Analysis of SEER Adenosquamous Carcinoma Data to Identify Cause Specific Survival Predictors and Socioeconomic Disparities

Rex Cheung

Abstract

Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) adenosquamous carcinoma data to identify predictive models and potential disparities in outcome. Materials and Methods: This study analyzed socio-economic, staging and treatment factors available in the SEER database for adenosquamous carcinoma. For the risk modeling, each factor was fitted by a generalized linear model to predict the cause specific survival. An area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. Results: A total of 20,712 patients diagnosed from 1973 to 2009 were included in this study. The mean follow up time (S.D.) was 54.2 (78.4) months. Some 2/3 of the patients were female. The mean (S.D.) age was 63 (13.8) years. SEER stage was the most predictive factor of outcome (ROC area of 0.71). 13.9% of the patients were un-staged and had risk of cause specific death of 61.3% that was higher than the 45.3% risk for the regional disease and lower than the 70.3% for metastatic disease. Sex, site, radiotherapy, and surgery had ROC areas of about 0.55-0.65. Rural residence and race contributed to socioeconomic disparity for treatment outcome. Radiotherapy was underused even with localized and regional stages when the intent was curative. This under use was most pronounced in older patients. Conclusions: Anatomic stage was predictive and useful in treatment selection. Under-staging may have contributed to poor outcome.

Keywords: Adenosquamous carcinoma - radiotherapy - SEER registry - under usage - cause specific survival

Introduction

SEER registry has massive amount of data available for analysis, however, manipulating this data pipeline could be challenging. SEER Clinical Outcome Prediction Expert (SCOPE) (Cheung, 2014c; Cheung, 2014a; Cheung, 2014d; Cheung, 2014b) was used mine SEER data and construct accurate and efficient prediction models (Cheung et al., 2001a; Cheung et al., 2001b). The areas under the receiver operating characteristic curve (ROC) were computed (Cheung, 2014a; 2014b; 2014c; 2014b; 2014e; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2014b; 2014e; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2014b; 2014e; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). SCOPE provides SEER-adapted programs for user friendly exploratory studies, univariate recoding and parsing (Cheung, 2014a; 2014b; 2014c; 2014b; 2014e; Cheung, 2015a; 2015b; Cheung, 2015 (In press)).
Table 1. The Risk Models Include the Socio-demographic, Tumor and Treatment Factors for Adenosquamous Carcinoma

Number	%
Mean	63
S.D.	14
< 20 years old	7.03
≥ 20 years old	99.97
Female	13109 63.29
Male	5603 36.71
Localized, I	9001 32.84
Regional, II	6196 29.92
Distant, III	4957 23.35
Untreated/other, IV	2079 13.80
Lung and bronchus	1497 45.73
Others	11240 54.27
Well differentiated, Grade I	790 3.81
Moderately differentiated, Grade II	4017 19.39
Poorly differentiated, Grade III	8793 42.45
Undifferentiated, anaplastic, Grade IV	786 3.77
Unknown	6332 30.57
Counties in metropolitan areas 0.01 million pop/Counties in metropolitan areas of 250,000 to 1 million pop/Urban pop of ge 20,000 adjacent to a metropolitan area	18446 89.06
versus	2266 10.94
Others	11052 57.71
≤ 50000	8760 42.29
≥ 50000	10557 50.97
< 25%	10555 49.03
≥ 25%	10634 49.57
Black	2078 10.03
None	11291 54.51
Beam radiation	6275 32.47
Combination of beam with implants or isotopes	1491 7.20
Refused	172 0.83
Other radiation (1973-1987 cases only)	264 1.27
Recommended, unknown if administered	293 1.41
Radioisotopes	17 0.08
Radioactive implants	192 0.93
Radiation, NOS method or source not specified	149 0.72
Unknown	118 0.57
Surgery performed	13639 65.45
Recommended but not performed, unknown reason	992 4.62
Not recommended	4227 20.41
Recommended but not performed, patient refused	100 0.48
Not recommended, contraindicated due to other conditions	389 1.88
Recommended, unknown if performed	66 0.32
Unknown, death certificate or autopsy only case	7 0.03
Death	5285 15.86
Alive or dead of other cause	8163 39.41

Results

There were 20712 patients included in this study (Table 1). The follow up (S.D.) was 54 (72.4) months. 64% of the patients were female. The mean (S.D.) age was 63 (13.8) years. There were 60% adenosquamous carcinoma patients listed from SEER database were adults. There were 7 patients younger than 20 years old in the SEER data, and it was a poor prognostic factor (Table 1 and Table 2). There is a significant female to male difference in risk of cause specific death (Table 2) favoring the female sex. 46% of the patients had lung cancers. Uterus and uterine cervix were also the common anatomic sites (Table 3). 30.6% of the tumors were not graded. Unknown grade has the highest risk of cause specific death at 51.8%. SEER stage model (localized, regional, distant, un-staged/others) was the most predictive model (ROC area or 0.71). A 4-tiered staging model was optimized to a 3-tiered model (with a ROC area of 0.67) by SCOPE (Table 1). ROC areas were used to optimize the risk models. For example, the SEER staging could be abstracted down to 3-tiered structure while not abandoning the poor (Table 1, 2, and 3). Among the socioeconomic factors studies, African American patients had 53.8% risk of death compared with 43.7% of others. However, this level of difference increased the ROC area mildly to 0.52 (Table 1). Actual residence and living a cosmopolitan area have respectively 48.7% and 42.4% risk of cause specific death (Table 1, 2 and 3).

There is about 44.7% overall risk of adenosquamous carcinoma death for patients listed in SEER. The risks were 19.1% and 45.3% for localized and regional adenosquamous carcinoma respectively (Table 2). Age older than 20 years old did correlate with higher percentage mortality during this study period from 1973 to 2009 (Table 1 and Table 2). RT with external beam was associated with 54.5% risk of death, and 32.5% risk of death (Table 3). RT with external beam had surgery had respectively 48.7% and 44.2% risk of cause specific death compared with 43.7% of others. However, this

Discussion

This study is interested in constructing models that will aid patient and treatment selection for adenosquamous carcinoma patients. To that end, this study examined the ROC models (Rex and McNeil, 1982) of a long list of potential explanatory factors (Table 1). ROC models take into account both sensitivity and specificity of the prediction. Ideal model would have a ROC area of 1 and a random model is expected to have an area of 0.5 (Hanley and McNeil, 1982; Rex, 2014c; Rex, 2014a; Rex, 2014d; Rex, 2014b; Rex, 2014e; Rex, 2015b; Rex, 2015c; Cheung, 2015 (In press)). For example, a clinical ROC model can be used to predict if a patient receiving the recommended treatment will die from the disease. SEER stage in order to be consistent over decades, it abstracts the staging into simple but important stages for cancer progression: localized, regional and distant. Stage was the most predictive of patient outcome (Table 1 and Table 2). There is a significant female to male difference in risk of cause specific death (Table 2) favoring the female sex. 46% of the patients had lung cancers. Uterus and uterine cervix were also the common anatomic sites (Table 3). 30.6% of the tumors were not graded. Unknown grade has the highest risk of cause specific death at 51.8%. SEER stage model (localized, regional, distant, un-staged/others) was the most predictive model (ROC area or 0.71). A 4-tiered staging model was optimized to a 3-tiered model (with a ROC area of 0.67) by SCOPE (Table 1). ROC areas were used to optimize the risk models. For example, the SEER staging could be abstracted down to 3-tiered structure while not abandoning the poor (Table 1, 2, and 3). Among the socioeconomic factors studies, African American patients had 53.8% risk of death compared with 43.7% of others. However, this level of difference increased the ROC area mildly to 0.52 (Table 1). Actual residence and living a cosmopolitan area have respectively 48.7% and 42.4% risk of cause specific death (Table 1, 2 and 3).

There is about 44.7% overall risk of adenosquamous carcinoma death for patients listed in SEER. The risks were 19.1% and 45.3% for localized and regional adenosquamous carcinoma respectively (Table 2). Age older than 20 years old did correlate with higher percentage mortality during this study period from 1973 to 2009 (Table 1 and Table 2). RT with external beam was associated with 54.5% risk of death, and 32.5% risk of death (Table 3). RT with external beam had surgery had respectively 48.7% and 44.2% risk of cause specific death compared with 43.7% of others. However, this
Table 1. The Risk Models Include the Socio-demographic, Tumor and Treatment Factors for Adenosquamous Carcinoma

Factor	Number	%
Alive or dead of other cause	8163	39.41
N/A not first tumor	3285	15.86
Dead	9264	44.73
Not recommended, contraindicated due to other causes	100	0.48
Recommended but not performed, patient refused	4227	20.41
Recommended but not performed, unknown reason	1992	9.62
Surgery performed	13639	65.85
Unknown	6332	30.57
Counties in metropolitan areas of 250,000 to 1 million pop/Urban pop of ge 20,000 adjacent to a metropolitan area versus	18466	89.06
Others	2266	10.94
< 50000	10557	50.97
≥ 25	10155	49.03
White/others	10634	99.97
Asian Pacific Journal of Cancer Prevention, Vol 17, 2016		

Results

There were 20712 patients included in this study (Table 1). The follow up (S.D.) was 54.2 (78.4) months. 64% of the patients were female. The mean (S.D.) age was 63 (13.8) years. There were 60% adenosquamous carcinoma patients listed from SEER database were adults. There were 17 patients younger than 20 years old in the SEER data, and it was a poor prognostic factor (Table 1 and Table 2). There is a significant female to male difference in risk of cause specific death (Table 2) favoring the female sex. 46% of the patients had lung cancers. Uterus and uterus cervix were also the common anatomic sites (Table 3). 30% of the tumors were not graded. Unknown grade has the highest risk of cause specific death at 51.8%. SEER stage model (localized, regional, distant, un-staged/others) was the most predictive model (ROC area or 0.71). A 4-tiered staging model was optimized to a 3-tiered model (with a ROC area of 0.67) by SCOPE (Table 1). ROC areas were used to optimize the risk models. For example, the SEER staging could be slimmed down to 3-tiered structure while not abandoning the poor (Table 1, 2 and 3). Among the socioeconomic factors studies, African American patients had 53.8% risk of cause specific death for patients listed in SEER. The risks of death were significantly higher for other races. In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)).

Discussion

This study is interested in constructing models that will aid patient and treatment selection for adenosquamous carcinoma patients. To that end, this study examined the ROC models (Hanley and McNeil, 1982) of a long list of potential explanatory factors (Table 1). ROC models take into account both sensitivity and specificity of the prediction. Ideal model would have a ROC area of 1 and a random model is expected to have an area of 0.5 (Hanley and McNeil, 1982; Cheung, 2014a; Cheung, 2014c; Cheung, 2014d; Cheung, 2014e; Cheung, 2015b; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). For example, a clinical ROC model can be used to predict if a patient receiving the recommended treatment will die from the disease. SEER stage in order to be consistent over decades, it abstracts the staging into simple but important factors studies, African American patients had 53.8% risk of cause specific death for patients listed in SEER. The risks of death were significantly higher for other races. In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)). Similar strata were fused to make more efficient models if the ROC performance did not degrade (Cheung et al., 2001a; Cheung et al., 2001b). In addition, it also implemented binary fusion and optimization to streamline the risk stratification by combining risk strata when possible (Cheung, 2014a; 2014b; 2014c; 2015a; 2015b; Cheung, 2015 (In press)).
When there are competing prediction or prognostic models, the most efficient (i.e. the simplest) model is thought to prevail (D’Amico et al., 1998). This has an improvement. It may be a consequence of having a better guidance model in treatment and patient selection. Adenosquamous carcinoma is an aggressive disease, there was a 19% of adenosquamous carcinoma death (Table 2) despite treatments even for early stage cancer. In conclusion, this study has identified the staging models are the most prognostic of treatment outcomes of adenosquamous cancer patients. The high under-staging rates may have prevented patients from selecting definitive local therapy and may have contributed to the poor outcome in these patients with this aggressive disease.

References
Adegoke O, Kaluaghuman S, Viring B (2012). Cervical cancer trends in the United States: a 35-year population-based analysis. J Womens Health 8 311. Disparities in cancer outcomes: Lessons learned from children with cancer. Pediatr Blood Cancer 56, 994-1001.

Cheung MR (2014a). Optimization of predictors of Ewing sarcoma cause-specific survival: a population study. Asian Pac J Cancer Prev 15, 4143-5.

Cheung MR (2014b). Receiver operating characteristic curve analysis of SEER medioblastoma and primitive neuroectodermal tumor (PNET) outcome: identification and optimization of predictive models. Asian Pac J Cancer Prev 15, 6781-5.

Cheung MR (2014c). Surveying and optimizing the predictors for epimyosarcoma specific survival using SEER data. Asian Pac J Cancer Prev 15, 867-70.

Cheung MR (2014d). Under-use of radiotherapy in stage III bronchoalveolar lung cancer and socio-economic disparities in cause specific survival: a population study. Asian Pac J Cancer Prev 15, 491-5.

Cheung R (2014e). Epidemiology and radiotherapy of hepatocellular carcinoma. Int J Cancer Clin Res 1, 1.

Cheung R (2015a). Air, pollution and cancer: global epidemiology, public health and genomics. An Asian Med Epidemiol, 2, 1-7.

Cheung R 2015b. Topics on radiotherapy, global cancer epidemiology and public health. Lambert Academic Publishing.

Cheung R 2015 (In press). Determining best contours in radiotherapy treatment in a modern era, and asian American medical epidemiology: public health point of view.

Cheung R 2015b. Recent advances in cancer epidemiology and public health and radiotherapy topics, Austin Publishing Group, Austin eBooks.

Cheung R, Alsahbori MD, D’Amico AV et al (2011a). ROC-optimization may improve risk stratification of prostate cancer patients. Urology, 57, 286-90.

Cheung R, Alsahbori MD, D’Amico AV et al (2011b). Using the receiver operator characteristic curve to select pretreatment and pathologic predictors for early and late post-prostatectomy PSA failure. Urology, 80, 400-5.

Cheung R et al, Desjardins A, Chang A et al (1998). Assessment of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

Gallic V, Herzog TJ, Lewin SN et al (2012). Prognostic significance of adenosquamous histology in women with cervical cancer. Gynecol Oncol, 125, 287-91.

Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.

Marcou DM, Goodman M, Jani AB et al (2012). A comprehensive review of incidence and survival patterns with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis, 15, 283-8.

Massouli H, Zambetti A et al (2012). Population-based evaluation of adenosquamous carcinoma of the colon and rectum. Dis Colon Rectum, 55, 509-14.

McDowell HP, Foot AB,Ellershaw C et al (2010). Outcomes of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

McDowell HP, Foot AB, Ellershaw C et al (2010). Outcomes of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

Gallic V, Herzog TJ, Lewin SN et al (2012). Prognostic significance of adenosquamous histology in women with cervical cancer. Gynecol Oncol, 125, 287-91.

Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.

Marcou DM, Goodman M, Jani AB et al (2012). A comprehensive review of incidence and survival patterns with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis, 15, 283-8.

Massouli H, Zambetti A et al (2012). Population-based evaluation of adenosquamous carcinoma of the colon and rectum. Dis Colon Rectum, 55, 509-14.

McDowell HP, Foot AB, Ellershaw C et al (2010). Outcomes of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

Gallic V, Herzog TJ, Lewin SN et al (2012). Prognostic significance of adenosquamous histology in women with cervical cancer. Gynecol Oncol, 125, 287-91.

Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.

Marcou DM, Goodman M, Jani AB et al (2012). A comprehensive review of incidence and survival patterns with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis, 15, 283-8.

Massouli H, Zambetti A et al (2012). Population-based evaluation of adenosquamous carcinoma of the colon and rectum. Dis Colon Rectum, 55, 509-14.

McDowell HP, Foot AB, Ellershaw C et al (2010). Outcomes of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

Gallic V, Herzog TJ, Lewin SN et al (2012). Prognostic significance of adenosquamous histology in women with cervical cancer. Gynecol Oncol, 125, 287-91.

Hanley JA, McNeil BJ (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.

Marcou DM, Goodman M, Jani AB et al (2012). A comprehensive review of incidence and survival patterns with rare histological variants of prostate cancer in the United States from 1973 to 2008. Prostate Cancer Prostatic Dis, 15, 283-8.

Massouli H, Zambetti A et al (2012). Population-based evaluation of adenosquamous carcinoma of the colon and rectum. Dis Colon Rectum, 55, 509-14.

McDowell HP, Foot AB, Ellershaw C et al (2010). Outcomes of outcome prediction models for patients with localized prostate cancer managed with radical prostatectomy or external beam radiation therapy. Cancer, 82, 1887-93.

Gallic V, Herzog TJ, Lewin SN et al (2012). Prognostic significance of adenosquamous histology in women with cervical cancer. Gynecol Oncol, 125, 287-91.
When there are competing prediction or prognostic models, the most efficient (i.e. the simplest) model is thought to prevail (D’Amico et al., 1998). This has an information theoretic underpinning (Cheung, 2014c; Cheung, 2014a; Cheung, 2014b). For practical purposes, simpler models require fewer patients for a randomized trials because fewer risk strata need to be balanced using epidemiology data (Cheung, 2014a; 2014b; 2014c; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). In the clinic, simpler models are easier to use. SCOPE streamlined ROC models by binary fusion (Table 1). Two adjacent strata were tested iteratively to see if they could be combined without sacrificing the higher staging (Cheung, 2014c; Cheung, 2014a; Cheung, 2014b). Two adjacent strata were tested iteratively to see if they could be combined without sacrificing the higher predictive power usually belong to the more complex models (Cheung, 2014c; Cheung, 2014a; Cheung, 2014b; Cheung, 2014d). This study has shown that SCOPE can build efficient and accurate prediction models (Cheung, 2014b; Cheung, 2014a; Cheung, 2014d). When there are competing prediction or prognostic models, the most efficient (i.e. the simplest) model is thought to prevail (D’Amico et al., 1998). This has an information theoretic underpinning (Cheung, 2014c; Cheung, 2014a; Cheung, 2014b). For practical purposes, simpler models require fewer patients for a randomized trials because fewer risk strata need to be balanced using epidemiology data (Cheung, 2014a; 2014b; 2014c; Cheung, 2015a; 2015b; Cheung, 2015 (In press)). In the clinic, simpler models are easier to use. SCOPE streamlined ROC models by binary fusion (Table 1). Two adjacent strata were tested iteratively to see if they could be combined without sacrificing the higher predictive power usually belong to the more complex models (Cheung, 2014c; Cheung, 2014a; Cheung, 2014b; Cheung, 2014d).

Adenosquamous carcinoma is an aggressive disease, there was a 19% relative reduction in adenosquamous carcinoma death (Table 2) despite treatments even for early stage cancer. In conclusion, this study has identified the staging models are the most prognostic of treatment outcomes of adenosquamous cancer patients. The high under-staging rates may have prevented patients from selecting definitive local therapy and may have contributed to the poor outcome in these patients with this aggressive disease.
Rex Cheung

study. J Surg Res, 170, e243-51.
Sultan I, Qaddoumi I, Yaser S, et al (2009). Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol, 27, 3391-7.
Travis WD, Lubin J, Ries L, et al (1996). United States lung carcinoma incidence trends: declining for most histologic types among males, increasing among females. Cancer, 77, 2464-70.
Wang J, Wang FW, Lagrange CA, et al (2010). Clinical features and outcomes of 25 patients with primary adenosquamous cell carcinoma of the prostate. Rare Tumors, 2, 47.