DIVISION ALGEBRAS SATISFYING \((x^p, x^q, x^r) = 0\)

O. DIANKHA, A. ROCHDI AND M. TRAORÉ

Abstract. We study algebras \(A\), over a field of characteristic zero, satisfying \((x^p, x^q, x^r) = 0\) for \(p, q, r \in \{1, 2\}\). The existence of a unit element in such algebras leads to the third power-associativity. If, in addition, \(A\) has degree \(\leq 4\) then \(A\) is power-commutative. We deduce that any 4-dimensional real division algebra, with unit element, satisfying \((x^p, x^q, x^r) = 0\) is quadratic. This persists for \((x, x^q, x^r) = 0\) if we replace the word ”unit” by ”left-unit”.

Mathematics Subject Classification 2000: 17A05, 17A20, 17A30, 17A35, 17A45.

Keywords. Third power-associative (Flexible, Quadratic) algebra. Division algebra.

1. Introduction

The study of finite-dimensional (FD) real division algebras is a fascinating topic that arose after the discovery of quaternions \(\mathbb{H}\) and octonions \(\mathbb{O}\). Classical results show that \(\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}\) classifies the FD real associative division algebras ([Fr 1878], [HKR 91]) and that \(\{\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\}\) classifies the FD real alternative division algebras ([Zo 31], [HKR 91]).

The \((1, 2, 4, 8)\)-theorem ([Ho 40], [BM 58], [Ke 58], [HKR 91]), which states that 1, 2, 4, 8 are the only possibilities for the dimension of every FD real division algebra, revolutionized the theory and has become an indispensable tool in almost all subsequent work. On the other hand the classification of real division algebras is trivial in dimension 1 ([S 66] p. 2), ([Rod 04] Proposition 1.2 p. 104). It was completed and refined quite recently in dimension 2 ([HP 04], [Di 05]) after a few attempts ([BBO 81, 82], [AK 83], [Bu 85], [G 98]). Thus work focused onto algebras of dimension 4 and 8.

Studies in [BBO 82], where the pseudo-octonions algebra \(\mathbb{P}\) ([Ok 78] played an important role, led to the classification of the FD real flexible\(^2\) division algebras ([CDKR 99], [Da 06]) generalizing [Zo 31].

Another generalizing result ([Os 62], [Di 00]) classifies the 4-dimensional real quadratic\(^3\) division algebras, and despite a series of additional works

\(1\) An algebra \(A\) over an arbitrary field is said to be **alternative** if it satisfies \((x, x, y) = (y, x, x) = 0\) for all \(x, y \in A\).

\(2\) Algebra \(A\) is said to be **flexible** if it satisfies \((x, y, x) = 0\) for all \(x, y \in A\).

\(3\) Algebra \(A\) is said to be **quadratic** if it contains a unit element \(e\) and for all \(x \in A\) the elements \(e, x, x^2\) are linearly dependant.
in dimension 8 ([DL 03], [Li 04], [DFL 06], [DR 10]) the classification of 8-dimensional real quadratic division algebras remains an open problem.

The class of power-commutative algebras contains the flexible [Raf 50], and quadratic algebras. Note here that among the finite-dimensional real division algebras, power-associative algebras are the same as the quadratic algebras ([Roc 94] Corollaire 2.27 p. 36). The problem of determining all real division algebras is more difficult in dimension 8 than on dimension 4 where the works are progressing relatively more quickly, as occurred for the power-commutative algebras [DR 11].

Third power-associative algebras are a natural generalization of power-commutative ones, and was already studied ([Elm 83, 87], [EP 94]) but apparently never in the context of division algebras. In the present work we begin our study with a third power-associative algebra over an arbitrary field of characteristic zero. We show that the additional assumption of the existence of a one-sided unit and that the algebra has degree ≤ 4, ensures the commutativity of powers (Lemma 1). We deduce that every real third power-associative division algebra, with one-sided unit, having degree ≤ 4 is quadratic (Theorem 3).

Algebras satisfying the identity \((x^p, x^q, x^r) = 0\) for fixed \(p, q, r \in \{1, 2\}\) were also studied outside the general context of division algebras ([CR 08], [CRR 11], [Elm 01], [EE 04]). Here we show first that every real division algebra, with left-unit, satisfying \((x, x, x^2) = 0\) is quadratic (Theorem 1). This remains true for every real division algebra, with unit element, of degree ≤ 4 satisfying \((x^p, x^q, x^r) = 0\) (Theorem 2). Above result persists for every identity \((x, x^q, x^r) = 0\) if we replace the word ”unit element” by ”left-unit element” (Theorem 3). In the other hand there are examples of real left-unital division algebras of degree 2 satisfying \((x^2, x^q, x^r) = 0\) for all \(q, r \in \{1, 2\}\) containing no right-unit element. Hence the need, here, for the assumption of the existence of a two-sided unit element.

2. Notations and preliminary results

Algebras \(A\) will be considered over a field \(\mathbb{K}\) of characteristic zero. We denote by \((x, y, z)\) (resp. \([x, y]\)) the associator \((xy)z - x(yz)\) of \(x, y, z \in A\) (resp. the commutator of \(x, y \in A\)). The subalgebra of \(A\) generated by every element \(x \in A\) is denoted by \(A(x)\).

(1) Algebra \(A\) is called

(a) **third power-associative (TPA)** if \((x, x, x) = 0\) for all \(x \in A\),
(b) **power-associative** if \(A(x)\) is associative for all \(x \in A\),
(c) **power-commutative** if \(A(x)\) is commutative for all \(x \in A\).
DIVISION ALGEBRAS SATISFYING \((x^p, x^q, x^r) = 0\)

(2) If \(A\) is FD then the set \(\{\dim(A(y)) : y \in A\}\) admit a bigger finite element \(d\) called the degree of \(A\) [Rod 94].

(3) \(A\) is called a division algebra if it is FD and the operators \(L_x\) and \(R_x\) of left and right multiplication by \(x\) be bijective for all \(x \in A - \{0\}\).

(4) If \(\mathbb{K}\) is the field of real numbers \(\mathbb{R}\) the algebra is said to be real. The \((1, 2, 4, 8)\)-theorem shows that the degree of every real division algebra is 1, 2, 4 or 8. □

Let now \(\mathbb{A}\) be one of classical real division algebras \(\mathbb{C}\) (complex numbers), \(\mathbb{H}\) (quaternions) or \(\mathbb{O}\) (octonions), and \(\# \mathbb{A}, \mathbb{A}^\ast\), the standard isotopes of \(\mathbb{A}\) having \(\mathbb{A}\) as vectorial space and products \(x * y\) given respectively by \(\overline{xy}, \overline{x} \overline{y}\) where \(x \mapsto \overline{x}\) is the standard conjugation of \(\mathbb{A}\).

3. The identities \((x^p, x^q, x^r) = 0\)

Let now \(A\) be an algebra and \(p, q, r\) be natural numbers in \(\{1, 2\}\). There are maps \(f_m : A \rightarrow A\) for \(m = 1, \ldots, p + q + r - 1\) such that the equality

\[
\left((x + \lambda y)^p, (x + \lambda y)^q, (x + \lambda y)^r\right) = (x^p, x^q, x^r) + \lambda f_1(x, y) + \ldots + \lambda^{p+q+r-1} f_{p+q+r-1}(x, y) + \lambda^{p+q+r}(y^p, y^q, y^r)
\]

holds for all scalar \(\lambda\) and \(x, y \in A\). Moreover, \(f_m(y, x) = f_{p+q+r-m}(x, y)\) for all \(m \in \{1, \ldots, p + q + r - 1\}\). The identity \((x^p, x^q, x^r) = 0\) in \(A\) is equivalent to \(f_m \equiv 0\) for all \(m\). We denote \(f_m \equiv 0\) by \((p.q.r.m)\) and call it the \(m^{th}\) identity obtained by linearization of \((x^p, x^q, x^r) = 0\). The following three tables, where \(x \bullet y\) denotes \(xy + yx\), specify the cases \((p.q.r.1), (p.q.r.2)\) and \((2.2.2.3)\) respectively:

\((x^p, x^q, x^r) = 0\)	The first corresponding identity (p.q.r.1)
\((x, x, x) = 0\)	\([x^2, y] + [x \bullet y, x] = 0\)
\((x, x, x^2) = 0\)	\((x, x \bullet y) + (x, y, x^2) + (y, x, x^2) = 0\)
\((x, x^2, x) = 0\)	\((x, x^2, y) + (x, x \bullet y, x) + (y, x^2, x) = 0\)
\((x, x^2, x^2) = 0\)	\((x, x^2, x \bullet y) + (x, x \bullet y, x^2) + (y, x^2, x^2) = 0\)
\((x^2, x, x) = 0\)	\((x^2, x, y) + (x^2, x \bullet y, x) + (x \bullet y, x, x) = 0\)
\((x^2, x, x^2) = 0\)	\((x^2, x, x \bullet y) + (x^2, x \bullet y, x^2) + (x \bullet y, x, x^2) = 0\)
\((x^2, x^2, x) = 0\)	\((x^2, x^2, x \bullet y) + (x^2, x \bullet y, x^2) + (x \bullet y, x^2, x) = 0\)
The second corresponding identity (p.q.r.2)

\[(x, x, x^2) = 0\]
\[(x, x, x^2, x^2) = 0\]
\[(x, x^2, x) = 0\]
\[(x, x^2, x^2) = 0\]

The third corresponding identity (2.2.2.3)

\[(x^2, x^2) = 0\]
\[(x^2, x^2, x^2) = 0\]

We have some relationships between the identities \((x^p, x^q, x^r) = 0\):

Proposition 1. Every TPA algebra satisfies the identity \((x, x^2, x) = 0\).

Proof. The result is well known [Raf 50] and follows here from (1.1.1.1) by putting \(y = x^2\) and taking into account the characteristic of \(K\).

Remark 1. Third power-associativity is stronger than identity \((x, x^2, x) = 0\) ([Ch 09] Remarque 1.17, p. 18). However, we know no examples of division algebras satisfying the identity \((x, x^2, x) = 0\) which are not TPA.

Proposition 2. Let \(A\) be an algebra, with unit element \(e\), satisfying the identity \((x^p, x^q, x^r) = 0\) for fixed \(p, q, r\) in \(\{1, 2\}\). Then \(A\) is TPA.

Proof. We can assume that \((p, q, r) \neq (1,1,1)\) and the result is immediately obtained from the equality (p.q.r.m), where \(m = p + q + r - 3\), by putting \(y = e\) and taking into account the characteristic of \(K\).

Proposition 3. Let \(A\) be an algebra over \(K\), with a left-unit \(e\), having no non-zero divisors of zero. If \(A\) satisfy the identity \((x, x^q, x^r) = 0\) for fixed \(q, r\) in \(\{1, 2\}\), then \(A\) has unit element \(e\) and is TPA.

Proof. We can assume that \((q, r) \neq (1,1)\) and putting \(x = e\) in the equality (1.q.r.1), we have: \(0 = (y, e, e) = (ye - y)e\). As \(A\) has no non-zero divisors of zero, \(e\) is a right-unit and Proposition 2 conclude.
DIVISION ALGEBRAS SATISFYING \((x^n, x^q, x^r) = 0\)
\(e \) is a two-sided unit and \(A \) satisfies the identity \((x^p, x^q, x^r) = 0\) for fixed \(p, q, r \in \{1, 2\}\).

(2) \(A \) has no non-zero divisor of zero and satisfies the identity \((x, x^q, x^r) = 0\) for fixed \(q, r \in \{1, 2\}\).

Proof. (1) According to the Proposition 2 algebra \(A \) is TPA. The first assertion follows then from ([Raf 50] Théorème 3, p. 578).

(2) The result follows from the first assertion and Proposition 3. \(\square \)

We can now state the following result:

Theorem 2. Let \(A \) be a real division algebra, with unit element \(e \), of degree \(\leq 4 \). Then the following assertions are equivalent:

(1) \(A \) satisfy the identity \((x^p, x^q, x^r) = 0\) for fixed \(p, q, r \in \{1, 2\}\).

(2) \(A \) is power-associative.

(3) \(A \) is quadratic.

Proof. (1) \(\Rightarrow \) (2). \(A \) is power-commutative by Lemma 1. The result is then a consequence of Hopf’s commutative theorem ([H 40] and Yang-Petro’s theorem ([Y 81], [Pet 87]).

(2) \(\Rightarrow \) (3). See ([Roc 94] Corollaire 2.27 p. 36).

(3) \(\Rightarrow \) (1) is obvious. \(\square \)

Theorem 2 remain true if one replaces the assumption ”\(A \) has a unit element” by ”\(A \) has a left-unit element” and identity ”\((x^p, x^q, x^r) = 0\)” by ”\((x, x^q, x^r) = 0\)”, thanks to Proposition 3:

Theorem 3. Let \(A \) be a real division algebra of degree \(\leq 4 \) having a left-unit element. Then the following assertions are equivalent:

(1) \(A \) satisfy the identity \((x, x^q, x^r) = 0\) for fixed \(q, r \in \{1, 2\}\).

(2) \(A \) is quadratic. \(\square \)

Remarks 1. Let \(A \) any one of real division algebras \(\mathbb{C}, \mathbb{H}, \mathbb{O} \).

(1) The isotope standard \(\overset{*}{A} \) of \(A \) and the pseudo-octonion algebra \(\mathbb{P} \) are flexible but not power-associative algebras. Thus the hypothesis of the existence of a left-unit element in Theorem 3 is necessary.

(2) The division algebra \(\overset{*}{A} \), having left-unit and degree 2, satisfies all the identities \((x^2, x^q, x^r) = 0\) but is not TPA. So Proposition 3 and Theorem 3 does not have a similar for the identities: \((x^2, x^q, x^r) = 0\).
DIVISION ALGEBRAS SATISFYING \((x^p, x^q, x^r) = 0\)

(3) Taking into account Theorem 2 and the \((1, 2, 4, 8)\)-theorem it is natural to wonder if there are examples of unital TPA real division algebras of degree 8. □

REFERENCES

[1] [A 48] A. A. Albert, *On the power-associativity of rings*. Summa Brasiliensis Mathematicae 2 (1948), 21-33.
[2] [AK 83] S. C. Althoen and L. D. Kugler, *When is \(R^2\) a division algebra?* American Mathematical Monthly, 90 (9) (1983), 625-635.
[3] [BM 58] R. Bott and J. Milnor, *On the parallelizability of the spheres*. Bull. Amer. Math. Soc. 64 (1958), 8789.
[4] [BBO 81] G. M. Benkart, D. J. Britten, and J. M. Osborn, *On applications of isotopy to real division algebras*. Hadronic J. 4 (1981), 497-529.
[5] [BBO 82] G. M. Benkart, D. J. Britten, and J. M. Osborn, *Real flexible division algebras*. Canadian Journal of Mathematics, 34 (1982), 550-588.
[6] [Bu 85] I. Burdujan, *Types of nonisomorphic two-dimensional real division algebras*. Proceedings of the national conference on algebra (Romanian), An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 31 (1985), suppl., 102-105.
[7] [CKMMRR 10] A. Calderón, A. Kaïdi, C. Martín, A. Morales, M. Ramírez, and A. Rochdi, *Finite-dimensional absolute valued algebras*. Israël J. Math. 184 (2011), 193-220.
[8] [Ch 09] A. Chandid, *Algèbres absolument valuées qui satisfont à \((x^p, x^q, x^r) = 0\)*. Thèse Doctorale, Université Hassan II-Mohammedia, Faculté des Sciences Ben M'sik (2009) Casablanca (Morocco).
[9] [CRR 11] A. Chandid, M. I. Ramírez, and A. Rochdi, *On finite-dimensional absolute-valued algebras satisfying \((x^p, x^q, x^r) = 0\)*. Commun. Algebra 40, No. 4 (2012), 1525-1546.
[10] [CR 08] A. Chandid and A. Rochdi, *A survey on absolute valued algebras satisfying \((x^i, x^j, x^k) = 0\)*. Int. J. Algebra, 2 (2008) 837-852.
[11] [CDKR 99] J. A. Cuenca, R. De Los Santos Villodres, A. Kaïdi, and A. Rochdi, *Real quadratic flexible division algebras*. Linear Algebra Appl. 290, (1999) 1-22.
[12] [Da 06] E. Darpö, *On the classification of the real flexible division algebras*. Colloquium Mathematicum 105 (1) (2006), 1-17.
[13] [Da 10] E. Darpö, *Some modern developments in the theory of real division algebras*. Proceedings of the Estonian Academy of Sciences, 59 (2010), 53-59.
[14] [DR 11] E. Darpö and A. Rochdi, *Classification of the four-dimensional power-commutative real division algebras*. P. Roy. Soc. Edinb. A, 141 A (2011), 1207-1223.
[15] [Di 00] E. Dieterich, *Real quadratic division algebras*. Comm. Algebra, 28 (2000) 941-947.
[16] [Di 05] E. Dieterich, *Classification, automorphism groups and categorical structure of the two-dimensional real division algebras*. Journal of Algebra and its applications, 4 (2005), 517-538.
[17] [DFL 06] E. Dieterich, K. H. Fieseler, and L. Lindberg, *Liftings of dissident maps*. J. Pure Appl. Algebra, 204 (1) (2006), 133-154.
[18] [DL 03] E. Dieterich and L. Lindberg, *Dissident maps on the 7-dimensional Euclidean space*. Colloq. Math. 97 (2003), 251-276.
[19] [DR 10] E. Dieterich and R. Rubinsztein, *The degree of an eight-dimensional real quadratic division algebra* is 1, 3, or 5. Bull. Sci. Math. **134** (2010), 447-453.

[20] [DRR 11] A. Diouf, M. Ramírez, and A. Rochdi, *Classification of the absolute-valued algebras with left-unit satisfying* $x^2(x^2)^2 = (x^2)^2x^2$. [arXiv:1109.0239v1 [math.RA]] 1 Sep 2011.

[21] [EP 94] A. Elduque, and J. M. Pérez, *Third Power Associative Composition Algebras*. Manuscripta Math. **84** (1994), 73-87.

[22] [Elm 83] M. L. El-Mallah, *Sur les algèbres absolument valuées qui vérifient l’identité* $(x, x, x) = 0$. J. Algebra **80** (1983), 314-322.

[23] [Elm 87] M. L. El-Mallah, *On finite dimensional absolute valued algebras satisfying* $(x, x, x) = 0$. Arch. Math. **49** (1987), 378-382.

[24] [EE 04] M. L. El-Mallah and M. El-Agawany, *Absolute valued algebras satisfying* $(x^2, x^2, x^2) = 0$. Comm. Algebra **32**, 3537-3541 (2004).

[25] [Fr 1878] F. G. Frobenius, *Über lineare Substitutionen und bilineare Formen*. J. Reine Angew. Math. **84** (1878), 1-63.

[26] [G 98] E. Gottschling, *Die zweidimensionalen reellen Divisionalgebren*, Seminarber. Fachb. Math. FernUniversität Hagen 63 (1998), 228-261.

[27] [HKR 91] F. Hirzebruch, M. Koecher and R. Remmert, *Numbers*. Springer-Verlag (1991).

[28] [Ho 40] H. Hopf, *Ein topologischerbeitrag zur reellen algebra*. Comment. Math. Helvet. (1940), 219-239.

[29] [HP 04] M. Hübner and H. P. Petersson, *Two-dimensional real division algebras revisited*. Beiträge Algebra Geom., **45**, (2004) 29-36.

[30] [Ke 58] M. Kervaire, *Non-parallelizability of the n-sphere for n > 7*. Proc. Nat. Acad. Sci. USA **44** (1958), 280-283.

[31] [Li 04] L. Lindberg, *On the doubling of quadratic algebras*. Colloq. Math. **100** (2004), 119-139.

[32] [Ok 78] S. Okubo, *Pseudo-quaternions and pseudo octonions algebras*. Hadronic J. **1**, (1978) 1250-1278.

[33] [Os 62] J. M. Osborn, *Quadratic division algebras*. Trans. AMS **105** (1962), 202-221.

[34] [Pet 87] J. Petro, *Real division algebras of dimension > 1 contain C*. Amer. Math. Monthly, **94** (1987), 445-449.

[35] [Raf 50 1] R. Raffin, *Algèbres non associatives, Algèbres du quatrième degré*. Bull. Cl. Acad. Roy. Belgique, Série 5, t. **36** (1950), 574-578.

[36] [Raf 50 2] R. Raffin, *Anneaux à puissances commutatifs et anneaux flexibles*. C. R. Acad. Sci. Paris **230** (1950), 804-806.

[37] [Roc 94] A. Rochdi, *Algèbres non associatives normées de division. Classification des algèbres réelles de Jordan non commutatives de division lineaire de dimension 8*. Thèse Doctorale, Université Mohammed V (1994) Rabat (Morocco). [arXiv:1002.0312v1 [math.RA]] 1 Feb 2010.

[38] [Rod 94] A. Rodríguez, *Absolute valued algebras of degree two*. In Nonassociative Algebra and its applications (Ed. S. González), 350-356, Kluwer Academic Publishers, Dordrecht-Boston-London (1994).

[39] [Rod 04] A. Rodríguez, *Absolute valued algebras, and absolute valuable Banach spaces*. Advanced courses of mathematical analysis I, 99-155, World Sci. Publ., Hackensack, NJ, (2004).
[41] [S 66] R. D. Schafer, *An introduction to nonassociative algebras*. Academic Press, New York (1966).

[42] [T 12] M. Traoré, *Algèbres réelles à puissances 3-associatives de division de dimension 4*. Mémoire de Master UCAD (2012) Dakar (Sénégal).

[43] [Y 81] C. T. Yang, *Division algebras and fibrations of spheres by great spheres*. J. Differential Geometry, 16 (1981), 577-593.

[44] [Zo 31] M. Zorn, *Theorie der alternativen Ringe*. Abh. Math. Sem. Univ. Hamburg, 8 (1931), 123-147.

O. Diankha
Département de Mathématiques et Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
e-mail: odiankha@ucad.sn

A. Rochdi and M. Traoré
Département de Mathématiques et Informatique, Faculté des Sciences Ben M’Sik, Université Hassan II-Mohammedia, 7955 Casablanca, Morocco
e-mail: abdellatifro@yahoo.fr and sasmohasas@yahoo.fr