THE LOCAL-GLOBAL PRINCIPLE FOR DIVISIBILITY IN CM ELLIPTIC CURVES

BRENDAN CREUTZ AND SHENG(VICTOR) LU

Abstract. We consider the local-global principle for divisibility in the Mordell-Weil group of a CM elliptic curve defined over a number field. For each prime \(p \) we give sharp lower bounds on the degree \(d \) of a number field over which there exists a CM elliptic curve which gives a counterexample to the local-global principle for divisibility by a power of \(p \). As a corollary we deduce that there are at most finitely many elliptic curves (with or without CM) which are counterexamples with \(p > 2d + 1 \). We also deduce that the local-global principle for divisibility by powers of 7 holds over quadratic fields.

1. Introduction

Let \(E/k \) be an elliptic curve over a number field \(k \). We say that a \(k \)-rational point \(P \in E(k) \) is divisible by the integer \(N \) if there exists \(Q \in E(k) \) such that \(NQ = P \). The question motivating this paper is the extent to which this notion of divisibility satisfies a local-global principle. Namely, if there exists \(Q_v \in E(k_v) \) such that \(NQ_v = P \) for all (or all but possibly finitely many) completions \(k_v \) of \(k \) does it follow that \(P \) is divisible by \(N \)?

Over the past decades there has been substantial interest in the problem of determining conditions on \(N \) and \(k \) implying that such a local-global principle holds for all elliptic curves over \(k \) [DZ01, DZ04, DZ07, PRV12, PRV14, Cre16, LW16, Ran18]. Due to its connection with a question of Cassels [Cas62, Problem 1.3], the analogous question where \(E(k) = H^0(k, E) \) is replaced by the Galois cohomology group \(H^1(k, E) \) has also received much attention [CS15, Cre13, Cre16]. Function field analogues of these questions were studied in [CV17]. In all cases the positive results in the literature concerning local-global divisibility in the groups \(E(k) \) and \(H^1(k, E) \) have relied on the same technique, which considers a more general local-global principle for the \(N \)-torsion subgroup of \(E \) (see Definition 1.1 below).

The approach to establishing such a local-global principle can be summarized as follows. First one aims to identify purely group-theoretic conditions on the image of the mod \(N \) Galois representation \(\rho_N : \text{Gal}(k) \to \text{Aut}(E[N]) \cong \text{GL}_2(\mathbb{Z}/N) \) which guarantee that the local-global principle for divisibility by \(N \) holds. Elliptic curves for which these conditions are not satisfied correspond to non-cuspidal \(k \)-rational points on some modular curve with level \(N \) structure. These curves have only finitely many points defined over number fields of degree \(\leq d \), provided \(N \) is sufficiently large. In many cases one can show that all of the low degree points are cusps. This has resulted in proofs that these local-global principles for divisibility by a prime power \(N = p^a \) hold for all \(p \) larger than an explicit bound depending only on the degree of the number field (See [PRV12, Corollary 2] or [CS15, Theorem B(1)]). In the case \(k = \mathbb{Q} \), the bound is \(p \geq 5 \) [PRV14, Corollary 4] and it is known to be sharp [Cre16]. For degrees greater than 1 the exact bound is unknown.

Establishing an exact bound requires identifying the sporadic points on these modular curves and checking whether the local-global principle holds for the corresponding elliptic
curves. To that end, we undertake a detailed analysis of the local-global principle for divisibility on CM curves, as these are a common source of low degree points on modular curves.

Before stating our main results let us define the local-global principle we refer to.

Definition 1.1. For a set of places S of k define

$$\mathbb{X}^1(k, E[N]; S) := \ker \left(H^1(k, E[N]) \rightarrow \prod_{v \notin S} H^1(k_v, E[N]) \right),$$

where $H^1(k, E[N])$ denotes Galois cohomology of the N-torsion subgroup of E. We say that the local-global principle holds for $(E/k, N)$ if $\mathbb{X}^1(k, E[N]; S) = 0$ for every finite set of places S of k.

If the local-global principle holds for $(E/k, N)$, then the local-global principle for divisibility by N holds for $H^i(k, E)$ for all $i \geq 0$ (See [Cre16, Theorem 2.1] and Lemma 2.2). The goal of this paper is to determine the minimal degree of a number field over which there is a CM elliptic curve for which the local-global principle fails for given prime power $N = p^n$.

In Section 3 we prove the following.

Theorem 1.2. Let $O \subset K$ be an order of conductor f in a quadratic imaginary field K and let $j = j(O)$ be the j-invariant of an elliptic curve with complex multiplication by O. Let p^n be an odd prime power, let $k = \mathbb{Q}(j)$ and set $u = 2$ if $j \neq 0$ and $u = 3$ if $j = 0$.

1. Let L be a number field and let E/L be an elliptic curve with CM by O. Then the local-global principle for $(E/L, p^n)$ holds in any of the following cases:
 (a) p does not divide f and p splits in K;
 (b) p does not divide f, p is inert in K and $[L : k] < (p^2 - 1)/u$; or
 (c) p divides f or p ramifies in K and $[L : k] < (p - 1)/2$.

2. These bounds above are sharp:
 (b') If p does not divide f and p is inert in K, then there exists a number field L of degree $(p^2 - 1)/u$ over k and an elliptic curve E/L with $j(E) = j$ such that the local-global principle fails for $(E/L, p^2)$.
 (c') If p ramifies in K but does not divide f, then there exists a number field L of degree $(p - 1)/2$ over k and an elliptic curve E/L with $j(E) = j$ such that the local-global principle fails for $(E/L, p^2)$.

Using Theorem 1.2 one can determine the minimal degree of a number field L for which there exists a CM elliptic curve E/L for which the local-global principle for $(E/L, p^n)$ fails for some n. In Section 4 we give several explicit examples where the local-global principle fails over number fields of minimal degree. The following table gives the values $d = d(p)$ for some small values of p.

p	3	5	7	11	13	17	19	23
d	1	4	3	5	12	32	9	33

The case $p = 3$ recovers the examples given in [Cre16, LW16] showing that the local-global principle for $(E/\mathbb{Q}, 9)$ can fail. For further details see Section 4.1.

Combining the above with [Ran18] and explicit lower bounds for the gonality of modular curves [Abr96] we will prove the following.
Theorem 1.3. Let \(d \geq 1 \) be an integer and let \(p \geq 17 \) be a prime number \(p > 2d + 1 \). Then there are at most finitely many elliptic curves \(E/L \) defined over a number field of degree \(d = [L : \mathbb{Q}] \) such that the local-global principle for \((E/L, p^n) \) fails for some \(n \geq 1 \). Moreover, any such counterexample to the local-global principle yields a non-cuspidal non-CM point of degree \(\leq d \) on the modular curve \(X(p) \) parameterizing isomorphism classes of elliptic curves with full level \(p \) structure \(E[p] \simeq \mu_p \times \mathbb{Z}/p \).

Theorem 1.3 should be compared with [PRV12, Corollary 2] and [CS15, Theorem B(1)] which assert that the local-global principle holds for \((E/L, p^n) \) for all \([L : \mathbb{Q}] \leq d \) provided \(p > (1 + 3d^2)^2 \). The conclusion of our corollary is weaker in that it allows finitely many possible exceptions, but our bound on \(p \) is linear rather than exponential in the degree \(d \). We expect that our bound holds without exceptions for most (if not all) primes \(p \). Sporadic points of degree \(d \leq (p - 1)/2 \) on \(X(p) \) should be quite rare as these curves have gonality \(\Theta(p^3) \). Moreover, the existence of such a point does not necessarily imply that there is a counterexample to the local-global principle, as there are additional (and rather strict) conditions which must also be satisfied by the mod \(p^3 \) Galois representation of the corresponding elliptic curves.

The points of degree at most 2 on the Klein quartic \(X(7) \) are determined in [Tze04]. The rational points are all cusps and the degree 2 points have residue field \(\mathbb{Q}(\sqrt{-3}) \) and lie above \(j = 0 \) on \(X(1) \). Since 7 splits in \(\mathbb{Q}(\sqrt{-3}) \), Theorem 1.3 shows that the local-global principle for \((E/\mathbb{Q}(\sqrt{-3}), 7^n) \) holds for the corresponding curves. Thus the following corollary.

Corollary 1.4. The local-global principle holds for \((E/L, 7^n) \) for every elliptic curve \(E/L \) over a quadratic number field and every \(n \geq 1 \).

Note that by Theorem 1.2 the local-global principle with \(N = 7^n \) can fail for elliptic curves over cubic number fields. For an explicit example, see Section 4.2.

2. Group theoretic results on \(H^1_\ast \)

Let \(p \) be an odd prime.

Definition 2.1. Let \(V_n := \mathbb{Z}/p^n \times \mathbb{Z}/p^n \) be the natural module with a left action of \(\text{GL}_2(\mathbb{Z}/p^n) \). For a subgroup \(G \subset \text{GL}_2(\mathbb{Z}/p^n) \) let \(H^i(G, V_n) \) denote the \(i \)-th cohomology group of the \(G \)-module \(V_n \). Define

\[
H^1_\ast(G, V_n) := \bigcap_{g \in G} \ker \left(H^1(G, V_n) \xrightarrow{res} H^1(\langle g \rangle, V_n) \right),
\]

where \(\langle g \rangle \) denotes the cyclic subgroup of \(G \) generated by \(g \).

The following lemma is well known in the literature on questions of local-global divisibility.

Lemma 2.2. Let \(E/k \) be an elliptic curve over a number field and let \(G \subset \text{GL}_2(\mathbb{Z}/p^n) \) denote the image of the representation \(\text{Gal}(k) \to \text{Aut}(E[n]) \simeq \text{GL}_2(\mathbb{Z}/p^n) \) (for some choice of isomorphism \(\text{Aut}(E[p^n]) \simeq \text{GL}_2(\mathbb{Z}/p^n) \)). Then the local global principle holds for \((E/k, p^n) \) if and only if \(H^1_\ast(G, V_n) = 0 \).

Proof. To simplify notation let \(\mathbb{K} := k(E[p^n]) \) and identify \(G \simeq \text{Gal}(\mathbb{K}/k) \). For each place \(v \) of \(k \), choose a place \(v \) of \(\mathbb{K} \) above \(v \) and let \(G_v = \text{Gal}(\mathbb{K}_v/k_v) \) be the decomposition group. For
any finite set of primes S, the inflation-restriction sequence gives the following commutative and exact diagram.

$$
\begin{array}{cccccc}
0 & \longrightarrow & H^1(G, E[p^n]) & \longrightarrow & H^1(k, E[p^n]) & \longrightarrow & H^1(\mathbb{K}, E[p^n]) \\
& & \downarrow{^a} & & \downarrow{^b} & & \\
0 & \longrightarrow & \prod_{v \notin S} H^1(G_v, E[p^n]) & \longrightarrow & \prod_{v \notin S} H^1(k_v, E[p^n]) & \longrightarrow & \prod_{v \notin S} H^1(\mathbb{K}_v, E[p^n])
\end{array}
$$

Since $H^1(\mathbb{K}, E[p^n]) = \text{Hom}_{\text{cont}}(\text{Gal}(\mathbb{K}), E[p^n])$, Chebotarev’s density theorem implies that the map c is injective. Hence $\text{III}^1(k, E[p^n]; S) = \ker(b) = \text{im}(\ker(a))$. By a second application of Chebotarev’s density theorem, the groups G_v range (up to conjugacy) over all cyclic subgroups of G. From this it follows that $\ker(a) \subseteq H^1_s(G, E[p^n])$. We deduce from this that $\text{III}^1(k, E[p^n]; S) \subseteq \text{im}(H^1_s(G, E[p^n]))$ with equality in the case that S contains all of the finitely many places where the decomposition group is not cyclic. The result follows. \(\square\)

Definition 2.3. For an odd integer $m \geq 3$ and $\delta \in \mathbb{Z}/N$ define

$$C_{\delta, m} := \left\{ \begin{bmatrix} a & b \\ \delta b & a \end{bmatrix} : a, b \in \mathbb{Z}/m, a^2 - \delta b^2 \in (\mathbb{Z}/m)^{\times} \right\} \subset GL_2(\mathbb{Z}/m), \text{ and}$$

$$N_{\delta, m} := \left\langle \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, C_{\delta, m} \right\rangle \subset GL_2(\mathbb{Z}/m).$$

When $m = p^n$ is a prime power, we say that $G \subset N_{\delta, p^n}$ is a **full subgroup** if the kernels of the reduction mod p maps $N_{\delta, p^n} \rightarrow GL_2(\mathbb{Z}/p)$ and $G \rightarrow GL_2(\mathbb{Z}/p)$ are equal.

Lemma 2.4. Let $G \subset N_{\delta, p^n}$ and let $G' := G \cap C_{\delta, p^n}$. If $H^1_s(G, V_n) \neq 0$, then $H^1_s(G', V_n) \neq 0$.

Proof. Note that G' has odd order and index dividing 2 in G. So $H^i(G/G', V'_n) = 0$ for $i \geq 1$. Thus, the inflation-restriction sequence gives an injective map $H^1(G, V_n) \rightarrow H^1(G', V_n)$. This map sends $H^1_s(G, V_n)$ to $H^1_s(G', V_n)$ because every cyclic subgroup of G' is also a cyclic subgroup of G. \(\square\)

2.1. **Split case.**

Lemma 2.5. Suppose δ is a nonzero square mod p. Then for every $G \subset N_{\delta, p^n}$, we have $H^1_s(G, V_n) = 0$.

Proof. By Lemma 2.4 we may assume that $G \subset C_{\delta, p^n}$. Let $d \in \mathbb{Z}/p^n$ be a square root of δ. Then C_{δ, p^n} is conjugate to the group of diagonal matrices in $GL_2(\mathbb{Z}/p^n)$. Since G is diagonal, V_n splits as a product $V_n = W_1 \times W_2$ of cyclic G-modules of order p^n. Hence $H^1(G, V_n) \cong H^1(G, W_1) \times H^1(G, W_2)$. We will show below that $H^1_s(G, W_i) = 0$ for $i = 1, 2$. It follows that $H^1_s(G, V_n) = 0$ as required.

Write $G = H_1 \times H_2$ where $H_i \subset G$ is the subgroup containing all matrices whose i-th diagonal entry is 1. Note that $W_1^{H_1} = W_1$ and that H_2 acts faithfully on W_1 (i.e., through an injective map $H_2 \rightarrow \text{Aut}(W_2) \cong (\mathbb{Z}/p^n)^{\times}$). It follows from a standard computation in the cohomology of cyclic groups that $H^1_s(H_2, W_1) = 0$ (see [NSW08, Lemma 9.1.4]). Let $\xi \in H^1_s(G, W_1)$. Since $H_1 \subset G$ is a cyclic subgroup the restriction of ξ to H_1 is trivial. Hence ξ is in the image of the inflation map $H^1_s(H_2, W_1) = H^1_s(H_2, W_1^{H_1}) \rightarrow H^1_s(G, W_1)$. As noted above, $H^1_s(H_2, W_1) = 0$, so $\xi = 0$ showing that $H^1_s(G, W_1) = 0$. Swapping indices the same argument shows that $H^1_s(G, W_2) = 0$. \(\square\)
2.2. Inert case.

Lemma 2.6. Suppose that δ is not a square modulo p. Let \(G \subset N_{\delta,p^n} \) and let \(G_1 \subset GL_2(\mathbb{Z}/p) \) denote the image of \(G \) modulo \(p \).

(1) If \(G_1 \) is contained in neither \(\begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix} \) nor \(\begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \), then \(H^1_1(G, V_n) = 0 \).

(2) If \(G \) is a full subgroup of \(N_{\delta,p^2} \) with \(G_1 \subset \begin{bmatrix} \pm 1 & 0 \\ 0 & 1 \end{bmatrix} \) or \(G_1 \subset \begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \), then \(H^1_1(G, V_2) \neq 0 \).

Proof. Let us prove the first statement. Suppose \(H^1_1(G, V_n) \neq 0 \). Letting \(G' = G \cap C_{\delta,p^n} \), we have \(H^1_1(G', V_n) \neq 0 \) by Lemma 2.3. Let \(G_1' \) denote the image of \(G' \) modulo \(p \). Since \(\#C_{\delta,p} = p^2 - 1 \) is prime to \(p \), there are two possibilities for \(G_1' \):

(a) \(G_1' \) is generated by an element of order dividing \(p - 1 \) with 1 as an eigenvalue, or

(b) \(G_1' \) is generated by an element of order 3 acting irreducibly on \(V_1 = p^{n-1}V_n \).

(We note that \(G_1' = S_3 \) is impossible because \(C_{\delta,p} \) is abelian.) First consider case (a). The elements of order \(p - 1 \) in \(C_{\delta,p} \) are diagonal matrices, so the condition on the eigenvalues implies that \(G_1' \) is trivial. Then \(G_1 \) is generated by an element of order dividing 2 which has 1 as eigenvalue, so it must be contained in one of the two groups in the statement.

Now consider case (b). Then \(G' \) is abelian of order \(3p^m \), so the Sylow-3-subgroup \(P \subset G' \) is normal. The inflation-restriction sequence reads

\[
H^1_1(G'/P, V_n^P) \rightarrow H^1_1(G', V_n) \rightarrow H^1_1(P, V_n) .
\]

Since \(P \) acts irreducibly on \(V[p] \) we have \(V_n^P = 0 \), so the first term in the sequence is 0. The final term in the sequence is also trivial because \(P \) and \(V_n \) have relatively prime orders. By exactness of the inflation-restriction sequence we conclude \(H^1_1(G', V_n) = 0 \), contradicting the assumption \(H^1_1(G', V_n) \neq 0 \).

We now prove part 2 of the lemma. Consider the matrices

\[
\sigma_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, h_1 = \begin{bmatrix} 1 + p & 0 \\ 0 & 1 + p \end{bmatrix}, h_2 = \begin{bmatrix} 1 & p \\ \delta p & 1 \end{bmatrix} \in GL_2(\mathbb{Z}/p^2).
\]

By assumption \(G \) is generated by \(h_1, h_2 \) and at most one of the \(\sigma_i \). Then \(G \) is the semidirect product of \(H = \langle h_1, h_2 \rangle \) and a subgroup of order dividing 2. Since \(G/H \) has order dividing 2 and \(p \) is odd the inflation-restriction sequence gives an isomorphism

\[
H^1_1(G, V_2[p]) \simeq H^1_1(H, V_2[p]) = \text{Hom}_{G/H}(H, V_2[p]) .
\]

Let \(v \in V_2[p]^G \) be a nonzero element fixed by \(G \) and define \(\phi : H \rightarrow V_2[p] \) as the homomorphism determined by \(\phi(h_1) = v \) and \(\phi(h_2) = 0 \). Since \(h_1 \) lies in the center of \(G \) and \(v \) is fixed by \(G \), \(\phi \) is a \(G/H \)-equivariant homomorphism. By the isomorphism above this determines a nonzero class in \(H^1_1(G, V_2[p]) \). We claim that the image \(\phi' \) of this class in \(H^1_1(G, V_2) \) is a nonzero element of \(H^1_1(G, V_2) \).

Let us give the details assuming \(\sigma_1 \in G \), the other cases being handled similarly. Let \(g \in G \). We will show that the restriction of \(\phi \) to the subgroup generated by \(g \) is a coboundary. If \(g \in H \), then \(g = a h_1^b h_2^c \) for some \(a, b \) and the condition that \(\phi' \) restricts to a coboundary on the subgroup generated by \(g \) is that the equation

\[
\begin{pmatrix} ap & bp \\ b \delta p & ap \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

holds. Since this is equivalent to a certain equation involving the eigenvalues of \(g \) it is in particular soluble in \(GL_2(\mathbb{Z}/p^2) \).
has a solution \(x \in V_2 \). This clearly has solutions when \(ap = 0 \). When \(ap \neq 0 \), \((a^2 - \delta b^2) \in (\mathbb{Z}/p^2)^\times \) because we have assumed \(\delta \) is not a square modulo \(p \). In this case the unique solution to (2.1) is \(x = \frac{a}{a^2 - \delta b^2} \begin{bmatrix} -b \\ a \end{bmatrix} \).

If, on the other hand, \(g \not\in H \), then \(g = \sigma h^a \) in which case the local condition becomes

\[
\begin{bmatrix} ap & bp \\ -b\delta p & -2 - ap \end{bmatrix} x = \begin{bmatrix} 0 \\ ap \end{bmatrix},
\]

which has the solution \(x = p, y = -ap/2 \).

The fact that (2.1) and (2.2) have solutions for any choice of \(a, b \) gives that \(\phi' \in H_1^1(G, V_2) \). The fact that there is no common solution to (2.1) as one varies \(a, b \) shows that \(\phi' \) is not trivial.

\[\Box\]

2.3. Ramified case.

Lemma 2.7. Suppose that \(\delta \equiv 0 \mod p \). Let \(G \subset N_{\delta,p^n} \) and let \(G_1 \) denote the image of \(G \) modulo \(p \).

1. If \(G_1 \) is contained in neither \(\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \) nor \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), then \(H_1^1(G, V_n) = 0 \).

2. If \(\delta \neq 0 \mod p^2 \), \(G \) is a full subgroup of \(N_{\delta,p^n} \) and \(G_1 = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \), then \(H_1^1(G, V_2) \neq 0 \).

Proof. For the first statement suppose \(H_1^1(G', V_n) \neq 0 \) where \(G' = G \cap C_{\delta,p^n} \). Let \(G_1' \) denote the image of \(G' \) modulo \(p \). If \(p \nmid \#G_1' \), then as in the proof of the preceding lemma, \[\text{[Ran18]}\] implies that \(G_1 \) is generated by a diagonal matrix of order dividing 2 with 1 as an eigenvalue. Otherwise \(p \mid \#G_1' \). Since \(\delta \equiv 0 \mod p \), \(C_{\delta,p} \) is a Borel subgroup. So in this case \[\text{[Ran18]}\] implies that \(G_1' \) is the subgroup of strictly upper triangular matrices and that \(G_1 = G_1' \) or \(G_1 \) is generated by \(G_1' \) and \(\text{diag}(1, -1) \) as required.

The assumption in the second statement of the lemma implies that \(G \) is generated by the matrices

\[
\sigma = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad g = \begin{bmatrix} 1 & 1 \\ \delta & 1 \end{bmatrix}, \quad h = \begin{bmatrix} 1 + p & 0 \\ 0 & 1 + p \end{bmatrix} \in GL_2(\mathbb{Z}/p^2).
\]

We note that any element of \(G \) can be written in the form \(\sigma^a g^b h^c \) for some integers \(a, b, c \). Let \(H = \langle h, g^p \rangle \) be the kernel of reduction modulo \(p \). Then \(G/H \) is the dihedral group of order \(2p \) generated by the images \(\overline{\sigma} \) and \(\overline{g} \) of \(\sigma \) and \(g \). A direct calculation shows that the cochain defined by

\[
\overline{\sigma} g^p \mapsto p \left[\frac{b(b - 1)/2}{(-1)^a b + (1 + (-1)^{a+1})/2} \right]
\]

gives a nontrivial class in \(H^1(G/H, V_2[p]) \). We will show that the image \(\xi \) of this class in \(H^1(G, V_2) \) is a nonzero element of \(H_1^1(G, V_2) \). The proof is similar to that found in \[\text{[Ran18]}\] Lemma 11.

By induction one proves that

\[
g^b = \left(1 + \delta \frac{b(b - 1)}{2} \right) \left(b + \delta \sum_{i=1}^{b} \frac{i(i-1)}{2} \right) \right] .
\]
If $C \subset G$ is a cyclic subgroup generated by $\gamma = g^h c$, the condition that ξ is the class of a coboundary on C is that the equation

\begin{equation}
\left[\begin{array}{c}
 cp + \delta \frac{(b-1)}{2} \ b + cp + \delta \sum_{i=1}^{b} \frac{i(i-1)}{2} \\
 -\delta b \\
 cp + \delta \frac{(b-1)}{2} \ b + cp + \delta \sum_{i=1}^{b} \frac{i(i-1)}{2}
\end{array} \right] \left[\begin{array}{c}
x \\
y
\end{array} \right] = \left[\begin{array}{c}
p \frac{b(b-1)}{2} \\
p b \\
-pb + p
\end{array} \right].
\end{equation}

has a solution with $x, y \in \mathbb{Z}/p^2$ for any choice of integers b, c. Since the right hand side lies in $pV_2 = V_2[p]$ and the determinant of the matrix on the left hand side is $\delta b^2 \neq 0 \mod p^2$, this equation has a solution. Namely, $x = p/\delta, y = -cp^2/\delta b$ (which is well defined in \mathbb{Z}/p^2 since $\delta \neq 0 \mod p^2$).

Similarly, if C is generated by $\sigma g h c$, the local condition gives rise to the equation

\begin{equation}
\left[\begin{array}{c}
 cp + \delta \frac{(b-1)}{2} \ b + cp + \delta \sum_{i=1}^{b} \frac{i(i-1)}{2} \\
 -\delta b \\
 cp + \delta \frac{(b-1)}{2} \ b + cp + \delta \sum_{i=1}^{b} \frac{i(i-1)}{2}
\end{array} \right] \left[\begin{array}{c}
x \\
y
\end{array} \right] = \left[\begin{array}{c}
p \frac{b(b-1)}{2} \\
p b \\
-2cp + pb + p
\end{array} \right].
\end{equation}

in which case $x = 0, y = (b-1)p/2$ is a solution. We conclude that ξ lies in $H^1_k(G, V_2)$. As the solutions to (2.3) depend on b, ξ is nontrivial.

\[\Box\]

3. Proofs of the theorems

Before beginning the proof let us recall some relevant results concerning the mod N representations attached to CM elliptic curves.

Let $E/\mathbb{Q}(j(E))$ be an elliptic curve over $k = \mathbb{Q}(j(E))$ with complex multiplication by an order $\mathcal{O} \subset K$ where K is a quadratic imaginary field. Let $H = K(j(E))$ and let $h : E \to E/\text{Aut}(E) = \mathbb{P}^1$ be a Weber function. All elliptic curves with CM by \mathcal{O} are twists of one another and the field $H_N := H(h(E[N]))$ does not depend on the choice of twist.

As $E[N]$ is an End(E) = \mathcal{O} module of rank 1 there is an isomorphism $\text{Aut}_\mathcal{O}(E[N]) \simeq (\mathcal{O}/N)^\times$. Assuming N is odd, the natural map $\mathcal{O}^\times \to (\mathcal{O}/N)^\times$ is injective and its image identifies with $\text{Aut}(E)$ as a subgroup of $\text{Aut}_\mathcal{O}(E[N])$. The restriction of $\rho_{H,N}$ to $G_{H,N}$ induces a representation $\rho_{H,N} : G_{H,N} \to \text{Aut}(E) \simeq \mathcal{O}^\times$. In particular, $\text{Gal}(H(E[N])/H_N)$ may be viewed as a subgroup of $\text{Aut}(E)$. On the other hand, any choice of basis for $E[N]$ determines an isomorphism of groups $\text{Aut}(E[N]) \simeq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$. The main theorems of class field theory allow one to classify the possibilities for the image of the mod N representation $\rho_{k,N} : \text{Gal}(k) \to \text{Aut}(E[N])$. The following is taken from [LR].

Theorem 3.1 ([LR Theorem 1.1]). Suppose N is odd and let $\delta = \Delta_K f^2/4$, where Δ_K is the fundamental discriminant of K and f is the conductor of \mathcal{O}. Then there is a basis for $E[N]$ such that the image of $\rho_{k,N} : \text{Gal}(k) \to \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$ lies in the group $N_{\delta,N}$ (see Definition 2.3) and is generated by $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and $C_{\delta,N} = \text{image}(\rho_{H,N})$. Moreover the image of the index of $\rho_{H,N}$ in $C_{\delta,N}$ is equal to the index of $\text{Gal}(H(E[N])/H_N)$ as a subgroup of $\text{Aut}(E) \simeq \mathcal{O}^\times$.

Lemma 3.2. Suppose $N = p$ is an odd prime and the mod p representation attached to E/k surjects onto $N_{\delta,p}$. Let $A \subset \text{Aut}(E) \subset N_{\delta,p}$ and $G \subset N_{\delta,p}$ with $A \cap G = 1$. Let $L \subset k(E[p])$ be the fixed field of the group $AG \subset N_{\delta,p}$. There exists a twist E'/L of E/L by a character $\chi : \text{Gal}(L) \to A \subset \text{Aut}(E)$ such that the mod p image attached to E'/L is equal to G if and only if G is a normal subgroup of AG.

Remark 3.3. The subgroup $A = \mu_2 \subset \text{Aut}(E)$ lies in the center of $N_{\delta,p}$ so in this case G is always normal in AG.

7
Proof. To ease notation let \(K = k(E[p]) \) and identify \(N_{\delta,p} = \text{Gal}(K/k) \). If \(G \) is a normal subgroup of \(AG \), then the extension \(K^G/L \) is Galois with Galois group isomorphic to \(A \), which may be identified with a subgroup of \(\text{Aut}(E) = \mu_m \). Then there is a character \(\chi : \text{Gal}(L) \to \mu_m \) with kernel \(\text{Gal}(K^G) \) whose restriction to \(\text{Gal}(K^A) \) is the inverse of \(\rho_{E/k^A} : \text{Gal}(K^A) \to A \subset \mu_m \). Let \(E'/L \) be the twist of \(E/L \) by \(\chi \). The mod \(p \) representations are related by \(\rho_{E/L,p} \otimes \chi = \rho_{E'/L,p} \). So \(\mathbb{K}^A = \ker(\rho_{E'/L,p}) = L(E'[p]) \) and the image of \(\rho_{E'/L,p} \) is equal to \(G \).

Conversely, if there exists a twist as in the statement, then \(M = \ker(\chi) \) is a Galois extension of \(L \) and \(\text{Gal}(K/M) = G \), so \(G \) is normal in \(AG = \text{Gal}(K/L) \).

Proof of Theorem 1.2.\[\square \]

Part (1): Let \(L/k \) be a finite extension and let \(E/L \) be an elliptic curve with CM by \(\mathcal{O} \). By [LR, Theorem 4.6] there exists an elliptic curve \(E'/k \) with CM by \(\mathcal{O} \) such that (under a suitable choice of basis for \(E'[p^n] \)) the image \(G_{E'/k,p^n} \) of the representation \(\rho_{E'/k,p^n} : \text{Gal}(k) \to \text{Aut}(E'[n]) \simeq \text{GL}_2(\mathbb{Z}/p^n) \) is equal to \(N_{\delta,p^n} \). The image \(G_{E'/L,p^n} \) of the mod \(p^n \) representation attached to the base change \(E'/L \) is the restriction of \(\rho_{E'/k,p^n} \) to the subgroup \(\text{Gal}(L) \subset \text{Gal}(k) \). Galois theory gives \([N_{\delta,p^n} : G_{E'/L,p^n}] \leq [L : k] \).

There is a character \(\chi : \text{Gal}(L) \to \mu_m \) such that \(E' = E^x \) is the twist of \(E/L \) by \(\chi \). The mod \(p^n \) representations are related by \(\rho_{E/L,p^n} = \rho_{E'/L,p^n} \otimes \chi \). The images \(G_{E/L,p^n} \) and \(G_{E'/L,p^n} \) of these representations are subgroups of \(N_{\delta,p^n} \) whose sizes differ by a factor which divides \(\ell := \#\text{image}(\chi) \). Thus \([N_{\delta,p^n} : G_{E'/L,p^n}] \leq [L : k] \). In particular, if \(j \neq 0, 1728 \), then \([N_{\delta,p^n} : G_{E'/L,p^n}] \leq 2[L : k] \).

(a) Assume that \(p \) does not divide \(f \) and that \(p \) splits in \(K \). Then \(\delta = \Delta_K f^2/4 \) is a nonzero square modulo \(p \). By Lemma 2.5 we have \(H^1_{\text{et}}(G_{E/L,p^n}, V_n) = 0 \). So the local-global principle holds for \((E/L, p^n) \) by Lemma 2.2.

(b) Assume that \(p \) does not divide \(f \), \(p \) is inert in \(K \) and \([L : k] < (p^2 - 1)/2 \). First assume \(j \neq 0, 1728 \). Then by the discussion above we have

\[[N_{\delta,p} : G_{E/L,p}] \leq [N_{\delta,p^n} : G_{E/L,p^n}] \leq 2[L : k] < p^2 - 1. \]

The assumption on \(p \) implies that \(\delta = \Delta_K f^2/4 \) is not a square modulo \(p \). So \#\(N_{\delta,p} = 2(p^2 - 1) \) and the estimate above gives \#\(G_{E/L,p} > 2 \). In particular \(G_{E/L,p} \) cannot be contained in either of the subgroups appearing in Lemma 2.6. We conclude from this and Lemma 2.2 that the local-global principle holds for \((E/L, p^n) \).

Now we consider the cases \(j = 0 \) or \(j = 1728 \). Let \(m = \#\text{Aut}(E) \in \{4, 6\} \). Suppose \(H^1_{\text{et}}(G_{E/L,p^n}, V_n) \neq 0 \). We must show \([L : k] \geq 2(p^2 - 1)/u \). By Lemma 2.6 \(G_{E/L,p} \) is trivial or is generated by \(\text{diag}(-1, 1) \) or \(\text{diag}(1, -1) \). If \(G \) is trivial, then the estimate \([N_{\delta,p^n} : G_{E/L,p^n}] \leq u[L : k] \) gives \([L : k] \geq 2(p^2 - 1)/u \). If \(G_{E/L,p} \) is generated by either \(\text{diag}(-1, 1) \) or \(\text{diag}(1, -1) \), then \(G_{E/L,p} \) is not normal in \(G_{E/L,p} \text{Aut}(E) \). In fact, the only nontrivial subgroup \(A \subset \text{Aut}(E) \) for which \(G_{E/L,p} \) is normal in \(G_{E/L,p} A \) is \(A = \mu_2 \). By Lemma 3.2 we conclude that the image of \(\chi \) is contained in \(\mu_2 \). So \(\ell := \#\text{image}(\chi) = 2 \) and our estimate above gives \([N_{\delta,p^n} : G_{E/L,p^n}] \leq \ell[L : k] \leq 2[L : k] \), which implies \([L : k] \geq (p^2 - 1)/2 \geq 2(p^2 - 1)/u \) as required.

(c) Assume that \(p \) divides \(f \) or \(p \) is ramified in \(K \). Assume that \([L : k] < (p - 1)/2 \). These conditions imply \(j \neq 0, 1728 \). Note that the condition on \([L : k] \) implies \(p > 3 \), so \(\text{Aut}(E) = \mu_2 \). Arguing as in the previous case we have \([N_{\delta,p} : G_{E/L,p}] < (p - 1)/2 \). In this case \(\delta = \Delta_K f^2/4 \) is 0 mod \(p \), so \#\(N_{\delta,p} = 2p(p-1) \) and we conclude \#\(G_{E/L,p} > 2p \).
In particular $G_{E/L,p}$ cannot be contained in either of the subgroups appearing in Lemma 2.7. We conclude from this and Lemma 2.2 that the local-global principle holds for $(E/L,p^n)$.

Part (2): We now show that the bounds obtained in Part (1) are sharp. Let E'/k be, as above, an elliptic curve such that the mod p^2 representation surjects onto N_{δ,p^2}. Let $K = k(E'[p])$. We identify $N_{\delta,p} = \text{Gal}(K/k)$. Let $H_p \subset K$ be the subfield fixed by $\text{Aut}(E') \subset N_{\delta,p}$. As the notation suggests, $H_p = k(h(E'[p]))$ for a Weber function h. Hence H_p is independent of the choice of twist of E'. Let $H_p' \subset K$ be the subfield fixed by $\mu_2 \subset \text{Aut}(E) \subset N_{\delta,p}$. Then $H_p = H_p'$ if $j \neq 0, 1728$.

(b') Assume that p does not divide f and p is inert in K. Let $M \subset K$ be the subfield fixed by $g = \text{diag}(-1,1) \in N_{\delta,p}$ and let $L = M \cap H_p = K^{(g,-1)}$. Note that $[K:L] = 4$ and $[K:k] = \#N_{\delta,p} = 2(p^2 - 1)$, so $[L:k] = (p^2 - 1)/2$. Let $\chi : \text{Gal}(L) \to \mu_2$ be the quadratic character with $\ker(\chi) = \text{Gal}(M)$ and let E/L be the quadratic twist of E'/L by χ. The image $G_{E/L,p^2}$ of the mod p^2 representation attached to E/L is a full subgroup of N_{δ,p^2} whose image mod p is generated by $g = \text{diag}(-1,1)$. So by Lemma 2.6 we have that $H_2^0(G_{E/L,p^2}, V_2) \neq 0$. By Lemma 2.2 we conclude that the local-global principle fails for $(E/L,p^2)$.

In the case $j = 0$ we can construct an example over a field of degree $(p^2 - 1)/3$ as follows. The field $H_p = k(E'[p])$ has degree $2(p^2 - 1)/6 = (p^2 - 1)/3$ and $\text{Gal}(K/H_p) = \text{Aut}(E) = \mu_6$. By Lemma 3.2 (applied with $G = 1$) there exists a sextic twist of E'/H_p such that $H_p = H_p'(E'[p])$. The image of the mod p^2 associated to this curve is the full subgroup of N_{δ,p^2} congruent to the trivial group modulo p. By Lemmas 2.6 and 2.2 the local-global principle fails for $(E/H_p, p^2)$.

(c') Assume that p ramifies in K but does not divide f. Let $G \subset N_{\delta,p}$ be the subgroup generated by $\text{diag}(1,-1)$ and the strictly upper triangular matrices. Let $M \subset K$ be the fixed field of G and let $L = M \cap H_p$. In this case $[K:k] = 2p(p-1)$, so $[L:k] = (p - 1)/2$.

As in the preceding case, twisting E'/L by the quadratic character $\text{Gal}(L) \to \mu_2$ with kernel $\text{Gal}(M)$ yields an elliptic curve E/L such that the image $G_{E/L,p^2}$ of the mod p^2 representation is the full subgroup of $N_{\delta,p}$ whose image mod p is G. By Lemma 2.7 and 2.2 we conclude that the local-global principle fails for $(E/L,p^2)$.

\[\square\]

Proof of Theorem 1.3 Let E/L be an elliptic curve over the number field L of degree $d = [L : \mathbb{Q}]$. Suppose $p > 2d + 1$ and that the local-global principle for $(E/L,p^n)$ fails. The determinant of the mod p representation $\text{Gal}(k) \to \text{Aut}(E[p]) \simeq \text{GL}_2(\mathbb{Z}/p) \to \mathbb{Z}/p^\times$ is the p-cyclotomic character. Since $d < (p - 1)/2 = [\mathbb{Q}(\mu_p)^+ : \mathbb{Q}]$, the image of this determinant map is of size greater than 2. \cite{Ran18} Theorem 2] shows that the possibilities for the image of the mod p representation are rather limited. The only possibility compatible with the image of the determinant map having size greater than 2 is that the image is contained in $\begin{bmatrix} 1 & 0 \\ 0 & * \end{bmatrix}$. In other words, $E[p] \simeq \mathbb{Z}/p \times \mu_p$ as a Galois module, so E/L corresponds to a non-cuspidal point in $X(p)(L)$. By Theorem 1.2 E/L does not have CM. It remains only to prove the finiteness of the set of points of degree $\leq (p - 1)/2$ on $X(p)$. By \cite{Fre94} it suffices
to check that \(X(p) \) has gonality \(\gamma(X(p)) \geq (p - 1) \). In [Abr96] one finds the estimate \(\gamma(X(p)) \geq |\text{PSL}_2(\mathbb{Z}) : \Gamma(p)| = 7800 = 7(p^3 - p)/1600 \), which suffices for \(p \geq 17 \). \qed

4. Explicit Examples

Proposition 4.1. Suppose \(p \equiv 3 \mod 4 \) is a prime ramifying in \(K \) and let \(E/k \) be an elliptic curve with CM by an order \(\mathcal{O} \) in \(K \) whose conductor is not divisible by \(p \). We assume \(p = \mathbb{Q}(j(E)) \). Then \([k(\mu_p) : k] = p - 1 \). Let \(k(\mu_p)^+ \) be the unique intermediate field of degree \((p - 1)/2 \) over \(k \). There is a twist \(E'/k \) of \(E/k \) such that the local-global principle fails for \((E'/k(\mu_p)^+, p^2) \).

Proof. Twisting if necessary, we may assume that the mod \(p^n \) representations attached to \(E/k \) surject onto \(N_{\delta,p} \). Let \(K = k(E[p]) \) and identify \(N_{\delta,p} = \text{Gal}(K/k) \). Since \(\delta \equiv 0 \mod p \), \(N_{\delta,p} \) consists of the upper triangular invertible matrices. Note that \(k(\mu_p)^+ \subset K \) is the subfield fixed by \(\text{SL}_2(\mathbb{Z}/p) \cap N_{\delta,p} \). Since \(p \equiv 3 \mod 4 \), \(\text{SL}_2(\mathbb{Z}/p) \cap N_{\delta,p} \) is the group generated by \(-1\) and the strictly upper triangular matrices. The subfield \(k(\mu_p)^+ \) is fixed by the complex conjugation, which acts on \(E[p] \) as \(\text{diag}(-1, 1) \) or \(\text{diag}(1, -1) \). So \(k(\mu_p)^+ \) is the fixed field of the group \(\begin{bmatrix} \pm 1 & * \\ 0 & \pm 1 \end{bmatrix} \) of order \(4p \). The fixed field \(M \subset K \) of the group \(G = \begin{bmatrix} 1 & * \\ 0 & \pm 1 \end{bmatrix} \) is a quadratic extension of \(k(\mu_p)^+ \). Let \(E'/k(\mu_p)^+ \) be the twist of \(E/k(\mu_p)^+ \) by the quadratic character with kernel \(\text{Gal}(M) \). Then the image of the mod \(p \) representation attached to \(E'/k(\mu_p) \) is equal to \(G \). By Lemma 2.7 we have \(H^1(G; E/k(\mu_p)^+, p^2) \neq 0 \). The only primes that ramify in the extension \(k(\mu_p)^+/k \) are those lying above \(p \). \qed

4.1. The case \(p = 3 \). Proposition 4.1 shows that there is an elliptic curve \(E/Q \) of \(j \)-invariant \(0 \) (so \(K = Q(\sqrt{-3}) \)) such that the local-global principle fails for \((E/Q, 9) \). Examples of such were first given in [Cre16] and then in [LW16]. In fact the proposition recovers these examples as all have \(j \)-invariant \(0 \) and mod 9 image the full subgroup of \(N_{6,9} \) congruent to \(\begin{bmatrix} 1 & * \\ 0 & \pm 1 \end{bmatrix} \) modulo 3. In light of the fact that \(\text{Aut}(E) \simeq \mu_6 \) for these curves, one can obtain infinitely many counterexamples to the local-global principle for \((E/Q, 9) \) by taking cubic twists (which was already evident from [Cre16 Corollary 4.3]). This family of twists also contains the modular curve \(X_0(27) \) whose mod 9 image is the full subgroup of \(N_{6,9} \) congruent to \(\begin{bmatrix} 1 & 0 \\ 0 & \pm 1 \end{bmatrix} \) modulo 3, giving a counterexample to the local-global principle for \((E/Q, 9) \) with a different mod 3 image.

For an example with a different \(j \)-invariant one can consider the family of curves \(E/Q \) with \(j \)-invariant \(2^{18}3^{3}5^{3} \) which have CM by the order of conductor 2 in \(Q(\sqrt{-3}) \). In this case \(\text{Aut}(E) \simeq \mu_2 \) so there is a unique curve in the family whose mod 9 representation is the full subgroup of \(N_{-3,9} \) congruent to \(\begin{bmatrix} 1 & * \\ 0 & \pm 1 \end{bmatrix} \) modulo 3; it is the curve with Cremona reference 36.a2 and is a counterexample to the local-global principle for \((E/Q, 9) \).

4.2. The case \(p = 7 \). There are two elliptic curves of conductor 49 over \(\mathbb{Q} \) with CM by the maximal order in \(\mathbb{Q}(\sqrt{-7}) \). One is the modular curve \(X_0(49) \) and the other, \[\text{LMFDB Elliptic Curve 49.a2} \], is its twist by the quadratic character corresponding to \(\mathbb{Q}(\sqrt{-7})/\mathbb{Q} \).
The images of the mod 7 representations attached to the base changes of these curves to $\mathbb{Q}(\mu_7)^+$ are

$$\begin{pmatrix} \pm 1 & * \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & * \\ 0 & \pm 1 \end{pmatrix},$$

respectively. For both curves the local-global principle for $(E/\mathbb{Q}(\mu_7), 49)$ fails, while only for the twist E of $X_0(49)$ does it fail for $(E/\mathbb{Q}(\mu_7)^+, 49)$. This gives the unique example of a CM elliptic curve over a cubic number field for which the local-global principle fails with $N = 7^n$. Since the conductor is $49 = 7^2$, the decomposition groups $D_q \subset \text{Gal}(\mathbb{Q}(E[49])/\mathbb{Q}(\mu_7)^+)$ are cyclic for all primes $q \nmid 7$. Moreover, 7 is totally ramified in the degree 42 extension $\mathbb{Q}(E[49])/\mathbb{Q}$ and so if p is the prime of $\mathbb{Q}(\mu_7)^+$ lying above 7, then the restriction map $H^1(\mathbb{Q}(\mu_7)^+, E[7]) \to H^1(\mathbb{Q}(\mu_7)^+, E[7])$ is an isomorphism. We conclude that

$$\exists^1(\mathbb{Q}(\mu_7)^+, E[49]; S) \neq 0 \iff p \in S,$$

So while the local-global principle fails for $(E/\mathbb{Q}(\mu_7)^+, 49)$ the local-global principle for divisibility by 7^n holds in the groups $E(\mathbb{Q}(\mu_7)^+)$ and $H^1(\mathbb{Q}(\mu_7)^+, E)$.

4.3. The case $p = 5$. There is no rational j-invariant $j = j(O)$ of an order in a quadratic imaginary field such that 5 divides the conductor or ramifies in O. So by Theorem 1.2 the local-global principle with $N = 5^n$ holds for CM curves over quadratic and cubic fields. The class number of $\mathbb{Q}(\sqrt{-5})$ is 2, so there are elliptic curves with CM by the maximal order $O \subset \mathbb{Q}(\sqrt{-5})$ defined over a quadratic field, namely $k = \mathbb{Q}(\sqrt{5}) = \mathbb{Q}(j(O))$. Theorem 1.2(c') implies that there is a CM elliptic curves over some quadratic extension L/k such that the local-global principle for $(E/L, 5^2)$ fails. Here we provide an explicit example.

Consider the curve E/k [LMFDB Elliptic Curve 4096.1-k1] with Weierstrass equation

$$E : y^2 = f(x) := x^3 - \phi x^2 + (-\phi - 9)x + (-6\phi - 15),$$

where $\phi \in \mathbb{Q}(\sqrt{5})$ satisfies $\phi^2 + \phi + 1 = 0$. The image of the mod 5 Galois representation is $\begin{pmatrix} \pm 1 & * \\ 0 & \pm 1 \end{pmatrix}$ (note that $k = \mathbb{Q}(\mu_5)^+$, so the diagonal entries must be squares in \mathbb{F}_5^*). The 5-division polynomial of E/k has a root θ in a quadratic extension L/k, which turns out to be $L = \mathbb{Q}(\mu_{20})^+$. The root θ is the x-coordinate of a 5-torsion point on E. The quadratic twist of E by $d = f(\theta) \in L^*/L^{x^2}$ yields the curve [LMFDB Elliptic Curves 25.a2] which has an L-rational 5-torsion point. The image of the mod 5 Galois representation attached to E^d is

$$\begin{pmatrix} 1 & * \\ 0 & \pm 1 \end{pmatrix}$$

and so, by Lemma 2.7, the local-global principle fails for $(E^d/L, 25)$. As 5 is the only prime of bad reduction and 5 is totally ramified in $L(E^d[5])$ we conclude (similarly to the $p = 7$ case) that $\exists^1(L, E^d[25]; S) \neq 0$ if and only if S contains the prime of L above 5.

5. Acknowledgements

Some of the content in this article is based on the second author’s MSc Thesis at the University of Canterbury which includes a detailed proof of Corollary 1.4.
References

[Abr96] Dan Abramovich, *A linear lower bound on the gonality of modular curves*, Internat. Math. Res. Notices 20 (1996), 1005–1011.

[Cas62] J. W. S. Cassels, *Arithmetic on curves of genus 1. III. The Tate-Šafarevič and Selmer groups*, Proc. London Math. Soc. (3) 12 (1962), 259–296.

[ČS15] Mirela Çiperiani and Jakob Stix, *Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels*, J. Reine Angew. Math. 700 (2015), 175–207.

[Cre13] Brendan Creutz, *Locally trivial torsors that are not Weil-Châtelet divisible*, Bull. Lond. Math. Soc. 45 (2013), no. 5, 935–942.

[Cre16] Brendan Creutz, *On the local-global principle for divisibility in the cohomology of elliptic curves*, Math. Res. Lett. 23 (2016), no. 2, 377–387.

[CV17] Brendan Creutz and José Felipe Voloch, *Local-global principles for Weil-Châtelet divisibility in positive characteristic*, Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 2, 357–367.

[DZ01] Roberto Dvornicich and Umberto Zannier, *Local-global divisibility of rational points in some commutative algebraic groups*, Bull. Soc. Math. France 129 (2001), no. 3, 317–338 (English, with English and French summaries).

[DZ04] Roberto Dvornicich and Umberto Zannier, *An analogue for elliptic curves of the Grunwald-Wang example*, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 47–50 (English, with English and French summaries).

[DZ07] Roberto Dvornicich and Umberto Zannier, *On a local-global principle for the divisibility of a rational point by a positive integer*, Bull. Lond. Math. Soc. 39 (2007), no. 1, 27–34.

[Fre94] Gerhard Frey, *Curves with infinitely many points of fixed degree*, Israel J. Math. 85 (1994), no. 1-3, 79–83.

[Gre12] Ralph Greenberg, *The image of Galois representations attached to elliptic curves with an isogeny*, Amer. J. Math. 134 (2012), no. 5, 1167–1196.

[LMFDB] The LMFDB Collaboration, *The L-functions and modular forms database*. [Online; accessed 22 October 2021].

[LR] Álvaro Lozano-Robledo, *Galois representations attached to elliptic curves with complex multiplication*, available at [arXiv:1809.02584v2](https://arxiv.org/abs/1809.02584v2).

[LW16] Tyler Lawson and Christian Wuthrich, *Vanishing of some Galois cohomology groups for elliptic curves*, Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 373–399.

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, *Cohomology of number fields*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.

[PRV12] Laura Paladino, Gabriele Ranieri, and Evelina Viada, *On local-global divisibility by \(p^n \) in elliptic curves*, Bull. Lond. Math. Soc. 44 (2012), no. 4, 789–802.

[PRV14] Laura Paladino, Gabriele Ranieri, and Evelina Viada, *On the minimal set for counterexamples to the local-global principle*, J. Algebra 415 (2014), 290–304.

[Ran18] Gabriele Ranieri, *Counterexamples to the local-global divisibility over elliptic curves*, Ann. Mat. Pura Appl. (4) 197 (2018), no. 4, 1215–1225.

[Tze04] Pavlos Tzermias, *Low-degree points on Hurwitz-Klein curves*, Trans. Amer. Math. Soc. 356 (2004), no. 3, 939–951.