Crystalline TiO$_2$ protective layer with graded oxygen defects for efficient and stable silicon-based photocathode

Jianyun Zheng1,2, Yanhong Lyu1,2, Ruilun Wang1, Chao Xie1, Huaijuan Zhou3, San Ping Jiang2 & Shuangyin Wang1

The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO$_2$ with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO$_2$ shows a limiting current density of ~35.3 mA cm$^{-2}$ and durability of over 100 h at 10 mA cm$^{-2}$ in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO$_2$ protection layer. These findings have significant suggestions for further development of silicon-based, III–V compounds and other photoelectrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices.

1 State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 Hunan, China. 2 Western Australian School of Mines: Minerals, Energy and Chemical Engineering and Fuels and Energy Technology Institute, Curtin University, Perth, Western Australia 6102, Australia. 3 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. Correspondence and requests for materials should be addressed to H.Z. (email: huaijuanzhou518@mail.sic.ac.cn) or to S.W. (email: shuangyinwang@hnu.edu.cn)
Photocatalytic (PEC) water splitting that directly converts water and sunlight to hydrogen and oxygen is an innovative and sustainable approach\(^1-4\). Much effort has been directed towards searching efficient and stable semiconductor materials for PEC cells, including silicon (Si)\(^5\)–\(^9\), III–V compounds\(^11,12\), and various oxides\(^13,14\). In comparison to oxides and III–V semiconductors, Si is more attractive because of its low cost, low bandgap (~1.1 eV), and applicable conduction band edge position for hydrogen evolution reaction (HER)\(^15-18\). In order to avoid backscattering of light in the planar water–silicon interface and maximize conversion of solar energy to H\(_2\) fuel, Oh et al employed Si with nanoporous structure (black Si) comprising the density-graded surface and reported a near-zero reflection\(^19\). Unfortunately, according to Pourbaix diagrams, black Si is easy to be corroded quickly when contacting with an electrolyte of high ionic strength, meaning a very narrow window of stability\(^20\).

Facing above challenge, the prevailing strategy is to introduce an amorphous insulating coating with high light transmission, extremely high uniformity, and moderate charge conductivity to separate the Si surface from the electrolyte\(^21\). This has been met with some success with a variety of amorphous oxides, like TiO\(_2\)\(^22\) and NiO\(_2\)\(^23\). The early studies showed the stable Si photocathodes for HER in acidic electrolytes by depositing amorphous oxides. Nevertheless, at the device level, the photocathode and photoanode are commonly placed in the alkaline electrolyte, where the earth-abundant, efficient oxygen evolution reaction (OER) catalysts operate sustainably\(^24\).

However, there is an obvious trade-off between photoelectrode stability and efficiency when amorphous oxide serves as a protective layer. Thin amorphous materials (<4 nm) possess the passage of high current densities (>1 A cm\(^{-2}\))\(^7\) for efficient photoelectrodes, but, are not stable in this case. To the best of my knowledge, amorphous oxides for stabilizing the Si-based photocathodes in alkaline solutions is less than 100 h\(^25\). Increasing the thickness of the protective layer cannot solve the problem, as the carrier tunneling probabilities decay exponentially with the layer thickness. In fact, even if the layer thickness can be increased, the poor crystallinity and low-density structure of the amorphous oxides will lead to considerably high solubility and limit the electrochemical stability under strong alkaline conditions during a sustained photoelectrolysis\(^26\). In contrast to amorphous phase, crystalline transition metal oxides can offer a higher alkaline tolerance to enhance the long-term stability of Si photocathode; however, their application is hindered by low conductivity. It is known that carrier transport in the amorphous TiO\(_2\) can be tuned through changing the concentration and formation of the defects\(^27,28\). However, there are few reports on tailoring the crystalline oxides to meet the challenges of the protective layer of Si photocathode\(^29\).

In this work, we propose a facile approach to significantly enhance and stabilize the PEC performance of black Si (denoted as b-Si) photocathodes in a strong alkaline media (1.0 M NaOH). In this approach, crystalline TiO\(_2\) with graded oxygen defects (denoted as black TiO\(_2\) or b-TiO\(_2\)) is used as the protective layer. The graded oxygen defects in the b-TiO\(_2\) layer allow photogenerated electrons to flow easily to the surface. Meanwhile, the b-TiO\(_2\) layer with crystalline structure is stable and enhances substantially the operational life of b-Si photocathode. Finally, cocatalyst/protective layer/semiconductor architecture presents a saturation current density of ~35.3 mA cm\(^{-2}\) and durability of >100 h at 10 mA cm\(^{-2}\) in 1.0 M NaOH.

Results

Synthesis of black Si-based photocathodes. The assembly of b-Si-based photocathodes contained three main steps: chemical etching of Si; crystalline TiO\(_2\) protective layer (denoted as c-TiO\(_2\)); and Pd metal nanoparticles (denoted as Pd NPs, Fig. 1, see Methods and Supplementary Table 1). We investigated the bare b-Si electrode and the one protected by c-TiO\(_2\) layers without (c-TiO\(_2\)/b-Si) and with graded oxygen defects (b-TiO\(_2\)/b-Si) towards water splitting, respectively. In addition, the concentrations of oxygen defects were varied by changing the deposition time of Ti layer (denoted as b1-TiO\(_2\)/b-Si and b2-TiO\(_2\)/b-Si, its preparation conditions listed in Supplementary Table 1). Pd NPs were deposited on the surface as cocatalysts and annealed in vacuum\(^30\). The Si-based photocathodes with Pd NPs were denoted as Pd/b-Si, Pd/c-TiO\(_2\)/b-Si, Pd/b1-TiO\(_2\)/b-Si, and Pd/b2-TiO\(_2\)/b-Si, respectively.

Characterization of protective layer/b-Si photocathodes. X-ray diffraction (XRD) patterns (Fig. 2a) revealed the presence of anatase TiO\(_2\) phase in c-TiO\(_2\)/b-Si, b1-TiO\(_2\)/b-Si, and b2-TiO\(_2\)/b-Si. Further analysis of XRD data indicates the presence of an oxygen-deficient TiO\(_2\) phase in b1-TiO\(_2\)/b-Si and b2-TiO\(_2\)/b-Si,
because parts of diffraction peaks are in close proximity to Ti$_3$O$_5$ phase. The higher intense peaks at ~44° for b2-TiO$_2$/b-Si can be ascribed to the more b-TiO$_2$ via longer deposition time of Ti layer (Supplementary Table 1).

The measured total hemispherical optical reflectance of all samples in air. The inset shows the optical absorption coefficient as a function of the incident photon energy for indirect allowed transition for b2-TiO$_2$/b-Si.

Photographs of the spherical water droplets with changeable CAs before and after c-TiO$_2$/b-Si, b1-TiO$_2$/b-Si and b2-TiO$_2$/b-Si were exposed to UV-visible light irradiation for 30 min.

The PEC performances and electronic characterizations of the samples. a XRD patterns of b-Si (black), c-TiO$_2$/b-Si (pink), b1-TiO$_2$/b-Si (Cambridge blue) and b2-TiO$_2$/b-Si (dark green). The standard XRD patterns for anatase TiO$_2$ (red rhombus), rutile TiO$_2$ (tan star) and Ti$_3$O$_5$ (purple triangle) are shown at the bottom (JCPDS, No. 02-0387, 03-1122 and 23-0606), separately. b EPR spectra of c-TiO$_2$/b-Si (pink dot), b1-TiO$_2$/b-Si (Cambridge blue dash) and b2-TiO$_2$/b-Si (green line) at room temperature. c The measured total hemispherical optical reflectance of all samples in air. The inset shows the optical absorption coefficient as a function of the incident photon energy for indirect allowed transition for b2-TiO$_2$/b-Si. d Photographs of the spherical water droplets with changeable CAs before and after c-TiO$_2$/b-Si, b1-TiO$_2$/b-Si and b2-TiO$_2$/b-Si were exposed to UV-visible light irradiation for 30 min, respectively.

Figure 2c shows the light diffuse reflection of the samples. Owing to the nanostructured surface trapping light, b-Si displayed distinctly low reflectance (<5%) in the wavelength range from ~450 to 800 nm. However, the diffuse reflection spectra of b1-TiO$_2$/b-Si and b2-TiO$_2$/b-Si showed a lower reflectance in the 350–1000 nm regions, compared to the bare b-Si and c-TiO$_2$/b-Si. This indicates that the b-TiO$_2$ layer can further increase the light absorption of the samples. Supposing that the light completely absorbed by the samples produces current (unity photoresponse and an infinite thickness of Si), b2-TiO$_2$/b-Si can provide ~37.5 mA cm$^{-2}$ (Supplementary Fig. 4) calculated under the AM1.5 solar photon flux between 350 and 1000 nm. In the inset of Fig. 2c, b2-TiO$_2$/b-Si possesses the two linear parts in the curve, corresponding to two band gaps of ~1.1 and 1.62 eV. The bandgap of ~1.1 eV originating from the Si was also observed in other samples (Supplementary Fig. 5). Furthermore, the optical properties of b-TiO$_2$ film deposited on BK7 glass wafer through the same deposition conditions for b2-TiO$_2$/b-Si illustrate that the b-TiO$_2$ layer shows two band gaps of 1.62 and 2.4 eV (Supplementary Fig. 6). Based on the preparation process and data analysis, a hypothesis is proposed that the b-TiO$_2$ layer in b2-TiO$_2$/b-Si is composed of two kinds of stoichiometric TiO$_x$ (marked as TiO$_{1.9}$ and TiO$_{2-x}$, respectively) as well as graded oxygen defects. As photosensitive materials, the photoinduced superhydrophilicity (water contact angle (CA) of 0°) of c-TiO$_2$ is displayed in Fig. 2d. Among these samples, b2-TiO$_2$/b-Si in dark exhibits most hydrophilic properties in dark with CA of 16.1°. The rich oxygen-deficient surfaces build hydrogen bonds with interfacial water molecules, forming hydrophilic hydration structure.

The PEC performances and electronic characterizations of the samples without Pd are provided in Supplementary Figs. 7–11. Among the photocathodes studied, best performance was obtained on b2-TiO$_2$/b-Si, showing the onsets shifted ~0.080 V, ~1.8 mA cm$^{-2}$ at the reversible potential (0 V vs RHE), and
respectively. All the scale bar labels are 200 nm.

The scale bar label is 200 nm in TEM image. The inset in TEM image is the magnification image of the specified area by HRTEM with the scale bar label of 5 nm. High-magnification images on the right correspond to the marked area in the inset with the scale bar label of 2 nm.

Fig. 3 Microstructure and composition distribution of Pd/b2-TiO2/b-Si. a) Cross-sectional TEM image and related high-magnification images of Pd/b2-TiO2/b-Si. The scale bar label is 200 nm in TEM image. The inset in TEM image is the magnification image of the specified area by HRTEM with the scale bar label of 5 nm. High-magnification images on the right correspond to the marked area in the inset with the scale bar label of 2 nm. b) HAADF-STEM image with matching elemental distribution map for Pd/b2-TiO2/b-Si. Ti, O, Pd, and Si are represented as yellow, purple, red, and Cambridge blue, respectively. All the scale bar labels are 200 nm.

limiting current density of 25.2 mA cm$^{-2}$. This is lower than ideal photocurrent of \sim37.5 mA cm$^{-2}$ as calculated (Supplementary Fig. 4).

Characterization and PEC profile of Pd/protective layer/b-Si. Pd NPs cocatalysts were added to Si-based photocathodes in order to increase the PEC hydrogen production. Pd/b2-TiO2/b-Si showed a sole EPR signal for Ti$^{3+}$ at $g = 1.991$, while the one associated with single electron-trapped oxygen vacancies ($g = 2.000$) disappeared, which implies that capping Pd NPs restrain the generation of reduced O$_2$ (Supplementary Fig. 12). Nanoporous structure was maintained in Pd/b1-TiO2/b-Si and Pd/b2-TiO2/b-Si, and some nanoparticles were dispersed on the surface, as seen in Supplementary Figs. 13 and 14. High-resolution transmission electron microscopy (HRTEM) analysis indicates Pd/b2-TiO2/b-Si is made up of Si nanopillars, thin protective layer and nanoparticles (Fig. 3a), in consistent with FESEM images. The spacing of lattice fringes with 0.309, 0.316, 0.349 and 0.224 nm detected from the inner of protective layer to nanoparticles (Fig. 3b) can be indexed as the (101) planes of TiO1$^{3+}$, TiO2$^{-}$x and TiO2, and the (111) plane of face-centered cubic (fcc) structures of Pd, respectively. In addition, there are significant vacant lattice sites in (101) plane of TiO1$^{3+}$ and TiO2$^{-}$x in accordance with the presence of oxygen defects. The spacing of lattice fringes for the protective layer (b-TiO2) increases gradually from the inner to surface of the layer, implying the formation of graded oxygen defects. The cross-section portion of Pd/b2-TiO2/b-Si (Fig. 3b) was further characterized using scanning transmission electron microscopy (STEM) coupled with energy dispersive x-ray spectroscopy (EDS) mapping. The element mapping indicates that b-TiO2 is conformal via tubular geometry surrounding the surface of needle-shaped b-Si. The minimum thickness of b-TiO2 layer on the roof of the sample was around 20 nm. Strong O signals were observed from the central region of the tubes, while the edge of the tubes exhibited a weak O signal. The gradient distribution of O element mapping is a result of the presence of graded oxygen defects. As expected, Pd NPs were dispersed on the surface of b-TiO2 layer. The sparse dispersion of Pd NPs will not block the light absorption of b-Si. Meanwhile, the photoinduced superhydrophilicity of the samples was difficult to be observed because of the dispersed Pd NPs (Supplementary Fig. 15).

The composition of each layer of Pd/b2-TiO2/b-Si was analyzed using x-ray photoelectron spectroscopy (XPS) depth profiling measurements via etching (Fig. 4). The full survey scan of the sample surface shows the characteristic peaks of Ti 2p, Pd 3d, and O 1s (Supplementary Fig. 16). The Pd 3d spectrum of Pd/b2-TiO2/b-Si showed a dominant signature peak of metallic Pd (Pd0). To reveal the variation of the chemical environment of b-TiO2, the Ti 2p spectra of Pd/b2-TiO2/b-Si were analyzed in detail (Fig. 4a, b). The Ti 2p3/2 obtained on the surface and in the bulk (or inner) of the b-TiO2 layer both display two peaks at 459.5 and 457.8 eV, corresponding to Ti$^{4+}$ and Ti$^{3+}$, respectively. However, the intensity of Ti$^{3+}$ in the inner of the b-TiO2 layer is stronger than that detected on the surface of the b-TiO2 layer, whereas the signal of Ti$^{4+}$ becomes weaker in the inner of the b-TiO2 layer. The ratio of Ti$^{3+}$ and Ti$^{4+}$ directly relates to the concentration of oxygen defects and the difference between the surface and inner of the b-TiO2 layer implies the formation of graded oxygen defects.

XPS depth profiling of Pd/b2-TiO2/b-Si (Fig. 4c) discloses that the surface is composed of Pd NPs and TiO2 layer. The atomic concentration of Pd and O peaked at the sample surface and decreased by increasing the etching depth. The concentration of Pd approached almost zero.
with an etching depth of 20 nm. The Ti signal increased continuously and became dominant after the etching depth of 20 nm. The Si signal started to be emerged in XPS spectrum. This indicates that the minimum thickness of b-TiO₂ layer for Pd/b₂-TiO₂/b-Si is around 20 nm, in accordance with STEM images. The results also confirm that b-Si is fully protected in this case. The XPS valence-band (VB) spectra of the surface and the inner of b-TiO₂ layer in Pd/b₂-TiO₂/b-Si (Fig. 4d) demonstrate that the VB maximum of the surface and the inner is 1.45 and 0.69 eV, respectively. This again indicates the formation of the structure of discrete layering for Pd/b₂-TiO₂/b-Si, defined as Pd NPs/b-TiO₂ (or TiO₂-x/TiO1+y)/b-Si concisely.

Figure 5a depicts the PEC performance of HER on Pd/b-Si, Pd/c-TiO₂/b-Si, Pd/b₁-TiO₂/b-Si, and Pd/b₂-TiO₂/b-Si under simulated AM 1.5 solar illumination in 1.0 M NaOH solution. The dark currents are negligible. The best performance was obtained on Pd/b₂-TiO₂/b-Si, achieving an onset potential of 0.32 V vs RHE and photocurrent of ~8.3 mA cm⁻² measured on Pd/b₁-TiO₂/b-Si under identical test conditions. Most interesting, Pd/b₂-TiO₂/b-Si electrode reached a saturated photocurrent density of ~35.3 mA cm⁻² at −0.22 V vs RHE, close to the theoretical value of 37.5 mA cm⁻². This indicates that adding Pd NPs on the sample surface enhances the PEC activity of Si-based photocathodes. On the other hand, Pd/c-TiO₂/b-Si showed almost no PEC activity, implying that the Pd NPs do not activate the PEC behaviors of the photocathodes. In addition, Pd/b₁-TiO₂/b-Si shows a much better PEC performance in 0.5 M H₂SO₄ electrolyte solution as compared to other samples, similar to that observed in alkaline electrolyte (Supplementary Fig. 17). The high efficiency of Pd/b₂-TiO₂/b-Si photocathode is supported by much higher incident photon-to-current efficiency (IPCE), as compared to that of Pd/b₁-TiO₂/b-Si (Fig. 5b). In the 420–540 nm range, Pd/b₂-TiO₂/b-Si achieved an IPCE > 90%. Such differences in IPCE between Pd/b₁-TiO₂/b-Si and Pd/b₂-TiO₂/b-Si were also observed in an acidic solution (Supplementary Fig. 18). Such high IPCE of Pd/b₂-TiO₂/b-Si can be explained by (1) good light absorption of b-Si with b-TiO₂, and (2) excellent electron transfer owing to high defect concentration. To assess the efficiency of PEC hydrogen generation, long-term hydrogen evolution of Pd/b₂-TiO₂/b-Si under light illumination was measured at specific potential (~0.078 V) in 1.0 M NaOH. The Faradaic yield (FY) relates to the photocurrent to hydrogen production, and is given by

\[FY = \frac{2n_{H_2}}{n_{Ti}} F \]

where \(F \), \(n_{H_2} \), \(I \) and \(t \) are Faraday’s constant, the number of moles of hydrogen gas produced, the photocurrent and the illumination time, respectively. On the basis of the calculation, the FY for hydrogen generation is > 96% on Pd/b₂-TiO₂/b-Si measured at −0.078 V vs RHE in 1.0 M NaOH under illumination (Supplementary Fig. 19). In addition to IPCE, the external and internal quantum efficiencies (EQE and IQE) are calculated by normalizing IPCE to the measured absorbance of the photocathode and electrolyte,

\[IQE = \frac{EQE}{A} = \frac{EQE}{1 - R} \approx \frac{IPCE}{1 - R} = APCE \]

where \(A \) is the absorbance of the solution and Pd/b₂-TiO₂/b-Si. In the wavelength range of 380–750 nm, no absorption of the solution has been verified. Furthermore, IQE is easily represented by absorbed photon-to-current efficiency (APCE) because of the FY of ~1. Here, the APCE value in certain incident photon energy is over 100% (Supplementary Fig. 20). Nevertheless, the solar-to-hydrogen (STH) efficiency and solar-to-hydrogen conversion efficiency (SHCE) of Pd/b₂-TiO₂/b-Si are low (Supplementary Figs. 21 and 22) because of the lack of p-n junctions.

The durability of Pd/b₂-TiO₂/b-Si photocathodes were monitored under light irradiation at −0.012 V vs RHE (corresponding
to initial J of ~10 mA cm$^{-2}$) in 1.0 M NaOH and 0.5 M H$_2$SO$_4$ solutions (Fig. 5c). Pd/b2-TiO$_2$/b-Si photocathodes exhibit little photocurrent decay in both alkaline and acid electrolytes for over 100 h (Fig. 5c and Supplementary Fig. 23a). The variations of photocurrent density of Pd/b2-TiO$_2$/b-Si via chopping light illumination at interval time of 2 h (Supplementary Fig. 23b) show good stability and photosensitivity. Meanwhile, similar J–V curves of fresh and half-year atmosphere-aged Pd/b2-TiO$_2$/b-Si further verify the stability of the photocathode in air, as shown in Supplementary Fig. 24. Additionally, the b-Si with nanostructured surface remained a high coverage of Pd NPs after 100 h of 100-h stability measurement of Pd/b2-TiO$_2$/b-Si, the prepared surface remained a high coverage of Pd NPs after 100 h of operation continuously. Indeed, the actual surface area of Pd/b2-TiO$_2$/b-Si is considerably larger than the geometric area. This implies that the actual b-TiO$_2$ loss is much lower than the calculated value. XPS spectra (Supplementary Fig. 25) of Pd/b2-TiO$_2$/b-Si photocathode after 100 h photoelectrolysis testify a good level of protection for the photocathode surface. However, the atomic concentration of Si at the etching depth of 20 nm after testing is higher than that before testing, probably due to a small amount of b-TiO$_2$ dissolution in NaOH solution with extended electrolysis. These results highlight the excellent durability of Pd/b2-TiO$_2$/b-Si due to the conformal crystalline TiO$_2$ protective layer. Figure 5d summarizes the stability of current and previous Si-based photocathodes plotted versus the pH level during the test.$^{22,24,27,34–42}$ In view of these collected data, most stability studies for the Si-based photocathodes were carried out in the acid electrolytes, specially pH = 0, because most of amorphous protective layers relatively stabilize in such conditions. As mentioned earlier, it is critical to develop the highly stable and efficient photocathodes for HER in strong alkaline electrolytes. In addition, the characterization, analysis and PEC measurements of Pd/b2-TiO$_2$/planar Si (substituting planar Si wafer by black Si wafer) further demonstrate the effect of b-TiO$_2$ protection layer (Supplementary Figs. 26–28). In short, the crystalline TiO$_2$ layer with graded oxygen defects supports the p-Si photocathode to achieve a comparable PEC performance and an excellent stability simultaneously.

Activating and enhancing mechanism by oxygen defects. In semiconductors, Photoluminescence (PL) emission is a powerful tool to judge the transfer and separation process of the charge carrier. All the samples showed PL peak of approximately 653 nm (Fig. 6a), attributed to the recombination of photogenerated electron-hole pairs for b-Si. Due to coating the c-TiO$_2$ layer, Pd/c-TiO$_2$/b-Si had the strongest PL intensity, in concordance with the poor PEC performance. As compared to either Pd/b-Si or the Pd/b1-TiO$_2$/b-Si, Pd/b2-TiO$_2$/b-Si shows good stability and photosensitivity. Meanwhile, similar J–V curves of fresh and half-year atmosphere-aged Pd/b2-TiO$_2$/b-Si further verify the stability of the photocathode in air, as shown in Supplementary Fig. 24. Additionally, the b-Si with nanostructured surface remained a high coverage of Pd NPs after 100 h of operation continuously. Indeed, the actual surface area of Pd/b2-TiO$_2$/b-Si is considerably larger than the geometric area. This implies that the actual b-TiO$_2$ loss is much lower than the calculated value. XPS spectra (Supplementary Fig. 25) of Pd/b2-TiO$_2$/b-Si photocathode after 100 h photoelectrolysis testify a good level of protection for the photocathode surface. However, the atomic concentration of Si at the etching depth of 20 nm after testing is higher than that before testing, probably due to a small amount of b-TiO$_2$ dissolution in NaOH solution with extended electrolysis. These results highlight the excellent durability of Pd/b2-TiO$_2$/b-Si due to the conformal crystalline TiO$_2$ protective layer. Figure 5d summarizes the stability of current and previous Si-based photocathodes plotted versus the pH level during the test.$^{22,24,27,34–42}$ In view of these collected data, most stability studies for the Si-based photocathodes were carried out in the acid electrolytes, specially pH = 0, because most of amorphous protective layers relatively stabilize in such conditions. As mentioned earlier, it is critical to develop the highly stable and efficient photocathodes for HER in strong alkaline electrolytes. In addition, the characterization, analysis and PEC measurements of Pd/b2-TiO$_2$/planar Si (substituting planar Si wafer by black Si wafer) further demonstrate the effect of b-TiO$_2$ protection layer (Supplementary Figs. 26–28). In short, the crystalline TiO$_2$ layer with graded oxygen defects supports the p-Si photocathode to achieve a comparable PEC performance and an excellent stability simultaneously.

Activating and enhancing mechanism by oxygen defects. In semiconductors, Photoluminescence (PL) emission is a powerful tool to judge the transfer and separation process of the charge carrier. All the samples showed PL peak of approximately 653 nm (Fig. 6a), attributed to the recombination of photogenerated electron-hole pairs for b-Si. Due to coating the c-TiO$_2$ layer, Pd/c-TiO$_2$/b-Si had the strongest PL intensity, in concordance with the poor PEC performance. As compared to either Pd/b-Si or the Pd/b.
b1-TiO2/b-Si, a pronounced fluorescence quenching was discovered in Pd/b2-TiO2/b-Si, implying that charge carrier recombination is inhibited. Interestingly, the PL intensity decreases with the order of Pd/c-TiO2/b-Si, Pd/b1-TiO2/b-Si, and Pd/b2-TiO2/b-Si, showing the inverse dependence to the concentration of oxygen defects of TiO2 layer. This illustrates the increased charge transfer with oxygen defects in TiO2 layer. Time-resolved PL spectra (Fig. 6b and Supplementary Table 2) were employed to investigate the charge carrier dynamics in Pd/c-TiO2/b-Si and Pd/b2-TiO2/b-Si. Pd/c-TiO2/b-Si displayed quick recombination with PL lifetimes of $t_2 = 8.82$ ns, in accordance with the poor charge transfer capability of c-TiO2. Amazingly, the lifetime of Pd/b2-TiO2/b-Si was prolonged drastically to 16.32 μs, indicating substantially retarded charge recombination and enhanced charge transfer for the Pd NPs/b-TiO2/b-Si photocathode. Moreover, the time-resolved PL spectra of Pd/b-Si and Pd/b1-TiO2/b-Si in Supplementary Fig. 29 and Supplementary Table 2 also presented the level of microsecond lifetime assigning to $t_2 = 13.34$ and 12.54 μs, respectively. Accordingly, more efficient charge transfer and greatly reduced charge recombination are induced by higher concentration of oxygen defects, prolonging the electron lifetime. This indicates that a channel constructed with graded oxygen defects in b-TiO2 layer is facile for transferring the photogenerated electron from the bulk of b-Si to the electrode/electrolyte interface. Conductive atomic force microscopy (C-AFM) allows direct probing of the electron transport channel formed at the different concentrations of oxygen defects. Figure 6c exhibits C-AFM information, including surface topography and typical current–voltage curves for Pd/b2-TiO2/b-Si. Pd/b2-TiO2/b-Si in the positions 1, 3, 4, and 5 showed the current responses. Among them, the position 1 and 3 on the Pd NP exhibited a high current, and the current of the positions 4 and 5 without Pd NP reduced markedly. The current response of Pd/c-TiO2/b-Si (Supplementary Fig. 30) was hardly observed in the range of applied bias, whereas there were only the weak current responses in Pd/b1-TiO2/b-Si (Supplementary Fig. 31). In addition, although the current of Pd/b-Si (Supplementary Fig. 32) was higher than that of Pd/b2-TiO2/b-Si, Pd/b2-TiO2/b-Si could possess more conductive channel than Pd/b-Si. As a result, the graded oxygen defects form the conductive channel would facilitate the electron transfer through the b-TiO2 layer. The concentration of oxygen defects not only determines the passage of the electric current through TiO2 layer, but also influences the distribution and quantity of transport channel.

As mentioned above, the activated and enhanced mechanisms for the PEC performance of Si-based photocathodes with the b-TiO2 layer are proposed in Fig. 7. In general, when illuminated, the b-Si absorbs the incident photons to produce the photoexcited electron-hole pairs. Subsequently, the minority carriers of b-Si tunnel through the protective layer to the Pd NPs, where HER takes place. However, in this work, the crystalline TiO2 layer inhibits the photogenerated electrons to pass through. Graded oxygen defects constructed in the b-TiO2 can form certain electrically conducting channels, which allow the photogenerated electrons to reach on the surface of the photocathode (the left inset of Fig. 7). Additionally, the H2 evolution off the b-TiO2 surface that is similar to hydrogen spillover-assisted H2 evolution off the SiO2 surface is attributed to highly electron conductive and sparsely dispersed Pd NPs. In this reaction process, H+ is reduced for yielding an absorbed proton on the Pd NP, then spillover to the b-TiO2 surface and recombine with another H atom for producing H2. The latter can be accelerated by plentiful electrons tunneling from the b-TiO2 layer immediately to the H+ species on the surface. To further understand the role of b-TiO2.
on the transfer of photoexcited electron, the energy band diagram scheme of Pd NPs/b-TiO2/b-Si photocathode is schematically described in the inset of Fig. 7. The VB maximum value in electron volts is converted to electrochemical energy potentials in volts by the reference\(^8\). In many experimental and computational works, the Ti\(^{3+}\) in TiO\(_2\) provides a shallow energy level near the conduction band (CB) minimum slightly, while on-lattice disorders in crystalline TiO\(_2\) created by oxygen defects can available up-shift the valence band edge of TiO\(_2\)\(^{5,46}\). In fact, we demonstrate that the tails effect narrows the bandgap of b-TiO\(_2\) (1.62 V for TiO\(_{1+y}\) and 2.4 V for TiO\(_{2-x}\)), corresponding to the CB minimum (−0.08 V for TiO\(_{1+y}\) and −0.1 V for TiO\(_{2-x}\)) and VB maximum (1.54 V for TiO\(_{1+y}\) and 2.3 V for TiO\(_{2-x}\)). As a result, the TiO\(_{1+y}\) and TiO\(_{2-x}\) parts of the b-TiO\(_2\) layer have nearly uniform CB edge. In addition, the VB minimum and bandgap of p-type Si generally are at −0.55 and 1.1 V, separately. From the above values, the difference of CB minimum and VB maximum between Si and b-TiO\(_2\) are 0.45 and 1.04 V, respectively. Consequently, the electrons go easily through the conduction band, whereas the transport of holes from b-Si to b-TiO\(_2\) is blocked due to a large barrier in valence band.

Discussion

A facile method for resolving the trade-off between efficiency and stability of the Si-based photocathodes is expounded by constructing crystalline TiO\(_2\) protective layer with graded oxygen defects. In these cases, graded oxygen defects are the most important factor for activating and enhancing PEC behaviors of Si-based photocathodes with crystalline TiO\(_2\) protective layer. Meanwhile, the conformal crystalline TiO\(_2\) layer substantially enhances the lifetime of the photocathodes in both strong acid and alkaline electrolyte solutions. The present results illustrate an effective path toward the practical solar-fuel photocatalysts systems via introducing crystalline nonstoichiometric metal oxide layer.

Methods

Preparation of black silicon. A single-side-polished, boron-doped p-type Si wafer with (100) orientation, a thickness of 500 μm, and a resistivity of 2–4 Ω cm (Supplementary Figs. 33 and 34) was ultrasonically cleaned in the acetone, ethanol, and deionized (DI) water for 20 min, separately. b-Si was fabricated by metal-catalyzed electroless etching method\(^9,47\). The clean wafer was immersed in a piranha solution (1:3 (v/v), 30 wt% H\(_2\)O\(_2\):H\(_2\)SO\(_4\)) for 5 min and then in a 5 wt% HF solution for 20 min to remove the SiO\(_2\) layer. Subsequently, the wafer was rinsed with DI water and immersed in a hybrid solution of 2 mM AgNO\(_3\) and 2 wt% HF for 30 s. After that, the wafer was fast rinsed with DI water and subsequently dipped in the solution of 40 wt% HF, 20 wt% H\(_2\)O\(_2\) and DI water with a volume ratio of 3:1:10 for 150 s. Further, rinsing with DI water again, the etched wafer was soaked with 40 wt % HNO\(_3\) solution for 20 min to remove the Ag nanoparticle residue. Finally, the prepared wafer with porous surface (b-Si) was rinsed and dried.

Assembly of black silicon-based photocathodes. Firstly, amorphous TiO\(_2\)/Ti multilayer was deposited on b-Si by using a direct current magnetron sputtering (dCzMS) system (Chuangshiweina Co. Ltd., MSP-3200) to sputter Ti target (purity > 99.5 wt%) in pure Ar (99.99%) or mixed Ar/O\(_2\) (99.99%) atmosphere at room temperature. The base pressure of the system was kept at 1.0 × 10\(^{-4}\) Pa. Before deposition, b-Si substrates were cleaned and activated by plasma treatment with the gas mixture of Ar and H\(_2\) for 30 min. The deposition pressure was 2.0 Pa. The prepared film was treated in air and under vacuum (1.0 Pa) at 600 °C for 30 min to form TiO\(_2\) protective layer without and with graded oxygen defects. Additionally, varying the deposition time of Ti layer acquired the different concentrations of oxygen defects (its preparation conditions listed in Supplementary Table 1) for evaluating the relationship between PEC behaviors and oxygen defects. To further enhance the efficiency of PEC hydrogen production, Pd NPs were added on the surface of Si-based photocathodes according to the literature\(^60\). Details of the preparation parameters of each layer are described in Supplementary Table 1.

The back sides of all samples were first polished, and then were coated by Au layer with ~300 nm thickness and bonded with a Cu wire by using silver paint, achieving an ohmic back contact. After drying, the epoxy was used to encapsulate the entire back side and partial front side of the b-Si electrodes, building an exposed active area of ~0.1 cm\(^2\). The geometrical area of the exposed electrode surface was determined by calibrated digital images and ImageJ\(^{68}\).
Physicochemical characterization. To explore the crystalline structure of the samples, a Rigaku diffractometer (Rigaku Ultima IV) was employed to perform 29 XRD scans with the grazing angle of 1° at the scan rate of 2° min⁻¹ in Cu Kα radiation (λ = 0.15406 nm). EPR spectra (IES FA–200) with continuous-wave spectrometer were taken on a sweeping magnetic field and an X band (9.2 GHz) at room temperature. HRTEM (Tecnai G2 F20 S-Twin) were employed to observe the cross section of the film. STEM (Tecnai G2 F20 S-Twin) with a high angle annular dark field (HAADF) detector and EDS were applied to synchronously analyze the component content and structure. The chemical composition was investigated by XPS (Thermo escalab 250Xi) with monochromated Al Kα radiation at a pass energy of 29.4 eV, C1s peak (284.8 eV) arising from adventitious carbon was used to calibrate the binding energies. To observe the compositions of each layer of Pd/b2-TiO2/b-Si, XPS depth profiling was conducted via Ar ion beam with a power of 150 W and a beam spot of 500 μm. In this condition, the etching time of ~20 s, ~40 s, and ~75 s corresponded to the etching depth of 5 nm, 10 nm, and 20 nm for Pd/b2-TiO2/b-Si. Fluorescence spectrophotometer (Fls-980, Edmund) was used to obtain the room-temperature PL spectra with an excitation wavelength of 405 nm. Time-resolved PL decay spectra were also tested using the same equipment. The PL lifetime of the sample was fitted by using the experimental decay transient data with bi-exponential decay model. The atomic force microscopy (AFM) images presenting both the surface morphology and microscopic C–V curves were collected via Nanocate SII scanning probe microscopy with contact and electric models. The concentration of Ti and Pd in the electrolyte was detected by ICP-MS with Thermo Scientific X Series II ICP-MS. The calibration tests were performed using diluted solutions of Ti and Pd (standards with 1000 mg metal/ml). Conversion of the measured amounts of Ti in the electrolyte into monolayers of TiO2 lost during PEC testing was achieved using the lattice distance between two TiO2 planes. Temperature dependent tunneling experiments were performed for PEC measurements in a PEC 1000 system (PerfectLight Co. Ltd) with monochromated light, illumination of 4 s. The current was collected at 10 points per second, and the total time is 120 s. The final 10 points of each light and dark cycle were averaged. The photocurrent was equal to the light current subtracting the dark current. The average value of two experiments determined each plot. ICP-E was calculated by the equation

\[
\text{ICP-E} = \frac{1240 \times (J_{\text{light}} - J_{\text{dark}})}{J_{\text{dark}}} \times 100\% \tag{6}
\]

where \(J_{\text{light}}, J_{\text{dark}}, \lambda, \text{and } \beta \) denote light current, dark current, certain wavelength, density of light intensity at certain wavelength, respectively.

Data availability

The data supporting this study are available from the authors on reasonable request.

Received: 17 March 2018 Accepted: 16 July 2018

Published online: 03 September 2018

References

1. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).
2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).
3. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).
4. Landman, A. et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646–651 (2017).
5. Boettcher, S. W. et al. Energy-conversion properties of vapor-liquid-solid–grown silicon wire–array photocathodes. Science 327, 185–187 (2010).
6. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).
7. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Nature 434, 1005–1009 (2014).
8. Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for high-efficiency photoelectrochemical water oxidation. Nat. Mater. 14, 1150–1155 (2015).
9. Yu, Y. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017).
10. Scheuermann, A. G. et al. Design principles for maximizing photovoltage in metal–oxide–protected water-splitting photoanodes. Nat. Mater. 15, 99–105 (2016).
11. Gu, J. et al. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 15, 456–460 (2016).
12. Kao, D. et al. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2, 17043 (2017).
13. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).
14. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).
15. Zheng, J., Bao, S. H., Guo, Y. & Jin, P. Anatease TiO2 films with dominant (001) facets fabricated by direct-current reactive magnetron sputtering at room temperature: oxygen defects and enhanced visible-light photocatalytic behaviors. ACS Appl. Mater. Interfaces 6, 5940–5946 (2014).
16. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured anatase–Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).
17. Lee, M. H. et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem., Int. Ed. 51, 10760–10764 (2012).
18. Dominey, R. N., Lewis, N. S., Bruce, J. A., Bookbinder, D. C. & Wrighton, M. S. Improvement of photoelectrochemical hydrogen generation by surface...
modification of p-type silicon semiconductor photocathodes. J. Am. Chem. Soc. 104, 467–472 (1982).
19. Oh, J., Yuan, H. C. & Branz, H. M. An 18.2%–efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7, 743–748 (2012).
20. Chen, S. & Wang, L. W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3658–3666 (2012).
21. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).
22. Lin, Y. et al. Amorphous Si thin film based photocathodes with high photovoltaic for efficient hydrogen production. Nano. Lett. 13, 5615–5618 (2013).
23. Zhou, X. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 8, 2644–2649 (2015).
24. Zheng, J., Cai, L., Li, H., Shi, X. & Zheng, X. Stabilizing silicon photocathodes by solution-deposited Ni–Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Lett. 2, 1939–1946 (2017).
25. Kurt, M. G., Enman, L. J., Gurnon, N. J., Nadarajah, A. & Boettcher, S. W. Solution-deposited FeSnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes. ACS Appl. Mater. Interfaces 6, 22830–22837 (2014).
26. Zgierska, A. G., Tilley, S. D., Vrabec, H., Gratzel, M. & Hu, X. Hydrogen evolution from a copper(II) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3095 (2014).
27. Seger, B. et al. Using TiO2 as a protective coating for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).
28. Ji, L. et al. Localized dielectric breakdown and antireflective coating in metal-oxide-semiconductor photodetectors. Nat. Mater. 16, 127–131 (2017).
29. Gu, J. et al. A graded catalytic-protective layer for an efficient and stable water-splitting photocathode. Nat. Energy 2, 16192 (2017).
30. Zheng, J. et al. Pd–MgNi2 nanospheres/black-TiO2 porous films with highly efficient hydrogen production by near-complete suppression of surface recombination. Appl. Catal., B 183, 69–74 (2016).
31. Liu, F. et al. Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. J. Am. Chem. Soc. 139, 10020–10027 (2017).
32. Zheng, J. Y., Yao, S. H., Guo, Y. & Jin, P. Natural hydrophobicity and reversible wettability conversion of flat anatase TiO2 thin films. ACS Appl. Mater. Interfaces 6, 1351–1355 (2014).
33. Yan, Y. et al. Multiple exciton generation for photocathodic hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2, 17052 (2017).
34. Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84–90 (2015).
35. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438 (2011).
36. Benck, J. D. et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014).
37. Feng, J. et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano. Res. 8, 1577–1583 (2015).
38. Oh, S., Kim, J. B., Song, J. T., Oh, J. & Kim, S. H. Atomic layer deposited molybdenum disulphide on Si photocathodes for highly efficient photocathodic hydrogen reduction reaction. J. Mater. Chem. A 5, 3304–3310 (2017).
39. Oh, J., Deutsch, T. G., Yuan, H. C. & Branz, H. M. Nanoporous black silicon photocathode for H2 production by photocathodic water splitting. Energy Environ. Sci. 4, 1690–1694 (2011).
40. Seger, B. et al. Hydrogen production using a molybdenum sulphide catalyst on a titanium-protected n-p silicon photocathode. Angew. Chem., Int. Ed. 51, 9128–9131 (2012).
41. Bae, D., Seger, B., Vesborg, P. C., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photocathodes. Chem. Soc. Rev. 46, 1933–1954 (2017).
42. Bae, D. et al. Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media. Sol. Energy Mater. Sol. Cell 144, 758–765 (2016).
43. Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A. H2 evolution at Si-based metal-insulator-semiconductor photocathodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562–568 (2013).
44. Pan, J., Liu, G., Lu, G. Q. & Cheng, H. M. On the true photocatalytic order of [001], [100], and [110] facets of anatase TiO2 crystals. Angew. Chem., Int. Ed. 50, 2133–2137 (2011).
45. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).
46. Wang, Z. et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 5444–5450 (2013).
47. Oh, I., Kye, J. & Hwang, S. Enhanced photocatalytic hydrogen production from silicon nanowire array photocathode. Nano. Lett. 12, 298–302 (2012).
48. Sun, K. et al. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 6, 592–598 (2015).

Acknowledgements
The authors are grateful to the National Natural Science Foundation of China (51402100 and 21573066), the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009), the Shanghai Sailing Program (17YF142980) and Australian Research Council (DP180100568).

Author contributions
J.Z., H.Z. and S.W. conceived the ideas, designed the research and oversaw the entire project. J.Z. synthesized the catalysts, conducted photoelectrochemical measurements and analysed the data. Y.L., R.W. and C.X. carried out the preparation of black Si and Raman and EPR characterization. J.Z., H.Z., and S.W. co-wrote the paper and commented on the manuscript. S.P.J. commented and improved the language of the paper. Data availabilityThe data supporting this study are available from the authors on rea-sonable request.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05580-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.