Boundedness of derivatives and anti-derivatives of holomorphic functions as a rare phenomenon

Maria Siskaki

Abstract
In this article we prove a general result which in particular suggests that, on a simply connected domain Ω in \mathbb{C}, all the derivatives and anti-derivatives of the generic holomorphic function are unbounded. A similar result holds for the operator \tilde{T}_N of partial sums of the Taylor expansion with center $\zeta \in \Omega$ at $z = 0$, seen as functions of the center ζ. We also discuss a universality result of these operators \tilde{T}_N.

AMS Classification n°: primary 30K99, secondary 30K05

Key words and phrases: Baire's Theorem, generic property, Differentiation and Integration operators, Taylor expansion, partial sums, universal Taylor series

1 Introduction
Let Ω be a domain in the complex plane and consider the space $\mathcal{H}ol(\Omega)$ of all the functions that are holomorphic on Ω with the topology of uniform convergence on compacta. In the first section of this article we show that, for a function $f \in \mathcal{H}ol(\Omega)$, the phenomenon of its k-derivative or k-anti-derivative being bounded on Ω is a rare phenomenon in the topological sense, provided that Ω is simply connected. We do this by using Baire’s Theorem and we prove that the set \mathcal{D} of all the functions $f \in \mathcal{H}ol(\Omega)$ with the property that the derivatives and the anti-derivatives of f of all orders are unbounded on Ω is a dense G_δ set in $\mathcal{H}ol(\Omega)$.

If a function f is holomorphic in an open set containing ζ, then $S_N(f, \zeta)(z)$ denotes the N-th partial sum of the Taylor expansion of f with center ζ at z. If Ω is a simply connected domain and $\zeta \in \Omega$, we define the class $\mathcal{U}(\Omega, \zeta)$ as follows:

Definition 1.1. The set $\mathcal{U}(\Omega, \zeta)$ is the set of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, for every compact set $K \subset \mathbb{C}$, $K \cap \Omega = \emptyset$, with K^c connected, and for every function h which is continuous on K and holomorphic in the interior of K, there exists a sequence $\{\lambda_n\} \in \{0, 1, 2, \ldots\}$ such that

$$\sup_{z \in K} |S_{\lambda_n}(f, \zeta)(z) - h(z)| \longrightarrow 0, \quad n \to \infty$$

1
Denote $D = \{ z \in \mathbb{C} : |z| < 1 \}$. It is shown in [4] that $U(D, 0)$ is a dense G_δ set in $\mathcal{H}ol(D)$. More generally, in [3] it is shown that $U(\Omega, \zeta)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$, where Ω is any simply connected domain and $\zeta \in \Omega$. Next, for Ω as above, we define the set $U(\Omega)$:

Definition 1.2. The set $U(\Omega)$ is the set of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that, for every compact set $K \subset \mathbb{C}$, $K \cap \Omega = \emptyset$, with K^c connected, and every function h which is continuous on K and holomorphic in the interior of K, there exists a sequence $\{\lambda_n\} \in \{0, 1, 2, \ldots\}$ such that, for every compact set $L \subset \Omega$, $\sup_{\zeta \in L} \sup_{z \in K} |S_{\lambda_n}(f, \zeta)(z) - h(z)| \to 0$, $n \to \infty$.

Again in [3] it is shown that $U(\Omega)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$. Furthermore, in [1] it is shown that $U(\Omega, \zeta) = U(\Omega)$, provided that Ω is contained in a half-plane. This result is generalized in [2], where it is shown that $U(\Omega, \zeta) = U(\Omega)$ for any simply connected domain Ω and $\zeta \in \Omega$.

In the second section of this article, we fix a $\zeta_0 \in \Omega$ and, for $N \geq 1$, we consider the function

$$S_N(f, \zeta_0) : \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^{N} \frac{f^{(n)}(\zeta_0)}{n!}(z - \zeta_0)^n = S_N(f, \zeta_0)(z)$$

V. Nestoridis suggested that, contrary to the functions in $U(\Omega, \zeta)$, whose Taylor partial sums are considered as functions of z with the center ζ fixed, we fix $z = 0$ and let the center ζ vary in Ω. Thus, for $N \geq 0$, we obtain an operator

$$\tilde{T}_N : \mathcal{H}ol(\Omega) \to \mathcal{H}ol(\Omega)$$

$$f \mapsto \tilde{T}_N(f)$$

where

$$\tilde{T}_N(f) : \Omega \to \mathbb{C}$$

$$\zeta \mapsto \sum_{n=0}^{N} \frac{f^{(n)}(\zeta)}{n!}(-\zeta)^n = \tilde{T}_N(f)(\zeta)$$

for any $f \in \mathcal{H}ol(\Omega)$ and $N \geq 0$. The set of functions $f \in \mathcal{H}ol(\Omega)$ such that $\tilde{T}_N(f)$ is unbounded on Ω for all $N \geq 0$ is residual in $\mathcal{H}ol(\Omega)$. This led V. Nestoridis to conjecture that, if $0 \notin \Omega$, then the class $S(\Omega)$ of all functions $f \in \mathcal{H}ol(\Omega)$ with the property that the set $\{\tilde{T}_N(f) : N = 0, 1, 2, \ldots\}$ is dense in $\mathcal{H}ol(\Omega)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$. In this article we show that either $S(\Omega) = \emptyset$ or $S(\Omega)$ is a dense G_δ set in $\mathcal{H}ol(\Omega)$. The question of whether $S(\Omega) \neq \emptyset$ will be examined in a future article. However, we do show that, if $0 \notin \Omega$, then the set $S_\delta(\Omega)$ of the functions $f \in \mathcal{H}ol(\Omega)$ with he property that the closure
of the set \(\{ \tilde{T}_{\lambda}(f) \} \) contains the constant functions on \(\Omega \) is residual in \(\mathcal{H}ol(\Omega) \). We do this by proving that \(S_{\lambda}(\Omega) \) contains the set \(U(\Omega) \), which is already proven to be a dense \(G_\delta \) set in \(\mathcal{H}ol(\Omega) \) ([3]).

In the last part of the article, answering a question by T. Hatziafratis, we prove that, for a countable set \(E \subset T = \{ z \in \mathbb{C} : |z| = 1 \} \), the generic holomorphic function on \(\mathbb{D} \) has unbounded derivatives and anti-derivatives on each ray \([0, z) \), \(z \in E \). We also obtain a more general result, where in fact we do not use Baire’s Theorem and, therefore, the topological vector space used need not be a Fréchet space.

2 Preliminaries

Regarding the terminology used, a set \(\Omega \subset \mathbb{C} \) is called a domain if it is open and connected in \(\mathbb{C} \). A \(G_\delta \) set in \(\mathcal{H}ol(\Omega) \) is a countable intersection of open sets in \(\mathcal{H}ol(\Omega) \) and an \(F_\sigma \) set is a countable union of closed sets in \(\mathcal{H}ol(\Omega) \). Furthermore, a subset \(E \) of \(\mathcal{H}ol(\Omega) \) is called dense if there exists no non-empty open subset \(U \) of \(\mathcal{H}ol(\Omega) \) such \(U \) and \(E \) are disjoint. The set \(E \) is nowhere dense in \(\mathcal{H}ol(\Omega) \) if every non-empty open set \(U \) has an open non-empty subset \(V \) such that \(E \) and \(V \) are disjoint. This is equivalent to the closure of \(E \) having an empty interior in \(\mathcal{H}ol(\Omega) \). A \(G_\delta \) dense subset of \(\mathcal{H}ol(\Omega) \) is a \(G_\delta \) subset which is also dense. Because the space \(\mathcal{H}ol(\Omega) \) is metrizable complete, Baire’s theorem implies that a subset of \(\mathcal{H}ol(\Omega) \) is \(G_\delta \) dense iff it is the countable intersection of open and dense subsets of \(\mathcal{H}ol(\Omega) \). A subset of \(\mathcal{H}ol(\Omega) \) is called residual if it contains a \(G_\delta \) dense set. Equivalently, if its complement is contained in an \(F_\sigma \) set of the first category.

Let \(\Omega_1, \Omega_2 \) be two domains in \(\mathbb{C} \) and \(T : \mathcal{H}ol(\Omega_1) \to \mathcal{H}ol(\Omega_2) \) be a linear operator with the property that for every \(z \in \Omega_2 \), the function \(f \mapsto T(f)(z) \) is continuous in \(\mathcal{H}ol(\Omega_1) \). Observe that this latter property is weaker than \(T \) being continuous. Define

\[
\mathcal{U}_T = \{ f \in \mathcal{H}ol(\Omega_1) : T(f) \text{ is unbounded on } \Omega_2 \}
\]

Proposition 2.1. If \(\Omega_1, \Omega_2 \) are two domains in \(\mathbb{C} \) and \(T \) is as above, then either \(\mathcal{U}_T = \emptyset \) or \(\mathcal{U}_T \) is a dense \(G_\delta \) set in \(\mathcal{H}ol(\Omega_1) \).

Proof. If \(\mathcal{U}_T \neq \emptyset \), for \(m \geq 1 \) define

\[
U_m = \{ f \in \mathcal{H}ol(\Omega_1) : |T(f)(z)| \leq m \text{ for all } z \in \Omega_2 \}
\]

Then

\[
\mathcal{U}_T = \left(\bigcup_{m=1}^{\infty} U_m \right)^c = \bigcap_{m=1}^{\infty} U_m^c
\]

We will show that \(U_m \) is closed and nowhere dense in \(\mathcal{H}ol(\Omega_1) \) for each \(m \geq 1 \).
To see that it is closed, take a sequence \(\{f_n\} \) in \(U_m \) such that \(f_n \to f \) uniformly on compact subsets of \(\Omega_1 \) for some function \(f \). Then \(f \in Hol(\Omega_1) \) and, for \(z \in \Omega_2 \) we have

\[
|T(f)(z)| \leq |T(f)(z) - T(f_n)(z)| + |T(f_n)(z)|
\]

Taking \(n \to \infty \) we get that \(|T(f)(z)| \leq m \) because of the continuity of \(f \to T(f)(z) \), i.e. \(f \in U_m \). Thus, \(U_m \) is closed.

To see that \(U_m \) is nowhere dense, it suffices to show that \(U_m^c = \emptyset \). Suppose \(f \in U_m^c \).

Since \(\mathcal{U}_T \neq \emptyset \), there exists a function \(g \in \mathcal{H}ol(\Omega_1) \) such that \(T(g) \) is unbounded on \(\Omega_2 \). Then \(\{f + \frac{1}{n}g\}_n \) is a sequence in \(\mathcal{H}ol(\Omega_1) \) and, if \(K \) is a compact subset of \(\Omega_1 \), we have

\[
\|(f + \frac{1}{n}g) - f\|_K = \sup_{z \in K} |f(z) + \frac{1}{n}g(z) - f(z)|
\]

\[
= \sup_{z \in K} \left| \frac{1}{n}g(z) \right| = \frac{1}{n} \|g\|_K
\]

By taking \(n \to \infty \) and observing that \(\|g\|_K < \infty \), \(g \) being holomorphic on \(\Omega_1 \supset K \), we obtain that \(f + \frac{1}{n}g \to f \) uniformly on \(K \). But \(K \) was an arbitrary compact subset of \(\Omega_1 \), so \(f + \frac{1}{n}g \to f \) uniformly on compact subsets of \(\Omega_1 \).

Since \(f \in U_m^c \), there exists an \(n_0 \) such that \(f + \frac{1}{n_0}g \in U_m \). By the linearity of \(f \to T(f) \) this means that

\[
\frac{1}{n_0} |T(g)(z)| \leq |T(f)(z) + \frac{1}{n_0} T(g)(z)| + |T(f)(z)|
\]

\[
\leq m + m
\]

or \(|T(g)(z)| \leq 2mn_0 \), for all \(z \in \Omega_2 \), which is contradictory to the fact that \(T(g) \) is unbounded on \(\Omega_2 \). Thus, \(U_m^c = \emptyset \) and the proof is complete. \(\square \)

Proposition 2.2. For \(n \in \mathbb{Z} \), let \(T_n : \mathcal{H}ol(\Omega_1) \to \mathcal{H}ol(\Omega_2) \) be linear and such that for every \(z \in \Omega_2 \), the function \(f \to T(f)(z) \) is continuous in \(\mathcal{H}ol(\Omega_1) \). If \(\mathcal{U}_{T_n} \neq \emptyset \) for all \(n \in \mathbb{Z} \) then the set \(\bigcap_n \mathcal{U}_{T_n} \) is dense \(G_\delta \) in \(\mathcal{H}ol(\Omega_1) \).

Proof. The space \(\mathcal{H}ol(\Omega_1) \) with the metric of uniform convergence on compacta is a complete metric space, so by Baire’s Theorem any countable intersection of dense \(G_\delta \) sets in \(\mathcal{H}ol(\Omega_1) \) is again a dense \(G_\delta \) set in \(\mathcal{H}ol(\Omega_1) \). Since \(\mathcal{U}_{T_n} \neq \emptyset \), it is a dense \(G_\delta \) set in \(\mathcal{H}ol(\Omega) \) by Proposition (2.1), \(n \in \mathbb{Z} \), and the desired result follows immediately. \(\square \)

Observe that Propositions (2.1) and (2.2) still hold if we replace \(\mathcal{H}ol(\Omega_2) \) by \(\mathbb{C}^X \), where \(X \) is any non-empty set and \(\mathbb{C}^X \) is the set of all functions from \(X \) to \(\mathbb{C} \).

3 Boundedness of derivatives and anti-derivatives as a rare phenomenon

Proposition 3.1. Let \(\Omega \subset \mathbb{C} \) be open and non-empty. The set \(A_0 \) of all functions \(f \in \mathcal{H}ol(\Omega) \) that are bounded on \(\Omega \) is a set of the first category in \(\mathcal{H}ol(\Omega) \).
Proof. For $m \in \mathbb{N}$ define

$$A_m = \left\{ f \in \mathcal{H}(\Omega) : |f(z)| \leq m, \text{ for all } z \in \Omega \right\}$$

It is obvious that

$$A_0 = \bigcup_{m=1}^{+\infty} A_m$$

We will show that every A_m is closed and has an empty interior in $\mathcal{H}(\Omega)$.

For $m \in \mathbb{N}$, the set A_m is closed in $\mathcal{H}(\Omega)$: Let $\{f_n\}$ be a sequence in A_m and f a function on Ω such that $f_n \to f$ uniformly on compact subsets of Ω. By the Weierstrass theorem, $f \in \mathcal{H}(\Omega)$ and, for $z \in \Omega$

$$|f(z)| = \lim_{n \to \infty} |f_n(z)| \leq m$$

Therefore, $f \in A_m$ and A_m is closed in $\mathcal{H}(\Omega)$ for each $m = 1, 2, ...$.

Next we show that $A_m^0 = \emptyset$ for all $m = 1, 2, ...$: First observe that there exists a function $g \in \mathcal{H}(\Omega)$ that is unbounded on Ω. Indeed, if Ω is unbounded take $g(z) = z$, $z \in \Omega$, and if Ω is bounded, take $\zeta_0 \in \partial \Omega$ and $g(z) = \frac{1}{z - \zeta_0}$.

Now assume that there exists $f \in A_m^0$ for some fixed $m = 1, 2, ...$. Then $\{f + \frac{1}{n}g\}_n$ is a sequence in $\mathcal{H}(\Omega)$ and $f + \frac{1}{n}g \to f$ uniformly on compact subsets of Ω, $n \to \infty$. But $f \in A_m^0$, hence there exists an $n_0 \in \mathbb{N}$ such that $f + \frac{1}{n_0}g \in A_m^0$. This means that

$$|f(z) + \frac{1}{n_0}g(z)| \leq m, \text{ for all } z \in \Omega$$

But then, for any $z \in \Omega$ we would have

$$\left| \frac{1}{n_0}g(z) \right| = \left| f(z) + \frac{1}{n_0}g(z) - f(z) \right|$$

$$\leq |f(z) + \frac{1}{n_0}g(z)| + |f(z)|$$

$$\leq m + m,$$

Therefore, $|g(z)| \leq 2mn_0$ for all $z \in \Omega$, which is contradictory to the fact that g is unbounded on Ω. Thus, $A_m^0 = \emptyset$ and the proof is complete.

For $f \in \mathcal{H}(\Omega)$, we denote by $f^{(k)}$ the k-derivative of f, $k \geq 1$. By $f^{(0)}$ we denote f itself.

Proposition 3.2. Let $\Omega \subset \mathbb{C}$ be open and non-empty and $k \in \mathbb{N}$. The set A_k of all functions $f \in \mathcal{H}(\Omega)$ such that $f^{(k)}$ is bounded on Ω is a set of the first category in $\mathcal{H}(\Omega)$.

Proof. For $m \in \mathbb{N}$, define

$$A_m = \left\{ f \in \mathcal{Hol}(\Omega) : |f^{(k)}(z)| \leq m, \text{ for all } z \in \Omega \right\}$$

It is obvious that

$$A_k = \bigcup_{m=1}^{+\infty} A_m$$

We will show that each A_m is closed and has empty interior in $\mathcal{Hol}(\Omega)$.

To see that it is closed, take a sequence \(\{f_n\} \) in A_m and a function f on Ω such that $f_n \rightarrow f$ uniformly on compact subsets of Ω. By the Weierstrass theorem we have that $f \in \mathcal{Hol}(\Omega)$ and $f^{(k)}_n \rightarrow f^{(k)}$ uniformly on compact subsets of Ω. Therefore, for any $z \in \Omega$ we have that

$$|f^{(k)}(z)| = \lim_{n \to \infty} |f^{(k)}_n(z)| \leq m$$

i.e. $f \in A_m$. Thus, A_m is closed.

To see that $A_m^c = \emptyset$, first observe that there exists a function $g \in \mathcal{Hol}(\Omega)$ such that $g^{(k)}$ is unbounded on Ω. Indeed, if Ω is unbounded take $g(z) = z^{k+1}$ and if Ω is bounded take $\zeta_0 \in \partial \Omega$ and $g(z) = \frac{1}{z - \zeta_0}$.

Now assume that there exists $f \in A_m^c$. Then \(\{f + \frac{1}{n_0}g\}_n \) is a sequence in $\mathcal{Hol}(\Omega)$ and $f + \frac{1}{n_0}g \rightarrow f$ uniformly on compact subsets of Ω, $n \to \infty$. But $f \in A_m^c$, hence there exists an $n_0 \in \mathbb{N}$ such that $f + \frac{1}{n_0}g \in A_m^c$. This means that

$$|f^{(k)}(z) + \frac{1}{n_0}g^{(k)}(z)| \leq m, \text{ for all } z \in \Omega$$

where the linearity of the derivative operator is used. But then, for any $z \in \Omega$ we would have

$$\left| \frac{1}{n_0}g^{(k)}(z) \right| = \left| f^{(k)}(z) + \frac{1}{n_0}g^{(k)}(z) - f^{(k)}(z) \right|$$

$$\leq \left| f^{(k)}(z) + \frac{1}{n_0}g^{(k)}(z) \right| + \left| f^{(k)}(z) \right|$$

$$\leq m + m,$$

Thus $|g^{(k)}(z)| \leq 2mn_0$ for all $z \in \Omega$, which is contradictory to the fact that $g^{(k)}$ is unbounded on Ω. Thus, $A_m^c = \emptyset$ and the proof is complete.

Proposition 3.3. Let $\Omega \subset \mathbb{C}$ be open and non-empty. The set \mathcal{E} of all functions $f \in \mathcal{Hol}(\Omega)$ with the property that $f^{(k)}$ is unbounded on Ω, for all $k \in \mathbb{N}$, is a dense G_δ set in $\mathcal{Hol}(\Omega)$.

Proof. Using the notation previously established it is obvious that

$$\mathcal{E} = \bigcap_{k=0}^{\infty} A_k^c$$

6
By Propositions (3.1) and (3.2) we have that for each $k \geq 0$, the set A_k is the countable union of closed, nowhere dense sets in $\text{Hol}(\Omega)$, so its complement A_k^c must be a dense G_δ set in $\text{Hol}(\Omega)$. By Baire’s Theorem, the set E is a dense G_δ set in $\text{Hol}(\Omega)$ as a countable intersection of dense G_δ sets in a complete metric space.

From now on, and throughout the remainder of this section, consider an $\Omega \subset \mathbb{C}$ which is non-empty, open and simply connected. Fix $\zeta_0 \in \Omega$ and, for $f \in \text{Hol}(\Omega)$ define

$$T(f)(z) = \int_{\gamma_z} f(\xi)d\xi,$$

for all $z \in \Omega$

$$T^{(k)}(f)(z) = \int_{\gamma_z} T^{(k-1)}(f)(\xi)d\xi,$$

for all $z \in \Omega, k \geq 2$

where γ_z is any polygonal line in Ω that starts at ζ_0 and ends at z. Since Ω is assumed to be simply connected, each $T^{(k)}$ is well-defined and holomorphic in Ω and its k-derivative is f.

Proposition 3.4. The operator

$$T : \text{Hol}(\Omega) \rightarrow \text{Hol}(\Omega)$$

$$f \mapsto T(f)$$

is linear and continuous on $\text{Hol}(\Omega)$.

Proof. The linearity of T is obvious from the linearity of the integral. For the continuity, take a sequence $\{f_n\}$ in $\text{Hol}(\Omega)$ and a function f on Ω such that $f_n \rightarrow f$ uniformly on compact subsets of Ω. By the Weierstrass theorem we have that $f \in \text{Hol}(\Omega)$. We must show that $T(f_n) \rightarrow T(f)$ on compact subsets of Ω.

Let K be a compact subset of Ω. Either $\Omega = \mathbb{C}$ or $\Omega \neq \mathbb{C}$.

In the first case, i.e. $\Omega = \mathbb{C}$, for $z \in K$ we take γ_z to be the line segment $[\zeta_0, z]$. Set $M = \max\{|\zeta_0|, \max_{z \in K}|z|\}$ and observe that M is well defined and finite because K is compact in \mathbb{C}. Define $L = \overline{D(0, M)} = \{z \in \mathbb{C} : |z| \leq M\}$. Then L is compact in \mathbb{C}, $K \subset L$ and $\gamma_z \subset L$, for all $z \in K$. Therefore, for $z \in K$ we have

$$|T(f_n)(z) - T(f)(z)| = \left| \int_{\gamma_z} f_n(\xi)d\xi - \int_{\gamma_z} f(\xi)d\xi \right|$$

$$= \left| \int_{\gamma_z} (f_n(\xi) - f(\xi))d\xi \right|$$

$$\leq \|f_n - f\|_L |z - \zeta_0|$$

$$\leq 2M\|f_n - f\|_L$$

Thus $\|T(f_n) - T(f)\|_K \leq 2M\|f_n - f\|_L \rightarrow 0$, $n \rightarrow \infty$.

In the second case, i.e. $\Omega \neq \mathbb{C}$, since Ω is a simply connected domain, by the Riemann Mapping Theorem there exists an analytic function $\phi : \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \rightarrow \mathbb{C}$ such that ϕ is univalent and $\phi(\mathbb{D}) = \Omega$. Obviously ϕ is a homeomorphism between \mathbb{D} and
Since the set \(\{z_0\} \cup K \subset \Omega \) is compact, the set \(\phi^{-1}(\{z_0\} \cup K) \subset \mathbb{D} \) is also compact. Therefore, there exists an \(r \), with \(0 < r < 1 \), such that \(\phi^{-1}(\{z_0\} \cup K) \subset \overline{D(0,r)} = \{z \in \mathbb{C} : |z| \leq r\} \). Define \(L = \phi(\overline{D(0,r)}) \subset \phi(\mathbb{D}) = \Omega \). Then \(L \) is compact and \(K \subset L \). For \(z \in K \) we have that \(\phi^{-1}(z) \in \overline{D(0,r)} \), hence the line segment \([\phi^{-1}(z), \phi^{-1}(z)] \subset \overline{D(0,r)} \). Therefore, if \(\sigma : [0,1] \to \mathbb{C} \) is a parametrization of \([\phi^{-1}(z), \phi^{-1}(z)] \), then \(\text{Length}(\sigma) \leq 2r \). Take \(\gamma_z = \phi([\phi^{-1}(z), \phi^{-1}(z)]) \subset \phi(\overline{D(0,r)}) = L \) and observe that \(\gamma_z \) is rectifiable: \(\phi \circ \sigma : [0,1] \to \Omega \) is a parametrization of \(\gamma_z \) and

\[
\text{Length}(\gamma_z) = \int_0^1 |\gamma_z'(t)| \, dt
\]

\[
= \int_0^1 |(\phi \circ \sigma)'(t)| \, dt
\]

\[
= \int_0^1 |(\phi'(\sigma(t)))| |\sigma'(t)| \, dt
\]

\[
\leq \max \{ |\phi'(z)| : z \in \overline{D(0,r)} \} \text{Length}(\sigma)
\]

\[
\leq \max \{ |\phi'(z)| : z \in \overline{D(0,r)} \} \cdot 2r
\]

which is of course finite because \(\phi' \) is continuous on the compact set \(\overline{D(0,r)} \).

We then have

\[
|T(f_n)(z) - T(f)(z)| = | \int_{\gamma_z} f_n(\xi) \, d\xi - \int_{\gamma_z} f(\xi) \, d\xi |
\]

\[
= | \int_{\gamma_z} (f_n(\xi) - f(\xi)) \, d\xi |
\]

\[
\leq \| f_n - f \|_L \cdot \text{Length}(\gamma_z)
\]

\[
\leq \| f_n - f \|_L \cdot \max \{ |\phi'(z)| : z \in \overline{D(0,1)} \} \cdot 2r
\]

Thus \(\|T(f_n) - T(f)\|_K \leq \| f_n - f \|_L \cdot \max \{ |\phi'(z)| : z \in \overline{D(0,1)} \} \cdot 2r \to 0 \), \(n \to \infty \).

In any case we have shown that \(T(f_n) \to T(f) \) uniformly on \(K \). Since \(K \) was an arbitrary compact subset of \(\Omega \), the continuity of \(T \) follows.

Corollary 3.5. Let \(k \geq 1 \). The operator

\[
T^{(k)} : \mathcal{Hol}(\Omega) \to \mathcal{Hol}(\Omega)
\]

\[
f \mapsto T^{(k)}(f)
\]

is linear and continuous on \(\mathcal{Hol}(\Omega) \).

Proof. We have that \(T^{(k)} = T \circ T \circ ... \circ T \), the composition of \(T \) \(k \) times. Therefore linearity and continuity both follow by Proposition 3.4.

Corollary 3.6. If \(f_n \to f \) uniformly on compact subsets of \(\Omega \) and \(k \geq 1 \), then \(T^{(k)}(f_n) \to T^{(k)}(f) \) pointwise in \(\Omega \).
Proof. By the Weierstrass Theorem, \(f \in \mathcal{H}ol(\Omega) \). By Corollary (3.5) we have that \(T^{(k)}(f_n) \rightarrow T^{(k)}(f) \) uniformly on compact subsets of \(\Omega \) and therefore \(T^{(k)}(f_n) \rightarrow T^{(k)}(f) \) pointwise in \(\Omega \).

Proposition 3.7. Let \(\Omega \subset \mathbb{C} \) be a simply connected domain and \(k \geq 1 \). The set \(B_k \) of all \(f \in \mathcal{H}ol(\Omega) \) such that \(T^{(k)}(f) \) is bounded on \(\Omega \) is a set of the first category in \(\mathcal{H}ol(\Omega) \).

Proof. For \(m \in \mathbb{N} \), define

\[
B_m = \{ f \in \mathcal{H}ol(\Omega) : |T^{(k)}(f)(z)| \leq m \text{ for all } z \in \Omega \}
\]

Then \(B_k = \bigcup_{m=1}^{\infty} B_m \). We will show that each \(B_m \) is closed and nowhere dense in \(\mathcal{H}ol(\Omega) \).

To see that it is closed, take a sequence \(\{f_n\} \) in \(B_m \) such that \(f_n \rightarrow f \) uniformly on compact subsets of \(\Omega \). By Corollary (3.7), \(T^{(k)}(f_n) \rightarrow T^{(k)}(f) \) pointwise in \(\Omega \). Therefore, for \(z \in \Omega \) we have that

\[
|T^{(k)}(f)(z)| \leq |T^{(k)}(f)(z) - T^{(k)}(f_n)(z)| + |T^{(k)}(f_n)(z)| + m
\]

Taking \(n \rightarrow \infty \) we obtain \(|T^{(k)}(f)(z)| \leq m \) and therefore \(f \in B_m \). Thus, \(B_m \) is closed.

To see that \(B_k^0 = \emptyset \), first observe that there exists a function \(g \in \mathcal{H}ol(\Omega) \) such that \(T^{(k)}(g) \) is unbounded on \(\Omega \); indeed, if \(\Omega \) is unbounded take \(g(z) = 1, z \in \Omega \), and if \(\Omega \) is bounded take \(\zeta_0 \in \partial \Omega \) and \(g(z) = \frac{1}{(z - \zeta_0)^{k+1}} \). Now assume that \(f \in B_m^0 \). Then \(f + \frac{1}{m} g \rightarrow f \) uniformly on compact subsets of \(\Omega \), \(n \rightarrow \infty \). Therefore, there exists an \(n_0 \) such that \(f + \frac{1}{n_0} g \in B_m \). By the linearity of \(f \mapsto T^{(k)}(f) \) this means that

\[
|T^{(k)}(f)(z) + \frac{1}{n_0} T^{(k)}(g)(z)| = |T^{(k)}(f + \frac{1}{n_0} g)(z)| \leq m
\]

for all \(z \in \Omega \). But then

\[
\frac{1}{n_0} |T^{(k)}(g)(z)| \leq |T^{(k)}(f)(z) + \frac{1}{n_0} T^{(k)}(g)(z)| + |T^{(k)}(f)(z)|
\]

\[
\leq m + m
\]

or \(|T^{(k)}(g)(z)| \leq 2mn_0 \), for all \(z \in \Omega \), which is contradictory to the fact that \(T^{(k)}(g) \) is unbounded on \(\Omega \). Thus, \(B_m^0 = \emptyset \) and the proof is complete.

For \(f \in \mathcal{H}ol(\Omega) \), where \(\Omega \subset \mathbb{C} \) is a simply connected domain, we denote

\[
f^{(k)} = \begin{cases}
\text{the } k^{th} \text{ derivative of } f, & \text{if } k > 0 \\
f, & \text{if } k = 0 \\
T^{(-k)}(f), & \text{if } k < 0
\end{cases}
\]

where \(T^{(k)}(f) \) as defined above. Collecting all the above results together we get
Theorem 3.8. Let $\Omega \subset \mathbb{C}$ be a simply connected domain. Then the set \mathcal{D} of all functions $f \in \text{Hol}(\Omega)$ with the property that $f^{(k)}$ is unbounded on Ω for all $k \in \mathbb{Z}$ is a dense G_δ subset of $\text{Hol}(\Omega)$.

Proof. For $k \in \mathbb{Z}$ define

$$D_k = \{ f \in \text{Hol}(\Omega) : f^{(k)} \text{ unbounded on } \Omega \}$$

Then $\mathcal{D} = \bigcap_{k \in \mathbb{Z}} D_k$. By Propositions (3.1), (3.2) and (3.7) we have that each D_k is a dense G_δ set in $\text{Hol}(\Omega)$, because its complement is a countable union of closed, nowhere dense sets in $\text{Hol}(\Omega)$. Since $\text{Hol}(\Omega)$ is a complete metric space, Baire’s Theorem gives that any countable intersection of dense G_δ sets is again a dense G_δ set.

At this point observe that Proposition (3.3) and Theorem (3.8) are immediate corollaries to Proposition (2.2):

The operator

$$\Lambda : \text{Hol}(\Omega) \to \text{Hol}(\Omega)$$

$$f \mapsto f'$$

is linear and continuous by the Weierstrass Theorem. If additionally Ω is simply connected, the same holds for the operator

$$\tilde{\Lambda} : \text{Hol}(\Omega) \to \text{Hol}(\Omega)$$

$$f \mapsto \int_{\gamma_0} f(\xi)d\xi$$

by Proposition (3.4), the primitive of f being defined as in the discussion preceding that same Proposition.

Now define Λ_k to be k compositions of Λ with itself, $k \geq 1$, Λ_0 to be the identity function on $\text{Hol}(\Omega)$ and Λ_k to be $(-k)$ compositions of $\tilde{\Lambda}$ with itself, $k \leq -1$. Then each Λ_k is linear and continuous in $\text{Hol}(\Omega)$ and, furthermore, $\mathcal{U}_{\Lambda_k} \neq \emptyset$, for all $k \in \mathbb{Z}$. Therefore, the set $\bigcap_{k \in \mathbb{Z}} \mathcal{U}_{\Lambda_k}$ is a dense G_δ subset of $\text{Hol}(\Omega)$. But this is exactly the set \mathcal{D} of Theorem (3.8).

4 Universality of operators related to the partial sums

Now assume that Ω is a domain in \mathbb{C}. For $N \geq 0$ we define:

$$S_N : \text{Hol}(\Omega) \to \text{Hol}(\Omega \times \mathbb{C})$$

$$f \mapsto S_N(f, \cdot)(\cdot) = S_N(f)$$

where

$$S_N(f, \zeta)(z) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta)}{n!} (z - \zeta)^n, \ z \in \Omega, \ z \in \mathbb{C}$$
Then S_N is obviously linear. By the Weierstrass Theorem it is also continuous; indeed suppose $K = K_1 \times K_2$ is a compact subset of $\Omega \times \mathbb{C}$, where K_1, K_2 are compact subsets of Ω and \mathbb{C} respectively, and $f_k \rightarrow f$ uniformly on compact subsets of Ω. Set $M = \max_{(\zeta, z) \in K} |z - \zeta|$. Then, for $(\zeta, z) \in K$ we have that

$$|S_N(f_k, \zeta)(z) - S_N(f, \zeta)(z)| = \left| \sum_{n=0}^{N} \frac{f_k^{(n)}(\zeta) - f^{(n)}(\zeta)}{n!} (z - \zeta)^n \right|$$

$$\leq \sum_{n=0}^{N} \frac{|f_k^{(n)}(\zeta) - f^{(n)}(\zeta)|}{n!} |z - \zeta|^n$$

$$\leq \sum_{n=0}^{N} \ould{f_k^{(n)} - f^{(n)}}_{K_1} M^n$$

which means that

$$\|S_N(f_k) - S_N(f)\|_K \leq \sum_{n=0}^{N} \ould{f_k^{(n)} - f^{(n)}}_{K_1} M^n$$

and therefore $S_N(f_k) \rightarrow S_N(f)$ uniformly on K, for each $N = 0, 1, 2, \ldots$

Now fix $\zeta_0 \in \Omega$ and, for $N \geq 0$, define

$$T_N : \mathcal{H}ol(\Omega) \rightarrow \mathcal{H}ol(\mathbb{C})$$

$$f \mapsto S_N(f, \zeta_0)(\cdot)$$

Then each T_N is linear and continuous in $\mathcal{H}ol(\Omega)$ and

$$\mathcal{U}_{T_N} = \{ f \in \mathcal{H}ol(\Omega) : S_N(f, \zeta_0) \text{ is unbounded in } \mathbb{C} \}$$

But $S_N(f, \zeta_0)$ is a polynomial, so it is bounded in \mathbb{C} if and only if it is constant in \mathbb{C}. Therefore

$$\mathcal{U}_{T_N} = \{ f \in \mathcal{H}ol(\Omega) : S_N(f, \zeta_0) \text{ is non-constant in } \mathbb{C} \}$$

For $N = 0$ we have that $S_N(f, \zeta_0)(z) = f(\zeta_0)$, $z \in \mathbb{C}$, so $\mathcal{U}_{T_N} = \emptyset$.

for $N \geq 1$, we have that

$$S_N(f, \zeta_0)(z) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta_0)}{n!} (z - \zeta_0)^n$$

is constant if and only if $f'(\zeta_0) = f''(\zeta_0) = \ldots = f^{(N)}(\zeta_0) = 0$. But there always exists a function $f \in \mathcal{H}ol(\Omega)$ such that $f^{(k)}(\zeta_0) \neq 0$, for all $k \in \mathbb{N}$, for example $f(z) = e^z$.

Therefore, $\mathcal{U}_{T_N} \neq \emptyset$, for all $N \geq 1$. By Proposition (2.2) we have that the set $\bigcap_{N=1}^{\infty} \mathcal{U}_{T_N}$ of all the functions $f \in \mathcal{H}ol(\Omega)$ with the property that the function $S_N(f, \zeta_0)$ is unbounded
in \(\mathbb{C} \) for all \(N \geq 1 \), is a dense \(G_\delta \) set in \(\text{Hol}(\Omega) \).

We mention that \(\mathcal{U}_{T_1} \) is an open dense set in \(\text{Hol}(\Omega) \) because \(\mathcal{U}_{T_1} = \{ f \in \text{Hol}(\Omega) : f'(\zeta_0) \neq 0 \} \). Similarly, \(\mathcal{U}_{T_N} \) is also an open dense set in \(\text{Hol}(\Omega) \), so \(\bigcap_{N=1}^{\infty} \mathcal{U}_{T_N} \) is \(G_\delta \) dense in \(\text{Hol}(\Omega) \). So this corollary of Proposition (2.2) is well known and obvious. A similar result holds if we replace \(\mathbb{C} \) by any unbounded domain \(\Omega \); in particular this holds for \(\Omega_2 = \Omega \) if \(\Omega \) is unbounded.

Now fix \(z = 0 \) and, for \(N \geq 0 \), define

\[
\tilde{T}_N : \text{Hol}(\Omega) \to \text{Hol}(\Omega)
\]

\[
f \mapsto S_N(f, \cdot)(0)
\]

Each \(\tilde{T}_N \) is linear and continuous in \(\text{Hol}(\Omega) \).

For \(N = 0 \), we have that \(S_0(f, \zeta)(0) = f(\zeta), \zeta \in \Omega \), and therefore

\[
\mathcal{U}_{\tilde{T}_N} = \{ f \in \text{Hol}(\Omega) : f \text{ is unbounded in } \Omega \}
\]

which is a dense \(G_\delta \) set in \(\text{Hol}(\Omega) \) by Proposition (3.1).

For \(N \geq 1 \), if \(\Omega = \mathbb{C} \), take \(f(z) = e^z, z \in \mathbb{C} \). Since \(z \mapsto e^z \) dominates the polynomials in \(\mathbb{C} \), we have that \(S_N(f, \zeta)(0) \) is unbounded in \(\mathbb{C} \). If \(\Omega \neq \mathbb{C} \), take \(\zeta_0 \in \partial \Omega \) and \(f(z) = \frac{1}{z - \zeta_0}, z \in \Omega \). Then \(f \in \text{Hol}(\Omega) \) and

\[
S_N(f, \zeta)(0) = \sum_{n=0}^{N} \frac{\zeta^n}{(\zeta - \zeta_0)^{n+1}}, \zeta \in \Omega
\]

which is a rational function with poles only at \(z = \zeta_0 \). Hence \(\lim_{\zeta \to \zeta_0} |S_N(f, \zeta)(0)| = \infty \) and \(S_N(f, \cdot)(0) \) is unbounded in \(\Omega \).

Therefore, \(\mathcal{U}_{\tilde{T}_N} \neq \emptyset \) for all \(N \geq 0 \), so by Corollary (2.2) we have that the set \(\bigcap_{N=0}^{\infty} \mathcal{U}_{\tilde{T}_N} \) of all functions \(f \in \text{Hol}(\Omega) \) with the property that \(S_N(f, \cdot)(0) \) is unbounded in \(\Omega \) for all \(N \geq 0 \), is a dense \(G_\delta \) set in \(\text{Hol}(\Omega) \).

Next we consider the following class \(\mathcal{S}(\Omega) \) of functions on \(\Omega \):

Definition 4.1. Let \(\Omega \) be an open, non-empty subset of \(\mathbb{C} \). We define \(\mathcal{S}(\Omega) \) to be the set of all functions \(f \in \text{Hol}(\Omega) \) such that \(\{ \tilde{T}_N(f) \}_{N \geq 0} \) is dense in \(\text{Hol}(\Omega) \).

From now on and unless otherwise stated we assume that \(\Omega \) is a simply connected domain in \(\mathbb{C} \). Our goal is to show that either \(\mathcal{S}(\Omega) = \emptyset \) or \(\mathcal{S}(\Omega) \) is a dense \(G_\delta \) set in \(\text{Hol}(\Omega) \). To this end, first observe that, \(\text{Hol}(\Omega) \) is separable: the set \(\{ p_j \} \) of all polynomials with coefficients having rational coordinates is dense in \(\text{Hol}(\Omega) \) by the Runge Theorem. Now consider an exhaustive sequence \(\{ K_m \} \) of compact subsets of \(\Omega \), i.e. a sequence \(\{ K_m \} \) of compact subsets of \(\Omega \) such that

1. \(\Omega = \bigcup_{m=1}^{\infty} K_m \)
2. K_m lies in the interior of K_{m+1}, for $m = 1, 2, ...$

3. Every compact subset of Ω lies in some K_m

4. Every component of K_m^c contains a component of Ω^c, $m = 1, 2, ...$

(See [5]) Now we can show that $S(\Omega)$ can be expressed as a set which will be shown to be a G_δ one in $Hol(\Omega)$:

Proposition 4.2. $S(\Omega) = \bigcap_{s, j, m = 1}^{\infty} \bigcup_{N = 0}^{\infty} \{ f \in Hol(\Omega) : \sup_{\zeta \in K_m} |\tilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \}$

Proof. That $S(\Omega)$ is a subset of the set on the right is an immediate consequence of the definition of $S(\Omega)$.

Consider now a function f in the set on the right, a function $g \in Hol(\Omega)$, a compact subset K of Ω and an $\epsilon > 0$. There exists an $m \geq 1$ such that $K \subset K_m$ and an $s \geq 1$ such that $\frac{1}{s} < \epsilon$. For these g, K_m and s, there exists a $j \geq 1$ such that

$$\sup_{\zeta \in K} |p_j(\zeta) - g(\zeta)| \leq \sup_{\zeta \in K_m} |p_j(\zeta) - g(\zeta)| < \frac{1}{2s}$$

For these K_m, s and j, there exists an $N \geq 0$ such that

$$\sup_{\zeta \in K} |\tilde{T}_N(f)(\zeta) - p_j(\zeta)| \leq \sup_{\zeta \in K_m} |\tilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{2s}$$

By the triangle inequality, for $z \in K$, we have

$$|\tilde{T}_N(f)(z) - g(z)| \leq |\tilde{T}_N(f)(z) - p_j(z)| + |p_j(z) - g(z)|$$

$$\leq \sup_{\zeta \in K} |\tilde{T}_N(f)(\zeta) - p_j(\zeta)| + \sup_{\zeta \in K} |p_j(\zeta) - g(\zeta)|$$

$$< \frac{1}{2s} + \frac{1}{2s}$$

Therefore, $\sup_{\zeta \in K} |\tilde{T}_N(f)(\zeta) - g(\zeta)| \leq \frac{1}{s} < \epsilon$, so $\{\tilde{T}_N(f)\}$ is dense in $Hol(\Omega)$.

Proposition 4.3. $S(\Omega)$ is a G_δ set in $Hol(\Omega)$.

Proof. By Proposition 4.2, it suffices to show that, for $j, s, m \geq 1$ and $N \geq 0$, the set

$$E_{j,s,m,N} := \{ f \in Hol(\Omega) : \sup_{\zeta \in K_m} |\tilde{T}_N(f)(\zeta) - p_j(\zeta)| < \frac{1}{s} \}$$

is open in $Hol(\Omega)$.

To this end, consider functions $g_k \in Hol(\Omega)$, $k \geq 1$, and $g \in E_{j,s,m,N}$ such that $g_k \rightarrow g$ uniformly on compact subsets of Ω. It suffices to find a k_0 such that $g_k \in E_{j,s,m,N}$, for all $k \geq k_0$. Since $g \in E_{j,s,m,N}$, there exists a $\delta > 0$ such that

$$\sup_{\zeta \in K_m} |\tilde{T}_N(g)(\zeta) - p_j(\zeta)| < \frac{1}{s} - 2\delta$$
Set $M = \max \{ e^{\left| z \right|} : \zeta \in K_m \}$. By the Weierstrass Theorem we have that $g_k^{(i)} \rightarrow g^{(i)}$ uniformly on compact subsets of Ω, $i = 0, 1, ..., N$, so there exists a $k_0 \in \mathbb{N}$ such that

$$\|g_k^{(i)} - g^{(i)}\|_{K_m} < \frac{\delta}{M}$$

for all $i = 0, 1, \ldots, N$. Therefore, for $z \in K_m$ and $k \geq k_0$ we have

$$|\tilde{T}_N(g_k)(z) - p_j(z)| \leq |\tilde{T}_N(g_k)(z) - \tilde{T}_N(g)(z)| + |\tilde{T}_N(g)(z) - p_j(z)|$$

$$= \left| \sum_{n=0}^{N} \frac{g^{(n)}_k(z) - g^{(n)}(z)}{n!} (-z^n) \right| + |\tilde{T}_N(g)(z) - p_j(z)|$$

$$\leq \sum_{n=0}^{N} \frac{|g^{(n)}_k(z) - g^{(n)}(z)|}{n!} |z|^n + \sup_{\zeta \in K_m} |\tilde{T}_N(g)(\zeta) - p_j(\zeta)|$$

$$< \sum_{n=0}^{N} \frac{|g^{(n)}_k(z) - g^{(n)}(z)|}{n!} |K_m| |z|^n + \frac{1}{s} - 2\delta$$

$$< \frac{\delta}{M} \sum_{n=0}^{N} \frac{|z|^n}{n!} + \frac{1}{s} - 2\delta$$

$$\leq \frac{\delta}{M} \sum_{n=0}^{\infty} \frac{|z|^n}{n!} + \frac{1}{s} - 2\delta$$

$$= \frac{\delta}{M} (|z| + \frac{1}{s}) - 2\delta$$

$$\leq \frac{\delta}{M} M + \frac{1}{s} - 2\delta$$

$$= \frac{1}{s} - \delta$$

Since the $z \in K_m$ was arbitrary, we have that

$$\sup_{\zeta \in K_m} |\tilde{T}_N(g_k)(\zeta) - p_j(\zeta)| \leq \frac{1}{s} - \delta < \frac{1}{s}$$

for all $k \geq k_0$. Hence $g_k \in E_{j,s,m,N}$, $k \geq k_0$. This completes the proof. \qed

Proposition 4.4. Let Ω be a simply connected domain in \mathbb{C}. Either $S(\Omega) = \emptyset$ or $S(\Omega)$ is a dense G_δ set in $\text{Hol}(\Omega)$.

Proof. If $S(\Omega) \neq \emptyset$, by Proposition [4.3] it suffices to show that $S(\Omega)$ is dense in $\text{Hol}(\Omega)$.

Let $f \in S(\Omega)$. Observe that, if p is a polynomial, then $f + p \in S(\Omega)$. Indeed, $f + p \in \text{Hol}(\Omega)$ and, for all $N > \deg p$, we have that $\tilde{T}_N(f + p) = \tilde{T}_N(f) + q_p$, where

$$q_p(\zeta) = \sum_{n=0}^{N} \frac{(-1)^n p^{(n)}(\zeta)}{n!} \zeta^n, \quad \zeta \in \Omega$$

14
is again a polynomial. For a function $g \in \text{Hol}(\Omega)$, we have that $g - q_p \in \text{Hol}(\Omega)$, and therefore there exists a sequence $\{\lambda_n\}$ in \mathbb{N} such that $\tilde{T}_{\lambda_n}(f) \to g - q_p$ uniformly on compact subsets of Ω. But then $\tilde{T}_{\lambda_n}(f + p) = \tilde{T}_{\lambda_n}(f) + q_p \to g$ uniformly on compact subsets of Ω, i.e. $\{\tilde{T}_N(f + p)\}$ is dense in $\text{Hol}(\Omega)$ and $f + p \in S(\Omega)$.

Now the density of $S(\Omega)$ in $\text{Hol}(\Omega)$ follows easily because by Runge’s Theorem the polynomials are dense in $\text{Hol}(\Omega)$.

At this point observe that, if $0 \in \Omega$, then $S(\Omega) = \emptyset$. Indeed, for $f, g \in \text{Hol}(\Omega)$ such that $f(0) \neq g(0)$, we have that, for any $N \in \mathbb{N}$ and any compact subset L of Ω such that $0 \in L$,

$$\sup_{\zeta \in L} |\tilde{T}_N(f)(\zeta) - g(\zeta)| \geq |\tilde{T}_N(f)(0) - g(0)| = |f(0) - g(0)| > 0$$

so there is no subsequence of $\{\tilde{T}_N(f)\}$ that converges to g uniformly on compact subsets of Ω.

Definition 4.5. Let Ω be open in \mathbb{C}. The set $S_t(\Omega)$ is the set of all $f \in \text{Hol}(\Omega)$ with the property that, for every $c \in \mathbb{C}$ there exists a sequence $\{\lambda_n\}$ in \mathbb{N} such that, for every $L \subset \Omega$ compact,

$$\sup_{\zeta \in L} |\tilde{T}_{\lambda_n}(f)(\zeta) - c| \to 0, \quad n \to \infty$$

Proposition 4.6. The set $S_t(\Omega)$ is a G_δ set in $\text{Hol}(\Omega)$.

Proof. Let $\{z_j\}_{j \in \mathbb{N}}$ be an enumeration of the points in the complex plane with rational coordinates. Following the proof of Propositions (4.2) and (4.3), we get that

$$S_t(\Omega) = \bigcap_{s,j,m=1}^{\infty} \bigcup_{N=0}^{\infty} \{f \in \text{Hol}(\Omega) : \sup_{\zeta \in K_m} |\tilde{T}_N(f)(\zeta) - z_j| < \frac{1}{s}\}$$

and that the set

$$\{f \in \text{Hol}(\Omega) : \sup_{\zeta \in K_m} |\tilde{T}_N(f)(\zeta) - z_j| < \frac{1}{s}\}$$

is open in $\text{Hol}(\Omega)$, $m, j, s \geq 1$, $N \geq 0$. \hfill \Box

Observe again that, if $0 \in \Omega$, then $S_t(\Omega) = \emptyset$. Indeed, for $f \in \text{Hol}(\Omega)$, $c \in \mathbb{C}$ with $f(0) \neq c$ and $L \subset \Omega$ compact, we have that

$$\sup_{\zeta \in L} |\tilde{T}_N(f)(\zeta) - c| \geq |\tilde{T}_N(f)(0) - c| = |f(0) - c| > 0$$

for all $N \in \mathbb{N}$. However, we can show that $S_t(\Omega)$ is dense in $\text{Hol}(\Omega)$ if Ω is a simply connected domain and $0 \notin \Omega$:

Theorem 4.7. Let Ω be a simply connected domain with $0 \notin \Omega$. Then $S_t(\Omega)$ contains a dense G_δ set in $\text{Hol}(\Omega)$.

15
Proof. Since Ω is a simply connected domain, the class \(U(Ω) \) is a dense \(G_δ \) set in \(\mathcal{H}o\mathcal{l}(Ω) \). We will show that \(U(Ω) \subset S_t(Ω) \).

Let \(f \in U(Ω) \) and \(c \in \mathbb{C} \). Take \(K = \{0\} \), which is disjoint from \(Ω \) because \(0 \notin Ω \). Then \(K \) is a compact set in \(\mathbb{C} \), \(K \cap Ω = \emptyset \), \(K^c \) is connected, and the function \(h(z) = c \), \(z \in K \), is continuous on \(K \) and (trivially) analytic in the interior of \(K \). By definition of the class \(U(Ω) \), there exists a sequence \(\{λ_n\} \in \mathbb{N} \) such that, for every compact set \(L \subset Ω \),

\[
\sup_{ζ \in L} \sup_{z \in K} |S_{λ_n}(f, ζ)(z) - h(z)| \to 0, \quad n \to \infty
\]

or

\[
\sup_{ζ \in L} |S_{λ_n}(f, ζ)(0) - c| \to 0, \quad n \to \infty
\]

But this is exactly

\[
\sup_{ζ \in L} |\tilde{T}_{λ_n}(f)(ζ) - c| \to 0, \quad n \to \infty
\]

Therefore, \(f \in S_t(Ω) \). This completes the proof. \(\Box \)

5 A more general statement

During a seminar on these topics, T. Hatziafratis posed the following question: Let \(E \) be a countable dense subset of \(T = \{z \in \mathbb{C} : |z| = 1\} \). Is it true that, for the generic function \(f \in \mathcal{H}o\mathcal{l}(D) \), all the derivatives and anti-derivatives of \(f \) are unbounded on every radius joining 0 to a point of \(E \)?

The answer to this question is affirmative. To see this, we examine a more general case:

Proposition 5.1. Let \(Ω \subset \mathbb{C} \) be an open set, \(X \) a non-empty subset of \(Ω \).
If \(T: \mathcal{H}o\mathcal{l}(Ω) \to \mathcal{H}o\mathcal{l}(Ω) \) is a linear operator with the property that, for every \(z \in Ω \), the mapping \(\mathcal{H}o\mathcal{l}(Ω) \ni f \mapsto T(f)(z) \in \mathbb{C} \) is continuous, and

\[
S = S(T, Ω, X) = \{f \in \mathcal{H}o\mathcal{l}(Ω) : T(f) \text{ is unbounded on } X\},
\]

then either \(S = \emptyset \) or \(S \) is a dense \(G_δ \) set in \(\mathcal{H}o\mathcal{l}(Ω) \).

Proof. To show that \(S \) is a \(G_δ \) set, for \(m \geq 1 \), define

\[
S_m = \{f \in \mathcal{H}o\mathcal{l}(Ω) : \exists z \in X \text{ such that } |T(f)(z)| > m\}
\]

Then \(S = \bigcap_{m=1}^{∞} S_m \). Since the mapping \(f \mapsto T(f)(z) \) is continuous, the set \(S_m \) is open in \(\mathcal{H}o\mathcal{l}(Ω) \), for each \(m \geq 1 \). Hence, \(S \) is a \(G_δ \) set in \(\mathcal{H}o\mathcal{l}(Ω) \).

To show that \(S \) is dense in \(\mathcal{H}o\mathcal{l}(Ω) \) if it is not empty, let \(g \in S \), i.e. \(g \in \mathcal{H}o\mathcal{l}(Ω) \) and \(T(g) \) is unbounded on \(X \), and let \(f \in \mathcal{H}o\mathcal{l}(Ω) \). If \(T(f) \) is unbounded on \(X \), then \(f \in S \) and \(f \) is (trivially) the limit in \(\mathcal{H}o\mathcal{l}(Ω) \) of a sequence of functions in \(S \). If \(T(f) \) is bounded on \(X \) by, say, \(M_1 \), then, for a fixed \(n \geq 1 \), the function \(T(f + \frac{1}{n} g) \) is unbounded.
on X. Indeed, suppose it is bounded on X by a positive number M_2. Then, if $z \in X$, by the linearity of T we would have

$$|T(g)(z)| = n|T\left(\frac{1}{n}g\right)(z)|$$

$$= n|T(f + \frac{1}{n}g)(z) - T(f)(z)|$$

$$\leq n|T(f + \frac{1}{n}g)(z)| + n|T(f)(z)|$$

$$\leq n M_2 + n M_1$$

But this means that $T(g)$ is bounded on X by $n(M_1 + M_2)$, which is contradictory to the fact that $T(g)$ is unbounded on X. Therefore, $T(f + \frac{1}{n}g)$ is unbounded on X for every $n \geq 1$; in other words $f + \frac{k}{n}g \in S$, for every $n \geq 1$. But $f + \frac{k}{n}g \to f, n \to \infty$, uniformly on compact subsets of Ω, so f is again the limit in $\mathcal{H}ol(\Omega)$ of a sequence of functions in S. Since f was an arbitrary function in $\mathcal{H}ol(\Omega)$, S is dense in $\mathcal{H}ol(\Omega)$ and the proof is complete. \hfill \Box

Consider now countable $T^{(k)}$ and X_m such that $S(T^{(k)}, \Omega, X_m) \neq \emptyset$, for all k, m. Then Baire’s Theorem gives that $\bigcap_{k,m} S(T^{(k)}, \Omega, X_m)$ is a dense G_{δ} set in $\mathcal{H}ol(\Omega)$. This answers the aforementioned question in the affirmative, because if $\zeta_m \in E$ and X_m is the radius joining 0 to ζ_m, then the function $g(z) = \frac{1}{z - \zeta_m}$, $z \in \mathbb{D}$, belongs to $S(T^{(k)}, \mathbb{D}, X_m)$ for all $k \geq 0$, where T is the differentiation operator.

More generally, we can replace \mathbb{D} with any open non-empty set Ω in \mathbb{C}, T being the differentiation operator and $X_m \subset \Omega$ having at least one accumulation point in $\partial \Omega$. If Ω is simply connected, then we obtain the analogous result for both the integration operator and the operator related to Taylor partial sums \tilde{T}_N that was defined before.

Observing that in the proof of Proposition (5.1) no properties of $\mathcal{H}ol(\Omega)$ were used other than those of a topological vector space, we can obtain the best generalization of our result, where completeness is not assumed and the proof does not use Baire’s Theorem:

Proposition 5.2. Let \mathcal{V} be a topological vector space over the field \mathbb{R} or \mathbb{C} and X a non-empty set. Denote by $F(X)$ the set of all complex-valued functions on X and consider a linear operator $T : \mathcal{V} \to F(X)$ with the property that, for all $x \in X$, the mapping $\mathcal{V} \ni \alpha \mapsto T(\alpha)(x) \in \mathbb{C}$ is continuous. Let $S = \{\alpha \in \mathcal{V} : T(\alpha) \text{ is unbounded on } X\}$. Then either $S = \emptyset$ or S is a dense G_{δ} set in \mathcal{V}.

Proof. That S is a G_{δ} set follows from the fact that $S = \bigcap_{m=1}^{\infty} \bigcup_{x \in X} \{\alpha \in \mathcal{V} : |T(\alpha)(x)| > m\}$ and the continuity of $\alpha \mapsto T(\alpha)(x)$. The proof that S is dense if it is non-empty is identical to the proof of Proposition (5.1). \hfill \Box

Acknowledgement — The topics discussed in this article were suggested by V. Nestoridis. I would like to thank him for the guidance and the insightful suggestions offered. I would also like to thank T. Hatziafratis for his taking interest in the topics discussed.
References

[1] A. Melas and V. Nestoridis. Universality of Taylor series as a generic property of holomorphic functions. *Advances in Mathematics*, 157(2001)(no. 2):pages 138–176.

[2] J. Müller, V. Vlachou, and A. Yavrian. Universal overconvergence and Ostrowski-gaps. *Bulletin of the London Mathematical Society*, 38(2006)(no. 4):pages 597–606.

[3] V. Nestoridis. An extension of the notion of universal Taylor series. *CMFT 1997(Nicosia) 421-430. Ser. Approx. Decompos., II, World Sci. Publ. River Edge, NJ. 1999*.

[4] V. Nestoridis. Universal Taylor series. *Annales de l’institut Fourier (Grenoble)*, 46 (1996)(no. 5):pages 1293–1306.

[5] W. Rudin. *Real and Complex Analysis, 3rd Ed*. McGraw-Hill, Inc., New York, NY, USA, 1987.

Department of Mathematics
National and Kapodistrian University of Athens
Panepistimiopolis, 157-84
Athens
Greece
e-mail: siskakmaria@math.uoa.gr