HFLTS-TOPSIS With Pseudo-distance in Determining The Best Lecturers

Dahlan Abdullah1*, H Hartono2, Kundharu Saddhono3, Nuning Kurniasih4, Akbar Iskandar5, Dian Rianitas6, Purwanto7, Rianti Setyawisih8, Erwinsyah Satria9, Tato Nuryanto10, Lilik Herawati11, Sujinah12 and I Ketut Sudarsana13
1Department of Informatics, Universitas Malikussaleh, Aceh Utara, Indonesia
2Department of Computer Science, STMIK IBBI, Medan, Indonesia
3Graduate Program, Universitas Sebelas Maret, Surakarta, Indonesia
4Faculty of Communication Sciences, Library and Information Science Program, Universitas Padjadjaran, Bandung, Indonesia
5Department of Informatics, STMIK AKBA, Makassar, Indonesia
6Department of Public Administrations, Universitas Lancang Kuning, Indonesia
7Faculty of Literature, Universitas Islam Sumatera Utara Medan Indonesia
8Department of Management, Faculty of Economic, Universitas Islam 45 Bekasi, Indonesia
9Faculty of Teacher Training and Education, Universitas Bung Hatta, Padang, Indonesia
10FITK IAIN Syekh Nurjati Cirebon, Indonesia
11Department of Indonesian Language Teaching, Institut Agama Islam Negeri Syekh Nurjati Cirebon, Cirebon, Indonesia
12Faculty of Education, University Muhammadiyah of Surabaya, Surabaya, Indonesia
13Department of Religious Education, Institut Hindu Dharma Negeri Denpasar, Indonesia

* dahlan@unimal.ac.id

Abstract. Decision making is sometimes faced with a situation where assessment is given in the form of linguistic variables, which have a certain range of values so that decision making cannot be given in the form of numerical values. One approach commonly used is Hesitant Fuzzy Linguistic Term Sets (HFLTS) which is a multi-criteria and multi-alternative decision making method. In TOPSIS which has the concept of distance measurement, basically the chosen one is the best alternative is an alternative that has the closest distance to a positive solution and the farthest distance with a negative solution. The incorporation of HFLTS-TOPSIS has the advantage that decision making can be done in the form of variable linguistics and also a situation where there are benefit criteria and cost criteria. This study will use the HFLTS-TOPSIS approach that has been modified in the distance calculation section so that distance calculation is based on the difference of preference degree between the two HFLTS. The results of research conducted by a number of researchers show that using pseudo-distance will provide advantages compared to the standard HLFTS-TOPSIS. Pseudo-distance HFLTS-TOPSIS will be applied in the selection of the best lecturers. The criteria used in this study are: Student Satisfaction, Research, Number of late, and number of complaints from students.
1. Introduction

Research on decision support systems has attracted widespread attention from a number of researchers. [1] have used a knowledge-based system to support decision making on PPVC implementation. The application of decision support systems is also not uncommon in the industrial world, where one of them is in the field of production process planning. This has an impact on improving efficiency in the industrial world [2]. Application of decision-making is also not uncommon in other fields, one of which is medicine. The rapidly growing field of medicine is expected to interact with other fields, one of which is the field of computer science with rapid development in the field of decision support systems. The application of decision support systems in the field of medicine is expected to improve the accuracy of diagnosis [3]. Problems that require a decision support system are often found in everyday life, not merely a complete problem. Social problems also require decision support systems such as problems for the application of justice in the field of law. The existing system can help impose penalties to be more precise so as to avoid mistakes from judges in giving inappropriate verdicts [4]. To guarantee the accuracy of decisions made through a decision support system, it can be done by conducting a measurement process through an accurate benchmarking method to obtain a comprehensive picture of the success of the application of a decision support system that has been designed previously [5]. If the benchmarking results still show weaknesses, the existing system can be improved [6]. The benchmarking process can also be done to determine the level of efficiency of the application of decision support systems. If the decision support system to be implemented turns out to be inefficient, it must be considered about how much input is used and how much output is produced [7]. Inefficiency basically shows that the input needed is much greater than the output produced. If the application of a decision support system is not efficient it will bring unfavorable results. One method commonly used in decision making is the Fuzzy Linguistic Term Sets (HFLTS) Hesitant method. This method can be used in decision making that contains elements of uncertainty and hesitant [8]. Another advantage of Fuzzy Linguistic Term Sets (HFLTS) is that decision making allows assessment to be given in the form of linguistic variables and does not require that ratings be given in the form of numerical values [9]. The integration of the Fuzzy method with the TOPSIS method has been carried out by a number of researchers. One of them is research from Jha et al. [10]. In TOPSIS which has the concept of distance measurement, basically the chosen one is the best alternative is an alternative that has the closest distance to a positive solution and the farthest distance with a negative solution [11]. Ren et al. has proposed a new approach from HFLTS-TOPSIS through a new definition of how to find a distance based on the preference degree between the two HFLTS [12]. HFLTS-TOPSIS With Pseudo-distance in this study will be used to determine the best lecturers. The criteria used in this study are: Student Satisfaction, Research, Number of late, and number of complaints from students.

2. Related Works

Liu and Rodriguez have used HFLTS in decision making involving multi criteria and multi alternatives. The research they did used the concept of fuzzy envelope [13]. A more detailed membership function determination is one of the keys to success in implementing HFLTS, one of which is by processing the existing partition function, which can be done using fuzzy grid partition so that the results obtained will be more satisfying and retrieval. decisions will be more appropriate to avoid mistakes in the decision-making process [14]. The application of HFTLS-TOPSIS is intended to benefit from the assessment using variable linguistics in circumstances that contain doubts which are the advantages of fuzzy hesitant and on the other hand can make decisions by using the benefit criteria and cost criteria which are the advantages of TOPSIS [15]. Pei et al. also using a pseudo-distance distance calculation to determine relative closeness in the HFLTS-TOPSIS method and proven to be used in hesitant linguistic decision making [16]. The application of this pseudo-distance concept provides many conveniences including distance measurement to be more accurate because it is based on the preference degree obtained by each alternative so that it will base on the results of the assessment given by each decision maker using linguistic variables.
3. Research Methodology

The research methodology can be seen in figure 1.

![Figure 1. Research Methodology](image)

In Figure 1 it can be seen that the decision-making process with HFLTS TOPSIS begins with defining the existing alternatives and also determining the criteria that will be used as a basis for the assessment of each alternative. The process of determining alternatives and these criteria needs to be done well. Existing criteria also need to be grouped into benefit criteria and also cost criteria so that they can be well determined by the results of the assessment of each alternative. After that, the decision maker involved in the research will be asked to provide an assessment. Assessment is given in the form of linguistic values which can involve several decision makers. Assessment results will be presented in the form of a decision matrix. The next step is to form the positive-ideal separation matrix and negative-ideal separation matrix to then determine the distance to PIS and NIS for further ranking of each alternative based on relative closeness.

4. Result and Discussion

4.1. Hesitant Fuzzy

Suppose that X is a reference set, a Fuzzy Hesitant Set on X is defined as a function of h that returns a subset of membership values [0,1]. To facilitate our understanding, an HFS can be represented using equation 3.

\[M = \{ < x, h_M(x) > | x \in X \} \] (1)

Where \(h_M(x) \) is a set of several membership values that have a value range of 0 to 1, which indicates the possible membership value of member \(x \in X \) for set \(M \). \(h = h_M(x) \) as Hesitant Fuzzy Element (HFE) and \(H \) is a set of all HFE members. For comparison of HFE, linguistic evaluation scale is used, which transforms linguistic variables into linguistic scales. To do that is used discrete set of linguistic scale as:

\[\delta = \{ s_\alpha | \alpha = -\tau, ..., -1, 0, 1, ..., \tau \} \] (2)

For example, a discrete set of linguistic scales containing 7 (seven) members (\(\tau = 3 \)) is as follows:

\[\delta = \{ s_0 = nothing, s_1 = very \ low, s_2 = low, s_3 = medium, s_4 = high, s_5 = very \ high, s_6 = perfect \} \]

The concept of fuzzy hesitant that uses linguistic variables is a concept that is generally more acceptable to humans, because basically humans give judgment rarely done using numerical values
and are more often done using linguistic values. Linguistic values expressed in several scales provide clear guidelines for the decision maker to be able to state well the results of their observations of the values obtained for each alternative for each of the criteria that have been determined previously.

4.2. Hesitant Fuzzy Linguistic Term Sets (HFLTS)

HFLTS is a method that is currently developing rapidly and is used by many parties in decision making because of its ability to overcome hesitancy and was first introduced by Rodriguez et al.[17]. In the HFLTS there are several steps taken, as follows[18].

1. Determine the upper bound H_{s+} for each alternative.

 $$H_{s+}(x_i) = \{H^1_{s+}(x_i), \ldots, H^n_{s+}(x_i)\}, i \in \{1, \ldots, n\}$$

2. Determine the lower bound H_{s-} for each alternative.

 $$H_{s-}(x_i) = \{H^1_{s-}(x_i), \ldots, H^n_{s-}(x_i)\}, i \in \{1, \ldots, n\}$$

3. Obtain minimum linguistic for upper bound

 $$H_{s+\text{min}}(x_i) = \min \{H^j_{s+}(x_i) | j \in \{1, \ldots, m\}\}, i \in \{1, \ldots, n\}$$

4. Obtain maximum linguistic for lower bound

 $$H_{s-\text{max}}(x_i) = \max \{H^j_{s-}(x_i) | j \in \{1, \ldots, m\}\}, i \in \{1, \ldots, n\}$$

5. Determine the envelope of the HFLTS

 $$\text{env}(H_s) = [H_{s-\text{max}}, H_{s+\text{min}}]$$

4.3. TOPSIS

TOPSIS is a method for multi-criteria decision making that is used to determine solutions in the form of selecting the best alternative from a set of alternatives. Standard TOPSIS is developed based on distance measurements[19]. The steps in using the TOPSIS method are as follows.

1. Build a normalized matrix

 $$R = (r_{ij})_{mn}$$

2. Determine the Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS)

 $$R^+ = \{r_{1+}, r_{2+}, \ldots, r_{n+}\} = (\max_{1 \leq i \leq m} \{r_{ij}\} | r_{ij} \in \Omega_b, \min_{1 \leq i \leq m} \{r_{ij}\} | r_{ij} \in \Omega_c),$$

3. Calculate the distance of each alternatif from the PIS and NIS as follows.

 $$d^+_i = \sqrt{\frac{w_j \sum_{j=1}^n (r_{ij} - r^+)^2}{}, i = 1, 2, \ldots, m}$$

 $$d^-_i = \sqrt{\frac{w_j \sum_{j=1}^n (r_{ij} - r^-)^2}{}, i = 1, 2, \ldots, m}$$

4. Calculate the relative closeness as follows.

 $$\eta_i = \frac{d^+_i}{d^+_i + d^-_i}, i = 1, 2, \ldots, m$$

5. Rank alternative according to the relative closeness.
4.4. HFLTS-TOPSIS with Pseudo-Distance
The HFLTS-TOPSIS with Pseudo-Distance steps as follows.

1. Determining the alternative and criteria
2. Combining the opinion of decision maker with the following equation
 \[S_{pij} = \min_k \left\{ \min_l \left(\max_i H_{lij}^k \right), \max_l \left(\min_i H_{lij}^k \right) \right\} \] \[S_{qij} = \max_k \left\{ \min_l \left(\max_i H_{lij}^k \right), \max_l \left(\min_i H_{lij}^k \right) \right\} \]

3. Determining PIS and NIS
 \[\tilde{A}^+ = \left(\left(\max_l \left(\min_i H_{lij}^k \right) \right) \right)_{ij} \cup \Omega_h, \left(\left(\min_l \left(\max_i H_{lij}^k \right) \right) \right)_{ij} \cup \Omega_c \] \[\tilde{A}^- = \left(\left(\min_l \left(\max_i H_{lij}^k \right) \right) \right)_{ij} \cup \Omega_h, \left(\left(\max_l \left(\min_i H_{lij}^k \right) \right) \right)_{ij} \cup \Omega_c \]

Using Pseudo-distance to calculate the distance to PIS and NIS.
 \[D^+ = \left(d\left(e_{1i}, C(c_i)\right) + \ldots + d\left(e_{ri}, C(c_i)\right) \right) \] \[D^- = \left(d\left(e_{1i}, H(c_i)\right) + \ldots + d\left(e_{ri}, H(c_i)\right) \right) \]

Where \(d\left(e_{ijk}, C(c_i)\right) \) is the pseudo-distance between \(e_{ijk} = [s_{pijk}, s_{qijk}] \)

5. Calculate The Relative Closeness.
 \[RC(A_i) = \frac{D^+_i}{D^+_\max} + \frac{D^-_i}{D^-_\max} \quad i = 1, 2, \ldots, m \]

4.5. HFLTS-TOPSIS with Pseudo-Distance for Determining The Best Lecturer

For Example A = \{a_1, a_2, a_3\} be a set of alternatives and C={c_1, c_2, c_3, c_4} be set of criteria: Student Satisfaction, Research, Number of late, and number of complaints from students. Three decision makers M = \{d_1, d_2, d_3\} with weights W = \{0.3, 0.4, 0.3\} use linguistic terms \(\{s_0 = nothing, s_1 = very\ low, s_2 = low, s_3 = medium, s_4 = high, s_5 = very\ high, s_6 = perfect\} \). The assessment result will be showed in Table 1.

Table 1. The Assessment Result by Decision Makers
d_1(0.3)
a_1
a_2
a_3
d_2(0.4)
a_2

5
Table 1 shows the assessments given by each assessor in the form of linguistic variables that have a range of values as stated in the HFLTS. Assessment is given for each criterion for each alternative.

Build a decision matrix that can be shown as follows

\[D_1 = \begin{bmatrix} [s_5, s_6] & [s_5, s_6] & [s_5, s_6] & [s_4, s_6] \\ [s_4, s_6] & [s_4, s_6] & [s_4, s_6] & [s_1, s_3] \\ [s_3, s_6] & [s_5, s_6] & [s_5, s_6] & [s_3, s_5] \end{bmatrix} \]

\[D_2 = \begin{bmatrix} [s_4, s_5] & [s_3, s_5] & [s_4, s_5] & [s_2, s_3] \\ [s_3, s_5] & [s_3, s_5] & [s_4, s_5] & [s_3, s_4] \end{bmatrix} \]

\[D_3 = \begin{bmatrix} [s_3, s_5] & [s_3, s_6] & [s_3, s_4] & [s_2, s_3] \end{bmatrix} \]

The decision matrix formed is a summary of the assessment results that have been given by each assessor stated in Table 1. The decision matrix shows the range of linguistic rating scales in the form of the lowest value and the largest value given. The existence of this range of values basically shows that the assessor is sometimes less sure to state an appraisal appropriately using one of the linguistic scales, and this is facilitated by the application of HFLTS which can provide a range of linguistic scoring scales.

Determining the positive ideal solution and negative ideal solution that can be seen in Table 2.

Table 2. Positive and Negative Ideal Solution

Aggregating the result of \(d_1, d_2, \) and \(d_3 \) that can be shown as follows.

\[D = 0.3d_1 + 0.4d_2 + 0.3 = \begin{bmatrix} [s_5, s_6] & [s_5, s_6] & [s_5, s_6] & [s_4, s_6] \\ [s_4, s_6] & [s_4, s_6] & [s_4, s_6] & [s_2, s_3] \\ [s_3, s_6] & [s_3, s_6] & [s_3, s_6] & [s_5, s_6] \end{bmatrix} \]
The aggregating process is carried out based on the determination of the pre-existing weights, where the decision maker 1 has a weight of 0.3, the decision maker 2 has a weight of 0.4, and the decision maker 3 has a weight of 0.3. Then the existing weight will be multiplied by the value that has been given by each decision maker in giving an assessment of each alternative for each existing criterion.

Calculating pseudo-distance for positive-ideal separation matrix D^+ dan negative-ideal separation matrix D^-

$$D^+= \begin{pmatrix} d([s_5, s_6], [s_5, s_6]) + d([s_4, s_5], [s_5, s_6]) + d([s_5, s_6], [s_5, s_6]) + +d([s_4, s_5], [s_5, s_6]) \\ d([s_5, s_6], [s_5, s_6]) + d([s_5, s_6], [s_5, s_6]) + +d([s_2, s_3], [s_5, s_6]) \\ d([s_5, s_6], [s_5, s_6]) + d([s_5, s_6], [s_5, s_6]) + +d([s_5, s_6], [s_5, s_6]) \end{pmatrix} \begin{pmatrix} 0 + 0.5 + 0 + 0.17 \\ 0.5 + 0.5 + 0.5 + 0.5 \\ 0.5 + 0.5 + 0.5 + 0 \end{pmatrix} = \begin{pmatrix} 0.67 \\ 2 \\ 1.5 \end{pmatrix}$$

It can be seen that for a positive ideal solution, the best results are given by alternative a_4 because having the closest distance with positive ideal solution, then followed by a_3, and then a_2. However, this does not mean we can easily state that alternative a_4 is the best, because there are other aspects that need to be considered, namely the distance with the negative ideal solution.

$$D^- = \begin{pmatrix} d([s_5, s_6], [s_3, s_5]) + d([s_4, s_5], [s_3, s_5]) + d([s_5, s_6], [s_3, s_5]) + +d([s_4, s_5], [s_2, s_3]) \\ d([s_5, s_6], [s_3, s_5]) + d([s_4, s_5], [s_3, s_5]) + d([s_4, s_5], [s_3, s_5]) + +d([s_2, s_3], [s_2, s_3]) \\ d([s_5, s_6], [s_3, s_5]) + d([s_4, s_5], [s_3, s_5]) + d([s_4, s_5], [s_3, s_5]) + +d([s_5, s_6], [s_2, s_3]) \end{pmatrix} \begin{pmatrix} 0.5 + 0.17 + 0.5 + 0.5 \\ 0.17 + 0.25 + 0.17 + 0 \\ 0 + 0.17 + 0 + 0.5 \end{pmatrix} = \begin{pmatrix} 1.67 \\ 0.59 \\ 0.67 \end{pmatrix}$$

Different things happen in the negative ideal solution where it is expected that the alternatives can have a longer distance with a negative ideal solution. The return result shows that a_1 is the best alternative, then followed by a_3, and a_2.

After obtaining the results for the distance on the PIS and the NIS, the next step is to calculate relative closeness. This stage is the last stage, where the higher the relative closeness value then this means that the alternatives are getting better.

Calculate relative closeness of each alternative as follows.

$$RC(a_1) = \frac{0.67}{0.59 + 0.67} = 2$$

$$RC(a_2) = \frac{0.67}{2} + \frac{0.59}{1.67} = 0.688$$

$$RC(a_3) = \frac{0.67}{1.5} + \frac{0.67}{1.67} = 0.847$$

Based on the test results it can be seen that the alternative with the highest Relative Closeness will be chosen. Based on the test results it can be seen that a_1 is the chosen alternative, then the second best alternative is a_2, and the alternative with the lowest Relative Closeness is a_3. The test results directly indicate that the preference degree based distance calculation provides very satisfying results, thus indicating that the designed model can be applied in determining the best lecturer. The application of this pseudo-distance concept provides many conveniences including distance measurement to be more accurate because it is based on the preference degree obtained by each alternative so that it will base on the results of the assessment given by each decision maker using linguistic variables.
5. Conclusion

The conclusions that can be obtained from the results of this study are: (1) HFLTS-TOPSIS can be used in determining the best lecturers, (2) HFLTS-TOPSIS with Pseudo-distance can determine both the distance that is based on the preference degree, and (3) The application of HFLTS-TOPSIS with pseudo-distance can provide excellent results in determining the best lecturers.

References

[1] B.-G. Hwang, M. Shan, and K.-Y. Looi, “Knowledge-based decision support system for prefabricated prefinished volumetric construction,” Automation in Construction, vol. 94, pp. 168–178, Oct. 2018.

[2] G. Dutta, N. Gupta, J. Mandal, and M. K. Tiwari, “New decision support system for strategic planning in process industries: Computational results,” Computers & Industrial Engineering, vol. 124, pp. 36–47, Oct. 2018.

[3] M. F. Syahputra et al., “Identification Male Fertility Through Abnormalities Sperm Based Morphology (Teratospermia) using Invariant Moment Method,” J. Phys.: Conf. Ser., vol. 978, no. 1, p. 012107, 2018.

[4] A. Alesyanti, R. Ramlan, H. Hartono, and R. Rahim, “Ethical decision support system based on hermeneutic view focus on social justice,” I, vol. 7, no. 2.9, pp. 74–77, 2018.

[5] D. Abdullah, S. Suwilo, Tulus, H. Mawengkang, and S. Efendi, “Data envelopment analysis with upper bound on output to measure efficiency performance of departments in Malaiaksaleh University,” J. Phys.: Conf. Ser., vol. 890, no. 1, p. 012102, 2017.

[6] D. Abdullah et al., “A Slack-Based Measures within Group Common Benchmarking using DEA for Improving the Efficiency Performance of Departments in Universitas Malikussaleh,” MATEC Web Conf., vol. 197, p. 16005, 2018.

[7] D. Abdullah, Tulus, S. Suwilo, S. Efendi, Hartono, and C. I. Erliana, “A Slack-Based Measures for Improving the Efficiency Performance of Departments in Universitas Malikussaleh,” International Journal of Engineering & Technology, vol. 7, no. 2, pp. 491–494, Apr. 2018.

[8] H. Wang, Z. Xu, and X.-J. Zeng, “Hesitant fuzzy linguistic term sets for linguistic decision making: Current developments, issues and challenges,” Information Fusion, vol. 43, pp. 1–12, Sep. 2018.

[9] B. Zhang, H. Liang, and G. Zhang, “Reaching a consensus with minimum adjustment in MAGDM with hesitant fuzzy linguistic term sets,” Information Fusion, vol. 42, pp. 12–23, Jul. 2018.

[10] K. Jha, R. Kumar, K. Verma, B. Chaudhary, Y. K. Tyagi, and S. Singh, “Application of modified TOPSIS technique in deciding optimal combination for bio-degradable composite,” Vacuum, vol. 157, pp. 259–267, Nov. 2018.

[11] R. Vidal and N. Sánchez-Pantoja, “Method based on life cycle assessment and TOPSIS to integrate environmental award criteria into green public procurement,” Sustainable Cities and Society, Oct. 2018.

[12] F. Ren, M. Kong, and Z. Pei, “A New Hesitant Fuzzy Linguistic TOPSIS Method for Group Multi-Criteria Linguistic Decision Making,” Symmetry, vol. 9, pp. 1–19, 2017.

[13] H. Liu and R. M. Rodriguez, “A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making,” Information Sciences, vol. 258, pp. 220–238, Feb. 2014.

[14] T. Simanihuruk et al., “Hesitant Fuzzy Linguistic Term Sets with Fuzzy Grid Partition in Determining the Best Lecturer,” I, vol. 7, no. 2.3, pp. 59–62, Mar. 2018.

[15] O. Senvar, I. Otay, and E. Bolturk, “Hospital Site Selection via Hesitant Fuzzy TOPSIS,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 1140–1145, Jan. 2016.

[16] Z. Pei, J. Liu, F. Hao, and B. Zhou, “FLM-TOPSIS: The fuzzy linguistic multiset TOPSIS method and its application in linguistic decision making,” Information Fusion, vol. 45, pp. 266–281, Jan. 2019.

[17] R. M. Rodriguez, L. Martinez, and F. Herrera, “Hesitant Fuzzy Linguistic Term Sets for Decision Making,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 109–119, Feb. 2012.
[18] I. Beg and T. Rashid, “TOPSIS for Hesitant Fuzzy Linguistic Term Sets,” *International Journal of Intelligent Systems*, vol. 28, no. 12, pp. 1162–1171, Dec. 2013.

[19] G. Sun, X. Guan, X. Yi, and Z. Zhou, “An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications,” *Applied Soft Computing*, vol. 68, pp. 249–267, Jul. 2018.