Genome Characteristics Reveal the Biocontrol Potential of Actinobacteria Isolated From Sugarcane Rhizosphere

Zhen Wang1,2,3†, Manoj Kumar Solanki4†, Zhuo-Xin Yu3, Muhammad Anas3, Deng-Feng Dong3, Yong-Xiu Xing3, Mukesh Kumar Malviya2, Fei Pang1* and Yang-Rui Li2,3*

1Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, China, 2Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China, 3Agricultural College, Guangxi University, Nanning, China, 4Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland

To understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi in vitro. Results showed that BTU6 (Streptomyces griseorubiginosus), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane. The genomic evaluation indicated that BTU6 has the ability to biosynthesize chitinase, β-1,3-glucanase, and various secondary metabolites and plays an essential role in the growth of sugarcane plants under biotic stress. Potential mechanisms of the strain in improving the disease resistance of sugarcane plants and its potential in biodegrading exogenous chemicals were also revealed. This study showed the importance of sugarcane rhizosphere actinobacteria in microbial ecology and plant growth promotion.

Keywords: actinobacteria, sugarcane, genome, biocontrol, smut

INTRODUCTION

The plant rhizosphere is a reservoir of microbial interactions that regulate plant activities. Plant roots exudates provide nutrients and energy substances to microbes (Fan et al., 2001; Bertin et al., 2003), and plant defense against pathogens in the rhizosphere by secreting antibiotics, inducing systemic resistance, or by direct antagonism against the pathogen for nutrient and space (Bakker et al., 2003); the roots also produce auxin (IAA), siderophores, dissolved inorganic phosphorus, which promote nutrient absorption and plant growth (Burdman et al., 2000).
Microorganisms are known to regulate plant gene expression, metabolism, growth and provide protection against multiple stress-causing factors (Ortiz Castro et al., 2009). Actinobacteria, which are gram-positive bacteria with high G + C DNA content that constitute one of the largest bacterial phyla, secrete several extracellular metabolites and antibiotics used as plant growth promoters (Strap, 2011). After biocontrol bacteria induce the host plant, it produces plant defense enzymes and disease-related proteins; lignin and phenol induction also directly improves the host plant, it produces plant defense enzymes and disease-related promoters (Strap, 2011). After biocontrol bacteria induce the extracellular metabolites and antibiotics used as plant growth promoters, actinomycetes cells, can control several soil-borne diseases such as Rhizoctonia spp., Pythium spp., Fusarium spp., Phytophthora spp. (Kortemaa et al., 1997; Hansen et al., 2010; Aggarwal et al., 2016), and Actinovate (containing 1% Streptomyces lydicus WYEC 108) and Streptomyces griseoviridis K61 have also been registered as biopesticides in the United States and France, respectively, and used in horticultural crops to manage soil-borne diseases, including Fusarium wilt and Rhizoctonia root rot (Yuan and Crawford, 1995; Minuto et al., 2006). In addition, Streptomyces secrete several antimicrobial compounds such as chitinase, glucanase, cellulase, organic acids, steroidal compounds, vitamins, and enzyme inhibitors (Mahadevan and Crawford, 1997; Palaniyandi et al., 2013). These metabolites play an important role in plant diseases management and plant growth promotion (Olanrewaju and Babalola, 2019).

Plant diseases cause up to 25% of annual crop yield losses (Prashar et al., 2013). Plant growers well accept Microbe-based biological control technology in developed countries due to its low cost, environmental friendliness, and chemical-free residue. In recent years, microbes have been accepted as alternate sources for the biological control of plant diseases and plant growth promotion (Montesinos et al., 2002; Islam et al., 2016; Liu et al., 2018). Microbial biocontrol agents inhibit pathogens by different mechanisms, including antibiotics secretion, competition for food and space, direct parasitism, induced resistance of plant, and growth promotion of plant in stressed conditions (Van Wees et al., 2008; Kannan and Sureendrar, 2009; de Jesus Sousa and Olivares, 2016; Viane et al., 2016). However, the role of sugarcane rhizosphere actinomycetes in plant growth management and plant growth promotion is not well documented. In our previous studies, the actinobacterial genome has provided new insights on microorganisms that can improve drought resistance in plants (Wang et al., 2018). This study aimed to characterize actinomycetes in the sugarcane rhizosphere and their growth-promoting activity in order to provide new references for microorganisms that can antagonize plant pathogens and improve plant health.

MATERIALS AND METHODS

Sample Collection and Bacterial Isolation
Rhizosphere soil samples were collected from experiment fields of Sugarcane Research Institute of Guangxi University, Nanning (Guangxi, China). The rhizosphere soil sampling was performed according to the procedure of Gobran and Clegg (1996). The sugarcane rhizosphere soil samples were collected from the root surface (0.5–5 mm) for the study. We used a modified method of Shahidi Bonjar et al. (2005) to isolate the actinomycetes. Briefly, 1 g of rhizosphere soil sample was added into a centrifuge tube containing 9 mL sterile water and incubated in a shaker at 100 rpm for 30 min. The suspension was subjected to gradient dilution and 200 μL of the diluted soil suspension was added to Gauze medium (Solarbio Biotech Co., Ltd., Beijing, China), containing 20 μg mL⁻¹ nalidixic acid, and cultured at 30°C until colony appeared. Pure colonies were separately transferred into the Gauze agar plate. The purified strains were stored in 20% glycerol at −80°C. Streptomyces chartreusis WZS021 (Wang et al., 2016, 2018) was used as a reference strain for phylogenetic analysis and PGP characteristics.

Plant Growth-Promoting Characteristics
To assess the production of indole acetic acid (IAA), 5 mL Luria broth was modified 0.5 mg mL⁻¹ tryptophan, and the test strain was inoculated and incubated for 3 days on an incubator shaker at 180 rpm on 30°C. After incubation, the broth was centrifuged and to 1 mL of supernatant, 50 μL of 10 mmol L⁻¹ orthophosphoric acid was added followed by the addition of 2 mL of Salkowski’s reagent for color development at 25°C incubation for 30 min in the dark; the optical density was taken at 530 nm. The different concentrations of IAA standard solution were used for the standard curve to quantify the IAA production (Gordon and Weber, 1951). For the siderophore test, the active strain was streaked onto the chrome azurol S (CAS) plate (Alexander and Zuberer, 1991) and incubated at 30°C. After 5 days, the presence or absence of an orange-yellow halo around the colonies on the medium was observed. The phosphate solubilizing ability of the strain was determined by inoculating the active strain in a phosphate dissolving medium (Hopebio Biological, Qingdao, China) and incubating for 5 days at 30°C; the halo area around the colony indicated that the bacteria had the ability to dissolve phosphorus. ACC deaminase activity was determined by measuring the production of α-ketobutyrate and ammonia produced by ACC cleavage according to (Penrose and Glick, 2003).

DNA Extraction of Actinomycetes and Amplification of 16S rRNA Sequences
Bacterial genomic DNA extraction kit (CW BIO Biotechnology Co., Ltd., Beijing, China) was used to isolate genomic DNA, and DNA purity and quantity were monitored using a NanoDrop One spectrophotometer (Thermo Fisher Scientific, Wilmington,
PCR amplification of the 16S rRNA and secondary metabolites synthase genes were carried out using the isolated genomic DNA of actinomycetes. The PCR system and reaction conditions are shown in Supplementary Tables 1, 2. The amplified PCR product was purified using the SanPrep column DNA gel recovery kit (Sangon Biotech Co., Ltd., Shanghai, China) and Sanger sequencing was performed in Sangon Biotech Co., Ltd. (Shanghai, China). The sequence reads in Fasta format were aligned in the NCBI database and accession numbers were obtained (Table 1). NCBI GenBank database using a BLASTn program. Identification to the species level was determined as maximum homology (C97%) to a type strain sequence in the GenBank. Evolutionary trees for the data sets were inferred by the neighbor-joining method of Saitou and Nei (1987) by using the neighbor-joining program by MEGA 6.0 software (Tamura et al., 2013) to construct the phylogenetic tree of actinomycetes.

Detection of Antifungal Activity of Actinomycetes

To test the antagonism of actinomycetes, nine economically important plant pathogens were used in the dual culture assay (Supplementary Table 3). A 5 mm disc of full-grown pathogenic fungi was inoculated in the center of the potato dextrose agar plate, and an active actinomycetes strain was streaked 30 mm away from the disc of the pathogenic fungi. In each experiment, three replicates were performed, and pathogenic fungi without active strains were treated as controls. All plates were incubated at 28°C for 7 days, and mycelial growth and zone of inhibition were calculated as compared to control.

Greenhouse-Based Biocontrol Assay Against the Smut Pathogen

The experiment was carried out in the sugarcane greenhouse located in the Guangxi University (Nanning, China). The indoor temperature was 24–32°C. The characteristics of the soil were as follows: pH, 6.76; organic matter, 21.42 g·kg⁻¹; total nitrogen, 0.94 g·kg⁻¹; total phosphorus, 2.73 g·kg⁻¹; total potassium, 8.02 g·kg⁻¹; alkaline nitrogen, 108 mg·kg⁻¹; available phosphorus, 96 mg·kg⁻¹; and available potassium, 79 mg·kg⁻¹. We used three different treatments in this experiment: T1 (no inoculation, only water), T2 (inoculation of smut pathogen only), T3 (inoculation of smut pathogen and BTU6 as biocontrol agent). Thirty sugarcane plants were used per treatment and the experiment was repeated three times.

Colonization of BTU6 in the Roots of Sugarcane

Sugarcane seedlings were maintained in plastic pots (20 cm in diameter, 18 cm in depth) filled with sterilized sand, which was moistened with sterile Hoagland nutrient solution, and kept in the greenhouse (28/22°C, 16/8 h light/dark cycle). BTU6 (10 mL, ∼10⁶ cfu·mL⁻¹) was inoculated into a pot, and root samples were collected on day 14. After overnight fixation with 2.5% glutaraldehyde, the sample was dehydrated in a gradient series of acetone (30, 50, 70, 80, 90, and 100%: incubation of 20 min with each concentration of acetone). After drying with hexamethyldisilazane, the sample was coated with gold using an ion sputtering equipment (EM ACE200; Leica Microsystems, Wetlzer, Germany) and observed under a scanning electron microscope (SU8020; Hitachi High-Tech Instruments, Tokyo, Japan).

Genome Sequencing of BTU6, Assembly, and Annotation

Cellular genome extraction is described with reference to the manufacturer's protocol of bacterial genomic DNA extraction kit (CW BIO Biotechnology Co., Ltd., Beijing, China). The purity of extracted DNA was assayed with a NanoDrop One spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, United States). The BTU6 genome was sequenced by Oxford Nanopore PromethION sequencing platform. Sequencing was carried out at the Biomarker Biotechnology Co., Ltd. (Beijing, China). After obtaining raw sequencing data, low-quality readings were filtered by SMRT 2.3.0 (Berlin et al., 2015; Koren and Phillippy, 2015) and the filtered sub-reads were assembled using Canu v1.5 software (Koren et al., 2017). Pilon software (Walker et al., 2014) was used to further correct the assembled genome, and a contig with higher accuracy and no gap was obtained.

We analyzed the Genome function using Gene Ontology (GO) (Ashburner et al., 2000), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2004, 2006), Clusters of Orthologous Groups (COG) (Tatusov et al., 2003), Non-Redundant Protein Database databases (NR) (Li et al., 2002), Transporter Classification Database (TCDB) (Saier et al., 2014), Swiss-Prot (Bairoch and Apweiler, 2000), and TrEMBL (Magrane and Consortium, 2011). We analyzed and predicted the secondary metabolite synthetase genes of strain BTU6 using antiSMASH (Blin et al., 2019). The respected genomic sequence data was submitted to GenBank under the BioProject PRJNA549819 (accession number CP041168). Using the predicted genomic information, the application software Circos (Krzywinski et al., 2009) was used to draw a genomic circle map.

Statistical Analysis

All data were analyzed using SPSS version 26 (IBM Corp., Armonk, NY, United States). One-way analysis of variance and Duncan’s multiple range test were used to determine differences.
Isolates	Type strain match (% similarity)	No. of nucleotides	Accession number	PGP traits	aIAA	bACC	Siderophore	P-solubilization	N-free medium growth
TU2	Nocardoides lutues KCTC 9575T	1,416	MH497623	–	0.28	+	–	–	+
TU3	Streptomyces cinereoruber NBRC 15396T	1,429	MH482864	–	–	+	–	–	–
TU4	Streptomyces gramineus JR043T	1,442	MH482865	21.89	0.06	–	–	–	–
TU5	Streptomyces recifensis NBRC 12813T	1,426	MH482866	–	0.26	–	–	–	–
TU6	Streptomyces lannensis TA406T	1,424	MH482867	27.55	–	–	–	–	–
TU7	Streptomyces gramineus NBRC 13375T	1,424	MH482868	–	–	–	–	–	–
TU8	Streptomyces filipinensis NBRC 12860T	1,426	MH482869	25.83	–	–	–	–	–
TU10	Streptomyces bambusae T110T	1,426	MH482870	–	–	–	+	–	+
TU11	Streptomyces cyaenei NRRL B02296T	1,427	MH482871	49.06	–	–	+	–	+
TU12	Streptomyces shaanxiensis CCNWHQ 0031T	1,426	MH482872	43.75	–	–	–	–	–
TU13	Streptomyces neopeptinius KNF 2047T	1,422	MH482873	75.55	0.51	–	–	–	–
TU14	Streptomyces filipinensis NBRC 12860T	1,423	MH482874	–	–	–	–	–	–
TU15	Streptomyces pseudovenezuelae DSM 40212T	1,430	MH482875	48.01	0.01	–	–	–	–
TU16	Streptomyces griseorubiginosus DSM 40469T	1,429	MH482876	58.67	0.55	–	–	–	–
TU17	Streptomyces griseoluteus NBRC 13375T	1,427	MH482877	–	–	–	–	–	–
TU19	Streptomyces lannensis TA406T	1,431	MH482878	–	–	–	–	–	+
TU20	Amycolatopsis xylanica CPCC 202699T	1,414	MH497624	36.02	–	–	–	–	+
TU21	Streptomyces griseoluteus NBRC 13375T	1,408	MH482879	29.06	–	–	–	–	–
TU22	Streptomyces recifensis NBRC 12813T	1,425	MH482880	–	–	–	–	–	+
TU23	Streptomyces lannensis TA406T	1,424	MH482881	–	–	–	–	–	+
TU32	Streptomyces pratensis ch24T	1,421	MH482882	–	–	–	–	–	+
TU33	Streptomyces neopeptinius KNF 2047T	1,424	MH482883	40.71	0.52	–	–	–	–
BTU1	Streptomyces shaanxiensis CCNWHQ 0031T	1,423	MH482884	56.52	0.24	–	–	–	+
BTU2	Streptomyces neopeptinius KNF 2047T	1,425	MH482885	60.96	0.07	–	–	–	+
BTU3	Streptomyces gramineus JR043T	1,423	MH482886	–	–	–	–	–	–
BTU4	Streptomyces griseoluteus NBRC 13375T	1,423	MH482887	43.25	–	–	–	–	–
BTU5	Streptomyces recifensis NBRC 12813T	1,426	MH482888	–	–	–	–	–	–
BTU6	Streptomyces griseorubiginosus DSM 40469T	1,428	MH482889	50.87	0.06	–	–	–	+
BTU8	Streptomyces amritsarensis MTCC 11845T	1,428	MH482890	84.85	–	–	–	–	+

(Continued)
Isolates	Type strain match (% similarity)	No. of nucleotides	Accession number	PGP traits				
BTU9	Streptomyces pseudovenezuelae DSM 40212^T (99.16)	1,423	MH482891	88.65^a	1.47^b	–	–	–
BTU10	Streptomyces canus DSM 40017^T (99.95)	1,426	MH482892	56.99^e	0.13^c	–	–	–
BTU11	Streptomyces pseudovenezuelae DSM 40212^T (99.96)	1,426	MH482893	79.46^b	0.18^b	–	–	–
BTU12	Streptomyces neopeptinius KNF 2047^T (99.93)	1,428	MH482894	54.30^c	0.07^c	–	–	+
BTU13	Streptomyces amritsarensis MTCC 11845^T (99.30)	1,424	MH482895	–	–	+	–	–
BTU14	Streptomyces neopeptinius KNF 2047^T (99.00)	1,427	MH482896	–	0.26^d	–	+	–
BTU16	Streptomyces cyaneus NRRL B02296^T (98.94)	1,421	MH482897	59.89^c	1.56^c	–	–	–
BTU17	Streptomyces pseudovenezuelae DSM 40212^T (98.88)	1,426	MH482898	87.47^a	0.08^c	–	–	–
BTU18	Streptomyces shaanxiensis CCNWHQ 0031^T (98.91)	1,425	MH482899	51.16^b	0.08^b	+	–	+
BTU19	Streptomyces pratensis ch24^T (100)	1,424	MH482900	–	0.76^c	–	–	+
BTU20	Streptomyces neopeptinius KNF 2047^T (98.64)	1,424	MH482901	56.52^e	0.16^d	–	+	+
BTU21	Streptomyces gramineus JR043^T (98.13)	1,429	MH482902	–	0.30^d	–	–	–
BTU22	Leifsonia soli TG-S248^T (98.64)	1,425	MH497612	–	–	–	–	–
GEN1	Streptomyces gramineus JR043^T (97.99)	1,422	MH482903	–	–	–	–	–
GEN2	Streptomyces violaceorubidus LMG 2031^T (98.31)	1,423	MH482904	20.36^e	–	–	–	–
GEN5	Streptomyces violaceorubidus LMG 2031^T (99.15)	1,420	MH482905	28.76^k	–	–	–	+
GEN7	Streptomyces violaceorubidus LMG 2031^T (99.79)	1,404	MH482906	21.89^e	–	–	–	–
GEN8	Streptomyces violaceorubidus LMG 2031^T (99.15)	1,417	MH482907	35.20^j	–	–	–	–
GEN15	Streptomyces violaceorubidus LMG 2031^T (99.29)	1,419	MH482908	–	–	–	–	+
WZS021	Streptomyces chartreusis NBRC 12753^T (99.63)	1,484	KX775948	30.50^e	3.03^d	+	–	+
WZS023	Leucobacter aridicollis CIP 108388^T (99.37)	1,427	MH497608	26.22^d	–	+	+	–
WZS027	Streptomyces chartreusis NBRC 12753^T (99.86)	1,403	MH482909	–	–	–	+	–
WZS028	Streptomyces pratensis ch24^T (99.78)	1,425	MH482910	–	–	–	+	–
WZS030	Streptomyces pratensis ch24^T (99.81)	1,429	MH482911	–	–	–	–	–
WZS031	Streptomyces pratensis ch24^T (99.93)	1,424	MH482912	–	–	–	+	–
WZS035	Nocardioides lutues KCTC 9675^T (100)	1,368	MH497610	21.32^m	–	–	–	–
WZS050	Streptomyces pratensis ch24^T (100)	1,430	MH482913	–	–	–	+	–
WZS051	Streptomyces pratensis ch24^T (99.89)	1,428	MH482914	–	2.05^d	+	–	–
WZS221	Brevibacterium epidermidis NBRC 14811^T (98.73)	1,424	MH559626	29.87ⁿ	–	–	–	+

+: positive; −: negative. ^amg mL^{−1}, SE: 2.07, DMRT (p = 0.05): 1.87, CV (%): 4.4; ^bµmol α-ketobutyrate mg^{−1} protein h^{−1}, SE: 0.09, DMRT (p = 0.05): 0.04, CV (%): 16.5. Different small letters as superscript represent significant difference at 95% confidence intervals based on DMRT test.
between samples, with statistically significant differences set at a 5% level.

RESULTS

Identification of Rhizosphere Actinomycetes

We isolated a total of 58 actinobacteria from the sugarcane rhizosphere; of these, 52 strains were identified as *Streptomyces* (89%), and the remaining 6 non-*Streptomyces* actinomycetes strains were identified as *Leucobacter* (2%), *Nocardioides* (3%), *Leifsonia* (2%), *Amycolatopsis* (2%), and *Brevibacterium* (2%). Phylogenetic relationships among the isolates are shown in Figure 1.

PGPR Characteristics of Actinomycetes

Among all isolates, 55% of strains had the ability to secrete IAA, with BTU9 showing the maximum IAA production of 88.65 mg mL$^{-1}$. Moreover, 40% of active strains were able to secrete ACC deaminase in the range 0.01–3.03 μmol α-ketobutyrate mg$^{-1}$ protein h$^{-1}$. The siderophores assay results indicated that 22% of strains had iron chelation ability. Among all strains, 21% of active strains had the ability to dissolve inorganic phosphorus (Table 1).

Detection of Actinomycetes Activity Against Pathogenic Fungi in \textit{in vitro}

The antagonism assays revealed that 72% actinomycetes showed antagonism against *Botrytis cinerea*, followed by 59% strains that antagonized against brown spot disease-causing *Alternaria brassicicola*, and 60% against the rice sheath blight-causing *Rhizoctonia solani* and banana wilt causing *Fusarium oxysporum* f. sp. Cubense. Among all strains, 37 actinomycetes antagonized more than four pathogenic fungi and only 2 strains showed antifungal activity against all tested pathogenic fungi (Figure 2A and Supplementary Table 3). However, some strains, including BTU6, BTU8, BTU13, and WZS031, had strong antagonistic effects on the *Sporisorium scitamineum*, and based on potential antagonistic ability, we used strain BTU6 for the greenhouse experiment.

PCR Detection of Secondary Metabolite Synthase Genes

The secondary metabolite synthase gene detection test showed that the highest number (83%) of strains had PKS II gene, followed by PKS I gene (62%); the least number of strains (45%) had the CYP gene. Interestingly, 17 strains had five secondary metabolite synthase genes were commonly detected, and three secondary metabolite synthetase genes were widely detected in 51 strains (Figure 2B and Supplementary Table 4).

Greenhouse Based Biocontrol Assay Against the Smut Pathogen

We assessed plant defense enzyme activity and disease-related substances, to examine the vital effect of BTU6 inoculation on plant antagonism against the sugarcane smut disease. The difference in POD, PPO, and PAL activity of the three treatments reached significant levels, with activity patterns in the respected treatments recorded as follows: T3 > T2 > T1. Compared with T1, The TP content in T2 and T3 increased by 54.5 and 121.2%, respectively. There was no significant difference in lignin
in the leaves of inoculated and uninoculated plants (Table 2). The fresh weights of T2 and T3 were significantly higher than that of T1 (increased by 18.0 and 20.1%, respectively), but no significant difference in plant height was observed. Moreover, the presence of BTU6 enhanced the resistance of sugarcane to smut (Supplementary Figure 1). The smut infection rate of T3 was 12% higher than that of T1, but 10% lower than that of T2. The sterile sand inoculation test in the greenhouse also showed that BTU6 can colonize the root surface and root hair area of sugarcane (Figure 3).

Genomic Traits and Genes Associated With Antagonistic Diseases
After sequencing, the complete genome sequence of *Streptomyces griseorubiginosus* BTU6 was obtained. The genome contained
TABLE 2 | Comparison of defensive enzyme activities, active substances and susceptibility rates of plant disease resistance in different treatments in greenhouse experiments.

Treatment	POD (U·g⁻¹)	PPO (U·g⁻¹)	PAL (U·g⁻¹)	TP (mg·g⁻¹)	Lignin (mg·g⁻¹)	Infection rate (%)	Fresh weight (g)	Plant height (m)	
	Shoot	Root	Shoot	Root					
T1	90.1ᵃ	78.2ᵇ	26.9ᶜ	3.3ᵈ	153ᵃ	5.6ᵃ	154.9ᵇ	12.2ᵇ	0.62ᵃ
T2	105.9ᵇ	101.4ᵇ	57.4ᵇ	5.1ᵇ	161.5ᵃ	45.6ᵇ	174.4ᵃ	22.7ᵃ	0.67ᵇ
T3	138.6ᵃ	131.6ᵃ	67.4ᵃ	7.3ᵃ	157.9ᵇ	78.9ᵇ	182.1ᵇ	18.6ᵇ	0.63ᵃ
SE	7.1ᵃ	8.1ᵃ	6.1ᵃ	0.5ᵇ	4.32	10.6ᵇ	4.23	1.69	0.01
LSD	5.5ᵃ	7.1ᵃ	1.7ᵃ	0.2ᵇ	11.7⁰	3.5¹	3.49	2.0	0.02
CV (%)	6.6	7.8	12.1	11.0	2.7	24.6	2.9	9.4	1.8

T1 (no inoculation-only water), T2 (inoculation of smut pathogen only), T3 (inoculation of smut pathogen and actinomycetes BTU6 as biocontrol agent). Different small letters as superscript represent significant difference at 95% confidence intervals based on DMRT test.

DISCUSSION

Streptomycetes are one of the most important actinobacteria genus associated with the plant rhizosphere and endosphere. The phylogenetic tree analysis showed that all Streptomycetes were in the same clade, and other actinobacterial strains such as TU20, WZS035, and TU2, separated out in another clade. Strains WZS023 and BTU22 displayed a close relationship with each other.

Berg et al. (2006) reported that 35% of microorganisms isolated from the rhizosphere have the effect of inhibiting the growth of phytopathogenic microorganisms, while for results of microbial isolation by Fürnkranz et al. (2009), about two-thirds of the alternate microorganisms promoted plant growth. Hamdali et al. (2008) isolated 8 strains for dissolving inorganic phosphorus from mineral-containing phosphate soils in Morocco. The PGP properties screening results showed the strains with the highest IAA capacity were found (32, 55%), followed by the strains with ACC deaminase activity (23, 40%), and 89% of the strains had at least one kind of PGP ability. Strains indicating that sugarcane rhizosphere actinobacteria have the ability to promote plant growth.

Moreover, previous studies have discussed the secondary metabolite production of Streptomycetes. Strobel (2003) reported that Streptomycetes NRRL30562 strain produced four peptide antibiotics, Munumbicins A, B, C, and D, that could inhibit a variety of phytopathogenic bacteria, molds, and malaria parasites. Clermont et al. (2010) also revealed that geldanamycin produced by Streptomycetes melanoporofaciens EF-76 had antagonistic effects on a variety of gram-positive bacteria and fungi. However, Yuan et al. (2014) confirmed that the PCR technology was a rapid method for detecting the secondary metabolite genes. In the present study, we also used PCR method to detect PKS I, PKS II, NRPS, phzE, dTGd, Halo, CYP genes. Interestingly, 83% strains had the PKS II gene (Supplementary Table 4) and 59% of strains had the dTGd gene. These results aligned with previous studies that reported on the important role of dTGd gene in the activity, toxicity, and solubility of natural products (Kirschning et al., 1997; Poulsen et al., 2000). D-glucose undergoes a series of complex actions, resulting in a structurally diverse 6-deoxyhexose, therefore, a very large family of 6-deoxyhexoses (Chen et al., 2011). From the highly conserved nature of the dTGd gene, the potential for the synthesis of 6-deoxyhexose by the Streptomycetes strain was determined (Yu et al., 2004). Results showed that the CYP gene encoded a key enzyme in the biosynthesis of polyene antibiotics, cytochrome...
FIGURE 3 | *Streptomyces griseorubiginosus* BTU6 colonizes the root surface (B) and hair area (C) of sugarcane and forms a mycelial cluster. (A) Represents a control sugarcane plant without BTU6 inoculation. Scale bar = 20 µm.

P450 hydroxylase (Lee et al., 2006). The halogenase gene in the molecule plays an important role in the biological activity of the entire compound. FADH$_2$-dependent halogenase is the most important halogenase in the secondary metabolic halide biosynthesis pathway (Van Pee and Patallo, 2006), and the biosynthesis of many antibiotics is based mainly on FADH$_2$-dependent halogenase (Van Pee, 2001). However, some strains have antibacterial activity, but no secondary metabolite genes have been detected; also, selected primers for amplifying metabolite genes have not been suitable for all actinobacteria due to differences in genotypes, although some of these genotypes could still be used as a basic understanding of biosynthetic genes. In the present study, the *PKS II* gene was detected in 83% of the strains, indicating that most of the sugarcane rhizosphere actinobacteria have the potential to synthesize type II polyketides. Even the smallest strain with the *CYP* gene was almost half the number of tested strains (26, 45%). Together with the PCR test of bioactive substance synthase, we also conducted an antagonistic test *in vitro*. All actinobacteria antagonized at least one pathogenic fungus, demonstrating the antagonistic properties of the actinobacteria.

Based on the *in vitro* results, we selected strain BTU6 for the sugarcane smut disease management experiment in the greenhouse, and results indicated that strain BTU6 increased plant disease resistance by regulating plant defense enzymes. Results on plant defense enzymes such as POD, PAL, and PPO in the BTU6 inoculated with smut pathogen showed that the activity levels were significantly higher ($p < 0.05$) than without BTU6, indicating that BTU6 inoculation enhanced the plant defense response against the smut pathogen. Ehret et al. (2010) also reported plant defense enzymes associated with disease resistance, of which POD, PAL, and PPO were essential enzymes involved in the plant protection process against the pathogen infection; these enzymes are often used as an important indicator of plant defense response (Lambais and Mehdy, 1995). Intermediates of PAL synthesis, such as phenolic substances and lignin are important antimicrobial substances in plants (Pellegrini et al., 1994). POD functions in strengthening plant cell walls, resisting the invasion of pathogens, and as a protective enzyme for scavenging reactive oxygen species in cells (Ray et al., 1998). PPO oxidizes phenolic substances into highly toxic terpenoids, thereby killing invading pathogens (Volpin et al., 1995). Lignin and its analogs are produced in large quantities when pathogens invade plants or are mechanically damaged (Vance et al., 1980; Hammerschmidt and Kuč, 1982; Nicholson and Hammerschmidt, 1992; Boudet et al., 1995). Lignified cell walls enhance the resistance of herbaceous and woody plants against pathogens (Hammerschmidt and Kuč, 1982; Southerton and Deverall, 1990; Dushnicky et al., 1998). Total phenolic content is also closely related to the disease resistance of plants. The total phenolic content of the cowpea varieties resistant to a mosaic disease was higher than the susceptible genotype (Shilpashree et al., 2013). Similarly, the content of phenolic substances in highly resistant red rot varieties was significantly higher than that in susceptible varieties. The change in total phenolic content could be used as a basis for assessing the degree of disease resistance of sugarcane (Beato et al., 1970).

In this study, the total phenolic content of the three treatments was significantly different, indicating that phenolic substances also played a role in improving sugarcane smut resistance. Ippolito et al. (2000) found that *Aureobasidium pullulans* can significantly increase the activity of chitinase and β-1,3 glucanases in apple fruit, and degrade the fungal cell wall to inhibit fungal growth. In addition, Luo et al. (2012) found that the antagonistic yeast (*Pichia membranefaciens*) can induce the increase in POD activity in citrus fruits, and promote the formation of phenols and flavonoids, thereby improving the disease resistance of citrus. Zhao et al. (2008) studied the biocontrol effect of *Pichia guilliermondii* on tomato root rot (*Rhizopus nigricans*) and found that *Pichia guilliermondii* could induce the increase of
SOD, CAT and POD activities in tomato fruit. This study also demonstrated that antagonistic bacteria could induce defense-related enzymes of sugarcane.

To explore the characteristics and commonalities between BTU6 and other Streptomyces strains, the BGCs of 17 Streptomyces strains were predicted and compared. Overall, different types of unknown gene clusters were identified in Streptomyces. PKS- and NRPS-related BGCs were the most prevalent; these two types of BGCs synthesize active substances of macrolides non-ribosomal peptides, respectively (Theobald et al., 2019). These observed differences between Streptomyces may be related to their complex living environment, thus
representing adaptation events that they underwent. Moreover, these results confirmed the abundance of Streptomyces-derived naturally active substances in the sugarcane rhizosphere, which may be helpful for the development of new antibiotics. In particular, all Streptomyces were found to contain ectoine and siderophore BGCs. In the long-term evolutionary process, most microorganisms have developed an osmotic pressure mechanism that accumulates compatible solutes in the cytoplasm to counteract the changing external environment. Among them, ectoine is an important compatible solute (Fenizia et al., 2020), which enables Streptomyces to better adapt to the complex and changeable environment. Siderophores affect plant health by promoting plant nutrient absorption, improving plant resistance, and inhibiting the growth of pathogenic microbes (Verbon et al., 2017). In the present study, many heterozygous gene clusters were also identified in Streptomyces, thereby indicating that these bacteria exhibit a high degree of horizontal gene transfer in the long-term evolutionary process, which has essential ecological functions. Atratumycin is a cyclodepsipeptide that actively targets Mycobacterium tuberculosis. It is generally isolated from deep-sea Streptomyces, but it has also been reported in terrestrial Streptomyces (Sun et al., 2019). Considering the unique BGCs observed, BTU6 strains exhibit remarkable potential for application in the development of antimicrobial agents. Taken together, the common BGCs of Streptomyces, as well as the unique clusters identified, can explain the broad-spectrum antagonistic effect of BTU6 on common pathogens, mainly smut.

In vivo and in vitro experiments showed that BTU6 has the ability to enhance plant growth and also can improve plant defense against pathogens. These results motivated us to identify the genomic information to understand the plant growth promotion and stress regulation mechanisms. Interestingly, 34 secondary metabolic gene clusters in the genome of BTU6 concluded our results regarding the biocontrol potential. Several past studies have described the importance of chitinase to break down the chitinolytic cell wall of pathogens (Alexopoulos et al., 1996; Baharlouei et al., 2010; Chater et al., 2010; Shen et al., 2016). Polyketide compounds are one of the most diverse natural products of function and structure, with biological activities, including antibacterial, antiviral, antitumor, anti-pathogenic, anti-tuberculosis and immunosuppression (Miyanaga, 2017). NRPS can be used as an antibiotic, immunosuppressant, lipid-lowering and antifungal, and is widely used in medicine and agriculture (Misiek and Hoffmeister, 2007; Maansson et al., 2016). The metabolites of Streptomyces isolated from the soil also contain large amounts of terpenes (Wang C. et al., 2013; Wang Z. et al., 2013). Terpenoids not only have an antibacterial effect (Gallucci et al., 2009), but also have a strong killing effect on root-knot nematodes (Ntalli et al., 2011). Eisenman and Casadevall (2012) reported that melanin has anti-ultraviolet radiation and scavenging free radicals in organisms and can improve the ability of organisms to survive and compete. Lanthipeptide is a large class of cyclic peptide compounds containing thioether bonds (Cooper et al., 2010; Knerr and van der Donk, 2012) and has strong antibacterial activity against Gram-positive bacteria (Delves-Broughton et al., 1996). In this study, the defense enzyme activity of BTU6-treated sugarcane plants was different from that of untreated control plants and had a direct or indirect relationship with the expression of corresponding genes. Streptomyces is an essential class of biocontrol bacteria in agricultural production. Traditional experimental analysis and identification methods have limitations in analyzing Streptomyces active substances and cannot fully exploit their antibacterial potential; however, bioinformatics tools make up for these shortcomings. Bioinformatics provides an in-depth understanding of the nature and function of organisms from the perspective of the genome, and provides new approaches for microbial research (Bentley et al., 2002; Udwaray et al., 2007; Kersten et al., 2011; Ziemert et al., 2012).

Persistent organic pollutants (POPs) have the characteristics of persistence, semi-volatility, easy bioaccumulation, and high toxicity, which bring great harm to human health and the environment (Lohmann et al., 2007; Lapworth et al., 2012; Tran et al., 2013). The microbial degradation method has received extensive attention due to its mild reaction conditions, thorough degradation, low operating costs, and no secondary pollution (Shokrollahzadeh et al., 2008; Hassan and Sorial, 2009; Rene et al., 2010). The genomic information generated from this study demonstrated the potential of BTU6 to biodegrade persistent organic pollutants. For example, hexachlorocyclohexanes (HCH) is the most common type of persistent organic pollutant. It was also the organic synthetic pesticide discovered and applied. Due to its excellent insecticidal effect, it is widely used in agriculture (Quintero et al., 2008). Benzoates, styrene, and caprolactam pose greater risks to environmental organisms (Marczynski et al., 2000; Dahlhoff et al., 2001; Willis and Ling, 2003). Bisphenol A (BPA) is often used as a compound to manufacture plastics, epoxies, and other materials. It is also an endocrine disruptor that interferes with the synthesis and metabolism of hormones and is associated with multiple pathologies in the human reproductive system (Howdeshell et al., 1999; Maffini et al., 2006; Diamanti-Kandarakis et al., 2009). Dioxins are often associated with waste incineration, which are carcinogenic, teratogenic, mutagenic, and are included in the first batch of Stockholm Convention on Persistent Organic Pollutants list (Everaert and Baeyens, 2002; Wang et al., 2012). The natural and synthetic polycyclic aromatic hydrocarbons are dispersed throughout the world with the flow of the atmosphere. Polycyclic aromatic hydrocarbons enter the vegetation from the atmosphere and eventually lead to enrichment in the food chain, which is the leading organic pollutant affecting human health (Blumer, 1976; Morehead et al., 1986). Atrazine was once considered one of the most difficult to degrade herbicides, posing a threat to aquatic ecosystems and human drinking water sources (Storrs and Kiesecker, 2004; Fan and Song, 2014). In addition, glycine oxidase in microorganisms degrades glyphosate to amine methylphosphonic acid (AM-PA) and glyoxylic acid to reduce glyphosate residues (Nishiya and Imanaka, 1998). BTU6 could degrade a variety of exogenous chemicals, especially those that are difficult to degrade by artificial methods, which provides a new solution to ecological protection.
CONCLUSION

The sugarcane rhizosphere is rich in actinobacteria that promote plant growth, and most have the potential to antagonize plant pathogens. *Streptomyces griseorubiginosus* BTU6 enhances the resistance of plants to smut by regulating the stress resistance related enzyme activity and substances (POD, PAL, PPO, TP) in sugarcane. Bacterial genomic information also provides evidence that BTU6 produces a variety of secondary metabolites that antagonize fungi, further elucidating the molecular mechanisms of bacterial-plant interactions. In addition, the genome showed that BTU6 has the potential for biodegrading of a variety of exogenous chemicals, which can provide new insights into green solutions to various environmental options.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

ZW, Y-RL, D-FD, and FP designed the study. ZW, MS, and Z-XY conducted the experiments. MA and Y-XX analyzed the data. ZW, MS, Y-RL, and MM wrote the manuscript. Y-RL and D-FD revised and finalized the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

Aggarwal, N., Thind, S. K., and Sharma, S. (2016). “Role of secondary metabolites of *Actinomycetes* in crop protection,” in *Plant Growth Promoting Actinobacteria*, eds G. Subramaniam, S. Arumugam, and V. Rajendran (Singapore: Springer), 99–121. doi: 10.1007/978-981-10-0707-1_7

Alexander, D. B., and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. *Biol. Fertil. Soils* 12, 39–45. doi: 10.1007/BF00369386

Alexopoulos, C. J., Mims, C. W., and Blackwell, M. (1996). *Introductory Mycology*. New York, NY: John Wiley and Sons.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: tool for the unification of biology. *Nat. Genet.* 25:23. doi: 10.1038/75556

Baharlouei, A., Sharifi-Sirchi, G. R., and Bonjar, G. H. S. (2010). Identification of *Actinomycetes* strain 101, and its new antagonistic spectrum of activity. *Microb. Agric. Sci.* 93, 439–445.

Bairoch, A., and Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic Acids Res.* 28, 45–48. doi: 10.1093/nar/28.1.45

Bakker, P.a.H.M., Ran, L. X., Pieterse, C. M. J., and Loon, L. C. V. (2003). Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. *Can. J. Plant Pathol.* 25, 5–9. doi: 10.1080/07060660390560743

Beato, M., Homoki, J., Doenecke, D., and Sekeris, C. E. (1970). Phenolic content of sugarcane in relation to red rot disease. * EXPERIEN TIA 26, 1074–1076*. doi: 10.1007/BF02112682

Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., et al. (2002). Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2). *Nature* 417:141. doi: 10.1038/417141a

Berg, G., Opelt, K., Zachow, C., Lottmann, J., Götz, M., Costa, R., et al. (2006). The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus *Verticillium* differs depending on plant species and site. *FEMS Microbiol. Ecol.* 56, 250–261. doi: 10.1111/j.1574-6941.2005.00025.x

Berlin, K., Koren, S., Chin, C. S., Drake, J. P., Landolin, J. M., and Phillippy, A. M. (2015). Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. *Nat. Biotechnol.* 33, 623–630. doi: 10.1038/nbt.3238

Bettin, C., Yang, X., and Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. *Plant Soil* 256, 67–83. doi: 10.1023/A:1026290508166

Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., et al. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic Acids Res.* 47, W81–W87. doi: 10.1093/nar/gkx310

Blumer, M. (1976). Polycyclic aromatic compounds in nature. *Sci. Am.* 234, 35–45. doi: 10.1038/scientificamerican0376-34

Boudet, A. M., Lapiere, C., and Grima-Pettenati, J. (1995). Biochemistry and molecular biology of lignification. *New Phytol.* 129, 203–236. doi: 10.1111/j.1469-8137.1995.tb04292.x

Burdman, S., Jurkevitch, E., and Okon, Y. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. *Microb. Interact.* 2, 229–250.

Chater, K. F., Biró, S., Lee, K. J., Palmer, T., and Schrempf, H. (2010). The complex extracellular biology of *Streptomyces*. *FEMS Microbiol. Rev.* 34, 171–198. doi: 10.1111/j.1574-6976.2009.00206.x

Chen, F., Lin, L., Wang, L., Tan, Y., Zhou, H., Wang, Y., et al. (2011). Distribution of dTDP-glucose-4,6-dehydratase gene and diversity of potential stalked spore-forming actinomycetes in sugarcane. *Can. J. Plant Pathol.* 33, 623–630. doi: 10.1016/j.cjpp.2011.04.002

Clermont, N., Legault, G., Lerat, S., and Beaulieu, C. (2010). Effect of biopolymers on geldanamycin production and biocontrol ability of *Streptomyces melanoporofaciens* strain EF-76. *Can. J. Plant Pathol.* 32, 481–489. doi: 10.1080/070606610.2010.512121

ACKNOWLEDGMENTS

We thank Hai-Yan Wu and Qiong He of Guangxi University for providing the related fungal pathogens for plant, and Dr. Cheng-Xi Li of Guangxi University for helping in genome informatics analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.797889/full#supplementary-material
Fan, X., and Song, F. (2014). Bioremediation of atrazine: recent advances and
Hansen, V. M., Winding, A., and Madsen, A. M. (2010). Exposure to bioaerosols
Gallucci, M. N., Oliva, M., Casero, C., Dambolena, J., Luna, A., Zygadlo, J., et al.
Ehret, D. L., Edwards, D., Helmer, T., Lin, W., Jones, G., Dorais, M., et al.
Hamdali, H., Hafidi, M., Virolle, M. J. L., and Ouhdouch, Y. (2008).
El-Tarabily, K. A., Nassar, A. H., Hardy, G. S. J., and Sivasithamparam, K. (2010).
Cooper, L. E., Li, B., and Van Der Donk, W. A. (2010). “5.08 ñ biosynthesis and
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The
Luo, Y., Zeng, K., and Ming, J. (2012). Control of blue and green mold decay of
Koren, S., and Phillippy, A. M. (2015). One chromosome, one contig: complete
Kirschning, A., Bechthold, A., and Rohr, J. (1997). Chemical and biochemical
de Haen, A. A., and Sorial, G. (2009). Biological treatment of benzene in a
Hassan, A. A., and Sorial, G. (2009). Biological treatment of benzene in a controlled
disclosed trickled bed air biofilter. *Chemosphere* 75, 1315–1321. doi: 10.1016/j.chemosphere.2009.03.008
Howdeshell, K. L., Hotchkiss, A. K., Thayer, K. A., VanDenbergh, J. G., and Vom Saal, F. S. (1999). Exposure to bisphenol A advances puberty. *Nature* 401, 763–764. doi: 10.1038/44517
Ippolito, A., El Ghouth, A., Wilson, C. L., and Wisniewski, M. (2000). Control of postharvest decay of apple fruit by *Aureobasidium pullulans* and induction of defense responses. *Postharvest Biol. Technol.* 19, 265–272. doi: 10.1016/S0925-5214(00)00104-6
Islam, S., Akanda, A. M., Prova, A., Islam, M. T., and Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. *Front. Microbiol.* 6:1360. doi: 10.3389/fmicb.2015.01360
Kaneshia, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., et al. (2006). From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res.* 34:D354–D357. doi: 10.1093/nar/gkt102
Kaneshia, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering the genome. *Nucleic Acids Res.* 32:D278–D280. doi: 10.1093/nar/gkh063
Kannan, V., and Sureendrar, R. (2009). Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. *J. Basic Microbiol.* 49, 158–164. doi: 10.1002/jobm.200800011
Kersten, R. D., Yang, Y. L., Xu, Y., Cimermancic, P., Nam, S. J., Fenical, W., et al. (2011). A mass spectrometry-guided genome mining approach for natural product peptidoglycans. *Nat. Chem. Biol.* 7, 794–802. doi: 10.1038/nchembio.864
Kirschning, A., Bachtold, A., and Roehr, J. (1997). Chemical and biochemical aspects of deoxysugars and deoxyxysugars oligosaccharides. *Top. Curr. Chem.* 188, 1–84. doi: 10.1007/BF0119234
Knerr, P. J., and van der Donk, W. A. (2012). Discovery, biosynthesis, and engineering of lantipeptides. *Annu. Rev. Biochem.* 81, 479–505. doi: 10.1146/annurev-biochem-060110-113521
Koren, S., and Phillippy, A. M. (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. *Curr. Opin. Microbiol.* 23, 110–120. doi: 10.1016/j.mib.2014.11.014
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* 27, 722–736. doi: 10.1101/gr.215087.116
Kortema, H., Pennanen, T., Smolander, A., and Haathtela, K. (1997). Distribution of antagonistic *Streptomyces griseoviridis* in rhizosphere and non-rhizosphere sand. *J. Phytopathol.* 145, 137–143. doi: 10.1111/j.1439-0434.1997.tb00376.x
Krzewinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. *Genome Res.* 19, 1639–1645. doi: 10.1101/gr.092759.109
Lambais, M. R., and Mehdy, M. C. (1995). Differential expression of defense-related genes in arbuscular mycorrhiza. *Can. J. Bot.* 73, 533–540. doi: 10.1139/b95-293
Lapworth, D. J., Baran, N., Stuart, M. E., and Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. *Environ. Pollut.* 163, 287–303. doi: 10.1016/j.envpol.2011.12.034
Lee, M. Y., Myeong, J. S., Park, H. J., Han, K., and Kim, E. S. (2006). Isolation and partial characterization of a cryptic polyene gene cluster in *Pseudomonas aeruginosa* autotrophica. *J. Ind. Microbiol. Biotechnol.* 33, 84–87. doi: 10.1007/s10295-005-0018-7
Li, W., Jaroszewski, L., and Godzik, A. (2002). Tolerating some redundancy significantly speeds up clustering of large protein databases. *Bioinformatics* 18, 77–82. doi: 10.1093/bioinformatics/18.1.77
Liu, K., McInroy, J. A., Hu, C.-H., and Klopper, J. W. (2018). Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. *Plant Dis.* 102, 67–72. doi: 10.1094/PDIS-04-17-0478-RE
Lohmann, R., Breivik, K., Dachs, J., and Muir, D. (2007). Global fate of POPs: current and future research directions. *Environ. Pollut.* 150, 150–165. doi: 10.1016/j.envpol.2007.06.051
Luo, Y., Zeng, K., and Ming, J. (2012). Control of blue and green mold decay of citrus fruit by *Pichia membranifaciens* and induction of defense responses. *Sci. Hortic.* 135, 120–127. doi: 10.1016/j.scienta.2011.11.031
Tran, N. H., Hu, J., and Ong, S. L. (2013). Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC-MS/MS and isotope dilution. *Talanta* 113, 82–92. doi: 10.1016/j.talanta.2013.03.072

Udawary, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., Fenical, W., et al. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete *Salinispora tropica*. *Proc. Natl. Acad. Sci. U.S.A.* 104, 10376–10381. doi: 10.1073/pnas.070962104

Van Pee, K. (2001). Microbial biosynthesis of halometabolites. *Arch. Microbiol.* 175, 250–258. doi: 10.1007/s002030100263

Van Pee, K., and Patallo, E. P. (2006). Flavin-dependent halogenases involved in secondary metabolism in bacteria. *Appl. Microbiol. Biotechnol.* 70, 631–641. doi: 10.1007/s00253-005-0232-2

Van Wees, S. C., Van Der Ent, S., and Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. *Curr. Opin. Plant Biol.* 11, 443–448. doi: 10.1016/j.pbi.2008.05.005

Vance, C., Kirk, T., and Sherwood, R. (1980). Lignification as a mechanism of disease resistance. *Annu. Rev. Phytopathol.* 18, 259–288. doi: 10.1146/annurev.phyto-080516-035537

Verbon, E. H., Trapet, P. L., Stringlis, I. A., Kruijs, S., Bakker, P. A., and Pieterse, C. M. (2017). Iron and immunity. *Annu. Rev. Phytopathol.* 55, 355–375. doi: 10.1146/annurev-phyto-080516-035537

Viaene, T., Langendries, S., Beirinckx, S., Maes, M., and Goormachtig, S. (2016). Diversity and biological activity of Actinobacteria isolated from the Chukchi shelf marine sediments in the arctic ocean. *Mar. Drugs* 12, 1281–1297. doi: 10.3390/md12031281

Yuan, W. M., and Crawford, D. L. (1995). Characterization of *Streptomyces lydicus* WYEC108 as a potential biocontrol agent against fungal root and seed rots. *Appl. Environ. Microbiol.* 61, 3119–3128. doi: 10.1128/aem.61.8.3119-3128.1995

Zhao, Y., Tu, K., Shao, X., Jing, W., and Su, Z. (2008). Effects of the yeast *Pichia guilliermondii* against *Rhizopus nigricans* on tomato fruit. *Postharvest Biol. Technol.* 49, 113–120. doi: 10.1016/j.postharvbio.2008.01.001

Zhu, Q., Dabi, T., Beeche, A., Yamamoto, R., Lawton, M. A., and Lamb, C. (1995). Cloning and properties of a rice gene encoding phenylalanine-ammonia-lyase. *Plant Mol. Biol.* 29, 535–550. doi: 10.1007/BF00029983

Ziemert, N., Podell, S., Penn, K., Badger, J. H., Allen, E., and Jensen, P. R. (2012). The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. *PLoS One* 7:e34064. doi: 10.1371/journal.pone.0034064

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Wang, Solanki, Yu, Anas, Dong, Malviya, Pang and Li. *This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.*