Semidefinite relaxations for semi-infinite polynomial programming

Li Wang · Feng Guo

Received: 13 May 2013 / Published online: 17 October 2013
© Springer Science+Business Media New York 2013

Abstract This paper studies how to solve semi-infinite polynomial programming (SIPP) problems by semidefinite relaxation methods. We first recall two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. Then we propose an exchange algorithm with SDP relaxations to solve SIPP problems with compact index set. At last, we extend the proposed method to SIPP problems with noncompact index set via homogenization. Numerical results show that the algorithm is efficient in practice.

Keywords Polynomial optimization · Semi-infinite programming · SDP relaxation · Sum of squares · Homogenization

1 Introduction

Consider the semi-infinite polynomial programming (SIPP) problem:

\[
(P) : \quad \begin{cases}
 f^* := \min_{x \in X} f(x) \\
 \text{s.t. } g(x, u) \geq 0, \quad \forall u \in U,
\end{cases}
\]

where

\[
X = \{ x \in \mathbb{R}^n \mid \theta_1(x) \geq 0, \ldots, \theta_m(x) \geq 0 \},
\]

\[
U = \{ u \in \mathbb{R}^p \mid h_1(u) \geq 0, \ldots, h_m(u) \geq 0 \}.
\]
Here $f(x), \theta_i(x)$ are polynomials in $x \in \mathbb{R}^n$, $h_j(u)$ are polynomials in $u \in \mathbb{R}^p$ and $g(x, u)$ is a polynomial in $(x, u) \in \mathbb{R}^n \times \mathbb{R}^p$. Throughout this paper, we assume that X is compact and U is an infinite index set, i.e., there are infinitely many constraints in (P). The SIPP problem is a special subclass of the semi-infinite programming (SIP) which has many applications, e.g., Chebyshev approximation, maneuverability problems, some mathematical physics problems and so on [11, 17].

There are various algorithms for SIP problems based on discretization schemes of U, such as central cutting plane method [4], Newton’s method [30], SQP methods [32] and the like. Most of algorithms for SIP problems, however, are only locally convergent or globally convergent under some strong assumptions, like convexity or linearity, and to the authors best knowledge, few of them are specially designed for SIPP problems exploiting features of polynomial optimization problems. Parpas and Rustem [26] proposed a discretization like method to solve min-max polynomial optimization problems, which can be reformulated as SIPP problems. Using a polynomial approximation and an appropriate hierarchy of semidefinite relaxations, Lasserre presented an algorithm to solve the generalized SIP problems in [16].

Before introducing the contribution of this paper, we first review some of the considerable progress recently made in solving polynomial optimization problems with finite constraints via sums of squares relaxations, which are typically based on the Positivstellensatz [27]. We define a so-called quadratic module which is a set of polynomials generated by the finitely many constraints, to which any polynomials positive over the feasible set belong. The classic Lasserre’s hierarchy [14] is to compute the maximal real number, minus which the objective lies in the quadratic module. By increasing the order of the quadratic module, Lasserre’s hierarchy results in a sequence of lower bounds of the global optimum and the asymptotical convergence is established under the Archimedean condition. Interestingly, finite convergence of Lasserre’s hierarchy is generic [24]. To guarantee the finite convergence of Lasserre’s hierarchy, Nie [22] proposed a refined SDP relaxation by some “Jacobian-type” technique which represents optimality conditions of the considered polynomial optimization problem. More importantly, these SDP relaxation methods are global and the minimizers can be extracted if the flat extension condition [2] or more general, flat truncation condition [23] holds. The aim of this paper is to apply these SDP relaxation methods to solve SIPP problems.

An efficient method based on discretization scheme for solving SIP is the exchange method which approaches the optimum in an iterative manner. Generally speaking, given a finite subset $U_k \subseteq U$ in an iteration, we obtain at least one global minimizer x_k of $f(x)$ under the associated finitely many constraints and then compute the global minimum g^k and minimizers u_1, \ldots, u_t of $g(x^k, u)$ over U. If $g^k \geq 0$, stop; otherwise, update $U_{k+1} = U_k \cup \{u_1, \ldots, u_t\}$ and proceed to the next iteration. Therefore, to guarantee the success of the exchange method, the subproblems in each iteration need to be globally solved and at least one minimizer of each subproblem can be extracted. The compactness of the index set U is commonly assumed in many algorithms for SIP problems, which ensure the existence of global minimizers for constraint subproblem. However, when the constraint subproblem is nonconvex, globally solving it and extracting global minimizers are very challenging.

Specializing the exchange method in SIPP problem (P), the subproblems are polynomial optimization problems with finitely many constraints, which can be solved
Semidefinite relaxations for semi-infinite polynomial programming 135

exactly by SDP relaxations. Assuming the index set \(U \) is compact, an exchange type method with SDP relaxations is given in this paper. Numerical experiments show that this algorithm is efficient in practice. We also apply this approach to optimization problems with polynomial matrix inequality and get good numerical performance. If \(U \) is noncompact, the exchange method might fail, see Example 4.1. Another novelty of this paper is that we extend the proposed algorithm to solve SIPP problems with noncompact \(U \). By a technique of homogenization, we first reformulate the original SIPP problem as a new one with a compact index set, to which we then apply the proposed semidefinite relaxation algorithm. We prove that these two problems are equivalent under some generic conditions.

The paper is organized as follows. In Sect. 2, we introduce two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. In Sect. 3, we propose a semidefinite relaxation algorithm to solve SIPP problem \((P)\) with compact index set \(U \). In Sect. 4, we consider how to apply the proposed algorithm to solve SIPP problems with noncompact index set \(U \) by homogenization.

\[f_{\min} := \min_{x \in \mathbb{R}^n} f(x) \]
\[
\begin{align*}
\text{s.t. } h_1(x) &= \cdots = h_{m_1}(x) = 0, \\
g_1(x) &\geq 0, \ldots, g_{m_2}(x) \geq 0,
\end{align*}
\] (2.1)

where \(f(x), h_i(x), g_j(x) \in \mathbb{R}[x] \). Based on the Positivstellensatz, considerable work has recently been done on solving (2.1) by means of SDP relaxation. Generally speaking, these methods relax (2.1) as a sequence of SDPs whose optima are lower bounds of \(f_{\min} \) and converge to \(f_{\min} \) under some assumptions. We first introduce the classic Lasserre’s SDP relaxation [14] and then Nie’s Jacobian SDP relaxation [22] with property of finite convergence.

2 SDP relaxations for polynomial optimization

In this section, we study how to solve the following polynomial optimization problem with finitely many constraints:

Notation The symbol \(\mathbb{N} \) (resp., \(\mathbb{R}, \mathbb{C} \)) denotes the set of nonnegative integers (resp., real numbers, complex numbers). For any \(t \in \mathbb{R} \), \(\lceil t \rceil \) denotes the smallest integer that is not smaller than \(t \). For integer \(n > 0 \), \([n] \) denotes the set \(\{1, \ldots, n\} \). For \(x \in \mathbb{R}^n \), \(x_i \) denotes the \(i \)-th component of \(x \). For \(x \in \mathbb{R}^n \) and \(\alpha \in \mathbb{N}^n \), \(x^\alpha \) denotes \(x_1^{\alpha_1} \cdots x_n^{\alpha_n} \). For a finite set \(T \), \(|T| \) denotes its cardinality. \(\mathbb{R}[x] = \mathbb{R}[x_1, \ldots, x_n] \) denotes the ring of polynomials in \((x_1, \ldots, x_n) \) with real coefficients. For a symmetric matrix \(W \), \(W \succeq 0 \) (\(\succ 0 \)) means that \(W \) is positive semidefinite (definite). For any vector \(u \in \mathbb{R}^p \), \(\|u\| \) denotes the standard Euclidean 2-norm.

2.1 Lasserre’s SDP relaxation

Denote \(K \) as the feasible set of (2.1). Let \(\mathcal{F} := \{h_1, \ldots, h_{m_1}, g_0, g_1, \ldots, g_{m_2}\} \) and \(g_0 = 1 \). We say a polynomial is SOS if it is a sum of squares of other polynomials.
The k-th truncated quadratic module generated by F is defined as

$$Q_k(F) := \left\{ \sum_{j=1}^{m_1} \phi_j h_j + \sum_{i=0}^{m_2} \sigma_i g_i \middle| \sigma_i \text{ are } \text{SOS}, \ \phi_j \in \mathbb{R}[x], \ \forall \ i, j \right\}.$$

The k-th Lasserre’s SDP relaxation [14] for solving (2.1) (k is also called the relaxation order) is

$$f_k := \max \gamma \quad \text{s.t.} \quad f(x) - \gamma \in Q_k(F). \quad (2.2)$$

The relaxation (2.2) is equivalent to a semidefinite program and could be solved efficiently by numerical methods like interior-point algorithms. Clearly, $f_k \leq f_{\text{min}}$ for every k and the sequence $\{f_k\}$ is monotonically increasing. The quadratic module generated by F is

$$Q(F) := \bigcup_{k=1}^{\infty} Q_k(F).$$

Definition 2.1 The set $Q(F)$ satisfies the Archimedean condition if there exists $\psi \in Q(F)$ such that inequality $\psi(x) \geq 0$ defines a compact set in $x \in \mathbb{R}^n$.

Note that the Archimedean condition implies the feasible set K is compact but the inverse is not necessarily true. However, for any compact K we can always “force” the associated quadratic module to satisfy the Archimedean condition by adding a “redundant” constraint, e.g., $\rho - ||x||^2 \geq 0$ for sufficiently large ρ.

The convergence for Lasserre’s hierarchy (2.2), i.e., $\lim_{k \to \infty} f_k = f_{\text{min}}$, is implied by Putinar’s Positivstellensatz:

Theorem 2.2 ([27]) If a polynomial p is positive on K and the Archimedean condition holds, then $p \in Q(F)$.

We next consider the dual optimization problem of (2.2). Let y be a truncated moment sequence (tms) of degree $2k$, i.e., $y = (y_{\alpha})$ be a sequence of real numbers which are indexed by $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ with $|\alpha| := \alpha_1 + \cdots + \alpha_n \leq 2k$. The associated k-th moment matrix is denoted as $M_k(y)$ which is indexed by \mathbb{N}^n_k, with (α, β)-th entry $y_{\alpha + \beta}$. Given polynomial $p(x) = \sum_{\alpha} p_{\alpha} x^\alpha$ where $x^\alpha := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, denote $d_p = \lceil \deg(p)/2 \rceil$. For $k \geq d_p$, the $(k - d_p)$-th localizing moment matrix $L_{y_{(k-d_p)}}(y)$ is defined as the moment matrix of the shifted vector $((py)_{\alpha})_{\alpha \in \mathbb{N}^n_{2(k-d_p)}}$ with $(py)_{\alpha} = \sum_{\beta} p_{\beta} y_{\alpha + \beta}$. Denote by \mathcal{M}_{2k} the space of all tms whose degrees are $2k$. Let $\mathbb{R}[x]_{2k}$ be the space of real polynomials in x with degree at most $2k$. For any $y \in \mathcal{M}_{2k}$, a Riesz functional \mathcal{L}_y on $\mathbb{R}[x]_{2k}$ is defined as

$$\mathcal{L}_y \left(\sum_{\alpha} q_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \right) = \sum_{\alpha} q_{\alpha} y_{\alpha}, \quad \forall \ q(x) \in \mathbb{R}[x]_{2k}.$$

For convenience, we hereafter still use q to denote the coefficient vector of $q(x)$ in the graded lexicographical ordering and denote $\langle q, y \rangle = \mathcal{L}_y(q)$. From the definition
of the localizing moment matrix $L_p^{(k-d_p)}(y)$, it is easy to check that

$$q^T L_p^{(k-d_p)}(y)q = \mathcal{L}_y(p(x)q(x)^2), \quad \forall \ q(x) \in \mathbb{R}[x]_{k-d_p}.$$

The dual optimization problem of (2.2) is ([14, 15])

$$\begin{align*}
\{ f_k^*: \min_{y \in M_{2k}} \langle f, y \rangle \\
\text{s.t.} \quad L_{h_j}^{(k-d_{h_j})}(y) = 0, \quad j \in [m_1], \quad L_{g_i}^{(k-d_{g_i})}(y) \succeq 0, \quad i \in [m_2], \\
M_k(y) \succeq 0, \quad (1, y) = 1. \}
\end{align*}$$

Let

$$d = \max\{ 1, d_{h_i}, d_{g_j} \mid i \in [m_1], \ j \in [m_2] \}.$$

Lasserre [14] shows that $f_k \leq f_k^* \leq f_{\min}$ for every $k \geq \max\{ d_f, d \}$ and both $\{ f_k \}$ and $\{ f_k^* \}$ converge to f_{\min} if the Archimedean condition holds.

We say Lasserre’s hierarchy (2.2) and (2.3) has finite convergence if

$$f_{k_1} = f_{k_1}^* = f_{\min} \quad \text{for some order } k_1 < \infty. \quad (2.4)$$

Based on the earlier work by Scheiderer and Marshall (cf. [18, 19, 28, 29]), Nie proved that under the Archimedean condition, Lasserre’s SDP relaxation has finite convergence generically (cf. [24, Theorem 1.1]). Since f_{\min} is usually unknown, a practical issue is how to certify the finite convergence if it happens. Moreover, if it is certified, how do we get minimizers?

Let y^* be an optimizer of (2.3). By [2, Theorem 1.1], $f_k^* = f_{\min}$ for some k if the flat extension condition (FEC) [2] holds, i.e.,

$$\text{rank } M_{k-d}(y^*) = \text{rank } M_k(y^*). \quad (2.5)$$

By solving some SVD and eigenvalue problems ([8]), we can get $r := \text{rank } M_k(y^*)$ global optimizers for (2.1). However, (2.5) is not a generally necessary condition for checking finite convergence of Lasserre’s hierarchy (cf. [23, Example 1.1]). To certify the finite convergence of (2.2) and get minimizers of (2.1) from (2.3), a weaker condition was proposed in [23]. We say a minimizer y^* of (2.3) satisfies flat truncation condition (FTC) if there exists an integer $t \in [\max\{ d_f, d \}, k]$ such that

$$\text{rank } M_{t-d}(y^*) = \text{rank } M_t(y^*). \quad (2.6)$$

If an optimizer of (2.3) has a flat truncation, by [2, Theorem 1.1] again, we still have $f_k^* = f_{\min}$. Moreover, if there is no duality gap between (2.2) and (2.3), we obtain $f_k = f_{\min}$. More importantly, [23, Theorem 2.2] shows that the flat truncation is also necessary for Lasserre’s hierarchy (2.2) under some generic assumptions.

Algorithm 2.3 Lasserre’s SDP relaxation

Input: Objective function $f(x)$, constraint functions $h_i(x)$, $g_j(x)$ and maximal relaxation order k_{\max}.

Output: Global minimum and minimizers of problem (2.1).
I Set \(d := \max\{1, d_f, d_{h_j}, d_{g_j}\} \) and initial relaxation order \(k = d \).

II Solve primal and dual SDP problems (2.2) and (2.3) by standard SDP solver (e.g., SeDuMi [31], SDPT3 [33], SDPNAL [34]).

III For \(t \in [d, k] \), check condition (2.6).
 1 If (2.6) holds for some \(t \), get minimizers by Extraction Algorithm [8] and stop;
 2 Otherwise, go to Step IV.

IV If \(k > k_{max} \), stop; otherwise, set \(k = k + 1 \) and go to Step II.

2.2 Jacobian SDP relaxation

The convergence of Lasserre’s SDP relaxations (2.2) and (2.3) might be asymptotic for some instances, i.e., only lower bounds are found for each order \(k \). To overcome this hurdle, some gradient type SDP relaxation methods were proposed [3, 22, 25]. In [22], Nie reformulated problem (2.1) by some “Jacobian-type” technique whose SDP relaxation has finite convergence.

Roughly speaking, Jacobian SDP relaxation is to add auxiliary constraints to (2.1) which represent optimality conditions under the assumption that the optimum \(f_{\min} \) is achievable. The basic idea is that at each optimizer, the Jacobian matrix of the objective function, the equality constraints and the active inequality constraints must be singular, i.e., all its maximal minors vanish. For convenience, denote

\[h := (h_1, \ldots, h_{m_1}) \text{ and } g := (g_1, \ldots, g_{m_2}). \]

For a subset \(J = \{j_1, \ldots, j_k\} \subseteq \{m_2\} \), denote \(g_J := (g_{j_1}, \ldots, g_{j_k}) \). Symbols \(\nabla h \) and \(\nabla g_J \) represent the gradient vectors of the polynomials in \(h \) and \(g_J \), respectively. Denote the determinantal variety of \((f, h, g_J)\)’s Jacobian being singular by

\[G_J = \{ x \in \mathbb{C}^n | \text{rank} B^J(x) \leq m_1 + |J| \}, \]

where

\[B^J(x) = \begin{bmatrix} \nabla f(x) & \nabla h(x) & g_J(x) \end{bmatrix}. \]

Instead of using all maximal minors to define \(G_J \), [22, Sect. 2.1] discusses how to get the smallest number of defining equations. Let \(\eta_1^J, \ldots, \eta_{\text{len}(J)}^J \) be the set of defining polynomials for \(G_J \) where \(\text{len}(J) \) is the number of these polynomials. For each \(i = 1, \ldots, \text{len}(J) \), define

\[\varphi_i^J(x) = \eta_i^J \cdot \prod_{j \in J^c} g_j(x), \text{ where } J^c = [m_2] \setminus J. \tag{2.7} \]

For simplicity, we list all possible \(\varphi_i^J \) in (2.7) sequentially as

\[\varphi_1, \varphi_2, \ldots, \varphi_r, \text{ where } r = \sum_{J \subseteq [m_2] \setminus J, |J| \leq m - m_1} \text{len}(J). \]
Consider the following optimization by adding all φ_l’s to (2.1):

$$
\begin{align*}
\text{s}^* := \min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } h_i(x) = 0, \quad i \in [m_1], \quad \varphi_l(x) = 0, \quad l \in [r], \\
g_j(x) \geq 0, \quad j \in [m_2].
\end{align*}
$$

As shown in [22, Lemma 3.1] and [7, Lemma 3.5], by adding auxiliary constraints $\varphi_l(x) = 0$, the feasible set of (2.8) is restricted to the KKT points and singular points of the feasible set of (2.1). Therefore, (2.1) and (2.8) are equivalent if the minimum f_{\min} of (2.1) is achievable.

Lemma 2.4 ([7, Lemma 3.6]) Assume $m_1 \leq n$ and at most $n - m_1$ of $g_1(x), \ldots, g_{m_2}(x)$ vanish for any feasible point x. If the minimum f_{\min} of (2.1) is achievable, then $s^* = f_{\min}$.

Remark 2.5 Since s^* is the minimal value of $f(x)$ achieved among the KKT points and singular points of the feasible set of (2.1), it is possible that $s^* > f_{\min}$ (cf. [22, Sect. 2.2]) if f_{\min} is not achievable.

If the Archimedean condition holds for the feasible set K, then K is compact and f_{\min} is achievable. By Lemma 2.4, we always have $s^* = f_{\min}$. Applying Lasserre’s SDP relaxations (2.2) and (2.3) to (2.8), the resulting SDP relaxations for (2.8) have finite convergence under some generic conditions (cf. [22, Theorem 4.2], [7, Theorem 3.9]).

Algorithm 2.6 Nie’s Jacobian SDP relaxation

Input: Objective function $f(x)$, constraints functions $h_i(x), g_j(x)$, maximal relaxation order k_{\max}.

Output: Global minimum and minimizers of problem (2.1).

1. Construct the auxiliary polynomials $\varphi_l(x)$’s.
2. Set $d := \max\{1, d_f, d_{h_i}, d_{g_j}, d_{\varphi_l}\}$ and initial relaxation order $k = d$.
3. Solve (2.8) by Algorithm 2.3.
4. For $t \in [d, k]$, check condition (2.6).
 1. If (2.6) holds for some t, get minimizers by Extraction Algorithm [8] and stop;
 2. Otherwise, go to Step V.
5. If $k > k_{\max}$, stop; otherwise, set $k = k + 1$ and go to Step III.

In contrast to Lasserre’s SDP relaxation, Jacobian SDP relaxation is more complicated due to the auxiliary polynomials $\varphi_l(x)$’s. We refer to [22, Sect. 4] for some simplified versions of Jacobian SDP relaxation method.
3 SIPP with compact set U

The two SDP relaxation algorithms shown in Sect. 2 provide strong tools to globally solve polynomial optimization problems with finitely many constraints. In this section, we will discuss how to use them to solve SIPP problems globally.

3.1 A semidefinite relaxation algorithm

One main difficulty in solving a SIP problem is that there are infinite number of constraints. How to deal with the infinite index set U is the key difference among various SIP algorithms. Exchange method is commonly used in SIP computation, and is regarded as an efficient method on solving SIP problems [11, 17].

The general steps of exchange method are determined algorithmically as follows [11]. Given a subset $U_k \subseteq U$ in iteration k with $|U_k| < \infty$, compute at least one global solution x^k of

$$\min_{x \in X} f(x) \quad \text{s.t. } g(x, u) \geq 0, \quad \forall \ u \in U_k, \quad (3.1)$$

and solutions u_1, \ldots, u_t of the subproblem

$$g^k := \min_{u \in U} g(x^k, u). \quad (3.2)$$

If $g^k \geq 0$, stop; otherwise, set $U_{k+1} = U_k \cup \{u_1, \ldots, u_t\}$ and go to next iteration.

Therefore, to successfully apply the exchange method to solve SIPP problems, we need to globally solve subproblems (3.1)–(3.2) and extract global minimizers in each iteration. As we have discussed in Sect. 2, the SDP relaxation methods are proper means for this propose. The specific description of exchange method with SDP relaxations for SIPP problems is shown in the following.

Algorithm 3.1 Semidefinite relaxations for SIPP

Input: Objective function $f(x)$, constraint function $g(x, u)$, basic closed semialgebraic sets X, U, tolerance ϵ and maximum iteration number k_{max}.

Output: Global optimum f^* and set X^* of minimizers of problem (P).

Step 1 Choose random $u_0 \in U$ and let $U_0 = \{u_0\}$. Set $X^* = \emptyset$ and $k = 0$.

Step 2 Use Algorithm 2.3 to solve

$$(P_k) : \begin{cases} f_k^{\min} := \min_{x \in X} f(x) \\ \text{s.t. } g(x, u) \geq 0, \quad \forall \ u \in U_k. \end{cases} \quad (3.3)$$

Let $S_k = \{x_1^k, \ldots, x_{r_k}^k\}$ be the set of the global minimizers of problem (P).

Step 3 Set $U_{k+1} = U_k$. For $i = 1, \ldots, r_k$,

(a) Use Algorithm 2.6 to solve

$$(Q_i^k) : \quad g_i^k := \min_{u \in U} g(x_i^k, u). \quad (3.4)$$

Let $T_i^k = \{u_{i,j}^k, j = 1, \ldots, t_i^k\}$ be the set of global minimizers of (Q_i^k).

\(\square\) Springer
(b) Update $U_{k+1} = U_{k+1} \cup T_i^k$.
(c) If $g_i^k \geq -\epsilon$, then update $X^* = X^* \cup \{x_i^k\}$.

Step 4 If $X^* \neq \emptyset$ or $k > k_{\text{max}}$, stop; otherwise, set $k = k + 1$ and go back to Step 2.

Remark 3.2 Subproblems (P_k) and (Q_k^i) in Algorithm 3.1 can be solved by both Algorithm 2.3 and 2.6. Finite convergence can be guaranteed by Algorithm 2.6 which, however, produces SDPs of size exponentially depending on the number of the constraints. Since U_k enlarges as k increases, subproblem (P_k) consequently becomes hard to be solved by Algorithm 2.6. Therefore, we solve (P_k) by Algorithm 2.3 which is also proved to have finite convergence generically [24]. Because the index set U is fixed and compact, Algorithm 2.6 is a better choice for solving (Q_k^i).

Proposition 3.3 (Monotonic Property) For all k, the optimal values of (P_k) in (3.3), we have

$$f_1^{\text{min}} \leq \cdots \leq f_k^{\text{min}} \leq f_{k+1}^{\text{min}} \leq \cdots \leq f^*.$$ \hspace{1cm} (3.5)

Proof Because

$$U_1 \subseteq \cdots \subseteq U_k \subseteq U_{k+1} \subseteq \cdots \subseteq U.$$

So the feasible sets of (P_k) and (P) satisfy

$$K \subseteq \cdots \subseteq K_{k+1} \subseteq K_k \subseteq \cdots \subseteq K_1,$$

we obtain the conclusion. \hfill \square

We have the following convergence analysis of Algorithm 3.1:

Theorem 3.4 Suppose that X is compact. If at each step k,

(a) subproblems (P_k) and each (Q_k^i) are globally solved,
(b) intermediate results S_k and at least one T_i^k are nonempty,

then either Algorithm 3.1 stops with solutions to (P) in a finite number of iterations or for any sequence (x^k) with $x^k \in S_k$, there exists at least one limit point as k increases and each of them solves (P).

Proof At each step, if (a) holds, then global optima f_k^{min} and g_i^k are obtained and monotonic property (3.5) is true. Additionally, if (b) is satisfied, then Algorithm 3.1 either stops in a finite number of iterations or proceeds without interrupt as k increases.

If Algorithm 3.1 stops at k-th iteration with $k < k_{\text{max}}$, then $g_i^k \geq 0$ for some i, which implies that the associated x_i^k is feasible for (P). Moreover, x_i^k is a global minimizer of (P) by (3.5). Now we assume $g_i^k < 0$ for each k and i which implies
$T^k_i \not\subseteq U_k$ and $U_k \subset U_{k+1}$ for all k. The following argument is based on the proof of [11, Theorem 7.2]. For any $x \in X$, define

$$v(x) := \min \{g(x, u), u \in U\}.$$

Obviously, $v(x)$ is continuous. Fix a sequence $\{x^k\}$ with $x^k \in S_k$, then a limit point $\bar{x} \in X$ always exists since X is compact. Without loss of generality, assume $x^k \to \bar{x}$. By (3.5), it suffices to prove that \bar{x} is feasible for (P). Let $v(x^k) = g(x^k, u^k)$ and X_k be the feasible set of (P_k). Since $U_k \subset U_{k+1}$, we have $\bar{x} \in \bigcap_{k=1}^{\infty} X_k$ and therefore $g(\bar{x}, u^k) \geq 0$. Then

$$v(\bar{x}) = v(x^k) + \left[v(\bar{x}) - v(x^k) \right]$$

$$= g(x^k, u^k) + \left[v(\bar{x}) - v(x^k) \right]$$

$$\geq \left[g(x^k, u^k) - g(\bar{x}, u^k) \right] + \left[v(\bar{x}) - v(x^k) \right].$$

By the continuity of v and g, we have $v(\bar{x}) \geq 0$, i.e., \bar{x} is feasible for (P). \hfill \square

If X and U are compact, then the optima of (P_k) and (Q^k_1) are achievable. By applying SDP relaxations Algorithm 2.3 and Algorithm 2.6 to (P_k) and (Q^k_1), as we have mentioned in Sect. 2, (a) and (b) are generically satisfied no matter what initial U_0 we choose. In Sect. 4, we will consider the case when U is noncompact for which the convergence of Algorithm 3.1 might fail if we choose an arbitrary initial U_0 (Example 4.1). We will deal with this issue by the technique of homogenization.

3.2 Numerical experiments

This subsection presents some numerical examples to illustrate the efficiency of Algorithm 3.1. The computation is implemented with Matlab 7.12 on a Dell 64-bit Linux Desktop running CentOS (5.6) with 8 GB memory and Intel(R) Core(TM) i7 CPU 860 2.8 GHz. Algorithm 3.1 is implemented with software Gloptipoly [10]. SeDuMi [31] is used as a standard SDP solver. Throughout the computational experiments, we set parameters $k_{\text{max}} = 15$, $\epsilon = 10^{-4}$ in Algorithm 3.1. After Algorithm 3.1 terminates, let X^* be the output set of global minimizers of (P), f^* be the value of the objective function f over X^* and Iter be the number of iterations Algorithm 3.1 has proceeded. Let

$$\text{Obj}_2 := \min_{x^*, u} g(x^*, u).$$

By the discussion in Sect. 3.1, the global minimizers in X^* can be certified by inequality $\text{Obj}_2 \geq -\epsilon$.

3.2.1 Examples of existing SIPP problems

We test some small examples taken from [1, Appendix A]. For nonpolynomial functions, e.g., sine, cosine or exponential function, we use their Taylor polynomial approximations, see Appendix A. Let $X = [-100, 100]^n$. Test results are reported in
Table 1: Computational results for existing SIPP problems

No.	\(x^*\)	Iter	\(f^*\)	Obj2
Example A.1	\((-0.0008, 0.4999)\)	2	\(-0.2504\)	\(6.4744e-7\)
Example A.2	\((-0.7500, -0.6180)\)	3	0.1945	\(3.5305e-7\)
Example A.3	\((-0.1514, -1.7484, 2.5725)\)	2	9.6973	\(7.8870e-5\)
Example A.4	\((-1, 0, 0)\)	2	1	\(6.2320e-5\)
Example A.5	\((0, 0)\)	2	0	\(-1.1578e-12\)
Example A.6	\((0, 0, 0)\)	2	4	\(-4.7070e-12\)
Example A.7	\((0, 0)\)	2	0	\(1.9285e-12\)

Table 1, where the numbering of examples is not the same as in [1]. The Iter column in Table 1 indicates that Algorithm 3.1 takes a very few steps to find the global minimizer which are certified by the Obj2 column.

3.2.2 Examples of random SIPP problems

We test the performance of Algorithm 3.1 on some random SIPP problems which are generated as follows.

Let \(x = (x_1, \ldots, x_n)\) and \(u = (u_1, \ldots, u_p)\). Given \(d \in \mathbb{N}\), let \([x]_d\) and \([u]_d\) be the vectors of monomials with degree up to \(d\) in \(\mathbb{R}[x]\) and \(\mathbb{R}[u]\), respectively. Denote \(\langle [x]_d, [u]_d \rangle\) as the vector obtained by stacking \([x]_d\) and \([u]_d\). Let \(f(x) = \eta^T [x]_{2d_1}\) be the objective function where \(\eta\) is a Gaussian random vector of matching dimension. Let \(g(x, u) = \tau - \langle [x]_{d_2}, [u]_{d_2} \rangle^T M \langle [x]_{d_2}, [u]_{d_2} \rangle\), where \(\tau\) is a random number in \([1, 10]\) and \(M\) is a random positive semidefinite matrix of matching dimension. Let \(X = B_n(0, 1)\) be the unit ball in \(\mathbb{R}^n\) and \(U\) varies among \(U_1 = B_p(0, 1)\), \(U_2 = [-1, 1]^p\) and \(U_3 = \Delta_p\) where \(\Delta_p\) is the \(p\) dimensional simplex.

The results using Algorithm 3.1 are shown in Table 2 where the Inst column denotes the number of randomly generated instances, the consumed computer time is in the format hr:mn:sc with hr (resp. mn, sc) standing for the consumed hours (resp. minutes, seconds). The Obj2 column has Obj2 \(\geq \epsilon\), which shows that Algorithm 3.1 successfully solves all the random problems.

3.3 Application to PMI problems

In this subsection, we apply Algorithm 3.1 to the following optimization problem with polynomial matrix inequality (PMI):

\[
\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t. } G(x) \succeq 0,
\]

where \(f(x) \in \mathbb{R}[x]\) and \(G(x)\) is an \(m \times m\) symmetric matrix with entries \(G_{ij}(x) \in \mathbb{R}[x]\). PMI is a special SIPP problem and has been widely arising in control system design, e.g., static output feedback design problems [9]. PMI is also interesting in optimization theory, e.g., SDP representation of a convex semialgebra set [20]. Some traditional methods for globally solving (3.6) are based on branch-and-bound
Table 2 Computational results for random SIPP problems

No.	n	p	d_1	d_2	Inst	U	time (min, max)	Obj2 (min, max)
1	5	3	3	2	10	U_1	0:00:17	1.3479
2	5	3	2	2	10	U_3	0:00:06	−9.5236e−9
3	6	2	2	2	10	U_1	0:00:19	1.7144
4	6	3	2	2	10	U_1	0:00:19	1.0450
5	7	3	3	2	10	U_3	0:00:26	3.7797e−8
6	8	3	2	2	10	U_1	0:04:52	1.3213
7	9	2	2	2	5	U_1	0:45:26	1.5850
8	9	2	2	2	5	U_3	0:44:40	1.7521e−8
9	5	2	2	2	5	U_2	0:57:17	1.3116e−6

schemes and alike [6] which, as pointed in [9], are computationally expensive. Recently, some global methods based on SOS relaxations are proposed in [12, 13] as well as in [6] in a dual view.

Define

$$X := \{ x \in \mathbb{R}^n \mid G(x) \succeq 0 \} \quad \text{and} \quad U := \{ u \in \mathbb{R}^m \mid \|u\|^2 = 1 \}.$$

Then problem (3.6) is equivalent to the following SIPP problem

$$\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{s.t.} & \quad g(x, u) = u^T G(x) u \geq 0, \quad \forall u \in U.
\end{align*}$$

(3.7)

Assume the feasible set X is compact, then we can apply Algorithm 3.1 to solve SIPP problem (3.7). The following examples show that Algorithm 3.1 is efficient to solve PMI problems.

Example 3.5 Consider the following PMI problem:

$$\begin{align*}
\min_{x \in \mathbb{R}^2} & \quad f(x) = x_1 + x_2 \\
\text{s.t.} & \quad G(x) = \begin{bmatrix}
4 - x_1^2 - x_2^2 & x_1 & x_2 \\
x_1 & x_2^2 - x_1 & x_1 x_2 \\
x_2 & x_1 x_2 & x_1^2 - x_2
\end{bmatrix} \succeq 0.
\end{align*}$$

(3.8)

The characteristic polynomial of matrix $G(x)$ is:

$$p(t, x) = \det(t I_3 - G(x)) = t^3 - g_1(x)t^2 + g_2(x)t - g_3(x),$$

\(\copyright \) Springer
Fig. 1 Feasible region of PMI problem (3.8) in Example 3.5

where

\[g_1(x) = 4 - x_1 - x_2, \]
\[g_2(x) = x_1^2 - 4x_2 - x_1^4 + x_1x_2 - x_2^4 - 2x_1^2x_2^2 + x_1x_2^2 - 4x_1 + 3x_1^2 + 3x_2^2, \]
\[g_3(x) = x_1^2 + 4x_1x_2 + 2x_1^2x_2^2 + x_1x_2^2 - x_2^3x_2 - 4x_3^3 + x_2^2x_1^2 - x_2^3x_1 - 4x_3^2 \\
- x_1^4 - x_2^4 + x_1^5 + x_2^5 + x_1x_2^3. \]

According to Descartes’ rule of signs [9], the feasible set of (3.8) is

\[\{ x \in \mathbb{R}^2 | g_1(x) \geq 0, \; g_2(x) \geq 0, \; g_3(x) \geq 0 \} \]

which is shown shaded in Fig. 1. We first reformulate (3.8) as a SIPP problem (3.7), then apply Algorithm 3.1 to it. After 5 iterations, we get a global minimizer \(x^* \approx (-1.2853, -1.2763) \) which is certified by \(\text{Obj}_2 = -1.4523 \times 10^{-4} \). The accuracy of this result can be seen from Fig. 1.

Example 3.6 Consider the following PMI problem:

\[
\begin{align*}
\min_{x \in \mathbb{R}^2} f(x) &= x_1 - x_2 \\
\text{s.t. } G(x) &= \begin{bmatrix} 10 - x_1^2 - x_2^2 & x_1 & -x_1^2 + x_2 & x_2 + 3 \\
x_1 & x_2^2 & x_1 - x_2^2 & x_1 \\
-x_1^2 + x_2 & x_1 - x_2^2 & x_1 + 2x_2^2 & x_2 \\
x_2 + 3 & x_1 & x_2 & x_2^2 \end{bmatrix} \succeq 0.
\end{align*}
\]

(3.9)

Similar to Example 3.5, we obtain the feasible set of (3.9) by Descartes’ rule of signs [9] and show it shaded in Fig. 2. Applying Algorithm 3.1 to the reformulation (3.7) of problem (3.9), we get global minimizer \(x^* \approx (0.5093, -1.0678) \) and minimum
$f(x^*) \approx 1.5771$ which are certified by $\text{Obj}_2 = -9.4692 \times 10^{-5}$. From Fig. 2, we can see this result is accurate. □

We end this subsection by pointing out a trick hidden in the reformulation (3.7) of (3.6). PMI optimization problem (3.6) can be regarded as a SIPP problem with a non-compact index set $\tilde{U} = \mathbb{R}^m$. Since the constraint function $g(x, u)$ is homogenous in u, we can restrict \tilde{U} to the unit sphere U. By Theorem 3.4, to guarantee the convergence of Algorithm 3.1, the optimum of (Q_i^k) needs to be achievable for each k which might fail if U is noncompact. The reformulation (3.7) of (3.6) gives us a clue for dealing with SIPP with noncompact U by the technique of homogenization. We will go into detail about this technique in next section.

4 SIPP with noncompact set U

At the k-th iteration of Algorithm 3.1, if the global minima g_i^k of (Q_i^k) are not achievable for all $x_i^k \in S_k$, then by Remark 2.5, either

- case 1. $T_i^k = \emptyset$, then U_{k+1} can not be updated and consequently S_{k+1} remains the same as S_k, or
- case 2. U_{k+1} is updated by T_i^k which consists of KKT points or singular points of the feasible set of (Q_i^k) rather than global minimizers.

As we have discussed in Sect. 3.1, the convergence property of Algorithm 3.1 might fail or wrong global minimizers might be outputted if the above cases happen. For example,
Example 4.1 Consider the following problem:

\[
\begin{aligned}
 f^* := \min_{x_1, x_2 \in \mathbb{R}} & -x_1 - x_2 \\
 \text{s.t.} & \ x_1(u_1^2 - 1) + (x_2 - u_1 u_2)^2 \geq 0, \quad \forall u_1, u_2 \in \mathbb{R}, \\
 & \ x_1^2 + x_2^2 = 2.
\end{aligned}
\] (4.1)

We choose \(u_1, u_2 \) such that \(x_2 - u_1 u_2 = 0 \). By letting \(u_1 \) tend to infinity and 0 respectively, we obtain that \(x_1 = 0 \) for any feasible point \(x \). Therefore, there are only two feasible points \((0, \pm \sqrt{2}) \) and the global minimum is \(-\sqrt{2}\) with minimizer \((0, \sqrt{2})\).

We claim that Algorithm 3.1 fails to solve (4.1) if we set initial \(U_0 = \{(u_1^0, u_2^0)\} \) such that

\[
(u_1^0, u_2^0) \notin U := \{u \in \mathbb{R}^2 \mid u_1 u_2 = \sqrt{2}, u_1^2 < 2\sqrt{2} - 2\}.
\]

We prove it in the following. First, we show that for any \((u_1, u_2) \in \mathbb{R}^2\) there always exists \((\tilde{x}_1, \tilde{x}_2)\) with \(\tilde{x}_1 > 0, \tilde{x}_2 > 0 \) such that

\[
 g(\tilde{x}, u) := \tilde{x}_1(u_1^2 - 1) + (\tilde{x}_2 - u_1 u_2)^2 \geq 0, \quad \tilde{x}_1^2 + \tilde{x}_2^2 = 2.
\]

This is true if \(g((0, \sqrt{2}), u) > 0 \) or \(g((\sqrt{2}, 0), u) > 0 \) by the continuity of \(g(x, u) \). Now we assume

\[
 g((0, \sqrt{2}), u) \leq 0 \quad \text{and} \quad g((\sqrt{2}, 0), u) \leq 0.
\]

From the first inequality, we get \(u_1 u_2 = \sqrt{2} \). Then by the second inequality, we have \(u_1^2 \leq 1 - \sqrt{2} \) which is a contradiction. Therefore, the following subproblem

\[
(P_0): \quad f_0^{\min} := \min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_1^2 + x_2^2 = 2, \quad g(x, u) \geq 0, \quad \forall u_1, u_2 \in \mathbb{R},
\]

has global minimizer \(S_0 = \{(\tilde{x}_1, \tilde{x}_2)\} \) with \(\tilde{x}_1 > 0, \tilde{x}_2 > 0 \). Then we solve the subproblem

\[
(Q^0): \quad g^0 := \min_{u \in \mathbb{R}^2} g(\tilde{x}, u) = \tilde{x}_1(u_1^2 - 1) + (\tilde{x}_2 - u_1 u_2)^2.
\] (4.2)

Obviously, \(g^0 = -\tilde{x}_1 \) is not achievable. Applying Jacobian SDP relaxation Algorithm 2.6, we obtain \(U^0 = \{(0, 0)\} \) which consists of the only critical point \((0, 0)\) of map \(g(x^0, u) \) with critical value \(\tilde{x}_2^2 - \tilde{x}_1 \). If \(\tilde{x}_2^2 - \tilde{x}_1 \geq 0 \), then Algorithm 3.1 terminates and outputs \(X^* = \{(\tilde{x}_1, \tilde{x}_2)\} \) which is a wrong solution. Now we assume \(\tilde{x}_2^2 - \tilde{x}_1 < 0 \) and continue. By Algorithm 3.1, \(U_1 = \{((\bar{u}_1, \bar{u}_2), (0, 0))\} \). Then we go to the next iteration and solve

\[
(P_1): \quad f_1^{\min} := \min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{s.t.} \quad x_2 - x_1 \geq 0, \quad g(x, \bar{u}) \geq 0, \quad x_1^2 + x_2^2 = 2.
\]
Let K_1 be the feasible set of (P_1), then
case 1. There exists no $(\tilde{x}_1, \tilde{x}_2) \in K_1$ with $\tilde{x}_1 > 0, \tilde{x}_2 > 0$. The global minimizer of
(P_1) is $S_1 = \{(0, \sqrt{2})\}$ and $g^1 := \min_{u \in \mathbb{R}^2} g((0, \sqrt{2}), u) \geq 0$. Therefore, the
correct global solution of (4.1) is outputted. In this case, by the continuity of $g(x, u)$, we have $g((0, \sqrt{2}), \tilde{u}) \leq 0$ and $g((1, 1), \tilde{u}) < 0$. From these two
inequalities, we get $(\tilde{u}_1, \tilde{u}_2) \in U$.
case 1. There exists $(\tilde{x}_1, \tilde{x}_2) \in K_1$ with $\tilde{x}_1 > 0, \tilde{x}_2 > 0$. Then the global minimizer of
(P_1) is $S_1 = \{(\tilde{x}_1, \tilde{x}_2)\}$ with $\tilde{x}_1 > 0, \tilde{x}_2 > 0$. Similar to \tilde{g}, g^1 is not achiev-
able and $U_1 = \{(\tilde{u}_1, \tilde{u}_2), (0, 0)\}$ can not be updated. Consequently, the same
process will be repeated in the following iterations.

Now we have proved the claim. Since the set U is a subset of a Zariski closed set of
\mathbb{R}^2, Algorithm 3.1 fails if we choose a generic initial $U_0 = \{(u_1, u_2)\}$.

Hence, Algorithm 3.1 might fail to solve SIPP problem (P) if the optima of sub-
problems (Q^k_i) can not be reached for all $x^k_i \in S_k$ which might happen when U is
noncompact. As we have mentioned at the end of Sect. 3, the reformulation (3.7) of
(3.6) sheds light on this issue by the technique of homogenization. In the following,
we apply this technique to general SIPP problem (P) with noncompact index set U.

For given polynomial $q(u) \in \mathbb{R}[u] := \mathbb{R}[u_1, \ldots, u_p]$ with degree $d = \deg(q)$, let
$\tilde{q}(\tilde{u}) = u_0^d q(u/u_0)$ be the homogenization of $q(u)$ where $\tilde{u} = (u_0, u) \in \mathbb{R}^{p+1}$. Define

$$
\tilde{g}(x, \tilde{u}) = u_0^{d_g} g(x, u/u_0) \text{ where } d_g = \deg_u g(x, u)
$$

and

$$
U = \{u \in \mathbb{R}^p | h_1(u) \geq 0, \ldots, h_{m_1}(u) \geq 0\},
$$

$$
U_0 = \{\tilde{u} \in \mathbb{R}^{p+1} | \tilde{h}_1(\tilde{u}) \geq 0, \ldots, \tilde{h}_{m_1}(\tilde{u}) \geq 0, u_0 > 0, \|\tilde{u}\|^2 = 1\},
$$

$$
\tilde{U} = \{\tilde{u} \in \mathbb{R}^{p+1} | \tilde{h}_1(\tilde{u}) \geq 0, \ldots, \tilde{h}_{m_1}(\tilde{u}) \geq 0, u_0 \geq 0, \|\tilde{u}\|^2 = 1\}.
$$

Proposition 4.2 $q(u) \geq 0$ on U if and only if $\tilde{q}(\tilde{u}) \geq 0$ on closure(U_0).

Proof “If” direction. Suppose there exists $v \in U$ such that $q(v) < 0$. For $i \in [m_1]$, we have $h_i(v) \geq 0$. Let $\tilde{v} = \left(\frac{1}{\sqrt{1+\|v\|^2}}, \frac{v}{\sqrt{1+\|v\|^2}}\right)$, then

$$
\tilde{h}_i(\tilde{v}) = \left(1 + \|v\|^2\right)^{-\frac{\deg(h_i)}{2}} h_i(v) \geq 0, \quad i \in [m_1],
$$

which implies $\tilde{v} \in U_0$ and

$$
\tilde{q}(\tilde{v}) = \left(1 + \|v\|^2\right)^{-\frac{d}{2}} q(v) < 0.
$$

It contradicts the assumption that $\tilde{q}(\tilde{v}) \geq 0$ on closure(U_0).

“Only if” direction. Let $\tilde{v} = (v_0, v) \in \text{closure}(U_0)$, then there exists a sequence
$v^k = (v_0^k, v^k) \in U_0$ such that $\lim_{k \to \infty}(v_0^k, v^k) = (v_0, v)$ with $v_0^k > 0$ for all k. We have

$$
h_i(v^k/v_0^k) = (v_0^k)^{-\deg(h_i)} \tilde{h}_i(\tilde{v}^k) \geq 0, \quad i \in [m_1], \text{ for all } k.
$$
Therefore, the sequence \(\{v^k/v^k_0\} \in U \) and \(q(v^k/v^k_0) \geq 0 \). Since \(q \) is continuous,

\[
\tilde{q}(\tilde{v}) = \lim_{k \to \infty} \tilde{q}(v^k) = \lim_{k \to \infty} (v^k_0)^d q(v^k/v^k_0) \geq 0,
\]

which shows \(\tilde{q}(\tilde{v}) \geq 0 \) on \(\text{closure}(U_0) \). The proof is completed. \(\square \)

Corollary 4.3 A polynomial \(q(u) \geq 0 \) on \(\mathbb{R}^p \) if and only if \(\tilde{q}(\tilde{u}) \geq 0 \) on \(\{\tilde{u} \in \mathbb{R}^{p+1} | \|\tilde{u}\|^2 = 1\} \).

Proof From the proof of Proposition 4.2, we can see the inequality \(u_0 > 0 \) can be removed from \(U_0 \) such that \(q(u) \geq 0 \) on \(\mathbb{R}^p \) if and only if \(\tilde{q}(\tilde{u}) \geq 0 \) on

\[
\text{closure}(\{\tilde{u} \in \mathbb{R}^{p+1} | \|\tilde{u}\|^2 = 1\}) = \{\tilde{u} \in \mathbb{R}^{p+1} | \|\tilde{u}\|^2 = 1\}.
\]

\(\square \)

By Proposition 4.2, we have the following equivalent reformulation of problem \((P)\):

\[
(P_0) : \ \left\{ \begin{array}{l}
 f^* := \min_{x \in X} f(x) \\
 \text{s.t. } \tilde{g}(x, \tilde{u}) \geq 0, \ \forall \tilde{u} \in \text{closure}(U_0).
 \end{array} \right.
\]

Some natural questions arise: how to get the explicit expression of semi-algebraic set closure\((U_0)\)? Is it true that \(\text{closure}(U_0) = \tilde{U} \)? Clearly, we have

\[
\text{closure}(U_0) \subseteq \tilde{U}. \tag{4.3}
\]

Unfortunately, the equality does not always hold even if set \(U \) is compact (cf. [21, Example 5.2]).

Definition 4.4 ([21]) \(U \) is closed at \(\infty \) if \(\text{closure}(U_0) = \tilde{U} \).

Since it might be hard to express \(\text{closure}(U_0) \) for a given particular SIPP problem, we consider to solve the following problem in general:

\[
(\tilde{P}) : \ \left\{ \begin{array}{l}
 \tilde{f}^* := \min_{x \in X} f(x) \\
 \text{s.t. } \tilde{g}(x, \tilde{u}) \geq 0, \ \forall \tilde{u} \in \tilde{U}.
 \end{array} \right.
\]

As set \(\tilde{U} \) is compact, the semidefinite relaxation Algorithm 3.1 in Sect. 3 can successfully solve this problem with any arbitrary initial \(U_0 \). Next we investigate the relation between problem \((P)\) and problem \((\tilde{P})\).

We define

\[
M = \{x \in \mathbb{R}^n | g(x, u) \geq 0, \ \forall u \in U\}.
\]

\[
\tilde{M} = \{x \in \mathbb{R}^n | \tilde{g}(x, \tilde{u}) \geq 0, \ \forall \tilde{u} \in \tilde{U}\}.
\]

Proposition 4.5 We have \(\tilde{M} \subseteq M \) and the equality holds if \(U \) is closed at \(\infty \).
Proof By Proposition 4.2, we have

$$M = \{ x \in \mathbb{R}^n \mid \tilde{g}(x, \tilde{u}) \geq 0, \ \forall \ \tilde{u} \in \text{closure}(U_0) \}.$$

Then the conclusion follows due to the relationship (4.3). \qed

Consequently, we have

Theorem 4.6 \(\tilde{f}^* \geq f^* \) and the equality holds if \(U \) is closed at \(\infty \).

Corollary 4.3 shows that \(U = \mathbb{R}^p \) is closed at \(\infty \) and therefore,

Corollary 4.7 The following two problems are equivalent:

$$\begin{align*}
\begin{cases}
\min_{x \in \mathcal{X}} f(x) \\
s.t. \ g(x, u) \geq 0, \ \forall \ u \in \mathbb{R}^p,
\end{cases} & \quad \begin{cases}
\min_{x \in \mathcal{X}} f(x) \\
s.t. \ \tilde{g}(x, \tilde{u}) \geq 0, \ \forall \ \tilde{u} \in \tilde{U},
\end{cases}
\end{align*}$$

where \(\tilde{U} = \{ \tilde{u} \in \mathbb{R}^{p+1} \mid \| \tilde{u} \| = 1 \} \).

Example 4.1 (Continued) We reformulate the problem (4.1) as

$$\begin{align*}
\begin{cases}
\tilde{f}^* := \min_{x_1, x_2 \in \mathbb{R}} -x_1 - x_2 \\
s.t. \ x_1(u_1^2 - u_0^2) + (x_2u_0^2 - u_1u_2)^2 \geq 0, \ \forall \ \tilde{u} \in \tilde{U},
\end{cases} & \quad \begin{cases}
\min_{x \in \mathcal{X}} f(x) \\
s.t. \ g(x, u) \geq 0, \ \forall \ u \in \mathbb{R}^p,
\end{cases}
\end{align*}$$

(4.4)

where \(\tilde{U} = \{(u_0, u_1, u_2) \in \mathbb{R}^3 \mid u_0^2 + u_1^2 + u_2^2 = 1 \} \). By choosing \(u_0 = 1 \), we know \(\tilde{M} \supseteq \{(0, \pm \sqrt{2})\} \) which, obviously, are feasible to (4.4). Therefore, \(\tilde{f}^* = f^* = -\sqrt{2} \) with minimizer \((0, \sqrt{2}) \). Choosing \(U_0 = \{(1, 0, 0)\} \) in Algorithm 3.1, Fig. 3 shows the feasible regions of subproblems \((P_k) \) for iterations \(k = 0, 1, \ldots, 5 \). Let \(h(x) = x_1^2 + x_2^2 - 2 \). At \(i \)-th iteration, the feasible region is defined by

$$K_i := \{ x \in \mathbb{R}^2 \mid h(x) = 0, g_0(x) \geq 0, \ldots, g_t(x) \geq 0 \}$$

where

\[
\begin{align*}
g_0 &= -x_1 + x_2^2, \\
g_1 &\approx 0.026046 - 0.319630x_1 - 0.19679x_2 + 0.371710x_2^2, \\
g_2 &\approx 0.054893 - 0.115770x_1 - 0.18811x_2 + 0.161160x_2^2, \\
g_3 &\approx 0.068650 - 0.049084x_1 - 0.14992x_2 + 0.081854x_2^2, \\
g_4 &\approx 0.072498 - 0.025711x_1 - 0.12039x_2 + 0.049977x_2^2, \\
g_5 &\approx 0.073368 - 0.018152x_1 - 0.10683x_2 + 0.038891x_2^2.
\end{align*}
\]
For each i, the feasible region K_i is the intersection of the left parts of the circle $x_1^2 + x_2^2 = 2$ divided by hyperbolas $g_i(x) = 0$, $i = 0, \ldots, 5$. From Fig. 3, we can see the minimizers of subproblems (P_k) converge to $(0, \sqrt{2})$ which is the minimizer of problem (4.1).

We would like to point out that if U is not closed at ∞, we might have $\tilde{f}^* > f^*$. For example,

Example 4.8 Consider the following SIPP problem:

$$
\begin{array}{ll}
 f^* := \min_{x \in \mathbb{R}} x^2 \\
 \text{s.t. } x(u_1 - u_2 + 1) \geq 0, \quad \forall u \in U, \\
 x \in [1, 2],
\end{array}
$$

where

$$
U = \{ u \in \mathbb{R}^2 : u_1^2(u_1 - u_2) - 1 = 0 \}.
$$

Since for all $u \in U$,

$$
g(1, u) = u_1 - u_2 + 1 = \frac{1}{u_1^2} + 1 > 0,
$$

$x^* = 1$ is feasible and furthermore the minimizer of problem (4.5). Hence, $f^* = 1$. By definition,

$$
\tilde{U} = \{ \tilde{u} \in \mathbb{R}^3 : u_1^2(u_1 - u_2) - u_0^3 = 0, \ u_0 \geq 0, \ u_0^2 + u_1^2 + u_2^2 = 1 \}.
$$

As is shown in [7, 21], U is not closed at ∞ because there exists a point $(0, 0, 1) \in \tilde{U}$ but $(0, 0, 1) \notin \text{closure}(U_0)$. Since for any $x \in [1, 2]$,

$$
\tilde{g}(x, (0, 0, 1)) = -x < 0,
$$
we have $\tilde{M} = \emptyset$. Therefore, $\tilde{f}^* = \infty > f^*$. \hfill \square

Example 4.8 shows that the problem (\tilde{P}) might not be equivalent to (P) when the set U is not closed at ∞. In the following, however, we show that U is closed at ∞ in general. In other words, U is closed at ∞ if it is defined by generic polynomials.

Suppose that U is not closed at ∞, then by definition there exists $(0, \tilde{u}) \in \tilde{U} \setminus \text{closure}(U_0)$ with $0 \neq \tilde{u} \in \mathbb{R}^p$. Let \hat{h}_i denote the homogeneous part of highest degree of h_i for $i \in [m_1]$ and

$$\{j_1, \ldots, j_\ell\} := \{ j \in [m_1] | \hat{h}_j (0, \tilde{u}) = \hat{h}_j (\tilde{u}) = 0 \}.$$

Then \tilde{u} is a solution to the polynomial system

$$\hat{h}_{j_1} (\tilde{u}) = \cdots = \hat{h}_{j_\ell} (\tilde{u}) = \| \tilde{u} \|^2 - 1 = 0. \quad (4.6)$$

The Jacobian matrix of the system (4.6) at \tilde{u} is

$$A(\tilde{u}) := \begin{bmatrix}
\frac{\partial \hat{h}_{j_1}}{\partial u_1} (\tilde{u}) & \cdots & \frac{\partial \hat{h}_{j_1}}{\partial u_p} (\tilde{u}) \\
\vdots & \ddots & \vdots \\
\frac{\partial \hat{h}_{j_\ell}}{\partial u_1} (\tilde{u}) & \cdots & \frac{\partial \hat{h}_{j_\ell}}{\partial u_p} (\tilde{u}) \\
2\tilde{u}_1 & \cdots & 2\tilde{u}_p
\end{bmatrix}.$$

Lemma 4.9 ([7, Lemma 2.10]) Suppose U is not closed at ∞. Let $(0, \tilde{u}) \in \tilde{U} \setminus \text{closure}(U_0)$ and $\ell < p$, then rank $A(\tilde{u}) < \ell + 1$.

Let $\hat{h}_{m_1 + 1} := \| \tilde{u} \|^2 - 1$ and $J(\tilde{u}) = \{ j_1, \ldots, j_\ell, m_1 + 1 \}$. We review some background about resultants and discriminants in Appendix B. By Proposition B.1 and Proposition B.3, we have

Theorem 4.10 Suppose U is not closed at ∞, and let $(0, \tilde{u}) \in \tilde{U} \setminus \text{closure}(U_0)$, then

(a) If $|J(\tilde{u})| > p$, then for every subset $\{ j_1, \ldots, j_{p+1} \} \subseteq J(\tilde{u})$,

$$\text{Res}(\hat{h}_{j_1}, \ldots, \hat{h}_{j_{p+1}}) = 0.$$

(b) If $|J(\tilde{u})| \leq p$, then $\Delta(\hat{h}_{j_1}, \ldots, \hat{h}_{j_\ell}, \hat{h}_{m_1 + 1}) = 0$.

The above theorem shows that if U is defined by some generic polynomials, then it is closed at ∞. Hence, the assumption that U is closed at ∞ is a generic condition. Therefore, SIPP problems (P) and (\tilde{P}) are equivalent in general.

Example 4.11 Consider the following problem

$$\begin{cases}
\min_{x \in X} f(x) = x_1^2 + x_2^2 \\
s.t. \ g(x, u) = x_1 u_1 + u_2 + x_2 \geq 0, \ \forall \ u \in U,
\end{cases} \quad (4.7)$$
Fig. 4 The feasible region \(U \) in Example 4.11

The set \(U \) is shown shaded in Fig. 4. Since \(u_1 + u_2 + 1 = 0 \) is the asymptote of the curve \(u_1^3 + u_2^3 - 3u_1u_2 = 0 \), the inequality \(g(x,u) \geq 0 \) for all \(u \in U \) requires \(x_1 = 1 \) and \(x_2 \geq 1 \). Therefore, the feasible set of (4.7) is \[\{ x \in \mathbb{R}^2 \mid x_1 = 1, 1 \leq x_2 \leq \sqrt{3} \} \] and the global minimizer is \(x^* = (1,1) \). It is easy to see that for a given \(\bar{x}_1, \bar{x}_2 \in X \), the global minimum of \(g(\bar{x},u) \) over \(U \) is either \(-\infty\) or finite but not achievable. Therefore, by the discussion at the beginning of this section, Algorithm 3.1 might fail to solve (4.7). For example, if we set \(U_0 = \{(1,-1)\} \), then we get minimizer \(X^* = \{(0.5000, 0.4999)\} \); if \(U_0 = \{(1,0)\} \), then \(X^* = \{(0.0262, 0.3086) \times 10^{-5}\} \).

Now we use the homogenization technique to reformulate (4.7). First, we show that \(U \) is closed at \(\infty \). Let

\[
U_0 = \{ (u_0, u_1, u_2) \in \mathbb{R}^3 \mid u_1^3 + u_2^3 - 3u_1u_2u_0 \geq 0, \ u_0^2 + u_1^2 + u_2^2 = 1, \ u_0 > 0 \},
\]

\[
\tilde{U} = \{ (u_0, u_1, u_2) \in \mathbb{R}^3 \mid u_1^3 + u_2^3 - 3u_1u_2u_0 \geq 0, \ u_0^2 + u_1^2 + u_2^2 = 1, \ u_0 \geq 0 \}.
\]

By definition, if \(U \) is not closed at \(\infty \), then there exists \((0, \tilde{u}_1, \tilde{u}_2) \in \tilde{U} \setminus \text{closure}(U_0) \) which implies

\[
\tilde{u}_1^3 + \tilde{u}_2^3 = 0, \quad \tilde{u}_1^2 + \tilde{u}_2^2 = 1.
\]

Therefore

\[
(\tilde{u}_1, \tilde{u}_2) \in \left\{ \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right), \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) \right\}.
\]

Let

\[
\tilde{u}_k := \left(\sqrt{2\epsilon_k}, -\frac{1}{2} - \epsilon_k, \sqrt{1 - \frac{1}{2} - \epsilon_k} \right), \quad \hat{u}_k := \left(\sqrt{2\epsilon_k}, \sqrt{\frac{1}{2} - \epsilon_k}, -\sqrt{\frac{1}{2} - \epsilon_k} \right).
\]
Let $\varepsilon_k \to 0$, then $\tilde{u}_k, \hat{u}_k \in U_0$ for all k large enough and
\[
\lim_{k \to \infty} \tilde{u}_k = \left(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \quad \lim_{k \to \infty} \hat{u}_k = \left(0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right).
\]
This shows U is closed at ∞. Therefore, by homogenization, we reformulate (4.7) as the following equivalent problem
\[
\begin{aligned}
\min_{x \in X} x_1^2 + x_2^2 \\
\text{s.t. } \tilde{g}(x, \tilde{u}) = x_1 u_1 + u_2 + x_2 u_0 \geq 0, \quad \tilde{u} \in \tilde{U}.
\end{aligned}
\]
By Algorithm 3.1, we find a global minimizer
\[
x^* \approx (0.9999, 0.9998) \quad \text{with Obj}_2 = -9.8148 \times 10^{-7},
\]
after several iterations. \qed

In this section, by the homogenization technique, we reformulate the SIPP problem (P) with the noncompact index set U as the problem (\tilde{P}) with compact index set \tilde{U} which can be globally solved by Algorithm 3.1. Under the assumption that set U is closed at ∞ which is a generic condition, we show the two problems are equivalent.

Appendix A: Existing SIPP examples

Example A.1 Let $U = [0, 2]$ and
\[
f(x) = \frac{1}{3} x_1^2 + \frac{1}{2} x_1 + x_2^2 - x_2, \quad g(x, u) = -x_1^2 - 2x_1 x_2 u^2 + \sin(u).
\]
Replace the function $\sin(u)$ by $u - \frac{u^3}{6}$.

Example A.2 Let $U = [0, 1]$ and
\[
f(x) = \frac{1}{3} x_1^2 + x_2^2 + \frac{1}{2} x_1, \quad g(x, u) = -(1 - x_1^2 u^2)^2 + x_1 u^2 + x_2^2 - x_2.
\]

Example A.3 Let $U = [0, 1]$ and
\[
f(x) = x_1^2 + x_2^2 + x_3^2, \quad g(x, u) = -x_1 - x_2 e^{x_3 u} - e^{2 u} + 2 \sin(4u).
\]
Replace function $e^{x_3 u}$ by $1 + x_3 u + \frac{1}{2} x_3^2 u^2 + \frac{1}{6} x_3^3 u^3 + \frac{1}{24} x_3^4 u^4$, function $e^{2 u}$ by $1 + 2 u + 2 u^2 + \frac{4}{3} u^3 + \frac{2}{5} u^4$, and function $\sin(4u)$ by $4u - \frac{32}{3} u^3$.

Example A.4 Let $U = [0, 1]^2$ and
\[
f(x) = x_1^2 + x_2^2 + x_3^2, \quad g(x, u) = -x_1 (u_1 + u_2^2 + 1) - x_2 (u_1 u_2 - u_2^2) - x_3 (u_1 u_2 + u_2^2 + u_2) - 1.
\]
Example A.5 Let $U = [0, \pi]$ and

$$f(x) = x_2^2 - 4x_2, \quad g(x, u) = -x_1 \cos(u) - x_2 \sin(u) + 1.$$

Replace function $\sin(u)$ by $u - \frac{1}{6} u^3$ and $\cos(u)$ by $1 - \frac{1}{2} u^2 + \frac{1}{24} u^4$.

Example A.6 Let $U = [0, \pi]$ and

$$f(x) = (x_1 + x_2 - 2)^2 + (x_1 - x_2)^2 + 30 \min(0, (x_1 - x_2))^2, \quad g(x, u) = -x_1 \cos(u) - x_2 \sin(u) + 1.$$

Like in [16], let $x_3 = \min(0, (x_1 - x_2))$, then $f(x) = (x_1 + x_2 - 2)^2 + (x_1 - x_2)^2 + 30x_3^2$. We add new constraints $x_3^2 = (x_1 - x_2)^2$ and $x_3 \geq 0$ in X. Replace function $\sin(u)$ by $u - \frac{u^3}{6} + \frac{u^5}{5!}$.

Example A.7 Let $U = [-1, 1]$ and

$$f(x) = x_2, \quad g(x, u) = -2x_1^2 u^2 + u^4 - x_1^2 + x_2.$$

Appendix B: Resultants and discriminants

We review some background about resultants and discriminants. More details can be found in [5, 21, 22].

Let f_1, \ldots, f_n be homogeneous polynomials in $x = (x_1, \ldots, x_n)$. The resultant $\text{Res}(f_1, \ldots, f_n)$ is a polynomial in the coefficients of f_1, \ldots, f_n satisfying

$$\text{Res}(f_1, \ldots, f_n) = 0 \iff \exists 0 \neq u \in \mathbb{C}^n, \quad f_1(u) = \cdots = f_n(u) = 0.$$

Let f_1, \ldots, f_m be homogenous polynomials with $m < n$. The discriminant for f_1, \ldots, f_m is denoted by $\Delta(f_1, \ldots, f_m)$, which is a polynomial in the coefficients of f_1, \ldots, f_m such that

$$\Delta(f_1, \ldots, f_m) = 0$$

if and only if the polynomial system

$$f_1(x) = \cdots = f_m(x) = 0$$

has a solution $0 \neq u \in \mathbb{C}^n$ such that the Jacobian matrix of f_1, \ldots, f_m does not have full rank.

Given inhomogeneous polynomial $h(x) \in \mathbb{R}[x]$, let \tilde{h} denote the homogenization of h, i.e., $\tilde{h} = \tilde{h}(\tilde{x}) = x_0^{\deg(h)} h(x/x_0)$. For inhomogeneous polynomials $f_0, f_1, \ldots, f_n \in \mathbb{R}[x]$, the resultant $\text{Res}(f_0, f_1, \ldots, f_n)$ is defined to be

$$\text{Res}(\tilde{f}_0, \tilde{f}_1, \ldots, \tilde{f}_n).$$
For inhomogeneous polynomials \(f_1, \ldots, f_m \in \mathbb{R}[x] \) with \(m \leq n \), the discriminant \(\Delta(f_1, \ldots, f_m) \) is defined as

\[
\Delta(\tilde{f}_1, \ldots, \tilde{f}_m).
\]

We have

Proposition B.1 Let \(f_0, f_1, \ldots, f_n \in \mathbb{R}[x] \) be inhomogeneous polynomials. Suppose the polynomial system

\[
f_0(x) = f_1(x) = \cdots = f_n(x) = 0
\]

has a solution in \(\mathbb{C}^n \), then

\[
\text{Res}(f_0, f_1, \ldots, f_n) = 0.
\]

Proof If the polynomial system

\[
f_0(x) = f_1(x) = \cdots = f_n(x) = 0
\]

has a solution \(u \in \mathbb{C}^n \), then the polynomial system

\[
\tilde{f}_0(\tilde{x}) = \tilde{f}_1(\tilde{x}) = \cdots = \tilde{f}_n(\tilde{x}) = 0
\]

has a nonzero solution \((1, u) \in \mathbb{C}^{n+1} \). The conclusion follows by the properties of resultant for homogeneous polynomials. \(\square\)

Proposition B.2 Let \(m \leq n \). The polynomial system

\[
f_1(x) = \cdots = f_m(x) = 0
\]

has a solution \(u \in \mathbb{C}^n \) such that the Jacobian matrix of \(f_1, \ldots, f_m \) is rank deficient at \(u \) if and only if the polynomial system

\[
\tilde{f}_1(\tilde{x}) = \cdots = \tilde{f}_m(\tilde{x}) = 0
\]

has a solution \((1, u) \in \mathbb{C}^{n+1} \) such that the Jacobian matrix of \(\tilde{f}_1, \ldots, \tilde{f}_m \) is rank deficient at \((1, u) \).

Proof Let \(d_i = \deg_x(f_i) \), \(f_{i,j} \) denote the homogenous part of degree \(j \) of polynomial \(f_i \) and \(\tilde{f}_{i,j} = x_0^{d_i-j} f_{i,j} \) for \(i = 1, \ldots, m \) and \(j = 0, \ldots, d_i \). Denote

\[
\nabla_x := \left\{ \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right\} \quad \text{and} \quad \nabla_{\tilde{x}} := \left\{ \frac{\partial}{\partial x_0}, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right\}.
\]

The “if” direction is implied by

\[
\frac{\partial \tilde{f}_i}{\partial x_j}(1, u) = \frac{\partial f_i}{\partial x_j}(u), \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.
\]

(\ref{B.1})
Next we prove the “only if” direction. By assumption, there exists a set of \(n \) scalars \(c_1, \ldots, c_n \), not all zero, such that

\[
\sum_{i=1}^{m} c_i (\nabla_x f_i)(u) = 0
\]

which means

\[
\sum_{i=1}^{m} c_i \left(\sum_{j=1}^{d_i} \frac{\partial f_{i,j}}{\partial x_k}(u) \right) = 0, \quad k = 1, \ldots, n.
\]

Then by Euler’s Homogeneous Function Theorem, we have

\[
0 = \sum_{k=1}^{n} \sum_{i=1}^{m} c_i \left(\sum_{j=1}^{d_i} \frac{\partial f_{i,j}}{\partial x_k}(u) u_k \right)
= \sum_{i=1}^{m} c_i \left(\sum_{j=1}^{d_i} \frac{\partial f_{i,j}}{\partial x_k}(u) u_k \right)
= \sum_{i=1}^{m} c_i \left(\sum_{j=1}^{d_i} j f_{i,j}(u) \right)
= \sum_{i=1}^{m} c_i \left(\sum_{j=1}^{d_i} j f_{i,j}(u) + \sum_{j=0}^{d_i} (d_i - j) f_{i,j}(u) - \sum_{j=0}^{d_i} (d_i - j) f_{i,j}(u) \right)
= \sum_{i=1}^{m} c_i \left(d_i \sum_{j=0}^{d_i} f_{i,j}(u) - \sum_{j=0}^{d_i} \frac{\partial f_{i,j}}{\partial x_0}(1, u) \right)
= \sum_{i=1}^{m} c_i \left(d_i f_i(u) - \frac{\partial \tilde{f}_i}{\partial x_0}(1, u) \right)
= -\sum_{i=1}^{m} c_i \frac{\partial \tilde{f}_i}{\partial x_0}(1, u).
\]

By combining (B.1), we obtain

\[
\sum_{i=1}^{m} c_i (\nabla_x \tilde{f}_i)(1, u) = 0
\]

which concludes the proof.

By Proposition B.2 and the properties of discriminant for homogeneous polynomials, we have
Proposition B.3 \(\text{Let } m \leq n \text{ and } f_1, \ldots, f_m \in \mathbb{R}[x] \text{ be inhomogeneous polynomials. Suppose that the polynomial system} \]
\[
f_1(x) = \cdots = f_m(x) = 0
\]
\[
\text{has a solution in } \mathbb{C}^n \text{ at which the Jacobian matrix of } f_1, \ldots, f_m \text{ is rank deficient, then} \]
\[
\Delta(f_1, \ldots, f_m) = 0.
\]

Note that the reverses of Proposition B.1 and Proposition B.3 are not necessarily true.

References

1. Bhattacharjee, B., Green, W.H., Barton, P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30(1), 63–93 (2005)
2. Curto, R.E., Fialkow, L.A.: Truncated \(K \)-moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005)
3. Demmel, J., Nie, J., Powers, V.: Representations of positive polynomials on noncompact semialgebraic sets via KKT ideals. J. Pure Appl. Algebra 209(1), 189–200 (2007)
4. Elzinga, J., Moore, T.G.: A central cutting plane algorithm for the convex programming problem. Math. Program. 8, 134–145 (1975)
5. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Basel (1994)
6. Goh, K.-C., Safonov, M.G., Papavassilopoulos, G.P.: Global optimization for the biaffine matrix inequality problem. J. Glob. Optim. 7(4), 365–380 (1995)
7. Guo, F., Wang, L., Zhou, G.: Minimizing rational polynomial by exact Jacobian SDP relaxation applicable to finite singularities. J. Global Optim. (2013, to appear). Available at http://arxiv.org/abs/1205.6442, doi:10.1007/s10898-013-0047-0
8. Henrion, D., Lasserre, J.B.: Detecting Global Optimality and Extracting Solutions in GloptiPoly, vol. 312. Springer, Berlin (2005)
9. Henrion, D., Lasserre, J.B.: Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Autom. Control 51(2), 192–202 (2006)
10. Henrion, D., Lasserre, J.B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)
11. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)
12. Hol, C.W.J., Scherer, C.W.: Sum of squares relaxations for polynomial semi-definite programming. In: International Symposium on Mathematical Theory of Networks and Systems, Leuven, Belgium, July 2004
13. Kojima, M.: Sums of squares relaxations of polynomial semidefinite programs. Technical Report B-397, Department of Mathematical and Computing Sciences Tokyo Institute of Technology, Tokyo, Japan (2003)
14. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)
15. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)
16. Lasserre, J.B.: An algorithm for semi-infinite polynomial optimization. Top 20(1), 119–129 (2012)
17. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)
18. Marshall, M.: Representation of non-negative polynomials with finitely many zeros. Ann. Fac. Sci. Toulouse 15, 599–609 (2006)
19. Marshall, M.: Positive Polynomials and Sums of Squares. Mathematical Surveys and Monographs, vol. 146. American Mathematical Society, Providence (2008)
20. Nie, J.: Polynomial matrix inequality and semidefinite representation. Math. Oper. Res. 36(3), 398–415 (2011)
21. Nie, J.: Discriminants and nonnegative polynomials. J. Symb. Comput. 47(2), 167–191 (2012)
22. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program., Ser. A 137, 225–255 (2013)
23. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program., Ser. A (2013, to appear). doi:10.1007/s10107-012-0589-9
24. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math. Program., Ser. A (2013, to appear). doi:10.1007/s10107-013-0680-x
25. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Program., Ser. A 106(3), 587–606 (2006)
26. Parpas, P., Rustem, B.: An algorithm for the global optimization of a class of continuous minimax problems. J. Optim. Theory Appl. 141(2), 461–473 (2009)
27. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)
28. Scheiderer, C.: Sums of squares on real algebraic curves. Math. Z. 245(4), 725–760 (2003)
29. Scheiderer, C.: Distinguished representations of non-negative polynomials. J. Algebra 289(2), 558–573 (2005)
30. Still, G.: Generalized semi-infinite programming: numerical aspects. Optimization 49(3), 223–242 (2001)
31. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(12), 625–653 (1999)
32. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math. 23, 141–153 (1988)
33. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a MATLAB software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1998)
34. Zhao, X., Sun, D., Toh, K.c.: SDPNAL version 0.1—a MATLAB software for semidefinite programming based on a semi-smooth Newton-CG augmented Lagrangian method. http://www.math.nus.edu.sg/~mattohkc/SDPNAL.html