both charged tracks are required to satisfy the following selection criteria: 1) $E^\mu_{\text{cal}}/p < 0.9 \text{ c}$, 2) $0.1 < E^\mu_{\text{cal}} < 0.3 \text{ GeV}$, and 3) the absolute value of the time difference between the TOF and expected muon time ($\Delta t_{\text{TOF}}$) must be less
than 0.26 ns. Here, $E_{\text{cal}}^{\mu}$ is the energy deposited in the EMC by the $\mu^+/\mu^-$ particle, and $p$ is the momentum of the charged muon track. To further improve the purity of muons, one of the charged tracks is required to have its penetration depth in the MUC be greater than $(-40.0 + 70 \times p/(\text{GeV/c}))$ cm for $0.5 \leq p \leq 1.1 \text{ GeV/c}$ and 40 cm for $p > 1.1 \text{ GeV/c}$.

The two muon tracks are required to originate from a common vertex by performing a vertex fit to form an $A^0$ candidate. A four-constraint (4C) kinematic fit is performed with the two charged tracks and one of the photon candidates in order to improve the mass resolution of the $A^0$ candidate. If there is more than one $\gamma \mu^+ \mu^-$ candidate, the candidate with the minimum value of the $\chi^2$ from the 4C kinematic fit ($\chi^2_{4C}$) is selected, and the $\chi^2_{4C}$ is required to be less than 40 to reject backgrounds from $J/\psi \rightarrow \pi^+ \pi^- \pi^0$ and $e^+e^- \rightarrow \gamma \pi^+ \pi^- \pi^0$. We reject fake photons by requiring the di-muon invariant mass ($m_{\mu^+\mu^-}$) obtained from the 4C kinematic fit to be less than 3.04 GeV/$c^2$. To suppress backgrounds from $e^+e^- \rightarrow \gamma \mu^+ \mu^-$ and $J/\psi \rightarrow \mu^+ \mu^-$ ($\gamma$), the absolute value of the cosine of the muon helicity angle (cos$\theta^\mu$), defined as the angle between the direction of one of the muons and the direction of the $J/\psi$ in the $A^0$ rest frame, is required to be less than 0.92.

After the above selection criteria, we determine the signal yield as a function of $m_{\mu^0}$ in the interval of 0.212 $\leq m_{A^0} \leq 3.0$ GeV/$c^2$ by performing a series of one-dimensional unbinned maximum likelihood (ML) fits to the reduced mass, $m_{\text{red}} = \sqrt{m_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$ distribution of surviving events. Fig. 1 shows the $m_{\text{red}}$ distribution of surviving events together with the background predictions from various simulated MC samples and 2.93 fb$^{-1}$ of $\psi(3770)$ data $^{33,34}$. We use $m_{\text{red}}$ rather than $m_{\mu^+\mu^-}$ because it is easier to model the non-peaking background across the entire $m_{A^0}$ region, in particular, the kinematic threshold region $m_{\mu^+\mu^-} \approx 2m_{\mu}$ ($m_{\text{red}} \approx 0$). The non-peaking background is dominated by $e^+e^- \rightarrow \gamma \mu^+ \mu^-$ and $J/\psi \rightarrow \mu^+ \mu^-$ ($\gamma$), and the peaking background by $J/\psi \rightarrow \rho \pi$ and $J/\psi \rightarrow \gamma f$ ($f = f_2(1270)$, $f_0(1500)$, $f_0(1710)$) decays, where both $\rho/\omega$ and $f$ decay to $\pi^+\pi^-$. The $m_{\text{red}}$ distribution of data is generally well described by the background predictions, except in the low-mass region, where KKMC $^{32}$ fails to reproduce the ISR events for the $e^+e^- \rightarrow \gamma J/\psi, J/\psi \rightarrow \mu^+ \mu^-$ process. This disagreement has little impact on the search because the signal extraction procedure does not depend on the background predictions.

The fit function includes the contributions of signal, continuum background and peaking background components from $\rho/\omega$, $f_2(1270)$, $f_0(1500)$, and $f_0(1710)$ mesons. Table 1 summarizes the $m_{\text{red}}$ fit intervals for the various $m_{A^0}$ points used to handle both non-peaking and peaking backgrounds smoothly.

Simulated MC samples are used to develop the probability density functions (PDFs) of signal and backgrounds. The $A^0$ is assumed to be a scalar or pseudo-scalar particle with a very narrow decay width in comparison to the experimental resolution $^{33}$. We describe the $m_{\text{red}}$ distribution of the signal PDF by the sum of two Crystal Ball (CB) functions $^{36}$ with a common peak value and opposite side tails. The $m_{\text{red}}$ resolution varies from 2 MeV/$c^2$ to 12 MeV/$c^2$ while the signal efficiency varies between 27% and 53% depending upon the muon momentum values at different $A^0$ mass points. We interpolate the signal efficiency and signal PDF parameters linearly between the mass points of the generated signal MC events. The non-peaking background PDF is described by a function $\tan\theta(\sum_{l=1}^{n} p_l m_{\text{red}}^{l})$ in the threshold mass region of 0.212 $\leq m_{A^0} \leq 0.40$ GeV/$c^2$, where $p_l$ are the polynomial coefficients. This function provides a threshold like behavior in the low-mass region of the $m_{\text{red}}$ distribution and passes through the origin when $m_{\text{red}} = 0$. In the other mass regions, we use second, third, fourth, fifth or sixth-order Chebyshev polynomial function to describe the non-peaking background PDFs detailed in Table 1. We determine the initial parameters of these background PDFs using a cocktail MC sample

![FIG. 1. The $m_{\text{red}}$ distribution of data (black dot points with error bars), together with the background predictions of the QED $e^+e^- \rightarrow \gamma \mu^+ \mu^-$ process from $\psi(3770)$ data (black histogram) and $J/\psi \rightarrow \rho \pi, \mu^+ \mu^-(\gamma)$, $\gamma f$ ($f = f_2(1270), f_0(1500), f_0(1710)$) decays from MC samples of those processes (gray pattern histogram). The dashed cyan histogram represents the combined background.](image-url)

| $m_{\text{red}}$ fit interval (GeV/$c^2$) | $m_{A^0}$ points (GeV/$c^2$) | Order of Polynomial function |
|----------------------------------------|-------------------------------|-----------------------------|
| 0.002 – 0.45                           | 0.212, 0.45                   | $5^{th}$                    |
| 0.3 – 0.65                             | 0.401, 0.65                   | $4^{th}$                    |
| 0.4 – 1.06                             | 0.601, 1.00                   | $3^{rd}$                    |
| 0.95 – 1.95                            | 1.001, 1.8                    | $2^{nd}$                    |
| 1.7 – 2.5                              | 1.892, 2.4                    | $5^{th}$                    |
| 2.3 – 2.7                              | 2.492, 2.6                    | $4^{th}$                    |
| 2.5 – 2.9                              | 2.692, 2.848                  | $5^{th}$                    |
| 2.75 – 3.0                             | 2.85, 2.90                    | $6^{th}$                    |
| 2.85 – 3.032                           | 2.902, 3.0                    | $5^{th}$                    |
of all possible non-peaking backgrounds to achieve better agreement between data and the fit models.

To take into account the well-known structure of the $\rho$-$\omega$ interference, we describe the peaking background PDF of the $m_{\text{red}}$ distribution with the Gounaris and Sakurai (GS) function in the range of $0.4 \leq m_{\text{red}} \leq 1.06$ GeV/$c^2$ [37]. The fit formula, detailed in Ref. [38], is the same as that used previously by the BaBar [39] and BESIII [40] experiments in the measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross-section in the $\rho/\omega$ mass region. The amplitudes for the higher $\rho$ states, $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$, as well as the masses and widths of those states are taken from Ref. [38]. We fix the $\omega$ width according to the PDG [29] value and float the other parameters during the fit. We describe the peaking background PDFs corresponding to $f_2(1270)$, $f_0(1500)$ and $f_0(1710)$ resonances by the sum of the two CB functions [36] using the parameters determined from MC samples of $J/\psi \rightarrow \gamma f$, $f \rightarrow \pi^+\pi^-$ decays, where $f = f_2(1270)$, $f_0(1500)$, and $f_0(1710)$ mesons.

The search for the $A^0$ narrow resonance is performed in steps of approximately half the $m_{\text{red}}$ resolution, i.e., 1 MeV/$c^2$ in the mass range of $0.22 \leq m_{A^0} \leq 1.5$ GeV/$c^2$ and 2.0 MeV/$c^2$ in the other $m_{A^0}$ regions, with a total of 2,035 $m_{A^0}$ points. The PDF parameters of the signal and peaking backgrounds of $J/\psi \rightarrow \gamma f$ are fixed while the non-peaking background PDF, and the numbers of the signal, peaking, and non-peaking background events are floated. Plots of the fit to the $m_{\text{red}}$ distribution for two selected mass points are shown in Fig. 2.

The fit is repeated with alternative signal, peaking, and non-peaking background PDFs to determine the systematic uncertainties for the numbers of signal events associated with the corresponding PDFs at each $m_{A^0}$ point. The uncertainty associated with the signal PDF is studied by replacing the sum of the two CB functions with a ‘Crujff’ function [39]. The uncertainty associated with the $\rho - \omega$ peak is evaluated by varying the $\rho$ and $\omega$ contributions in the formula of Eq. (26) of Ref. [38]. The uncertainty due to the peaking background of $J/\psi \rightarrow \gamma f$ is studied by replacing the sum of the two CB functions with the simulated MC samples of the corresponding decay processes convolved with a Gaussian function whose parameters are floated during the fit. The uncertainty due to the non-peaking background PDF is studied by replacing the tanh($\sum_{l=1}^{6} p_l m_{\text{red}}^l$) and $n^{th}$ order Chebyshev polynomial function with tanh($\sum_{l=1}^{6} p_l m_{\text{red}}^l$) and $(n + 1)^{th}$ order Chebyshev polynomial functions, respectively, in the fit. The one with the largest signal yield among these fit scenarios is considered to produce the final result.

The product branching fraction of $J/\psi \rightarrow \gamma A^0$ and $A^0 \rightarrow \mu^+\mu^-$ as a function of $m_{A^0}$ is calculated as

$$B(J/\psi \rightarrow \gamma A^0) \times B(A^0 \rightarrow \mu^+\mu^-) = \frac{N_{\text{sig}}}{\epsilon \cdot N_{J/\psi}},$$  \hfill (2)

where $N_{\text{sig}}$ is the number of signal events, $\epsilon$ is the signal selection efficiency, and $N_{J/\psi} = (8.998 \pm 0.039) \times 10^9$ is the number of $J/\psi$ events. Fig. 3 shows the plots of the product branching fractions $B(J/\psi \rightarrow \gamma A^0) \times B(A^0 \rightarrow \mu^+\mu^-)$ and the statistical significance, defined as $S = \text{sign}(N_{\text{sig}}) \sqrt{2 \ln(L_{\text{max}}/L_0)}$, where $L_{\text{max}}$ ($L_0$) is the maximum likelihood value for a fit with number of signal events being floated (fixed at zero). The largest upward local significance value is determined to be $3.5\sigma$.

![FIG. 2. Fits to the $m_{\text{red}}$ distributions for (top) $m_{A^0} = 0.221$ GeV/$c^2$ and (bottom) $m_{A^0} = 0.696$ GeV/$c^2$. The corresponding local significance values at these mass points are observed to be $3.3\sigma$ and $3.5\sigma$, respectively. Black dots with error bars represent the data, the red long-dashed curve the non-peaking background, the pink dotted curve the peaking background, the green dashed curve the signal PDF, and the solid blue curve the total fit results. In the bottom figure, the well-known $\rho - \omega$ interference is taken care of by describing the peaking background PDF of the $m_{\text{red}}$ distribution by a GS function [37] [38], as described in the text.](image-url)
at $m_{A^0} = 0.696$ GeV/$c^2$. Based on a large ensemble of pseudo experiments \[18\], the probability of observing a fluctuation of $S \geq 3$, at the level of 1\(\sigma\), is estimated to be 12%. The corresponding global significance value is determined to be at the level of 1\(\sigma\). Thus, we conclude that no evidence of Higgs production is found within the searched $m_{A^0}$ regions.

### III. SYSTEMATIC UNCERTAINTIES

According to Eq. 2, the systematic uncertainties for the branching fraction measurement include those from the number of signal events, the reconstruction efficiency, and the number of $J/\psi$ events. The uncertainties associated with the number of signal events originating from the PDF parameters of signal and backgrounds are considered by performing alternative fits at each $m_{A^0}$ point.

Pseudo experiments are utilized to test the reliability of the fit procedures and compute the fit bias, which may appear due to imperfect signal and background modeling. The same fit procedure is performed in each pseudo experiment. The resultant average difference between the input and output signal yields is determined to be 0.3 events. We consider this as an additive systematic uncertainty ($\sigma_{add}$), which may affect the significance of any observation but does not scale with the reconstructed signal yield.

The uncertainties associated with the reconstruction efficiency and the number of $J/\psi$ events don’t affect the significance of any observation. Thus, we consider them as multiplicative systematic uncertainties ($\sigma_{mult}$) and scale with the number of reconstructed signal events. The uncertainty associated with the reconstruction efficiency includes those from tracking, PID, and the photon detection efficiency.

The uncertainty due to MDC tracking is determined to be 1% per track using the high statistics control samples of $J/\psi \rightarrow \rho \pi$ and $J/\psi \rightarrow p\overline{p}\pi^{+}\pi^{-}$. A total of 2.0% systematic uncertainty is assigned for the two charged tracks in this analysis. The systematic uncertainty associated with the photon reconstruction efficiency is determined using a control sample of $e^+e^- \rightarrow \gamma \mu^+\mu^-$, in which the ISR photon is predicted using the four momenta of the two charged tracks. This sample also includes the dominant contribution from $J/\psi \rightarrow \gamma \pi^+\pi^-$ decay, including all the possible intermediate resonances. The relative difference in efficiency between data and MC is found to be 0.2%, which is considered as a systematic uncertainty.

A control sample of $J/\psi \rightarrow \mu^+\mu^- (\gamma)$ is used to evaluate the systematic uncertainty due to the muon PID, $\cos \theta_{mu}$, and $\chi^2_{4C}$ requirements. In this sample, one track is tagged with a tight muon PID. The final uncertainty associated with the muon PID also takes into account the fraction of events with one or two tracks identified as muons obtained from the simulated signal MC sample. The corresponding uncertainties, computed as the relative change in efficiency between data and MC, are determined to be $2.9 - 4.1\%$, 0.8% and 1.8%, respectively. The systematic uncertainty due to the number of $J/\psi$ events is 0.3% using $J/\psi$ inclusive hadronic events.
IV. RESULT

Since no evidence of Higgs production is found, we set 90% confidence level (C.L.) upper limits on the product branching fractions \( B(J/\psi \rightarrow \gamma A^0) \times B(A^0 \rightarrow \mu^+ \mu^-) \) as a function of \( m_{A^0} \) using a Bayesian method [29] after incorporating the systematic uncertainty by smearing the likelihood curve with a Gaussian function having a width equal to the systematic uncertainty. The limits vary in the range of \((1.2 - 778.0) \times 10^{-9}\) for the Higgs mass region of \(0.212 \leq m_{A^0} \leq 3.0 \text{ GeV}/c^2\) depending on the \(m_{A^0}\) point, as shown in Fig. 4. The new measurement has a 6-7 times improvement over the previous BESIII measurement [21].

To compare our results with the BaBar measurement [18], we also compute 90% C.L. upper limits on the effective Yukawa coupling of the Higgs field to the bottom-quark pair \( g_0(= g_\gamma \tan^2 \beta) \times \sqrt{B(A^0 \rightarrow \mu^+ \mu^-)} \) as a function of \( m_{A^0} \) for different values of \( \tan \beta \) using Eq. (1) as shown in Fig. 5. Our new measurement is slightly better than the BaBar measurement [18] in the low-mass region for \( \tan \beta = 1.0 \).

V. SUMMARY

We search for di-muon decays of \( A^0 \) in \( J/\psi \rightarrow \gamma A^0 \) using 9.0 billion \( J/\psi \) events collected by the BESIII detector. No evidence of Higgs production is found, and we set 90% C.L. upper limits on product branching fractions \( B(J/\psi \rightarrow \gamma A^0) \times B(A^0 \rightarrow \mu^+ \mu^-) \) in the range of \((1.2 - 778.0) \times 10^{-9}\) for \(0.212 \leq m_{A^0} \leq 3.0 \text{ GeV}/c^2\). This result has an improvement by a factor of 6-7 over the previous BESIII measurement [21], and is better than the BaBar measurement [18] for \( m_{A^0} \leq 0.7 \text{ GeV}/c^2 \) for \( \tan \beta = 1 \). Thus, our measurement is more stringent for \( m_{A^0} \leq 0.7 \text{ GeV}/c^2 \) over the existing experimental results [18,21,40]. The new BESIII limit is also lower than the theoretical prediction at the threshold Higgs mass point of 0.212 GeV/c², and thus constrains a large fraction of the parameter space of the new physics models, including NMSSM [3,4,17].

VI. ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11335008, 11625523, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 1203513, 12035013, 12061131003, 11705192, 11950410506, 12061131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207, U1832103, U2032111; CAS Key Research Program of Frontier Sciences under Contract No. QYZD-J-SSW-SLH040; 100 Talents Pro-
