First report of brown widow spider sightings in Peninsular Malaysia and notes on its global distribution

Mustakiza Muslimin1, John-James Wilson2,3, Amir-Ridhwan M Ghazali1, Kamil A Braima1, John Jeffery1, Fitri Wan-Nor4, Mohamed E Alaa-Eldin5, Siti-Waheeda Mohd-Zin1, Wan S Wan-Yusoff7, Yusoff Norma-Rashid7, Yee L Lau1, Mahmud Rohela1 and Noraishah M Abdul-Aziz1*

Abstract

Background: The brown widow spider (Latrodectus geometricus Koch, 1841) has colonised many parts of the world from its continent of origin, Africa. By at least 1841, the species had successfully established populations in South America and has more recently expanded its range to the southern states of North America. This highly adaptable spider has been far more successful in finding its niche around the world than its famous cousins, the black widow, Latrodectus mactans, found in the south-eastern states of North America, and the red-back, Latrodectus hasselti, found mostly in Australia, New Zealand and Japan.

Methods: We performed an extensive web search of brown widow sightings and mapped the location of each sighting using ArcGIS. Specimens reputedly of the species L. geometricus were collected at three localities in Peninsular Malaysia. The spiders were identified and documented based on an examination of morphological characteristics and DNA barcoding.

Results: The spiders found in Peninsular Malaysia were confirmed to be Latrodectus geometricus based on their morphological characteristics and DNA barcodes. We recorded 354 sightings of the brown widow in 58 countries, including Peninsular Malaysia.

Conclusion: Reports from the Americas and the Far East suggest a global-wide invasion of the brown widow spider. Herein we report the arrival of the brown widow spider in Peninsular Malaysia and provide notes on the identification of the species and its recently expanded range.

Keywords: Latrodectus geometricus, Brown widow spider, Colonization, DNA barcoding, Envenomation, Global invasion, Invasive species, Medically important arthropods, Synanthropy

Background

The widow spiders comprise 30 species in the genus Latrodectus Walckenaer, 1805 [1]. They earned the name “widow” because the female eats the male after mating. However, this behavior has been only conclusively documented for one species, the red-back spider (L. hasselti Thorell, 1870) [2]. Black widow [L. mactans, (Fabricius 1775)] envenomation can cause death in humans; however, lethality is less than 1% [3,4]. Human mortality caused by the red-back spider, native to Australia and New Zealand, has never been reported, perhaps in part because these two countries have an extensive supply of antivenom [5,6]. Human death resulting from envenomation by the lesser-known brown widow (L. geometricus Koch, 1841) was reported in Madagascar in 1991. However, the identity of the spider, consequences of delayed medical intervention and the exact details of the case, whose report is in French, remain in question [7]. Furthermore, medical conditions associated with spider bites are often over-diagnosed and misdiagnosed [8]. The brown widow is known by many arachnologists to be nonaggressive and usually bites only when threatened. Like most

© 2015 Muslimin et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
widow spiders, it avoids people and prefers the shelter of its protective retreat. If the retreat is disturbed, the spider often jumps from its web to the ground, retracts its legs and plays dead, in a behavior known as thanatosis [9].

Reports from the Americas to the Far East suggest a recent global-wide invasion of the brown widow spider and numerous sightings of brown widows have been reported in Central Asia and the Middle East [10-16]. The Department of Parasitology at the University of Malaya Faculty of Medicine, Kuala Lumpur, is monitoring this invasion and is contacted periodically by concerned local citizens reporting unusual spiders in their homes. These concerns are likely unwarranted since only one single case of a venomous spider (*Lampropelma violaceopedes* Abraham, 1924) biting a human has been reported in Southeast Asia [17]. However, rapid urbanization in East Asia and the region’s bustling economic trade and growing population may promote colonization by synanthropic widow spiders as specimens “hitchhike” in containers to densely populated areas [1,18,19]. This paper reports the arrival of the brown widow spider in Peninsular Malaysia and provides notes on the identification of the species and its global distribution.

Methods

Global distribution of *Latrodectus geometricus*

Global records of *L. geometricus* were compiled from the scientific literature and popular media through web searches, together with GPS coordinates obtained directly from the records or inferred as precisely as possible from the stated locations. These records were then mapped using ArcGIS 9.2 [20].

***Latrodectus geometricus* in Peninsular Malaysia**

Acting on calls from the general public, spider specimens reputedly of the species *L. geometricus* were collected at three localities in Peninsular Malaysia: Penang (5°24′00″N, 100°14′20″E), at a private residence after obtaining permission from the owners; on the roadside, near food stalls in a residential area in Selangor (3°20′N, 101°30′E); and in a private vehicle in Johor (1°29′14″N, 103°46′52″E) after obtaining the permission of the vehicle owner. Permission to collect spiders in Peninsular Malaysia was approved by the Department of Wildlife and National Parks of Peninsular Malaysia, commonly known as PERHILITAN (application number: JPHL&TN(IP): 80-4/2 Jld16).

Spiders were provisionally identified by examining the palps, epigynum, geometrical markings on the underside of the abdomen and spherical spikey off-white egg sacs [21]. As a member of the family Theridiidae, *L. geometricus* has four pairs of eyes positioned in two parallel rows, a comb feet arranged in a comb-like row of bristles on the tarsi of the hind legs, and distinctive paired spermathecae with coiled copulatory ducts [21-24]. Similarly to some other widow spiders, brown widows have a characteristic hourglass-shaped streak on the underside of the abdomen which varies from a pale to dark orange as the spider matures. Females are significantly larger than males (leg length 30-40 mm compared with 16-20 mm in males).

DNA was extracted from whole spiders using a Nucleospin tissue kit (Macherey-Nagel) following the procedures recommended by the manufacturer. We PCR-amplified the “DNA barcode” fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene (mtDNA) using the primer combination LepF1/LepR1 and standard thermostatic conditions [25]. The PCR product was sequenced in both directions using the PCR primers by a local company (MyTACG Bioscience, Kuala Lumpur). The resulting sequences were edited and combined with all COI sequences from *Latrodectus* available on the GenBank and analyzed using the neighbor-joining method and MEGA 6 software [26].

![Figure 1](https://example.com/figure1.png) **Figure 1** Distribution of reported sightings of *Latrodectus geometricus*. (a) Map showing the global distribution of *Latrodectus geometricus* [1,2,7,11,12,19,21-24,27-127]. (b) Locations in the northwest, central and south of Peninsular Malaysia with new records of the brown widow spider.
Figure 2. Common morphological characteristics of *Latrodectus geometricus* according to Koch (1841). (A) The hourglass-shaped streak on the underside of the abdomen (male, Johor, Malaysia). (B) Dome-shaped abdomen typical of a juvenile Theridiidae and the spiky spherical egg sacs (Penang, Malaysia). (C) Embolus inside the palp of the male spider showing four coils. (D) A brown widow caught in central Peninsular Malaysia bearing darker and more spherical features on its abdomen. (E) The epigynum, characteristic of females, with two pairs of spermaticae located on the underside of the abdomen. (F) Spiky spherical egg sacs lined in a row on a window sill of a house (Penang, Malaysia). (G) The dome-shaped abdomen of a female brown widow from the northwest of Peninsular Malaysia bearing lighter features on its abdomen. (H) Egg sacs, moulted skin and live and dead juvenile/adult *L. geometricus* (yellow arrows) being surrounded by its cobweb. (I) Dorsal aspect of abdomen with distinct pattern surrounded by cobweb, found in and around bicycle compartment.
associated information about the specimens (photographs, collection date and locality) can be found in the public dataset DS-LATRO on the Barcode of Life Datasystems’ (BOLD) website (http://www.boldsystems.org), and also on GenBank (http://www.ncbi.nlm.nih.gov/genbank; accession numbers: KF227386-KF227396).

Results

We compiled 354 records of *L. geometricus* sightings from 117 sources (Figure 1) and plotted the locations onto a world map (Figure 1). The spiders collected in Penang, Selangor and Johor were confirmed as *L. geometricus* based on an examination of morphological characteristics.

![Figure 3](image)

Figure 3 Neighbor-joining tree showing K2P distances between newly sequenced DNA barcodes from spiders collected in Peninsular Malaysia (codes: LACMA00XX) and publicly available sequence data for *Latrodectus geometricus* collected worldwide (GenBank accession numbers by locality).
Native to southern Africa and to have gradually expanded its range since the 1800s to cover both tropical and temperate regions of the world (Figure 1) [29]. Sightings of brown widows had already been reported in South America, North America, and the Middle East (Yemen in 1890) before 1900 [28,32,88]. Since then, sightings were reported in Saudi Arabia in 1959, Israel in 1983, Central Asia (Afghanistan in 2008 and Turkey in 2008), Southeast Asia (Indonesia in 1950, the Philippines in 1950 and Singapore in 2006), Japan in 1995, and Australia in 1987 [15,51,52,73,75,80,86,95,107]. Although the presence of the brown widow has yet to be reported in Europe, with the exception of Turkey, the species is extending its range into temperate North America with recent reports from southern US states such as Texas, North Carolina and Mississippi [128].

Although the L. geometricus specimens found in Peninsular Malaysia were easily identifiable due to their morphological characteristics, the findings were confirmed using DNA barcoding. The brown widows collected in the northwest (Penang) and south (Johor) of Peninsular Malaysia seemed to be morphologically similar to those reported in port cities in Japan, suggesting that Japan is the source of the infestation [127]. This would not be surprising, given the amount of trade between Japan and these two ports [129]. Penang is an international port, popularly known as the Pearl of the Orient, and therefore we suspect that L. geometricus was accidentally imported.

Upon arrival, L. geometricus is known to colonize urban areas especially in and around homes and gardens, which is consistent with our observations of brown widow webs and eggs in both well-lit and dark areas around windows, ceilings and car door hinges [1,48,78,130]. Since Latrodectus geometricus was reported in Singapore, the proximity of Singapore and Johor suggests that the brown widow collected in Johor may have come from the former, whose population is likely to have originated in Japan [107]. The L. geometricus colony from Selangor (central Peninsular Malaysia) appeared to have two different morphotypes. However, no genetic differentiation was found in their DNA barcodes. The first was similar to those found in Penang and Johor, while the second had a spherical abdomen and was more similar to the brown widow reported in India and Brazil [103]. Phylogeographic studies of different gene regions together with searches for L. geometricus in other localities may shed some light on these findings. Following recent reports from South and North America, Peninsular Malaysia is the latest region to be occupied by the global invasion of the brown widow.

Discussion

Although the description of this species is based on a specimen collected in Colombia, South America in 1841, Latrodectus geometricus is thought to be native to southern Africa and to have gradually expanded its range since the 1800s to cover both tropical and temperate regions of the world (Figure 1) [29]. Sightings of brown widows had already been reported in South America, North America, and the Middle East (Yemen in 1890) before 1900 [28,32,88]. Since then, sightings were reported in Saudi Arabia in 1959, Israel in 1983, Central Asia (Afghanistan in 2008 and Turkey in 2008), Southeast Asia (Indonesia in 1950, the Philippines in 1950 and Singapore in 2006), Japan in 1995, and Australia in 1987 [15,51,52,73,75,80,86,95,107]. Although the presence of the brown widow has yet to be reported in Europe, with the exception of Turkey, the species is extending its range into temperate North America with recent reports from southern US states such as Texas, North Carolina and Mississippi [128].

Although the L. geometricus specimens found in Peninsular Malaysia were easily identifiable due to their morphological characteristics, the findings were confirmed using DNA barcoding. The brown widows collected in the northwest (Penang) and south (Johor) of Peninsular Malaysia seemed to be morphologically similar to those reported in port cities in Japan, suggesting that Japan is the source of the infestation [127]. This would not be surprising, given the amount of trade between Japan and these two ports [129]. Penang is an international port, popularly known as the Pearl of the Orient, and therefore we suspect that L. geometricus was accidentally imported.

Upon arrival, L. geometricus is known to colonize urban areas especially in and around homes and gardens, which is consistent with our observations of brown widow webs and eggs in both well-lit and dark areas around windows, ceilings and car door hinges [1,48,78,130]. Since Latrodectus geometricus was reported in Singapore, the proximity of Singapore and Johor suggests that the brown widow collected in Johor may have come from the former, whose population is likely to have originated in Japan [107]. The L. geometricus colony from Selangor (central Peninsular Malaysia) appeared to have two different morphotypes. However, no genetic differentiation was found in their DNA barcodes. The first was similar to those found in Penang and Johor, while the second had a spherical abdomen and was more similar to the brown widow reported in India and Brazil [103]. Phylogeographic studies of different gene regions together with searches for L. geometricus in other localities may shed some light on these findings. Following recent reports from South and North America, Peninsular Malaysia is the latest region to be occupied by the global invasion of the brown widow.

Conclusions

The brown widow spider remains a potential concern and should be monitored. Reports from the Americas and the Far East suggest a global-wide invasion of the brown widow spider due to its far-reaching adaptability. The arrival of the brown widow spider in Peninsular Malaysia including identification of the species using both taxonomic and molecular methods was reported. Furthermore, its recently expanded range and its phylogeographic distribution were discussed in view of its impact on humans.

Ethics committee approval

Permission to collect samples was granted by the Department of Wildlife and National Parks, Peninsular Malaysia (PERHILITAN): application number JPHL&TN(IP): 80-4/2 Jld16(24). This consent prohibits the collection of endangered or protected species.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MM and JJW performed the systematic literature review. MM, JJW and NMAA conceived the project and wrote the manuscript with assistance from KAB, JJ, SMZ, WSW, YN, YLL and RM. MM, MGA, FW, KAB performed the fieldwork. MIA, KAB performed the GIS analysis and plotted the coordinates. All authors read and approved the final version of this manuscript.

Acknowledgements

Authors were awarded University of Malaya Research Grants (RG301/11HTM to WSW, and RG509-13HTM to NMAA) and Fundamental Research Grants from the Malaysian Ministry of Higher Education (FP013/2010A to WSW, and FP036/2010A to RM). KAB was supported by the University of Malaya Postgraduate Research Fund (PV052/2012A) and research assistantship High Impact Research Grant (UM.C/625/1/HR/148/02). JJ was awarded a research assistantship (RG509-13HTM). The funders played no part in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The corresponding author, Norashah Mydin Abdul-Aziz, had full access to all study data and had final responsibility for the decision to submit for publication.

Author details

1. Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
2. Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
3. Museum of Zoology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
4. Faculty of Veterinary Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia.
5. Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

Received: 11 August 2014 Accepted: 27 April 2015

Published online: 09 May 2015

References

1. Gibt JE, González A, Gillespie RG. The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol. 2004;31(3):1127–42.
2. Segoli M, Arieli R, Sierwald P, Harari AR, Lubin Y. Sexual cannibalism in the brown widow spider (Latrodectus geometricus). Ethology. 2008;114(3):279–86.
3. Gaisford K, Kautz DD. Black widow spider bite: a case study. Dimens Crit Care Nurs. 2011;30(2):79–86.

4. Clark RF, Wettern-Kestner S, Vance MV, Gerkin R. Clinical presentation and treatment of black widow spider envenomation: a review of 163 cases. Ann Emerg Med. 1992;21(7):782–7.

5. Sutherland SK, Trinca JC. Survey of 2144 cases of red-back spider bites: Australia and New Zealand, 1963–1976. Med J Aust. 1978;2(16):620–3.

6. Bonnet MS. The toxicity of the Latrodectus hasselti spider—the Australian red back spider. Br Homeopath J. 1999;88(1):2–6.

7. Ramalharsonio A, de Haro L, Jougard J, Goyffon M. Latrodectism in Madagascar. Med Trop (Mars). 1994;54(2):127–30.

8. Diaz JH. The global epidemiology, syndromic classification, management, and prevention of spider bites. Am J Trop Med Hyg. 2004;71(2):239–50.

9. Vetter RS. Spiders of the genus Latrodectus (Araneae, Sicariidae): a review of biological, medical and psychological aspects regarding envenomations. J Arachnol. 2008;36(1):50–63.

10. Yoshida T. Distribution of Latrodectus geometricus in Japan. Med Entomol Zool. 2003;5(3) Suppl. 2. (In Japanese).

11. Vetter RS, Vincent LS, Danielsen DW, Reinker KL, Clarke DE, Inyene AA, et al. The prevalence of brown widow and black widow spiders (Araneae: Theridiidae) in urban southern California. J Med Entomol. 2011;49(1):947–51.

12. Simó M, Dias MFR, Jorge C, Castro M, Dias MA, Laborda A, Habitat, redescription and distribution of Latrodectus geometricus in Uruguay (Araneae: Theridiidae). Biota Neotropica. 2012;12(3):57–1.

13. Borkan J, Gross E, Lubin Y, Oliyan I. An outbreak of venomous spider bites in a citrus grove. J Trop Med Hyg. 1990;93(3):226–30.

14. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ophiocoa huwena. Toxicon. 2008;51(18):479–89.

15. Lamb L, Ross D, Lalgg D, Green A, Morgan E, Warrell DA. Management of venomous bites and stings in British Military Personnel deployed in Iraq, Afghanistan and Cyprus. J R Army Med Corps. 2008;154(Supp 4):412–40.

16. Schäfer CN, Nissen LR, Koford LT, Hansen FB. A suspected case of systemic envenomation syndrome in a soldier returning from Iraq: implications for Special Forces Operations. Mil Med. 2010;175(5):375–8.

17. Lim B, Davie C. The bite of a bird-eating spider Lepomphelus violaceopunctulatus. Med J Malaysia. 1972;24(4):311.

18. Luniak M. Synurbization – adaptation of animal wildlife to urban development. In: Shaw W, Harris L, Van Duff L, editors. Proceedings of the 4th International Symposium on Urban Wildlife Conservation. Tucson, AZ: College of Agriculture and Life Sciences, University of Arizona; 2004. p. 50–5.

19. Brown KS, Ncace JS, Goddard J. Additions to the known US distribution of Latrodectus geometricus (Araneae: Theridiidae). J Med Entomol. 2008;45(5):659–63.

20. ESRI ArcGIS 9.2. Environmental Systems Research Institute Inc. Redlands, California; 2006.

21. Center for Invasive Species Research (CISR): How to identify Brown Widow Spiders. Riverside: University of California. 2013. http://cISR.ucr.edu/identifying_brown_widow_spiders.html.

22. Knofill B, Piller K. Kugelspinner – eine Einführung (Araneae, Theridiidae). Denisia. 2004;14:111–60.

23. Koh JKH, Ming LT. Biodiversity in the Heart of Borneo - Spiders of Brunei Darussalam. Kinaral: Natural History Publications (Borneo); 2013.

24. Levi HW. Cosmopolitan and pantropical species of theridid spiders (Araneae: Theridiidae). Pac Insects. 1967;9(2):175–86.

25. Wilson JJ. DNA barcodes for insects. Methods Mol Biol. 2012;858:17–30.

26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

27. Shukla S, Broome VG. First report of the brown widow spider, L. geometricus and of their parasites on the Island of the Australian Muslimin erbeutete Arachniden. Zeitschrift fur Ges Naturschft. 1878;51(3):311.

28. Koch CL. The widow spiders of Florida, vol. 2. Florida: Division McCrone JD, Stone KJ. The widow spiders of Florida, vol. 2. Florida: Division Metropolitan Entomological Society; 1942.

29. Pearson JF. Latrodectus geometricus Koch in southern Florida. Science. 1936;83:522–3.

30. Vellard J. Le venin des araignées. Paris: Masson et Cie; 1936.

31. Roever CF. Katalog der Araneae von 1758 bis 1940, vol. 1. Natura Brehms; 1942.

32. Smithers RHN. Contributions to our knowledge of the genus Latrodectus (Araneae: Theridiidae) in south Africa. Am S Afr Mus. 1944;36:263–312.

33. Bouillon A. La fécondité chez l’araignée Latrodectus mactans, L. geometricus et Agiope auro, et de leurs parasites sur l’île de Hawaii. Proc Hawaiian Entomol Soc. 1945;12(245)–7.

34. Caporacioli DL. Aracnídeis della Colònia del Kenya raccolto da Toschi e Meneghetti negli anni 1944-1946. Commentat Pontif Acad Scient. 1949;136:309–17.

35. Keegan HL, Blauw AS, Anderson R. Latrodectus geometricus Koch on Luzon. Am J Trop Med Hyg. 1952;30(6):901–7.

36. Roza M, Seldel R. Latrodectus hasselti Thorell. Hemera Zoa. 1950;58:169–70.

37. Baerg WJ. The brown widow and the black widow spiders in Jamaica (Araneae, Theridiidae). Ann Entomol Soc Am. 1954(7):52–60.

38. Bouilhon A. La fécondité chez l’araignée Latrodectus geometricus. K. Coch. Lepoldville: Éditions de l’Université; 1957.

39. Levi HW. The spider genus Latrodectus (Araneae, Theridiidae). Trans Am Microsc Soc. 1959;78(1):47–53.

40. Abalos JW, Baaz EC. On spermatic transmission in spiders. Psyche. 1963;70(4):197–207.

41. Chysanthus P. Spiders from south New Guinea V. Nova Guinea (NS, Zool). 1963;24:727–50.

42. Bucher W. Distribution géographique des arachnides pepconhtens terméens. Mem Inst Butantan. 1964;37:55–66.

43. Genschman BS, Scharpell RD. The genus Latrodectus Walckenaer 1804 in the Argentina. Rev Soc Ent Arg. 1965;27:51–9.

44. Bown C, Stone KJ. The widow spiders of Florida, vol. 2. Florida: Division of Plant Industry; 1965 [Series: Arthropods of Florida and neighboring land areas].

45. Abalos JW, Baaz EC. Las arañas del genero Latrodectus en Santiago del Estero. Cordoba: Universidad Nacional de Cordoba; 1967 [Série Ciências Naturais N. 55].

46. Abalos JW, Baaz EC. The spider genus Latrodectus in Santiago del Estero, Argentina. Animal Toxins. Oxford: Pergamon Press; 1967. p. 59–74.

47. Pinto LS. Species of widow spiders in northern Argentina (Latrodectus: Theridiidae). Psyche. 1967;74(4):290–8.
Latrodectus geometricus

51. C. L. Koch, 1841

30. 101. 42. 8. 60. 14. Latrodectus geometricus

80. Latrodectus geometricus

7. 60. 7. 8. Latrodectus geometricus

and 9. 405. L. geometricus

44. "sp. in north of Khorasan and their medical importance

80. Latrodectus geometricus

Latrodectus geometricus

Latrodectus geometricus

(5Araneae: Theridiidae) in Africa.

"Latrodectus geometricus

Latrodectus geometricus

44. "sp. in north of Khorasan and their medical importance

80. Latrodectus geometricus

Latrodectus geometricus

(5Araneae, Theridiidae) in Africa.

"Latrodectus geometricus

Latrodectus geometricus

Latrodectus geometricus

(5Araneae, Theridiidae) in Africa.

"Latrodectus geometricu
118. Museo Argentino de Ciencias Naturales. Colección Nacional de Aracnología - Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’. 2013. http://www.gbif.org/occurrence/34e892b0-d9c7-11de-b793-b8a03c50a862.

119. Nearctic Spider Database. Latrodectus geometricus C. L. Koch, 1841. 2013. http://www.biologybrowser.org/node/1194423.

120. Royal Museum for Central Africa. Arachnomorphae Collection & Systematics. Latrodectus geometricus Koch C.L., 1841. 2013. http://www.africamuseum.be/collections/browsecollections/naturalsciences/biology/arachnomorphae/browse_systematics?orderby=Full%20name&b_start=int=29700.

121. Senckenberg. Collection Arachnology SMF. Latrodectus geometricus C. L. Koch, 1841. 2013. http://www.gbif.org/occurrence/207865986.

122. Srinivasulu C, Srinivasulu B, Javed SMM, Seetharamaraju M, Jyothi SA, Srinivasulu CA, et al. Additions to the araneofauna of Andhra Pradesh, India-part II. Records of interesting species of the comb-footed genera Latrodectus, Rhomphaea and Coleosoma (Araneae: Theridiidae). J Threat Taxa. 2013;5(10):4483–91.

123. SystTax: SysTax - Zoological Collections. 2013. http://www.gbif.org/dataset/7d8bed137-1d30-42f1-8b78-12a4957e4690.

124. Vetter RS. Spider envenomation in north America. Crit Care Nurs Clin North Am. 2013;25(2):205–23.

125. Western Australian Museum. Western Australian Museum provider for OZCAM. Latrodectus geometricus C. L. Koch, 1841. 2013. http://www.gbif.org/occurrence/search?taxon_key=2157944&dataset_key=7c93d290-6c8b-11de-8226-b8a03c50a862.

126. Platnick NI. The World Spider Catalog. Version 14.5. New York: American Museum of Natural History; 2014.

127. Ori M, Shinkai E, Ikeda H. Introduction of widow spiders into Japan. Med Entomol Zool. 1996;47(2):111–9.

128. Vetter RS. The distribution of brown recluse spiders in the southeastern quadrant of the United States in relation to loxoscelism diagnoses. South Med J. 2009;102(5):518–22.

129. Kratoska PH, editor. Southeast Asian minorities in the wartime Japanese empire. United Kingdom: Routledge Curzon; 2002.

130. Hunter P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 2007;8(4):316.