STUDIES ON THE MECHANISMS OF THE INHIBITORY EFFECT OF N-5' ON HISTAMINE RELEASE FROM RAT PERITONEAL EXUDATE CELLS

Tetsuhiro KUBOTA, Arao UJIIE, Jun NAITO, Masayuki NAKAZAWA and Akihide KODA*
Division of Pharmacology, Research Laboratories, Kissei Pharmaceutical Co., Ltd., 19-48 Yoshino, Matsumoto 399-65, Japan
*Department of Pharmacology, Gifu College of Pharmacy, 5-6-1 Mitahora-higashi, Gifu 502, Japan
Accepted April 2, 1983

Abstract—To investigate the mechanisms for the inhibition of IgE-mediated histamine release from rat peritoneal exudate cells (PEC) by N-5', we studied the relation between the inhibitory effect of N-5' on histamine release and the intracellular levels of adenine nucleotides such as ATP and cAMP. Evident histamine release was induced by the addition of specific antigen to rat PEC sensitized with IgE antiserum in vitro, and the release showed a maximum 30 sec after the antigen challenge. In the same time course as the histamine release, the intracellular levels of ATP and cAMP decreased. N-5' significantly inhibited the histamine release and a decrease in ATP level as a result of the antigen-antibody reaction. A decrease in cAMP level showed a tendency to be suppressed by N-5'. Antigen-induced 14CO2 production for 6-14C-glucose in the sensitized PEC was 3 times that seen in the case without antigen. N-5' dramatically suppressed the acceleration in the production of 14CO2. Differing from the action of papaverine, the inhibitory effect of N-5' on the IgE-mediated histamine release from rat PEC was identical both in the presence or in the absence of glucose. N-5' scarcely affected the ATP level in the non-sensitized PEC in the glucose-free medium. On the other hand, N-5' inhibited the activity of Na+, K+-ATPase, one of the ATP-consuming enzymes, in a dose-dependent fashion. From these results, it is presumed that the suppression of ATP-utilization through the inhibition of Na+, K+-ATPase activity is involved in the inhibition of histamine release by N-5'. The relation between the inhibitory effect of N-5' on histamine release and both nucleotides was also discussed.

N-(3,4-dimethoxycinnamoyl)anthranilic acid (N-5'), a new anti-atopic agent, was first reported to have a significant suppressive effect on homologous passive cutaneous anaphylaxis (PCA) in rats with the oral application by Koda et al. (1). A clinical study for the atopic type of asthma has shown good results (2). Azuma et al. reported that the suppressive effect of N-5' on homologous PCA may be principally due to the inhibition of histamine release mediated by IgE antibody from mast cells (MC) (3). The mechanism for the inhibition of histamine release has been reported to be different from that of disodium cromoglycate (DSCG) and to differ from those of metabolic inhibitors such as papaverine and 2,4-dinitrophenol (4). However, the mechanism for the inhibition of allergic histamine release by N-5' is not yet clear.

It is well known that cyclic 3',5'-AMP (cAMP) plays an important role in IgE-mediated histamine release (5–7), and it is
also known that intracellular adenosine triphosphate (ATP) is important in the histamine secretory process (8–10). The present work was carried out to study the relation between these nucleotides and the inhibitory effect of N-5' on histamine release.

Materials and Methods

1) Preparation of the suspension of rat peritoneal exudate cells

Peritoneal exudate cells (PEC) were isolated in the same manner as described in the previous report (3). The PEC obtained was suspended in phosphate buffered saline (PBS) containing 137 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl₂, 1.0 mM MgCl₂ · 6H₂O, 5.6 mM glucose, 5 units/ml of heparin, and adjusted to pH 7.2 with 5% (v/v) of 0.1 M Sörensen phosphate buffer, and they were prepared in a concentration of 5 x 10⁴ MC/ml of PBS unless otherwise noted.

2) Sensitization of PEC and induction of histamine release

The PEC were sensitized in vitro by incubation with rat IgE antiserum against 2,4-dinitrophenyl-coupled ascaris extract (DNP-As) as described in the previous report (3). The amount of histamine released in the medium by the challenge with 100 μg/ml of DNP-As as an antigen at 37°C for various periods and the amount of residual intracellular histamine were determined by the method of Shore et al. (11).

3) Assay of cAMP in PEC

One milliliter of the sensitized or non-sensitized PEC suspension was incubated for various periods at 37°C. The PEC suspension was immersed into a dry ice-acetone bath until frozen, and this was followed by subsequent immersing into a boiling water bath for 5 min. The PEC were homogenized and centrifuged for 10 min at 1,100 x g. An aliquot of the supernatant was used for cAMP determination by the binding assay method of Gilman (12).

4) Assay of ATP in PEC

The sensitized or non-sensitized PEC suspension was treated in the same manner as described for the cAMP assay, and the amount of ATP was assayed using an ATP kit (Boehringer Co.).

5) Enzyme activity

Na⁺, K⁺-dependent adenosine triphosphatase (Na⁺, K⁺-ATPase) activity: Rat brain microsomes were treated with 2 M NaI; and Na⁺, K⁺-ATPase was separated and activated by the method of Nakao et al. (13). Inorganic phosphorus liberated during the enzyme reaction was determined by the method of Fiske and Subbarow (14), while protein content was determined by the Lowry method (15).

6) Antigen-induced ¹⁴C0₂ production in sensitized PEC

Sensitized PEC (comprising 10⁶ mast cells) suspended in 2 ml of PBS containing 0.1 μCi of 6-¹⁴C-glucose were incubated with DNP-As in a final concentration of 100 μg/ml in a Warburg flask at 37°C. The reaction was terminated after an established period by the addition of 0.3 ml of perchloric acid (70%). The ¹⁴CO₂ generated was incubated so it could adsorb in 0.4 ml of hyamine for 30 min according to the method described by Tamers et al. (16), and the radioactivity of the adsorbed ¹⁴CO₂ was determined by a liquid scintillation counter (Packard).

7) Drugs used

The drugs used were as follows: N-5' (Kissei Pharmaceutical Co.), DSCG (Fujisawa Pharmaceutical Co.), epinephrine hydrochloride (Sankyö Pharmaceutical Co.), theophylline (Nakarai Chemicals), papaverine hydrochloride (Dainippon Pharmaceutical Co.), ouabain (Merck), ATP-2Na (Sigma), cAMP (Wako Chemicals), NaI (Nakarai Chemicals), phosphatidylserine (Nakarai Chemicals), ³H-cAMP (RCC Amersham, 27 mCi/mmol) and D-6-¹⁴C-glucose (RCC Amersham, 60.4 mCi/mmol).
INHIBITION OF HISTAMINE RELEASE BY N-5' 839

N-5' was dissolved in a 1% NaHCO₃ aqueous solution and diluted to the required concentration with PBS. The other drugs used were dissolved in PBS, and phosphatidylserine was dissolved in ethanol. In the antigen-antibody reaction, drugs to be tested were applied 1 min prior to the antigen challenge, at which time inhibition of allergic histamine release by N-5' is most potent as described in the previous report (3).

Results

1) Influence on antigen-induced histamine release from PEC and intracellular cAMP and ATP levels: Histamine release was quite evident when 100 μg/ml of the antigen was added to the rat sensitized PEC. The release showed a maximum at 30 sec after the antigen challenge. Such a release was obviously inhibited by 100 μM N-5' and 100 μM DSCG (Fig. 1-A). Conversely, the cAMP level in the PEC decreased in virtually the same time course as the histamine release. A minimum value was exhibited at 30 sec after the antigen challenge. A decrease in cAMP level induced by the antigen showed a tendency to be suppressed by 100 μM N-5' and 100 μM DSCG (Fig. 1-B). The ATP level in PEC also decreased in the same time course as the histamine release and the decrease in cAMP level discussed above. N-5' in a dose of 100 μM significantly inhibited the decrease in ATP level induced by the antigen (Fig. 1-C).

2) Influence on antigen-induced production of ¹⁴CO₂ in sensitized PEC: When DNP-As was added to the sensitized PEC suspension containing 0.1 μCi of 6-¹⁴C-glucose, significant generation of ¹⁴CO₂ was seen 1 min after; and thereafter, ¹⁴CO₂ production increased in accordance with the incubation period. The amount of ¹⁴CO₂ at 20 min after the antigen challenge was approx. 3 times that seen in the case without antigen.

![Fig. 1. Effect of N-5' and DSCG on antigen-induced histamine release (A) from rat PEC and changes in the intracellular levels of cAMP (B) and ATP (C). PEC were sensitized with rat IgE antiserum against DNP-As in vitro. Each point represents the mean of 4 experiments and vertical bars indicate standard error. *: Statistical significance from the control at P<0.05 and P<0.01, respectively. O: Control. ●: 100 μM N-5'. △: 100 μM DSCG.](image)

![Fig. 2. Effect of N-5' on antigen-induced ¹⁴CO₂ production from 6-¹⁴C-glucose in PEC of rats. PEC were sensitized with rat IgE antiserum against DNP-As in vitro. Each point represents the mean of 3 to 5 experiments and vertical bars indicate standard error. *: Statistical significance from the control at P<0.05 and P<0.01, respectively. O: Control. ●: 100 μM N-5'. △: Spontaneous ¹⁴CO₂ production without antigen.](image)
without antigen. Application of 100 \(\mu M \)
N-5' clearly suppressed the increase in generation of \(^{14}CO_2\) induced by the antigen challenge at any observation time (Fig. 2).

3) Influence on allergic histamine release in the presence or absence of glucose: Histamine release from PEC mediated by IgE was clearly lower during the absence of glucose than during the presence of glucose in the medium used, as shown in Table 1. The inhibitory effect of N-5' and that of theophylline on the histamine release were identical, both in the presence or in the absence of glucose. In contrast, the inhibitory

Drug (\(\mu M \))	With glucose	Without glucose		
	Histamine release (%)	Inhibition (%)	Histamine release (%)	Inhibition (%)
Control	42.6\(\pm\)1.25	27.8\(\pm\)0.47		
Spontaneous	10.8\(\pm\)0.06	5.7\(\pm\)0.21		
N-5' (100)	25.5\(\pm\)1.36*	53.8	14.5\(\pm\)0.98*	60.2
Papaverine (100)	36.9\(\pm\)0.60	17.9	9.0\(\pm\)0.23*	85.1
Theophylline (1000)	21.4\(\pm\)1.36*	66.7	15.4\(\pm\)1.21*	56.1

Inhibitory activity of drugs was examined in the medium containing glucose (5.6 mM) or without glucose. The sensitized PEC was incubated at 37°C for 20 min after the antigen challenge. Each experiment represents the mean\(\pm\)S.E. of 3 observations. *: Statistical significance from the control at P<0.01.

Drug	\(\mu M \)	1 min	20 min
Control	10	1.94\(\pm\)0.16	1.86\(\pm\)0.12
N-5'	100	1.89\(\pm\)0.34	1.74\(\pm\)0.27
Papaverine	1000	1.84\(\pm\)0.11	1.69\(\pm\)0.20

Non-sensitized PEC were incubated in the medium without glucose for 1 or 20 min. Each datum indicates \(\mu g/tube\) of ATP and represents the mean\(\pm\)S.E. of 5 observations. *: Statistical significance from the control at P<0.01.

Drug	\(\mu M \)	ATP liberated (\(\mu m mole/mg\) protein/30 min)	Inhibition %	
Control		82.5\(\pm\)7.2		
N-5'	10	70.6\(\pm\)6.4	14.4	
	100	61.8\(\pm\)7.2*	25.1	
	1000	38.0\(\pm\)6.4*	54.0	
Ouabain	10	54.3\(\pm\)8.6*	34.2	
Phosphatidylserine	100	90.4\(\pm\)7.2	-9.6	

Each experiment included 8 to 20 observations. *: Statistical significance from the control at P<0.05 and P<0.01, respectively.
4) Influence on ATP level in non-sensitized PEC: The effects of 10 to 1,000 nM N-5' and of 100 nM papaverine on the ATP level in non-sensitized PEC in glucose-free medium were studied. Although N-5' had virtually no effect on the ATP level after a 1- or 20-min incubation, papaverine reduced the ATP level in both cases (Table 2).

5) Influence on Na+, K+-ATPase activity: The activity of crude Na+, K+-ATPase prepared from rat brain microsomes was markedly inhibited by 10 nM ouabain, while it increased slightly with the addition of 100 nM phosphatidylserine. On the other hand, 10 to 1,000 nM N-5' exhibited a dose-dependent suppressive effect (Table 3).

Discussion

Histamine release induced by the specific antigen (DNP-As) from the rat PEC sensitized in vitro with IgE antibody reached a maximum 30 sec after challenge. In virtually the same time course, the levels of cAMP and ATP in the cells decreased. N-5' exhibited a pronounced inhibitory effect on the histamine release and a suppressive effect on the decrease in the intracellular levels of cAMP and ATP. It is well known that an energy requiring process is essential when histamine release is induced by the antigen challenge (8–10). In our study, we observed that the ATP level decreased in accordance with the time course of histamine release. Accordingly, it was presumed that ATP was consumed during histamine release. An increase in the production of 14CO$_2$ from 6-14C-glucose by the antigen challenge in the Embden-Meyerhof cycle, a de novo synthetic system of ATP, is conceivable to support this presumption. The fact that the inhibition of the histamine release in the absence of glucose by papaverine, an uncoupler of oxidative phosphorylation (17), disappeared by the addition of glucose to the medium also supports this assumption. Inhibitors of glucose metabolism such as 2-deoxyglucose are able to inhibit the allergic histamine release from mast cells (18). N-5' suppressed the acceleration of 14CO$_2$ production from 6-14C-glucose by the antigen challenge in the sensitized PEC. However, as N-5' also suppressed the decrease in the intracellular level of ATP, the suppression of glucose metabolism by N-5' seemed to be the result of the inhibition of ATP consumption rather than direct inhibition of glucose metabolism.

Since the inhibition of the allergic histamine release by N-5' was not affected in the presence of glucose in the medium and N-5' scarcely affected the ATP level in non-sensitized PEC in glucose-free medium, N-5' has a different mechanism from those of the metabolic inhibitors such as papaverine and 2-deoxyglucose concerning the inhibition of histamine release. On the other hand, N-5' exhibited a clear inhibitory effect in a dose-dependent fashion on the activity of Na+, K+-ATPase, one of the ATP-consuming enzymes. As mentioned previously, a suppressive effect of N-5' on the decrease in ATP level was exhibited during allergic histamine release. Although, because we used rat brain microsomes as the source of Na+, K+-ATPase, tissue specificity of the inhibition to this enzyme by N-5' must be examined using purified mast cells; at least a part of the action of N-5' in inhibiting the histamine release appears to be due to its suppression of ATP utilization through the inhibition of Na+, K+-ATPase.

It has been well established that cAMP plays an important role in the process of allergic histamine release (5–7). There have been reports concerning the suppression of histamine release during the inhibition of phosphodiesterase activity due to xanthine derivatives and during the activation of
adenylate cyclase activity due to adrenergic
β-receptor stimulants (19, 20). Kaliner and
Austen (18) reported that the decrease in
cAMP level during histamine release is due
to the decrease in intracellular level of ATP,
the substrate of cAMP synthesis. In our
study, we demonstrated that the cAMP
level in the PEC decreased in close correlation
with the time course of histamine release
mediated by IgE. Koda et al. (21) reported
that degranulation of mesentric mast cells
during the antigen-antibody reaction was
inhibited by isoproterenol and theophylline
dose-dependently, and each inhibitory effect
of both drugs was potentiated synergistically
by the combination with the other drug. They
also reported that as N-5' and DSCG did not
potentiate the inhibitory effect of isoproterenol
or theophylline on the degranulation, the
inhibitory effect of N-5' and DSCG on
degranulation of mast cells is not dependent
on the elevation of cAMP level in mast cells.
In our study, as the suppression of decrease
in the intracellular level of cAMP during the
inhibition of histamine release by N-5' was
less than that shown in the case of the ATP
level, the role of suppression of the decrease
in intracellular level of cAMP in the inhibition
of histamine release by N-5' does not seem
to be so large.

As indicated above, at least a part of the
effect of N-5' in inhibiting the histamine
release mediated by IgE is presumed to
originate in the suppression of ATP-utilization
due to the inhibition of Na+, K+-ATPase
activity. However, because we used "mixed"
PEC in this experiment, changes in adenine
nucleotides such as ATP and cAMP level in
PEC during the histamine release may not
accurately reflect those in mast cells. So these
must be further studied using purified mast
cells with the inhibition to Na+, K+-ATPase.

Acknowledgement: The authors are
grateful to Dr Y. Sato of the 1st Dept. of
Bacteriology, The National Institute of
Hygienic Sciences, Japan, for the generous
gift of B. pertussis.

References
1) Koda, A., Nagai, H., Watanabe, S., Yanagihara,
Y. and Sakamoto, K.: Inhibition of hypersensiti-
tivity reactions by a new drug, N-(3',4'-di-
methoxyaminomethyl) anthranilic acid (N-5').
J. Allergy Clin. Immunol. 57, 396-407 (1976)
2) N-5' study group in children (Shioda, H. and
50 members): A double blind controlled trial
of N-(3',4'-dimethoxyaminomethyl) anthranilic
acid on children with bronchial asthma. Allergy
34, 213-219 (1979)
3) Azuma, H., Banno, K. and Yoshimura, T.:
Pharmacological properties of N-(3',4'- dime-
thoxyaminomethyl) anthranilic acid (N-5'), a new
anti-atopic agent. Br. J. Pharmacol. 58, 483-
488 (1976)
4) Nakazawa, M., Yoshimura, T., Naito, J. and
Azuma, H.: Pharmacological properties of N-
(3',4'-dimethoxyaminomethyl) anthranilic acid (N-5'), a new anti-atopic agent. (5) Influence
of N-5' on the histamine release from peritoneal
exudate cells. Folia Pharmacol. Japon. 74,
483-490 (1978) (Abs. in English)
5) Orange, R.P., Austen, W.G. and Austen, K.F.:
Immunological release of histamine and slow
reacting substance of anaphylaxis from human
lung. I. Modulation by agents influencing
cellular levels of cyclic 3',5'-adenosine mono-
phosphate. J. Exp. Med. 134, 136s-148s (1971)
6) Bourne, H.R., Melmon, K.L. and Lichtenstein,
L.M.: Histamine augments leukocyte adenosine
3',5'-monophosphate and blocks antigenic
histamine release. Science 173, 743-745
(1971)
7) Bourne, H.R., Lichtenstein, L.M. and Melmon,
K.L.: Pharmacologic control of allergic histamine
release in vitro: evidence for an inhibitory role
of 3',5'-adenosine monophosphate in human
leukocytes. J. Immunol. 108, 696-705 (1972)
8) Diamant, B.: The influence of anoxia and
glucose on histamine liberation caused by a
principle in Ascaris suis. Acta Physiol. Scand.
50, Supp. 175, 34 (1960)
9) Diamant, B. and Uvnás, B.: Evidence for
energy-requiring processes in histamine release
and mast cell degranulation in rat tissues
induced by compound 48/80. Acta Physiol.
Scand. 53, 315-329 (1961)
10) Diamant, B., Norn, S., Felding, P., Olsen, N.,
Ziebell, A. and Nissen, J.: ATP level and CO2
production of mast cells in anaphylaxis. Int.
Arch. Allergy Appl. Immunol. 47, 894-908
INHIBITION OF HISTAMINE RELEASE BY N-5'

11) Shore, P.A., Burkhalter, A. and Cohn, V.H.: A method for the fluorometric assay of histamine in tissues. J. Pharmacol. Exp. Ther. 127, 182–186 (1959)

12) Gilman, A.G.: A protein binding assay for adenosine 3',5'-cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 67, 305–312 (1970)

13) Nakao, T., Nagano, K., Adachi, K. and Nakao, M.: Separation of two adenosine triphosphatases from erythrocyte membrane. Biochem. Biophys. Res. Commun. 13, 444–448 (1963)

14) Fiske, C.H. and Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925)

15) Lowry, O.H., Rosebrough, H.J. and Farr, A.L.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

16) Tamers, M.A. and Diez, M.: Determination of C14 and tritium in blood and other biological materials. Int. J. Appl. Radiat. Isot. 15, 697–702 (1964)

17) Browning, E.T., Groopi, V.E., Jr. and Kon, C.: Papaverine, a potent inhibitor of respiration in C-6 Astrocytoma cells. Mol. Pharmacol. 10, 175–181 (1974)

18) Kaliner, M. and Austen, K.F.: Cyclic AMP, ATP and reversed anaphylactic histamine release from rat mast cells. J. Immunol. 112, 664–674 (1974)

19) Lichtenstein, L.M. and Margolis, S.: Histamine release in vitro. Inhibition by catecholamines and methylxanthines. Science 161, 902–903 (1968)

20) Assem, E.S.K. and Schild, H.O.: Inhibition by sympathomimetic amines of histamine release induced by antigen in passively sensitized human lung. Nature 224, 1028–1029 (1969)

21) Koda, A., Nakamura, T. and Watanabe, S.: A study on the anti-allergic action of N-(3',4'-dimethoxycinnamoyl) anthranilic acid (N-5'). Abstract of Xth International Congress of Allergology, p. 78 (1976)