Research article

Behavioural incongruities in juvenile *Cyprinus carpio* exposed to organophosphate compounds

Sameena Khan a, Imtiyaz Qayoom a,**, Masood H. Balkhi a, Adnan Abubakr a, Summya Rashid b, Rana M. Alsaffar b, Muneeb U. Rehman c,*

a Division of Aquatic Environmental Management, Faculty of Fisheries, SKUAST-K Rangil, Ganderbal, J&K 190006, India
b Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
c Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

ARTICLE INFO

Keywords:
Organophosphates chlorpyrifos
Dimethoate
Cyprinus carpio
Behaviour
Genotoxicity

ABSTRACT

For the ever increasing human population, the necessity to produce the food in large quantities has become the main goal internationally which has led to increase the practice of pesticides globally. Presence of pesticides in aquatic water bodies is largely due to the runoff from agricultural fields causing to deteriorate the healthy characteristics of an aquatic environment system leading to the toxic impact on non-target aquatic organism such as fish.

Approach: In fish, there are various portal of entry through which the contaminants enter. Via various routes, the contaminants reach into the blood and subsequently to different organs or systems. Since Pesticides are known to modify the behavior of animals when exposed to toxic levels. The behavioral changes may be caused by the changes in the nervous system triggered directly or through metabolic or physiological activities. However, the effects have been found to be multifarious and known to differ at different concentrations. Also, Blood is the most accessible component of the vertebrate body fluid system and consequences of direct and indirect damage to blood cells and their precursors are predictable and potentially life threatening. Therefore, behavioural and genotoxicological studies have been considered and used as diagnostic tool in order to investigate behavioural and genotoxicological alterations. This study was undertaken to investigate behavioural changes in *Cyprinus carpio* exposed to two organophosphate compounds, chlorpyrifos (cpf) and dimethoate (dim). Fishes weighing 10 ± 2 g were exposed to sub-lethal concentrations of cpf (0.76 ppb, 1.52 ppb, 2.28 ppb, 3.04 ppb and 3.8 ppb) and dimethoate (0.22 ppm, 0.44 ppm, 0.66 ppm, 0.88 ppm and 1.1 ppm) for the period of 96 h and various behavioural indices were evaluated during that period. Both the pesticides were found to induce behavioral

* Corresponding author.
** Corresponding author.
E-mail addresses: drsheikhimtiyaz@gmail.com (I. Qayoom), muneebjh@gmail.com, mrehman1@ksu.edu.sa (M.U. Rehman).

https://doi.org/10.1016/j.heliyon.2022.e11227
Received 18 May 2022; Received in revised form 9 August 2022; Accepted 19 October 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Pesticide is one of the aquatic pollutants that contribute to the environmental problems all over the world. Significantly large amount of the applied pesticides in farmlands and agricultural fields find their way back into aquatic habitats such as rivers, lakes and ponds as reported by Werimo et al. (2009) and Ensminger et al. (2011). On annual basis several conventional pesticides are used in different areas all over the world as reported by EPA (2001) which indicates that pesticides are spread across the ecosystem worldwide on a yearly basis as per the evaluation revealed by Piemental and Levitan (1986). Practice of organophosphates is on rise as their persistence in the environment is less due to their quick transformation into nontoxic compounds in less amount of time, yet their effects on the growth and survival in aquatic animals are adverse (Candioti et al., 2010; Bolognesi, 2003; Cavas and Ergene-Gözükar, 2005; Mohanty et al., 2011). Owing to high non-specific acute toxicity may lead to frequent intoxication of non-target organisms (Nunes, 2011) contributing extensively to the food chain and water bodies (Bagheri, 2007).

Fish are very sensitive organism to the environmental contaminants and as such, pollutants such as pesticides may initiate a significant disruption of certain metabolic activities in fish as a result of contact between the contaminants and fish organs (John, 2007). Many studies that were conducted in recent times have shown that pesticides can impair the health of fish (Siang et al., 2007; Nwan et al., 2010). Behavioural anomalies are the earliest of all shown by fishes even if they witness pesticide exposure in minute quantities. In most of the studies, the behavioural changes may be detectable before the occurrence of apparent physiological alterations (Marigoudar and Ahmed, 2009; Nagaraju et al., 2011; Devi and Mishra, 2013; Qayoom et al., 2016a, Qayoom et al., 2016b). Organophosphate pesticides are known to induce behavioural toxicity in fishes by targeting specific physiological systems and exert their effects on behaviour via physiological pathways. Popularly known as neurotoxins, they are key factors to cause damage in the brain muscles to cause Organophosphate Induced Delayed Neurotoxicity (OPIDN) (Hudson, 2004). This gives an indication, that their neuro-toxic nature may be secondarily involved in inducing neuro-behavioural toxicity in fishes to cause ostensible behavioural changes like expressions of mood, changes in behaviour and thinking attrition of scales, imbalance in swimming, quiescent and frenzied movements and uncoordinated movements (Qayoom et al., 2014; Qayoom et al., 2016a, Qayoom et al., 2016b; Uner et al., 2006). There are some other apparent and quantifiable behavioural changes like Tail Beat Frequency (TBF), Swimming Velocity (SV), and Opercular Beat Frequency (OBF) reported to get altered due to chemical insults of organophosphorous pesticide in fishes (Levin et al., 2003; Kane et al., 2005; Xia et al., 2010; Devi and Mishra, 2013). Ecotoxicological risk assessment of pesticides is based on available toxicity data and the effects resulting from actual exposure to a chemical in non-target organisms like fish serving both as targets and as models.

Common carp (Cyprinus carpio) is one of the most important cultured fish in India. Common carp and other species belonging to the family Cyprinidae are found in most rivers and lakes, making it a proper model species to study eco-toxicity of pesticides. Therefore, the aim of this study was to identify the changes in behaviour of carp exposed to sub-lethal concentrations of technical grade of organophosphate pesticides. In addition to the behavioural alterations, genotoxic changes have also been reported by number of researchers in terms of micronucleus formation in fish hematocytes. Micronuclei (MN) are extra-nuclear damaged chromosomes or their fragments which fail to transfer to daughter nuclei during cell division. These chromatin containing bodies fail in anaphase due to delay caused by xenobiotic exposure of pesticides leading to genetic injury in fishes. Permanent genetic damage due to MN formation leads to cell apoptosis, genomic instability or cancer development. However, it is found from the literature that a significant work has not yet been done in the field of behavioural toxicology of fishes with respect to organophosphate pesticides and need to be carried out extensively to attain a proper understanding behind the mechanisms involved in it. Similarly, genotoxic responses due to MN formation in fish hematocytes need to be studied with more deliberation to evaluate their intensity of toxicity of different pesticides in fishes. Keeping the importance of this research in consideration, the study was taken to assess the behavioural and genotoxic responses in C. carpio juveniles under in-vivo exposure of two organophosphorus compounds used worldwide, dimethoate and chlorpyrifos. The study was carried out to observe the elicited responses under controlled bioassays.

2. Material and methods

The whole experimental design is described in Figure 1.

2.1. Test organisms

Juveniles of common carp, C. carpio var. comminis weighing 10±2g were collected from a local hatchery in oxygenated plastic bags and immediately disinfected in 0.05% KMnO4 solution for 2 min. The weight of the fishes was selected same as used by Qayoom et al. (2016a, 2016b) to measure the exact sub-lethal concentrations used in this study. Soon fishes were transferred in aquaria with the size of 60 × 30 × 40 cm which also were also disinfected with KMnO4 before the introduction of fishes. Fish samples were kept for two weeks for acclimation and fed with artificial diet @ 3% body weight. During this period adequate oxygen was supplied through aerators and aquarium water was changed every morning.

2.2. Test design

Methodology from Manual of Methods in Aquatic Environment Research (Part 10, Short-term Static Bioassay), Technical Manual of FAO was applied in the study (Reish and Oshida, 1987). All the ethical guidelines for using and handling of test animals, chemicals for euthanasia and anesthesia, and drawing of blood from fishes were used in accordance with the Canadian Council of Animal Care (Nickum, 2004) opted by Canadian Department of Fisheries and Oceans Animal user training template (CDFOA, 2004). Ten fishes were placed in one aquarium in which bioassays were carried out in triplicates using double distilled water as dilution medium. Some Physical and chemical parameters like temperature, pH, CO2 and dissolved oxygen were analyzed daily to check the water quality (A. P. H. A., 2012).
2.3. Test concentration

Fishes were exposed to sub-lethal concentrations of dimethoate and chlorpyrifos under static bioassay tests. Technical grade of CPF and dimethoate were used in this study were procured from Gharda Chemicals Ltd. with 98.2% purity. The stock solution was prepared in methanol and subsequent concentrations in deionized water (Reish and Oshida, 1987). Sub-lethal concentrations of both the pesticides were chosen as per the available literature with 20%, 40%, 60%, 80% and 100% of LC50 (Qayoom et al., 2016a, Qayoom et al., 2016b). Behavioural responses were estimated within 96 h of the experiment while as for geno-toxicological studies, blood was withdrawn after 21 days of exposure of pesticides to fishes. All the experiments were static bioassay run in triplicates along with control.

2.4. Estimation of behavioural indices

For estimation of behavioural changes in fishes, the behavioural indices like Swimming Activity Index (Ai), Swimming Velocity (Vs), Opercular Beat Frequency (OBF), Tail Beat Frequency (TBF), Eye (Eo) and Fin deformities (Fd) were calculated as per the formulae given in Table 1.

2.5. Blood collection

For experimental study, blood was collected individually from each fish. Before blood collection fish were dipped in a solution of clove oil (75 mg/l) for anesthesia each time. Blood was withdrawn from caudal peduncle as per the guidelines provided by Canadian Council of Animal Care (Nickum).

2.6. Estimation of micro-nuclei for cytogenetic studies

The micro-nucleus (MN) test was done using methodology of Barsiene et al. (2013) Figure 2A drop of blood was immediately smeared on glass slide and air dried after collection. Then fixed in absolute methanol for 10 min, the slide was stained using 5% Giemsa for half an hour for the calculation of MN frequency using 100x magnifications and calculated using the following formula:

\[
\frac{\text{No. of micronuclei}}{1000} = \text{MN Frequency} \text{Cell}
\]

2.7. Ethical statement

The Aquatic Animal Ethics Committee of Faculty of Fisheries, SKUAST-K, J&K, India, reviewed the scientific procedures and protocols which were to be employed throughout the experimental study and whether they follow the aquatic animal ethical guidelines of the Committee For The Purpose Of Control And Supervision Of Experiments On Animals (CPCSEA) and Institutional Animal Ethics Committee (IAEC). After a review, the approval for conducting the study was granted (No: 2017-F-60-M: dated 14/03/2019).

2.8. Statistical analysis

The dataset obtained in behavioural indices was analysed using Two-Way ANOVA with the calculation of Critical Difference (C.D.) at 5%. The CD is the smallest difference between the inferences indicating a true change in the parameters. For the calculation of micronuclei and water quality, descriptive statistics for calculation of means, standard deviations and frequency was carried out using SPSS 20.0 version software.

3. Results

Five concentrations of CPF, i.e. 20%, 40%, 60%, 80% and 100% of LC50 (3.8 ppb) (0.76 ppb, 1.52 ppb, 2.28 ppb, 3.04 ppb and 3.8 ppb) and dimethoate (LC50 = 1.1 ppm) (0.22 ppm, 0.44 ppm, 0.66 ppm, 0.88 ppm and 1.1 ppm) were calculated from the available literature (Qayoom et al., 2016a, Qayoom et al., 2016b) and labeled from C1 to C5 with increasing order of concentration. In addition, development of
3.1. Behavioural indices

3.1.1. Tail Beat Frequency (TBF/min.)

Effects of chlorpyrifos and dimethoate on Tail Beat Frequency are presented in Tables 1 and 2. The tail beats decreased with the increase of exposure of pesticide dose and exposure time. TBF significantly (p < 0.001) decreased with the increase in concentration of CPF from C1 to C5 with an average values of 93.633/m to 53.417/m in E1, 61.436/m to 53.45/m in E2 and 25.75/m to 53.833/m in E3. The calculated critical difference (C.D.) in E1, E2 and E3 was found 17.417, 11.876 and 14.606 respectively (Table 2) indicating a significant reduction in the tail beats in CPF exposed fishes when compared with the control specimens. In dimethoate exposed fishes; TBF was also found diminishing with increasing concentrations of pesticide and the exposure time to fishes. The average values of TBF dropped down in C1 to C5 from 63.690/m to 50.400/m in E1, 75.092/m to 50.217/m in E2 and 76.283/m to 52.700/m in E3 with calculated C.D. of 8.178, 50.400/m in E1, 75.092/m to 50.217/m in E2 and 76.283/m to 52.700/m in E3 with calculated C.D. of 9.982, 10.097 and 10.088 respectively (Table 3). The results indicated that CPF had a profound effect on TBF of fishes suggesting that CPF is more toxic to common carps than dimethoate.

3.1.2. Opercular Beat Frequency (OBF/min.)

Chlorpyrifos and dimethoate were found to induce toxic effects on the C. carpio var. communis which caused change in the OBF in fishes exposed to both the pesticides. OBF was significantly (p < 0.001) found decreased with increasing concentrations of CPF and dropped down with the increase in concentration from C1 to C5 from the average values of 64.467/m to 32.667/m in E1, 64.183/m to 35.90/m in E2 and 59.813/m to 42.417/m in E3 with calculated C.D. of 8.178, 7.39 and 9.858 respectively (Table 4). In dimethoate experiments, OBF was also found diminishing as the concentration of pesticides increased from C1 to C5 with the average values of 77.667/m to 64.883/m in E1, 94.033/m to 71.267/m in E2 and 91.183/m to 67.85/m in E3 with calculated C.D. of 0.086, 10.903 and 10.881 respectively (Table 5). The profound decrease in CPF exposed fishes than dimethoate is indicative of its potential toxicity towards fishes. A steep decrease in TBF from C1 to C5 in both CPF and dimethoate bioassays indicate that with the increase in concentrations of pesticides, the sluggish movements recorded in fishes was found increased which caused decrease in OBF as well. Thus OBF was also found dependent on exposure of pesticide and time.

Formulae for calculation of behavioural responses.

S. No	Behavioural Response	Formula	Reference
1	Swimming Activity Index (Ai)	Average number of total moves registered in the period number of total moves on day 1	Eissa et al. (2009)
2	Swimming Velocity (Vd)	V = d (n - m)/dt	Eissa et al. (2009)
3	Opercular Beat Frequency (OBF)	Counted per minute in each individual in aquarium	Tanterpale et al. (2012)
4	Tail Beat Frequency (TBF)	Counted per minute in each individual in aquarium	Devi and Mishra (2013)
5	Eye deformities (Ed)	Microphthalmia Exophthalmia Unilateral Anophthalmia	Devi and Mishra (2013)
6	Fin deformities (Fd)	Necrosis Split fins	Devi and Mishra (2013)

3.1.3. Swimming velocity (cm/sec)

The daily mean values of swimming velocity were calculated for the entire bioassay which was found fluctuating and got decreased with the increase in the concentrations of pesticides. Average mean values of swimming velocity dropped from C1 to C5 in CPF exposed fishes and ranged between 1.353 cm/s to 0.988 cm/s in E1, 1.112 cm/s to 0.817 cm/s in E2 and 2.656 cm/s to 0.872 cm/s in E3 with a non-significant critical difference (Table 6) in all the experiments. In dimethoate challenged fishes, the average mean values of swimming velocity decreased from C1 to C5 from 9.865 cm/s to 3.599 cm/s in E1, 6.146 cm/s to 2.367 cm/s in E2 and 5.518 cm/s to 2.169 cm/s in E3 with a calculated C.D. of 4.602, 4.432 respectively. The C.D. in E3 of CPF was found insignificant with the value of (Table 7).

3.1.4. Swimming activity index (Ai/day)

The mean swimming activity index (Ai) decreased in pesticide exposed fishes as compared to control. The activity was found to decrease in the bioassays with the passage of time and increase in pesticide concentrations. In CPF experiments, the average Ai values from C1 to C5 decreased from 0.235 ± 0.084 to 0.115 ± 0.041 in E1, 0.295 ± 0.046 to 0.0975 ± 0.016 in E2 and 0.4025 ± 0.033 to 0.195 ± 0.019 in E3 (Table 8). In dimethoate experiments the average swimming activity index (Ai) was also found to get decreased from C1 to C5 and ranged from 0.147 ± 0.006 to 0.0725 ± 0.013 in E1, 0.18 ± 0.008 to 0.1115 ± 0.007 in E2 and 0.18475 ± 0.003 to 0.1055 ± 0.003 in E3 (Table 9).

3.1.5. Eye deformities

No microphthalmia, unilateral anophthalmia and exophthalmia were observed in this study. However, clouding of eyes which initially turned the pupil into a white ball and whole eye ball was covered later on was noticed in both, CPF and dimethoate challenged fishes. The white mass of cloud turned dense with the increase in exposure time of pesticides to fishes and was reported early in the chlorpyrifos exposed samples. However, both the pesticides were equally seen to induce clouding of eyes in fishes (Figures 3, 4, and 5).

3.1.6. Fin deformities

During present investigation, none of the experimental fishes were found to develop fin necrosis in any of the experiments conducted for dimethoate and chlorpyrifos. However, there were various instances of split fins found at the termination of bioassays of both the pesticides. In dimethoate exposed fishes, not more than 20% of the fishes in C5 developed split fins at 96 h of the experiment indicating that this concentration can be lethal for fishes leading to the morphological deformities (Table 10). Fishes exposed to chlorpyrifos started to show the morphological deformities in fins early in the 48 h of experiment in higher concentrations of C4 and C5 (Table 10) which suggests that even small quantities of chlorpyrifos are lethal and potentially toxic to common carps. The maximum number of 20% of fishes was found to develop split fins with chlorpyrifos exposure (Figures 6 and 7).

3.1.7. Micro-nuclei formation

Fish exposed to chlorpyrifos and dimethoate was found to get intoxicated genetically which was confirmed by the incidence of micro-nuclei development in the fish erythrocytes exposed to both pesticides. The incidence of micronuclei was found both, time and dose dependent in fishes exposed to both pesticides. The frequencies of micronuclei are presented in Table 11 for chlorpyrifos and dimethoate respectively.

In chlorpyrifos exposed fishes, the percentage development of micronuclei increased with the increase in pesticide concentration of with the average values of 1.67 ± 0.66 in C1 to 10.67 ± 0.88 in C5 with none recorded in the control (Table 11). In dimethoate treated fishes, more or less same trend was observed with least micronucleus frequency of 1.00 ± 0.00 in C1 and the maximum frequency of 9.33 ± 0.33 in C5 (Table 11). No micronuclei were found in the control samples. The progressive increase in micronuclei incidence with increasing toxicant concentrations.
suggest that the genotoxicity due to chlorpyrifos and dimethoate in fish erythrocytes is dependent on the dose of the pesticide (Figures 8 and 9).

4. Discussion

When fish are exposed to aquatic pollutants, it metabolizes and stores aquatic pollutants (Daoud et al., 2009). The toxicants like pesticides gets accumulated within the tissue of exposed fish due to its lipophilic nature thereby resulting into impairment in the biology of fish. The aim of this study is to evaluate the behavioural and genotoxicological impairments in the fish exposed to the organophosphate pesticides. Behavioural toxicology is a primary tool to observe changes in fishes exposed to pesticides. The brain functions that are compromised on account of toxic insults directly influence fish behaviour and this is more conspicuous in fish, particularly with reference to aquatic pollution (Rao, 1999). In this study, organophosphate compounds were found detrimental to fish physiology and induction of behavioural and genotoxicity. Comparatively, CPF was found more hazardous than dimethoate and induced severe toxicity.

Tail Beat Frequency (TBF) is the quantitative estimation of beats per minute. Same stands true for Opercular Beat Frequency (OBF). Any change in TBF and OBF indicates the condition of stress, pathology or toxicity in fishes which make them lethargic with the onset of sluggish, uncoordinated and erratic movements. Induced toxicity by organophosphate pesticides is known to alter the TBF and OBF in fishes. In this study, the TBF and OBF of common carps were found significantly (P < 0.001) reduced with increasing exposure time and pesticide concentrations in all the replicates conducted for dimethoate and chlorpyrifos (Tables 4 and 5). Similar rise in OBF values in C2

![Figure 2. Protocol adopted for Geno-toxicological studies.](image)
concentrations were observed followed by a gradual decrease in their values from C3 to C5 in both, CPF and dimethoate bioassays. The reason for this sudden increase may be attributed to the fact that fishes initially experience a sudden shock due to the pesticide exposure due to which they show quiescent movements which leads to the increase in TBF. Similarly the sudden shock due to pesticide exposure leads to increased respiratory rates to avoid the toxic medium leads to increased values of OBF. Our results are in consonance with the results reported by Omorogie (1995), Grillitsch et al. (1999) and Chindah et al. (2004) who argued that chemical stress elicits behavioural changes under both acute and sub-lethal toxicity which causes reduction in TBF and OBF values as well. Devi and Mishra (2013) reported increase in the TBF of *Channa punctatus* exposed to chlorpyrifos up to 24th hour of pesticide exposure which declined afterwards with the termination of experiment. Their

Time	C1	C2	C3	C4	C5	Control	Mean for time	C.D. at 5%
E1	06	60.340	64.100	48.900	48.300	45.500	48.200	52.557
	12	59.900	59.900	57.400	54.400	48.800	49.300	54.950
	24	70.500	73.400	58.800	50.100	51.600	42.300	57.783
	48	49.600	48.200	43.400	39.000	31.300	28.600	40.017
	72	45.600	47.000	37.400	24.600	25.300	16.700	32.776
	96	96.200	102.60	103.90	102.80	99.900	100.700	101.017
Mean for concentrations	63.690	65.867	58.300	53.200	50.400	47.633		
E2	06	70.750	74.000	66.200	61.400	50.800	49.300	52.557
	12	77.400	76.600	67.300	55.300	48.500	47.700	50.033
	24	72.800	71.000	68.700	49.500	39.000	14.800	50.683
	48	73.100	70.900	58.400	52.100	29.000	9.600	39.983
	72	61.200	62.800	48.300	34.100	24.600	6.200	44.417
	96	95.300	104.60	104.00	102.40	102.80	103.900	101.967
Mean for concentrations	75.092	77.617	68.817	59.133	50.217	45.300		

Time	C1	C2	C3	C4	C5	Control	Mean for time	C.D. at 5%
E3	06	72.900	81.500	79.000	68.900	62.100	50.400	52.557
	12	77.900	76.000	72.000	62.100	56.300	47.600	65.217
	24	74.100	68.900	50.500	49.100	42.500	31.800	51.767
	48	75.700	68.400	62.900	54.500	29.000	20.100	51.767
	72	66.500	66.700	53.700	42.800	24.600	9.600	44.417
	96	90.600	102.50	102.20	102.80	99.800	99.817	99.817
Mean for concentrations	76.283	77.333	70.050	63.267	52.700	43.633		

Time	C1	C2	C3	C4	C5	Control	Mean for time	C.D. at 5%
E1	06	58.400	53.400	45.900	37.100	26.800	26.200	41.300
	12	46.600	43.000	37.100	26.100	26.100	17.000	32.200
	24	42.000	41.200	27.600	21.300	16.500	10.300	26.483
	48	38.900	37.000	16.000	19.000	13.900	7.600	22.067
	72	36.400	25.100	17.700	14.500	10.600	6.200	18.417
	96	104.500	103.400	102.800	102.700	104.800	99.700	102.983
Mean for concentrations	54.467	50.517	41.183	36.783	32.667	27.833		
E2	06	57.400	58.200	52.000	48.300	32.600	32.500	46.833
	12	59.500	54.600	44.500	40.700	27.300	25.000	41.933
	24	55.600	55.400	44.700	32.700	21.600	13.400	37.233
	48	55.100	50.200	36.400	21.100	15.800	10.700	31.550
	72	51.200	42.800	29.800	18.800	12.500	7.000	27.017
	96	106.300	106.000	104.300	105.400	105.600	103.000	105.150
Mean for concentrations	64.183	61.200	51.950	44.500	35.900	31.983		

Table 3. Tail beat frequency elicited by the fish when exposed to dimethoate.

Table 4. Opercular beat frequency elicited by the fish when exposed to CPF.
results are in accordance with the results obtained in the present study. Other studies indicate that toxicity due to petroleum related hydrocarbon compounds cause damage to epithelial cells of the gill chamber (Omoregie, 1995) which leads to retardation of OBF in common carps. Our results are in accordance with Chindah et al. (2004); Pandey et al. (2008); Woke and Wokoma, 2009; Devi and Mishra (2013); Misha and Verma (2016); Harit and Srivastava (2018) and Banjara and Singh (2019) who reported decrease in opercular beats of various fishes exposed to organophosphate pesticides. One of the primary reasons for the decrease in Tail Beat and Opercular Beat Frequencies in all the dimethoate and CPF exposed fishes is resultant of AChE inhibition in muscles which results in the blockade of neural transmission (Devi and Mishra, 2013) which is indicative of paralysis and pending death and causes retarded physiological processes in fish physiological functions (Omoregie, 1995;

Time	C1	C2	C3	C4	C5	Control	Mean for time	C.D. at 5%
E1 06	104.600	105.800	99.200	89.500	92.100	82.400	95.600	4.1176
12	71.900	70.400	61.500	58.200	53.800	50.500	63.667	4.1176
24	73.500	65.400	62.900	61.500	58.200	53.800	62.550	4.1176
48	70.200	70.800	69.500	61.500	58.200	53.800	63.667	4.1176
72	52.300	55.400	54.500	33.700	21.900	42.283	4.1176	
96	93.500	96.000	97.400	97.300	98.000	96.783	4.1176	
Mean for concentrations	77.667	77.633	74.483	69.017	64.883	60.283	4.1176	
E2 06	100.800	91.700	90.700	91.300	87.900	82.800	90.867	10.903
12	97.300	89.400	88.100	85.300	81.800	79.000	86.817	10.903
24	95.000	91.400	90.300	83.000	75.100	87.450	10.903	
48	97.100	97.900	90.700	91.400	91.300	91.300	97.800	10.903
72	84.600	86.700	53.700	42.800	24.700	44.417	10.903	
96	90.600	100.000	98.900	99.800	98.000	99.800	99.800	10.903
Mean for concentrations	91.183	92.333	83.683	76.417	67.850	62.767	10.903	
E3 06	102.500	97.900	89.500	78.100	78.800	76.417	87.183	10.881
12	96.500	98.800	82.400	77.300	79.000	84.233	10.881	
24	95.200	96.600	84.200	79.200	75.100	83.467	10.881	
48	95.800	94.500	90.100	78.900	70.600	83.467	10.881	
72	66.500	66.700	53.700	42.800	24.700	44.417	10.881	
96	90.600	102.500	102.200	102.200	101.600	99.800	99.800	10.881
Mean for concentrations	91.183	92.333	83.683	76.417	67.850	62.767	10.881	

Table 5. Opercular beat frequency elicited by the fish when exposed to dimethoate.

Table 6. Swimming velocity-cm per sec elicited by the fish exposed to CPF bioassays.
Table 7. Swimming velocity-cm per sec elicited by the fish exposed to dimethoate bioassays.

Factor (A)	Time	C1	C2	C3	C4	C5	Control	Mean for time	
E1	06	16.333	4.438	3.547	3.810	2.777	1.965	5.478	1.8786
12	6.186	4.852	5.181	3.620	2.800	2.185	4.137	1.8092	
24	11.272	9.600	3.446	2.574	2.045	2.014	5.158	4.432	
48	8.176	6.406	2.848	2.234	1.539	1.229	3.795	2.012	
72	8.750	6.753	2.552	1.409	2.482	0.824	3.795	4.432	
96	8.475	8.600	10.225	11.850	9.950	8.175	9.546	2.012	
Mean for concentrations	9.865	6.775	4.633	4.250	3.599	2.732	1.8092		
E2	06	15.525	3.633	2.988	2.682	2.134	1.851	4.432	
12	4.738	3.083	2.567	2.642	2.390	2.037	2.895	4.432	
24	4.569	3.172	2.600	1.993	1.873	1.871	2.680	4.432	
48	3.372	3.300	2.689	2.078	1.038	1.034	2.252	4.432	
72	3.747	4.067	2.226	1.529	1.196	0.670	2.239	4.432	
96	4.925	5.353	6.378	6.581	5.659	5.437	5.722	4.432	
Mean for concentrations	6.146	4.378	3.241	2.918	2.367	2.150	4.432		

Table 8. Swimming activity index elicited by the chlorpyrifos exposed fishes during three trials at different concentrations.

Days	C1	C2	C3	C4	C5	Control	Mean for time	
E1	Day 1	0.48	0.31	0.25	0.43	0.23	1.02	0.8786
Day 2	0.19	0.27	0.19	0.17	0.07	1.03	1.8786	
Day 3	0.18	0.26	0.15	0.12	0.12	1	4.602	
Day 4	0.09	0.09	0.1	0.06	0.04	1.09	4.602	
Mean ± SE	0.235 ± 0.0084	0.232 ± 0.0048	0.172 ± 0.0031	0.195 ± 0.0041	0.135 ± 0.0019	4.602		
E2	Day 1	0.42	0.3	0.25	0.27	0.07	1.02	1.8092
Day 2	0.3	0.25	0.01	0.17	0.07	1.03	4.432	
Day 3	0.25	0.21	0.17	0.14	0.12	1	4.432	
Day 4	0.21	0.18	0.14	0.14	0.13	1.09	4.432	
Mean ± SE	0.295 ± 0.0046	0.235 ± 0.0026	0.1425 ± 0.0049	0.18 ± 0.0031	0.135 ± 0.0016	4.432		
E3	Day 1	0.36	0.29	0.27	0.23	0.22	1.02	1.8617
Day 2	0.39	0.36	0.26	0.22	1.03	4.432		
Day 3	0.36	0.36	0.25	0.18	1.04	4.432		
Day 4	0.5	0.42	0.39	0.25	0.2	1.09	4.432	
Mean ± SE	0.4025 ± 0.003	0.3575 ± 0.006	0.32 ± 0.003	0.23 ± 0.0018	0.195 ± 0.0019	4.432		

It is important to mention that during initial hours of pesticide exposure, the opercular movements were found to get increased which compensated the need of required oxygen demand in fish body. But in the later hours of experiments, when the opercular movements got reduced due to the induction of paralysis, fishes tried to escape the toxic medium, thereby depicting the surfacing and gulping movements.

Swimming Velocity (V_s) is the rate of change of distance from one point (n) to another (m) in a given test chamber. Swimming Activity Index (A_s) is the average number of total moves registered in the period divided by the number of total moves recorded on each particular experimental day i of the period (Eissa et al., 2003, 2006). Increase in Swimming Velocity indicates hyperactivity while as its reduction depicts lethargy, paralysis and death in fishes. Similarly the Swimming Activity describes whether the fishes are moving normally without any indication of disease, stress and toxicity. Hence, any deviations of these indices are indicative abnormal behaviour in fishes.

In this study, the Swimming Velocity and Swimming Activity indices decreased in common carps exposed to dimethoate and CPF. In both experimental setups, the Swimming Velocity decreased in all the replicates (E1, E2 and E3) with the exposure of time and increase in the pesticide concentration. From C1 to C5 the gradual decrease in the Swimming Velocity values significantly ($p \leq 0.001$) decreased when compared with control (Tables 6 and 7). The Swimming Activity also decreased significantly ($p \leq 0.001$) compared to the control (Tables 8 and 9). Our results are in agreement with the findings of Rao et al. (2005) who found reduced Swimming Velocity in Gambusia affinis after chlorpyrifos exposure. Similar results were reported by Kavitha and Rao (2008) who reported decrease in Swimming Velocity of Gambusia affinis exposed to chlorpyrifos with the increase in the pesticide concentration which are in accordance with the results obtained in this study. Devi and Mishra (2013) obtained similar results in Channa punctatus under chlorpyrifos intoxication while as Verma et al. (2017) also obtained the similar results against Hilban on Heteropneustes fossilis which are in accordance with the results of this investigation. Decrease in Swimming Activity is also reported by Levin et al. (2003); Ramesh and Saravanan (2008), Dogan and Can (2011) and Harit and Srivastava (2018) who also reported reduction Swimming Activity Index in different fishes after sub-lethal exposure to different pesticide concentrations.

The reduction in the values of swimming indices is the outcome of neurotoxic stress induced by toxicants. Accumulation of Ach at synaptic junctions due to inhibition of AChE enzyme leads to sluggish movements in fishes, causing lowering of swimming indices. Hence, change in fish locomotor behaviour is resultant of Ach accumulation causing interruption in coordination between the nervous and muscular junctions. Similar reduction in locomotor activity has been reported by Rao et al. (2005); Begum et al. (2006) and Kavitha and Rao (2008) who linked depressed locomotor activity with the inhibition of AChE enzyme in fishes.
It is pertinent to mention that no microphthalmia, unilateral anophthalmia and exophthalmia were reported in this study. Our results differ with those obtained by Devi and Mishra (2013) who reported various eye deformities including microphthalmia, unilateral anophthalmia and exophthalmia in *Channa punctatus* exposed to chlorpyrifos. Misha and Verma (2016) and Verma et al. (2017) also reported several eye deformities in *Heteropneustes fossilis* under CPF intoxication. In this study, however, clouding of eyes which initially turned the pupil and later on the whole eye in to a white ball of cloud was noticed in both, dimethoate and chlorpyrifos exposed fishes. The white mass of cloud turned dense

Table 9. Swimming activity index elicited by the dimethoate exposed fishes during three trails at different concentrations.

Days	C1	C2	C3	C4	C5	Control
E1 Day 1	0.155	0.155	0.13	0.11	0.1	1.06
Day 2	0.144	0.1	0.11	0.09	0.09	1
Day 3	0.13	0.12	0.09	0.07	0.04	1.04
Day 4	0.159	0.14	0.11	0.09	0.06	1
Mean ± SE	0.147 ± 0.006	0.12875 ± 0.012	0.11 ± 0.008	0.09 ± 0.008	0.0725 ± 0.013	1.025 ± 0.015

E2 Day 1	0.183	0.165	0.134	0.125	0.116	1.06
Day 2	0.17	0.157	0.14	0.097	0.097	1
Day 3	0.167	0.157	0.157	0.123	0.103	1.04
Day 4	0.17	0.18	0.18	0.13	0.13	1
Mean ± SE	0.18 ± 0.008	0.16475 ± 0.005	0.15275 ± 0.010	0.11875 ± 0.007	0.1115 ± 0.007	1.025 ± 0.015

E3 Day 1	0.188	0.184	0.142	0.142	0.108	1.06
Day 2	0.183	0.175	0.135	0.118	0.1	1
Day 3	0.178	0.16	0.141	0.12	0.114	1.04
Day 4	0.19	0.173	0.141	0.135	0.1	1
Mean ± SE	0.18475 ± 0.003	0.173 ± 0.005	0.13975 ± 0.002	0.12875 ± 0.006	0.1055 ± 0.003	1.025 ± 0.015

Figure 3. Clouding of eyes at initial hours of pesticide exposure.

Figure 4. Clouding of eyes of common carps exposed to dimethoate initial hours of pesticide exposure.

Figure 5. Clouding of eyes of common carps exposed to CPF initial hours of pesticide exposure.
with the increase in exposure time of pesticides to fishes and was reported early in the chlorpyrifos exposed samples. The same results were reported by Dey and Saha (2014).

In present study none of the experimental fishes were found to develop fin necrosis in any trials of dimethoate and chlorpyrifos which are not in accordance with the results reported by Pandey et al. (2008); Misha and Verma (2016) and Verma et al. (2017) who reported fin necrosis in various fish species exposed to different pesticides. However, there were various instances of split fins found at the termination of bioassays of dimethoate and chlorpyrifos. In dimethoate exposed fishes, up to 20% of the fishes developed split fins at 96 h of the experiment in C5 indicating that this concentration can be lethal for fishes leading to the morphological deformities (Table 10). Fishes exposed to chlorpyrifos started to show the morphological deformities in fins early in the 48 h of experiment in C4 and C5 (Table 11) which suggests that even small quantities of chlorpyrifos are lethal and potentially toxic to common

Table 10. Fin deformities developed in Cyprinus carpio var. communis exposed to different concentrations of dimethoate and chlorpyrifos.

Pesticide	Time in hours	C1	C2	C3	C4	C5	CT
Dimethoate	6	-	-	-	-	-	-
	12	-	-	-	-	-	-
	24	-	-	-	-	-	-
	48	-	-	-	-	-	-
	72	-	-	-	-	-	-
	96	-	-	-	-	-	-
Chlorpyrifos	6	-	-	-	-	-	-
	12	-	-	-	-	-	-
	24	-	-	-	-	-	-
	48	-	-	-	-	-	-
	72	-	-	-	-	-	-
	96	-	-	-	-	-	-

T denotes trial, CT = control.

Figure 6. Split fins in common carps exposed to dimethoate.

Figure 7. Split fins in common carps exposed to CPF.
Table 11. Incidence of Micro-Nucleus (MN) after 21 days of chlorpyrifos exposure to *Cyprinus carpio* var. *communis* (R1-R3).

Pesticide	S. No.	Conc. of pesticide (ppb)	No. of Fishes Observed	No. of cells counted	No. of cells with MN (R1, R2, R3)	MN Frequencies Mean ± S.E.
Chlorpyrifos	1	0.76	5	100	1, 3, 1	1.67 ± 0.66
	2	1.52	5	100	3, 2, 2	2.33 ± 0.33
	3	2.28	5	100	4, 7, 7	6.00 ± 1.00
	4	3.04	5	100	7, 7, 9	7.67 ± 0.67
	5	3.8	5	100	12, 11, 9	10.67 ± 0.88
	6	0.00*	5	100	0, 0, 0	0.0 ± 0.0
Dimethoate	1	0.22	5	100	1, 1, 1	1.00 ± 0.00
	2	0.44	5	100	1, 2, 1	1.33 ± 0.33
	3	0.66	5	100	2, 2, 1	1.67 ± 0.33
	4	0.88	5	100	7, 4, 6	5.67 ± 0.88
	5	1.10	5	100	9, 10, 9	9.33 ± 0.33
	6	0.00*	5	100	0, 0, 0	0.0 ± 0.0

a = zero conc. for control.

Figure 8. Micronuclei formation due to dimethoate.

Figure 9. Micronuclei formation due to CPF.
carps. The maximum number of 20% of fishes was found to develop split fins. The reason behind it might be the dermal absorption of the toxicant being one of the portal of entry. These results are in accordance with the results of Devi and Mishra (2013).

The instances of genotoxicity in this study were confirmed by the incidence of micro-nuclei development in the fish erythrocytes. The incidence was found both, time and dose dependent in both the pesticides. In chlorpyrifos treated fishes, same trend was observed with least frequencies recorded in C1 and highest in C5 (Table 11). In dimethoate exposed fishes, the percentage of development of micro-nuclei was found to get increased from C1 to C5 with none recorded in the control samples (Table 11). However, the incidence of micronuclei in chlorpyrifos exposed fishes was found higher than that of dimethoate confirming its severe induction of toxicity. Our findings are in agreement with Naqvi et al. (2016) who found that increase in frequencies of micronuclei are significantly dose dependent in Oreochromis mossambicus, Malik and Ganaie (2011); Malik et al. (2011); Ali et al. (2014); Dar et al. (2014); Anita et al. (2016), Bhatnagar et al. (2016) who found that increase in frequencies of micronuclei are severe induction of toxicity. Our findings are in agreement with Naqvi et al. (2016) who found that increase in frequencies of micronuclei are significantly dose dependent in Oreochromis mossambicus, Malik and Ganaie (2011); Malik et al. (2011); Ali et al. (2014); Dar et al. (2014); Anita et al. (2016), Bhatnagar et al. (2016) who reported micronuclei frequencies associated with the dose of different pesticides in fishes. Increase in the micronuclei frequency in organophosphate exposed fishes is indicates damage in the chromatin material, although the exact mechanism of genotoxicity is still not understood fully. Oxidative damage is thought to be an important mechanism in the DNA damage caused by organophosphate pesticides (Hodgson and Levi, 1996).

5. Conclusion

The alterations reported in the behavioural and genotoxicological responses of C. carpio communis juveniles exposed to sublethal concentrations of organophosphate pesticides in this study indicates that organophosphate pesticides have direct impact in alteration of behaviour of fishes and inducing Genotoxicity. Chlorpyrifos is more hazardous than dimethoate for inducing behavioural and genotoxicity in fish hemocytes. Behavioural and genotoxicological responses analysis maybe useful approach for monitoring the long-term effects of pesticides on cultured fish. This in turn will affect the growth and fitness, fecundity of the fish population and other non-targeted organisms such as man through the food chain. Therefore, the toxic hazard of organophosphate pesticides should be taken into consideration during its use in adjacent aquatic habitat.

Declarations

Author contribution statement

Sameena Khan: Performed the experiments; Wrote the paper. Imitiyaz Qayoom: Analysed and Interpreted the data; Conceived and designed the experiments. Masood H. Balkhi: Conceived and designed the experiments. Adnan Abubakr: Analyzed and interpreted the data. Sumyaa Rashid: Contributed reagents, materials, analysis tools or data. Rana M Alsaffar: Contributed reagents, materials, analysis tools or data; Analysed and interpreted the data. Muneeb U Rehman: Conceived and designed the experiments; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data will be made available on request.

Declaration of interest’s statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Ali, M.N., Ganaie, H.A., Nisar, Z., 2014. Studies on the toxicogenomic effects of organophosphate pesticide dimethoate [o, o-dimethyl s-(methylcarbamoylmethyl) phosphorodithioate] in Cyprinus carpio L. Int. J. Curr. Res. Rev. 106, 79.
Anita, B., Yadav, A.S., Cheema, N., 2016. Genotoxic effects of chlorpyrifos in freshwater fish Carassius mirgala using micronucleus assay. Adv. Biol. 1.
A. P. H. A., 2012. Standard Methods for the Examination of Water and Wastewater. Bagheri, F., 2007. Study of pesticide residues (diazinon, azinphomethyl). In: In the Rivers of Golestan Province (Gorgan, Raud and Gharesho). Tehran University of Medical Science, Tehran, Iran. M.Sc. Thesis.
Banjara, B., Singh, R.K., 2019. Toxicity study of endosulfan, carbofurran, dichlorvos, dimethoate and phorate in catfish Mynas angחקha. Int. J. Recent Sci. Res. 10, 34203.
Bari, S., Rybakovas, A., Lang, T., et al., 2013. Environmental genotoxicity and cytotoxicity levels in fish from the North Seaoffshore region and Atlantic coastal waters. Mar. Pollut. Bull. 68, 105.
Begum, G., Venkateswaralu, J., Velankanti, K., 2006. Oxidative stress and changes in locomotor behaviour and gill morphology of Gambusia affinis exposed to chromium. Toxicol. Environ. Chem. 88, 365.
Bhatnagar, A., Yadav, A.S., Cheema, N., 2016. Genotoxic effects of chlorpyrifos in freshwater fish Carassius mirgala using micronucleus assay. Adv. Biol. 1.
Bolognesi, C., 2003. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat. Res. 543, 251–272.
Candioti, J.V., Solonessi, S., Larramendy, M.I., 2010. Genotoxic and cytotoxic effects of the formulated insecticide alfand on Caenordom dennmannaculatus (Jenyns, 1842) (Pisces: Poeciliidae). Mutat. Res. 703, 180–186.
Cavas, T., Ergene-Gencer, S., 2005. Micronucleus test in fish cells: a bioassay for In situ monitoring of genotoxic pollution in the marine environment. Environ. Mol. Mutagen 46, 64–70.
CDFDOA, 2004. Canada department of fisheries and ocean animal user training template. in: Blood Sampling Template 1.
Chaabah, A.C., Silikoi, F.D., Vincent-Akpou, I., 2004. Toxicity of anorganophosphate pesticide (chlorpyrifos) on a common Niger delta wetland fish Tilapia ginnenimus (Bleeker 1862). J. Appl. Sci. Environ. Manag. 8, 11.
Daoud, A.A., Nagpur, N.S., Sudhir, K.B., Ravindra, K., Kushwaha, B., Lakra, W.S., 2009. Assessment of genotoxic and Mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem. Toxicol. 47, 650–656.
Dar, S.A., Younus, A.R., Balkhi, M.H., Ganaie, F.A., Bhat, F.A., 2014. Assessment of endosulfan induced genotoxicity and mutagenicity manifested by oxidative stress pathways in freshwater cyprinid fish crucian carp (Carassius carassius L.). Chemosphere 20, 273.
Devi, Y., Mishra, A., 2013. Study of behavioural and morphological anomalies offish of fresh water teleost, Channa punctatus under chlorpyrifos intoxication. Int. J. Pharma Bio Sci. 4, 865.
Dey, C., Saha, S.K., 2014. Dimethoate (30%) induces on the toxicities in the Indian major carp: Labeo rohita (Hamilton). Int. J. Fish. Aquat. Stud. 1, 232.
Dogran, D., Can, C., 2011. Behavioral and hematological, biochemical and behavioral responses of Oncorhynchus mykiss to dimethoate. Fish Physiol. Biochem. 37, 951.
Eissa, B.L., Ferrari, L., Ossana, N.A., Salibian, A., 2006. Biomarcadores etoloxicos no invasivos de estres ambiental: estudio comparativo en dos teleostees de ecosistemas de la region pampeana argentina. Revista de Toxicologia (Spain) 23, 11–16.
Eissa, B.L., Ossana, N.A., Ferrari, L., Salibian, A., 2009. Quantitative behavioral parameters as toxicity biomarkers: fish responses to waterborne cadmium. Arch. Environ. Contam. Toxicol. 58, 1032.
Eissa, B.L., Salibian, A., Ferrari, L., Porta, P., Borgia, M., 2003. Evaluacion toxicologica no invasiva del cadmico: modificaciones de biomarcadores conductuales en Cyprinus carpio. Biologia Acuatica 20, 56–62.
Ensminger, M., Bergin, R., Spurlock, F., Goh, K.S., 2011. Pesticide Concentrations in Environ. Toxicol. Chem. 15, 1590.
Eissa, B.L., Ossana, N.A., Ferrari, L., Salibian, A., 2006. Biomarcadores etoloxicos no invasivos de estres ambiental: estudio comparativo en dos teleostees de ecosistemas de la region pampeana argentina. Revista de Toxicologia (Spain) 23, 11–16.
Eissa, B.L., Ossana, N.A., Ferrari, L., Salibian, A., 2009. Quantitative behavioral parameters as toxicity biomarkers: fish responses to waterborne cadmium. Arch. Environ. Contam. Toxicol. 58, 1032.
Ensminger, M., Bergin, R., Spurlock, F., Goh, K.S., 2011. Pesticide Concentrations in Water and Sediment and Associated Invertebrate Toxicity in Del Puerto and Orestimba Creeks, California, 2007–2008. Environmental Monitoring and Assessment.
EPA, 2001. Pesticide IndustrySales and Usages: 1996 and 1997 Market Estimates. www.epa.gov/Oheaa1/pestsales/97pestsales/table1.html.
Fryday, S.N.L., Andrw, D.M., Hart, A.D.M., et al., 1996. Effects of exposure to an organophosphate pesticide on the behaviour and use of cover by captive starlings. Environ. Toxicol. Chem. 15, 1590.
Grillitsch, B., Vogl, C., Wytke, R., 1999. Qualification of spontaneous undirected locomotor behaviour of fish for sub-lethal toxicity testing. Part II. Variability of measurement parameters under toxicant induced stress. Environ. Toxicol. Chem. 18, 2743.
Harrt, G., Srivastava, N., 2018. Behavioural alterations in Channa punctatus after exposure to endosulfan followed by subsequent recovery. Int. J. Fish. Aquat. Stud. 6, 51.
Hodgson, E., Levi, P.E., 1996. Pesticides: an important but understated model for the environmental health sciences. Environ. Health Perspect. 104, 97.
Hudson, E., 2004. A Text Book of Modern Toxicology, third ed., 57. Department of Environmental and Biochemical Toxicology. North California State University.

John, P.J., 2007. Alteration of certain blood parameters of freshwater teleost Mylophorus victatus after chronic exposure to metasystox and sevin. Fish Physiol. Biochem. 33, 15–20.

Kane, A.S., Salisbury, J.D., Brewer, S.K., 2005. Fish Models in Behavioural Toxicology: Automated Techniques, Updates and perspectives. In: Ostrander, G.K (Ed.), Methods In Aquatic Toxicology, second ed. Lewis Publishers, Boca Raton, p. 559.

Kavitha, P., Rao, J., 2008. Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ. Toxicol. Pharmacol. 26, 192.

Kurteshi, K., Shaqiri, Z., 2019. Estimation of genotoxic effect of insecticidechramagor (dimethoate) on gold fish Carassius auratus after 5 days of treatment. Chem., Bulg. J. Sci. Educ. 6, 384.

Levin, E., Cristhansis, E., Yacisin, K., et al., 2003. Chlorpyrifos exposure of developing peripheral blood erythrocytes of Fish (Clarias gariepinus) under temperate conditions of Kashmir, India. Sci. World J. 1.

Malik, M., Ganie, F.A., Ali, M.D.N., Nisar, Z., 2011. Genotoxic effects of organophosphate insecticide thiometon in some exotic fishes of Kashmir. Int. J. Pharm. Sci. 8 (1), 19.

Malik, M., Ganie, F.A., Ali, M.D.N., Nisar, Z., 2011. Genotoxic effects of organophosphate pesticide phorate in some exotic fishes of Kashmir. Cancer Biol. 1, 8.

Marigoudar, S.R.R.N., Ahmed, M.D., 2009. Cypermethrin of induced respiratory and behavioral responses in Labeo rohita. Vet. Archiv. 79, 583.

Misha, A., Verma, S., 2016. Acute toxicity bioassay of organophosphorous pesticide, chloropyrifos on freshwater catfish, Heteropeustes fossilis (Bloch, 1794). Int. J. Fish. Aquat. Stud. 4, 388.

Mohanty, G., Mohanty, J., Nayak, A.K., Mohanty, S., Dutta, S.K., 2011. Application of comet assay in the study of DNA damage and recovery in Rohu (Labeo rohita) fingerlings after an exposure to phorate, an organophosphate pesticide. Ecotoxicology 20, 283–292.

Nagaraju, B., Sudhakar, P., Anthia, A., Haribabu, G., Rathnamma, V.V., 2011. Toxicity evaluation and behavioural studies of fresh water fish Labeorohita exposed to Rimon. Int. J. Res. Pharm. Biomed. Sci. 2, 722.

Naqui, G.Z., Shoaib, N., Ali, A.M., 2016. Genotoxic potential of pesticides in the peripheral blood erythrocytes of Fish (Oreochromis mossambicus). Pakistan J. Zool. 48, 1643.

Nichum, J.G., Bart Jr., H.L., Bowser, P.R., Geer, I.E., Hubbs, C., Jenkins, J.A., Macmillan, J.R., Rachlin, J.W., Rose, J.D., Sorensen, P.W., Tomasso, J.R., 2004. American Fisheries Society. http://www.ccsca.ca/en/training/niaut/fish.

Nunes, B., 2011. The use of cholinesterases in ecotoxicology. Rev. Environ. Contam. Toxicol. 22, 1–59.

Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B., Srivastava, S.K., 2010. Mutagenic and genotoxic effects of Carbosulphan in freshwater fish Channa punctatus (Bloch) using micronucleus assay and Alkaline Single-cell Gel Electrophoresis. Food Chem. Toxicol. 48, 202–208.

Omorogee, E., 1995. Effect of Petroleum in Nile tilapia and its Helminthes Infection. University of Jos, Jos, Nigeria, p. 152. Ph. D Thesis.

Pandey, R.K., Singh, R.N., Singh, S., et al., 2008. Acute toxicity bioassay of dimethoate on freshwater air breathing catfish Heteropeustes fossilis (Bloch). J. Environ. Biol. 30, 437.

Peatman, D., Levin, L., 1986. Pesticides- amounts applied and amounts reaching Pests. Biosciences 36, 86–91.

Qayoom, I., Balkhi, M.H., Mukhtar, M., et al., 2014. Biochemical toxicity of organophosphate compounds in fishes. SKUAST J. Res. 16, 1.

Qayoom, I., Balkhi, M.H., Mukhtar, M., et al., 2016a. Chlorpyrifos Induced Acute Toxicity and Behavioural Responses in Juvenile Common Carp (Cyprinus carpio Var. Commani) of Kashmir. Ecol. Environ. Conserv. 22, 571.

Qayoom, I., Shah, F.A., Mukhtar, M., et al., 2016b. Dimethoate Induced Behavioural changes in juveniles of Cyprinuscarpio var. commani under temperate conditions of Kashmir, India. Sci. World J. 1.

Ramesh, H., Saravananan, M., 2008. Haematological and biochemical responses in a freshwater fish Cyprinus carpio exposed to chlorpyrifos. Int. J. Integr. Biol. 3, 80.

Rao, K.R.S.S., 1999. Pesticide Impact on Fish Metabolism. Discovering publishing house, New Delhi, India, p. 140.

Rao, J.V., Ghoussia, B., Pallela, R., 2005. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int. J. Environ. Res. Publ. Health 2, 478.

Reish, D.J., Oshida, O.S., 1987. Manual of Methods in Aquatic Environment Research Part 10, Short Term Bioassay, FAO.

Siang, H.Y., Yee, L.M., Seng, C.T., 2007. Acute toxicity of Organochlorine Insecticide endosulfan and its effect on behaviour and some Hematological parameters of Asian Swamp fish (Monopterus albus). Pestic. Biochem. Physiol. 89, 46–53.

Tantarapale, V.T., Rathod, S.H., Kapil, S., 2012. Temperature stress on opercular beats and respiratory rate of freshwater fish Channa punctatus (Bloch) using micronucleus assay and Alkaline Single-cell Gel Electrophoresis. Food Chem. Toxicol. 48, 202–208.

Uner, N., Oruc, E.O., Seygiler, Y., et al., 2006. Effects of diazoxon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ. Toxicol. Pharmacol. 21, 241.

Verma, S., Rawat, A., Mishra, A., 2017. Study of lethal toxicity of Hilban on fresh water cat fish, Singh (Heteropeustes fossilis; Bloch, 1794). Asian J. Bio. Sci. 12, 156.

Wakim, K., Bergwerff, A.A., Seinen, W., 2009. Residue levels of organochlorines and organophosphates in water, fish and sediments from Lake Victoria-Kenyan portion. Aqu. Ecol. Heal Man 12, 337–431.

Woke, G.N., Wokoma, J.P.A., 2009. Effects of pesticide (Chlorpyrifos Ethyl) on the fingerlings of catfish (Clarias gariepinus). Global J. Pure Appl. Sci. 15, 3.

Xia, J., Niu, C., Pei, X., 2010. Effects of chronic exposure to nonylphenol on locomotor activity and social behavior in zebrafish (Danio rerio). J. Environ. Sci. 22, 1435.