Global Burden of Atherosclerotic Cardiovascular Disease in People Living with the Human Immunodeficiency Virus

Citation for published version:
Shah, ASV, Stelzle, D, Lee, KK, Beck, EJ, Alam, S, Clifford, S, Longenecker, CT, Strachan, FE, Bagchi, S, Whiteley, W, Rajagopal, S, Kottilil, S, Nair, H, Newby, DE, McAllister, DA & Mills, NL 2018, 'Global Burden of Atherosclerotic Cardiovascular Disease in People Living with the Human Immunodeficiency Virus: A Systematic Review and Meta-Analysis' Circulation. DOI: 10.1161/CIRCULATIONAHA.117.033369

Digital Object Identifier (DOI):
10.1161/CIRCULATIONAHA.117.033369

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Circulation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Global Burden of Atherosclerotic Cardiovascular Disease in People Living With HIV
Systematic Review and Meta-Analysis

BACKGROUND: With advances in antiretroviral therapy, most deaths in people with HIV are now attributable to noncommunicable illnesses, especially cardiovascular disease. We determine the association between HIV and cardiovascular disease, and estimate the national, regional, and global burden of cardiovascular disease attributable to HIV.

METHODS: We conducted a systematic review across 5 databases from inception to August 2016 for longitudinal studies of cardiovascular disease in HIV infection. A random-effects meta-analysis across 80 studies was used to derive the pooled rate and risk of cardiovascular disease in people living with HIV. We then estimated the temporal changes in the population-attributable fraction and disability-adjusted life-years (DALYs) from HIV-associated cardiovascular disease from 1990 to 2015 at a regional and global level. National cardiovascular DALYs associated with HIV for 2015 were derived for 154 of the 193 United Nations member states. The main outcome measure was the pooled estimate of the rate and risk of cardiovascular disease in people living with HIV and the national, regional, and global estimates of DALYs from cardiovascular disease associated with HIV.

RESULTS: In 793,635 people living with HIV and a total follow-up of 3.5 million person-years, the crude rate of cardiovascular disease was 61.8 (95% CI, 45.8–83.4) per 10,000 person-years. In comparison with individuals without HIV, the risk ratio for cardiovascular disease was 2.16 (95% CI, 1.68–2.77). Over the past 26 years, the global population-attributable fraction from cardiovascular disease attributable to HIV increased from 0.36% (95% CI, 0.21%–0.56%) to 0.92% (95% CI, 0.55%–1.41%), and DALYs increased from 0.74 (95% CI, 0.44–1.16) to 2.57 (95% CI, 1.53–3.92) million. There was marked regional variation with most DALYs lost in sub-Saharan Africa (0.87 million, 95% CI, 0.43–1.70) and the Asia Pacific (0.39 million, 95% CI, 0.23–0.62) regions. The highest population-attributable fraction and burden were observed in Swaziland, Botswana, and Lesotho.

CONCLUSIONS: People living with HIV are twice as likely to develop cardiovascular disease. The global burden of HIV-associated cardiovascular disease has tripled over the past 2 decades and is now responsible for 2.6 million DALYs per annum with the greatest impact in sub-Saharan Africa and the Asia Pacific regions.

CLINICAL TRIAL REGISTRATION: URL: https://www.crd.york.ac.uk/prospero. Unique identifier: CRD42016048257.

Key Words: cardiovascular diseases ◼ global burden of disease ◼ HIV ◼ myocardial infarction ◼ stroke

Sources of Funding, see page 1109
Clinical Perspective

What Is New?

- Recent studies have identified plausible biological mechanisms, including endothelial dysfunction and arterial inflammation, to explain the association between HIV infection and atherosclerotic disease.
- This article represents a systematic analysis to evaluate the association between HIV and cardiovascular disease and estimate the burden of HIV-associated cardiovascular disease at a national, regional, and global level.
- We report that the risk of cardiovascular disease is increased 2-fold in people living with HIV, and the global burden of HIV-associated cardiovascular disease has tripled over the past 2 decades with the majority of the burden experienced in sub-Saharan Africa and the Asia Pacific region.

What Are the Clinical Implications?

- The combined burden of HIV and cardiovascular disease, especially in high-prevalence regions, has important implications with respect to regional health policies, guidelines, and resource allocation.
- Risk stratification and identification of patients at risk of future cardiovascular disease are already challenging in these regions.
- Whether patients living with HIV should be considered high-risk and appropriate primary prevention pharmacotherapy such as statin therapy should be implemented remains unclear.
- Our estimates have important policy implications for implementing appropriate cardiovascular risk stratification and treatment strategies across healthcare systems, especially in low- and middle-income nations where both HIV and cardiovascular disease remain highly prevalent.

Currently, >35 million people are infected with HIV, with two-thirds being resident in sub-Saharan Africa.1 Although the global incidence for HIV has stabilized, the provision and widespread distribution of combined antiretroviral therapy2 has dramatically improved survival with the prevalence of HIV steadily increasing over the past 2 decades.3 This improvement in survival has been primarily attributed to a reduction in opportunistic infections, especially in the low- and middle-income nations.1,4 Indeed, most deaths now arise from noncommunicable illnesses, especially cardiovascular disease.5-7

Cardiovascular disease is the leading cause of morbidity and mortality worldwide.8,9 The past 2 decades have seen a substantial increase in the morbidity attributable to cardiovascular disease, with a significant proportion of the burden borne by low- and middle-income nations.10,11 The highest prevalence rates of HIV have been observed in sub-Saharan Africa. This region has also seen a steady increase in the burden of cardiovascular disease over the past 2 decades.2,12 Recent studies have shown a link between the development of cardiovascular disease and HIV infection with multiple potential mechanisms, including direct vascular inflammation,13,14 dyslipidemia,15 and insulin resistance.16,17

The aim of this systematic analysis was to review and to meta-analyze the rate of cardiovascular disease in people living with HIV, to determine the association between HIV infection and the risk of cardiovascular disease, and to estimate the national, regional, and global burden of HIV-associated cardiovascular disease.

METHODS

Data and the corresponding R analysis code will be available at https://github.com/anoopsshah/hiv_cvd.

Databases, Sources, and Searches

We searched MEDLINE, EMBASE, Global Health, Cumulative Index to Nursing and Allied Health Literature, and Web of Science by using the following key words: myocardial infarction, stroke, cerebrovascular disease, cardiovascular disease, and HIV (Text I in the online-only Data Supplement). Bibliographic reference lists of studies selected for inclusion in our meta-analysis and relevant review articles were manually searched (Figure 1). We limited our search to studies published between 1948 and August 30, 2016.

Selection of Articles, Extraction of Data, and Data Synthesis

All longitudinal studies, including case-control, cohort, and randomized controlled trials, were included. There were no language restrictions, and only peer-reviewed original articles were included. Many studies provided data on the same cohort at extended follow-up time points. In such cases, we selected the published study with the longest follow-up period. Data were extracted independently, and any discrepancies were adjudicated by 4 investigators (A.S.V.S., D.S., K.K.L., and S.A.). We contacted authors for additional data or clarification where required. The study methodology, results, and presentation were conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (Table I in the online-only Data Supplement).18

Crude Rate

The pooled incident crude rates of cardiovascular disease studies were only included if they provided the number of cardiovascular events (fatal or nonfatal myocardial infarction or stroke) and the follow-up period. Crude incidence rates were pooled per 10 000 person-years and presented for all incident cardiovascular events and deaths. The analysis was stratified by etiology classified as either myocardial infarction or cerebrovascular disease, where applicable.

Risk Ratio

For estimating the pooled risk ratios of cardiovascular disease, cases were defined as any hospitalization with,
or mortality from, cardiovascular events (fetal or nonfetal myocardial infarction or stroke) in individuals with and without HIV. Studies were also included if the outcome was defined as a cardiovascular event and included but was not exclusive to myocardial infarction or stroke. Risk ratio estimates for disease incidence and case fatality for cardiovascular events in HIV-infected populations in comparison with populations not infected by HIV were pooled and presented with 95% CIs.

Pooled risk ratio estimates were assessed for publication bias by visually assessing funnel plots and for asymmetry by using the Egger regression test. The trim-and-fill method was used to adjust for selection bias attributable to potential unpublished studies or bias attributable to small-study effects. Sensitivity analysis was performed by removing studies where adjustment for important confounders was omitted (Table II in the online-only Data Supplement). Across both the pooled rate and risk ratios, subgroup analysis was only performed where ≥3 estimates were available. Studies providing estimates for the risk ratio were further stratified by type of event and publication year.

Regional and Global Estimates for HIV Prevalence and Cardiovascular Disability-Adjusted Life-Years
Global and regional estimates of cardiovascular disease attributable to HIV were derived annually from 1990 to 2015.

Cardiovascular Disability-Adjusted Life-Years
National disability-adjusted life-year (DALY) estimates for cardiovascular disease (consisting of the sum of DALYs attributable to ischemic heart disease and stroke) were available from the Institute of Health Metrics and Evaluation. Countries were grouped into Joint United Nations Programme on HIV/AIDS (UNAIDS) regions (Table III in the online-only Data Supplement). The DALYs for cardiovascular disease in each country were summed to derive the regional cardiovascular burden. These data were available at 5-year intervals, from 1990 to 2015, with intervening years obtained via linear interpolation.

Regional Prevalence of HIV
Prevalence estimates for HIV were available from 1990 to 2015, for the population from 15 to 49 years of age, from UNAIDS at a global and regional level.

Population-Attributable Fraction and HIV-Attributable Cardiovascular DALYs
At the global and regional levels, we applied the HIV prevalence estimates for the 15- to 49-year age group across the entire adult population. As such, the calculated population-attributable fraction was applied to the entire adult population when calculating the cardiovascular DALYs attributable to HIV at global and regional levels.

National Estimates for HIV Prevalence and Cardiovascular DALYs
National estimates of HIV prevalence and cardiovascular burden were available from 160 and 179 countries, respectively, of the 193 United Nations member states, and both were available from 154 countries. National HIV prevalence estimates were available for the >15-years age group for 2016, and national DALY estimates for cardiovascular disease were available for 2015.

We also calculated estimates of burden in the nations with a high HIV prevalence by combining data for the UNAIDS-defined 21 Global Plan priority countries (Table III in the online-only Data Supplement). National-level data for cardiovascular DALYs for 2015 and HIV prevalence for 2016 were available for 20 of the 21 Global Plan priority countries (Table III in the online-only Data Supplement).

Statistical Analysis
Using the pooled risk ratio for cardiovascular disease in people living with HIV and the prevalence of HIV, we estimated the population-attributable risk fraction at national, regional, and global levels. At regional and global levels, we further estimated the yearly changes in attributable risk to take into account temporal changes in the population prevalence of HIV. The population-attributable fraction for HIV for cardiovascular disease was calculated as described previously.

Population Attributable Fraction = \frac{\text{Prevalence} \times (\text{Risk Ratio} - 1)}{1 + \text{Prevalence} \times (\text{Risk Ratio} - 1)}

We anticipated heterogeneity between studies when estimating both the crude incidence rates and the risk ratio because of different study designs, methods of analysis and varying adjustment, and geographical and population differences. We therefore used a random-effects model with the maximum likelihood estimator to account for both within- and between-study heterogeneity. Heterogeneity, when estimating the pooled estimate of the risk ratio, was examined using the standard \(I^2 \) test. Publication or small-study bias was assessed using the regression test, and the trim-and-fill method was used for correcting funnel plot asymmetry. Risk of bias was assessed at a study level according to the level of adjustment undertaken (Table II in the online-only Data Supplement). Studies at low risk of bias were defined if adjustment of age, sex, and at least 1 other covariate was undertaken. Moderate risk was defined as adjustment of at least age or sex, and studies were classified as high-risk if no adjustment was undertaken. Full statistical methods are explained in the online-only Data Supplement (Text II in the online-only Data Supplement, Figure IA and IB in the online-only Data Supplement). All analyses were performed in R Version 3.2.3 with the estimates derived using the metafor package. Statistical significance was taken as a 2-sided \(P < 0.05 \).

RESULTS
A total of 80 studies were identified to estimate the rate and risk ratio of cardiovascular disease in people living with HIV. One hundred twenty-two estimates from 73 studies were used to calculate the pooled crude incidence rates of fatal and nonfatal cardiovascular disease in people living with HIV (Table IV in the online-only...
This comprised 793,635 people with HIV and a total follow-up of 3.5 million person-years. The crude incidence rate for cardiovascular disease per 10,000 person-years was 61.8 (95% CI, 45.8–83.4). When stratified by incident myocardial infarction and stroke, the rate was 25.9 (95% CI, 20.3–33.0) and 17.9 (95% CI, 13.2–24.3), respectively (Figure IIA through IIC in the online-only Data Supplement). The cardiovascular mortality rate was 14.1 per 10,000 person-years (95% CI, 10.3–19.4) (Figure IID through IIF in the online-only Data Supplement). Of the 122 estimates, only 12 (9.8%) estimates (across 11 studies) provided information on crude rates in the non-HIV population (Table V in the online-only Data Supplement).

A further 17 estimates from 16 studies were identified to estimate the pooled risk ratio of incident cardiovascular disease in individuals with HIV infection (Table, Figure 2B). Studies originated mainly from Europe, North America, and the Asia Pacific region with few studies from low- and middle-income nations (Table) and primarily involving black and white participants (Table VI in the online-only Data Supplement). The majority of studies used physician diagnosis or the International Classification of Diseases coding system to define cardiovascular disease. The pooled risk ratio was 2.16 (95% CI, 1.68–2.77) (Figure 2B). The risk ratio when stratified by type of event was 2.36 (95% CI, 1.50–3.70) for any cardiovascular disease (including myocardial infarction and stroke), 1.79 (95% CI, 1.54–2.08) for myocardial infarction, and 2.56 (95% CI, 1.43–4.61) for stroke. Risk ratios for older studies, those with moderate/high risk of bias, and those with longer follow-up were larger (Table VII in the online-only Data Supplement). Selection bias attributable to potential unpublished studies or to small-study effects was noticed for the overall risk ratio. Imputing for asymmetry using the trim-and-fill method did not alter the effect direction, but, as expected, did attenuate the effect size (Table VII in the online-only Data Supplement and Figure III in the online-only Data Supplement). We observed substantial heterogeneity for the overall estimate (Figure 2).

Trends in the Global and Regional Burden of Disease

Globally, the population-attributable fraction for cardiovascular disease associated with HIV infection increased from 0.36% (95% CI, 0.21%–0.56%) in 1990 to 0.92% (95% CI, 0.55%–1.41%) in 2015. This was associated with a >3-fold increase in DALYs from HIV-associated cardiovascular disease from 0.74 million (95% CI, 0.44–1.16) in 1990 to 2.57 million (95% CI, 1.53–3.92) in 2015 (Figure 3A). Similar temporal increases were seen when stratified by sex (Figure 3B, Table VIII in the online-only Data Supplement).

There was marked regional variation in the temporal change in the DALYs because of cardiovascular disease attributable to HIV (Figure 3C). In 2015, East and Southern Africa, Asia and the Pacific, and West and Central Africa accounted for over two-thirds of all DALYs (Figure 3C). The largest annual increase across the 26-
year period was observed in East and Southern Africa (15 870 DALYs per year [95% CI, 7600–32 660]) with the lowest increases observed in the Middle East and North Africa (530 DALYs per year [95% CI, 280–950]) and Western and Central Europe and North America (700 DALYs per year [95% CI, 410–1070]) (Table IX in the online-only Data Supplement).

National Estimates

National estimates of prevalence and cardiovascular burden were available for 154 countries. The highest population-attributable fraction was observed in countries within sub-Saharan Africa, with HIV accounting for >15% of the cardiovascular burden in Swaziland,
Botswana, Lesotho, and South Africa (Figure 4A, Table X in the online-only Data Supplement). Similarly, the largest burden was observed in sub-Saharan Africa (Figure 4B). In the UNAIDS Global Plan priority countries, the population-attributable fraction was comparable to other traditional cardiovascular risk factors (Table XI in the online-only Data Supplement).

Data for the burden of cardiovascular DALYs attributable to HIV were available for 20 of the 21 priority countries from sub-Saharan Africa in the UNAIDS Global Plan.22 HIV-associated cardiovascular DALYs across these countries increased from 0.21 million (95% CI, 0.11–0.38) in 1990 to 0.74 million (95% CI, 0.39–1.37) in 2015 (Figure IV in the online-only Data Supplement).

DISCUSSION

In this systematic review, meta-analysis, and burden assessment, we evaluated the association between HIV infection and cardiovascular disease, and estimated the national, regional, and global burden of cardiovascular disease attributable to HIV infection. We make a number of important and novel observations. First, the crude rate for incident cardiovascular disease was 60 per 10,000 person years and is comparable to other high-risk cardiovascular groups, such as diabetes mellitus.42 Second, the risk of incident cardiovascular disease was 2-fold higher in people living with HIV. Third, the number of DALYs attributable to HIV-associated cardiovascular disease has increased 3-fold over the past 2 decades, but has now plateaued. Finally, there were major regional variations in both the attributable fraction and the rates of cardiovascular disease attributable to HIV, with much of the burden seen in sub-Saharan Africa, followed by Asia and the Pacific.

Many factors may have affected the estimates that we have derived and are based on several assumptions that merit discussion. First, the pooled risk ratios used to calculate the population-attributable fraction and the subsequent cardiovascular burden were primarily obtained from developed nations but were applied to all regions. This approach is ubiquitous in these types of analyses43,44 and highlights the paucity of data from these regions. In a recent analysis evaluating the global burden of cardiovascular disease attributable to hypertension and obesity, <10% of cohorts originated from low- and middle-income nations.44,45 Second, the incidence rate does not consider competing risk from non-cardiovascular mortality. This would further underestimate the rate of cardiovascular disease in people living with HIV, especially in earlier studies when antiretroviral therapy was not widely available. Third, although many of the individual studies evaluating the risk ratio of cardiovascular disease adjusted for important traditional risk factors, there remains the risk of residual confounding. Previous studies have already shown higher fre-
quencies of both modifiable and nonmodifiable cardio-
vascular risk factors in people living with HIV. As such,
a higher prevalence of factors that do not lie on the
causal pathway may have influenced the overall asso-
ciation between HIV and cardiovascular events. Fourth,
the pooled relative risk estimates used to calculate the

Figure 3. Disability-adjusted life-years.
Temporal change in the disability-adjusted life-years (DALYs) of HIV-associated cardiovascular disease globally (A) and stratified by sex (B); red line represents central estimate, and blue dashed lines represent the 95% CI. (Continued)
population-attributable fraction for DALY for ischemic heart and cerebrovascular disease was obtained solely from studies including acute myocardial infarction or stroke and so did not specifically include estimates for angina pectoris or other chronic manifestations of atherosclerotic disease. However, relative to the overall cardiovascular DALY attributable to ischemic heart disease, the burden from angina is minimal. Therefore, the impact of this limitation on the overall burden estimate is likely to be small. Fifth, the majority of studies evaluating the risk of cardiovascular disease in people living with HIV have recruited participants before 2010, with a large number conducted in the previous century. The epidemiology of HIV diagnosis and care has changed significantly over the past 2 decades, with better provision of antiretroviral therapy and improved survival, resulting in an increased prevalence of HIV. Sixth, when calculating the burden at a global and regional level, we have made the assumption that the prevalence of HIV infection in the younger age group (15–49 years old) is consistent across the entire age range. There is a paucity of data in the prevalence of HIV in the older population, especially in high-prevalence regions such as sub-Saharan Africa. However, analysis of the populations in these regions shows that the prevalence in the older population remains similar to that of the 15- to 49-year group. Finally, we noticed substantial heterogeneity for our overall pooled risk ratios. The source for this degree of heterogeneity is likely to be multifactorial and reflect differences in population demographics, sample size and small-study effect, patient characteristics, selection or publication bias, and case ascertainment bias because the majority of data were based on national statistics.

Many studies have evaluated the association between HIV infection and the risk of atherosclerotic disease including the potential role of antiretroviral therapy. This is the first study to review and meta-analyze systematically the association between HIV infection and cardiovascular disease, and to estimate the burden of cardiovascular disease attributable to HIV. The mechanisms underlying this association remain poorly understood. Possible mechanisms include endothelial dysfunction and increased systemic and coronary arterial inflammation associated with elevated inflammatory markers. Furthermore, patients with HIV have more traditional metabolic risk factors for cardiovascular disease including dyslipidemia, insulin resistance and abnormal glucose homeostasis, and abnormalities in body fat composition. The increased risk of cardiovascular disease in people living with HIV is thus a consequence of both accelerated atherosclerosis attributable to chronic infection and the increased prevalence of traditional risk factors.

The global burden of cardiovascular disease attributable to HIV infection has tripled over the past 2 decades.
especially in the low- and middle-income nations, and is likely to be a product of both temporal increases in the prevalence of HIV and the morbidity and mortality from cardiovascular disease. The prevalence of HIV varies by region with the greatest proportions seen in sub-Saharan Africa and the Asia Pacific region. Cardiovascular disease now accounts for >10% of all morbidity and mortality in sub-Saharan Africa with rates that are comparable to high-income regions. Consequently, the sub-Saharan region accounted for half of all DALYs from cardiovascular disease attributable to HIV. The population-attributable fraction of HIV-associated cardiovascular disease in the UNAIDS high-priority countries was up to 25% and similar to traditional lifestyle, metabolic, and environmental risk factors.23,24

The combined burden of HIV and cardiovascular disease in the UNAIDS high-priority countries is of growing concern and has important implications with respect to regional health policies, guidelines, and resource allocation. Risk stratification and identification of patients at intermediate or high risk of future cardiovascular disease are already challenging in resource-limited nations.55 Furthermore, traditional risk scores perform poorly because they consistently underestimate risk in HIV-infected populations.35,56,57 Whether patients living with HIV should be considered high risk and started on primary prevention, such as statin therapy, remains unclear. A recent randomized controlled trial of rosuvastatin in patients with HIV demonstrated a reduction in carotid artery intima-media thickness despite these individuals having low low-density lipoprotein cholesterol concentrations at baseline.58 Although the latest international guidelines have expanded the use of lipid-lowering therapy
CONCLUSIONS
This analysis evaluates the association between HIV and cardiovascular disease, and estimates the global burden of HIV-associated cardiovascular disease. We report that the risk of cardiovascular disease was 2-fold higher in people living with HIV. Moreover, the global burden of HIV-associated cardiovascular disease has tripled over the past 2 decades and is now responsible for 2.6 million DALYs per annum, with the majority in sub-Saharan Africa and the Asia Pacific regions. Our estimates have important policy implications for implementing appropriate cardiovascular risk stratification and treatment strategies across healthcare systems, especially in those countries with the greatest burden where resources remain limited.

ARTICLE INFORMATION
Received December 22, 2017; accepted June 5, 2018.
The online-only Data Supplement, podcast, and transcript are available with this article at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.117.033369

Correspondence
Anoop S.V. Shah, MD, MPH, PhD, BHF/University Centre for Cardiovascular Science, SU 305, Chancellor’s Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom. Email Anoop.Shah@ed.ac.uk

Affiliations
BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland (A.S.V.S., K.K.L., S.A., S.C., F.S., D.E.N., N.L.M.). Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland (A.S.V.S., H.N.). Centre for Clinical Brain Sciences (W.W.), University of Edinburgh, Scotland. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. Centre for Global Health, Department of Neurology, Techni- nes/2016/Global-AIDS-update-2016. Accessed August 5, 2018.

REFERENCES
1. Global AIDS Update 2016. Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS. http://www.unaids.org/en/resources/docu- ments/2016/Global-AIDS-update-2016. Accessed August 5, 2018.
2. Mensah GA, Roth GA, Sampson UK, Moran AE, Feigin VL, Forouzanfar MH, Naghavi M, Murray CJ, GBD 2013 Mortality and Causes of Death Collaborators. Mortality from cardiovascular diseases in sub-Saharan Af- rica, 1990–2013: a systematic analysis of data from the Global Burden of Disease Study 2013. Cardiovasc J Afr. 2015;26(2 suppl 1):S6–S10.
3. Murray CJ, Ortizblad KF, Guinovart C, Lim SS, Woloschuk WM, Roberts DA, Dansereau EA, Graetz N, Barber RM, Brown JC, Wang H, Duber HC, Naghavi M, Dicker D, Dandona L, Salomon JA, Heuton K, Foreman K, Phillips DE, Fleming TD, Flaxman AD, Phillips BK, Johnson EK, Coggeshall MS, Abid-Allah F, Albera SF, Abubakar I, Abu-Raddad LJ, Abu- Rmeileh NM, Achoki T, Adeyemo AO, Aduok AK, Aduscu JA, Agarwal EE, Akenda A, D Khoubi MJ, Alasofar D, Alibabt MI, Alcalá-Cerra G, Ale- gretti MA, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, All A, Allen PJ, Alsharif U, Alveza E, Alvis-Guzman N, Amakunna AA, Amare AT, Amini H, Ammar W, Anderson BO, Antonio CA, Anwarri P, Amolv J, Ar- senijevic VS, Artaman A, Asghar RJ, Assadi R, Atkin LS, Badawi A, Bal- akrishnan K, Banerjee A, Basu S, Beardsley J, Bekele T, Bell ML, Bernabe E, Beyene TJ, Bhala N, Bhalla A, Bhutta ZA, Abdulhak AB, Binagwaho A, Blore JD, Basara BB, Bone D, Brainin M, Breitporde N, Castañeda-Orjuela CA, Cataló-Lopez F, Chadka V, Chang LC, Chang Pf, Chuang TW, Colo- mar M, Cooper LF, Cooper C, Courville KJ, Cowie BC, Crijn MH, Dan- dona R, Dayama A, De Leo D, Degenhardt L, Del Pozo-Cruz B, Deribe K, Des Jarlais DC, Desai M, Dharmaratne SD, Dilmen U, Ding EL, Driscoll TR, Durrani AM, Ellenbogen RG, Ermarkov SP, Esteghamati A, Faraon EA, Farzadfar F, Fereshtehe Najmed SM, Fijabi DO, Forouzanfar MH, Fra Paleau O, Gaffklin F, Gamlaklidze A, Gankpe FG, Geleijse JM, Gessner BD, Gibney KB, Ginawi IA, Glaser EL, Gona P, Goto A, Gouda HN, Gugnani HC, Gupta R, Gupta A, Hafzi-Nejad N, Harnadeh RR, Hamrnadi M, Hankey GJ, Harb HL, Haro JM, Hamervoiler R, Hay SI, Hedayati MT, PI, Hieko HK, Horn- berger JC, Hosgood HD, Hotze PJ, Hoy DG, Huang Ji, Iyung KM, Idrisov RT, Innos K, Jacobsen KH, Jeemson P, Jensen PN, Jha V, Jhang G, Jonas JB, Jucl K, Kan H, Kankind L, Karim NA, Kesh A, Karemcka CK, Kaur A, Kawsakomi N, Kazi DS, Kemp AH, Kengne AP, Keran A, Kereiselediz M, Khader YS, Khaliha SE, Khan EA, Khang YH, Khonelidze I, Kinfu Y, Kinge JM, Knibbs L, Kuboko Y, Kosen S, Defo BK, Kulkarni VS, Kulkarni C, Kumar K, Kumar RB, Kumar GA, Kwak GL, La T, Balaji AI, Lam H, Lan Q, Lassimun CG, Larson HJ, Larsson A, Lee JT, Leigh J, Leinsal M, Leung R, Li Y, Li Y, De Lima GM, Lin HH, Lipshultz SE, Liu S, Liu Y, Looek BK, Lotufo PA, Machado VM, Maclachlan JH, Magis-Rodriguez C, Majdan M, Mapoma CC, Mar- cesnes W, Marzban MB, Masci JR, Mashal MT, Merson-Jones AH, Mayosi BM, Mazorodze TT, Mckay AC, Meaney PA, Mehidrattta MM, Mesia-Rodriguez F, Melaku YA, Memisah ZA, Mendosa W, Miller TR, Mills EJ, Mohammed KA, Mokdad AH, Mola GL, Monasta L, Montico M, Moore AR, Morri R, Moturi WN, Mukaiagwara M, Murthy KS, Naheed A, Naidoo KS, Naldi L, Nangia V, Narayan KM, Nash D, Nejari C, Nelson RG, Neupane SP, New- ton CR, Ng M, Misa M, Nolte S, Norheim OF, Noussavior V, Nyakarukah L, Oh IH, Ohkubo T, Oluusaya BO, Omer BS, Opio JO, Orsikawe OE, Pandian JD, Pacharchistou C, Caicedo AI, Patten SB, Paul VK, Pavin BI, Pearce N, Pereira DM, Pervaza A, Pesudos K, Petzold M, Pimentel C, Pinto D, Quezada AD, Quistberg DA, Rafay A, Rahimi K, Rahimi-Movahaghe V, Ul Rahman S, Raju M, Rana SM, Rayaz H, Reilly RQ, Remuzzi G, Richardus JH, Ronfani L, Roy N, Sabin N, Saeedi MY, Sahraian MA, Samonte GM, Sawhney M, Schneider II, Schwebel DC, Seezad S, Sepanlou SG, Servan- Morii EE, Shiekhhabah S, Shibuya K, Shin HH, Shiee I, Shvikatok R, Sigfus- dottir ID, Silberher D, Silberberg AP, Simon RD, Singh JH, Skirbekk V, Silvia K, Soneji S, Soshnikov SS, Steenarmaeddy CU, Stathopoulou V, Stropoulou- is V, Swanmanathan S, Sykes BL, Tabbi KM, Takeda K, Tenkorang KY, Terkawi AS, Thomson AJ, Thome-Lyman AL, Towbin JA, Traebert J, Tran BX, Dumbette ZE, Tsimbaris M, Uchendu US, Ukparaka KN, Uzun SB, Vaischer A, Vasankari TJ, Venketasubramanian N, Vlassov VV, Voll- set SE, Waller S, Wallin MT, Wang L, Wang X, Wang Y, Weichenthal S, Weidenspier PA, Weintraub RG, Westerman R, White RA, Wilkinson JD, Williams TN, Woldeyohannes SM, Wong JW, Xu G, Yang YC, You C, Jin KY, El Sayed M, Zhao Y, Zheng Y, Zhou M, Zhu J, Zou XN, Lopez AD, Vos T, Global re- in the general population, over two-thirds of people living with HIV with evidence of high-risk morphology coronary atherosclerotic plaque would not have been recommended for statin therapy. The REPRIEVE study (Randomised Trial to Prevent Vascular Events in HIV) is now underway to evaluate the efficacy of statin therapy in people living with HIV who are deemed low-risk based on traditional risk scores.6,61

Disclosures
None.

ARTICLE INFORMATION
Received December 22, 2017; accepted June 5, 2018.
The online-only Data Supplement, podcast, and transcript are available with this article at https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.117.033369

Correspondence
Anoop S.V. Shah, MD, MPH, PhD, BHF/University Centre for Cardiovascular Science, SU 305, Chancellor’s Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom. Email Anoop.Shah@ed.ac.uk

Affiliations
BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland (A.S.V.S., K.K.L., S.A., S.C., F.S., D.E.N., N.L.M.). Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland (A.S.V.S., H.N.). Centre for Clinical Brain Sciences (W.W.), University of Edinburgh, Scotland. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. Case Western Reserve School of Medicine, Cleveland, OH (C.T.L., S.R.). Division of Cardiovascular Medicine, University of California, Munich, Germany (D.S.). Division of Infectious Diseases and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD (S.B., S.K.). Institute of Health and Wellbeing, University of Glasgow, United Kingdom (D.A.M.).

Acknowledgments
Dr Shah conceived the design and performed the initial acquisition, analysis, and interpretation of data. All authors were involved in drafting the manuscript and revising it, and have given final approval of the version to be published.

Sources of Funding
This research was funded by the British Heart Foundation with Dr Mills and Newby supported by the Butler Senior Clinical Research Fellowship (FS16/14/32023) and John Wheatley Chair (CH09/002) awards, respectively. Dr McAllister is funded via an Intermediate Clinical Fellowship and Best Fellowship from the Wellcome Trust (201492-Z-16-Z).
8. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham 6. Mocroft A, Reiss P, Gasiorowski J, Ledergerber B, Kowalska J, Chiesi 4. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten 3. Shah et al., Global Burden of Cardiovascular Disease in HIV

10.1097/QAI.0000000000000138

10.1002/ijtj.21748

10.1056/NEJM199803263381301

10.1097/QAD.0b013e3283356356

10.1097/QAI.0b013e3181e9be6b

10.1056/NEJM199803263381301

10.1097/QAD.0b013e3283356356

10.1002/ijtj.21748

10.1002/ijtj.21748

10.1097/QAD.0b013e3283356356

10.1002/ijtj.21748

10.1097/QAD.0b013e3283356356

10.1097/QAI.0000000000000138

10.1002/ijtj.21748

10.1002/ijtj.21748

3.802:2095–2128. doi:10.1016/S0140-6736(14)60844-8

2001;32:130–139. doi:10.1086/371541

11.008720

2014;129:1493–1501. doi:10.1161/CIRCULATIONAHA.113.004046

2014;138:1100–1112. DOI: 10.1161/CIRCULATIONAHA.117.033369

2018;138:1100–1112. DOI: 10.1161/CIRCULATIONAHA.117.033369
17. Grinspoon S, Curr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med 2005;352:48–62. doi: 10.1056/NEJMoa041811
18. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by simple graphical test. BMJ 1997;315:629–634.
20. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometh. 2000;56:455–463.
21. Theodorotou E, McAllister DA, Reed C, Adeloye DO, Rudan I, Muhe LM, Madhi SA, Campbell H, Nair H. Global, regional, and national estimates of pneumonia burden in HIV-infected children in 2010: a meta-analysis and modelling study. Lancet Infect Dis 2014;14:1250–1258. doi: 10.1016/S1473-3099(14)70990-9
22. 2015 Progress Report on the Global Plan. Geneva, Switzerland: Joint Unit ed Nations Programme on HIV/AIDS. http://www.unaids.org/en/ourwork/ programmebranch/officialglobalplan
23. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, Langrish JP, Newby DE, Mills NL. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015;350:h1295.
24. Shah AS, Langrish W, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet. 2013;382:1039–1048. doi: 10.1016/S0140-6736(13)60898-3
25. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Software. 2010;36:1–48.
26. Qureshi AI, Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comorbidity burden of HIV/ AIDS among US veterans using VA administrative health insurance database. J Acquir Immune Defic Syndr 2011;57:245–252. doi: 10.1097/QAI.0b013e31825c7f24
27. Gardner LI, Klein DB, Leyden WA, Xu L, Chao CR, Horberg MA, Towner WJ, Hurley LB, Marcus JL, Qureshi AI, Benbow AS, Mielke LM, Madhi SA, Campbell H, Nair H. Global, regional, and national estimates of pneumonia burden in HIV-infected children in 2010: a meta-analysis and modelling study. Lancet Infect Dis 2014;14:1250–1258. doi: 10.1016/S1473-3099(14)70990-9
28. Cole JW, Pinto AN, Hebel JR, Buchholz DW, Earley CJ, Johnson CJ, Johnson COR, Kim YJ, Kuller LH, Kramer MS, Lean ME, Martínez-Artola V, Sagredo M, Castilla J. Mortality by causes in HIV-infected versus uninfected adults: A prospective, community-based, case-control study. Lancet Glob Health. 2013;1:e282–e288.
29. Mateen FI, Post WS, Sacktor N, Abraham AG, Becker JT, Smith BR, Detels R, Martin E, Phair JP, Shinohara RT, Multicenter AIDS Cohort Study (MACS) Investigators. Long-term predictive value of the Framingham Risk Score for Stroke in HIV-positive vs HIV-negative men. Neurology. 2013;81:2094–2102. doi: 10.1212/WNL.0b013e3182799673
30. Tripathi A, Liese AD, Winniford MD, Zurlo F, Cohn JN, Wilkins J, Seltzer MS, Dominiczak AH, Waring PA, Scherr PA, Long A, Materson BJ, Chambless LE, Barrett-Connor EL. The effect of obesity and overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;373:13–27. doi: 10.1056/NEJMoa1614362
31. Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK, Rimmer D, Rodriguez-Barradas MC, Dubrow R, Park LS, Skanderson M, Shiels MS, Gange SJ, Gebo KA, Justice AC, Veterans Aging Cohort Study (VACS). Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin Infect Dis. 2015;60:627–638. doi: 10.1093/cid/ciu869
32. Klein DB, Leyden WA, Xu L, Chao CR, Horberg MA, Towner WJ, Hurley LB, Marcus JL, Qureshi AI, Benbow AS, Mielke LM, Madhi SA, Campbell H, Nair H. Global, regional, and national estimates of pneumonia burden in HIV-infected children in 2010: a meta-analysis and modelling study. Lancet Infect Dis 2014;14:1250–1258. doi: 10.1016/S1473-3099(14)70990-9
33. Rasmussen LD, May MT, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, Obel N. Time trends for risk of severe age-related diseases in individuals with and without HIV infection in Denmark: a nationwide population-based cohort study. Lancet HIV. 2015;2:e282–e289. doi: 10.1016/S2352-3018(15)00077-6
34. Tripathi A, Liese AD, Winniford MD, Zurlo F, Cohn JN, Wilkins J, Seltzer MS, Dominiczak AH, Waring PA, Scherr PA, Long A, Materson BJ, Chambless LE, Barrett-Connor EL. The effect of obesity and overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;373:13–27. doi: 10.1056/NEJMoa1614362
35. Shah AS, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, Langrish JP, Newby DE, Mills NL. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 2015;350:h1295.
36. Tripathi A, Liese AD, Winniford MD, Zurlo F, Cohn JN, Wilkins J, Seltzer MS, Dominiczak AH, Waring PA, Scherr PA, Long A, Materson BJ, Chambless LE, Barrett-Connor EL. The effect of obesity and overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;373:13–27. doi: 10.1056/NEJMoa1614362
37. Womack JA, Chang CC, So-Armah KA, Alcorn C, Baker JV, Brown ST, Budoff M, Butt AA, Gibert C, Goetz MB, Gottlieb J, Gottlieb S, Justice AC, Leaf D, McGinnis K, Rimland D, Rodriguez-Barradas MC, Sico J, Skanderson M, Tindle H, Tracy RP, Warner A, Freiberg MS. HIV infection and cardiovascular disease in women. J Am Heart Assoc. 2014;3:e001035. doi: 10.1161/JAHA.114.001035
38. Sico JI, Chang CC, So-Armah K, Justice AC, Hylek E, Skanderson M, McGinnis K, Kuller LH, Kramer MS, Rimland D, Goetz MB, Sico J, Rodriguez-Barradas MC, Gibert C, Leaf D, Brown ST, Samet J, Kazis L, Bryant K, Freiberg MS; Veterans Aging Cohort Study. HIV status and the risk of ischemic stroke among men. Neurology. 2015;84:1933–1940. doi: 10.1212/WNL.0000000000001560
39. Shah et al Global Burden Cardiovascular Disease in HIV

Copyright: Please check the copyright information listed at the bottom of the page.
45. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, Farzadfar F, Stevens GA, Lim SS, Riley LM, Ezzati M; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Pressure). National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet. 2011;377:568–577. doi: 10.1016/S0140-6736(10)60203-3

46. GBD 2015 HIV Collaborators. Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2015: the Global Burden of Disease Study 2015. Lancet HIV. 2016;3:e361–e387.

47. Negin J, Cumming RG. HIV infection in older adults in sub-Saharan Africa: extrapolating prevalence from existing data. Bull World Health Organ. 2010;88:847–853. doi: 10.2471/BLT.10.076349

48. Islam RM, Wu J, Jansson J, Wilson DP. Relative risk of cardiovascular disease among people living with HIV: a systematic review and meta-analysis. HIV Med. 2012;13:453–468. doi: 10.1111/j.1468-1293.2012.00996.x

49. Bavinger C, Bendavid E, Niehaus K, Olshen RA, Olkin I, Sundaram V, Wein N, Holodniy M, Hou N, Owens DK, Desai M. Risk of cardiovascular disease from antiretroviral therapy for HIV: a systematic review. PLoS One. 2013;8:e59951. doi: 10.1371/journal.pone.0059951

50. The DADS Study Group; Friis-Møller N, Reiss P, Sabin CA, Weber R, Monforte AD, El-Sadr W, De Wit S, Kirk O, Fontas E, Law MG, Phillips A, Lundgren JD. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356:1723–1735.

51. Stein JH, Klein MA, Bellehumeur JL, McBride PE, Wiebe DA, Otvos JD, Kosman JM. Use of human immunodeficiency virus-1 protease inhibitors is associated with atherogenic lipoprotein changes and endoth dysfunction. Circulation. 2001;104:257–262.

52. Bernasconi E, Boubaker K, Junghans C, Flepp M, Furrer HJ, Haensel A, Hirschel B, Roggian K, Chave JP, Opravil M, Weber R, Rickenbach M, Telenti A; Swiss HIV Cohort Study. Abnormalities of body fat distribution in HIV-infected persons treated with antiretroviral drugs: the Swiss HIV Cohort Study. J Acquir Immune Defic Syndr. 2002;31:50–55.

53. Lichtenstein KA, Ward DJ, Moorman AC, Delaney KM, Young B, Paella FJ Jr, Rhodes PH, Wood KC, Holmberg SD; HIV Outpatient Study Investigators. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15:1389–1398.

54. Miller J, Carr A, Emery S, Law M, Mallal S, Baker D, Smith D, Kaldor J, Cooper DA. HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med. 2003;4:293–301.

55. Gazzano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35:72–115. doi: 10.1016/j.cpcardiol.2009.10.002

56. Friis-Møller N, Thielbaut R, Reiss P, Weber R, Monforte AD, De Wit S, El-Sadr W, Fontas E, Worm S, Kirk O, Phillips A, Sabin CA, Lundgren JD, Law MG; DAD study group. Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil. 2010;17:491–501. doi: 10.1097/HJR.0b013e328336a150

57. Bagchi S, Hickey A. Cardiovascular disease risk assessment tools in HIV-infected patients – are they adequate?. J AIDS Clin Res 2016;7:583.

58. Longenecker CT, Sattar A, Gilkeson R, McComsey GA. Rosuvastatin slows progression of subclinical atherosclerosis in patients with treated HIV infection. AIDS. 2016;30:2195–2203. doi: 10.1097/QAD.0000000000001167

59. Zanni MV, Fitch KV, Feldpausch M, Han A, Lee H, Lu MT, Abbara S, Ribaudo H, Douglas PS, Hoffmann U, Lo J, Grinspoon SK; 2013 American College of Cardiology/American Heart Association and 2004 Adult Treatment Panel III cholesterol guidelines applied to HIV-infected patients with/without subclinical high-risk coronary plaque. AIDS. 2014;28:2061–2070. doi: 10.1097/QAD.0000000000000360

60. Gilbert JM, Fitch KV, Grinspoon SK. HIV-related cardiovascular disease, statins, and the REPRIEVE Trial. Top Antivir Med. 2015;23:146–149.

61. Mitka M. Exploring statins to decrease HIV-related heart disease risk. JAMA. 2015;314:657–659. doi: 10.1001/jama.2015.5498