Stationary states in single-well potentials under symmetric Lévy noises

Bartłomiej Dybiec1, Igor M Sokolov2 and Aleksei V Chechkin3,4

1 Marian Smoluchowski Institute of Physics, and Mark Kac Center for Complex Systems Research, Jagiellonian University, ulica Reymonta 4, 30-059 Kraków, Poland
2 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
3 School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
4 Institute for Theoretical Physics NSC KIPT, Akademicheskaya street 1, Kharkov 61108, Ukraine
E-mail: bartek@th.if.uj.edu.pl, igor.sokolov@physik.hu-berlin.de and achechkin@kpi.kharkov.ua

Received 5 May 2010
Accepted 14 June 2010
Published 9 July 2010

Online at stacks.iop.org/JSTAT/2010/P07008
doi:10.1088/1742-5468/2010/07/P07008

Abstract. We discuss the existence of stationary states for subharmonic potentials $V(x) \propto |x|^c$, $c < 2$, under the action of symmetric α-stable noises. We show analytically that the necessary condition for the existence of the steady state is $c > 2 - \alpha$. Consequently, for harmonic ($c = 2$) and superharmonic potentials ($c > 2$) driven by any α-stable noise, steady states always exist. Stationary states are characterized by probability density functions $P(x) \propto x^{-(c+\alpha-1)}$ for $|x| \to \infty$ having a lighter tail than the noise distribution for superharmonic potentials ($c > 2$) and a heavier tail than the noise distribution for subharmonic ones. Monte Carlo simulations confirm the existence of such stationary states and the form of the tails of the corresponding probability densities.

Keywords: stochastic particle dynamics (theory), stochastic processes (theory), stationary states
1. Introduction

The dynamics of many physical systems can be reduced to a standard model of a ‘particle’ (relevant coordinate x) under the action of a deterministic force $f(x)$ and a noise force including the action of all neglected degrees of freedom. The mathematical tool for such a description is given by a Langevin equation, which in the overdamped limit typically takes the form

$$\dot{x}(t) = f(x) + \zeta(t).$$

In equation (1) $f(x)$ stands for the deterministic force, while $\zeta(t)$ is the stochastic force—noise—describing interactions of a test particle with its complex surroundings. Commonly, it is assumed that the stochastic force is of the white type, for example representing the particle’s collisions with molecules of the bath. Following the Generalized Central Limit Theorem, a large number of independent collisions will lead to white noise of a stable type, i.e. either to Gaussian noise or to more general Lévy noise. The presence of fluctuations distributed according to Lévy laws has been observed in various situations in physics, chemistry and biology [1, 2], paleoclimatology [3] and economics [4]. The situations pertinent to heavy-tailed distributions appear in the context of different models [5]–[8], and are analyzed in an increasing number of studies [9]–[30].

The action of white Lévy noise leads to increments of the stochastic process which are distributed according to α-stable Lévy type distributions. Symmetric Lévy distributions $p_\alpha(x; \sigma)$ are characterized by their Fourier transforms (characteristic functions of the distributions) $\phi(k) = \int_{-\infty}^{\infty} e^{ikx} p_\alpha(x; \sigma) \, dx$ being [31]–[33]

$$\phi(k) = \exp[-\sigma^\alpha |k|^\alpha].$$

(2)

The parameter α (where $\alpha \in (0, 2]$) is the stability index of the distribution describing, for $\alpha < 2$, the asymptotic decay of its tails

$$p_\alpha(x) \propto |x|^{-(1+\alpha)}.$$

(3)
Finally, σ is the scale parameter which controls the overall distribution width. The Gaussian distribution corresponds to a special case of a Lévy stable law with $\alpha = 2$ when $\sqrt{2\sigma}$ is interpreted as the standard deviation of the distribution. In more general cases, for $\alpha < 2$, the variance of α-stable densities diverges. For $\alpha < 1$, the mean value of α-stable densities also does not exist.

The present work addresses the properties of Lévy flights in external potentials. The theoretical description of such systems is based on the Langevin equation and/or Fokker–Planck equation, which is of the fractional order [34]. The research performed here extends earlier studies [9, 19–21, 35–38] where the analysis of Lévy flights in harmonic and superharmonic potentials has been presented. The discussion conducted there did not account for the problem of the existence of stationary states in potentials less steep than parabolic, which is the main topic of the present work. This issue is addressed here by the use of analytical arguments and Monte Carlo simulations.

The model under discussion is presented in section 2. Section 3 discusses the obtained results. The paper is closed with concluding remarks (section 4).

2. Model

An overdamped Brownian–Lévy particle moves in an external potential $V(x)$, therefore equation (1) takes the form

$$\dot{x}(t) = -V'(x) + \zeta(t),$$ \hspace{1cm} (4)

where $V(x)$ represents a subharmonic single-well potential $V(x) = |x|^c$ with $0 < c < 2$, see figure 1, and $\zeta(t)$ denotes a Lévy stable white noise process [9, 10, 15, 39, 40]. The position of a random walker can be calculated by means of the stochastic integration of equation (4) [32, 41]

$$x(t) = x(0) - \int_0^t V'(x(s)) \, ds + \int_0^t \zeta(s) \, ds$$

$$= x(0) - \int_0^t V'(x(s)) \, ds + L_\alpha(t).$$ \hspace{1cm} (5)

Figure 1. Exemplary subharmonic potentials: $V(x) = |x|$ and $V(x) = |x|^{1.5}$ used for examination of the problem of the existence of stationary states.
The integral \(\int_0^t \zeta(s) \, ds \equiv \Lambda_0(t) \) defines an \(\alpha \)-stable Lévy process \(\Lambda_0(t) [9, 10, 15, 39, 42] \) which is driven by a Lévy stable noise \(\zeta(t) \). Increments \(\Delta \Lambda_0(\Delta t) = \Lambda_0(t + \Delta t) - \Lambda_0(t) \) of the \(\alpha \)-stable Lévy process are distributed according to the \(\alpha \)-stable density with the stability index \(\alpha \). If the time step is set to \(\Delta t \), the appropriate \(\alpha \)-stable distribution is

\[
p_{\alpha}(\Delta \Lambda_0; \sigma(\Delta t)^{1/\alpha}) [32, 33, 43, 44].
\]

Equation (4) is associated with the following fractional Fokker–Planck equation (FFPE) [35], [45]–[50]

\[
\frac{\partial P(x, t)}{\partial t} = \left[\frac{\partial}{\partial x} V'(x, t) + \sigma^\alpha \frac{\partial^\alpha}{\partial |x|^\alpha} \right] P(x, t)
\] (6)

where the fractional (Riesz–Weyl) derivative is defined by the Fourier transform [9, 19, 20, 51] \(\mathcal{F}[\partial^\alpha/\partial |x|^\alpha f(x)] = -|k|^\alpha \mathcal{F}[f(x)] \). The (space) fractional derivative in equation (6) describes long jumps which are distributed according to the \(\alpha \)-stable density, see equation (2) and [1, 35, 46, 48]. The Langevin equation (4) provides a stochastic representation of the fractional Fokker–Planck equation (6). In other words, it describes an evolution of a single realization of the stochastic process \(\{x(t)\} \). From the ensemble of trajectories it is possible to analyze further properties of the system, in particular a probability density \(P(x, t) \) of finding a random walker at time \(t \) in the neighborhood of \(x \), see equation (6). More details on the numerical scheme for integration of stochastic differential equations with respect to \(\alpha \)-stable noises can be found in [14, 15, 32, 33, 43].

In the following sections properties of stationary probability distributions for single-well systems perturbed by symmetric Lévy noises are discussed. In the limiting cases of parabolic and quartic potentials the performed simulations corroborate earlier theoretical findings [9], [19]–[21], [35]–[38], [52].

3. Results

Only in a limited number of special cases is it possible to find stationary probability densities \(P(x) \) analytically by solving equation (6). Therefore, the construction of stationary densities relies on numerical methods. In such a case, there are two frameworks possible: one option is to discretize equation (6), see [19, 21], [53]–[56], alternatively one might use a Monte Carlo method based on the simulation of the Langevin equation (4), see [32, 33, 41, 43, 57, 58]. Here, we rely on Monte Carlo simulations. Such a choice is based on the statistical properties of searched densities. As we proceed to show, for subharmonic potentials, if stationary states exist, the tail of the corresponding probability density function \(P(x) \) is ‘fatter’ than the tail of the corresponding \(\alpha \)-stable density. In such a case confining the numerical solution of equation (6) to a finite interval may introduce uncontrollable errors. Therefore, in our simulations, we rely solely on the stochastic representation of the fractional Fokker–Planck equation (6) which is provided by equation (4).

In the \(\alpha = 2 \) case (Gaussian noise) the stationary solution for equation (6), which in this case reduces to a ‘normal’ Fokker–Planck equation, has the Boltzmann–Gibbs form

\[
P(x) \propto \exp \left[-\frac{V(x)}{\sigma^2} \right]
\] (7)

and exists for any power-law potential \(V(x) \) such that \(\lim_{|x| \to \infty} V(x) = +\infty \). The situation drastically changes for Lévy noises with \(\alpha < 2 \). Stationary states always exist in potentials
Stationary states under symmetric Lévy noises

steeper than the parabolic one \[19\]–\[21\], \[35\]–\[38\], \[52\]. However, as it will be shown this is no longer the case for subharmonic potentials.

3.1. Parabolic and quartic potentials

There are two special cases of power-law potentials for which the stationary solution can be given in a closed form: the case of a parabolic potential (for any \(0 < \alpha \leq 2\)) and the case of a quartic potential for \(\alpha = 1\) and 2. These cases will serve as a benchmark for our further considerations.

In order to find stationary solution of the fractional Fokker–Planck equation (6) we rewrite it in the Fourier space as

\[
\frac{\partial \hat{P}(k,t)}{\partial t} = \hat{U}(k) \hat{P}(k,t) - \sigma^\alpha |k|^{\alpha} \hat{P}(k,t).
\]

(8)

In equation (8) \(\hat{U}(k)\) denotes the operator related to the Fourier representation of the derivative of the potential \(V'(x)\) which corresponds to the force taken with the opposite sign \[21\]. More precisely, the following relation is fulfilled:

\[
\mathcal{F}\{(\partial/\partial x)[V'(x)P(x)]\} = \hat{U}(k)\hat{P}(k).
\]

Therefore, for power-law potentials \(V(x) \propto x^{2m}\), the operator \(\hat{U}(k)\) is proportional to \(k(\partial^{2m-1}/\partial k^{2m-1})\). For \(V(x) \propto |x|^c\) with \(c \neq 2m\), the corresponding operator is proportional to \(k\) times the fractional (Riesz–Weyl) derivative of the order \(c - 1\).

For the parabolic potential \(V(x) = x^2/2\) the expression for \(\hat{U}(k)\) reads \(\hat{U}(k) = -k(\partial/\partial k)\). For symmetric \(\alpha\)-stable noises, the stationary probability density fulfils \[19,\ 20\]

\[
\frac{\partial \hat{P}(k)}{\partial k} = -\sigma^\alpha \text{sgn} k |k|^{\alpha-1} \hat{P}(k).
\]

(9)

The solution of equation (9) is

\[
\hat{P}(k) = \exp \left[-\frac{\sigma^\alpha |k|^\alpha}{\alpha} \right],
\]

(10)

i.e., the stationary solution is a symmetric Lévy distribution, see equation (2), characterized by a different value of the scale parameter than the noise in equation (4). The scale parameter of the stationary density is \(\sigma/\alpha^{1/\alpha}\). For \(\alpha < 2\), the variance of the stationary solution diverges and the parabolic potential is not sufficient to produce bounded states, i.e. states characterized by a finite variance \[9\], \[19\]–\[21\], \[35\]–\[38\].

For the quartic potential \(V(x) = x^4/4\) the expression for \(\hat{U}(k)\) reads \(\hat{U}(k) = k(\partial^3/\partial k^3)\). The stationary density fulfils

\[
\frac{\partial^3 \hat{P}(k)}{\partial k^3} = \sigma^\alpha \text{sgn} k |k|^{\alpha-1} \hat{P}(k).
\]

(11)

For \(\alpha = 1\), the solution of equation (11) reads \[19,\ 20\]

\[
\hat{P}_{\alpha=1}(k) = \frac{2}{\sqrt{3}} \exp \left[-\frac{\sigma^{1/3} |k|}{2} \right] \cos \left[\frac{\sqrt{3}\sigma^{1/3} |k|}{2} - \frac{\pi}{6} \right].
\]

(12)

doi:10.1088/1742-5468/2010/07/P07008
The formula for the corresponding stationary density \(P(x) \) [19]–[21], [52] in the real space is
\[
P_{\alpha=1}(x) = \frac{1}{\pi w [1 - (x/w)^2 + (x/w)^4]},
\]
where \(w = \sigma^{1/3} \). The stationary solution (13), as well as the steady state (10) with \(\alpha < 2 \), is no longer of the Boltzmann–Gibbs type. This is typical for systems driven by Lévy white noises with the stability index \(\alpha < 2 \) [59]. The stationary state, see equation (13), has an asymptotic power-law dependence, i.e. \(P(x) \propto |x|^{-4} \). Furthermore, the stationary solution (13) is bimodal, with modal values located at \(x = \pm \sigma^{1/3}/\sqrt{2} \) [19]–[21].

3.2. Subharmonic potentials

3.2.1. Analytical results. Subharmonic potentials \((V(x) = |x|^c \text{ with } 0 < c < 2, \text{ see figure 1}) \) lie between the force free case \((c = 0)\) and the harmonic potential \((c = 2)\). As was indicated in section 3.1, for the harmonic potential, the stationary state is an \(\alpha \)-stable Lévy type distribution, see equations (2) and (10). In the force free case the stationary solutions do not exist. The time dependent solutions are just Lévy stable distributions with a growing scale parameter \(\sigma \), i.e. \(\sigma(t) = \sigma t^{1/\alpha} \). This observation suggests that for intermediate values of the exponent \(c \) \((0 < c < 2)\) there should be a transition between the situation when the stationary state exists and the situation when the stationary state is absent.

It is possible to obtain a necessary condition for the existence of the stationary state using qualitative arguments based on the FFPE (6). If a stationary state for equation (6) exists, it satisfies
\[
\left[\frac{d}{dx} V'(x) + \sigma^\alpha \frac{d^\alpha}{dx^\alpha} \right] P(x) = 0.
\]
Assuming that the tails of the distribution are given by a power-law, i.e. \(P(x) \propto |x|^{-\nu} \) as \(|x| \to \infty \), the first term in equation (14) behaves as
\[
\frac{d}{dx} [c|x|^{c-1}P(x)] \simeq x^{c-2-\nu}.
\]
The fractional derivative, see equation (14), is a nonlocal operator. The asymptotics of the fractional derivative of a probability density has a universal behavior independent of the particular form of this density. Indeed, its behavior for \(x \to \infty \) is governed by the behavior of its Fourier transform \(-|k|^\alpha \hat{P}(k)\) for \(k \to 0 \). Due to the normalization condition, \(\hat{P}(k = 0) = 1 \). The inverse Fourier transform results in
\[
\frac{d^\alpha}{dx^\alpha} P(x) \simeq x^{-1-\alpha}.
\]
In order to satisfy equation (14), both terms (15) and (16) have to represent the same \(x \)-dependence. Consequently, we get \(c - 2 - \nu = -1 - \alpha \) and
\[
\nu = c + \alpha - 1.
\]
Therefore, a stationary state is asymptotically characterized by a power-law
\[
P(x) \propto |x|^{-(c+\alpha-1)},
\]
doi:10.1088/1742-5468/2010/07/P07008
Stationary states under symmetric Lévy noises

i.e. by the same expression as for the superharmonic potentials [21]. The probability density function $P(x)$ has to be integrable, which corresponds to $\nu > 1$. Thus, the necessary condition for the existence of the steady state is

$$c > 2 - \alpha$$ \hspace{1cm} (19)

or

$$\alpha > 2 - c.$$ \hspace{1cm} (20)

Alternatively, the condition (17) can be derived using the dimensional analysis of the Fourier representation of equation (14).

For the parabolic potential ($c = 2$), the exponent ν reproduces the decay of the Lévy distribution ($\nu = 1 + \alpha$), see equation (10). For the quartic potential ($c = 4$) with $\alpha = 1$ we get $\nu = 4$, as follows from equation (13). The complementary cumulative density function ($F_c(x) = 1 - F(x) = 1 - \int_{-\infty}^{x} P(x') \, dx'$) is thus asymptotically characterized by a power-law decay

$$F_c(x) \propto x^{-(c+\alpha-2)}.$$ \hspace{1cm} (21)

Having the condition (19), it is also possible to determine the dependence of the width of the stationary distribution $w(\sigma)$ on the noise strength σ. Assuming that $P(x) = w^{-1}f(x/w)$ can be expressed through a universal function $f(\xi)$ of a new, dimensionless, length variable $\xi = x/w$ (this assumption is reasonable due to the scale free nature of the power-law potential), we change the length variable to $\xi = x/w$. For $V(x) = |x|^c$ (i.e. $V'(x) = c|x|^{c-1}$, $x \neq 0$), we get

$$w^{c-1}w^{-\alpha} \frac{d}{d\xi} \left[c|\xi|^{c-1}f(\xi) \right] + \sigma^{\alpha}w^{-1-\alpha} \frac{d^\alpha}{d|\xi|^\alpha}f(\xi) = 0.$$ \hspace{1cm} (22)

The universal rescaled equation for $f(\xi)$

$$\frac{d}{d\xi} \left[c|\xi|^{c-1}f(\xi) \right] + \sigma^{\alpha} \frac{d^\alpha}{d|\xi|^\alpha}f(\xi) = 0$$ \hspace{1cm} (23)

can only be obtained if the width of distribution $w(\sigma)$ is the solution of the following equation

$$w^{c-3} = \sigma^\alpha w^{-1-\alpha}.$$ \hspace{1cm} (24)

Condition (24) assures that the prefactors of both terms in equation (22) scale similarly when σ is changed. Thus, from equation (24) one obtains

$$w(\sigma) \propto \sigma^{\alpha/(c+\alpha-2)}.$$ \hspace{1cm} (25)

In the absence of the noise ($\sigma \to 0$) the solution $P(x)$ corresponds to the particle’s position in the minimum of the potential, $P(x) = \delta(x)$, i.e. $w(\sigma) = 0$. For $c + \alpha < 2$, the exponent in equation (25) is negative, and the distribution’s width $w(\sigma)$ diverges for $\sigma \to 0$, which corresponds to a non-physical situation. Consequently, no stationary state is possible. On the other hand, for $c + \alpha > 2$, the exponent in equation (25) is positive and the distribution width is an increasing function of the scale parameter σ. Therefore, the necessary condition for the existence of the steady state, see equation (19), is confirmed by the condition (25).
Note that the cases of parabolic and quartic potentials confirm equation (25). For the parabolic potential ($c = 2$) we get $w(\sigma) \propto \sigma$, see equation (10). In the case of the quartic potential ($c = 4$) with $\alpha = 1$ we get $w(\sigma) \propto \sigma^{1/3}$, see equation (13). Moreover, it is also possible to discuss how the relaxation time to the equilibrium depends on the scale parameter σ. To do this, we turn to equation (6) and rescale both the length ($\xi = x/w$) and the time variables ($\tau = t/\tau_0(\sigma)$), so that the rescaled solution to equation (6) is a universal function. The rescaling of t corresponds to

$$\tau_0(\sigma) \propto [w(\sigma)]^{3-c} = \sigma^{\alpha(3-c)/(c+\alpha-2)},$$

(26)

It indicates that the dependence on the scale parameter σ for the stability index α close to $2 - c$ gets extremely sharp. In other words, when α approaches $2 - c$ (from above) the relaxation time grows and diverges at $\alpha = 2 - c$.

The condition (19) for the existence of the steady state can be corroborated by the following qualitative argument based on the decomposition of the noise into a ‘background’ noise with finite variance, and ‘bursts’ of arbitrary amplitude [38, 60, 61].

Let us consider the discretized Langevin scheme with the time step of integration Δt and the characteristic amplitude of the Lévy jumps $\epsilon = \sigma(\Delta t)^{1/\alpha}$. Additionally, let us introduce a cutoff level Λ, so that only the jumps with an amplitude $a > \Lambda$ are considered as bursts. The overall situation is then considered as pertinent to a perturbation of the equilibrium distribution of particles in the potential $V(x)$ under the action of the background noise (i.e. the Boltzmann distribution in the potential $V(x)$ at the temperature $kT \simeq \Lambda$) by these distinct bursts. The width of this distribution W depends on the cutoff level Λ and on the type of the potential. Moreover, we assume that only very large bursts, with $a \gg \Lambda$, can be responsible for the absence of a stationary distribution. Therefore, the finite width of the background distribution can be neglected when considering the action of such bursts. The distribution of the burst amplitudes is then given by the asymptotic behavior of tails of the symmetric Lévy distribution

$$p(a) \simeq \frac{\epsilon^\alpha}{a^{1+\alpha}} = \frac{\sigma^\alpha \Delta t}{a^{1+\alpha}}.$$

(27)

A burst of amplitude a brings the particle to a position $x \approx a$, and the typical time necessary to return to the interval of the characteristic width W is given by the solution of the ordinary equation of motion

$$\dot{x}(t) = -V'(x).$$

(28)

For $c \neq 2$, the return time $T(a)$ into the equilibrium domain, i.e. $|x| < W$, from the initial position $x = a$ is given by

$$T(a) = \frac{1}{c(2-c)} \left[a^{2-c} - W^{2-c} \right].$$

(29)

For subharmonic potentials, $0 < c < 2$, the return time $T(a)$ is dominated by the initial position a. The leading contribution to $T(a)$ is provided by the first term of equation (29), i.e. $a^{2-c}/[c(2-c)]$. Therefore, instead of the return time to the equilibrium domain it is possible to consider the return time to the origin, which is finite and slightly larger than the return time to the characteristic domain.

It is reasonable to assume, that the steady state does not exist, if the time $T(a)$ to return from the point a is larger than the typical time between two bursts of amplitude.

doi:10.1088/1742-5468/2010/07/P07008
a or larger, and might exist in the opposite situation. The probability to have a burst of amplitude a or larger is
\[P(a) = 2 \int_a^\infty p(a') \, da' \simeq \left(\frac{\epsilon}{a}\right)^\alpha, \tag{30} \]
so that the typical time between two such events is
\[T \simeq \Delta t \left(\frac{a}{\epsilon}\right)^\alpha. \tag{31} \]
Comparing T with $T(a)$ we conclude that the inequality $T(a) < T$ applies and the stationary states are possible for

$$c > 2 - \alpha.$$

(32)

For superharmonic potentials, $c > 2$, the situation is the reverse of the situation for subharmonic potentials. The larger the initial displacement a is, the faster is the return to the W-domain. For an increasing initial displacement a, the typical return time essentially tends to a constant value $W^2 a / [c(c - 2)]$, while the time between two subsequent bursts grows with their amplitude a. Comparing T with $T(a)$, we conclude that stationary states for superharmonic potentials exist for every value of the stability index α. The harmonic potential, $c = 2$, is the limiting case for which the return time shows not a power-law but a logarithmic dependence. In such a case, the very same arguments proving the existence of stationary states hold.

3.2.2. Numerical results. Numerical results were obtained by Monte Carlo simulations of equation (4) with the time step of integration $\Delta t = 10^{-2}$, averaged over $N = 10^6$ realizations [14, 15, 32, 33, 43, 58]. Initially, at time $t = 0$, a test particle was located at the origin, i.e. $x(0) = 0$. Due to the symmetry of the noise and of the potential,
stationary states are symmetric with respect to the origin; the median and modal values of the stationary densities are located at the origin.

Our test of stationarity is based on the quantiles \(q_y \) (0 < \(y < 1 \)) of distributions, which are defined as \(q_y = \int_{-\infty}^{x} P(x', t) \, dx' \). Quantiles of stationary distributions remain constant. Consequently, plotting quantile values as functions of time (quantile lines) gives us the key to analyze stationarity. More precisely, if the quantile lines are parallel to the abscissa, it means that the stationary state has been reached.

In order to verify the performance of the test based on quantile lines we have constructed quantile lines for Lévy flights in the parabolic potential. In such a case the stationary state exists and is given by the \(\alpha \)-stable density, see equation (10). Therefore, quantile lines should be parallel to the abscissa. Analogously, the interquantile distance \(q_y - q_{1-y} \) (1/2 < \(y < 1 \)), which is the width of the interval containing \(1 - 2y \) probability mass, should not change over time. This behavior is indeed observed, e.g. in the bottom panel of figure 2.

Furthermore, figure 2 compares interquantile distance (left column) and complementary cumulative distributions \(F_c(x, t) = 1 - F(x, t) = 1 - \int_{-\infty}^{x} P(x', t) \, dx' \) (right column) for the stability index \(\alpha = 0.9 \) and various potentials: \(V(x) = 0 \) (top panel), \(V(x) = |x| \) (middle panel) and \(V(x) = x^2/2 \) (bottom panel). From these cases only the \(V(x) = x^2/2 \) case corresponds to the situation when a stationary state exists. The top panel of figure 2...
Figure 5. Quantile lines q_y and $|q_{1-y}|$ ($y = \{0.9, 0.8, 0.7, 0.6\}$, from top to bottom) as a function of $1/t$ (left column) and complementary cumulative distributions at the end of the simulation (right column) for $V(x) = |x|^{1.5}$ with the value of the stability index $\alpha = 0.7$ and the scale parameter σ: $\sigma = 1$ (top panel), $\sigma = 0.1$ (middle panel) and $\sigma = 0.01$ (bottom panel). In the right column, solid lines present the $x^{-(\alpha-0.5)}$ decay predicted by equation (21).

corresponds to the force free case in which no stationary density exists. In such a case, the interquantile distance grows as $t^{1/\alpha}$. The middle panel of figure 2 corresponds to the intermediate case, i.e. $V(x) = |x|$. Numerical simulations indicate that for $V(x) = |x|$ and $\alpha = 0.9$ no stationary state exists either, which is in agreement with the analytical arguments given above. Note that in all three cases the decay of the probability densities follows the one of the noise, albeit for different reasons. For free motion, this decay follows the one of the noise due to the stability of the process. For the case $V(x) = |x|$, where according to the analytical result the stationary state is absent, numerical simulations
suggest that the tail of the distribution function is still dominated by the properties of the noise, and follows the $F_c(x) \propto x^{-\alpha}$ pattern. Finally, for the parabolic potential it is essentially given by $F_c(x) \propto x^{-(c+\alpha-2)}$, i.e. again by $F_c(x) \propto x^{-\alpha}$ for $c = 2$.

Consecutive figures present results for subharmonic potentials. Figures 3–5 present results for $V(x) = |x|^{1.5}$. Figures 3 and 4 present: interquantile distance as a function of time t (figure 3) and complementary cumulative distributions ($F_c(x) = 1 - F(x)$) at the end of simulation (figure 4). The various panels present results for various values of the stability index α: $\alpha = \{1.5, 1.1\}$ (left column, from top to bottom) and $\alpha = \{0.9, 0.8\}$ (right column, from top to bottom). Finally, figure 5 presents quantile lines (left column) and complementary cumulative distributions (right column) for $\alpha = 0.7$ with various scale parameters σ: $\sigma = 1$ (top panel), $\sigma = 0.1$ (middle panel) and $\sigma = 0.01$ (bottom panel).

Figures 6–8 present results for $V(x) = |x|$. Figures 6 and 7 present: interquantile distance as a function of time t (figure 6) and complementary cumulative distributions ($F_c(x) = 1 - F(x)$) at the end of the simulation (figure 7). The various panels present result for various values of the stability index α: $\alpha = \{1.7, 1.6\}$ (left column, from top to bottom) and $\alpha = \{1.5, 1.4\}$ (right column, from top to bottom). Finally, figure 8 presents quantile lines (left column) and complementary cumulative distributions (right column) for $\alpha = 1.3$ with various scale parameters σ: $\sigma = 1$ (top panel) and $\sigma = 0.1$ (bottom panel).
The stability index α in figures 3–8 is chosen in such a way that equation (19) holds true. Even in this case the numerical verification whether stationary states exist or do not exist, due to possible slow convergence to a stationary state, is not trivial; see the discussion of figures 5 and 8 below.

The probability densities for the system described by equations (4) and (6) are symmetric with respect to the origin. Therefore the quantile lines for q_y and $|q_{1-y}|$ overlap and are not distinguishable in the left panels of figures 5 and 8.

For $V(x) = |x|^{1.5}$, figure 3 indicates that, for sufficiently large values of the stability index α, stationary densities exist. Although all the values of stability indices shown correspond to the domain where stationary states are predicted to exist, the convergence to these states becomes slower when α approaches $2 - c = 0.5$ for $V(x) = |x|^{1.5}$. Figure 6 shows a very similar behavior for $V(x) = |x|$. Here, again, the relaxation time to the equilibrium becomes larger when α approaches $2 - c = 1$.

Figures 4 and 7 present complementary cumulative distributions in the situation when equation (19) is valid. Therefore, according to equation (21), the complementary cumulative distributions should asymptotically decay as $x^{-(c+\alpha-2)}$. Indeed, in figures 4 and 7 the decay predicted by equation (21) is observed.

Figures 5 ($\alpha = 0.7$ and $V(x) = |x|^{1.5}$) and 8 ($\alpha = 1.3$ and $V(x) = |x|$) present quantile lines and complementary cumulative distributions for different values of the scale parameter σ.
Figure 8. Quantile lines q_y and $|q_{1-y}|$ ($y = \{0.9, 0.8, 0.7, 0.6\}$, from top to bottom) as a function of $1/t$ (left column) and complementary cumulative distributions at the end of simulation (right column) for $V(x) = |x|$ with the value of the stability index $\alpha = 1.3$ and the scale parameter σ: $\sigma = 1$ (top panel) and $\sigma = 0.1$ (bottom panel). In the right column, solid lines present the $x^{-(\alpha-1)}$ decay predicted by equation (21).

The quantile lines are plotted as functions of $1/t$ in order to elucidate convergence. Thus, in figure 5 the convergence of $q_{0.9}$ is not achieved over the time of simulation for $\sigma = 1$, but is approached for $\sigma = 0.01$. Correspondingly, the tail of the complementary cumulative density differs from the theoretical predictions for $\sigma = 1$ and approaches its theoretical asymptotics for $\sigma = 0.01$. The same is true for the data in figure 8, where the convergence is achieved already for $\sigma = 0.1$. This indicates that the problem of slow convergence to the stationary state has to be taken seriously.

4. Summary and conclusions

We considered the problem of the existence of stationary states in power-law subharmonic potentials $V(x) = |x|^c$, $c < 2$, under the action of Lévy stable noise characterized by the stability index α. On the one hand, for potentials steeper than harmonic ones, stationary solutions exist for any $0 < \alpha \leq 2$. On the other hand, for subharmonic potentials, the scaling analysis of the fractional Fokker–Planck equation leads us to the conclusion that such states exist if $\alpha > 2 - c$. This conclusion is corroborated by an alternative argument based on the decomposition of the Lévy noise. For subharmonic potentials, the probability density functions of stationary states are characterized by the asymptotic power-law decay
Stationary states under symmetric Lévy noises

\[P(x) \propto |x|^{-\nu} = |x|^{-(c+\alpha-1)} \] for \(|x| \to \infty\), which is slower than decay of the tails of the corresponding Lévy distributions. Monte Carlo simulations of the Langevin equation confirm these analytical findings, at least for \(\alpha\) not too close to \(2 - c\). The convergence to the stationary state for \(\alpha\) approaching \(2 - c\) is very slow, which poses considerable numerical problems, since both long times and very small values of the scale parameter \(\sigma\) are required. However, for \(\sigma\) small enough, the tendency to converge is still observable.

Acknowledgments

The authors acknowledge the financial support by DFG within SFB555. AVC acknowledges financial support from European Commission via MC IIF, grant 219966 LeFrac. The computer simulations were performed at the Institute of Physics, Jagiellonian University and the Academic Computer Center, Cyfronet AGH.

References

[1] Shlesinger M F, Zaslavsky G M and Frisch J (ed), 1995 Lévy Flights and Related Topics in Physics (Berlin: Springer)
[2] Barndorff-Nielsen O E, Mikosch T and Resnick S I (ed), 2001 Lévy Processes: Theory and Applications (Boston: Birkhäuser)
[3] Ditliveness P D, 1999 Geophys. Res. Lett. 26 1441
[4] Mantegna R N and Stanley H E, 2000 An Introduction to Econophysics. Correlations and Complexity in Finance (Cambridge: Cambridge University Press)
[5] Solomon T H, Weeks E R and Swinney H L, 1993 Phys. Rev. Lett. 71 3975
[6] Solomon T H, Weeks E R and Swinney H L, 1994 Physica D 76 70
[7] Chechkin A V, Gonchar V Y and Szydlowski M, 2002 Phys. Plasmas 9 78
[8] Boldyrev S and Gwinn C R, 2003 Phys. Rev. Lett. 91 131101
[9] Jespersen S, Metzler R and Fogedby H C, 1999 Phys. Rev. E 59 2736
[10] Ditliveness P D, 1999 Phys. Rev. E 60 172
[11] Kosko B and Mitaim S, 2001 Phys. Rev. E 64 051110
[12] Dybiec B and Gudowska-Nowak E, 2004 Phys. Rev. E 69 016105
[13] del Castillo-Negrete D, Gonchar V Y and Chechkin A V, 2008 Physica A 387 6693
[14] Dybiec B and Gudowska-Nowak E, 2004 Fluct. Noise Lett. 4 L273
[15] Dybiec B, Gudowska-Nowak E and Hänggi P, 2006 Phys. Rev. E 73 046104
[16] Dybiec B and Gudowska-Nowak E, 2006 Acta Phys. Pol. B 37 1479
[17] Dybiec B, Gudowska-Nowak E and Hänggi P, 2007 Phys. Rev. E 75 021109
[18] Dybiec B and Gudowska-Nowak E, 2009 J. Stat. Mech. P05004
[19] Chechkin A V, Klafter J, Gonchar V Y, Metzler R and Tanatarov L V, 2002 Chem. Phys. 284 233
[20] Chechkin A V, Klafter J, Gonchar V Y, Metzler R and Tanatarov L V, 2003 Phys. Rev. E 67 010102(R)
[21] Chechkin A V, Gonchar V Y, Klafter J, Metzler R and Tanatarov L V, 2004 J. Stat. Phys. 115 1505
[22] Sokolov I M and Belik V V, 2003 Physica A 330 46
[23] Dubkov A A, Spagnolo B and Uchaikin V V, 2008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 18 2649
[24] Garbaczewski P and Stephanovich V, 2009 Phys. Rev. E 80 31113
[25] Garbaczewski P, 2010 Physica A 389 936
[26] Srokowski T, 2009 Phys. Rev. E 79 040104
[27] Srokowski T, 2010 Phys. Rev. E 81 051110
[28] Rypdal M and Rypdal K, 2010 Phys. Rev. Lett. 104 128501
[29] Barthelemy P, Bertolotti J and Wiersma D, 2008 Nature 453 495
[30] Pastersak Z, Bartumeus F and Grasso F W, 2009 J. Phys. A: Math. Theor. 42 434010
[31] Feller W, 1968 An Introduction to Probability Theory and its Applications (New York: Wiley)
[32] Janicki A and Weron A, 1994 Simulation and Chaotic Behavior of \(\alpha\)-Stable Stochastic Processes (New York: Dekker)
[33] Janicki A, 1996 Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures (Wrocław: Hugo Steinhaus Centre for Stochastic Methods)
[34] Podlubny I, 1999 Fractional Differential Equations (San Diego, CA: Academic)
[35] Dubkov A A and Spagnolo B, 2005 Fluct. Noise Lett. 5 L267

do:10.1088/1742-5468/2010/07/P07008
Stationary states under symmetric Lévy noises

[36] Dubkov A A and Spagnolo B, 2007 Acta Phys. Pol. B 38 1745
[37] Samorodnitsky G and Grigoriu M, 2003 Stoc. Process. Appl. 105 69
[38] Samorodnitsky G and Grigoriu M, 2007 Theor. Math. Phys. 150 332
[39] Weiss G H and Szabo A, 1983 Physica A 119 509
[40] Cáceres M O, 1999 J. Phys. A: Math. Gen. 32 6009
[41] Janicki A and Weron A, 1994 Stat. Sci. 9 109
[42] Samorodnitsky G and Taqqu M, 1994 Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance (New York: Chapman and Hall)
[43] Janicki A and Izydorczyk A, 2001 Computer Methods in Stochastic Modelling (Warszawa: Wydawnictwa Naukowo Techniczne) (in Polish)
[44] Nolan J P, 2010 Stable Distributions—Models for Heavy Tailed Data (Boston: Birkhäuser) chapter 1 in progress, online at http://academic2.american.edu/~jpnolan
[45] Metzler R, Barkai E and Klafter J, 1999 Europhys. Lett. 46 431
[46] Yanovsky V V, Chechkin A V, Schertzer D and Tur A V, 2000 Physica A 282 13
[47] Schertzer D, Larchevêque M, Duan J, Yanowsky V V and Lovejoy S, 2001 J. Math. Phys. 42 200
[48] Di Paola M and Vasta M, 2003 ASME Appl. Mech. Div. 254 207
[49] Brockmann D and Sokolov I M, 2002 Chem. Phys. 284 409
[50] Chaves A, 1998 Phys. Lett. A 239 13
[51] Metzler R and Klafter J, 2004 J. Phys. A: Math. Gen. 37 R161
[52] Chechkin A V, Gonchar V Y, Klafter J and Metzler R, 2006 Adv. Chem. Phys. 133 439
[53] Press W H, Teukolsky S A, Vetterling W T and Flannery B P, 1992 Numerical Recipes. The Art of Scientific Computing (Cambridge: Cambridge University Press)
[54] Abdel-Rehim E, Modelling and simulating of classical and non-classical diffusion processes by random walks, 2004 PhD Thesis Department of Mathematics and Informatics, Freie Universität, Berlin, Germany
[55] Meerschaert M M and Tadjeran C, 2004 J. Comput. Appl. Math. 172 65
[56] Meerschaert M M and Tadjeran C, 2006 Appl. Numer. Math. 56 80
[57] Dybiec B, Gudowska-Nowak E and Sokolov I M, 2007 Phys. Rev. E 76 041122
[58] Grigoriu M, 2009 Phys. Rev. E 80 26704
[59] Eliazar I and Klafter J, 2003 J. Stat. Phys. 111 739
[60] Imkeller P and Pavlyukevich I, 2006 Stoch. Process. Appl. 116 611
[61] Imkeller P and Pavlyukevich I, 2006 J. Phys. A: Math. Gen. 39 L237

doi:10.1088/1742-5468/2010/07/P07008