A SEARCH FOR Lyα EMITTERS AT REDSHIFT 3.7

Shinobu S. Fujita, Masaru Ajiki, Yasuhiro Shioya, Tohru Nagao, Takashi Murayama, Yoshiaki Taniguchi, Sadanori Okamura, Masami Ouchi, Kazuhiro Shimakatu, Mamoru Doi, Hisanori Furusawa, Masaru Hamabe, Masahiko Kimura, Yutaka Komiya, Masayuki Miyazaki, Satoshi Miyazaki, Fumiki Nakata, Maki Sekiguchi, Masafumi Yagi, Naoki Yasuda, Yuichi Matsuda, Hajime Tamura, Tomoki Hayashino, Keiichi Kodaira, Hiroshi Karoji, Toru Yamada, Kouji Ohta, and Masayuki Umemura

Received 2002 March 18; accepted 2002 September 18

ABSTRACT

We present the results of a survey for emission-line objects, based on optical intermediate-band (λc = 5736 Å and Δλ = 280 Å) and broadband (B, V, R, and I) observations of the Subaru//XMM-Newton Deep Field with the 8.2 m Subaru telescope and the Subaru Prime Focus Camera (Suprime-Cam). All the data were obtained during the guaranteed time observations of the Suprime-Cam instrument. The intermediate-band image covered a sky area of 10'62' × 12'40' ≈ 132 arcmin^2 in the Subaru//XMM-Newton Deep Field (Ouchi et al.). Using this image, we found 23 emission-line sources whose observed emission-line equivalent widths are greater than 250 Å. Their optical multicolor properties indicate that six emission-line sources are Lyα emitters at z ≈ 3.7 (Aλ ≈ 0.22). They are either intense starburst galaxies or active galactic nuclei-like quasars at z ≈ 3.7. Two more emission-line sources may also be Lyα emitters at z ≈ 3.7, although their multicolor properties are marginal. Among the remaining 15 emission-line objects, eight objects appear to be strong emission-line galaxies at lower redshift; e.g., [O ii] λ3727 emitters at z ≈ 0.54, Hβ at z ≈ 0.18, or [O iii] λ5007 emitters at z ≈ 0.15. The remaining seven objects are unclassified because they are too faint to be detected in broadband images. We discuss the observational properties of these strong emission-line sources. In particular, our data allow us to estimate the star formation density at z ≈ 3.7 for the first time.

Key words: cosmology: observations — early universe — galaxies: evolution — galaxies: formation

1. INTRODUCTION

It has often been argued that forming galaxies at high redshifts experience very luminous starbursts and thus could be very bright in line emission, such as the Lyα and [O ii] λ3727 emission lines (e.g., Partridge & Peebles 1967; Larson 1974; Meier 1976). However, although many attempts have been made to search for such very strong emission-line sources at high redshift (e.g., Pritchet 1994; see also Pahre & Djorgovski 1995; Thompson, Mannucci, & Beckwith 1996), by the mid 1990s most of these searches had failed, except for some successful surveys around known high-z objects, such as quasars and radio galaxies (Hu & McMahon 1996; Hu, McMahon, & Egami 1996; Petitjean et al. 1996; Pascarelle et al. 1996; Keel et al. 1999). Consequently, the Lyman-break method (or the broadband, color-selection method) has been mainly used to investigate observational properties of high-z galaxies for the past several years (Steidel et al. 1996a, 1996b, 1999; Cowie et al. 1996; Lanzetta, Yahil, & Fernandez-Soto 1996; Madau et al. 1996; Yahata et al. 2000; Ouchi et al. 2001).

Recently, however, new attempts with 10 m class telescopes have revealed the presence of Lyα emitters in blank fields at high redshift (Cowie & Hu 1998, hereafter CH98; see also Hu, McMahon, & Cowie 1999; Ouchi et al. 2003; Hu et al. 2002). Subsequently, Steidel et al. (2000, hereafter S00) also succeeded in finding a number of high-z Lyα emitters in the SSA22 blank field. Furthermore, Kudritzki et al. (2000, hereafter K00) have identified nine Lyα emitters at z ≈ 3.1 during the course of their narrowband imaging survey aimed at looking for intractable planetary nebulae in the Virgo Cluster (Mendez et al. 1997). These surveys have reinforced the potential importance of the search for high-z Lyα emitters. Thus deep imaging surveys with narrowband filters are now considered to be a powerful tool in this era of 10 m class telescopes to probe the Lyα emission from high-z young galaxies and active galactic nuclei-like quasars. Such surveys for high-z emission-line sources provide us with very important information not only on the formation and evolution of galaxies but also on the cosmic reionization process at very high redshift (e.g., Loeb & Barkana 2001 and references therein).
However, such surveys for emission-line galaxies with narrowband filters are limited in that survey volumes are too small because of narrower band widths (e.g., ~100 Å). In order to gain survey volumes, we need very wide field CCD cameras on 10 m class telescopes. Fortunately, the Subaru 8.2 m telescope (Kaifu 1998) at Mauna Kea Observatories has the wide-field (a $34' \times 27'$ field of view) prime-focus camera, Suprime-Cam (Miyazaki et al. 1998). This camera enables us to carry out narrowband imaging surveys for high-z emission-line objects.

For this purpose we made a new filter system, which consists of 20 filters with the spectral resolution of $R = 23$, covering from 4000 to 9500 Å (Hayashino et al. 2000; Taniguchi 2001; Shioya et al. 2002). Its spectral resolution is not higher than that of typical narrowband filters used for Lyα-emitter searches; e.g., $R = 70$ with the central wavelength $\lambda_c = 5390$ Å and the bandwidth of $\Delta \lambda = 77$ Å ($S00$), and $R = 62$ with $\lambda_c = 4970$ Å and $\Delta \lambda = 80$ Å ($S00$). However, our intermediate-band filter system (called the IA system, which means the intermediate-band filter set A) is useful for detecting strong emission-line sources whose emission-line equivalent widths exceed 250 Å in the observed frame. Further, our system covers the entire optical wavelength range, and thus we will be able to carry out a full range of systematic searches for strong emission-line sources at various redshifts from $z \approx 2.2$ to $z \approx 6.9$ (Taniguchi 2001).

During the commissioning phase of Suprime-Cam on the Subaru telescope we made an imaging survey for Lyα emitters at $z \approx 3.7$ in the Subaru/XMM-Newton field (Ouchi et al. 2001), using one of the IA filters (IA574, $\lambda_c = 5736$ Å and $\Delta \lambda = 280$ Å). In this paper we present our first results of this intermediate-band imaging survey.

Throughout this paper magnitudes are given in the AB system. We adopt a flat universe with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, and $h = 0.7$, where $h = H_0/(100$ km s$^{-1}$ Mpc$^{-1}$).

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

As described in Ouchi et al. (2001; see also Ouchi 2001), we have obtained deep and wide-field $B-$, $V-$, $R-$, and i'-band imaging data of a central $30' \times 24'$ area in the Subaru/XMM-Newton Deep Survey Field centered at a(J2000.0) = $2^h18^m00^s$ and δ(J2000.0) = $-5^\circ12'00''$, using Suprime-Cam (Miyazaki et al. 1998) on the Subaru telescope during a period between 2000 August and 2000 November. In addition to these broadband image data, we obtained an intermediate-band image using the IA filter IA574 ($\lambda_c = 5736$ Å and $\Delta \lambda = 280$ Å) in 2000 August. The transmission curves of the filters used in our observations are shown in Figure 1.

During the IA574-band observing run, only four CCD chips, each of which has 2048×4096 pixels, were installed in the Suprime-Cam. Two are MIT CCD chips, while the others are SITe chips; a northeast part ($13.7' \times 13.7'$) of the broadband image was observed with the MIT chips and a northwest part ($13.7' \times 13.7'$) was observed with the SITe chips. In this paper we present results obtained with the IA574 image taken with the SITe CCDs. The final sky coverage in our analysis is $10/62 \times 12/40$ in the $13.7' \times 13.7'$ area covered by the SITe CCD chips. Our sky coverage is shown together with that of the broadband imaging (Ouchi et al. 2001) in Figure 2. Results obtained with the IA574 image with the MIT CCDs will be given in Yoshida et al. (2002). A journal of our all observations is summarized in Table 1.

The individual CCD data were reduced and combined using IRAF and the mosaic-CCD data reduction software developed by us (Yagi et al. 2002). The following photometric standard stars were observed to calibrate the data: (1) PG 0205+134 (Massey et al. 1988) and G158–100 (Oke 1990) for the August run, and (2) SA92, SA98, SA95, SA101 (Landolt 1992), and SA95_42 (Oke 1990). The com-

Table 1

Band	Obs. Date	Total Integ. Time	$m_{lim}(AB)^a$
B	2000 Nov 24, 25	10,620	27.6
V	2000 Nov 26, 27	4,800	26.4
R	2000 Aug 1	2,520	26.3
i'	2000 Nov 21–24	3,480	26.5
IA574	2000 Aug 4	6,000	26.7

a The limiting magnitude (3 σ).

Fig. 1.—Transmission curves of the filters used in our observations.
bined images for the individual bands were aligned and smoothed with Gaussian kernels to match their seeing sizes. The final images cover a contiguous 618 arcmin² area with a point-spread function (PSF) FWHM of 0.98 for the broadband data, and a 188 arcmin² area with a PSF FWHM of 0.98 for the IA574 data. In the later analysis we use the 132 arcmin² area covered by both the IA574 and the broadband data. The final IA574 image is shown in Figure 3 together with a final color image made by using the broadband images.

The total size of the field is 10'62 by 12'40, corresponding to a total solid angle of ≈132 arcmin². The effective volume probed by the IA574 imaging has (comoving) transverse dimensions of 21.5 h₀⁻¹ × 25.1 h₀⁻¹ Mpc, and the half-power points of the filter correspond to a comoving depth along the line of sight of 173.8 h₀⁻¹ Mpc (zₘᵢₙ ≈ 3.60 and zₘₐₓ ≈ 3.83), where h₀ = H₀ / 70 km s⁻¹ Mpc⁻¹. Therefore, a total volume of 93,952 h₀⁻³ Mpc³ is probed in our IA574 image, which is much wider than that of the previous pioneering studies, 10,410 h₀⁻³ Mpc³ (CH98) and 16,741 h₀⁻³ Mpc³ (S00) (see Table 6).

2.2. Source Detection and Photometry

Source detection and photometry were performed using SExtractor version 2.1.6 (Bertin & Arnouts 1996). Here we used the same source-detection criterion as that in Ouchi et al. (2001); a source must be a 5 pixel connection above 27.6 mag for a 3 σ detection with a 2'' diameter aperture. As for the source detection in the broadband images, the limiting magnitudes are B = 27.6, V = 26.4, R = 26.7, and i' = 26.2 for a 3 σ detection with a 2'' diameter aperture (Ouchi et al. 2001).

In the above source detection, we have detected ~5500 sources down to IA574 = 26. In order to examine the completeness in the IA574 imaging, we show results of the number count as a function of IA574 magnitude in Figure 4. This figure shows that our source detection appears complete down to IA574 ≈ 25.4.

In order to make sure that our source selections were made with little ambiguity, we have newly performed a simulation using the IRAF ARTDATA (e.g., Kajisawa et al. 2000). We assume that galaxies have two types of light distributions, obeying (1) the de Vaucouleurs r¹/⁴ law and (2) the exponential law. For each type of galaxy we generated 300 model galaxies for each magnitude interval (Δm = 0.2 mag), i.e., 600 model galaxies in total. Their sky positions, half-light radius (1 to 7 kpc), and ellipticities are randomly determined. Then these model galaxies are put into the CCD data together with Poisson noises. After smoothing model-galaxy images to match to the seeing size, we try to detect them using SExtractor with the same procedure as that used in our paper. The detectability of the model galaxies in each band is shown in Figure 5 as a function of AB magnitude. As for objects brighter than IA574 = 25.4, we find that the detectability is higher than 50%. Therefore, we consider that this result appears to be consistent with the completeness limit, mₗᵦ(AB) = 25.4 shown in Figure 4 (see also the last column in Table 1).

The VR–IA574 color is plotted for the detected model galaxies with a color of VR–IA574 = 0 as a function of IA574 magnitude in Figure 6. It is shown that almost all the
model galaxies are within 2σ deviations. Therefore, we conclude that our source selections were done with appropriate accuracy for our purpose.

3. RESULTS

3.1. Selection of IA574-Excess Objects

Since the central wavelength of the V filter is bluer than that of the IA574 filter (5736 Å), we constructed an image that we will refer to as the “VR continuum,” using a linear combination ($VR = 3.4V + 1.0R$) of the deep V and R images after scaling them to the same photometric zero point; a 3σ photometric limit of $VR \approx 26.6$ in a 200 pixel diameter aperture. This enables us to more precisely sample the continuum at the same effective wavelength as that of the IA574 filter.

Although the detection limit of the IA574 image is 25.7, our source detection in IA574 appears complete down to ≈ 25.4 from Figure 4. Therefore, we tried to detect IA574-excess objects down to IA574 = 25.4 and made an IA574-selected catalog in which 3635 objects are contained. In Figure 7 we show the diagram between VR–IA574 and IA574 for the objects in the above catalog. Taking the scatter in the VR–IA574 color into account, we have selected strong emission-line sources with the criteria of VR–IA574 ≥ 0.7 and IA574 ≤ 25.4. These criteria are shown by the dotted lines in Figure 7. There are 101 sources that satisfy the above two criteria. We also show the distributions of 2σ (solid lines) and 3σ (dashed lines) errors in Figure 7. We remove 20 objects out of 101 sources because their VR–IA574 colors are smaller than the 2σ error.

Since the central wavelength of the IA574 filter is closer to that of the V-band filter than to that of the R-band one, we adopted the criterion of VR–IA574 ≥ 0.7 as our primary criterion. However, red-color objects with a continuum break in the V-band window may also be detected as strong emission-line sources, even though they have little emission-line flux. In order to remove such objects, we also adopted another criterion, of R–IA574 ≥ 0.7. In Figure 8 we show the diagram between VR–IA574 and R–IA574 for the 81 objects found with the VR–IA574 color selection. As shown in this figure, 32 sources have been rejected because they do not show significant excess in the R–IA574 colors. Then we obtain a sample of 49 objects with both VR–IA574 ≥ 0.7 and R–IA574 ≥ 0.7. These color criteria mean that all the sources have their emission-line equivalent widths higher than 250 Å. It is also noted that dusty starburst galaxies with very red colors may not be found with our selection criteria, and thus the strong emission-line objects found in our search may be mostly either starburst galaxies with weak reddening or typical type 1 AGNs, such as quasars.

In order to ensure that our selection is reliable, we adopt another severe criterion: a source must be a 13 pixel connection above 2σ. The reason for this is that a source under a $\approx 1''$ seeing condition has a 13 pixel connection. Applying this criterion, we reject 24 sources among the 49 sources. Finally, we have made a careful visual inspection of all candidates’ images in order to reject ambiguous objects that may be attributed to noises. In this procedure we rejected two sources because they show a linear or an unusual shape. Then we obtain our final sample of 23 emission-line sources.

We have also checked that none of our line-emitter candidates are either variable objects or moving objects by comparing the R-band image obtained in 2000 August with that from 2000 November. We do not find any spatially extended Lyα emitters like the Lyα blobs found by S00. On Lyα blobs, see Taniguchi & Shioya (2000) and Taniguchi, Shioya, & Kakazu (2001) and references therein.
3.2. Selection of IA574-Excess Objects at $z \approx 3.7$

Our main aim in the present survey is to find strong Lyα emitters at $z \approx 3.7$. However, strong emission-line sources at lower redshift may also be found in our survey; e.g., CIV $\lambda 1550$ sources at $z \approx 2.70$, Mg II $\lambda 2798$ sources at $z \approx 1.05$, [O II] $\lambda 3727$ sources at $z \approx 0.54$, Hβ $\lambda 4861$ at $z \approx 0.18$, [O III] $\lambda 5007$ sources at $z \approx 0.15$, and so on. In order to distinguish Lyα emitters at $z \approx 3.7$ from emission-line objects at lower redshift, we investigate their broadband color properties. In this procedure we also take account of the observed emission-line equivalent widths.

First, we show that the $B-R$ color provides a nice tool to pick up Lyα emitters at $z \approx 3.7$. In Figure 9 we show the diagram of $B-R$ color as a function of redshift for galaxies with spectral energy distributions (SEDs) typical of E (the bulges of M31 and M81), Sbc, Scd, and Irr galaxies (Coleman, Wu, & Weedman 1980; hereafter CWW). The CWW SEDs cover a wavelength range from 1500 to 10000 Å. We therefore extend them below 1500 Å, assuming $f_{\lambda} \propto \lambda^{-0.82}$ (Kinney et al. 1993) down to 912 Å. As an SED of young starburst galaxies, we adopt an SED generated by the population synthesis model GISSEL96 (Bruzual & Charlot 1993); a galaxy with a constant star formation rate at an age of 10^8 yr. We also show expected redshift ranges for Lyα emitters at
$z \approx 3.7$, [O II] λ3727 emitters at $z \approx 0.54$, and [O III] λ5007 emitters at $z \approx 0.15$.

For low-z galaxies, their $B-R$ colors are mainly determined by the stellar populations. On the other hand, for high-z galaxies beyond $z \sim 2.5$, their colors are mainly determined by the continuum depression due to the intergalactic extinction, i.e., cosmic transmission (e.g., Madau 1995). In Figure 9 we show three cases of different cosmic transmissions: (1) the mean value of the cosmic transmission by Madau (1995) (solid curves), (2) a value twice as large as the above mean value (dotted lines), and (3) a value half of the above mean value (dashed lines). These results imply that Lyα emitters at $z \approx 3.7$ have $B-R \gtrsim 1.0$ even if the cosmic transmission shows scatters within a factor of 2 from one line of sight to another.

Fig. 7.—Objects detected to the apparent magnitude limit of IA574 = 26 in the IA574-selected catalog. The horizontal broken line corresponds to the color of $VR-IA574 = 0.7$. Objects above this line have strong emission lines, with EW$_{\text{obs}} = 250$ Å or greater. Solid lines and dotted lines show the distribution of 2σ and 3σ error, respectively.

It is also expected that E-, Sbc-, and Scd-type galaxies at lower redshift have $B-R > 1$. However, our strong emission-line objects found in this study have large emission-line equivalent widths; i.e., EW$_{\text{obs}} \geq 250$ Å. This value corresponds to a rest-frame equivalent width of EW$_0 = 163$ Å for [O II] λ3727 emitters at $z \approx 0.54$, EW$_0 = 212$ Å for Hβ emitters at $z \approx 0.18$, and EW$_0 = 217$ Å for [O III] λ5007 emitters at $z \approx 0.15$. Since it is known that typical rest-frame [O II] or [O III] emission-line galaxies in the nearby universe have EW$_0 < 100$ Å (e.g., Jansen et al. 2000), it is unlikely that the strong emission-line sources with $B-R \geq 1.0$ are low-z sources (see also § 3).

Second, we show the diagram between $B-R$ and $R-i$ for all the objects detected in the broadband B, R, and i images in the right panel of Figure 10. We also show color evolutions of model galaxies with the CWW SEDs typical of E, Sbc, Scd, and Irr galaxies and with the SED for young starburst galaxies as a function of redshift (left). The model results show that Lyα emitters at $z \sim 3.7$ may occupy the shaded domain defined with both $B-R > 1.0$ and $R-i \lesssim 0.7$, although the latter color constraint appears not so strong. This figure also implies once again that either strong [O II] or [O III] emitters could have $B-R < 1$.

It seems necessary to examine whether or not strong C IV emitters (i.e., quasars) at $z \approx 2.7$ are misclassified as Lyα emitters at $z \approx 3.7$. Using the composite spectrum of SDSS quasars (Vanden Berk et al. 2001), we estimate the $B-R$ color when we observe a quasar with the SDSS composite spectrum at $z \approx 2.7$. We find that its $B-R$ color is much bluer than 1.0 because the Lyman break comes shorter than the B-band transmission. Therefore there is no possibility of selecting quasars at $z \approx 2.7$ when we use the above color criteria.

In conclusion, one can identify Lyα emitters at $z \approx 3.7$ using the two color criteria: (1) $B-R \geq 1.0$, and (2) $R-i \leq 0.7$. It is again noted that the observed larger emission-line equivalent widths (i.e., EW$_{\text{obs}} \geq 250$ Å) allow us to adopt the above simple color criteria in our selection. In this

Fig. 8.—Plot of $VR-IA574$ versus $R-IA574$ for the 81 objects found with $VR-IA574 > 0.7$ and IA574 < 25.4 selection.

Fig. 9.—Diagram of $B-R$ color as a function of redshift for galaxies with spectral energy distributions (SEDs) typical of E, Sbc, Scd, and Irr (CWW). The bluest is young starburst model (see text). Redshift ranges for Lyα emitters at $z \approx 3.7$, [O II] λ3727 emitters at $z \approx 0.53$, and [O III] λ5007 emitters at $z \approx 0.15$ are also shown by shaded strips.
way, we have classified our 23 emission-line sources into the following four categories.

1. Lyα emitters at $z \approx 3.7$: Six emission-line objects satisfy the above two criteria, and thus they are identified as Lyα emitters at $z \approx 3.7$, which are marked by open red circles in the upper shaded region in Figure 10. Their positions, emission-line equivalent widths, and photometric properties are given in Table 2. In Figure 11, we show the B, V, IA574, R, and i' images of each object in our sample of Lyα emitters at $z \approx 3.7$. The SED is also shown in the right panel for each object. We note that one object (No. 4) appears to be extended in the IA574 image. Its angular diameter (above 2$''$) is estimated as 14.3 h_{70}^{-1} kpc at $z = 3.7$. Although we cannot rule out the possibility that this source is a low-z object, we do not adopt any criterion on the source size in our source selection procedure. Therefore we include this source as a Lyα-emitter candidate.

2. Marginal Lyα emitters at $z \approx 3.7$: Two objects, shown by pink colors in Figure 10, appear marginal between objects at $z \approx 3.7$ and ones at lower redshift, because their $B-R$ colors marginally satisfy the condition of $B-R \geq 1.0$ if their observational errors are taken into account. Therefore we call them "marginal" Lyα emitters at $z \approx 3.7$. Their positions, emission-line equivalent widths, and photometric properties are given in Table 3. In Figure 12 we show the B, V, IA574, R, and i' images of each object in our sample of marginal Lyα emitters at $z \approx 3.7$. The SED is also shown in the right panel for each object.

3. Low-z emission-line objects: Eight objects among the remaining 15, which are marked by open squares in Figure 10, may be emission-line objects at lower redshifts, because their $B-R$ colors are significantly bluer than 1.0. Their positions, emission-line equivalent widths, and photometric properties are given in Table 4. In Figure 13 we show the B, V, IA574, R, and i' images of each object in our sample of low-z emitter candidates. The SED is also shown in the right panel for each object.

Table 2

Photometric Properties of Lyα-Emitter Candidates at $z \approx 3.7$

No.	α(J2000.0)	δ(J2000.0)	EW$_{\text{obs}}$ (\AA)	B	V	IA574	R	i'	VR	VR–IA574	R–IA574	B–R	R–i'
1....	2 17 54.90	–5 09 13.7	1014 ± 439	27.73	26.35	24.88	26.54	26.16	>27.02	2.14	1.66	1.19	0.38
2.....	2 17 34.30	–5 09 35.9	454 ± 273	27.46	26.54	25.37	26.42	26.64	26.49	1.11	1.05	1.04	−0.22
3.....	2 17 37.87	–5 00 11.7	439 ± 220	28.04	26.45	25.18	26.20	25.75	26.35	1.18	1.02	1.84	0.45
4.....	2 17 46.26	–5 11 42.5	414 ± 159	27.71	25.76	24.83	26.25	25.74	25.81	0.99	1.42	1.46	0.51
5.....	2 17 38.09	–5 11 20.0	307 ± 149	27.16	25.84	25.03	25.92	25.71	25.84	0.80	0.89	1.24	0.21
6.....	2 18 06.71	–5 10 05.5	269 ± 115	27.34	25.88	24.88	25.61	25.66	25.79	0.91	0.73	1.73	−0.05

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
Fig. 11.—Broadband and IA574 images of the most probable candidates of Lyα emitters at $z \approx 3.7$. Each box is 16" on a side. Each circle has a 4" radius. The SED is also shown in the right panel for each object.
4. Unclassified emission-line objects: Six objects out of the remaining seven are detected only in the IA574. Therefore we cannot use their broadband photometric properties, and they are left as “unclassified” emission-line objects. The last one is detected only in the R band, except for IA574. Their positions, emission-line equivalent widths, and photometric properties are given in Table 5. In Figure 14 we show the B, V, IA574, R, and i' images of each object. The SED is also shown in the right panel for each object.

3.3. Equivalent Widths of Emission Features

First, we investigate the emission-line equivalent width of the low-z emission-line sources. We show the rest-frame [O II] and [O III] emission-line equivalent widths (crosses) as a function of $B−R$ in Figures 15 and 16, respectively. Note that we use the $B−R$ color in the Vega-based photometric system, $(B−R)_{\text{Vega}}$ (e.g., Fugita, Shimasaku, & Ichikawa 1995) in order to compare the observations with model results, which are obtained by using the population synthesis model GISSEL96 (Bruzual & Charlot 1993). In our model calculations we use the $/C28$ model with both $/C28 = 1$ Gyr and the metallicity of $Z = 0.02$. Model results for the $(B−R)_{\text{Vega}}$ are obtained for the following ages: 10, 100, 500 Myr, 1, 2, 3, 4, 7, and 10 Gyr. For each model we derive the $H/12$ luminosity from the Lyman continuum luminosity using the following formula (Leitherer & Heckman 1995),

$$L(H/12) = 4.76 \times 10^{-13} N(H/12) \text{ ergs s}^{-1},$$

where $N(H/12)$ is the number density of Lyman continuum

No.	α(J2000.0)	δ(J2000.0)	EW_{obs} (Å)	B	V	IA574	R	i'	VR	VR−IA574	R−IA574	$B−R$	$R−i'$
1...	21743.48	−50702.9	1022 ± 635	27.51	26.84	25.27	26.94	26.64	>27.02	>1.75	1.67	0.57	0.30
2...	21754.10	−50754.5	687 ± 287	27.56	26.17	24.90	26.74	>26.64	26.24	1.35	1.84	0.83	<0.10

No.	α(J2000.0)	δ(J2000.0)	EW_{obs} (Å)	B	V	IA574	R	i'	VR	VR−IA574	R−IA574	$B−R$	$R−i'$
1...	21725.93	−50430.4	>1177	27.75	>26.84	25.23	>27.12	>26.64	>27.02	>1.79	>1.89	<0.63	...
2...	21757.87	−51143.5	>1091	27.52	>26.84	25.30	>27.12	>26.64	>27.02	>1.72	>1.82	<0.40	...
3...	21751.99	−50905.0	536 ± 244	26.51	26.57	25.07	26.24	26.51	26.43	1.36	1.16	0.28	−0.27
4...	21751.77	−50801.8	535 ± 261	26.62	26.41	25.15	26.31	26.14	26.35	1.20	1.16	0.30	0.17
5...	21738.24	−50914.8	284 ± 173	26.37	>26.84	25.29	26.05	26.50	>27.02	>1.73	0.76	0.32	−0.45
6...	21754.42	−50823.9	268 ± 105	25.75	25.50	24.75	25.49	25.76	25.48	0.73	0.74	0.26	−0.27
7...	21728.61	−50854.1	261 ± 154	26.53	25.96	25.19	25.94	26.17	25.91	0.71	0.75	0.59	−0.23
8...	21751.73	−50054.9	254 ± 153	26.15	26.32	25.24	25.94	26.08	26.22	0.98	0.70	0.21	−0.14

Fig. 12.—Broadband and IA574 images of emitter candidates classified as “marginal” (see text). Each box is 16" on a side. Each circle has a 4" radius. The SED is also shown in right panel for each object.
Fig. 13.—Broadband and IA574 images of the most probable candidates of Lyα emitters at lower redshifts. Each box is 16′′ on a side. Each circle has a 4′′ radius. The SED is also shown in right panel for each object.
Fig. 14.—Broadband and IA574 images of the unclassified emission-line source which is detected only in the IA574 image. Each box is 16" on a side. Each circle has a 4" radius. Its SED is also shown in right panel.
photons per second. The equivalent widths of [O II] and [O III] emission are estimated for the following cases: (1) log \([\text{O II}]/H\beta = 0\) (lower solid line, Fig. 15) and 0.5 (upper solid line, Fig. 15), and (2) log \([\text{O III}]/H\beta = -0.5\) (lower solid line, Fig. 16) and 0.5 (upper solid line, Fig. 16). The low-\(z\) emission-line candidates found in our survey appear to show much stronger emission-line galaxies than do star-forming galaxies found in the local universe. Such examples have indeed been found by Ohyama et al. (1999); e.g., [O II] emitters at \(z \sim 0.5\) have \(EW_{\text{obs}} \sim 200\) Å. Such galaxies must be very blue, and thus their \(B - R\) colors are expected to be much bluer than \(B - R = 1\) (see also Stockton & Ridgeway 1998; Stern et al. 2000). These results also reinforce the conclusion that low-\(z\) strong emission-line galaxies do not have \(B - R > 1\).

Second, we compare the distribution of observed emission-line equivalent widths (\(EW_{\text{obs}}\)) among the four samples in Figure 17: (1) the Ly\(\alpha\)-emitter sample, (2) the marginal Ly\(\alpha\)-emitter sample, (3) the low-\(z\)-emitter sample, and (4) the unclassified sample. We obtain the average equivalent widths of 482 ± 246 Å for the Ly\(\alpha\)-emitter sample. If we combine the Ly\(\alpha\)-emitter sample and the marginal ones, we obtain the average equivalent widths of 575 ± 280 Å. On the other hand, we obtain the average equivalent widths of the low-\(z\) sample, which is smaller than the above values. This makes sense because the \(EW_{\text{obs}}\) of the Ly\(\alpha\)-emitter candidates is amplified by a factor of \(\approx 4.7\), while the amplification factor must be rather small for the low-\(z\)-emitter candidates; e.g., a factor of 1.54 for [O II] emitters.

Finally, it is interesting to note again that the low-\(z\) emitters detected in our survey may have large rest-frame emission-line equivalent widths; e.g., \(EW_0 \sim 150 - 200\) Å if they are either [O II], H\(\beta\), or [O III] emitters. As noted before, it is known that typical rest-frame [O II] or [O III] emission-line galaxies in the nearby universe have \(EW_0 < 100\) Å (e.g., Jansen et al. 2000). If emission-line galaxies are located at \(z \approx 0.151 - 0.174\), both H\(\beta\) and [O III] \(\lambda\lambda 4959, 5007\) emission lines can be detected simultaneously in our IA574 image, resulting in larger than normal emission-line equivalent widths. However, it seems unlikely that most of the low-\(z\) emitters are located at the above narrow redshift range. Furthermore, Ohyama et al. (1999) found very strong [O II] emitters at \(z \approx 0.5\) serendipitously. In Figure 18 we show a diagram between \(EW_{\text{obs}}\) and \(VR\) for the eight low-\(z\) emitters. It appears that fainter galaxies tend to have larger \(EW_{\text{obs}}\). Therefore, it is suggested that a number of emission-line galaxies with large equivalent widths may have not yet

TABLE 5

PHOTOMETRIC PROPERTIES OF UNCATEGORIZED Emitter Candidates

No.	\(\alpha(J2000.0)\)	\(\delta(J2000.0)\)	\(EW_{\text{obs}}\) (Å)	\(B\)	\(V\)	\(IA574\)	\(R\)	\(f\)	\(VR\)	\(VR - IA574\)	\(R - IA574\)	\(B - R\)	\(R - f\)
1...	21743.08	-5070.12	>1508	>28.04	>26.84	25.01	>27.12	>26.64	>27.02	>2.01	>2.11
2...	21739.25	-5082.73	>1199	>28.04	>26.84	25.21	>27.12	>26.64	>27.02	>1.81	>1.91
3...	21757.10	-5122.22	>1092	>28.04	>26.84	25.30	>27.12	>26.64	>27.02	>1.73	>1.82
4...	21726.82	-5011.24	>1080	>28.04	>26.84	25.31	>27.12	>26.64	>27.02	>1.72	>1.81
5...	21743.20	-5070.23	>1074	>28.04	>26.84	25.31	>27.12	>26.64	>27.02	>1.71	>1.81
6...	21752.84	-5090.54	>1008	>28.04	>26.84	25.36	>27.12	>26.64	>27.02	>1.66	>1.75
7...	21742.91	-5110.93	>569 ± 332	>28.04	>26.84	25.35	26.55	>26.64	>27.02	>1.67	1.20	>1.49	<−0.09

Fig. 15.—Diagram of log \(EW([\text{O II}])\) as a function of \(B - R\). The data of the low-\(z\) emitter candidates in our survey are shown by crosses. The observational data of nearby galaxies (dots) are taken from Jansen et al. (2000). Solid lines show our model predictions, using the population synthesis model G1SSEL96 (Bruzual & Charlot 1993), with the star-formation timescale of 1 Gyr and ages of 10 (reddest), 7, 4, 3, 2, 1, 0.5, 0.1, and 0.01 (bluest) Gyr. We assume that \(\xi(H\beta) = 4.76 \times 10^{-13} N(H\beta)\) (ergs s\(^{-1}\)), where \(N(H\beta)\) is an ionizing photon production rate in units of s\(^{-1}\), and log \([\text{O II}]/H\beta = 0\) (lower solid line) and 0.5 (upper solid line). When emission-line flux is also taken into account in the \(R\) magnitude, the solid lines are shifted to the dashed lines. The dotted vertical line shows a typical color of an Irr galaxy.

Fig. 16.—Diagram of log \(EW([\text{O III}])\) as a function of \(B - R\). The data of the low-\(z\) emitter candidates in our survey are shown by crosses. The observational data (dots) are taken from Jansen et al. (2000). The dotted vertical line shows a typical color of an Irr galaxy. The meanings of solid and dashed lines are the same as those in Fig. 15.
been probed in previous surveys because they are too faint to be included in bright magnitude-limited samples.

3.4. Spatial Distribution of the IA574-Excess Objects

We investigate the spatial distributions of the Lyα-emitter candidates at \(z \approx 3.7 \). In Figure 19 we plot the spatial distributions for the four emitter samples. The Lyα-emitter candidates at \(z \approx 3.7 \) are shown by open circles. Five among the six candidates, together with the two marginal Lyα-emitter candidates, are distributed in the southern part of our image. However, the low-z emitter sample also shows such a tendency. We do not discuss this issue in further detail because our survey depth is not so deep and spectroscopic confirmation has not yet been done.

Fig. 17.—Comparison of histograms of \(\text{EW}_{\text{obs}(\text{Ly}\alpha)} \) between the six Lyα-emitter candidates at \(z \approx 3.7 \) (top) and eight low-z emitters (second from top), two marginal emitter candidates (third from top), and seven unclassified emitter candidates (bottom).

Fig. 18.—Diagram between \(\text{EW}_{\text{obs}} \) and \(VR \) for the eight low-z-emitter candidates.

Fig. 19.—Celestial positions of the six Lyα-emitter candidates at \(z \approx 3.7 \) (open circles), marginal emitter candidates (open diamonds), eight low-z emitter candidates (open squares), and seven unclassified emitter candidates (crosses).
4. DISCUSSION

4.1. Nature of the Ly\textalpha-Emitter Candidates at \(z \approx 3.7\)

We have detected six Ly\textalpha emitters and two marginal candidate emitters at \(z \approx 3.7\). Although it is uncertain whether they are genuine star-forming galaxies or active galactic nuclei, it is highly probable that the emission feature is attributed to Ly\textalpha emission, and thus their redshifts are \(z \approx 3.7\). Therefore it seems interesting to investigate their rest-frame Ly\textalpha equivalent widths \(EW_0(Ly\alpha)\) (see Table 7). We note that, because of the effect of cosmic transmission, the value of \(EW_0(Ly\alpha)\) evaluated here is smaller than the intrinsic value (see the Appendix). In Figure 20 we show a histogram of \(EW_0(Ly\alpha)\) for the six sources. It is shown that the rest-frame equivalent widths range from 57 to 216 Å.

The average value is \(<EW_0(Ly\alpha)> \approx 103 \pm 53\) Å. These values are comparable to those found by CH98 and S00 (except the two Ly\textalpha blobs found by S00). It is noted that Vanden Berk et al. (2001) obtained \(<EW_0(Ly\alpha)> \approx 93 \pm 0.7\) Å for a sample of over 220 quasars found in the Sloan Digital Sky Survey. This median value is also similar to the median value obtained for our sample.

In Figure 21 we compare our result with those of the previous narrowband surveys by CH98, S00, and Malhotta & Rhoads (2002, hereafter MR02). Since their survey volumes are different from ours, we have reevaluated the frequency distributions of the equivalent widths so as to match to our survey volume. For the results by MR02 we adopt the frequency distribution in which 1 \(\sigma\) R-band continuum is used in the estimate of equivalent widths. As shown in this figure, all the previous surveys have detected more numerous Ly\textalpha emitters by a factor of 3 to 9 than our survey for objects with \(EW_0 = 50\) to 100 Å. The reason for this seems that their survey depths in EW are deeper than that of our survey.

Both our survey and the LALA survey by MR02 succeeded in detecting stronger Ly\textalpha emitters with \(EW_0 > 100\) Å. Since it is considered that such strong emitters may be rarer than weak emitters in general, their wide-field coverages enable them to detect such strong emitters. We also note that the LALA survey detected more numerous sources whose equivalent widths reach \(\sim 500\) Å. This is because their survey depths in flux are deeper than ours.

In Figure 22 we show a diagram of \(EW_0(Ly\alpha)\) versus \(VR\) magnitude for the six sources. It is found that the fainter objects tend to have larger \(EW_0(Ly\alpha)\). This tendency can be understood in terms of the so-called Baldwin effect (Baldwin 1977) for active galactic nuclei. However, it is also known that such tendency can be found in star-forming galaxies (e.g., Cowie et al. 1996), although the correlation shows much larger scatter than that for active galactic nuclei. Since the correlation shown in Figure 22 exhibits the large scatter, it is suggested that the majority of the detected Ly\textalpha emitters are star-forming galaxies like those found by CH98 and S00, rather than quasars.

4.2. Space Density of the Ly\textalpha emitters at \(z \approx 3.7\)

We have detected the six candidates of Ly\textalpha emitters at \(z \approx 3.7\) in a volume of 93,952 Mpc\(^3\). This yields a space density of Ly\textalpha emitters, \(n(Ly\alpha) \approx 6.4 \times 10^{-5}\) Mpc\(^{-3}\). CH98 obtained \(n(Ly\alpha) \approx 9.6 \times 10^{-4}\) Mpc\(^{-3}\) for the Hubble Deep Field and \(n(Ly\alpha) \approx 1.3 \times 10^{-3}\) Mpc\(^{-3}\) for the SSA22 field. S00 obtained \(n(Ly\alpha) \approx 4.3 \times 10^{-3}\) Mpc\(^{-3}\) for the Lyman break galaxies (LBG) overdensity region. Further, K00 obtained \(n(Ly\alpha) \approx 1.3 \times 10^{-3}\) Mpc\(^{-3}\) in their La Palma field (Mendez et al. 1997). The density we obtained is lower by 1 order of magnitude than their values. This difference may be partly due to the fact that their survey depths are deeper by a factor of 3 than ours. However, the higher density obtained by S00 may be real because their survey field is the LBG overdensity region. A summary of the space densities of high-z Ly\textalpha emitters is given in Table 6.
Then we investigate the Lyα luminosities of the z ≈ 3.7 candidates. We assume that all the sources have a redshift of 3.717, which corresponds to the case that the Lyα emission is shifted to the central wavelength of IA574 filter. In Table 7 we give the Lyα luminosities for the six objects. The derived Lyα luminosities range from $\approx 5 \times 10^{42}$ to 1×10^{43} ergs s$^{-1}$, being slightly larger than those of CH98’s sources. In Figure 23 we show the distribution of Lyα luminosities for our sample together with the results of CH98. Here we estimate the Lyα luminosities of CH98’s sources using the cosmology adopted in this paper. It is shown that our survey probes higher luminosity sources with respect to the CH98 survey. It is likely that higher luminosity sources are fewer than lower luminosity ones. Therefore, in order to find such higher luminosity sources, it is necessary to perform wide-field surveys. Since our survey volume is wider by a factor of 10 than that of CH98, we can detect such higher luminosity Lyα emitters in our survey. On the other hand, our survey limit (EW$_{\text{limit}} = 250$ Å) is shallower by a factor of 2.5 than their limit (EW$_{\text{limit}} \approx 100$ Å). Therefore we miss a large number of lower luminosity Lyα emitters. Wide-field and very deep narrowband imaging surveys will be necessary to explore the nature of emission-line objects at high redshift (e.g., Taniguchi et al. 2001).

4.3. Star Formation Density at z ≈ 3.7

Finally, we estimate the star formation rate for the six Lyα emitters at z ≈ 3.7. Given the formula

$$\text{SFR} = 7.9 \times 10^{-42} L(\text{Hα}) \ M_\odot \ yr^{-1},$$

where $L(\text{Hα})$ is the Hα luminosity in units of ergs per second (Kennicutt 1998), together with a relation,

$$L(\text{Lyα}) = 8.7L(\text{Hα}),$$

from case B recombination theory (Brocklehurst 1971), we can estimate the star formation rate using the Lyα luminosity:

$$\text{SFR}(\text{Lyα}) = 9.1 \times 10^{-43} L(\text{Lyα}) \ M_\odot \ yr^{-1}$$

(see Hu et al. 2002). The results are given in the last column of Table 7. We note that the star formation rate derived here is reduced by the cosmic transmission (see the Appendix). The star formation rates range from 4.7 to 9.4 M_\odot yr$^{-1}$, with an average of $6.4 \pm 1.6 \ M_\odot$ yr$^{-1}$. Although these values are typical of the Lyman break galaxies at z $\approx 3-4$ (e.g., Steidel et al. 1999 and references therein), the number density of the strong Lyα emitters like our sources is rather small (see Fig. 23).

We examine whether or not the SFR derived from the Lyα luminosity is consistent with that derived from the UV continuum luminosity for our sample. The observed I magnitude can be converted to a UV continuum luminosity at $\lambda = 1600$ Å. Using the following relation (Kennicutt 1998; see also Madau et al. 1998),

$$\text{SFR}(\text{UV}) = 1.4 \times 10^{-28} L_\nu \ M_\odot \ yr^{-1},$$

where L_ν is in units of ergs s$^{-1}$ Hz$^{-1}$, we estimate the SFR based on the rest-frame UV ($\lambda 1600$ Å) continuum luminosity for each object. The results are summarized in Table 8. Then, in Figure 24, we compare the two SFRs, SFR(Lyα)
and SFR(UV), for each object. It is shown that the two SFRs appear consistent within a factor of 2.

It is interesting to estimate the contribution of the star formation in the six Lyα-emitter candidates to the comoving cosmic star formation density (e.g., Madau et al. 1996). Integrating the star formation rates given in Table 7, we obtain the comoving star formation density for our sources, \(\rho_{\text{SFR}} \sim 5.3 \times 10^{-4} \, M_\odot \, \text{yr}^{-1} \, \text{Mpc}^{-3} \). In this estimate we adopt an Einstein-de Sitter cosmology with \(H_0 = 50 \, \text{km s}^{-1} \, \text{Mpc}^{-1} \), following the manner of Madau et al. (1996).

In Figure 25 we compare this star formation rate density with those of previous studies compiled by Trentham, Blain, & Goldader (1999). We also show the results obtained by CH98 and K00. As shown in this figure, the star formation density derived in this study is much smaller than the previous estimates. However, note that no reddening correction is made for our data point (e.g., Pettini et al. 1998). It is obvious that the two estimations for our data point (e.g., Pettini et al. 1998). However, note that no reddening correction is made for our data point.

Note that no reddening correction is made for our data point.

CH98 = Cowie & Hu 1998, K99 = Keel et al. 1999, S00 = Steidel et al. 2000, and K00 = Kudritzki et al. 2000.

\(a \) The name of the field.

\(b \) Field type: B = blank field, and T = targeted field.

\(c \) The central redshift corresponding to the central wavelength of the narrowband filter (\(\lambda_c \)).

\(d \) The minimum and maximum redshift covered by the narrowband filter.

\(e \) The smallest equivalent width of the Lyα emission detected in the survey in angstroms in the observed frame.

\(f \) The number density of Lyα emitters found in the survey.

\(g \) The number density of Lyα emitters found in the survey in units of \(h^3 \, \text{Mpc}^{-3} \).

\(h \) The LBG spike region.

\(i \) The number density of Lyα emitters in the survey in units of \(h^3 \, \text{Mpc}^{-3} \).

\(j \) The number of Lyα emitters in the survey.

\(k \) The smallest equivalent width of the Lyα emission detected in the survey in angstroms in the observed frame.

\(l \) The name of the field.

\(m \) The luminosity function for high-redshift Lyα emitters.

\(n \) The number density of Lyα emitters found in the survey.

In Table 7 we compare the Lyα luminosity and star formation rate for the Lyα-emitter candidates at \(z \approx 3.7 \).

Survey \(\alpha \)	Field \(\beta \)	Field Type \(\gamma \)	\(\Delta z \)	\(z_{\text{min}} \), \(z_{\text{max}} \)	\(\text{SFR(Ly} \alpha) \) \((h_0^3 \, \text{Mpc}^3 \, \text{yr}^{-1}) \)	\(\text{EW}_{\text{Ly} \alpha} \) \((\text{ergs s}^{-1}) \)
CH98.............	HDF............	B................	3.4......	(3.41, 3.47)......	5205..........................	115..........................
CH98.............	SSA22..........	B................	3.4......	(3.41, 3.47)......	5205..........................	90...........................
K99..............	53W002.........	T................	2.4......	(2.32, 2.45)......	85338........................	92...........................
K99..............	53W002E........	T................	2.45.....	(2.49, 2.61)......	78858........................	291.........................
K99..............	NGC 6251......	B................	2.4......	(2.32, 2.45)......	85338........................	155.........................
K99..............	53W002N........	T................	2.55.....	(2.49, 2.61)......	78858........................	144.........................
K99..............	53W002E........	T................	2.55.....	(2.49, 2.61)......	78858........................	80...........................
S00..............	LBGS...........	B................	3.09.....	(3.07, 3.12)......	16741........................	80...........................
K00..............	Virgo.........	B................	3.14.....	(3.12, 3.15)......	6020..........................	8............................
This study.......	Subaru/XMM...	B................	3.72.....	(3.60, 3.83)......	93952........................	254.........................

a The name of the field.

b Field type: B = blank field, and T = targeted field.

c The central redshift corresponding to the central wavelength of the narrowband filter (\(\lambda_c \)).

d The minimum and maximum redshift covered by the narrowband filter.

e The smallest equivalent width of the Lyα emission detected in the survey in angstroms in the observed frame.

f The number density of Lyα emitters found in the survey.

5. SUMMARY

We have presented our optical intermediate-band (\(\lambda_c = 5736 \, \text{Å} \) and \(\Delta \lambda = 280 \, \text{Å} \)) and multicolor observations of the Subaru/XMM-Newton Deep Field obtained with Suprime-Cam on the 8.2 m Subaru telescope. All the data were obtained during the guaranteed time observations of the Suprime-Cam instrument. The intermediate-band image covered a sky area of 10'26' x 12'40' \(\approx 132 \, \text{arcmin}^2 \) in the Subaru/XMM-Newton Deep Field (Ouchi et al. 2001). Our survey volume amounts to 93,952 \(h_0^3 \, \text{Mpc}^3 \) when we adopt a flat universe with \(\Omega_m = 0.3 \) and \(\Omega_{\Lambda} = 0.7 \), where \(h = H_0/(100 \, \text{km s}^{-1} \, \text{Mpc}^{-1}) \).

We give a summary of our results below.

1. In our survey we found 23 emission-line sources whose observed emission-line equivalent widths are greater than 250 Å. Their optical multicolor properties indicate six Lyα emission-line sources and two marginal candidate sources at \(z \approx 3.7 (\Delta z \approx 0.22) \). They are either intense starburst galaxies or active galactic nuclei-like quasars at \(z \approx 3.7 \).

Among the remaining 15 emission-line objects, eight objects may be either \([\text{O} \, ii] \) 3727 emitters at \(z \approx 0.54 \), \([\text{H} \beta] \) emitters at \(z \approx 0.18 \), or \([\text{O} \, iii] \) 5007 emitters at \(z \approx 0.15 \). The remaining seven objects have been found only in the IA574 image.

2. For the six Lyα emitters at \(z \approx 3.7 \) we obtain the average emission-line equivalent width of \(\langle \text{EW}_{\text{Ly} \alpha} \rangle \approx 103 \pm 53 \, \text{Å} \). Their star formation rates range from 4.7 to 9.4 \(M_\odot \, \text{yr}^{-1} \) with an average of 6.4 \(M_\odot \, \text{yr}^{-1} \). Although these values are typical of those of the Lyman break galaxies at \(z \approx 3.4 \), the number density of the strong Lyα emitters like our sources appears rather small since the present survey is not deep enough to detect faint emission-line galaxies.
3. We estimated the contribution of star formation in the six \text{Ly}\alpha-emitter candidates to the comoving cosmic star formation density (e.g., Madau et al. 1996). Integrating the star formation rates given in Table 6, we obtain the comoving star formation density for our sources, $\rho_{\text{SFR}} \sim 5.4 \times 10^{-4} \, M_\odot \, \text{yr}^{-1} \, \text{Mpc}^{-3}$. In this estimate we adopt an Einstein-de Sitter cosmology with $H_0 = 50 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, following the manner of Madau et al. (1996).

We would like to thank the Subaru Telescope staff for their invaluable help in commissioning the Suprime-Cam, which made these difficult observations possible. Y. S., M. O., H. F., and F. N. acknowledge support from the Japan Society for the Promotion of Science (JSPS) through JSPS Research Fellowships for Young Scientists. This work was financially supported in part by the Ministry of Education, Science, Culture, and Technology (Nos. 10044052 and 10304013).
TABLE 8
UV CONTINUUM LUMINOSITY AND STAR FORMATION RATE FOR THE Lyα-EMITTER CANDIDATES AT z ≈ 3.7

No.	f (AB mag)	f, (f) × 10^{-20} ergs s^{-1} cm^{-2} Hz^{-1}	L^{1600}_{(0)} × 10^{39} ergs s^{-1} Hz^{-1}	SFR(UV) (M_⊙ yr^{-1})
1...	26.16	0.125	0.339	4.75
2...	>26.20	<0.120	<0.327	<4.58
3...	25.75	0.182	0.495	6.93
4...	25.74	0.184	0.500	6.99
5...	25.71	0.189	0.514	7.19
6...	25.66	0.198	0.538	7.53

* The UV continuum luminosity at λ = 1600 Å.

APPENDIX

THE EFFECT OF COSMIC TRANSMISSION ON THE EVALUATION OF Lyα EMISSION

We demonstrate here how the value of \(\text{min}(VR - IA574, R - IA574) \) is affected by the absorption of neutral hydrogen gas clouds between the object and us, so-called the cosmic transmission. We also show how the cosmic transmission affects the detectability of Lyα-emitter candidates. In the text (§ 4.2) we evaluate the value of \(EW_{\text{obs}} \) simply from \(min(\text{VR} - IA574, R - IA574) \) and the value of \(EW_0 \) by dividing \(EW_{\text{obs}} \) by \((1 + z_{\text{em}}) \), where \(z_{\text{em}} \) is the redshift of a Lyα-emitter candidate. Because of the cosmic transmission, the emission with wavelength of \(\lambda < (1 + z_{\text{em}}) \lambda_{\text{Ly} \alpha} \) is dimmed as \(F_{\text{obs}} = F_{\text{int}} \exp(-\tau_{\text{eff}}) \), where \(F_{\text{obs}} \) is the observed flux, \(F_{\text{int}} \) is the intrinsic flux, \(\exp(-\tau_{\text{eff}}) \) is the cosmic transmission, and \(\tau_{\text{eff}} \) is the effective optical depth. We have simulated the effect of cosmic transmission on \(min(\text{VR} - IA574, R - IA574) \) and \(EW_0 \) in the following way. For this simulation we prepare the SED with Lyα emission by adding the emission-line flux corresponding to \(EW_{\text{model}}^{\text{Ly} \alpha} \) with the Gaussian profile to the synthesized SED of young starburst galaxies, which is derived for the constant star formation rate with an age of \(10^8 \) yr. We adopt the effective optical depth \((\tau_{\text{eff}}) \) formulated by Madau et al. (1996). Results are shown in Fig. 24. If the cosmic transmission is 1 (\(\tau_{\text{eff}} = 0 \)), the \(min(\text{VR} - IA574, R - IA574) \) of Lyα emitters with \(EW_{\text{obs}}^{\text{Ly} \alpha} = 100 \) Å is nearly constant and larger than 0.7 for redshifts between 3.61 and 3.82 (long dashed line, Fig. 24). On the other hand, adopting the average cosmic transmission, the value of \(min(\text{VR} - IA574, R - IA574) \) of Lyα emitters with \(EW_{\text{obs}}^{\text{Ly} \alpha} = 100 \) Å (solid line) decreases with redshift and becomes smaller than 0.7 for redshifts higher than 3.65. The min \((\text{VR} - IA574, R - IA574) \) of Lyα emitters with \(EW_{\text{model}}^{\text{Ly} \alpha} = 200 \) Å is always larger than 0.7 for redshifts between 3.61 and 3.82, even if the effect of the cosmic transmission is taken into account (dotted line). These results imply that, because of the cosmic transmission, the detectability of Lyα emitters depends on the redshift of the galaxy, especially for Lyα emitters with smaller \(EW_{\text{obs}}^{\text{Ly} \alpha} \). We also show the \(EW_{\text{obs}}^{\text{Ly} \alpha} \) calculated simply from the value of \(min(\text{VR} - IA574, R - IA574) \) in the bottom panel of Fig. 26. Because of the cosmic transmission, the value of \(EW_{\text{obs}}^{\text{Ly} \alpha} \) is smaller than \(EW_{\text{model}}^{\text{Ly} \alpha} \). Taking account of this result, the star formation rate estimated in the text (§ 4.3) may be considered as a lower limit of the star formation rate.

![Fig. 26](image-url)
