Weighted gradient estimates for the class of singular p-Laplace system

Tan Duc Do1, Le Xuan Truong2, Nguyen Ngoc Trong3,★

1University of Economics Ho Chi Minh City
Email: tanducdo.math@gmail.com

2University of Economics Ho Chi Minh City
Email: lxuantruong@gmail.com

3University of Economics Ho Chi Minh City
★ Corresponding author
Email: trongnn37@gmail.com

April 7, 2020

Abstract

Let $n \in \{2, 3, 4, \ldots\}$, $N \in \{1, 2, 3, \ldots\}$ and $p \in (1, 2 - \frac{1}{n}]$. Let $\beta \in (1, \infty)$ be such that

$$\frac{np}{n - p} < \beta' < \frac{n}{n(2 - p) - 1}$$

and $f \in L^{\beta}(\mathbb{R}^n; \mathbb{R}^N)$. Consider the p-Laplace system

$$-\Delta_p u = -\text{div} \left(|Du|^{p-2} Du\right) = f \quad \text{in} \quad \mathbb{R}^n.$$

We obtain a weighted gradient estimate for distributional solutions of this system.

Keywords: Nonlinear elliptic systems, Gradient regularity.

2010 Mathematics Subject Classification: primary: 35J60, 35J61, 35J62; secondary: 35J75, 42B37.
1 Introduction

Calderon-Zygmund theory is undoubtedly classical to linear partial differential equations. In the last few years, its extension to non-linear settings has become an active area of research. For a comprehensive survey on this account, cf. [Min10] and also the references therein. Our paper continues this trend with a gradient estimate for the solutions of a p-Laplace system.

Specifically, let $n \in \{2, 3, 4, \ldots\}$, $N \in \{1, 2, 3, \ldots\}$ and $p \in \left(1, 2 - \frac{1}{n}\right]$. Consider the p-Laplace system

$$- \Delta_p u = - \text{div} \left(|Du|^{p-2} Du\right) = f \quad \text{in} \quad \mathbb{R}^n,$$

where $f : \mathbb{R}^n \longrightarrow \mathbb{R}^N$ belongs to some appropriate Lebesgue space.

Our aim is to derive a general Muckenhoupt-Wheeden-type gradient estimate for (1.1). This result inherits the spirit of [KM18], [NP19], [NP] and [NP20]. Specifically, in [NP19], [NP] the authors obtained such estimates when $N = 1$ and $1 < p \leq 2 - \frac{1}{n}$. If in addition $\frac{3n-2}{2n-1} < p \leq 2 - \frac{1}{n}$, pointwise gradient estimates with measure data are also available (cf. [NP20]). In a system setting (i.e. $N \geq 1$) with measure data, pointwise gradient bounds via Riesz potential and Wolff potential for $p > 2 - \frac{1}{n}$ were obtained in [KM18]. Regarding the method of proof, we follow the general frameworks presented in these papers. Our main contribution involves the reconstructions of a comparison estimate and a good-\(\lambda\)-type bound peculiar to the setting in this paper.
To state our main result, we need some definitions.

Definition 1.1. A function $u : \mathbb{R}^n \to \mathbb{R}^N$ is a distributional (or weak) solution to (1.1) if

$$\int_{\mathbb{R}^n} |Du|^{p-2} Du : D\varphi \, dx = \int_{\mathbb{R}^n} f \varphi \, dx$$

for all $\varphi \in C_c^\infty(\mathbb{R}^n, \mathbb{R}^N)$.

Here Du, which is a counterpart of ∇u in the equation setting, is understood in the sense of tensors. See Section 2 for further details.

Next recall the notion of Muckenhoupt weights.

Definition 1.2. A positive function $\omega \in L^1_{\text{loc}}(\mathbb{R}^n)$ is said to be an A_∞-weight if there exist constants $C > 0$ and $\nu > 0$ such that

$$\omega(E) \leq C \left(\frac{|E|}{|B|} \right)^\nu \omega(B),$$

for all balls $B \subset \mathbb{R}^n$ and all measurable subset E of B. The pair (C, ν) is called the A_∞-constants of ω and is denoted by $[\omega]_{A_\infty}$.

In what follows, we will also make use of the maximal function defined by

$$M_\beta(f)(x) = \sup_{\rho > 0} \rho^\beta \int_{B_\rho(x)} |f(y)| \, dy$$

for all $x \in \mathbb{R}^n$, $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $\beta \in [0, n]$, where

$$\int_{B_\rho(x)} |f(y)| \, dy := \frac{1}{|B_\rho(x)|} \int_{B_\rho(x)} f(y) \, dy.$$

When $\beta = 0$, the Hardy-Littlewood maximal function $M = M_0$ is recovered.

Our main result is as follows.

Theorem 1.3. Let $n \in \{2, 3, 4, \ldots\}$, $N \in \{1, 2, 3, \ldots\}$ and $p \in (1, 2 - \frac{1}{n}]$. Let $\beta \in (1, \infty)$ be such that

$$\frac{np}{n-p} < \beta' < \frac{n}{n(2-p)-1}$$

and $f \in L^\beta(\mathbb{R}^n, \mathbb{R}^N)$. Let $\Phi : [0, \infty) \to [0, \infty)$ be a strictly increasing function that satisfies

$$\Phi(0) = 0 \quad \text{and} \quad \lim_{t \to \infty} \Phi(t) = \infty.$$
Furthermore assume that there exists a $c > 1$ such that

$$\Phi(2t) \leq c \Phi(t)$$

for all $t \geq 0$. Then for all $\omega \in A_\infty$ there exist a $C > 0$ and a $\delta \in (0, 1)$, both depending on n, p, Φ and $[\omega]_A$ only, such that

$$\int_{\mathbb{R}^n} \Phi(|Du|) \omega \, dx \leq C \int_{\mathbb{R}^n} \Phi \left(M_p(|f|^\delta) \right)^{\frac{1}{p-1+\delta}} \omega \, dx$$

for all distributional solution u of (1.1).

Note that in our setting all functions are vector fields. For short we will write, for instance, $C^\infty_c(\mathbb{R}^n)$ in place of $C^\infty_c(\mathbb{R}^n, \mathbb{R}^N)$ hereafter. When scalar-valued functions are in use, we will explicitly write $C^\infty_c(\mathbb{R}^n, \mathbb{R})$. This convention applies to all function spaces in the whole paper.

When $n = 1$ it has been known that the distributional solution u is locally $C^{1,a}$ for some exponent $a = a(n, N, p) > 0$, whose result is due to [Uh77]. Hence we only consider $n \geq 2$ in this project. We also remark that the function Φ in the above theorem is quite general. In particular, we do not require Φ to be convex or to satisfy the so-called ∇_2 condition: $\Phi(t) \geq \frac{1}{2a} \Phi(at)$ for some $a > 1$ and for all $t \geq 0$. As such one can take, for examples, $\Phi(t) = t^a$ or $\Phi(t) = [\log(1 + t)]^a$ for any $a > 0$.

The outline of the paper is as follows. Section 2 collects definitions and basic facts about tensors and p-harmonic maps. In Sections 3 and 4 we derive a comparison estimate and a good-λ-type bound respectively. Lastly Theorem 1.3 is proved in Section 5.

Notations. Throughout the paper the following set of notation is used without mentioning. Set $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\mathbb{N}^n = \{1, 2, 3, \ldots\}$. For all $a, b \in \mathbb{R}$, $a \wedge b = \min\{a, b\}$ and $a \vee b = \max\{a, b\}$. For all ball $B \subset \mathbb{R}^d$ we write $w(B) := \int_B w$. The constants C and c are always assumed to be positive and independent of the main parameters whose values change from line to line. Given a ball $B = B_r(x)$, we let $tB = B_{tr}(x)$ for all $t > 0$. If $p \in [1, \infty)$, then the conjugate index of p is denoted by p'.

Throughout assumptions. In the entire paper, we always assume that $n \in \{2, 3, 4, \ldots\}$, $N \in \{1, 2, 3, \ldots\}$ and $p \in \left(1, 2 - \frac{1}{n}\right]$ without explicitly stated.
2 Tensors and p-harmonic maps

This section briefly summarizes definitions and basic facts regarding tensors and p-harmonic maps. Further details are available in [KM18, Sections 2 and 3]. These will be used frequently in subsequent sections without mentioning.

Let $\{e_j\}_{j=1}^n$ and $\{e^a\}_{a=1}^N$ be the canonical bases of \mathbb{R}^n and \mathbb{R}^N respectively. Let ζ and ξ be second-order tensors of size (N, n), that is,

$$\zeta = \zeta_j^a e^a \otimes e_j \quad \text{and} \quad \xi = \xi_j^a e^a \otimes e_j
$$

in which repeated indices are summed. Note that the linear space of all second-order tensors is isomorphic to $\mathbb{R}^{N \times n}$.

The Frobenius product of ζ and ξ is given by

$$\zeta : \xi = \zeta_j^a \xi_j^a,$$

from which we also obtain the Frobenius norm of ζ as $|\zeta|^2 = \zeta : \zeta$. The divergence of ζ is defined by

$$\text{div} \, \zeta = (\partial_j \zeta^a_j) e^a.$$

Also the gradient of a first-order tensor $u = u^a e^a$ is the second-order tensor

$$Du = (\partial_j u^a) e^a \otimes e_j.$$

Next consider the tensor field

$$A_q(z) := |z|^{q-2} z = |z|^{q-2} z_j^a e^a \otimes e_j$$

defined on the linear space of all second-order tensors, where $q \in (1, \infty)$. The differential of A_q is defined as a fourth-order tensor

$$\partial A_q(z) = |z|^{q-2} \begin{pmatrix} \delta_{a\beta} \delta_{ij} + (q-2) \frac{z_i^a z_j^\beta}{|z|^2} \end{pmatrix} (e^a \otimes e_i) \otimes (e^\beta \otimes e_j).$$

Here $\delta_{a\beta}$ is the Kronecker’s delta. This leads to

$$\partial A_q(z) : \xi = |z|^{q-2} \begin{pmatrix} \xi + (q-2) \frac{\xi_j^a z_i^\beta}{|z|^2} \end{pmatrix}$$
and

$$\langle \partial A_\alpha(z) : \xi \rangle : \xi = |z|^{q-2} \left(|\xi|^2 + (q-2) \frac{(z : \xi)^2}{|z|^2} \right).$$

Regarding second-order tensors, the following inequality is well-known (cf. [KM18, (4.51)]).

Lemma 2.1. Let $q \in (1, \infty)$. There exists a $c = c(n; N; p) \leq 1$ such that

$$\left(|z_2|^{q-1}z_2 - |z_1|^{q-1}z_1 \right) : (z_2 - z_1) \geq c \left(|z_2|^2 + |z_1|^2 \right)^{(q-2)/2} |z_2 - z_1|^2$$

for all second-order tensors z_1 and z_2.

We end this section with the definition of a q-harmonic map.

Definition 2.2. Let $q \in (1, \infty)$. A function $v \in W^{1,q}(\mathbb{R}^n)$ is said to be q-harmonic if

$$\int_{\mathbb{R}^n} |Dv|^{q-2} Dv : D\varphi \, dx = 0$$

for all $\varphi \in C_0^\infty(\mathbb{R}^n)$.

3 A comparison estimate

In this section we prove a comparison estimate between the weak solutions of (1.1) and a p-harmonic map, which is the content of Proposition 3.1.

In what follows it is convenient to denote

$$q_0 = \frac{\beta' (p-1) n}{\beta' (n-1) - n}. \quad (3.1)$$

Note that $q_0 \in (1, p)$. Also set $B_\sigma = B_\sigma(0)$ for all $\sigma \in (0, 1]$.

Proposition 3.1. Let $\varepsilon > 0$, $M \geq 1$ and $\beta \in (1, \infty)$ be such that $\frac{np}{n-p} < \beta' < \frac{n}{m(2p-1)}$. Let $1 < q < q_0$ and

$B = B_\sigma(x_0)$ be a ball in \mathbb{R}^n. Suppose $u \in W^{1,p}(B)$ satisfy

$$\int_B |u| \, dx \leq Mr. \quad (3.2)$$

Then there exists a positive constant $\delta = \delta(n, N, p, q, M, \varepsilon) \in (0, 1)$ such that if

$$\left| \int_B |Du|^{p-2} Du : D\varphi \, dx \right| \leq \frac{\delta}{r} \left(\int_B |\varphi(x)|^{p} \, dx \right)^{1/p'} \quad (3.3)$$
for all \(\varphi \in W^{1,p}_0(B) \cap L^p(B) \), then there exist a constant \(c = c(n, N, p, q) > 0 \) and a \(p \)-harmonic map \(v \in W^{1,p}(\frac{1}{2}B) \) such that
\[
\left(\int_{\frac{1}{2}B} |Dv|^q \, dx \right)^{1/q} \leq \varepsilon
\]
as well as
\[
\int_{\frac{1}{2}B} |v| \, dx \leq M 2^n \quad \text{and} \quad \left(\int_{\frac{1}{2}B} |Dv|^q \, dx \right)^{1/q} \leq cM.
\]

We divide the proof of Proposition 3.1 into several parts. To begin with, recall the following self-improving property of reverse H"older inequalities (cf. [HK, Lemma 3.38]).

Lemma 3.2. Let \(0 < q < a < \gamma < \infty, \xi \geq 0 \) and \(M \geq 0 \). Let \(v \) be a non-negative Borel measure with finite total mass and \(B \subset \mathbb{R}^n \) be a ball. Suppose \(0 \leq g \in L^p(U, v) \) satisfies the following: there exists a \(c_0 > 0 \) such that
\[
\left(\int_{\sigma_1 B} g^\gamma \, dv \right)^{1/\gamma} \leq \frac{c_0}{(\sigma - \sigma_1)^\xi} \left(\int_{\sigma B} g^a \, dv \right)^{1/a} + M
\]
for all \(\kappa \leq \sigma_1 < \sigma \leq 1 \), where \(\kappa \in (0, 1) \). Then there exists a \(c = c(c_0, \xi, \sigma, a, q) > 0 \) such that
\[
\left(\int_{\sigma_1 B} g^\gamma \, dv \right)^{1/\gamma} \leq \frac{c}{(1 - \sigma)^\xi} \left[\left(\int_{\sigma B} g^q \, dv \right)^{1/q} + M \right]
\]
for all \(\sigma \in (\kappa, 1) \), where
\[
\xi := \frac{p (\gamma - q)}{q (\gamma - a)}.
\]

Next we will establish suitable a priori estimates for (scaled) weak solutions of (1.1) under the assumptions in Proposition 3.1.

Lemma 3.3. Let \(M \) and \(\beta \) be as in Proposition 3.1. Let \(\delta \in (0, 1) \). Suppose \(\overline{u} \in W^{1,p}(B_1) \) satisfies
\[
\int_{B_1} |\overline{u}| \, dx \leq 1 \quad \text{(3.4)}
\]
and
\[
\left| \int_{B_1} |D\overline{u}|^{p-2} D\overline{u} : \nabla \eta \, dx \right| \leq M^{1-p} \delta \| \eta \|_{L^p(B_1)} \quad \text{(3.5)}
\]
for all \(\eta \in W^{1,p}_0(B_1) \cap L^p(B_1) \). Then there exists a \(c = c(n, N, p, q) \) such that
\[
\| \overline{u} \|_{W^{-1,\infty}(B_2, q)} \leq c
\]
for all \(q \in (1, q_0) \).
\textbf{Proof.} The main idea is to test (3.5) with suitable test functions. Following [KMT18] Proof of Theorem 4.1 consider for each $t > 0$ the truncation operator $T_t : \mathbb{R}^N \mapsto \mathbb{R}^N$ defined by

$$T_t(z) := \min \left\{ 1, \frac{t}{|z|} \right\} z. \quad (3.6)$$

By direct calculations, $DT_t : \mathbb{R}^N \mapsto \mathbb{R}^N \otimes \mathbb{R}^N$ is given by

$$DT_t(z) = \begin{cases} I & \text{if } |z| \leq t \\ \frac{t}{|z|} \left(I - \frac{z \otimes z}{|z|^2} \right) & \text{if } |z| > t, \end{cases} \quad (3.7)$$

where $I : \mathbb{R}^N \mapsto \mathbb{R}^N \otimes \mathbb{R}^N$ denotes the identity operator.

Now let $\phi \in C_c^\infty(B_1; \mathbb{R})$ be such that $0 \leq \phi \leq 1$ and then choose

$$\eta := \phi^p T_t \left(\frac{\partial}{\partial x} \right)$$

as a test function in (3.5). We have

$$D\eta = 1_{(\frac{\partial}{\partial x})} \left(\phi^p D\frac{\partial}{\partial x} + p\phi^{p-1} \frac{\partial}{\partial x} D\phi \right) + 1_{(\frac{\partial}{\partial x})} \frac{t}{|\partial|} \left(\phi^p (I - P) D\left(\frac{\partial}{\partial x} \right) + p\phi^{p-1} \frac{\partial}{\partial x} D\phi \right),$$

where $P := \frac{\partial}{\partial x}$. Also notice that

$$D\frac{\partial}{\partial x} : \left((I - P) D\frac{\partial}{\partial x} \right) = |D\frac{\partial}{\partial x}|^2 - \frac{u^\mu D\frac{\partial}{\partial x} u^\mu D\frac{\partial}{\partial x}}{|u|^2} = |D\frac{\partial}{\partial x}|^2 - \frac{\sum_{j=1}^{n} (D_j \cdot u)^2}{|u|^2} \geq 0 \quad (3.8)$$

and

$$\|\eta\|_{L^p(B_1)} = \left(\int_{B_1} \left| T_t \left(\frac{\partial}{\partial x} \right)^{1/\theta} \phi^{p\theta} d\chi \right|^{1/\theta} \right)^{1/\theta} = \left(\int_{B_1} \left| T_t \left(\frac{\partial}{\partial x} \right)^{\theta \theta} \phi^{p\theta} d\chi \right|^{1/(1-\theta)} \phi^{p(1-\theta)} d\chi \right)^{1/(1-\theta)} \leq t^\theta \left\| \phi^{1/\theta} \right\|_{L^{p/(1-\theta)}(B_1)}^{1-\theta},$$

where $0 < \theta < 1$.

Substituting these into (3.5) and using Young’s inequality we obtain

$$\int_{B_1 \cap \{ \frac{\partial}{\partial x} \}} |D\frac{\partial}{\partial x}|^p \phi^p d\chi \leq c \int_{B_1 \cap \{ \frac{\partial}{\partial x} \}} |\frac{\partial}{\partial x}|^p |D\phi|^p d\chi + c M^{1-p} \|\phi\| L^{p/(1-\theta)}(B_1) \|\phi^{1/\theta}\|_{L^{p/(1-\theta)}(B_1)}^{1-\theta}$$

$$+ ct \int_{B_1 \cap \{ \frac{\partial}{\partial x} \}} |D\frac{\partial}{\partial x}|^{p-1} |D\phi|^p d\chi \quad (3.9)$$

for some $c = c(n, N, p) > 0$.

8
For the rest of the proof we use \(c = c(n, N, p) \) whose value may vary from line to line.

Next let \(\gamma \in (0, 1) \). Multiplying (3.9) by \((1 + t)^{-1 - \gamma - \theta} \) and then integrating on \((0, \infty)\) with respect to \(t \) give

\[
\frac{1}{\theta + \gamma} \int_{B_1} \frac{|D\overline{u}|^p \phi^p}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx \leq \frac{c}{\gamma + \theta} \int_{B_1} (1 + |\overline{u}|)^{\rho - \gamma - \theta} |D\phi|^p \, dx \\
+ \frac{c}{\gamma} \left\| \phi \right\|_{L^{\rho(1-\theta)}(B_1)}^{1-\theta} + c \int_{B_1} \frac{|\overline{u}| |D\overline{u}|^{p-1} |D\phi| \phi^p}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx.
\]

It follows from Young’s inequality that

\[
\int_{B_1} \frac{|D\overline{u}|^{p-1} |D\phi| \phi^{p-1}}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx \leq \frac{1}{2c(\gamma + \theta)} \int_{B_1} \frac{|D\overline{u}|^p \phi^p}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx + c(\gamma + \theta)^{p-1} \int_{B_1} (1 + |\overline{u}|)^{-(\gamma + \theta)} |D\phi|^p |\overline{u}|^p \, dx.
\]

Consequently

\[
\int_{B_1} \frac{|D\overline{u}|^{p-1} \phi^p}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx \leq c \int_{B_1} (1 + |\overline{u}|)^{\rho - \gamma - \theta} |D\phi|^p \, dx + \frac{c}{\gamma} \left\| \phi \right\|_{L^{\rho(1-\theta)}(B_1)}^{1-\theta} \tag{3.10}
\]

The pointwise inequality \(|D| |D\overline{u}| \leq |D\overline{u}|^p\) implies

\[
|D((1 + |\overline{u}|)^{1 - \frac{\rho\gamma}{p}} \phi)|^p \leq \frac{c |D\overline{u}|^p}{(1 + |\overline{u}|)^{1 + \gamma}} \phi^p + c(1 + |\overline{u}|)^{\rho - \theta - \gamma} |D\phi|^p.
\]

Combining with (3.10), we obtain

\[
\int_{B_1} |D((1 + |\overline{u}|)^{1 - \frac{\rho\gamma}{p}} \phi)|^p \, dx \leq c \int_{B_1} (1 + |\overline{u}|)^{\rho - \gamma - \theta} |D\phi|^p \, dx + \frac{c}{\gamma} \left\| \phi \right\|_{L^{\rho(1-\theta)}(B_1)}^{1-\theta} \tag{3.11}
\]

Applying Sobolev’s inequality to (3.11) and combining the derived estimate with (3.10) yield

\[
\int_{B_1} \frac{|D\overline{u}|^{p-1} \phi^p}{(1 + |\overline{u}|)^{\gamma + \theta}} \, dx + \left(\int_{B_1} (1 + |\overline{u}|)^{\frac{\rho - \gamma - \theta}{\rho - p}} \phi^{\frac{p}{\rho - p}} \, dx \right) \leq c \int_{B_1} (1 + |\overline{u}|)^{\rho - \gamma - \theta} |D\phi|^p \, dx \\
+ \frac{c}{\gamma} \left\| \phi \right\|_{L^{\rho(1-\theta)}(B_1)}^{1-\theta} \tag{3.12}
\]

Next let \(7/8 \leq \sigma_1 < \sigma \leq 1 \) and \(\psi \in C^\infty_c(B_{\sigma}) \) be such that

\[
0 \leq \psi \leq 1, \quad \psi|_{B_{\sigma_1}} = 1 \quad \text{and} \quad |D\psi| \leq \frac{100}{\sigma - \sigma_1}.
\]

With this choice of test function, we deduce from (3.12) that

\[
\left(\int_{B_{\sigma_1}} (1 + |\overline{u}|)^{\frac{\rho - \gamma - \theta}{\rho - p}} \phi^{\frac{p}{\rho - p}} \, dx \right) \leq \frac{c}{\sigma - \sigma_1} \int_{B_{\sigma}} (1 + |\overline{u}|)^{\rho - \gamma - \theta} \, dx + \frac{c}{\gamma} \left\| \phi \right\|_{L^{\rho(1-\theta)}(B_{\sigma})}^{1-\theta} \tag{3.13}
\]

for all \(\gamma, \theta \in (0, 1) \).
Now we choose $\theta, \gamma \in (0, 1)$ such that $p - \theta - \gamma \geq 1$. Then thanks to Lemma (3.2) and (3.4), we get

$$
\left(\int_{B_{r_1}} \left(1 + |u| \right)^{\frac{p - \theta - \gamma}{n-p}} \, dx \right)^{\frac{n-p}{p}} \leq \frac{c}{1-\sigma} + \frac{c}{\gamma} \|u\|_{L^{p/(1-\theta)(B)}_x} \leq \frac{c}{1-\sigma} + \frac{c}{\gamma} \left(1 + |u| \right)^{\frac{1-\theta}{p/(1-\theta)(B)}_x}.
$$

The lemma can now be achieved by iterating (3.14) multiple times. Indeed if we denote $b = \frac{n}{n-p}$ then (3.14) reads

$$
\|1 + |u|\|_{L^{p/(1-\theta)(B)}_x} \leq \frac{c}{1-\sigma} + \frac{c}{\gamma} \left(1 + |u| \right)^{\frac{1-\theta}{p/(1-\theta)(B)}_x}.
$$

(3.14)

For each $k \in \mathbb{N}^*$ set $\gamma_k = (2\beta')^{-k}$ and θ_k such that

$$
\left\{ \begin{array}{l}
\theta_1 = 1 - \frac{1}{\beta'}, \\
\theta_{k+1} = 1 - \frac{b}{\beta'}(p - \theta_k - \gamma_k) \in (0, 1).
\end{array} \right.
$$

Using (3.14), (3.3), we obtain

$$
\|1 + |u|\|_{L^{p/(1-\theta_k)(B_{r/2})_x}} + \|1 + |u|\|_{L^{p/(1-\theta_k)(B_{r/2})_x}} \leq c_k
$$

(3.15)

for all $k \in \mathbb{N}^*$, where $c_k = c_k(n, N, p, k)$.

By extracting a subsequence when necessary, we may assume without loss of generality that $\lim_{k \to \infty} \theta_k = \theta_0$.

Then

$$
\beta' (1 - \theta_0) = \frac{(p - \theta_0)n}{n - p}
$$

or equivalently

$$
\theta_0 = \frac{\beta' (n - p) - p n}{\beta' (n - p) - n}.
$$

Observe that for all $a_1 > 0$ there exists a $k_1 \in \mathbb{N}^*$ such that $\theta_0 + \frac{a_1}{b} \geq \theta_{k_1} + \gamma_{k_1}$. Therefore (3.15) implies

$$
\int_{B_{r/2}} \left(1 + \|u\| \right)^{\frac{(p-\theta_0)n}{n-p}} \, dx \leq c(n, N, p, a_1)
$$

(3.16)

for all $a_1 > 0$. Choosing a suitable test function in (3.10) leads to

$$
\int_{B_{r/4}} \frac{|D\bar{u}|^p}{(1 + |u|)^{p+\gamma}} \, dx \leq c \int_{B_{r/2}} \left(1 + |u| \right)^{p+\gamma} \, dx + \frac{c}{\gamma} \|u\|_{L^{p/(1-\theta)(B_{r/2})_x}}^{\frac{1-\theta}{p/(1-\theta)(B_{r/2})_x}}.
$$

Then (3.15) in turn implies

$$
\int_{B_{r/4}} \frac{|D\bar{u}|^p}{(1 + |u|)^{p+\gamma}} \, dx \leq c_k,
$$

(3.17)
for all \(k \in \mathbb{N}^* \), where \(c_k = c_k(n, N, p, k) \).

Analogously for all \(a_2 > 0 \) there exists a \(k_2 \in \mathbb{N}^* \) such that \(\theta_0 + a_2 > \theta_{k_2} + \gamma_{k_2} \). Therefore (3.17) gives

\[
\int_{B_{3/4}} \frac{|Dn|^p}{(1 + |n|)^{\theta_0 + a_2}} \, dx \leq c(n, N, p, a_2)
\]

(3.18)

for all \(a_2 > 0 \).

Now let \(a = \frac{p'(p-1)n}{\beta'(n-1)-n} \) and apply Hölder’s inequality for the exponent \(\frac{p}{a-a_2} \) to arrive at

\[
\int_{B_{3/4}} |Dn|^{\frac{p'(p-1)n}{\beta'(n-1)-n}-a_2} \, dx = \int_{B_{3/4}} |Dn|^{a-a_2} (1 + |n|)^{-(\theta_0+a_2)/(p'(p-1)n)}(1 + |n|)^{(\theta_0+a_2)/(a-a_2)} \, dx
\]

\[
\leq \left(\int_{B_{3/4}} \frac{|Dn|^p}{(1 + |n|)^{\theta_0 + a_2}} \, dx \right)^{(a-a_2)/p}
\times \left(\int_{B_{3/4}} (1 + |n|)^{(\theta_0+a_2)/n-\alpha_2} \, dx \right)^{(p-a+a_2)/p}.
\]

(3.19)

Since \((a-a_2)/(p-a+a_2) < a/(p-a) \) and \(\beta' > np/(n-p) \), one has

\[
\frac{\theta_0 a}{p - a} < \frac{(p - \theta_0)n}{n-p}
\]

and so

\[
\frac{(\theta_0 + a_2)(a - a_2)}{p - a + a_2} < \frac{(\theta_0 + a_2)a}{p - a} < \frac{(p - \theta_0)n}{n-p} - a_1
\]

for all \(a_1, a_2 > 0 \) small enough.

By putting (3.16), (3.18) and (3.19) together,

\[
\int_{B_{3/4}} |Dn|^{\frac{p'(p-1)n}{\beta'(n-1)-n}-a_2} \, dx \leq c(n, N, p, a_2)
\]

(3.20)

for sufficiently small \(a_2 > 0 \).

We now combine (3.13) and (3.20) to conclude that

\[
\int_{B_{3/4}} |n|^{\frac{p'(p-1)n}{\beta'(n-1)-n}-\alpha_1} \, dx \leq c(n, N, p, a_1) \quad \text{and} \quad \int_{B_{3/4}} |Dn|^{\frac{p'(p-1)n}{\beta'(n-1)-n}-a_2} \, dx \leq c(n, N, p, a_2)
\]

for all sufficiently small \(a_1, a_2 > 0 \) (and so trivially for all larger values of \(a_1 \) and \(a_2 \)).

This verifies our claim.

\[\text{Lemma 3.4. Let } M \text{ and } \beta \text{ be as in Proposition 3.1. Let } \{u_j\}_{j \in \mathbb{N}^*} \subset W^{1,p}(B_1) \text{ satisfy}
\]

\[
\int_{B_1} |u_j| \, dx \leq 1
\]

(3.21)
and
\[
\left| \int_{B_1} |Du_j|^{p-2} Du_j : D\varphi \, dx \right| \leq M^{1-p} 2^{-j} \left(\int_{B_1} |\varphi(x)|^{\beta'} \, dx \right)^{1/\beta'}
\] (3.22)
for all \(\varphi \in W^{1,p}_0(B_1) \cap L^{\beta'}(B_1) \). Then there exists a \(\tilde{u} \in W^{1,q}(B_{3/4}) \) such that
\[
\lim_{j \to -\infty} u_j = \tilde{u} \quad \text{in } W^{1,q}(B_{3/4})
\]
for all \(q \in (1, q_0) \). Moreover,
\[
\int_{B_{1/2}} |\tilde{D}\tilde{u}|^{p-2} \tilde{D}\varphi \, dx = 0
\] (3.23)
for all \(\varphi \in C_c^\infty(B_{1/2}) \).

Proof. Let \(1 < q < q_0 \) and \(q_1 = (q + q_0)/2 \). By Lemma 3.3, there exists a \(c = c(n, N, p, q) \) such that
\[
\int_{B_{3/4}} |\tilde{D}u_j|^q \, dx \leq c \quad \text{and} \quad \int_{B_{3/4}} |\tilde{D}u_j|^{q_1} \, dx \leq c
\] (3.24)
uniformly in \(j \in \mathbb{N}^n \).

For convenience we will constantly use \(c = c(n, N, p, q) \) without mentioning further, the value of which may vary from line to line.

By passing to a subsequence if necessary, we may assume there exist \(\tilde{u} \in W^{1,q}(B_{3/4}) \), \(b \in L^{q/(p-1)}(B_{3/4}) \) and \(h \in L^q(B_{3/4}) \) such that
\[
\int_{B_{3/4}} |\tilde{D}u_j|^q \, dx + \sup_j \int_{B_{3/4}} |\tilde{D}u_j|^{q_1} \, dx + \sup_j \int_{B_{3/4}} |\tilde{D}u_j|^{q_1} \, dx < \infty,
\] (3.25)
\[
\tilde{D}u_j \rightharpoonup \tilde{D}u, \quad |\tilde{D}u_j - \tilde{D}u| \rightarrow h \quad \text{weakly in } L^q(B_{3/4}),
\] (3.26)
\[
|\tilde{D}u_j|^{p-2} \tilde{D}u_j \rightharpoonup b \quad \text{weakly in } L^{q/(p-1)}(B_{3/4}) \quad \text{and}
\] (3.27)
\[
\tilde{u}_j \longrightarrow \tilde{u} \quad \text{strongly in } L^q(B_{3/4}) \quad \text{and pointwise in } B_{3/4}.
\] (3.28)

As a consequence of (3.21) and (3.24) we have
\[
\int_{B_{3/4}} |\tilde{u}| \, dx \leq 2^q \quad \text{and} \quad \int_{B_{3/4}} |\tilde{D}u|^q \, dx \leq c.
\] (3.29)

Next we aim to prove that \(h = 0 \) almost everywhere, from which the lemma follows at once. To this end it suffices to show that
\[
h(\overline{x}) = 0
\] (3.30)
for all $\bar{x} \in B_{3/4}$ which is a Lebesgue point simultaneously for \bar{u}, $D\bar{u}$, h and b, that is,

$$\lim_{\theta \to 0} \int_{B_{\theta}(\bar{x})} \left[|\bar{u} - \bar{u}(\bar{x})| + |D\bar{u} - D\bar{u}(\bar{x})| + |h - h(\bar{x})| + |b - b(\bar{x})|^{1/(p-1)} \right]^q \, dx = 0 \quad (3.31)$$

and

$$|\bar{u}(\bar{x})| + |D\bar{u}(\bar{x})| + |h(\bar{x})| + |b(\bar{x})| < \infty. \quad (3.32)$$

To see this, with (3.30) in mind, $D\bar{u}_j \to D\bar{u}$ strongly in $L^1(B_{3/4})$. Whence the second bound in (3.29) and interpolation yield

$$\left\| D\bar{u}_j - D\bar{u}\right\|_{L^q(B_{3/4})} \leq \left\| D\bar{u}_j - D\bar{u}\right\|_{L^1(B_{3/4})} \left\| D\bar{u}_j - D\bar{u}\right\|_{L^{q^*}(B_{3/4})}^{1-\theta} \to 0,$$

where θ is such that $1/q = \theta + (1 - \theta)/q_1$.

Now back to the proof of (3.30), let $\bar{x} \in B_{3/4}$ be a simultaneous Lebesgue point for \bar{u}, $D\bar{u}$, h and b. Set

$$\alpha_\sigma(x) := (\bar{u})_{B_\sigma(\bar{x})} + D\bar{u}(\bar{x}) \cdot (x - \bar{x})$$

for all $\sigma \in (0, 3/4)$. Poincare’s inequality for α_σ implies

$$\lim_{\sigma \to 0} \int_{B_\sigma(\bar{x})} \left| \frac{\bar{u} - \alpha_\sigma}{\sigma} \right|^q \, dx \leq c \lim_{\sigma \to 0} \int_{B_\sigma(\bar{x})} |D\bar{u} - D\bar{u}(\bar{x})|^q \, dx = 0. \quad (3.33)$$

By (3.26) we have

$$h(\bar{x}) = \lim_{\sigma \to 0} \lim_{j \to \infty} \int_{B_{\sigma/2}(\bar{x})} |D\bar{u}_j - D\bar{u}| \, dx$$

$$= \lim_{\sigma \to 0} \lim_{j \to \infty} \int_{B_{\sigma/2}(\bar{x})} 1_{|\bar{u}_j - \alpha_\sigma| < \sigma} |D\bar{u}_j - D\bar{u}| \, dx + \lim_{\sigma \to 0} \lim_{j \to \infty} \int_{B_{\sigma/2}(\bar{x})} 1_{|\bar{u}_j - \alpha_\sigma| \geq \sigma} |D\bar{u}_j - D\bar{u}| \, dx$$

$$=: I + II. \quad (3.34)$$

We aim to show that $I = II = 0$. For this we estimate each term separately. Term II turns out to be easier to estimate so we do it first.

Term II: We first show that

$$\lim_{j \to \infty} \int_{B_{\sigma/2}(\bar{x})} 1_{|\bar{u}_j - \alpha_\sigma| \geq \sigma} |D\bar{u}_j - D\bar{u}| \, dx \leq \int_{B_{\sigma/2}(\bar{x})} 1_{|\bar{u} - \alpha_\sigma| \geq \sigma} h \, dx. \quad (3.35)$$
To this end note that
\[
\int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma]} |D\vec{u}_j - D\vec{u}| \, dx \leq \int_{\mathcal{B}_1(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma/2]} |D\vec{u}_j - D\vec{u}| \, dx
\]
\[
+ \int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma/2]} |D\vec{u}_j - D\vec{u}| \, dx.
\]

By invoking (3.25) and (3.28) one has
\[
\int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma]} |D\vec{u}_j - D\vec{u}| \, dx \leq \left(\int_{\mathcal{B}_1(\mathcal{X})} |D\vec{u}_j - D\vec{u}|^q \, dx \right)^{1/q} \left(\frac{\{ |x \in B_{3/4} : |\vec{u}_j - \vec{u}| | \geq \sigma/2 \}}{|B_{\sigma/2}(\mathcal{X})|} \right)^{1/q'} \quad \text{as } j \to \infty
\]
\[
\leq 0.
\]

This justifies (3.35).

Next we use (3.31), (3.32) and (3.33) to obtain
\[
\int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma/2]} |h| \, dx \leq \left(\int_{\mathcal{B}_1(\mathcal{X})} |h|^q \, dx \right)^{1/q} \left(\int_{\mathcal{B}_1(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| \geq \sigma/2]} \, dx \right)^{1/q'}
\]
\[
\leq \left[\left(\int_{\mathcal{B}_1(\mathcal{X})} |h - h(\mathcal{X})|^q \, dx \right)^{1/q} + h(\mathcal{X}) \right] \left(\int_{\mathcal{B}_1(\mathcal{X})} \left| \frac{\vec{u} - \alpha_\sigma}{\sigma} \right|^q \, dx \right)^{1/q'} \quad \text{as } \sigma \to 0
\]
\[
\leq 0.
\]

Hence $II = 0$.

Term I: One has
\[
\int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u}_j - D\vec{u}| \, dx \leq \int_{\mathcal{B}_1(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u}_j - D\alpha_\sigma| \, dx
\]
\[
+ 2^n \int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u} - D\alpha_\sigma| \, dx.
\]

Since
\[
\lim_{\sigma \to 0} \lim_{j \to \infty} \int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u} - D\alpha_\sigma| \, dx \leq \lim_{\sigma \to 0} \int_{\mathcal{B}_1/2(\mathcal{X})} |D\vec{u} - D\vec{u}(\mathcal{X})| \, dx = 0
\]
by (3.31), it remains to show that
\[
\lim_{\sigma \to 0} \lim_{j \to \infty} \int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u}_j - D\alpha_\sigma| \, dx = 0. \tag{3.36}
\]

By Holder’s inequality,
\[
\int_{\mathcal{B}_1/2(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} |D\vec{u}_j - D\alpha_\sigma| \, dx \leq \left(\int_{\mathcal{B}_1(\mathcal{X})} 1_{[|\vec{u}_j - \vec{u}| < \sigma]} \left(|D\vec{u}_j| + |D\alpha_\sigma| \right)^{-p} \, dx \right)^{1/p} \left(\int_{\mathcal{B}_1(\mathcal{X})} |D\vec{u}_j - D\alpha_\sigma|^2 \, dx \right)^{1/2}
\]
\[
\times \left(\int_{\mathcal{B}_1(\mathcal{X})} \left(|D\vec{u}_j| + |D\alpha_\sigma| \right)^{-2p} \, dx \right)^{1/2}.
\]
The second integral on the right-hand side is bounded uniformly in \(j \) due to (3.24) and (3.29). Hence to achieve (3.36), it suffices to show that

\[
\lim_{\sigma \to 0} \lim_{j \to \infty} \int_{B_{\sigma/2}(\overline{x})} 1_{|\overline{\nu}_j - \alpha_\sigma| < \sigma} \left(|D\overline{\nu}_j| + |D\alpha_\sigma| \right)^{p-2} |D\overline{\nu}_j - D\alpha_\sigma|^2 \, dx = 0.
\]

To this end, let \(\phi \in C_c^\infty(B_{\sigma}(\overline{x})) \) be such that

\[
0 \leq \phi \leq 1, \quad \phi|_{B_{\sigma/2}(\overline{x})} = 1 \quad \text{and} \quad |D\phi| \leq \frac{4}{\sigma}.
\]

Set \(\eta := \phi T_\sigma(\overline{u}_j - \alpha_\sigma) \), where \(T_\sigma \) is defined by (3.6). It follows from (3.7) that

\[
\left(|D\overline{\nu}_j|^{p-2}D\overline{\nu}_j - |D\alpha_\sigma|^{p-2}D\alpha_\sigma \right) \cdot D\eta
\]

\[
= 1_{|\overline{\nu}_j - \alpha_\sigma|} \left(\left(|D\overline{\nu}_j|^{p-2}D\overline{\nu}_j - |D\alpha_\sigma|^{p-2}D\alpha_\sigma \right) \cdot D(\overline{u}_j - \alpha_\sigma) \right) \phi
\]

\[
+ 1_{|\overline{\nu}_j - \alpha_\sigma|} \left(\left(|D\overline{\nu}_j|^{p-2}D\overline{\nu}_j - |D\alpha_\sigma|^{p-2}D\alpha_\sigma \right) \cdot (I - P_j)D(\overline{u}_j - \alpha_\sigma) \right) \phi
\]

\[
+ \left(|D\overline{\nu}_j|^{p-2}D\overline{\nu}_j - |D\alpha_\sigma|^{p-2}D\alpha_\sigma \right) \cdot [T_\sigma(\overline{u}_j - \alpha_\sigma) \otimes D\phi]
\]

\[
=: G_{j,\sigma}^1(x) + G_{j,\sigma}^2(x) + G_{j,\sigma}^3(x),
\]

where

\[
P_j := \frac{(\overline{u}_j - \alpha_\sigma) \otimes (\overline{u}_j - \alpha_\sigma)}{|\overline{u}_j - \alpha_\sigma|^2} \quad \text{and} \quad P := \frac{(\overline{u} - \alpha_\sigma) \otimes (\overline{u} - \alpha_\sigma)}{|\overline{u} - \alpha_\sigma|^2}.
\]

Since \(\alpha_\sigma \) is affine, one has

\[
\int_{B_i} |D\alpha_\sigma|^{p-2}D\alpha_\sigma \cdot D\eta \, dx = 0.
\]

Therefore

\[
0 \leq \int_{B_\sigma(\overline{x})} G_{j,\sigma}^1(x) \, dx \leq 2^{-j} a^{1-n} - \int_{B_\sigma(\overline{x})} G_{j,\sigma}^2(x) \, dx - \int_{B_\sigma(\overline{x})} G_{j,\sigma}^3(x) \, dx,
\]

(3.37)

where we used the monotonicity of the vector field \(z \mapsto |z|^{p-2}z \) in the first step.

Next we estimate the two integrals on the right-hand side of the above inequality.

Integral of \(G_{j,\sigma}^3 \): First we deduce from (3.24) that \(\{|D\overline{\nu}_j|^{p-2}D\overline{\nu}_j\}_{j \in \mathbb{N}^*} \) is bounded in \(L^{\frac{q}{q-p-1}} \). This together with (3.24) and (3.28) imply that

\[
\lim_{j \to \infty} \int_{B_\sigma(\overline{x})} G_{j,\sigma}^3(x) \, dx = \int_{B_\sigma(\overline{x})} (b - |D\alpha_\sigma|^{p-2}D\alpha_\sigma) \cdot [T_\sigma(\overline{u} - \alpha_\sigma) \otimes D\phi] \, dx.
\]
Holder’s inequality then gives

\[
\left| \int_{B_{r}(\Omega)} (b - |D\alpha|)^{p-2} D\alpha \right| \leq c \left(\int_{B_{r}(\Omega)} b(b(x) |q/(p-1) + |b(x) |q/(p-1) + |D\tilde{x}(x)|^{q} dx \right)^{\frac{p}{q}} \times \left(\int_{B_{r}(\Omega)} \left(\frac{\min\{|\tilde{\alpha}_{\Omega} - \alpha_{\sigma}|\}}{\sigma} \right)^{\frac{q}{q-(p-1)}} dx \right)^{\frac{p}{q}}.
\]

Note that the first integral on the right-hand side is bounded. For the second integral, we have

\[
\int_{B_{r}(\Omega)} \left(\frac{\min\{|\tilde{\alpha}_{\Omega} - \alpha_{\sigma}|\}}{\sigma} \right)^{q/(q-(p-1))} dx \leq \int_{B_{r}(\Omega)} \left(\frac{\min\{|\tilde{\alpha}_{\Omega} - \alpha_{\sigma}|\}}{\sigma} \right)^{q} dx \leq \int_{B_{r}(\Omega)} \left(\frac{\tilde{\alpha}_{\Omega} - \alpha_{\sigma}}{\sigma} \right)^{q} dx \rightarrow 0,
\]

where we used the fact that \(\frac{q}{q-(p-1)} > q\) and \((3.33)\) in the first and second steps respectively.

Consequently

\[
\lim_{\sigma \to 0} \lim_{j \to \infty} \left| \int_{B_{r}(\Omega)} G_{j,\sigma}^{3} (x) dx \right| = 0.
\]

Integral of \(G_{j,\sigma}^{2}\): We have \(D\tilde{u}_{j} : (I - P_{j})D\tilde{u}_{j} \geq 0\) by a similar argument to that of \((3.8)\). Therefore

\[
|D\tilde{u}_{j}|^{p-2} D\tilde{u}_{j} - |D\alpha_{\sigma}|^{p-2} D\alpha_{\sigma} \geq (I - P_{j})D(\tilde{u}_{j} - \alpha_{\sigma}).
\]

\[
(3.38)
\]

Observe also that \(1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}| \geq \alpha_{\sigma}} P_{j} \to 1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}| \geq \alpha_{\sigma}} P\) a.e. and hence strongly in \(L^{s}(B_{3/4})\) for every \(s \geq 1\). The same also applies to the convergence \(1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|} |\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|^{-1} \to 1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|} |\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|^{-1}\). These in combination with \((3.38)\) and \((3.27)\) yield that

\[
\limsup_{j \to \infty} \left(- \int_{B_{r}(\Omega)} G_{j,\sigma}^{2} (x) dx \right) \leq \int_{B_{r}(\Omega)} b : (I - P)D\alpha_{\sigma} \frac{\sigma 1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|}}{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|} dx + \int_{B_{r}(\Omega)} |D\alpha_{\sigma}|^{p-2} D\alpha_{\sigma} : (I - P)D(\tilde{\alpha}_{\sigma} - \alpha_{\sigma}) \frac{\sigma 1_{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|}}{|\tilde{\alpha}_{\sigma} - \alpha_{\sigma}|} dx.
\]

Next we estimate each on the right-hand side separately. As \(q > p - 1\) there exists an \(s > 1\) such that
At the same time,

\[\frac{q(s-1)}{q-p+1} \leq q. \]

Keeping in mind (3.33) one has

\[
\left| \int_{B_r(x)} b : (I - P)D\sigma \frac{1_{[\tilde{u} - \alpha_\sigma, \sigma\tilde{u}]} d\sigma}{|\tilde{u} - \alpha_\sigma|} \right| \leq c \int_{B_r(x)} |b| \frac{\left| \tilde{u} - \alpha_\sigma \right|^{s-1}}{\sigma} \, d\sigma
\]

\[
\leq c \left(\int_{B_r(x)} |b|^{q/(p-1)} \, d\sigma \right)^{(p-1)/q} \left(\int_{B_r(x)} \frac{|\tilde{u} - \alpha_\sigma|^{q}}{\sigma} \, d\sigma \right)^{(1-1/q)}
\]

\[
\sigma \to 0.
\]

At the same time,

\[
\int_{B_r(x)} |D\alpha_\sigma|^p \, d\sigma : (I - P)D(\tilde{u} - \alpha_\sigma) \frac{1_{[\tilde{u} - \alpha_\sigma, \sigma\tilde{u}]} d\sigma}{|\tilde{u} - \alpha_\sigma|}
\]

\[
\leq c \int_{B_r(x)} |D(\tilde{u} - \alpha_\sigma)| \frac{|\tilde{u} - \alpha_\sigma|^{q-1}}{\sigma} \, d\sigma
\]

\[
\leq c \left(\int_{B_r(x)} |D\tilde{u} - D\tilde{u}(x)|^q \, d\sigma \right)^{1/q} \left(\int_{B_r(x)} \frac{|\tilde{u} - \alpha_\sigma|^{q}}{\sigma} \, d\sigma \right)^{1-1/q}
\]

\[
\sigma \to 0.
\]

As a consequence,

\[
\limsup_{\sigma \to 0} \limsup_{j \to \infty} \left(- \int_{B_r(x)} G_{j,\sigma}^2(x) \, dx \right) \leq 0.
\]

This finishes our estimate for the integral of \(G_{j,\sigma}^2 \).

Continuing with (3.37), we conclude that

\[
\limsup_{\sigma \to 0} \limsup_{j \to \infty} \int_{B_r(x)} G_{j,\sigma}^1(x) \, dx = 0. \quad (3.39)
\]

We proceed with the proof of (3.36). It follows from (3.39) and Lemma 2.1 that

\[
\limsup_{\sigma \to 0} \limsup_{j \to \infty} \int_{B_r(x)} \frac{1_{[\tilde{u} - \alpha_\sigma, \sigma\tilde{u}]} (|D\tilde{u} - D\sigma_\sigma|)^{p-2} |D\tilde{u}_j - D\alpha_\sigma|^{2} \phi \, d\sigma = 0.
\]

Hence \(I = 0 \).

That \(h(x) = 0 \) now follows from (3.34), whence \(Du \in L^q(B_{3/4}) \). Lastly, we let \(j \to \infty \in (3.22) \) to obtain (3.25). This completes our proof.

We now have enough preparation to derive Proposition 3.1.
Proof of Proposition 3.1. We proceed via a proof by contradiction. Our arguments follow \[\text{KMT18}^\text{Step 5 in Proof of Theorem 4.1}\] closely.

For a contradiction, assume that there exist an \(\epsilon > 0\) and sequences of balls \(\{B_{r_j}(x_j)\}_{j \in \mathbb{N}^*}\) and \(\{u_j\}_{j \in \mathbb{N}^*} \subseteq W^{1,p}(B_{r_j}(x_j))\) such that

\[
\int_{B_{r_j}(x_j)} |u_j| \, dx \leq M r_j \quad \text{and} \quad \left| \int_{B_{r_j}(x_j)} |Du_j|^{p-2} Du_j : D\phi \, dx \right| \leq \frac{2^{-j}}{r_j} \|\phi\|_{L^p(B_{r_j}(x_j))} \tag{3.40}
\]

for all \(\phi \in W^{1,p}_0(B_{r_j}(x_j)) \cap L^{p^*}(B_{r_j}(x_j))\), whereas

\[
\left(\frac{\int_{B_{r_j/2}(x_j)} |Du_j - Dv|^q \, dx}{r_j} \right)^{1/q} > \epsilon
\]

for all \(v \in W^{1,p}(B_{r_j/2}(x_j))\) being \(p\)-harmonic in \(B_{r_j}(x_j)\) and satisfying

\[
\int_{B_{r_j/2}(x_j)} |v| \, dx \leq 2^n M r_j \quad \text{and} \quad \left(\frac{\int_{B_{r_j/2}(x_j)} |Dv|^q \, dx}{r_j} \right)^{1/q} \leq \left(\frac{2^n \epsilon}{|B_1|} \right)^{1/q} M
\]

for all \(q \in (1, q_0)\), where \(c = c(n, N, p, q)\).

For the rest of the proof, \(c\) will always denote a constant depending on \(n, N, p, q\) only whose value may vary from line to line.

We first perform a scaling on \(u_j\) for all \(j \in \mathbb{N}\). For convenience, we denote \(u_0 = u\). For each \(j \in \mathbb{N}\) and \(\varphi \in W^{1,p}_0(B) \cap L^{p^*}(B)\) let

\[
\bar{u}_j(x) = \frac{u_j(x_0 + r x)}{M r} \quad \text{and} \quad \eta(x) = \frac{\varphi(x_0 + r x)}{r}.
\]

Then (3.2), (3.3) and (3.40) become

\[
\int_{B_1} |\bar{u}_j| \, dx \leq 1 \tag{3.41}
\]

and

\[
\left| \int_{B_1} |D\bar{u}_j|^{p-2} D\bar{u}_j : D\eta \, dx \right| \leq M^{1-p} \delta_j \|\eta\|_{L^{p^*}(B_1)}, \tag{3.42}
\]

where

\[
\delta_j := \begin{cases}
\delta & \text{if } j = 0, \\
2^{-j} & \text{otherwise}.
\end{cases}
\]

It follows from Lemma 3.3 that

\[
\|\bar{u}_j\|_{W^{1,q}(B_{1/2})} \leq c
\]
for all \(q \in (1, q_0) \) and \(j \in \mathbb{N} \).

Using Lemma [3.4] there exists a \(\tilde{u} \in W^{1,q}(B_{3/4}) \) such that

\[
\lim_{j \to \infty} u_j = \tilde{u} \quad \text{in } W^{1,q}(B_{3/4})
\]

for all \(q \in (1, q_0) \) with the property that

\[
\int_{B_{1/2}} |D\tilde{u}|^{q-2} D\tilde{u} : D\varphi \, dx = 0
\]

for all \(\varphi \in C_c^\infty(B_{1/2}) \).

We aim to show that \(\tilde{u} \) is \(p \)-harmonic. In particular, we will show that \(D\tilde{u} \in L^p(B_{1/2}) \).

Let \(\phi \in C_c^\infty(B_{3/4}) \) be such that \(0 \leq \phi \leq 1 \) and \(\phi \vert_{B_{1/2}} = 1 \). It follows from (3.9) that

\[
\int_{B_1 \cap \{ |\tilde{u}| < t \}} |D\overline{\tilde{u}}|^p \phi \, dx \leq c \int_{B_1 \cap \{ |\tilde{u}| < t \}} |\overline{\tilde{u}}|^p \vert D\phi \vert^p \, dx + c M^{1-p} \delta_j \rho^0 \left\| \overline{\tilde{u}} \phi^{p-1} \right\|_{L^{p/(1-\theta)}(B_1)}^{1-\theta} + ct \int_{B_1 \cap \{ |\tilde{u}| \geq t \}} |D\overline{\tilde{u}}|^{p-1} \vert D\phi \vert \phi^{p-1} \, dx.
\]

By taking the inferior limit both sides of this inequality when \(j \to \infty \) and then referring to Fatou’s lemma for the left-hand side, one has

\[
\int_{B_{3/4} \cap \{ |\tilde{u}| < t \}} |D\tilde{u}|^p \phi \, dx \leq c \int_{B_{3/4} \cap \{ |\tilde{u}| < t \}} |\tilde{u}|^p \vert D\phi \vert^p \, dx + ct \int_{B_{3/4} \cap \{ |\tilde{u}| \geq t \}} |D\tilde{u}|^{p-1} \vert D\phi \vert \phi^{p-1} \, dx
\]

for all \(t > 0 \).

Next let \(\gamma \in (0, 1) \). By multiplying the above inequality by \((1 + t)^{-1-\gamma} \), integrating over \((0, \infty) \) with respect to \(t \) and then invoking Fubini’s theorem we arrive at

\[
\frac{1}{\gamma} \int_{B_{3/4}} \frac{|D\tilde{u}|^p \phi \rho}{(1 + |\tilde{u}|)^\gamma} \, dx \leq \frac{c}{\gamma} \int_{B_{3/4}} (1 + |\tilde{u}|)^{-\gamma} \vert D\phi \vert^p \, dx
\]

\[
+ c \int_0^\infty \frac{1}{(1 + t)^\gamma} \int_{B_{3/4} \cap \{ |\tilde{u}| \geq t \}} |D\tilde{u}|^{p-1} \vert D\phi \vert \phi^{p-1} \, dx \, dt.
\]

To handle the second integral on the right-hand side of this inequality, an application of Fubini’s theorem and
Young’s inequality gives

\[c \int_0^\infty \frac{1}{(1 + t)^\gamma} \int_{B_{3/4} \cap \{|\tilde{u}| \geq t\}} |D\tilde{u}|^{p-1} |D\phi|^{p-1} dx dt \leq \frac{c}{1 - \gamma} \int_{B_{3/4}} |D\tilde{u}|^{p-1} (1 + |\tilde{u}|)^{1-\gamma} |D\phi|^{p-1} dx \]

\[\leq \frac{1}{2\gamma} \int_{B_{3/4}} \frac{|D\tilde{u}|^{p} \phi}{(1 + |\tilde{u}|)^{\gamma}} dx \]

\[+ \frac{c\gamma^{p-1}}{(1 - \gamma)^p} \int_{B_{3/4}} (1 + |\tilde{u}|)^{p-\gamma} |D\phi|^p dx. \]

Hence

\[\int_{B_{3/4}} \frac{|D\tilde{u}|^{p} \phi}{(1 + |\tilde{u}|)^{\gamma}} dx \leq \frac{c}{(1 - \gamma)^p} \int_{B_{3/4}} (1 + |\tilde{u}|)^{p-\gamma} |D\phi|^p dx. \] (3.43)

From this there are two possibilities. If \(n < p^2 \) then \(p < q_0 \), from which it follows that \(u \in L^p(B_{3/4}) \). So taking \(\gamma \to 0 \) in (3.43) yields \(Du \in L^p(B_{1/2}) \). It remains to consider \(p^2 \leq n \). In this case choose \(\gamma \geq \frac{n-p^2}{n-p} \).

Using the fact that \(\tilde{u} \in W^{1,q}(B_{3/4}) \) for all \(q \in (1, q_0) \) we deduce that right-hand side in (3.43) is finite.

Since

\[|D((1 + |\tilde{u}|)^{\frac{\gamma}{p}})\phi|^p \leq \left(1 - \frac{\gamma}{p}\right)^p |D\tilde{u}|^{p} (1 + |\tilde{u}|)^{-\gamma}, \]

(3.43) implies that

\[\int_{B_{3/4}} \left|D\left((1 + |\tilde{u}|)^{\frac{\gamma}{p}} \phi\right)\right|^p dx \leq \frac{c}{(1 - \gamma)^p} \int_{B_{3/4}} (1 + |\tilde{u}|)^{p-\gamma} |D\phi|^p dx. \] (3.44)

Set \(\theta = \frac{n}{n-p} = \frac{p^*}{p} \), where \(p^* \) denotes the Sobolev’s exponent. Using Sobolev’s inequality and (3.44), we obtain

\[\left(\int_{B_{3/4}} (1 + |\tilde{u}|)^{1-\gamma/p} \phi \right)^{\theta_p} dx \right)^{1/\theta} \leq \frac{c}{(1 - \gamma)^p} \int_{B_{3/4}} (1 + |\tilde{u}|)^{p-\gamma} \phi |D\phi|^p dx. \] (3.45)

Next we use an iterating argument in the spirit of (finite) Moser’s interation to derive the claim. Define

\[q_j = \theta^j(p - \gamma), \quad \gamma_j = p - q_j, \quad B_j = B_{3/8 + 1/(j+1)} \]

and correspondingly choose \(\{\phi_j\}_{j \in \mathbb{N}} \subset C_c^\infty(B') \) such that

\[0 \leq \phi_j \leq 1, \quad \phi_{j+1} \leq \phi_j \quad \text{and} \quad \phi_j|_{B_{3/4}} = 1 \]

for all \(j \in \mathbb{N} \). Note that \(\{\gamma_j\}_{j \in \mathbb{N}} \) is decreasing.
Now (3.45) reads
\[
\left(\int_{B_{3/4}} (1 + |\tilde{u}|)^{\theta(p-\gamma_j)} \phi_j^{\theta_p} \right)^{1/\theta} \leq c \int_{B_{3/4}} (1 + |\tilde{u}|)^{p-\gamma_j} |D\phi_j|^\rho \, dx
\]
for all \(j \in \mathbb{N} \), provided that \(\gamma_j > 0 \). In other words \(u \in L^\rho(B/r) \) implies \(u \in L^\rho_0(B_1) \) for all \(j \in \mathbb{N} \) such that \(\gamma_j > 0 \).

Let \(j_0 \in \mathbb{N} \) be the smallest number such that \(\gamma_{j_0+1} \leq 0 \). Then \(u \in L^\rho(B_0) \). This in particular yields \(\tilde{u} \in L^\rho(B_{3/8}) \). Combining this with (3.43) and then taking the limit when \(r \to 0 \) give \(D\tilde{u} \in L^\rho(B_{1/2}) \).

The claim now follows by reversing the scaling process at the beginning of the proof. \(\blacksquare \)

The following lemmas are direct consequences of Proposition 3.1.

Lemma 3.5. Let \(\beta \in (1, \infty) \) be such that
\[
\frac{np}{n - p} < \beta' < \frac{n}{n(2 - p) - 1}.
\]

Let \(B = B_r(x_0) \) be a ball and \(f \in L^\beta(B) \). Let \(u \in W^{1,\beta}(B) \) be a weak solution to (1.1) in \(B \). Let \(\epsilon \in (0, 1) \) and \(q \in (1, q_0) \), where \(q_0 \) is defined in (3.1). Then there exist \(\delta = \delta(n, \delta, \beta, \epsilon) \) \((0, 1) \) and a \(p \)-harmonic map \(v \) in \(\frac{1}{2}B \) such that
\[
\left(\int_{\frac{1}{2}B} |Du - Dv|^q \, dx \right)^{1/q} \leq \frac{\epsilon}{r} \int_B |u - (u)_B| \, dx + \frac{\epsilon}{\delta^{1/(p-1)}} \left[r \left(\int_B |f|^{\beta} \, dx \right)^{1/\beta} \right]^{1/(p-1)}.
\]
(3.46)

Proof. We use a scaling argument with
\[
\bar{u} := \frac{u - (u)_B}{\lambda} \quad \text{and} \quad \bar{f} := \frac{f}{\lambda^{p-1}},
\]
(3.47)

where
\[
\lambda := \frac{1}{r} \int_B |u - (u)_B| \, dx + \left[\frac{r}{\delta} \left(\int_B |f|^{\beta} \, dx \right)^{1/\beta} \right]^{1/(p-1)}
\]

and \(\delta = \delta(n, \rho, p, q, \epsilon) \) is given in Proposition 3.1 with \(M = 1 \).

It follows that
\[
\int_B |\bar{u}| \, dx \leq r \quad \text{and} \quad -\Delta_\rho \bar{F} = \bar{f} \quad \text{in} \ B.
\]

If \(\lambda = 0 \) then \(u \) is constant and so we can choose \(v = u \).
Next assume that $\lambda > 0$. We have
\[
\left| \int_B |D\overline{u}|^{p-2}D\overline{u} : D\varphi \, dx \right| \leq \frac{1}{2^{p-1}} \left(\int_B |\varphi|^{\theta'} \, dx \right)^{1/\theta'} \left(\int_B |f|^{\theta} \, dx \right)^{1/\theta} \leq \frac{\delta}{r} \left(\int_B |\varphi|^{\theta'} \, dx \right)^{1/\theta'},
\]
for all $\varphi \in W^{1,\theta}_0(B) \cap L^\theta(B)$. Therefore by Proposition 3.1 there exists a p-harmonic map \overline{v} in $\frac{1}{2}B$ such that
\[
\left(\int_{\frac{1}{2}B} |D\overline{u} - D\overline{v}|^q \, dx \right)^{1/q} \leq \varepsilon.
\]
Scaling back to u with $v = \lambda \overline{v}$ we obtain (3.46). To finish note that v is p-harmonic.

Proposition 3.6. Adopt the assumptions and notation in Lemma 3.5 Then there exist constants
\[
\delta = \delta(n, N, p, q, \varepsilon) \in (0, 1), C = C(n, p, q) > 0
\]
and a p-harmonic map $v \in W^{1,\theta}(\frac{1}{2}B)$ such that
\[
\left(\int_{\frac{1}{2}B} |Du - Dv|^q \, dx \right)^{1/q} \leq \frac{\varepsilon}{\delta^{1/(p-1)}} \left[r \left(\int_B |f|^{\theta} \, dx \right)^{1/\theta} \right]^{1/(p-1)} + \varepsilon \left(\int_B |Du|^q \, dx \right)^{1/q}
\]
and
\[
\|Dv\|_{L^\infty(\frac{1}{2}B)} \leq \frac{CE}{\delta^{1/(p-1)}} \left[r \left(\int_B |f|^{\theta} \, dx \right)^{1/\theta} \right]^{1/(p-1)} + C(1 + \varepsilon) \left(\int_B |Du|^q \, dx \right)^{1/q}.
\]

Proof. Using Lemma 3.5 Poincare’s and Holder’s inequalities, there exists a p-harmonic map $v \in W^{1,\theta}(\frac{1}{2}B)$ such that
\[
\left(\int_{\frac{1}{2}B} |Du - Dv|^q \, dx \right)^{1/q} \leq \varepsilon \left(\int_B |Du|^q \, dx \right)^{1/q} + \frac{\varepsilon}{\delta^{1/(p-1)}} \left[r \left(\int_B |f|^{\theta} \, dx \right)^{1/\theta} \right]^{1/(p-1)}.
\]
Next it follows from [KM18, (3.6)] that
\[
\|Dv\|_{L^\infty(\frac{1}{2}B)} \leq C \int_{\frac{1}{2}B} |Dv| \, dx \leq C \left(\int_{\frac{1}{2}B} |Dv|^q \, dx \right)^{1/q}
\]
for a constant $C = C(n, p, q)$.

The claim now follows by combining these two estimates together.
4 Good-λ type bounds

In this section we present a good-λ-type estimate - Proposition 4.3. In order to do this, we need two auxiliary results.

The first one can be viewed as a (weighted) substitution for the Calderon-Zygmund-Krylov-Safonov decomposition (cf. [MP11]).

Lemma 4.1. Let ω be an A_∞-weight and B be a ball of radius R in \mathbb{R}^n. Let $E \subseteq F \subseteq B$ be measurable and $\varepsilon \in (0, 1)$ satisfy the following property:

(i) $\omega(E) < \varepsilon \omega(B)$.

(ii) $\omega(E \cap B_{\rho}(x)) \geq \varepsilon \omega(B_{\rho}(x))$ implies $B_{\rho}(x) \cap F \subset F$ for all $x \in B$ and $\rho \in (0, R)$.

Then there exists a $C = C(n, [\omega]_{A_\infty})$ such that $\omega(E) \leq C\varepsilon \omega(F)$.

The next result is a variation of Lemma 4.1.

Lemma 4.2. Let ω be an A_∞-weight. Let $E \subseteq F$ be measurable and $\varepsilon \in (0, 1)$ satisfy the following property:

For all $x \in \mathbb{R}^n$ and $R \in (0, \infty)$, one has

$$\omega(E \cap B_R(x)) \geq \varepsilon \omega(B_R(x)) \quad \text{implies} \quad B_R(x) \subset F.$$ \hspace{1cm} (4.1)

Then there exists a $C = C(n, [\omega]_{A_\infty})$ such that $\omega(E) \leq C\varepsilon \omega(F)$.

Proof. Without loss of generality, we may assume that $\omega(E) \vee \omega(F) < \infty$. Let $x_0 \in \mathbb{R}^n$ and R be sufficiently large such that $\omega(E) < \varepsilon \omega(B_R(x_0))$. Set $S = E \cap B_R(x_0)$ and $T = F \cap B_R(x_0)$. The claim follows directly from Lemma 4.1 with S, T, $B_R(x_0)$ and ε.

Indeed, we have $\omega(S) \leq \omega(E) < \varepsilon \omega(B_R(x_0))$. Assume that $x \in B_R(x_0)$ and $\rho \in (0, R]$ satisfy

$$\omega(S \cap B_{\rho}(x)) \geq \varepsilon \omega(B_{\rho}(x)).$$

Obviously we also have

$$\omega(E \cap B_{\rho}(x)) \geq \varepsilon \omega(B_{\rho}(x)).$$
Now we let \(R \) tend to infinity to complete the proof.

Recall the maximal function defined by

\[
M_\beta(f)(x) = \sup_{\rho>0} \rho^\beta \int_{B_\rho(x)} |f(y)| \, dy
\]

for all \(x \in \mathbb{R}^n \), \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \) and \(\beta \in [0, n] \). The case \(\beta = 0 \) corresponds to the usual Hardy-Littlewood maximal function \(M = M_0 \).

We now turn to the aforementioned good-\(\lambda \)-type estimate.

Proposition 4.3. Let \(\omega \in \Lambda_\infty \), \(\epsilon > 0 \) and \(q \in (1, q_0) \). Let \(\beta \in (1, \infty) \) be such that \(\frac{np}{n-p} < \beta' < \frac{n}{n-2} \) and \(f \in L^\beta(\mathbb{R}^n) \). Then there exist constants

\[
C = C(n, [\omega]_{\Lambda_\infty}), \quad \Lambda_0 = \Lambda_0(n, p, q) > 3^n/q \quad \text{and} \quad \delta = \delta(n, p, q, \epsilon, [\omega]_{\Lambda_\infty}) \in (0, 1),
\]

such that

\[
\omega \left\{ x \in \mathbb{R}^n : \left(M(|Du|^q)(x) \right)^{1/q} > \Lambda_0 \lambda, \quad \left(M_\beta(|f|^\beta)(x) \right)^{1/(p-1)\beta} \leq \delta^{1/(p-1)} \lambda \right\} \leq C \epsilon \omega \left(\left\{ x \in \mathbb{R}^n : \left(M(|Du|^q)(x) \right)^{1/q} > \lambda \right\} \right)
\]

for all \(\lambda > 0 \).

Proof. Set

\[
E_{\lambda, \delta} = \left\{ y \in \mathbb{R}^n : \left(M(|Du|^q)(y) \right)^{1/q} > \Lambda_0 \lambda, \quad \left(M_\beta(|f|^\beta)(y) \right)^{1/(p-1)\beta} \leq \delta^{1/(p-1)} \lambda \right\}
\]

and

\[
F_\lambda = \left\{ y \in \mathbb{R}^n : \left(M(|Du|^q)(y) \right)^{1/q} > \lambda \right\}
\]

for each \(\delta \in (0, 1) \) and \(\lambda > 0 \). Here \(\Lambda_0 = \Lambda_0(n, p, q) \) is to be chosen later.

We will use Lemma 4.2 for \(E_{\lambda, \delta} \) and \(F_\lambda \). That is, we will verify that

\[
\omega(E_{\lambda, \delta} \cap B_r(x)) \geq \epsilon \omega(B_r(x)) \quad \Longrightarrow \quad B_r(x) \subset F_\lambda
\]
for all $x \in \mathbb{R}^n$, $r \in (0, \infty)$ and $\lambda > 0$, provided that δ is sufficiently small.

Indeed, let $x \in \mathbb{R}^n$, $r \in (0, \infty)$ and $\lambda > 0$. To avoid triviality, we consider $E_{\lambda, \delta} \cap B_r(x) \neq \emptyset$. By contraposition, assume that $B_r(x) \cap F_{\delta}^r \neq \emptyset$. Then there exist $x_1, x_2 \in B_r(x)$ such that

$$
\left(M(|Du|^q)(x_1) \right)^{1/q} \leq \lambda \quad \text{and} \quad \left(M(1_{B_{\rho}(x)}|Du|^q)(y) \right)^{1/q} \leq \delta^{1/(p-1)} \lambda.
$$

(4.2)

We aim to show that

$$
\omega(E_{\lambda, \delta} \cap B_r(x)) < \epsilon \omega(B_r(x)).
$$

First note that

$$
\left(M(|Du|^q)(y) \right)^{1/q} \leq \max \left\{ \left(M\left(1_{B_{2r}(x)}|Du|^q\right)(y)\right)^{\frac{1}{q}}, 3^{n/q} \lambda \right\}
$$

(4.3)

for all $y \in B_r(x)$. Indeed, if $\rho \leq r$ then

$$
\int_{B_\rho(y)} |Du|^q dx = \int_{B_\rho(y)} 1_{B_{2r}(x)}|Du|^q dx \leq M\left(1_{B_{2r}(x)}|Du|^q\right)(y).
$$

Otherwise $B_\rho(y) \subset B_{2r+\rho}(x_1)$ and we have

$$
\int_{B_\rho(y)} |Du|^q dx \leq \frac{1}{|B_\rho(y)|} \int_{B_{2\rho}(y)} |Du|^q dx = 3^n \int_{B_{2\rho}(y)} M(|Du|^q)(x_1) \leq 3^n \lambda^q.
$$

It follows from (4.3) that

$$E_{\lambda, \delta} \cap B_r(x) = \left\{ y \in \mathbb{R}^n : \left(M\left(1_{B_{2r}(x)}|Du|^q\right)(y)\right)^{\frac{1}{q}} \leq 3^{n/q} \lambda \right\} \cap B_r(x)
$$

for all $\lambda > 0$ and $\lambda_0 \geq 3^{n/q}$.

Applying Proposition 3.6 to $u \in W^{1,p}_0(\mathbb{R}^n)$, $f, B = B_{8r}(x)$ and $\eta \in (0, 1)$, there exist constants $\delta = \delta(n, p, q, \epsilon, |\omega|_{A_\infty}) \in (0, 1)$, $C_0 = C_0(n, p, q) > 0$ and a p-harmonic map $v \in W^{1,p}(B_{4r}(x))$ such that

$$
\|Du\|_{L^\infty(B_{2r}(x))} \leq \frac{C_0\eta}{\delta^{1/(p-1)}} \left[r \left(\int_{B_{8r}(x)} |f|^\beta \, dy \right)^{1/\beta} \right]^{1/(p-1)} + C_0(1 + \eta) \left(\int_{B_{8r}(x)} |Du|^q \, dy \right)^{1/q}
$$

and

$$
\left(\int_{B_{2r}(x)} |Du - Dv|^q \, dx \right)^{\frac{1}{q}} \leq \frac{\eta}{\delta^{1/(p-1)}} \left[r \left(\int_{B_{8r}(x)} |f|^\beta \, dx \right)^{1/\beta} \right]^{1/(p-1)} + \eta \left(\int_{B_{8r}(x)} |Du|^q \, dx \right)^{1/q}.
$$

25
Using (4.2) we deduce that
\[
\|Du\|_{L^\infty(B_{2r}(x))} \leq \frac{C_0 \eta}{\delta^{1/(p-1)}} \left(\mathcal{M}_\beta(|f|^\beta)(x_2) \right)^{1/(p-1)} + C_0(1 + \eta) \left[\mathcal{M}(\|Du\|^q)(x_1) \right]^{1/q}
\]
\[
\leq C_0(1 + \eta)\lambda \leq 2C_0\lambda
\]
and
\[
\left(\int_{B_{\delta r}(x)} |Du - Dv|^q \, dx \right)^{1/q} \leq \frac{\eta}{\delta^{1/(p-1)}} \left[R \left(\int_{B_{\delta r}(x)} |f|^\beta \, dx \right)^{1/\beta} \right]^{1/(p-1)} + \eta \left[\int_{B_{\delta r}(x)} |Du|^q \, dx \right]^{1/q}
\]
\[
\leq \eta \lambda.
\]
Clearly
\[
\left[\mathcal{M}\left(\left| \sum_{j=1}^3 f_j \right|^q \right) \right]^{1/q} \leq 3 \sum_{j=1}^3 \left[\mathcal{M}(\|f_j\|)^q \right]^{1/q}.
\]
Hence
\[
|E \cap B_r(x)| \leq \left| \left\{ y \in \mathbb{R}^n : \mathcal{M} \left(\mathbf{1}_{B_{2r}(x)} |D(u - v)|^q(y) \right)^{1/q} > \Lambda_0 \lambda/9 \right\} \cap B_r(x) \right|
\]
\[
+ \left| \left\{ y \in \mathbb{R}^n : \mathcal{M} \left(\mathbf{1}_{B_{2r}(x)} |Dv|^q(y) \right)^{1/q} > \Lambda_0 \lambda/9 \right\} \cap B_r(x) \right|.
\]
In view of (4.4) there holds
\[
\left| y \in \mathbb{R}^n : \left(\mathcal{M} \left(\mathbf{1}_{B_{2r}(x)} |Dv|^q(y) \right)^{1/q} > \Lambda_0 \lambda/9 \right) \cap B_r(x) \right| = 0,
\]
provided that \(\Lambda_0 \geq \max\{3^{n/q}, 30C_0\} \).

Combining (4.5) and (4.6) yields
\[
|E \cap B_r(x)| \leq \left| \left\{ y \in \mathbb{R}^n : \mathcal{M} \left(\mathbf{1}_{B_{2r}(x)} |D(u - v)|^q(y) \right)^{1/q} > \Lambda_0 \lambda/9 \right\} \cap B_r(x) \right|
\]
\[
\leq \frac{C}{\Lambda_0^{1/q}} \int_{B_{2r}(x)} |D(u - v)|^q \, dx \leq C \eta^{q} \rho^n,
\]
where we used the fact that \(\mathcal{M} \) is of weak type \((1, 1)\) in the second step.

Thus
\[
\omega(E \cap B_r(x)) \leq c \left(\frac{|E \cap B_r(x)|}{|B_r(x)|} \right)^\nu \omega(B_r(x)) \leq c(C \eta^q)^\nu \omega(B_r(x)) < \varepsilon \omega(B_r(x)),
\]
where we chose \(\eta \) small enough such that \(c(C\eta^q)^v < e \).

This completes our proof. \(\blacksquare \)

5 Global weighted gradient estimates

With the knowledge from the previous sections, we are now ready to tackle the main theorem.

Proof of Theorem 1.3. By Theorem 4.3, for all \(\epsilon > 0 \) and \(q \in (1, q_0) \), where \(q_0 \) is defined in (3.1) there exist constants \(C = C(n, [\omega]_{A_{\infty}}) \), \(\delta = \delta(n, p, q, \epsilon, [\omega]_{A_{\infty}}) \in (0, 1) \) and \(\Lambda_0 = \Lambda_0(n, p, q) > 3^{q/4} \) such that

\[
\omega \left(\left\{ x \in \mathbb{R}^n : (M(|Du|^q)(x))^{1/q} > \Lambda_0 \lambda, \left(\frac{1}{\delta^{1/(p-1)}} \right)^\frac{1}{\omega} \leq \delta^{1/(p-1)} \lambda \right\} \right) \\
\leq C\epsilon \omega \left(\left\{ x \in \mathbb{R}^n : \left(M_{\beta}(|f|^\beta)(x) \right)^{1/q} > \lambda \right\} \right)
\]

for all \(\lambda > 0 \).

By hypothesis \(\Phi \) is invertible and \(\Phi^{-1} : [0, \infty) \to [0, \infty) \). Therefore

\[
\omega \left(\left\{ x \in \mathbb{R}^n : (M(|Du|^q)(x))^{1/q} > \Phi^{-1}(t) \right\} \right) \leq \omega \left(\left\{ x \in \mathbb{R}^n : \left(M_{\beta}(|f|^\beta)(x) \right)^{1/q} > \frac{\delta^{1/(p-1)}}{\Lambda_0} \Phi^{-1}(t) \right\} \right) \\
+ C\epsilon \omega \left(\left\{ x \in \mathbb{R}^n : \left(M(|Du|^q)(x) \right)^{1/q} > \frac{\Phi^{-1}(t)}{\Lambda_0} \right\} \right)
\]

for all \(t > 0 \). This in turn implies

\[
\int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt \\
\leq C\epsilon \int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > \Lambda_0 \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt \\
+ \int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M_{\beta}(|f|^\beta)(x) \right)^{\frac{1}{\omega}} \right) > t \right\} \right) dt \\
\leq C\epsilon \int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : H_1 \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt \\
+ \int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : H_2 \Phi \left(\left(M_{\beta}(|f|^\beta)(x) \right)^{\frac{1}{\omega}} \right) > t \right\} \right) dt,
\]

where we used the fact that \(\Phi(2t) \leq c \Phi(t) \) and \(\Phi \) is increasing in the second step. Here \(T > 0 \), \(H_1 = c^{\log_2(\Lambda_0)} \) and \(H_2 = c^{\log_2(\frac{\Lambda_0}{\delta^{1/(p-1)}})} \), in which \(\lceil \cdot \rceil \) denotes the ceiling function.
Using a change of variables we arrive at

$$
\int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt
$$

$$
\leq H_1 C \epsilon \int_0^{\frac{T}{H_1 \epsilon}} \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt
$$

$$
+ H_2 \int_{\frac{T}{H_1 \epsilon}}^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M_\beta(|f|^\beta)(x) \right)^{\frac{1}{(p-1)p}} \right) > t \right\} \right) dt.
$$

Now we choose \(\epsilon = \frac{1}{2H_1 C} \) so that the first integral on the right is absorbed by the left-hand term, which yields

$$
\int_0^T \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) > t \right\} \right) dt
$$

$$
\leq 2H_2 \int_0^{\frac{T}{H_1 \epsilon}} \omega \left(\left\{ x \in \mathbb{R}^n : \Phi \left(\left(M_\beta(|f|^\beta)(x) \right)^{\frac{1}{(p-1)p}} \right) > t \right\} \right) dt.
$$

Recall that

$$
\int_{\mathbb{R}^n} \Phi(|f|) \omega dx = \int_0^\infty \omega(\{ x \in \mathbb{R}^n : \Phi(|f(x)|) > t \}) dt.
$$

Thus by letting \(T \to \infty \) in the above inequality we arrive at

$$
\int_{\mathbb{R}^n} \Phi \left(\left(M(|Du|^q)(x) \right)^{\frac{1}{q}} \right) \omega dx \leq 2H_2 \int_{\mathbb{R}^n} \Phi \left(\left(M_\beta(|f|^\beta)(x) \right)^{\frac{1}{(p-1)p}} \right) \omega dx
$$

as required.

References

[DiB83] DiBENEDETTO, E., \(C^{1+\alpha} \) local regularity of weak solutions of degenerate elliptic equations. *Nonlinear Anal.* 7 (1983), 827–85.

[Giu03] GIUSTI, E., *Direct Methods in the Calculus of Variations*. World Scientific Publishing Co. Inc, River Edge, 2003.

[HK] HEINONEN, J. and KILPELAINEN, T., *Nonlinear potential theory of degenerate elliptic equations*. Oxford Mathematical Monograph.
[KM18] KUUSI, T. and MINGIONE, G., Vectorial nonlinear potential theory. *J. Eur. Math. Soc.* **20** (2018), 929–1004.

[Min10] MINGIONE, G., Non-linear aspects of Calderon-Zygmund theory. *Jahresber Dtsch Math-Ver* **112** (2010), 159–191.

[MP11] MENGESHA, T. and PHUC, N. C., Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. *Journal of Differential Equations* **250** (2011), 1485–2507.

[NP] NGUYEN, Q. H. and PHUC, N. C., Existence and regularity estimates for quasilinear equations with measure data: the case $1 < p \leq \frac{3n-2}{2n-1}$. *arXiv:2003.03725v1*.

[NP19] ———, Good-λ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems with applications. *Math. Ann.* **374** (2019), 67–98.

[NP20] ———, Pointwise gradient estimates for a class of singular quasilinear equations with measure data. *J. Funct. Anal.* **259** (2020), 2961–2998.

[Uhl77] UHLENBECK, K., Regularity for a class of non-linear elliptic systems. *Acta Math.* **138** (1977), 219–240.