Measurement of the Inclusive and Differential Higgs Boson Production Cross Sections in the Decay Mode to a Pair of τ Leptons in pp Collisions at $\sqrt{s} = 13$ TeV

A. Tumasyan et al. (CMS Collaboration)

(Received 23 July 2021; accepted 24 January 2022; published 23 February 2022)

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states.

 DOI: 10.1103/PhysRevLett.128.081805

Measuring differential production cross sections of the Higgs boson could eventually highlight the contribution of beyond-the-standard-model physics to the Higgs boson couplings [1,2], e.g., by the observation of deviations from the standard model (SM) in the Higgs boson transverse momentum p_T distribution predicted with high accuracy at next-to-next-to-leading-order (NNLO) precision [3]. Such measurements are also powerful probes of the SM predictions, in particular, of the higher-order corrections in perturbation theory, and could help improve event modeling.

Differential cross sections of Higgs boson production have been measured in the $\gamma\gamma$, ZZ, W^+W^-, and $b\bar{b}$ decay channels for various sets of observables by the ATLAS and CMS Collaborations at the CERN LHC at center-of-mass energies of 7, 8, and 13 TeV [4–10]. The $H \to \tau^+\tau^-$ decay channel [11,12] can also contribute to differential measurements of the Higgs boson production, providing complementary information with other decay modes. It is competitive in parts of the phase space where small production cross sections are compensated by a relatively large branching fraction $B(H \to \tau^+\tau^-) = 6.2\%$ [13]; this is particularly the case for high jet multiplicities (N_{jets}) and large Lorentz boosts of the Higgs boson. This Letter presents the first differential fiducial measurements of the Higgs boson production cross section using its decays to a pair of τ leptons. The Higgs boson cross section is measured as functions of its transverse momentum (p_T^{H}), N_{jets}, and the leading jet p_T ($p_T^{j_1}$), using data collected by the CMS experiment in proton-proton (pp) collisions at a center-of-mass energy of 13 TeV between 2016 and 2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. A measurement of the inclusive fiducial Higgs boson cross section is also presented in a phase space complementary to those studied with other final states.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end cap detectors. Muons are detected in gaseous detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [14].

Simulated events with Higgs bosons are generated for the different production modes (gluon fusion, vector boson fusion, and productions in association with a vector boson, W or Z, or with top quarks) at next-to-leading-order (NLO) precision in perturbative quantum chromodynamics (QCD), including finite quark mass effects, with the POWHEG 2.0 [15–19] generator. The distributions of p_T^{H} and N_{jets} in the gluon fusion production simulation are corrected to match the predictions of the NNLOPS generator [20,21]. The Higgs boson mass is assumed to be 125.38 GeV [22].

The MADGRAPH5_AMC@NLO2.2.2 (2.4.2) event generator [23] is used to simulate the Drell-Yan process at
leading order with the MLM jet matching and merging scheme [24] for the simulation of data taken in 2016 (2017 and 2018). It is also used to model the diboson production at NLO in (α_S), whereas POWHEG 2.0 and 1.0 are used for $\tilde{t}\bar{t}$ and single top quark production, respectively. Single top quark production in the t-channel and diboson events are normalized to their cross sections at NLO precision or higher \([25,26]\). Drell-Yan events, as well as \tilde{t} events and single top quark production in the tW channel, are normalized to their cross sections at NNLO precision \([27,28]\). The generators are interfaced with PYTHIA8.212 [29] to model the parton showering and fragmentation, as well as the decay of the τ leptons. The PYTHIA tunes CUETP8M1 and CUETP8M4 [30] are used in simulation corresponding to the 2016 data-taking conditions, and the CP5 tune [31] is used for 2017 and 2018 simulations. The parton density function (PDF) set is NNPDF 3.1 for 2016 simulations, and NNPDF 3.1 for 2017 and 2018 simulations \([32\text{-}34]\). Additional proton-proton interactions per bunch crossing, called pileup, are added to the simulations with the profile observed in data. Simulated events are processed through a GEANT4 [35] simulation of the CMS detector.

The particle-flow (PF) algorithm [36] is used to reconstruct the events on the basis of information from the different CMS subdetectors. Muons are reconstructed from tracks and hits in the tracker and muon systems \([37,38]\). Electrons are reconstructed from tracks in the tracking system and calorimeter deposits, and identified with a multivariate discriminant described in Ref. [39]. The relative isolation of electrons (muons) is calculated on the basis of the p_T of tracks in a cone of $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3$ (0.4) centered on the lepton track, corrected for charged and neutral pileup contributions; it is required to be less than 0.15. Jets are clustered from PF candidates using the anti-(k_T) FASTJET algorithm with distance parameter R of 0.4 \([40,41]\), requiring $p_T > 30$ GeV and $|\eta| < 4.7$. Jet energy corrections are applied on an event-by-event basis \([36,42,43]\). In events collected in 2017, jets with $p_T < 50$ GeV and $2.65 < |\eta| < 3.14$ are discarded to eliminate spurious jets caused by detector noise. Hadronic jets originating from b quarks are tagged with the medium working point of the DEEPCSV algorithm \([44]\). The hadrons-plus-strips algorithm [45], which combines one or three tracks with energy deposits in the calorimeters, is used to reconstruct τ leptons decaying hadronically, denoted as τ_h. Deep neural network discriminants are used to reduce the fraction of quark and gluon jets, electrons, and muons misidentified as τ_h candidates [46]. All particles reconstructed in the event are used to determine the missing transverse momentum p_T^{miss}, which is defined as the negative vectorial sum of the transverse momenta of all PF candidates originating from the primary pp interaction vertex, which is the vertex with the largest value of summed physics object p_T^ϕ [47]. It is adjusted for the effect of jet energy corrections. Corrections to the p_T^{miss} are applied to reduce the mismodeling of the simulated $Z + $ jets and Higgs boson samples [11].

Events are selected in four final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$. In the $e\mu$ final state, a combination of triggers requiring an electron and a muon is used, and in the $\tau_h\tau_h$ final state, the triggers require the presence of two isolated τ_h candidates. In the $e\tau_h$ ($\mu\tau_h$) final state, the events are selected with a trigger that relies on the presence of a single electron (muon) with p_T above 25–32 (22–24) GeV, or a trigger that requires both an electron with $p_T > 24$ GeV and a τ_h candidate with $p_T > 20$–27 GeV (a muon with $p_T > 19$–20 GeV and a τ_h candidate with $p_T > 27$–30 GeV) if the lepton p_T is too low to satisfy the single-lepton trigger thresholds. In the $\tau_h\tau_h$ final state, the triggers select two τ_h candidates with $p_T > 35$–40 GeV. The thresholds depend on the data-taking year. The off-line event selection criteria are given in Table I, where the symbol $m_{\ell\ell}$ denotes the invariant mass between two objects in the transverse plane. In the $e\mu$, $e\tau_h$, and $\mu\tau_h$ final states, the small fraction of events without a reconstructed jet with $p_T > 30$ GeV and with ΔR between the visible decay products of the two τ leptons below 2 is vetoed because of the difficulty in accurately estimating the backgrounds in this particular topology. In the $\tau_h\tau_h$ final state, all events are required to contain at least one jet. This requirement significantly reduces the QCD multijet background, while it does not affect the signal acceptance significantly since the Higgs bosons need to be boosted for their decay products to pass the high-p_T trigger thresholds. All events with a jet tagged as originating from a bottom quark are discarded in the $e\mu$, $e\tau_h$, and $\mu\tau_h$ final states, where the $t\bar{t}$ background would otherwise be consequential.

The fiducial region is defined to be as close as possible to the reconstructed event selection. All variables used in the definition of the fiducial region are calculated at the generator level after parton showering and hadronization, and the electrons and muons are “dressed” in that the lepton momentum includes the momenta of photons radiated within

Event selection criteria. The p_T ranges are related to different triggers used during different data-taking periods. In events collected in 2016 in the $\mu\tau_h$ channel, τ_h candidates with $0.2 <	\eta	< 0.3$ are discarded because of a significantly larger misidentification rate of muons as τ_h objects.				
p_T^ℓ (GeV)	$> 15/24$	> 25–26	\cdots	\cdots		
$	\eta^\ell	$	< 2.4	< 2.1	\cdots	\cdots
p_T^τ (GeV)	$> 24/15$	> 20–21	\cdots	\cdots		
$	\eta^\tau	$	< 2.4	< 2.1	\cdots	\cdots
p_T^μ (GeV)	\cdots	> 30	> 40	\cdots		
$	\eta^\mu	$	\cdots	< 2.3	< 2.3	< 2.1
$m_{\ell\ell}$ (e/μ, p_T^{miss}) (GeV)	\cdots	< 50	< 50	\cdots		
$m_T(e/\mu, p_T^{\text{miss}})$ (GeV)	< 60	\cdots	\cdots	\cdots		
N_{jets}	\cdots	\cdots	\cdots	> 0		
a cone of $\Delta R < 0.1$ centered on the lepton. In the $e\tau_h$ ($\mu\tau_h$) final state, the electron (muon) is required to have p_T above 25 (20) GeV and $|\eta| < 2.1$, while the τ_h candidate must have a visible p_T greater than 30 GeV and visible $|\eta| < 2.3$. Here, the term visible refers to the kinematic variables constructed from the momenta of the visible decay products of the τ leptons, excluding the invisible neutrinos. In addition, the transverse mass $m_T(e/\mu, \vec{p}_{T\text{miss}})$ must be less than 50 GeV. In the $\tau_h\tau_h$ final state, the visible p_T of both τ_h must exceed 40 GeV, while their visible $|\eta|$ must be within 2.1, and there must be at least one jet with $p_T > 30$ GeV. In the $e\mu$ final state, the leading (subleading) lepton must have $p_T > 24$ (15) GeV, both leptons must have $|\eta| < 2.4$, and the m_T of the dilepton system and $\vec{p}_{T\text{miss}}$ must be below 60 GeV to remove the overlap with the $H \to WW$ measurement [8].

Decays of the Higgs boson other than $H \to \tau\tau$ events passing the reconstructed event selection belong to the fiducial region as estimated from simulation. The SM prediction for the Higgs boson cross section in this fiducial region is 408 ± 27 fb, using the inclusive cross sections and branching fractions in Refs. [48–50] and the fiducial acceptance from the NLO predictions of the POWHEG 2.0 generator with corrections from the NNLOPS generator for the gluon fusion production mechanism. In particular, the gluon fusion simulation is normalized to the cross section computed at next-to-NNLO QCD accuracy and NLO electroweak precision. Events outside the fiducial region are treated as backgrounds in the measurement and are normalized to their SM expectations. This treatment is chosen because most nonfiducial events correspond to Higgs boson decays to a pair of W bosons, especially in the $e\mu$ final state, for which the differential distributions have been measured to be compatible with the SM expectation [8].

The di-τ background, mainly composed of $Z \to \tau\tau$, leptonically decaying $t\bar{t}$, and diboson processes, is modeled with an “embedded sample” [51], where muons from dimuon events in data are replaced with simulated τ leptons. The background with jets misidentified as τ_h candidates is estimated from data with a so-called “misidentification rate method” [52]. The probability for loosely isolated jets to be misidentified as τ_h is measured in control regions enriched in QCD multijet, $W +$ jets, or $t\bar{t}$ events, as a function of p_T for different N_{jets}, and separately in the barrel and end caps of the detector. Differences between processes, N_{jets}, and the detector region are typically of the order of 15%, 10%, and 10%, respectively. The misidentification probabilities are corrected on an event-by-event basis depending on the p_T of the other lepton in the event $p_T^{h\ell}$ and p_T^{ℓ}, with multiplicative corrections ranging 0.5–1.2 for each variable. The reconstructed variable $p_T^{h\ell}$ is evaluated as the vectorial p_T sum of the visible decay products of the τ leptons and $\vec{p}_{T\text{miss}}$, multiplied with a correction factor that is measured in signal simulation and depends on this same vectorial sum to make it an unbiased estimator of the generated $p_T^{h\ell}$. The correction factor reaches a plateau between 1.05 and 1.10 at high-$p_T^{h\ell}$ values, and is significantly below 1.0 at low-$p_T^{h\ell}$ values. For events with $p_T^{h\ell} > 350$ GeV at the generator level, the reconstructed $p_T^{h\ell}$ resolution is better than 10%, whereas it is worse than 30% for $p_T^{h\ell} < 45$ GeV.

The misidentification probabilities as a function of the p_T of the other τ, p_T^{ℓ}, and $p_T^{h\ell}$ were measured after the initial tau p_T misidentification measurement due to the large number of variables impacting the misidentification probabilities. These corrections are determined by a comparison of data-to-prediction distributions in the aforementioned control regions. Additionally, corrections for the selection criteria that differ between the signal and control regions, such as the same-sign charge requirement for the τ leptons in the QCD-enriched region and the high m_T requirement in the W-enriched region, are introduced and depend on the reconstructed di-τ mass, $m_{\tau\tau}$. They are typically close to 1.0 but can reach up to 1.2 in parts of the phase space. In the $e\tau_h$ and $\mu\tau_h$ final states, the overall misidentification rate is a weighted average of the corrected misidentification rates measured for the different types of processes. The weights are proportional to the expected fraction of each process with respect to the total background determined event by event as a function of N_{jets} and $m_{\tau\tau}$ using simulations for the $W +$ jets and $t\bar{t}$ backgrounds. In the $\tau_h\tau_h$ final state, the misidentification probabilities are measured only in the dominant QCD multijet background. They are used to reweight events where the leading τ_h candidate fails the τ_h identification criteria. The very small contribution of events where only the subleading τ_h is a jet but the leading τ_h is genuine is estimated from simulation.

The background with jets misidentified as electrons or muons in the $e\mu$ final state, essentially events from QCD multijet, $W +$ jets, and semileptonically decaying $t\bar{t}$ production, is estimated from data events where the electron and the muon have the same sign, reweighted with an extrapolation factor that depends on N_{jets} and $\Delta R(e, \mu)$. Other backgrounds are estimated from simulation and scaled to their theoretical cross sections.

To increase the signal sensitivity without introducing a strong model dependence, events are classified in different categories depending on $p_T^{h\ell}$. In the $e\tau_h$ and $\mu\tau_h$ final states, the categories are defined with the following requirements: $30 < p_T^{h\ell} < 50$, $50 < p_T^{h\ell} < 70$, and $p_T^{h\ell} > 70$ GeV. In the $\tau_h\tau_h$ channel, the requirements are based on the subleading τ_h candidate because the misidentification probability decreases with $p_T^{h\ell}$: $40 < p_T^{h\ell} < 50$, $50 < p_T^{h\ell} < 70$, and $p_T^{h\ell} > 70$ GeV. No categorization is introduced in the $e\mu$ channel because the signal-to-background ratio does not significantly increase with the lepton p_T.

Systematic uncertainties are associated with the triggering and reconstruction of the different objects selected in the analysis and they amount to typically 2%–3% in the efficiency and 0.5%–3.0% in the energy scale, per object.
Uncertainties in the small misidentification rates of electrons and muons as \(\tau_h \) candidates range between 5% and 40% depending on the decay mode and \(\eta \), while the uncertainty in the momentum scale for these objects is up to 6%. Similar uncertainties, partially correlated, are considered for the objects in the embedded samples [51]. Uncertainties in the jet momentum scales and \(p_T^{\text{miss}} \) measurement are evaluated event by event. The uncertainty in the \(b \) tagging reaches up to 10% for processes with heavy-flavor jets.

Uncertainties of 2.0%, 4.2%, 5.0%, and 5.0% are used for the predicted cross sections of the Drell-Yan, \(\tau \), single top quark, and diboson productions, respectively [25–28]. The \(Z \rightarrow \tau \tau \) process yield, which is estimated with embedded samples, has an uncertainty of 4% to account for the dimuon trigger used to select the initial events in data before the muons are replaced with \(\tau \) leptons. Additionally, an uncertainty of 10% is assigned to the normalization of embedded events without any jet in the \(e\tau_h \) and \(\mu\tau_h \) final states to cover for a potential mismodeling introduced by the \(m_T (e/\mu, p_T^{\text{miss}}) \) selection criterion.

Several sources of uncertainty are taken into account for the estimate of the background with jets misidentified as \(\tau_h \) candidates: statistical uncertainties in the misidentification rate measurement as a function of \(p_T^h \); systematic uncertainties in the description of other variables \((p_T^h, p_T^{\ell/h}, \tau_h) \), as determined from closure tests; systematic uncertainties in the extrapolation between the regions where the misidentification rates are measured and the signal region; systematic uncertainties to cover for a finer granularity of some variables in the signal region, e.g., signal regions with two, three, or four jets while the misidentification rates are measured inclusively for \(N_{\text{jets}} \geq 2 \). In particular, the last source of uncertainty includes a 5% uncertainty in the yield of the reducible background in each bin of \(N_{\text{jets}} \). Events with misidentified jets in the highest-\(p_T^h \) categories also have a yield uncertainty in the range of 5%–10%, depending on the final state. This avoids propagating constraints from the low-\(p_T^h \) categories under the assumption that the \(p_T \) dependence of the misidentification probabilities is linear.

Statistical uncertainties in the number of simulated events in the signal region or observed event yields in the control regions are considered in all bins of the distributions. The uncertainty in the integrated luminosity for the combined 2016–2018 period is 1.6%, while individual years have uncertainties in the range 1.2%–2.5%, with partial correlations between data-taking years [53–55].

For the signal, uncertainties from missing higher-order corrections in the perturbative QCD expansion are estimated by varying the renormalization and factorization scales by factors of 2. In the case of the gluon fusion production, the uncertainty scheme proposed in Ref. [48] is used. For the signal in the fiducial region, the uncertainties are implemented in such a way that they do not modify the fiducial cross sections in any of the generator-level bins before the selection considering the shape effect only. The uncertainties can, however, modify the normalization of the Higgs boson events outside of the fiducial region since the cross section for these events is normalized to the SM expectation. The fraction of the Higgs boson events in this region is less than 3% and 8% in the \(\tau_h \tau_h \) and \(\mu\tau_h \) final states, respectively.

In each category, two-dimensional distributions of \(m_T \) reconstructed with a simplified matrix element algorithm [56] with a resolution around 20%, and of the variable considered for the differential measurement \((p_T^h, N_{\text{jets}}, p_T^{\ell/h}) \) are built. In practice, this is equivalent to making \(m_T \) distributions in different bins of the other observable. At the generator level, \(p_T^h, N_{\text{jets}}, \) and \(p_T^{\ell/h} \) are evaluated with a \textsc{rivet} implementation [57] of the simplified template cross sections scheme [48], where jets with \(p_T > 30 \text{ GeV} \) are formed from clusters of final-state particles from the primary vertex, excluding the decay products of the Higgs boson. Signal events from one generator-level bin contribute to multiple reconstruction-level bins. By performing one simultaneous fit over all reconstruction-level bins, the signal strength modifiers of the different generator-level observable bins modeled as freely floating parameters of interest, can be determined using all the selected events. This simultaneous fit is equivalent to a signal extraction in the reconstruction-level bins and its unfolding into generator-level bins performed in a single step. The signal strengths per observable range are assumed fully correlated among final states since similar phase spaces are selected with the fiducial region definitions. This unfolding procedure can be sensitive to statistical fluctuations in the observed distributions and to small variations in the response matrix, and a Tikhonov regularization of the unfolded distribution is performed by adding to the likelihood function a multiplicative penalty term [58,59]. Regularization reduces statistical fluctuations and unphysical solutions, but it can lead to undercoverage of the uncertainty intervals and introduce systematic biases, which, in this Letter, are negligible with respect to the systematic and statistical uncertainties. These effects are controlled by optimizing the strength of the regularization term with the minimum global correlation coefficient [60]. The optimum regularization factor is 1.85 (1.35 and 2.35) for the \(p_T^h \) (\(N_{\text{jets}} \) and \(p_T^{\ell/h} \), respectively) measurement.

The predicted and measured differential fiducial cross sections are shown in Fig. 1 for the regularized fits. Tabulated results are available in the HepData database [61] for the regularized and unregularized cases. The fit has a \(p \) value with respect to the SM expectation from the \textsc{nnlops} prediction of 17%, 71%, and 45% for the measurements of \(p_T^h, N_{\text{jets}}, \) and \(p_T^{\ell/h} \), respectively. No significant deviation with respect to the SM predictions is observed, and the measurements are compatible with both the \textsc{powheg} and \textsc{nnlops} expectations. The low measured cross sections for \(0 < p_T^h < 45 \text{ GeV} \) and \(45 < p_T^h < 80 \text{ GeV} \) do not coincide with the much more precise measurements performed in this
phase space in other final states [6,9], and are attributed to statistical fluctuations.

The results are dominated by statistical and theoretical uncertainties. After the maximum likelihood fit described later in this Letter, the uncertainty in the background with jets misidentified as τh candidates is at the percent level in the phase space region with large background contributions, and up to 10%–15% at high \(p_T^H \). The impacts on the template normalization from the uncertainties for embedded events without any reconstructed jet are 7% and 4% in the case of no jets and one jet, respectively, and become negligible at high jet multiplicity. Acceptance uncertainties for the \(ggH \) signal give the largest contribution to the overall impacts on the fits from the uncertainties due to migration between different jet multiplicity bins are less than 8% overall, while the combined effect of the other theoretical uncertainties is less than 3%.

The measurement is precise with respect to the measurements in other final states for \(120 < p_T^H < 600 \text{ GeV} \), \(N_{\text{jets}} \geq 2 \), and \(p_T^j > 120 \text{ GeV} \). More specifically, this measurement for \(120 < p_T^H < 200 \text{ GeV} \) is comparable in precision with the measurements by the CMS [10] and ATLAS [9] Collaborations in the \(H \to ZZ \to 4\ell \) decay channel with 137–139 fb\(^{-1} \), and 50% more sensitive than the CMS measurement in the \(H \to WW \) channel with 137 fb\(^{-1} \) [8] and the combination performed by the CMS Collaboration with 36 fb\(^{-1} \) in the \(bb, \gamma \gamma, \) and \(ZZ \) decay channels [6]. For \(200 < p_T^H < 600 \text{ GeV} \), the current measurement has a significantly higher precision and granularity than the measurements in Refs. [4–10].

The inclusive fiducial cross section is measured from the distributions used in the differential measurements of \(N_{\text{jets}} \) by reformulating the parameters of interest such that one modifies the total inclusive fiducial cross section. Its measured value is 426 ± 102 fb, compatible with the SM expectation of 408 ± 27 fb.

In summary, measurements of the differential fiducial cross sections of the Higgs boson have been performed for the first time at the LHC in the decay channel of two \(\tau \) leptons. The differential cross sections as functions of the Higgs boson transverse momentum, the jet multiplicity, and transverse momentum of the leading jet are in agreement with the expectations of the standard model, with a competitive precision with respect to measurements in other final states in the phase spaces with a large jet multiplicity, or with a Higgs boson transverse momentum above 120 GeV. In addition, the fiducial inclusive cross section has been measured to be 426 ± 102 fb, in agreement with the standard model expectation of 408 ± 27 fb.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success...
of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOC and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and RNC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] M. Grazzini, A. Il’inicka, M. Spira, and M. Wiesemann, Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, J. High Energy Phys. 03 (2017) 115.

[2] F. Bishara, U. Haisch, P. F. Monni, and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, Phys. Rev. Lett. 118, 121801 (2017).

[3] S. Alioli, A. Broggio, S. Kallweit, M. A. Lim, and L. Rottoli, Higgsstrahlung atNNLL’ + NNLO matched to parton showers in geneva, Phys. Rev. D 100, 096016 (2019).

[4] CMS Collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at √s = 8 TeV using H → WW decays, J. High Energy Phys. 03 (2017) 032.

[5] ATLAS Collaboration, Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ→4ℓ decay channels at √s = 13 TeV with the ATLAS detector, Phys. Lett. B 786, 114 (2018).

[6] CMS Collaboration, Measurement and interpretation of differential cross sections for Higgs boson production at √s = 13 TeV, Phys. Lett. B 792, 369 (2019).

[7] CMS Collaboration, Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at √s = 13 TeV, J. High Energy Phys. 01 (2019) 183.

[8] CMS Collaboration, Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at √s = 13 TeV, J. High Energy Phys. 03 (2021) 003.

[9] ATLAS Collaboration, Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4ℓ decay channel at √s = 13 TeV, Eur. Phys. J. C 80, 942 (2020).

[10] CMS Collaboration, Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at √s = 13 TeV, Eur. Phys. J. C 81, 488 (2021).

[11] CMS Collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779, 283 (2018).

[12] ATLAS Collaboration, Cross-section measurements of the Higgs boson decaying into a pair of τ-leptons in proton-proton collisions at √s = 13 TeV with the ATLAS detector, Phys. Rev. D 99, 072001 (2019).

[13] P. A. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[14] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[15] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.

[16] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: The POWHEG method, J. High Energy Phys. 11 (2007) 070.

[17] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX, J. High Energy Phys. 06 (2010) 043.

[18] S. Alioli, K. Hamilton, P. Nason, C. Oleari, and E. Re, Jet pair production in POWHEG, J. High Energy Phys. 04 (2011) 081.

[19] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, J. High Energy Phys. 04 (2009) 002.

[20] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, NNLOPS simulation of Higgs boson production, J. High Energy Phys. 10 (2013) 222.

[21] K. Hamilton, P. Nason, and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MINLO Higgs generator, J. High Energy Phys. 05 (2015) 140.

[22] CMS Collaboration, A measurement of the Higgs boson mass in the diphoton decay channel, Phys. Lett. B 805, 135425 (2020).

[23] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[24] J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. Maltoni, M. L. Mangano, M. Moretti, C. G. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, and M. Worek, Comparative study of various algorithms for the
merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53, 473 (2008).

[25] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the LHC, J. High Energy Phys. 07 (2011) 018.

[26] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhofer, A. von Manteuffel, S. Pozzorini, D. Rathlev, and L. Tancredi, $W^+ W^-$ Production at Hadron Colliders In Next to Leading Order QCD, Phys. Rev. Lett. 113, 212001 (2014).

[27] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through $O(a_s^7)$, Phys. Rev. D 74, 114017 (2006).

[28] M. Czakon and A. Mitov, TOP++: A program for the calculation of CMS PYTHIA8 tunes from underlying-event measurements, Eur. Phys. J. C 80, 4 (2020).

[29] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B855, 153 (2012).

[30] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-TOP-16-021, 2016, https://cds.cern.ch/record/2235192.

[31] CMS Collaboration, Jet energy scale and resolution in the production of $t\bar{t}$ events by CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12, P06015 (2018).

[32] CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV, J. Instrum. 13, P06015 (2018).

[33] CMS Collaboration, Electron and photon reconstruction and identification of high-momentum muons in proton-proton collisions at $\sqrt{s} = 13$ TeV, J. Instrum. 15, P02027 (2020).

[34] CMS Collaboration, Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC, J. Instrum. 16, P05014 (2021).

[35] M. Cacciari, G. P. Salam, and G. Soyez, The anti-k_t jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[36] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017, https://cds.cern.ch/record/2256875.

[37] CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, J. Instrum. 12, P02014 (2017).
(CMS Collaboration)
Page	University Name	Country/Region
29	Universidad San Francisco de Quito, Quito, Ecuador	
30	Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt	
31	Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt	
32	National Institute of Chemical Physics and Biophysics, Tallinn, Estonia	
33	Department of Physics, University of Helsinki, Helsinki, Finland	
34	Helsinki Institute of Physics, Helsinki, Finland	
35	Lappeenranta University of Technology, Lappeenranta, Finland	
36	IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France	
37	Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France	
38	Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France	
39	Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France	
40	Georgian Technical University, Tbilisi, Georgia	
41	RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany	
42	RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany	
43	RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany	
44	Deutsches Elektronen-Synchrotron, Hamburg, Germany	
45	University of Hamburg, Hamburg, Germany	
46	Karlsruher Institut fuer Technologie, Karlsruhe, Germany	
47	Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece	
48	National and Kapodistrian University of Athens, Athens, Greece	
49	National Technical University of Athens, Athens, Greece	
50	University of Ioannina, Ioannina, Greece	
51	MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary	
52	Wigner Research Centre for Physics, Budapest, Hungary	
53	Institute of Nuclear Research ATOMKI, Debrecen, Hungary	
54	Institute of Physics, University of Debrecen, Debrecen, Hungary	
55	Karoly Robert Campus, MATE Institute of Technology	
56	Indian Institute of Science (IISc), Bangalore, India	
57	National Institute of Science Education and Research, HBNI, Bhubaneswar, India	
58	Panjab University, Chandigarh, India	
59	University of Delhi, Delhi, India	
60	Saha Institute of Nuclear Physics, HBNI, Kolkata, India	
61	Indian Institute of Technology Madras, Madras, India	
62	Bhabha Atomic Research Centre, Mumbai, India	
63	Tata Institute of Fundamental Research-A, Mumbai, India	
64	Tata Institute of Fundamental Research-B, Mumbai, India	
65	Indian Institute of Science Education and Research (IISER), Pune, India	
66	Department of Physics, Isfahan University of Technology, Isfahan, Iran	
67	Institute for Research in Fundamental Sciences (IPM), Tehran, Iran	
68	University College Dublin, Dublin, Ireland	
69a	INFN Sezione di Bari, Bari, Italy	
69b	Università di Bari, Bari, Italy	
69c	Politecnico di Bari, Bari, Italy	
70a	INFN Sezione di Bologna, Bologna, Italy	
70b	Università di Bologna, Bologna, Italy	
71a	INFN Sezione di Catania, Catania, Italy	
71b	Università di Catania, Catania, Italy	
72a	INFN Sezione di Firenze, Firenze, Italy	
72b	Università di Firenze, Firenze, Italy	
73a	INFN Laboratori Nazionali di Frascati, Frascati, Italy	
73b	INFN Sezione di Genova, Genova, Italy	
74a	Università di Genova, Genova, Italy	
74b	University College Dublin, Dublin, Ireland	
75a	INFN Sezione di Milano-Bicocca, Milano, Italy	
75b	Università di Milano-Bicocca, Milano, Italy	
76a	INFN Sezione di Napoli, Napoli, Italy	
76b	Università di Napoli ’Federico II’, Napoli, Italy	
76c	Università della Basilicata, Potenza, Italy	
76d	Università G. Marconi, Roma, Italy	
77a	INFN Sezione di Padova, Padova, Italy	
77b	Università di Padova, Padova, Italy	
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, WI, Wisconsin, USA

a Deceased.
b Also at TU Wien.
c Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
d Also at Université Libre de Bruxelles, Bruxelles, Belgium.
e Also at Universidade Estadual de Campinas, Campinas, Brazil.
f Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
g Also at The University of the State of Amazonas.
h Also at University of Chinese Academy of Sciences.
i Also at Department of Physics, Tsinghua University, Beijing, China.
j Also at UFMS.
k Also at The University of Iowa, Iowa City, Iowa, USA.
l Also at Nanjing Normal University Department of Physics.
m Also at University of Chinese Academy of Sciences.

Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.

Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Cairo University, Cairo, Egypt.
Also at Helwan University, Cairo, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at Erzincan Binali Yıldırım University, Erzincan, Turkey.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran.

Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Forschungszentrum Jülich.

Also at Physics Department, Faculty of Science, Assiut University.
Also at Karoly Robert Campus, MATE Institute of Technology.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Wigner Research Centre for Physics, Budapest, Hungary.

Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at G.H.G. Khalsa College, Punjab, India.
Also at Shoolini University, Solan, India.

Also at University of Hyderabad, Hyderabad, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Indian Institute of Technology (IIT), Mumbai, India.
Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.

Also at Sharif University of Technology, Tehran, Iran.

Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.

Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.

Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development.
Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.
Also at Università di Napoli ‘Federico II’.

Also at Consiglio Nazionale delle Ricerche—Istituto Officina dei Materiali.
Also at Riga Technical University, Riga, Latvia.

Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
