Evaluation of Oxidative Stress on Soybean (*Glycine max* L. *Merrill*) and Wheat (*Triticum aestivum*) Crops in Response to Chlorpyrifos

Nutan Singh*, Pratibha Katiyar and Ajay

Department of Plant Physiology, Indira Gandhi Krishi Viswavidyalaya, Raipur-492012, Chhatishgarh, India

*Corresponding author

A B S T R A C T

Study aim to evaluate the effect of chlorpyrifos on several metabolic and stress related parameters associated with pesticide resistance. The experiment was conducted at Indian Institute of Soil Science (ICAR), Bhopal (MP) during 2015-2016, comprising four concentrations of pesticide chlorpyrifos viz. 0%, 0.25%, 0.75% and 1.25%. The commencement of foliar treatment applied on vegetative phase i.e., 30, 45 and 60 days after sowing on soybean (Kharif) and wheat (rabi). The morphological, physiological and biochemical characteristics of soybean and wheat were recorded after various doses of pesticide treatment application. It was observed that the increased rate of pesticide treatment significantly decreased the morphological parameters i.e., plant height, number of leaves, leaf area leaf dry weight, stem dry weight, root dry weight. The rate of photosynthesis, transpiration, stomatal conductance decreased with increased concentration of pesticide in soybean and wheat. The peroxidase, polyphenol oxidase activity and structural carbohydrate decreased with increasing level of pesticide treatment in both the experimental crops. Whereas, nitrate reductase, soluble protein and proline content increased with increasing levels of pesticide treatments. However, the increase in soluble protein and protein content was more in wheat as compared to soybean and also shown more resistance towards the oxidative stress.

Keywords

Oxidative stress on soybean, Wheat, Crops.

Article Info

Accepted: 17 September 2017
Available Online: 10 November 2017

Introduction

The use of synthetic pesticides as crop protection chemicals has become the most accepted ecological weapon for assured crop production. With the restricted use of most of the organochlorine insecticides, the organophosphorus compounds are taking the major share of insecticide consumption in India (*Aditya et al.*, 1997). Chlorpyrifos [*O,O*diethyl [*O-*(3,5,6-trichloro-2-pyridyl) phosphorothioate]*] is a broad-spectrum organophosphate insecticide being used for more than a decade to control foliar insects that affect agricultural crops, to reduce pod damage (*Khan et al.*, 2009, *Kumar et al.*, 2010), and subterranean termites (*Venkateswara Rao et al.*, 2005). Chlorpyrifos produces hazardous effects on the environment when it is applied directly on plants or mixed with soil (*Howard 1991*). Soybean (*Glycine max* L. *Merrill*) is an important pulse as well as oilseed crop. It has become wonder crop of twentieth century and is often designated as “Golden bean.” And Wheat (*Triticum* spp.), the world’s most...
widely cultivated crop, in 2000, world wheat production was approximately 572 million metric tons on 205 million hectares (Anonymous 2002, Stoskopf 1985). Wheat is the staple food for about 40% of the world’s population (Wiese 1987). Common bread Wheat (T. aestivum, L.) and durum Wheat (T. durum Desf.) make up 90% of the world’s Wheat crop. Wheat is further classified as winter or spring, hard or soft, red or white, and by protein content (Briggle and Curtis 1987). In the process of development of agriculture, pesticides have become an important tool as a plant protection agent for boosting food production.

Materials and Methods

A pot experiment will be laid out in control condition in completely Randomized Block Design at Indian Institute of soil science, Bhopal. Lab work will be conducted in laboratory of Indian Institute of Soil Science.

Description of crop: Soybean and Wheat
Soybean genotype: JS 9305
Wheat genotype: HD 2987

Physiological parameters were measured using standard procedures. The following parameters were studied in the present study.

Morphological parameters

Plant height

Plant height was recorded from base of the plant to the uppermost node of main shoot of plant at 30 days after showing (DAS) and 45 days (DAS) and 60 days (DAS). In each site, one plant was selected and height was expressed in cm.

Plant biomass

The selected plant was removed from the plastic container. The whole plant was divided into leaves, stem and roots and then weight of leaves and stem was measured for fresh weight. The samples were dried in oven for 72 hrs at 65°C and total dry weight (expressed in gram) of leaves and stem was recorded for dry weight.

Root biomass

The whole root was weighed immediately for fresh weight and dried in oven for 72 hrs at 65°C and total dry weight (expressed in gram) of root was recorded for dry weight.

Leaf area

Leaf area was measured by leaf area meter LICOR make (Model 3100) and expressed in cm².

Physiological parameters

Estimation of gaseous exchange parameters

Gas exchange parameters viz. Photosynthesis rate (µM CO₂ m⁻² s⁻¹), transpiration rate (Mm H₂O m⁻² s⁻¹) and stomatal conductance (µM m⁻² s⁻¹) were recorded in the morning (9 to 11:30 AM) in the experimental plant leaves using Photosynthesis system (make: PP systems and model: CIRAS-3).

Biochemical parameters

Peroxidase (POX) activity assay (ΔOD µg protein⁻¹ min⁻¹)

POX activity was assayed by following the method of summer and Gjessing, (1943). The extract from SOD Assay was used for POX assay. Added 1ml O-dianisidine (0.01M in methanol), 0.5 ml H₂O₂ (0.02M), 1 ml phosphate buffer, 2.4 ml distilled water and 0.2 ml enzyme and incubated at 30°C for 5 min. The reaction was stopped by adding 1ml 2N H₂SO₄. Blank tube excluding H₂O₂ was
prepared by adding 0.5 ml distilled water. The colour intensity was measured by spectrophotometer at 430 nm wavelength and POX was expressed in unit (\(\Delta OD/\mu g\text{ protein}^{-1}\text{ min}^{-1}\)).

Estimation of nitrate reductase activity \((\mu g\text{NO}_2/\text{g fw/h})\)

Nitrate reductase can be estimated by the in vivo assay method given by Nicholas and Nason (1957), by incubating pieces of plant tissues as such in KNO\(_3\) solution. The amount of nitrite formed is estimated as a measure of the enzyme activity. Leaves were cut into 2-3 mm fragments and suspended in 5 ml of phosphate buffer containing 0.1 M KNO\(_3\) placed in 25 ml beakers. The beakers were placed in a vacuum desiccator and tissues were vacuum infiltrated. The beakers were incubated in a water bath at 30°C for 30 min. 2.5 ml of sulphanilamide-HCl was added to estimate the nitrite formed in suspending medium.

The mixture was filtered through Whatman No. 1 filter paper to remove the leaf fragments and 2.5 ml of NEDH was added. The absorbance of solution was measured at 540 nm in a colorimeter. The results were expressed as \(\mu\text{mol NO}_2^-\) formed per 30 min per g fresh tissue.

Estimation of polyphenol oxidase \((\Delta OD/\mu g\text{ protein}^{-1}\text{ min}^{-1})\)

Polyphenol oxidase was measured by following method given by Fujita (1979).

0.2 M Acetate Buffer pH 4.5
0.2 M phosphate buffer pH 6.0
1% pyrogallol solution

Acetate buffer: for 1 liter = 3.5 ml CH\(_3\)COOH + 3.2 g Sodium Acetate Phosphate Buffer: For 1 liter = KH\(_2\)PO\(_4\) 11.93 g + K\(_2\)HPO\(_4\) 2.14 g

Method: leaves sample 0.2 g + 10 ml acetate buffer \(\rightarrow\) 10 min incubation. 1 ml supernatant 2 ml phosphate buffer 0.5 ml pyrogallol \(\rightarrow\) OD at 495 nm.

Total soluble protein assay

Total soluble protein was measured by following method given by Bradford (1976). Used the extract for assay and added 0.2 ml sample, 4 ml 0.1% protein reagent (100 mg Coomassie Brilliant Blue) and 0.8 ml distilled water. The colour intensity was measured by spectrophotometer at 595 nm wavelength. Calculation of the total soluble protein content was done by creating a standard curve using a standard bovine serum albumin (25 mg in 0.15 M NaCl and made up to volume 25 ml stock and working stock was made by diluting 10 times) and was expressed in mg per gram fresh weight (mg g\(^{-1}\) FW).

Estimation of non-structural carbohydrate (mg/g)

Non-structural carbohydrate was calculated as sum of total soluble sugar and starch and expressed as percentage of dry weight.

Estimation of proline content (\(\mu mg^{-1}\))

Proline content was measured following the method of Bates et al., (1973). 0.5 gram of fresh plant sample (leaves) was taken and 10 ml of 3% aqueous sulphosalicylic acid added and ground in pestle and mortar, and then filtered through whatman No. 42 filter paper.

Statistical analysis

CRD (Completely randomized design) was used to statistical analysis. The analysis was performed online in OPSTAT (Online statistical analysis tool) analysis. The critical difference (C.D.) was calculated at 5% levels.
Results and Discussion

Morphological parameter

Plant height (cm)

The plant height of soybean, and wheat were evaluated at 30 days, 45 days and 60 days after sowing the pesticide chlorpyrifos were sprayed (by Trigger type hand sprayer) and having the nozzle (soild cone) one week before the observation recorded. Hence the oxidative stresses were applied three days in all experimental crops. It was observed that the plant heights were not affected significantly in all the experimental crops except in wheat at 60 DAS. However, the plant heights of all the experimental crops were higher in control (no chlorpyrifos). The plant height is decreased with increasing concentration of chlorpyrifos in soybean and wheat. However, there was non-significant variation within treatments (Table 1; Fig. 1-2).

The similar impact were observed by Kumar and Kumar (1993) in Vicia faba by the use of metasystox @50-100 mg/l. The higher concentration 200-300mi/l were found to have inhibitory effect on plant height, no. of branches, no of leaves per plants, total leaf area and plant biomass. The similar results were confirmed by Bashir et al., (2007) in Lens culinaris L. with mancozeb. Stevens et al., (2008) in rice with use of imidacloprid. They observed the lower dose of dimethoate (50ppm) proved stimulant in growth of rice.

The suppression in morphological parameters might be due to the retarded cell growth and division in root, cell elongation and conversion of Indole-3- acetic acid IAA into various photooxidative products. Tevini and Teramura (1989) suggested that these compounds function as strong auxin antagonists. Another reason could be explained on the basis of inhibition in the activity of 4- hydroxyl phenyl pyruvate dioxygenase (HPPD), an enzyme needed for the growth and development of meristematic tissue as suggested by Luscombe et al., (1993) following pesticide isoxaflutole treatment in maize and sugarcane.

Leaf area (cm²)

Leaf area of experimental crops was significantly affected with chlorpyrifos doses. However, the maximum increase in leaf area was observed at lower dose of pesticide in wheat (41.66) over control (39.03) where as in soybean increased concentration of pesticide decreased the leaf area gradually (Table 2).

Kasyap and Kumar (2013) also reported that the lower concentration (50ppm) of chlorpyrifos significantly proved highly effective, non-phytotoxic and seemed to elevate growth parameters. Kumar and Kumar (1993) also confirmed the similar impact were observed by on Vicia faba by the use of metasystox @50-100 mg/l. The higher concentration 200-300mi/l were found to have inhibitory effect on plant height, no. of branches, no of leaves per plants, total leaf area and plant biomass.

Leaf dry wt. (g)

Significant impact of chlorpyrifos treatment was observed in dry weight of leaf in soybean and wheat at 30 and 60 DAS. The increased concentration significantly decreased the dry weight of leaves (Table 3).

Siddiqui et al., (1997) have reported that usage of low dosage of Methyl thiophenate (fungicide) treatment in Sesbania sesban has been found to cause an increase in fresh and dry weight, where higher dosages have been found to be deleterious. Though most of the
systemic fungicides are used as seed dressing, yet there are several reports showing phytotoxicity on various plants. Similar facts were observed by Hack, 1994; Holderness, 1990; Kaspers et al., 1987).

Stem dry weight (g)

The stem dry weight was non-significantly affected by various concentration of chlorpyrifos treatment in soybean and wheat. However, it was effective at later phases of growth when applied hence in wheat increased concentration decreased the dry matter of stem gradually over control. This might be due to the control of pest infestation resulted more leaf area and better dry matter production. However, the response of higher dose was found negative due to higher oxidative stress automatically reduced the photosynthetic rate and resulting reduced dry matter partitioning and stem weight (Table 4).

Kumar and Kumar (1993) also confirmed the similar impact were observed by on *Vicia faba* by the use of metasystox @50-100 mg/l. The higher concentration 200-300ml/l were found to have inhibitory effect on plant height, no. of branches, no of leaves per plants, total leaf area and plant biomass. Iqtidar et al., (1995) also confirmed the similar effect of morpholine systemic fungicide in wheat and maize plants. And Elbashir et al., (2007) also confirmed the similar impact of seed treatment by mancozeb on various morphological parameters in *Lens culinaris* L. in different developmental stage and concluded that all the morphological parameters increased significantly only lower dose (0.1%) whereas a liner decrease with increasing concentrations of mancozeb was observed.

Root dry weight (g)

The impact of pesticide treatment was observed on root dry weight of soybean and wheat At 30, 45 and 60 DAS. The root dry weight was significantly higher at control (0.213) in soybean. The increased concentration of pesticide decreased the dry weight of root. The similar trend was observed in wheat also. However, at 60 DAS the difference in root dry was non-significant with increased rate of pesticide application. The might be due to the plant growth physiology. Plant attained maximum root growth upto that phase (Table 5).

Photosynthesis rate (µ mole CO$_2$/ m2/ sec)

The photosynthesis rate was measured in 3rd fully expended leaves from the top. The rate was highest in control and gradually decreased with increase concentration of treatment. The mean value was greater in control (8.32) in soybean. Whereas in wheat the average value of photosynthesis rate was highest at T_3 0.75% of chlorpyrifos (9.28) followed by control (8.53) and at T_1 0.25% (7.58) the minimum photosynthesis rate was observed in T_4 1.25% concentration of chlorpyrifos (6.58). However, the result was non-significant at 30 DAS (Table 6; Fig. 3-4).

Decreased photosynthetic efficiency of the high concentration Chlorpyrifos treated seedlings may decrease the production of dry matter. The studies of Kumar et al., (1993) indicate that the use of Metasystox on *Vicia faba* is promontory for seed germination and growth when used in lower concentrations (50-100 mg l$^{-1}$). The higher concentrations (200-300 mg l$^{-1}$) were inhibitory for
photosynthesis rate stomatal conductance and transpiration rate. Similar results have been obtained by Coskun et al., (2015) in maize reported by Olszewski (2004) in pea and Singh et al., (1970) in Citrus.

Stomatal conductance (µmol /m²/sec)

Stomatal conductance was measured at 30, 45 and 60 DAS at various concentration of pesticide. It was observed that the pesticide have significant impact on this physiological parameter of gaseous exchange. The stomatal conductance was increase with increased level of pesticide in soybean and wheat. In soybean maximum stomatal conductance was observed at T₄ 1.25% treated (111.33) over control (100.00). Whereas, in wheat value was maximum in treatment T₂ 0.25% (3.31) followed by T₃ 0.75% (3.09) and T₄ 1.25% (2.86). (Table 7).

Xia et al., (2006) also reported that the The phytotoxicities of nine pesticides at practical dosages on photosynthesis were investigated in cucumber (Cucumis sativus L.) Plants treated with paraquat showed the severest phytotoxic symptom with the highest reduction in net photosynthetic rate, stomatal conductance (Gs) and intercellular CO₂ concentration (Ci). Dias M. C. (2012) also confirmed the similar impact of these compounds on the photosynthetic apparatus.

Table.1 Impact of pesticide on plant height (cm) of soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

Plant height (cm)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁- Control (No chlorpyrifos)	27.00	28.50	31.00	86.50	28.83
T₂- 0.25% (low)	25.00	27.50	30.00	82.50	27.50
T₃- 0.75% (medium)	25.50	26.00	27.00	78.50	26.17
T₄- 1.25% (High)	23.50	24.50	26.00	74.00	24.67
Mean	25.25	26.63	28.50		
CD(P=0.05)	NS	1.75	3.49		
CD(P=0.01)	NS	NS	NS		
SE(m±)	0.79	0.43	0.87		
C.V.	4.43	2.30	4.30		
Wheat					
T₁- Control (No chlorpyrifos)	44.00	61.00	68.00	173.00	57.67
T₂- 0.25% (low)	37.00	59.00	62.50	158.50	52.83
T₃- 0.75% (medium)	40.50	54.00	67.00	161.50	53.83
T₄- 1.25% (High)	46.00	57.00	58.00	161.00	53.67
Mean	41.88	57.75	63.88		
CD(P=0.05)	5.79	4.03	3.02		
CD(P=0.01)	NS	NS	4.88		
SE(m±)	1.44	1.00	0.75		
C.V.	4.85	2.45	1.66		

DAS (Days after sowing)
Table 2 Impact of pesticide on leaf area (cm^2) of soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

Leaf area (cm^2)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T_1: Control (No chlorpyrifos)	118.60	153.26	204.76	476.61	158.87
T_2: 0.25% (low)	116.50	119.25	191.46	427.21	142.40
T_3: 0.75% (medium)	110.55	128.15	151.18	389.88	129.96
T_4: 1.25% (High)	104.38	114.35	153.00	371.73	123.91
Mean	112.51	128.75	175.10		
CD (P=0.05)	7.43	13.42	26.53		
CD (P=0.01)	NS	21.66	42.83		
SE (m±)	1.84	3.33	6.58		
C.V.	2.32	3.66	5.31		
Wheat					
T_1: Control (No chlorpyrifos)	37.35	44.48	35.27	117.09	39.03
T_2: 0.25% (low)	33.88	34.63	56.46	124.97	41.66
T_3: 0.75% (medium)	29.60	31.50	37.32	98.41	32.80
T_4: 1.25% (High)	34.84	39.69	35.76	110.29	36.76
Mean	33.92	37.57	41.20		
CD (P=0.05)	4.67	4.57	6.06		
CD (P=0.01)	NS	7.37	9.78		
SE (m±)	1.16	1.13	1.50		
C.V.	4.83	4.26	5.16		

DAS (Days after sowing)

Table 3 Impact of pesticide on leaf dry weight (g) of soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

Leaf dry wt. (g)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T_1: Control (No chlorpyrifos)	0.860	0.960	1.525	3.345	1.115
T_2: 0.25% (low)	0.650	0.855	1.120	2.625	0.875
T_3: 0.75% (medium)	0.580	0.780	0.960	2.320	0.773
T_4: 1.25% (High)	0.510	0.750	1.015	2.275	0.758
Mean	0.650	0.836	1.155		
CD (P=0.05)	0.144	0.086	NS		
CD (P=0.01)	0.234	0.130	NS		
SE (m±)	0.035	0.028	0.142		
C.V.	7.769	3.612	17.354		
Wheat					
T_1: Control (No chlorpyrifos)	0.250	0.215	0.410	0.875	0.292
T_2: 0.25% (low)	0.210	0.280	0.405	0.895	0.298
T_3: 0.75% (medium)	0.230	0.250	0.380	0.860	0.287
T_4: 1.25% (High)	0.190	0.185	0.360	0.735	0.245
Mean	0.220	0.233	0.389		
CD (P=0.05)	0.040	0.032	0.036		
CD (P=0.01)	NS	0.054	NS		
SE (m±)	0.010	0.008	0.009		
C.V.	6.428	4.809	3.279		

DAS (Days after sowing)
Table 4 Impact of pesticide on stem dry weight (g) of soybean and wheat at various growth phases *i.e.*, 30, 45 and 60 DAS

Stem dry wt. (g)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁- Control (No chlorpyrifos)	0.375	0.390	0.740	1.505	**0.502**
T₂- 0.25% (low)	0.235	0.410	0.710	1.355	**0.452**
T₃- 0.75% (medium)	0.340	0.425	0.560	1.325	**0.442**
T₄- 1.25% (High)	0.230	0.345	0.610	1.185	**0.395**
Mean	**0.295**	**0.393**	**0.655**		
CD (P=0.05)	0.082	NS	0.103		
CD (P=0.01)	NS	NS	NS		
SE (m±)	0.020	0.015	0.025		
C.V.	9.737	5.535	5.505		
Wheat					
T₁- Control (No chlorpyrifos)	0.175	0.165	0.795	1.135	**0.378**
T₂- 0.25% (low)	0.165	0.150	0.675	0.990	**0.330**
T₃- 0.75% (medium)	0.135	0.145	0.460	0.740	**0.247**
T₄- 1.25% (High)	0.130	0.120	0.760	1.010	**0.337**
Mean	**0.151**	**0.145**	**0.673**		
CD (P=0.05)	0.027	0.025	0.071		
CD (P=0.01)	NS	NS	0.111		
SE (m±)	0.007	0.006	0.018		
C.V.	6.185	5.973	3.718		

DAS (Days after sowing)

Table 5 Impact of pesticide on root dry weight (g) soybean and wheat at various growth phases *i.e.*, 30, 45 and 60 DAS

Root dry wt. (g)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁- Control (No chlorpyrifos)	0.440	0.095	0.105	0.640	**0.213**
T₂- 0.25% (low)	0.155	0.125	0.110	0.390	**0.130**
T₃- 0.75% (medium)	0.245	0.065	0.060	0.370	**0.123**
T₄- 1.25% (High)	0.195	0.085	0.080	0.360	**0.120**
Mean	**0.259**	**0.093**	**0.089**		
CD (P=0.05)	0.048	0.020	0.036		
CD (P=0.01)	0.070	0.035	NS		
SE (m±)	0.012	0.005	0.009		
C.V.	6.553	7.644	14.363		
Wheat					
T₁- Control (No chlorpyrifos)	0.135	0.146	0.345	0.626	**0.209**
T₂- 0.25% (low)	0.126	0.141	0.275	0.542	**0.181**
T₃- 0.75% (medium)	0.091	0.095	0.245	0.431	**0.144**
T₄- 1.25% (High)	0.084	0.116	0.245	0.445	**0.148**
Mean	**0.109**	**0.125**	**0.278**		
CD (P=0.05)	0.011	0.006	0.053		
CD (P=0.01)	0.016	0.003	NS		
SE (m±)	0.003	0.001	0.013		
C.V.	3.513	1.633	6.742		

DAS (Days after sowing)
Table 6

Photosynthesis rate	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁ - Control (No chlorpyrifos)	7.80	9.10	8.05	24.95	8.32
T₂ - 0.25% (low)	8.20	5.90	8.35	22.45	7.48
T₃ - 0.75% (medium)	7.05	4.10	9.65	20.80	6.93
T₄ - 1.25% (High)	4.05	3.55	4.90	12.50	4.17
Mean	6.78	5.66	7.74		
CD (P=0.05)	1.00	0.86	1.30		
CD (P=0.01)	1.61	1.40	2.10		
SE (m±)	0.25	0.21	0.32		
C.V.	5.17	5.34	5.91		
Wheat					
T₁ - Control (No chlorpyrifos)	7.85	11.15	6.60	25.60	8.53
T₂ - 0.25% (low)	8.35	7.05	7.35	22.75	7.58
T₃ - 0.75% (medium)	9.40	9.95	8.50	27.85	9.28
T₄ - 1.25% (High)	5.15	7.25	7.35	19.75	6.58
Mean	7.69	8.85	7.45		
CD (P=0.05)	1.49	1.55	0.55		
CD (P=0.01)	NS	2.50	0.80		
SE (m±)	0.37	0.38	0.14		
C.V.	6.81	6.14	2.60		

DAS (Days after sowing)

Table 7

Stomatal conductance	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁ - Control (No chlorpyrifos)	79.0	105.5	115.5	300.0	100.0
T₂ - 0.25% (low)	98.0	116.0	116.5	330.5	110.2
T₃ - 0.75% (medium)	100.5	120.0	96.0	316.5	105.5
T₄ - 1.25% (High)	162.5	86.0	85.5	334.0	111.3
Mean	110.0	106.9	103.4		
CD (P=0.05)	15.2	16.0	18.9		
CD (P=0.01)	24.5	NS	NS		
SE (m±)	3.8	4.0	4.7		
C.V.	6.8	5.3	6.4		
Wheat					
T₁ - Control (No chlorpyrifos)	2.94	3.60	2.55	9.09	3.03
T₂ - 0.25% (low)	3.02	3.40	3.50	9.92	3.31
T₃ - 0.75% (medium)	2.62	3.65	3.00	9.27	3.09
T₄ - 1.25% (High)	2.07	3.50	3.00	8.57	2.86
Mean	2.66	3.54	3.01		
CD (P=0.05)	0.49	NS	0.58		
CD (P=0.01)	NS	NS	NS		
SE (m±)	0.12	0.14	0.14		
C.V.	6.39	5.74	6.74		

DAS (Days after sowing)
Table.8 Impact of pesticide on transpiration rate (µmol H₂O/m²/sec) of soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

Transpiration rate	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁ - Control (No chlorpyrifos)	2.81	2.60	2.94	8.35	2.78
T₂ - 0.25%(low)	3.50	2.93	3.02	9.45	3.15
T₃ - 0.75% (medium)	3.60	3.15	2.62	9.36	3.12
T₄ - 1.25%(High)	5.17	2.59	2.26	10.01	3.34
Mean	3.77	2.82	2.71		
CD(P=0.05)	0.54	NS	0.42		
CD(P=0.01)	0.87	NS	NS		
SE(m±)	0.13	0.40	0.11		
C.V.	5.01	20.06	5.48		
Wheat					
T₁ - Control (No chlorpyrifos)	2.94	3.60	2.55	9.09	3.03
T₂ - 0.25%(low)	3.02	3.40	3.50	9.92	3.31
T₃ - 0.75% (medium)	2.62	3.65	3.00	9.27	3.09
T₄ - 1.25%(High)	2.07	3.50	3.00	8.57	2.86
Mean	2.66	3.54	3.01		
CD(P=0.05)	0.49	NS	0.58		
CD(P=0.01)	NS	NS	NS		
SE(m±)	0.12	0.14	0.14		
C.V.	6.39	5.74	6.74		

DAS (Days after sowing)

Table.9 Impact of pesticide on peroxidase activity (∆ODµgprotein⁻¹min⁻¹) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

POXunit/gm	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁ - Control (No chlorpyrifos)	122.4	47.55	108.4	278.35	92.78
T₂ - 0.25%(low)	102.75	66.35	86.05	255.15	85.05
T₃ - 0.75% (medium)	72.1	79.2	71.85	223.15	74.38
T₄ - 1.25%(High)	65.5	88.25	60.1	213.85	71.28
Mean	90.69	70.34	81.60		
CD(P=0.05)	19.898	18.765	16.215		
CD(P=0.01)	32.13	NS	26.18		
SE(m±)	4.935	4.655	4.022		
C.V.	7.696	9.358	6.97		
Wheat					
T₁ - Control (No chlorpyrifos)	103.07	117.175	143.565	363.81	121.27
T₂ - 0.25%(low)	103.76	137.445	122.145	363.35	121.12
T₃ - 0.75% (medium)	89.455	142.29	146.37	378.115	126.04
T₄ - 1.25%(High)	134.64	148.92	140.76	424.32	141.44
Mean	107.73	136.46	138.21		
CD(P=0.05)	21.125	16.13	13.773		
CD(P=0.01)	NS	NS	NS		
SE(m±)	5.24	4.001	3.416		
C.V.	6.878	4.146	3.496		

DAS (Days after sowing)
Table 10 Impact of pesticide on polyphenol oxidase (µg Protein\(^{-1}\) min\(^{-1}\)) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

	DAS 30	DAS 45	DAS 60	Total	Mean
Soyabean					
T\(_1\) Control (No chlorpyrifos)	0.0241	0.0311	0.0289	0.0841	0.0280
T\(_2\) 0.25% (low)	0.0204	0.0301	0.0304	0.0809	0.0270
T\(_3\) 0.75% (medium)	0.0266	0.0288	0.0295	0.0849	0.0283
T\(_4\) 1.25% (High)	0.0193	0.0328	0.0253	0.0774	0.0258
Mean	0.0226	0.0307	0.0285		
CD(\(P=0.05\))	0.0040	0.0020	0.0030		
CD(\(P=0.01\))	NS	NS	NS		
SE(m±)	0.0010	0.0010	0.0010		
C.V.	7.4940	2.8400	4.1330		
Wheat					
T\(_1\) Control (No chlorpyrifos)	0.0096	0.0162	0.0102	0.0359	0.0120
T\(_2\) 0.25% (low)	0.0114	0.0155	0.0116	0.0385	0.0128
T\(_3\) 0.75% (medium)	0.0079	0.0129	0.0152	0.0360	0.0120
T\(_4\) 1.25% (High)	0.0102	0.0134	0.0129	0.0365	0.0122
Mean	0.0098	0.0145	0.0124		
CD(\(P=0.05\))	0.0008	0.0007	0.0010		
CD(\(P=0.01\))	NS	NS	NS		
SE(m±)	0.0002	0.0002	0.0003		
C.V.	2.9417	1.8162	2.9763		

DAS (Days after sowing)

Table 11 Impact of pesticide on nitrate reductase (µg NO\(_2\)/g fw/h) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

	DAS 30	DAS 45	DAS 60	Total	Mean
Soyabean					
T\(_1\) Control (No chlorpyrifos)	0.0946	0.0661	0.0180	0.1786	0.0595
T\(_2\) 0.25% (low)	0.0528	0.0734	0.0719	0.1981	0.0660
T\(_3\) 0.75% (medium)	0.0731	0.0601	0.0267	0.1599	0.0533
T\(_4\) 1.25% (High)	0.1390	0.0198	0.0663	0.2251	0.0750
Mean	0.0899	0.0548	0.0457		
CD(\(P=0.05\))	0.0010	0.0008	0.0011		
CD(\(P=0.01\))	0.0060	0.0060	0.0060		
SE(m±)	0.0003	0.0002	0.0003		
C.V.	0.4123	0.5055	0.8626		
Wheat					
T\(_1\) Control (No chlorpyrifos)	0.0096	0.0162	0.0102	0.0359	0.0120
T\(_2\) 0.25% (low)	0.0114	0.0155	0.0116	0.0385	0.0128
T\(_3\) 0.75% (medium)	0.0079	0.0129	0.0152	0.0360	0.0120
T\(_4\) 1.25% (High)	0.0102	0.0134	0.0129	0.0365	0.0122
Mean	0.0098	0.0054	0.0054		
CD(\(P=0.05\))	0.0008	0.0007	0.0010		
CD(\(P=0.01\))	NS	NS	NS		
SE(m±)	0.0002	0.0002	0.0003		
C.V.	2.9417	1.8162	2.9763		

DAS (Days after sowing)
Table 12 Impact of pesticide on proline content (μmole/g) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

	Proline (μmole/g)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean						
T₁-Control (No chlorpyrifos)	0.0160	0.0250	0.0170	0.0580	**0.0193**	
T₂ 0.25% (low)	0.0160	0.0210	0.0200	0.0570	**0.0190**	
T₃ 0.75% (medium)	0.0150	0.0190	0.0220	0.0560	**0.0187**	
T₄ 1.25% (High)	0.0150	0.0190	0.0230	0.0570	**0.0190**	
Mean	**0.0155**	**0.0210**	**0.0205**			
CD(P=0.05)	0.0010	0.0010	0.0010			
CD(P=0.01)	0.0010	0.0080	0.0040			
SE(m±)	0.0000	0.0000	0.0000			
C.V.	1.6140	0.8890	1.5110			
Wheat						
T₁-Control (No chlorpyrifos)	0.1200	0.0060	0.0070	0.1330	**0.0443**	
T₂ 0.25% (low)	0.3250	0.0100	0.0100	0.3450	**0.1150**	
T₃ 0.75% (medium)	0.0300	0.0090	0.0090	0.0480	**0.0160**	
T₄ 1.25% (High)	0.0450	0.0090	0.0090	0.0630	**0.0210**	
Mean	**0.1300**	**0.0085**	**0.0088**			
CD(P=0.05)	0.0140	0.0010	0.0020			
CD(P=0.01)	0.0200	0.0030	NS			
SE(m±)	0.0040	0.0000	0.0000			
C.V.	3.8470	6.0610	7.3120			

DAS (Days after sowing)

Table 13 Impact of pesticide on total soluble protein (mg/g fw) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

	TSP (mg/gm fw)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean						
T₁-Control (No chlorpyrifos)	1.750	1.450	1.680	4.880	**1.627**	
T₂ 0.25% (low)	1.595	1.360	1.575	4.530	**1.510**	
T₃ 0.75% (medium)	1.645	1.540	1.680	4.865	**1.622**	
T₄ 1.25% (High)	1.545	1.355	1.910	4.810	**1.603**	
Mean	**1.634**	**1.426**	**1.711**			
CD(P=0.05)	0.117	0.046	0.058			
CD(P=0.01)	NS	0.075	0.095			
SE(m±)	0.029	0.011	0.014			
C.V.	2.514	1.136	1.186			
Wheat						
T₁-Control (No chlorpyrifos)	1.680	1.720	1.430	4.830	1.610	
T₂ 0.25% (low)	1.740	1.675	1.485	4.900	1.633	
T₃ 0.75% (medium)	1.645	1.780	1.530	4.955	1.652	
T₄ 1.25% (High)	1.755	1.735	1.630	5.120	1.707	
Mean	**1.705**	**1.728**	**1.519**			
CD(P=0.05)	0.051	0.062	0.076			
CD(P=0.01)	NS	NS	0.128			
SE(m±)	0.013	0.015	0.019			
C.V.	1.057	1.262	1.758			

DAS (Days after sowing)
Table 14 Impact of pesticide on non structural carbohydrate (mg/g) in soybean and wheat at various growth phases i.e., 30, 45 and 60 DAS

Non structural carbohydrate (mg/g)	DAS 30	DAS 45	DAS 60	Total	Mean
Soybean					
T₁-Control (No chlorpyrifos)	2.931	7.615	11.006	21.553	7.184
T₂-0.25% (Low)	3.474	9.144	12.513	25.130	8.377
T₃-0.75% (Medium)	3.063	7.508	10.271	20.841	6.947
T₄-1.25% (High)	3.190	6.906	8.963	19.059	6.353
Mean	**3.164**	**7.793**	**10.688**		
CD (P=0.05)	0.081	0.737	0.325		
CD (P=0.01)	0.136	1.220	0.530		
SE (m±)	0.021	0.188	0.083		
C.V.	0.920	3.404	1.094		
Wheat					
T₁-Control (No chlorpyrifos)	3.275	5.719	5.719	14.713	4.904
T₂-0.25% (Low)	4.550	10.250	10.250	25.050	8.350
T₃-0.75% (Medium)	3.775	6.463	6.463	16.700	5.567
T₄-1.25% (High)	2.571	4.975	4.975	12.521	4.174
Mean	**3.543**	**6.852**	**6.852**		
CD (P=0.05)	0.404	0.911	1.031		
CD (P=0.01)	0.668	1.510	1.700		
SE (m±)	0.103	0.232	0.263		
C.V.	4.108	4.788	4.059		

DAS (Days after sowing)

Treatments

Treatments	Treatment details
T₁	Control (No chlorpyrifos)
T₂	Foliar application below normal (Low)-0.25%
T₃	Foliar application recommended dose (Medium)-0.75%
T₄	Foliar application supra-optimal dose (High)-1.25%

T₁. Control (no pesticide use)
T₂- The spray solution is prepared from stock solution. Take 0.25 ml of stock solution and make up the volume 100 ml. So 0.25% low chlorpyrifos.
T₃- The spray solution is prepared from stock solution. Take 0.75 ml of stock solution and make up the volume 100 ml. So 0.75% medium chlorpyrifos.
T₄- The spray solution is prepared from stock solution. Take 1.25 ml of stock solution and make up the volume 100 ml. So 1.25% high chlorpyrifos.
Fig 1: Impact of pesticide on Plant height of soybean at various days after treatment 30, 45 and 60 DAS.

Fig 2: Impact of pesticide on Plant height of wheat at various days after treatment 30, 45 and 60 DAS.
Fig 3 Impact of pesticide on photosynthesis rate of soybean at various days after treatment 30, 45 and 60 DAS.

Fig 4 Impact of pesticide on photosynthesis rate of wheat at various days after treatment 30, 45 and 60 DAS.
Transpiration rate (µmol H₂O/m²/sec)

The transpiration rate was measured in 3rd fully expended leaves from the top. The rate was highest in higher concentration and decreased in control. The mean value was greater in T₄ 1.25% (3.34) in soybean. Whereas in wheat the average value of transpiration rate was highest at T₂ 0.25% of chlorpyrifos (3.31) followed by T₃ 0.75% (3.09) and at control (3.03) and minimum rate of transpiration was observed at lower concentration of chlorpyrifos T₄ 1.25% (2.86) (Table 8). Transpiration is directly related to stomatal opening, which is essential for leaf intake of carbon dioxide for photosynthesis. Photosynthesis is a more general measurement of carbon dioxide intake and fixation (sugar production). Both processes are interrelated and are directly related to plant growth and productivity.

The higher value of transpiration occurred on insecticide-free plants. Photosynthesis was also higher in the untreated check, suggesting that all insecticide treatments adversely influenced both stomatal opening and over all photosynthesis rates as reported by Sances et al., (1981) similar result were reported by Olszewski. (2004) observed a tendency towards a slight decrease in the rate of photosynthesis under the influence of a fungicidal agent in horse bean and pea. Further, the same author found a significant decline in the levels of photosynthesis and transpiration under the effect of foliar herbicide application. Panduranga et al., (2005) also confirmed the dimethoate causes a reduction in plant growth, photosynthesis pigments and photosynthetic activity of *Glycine max* L.

Peroxidase (ΔODµg protein⁻¹ min⁻¹)

The peroxidase activity was measured at 30, 45 and 60 DAT in soybean and wheat. The average rate was decreased with increasing level of pesticide treatment in soybean. However, in wheat it was maximum at T₄ (1.25%) (141.44). While in ashwagandha it was minimum at T₄ (87.64) over control 118.07. However, the enzyme activity was maximum at initial stage of growth and decreased with the passage of time. This might be due to the presence of healthy and efficient H₂O₂ scavenging system during the young stage of plant (Table 9).

The result of present investigation suggest that activity of catalase was gradually decreased in treated plants as compared to control which was similar finding reported by Vidyasagar et al., (2007) in *Sorghum bicolor* L. However, the activity of other oxidative enzymes such as, polyphenol oxidase and peroxidase was increased along with the concentration of chlorpyrifos increased. The increase in peroxidase activity may be due to the metabolic response to environmental stress reported by Fang and Kao (2000). Lee (2002) also reported that the peroxidase activity increased remarkably with Na₂SO₃ treatments. Since peroxidase activity was very high in treated shoots, accumulated H₂O₂ was utilized for various peroxidative polymerization reactions.

Polyphenol oxidase (µg Protein⁻¹ min⁻¹)

Polyphenol oxidase was measured during the pesticide treatment in soybean and wheat at 30, 45 and 60 DAS and in ashwagandha at 30, 45 and 60 DAT. The content was increased with passage of time in soybean and wheat. Whereas, in ashwagandha it increased maximum at 45 DAT 0.0173 over control. However, it 0.0071 decreased at 60DAT 0.0017. However, the increased concentration of pesticide slightly increased the activity of polyphenol oxidase in all the experimental crops (Table 10).
Fang and Kao (2000) also reported that the activity of oxidative enzymes such as, polyphenol oxidase and peroxidase was increased along with the concentration of chlorpyrifos increased. The increase in peroxidase activity may be due to the metabolic response to environmental stress. Similar results have been obtained by Chauhan et al., (2013) in potato reported by Nanjo et al., (1999).

Nitrate reductase (µg NO₂/g fw/ h)

Nitrate reductase activity was significantly affected by pesticide resistance. However, in general it decreased with passage of time in soybean and wheat. Increased concentration of pesticide has shown the maximum activity of nitrate reductase in soybean and wheat. However, in ashwagandha in general its activity increased with passage of time at 60 DAT it was maximum 0.0081 and increased level of treatment increased the activity i.e., at T₄ 1.25% it was 0.0076 (µg NO₂/g fw/ h) over control 0.0075 (µg NO₂/g fw/ h) (Table 11).

Nitrate reductase (NR) activity was seen to decrease with concentration of pesticide increase. A result was well supported by Pankaj et al., (2015) also reported significant decrease in activity with increase in concentration of pesticide in Fenugreek.

Proline content (µM g⁻¹)

Proline is the amino acid accumulates under stress situation was measured at 30, 45 and 60 DAS after application of chlorpyrifos in soybean, wheat and ashwagandha. The maximum proline content was observed at 60 DAS. However, the increased rate of chemical slightly increased the proline content at T₂ 0.25% level in wheat 0.115µM/g over control 0.0443µM/g. It showed more resistant in wheat as compared to soybean and ashwagandha when the control decreased with increasing level of treatment (Table 12).

The proline content also increased in the present studies due to the chlorpyrifos treatment. Similar finding have also been reported by Nasrabadi et al., (2014) in tomato, Parween et al., (2012) in Vigna radiata L. and Coskun et al., 2015. Proline accumulated in plants under various stress conditions. The accumulation of proline in plant due to drought and temperature stress is also well documented by Gzik (1996). Proline acts as a hydrophobic protectant for enzymes and sub-cellular organelles Lerudulier et al., (1994). This helps the plant to tolerate or adapt to the stress condition. It is evident from these studies that an increase in proline content may serve as a mean of protection of plant tissue against stress.

Total soluble protein (mg/g fw)

The average total soluble protein was increased with passage of time in all the experimental crops. The treatment of pesticide increased it gradually and significantly in wheat and ashwagandha with increasing level of treatment. Maximum increase was observed at T₄ (1.25%) in wheat 1.707 over control 1.610. Whereas, in ashwagandha maximum soluble protein was obtained at T₃ (0.75%) 1.713 over control 1.600 In soybean crops the content decreased at 45 DAS and the maximum content was observed at T₂ (0.25%) 1.713 over control 1.600. In the content decreased it might be used for synthesis of new proteins under stress and its increase showed the resistance mechanism of stress viz. more synthesis of protein (Table 13).

Singh and Tiwari (2003) also found the total protein content in plants decreased with increasing of pesticide concentrations compared to the control plants, respectively.
Protein content in organisms, an important indicator of reversible and irreversible changes in metabolism, is known to respond to a wide variety of stressor such as natural and xenobiotic. It showed that excessive pesticide reduced protein amount of many plant species Zengin et al., (2007) reported by Vidyasagar et al., (2007).

Non-structural carbohydrate (mg/g)

Non-structural carbohydrate (total soluble sugar + starch) was estimated at 30, 45 and 60DAS. It was significantly increased with passage of time in all the experimental crops. It might be due to more anabolic reaction at the later phase of growth band carbohydrate were synthesized more efficiently. However, the lower dose T2 0.25% of pesticide increased the maximum structural carbohydrate over control in soybean 8.377 over control 7.184. In wheat 8.350 over control 4.904. Whereas, the further increase in dose of pesticide decreased the structural carbohydrate significant in all the experimental crops. However, in ashwagandha the structural carbohydrate was maximum at control over treatments (Table 14).

Siddiqui et al., (2001) also suggested that the carbohydrate content is rapidly decreased with increase the concentration of chlorpyrifos. A similar result was reported by Bhattacharya et al., (2001) in carbendazim treated rice plants.

Chlorpyrifos is a hazardous and important pollutant of the environment. The EU Directive 2008/105/EC lists it as one of the priority water pollutant. Its presence in mainly detected by chemical but, since biological tests have general in importance in the last few years. Chlorpyrifos effect on several metabolic and stress related parameters *i.e.*, morphological physiological and biochemicals. Therefore, the impact of oxidative stress was evaluated on these crop plants to find out the chemical stress tolerance and resistance mechanism. It was observed that as compared to soybean, wheat was found to be same tolerance against the oxidative stress. However, the ashwagandha was initially affected but later it increased its morphophysiological traits.

References

Aditya, C.N., Banerjee, H. and Kole, R.K. 1997 An appraisal of pesticide use in Indian agriculture with special reference to their consumption in West Bengal. Sci Cult., 63: 223–228.

Bashir, F., Siddiqi T.O., and Mahmooduzzafar, Iqbal. M. 2007a Effect of different concentrations of mancozeb on the morphology and anatomy of Lens culinaris L. Indian J Environ Sci 11: 71–74.

Bates, L.S., Waldeen, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.

Boutin, C., Elmegaard, N. and Kjar, C. 2004 Toxicity testing of fifteen non crop plant species with six herbicides in a green house experiment: implications for risk assessment. Ecotoxicology, 23: 34-369.

Bradford, M.M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding Analytical Biochemistr., 72: 248-254.

Chauhan, S. S., Agrawal, A. And Srivastava, A. 2013 Effect of imidacloprid insecticide residue on biochemical parameters in potatoes and its estimation by HPLC. Asi. J. Pharm. Clin. Res., 6 (3): 114-117.

Coskun, Y., Kilic, S. and Duran, R.E. 2015. The effect of the insecticide pyriproxyfen on germination, development and growth responses of maize seedlings. Fre. Envi. Bull., 24 (1): 278-284.

Elbashier, M.M. A., Shao, X., Mohmmed, A., Ali, A. A. S and Osman B. H. 2016. Effect of pesticide residues (Sevin) on carrot (*Daucus carota* L.) and free nitrogen fixers
Int. J. Microbiol. App. Sci. (2017) 6(11): 2045-2064

Endosulfan in mediating stress responses in *Azotobacter* spp. Agril. Sci., 7: 93-99.

Kumar, M. and Kumar, R. 1993. Effect of metasystox on certain physiological and biochemical aspects in *Vicia faba*. Nat Conserv, 5: 109-110.

Kumar, N.G., Nirmala, P. and Jayappa, A.H. 2010. Effect of various methods of application of insecticides on the incidence of *Liriomyza trifolii* (burgess) and other pests in soybean. Karnataka J. Agric. Sci., 23: 130–132.

Lee, M.Y. 2002. Effect of Na$_2$SO$_4$ on the activities of antioxidant enzymes in geranium seedlings. Phytochem., 59 (2): 493-499.

Khan, S.M. and Kour, G. 2007. Sub acute oral toxicity of chlorpyrifos and malathion on antioxidant enzymes in tomato and brinjal. Intern. J. Pharma. Bio. Sci., 2(2): 0975-6299.

Olszewski, J. 2004. The effects of some biotic and abiotic stresses on the rate of photosynthesis and transpiration, yield and health of horse bean and pea. (Rozprawy
Monografie) 85. Wydawnictwo UWM. Olsztyn (in Polish).

Panduranga, M.G., Mahadeva, P.G. and Sudarshana, M.S. 2005 Toxicity of different imbibitions periods of dimethoate on germination, chlorophyll a/b, and dry matter of Glycine max (L) Merrill. Cv. 548 KHSB-2, during early seedlings growth. J Physiol Res., 18: 199–201.

Pankaj, S.M, and Rohit P.G. 2015. Effect of pesticide on nitrate reductase activity in (Trigonella Foenum) i.e., fenugreek. J. Hort. 2: 166. doi: 10.4172/2376-0354.1000166.

Parween, T., Jan, S., Mahmooduzzafar., and Fatma, T. 2011. Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiataL.) in response to chlorpyrifos. Actaphysiol. Plant, 33: 2321–2328.

Parween, T., Mahomooduzzafar, S. J. and Fatima, T. 2012. Evaluation of oxidative stress in material safety data, (Vigna radiata L.) in response to chlorpyrifos, Int. J. Env. Sci., & Technol., 9.605-612.

Siddiqui, Z.S. 1997. Effect of systemic fungicides on total protein, carbohydrate and phenolic contents of (Solanum melongena) and (Avena sativa) Appl. Ent. Phytopath., 64: 17-22.

Siddiqui, Z.S., Ahmed, S. and Gulzar, S. 1997. Effect of topsin-m (Methylthiophenate) and bayleton (Triademifon) on seedling growth, biomass, nodulation and phenolic content of sesbaniasesban. Bangl. J. Bot., 26 (2): 127-130.

Singh, R., Saxena, S.K. and Sharma, V.S.P. 1970. An improved method of raising Citrus root stocks. Punjab Hort. J., 10: 166-171.

Tevini, M. and Teramura, A.H. 1989. UV-B effects on terrestrial plants. Photochem. Photobiol., 50: 479-487.

Venkateswara, R. J., Parvati, K., Kavitha, P., Jakka, N.M., Pallela, R. 2005. Effect of chlorpyrifos and monocrotophos on loco motor behavior and acetyl cholinesterase activity of subterranean termites, Odontotermes obesus. Pest Manage Sci., 61: 417–421.

Vidyasagar, G.M., Kotresha, D., Sreenivasa,N. and Karnam, R. 2009. Role of Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L. Zhou, Y.H. and Yu, J.Q. 2006. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in (Cucumis sativus L.) Pest. Biochem. Physiol., 86: 42-48.

Zengin, F.K. and Kirbag, S. 2007. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J. Envir Bio., 28 (3): 561-566.

How to cite this article:

Nutan Singh, Pratibha Katiyar and Ajay. 2017. Evaluation of Oxidative Stress on Soybean (Glycine max L. Merrill) and Wheat (Triticum aestivum) Crops in Response to Chlorpyrifos. Int.J.Curr.Microbiol.App.Sci. 6(11): 2045-2064. doi: https://doi.org/10.20546/ijcemas.2017.611.243