Antimicrobial Activity of *Vernonia amygdalina*, *Ocimum gratissimum* and *Gongronema latifolium* Synergy on Common Foodborne Pathogenic Bacteria

I. Ahaotu a* and N. Y. Richard a

a Department of Microbiology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Author IA designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Author NYR managed the analysis of the study and the literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMB/2022/v22i430455

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sciarticle5.com/review-history/85380

Received 20 January 2022
Accepted 28 March 2022
Published 09 April 2022

Original Research Article

ABSTRACT

The search for antimicrobial agents from natural sources such as diverse plant species against foodborne pathogens has less side effect than chemically synthesized compounds. In this study, antimicrobial activity of ethanolic extract, hot and cold aqueous extracts of *Vernonia amygdalina*, *Ocimum gratissimum* and *Gongronema latifolium* was tested against *Escherichia coli*, *Staphylococcus aureus* and *Listeria monocytogenes*. The leaf extracts of *Vernonia amygdalina* did not show antimicrobial activity against the test isolates. The diameter of zone of inhibition shown by ethanolic leaf extract of *Gongronema latifolium* and *Ocimum gratissimum* against *S. aureus* is 12.0±1 mm and 10±2 mm, respectively. With regards to ethanolic leaf extract of *Gongronema latifolium* and *Ocimum gratissimum*, the diameter of zone of inhibition demonstrated against *L. monocytogenes* and *E. coli* is 18.0±2 mm and 6.0±1 mm, respectively. A synergistic ethanolic or aqueous extracts of the leaves did not show antimicrobial activity against the test isolates. However, ethanolic extracts of *Gongronema latifolium* and *Ocimum gratissimum* used separately is an effective antimicrobial agent the test isolates.

Corresponding author: E-mail: ihumahaotu@yahoo.com
Keywords: Traditional medicine; bioactive compounds; medicinal plants; antimicrobial activity.

1. INTRODUCTION

Traditional medicine is popular in many developing countries till date. The historical and cultural antecedents of traditional medicine is responsible for its wide acceptability [1,2]. The effectiveness of using herbal plants in the treatment of bacterial infections is a strong belief among residents in most rural communities in Nigeria [3]. According to World Health Organization (WHO), primary health care sought after by approximately 80 % of the world’s population is traditional or herbal medicines. The practice of traditional medicine largely involves the use of plants [4,5]. Interestingly, traditional medicine and modern pharmaceuticals make use of plant and plant products to treat various ailments [6].

Plants especially vegetables such as Vernonia amygdalina (bitter leaf), Ocimum gratissimum (scent leaf) and Gongronema latifolium (bush buck) contain physiologically active components which over the years, have been exploited in traditional medicine for the treatment of various ailments [7]. The three major tribes in Nigeria know bitter leaf as “Olugbu”, “Ewuro” and “Fetefete”, respectively [8]. In the South-East and South-West, bush buck is known as “Utazi/Utasii and “Aroke”, respectively [9]. Ocimum gratissimum is respectively as ‘Nchuanwu’ by the Igbo in the South-East [10]. According to Omogbai et al. [11], ‘utaz’ contains pregnanes, saponins and essential oils. The use of G. latifolium in traditional folk medicine and also as a spice is well known. Ocimum gratissimum is well known because of its culinary and medicinal properties [12]. The common name ‘scent leaf’ is attributed to sweet scent an aroma associated with Ocimum gratissimum [13]. The choice of the three (3) vegetables used in the study is because they are commonly used in traditional medicinal practice in Southern Nigeria.

Saponins, glycosides, alkaloids, and tannins present in bitter leaf is associated with bitterness of Vernonia amygdalina [14]. Ocimum gratissimum contain large amount of oligosaccharides, phytates, alkaloid, tannins, flavonoids that qualifies it as a medicinal plant [15]. Scent leaf is useful in the treatment of skin diseases and many other diseases which include fever, headache, upper tract infection, pneumonia, tooth and gum disorders [12]. Different parts of bitter leaf plant is useful in traditional medicine as antihelminth, antimalarial, febrifuge, laxative, digestive tonic and appetizer. It also help in the treatment of diabetes [16].

Staphylococcus aureus, Escherichia coli and Listeria monocytogenes are common microorganisms associated with foodborne diseases [17]. The fact that these foodborne pathogens have demonstrated antimicrobial resistance to common antibiotics is a threat to healthcare system [18]. Consequently, there is need to explore other possible options to combat infections caused by these foodborne pathogens which include intensive research on medicinal plants, among others. Antimicrobial effects of bitter leaf and bush buck against common pathogens such as S. aureus, Pseudomonas aeruginosa, E. coli, and Klebsiella sp have been reported [19]. The antimicrobial activity of leaf extracts of Gongronema latifolium against S. aureus and Lactobacillus fermentum was reported by Omogbai et al. [11]. It has also been reported that leaf extract of Ocimum gratissimum (scent leaf) possess antimicrobial activity against microorganisms such as E. coli, Streptococcus fecalis, S. aureus, and Lactobacilli sp. [15].

A study carried out by Opara et al. [20] evaluated the antibacterial activity of Ocimum gratissimum and Vernonia amygdalin against E. coli, S. aureus, P. aeruginosa and S. pyogenes. Findings from the study revealed that ethanolic extract of the dried leaves demonstrated zones of inhibition (> 5mm diameter) against all the isolates. Although antimicrobial activity of Vernonia amygdalin, Ocimum gratissimum and Gongronema latifolium leaf extract is known to possess antimicrobial activities against some pathogens, there is possibility that some microbial strains could develop a level of resistance against bioactive compounds in the leaf extracts overtime. Consequently, frequent testing of antimicrobial activities of leaf extracts against common pathogens is required. There is dearth of information on synergistic antimicrobial activity of Ocimum gratissimum, Vernonia amygdalin and Gongronema latifolium against common foodborne pathogens. In addition to evaluating the antimicrobial activity of the leaf extracts, this study is aimed at reporting the antimicrobial activity of a mixture of leaf extracts of Ocimum gratissimum, Vernonia amygdalin and Gongronema latifolium against Staphylococcus aureus, Escherichia coli and Listeria monocytogenes.
2. MATERIALS AND METHODS

Fresh leaves of *Vernonia amygdalina* (bitter leaf), *Ocimum gratissimum* (scent leaf), and *Gongronema latifolium* (utazi) plant were bought from Choba market, Rivers State, Nigeria using sterile polythene bags. The leaves used in the study was authenticated and identified in the Department of Plant Science and Biotechnology, University of Port Harcourt. All the materials were transported to the Food and Industrial Microbiology Laboratory, University of Port Harcourt in less than 12 hours from the time of purchase.

2.1 Plant Extraction

Aqueous (hot and cold water) and ethanol extracts of the plant were prepared using the method described by Madunagu et al. [21]. Thirty grams (30 g) of each of the vegetables were washed and ground using a clean mortar and pestle.

2.2 Aqueous Extract

Twenty grams (20 g) of the ground leaves were measured into different sterile conical flasks containing 50 ml hot and sterile distilled water. The conical flask was covered with a cork and manually shaken for proper mixing. The content of the flask was kept for 48 hours. The extracts were filtered using Whatman No. 1 filter paper.

2.3 Ethanol Extract

Twenty grams (20 g) each of the ground leaves were measured into different sterile conical flasks containing 50 ml of 100 % ethanol. The conical flask was covered with a cork and manually shaken for proper mixing. The content of the flask was kept for 48 hours. The extracts were filtered using Whatman No. 1 filter paper and concentrated with the aid of a rotary evaporator. The concentrated extract was stored in the refrigerator at 4ºC prior to use.

2.4 Sterility Test of the Plant Extracts

Each of the extracts (aqueous and ethanol extract) was tested for the presence of microbial contaminants. The test involved inoculating 1 ml each of the extracts on nutrient agar and incubated at 37 °C for 24 hours. The plates were observed for microbial growth. The absence of microbial growth on the culture plates inoculated with the plant extracts after incubation indicated that the extracts were sterile. The plant extracts were then assayed for antimicrobial activity.

2.5 Source of Test Organism

Escherichia coli, Staphylococcus aureus and *Listeria monocytogenes* were selected as test organisms. The bacterial isolates were obtained from Medical laboratory, Department of Microbiology, University of Port Harcourt. The bacteria were maintained on nutrient agar slants and stored in the refrigerator at 4 °C. The isolates were reconfirmed prior to use for this work, in the laboratory, following the conventional method of identification, such as morphological features, Grams staining reaction, motility and biochemical characteristics.

2.6 Preparation and Standardization of Bacterial Inoculum

Preparation and standardization of each bacterial inoculum was done by picking test organism growing as a pure culture on solid media and then transferred into sterile normal saline and left for two hours to produce a growth of the same turbidity with McFarland standard. A sterile swab stick was used to inoculate each test organism into the Muller-Hinton Agar.

2.7 Identification of Isolates

The colonial morphology of the bacterial isolates in the Petri dishes were observed and noted. Gram and endospore staining of the bacterial isolates were carried out, followed by biochemical reactions which include oxidase, catalase, indole, methyl red, motility, Voges Proskauer, triple sugar iron agar (TSIA) and sugar fermentation tests.

2.8 Determination of Antimicrobial Activity

The antimicrobial activity of the plant extract of *Vernonia amygdalina, Ocimum gratissimum, and Gongronema latifolium* were determined using agar well diffusion method. Muller-Hinton Agar was prepared and allowed to solidify. Afterwards, the agar was inoculated with the test organism. A sterile cork borer of 10 mm diameter was used to bore uniform wells on the surface of the agar. Exactly 0.1 ml of the extract was introduced into the well.
2.9 Statistical Analysis

All analysis were done in triplicates and means were calculated. The results obtained were expressed as Mean± Standard error of mean.

3. RESULTS

Table 1 shows the biochemical characteristics of the test organisms to reconfirm the isolates. They include *Escherichia coli*, *Staphylococcus aureus* and *Listeria monocytogenes*. Antimicrobial activity of cold aqueous leaf extract of *Vernonia amygdalina*, *Gongronema latifolium* and *Ocimum gratissimum* against three bacterial isolates is presented in Table 2. Presented in Table 3 is the antimicrobial activity of hot aqueous leaf extract of *Vernonia amygdalina*, *Gongronema latifolium* and *Ocimum gratissimum* against three bacterial isolates. The results show that cold and hot aqueous extract of the three leaves did not demonstrate antimicrobial activity against *E. coli*, *S. aureus*, and *L. monocytogenes*. Antimicrobial activity of ethanolic extract of *Vernonia amygdalina*, *Gongronema latifolium* and *Ocimum gratissimum* against three bacterial isolates is presented in Table 4. Ethanolic extract of *Ocimum gratissimum* and *Gongronema latifolium* showed antimicrobial activity against *S. aureus*. Antimicrobial activity against *E. coli* and *L. monocytogenes* was demonstrated by ethanolic extract of *Ocimum gratissimum* and *Gongronema latifolium*, respectively. Depicted in Plate 1 is the highest zone of inhibition (18±2 mm) which was demonstrated by ethanolic extract of *Gongronema latifolium* against *L. monocytogenes*. Table 5 shows the antimicrobial activities of a combination of leaf extracts of *Vernonia amygdalina*, *Ocimum gratissimum* and *Gongronema latifolium* against the bacterial isolates. The result shows that a combination of extracts from the three leaves did not demonstrate antimicrobial activity against *E. coli*, *S. aureus*, and *L. monocytogenes*.

Table 1. Biochemical characteristics of the test organisms

	PIE Rod	PIS Cocci	PIL Rod	A/A	+	-	+	-	-	+	A/A	+	+
Escherichia coli					+						A/A	+	
Staphylococcus aureus					+						A/A	-	+
Listeria monocytogenes					+						A/A	-	+

Key: A - Acid; + Positive; - Negative

Table 2. Antimicrobial activity of cold aqueous leaf extract of *Vernonia amygdalina*, *Gongronema latifolium* and *Ocimum gratissimum* against three bacterial isolates

Leaf extract	*Staphylococcus aureus*	*Escherichia coli*	*Listeria monocytogenes*
Vernonia amygdalina	-	-	-
Gongronema latifolium	-	-	-
Ocimum gratissimum	-	-	-
Table 3. Antimicrobial activity of hot aqueous leaf extract of Vernonia amygdalina, Gongronema latifolium and Ocimum gratissimum against three bacterial isolates

Leaf extract	Staphylococcus aureus	Escherichia coli	Listeria monocytogenes
Vernonia amygdalina	-	-	-
Gongronema latifolium	-	-	-
Ocimum gratissimum	-	-	-

Table 4. Antimicrobial activity of ethanolic leaf extract of Vernonia amygdalina, Gongronema latifolium and Ocimum gratissimum against three bacterial isolates

Leaf extract	Staphylococcus aureus	Escherichia coli	Listeria monocytogenes
Vernonia amygdalina	-	-	-
Gongronema latifolium	12±1 mm	-	18±2 mm
Ocimum gratissimum	10±2 mm	6±1 mm	-

Table 5. Antimicrobial activities of a combination of leaf extracts against the S. aureus, E. coli and L. monocytogenes

Leaf extract	Staphylococcus aureus	Escherichia coli	Listeria monocytogenes
Cold extract (V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	
Hot extract (V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	
Ethanolic extract (V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	(V. amygdalina + O. gratissimum + G. latifolium)	

4. DISCUSSION

The result obtained from this study has shown that hot and cold aqueous extract of Vernonia amygdalina, Gongronema latifolium and Ocimum gratissimum leaves did not show antimicrobial activity against Escherichia coli, Staphylococcus aureus and Listeria monocytogenes. This result is not in agreement with the findings of Unegbu et al. [14] which reported that hot ethanolic extract of Vernonia amygdalina showed antimicrobial activity against S. aureus and E. coli based on minimum inhibitory diameter of 8.0-19.0 mm and 7.0-20.00 mm, respectively. A recent study carried out by Femi et al. [22] reported the presence of alkaloids, cardiac glycosides, flavonoids, saponins, steroids, tannins and glycosides in ethanol and cold water Vernonia amygdalina leaf extract. The inability of hot and cold aqueous extract of the three leaves to demonstrate antimicrobial activity against the three isolates could be as a result of antimicrobial resistance developed by strains of E. coli, S. aureus and L. monocytogenes used in the study. The concentration of the leaf extract used in the study could also have played a role in the result obtained. Findings from a recent study carried out by Abike et al. [23] reported that 100 mg/ml leaf extract of Vernonia amygdalina showed antimicrobial activity against Staphylococcus sp and Escherichia coli. However, 50 mg/ml of the extract did not show antimicrobial activity against E. coli. To a large extent, the report is not in agreement with the findings from this study and could be attributed to the solvent (methanol) used in extracting bioactive compounds in Vernonia amygdalina.

Ethanolic extract of Gongronema latifolium leaves showed antimicrobial activity against Staphylococcus aureus and Listeria.
monocytogenes. The diameter of zone of inhibition of ethanolic extract of leaves of *G. latifolium* against *Staphylococcus aureus* and *Listeria monocytogenes* is 12.0±1 mm and 18.0±2 mm, respectively. However, hot and cold aqueous extract of *G. latifolium* did not show antimicrobial activity against these bacteria. The implication of the result is that ethanolic extraction of bioactive compounds in *Gongronema latifolium* leaves is more effective than aqueous extraction (hot and cold). In a related study, Bankole et al. [12] reported that 25%, 50% and 75% *G. latifolium* aqueous and ethanolic extract showed complete growth inhibition of *S. aureus*. This result is partially in agreement with the findings from this study. According to the results reported by Omogbai et al. [11], the diameter of zone of inhibition of ethanolic leaf extracts of *G. latifolium* against *Escherichia coli* and *S. aureus* is 18 mm and 28 mm, respectively. Findings from this study shows that ethanolic extract and aqueous extract (hot and cold) of *G. latifolium* leaf did not show antimicrobial activity against *E. coli*. This result is in agreement with the report of Akani et al. [24].

The diameter of zone of inhibition of ethanolic extract of *Ocimum gratissimum* leaves against *Staphylococcus aureus* and *Escherichia coli* is 10.0±2 mm and 6.0±1 mm, respectively. Antimicrobial activity of ethanolic extract of *Ocimum gratissimum* against the test isolates reported in this study is in agreement with the report of Amengialue et al. [13]. They reported that diameter of zone of inhibition of ethanolic extract of *Ocimum gratissimum* against *S. aureus* and *Escherichia coli* is 11.0 mm and 9.0 mm, respectively. In this study, ethanolic extract and aqueous extract (hot and cold) of *Ocimum gratissimum* did not show antimicrobial activity against *Listeria monocytogenes*. This result is not in agreement with the findings of Adeshina et al. [25] which involved testing the antimicrobial activities of ethyl acetate and diethyl ether extract of *Ocimum gratissimum* against *Listeria monocytogenes*. The researchers discontinued the use of ethanolic extract of *O. gratissimum* in the course of the study because the solvent (ethanol) was unable to extract eugenol identified as the active ingredient in the leaves associated with antibacterial activities.

A striking result in this study is that a combination of ethanolic extract of *Ocimum gratissimum*, *Vernonia amygdalina* and *Gongronema latifolium* did not show antimicrobial activity against *S. aureus*, *E. coli* and *L. monocytogenes*. The same result was obtained after testing the antimicrobial activity of aqueous extract (hot and cold) of a combination *O. gratissimum*, *V. amygdalin* and *G. latifolium* against the three bacterial isolates. This result could be attributed to chemical reaction between individual bioactive compounds in the leaf extracts which led to the formation of compound(s) lacking in antimicrobial activity against the three test isolates. The bioactive compounds present in the leaf of *O. gratissimum* include eugenol, methyl eugenol, cis-ocimene, trans-ocimene, pinene, camphor, germacrene-D, trans-caryophyllene, farnesene and 1-bisabolene [26]. Several types of sesquiterpene lactones, flavonoids, saponins, alkaloids, tannins, phenolics, terpenes, steroidal glycosides, and triterpenoids have been identified as bioactive compounds found in *Vernonia amygdalina* [27]. According to Ohiagu et al. [28], flavonoids, tannins, saponins, alkaloids and phenols are some of the bioactive compounds present in *G. latifolium*. Lack of antimicrobial activity of a combination of the three leaf extracts against the test bacterial isolates could be as a result of the concentration of each leaf extract used in the study. There is possibility that the test bacterial isolates have developed resistance to chemical compounds formed as a result of mixing three leaf extracts. In a related study, Awomukwu et al. [29] reported that a combination of leaf extracts of *Ocimum gratissimum* Linn and *Gongronema latifolium* Benth had greater inhibitory effect against *Escherichia coli*, *Salmonella typhi*, *Shigella dysenteriae* and *Enterobacter aerogenes* compared to each of the plant extracts. The report is not in agreement with the findings from this study.

5. CONCLUSION

Aqueous extract (hot and cold) and ethanolic leaf extract of *Vernonia amygdalina* did not show antimicrobial activities against the test isolates (*Staphylococcus aureus*, *Escherichia coli* and *Listeria monocytogenes*). Antimicrobial activities was shown by ethanolic leaf extract of *Gongronema latifolium* and *Ocimum gratissimum* against *S. aureus*. Ethanolic leaf extract of *Gongronema latifolium* and *Ocimum gratissimum* demonstrated antimicrobial activity against *L. monocytogenes* and *E. coli*, respectively. A combination of leaf extract of *Ocimum gratissimum*, *Vernonia amygdalina* and *Gongronema latifolium* obtained using ethanol or aqueous solution (hot and cold) did not show antimicrobial activity against the test isolates.
DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Anyanwu MU, Okoye RC. Antimicrobial activity of Nigerian medicinal plants. J Intercultural Ethnopharmacol. 2017;6(2):240-259.
2. Akinwumi KA. Antibacterial screening of five Nigerian medicinal plants against S. typhi and S. paratyphi. J Nig Infection Control Assoc. 2000;3(1):30-33.
3. Adelabu TT, Oladimeji SA. Antimicrobial activity of leaf extracts of Ocimum gratissimum on selected diarrhoea causing bacteria in south western Nigeria. Afri J Biotech. 2005;4(7):682-684.
4. Akinjogunla OJ, Adegoke AA, Udokang IP, Adebayo-Tayo BC. Antimicrobial potential of Nymphaea lotus (Nymphaeaceae) against wound pathogens. J Medicinal Plants Resear. 2009;3(3):138-141.
5. Ali M, Diso SU, Waiya SA, Abdallah MS. Phytochemical screening and antibacterial activity of bitter leaf (Vernonia amygdalina). Annals Microbiol Infect Dis. 2019;2(4):01-07.
6. Osuagwu AN, Ekpo IA, Otu P, Ottoho, E. Utilization and phytochemical composition of the fruits and leaves of Gongronema latifolium Benth. Agrotech. 2013;2(3):1-4.
7. Ajibesin KK, Essien EE, Adesanya SA. Antibacterial constituents of the leaves of Dacryodes edulis. African J Pharm Pharmacol. 2011;5(15):1782-1786.
8. Ugboogu EA, Emmanuel O, Dike ED, Agi GO, Ugboogu OC, Ibe C, Iweala EJ. The pytochemistry, ethnobotanical, and pharmacological potentials of the medicinal plant Vernonia amygdalina L. (bitter leaf). Clin Complementary Med Pharmacol. 2021;1(1):1-15.
9. Bassey AP, Olusola OO, Aeshola A, Ajibade JF. Effect of Gongronema latifolium and Ocimum basilicum extracts on antioxidant and physicochemical characteristics of smoked beef stored under room temperature. Asian Food J. 2020;15(3):42-51.
10. Junaid SA, Olabode AO, Onwuliri FC, Okwori AEJ, Agina SE. The antimicrobial properties of Ocimum gratissimum extracts on some selected bacterial gastrointestinal isolates. Afri J Biotech. 2006;5(22):2315-2321.
11. Omogbai BA, Eighemenio OS, Obazenu EI, Idouriyekemwen AS, Ubaka LN. Phytochemical analysis of Gongronema latifolium (‘utazi’) leaf and its bioactivity on microbial isolates from African sorghum beer (burukutu). BLU J Basic Appl Sci. 2019;4(1):82-90.
12. Bankole HA, Anjorin AA, Kazeem MI, Ogbeche ME, Agbafor U. Antibacterial activity of Ocimum gratissimum and Gongronema latifolium on Staphylococcus aureus and Salmonella typhi. East Afri J Sci Tech. 2012;2(1):114-128.
13. Amengialue OO, Edobor O, Egbarevba AP. Antibacterial activity of extracts of Ocimum gratissimum on bacteria associated with diarrhoea. Bayero J Pure Appl Sci. 2013;6(2):143-145.
14. Unegbu VN, Nkwoemeka NE, Obum-Nnadi CN, Okey-Ndeche FN. Phytochemical and antibacterial activities of Vernonia amygdalina leaves (bitter leaf) on two drug resistant bacteria, Intl J Resear Studies Microbiol Biotech. 2020;6(1):30-37.
15. Ladipo MK, Doherty VF, Kanife UC. Phytochemical screening and antibacterial investigation of the extract of Ocimum gratissimum (scent leaf) on selected Enterobacteriaceae. Prod Agric Tech. 2010;6(2):75-84.
16. Habtamu A, Melaku Y. Antibacterial and antioxidant compounds from the flower extracts of Vernonia amygdalina. Adv Pharmacoal Sci. 2018;1-6. Available:https://doi.org/10.1155/2018/4083736
17. Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Tropical Med. 2020;1-19. Available:https://doi.org/10.1155/2020/4674235
18. Miranda JM, Vázquez BI, Fente CA, Colomata P, Cepeda A, Franco CM. Comparison of antimicrobial resistance in
Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat. J Food Protection. 2008; 71(12):2537-2542.

19. Ndubueze CW, Dike-Ndudim JN, Udujih HI. Antibacterial effect of Gongronema latifolium leaf extracts on selected Gram positive and negative clinical bacterial isolates. Eur J Bot Plant Sci Phyto. 2020; 5(1):1-12.

20. Opara AU, Egbuobi RC, Dike Ndudim JN, Onyewuchi CE, Nnodim JK. Antibacterial activity of Ocimum gratissimum (nchu-anwu) and Vernonia amygdalina (bitter leaf) antibacterial activity of Ocimum gratissimum (nchu-anwu) and Vernonia amygdalina (bitter leaf). Brit Biotech J. 2014;4(10):1115-1122.

21. Madunagu BE, Ebana RB, Udo SM, Ndifon LT. Antimicrobial activity of Ixora divaricata and Citrus amantilolia on some pathogens and drug resistant Neisseria gonorrhoea. Niger J Bot. 2001;14:63-69.

22. Femi GA, Olukayode OO, Olugbenga AO, Bashiru SE, Fatima YA. The effect of bitter leaves (Vernonia amygdalina) extract on Salmonella typhi and Salmonella paratyphi. Intl J Resear Innov Appli Sci. 2021;6(6):145-148.

23. Abike TO, Debbie O, Olusola OC, Modupe AO, Olowokere BD, Olawoye AA. Antibacterial efficacy of Vernonia amygdalina against bacteria strains recovered from hospital formites, Nigeria. Curr Trends Biotech Microbiol. 2020; 2(2):381-388.

24. Akani NP, Nwachukwu C, Hakam IO. Evaluation of the antibacterial activity of Gongronema latifolium and Costus afer leaf extracts on E. coli (ATCC 29455) and S. aureus (ATCC 25923). Intl J Pathogen Resear. 2020;5(4):11-16.

25. Adeshina I, Jenyo-Oni A, Emikpe BO, Ajani EK. Effect of solvents on phytoconstituents and antimicrobial activities of Ocimum gratissimum and Eugenia caryophyllata extracts on Listeria monocytogenes. Acta Vet Eurasia. 2018;44:31-38.

26. Prabhu KS, Lobo R, Shirwaikar AA, Shirwaikar A. Ocimum gratissimum: A review of its chemical, pharmacological and ethnomedicinal properties. The Open Comp. Med. J. 2009;1(1):1-15.

27. Alara OR, Abdurahman NH, Mudalip SKA, Olalere OA. Phytochemical and pharmacological properties of Vernonia amygdalina: A review. J Chem Engineer. Ind. Biotech. 2017;2:80-96.

28. Ohiagu FO, Chikezie PC, Maduka TDO, Enyoh CE, Chikezie CM. Bioactive compounds and medicinal usefulness of edible leaves of Vernonia amygdalina, Ocimum gratissimum, Piper guineense and Gongronema latifolium. SAJ Pharm Pharmacol. 2021;7(1):1-19.

29. Awomukwu DA, Anumudu CK, Ogbolosingha AJ. Comparative antibacterial analysis and synergistic potency of the leaf extracts of Ocimum gratissimum Linn. and Gongronema latifolium Benth. on some enteric bacterial isolates. Eur J Nutri Food Safety. 2019; 11(2):98-107.