∂-HARMONIC FORMS ON 4-DIMENSIONAL ALMOST-HERMITIAN MANIFOLDS

NICOLETTA TARDINI AND ADRIANO TOMASSINI

Abstract. Let \((X, J)\) be a 4-dimensional compact almost-complex manifold and let \(g\) be a Hermitian metric on \((X, J)\). Denote by \(\Delta_\partial := \partial\bar{\partial} + \partial^*\bar{\partial}\) the \(\partial\)-Laplacian. If \(g\) is \emph{globally conformally Kähler}, respectively \emph{(strictly) locally conformally Kähler}, we prove that the dimension of the space of \(\partial\)-harmonic \((1, 1)\)-forms on \(X\), denoted as \(h^{1,1}_\partial\), is a topological invariant given by \(b_+ + 1\), respectively \(b_-\). As an application, we provide a one-parameter family of almost-Hermitian structures on the Kodaira-Thurston manifold for which such a dimension is \(b_-\). This gives a positive answer to a question raised by T. Holt and W. Zhang. Furthermore, the previous example shows that \(h^{1,1}_\partial\) depends on the metric, answering to a Kodaira and Spencer’s problem. Notice that such almost-complex manifolds admit both almost-Kähler and \((\text{strictly})\) locally conformally Kähler metrics and this fact cannot occur on compact complex manifolds.

1. Introduction

Let \((X, J)\) be an almost-complex manifold, then if \(J\) is not integrable one has that \(\bar{\partial} \neq 0\) and so the Dolbeault cohomology of \(X\)

\[H^{\bullet, \bullet}_\partial(X) := \frac{\text{Ker } \partial}{\text{Im } \partial} \]

is not well defined. However, if \(g\) is a Hermitian metric on \((X, J)\) and \(*\) denotes the associated Hodge-\(*\)-operator, then

\[\Delta_\partial := \bar{\partial}\partial + \partial^*\bar{\partial} \]

is a well-defined second order, elliptic, differential operator, without assuming the integrability of \(J\). In particular, if \(X\) is compact, then \(\text{Ker } \Delta_\partial\) is a finite-dimensional vector space and we will denote as usual with \(h^{\bullet, \bullet}_\partial\) its dimension. If \(J\) is integrable, then the \((p, q)\)-Dolbeault cohomology groups \(H^{p,q}_\partial(X)\) of the compact complex manifold \((X, J)\) are isomorphic to the Kernel of \(\Delta_\partial\), that is

\[H^{p,q}_\partial(X) \simeq \text{Ker } \Delta_\partial|_{A^{p,q}(X)} \]

where \(A^{p,q}(X)\) denotes the space of smooth \((p, q)\)-forms on \((X, J)\) and, in particular, the dimension of the space of \(\partial\)-harmonic forms is a holomorphic invariant, not depending on the choice of the Hermitian metric. In [6, Problem 20] Kodaira and

2010 Mathematics Subject Classification. 53C15; 58A14; 58J05.

Key words and phrases. almost-complex; Hermitian metric; Hodge number; Kodaira-Thurston manifold.

The first author is partially supported by GNSAGA of INdAM and has financially been supported by the Programme “FIL-Quota Incentivante” of University of Parma and co-sponsored by Fondazione Cariparma. The second author is partially supported by the Project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics” and by GNSAGA of INdAM.
Spencer asked whether this is the case also when J is not integrable. More precisely,

Question I Let (M, J) be an almost-complex manifold. Choose a Hermitian metric on (M, J) and consider the numbers $h^{p,q}_{\partial}$. Is $h^{p,q}_{\partial}$ independent of the choice of the Hermitian metric?

In [7] Holt and Zhang answered negatively to this question, showing that there exist almost-complex structures on the Kodaira-Thurston manifold such that the Hodge number $h^{1,1}_{\partial}$ varies with different choices of Hermitian metrics. Furthermore, in [7, Proposition 6.1] the authors showed that for a compact 4-dimensional almost-Kähler manifold $h^{1,1}_{\partial}$ is independent of the metric, and more precisely $h^{1,1}_{\partial} = b_- + 1$, where b_- denotes the dimension of the space of the anti-self-dual harmonic 2-forms. In [7, Question 6.2] the authors asked the following

Question II Let (M, J) be a compact almost-complex 4-dimensional manifold which admit an almost-Kähler structure. Does it have a non almost-Kähler Hermitian metric such that $h^{1,1}_{\partial} \neq b_- + 1$?

In this paper we study this problem. In fact, first we show that on compact almost-complex 4-dimensional manifolds $h^{1,1}_{\partial}$ is a conformal invariant of Hermitian metrics (see Lemma 3.2). In particular, this means that [7, Proposition 6.1] can be extended to Hermitian metrics that are globally conformal to an almost-Kähler metric (for simplicity we will call these metrics globally conformally Kähler, even though the almost-complex structure may not be integrable).

Next we show, using the existence (and uniqueness up to omotheties) of the Gauduchon representative in every conformal class, the following, see Theorem 3.6.

Theorem 1 Let (X^4, J) be a compact almost-complex manifold of dimension 4, then, with respect to a (strictly) locally conformally Kähler metric, $h^{1,1}_{\partial} = b_-$.

Here, by (strictly) locally conformally Kähler metric we mean a Hermitian metric ω, such that

$$d\omega = \theta \wedge \omega$$

with θ a d-closed, non d-exact, differential 1-form.

Then we show the following, see Theorem 3.7.

Theorem 2 Let (X^4, J) be a compact almost-complex manifold of dimension 4 and let ω be a Hermitian metric, then if ω is globally conformally Kähler (in particular if it is almost-Kähler), it holds

$$h^{1,1}_{\partial} = b_- + 1.$$

If ω is (strictly) locally conformally Kähler,

$$h^{1,1}_{\partial} = b_-.$$

In particular, for locally conformally Kähler and globally conformally Kähler metrics on compact 4-dimensional almost-complex manifolds, $h^{1,1}_{\partial}$ is a topological invariant. Notice that this was already known in the integrable case, by [5, Proposition II.6].

We also show in Proposition 3.8 that on every compact 4-dimensional almost-Hermitian manifold, b_- is a lower bound for $h^{1,1}_{\partial}$, that is optimal in view of Theorem 3.6.
Finally, we discuss these results on explicit examples on the Kodaira-Thurston manifold, denoted with X. This is a compact 2-step nilmanifold of dimension 4 that can be endowed with both complex and symplectic structures but cannot admit any Kähler metrics (see [9], [11]) and it has the structure of a principal S^1-bundle over a 3-torus. This manifold turns out to be a very valuable source of examples in non-Kähler geometry.

First, in example 4.1, we construct a family of almost-complex structures J_a, with $a \in \mathbb{R} \setminus \{0\}$, $a^2 < 1$, on X that admit both almost-Kähler and (strictly) locally conformally Kähler metrics (notice that in view of [13] this could not happen in the integrable case). Namely, (X, J_a) is a compact almost-complex 4-dimensional manifold which admit an almost-Kähler metric $\tilde{\omega}_a$ and a non almost-Kähler Hermitian metric ω_a such that

$$h^{1,1}_a = b_+ \neq b_- + 1.$$

Hence, this example answers affirmatively to [7, Question 6.2] in the case of the Kodaira-Thurston manifold endowed with the 1-parameter family of almost-complex structures J_a.

Moreover, this answers to Kodaira and Spencer’s question, showing that also the Hodge number $h^{1,1}_a$ depends on the Hermitian metric and not just on the almost-complex structure.

Then, in example 4.3 we construct on X a left-invariant almost-complex structure compatible with a family of non left-invariant globally conformally Kähler metrics. In particular, in this case we will have

$$h^{1,1}_a = b_+ + 1.$$

In both examples we write down explicitly the $\overline{\partial}$-harmonic representatives in $\mathcal{H}^{1,1}_a$.

2. Preliminaries

In this Section we recall some basic facts about almost-complex and almost-Hermitian manifolds and fix some notations. Let X be a smooth manifold of dimension $2n$ and let J be an almost-complex structure on X, namely a $(1,1)$-tensor on X such that $J^2 = -\text{Id}$. Then, J induces on the space of forms $A^\ast(X)$ a natural bigrading, namely

$$A^\ast(X) = \bigoplus_{p+q=\bullet} A^{p,q}(X).$$

Accordingly, the exterior derivative d splits into four operators

$$d : A^{p,q}(X) \to A^{p+2,q-1}(X) \oplus A^{p+1,q}(X) \oplus A^{p,q+1}(X) \oplus A^{p-1,q+2}(X)$$

$$d = \mu + \partial + \overline{\partial} + \bar{\mu},$$

where μ and $\bar{\mu}$ are differential operators that are linear over functions. In particular, they are related to the Nijenhuis tensor N_J by

$$(\mu \alpha + \bar{\mu} \alpha)(u,v) = \frac{1}{4} \alpha (N_J(u,v))$$

where $\alpha \in A^1(X)$. Hence, J is integrable, that is J induces a complex structure on X, if and only if $\mu = \bar{\mu} = 0$.

In general, since $d^2 = 0$ one has
\[
\begin{aligned}
\mu^2 &= 0 \\
\mu \partial + \partial \mu &= 0 \\
\partial \bar{\partial} + \mu \partial + \partial \bar{\partial} &= 0 \\
\bar{\partial} \partial + \mu \bar{\partial} + \bar{\partial} \mu &= 0 \\
\bar{\partial}^2 + \mu \bar{\partial} + \partial \bar{\partial} &= 0 \\
\mu \bar{\partial} + \partial \bar{\partial} &= 0 \\
\bar{\partial} \partial^2 &= 0
\end{aligned}
\]
In particular, $\bar{\partial}^2 \neq 0$ and so the Dolbeault cohomology of X
\[
H^{\bullet \bullet}_{\bar{\partial}}(X) := \frac{\text{Ker} \bar{\partial}}{\text{Im} \bar{\partial}}
\]
is well defined if and only if J is integrable.

If g is a Hermitian metric on (X, J) with fundamental form ω and $*$ is the associated Hodge-$*$-operator, one can consider the following differential operator
\[
\Delta_{\bar{\partial}} := \bar{\partial} \partial^2 + \bar{\partial} \partial + \partial \bar{\partial}.
\]
This is a second order, elliptic, differential operator and we will denote its kernel by
\[
H^{p,q}_{\bar{\partial}}(X) := \text{Ker} \Delta_{\bar{\partial}}|_{\mathcal{A}^p,q(X)}.
\]
In particular, if X is compact this space is finite-dimensional and its dimension will be denoted by $h^{p,q}_{\bar{\partial}}$. By [7] we know that these numbers are not holomorphic invariants, more precisely they depend on the choice of the Hermitian metric. When needed we will use the notations $H^{p,q}_{\bar{\partial}, \omega}$, $h^{p,q}_{\bar{\partial}, \omega}$ in order to stress on the dependence on the Hermitian metric ω.

However, if the Hermitian metric is almost-Kähler and $2n = 4$, in [7, Proposition 6.1] it was shown that $h^{1,1}_{\bar{\partial}} = b_+ - 1$, depends only on the topology of X.

We recall that one can consider also other elliptic differential operators on almost-Hermitian manifolds, as done in [11], as generalizations of the classical Dolbeault, Bott-Chern and Aeppli Laplacians defined on complex manifolds. Moreover, a generalization of the Dolbeault cohomology of the non integrable setting was introduced and studied in [2] and [3].

Let us fix now an almost-Hermitian metric g on a compact $2n$-dimensional almost-complex manifold (X, J), which we will identify with its associated $(1,1)$-form ω. Then J acts as an isomorphism on $\wedge^{p,q}X$ by $J \alpha = \sqrt{-1}^{q-p} \alpha$, $\alpha \in \wedge^{p,q}X$.

Via this extension, it follows that $J^2 = (-1)^{k} \text{id}$, so that $J^{-1} = (-1)^{k} J = J^*$ on $\wedge^k X$, where J^* is the pointwise adjoint of J with respect to some (and so any) Hermitian metric. We denote by d^c the differential operator $d^c := -J^{-1} d J$.

Then, we can consider the linear operator $L := \omega \wedge -$ and its adjoint $\Lambda := L^*$. We recall that $L^{n-1} : \wedge^1 X \to \wedge^{2n-1} X$ is an isomorphism, therefore one can define the Lee form of ω, as:
\[
\theta := \Lambda d \omega = J d^c \omega \in \wedge^1 X
\]
such that
\[
d \omega^{n-1} = \theta \wedge \omega^{n-1}.
\]
We will say that ω is (strictly) locally conformally Kähler if
\[
d \omega = \alpha \wedge \omega
\]
where α is a d-closed, non d-exact, 1-form. In particular, in this case, the Lee form of ω is
\[
\theta = \frac{1}{n-1} \alpha.
The metric ω will be called *globally conformally Kähler* if
\[
d\omega = \alpha \wedge \omega
\]
with α d-exact 1-form. Indeed, if $\alpha = df$ then the metric $e^{-f} \omega$ is almost-Kähler.

Notice that, if $\tilde{\omega} = \Phi \omega$, with $\Phi \in C^\infty(X, \mathbb{R})$, $\Phi > 0$, are two conformal Hermitian metrics, then the associated Lee forms are related by
\[
\theta_{\tilde{\omega}} = \theta_\omega + (n-1)d \log \Phi,
\]
in particular, $d\theta_{\tilde{\omega}} = d\theta_\omega$. Hence, all the Hermitian metrics conformal to a (strictly) locally conformally Kähler are still (strictly) locally conformally Kähler.

Another important class of Hermitian metrics is given by the *Gauduchon metrics*, which are defined by $dd^c \omega = 0$ or equivalently as having co-closed Lee form.

These metrics are a very useful tool in conformal and almost-Hermitian geometry, in view of the celebrated result by Gauduchon, [4, Théorème 1], which states that if (M,J) is an n-dimensional compact almost-complex manifold with $n > 1$, then any conformal class of any given almost-Hermitian metric contains a Gauduchon metric, unique up to multiplication with positive constants.

3. $h^{1,1}_\partial$ on compact almost-Hermitian 4-dimensional manifolds

In this section we study the Hodge number $h^{1,1}_\partial$ on compact almost-Hermitian 4-dimensional manifolds.

We first show in arbitrary dimension the following Lemma, that ensures that in suitable degrees the Hodge numbers are conformal invariants.

Lemma 3.1. Let (X^{2n}, J) be a compact almost-complex manifold of dimension $2n$, then, for $p+q = n$, $h^{p,q}_\partial$ is a conformal invariant of Hermitian metrics.

Proof. Let $\tilde{\omega} = \Phi \omega$ be two conformal Hermitian metrics, with Φ smooth positive function on X. Then, for (p,q)-forms on a $2n$-dimensional manifold we have that the associated Hodge-$*$-operators are related by,
\[
*_{\tilde{\omega}} = \Phi^{n-p-q} *_\omega.
\]
In general we would have that $\psi \in A^{1,1}(X)$ is ∂-harmonic with respect to $\tilde{\omega}$ if and only if
\[
\overline{\partial} \psi = 0, \quad \partial *_{\tilde{\omega}} \psi = 0
\]
if and only if
\[
\overline{\partial} \psi = 0, \quad \partial (\Phi^{n-p-q} *_{\omega} \psi) = 0
\]
Now we compute
\[
\partial (\Phi^{n-p-q} *_{\omega} \psi) = \partial \Phi^{n-p-q} \wedge *_{\omega} \psi + \Phi^{n-p-q} \partial *_{\omega} \psi = (n-p-q) \Phi^{n-p-q-1} \partial \Phi \wedge *_{\omega} \psi + \Phi^{n-p-q} \partial *_{\omega} \psi.
\]
Clearly, if $p+q = n$ we have that
\[
*_{\tilde{\omega}} = *_{\omega},
\]
and
\[
\partial *_{\tilde{\omega}} \psi = 0 \iff \partial *_{\omega} \psi = 0.
\]
Hence, for $p+q = n$
\[
\mathcal{H}^{p,q}_{\partial, \Phi \omega} = \mathcal{H}^{p,q}_{\partial, \omega},
\]
In particular, their dimensions coincide,
\[
h^{p,q}_{\partial, \Phi \omega} = h^{p,q}_{\partial, \omega}.
\]

As a corollary we have the following
Lemma 3.2. Let \((X^4, J)\) be a compact almost-complex manifold of dimension 4, then \(h^{1,1}_{\overline{\partial}}\) is a conformal invariant of Hermitian metrics.

As an immediate application we have the following

Proposition 3.3. Let \((X^4, J)\) be a compact almost-complex manifold of dimension 4, then, with respect to a globally conformally Kähler metric, \(h^{1,1}_{\overline{\partial}} = b_− + 1\).

Proof. Since \(h^{1,1}_{\overline{\partial}}\) is a conformal invariant, the result follows by [7]. Indeed, for almost-Kähler metrics \(h^{1,1}_{\overline{\partial}} = b_− + 1\). □

We first prove the following (cf. [5, Proposition II.6] for the integrable case)

Proposition 3.4. Let \((X^4, J)\) be a compact almost-complex manifold of dimension 4 and let \(\omega\) be a Gauduchon metric, then the trace of a \(\overline{\partial}\)-harmonic \((1,1)\)-form is constant. Namely, if \(\psi \in \mathcal{H}^1_{\overline{\partial}}\) is written as

\[
\psi = f\omega + \gamma \quad \text{with } *\gamma = -\gamma,
\]

then \(f\) is constant.

Proof. Let \(\psi \in A^{1,1}(X)\) be a \(\overline{\partial}\)-harmonic \((1,1)\)-form. Then,

\[
\psi = f\omega + \gamma
\]

with \(\gamma\) anti-self dual \((1,1)\)-form, namely \(*\gamma = -\gamma\), and \(f = \frac{1}{2} \text{tr} \psi = \frac{1}{2} \Lambda \psi = \frac{1}{2} \langle \psi, \omega \rangle\).

Hence,

\[
*\psi = f\omega - \gamma.
\]

Since \(\psi\) is \(\overline{\partial}\)-harmonic, then \(\overline{\partial}\psi = 0\) and \(\partial *\psi = 0\), namely

\[
\overline{\partial}(f\omega) = -\overline{\partial}\gamma
\]

and

\[
\partial(f\omega) = \partial\gamma.
\]

Recalling that for \((1,1)\)-forms on a 4-dimensional manifolds we have that

\[
d^c = i(\overline{\partial} - \partial)
\]

and

\[
d\overline{d}^c + d^c d = 0;
\]

summing up the previous two equations we get

\[
d(f\omega) = id^c \gamma,
\]

hence

\[
d\overline{d}^c(f\omega) = 0.
\]

Since \(\omega\) is Gauduchon this implies that \(f\) is constant. For completeness we recall here the proof (cf. for instance also the proof in [11, Theorem 10]). Since, on a 4-dimensional manifold \(d\omega = \theta \wedge \omega\), where \(\theta\) is the Lee form of \(\omega\), we have

\[
\begin{align*}
\overline{d}^c(f\omega) &= d(\overline{d}^c f \wedge \omega + f J\theta \wedge \omega) \\
&= \overline{d}^c f \wedge \omega - d^c f \wedge \theta \wedge \omega + df \wedge J\theta \wedge \omega \\
&\quad + dJ\theta \wedge \omega + f \theta \wedge J\theta \wedge \omega \\
&= (\overline{d}^c f - d^c f \wedge \theta + df \wedge J\theta + f dJ\theta + f \theta \wedge J\theta) \wedge \omega \\
&\quad + \Lambda (\overline{d}^c f - d^c f \wedge \theta + df \wedge J\theta + f dJ\theta + f \theta \wedge J\theta) \frac{\omega^2}{2}.
\end{align*}
\]

Therefore, \(d\overline{d}^c(f\omega) = 0\) is equivalent to:

\[
\Lambda (\overline{d}^c f - d^c f \wedge \theta + df \wedge J\theta + f dJ\theta + f \theta \wedge J\theta) = 0
\]
Recall now that from [1, Lemma 7] on an almost-Hermitian manifold we have, for every 1-form α,
\[\Lambda(dJ\alpha) = -d^*\alpha - \langle \alpha, \theta \rangle. \]
Therefore,
\[\Lambda(dd^c f - d^c f \wedge \theta + df \wedge J\theta + f dJ\theta + f \theta \wedge J\theta) = 0 \]
if and only if
\[-\Delta f - \langle df, \theta \rangle - \Lambda(df \wedge \theta) + \Lambda(df \wedge J\theta) - fd^*\theta - f|\theta|^2 + f\Lambda(\theta \wedge J\theta) = 0. \]
This holds if and only if
\[-\Delta f + 2\langle df, \theta \rangle - f|\theta|^2 + f|\theta|^2 = 0. \]
Therefore, we have obtained that $dd^c(f\omega) = 0$ if and only if
\[-\Delta f + \langle df, \theta \rangle = 0. \]
Namely, $f \in \text{Ker} L^*$ where, for Gauduchon metrics,
\[L^*(h) = \Delta h - \langle dh, \theta \rangle \]
is the adjoint of the operator L, with
\[L(h) = \Delta h + \langle dh, \theta \rangle. \]
Now, by [5] (cf. also [4]) f is either positive or negative (unless $f = 0$). Suppose that $f > 0$ (otherwise one can argue with $-f$), then by $dd^c(f\omega) = 0$ we have that $f\omega$ is a Gauduchon metric conformal to ω, and so f is constant.

Remark 3.5. In the proof of the previous proposition we had that
\[d(f\omega) = id^c\gamma. \]
Since, f is constant and $d\omega = \theta \wedge \omega$ we have that applying the Hodge-$*$-operator,
\[f*(\theta \wedge \omega) = i*d^c\gamma. \]
Since θ is a primitive form, one has that $*(\theta \wedge \omega) = *L\theta = -J\theta$. Moreover, using that $J\gamma = \gamma$ and $*\gamma = -\gamma$ one obtain that
\[f\theta = -id^c\gamma. \]
In particular, if $\theta \neq 0$ (i.e., ω is not almost-Kähler), we have that
\[f = 0 \iff d^c\gamma = 0 \iff \gamma \text{ is harmonic}. \]
As a consequence, we prove that with respect to (strictly) locally conformally Kähler structures, $h^{1,1}_{\mathcal{T}_\gamma}$ is a topological invariant.

Theorem 3.6. Let (X^4, J) be a compact almost-complex manifold of dimension 4 and suppose that there exists a (strictly) locally conformally Kähler metric, then
\[h^{1,1}_{\mathcal{T}_\gamma} = b_{-}. \]

Proof. Let $\tilde{\omega}$ be a (strictly) locally conformally Kähler metric on (X^4, J). Since, by Lemma 3.2 $h^{1,1}_{\mathcal{T}_\gamma}$ is a conformal invariant we fix in the conformal class of $\tilde{\omega}$ the Gauduchon representative ω of volume 1. Clearly, ω is still (strictly) locally conformally-Kähler.
Let $\psi \in A^{1,1}(X)$ be a \mathcal{T}_γ-harmonic $(1,1)$-form. Then,
\[\psi = f\omega + \gamma \]
with \(*\gamma = -\gamma \) and \(f \) constant by Proposition 6.4. By Remark 6.5
\[
f \theta = d^*(-i\gamma) \in \text{Im } d^*.
\]
Now, we want to show that \(f = 0 \). Suppose by contradiction that \(f \neq 0 \), hence
\[
\theta = d^* \left(-\frac{i}{f} \gamma \right) \in \text{Im } d^*.
\]
but, since \(\omega \) is still (strictly) locally conformally-Kähler, \(d\theta = 0 \). So \(\theta \) is \(d \)-closed and \(d^* \)-exact and so \(\theta = 0 \), but this is absurd since \(d\omega \neq 0 \). Therefore, \(f = 0 \) and
\[
\psi = \gamma \quad \text{with} \quad *\gamma = -\gamma
\]
with \(d^*\gamma = 0 \), that is \(\gamma \) harmonic, concluding the proof. \(\square \)

In particular, as a consequence of Lemma 3.2, Theorem 3.6 and [7, Proposition 6.1], for locally conformally Kähler and globally conformally Kähler metrics on compact 4-dimensional almost-complex manifolds, \(h_{1,1}^{1,1} \) is a topological invariant. Namely, we have proven the following

Theorem 3.7. Let \((X^4, J)\) be a compact almost-complex manifold of dimension 4 and let \(\omega \) be a Hermitian metric, then if \(\omega \) is globally conformally Kähler (in particular if it is almost-Kähler), it holds
\[
h_{1,1}^{1,1} = b_- + 1.
\]
If \(\omega \) is (strictly) locally conformally Kähler,
\[
h_{1,1}^{1,1} = b_-.
\]
Notice that in the integrable case, \(h_{1,1}^{1,1} \) only depends on the complex structure and for compact complex surfaces this result is known (cf. [5, Proposition II.6]). Indeed, recall that a compact complex surface is Kähler if and only if \(b_1 \) is even and in this case \(h_{1,1}^{1,1} = b_- + 1 \). On the other side, a compact complex surface is non-Kähler if and only \(b_1 \) is odd and in this case \(h_{1,1}^{1,1} = b_- \). This is coherent with our result since on compact Kähler surfaces there exist no (strictly) locally conformally Kähler metrics by [13]. In fact, this last statement holds more generally, indeed by ([13, Theorem 2.1, Remark (1)]), on compact complex manifolds satisfying the \(\partial\bar{\partial} \)-lemma every locally conformally Kähler structure is also globally conformally Kähler. We want to point out that the first non-integrable examples of almost-Kähler manifolds admitting (strictly) locally conformally Kähler manifolds appeared in [12]. In Section 4 we will construct a new family of examples on the Kodaira-Thurston manifold.

In view of these results, we ask whether there exist examples of Hermitian metrics on compact almost-complex 4-dimensional manifolds with \(h_{1,1}^{1,1} \) different from \(b_- \) and \(b_- + 1 \).

The following result gives a general estimate for \(h_{1,1}^{1,1} \).

Proposition 3.8. Let \((X^4, J)\) be a compact almost-complex manifold of dimension 4 and let \(\omega \) be a Hermitian metric, then
\[
H^-_g \subseteq H_{1,1}^{1,1},
\]
where \(H^-_g \) denotes the space of anti-self-dual harmonic \((1,1)\)-forms.

In particular,
\[
h_{1,1}^{1,1} \geq b_-.
\]
Proof. Let γ be an anti-self-dual $(1,1)$-form, namely $*\gamma = -\gamma$. Suppose that γ is harmonic, that is equivalent to $d\gamma = 0$. Hence, for degree reasons
\[
\overline{\partial}\gamma = 0 \quad \text{and} \quad \partial * \gamma = -\partial \gamma = 0.
\]
Therefore, γ is $\overline{\partial}$-harmonic. \hfill \square

In particular, Theorem 3.7 shows that the minimum $b^{1,1}_{\overline{\partial}}$ is reached by strictly locally conformally Kähler metrics.

4. Explicit constructions on the Kodaira-Thurston manifold

In this section we apply the results obtained in Section 3 to construct explicit examples. First, we recall the definition of the Kodaira-Thurston manifold X. Let $H_3(\mathbb{R}) := \left\{ \begin{bmatrix} 1 & x_1 & x_3 \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$ be the 3-dimensional Heisenberg group and let Γ be the subgroup of $H_3(\mathbb{R})$ of the matrices with integral entries. Then, $X := \frac{H_3(\mathbb{R})}{\Gamma} \times S^1$ is a compact 4-dimensional manifold admitting both complex and symplectic structures but no Kähler structures. Denoting with x_4 the coordinate on S^1, a global frame on X is given by
\[
e_1 := \partial x_1, \quad e_2 := \partial x_2 + x_1 \partial x_3, \quad e_3 := \partial x_3, \quad e_4 := \partial x_4,
\]
and its dual coframe is
\[
e^1 := dx_1, \quad e^2 := dx_2, \quad e^3 := dx_3 - x_1 dx_2, \quad e^4 := dx_4.
\]
In particular, the only non trivial bracket is $[e_1, e_2] = e_3$ and so the structure equations become
\[
de^1 = de^2 = de^4 = 0, \quad de^3 = -e^1 \wedge e^2.
\]
In the sequel we denote by $e^{ij} = e^i \wedge e^j$ and similarly.

Then
\[
H^2_{d\overline{\partial}}(X; \mathbb{R}) \cong \text{Span}_{\mathbb{R}}([e^{13} - e^{24}], [e^{14} + e^{23}], [e^{13} + e^{24}], [e^{14} - e^{23}])
\]
where all the representatives are harmonic, with respect to the Riemannian metric $g = \sum_{j=1}^{4} e^j \otimes e^j$. Furthermore, the space of d-harmonic anti-self dual forms is isomorphic to
\[
\text{Span}_{\mathbb{R}}([e^{13} + e^{24}], [e^{14} - e^{23}]),
\]
so that $b_{-}(X) = 2$.

Example 4.1. Now we construct the following family of almost-complex structures J_a on X, with $a \in \mathbb{R}$, setting as coframe of $(1,0)$-forms
\[
\Phi^1_a := (e^1 + ae^4) + ie^3, \quad \Phi^2_a := e^2 + ie^4.
\]
We will use the notation $\Phi^1 = \Phi^1_a$, $\Phi^2 = \Phi^2_a$. The dual $(1,0)$-frame of vector fields is given by
\[
V_1 := \frac{1}{2}(e_1 - ie_3), \quad V_2 := \frac{1}{2}(e_2 - i(e_4 - ae_1)).
\]
One can show directly that the complex structure equations become
\[\partial \Phi^1 = -\frac{i}{4} \Phi^{12} - \frac{i}{4} \Phi^{1\bar{2}} + \frac{i}{4} \Phi^{21} + \frac{a}{2} \Phi^{22} - \frac{i}{4} \Phi^{1\bar{2}}, \]
\[\partial \Phi^2 = 0, \]
and in particular, \(J_a \) is a non integrable almost-complex structure. For every \(a \in \mathbb{R} \), we fix the following Hermitian metric
\[\omega_a := \frac{i}{2} (\Phi^1 \wedge \bar{\Phi}^1 + \Phi^2 \wedge \bar{\Phi}^2). \]
A direct computation gives that
\[d\omega_a = i\frac{a}{4} \Phi^{12\bar{2}} - i\frac{a}{4} \Phi^{21\bar{2}} = \theta_a \wedge \omega_a. \]
with \(\theta_a = \frac{a}{2} (\Phi^1 + \bar{\Phi}^1) \). In particular,
- \(d\theta_a = 0 \),
- \(\omega_a \) is an almost-Kähler metric if and only if \(a = 0 \).
Therefore, for \(a \neq 0 \), the Lee form \(\theta_a \) of the almost-Hermitian metric \(\omega_a \) is closed and not \(d \)-exact, hence \(\omega_a \) is a strictly locally conformally Kähler metric.

Hence, by Theorem 3.7 for the Hodge numbers we have on \((X, J_a)\), with \(a^2 < 1 \),
- \(h^{1,1}_{\omega_a} = b_- = 2 \) for \(a \neq 0 \)
- \(h^{1,1}_{\omega_{a=0}} = b_- + 1 = 3 \)
- \(h^{1,1}_{\tilde{\omega}_a} = b_- + 1 = 3 \)

This, in particular, partially answers to Question 6.2 in [7], giving explicit examples of compact almost-complex 4-dimensional manifolds which admit an almost-Kähler metric and also admit a non almost-Kähler Hermitian metric with \(h^{1,1}_{\omega_a} \neq b_- + 1 \).
Moreover, this answers to Kodaira and Spencer’s question, showing that also the Hodge number \(h^{1,1}_{\omega_a} \) depend on the Hermitian metric and not just on the almost-complex structure.

For the sake of completeness we write down the PDE’s system that one should solve in order to find a basis for \(H^{1,1}_{\omega_a} \).
Let \(\psi \in A^{1,1}(X) \) be an arbitrary \((1,1)-form on X\), then \(\psi \) can be written as
\[\psi = A \Phi^{11} + B \Phi^{12} + L \Phi^{21} + M \Phi^{22} \]
where \(A, B, L, M \) are smooth functions on \(X \).

By the complex structure equations, we get
\[\overline{\partial} \psi = V_2(A) \Phi^{112} - V_1(B) \Phi^{112} + V_2(L) \Phi^{212} - V_1(M) \Phi^{212} - \frac{a}{2} A \Phi^{212} + \frac{i}{4} B \Phi^{212} - \frac{i}{4} L \Phi^{212}, \]
hence \(\overline{\partial} \psi = 0 \) if and only if
\[V_2(A) - V_1(B) = 0, \]
\[V_2(L) - V_1(M) - \frac{a}{2} A + \frac{i}{4} B - \frac{i}{4} L = 0. \]
Now, if we denote with \ast the Hodge-\ast-operator with respect to the metric ω, we have

$$\ast \psi = M \Phi^{11} - B \Phi^{12} - L \Phi^{21} + A \Phi^{22}$$

and

$$\partial \ast \psi = -V_2(M) \Phi^{121} + V_2(B) \Phi^{122} - V_1(L) \Phi^{121} + V_1(A) \Phi^{122} + \frac{a}{2} M \Phi^{122} + \frac{i}{4} B \Phi^{122} - \frac{i}{4} L \Phi^{122},$$

hence $\partial \ast \psi = 0$ if and only if

$$V_2(M) + V_1(L) = 0,$$

$$V_2(B) + V_1(A) + \frac{a}{2} M + \frac{i}{4} B - \frac{i}{4} L = 0.$$

Therefore, ψ is harmonic if and only if

$$\begin{cases}
V_2(A) - V_1(B) = 0, \\
V_2(L) - V_1(M) - \frac{a}{2} A + \frac{i}{4} B - \frac{i}{4} L = 0, \\
V_2(M) + V_1(L) = 0,
\end{cases}$$

$$V_2(B) + V_1(A) + \frac{a}{2} M + \frac{i}{4} B - \frac{i}{4} L = 0.$$

Since we know that $h^{1,1}_{\omega_a} = b_- = 2$, the solution of this system is given by A, B, L, M constants and

$$A = -M = \frac{i}{2a} B - \frac{i}{2a} L.$$

Hence,

$$\mathcal{H}^{1,1}_{\omega_a} = C \left\langle \frac{i}{2a} \Phi^{11} + \Phi^{12} - \frac{i}{2a} \Phi^{22}, - \frac{i}{2a} \Phi^{11} + \Phi^{21} + \frac{i}{2a} \Phi^{22} \right\rangle.$$

Since in the integrable case, on Kähler manifolds every locally conformally Kähler metric is globally conformally Kähler we want to put in evidence the following

Proposition 4.2. The Kodaira-Thurston manifold with the almost-complex structure J_a constructed above admits both almost-Kähler metrics and (strictly) locally conformally Kähler metrics.

For other examples we refer to [12].

Example 4.3. Now we define a different, non left-invariant, Hermitian structure on the Kodaira-Thurston manifold X.

First we define a non-integrable left-invariant complex structure J on X setting as global co-frame of $(1,0)$-forms

$$\varphi^1 := e^1 + ie^3, \quad \varphi^2 := e^2 + ie^4$$

and the corresponding structure equations become

$$d\varphi^1 = -\frac{i}{4} \varphi^{12} - \frac{i}{4} \varphi^{12} + \frac{i}{4} \varphi^{21} - \frac{i}{4} \varphi^{12}, \quad d\varphi^2 = 0.$$

We will denote with $\{W_1, W_2\}$ its dual frame, more precisely

$$W_1 := \frac{1}{2} (e_1 - ie_3), \quad W_2 := \frac{1}{2} (e_2 - ie_4),$$

namely,

$$W_1 = \frac{1}{2} (\partial_x - i \partial_x), \quad W_2 = \frac{1}{2} (\partial_x + x_1 \partial_x - i \partial_x).$$
We consider now on \((X, J)\) the following 1-parameter family of almost-Hermitian metrics
\[\omega_{tf} = e^{2tf(x_2)}e^1 \wedge e^3 + e^2 \wedge e^4 \]
where \(f = f(x_2)\) is a \(\mathbb{Z}\)-periodic smooth function with \(e_2(f) \neq 0\). In particular, \(f\) induces a smooth function on \(X\). Then it is immediate to check that the almost-complex structure \(J\) is compatible with \(\omega_{tf}\) so that it defines a positive definite Hermitian metric on \(X\). In fact, the metric \(\omega_{tf}\) is almost-Kähler if and only if \(t = 0\). Indeed, by the structure equations and the fact that \(e_2(f) = f'(x_2) \neq 0\) by assumption, we have
\[d\omega_{tf} = -2te^{2tf(x_2)}e_2(f)e^{123}. \]
Hence \(\omega_{tf}\) is a Hermitian deformation of an almost-Kähler metric on \(X\).

Moreover, notice that
\[\omega_{tf} = 2tf(x_2)e_1 \wedge e^3 = 2tf(x_2)e_2 \wedge e^4 = 2tf(x_2)e_3 \wedge e^1, \]
with \(\omega_{tf} = 2tf(x_2)e_1^2 = 2tf(x_2)e_2^2 = 2tf(x_2)e_3^2\), namely the Lee form of \(\omega_{tf}\) is \(d\)-exact, which means that \(\omega_{tf}\) is globally conformally Kähler. A direct computation shows that, in fact
\[e^{-2tf(x_2)}\omega_{tf} \]
is an almost-Kähler metric. Hence, by Theorem 3.7 for the Hodge numbers we have on \((X, J)\),
\[h^{1,1}_{\omega_{tf}} = b_+ + 1 = 3. \]

For completeness we write down the system that one should solve in order to find a basis for \(H^{1,1}_{\omega_{tf}}\).

Let \(\psi \in A^{1,1}(X)\) be an arbitrary \((1, 1)\)-form on \(X\), then \(\psi\) can be written as
\[\psi = A\varphi^{11} + B\varphi^{12} + L\varphi^{21} + M\varphi^{22} \]
where \(A, B, L, M\) are smooth functions on \(X\).

By the complex structure equations, we get
\[\overline{\partial}\psi = W_2(A)\varphi^{112} - \bar{W}_1(B)\varphi^{112} + W_2(L)\varphi^{212} - \bar{W}_1(M)\varphi^{212} + \frac{i}{4}B\varphi^{212} - \frac{i}{4}L\varphi^{212}, \]

hence \(\overline{\partial}\psi = 0\) if and only if
\[W_2(A) - \bar{W}_1(B) = 0, \]
\[W_2(L) - \bar{W}_1(M) + \frac{i}{4}B - \frac{i}{4}L = 0. \]

Now, if we denote with \(*\) the Hodge-* operator with respect to the metric \(\omega_{tf}\) we have that a unitary frame is given by
\[\psi_1 = \frac{1}{\sqrt{2}}e^{tf(x_2)}\varphi^1, \quad \psi_2 = \frac{1}{\sqrt{2}}\varphi^2 \]
and hence we have
\[*\psi = Ae^{-2tf(x_2)}\varphi^{22} - B\varphi^{12} - L\varphi^{21} + M\varphi^{22} \]
and
\[\partial *\psi = -W_2(Me^{2tf(x_2)})\varphi^{121} + W_2(B)\varphi^{122} - W_1(L)\varphi^{121} + W_1(Ae^{-2tf(x_2)})\varphi^{122} + \frac{i}{4}B\varphi^{22} - \frac{i}{4}L\varphi^{22}, \]

hence \(\partial *\psi = 0\) if and only if
\[W_2(Me^{2tf}) + W_1(L) = 0, \]
\[W_2(B) + W_1(Ae^{-2tf(x_2)}) + \frac{i}{4}B - \frac{i}{4}L = 0. \]
Therefore, ψ is harmonic if and only if
\[
\begin{align*}
\vec{W}_2(A) - \vec{W}_1(B) &= 0, \\
\vec{W}_2(L) - \vec{W}_1(M) + \frac{i}{4}B - \frac{i}{4}L &= 0, \\
\vec{W}_2(Me^{2tf(z_2)}) + \vec{W}_1(L) &= 0, \\
\vec{W}_2(B) + \vec{W}_1(Ae^{-2tf(z_2)}) + \frac{i}{4}B - \frac{i}{4}L &= 0.
\end{align*}
\]
Since we know that
\[b\frac{1,1}{\omega_{1,1}} = b_+ + 1 = 3,
\]
the solution of this system is given by A complex constant, $B = L$ complex constants and $M = M_0 e^{-2tf(z_2)}$ where M_0 is a complex constant. Hence,
\[
\mathcal{H}_{\text{Harm}}^{1,1} = \mathbb{C}\left\langle \varphi^{11}, \varphi^{12}, \varphi^{21}, e^{-2tf(z_2)}\varphi^{22} \right\rangle.
\]

Remark 4.4. It has to be remarked that solving these kind of PDE's systems is not an easy task. Indeed, as a general method, one could use Fourier analysis to expand the unknown complex valued functions A, B, L, M, obtaining a first order ODE's system on the Fourier coefficients of A, B, L, M, which, as far as we know, is very challenging to solve (cf. also [7, 8] for further comments).

References

[1] D. Angella, N. Istrati, A. Otiman, N. Tardini, Variational Problems in Conformal Geometry, *J. Geom. Anal.* 31(3), 3230–3251 (2021).
[2] J. Cirici, S. O. Wilson, Dolbeault cohomology for almost complex manifolds, *Adv. Math.*, 391 (2021), 107970.
[3] J. Cirici, S. O. Wilson, Topological and geometric aspects of almost Kähler manifolds via harmonic theory, *Sel. Math. New Ser.*, 26, no. 35 (2020).
[4] P. Gauduchon, Le théorème de l'excentricité nulle, *C. R. Acad. Sci. Paris Sér. A-B* 285 (1977), no. 5, A387–A390.
[5] P. Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, *Math. Ann.* 267 (1984), no. 4, 485–518.
[6] F. Hirzebruch, Some problems on differentiable and complex manifolds, *Ann. Math. (2)* 60 (1954), 213–236.
[7] T. Holt, W. Zhang, Harmonic Forms on the Kodaira-Thurston Manifold, *arXiv:2001.10962 [math.DG]*, 2020.
[8] T. Holt, W. Zhang, Almost Kähler Kodaira-Spencer problem, *arXiv:2010.12545 [math.DG]*, 2020, to appear in *Math. Res. Lett.*
[9] K. Kodaira. On the structure of compact complex analytic surfaces. I. *Amer. J. Math.*, 86 (1964), 751–798.
[10] N. Tardini, A. Tomassini, Differential operators on almost-Hermitian manifolds and harmonic forms, *Complex Manifolds*, 7, no. 1, (2020) 106–128.
[11] W. P. Thurston, Some simple examples of symplectic manifolds, *Proc. Amer. Math. Soc.* 55 (1976), 467–468.
[12] I. Vaisman, On locally conformal almost Kähler manifolds, *Israel Journal of Mathematics* 24 (1976), 338–351.
[13] I. Vaisman, On locally and globally conformal Kähler manifolds, *Trans. Amer. Math. Soc.* 202 (1980), no. 2, 533–542.

Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy

Email address: nicoletta.tardini@gmail.com
Email address: nicoletta.tardini@unipr.it
Email address: adriano.tomassini@unipr.it