The STIM1/Orai signaling machinery

Marc Fahner, Isabella Derler, Isaac Jardin, and Christoph Romanin*

Institute of Biophysics; Johannes Kepler University Linz; Linz, Austria

Keywords: CRAC channels, Orai, STIM, coiled-coil domain, immune system

Ca²⁺ influx via store-operated Ca²⁺ release activated Ca²⁺ (CRAC) channels represents a main signaling pathway for T-cell activation as well as mast-cell degranulation. The ER-located Ca²⁺-sensor, STIM1 and the Ca²⁺-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Their identification, but even more the recent structural resolution of both proteins by X-ray crystallography has substantially advanced the understanding of the activation mechanism of CRAC channels. In this review, we provide a detailed description of the STIM1/Orai1 signaling pathway thereby focusing on the critical domains mediating both, intra- as well as intermolecular interactions and on the ion permeation pathway. Based on the results of functional studies as well as the recently published crystal structures, we portray a mechanistic view of the steps in the CRAC channel signaling cascade ranging from STIM1 oligomerization over STIM1-Orai1 coupling to the ultimate Orai1 channel activation and permeation.

Introduction to CRAC channels

The Ca²⁺ ion represents a major intracellular messenger in eukaryotic cells. Changes in cytosolic Ca²⁺ concentrations are required for many physiological processes such as proliferation, contraction, secretion. Among the pathways that allow Ca²⁺ entry from the extracellular matrix, Ca²⁺ release-activated Ca²⁺ (CRAC) channels belong to the group of store-operated channels (SOC) which have been extensively studied during the past 2 decades in T-lymphocytes and mast cells. In 2005 and 2006, STIM1 and Orai1, the key components fully reconstituting CRAC currents have been identified. One form of hereditary severe combined immune deficiency (SCID) syndrome which is linked to a defect in CRAC channel function has opened the way to the identification of the Orai1 channel protein and its mutated form (Orai1 R91W) in SCID patients. Moreover, here Feske et al. have combined a modified linkage analysis with single-nucleotide polymorphism arrays and a Drosophila RNA interference screen that has conclusively led to the identification of Orai1 (also initially termed CRACM1) as the CRAC channel pore forming unit. Sequence database research has revealed a family consisting of three homologous proteins in higher vertebrates, i.e., Orai1, Orai2, and Orai3. Bioinformatic analysis predicts each of the Orai family members as a transmembrane (TM) protein with 4 TM spanning segments and 3 cytosolic strands including the N-terminus, the second loop connecting TM2 and TM3 and the C-terminus. Electrophysiological characterization by several groups has revealed that Orai proteins represent unequivocally the pore forming entity in the CRAC channel complex, providing the high Ca²⁺-selectivity and low single-channel conductance. Further biophysical experiments have shed light on the Orai isoforms’ distinct properties like inactivation profiles and 2-aminoethyl-diphenyl borate (2-APB) sensitivity.

In 2005, Liou et al. as well as Roos et al. have characterized the CRAC channel activating protein, i.e., stromal interaction molecule 1 (STIM1). By knocking down 2300 signaling proteins in HeLa and Drosophila S2 insect cells using an RNA interference-based screen, they have identified 2 proteins essential for endoplasmic reticulum (ER) store depletion mediated Ca²⁺ influx, STIM1 and STIM2. These ER-located Ca²⁺ sensors are responsible for activating CRAC channels following Ca²⁺ depletion of the ER. STIM2 shares approximately 61% sequence identity with STIM1. Both proteins contain an ER luminal N-terminus including the Ca²⁺ sensing EF-hand, 1 TM spanning segment and a long cytosolic strand which couples to and activates Orai. At resting cell conditions, STIM1 exhibits a tubular distribution throughout the cytosolic ER compartment and has also been detected to a small extent in the plasma membrane (PM). Upon store depletion, the luminal STIM1 EF hand loses Ca²⁺ which triggers homomerization and translocation of STIM1 to the cell periphery near the PM, i.e., ER-PM junctions. In these microdomains the STIM1 oligomers form punctuate clusters which interact with and activate Orai channels. The small portion of the STIM1 pool that integrates into the plasma membrane is not essentially required for CRAC channel activation. It has been shown that STIM1 has an additional role in TRP channel regulation as well as arachidonate- and leukotriene C4- as well as arachidonate- and leukotriene C4- stimulated Ca²⁺ channels where Orai1 and Orai3 are essential components.

In 2012, the crystal structures of both cytosolic fragments of STIM1 and full-length Orai3 have been reported, representing a milestone toward detailed elucidation of intra- and intermolecular interactions of these proteins and their conformational changes. In the following, mechanistic aspects of the STIM/Orai signaling machinery are presented and discussed in the context of these structures.

STIM1

STIM1 oligomerization and translocation

Overexpressed fluorescence-tagged STIM1 proteins exhibit a dramatic change in localization in response to store depletion. In resting cell with full ER Ca²⁺ stores, STIM1 is
Figure 1. For figure legend, see page 332.
homogenously distributed and moves rapidly along microtubules. Following store depletion STIM1 oligomerizes, consequently slow-
down its movement along the microtubules.32 In a former study, Baba et al.32 have demonstrated a dynamic, constitutive movement of
STIM1 in resting cells, while store depletion leads to redistribu-
tion of STIM1 into discrete puncta located at ER-PM junctions.
Examination of several mutants with deletion in the cytosolic
strand of STIM1 has revealed coiled-coil (CC) regions and the
serine/proline rich domain of STIM1 (Fig. 1A) as essential for
the constitutive movement of STIM1, while the puncta formation
involves both luminal as well as cytoplasmic STIM1 domains.32
As derived from FRET experiments, store depletion consequen-
tly leads to the formation of stable STIM1 oligomers.30,45,46 Elegant
experiments performed by Luik et al.35 utilizing artificial luminal
cross-linking of STIM1 demonstrates luminal dimerization as trig-
gger signal for STIM1 oligomerization and accumulation at ER–PM
junctions where it interacts with and activates Orai1 channels. In
summary, these results point to the fact that initial di – and/or
oligomerization on the luminal side is the first step in the activa-
tion process of STIM1 induced by store depletion.4,7,47-49

STIM1 essential domains in the ER luminal strand

STIM1 contains an ER luminal N-terminus, a single TM span-
ing domain and a cytosolic C-terminus (Fig. 1A). The ER luminal
part includes a canonical and a hidden EF-hand followed by a
sterile-\(\alpha\) motif (SAM).50-52 The EF-hand consists of a helix-loop-
helix motif where negatively charged aspartates and glutamates
bind \(\text{Ca}^{2+}\) as long as the stores are full. \(\text{Ca}^{2+}\) store depletion is the
initial signal for STIM1 oligomerization, with \(\text{Ca}^{2+}\) dissociating
from the EF hand (\(K_d \sim 200-600\mu\text{M}\)) thereby destabilizing the
entire EF-SAM entity.31 The low \(\text{Ca}^{2+}\) binding affinity perfectly
matches the \(\text{Ca}^{2+}\) concentration range (~400–800 \(\mu\text{M}\)) at which an ER
\(\text{Ca}^{2+}\) sensor protein is able to accurately respond to chang-
ing ER \(\text{Ca}^{2+}\) concentrations. Stathopoulos et al.32 have examined in
detail the EF-SAM complex (Fig. 1A). They have demonstrated
that holo EF-SAM loaded with \(\text{Ca}^{2+}\) contains high \(\alpha\)-helicity
whereas in the absence of \(\text{Ca}^{2+}\) (apo EF-SAM) it is less compact.
The holoform has proven to be a monomer whereas the apoform in
contrast forms at least a first \(\alpha\)-helical coiled-coil (CC) region.51,52 The calculated Hill coefficient for the
luminal domains of STIM1 under low \([\text{Ca}^{2+}]_{\text{ER}}\) concen-
trations is ~4 which is rather high and in line with a probable mul-
timeric state.35 Accordingly, Covington et al.51 have shown that a
STIM1 deletion mutant lacking the whole, cytoplasmic C-terminus
is also able to di-/oligomerize via the luminal strands in response
to store depletion as derived from FRET increases. Both STIM1
and STIM2 contain EF-SAM domains in their ER luminal part,
however, these domains behave differently.25 As STIM2
activates CRAC currents upon smaller decreases in \([\text{Ca}^{2+}]_{\text{ER}}\) STIM2 has
been proposed to be part of a feedback system to keep \([\text{Ca}^{2+}]_{\text{ER}}\)
in tight limits.25 The reason for the distinct behavior of EF-SAM
of STIM1 and STIM2 has been explained by a difference in the
luminal, structural stability of STIM1 and STIM2.54,55 Next to the
SAM domain a TM segment spans the ER membrane (Fig. 1A).
Whether the TM domain acts as a passive entity or affects STIM1
oligomerization actively remains to be seen.

STIM1 essential domains in the cytosolic strand

The long, cytosolic strand includes three putative coiled-coil
(CC1, CC2, CC3) regions, the CRAC modulatory domain CMD,
a serine/proline – and a lysine-rich region (Fig. 1A). As demon-
strated by Huang et al.56 and Muik et al.,57 the STIM1 C-terminus
is sufficient to activate CRAC channels. Based on this finding, sev-
eral groups have analyzed shortened cytosolic STIM1 fragments
to identify the key domains that are sufficient to activate Orai
channels. Finally and nearly at the same time, OASF (233–450),
CAD (342–448), SOAR (344–442), and Ccb9 (339–444) have
been identified57-60 (Fig. 1A). All these fragments have the CC2
(363–389) and CC3 (399–423) regions with additional 19 residues
(424–442) in common (Fig. 1A), integrating an Orai coupl-
ing and activating domain as well as a STIM1 homomerization
domain (SHD). The latter domain has been assigned to the seg-
ment ~421–450 and it is involved in cytosolic STIM1 homomer-
ization.57 Deletion of the SHD in OASF results in substantially
reduced FRET values in homomerization experiments and abol-
ishes activation of Orai1 channels in patch clamp recordings.57

Crystal structure of the Orai1 activating entity of STIM1

In 2012 the first crystal structure of a cytosolic portion of
STIM1 has been reported revealing intra- and intermolecular
interactions of a dimeric assembly.62 The crystallized hSOAR
protein (345–444 \(\text{STIM1}_{345-444}\)) forms a dimer (Fig. 1B) which
could possibly corresponds to human STIM1 in the activated state.
The structure of the monomeric SOAR molecule resembles that of
the capital letter “R.” It consists of 2 long \(\alpha\)-helices, i.e., CC2 and
CC3, arranged in antiparallel manner that are linked by 2 short
\(\alpha\)-helices. The dimer’s interface is generated by CC interactions
with the C – and N-termini, respectively, from the other monomer.
C-terminal residues (R429, W430, I433, L436) from 1 monomer
interact with N-terminal amino acids (T354, L351, W350, L347)
of the other monomer resulting in an overall V-shape structure of
the SOAR dimer (Fig. 1B). The tyrosines 361 from each mono-
mer form a stacking interaction at the crossing point of both CC2.
Amino acid mutations of (L347A-W350A-L351A or W430A-I433A-L436A)
in the dimer interface region in SOAR as well as full-length STIM1
disrupt co-localization with and activation of Orai1 channels.62 A cluster of positively charged residues, i.e.,
K382, K384, K385, K386, R387, is located on either tip of the
V-shape structure of the hSOAR dimer (Fig. 1B).

The role of CC1 in controlling the activation state of STIM1

In addition to the Orai1 activating entity of STIM1, i.e., SOAR,
the CC1 domain (aa 238–343, Fig. 1A) plays an important role in

Figure 1 (See previous page). STIM1: (A) Schematic representation of human, full-length STIM1 depicting regions essential to the STIM1/Orai1 signaling cascade. Moreover, the structure of the EF-SAM domain as well as the STIM1 SOAR (344–442) fragment is shown. (B) Cartoon representation of a STIM1 SOAR (344–442) – dimer including coiled-coil domain 2 (CC2) and 3 (CC3) exhibiting a V-shaped structure. Furthermore, residues mediating dimer inter-
action and those involved in the coupling to Orai1 (positively charged residues) are highlighted. Inset depicts magnified view of interacting residues between Monomer "a" N-terminal and Monomer "b" C-terminal segments. (C) Cartoon representation of a STIM1 SOAR (344–442) monomer together
with the inhibitory helix (aa 310–337), depicting critical residues the mutation of which modifies STIM1 function (aa numbering refers to human STIM1). (D and E) Two hypothetical models of STIM1 in the resting state.
transducing luminal di-/oligo-merization to the cytosolic strand of STIM1 resulting in SOAR exposure and homomerization.42,61-64 Covington et al.53 have analyzed the impact of the respective cytosolic CC domains on homomerization by the STIM1 C-terminal deletion mutants STIM1-CC1 (aa 1–344) and STIM1-CC1-CAD (aa 1–448) concluding that CC1 leads to store independent, yet unstable oligomerization, while CC3+SHD (see Fig. 1A) within CAD enables store dependent oligomerization. Although STIM1-CC1 demonstrates weak oligomerization potential per se, the role of CC1 has to be evaluated in the context of CC1-SOAR/CAD which mimics the inactive state as long as stores are full.62,65,66 Current models of STIM1 activation show CC1 oligomerization subsequent to store depletion.62,65,66 The detailed role of CC1 still remains puzzling, as its mechanistic function in controlling SOAR exposure (see below) and oligomerization has not been sufficiently resolved. Bioinformatic secondary structure predictions suggest the presence of 3 \(\alpha\) helices (\(\alpha_1, \alpha_2, \alpha_3\)) within the CC1 structure (Fig. 1A).67 Helix \(\alpha_1\) comprises aa 238–271, helix \(\alpha_2\) aa 278–304, and helix \(\alpha_3\) aa 308–337 (also known as inhibitory helix IH42). Several hypothetical models on the mechanism of CC1 in the control of STIM1 activation status have been proposed (Fig. 1D or E). Korzeniowski et al.67 suggest that STIM1 C-terminus is kept in a quiescent state due to an autoinhibitory, intramolecular electrostatic interaction between an inhibitory acidic segment within \(\alpha_3\) of CC1 and a short basic region (aa 382–387) within SOAR. However, as evident from the crystal structure of \textit{C.elegans} of CC1+SOAR (Fig. 1C), the so called inhibitory helix (\(\alpha_3^{\text{CC1}}\)) is less likely in the position to form the suggested electrostatic clamp with the basic region at the tip (see Fig. 1C). Yang et al.42 propose that \(\alpha_3^{\text{CC1}}\) forms intramolecular interactions with residues at the beginning of CC2 and at the end of CC3 (Fig. 1C). Their activation model describes a STIM1 dimer in the resting state where the SOAR domain is responsible for dimerization and is occluded by the inhibitory helix (\(\alpha_3^{\text{CC1}}\)). Another work by Machaca's group64 presents an intramolecular shielding model of STIM1 that keeps it in a quiescent state. They show that the acidic region within \(\alpha_3^{\text{CC1}}\) is neither involved in electrostatic interactions nor in CC formation as deletion or substitutions of this segment reveals no effect. However, multiple mutations within \(\alpha_3^{\text{CC1}}\) affecting the amphipathic character of the helix seem to have an impact. Therefore, they conclude that the amphipathic nature of the \(\alpha_3^{\text{CC1}}\) regulates the STIM1 activation status.64

In an attempt to monitor conformational re-arrangements, we have developed a double-labeled YFP-OASF-CFP conformational sensor to show that STIM1 aa233–474 (OASF), comprising both CC1 and SOAR, folds into a rather closed conformation which may represent the quiescent state of STIM1 when Ca2+ stores are full. Consistently, Zhou et al.68 reported recently, based on Tb3+-acceptor energy transfer measurements, a similarly tight conformation of STIM1 C-terminus (233–685) where the polybasic segment at the end is near to the residue 233 at the beginning. In attempt to reveal the molecular steps that guide the cytosolic strand of STIM1 from the quiescent into the active form, either mutations or artificial crosslinking have been performed. By introducing point mutations in \(\alpha_1^{\text{CC1}}\) (L251S) or CC3 (L416S L423S) (see Fig. 1C) the OASF sensor then adopts an extended conformation as measured by FRET.62 When introducing these CC1 or CC3 point mutations in full length STIM1, constitutive CRAC currents have been observed despite the stores are not depleted. Hence, we have suggested that intramolecular CC interactions exist within the quiescent STIM1 that are released by these mutations or physiologically upon store depletion and/or interaction with Orai.62 An alternative approach by Hogan's group, such an extended conformation exposing the polybasic cluster at the very end of STIM1-CT has been induced by artificial crosslinking of the CC1 domains from 2 STIM1 C-termini that stabilizes the \(\alpha\)-helical portion and promotes dimerization of CC1.68 Introducing the “activating” mutation L251S into STIM1-CT also results in conformational extension of STIM1-CT68 which is in line with Muik et al.42 and emphasizes the impact of \(\alpha_1^{\text{CC1}}\) on the transition of STIM1 from a quiescent to an active state. Furthermore, Zhou et al.68 demonstrate that only monomeric CC1 is able to interact with SOAR implying that CC1 dimerization as a consequence of STIM1 activation yields the extended conformation due to release of the interaction with SOAR. Based on these data, we present in Figure 1D and E two hypothetical models that depict quiescent STIM1 conformations in the resting cell. In either model, besides the luminal EF hand and SAM domains, the CC1 domain plays a dominant role in controlling the inactive state of STIM1 with both \(\alpha_1^{\text{CC1}}\) and \(\alpha_3^{\text{CC1}}\) helices contributing to that function, via intramolecular interactions with the SOAR domain.62,65,66 The difference between these models can be seen in the arrangement of the SOAR domain where the V-like structure is directed away from (Fig. 1D) or toward (Fig. 1E) the ER membrane. In the latter case the polybasic segment aa382–387 directs toward the ER membrane. In addition these models differ in the arrangement of the CC1 domain. Crystallization of human STIM1 will be essential to elucidate the CC1-SOAR interaction, as the CC1 domain of \textit{C.elegans} is shorter and the residues involved in the intramolecular interaction of \(\alpha_3^{\text{CC1}}\) with SOAR are not well conserved. Moreover, the cytosolic N-terminal portion of \textit{C.elegans} STIM1 corresponding to human 233–306 has not been resolved in the crystal structure. Upon store depletion CC1 dimerization is suggested to release the inhibitory clamp leading to exposure of SOAR and oligomerization, key to the interaction with Orai cytosolic strands (see section below and Fig. 3).65,68

Several questions still need to be resolved in more detail: Which STIM1-CT domains interact intramolecularly keeping STIM1 in a tight, quiescent state, particularly regarding the \(\alpha_1\) of CC1? What are the specific roles of \(\alpha_1, \alpha_2, \alpha_3\) of CC1 in controlling STIM1-CT re-arrangement? What is the interplay of the different STIM1-CT domains in the course of activation following store depletion? Which domains are involved in and how do they control the formation of higher order STIM1 oligomers?

Orai

Assembly of Orai subunits

Individual Orai subunits are composed of 4 transmembrane domains, the N- and C-terminal cytosolic strands, 1 intracellular and 2 extracellular loops (Fig. 2A). The CRAC channel complex is composed of an oligomer of Orai subunits, potentially forming homo- as well as heteromeric Orai channels.12,69-71 As
the truncation of the cytosolic strands does not generally affect aggregation of Orai subunits, their multimerization is assumed to be mainly established by their transmembrane regions. Hitherto, a detailed mapping of crucial regions especially within the transmembrane segments but also in the cytosolic portions is still missing. The recently reported hexameric drosophila Orai crystal structure (see below Fig. 2B) has revealed dimerization of C-termini within each of the 3 Orai dimers and may provide further clues for experiments on key residues or regions holding the Orai subunits together.
Orai stoichiometry

Orai channel structure displays no clear homology to other calcium channels. Hence, speculations concerning their function and stoichiometry have soon arisen. Biochemical and fluorescence studies have mainly revealed a tetrameric Orai structure, in contradiction to the recently published...
hexameric crystal structure of the Orai channel of Drosophila melanogaster.43

In the early stage of research on Orai proteins, at least stable dimers have been discovered by biochemical approaches, while chemical cross-linking has enabled to observe tetramers.70 Tetrameric or higher order Orai1 aggregates have been confirmed by disulfide cross-linking.89 A tetrameric stoichiometry has also been visualized by electron microscopy studies.81 This oligomeric state of 4 Orai subunits forming an active and conducting Ca2+ channel is further underlined by functional assays. Store-operated Ca2+ currents mediated by expressed, tetrameric Orai1 concatamers remain unaffected by co-expression with a dominant-negative Orai1 mutant.75,81 Furthermore concatenated Orai1 tetramers with an increasing number of non-functional Orai1 R91W subunits have displayed a gradual loss in Ca2+ currents.76 This current reduction is independent on the position or order of Orai R91W, but directly dependent on the number of mutant subunits in the tetramer.76

Employing single molecule fluorescence microscopy, which allows counting the Orai1 subunits within the channel complex, several groups72,73,76,77,82 have investigated the stoichiometry of Orai1 channels in the activated and resting state. For this, stepwise photobleaching has been applied to immobile Orai aggregates in fixed cells,78 confirming that STIM1-activated, conducting CRAC channels form tetramers. Under resting cell conditions, Ji et al.77 have detected Orai1 tetramers in fixed HEK 293 cells. In contrast, Penna et al.74 have observed a dimeric state for immobile Orai aggregates in Xenopus levis oocytes and they have suggested that dimerization of Orai1 dimers is induced by STIM1, leading to the tetrameric, activated CRAC channel.74 These controversial results regarding the stoichiometry of Orai1 in the resting cell state may result, as suggested by Cahalan’s group,79 from fixation of cells which artificially causes store depletion and thus leads to tetramer formation of Orai subunits.

Alternative to stepwise photobleaching, direct single molecule brightness analysis72,73,78 has also been utilized to analyze the stoichiometry of resting state Orai1 proteins in living HEK 293 cells, where the majority of Orai1 is mobile. Upon exclusively measuring the stoichiometry of mobile GFP-Orai1 proteins, the largest Orai1 fraction emerged to be purely tetrameric.78 Furthermore, the robust FRET between 2 differentially-labeled dimeric Orai1 concatamers does not change upon store depletion, suggesting that Orai1 has already accomplished its final oligomeric state which is at least tetrameric or higher.78 Demuro et al.79 have also studied the stoichiometry of Orai3 channels by single-molecule photobleaching reporting that at resting state Orai3 remains a dimer, while it forms a tetramer in the presence of STIM1 C-terminus. In contrast, 2-APB stimulation leaves Orai3 in its dimeric state leading to the hypothesis of a functional dimeric channel assembly gated by 2-APB. Orai3 single molecule brightness analysis measurements as well as FRET experiments of differently labeled Orai3-dimers have not yet been reported.

In contrast to a tetrameric Orai assembly, the recent crystallographic study43 reported – against all expectations—a hexameric structure of Orai from Drosophila melanogaster (Fig. 2B). The 4 transmembrane helices are arranged in 3 concentric rings, where TM1 forms the inner ring surrounding the ion pore, TM2 and TM3 are arranged in a second, and TM4 forms the third ring.43 Compatible with the hexameric crystal structure of Orai1, quantification of the particle size of purified Orai alone or together with CAD in negative stain electron microscopy has revealed higher order oligomers with more than 4 Orai subunits in a complex together with CAD.78 One fraction has shown complexes of maximal 6 particles matching with the hexameric crystal structure. It is of note that both the atypical structure of Orai1 Ca2+ channel subunits and the hexameric stoichiometry are distinctly different to features of other Ca2+-selective channels such as TRPV6 or L-type voltage-gated channels.72,73

Besides the tetrameric and hexameric assemblies of Orai subunits, Shuttleworth’s group has reported that Orai subunits may also form pentameric complexes to generate the arachidonate-regulated Ca2+ (ARC) channel. These channels contain 3 Orai1 and 2 Orai3 subunits, thus forming a heteromeric assembly.75,76,83 Therein, the Orai3 N-terminus represents the critical determinant which switches a store-operated channel into an arachidonate-regulated one.82

The Orai channel permeability

Orai channels conduct Ca2+ ions with a selectivity 1000 times higher than that of Na+.84 Hence, strongly inward rectifying Orai Ca2+ currents display a reversal potential of more than +60 mV.12,15,85 Monovalent ions are also able to permeate through Orai channels, as long as the solution is free of divalent ions. These monovalent Orai currents are blocked by addition of Ca2+ at µM concentrations. Furthermore, Orai channels possess a very low single channel conductance of about 20 fS in the presence of 110 mM Ca2+, which further decreases at physiological Ca2+ concentrations.86,87

The Orai1 channels are regulated via intracellular Ca2+, which induces Orai channel inactivation, displaying a fast and a slow phase. The members of the Orai family differ in their inactivation profiles, based on differences in the sequence of the N-terminus, the cytosolic loop2 between TM2 and TM3 as well as the C-terminus.12,88

In contrast to other Ca2+ channels, such as TRPV689 and L-type channels,90 Cs+ is unable to pass through Orai channels. Permeation studies with methylated derivatives of ammonium91 have revealed that the narrowest region of the Orai1 pore possesses a diameter of 3.8 to 3.9 Å.11,2,92 Novel findings derived from the crystal structure (see Fig. 2B and C) suggest for the narrowest area in the ion pore a diameter of ~6 Å,93 which is at variance with the experimentally obtained diameter with methylation ammonium derivatives. A recent study by Thompson and Shuttleworth93 has focused on the selectivity of tetrameric vs. hexameric concatemeric channel assemblies. Interestingly, the hexameric concatemer shows reduced Ca2+ selectivity compared with the tetrameric form, compatible with the fact of ~6 Å diameter observed for less Ca2+ selective Orai pore mutants. Thus, the discrepancy between the experimentally and structurally resolved pore diameter is so far unclear. The presence of STIM1 may affect Ca2+ selectivity94 and pore diameter when co-crystallized. Nonetheless, the hexameric Orai1 concatemers exhibiting the reduced Ca2+ selectivity have been activated via STIM1.95
The Orai1 pore and the TM1

The distinct amino acid sequence and permeation properties of Orai channels compared with other Ca2+ ion channels has led to the proposal of a unique selectivity filter for the CRAC channel.74,75,77 The permeation pathway of Orai channels is mainly formed by TM1 surrounding the ion pore together with at least a part of the ETON (see below) region (Fig. 2C). A negatively charged glutamate E106 has been determined to exclusively contribute to the selectivity filter; hence based on the hexameric Orai crystal structure, the selectivity filter is composed of a ring of 6 glutamates from the six TM1 regions surrounding the ion pore. A single point mutation E106D9,10,11 in TM1 reduces already the Ca2+ selectivity together with an enlargement in the minimum pore size to 5.4 Å. This increase in the pore diameter is accompanied by a further relief of the steric hindrance for Cs+ permeation23 leading to reduced Ca2+ selectivity.

Besides the E106 in TM1, the first extracellular loop of Orai containing 3 negatively charged residues (D110/112/114, see Fig. 2A) also contributes to the attraction of Ca2+ ions and the selectivity. Mutation of all 3 negatively charged residues to alanines drastically decreases Ca2+ selectivity.10,86 Analogous sites in the other Orai isoforms are composed of a mixture of glutamates, glutamines and aspartates. While homomeric channels, independent of the isoform, display inward rectifying Ca2+ selective currents, heteromeric channel assemblies, as evaluated for Orai1/Orai3, display an asymmetric combination of glutamates and aspartates and less Ca2+ selectivity with an increased Cs+ permeation.69 Thus, the acidic Ca2+ coordination site in the first loop may additionally regulate Ca2+ selectivity of Orai channels, besides E106, and prevent monovalent outward currents.8,11,22 Several cysteine loop1 mutants form disulfide bonds and dimerize, which suggests a close proximity of 2 adjacent first loops within an Orai1 channel complex. Small MTS reagents as well as larger 6 to > 8 Å MTS probes coupled to the cysteine mutants in the first loop result in decreased currents, suggesting these loops flank a vestibule large enough to accommodate bulky compounds.86 These results may further indicate that the first loop is a flexible segment that can undergo conformational changes.86 Hence, Ca2+ permeation is optimized by the first extracellular loop, which attracts Ca2+ ions via its negative residues, thereby functioning as a Ca2+ sink to enhance the local Ca2+ concentration at the pore entrance close to the selectivity filter.9,95 Consequently the Ca2+ ions are guided from the extracellular loop via E106 through the pore maintaining the high Ca2+ selectivity8,11,22 of the Orai channels.

Toward the cytoplasmic side the pore opens to a wider cavity including hydrophobic side chains like valine 102, phenylalanine 99 and leucine 95 (see Fig. 2C). These residues point directly into the pore as visible in the Orai crystal structure which is, except for F99, in accordance with their ability to dimerize upon cysteine substitution in cysteine crosslinking experiments.80,86 Mutation of hydrophobic (V102) as well as polar (G98) residues in TM1 (Fig. 2D) has shown that the channel can be locked in an open conformation.9,95 The constitutively active Orai1 V102C/A channel additionally displays changes in the selectivity filter leading to a reduced Ca2+ selectivity due to an increased pore size.9,96 Interestingly, Orai1 V102C/A currents regain Ca2+ selectivity in the presence of STIM1.9,95 Upon introduction of L273S in the Orai1 C-terminal coiled-coil domain (see Fig. 2D) impairing STIM1 interaction,9,96 the V102C mutant remained non-selective even in the presence of STIM1. Thus, STIM1 binding regulates the ion selectivity and pore architecture of Orai1 channels. Prakriya and coworkers9,95 have speculated that the close proximity of the gating residue V102 to the selectivity filter at E106 contributes to the tight coupling of permeation and gating during channel activation. Furthermore, since STIM1 interaction regulates selectivity of Orai1 V102A/C, these mutants have been utilized as tool to monitor alterations in STIM1 binding, which has allowed for determination of STIM1 key interaction sites on Orai1 cystosolic strands9,97 (see below).

Subsequent to the selectivity filter and within the hydrophobic cavity a flexible glycine hinge (G98) has been identified (Fig. 2D) that assumedly enables flexion of the upstream pore-lining region to reduce the impedance of Ca2+ flow after passing the selectivity filter.9,95 Its mutation to G98D results in non-selective, constitutive currents.9,96 which, in contrast to Orai1 V102A, do not re-gain Ca2+ selectivity in the presence of STIM1. Moreover, the G98D mutation even restores function of the non-functional R91W SCID mutant.9,96 Hence, the constitutive G98D mutant seems to extend the channel gate more effectively than the V102A/C mutant, preventing STIM1 N-terminal interaction and hydrophobic packing associated with the R91W mutation.

The extended TM1 Orai N-terminal (ETON) region

The Orai crystal structure93 has revealed that the helical structure of the TM1 domain extends even further into the cytosol by about 20 Å forming the so called extended TM1 Orai1 N-terminal (ETON) region.9,98 At the cytosolic side the TM1 helix together with the ETON region contains three positively charged residues R91, K87, and R83 which directly line the pore thereby creating an unusual environment for a cation channel. These positively charged residues have been suggested to provide both barrier as well as electrostatic stabilization to the elongated pore controlled via interaction with STIM1.9,98 The mutation of arginine R91 to hydrophobic residues inhibits STIM1-dependent Orai1 currents, associated with the SCID disease.5,99 In order to let Ca2+ pass into the cell cytosol, this barrier of the 3 positive charges possibly linked to anions43 is likely released, accomplished by a coupling of STIM1 to the conserved ETON region.9,98

Further, Orai1 gating is additionally controlled by another positively charged amino acid, i.e., K85, in the ETON-region (Fig. 2C and D). As the Orai1 K85E mutant completely lacks activation via STIM1,100 despite an only partially reduced binding between an N-terminal Orai1 fragment and CAD, this loss of function most likely results from a defect in gating. Mechanistically, the latter defect may be linked to an impairment of intramolecular interactions of K85 stabilizing the Orai1 channel structure as essential for STIM1-dependent gating.

In addition the ETON region includes 2 serines (S89 S90) which are located between the 2 basic residues R91 and K87.
Channels Volume 7 Issue 5

19

338

STIM1/Orai1 Coupling Domains

STIM1 coupling to the C-terminus

The coupling of STIM1 oligomers and the Orai1 channel involves several domains in the cytosolic strands of STIM1 and Orai1 (Fig. 1A; Fig. 2A and D). Truncation of the Orai1 C-terminus, as performed in 3 independent studies, has provided the first insight into the STIM1/Orai1 coupling process. Co-localization and FRET experiments have clearly revealed that Orai1 C-terminus is indispensable for the coupling with STIM1. In accordance, Orai1 C-terminus forms the cytosolic extension of TM4, thus easily accessible to STIM1 for cytosolic binding. Partial deletion of the C-terminal strand (Orai1 Δ283–301) has still enabled co-clustering with STIM1 indicating that the second half of Orai1 C-terminus is not essential for coupling to STIM1. Bioinformatic analysis has predicted a weak coiled-coil probability of Orai1 C-terminus, while Orai2 and Orai3 display a 15–17 fold higher coiled-coil probability. Consistently, a single point mutation in the Orai1 coiled-coil domain (L273S or L276D, see Fig. 2D) is sufficient to abrogate the coupling with STIM1 C-terminus, whereas a double point mutation has been required in Orai2 and Orai3. In accordance, Zhang et al. have shown constitutive co-localization of STIM1 with Orai3 before store depletion, in contrast to Orai1, very likely due to the increased coiled-coil probability of Orai3 compared with Orai1. These findings point to the affinity of STIM1 increasing with the higher probability of Orai C-terminal CC domains. In line, a reduction of the probability of the CC2 domain of STIM1 C-terminus by a single mutation (L373S) still allows partial activation of Orai2 and Orai3 channels, but not of Orai1. Communication to all 3 Orai channels is disrupted by a double mutation in CC2 domain of STIM1. Thus, these CC domains are essential for the coupling of STIM1 and Orai. Nonetheless, it remains unclear why both Orai1 and Orai3 activate with comparable kinetics upon store depletion, as constitutive STIM1 coupling to Orai3 may imply faster activation. Hence, further domains besides STIM1-Orai1-C-terminus coupling control the kinetics of Orai activation.

It is of note that the Orai1 C-terminal hydrophobic residues L273 and L276, the mutation of which disrupt Orai1 coupling to STIM1 play an additional role in their involvement of C-terminal dimerization of each Orai dimer within the hexameric Orai crystal structure. Hence it is tempting to speculate that their mutation has impaired either the geometry of the dimeric arrangement or/and the interacting sites, both essential for the coupling to STIM1.

Besides these hydrophobic amino acids, the Orai1 C-terminus includes a series of acidic residues (Fig. 2D). These negatively charged amino acids have been proposed to interplay with a highly conserved cluster of basic residues in STIM1 (KIKKKR – aa 382–387 of human STIM1), to mediate STIM1/Orai1 coupling. STIM1 mutants lacking this positively charged segment fail to associate with Orai upon store depletion. However, coupling occurs between this STIM1 mutant or wild-type STIM1 with the mutant Orai1 that has all 6 negative charges neutralized in its C-terminus, indicating that other structural
components dominate in the coupling process. In aggregate, heteromeric coiled-coil interactions between CC2 of STIM1 and Orai1 C-terminus are mainly mediated by hydrophobic residues and to a weaker extent stabilized by salt bridges.

In our hypothetical STIM1/Orai coupling models (Fig. 3A and B), STIM1 gets fully activated via oligomerization both of the ER luminal part as well as the cytosolic coiled-coil domains accompanied with SOAR exposure. The proposed models display the 2 conformations for quiescent STIM1 as previously depicted in Figure 1D and E. The main difference in the activated form of STIM1 that interacts with the Orai1 channel can be seen in the arrangement of the CC1 domain that tightly controls STIM1 activation status. SOAR exposure as well as oligomerization is induced either by a parallel (Fig. 3A) or at least in part antiparallel (Fig. 3B) arrangement of CC1 triggered via store depletion. In either model, the CC2 domain interacts with Orai1 C-terminus, while the Orai1 N-terminal interaction domain of STIM1 is still unknown.

STIM1 coupling to Orai1 N-terminus

In addition to Orai1 C-terminus, its N-terminus functions as another binding partner for STIM1 (or CAD), though to a weaker extent as revealed by co-immunoprecipitation studies. Here, in all Orai proteins, the conserved ETON region (aa73–90) forming the elongated extension of TM1 into the cytosol is essential for the interaction with STIM1. While a complete deletion of Orai1 N-terminus or a deletion of aa74–90 results in loss of Orai1 function, a partial truncation up to residue 74/75 maintained Orai1 channel activity. Consistently, Orai1 current activation is completely abolished upon deletion of the first 76 N-terminal residues or beyond. Additionally, a mutagenesis approach has revealed the double point mutation of charged R83 and K87 residues (see interface).

Further downstream the ETON region, the positively charged L74 and W76 (see interface) also contribute to electrostatic barrier as well as stabilization to the elongated pore. In summary, almost the whole ETON region functions as binding interface for Orai1 interaction with STIM1 and additionally provides electrostatic gating elements to fine-tune the shape of the elongated pore.

Intriguingly, despite the ETON region is fully conserved between Orai1 and Orai3, STIM1-dependent activation of the latter is still retained upon extensive truncations that already abolish Orai1 function. Hence, Orai3 activation via STIM1 seems to involve additional structures that compensate for the extensive N-terminal deletions, the location of which still remains to be elucidated.

In summary, STIM1 coupling to and activation of Orai1 channels involves both Orai1 N – as well as C-terminus, the bridging of which is most likely accomplished by the SOAR domain of STIM1. Thereby, a force is generated to induce a conformational re-arrangement of the elongated TM1 helices surrounding the Orai1 pore which probably removes the electrostatic barrier provided by the ETON region and culminates in Ca$^{2+}$ entry into the cell cytosol. Whether the conformational re-arrangement is mediated only via Orai1 cytosolic strands or additionally involves alterations in TM helical interactions is so far unclear.

Stoichiometry within the STIM1/Orai1 Complex

After ER store-depletion, STIM1 oligomerizes and redistributes to puncta in ER-PM junctions. This process is accompanied by a conformational change leading to SOAR exposure, interaction with and activation of Orai channels. The STIM1/Orai complex formation leads to a reduction in the molecular mobility of Orai1 in comparison to Orai proteins at resting state. The STIM1/Orai complex is formed by oligomeric aggregates of STIM1 and Orai1, while the exact stoichiometry of interacting subunits still remains unclear. Orai1 proteins have been detected in biochemical and fluorescence studies mainly as a tetramer, while the recent crystal structure has revealed that Orai1 occurs as a hexameric complex. Regarding STIM1, expression studies with varying STIM1:Orai ratios as well as patch-clamp measurement on Orai1-STIM1 C-term fusion proteins have revealed that eight STIM1 molecules are required for full CRAC current activation and inactivation, even if only 1 to 2 STIM1 molecules are sufficient to trap Orai channels at ER-PM junctions. The extent of inactivation is related to the number of STIM1 molecules which bind to the Orai1 channel complex in as that the more STIM1 associated, the more Orai1 currents inactivate. Furthermore, an increase in the Ca$^{2+}$ selectivity of Orai1 has additionally been observed the more STIM1 molecules are interacting with Orai1. Hence, CRAC channel activation occurs not in an “all-or-none” fashion but develops via a graded process involving up to 8 STIM1 molecules. Regarding a potential tetrameric Orai complex, the STIM1:Orai stoichiometry has been suggested as 2:1. However, in light of the crystallized hexameric Orai complex, it remains unclear as to how 8 STIM1 molecules may easily couple to six Orai subunits. In that case, 12 STIM1 molecules may be required to fully activate the Orai hexamer. Alternatively, one could also envisage a 1:1 stoichiometry of STIM1:Orai1 proteins involving 2 STIM1 molecules coupling to each of the 3 Orai1 dimer entities in the hexameric assembly.

Perspective

Despite substantial progress, particularly with access to 3D atomic structures, has been obtained in the STIM/Orai field in the past 8 y, our understanding of the CRAC channel signaling machinery is far from complete. Regarding STIM1, the intra-/intermolecular interactions which keep STIM1 in the quiescent state and the activation steps linking store depletion to exposure of SOAR and oligomerization need to be more precisely defined. The gating of Orai channels by STIM1 is only partially understood, particularly as the STIM1 segment interacting with Orai1 N-terminal region is unknown. Moreover, it remains to be clarified whether additional Orai domains besides the N- and C-terminal strands play a role in transducing the coupling of STIM1 into Orai1 gating. Crystallization of STIM1 active fragments with Orai
or of Orai mutants locked in the open state will certainly help to understand this process of gating together with a clarification on the knowledge of which will enhance our understanding of CRAC current regulation and also widen the repertoire for interference.

References

1. Bertridge MJ. Elementary and global aspects of calcium signalling. J Physiol 1997; 499:291-306; PMID:9080360
2. Bertridge MJ. Inositol triphosphate and calcium sig-
nalling mechanisms. Biochem Biophys Acta 2009; 1793:933-40; PMID:19010359; http://dx.doi.org/10.1016/j.bbamcr.2008.10.005
3. Parekh AB, Purney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85:757-810; PMID:15788713; http://dx.doi.org/10.1152/physrev.00057.2003
4. Roos J, DiGregorio PJ, Yeromin AV, Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Lis A, Beck A, Fleig A, Penner R, et al. CRAM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220-3; PMID:16645049; http://dx.doi.org/10.1126/science.1127883
5. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Roos J, DiGregorio PJ, Yeromin AV, Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Lis A, Beck A, Fleig A, Penner R, et al. CRAM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220-3; PMID:16645049; http://dx.doi.org/10.1126/science.1127883
6. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Roos J, DiGregorio PJ, Yeromin AV, Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Lis A, Beck A, Fleig A, Penner R, et al. CRAM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220-3; PMID:16645049; http://dx.doi.org/10.1126/science.1127883
7. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Roos J, DiGregorio PJ, Yeromin AV, Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Lis A, Beck A, Fleig A, Penner R, et al. CRAM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220-3; PMID:16645049; http://dx.doi.org/10.1126/science.1127883

Acknowledgments

This work was supported by the Austrian Science Fund (FWF project P25210 to Derler I, FWF project M01506000 to Jardín I, and FWF project P25172 to Romanin C).
membrane targeting of stromal interaction molecule reveals sequential oligomerization and local plasma of Stim1 localization and function. J Cell Sci 2006; 119:1199-209.

B. Zhang SL, Kozak JA, Jiang W, Yeromin AV, Chen J, Park CY, Hoover PJ, Mullins FM, Bachhawat P, Muallem S, Worley PF. STIM1 carboxyl-terminus induces store depletion to CRAC channel activation. Nature 2011; 478:424-5.

C. Gudlur A, Zhou Y, Hogan PG. STIM-Orai Interactions That Control the CRAC Channel. Current topics in membranes 2013; 71:33-58.

D. Fecke S, Prakriya M. Conformational dynamics of STIM1 activation. Nat Struct Mol Biol 2013; 20:918-9. PMID:23912356; http://dx.doi.org/10.1038/nsmb.2647

E. Korzeniowski MK, Manjaree IMS, Varnai P, Balla T. Activation of STIM-Orai involves an intracellular switching mechanism. Sci Signal 2010; 3:ra82; PMID:2081754; http://dx.doi.org/10.1126/scisignal.2001122

F. Zhou Y, Srivivasan P, Razavi S, Seymour S, Meraney P, Gudlur A, Stathopoulos PB, Ikura M, Schindl R, Fritsch R, Frischauf I, Kozak JA. Essential function for the calcium sensory region of STIM1 underneath the plasma membrane induces store depletion to CRAC channel activation. Nature 2011; 478:424-5.

G. Yu F, Sun L, Hufrack S, Selvaraj S, Machaka C. Intramembrane shielding maintains the EF-hand senor STIM1 in an inactive configuration. J Cell Sci 2013; 126:2401-10; PMID:23572507; http://dx.doi.org/10.1242/jcs.117200

H. Yu Y, Pennan A, Chen J, Varnai P, Balla T. Activation of STIM-Orai involves an intramolecular switching mechanism. Sci Signal 2010; 3:ra82; PMID:2081754; http://dx.doi.org/10.1126/scisignal.2001122

I. Hu X, Pedii L, Driver MM, Long SB. Crystal structure of the calcium release-activated calcium channel Orai1. Science 2012; 338:1308-13; PMID:23180773; http://dx.doi.org/10.1126/science.1228757

J. Smyth JT, Dehavin WI, Bird GS, Putney JW Jr. Ca2+-store-dependent and - independent revers of Stim1 localization and function. J Cell Sci 2008; 121:762-72; PMID:18285445; http://dx.doi.org/10.1242/jcs.019415

K. Lu J, Fisz Z, Inoue T, Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 2007; 104:9301-6; PMID:17517596; http://dx.doi.org/10.1073/pnas.0702866104
Prakriya M. The molecular physiology of Orai1, Orai2, and Orai3. J Biol Chem 2007; 282:23195-202; PMID:17548605.

Prakriya M, Schindl R, Gruber HJ, Groschner K, Romanin C, Frischauf I, Muik M, Brouwer JD, Morgenstern K, Eshaghi S, Romanin C. Determinants of the coupling between STIM1 and Orai channels: differential activation of Orai-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 2009; 284:21696-706; PMID:19566081; http://dx.doi.org/10.1074/jbc.M109.018408.

Prakriya M, Schindl R, Gruber HJ, Groschner K, Romanin C. Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 2009; 284:21696-706; PMID:19566081; http://dx.doi.org/10.1074/jbc.M109.018408.

Prakriya M, Schindl R, Gruber HJ, Groschner K, Romanin C, Frischauf I, Muik M, Brouwer JD, Morgenstern K, Eshaghi S, Romanin C. Determinants of the coupling between STIM1 and Orai channels: differential activation of Orai-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 2009; 284:21696-706; PMID:19566081; http://dx.doi.org/10.1074/jbc.M109.018408.

Prakriya M, Schindl R, Gruber HJ, Groschner K, Romanin C. Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 2009; 284:21696-706; PMID:19566081; http://dx.doi.org/10.1074/jbc.M109.018408.
113. Hoover PJ, Lewis RS. Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 2011; 108:13299-304; PMID:21788510; http://dx.doi.org/10.1073/pnas.1101664108

114. Li Z, Liu L, Deng Y, Ji W, Du W, Xu P, Chen L, Xu T. Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits. Cell Res 2011; 21:365-15; PMID:20838418; http://dx.doi.org/10.1038/cr.2010.131

115. Scrimgeour N, Litjens T, Ma L, Barritt GJ, Rychkov GY. Properties of Orai1 mediated store-operated current depend on the expression levels of STIM1 and Orai1 proteins. J Physiol 2009; 587:2903-18; PMID:19403622; http://dx.doi.org/10.1113/jphysiol.2009.170662

116. Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 2010; 12:436-46; PMID:20418871; http://dx.doi.org/10.1038/nch2045

117. Palty R, Raveh A, Kaminisky I, Meller R, Reuveny E. SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 2012; 149:425-38; PMID:22464749; http://dx.doi.org/10.1016/j.cell.2012.01.055

118. Sharma S, Quintana A, Findlay GM, Merrlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 2013; 499:238-42; PMID:23792561; http://dx.doi.org/10.1038/nature12229