THE COARSE BAUM-CONNES CONJECTURE FOR RELATIVELY HYPERBOLIC GROUPS

TOMOHIRO FUKAYA, SHIN-ICHI OGUNI

Abstract. We study a group which is hyperbolic relative to a finite family of infinite subgroups. We show that the group satisfies the coarse Baum-Connes conjecture if each subgroup belonging to the family satisfies the coarse Baum-Connes conjecture and admits a finite universal space for proper actions. Especially, the group satisfies the analytic Novikov conjecture.

1. Introduction

Let X be a proper metric space. We say that X satisfies the coarse Baum-Connes conjecture if the following coarse assembly map μ_X of X is an isomorphism:

$$\mu_X : KX_*(X) \to K_*(C^*(X)).$$

If a countable group G equipped with a proper invariant metric satisfies the coarse Baum-Connes conjecture, and if G admits a finite G-simplicial complex which is a universal space for proper actions, then, by a descent principle, G satisfies the analytic Novikov conjecture. For details, see [17, Theorem 8.4] and also [7, Theorem 12.6.3].

There are several studies on the coarse Baum-Connes conjecture for relatively hyperbolic groups. Let G be a group which is hyperbolic relative to a finite family of infinite subgroups $\mathbb{P} = \{P_1, \ldots, P_k\}$. Osin [14] showed that G has finite asymptotic dimension if each subgroup P_i has finite asymptotic dimension. Ozawa [15] showed that G is exact if each subgroup P_i is exact. Dadarlat and Guentner [2] showed that G is uniformly embeddable in a Hilbert space if each subgroup P_i is uniformly embeddable in a Hilbert space. Due to Yu’s works [19][20], those results imply the coarse Baum-Connes conjecture for such groups.

2010 Mathematics Subject Classification. Primary 58J22; Secondary 20F67, 20F65.

Key words and phrases. coarse Baum-Connes conjecture, relatively hyperbolic group, Mayer-Vietoris sequence

T. Fukaya was supported by Grant-in-Aid for Young Scientists (B) (23740049) from The Ministry of Education, Culture, Sports, Science and Technology
In the present paper, we show the following:

Theorem 1.1. Let G be a finitely generated group and $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a finite family of infinite subgroups. Suppose that (G, \mathcal{P}) is a relatively hyperbolic group. If each subgroup P_i satisfies the coarse Baum-Connes conjecture, and admits a finite P_i-simplicial complex which is a universal space for proper actions, then G satisfies the coarse Baum-Connes conjecture.

We note that G admits a finite G-simplicial complex which is a universal space for proper actions (see Appendix B).

Here we summarize the proof of Theorem 1.1. Let $X(G, \mathcal{P}, S)$ be the augmented space obtained by attaching horoballs to the Cayley graph $\Gamma(G, S)$ along the left cosets of subgroups $P \in \mathcal{P}$ where S is a finite generating set (Definition 2.1 and Definition 2.2). Since $X(G, \mathcal{P}, S)$ is δ-hyperbolic, $X(G, \mathcal{P}, S)$ satisfies the coarse Baum-Connes conjecture. We fix an order on horoballs. Let X_n be a subspace obtained by removing the first $n - 1$ horoballs from $X(G, \mathcal{P}, S)$ (Notation 5.1). By Mayer-Vietoris arguments, we show inductively that X_n satisfies the coarse Baum-Connes conjecture (Section 5.1). To study the coarse assembly map for $X_\infty = \bigcap X_n$, which is coarsely equivalent to G, we need to analyze the coarse K-homology of the projective limit. We might expect a so-called Milnor exact sequence

$$0 \rightarrow \lim\limits_{\leftarrow} \ker KX_{p+1}(X_n) \rightarrow KX_p(X_\infty) \rightarrow \lim\limits_{\rightarrow} KX_p(X_n) \rightarrow 0.$$

Unfortunately, (1) is not necessarily exact, in general. A simple counterexample is given by $Y_n = \mathbb{R} \setminus [-n, n]$. Thus we introduce a contractible space $EX(G, \mathcal{P})$. The following isomorphism (Proposition 3.1) is crucial to the proof of Theorem 1.1

$$KX_*(X(G, \mathcal{P}, S)) \cong K_*(EX(G, \mathcal{P})).$$

Sections 2 and 3 are devoted to a proof of this isomorphism. For the projective limit of locally compact Hausdorff spaces, there is a Milnor exact sequence in K-homology (Section 5.2). Combining this with an exact sequence in K-theory of C^*-algebras (Proposition 5.3), we complete the proof.

2. **Coarse K-homology of the augmented space**

Let G be a finitely generated group with a finite family of infinite subgroups $\mathcal{P} = \{P_1, \ldots, P_k\}$. Groves and Manning [4] introduced a space obtained by attaching “combinatorial horoballs” to G along the left cosets of subgroups $P \in \mathcal{P}$. Their construction is
suitable for Mayer-Vietoris arguments to compute the coarse K-homology of \(G \) in terms of that of \(P \in \mathbb{P} \). We review the construction and study the coarse K-homology of the resulting space.

2.1. The augmented space.

Definition 2.1. Let \((P, d)\) be a proper metric space. The *combinatorial horoball* based on \(P \), denoted by \(\mathcal{H}(P) \), is the graph defined as follows:

1. \(\mathcal{H}(P)^{(0)} = P \times (\mathbb{N} \cup \{0\}) \).
2. \(\mathcal{H}(P)^{(1)} \) contains the following two type of edges:
 a. For each \(l \in \mathbb{N} \cup \{0\} \) and \(p, q \in P \), if \(0 < d(p, q) \leq 2^l \) then there is a *horizontal edge* connecting \((p, l)\) and \((q, l)\).
 b. For each \(l \in \mathbb{N} \cup \{0\} \) and \(p \in P \), there is a *vertical edge* connecting \((p, l)\) and \((p, l + 1)\).

Here \(\mathbb{N} \) denotes the set of positive integers. We endow \(\mathcal{H}(P) \) with the graph metric.

For a closed subset \(I \subset \mathbb{R} \), let \(\mathcal{H}(P; I) \) denote the full subgraph of \(\mathcal{H}(P) \) spanned by \(P \times (I \cap (\mathbb{N} \cup \{0\})) \).

Let \(G \) be a finitely generated group with a finite family of infinite subgroups \(\mathbb{P} = \{P_1, \ldots, P_k\} \). We take a finite generating set \(S \) for \(G \). We assume that \(S \) is symmetrized, so that \(S = S^{-1} \). We endow \(G \) with the left-invariant word metric \(d_S \) with respect to \(S \). We choose a sequence \(g_1, g_2, \ldots \) in \(G \) such that for each \(r \in \{1, \ldots, k\} \), the map \(\mathbb{N} \to G/P_r : a \mapsto g_{ak+r}P_r \) is bijective. For \(i = ak + r \in \mathbb{N} \), let \(P_{(i)} \) denote a subgroup \(P_r \). Thus the set of all cosets \(\bigsqcup_{r=1}^{k} G/P_r \) is indexed by the map \(\mathbb{N} \ni i \mapsto g_{i}P_{(i)} \). Each coset \(g_{i}P_{(i)} \) has a proper metric \(d_{i} \) which is the restriction of \(d_S \). Let \(\Gamma \) be the Cayley graph of \((G, S)\). There exists a natural embedding \(\psi_i : \mathcal{H}(g_{i}P_{(i)}; \{0\}) \hookrightarrow \Gamma \) such that \(\psi_i(x, 0) = x \) for all \(x \in g_{i}P_{(i)} \).

Definition 2.2. The *augmented space* \(X(G, \mathbb{P}, S) \) is obtained by pasting \(\mathcal{H}(g_{i}P_{(i)}) \) to \(\Gamma \) by \(\psi_i \) for all \(i \in \mathbb{N} \). Thus we can write it as follows:

\[
X(G, \mathbb{P}, S) = \Gamma \cup \bigsqcup_{i \in \mathbb{N}} \mathcal{H}(g_{i}P_{(i)}).
\]
We endow $X(G, \mathbb{P}, S)$ with the graph metric. For positive integer N, set

$$X(N) = \Gamma \cup \bigcup_{i \in \mathbb{N}} \mathcal{H}(g_i P_{(i)}; [0, N]);$$
$$Y(N) = \bigsqcup_{i \in \mathbb{N}} \mathcal{H}(g_i P_{(i)}; [N, \infty]);$$
$$Z(N) = \bigsqcup_{i \in \mathbb{N}} \mathcal{H}(g_i P_{(i)}; \{N\}).$$

Remark 2.3. The vertex set of $X(G, \mathbb{P}, S)$, denoted by $X(G, \mathbb{P}, S)^{(0)}$, can naturally be identified with the set of 2-tuple (x, t), where $x \in \bigcup_{i \in \mathbb{N}} g_i P_{(i)}$ and $t \in \mathbb{N}$, or $x \in G$ and $t = 0$. We endow $X(G, \mathbb{P}, S)^{(0)}$ with the metric from the graph structure.

Definition 2.4. The pair (G, \mathbb{P}) is a relatively hyperbolic group if the augmented space $X(G, \mathbb{P}, S)$ is δ-hyperbolic for some $\delta \geq 0$.

Remark 2.5. Groves and Manning [4, Theorem 3.25] show that the above definition is equivalent to other various definitions. See also [9].

2.2. An anti-Čech system.

We form an anti-Čech system $\{U(j)\}_j$ of $X(G, \mathbb{P}, S)^{(0)}$ as follows: For $i \geq 1, (x, t) \in g_i P_{(i)} \times \mathbb{N}$ and $j \geq 1$, a column centered at (x, t) with the size j is

$$B((x, t), j) = \{(y, l) \in g_i P_{(i)} \times \mathbb{N} : d_S(x, y) \leq 2^{t+j}, t \leq l \leq t + j\}.$$

For $x \in G$ and $j \geq 1$, a column centered at $(x, 0)$ with the size j is

$$B((x, 0), j) = \{(y, l) \in X(G, \mathbb{P}, S)^{(0)} : d_S(x, y) \leq 2^j, 0 \leq l \leq j\}.$$

The locally finite cover $U(j)$ is made up of all those columns with size j, that is,

$$U(j) = \{B((x, t), j) : (x, t) \in X(G, \mathbb{P}, S)^{(0)}\}.$$

When $j \leq j'$, the map $U(j) \rightarrow U(j')$ is defined by sending $B((x, t), j)$ to $B((x, t), j')$.

2.3. *Mayer-Vietoris sequences.* Set \(j_n = 3^n, N_n = 3^n + 1 \) for \(n \geq 0 \). We introduce a decomposition of \(\mathcal{U}(j_n) \) as follows:

\[
\mathcal{U}_n = \mathcal{U}(j_n);
\]

\[
\mathcal{X}_n = \{ B \in \mathcal{U}(j_n) : B \cap X(N_n) \neq \emptyset \};
\]

\[
\mathcal{Y}_n = \{ B \in \mathcal{U}(j_n) : B \cap Y(N_n) \neq \emptyset \};
\]

\[
\mathcal{Z}_n = \{ B \in \mathcal{U}(j_n) : B \cap Z(N_n) \neq \emptyset \};
\]

\[
\mathcal{Z}_i^n = \{ B \in \mathcal{Z}_n : B \cap H(g_i P(i)) \neq \emptyset \}.
\]

We remark that \(\mathcal{U}_n = \mathcal{X}_n \cup \mathcal{Y}_n, \mathcal{X}_n \cap \mathcal{Y}_n = \mathcal{Z}_n \) and \(\mathcal{Z}_n = \bigsqcup_i \mathcal{Z}_i^n \). Then the pair \((\mathcal{X}_n, \mathcal{Y}_n) \) forms an excision pair of \(\mathcal{U}_n \) and the map \(\mathcal{U}_n \to \mathcal{U}_{n+1} \) preserves the pairs. Thus we have the following exact sequence:

\[
\cdots \to \lim_{\leftarrow} K_p(|\mathcal{X}_n|) \to \lim_{\leftarrow} K_p(|\mathcal{X}_n|) \oplus \lim_{\leftarrow} K_p(|\mathcal{Y}_n|) \to \lim_{\leftarrow} K_p(|\mathcal{U}_n|) \to \lim_{\leftarrow} K_{p-1}(|\mathcal{Z}_n|) \to \cdots.
\]

Since \(\{\mathcal{U}_n\}_n \) forms an anti-Čech system of \(X(G, \mathbb{P}, S)^{(0)} \), we have \(\lim_{\leftarrow} K_*(|\mathcal{U}_n|) = KX_*(X(G, \mathbb{P}, S)) \).

In this section, we compute \(\lim_{\leftarrow} K_*(|\mathcal{X}_n|) \) and \(\lim_{\leftarrow} K_*(|\mathcal{Y}_n|) \).

Lemma 2.6. The inductive limit of \(K_*(|\mathcal{X}_n|) \) is isomorphic to \(KX_*(X(1)) \).

Proof. For \(N \geq j + 1 \geq 0 \), we define that the subset \(\mathcal{U}(N, j) \) of \(\mathcal{U}(j) \) is made up of all columns \(B((x, t), j) \in \mathcal{U}(j) \) which intersect with \(X(N) \). We remark that \(\mathcal{X}_n = \mathcal{U}(N_n, j_n) \).

We define simplicial maps \(\alpha_n, \beta_n, \gamma_n \) by

\[
\alpha_n : \mathcal{U}(N_n, j_n) \to \mathcal{U}(N_n, j_n)
\]

: \(B((x, t), j_n) \mapsto B((x, t), j_n) \),

\[
\beta_n : \mathcal{U}(N_n, j_n) \to \mathcal{U}(N_n, j_n+1)
\]

: \(B((x, t), j_n) \mapsto \begin{cases} B((x, 1), j_{n+1}) & (t \geq 1) \\ B((x, 0), j_{n+1}) & (t = 0), \end{cases} \)

\[
\gamma_n : \mathcal{U}(N_n, j_n) \to \mathcal{U}(N_n+1, j_{n+1})
\]

: \(B((x, t), j_n) \mapsto B((x, t), j_{n+1}) \).

Clearly \(\alpha_{n+1} \circ \beta_n \) and \(\gamma_n \) belong to the same contiguity class. Since two simplicial maps belonging to the same contiguity class define continuous maps which are homotopic [18, Lemma 5.5.2.], we have the following commutative diagram:

\[
\begin{array}{c}
K_*(|\mathcal{U}(1, j_n)|) \xrightarrow{\alpha_n^*} K_*(|\mathcal{U}(N_n, j_n)|) \\
\downarrow \quad \downarrow \quad \downarrow \\
K_*(|\mathcal{U}(1, j_{n+1})|) \xrightarrow{\alpha_{n+1}^*} K_*(|\mathcal{U}(N_{n+1}, j_{n+1})|).
\end{array}
\]
It follows that \(\lim_{\to} K_*(|\mathcal{U}(1, j_n)|) \cong \lim_{\to} K_*(|\mathcal{U}(N_n, j_n)|) \).

Let \(\mathcal{U}(1, j_n) \cap X(1) \) denote the cover of \(X(1) \) which consists of all \(B \cap X(1) \) for \(B \in \mathcal{U}(1, j_n) \). Then \(\mathcal{U}(1, j_n) \cap X(1) \) forms an anti-Čech system of \(X(1) \). Since \(|\mathcal{U}(1, j_n)| \) \(X(1) \), we have \(K_* X_*(X(1)) = \lim_{\to} K_* (|X_n|) \). \(\square \)

Lemma 2.7. The inductive limit of \(K_*(|X_1|) \) is trivial.

Proof. For an integer \(s \geq 0 \), we define a simplicial map \(q_{n,s} : Y_n \to Y_{n+1} \) by

\[
q_{n,s}(B((x, t), j_n)) = \begin{cases}
B((x, t), j_{n+1}) & \text{if } t \geq s, \\
B((x, s), j_{n+1}) & \text{if } t < s.
\end{cases}
\]

Clearly \(q_{n,s} \) and \(q_{n,s+1} \) are contiguous. Let \(h_{n,s} : [s, s+1] \times |Y_n| \to |Y_{n+1}| \) be a proper homotopy between geometric realizations of \(q_{n,s} \) and \(q_{n,s+1} \). We define a proper map \(q_n : \mathbb{R}_{\geq 0} \times |Y_n| \to |Y_{n+1}| \) by \(q_n(\theta, x) = h_{n,[\theta]}(\theta, x) \), where \(\theta \in \mathbb{R}_{\geq 0} \), \(x \in |Y_n| \), and \([\theta] \) denotes the largest integer not greater than \(\theta \). Then we have the following commutative diagram:

\[
\begin{array}{ccc}
|Y_n| & \xrightarrow{q_{n,s}} & |Y_{n+1}| \\
\downarrow & & \downarrow \\
\mathbb{R}_{\geq 0} \times |Y_n| & \xrightarrow{q_n} & \mathbb{R}_{\geq 0} \times |Y_{n+1}|
\end{array}
\]

Here the horizontal arrow is the canonical map and the map \(|Y_n| \to \mathbb{R}_{\geq 0} \times |Y_n| \) is given by the inclusion onto \(\{0\} \times |Y_n| \). Since \(\mathbb{R}_{\geq 0} \times |Y_n| \) is contractible (see [7, Remark 7.1.4]), the homomorphism \(K_*(|Y_n|) \to K_*(|Y_{n+1}|) \) factors through zero. Therefore, \(\lim_{\to} K_*(|Y_n|) = 0 \). \(\square \)

By the cluster axiom of \(K \)-homology (see [7, Definition 7.3.1]), we have \(K_* (|X_1|) \cong \prod_{i \geq 1} K_* (|Z_{1i}|) \). Therefore we have the following exact sequence:

\[
\cdots \to \lim_{\to} \prod_{i \geq 1} K_* (|Z_{1i}|) \to K_* (X(1)) \to K_* (X(G, \mathbb{P}, S)) \to \cdots
\]

(3)

We remark that \(K_* (X(1)) \cong K_* (G) \) since \(X(1) \) and \(G \) are coarsely equivalent. In the next section, we will show \(\lim_{\to} \prod_{i \geq 1} K_* (|Z_{1i}|) \cong \prod_{i \geq 1} K_* (g_i P_i) \) with the aid of finite universal spaces \(E P_1, \ldots, E P_k \).
3. Contractible models

In this section, we take \((G, \mathbb{P})\) in Theorem 1.1. Let \(\mathcal{E}G\) be a finite \(G\)-simplicial complex which is a universal space for proper actions. For \(r \in \{1, \ldots, k\}\), let \(\mathcal{E}P_r\) be a finite \(P_r\)-simplicial complex which is a universal space for proper actions. In the rest of this paper, we assume that all \(\mathcal{E}P_r\) are embedded in \(\mathcal{E}G\). We also assume that \(G\) is naturally embedded in the set of vertices of \(\mathcal{E}G\) and \(g_i P_{(i)}\) is embedded in \(g_i \mathcal{E}P_{(i)}\). If \((G, \mathbb{P})\) satisfies conditions in Theorem 1.1, then we can take \(\mathcal{E}G\) satisfying these conditions (see Appendix A). We take a finite subcomplex \(\Delta \subset \mathcal{E}G\) containing a fundamental domain of \(\mathcal{E}G\). We may assume that \(\Delta \cap \mathcal{E}P_r\) contains a fundamental domain of \(\mathcal{E}P_r\) for \(r = 1, \ldots, k\) without loss of generality.

Now, we introduce a contractible model of \(X(G, \mathbb{P}, S)\). We define an embedding \(\varphi_i: g_i \mathcal{E}P_{(i)} \times \{0\} \hookrightarrow \mathcal{E}G\) by \(\varphi_i(x, 0) = x\).

A contractible model for \(X(G, \mathbb{P}, S)\) is obtained by pasting \(g_i \mathcal{E}P_{(i)} \times [0, \infty)\) to \(\mathcal{E}G\) by \(\varphi_i\) for all \(i \in \mathbb{N}\). Thus we can write it as follows:

\[
EX(G, \mathbb{P}) = \mathcal{E}G \cup \bigcup_{i \in \mathbb{N}} (g_i \mathcal{E}P_{(i)} \times [0, \infty)).
\]

Contractible models for \(X(1), Y(1)\) and \(\mathcal{H}(g_i P_{(i)}; \{1\})\) are also defined as follows:

\[
EX(1) = \mathcal{E}G \cup \bigcup_{i \in \mathbb{N}} (g_i \mathcal{E}P_{(i)} \times [0, 1]);
\]

\[
EY(1) = \bigsqcup_{i \in \mathbb{N}} (g_i \mathcal{E}P_{(i)} \times [1, \infty));
\]

\[
EZ^i = g_i \mathcal{E}P_{(i)} \times \{1\}.
\]

We remark that \(EX(G, \mathbb{P})\) admits a proper metric such that \(EX(G, \mathbb{P})\) is coarsely equivalent to \(X(G, \mathbb{P}, S)\), but it is neither of bounded geometry nor uniformly contractible, if \(\mathbb{P}\) is not empty. Thus \(EX(G, \mathbb{P})\) is not coarsening of \(X(G, \mathbb{P}, S)\) in the sense of [17, Definition 2.4]. However \(EX(G, \mathbb{P})\) is a “weakly coarsening” of \(X(G, \mathbb{P}, S)\) in the following sense:

Proposition 3.1. The coarse K-homology of \(X(G, \mathbb{P}, S)\) can be computed by the contractible model, that is, \(K_* (X(G, \mathbb{P}, S)) \cong K_* (EX(G, \mathbb{P})).\)

Proposition 3.1 is no direct consequence of [6, Proposition 3.8]. Our strategy is cutting off horoballs by Mayer-Vietoris arguments.
3.1. **Proof of Proposition 3.1.** We construct a locally finite cover \(\mathcal{E}_n \) of \(EX(G, \mathbb{P}) \) as follows: for \(x \in g_iP(i) \) and \(j \geq 1 \), the ball in \(g_iEP(i) \) centered at \(x \) with the size \(j \) is

\[
(4) \quad EB(x, j) = \bigcup y(\Delta \cap EP(i))
\]

where the union is taken over all \(y \in g_iP(i) \) such that \(d_S(x, y) \leq 2^j \). A contractible column centered at \((x, t) \in g_iP(i) \times \mathbb{N} \) with the size \(j \) is

\[
EB((x, t), j) = EB(x, t + j) \times [t, t + j].
\]

For \(x \in G \), a contractible column centered at \((x, 0) \in G \times \{0\} \) with the size \(j \) is

\[
EB((x, 0), j) = \bigcup \left(y\Delta \cup \bigcup_{i \in \mathbb{N}} ((y\Delta \cap g_iEP(i)) \times [0, j])\right)
\]

where the first union is taken over all \(y \in G \) such that \(d_S(x, y) \leq 2^j \). We define that the cover \(\mathcal{E}_n \) of \(EX(G, \mathbb{P}) \) consists of all those columns \(EB((x, t), j_n) \) for \((x, t) \in X(G, \mathbb{P}, \mathcal{S})^{(0)} \). Taking subsequence if necessary, we define a simplicial map \(\mathcal{E}_n \to \mathcal{U}_{n+1} \) by \(EB((x, t), j_n) \mapsto B(((x, t), j_{n+1}) \).

A partition of the unity gives a continuous map \(h_n : EX(G, \mathbb{P}) \to |\mathcal{E}_n| \). The composite of \(h_2 \) and \(|\mathcal{E}_2| \to |\mathcal{U}_3| \) induces a homomorphism \(K_*EX(G, \mathbb{P}) \to KX_*(X(G, \mathbb{P}, \mathcal{S})) \).

Next, for each \(i \in \mathbb{N} \), we construct an anti-Čech system \(\{EZ^n_i\}_n \) of \(EZ^i \) as follows: the cover \(EZ^n_i \) of \(EZ^i \) consists of all balls \(EB(x, j_n) \times \{1\} \) for \(x \in g_iP(i) \). Then \(\{EZ^n_i\}_n \) forms an anti-Čech system.

We define a simplicial map \(EZ^n_i \to EZ^{i+1}_n \) by \(B((x, s), j_n) \mapsto EB((x, j_{n+1}) \times \{1\} \). We also define a simplicial map \(EZ^n_i \to EZ^{i+1}_n \) by \(EB((x, j_n) \times \{1\} \mapsto B(((x, 1), j_{n+1}) \). Then we have a commutative diagram

\[
\begin{array}{ccc}
\prod_{i \in \mathbb{N}} K_*(|Z^n_i|) & \longrightarrow & \prod_{i \in \mathbb{N}} K_*(|EZ^n_{i+1}|) \\
\downarrow & & \downarrow \\
\prod_{i \in \mathbb{N}} K_*(|Z^n_{i+2}|) & \longrightarrow & \prod_{i \in \mathbb{N}} K_*(|EZ^n_{i+3}|).
\end{array}
\]

Hence \(\varprojlim \prod_{i \in \mathbb{N}} K_*(|Z^n_i|) \cong \varprojlim \prod_{i \in \mathbb{N}} K_*(|EZ^n_i|) \). The partition of the unity gives a continuous map \(h^n_i : EZ^i \to |EZ^n_i| \) for \(i \) and \(n \geq 1 \). By the proof of [6, Proposition 3.8], taking a subsequence if necessary (not depending on \(i \)), the induced map \((h^n_i)_* : K_*(EZ^i) \to K_*(|EZ^n_i|) \) is an isomorphism onto the image of the map \(K_*(|EZ^n_{i-1}|) \to K_*(|EZ^n_i|) \). See
also [5, Lemma 7.11]. It follows that

\[
\prod_{i \in \mathbb{N}} K_* (EZ^i) \cong \lim_{\rightarrow} \prod_{i \in \mathbb{N}} K_* (|EZ^i_n|) \cong \lim_{\rightarrow} \prod_{i \in \mathbb{N}} K_* (|Z^i_n|).
\]

By arguments similar to that in the case of EZ^i, we can show the following isomorphism:

\[
K_* (EX(1)) \cong \lim_{\rightarrow} K_* (|U(1,j_n)|) = KX_* (X(1)).
\]

By the Mayer-Vietoris sequence for $EX(G, \mathbb{P}) = EX(1) \cup EY(1)$, the exact sequence (3) and the fact that $K_* (EY(1)) = 0$, we have the following commutative diagram with two horizontal exact sequences:

\[
\begin{array}{cccccc}
\prod_{i \in \mathbb{N}} K_* (EZ^i(1)) & \rightarrow & K_* (EX(1)) & \rightarrow & K_* (EX(G, \mathbb{P})) & \rightarrow \\
\lim_{\rightarrow} \prod_{i \in \mathbb{N}} K_* (|Z^i_n|) & \rightarrow & KX_* (X(1)) & \rightarrow & KX_* (X(G, \mathbb{P}, S)) & \rightarrow
\end{array}
\]

By (5), (6) and the five lemma, all vertical maps are isomorphisms. This completes the proof of Proposition 3.1.

4. Coarse Mayer-Vietoris sequences

Higson, Roe and Yu [8] introduced a coarse Mayer-Vietoris sequence in the K-theory of the Roe algebras. It is used to prove a Lipschitz homotopy invariance of the K-theory of the Roe algebras [17, Theorem 9.8].

We first recall a notion of “excision pair” in coarse category. For a metric space M, a subspace A, and a positive number R, we denote by $\text{Pen}(A; R)$ the R-neighbourhood of A in M, that is, $\text{Pen}(A; R) = \{ p \in M : d(p,A) \leq R \}$.

Definition 4.1. Let M be a proper metric space, and let A and B be closed subspaces with $M = A \cup B$. We say that $M = A \cup B$ is an ω-excisive decomposition, if for each $R > 0$ there exists some $S > 0$ such that

\[
\text{Pen}(A; R) \cap \text{Pen}(B; R) \subset \text{Pen}(A \cap B; S).
\]

We summarize results in [8] (see also [12] and [13]) on coarse assembly maps and Mayer-Vietoris sequences as follows:
Theorem 4.2. Suppose that \(M = A \cup B \) is an \(\omega \)-excisive decomposition. Then the following diagram is commutative and horizontal sequences are exact:

Here vertical arrows are coarse assembly maps.

5. Proof of theorem 1.1

In this section, we give a proof of Theorem 1.1 which is divided into two parts. In the first part, we show inductively the coarse Baum-Connes conjecture for the space obtained by removing the first \(n-1 \) horoballs from \(X(G, \mathcal{P}, \mathcal{S}) \). In the second part, we compute the coarse K-homology and the K-theory of the Roe algebra of \(G \) which is the intersection of a decreasing sequence of subspaces of \(X(G, \mathcal{P}, \mathcal{S}) \).

5.1. The first part.

Notation 5.1. We introduce the following notations:

\[
X_n = \Gamma \cup \bigcup_{i \geq n} \mathcal{H}(g_i P(i)); \quad X_\infty = \bigcap_{n \geq 1} X_n; \quad EX_n = E G \cup \bigcup_{i \geq n} (g_i E P(i) \times [0, \infty)) \quad EX_\infty = \bigcap_{n \geq 1} EX_n.
\]

We remark that \(X_1 = X(G, \mathcal{P}, \mathcal{S}), X_\infty = \Gamma, EX_1 = EX(G, \mathcal{P}) \) and \(EX_\infty = E G \).

Since \(X_1 \) is \(\delta \)-hyperbolic for some \(\delta \geq 0 \), by the result of Higson-Roe [6 Corollary 8.2], the coarse assembly map \(\mu: K_* (X_1) \rightarrow K_* (C^* (X_1)) \) is an isomorphism. See Appendix B. In fact, by Proposition 3.1, the coarse assembly map

\[
\mu: K_* (EX_1) \rightarrow K_* (C^* (X_1))
\]

is an isomorphism. By assumption and [6 Proposition 3.8], \(\mu: K_* (g_n E P(n)) \rightarrow K_* (C^* (g_n P(n))) \) is an isomorphism for all \(n \geq 1 \).

Lemma 5.2. For any \(n \geq 0 \), the coarse assembly map \(\mu_n: K_* (EX_n) \rightarrow K_* (C^* (X_n)) \) is an isomorphism.
Proof. We assume that μ_n is an isomorphism. Since $X_n = X_{n+1} \cup \mathcal{H}(g_nP_n)$ is an ω-excisive decomposition, it follows from (coarse) Mayer-Vietoris sequences and the five lemma that μ_{n+1} is an isomorphism. □

5.2. The second part. Let $(EX_n)^+$ denote the one-point compactification of EX_n. It is clear that $(EX_\infty)^+ = \bigcap_{n \in \mathbb{N}} (EX_n)^+$. By the Milnor exact sequence [7, Proposition 7.3.4], we have

$$0 \to \lim_{\leftarrow} K_{p+1}((EX_n)^+) \to K_p((EX_\infty)^+) \to \lim_{\leftarrow} K_p((EX_n)^+) \to 0. \quad (9)$$

Since the K-homology of EX_n is just the reduced K-homology of $(EX_n)^+$, we have $K_*(((EX_n)^+)) \cong K_*(EX_n) \oplus K_*(\{+\})$ where $\{+\}$ denotes a one-point space. This is also a direct consequence of an exact sequence [7, Definition 7.1.1(b)]. Thus we can replace $K_*(((EX_n)^+))$ in (9) by $K_*(EX_n)$.

Next, we consider the K-theory of the Roe algebras. Let H be a Hilbert space and $\rho: C_0(X_1) \to \mathfrak{B}(H)$ is an ample representation where $\mathfrak{B}(H)$ is the set of all bounded operators on H. The Roe algebra $C^*(X_1, H)$ is the norm closure of the algebra of locally compact, controlled operators on H (see [7, Definition 6.3.8]). The restriction $\rho: C_0(X_n) \to \mathfrak{B}(C_0(X_n)H)$ gives an ample representation of $C_0(X_n)$. The Roe algebra $C^*(X_n, C_0(X_n)H)$ can be naturally identified with a sub-C^*-algebra of $C^*(X_1, H)$, in fact, we have

$$C^*(X_n, C_0(X_n)H) = \{ T \in C^*(X_1, H) : \text{supp} T \subset X_n \times X_n \}.$$

We abbreviate $C^*(X_n, C_0(X_n)H)$ to $C^*(X_n)$. Now it is easy to see that $C^*(X_\infty) = \bigcap_{n \geq 1} C^*(X_n)$.

Phillips [16] studied the K-theory of the projective limit of C^*-algebras.

Proposition 5.3 ([16, Theorem 5.8(5)]). The following sequence is exact.

$$0 \to \lim_{\leftarrow} K_{p+1}(C^*(X_n)) \to K_p(C^*(X_\infty)) \to \lim_{\leftarrow} K_p(C^*(X_n)) \to 0.$$

By Proposition 5.3 and (9), we have the following commutative diagram such that upper and lower horizontal sequences are exact:

$$\begin{array}{ccccccc}
0 & \to & \lim_{\leftarrow} K_{p+1}(EX_n) & \to & K_p(EX_\infty) & \to & \lim_{\leftarrow} K_p(EX_n) & \to & 0. \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \lim_{\leftarrow} K_{p+1}(C^*(X_n)) & \to & K_p(C^*(X_\infty)) & \to & \lim_{\leftarrow} K_p(C^*(X_n)) & \to & 0.
\end{array}$$
By Lemma 5.2 and the five lemma, every vertical map is an isomorphism. This completes the proof of Theorem 1.1.

Remark 5.4. In the proof of Theorem 1.1, we use δ-hyperbolicity of the augmented space only for the first step of the induction in section 5.1 and the existence of a universal space EG mentioned in the beginning of Section 3.

Appendix A. A finite universal space for proper actions of a relatively hyperbolic group

In this appendix we prove the following (refer to [3, Theorem 0.1] on the case of torsion free groups):

Theorem A.1. Let a countable group G be hyperbolic relative to a finite family of infinite subgroups \mathbb{P}. Suppose that every $P \in \mathbb{P}$ admits a finite P-simplicial complex which is a universal space for proper actions. Then G admits a finite G-simplicial complex which is a universal space for proper actions. In fact, G has a finite G-simplicial complex EG with an embedding $i \colon G \hookrightarrow EG$ and each $P \in \mathbb{P}$ has a finite P-simplicial complex EP which is a subcomplex of EG such that $i(P) \subset EP$.

See [10] for universal spaces for proper actions.

Let a countable group G be finitely generated relative to a finite family of infinite subgroups \mathbb{P}. We denote the family of all left cosets by $a := \bigsqcup_{P \in \mathbb{P}} G/P$. We take a left invariant, proper metric d_G on G such that G is generated by $\{g \in G \mid d_G(e, g) \leq 1\} \cup \bigcup_{P \in \mathbb{P}} P$. We remark that $\{g \in G \mid d_G(e, g) \leq 1\}$ is a finite set.

Now we recall the definition of the augmented space $X(G, \mathbb{P}, d_G)$ (see [4, Section 3] and also [9]). Its vertex set $V(G, \mathbb{P}, d_G)$ is $G \sqcup \bigsqcup_{A \in a} (A \times \mathbb{N})$ where \mathbb{N} is the set of positive integers. We often denote the subset $G \subset V(G, \mathbb{P})$ by $G \times \{0\}$. Also we often regard $A \in a$ as a subset $A \times \{0\}$ of $G \times \{0\}$. Its edge is either a vertical edge or a horizontal edge: a vertical edge is a pair $\{(a, t_1), (a, t_2)\} \subset A \times (\{0\} \sqcup \mathbb{N})$ such that $|t_1 - t_2| = 1$ for $A \in a$; a horizontal edge is a pair $\{(a_1, t), (a_2, t)\} \subset A \times \mathbb{N}$ such that $0 < d_G(a_1, a_2) \leq 2t$ for $A \in a$ or a pair of $\{g_1, g_2\} \subset G$ such that $d_G(g_1, g_2) = 1$.

Since G is generated by $\{g \in G \mid d_G(e, g) \leq 1\} \cup \bigcup_{P \in \mathbb{P}} P$, the augmented space $X(G, \mathbb{P}, d_G)$ is connected. This graph structure induces a metric on $V(G, \mathbb{P}, d_G)$. When we consider for $P \in \mathbb{P}$, a left invariant proper metric $d_P := d_G|_{P \times P}$ on P, then $X(P, \{P\}, d_P)$ is nothing but the full subgraph of $P \sqcup (P \times \mathbb{N})$ in $X(G, \mathbb{P}, d_G)$. Moreover we can confirm that $X(P, \{P\}, d_P)$ is an isometrically embedded subgraph of $X(G, \mathbb{P}, d_G)$.
We consider the Rips complex \(R_D(V(G, \mathbb{P}, d_G)) \) for a positive integer \(D \). We denote the full subcomplexes of

\[
V(G, \mathbb{P}, d_G)_r = \bigsqcup_{A \in a} (A \times \{r, \ldots\});
\]

\[
V(G, \mathbb{P}, d_G)^R = G \sqcup \bigsqcup_{A \in a} (A \times \{1, \ldots, R\});
\]

\[
V(G, \mathbb{P}, d_G)_{r}^R = \bigsqcup_{A \in a} (A \times \{r, \ldots, R\}) = V(G, \mathbb{P}, d_G)_r \cap V(G, \mathbb{P}, d_G)^R,
\]

in \(R_D(V(G, \mathbb{P}, d_G)) \) by \(R_D(V(G, \mathbb{P}, d_G))_r \), \(R_D(V(G, \mathbb{P}, d_G))^{R} \) and \(R_D(V(G, \mathbb{P}, d_G))_{r}^{R} \), respectively, where \(r, R \in \mathbb{N} \) such that \(r \leq R \).

Remark A.2. If \(r + D \leq R \), then we have \(R_D(V(G, \mathbb{P}, d_G)) = R_D(V(G, \mathbb{P}, d_G))_r \cup R_D(V(G, \mathbb{P}, d_G))^{R} \) and \(R_D(V(G, \mathbb{P}, d_G))_{r}^{R} \).

\(G \) is hyperbolic relative to \(\mathbb{P} \) if and only if \(V(G, \mathbb{P}, d_G) \) is \(\delta \)-hyperbolic for some \(\delta \geq 0 \) (see [11, Theorem 3.25]). Since \(V(G, \mathbb{P}, d_G) \) is \(\delta \)-hyperbolic, there exists some positive number \(D_\delta \) such that for any \(D \in \mathbb{N} \) such that \(D \geq D_\delta \), the Rips complex \(R_D(V(G, \mathbb{P}, d_G)) \) is contractible. Moreover we have the following:

Proposition A.3. Let a countable group \(G \) be hyperbolic relative to a finite family of infinite subgroups \(\mathbb{P} \). Suppose that \(V(G, \mathbb{P}, d_G) \) is \(\delta \)-hyperbolic, where \(\delta \) is a non-negative number. Then there exists some positive number \(D_\delta' \) such that for any integer \(D \) such that \(D \geq D_\delta' \), the first barycentric subdivision of the Rips complex \(R_D(V(G, \mathbb{P}, d_G)) \) is a \(G \)-simplicial complex which is a universal space for proper actions.

If \(\mathbb{P} \) is empty on the above, then \(G \) is a hyperbolic group. The above for this case is known ([11]). Since arguments in the proof of [11, Theorem 1] can be applied to the above, we omit its proof.

Proof of Theorem A.1. We take a left invariant proper metric \(d_G \) on \(G \) such that \(G \) is generated by \(\{g \in G \mid d_G(e, g) \leq 1\} \cup \bigcup_{P \in \mathbb{P}} P \). We denote by \(d_P \) a left invariant proper metric \(d_G|_{P \times P} \) on \(P \in \mathbb{P} \).

Suppose that \(V(G, \mathbb{P}, d_G) \) is \(\delta \)-hyperbolic. Then for every \(P \in \mathbb{P} \), the vertex set \(V(P, \{P\}, d_P) \) is \(\delta \)-hyperbolic because \(X(P, \{P\}, d_P) \) is an isometrically embedded subgraph of \(X(G, \mathbb{P}, d_G) \). We fix \(D \in \mathbb{N} \) such that \(D \geq D_\delta' \), where \(D_\delta' \) is a constant in Proposition A.3. We take \(P \in \mathbb{P} \) and \(r, R \in \mathbb{N} \) such that \(r + D \leq R \). Also we take for every \(P \in \mathbb{P} \), a finite \(P \)-simplicial complex \(\overline{E}P \) which is a universal space for proper actions.
Since the first barycentric subdivision of $R_D(V(P, \{P\}, d_P))_r$ is a P-simplicial complex which is a universal space for proper actions by Proposition A.3, we have a P-homotopy equivalent map $h_P : R_D(V(P, \{P\}, d_P))_r \to EP$. It follows from an equivariant version of simplicial approximation theorem (see [1] Exercise 6 for Chapter 1) that there exist a natural number n and a P-simplicial map $f_P : R_D^{(n)}(V(P, \{P\}, d_P))_r \to EP$ which is P-homotopy equivalent to h_P where $R_D^{(n)}(V(P, \{P\}, d_P))_r$ is the n-th barycentric subdivision of $R_D(V(P, \{P\}, d_P))_r$. We can take n independently of P because \mathbb{P} is a finite family. We consider mapping cylinders
\[(R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1]) \cup_{j_P} R_D^{(n)}(V(P, \{P\}, d_P))_r;\]
\[(R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1]) \cup_{q_P} EP,\]
whose pasting maps are
\[j_P : R_D^{(n)}(V(P, \{P\}, d_P))_r \times \{1\} \ni (x, 1) \mapsto x \in R_D^{(n)}(V(P, \{P\}, d_P))_r;\]
\[q_P : R_D^{(n)}(V(P, \{P\}, d_P))_r \times \{1\} \ni (x, 1) \mapsto f_P(x) \in EP,\]
respectively. Then the maps $id_{R_D^{(n)}(V(P, \{P\}, d_P))_r}$ and f_P induce a map
\[\tilde{f}_P : (R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1]) \cup_{j_P} R_D^{(n)}(V(P, \{P\}, d_P))_r \to\]
\[(R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1]) \cup_{q_P} EP,\]
which is a P-homotopy equivalent map. In fact we can confirm that \tilde{f}_P is a P-homotopy equivalent map relative to $R_D^{(n)}(V(P, \{P\}, d_P))_r \times \{0\}$. Now we construct two G-simplicial complex $R_D^{(n)}(V(G, \mathbb{P}, d_G))_1$ and $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ as follows: First, $R_D^{(n)}(V(G, \mathbb{P}, d_G))_1$ is obtained by, for every $P \in \mathbb{P}$, pasting G-equivariantly, $(R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1]) \cup_{j_P} R_D^{(n)}(V(P, \{P\}, d_P))_r$, to $R_D^{(n)}(V(G, \mathbb{P}, d_G))_R$ by the pasting map
\[R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1] \to R_D^{(n)}(V(P, \{P\}, d_P))_r.\]
Second, $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ is obtained by, for every $P \in \mathbb{P}$, pasting G-equivariantly, $R_D^{(n)}(V(P, \{P\}, d_P))_r \times [0, 1] \cup_{q_P} EP$ to $R_D^{(n)}(V(G, \mathbb{P}, d_G))_R$ by the same pasting map. Then they are G-homotopy equivalent by the induced map by $id_{R_D^{(n)}(V(G, \mathbb{P}, d_G))_R}$ and \tilde{f}_P for any $P \in \mathbb{P}$. Since $R_D^{(n)}(V(G, \mathbb{P}, d_G))_r$ is clearly G-homeotopic to $R_D^{(n)}(V(G, \mathbb{P}, d_G))_1$ by Remark A.2, we have $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ is G-homeotopic to $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$. It follows from Proposition A.3 that $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ is a G-simplicial complex which is a universal space for proper actions. It is also clear that $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ is a finite G-simplicial complex by the construction. G is naturally embedded in $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$.
$R_D^{(n)}(V(P, \{P\}, d_P))_2$ is a subcomplex of $R_D^{(n)}(V(G, \mathbb{P}, d_G))_2$ and is a finite universal P-simplicial complex with the natural embedding of P. □

APPENDIX B. THE COARSE BAUM-CONNES CONJECTURE FOR HYPERBOLIC METRIC SPACES

Higson and Roe [6, Corollary 8.2] proved the coarse Baum-Connes conjecture for hyperbolic metric spaces. The following Proposition B.1 plays an important role in their proof.

Proposition B.1. Let Y be a compact metric space and let O_Y denote an open cone of Y. Then the coarsening map

$$\mu: K_*(O_Y) \to KX_*(O_Y)$$

is an isomorphism.

Higson and Roe [6, Proposition 4.3] proved this proposition assuming that the dimension of Y is finite. Here we prove it without assuming that.

Proof. Any compact metric space can be embedded in the separable Hilbert space l_2. In fact, the stereographic projection gives an embedding in the unit ball of l_2. So we assume $Y \subset \{x \in l_2 : ||x|| = 1\}$. Then the open cone of Y is given by $O_Y = \{tx \in l_2 : x \in Y, t \in [0, \infty)\}$. For $I \subset (0, \infty)$, set

$$Y \times I = \{tx \in l_2 : x \in Y, t \in I\}.$$

Since Y is compact, for each $n \in N$, there exist $p_1^n, \ldots, p_{a_n}^n \in Y \times \{n\}$ such that

$$\bigcup_{m=1}^{a_n} B(p_m^n, 1) \supset Y \times \{n\}. \quad (10)$$

Here $B(x, r)$ denotes a ball of radius r centered at x. Then we have

$$\bigcup_{m=1}^{a_n} B(p_m^n, 2) \supset Y \times [n - 1, n + 1].$$

For each $i \in \mathbb{N}$, we form a cover \mathcal{U}_i of O_Y as follows:

$$U_m^n(i) = B(p^n_m, 3^i) \cap O_Y, \quad m = 1, \ldots, a_n,$$

$$\mathcal{U}_i = \bigcup_{n \geq 1} \{U_1^n(i), \ldots, U_{a_n}^n(i)\}.$$
It is clear that \mathcal{U}_i is a locally finite cover and thus we obtain an anti-Čech system $\{\mathcal{U}_i\}_{i \geq 1}$.

By the definition, it follows that
\[
\bigcup_{n \geq 1} \bigcup_{m=1}^{a_n} B(p^n_m, 3^i) \subset \text{Pen}(\mathcal{O}Y, 3^i).
\]

Then the method used in the proof of [6, Proposition 4.3] can be applied to $\{\mathcal{U}_i\}_{i \geq 1}$. This completes the proof of Proposition B.1. □

References

1. Glen E. Bredon, *Introduction to compact transformation groups*, Academic Press, New York, 1972, Pure and Applied Mathematics, Vol. 46. MR 0413144 (54 #1265)
2. Marius Dadarlat and Erik Guentner, *Uniform embeddability of relatively hyperbolic groups*, J. Reine Angew. Math. 612 (2007), 1–15. MR 2364071 (2008h:20064)
3. François Dahmani, *Classifying spaces and boundaries for relatively hyperbolic groups*, Proc. London Math. Soc. (3) 86 (2003), no. 3, 666–684. MR 1974394 (2004b:20061)
4. Daniel Groves and Jason Fox Manning, *Dehn filling in relatively hyperbolic groups*, Israel J. Math. 168 (2008), 317–429. MR 2448064 (2009h:57030)
5. Erik Guenter, Romain Tessera, and Guoliang Yu, *Decomposition complexity and topological rigidity*, preprint, http://www.normalesup.org/%7Etessera/borel031110.pdf.
6. Nigel Higson and John Roe, *On the coarse Baum-Connes conjecture*, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 227–254. MR 1388312 (97f:58127)
7. ______, *Analytic K-homology*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000, Oxford Science Publications. MR 1817560 (2002c:58036)
8. Nigel Higson, John Roe, and Guoliang Yu, *A coarse Mayer-Vietoris principle*, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 1, 85–97. MR MR1219916 (95c:19006)
9. G. Christopher Hruska, *Relative hyperbolicity and relative quasiconvexity for countable groups*, Algebr. Geom. Topol. 10 (2010), no. 3, 1807–1856. MR 2684983
10. Wolfgang Lück, *Survey on classifying spaces for families of subgroups*, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322. MR 2195456 (2006m:55036)
11. David Meintrup and Thomas Schick, *A model for the universal space for proper actions of a hyperbolic group*, New York J. Math. 8 (2002), 1–7 (electronic). MR 1887695 (2003b:57002)
12. Paul D. Mitchener, *Coarse homology theories*, Algebr. Geom. Topol. 1 (2001), 271–297 (electronic). MR 1834777 (2002k:55012)
13. ______, *Addendum to: “Coarse homology theories”* [Algebr. Geom. Topol. 1 (2001), 271–297 (electronic); mr1834777], Algebr. Geom. Topol. 3 (2003), 1089–1101 (electronic). MR 2012966 (2004i:55007)
14. D. Osin, *Asymptotic dimension of relatively hyperbolic groups*, Int. Math. Res. Not. (2005), no. 35, 2143–2161. MR 2181790 (2006g:20068)

15. Narutaka Ozawa, *Boundary amenability of relatively hyperbolic groups*, Topology Appl. 153 (2006), no. 14, 2624–2630. MR 2243738 (2007g:20043)

16. N. Christopher Phillips, *Representable K-theory for σ-C^*-algebras*, K-Theory 3 (1989), no. 5, 441–478. MR 1050490 (91k:46082)

17. John Roe, *Index theory, coarse geometry, and topology of manifolds*, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. MR MR1399087 (97h:58155)

18. Edwin H. Spanier, *Algebraic topology*, Springer-Verlag, New York, 1981, Corrected reprint. MR 666554 (83i:55001)

19. Guoliang Yu, *The Novikov conjecture for groups with finite asymptotic dimension*, Ann. of Math. (2) 147 (1998), no. 2, 325–355. MR 1626745 (99k:57072)

20. Guoliang Yu, *The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space*, Invent. Math. 139 (2000), no. 1, 201–240. MR 1728880 (2000j:19005)

Tomohiro Fukaya
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

E-mail address: tomo@math.kyoto-u.ac.jp

Shin-ichi Oguni
Department of Mathematics, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577 Japan

E-mail address: oguni@math.sci.ehime-u.ac.jp