A Comparison of Patient Recovery Following Unilateral and Bilateral Endoscopic Preperitoneal Herniorrhaphy

Syed A. Ahmad MD, Alan L. Schuricht MD

ABSTRACT

Introduction: The advantage of using minimally invasive techniques over open techniques in the repair of inguinal hernias remains unclear. One of the more established indications for the performance of minimally invasive (e.g., endoscopic preperitoneal) herniorrhaphy is the presence of bilateral hernias. However, no prior study has compared the recovery following unilateral and bilateral endoscopic preperitoneal hernia repairs.

Patients and Methods: From July 15, 1994 through August 16, 1996 one primary surgeon performed 373 hernia repairs on 250 patients. Unilateral herniorrhaphy (UH) was performed on 114 males and 13 females with an average age of 58 (range 18 - 89). Bilateral herniorrhaphy (BH) was performed on 121 males and 2 females with an average age of 53 (range 18 - 86) (p>0.05). Within the UH group there were 105 virgin hernias and 22 recurrent hernias. The BH group included 212 virgin hernias and 34 recurrent (p>0.05).

Bilateral repairs took longer to perform than unilateral repairs (65 minutes vs. 45 minutes) (p<0.05). At the time of discharge, all patients were given a postoperative survey and asked to record their level of pain, narcotic use and level of activity on the day of surgery and postoperative days 1, 2, 3, 7, 14, and 28.

Results: No differences were found in pain perception, narcotic use or level of activity on any of the days measured between the two groups (p>0.05). In addition, both groups returned to work at a similar time (UH: 6.32 +/- 3.29 days, BH: 6.68 +/- 4.13 days) (p>0.05).

Conclusion: Bilateral endoscopic preperitoneal herniorrhaphy can be performed with the same expected patient recovery as unilateral repairs.
A Comparison of Patient Recovery Following Unilateral and Bilateral Endoscopic Preperitoneal Herniorrhaphy, Ahmad S.

Table 1.

Postoperative Patient Survey. Patients were asked to record responses to the following three criteria on the day of surgery as well as postoperative days 1, 2, 3, 7, 14, and 28. They were also asked to record the date of return to work and/or full “normal” activity. (note: notations in parentheses are legends for Figures 1-7)

PAIN	NARCOTIC PILLS TAKEN	LEVEL OF ACTIVITY
None (P0)	None (N0)	Mostly in bed (A1)
Mild, on walking stairs (P1)	One (N1)	Minimal walking (A2)
Mild, on walking (P2)	Two (N2)	Normal walking (A3)
Moderate, on walking (P3)	Three (N3)	Back to work, light duty (A4)
Moderate, continuous (P4)	Four to eight (N4)	Back to work, full duty (A5)
Severe (P5)	More than eight (N5)	No restrictions (A6)

Table 2.

Patient demographics.

	Unilateral Hernia Repair	Bilateral Hernia Repair
Number	127	123
Male:female	114:13*	121:2*
Mean age	56*	53*
Anesthesia	84 general*	90 general*
Type	43 epidural*	33 epidural*
	105 virgin	212 virgin*
	22 recurrent*	34 recurrent*

* p>0.05.

space was created with the use of a Preperitoneal Distension Balloon (PDB, Origin Medsystems, Menlo Park, CA) and was maintained with CO₂ insufflation at a pressure of 12 mm mercury. For all hernia repairs, dissection was carried out to identify and/or expose Cooper’s ligament, the inferior epigastric vessels, the internal ring, the spermatic cord and the iliofemoral vessels.

A single sheet of polypropylene mesh was used to repair each hernia in this series (size range of 3 X 5 to 4 X 6 inches). A keyhole incision was created superolaterally in the mesh to allow the mesh to wrap around the cord, thus recreating the internal ring. The mesh was fixed to the anterior abdominal wall and Cooper’s ligament using either the Endoscopic Multifire Stapler (EMS, Ethicon EndoSurgery, Cincinnati, OH) or Origin Tacker (Origin Medystems, Menlo Park, CA). No mechanical fixation of the mesh was performed below the iliopubic tract except at Cooper’s ligament.

At the completion of the repair(s), 30 cc of 0.25% bupivacaine with epinephrine (1:100,000) were placed into the preperitoneal space for the purpose of postoperative analgesia. Postoperative pain control was managed with oral acetaminophen with codeine (Tylenol #3) in all patients.

At the time of discharge, all patients were sent home with a postoperative questionnaire. They were asked to qualify their level of pain as well as keep track of their level of activity and number of narcotic analgesic pills ingested. Patients were asked to log these criteria on the day of surgery as well as postoperative days 1, 2, 3, 7, 14 and 28. Patients were also asked to record their return to work or, if retired or unemployed, when they were able to resume full “normal” activity (Table 1). Initially, patients were asked to mail these forms back to the surgeon’s office upon completion of the survey. With these response rates less than 100 percent, the forms were collected and discussed at the first postoperative visit (at 2-3 weeks postop) if the patients had returned to full activity.

All statistical calculations were made using SigmaStat Version 1.0. Statistical methods included t-test, chi-square test and Mann-Whitney Rank Sum test.

RESULTS

Intraoperative data are summarized in Table 3. Although operative time was longer in the bilateral group (65 vs. 43 minutes; p < 0.05), IV fluid requirements were the same for both groups (1289 cc vs. 1292 cc; p > 0.05). Blood loss was minimal in all patients. All hernia repairs were successfully completed endoscopically, with no conversions to open technique required.

Postoperative surveys were collected through mail follow-
The addition of a contralateral hernia repair during the performance of an endoscopic preperitoneal herniorrhaphy is well tolerated by patients. This is likely due to the small increase in operative time, as well as the minimal additional dissection needed to expose the inguinal anatomy on the second side. Bilateral herniorrhaphy can be performed without the need for additional trocar placement or repeat balloon dissection of the preperitoneal space. The tension free onlay of a second piece of polypropylene mesh apparently adds little to the postoperative symptom complex.

CONCLUSION

Our experience demonstrates that bilateral endoscopic preperitoneal herniorrhaphy can be performed with the same expected patient recovery as unilateral repair.

References:

1. Schultz L, Graber J, Pietrafitta J, et al. Laser laparoscopic herniorrhaphy: a clinical trial preliminary results. J Laparoendosc Surg. 1990;1(1):41-45.
2. Corbitt J, Jr. Laparoscopic herniorrhaphy. Surg Laparosc and Endosc. 1991;1(1):23-25.
3. Ger R, Monroe K, Duvivier R, Mishrick A. Management of indirect inguinal hernias by laparoscopic closure of the neck of the sac. Am J Surg. 1990;159:370-373.
4. Hawalsi A. Laparoscopic Inguinal Herniorrhaphy: classification and one year experience. J Laparoendosc Surg. 1992;2(4):137-143.
5. Stoker DL, Spiegelhalter DJ, Singh R, et al. Laparoscopic versus open inguinal hernia repair: randomized prospective trial. Lancet. 1994;343:1243-1245.
6. Macintyre IM, Miles WF. Critical appraisal and current position of laparoscopic hernia repair. J R Coll Surg Edinb. 1995;40(5):331-336.
7. Sailors D, Layman T, Burns R, et al. Laparoscopic hernia repair: a preliminary report. Am Surg. 1993;59(2):85-89.
A Comparison of Patient Recovery Following Unilateral and Bilateral Endoscopic Preperitoneal Herniorrhaphy, Ahmad S.

8. Willis I, Sendzische H. Laparoscopic preperitoneal prosthetic inguinal herniorrhaphy. *J Laparoendosc Surg.* 1992;2(4):183-187.

9. Sampath P, Yeo CJ, Campbell JN. Nerve injury associated with laparoscopic inguinal herniorrhaphy. *Surgery.* 1995;118(5):829-833.

10. Klopfenstein CE, Gaggero G, Mamie C, et al. Laparoscopic extraperitoneal inguinal hernia repair complicated by subcutaneous emphysema. *Can J Anaesth.* 1995;42(6):523-525.

11. Winchester DJ, Dawes LG, Modelski DD, et al. Laparoscopic inguinal hernia repair: a preliminary experience. *Arch Surg.* 1993;128(7):781-784.

12. Van Baden M, Meir E. Laparoscopic transperitoneal mesh repair of inguinal hernia. A preliminary review of 120 cases. *Acta Chir Belg.* 1995;95(2):95-99.

13. Liem MS, van der Graaf Y, van Steensel CJ, et al. Comparison of conventional anterior surgery and laparoscopic surgery for inguinal hernia repair. *N Engl J Med.* 1997;336(22):1541-1547.

![Figure 1](image1.jpg) **Figure 1.** Postoperative data for endoscopic herniorrhaphy on day of surgery. (Note: legend for figure is in Table 1.)

![Figure 2](image2.jpg) **Figure 2.** Postoperative data for endoscopic herniorrhaphy on postoperative day #1. (Note: legend for figure is in Table 1.)

![Figure 3](image3.jpg) **Figure 3.** Postoperative data for endoscopic herniorrhaphy on postoperative day #2. (Note: legend for figure is in Table 1.)

![Figure 4](image4.jpg) **Figure 4.** Postoperative data for endoscopic herniorrhaphy on postoperative day #3. (Note: legend for figure is in Table 1.)
Figure 5. Postoperative data for endoscopic herniorrhaphy on postoperative day #7. (Note: legend for figure is in Table 1.)

Figure 6. Postoperative data for endoscopic herniorrhaphy on postoperative day #14. (Note: legend for figure is in Table 1.)

Figure 7. Postoperative data for endoscopic herniorrhaphy on postoperative day #28. (Note: legend for figure is in Table 1.)