An $O(\log k \log^2 n)$-competitive Randomized Algorithm for the k-Sever Problem

Wenbin Chen∗†‡

Abstract

In this paper, we show that there is an $O(\log k \log^2 n)$-competitive randomized algorithm for the k-sever problem on any metric space with n points, which improved the previous best competitive ratio $O(\log^2 k \log^3 n \log \log n)$ by Nikhil Bansal et al. (FOCS 2011, pages 267-276).

Keywords: k-sever problem; Online algorithm; Primal-Dual method; Randomized algorithm;

1 Introduction

The k-sever problem is to schedule k mobile servers to serve a sequence of requests in a metric space with the minimum possible movement distance. In 1990, Manasse et al. introduced the k-sever problem as a generalization of several important online problems such as paging and caching problems [29] (Its conference version is [28]), in which they proposed a 2-competitive algorithm for the 2-sever problem and a $n-1$-competitive algorithm for the $n-1$ sever problem in a n-point metric space. They still showed that any deterministic online algorithm for the k-sever problem is of competitive ratio at least k. They proposed the well-known k-sever conjecture: for the k-sever problem on any metric space with more than k different points, there exists a deterministic online algorithm with competitive ratio k.

It was in [29] shown that the k-sever conjecture holds for two special cases: $k = 2$ and $n = k + 1$. The k-sever conjecture also holds for the k-sever problem on a uniform metric. The special case of the k-sever problem on a uniform metric is called the paging (also known as caching) problem. Slator and Tarjan have proposed a k-competitive algorithm for the paging problem [31]. For some other special metrics such as line, tree, there existed k-competitive online algorithms. Yair Bartal

∗Email:cwb2011@gzhu.edu.cn
†Department of Computer Science, Guangzhou University, P.R. China
‡State Key Laboratory for Novel Software Technology, Nanjing University, P.R. China
and Elias Koutsoupias show that the Work Function Algorithm for the \(k \)-sever problem is of \(k \)-competitive ratio in the following special metric spaces: the line, the star, and any metric space with \(k + 2 \) points [16]. Marek Chrobak and Lawrence L. Larmore proposed the \(k \)-competitive Double-Coverage algorithm for the \(k \)-sever problem on trees [21].

For the \(k \)-sever problem on the general metric space, the \(k \)-sever conjecture remain open. Fiat et al. were the first to show that there exists an online algorithm of competitive ratio that depends only on \(k \) for any metric space: its competitive ratio is \(\Theta((k!)^3) \). The bound was improved later by Grove who showed that the harmonic algorithm is of competitive ratio \(O(k^2) \) [25]. The result was improved to \((2^k \log k) \) by Y. Bartal and E. Grove [14]. A significant progress was achieved by Koutsoupias and Papadimitriou, who proved that the work function algorithm is of competitive ratio \(2^k - 1 \) [27].

Generally, people believe that randomized online algorithms can produce better competitive ratio than their deterministic counterparts. For example, there are several \(O(\log k) \)-competitive algorithms for the paging problem and a \(\Omega(\log k) \) lower bound on the competitive ratio in [24, 30]. Although there were much work [17, 13, 15], the \(\Omega(\log k) \) lower bound is still best lower bound in the randomized case. Recently, N. Bansal et al. propose the first polylogarithmic-competitive randomized algorithm for the \(k \)-sever problem on a general metric space [3]. Their randomized algorithm is of competitive ratio \(O(\log^2 k \log^3 n \log \log n) \) for any metric space with \(n \) points, which improves on the deterministic \(2k - 1 \) competitive ratio of Koutsoupias and Papadimitriou whenever \(n \) is sub-exponential \(k \).

For the \(k \)-server problem on the general metric space, it is widely conjectured that there is an \(O(\log k) \)-competitive randomized algorithm, which is called as the randomized \(k \)-server conjecture. For the paging problem (it corresponds to the \(k \)-sever problem on a uniform metric), there is \(O(\log k) \)-competitive algorithms [24, 30, 1]. For the weighted paging problem (it corresponds to the \(k \)-sever problem on a weighted star metric space), there were also \(O(\log k) \)-competitive algorithms [4, 9] via the online primal-dual method. More extensive literature on the \(k \)-server problem can be found in [26, 18].

In this paper, we show that there exists a randomized \(k \)-server algorithm of \(O(\log k \log^2 n) \)-competitive ratio for any metric space with \(n \) points, which improved the previous best competitive ratio \(O(\log^2 k \log^3 n \log \log n) \) by Nikhil Bansal et al. [3].

In order to get our results, we use the online primal-dual method, which is developed by Buchbinder and Naor et al. in recent years. Buchbinder and Naor et al. have used the primal-dual method to design online algorithms for many online problems such as covering and packing problems, the ad-auctions problem and so on [4, 5, 6, 7, 8, 10]. First, we propose a primal-dual formulation for the fraction \(k \)-sever problem on a weighted hierarchical well-separated tree (HST). Then, we design an \(O(\ell \log k) \)-competitive online algorithm for the fraction \(k \)-sever problem on a weighted HST with depth \(\ell \). Since any HST with \(n \) leaves can be transformed into a weighted HST with depth \(O(\log n) \) with any leaf to leaf distance distorted by at most a constant [3], thus, we get an \(O(\log k \log n) \)-competitive online algorithm for the fraction \(k \)-sever problem on an HST. Based on the known relationship between the fraction \(k \)-sever problem and the randomized \(k \)-sever problem, we get that there is an \(O(\log k \log n) \)-competitive randomized algorithm for the \(k \)-sever problem on an HST with \(n \) points. By the metric embedding theory [22], we get that there is an \(O(\log k \log^2 n) \)-competitive randomized algorithm for the \(k \)-sever problem on any metric space with \(n \) points.
2 Preliminaries

In this section, we give some basic definitions.

Definition 2.1. (Competitive ratio adapted from [32]) For a deterministic online algorithm DALG, we call it \(r \)-competitive if there exists a constant \(c \) such that for any request sequence \(\rho \), \(\text{cost}_{\text{DALG}}(\rho) \leq r \cdot \text{cost}_{\text{OPT}}(\rho) + c \), where \(\text{cost}_{\text{DALG}}(\rho) \) and \(\text{cost}_{\text{OPT}}(\rho) \) are the costs of the online algorithm DALG and the best offline algorithm OPT respectively.

For a randomized online algorithm, we have a similar definition of competitive ratio:

Definition 2.2. (Adapted from [32]) For a randomized online algorithm RALG, we call it \(r \)-competitive if there exists a constant \(c \) such that for any request sequence \(\rho \), \(\mathbb{E}[\text{cost}_{\text{RALG}}(\rho)] \leq r \cdot \text{cost}_{\text{OPT}}(\rho) + c \), where \(\mathbb{E}[\text{cost}_{\text{RALG}}(\rho)] \) is the expected cost of the randomized online algorithm RALG.

In order to analyze randomized algorithms for the \(k \)-server problem, D. Türküoğlu introduce the fractional \(k \)-server problem [32]. On the fractional \(k \)-server problem, servers are viewed as fractional entities as opposed to units and an online algorithm can move fractions of servers to the requested point.

Definition 2.3. (Fractional \(k \)-server problem adapted from [32]) Suppose that there are a metric space \(S \) and a total of \(k \) fractional servers located at the points of the metric space. Given a sequence of requests, each request must be served by providing one unit server at requested point, through moving fractional servers to the requested point. The cost of an algorithm for servicing a sequence of requests is the cumulative sum of the distance incurred by each server, where moving a \(w \) fraction of a server for a distance of \(\delta \) costs \(w\delta \).

In [11, 12], Bartal introduce the definition of a Hierarchical Well-Separated Tree (HST), into which a general metric can be embedded with a probability distribution. For any internal node, the distance from it to its parent node is \(\sigma \) times of the distance from it to its child node. The number \(\sigma \) is called the stretch of the HST. An HST with stretch \(\sigma \) is called a \(\sigma \)-HST. In the following, we give its formal definition.

Definition 2.4. (Hierarchically Well-Separated Trees (HSTs) [20]). For \(\sigma > 1 \), a \(\sigma \)-Hierarchically Well-Separated Tree (\(\sigma \)-HST) is a rooted tree \(T = (V, E) \) whose edges length function \(d \) satisfies the following properties:

1. For any node \(v \) and any two children \(w_1, w_2 \) of \(v \), \(d(v, w_1) = d(v, w_2) \).
2. For any node \(v \), \(d(p(v), v) = \sigma \cdot d(v, w) \), where \(p(v) \) is the parent of \(v \) and \(w \) is a child of \(v \).
3. For any two leaves \(v_1 \) and \(v_2 \), \(d(p(v_1), v_1) = d(p(v_2), v_2) \).

Fakcharoenphol et al. showed the following result [22].

Lemma 2.5. If there is a \(\gamma \)-competitive randomized algorithm for the \(k \)-server problem on an \(\sigma \)-HST with all requests at the \(n \) leaves, then there exists an \(O(\gamma \sigma \log n) \)-competitive randomized online algorithm for the \(k \)-server problem on any metric space with \(n \) points.

We still need the definition of a weighted hierarchically well-separated tree introduced in [3].
Theorem 2.6. (Weighted Hierarchically Well-Separated Trees (Weighted HSTs) [3]) A weighted \(\sigma \)-HST is a rooted tree satisfying the property (1), (3) of the definition 2.4 and the property:

\[d(p(v), v) \geq \sigma \cdot d(v, w) \]

for any node \(v \) which is not any leaf or the root, where \(p(v) \) is the parent of \(v \) and \(w \) is a child of \(v \).

In [3], Banas et al. show that an arbitrary depth \(\sigma \)-HST with \(n \) leaves can be embedded into an \(O(\log n) \) depth weighted \(\sigma \)-HST with constant distortion, which is described as follows.

Lemma 2.7. Let \(T \) be a \(\sigma \)-HST \(T \) with \(n \) leaves which is of possibly arbitrary depth. Then, \(T \) can be transformed into a weighted \(\sigma \)-HST \(\tilde{T} \) with depth \(O(\log n) \) such that: the leaves of \(\tilde{T} \) and \(T \) are the same, and leaf to leaf distance in \(T \) is distorted in \(\tilde{T} \) by a at most \(\frac{2}{\sigma - 1} \) factor.

3 An \(O(\log^2 k) \) Randomized Algorithm for the \(k \)-Sever Problem on an HST when \(n = k + 1 \)

In this paper, we view the \(k \)-sever problem as the weighed caching problem such that the cost of evicting a page out of the cache using another page satisfies the triangle inequality, i.e., a point is viewed as a page; the set of \(k \) points that are served by \(k \) servers is viewed as the cache which holds \(k \) pages; the distance of two points \(i \) and \(j \) is viewed the cost of evicting the corresponding page \(p_i \) out of the cache using the corresponding page \(p_j \).

Let \([n] = \{p_1, \ldots, p_n\} \) denotes the set of \(n \) pages and \(d(p_i, p_j) \) denotes the cost of evicting the page \(p_i \) out of the cache using the page \(p_j \) for any \(p_i, p_j \in [n] \), which satisfies the triangle inequality: for any pages \(i, j, s, d(p_i, p_i) = 0; d(p_i, p_j) = d(p_j, p_i); d(p_i, p_j) \leq d(p_i, p_s) + d(p_s, p_j) \).

Let \(p_1, p_2, \ldots, p_M \) be the requested pages sequence until time \(M \), where \(p_i \) is the requested page at time \(t \). At each time step, if the requested page \(p_i \) is already in the cache then no cost is produced. Otherwise, the page \(p_i \) must be fetched into the cache by evicting some other pages \(p \) in the cache and a cost \(\sum d(p, p_i) \) is produced.

In this section, in order to clearly describe our algorithm design idea, we consider the case \(n = k + 1 \).

First, we give some notations. Let \(\sigma \)-HST denote a hierarchically well-separated trees with stretch factor \(\sigma \). Let \(N \) be the number of nodes in a \(\sigma \)-HST and leaves be \(p_1, p_2, \ldots, p_n \). Let \(\ell(v) \) denote the depth of a node \(v \). Let \(r \) denote the root node. Thus, \(\ell(r) = 0 \). For any leaf \(p \), let \(\ell \) denote its depth, i.e. \(\ell(p) = \ell \). Let \(p(v) \) denote the parent node of a node \(v \). \(C(v) \) denote the set of children of a node \(v \). Let \(D \) denote the distance from the root to its a child. \(D(v) = d(v, p(v)) \). It is easy to know that \(D(v) = \frac{D}{(\sigma - 1)} \).

Let \(T_v \) be the subtree rooted at \(v \) and \(L(T_v) \) denote the set of leaves in \(T_v \). Let \(|T_v| \) denote the number of the leaves in \(T_v \). For a leaf \(p_i \), let \(A(p_i, j) \) denote the ancestor node of \(p_i \) at the depth \(j \). Thus, \(A(p_i, \ell) \) is \(p_i \), \(A(p_i, 0) \) is the root \(r \) and so on. At time \(t \), let variable \(x_{p_i, t} \) denote the fraction of \(p_i \) that is in the cache and \(u_{p_i, t} \) denote the fraction of \(p_i \) that is out of cache. Obviously, \(x_{p_i, t} + u_{p_i, t} = 1 \) and \(\sum_{p \in [n]} x_{p, t} = k \). For a node \(v \), let \(u_{v, t} = \sum_{p \in L(T_v)} u_{p, t} \), i.e., it is the total fraction of pages in the subtree \(T_v \) which is out of the cache. It is easy to see that \(u_{v, t} = \sum_{w \in C(v)} u_{v, t} \). Suppose that at time 0, the set of initial \(k \) pages in the cache is \(I = \{p_1, \ldots, p_k\} \).

At time \(t \), when the request \(p_i \) arrives, if page \(p_i \) is fetched mass \(\Delta(p_i, p_i) \) into the cache by evicting out the page \(p \) in the cache, then the evicting cost is \(d(p, p_i) \cdot \Delta(p_i, p) \). For a \(\sigma \)-HST metric,
suppose the path from p_t to p in it is: $p_t, v_j, \ldots, v_k, v_{i_1}, \ldots, v_{i_j}, p$, where v is the first common ancestor node of p_t and p. By the definition of a σ-HST, we have $D(p_t) = D(p)$ and $D(v_j) = D(v'_j)$ for any $1 \leq i \leq j$. Thus, $d(p, p_t) = D(p_t) + \sum_{i=1}^{j} D(v_i) + D(p) + \sum_{i=1}^{j} D(v'_i) = 2D(p_t) + \sum_{i=1}^{j} 2D(v_i)$. So, the evicting cost is $(2D(p_t) + \sum_{i=1}^{j} 2D(v_i)) \cdot \Delta(p_t, p)$. Since p can be any page in $[n] \setminus \{p_t\}$, the evicting cost incurred at time t is $\sum_{i=1}^{N} 2D(v) \max\{0, u_{v,t-1} - u_{v,t}\}$. Thus, we give the LP formulation for the fractional k-sever problem on a σ-HST as follows.

\begin{align*}
\text{(P)} \quad & \text{Minimize} \sum_{t=1}^{M} \sum_{v=1}^{N} 2D(v)z_{v,t} + \sum_{t=1}^{M} \infty \cdot u_{p_t,t} \\
\text{Subject to} \forall t > 0 \text{ and } S \subseteq [n] \text{ with } |S| > k, \sum_{p \in S} u_{p,t} \geq |S| - k; \quad (3.1) \\
\forall t > 0 \text{ and a subtree } T_v(v \neq r), z_{v,t} \geq \sum_{p \in L(T_v)} (u_{p,t-1} - u_{p,t}); \quad (3.2) \\
\forall t > 0 \text{ and node } v, \ z_{v,t}, u_{v,t} \geq 0; \quad (3.3) \\
\text{For } t = 0 \text{ and any leaf node } p \in I, u_{p,0} = 0; \quad (3.4) \\
\text{For } t = 0 \text{ and any leaf node } p \notin I, u_{p,0} = 1; \quad (3.5)
\end{align*}

The first primal constraint (3.1) states that at any time t, if we take any set S of vertices with $|S| > k$, then $\sum_{p \in S} u_{p,t} = |S| - \sum_{p \in S} x_{p,t} \geq |S| - \sum_{p \in [n]} x_{p,t} = |S| - k$, i.e., the total number of pages out of the cache is at least $|S| - k$. The variables $z_{v,t}$ denote the total fraction mass of pages in T_v that are moved out of the subtree T_v (Obviously, it is not needed to define a variable $z_{r,t}$ for the root node). The fourth and fifth constraints ((3.4) and (3.5)) enforce the initial k pages in the cache are p_{i_1}, \ldots, p_{i_k}. The first term in the objective function is the sum of the moved cost out of the cache and the second term enforces the requirement that the page p_t must be in the cache at time t (i.e., $u_{p_t,t} = 0$).

Its dual formulation is as follows.

\begin{align*}
\text{(D)} \quad & \text{Maximize} \sum_{t=1}^{M} \sum_{S \subseteq [n], |S| > k} (|S| - k)a_{S,t} + \sum_{p \in I} \gamma_p \\
\text{Subject to} \forall t \text{ and } p \in [n] \setminus \{p_t\}, \sum_{S:p \in S} a_{S,t} - \sum_{j=1}^{\ell} (b_{A(p_{j}),t+1} - b_{A(p_{j},p),t}) \leq 0; \quad (3.6) \\
\forall t = 0 \text{ and } \forall p \in [n], \gamma_p - \sum_{j=1}^{\ell} b_{A(p_{j}),1} \leq 0; \quad (3.7) \\
\forall t > 0 \text{ and any subtree } T_v, b_{v,t} \leq 2D(v); \quad (3.8) \\
\forall t > 0 \text{ and } v \text{ and } |S| > k, a_{S,t}, b_{v,t} \geq 0 \quad (3.9)
\end{align*}

In the dual formulation, the variable $a_{S,t}$ corresponds to the constraint of the type (3.1); the variable $b_{v,t}$ corresponds to the constraint of the type (3.2); The variable γ_p corresponds to the constraint of the type (3.4) and (3.5).

Based on above primal-dual formulation, we extend the design idea of Bansal et al.’s primal-dual algorithm for the metric task system problem on a σ-HST [10] to the k-sever problem on a σ-HST. The design idea of our online algorithm is described as follows. During the execution of our algorithm, it always maintains the following relation between the primal variable $u_{v,t}$ and dual variable $b_{v,t+1}$: \[u_{v,t} = f(b_{v,t+1}) = \frac{T_v}{k} \left(\exp\left(\frac{b_{v,t+1}}{2D(v)} \ln(1 + k)\right) - 1\right). \] When the request p_t arrives at time t, the page p_t is gradually fetched into the cache and other pages are gradually moved out of
the cache by some rates until \(p_t \) is completely fetched into the cache (i.e., \(u_{p_t,t} \) is decreased at some rate and other \(u_{p_t,t} \) is increased at some rate for any \(p \in [n] \setminus \{p_t\} \) until \(u_{p_t,t} \) becomes 0). It can be viewed that we move mass \(u_{p_t,t} \) out of leaf \(p_t \) through its ancestor nodes and distribute it to other leaves \(p \in [n] \setminus \{p_t\} \). In order to compute the exact distributed amount at each page \(p \in [n] \setminus \{p_t\} \), the online algorithm should maintain the following invariants:

1. (Satisfying Dual Constraints:) It is tight for all dual constraints of type (3.6) on other leaves \([n] \setminus \{p_t\}\).
2. (Node Identity Property:) \(u_{v,t} = \sum_{w \in C(v)} u_{w,t} \) holds for each node \(v \).

We give more clearer description of the online algorithm process. At time \(t \), when the request \(p_t \) arrives, we initially set \(u_{p_t,t} = u_{p_t,t-1} \). If \(u_{p_t,t} = 0 \), then we do nothing. Thus, the primal cost and the dual profit are both zero. All the invariants continue to hold. If \(u_{p_t,t} \neq 0 \), then we start to increase variable \(a_S \) at rate 1. At each step, we would like to keep the dual constraints (3.6) tight and maintain the node identity property. However, increasing variable \(a_S \) violates the dual constraints (3.6) on leaves in \([n] \setminus \{p_t\}\). Hence, we increase other dual variables in order to keep these dual constraints (3.6) tight. But, increasing these variables may also violate the node identity property. So, it makes us to update other dual variables. This process results in moving initial \(u_{p_t,t} \) mass from leaf \(p_t \) to leaves \([n] \setminus \{p_t\}\). We stop the updating process when \(u_{p_t,t} \) become 0.

In the following, we will compute the exact rate at which we should move mass \(u_{p_t,t} \) from \(p_t \) through its ancestor nodes at time \(t \) to other leaves in \([n] \setminus \{p_t\}\) in the \(\sigma \)-HST. Because of the space limit, we put proofs of the following some claims in the Appendix. First, we show one property of the function \(f \).

Lemma 3.1. \(\frac{du_{v,t}}{db_{v,t+1}} = \frac{\ln(1+k)}{2D(v)} (u_{v,t} + |T_u|) \).

Proof. Since \(u_{v,t} = \frac{|T_u|}{k} (\exp(\frac{b_{v,t+1}}{k} \ln(1+k)) - 1) \), we take the derivative over \(b_{v,t+1} \) and get the claim. \(\square \)

In order to maintain the **Node Identity Property:** \(u_{v,t} = \sum_{w \in C(v)} u_{w,t} \) for each node \(v \) at any time \(t \), when \(u_{v,t} \) is increased or decreased, it is also required to increase or decrease the children of \(v \) at some rate. The connection between these rates is given.

Lemma 3.2. For a node \(v \), if we increase variable \(b_{v,t+1} \) at rate \(h \), then we have the following equality:

\[
\frac{1}{\sigma} (u_{v,t} + |T_u|) \cdot \frac{db_{v,t+1}}{dh} = \sum_{w \in C(v)} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + |T_w|)
\]

We need one special case of lemma 3.2: when the variable \(b_{v,t+1} \) is increased (decreased) at rate \(h \), it is required that the increasing (decreasing) rate of all children of \(v \) is the same. By above lemma, we get:

Lemma 3.3. For \(v \) a node, assume that we increase (or decrease) the variable \(b_{v,t+1} \) at rate \(h \). If the increasing (or decreasing) rate of each \(w \in C(v) \) is the same, then in order to keep the **Node Identity Property**, we should set the increasing (or decreasing) rate for each child \(w \in C(v) \) as follows:

\[
\frac{db_{w,t+1}}{dh} = \frac{1}{\sigma} \frac{db_{w,t+1}}{dh}
\]

Repeatedly applying this lemma, we get the following corollary.
Corollary 3.4. For a node \(v \) with \(\ell(v) = j \) and a path \(P \) from leaf \(p_i \in T_v \) to \(v \), if \(b_{v,t+1} \) is increased (or decreased) at rate \(h \) and the increasing (decreasing) rate of all children of any \(v' \in P \) is the same, then \(\sum_{v' \in P} \frac{db_{v',t+1}}{dh} = \frac{db_{v,t+1}}{dh} \cdot \psi(j) \), where \(\psi(j) = (1 + \frac{1}{\sigma} + \frac{1}{\sigma^2} + \cdots + \frac{1}{\sigma^{j-1}}) = (1 + \Theta(\frac{1}{\sigma})) \).

We still require the following special case of lemma 3.2. Let \(w_1 \) be the first child of the node \(v \). Assume that \(b_{w_1,t+1} \) is increased (or decreased) at some rate and the rate of increasing (or decreasing) \(b_{w',t+1} \) is the same for every \(w' \in C(v) \), \(w' \neq w_1 \). If \(b_{w,t+1} \) is unchanged, then the following claim should hold.

Lemma 3.5. Let \(w_1, \ldots, w_m \) be the children of a node \(v \). Assume that we increase (or decrease) \(w_1 \) at rate \(h \) and also increase \(w_2 \) to \(w_m \) at the same rate \(h \). For \(i \geq 2 \), let \(\frac{db_{w',t+1}}{dh} \) be \(\frac{db_{w_i,t+1}}{dh} \). If we would like to maintain the amount \(u_{v,t} \) unchanged, then we should have:

\[
\frac{db_{w',t+1}}{dh} = \frac{u_{w_1,t}+|T(w_1)|}{u_{w_1}+|T(v)|} \cdot (\frac{db_{w_1,t+1}}{dh} + \frac{db_{w',t+1}}{dh})
\]

Theorem 3.6. When request \(p_v \) arrives at time \(t \), in order to keep the dual constraints tight and node identity property, if \(a_{S,t} \) is increased with rate 1, we should decrease every \(b_{A(p_i,j),t+1} \) \(1 \leq j \leq \ell \) with rate:

\[
\frac{db_{A(p_i,j),t+1}}{da_{S,t}} = \frac{2+t}{\psi(j)} \left[(u_{A(p_i,j),t} + \frac{|T(A(p_i,j))|}{k})^{-1} - (u_{A(p_i,j-1),t} + \frac{|T(A(p_i,j-1))|}{k})^{-1} \right].
\]

For each sibling \(w \) of \(A(p_i,j) \), increase \(b_{w,t+1} \) with the following rate:

\[
\frac{db_{w,t+1}}{da_{S,t}} = \frac{2+t}{\psi(j)} \left(u_{A(p_i,j-1),t} + \frac{|T(A(p_i,j-1))|}{k} \right)^{-1}
\]

Thus, we design an online algorithm for the fractional \(k \)-sever problem as follows (see Algorithm 3.1).

Algorithm 3.1: The online primal-dual algorithm for the fractional \(k \)-sever problem on a \(\sigma \)-HST.

Theorem 3.7. The online algorithm for the fractional \(k \)-sever problem on a \(\sigma \)-HST is of competitive ratio \(15\ln^2(1+k) \).
In [32], Duru Türekoğlu study the relationship between fractional version and randomized version of the k-sever problem, which is given as follows.

Lemma 3.8. The fractional k-sever problem is equivalent to the randomized k-sever problem on the line or circle, or if k = 2 or k = n − 1 for arbitrary metric spaces.

Thus, we get the following conclusion:

Theorem 3.9. There is a randomized algorithm with competitive ratio 15 ln^2(1 + k) for the k-sever problem on a σ-HST when n = k + 1.

By lemma 2.5, we get the following conclusion:

Theorem 3.10. There is an O(log^2 k log n) competitive randomized algorithm for the k-sever problem on any metric space when n = k + 1.

4 An O(ℓ log k)-competitive Fractional Algorithm for the k-Sever Problem on a Weighted HST with Depth ℓ

In this section, we first give an O(ℓ log k)-competitive fractional algorithm for the k-Sever problem on a weighted σ-HST with depth ℓ.

We give another some notations for a weighted HST. Let T be a weighted σ-HST. For a node whose depth is j, let σ_j = \frac{D(v)}{D(w)} = \frac{d(p(v),u)}{d(v,w)} where w is a child of v. By the definition of a weighted σ-HST, σ_j ≥ σ for all 1 ≤ j ≤ ℓ − 1. For a node v ∈ T, if any leaf p ∈ L(T(v)) such that u_{p,t} = 1, we call it a full node. By this definition, for a full node, u_{v,t} = |L(T_v)|. Otherwise, we call it non-full node. Let NFC(v) is the set of non-full children node of v, i.e., NFC(v) = \{w|w ∈ C(v) and w is a non-full node\}. For a node v, let NL(T_v) denote the set of non-full leaf nodes in T_v. Let S = \{p|u_{p,t} < 1\}. Let P' denote the path from p_t to root r: \{A(p_t,ℓ) = P_t,A(p_t,ℓ−1),...,A(p_t,1),...,A(p_t,0) = r\}. For a node v ∈ P', if there exists a p ∈ S\{p_t\} such that v is the first common ancestor of p and p_t, we call it a common ancestor node in P'. Let CA(p_t,S) denote the set of common ancestor nodes in P'. Suppose that CA(p_t,S) = \{A(p_t,ℓ_1),...,A(p_t,ℓ_h)\}, where ℓ_1 < ℓ_2 < ... < ℓ_h. For a node v, let u_{v,t} = \sum_{p ∈ S} u_{p,t}. It is easy to know that u_{v,t} = \sum_{w ∈ NFC(v)} u_{w,t}. Thus, for a full node v, u_{v,t} = 0.

For any ℓ_i < j < ℓ, u_{A(p_t,j),t} = u_{A(p_t),t}. For any 0 ≤ j < ℓ_1, u_{A(p_t,0),t} = u_{A(p_t,j),t} = u_{A(p_t,ℓ_1),t}. For any ℓ_{i−1} < j < ℓ_i, u_{A(p_t,j),t} = u_{A(p_t,ℓ_i),t}.

The primal-dual formulation for the fractional k-sever problem on a weighted HST is the same as that on a HST in section 3. Based on the primal-dual formulation, the design idea of our online algorithm is similar to the design idea in section 3. During the execution of our algorithm, it keeps the following relation between the primal variable u_{v,t} and dual variable b_{v,t+1}: u_{v,t} = f(b_{v,t+1}) = \frac{|NL(T_v)|}{k}(\exp(\frac{b_{v,t+1}}{D(v)} \ln(1 + k)) − 1). This relation determines how much mass of u_{p,t} should be gradually moved out of leaf p_t and how it should be distributed among other leaves S \{p_t\} until p_t is completely fetched into the cache, i.e. u_{p_t,t} = 0. Thus, at any time t, the algorithm maintains a distribution \{u_{p_1,t},...,u_{p_n,t}\} on the leaves such that \sum_{p ∈ [n]} u_{p,t} = n − k.

In order to compute the the exact rate at which we should move mass u_{p,t} from p_t through its ancestor nodes at time t to other leaves S \{p_t\} in the weighted σ-HST, using similar argument to that in section 3, we get following several claims. Because of the space limit, we put their proofs in the Appendix.
Lemma 4.1. \(\frac{db_{v,t}}{dh} = \frac{\ln(1+k)|NL(T_v)|}{2D(v)}(u_{v,t} + \frac{|NL(T_v)|}{k}) \).

Proof. Since \(u_{v,t} = \frac{|NL(T_v)|}{k}(\exp(\frac{b_{v,t+1}}{2D(v)}(1+k)) - 1) \), we take the derivative over \(b_{v,t+1} \) and get the claim. \(\square \)

Lemma 4.2. For a node \(v \) with \(\ell(v) = j \), if we increase variable \(b_{v,t+1} \) at rate \(h \), then we have the following equality:

\[
\frac{1}{\sigma_j}(u_{v,t} + \frac{|NL(T_v)|}{k}) \cdot \frac{db_{v,t+1}}{dh} = \sum_{w \in NFC(v)} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + \frac{|NL(T_v)|}{k})
\]

Lemma 4.3. For \(v \) a node with \(\ell(v) = j \), assume that we increase (or decrease) the variable \(b_{v,t+1} \) at rate \(h \). If the increasing (or decreasing) rate of each \(w \in NFC(v) \) is the same, then in order to keep the Node Identity Property, we should set the increasing (or decreasing) rate for each child \(w \in NFC(v) \) as follows:

\[
\frac{db_{w,t+1}}{dh} = \frac{1}{\sigma_j} \cdot \frac{db_{v,t+1}}{dh}
\]

Repeatedly applying this lemma, we get the following corollary.

Corollary 4.4. For a node \(v \) with \(\ell(v) = j \) and a path \(P \) from leaf \(p_i \in T_v \) to \(v \), if \(b_{v,t+1} \) is increased (or decreased) at rate \(h \) and the increasing (decreasing) rate of all children of any \(v' \in P \) is the same, then

\[
\sum_{v' \in P} \frac{db_{v',t+1}}{dh} = \frac{db_{v,t+1}}{dh} \cdot \phi(j), \quad \text{where} \quad \phi(j) = (1 + \frac{1}{\sigma_j} + \frac{1}{\sigma_j\sigma_{j+1}} + \cdots + \frac{1}{\sigma_j\sigma_{j+1} \cdots \sigma_{t-1}}) \leq (1 + \Theta(\frac{1}{\sigma}))
\]

Lemma 4.5. Let \(w_1, \ldots, w_m \) be the non-full children node of a node \(v \) (i.e., any \(w_i \in NFC(v) \)). Assume that we increase (or decrease) \(w_1 \) at rate \(h \) and also increase \(w_2 \) to \(w_m \) at the same rate \(h \). For \(i \geq 2 \), let \(\frac{db_{w_i,t+1}}{dh} = \frac{db_{w_{i-1},t+1}}{dh} \). If we would like to maintain the amount \(u_{v,t} \) unchanged, then we should have:

\[
\frac{db_{w_i,t+1}}{dh} = \frac{u_{w_i,t}(\frac{|NL(T_{w_i})|}{k})}{u_{v,t}(\frac{|NL(T_{w_i})|}{k})} \cdot (\frac{db_{w_{i-1},t+1}}{dh} + \frac{db_{w_{i-1},t+1}}{dh})
\]

Theorem 4.6. When request \(p_t \) arrives at time \(t \), in order to keep the dual constraints tight and node identity property, if \(\sigma_j \) is increased with rate 1, we should decrease every \(b_{A(p_t,j),t+1} \) for each \(j \in \{\ell_1 + 1, \ell_2 + 1, \ldots, \ell_h + 1 \} \) with rate:

\[
\frac{db_{A(p_t,j),t+1}}{d\sigma_j} = \frac{u_{A(p_t,j),t}(\frac{|NL(T_{A(p_t,j)})|}{k})}{\sigma_j} \cdot (u_{A(p_t,j),t} + \frac{|NL(T_{A(p_t,j)})|}{k}) - (u_{A(p_t,j-1),t} + \frac{|NL(T_{A(p_t,j-1)})|}{k}) - 1).
\]

For each sibling \(w \in NFC(v) \) of \(A(p_t,j) \), increase \(b_{w,t+1} \) with the following rate:

\[
\frac{db_{w,t+1}}{d\sigma_j} = \frac{u_{w,t}(\frac{|NL(T_{w})|}{k})}{\sigma_j} \cdot (u_{w,t} + \frac{|NL(T_{w})|}{k}) - 1)
\]

Thus, we design an online algorithm for the fractional \(k \)-sever problem on a weighted \(\sigma \)-HST as follows (see Algorithm 4.1).

Theorem 4.7. The online algorithm for the fractional \(k \)-sever problem on a weighted \(\sigma \)-HST with depth \(\ell \) is of competitive ratio \(4\ell \ln(1 + k) \).

By lemma 2.7, we get:

Theorem 4.8. There exists an \(O(\log k \log n) \)-competitive fractional algorithm for the \(k \)-sever problem on any \(\sigma \)-HST.

In [9], Nikhil Bansal et al. show the following conclusion.
1: At time $t = 0$, we set $b_{p,1} = \gamma_p = 0$ for all p.
2: At time $t \geq 1$, when a request p_t arrives:
3: Initially, we set $u_{p,t} = u_{p,t-1}$ for all p, and $b_{p,t+1}$ is initialized to $b_{p,t}$.
4: If $u_{p,t} = 0$, then do nothing.
5: Otherwise, do the following:
6: Let $S = \{ p : u_{p,t} < 1 \}$. Suppose that $CA(p_t, S) = \{ A(p_t, \ell_1), \ldots, A(p_t, \ell_k), A(p_t, \ell_1) \}$, where $0 \leq \ell_1 < \ell_2 < \ldots < \ell_k < \ell$.
7: While $u_{p,t} \neq 0$:
8: Increasing $a_{S,t}$ with rate 1;
9: For each $j \in \{ \ell_1 + 1, \ell_2 + 1, \ldots, \ell_k + 1 \}$, decrease every $b_{A(p_t,j),t+1}$ with rate:
10: $\frac{db_{A(p_t,j),t+1}}{da_{S,t}} = \frac{\upsilon_{x,t} + S}{\phi(j)} \left[(u_{A(p_t,j),t} + \frac{|NL(T_{A(p_t,j)})|}{k}) - 1 - (u_{A(p_t,j-1),t} + \frac{|NL(T_{A(p_t,j-1)})|}{k}) - 1 \right].$
11: For each sibling $w \in NFC(v)$ of $A(p_t,j)$, increase $b_{w,t+1}$ with the following rate:
12: $\frac{db_{w,t+1}}{da_{S,t}} = \frac{\upsilon_{x,t} + S}{\phi(j)} \left[u_{A(p_t,j-1),t} + \frac{|NL(T_{A(p_t,j-1)})|}{k} \right]^{-1} - 1.$
13: For any node v' in the path from w to a leaf in $NL(T_w)$, if $w' \in NFC(v')$ and $\ell(v') = j$, then we update $S \leftarrow S \setminus \{ p \}$ and 14: the set $NFC(v)$ for each ancestor node v of p.

Algorithm 4.1: The online primal-dual algorithm for the fractional k-sever problem on a weighted σ-HST.

Lemma 4.9. Let T be a σ-HST with $\sigma > 5$. Then any online fractional k-sever algorithm on T can be converted into a randomized k-sever algorithm on T with an $O(1)$ factor loss in the competitive ratio.

Thus, we get the following conclusion by Theorem 4.8:

Theorem 4.10. Let T be a σ-HST with $\sigma > 5$. There is a randomized algorithm for the k-sever problem with a competitive ratio of $O(\log k \log n)$ on T.

By lemma 2.5, we get the following conclusion:

Theorem 4.11. For any metric space, there is a randomized algorithm for the k-sever problem with a competitive ratio of $O(\log k \log^2 n)$.

5 Conclusion

In this paper, for any metric space with n points, we show that there exist a randomized algorithm with $O(\log k \log^2 n)$-competitive ratio for the k-sever problem, which improved the previous best competitive ratio $O(\log^2 k \log^3 n \log n)$.

Acknowledgments

We would like to thank the anonymous referees for their careful readings of the manuscripts and many useful suggestions.
Wenbin Chen’s research has been partly supported by the National Natural Science Foundation of China (NSFC) under Grant No.11271097., the research projects of Guangzhou education bureau under Grant No. 2012A074. and the project KFKT2012B01 from State Key Laboratory for Novel Software Technology, Nanjing University.

References

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized paging algorithms. Theoretical Computer Science, 234(1-2):203-218, 2000.

[2] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 450-456, 1999.

[3] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, Joseph Naor. A Polylogarithmic-Competitive Algorithm for the k-Server Problem. FOCS 2011, pages 267-276.

[4] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. A primal-dual randomized algorithm for weighted paging. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, pages 507-517, 2007.

[5] N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-auctions revenue. Proc. 14th European Symp. on Algorithms (ESA), pp. 253-264, 2007.

[6] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing problems. Proc. 12th European Symp. on Algorithms (ESA), volume 3669 of Lecture Notes in Comput. Sci., pages 689–701. Springer, 2005.

[7] N. Buchbinder and J. Naor. Improved bounds for online routing and packing via a primal-dual approach. Proc. 47th Symp. Foundations of Computer Science, pages 293–304, 2006.

[8] Niv Buchbinder, Joseph Naor. The Design of Competitive Online Algorithms via a Primal-Dual Approach. Foundations and Trends in Theoretical Computer Science 3(2-3): 93–263 (2009).

[9] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Towards the randomized k-server conjecture: A primal-dual approach. Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 40-55, 2010.

[10] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Metrical task systems and the k-server problem on HSTs. In ICALP’10: Proceedings of the 37th International Colloquium on Automata, Languages and Programming, 2010, pp.287-298.

[11] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pages 184-193, 1996.

[12] Yair Bartal. On approximating arbitrary metrics by tree metrics. Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 161-168, 1998.
[13] Yair Bartal, Bela Bollobas, and Manor Mendel. A ramsy-type theorem for metric spaces and its applications for metrical task systems and related problems. Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 396-405, 2001.

[14] Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. Journal of the ACM, 47(1):1-15, 2000.

[15] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phenomena. Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 463-472, 2003.

[16] Yair Bartal, Elias Koutsoupias. On the competitive ratio of the work function algorithm for the k-sever problem. Theoretical Computer Science, 324(2-3): 337-345.

[17] Avrim Blum, Howard J. Karloff, Yuval Rabani, and Michael E. Saks. A decomposition theorem and bounds for randomized server problems. Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, pages 197-207, 1992.

[18] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998.

[19] M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers on trees. SIAM Journal on Computing, 20(1): 144-148, 1991.

[20] A. Coté, A. Meyerson, and L. Poplawski. Randomized k-server on hierarchical binary trees. Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 227-234, 2008.

[21] B. Csaba and S. Lodha. A randomized on-line algorithm for the k-server problem on a line. Random Structures and Algorithms, 29(1): 82-104, 2006.

[22] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 448-455, 2003.

[23] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. Journal of Computer and System Sciences, 48(3): 410-428, 1994.

[24] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4): 685-699, 1991.

[25] Edward F. Grove. The harmonic online k-server algorithm is competitive. Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 260-266, 1991.

[26] Elias Koutsoupias. The k-sever problem. Computer Science Review. Vol. 3. No. 2. Pages 105-118, 2009.

[27] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42(5): 971-983, 1995.
Appendix

Proofs for claims in section 3

The proof for Lemma 3.2 is as follows:

Proof. Since it is required to maintain $u_{v,t} = \sum_{w \in C(v)} u_{w,t}$, we take the derivative of both sides and get that:

$$\frac{du_{v,t}}{db_{v,t+1}} \cdot \frac{db_{v,t+1}}{dh} = \sum_{w \in C(v)} \frac{du_{w,t}}{db_{w,t+1}} \cdot \frac{db_{w,t+1}}{dh}.$$

By lemma 3.1, we get:

$$\ln(1+\frac{k}{2}) \cdot \frac{D(v)}{D(w)} \cdot \frac{db_{v,t+1}}{dh} \cdot \frac{db_{w,t+1}}{dh} = \sum_{w \in C(v)} \frac{du_{w,t}}{db_{w,t+1}} \cdot \frac{db_{w,t+1}}{dh} \cdot \frac{db_{v,t+1}}{dh}.$$

Since $D(v) = \sigma$, we get:

$$\frac{1}{\sigma} (u_{v,t} + \frac{T_v}{k}) \cdot \frac{db_{v,t+1}}{dh} = \sum_{w \in C(v)} \frac{du_{w,t}}{db_{w,t+1}} \cdot (u_{w,t} + \frac{T_w}{k}).$$

The proof for Lemma 3.3 is as follows:

Proof. By above Lemma 3.2, if the increasing (or decreasing) rate of each $w \in C(v)$ is the same, we get that:

$$\frac{1}{\sigma} (u_{v,t} + \frac{T_v}{k}) \cdot \frac{db_{v,t+1}}{dh} = \sum_{w \in C(v)} \frac{du_{w,t}}{db_{w,t+1}} \cdot (u_{w,t} + \frac{T_w}{k}).$$

So, we get that: $\frac{db_{v,t+1}}{dh} = \frac{1}{\sigma} \cdot \frac{db_{v,t+1}}{dh}$.

The proof for Lemma 3.5 is as follows:

Proof. By Lemma 3.2, in order to keep the amount $u_{v,t}$ unchanged, we get:

$$\frac{db_{w,t+1}}{dh} \cdot (u_{w_1,t} + \frac{T(w_1)}{k}) + \sum_{w \in C(v) \setminus \{w_1\}} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + \frac{T(w)}{k}) = 0.$$

Thus, $\frac{db_{w,t+1}}{dh} \cdot (u_{w_1,t} + \frac{T(w_1)}{k}) + \sum_{w \in C(v) \setminus \{w_1\}} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + \frac{T(w)}{k}) = 0$.

So, $\frac{db_{w,t+1}}{dh} \cdot (u_{w_1,t} + \frac{T(w_1)}{k}) + \sum_{w \in C(v) \setminus \{w_1\}} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + \frac{T(w)}{k}) = 0$.

Hence, we get the claim.
The proof for Theorem 3.6 is as follows:

Proof. When request p_t arrives at time t, we move mass $u_{p_t,t}$ from p_t through its ancestor nodes to other leaves $[n] \setminus \{p_t\}$, i.e. $u_{p_t,t}$ is decreased and $u_{p,t}$ is increased for any $p \in [n] \setminus \{p_t\}$. Since these mass moves out of each subtree $T_{A(p_t)}$ for each $1 \leq j \leq \ell$, $u_{A(p_t,j),t}$ is decreased. By $u_{A(p_t,j),t} = f^{-1}(b_{A(p_t),t+1})$ (we need to keep this relation during the algorithm), $b_{A(p_t,j),t+1}$ also decreases for each $1 \leq j \leq \ell$. On the other hand, $u_{p,t}$ is increased for each $p \in [n] \setminus \{p_t\}$. Thus, for each node v whose T_v doesn’t contain p_t, its mass $u_{v,t}$ is also increased. For each node v whose T_v doesn’t contain p_t, it must be a sibling of some node $A(p_t)$. For each $1 \leq j \leq \ell$, we assume that all siblings v' of node $A(p_t,j)$ increase $b_{v',t+1}$ at the same rate.

In the following, we will compute the increasing (or decreasing) rate of all dual variables in the σ-HST regarding a_{S}. For $1 \leq j \leq \ell$, let $\nabla b_{j} = -\frac{b_{A(p_t),j,t+1}}{da_{S}}$ be the decreasing rate of $b_{A(p_t,j),t+1}$ regarding a_{S}. For $1 \leq j \leq \ell$, let $\nabla b_{j}' = \frac{b_{w,t+1}}{da_{S}}$ be the increasing rate of $b_{w,t+1}$ for any siblings w of $A(p_t,j)$ regarding a_{S}.

Using from top to down method, we can get a set of equations about the quantities ∇b_{j} and $\nabla b_{j}'$. First, we consider the siblings of $A(p_t,1)$ (i.e. those nodes are children of root r, but they are not $A(p_t,1)$). Let w be one of these siblings. If $b_{w,t+1}$ is raised by $\nabla b_{1}'$, by Corollary 3.4, the sum of $\nabla b'$ on any path from a leaf in T_w to w must be $\psi(1) \cdot \nabla b_1'$. Since a_S is increasing with rate 1, it forces $\psi(1) \cdot \nabla b_1' = 1$ in order to maintain the dual constraint (3) tight for leaves in T_w.

This considers the dual constraints for these leaves. Now, this increasing mass must be canceled out by decreasing the mass in $T_{A(p_t,1)}$ since the mass $u_{r,t}$ in T_1 is not changed. Thus, in order to maintain the “Node Identity Property” of root, by Lemma 3.5, we must set ∇b_1 such that:

$$\nabla b_1' = (\nabla b_1 + \nabla b_1') \cdot \frac{u_{A(p_t,1,t) + \frac{T_{A(p_t,1)}}{n}}}{1 + \frac{T_{A(p_t,1)}}{n}}$$

For siblings of node $A(p_t,2)$, we use the similar argument. Let w be a sibling of $A(p_t,2)$. Consider a path from a leaf in T_w to the w. Their dual constraint (3) already grows at rate $1 + \psi(1)\nabla b_1$. This must be canceled out by increasing $b_{w,t+1}$. If $b_{w,t+1}$ is raised by $\nabla b_2'$, by corollary 3.4, $\nabla b'$ on any path from a leaf in T_w to w must be $\psi(2) \cdot \nabla b_2'$. Thus, $\nabla b_2'$ must be set such that: $\psi(2) \cdot \nabla b_2' = 1 + \psi(1) \cdot \nabla b_1$

Again, this increasing mass must be canceled out by decreasing the mass in $T_{A(p_t,2)}$. In order to keep the “Node Identity Property” of $A(p_t,1)$, by Lemma 3.5. we must set ∇b_2 such that:

$$\nabla b_2' = (\nabla b_2 + \nabla b_2') \cdot \frac{u_{A(p_t,2,t) + \frac{T_{A(p_t,2)}}{n}}}{1 + \frac{T_{A(p_t,2)}}{n}}$$

Continuing this method, we obtain a system of linear equations about all ∇b_{j} and $\nabla b_{j}'$ ($1 \leq j \leq \ell$). For maintaining the dual constraints tight, we get the following equations:

$$\psi(1) \cdot \nabla b_1' = 1$$
$$\psi(2) \cdot \nabla b_2' = 1 + \psi(1) \cdot \nabla b_1$$
$$\vdots$$
$$\psi(\ell) \cdot \nabla b_\ell' = 1 + \sum_{i=1}^{\ell-1} \psi(i) \nabla b_i$$

For keeping the node identity property, we get the following equations:

$$\nabla b_1' = (\nabla b_1 + \nabla b_1') \cdot \frac{u_{A(p_t,1,t) + \frac{T_{A(p_t,1)}}{n}}}{1 + \frac{T_{A(p_t,1)}}{n}}$$

14
\[\nabla b_2 = (\nabla b_2 + \nabla b'_2) \cdot \frac{(u_{A(A_{p_1,2}),t} + |T_v(A_{p_1,2})|)}{(u_{A(A_{p_1,1}),t} + |T_v(A_{p_1,1})|)} \]

\[\vdots\]

\[\nabla b'_\ell = (\nabla b_\ell + \nabla b'_{\ell}) \cdot \frac{(u_{A(A_{p_1,\ell}),t} + |T_v(A_{p_1,\ell})|)}{(u_{A(A_{p_1,\ell-1}),t} + |T_v(A_{p_1,\ell-1})|)} \cdot \frac{1}{\psi(j)} \cdot \psi(i) \nabla b_i \]

We continue to solve the system of linear equations.

For each \(1 \leq j \leq \ell\),

\[\psi(j) \cdot \nabla b'_j = 1 + \sum_{i=1}^{j-1} \psi(i) \nabla b_i \]

\[= 1 + \sum_{i=1}^{j-2} \psi(i) \nabla b_i + \psi(j-1) \nabla b_{j-1} \]

\[= \psi(j-1) \cdot \nabla b'_{j-1} + \psi(j-1) \nabla b_{j-1} \]

\[= \psi(j-1) \cdot (\nabla b'_{j-1} + \nabla b_{j-1}) \]

Since \(\nabla b'_{j-1} = (\nabla b_{j-1} + \nabla b'_{j-1}) \cdot \frac{(u_{A(A_{p_1,j-1}),t} + |T_v(A_{p_1,j-1})|)}{(u_{A(A_{p_1,j-2}),t} + |T_v(A_{p_1,j-2})|)}\), we get:

\[\psi(j) \nabla b'_j = \psi(j-1) \nabla b'_{j-1} \cdot \frac{(u_{A(A_{p_1,j-2}),t} + |T_v(A_{p_1,j-2})|)}{(u_{A(A_{p_1,j-1}),t} + |T_v(A_{p_1,j-1})|)} \]

Solving the recursion, we get:

\[\nabla b'_j = \psi(j) \cdot \frac{(u_{A(A_{p_1,j-1}),t} + |T_v(A_{p_1,j-1})|)}{(u_{A(A_{p_1,j}),t} + |T_v(A_{p_1,j})|)} \cdot \frac{1}{\psi(j)} \cdot (u_{A(A_{p_1,j}),t} + |T_v(A_{p_1,j})|) - 1 - (u_{A(A_{p_1,j-1}),t} + |T_v(A_{p_1,j-1})|) \]

\[\square\]

The proof for Theorem 3.7 is as follows:

Proof. Let \(P\) denote the value of the objective function of the primal solution and \(D\) denote the value of the objective function of the dual solution. Initially, let \(P = 0\) and \(D = 0\). In the following, we prove three claims:

(1) The primal solution produced by the algorithm is feasible.

(2) The dual solution produced by the algorithm is feasible.

(3) \(P \leq 15 \ln^2(1 + k) D\).

By three claims and weak duality of linear programs, the theorem follows immediately.

First, we prove the claim (1) as follows. At any time \(t\), since \(S = [n]\) and the algorithm keeps \(\sum_{p \in [n]} = n - k = 1 = |S| - k\). So, the primal constraints (3.1) are satisfied.

Second, we prove the claim (2) as follows. By theorem 3.6, the dual constraints (3.6) are satisfied. Obviously, dual constraints (3.7) are satisfied. For any node \(v\), if \(b_{v,t+1} = 0\), then \(u_{v,t} = 0\); if \(b_{v,t+1} = 2D(v)\), then \(u_{v,t} = |T_v|\). Thus, the dual constraints (3.8) are satisfied.

Third, we prove claim (3) as follows. If the algorithm increases the variables \(a_{S,t}\) at some time \(t\), then:

\[
\frac{\partial D}{\partial a_{S,t}} = |S| - k = n - (n - 1) = 1.
\]

Let’s compute the primal cost. At depth \(j(1 \leq j \leq \ell)\), we compute the movement cost of our algorithm by the change of \(\nabla b'_j\) as follows.

\[
\sum_{w \in C(A_{p_1,j-1}) \setminus \{A_{p_1,j}\}} \frac{2D(w)}{\frac{\partial u_{w,t}}{\partial b'_j}} \cdot \frac{\partial b'_j}{\partial a_S} = \nabla b'_j \sum_{w \in C(A_{p_1,j-1}) \setminus \{A_{p_1,j}\}} 2D(w) \cdot \frac{\ln(1 + k)}{2D(w)} \left(u_{w,t} + \frac{|T_w|}{k} \right)
\]

15
\begin{align*}
&= 2 + \frac{1}{\psi(j)} \cdot \ln(1+k) \cdot \sum_{(u_{w,t} + \frac{|T_u|}{k}) \in C(A(p_t,j-1)) \setminus \{A(p_t,j)\}} (u_{w,t} + \frac{|T_u|}{k}) \\
&\leq \frac{5}{2} \cdot \ln(1+k) \cdot \sum_{w \in C(A(p_t,j-1)) \setminus \{A(p_t,j)\}} (u_{w,t} + \frac{|T_u|}{k})
\end{align*}

Let \(B_j \) denote \(u_{A(p_t,j),t} + \frac{|T_{A(p_t,j)}|}{k} \). Then, \(\sum_{w \in C(A(p_t,j-1)) \setminus \{A(p_t,j)\}} (u_{w,t} + \frac{|T_u|}{k}) = B_{j-1} - B_j \).

Hence, the total movement cost over all \(\ell \) levels is
\begin{align*}
&= \frac{5}{2} \ln(1+k) \cdot \sum_{j=1}^{\ell} \frac{B_{j-1} - B_j}{B_{j-1}} \\
&= \frac{5}{2} \ln(1+k) \cdot \sum_{j=1}^{\ell} (1 - \frac{B_j}{B_{j-1}}) \\
&\leq \frac{5}{2} \ln(1+k) \cdot \sum_{j=1}^{\ell} \ln B_{j-1} \\
&= \frac{5}{2} \ln(1+k) \cdot \ln B_0 \\
&\leq \frac{5}{2} \ln(1+k) \cdot 2 \ln k \cdot B_0 \\
&\leq \frac{5}{2} \ln(1+k) \cdot 2 \ln k \cdot (2 + \frac{1}{n-1}) \\
&= 15 \ln^2(1+k)
\end{align*}

where the first inequality holds since \(1 \leq y - \ln y \) for any \(0 \leq y \leq 1 \). Thus, we get \(P \leq 15 \ln^2(1+k) D \).

Let \(OPT \) be the cost of the best offline algorithm. \(P_{\text{min}} \) be the optimal primal solution and \(D_{\text{max}} \) be the optimal dual solution. Then, \(P_{\text{min}} \leq OPT \) since \(OPT \) is a feasible solution for the primal program. Based on the weak duality, \(D_{\text{max}} \leq P_{\text{min}} \). Hence, \(\frac{P}{OPT} \leq \frac{P_{\text{min}}}{P_{\text{min}}} \leq \frac{15 \ln^2(1+k)D}{P_{\text{min}}} \leq \frac{15 \ln^2(1+k)P_{\text{min}}}{P_{\text{min}}} = 15 \ln^2(1+k) \).

So, the competitive ratio of this algorithm is \(15 \ln^2(1+k) \). \(\square \)

\textbf{Proofs for claims in section 4}

The proof for Lemma 4.2 is as follows:

\textit{Proof.} Since it is required to maintain \(u_{w,t} \), we take the derivative of both sides and get that:
\[\frac{d u_{w,t}}{d v, t+1} \cdot \frac{d h_{w,t+1}}{d h} = \sum_{w \in NFC(v)} \frac{d u_{w,t}}{d w_{v,t+1}} \cdot \frac{d h_{w,t+1}}{d h} \cdot (u_{v,t} + \frac{|NL(T_v)|}{k}). \]

By lemma 3.1, we get:
\[\frac{D(w)}{D(v)} (u_{v,t} + \frac{|NL(T_v)|}{k}) = \sum_{w \in NFC(v)} \frac{d h_{w,t+1}}{d h} \cdot \frac{d v, t+1}{D(w)} (u_{w,t} + \frac{|NL(T_w)|}{k}). \]

Since \(\frac{D(w)}{D(v)} = \sigma_j \), we get:
\[\frac{1}{\sigma_j} (u_{v,t} + \frac{|NL(T_v)|}{k}) \cdot \frac{d h_{w,t+1}}{d h} = \sum_{w \in NFC(v)} \frac{d h_{w,t+1}}{d h} \cdot (u_{w,t} + \frac{|NL(T_w)|}{k}) \quad \square \]

The proof for Lemma 4.3 is as follows:

\textit{Proof.} By Lemma 4.2, if the increasing (or decreasing) rate of each \(w \in NFC(v) \) is the same, we get that:
\[
\frac{1}{\sigma_j}(u_{v,t} + \frac{|NL(T_v)|}{k}) \cdot \frac{db_{w,t+1}}{dh} = \frac{db_{w,t+1}}{dh} \cdot \sum_{w \in NFC(v)} (u_{w,t} + \frac{|NL(T_w)|}{k}) = \frac{db_{w,t+1}}{dh} \cdot (u_{v,t} + \frac{|NL(T_v)|}{k}).
\]

So, we get that: \(\frac{db_{w,t+1}}{dh} = \frac{1}{\sigma_j} \frac{db_{w,t+1}}{dh}\) \(\square\)

The proof for Lemma 4.5 is as follows:

Proof. By lemma 4.2, in order to keep the amount \(u_{v,t}\) unchanged, we get:

\[
\frac{db_{w,t+1}}{dh} \cdot (u_{w,t+1} + \frac{|NL(T_w)|}{k}) + \sum_{w \in NFC(v)} \frac{db_{w,t+1}}{dh} \cdot (u_{w,t} + \frac{|NL(T_w)|}{k}) = 0.
\]

Thus, \(\frac{db_{w,t+1}}{dh} = -\frac{db_{w,t+1}}{dh}\) \(\square\)

The proof for Theorem 4.6 is as follows:

Proof. When request \(p_t\) arrives at time \(t\), we move mass \(u_{p_t,t}\) from \(p_t\) through its ancestor nodes to other non-full leaves nodes \(S \setminus \{p_t\}\), i.e. \(u_{p_t,t}\) is decreased and \(u_{p,t}\) is increased for any \(p \in S \setminus \{p_t\}\). Since these mass moves out of each subtree \(T_{(p_t,j)}\) for each \(1 \leq j \leq \ell\), \(u_{A(p_t,j),t}\) is decreased. By using from top to down method, we can get a set of equations about the quantities \(db_j\) and \(\nabla b_j\). First, we consider the siblings of \(A(p_t, \ell_1 + 1)\) (i.e., those nodes are children of \(A(p_t, \ell_1)\), but they are not \(A(p_t, \ell_1 + 1)\)). Let \(w\) be one of these siblings. If \(b_{w,t+1}\) is raised by \(\nabla b'_{\ell_1+1}\) by Corollary 4.4, the sum of \(\nabla b'\) on any path from a leaf in \(T_w\) to \(w\) must be \(\phi(\ell_1 + 1) \cdot \nabla b'_{\ell_1+1}\). Since \(a_S\) is increasing with rate 1, it forces \(\phi(\ell_1 + 1) \cdot \nabla b'_{\ell_1+1} = 1\) in order to maintain the dual constraint (3) tight for non-full leaf nodes in \(T_w\).

This considers the dual constraints for these non-full leaf nodes. Now, this increasing mass must be canceled out by decreasing the mass in \(T_{A(p_t, \ell_1 + 1)}\) since the mass \(u_{A(p_t, \ell_1),t}\) in \(T_{A(p_t, \ell_1)}\) is not changed. Thus, in order to maintain the “Node Identity Property” of \(A(p_t, \ell_1)\), by Lemma 4.5, we must set \(\nabla b_1\) such that:

\[
\nabla b'_{\ell_1+1} = (\nabla b_{\ell_1+1} + \nabla b'_{\ell_1+1}) \cdot \frac{u_{A(p_t, \ell_1 + 1),t+1}}{u_{A(p_t, \ell_1),t+1}} \cdot \frac{|NL(T_{A(p_t, \ell_1 + 1)})|}{|NL(T_{A(p_t, \ell_1)})|}
\]

For siblings of node \(A(p_t, \ell_2 + 1)\), we use the similar argument. Let \(w\) be a sibling of \(A(p_t, \ell_2 + 1)\). Consider a path from a non-full leaf node in \(T_w\) to the \(w\). Their dual constraint (3.6) already grows
at rate $1 + \phi(\ell_1 + 1)\nabla b_{\ell_1+1}$. This must be canceled out by increasing $b_{w,t+1}$, and if $b_{w,t+1}$ is raised by $\nabla b'_{\ell_2+1}$, by corollary 4.4, the sum of $\nabla b'$ on any path from a leaf in T_w to w must be $\phi(2) \cdot \nabla b'_{\ell_2}$. Thus, $\nabla b'_{\ell_2}$ must be set such that: $\phi(\ell_2 + 1) \cdot \nabla b'_{\ell_2+1} = 1 + \phi(\ell_1 + 1) \cdot \nabla b_{\ell_1+1}$.

Again, this increasing mass must be canceled out by decreasing the mass in $T_{A(p_1,\ell_2)}$. In order to keep the “Node Identity Property” of $A(p_1,\ell_2)$, by Lemma 4.5, we must set ∇b_{ℓ_2+1} such that:

$$\nabla b'_{\ell_2+1} = (\nabla b_{\ell_2+1} + \nabla b'_{\ell_2+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

$$= (\nabla b_{\ell_2+1} + \nabla b'_{\ell_2+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

Continuing this method, we obtain a system of linear equations about all ∇b_j and $\nabla b'_j$ ($j \in \{\ell_1+1, \ell_2+1, \ldots, \ell_h+1\}$). For maintaining the dual constraints tight, we get the following equations:

$$\phi(\ell_1 + 1) \cdot \nabla b'_{\ell_1+1} = 1$$

$$\phi(\ell_2 + 1) \cdot \nabla b'_{\ell_2+1} = 1 + \phi(\ell_1 + 1) \cdot \nabla b_{\ell_1+1}$$

$$\vdots$$

$$\psi(\ell_h + 1) \cdot \nabla b'_{\ell_h+1} = 1 + \sum_{i=1}^{h-1} \phi(i+1) \nabla b_{i+1}$$

For keeping the node identity property, we get the following equations:

$$\nabla b'_{\ell_1+1} = (\nabla b_{\ell_1+1} + \nabla b'_{\ell_1+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

$$\nabla b'_{\ell_2+1} = (\nabla b_{\ell_2+1} + \nabla b'_{\ell_2+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

$$\vdots$$

$$\nabla b'_{\ell_h+1} = (\nabla b_{\ell_h+1} + \nabla b'_{\ell_h+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

We continue to solve the system of linear equations. For each $1 \leq j \leq h$

$$\phi(\ell_j + 1) \cdot \nabla b'_{\ell_j+1} = 1 + \sum_{i=1}^{j-1} \phi(i+1) \nabla b_{i+1}$$

$$= 1 + \sum_{i=1}^{j-2} \phi(i+1) \nabla b_{i+1} + \phi(\ell_{j-1} + 1) \nabla b_{\ell_{j-1}+1}$$

$$= \phi(\ell_{j-1} + 1) \cdot \nabla b_{\ell_{j-1}+1} + \phi(j-1) \nabla b_{\ell_{j-1}+1}$$

$$= \phi(\ell_{j-1} + 1) \cdot (\nabla b_{\ell_{j-1}+1} + \nabla b_{\ell_{j-1}+1}).$$

Since $\nabla b'_{\ell_{j-1}+1} = (\nabla b_{\ell_{j-1}+1} + \nabla b'_{\ell_{j-1}+1}) \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$, we get:

$$\psi(\ell_{j-1} + 1) \nabla b'_{\ell_{j-1}+1} = \psi(\ell_{j-1} + 1) \nabla b_{\ell_{j-1}+1} \cdot \frac{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}{(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

Solving the recursion, we get:

$$\nabla b'_{\ell_{j+1}} = \frac{u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}}{\phi(\ell_{j+1}) \cdot (u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})}$$

$$\nabla b_{\ell_{j+1}} = \frac{u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}}{\phi(\ell_{j+1}) \cdot (u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})} \cdot [(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}) - 1] - (u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}) - 1]$$

$$= \frac{u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}}{\phi(\ell_{j+1}) \cdot (u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k})} \cdot [(u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}) - 1] - (u_{A(p_1,\ell_2),t} + \frac{|NL(T_{A(p_1,\ell_2)})|}{k}) - 1]$$
The proof for Theorem 4.7 is as follows:

Proof. Let P denote the value of the objective function of the primal solution and D denote the value of the objective function of the dual solution. Initially, let $P = 0$ and $D = 0$. In the following, we prove three claims:

(1) The primal solution produced by the algorithm is feasible.

(2) The dual solution produced by the algorithm is feasible.

(3) $P \leq 2 \ln(1 + k)D$.

By three claims and weak duality of linear programs, the theorem follows immediately.

The proof of claim (1) and (2) are similar to that of claim (1) and (2) in section 3.7.

Third, we prove claim (3) as follows. If the algorithm increases the variables $a_{S,t}$ at some time t, then: $\frac{\partial D}{\partial a_{S,t}} = |S| - k$. Let’s compute the primal cost. At depth $j \in \{\ell_1 + 1, \ell_2 + 1, \ldots, \ell_h + 1\}$, we compute the movement cost of our algorithm by the change of $\nabla b_j'$ as follows.

$$
\sum_{w \in NFC(A(p_{t-1},j-1) \setminus \{A(p_{t,j})\})} 2D(w) \cdot \frac{du_{w,t}}{\partial b_j'} \cdot \frac{db_j'}{\partial a_S} = \nabla b_j' \cdot \phi(j) \cdot \ln(1 + k) \cdot \sum_{w \in C(A(p_{t,j-1}) \setminus \{A(p_{t,j})\})} \left(u_{w,t} + \frac{NL(T_w)}{k} \right)
$$

$$
= \left(\sum_{p \in S \setminus \{p_t\}} u_{p,t} + \frac{|S| - 1}{k} \right) \cdot \ln(1 + k) \cdot \sum_{w \in C(A(p_{t,j-1}) \setminus \{A(p_{t,j})\})} \left(u_{w,t} + \frac{NL(T_w)}{k} \right)
$$

$$
\leq (3(|S| - k) + \left(\frac{|S| - 1}{k} \right) \cdot \ln(1 + k) \cdot \sum_{w \in C(A(p_{t,j-1}) \setminus \{A(p_{t,j})\})} \left(u_{w,t} + \frac{NL(T_w)}{k} \right)
$$

$$
\leq 4 \cdot \ln(1 + k) \cdot (|S| - k) \cdot \sum_{w \in C(A(p_{t,j-1}) \setminus \{A(p_{t,j})\})} \left(u_{w,t} + \frac{NL(T_w)}{k} \right) \leq u_{A(p_{t,j-1},t)} + \frac{NL(T_A(p_{t,j-1}))}{k}.$$

Where the first inequality holds since $\sum_{p \in S \setminus \{p_t\}} u_{p,t} < |S| - k$, the reason is that the constraint at time t is not satisfied otherwise the algorithm stops increasing the variable $u_{p,t}$ (Since $\sum_{p \in S} u_{p,t} = |S| - k$, $\sum_{p \in S \setminus \{p_t\}} u_{p,t} < |S| - k \Leftrightarrow u_{p_t,t} = 0$, i.e the algorithm stop increasing the variables). In addition, when $|S| \geq k + 1$, $\frac{|S| - 1}{k} = |S| - k$.

Thus, the total cost of all j depth is at most $4 \ell \cdot \ln(1 + k) \cdot (|S| - k)$. Hence, we get $P \leq 4 \ell \cdot \ln(1 + k) \cdot D$.

19
So, the competitive ratio of this algorithm is $4\ell \ln(1 + k)$. \qed