Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin

Carrai, Maura; Steinke, Verena; Vodicka, Pavel; Pardini, Barbara; Rahner, Nils; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K.; Goergens, Heike; Stemmler, Susanne; Betz, Beate; Kloor, Matthias; Engel, Christoph; Buettner, Reinhard; Naccarati, Alessio; Vodickova, Ludmila; Novotny, Jan; Stein, Angelika; Hemminki, Kari; Propping, Peter; Försti, Asta; Canzian, Federico; Barale, Roberto; Campa, Daniele

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0020464

2011

Citation for published version (APA):
Carrai, M., Steinke, V., Vodicka, P., Pardini, B., Rahner, N., Holinski-Feder, E., Morak, M., Schackert, H. K., Goergens, H., Stemmler, S., Betz, B., Kloor, M., Engel, C., Buettner, R., Naccarati, A., Vodickova, L., Novotny, J., Stein, A., Hemminki, K., ... Campa, D. (2011). Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0020464

Total number of authors: 24

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. Nov. 2021
Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin

Maura Carrai¹, Verena Steinke², Pavel Vodicka³,⁴, Barbara Pardini³, Nils Rahner², Elke Holinski-Feder⁵,⁶, Monika Morak⁶,⁷, Hans K. Schackert⁷, Heike Görgens⁷, Susanne Stemmler⁸, Beate Betz⁹, Matthias Kloor¹⁰, Christoph Engel¹¹, Reinhard Büttner¹², Alessio Naccarati¹³, Ludmila Vodickova³,⁴, Jan Novotny¹³, Angelika Stein¹⁴, Kari Hemminki¹⁴,¹⁵, Peter Propping², Asta Försti¹⁴,¹⁵, Federico Canzian¹⁴, Roberto Barale¹, Daniele Campa¹,¹⁴,*

¹ Department of Biology, University of Pisa, Pisa, Italy, ² Institute of Human Genetics, University of Bonn, Bonn, Germany, ³ Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic, ⁴ Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Czech Republic, ⁵ Department of Internal Medicine, University Hospital of Ludwig-Maximilians-University, Munich, Germany, ⁶ Medical Genetics Center/Medizinisch Genetisches Zentrum (MGZ), Munich, Germany, ⁷ Department of Surgical Research, Technische Universität Dresden, Dresden, Germany, ⁸ Humangenetik Ruhr-Universität Bochum, Bochum, Germany, ⁹ Institute of Human Genetics, University of Düsseldorf, Düsseldorf, Germany, ¹⁰ Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany, ¹¹ Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany, ¹² Institute of Pathology, University of Bonn, Bonn, Germany, ¹³ Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic, ¹⁴ The German Cancer Research Center/Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany, ¹⁵ Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden

Abstract

Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotype and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99–1.67; Pvalue = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06–1.75; Pvalue = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12–1.61; Pvalue = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin.

Citation: Carrai M, Steinke V, Vodicka P, Pardini B, Rahner N, et al. (2011) Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin. PLoS ONE 6(6): e20464. doi:10.1371/journal.pone.0020464

Editor: Yiqing Song, Brigham & Women’s Hospital, and Harvard Medical School, United States of America

Received February 28, 2011; Accepted April 25, 2011; Published June 2, 2011

Copyright: © 2011 Carrai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was partially supported by the Grant Agency of the Czech Republic: CZ:GA:CR:GA310/07/1430, by the European Economic Area/Norway Grants and the Czech Republic state budget by means of the Research Support Fund: A/CZ0046/2/0012. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.

Competing Interests: EHF and MM are employed by Medical Genetics Center/Medizinisch Genetisches Zentrum, Munich. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: d.campa@dkfz.de

Introduction

Colorectal cancer (CRC) is the third most common cancer in the world and the second in Europe [1,2]. Genetic background is thought to play a role in modulating individual risk [3]. The main interest of the research on the genetic susceptibility of CRC has been focused on genes involved in xenobiotic transport and metabolism [4,5,6,7], DNA repair and cell cycle [8,9], insulin resistance, obesity and glucose levels [10], and inflammation [11,12]. However, the possible association between taste receptors, bitter sensing and CRC risk has been recently tested [13,14,15,16]. The gustatory system, developed during evolution, is a nutritional gatekeeper of the body to determine which food should be ingested and which should be rejected as potentially harmful. In particular, the capability to discriminate bitter taste has evolved as a central warning signal against the ingestion of possible toxic substances. TAS2R38, the most studied gene belonging to this family, is greatly involved in the ability to taste the glucosinolates, a large family of bitter tasting compounds which are widely distributed in plants and particularly in the *Brassica* sp. [17,18]. The discrimination of bitter taste can influence the consumption of vegetables containing these ligands and since a reduced vegetable intake can increase colon...
cancer risk, individual responsiveness to bitter compounds could modulate the disease risk [19,20,21,22]. Moreover, bitter taste receptors encoded by TAS2R gene family are expressed not only in the tongue but also in the cells of the gastrointestinal (GI) tract [23,24]. Taste receptors may provide, in this way, the organism with two lines of defence against possible toxic agents. The first may be at the level of taste in the tongue, by avoiding ingestion. The second line of defence, the molecular sensing in the GI tract, could be responsible for the detection of ingested harmful drugs and toxins, thereby initiating responses critical for survival. Namely, the detection process is initiated by sending messages to the nervous system to give rise to the appropriate response of their neutralization and expulsion [23]. Furthermore, the taste sensing is an important system to start hormonal and/or neural pathways leading to the regulation of caloric intake, pancreatic insulin secretion, and metabolism [23]. Although these fundamental control systems have been known since many years, the cellular and neural pathways that mediate biological responses to luminal stimuli in general, and bitter stimuli in particular, remain poorly characterized. However, recent reports are quickly adding new information to this very important topic [25,26,27,28].

TAS2R38 gene is characterized by three non synonymous coding SNPs (rs713598 – G145C, Ala49Pro; rs1726866 – T785C, Val262Ala; rs10246939 – A886G, Ile296Val). These three polymorphisms, which are also tagging SNPs and cover all the common genetic variability of the gene locus, give rise to several haplotypes. Two of these haplotypes, Pro-Ala-Val (PAV) and Ala-Val-Ile (AVI) are by far the most commonly found in human populations [29,30,31]. Subjects possessing at least one copy of the PAV allele are significantly more responsive to bitter tastants, like PROP or PTC (taster phenotype), than those who are homozygous for the AVI allele (non-taster phenotype). Since the distinct phenotypes (taster vs non-taster) reflect a differential receptor functionality, the inability to taste bitter compounds could be also a marker for an impaired function of the receptors in GI: non-taster individuals could react slower in eliminating xenobiotics in the gut and consequently being at higher risk for CRC.

The aim of this study was, using a tagging approach, to evaluate the variability in the TAS2R38 and the resulting “tasting ability” and CRC risk in a total of 1203 cases of colorectal cancer and 1332 controls from the German and Czech populations, which are known to exhibit one of the higher incidence of CRC [32].

Results

In this case-control study we evaluated the variability in the TAS2R38 gene in a group of subjects of German and Czech Caucasian origin. Details regarding the main characteristics of the two study populations are presented in Table 1.

Genotyping success rates and quality control

The genotype distributions at all loci were in Hardy-Weinberg equilibrium in controls, with non-significant chi square values (p>0.05, data not shown). Random duplicate samples (8%) were also included and concordance of their genotypes was greater than 99%. The average call rate for the three SNPs was 97.9%.

Main effects of genotyped SNPs

The distribution of the genotypes and their odds ratios (ORs) for association with CRC risk are shown in Table 2. We evaluated the ORs separately and jointly for the two populations. We found that there were no significant associations between the SNPs of the TAS2R38 gene and CRC neither in the Czechs, in the Germans, nor in the joint analysis.

Haplotype, diplotype and phenotype analysis

The distribution of the major haplotypes (PAV and AVI) was not significantly different (p = 0.99) in the two populations. Although rare haplotypes (AAV; PVV; AAI; PVI and PAI) accounted for the same cumulative frequency (4%) for both the German and the Czech groups, they appeared differently distributed as reported in supplementary Figures S1 and S2. Performing logistic regression analysis jointly on the German and the Czech populations we observed a statistically significant association between TAS2R38 diplotype and CRC risk: carriers of the AVI/AVI diplotype present an increased risk of CRC compared to the PAV/PAV carriers with an OR of 1.33 (95% CI 1.03–1.72; p = 0.027). Country of origin and gender did not significantly modify the observed association (p = 0.85 and p = 0.36 respectively) as reported in Table 3.

In the Czech population the carriers of the AVI/AVI diplotype presented a statistically not significant tendency to increased CRC risk, with an OR of 1.15 (95% CI 0.80–1.66; p = 0.44).

In the German population we found a significant association between the AVI/AVI diplotype carriers and increased risk of CRC with an OR of 1.52 (95% CI 1.05–2.21; p = 0.027) compared to the PAV/PAV carriers.

Finally, we divided all the diplotypes in two groups defined by their phenotype, the taster (PAV/PAV; PAV/PVV; P_*/A_*) group and the non-taster (AVI/AVI; AAV/AVI; AAI/AAI) group. Non-tasters were associated with an increased risk of CRC in the German population (OR = 1.36; 95% CI 1.06–1.75; p = 0.016). Non-tasters were also associated with an increased risk in the Czech population, although not at a statistically significant level (OR = 1.28; 95% CI 0.99–1.67; p = 0.0580. Analyzing the two populations together the association was stronger (OR = 1.34; 95% CI 1.12–1.61, p = 0.001).
Table 2. Associations of TAS2R38 tagging polymorphisms with colorectal cancer risk.

SNP	Czech population	German population	Combined population												
	Cases	Controls	OR (95% CI)	P_value	P_trend	Cases	Controls	OR (95% CI)	P_value	P_trend	Cases	Controls	OR (95% CI)	P_value	P_trend
rs713598															
C/C	123	115	1	0.31	0.03	1138	1255	0.05							
C/G	272	303	0.87 (0.64–1.19)	0.47	259	327	1.23 (0.88–1.72)	0.22	531	630	0.98	0.79–1.23	0.90		
G/G	191	158	1.13 (0.80–1.58)	0.47	217	234	1.40 (0.98–1.98)	0.05	408	392	1.21	0.96–1.54	0.09		
C/G+G/G	463	461	0.96 (0.71–1.29)	0.80	476	561	1.30 (0.94–1.79)	0.10	939	1022	1.10	0.89–1.36	0.36		
rs1726866	584	572	0.40		555	677	0.07		1139	1249	0.05				
C/C	105	97	1		104	155	1		209	252	1				
C/T	261	287	0.84 (0.61–1.18)	0.33	264	315	1.23 (0.91–1.67)	0.16	525	602	1.03	0.83–1.29	0.73		
T/T	218	188	1.05 (0.74–1.48)	0.76	187	207	1.30 (0.94–1.80)	0.10	405	395	1.20	0.95–1.52	0.11		
C/T+T/T	479	475	0.93 (0.68–1.26)	0.66	451	522	1.26 (0.95–1.67)	0.10	932	997	1.26	0.89–1.35	0.35		
rs10246939	584	590	0.27		531	686	0.06		1115	1276	0.04				
C/C	121	118	1		102	155	1		223	273	1				
C/T	266	304	0.89 (0.65–1.22)	0.50	245	323	1.13 (0.83–1.54)	0.41	511	627	1.00	0.80–1.24	0.96		
T/T	197	168	1.14 (0.82–1.60)	0.41	184	208	1.29 (0.93–1.79)	0.11	381	376	1.23	0.98–1.56	0.07		
C/T+T/T	463	472	0.98 (0.73–1.32)	0.94	429	531	1.20 (0.90–1.59)	0.21	892	1003	1.09	0.89–1.33	0.39		

Numbers may not add up to 100% of subjects due to genotyping failure. All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

OR: odds ratio; CI: confidence interval.

doi:10.1371/journal.pone.0020464.t002
Effects of genotyped SNPs in different population strata

For the Czech population we have performed analysis stratifying for gender and smoking status and we also performed an analysis using BMI as adjustment factor. For the German population we did not have data on smoking and BMI. In our study there was no difference in the genotype distributions in the various strata, nor BMI had any effect on the association.

Discussion

In the present study common genetic variation in TAS2R38 was completely captured. The applied intensive SNP tagging approach provides a close to exhaustive analysis of associations of CRC risk with common polymorphic variants known for the locus of interest. Moreover the analyses of haplotypes, diplotype and phenotype provide a comprehensive picture of the common genetic variability of the TAS2R38 gene in relation with CRC risk.

In this study we had sufficient power (over 80% for a codominant model) to detect OR = 1.30 at alpha = 0.05 for a SNP with a MAF of 0.33 (which is the most rare allele hereby studied) if considering only the German population. For the Czech population we had the same power for detecting associations of OR = 1.27 or greater and pooling together the two populations we had the same power for detecting associations of CRC risk. Analyzing the three SNPs together (p for the trend test = 0.007). Individuals carrying this diplotype are referred as bitter compounds “non-tasters”; as opposed to “taster”. We finally considered the non-taster phenotype against all the others and found that it was associated with increased CRC risk in both populations, although the association was stronger in the German population than in the Czech. This association suggests that the distinct phenotypes, which reflect a differential receptor functionality in the inability to taste bitter compounds, could be also a marker for an impaired function of the receptors in GI: non-taster individuals could react slower in eliminating xenobiotics in the gut and consequently being at higher risk of CRC.

Table 3. Associations of the TAS2R38 common diplotypes with colorectal cancer risk.

Diplotype	Cases (n)	Controls (n)	OR (95% CI)	P value	Trend P value
PAV/PAV	93	95	1	0.187	-
PAV/AVI	210	259	0.84 (0.60–1.19)	0.341	-
AVI/AVI	176	155	1.15 (0.80–1.66)	0.436	-
PAV/AVI+	386	414	0.96 (0.69–1.32)	0.819	-
AVI/AVI					

*Numbers may not add up to 100% of subjects due to genotyping failure. All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

Table 4. Associations of bitter sensing phenotypes with colorectal cancer risk.

TASTER	Cases (n)	Controls (n)	OR (95% CI)	P value
PAV/PAV+	343	395	1	-
Non-TASTER	176	155	1.28 (0.99–1.67)	0.058

*Numbers may not add up to 100% of subjects due to genotyping failure. All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

However, when we analyzed the distribution of major diplotypes between the cases and the controls we found that the AVI/AVI combination is associated with an increased CRC risk. This association was stronger when considering the two population together (p for the trend test = 0.007). Individuals carrying this diplotype are referred as bitter compounds “non-tasters”; as opposed to “taster”. We finally considered the non-taster phenotype against all the others and found that it was associated with increased CRC risk in both populations, although the association was stronger in the German population than in the Czech. This association suggests that the distinct phenotypes, which reflect a differential receptor functionality in the inability to taste bitter compounds, could be also a marker for an impaired function of the receptors in GI: non-taster individuals could react slower in eliminating xenobiotics in the gut and consequently being at higher risk of CRC.

Table 4. Associations of bitter sensing phenotypes with colorectal cancer risk.

TASTER	Cases (n)	Controls (n)	OR (95% CI)	P value
PAV/PAV+	343	395	1	-
Non-TASTER	176	155	1.28 (0.99–1.67)	0.058

*Numbers may not add up to 100% of subjects due to genotyping failure. All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

This association was stronger when considering the two population together (p for the trend test = 0.007). Individuals carrying this diplotype are referred as bitter compounds “non-tasters”; as opposed to “taster”. We finally considered the non-taster phenotype against all the others and found that it was associated with increased CRC risk in both populations, although the association was stronger in the German population than in the Czech. This association suggests that the distinct phenotypes, which reflect a differential receptor functionality in the inability to taste bitter compounds, could be also a marker for an impaired function of the receptors in GI: non-taster individuals could react slower in eliminating xenobiotics in the gut and consequently being at higher risk of CRC.

Table 4. Associations of bitter sensing phenotypes with colorectal cancer risk.

TASTER	Cases (n)	Controls (n)	OR (95% CI)	P value
PAV/PAV+	343	395	1	-
Non-TASTER	176	155	1.28 (0.99–1.67)	0.058

*Numbers may not add up to 100% of subjects due to genotyping failure. All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

Further study is needed to confirm these findings and to elucidate the role of TAS2R38 and bitter taste sensitivity in CRC development.
weaker association between the genetic variability of the locus and CRC risk in the Czech population. One explanation may be related to environmental factors (e.g., diet, smoking). A second explanation could be the different enrolment strategy of study subjects since Germans had a family history of CRC or CRC diagnosed under the age of 50. Mean and median age are lower in the German population and this may reflect the fact the causality of the tumour might have a stronger genetic component since the environment had less time to modify the cancer risk for these individuals. It is also possible that the interactions between genes and environment could be the cause of the weaker association in the Czech population in a way that we could not detect within this study. Finally the association could be a chance finding, but we would tend to exclude this for the fact that in the two populations the association seems to indicate the same group as the increased risk individuals.

Gender differences for bitter tastes have been explored [33] and for these reason we conducted stratified analyses in both populations. We found that sex was not a modifying factor in either population.

Several genome-wide association studies (GWAS) on CRC risk have been published [34], and in none of them TAS2R38 emerged as a possible susceptibility locus. However, it is interesting to note that the genomic region in which the TAS2R38 lies is poorly covered by the SNP arrays used in published CRC GWAS. In particular, rs1726066 and rs10246939 are not present on those platforms (http://genome.ucsc.edu/cgi-bin/hgGateway). We found an association by using the combinations of the three genotypes into diplotypes, therefore it is not surprising that GWAS, where the two of the three SNPs were lacking, and which do not routinely study haplotypes/diplotypes/phenotypes, did not detect any signal at this locus.

In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin. A larger, independent study is needed to further investigate this finding.

Materials and Methods

Ethics Statement

All participants signed an informed written consent. The study was approved by the ethical review boards of the institutions responsible for subject recruitment in each of the recruitment centres.

Written informed consent was obtained from all study participants. The ethical committees were the following:

- Ethikkommission der Medizinischen Fakultät der Ruhr Universität Bochum [Reg.-Nr.:1514];
- Ethik Kommission – Medizinische Fakultät Bonn [Lfd. Nr. 115/09];
- Ethik Kommission der Medizinische Fakultät der Technischen Universität; Dresden [Bearbeitungs-Nr. EK170102006];
- Ethikkommission der Medizinische Fakultät der Heinrich Heine Universität Düsseldorf [Studiennummer: 1172];
- Ethikkommission I der Universität – Medizinische Fakultät Heidelberg [Antrags- Nr.: 220/2002];
- Ethikkommission II an der Fakultät für Klinische Medizin der Ruprecht-Karl-Universität Heidelberg (concerning samples from Mannheim) [Antrags- Nr.: 87/04];
- Ethikkommission der Medizinische Fakultät Universität München [Projekt Nr. 255/98];
- Eücks komise Ustravan experimentální medicí AV ČR Ethics Committee of the Institute for clinical and Experimental Medicine and Faculty Thomayer Hospital [Č.], 766/09 (09-04-09).

Study populations

For the present cases-control study we have considered a group of subjects from two populations: one from Czech Republic (601 cases, 623 controls) and the other from Germany (602 cases, 709 controls).

The Czech population has been extensively described elsewhere [7]. Briefly, cases were CRC patients visiting nine oncological departments (two in Prague, one each in Benesov, Brno, Liberec, Ples, Pribram, Usti nad Labem, and Zlin) distributed in all geographic regions of Czech Republic and being representative of the population of the entire country. This study includes patients who could be interviewed and provided biological samples of sufficient quality for genetic analysis. All cases had histological confirmation of their tumor diagnosis. In the group of cases, genetic testing for hereditary nonpolyposis CRC (HNPPC) was recommended to four patients, who belonged to families complying with the Amsterdam criteria II, and these cases were excluded.

Controls were selected among patients admitted to five large gastroenterological departments (Prague, Brno, Jihlava, Liberec, and Pribram) all over the Czech Republic, during the same period as the recruitment of cases. Only subjects whose colonoscopic results were negative for malignancy, colorectal adenomas or IBD were chosen as controls. Among 739 invited controls, a total of 623 (84.3%) were analyzed in this study (lost controls were similar to those included with respect to sex distribution).

Cases included in this study had a mean age of 59.2 years (range 27–74), while controls had a mean age of 55.3 years (range 28–91).

The genetic analyses did not interfere with diagnostic or therapeutic procedures for the subjects. All participants signed an informed written consent and the design of the study was approved by the Ethical Committee of the Institute of Experimental Medicine, Prague, Czech Republic.

For the German population, as described in [35,36] CRC cases comprised 602 index patients (age range 13–82 years, mean 43.2 years) recruited by six German university hospitals (Bochum, Bonn, Dresden, Düsseldorf, Heidelberg and Munich/Regensburg). Cases were collected as part of a large study on susceptibility to HNPPC. Inclusion criteria for the cases were (i) a family history of CRC or (ii) CRC diagnosed under the age of 50. Analysis for microsatellite instability was applied as a pre-screening test prior to mutation analysis in the MSH2 and MLH1 genes. All cases were tested to be microsatellite stable.

The control series consisted of 709 healthy, unrelated and ethnicity-, sex- and age-matched blood donors (26–64 years, mean 44.5 years) which were recruited between 2004 and 2006 by the Institute of Transfusion Medicine and Immunology, Faculty of Mannheim, Germany. The matching intervals for age were ‘younger than 30 years’, five-year groups (30–34, 35–39,…,60–64) and ‘older than 65 years’. Blood sampling was performed during regular blood donation according to German guidelines. The study was approved by the competent local Ethics Committees, and written informed consent was obtained from all individuals.

Details regarding the main characteristics of the two study populations are presented in Table 1.

Selection of tagging SNPs

We aimed at surveying the entire set of common genetic variants in TAS2R38. To this end, we followed a hybrid tagging-functional approach. We used the algorithm described by Carlson and coworkers [37] that was developed to select the maximally informative set of tag SNPs in a candidate-gene association study. All polymorphisms in the region of TAS2R38 locus with minor allele frequency (MAF) ≥5% in Caucasians from the International HapMap Project (version 21a; http://www.hapmap.org) were included. Tagging SNPs were selected with the use of the Tagger program within Haplovew [http://www.broad.mit.edu/mpg/haplovew/; http://www.broad.mit.edu/mpg/tagger/] [38,39],
using pairwise tagging with a minimum r^2 of 0.8. Considering that the genomic region of \textit{TAS2R38} is characterized by high levels of linkage disequilibrium (LD), we postulate that such SNPs are also likely to tag any hitherto unidentified common SNPs in the gene. We selected rs7135990, rs1726666 and rs10246939 as tagging SNPs since they are all non-synonymous functional [29,30,40,41,42,43,44,45] SNPs.

DNA extraction and genotyping
DNA was extracted from blood samples with standard proteinase K digestion followed by phenol/chloroform extraction and ethanol precipitation. The order of DNAs of cases and controls was randomized on PCR plates in order to ensure that an equal number of cases and controls could be analyzed simultaneously. All genotyping was carried out using the Taqman assay. The MGB Taqman probes and primers were purchased from Applied Biosystems (Foster City, CA) as pre-designed assays. The reaction mix included 10 ng genomic DNA, 10 pmol each primer, 2 pmol each probe and 2.5 ml of 2x master mix (Applied Biosystems) in a final volume of 5 pl. The thermocycling included 40 cycles with 30 s at 95°C followed by 60 s at 60°C. PCR plates were read on an ABI PRISM 7900HT instrument (Applied Biosystems).

All samples that did not give a reliable result in the first round of genotyping were resubmitted to up to two additional rounds of genotyping. Data points that were still not filled after this procedure were left blank.

Haplotyp and diplotype reconstruction
Haplotypes and diplotypes were reconstructed using PHASE software [46].

Statistical Analysis
The frequency distribution of genotypes was examined for the cases and the controls, Hardy-Weinberg equilibrium was tested in the cases and in the controls and in the two populations separately by chi square test. We used logistic regression for multivariate analyses to assess the main effects of the genetic polymorphism on CRC risk using a co-dominant and a dominant inheritance model.

The most common genotype in the controls was assigned as the reference category. All analyses were adjusted for age and gender. In the Czech population we also adjusted for Body Max Index (BMI) as a continuous variable. We analyzed the two populations separately and together (we adjusted also for center of recruitment in the latter case).

Logistic regression considering the reconstructed haplotype adjusted for age (continuous), and study center was performed to calculate risk estimates. The “taster” (PAV) haplotype was set as reference group. We finally created diplotypes for each individual and grouped and divided them into two phenotypic groups, the taster group (PAV/PAV; PAV/PV; P*/A/*) and the non-taster group (AVI/AVI;AVI/AV/VI). For the diplotype analysis the “taster” group was set as reference.

We also performed stratified analysis for gender and smoking habits. Smokers were classified as current smokers, ex smokers (quit smoking for more than 5 years) or never smokers. Smokers were subsequently divided in heavy smokers (more than 20 cigarettes per day) and non-heavy smokers (less than 20 cigarettes per day). All analysis were performed using STATGRAPHICS® Centurion XVI software (© 2009 by StatPoint Technologies, Inc.,www.STATGRAPHICS.com) and STATA software (StataCorp, College Station, TX).

Supporting Information

Figure S1 Distribution of the Haplotypes in the Czech population.

Figure S2 Distribution of the Haplotypes in the German population.

Author Contributions
Conceived and designed the experiments: DC R. Barale. Performed the experiments: MC DC AS. Analyzed the data: R. Buettner FC DC. Made contributions/ materials/ analysis tools: VS PV BP NR EH-F MM HKS HG SS BB MK CE R. Buttner AN LV JN PP. Wrote the paper: DC R. Buttner FC AF KH.

References
1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. (2010) Estimates of worldwide burden of cancer in 2008. \textit{GLOBOCAN 2008}. Int J Cancer. Equil ahead of print.
2. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. \textit{Eur J Cancer} 46: 763–781.
3. Strate LL, Syngal S (2005) Hereditary colorectal cancer syndromes. \textit{Cancer} 10: 2021–213.
4. Hlavata I, Vrana D, Smerhovsky Z, Pardini B, Naccarati A, et al. (2010) Association between exposure-relevant polymorphisms in \textit{CYP1B1, EPHX1}, \textit{NQO1}, \textit{GSTM1}, \textit{GSTP1} and \textit{GSTT1} and risk of colorectal cancer in a Czech population. \textit{Oncol Rep} 24: 1347–1353.
5. Campa D, Vodicka P, Pardini B, Novotny J, Fresti A, et al. (2009) Cigarrer polymorphisms in ATP-binding cassette C3/multidrug resistance associated protein 3 (ABCC3/MRP3) modify colorectal cancer risk? \textit{Eur J Cancer} 44: 854–857.
6. Campa D, Pardini B, Naccarati A, Vodickova L, Novotny J, et al. (2009) A gene-wide investigation on polymorphisms in the \textit{ABCG2/BRCP} transporter and susceptibility to colorectal cancer. \textit{Mutat Res} 645: 56–60.
7. Polakova V, Pardini B, Naccarati A, Landi S, Slyskaova J, et al. (2009) Genotype and haplotype analysis of cell cycle genes in sporadic colorectal cancer in the Czech Republic. \textit{Hum Mutat} 30: 661–668.
8. Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, et al. (2008) DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. \textit{Mutat Res} 638: 146–153.
9. Michaud DS, Fuchs CS, Liu S, Willett WC, Colditz GA, et al. (2005) Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. \textit{Cancer Epidemiol Biomarkers Prev} 14: 138–147.
22. Tepper BJ, Nurse RJ (1998) PROP taster status is related to fat perception and preference. Ann N Y Acad Sci 855: 802–804.

23. Rozengurt E (2006) Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol 291: G171–177.

24. Behrens M, Meyerhol W (2010) Oral and extraoral bitter taste receptors. Results Probl Cell Differ 52: 47–99.

25. Kokrashvili Z, Mosinger B, Margolskee RF (2009) T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann N Y Acad Sci 1170: 91–94.

26. Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 87: 3228–3235.

27. Mace OJ, Allbeck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582: 379–392.

28. Mace OJ, Lister N, Morgan E, Shepherd E, Allbeck J, et al. (2009) An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol 587: 195–210.

29. Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2005) Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26: 199–204.

30. Kim UK, Breslin PA, Reed D, Drayna D (2004) Genetics of human taste perception. J Dent Res 83: 448–453.

31. Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, et al. (2004) Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 74: 637–646.

32. Nelis M, Esko T, Zainprich F, Zainprich A, et al. (2009) Genetic structure of Europeans: a view from the North-East. PLoS One 4: e5472.

33. Wardwell L, Chapman-Novakofski K, Brewer MS (2009) Effects of age, gender and chronic obstructive pulmonary disease on taste acuity. Int J Food Sci Nutr. pp 1–14.

34. Stomil K, Patropoulos NA, Ioannidis JP (2010) Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur J Hum Genet 18: 852–857.

35. Campo D, Pardini B, Naccarati A, Vodickova L, Novotny J, et al. (2010) Polymorphisms of genes coding for ghrelin and its receptor in relation to colorectal cancer risk: a two-step gene-wide case-control study. BMC Gastroenterol 10: 112.

36. Mangold E, Pagendieker C, Friedl W, Modahl M, Bartmer R, et al. (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116: 692–702.

37. Carlson CS, Ebeling MA, Rieder MJ, Yi Q, Kruglyak L, et al. (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74: 106–120.

38. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploviz: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

39. de Bakker PI, Velez JS, Pe’er I, Gabriel SB, Daly MJ, et al. (2008) Efficiency and power in genetic association studies. Nat Genet 37: 1217–1223.

40. Ueda T, Ugawa S, Ishida Y, Shibata Y, Murakami S, et al. (2001) Identification of coding single-nucleotide polymorphisms in human taste receptor genes involved in bitter tasting. Biochem Biophys Res Commun 283: 147–151.

41. Reed DR, Zhu G, Breslin PA, Duke FK, Henders AK, et al. (2010) The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12. Hum Mol Genet 19: 4278–4285.

42. Kim U, Wooding S, Ricci D, Jorde LB, Drayna D (2006) Variation in the human TAS1R taste receptor genes. Chem Senses 31: 599–611.

43. Kim UK, Drayna D (2005) Genetics of individual differences in bitter taste perception: lessons from the PTC gene. Clin Genet 67: 275–280.

44. Bufe B, Breslin PA, Kuhn C, Reed DR, Thrupp CD, et al. (2005) The molecular basis of individual differences in phenylthiocarbamide and propylthiocarabamide bitterness perception. Curr Biol 15: 322–327.

45. Biarnes X, Marchiori A, Giorgetti A, Lanzara C, Gasparini C, et al. (2010) Insights into the binding of Phenylthiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One 5: e12394.

46. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78: 629–644.