Telecommunication systems of mines and underground structures based on PLC

V A Shpenst

Saint-Petersburg Mining University, Saint-Petersburg, 21 line VO, 2, 199106, Russia

E-mail: shpenst@spmi.ru

Abstract. The possible options for the integration of telecommunications and electrical systems of mining enterprises are considered. Based on an analysis of the current state and prospects for the development of telecommunications systems, various technical solutions are proposed for sharing the power supply networks available in mines and underground structures in order to solve the problems of telecommunication, automate process control and ensure the safety of operations. The analysis of the possibilities of applying the PLC technology in underground structures and mines for solving specific telecommunication problems has been carried out, and examples of their possible technical and hardware implementation are given.

1. Introduction.
One of the possible directions for further improvement of telecommunication systems in mines and underground structures may be their complexation with power supply systems. The transmission of any information and the implementation of power supply via common wired channels is effectively carried out in various technological applications. There are situations when the implementation of laying new cables is either very undesirable or not possible. In such cases, it is almost always possible to limit oneself to the existing electrical infrastructure – to use the existing wire network of the power supply system to organize a sufficiently high-speed and stable information transmission channel that is branched throughout the structure.

2. Methodology and technology.
Telecommunication technology PLC (Power line communication), based on the use of industrial power supply networks to ensure information exchange through the joint transmission of data by modulating the standard industrial alternating current, is quite simple in technical implementation, as well as high-speed installation of devices based on it. One of the first data transmission devices in power supply networks appeared in the 1940s, they were mainly used to solve signaling problems in power systems and on railways due to very low throughput [8]. In the last decade of the twentieth century, a number of different telecommunications companies implemented the first fairly serious projects in this area, but during their operation, major problems were discovered, the main one of which was low noise immunity. Operating at short distances from PLC-modems, various impulse devices, powerful power supplies and chargers, industrial electrical appliances, as well as electric motors and equipment with high power consumption caused impulse noise in unshielded high-frequency radiations of electrical wires, which, as a rule, caused sufficiently a marked decrease in the reliability and reliability of information transfer.
The heterogeneity of electrical wiring lines, poor quality of wire materials and high wear of electrical networks, cable joints made of electrically non-uniform materials (for example, copper and aluminum), the presence of twists, etc. also did not contribute to the sustainable functioning of such systems, and especially their capacity. Thus, the total reduction in data rates could reach 20-60%. In some cases, in buildings and places of operation of PLC-devices, deterioration in the operation of radio receivers at a distance of 3-5 m from the location of the PLC modem, especially noticeable on medium and short waves, was recorded. This phenomenon appeared, as the electric network wires began to be radiating antennas, which significantly violated the electromagnetic environment [13].

The technology of transmission of information through the power supply networks was widely used commercially only at the beginning of our century, and its industrial introduction and rapid wide distribution were based on the appearance of the necessary element base, especially high-performance specialized microcontrollers and high-speed DSP processors (digital signal processors), which allowed for the implementation of special methods of digital signal modulation and modern highly reliable encryption algorithms. This circumstance allowed to achieve not only a high level of reliability of reliability in data transmission, but also to ensure their effective protection from unauthorized access. Equally important was the widespread introduction and dissemination of standardization in various areas of this technology. The most authoritative communities and organizations currently regulating PLC device requirements are IEEE, ETSI, CENELEC, OPERA, UPA and HomePlug Powerline Alliance. The latter organization is an international alliance, which brings together about 75 fairly well-known companies in the telecommunications market (Siemens, Motorola, Samsung and Philips) [8]. This alliance, organized in 2001, aims to organize and conduct research and practical tests to ensure the compatibility of devices from various manufacturers that use this technology, as well as to support and promote a single standard called HomePlug.
Before starting the connection procedure into one common signal, all subcarrier frequencies included in it are subjected to a phase modulation process, each subcarrier modulated by its own bit sequence. After the end of this operation, they arrive at the signal conditioning unit, where they are combined into a common information packet, which is called an OFDM symbol. Figure 4 depicts an example of «relative quadrature phase shift keying» (DQPSK – Differential Quadrature Phase Shift Keying) for the selected four frequency subcarriers in the 4500-5100 kHz range.

In solving practical problems of PLC implementation, signal transmission is carried out, as a rule, with the use of 1536 subcarriers with further selection of a certain number of the best of them in the range from 4 to 64 MHz and depending on the state of the transmission line, also available interference level. The application of this method provides for the PLC-technology sufficient adaptability when used in various operating conditions. For example, a working PLC device may interfere with radio reception at certain frequencies. Another example is the case when a device or application already uses part of the operating range. Technological elimination of unwanted interference can be achieved by applying special settings, which are called Signal Mode and Power Mask on devices where appropriate capabilities can be provided. Signal Mode is a software method of allocating a certain operating frequency range, and Power Mask is a software procedure for limiting the band of frequencies used. Due to these methods, PLC-devices can operate stably together with radio communication systems in one common space and not make noise on the radio frequency band.

When transmitting information signals via the industrial power grid, very high levels of attenuation of the transmitted signal at some frequencies can also occur, which can lead to complete (partial) loss and distortion of the transmitted data. To ensure the adaptation of the signal information to the physical transmission medium, it is possible to apply the method of dynamic, inter-period signal switching, which allows detection and correction of errors, as well as the elimination of signal conflicts. The essence of this method is to organize continuous monitoring of signal transmission channels in order to identify the part of the spectrum where a certain threshold attenuation level is exceeded. When such a situation is detected, the use of the «problem» range is suspended for a certain period of time until an acceptable attenuation value is reached, and information data is transmitted at other frequencies during this period. The application of the proposed method will significantly improve the efficiency, reliability and noise immunity of the transmitted information.

Another significant difficulty that arises when transmitting information over industrial power supply networks is the presence of impulse noise, which can be generated by various network (charger) devices, lighting systems (especially halogen lamps), connecting and disconnecting from the network type of
electrical devices. The seriousness of this situation is that the modem cannot always have time to adapt to the dynamic environmental conditions, since the duration of these processes may lie in the interval of several microseconds, and as a result, some of the bits contained in the information signal may be lost [3].

According to the results of the research, the use of the method of two-stage or cascade noise-resistant transcoding of bit-streams before their modulation and transmission over the data channel is proposed as the most effective way to combat impulse noise. Its essence is to add redundant («protective») bits to the source information flow of a predetermined algorithm, which will be used during subsequent decoding at the receiver to detect and correct the detected errors. For example, cascading a block Reed-Solo-mon code and a simple convolutional code decoded according to the Viterbi algorithm, allows correcting not only single errors, but also error packets, which significantly increases the integrity of the transmitted data [3]. It should also be noted that the use of robust coding will increase the security and integrity of the transmitted data from the point of view of ensuring their protection against possible unauthorized access.

Since a sufficiently extensive power supply network acts as a medium of information transfer, then at some point in time several devices connected to the network can begin to transmit information. In this situation, the resolution of intersection and traffic overlap conflicts can be achieved through some kind of regulatory mechanism, which is the Media Access Protocol (CSMA/CA). The resolution of conflicts occurs on the basis of the established system of priorities, which are set when organizing the prioritization of data transfer.

As one of the really working technological examples of the implementation of this technology, PLC products from Semtech can be cited, which is intended for use in various typical power supply lines with low or medium operating voltage [3]. The modem used in this technology, operating with an analog physical line, must have the functional units necessary for processing analog data, digitizing and, of course, for processing digital data. On the transmitting side, the modem must also encode digital data in accordance with a given algorithm, convert it to analog and transmit it to the communication line.

All of the above actions are performed by EV8xxx series chips. Narrowband chips are «systems on a chip», which are highly integrated and contain all the necessary structural blocks to implement the physical, MAC, and other protocol layers (WPAN and IEC). The presented devices provide the implementation of several types of modulation (in practice, OFDM is most often used) for the organization of a stable and interference-proof channel. Single-chip integrated circuits that have passed
Functional compatibility testing in the HomePlug Alliance Netricity are notable for their versatility; both end nodes and network coordinators are designed on their basis. The Netricity specification is designed for network communications over long-distance power lines and is intended for industrial infrastructure, intelligent power distribution networks, and control of production processes. The technology can be used both in dense above-ground and underground power supply networks using frequencies below 500 kHz. It also includes the provision of an IEEE 802.15.4 (MAC) based access layer, which is key to the development of hybrid wired (wireless) networks [3].

A simplified structure with the image of the main functional units is shown in Figure 3, here you can select the following blocks [3]:

- The 32-bit RISC microcontroller provides an in-circuit implementation of the MAC layer, performs data processing, packet generation, data encryption using the AES block encryption algorithm, etc., and also solves application problems.
- The AFE (Analog Front-End) unit represents a set of analog components providing isolation using a transformer with a coupling capacitor, filtering and amplifying the input signal, as well as generating predetermined output signal levels by using the line driver at the OS.
- Peripheral units interface the integrated microprocessor with external chips — EEPROM memory, high-resolution ADC and host controller. For communication, the hardware implementation of the widely used SPI, I2C and UART interfaces is changed.
- The PHY unit provides the interface between the digital part of the chip and the analog line.
- The power subsystem provides all the necessary voltages for individual nodes. As a rule, a power supply is used, which operates on the same AC mains as used for data transmission.
- The clocking control unit.

For the practical application of the complexation technology of telecommunication systems and power supply systems in mines and underground structures, five potentially feasible methods can be proposed:

- inductive branching of signals with separate phase conductors in the distribution cables of the mine;
- branch into the socket or from the socket with low voltage, which may exist in the electrical equipment of the mine;
- a branch of the signals in the grounding of the cable with respect to local grounding;
- wireless branch to or from the cable;
- inductive RF branching on or off the entire high-voltage cable.

Thus, based on the specifics of the functioning of the mining enterprise (mine), the following subsystems can be included in such a combined telecommunications system, focused on monitoring and managing the main technological areas: environmental parameters of the mine; transport chain (conveyors, bunkers, feeders, etc.) from the bottom to the shaft of the mine; the work of fans of local airing; parameters of mining and tunnel complexes; degassing parameters; high-voltage switchgear; installations of main drainage; fan-mi main ventilation; the work of surface objects; technological complex loading of coal [12].

3. Conclusion

The proposed solutions for the application of integration of telecommunication systems and power supply systems of mining companies will improve the efficiency of solving various technological problems arising from the operation of mines (underground structures), improve production safety and reduce the cost of implementing automatic process control systems. Analysis of possible options for the technical implementation of these tasks has shown that this technology may face a number of significant difficulties in implementation. The main ones are related to the fact that electrical wiring of the power supply systems of Russian enterprises is made mainly of aluminum, and not of copper, which is used in most countries of the world. Electric cables made of aluminum have noticeably worse electrical
conductivity, which will lead to faster decay of information signals. Another identified problem is that in Russia the main issues of regulatory and legal regulation of the use of such technologies have not yet been resolved. The main factor hindering the rapid development of high-speed PLC systems is the lack of standards for broadband PLC systems, and, as a result, a high risk of incompatibility with other services in the enterprise using the same or close frequency bands. The Saint-Petersburg Mining University is implementing a scientific project to create the theoretical and methodological foundations for integrating telecommunication systems and power supply systems for mining companies, which should result in a scientific and methodological apparatus for building such systems, which is a significant jerk in improving the efficiency of management systems for such enterprises generally.

Acknowledgment.
The work was performed as part of research with the financial support of the Russian Foundation for Basic Research (grant N 18-07-01117).

References
[1] Vaganov V S, Goffart T V, Dubkov I S 2018 The development of mobile devices in the composition of computer networks of coal mines. Gornaya promyshlennost' 1 (137) 54-58
[2] Vaganov V S 2017 Safety rules in coal mines - the development of multifunctional safety systems. Gornaya promyshlennost' 2 (132) 77-83
[3] Verkhulevskii K 2015 Transmission of information over power supply networks using Semtech integrated circuit. Komponenty i tehnologii, 11 50-54
[4] Gaikovich G F 2009 Standardization in the field of industrial networks. Development of wireless standards for process control systems. Elektronnye komponenty 1 48-52
[5] Zubov V P 2017 State and directions of improvement of coal seam development systems in prospective coal mines in Kuzbass. Zapiski Gornogo instituta. 225 292-297 DOI: 10.18454/PMI.2017.3.292
[6] Grachev A Yu, Novikov A V, Panevnikov K V, Terekhov D B 2016 MFSB in a coal mine – positioning and alerting personnel. Nauchno-tekhnicheskii zhurnal Vestnik. 2 121-129
[7] Nevest'ev I A, Arsen'ev A V 2011 Construction of access networks for transmission of information via electrical networks.
[8] Grachev A Yu, Novikov A V, Panevnikov K V, Terekhov D B 2016 MFSB in a coal mine – positioning and alerting personnel. Nauchno-tekhnicheskii zhurnal Vestnik. 2 121-129
[9] Nevest'ev I A, Arsen'ev A V 2011 Construction of access networks for transmission of information via electrical networks.
[10] 2007 Elektrotekhnicheskie i informatsionnye kompleksy i sistemy 3(3) 12-19
[11] Okhrimenko V 2009 PLC-technologies. Elektronnye komponenty. 10 58-62
[12] Rules for the use of radio access equipment. Part I. Rules for the use of radio access equipment for wireless data transmission in the range from 30 MHz to 66 GHz (zaregistrirovano v Minyuste RF 12.10.2010 N 18695). Informatsionno-pravovoi portal «Garant». Кукшумув акци: http://www.garant.ru/products/ipo/prime/doc/99539/.
[13] Babenko A G, Lapin S E, Vit'gel'm A V, Orzhekhovskii S M 2011 Principles of building multifunctional coal mine safety systems, experience and prospects for their use in Kuzbass. Bezopasnost' truda v promyshlennosti 1 16-22
[14] RealTrac «Shahta». Multifunctional security system for mines, mines and underground mining of minerals. Retrieved from: https://realttrac.com/ru/solutions/underground-mining/
[15] Shklyarskii Ya E, Pirog S 2016 The impact of the load curve on the losses in the electrical network of the enterprise. Zapiski Gornogo instituta 222 859-863 DOI: 10.18454/PMI.2016.6.859
[16] Hrasnica H, Haidine A, Lehnert R 2005 Broadband Power line Communications: Networks Design. (John Willey & Sons)