Associated Lah numbers and r-Stirling numbers

Hacène Belbachir and Imad Eddine Bousbaa
USTHB, Faculty of Mathematics
RECITS Laboratory, DG-RSDT
BP 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria
hbelbachir@usthb.dz & ibousbaa@usthb.dz

May 13, 2014

Abstract

We introduce the associated Lah numbers. Some recurrence relations and convolution identities are established. An extension of the associated Stirling and Lah numbers to the r-Stirling and r-Lah numbers are also given. For all these sequences we give combinatorial interpretation, generating functions, recurrence relations, convolution identities. In the sequel, we develop a section on nested sums related to binomial coefficient.

AMS Classification: 11B73, 05A19.

Keywords: Generating functions; Associated Stirling and Lah numbers; Convolution; Combinatorial interpretation; Recurrence relation.

1 Introduction

The Stirling numbers of the first and second kind, denoted respectively $\left[\begin{array}{c} n \\ k \end{array} \right]$ and $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$, are defined by

\[
x(x+1)\cdots(x+n-1) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] x^k,
\]

and

\[
x^n = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} x(x-1)\cdots(x-k+1).
\]

It is well known that $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the number of permutations of the set $Z_n := \{1, 2, \ldots, n\}$ with k cycles and that $\left\{ \begin{array}{c} n \\ k \end{array} \right\}$ is the number of partitions of the set Z_n into k non empty subsets [17 Ch. 5], [23 Ch. 4].

The Lah numbers $\left[\begin{array}{c} n \\ k \end{array} \right]$ (Stirling numbers of the third kind), see [19 pp. 44], are defined as the sum of products of the Stirling number of the first kind and the Stirling numbers of the second kind

\[
\left[\begin{array}{c} n \\ k \end{array} \right] = \sum_{j=k}^{n} \left[\begin{array}{c} n \\ j \end{array} \right] \left\{ \begin{array}{c} j \\ k \end{array} \right\},
\]

and count the number of partitions of the set Z_n into k ordered lists. According to [1] and [2] they satisfy

\[
x(x+1)\cdots(x+n-1) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] x(x-1)\cdots(x-k+1),
\]
see for instance [3, eq 8].

Broder [12] gives a generalization of the Stirling numbers of the first and second kind the so-called r-Lah numbers of the first and second kind, denoted respectively \([n\!\!\,k]_r\) and \({n\!\!\,k}\}_r\), by adding restriction on the elements of \(Z_n\) : the \([n\!\!\,k]_r\) is the number of permutations of the set \(Z_n\) with \(k\) cycles such that the \(r\) first elements are in distinct cycles and the \({n\!\!\,k}\}_r\) is the number of partitions of the set \(Z_n\) into \(k\) subsets such that the \(r\) first elements are in distinct subsets. The \(r\-\)Lah numbers \([n\!\!\,k]_r\), see [3], count the number of partitions of the set \(Z_n\) into \(k\) ordered lists such that the \(r\) first elements are in distinct lists.

These three sequences satisfy respectively the following recurrence relations

\[
\begin{align*}
[n\!\!\,k]_r &= \binom{n-1}{k-1}_r + (n-1) \binom{n-1}{k}_r, \\
{n\!\!\,k}_r &= \binom{n-1}{k-1}_r + k \binom{n-1}{k}_r, \\
[n\!\!\,k]_r &= \binom{n-1}{k-1}_r + (n+k-1) \binom{n-1}{k}_r.
\end{align*}
\]

with \([n\!\!\,k]_r = {n\!\!\,k}_r = \binom{n\!\!\,k}{r} = \delta_{n,k}\) for \(k = r\), where \(\delta\) is the Kronecker delta, and \([n\!\!\,k]_r = {n\!\!\,k}_r = \binom{n}{k}_r = 0\) for \(n < r\).

For \(r = 1\) and \(r = 0\), these numbers coincide with the classical Stirling numbers of both kinds and with the classical Lah numbers.

Comtet [17, pp. 222] define an other generalization of the Stirling numbers of both kinds by adding a restriction on the number of elements by cycle or subset and call them, for \(s \geq 1\), the \(s\)-associated Stirling numbers of the first kind \(\gamma^s_k\) and of the second kind \(\{\!\!\,s\!\!\,k\}\). The \(\gamma^s_k\) is the number of permutations of the set \(Z_n\) with \(k\) cycles such that, each cycle has at least \(s\) elements. The \(\{\!\!\,s\!\!\,k\}\) is the number of partitions of the set \(Z_n\) into \(k\) subsets such that each subset has at least \(s\) elements. They have, each one, an explicit formula, see for instance [20, Eq 4.2, Eq 4.9]:

\[
\begin{align*}
[n\!\!\,k]^{(s)} &= \frac{n!}{k!} \sum_{i_1+i_2+\cdots+i_k=n} \frac{1}{i_1!i_2!\cdots i_k!}, \\
{n\!\!\,k}^{(s)} &= \frac{n!}{k!} \sum_{i_1+i_2+\cdots+i_k=n} \frac{1}{i_1!i_2!\cdots i_k!}.
\end{align*}
\]

The generating functions are respectively

\[
\begin{align*}
\sum_{n\geq sk} [n\!\!\,k]^{(s)} \frac{x^n}{n!} &= \frac{1}{k!} \left(-\ln(1-x) - \sum_{i=1}^{s-1} \frac{x^i}{i} \right)^k, \\
\sum_{n\geq sk} \{n\!\!\,k\}^{(s)} \frac{x^n}{n!} &= \frac{1}{k!} \left(\exp(x) - \sum_{i=0}^{s-1} \frac{x^i}{i!} \right)^k.
\end{align*}
\]

For \(s = 2\), these numbers are reduced to the specific associated Stirling numbers of both kinds, see for instance [23, pp. 73].

Note that, from (11) and (9), for \(n = sk\), we get

\[
[n\!\!\,k]^{(s)} = \frac{(sk)!}{k!s^k} \quad \text{and} \quad \{n\!\!\,k\}^{(s)} = \frac{(sk)!}{k!(s)!k}.
\]

Ahuja and Enneking [11] give a generalization of the Lah numbers called the associated Lah numbers using an analytic approach. In Sloane [24, A076126], we have a definition of the associated Lah numbers \([n\!\!\,k]^{(2)}\) as
the number of partitions of the set Z_n into k ordered lists such that each list has at least 2 elements. They satisfy the following explicit formula

\[\binom{n}{k}^{(2)} = \frac{n!}{k!} \binom{n-k-1}{k-1}, \tag{12} \]

and have the double generating function

\[\sum_{n \geq 2} \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k}^{(2)} y^k x^n k! = \exp \left(y \frac{x^2}{1-x} \right) - 1, \tag{13} \]

they consider $k \geq 1$, which means there is at least one part.

Hsu and Shiue [22] defined a Stirling-type pair \{S1, S2\} as a unified approach to the Stirling numbers, this approach generalize degenerate Stirling numbers [13], Weighted Stirling numbers [14] [15], r-Whitney numbers [9] [10] and many other ones. The authors and Belkhir in [4] and the authors in [7] give a combinatorial approach to special cases of the Stirling-type pair. Howard [21] extend the associated generalization to the Weighted Stirling numbers. Note that the Stirling-type pair does not generalize the associated Stirling numbers. Motivated by this, we introduce and develop the s-associated Lah numbers and the s-associated r-Stirling numbers.

In section 2, we define the s-associated Lah numbers $\binom{n}{k}_{s}$, $n \geq sk$, by a combinatorial approach analogous to Comtet’s generalization. We derive an explicit formula, a triangular recurrence relation, a combinatorial identity and some generating functions. We study, in section 3, some nested sums related to binomial coefficients in order to develop, in section 4, a generalization of the Stirling numbers of the three kinds using the two restrictions (Broder’s and Comtet’s ones), we call them respectively the s-associated r-Stirling numbers of the first kind $\binom{n}{k}_{r}$, the s-associated r-Stirling numbers of the second kind $\binom{n}{k}_{r}^{(s)}$ and the s-associated r-Lah numbers $\binom{n}{k}_{r}^{(s)}$. We give some recurrence relations and combinatorial identities in sections 5 and 6. Cross recurrences and convolution identities are established in sections 7 and 8. In section 9, we propose some generating functions of the s-associated r-Stirling numbers.

2 The s-associated Lah numbers

We start by introducing the s-associated Lah numbers.

Definition 1 The s-associated Lah number, denoted by $\binom{n}{k}_{s}$, is the number of partitions of Z_n into k order lists such that each list contains at least s elements.

Theorem 2 The s-associated Lah numbers obey to the following 'triangular' recurrence relation, for $n \geq sk$,

\[\binom{n}{k}_{s} = \binom{n-1}{s-1}_{s} \binom{n-s}{k-1}_{s} + (n+k-1) \binom{n-1}{k}_{s}, \tag{14} \]

with $\binom{n}{0}_{s} = \delta_{n,0}$ for $k = 0$, where δ is the Kronecker delta, and $\binom{n}{k}_{s} = 0$ for $n < sk$

Proof. Let us consider the n^{th} elements, if it belongs to a list containing exactly s elements, so we have $\binom{n-1}{s-1}_{s}$ ways to choose the remaining $(s-1)$ elements and $s!$ ways to order them into the cited list, then distribute the $(n-s)$ remaining elements into the $(k-1)$ remaining lists such that each list have at least s elements and we have $\binom{n-s}{k-1}_{s}$ ways to do it. Thus, we get $\binom{n-1}{s-1}_{s} \binom{n-s}{k-1}_{s}$ possibilities. Else, we consider all the possibilities of ordering $(n-1)$ elements into k lists under the usual condition which can be done by $\binom{n-1}{k}_{s}$ ways, then add the n^{th} elements next to an other and we have $n-1$ possibilities, or as head of each list and we have k possibilities, this gives $(n+k-1) \binom{n-1}{k}_{s}$ possibilities. \[\square\]
For \(s = 1 \) and \(s = 2 \), we get Lah numbers and associated Lah numbers respectively.

For \(s = 3 \), we obtain the following table, for \(n \leq 15 \),

\(n \backslash k \)	1	2	3	4	5
3	6				
4	24				
5	120				
6	720	360			
7	5040	5040			
8	40320	60480			
9	362880	725760	60480		
10	3628800	9072000	1814400		
11	39916800	119750400	39916800		
12	479001600	1676505600	798336000	199584000	
13	6227020800	24908083200	15567552000	1037836800	
14	87178291200	392302310400	305124019200	36324288000	
15	1307674368000	6538371840000	6102480384000	1089728640000	108972864000

The following result gives an explicit formula for the \(s \)-associated Lah numbers according to identities (17) and (15) for the \(s \)-associated Stirling numbers of both kinds.

Theorem 3 Let \(s, k \) and \(n \) be nonnegative integers such that \(n \geq sk \), we have

\[
\binom{n}{k}^{(s)} = \frac{n!}{k!} \binom{n - (s - 1)k - 1}{k - 1}.
\]

(Proof 1.) We order \(n \) elements on \(k \) ordered lists such that, each list contains at least \(s \) elements: first, we suppose that the lists are labeled \(1, \ldots, k \) and for each list \(j \) we choose \((i_j + s) \) \((0 \leq i_j \leq n - s)\) elements, we have \(\binom{n}{i_1 + s, i_2 + s, \ldots, i_k + s} \) possibilities to constitute the \(k \) groups. The arrangement of the \(j \)th subset gives \((i_j + s)!\) possibilities. It gets \(\sum_{i_1 + i_2 + \cdots + i_k = n - sk} \binom{n}{i_1 + s, i_2 + s, \ldots, i_k + s}(i_1 + s)!(i_2 + s)! \cdots (i_k + s)! = n! \binom{n - (s - 1)k - 1}{k - 1} \), we divide by \(k! \) to unlabeled the lists. \(\square \)

Proof 2. First we choose \(k \) elements to identify the \(k \) lists with \(\binom{n}{k} \) possibilities, then we choose \(k \) groups of \(s - 1 \) elements to get the condition of having \(s \) elements by list and we have \(\binom{n - k}{s - 1} \) possibilities for the first list, and \(\binom{n - k - (s - 1)}{s - 1} \) possibilities for the second one, and so on ... the last list have \(\binom{n - k - (s - 1)(k - 1)}{s - 1} \) possibilities. So we get \(\binom{n - k}{s - 1} \binom{n - k - (s - 1)}{s - 1} \cdots \binom{n - k - (s - 1)(k - 1)}{s - 1} = \binom{n - k}{s - 1} \cdots \binom{n - k}{s - 1} \binom{n - k}{s - 1} \) possibilities. We affect the remaining \(n - sk \) elements to the lists and we have \(k \) ways for the first element, \(k + 1 \) ways for the second one, and so on ... the last one have \(k + n - sk - 1 = n - (s - 1)k - 1 \). So, we get \(k(k + 1) \cdots (n - (s - 1)k - 1) = \binom{n - (s - 1)k - 1}{k - 1} \) possibilities. The result follows. \(\square \)

Remark 4 For \(n = sk \), we get the following according to relations given by (11)

\[
\binom{sk}{k}^{(s)} = \frac{(sk)!}{k!}.
\]

Comparing to (14), an other recurrence relation, with rational coefficients, can be deduced form the explicit formula (15) as follows.

Theorem 5 The \(s \)-associated Lah numbers satisfy the following recurrence relation

\[
\binom{n}{k}^{(s)} = \frac{n!}{(n - s)!k} \binom{n - s}{k - 1}^{(s)} + n \binom{n - 1}{k}^{(s)}.
\]
Proof. Using Pascal’s formula and relation (15), we get the result. □

Note that for \(s = 1 \), we get the relation given by the authors [8, eq 7] when \(r = 0 \). The \(s \)-associated Lah numbers can be expressed as a Vandermonde type formula as follows.

\[
\begin{align*}
\binom{n}{k}^{(s)} &= n! \sum_{i=0}^{p} \frac{(k-i)!}{(n-p-(s-1)i)!} \left(\binom{n-(s-1)i-p}{k-i} \right)^{(s)}.
\end{align*}
\] (18)

Proof. Using the explicit formula (15) and the Vandermonde formula, we get the result. □

The special case \(s = 1 \) gives the identity given by the authors [8, eq 6] when \(r = 1 \).

The \(s \)-associated Lah numbers satisfy the following vertical recurrence relation.

\[
\begin{align*}
\binom{n}{k}^{(s)} &= n! \sum_{i=0}^{p} \frac{(k-i)!}{(n-p-(s-1)i)!} \left(\binom{n-(s-1)i-p}{k-i} \right)^{(s)}.
\end{align*}
\] (18)

Proof. Using the explicit formula (15) and the Vandermonde formula, we get the result. □

The special case \(s = 1 \) gives the identity given by the authors [8, eq 6] when \(r = 1 \).

The \(s \)-associated Lah numbers satisfy the following vertical recurrence relation.

\[
\begin{align*}
\binom{n}{k}^{(s)} &= n! \sum_{i=0}^{p} \frac{(k-i)!}{(n-p-(s-1)i)!} \left(\binom{n-(s-1)i-p}{k-i} \right)^{(s)}.
\end{align*}
\] (18)

Proof. Using the explicit formula (15) and the Vandermonde formula, we get the result. □

The special case \(s = 1 \) gives the identity given by the authors [8, eq 6] when \(r = 1 \).
Let us consider the \((k - 1)\) first lists, they contain \(i\) \((s(k - 1) \leq i \leq n - s)\) elements. So, we choose the \(i\) elements and we have \(\binom{n - i}{i}\) ways to do it, and constitute the \(k - 1\) lists such that each list have at least \(s\) elements, which can be done by \(\binom{i}{s}\) ways, then order the \((n - i)\) remaining elements in a list with \((n - i)!\) possibilities. We conclude by summing over \(i\). \(\square\)

The exponential generating function of the \(s\)-associated Lah numbers is given by the following. It is a complement list to (9) and (10).

Theorem 8 Let \(n, k\) and \(s\) be integers, we have

\[
\sum_{n \geq k} \binom{n}{k} \frac{x^n}{n!} = \frac{1}{k!} \left(\frac{x^s}{1-x} \right)^k.
\]

Proof. Using the explicit formula (15), with the following identity for \(x \in \mathbb{N}\), see for instance [18],

\[
\sum_{n \geq 0} \frac{(n + x)}{x} t^n = \left(\frac{1}{1-t} \right)^{x+1},
\]

we get the result. \(\square\)

According to identity (13), the double generating function is given by

Theorem 9 We have

\[
\sum_{n \geq k} \sum_{k=0}^{\lfloor n/s \rfloor} \binom{n}{k} y^k \frac{x^n}{n!} = \exp \left\{ \frac{x^s}{1-x} \right\}.
\]

Proof. Interchanging the order of summation and using equation (20), we get the result. \(\square\)

3 Nested sums related to binomial coefficients

In this section, we evaluate some symmetric functions. We start by the following result.

Lemma 10 Let \(\alpha\) and \(\beta\) be integers such that \(\beta \geq \alpha\). We have

\[
\sum_{n \geq 0} \binom{n+\alpha}{\beta} z^n = \frac{z^{\beta-\alpha}}{(1-z)^{\beta+1}}.
\]

Proof. \(\sum_{n \geq 0} \binom{n+\alpha}{\beta} z^n = \left(\sum_{n \geq 0} \binom{n+\beta}{\beta} z^n \right) z^{\beta-\alpha} = \frac{z^{\beta-\alpha}}{(1-z)^{\beta+1}}.\) \(\square\)

The following result seems to be nice as an independent one.

Theorem 11 Let \(\alpha_1, \ldots, \alpha_r, \alpha, \beta_1, \ldots, \beta_r, \beta, k_1, \ldots, k_r\) and \(k\) be integers such that \(\alpha_1 + \cdots + \alpha_r = \alpha, \beta_1 + \cdots + \beta_r = \beta\) and \(k_1 + \cdots + k_r = k\) with \(\beta_i \geq \alpha_i\). The following identity holds

\[
\sum_{k_1+\cdots+k_r=k} \binom{k_1+\alpha_1}{\beta_1} \cdots \binom{k_r+\alpha_r}{\beta_r} = \binom{k+\alpha+r-1}{\beta+r-1}.
\]

Proof. By induction over \(r\), we get the result. So It suffices to do the proof for \(r = 2\). Thus, we have to establish

\[
\sum_{k_1+k_2=k} \binom{k_1+\alpha_1}{\beta_1} \binom{k_2+\alpha_2}{\beta_2} = \binom{k+\alpha+1}{\beta+1}.
\]

(24)
We consider the following product \(\sum_{n \geq 0} \sum_{k_1 + k_2 + \cdots + k_r = n} (k_1 + \alpha_1)(k_2 + \alpha_2) \cdot \cdots \cdot (k_r + \alpha_r) t^n = \left(\sum_{n \geq 0} \binom{k_1 + \alpha_1}{\beta_1} t^n \right) \left(\sum_{n \geq 0} \binom{k_2 + \alpha_2}{\beta_2} t^n \right) \) using (22), we get \(\frac{e^{t^1} - e^{-1}}{(1-t)^{\beta_1}} \cdot \frac{e^{t^{2}} - e^{-1}}{(1-t)^{\beta_2}} = \sum_{k} \binom{k + \alpha + 1}{\beta + 1} t^k \). □

As a consequence, we evaluate the sum of all possible integer products having the same summation.

Corollary 12 For \(\alpha_i = 0 \) and \(\beta_i = 1 \) we get

\[
\sum_{k_1 + \cdots + k_r = n} k_1 k_2 \cdots k_r = \binom{n + r - 1}{2r - 1}.
\] (25)

The above identity can be interpreted as the number of ways to choose \(r \) leaders of \(r \) groups constituted from \(n \) persons: we choose one person of each group and we have \(\binom{k_1}{1} \cdots \binom{k_r}{r} \) ways to do it. This is equivalent to choose \(r \) persons and \((r-1)\) separators from the \(n \) persons and the \(r - 1 \) separators and we have \(\binom{n + r - 1}{2r - 1} \) ways to do it.

Now, we are able to produce a general result. Also, it will be used to establish the next theorem.

Corollary 13 Let \(r, p \) and \(k \) be integers such that \(r \geq p \), we have

\[
\sum_{k_1 + \cdots + k_p + \cdots + k_r = n} k_1 k_2 \cdots k_p = \binom{n + r - 1}{r + p - 1}.
\] (26)

Proof.

\[
\sum_{k_1 + \cdots + k_p + \cdots + k_r = k} k_1 k_2 \cdots k_p = \sum_{m=0}^{k} \binom{k - m + \alpha_1}{\beta_1} \cdot \sum_{k_1 + \cdots + k_p + \cdots + k_r = m} 1
\]

using identity (25) and \(\sum_{i_1 + i_2 + \cdots + i_r = m} 1 = \binom{m + r - 1}{r - 1} \) we get

\[
\sum_{k_1 + \cdots + k_p + \cdots + k_r = k} k_1 k_2 \cdots k_p = \sum_{m=0}^{k} \binom{m + p - 1}{2p - 1} \binom{k - m + r - p - 1}{r - p - 1},
\]

applying relation (24), we get the result. □

Now, we are able to evaluate the sum of all products of \(k \) terms, all translated by \(\alpha \), and having a fixed summation.

Theorem 14 We have

\[
\sum_{i_1 + \cdots + i_k = n} (i_1 + \alpha)(i_2 + \alpha) \cdots (i_k + \alpha) = \sum_{j=0}^{k} \binom{k}{j} \binom{n + k - 1}{n - j} \alpha^{k - j}.
\] (27)

Proof. We have

\[
\sum_{i_1 + \cdots + i_k = n} (i_1 + \alpha) \cdots (i_k + \alpha) = \sum_{j=0}^{k} \binom{k}{j} I_{k, k-j} \alpha^j,
\]

where \(I_{k,j} := \sum_{i_1 + i_2 + \cdots + i_k = n} i_1 i_2 \cdots i_j \) and from (20), we get the result. □

This nice result will be used to evaluate the explicit formula of the \(s \)-associated \(r \)-Stirling numbers which are introduced in the following section.
4 The \(s\)-associated \(r\)-Stirling numbers of the both kinds and the \(s\)-associated \(r\)-Lah numbers

Now, we introduce the \(s\)-associated \(r\)-Stirling numbers of the both kinds and the \(s\)-associated \(r\)-Lah numbers.

Definition 15 The \(s\)-associated \(r\)-Stirling numbers of the first kind count the number of permutations of the set \(Z_n\) with \(k\) cycles such that the \(r\) first elements are in distinct cycles and each cycle contains at least \(s\) elements.

The \(s\)-associated \(r\)-Stirling numbers of the second kind count the number of partitions of the set \(Z_n\) into \(k\) subsets such that the \(r\) first elements are in distinct subsets and each subset contains at least \(s\) elements.

The \(s\)-associated \(r\)-Lah numbers, called also the \(s\)-associated \(r\)-Stirling numbers of the third kind, count the number of partitions of the set \(Z_n\) into \(k\) ordered lists such that the \(r\) first elements are in distinct lists and each list contains at least \(s\) elements.

Here is given, for each kind, the table for \(r = s = 2\).

\(n\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)
4	2					
5	12					
6	72	12				
7	480	160				
8	3600	1740	90			
9	3024	18648	2100			
10	282240	207648	35840	840		
11	2903040	2446848	560448	3024		
12	32659200	30702240	8641080	743400	9450	
13	399168000	410731200	135519120	15935920	485100	
14	5269017600	5852755280	2194121952	324416400	16216200	124740
15	74724249600	88663610880	36941553792	6522721920	455975520	8648640
16	1133317785600	1424644865280	649046990592	132205465392	11835944120	377116740

Table 1: Some values for the 2-associated 2-Stirling numbers of the first kind

\(n\)	\(2\)	\(3\)	\(4\)	\(5\)	\(6\)	\(7\)	\(8\)	
4	2							
5	6							
6	14	12						
7	30	80						
8	62	360	90					
9	126	1372	1050					
10	254	4788	7700	840				
11	510	15864	45612	15120				
12	1022	50880	239190	163800	9450			
13	2046	159764	1161270	1389080	242550			
14	4094	494604	5353392	10182480	3638250	124740		
15	8190	1516528	23809200	67822040	41771730	4324320		
16	16382	4619160	103099994	422534112	407246840	85765680	1891890	
17	32766	14004876	438124050	2507785280	3555852300	1280178900	85135050	

Table 2: Some values of the 2-associated 2-Stirling numbers of the second kind
The s-associated r-Stirling numbers of the three kinds have the following explicit formulas.

Theorem 16 For \(n \geq sk \) and \(k \geq r \), we have

\[
\begin{align*}
\left[\begin{array}{c} n \\ k \end{array} \right]_{r}^{(s)} &= \frac{(n-r)!}{(k-r)!} \sum_{m=0}^{n-sk} \frac{1}{r!} \sum_{i_{1}+\ldots+i_{r}=n-sk-m} (m+r-1) \cdots (i_{r}+s) \cdots (i_{k}+s), \\
\left\{ \begin{array}{c} n \\ k \end{array} \right\}_{r}^{(s)} &= \frac{(n-r)!}{(k-r)!} \sum_{i_{1}+\ldots+i_{k}=n-sk} \frac{1}{r!} (i_{1}+s-1)! \cdots (i_{r}+s-1)! (i_{r+1}+s)! \cdots (i_{k}+s)!, \\
\left[\begin{array}{c} n \\ k \end{array} \right]_{r}^{(s)} &= \frac{(n-r)!}{(k-r)!} \sum_{j=0}^{r} \binom{r}{j} (n-1)^{j} \sum_{j+1}^{k} (n-r-1) \cdots k_{j-1} (k-j+1)^{k-j},
\end{align*}
\]

Proof. We first prove the identity (28). To constitute a partition of \(Z_{n} \) into \(k \) parts such that each part has at least \(s \) elements and the \(r \) first elements are in distinct parts, we proceed as follows: we put the \(r \) first elements in \(r \) parts (one by part). Now we partition the \(n-r \) remaining elements into \(k \) parts such that \(r \) parts have at least \(s-1 \) elements and \(k-r \) parts have at least \(s \) elements, and we have \(\frac{(n-r)!}{(k-r)!} \binom{n-r}{i_{1}, i_{2}, \ldots, i_{k}} \) ways to do it, with \(i_{j} \geq s-1 \) for \(j = 1, \ldots, r \) and \(i_{j} \geq s \) for \(j = r+1, \ldots, k \), which gives identity (28).

With the same specifications used to establish relation (29), to count the number of permutations of \(Z_{n} \) into \(k \) cycles it suffices to constitute the cycles by considering all the possible arrangements in the parts and we have \(\frac{(n-r)!}{(k-r)!} \binom{n-r}{i_{1}, i_{2}, \ldots, i_{k}} \) ways. So we can write:

\[
\begin{align*}
\left[\begin{array}{c} n \\ k \end{array} \right]_{r}^{(s)} &= \frac{1}{(k-r)!} \sum_{i_{1}+\ldots+i_{k}=n-r} \frac{1}{i_{1}! \cdots i_{k}!} (n-r-1)! \cdots (i_{r}+1)! \cdots (i_{k}-1)!, \\
&= \frac{(n-r)!}{(k-r)!} \sum_{m=r(s-1)}^{n-r} \frac{1}{i_{r+1} \cdots i_{k}!} \sum_{i_{j} \geq s} \frac{1}{i_{1} \cdots i_{r}!} \sum_{i_{r+1} \cdots i_{k}!} 1, \\
&= \frac{(n-r)!}{(k-r)!} \sum_{m=0}^{n-sk} \frac{1}{(i_{r+1}+\cdots+i_{k}+n-sk-m)!} \sum_{i_{1}+\cdots+i_{r}=m} 1,
\end{align*}
\]

finally using \(\sum_{i_{1}+\cdots+i_{r}=m} 1 = \binom{m+r-1}{r-1} \), we get identity (29).
The same approach works, to constitute partitions of \(Z_n \) into \(k \) ordered lists we have to consider the arrangement in the parts and we have \((i_1 + 1)! (i_2 + 1)! \cdots (i_r + 1)! i_{r+1}! \cdots i_k! \) ways to do it. Thus we get

\[
\binom{n}{k}_r^{(s)} = \frac{1}{(k-r)!} \sum_{i_1 + \cdots + i_k = n-r} \binom{n-r}{i_1, \ldots, i_k} (i_1 + 1)! \cdots (i_r + 1)! i_{r+1}! \cdots i_k!
\]

using relation (27), we get

\[
= \frac{(n-r)!}{(k-r)!} \sum_{m=s(k-r)}^{n-r} \sum_{i_j \geq s} (i_1 + 1) \cdots (i_r + 1) \sum_{i_{r+1} + \cdots + i_k = m} 1
\]

using relation (24), we get identity (30).

From (31), we can write a second kind explicit formula according to (27) and generalizing relation (15).

\[
\binom{n}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} \sum_{j=0}^{r} \binom{r}{j} \sum_{m=0}^{n-sk-m} \binom{m + k - r - 1}{k - r - 1} \binom{n - sk - m - r - 1}{r - 1 + j} s^{r-j},
\]

using relation (27), we get

\[
\binom{n}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} \sum_{i_1 + i_2 + \cdots + i_k = n-sk} (i_1 + s) (i_2 + s) \cdots (i_r + s).
\]

From (32), we can write a second kind explicit formula according to (27) and generalizing relation (15).

\[
\binom{n}{k}_r^{(s)} = \frac{1}{(k-r)!} \sum_{i_1 + i_2 + \cdots + i_k = n-sk} (i_1 + s) (i_2 + s) \cdots (i_r + s).
\]

The precedent theorem works for \(k = r \). Furthermore, the identities are more explicit.

Remark 17 For \(k = r \), we get respectively

\[
\binom{n}{r}_r^{(s)} = \frac{(n-r)! (n-r(s-1) - 1)}{r - 1},
\]

\[
\binom{n}{r}_r^{(s)} = \sum_{i_1 + i_2 + \cdots + i_k = n-r} \binom{n-r}{i_1, i_2, \ldots, i_r},
\]

\[
\binom{n}{r}_r^{(s)} = \frac{(n-r)!}{i_0 + 1} \binom{n-(s-1)r - 1}{r + i - 1} s^{r-i}.
\]

The following special values can be easily computed, extending relations given by relations (11) and (16)

\[
\binom{sk}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} s^k, \quad (36)
\]

\[
\binom{sk}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} s^{(s-1)! r s^{k-r}}, \quad (37)
\]

\[
\binom{sk}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} s^r. \quad (38)
\]

Here is given an other explicit formula of the \(s \)-associated \(r \)-Lah numbers. This one is more interesting than relation (32). It is evaluated using one summation

Theorem 18 Let \(n, k, r \) and \(s \) be nonnegative integers such that \(k \geq r \) and \(n \geq sk \), we have

\[
\binom{n}{k}_r^{(s)} = \frac{(n-r)!}{(k-r)!} \sum_{j=0}^{r} \binom{r}{j} \binom{n + j - (s-1)k - 1}{k + j - 1} (s-1)^{r-j}.
\]
Proof. To constitute the \(k \) lists we use the \(r \) first elements which are supposed in different lists to identify the \(r \) first lists and we choose \(k - r \) elements form the remaining elements, with \(\binom{n-r}{k-r} \) possibilities, as head list of the \(k - r \) remaining lists. Now to retch the condition that in each list we have at least \(s \) elements, we constitute \(k \) groups of \((s - 1) \) elements form the \(n - k \) remaining elements and we have \(\binom{n-k}{s-1,n-s} \) ways to do it, and consider all the permutations of each group so we get \((s - 1)! \) possibilities. Now, for the \(r \) first elements we suppose that \(j \) of them are head lists so we choose them with \(\binom{k}{j} \) ways and order the \(r - j \) elements after an element of each group and we have \((s - 1)r-j \) possibilities. It remains to affect the \(n - sk \) remaining elements, so the first one has \((k + j) \) possibilities (\(k \): at the end of each lists or before the \(j \) suppose head lists), the second one have \((k + j + 1) \) possibilities (one possibilities added by the previews element) and so one . . . the last element have \((k + j) + (n - sk - 1) = n + j - (s - 1)k - 1 \) possibilities. This gives \(\frac{(n+j-(s-1)k-1)!}{(k+j-1)!} = (k+j)\cdots(n+j-(s-1)k-1) \) possibilities. Summing over all possible values of \(j \) we get \(\frac{\binom{n-k}{(s-1)n-s}}{\binom{n-k}{n-s}} \sum_{j=0}^{r} \binom{r}{j} \frac{(n+j-(s-1)k-1)!}{(k+j-1)!} (s-1)^{r-j} \) which, after simplification, gives the result. \(\square \)

Note that the explicit formula of the \(s \)-associated Lah numbers [15] is obtained form [39] for \(r = 0 \) and \(r = 1 \). Also, for \(s = 1 \), we get the explicit formula of the \(r \)-Lah numbers [3] Eq 3]

From [39] and [30] we can state the following, which is very nice in terms of identities related to binomial coefficients.

Proposition 19 We have

\[
\sum_{j=0}^{r} \binom{r}{j} \binom{n+k+j-1}{n} (s-1)^{r-j} = \sum_{j=0}^{r} \binom{r}{j} \binom{n-(s-1)k-1}{k+j-1} (s-1)^{r-j},
\]

(40)

From [41] and [30] we get a second expression, dual to relation [27].

Proposition 20 we have

\[
\sum_{i_1+i_2+\ldots+i_k=n} (i_1+s) (i_2+s) \cdots (i_r+s) = \sum_{j=0}^{r} \binom{r}{j} \binom{n+k+j-1}{n} (s-1)^{r-j}
\]

5 Recurrence relations

The \(s \)-associated \(r \)-Stirling numbers satisfy recurrence relations as the regular \(s \)-associated Stirling numbers, using three terms of two triangles: the \((r-1)\)-Stirling triangle and the \(r \)-Stirling triangle.

![Triangular recurrence relation](image)

Figure 3: Triangular recurrence relation given the value of the black element as linear combination of the values of the three others, for the \(s \)-associate \(r \)-Stirling numbers of the three kinds

The recurrence relation of the \(s \)-associated \(r \)-Stirling numbers of the first kind is given as follows.
Theorem 21 Let \(r, k, s \), and \(n \) be nonnegative integers such that \(n \geq sk \) and \(k \geq r \), we have

\[
\begin{align*}
\binom{n}{k}_r^{(s)} &= \binom{n-r-1}{s-1}(s-1)!\binom{n-s-1}{k-1}_r^{(s)} + r\binom{n-r-1}{s-2}(s-2)!\binom{n-s-2}{k-1}_{r-1}^{(s)} + (n-1)\binom{n-1}{k}_r^{(s)}.
\end{align*}
\]

Proof. Let us consider the \(n \)-th element, if it belongs to a cycle containing exactly \(s \) elements not from the \(r \) elements, we have \(\binom{n-r-1}{s-1} \) ways to choose the \((s-1) \) remaining elements and \((s-1)!\) ways to constitute the cycle, then distribute the \((n-s)\) remaining elements on the \((k-1)\) remaining cycles such that each cycle has at least \(s \) element and the \(r \) first elements are in distinct cycles, so we have \(\binom{n-s}{k-1}_r^{(s)} \) ways to do it. Thus we get \(\binom{n-r-1}{s-1}(s-1)!\binom{n-s}{k-1}_r^{(s)} \) possibilities. Else, if one of the \(r \) first elements belongs to the cycle, we have \(r \) ways to choose one of the \(r \) first elements, \(\binom{n-r-1}{s-2} \) ways to choose the remaining \((s-2) \) ones and \((s-1)!\) ways to constitute the cycle, then distribute the \((n-s)\) remaining elements on the \((k-1)\) remaining cycles such that, in each cycle, there is at least \(s \) elements and the \(r-1 \) first elements are in distinct cycles, so we have \(\binom{n-s}{k-1}_{r-1}^{(s)} \) possibilities to do it. Thus we get \(r\binom{n-r-1}{s-2}(s-2)!\binom{n-s}{k-1}_{r-1}^{(s)} \) possibilities. Else, we consider all the permutations of \((n-1)\) elements with \(k \) cycles under the usual conditions which can be done by \(\binom{n-1}{k}_r^{(s)} \) ways, then add the \(n \)-th element to the \(k \) cycles and we have \((n-1)\) possibilities. \(\square \)

For \(s = 1 \) we get relation (41), and for \(r = 1 \) using Pascal’s formula we get the recurrence relation of the \(s \)-associated Stirling numbers of first kind [20, eq 4.8].

The \(s \)-associated \(r \)-Stirling numbers of the second kind satisfy the following recurrence relation.

Theorem 22 Let \(r, k, s \), and \(n \) be nonnegative integers such that \(n \geq sk \) and \(k \geq r \), we have

\[
\binom{n}{k}_r^{(s)} = \binom{n-r-1}{s-1}\binom{n-s-1}{k-1}_r^{(s)} + r\binom{n-r-1}{s-2}\binom{n-s-2}{k-1}_{r-1}^{(s)} + k\binom{n-1}{k}_r^{(s)}.
\]

Proof. Let us consider the \(n \)-th elements, if it belongs to a part containing exactly \(s \) elements not from the \(r \) first ones, so we have \(\binom{n-r-1}{s-1} \) ways to choose the remaining \((s-1) \) elements and \(\binom{n-s}{k-1}_r^{(s)} \) ways to distribute the \((n-s)\) remaining elements on the \((k-1)\) remaining parts such that, the \(r \) first elements are in distinct parts, and each part, have at least \(s \) elements which gives \(\binom{n-s}{k-1}_r^{(s)} \) possibilities. Else, if one of the \(r \) first elements belongs to that part, we have \(r \) ways to choose it, and \(\binom{n-r-1}{s-2} \) ways to choose the remaining \((s-2) \), then distribute the \((n-s)\) remaining elements on the \((k-1)\) remaining parts such that, the \(r-1 \) first elements are in distinct parts, and each part, have at least \(s \) elements which can be done by \(\binom{n-s}{k-1}_{r-1}^{(s)} \) ways. So we have \(r\binom{n-r-1}{s-2}\binom{n-s}{k-1}_{r-1}^{(s)} \) possibilities. Else, we consider all the partitions of \((n-1)\) elements on \(k \) blocks under the usual conditions which can be done by \(\binom{n-1}{k}_r^{(s)} \) ways, then add the \(n \)-th elements to the \(k \) cycles with \((n-1)\) possibilities. \(\square \)

For \(s = 1 \) we get relation (45), and for \(r = 1 \) using Pascal’s formula we get the recurrence relation of the \(s \)-associated Stirling numbers of the second kind [20, eq 4.1].

The \(s \)-associated \(r \)-Lah numbers satisfy the following recurrence relation.

Theorem 23 Let \(r, k, s \), and \(n \) be nonnegative integers such that \(n \geq sk \) and \(k \geq r \) we have

\[
\binom{n}{k}_r^{(s)} = \binom{n-r-1}{s-1}s!\binom{n-s-1}{k-1}_r^{(s)} + r\binom{n-r-1}{s-2}s!\binom{n-s}{k-1}_{r-1}^{(s)} + (n+k-1)\binom{n-1}{k}_r^{(s)}.
\]
least s elements and the r first elements are in distinct lists with $|_{k-1}^{n-s}(s)$ ways. Thus we get $\binom{n - s}{k - 1} s! |_{k-1}^{n-s}(s)$ possibilities. Else, if one of the r first elements belongs to the list, we have $\binom{s}{1} = r$ ways to choose one of the r first elements and $\binom{n-r-1}{s-2}$ ways to choose the remaining $(s-2)$ elements and $s!$ ways to constitute the list, then distribute the $(n-s)$ remaining elements into the $(k-1)$ remaining lists such that each list has at least s elements and the $r-1$ first elements are in distinct lists and we have $|_{k-1}^{n-s}(s)$ possibilities. Else, if one of the r first elements belongs to the k lists and we have $(n-s)$ possibilities as a head list, which gives $(n+k-1)|_{k-1}^{n-s}(s)$ possibilities. \hfill \square

For $s = 1$ we get relation (6), and for $r = 1$ and using Pascal’s formula we get the recurrence relation (14).

6 Combinatorial identities or convolution relations

In this section, we establish some combinatorial identities for the s-associated r-Stirling numbers using a combinatorial approach. We can also consider them as convolution relations.

The next identity is an expression of s-associated r-Stirling numbers in terms of the s-associated r'-Stirling numbers with $r' \leq r$.

Theorem 24 Let p, r, k and n be nonnegative integers such that $p \leq r \leq k$ and $n \geq sk$, we have

$$\binom{n}{k}_r^{(s)} = \sum_{i=(s-1)p}^{n-p-s(k-p)} \frac{(n-r)!}{(n-r-i)!} \binom{i-p(s-2)-1}{r-1} \left[\binom{n-p-i}{k-p} \right]_{r-p}^{(s)}.$$ (44)

Proof. Let us consider the i ($(s-1)p \leq i \leq n-p-s(k-p)$) elements which belongs to the p cycles containing the elements $1, \ldots, p$. We have $\binom{n-r}{i}$ possibilities to choose the i elements and $i+p \binom{(s)}{p}_p$ ways to construct the corresponding cycles. The remaining $n-p-i$ elements must form the $k-p$ remaining cycles; this can be done in $\binom{n-p-i}{k-p}_{r-p}^{(s)}$ ways. Using equation (33) and summing for all i, we get the proof. \hfill \square

For $p = r$, we obtain an expression of the s-associated r-Stirling numbers of the first kind in terms of the regular s-associated Stirling numbers of the first kind

$$\binom{n}{k}_r^{(s)} = \sum_{i=(s-1)r}^{n-r-s(k-r)} \frac{(n-r)!}{(n-r-i)!} \binom{i-r(s-2)-1}{r-1} \left[\binom{n-r-i}{k-r} \right]^{(s)}.$$ (45)

For $s = 1$, we obtain the equation given by Broder [12, eq 26] and for $r = 1$, we get a vertical recurrence relation for the classical s-associated Stirling numbers of the first kind

$$\binom{n}{k}_1^{(s)} = \sum_{i=s-1}^{n-s(k-1)-1} \frac{(n-1)!}{(n-i-1)!} \left[\binom{n-i-1}{k-1} \right]^{(s)}.$$ (46)

Theorem 25 Let p, r, k and n be nonnegative integers such that $p \leq r \leq k$ and $n \geq sk$, we have

$$\binom{n}{k}_r^{(s)} = \sum_{i=p-r+s(k-p)}^{n-r-(s-1)p} \frac{(n-r)!}{(s-1)!} \binom{n-p(s-1)-r}{i} \binom{i+r-p}{k-p}_{r-p}^{(s)} p^{n-p(s-1)-r-i}.$$ (47)
Proof. Let us consider p first elements ($p \leq r$), they constitute p parts with $p(s - 1)$ elements so we choose those elements by \(\binom{n-r}{s-1,n-r,\ldots,n-r(s-1)-r} = \frac{(n-r)!}{((s-1)!)^p(n-p(s-1)-r)!} \) ways. Then we choose the i elements \((s-1)(r-p) + s(k-r) \leq i \leq n-r - (s-1)p\) which belongs to the remaining $k - p$ parts and we have \(\binom{n-p(s-1)-r}{i} \) ways to do it. Then, distribute them on $k - p$ parts such that the $r - p$ fixed elements are in distinct parts and each part have at least s elements, which can be done by \(\binom{k-p}{r_p}^{(s)}\) possibilities. It remains now to distribute the remaining $n - p(s-1) - r - i$ elements on the p first parts and we have \(p^{n-p(s-1)-r-i} \) possibilities. We conclude by summing over all possible values of i. \(\square\)

Figure 4: The value of an element in the s-associated r-Stirling table in terms of the consecutive vertical elements in the s-associated $r - p$-Stirling table as an inner product result

For $p = r$ we get an expression of the s-associated r-Stirling numbers of the second kind in terms of the regular s-associated Stirling numbers of the second kind

\[
\binom{n}{k}_r^{(s)} = \sum_{i=s(k-r)}^{n-r} \frac{(n-r)!}{((s-1)!)^i(n-s)!} \binom{n-sr}{i} \binom{i}{k-r}_r^{(s)} \; r^{n-sr-i},
\]

also, for $s = 1$, we obtain the equation given by Broder \[12\] eq 31] and for $r = 1$, we get a vertical recurrence relation for the classical s-associated Stirling numbers of the second kind

\[
\binom{n}{k}_1^{(s)} = \sum_{i=s(k-1)}^{n-s} \binom{n-1}{i} \binom{n-s}{i} \binom{i}{k-1}_1^{(s)}.
\]

Theorem 26 Let p, r, k and n be nonnegative integers such that $p \leq r \leq k$ and $n \geq sk$, we have

\[
\binom{n}{k}_r^{(s)} = \sum_{i=0}^{p} \frac{(k-r+p-i)!}{(k-r)!} \binom{p}{i} \binom{n-r}{i(s-1)} \frac{(i(s-1))!}{((s-1)!)^i} \binom{n-p-i(s-1)}{k-i}_r^{(s)}.
\]

Proof. Let us consider the p first elements, and focus on the i ($0 \leq i \leq p$) parts containing exactly s elements, we have \(\binom{p}{i}\) ways to choose the i elements from the p first ones, and \(\binom{n-r}{i(s-1)}\) ways to choose the $i(s-1)$ remaining elements to have s elements by part, and \(\frac{(i(s-1))!}{((s-1)!)^i}\) ways to partition the $i(s-1)$ elements on i groups such that each group have at least $(s-1)$ elements, then affect each group to the i elements and we have $i!$. Then, we partition the $n-p-i(s-1)$ remaining elements into $(k-i)$ parts such that each group has at least s elements and the remaining $r-p$ elements are in distinct subsets, and we have \(\binom{n-p-i(s-1)}{k-i}_r^{(s)}\) ways to do it. Now, it reminds $(p-i)$ elements not yet affected.
Thus we have \((k - r + p - i)\) choice for the first one, \((k - r + p - i - 1)\) choice for the second one and so on until the last one have \((k - r + 1)\) which gives \((k - r + p - i)(k - r + p - i - 1) \cdots (k - r + 1) = \frac{(k - r + p - i)!}{(k - r)!}\) possibilities. We conclude by summing.

For \(s = 1\) we get the relation given by the authors [5 eq 5].

An expression of the \(s\)-associated \(r\)-Stirling numbers of the second kind in terms of the \(s\)-associated Stirling numbers can be deduced from equation (50), for \(p = r\), as follows

\[
\left\{ \frac{n}{k} \right\}_r^{(s)} = \sum_{i=0}^{r} \frac{(k-i)!}{(k-r)!} \binom{n-r}{i} \binom{i(s-1)!}{(s-1)!} \left\{ n - r - i(s-1) \right\}_r^{(s)} - (k-i).
\]

(51)

Also, for \(r = 1\), we obtain the recurrence relation of the \(s\)-associated Stirling numbers [20 eq 4.1].

![Diagram](image)

Figure 5: Value of \(s\)-associated \(r\)-Stirling element (in black) as an inner product of a periodic sequence of elements of the \(s\)-associated \(r-p\)-Stirling table (in white) with a sequence deriving from binomial coefficient.

Theorem 27 Let \(p, r, k\) and \(n\) be nonnegative integers such that \(p \leq r \leq k\) and \(n \geq sk\), we have

\[
\left[\frac{n}{k} \right]_r^{(s)} = \sum_{i=0}^{n-sk} \frac{(n-r)!}{(n-r-j+(s-1)p)!} \binom{p}{i} \binom{p+j-1}{j-i} \left[\frac{n-sp-j}{k-p} \right]_r^{(s)} s^{r-i}.
\]

(52)

Proof. Let us consider the \(p\) first elements, they are in \(p\) distinct lists with \(i_j\) \((i_j \geq s-1; j = 1..p)\) other elements, such that \(i_1 + i_2 + \cdots + i_p = j \((s-1)p \leq j \leq n - p - s (k-p)\)\). Then there are \(\binom{n-r}{i_1} \binom{n-r-i_1}{i_2} \cdots \binom{n-r-i_1-i_2-\cdots-i_p-1}{i_p}\) ways to choose the \(i_1, i_2, \ldots, i_p\) elements and \((i_1 + 1)! (i_2 + 1)! \cdots (i_p + 1)!\) ways to constitute the \(p\) lists. Now, it remains to distribute the \(n - p - j\) remaining elements into \(k - p\) lists such that each list have at least \(s\) elements and the \(r - p\) elements are in distinct lists, which gives \(\left[\frac{n-p-j}{k-p} \right]_r^{(s)} \) possibilities. We sum over all value of \(j\) we get

\[
\left[\frac{n}{k} \right]_r^{(s)} = \sum_{j=(s-1)p}^{n-p-s(k-p)} \sum_{\substack{i_1 + i_2 + \cdots + i_p = j \\text{and } i_j \geq s-1}} \binom{i_1 + 1}{i_1} \binom{i_2 + 1}{i_2} \cdots \binom{i_p + 1}{i_p} \left[\frac{n-r}{k-p} \right]_r^{(s)}.
\]

the inner summations can be evaluated using (27). This gives the result. □

For \(p = r\), we get an expression of the \(s\)-associated \(r\)-Lah numbers in terms of the \(s\)-associated Lah numbers

\[
\left[\frac{n}{k} \right]_r^{(s)} = \sum_{i=0}^{n-sk} \sum_{j=i}^{r} \binom{r}{j} \binom{r+j-1}{j-i} \frac{(n-r)!}{(n-j+(s-2)r)!} s^{r-i} \left[\frac{n-sr-j}{k-r} \right]_r^{(s)}.
\]

(53)
Also, for \(r = 1 \), we get relation \([19]\), and for \(s = 1 \) we get the identity \([3\ \text{eq}\ 7]\).

7 Cross recurrence relations

From equations \([44]\) and \([52]\), for \(p = 1 \), we get some vertical cross recurrence relations.

Corollary 28 We have

\[
\begin{align*}
\binom{n}{k}_r &= \binom{n-s(k-1)-1}{(n-r)!} \binom{n-i-1}{k-1}_{r-1}, \\
\binom{n}{k}_r &= \binom{n-s(k-1)-1}{(i+1)(n-r)!} \binom{n-i-1}{k-1}_{r-1}.
\end{align*}
\]

(54) (55)

For \(r = 1 \), we get relation \([19]\) and for \(s = 1 \) we get the identity given by the authors in \([8]\).

Theorem 29 Let \(r, k, n \) be nonnegative integers such that \(n \geq sk \), we have

\[
\binom{n}{k}_r = \binom{n-r}{s-1} \binom{n-s}{k-1}_{r-1} + (k-r+1) \binom{n-1}{k}_{r-1}.
\]

(56)

Proof. Let us consider the \(r \)th elements. If it belongs to a group containing exactly \(s \) elements, we have \(\binom{n-r}{s-1} \binom{n-s}{k-1}_{r-1} \) ways to choose the remaining \((s-1)\) elements and \(\binom{n-r}{s-1} \binom{n-s}{k-1}_{r-1} \) ways to partition the remaining \((n-s)\) elements on \((k-1)\) parts such that the \((r-1)\) first elements are in distinct parts, and each part, have at least \(s \) elements. Thus we get \(\binom{n-r}{s-1} \binom{n-s}{k-1}_{r-1} \) possibilities. Else, we have \(\binom{n-r}{s-1} \binom{n-s}{k-1}_{r-1} \) possibilities to partition the remaining \((n-1)\) elements into \(k \) parts such that the \((r-1)\) first elements are in distinct parts, and each part, have at least \(s \) elements, then add the \(r \)th elements to on of the \((k-(r-1))\) parts and we have \((k-r+1) \binom{n-1}{k}_{r-1} \) possibilities. It gives \((k-r+1) \binom{n-1}{k}_{r-1} \).

For \(s = 1 \) we get the cross recurrence \([5\ \text{eq}\ 3]\) and for \(r = 1 \) we get the recurrence relation of the \(s \) associated Stirling numbers of the second kind \([20\ \text{eq}\ 4.1]\).

8 Convolution identities (revisited)

The \(s \)-associated \(r \)-Stirling numbers of the three kinds can be expressed as a convolution using the binomial coefficients.

Theorem 30 Let \(r, k \) and \(n \) be nonnegative integers such that \(n \geq sk \) with \(k_1 + \cdots + k_p = k \) and \(r_1 + \cdots + r_p = r \), we have

\[
\binom{k}{k_1, \ldots, k_p}_r \binom{n}{k+r}_r = \sum_{l_i \geq s k_i + (s-1) r_i, l_i + \cdots + l_p = n} \binom{n}{l_1, \ldots, l_p} \binom{l_1 + r_1}{k_1 + r_1}_r \cdots \binom{l_p + r_p}{k_p + r_p}_r.
\]

(57)

Proof. We consider permutations of \(Z_{n+r} \) with \(k+r \) cycles such that the \(r \) first elements are in distinct cycles and each cycle has at least \(s \) elements and we have \(\binom{n+r}{k+r}_r \) possibilities. We color the cycles with \(p \) colors such that each \(r_i \) cycles containing the \(r_i \) elements with \(k_i \) other cycles have the same color, thus we choose the \(k_i \) cycles and we have \(\binom{k_i}{k_i}_r \) possibilities this is to choose the \(l_i \) elements that have the
same color of the \(r_i \) first and we have \(\binom{n}{ l_1, \ldots, l_p} \) possibilities, then consider all the permutations of the \(l_i + r_i \) elements with \(k_i + r_i \) cycles such that the \(r_i \) elements are in distinct cycles and each cycle has at least \(s \) element and we have \(\binom{[l_i + r_i]^{(s)}}{k_i + r_i} \) ways to do it. Summing over all possible values of \(l_i \) gives the result. \(\square \)

Theorem 31 Let \(k, r, k \) and \(n \) be nonnegative integers such that \(n \geq sk \) with \(k_1 + \cdots + k_p = k \) and \(r_1 + \cdots + r_p = r \). The \(s \)-associated \(r \)-Stirling numbers of the second kind satisfy

\[
\left(\begin{array}{c} k \\ k_1, \ldots, k_p \end{array} \right) \binom{n + r}{k + r} = \sum_{l_1 + \cdots + l_p = n \atop l_i \geq sk_i + (s-1)r_i} \binom{n}{l_1, \ldots, l_p} \binom{l_1 + r_1}{k_1 + r_1} \cdots \binom{l_p + r_p}{k_p + r_p} \cdot (s) . \tag{58}
\]

Proof. We use an adapted analogous bijective proof as for the identity \(\text{(57)} \). \(\square \)

Relations \(\text{(57)} \) and \(\text{(58)} \) extend those given by the others [5, Eq 8, Eq 12] to the \(s \)-associated situation.

Theorem 32 Let \(r, k \) and \(n \) be nonnegative integers such that \(n \geq sk \) with \(k_1 + \cdots + k_p = k \) and \(r_1 + \cdots + r_p = r \). The \(s \)-associated \(r \)-Lah numbers satisfy

\[
\left(\begin{array}{c} k \\ k_1, \ldots, k_p \end{array} \right) \binom{n + r}{k + r} = \sum_{l_1 + \cdots + l_p = n \atop l_i \geq sk_i + (s-1)r_i} \binom{n}{l_1, \ldots, l_p} \binom{l_1 + r_1}{k_1 + r_1} \cdots \binom{l_p + r_p}{k_p + r_p} \cdot (s) . \tag{59}
\]

Proof. We use an adapted analogous bijective proof as for the identity \(\text{(57)} \). \(\square \)

For \(s = 1 \), we get

\[
\left(\begin{array}{c} k \\ k_1, \ldots, k_p \end{array} \right) \binom{n + r}{k + r} = \sum_{l_1 + \cdots + l_p = n \atop l_i \geq sk_i + (s-1)r_i} \binom{n}{l_1, \ldots, l_p} \binom{l_1 + r_1}{k_1 + r_1} \cdots \binom{l_p + r_p}{k_p + r_p} . \tag{60}
\]

9 Generating functions

The \(s \)-associated \(r \)-Stirling numbers of the first kind have the following exponential generating function.

Theorem 33 We have

\[
\sum_{n \geq sk + (s-1)r} \binom{n + r}{k + r} \binom{x^n}{n!} = \frac{(-1)^k}{k!} \left(\ln \left(\frac{1}{1 - x} \right) + \sum_{i=1}^{s-1} \frac{x^i}{i} \right)^k \left(\frac{x^{n-1}}{1 - x} \right)^r . \tag{61}
\]

Proof. Using the identity \(\text{(13)} \), we get

\[
\sum_{n \geq sk + (s-1)r} \binom{n + r}{k + r} \binom{x^n}{n!} = \sum_i \binom{i - r(s - 2) - 1}{r - 1} x^i \sum_{n \geq sk + (s-1)r} \binom{n - i}{k} \binom{x^{n-i}}{(n-i)!} ,
\]

from \(\text{(9)} \), we obtain

\[
\sum_{n \geq sk + (s-1)r} \binom{n + r}{k + r} \binom{x^n}{n!} = \frac{1}{k!} \left(\ln \left(\frac{1}{1 - x} \right) - \sum_{i=1}^{s-1} \frac{x^i}{i} \right) \sum_i \binom{i - r(s - 2) - 1}{r - 1} x^i ,
\]

using relation \(\text{(22)} \) we get the result. \(\square \)

The above theorem implies the double generating function.
Theorem 34 The s-associated r-Stirling numbers of the first kind satisfy
\[
\sum_{n,k} \left[\frac{n+r}{k+r} \right]^{(s)} \frac{x^n}{n!} y^k = \frac{\exp \left(y \ln \left(\frac{1}{1-x} \right) - y \sum_{i=0}^{s-1} \frac{x^i}{i!} \right) \left(x^{s-1} \right)^r}{1-x}.
\] (62)

Proof. Interchanging the order of summation and using equation (61) we get the result. \qed

The s-associated r-Stirling numbers of the second kind have the following exponential generating function
\[
\sum_{n \geq sk+(s-1)r} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} = \frac{\exp \left(y - \sum_{i=0}^{s-1} \frac{x^i}{i!} \right) \left(x^{s-1} \right)^r}{1-x}.
\] (63)

Proof. Using the identity (51), we get
\[
\sum_{n \geq sk+(s-1)r} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} = \frac{(k+r-i)!}{k!} \sum_{i=0}^{r} \left(\frac{x^{i-1}}{(s-1)!} \right)^i \sum_{n \geq sk+(s-1)r} \left\{ \frac{n-i}{k+r+i} \right\}^{(s)} \frac{x^n}{n!}.
\]
the second summation can be evaluated using (10) and gives
\[
\sum_{n \geq sk+(s-1)r} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} = \frac{1}{k!} \left(\exp \left(y - \sum_{i=0}^{s-1} \frac{x^i}{i!} \right) \right)^r,
\]
using the binomial theorem we get the result. \qed

The double generating function for s-associated r-Stirling numbers of the second kind is
\[
\sum_{n,k} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} y^k = \exp \left(y \exp \left(x \right) - y \sum_{i=0}^{s-1} \frac{x^i}{i!} \right) \left(x^{s-1} \right)^r.
\] (64)

The s-associated r-Lah numbers have the following exponential generating function
\[
\sum_{n,k} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} y^k = \exp \left(y \exp \left(x \right) - y \sum_{i=0}^{s-1} \frac{x^i}{i!} \right) \left(x^{s-1} \right)^r.
\] (65)

Proof. Using the explicit formula (39) in the left hand side we get
\[
\sum_{n \geq sk+(s-1)r} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} = \frac{1}{k!} \sum_{j=0}^{r} \left(\frac{x^j}{(s-1)!} \right)^r \sum_{n \geq sk+(s-1)r} \left(\frac{n+r+j-(s-1)(k+r)-1}{k+r+j} \right) x^n,
\]
the second summation in the right side, due to relation (22), gives
\[
\sum_{n \geq sk+(s-1)r} \left\{ \frac{n+r}{k+r} \right\}^{(s)} \frac{x^n}{n!} = \frac{1}{k!} \sum_{j=0}^{r} \left(\frac{x^j}{(s-1)!} \right)^r \sum_{j=0}^{r} \left(\frac{x^j}{(s-1)!} \right)^r \left(\frac{1}{1-x} \right)^{r-j}
\]
using the binomial theorem we get the result. \qed

The double generating function of the s-associated r-Lah numbers is given by
Theorem 38

\[
\sum_{n \geq s k + (s-1)r} \sum_{k \geq 0} \left[\begin{array}{c} n+r \\ k+r \end{array}\right]_{r, \lambda, n!} \frac{x^n}{n!} y^k = \left[\exp \left\{ \frac{y}{1-x} \right\} \right] \left[\frac{x^{s-1}}{(1-x)^2} (s-(s-1)x) \right]^r.
\] (66)

Proof. Interchanging the order of summation and using equation (65) we get the result. \(\square\)

10 Conclusion and perspectives

Roughly speaking, there are many recurrence and congruence relations known about the \(r\)-Stirling numbers and the associated Stirling numbers which can be generalized to \([n]\alpha, \beta)\(r\), \([n]\alpha, \beta)\(k\), \([n]\alpha, \beta)\(r\), \([n]\alpha, \beta)\(k\). We have treated a few of these. In this section, we propose some problems:

- Howard \([21]\) gave, as perspectives, an extension of the weighted associated Stirling numbers to the Weighted \(s\)-associated Stirling numbers without specifying the expressions. In this perspective, as continuity to our work, we propose the Weighted \(s\)-associated Stirling numbers of the first and the second kind, denoted \([n]\alpha, \beta)\(k\) and \([n]\alpha, \beta)\(r\), respectively, by the following

\[
\sum_{n \geq s} \left[\begin{array}{c} n \\ k \end{array}\right]_{\lambda}^\alpha \frac{x^n}{n!} = \frac{(-1)^k}{k!} \left(\frac{1}{1-x} \right)^k \left(-\sum_{i=1}^{s-1} \frac{(-\lambda) x^i}{i} \right) \left(\ln (1-x) + \sum_{i=1}^{s-1} \frac{x^i}{i} \right)^k,
\] (67)

where \(\alpha, \beta\) are parameters.

\[
\sum_{n \geq s} \left(\begin{array}{c} n \\ k \end{array}\right)_{r, \lambda, n!} \frac{x^n}{n!} = \frac{1}{k!} \left(\exp (\lambda x) - \sum_{i=0}^{s-1} \frac{(\lambda x)^i}{i!} \right) \left(\exp (x) - \sum_{i=0}^{s-1} \frac{x^i}{i!} \right)^k.
\] (68)

Note that for \(s = 2\), we get weighted associated Stirling numbers. It seems possible to derive analog relations of the weighted associated Stirling numbers, and establish other identities.

- By the same reasoning, it is interesting to extend these generalization to the \(r\)-Stirling numbers. We define the weighted \(s\)-associated \(r\)-Stirling numbers of the first and the second kind respectively

\[
\sum_{n} \left[\begin{array}{c} n+r \\ k+r \end{array}\right]_{r, \lambda, n!} \frac{x^n}{n!} = \frac{(-1)^k}{k!} \left(\frac{1}{1-x} \right)^k \left(-\sum_{i=1}^{s-1} \frac{(-\lambda) x^i}{i} \right) \left(\ln (1-x) + \sum_{i=1}^{s-1} \frac{x^i}{i} \right)^k \left(\frac{x^{s-1}}{1-x} \right),
\] (69)

where \(\alpha, \beta\) are parameters.

\[
\sum_{n} \left(\begin{array}{c} n+r \\ k+r \end{array}\right)_{r, \lambda, n!} \frac{x^n}{n!} = \frac{1}{k!} \left(\exp (\lambda x) - \sum_{i=0}^{s-1} \frac{(\lambda x)^i}{i!} \right) \left(\exp (x) - \sum_{i=0}^{s-1} \frac{x^i}{i!} \right)^k \left(\exp (x) - \sum_{i=0}^{s-2} \frac{x^i}{i!} \right)^r.
\] (70)

It will be nice to investigate the combinatorial meaning and drive all the combinatorial identities. Also, for \(s = 1\), we get the definition of the weighted \(r\)-Stirling numbers as follows

\[
\sum_{n \geq s k + (s-1)r} \left[\begin{array}{c} n+r \\ k+r \end{array}\right]_{r, \lambda, n!} \frac{x^n}{n!} = \frac{(-1)^k}{k!} \left(\frac{1}{1-x} \right)^k \left(\ln (1-x) \right)^k,
\] (71)

\[
\sum_{n \geq s k + (s-1)r} \left(\begin{array}{c} n+r \\ k+r \end{array}\right)_{r, \lambda, n!} \frac{x^n}{n!} = \frac{1}{k!} \left(\exp (\lambda x) - 1 \right) \left(\exp (x) - 1 \right)^k \exp (rx).
\] (72)

- It will be nice to investigate the different generalization (weighted, degenerated) of the Lah numbers and \(r\)-Lah numbers.

- The authors and Belkhir \([4]\) define the \([n]_{k}^{\alpha, \beta}\) as the weight of a partition of \(n\) elements into \(k\) lists such that the element inserted as head list has weight \(\beta\) except the first inserted one which has weight 1 and the element inserted after an other one has weight \(\alpha\). This interpretation allow an extension to the \(s\)-associated aspect by adding the known restriction (at least \(s\) elements by list).
• An other perspective of this work is to consider the Whitney numbers (see [9, 10, 11, 2]) and \(r \)-Whitney numbers (see [16]) and to introduce the \(s \)-associated situation by two approaches: the first one via the generating function and the second one using the combinatorial interpretation (see [6]).

11 Tables of the \(s \)-associated \(r \)-Stirling numbers of the three kinds

\(n \) \(k \)	3	4	5	6	7	8	
6	6						
7	72						
8	720	60					
9	7200	1320					
10	75600	21420	630				
11	8467200	3205440	21840				
12	101606400	47537280	519120	7560			
13	1306368000	720057600	10795680	378000			
14	17962560000	11297880000	213804360	12335400	103950		
15	263450880000	184823040000	4191881760	339255840	7068600		
16	41098337280000	31640678784000	83018048256	8627739120	302702400	1621620	
17	6799906713600000	5670985582080000	1679434428672	212106454560	10621490880	143783640	

Some values of the 2-associated 3-Stirling numbers of the first kind

\(n \) \(k \)	2	3	4	5	6	
6	24					
7	240					
8	2160					
9	20160	1680				
10	201600	36960				
11	2177280	616896				
12	25401600	9616320	201600			
13	319334400	145774080	7761600			
14	4311014400	2329015680	206569440			
15	622702080000	391659840000	4817292480	38438400		
16	9589612032000	6728987865600	106815893184	2287084800		
17	156920924160000	120809864448000	23376236083200	88691803200		
18	2719962685440000	2268394232832000	514852847308800	28861664832000	10762752000	
19	49796239933440000	44538726503520000	11537634473164800	863628051686400	914833920000	

Some values of the 3-associated 2-Stirling numbers of the first kind

\(n \) \(k \)	3	4	5	6	
9	720				
10	15120				
11	241920				
12	3628800	120960			
13	54432000	4536000			
14	838252800	117754560			
15	134120448000	268240896000	266112000		
16	224172748000	579168921600	1556755200		
17	39230231040000	12391009344000	593902108800		
18	719220902400000	2654453628288000	19024845840000	8072064000	
19	13809041326080000	592364034662400000	5607556708360000	678053376000	
20	2774361939148800000	13356216902246400000	158911827250176000	356510778624000	
Some values of the 3-associated 3-Stirling numbers of the first kind

$n \setminus k$	3	4	5	6	7	8
6	6					
7	36					
8	150	60				
9	540	660				
10	1806	4620	630			
11	5796	26376	10920			
12	18150	134316	114660	7560		
13	55980	637020	947520	189000		
14	171006	2882220	6798330	2772000	103950	
15	519156	12623952	44482680	31221960	3534300	
16	1569750	54031692	273060216	299459160	68918850	1621620
17	4733820	227425380	1690815216	2578495920	1013632620	71891820
18	14250606	945535500	9069810750	20561420880	12509597100	1797295500
19	42850116	3895163928	50074806600	154904109360	136912175400	33423390000

Some values of the 2-associated 3-Stirling numbers of the second kind

$n \setminus k$	2	3	4	5	6	7
6	6					
7	20					
8	50					
9	112	210				
10	238	1540				
11	492	7476				
12	1002	30240	12600			
13	2024	110550	161700			
14	4070	379764	1286670			
15	8164	1252680	8168160	1201200		
16	16354	4020016	45411366	23823800		
17	32736	12656826	231591360	281331050		
18	65502	39315588	1112731620	2574371800	168168000	
19	131036	120953436	5122253136	20176035880	4764760000	
20	262106	369535392	22845529356	142501719360	78189711600	
21	524248	1123340382	99494683548	934588410756	973654882200	32590958400

Some values of the 3-associated 2-Stirling numbers of the second kind
\[
\begin{array}{|c|cccccc|}
\hline
n \backslash k & 3 & 4 & 5 & 6 & 7 \\
\hline
9 & 90 \\
10 & 630 \\
11 & 2940 \\
12 & 11508 & 7560 \\
13 & 40950 & 94500 \\
14 & 137610 & 734580 \\
15 & 445896 & 4569180 & 831600 \\
16 & 1410552 & 24959220 & 16216200 \\
17 & 4390386 & 125381256 & 188558370 \\
18 & 13514046 & 594714120 & 1701649950 & 126126000 \\
19 & 41278068 & 2707865160 & 13172479320 & 3531528000 \\
20 & 125405532 & 11965834608 & 92024532600 & 57320062800 \\
21 & 379557198 & 51706343676 & 597753095940 & 706637731800 & 25729704000 \\
22 & 1145747538 & 219672404652 & 3679670518524 & 7344721664280 & 977728752000 \\
23 & 3452182656 & 921197481924 & 21746705483880 & 67927123063800 & 2110264564000 \\
24 & 10388002848 & 3824306218236 & 124527413730720 & 5772111312567600 & 340398980922000 \\
\hline
\end{array}
\]

Some values of the 3-associated 3-Stirling numbers of the second kind

\[
\begin{array}{|c|cccccc|}
\hline
n \backslash k & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
6 & 48 \\
7 & 864 \\
8 & 12240 & 960 \\
9 & 166320 & 31680 \\
10 & 2298240 & 735840 & 20160 \\
11 & 33022080 & 15200640 & 1048320 \\
12 & 497871360 & 302279040 & 35925120 & 483840 \\
13 & 7903526400 & 5994777600 & 104328000 & 36288000 \\
14 & 13220441600 & 120708403200 & 28101427200 & 1716422400 \\
15 & 2328905779200 & 2491766323200 & 732872448000 & 66501388000 \\
16 & 43153254144000 & 53016855091200 & 18942597273600 & 2325792268800 \\
17 & 839788479129600 & 1166096823091200 & 491947097241600 & 77022028752000 \\
\hline
\end{array}
\]

Some values for the 2-associated 3-Lah numbers

\[
\begin{array}{|c|cccc|}
\hline
n \backslash k & 2 & 3 & 4 & 5 \\
\hline
6 & 216 \\
7 & 2880 \\
8 & 33120 \\
9 & 383040 & 45360 \\
10 & 4636800 & 1330560 \\
11 & 59512320 & 28667520 \\
12 & 812851200 & 562464000 & 163296000 \\
13 & 11815372800 & 10777536000 & 838252800 \\
14 & 182499609600 & 207886694400 & 28979596800 \\
15 & 2988969984000 & 4097379686400 & 859328870400 & 93405312000 \\
16 & 5178309472800 & 8316809804800 & 23799673497600 & 7410154752000 \\
17 & 946756242432000 & 1745745281280000 & 640760440320000 & 374866652160000 \\
\hline
\end{array}
\]

Some values for the 3-associated 2-Lah numbers
Some values for the 3-associated 3-Lah numbers

\(n\backslash k\)	3	4	5	6
9	19440			
10	544320			
11	11249280			
12	212647680	9797760		
13	3940876800	489888000		
14	73766246400	16525555200		
15	1414970726400	479001600000	6466521600	
16	2802159360000	12989565388800	504388684800	
17	575115187046400	342959397580800	25107347865600	
18	1225552417689600	9007261046784000	1030447401984000	5884534656000
19	271347662057472000	2382687312445440000	383096282849280000	659067881472000
20	62423143630848000000	639703839430656000000	135090085190860800000	453501470822400000

References

[1] J. C. Ahuja and E. A. Enneking. Concavity property and a recurrence relation for associated Lah numbers. Fibonacci Quart., 17(2):158–161, 1979.

[2] C. B. Corcino, R. B. Corcino, and N. Acala. Asymptotic estimates for r-Whitney numbers of the second kind. Journal of Applied Mathematics, 2014(354053):7, 2014. 10, Art. 07.2.3. (2007).

[3] H. Belbachir and A. Belkhir. Cross recurrence relations for r-Lah numbers. Ars Combin., 110:199–203, 2013.

[4] H. Belbachir, A. Belkhir, and I. E. Bousbaa. Combinatorial approach of the generalized Stirling numbers. Submitted.

[5] H. Belbachir and I. E. Bousbaa. Convolution identities for the r-Stirling numbers. Submitted.

[6] H. Belbachir and I. E. Bousbaa. A simple combinatorial interpretation of the Whitney and r-Whitney numbers. Submitted.

[7] H. Belbachir and I. E. Bousbaa. Translated Whitney and r-Whitney numbers: A combinatorial approach. Journal of Integer Sequences, 16:13.8.6, 2013.

[8] H. Belbachir and I. E. Bousbaa. Combinatorial identities for the r-Lah numbers. Ars Combin., 117, 2014.

[9] M. Benoumhani. On Whitney numbers of Dowling lattices. Discrete Math., 159(1-3):13–33, 1996.

[10] M. Benoumhani. On some numbers related to Whitney numbers of Dowling lattices. Adv. in Appl. Math., 19(1):106–116, 1997.

[11] M. Benoumhani. Log-concavity of Whitney numbers of Dowling lattices. Adv. in Appl. Math., 22(2):186–189, 1999.

[12] A. Z. Broder. The r-Stirling numbers. Discrete Math., 49(3):241–259, 1984.

[13] L. Carlitz. Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math., 15:51–88, 1979.

[14] L. Carlitz. Weighted Stirling numbers of the first and second kind, I. Fibonacci Quart., 18(2):147–162, 1980.
[15] L. Carlitz. Weighted Stirling numbers of the first and second kind, II. Fibonacci Quart., 18(3):242–257, 1980.

[16] G.-S. Cheon and J.-H. Jung. r-Whitney numbers of Dowling lattices. Discrete Math., 312(15):2337–2348, 2012.

[17] T. Comtet. Advanced Combinatorics. D. Reidel, Boston, DC, 1974.

[18] H. W. Gould. Combinatorial identities. Henry W. Gould, Morgantown, W.Va., 1972. A standardized set of tables listing 500 binomial coefficient summations.

[19] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley Publishing Company, Reading, MA, second edition, 1994. A foundation for computer science.

[20] F. T. Howard. Associated Stirling numbers. Fibonacci Quart., 18(4):303–315, 1980.

[21] F. T. Howard. Weighted associated Stirling numbers. Fibonacci Quart., 22(2):156–165, 1984.

[22] L. C. Hsu and P. J.-S. Shiue. A unified approach to generalized Stirling numbers. Adv. in Appl. Math., 20(3):366–384, 1998.

[23] J. Riordan. An introduction to combinatorial analysis. Dover Publications Inc., Mineola, NY, 2002.

[24] N. J. A. Sloane. The on-line encyclopedia of integer sequences. Notices Amer. Math. Soc., 50(8):912–915, 2003.