Phase shifter based on an ultrathin superconducting bilayer with a through-hole for a superconducting device

Hiroshi Ishizu (✉ 8120506@ed.tus.ac.jp)
Tokyo University of Science: Tokyo Rika Daigaku https://orcid.org/0000-0002-9871-775X

Hirotake Yamamori
National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin
Sangyo Gijutsu Sogo Kenkyujo

Shunichi Arisawa
National Institute for Mathematical Sciences

Kazuyasu Tokiwa
Tokyo University of Science: Tokyo Rika Daigaku

Yasumoto Tanaka
National Institute of Advanced Industrial Science and Technology: Kokuritsu Kenkyu Kaihatsu Hojin
Sangyo Gijutsu Sogo Kenkyujo

Research Article

Keywords:

Posted Date: October 25th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-727983/v2

License: ☭ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Phase shifter based on an ultrathin superconducting bilayer with a through-hole for a superconducting device

Hiroshi Ishizu1,2,*, Hirotake Yamamori1, Shunichi Arisawa3, Kazuyasu Tokiwa2, Yasumoto Tanaka1

1 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
2 Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
3 National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

* Author to whom correspondence should be addressed: 8120506@ed.tus.ac.jp, https://orcid.org/0000-0002-9871-775X

Other author ORCHID numbers:
Yamamori Hirotake (https://orcid.org/0000-0002-7296-711X)
Arisawa Shunichi (https://orcid.org/0000-0001-8155-9401)
Tokiwa Kazuyasu (https://orcid.org/0000-0003-3543-1786)
Tanaka Yasumoto (http://orcid.org/0000-0001-6421-2799, https://orcid.org/0000-0003-3543-178)

Abstract

Applying a radian phase shift other than 2π is a key issue for superconducting circuits, such as flux qubits. Magnetic flux is useful when generating a phase shift. However, a quantized magnetic flux accompanying a trapped vortex in a superconductor does not possess a phase shifter function. The magnetic flux generated by an external field generates noise. In this study, we propose a phase bias system that does not require an external field during operation. We confirm the phase shift of a direct current superconducting interference device (SQUID) placed on an ultrathin superconducting Nb bilayer with a through-hole by cooling it to a
temperature below the superconducting transition temperature with an external field. Although the cause of the phase shift in our system is unclear, we believe that it may be caused by a fractional quantum in the bilayer. When the SQUID is replaced by a qubit, the phase shift can be applied to a phase bias.

Keywords: Phase shifter, superconducting bilayer, SQUID, fractional quantum, \textit{i}-soliton, multiband/multicomponent superconductor.

1. Introduction

Since 1971, multilayers of ultrathin superconducting sheets have been studied as two-dimensional superconductors [1] and as models of layered superconducting materials [2–4], such as cuprate- and Fe-based superconductors [5, 6]. An ultrathin superconducting bilayer system is the simplest multilayer system [7, 8]. Moreover, it can be considered as a model system of two-band/multicomponent superconductors [9, 10]. Phase difference solitons between components (\textit{i}-solitons) in multicomponent superconductors, which are not found in conventional superconductors, have been discussed and have been shown to increase the possibility of fractional flux quantum generation [10–13].

Hence, we developed a novel ultrathin bilayer system to investigate these new topological objects found in multicomponent superconductors. In 2018, we confirmed the fractional quantization of magnetic flux in the ultrathin bilayer system with the use of a scanning magnetometer [14]. The scanning magnetometer provides a precise measurement of the magnetic flux distribution [15]. However, it requires the presence of a person throughout the measurement process, and it is difficult to measure the magnetic field dependence at low temperatures automatically. To investigate the basic properties of an ultrathin bilayer in detail,
we placed a direct current superconducting interference device (DC-SQUID) on the ultrathin bilayer with the use of a device process [16]. Given that the structures of qubits and SQUIDs are similar, we believe that our system will facilitate the function of reinforcing/remodeling conventional flux qubits [17].

The direct combination of a SQUID and target to produce a magnetic flux has been attempted in other multicomponent superconductors to attain a fractional vortex [18]. However, with the exception of one of our previous publications [14], to the best of our knowledge, there is no other report on the identification of the fractional vortex. We explore herein the basic properties of this device with the use of a bilayer with a through-hole.

2. Experiments

Fig. 1(a) shows that the system used in this study consists of an external copper coil and a chip with the developed ultrathin bilayer disk. The coil wire had a diameter of 0.85 mm, and the coil had an internal diameter of 7.4 mm. The space between the coil and chip was ~4.5 mm. This coil generated the field, which was oriented perpendicular to the surface of the chip. Fig. 1(b) shows the schematics of the chip, comprising a Nb coil, lines connecting the terminals, and two types of SQUID arrays; one array type is used for calibration and the other for detecting fractional flux quantum trapped in the bilayer. In the right-hand-side row of the chip, the bilayer disk was present underneath a series array of 100 SQUIDs, whereas in the left-hand-side row, the bilayer disk was absent. The length of the SQUID arrays was 1.2 mm, and the separation between the centers of the two SQUID arrays was 24 μm. These arrays were surrounded by a rectangular Nb coil, with an inner width and length of 1 mm and 5 mm, respectively, and a Nb linewidth of 200 μm. Figs. 1 (c)–(e) show the SQUID and
bilayer in detail. The disk with a diameter of 10 μm consisted of two 20 nm thick Nb layers. We inserted a 5 nm thick Al layer between the two Nb layers, and the top surface of this Al layer was oxidized. The disk consisted of three layers. The special feature of our device is a central through-hole with a diameter of 2 μm in the bilayer, which was designed with a Josephson current density of 300 A/cm² between the two Nb layers. The bilayer was covered with a 100 μm thick silicon oxide layer, and the DC-SQUIDs (with a designed critical current of 76 μA) were placed on it. The DC-SQUID has two square junctions of dimensions 3 μm × 3 μm, and the critical current was designed to be 38 μA in one junction. The series array of 100 SQUIDs improved the signal-to-noise ratio because of the averaged results of the SQUIDs. We quantified the transport properties of the SQUIDs using a typical instrument [16, 19, 20].

Fig. 1. Device used in experiments. Schematic of the (a) system, (b) chip, and (c) superconducting interference device (SQUID) and bilayer. (d) Top and (e) side views of the SQUID and bilayer.
We inferred that the total flux that passed through the SQUIDs was characterized by the I_C values of the SQUIDs. In the I–V characteristic, we determined the positive currents measured at 90% ($I_C^+ (90\%)$) and 10% ($I_C^+ (10\%)$) of the maximum voltage, as well as the negative currents measured at 90% ($I_C^- (90\%)$) and 10% ($I_C^- (10\%)$) of the minimum voltage. When all the SQUIDs were in the same I_C state (high/low state), $I_C^\pm (10\%) \approx I_C^\pm (90\%)$. In all the measurements, the SQUID bias currents were first increased from 0 to 100 μA at an interval of 1 μA, then decreased to −100 μA, and finally increased back to 0 μA. The current flowing in the upward direction in Fig. 1(d) is the current in the positive direction.

The flux quantum was trapped as the temperature decreased and while the temperature passed through the superconducting transition point in the presence of an external field (this phenomenon is called “field cooling” (FC)), hereafter referred to as Φ_{FC}. The device temperature was first increased to 12–14 K, which was higher than the critical temperature of superconductivity for the bilayer (i.e., $T_{C, bilayer} = 7.73$ K) [14, 16]; subsequently, the temperature was reduced following the application of a magnetic field. The magnetic field was then removed at temperatures in the range of 6–6.5 K. After cooling below 5.5 K, we re-applied the field to measure the external field dependency of I_C at low temperatures. The field applied at low temperatures is designated as Φ_{ex}. The downward direction of the magnetic field is determined to be the positive direction. The applied magnetic field is positive when the current flow appears clockwise by looking at the chip from above.

Φ_{FC} denotes the magnetic field applied at high temperatures (above 6.5 K) when FC is generated by the external copper coil, whereas Φ_{ex} denotes the magnetic field applied at low temperatures (below 5.5 K) after FC is generated by the Nb coil. The reasons behind the use of the two types of coils are heating and resistance. The external coil was made of copper.
wire, which was heated when the current was applied. When the external coil is used for a long period, it becomes difficult to maintain the coil at a constant temperature; thus, the coil becomes unsuitable for generating Φ_{ex}. By contrast, the Nb coil has a large resistance above $T^{\text{Nb}}_C = 9.23$ K, and it is difficult to apply current to it at temperatures $> T^{\text{Nb}}_C$. Thus, the Nb coil is unsuitable for generating Φ_{FC} and operates at higher temperatures (12–14 K).

We conducted two types of calibrations for the external field. For one type of calibration, the external field was represented by the total flux inside the SQUIDs without the bilayer when the external field was applied. Subsequently, we calibrated the magnetic field with the left SQUID. The flux unit was represented by Φ_0 in this case. For the other type of calibration, the external field was represented by the total flux inside the SQUIDs with the bilayer when the external field was applied. The flux unit was represented by Φ_0 in this case. The appropriateness of the unit depends on the situation, as has been discussed later.

We investigated two types of I_C changes in the SQUIDs, which were measured at temperatures of 4–5 K. In the Φ_{FC}–I_C characteristic measurements, the FC process was performed each time before the I–V characteristics were measured; the Φ_{FC} value changed at every measurement. In these Φ_{FC}–I_C measurements, we maintained $\Phi_{\text{ex}} = 0$. In the Φ_{ex}–I_C characteristic measurements, the FC process was performed only once, i.e., the I–V characteristics were measured by varying Φ_{ex}, without increasing the device temperature again.

3. Results and Discussion

The I–V characteristics (Figs. 2(a) and 2(b)) depict the high and low I_C states. Typically, the SQUID voltage jumped to ~280 mV, which corresponded to a value equal to 100 times the gap of the superconducting Nb [21, 22]. This implies that all SQUIDs were in the “running state,” which we were able to confirm.
Fig. 2. I–V characteristics. Arrows indicate the directions of the currents that sweep each other. (a) Case in which $\Phi_{FC} = 0.0$. (b) Case in which $\Phi_{FC} = 1.0\Phi_0$.

Figs. 3(a) and 3(b) depict the $\Phi_{ex}-I_C$ characteristics for the cases of $\Phi_{FC} = 0.0$ and $\Phi_{FC} = 1.2\Phi_0$, respectively. The hysteresis observed herein was small. A comparison of these two figures shows that the value of Φ_{ex} that yields the maximum I_C is different in the two figures, thus indicating a shift in the signal.
Fig. 3. $\Phi_{\text{ex}}-I_C$ characteristics: Changes in I_C with respect to Φ_{ex}. (a) Case in which $\Phi_{\text{FC}} = 0.0$. (b) Case in which $\Phi_{\text{FC}} = 1.2\Phi_0$. The dark and light lines indicate the ascending and descending trends of Φ_{ex}, respectively. The lower axis is scaled by Φ_0, and the upper axis is scaled by Φ_0.

Φ_0 is used as the calibration value in Fig. 3. The reason behind the use of Φ_0 as the calibration value in Fig. 3 is that the superconductors cancel a part of the applied field at temperatures below T_C. In our system, T_C^{bllayer} (critical temperature of the bilayer) is 7.73 K, and Φ_{ex} is always applied below T_C^{bllayer}. Φ_0 has the following relationship with Φ_0: $\Phi_0 \approx 1.39\Phi_0$. Similarly, changes in the period have been observed in the Sr$_2$RuO$_4$-Ru eutectic microplates with a micro-DC-SQUID [18].

The I_C of the SQUID varies at Φ_0 intervals with the modulation of the external magnetic fields. The value of I_C is typically maximized at $\Phi_{\text{ex}} = 0$. The shift in the location where I_C is maximized indicates the presence of a magnetic flux other than the external field Φ_{ex}. In Fig. 3, this shift is equal to $0.45 \pm 0.01\Phi_0$.

Furthermore, we investigated the value of Φ_{FC} at which the phase shift occurred (Fig. 4). When the phase shift occurs, the SQUIDs should be in a low I_C state with $\Phi_{\text{ex}} = 0$. As is evident from Fig. 4, for current values below $0.5\Phi_0$, the I_C value remains high ($I_C = 60–70 \mu\text{A}$); however, between $0.9\Phi_0$ and $1.5\Phi_0$, the I_C is low ($I_C = 15–25 \mu\text{A}$). Therefore, the phase shift does not occur for values below $0.5\Phi_0$; instead, it occurs for values between $0.9\Phi_0$ and $1.5\Phi_0$. However, there exists a run dependence for Φ_{FC} values above $1.5\Phi_0$. This does not affect the confirmation of the function of the phase shifter. We are conducting extensive investigations on this aspect in an ongoing study.
Fig. 4. Φ_{FC-I_C} characteristics and color scale indicating the voltage of SQUIDs array. The boundary between the yellow and red regions corresponds to I_C^+ (90%). The boundary between the green and yellow regions corresponds to I_C^+ (10%). The boundary between the blue and green regions corresponds to I_C^- (10%). The boundary between the indigo and blue regions corresponds to I_C^- (90%).

Φ_0 is used as the calibration value in Fig. 4. Φ_0 yields a more appropriate value because the shielding and/or the Meissner effect of the bilayer is extremely weak when the magnetic flux enters the bilayer at temperatures just below the $-T_C^{\text{bilayer}}$.

Herein, we discuss the occurrence of the phase shift. We have two different interpretations to explain this phenomenon. First, a fractional flux quantum is trapped in the bilayer by the FC method. Second, a part of the flux quantum trapped in the bilayer escapes from regions between the SQUID and bilayer.

The fractional flux is generated in the ultrathin bilayer; the fractional value is determined as the ratio of the thickness of the upper layer to the lower layer [14, 23]. Fractional flux quanta were confirmed in an ultrathin bilayer system with a hole present only in the upper...
layer [14, 16]. We believe that the same phenomenon may occur in an ultrathin bilayer system with a through-hole. If a flux quantum is generated in the ultrathin bilayer system with a through-hole, the amount of shift should be $1/2\Phi_0$ when the thickness of the upper layer is equal to the thickness of the lower layer in our system. The value of the fractional quantum can vary when there is a difference in the effective thickness between the lower and upper layers. Considering the proximity effect in the Al layer, the thicknesses of the upper and lower layers of the bilayer were slightly different [14, 16]. The amount of shift with $0.45 \pm 0.01\Phi_0$ can be explained by this theory.

There is space between the SQUID and the bilayer in this system. Thus, it is possible that a part of the flux trapped in the bilayer escaped through this space. To allow a part of the flux with a value of approximately $0.55\Phi_0$ to escape from regions between the SQUID and bilayer, the SQUID needs to be approximately 2000 nm away from the bilayer based on the assumption of a monopole-like (Fig. 1 of Ref. [4]) field distribution observed in the Pearl vortex in an infinite two-dimensional layer [24]. The distance in our system is approximately in the range of 100–200 nm; therefore, it cannot be assumed that nearly half of the flux quantum escapes.

The most plausible interpretation regarding the phase shift with $0.45 \pm 0.01\Phi_0$ is the first interpretation according to which the phase shift is generated by the fractional flux quanta. If our interpretation is correct, our system is ideal as a phase shifter because it can be easily designed to achieve arbitrary shifts by adjusting the thicknesses of the upper and lower layers. Our system does not need any additional space, as observed in the flux bias given by the additional loop following the attachment of a SQUID [25]. Furthermore, the proposed system does not require new materials, such as magnetic materials, other than Nb [26, 27].
Substantial cost and time (at least more than half a year) are required to install a new process line dealing with new materials. Our proposed system can be implemented without any additional manufacturing device.

We confirmed that a study has been previously conducted on a ring composed of a thick bilayer [28]. However, while the geometric shape of this bilayer is similar to the geometry of our ultrathin bilayer, differences in fundamental content exist. In the case of the conventional bilayer, flux propagates through layers. In our ultrathin bilayer, flux propagates through a pinhole in the center of the bilayer. The physical principles, properties, dynamics, basic formulas, underlying phenomena, and the role of the magnetic flux are completely different in these two cases. The “fractional phase shift” in the thick bilayer ring was also investigated [29], wherein the phase shift was induced by an externally injected current. Similar to the phase shift induced by the additional ring [25], extra space was needed, and this system could potentially feed the noise induced by the external current lead. Using the flux trapped in the ultrathin bilayer system, we can avoid these drawbacks.

Finally, the plausibility of the formation of a fractional quantum in view of the previous theories are discussed. Several theories exist to predict a fractional flux quantum and a fractional vortex in the bilayer and multicomponent superconductors with a finite quadratic Josephson interaction between two components [7, 30–42]. Although these theories have not been experimentally confirmed (in other words, the situations discussed in these theories have not yet been reproduced experimentally), there is a consensus among these theories that the topology of the two-component superconductors enables the formation of a fractional flux quantization. Based on this schema, a vortex molecule comprising a two fractional vortices can be formed [43, 44]. The size of the vortex molecule is estimated to be
approximately 36 μm in the present case, which is larger than the diameter of the disk. It has been discussed theoretically that the vortex molecule is cut into two fractional vortices and one of them remains in the sample when the size of the vortex molecule is larger than the size of the sample in the conventional multicomponent superconductors (spin triplet superconductors) [45–48]. These theoretical aspects suggest that the fragment of the vortex molecule is trapped in the pinhole.

4. Conclusion

It is worth noting that this system can be utilized as a phase shifter. We intend to investigate this phase shifting mechanism for use in a qubit. In addition, this system is useful for studying fractional flux quanta. If it can be proven that this phase shift is due to fractional flux quanta, it can be used to assess whether fractional flux quanta are generated in multilayer systems, and multicomponent superconductors would thus become considerably simpler.

Acknowledgments

The devices were fabricated in a clean room for analog–digital superconductivity (CRAVITY) at the National Institute of Advanced Industrial Science and Technology (AIST). We would like to thank Editage (www.editage.jp) for English language editing.

Declarations

Funding

Support was received from the AIST Innovation School.
Conflicts of interest/Competing interests

All authors declare that (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work, and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Availability of data and material

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Authors' contributions

H. I.: original draft, data curation, formal analysis, investigation, software, visualization, review, and editing. H. Y.: conceptualization, data curation, investigation, methodology, resources, software, review, and editing. S. A.: conceptualization, review, and editing. K. T.: review and editing. Y. T.: conceptualization, original draft, data curation, formal analysis, investigation, methodology, resources, software, visualization, review, and editing.

References

1) W.E. Lowence, S. Doniach, Proc of the 12th Intern Conf. on Low Temperature
Phys. Kyoto, 1970 Ed. E Kanda, Tokyo: Kigaku, 1971, 361–362.

2) R.A. Klemm, M.R. Bealey, A. Luther, J. Low Temp. Phys. 16 607 (1974)
https://doi.org/10.1007/BF00654905.

3) D.E. Prober, M.R. Beasley, R.E. Schwall, Phys. Rev. B 15 5245 (1977)
https://doi.org/10.1103/PhysRevB.15.5245.

4) J.R. Clem, Phys. Rev. B, 43 7837 (1991)
https://doi.org/10.1103/PhysRevB.43.7837.

5) J.G. Bednorz, K.A. Miller, Z. Phys. B. 64 189 (1986)
https://doi.org/10.1007/BF01303701.

6) Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130 3296 (2008) https://doi.org/10.1021/ja800073m.

7) W. Zhang, H.A. Ferting, Phys. Rev. B 71 224514 (2005)
https://doi.org/10.1103/PhysRevB.71.224514.

8) A. De Col, V. B. Geshkenbein, G. Blatter, Phys. Rev. Lett. 94 097001 (2005)
https://doi.org/10.1103/PhysRevLett.94.097001.

9) A. Gurevich, V.M. Vinokur, Phys. Rev. Lett. 97 137003 (2006)
https://doi.org/10.1103/PhysRevLett.97.137003.

10) H. Bluhm, N.C. Koshnick, M.E. Huber, K.A. Moler, Phys. Rev. Lett. 97 237002
(2006) https://doi.org/10.1103/PhysRevLett.97.237002.

11) Y. Tanaka, J. Phys. Soc. Jpn. **70** 2844 (2001) https://doi.org/10.1143/JPSJ.70.2844.

12) Y. Tanaka, Phys. Rev. Lett. **88** 017002 (2002) https://doi.org/10.1103/PhysRevLett.88.017002.

13) A. Crisan, Y. Tanaka, D.D. Shivagan, A. Iyo, L. Cosereanu, K. Tokiwa, T. Watanabe, Jpn. J. Appl. Phys. **46** L451 (2007) http://dx.doi.org/10.7567/JJAP.53.099201.

14) Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa, Physica C **548** 44 (2018) https://doi.org/10.1016/j.physc.2018.02.001.

15) S. Arisawa, K. Mochiduki, K. Yun, T. Hatano, I. Iguchi, K. Endo, JJAP. **51** 095804 (2012) http://dx.doi.org/10.1143/JJAP.51.095804.

16) Y. Tanaka, H. Yamamori, S. Arisawa, Physica C: Superconductivity and its Applications **589** 1353932 (2021) https://doi.org/10.1016/j.physc.2021.1353932.

17) J.E. Mooji, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Science 285 1036 (1999) https://doi.org/10.1126/science.285.5430.1036.

18) Y. Nago, D. Sakuma, R. Ishiguro, S. Kashiwaya, S. Nomura, K. Kono, Y. Maeno, H. Takayanagi, J. Phys.: Conf. Ser. **969** 012040 (2018) https://doi.org/10.1088/1742-6596/969/1/012040.
19) H. Yamamori, M. Maruyama, Y. Amagai, T. Shimazaki, IEICE Electron. Express 16 20190219 (2019) https://doi.org/10.1587/elex.16.20190219.

20) A. Shoji, H. Yamamori, M. Ishizaki, S.P. Benz, P.D. Dresselhaus, IEEE Trans. Appl. Supercond. 13 919 (2003) https://doi.org/10.1109/TASC.2003.814082.

21) M.D. Sherrill, H.H. Edwards, Phys. Rev. Lett. 6 460 (1961)

https://doi.org/10.1103/PhysRevLett.6.460.

22) M. Hidaka, S. Nagasawa, J. Cryo. Super. Soc. Jpn. 52 5 (2017) [in Japanese]

https://doi.org/10.2221/jcsj.52.315.

23) Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa, Physica C 538 12 (2017) https://doi.org/10.1016/j.physc.2017.04.009.

24) J. Pearl, Appl. Phys. Lett. 5 65 (1964) https://doi.org/10.1063/1.1754056.

25) J.B. Majer, J.R. Butcher, J.E. Mooij, Appl. Phys. Lett. 80 3638 (2002)

https://doi.org/10.1063/1.1478150.

26) D.S. Golubovic, W.V. Pogosov, M. Morelle, V.V. Moshchalkov, Phys. Rev. Lett. 92 177904 (2004) https://doi.org/10.1103/PhysRevLett.92.177904.

27) V.V. Ryazanov, V.A. Oboznov, A.V. Veretennikov, A. Yu. Rusanov, Phys. Rev. B 65 020501(R) (2001) https://doi.org/10.1103/PhysRevB.65.020501.

28) R. Monaco, J. Mygind, V.P. Koshelets, Supercond. Sci. Technol. 33 075013 (2020)
https://doi.org/10.1088/1361-6668/ab92e7.

29) K. Buckenmaier, T. Gaber, M. Siegel, D. Koelle, R. Kleiner, E. Goldobin, Phys. Rev. Lett. 98 117006 (2007) https://doi.org/10.1103/PhysRevLett.98.117006.

30) A.S. Mosquera Polo, R.M. da Silva, A. Vagov, A.A. Shanenko, C.E. Deluque Toro, J. Albino Aguiar, Phys. Rev. B 96 054517 (2017)

https://doi.org/10.1103/PhysRevB.96.054517.

31) S.Z. Lin, L.N. Bulaevskii, Phys. Rev. Lett. 110 087003 (2013)

https://doi.org/10.1103/PhysRevLett.110.087003.

32) S.Z. Lin, C. Reichhardt, Phys. Rev. B 87 100508 (2013)

https://doi.org/10.1103/PhysRevB.87.100508.

33) J.C. Piña, C.C. de Souza Silva, M.V. Milošević, Physica C: Superconductivity and its Applications 503 48 (2014) https://doi.org/10.1016/j.physc.2014.04.017.

34) R.M. da Silva, M.V. Milošević, D. Domínguez, F.M. Peeters, J.A. Aguiar, Appl. Phys. Lett. 105 232601 (2014) https://doi.org/10.1063/1.4904010.

35) J.C. Piña, C.C. de Souza Silva, M.V. Milošević, Phys. Rev. B 86 024512 (2012)

https://doi.org/10.1103/PhysRevB.86.024512.

36) P.J. Pereira, L.F. Chibotaru, V.V. Moshchalkov, Phys. Rev. B 84 144504 (2011)

https://doi.org/10.1103/PhysRevB.84.144504.
37) R. Geurts, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81 214514 (2010)

https://doi.org/10.1103/PhysRevB.81.214514.

38) L.F. Chibotaru, V.H. Dao, Phys. Rev. B 81 020502(R) (2010)

https://doi.org/10.1103/PhysRevB.81.020502.

39) L.F. Chibotaru, V.H. Dao, A. Ceulemans, EPL 78, 47001 (2007)

https://doi.org/10.1209/0295-5075/78/47001.

40) J. Goryo, S. Soma, H. Matsukawa, Europhysics Letters 80 17002 (2007)

https://doi.org/10.1209/0295-5075/80/17002.

41) T.N. Jorge, C. Aguirre, A. de Arruda, J. Barba-Ortega, The European Physical Journal B 93 69 (2020) https://doi.org/10.1140/epjb/e2020-100418-4.

42) C. Aguirre, A.S. de Arruda, J. Faúndez, J. Barba-Ortega, Physica B 615 413032 (2021) https://doi.org/10.1016/j.physb.2021.413032.

43) D.D. Shivagan, A. Crisan, P.M. Shirage, A. Sundaresan, Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, N. Terada, J. Phys.: Conf. Ser. 97 012212 (2008)

https://doi.org/10.1088/1742-6596/97/1/012212.

44) Y. Tanaka, A. Crisan, D.D. Shivagan, A. Iyo, K. Tokiwa, T. Watanabe, J. Appl. Phys. 46 134 (2007) http://dx.doi.org/10.7567/JJAP.53.099202.

45) N. Ogawa, M. Sigrist, K. Ueda, J. Phys. Soc. Jpn. 65 545–551 (1996)
https://doi.org/10.1143/jpsj.65.545.

46) T.A. Tokuyasu, D.W. Hess, J.A. Sauls, Phys. Rev. B 41 8891 (1990)

https://doi.org/10.1103/PhysRevB.41.8891.

47) N. Ogawa, M. Sigrist, K. Ueda, Physica B 206–207 634 (1995)

https://doi.org/10.1016/0921-4526(94)00542-4.

48) N. Ogawa, The vortex structure and the magnetization of an unconventional superconductor. Thesis, Tsukuba Univ. (1994).