Review of different clinical scenarios in patients with cardiovascular disease in the era of the coronavirus pandemic

Marcin Grabowski, Krzysztof Ozierański, Renata Główczyńska, Agata Tymińska, Magdalena Niedziela, Robert Kowalik, Piotr Lodziński, Łukasz Kołtowski, Janusz Kochman, Paweł Balsam, Grzegorz Opolski

1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland

Introduction Cardiovascular comorbidities are common in patients with coronavirus disease 2019 (COVID-19) and associated with a greater risk of morbidity and mortality. This special report reviews clinical data on the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular disease (CVD) (Figure 1). The spread of COVID-19 requires attention to the immediate and long-term cardiovascular implications of viral infection. This is of particular importance to patients with pre-existing CVD.

Hypertension Arterial hypertension is one of the most frequent comorbidities in patients with SARS-CoV-2 infection. A recent meta-analysis of 6 studies including 1527 infected patients showed that the prevalence of hypertension, cardio- and cerebrovascular disease, and diabetes in that population was 17.1%, 16.4%, and 9.7%, respectively. What is more, the prevalence of comorbidities was higher among patients who were admitted to intensive care units (ICUs), required mechanical ventilation, or had fatal outcomes. However, according to current knowledge, hypertension is not an independent risk factor for worse outcomes in patients with COVID-19.

Notably, the aforementioned comorbidities are often treated with renin-angiotensin system inhibitors, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Their beneficial effect on cardiovascular outcomes has been demonstrated in numerous studies. However, recently, the potential of ACEIs and ARBs to cause unfavorable effects—specifically, an increased risk of SARS-CoV-2 infection and a more severe course of COVID-19—has been suggested. Severe acute respiratory syndrome coronavirus 2 binds to its target cells through angiotensin-converting enzyme 2 (ACE2), which is expressed in the lungs, intestines, kidneys, blood vessels, and heart. In animal models, the upregulation of ACE2 expression in various organs resulted from ACEI and ARB treatment. Angiotensin-converting enzyme 2 turns angiotensin II to angiotensin 1-7, which has a protective role in the cardiovascular system and, potentially, a vasodilatory effect. Moreover, ACE2 prevents acute lung injury. Possible upregulation of ACE2 expression as a receptor for viral cell entry (with ACEIs or ARBs) may theoretically increase susceptibility to COVID-19.

Interestingly, a contrasting hypothesis has also been postulated. Angiotensin receptor blockers have been suggested to act beneficially in patients with COVID-19 by ACE2 upregulation, thus increasing the concentration of vasodilating angiotensin 1-7 at the expense of angiotensin II causing vasoconstriction, which contributed to lung protection.

Therefore, in the absence of firm evidence regarding beneficial or adverse outcomes of ACEI and ARB treatment in patients with COVID-19, the European Society of Cardiology (ESC) as well as the American College of Cardiology and American Heart Association do not recommend discontinuation or any modification of clinically indicated therapy. The risk of discontinuing drug use is well known: it may destabilize blood pressure control and consequently increase cardiovascular mortality in patients with COVID-19.

Chronic coronary syndromes Reports of outpatient and inpatient cohorts with COVID-19 showed that 24% of patients had at least 1 comorbidity and...
2.5% to 25% had chronic coronary syndromes (CCSs). They were more frequently observed in critically ill patients with respiratory failure (9%) and in nonsurvivors (24%). Chronic coronary syndromes were also a risk factor for inhospital death in univariable analysis (odds ratio [OR], 21.4; 95% CI, 4.64–98.76). It can be presumed that patients with coronary artery disease are susceptible to cardiac injury and complications from COVID-19 leading to sudden deterioration.

Acute inflammation can exacerbate the course of pre-existing CCSs and may contribute to atherosclerotic plaque rupture leading to cardiovascular events. Therefore, administering drugs like aspirin, statins, β-blockers, and ACEIs, which have the potential to stabilize plaque, is strongly recommended by current guidelines on the management of CCSs.

Due to the increased likelihood of stent thrombosis due to procoagulant effects of systemic inflammation, some experts advise doctors to assess platelet function and consider intensifying antiplatelet therapy, especially in patients with a history of previous coronary intervention.

In the era of the COVID-19 pandemic, numerous hospitals are limiting or cancelling elective diagnostic workup and treatment procedures. High-risk patients on waiting lists should be prioritized. What is more, single-day percutaneous coronary interventions (PCIs) should be considered to reduce the risk of transmission. As for treatment options, medical management or PCIs may need to be preferentially considered over coronary artery bypass grafting, if feasible, according to current guidelines. A reason for such approach is the limited number of ICUs, beds, and respirators. Second, there is currently a limited amount of packed red blood cells owing to an insufficient number of available blood donors.

Acute coronary syndromes The clinical presentation of acute coronary syndrome (ACS) may have signs and symptoms overlapping with those of COVID-19, including nausea, isolated dyspnea, chest discomfort, fatigue, and tachycardia, making it challenging to differentiate between these 2 entities.

While the optimal management strategy in patients with ACS during the COVID-19 epidemic is being widely discussed, no ultimate consensus has been reached so far. Decisions should be individualized, considering the risk of SARS-CoV-2 exposure versus the risk of delay in diagnosis or therapy. However, in the case of ST-segment elevation myocardial infarction (STEMI), it is reasonable to follow the guideline-recommended treatment, which implies primary PCI within 90 minutes from first medical contact.

In STEMI patients with active or suspected COVID-19 in whom PCI is to be performed, appropriate personal protective equipment (PPE) should be worn, such as gowns, gloves, goggles, shields, and FFP2/FFP3 masks. However, in our opinion, it is reasonable to assume that each patient is a potential SARS-CoV-2-infected person. This assumption is based on the fact that 15% to 20% of infected
patients remain asymptomatic yet capable of infecting others.25 Such a strategy, although it requires additional resources, ultimately minimizes the risk of personnel exposure and contamination of the catheterization laboratory. Adoption of these precautions should reduce the risk of catheterization laboratory quarantine or shutdowns, enabling full availability of primary PCI services in a continuous and uninterrupted fashion.

No specific recommendations to alter the routine PCI technique, stent selection, and periprocedural pharmacotherapy have been provided yet. However, in patients with acute cardiovascular and respiratory decompensation, intubation should be considered before admission to a catheterization laboratory, as emergency intubation, suction, and active cardiopulmonary resuscitation (CPR) in the catheterization laboratory setting is likely to result in generating aerosolized respiratory secretions increasing the likelihood of personnel exposure.

Of note, the pandemic may pose a threat to patients with STEMI, as it increases the risk of delayed primary PCIs, resulting from multiple factors. First, there seems to be a significant patient factor, which most probably results from patient reluctance to hospitalization. Specifically, as reported in a preliminary report from China,25 researchers noted a nearly 4-fold increase in the time from symptom onset to first medical contact. Second, the availability of emergency medical transport may be limited owing to system overload and unavailability of some emergency medical response teams caused by post-exposure quarantine. Last but not least, one can expect some hospital delay related to the need for providing additional safety procedures, as mentioned above and listed in a recent article.25

Due to the increased risk of delays from symptom onset to PCI, fibrinolysis and an early pharmacoinvasive strategy should be considered in patients with STEMI in whom the expected delay is longer than 90 minutes.

Patients with non-ST-segment elevation myocardial infarction (NSTEMI) should undergo biomarker evaluation (ie, high-sensitivity troponin) as well as symptom and electrocardiogram (ECG) monitoring, followed by risk stratification. According to current ESC guidelines, an immediate invasive strategy is recommended only in very high-risk patients, which means that, in the majority of patients with NSTEMI, timing should allow for diagnostic testing for COVID-19 prior to cardiac catheterization and more informed decision making regarding infection status.38 Of note, a troponin rise is observed in up to 17% of patients with COVID-19, which is likely related to acute cardiac injury and/or type 2 myocardial infarction.1 That is why, in light of lack of any other signs of ischemia, conservative treatment should be considered as the default strategy.

Myocarditis The actual incidence of myocarditis in patients with SARS-CoV-2 infection is impossible to be determined, as endomyocardial biopsy is used infrequently. Among more than 21 million known COVID-19 cases worldwide, the scenario of clinically suspected myocarditis is uncommon. Using the search terms (“coronavirus” OR “SARS-CoV-2” OR “COVID-19” AND “myocarditis”), there can be found only several dozens of case reports and a small number of retrospective studies reporting clinically suspected myocarditis—few using positive cardiac magnetic resonance imaging—but none of them were proven by biopsy.2,21-23 Cardiac magnetic resonance imaging should be performed in all cases of suspected myocarditis in order to increase the likelihood of proper diagnosis, but it increases the risk of facility contamination. What is more, sputum or nasal/throat swab testing is not sufficient to prove the association of clinically suspected myocarditis with SARS-CoV-2 infection, since only molecular testing (polymerase chain reaction or in situ hybridization) of the myocardial tissue provides definite diagnosis. In addition, SARS-CoV-2 is not among cardiotropic viruses that are known to be associated with myocarditis (like parvovirus B19, enterovirus, or adenovirus). In a single case report, autopsy showed only few interstitial mononuclear inflammatory infiltrates yet no signs of myocardial damage.32 However, it is postulated that there is a potential way of direct cardiac involvement through ACE2, the receptor for SARS-CoV-2.33 This theory requires further investigation.

Myocarditis is more common in children and young adults, may occur at middle age, and is rare in the elderly, while the median age of patients with COVID-19 has been approximately 55 years, and comorbidities have been present in at least half of patients.1,4 In patients with COVID-19, the predominant clinical presentation was pneumonia accompanied by signs and symptoms of systemic infection, while chest pain (2% of patients), palpitations, and/or arrhythmia were observed at low frequency.39 In the overall population, elevated natriuretic peptide and troponin levels were noted in a low proportion of patients (approximately 30% and 10% to 20%, respectively), with a higher prevalence among those requiring intensive care.4,35,36 Deceased patients had significantly more complications such as acute respiratory distress syndrome (ARDS), acute kidney injury, shock, and disseminated intravascular coagulation. In deceased groups, acute cardiac injury with elevated troponin and natriuretic peptide levels was also significantly more frequent than in survivors, which is likely due to multiorgan damage (including liver and renal failure), cytokine storm, or unknown etiology.37 There is evidence showing that acute infections are associated with an increased risk of myocardial damage.38 Abnormal troponin levels do not equate heart failure, myocarditis, or myocardial infarction in COVID-19. Other potential mechanisms of troponin elevation include high myocardial oxygen demand accompanied by hypoxia due to acute respiratory failure, plaque rupture, and coronary
thrombosis enabled by systemic inflammation and dyselectrolytemia, especially hypokalemia related to the interaction between SARS-CoV-2 and the renin–angiotensin system.1,20,39 Additionally, the drugs used in COVID-19 such as antivirals, corticosteroids, chloroquine, and azathioprine may pose a risk of cardiac toxicity, interact with cardiac drugs, and prolong the QT interval, thus leading to arrhythmia.46 Therefore, current epidemiological data do not support the hypothesis that myocarditis is associated with COVID-19, or that it is common.

In the abovementioned studies, patients with clinically suspected myocarditis were treated with corticosteroids, intravenous immunoglobulin (IVIG), or antiviral treatment (alone or in combination), although these agents have no proven beneficial role in clinically suspected myocarditis.41 According to the current ESC recommendations, immunosuppressive treatment or immunomodulation should be prescribed after ruling out the presence of the virus in the myocardium on endomyocardial biopsy.27 What is more, patients with COVID-19 who received corticosteroids and/or IVIG did not benefit from this treatment or even had an increased risk of death.3 Use of corticosteroids in viral infection (a high risk of coinfection with other respiratory pathogens was also reported in COVID-19) is controversial and may lead to reduced viral clearance and an increased risk of sepsis.42 Administration of IVIG for hypothetical myocarditis in COVID-19 might be useless, since human IVIG does not contain immunoglobulin G against COVID-19 (except for patients recovered from COVID-19). It has also been postulated that up to 50% of patients with acute myocarditis show spontaneous healing.27

Intensive cardiac care Current research shows that patients requiring ICU treatment were more likely to suffer from hypertension, diabetes, or ischemic heart disease.13,44 The infection may not only indirectly affect the circulatory system, exacerbating the symptoms of already existing diseases, but also directly contribute to the occurrence of specific diseases and cardiac complications (eg, myocarditis, ACS, myocardial injury, acute heart failure leading to cardiogenic shock, malignant ventricular arrhythmias, or venous thromboembolism). Most likely, this is due to uncontrolled immune response to the virus, resulting in acute neurohormonal stress, release of a large number of proinflammatory cytokines, which leads to significant disorders of the coagulation system.3 In addition, infection can lead to complications specific to COVID-19 such as pneumonia, ARDS, septic shock, or multiorgan failure. All this means that individual disease syndromes can superimpose each other, which can greatly impede the diagnostic process and implementation of appropriate treatment. Prioritized patients with severe COVID-19 should be referred to the ICU, where specific equipment and medical staff experienced in intensive care are available. However, it seems very likely that a patient with COVID-19 will be transferred to an intensive cardiac care unit because of a primary cardiac disease or no ICU available.

This fact sets new challenges for cardiologists and certainly diverges from the current routine practice.

Available reports clearly show that the presence of CVD in patients infected with SARS-CoV-2 is associated with a dramatic increase in in-hospital mortality when the existing cardiovascular pathologies are accompanied by respiratory failure, infectious myocardial damage, or new, treatment-resistant cardiac arrhythmias.43

Heart failure It has been shown that heart failure occurred in 52% of nonsurvivors and in 12% of survivors.7 Surprisingly, although respiratory disease is the major clinical manifestation of COVID-19, the case-fatality rate in patients with pre-existing CVD is greater (10.5%) than in those with pre-existing chronic respiratory disease (6.3%).43 Heart failure in patients with suspected or confirmed COVID-19 should be managed according to the current guidelines.45 To limit the risk of viral exposure, it is recommended to avoid blood testing (to measure troponin and natriuretic peptide levels) or echocardiography in patients with COVID-19, unless they are necessary and affect treatment.46 Treatment of acute left ventricular failure complicated by pulmonary edema in patients with COVID-19 should follow the same rules as for noninfected individuals. The difficulty physicians face is to establish the cause of acute left ventricular decompensation and differentiate with noncardiogenic pulmonary edema caused by massive pneumonia or ARDS. Radiological symptoms are unreliable in the acute phase of edema and it is difficult to perform more advanced diagnostic workup owing to the patient’s clinical status. In this case, the initial inference should be probably based on assessing the dynamics of withdrawal of pulmonary edema symptoms in response to the use of typical pharmacological treatment. It should be assumed that persons who, despite treatment, develop respiratory failure symptoms leading to the need for mechanical ventilation, may show primary pulmonary or mixed pathology. Properly performed endotracheal intubation by qualified medical staff wearing PPE and patient sedation enable healthcare personnel to perform imaging, including chest computed tomography and lung ultrasound, which, in combination with serial arterial blood gas tests, will help establish diagnosis and implement appropriate treatment.47 The management of patients with COVID-19 should follow the accepted principles, yet with a special emphasis on patients’ prognosis.48

Pulmonary embolism Pulmonary embolism is another cardiac condition that requires treatment in the intensive cardiac care unit and it may occur as...
a direct consequence of COVID-19. Patients with COVID-19 are at increased risk of developing venous and arterial thromboembolism. In hemodynamically unstable patients, rescue fibrinolysis should be used or, in case it is ineffective, surgical or percutaneous thrombectomy can be considered. In many cases, this may unfortunately involve the need to transfer the patient to a center offering highly specialized treatment and simultaneous access to hemodynamic support. It seems that, especially in the era of COVID-19, such decisions regarding treatment of severe pulmonary embolism should be made by interdisciplinary teams. According to the current guidelines, low-risk patients may be hospitalized shortly and should be discharged on oral treatment after exclusion of viral infection.3

Acute aortic syndrome Patients with acute aortic syndrome should be referred to cardiac surgery centers after establishing their serological status, if testing is allowed in their state. If serological evaluation is unavailable, the abnormalities seen on chest computed tomography may support the decision to take appropriate precautions to prevent virus transmission.

Diverse principles in ventilation support Interestingly, noninvasive ventilation (continuous positive airway pressure and bilevel positive airway pressure) is the recommended first-line method of ventilation support in selected patients with acute heart failure.49 Currently, it is not advised to use it owing to the high risk of virus transmission to medical staff, and the preferred methods include endotracheal intubation and mechanical ventilation. As experts suggest, a strategy should be adopted to identify patients who will require intubation in the near future in order to avoid performing a procedure with a high risk of virus transfer without adequate protection of the personnel with PPE. The passive methods include using only high-flow nasal catheters and face masks, without positive inspiratory pressures. The National Early Warning Score 2 comprises the following criteria: respiratory rate, hypercapnic respiratory failure, room air or supplemental oxygen, temperature, systolic blood pressure, pulse, and the consciousness level. The score is now validated for patients with COVID-19.

In severe ARDS, it is recommended to adjust ventilation therapy to serial arterial oxygen pressure values. Frequently, there is a need to use high positive end-expiratory pressure (PEEP; 4–6 mm of H2O under normal conditions) values with relatively small inspiratory volumes (4–6 ml per 1 kg of body weight). However, the increased value of PEEP may not be sufficient to improve oxygenation.49 Simultaneously, increased PEEP may worsen hemodynamic instability and hypotension. In this case, the effectiveness of ARDS treatment will be significantly limited by poor hemodynamic parameters and a consequent need for extracorporeal membrane oxygenation therapy.50

Cardiopulmonary resuscitation Some modifications regarding CPR procedures in patients with COVID-19 should be emphasized. The key recommendation is to identify patients who may require CPR as early as possible in order to ensure required equipment and avoid performing CPR without personal protection. The National Early Warning Score 2 can help recognize patients at increased risk.

Importantly, it is recommended to start compression-only CPR with the quick assessment of the patient’s cardiac arrest rhythm, until endotracheal intubation with full PPE protection is provided. Mouth-to-mouth ventilation should not be used in order to limit aerosol spread. In the case of shockable rhythms (hemodynamically unstable ventricular tachycardia or ventricular fibrillation), it is advised to perform defibrillation as soon as possible.17

Potential serious adverse events of currently proposed treatment protocols in coronavirus disease 2019 Based on the encouraging results of preliminary studies, chloroquine/hydroxychloroquine and azathioprine have been widely prescribed to patients with COVID-19. However, these drugs favor QT interval prolongation and, therefore, may provoke subsequent ventricular arrhythmia, including torsade de pointes, and are not currently recommended. Clinicians taking care of patients with COVID-19 should be aware of potential adverse cardiovascular effects of proposed therapeutic options. Moreover, adequate monitoring of treatment safety is warranted, especially in highly vulnerable patients with underlying cardiac, renal, or hepatic dysfunction and in those receiving medications known to cause QT interval prolongation.40

Arrhythmia, ablation, and implantable devices In patients with COVID-19, the risk of arrhythmia is increased due to possible heart failure, suspected myocarditis, proinflammatory effects, cardiac injury, and increased sympathetic stimulation. Although arrhythmia is listed among potential cardiovascular complications of SARS-CoV-2 infection, a precise distribution of various heart rhythm disturbances is not available.

Non-specific heart palpitations were reported in 7.3% of 137 patients admitted due to COVID-19.24 In 138 patients with COVID-19 who were hospitalized in Wuhan, cardiac arrhythmia was noted in 16.7% of them and more commonly seen in ICU patients (44.4%) compared with non-ICU patients (6.9%).4 Unfortunately, the types of arrhythmia were not specified in those reports. In another study evaluating the association between underlying CVD and myocardial injury with fatal outcomes, patients with high troponin T levels presented a higher incidence of malignant arrhythmias compared with those with normal levels (11.5% versus 5.2%).49

In patients with CIEDs who are already followed up with remote monitoring and do not
require in-person evaluation, it is recommend-
ed to consider replacing routine visits with re-

time devices, and small financial reimburse-

Telemedicine A global pandemic was official-

ly announced on March 11, 2020 by the World

Health Organization. The spread of SARS-

CoV-2 across the world has changed the organ-

ization of numerous industries, including the

healthcare system, which had to adjust to pre-

vailing conditions and clinical demands. Telem-

dicine accelerated its growth, limiting so-

cial contact at the same time, which includes

limiting regular medical appointments. Use of
telemedicine had been recommended by inter-
national societies before the emergence of the
COVID-19 pandemic. However, there have al-
ways been some barriers, which stopped the
expansion of telemedicine. Reorganization of
healthcare systems, clinicians’ reluctance, poor
computer skills, and small financial reimburse-
ment are listed among the reasons for its slow
development observed so far.

Nonetheless, physicians across the world are
nowadays forced to provide consultations us-
ing mobile phones and computers in order to
stop the virus spread and enable the treatment
of patients, especially those isolated or during
quarantine. Medical teleconsultation has been
legalized by several governments. This approach
is also evidence-based and has been justified by
several randomized trials. Video consultations
proved to be a useful, financially profitable tool
and showed high satisfaction rates among both
patients and physicians, without differences in
disease progression.

However, we should be careful in selecting pa-

tients for consultations due to reasons other than

those related to COVID-19 and identify those

who can and will benefit from this solution. Pa-

tients whose general condition is unstable or re-

quire acute care still need to have a traditional
visit scheduled.

Telecare can abolish barriers to receiving cardi-

ac care during the SARS-CoV-2 pandemic. First of
all, telecare diminishes patient exposure, thus
reducing the risk of infection. Second, it resolves pa-
tient problems with transportation during a pan-
demic, when public transport is not recommend-
ed. What is more, this solution will allow for a bet-
ter allocation of hospital beds to the seriously ill
patients or those with COVID-19.

For the sake of safety, it is necessary to review
upcoming appointments in advance to identify
3 groups of patients: 1) those who must be

seen face-to-face (traditional visit); 2) those who
might be seen virtually (telecare visit); 3) those
who can be safely rescheduled a few months lat-
er, at a more appropriate time posing a lower risk
of infection (postponed visit).

Of note, some practical issues of telecare
should be discussed here. There are various types
of virtual visits such as video consultation and
consultation by phone or a special dedicated sys-
tem for e-consultations. During virtual visits,
physicians can review results from previous ex-
aminations together with patients and discuss
vital sign trends from remote monitoring. Tele-
visits can be aimed at educating patients about
the disease process and treatment targets. Edu-
cation and counseling on diet or physical activi-
ity can also be provided in this way.

Another form of telecare, apart from televis-
its, is the remote monitoring of implanted cardi-
devices using special, dedicated systems. It is
recommended to call every patient whose sched-
uled visit for routine monitoring and reprogram-
ing of cardiac devices cannot be conducted in
order to assess their medical status (new symp-
toms such as dizziness, loss of consciousness, his-
tory of shock delivery).

Key points Several take-home messages regard-
ing the management of CVD in the era of the
COVID-19 pandemic can be derived from this
review:

- Patients with cardiovascular risk factors and

CVD are at greater risk of morbidity and mortal-
ity related to COVID-19.

- In acute cardiac conditions such as ACS, heart
failure, and cardiogenic shock decisions on the
management strategy should be taken on a case-
by-case basis, considering the risk of exposure
to SARS-CoV-2 versus the risk of delay in diagnosis
or therapy.

- Troponin release is a common and multifacto-
rial cardiac manifestation of COVID-19 and is as-
associated with an increased risk of morbidity and
mortality.

- Myocarditis is highly overdiagnosed as
one of the common cardiac complications of
COVID-19, but there is no firm evidence show-
ing that SARS-CoV-2 is a novel cardiotropic vi-
rus causing direct cardiomyocyte damage. The
term ‘myocarditis’ should be used only for di-
agnosis confirmed by endomyocardial biopsy
or autopsy.

- Various non–evidence-based treatment strate-
gies in patients with COVID-19 (ie, antivirals, cor-
ticosteroids, chloroquine, and azathioprine) may
pose a risk of cardiac toxicity and should not be
used at all or with extreme caution.

- The global COVID-19 pandemic poses challeng-
es to healthcare systems. Implementing telemed-
icine solutions for daily care is beneficial, partic-
ularly in patients with stable, chronic diseases.
However, it should not delay the management
of patients who require in-person visits.
REFERENCES

1. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109: 531-538.

2. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382: 1708-1720.

3. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062.

4. Wang Q, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323: 1061-1068.

5. Zheng YY, Ma YT, Zhang JY, Xie K. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17: 259-260.

6. Hoffmann M, Kleine-Weddel R, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 andTMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-280.e8.

7. Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94: e0127-20.

8. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-convert- ing enzyme inhibition and angiotensin II receptor blockers on case angio- tensin-converting enzyme 2. Circulation. 2005; 111: 2605-2610.

9. Furusashi M, Moniava N, Mita T, et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens. 2015; 28: 15-21.

10. Li XC, Zhang J, Zhou J. The vasoprotective axes of the renin-angioten- sin system: physiological relevance and therapeutic implications in cardiovas- cular hypertensive and kidney diseases. Pharmacol Res. 2017; 125: 21-38.

11. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436: 112-116.

12. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting en- zyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11: 875-879.

13. Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia [in Chinese]. Zhonghua Jie He Hu Xi Za Zhi. 2020 Feb 16. [Epub ahead of print].

14. Phadke M, Saini, S. Rapid response: use of angiotensin receptor blockers such as Telmisartan, Losartan in nCoV Wuhan Corona Virus infec- tions – novel mode of treatment. Response to the emerging novel coronavi- rus outbreak. BMJ. 2020; 368.

15. Kuster GM, Pister O, Burkard T, et al. SARS-CoV-2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020; 41: 1801-1803.

16. Buskott B, Kovacs R, Harrington B. Joint HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. J Card Fail. 2020; 26: 370.

17. National Health Commission of People’s Republic of China. Diagnosis and treatment of pneumonia caused by novel coronavirus (trial version 4). In Chinese. Published 2020. http://www.nhc.gov.cn/yzygj/s7535p/202002/429456235a20920b63b1729b70587e67e/7a9309111267477a9a54d30696c8b4768.pdf. Accessed March 31, 2020.

18. Shi S, Qin M, Chen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5: 802-810.

19. Kwiat E, Wijns W, Saraste A, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Heart J. 2020; 41: 407-477.

20. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020; 41: 1799-1803.

21. Ciiaszewski A. Will the COVID-19 pandemic accelerate the implementa- tion of single-day coronary angioplasty in Poland? Postepy Kardiol Interwen- cyjny. 2020; 16: 184-186.
Kowalik RJ, Fojt A, Ozierański K, et al. Results of targeted temperature management of patients after sudden out of hospital cardiac arrest: a comparison between intensive general and cardiac care units. Kardiol Pol. 2020; 78: 30-36.

Resuscitation Council UK. Statement on COVID-19 in relation to CPR and resuscitation in healthcare settings. https://www.resus.org.uk/media/statements/resuscitation-council-uk-statements-on-covid-19-coronavirus-cpr-and-resuscitation/covid-healthcare/. Accessed April 20, 2020.

MacLaren G, Fisher D, Brodie D. Preparing for the most critically ill patients with COVID-19: the potential role of extracorporeal membrane. JAMA. 2020; 323: 1245-1246.

Kempa M, Gudy M, Farkowski MM, et al. Electrotherapy and electrophysiology procedures during the coronavirus disease 2019 pandemic: an opinion of the Heart Rhythm Section of the Polish Cardiac Society (with an update). Kardiol Pol. 2020; 78: 489-492.

World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19, 11 March 2020, https://www.who.int/dgho/speeches/detail/who-dg-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed March 8, 2020.

Steinberg JS, Varma N, Cygankiewicz I, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring: telemetry. Heart Rhythm. 2017; 14: e55-e96.

Piotrowicz R, Krzesinski P, Balsam P, et al. Cardiology telemedicine solutions - opinion of the experts of the Committee of Informatics and Telemedicine of Polish Society of Cardiology, Section of Non-invasive Electrocardiology and Telemedicine of Polish Society of Cardiology and Clinical Sciences C [in Polish]. Kardiol Pol. 2018; 76: 698-707.

Smith AC, Gray LC. Telemedicine across the ages. Med J Aust. 2009; 190: 15-19.

Hollander JE, Carr BG. Virtually perfect? Telemedicine for COVID-19. N Engl J Med. 2020; 382: 1679-1681.

Lurie N, Carr BG. The role of telehealth in the medical response to disasters. JAMA Intern Med. 2018; 178: 745-746.

Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-19 infection. Clin Chem Lab Med. 2020; 58: 1131-1134.

Wu Q, Zhou L, Sun X. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017; 7: 9110.