INTRODUCTION

Non-alloyed commercially pure (CP) titanium and titanium alloys have been used for implants and prosthetic appliances as a bioinert metal1-3). Ideally, all restorations should be made without metal, namely, with porcelain and zirconia, for aesthetic and biocompatible reasons4,5). However, the frameworks of removable partial dentures (RPDs) and some implant superstructures will be made, reluctantly, with metal even in the future 6,7). To avoid the presence of various metal combinations in patients’ oral cavities, the use of a single metal for all restorations would be needed to protect against metal corrosion caused by the contact of different metals. For this “one-metal rehabilitation” concept, non-alloyed CP titanium should be used for all restorations, based on the assumption that implant treatment will be carried out if a tooth is lost.

In Tsurumi University Dental Hospital, Yokohama, Japan, CP titanium has been used for not only fixed prosthetic appliances but also prosthetic removable dentures based on the patient-first philosophy —that better safety and excellent biocompatible metal should be used in patients’ mouths— from approximately 25 years ago8,9). Although the benefits of CP titanium dentures have been proved by clinical observations, several laboratory and clinical problems have been found6,9). Of the laboratory problems, casting 10-15), cutting16,17), grinding 18,19), and polishing are not easy 20), and casting apparatus for titanium is more expensive than for the conventional dental alloys. The debonding of the denture base resin from the titanium framework21-23), deformation of the titanium clasp24-30), discoloration of the titanium surface31), severe wear of titanium teeth32-36), and much plaque accumulation37-39) are some of the clinical problems frequently observed in our clinical practice, whereas catastrophic failures have never been found40). Some of these laboratory and clinical problems have been resolved by basic studies and the efforts of laboratory technicians so that cast titanium frameworks for RPDs could be constantly fabricated with clinical success40-43).

The advantages of titanium frameworks as compared to conventional dental alloys include outstanding corrosion resistance44,45), appropriate mechanical properties46,47), their light weight, better fitness accuracy48), and less metal allergy due to its excellent biocompatibility49,50). On the contrary, the occurrence of a chemical reaction layer from the titanium casting is an inevitable disadvantage51,52). As an alternate method for the manufacturing of titanium frameworks, most implant superstructures, including abutments, have been fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM) instead of casting53-55). Using CAD/CAM, titanium frameworks for RPDs have also started being fabricated by milling titanium disks and additive manufacturing from titanium powders.

This review article outlines the laboratory and clinical problems of cast titanium removable dentures and proposes their solutions. In addition, the future trends of fabrication methods for titanium frameworks using CAD/CAM are described based on the “one-metal rehabilitation” concept.

PROBLEMS OF CAST TITANIUM DENTURES

Casting apparatuses for titanium restorations and denture frameworks were developed more than 30 years ago. Since the castability and mechanical properties of titanium castings greatly depend on the
Pattern10,56). Presently, the occurrence of casting defects can be mostly controlled in the titanium castings9). The burnout time of framework patterns before metal casting is longer than for conventional dental alloys16-19). Cutting and grinding times are much longer, and machine tools are easily worn, as compared to gold alloys16,17). Special cutting and grinding tools should be developed to improve the machinability of titanium.

Debonding of denture base resin
Previously, the debonding of denture base resin from a titanium framework was frequently observed for short period after denture delivery31). Recently, bond strengths of metal primers have been remarkably improved; little debonding occurred between the denture base resin and the titanium framework, similarly to Co-Cr and gold alloy frameworks12,23).

Severe wear of titanium teeth
Severe wear was frequently observed on titanium teeth32-36). Kabe32) and Shimura33) tested the wear of titanium teeth using wear-testing apparatus that simulated the chewing function. Severe wear occurred between titanium of the same grade used for maxillary and mandibular teeth (Type 2 vs. Type 2 or Type 3 vs. Type 3). The wear resistance of the α+β alloy, i.e., Ti-6Al-4V and Ti-6Al-7Nb, was better than that of CP titanium. To avoid severe wear of titanium teeth, different grades of titanium (Grade 3 vs. Grade 4) should be used for maxillary and mandibular teeth; otherwise Grade 4 should be used for both jaws.

Discoloration
One significant problem might be the discoloration of the titanium surface shortly after delivery35). This discoloration was caused by the immersion of the titanium denture into an alkaline denture cleanser6). Dentists must instruct patients to avoid using strong alkaline denture cleaners for titanium dentures.

Adherence of denture plaque
Plaque adheres easily to titanium frameworks as compared to conventional dental alloys37,38). Urushibara et al.39) reported higher amounts of biofilms formed by unfiltered, fresh human saliva or Streptococcus mutans and/or Candida albicans on CP titanium than on other alloys and resin samples. The biocompatibility of titanium would promote the adherence of denture plaque.

Others
A few patients wearing titanium dentures commented about a “slightly strange taste”57). The reason for this phenomenon is unknown; future study is necessary regarding patients’ sense of taste when using titanium dentures.

ADVANTAGES OF CAST TITANIUM DENTURES
Although laboratory and clinical drawbacks remain, CP titanium has many advantages for clinical use, including biocompatibility, fitness accuracy, their light weight, laser welding, and one-metal rehabilitation.

Biocompatibility
The biocompatibility of titanium can be emphasized as its most beneficial point2-5. Clinical reports have indicated that changing to porcelain or hybrid resin restorations and titanium dentures is the best way to
treat patients with metal allergies. Recently, allergic reactions to titanium implants have been reported and may gradually increase in the future. Although implants, superstructures, and crown-bridges can be fabricated with zirconia as metal-free restorations, it would be difficult to use zirconia for RPD frameworks because zirconia bars and clasp arms are easily breakable.

Fitness accuracy

More than 800 titanium dentures have been delivered through our hospital over the past 25 years; appropriate fitness accuracy could be clinically confirmed similarly to conventional dental alloys. Muraishi examined the fitness accuracy of titanium and Co-Cr clasps; there were no significant differences between them.

Lightweight

Because titanium has low density, titanium dentures can be fabricated that weigh less than those made of gold and Co-Cr alloys. Thus, titanium would be suitable for use in large RPD frameworks. Especially, some patients prefer light maxillary dentures because they believe that lightweight dentures will be more comfortable. These patients prefer titanium dentures for the maxillary jaw. Facial prostheses must be lightweight because of their poor retention; using titanium for lightweight facial prostheses is clinically significant.

Laser welding

Titanium has a lower thermal conductivity value and an excellent rate of laser beam absorption; therefore, laser welding can be performed easily to fabricate frameworks and repair dentures. Since there are four grades of CP titanium from 1 to 4 with mechanical properties ranging from flexible to rigid, RPD components can be made separately from the appropriate grade of CP titanium. After casting, each component can be joined using laser welding. Alternatively, rather than constructing new dentures, existing titanium dentures can be rebuilt to add or enlarge denture components using laser welding. Even broken clasps can be rejoined using laser welding, and the retentive force does not decrease after clasp repair. In addition, the wear resistance of titanium teeth can be improved by laser irradiation.

Surface modification

To improve the fatigue strength of titanium, surface modification has been performed in the industrial world. The clasp is the most easily broken RPD component, due to its slender shape and the concentration of stress during insertion/removal. Hayashi et al. and Tokue et al. examined the effect of shot peening on the fatigue resistance of titanium clasps. Micro-spheroidal particles are strongly impacted to the titanium surface, and the surface became smoother while the mechanical properties increased.

One-metal rehabilitation

Generally, there are many different dental alloys in most patients’ oral cavities. Using CP titanium, all metal restorations, prosthetic frameworks, and implants can be unified to single metal.

CAD/CAM TITANIUM DENTURES

Milled titanium framework for RPDs

First, a CP titanium framework has been milled for implant superstructure after the framework pattern was fabricated and scanned by a laboratory scanner. A one-piece full-arch fixed prosthesis framework can be also milled from a CP titanium disk, so that a higher fitness accuracy could be confirmed. Regarding the RPD framework, a sacrificial pattern is produced by CAD/CAM (milling or rapid prototyping technology), and investment-casting and finishing techniques are generally carried out in accordance with conventional techniques. Although milling manufacturing for RPD frameworks from titanium disks has been tried, it would be a wasteful process, since the bilateral RPD framework is significantly thinner with a slender-shaped clasp and connector. The disadvantages of milled titanium frameworks include; 1) it is not easy to cut the complicated shapes and/or undercut areas, 2) large quantities of cutting chips are discharged, 3) milling accuracy deteriorates when cutting tools are worn, and 4) long processing times are required.

Today, yttria tetragonal zirconia polycrystals (Y-TZP) and ceria-stabilized zirconia/alumina nanocomposites (Ce-TZP/A) have been popularly used for crowns, bridges, implant superstructure, and palatal plates instead of CP titanium for metal-free restorations and greater esthetics. However, zirconia would not be suitable for RPD frameworks even now because of the following reasons: 1) difficulty in cutting and grinding for corrections, 2) difficulty in adjusting retentive force, 3) the breakability of zirconia clasps, 4) the impossibility of soldering and laser welding, 5) bad aesthetics of zirconia clasps because the color is too white, and 6) no clinical evidence for a long-term prognosis. Presently, RPD frameworks milled from titanium disks might be better than zirconia frameworks.

Additive manufacturing of titanium framework for RPDs

The fabrication of frameworks for dental applications by laser sintering and metal additive manufacturing has been tried recently. As compared to the milling process, additive manufacturing has many advantages: 1) no cutting chips are produced; 2) shapes with free curves, undercuts, and hollow structures can be fabricated; 3) accuracy is not diminished by worn cutting tools; 4) many frameworks can be prepared simultaneously; and 5) the cost is relatively low. However, one big problem of conventional additive manufacturing is that it creates surface that are too rough because the particle size used is lager (more than 50 µm) (Fig. 9).
Since bilateral RPD framework is significantly thinner with a slender-shaped clasp and connector, milling manufacturing of RPD frameworks would be waste process from the titanium disks.

One big problem of conventional additive manufacturing of RPD frameworks is that it creates surface that are too rough.

Hybrid processing of repeated laser sintering and high-speed milling as one simultaneous process is now being tried for fabricating RPD frameworks. Using a hybrid processing machine (LUMEX Avance, Matsuura, Fukui, Japan), accurate molding and smooth surfaces can be produced. Nakata et al.79 examined the fitness accuracy and retentive force of Akers clasps fabricated by conventional casting and
hybrid processing and suggested that the surface of the sintered and milled clasp was smoother than those of cast clasps. The retentive forces of hybrid processing clasps were also significantly higher than those of cast clasps. Although the retentive forces of cast clasps were remarkably decreased, hybrid processing clasps demonstrated a constant or slight decrease from 1,000 to 10,000 insertion/removal cycles (Fig. 5). These results suggest that hybrid processing CAD/CAM clasps can be recommended instead of cast clasps.

Although CP titanium crown copings and RPD frameworks could be cast with clinically acceptable accuracy, high-level laboratory skills are necessary to ensure titanium casting success6. Milled titanium is already used with great success for most implant superstructures and fixed prosthesis appliances, whereas milling or additive manufacturing of titanium RPD frameworks is unlikely to be widespread in the near future79. The hybrid processing of repeated laser sintering and high-speed milling is expected to make up for the drawbacks of only milling or additive titanium for the manufacturing of RPD frameworks79. Future basic research and clinical observations regarding hybrid processing on titanium RPD frameworks are necessary for appropriate clinical use.

CONCLUSIONS

Although laboratory and clinical problems remain, CP titanium can be used for all restorations and prosthetic appliances using the casting process. Using CP titanium as a bioinert metal, one-metal rehabilitation would be performed in patients’ mouths. With CAD/CAM, milling manufacturing is suitable for implant superstructures and crown-bridges, and the hybrid process of laser sintering and high speed milling would be good way for RPD frameworks to improve both drawbacks.
22) Suzuki T, Takahashi H, Arksornnukit M, Oda N, Hirano S. Bonding properties of heat-polymerized denture base resin to Ti-6Al-7Nb alloy. Dent Mater J 2005; 24: 530-535.

23) Shimizu H, Kurtz KS, Tachii Y, Takahashi Y. Use of metal conditioners to improve bond strengths of autopolymerizing denture base resin to cast Ti-6Al-7Nb and Co-Cr. J Dent 2006; 34: 117-122.

24) Vallittu PK, Kokkonen M. Deflection fatigue of cobalt-chromium, titanium, and gold alloy cast denture clasps. J Prosthodont Res 1995; 4: 412-419.

25) Bridgeman JT, Markar VA, Hummel SK, Benson BW, Pace LL. Comparison of titanium and cobalt-chromium removable partial denture clasps. J Prosthodont Res 1997; 78: 187-193.

26) Essop AR, Sult SA, Sykes LM, Chandler HD, Becker PJ. The flexibility of titanium clasps compared with cobalt-chromium clasps. SADJ 2000; 55: 672-677.

27) Ohshima A. A fundamental study on retentive force of titanium cap clasps. Tsurumi Univ Dent J 2004; 30: 41-51.

28) Kim D, Park C, Yi Y, Cho L. Comparison of cast Ti-Ni alloy cast retention with conventional removable partial denture clasps. J Prosthodont Res 2004; 91: 374-382.

29) Rodrigues RC, Ribeiro RF, de Mattos Mda G, Bezoz SOH. Comparative study of circumferential clasp retention force for titanium and cobalt-chromium removable partial dentures. J Prosthodont Res 2002; 88: 290-296.

30) Shimpo H. Retentive force of titanium clasps with different retentive cap designs. J Prosthodont 2008; 17: 300-307.

31) Sutton AJ, Rogers FM. Discoloration of a titanium alloy removable partial denture: a clinical report. J Prosthodont 2001; 10: 102-104.

32) Kabe S. Studies on attrition of CP titanium as metal teeth. Tsurumi Univ Dent J 1998; 24: 69-79.

33) Shimura I. In vitro study evaluated the relative wear resistance of CP titanium and artificial teeth materials. Tsurumi Univ Dent J 2001; 27: 45-58.

34) Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Okabe T. In vitro wear assessment of titanium alloy teeth. J Prosthodont Res 2002; 11: 263-269.

35) Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti-Cu alloys. Biomaterials 2003; 24: 3377-3381.

36) Sato Y. Effect of surface modification using laser on wear resistance of titanium. J Jpn Prosthodont Soc 2005; 49: 1-10.0.

37) Rasperini G, Maglione M, Cocconcelli P, Simion M. In vivo early plaque formation on pure titanium and ceramic abutments: a comparative microbiological and SEM analysis. Clin Oral Implants Res 1999; 9: 357-364.

38) Ichikawa T, Hirota K, Kanitani H, Miyake Y, Matsumoto N. In vitro adherence of Streptococcus constellatus to dense hydroxyapatite and titanium. J Oral Rehabil 1998; 25: 125-127.

39) Urushibara Y, Ohshima T, Sato M, Hayashi Y, Hayakawa T, Maeda N, Ohkubo C. An analysis of the biofilms adhered to framework alloys using in vitro denture plaque models. Dent Mater J 2014; 33: 402-414.

40) Wakabayashi N, A1 M. A short-term clinical follow-up study of superplastic titanium alloy for major connectors of removable partial dentures. J Prosthodont Res 1997; 77: 583-587.

41) Au AR, Lechner SK, Thomas CJ, Mori T, Chung P. Titanium for removable partial dentures (III): 2-year clinical follow-up in an undergraduate programme. J Oral Rehabil 2000; 27: 979-985.

42) Da Silva L, Martinez A, Rilo B, Santana U. Titanium for removable denture bases. J Oral Rehabil 2000; 27: 131-135.

43) ADA Council on Scientific affairs. Titanium applications in dentistry. J Am Dent Assoc 2003; 134: 347-349.

44) Miura H, Miyagawa Y. Electrochemical corrosion behavior of titanium castings. Part 1: Effects of degree of surface polishing and kind of solution. J Jpn Soc Dent Mater Devices 1996; 15: 283.

45) Koike M, Fujii H. In vitro assessment of corrosive properties of titanium as a biomaterial. J Oral Rehabil 2001; 28: 540-548.

46) Srimaneepong V, Yoneyama T, Wakabayashi N, Kobayashi E, Hanawa T, Doi H. Deformation properties of Ti-6Al-7Nb alloy castings for removable partial denture frameworks. Dent Mater J 2004; 23: 497-503.

47) Aridome K, Yamazaki M, Baba K, Ohyama T. Bending properties of strengthened Ti-6Al-7Nb alloy major connectors compared to Co-Cr alloy major connectors. J Prosthodont Dent 2003; 93: 267-273.

48) Hellö Y R, Dærand T, Johansson S, Lindberg A. The CrescoTi Precision method: description of a simplified method to fabricate titanium superstructures with passive fit to osseointegrated implants. J Prosthodont Dent 1999; 82: 487-491.

49) Suzuki N. Metal allergy in dentistry: detection of allergen metals with X-ray fluorescence spectroscopy and its application toward allergen elimination. Int J Prosthodont 1995; 8: 351-359.

50) Kononen M, Rintanen J, Waltimo A, Kempoainen P. Titanium framework removable partial denture used for patient allergic to other metals: a clinical report and literature review. J Prosthodont Dent 1995; 73: 4-7.

51) Watanabe I, Watkins JH, Nakajima H, Atsuma M, Okabe T. Effect of pressure difference on the quality of titanium casting. J Dent Res 1997; 76: 773-779.

52) Watanabe I, Watanabe E, Yoshida K, Okabe T. Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy. J Prosthodont Dent 1999; 81: 270-276.

53) Lin WS, Metz MJ, Pollini A, Ntounis A, Morton D. Digital data acquisition for a CAD/CAM-fabricated titanium framework and zirconium oxide restorations for an implant-supported fixed complete dental prosthesis. J Prosthodont 2014; 112: 1324-1329.

54) Katsoulis J, Müller P, Mericske-Stern R, Blatz MB. CAD/CAM fabrication accuracy of long- vs. short-span implant-supported FDPs. Clin Oral Implants Res 2015; 26: 245-249.

55) Katsoulis J, Mericske-Stern R, Rotkina L, Enkling N, Blatz MB. Precision of fit of implant-supported screw-retained 10-unit computer-aided-designed and computer-aided-manufactured frameworks made from zirconium dioxide and titanium: an in vitro study. Clin Oral Implants Res 2014; 25: 165-174.

56) Baltag I, Watanabe K, Miyakawa O. Internal porosity of cast titanium removable partial dentures: influence of sprue direction and diameter on porosity in simplified circumferential clasps. Dent Mater 2005; 21: 530-537.

57) Yoshida N, Shirai Y, Yanagisawa I, Shimakura M. A study on the oral sense of pure titanium. Proceedings of 12th Society for Titanium Alloys in Dentistry; 1999 Feb 20; Tokyo, Japan. Tokyo: Nissei-eburo; 1999. p.26-27.

58) Sakamoto K, Ando K, Noma D. Metal allergy to titanium bars and dental implants. J Prosthodont Res 2016; 60: 213-219.

59) Katsoulis J, Mericske-Stern R, Blatz MB. CAD/CAM fabrication accuracy of long- vs. short-span implant-supported FDPs. Clin Oral Implants Res 2015; 26: 245-249.

60) Hosoki M, Nishigawa K, Miyamoto Y, Ohe G, Matsuka Y. Allergic contact dermatitis caused by titanium screws and dental implants? A systematic review. Clin Implant Dent Relat Res 2013; 15: 47-52.

61) Muraishi E. Retentive forces and fitting accuracy of repaired Akers clasps using laser welding. Tsurumi Univ Dent J 2010; 27: 53-65.

62) Shiwa M. The effect of weight change of maxillary complete denture on masticatory movement. J Jpn Prosthodont Soc
63) Ohkubo C, Kurtz KS, Watanabe I, Hosoi T, Okabe T. Development of a cranio facial implant-retained facial prosthesis with cast CP titanium substructure. Proceeding of 12th Society for Titanium Alloys in Dentistry; 2000 Feb 20; Yokohama, Japan. Tokyo: Nissei-eburo; 2000. p.70-71.

64) Watanabe I, Topham DS. Laser welding of cast titanium and dental alloys using argon shielding. J Prosthodont 2006; 15: 102-107.

65) Watanabe I, Baba N, Chang J, Chiu Y. Nd:YAG laser penetration into cast titanium and gold alloy with different surface preparations. J Oral Rehabil 2006; 33: 443-446.

66) Suzuki Y, Ohkubo C, Abe M, Hosoi T. Titanium removable partial denture clasp repair using laser welding: A clinical report. J Prosthet Dent 2004; 91: 418-420.

67) Pompeo G, Girasole M, Longo G, Cricenti A, Bailo D, Ronci F, Maras A, Serracino M, Moretti PF. AFM for diagnosis of nanocrystallization of steels in hardening processes. J Microsc 2008; 230: 218-223.

68) Sonntag R, Reinders J, Gibeiner J, Kretzer JP. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. PLoS One 2015; 10: e0121963.

69) Hayashi D, Hanatani S. Effect of shot-peened surface modification with minute particles on the fatigue strengths of cast titanium and cobalt-chromium alloy. Tsurumi Univ Dent J 2010; 36: 41-51.

70) Tokue A, Hayakawa T, Ohkubo C. Fatigue resistance and retentive force of cast clasps treated by shot peening. J Prosthodont Res 2013; 57: 186-194.

71) Vigo P, Fonzi F, Majzoub Z, Cordeli G. An in vitro evaluation of titanium, zirconia, and alumina procerabutments with hexagonal connection. Int J Oral Maxillofac Implants 2006; 21: 575-580.

72) Drago C, Howell K. Concepts for designing and fabricating metal implant frameworks for hybrid implant prostheses. J Prosthodont 2012; 21: 413-424.

73) Bibb RJ, Eggbeer D, Williams RJ, Woodward A. Trial fitting of a removable partial denture framework made using computer-aided design and rapid prototyping techniques. Proc Inst Mech Eng H 2006; 220: 793-797.

74) Wada T, Takano T, Tasaka A, Ueda T, Sakurai K. Evaluation of participants’ perception and taste thresholds with a zirconia palatal plate. J Prosthodont Res 2016; 60: 294-300.

75) Hagiwara Y, Nakajima K. Use of ceria-stabilized zirconia/ alumina nanocomposite for fabricating the frameworks of removable dental prostheses: A clinical report. J Prosthodont 2016; 116: 166-171.

76) Oda Y, Takemoto S, Hattori M, Yoshinari M, Kawada E, Hasegawa K, Aichi T, Matsumoto N. Evaluation of the mechanical properties of Co-Cr and Ti-Al-V alloy specimens fabricated by additive manufacturing: in comparison with dental casting. J Jpn Soc Dent Mater and Devices 2012; 51: 379.

77) Oda Y. Forefront of dental application of titanium. J Tokyo Dent Coll Soc 2014; 114: 187-197.

78) Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive technology: update on current materials and applications in dentistry. J Prosthodont 2017; 26: 156-163.

79) Nakata T, Shimpo H, Ohkubo C. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. J Prosthodont Res 2017; 61: 276-282.