PRIMORDIAL NUCLEOSYNTHESIS
WITH A DECAYING TAU NEUTRINO

Scott Dodelson,1 Geza Gyuk,2 and Michael S. Turner1,2,3

1NASA/Fermilab Astrophysics Center Fermi National Accelerator Laboratory, Batavia, IL 60510-0500

2Department of Physics
The University of Chicago, Chicago, IL 60637-1433

3Department of Astronomy & Astrophysics
Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637-1433

ABSTRACT

A comprehensive study of the effect of an unstable tau neutrino on primordial nucleosynthesis is presented. The standard code for nucleosynthesis is modified to allow for a massive decaying tau neutrino whose daughter products include neutrinos, photons, e^\pm pairs, and/or noninteracting (sterile) daughter products. Tau-neutrino decays influence primordial nucleosynthesis in three distinct ways: (i) the energy density of the decaying tau neutrino and its daughter products affect the expansion rate tending to increase ^4He, D, and ^3He production; (ii) electromagnetic (EM) decay products heat the EM plasma and dilute the baryon-to-photon ratio tending to decrease ^4He production and increase D and ^3He production; and (iii) electron neutrinos and antineutrinos produced by tau-neutrino decays increase the weak rates that govern the neutron-to-proton ratio, leading to decreased ^4He production for short lifetimes ($\lesssim 30$ sec) and masses less than about 10 MeV and increased ^4He production for long lifetimes or large masses. The precise effect of a decaying tau neutrino on the yields of primordial nucleosynthesis and the mass-lifetime limits that follow depend crucially upon decay mode. We identify
four generic decay modes that serve to bracket the wider range of possibilities: tau neutrino decays to (1) sterile daughter products (e.g., $\nu_\tau \to \nu_\mu + \phi$; ϕ is a very weakly interacting scalar particle); (2) sterile daughter product(s) + daughter product(s) that interacts electromagnetically (e.g., $\nu_\tau \to \nu_\mu + \gamma$); (3) electron neutrino + sterile daughter product(s) (e.g., $\nu_\tau \to \nu_e + \phi$); and (4) electron neutrino + daughter product(s) that interact electromagnetically ($\nu_\tau \to \nu_e + e^\pm$). Mass-lifetime limits are derived for the four generic decay modes assuming that the abundance of the massive tau neutrino is determined by its electroweak annihilations. In general, nucleosynthesis excludes a tau-neutrino of mass $0.4 \text{ MeV} - 30 \text{ MeV}$ for lifetimes greater than about 300 sec. These nucleosynthesis bounds are timely since the current laboratory upper bounds to the tau-neutrino mass are around 30 MeV, and together the two bounds very nearly exclude a long-lived tau neutrino more massive than about 0.4 MeV. Further, our nucleosynthesis bounds together with other astrophysical and laboratory bounds exclude a tau neutrino of mass $0.4 \text{ MeV} - 30 \text{ MeV}$ of any lifetime that decays with EM daughter product(s). We use our results to constrain the mass times relic abundance of a hypothetical, unstable species with similar decay modes. Finally, we note that a tau neutrino of mass 1 MeV to 10 MeV and lifetime 0.1 sec - 10 sec whose decay products include an electron neutrino can reduce the ^4He yield to less than that for two massless neutrino species. This fact could be relevant if the primordial mass fraction of ^4He is found to be less than about 0.23 and can also lead to a modification of the nucleosynthesis bound to the number of light ($\ll 1 \text{ MeV}$) neutrino (and other) particle species.
1 Introduction

Primordial nucleosynthesis is one of the cornerstones of the hot big-bang cosmology. The agreement between the predictions for the abundances of D, 3He, 4He and 7Li and their inferred primordial abundances provides the big-bang cosmology’s earliest, and perhaps most, stringent test. Further, big-bang nucleosynthesis has been used to provide the best determination of the baryon density \[1, 2\] and to provide crucial tests of particle-physics theories, e.g., the stringent bound to the number of light neutrino species \[3, 4\].

Over the years various aspects of the effect of a decaying tau neutrino on primordial nucleosynthesis have been considered \[5, 6, 7, 8, 9, 10, 11, 12\]. Each previous study focused on a specific decay mode and incorporated different microphysics. To be sure, no one study was complete or exhaustive. Our purpose here is to consider all the effects of a decaying tau neutrino on nucleosynthesis in an comprehensive and coherent manner. In particular, for the first time interactions of decay-produced electron neutrinos and antineutrinos, which can be important for lifetimes shorter than 100 sec or so, are taken into account.

The nucleosynthesis limits to the mass of an unstable tau neutrino are currently of great interest as the best laboratory upper mass limits \[13\], 31 MeV by the ARGUS Collaboration and 32.6 MeV by the CLEO Collaboration\[1\] are tantalizingly close to the mass range excluded by nucleosynthesis, approximately 0.4 MeV to 30 MeV for lifetimes greater than about 300 sec. If the upper range of the cosmologically excluded band can be convincingly shown to be greater than the upper bound to the mass from laboratory experiments, the two bounds together imply that a long-lived tau-neutrino must be less massive than about 0.4 MeV. This was the major motivation for our study.

The effects of a massive, decaying tau neutrino on primordial nucleosynthesis fall into three broad categories: (i) the energy density of the tau neutrino and its daughter product(s) increase the expansion rate, tending to increase 4He, D, and 3He production; (ii) the electromagnetic (EM) plasma is heated by the daughter product(s) that interact electromagnetically (photons and e^\pm pairs), diluting the baryon-to-photon ratio and decreasing 4He

1Both are 95% C.L. mass limits based upon end-point analyses of tau decays to final states containing five pions. The CLEO data set contains 113 such decays and the ARGUS data set contains 20 such decays. \[13\].
production and increasing D and 3He production; and (iii) electron neutrino (and antineutrino) daughters increase the weak interaction rates that govern the neutron-to-proton ratio, leading to decreased 4He production for short lifetimes ($\lesssim 30$ sec) and masses less than about 10 MeV and increased 4He production for long lifetimes. Decays that take place long after nucleosynthesis ($\tau_\nu \sim 10^5 \text{ sec} - 10^6 \text{ sec}$) can lead to the destruction of the light elements through fission reactions and additional constraints [14], neither of which are considered here.

In terms of the effects on primordial nucleosynthesis there are, broadly speaking, four generic decay modes:

1. Tau neutrino decays to daughter products that are all sterile, e.g., $\nu_\tau \rightarrow \nu_\mu + \phi$ (ϕ is a very weakly interacting boson). Here, only effect (i) comes into play. Aspects of this case were treated in Refs. [5, 7, 10, 11, 12]; the very recent work in Ref. [12] is the most complete study of this mode.

2. Tau neutrino decays to a sterile daughter product(s) plus a daughter product(s) that interacts electromagnetically, e.g., $\nu_\tau \rightarrow \nu_\mu + \gamma$. Here, effects (i) and (ii) come into play. This case was treated in Ref. [6], though not specifically for a decaying tau neutrino.

3. Tau neutrino decays into an electron neutrino and sterile daughter product(s), e.g., $\nu_\tau \rightarrow \nu_e + \phi$. Here, effects (i) and (iii) come into play. This case was treated in Ref. [8]; however, the interactions of electron neutrinos and antineutrinos with the ambient thermal plasma were not taken into account. They can be important: The interaction rate of a high-energy electron neutrino produced by the decay of a massive tau neutrino relative to the expansion rate $\Gamma/H \sim (m_\nu/\text{MeV})(\text{sec}/t)$.

4. Tau neutrino decays into an electron neutrino and daughter product(s) that interact electromagnetically, e.g., $\nu_\tau \rightarrow \nu_e + e^\pm$. Here, all three effects come into play. Aspects of this case were treated in Ref. [4], though interactions of electron neutrinos and antineutrinos with the ambient thermal plasma were neglected and the ν_e-spectrum was taken to be a delta function.

As we shall emphasize more than once, the effect of a tau neutrino of a
given mass and lifetime—and therefore limits to its mass/lifetime—depends very much upon decay mode.

While these four generic decay modes serve to bracket the possibilities, the situation is actually somewhat more complicated. Muon neutrinos are not completely sterile, as they are strongly coupled to the electromagnetic plasma down to temperatures of order a few MeV (times of order a fraction of a second), and thus can transfer energy to the electromagnetic plasma. However, for lifetimes longer than a few seconds, their interactions with the electromagnetic plasma are not very significant (see Ref. [15]), and so to a reasonable approximation muon-neutrino daughter products can be considered sterile. Precisely how much electromagnetic entropy is produced and the effect of high-energy neutrinos on the proton-neutron interconversion rates depend upon the energy distribution of the daughter products and their interactions with the ambient plasma (photons, e^\pm pairs, and neutrinos), which in turn depends upon the number of daughter products and the decay matrix element.

Without going to extremes, one can easily identify more than ten possible decay modes. However, we believe the four generic decay modes serve well to illustrate how the nucleosynthesis mass-lifetime limits depend upon the decay mode and provide reasonable estimates thereof. In that regard, input assumptions, e.g., the acceptable range for the primordial abundances and the relic neutrino abundance\(^2\) probably lead to comparable, if not greater, uncertainties in the precise limits.

Finally, a brief summary of our treatment of the microphysics: (1) The relic abundance of the tau neutrino is determined by standard electroweak annihilations and is assumed to be frozen out at its asymptotic value during the epoch of nucleosynthesis, thereafter decreasing due to decays only. Because we assume that the relic abundance of the tau neutrino has frozen out we cannot accurately treat the case of short lifetimes, $\tau_\nu \lesssim (m_\nu/\text{MeV})^{-2} \text{sec}$, where inverse decays can significantly affect the tau-neutrino abundance and that of its daughter products. For generic decay mode (1) the effect of inverse decays for short lifetimes was consid-

\(^2\)The variation between different calculations of the tau-neutrino abundance are of the order of 10% to 20%; they arise to different treatments of thermal averaging, particle statistics, and so on. Since we use the asymptotic value of the tau-neutrino abundance our abundances are in general smaller, making our limits more conservative.

\(^3\)For generic decay mode (1) the effect of inverse decays for short lifetimes was consid-
this is not true, the nucleosynthesis limits become even more stringent). (3) The electromagnetic energy produced by tau-neutrino decays is assumed to be quickly thermalized and to increase the entropy in the electromagnetic plasma according to the first law of thermodynamics. (4) The perturbations to the phase-space distributions of electron and muon neutrinos due to tau-neutrino decays and partial coupling to the electromagnetic plasma are computed. (5) The change in the weak rates that interconvert neutrons and protons due to the distorted electron-neutrino distribution are calculated. (6) The total energy of the Universe includes that of photons, e^\pm pairs, neutrinos, and sterile daughter product(s).

The paper is organized as follows; in the next Section we discuss the modifications that we have made to the standard nucleosynthesis code. In Section 3 we present our results, discussing how a decaying tau neutrino affects the yields of nucleosynthesis and deriving the mass/lifetime limits for the four generic decay modes. In Section 4 we discuss other astrophysical and laboratory limits to the mass/lifetime of the tau neutrino, and finish in Section 5 with a brief summary and concluding remarks.

2 Modifications to the Standard Code

In the standard treatment of nucleosynthesis [17] it is assumed that there are three massless neutrino species that completely decouple from the electromagnetic plasma at a temperature well above that of the electron mass ($T \sim 10\text{ MeV} \gg m_e$). Thus the neutrino species do not interact with the electromagnetic plasma and do not share in the “heating” of the photons when the e^\pm pairs disappear.

In order to treat the most general case of a decaying tau neutrino we have made a number of modifications to the standard code. These modifications are of four kinds: (1) Change the total energy density to account for the massive tau neutrino and its daughter products; (2) Change the first-law of thermodynamics for the electromagnetic plasma to account for the injection of energy by tau decays and interactions with the other two neutrino seas; (3) Follow the Boltzmann equations for the phase-space distributions for electron and muon neutrinos, accounting for their interactions with one another and the electromagnetic plasma; (4) Modify the weak interaction rates that
interconvert neutrons and protons to take account of the perturbations to the electron-neutrino spectrum.

These modifications required tracking five quantities as a function of $T \equiv R^{-1}$, the neutrino temperature in the fully decoupled limit (R = the cosmic-scale factor). They are: ρ_{ν_τ}, ρ_ϕ (where ϕ is any sterile, relativistic decay product), T_γ, and Δ_e and Δ_μ, the perturbations to the electron-neutrino and mu-neutrino phase-space distributions.

Our calculations were done with two separate codes. The first code tracks ρ_{ν_τ}, ρ_ϕ, T_γ, Δ_e, and Δ_μ as a function of T, for simplicity, using Boltzmann statistics. These five quantities were then converted to functions of the photon temperature using the $T(T_\gamma)$ relationship calculated, and their values were then passed to the second code, a modified version of the standard nucleosynthesis code [17].

We now discuss in more detail the four modifications.

2.1 Energy density

There are four contributions to the energy density: massive tau neutrinos, sterile decay products, two massless neutrino species, and the EM plasma. Let us consider each in turn.

As mentioned earlier, we fix the relic abundance of tau neutrinos assuming that freeze out occurs before nucleosynthesis commences ($t \ll 1$ sec). We follow Ref. [10] in writing

$$\rho_{\nu_\tau} = r \left[\frac{\sqrt{(3.151T)^2 + m_{\nu_\tau}^2}}{3.151T} \right] \rho_{\nu_\tau}(m_{\nu_\tau} = 0) \exp(-t/\tau_{\nu_\tau}), \quad (1)$$

where r is the ratio of the number density of massive neutrinos to a massless neutrino species, the $(3.151T)^2$ term takes account of the kinetic energy of the neutrino, and the exponential factor takes account of decays. The relic abundance is taken from Ref. [10]; for a Dirac neutrino it is assumed that all four degrees are freedom are populated for masses greater than 0.3 MeV (see Ref. [10] for further discussion).

The correct statistics for all species are of course used in the nucleosynthesis code; the five quantities are passed as fractional changes (to the energy density, temperature and rates) to minimize the error made by using Boltzmann statistics in the first code.
Note that for temperatures much less than the mass of the tau neutrino,
\[\rho_{\nu\tau}/\rho_\nu (m_\nu = 0) = r m_\nu e^{-t/\tau_\nu}/3.151T, \]
which increases as the scale factor until the tau neutrinos decay; further, \(r m_\nu \) determines the energy density contributed by massive tau neutrinos and hence essentially all of their effects on nucleosynthesis. The relic neutrino abundance times mass (\(r m_\nu \)) is shown in Fig. 1.

The energy density of the sterile decay products is slightly more complicated. Since the \(\phi \)'s are massless, their energy density is governed by

\[\frac{d\rho_\phi}{dT} = \frac{4\rho_\phi}{T} - \frac{f_\phi \rho_{\nu\tau}}{T \tau_\nu}, \]

(2)

where the first term accounts for the effect of the expansion of the Universe and the second accounts for the energy dumped into the sterile sector by tau-neutrino decays. The quantity \(f_\phi \) is the fraction of the tau-neutrino decay energy that goes into sterile daughters: for \(\nu_\tau \rightarrow \phi + \nu_e \) or EM, \(f_\phi = 0.5 \); and for all other modes \(f_\phi = 0 \). Eq. (2) was integrated numerically, and \(\rho_\phi \) was passed to the nucleosynthesis code by means of a look-up table.

The neutrino seas were the most complicated to treat. The contribution of the neutrino seas was divided into two parts, the standard, unperturbed thermal contribution and the perturbation due to the slight coupling of neutrinos to the EM plasma and tau-neutrino decays,

\[\rho_\nu = \rho_{\phi_0} + \delta\rho_\nu. \]

(3)

The thermal contribution is simply \(6T^4/\pi^2 \) per massless neutrino species (two in our case). The second term is given as an integral over the perturbation to the neutrino phase-space distribution,

\[\delta\rho_\nu = \sum_{i=e,\mu} 2 (2\pi)^3 \int \rho d^3 p \Delta_i (p, t), \]

(4)

where the factor of two accounts for neutrinos and antineutrinos.

Finally, there is the energy density of the EM plasma. Since the electromagnetic plasma is in thermal equilibrium it only depends upon \(T_\gamma \):

\[\rho_{\text{EM}} = \frac{6T_\gamma^4}{\pi^2} + \frac{2m_e^3 T_\gamma}{\pi^2} \left[K_1(m_e/T_\gamma) + \frac{3K_2(m_e/T_\gamma)}{m_e/T_\gamma} \right], \]

(5)

where \(K_1 \) and \(K_2 \) are modified Bessel functions. We numerically compute \(T_\gamma \) as a function of \(T \) by using the first law of thermodynamics.
2.2 First law of thermodynamics

Energy conservation in the expanding Universe is governed by the first law of thermodynamics,
\[d[\rho_{\text{TOT}} R^3] = -p_{\text{TOT}} dR^3, \tag{6} \]
where in our case \(\rho_{\text{TOT}} = \rho_{\text{EM}} + \rho_{\nu 0} + \delta \rho_{\nu} + \rho_{\phi} + \rho_{\nu}, \) \(p_{\text{TOT}} = p_{\text{EM}} + p_{\nu 0} + \delta p_{\nu} + p_{\phi} + p_{\nu}, \) \(\delta p_{\nu} = \delta \rho_{\nu} / 3, \) \(p_{\phi} = \rho_{\phi} / 3, \) and
\[p_{\text{EM}} = \frac{2 T^4}{\pi^2} + \frac{2 m_e^2 T^2}{\pi^2} K_2(m_e / T). \tag{7} \]
Eq. (6) can be rewritten in a more useful form,
\[\frac{d T_{\gamma}}{dt} = -3 H (\rho_{\text{TOT}} + p_{\text{TOT}} - 4 \rho_{\nu 0} / 3) - d (\delta \rho_{\nu} + \rho_{\phi} + \rho_{\nu}) / dt \frac{d \rho_{\text{EM}} / d T_{\gamma}}{d \rho_{\text{EM}} / d T_{\gamma}}. \tag{8} \]
The quantity \(d \rho_{\text{EM}} / d T_{\gamma} \) is easily calculated, and the time derivatives of the densities can either be solved for analytically, or taken from the previous time step.

2.3 Neutrino phase-space distribution functions

The Boltzmann equations governing the neutrino phase-space distribution functions in the standard case were derived and solved in Ref. \[15\]. We briefly summarize that treatment here, focusing on the modifications required to include massive tau-neutrino decays.

We start with the Boltzmann equation for the phase-space distribution of neutrino species \(a \) in the absence of decays:
\[\frac{\partial f_a}{\partial t} - \frac{H |p|^2}{E_a} \frac{\partial f_a}{\partial E} = -\frac{1}{2 E_a \text{ processes}} \int d\Pi_1 d\Pi_2 d\Pi_3 (2\pi)^4 \delta^4 (p_a + p_1 - p_2 - p_3) \times |M_{a+1\leftrightarrow 2+3}|^2 [f_a f_1 - f_2 f_3], \tag{9} \]
where the processes summed over include all the standard electroweak \(2 \leftrightarrow 2 \) interactions of neutrinos with themselves and the electromagnetic plasma, and Boltzmann statistics have been used throughout.

We write the distribution functions for the electron and muon neutrinos as an unperturbed part plus a small perturbation:
\[f_i (p, t) = \exp(-p/T) + \Delta_i (p, t), \tag{10} \]
where we have assumed that both species are effectively massless. During nucleosynthesis the photon temperature begins to deviate from the neutrino temperature T, and we define

$$\delta(t) = T_{\gamma}/T - 1.$$

Eq. (3) is expanded to lowest order in Δ_i and $\delta(t)$, leading to master equations of the form:

$$\frac{p}{T} \Delta_i(p, t) = 4G_F^2 T^3 \left[-A_i(p, t) \Delta_i(p, t) + B_i(p, t) \delta(t) + C_i(p, t) + C'_i(p, t) \right], \quad (11)$$

where $i = e, \mu$ and the expressions for $A_i, B_i, C_i,$ and C'_i are given in Ref. [15] [in Eq. (2.11d) for C_μ the coefficient $(c + 8)$ should be $(c + 7)$].

In context of tau-neutrino decays we treat decay-produced muon neutrinos as a sterile species, and thus we are only interested in modifying the master equation for electron neutrinos to allow for decays. In the case of two-body decays (e.g., $\nu_\tau \rightarrow \nu_e + \phi$ or $\nu_\tau \rightarrow \nu_e + \text{EM}$) the additional term that arises on the right-hand side of Eq. (11) is

$$\frac{p}{T} \Delta_e(p, T) = \cdots + \frac{n_{\nu_e}}{\tau_\nu} \frac{2\pi^2}{pT} \delta(p - m_\nu/2), \quad (12)$$

where n_{ν_e} is the number density of massive tau neutrinos.

The decay mode $\nu_\tau \rightarrow \nu_e + e^\pm$ has a three-body final state, so that the energy distribution of electron neutrinos is no longer a delta function. In this case, the source term is

$$\frac{p}{T} \Delta_e(p, T) = \cdots + \frac{32\pi^2 n_{\nu_e} p(3 - 4p/m_\nu)}{\tau_\nu m_\nu^3 T} \theta(p - m_\nu/2), \quad (13)$$

where for simplicity we have assumed that all particles except the massive tau neutrino are ultrarelativistic.

2.4 Weak-interaction rates

Given Δ_e, it is simple to calculate the perturbations to the weak interaction rates that convert protons to neutrons and vice versa (see Ref. [15] for

\footnote{For m_ν we actually use our expression for the total tau-neutrino energy $E_\nu = \sqrt{m_\nu^2 + (3.151 T)^2}$. Except for very short lifetimes and small masses, $E_\nu \approx m_\nu$.}
details). The perturbations to the weak rates are obtained by substituting \(\exp(-p/T) + \Delta_e(p, t) \) for the electron phase-space distribution in the usual expressions for the rates [13] and then expanding to lowest order. The perturbations to the rates for proton-to-neutron conversion and neutron-to-proton conversion (per nucleon) are respectively

\[
\delta \lambda_{pn} = \frac{1}{\lambda_0 \tau_n} \int_{m_e}^\infty E dE \left(E^2 - m_e^2 \right)^{1/2} \Delta_e(E + Q) \frac{1}{2} \left(E + Q \right)^2
\]

(14)

\[
\delta \lambda_{np} = \frac{1}{\lambda_0 \tau_n} \int_{m_e}^\infty E dE \left(E^2 - m_e^2 \right)^{1/2} \Delta_e(E - Q) \frac{1}{2} \left(E - Q \right)^2
\]

(15)

where Boltzmann statistics have been used for all species, \(\tau_n \) is the neutron mean lifetime, \(Q = 1.293 \) MeV is the neutron-proton mass difference, and

\[
\lambda_0 \equiv \int_{m_e}^Q E dE \left(E^2 - m_e^2 \right)^{1/2} (E - Q)^2.
\]

The perturbations to the weak rates are computed in the first code and passed to the nucleosynthesis code by means of a look-up table. The unperturbed part of the weak rates are computed by numerical integration in the nucleosynthesis code; for all calculations we took the neutron mean lifetime to be 889 sec.

3 Results

In this section we present our results for the four generic decay modes. Mode by mode we discuss how the light-element abundances depend upon the mass and lifetime of the tau neutrino and derive mass/lifetime limits. We exclude a mass and lifetime if, for no value of the baryon-to-photon ratio, the light-element abundances can satisfy:

\[
Y_P \leq 0.24; \tag{16}
\]

\[
D/H \geq 10^{-5}; \tag{17}
\]

\[
(D + ^3 He)/H \leq 10^{-4}; \tag{18}
\]

\[
Li/H \leq 1.4 \times 10^{-10}. \tag{19}
\]

For further discussion of this choice of constraints to the light-element abundances we refer the reader to Ref. [4].
The ^4He and ^3He abundances play the most important role in determining the excluded regions. The mass/lifetime limits that follow necessarily depend upon the range of acceptable primordial abundances that one adopts, a fact that should be kept in mind when comparing the work of different authors and assessing confidence levels. Further, the relic abundances used by different authors differ by 10% to 20%. Lastly, the precise limit for a specific decay mode will of course differ slightly from that derived for its “generic class.”

In illustrating how the effects of a decaying tau neutrino depend upon lifetime and in comparing different decay modes we use as a standard case an initial (i.e., before decay and e^\pm annihilations) baryon-to-photon ratio $\eta_i = 8.25 \times 10^{-10}$. In the absence of entropy production (no decaying tau neutrino or decay modes 1 and 3 which produce no EM entropy) the final baryon-to-photon ratio $\eta_0 = 4\eta_i/11 = 3 \times 10^{-10}$, where $4/11$ is the usual factor that arises due to the entropy transfer from e^\pm pairs to photons. In the case of decay modes 2 and 4 there can be significant EM entropy production, and the final baryon-to-photon ratio $\eta = \eta_0/(S_f/S_i) \leq \eta_0$ (S_f/S_i is the ratio of the EM entropy per comoving volume after decays to that before decays). Even though η_0 does not correspond to the present baryon-to-photon ratio if there has been entropy production, we believe that comparisons for fixed η_0 are best for isolating the three different effects of a decaying tau neutrino on nucleosynthesis. For reference, in the absence of a decaying tau neutrino the ^4He mass fraction for our standard case is: $Y_p = 0.2228$ (two massless neutrino species) and 0.2371 (three massless neutrino species).

3.1 $\nu_\tau \rightarrow$ sterile daughter products

Since we are considering lifetimes greater than 0.1 sec, by which time muon neutrinos are essentially decoupled, the muon neutrino is by our definition effectively sterile, and examples of this decay mode include, $\nu_\tau \rightarrow \nu_\mu + \phi$ where ϕ is some very weakly interacting scalar particle (e.g., majoron) or $\nu_\tau \rightarrow \nu_\mu + \nu_\mu + \bar{\nu}_\mu$.

For this decay mode the only effect of the unstable tau neutrino on nucleosynthesis involves the energy density it and its daughter products contribute. Thus, it is the simplest case, and we use it as “benchmark” for comparison to the other decay modes. The light-element abundances as a function of tau-neutrino lifetime are shown in Figs. 2-4 for a Dirac neutrino of mass
20 MeV.

The energy density of the massive tau neutrino grows relative to a massless neutrino species as $\frac{r m_\nu}{3T}$ until the tau neutrino decays, after which the ratio of energy density in the daughter products to a massless neutrino species remains constant. For tau-neutrino masses in the 0.3 MeV to 30 MeV mass range and lifetimes greater than about a second the energy density of the massive tau neutrino exceeds that of a massless neutrino species before it decays, in spite of its smaller abundance (i.e., $r \ll 1$). The higher energy density increases the expansion rate and ultimately 4He production because it causes the neutron-to-proton ratio to freeze out earlier and at a higher value and because fewer neutrons decay before nucleosynthesis begins. Since the neutron-to-proton ratio freezes out around 1 sec and nucleosynthesis occurs at around a few hundred seconds, the 4He abundance is only sensitive to the expansion rate between one and a few hundred seconds.

In Fig. 2 we see that for short lifetimes ($\tau_\nu \ll 1$ sec) the 4He mass fraction approaches that for two massless neutrinos (tau neutrinos decay before their energy density becomes significant). As expected, the 4He mass fraction increases with lifetime leveling off at a few hundred seconds at a value that is significantly greater than that for three massless neutrino species.

The yields of D and 3He depend upon how much of these isotopes are not burnt to 4He. This in turn depends upon competition between the expansion rate and nuclear reaction rates: Faster expansion results in more unburnt D and 3He. Thus the yields of D and 3He increase with tau-neutrino lifetime, and begin to level off for lifetimes of a few hundred seconds as this is when nucleosynthesis is taking place (see Fig. 3).

The effect on the yield of 7Li is a bit more complicated. Lithium production decreases with increasing η for $\eta \lesssim 3 \times 10^{-10}$ because the final abundance is determined by competition between the expansion rate and nuclear processes that destroy 7Li, and increases with increasing η for $\eta \gtrsim 3 \times 10^{-10}$ because the final abundance is determined by competition between the expansion rate and nuclear processes that produce 7Li. Thus, an increase in expansion rate leads to increased 7Li production for $\eta \lesssim 3 \times 10^{-10}$ and decreased 7Li production for $\eta \gtrsim 3 \times 10^{-10}$; this is shown in Fig. 4. Put another way the valley in the 7Li production curve shifts to larger η with increasing tau-neutrino lifetime.

We show in Figs. 5 and 6 the excluded region of the mass/lifetime plane for a Dirac and Majorana tau neutrino respectively. As expected, the ex-
cluded mass range grows with lifetime, asymptotically approaching 0.3 MeV to 33 MeV (Dirac) and 0.4 MeV to 30 MeV (Majorana). We note the significant dependence of the excluded region on lifetime; our results are in good agreement with the one other work where comparison is straightforward [10], and in general agreement with Refs. [7, 12].

3.2 $\nu_\tau \rightarrow$ sterile + electromagnetic daughter products

Again, based upon our definition of sterility, the sterile daughter could be a muon neutrino; thus, examples of this generic decay mode include $\nu_\tau \rightarrow \nu_\mu + \gamma$ or $\nu_\tau \rightarrow \nu_\mu + e^\pm$. Our results here are based upon a two-body decay (e.g., $\nu_\tau \rightarrow \nu_\mu + \gamma$), and change only slightly in the case of a three-body decay (e.g., $\nu_\tau \rightarrow \nu_\mu + e^\pm$), where a larger fraction of the tau-neutrino mass goes into electromagnetic entropy.

Two effects now come into play: the energy density of the massive tau neutrino and its daughter products speed up the expansion rate, tending to increase 4He, 3He, and D production; and EM entropy production due to tau-neutrino decays reduce the baryon-to-photon ratio (at the time of nucleosynthesis), tending to decrease 4He production and to increase D and 3He production. Both effects tend to shift the 7Li valley (as a function of η_0) to larger η_0.

While the two effects have the “same sign” for D, 3He, and 7Li, they have opposite signs for 4He. It is instructive to compare 4He production as a function of lifetime to the previous “all-sterile” decay mode. Because of the effect of entropy production, there is little increase in 4He production until a lifetime greater than 1000 sec or so. For lifetimes greater than 1000 sec the bulk of the entropy release takes place after nucleosynthesis, and therefore does not affect the value of η during nucleosynthesis.

Because of the competing effects on 4He production, the impact of an unstable, massive tau neutrino on nucleosynthesis is significantly less than that in the all-sterile decay mode for lifetimes less than about 1000 sec. The excluded region of the mass/lifetime plane is shown in Figs. 5 and 6. For lifetimes greater than about 1000 sec the excluded mass interval is essentially the same as that for the all-sterile decay mode; for shorter lifetimes it is significantly smaller.

Finally, because of entropy production, the final value of the baryon-to-photon ratio is smaller for fixed initial baryon-to-photon ratio: it is reduced
by the factor by which the entropy per comoving volume is increased. In the
limit of significant entropy production \(S_f/S_i \gg 1 \), this factor is given by,
cf. Eq. (5.73) of Ref. [19],
\[
S_f/S_i \simeq 0.13 r m_\nu \sqrt{\tau_\nu/m_{P1}} \simeq 1.5 \frac{r m_\nu}{\text{MeV}} \sqrt{\frac{\tau_\nu}{1000 \text{ sec}}}.
\]
(20)
A precise calculation of entropy production for this decay mode is shown in
Fig. 7. As can be seen in the figure or from Eq. (20), entropy production
becomes significant for lifetimes longer than about 100 sec.

3.3 \(\nu_\tau \rightarrow \nu_e + \text{sterile daughter products} \)

Once again, by our definition of sterility this includes decay modes such as
\(\nu_\tau \rightarrow \nu_e + \phi \) or \(\nu_\tau \rightarrow \nu_e + \nu_\mu \bar{\nu}_\mu \). Here, we specifically considered the two-body
decay mode \(\nu_\tau \rightarrow \nu_e + \phi \), though the results for the three-body mode are
very similar.

Two effects come into play: the energy density of the massive tau neutrino
and its daughter products and the interaction of daughter electron neutrinos
with the nucleons and the ambient plasma. The first effect has been discussed
previously. The second effect leads to some interesting new effects.

Electron neutrinos and antineutrinos produced by tau-neutrino decays
increase the weak rates that govern the neutron-to-proton ratio. For short
lifetimes (\(\lesssim 30 \text{ sec} \)) and masses less than about 10 MeV the main effect is
to delay slightly the “freeze out” of the neutron-to-proton ratio, thereby
decreasing the neutron fraction at the time of nucleosynthesis and ultimately
\(^4\text{He} \) production. For long lifetimes, or short lifetimes and large masses, the
perturbations to the \(n \rightarrow p \) and \(p \rightarrow n \) rates (per nucleon) are comparable;
since after freeze out of the neutron-to-proton ratio there are about six times
as many protons as neutrons, this has the effect of increasing the neutron
fraction and \(^4\text{He} \) production. This is illustrated in Fig. 8. The slight shift
in the neutron fraction does not affect the other light-element abundances
significantly.

The excluded portion of the mass/lifetime plane is shown in Figs. 5 and
6. It agrees qualitatively with the results of Ref. [8].

\footnote{The authors of Ref. [8] use a less stringent constraint to \(^4\text{He} \) production, \(Y_\rho \leq 0.26 \); in spite of this, in some regions of the \(m_\nu - \tau_\nu \) plane their bounds are as, or even more,
for this decay mode with the all-sterile mode, the effects of electron-neutrino daughter products are clear: for long lifetimes much higher mass tau neutrinos are excluded and for short lifetimes low-mass tau neutrinos are allowed.

3.4 $\nu_\tau \to \nu_e +$ electromagnetic daughter products

Now we consider the most complex of the decay modes, where none of the daughter products is sterile. Specifically, we consider the decay mode $\nu_\tau \to \nu_e + e^\pm$, though our results change very little for the two-body decay $\nu_\tau \to \nu_e + \gamma$.

In this case all three effects previously discussed come into play: the energy density of the massive tau neutrino and its daughter products speed up the expansion rate; the entropy released dilutes the baryon-to-photon ratio; and daughter electron neutrinos increase the weak-interaction rates that control the neutron fraction. The net effect on 4He production is shown in Fig. 9 for a variety of tau-neutrino masses. The main difference between this decay mode and the previous one, $\nu_\tau \to \nu_e +$ sterile, is for lifetimes between 30 sec and 300 sec, where the increase in 4He production is less due to the entropy production which reduces the baryon-to-photon ratio at the time of nucleosynthesis.

The excluded region of the mass/lifetime plane is shown in Figs. 5 and 6. It agrees qualitatively with the results of Ref. [9]. The excluded region for this decay mode is similar to that of the previous decay mode, except that lifetimes less than about 100 sec are not excluded as entropy production has diminished 4He production in this lifetime interval.

3.5 Limits to a generic light species

We can apply the arguments for the four decay modes discussed above to a hypothetical species whose relic abundance has frozen out at a value r relative to a massless neutrino species before the epoch of primordial nucleosynthesis with the ambient plasma.

7The authors of Ref. [9] use a less stringent constraint to 4He production, $Y_P \leq 0.26$; in spite of this, in some regions of the $m_\nu - \tau_\nu$ plane their bounds are as, or even more, stringent. This is presumably due to the neglect of electron-neutrino interactions with the ambient plasma.
The previous limits become limits to rm as a function of lifetime τ and mass m, which are difficult to display. With the exception of the effect that involves daughter electron neutrinos, all other effects only depend upon rm, which sets the energy density of the massive particle and its daughter products. In Fig. 10, we show that for lifetimes greater than about 100 sec and masses greater than about 10 MeV, the 4He production is relatively insensitive to the mass of the decaying particle. This means that for lifetimes greater than about 100 sec the limit to rm should be relatively insensitive to particle mass.

We show in Fig. 11 the excluded regions of the rm-τ plane for a 20 MeV decaying particle. In deriving these limits we used the same criteria for acceptable light-element abundances and assumed three massless neutrino species. The limits to rm for decay modes without electron-neutrino daughter products are strictly independent of mass; the two other should be relatively insensitive to the particle mass for $\tau \gtrsim 100$ sec (and the actual limits are more stringent for $m > 20$ MeV).

4 Laboratory and Other Limits

There are a host of other constraints to the mass and lifetime of the tau neutrino [20]. As a general rule, cosmological arguments, such as the one presented above, pose upper limits to the tau-neutrino lifetime for a given mass: cosmology has nothing to say about a particle that decays very early since it would not have affected the “known cosmological history.” Laboratory experiments on the other hand pose lower limits to the lifetime because nothing happens inside a detector if the lifetime of the decaying particle is too long. Finally, astrophysical considerations generally rule out bands of lifetime since “signals” can only be detected if (a) the tau neutrinos escape the object of interest before decaying and (b) decay before they pass by earthly detectors.

4.1 Laboratory

The most important limits of course are the direct limits to the tau-neutrino mass. These have come down steadily over the past few years. The current upper limits are 31 MeV and 32.6 MeV [13].
If the tau neutrino has a mass greater than $2m_e = 1.02\text{ MeV}$, then the decay $\nu_\tau \to \nu_e + e^\pm$ takes place through ordinary electroweak interactions at a rate

$$\Gamma = \frac{G_F^2 m_\nu^5}{192\pi^3} |U_{e\tau}|^2 |U_{ee}|^2 \simeq \frac{(m_\nu/\text{MeV})^5 |U_{e\tau}|^2}{2.9 \times 10^4 \text{ sec}},$$

(21)

where $U_{e\tau}$ and U_{ee} are elements of the unitary matrix that relates mass eigenstates to weak eigenstates, the leptonic equivalent of the Cabbibo-Kobayashi-Maskawa matrix. We note that the rate could be larger (or even perhaps smaller) in models where the decay proceeds through new interactions. Thus, limits to $U_{e\tau}$ give rise to model-dependent limits to the tau-neutrino lifetime.

A number of experiments have set limits to $U_{e\tau}$. The most sensitive experiment in the mass range $1.5\text{ MeV} < m_\nu < 4\text{ MeV}$ was performed at the power reactor in Gosgen, Switzerland [21], which produces tau neutrinos at a rate proportional to $|U_{e\tau}|^2$ through decay of heavy nuclei and $\nu_e - \nu_\tau$ mixing. Above this mass range, experiments that search for additional peaks in the positron spectrum of the $\pi^+ \to e^+\nu$ decay (due to $\nu_e - \nu_\tau$ mixing) provide the strictest limits. In the mass range $4\text{ MeV} < m_\nu < 20\text{ MeV}$, Bryman et al. [22] set the limits shown in Fig. 12; for larger masses the best limits come from Ref. [23].

There are also direct accelerator bounds to the lifetime of an unstable tau neutrino that produces a photon or e^\pm pair. In particular, as has been recently emphasized by Babu et al. [24], the BEBC beam dump experiment [25] provides model-independent limits based upon the direct search for the EM decay products. These limits, while not quite as strict as those mentioned above, are of interest since they apply to the photon mode and to the e^\pm mode even if the decay proceeds through new interactions. The limit,

$$\tau_\nu > 0.18 (m_\nu/\text{MeV}) \text{ sec},$$

(22)

is shown in Fig. 12.

4.2 Astrophysical

The standard picture of type II supernovae has the binding energy of the newly born neutron star (about $3 \times 10^{53}\text{ erg}$) shared equally by neutrinos of all species emitted from a neutrinosphere of temperature of about 4 MeV. There are two types of limits based upon SN 1987A, and combined they rule out a large region of $m_\nu - \tau_\nu$ plane.
First, if the tau neutrino decayed after it left the progenitor supergiant, which has a radius $R \simeq 3 \times 10^{12} \text{cm}$, the high-energy daughter photons could have been detected $[26, 27, 28]$. The Solar Maximum Mission (SMM) Gamma-ray Spectrometer set an upper limit to the fluence of γ rays during the ten seconds in which neutrinos were detected:

$$f_\gamma < 0.9 \text{ cm}^{-2}; \quad 4.1 \text{ MeV} < E_\gamma < 6.4 \text{ MeV}. \quad (23)$$

As we will see shortly, if only one in 10^{10} of the tau neutrinos leaving the supernova produced a photon, this limit would have been saturated. In the mass regime of interest there are two ways out of this constraint: The lifetime can be so long that the arrival time was more than ten seconds after the electron antineutrinos arrived, or the lifetime can be so short that the daughter photons were produced inside the progenitor. We can take account of both of these possibilities in the following formula for the expected fluence of γ rays:

$$f_{\gamma,10} = f_{\nu\bar{\nu}} W_\gamma B_\gamma \langle F_1 F_2 \rangle \quad (24)$$

where the subscript 10 reminds us that we are only interested in the first ten seconds, $f_{\nu\bar{\nu}} \simeq 1.4 \times 10^{10} \text{ cm}^{-2}$ is the fluence of a massless neutrino species, $W_\gamma \sim 1/4$ is the fraction of decay photons produced with energies between 4.1 MeV and 6.4 MeV, F_1 is the fraction of tau neutrinos that decay outside the progenitor, and F_2 is the fraction of these that decay early enough so that the decay products were delayed by less than ten seconds. The quantity B_γ is the branching ratio to a decay mode that includes a photon. For $m_\nu \gtrsim 1 \text{ MeV}$ one expects the $\nu_e + e^\pm$ mode to be dominant; however, ordinary radiative corrections should lead to $B_\gamma \simeq 10^{-3}$ $[29]$. Finally angular brackets denote an average over the Fermi-Dirac distribution of neutrino momenta,

$$\langle A \rangle \equiv \frac{1}{1.5 \zeta(3) T^3} \int_0^\infty \frac{A dp p^2}{e^{E/T} + 1}, \quad (25)$$

where $T \simeq 4 \text{ MeV}$ is the temperature of the neutrinosphere and $E = (p^2 + m_\nu^2)^{1/2}$.

To evaluate the fluence of gamma rays we need to know F_1 and F_2. The fraction F_1 that decay outside the progenitor is simply e^{-t_1/τ_L} where $t_1 = R/v = RE/p$ and the “lab” lifetime $\tau_L = \tau E/m_\nu$. Of these, the fraction whose decay products arrive after ten seconds is $e^{-t_2/\tau_L}/e^{-t_1/\tau_L}$ where $t_2 = (26, 27, 28)$.
10 sec/(1 − v/c); thus, \(F_2 = 1 - e^{(t_1 - t_2)/\tau_L} \). Figure 12 shows this constraint assuming a branching ratio \(B_\gamma = 10^{-3} \).

The second constraint comes from observing that if tau neutrinos decayed within the progenitor supergiant, the energy deposited (up to about \(10^{53} \) erg) would have “heated up” the progenitor so much as to conflict with the observed optical luminosity of SN 1987A (and other type II supernovae) \[29, 30\]. We require

\[
E_{\text{input}} = \langle (1 - F_1) \rangle E_\nu \lesssim 10^{47} \text{ erg}, \tag{26}
\]

where \(E_\nu \sim 10^{53} \) erg is the energy carried off by a massless neutrino species, and \(1 - F_1 \) is the fraction of tau neutrinos that decay within the progenitor. This constraint is mode-independent since decay-produced photons or \(e^\pm \) pairs will equally well “overheat” the progenitor. As Fig. 12 shows, the “supernova-light” bound is extremely powerful.

Finally, a note regarding our SN 1987A constraints. We have assumed that a massive tau-neutrino species has a Fermi-Dirac distribution with the same temperature as a massless (\(m_\nu \ll 10 \text{ MeV} \)) neutrino species. This is almost certainly false. Massive (\(m_\nu \gtrsim 10 \text{ MeV} \) or so) tau neutrinos will drop out of chemical equilibrium (maintained by pair creation/annihilations and possibly decays/inverse decays) interior to the usual neutrinosphere as the Boltzmann factor suppresses annihilation and pair creation rates relative to scattering rates. This leads us to believe that we have actually underestimated the fluence of massive neutrinos. While the problem has yet to be treated rigorously, we are confident that, if anything, our simplified treatment results in limits that are overly conservative. Accurate limits await a more detailed analysis \[31\].

4.3 Cosmological

The most stringent cosmological constraint for masses \(0.1 \text{ MeV} \lesssim m \lesssim 100 \text{ MeV} \) is the nucleosynthesis bound discussed in this paper. Nonetheless, it is worthwhile to mention some of the other cosmological limits since they are based upon independent arguments. A stable tau neutrino with mass in the MeV range contributes much more energy density than is consistent with the age of the Universe. Such a neutrino must be unstable, with a lifetime short enough for its decay products to lose enough most of their energy to
“red shifting”\cite{32}. The lifetime limit is mass dependent; a neutrino with a mass of about 1 MeV must have a lifetime shorter than about 10^9 sec, and the constraint gets less severe for larger or smaller masses. There is an even more stringent bound based the necessity of the Universe being matter dominated by a red shift of about 10^4 in order to produce the observed large-scale structure\cite{33}. Finally, there are other nucleosynthesis bounds based upon the dissociation of the light elements by decay-produced photons or electron-neutrinos\cite{14} and by e^\pm pairs produced by the continuing annihilations of tau neutrinos\cite{34}.

5 Summary and Discussion

We have presented a comprehensive study of the effect of an unstable tau neutrino on primordial nucleosynthesis. The effects on the primordial abundances and the mass/lifetime limits that follow depend crucially upon the decay mode. In the context of primordial nucleosynthesis we have identified four generic decay modes that bracket the larger range of possibilities: (1) all-sterile daughter products; (2) sterile daughter product(s) + EM daughter product(s); (3) ν_e + sterile daughter product(s); and (4) ν_e + EM daughter product(s). The excluded regions of the tau-neutrino mass/lifetime plane for these four decay modes are shown in Figs. 5 (Dirac) and 6 (Majorana).

In the limit of long lifetime ($\tau_\nu \gg 100$ sec), the excluded mass range is: 0.3 MeV – 33 MeV (Dirac) and 0.4 MeV – 30 MeV (Majorana). Together with current laboratory upper mass limits, 31 MeV (ARGUS) and 32.6 MeV (CLEO), our results very nearly exclude a long-lived, tau neutrino more massive than about 0.4 MeV. Moreover, other astrophysical and laboratory data exclude a tau-neutrino in the 0.3 MeV – 50 MeV mass range if its decay product(s) include a photon or e^\pm pair. Thus, if the mass of the tau neutrino is the range 0.4 MeV to 30 MeV, then its decay products cannot include a photon or an e^\pm pair and its lifetime must be shorter than a few hundred seconds.

We note that the results of Ref.\cite{12} for the all-sterile decay mode are more restrictive than ours, excluding masses from about 0.1 MeV to about 50 MeV for $\tau_\nu \gg 100$ sec. This traces in almost equal parts to (i) small ($\Delta Y \simeq +0.003$), but significant, corrections to the 4He mass fraction and (ii) slightly larger relic neutrino abundance. With regard to the first differ-
ence, this illustrates the sensitivity to the third significant figure of the 4He mass fraction. With regard to the second difference, it is probably correct that within the assumptions made the tau-neutrino abundance during nucleosynthesis is larger than what we used. However, other effects that have been neglected probably lead to differences in the tau-neutrino abundance of the same magnitude. For example, for tau-neutrino masses around the upper range of excluded masses, 50 MeV – 100 MeV, finite-temperature corrections, hadronic final states (e.g., a single pion), and tau-neutrino mixing have not been included in the annihilation cross section and are likely to be important at the 10% level.

So is a tau neutrino with lifetime greater than a few hundred seconds and mass greater than a fraction of an MeV ruled out or not? Unlike a limit based upon a laboratory experiment, it is impossible to place standard error flags on an astrophysical or cosmological bound. This is because of assumptions that must be made and modeling that must be done. For example, the precise limits that one derives depend upon the adopted range of acceptable light-element abundances. To be specific, in Ref. [12] the upper limit of the excluded mass range drops to around 38 MeV and the lower limit increases to about 0.4 MeV when the primordial 4He mass fraction is allowed to be as large as 0.245 (rather than 0.240). In our opinion, a very strong case has been made against a tau-neutrino mass in the mass range 0.4 MeV to 30 MeV with lifetime much greater than 100 sec; together with the laboratory limits this very nearly excludes a long-lived, tau neutrino of mass greater than 0.4 MeV.

Perhaps the most interesting thing found in our study is the fact that a tau neutrino of mass 1 MeV to 10 MeV and lifetime 0.1 sec to 10 sec that decays to an electron neutrino and a sterile daughter product can very significantly decrease the 4He mass fraction (to as low as 0.18 or so). It has long been realized that the standard picture of nucleosynthesis would be in trouble if the primordial 4He mass fraction were found to be smaller than about 0.23; within the standard framework we have found one way out: an unstable tau neutrino.\footnote{Based upon dimensional considerations the lifetime for the mode $\nu_\tau \rightarrow \nu_e + \phi$ is expected to be $\tau_\nu \sim 8\pi f^2/m_\nu^3$, where f is the energy scale of the superweak interactions that mediate the decay. For $\tau_\nu \sim 10$ sec and $m_\nu \sim 10$ MeV, $f \sim 10^9$ GeV.} In principle, the possibility of an unstable tau neutrino also loosens the primordial-nucleosynthesis bound to the number of light species.
which is largely based on the overproduction of ^4He. However, an unstable tau neutrino does not directly affect the primordial important nucleosynthesis bound to the baryon-to-photon ratio (and Ω_B) as this bound involves the abundances of D, ^3He, and ^7Li and not ^4He.

Finally, we translated our results for the tau neutrino into limits to the relic abundance of an unstable, hypothetical particle species that decays into one of the four generic decay models discussed. Those very stringent limits are shown in Fig. 11.

We thank Robert Scherrer, David Schramm, Gary Steigman, and Terry Walker for useful comments. This work was supported in part by the DOE (at Chicago and Fermilab), by the NASA through NAGW-2381 (at Fermilab), and GG’s NSF predoctoral fellowship. MST thanks the Aspen Center for Physics for its hospitality where some of this work was carried out.

References

[1] J. Yang, M.S. Turner, G. Steigman, D.N. Schramm, and K.A. Olive, *Astrophys. J.* **281**, 493 (1984).

[2] T.P. Walker et al., *Astrophys. J.* **376**, 51 (1991).

[3] G. Steigman, D.N. Schramm, and J. Gunn, *Phys. Lett. B* **66**, 202 (1977); also see, V.F. Shvartsman, *JETP Lett.* **9**, 184 (1969).

[4] For a recent review of cosmological limits based upon primordial nucleosynthesis see e.g., R.A. Malaney and G.J. Mathews, *Phys. Repts.* **229**, 145 (1993).

[5] E.W. Kolb and R.J. Scherrer, *Phys. Rev. D* **25**, 1481 (1982).

[6] R.J. Scherrer and M.S. Turner, *Astrophys. J.* **331**, 19 (1988).

[7] R.J. Scherrer and M.S. Turner, *Astrophys. J.* **331**, 33 (1988).
[8] N. Terasawa and K. Sato, *Phys. Lett. B* **185**, 412 (1987).

[9] N. Terasawa, M. Kawasaki, and K. Sato, *Nucl. Phys. B* **302**, 697 (1988).

[10] E.W. Kolb et al., *Phys. Rev. Lett.* **67**, 533 (1991).

[11] A. Dolgov and I. Rothstein, *Phys. Rev. Lett.* **71**, 476 (1993).

[12] M. Kawasaki et al., Ohio State University preprint OSU-TA-5/93 (1993).

[13] D. Cinabro et al. (CLEO Collaboration), *Phys. Rev. Lett.* **70**, 3700 (1993); H. Albrecht et al. (ARGUS Collaboration), *Phys. Lett. B* **292**, 221 (1992). Also see, H. Albrecht et al., *Phys. Lett. B* **202**, 149 (1988); K. Hikasa et al. (Particle Data Group), *Phys. Rev. D* **45**, S1 (1992); D.F. Cowen, in *Second Workshop on Tau-lepton Physics*, edited by K.K. Gan (WSPC, Singapore, 1993), p. 445; S.E. Csorna et al., *Phys. Rev. D* **35**, 2747 (1987).

[14] D.N. Lindley, *Mon. Not. R. astr. Soc.* **188**, 15 (1979); *Astrophys. J.* **294**, 1 (1985); J. Audouze, D.N. Lindley, and J. Silk, *ibid* **293**, L53 (1985); N. Terasawa, M. Kawasaki, and K. Sato, *Nucl. Phys. B* **302**, 697 (1988); R.J. Scherrer, *Mon. Not. R. astr. Soc.* **210**, 359 (1984); J. Gratsias et al., *Phys. Lett. B* **262**, 298 (1991); A.A. de Laix and R.J. Scherrer, *Phys. Rev. D* **48**, 562 (1993).

[15] S. Dodelson and M.S. Turner, *Phys. Rev. D* **46**, 3372 (1992).

[16] H.-S. Kang, M. Kawasaki, and G. Steigman, *Nucl. Phys. B* **402**, 323 (1993).

[17] M. Smith, L.H. Kawano, and R.A. Malaney, *Astrophys. J. Suppl.* **85**, 219 (1993); L. Kawano, FERMILAB-Pub-92/04-A, (1992).

[18] S. Weinberg, *Gravitation and Cosmology* (J. Wiley, New York, 1972), Ch. 15.

[19] E.W. Kolb and M.S. Turner, *The Early Universe* (Addison-Wesley, Redwood City, CA, 1990), Ch. 4.

[20] A nice review of many of these constraints can be found in S. Sarkar and A.M. Cooper, *Phys. Lett. B* **148**, 347 (1984).
[21] L. Oberauer, F. Von Feilitzsch, and R.L. Mossbauer, *Phys. Lett. B* **198**, 113 (1987).

[22] D.A. Bryman et al., *Phys. Rev. Lett.* **50**, 1546 (1983).

[23] N. De Leener-Rosier et al., *Phys. Lett. B* **177**, 228 (1986).

[24] K.S. Babu, T.M. Gould, and I.Z. Rothstein, hep-ph/9310349 (1993).

[25] A.M. Cooper-Sarkar et al., *Phys. Lett. B* **160**, 207 (1985).

[26] D.J. Forrest et al., *Sol. Phys.* **65**, 15 (1980); E.L. Chupp, W.T. Vestrand, and C. Reppin, *Phys. Rev. Lett.* **62**, 505 (1989).

[27] E.W. Kolb and M.S. Turner, *Phys. Rev. Lett.* **62**, 509 (1989).

[28] Another, probably more stringent limit based upon SN 1987A follows the analysis of data from a gamma-ray detector on the late Pioneer Venus Orbiter (PVO); A. Jaffe and M.S. Turner, work in preparation (1993).

[29] R.N. Mohapatra, S. Nussinov, and X. Zhang, Univ. of Maryland preprint 94-42 (1993). These authors also suggest other ways, besides the expected branching ratio of 10^{-3} due to radiative corrections, in which decay-produced e^\pm might convert into photons.

[30] R. Cowsik, D.N. Schramm, and P. Hoffich, *Phys. Lett. B* **218**, 91 (1989). This is an application of the original argument made by S.W. Falk and D.N. Schramm, *Phys. Lett. B* **79**, 511 (1978).

[31] G. Sigl and M.S. Turner, work in preparation (1993).

[32] D. Dicus, E.W. Kolb, and V. Teplitz, *Phys. Rev. Lett.* **39**, 168 (1977).

[33] G. Steigman and M.S. Turner, *Nucl. Phys. B* **253**, 375 (1985).

[34] J.A. Frieman, E.W. Kolb, and M.S. Turner, *Phys. Rev. D* **41**, 3080 (1990).
6 Figure Captions

Figure 1: The relic neutrino abundance used in our calculations as a function of neutrino mass: Dirac neutrino, including both helicity states (solid curve), and Majorana neutrino (broken curve); results from Ref. [10].

Figure 2: The 4He yield as a function of tau-neutrino lifetime for the four generic decay modes, a 20 MeV Dirac neutrino, and a baryon-to-photon ratio that in the absence of entropy production leads to a present value $\eta_0 = 3 \times 10^{-10}$. For reference, the 4He yield in the absence of a decaying tau neutrino is $Y_P = 0.2228$ (2 massless neutrinos) and 0.2371 (3 massless neutrinos).

Figure 3: The D (solid) and D + 3He (broken) yields as a function of tau-neutrino lifetime for the all-sterile decay mode, $\eta = 3 \times 10^{-10}$, and a 20 MeV Dirac neutrino.

Figure 4: The 7Li yield as a function of tau-neutrino lifetime for the all-sterile decay mode, $\eta = 10^{-10}$ (solid) and 10^{-9} (broken), and a 20 MeV Dirac neutrino.

Figure 5: Excluded regions of the mass-lifetime for a Dirac neutrino and the four generic decay modes. The excluded regions are to the right of the curves; our results are not applicable to the region labeled N/A as tau-neutrino inverse decays can be important and have not been included (see Ref. [12]).

Figure 6: Excluded regions of the mass-lifetime for a Majorana neutrino and the four generic decay modes. The excluded regions are to the right of the curves; our results are not applicable to the region labeled N/A as inverse decays can be important.

Figure 7: Entropy production as a function of tau-neutrino lifetime for a Dirac neutrino of mass 1, 5, 10, 20 MeV and the $\nu_\tau \to \phi + \text{EM}$ decay mode. S_f/S_i is the ratio of the entropy per comoving volume before and after tau-neutrino decays.

Figure 8: 4He yield as a function of tau-neutrino lifetime for the $\nu_\tau \to \nu_e + \phi$ decay mode, $\eta = 3 \times 10^{-10}$, and Dirac masses of 1, 5, 10, 20 MeV.
For reference, the 4He yield in the absence of a decaying tau neutrino is $Y_P = 0.2228$ (2 massless neutrinos) and 0.2371 (3 massless neutrinos).

Figure 9: 4He yield as a function of tau-neutrino lifetime for the $\nu_\tau \to \nu_\mu + \text{EM}$ decay mode, $\eta_0 = 3 \times 10^{-10}$, and Dirac masses of 1, 5, 10, 20 MeV. For reference, the 4He yield in the absence of a decaying tau neutrino is $Y_P = 0.2228$ (2 massless neutrinos) and 0.2371 (3 massless neutrinos).

Figure 10: 4He yield as a function of lifetime for the $\nu_\mu + \phi$ decay mode, $\eta_0 = 3 \times 10^{-10}$, $r_m = 3.5$, and masses of 5, 10, 20, 30 MeV. For reference, the 4He yield in the absence of a decaying tau neutrino is $Y_P = 0.2228$ (2 massless neutrinos) and 0.2371 (3 massless neutrinos).

Figure 11: Excluded regions of the $r_m - \tau$ plane for the four different decay modes and a 20 MeV mass particle. The limits for the first two decay modes are strictly independent of mass; for the last two decay modes they should be relatively insensitive to mass for $\tau \gtrsim 100$ sec (and actually more stringent than those shown here for $m > 20$ MeV). Excluded regions are above the curves.

Figure 12: Regions of the tau-neutrino mass-lifetime plane excluded by laboratory experiments and astrophysical arguments. The excluded regions are to the side of the curve on which the label appears. The dashed curve summarizes a host of different laboratory limits to $|U_{e\tau}|^2$, translated to a model-dependent bound to $\tau_{\nu}(\nu_\tau \to \nu_\mu \pm)$, cf. Eq. (21). SNL denotes the supernova-light constraint which extends to lifetimes shorter than those shown here.