Plasma miR-181a as a Candidate Diagnostic Biomarker for Kawasaki Disease Patients with Coronary Artery lesions

Yu Peng
Jiangxi Province Children’s Hospital

Xiaohui Liu
Jiangxi Province Children’s Hospital

Junkai Duan
Jiangxi Province Children's Hospital

Zhao Duan
Jiangxi Province Children's Hospital

Zheng Zou
Jiangxi Province Children's Hospital

Zhiqiang Liu
Jiangxi Province Children's Hospital

Yulan Zhou
First Affiliated Hospital of Nanchang University

xsfsmy2010@163.com Corresponding Author

DOI: 10.21203/rs.2.23602/v1

SUBJECT AREAS
Translational Medicine

KEYWORDS
Kawasaki disease; miR-181a; biomarker; coronary artery lesions
Abstract

Background: Kawasaki disease (KD) is an acute and systemic vasculitis, and the critical complication in KD patients is coronary artery lesions (CAL). Plasma miR-181a was found dysregulated in a variety of cardiovascular disease. The aim of this study was to define the relationship between the plasma miR-181a levels and CAL in KD. Methods: Plasma miR-181a levels were analyzed by quantitative reverse transcriptase-polymerase chain reaction in 121 patients with KD. Results: We found that plasma miR-181a levels at the acute phase were significantly elevated in KD patients with CAL than those without CAL. Correlation analysis showed that plasma miR-181a levels were positively correlated with the concentrations of CRP (r=0.363, P < 0.05) and NT-proBNP (r=0.389, P < 0.05). Receiver operating characteristic curve analyses showed that plasma miR-181a was of significant prediction value for CAL in KD, the area under receiver operating characteristic curve value for plasma miR-181a in prediction of CAL was 0.747, and the estimated sensitivity and specificity were 75.0% and 68.8%, respectively. Conclusions: Plasma miR-181a is prone to be a candidate biomarker for predicting CAL in KD. Therefore, further investigations are warranted to fully elucidate its role in KD.

Full-text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Tables

Table 1 Demographic, clinical and laboratory characteristics of patients with KD

Parameter	Median (Range) /No (%)
Age (months)	19.0 (2-144)
Male	78 (64.5%)
Incomplete KD	33 (27.3%)
IVIG resistant	25 (20.7%)
CAL	26 (21.5%)
Mucosal changes	107 (88.4%)
Conjunctival injection	101 (83.5%)
Rash	76 (62.8%)
Changes in extremities	51 (42.1%)
Cervical lymphadenopathy	79 (65.3%)
Table 2 Comparison of laboratory characteristic in KD patients with and without CAL

	KD with CAL	KD without CAL	P value
Age (months)	18 (2,120)	19 (2,144)	0.354
Male	18 (69.2%)	56 (58.9%)	0.340
WBC (×10⁹/l)	17.85±6.87	15.54±5.35	0.082
Neutrophil (×10⁹/l)	12.70±5.77	10.43±4.49	0.043*
Lymphocyte (×10⁹/l)	3.59±2.10	3.61±2.14	0.961
Hemoglobin (g/l)	101.56±12.80	103.59±10.98	0.362
Platelet (×10⁹/l)	372.53±152.43	350.56±107.05	0.444
CRP (mg/dl)	118.83±65.46	99.06±60.52	0.012*
ESR (mm/h)	64.84±23.82	60.27±27.51	0.368
PCT (ng/ml)	1.44±1.77	2.25±13.04	0.530
NT-proBNP (pg/ml)	1393.35±1792.47	636.57±771.91	0.025*
SF (ng/ml)	288.84±311.36	279.70±198.82	0.311

Table 3 Correlation between circulating miR-181a levels and other laboratory data in KD patients

	Correlation coefficient	P value
WBC	0.019	0.807
Neutrophil	-0.016	0.838
Lymphocyte	0.086	0.263
Hemoglobin	-0.039	0.609
Platelet	-0.006	0.933
CRP	0.363	<0.001
ESR	0.041	0.595
PCT	-0.058	0.451
NT-proBNP	0.389	<0.001
SF	0.132	0.084

Figures
Figure 1
Circulating miR-181a expression levels in KD. A. Circulating miR-181a expression levels in KD before and two days after initial IVIG infusion. B. Circulating miR-181a expression levels in complete KD and incomplete KD. C. Circulating miR-181a expression levels in IVIG-response and IVIG-resistant patients. D. Circulating miR-181a expression levels in KD patients with and without CAL.
Figure 1

Circulating miR-181a expression levels in KD. A. Circulating miR-181a expression levels in KD before and two days after initial IVIG infusion. B. Circulating miR-181a expression levels in complete KD and incomplete KD. C. Circulating miR-181a expression levels in IVIG-response and IVIG-resistant patients. D. Circulating miR-181a expression levels in KD patients with and without CAL.
Receiver operating characteristic (ROC) curve analysis of miR-181a, CRP and NT-proBNP as predictors for CAL in KD.
Figure 2

Receiver operating characteristic (ROC) curve analysis of miR-181a, CRP and NT-proBNP as predictors for CAL in KD.