Functional Space $C(\Omega)$, $C_0(\Omega)$

Katuhiko Kanazashi
Shizuoka City
Japan

Hiroyuki Okazaki1
Shinshu University
Nagano, Japan

Yasunari Shidama2
Shinshu University
Nagano, Japan

Summary. In this article, first we give a definition of a functional space which is constructed from all complex-valued continuous functions defined on a compact topological space. We prove that this functional space is a Banach algebra. Next, we give a definition of a function space which is constructed from all complex-valued continuous functions with bounded support. We also prove that this function space is a complex normed space.

MML identifier: CC0SP2, version: 7.12.01 4.167.1133

The terminology and notation used here have been introduced in the following articles: [6], [24], [25], [1], [26], [5], [4], [2], [21], [15], [3], [18], [19], [23], [22], [17], [7], [11], [12], [9], [10], [13], [8], [14], [20], and [16].

Let X be a topological structure and let f be a function from the carrier of X into \mathbb{C}. We say that f is continuous if and only if:

(Def. 1) For every subset Y of \mathbb{C} such that Y is closed holds $f^{-1}(Y)$ is closed.

Let X be a 1-sorted structure and let y be a complex number. The functor $X \mapsto y$ yielding a function from the carrier of X into \mathbb{C} is defined by:

(Def. 2) $X \mapsto y = (\text{the carrier of } X) \mapsto y$.

One can prove the following proposition

(1) Let X be a non empty topological space, y be a complex number, and f be a function from the carrier of X into \mathbb{C}. If $f = X \mapsto y$, then f is continuous.

Let X be a non empty topological space and let y be a complex number. Observe that $X \mapsto y$ is continuous.

1The work of this author was supported by JSPS KAKENHI 22300285.

2The work of this author was supported by JSPS KAKENHI 22300285.
Let X be a non empty topological space. One can verify that there exists a function from the carrier of X into \mathbb{C} which is continuous.

The following propositions are true:

(2) Let X be a non empty topological space and f be a function from the carrier of X into \mathbb{C}. Then f is continuous if and only if for every subset Y of \mathbb{C} such that Y is open holds $f^{-1}(Y)$ is open.

(3) Let X be a non empty topological space and f be a function from the carrier of X into \mathbb{C}. Then f is continuous if and only if for every point x of X and for every subset V of \mathbb{C} such that $f(x) \in V$ and V is open there exists a subset W of X such that $x \in W$ and W is open and $f \circ W \subseteq V$.

(4) Let X be a non empty topological space and f, g be continuous functions from the carrier of X into \mathbb{C}. Then $f + g$ is a continuous function from the carrier of X into \mathbb{C}.

(5) Let X be a non empty topological space, a be a complex number, and f be a continuous function from the carrier of X into \mathbb{C}. Then $a \cdot f$ is a continuous function from the carrier of X into \mathbb{C}.

(6) Let X be a non empty topological space and f, g be continuous functions from the carrier of X into \mathbb{C}. Then $f - g$ is a continuous function from the carrier of X into \mathbb{C}.

(7) Let X be a non empty topological space and f, g be continuous functions from the carrier of X into \mathbb{C}. Then $f \cdot g$ is a continuous function from the carrier of X into \mathbb{C}.

(8) Let X be a non empty topological space and f be a continuous function from the carrier of X into \mathbb{C}. Then $|f|$ is a function from the carrier of X into \mathbb{R} and $|f|$ is continuous.

Let X be a non empty topological space. The \mathbb{C}-continuous functions of X yields a subset of \mathbb{C}-Algebra(the carrier of X) and is defined by:

(Def. 3) The \mathbb{C}-continuous functions of $X = \{f : f$ ranges over continuous functions from the carrier of X into $\mathbb{C}\}$.

Let X be a non empty topological space. Observe that the \mathbb{C}-continuous functions of X is non empty.

Let X be a non empty topological space. Observe that the \mathbb{C}-continuous functions of X is \mathbb{C}-additively linearly closed and multiplicatively closed.

Let X be a non empty topological space. The \mathbb{C}-algebra of continuous functions of X yielding a complex algebra is defined by the condition (Def. 4).

(Def. 4) The \mathbb{C}-algebra of continuous functions of $X = \{$(the \mathbb{C}-continuous functions of X, mult$(\mathbb{C}$-continuous functions of X, \mathbb{C}-Algebra$(\text{the carrier of } X))$), Add$(\mathbb{C}$-continuous functions of X, \mathbb{C}-Algebra$(\text{the carrier of } X))$), Mult$(\mathbb{C}$-continuous functions of X, \mathbb{C}-Algebra$(\text{the carrier of } X))$, One$(\mathbb{C}$-continuous functions of X, \mathbb{C}-Algebra$(\text{the carrier of } X))$\}.
Next we state the proposition

(9) Let \(X \) be a non empty topological space. Then the \(\mathbb{C} \)-algebra of continuous functions of \(X \) is a complex subalgebra of \(\mathbb{C}\text{-Algebra}(\text{the carrier of } X) \).

Let \(X \) be a non empty topological space. Observe that the \(\mathbb{C} \)-algebra of continuous functions of \(X \) is strict and non empty.

Let \(X \) be a non empty topological space. One can check that the \(\mathbb{C} \)-algebra of continuous functions of \(X \) is Abelian, add-associative, right zeroed, right complementable, vector distributive, scalar distributive, scalar associative, scalar unital, commutative, associative, right unital, right distributive, vector distributive, scalar associative, and vector associative.

Next we state several propositions:

(10) Let \(X \) be a non empty topological space, \(F, G, H \) be vectors of the \(\mathbb{C} \)-algebra of continuous functions of \(X \), and \(f, g, h \) be functions from the carrier of \(X \) into \(\mathbb{C} \). Suppose \(f = F \) and \(g = G \) and \(h = H \). Then \(H = F + G \) if and only if for every element \(x \) of the carrier of \(X \) holds \(h(x) = f(x) + g(x) \).

(11) Let \(X \) be a non empty topological space, \(F, G \) be vectors of the \(\mathbb{C} \)-algebra of continuous functions of \(X \), and \(f, g \) be functions from the carrier of \(X \) into \(\mathbb{C} \), and \(a \) be a complex number. Suppose \(f = F \) and \(g = G \). Then \(G = a \cdot F \) if and only if for every element \(x \) of \(X \) holds \(g(x) = a \cdot f(x) \).

(12) Let \(X \) be a non empty topological space, \(F, G, H \) be vectors of the \(\mathbb{C} \)-algebra of continuous functions of \(X \), and \(f, g, h \) be functions from the carrier of \(X \) into \(\mathbb{C} \). Suppose \(f = F \) and \(g = G \) and \(h = H \). Then \(H = F \cdot G \) if and only if for every element \(x \) of the carrier of \(X \) holds \(h(x) = f(x) \cdot g(x) \).

(13) For every non empty topological space \(X \) holds
\[0_{\text{the } \mathbb{C}\text{-algebra of continuous functions of } X} = X \mapsto 0_{\mathbb{C}}. \]

(14) For every non empty topological space \(X \) holds
\[1_{\text{the } \mathbb{C}\text{-algebra of continuous functions of } X} = X \mapsto 1_{\mathbb{C}}. \]

(15) Let \(A \) be a complex algebra and \(A_1, A_2 \) be complex subalgebras of \(A \). Suppose the carrier of \(A_1 \subseteq \text{the carrier of } A_2 \). Then \(A_1 \) is a complex subalgebra of \(A_2 \).

(16) Let \(X \) be a non empty compact topological space. Then the \(\mathbb{C} \)-algebra of continuous functions of \(X \) is a complex subalgebra of the \(\mathbb{C} \)-algebra of bounded functions of the carrier of \(X \).

Let \(X \) be a non empty compact topological space. The \(\mathbb{C} \)-continuous functions norm of \(X \) yields a function from the \(\mathbb{C} \)-continuous functions of \(X \) into \(\mathbb{R} \) and is defined by:
(Def. 5) The C-continuous functions norm of $X = \langle \text{C-BoundedFunctionsNorm (the carrier of } X) \rangle$ \{the C-continuous functions of X\}.

Let X be a non empty compact topological space. The C-normed algebra of continuous functions of X yields a normed complex algebra structure and is defined by the condition (Def. 6).

(Def. 6) The C-normed algebra of continuous functions of $X = \langle \text{the C-continuous functions of } X, \text{mult}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{Add}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{Mult}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{One}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{Zero}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{the C-continuous functions norm of } X \rangle$.

Let X be a non empty compact topological space. Note that the C-normed algebra of continuous functions of X is non empty and strict.

Let X be a non empty compact topological space. Observe that the C-normed algebra of continuous functions of X is unital.

Next we state the proposition

(17) Let X be a non empty compact topological space. Then the C-normed algebra of continuous functions of X is a complex algebra.

Let X be a non empty compact topological space. One can check that the C-normed algebra of continuous functions of X is right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, associative, commutative, right distributive, right unital, and vector associative.

One can prove the following proposition

(18) Let X be a non empty compact topological space and F be a point of the C-normed algebra of continuous functions of X. Then $(\text{Mult}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)))(1_c, F) = F$.

Let X be a non empty compact topological space. Observe that the C-normed algebra of continuous functions of X is vector distributive, scalar distributive, scalar associative, and scalar unital.

We now state a number of propositions:

(19) Let X be a non empty compact topological space. Then the C-normed algebra of continuous functions of X is a complex linear space.

(20) Let X be a non empty compact topological space. Then $X \mapsto 0 = \langle \text{the C-normed algebra of continuous functions of } X \rangle$.

(21) Let X be a non empty compact topological space and F be a point of the C-normed algebra of continuous functions of X. Then $0 \leq \|F\|$.

(22) Let X be a non empty compact topological space, f, g, h be functions from the carrier of X into \mathbb{C}, and F, G, H be points of the C-normed algebra of continuous functions of X. Then

\[\text{Mult}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X), \text{Add}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{Mult}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{One}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{Zero}(\text{the C-continuous functions of } X, \text{C-Algebra (the carrier of } X)), \text{the C-continuous functions norm of } X \rangle. \]
algebra of continuous functions of X. Suppose $f = F$ and $g = G$ and $h = H$. Then $H = F + G$ if and only if for every element x of X holds $h(x) = f(x) + g(x)$.

(23) Let a be a complex number, X be a non empty compact topological space, f, g be functions from the carrier of X into \mathbb{C}, and F, G be points of the \mathbb{C}-normed algebra of continuous functions of X. Suppose $f = F$ and $g = G$. Then $G = a \cdot F$ if and only if for every element x of X holds $g(x) = a \cdot f(x)$.

(24) Let X be a non empty compact topological space, f, g, h be functions from the carrier of X into \mathbb{C}, and F, G, H be points of the \mathbb{C}-normed algebra of continuous functions of X. Suppose $f = F$ and $g = G$ and $h = H$. Then $H = F \cdot G$ if and only if for every element x of X holds $h(x) = f(x) \cdot g(x)$.

(25) Let X be a non empty compact topological space. Then $\|0\|_{\text{the } \mathbb{C}\text{-normed algebra of continuous functions of } X} = 0$.

(26) Let X be a non empty compact topological space and F be a point of the \mathbb{C}-normed algebra of continuous functions of X. Suppose $\|F\| = 0$. Then $F = 0$ in the \mathbb{C}-normed algebra of continuous functions of X.

(27) Let a be a complex number, X be a non empty compact topological space, and F be a point of the \mathbb{C}-normed algebra of continuous functions of X. Then $\|a \cdot F\| = |a| \cdot \|F\|$.

(28) Let X be a non empty compact topological space and F, G be points of the \mathbb{C}-normed algebra of continuous functions of X. Then $\|F + G\| \leq \|F\| + \|G\|$.

Let X be a non empty compact topological space. Observe that the \mathbb{C}-normed algebra of continuous functions of X is discernible, reflexive, and complex normed space-like.

The following propositions are true:

(29) Let X be a non empty compact topological space, f, g, h be functions from the carrier of X into \mathbb{C}, and F, G, H be points of the \mathbb{C}-normed algebra of continuous functions of X. Suppose $f = F$ and $g = G$ and $h = H$. Then $H = F - G$ if and only if for every element x of X holds $h(x) = f(x) - g(x)$.

(30) Let X be a complex Banach space, Y be a subset of X, and s_1 be a sequence of X. Suppose Y is closed and $\text{rng } s_1 \subseteq Y$ and s_1 is \mathbb{C}-Cauchy. Then s_1 is convergent and $\lim s_1 \in Y$.

(31) Let X be a non empty compact topological space and Y be a subset of the \mathbb{C}-normed algebra of bounded functions of the carrier of X. If Y is the \mathbb{C}-continuous functions of X, then Y is closed.

(32) Let X be a non empty compact topological space and s_1 be a sequence
of the C-normed algebra of continuous functions of X. If s_1 is C-Cauchy, then s_1 is convergent.

Let X be a non empty compact topological space. One can verify that the C-normed algebra of continuous functions of X is complete.

Let X be a non empty compact topological space. Observe that the C-normed algebra of continuous functions of X is Banach Algebra-like.

Next we state three propositions:

(33) For every non empty topological space X and for all functions f, g from the carrier of X into C holds $\text{support}(f + g) \subseteq \text{support } f \cup \text{support } g$.

(34) Let X be a non empty topological space, a be a complex number, and f be a function from the carrier of X into C. Then $\text{support}(a \cdot f) \subseteq \text{support } f$.

(35) For every non empty topological space X and for all functions f, g from the carrier of X into C holds $\text{support}(f \cdot g) \subseteq \text{support } f \cup \text{support } g$.

Let X be a non empty topological space. The CC_0-functions of X yielding a non empty subset of the C-vector space of the carrier of X is defined by the condition (Def. 7).

(Def. 7) The CC_0-functions of $X = \{f; f$ ranges over functions from the carrier of X into C: f is continuous $\land \lor_{Y: \text{non empty subset of } X} (Y$ is compact $\land \land_{A: \text{subset of } X} (A = \text{support } f \Rightarrow \overline{A}$ is a subset of $Y))\}$.

The following propositions are true:

(36) Let X be a non empty topological space. Then the CC_0-functions of X is a non empty subset of C-Algebra(the carrier of X).

(37) Let X be a non empty topological space and W be a non empty subset of C-Algebra(the carrier of X). Suppose $W = \text{the } CC_0$-functions of X. Then W is C-additively linearly closed.

(38) For every non empty topological space X holds the CC_0-functions of X is add closed.

(39) For every non empty topological space X holds the CC_0-functions of X is linearly closed.

Let X be a non empty topological space. Observe that the CC_0-functions of X is non empty and linearly closed.

The following propositions are true:

(40) Let V be a complex linear space and V_1 be a subset of V. Suppose V_1 is linearly closed and V_1 is not empty. Then $(V_1, \text{Zero}(V_1, V), \text{Add}(V_1, V), \text{Mult}(V_1, V))$ is a subspace of V.

(41) Let X be a non empty topological space. Then $(\text{the } CC_0$-functions of X, $\text{Zero}(\text{the } CC_0$-functions of X, the C-vector space of the carrier of X),$\text{Add}(\text{the } CC_0$-functions of X, the C-vector space of the carrier of X),$\text{Mult}(\text{the } CC_0$-functions of X, the C-vector space of the carrier of $X))$ is a subspace of the C-vector space of the carrier of X.
Let X be a non empty topological space. The \mathbb{C}-vector space of C_0-functions of X yielding a complex linear space is defined by the condition (Def. 8).

(Def. 8) The \mathbb{C}-vector space of C_0-functions of $X = \{\text{the } \mathbb{C}C_0\text{-functions of } X, \text{Zero}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X), \text{Add}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X), \text{Mult}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X)\}$.

Next we state the proposition

(42) Let X be a non empty topological space and x be a set. If $x \in \text{the } \mathbb{C}C_0\text{-functions of } X$, then $x \in \mathbb{C}$-BoundedFunctions (the carrier of X).

Let X be a non empty topological space. The $\mathbb{C}C_0$-functions norm of X yielding a function from the $\mathbb{C}C_0$-functions of X into \mathbb{R} is defined by:

(Def. 9) The $\mathbb{C}C_0$-functions norm of $X = (\mathbb{C}$-BoundedFunctionsNorm (the carrier of $X)) (\text{the } \mathbb{C}C_0\text{-functions of } X$.

Let X be a non empty topological space. The \mathbb{C}-normed space of C_0-functions of X yielding a complex normed space structure is defined by the condition (Def. 10).

(Def. 10) The \mathbb{C}-normed space of C_0-functions of $X = \{\text{the } \mathbb{C}C_0\text{-functions of } X, \text{Zero}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X), \text{Add}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X), \text{Mult}(\text{the } \mathbb{C}C_0\text{-functions of } X, \text{the } \mathbb{C}\text{-vector space of the carrier of } X), \text{the } \mathbb{C}C_0\text{-functions norm of } X\}$.

Let X be a non empty topological space. One can check that the \mathbb{C}-normed space of C_0-functions of X is strict and non empty.

One can prove the following propositions:

(43) Let X be a non empty topological space and x be a set. Suppose $x \in \text{the } \mathbb{C}C_0\text{-functions of } X$. Then $x \in \mathbb{C}$-continuous functions of X.

(44) For every non empty topological space X holds

$0_{\text{the } \mathbb{C}\text{-vector space of } C_0\text{-functions of } X} = X \mapsto 0$.

(45) For every non empty topological space X holds

$0_{\text{the } \mathbb{C}\text{-normed space of } C_0\text{-functions of } X} = X \mapsto 0$.

(46) Let a be a complex number, X be a non empty topological space, and F, G be points of the \mathbb{C}-normed space of C_0-functions of X. Then $\|F\| = 0$ iff $F = 0$ the \mathbb{C}-normed space of C_0-functions of X and $\|a \cdot F\| = |a| \cdot \|F\|$ and $\|F + G\| \leq \|F\| + \|G\|$.

Let X be a non empty topological space. Note that the \mathbb{C}-normed space of C_0-functions of X is reflexive, discernible, complex normed space-like, vector distributive, scalar distributive, scalar associative, scalar unital, Abelian, add-associative, right zeroed, and right complementable.

The following proposition is true
(47) Let X be a non empty topological space. Then the C-normed space of C_0-functions of X is a complex normed space.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[8] Noboru Endou. Banach algebra of bounded complex linear operators. Formalized Mathematics, 12(3):237–242, 2004.
[9] Noboru Endou. Banach space of absolute summable complex sequences. Formalized Mathematics, 12(2):191–194, 2004.
[10] Noboru Endou. Complex Banach space of bounded linear operators. Formalized Mathematics, 12(2):201–209, 2004.
[11] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93–102, 2004.
[12] Noboru Endou. Complex linear space of complex sequences. Formalized Mathematics, 12(2):109–117, 2004.
[13] Noboru Endou. Complex valued functions space. Formalized Mathematics, 12(3):231–235, 2004.
[14] Noboru Endou. Continuous functions on real and complex normed linear spaces. Formalized Mathematics, 12(3):403–419, 2004.
[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
[16] Katuhiko Kanazashi, Hiroyuki Okazaki, and Yasunari Shidama. Banach algebra of bounded complex-valued functionals. Formalized Mathematics, 19(2):121–126, 2011, doi:10.2478/v10037-011-0019-0.
[17] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[18] Chanapat Pacharapokin, Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Complex function differentiability. Formalized Mathematics, 17(2):67–72, 2009, doi:10.2478/v10037-009-0007-9.
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
[20] Yasunari Shidama, Hirofumi Suzuki, and Noboru Endou. Banach algebra of bounded functionals. Formalized Mathematics, 16(2):115–122, 2008, doi:10.2478/v10037-008-0017-z.
[21] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
[26] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 30, 2011