The vector optimization mechanism for resource planning problems

V V Zimin¹, V V Mitkov¹, A V Zimin¹, I G Stepanov² and A A Ivushkin³

¹Siberian State Industrial University, 42 Kirova street, Novokuznetsk, 654007, Russia
²Novokuznetsk Institute (Branch) of Kemerovo State University, 23 Tsiolkovsky street, Novokuznetsk, 654041, Russia
³Consolidated Company “Sibshakhrostroy” LLC, 9 Kuznetskoye shosse, Novokuznetsk, 654034, Russia

E-mail: zimin.1945@mail.ru

Abstract. The mechanism of two-criteria optimization for the resource planning problem is proposed, where the formalization of the problem can be represented by the direct and inverse control problem with a structurally similar description of the objective and cost functions. The set of Pareto-solutions of the two-criteria problem is determined by solution of the direct and inverse problems by the method of dichotomous programming, and the optimum on the set of Pareto-solutions – by the mechanism of complex estimation.

1. Introduction

Many problems of optimal resource planning, solved by industrial companies, are formulated in the form of a scalar direct or inverse control problem [1,2]. Let us consider, for example, the task of planning resources for training personnel operating the ERP system at a mining company [3].

Let \{\{p_{ji}\mid i = 1, n_j\}\mid j = 1, m\} be a set of training programs implemented by a consulting company involved in the creation of the ERP-system. Here \(j\) – the number of a business process, \(i\) – the number of the training program, \(p_{ji}\) – the \(i\)-th training program for the \(j\)-th business process, \(n_j\) – the number of training programs for the \(j\)-th process, \(m\) – the number of business processes.

Let us denote the cost of training of one user within the program by \(c_{ji} = c(p_{ji})\), the “expansion” of the user’s competence (which we will estimate in points) as a result of training within the program \(p_{ji}\) – by \(q_{ji} = q(p_{ji})\), the number of users that it is desirable to train within the program \(p_{ji}\) – by \(k_{ji} = k(p_{ji})\). Let us also assume that the management of each business process imposes a restriction on the minimum number of trained users \(k_{ji}^*\), which allows the initial operation to be started. Let us denote the maximum limit of funds, that the management of a company can spend on the users training, by \(c^*\).

2. The problem formalization and the solution method

We will introduce a discrete variable \(x_{ji}\), which is equal to 1, if users are to be trained in accordance with the program \(p_{ji}\), and equal to 0 otherwise. Then the direct problem of training costs optimal
planning is formulated as follows:

\[q = \sum_{j=1}^{n_j} \sum_{i=1}^{m} k_{ji} q_{ji} x_{ji} \rightarrow \max \]
\[\sum_{j=1}^{n_j} \sum_{i=1}^{m} k_{ji} c_{ji} x_{ji} \leq c^* \]
\[\sum_{i=1}^{n_j} k_{ji} x_{ji} \geq k^*_j, \quad j = 1, m. \]

The solution of problem (1) – (3) is a user training program \(\{ \{ x_{ji} | i = 1, n_j \} | j = 1, m \} \) that maximizes the total “expansion” of users competencies \(q \) with a given restraint \(c^* \) for the maximum funds limit on allocated for training and that meets the requirements set by the managers of the business processes for the minimum number of users to be trained.

The opposite to the formulated problem (1) – (3) will be the problem:

\[c = \sum_{j=1}^{n_j} \sum_{i=1}^{m} k_{ji} c_{ji} x_{ji} \rightarrow \min \]
\[\sum_{j=1}^{n_j} \sum_{i=1}^{m} k_{ji} q_{ji} x_{ji} \geq q^* \]
\[\sum_{i=1}^{n_j} k_{ji} x_{ji} \geq k^*_j, \quad j = 1, m. \]

in which it is required to define such training program for users \(\{ \{ x_{ji} | i = 1, n_j \} | j = 1, m \} \), which minimizes the costs \(c \) to achieve the given value of the user competence development \(q^* \).

Because of the structural similarity of functions \(c \) and \(q \), both problems can be effectively solved by the method of dichotomous programming [4,5,6]. We should note the following important feature of this method. When solving each of the sequence of evaluation problems into which the initial problem is broken (because of this structural similarity), a subset of solutions are formed that are permissible by constraints and are Pareto optimal, that is, they are not dominated by other solutions of this set [7,8]. The set of solutions of the last estimated problems of the direct and inverse problem, due to the noted peculiarity, is a subset of Pareto solutions of the vector optimization problem:

\[(q,c) \rightarrow \max \]
\[\sum_{i=1}^{n_j} k_{ji} x_{ji} \geq k^*_j, \quad j = 1, m. \]

Based on their preferences, the decision maker chooses the best option from this subset. The
procedure for determining the optimum on a subset of Pareto solutions can be formalized by applying the mechanism of complex estimation widely used in the theory of management of organizational systems [9, 10].

3. An example of a problem solving and results presentation

Let us consider the case with three business processes \(m = 3 \) and, respectively, with three \((n_1 = 3) \), two \((n_2 = 2) \) and two \((n_3 = 2) \) training programs for these processes. The initial data for the training programs are given in table 1.

\(q_{ji} \)	\(P_1 \)	\(P_2 \)	\(P_3 \)	\(P_{21} \)	\(P_{22} \)	\(P_{31} \)	\(P_{32} \)
4	3	5	3	4	4	5	3
3	2	3	4	3	4	2	
60	64	90	54	90	90	54	

\[k_1 \geq k_1^* = 5 \quad k_2 \geq k_2^* = 3 \quad k_3 \geq k_3^* = 2 \]

We will take for the direct problem \(c^* = 1100 \), and for the inverse problem \(q^* = 55 \).

Solving the direct and inverse problem by the method of dichotomous programming, we obtain, respectively, the Pareto solutions presented in tables 2 and 3.

\(q_{123} \)	45	51	39	36	59	50	53	56
\(k_{123} \)	12	14	11	11	14	13	13	15
\(c_{123} \)	774	902	722	632	1026	884	974	992
\(x_1 \)	101	111	011	110	101	110	011	110
\(x_2 \)	10	10	10	10	10	10	10	10
\(x_3 \)	01	01	01	01	10	10	10	11

\(q_{123} \)	83	77	71	65	59	56
\(k_{123} \)	21	19	18	16	14	15
\(c_{123} \)	1532	1404	1262	1134	1026	992
\(x_1 \)	1 1 1	1 0 1	1 1 1	1 0 1	1 0 1	1 1 0
\(x_2 \)	1 1	1 1	1 0	1 0	1 0	1 0
\(x_3 \)	1 1	1 1	1 1	1 1	1 0	1 1

The optimal solutions of the direct and inverse problems are underlined.

By uniting the solutions of both problems and excluding those that are dominated by others, we obtain the Pareto solution of the vector optimization problem, table 4 (a and b), figure 1.

| \(q_{123} \) | 83 | 77 | 71 | 65 | 59 | 56 |
k_{123}	21	19	18	16	14	15
c_{123}	1532	1404	1262	1134	1026	992
x_1	111	101	111	101	101	110
x_2	111	110	10	10	10	10
x_3	111	111	111	111	10	11

Table 4b. Union of Pareto solutions for the direct and inverse problem.

q_{123}	53	51	50	45	39	36
k_{123}	13	14	13	12	11	11
c_{123}	974	902	884	774	722	632
x_1	111	111	110	101	011	110
x_2	100	100	100	100	100	100
x_3	100	010	100	010	010	010

Figure 1. Histogram describing the set of Pareto-solutions to the vector optimization problems.

To formalize the choice of the best Pareto-solution by the decision maker, we will apply the mechanism of complex estimation, which, in the annex to the problem under consideration, will include the following procedures:

1. Bringing the scales for measuring local efficiency indicators q and c to a single discrete scale of a given rank R (we assume $R = 100$):
1.1 Defining the measurement ranges \(q \) and \(c \) (in our example: \(q_{\text{min}}=36 \), \(q_{\text{max}}=83 \), then \(q \in [35,85] \); \(c_{\text{min}}=632 \), \(c_{\text{max}}=1532 \), we assume \(c \in (630,1540) \)).

1.2 Defining the lengths of intervals \(q \) and \(c \) per one point of the measurement scale.

\[
\delta_q = \frac{85 - 35}{100} = 0.5, \quad \delta_c = \frac{1540 - 630}{100} = 9.1.
\]

2. Calculation of values \(q^\delta(q) \) \(c^\delta(c) \) in the new measurement scale (the direct scale of measurement for \(q^\delta(q) \), the inverse scale for \(c^\delta(c) \)).

3. Calculation of the average values of the integral indicator \((q,c)^\delta = \alpha_q q^\delta + \alpha_c c^\delta \) describing the effectiveness of the solution, obtained on the basis of additive convolution of local indicators and their relative weights given by the person making the decision (\(\alpha_q + \alpha_c = 1 \)).

Table 5 shows the results of converting the values of the indicators in table 4 from the natural scales of measurement to a single 100-point scale (the integrated indicator \((q,c)^\delta = \alpha_q q^\delta + \alpha_c c^\delta \), (\(\alpha_q = 0.34 \) \(\alpha_c = 0.66 \) is in the place of indicator \(k \)).

Table 5a. Evaluation of Pareto solutions in points.

\(q^{123} \)	96	84	72	60	48	42
\((q,c)^{b} \)	98.64	85.32	71	57	45.36	40.68
\(c^{123} \)	100	86	70	56	44	40
\(x_1 \)	1	1	1	1	1	1
\(x_2 \)	11	11	10	10	10	10
\(x_3 \)	11	11	11	11	10	11
No.	1	2	3	4	5	6

Table 5a. Evaluation of Pareto solutions in points.

\(q^{123} \)	36	32	30	20	8	2
\((q,c)^{b} \)	37.32	30.68	28.68	17.36	9.98	1.34
\(c^{123} \)	38	30	28	16	11	1
\(x_1 \)	1	1	1	1	0	1
\(x_2 \)	10	10	10	10	10	10
\(x_3 \)	10	0	1	0	1	0
No.	7	8	9	10	11	12

Figure 2 shows a histogram describing the Pareto solutions obtained in a single point scale for \(q \) and \(c \).

Solutions 3 and 4 are of interest. The third solution \((x_1 = 111, x_2 = 10, x_3 = 11) \) is the most balanced and is characterized by the fact that spending 70% of the resource maximum we get 72% of the maximum possible result. The fourth solution \((x_1 = 101, x_2 = 10, x_3 = 11) \) is the best in terms of resource efficiency: 56% of resources provide 60% of the value \(q \) (that is, 4% more than resource consumption).
Figure 2. A histogram describing the set of Pareto solutions for the vector optimization problem in a single point scale of measurements.

4. Conclusion
The two-criteria formulation of the resource planning problem is preferable for the decision-maker, as he usually searches for a compromise between costs and the objective indicator. The stated mechanism of two-criteria optimization in many cases allows the decision maker to find such a compromise.

References
[1] Zimin V V, Burkova I V and Zimin A V 2017 Models and Mechanisms for Managing the Life Cycle of IT Services (Saarbrucken: LAB LAMBERT Academic Publishing)
[2] Zimin V V and Kiseleva T V 2016 Proc. of the IV All-Russian Sci. and Pract. Conf. on Modeling and Knowledge-intensive Information Technologies in Technical and Socio-economic Systems (Novokuznetsk: SibSIU)
[3] Mitkov V V and Zimin V V 2017 Proc. of the 11th All-Russian Sci. and Pract. Conf. on Automation Systems in Education, Science and Production (Novokuznetsk: SibSIU) pp 293 – 297
[4] Burkov V N and Novikov D A 1997 How to Manage Projects: Scientific and Practical Edition (Moscow: SINTEG-GEO) p 188
[5] Burkova I V 2009 Automation and Telemecanics 10 15–21
[6] Burkova I V, Kosenkov A V and Khartonova T B 2006 Control Systems and Information Technologies: Scientific and Technical Journal 1.1(23) 123–126
[7] Petrovsky A B 2009 Theory of Decision-making (Moscow: Akademiya) p 400
[8] Larichev O I 2003 Theory and Methods of Decision-making (Moscow: Logos) p 392
[9] Burkov V N, Kondratieva V D and Shchepkin A V 2012 Mechanisms for Improving Road Safety (Moscow: LIBRICOM) p 208
[10] Novikov D A 2007 A Theory of Organizational Systems Management (Moscow: Fizmatgiz) p 584