A Japanese patient with neonatal biotin-responsive basal ganglia disease

Mizuki Kobayashi1,5, Yuichi Suzuki2,5, Maki Nodera2, Ayako Matsunaga3, Masakazu Kohda4, Yasushi Okazaki5, Kei Murayama3, Takanori Yamagata1 and Hitoshi Osaka1,5

INTRODUCTION

Biotin-responsive basal ganglia disease (BBGD) is an autosomal recessive disorder that causes catastrophic subacute metabolic encephalopathy. BBGD includes a wide variety of neurological phenotypes, including early-infantile Leigh-like encephalopathy, classic recurrent subacute encephalopathy, and adult-onset Wernicke-like encephalopathy. Patients with the most severe phenotype present with poor feeding, vomiting, and acute encephalopathy with severe lactic acidosis. BBGD is now recognized as thiamine metabolism dysfunction syndrome and is thought to cause this disease. In most cases, early-infantile severe encephalopathies in BBGD are caused by nonsense or frameshift variants. Therefore, loss of ThTR2 function is essential, especially with onset in the neonatal or early infancy period.

DATA REPORT

Biotin-responsive basal ganglia disease (BBGD) with SLC19A3 mutation was first reported in 1998, and over 30 mutations have been reported. We report a neonatal BBGD case with sudden-onset feeding difficulty and impaired consciousness. Encephalopathy resolved after the initiation of biotin and thiamine treatment. Genetic testing revealed a novel heterozygous mutation [c.384_387del, p.Tyr128fs];[c.265 A > C, p.Ser89Arg] in SLC19A3. Early treatment for BBGD is essential, especially with onset in the neonatal or early infancy period.

Human Genome Variation (2022) 9:1–3; https://doi.org/10.1038/s41439-022-00210-z

© The Author(s) 2022

Published online: 29 September 2022

Received: 12 October 2021 Revised: 3 August 2022 Accepted: 3 August 2022

© The Author(s) 2022

Published online: 29 September 2022
heterozygous SLC19A3 mutation, NM_025243.4: [c.384_387del,p.-Tyr128fs];[c.265A>C,p.(Ser89Arg)], was identified in the patient. A novel truncating mutation [c.384_387del,p.Tyr128fs] inherited from the mother appears to be pathogenic. A variant [c.265A>C,p.(Ser89Arg)] inherited from the father is likely pathogenic because it has already been reported in four cases; it is predicted to be deleterious/damaging by 4 of 5 variant prediction programs (Supplementary Table 1). We classified the variants according to the ACMG_AMP classification guideline. [c.384_387del,p.Tyr128fs] is thought to be pathogenic in PVS1 (the variant is thought to cause early truncation resulting in loss of function), PM2 (extremely low frequency), and PP4 (not been reported, but the phenotype of the compound mutations with other clinical BBGD cases is very specific). [c.265A>C,p. Ser89Arg] is likely pathogenic in PM2 (extremely low frequency; allele frequency = 0.00024 in the Japanese population; GnomAD exomes homozygous allele account = 0), PM3 (the other allele is thought to cause early truncation resulting in loss of function, and the phenotype is thought to be a recessive disorder), PP3 (multiple lines of computational evidence of a deleterious effect of the variant are provided in Supplementary Table 1), and PP4 (reported in four cases with LS or BBGD, clinically specific phenotypes for the gene). Sanger sequencing for the parents and patient confirmed the mutations identified (Supplementary Fig. 1). We did not find any SNPs that account for the developmental delay, only the SLC19A3 aberration. The patient’s follow-up brain MRI showed high-intensity signals in the bilateral thalamus, liquefaction of the dorsal putamen, and atrophy in the cortex, subcortical white matter, and white matter as sequela of neonatal encephalopathy.

Table 1. Related demography and outcome by mutations of neonatal encephalopathy patients.

Reference	Mutations	Age at onset	Consanguinity	treatment	Outcome
This case	c.384_387del,p.(Tyr128fs)	28 days	No	Biotin and thiamine	Bedridden
	/c.265A>C,p.(Ser89Arg)				
Yamada et al.14	c.958G>C,p.(Glu320Gln)	1M	Yes	NP	Bedridden
	/c.958G>C,p.(Glu320Gln)				
Perez-Duenas et al.15	c.68G>T,p.(Gly23Val)	1M	ND	Biotin and thiamine	Gait
	/c.68G>T,p.(Gly23Val)				
Gerards et al.16	c.20C>A,p.Ser7Ter	1M	No	NP	Death
	/c.20C>A,p.Ser7Ter				
Haack et al.17	c.982del,p.(Ala328Leufs*)	Neonatal	Yes	NP	Death
	/c.982del,p.(Ala328Leufs*)				
Haack et al.17	c.982del,p.(Ala328Leufs*)	18 days	Yes	Biotin and thiamine	Normal
	/c.982del,p.(Ala328Leufs*)				
Kamasak et al.18	c.623_624insA,p.(Ser179fs)	30 days	No	Thiamine	Responds to mother
	/c.623_624insA,p.(Ser179fs)				
Kamasak et al.18	c.620delinsAA,p.(Ala178fs)	30 days	No	Biotin and thiamine	ND
	/c.620delinsAA,p.(Ala178fs)				
Kamasak et al.18	c.894T>G,p.(Tyr298*)	23 days	No	Biotin and thiamine	Death
Kılıç et al.19	p.His200Serfs*,c.(597InsThr)	20 days	Yes	Biotin and thiamine	Death
	/p.His200Serfs*,c.(597InsThr)				
Kılıç et al.19	c.894T>G,p.(Tyr298*)	21 days	Yes	Biotin and thiamine	Quadriplegia
	/c.894T>G,p.(Tyr298*)				

ND not described, NP not performed.

Fig. 1 The patient’s magnetic resonance images. a, b Acute-phase brain MRI showed high-intensity signals in the bilateral thalamus, putamen and globus pallidus. c, d Follow-up brain MRI showed high-intensity signals in the bilateral thalamus, liquefaction of the dorsal putamen, and atrophy in the cortex, subcortical white matter, and white matter as sequela of neonatal encephalopathy.
by cells. Thiamine malabsorption due to loss of thiamine transporter type 2 causes BBGD. Thiamine pyrophosphate (TPP), which accounts for 80% of thiamine in the entire body, is produced from thiamine and binds to the pyruvate dehydrogenase complex as a coenzyme. If TPP is not synthesized or if it is undersynthesized, acetyl-CoA from pyruvate in the TCA cycle is not produced, leading to energy depletion in cells.

Biotin is a coenzyme for carboxylases, including pyruvate carboxylase in the TCA cycle, and helps to produce oxaloacetic acid as a coenzyme. If TPP is not synthesized or if it is produced from thiamine and binds to the pyruvate dehydrogenase complex as a coenzyme, the patient achieved independent gait (Table 1). Furthermore, before biotin and thiamine are initiated, neuronal damage may be too severe to gain favorable intellectual or motor development. As we performed target sequencing, we cannot deny the possibility that variants outside of the targeted genes influenced his development. Nevertheless, vitamin combination therapy may prevent a second attack or encephalopathy, as in our patient. Treatment before the onset of encephalopathy is required to attain better neurological outcomes. Moreover, elucidation of biomarkers for BBGD may provide a screening method and improve outcomes.

HGV DATABASE

The relevant data from this Data Report are hosted at the Human Genome Variation Database at https://doi.org/10.6084/m9.figsphere.hgv.3225, https://doi.org/10.6084/m9.figsphere.hgv.3228.

REFERENCES

1. Tabarki, B., Al-Hashem, A. & Alfadhel, M. Biotin-Thiamine-Responsive Basal Ganglia Disease GeneReviews® (eds Adam, M. P. et al). University of Washington, Seattle. Copyright © 1993–2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved. Seattle (WA), (1993). https://www.ncbi.nlm.nih.gov/books/NBK169615/ (2021).

2. Alfadhel, M. Early infantile Leigh-like SLC19A3 gene defects have a poor prognosis: Report and review. J. Cent. Nerv. Syst. Dis. 9, 1179573517737521 (2017).

3. Alfadhel, M. et al. Targeted SLC19A3 gene sequencing of 3000 Saudi newborns: A pilot study toward newborn screening. Ann. Clin. Transl. Neurol. 6, 2097–2103 (2019).

4. Kohda, M. et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 12, e1005679 (2016).

5. Wang, J. et al. Report of the largest Chinese cohort with SLC19A3 gene defect and literature review. Front. Genet. 12, 683255 (2021).

6. Ogawa, E. et al. Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: A study of 106 Japanese patients. J. Inherit. Metab. Dis. 40, 685–693 (2017).

7. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

8. Subramanian, V. S., Marchant, J. S. & Said, H. M. Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2. Biotin is not a substrate for hTHTR2. Am. J. Physiol. Cell Physiol. 291, C851–C859 (2006).

9. Said, H. M., Balamurugan, K., Subramanian, V. S. & Marchant, J. S. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G491–G498 (2004).

10. Marcé-Grau, A., Martí-Sánchez, L., Baide-Mairena, H., Ortigoza-Escobar, J. D. & Pérez-Dueñas, B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 42, 581–597 (2019).

11. Kohrogi, K. et al. Biotin-responsive basal ganglia disease: A case diagnosed by whole exome sequencing. J. Hum. Genet. 60, 381–385 (2015).

12. Li, D. et al. Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome. Eur. J. Med. Genet. 63, 104003 (2020).

13. Ortigoza-Escobar, J. D. et al. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: A treatable cause of Leigh syndrome. Brain 139, 31–38 (2016).

14. Yamada, K. et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med. Genet. 11, 171 (2010).

15. Pérez-Dueñas, B. et al. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics 131, e1670–e1675 (2013).

16. Gerards, M. et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain 136, 882–890 (2013).

17. Haack, T. B. et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain 137, e295 (2014).

18. Kamaša, T. et al. Are diagnostic magnetic resonance patterns life-saving in children with biotin-thiamine-responsive basal ganglia disease? Eur. J. Paediatr. Neurol. 22, 1139–1149 (2018).

19. Kilç, B. et al. Single gene, two diseases, and multiple clinical presentations: Biotin-thiamine-responsive basal ganglia disease. Brain Dev. 42, 572–580 (2020).

ACKNOWLEDGEMENTS

This work was funded by the Practical Research Project for Rare/Intractable Diseases from AMED to H.O. (JP21lm02106, JP21ek0109511, JP21bm080101822, JP21ek0109468), K.M. (JP21ek0109468, JP21ek0109482, JP19ek0109273), Y.O. (JP20kk0305015), and N. Ma (JP21ek0109486, JP21ek0109549, JP21cm0106503, JP21ek0109493) and JSPS KAKENHI to H.O. (JP21H04364), Y.O. (JP19H03624), and N. Mi (JP19H03621).

AUTHOR CONTRIBUTIONS

Y.S. and M.N. treated the patient. A.M., M.K., K.M., and Y.O. contributed to genetic analysis, designed the experiment and analyzed data. T.Y. supervised the writing. M.K. and H.O. are responsible for writing and the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41439-022-00210-z. Correspondence and requests for materials should be addressed to Hitoshi Osaka.

Reprints and permission information is available at http://www.nature.com/reprints. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.