Associations of Ambient NO\textsubscript{2} with Daily Hospitalization, Hospitalization Expenditure and Length of Hospital Stay of Cause-Specific Respiratory Diseases — Shanxi, China, 2017–2019

Dashan Zheng1,*; Dawei Cao2,*; Shiyu Zhang1; Huiqing Shen1; Yi Liu1; Qiyong Liu2; Jimin Sun3; Guangyuan Jiao5; Jianzhen Wang2; Xiaoran Yang6; Xinri Zhang2, #; Hualiang Lin1, #

Summary

What is already known about this topic?
Numerous epidemiological studies have documented the association between ambient nitrogen dioxide (NO\textsubscript{2}) and mortality and morbidity of respiratory diseases, however, research on the effect of NO\textsubscript{2} on the length of hospital stay (LOS) and hospitalization expenditure is limited.

What is added by this report?
This study collected the respiratory hospitalization, hospital expenditure, and LOS for respiratory diseases from 2017–2019 in Shanxi, China, and comprehensively evaluated the association between ambient NO\textsubscript{2} exposure and respiratory hospitalization, expenditure, and LOS.

What are the implications for public health practice?
This study provides evidence on the association between ambient NO\textsubscript{2} and respiratory burden, suggesting that continually diminishing ambient NO\textsubscript{2} could effectively reduce respiratory burden.

Nitrogen dioxide (NO\textsubscript{2}) has been widely associated with respiratory morbidity and mortality. However, its association with hospitalization expenditure and length of hospital stay (LOS) is scarcely analyzed. Thus, we analyzed this association in Shanxi Province, which has famously high fuel combustion with residential and industrial regions centralized in basins and valleys, making it difficult for air pollutants to disperse (1). Daily air pollution exposures were estimated for each case using an inverse distance approach and then averaged for each city. City-specific associations of NO\textsubscript{2} with hospital admission, hospitalization expenditure, and LOS were assessed by general additive models. The overall effects were then pooled through a random-effects meta-analysis. The potentially avoidable values and population attributable fraction (PAF) for total respiratory disease, asthma and chronic obstructive pulmonary disease (COPD) were assessed by reducing the concentration to the standards of the World Health Organization (WHO) (25 \(\mu\)g/m3) and Chinese government (40 \(\mu\)g/m3). Significant associations between NO\textsubscript{2} and respiratory hospitalization, hospital cost, and LOS were observed. We estimated 198.73 million CNY [95% confidence interval (CI): 119.07–278.40] in hospital costs, and 272.00 thousand days [95% CI: 179.22–364.79] of LOS could be potentially avoided under the WHO’s standards for Shanxi during 2017–2019. This study provides evidence for the association between NO\textsubscript{2} exposure and respiratory burden, suggesting that continually diminishing ambient NO\textsubscript{2} could effectively reduce respiratory burden.

This study collected hospital admission data for respiratory diseases from all the secondary and tertiary hospitals in Shanxi Province from February 2017 to November 2019. The information included general characteristics, residential address, date of admission and discharge, the principal diagnosis (based on the International Classification of Diseases, ICD-10), and hospital expenditures. The hospital expenditures included fees for drugs, clinical examinations, nursing care, and clinical operations. The LOS was calculated based on the admission date, and the LOS for each case was summed and regarded as the value for that day. We included the participants who had resided in Shanxi Province and excluded cases with missing information and those who had only received emergency or outpatient treatment and were then discharged.

Daily ambient air pollutant concentrations of NO\textsubscript{2}, fine particulate matter, sulfur dioxide, and ozone at all state-controlled air quality monitoring stations in Shanxi from 2017 to 2019 were also obtained. Individual level exposure was assessed using reverse distance weighting (IDW) by geocoding patient
addresses and monitoring station locations and averaging an individual’s daily exposure for each city (1–2).

The daily mean temperature and relative humidity were extracted from ERA5-L and reanalysis data (3). A bilinear interpolation approach was used to estimate the daily meteorological exposure for each participant, and then average the exposure for each city.

The city-specific and overall associations between NO$_2$ and hospitalization, hospital cost, and LOS for respiratory diseases, COPD, and asthma were assessed using a two-stage statistical approach based on the time-series model. At the first stage, a generalized additive model (GAM) with a quasi-Poisson was built to explore the effect of NO$_2$ on daily hospital admissions for each city. Considering the normal distribution of LOS and cost, the GAM with a Gaussian link was applied to examine the association between NO$_2$ and those two indicators. Time trend was controlled by a penalty smoothing spline function of 6 degrees of freedom (df) per year. Daily mean temperature and relative humidity were adjusted using the same spline function with 6 df and 3 df. Public holidays and days of the week (DOW) were treated as categorical variables.

Considering the lag effect, the associations on single lag days of 0 to 5 and moving average days of 01 to 03 were also examined. Further, a random-effect meta-analysis based on the associations of all 11 cities was applied to obtain the overall effects of NO$_2$.

At the second stage, this study estimated the attributable value and PAF of respiratory hospitalization, cost, and LOS for overall respiratory disease, asthma, and COPD to elucidate the potential benefits by controlling NO$_2$ concentration to a certain level. The recommended concentrations by the WHO (25 μg/m3) and Chinese government (40 μg/m3) were used as reference concentrations. The formula and sensitivity analysis can be found in the Supplementary Materials (available in http://weekly.chinacdc.cn).

This analysis included 666,189 hospital admissions due to respiratory diseases, corresponding to a total of 5.54 million days of LOS and 4.58 billion CNY in hospital expenditures.

Figure 1 illustrates the positive effects of NO$_2$ on daily hospitalizations, hospital expenditures, and LOS across different lag days and moving average days at the provincial level. The effect was highest in lag03, every 10 μg/m3 increment in NO$_2$ was associated with a 2.14% (95% CI: 1.39–2.89) increase in respiratory hospitalization, 2.41% (95% CI: 1.41–3.41) increase in hospitalization cost, and 2.14% (95% CI: 1.39–2.89) increase in hospital stay.
hospitalization, 13,167.36 CNY (95% CI: 7,697.29–18,637.43) in hospital expenditures, and 17.94 days (95% CI: 11.74–24.14) increase of LOS. Supplementary Tables S1–S3 (available in https://weekly.chinacdc.cn) displayed the city-specific attributable values which vary across different cities.

The potentially avoidable value and PAF by meeting different air quality standards are shown in Table 1. Under the WHO’s standards, about 18.10 thousand (95% CI: 11.78–24.54) hospital admissions, 198.73 million CNY (95% CI: 119.07–278.40) hospital costs, and 272.00 thousand days (95% CI: 179.22–364.79) of LOS could be avoided.

The potentially avoidable cost and LOS per capita based on the two standards are demonstrated in Table 2. About 298.31 CNY (95% CI: 178.73–471.90) in hospital costs and 0.41 days (95% CI: 0.27–0.55) of LOS could be avoided for each respiratory case under the standards of WHO.

Supplementary Table S4 (available in https://weekly.chinacdc.cn) delineates the overall attributable burden of COPD and asthma due to NO$_2$. About 5.69 million CNY (95% CI: 0.72–10.65) for asthma and 50.66 million (95% CI: 25.06–776.26) for COPD could be prevented by decreasing ambient NO$_2$ concentrations to 25 μg/m3, corresponding to PAFs of 5.40% (95% CI: 0.69%–10.11%) and 4.79% (95% CI: 2.37%–7.22%).

DISCUSSION

This analysis firstly demonstrated that higher NO$_2$ exposure was associated with increased respiratory hospitalization, higher hospital cost, and longer LOS. Furthermore, the results indicate that numbers of respiratory hospitalization, hospital costs, and length of hospital stay could be potentially saved by reducing the NO$_2$ concentrations. These findings provided ample evidence for formulating air pollution control policies, suggesting that continuously reducing NO$_2$ concentrations can decrease the burdens of respiratory diseases in Shanxi Province and other similar regions with high NO$_2$ pollution.

Our results indicate an adverse effect of ambient NO$_2$ on hospital burden due to respiratory diseases, which is in line with previous studies. For example, one study found an association between life expectancy of people living with respiratory diseases and air pollution (4). Furthermore, in Pennsylvania, the regions with more serious air pollution were found to have a higher hospital expenditure for respiratory diseases (5).

The potentially avoidable values and PAFs for cause-specific respiratory diseases in our analysis were also aligned with previous studies. For example, Guo et al. estimated that the asthma-induced economic cost attributed to NO$_2$ was 17.15 million dollars per year for Shanghai, China (6). Notably, the similar PAFs suggested that ambient NO$_2$ had an adverse effect on both chronic and allergic respiratory diseases.

Several mechanisms could help explain the observed adverse effect of NO$_2$ on the respiratory system. In one clinical trial, NO$_2$ caused mild airway inflammation in healthy subjects, which affected blood cells and

TABLE 1. Potentially avoidable values and population attributable fraction of hospital admission, hospitalization expenditure and hospital stay due to respiratory disease by reducing ambient NO$_2$ concentration to the recommended concentration by WHO (25 μg/m3) and Chinese government (40 μg/m3), 2017–2019.

Variable	Potential avoidable value (95% CI)	PAF (% 95% CI)		
	25 μg/m3	40 μg/m3		
Hospitalizations (thousand)	18.10 (11.78–24.54)	7.06 (4.60–9.55)	2.72 (1.77–3.68)	1.06 (0.69–1.43)
Hospitalization expenditure (million CNY)	198.73 (119.07–278.40)	72.81 (43.62–101.99)	4.34 (2.60–6.08)	1.59 (0.95–2.23)
Hospital stay (thousand days)	272.00 (179.22–364.79)	99.65 (65.66–133.64)	4.91 (3.23–5.68)	1.80 (1.18–2.41)

Abbreviation: WHO=World Health Organization; PAF=population attributable fraction; CI=.confidence interval; CNY=Chinese Yuan.

TABLE 2. The potentially avoidable hospitalization expenditure and length of hospital stay for each respiratory case by controlling daily NO$_2$ concentrations to criteria of WHO (25 μg/m3) and Chinese government (40 μg/m3), 2017–2019.

Variable	Potentially avoidable values for each case (95% CI)	
	25 μg/m3	40 μg/m3
Hospitalization expenditure (CNY)	298.31 (178.73–417.90)	109.29 (65.48–153.10)
Hospital stay (days)	0.41 (0.27–0.55)	0.15 (0.10–0.20)

Abbreviation: WHO=World Health Organization; CI=confidence interval; CNY=Chinese Yuan.
increased susceptibility to respiratory virus infections in airway epithelial cells (7). Moreover, exposure to higher ambient NO₂ was confirmed to be associated with lung function, which could trigger or aggravate COPD (8).

Limitations should be considered. First, this was an ecological study and it is difficult to make a causal inference on the association between ambient NO₂ exposure and respiratory burden. Second, this study only included cases from secondary and tertiary hospitals in Shanxi Province but excluded those from primary hospitals and patients without hospital admission, which may create a representativeness issue and lead to an underestimate of the respiratory burden in Shanxi Province.

In conclusion, this study elaborated on the association between ambient NO₂ exposure and respiratory hospitalization, hospital cost, and hospital stay. The findings in this analysis identified that government’s continued implementation of NO₂ concentration control can potentially reduce hospital admissions, saving a considerable amount of hospital expenditure for people in regions with high NO₂ pollution.

Conflicts of Interest: No conflicts of interest.
Funding: The Special Fund Project for Guiding Local Science and Technology Development by the Central Government (No.: YDZX20191400002737).

doi: 10.46234/ccdcw2022.164

* Corresponding authors: Xinri Zhang, ykdzx661@163.com; Hualiang Lin, linhualiang@mail.sysu.edu.cn.

1. School of Public Health, Sun Yat-sen University, Guangzhou City, Guangdong Province, China; 2. Department of Respiration, First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, China; 3. Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; 4. Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China; 5. Department of Ideological and Political Education, School of Marxism, Capital Medical University, Beijing, China; 6. Department of Standards and Evaluation, Beijing Municipal Health Commission Policy Research Center, Beijing Municipal health Commission Information Center, Beijing, China.

Submitted: May 07, 2022; Accepted: May 25, 2022

REFERENCES

1. Cao DW, Zheng DS, Qian ZM, Shen HQ, Liu Y, Liu QY, et al. Ambient sulfur dioxide and hospital expenditures and length of hospital stay for respiratory diseases: a multicity study in China. Ecotoxicol Environ Saf 2022;229:113082. http://dx.doi.org/10.1016/j.ecoenv.2021.113082.

2. Cao DW, Li DY, Wu YL, Qian ZM, Liu Y, Liu QY, et al. Ambient PM₂.₅ exposure and hospital cost and length of hospital stay for respiratory diseases in 11 cities in Shanxi province, China. Thorax 2021;76(8):743. http://dx.doi.org/10.1136/thoraxjnl-2020-215838.

3. Wang LJ, Liu C, Meng X, Niu Y, Lin ZJ, Liu YN, et al. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities. Environ Int 2018;117:33 – 9. http://dx.doi.org/10.1016/j.envint.2018.04.019.

4. Yang Y, Qi JL, Ruan ZL, Yin P, Zhang SY, Liu JM, et al. Changes in life expectancy of respiratory diseases from attaining daily PM₁₀ Standard in China: a nationwide observational study. Innovation 2020;1(3):100064. http://dx.doi.org/10.1016/j.jinn.2020.100064.

5. Carpenter BH, Chromy JR, Bach WD, LeSourd DA, Gillette DG. Health costs of air pollution: a study of hospitalization costs. Am J Public Health 1979;69(12):1232 – 41. http://dx.doi.org/10.2105/AJPH.69.12.1232.

6. Guo HB, Chen MX. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol Environ Saf 2018;161:184 – 9. http://dx.doi.org/10.1016/j.ecoenv.2018.05.089.

7. Frampton MW, Boscia J, Roberts NJ Jr, Azadniv M, Torres A, Cox C, et al. Nitrogen dioxide exposure: effects on airway and blood cells. Am J Physiol Lung Cell Mol Physiol 2002;282(1):L155 – 65. http://dx.doi.org/10.1152/ajplung.2002.282.1.L155.

8. Hou DN, Ge YH, Chen CC, Tan Q, Chen RJ, Yang YJ, et al. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: a cross-sectional study in China. Environ Int 2020;144:105977. http://dx.doi.org/10.1016/j.envint.2020.105977.
SUPPLEMENTARY METHODS

Formulas and Models

Attributable value = \sum_{i=0}^{n}(\text{baseline hospital admission}) \times [\exp(\beta \times \Delta C_i) - 1]

Attributable hospital expenditure (or length of hospital stay) = \sum_{i=0}^{n}(\beta \times \Delta C_i)

Population attributable fraction = \frac{\text{attributable value}}{\text{overall number}} \times 100\%

Attributable value for each case = \frac{\text{attributable value}}{\text{cases number}} \times 100\%

where i is the observation days with a higher NO₂ concentration than the recommended concentration offered by the WHO or Chinese government. Ci is the difference between the daily NO₂ concentration and the reference concentration on day i.

SUPPLEMENTARY TABLE S1. The estimated avoidable number of hospital admissions for respiratory diseases in 11 cities in Shanxi, China, 2017–2019.

City	Overall (in thousand)	Avoidable value (in thousand) (95% CI)	Population attributable fraction (%; 95% CI)	Avoidable value (in thousand) (95% CI)	Population attributable fraction (%; 95% CI)
Datong	85.72	3.28 (2.06 to 4.53)	3.82 (2.40 to 5.29)	0.71 (0.45 to 0.97)	0.82 (0.52 to 1.13)
Jincheng	55.53	1.73 (1.07 to 2.41)	3.12 (1.93 to 4.33)	0.68 (0.42 to 0.95)	1.23 (0.76 to 1.71)
Jinzhong	90.42	2.24 (0.52 to 4.02)	2.48 (0.58 to 4.45)	0.97 (0.23 to 1.73)	1.07 (0.25 to 1.91)
Linfen	73.08	3.32 (2.28 to 4.40)	4.55 (3.12 to 6.02)	1.43 (0.98 to 1.88)	1.95 (1.35 to 2.58)
Lyuliang	64.97	3.19 (1.77 to 4.66)	4.91 (2.72 to 7.17)	0.95 (0.53 to 1.38)	1.46 (0.81 to 2.12)
Shuozhou	28.31	0.29 (0.11 to 0.47)	1.01 (0.38 to 1.65)	0.07 (0.03 to 0.11)	0.25 (0.09 to 0.40)
Taiyuan	74.04	2.14 (0.68 to 3.65)	2.89 (0.92 to 4.93)	1.15 (0.37 to 1.95)	1.55 (0.49 to 2.63)
Xinzhou	36.64	0.42 (−0.04 to 0.90)	1.15 (−0.12 to 2.45)	0.14 (−0.01 to 0.29)	0.37 (−0.04 to 0.79)
Yangquan	32.60	0.26 (0.01 to 0.50)	0.79 (0.04 to 1.54)	0.11 (0.10 to 0.22)	0.35 (0.02 to 0.68)
Yuncheng	47.20	0.92 (0.53 to 1.34)	1.96 (1.11 to 2.83)	0.43 (0.24 to 0.62)	0.91 (0.52 to 1.31)
Changzhi	77.67	1.90 (0.58 to 3.26)	2.44 (0.74 to 4.20)	0.59 (0.18 to 1.01)	0.76 (0.23 to 1.30)

Abbreviation: CI=confidence interval.

SUPPLEMENTARY TABLE S2. The estimated avoidable hospital cost for respiratory diseases in 11 cities in Shanxi, China, 2017–2019.

City	Overall (million CNY)	Avoidable value (million CNY, 95% CI)	Population attributable fraction(%; 95% CI)	Avoidable value (million CNY, 95% CI)	Population attributable fraction (%; 95% CI)
Datong	683.11	26.40 (12.07 to 40.74)	3.87 (1.77 to 5.96)	5.22 (2.39 to 8.05)	0.76 (0.35 to 1.18)
Jincheng	314.07	16.98 (5.94 to 28.02)	5.41 (1.89 to 8.92)	6.27 (2.20 to 10.35)	2.00 (0.70 to 3.30)
Jinzhong	546.70	23.18 (−0.17 to 46.53)	4.24 (−0.03 to 8.51)	8.95 (−0.06 to 17.97)	1.64 (−0.01 to 3.29)
Linfen	479.07	36.35 (21.96 to 50.73)	7.59 (4.58 to 10.59)	13.66 (8.25 to 19.07)	2.85 (1.72 to 3.98)
Lyuliang	405.99	35.98 (1635 to 55.62)	8.86 (4.03 to 13.70)	11.72 (5.32 to 18.11)	2.89 (1.31 to 4.46)
Shuozhou	151.05	3.23 (−1.38 to 7.83)	2.14 (−0.91 to 5.19)	0.75 (−0.32 to 1.82)	0.50 (−0.21 to 1.21)
Taiyuan	724.98	23.75 (−8.98 to 56.48)	3.28 (−1.24 to 7.79)	11.74 (−4.44 to 27.91)	1.62 (−0.61 to 3.85)
Xinzhou	300.82	14.73 (−0.94 to 30.41)	4.90 (−0.31 to 10.11)	4.99 (−0.32 to 10.30)	1.66 (−0.11 to 3.42)
Yangquan	274.49	6.05 (−6.62 to 18.73)	2.21 (−2.41 to 6.82)	2.35 (−2.58 to 7.28)	0.86 (−0.94 to 2.65)
Yuncheng	237.83	14.16 (7.24 to 21.07)	5.95 (3.05 to 8.86)	5.44 (2.78 to 8.10)	2.29 (1.17 to 3.40)
Changzhi	462.84	7.19 (−8.31 to 22.69)	1.55 (−1.80 to 4.90)	2.36 (−2.73 to 7.46)	0.51 (−0.59 to 1.61)

Abbreviation: CNY=Chinese Yuan; CI=confidence interval.
Sensitivity Analysis

Several sensitivity analyses were performed to examine the robustness of our results. We conducted two-pollutant models to control the potential confounding effects of other air pollutants, including PM$_{2.5}$, O$_3$, and SO$_2$ in Supplementary Table S5. We also changed the df of temporal trend in the range of 5–8 and that of daily temperature and relative humidity in the range of 4–6 to examine the robustness of models (Supplementary Table S6).

The results of the sensitivity analysis indicated that our results were robust. Our two-pollutant models (Supplementary Table S5) suggest that the association was robust to the adjustment of co-pollutants (O$_3$, SO$_2$, and PM$_{2.5}$). In Supplementary Table S6 compared with our main models, the associations between NO$_2$ concentrations and outcomes were also generally similar by changing the dfs for the adjustment of meteorological factors and temporal trend.

SUPPLEMENTARY TABLE S3. The estimated avoidable length of hospital stays (LOS) for respiratory diseases in the 11 cities in Shanxi, China, 2017–2019.

City	Overall (thousand days)	Avoidable value (thousand days, 95% CI)	Population attributable fraction (%) (95% CI)	Avoidable value (thousand days, 95% CI)	Population attributable fraction (%) (95% CI)
Datong	866.97	39.18 (22.58 to 55.79)	4.52 (2.60 to 6.44)	7.74 (4.46 to 11.02)	0.89 (0.51 to 1.27)
Jincheng	430.01	25.93 (14.79 to 37.06)	6.03 (3.44 to 8.62)	9.58 (5.46 to 13.69)	2.23 (1.27 to 3.18)
Jinzhong	684.28	25.79 (4.22 to 47.37)	3.77 (0.62 to 6.92)	9.96 (1.63 to 18.30)	1.46 (0.24 to 2.67)
Linfen	578.60	37.52 (24.41 to 50.63)	6.49 (4.22 to 8.75)	14.10 (9.18 to 19.03)	2.44 (1.59 to 3.29)
Lyuliang	491.85	31.01 (13.05 to 48.97)	6.31 (2.65 to 9.96)	10.1 (4.25 to 15.94)	2.05 (0.86 to 3.24)
Shuozhou	234.09	7.82 (1.67 to 13.96)	3.34 (0.71 to 5.96)	1.82 (0.39 to 3.25)	0.78 (0.17 to 1.39)
Taiyuan	667.01	35.56 (9.65 to 61.47)	5.33 (1.45 to 9.22)	17.57 (4.77 to 30.38)	2.63 (0.72 to 4.55)
Xinzhou	309.92	13.38 (-0.06 to 26.81)	4.32 (-0.02 to 8.65)	4.53 (-0.02 to 9.08)	1.46 (-0.01 to 2.93)
Yangquan	304.5	9.87 (0.02 to 19.71)	3.24 (0.01 to 6.47)	3.84 (0.01 to 7.66)	1.26 (0.00 to 2.52)
Yuncheng	379.06	30.77 (20.22 to 41.32)	8.12 (5.33 to 10.90)	11.82 (7.77 to 15.88)	3.12 (2.05 to 4.19)
Changzhi	597.57	14.45 (-1.67 to 30.56)	2.42 (-0.28 to 5.11)	4.75 (-0.55 to 10.05)	0.79 (-0.09 to 1.68)

Abbreviation: CI=confidence interval.

SUPPLEMENTARY TABLE S4. Avoidable values and attributable fractions of COPD and asthma by controlling ambient NO$_2$ according to standards by 25 μg/m3, 40 μg/m3 in Shanxi Province, 2017–2019.

Disease	Variable	Avoidable value (95% CI)	Population attributable fraction (%) (95% CI)	Avoidable value (95% CI)	Population attributable fraction (%) (95% CI)
		25 μg/m3	40 μg/m3	25 μg/m3	40 μg/m3
COPD	Hospital cost (CNY)	50.66 (25.06 to 76.26)	18.56 (9.18 to 27.94)	4.79 (2.37 to 7.22)	1.76 (0.87 to 2.64)
	Hospital stay (day)	56.01 (30.49 to 81.54)	20.52 (11.17 to 29.87)	5.06 (2.76 to 7.37)	1.85 (1.01 to 2.70)
Asthma	Hospital cost (CNY)	5.69 (0.72 to 10.65)	2.08 (0.27 to 3.90)	5.40 (0.69 to 10.11)	1.98 (0.25 to 3.70)
	Hospital stay (day)	7.65 (3.45 to 11.85)	2.80 (1.26 to 4.34)	6.14 (2.77 to 9.52)	2.25 (1.02 to 3.49)

Abbreviation: CNY= Chinese Yuan; COPD=Chronic obstructive pulmonary disease; CI=confidence interval.

SUPPLEMENTARY TABLE S5. Sensitivity analyses on the PAF of NO$_2$ for hospital admission, hospital cost, and length of hospital stay at lag03 in two-pollutant models by meeting 25 μg/m3.

Two-pollutant model	Daily respiratory hospitalization	Hospitalization cost (thousand CNY)	Length of Hospital stay (days)
NO$_2$+SO$_2$	2.13 (1.17, 3.09)	13.46 (7.15, 19.76)	18.79 (10.98, 26.60)
NO$_2$+O$_3$	1.94 (1.26, 2.61)	12.07 (7.02, 17.11)	16.28 (10.55, 22.02)
NO$_2$+PM$_{2.5}$	1.84 (1.19, 2.50)	7.84 (4.39, 11.27)	12.76 (8.32, 17.21)

Abbreviation: CNY= Chinese Yuan; PAF=population attributable fraction.
SUPPLEMENTARY TABLE S6. Sensitivity analyses of the association between daily NO2 and hospital admissions, hospital cost, and length of hospital stay by changing the degree of freedom in the smoothing functions.

Models	Daily respiratory hospitalizations	Hospitalization cost (thousand CNY)	Length of Hospital stay (days)
Varying df for temporal trend			
df=5	2.23 (1.44 to 3.02)	13.25 (8.09 to 18.42)	18.70 (12.21 to 25.18)
df=7	1.89 (1.25 to 2.53)	11.72 (7.07 to 16.36)	16.00 (10.72 to 21.28)
df=8	1.78 (1.20 to 2.37)	11.83 (7.57 to 16.08)	15.30 (10.55 to 20.05)
Varying df for temperature			
df=5	2.00 (1.32 to 2.69)	12.08 (7.20 to 16.97)	16.49 (10.87 to 22.10)
df=7	1.98 (1.30 to 2.66)	11.81 (6.98 to 16.65)	16.45 (1075 to 22.15)
df=8	2.00 (1.31 to 2.68)	11.86 (7.02 to 16.71)	16.59 (10.87 to 22.32)
Varying df for relative humidity			
df=4	1.99 (1.30 to 2.68)	11.95 (7.13 to 16.76)	16.56 (10.88 to 22.23)
df=5	1.99 (1.29 to 2.68)	12.12 (7.18 to 17.07)	16.60 (10.93 to 22.27)
df=6	1.99 (1.30 to 2.68)	12.06 (7.11 to 17.01)	16.60 (10.92 to 22.29)

Abbreviation: CNY=Chinese Yuan.