RESEARCH PAPER

Structure and phase stability of nanocrystalline $\text{Ce}_{1-x}\text{Ln}_x\text{O}_{2-x/2-\delta}$ ($\text{Ln} = \text{Yb, Lu}$) in oxidizing and reducing atmosphere

Małgorzata A. Małecka · Ulrich Burkhardt · Dariusz Kaczorowski · Marcus P. Schmidt · Daniel Goran · Leszek Kępiński

Received: 7 August 2008 / Accepted: 6 December 2008 / Published online: 25 December 2008 © Springer Science+Business Media B.V. 2008

Abstract The structure and phase evolution of nanocrystalline $\text{Ce}_{1-x}\text{Ln}_x\text{O}_{2-x/2-\delta}$ ($\text{Ln} = \text{Yb, Lu}, x = 0 - 1$) oxides upon heating in H_2 was studied for the first time. Up to 950 °C the samples were single-phase, with structure changing smoothly with x from fluorite type (F) to bixbyite type (C). For the Lu-doped samples heated at 1100 °C in the air and H_2, phase separation into coexisting F- and C-type structures was observed for $x > 0.40$ and $x < 0.25$, respectively. It was found also that addition of Lu$^{3+}$ and Yb$^{3+}$ strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C in both atmospheres. Valency of Ce and Yb in $\text{Ce}_{0.1}\text{Lu}_{0.9}\text{O}_{1.55-\delta}$ and $\text{Ce}_{0.95}\text{Yb}_{0.05}\text{O}_{1.975-\delta}$ samples heated at 1100 °C was studied by XANES and magnetic measurements. In the former Ce was dominated by Ce$^{4+}$, with small contribution of Ce$^{3+}$ after heating in H_2. In the latter, Yb existed exclusively as Yb$^{3+}$ in both O$_2$ and H_2.

Keywords Nanocrystalline ceria based oxide · CeO_2–Lu_2O_3 · CeO_2–Yb_2O_3 · Crystallite growth · Hydrogen · TEM · XANES · EBSD · Magnetic susceptibility

Introduction

The structure stability of ceria-based mixed oxides ($\text{Ce}_{1-x}\text{Ln}_x\text{O}_{2-x/2-\delta}$, $x = \text{Ln}/(\text{Ce} + \text{Ln})$) containing lanthanide ions is an important issue because possible phase separation at high temperatures often limits potential applications of such systems. Existing data are, however, scarce and obtained mostly for samples prepared by solid-state reaction between polycrystalline oxides at high temperature (~ 1400 °C) in an oxidizing atmosphere. Phase separation in ceria doped with heavy lanthanides-ions (Er$^{3+}$, Yb$^{3+}$ and Lu$^{3+}$) but only for $x = 0.5$ was reported by Chavan et al. 2005. More complete data exist for similar CeO_2–Y_2O_3 system (Wallenberg et al. 1989; Longo and Podda 1981), where phase separation into two phases—Ce-rich oxide and Y-rich oxide—was observed over a wide composition range. The range of two phase region was strongly dependent on the heating temperature (Longo and Podda 1981).

For CeO_2–Lu_2O_3 (Yb_2O_3) mixed oxide system, two structure types (F-type and C-type) are expected. CeO_2 has a fluorite structure (F-type) described in $\text{Fm} \overline{3}m$ (225) space group and may exist over a wide range of oxygen deficiency as $\text{CeO}_{2-\delta}$ ($0 < \delta < 0.5$) or more...
precisely as Ce$_{1-x}$Ce$_x$O$_{2-y/2}$ (Adachi and Imanaka 1998). Ln$_2$O$_3$ has a bixbyite structure (C-type) described in Ia-3 (206) space group. Cation arrays in both structures are very similar and a unit cell of C-type structure can be build from eight F-type unit cells with simultaneous removing 25% oxygen ions (Wallenberg et al. 1989; Ou et al. 2006). In ceria-based mixed oxides, apart from above-mentioned F, and C- structures intermediate structures may be formed due to oxygen vacancy ordering. The vacancies can be arranged to form a superstructure (Ou et al. 2006) or a modulated (commensurately) F-type Ce$_{1-x}$Ln$_x$O$_{2-y/2-\delta}$ structure (Wallenberg et al. 1989).

Catalytic activity of ceria-based systems is due to their ability to partially change oxidation state from Ce$^{4+}$ to Ce$^{3+}$ during reaction (CeIVO$_2$ to CeIIIO$_{2-y/2}$) (Aneggi et al. 2006). This process can be modified by partial substitution of Ce$^{4+}$ with Ln$^{3+}$, which facilitates a bulk reduction of ceria (Rossignol et al. 2003; Sasikala et al. 2001). The improved reducibility is due to creation of extrinsic oxygen vacancies in the lattice, which enhances the oxygen anion mobility (Sasikala et al. 2001).

Important characteristic of nano-sized ceria for practical applications is particle size and structure stability at high temperatures. Additives such as lanthanide Ln$^{3+}$ ions are known to hinder strongly crystallite growth of ceria during heating in oxidizing atmosphere. The inhibiting effect is explained by additive segregation at the ceria grain boundaries (Luo et al. 2006; Malecka et al. 2007).

In this work, the structure and texture properties of nanocrystalline Ce$_{1-x}$Lu$_x$O$_{2-y/2-\delta}$ and Ce$_{1-x}$Yb$_x$O$_{2-y/2-\delta}$ were studied over the whole composition range ($0 < x < 1$) at various temperatures (up to 1100 °C) and atmospheres (O$_2$ and H$_2$). Samples subjected to various treatments were thoroughly characterized by powder X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Additionally, selected samples were characterized by Electron Backscatter Diffraction (EBSD), X-ray absorption spectroscopy (XAS), and magnetic susceptibility measurements.

Materials and methods

Nanoparticles of mixed Ce$_{1-x}$Lu$_x$O$_{2-y/2-\delta}$ and Ce$_{1-x}$Yb$_x$O$_{2-y/2-\delta}$ oxides were prepared by precipitation using the water-in-oil (W/O) microemulsion technique described previously (Malecka et al. 2007; Malecka and Keppinski 2007). The powder samples were dried and then preheated in oxygen flow at 500 °C for 3 h, before calcining in oxygen or hydrogen at 800 or 950 °C for 3 h, or in static air or hydrogen at 1100 °C for 45 h and 3 h, respectively.

True Ln-content in Ce$_{1-x}$Ln$_x$O$_{2-y/2-\delta}$ samples (Ln = Lu, Yb), measured with Energy Depressive Spectroscopy (EDAX PV 9800 spectrometer), appeared to agree within ±0.02 with nominal content corresponding to $x = 0.05–0.90$.

Morphology and microstructure of the oxides were investigated by TEM and EBSD. Analysis of TEM images, acquired with Philips CM-20 SuperTwin operating at 200 kV and providing 0.25 nm resolution, was made with ImageJ program (Rasband 1997). The EBSD patterns were acquired using the Nordlys S detector mounted on a Zeiss Supra 55 VP FEG-SEM. Analysis of EBSD patterns, including phase identification and generation of orientation maps were performed with Channel5 System (Oxford Instruments HKL A/S). The phase composition and lattice parameters were determined by XRD (STOE, monochromatized CuK$_{\alpha 1}$ radiation) with WinPLOTR program (Roisnel and Rodriguez-Carvajal 2000) used for display and analysis. Mean crystallite size and average maximum strain were calculated from XRD patterns with the profile fitting routine of the WinPLOTR software (Roisnel and Rodriguez-Carvajal 2000). Instrumental resolution function was calculated from XRD data recorded for Si standard sample.

Valence of additive and host lanthanide ions was determined using XAS (X-ray absorption spectroscopy) and magnetic susceptibility measurements. XAS near the Ce L3 edge was performed at different temperatures between 4 K and 300 K at the EXAFS beamline A1 of the Hamburg Synchrotron laboratory (Hasylab at Desy). Absorption spectra near the Yb L3 edge were collected at EXAFS beamline E4 at Hasylab. Magnetic measurements were carried out in the temperature range 1.71–400 K and in external magnetic fields up to 5 T using a commercial SQUID magnetometer (Quantum Design MPMS-5 type).

Results and discussion

As-synthesized Ce$_{1-x}$Ln$_x$O$_{2-y/2-\delta}$ (Ln = Yb, Lu; $0 < x < 1$) contains small (~4 nm) crystalline
particles with narrow size distribution, similar to that observed in other ceria-based oxides (Malecka et al. 2007; Malecka et al. 2008b). Chemical formula with undetermined “δ” factor was used, instead of stoichiometric Ce$_{1-x}$Lu$_x$O$_{2-x/2}$, because a fraction of Ce ions at the surface of particles may exist as Ce$^{4+}$ even in non-reducing conditions (Kimmel et al. 2006). The Ce$^{3+}$/Ce$^{4+}$ ratio may be close to 1 for very small particles (<2 nm), but decreases to ~0.01 for larger ones (>15 nm) (Bae et al. 2004). The latter estimation may not be valid for the samples heated in hydrogen where bulk reduction of Ce (Rossignol et al. 2003; Kępiński et al. 1995) as well as Ln-ions (e.g., Yb (Kaczmarek et al. 2005)) can occur. The oxidation of Ce$^{4+}$ by hydrogen where bulk reduction of Ce (Rossignol et al. 2003; Kępiński et al. 1995) as well as Ln-ions (e.g., Yb (Kaczmarek et al. 2005)) can occur.

Thermal evolution of the microstructure of Ce$_{1-x}$Lu$_x$O$_{2-x/2}$ samples heated up to 1100 °C in oxidizing atmosphere was described in our previous paper (Malecka et al. 2008a).

XRD, TEM, and EBSD

XRD patterns of the samples heated at 800 °C and 950 °C in O$_2$ or H$_2$ for 3 h were similar and revealed a continuous transformation of the structure from fluorite (Fmmm) (F-type) to bixbyite (Ia-3) (C-type). Figure 1A shows as an example XRD patterns of Ce$_{1-x}$Lu$_x$O$_{2-x/2}$ heated in H$_2$ at 950 °C. F–C phase change, monitored as appearance of a weak (112) peak characteristic for C-type structure at 2θ ~ 20°, occurred in this samples at x = ~0.5, i.e., at lower Lu content than in oxygen (x = ~0.6) (Malecka et al. 2008a). This shift is due to lowered stability of highly doped fluorite lattice under reducing conditions (see below). For Ce$_{1-x}$Yb$_x$O$_{2-x/2}$, F–C transformation occurred at x = ~0.5 in both atmospheres. The XRD patterns of pure CeO$_2$, Lu$_2$O$_3$, and Yb$_2$O$_3$ fitted well the reference data: ICDD PDF Nr. 00-034-0394, 00-012-0728 and 04-001-2438, respectively. Addition of Lu and Yb decreased the cell parameter of parent cubic CeO$_2$ over the whole x range (for bixbyite type structure half of the cell parameter was taken), as expected from the effective ionic radii (Ce$^{4+}$ = 0.0870 nm, Lu$^{3+}$ = 0.0861 nm, Yb$^{3+}$ = 0.0868 nm,—for coordination VI (Shannon 1976)) (Fig. 1B, C) and the fact that oxygen vacancies were formed in the ceria lattice upon Ce$^{4+}$—Ln$^{3+}$ substitution (one vacancy for two ions substituted). The formation of oxygen vacancies is necessary to ensure the electrical neutrality of the oxide. Hong and Virkar (1995), introduced a concept of an oxide vacancy radius, and the estimated oxygen vacancy radius was 0.1164 nm for trivalent, rare-earth oxide doped ceria, significantly less than the radius of O$^{2-}$ ion (0.1400 nm Shannon 1976). For both dopants, deviations from Vegard’s rule were observed. In Ce$_{1-x}$Lu$_x$O$_{2-x/2}$, the change of cell parameter with Lu content is slow and linear for x < ~0.35, but then the slope becomes steeper. This observation agrees well with dependence of the cell parameter on composition reported by Kimmel et al. 2006 at similar temperature and time of heating (900 °C/3 h) for Y-doped ceria. The authors assigned the deviations from linearity to coalescence of oxygen vacancies, which grows with increasing dopant content (Bae et al. 2004). For x > ~0.5, where C-type structure occurs, the slope is higher again because bixbyite structure is less prone to doping with aliovalent ions. Lu$^{3+}$ → Ce$^{4+}$ substitution requires introduction of large O$^{2-}$ ion into interstitial position, causing the lattice expansion. For Ce$_{1-x}$Yb$_x$O$_{2-x/2}$, only one inflection point at x ~ 0.5 was observed in both atmospheres (Fig. 1C). The change in the slope of the plots is correlated with the F → C transformation of the structure.

Mean crystallite size and average maximum strain for the mixed oxides were calculated from XRD patterns with the profile fitting procedure (Roisnel and Rodriguez-Carvajal 2000). Results obtained for Ce$_{1-x}$Lu$_x$O$_{2-x/2}$ and Ce$_{1-x}$Yb$_x$O$_{2-x/2}$ heated at 950 °C in O$_2$ and H$_2$ are presented in Fig. 2A and B, respectively. Figure 2 also contains volume weighted mean crystallite sizes (Σ$n_i d_i^3$/Σ$n_i d_i^2$) calculated for the same samples from TEM images. The volume weighted mean was used instead of simple arithmetic mean to make it comparable with the mean crystallite sizes calculated from XRD data (Matyi et al. 1987). It appears that there is qualitative agreement between both sets of mean crystallite size data, indicating that there is no additional broadening XRD reflections due to contingent phase separation. For both mixed oxides strong dependence of crystallite size on Ln content (x) was found, which to some extent was affected by the heating atmosphere. In O$_2$ even small Ln addition (x ≤ 0.1) caused very strong inhibiting effect on crystallite growth, which saturated for x > 0.3. In samples heated in H$_2$, the mean crystallite sizes were bigger for small dopings but then became smaller for x > 0.3. The behavior
observed in Fig. 2 agrees well with literature data for similar CeO₂–Ln₂O₃ systems heated in an oxidizing atmosphere (Luo et al. 2006; Małecka et al. 2007). The possible explanation of the strong inhibiting effect of Ln addition on the crystallite growth could be segregation of the dopant ions at the surface of ceria crystallites reported for La (Belliere et al. 2006) and Pr (Luo et al. 2006) doped ceria. Data on crystallite growth in ceria-based nanocrystalline oxides heated in a reducing atmosphere are scarce. For Ce₁₋ₓZrₓO₂₋δ strong inhibiting effect of Zr on ceria sintering, similar to that in oxygen was reported (Zhang et al. 2006).

Observed relation between the mean crystallite size and Ln content correlated well with the data describing the average maximum strain (Fig. 2). For Ln content x < 0.3, the strain was bigger in the samples heated in O₂ than in H₂ but for higher x the opposite was true. Higher strain in low doped samples heated in O₂ may be related to the presence of thicker segregated layer enriched in Ln³⁺ ions. Further steep increase of strain with Ln content in the samples heated in H₂ is caused by creation of additional oxygen vacancies due to Ce⁴⁺ – Ce³⁺ reduction. At x ≈ 0.5 the transformation to C-type structure stops this process. It is seen, however, that for very high Ln content (Ln₂O₃ doped with Ce) the strain increases very steeply with doping. It indicates that C-type bixbyite lattice is much less prone to doping with aliovalent ions than fluorite lattice.

Extensive crystal growth was observed for all samples heated at 1100 °C in reducing and oxidizing atmosphere, irrespective of additive content. Due to limitations of experimental methods applied, we could not precisely quantify differences in crystallite size. Estimations by XRD performed for selected samples (where no phase separation occurred) confirmed the tendency seen in Fig. 2 that Lu or Yb addition decreases the mean crystallite size. Moreover, for high Ln dopant content mean crystallite size after treatment in H₂ was smaller than after treatment in air. This observation has been confirmed by EBSD (see below).

Phase separation was observed in Ce₁₋ₓLuₓO₂₋x/2₋δ heated at 1100 °C for 3 h in H₂ (Fig. 3A). As in oxygen (Malecka et al. 2008a), two main phases, F-type and C-type, and additionally a third C’-type phase with bixbyite structure were observed (Fig. 3B). Reducing atmosphere promotes however the phase separation. It is seen clearly in the inset to Fig. 3A, which compares the XRD diagrams of the Ce₀.₆Lu₀.₄O₁.₈₋δ sample heated in H₂ and in O₂. The multi-phase region observed in a range 0.17 < x < 0.7 in the samples treated in H₂ atmosphere is broader than that in oxidizing one (0.35 < x < 0.7). The reason could be reduction of Ce⁴⁺ to Ce³⁺ in the mixed oxide.
which generates additional oxygen vacancies and destabilizes fluorite structure. Contrary to what occurred in oxygen, the intensity of the XRD reflections of the intermediate C# phase increased with increasing heat treatment time at 1100 °C. Besides above-mentioned phases, perovskite-type CeLuO$_3$ (Ito et al. 2001) was also found in hydrogen for narrow composition range $0.4 < x < 0.5$. Analysis of the variation of the lattice parameter with Lu content indicates that at 1100 °C up to 17 mol% Lu dissolves in CeO$_2$ and the solubility of Ce in LuO$_{1.5}$ is 20 mol%. The solubility limit of Lu in CeO$_2$ is narrower than 35 mol% observed in air at the same temperature (Malecka et al. 2008a). To our knowledge, there is no information in literature about structure stability of Lu-doped ceria in hydrogen.
Weak \(\sim 0.76 \text{ nm} \) fringes were observed in HRTEM images (or more clearly in corresponding FFT patterns) and SAED patterns of Ce\(_{0.5}\)Lu\(_{0.5}\)O\(_{1.75}\) heated at 1100 °C for 3 h in hydrogen (Fig. 4). Similar effect was found for samples heated in the air (Malecka et al. 2008a). The fringes could be assigned to superstructure \(\frac{1}{4}(220) \) reflections occurring due to doubling of the fluorite cell as a result of oxygen vacancy ordering (Ou et al. 2006), or due to modulation (commensurate) of F-type structure with a periodicity of 2\(a_F \) reported for CeO\(_2\)-Y\(_2\)O\(_3\) system (Wallenberg et al. 1989). We think that the second explanation is more plausible because of the character of SAED patterns, where sharp, strong Bragg reflections due to F-type structure are observed together with sharp, low intensity satellite reflections. Particles exhibiting superstructure reflections belong to the C\# phase identified in XRD patterns (Fig. 4). We think that true structure model of the C\# phase may involve complex oxygen vacancy ordering, similar to that proposed by Ou et al. (2008).

Recently, it has been shown that exposure of CeO\(_2\) to intense electron beam in TEM causes partial reduction of Ce\(^{4+}\) to Ce\(^{3+}\) (Garvie and Buseck 1999) with formation and ordering of oxygen vacancies which results in superstructure reflections in SAED pattern (Akita et al. 2006). To exclude the possible effect of electron beam on observation of superstructure reflections in our study of Ce\(_{1-x}\)Yb\(_x\)O\(_{2-x/2-\delta}\) samples, a blank experiment was performed. Figure 5 shows SAED patterns of CeO\(_2\) crystallite taken after various exposure times to electron beam under normal working conditions. It appears that very weak additional satellite reflections became visible only after 30 min exposure while 60 min exposure time was necessary to produce well-developed superstructure reflections. Since the exposure time necessary for focussing and taking image is several minutes, we may exclude the possibility of decisive role of electron beam and/or vacuum conditions on superstructure formation in our samples. The much weaker beam effects in our case as compared with Akita et al. (2006) may be due to lower acceleration voltage used (200 kV instead of 300 kV) and smaller beam intensity (LaB\(_6\) gun instead of FEG).

No F–C phase separation was observed for Ce\(_{1-x}\)Yb\(_x\)O\(_{2-x/2-\delta}\) heated at 1100 °C in air and in hydrogen (Fig. 3C). This is an important difference relative to what occurred for Lu-doped ceria, where extensive phase separation occurred in both atmospheres at 1100 °C. However, as in case of Lu-doped ceria, the F-type structure modulation with a periodicity of 2\(a_F \) was observed in SAED and HRTEM.

![XRD patterns for Ce\(_{1-x}\)Lu\(_x\)O\(_{2-x/2-\delta}\) (A) and cell parameters for Ce\(_{1-x}\)Lu\(_x\)O\(_{2-x/2-\delta}\) (B) and Ce\(_{1-x}\)Yb\(_x\)O\(_{2-x/2-\delta}\) (C) heated at 1100 °C in (○) O\(_2\) and (■) H\(_2\). Data marked as (△) for Ce\(_{1-x}\)Lu\(_x\)O\(_{2-x/2-\delta}\) are taken from Malecka et al. 2008a. Diagrams illustrating phase change with composition are included.](image-url)
Presented results for Ce$_{1-x}$Yb$_x$O$_{2-x/2-\delta}$ heated in oxidizing atmosphere contradict those presented in Chavan and Tyagi (2005), Mandal et al. (2007), and Bevan and Summerville (1979) where phase separation into coexisting F-type and C-type phases over wide composition range 0.5 $\leq x \leq$ 0.9 was reported. We think that the apparent difference is due to method of the sample preparation and temperatures (>1400 °C) used in Mandal et al. (2007), and Bevan and Summerville (1979). No data are available in literature on high temperature phase stability of Ce$_{1-x}$Yb$_x$O$_{2-x/2-\delta}$ and Ce$_{1-x}$Lu$_x$O$_{2-x/2-\delta}$ at high temperatures are clearly shown by the EBSD results (see maps in Figs. 6 and 7). Figure 6 shows an EBSD orientation map obtained for Ce$_{0.5}$Yb$_{0.5}$O$_{1.75-\delta}$ heated at 1100 °C for 45 h in air. The sample contains crystallites exhibiting fluorite type structure with mean size of 100 nm with a random distribution of orientations. Because the spatial resolution was ≈ 25 nm all the grains from the map shown in Fig. 6 with an equivalent diameter smaller than 75 nm were not taken into account when the average grain size was calculated. This explains why the average grain size obtained from the EBSD data is significantly bigger than that estimated from XRD (32 nm).

EBSD analysis done on the Ce$_{0.5}$Yb$_{0.5}$O$_{1.75-\delta}$ sample heated at 1100 °C for 3 h in H$_2$ showed a similar microstructure but with finer crystallites compared with the sample treated in air for 45 h. Because the crystallite mean size was only slightly higher than the interaction volume (i.e., spatial resolution of EBSD) no reliable data could be acquired for calculating the mean grain size. XRD estimated this value as 13 nm.

Totally different picture emerges for the Ce$_{0.5}$Lu$_{0.5}$O$_{1.75-\delta}$ sample heated at 1100 °C for 3 h in H$_2$ (Fig. 7). In addition to relatively small crystallites with fluorite structure and average size of...
470 nm, there are very large, micrometer size crystallites of second phase identified as orthorhombic, perovskite type CeLuO$_3$. This corresponds well with XRD results presented above, but raises a question on the possible reason of such drastic differences between Lu, and Yb-doped samples.

In most Ce$_{1-x}$Ln$_x$O$_{2-x/2-\delta}$ systems (Ln = Nd (Nitani et al. 2004; Chavan et al. 2005), Sm (Nitani et al. 2004), Yb (Mandal et al. 2007), Tm (Mandal et al. 2007)) reported in literature high temperature (>1200 °C) annealing in oxidizing atmosphere caused phase separation for x values close to 0.5 (Longo and Podda 1981; Nitani et al. 2004), though no phase separation was observed for Eu- (Mandal et al. 2006) or Gd-doped ceria (Grover and Tyagi 2004) even at very high temperatures (1400 °C). For CeO$_2$–Ln$_2$O$_3$ systems, where Ln is a heavy lanthanide (Dy, Tm, Yb) the tendency to phase separation in oxidizing atmosphere increases with decreasing radii of Ln$^{3+}$ ion (Mandal et al. 2007; Bevan and Summerville 1979). The reason is decreasing lattice parameter of C-type Ln$_2$O$_3$ oxide leaving less free space for additional, interstitial O$^{2-}$ ions that must be incorporated due to Ln$^{3+}$ → Ce$^{4+}$ substitution. This also explains why we observed phase separation in Ce$_{1-x}$Lu$_x$O$_{2-x/2-\delta}$ already at 1100 °C.

Much less is known on the phase stability of lanthanide-doped ceria in reducing atmosphere. Wang et al. (2004) studied interaction of nanocrystalline, fluorite type Ce$_{1-x}$Tb$_x$O$_y$ ($x \leq 0.5$) with hydrogen during heating up to 900 °C using in situ XRD. For $x = 0.33$ and 0.5, the authors observed phase separation with formation of bixbyite type Tb$_2$O$_3$. The process has been accounted for with the change of oxidation state of lanthanides ions from Ce$^{4+}$/Tb$^{4+}$ to Ce$^{3+}$/Tb$^{3+}$.

Valency of lanthanide ions in Lu- and Yb-doped ceria

In Ce$_{1-x}$Ln$_x$O$_{2-x/2-\delta}$ samples heated at high temperatures, especially in hydrogen there is uncertainty concerning the valency of minority (dopant) lanthanide ions. Lu is not expected to appear in the valency other than 3+, but for Ce and Yb reduction from Ce$^{4+}$ to Ce$^{3+}$ and from Yb$^{3+}$ to Yb$^{2+}$ may occur.

![Fig. 6 Orientation map (A) and the corresponding pole figures (B) obtained from Ce$_{0.5}$Yb$_{0.5}$O$_{1.75-\delta}$ heated at 1100 °C for 45 in air](image1)

![Fig. 7 Orientation map from the Ce$_{0.5}$Lu$_{0.5}$O$_{1.75-\delta}$ sample heated at 1100 °C for 3 h in H$_2$ (A) and the pole figures corresponding to the phase with the fluorite structure (B)](image2)
To get some insight into this, we performed XAS (X-ray absorption) and magnetic measurements for selected samples: Ce\textsubscript{0.1}Lu\textsubscript{0.9}O\textsubscript{1.55–δ} and Ce\textsubscript{0.95}Y\textsubscript{0.05}O\textsubscript{1.975–δ} heated at 1100 °C in air or in hydrogen.

In Ce\textsubscript{0.1}Lu\textsubscript{0.9}O\textsubscript{1.55–δ} heated in air XANES spectra collected at various temperatures from 5 to 283 K were practically identical with that of CeO\textsubscript{2} standard (Fig. 8) indicating the absence of any significant amount of Ce3+ ions. As displayed in Fig. 9, the sample is diamagnetic at room and elevated temperatures with the molar magnetic susceptibility of about −3.8 × 10−4 emu/mol per Ce atom. A small upturn of the susceptibility observed at low temperatures arises likely due to the presence of very small amount of paramagnetic Ce3+ ions at the surface of nanocrystalline particles. This presumption is supported by the shape of the field variation of the magnetization taken at T = 1.71 K (see the inset to Fig. 9) being characteristic of weak diamagnets contaminated by minute amounts of paramagnetic impurities.

Heating of Ce\textsubscript{0.1}Lu\textsubscript{0.9}O\textsubscript{1.55–δ} in hydrogen at 1100 °C caused partial reduction of Ce4+ into Ce3+. XANES spectra collected at various temperatures (Fig. 10) clearly show a shift of the absorption edge toward lower energies indicating the presence of Ce3+. Figure 11 presents results of magnetic measurements for this sample, revealing a distinctly different behavior from that of the specimen treated in air. In contrast to the latter, the sample treated in hydrogen is paramagnetic at room temperature and shows a strong temperature dependence of the magnetic susceptibility. In the entire temperature range studied,

\[\chi(T) = \chi_{\text{TIP}} + C/T, \]

the \(\chi(T) \) curve can be well approximated by the formula \(\chi(T) = \chi_{\text{TIP}} + C/T \), where the first term represents temperature independent paramagnetism due to Ce4+ ions and the second one accounts for the presence of Ce3+ ions. Least squares fit of this expression to the experimental data yielded \(\chi_{\text{TIP}} = 1.78 \times 10^{-4} \text{ emu/molCe} \) and the parameter \(C = 0.0943 \text{ (K emu)/molCe} \). Assuming that the Curie term results only from stable trivalent Ce atoms, one may estimate the content of such atoms to be about 12% of all the Ce atoms present in the sample studied. In line with this finding, the Curie paramagnetism of Ce3+...
ions dominates the low-temperature behavior of the magnetization of the Ce\textsubscript{0.1}Lu\textsubscript{0.9}O\textsubscript{1.55-δ} sample heated in hydrogen, as manifested by curved character of the field variation \(\sigma(B)\) (cf. the inset to Fig. 11).

These results answer the interesting question about the valency of Ce as dopant into bixbyite structure of Lu\textsubscript{2}O\textsubscript{3}. There are two possible scenarios. In the first, Ce as 3+ ion just replaces Lu 3+ in the lattice, whereas in the second Ce 4+ substitutes for Lu 3+ and additionally one O 2- ion per two such events enters the lattice. In the former case, the strong lattice distortion is inevitable due to large differences in effective ion radii (Ce 3+: 0.101 nm and Lu 3+: 0.0861 nm). In the latter case, the difference in cation radii is smaller (Ce 4+ = 0.0870 nm and Lu 3+: 0.0861 nm), but large oxygen anion must occupy interstitial site. The most probable one is 16c site in \textit{Ia\textsubscript{3}} (206) space group of Lu\textsubscript{2}O\textsubscript{3} (Ou et al. 2008). It appears that the latter possibility is realized.

For the Ce\textsubscript{0.95}Yb\textsubscript{0.05}O\textsubscript{1.975-δ} sample, the valency of Yb was studied by measurements of Yb L\textsc{iii} absorption edge. Figure 12 shows XANES spectra of the sample heated in air and in hydrogen. Comparison with the spectrum of Yb\textsubscript{2}O\textsubscript{3} standard suggests that ytterbium exists as Yb 3+ with no evidence of Yb 2+. This result agrees with observed decrease of the lattice parameter of CeO\textsubscript{2} with Yb doping (Fig. 1C and 3C) since Ce 4+ ions (0.0870 nm) are replaced with smaller Yb 3+ (0.0868 nm); ionic radius of Yb2+: 0.102 nm is bigger than that of Ce4+ (Shannon 1976).

Fig. 11 Temperature dependence of the molar magnetic susceptibility of Ce\textsubscript{0.1}Lu\textsubscript{0.9}O\textsubscript{1.55-δ} heated in hydrogen. Solid line represents the modified Curie law fit. Inset: field variation of the magnetization measured at 1.71 K with increasing (full symbols) and decreasing (open symbols) magnetic field

Fig. 12 XANES spectra of Ce\textsubscript{0.95}Yb\textsubscript{0.05}O\textsubscript{1.975-δ} heated in air and in hydrogen at the ytterbium L\textsc{iii} edge at various temperatures. Spectra of Yb\textsubscript{2}O\textsubscript{3} standards are also shown

Conclusions

Nano-sized (4–5 nm) particles of Ce\textsubscript{1-x}Ln\textsubscript{x}O\textsubscript{2-x/2-δ} (Ln = Yb, Lu) in range 0 < x < 1 were synthesized using a W/O microemulsion method. All mixed oxides were single-phase materials up to temperature of 950 °C. Phase separation was observed for Ce – Lu mixed oxide heated in air and hydrogen at 1100 °C for the composition range 0.40 < x < 0.70 and 0.25 < x < 0.70, respectively. Two main F- and C-type saturated solid solutions with additional intermediate C8+-type phase coexisted in the samples. No phase separation was observed for Yb-doped ceria even after heating at 1100 °C in air or in hydrogen. Fluorite-type (commensurately) modulated structure with a periodicity of 2a\textsubscript{F} was observed at intermediate Lu-ions concentrations for all samples.

Strong dependence of mean crystallite size in Lu, and Yb-doped ceria on Ln content (x) and some dependence on atmosphere was found. Very strong inhibiting effect of dopant on crystallite growth occurred for small Ln content (x < 0.2) and saturated for x > 0.3. In H\textsubscript{2}, inhibiting effect of Ln addition is less pronounced for small, but slightly more efficient for high Ln contents (x > 0.3) than in oxidizing atmosphere.
Valency of Ce in CeO$_{1.1}$Lu$_{0.9}$O$_{1.55-\delta}$ samples heated at 1100 °C in oxidizing atmosphere was exclusively 4+, whereas in H$_2$ small contribution (~10%) of 3+ was also present. In Ce$_{0.95}$Yb$_{0.05}$O$_{1.975-\delta}$ Yb existed exclusively as 3+ in both O$_2$ and H$_2$.

Acknowledgments This work was financially supported by the Polish Ministry of Science and Higher Education (grant N N205 0326 33). The authors thank Mrs. Z. Mazurkiewicz for valuable help with preparation of the samples and Mrs. E. Bukowska for XRD work. We gratefully acknowledge Dr. Edmund Welter of Hasylab et Desy for the Yb L3 measurements on E4 beamline.

References

Adachi G, Imanaka N (1998) The binary rare earth oxides. Chem Rev 98:1479–1514. doi:10.1021/cr980005h

Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2006) Determination of Ce$_{1-x}$Pr$_x$O$_{2-x/2}$, Ce$_{1-x}$Nd$_x$O$_{2-x/2}$ and Ce$_{1-x}$Lu$_x$O$_{2-y/2}$, respectively. J Eur Ceram Soc 26:129–136. doi:10.1016/j.jeurceramsoc.2005.05.018

Bae JS, Choo WK, Lee CH (2004) The crystal structure of icosahedral Au-Si system. J Phys Chem Solids 65:331–337. doi:10.1016/j.jpcc.2013.04.001

Bevan DJM, Summerville E (1979) Mixed rare earth oxides. In Gschneider KA, Eyring L (eds) Handbook on the physics and chemistry on rare earths, vol 3. Elsevier North-Holland Inc., pp 401–524

Chavan SV, Tyagi AK (2005) Phase relations and lattice thermal expansion studies in the CeO$_{2.5}$Nd$_{0.5}$O$_{2.75}$ system. Mater Sci Eng A 430:282–291. doi:10.1016/j.msea.2005.12.037

Chavan SV, Mathews MD, Tyagi AK (2005) Phase relations and thermal expansion studies in the CeO$_2$-NdO$_{1.5}$ system. Mater Res Bull 40:1558–1568. doi:10.1016/j.materresbull.2005.04.014

Garvie LAJ, Buseck PR (1999) Determination of Ce$^{4+}$/Ce$^{3+}$ in electron-beam-damaged CeO$_2$ by electron energy-loss spectroscopy, J Phys Chem Solids 60:1943–1947. doi:10.1016/S0022-3697(99)00218-8

Grover V, Tyagi AK (2004) Protein cross-links, thermal expansion in CeO$_2$ and Gd$_2$O$_3$, and stabilization of cubic gadolina, Mater Res Bull 39:859–866. doi:10.1016/j.materresbull.2004.01.007

Hong SJ, Virkar AV (1995) Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J Am Ceram Soc 78:433–439. doi:10.1111/j.1551-2916.1995.tb08820.x

Ito K, Tezuka K, Hinasu T (2001) Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO$_3$ (A = La-Nd, B = Dy-Lu). J Solid State Chem 157:173–179. doi:10.1006/jssc.2000.9071

Kaczmarek SM, Tsuboi T, Ito M, Boulon G, Leniec K (2005) Optical study of Yb$^{3+}$/Yb$^{2+}$ conversion in CaF$_2$ crystals, J Phys Condens Matter 17:3771–3786. doi:10.1088/0953-8984/17/25/005

Kępinski L, Wolcyrz M, Okal J (1995) Effect of chlorine on microstructure and activity of PdCeO$_2$ catalysts. J Chem Soc, Faraday Trans 91:507–515. doi:10.1039/f9959100507

Kimmel G, Zabicky J, Goncharov E, Mogilyanski D, Venkert A, Bruckental Y, Yeshurun Y (2006) Formation and characterization of nanocrystalline binary oxides of yttrium and rare earths metals. J Alloy Comp 423:102–106. doi:10.1016/j.jallcom.2005.12.037

Korotcenkov G, Badea S, Agogbua D, Ježová J, Kucek M, Pálinkás M, Purkmayer D, Gašparik J, Zabicky J (2002) Oxygen vacancy ordering in heavily Ce$^{4+}$-doped ceria, J Phys Condens Matter 14:2309–2316. doi:10.1088/0953-8984/14/11/102

Luo MF, Yan ZL, Jin LY, He M (2006) Raman spectroscopic study on the structure in the surface and the bulk shell of Ce$_{0.1}$Pr$_{0.9}$O$_{2.8}$, Ce$_{0.1}$Nd$_{0.9}$O$_{2.8}$, and Ce$_{0.1}$Lu$_{0.9}$O$_{2.8}$ mixed oxides. J Phys Chem B 110:13068–13071. doi:10.1021/jp062747z

Malecka MA, Kępinski L (2007) Solid state reactions in highly dispersed praseodymium oxide-SiO$_2$ system. J Alloy Comp 430:282–291. doi:10.1016/j.jallcom.2006.05.011

Malecka MA, Kępinski L, Miśta W (2007) Structure evolution of nanocrystalline CeO$_2$ and Ce$_{1-x}$La$_x$O$_{2-x/2}$ in O$_2$ and H$_2$ atmosphere and their catalytic activity in soot combustion. Appl Catal B 74:290–298. doi:10.1016/j.apcatb.2007.02.021

Malecka MA, Kępinski L, Mączka M (2008a) Structure and phase composition of nanocrystalline Ce$_{1-x}$Lu$_x$O$_{2-x/2}$ system. J Solid State Chem 181:2306–2312. doi:10.1016/j.jssc.2008.05.033

Malecka MA, Kępinski L, Miśta W (2008b) Synthesis, structure and morphology of CeO$_2$ and Ce$_{1-x}$La$_x$O$_{2-x/2}$ mixed oxides (Ln = Pr, Tb, Lu) prepared by microemulsion method. J Alloy Comp 451:567–570. doi:10.1016/j.jallcom.2007.04.110

Mandal BP, Grover V, Tyagi AK (2006) Phase relations, lattice thermal expansion in Ce$_{1-x}$Lu$_{x}$O$_{2-x/2}$ and Ce$_{1-x}$Pr$_{x}$O$_{2-x/2}$ systems and stabilization of cubic RE$_2$O$_3$ (RE = Eu, Sm). Mater Sci Eng A 430:120–124. doi:10.1016/j.msea.2006.05.140

Mandal BP, Grover V, Roy M, Tyagi AK (2007) X-ray diffraction and raman spectroscopic investigation on the phase relations in Yb$_2$O$_3$ and Tm$_2$O$_3$-substituted CeO$_2$. J Am Ceram Soc 90:2961–2965. doi:10.1111/j.1551-2916.2007.01826.x

Matyi RJ, Schwartiz LH, Butt JB (1987) Particle size, particle size distribution, and related measurements of supported metal catalysts. Catal Rev, Sci Eng 29:41–99. doi:10.1080/01614987808067547

Nitani H, Nakagawa T, Yamamoto TA (2004) XAFS and XRD study of ceria doped with Pr, Nd or Sm. Mater Lett 58:2076–2081. doi:10.1016/j.matlet.2004.01.005

Ou DR, Mori T, Ye F, Kobayashi T, Zou J, AUCHTERLONIE G, DRENNAN J (2006) Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89:171911. doi:10.1063/1.2369881

Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J (2008) Oxygen-vacancy ordering in lanthanide-doped ceria: dopant-type dependence and structure model. Phys Rev B 77:024108. doi:10.1103/PhysRevB.77.024108

Rasband W (1997) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/

Roisnel T, Rodriguez-Carvajal J (2000) WinPLOTR: a Windows tool for powder diffraction patterns analysis. Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), pp 118–123

Rossignol S, Gerard F, Mesnard D, Kappenstein C, Duprez D (2003) Structural changes of Ce-Pr-O oxides in hydrogen: a study by in situ X-ray diffraction and Raman spectroscopy. J Mater Chem 13:3017–3020. doi:10.1039/b306726b

Sasikala R, Varma S, Gupta NM, Kulshreshtha SK (2001) Reduction behavior of Ce-Y mixed oxides. J Mater Sci Lett 20:1131–1133. doi:10.1023/A:1010948508523

Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551

Wallenberg R, Withers R, Bevan DJM, Thompson JG, Barlow P, Hyde BG (1989) The fluorite-related ‘solid solutions’ of CeO2–Y2O3. I. A re-examination by electron microscopy and diffraction. J Less Common Met 156:1–16. doi:10.1016/0022-5088(89)90402-5

Wang X, Hanson JC, Liu G, Rodriguez JA, Iglesias-Juez A, Fernandez-Garcia M (2004) The behavior of mixed-metal oxides: physical and chemical properties of bulk Ce1-xTbxO2 and nanoparticles of Ce1-xTbxOy. J Chem Phys 121:5434–5444. doi:10.1063/1.1781116

Zhang F, Chen CH, Raitano JM, Hanson JC, Caliebe WA, Khalid S, Chan SW (2006) Phase stability in ceria-zirconia binary oxide nanoparticles: the effect of the Ce3+ concentration and the redox environment. J Appl Phys 99:084313. doi:10.1063/1.2190712