Comparing \(\text{WO}(\omega^\omega) \) with \(\Sigma_2^0 \) induction

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
University Park, PA 16802, USA
http://www.math.psu.edu/simpson
simpson@math.psu.edu

First draft: July 15, 2015
This draft: July 27, 2015

Abstract

Let \(\text{WO}(\omega^\omega) \) be the statement that the ordinal number \(\omega^\omega \) is well ordered. \(\text{WO}(\omega^\omega) \) has occurred several times in the reverse-mathematical literature. The purpose of this expository note is to discuss the place of \(\text{WO}(\omega^\omega) \) within the standard hierarchy of subsystems of second-order arithmetic. We prove that \(\text{WO}(\omega^\omega) \) is implied by \(I\Sigma_2^0 \) and independent of \(B\Sigma_2^0 \). We also prove that \(\text{WO}(\omega^\omega) \) and \(B\Sigma_2^0 \) together do not imply \(I\Sigma_2^0 \).

Contents

1 Introduction 2
2 \(I\Sigma_2^0 \) implies \(\text{WO}(\omega^\omega) \) 2
3 \(\text{WO}(\omega^\omega) \) does not imply \(B\Sigma_2^0 \) 3
4 \(\text{WO}(\omega^\omega) + B\Sigma_2^0 \) does not imply \(I\Sigma_2^0 \) 4
References 6

Keywords: reverse mathematics, proof-theoretic ordinals, fragments of arithmetic.

2010 MSC: Primary 03B30; Secondary 03F15, 03F30, 03F35.

The author’s research is supported by Simons Foundation Collaboration Grant 276282.
1 Introduction

In the language of second-order arithmetic, let \(\text{WO}(\omega^\omega) \) be the statement that \(\omega^\omega \) is well ordered.\(^1\) In \([3, 4, 6]\) it was shown that several theorems of abstract algebra, including the Hilbert Basis Theorem, are reverse-mathematically equivalent to \(\text{WO}(\omega^\omega) \). It is therefore of interest to understand the place of \(\text{WO}(\omega^\omega) \) within the usual hierarchy of subsystems of second-order arithmetic \([7, 8]\).

In this expository note we prove the following results.

- \(\text{WO}(\omega^\omega) \) is provable from \(\text{RCA}_0 + \Sigma^0_2 \) induction.
- \(\text{WO}(\omega^\omega) \) and \(\Sigma^0_2 \) bounding are independent of each other over \(\text{RCA}_0 \).
- \(\Sigma^0_2 \) induction is not provable from \(\text{RCA}_0 + \text{WO}(\omega^\omega) + \Sigma^0_2 \) bounding.

These results are perhaps well known and implicit in the literature on fragments of arithmetic \([2, 5]\). Our reason for writing them up here is that, because of \([3, 4, 6]\), they deserve attention in the reverse-mathematical context \([7]\). I thank Keita Yokoyama for explaining these results to me during a visit to Penn State, July 11–16, 2015.

2 \(\Sigma^0_2 \) implies \(\text{WO}(\omega^\omega) \)

In this section we show that \(\text{WO}(\omega^\omega) \) is provable in \(\text{RCA}_0 + \Sigma^0_2 \) but not in \(\text{RCA}_0 + \text{BSigma}^0_2 \). Our arguments in this section have a proof-theoretical flavor.

Definition 2.1. Let \(\Phi \) range over \(\Sigma^0_k \) formulas in the language of second-order arithmetic. Note that \(\Phi \) may contain free number variables and free set variables. We consider the following schemes.

1. \(\Sigma^0_k \) is the \(\Sigma^0_k \) induction principle, i.e., the universal closure of
 \[
 (\Phi(0) \land \forall i (\Phi(i) \Rightarrow \Phi(i + 1))) \Rightarrow \forall i \Phi(i).
 \]
2. \(\text{BSigma}^0_k \) is the \(\Sigma^0_k \) bounding principle, i.e., the universal closure of
 \[
 (\forall i \exists j \Phi(i, j)) \Rightarrow \forall m \exists n (\forall j < m) (\exists j < n) \Phi(i, j).
 \]

Note that \(\Sigma^0_2 \) was called \(\Sigma^0_2 \)-IND in \([7, \text{Remark I.7.9}]\). It is known that \(\Sigma^0_{k+1} \) implies \(\text{BSigma}^0_{k+1} \) and \(\Sigma^0_{k+1} \) implies \(\Sigma^0_k \).

Theorem 2.2. \(\text{WO}(\omega^\omega) \) is provable in \(\text{RCA}_0 + \Sigma^0_2 \).

Proof. We reason in \(\text{RCA}_0 + \Sigma^0_2 \). Assume that \(f \) is a descending sequence through \(\omega^\omega \). Consider the \(\Pi^0_2 \) formula \(\Phi(n, f) \equiv \forall \alpha (\text{if } \exists i (f(i) < \alpha + \omega^n) \text{ then } \exists i (f(i) < \alpha)) \). By \(\Pi^0_2 \) induction on \(n \) we prove \(\forall n \Phi(n, f) \). Trivially \(\Phi(0, f) \) holds. Assume inductively that \(\Phi(n, f) \) holds, and let \(\alpha \) be such that \(\exists i (f(i) < \alpha + \omega^{n+1}) \). Then we have \(\exists m \exists i (f(i) < \alpha + \omega^{n+1} \cdot m) \), so by \(\Pi^0_1 \) induction there is a least such \(m \). If \(m = 0 \) then \(\exists i (f(i) < \alpha) \) and we are done. If \(m = l + 1 \) then \(\exists i (f(i) < \alpha + \omega^n \cdot l + \omega^n) \), so by \(\Phi(n, f) \) we have \(\exists i (f(i) < \omega^\omega \cdot l) \) contradicting our choice of \(m \). We now see that \(\forall n \Phi(n, f) \) holds. For \(\alpha = 0 \) this says that \(\forall n (\text{if } \exists i (f(i) < \omega^n) \text{ then } \exists i (f(i) < 0)) \), or in other words \(\forall n \forall i (f(i) \geq \omega^n) \), contradicting the fact that \(\omega^\omega = \sup_n \omega^n \).

Theorem 2.3. \(\text{WO}(\omega^\omega) \) is not provable in \(\text{RCA}_0 + \text{BSigma}^0_2 \).

\(^1\)More precisely, \(\text{WO}(\omega^\omega) \) is the statement that the standard set of Cantor normal form notations for the ordinal numbers less than \(\omega^\omega \) is well ordered.
Proof. It is known [7, §IX.3] that the provably total recursive functions of RCA$_0$ are just the primitive recursive functions. In particular, totality of the Ackermann function is not provable in RCA$_0$. It is also known [2, Theorem IV.1.59] that RCA$_0$ + BΣ^0_2 is conservative over RCA$_0$ for Π^0_2 sentences. Therefore, totality of the Ackermann function is not provable in RCA$_0$ + BΣ^0_2. On the other hand, totality of the Ackermann function is straightforwardly provable in RCA$_0$ + WO(ω^ω).

Remark 2.4. More generally, for each $k \geq 2$, letting ω_k be a stack of ω’s of height k, it is known that WO(ω_k) is provable in RCA$_0$ + IΣ^0_k and not provable in RCA$_0$ + BΣ^0_k. These results belong to Gentzen-style proof theory.

3 WO(ω^ω) does not imply BΣ^0_2

In this section we show that BΣ^0_2 is not provable in RCA$_0$ + WO(ω^ω). Our arguments in this section and the next have a model-theoretical flavor.

Definition 3.1. IΣ_k and BΣ_k consist of basic arithmetic plus the respective restrictions of IΣ^0_k and BΣ^0_k to the language of first-order arithmetic [2]. It is known that IΣ_{k+1} implies BΣ_{k+1} and BΣ_{k+1} implies IΣ_k.

Remark 3.2. In the language of first-order arithmetic, let $\Phi(x)$ be a Σ_{k+1} formula with a distinguished free variable x. Write $\Phi(x)$ as $\exists y \Theta(x,y)$ where $\Theta(x,y)$ is a Π_k formula. Let $\overline{\Phi}(x)$ be the Σ_{k+1} formula

$$\exists z ((z)_1 = x \land \Theta((z)_1, (z)_2) \land \neg(\exists w < z) \Theta(((w)_1, (w)_2)))$$

The universal closures of the following are provable in IΣ_k.

1. $\forall x (\overline{\Phi}(x) \Rightarrow \Phi(x))$.
2. $\forall x \forall x' ((\overline{\Phi}(x) \land \overline{\Phi}(x')) \Rightarrow x = x')$.
3. $(\exists x \Phi(x)) \Rightarrow (\exists x \overline{\Phi}(x))$.

Items 1 and 2 are trivial, and for item 3 we use IΣ_k to prove the existence of z. See also the discussion of “special” Σ_{k+1} formulas in [2, §IV.1(d)]. The passage from $\Phi(x)$ to $\overline{\Phi}(x)$ will be referred to as uniformization with respect to the variable x.

Lemma 3.3. In the language of first-order arithmetic, let Ψ be a Π_3 sentence. If IΣ_1 + Ψ is consistent, then IΣ_1 + Ψ does not prove BΣ_2.

Proof. Let M be a nonstandard model of IΣ_1 + Ψ. Fix a nonstandard element $c \in M$. By Remark 3.2 we know that every nonempty subset of M which is $\Sigma_2(M)$-definable from c contains an element which is $\Sigma_2(M)$-definable from c. Hence

$$M_2 = \{ x \in M \mid x \text{ is } \Sigma_2(M)\text{-definable from } c \}$$

is a Σ_2-elementary submodel of M. Therefore, since Ψ is a Π_3 sentence, M_2 satisfies Ψ. And likewise, since IΣ_1 is axiomatized by Π_3 sentences, M_2 satisfies IΣ_1. We shall finish the proof by showing that M_2 does not satisfy BΣ_2.

Let $\Phi(e,x,c)$ be a Σ_2 formula which is universal in sense that, as e ranges over the natural numbers, $\Phi(e,x,c)$ ranges over all Σ_2 formulas with one free variable x and one parameter c. For each $x \in M_2$ we know that x is $\Sigma_2(M_2)$-definable from c,

2See also the proofs of Lemma 4.1 and Theorem 4.2 below.
\[\Phi(x, y, z) \]

i.e., there exists a natural number \(e \) such that \(x \) is the unique element of \(M_2 \) such that \(M_2 \) satisfies \(\Phi(e, x, c) \). Moreover, since \(e \) is a natural number and \(c \) is nonstandard, we have \(e < c \). Uniformizing with respect to \(x \), we see that \(M_2 \) satisfies \(\overline{\Phi}(e, x, c) \) for all such pairs \(e, x \). Uniformizing again with respect to \(e \), we see that for each \(x \in M_2 \) there is exactly one \(e = e_x \in M_2 \) such that \(e < c \) and \(M_2 \) satisfies \(\Phi(e, x, c) \). We now have a mapping \(x \mapsto e_x \) which is \(\Delta_2(M_2) \)-definable from \(c \) and maps \(M_2 \) one-to-one into \(\{ e \in M_2 \mid e < c \} \). If \(M_2 \) were a model of \(\mathcal{B}_2 \), then the restriction of \(x \mapsto e_x \) to \(\{ x \in M_2 \mid x \leq c \} \) would be \(M_2 \)-finite, so we would have an \(M_2 \)-finite mapping of the \(M_2 \)-finite set \(\{ x \in M_2 \mid x \leq c \} \) into its \(M_2 \)-finite proper subset \(\{ e \in M_2 \mid e < c \} \). This contradiction shows that \(M_2 \) cannot satisfy \(\mathcal{B}_2 \). \(\Box \)

Theorem 3.4. In the language of second-order arithmetic, let \(\exists X \forall Y \Psi(X, Y) \) be a \(\Sigma^2_2 \) sentence such that \(\Psi(X, Y) \) is \(\Pi^1_3 \). If \(\text{RCA}_0 + \exists X \forall Y \Psi(X, Y) \) is consistent, then \(\text{RCA}_0 + \exists X \forall Y \Psi(X, Y) \) does not prove \(\mathcal{B} \Sigma^0_2 \).

Proof. Consider the \(\Pi^1_3 \) formula \(\overline{\Psi}(X) \equiv \forall Y \left(Y \leq_T X \Rightarrow \Psi(X, Y) \right) \). We may view \(\overline{\Psi}(X) \) as a \(\Pi^1_3 \) sentence in the language of first-order arithmetic with an extra unary predicate \(X \). Let \((M, X_M) \) be a nonstandard model of \(\Sigma_1(X) + \overline{\Psi}(X) \). As in the proof of Lemma 3.3, fix a nonstandard \(c \in M \) and let \(M_2 = \{ x \in M \mid x \text{ is } \Sigma_2(M, X_M) \text{-definable from } c \} \). Also as in the proof of Lemma 3.3, we have that \((M_2, X_M \cap M_2) \) satisfies \(\Sigma_1(X) + \overline{\Psi}(X) \) and does not satisfy \(\mathcal{B}_2(X) \). Passing to the language of second-order arithmetic, it follows by [7, §IX.1] that \((M_2, \Delta_1(M_2, X_M \cap M_2)) \) satisfies \(\text{RCA}_0 + \exists X \forall Y \Psi(X, Y) \) and does not satisfy \(\mathcal{B} \Sigma^0_2 \). \(\Box \)

Corollary 3.5. \(\text{RCA}_0 + \text{WO}(\omega^\omega) \) does not prove \(\mathcal{B} \Sigma^0_2 \). More generally, for any primitive recursive linear ordering \(\alpha \) of the natural numbers, if \(\text{RCA}_0 + \text{WO}(\alpha) \) is consistent then \(\text{RCA}_0 + \text{WO}(\alpha) \) does not prove \(\mathcal{B} \Sigma^0_2 \).

Proof. \(\text{WO}(\alpha) \) can be written in the form \(\forall Y \Psi(X, Y) \) where \(\Psi(X, Y) \) is as in the hypothesis of Theorem 3.4. Our corollary is then a special case of Theorem 3.4. \(\Box \)

4 \(\text{WO}(\omega^\omega) + \mathcal{B} \Sigma^0_2 \) does not imply \(\Sigma^0_2 \)

In this section we show that \(\Sigma^0_2 \) is not provable in \(\text{RCA}_0 + \text{WO}(\omega^\omega) + \mathcal{B} \Sigma^0_2 \).

Lemma 4.1. In the language of first-order arithmetic, let \(\Psi \) be a \(\Pi^1_3 \) sentence. If \(\mathcal{B}_2 + \Psi \) is consistent, then \(\mathcal{B}_2 + \Psi \) does not prove \(\Sigma_2 \).

Proof. Let \(M \) be a nonstandard model of \(\mathcal{B}_2 + \Psi \). As in the proof of Lemma 3.3, fix a nonstandard element \(e \in M \) and consider the \(\Sigma_2 \)-elementary submodel \(M_2 = \{ a \in M \mid a \text{ is } \Sigma_2(M) \text{-definable from } c \} \). We may safely assume\(^3\) that \(M_2 \) is not cofinal in \(M \). We shall show that the submodel

\[
\bar{M}_2 = \{ x \in M \mid (\exists a \in M_2) (x < a) \}
\]

satisfies \(\mathcal{B}_2 + \Psi + \neg \Sigma_2 \).

Claim 1: \(\bar{M}_2 \) is a \(\Sigma_1 \)-elementary submodel of \(M \). To see this, let \(\Phi(x) \) be a \(\Sigma_1 \) formula with no free variables other than \(x \). Given \(u \in \bar{M}_2 \) such that \(M_2 \) satisfies \(\Phi(u) \), we need to show that \(\bar{M}_2 \) satisfies \(\Phi(u) \). Write \(\Phi(x) \) as \(\exists y \Theta(x, y) \) where \(\Theta(x, y) \) is

\(^3\)For instance, this would be the case if \(M \) is countably saturated, or if \(M \) satisfies \(\Sigma_2 \).
3.3

that with no free variables other than \(x \). The assumption that used in those proofs, but it will be used in the proof of Claim 4.

suffice to show that \((\exists y < b) \Phi(x,y)\) (where \(\Phi(x,y)\) is \(\Pi_0\)) gives a \(\Sigma_2\)-definable mapping from a bounded subset of \(M \) onto \(M \). Since \(M \) is a cofinal \(\Sigma_2\)-elementary submodel of \(\hat{M} \), this same formula gives a \(\Sigma_2(\hat{M}_2)\)-definable mapping from a bounded subset of \(\hat{M}_2 \) onto an unbounded subset of \(\hat{M}_2 \). This implies that \(\hat{M}_2 \) does not satisfy \(\Sigma_2 \).

As a point of interest, note that our proofs of Claims 1 through 3 used only the assumption that \(M \) satisfies \(\Sigma_1 \). The assumption that \(M \) satisfies \(\Sigma_2 \) was not used in those proofs, but it will be used in the proof of Claim 4.

Claim 4: \(\hat{M}_2 \) satisfies \(\Theta \). To see this, write \(\Psi \) as \(\forall x \exists y \Phi(x,y) \) (where \(\Phi(x,y) \) is \(\Pi_1\)) with no free variables other than \(x \) and \(y \). We need to show that \(\forall x (\exists y \in \hat{M}_2) \Phi(x,y) \) (where \(\Phi(x,y) \) is \(\Pi_1\)). By Claim 1 plus the fact that \(M \) is cofinal in \(\hat{M}_2 \), it will suffice to show that \(\forall x \in \hat{M}_2 \exists y \in \hat{M}_2 \exists a \in M \exists \Phi(x,y) \). Fix \(a \in M \). Since \(M \) satisfies \(\Sigma_2 + \forall x \exists y \Phi(x,y) \), there exists \(b \in M \) such that \(M \) satisfies \(\forall x < a \exists y < b \Phi(x,y) \). But then, because \(M \) is a \(\Sigma_2\)-elementary submodel of \(M \) and \(b \) belongs to \(M \), there exists such a \(b \) which also belongs to \(M \).

Theorem 4.2. In the language of second-order arithmetic, let \(\exists X \forall Y \Psi(X,Y) \) be a \(\Sigma_2 \) sentence such that \(\Psi(X,Y) \) is a \(\Pi_0^0 \) formula. If \(\text{RCA}_0 + \text{BS}_2^0 + \exists X \forall Y \Psi(X,Y) \) is consistent, then \(\text{RCA}_0 + \text{BS}_2^0 + \exists X \forall Y \Psi(X,Y) \) does not prove \(\Sigma_2^0 \).

Proof. As in the proof of Theorem 3.4, we may view the \(\Pi_0^0 \) formula \(\bar{\Psi}(X) \equiv \forall Y (Y \leq_T X \Rightarrow \Psi(X,Y)) \) as a \(\Pi_1 \) sentence in the language of first-order arithmetic with an extra unary predicate \(X \). As in the proof of Lemma 4.1, let \((M, X_M) \) be a nonstandard model of \(\text{BS}_2(X) + \bar{\Psi}(X) \), fix a nonstandard \(c \in M \), let \(M_2 = \{ a \in M \mid a \in \Sigma_3(\hat{M}_2, X_M) \text{definable from } c \} \), and let \(\hat{M}_2 = \{ x \in M \mid (\exists a \in M_2) (x < a) \} \). Also as in the proof of Lemma 4.1, we have that \((\hat{M}_2, X_M \cap \hat{M}_2) \) satisfies \(\text{BS}_2(X) + \bar{\Psi}(X) + \neg \Sigma_2(X) \). Passing to the language of second-order arithmetic, it follows by [7, §IX.1] that \((\hat{M}_2, X_M \cap \hat{M}_2) \) satisfies \(\text{RCA}_0 + \text{BS}_2^0 + \exists X \forall Y \Psi(X,Y) \).}

Corollary 4.3. \(\text{RCA}_0 + \text{BS}_2^0 + \text{WO}(\omega) \) does not prove \(\Sigma_2^0 \). More generally, for any primitive recursive linear ordering \(\alpha \) of the natural numbers, if \(\text{RCA}_0 + \text{BS}_2^0 + \text{WO}(\alpha) \) is consistent then \(\text{RCA}_0 + \text{BS}_2^0 + \text{WO}(\alpha) \) does not prove \(\Sigma_2^0 \).
Proof. \(\text{WO}(\alpha) \) can be written as \(\forall Y \Psi(Y,Y) \) where \(\Psi(X,Y) \) is as in the hypothesis of Theorem 4.2. Our corollary is then a special case of Theorem 4.2.

Remark 4.4. Theorems 3.4 and 4.2 and Corollaries 3.5 and 4.3 hold more generally, for all \(k \geq 2 \), replacing \(\Sigma^0_2 \) by \(\Sigma^0_k \) and \(\Pi^0_3 \) by \(\Pi^0_{k+1} \), with essentially the same proofs.

References

[1] S. Feferman, C. Parsons, and S. G. Simpson, editors. *Kurt Gödel: Essays for his Centennial*. Number 33 in Lecture Notes in Logic. Association for Symbolic Logic, Cambridge University Press, 2010. X + 373 pages.

[2] Petr Hájek and Pavel Pudlák. *Metamathematics of First-Order Arithmetic*. Perspectives in Mathematical Logic. Springer-Verlag, 1993. XIV + 460 pages.

[3] Kostas Hatzikiriakou. A note on ordinal numbers and rings of formal power series. *Archive for Mathematical Logic*, 33(4):261–263, 1994.

[4] Kostas Hatzikiriakou and Stephen G. Simpson. Reverse mathematics, Young diagrams, and the ascending chain condition. 13 pages, 8 July 2015, in preparation.

[5] Alexander P. Kreuzer and Keita Yokoyama. On principles between \(\Sigma_1 \)- and \(\Sigma_2 \)-induction, and monotone enumerations. http://arxiv.org/abs/1306.1936v4, 30 June 2015. 17 pages.

[6] Stephen G. Simpson. Ordinal numbers and the Hilbert basis theorem. *Journal of Symbolic Logic*, 53(3):961–974, 1988.

[7] Stephen G. Simpson. *Subsystems of Second Order Arithmetic*. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages; Second Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI + 444 pages.

[8] Stephen G. Simpson. The Gödel hierarchy and reverse mathematics. In [1], pages 109–127, 2010.