Efficacy and Safety of Vasopressin Receptor Antagonists for Euvolemic or Hypervolemic Hyponatremia

A Meta-Analysis

Xiangyun Zhang, MS, Mingyi Zhao, PhD, Wei Du, MS, Dongni Zu, MS, Yingwei Sun, MM, Rongwu Xiang, ME, and Jinguo Sun, PhD

Abstract: Hyponatremia, defined as a nonartifactual serum sodium level <135 mmol/L, is the most common fluid and electrolyte abnormality in clinical practice. Traditional management strategies (fluid restriction, hypertonic saline and loop diuretics, etc.) are difficult to maintain or ineffective. Recently, vasopressin receptor antagonists (VRAs) have shown promise for the treatment of hyponatremia.

We aimed to conduct a meta-analysis to evaluate the efficacy and safety of VRAs in patients with euvolemic or hypervolemic hyponatremia. We searched Pubmed, Cochrane Library, Web of Science and Springer, etc. (latest search on June 4, 2015) for English publications with randomized controlled trials. Two authors independently screened the citations and extracted data. We calculated pooled relative risk (RR), risk difference (RD), weighted mean difference (WMD) or standard mean difference (SMD), and 95% confidence intervals (CIs) by using random and fixed effect models.

We collected data from 18 trials involving 1806 patients. Both random and fixed effect meta-analyses showed that VRAs significantly increased the net change of serum sodium concentration (WMDrandom = 4.89 mEq/L, 95%CIs = 4.35–5.43 and WMDfixed = 4.70 mEq/L, 95%CIs = 4.45–4.95), response rate (RRrandom = 2.77, 95%CIs = 2.29–3.36 and RRfixed = 2.95, 95%CIs = 2.56–3.41), and 24-hour urine output (SMDrandom = 0.82, 95%CIs = 0.65–1.00 and SMDfixed = 0.79, 95%CIs = 0.66–0.93) compared to placebo. Furthermore, VRAs significantly decreased body weight (WMDrandom = −0.87 kg, 95%CIs = −1.24 to −0.49 and WMDfixed = −0.91 kg, 95%CIs = −1.22 to −0.59). In terms of safety, rates of drug-related adverse events (AEs), rapid sodium level correction, constipation, dry mouth, thirst, and phlebitis in the VRAs-treated group were greater than those in control group. However, there was no difference in the total number of AEs, discontinuations due to AEs, serious AEs, death, head- ache, hypotension, nausea, anemia, hyponatremia, urinary tract infection, renal failure, pyrexia, upper gastrointestinal bleeding, diarrhea, vomiting, peripheral edema, and dizziness between the 2 groups. Random effect meta-analyses showed that post treatment urine osmolality, supine systolic blood pressure, and diastolic blood pressure were lowered (WMDrandom = −233.07 mOsmol/kg, 95%CIs = −298.20–147.94; WMDfixed = −61.11 mOsmol/kg, 95%CIs = −9.810 to −2.41; WMDrandom = −2.59 mmHg, 95%CIs = −4.06 to −1.11, respectively), but serum osmolality was increased (WMDrandom = 9.29 mOsmol/kg, 95%CIs = 5.56–13.03). There was no significant change from baseline in serum potassium concentration between the 2 groups (WMDfixed = 0.90 mmol/Hg, 95%CIs = −0.07–0.06).

VRAs are relatively effective and safe for the treatment of hypervolemic and euvolemic hyponatremia.

INTRODUCTION

Hyponatremia, defined as a nonartifactual serum sodium level of less than 135 mmol/L, is the most common fluid and electrolyte abnormality in clinical practice. Decreases in serum sodium concentration may be a result of excess water intake, which contributes to a dilution effect, or sodium loss may exceed body water excretion. Hyponatremia is frequently caused by heart failure, cirrhosis, and the inappropriate release of arginine vasopressin (SIADH). It leads to various clinical symptoms, ranging from subtle to severe or even life threatening, and is associated with increased mortality, morbidity, and length of hospital stay for patients presenting with a range of conditions. Tradional managements (fluid restriction, hypertonic saline and loop diuretics, etc.) are the main but suboptimal treatment option since it is poorly tolerated, difficult to maintain, and has variable efficacy, slow responses, severe side effects. Vasopressin receptor antagonists (VRAs) are promising new agents for the treatment of the hypervolemic or euvolemic forms of hyponatremia. These agents are nonpeptide VRAs that interfere with the antidiuretic effect of the hormone by competitively binding to V2 receptors in the kidney. They induce the excretion of electrolyte-free water without changing the total level of electrolyte excretion, thereby increasing serum sodium concentration. Convivaptan is a V1a/V2 receptor antagonist, while tolvaptan, satavaptan, and lixivaptan are selective V2 receptor antagonists. Current randomized controlled trials have proven the relatively reliable efficacy and safety of VRAs in treating mild and moderate hyponatremia. However, the correction rate of serum sodium in acute severe hyponatremia has remained uncertain. In addition, although thirst and dry mouth have been the most frequent adverse events
(AEs) reported to date, severe AEs have also occasionally occurred, including liver and kidney damage, nerve damage, severe infection, upper gastrointestinal bleeding, etc. Therefore, a meta-analysis was undertaken to evaluate the clinical efficacy and safety of VRAs in patients with hyponatremia.

METHODS

Literature Search

PubMed, Cochrane Library, Web of Science and Springer, etc. were searched with the MeSH terms “hyponatremia,” “vasopressin receptor antagonists,” “conivaptan,” “liaxivaptan,” “satavaptan,” and “tolvaptan” (the latest search was performed on June 4, 2015) to identify English publications from randomized controlled trials assessing the efficacy and safety of VRAs for euvolemic or hypervolemic hyponatremia.

Eligibility Criteria

Patients, 18 years of age or older, diagnosed with euvolemic or hypervolemic hyponatremia (defined as a nonartifactual serum sodium level of less than 135 mmol/L) were eligible for inclusion. The intervention comparisons were made between VRAs (conivaptan, lixivaptan, satavaptan, tolvaptan, etc.) and no intervention, placebo, other diuretics (furosemide, spironolactone, etc.). No specific criteria were made regarding the dose or duration of treatment. The primary efficacy outcome was the change from baseline in serum sodium concentration. Secondary efficacy outcomes were the response rate (variable definitions to characterize this endpoint were used by the authors of the original studies), net change in body weight, and 24-hour urine output. The safety outcomes included the incidence of discontinuations, discontinuations due to AEs, AEs, serious AEs, drug-related AEs, death, and common AEs (dry mouth, thirst, headache, hypotension, nausea, constipation, etc.). Excluded trials were listed with the reason for exclusion.

Data Extraction

Data were extracted from full-text articles by 2 of the authors (XZ and WD) independently. Disagreements were resolved through consensus and arbitration by a 3rd author (DZ). For each included trial, the following basic characteristics were extracted from the full-text article: first author, country of patients, year of publication, concomitant disease of patients, amount of fluid restriction (if any), dose of drugs and route of administration, mean age or range, female percentage, the number of patients, duration of intervention, and hyponatremia type. Outcomes were extracted preferentially by intention to treat. In addition, we obtained mean ± standard deviation values for continuous variables in the original manuscripts for the meta-analysis. When mean ± standard deviation values were not available, calculation of mean and standard deviation values is based on 95% confidence intervals (CIs) or standard deviation values within subgroups. Trials in which specific endpoints were not reported were excluded only from the pooled analyses of the specific endpoints that were reported.

Quality Assessment

Study quality was assessed by the Jadad scale, which assesses adequacy of randomization, blinding, and attrition. The Jadad scale ranges from 0 to 5 points, with a low-quality study receiving a score of 2 or less and a high-quality study having a score of at least 3. Furthermore, we used the Schulz approach to evaluate the allocation concealment, which is defined as adequate (such as central randomization; numbered or coded bottles or containers; drugs prepared by the pharmacy; serially numbered, opaque, sealed envelopes; or other descriptions that contained convincing elements of concealment), inadequate (such as alternation or reference to case record numbers or to dates of birth), and unclear (not reported). There was low correlation between assessments of overall risk of bias and 2 common approaches to quality assessment: the Jadad scale and the Schulz approach to allocation concealment.

Statistical Analysis

Data analyses were performed in R 3.1.3 and STATA SE version 12.0 software. Main analyses used all trials with available quantitative information for every outcome. Random and fixed effect models were used for pooling data. The results were expressed as relative risk (RR), risk difference (RD), weighted mean difference (WMD), or standard mean difference (SMD) with 95% CIs, F2 value, and Egger test P value. The F2 value serves as a marker of intertrial heterogeneity, and intertrial heterogeneity was not considered with P ≤ 50% (with F2 > 50% defined as high heterogeneity). The sources of intertrial heterogeneity were assessed in subgroup and sensitivity analyses. Subgroup analyses evaluated the influence of various VRAs, hyponatremia type, and fluid restriction. In sensitivity analyses, we serially left 1 study out and analyzed heterogeneity on the basis of masking within the trial in order to judge the stability of effective values. Finally, publication bias was formally assessed by using funnel plots and Egger regression analysis (with P < 0.05 defined as having publication bias).

RESULTS

Study Characteristics

A total of 1147 potentially relevant citations were identified and screened, using the process shown in Figure 1. We retrieved 60 full-text articles for detailed evaluation, out of which 18 reports involving 1806 patients satisfied the selection criteria. The included trials were published between 2003 and 2014. The median number of patients was 100 (range 28–243), with 8 trials having more than 100 patients. Treatment duration ranged from 2 to 30 days. These trials generally focused on comparisons of 4 drugs (conivaptan, lixivaptan, satavaptan, and tolvaptan) with placebo. Conivaptan was used in 5 trials, lixivaptan in 4 trials, satavaptan in 3 trials, and tolvaptan in 6 trials (Table 1 and Figure 1) There was 1 publication which included 2 trials and combined some results. When the results were reported for the 2 trials collectively, we regarded them as 1 trial.

Study Quality

Overall study quality scores were fair to good (Jadad score of 2–5, Table 1). Seventeen of the 18 trials were double-blind, randomized, controlled studies, and randomization procedures were adequately described in 3 trials. One of the 18 trials was a prospective, multicenter, randomized, active-controlled, and open-label trial. The mean attrition rate reported in 17 trials was 30.84% and allocation concealment was reported in 8 trials. Finally, the intention-to-treat principle was used in 8 trials.
Effect of VRAs on Net Change of Serum Sodium Concentration

A total of 13 studies16–20,22–24,27,28,30,31,33 including 30 comparisons of 1725 patients reported net changes of serum sodium concentration. Using random and fixed effect meta-analyses (Figure 2), we found that use of VRAs resulted in a significant net increase in serum sodium concentration relative to the control group (WMD\text{random} = 4.89 mEq/L, 95%CI\text{random} = 4.35–5.43 and WMD\text{fixed} = 4.70 mEq/L, 95%CI\text{fixed} = 4.45–4.95). The heterogeneity was significant ($I^2 = 67.2\%$). We found similar overall results after excluding each individual study. Egger regression analysis found no evidence of publication bias in the assessment ($P_{\text{Egger}} = 0.45$).

In subgroup analyses (Figure 2), net changes of serum sodium concentration were larger in each drug-treated group (conivaptan, WMD\text{random} = 5.43 mEq/L, 95%CI\text{random} = 4.73–6.13 and WMD\text{fixed} = 4.86 mEq/L, 95%CI\text{fixed} = 4.59–5.14, $I^2 = 75.7\%$, 5 trials;16–20 lrixivaptan, WMD\text{random} = 2.44 mEq/L, 95%CI\text{random} = 1.24–3.64 and WMD\text{fixed} = 2.44 mEq/L, 95%CI\text{fixed} = 1.24–3.64, $I^2 = 0\%$, 3 trials; satavaptan, WMD\text{random} = 3.89 mEq/L, 95%CI\text{random} = 2.52–5.26 and WMD\text{fixed} = 3.89 mEq/L, 95%CI\text{fixed} = 2.61–5.16, $I^2 = 13.1\%$, 1 trial;27 and tolvaptan, WMD\text{random} = 4.72 mEq/L, 95%CI\text{random} = 3.78–5.66 and WMD\text{fixed} = 4.70 mEq/L, 95%CI\text{fixed} = 3.87–5.52, $I^2 = 17.5\%$, 4 trials28,30,31,33 than those in the placebo-treated group. Furthermore, the largest net changes of serum sodium concentration were found in conivaptan-treated patients. Each of the included studies had its own definitions of fluid restriction; in most of the studies, daily fluid intake was limited to 1.0 to 2.5 L. Net changes in trials that restricted fluid intake (WMD\text{random} = 5.22 mEq/L, 95%CI\text{random} = 4.63–5.80 and WMD\text{fixed} = 4.85 mEq/L, 95%CI\text{fixed} = 4.58–5.11, $I^2 = 66.5\%$, 8 trials)16,17,20,28,30,31,33 were larger than the changes in trials without fluid restriction (WMD\text{random} = 3.53 mEq/L, 95%CI\text{random} = 2.42–4.65 and WMD\text{fixed} = 3.44 mEq/L, 95%CI\text{fixed} = 2.65–4.23, $I^2 = 43.8\%$, 4 trials).23,24,28,31 Compared with placebo-treated patients, net changes of serum sodium concentration were significantly larger in VRA-treated patients in trials assessing patients mostly with cirrhosis (WMD\text{random} = 3.88 mEq/L, 95%CI\text{random} = 3.03–4.73, $I^2 = 17.8\%$, 3 trials)22,27,31 and SIADH (WMD\text{random} = 5.56 mEq/L, 95%CI\text{random} = 3.35–7.76, $I^2 = 0\%$, 1 trial).24

Effect of VRAs on the Response Rate

A total of 16 studies16–20,22–33 including 23 comparisons of 2333 patients, reported the response rate of patients with hyponatremia. Variable definitions were used to characterize this endpoint, such as the proportion of patients who achieved a confirmed normal serum sodium level (≥135 mEq/L) or an increase of 6 mEq/L,16–20 or who achieved a confirmed normal serum sodium level (≥135 mEq/L) or an increase of 5 mEq/L,25–27 or who achieved a sodium level ≥135 mmol/L23,24,28–30 or who achieved a sodium level ≥136 mmol/L22,31. The results of random and fixed effect meta-analyses (Figure 3) proved that the administration of VRAs resulted in a significantly increased response rate compared to placebo (RR\text{random} = 2.77, 95%CI\text{random} = 2.29–3.36 and RR\text{fixed} = 2.95, 95%CI\text{fixed} = 2.56–3.41). There was no heterogeneity among the included studies ($I^2 = 33.5\%$). The result of Egger regression analysis proved that publication bias existed ($P_{\text{Egger}} < 0.001$). All 16 trials included showed a beneficial effect of the study drug (RR > 1) and varied in sample size; thus, the bias probably stemmed from different degrees of benefit and small-study effects.34 Sensitivity analysis did not show a significant change in the results.

In subgroup analyses (Figure 3), the response rate was higher for each drug (conivaptan, RR\text{random} = 3.00, 95%CI\text{random} = 1.74–5.16 and RR\text{fixed} = 3.11, 95%CI\text{fixed} = 2.26–4.28, $I^2 = 56.5\%$, 5 trials16–20 lrixivaptan, RR\text{random} = 2.70, 95%CI\text{random} = 2.00–3.71 and RR\text{fixed} = 2.87, 95%CI\text{fixed} = 2.23–3.71, $I^2 = 52.3\%$, 4 trials),satavaptan, RR\text{random} = 2.84, 95%CI\text{random} = 1.64–4.92 and RR\text{fixed} = 3.16, 95%CI\text{fixed} = 2.09–4.78, $I^2 = 58.8\%$, 3 trials)22,24,28,31 and tolvaptan, RR\text{random} = 2.70, 95%CI\text{random} = 1.74–4.00 and RR\text{fixed} = 3.01, 95%CI\text{fixed} = 2.27–4.01, $I^2 = 26.0\%$, 3 trials).22,23,28,31
Author	Year	Country	Concomitant Disease	Restrictions of Fluid Intake	Dose, mg	Baseline of Serum Sodium, Mean ± SD or Range, mEq/L	Age (Range/SD), year	Male/Female	Total	Course	Hyponatremia Type	Jadad Score	Allocation Concealment
Ghali et al16	2006	United States, Canada, and Israel	COPD/malignancy/idiopathic/HF/other	Conivaptan, 40 mg, qd, p.o.	125.3 ± 3.5	38.0–93.0	12/12	74	5d	74	Euvolemic/hypervolemic	4	Unclear
			Conivaptan, 80 mg, qd, p.o.	125.4 ± 4.0	35.0–90.0					14/13			
Amane et al17	2009	Belgium, Finland, France, Germany, Italy, et.	CHF/malignancy/idiopathic/COPD/post-surgical/other/unknown	Placebo	123.4 ± 4.1	41.0–94.0	10/13	83	5d	83	Euvolemic/hypervolemic	4	Adequate
			Conivaptan, 40 mg, qd, p.o.	125.1 ± 5.1	61.5 ± 15.0					16/9			
Verbalis et al18 2008 United States	SIADH/idiopathic/CHF/malignancy/post-surgery/COPD/other	≤2.0 L/24 h	Conivaptan, 80 mg, qd, i.v.	125.6 ± 3.6	63.2 ± 10.7	19/7							
Koren et al19 2011 North America, India	CHF/SIADH/alcoholism/nephrotic/hypertension/renal failure/unknown, etc.	≤2.0 L/48 h	Conivaptan, 80 mg, qd, i.v.	125.1 ± 3.1	74.1 ± 11.7	9/8							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Conivaptan, 20 mg, qd, i.v.	124.4 ± 3.9	76.8 ± 12.5	13/7							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Conivaptan, 20 mg, bid, i.v.	126.4 ± 3.6	126.4 ± 3.6	9/11							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Placebo	125.5 ± 3.7	125.5 ± 3.7	1/8							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Conivaptan, 40 mg, qd, i.v.	123.3 ± 84.7	73.8 ± 11.5	12/17							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Conivaptan, 20 mg, qd, i.v.	124.8 ± 83.4	72.5 ± 13.8	14/12							
Zeltser et al20 2007 Israel, Columbia, United States, South Africa	CHF/SIADH/idiopathic/COPD/other	≤2.0 L/24 h	Placebo	124.3 ± 84.0	75.7 ± 16.1	15/14							

TABLE 1. Characteristics of Eligible Studies Included in the Meta-Analysis
Author et al	Year	Country	Concomitant Disease	Restrictions of Fluid Intake	Dose, mg	Baseline of Serum Sodium, Mean ± SD or Range, mEq/L	Age (Range/SD), year	Male/Female	Total	Course	Hyponatremia Type	Jadad Score	Allocation Concealment	
Abraham et al	2012	USA, India, Europe, Israel	Lung cancer/HIV infection/Guillain–Barre syndrome/other, but no SIADH	Unclear	Lixivaptan, 25–100 mg, qd, p.o.	129.7 ± 4.4	66.6 ± 14.1	73/81	206	7d	Euvolemic	4	Unclear	
Abraham et al	2012	North America, Europe, Asia	SIADH/other	Unclear	Lixivaptan, 25–100 mg, qd, p.o.	129.9 ± 4.3	62.7 ± 13.6	27/25	106	7d	Euvolemic	4	Unclear	
Aronson et al	2011	Europe, America, Israel, Australia	CHF/postoperative/other	1.0–1.5 L/24 h	Satavaptan, 25 mg, qd, p.o.	124.1 ± 5.4	65.2 ± 13.3	30/22	16/19	118	4d	Hypervolemic	4	Unclear
Soupart et al	2006	Belgium, France, Germany, Hungary	SIADH	1.5 L/24 h	Satavaptan, 25 mg, qd, p.o.	128.5 ± 3.2	68.8 ± 11.3	27/15	35	5d	Euvolemic	4	Adequate	
Chen et al	2014	China	SIADH	Unclear	Tolvaptan, 15–60 mg, qd, p.o.	128.0 ± 4.0	56.0 ± 9.0	19/7	4	Unclear				
Schrier et al	2006	United States	Cirrhosis/CHF/SIADH/other	Unclear	Tolvaptan, 15–60 mg, qd, p.o.	126.0 ± 6.0	59.0 ± 10.0	20/8	4	Euvolemic/ hypervolemic				
Gheorghiade et al	2006	United States	HF/liver cirrhosis/SIADH	1.2 L/24 h in placebo group	Tolvaptan, 10–60 mg, qd, p.o.	129.1 ± 4.5	63.0 ± 14.0	73/47	28	27d	Euvolemic/ hypervolemic			
Cárdenas et al	2011	United States	Cirrhosis	Unclear	Tolvaptan, 15–60 mg, qd, p.o.	128.0 ± 4.0	67.0 ± 9.0	6/5	120	30d	Euvolemic/ hypervolemic			
Verbalis et al	2011	United States	SIADH	Unclear	Tolvaptan, 15–60 mg, qd, p.o.	128.6 ± 4.4	55.0 ± 9.0	38/19	110	30d	Euvolemic/ hypervolemic			
Salahudeen et al	2013	United States	Cancer	1.5 L/24 h	Tolvaptan, 15–60 mg, qd, p.o.	126.0–130.0	65.0 ± 14.0	NA	30	14d	Euvolemic/ hypervolemic			

CHF = congestive heart failure, COPD = chronic obstructive pulmonary disease, HF = heart failure, HIV = human immunodeficiency virus, NA = not available, SD = standard deviation, SIADH = inappropriate release of arginine vasopressin.
95% CIs = 1.34–5.43 and RR fixed = 2.88, 95% CIs = 1.80–4.61, I² = 40.8%, 3 trials; 22–24 satavaptan, RR random = 2.54, 95% CIs = 1.77–3.65 and RR fixed = 2.70, 95% CIs = 1.87–3.91, I² = 0%, 3 trials; 25–27 and tolvaptan, RR random = 2.93, 95% CIs = 2.17–3.96 and RR fixed = 2.99, 95% CIs = 2.46–3.63, I² = 45.6%, 5 trials28–31,33 than for placebo. The response rate in trials of euvoletic hyponatremia was significantly higher than in trials of hypervolemic and euvoletic/hypervolemic hyponatremia (RR fixed, 3.08 vs 2.79 vs 2.96). The response rate in trials that restricted fluid intake (RR random = 2.86, 95% CIs = 2.09–3.91 and RR fixed = 3.12, 95% CIs = 2.47–3.93, I² = 36.6%, 11 trials)6–20,22–25,27 than in trials without fluid restriction (RR random = 2.77, 95% CIs = 2.15–3.58 and RR fixed = 2.84, 95% CIs = 2.36–3.42, I² = 39.1%, 5 trials).28–31,33 In addition, the response rate was also higher in VRA-treated patients than for placebo (RR random = 2.70, 95% CIs = 1.80–4.05 and RR fixed = 2.91, 95% CIs = 2.04–4.16, I² = 17.8%, 3 trials)22–27,31 and SIADH (RR random = 6.00, 95% CIs = 2.44–14.76 and RR fixed = 6.61, 95% CIs = 2.64–16.58, I² = 0%, 2 trials).26,28

Effect of VRAs on Serum Sodium Change

A total of 24 studies, including 13 comparisons of 576 patients, reported net changes in body weight of patients with hyponatremia. By random and fixed effect meta-analyses (Figure 4), the use of VRAs resulted in a significant net decrease in body weight relative to the control group (WMD random = −0.87 kg, 95% CIs = −1.24 to −0.49 and WMD fixed = −0.91 kg, 95% CIs = −1.23 to −0.59). There was no significant heterogeneity (I² = 17.3%) or publication bias in the assessments (P Egger = 0.69). Sensitivity analysis did not show any significant change.

Effect of VRAs on 24-hour Urine Output

A total of 6 studies, including 12 comparisons of 945 patients, reported 24-hour urine output of patients with hyponatremia. By random and fixed effects meta-analyses (Figure 5), the use of VRAs resulted in a significant net increase in 24-hour urine output relative to the control group (SMD random = 0.82, 95% CIs = 0.65–1.00 and SMD fixed = 0.79, 95% CIs = 0.66–0.93). The tests for heterogeneity were not significant (I² = 27.9%). Egger regression analysis found no evidence of publication bias in the assessment (P Egger = 0.24). Sensitivity analysis did not show any change in the result.

Safety Analysis of VRAs

As shown in Table 2 and Figure 6, there were no differences between VRAs and control groups regarding the total
number of AEs ($RR_{\text{fixed}} = 1.03$, 95% CIs = 0.96–1.10, $I^2 = 0\%$, $P_{\text{Egger}} = 0.42$),19,23–29,31 discontinuations due to AEs ($RR_{\text{fixed}} = 0.91$, 95% CIs = 0.67–1.24, $I^2 = 5\%$, $P_{\text{Egger}} = 0.35$),16–20,22–25,28,29,31,32 serious AEs (RR fixed = 0.92, 95% CIs = 0.76–1.12, $I^2 = 0\%$, $P_{\text{Egger}} = 0.55$),16–20,23–29,31,32 or death (RR fixed = 0.97, 95% CIs = 0.68–1.40, $I^2 = 17\%$, $P_{\text{Egger}} = 0.07$)16–20,23,24,28,29,31–33 The use of VRAs was associated with 0.78-fold decreased odds of discontinuations ($RR_{\text{fixed}} = 0.78$, 95% CIs = 0.65–0.94, $I^2 = 10\%$, $P_{\text{Egger}} = 0.76$)16–21,23–33 and 1.64-fold increased odds of drug-related AEs in the control group (RR fixed = 1.64, 95% CIs = 1.33–2.02, $I^2 = 0\%$, $P_{\text{Egger}} = 0.46$).16–18,20,22,28,29

FIGURE 3. Meta-analysis of randomized trials comparing the effect of vasopressin receptor antagonists versus placebo on the response rate of patients with hyponatremia.

FIGURE 4. Meta-analysis of randomized trials comparing the effect of vasopressin receptor antagonists versus placebo on net change in body weight of patients with hyponatremia.
FIGURE 5. Meta-analysis of randomized controlled trials comparing the effect of vasopressin receptor antagonists versus placebo on 24-hour urine output of patients with hyponatremia.

The common AEs occurring during the studies were overly rapid correction of hyponatremia,16–21,24–27,32 constipation,16,19,24,29,32 dry mouth,24,28,29,32 thirst,27,29,32 phlebitis,18–20 headache,16,23,24,29,32 hypotension,16–20,24,25,29,32 nausea,16,19,23,24,29,32 anemia,17–19,25 hypernatremia,23,24,26,27 urinary tract infection,18,23,24,26,29 renal failure,18,20,22,29,31 pyrexia,7,20,24,25,29 vomiting,19,23,24,26,29 peripheral edema, and dizziness,7,23,24,29,32. A total of 12 studies including 1300 patients reported overly rapid correction of serum sodium; in these studies, the authors used variable definitions to characterize the endpoint, with the serum sodium correction rate ranging from >8 mEq/L over 8 hours on the 1st day of therapy, or >12 mEq/L in 24 hours26 to >12 mEq/L in 1 day or >24 mEq/L in total.16 The results of the meta-analysis showed a significant increase in the rate of rapid sodium correction in the VRA-treated group without significant heterogeneity (RRfixed = 2.56, 95% CIs = 1.45–4.53, I² = 0%, P Egger < 0.05), especially in patients with SIADH (RRfixed = 8.05, 95% CIs = 1.07–60.53, F = 0%, 2 trials).26 Moreover, in the VRA-treated group, more patients developed constipation (RDfixed = 0.06, 95% CIs = 0.02–0.09, F = 0%, PEgger = 0.38), dry mouth (RDfixed = 0.08, 95% CIs = 0.04–0.13, F = 0%, PEgger = 0.76), thirst (RDfixed = 0.10, 95% CIs = 0.05–0.14, F = 0%, PEgger = 0.50), and phlebitis (RDfixed = 0.13, 95% CIs = 0.04–0.23, F = 38.1%, PEgger = 0.11) than those in the control group. However, no significant difference was found between the 2 groups with regard to headache, hypotension, nausea, anemia, hypernatremia, urinary tract infection, renal failure, pyrexia, upper gastrointestinal bleeding, diarrhea, vomiting, peripheral edema, and dizziness (Table 2).

Effects of VRAs on osmolality, blood pressure, and serum potassium concentration were also taken into account in this meta-analysis. As shown in Table 3, changes in urine osmolality and serum osmolality, reported in 5 trials16,17,20,27,30 including 10 comparisons (512 patients), showed a considerably larger change with VRAs than placebo (urine osmolality, WMDrandom = −233.07 mOsmol/kg, 95% CIs = −298.20 to −147.94, I² = 87.7%, PEgger = 0.07; serum osmolality, WMDrandom = −9.29 mOsmol/kg, 95% CIs = 5.56–13.03, I² = 79.1%, PEgger = 0.15). Changes in supine systolic blood pressure and supine diastolic blood pressure from baseline were reported in 6 trials16–18,20,26,27 including 20 comparisons (986 patients). Meta-analysis of 20 comparisons showed that both supine systolic blood pressure and supine diastolic blood pressure were lowered after VRA treatment (supine systolic blood pressure, WMDrandom = −6.11 mmHg, 95% CIs = −9.81 to −2.41, I² = 63.4%, PEgger < 0.05; supine diastolic blood pressure, WMDrandom = −2.59 mmHg, 95% CIs = −4.06 to −1.11, I² = 6.5%, PEgger = 0.51). There was no significant change from baseline in serum potassium concentration between groups (WMDrandom = 0.00 mmHg, 95% CIs = −0.07–0.07, I² = 12.1%, PEgger = 0.75, 6 trials).16–18,20,26,27

DISCUSSION

The aim of this meta-analysis of 18 trials was to present the most comprehensive evaluation to date of the clinical efficacy and safety of VRAs in patients with euvolemic or hypervolemic hyponatremia. The results confirmed that the serum sodium concentration, the response rate, and 24-hour urine output were significantly increased, while the body weight of patients was significantly decreased by the VRAs regimen. These effects do not depend on the specific drug that was used, the type of hyponatremia, or whether fluid intake was restricted. Correspondingly, VRAs significantly increase the possibility of drug-related AEs, including a rapid rate of rapid sodium level correction, constipation, dry mouth, thirst, and phlebitis. The urine osmolality and supine systolic and diastolic blood pressure were decreased, while the serum osmolality was elevated; these changes might result from the aquaretic effect of VRAs. Concerning the change in serum potassium concentration, however, no significant difference existed between the VRA-treated group and the control group.

It is well known that in contrast to conventional diuretic agents, which block distal tubule sodium transporters and cause simultaneous loss of electrolytes and water, VRAs produce a solute-sparing water excretion, due to their antagonizing effect on the vasopressin V₂ receptors which are located only on the principal cells of the tubules.35–37 Therefore, the increases in serum sodium concentration and 24-hour urine output, or the decreases in body weight in patients, have been viewed as primary indicators of the pharmacodynamic action of VRAs. Our study provides more convincing evidence than the previous reports38,39 by summarizing large amounts of clinical data and including meticulous subgroup analyses. We found that VRAs were definitely effective since they could induce meaningful increases in serum sodium concentration and response rate (defined as normalization of serum sodium level) in patients. The effect seemed more significant when each VRA was assessed separately. VRAs also exerted statistically significant effects in both fluid-restricted groups and fluid-unrestricted groups, although their effects seemed much stronger in groups where the fluid intake was restricted. In particular, the response
TABLE 2. Safety Analysis of Vasopressin Receptor Antagonists

Outcome Index	RR (95% CI)	RD (95% CI)						
	Random Effects Model	Fixed Effects Model	$I^2,$ %	P (Egger)	Random Effects Model	Fixed Effects Model	$I^2,$ %	P (Egger)
ADR 10 (1229)	1.04 (0.98,1.11) 0.96 (1.10) 0	0.4169	0.03 (−0.02,0.07) 0.02 (−0.03,0.07) 0	0.3243				
DCT 18 (1752)	0.78 (0.63,0.96) 0.78 (0.65,0.94) 10.2	0.7586	0.05 (−0.09,−0.00) −0.05 (−0.09,−0.01) 28.5	0.508				
DAE 14 (1557)	0.87 (0.62,1.22) 0.91 (0.67,1.24) 5	0.3469	0.00 (−0.03,0.03) −0.01 (−0.04,0.02) 23.9	0.8724				
SAE 15 (1636)	0.94 (0.77,1.14) 0.92 (0.76,1.12) 0	0.5471	−0.02 (−0.06,0.02) −0.02 (−0.05,0.01) 0	0.4203				
DEA 12 (1317)	0.94 (0.59,1.50) 0.97 (0.68,1.40) 17	0.0670	−0.01 (−0.04,0.02) 0.00 (−0.03,0.03) 24.9	0.4104				
DRE 8 (845)	1.61 (1.30,1.98) 1.64 (1.33,2.02) 58.2	0.1239	0.15 (0.06,0.25) 0.15 (0.09,0.21) 0	0.4638				
Common adverse events								
Overly rapid correction of hyponatremia 12 (1300)	1.95 (1.06,3.58) 2.56 (1.45,4.53) 0	0.0085	0.06 (0.02,0.10) 0.05 (0.03,0.07) 12.3	0.0231				
Constipation 5 (776)	2.57 (1.33,4.96) 2.67 (1.39,5.12) 0	0.5924	0.06 (0.02,0.09) 0.06 (0.02,0.09) 0	0.3766				
Dry mouth 4 (698)	2.27 (1.41,3.66) 2.34 (1.46,3.77) 0	0.4599	0.08 (0.03,0.12) 0.07 (0.03,0.07) 0	0.6654				
Thirst 3 (662)	2.57 (1.33,4.96) 2.67 (1.39,5.12) 0	0.5924	0.06 (0.02,0.09) 0.06 (0.02,0.09) 0	0.3766				
Phlebitis 3 (189)	2.97 (1.00,8.83) 3.14 (1.08,9.16) 0	0.11 (0.00,0.22) 0.13 (0.04,0.23) 38.1	0.1139					
Headache 5 (932)	1.07 (0.66,1.75) 1.11 (0.69,1.78) 0	0.9374	0.01 (−0.04,0.03) −0.01 (−0.04,0.03) 0	0.9117				
Hypotension 9 (1121)	1.07 (0.66,1.75) 1.11 (0.69,1.78) 0	0.9374	0.01 (−0.04,0.03) −0.01 (−0.04,0.03) 0	0.9117				
Nausea 6 (981)	1.08 (0.69,1.70) 1.11 (0.71,1.74) 0	0.7576	0.02 (−0.02,0.05) 0.01 (−0.03,0.04) 0	0.8975				
Anemia 4 (393)	0.61 (0.26,1.45) 0.62 (0.26,1.47) 0	0.1328	−0.02 (−0.07,0.03) −0.03 (−0.08,0.03) 0	0.7062				
Hypernatremia 4 (450)	2.57 (1.33,4.96) 2.67 (1.39,5.12) 0	0.5924	0.06 (0.02,0.09) 0.06 (0.02,0.09) 0	0.3766				
Urinary tract infection 6 (916)	1.07 (0.66,1.75) 1.11 (0.69,1.78) 0	0.9374	0.01 (−0.04,0.03) −0.01 (−0.04,0.03) 0	0.9117				
Renal failure 5 (763)	1.07 (0.66,1.75) 1.11 (0.69,1.78) 0	0.9374	0.01 (−0.04,0.03) −0.01 (−0.04,0.03) 0	0.9117				
Pyrexia 4 (390)	1.73 (0.51,5.82) 2.10 (0.68,4.68) 0	0.0435	0.03 (0.00,0.07) 0.03 (0.00,0.07) 12.3	0.0213				
Upper gastrointestinal bleeding 2 (180)	3.32 (0.75,14.73) 3.51 (0.82,15.01) 0	0.07 (0.00,0.14) 0.07 (0.00,0.14) 0	0.9425					
Diarrhea 5 (914)	0.90 (0.52,1.54) 0.94 (0.55,1.58) 0	0.6764	0.00 (−0.04,0.04) 0.00 (−0.04,0.03) 14.7	0.7548				
Vomit 6 (942)	0.48 (0.27,0.88) 0.47 (0.26,0.84) 0	0.2818	−0.04 (−0.07,−0.01) −0.04 (−0.07,−0.01) 0	0.0416				
Peripheral edema 4 (858)	1.02 (0.63,1.66) 1.03 (0.63,1.66) 0	0.6683	0.00 (−0.03,0.04) 0.00 (−0.03,0.04) 0	0.9313				
Dizziness 4 (858)	1.32 (0.60,2.88) 1.35 (0.78,2.34) 33.1	0.6645	0.02 (−0.02,0.07) 0.02 (−0.02,0.07) 39.6	0.9828				

ADR = overall adverse events, CI = confidence interval, DAE = discontinuations due to adverse events, DCT = discontinuations, DEA = death, DRE = drug-related adverse events, SAE = serious adverse events.

ADR = overall adverse events, CI = confidence interval, DAE = discontinuations due to adverse events, DCT = discontinuations, DEA = death, DRE = drug-related adverse events, SAE = serious adverse events.

Specific to intravenous conivaptan, NA = number of studies (k = 2) too small to test for small study effects.
rate to VRAs was significantly higher in patients with euvo-
lemic hyponatremia (i.e., SIADH) than in patients with hyper-
volemic (i.e., heart failure, cirrhosis) and euvolemic/
hyervolemic hyponatremia. The high response rate in patients
with SIADH has been reported previously and is believed to be
possibly related to the increased glomerular filtration rate and
decreased proximal sodium reabsorption, which caused good
free-water clearance, even in absence of arginine vasopres-
sin.38,39 However, this explanation needs to be further verified
with more experimental or clinical data. It should be noted that
around 15% of patients with SIADH do not significantly
increase their serum sodium concentration when treated with
VRAs.40 Gain-of-function mutations in the vasopressin V2
receptor of patients with SIADH40–42 and resetting of osmosis
could explain this nonresponsive behavior.40

Our meta-analysis suggested the administration of VRAs is
associated with an increased occurrence rate of drug-related
AEs, such as dry mouth, thirst, phlebitis, and overly rapid
sodium level correction, etc. However, VRAs were generally
well tolerated, since the side effects were mostly consistent with
the physiological activity of the drugs. Dry mouth and thirst
occurred significantly and frequently in patients treated with
VRAs, which might theoretically be associated with the
expected physiological response to an increase in plasma
osmolality secondary to high urine volumes. These high urine
volumes should probably be avoided by reducing the dose of the
drug in clinical practice. The daily fluid intake was limited to
1.0 to 2.5 L in most of the trials, which would increase the risk of
overly rapid correction of serum sodium and development of
hyponatremia. As expected, our study showed a more frequent
occurrence of excessive correction of serum sodium in the
VRA-treated groups, especially in patients with SIADH.

According to current clinical guidelines, in the treatment of
chronic hyponatremia, a slow correction rate of 4 to 8 mmol/L/
day in normal-risk patients, or 4 to 6 mmol/L/day in high-risk
patients, is the recommended procedure to avoid the risk of
osmotic demyelination.43 Despite the fact that overall neuro-
logic side effects were occasionally reported, no cases of
osmotic demyelination syndrome were reported in the studies
included in our meta-analysis. Nonetheless, it is prudent for
clinicians to remain vigilant when using VRAs to treat patients
with chronic hyponatremia, especially in patients with fluid
intake limitation. Significantly more patients in the conivaptan-
treated groups experienced phlebitis than in the placebo group,
although most of the cases of phlebitis were rated mild or
moderate. Koren et al19 indicated that a simplified regimen, in
which conivaptan was administered once or twice daily via 30-
minute intravenous infusion, might reduce the incidence of
infusion-site phlebitis when compared with placebo. However,
a direct comparison study might be required to further confirm
this finding. Compared with the placebo, VRAs were associated
with greater but clinically unimportant changes in supine
systolic and diastolic blood pressure on day 1, day 4, and
day 5. The incidence of other AEs, including changes in serum

FIGURE 6. Random effects meta-analysis of vasopressin receptor antagonists versus placebo for safety. ADR = overall adverse events,
CDP = change from baseline in supine diastolic blood pressure, CPC = change from baseline in serum potassium concentration,
CPO = change from baseline in plasma osmolality, CSP = change from baseline in supine systolic blood pressure, CUO = change from
baseline in urine osmolality, DAE = discontinuations due to adverse events, DCT = discontinuations, DEA = death, DRE = drug-related
adverse events, SAE = serious adverse events, trials (patients) = the number of included studies and included patients.

Outcome Index	No. Trials	CDP	CPC	CPO	CSD
Systolic BP	11 (512)	2.59 (0.04, 0.06)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)
Diastolic BP	11 (512)	-2.59 (0.04, 0.06)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)
Plasma osmolality	20 (986)	2.00 (0.04, 0.06)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)
Serum osmolality	20 (986)	-2.59 (0.04, 0.06)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)
Serum potassium concentration	21 (989)	-2.59 (0.04, 0.06)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)	0.00 (0.07, 0.07)

In summary, the present paper convincingly suggests that VRAs are relatively effective and safe for the treatment of hypervolemic and euvolemic hyponatremia, and also provides a scientific and quantitative basis to guide clinicians in the clinical use of VRAs.

ACKNOWLEDGMENTS

The authors thank the financial support from Natural Science Foundation of Liaoning Province of China (2015020724).

REFERENCES

1. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581–1589.
2. Upadhyay A, Jaber BL, Madias NE. Epidemiology of hyponatremia. Semin Nephrol. 2009;29:227–238.
3. Buckley MS, Leblanc JM, Cawley MJ. Electrolyte disturbances associated with commonly prescribed medications in the intensive care unit. Crit Care Med. 2010;38:S253–264.
4. Schrier RW. Pathogenesis of sodium and water in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis and pregnancy. N Engl J Med. 1988;319:1065–1072.
5. Esposito P, Pioiti G, Bianzina S, et al. The syndrome of inappropriate antidiuresis: pathophysiology, clinical management and new therapeutic options. Nephron Clin Pract. 2011;119:c62–c73.
6. Spasovski G, Vanholder R, Alloio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol. 2014;170:G1–G47.
7. Hantman D, Rossier B, Zohelman R, et al. Rapid correction of hyponatremia in the syndrome of inappropriate secretion of antidiuretic hormone: an alternative treatment to hypertonic saline. Ann Intern Med. 1973;78:870–875.
8. Miller PD, Linas SL, Schrier RW. Plasma demeclocycline concentrations and nephrotoxicity: correlation in hyponatremic cirrhotic patients. JAMA. 1980;243:2513–2515.
9. Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol. 2011;7:151–161.

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
10. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials*. 1996;17:1–12.

11. Moher D, Pham B, Jones A, et al. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in Meta analyses? *Lancet*. 1998;352:609–613.

12. Schulz KF, Chalmers I, Hayes RJ, et al. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA*. 1995;273:408–412.

13. Hartling, Ospina M, Liang Y, et al. Risk of bias versus quality assessment of randomised controlled trials: cross sectional study. *BMJ*. 2009;339:b4012.

14. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327:557–560.

15. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629–634.

16. Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatraemia. *J Clin Endocrinol Metab.* 2006;91:2145–2152.

17. Ammane D, Decaux G, Smith N, et al. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic hypermic or hypervolemic hyponatraemia. *Am J Med Sci.* 2009;337:28–36.

18. Verbalis JG, Zeltser D, Smith N, et al. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvolemic hyponatremia: subgroup analysis of a randomized, controlled study. *Clin Endocrinol (Oxf).* 2008;69:159–168.

19. Koren MJ, Hamad A, Klassen S, et al. Efficacy and safety of 30-minute infusions of conivaptan in euvolemic and hypervolemic hyponatraemia. *Am J Health Syst Pharm.* 2011;68:818–827.

20. Zeltser D, Rosansky S, Van Rensburg H, et al. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatraemia. *Am J Nephrol.* 2007;27:447–457.

21. Wong F, Blei AT, Blendsid LM, et al. A vasopressin receptor antagonist (VPA-985) improve serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. *Hepatology.* 2003;37:182–191.

22. Gerbes AL, Gülberg V, Ginés P, et al. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: a randomized double-blind multicenter trial. *Gastroenterology.* 2003;124:933–939.

23. Abraham WT, Decaux G, Josiassen RC, et al. Oral lixivaptan effectively increases serum sodium concentrations in outpatients with euvolemic hyponatraemia. *Kidney Int.* 2012;82:1215–1222.

24. Abraham WT, Hensen J, Gross PA, et al. Lixivaptan safely and effectively corrects serum sodium concentrations in hospitalized patients with euvolemic hyponatraemia. *Kidney Int.* 2012;82:1223–1230.

25. Aronson D, Verbalis JG, Mueller M, et al. Short-and long-term treatment of dilutional hyponatremia with satavaptan, a selective arginine vasopressin V2-receptor antagonist: the DILIPO study. *Eur J Heart Fail.* 2011;13:327–336.

26. Soupart A, Gross P, Legros JJ, et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antiidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. *Clin J Am Soc Nephrol.* 2006;1:1154–1160.

27. Ginés P, Wong F, Watson H, et al. Clinical trial: short-term effects of combination of satavaptan, a selective vasopressin V2 receptor antagonist, and diuretics on ascites in patients with cirrhosis without hyponatraemia—a randomized, double-blind, placebo-controlled study. *Aliment Pharmacol Ther.* 2010;31:834–845.

28. Chen S, Zhao JJ, Tong NW, et al. Randomized, double blinded, placebo-controlled trial to evaluate the efficacy and safety of tolvaptan in Chinese patients with hyponatremia caused by SIADH. *J Clin Pharmacol.* 2014;54:1362–1367.

29. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. *N Engl J Med.* 2006;355:2099–2112.

30. Gheorghiade M, Gottlieb SS, Udelson JE, et al. Vasopressin v (2) receptor blockade with tolvaptan versus fluid restriction in the treatment of hyponatremia. *Am J Cardiol.* 2006;97:1064–1067.

31. Cárdenas A, Ginés P, Marotta P, et al. Tolvaptan, an oral vasopressin antagonist, in the treatment of hyponatremia in cirrhosis. *J Hepatol.* 2010;52:571–578.

32. Verbalis JG, Adler S, Schrier RW, et al. Efficacy and safety of oral tolvaptan therapy in patients with the syndrome of inappropriate antidiuretic hormone secretion. *Eur J Endocrinol.* 2011;164:725–732.

33. Salahudeen AK, Ali N, George M, et al. Tolvaptan in hospitalized cancer patients with hyponatremia: a double blind, randomized, placebo-controlled clinical trial on efficacy and safety. *Cancer.* 2014;120:744–751.

34. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in Meta analyses of controlled trials with binary endpoints. *Stat Med.* 2006;25:3443–3457.

35. Schrier RW. Treatment of hyponatremia. *N Engl J Med.* 1985;312:1121–1123.

36. Knepper MA. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. *Am J Physiol.* 1997;272:F3–F12.

37. Verbalis JG. Vasopressin V2 receptor antagonists. *J Mol Endocrinol.* 2002;29:1–9.

38. Jaber BL, Almarzouqi L, Borgi L, et al. Short-term efficacy and safety of vasopressin receptor antagonists for treatment of hyponatraemia. *Am J Med.* 2011;124:977e1–977e9.

39. Rozen-Zvi B, Yahav D, Gheorghiade M, et al. Vasopressin receptor antagonists for the treatment of hyponatremia: systematic review and meta-analysis. *Am J Kidney Dis.* 2010;56:325–337.

40. Decaux G. V2-antagonists for the treatment of hyponatremia. *Nephrol Dial Transplant.* 2007;22:1853–1855.

41. Feldman BJ, Rosenthal SM, Vargas GA, et al. Nephrogenic syndrome of inappropriate antidiuresis. *N Engl J Med.* 2005;352:1884–1890.

42. Decaux G, Vanderheyst F, Bouko Y, et al. Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. *J Am Soc Nephrol.* 2007;18:606–612.

43. Verbalis JG, Goldsmith SR, Greenberg A, et al. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. *Am J Med.* 2013;126:S1–S42.

44. Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. *J Am Soc Nephrol.* 2010;21:705–712.