ON ENDOMORPHISMS OF SURFACE MAPPING CLASS GROUPS

MUSTAFÀ KORKMAZ

ABSTRACT: We prove in this paper that every endomorphism of the mapping class group of certain orientable surfaces onto a subgroup of finite index is in fact an automorphism.

1. Introduction

Let S be a compact connected orientable surface. The mapping class group \mathcal{M}_S of the surface S is the group of isotopy classes of orientation preserving diffeomorphisms $S \to S$. The extended mapping class group \mathcal{M}_S^* of S is the group of isotopy classes of all diffeomorphisms $S \to S$. Note that the isotopy classes of orientation reversing diffeomorphisms are also included in \mathcal{M}_S^*, and hence \mathcal{M}_S is a subgroup of \mathcal{M}_S^* of index two.

Recall that a group G is called residually finite if for each $x \neq 1$ in G there exists a homomorphism f from G onto some finite group such that $f(x)$ is nontrivial. Equivalently, there is some finite index normal subgroup of G that does not contain x. G is called hopfian if every surjective endomorphism of G is an automorphism. It is well known that finitely generated residually finite groups are hopfian [LS]. G is called cohopfian if every injective endomorphism of G is an automorphism.

The mapping class group of an orientable surface is finitely generated [L, B] and residually finite [G, I1]. Hence it is hopfian. N.V. Ivanov and J.D. McCarthy [M] proved that \mathcal{M}_S is also cohopfian. Author and J.D. McCarthy [KM] proved that if $\phi : \mathcal{M}_S \to \mathcal{M}_S$ is a homomorphism such that $\phi(\mathcal{M}_S)$ is a normal subgroup and $\mathcal{M}_S/\phi(\mathcal{M}_S)$ is abelian, then ϕ is an automorphism.

In this paper, we prove further that if ϕ is an endomorphism of the mapping class group \mathcal{M}_S onto a finite index subgroup, then ϕ is in fact an automorphism, with a few exceptions. The proof of this result relies on a result of R. Hirshon, which states that if ϕ is an endomorphism of a finitely generated residually finite group G such that $\phi(G)$ is of finite index in G, then ϕ restricted to $\phi^n(G)$ is an injection for some n.

D.T. Wise [W] gave an example of a finitely generated residually finite group G and an endomorphism Φ of G such that the restriction of Φ to $\Phi^n(G)$ is not injective for any n, answering a question of R. Hirshon in
negative. It might be interesting to consider the same question for mapping class groups of surfaces.

2. ENDOMORPHISMS OF MAPPING CLASS GROUPS

Let S be a compact connected oriented surface of genus g with b boundary components. For any simple closed curve a on S, there is a well known diffeomorphism, called a right Dehn twist, supported in a regular neighborhood of a. We denote by t_a the isotopy class of a right Dehn twist about a, also called a Dehn twist. Note that $ft_a f^{-1} = t_{f(a)}$ for any orientation preserving mapping class f.

The pure mapping class group $\mathcal{P}M_S$ is the subgroup of M_S consisting of those orientation preserving mapping classes which preserve each boundary component.

For a group G and a subgroup H of it, we denote by $C_G(H)$ the centralizer of H in G. The center of G is denoted by $C(G)$.

Theorem 1. Let G be a finitely generated residually finite group, and let ϕ be an endomorphism of G onto a finite index subgroup. Then there exists an n such that the restriction of ϕ to $\phi^n(G)$ is an injection.

Theorem 2. Let S be a compact connected orientable surface of genus g with b boundary components. Suppose, in addition, that if $g = 0$ then $b \geq 5$, if $g = 1$ then $b \geq 3$, and if $g = 2$ then $b \geq 1$. Then any isomorphism between two finite index subgroups of the extended mapping class group M^*_S is the restriction of an inner automorphism of M^*_S.

Theorem 1 was proved by R. Hirshon ([1]), and Theorem 2 was proved by N.V. Ivanov ([2]) for surfaces of genus at least two and by the author ([3]) for the remaining cases. Since the mapping class group M_S is normal in M^*_S, we deduce the following theorem.

Theorem 3. Let S be a compact connected orientable surface of genus g with b boundary components. Suppose, in addition, that if $g = 0$ then $b \geq 5$, if $g = 1$ then $b \geq 3$, and if $g = 2$ then $b \geq 1$. Then any isomorphism between two finite index subgroups of the mapping class group M_S is the restriction of an automorphism of M_S.

Lemma 4. Let S be a closed orientable surface of genus two and let Γ be a finite index subgroup of M_S. Then the center $C(\Gamma)$ of Γ is equal to $\Gamma \cap \langle \sigma \rangle$, where σ is the hyperelliptic involution.

Proof: Since the subgroup $\langle \sigma \rangle = \{1, \sigma\}$ is the center of M_S, its intersection with Γ is contained in the center of Γ.

Now let $f \in C(\Gamma)$ and let N be the index of Γ in M_S. Since $t^N_a \in \Gamma$ for all simple closed curves a, we have $t^N_{f(a)} = ft^N_a f^{-1} = t^N_a$. It follows that $f(a) = a$ (cf. [4]). Hence, $ft_a f^{-1} = t_{f(a)} = t_a$. Since M_S is generated by Dehn twists, $f \in C(M_S) = \langle \sigma \rangle$. \square
We are now ready to state and prove the main result of this paper.

Theorem 5. Let S be a compact connected orientable surface of genus g with b boundary components. Suppose, in addition, that if $g = 0$ then $b \neq 2,3,4$, and if $g = 1$ then $b \neq 2$. If ϕ is an endomorphism of \mathcal{M}_S such that $\phi(\mathcal{M}_S)$ is of finite index in \mathcal{M}_S, then ϕ is an automorphism.

Proof: If S is a (closed) sphere or a disk, then \mathcal{M}_S is trivial. Clearly, the conclusion of the theorem holds.

Suppose first that S is a torus with $b \leq 1$ boundary component. It is well known that \mathcal{M}_S is isomorphic to $SL_2(\mathbb{Z})$. The commutator subgroup of $SL_2(\mathbb{Z})$ is a nonabelian free group of rank 2 and its index in $SL_2(\mathbb{Z})$ is 12. Let us denote it by F_2. $\phi(F_2)$ is contained in F_2 as a finite index subgroup. If this index is k, $\phi(F_2)$ is a free group of rank $k + 1$. Since there is no homomorphism from F_2 onto a free group of rank ≥ 3, it follows that $k = 1$. That is, $\phi(F_2) = F_2$. In particular, $\phi(SL_2(\mathbb{Z}))$ contains F_2. The fact that ϕ is an automorphism in this case was proved in [KM].

Suppose now that S is not one of the surface above and not a closed a surface of genus 2. Let us orient S arbitrarily. Since \mathcal{M}_S is finitely generated and residually finite, there exists an n such that the restriction of ϕ to $\phi^n(\mathcal{M}_S)$ is an isomorphism onto $\phi^{n+1}(\mathcal{M}_S)$. Note that the subgroups $\phi^n(\mathcal{M}_S)$ and $\phi^{n+1}(\mathcal{M}_S)$ are of finite index in \mathcal{M}_S. Hence, there is an automorphisms α of \mathcal{M}_S such that the restrictions of α and ϕ to $\phi^n(\mathcal{M}_S)$ coincide.

Let N be the index of $\phi^n(\mathcal{M}_S)$ in \mathcal{M}_S. For any simple closed curve a on S, t^N_a is contained in $\phi^n(\mathcal{M}_S)$. Hence, $\alpha(t^N_a) = \phi(t^N_a)$. Let $f \in \mathcal{M}_S$ be any element. Then

$$t^N_{f(a)} = \alpha^{-1}(\phi(t^N_{f(a)})) = \alpha^{-1}(\phi(f t^N_a f^{-1})) = \alpha^{-1}(\phi(f))\alpha^{-1}(\phi(t^N_a))\alpha^{-1}(\phi(f^{-1})) = \alpha^{-1}(\phi(f))t^N_a \alpha^{-1}(\phi(f))^{-1} = t^N_{\alpha^{-1}(\phi(f))(a)}.$$

Hence, $\alpha^{-1}(\phi(f))(a) = f(a)$ for all a (cf. [IM]). It follows that $f^{-1} \alpha^{-1}(\phi(f))$ commutes with all Dehn twists. Since $\mathcal{P}\mathcal{M}_S$ is generated by Dehn twists, it is in $C_{\mathcal{M}_S}(\mathcal{P}\mathcal{M}_S)$, the centralizer of $\mathcal{P}\mathcal{M}_S$ in \mathcal{M}_S. But $C_{\mathcal{M}_S}(\mathcal{P}\mathcal{M}_S)$ is trivial [IM]. Hence, $\alpha^{-1}(\phi(f)) = f$. Therefore, $\phi = \alpha$. In particular, ϕ is an automorphism.

Suppose finally that S is a closed surface of genus two. Let R be a sphere with six holes. Then \mathcal{M}_R is isomorphic to the quotient of \mathcal{M}_S with its center $\langle \sigma \rangle$, where σ is the hyperelliptic involution (cf. [BH]). Let us identify \mathcal{M}_R and $\mathcal{M}_S/\langle \sigma \rangle$, and let $\pi : \mathcal{M}_S \to \mathcal{M}_R$ be the quotient map. Since $\phi(\sigma)$ is in the center of $\phi(\mathcal{M}_S)$, either $\phi(\sigma) = \sigma$ or $\phi(\sigma) = 1$ by the lemma above.
If $\phi(\sigma) = \sigma$, then ϕ induces an endomorphism Φ of \mathcal{M}_R, such that $\pi\phi = \Phi\pi$. Then we have a diagram in which all squares are commutative:

$$
\begin{array}{cccccc}
1 & \rightarrow & \langle \sigma \rangle & \rightarrow & \mathcal{M}_S & \xrightarrow{\pi} & \mathcal{M}_R & \rightarrow & 1 \\
1 & \rightarrow & \langle \sigma \rangle & \rightarrow & \mathcal{M}_S & \xrightarrow{\pi} & \mathcal{M}_R & \rightarrow & 1 \\
\downarrow I & & \downarrow \phi & & \downarrow \Phi & & \downarrow I & & \downarrow \Phi
\end{array}
$$

where I is the identity homomorphism. Since the image $\Phi(\mathcal{M}_R)$ of Φ is of finite index, Φ is an automorphism by the first part. By 5-lemma, ϕ is an automorphism.

If $\phi(\sigma) = 1$, then ϕ induces a homomorphism $\bar{\phi} : \mathcal{M}_R \rightarrow \mathcal{M}_S$ such that $\bar{\phi}\pi = \phi$. The image of the endomorphism $\Phi = \pi\bar{\phi}$ of \mathcal{M}_R has finite index. Since R is a sphere with six holes, Φ is an automorphism by the first part. Then, ϕ is an automorphism, and hence $\sigma = 1$. This contradiction finishes the proof of our theorem. \qed

Remark: If S is a sphere with two holes, then \mathcal{M}_S is a group of order two, and if S is a sphere with three holes, then \mathcal{M}_S is isomorphic to the symmetric group on three letters. Hence, in these cases the trivial homomorphism is an endomorphism onto a finite index subgroup which is not automorphism. We do not know if the conclusion of Theorem 5 holds if a sphere with four holes and a torus with two holes.

References

[B] Birman, J. S., *Braids, links and mapping class groups*, Annals of Math. Studies, Princeton University Press, Princeton, NJ, 1975.

[BH] Birman, J.S., Hilden, H.M., *On the mapping class groups of closed surfaces as covering spaces*, in: Advances in the theory of Riemann surfaces, Ann. Math. Studies no. 66, Princeton University Press, Princeton NJ 1971, 81-115.

[G] Grossman, E. K., *On the residual finiteness of certain mapping class groups*, J. London Math. Soc. (2) 9 (1974), 160-164.

[H] Hirschon, R., *Some properties of endomorphisms in residually finite groups*, J. Austral. Math. Soc. Ser. A 24 (1977), no.1, 117-120.

[I1] Ivanov, N. V., *Finite approximability of modular Teichmüller groups*, Sibirskii Matematicheskii Zhurnal 32 (1991), no.1, 182-185

[I2] Ivanov, N. V., *Automorphisms of complexes of curves and of Teichmüller spaces*, International Mathematics Research Notices (1997) no. 14, 651-666.

[I3] Ivanov, N. V., McCarthey, J. D., *On injective homomorphisms between Teichmüller modular groups*, Invent. Math. V. 135, F.2 (1999), 425-486.

[K] Korkmaz, M., *Automorphisms of complexes of curves on punctured spheres and on punctured tori*, Topology and its Applications, to appear.

[KM] Korkmaz, M., McCarthey, J. D., *Surface mapping class groups are ultrahopfian*, Proc. Camb. Phil. Soc., to appear.

[L] Lickorish, W. B. R., *A finite set of generators for the homeotopy group of a 2-manifold*, Proc. Camb. Phil. Soc. 60 (1964), 769-778.

[LS] Lyndon, R. C., Schupp, P. E., *Combinatorial group theory*, A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin Heidelberg, 1977.
[W] Wise, D., *An endomorphism of a finitely generated residually finite group*, MAGNUS preprint, #97-09-23A, available at http://zebra.science.cuny.eduweb/html/1997.html.

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey. E-mail: korkmaz@math.metu.edu.tr.