DIKETOPIPERAZINE PRODUCED BY PSYCHROPHILIC YEAST *Glaciozyma antarctica* PI12

(Diketopiperazin Dihasilkan oleh Yis Psikropilik *Glaciozyma antarctica* PI12)

Andi Rifki Rosandy¹, Muntaz Abu Bakar¹, Nurul Nadiah Abdul Rahman¹, Abdul Munir Abdul Murad², Azira Muhamad³, Rozida Mohd. Khalid¹*

¹School of Chemical Science and Food Technology, Faculty of Science and Technology
²School of Biosciences and Biotechnology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
³Malaysia Genome Institute (MGI), National Institute of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia

*Corresponding author: rozidakhalid@ukm.edu.my

Received: 7 June 2017; Accepted: 1 November 2017

Abstract

Four diketopiperazine derivatives; cyclo(-Pro-Val) (1), (-)-cyclo(-Pro-Tyr) (2), (-)-cyclo(-Pro-Phe) (3) and (+)-cyclo(-Pro-Leu) (4) were isolated from the ethyl acetate extract of *Glaciozyma antarctica* PI12, a cold-adapted yeast that belongs to family Kriegeriales. The compounds were isolated by radial chromatography and thin layer chromatography techniques and the chemical structures were elucidated by infrared (IR), ultraviolet (UV), nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry.

Keywords: *Glaciozyma antarctica* PI12, diketopiperazine, Kriegeriales

Abstrak

Empat terbitan diketopiperazin; siklo(-Pro-Val) (1), (-)-siklo(-Pro-Tir) (2), (-)-siklo(-Pro-Phe) (3) dan (+)-siklo(-Pro-Leu) (4) yang dipencarkan daripada ekstrak etil asetat *Glaciozyma antarctica* PI12, merupakan yis adaptasi sejuk yang terdiri dari famili Kriegeriales. Sebatian – sebatian terpencil telah diasingkan menggunakan teknik kromatografi pepejal dan kromatografi lapisa nipis dan struktur kimia dijelaskan oleh spektroskopi infra merah (IR), ultra lembayung (UL), resonans magnetik nuklear (RMN) dan spektrometri jisim.

Kata kunci: *Glaciozyma antarctica* PI12, diketopiperazin, Kriegeriales

Introduction

Antarctica is a continent with extreme low temperature and nutrients, with high UV radiation, low water availabilities and frequent freeze-thaw cycle [1]. Therefore, the biology of Antarctica more than other continents, is dominated by microorganisms [2], with a high level of adaptation and able to withstand extreme condition [3]. However, temperature is one of major factors affecting the survival of microorganisms in Antarctica [4]. Cold adapted fungi that grow optimally at temperatures less than 15 °C and cannot grow above 20 °C are called “psychrophilic fungi or cold-adapted fungi” [5]. Since the 1960s, bioactive secondary metabolites have been isolated and structurally characterised from psychrophiles [6] such as bioactive non-ribosomal peptides (NRPs),
compounds derived from the NRP-synthetase that were developed into antibiotics i.e. bacitracin, polymyxin B and E [7].

Glaciozyma antarctica PI12 belongs to the family Kriegeriales [8] and was isolated from a marine environment in Antarctica [9]. Recently, this psychrophilic yeast was reclassified from *Leucosporidium antarcticum* to *Glaciozyma antarctica* PI12 [10] and has also been isolated from various locations in Antarctica [11, 12]. *Glaciozyma antarctica* PI12 was widely investigated in recent years in most antifreeze protein production and cold-active enzyme, including an extracellular serine proteinase [13]. The main objective of this paper is to describe the isolation and structure characterisation from psychrophilic yeast *G. antarctica* PI12.

Materials and Methods

Biological materials

The *G. antarctica* PI12 sample used was a gift from Prof. Dr. Nazalan Najimudin from Universiti Sains Malaysia in Penang, Malaysia. It was identified based on the biochemical characteristics and the sequence of the internal transcribed spacer (ITS) as well as the LSU rRNA (Accession numbers JX89896955 and JX896956) by the National Collection of Yeast Cultures, Norwich, UK. The strain was cultured on Tryptic Soy Agar for 10 days at 4 °C until a single colony was obtained [14]. The culturing of *G. antarctica* PI12 was conducted in collaboration with the Malaysia Genome Institute.

Cultivation of yeast

10 µL of the *G. antarctica* PI12’s glycerol stock was sub-cultured on the Yeast Extract-Peptone-Dextrose (YPD) agar with 50 µg/mL of ampicillin and 50 µg/mL of kanamycin at 12 °C until a single colony was obtained. Next, a starter culture of *G. antarctica* PI12 was prepared by inoculating a single colony of *G. antarctica* PI12 from the agar plate into 10 mL of YPD medium (50 mL falcon tube) with 50 µg/mL of ampicillin and 50 µg/mL of kanamycin. It was then cultured at 12 °C at 180 rpm until mid-log phase (OD600: 1.0 to 1.8) (5 days). Thirdly, a fixed amount (10⁶ yeast cells/mL) of starter culture was inoculated into 50 mL of YPD medium (three 250 mL of conical flask were used) with two antibiotics, and then cultured at 12 °C at 180 rpm until stationary phase at day 14 [15].

Extraction and isolation

The production culture was centrifuged (10,000 rpm, 4 °C, 5 min). The supernatant was filtered under vacuum to remove any cells that were not pelleted out and its pH was adjusted to 4.0. The supernatant was extracted thrice with ethyl acetate, and eluted with the mixtures of dichloromethane (DCM) and methanol (MeOH) with increasing polarity (started with DCM/MeOH, 9.6: 0.4). The eluates showing the same profile on thin layer chromatography (TLC) were combined to give three fractions (I-III). Purification of Fraction I (1-4) (29.7 mg) was carried out using RC with a silica gel plate of 0.5 mm thickness. Elution with DCM and MeOH (8.4: 1.6) produced Compound 2 (1 mg), Compound 3 (1.5 mg), and Compound 4 (2 mg).

Results and Discussion

Characterization study

Cyclo(-Pro-Val) (1) is a white amorphous solid. ESI-MS [M + H]+ at m/z: 197. IR v_max (ATR) cm⁻¹: 3191, 2956, 1640, 1453, 1110, 922. ¹H NMR (MeOD, 700 MHz) δ_H (ppm) and ¹³C NMR (MeDO, 175 MHz) δ_C (ppm) data are tabulated in Table 1.

(-)-Cyclo(-Pro-Tyr) (2) is a white amorphous solid. [α]_D²⁰ 43.1 (c 0.14, ethanol). ESI-MS [M + H]+ ion at m/z: 261. IR v_max (ATR) cm⁻¹: 3248, 2927, 2853, 1747, 1658, 1449, 1252, 1174, 1114, 1017, 858. ¹H NMR (MeOD, 700 MHz) δ_H (ppm) and ¹³C NMR (MeOD, 175 MHz) δ_C (ppm) data are tabulated in Table 1.
(-)-Cyclo(-Pro-Phe) (3) is a white amorphous solid. [α]_D^20 -72 (c 0.7, methanol). ESI-MS [M + H]^+ ion at m/z: 169. IR ʋ_max (ATR) cm⁻¹: 3357, 2956, 2108, 1647, 1449, 1318 and 1087. ¹H NMR (MeOD, 700 MHz) δ_H (ppm) and ¹³C NMR (MeOD, 175 MHz) δ_c (ppm) data are tabulated in Table 1.

(+)-Cyclo(-Pro-Leu) (4) is a white powder. [α]_D^20 +28.1 (c 0.032, ethanol). ESI-MS [M + H]^+ ion at m/z: 211. IR ʋ_max (ATR) cm⁻¹: 3222, 2958, 2930, 2872, 1686, 1676, 1426, 1302, 1275, 1235, 1157, 1102, 1032, 996-919. ¹H NMR (MeOD, 700 MHz) δ_H (ppm) and ¹³C NMR (MeOD, 175 MHz) δ_c (ppm) data are tabulated in Table 1.

Table 1. ¹H and ¹³C NMR data (700 and 175 MHz, MeOD) for compounds 1-4

Position	APT (ppm)	¹H (mult., ΣH)	
1	1	2	3
1-N	-	-	-
2	165.8	165.7	165.5
3	59.9	56.6	53.1
4-NH	-	-	7.93 (br-s, 1H)
5	170.9	169.6	169.3
6	58.7	58.7	58.6
7	28.3	28.0	28.0
8	22.4	21.4	21.3
9	45.1	44.6	44.5
10	28.2	36.3	36.3
11	18.7	-	24.5
12	16.7	-	23.2
13	-	-	22.3
1¹	-	126.3	126.2
2⁴/6	-	130.7	130.7
3⁴/5	-	115.0	130.3
4⁺	-	156.1	128.2

Compound 1 was isolated as white amorphous solid. Its molecular formula was determined as C₁₀H₁₆N₅O₂, obtained by ESI-MS [M + H]^+ m/z 197. The IR spectrum showed the presence of carbonyl groups from amide (1640 cm⁻¹), and also saturated methylene groups at the range of 2956-2889 cm⁻¹. The ¹³C-APT NMR spectrum showed the location of ten signals representing two quaternary, three methines, three methylenes and two methyls carbons. The double bond equivalent (DBE) value of four indicated that this compound contained two double bonds and two cyclic aliphatic. The most deshielded carbons at δc 170.9 and 165.8 ppm were indicated as an asymmetrical carbonyl group. Three saturated non-equivalent methylene signals at δc 28.3 (C-7), 22.4 (C-8) and 45.1 (C-9) were attributed to a pyrrolidine ring. A methine carbon at δc 58.7 ppm (C-6) was the specific of methine signal of diketopiperazine alkaloid and another one methine at δc 59.9 ppm (C-3) indicated the presence of a methine existed.
between carbonyl and secondary amide while the two non-equivalent gem-dimethyls at δC 18.7 ppm (C-11) and δC 18.7 ppm (C-12) bound a saturated methine at δC 28.2 ppm (C-10).

Meanwhile, 12 proton signals representing 16 protons appeared in the ¹H-NMR spectrum as shown in Table 1. Six of the signals came from the three non-equivalent methylenes proton at H-7, H-8 and H-9, forming a basic pyrrolidine ring. An aminated methine proton, H-6 (δH 4.11 ppm) resonated as a triplet, indicating that C-6 was adjacent to a methylene group (C-7). Another methine proton at H-10 (δH 2.32 ppm) was resonated as a multiplet, because it was bound to two non-equivalent gem-dimethyls at C-11 and C-12. Comparison of the ¹H and ¹³C-APT NMR spectra of the compound suggested that it was Cyclo(-Pro-Val) (Fig. 1) [16]. Thus, the structure of Cyclo(-Pro-Val) (1) was previously isolated from Aspergillus fumigatus [17], Pseudomonas aeruginosa [18], and Stenotrophomonas sp. [19].

Figure 1. Chemical structure of compound 1

Compounds 2 and 3 (Figure 2) were found in Fraction III as a UV absorbing spot, which stained to violet with anisaldehyde/sulphuric acid. The ¹H NMR spectrum of Compound 2 showed two ortho-coupled signals at δH 7.05 (H-2', 6') and 6.79 (H-3', 5'), which pointed to an AA'BB' system of a 1,4-disubstituted aromatic ring, as well as two signals at δH 4.37 and 4.05 for two methines attached to electron withdrawing substituents. The spectrum proton of Compound 2 showed also two doublet of doublets for an ABX system of a methylene group at δH 3.46 and 2.79 (CH₂-10), as well as three methylene multiplets (CH₂-7) (δH 2.33, 1.99) attached to a heteroatom and CH₂-8, 9 (δH 2.01, 1.93, 3.63, 3.57). The ESI mass spectra determined the molecular weight of Compound 2 as 261 Dalton by (+)-ESI mode. The structure was further confirmed as (-)-cyclo(-Pro-Tyr) (2) by comparison with an authentic sample and spectra from our collection [20]. (-)-cyclo(-Pro-Tyr) (2) was previously isolated from Pseudomonas fluorescens GcM5-1A [21], Streptomyces sp. H7372 and ML 1532 [22, 23], Pseudomonas aeruginosa [18] and Lysobacter capsici AZ78 [24]. The difference between Compound 2 and Compound 3 lay on C-4', where Compound 2 had a hydroxy at C-4' (Figure 2).

Figure 2. Structure of compounds 2 and 3

From the spectroscopy data and comparison with the literature, compound 3 was confirmed as (-)-cyclo(-Pro-Phe) (3) [17] previously isolated from microbial sources, including Streptomyces rochei 87051-3 [16], Streptomyces sudanensis. A4.4 [25], Tyridiomyces formicarum [26], and Alternaria alternata [27].

(+)-Cyclo(-Pro-Leu) (4), [α]D²⁰ +28.1 (c 0.032, ethanol), was isolated as a white amorphous material with molecular formula C₁₁H₁₈N₂O₂, obtained by ESI–MS [M + H]⁺ m/z 211. The IR spectrum showed bands attributed to the aliphatic carbons (2958, 2930, 2872 cm⁻¹) and amide (1686, 1676 cm⁻¹) functional groups. The ¹H NMR spectrum
of compound 4 indicated the presence of three methines at H-3, H-6 and H-11; four methylenes at H-7, H-8, H-9 and H-10; and two non-equivalent dimethyls at H-12 and H-13 (Table 1). 13C NMR spectrum exhibited the presence of 11 carbon signals corresponding to two methyls, four methylenes, three methines and two quaternary carbons. The observation of the quaternary carbons at δC 167.1 (C-2) and 171.1 (C-5) suggested that these carbon signals were due to the carbonyl carbon of the amide groups. The DBE value of four indicated that this compound was containing two double bonds and two cyclic aliphatic. (+)-cyclo(Pro-Leu) (4) previously isolated from the Gram-negative Proteobacteria of Burkholderia cenocepacia and Serratia marcescens [28], Alternaria alternata [29], the bacteria Pseudoalteromonas sp. [30] and Vibrio alginolyticus [31].

Figure 3. Structure of compounds 4

Conclusion
Four diketopiperazine derivatives, i.e. cyclo(-Pro-Val) (Compound1), (-)-cyclo(-Pro-Tyr) (Compound 2), (-)-cyclo(-Pro-Phe) (Compound3) and (+)-cyclo(-Pro-Leu) (Compound4) were isolated and reported for the first time from psychrophilic yeast G. antarctica PI12. All the compounds reported in the present study were not subjected to further bioactivity studies due to insufficient amounts.

Acknowledgement
We would like to thank the School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM); Malaysia Genome Institute (MGI) for providing research facilities. We would like also to express our gratitude to the Indonesia Endowment Fund for Education (LPDP) and the Malaysian Ministry of Science and Technology and Universiti Kebangsaan Malaysia for financial support through the following research grants: 02-05-20-SF0007/4 and FRGS-1-2014-SG01-UKM-02-6.

References
1. Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L. and Onofri, S. (2007). Fungi in Antarctica. Reviews in Environmental Science and Biotechnology, 6: 127 – 141.
2. Nienow, J. A. and Friedmann, E. I. (1993). Terrestrial lithophytic (rock) communities. In: Friedmann, E. I. (ed). Antarctica microbiology. Wiley-Liss, New York, pp. 343 – 412.
3. Friedmann, E. I. (1993). Antarctic microbiology. Wiley-Liss, New York, pp. 634.
4. Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L. and Humr, N. P. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70: 222 – 252.
5. Morgan, R. Y. (1975). Psychrophilic bacteria. Bacteriological Reviews, 39: 144 – 167.
6. Giddings, L. A. and Newman, D. J. (2015). Bioactive compounds from terrestrial extremophiles. Springer, New York, pp. 1.
7. Sewald, N. and Jakubke, H. D. (2002). Peptides: Chemistry and biology. NJ: Wiley, Berlin, pp. 119 –124.
8. Di Menna, M. E. (1960). Yeast from Antarctica. Journal of General Microbiology, 7: 295 – 300.
9. Fell, J. W., Statzell, A., Hunter, I. L. and Phaff, H. J. (1969). Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek, 35: 433 – 462.
10. Turchetti, B., Thomas-Hall, S. R., Connell, L. B., Branda. E., Buzzini, P., Theelen, B., Müller, W. H. and Boekhout, T. (2011). Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciezyma gen. nov., Glaciezyma martini sp. nov. and Glaciezyma watsonii sp. nov. Extremophiles, 15: 573 – 586.
11. Donachie, S. P. (1995). Ecophysiological description of marine bacteria from Admiralty Bay (Antarctica), and the digestive tracts of selected Euphausiidae. Ph.D. Thesis, Department of Antarctic Biology, Polish Academy of Sciences, Warsaw.

12. Connell, L. B., Redman, R., Craig, S., Scorzetti, G., Iszard, M. and Rodriguez, R. (2008). Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbial Ecology, 56: 448 – 459.

13. Pazgier, M., Turkiewicz, M., Kalinowska, H. and Bielecki, S. 2003. The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium aterticum. Journal of Molecular Catalysis B: Enzymatic, 21: 39 – 42.

14. Hashim, N. H. F., Sulaiman, S., Bakar, F. D. A., Illias, R. M., Kawahara, H., Najimudin, N., Mahadi, N. M. and Murad, A. M. A. (2014). Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica. Polar Biology, 37: 1495 – 1505.

15. Hashim, N. H. F., Bharudin, I., Nguong, D. L. S., Higa, S., Bakar, F. D. A., Nathan, S., Rabu, A., Kawahara, H., Illias, R. M., Najimudin, N., Mahadi, N. M. and Murad, A. M. A. (2013). Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles, 17: 63 – 73.

16. Lee, H. B., Choi, Y. C. and Kim, S. U. (1994). Isolation and identification of Maculosins from Streptomyces rochei 87051-3. Agricultural Chemistry and Biotechnology, 37(5): 339 – 342.

17. Furtado, N. A. J. C., Pupo, M. T., Carvalho, I., Campo, V. L., Duarte, M. C. T., and Bastos, J. K. (2005). Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. Journal of the Brazilian Chemical Society, 16(6B): 1448 – 1453.

18. Vasquez-Rivera, D., González, O., Guzmán-Rodríguez, J., Diaz-Pérez, A. L., Ochoa-Zarzosa, A., Lopez-Bucio, J., Meza-Carmen, V. and Campos-García, G. (2015). Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PA01 leads to apoptosis in human cancer cell lines. BioMed Research International, 2015: 1 – 9.

19. Jermnak, U., Chinaphuti, A., Poapolathep, A., Kawai, R., Nagasawa, H. and Sakuda, S. (2013). Prevention of aflatoxin contamination by a soil bacterium of Stenotrophomonas sp. that produces aflatoxin production inhibitors. Microbiology, 159: 902 – 912.

20. Laatsch, H. (2010). AntiBase a data base for rapid dereplication and structure determination of microbial natural products. Wiley-VCH. Germany, Wein-heim.

21. Guo, Q., Guo, D., Zhao, B., Xu, J. and Li, R. (2007). Two cyclic dipeptides from Pseudomonas fluorescens GcM5-1A carried by the pine wood nematode and their toxicities to Japanese black pine suspension cells and seedlings in vitro. Journal of Nematology, 39(3): 243 – 247.

22. Cheenpracha, S., Borris, R. P., Tran, T. T., Jee, J. M., Seow, H. F., Cheah, H. Y., Ho, C. C. and Chang, L. C. (2011). Three new amides from Streptomyces sp. H7372. Journal of the Brazilian Chemical Society, 22(2): 223 – 229.

23. Munekata, M. and Tamura, G. (1981). Selective inhibition of SV40-transformed cell growth by diketopiperazines. Agricultural and Biological Chemistry, 45(11): 2613 – 2618.

24. Puopolo, G., Cimmino, A., Palmieri, M. C., Giovannini, O., Evidente, A. and I. Pertot, I. (2014). Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2.5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. Journal of Applied Microbiology, 117: 1168-1180.

25. Hamza, A. A., Ali, H. A., Clark, B. R., Murphy, C. D. and Eloibed, E. A. (2013). Cyclo (L-phenyl, L-prolyl). Diketopiperazines from a newly isolated Streptomyces sudanensis. A44. Journal of Biotechnology and Pharmaceutical Research, 4(1): 1 – 7.

26. Wang, Y., Mueller, U. G. and Clarke, J. (1999). Antifungal diketopiperazines from symbiotic fungus of funguss grewnting ant Cyphomyrmex minutus. Journal of Chemical Ecology, 25(4): 935 – 941.

27. Stierle, A. C., Cardellina, J. H. and Strobelt, G. A. (1988). Maculosins, a host-specific phytotoxin for spotted knapweed from Alternaria Alternata. Proceedings of the National Academy of Sciences of the United States of America, 85: 8008 – 8011.

28. Yap, A. C., Kok-Gan Chan, K. G. and Choo, Y. M. (2016). Isolation and identification of metabolites from the Gram-negative proteobacteria of Burkholderia cenocepacia and Serratia marcescens. Sains Malaysiana, 45(7): 1073 – 1077.

29. Musetti, R., Polizzotto, R., Vecchione, A., Borselli, S., Zulini, L., D’Ambrosio , M., di Toppi, L. S. and Pertot, I. (2007). Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: An ultrastructural study. Micron, 38: 643 – 650.
30. Luis, S. M., Ballesteros, J. and Gutiérrez, M. (2011). Antibacterial constituents from the octocoral associated bacterium Pseudoalteromonas sp. Revista Latinoamericana de Química, 39: 1 – 2.

31. Wang, X., Huang, Y., Sheng, Y., Su, P., Qiu, Y., Ke, C. and Feng, D. (2017). Antifouling activity towards mussel by small-molecule compounds from a strain of Vibrio alginolyticus bacterium associated with Sea Anemone Haliplanella sp. Journal of Microbiology and Biotechnology, 27(3): 460–470.