Tooth loss, cognitive impairment and chronic cerebral ischemia

Qian Pang a, Qianqian Wu b, Xingxue Hu c,d, Jianjun Zhang e, Qingsong Jiang a*

a Department of Prosthodontics, Beijing Stomatology Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
b Department of Stomatology, People's Hospital of Beijing Daxing District, Capital Medical University, Beijing, 102600, China
c Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, Ohio State University, OH, 43210, USA
d Dental 28, Lexington, MA, 02420, USA
e Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China

Received 10 March 2019; Final revision received 28 August 2019
Available online 19 October 2019

KEYWORDS
Cerebral ischemia; Dementia; Tooth loss; Behavioral science; Nitric oxide

Abstract Background/purpose: Vascular factor is an important risk factor in the process of cognitive impairment or dementia. Tooth loss could cause impairments of spatial learning and memory in mice, and nitric oxide (NO) and its synthase might be involved in the process. The objectives of this study were to investigate and compare the behavioral impairments between the Wistar rats with tooth loss and those with chronic ischemia to determine the changes in nitric oxide (NO) and its synthases under those two conditions. Materials and methods: The Morris water maze was used to test the spatial learning and memory abilities in the Wistar rats 8 weeks after the molar extraction procedure and the occlusion of 2 blood vessels to produce cerebral ischemia. The changes in NO and its synthases were evaluated using the Griess assay, Western blotting, and immunohistochemistry. Results: Similar impairments in the spatial learning and memory of Wistar rats were found after tooth loss and the induction of cerebral ischemia. The levels of NO and iNOS in the rat hippocampus increased, and the levels of eNOS decreased. Conclusion: For Wistar rats, the results of cognitive impairments related to tooth loss and those that occur due to chronic cerebral ischemia were statistically not significant and that NO, iNOS and eNOS in the hippocampus are involved in both cases.

* Corresponding author. Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China. Fax: +86 10 57099210.
E-mail address: qsjiang74@hotmail.com (Q. Jiang).
These authors contributed equally to this article.

https://doi.org/10.1016/j.jds.2019.09.001
1991-7902/© 2019 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In recent decades, human teeth, tools used for mastication, have also been considered essential for the nutrition and health of the human body.\(^1\) The human studies provided the evidence of correlation between tooth loss and cognitive impairment,\(^2,3\) and the results from the animal studies further elucidated the cause-effect relationship.\(^4\) With the world rapidly aging, the quality of life in the elderly is adversely affected as dementia becomes a serious public health problem.\(^5\) Brain ischemia increases the risk of both ischemic dementia with Alzheimer’s phenotype and Alzheimer’s disease dementia.\(^6\) In 2011, the American Heart Association/American Stroke Association claimed that there are “vascular factors contributing to cognitive impairment and dementia”. Vascular factors are officially identified as important risk factors for dementia.\(^7\)

Mastication correlates with an increase in cerebral blood circulation and affects postnatal brain development, aging and locomotor function; chewing leads to increased blood flow.\(^8\) Dental occlusal changes (e.g., tooth loss) induce motor cortex neuroplasticity.\(^9\) Altered dentitional states (including tooth loss and their restoration) are accompanied by widespread structural and functional brain changes in regions involved in processing and controlling sensory, motor, cognitive and emotional functions.\(^10,11\)

Nitric oxide (NO) and its synthases play important dual roles in the pathophysiology of cerebral ischemia in animal models.\(^12\) NO regulates cerebral blood flow and cell viability and protects nerve cells or fibers against pathogenic factors associated with cerebral ischemia, trauma, and hemorrhage.\(^13\) Basal release of nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) plays a neuroprotective role that contributes to an increase in cerebral blood flow in various mammals,\(^14\) preventing neuronal injury and inhibiting platelet and leukocyte adhesion. Excessive production of NO is clearly neurotoxic. Overproduction of NO by inducible nitric oxide (iNOS) has been implicated in various pathological processes, including tissue injury and cell apoptosis caused by ischemia and inflammation. In the early stage of cerebral ischemia, the amount of NO produced by endothelial cells is higher than that produced by neurons. The toxicity of NO is reduced by increasing collateral circulation, platelet aggregation, and microvascular blockage of leukocytes. Circulation counteracts the toxic effects of NO.\(^15\)

However, with the prolongation of ischemia, the damage zone can be observed in the late ischemia and reperfusion period. A marked inflammatory response and invasion of leukocytes occurs, accompanied by a high level of mRNA expression of iNOS, resulting in a large amount of NO.\(^15\) Molar extraction is associated with behavioral impairment, and changes in NO and iNOS in the hippocampus of KunMing mice were involved in behavioral changes after molar loss.\(^16\)

Cerebrovascular risk factors are easy to be found and controlled. Lack of awareness of the dangers of tooth loss has aggravated the prevalence of long-term loss of occlusal support without dental inlay. Studies have confirmed that the blood flow stimulation produced by mastication after restoration and reconstruction of occlusal support function may delay the process of cognitive decline, which will greatly increase people’s awareness of the importance of masticatory function and thus improve the quality of life of the elderly. Therefore, this topic has important social significance.

This study aimed to further investigate the effects of tooth loss on the development of spatial learning and memory in Wistar rats, comparing the results to those of chronic cerebral ischemia; in addition, this study aimed to determine the role of NO and its synthases in the process. If the degree of cognitive impairment caused by molar loss were proved similar to which caused by chronic cerebral ischemia, it would greatly increase the awareness of the importance of tooth loss. The hypothesis is that the difference in the behavioral impairments between tooth loss and chronic cerebral ischemia may statistically not significant and that the changes of NO, iNOS and eNOS in the hippocampus may be similar in both cases.

Materials and methods

Animals

Forty-eight male Wistar rats (3 months old) (Vital River Laboratory Animal Technology Co. Ltd) were used. All rats were habituated for at least 7 days before the experiments. Wistar rats weighing approximately 300 g were housed with five per standard cage in a light-controlled room (a 12:12-h cycle starting at 10:00 h) at room temperature (23 °C) and maintained on food and water provided ad libitum. The experiments complied with the National Institutes of Health (NIH) guidelines for the care and use of laboratory animals. The rats were randomly divided into 5 groups (16 rats each group) as follows: the chronic cerebral ischemia group (2-vo group), the chronic cerebral ischemia sham group (2-vo S group), the loss of occlusal support sham-operated group (MS group) and the control group (C group). The results of 2-vo S group and MS group will be provided as supplementary data. This study was approved by the animal care and use ethical committee of Beijing Stomatology Hospital (13-2-26).

Preparation of ischemia model and molarless model

2-vessel occlusion (2-vo)

Rats were anesthetized with 10% chloral hydrate (400 mg/kg), and the common carotid arteries were exposed by a ventral midline incision. For the 2-vessel occlusion procedure, the common carotid arteries were gently isolated from the adjacent vagus nerves and double ligated with silk.
sutures. The neck wound was sutured. Sham-operated animals were treated the same way except that the common carotid arteries were not occluded. The skin incision was sutured closed with 3-0 Nylon Monofilament suture (Ethicon). Rats were allowed free access to normal pelleted diet and water after the procedure. The general condition and body weight of each rat were monitored during the entire process.

Tooth loss model
The rats were anesthetized via intraperitoneal (i.p.) injection of 10% chloral hydrate (400 mg/kg). In the tooth loss group, all bilateral maxillary molars were removed. If there was root fracture, all the tooth structure visible above the gum was removed to eliminate occlusal contacts. In the sham group, small amounts of bilateral maxillary alveolar bone were removed with rongeur from the toothless gap region between molars and canines in the superior alveolar ridge. After the procedure, the rats were allowed free access to normal pelleted diet and water. The general condition and body weight of each rat were monitored during the entire process.

Morris water maze (MWM)

The MWM test was performed according to the protocol in the original study. The device consisted of a painted black circular pool (diameter 120 cm) filled with water (22 ± 1 °C) in which a small escape platform is hidden. The maze was divided into four quadrants. In the target quadrant, a transparent escape platform (diameter 10 cm) was placed 1 cm beneath the water surface. The behavior of the rat in the pool was recorded by a video camera positioned over the pool. The latencies to swim to the platform were monitored with a CCD video camera linked to a computer system.

Immunohistochemistry

Immediately after finishing the MWM test, the production of NO was determined by an assay for nitrite. Six rats from each group were decapitated, and the whole brain was removed. Then, the hippocampal areas were rapidly separated on ice plates and weighed. The tissue was ground nine times with phosphate-buffered saline, and 0.3% Triton X-100 were added. Then, the samples were shocked for 3 s and bathed in water for 5 min. Next, the tissue was centrifuged (12,000 g, 5 min) at 4 °C, and the culture of the supernatant was maintained. The procedure followed the instructions of the total nitric oxide assay kit (Biotime Institute of Biotechnology, S0024). The optical density of the assay samples was measured spectrophotometrically at 540 nm.

Western blot analysis

The hippocampi of 5 rats of each group were dissected, weighed, recorded and snap frozen in liquid nitrogen immediately after finishing the MWM test. Proteins were extracted with an Applygen total protein extraction kit. The protein concentration was normalized using Coomassie brilliant blue G-250 staining. Equal amounts of proteins were separated by SDS-PAGE on a 10% polyacrylamide gel, and the proteins were transferred to a PVDF membrane.
After blocking with 0.1% TBST containing 5% nonfat milk at room temperature for 2 h. Primary antibodies (iNOS, ab3525, 1:500 from Abcam, UK; eNOS, ab50010, 1:500 from Abcam, UK; β-actin, Immunoway, YM3028, 1:5000, USA) were incubated with the samples overnight. The membrane was rinsed with 0.1% TBST three times for 10 min each and incubated with secondary antibody (ZB2301, 1:5000, from Santa Cruz Biotechnology, Santa Cruz, CA) at room temperature for 2 h. The color was developed using the ECL kit. Images were acquired using the Fuji Digital Science Imager and analyzed with Gelpro Analyzer (Version 4.0) to measure the integrated optimal density (IOD) values of specific bands.

Statistical analysis

The statistical analyses were performed using SPSS Statistics V17.0 software (SPSS Inc.). Treatment differences of 5 days in the escape latency in the water maze task were analyzed using a repeated measures analysis of variance (ANOVA). One-way ANOVA followed by LSD and the Tukey post hoc test was used for the probe test and other data. The significance level was 0.05. All data were expressed as the mean ± standard deviation.

Results

MWM performance

None of the rats had observable physical abnormalities, and all showed similar swimming abilities in the visible-platform probe test. The MWM results revealed that all the rats found the platform increasingly quickly over the 5 days of training, and they demonstrated improved performance. There was a significant effect of training day on the measures of escape latency. Both the 2-vo group \((p < 0.001)\) and the M group \((p = 0.001)\) required significantly more time to learn to reach the platform than the C group, implying that both of the 2 groups had different levels of impairments in spatial learning and memory (Fig. 1A).

Figure 1 The 2-vo group and M group both showed impaired spatial learning and memory \((n = 16)\). (A) There was a significant main effect of training day on the measures of escape latency in each group \((p < 0.001)\). The 2-vo and M groups required significantly more time to learn to reach the platform than the C group \((p < 0.05)\). (B) During the visible-platform probe test, there was no significant difference among the groups \((\text{One-way ANOVA, } p = 0.58)\). (C) In the probe trial, the 2-vo and M groups took significantly more time to cross the original platform area for the first time than the C group \((n = 16)\) \((\text{One-way ANOVA, } **p < 0.01)\). (D) The frequencies of rats passing the original platform area in the 2-vo and M groups were significantly lower than those in the C group. The data are expressed as the mean ± SD \((\text{One-way ANOVA, } **p < 0.01)\).
However, there was no significant difference between the 2-vo group and the M group ($p = 0.064$). During the visible-platform test, the rats of each group had similar swimming ability (One-way ANOVA, $p = 0.58$) (Fig. 1B).

Probe trials (without a platform) were run on day 5 after training. The time it took for the rats to cross the area where the platform used to be was significantly different in the 2-vo (One-way ANOVA, $p = 0.001$) and M (One-way ANOVA, $p = 0.001$) groups compared to the C group (Fig. 1C). There was no significant difference between the 2-vo group and the M group (One-way ANOVA, $p = 0.53$) (Fig. 1C). Similar results were observed in the frequency of passing the platform (Fig. 1D).

The release of NO in the hippocampus

Using the Griess reagent assay, the amount of NO in the hippocampus after 8 weeks of surgery was estimated. The data indicated that compared to the C group, the NO concentrations in the hippocampus of the 2-vo group (One-way ANOVA, $p = 0.003$) and the M group (One-way ANOVA, $p = 0.007$) were higher (Fig. 2). There was no significant difference between the 2-vo and M groups (One-way ANOVA, $p = 0.45$).

iNOS expression in the hippocampus

The Western blot results demonstrated that the 2vo (One-way ANOVA, $p = 0.002$) and M (One-way ANOVA, $p = 0.003$) groups had significantly larger amounts of iNOS-positive cells compared to the C group (Fig. 3A,C). However, 2-vo group showed a slight but not statistically significant increase than M groups (One-way ANOVA, $p = 0.21$). The same immunohistochemistry results were found in the

Figure 2 The molarless condition and chronic cerebral ischemia both promoted NO production in the hippocampal area of the rats ($n = 6$). In the hippocampus, NO production in the 2-vo and M groups was higher than in the C group. The data are expressed as the mean ± SD (One-way ANOVA, **$P < 0.01$**).

Figure 3 The expression of iNOS increased and the expression of eNOS decreased in the hippocampal areas of the rats in the 2-vo and M groups ($n = 5$). (A) The expression levels of iNOS and eNOS were determined by Western blot analysis. (B) The proportion of iNOS was determined through densitometric analysis. (C) The proportion of eNOS was determined through densitometric analysis. The data are expressed as the mean ± SD (One-way ANOVA, **$P < 0.01$**).
expression of iNOS in the hippocampus (for 2vo group, \(p = 0.003 \) and M groups, \(p = 0.001 \)) (Figs. 4A and 5A). Similarly, there was a slight but not statistically significant difference between the 2-vo and M groups (One-way ANOVA, \(p = 0.35 \)).

Discussion

Western blot results showed that there were significantly fewer eNOS-positive cells in both the 2vo group (One-way ANOVA, \(p = 0.001 \)) and the M group (One-way ANOVA, \(p = 0.001 \)) compared to the C group (Fig. 3A, B). 2-vo group expressed less eNOS than M groups, yet there was no significant difference (One-way ANOVA, \(p = 0.57 \)). Similar results were also found in the immunohistochemistry results, which both the 2vo group (One-way ANOVA, \(p = 0.003 \)) and the M group (One-way ANOVA, \(p = 0.001 \)) expressed fewer eNOS than C group (Figs. 4B and 5B). And, there was also a slight but not statistically significant difference between the 2-vo and M groups (One-way ANOVA, \(p = 0.35 \)).
The method is simple, comparable and stable and produces a marked decrease in learning and memory. It is suitable for modeling long-term chronic cerebral ischemia. It is a commonly accepted chronic cerebral ischemia model.22,23 It has been reported that 2 weeks after 2-vessel occlusion, the results of HE staining and Nissl staining show that the neurons in the hippocampal CA1 area are damaged, with the percent damage increasing to 55% at 4 weeks and to 67% at 8–13 weeks.24 In addition, KM mice show impaired spatial learning and memory ability at 8 weeks postsurgery.16

The MWM has been used in some of the most sophisticated experiments in the study of the neurobiology and neuropharmacology of spatial learning and memory. It has been used in the validation of rodent models for neurocognitive disorders.25 Sex hormones may play a role in the difference in cognitive performance between males and females. Male animals have better spatial learning skills than female animals. The MWM task was originally designed to study the mechanisms of spatial localization in rats. Although mice have been successfully used and showed similar performance in dry-land spatial tasks where used, mice perform worse than rats in swimming tasks.26 Therefore, male rats were used in this study.

Evidence has been presented for the specific and disproportional involvement of hippocampal formation in the spatial aspects of MWM learning.27 Rats with hippocampal lesions are impaired in hidden- but not in visible-platform MWM learning. In fact, the pathological changes associated with Alzheimer’s disease start in the hippocampus;28 the same is true for postschismic brain injury dementia.29 There is strong evidence that the earliest pathological process in sporadic Alzheimer’s disease may be ischemic episodic damage to the hippocampus.30 The act of biting is not only important for chewing food but also has a wider significance. Clenching the jaw muscles may promote cardiac output.31 Brain functional activity is enhanced by the improvement of dentures in toothless patients.32 Jaw clenching could stimulate local blood flow into the brain.31 There are several possible underlying biological mechanisms regarding the relationship between the loss of molars and cognitive impairments, such as diminished sensory input, decreased cerebral blood flow, impaired cholinergic neurotransmission33 or increased stress responses.19 This study found that the spatial learning and memory of Wistar rats were impaired after either tooth loss or 2-vessel occlusion. It can be inferred that vascular factors play a similar role in the effects of tooth loss and chronic cerebral ischemia.

The degrees of changes in NO and iNOS after the 2-vo procedure and tooth extraction were almost the same. These two types of surgery may stimulate the overproduction of NO and iNOS, and eNOS plays a role in nitric oxide (NO) production.36 Generally, eNOS is expressed in endothelial cells and plays a crucial role in vasodilation.37 During this research, the level of eNOS decreased in the 2-vo and M groups, suggesting that eNOS may participate in the pathological state of cerebral ischemia and that eNOS is usually expressed in physiological conditions.

Within the limitations of this study, it can be concluded that the molarless condition aggravates cognitive impairments, the results of cognitive impairments related to tooth loss and those that occur due to chronic cerebral ischemia were statistically not significant and that NO, iNOS and eNOS in the hippocampus are involved in both cases.

Declaration of Competing Interest

There is no potential conflict of interests.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China [grant numbers 81771094; 81371165; and 30801311] and the Beijing Natural Science Foundation [grant number 7174309]. The authors declare that there are no potential conflicts of interest with respect to the authorship and/or publication of this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jds.2019.09.001.

References

1. Zhang YR, Du W, Zhou XD, Yu HY. Review of research on the mechanical properties of the human tooth. Int J Oral Sci 2014; 6:61–9.
2. Miquel S, Aspiras M, Day JEL. Does reduced mastication influence cognitive and systemic health during aging? Physiol Behav 2018;188:239–50.
3. Kubo KY, Chen H, Onozuka M. The relationship between mastication and cognition. In: Wang Z, Inuzuka H, eds. Senescence and senescence-related disorders. Rijeka: IntTech, 2013: 115–32.
4. Teixeira FB, Fernandes LDMP, Noronha PAT, et al. Masticatory deficiency as a risk factor for cognitive dysfunction. Int J Med Sci 2014;11:209–14.
5. Alzheimer’s Association. 2012 Alzheimer’s facts and figures. Alzheimer’s Dementia 2012;8:131–8.
6. Kudo T, Imaizumi K, Tanimukai H, et al. Are cerebrovascular factors involved in Alzheimer’s disease? Neurobiol Aging 2000; 21:215–24.
7. Gorelick PB, Scretieri A, Black SE, et al. American heart association stroke council, council on epidemiology and prevention, council on cardiovascular nursing, council on cardiovascular radiology and intervention, and council on cardiovascular surgery and anesthesia vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 2011;42:2672–713.
8. Miyake S, Wada TS, Honda H, Takahashi SS, Sasaguri K, Sato S. Stress and chewing affect blood flow and oxygen levels in the rat brain. Arch Oral Biol 2012;57:1491–7.
9. Avivi-Arber L, Lee JC, Sessle BJ. Dental occlusal changes induce motor cortex neuroplasticity. J Dent Res 2015;94: 1757–64.
10. Yan C, Ye L, Zhen J, Ke L, Gang L. Neuroplasticity of edentulous patients with implant-supported full dentures. Eur J Oral Sci 2008;116:387–93.
11. Shoi K, Fueki K, Usui N, Taira M, Wakabayashi N. Influence of posterior dental arch length on brain activity during chewing in patients with mandibular distal extension removable partial dentures. J Oral Rehabil 2014;41:486–95.
12. Anctil M, Poulain I, Pelletier C. Nitric oxide modulates peristaltic muscle activity associated with fluid circulation in the sea pansy Renilla koellickeri. J Exp Biol 2005;208:1087–94.
13. Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 2009;61:62–97.
14. Lüders JC, Wehli CC, Lin G, et al. Adenoviral gene transfer of nitric oxide synthase increases cerebral blood flow in rats. Neurosurgery 2000;47:1206–14.
15. Liu H, Li J, Zhao F, Wang H, Qu Y, Mu D. Nitric oxide synthase in hypoxic or ischemic brain injury. Rev Neurosci 2015;26:95–112.
16. Pang Q, Hu XX, Li XY, Zhang JJ, Jiang QS. Behavioral impairments and changes of nitric oxide and inducible nitric oxide synthase in the brains of molarless KM mice. Behav Brain Res 2015;278:411–6.
17. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47–60.
18. Griess P. Bemerkungen zu der abhandlung der H. H. Weselsky und Benedikt: "Ueber einige azoverbindungen". Chem Ber 1879;12:426–8.
19. Aoki H, Kimoto K, Hori N, Hoshi N, Yamamoto T, Onozuka M. Molarless condition suppresses proliferation but not differentiation rates into neurons in the rat dentate gyrus. Neurosci Lett 2010;469:44–8.
20. la Torre JC, Fortin T, Park GA, et al. Chronic cerebrovascular insufficiency induces dementia-like deficit in aged rats. Brain Res 1992;582:186–95.
21. Azzubaidi MS, Saxena AK, Talib NA, Ahmed QU, Dogarai BBS. Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion. Acta Neurobiol Exp 2012;72:154–65.
22. Xi Y, Wang M, Zhang W, et al. Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol Learn Mem 2013;109:7–19.
23. Kato T, Usami T, Noda Y, Hasegawa M, Ueda M, Nabeshima T. The effect of the loss of molar teeth on spatial memory and acetylcholine release from the parietal cortex in aged rats. Behav Brain Res 1997;83:239–42.
24. Behrendt D, Ganz P. Endothelial function from vascular biology to clinical applications. Am J Cardiol 2002;90:40–8.