Supplementary Materials

List of Supplementary Materials

Materials and Methods

References

Table S1. Counts of denitrification traits and their co-occurrences in fungal genomes.

Table S2. Results from approximately unbiased tests for the monophyly of fungal classes within \(\text{napA} \), \(\text{nirK} \), and \(\text{p450nor} \) gene trees. Where indicated, the monophyly of two lineages was also assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test significance was evaluated at \(p \leq 0.05 \).

Table S3. Results from species-tree gene-tree reconciliation using NOTUNG software for \(\text{napA} \), \(\text{nirK} \), and \(\text{p450nor} \) genes in fungi. Values are averages of solutions with standard deviations reported in parentheses.

Table S4. Predicted horizontal gene transfers of fungal \(\text{p450nor} \), \(\text{napA} \), and \(\text{nirK} \) genes based on alien index algorithm.

Table S5. List of genera containing species with and without \(\text{p450nor} \).

Figure S1. Gene abundances of \(\text{narG} \), \(\text{napA} \), \(\text{nirK} \), \(\text{p450nor} \), and flavohemoglobins (colored bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the cladogram were derived from the NCBI taxonomy using the online tool phyloT (http://phylot.biobyte.de/index.html).

Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective NO reductase (\(\text{p450nor} \)) gene sequence(s). On the left, an amino acid phylogeny of 238 concatenated single copy orthologues from fungal species in which one or more \(\text{p450nor} \) gene(s) were detected. The \(\text{p450nor} \) nucleotide phylogeny (right) demonstrates many instances of
incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S3. Cophylogenetic plot of napA-containing fungal species (left, N = 75) and the napA nucleotide tree (right, N = 78). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90%. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S4. Cophylogenetic plot of nirK-containing fungal species (left, N = 82) and the nirK nucleotide tree (right, N = 83). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90%. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S5. Plot of alien index values observed for p450nor genes (N = 178). Points above the hashed line at the origin are indicative of HGT. Names of fungal species with alien index values above zero are ordered as their points appear on the graph. Thick horizontal lines represent the median alien index value. See Materials and Methods in the Supplementary Materials for details on alien index calculations.

Figure S6. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes (left, N = 55) and cytochrome P450 family 105 amino acid sequences (right, N = 57). Both phylogenies represent 50% majority-rule consensus trees. The tree on the left is rooted with proteobacterial sequences as outgroup to the Actinobacteria. The tree on the right is midpoint
rooted. Nodes with posterior probabilities ≥ 0.95 are indicated by black circles on an adjacent branch.

Figure S7. Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of cytochrome P450 sequences (N = 408) demonstrating the affiliation of P450nor with other sequences belonging to members of the bacterial phyla Actinobacteria and Proteobacteria. Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on branches (left tree) indicate ≥0.95 posterior probability or ≥90 % bootstrap replication (right tree). The colored legend indicates the cytochrome P450 family specified by shared amino acid identity of ≥40 % (D.R. Nelson, Hum Genomics 4:59-65, 2009).

Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S9. Genome regions chosen for in depth presentation of protein coding genes surrounding p450nor in predicted BGC regions. Labels above genes are functional annotations from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each gene.

Materials and Methods

Phylogenetic reconstructions

Selection of the optimal evolutionary model for ML tree reconstruction was performed using prottest (Abascal et al., 2005) (amino acid alignment) and jmodeltest (Posada, 2008) (nucleotide alignment) software prior to ML tree reconstruction. Please refer to SI for additional details about evolutionary models used in phylogenetic analysis. Phylogenetic analysis with RAxML
was performed by sampling 20 starting trees and performing 1,000 replicate bootstrap analyses.
The tree with the maximal negative log likelihood score was compared to 1,000 replicates in RAxML to generate the final tree. Bayesian tree construction was performed using 3 independent runs with 6 chains for 5,000,000 generations. Output from MrBayes was evaluated with the sump and sumt commands within the software to ensure Markov Chain Monte Carlo chain mixing and convergence (potential scale reduction factor of 1.0) and standard deviation of split frequencies ~ 0.01 or lower. MrBayes output was further visualized in the program Tracer (http://tree.bio.ed.ac.uk/software/tracer/) to ensure convergence was reached.

Optimal evolutionary models for Bayesian analysis were estimated from the alignments using MrBayes software with a mixed amino acid model with 4 chains. The analysis continued for 1,000,000 generations, with sampling performed everything 1,000th generation and a default burn-in of 25%. Optimal amino acid models inferred by prottest ML analyses were LG (Le and Gascuel, 2008) (NapA, P450nor) or JTT (Jones et al., 1992) models (NirK), whereas for nucleotide sequences, the GTR (Rodriguez et al., 1990) model with variation in rate heterogeneity among sites was selected by jmodeltest as the optimal evolutionary model for each gene. Optimal amino acid models inferred with MrBayes were the WAG (Whelan and Goldman, 2001) (NapA and P450nor) or the JTT model (NirK). The GTR model with rate heterogeneity among sites was also the optimally inferred evolutionary model for nucleotide alignments used for Bayesian tree reconstruction. For phylogenetic analysis of fungal NapA, NirK, and P450nor with additional RefSeq protein sequences, the LG (ML) or WAG (Bayesian) models were selected in the respective phylogenetic software. All amino acid tree reconstruction utilized gamma distributed rate heterogeneity among sites, and additional tree reconstruction parameters were estimated from the alignment.
BayesTraits and NOTUNG analyses

For trait correlations, the concatenated 238 BUSCO gene alignment (see main text Materials and Methods) of 709 fungal taxa was bootstrapped into 800 replicate alignments using the PHYLIP software function seqboot (6) and 800 ML trees created as described in the main text using FastTree2 software. These alignments were paired with presence/absence data regarding denitrification traits and provided as input to BayesTraits software. BayesTraits was first operated in ML mode (100 ML tries setting) to generate parameter estimates for dependent (trait correlation) and independent (no trait correlation) models to be compared. These parameter estimates were then entered into BayesTraits, and three independent runs of the software in Bayesian mode using the dependent and independent model of trait correlation between the two traits being compared were performed. The analysis was run for 1,000,000 generations with samples taken every 1,000th generation and a burn-in of 50,000 generations. A stepping stone analysis (100 stones, 10,000 samples) was performed to generate log marginal likelihood values for Bayes Factor (BF) calculations to test which model (correlation or no correlation) best fit the data. Bayes Factors are comparable to a likelihood ratio test for model selection, and the larger the Bayes Factor the more certainty there is in the more complex, dependent model (indicating trait correlation). Hence, a BF of 1 is indicative of weak or no trait correlation, but a BF of 10 or larger indicates strong selection of the dependent model and trait correlation (Pagel et al., 2004).

A similar analysis is performed for ancestral state reconstruction, except that trees from a Bayesian analysis were used as input to the MultiState method of the software. Multistate was run for 5,500,000 generations with sampling every 2,000th generation and a burn-in of 500,000 generations. The probability of a given character state at a node within the tree was averaged
over all generations after the burn-in period and was used to determine support for the state of a node within the tree.

NOTUNG performs reconciliation by matching nodes between species and gene trees to infer numbers of GD, GL, and GT events. These reconciliations are used to calculate a weighted sum, termed the event score, by multiplying user supplied event costs for GD, GL, and GTs. When inferring GTs, multiple solutions may be reached, and NOTUNG reports all reconciliations reached to obtain a minimized event score. NOTUNG analyses were implemented with a duplication cost of 2, loss cost of 1, and a variable transfer cost from 3 to 15. Ratcheting the transfer costs assumes GD is prevalent, which is likely the case for fungi, in which GT events are assumed to be less frequent than for Bacteria and Archaea. All other settings were default. NOTUNG ignores incomplete lineage sorting as an evolutionary mechanism when both a rooted species and gene tree are used as input, as was the case for the present study.

Alien index calculations

The alien index (AI) was calculated as previously described and modified for use with a single gene (Wisecaver et al., 2016). Briefly, pairwise amino acid sequence alignments were performed using blastp for fungal NapA, NirK, and P450nor sequences. The in group was defined as the aligned sequence with the highest bitscore (excluding the query) belonging to the same taxonomic class as the query sequence. Accordingly, the out group was defined as the aligned sequence with the highest bitscore not belonging to the same taxonomic class as the query. The maximum bitscore was the bitscore derived from the alignment of the query to itself. Therefore, AI is calculated as follows:

\[AI = \frac{\text{out group bitscore}}{\text{max bitscore}} - \frac{\text{in group bitscore}}{\text{max bitscore}} \]
AI values range from 1 to -1. Values greater than zero are indicative of HGT or contamination of foreign DNA within the genome sequence being queried.

References

Abascal F, Zardoya R, Posada D. (2005). ProtTest: selection of best-fit models of protein evolution. *Bioinforma* **21**: 2104–2105.

Jones D, Taylor W, Thornton J. (1992). The rapid generation of mutation data matrices from protein sequences. *Comput Appl Biosci* **8**.

Le SQ, Gascuel O. (2008). An improved general amino acid replacement matrix. *Mol Biol Evol* **25**: 1307–20.

Pagel M, Meade A, Barker D. (2004). Bayesian estimation of ancestral character states on phylogenies. *Syst Biol* **53**: 673–684.

Posada D. (2008). jModelTest: Phylogenetic model averaging. *Mol Biol Evol* **25**: 1253–1256.

Rodriguez R, Oliver JL, Marin A, Medina JR. (1990). The general stochastic model of nucleotide substitution. *J Theor Biol* **142**. doi:10.1016/S0022-5193(05)80104-3.

Whelan S, Goldman N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. *Mol Biol Evol* **18**: 691–699.

Wisecaver JH, Alexander WG, King SB, Todd Hittinger C, Rokas A. (2016). Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in *Bacteria* and Eukaryotes. *Mol Biol Evol*. doi:10.1093/molbev/msw073.
Table S1. Counts of denitrification traits and their co-occurrences in fungal genomes.

Fungal lineage	napA	nirK	p450nor	flavoHb*	napA+nirK	napA+	nirK+	p450nor+	(p450nor+flavoHb)/p450nor†
Sordariomycetes	23	20	63	155	7	11	15	6	0.98
Leotiomycetes	2	9	36	25	1	2	8	1	0.53
Eurotiomycetes	34	52	35	80	19	15	24	11	0.46
Dothideomycetes	7	1	28	75	0	2	1	0	0.96
Tremellomycetes	1	0	3	12	0	0	0	1	0.33
Atractiellomycetes	0	0	1	0	0	0	0	0	
Pezizomycetes	0	0	1	0	0	0	0	0	
Mixiomycetes	0	0	0	0	0	0	0	0	
Agaricomycetes	1	0	0	17	0	0	0	0	
Saccharomycetes	0	0	0	63	0	0	0	0	n/a
Pucciniomycetes	2	0	0	1	0	0	0	0	
Monoblepharidomycetes	0	0	0	0	0	0	0	0	n/a
Chytridiomycetes	0	0	0	0	0	0	0	0	n/a
Walllemiomyctes	0	0	0	1	0	0	0	0	n/a
Ustilaginomycetes	0	0	0	1	0	0	0	0	n/a
Orbiliomycetes	0	0	0	2	0	0	0	0	n/a
Basidiobolomyctes	0	0	0	0	0	0	0	0	n/a
Dacrymyctes	0	0	0	0	0	0	0	0	n/a
Geminibasidiomycetes	0	0	0	0	0	0	0	0	n/a
Zoopagomycota	0	0	0	1	0	0	0	0	n/a
Schizosaccharomycetes	0	0	0	3	0	0	0	0	n/a
Pneumocystidomycetes	0	0	0	0	0	0	0	0	n/a
Blastocladiomycetes	0	0	0	0	0	0	0	0	n/a
Lecanoromycetes	1	0	0	0	0	0	0	0	n/a
Malasseziomyctes	0	0	0	12	0	0	0	0	n/a
Taphrinomycetes	0	0	0	1	0	0	0	0	n/a
Microbotryomycetes	4	0	0	0	0	0	0	0	n/a
Exobasidiomycetes	0	0	0	0	0	0	0	0	n/a
Entomophthoromycetes	0	0	0	1	0	0	0	0	n/a
Neocallimastigomycetes	0	0	0	0	0	0	0	0	n/a
Glomeromycetes	0	0	0	0	0	0	0	0	n/a
Total	75	82	167	450	27	30	48	18	125

A “+” indicates that each gene had to be present in each genome evaluated in order to add to the overall count for that lineage.

*FlavoHb = flavohemoglobin
†n/a = Not applicable since p450nor genes were not detected
Table S2. Results from approximately unbiased tests for the monophyly of fungal classes within napA, nirK, and p450nor gene trees. Where indicated, the monophyly of two lineages was also assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test significance was evaluated at $p \leq 0.05$.

Gene	Lineage	No. Genes	No. Taxa	No. Genera	Monophyletic	Amino acid	Nucleotide	Diff –lnL	P value	Diff –lnL	P value
napA	Agaricomycetes	2	1	1	Yes	Yes	-	-	-	-	-
	Dothideomycetes	7	7	6	No	No	40	0.015	40	0.001	
	Eurotiomycetes	36	34	14	No	No	753	2.00E-06	550	4.00E-04	
	Lecanoromycetes (Lec)	1	1	1	Yes	Yes	-	-	-	-	
	Leotiomycetes (L)	2	2	2	Yes	Yes	-	-	-	-	
	Microbotryomycetes	4	4	1	Yes	Yes	-	-	-	-	
	Pucciniomycetes	2	2	2	No	No	1303	9.00E-05	1088	2.00E-08	
	Sordariomycetes (S)	23	23	18	No	No	806	7.00E-01	770	9.00E-56	
	Tremellomycetes	1	1	1	Yes	Yes	-	-	-	-	
	L+S share MRCA	No	No		No	No	908	2.00E-07	973	6.00E-74	
	Lec+E share MRCA	No	No		No	No	75	3.00E-05	257	9.00E-06	
	*Diff –lnL = difference in negative log-likelihood of the observed tree to the constraint tree in which the taxa were constrained to be monophyletic.										

nirK

Lineage	No. Genes	No. Taxa	No. Genera	Monophyletic	Amino acid	Nucleotide	Diff –lnL	P value	Diff –lnL	P value	
Dothideomycetes	1	1	1	Yes	Yes	-	-	-	-	-	
Eurotiomycetes	52	52	17	No	No	19	0.142	33	0.003		
Leotiomycetes	10	10	1	Yes	Yes	-	-	-	-		
Sordariomycetes	20	20	8	Yes	Yes	-	-	-	-		
D+E share MRCA	No	No		No	No	15	0.042	30.1	0.004		
L+S share MRCA	No	No		No	No	18	0.142	35.3	0.001		
Gene	Lineage	No. Genes	No. Taxa	No. Genera	Monophyletic	Amino acid	Nucleotide	Diff \(-\text{lnL}\)	P value	Diff \(-\text{lnL}\)	P value
--------------	--------------------	-----------	----------	------------	--------------	------------	------------	----------------	---------	----------------	---------
p450nor	Dothideomycetes (D)	28	28	26	No	No	1153	4.00E-05	1294	8.00E-51	
	Eurotiomycetes (E)	36	35	17	No	No	891	1.00E-32	917	2.00E-37	
	Leotiomycetes (L)	37	36	16	No	No	465	2.00E-39	694	4.00E-40	
	Sordariomycetes (S)	72	63	32	No	No	1159	5.00E-10	1206	5.00E-15	
Tremellomycetes	3	3	2	No	No	125	3.00E-04	125	3.00E-08		
Atractiellomycetes	1	1	1	Yes	Yes						
Pezizomycetes	1	1	1	Yes	Yes						
L+S share MRCA		1386	1420	5.00E-72							
D+E share MRCA		1481	1481	2.00E-63							
Ascomycota (A)		139	140	6.00E-06							
Basidiomycota (B)		139	139	1.00E-39							
A+B share MRCA		139	140	3.00E-04							

*Diff \(-\text{lnL}\) = difference in negative log-likelihood of the observed tree to the constraint tree in which the taxa were constrained to be monophyletic.
Table S3. Results from species-tree gene-tree reconciliation using NOTUNG software for napA, nirK, and p450nor genes in fungi. Values are averages of solutions with standard deviations reported in parentheses.

Gene	Phylogeny	Duplications	Codivergences	Transfers	Losses	Duplication cost	Transfer cost	Loss cost	Solutions
p450nor amino acid	-	-	-	-	2	3	1	0	
	49.0 (0.0)	0.0 (0.0)	15.0 (0.0)	253.0 (0.0)	2	11	1	0	1000
	61.0 (0.0)	0.0 (0.0)	6.0 (0.0)	333.0 (0.0)	2	13	1	0	180
	62.1 (1.0)	0.0 (0.0)	5.4 (0.5)	339.3 (5.4)	2	15	1	0	420
p450nor nucleotide	-	-	-	-	2	3	1	0	
	45.0 (0.0)	0.0 (0.0)	16.0 (0.0)	215.0 (0.0)	2	9	1	0	1000
	53.6 (0.8)	0.0 (0.0)	8.2 (0.4)	277.6 (2.8)	2	11	1	0	1000
	56.0 (0.0)	0.0 (0.0)	6.0 (0.0)	299.0 (0.0)	2	13	1	100	
	60.0 (0.0)	0.0 (0.0)	4.0 (0.0)	319.0 (0.0)	2	15	1	60	
napA amino acid	1.4 (0.5)	0.0 (0.0)	30.8 (0.8)	14.9 (1.7)	2	3	1	1000	
	9.2 (1.4)	0.0 (0.0)	19.8 (1.4)	43.7 (4.3)	2	5	1	1000	
	15.0 (0.0)	0.0 (0.0)	14.0 (0.0)	64.0 (0.0)	2	7	1	36	
	22.0 (1.3)	0.0 (0.0)	7.8 (1.0)	100.8 (6.4)	2	9	1	20	
	28.0 (0.0)	0.0 (0.0)	3.0 (0.0)	135.0 (0.0)	2	11	1	1	
	28.0 (0.0)	0.0 (0.0)	3.0 (0.0)	135.0 (0.0)	2	13	1	1	
	31.0 (1.0)	0.0 (0.0)	0.5 (0.5)	165.5 (5.5)	2	15	1	2	
napA nucleotide	-	-	-	-	2	3	1	0	
	-	-	-	-	2	5	1	0	
	-	-	-	-	2	7	1	0	
	-	-	-	-	2	9	1	0	
	-	-	-	-	2	11	1	0	
	28.0 (1.0)	0.0 (0.0)	2.5 (0.5)	142.5 (4.5)	2	13	1	2	
	30.0 (0.0)	0.0 (0.0)	1.0 (0.0)	159.0 (0.0)	2	15	1	1	
Table S4. Predicted horizontal gene transfers of fungal *p450nor*, *napA*, and *nirK* genes based on alien index algorithm.

Gene	Query assembly ID	Query name	IG† bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG name	OG name	IG assembly ID	OG assembly ID
p450nor	Apimol	Apiospora	418	242	851	0.006	Sordariomycetes	Dothideomycetes	V. lopsis laxa CBS 191.97 v1.0	P. fracticola	GCA_0015	92805.1
		montagnei										
		NRRL 25634										
GCA_0000	Aspergillus	niger	353	437	859	0.098	Eurotiomycetes	Dothideomycetes	U. r. CBS 1704	S. parasiticus SU-1	GCA_0000	03515.2
02855.2		513 88										
GCA_0001	Nectria	haematococc	469	583	881	0.129	Sordariomycetes	Eurotiomycetes	S. pallida	T. virens Gv29-8	GCA_0007	10705.2
51355.1_3		a mpVI 77-									GCA_0009	56085.1
13-4		2479										
GCA_0002	Trichosporon	asahii var	400	572	813	0.212	Tremellomycetes	Sordariomycetes	M. blollopis	T. rufum	GCA_0009	50635.1
93215.1		asahii CBS										Plecu1
		2479										
GCA_0004	Byssoschlamy	s spectabilis	528	659	827	0.158	Eurotiomycetes	Sordariomycetes	E. xenobiotic a colletotria chum	T. rufum	GCA_0008	35505.1
97085.1											GCA_0001	70995.2
GCA_0007	Sporothrix	paludula	577	656	833	0.095	Sordariomycetes	Dothideomycetes	R. rufum	A. richmonden sis	GCA_0003	19635.1
10705.2												Rhyru1_1
GCA_0007	Geotrichum	candidum	586	650	854	0.075	Leotiomycetes	Dothideomycetes	T. r. CBS 18893	A. richmonden sis	GCA_0015	72075.1
43665.1												
GCA_0008	Mrakia	frigida	279	421	745	0.191	Tremellomycetes	Eurotiomycetes	T. r. CBS 18893	A. richmonden sis	GCA_0009	50635.1
15965.1												Monpu1
GCA_0008	Exophiala	xenobiotic a	573	637	887	0.072	Eurotiomycetes	Dothideomycetes	T. r. CBS 18893	A. richmonden sis	GCA_0001	50975.2
35505.1											GCA_0015	72075.1
GCA_0009	Mrakia	blollopis	371	531	852	0.188	Tremellomycetes	Eurotiomycetes	T. r. CBS 18893	A. richmonden sis	GCA_0002	93215.1
50635.1												Monpu1

*Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome.

†IG = Ingroup, OG = Outgroup.
Table S4. (continued)

Gene	Query assembly ID	Query name	IG\(^{+}\) bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG name	OG name	IG assembly ID	OG assembly ID
p450nor	GCA_0015 72075.1	Acidomyces richmondensis	584	637	831	0.064	Dothideomycetes	Eurotiomycetes	Rhytidhys teron rufalum	Myriangi um duriae CBS	GCA_0008 35505.1	Myru1_1
									Sclerotinia sclerotiorum m	1980 UF-70	GCA_0001 46945.1	
GCA_0015	92805.1	Peltaster fructicola	451	483	840	0.038	Dothideomycetes	Leotiomyctetes	Aspergillus niger CBS	513 88	GCA_0002 81105.1	GCA_0000 02855.2
Macan1		Macrophom a anomochlaeta CBS 525.71	393	437	846	0.052	Dothideomycetes	Eurotiomycetes	Valetiell opinis laxa CBS	191.97 v1.0	GCA_0015 92805.1	Valla1
Myrdu1		Myriangium duriae CBS 260.36	451	508	840	0.068	Dothideomycetes	Sordariomyctetes	Apiospora montagne i NRRL	25634 v1.0	GCA_0002 81105.1	GCA_0000 02855.2
Valla1		Valetoniellopsis laxa CBS 191.97 v1.0	418	508	838	0.107	Sordariomyctetes	Dothideomycetes	Clavaria famosa		Apimo1	Myrdu1
napA	GCA_0002 25285.2	Epichloe glyceriae E277	270	326	1367	0.041	Sordariomyctetes	Agaricomycetes	Pseudogym noascues sp. VKM F-	4513 FW-928	GCA_0007 09145.1	GCA_0011 79745.1
GCA_0002	81105.1	Coniosporia m apollinis CBS 100218	1416	1436	2040	0.010	Dothideomycetes	Leotiomyctetes	Fungal sp. No 11243		GCA_0008 36255.1	GCA_0007 50755.1
GCA_0003	15175.1	Herpotrich laceae sp. UM238	1265	1286	1989	0.011	Eurotiomycetes	Sordariomyctetes	Aspergillum ustus		GCA_0008 12125.1	GCA_0003 13795.2
GCA_0004	64645.1	Melampsora pinitorqua Mpin7	437	872	1645	0.264	Pucciniomyctetes	Eurotiomycetes	Cronarti um ribicola 11-2		GCA_0005 00245.1	GCA_0014 30945.1

\(^{+}\)Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome.

\(^{1}\)IG = Ingroup, OG = Outgroup.
Table S4. (continued)

Gene	Query assembly ID	Query name	IG' bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG assembly ID	OG assembly ID		
napA	GCA_0005 00245.1	Cronartium ribicola 11-2	431	905	1626	0.292	Pucciniomycetes	Sordariomycetes	Melampyssara pinitorquera Mpin7	Balansia obtecta B249	GCA_0004 64645.1	GCA_0007 09145.1
	GCA_0006 11775.1	Umbilicaria muehlenbergii	n/a	1421	2035	0.698	Lecanoromycetes	Leotiomyces	Umbilicaria muehlenbergii	Pseudogymnoascus sp. VKM F-4513 FW-928	GCA_0006 11775.1	GCA_0007 50755.1
	GCA_0007 09145.1	Balansia obtecta B249	278	925	1854	0.349	Sordariomycetes	Pucciniomycetes	Epichloe glyceriae E277	Cronartium ribicola 11-2	GCA_0002 25285.2	GCA_0005 00245.1
	GCA_0007 50755.1	Pseudogymnoascus sp. VKM F-4513 FW-928	1415	1436	2037	0.010	Leotiomyces	Dothideomycetes	Geotrichum candidum	Coniosporum apollinis CBS 100218 Colletotrichum orbiculare MAFF 240422	GCA_0007 43665.1	GCA_0002 81105.1
	GCA_0014 68955.1	Cryptococcus albidus	n/a	1033	2058	0.502	Tremellomycetes	Sordariomycetes	Cryptococcus albidus	Cryptococcus orbiculare MAFF 240422	GCA_0014 68955.1	GCA_0003 50065.1
	GCA_0015 72075.1	Acidomyces richmondensis	n/a	559	888	0.630	Dothideomycetes	Eurotiomyces	Acidomyces richmondensis	Arthrobotrya otae CBS 113480	GCA_0015 72075.1	GCA_0001 51145.1

*Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome.
†IG = Ingroup, OG = Outgroup.
Table S5. List of genera containing species with and without $p450$nor.

Genus	Total species	Species with $p450$nor	Percentage with $p450$nor
Arthroderma	2	1	50.0
Aspergillus	20	9	45.0
Bipolaris	6	2	33.3
Colletotrichum	10	5	50.0
Diaporthe	3	1	33.3
Diploida	3	2	66.7
Exophiala	7	1	14.3
Fusarium	16	13	81.3
Hirsutella	2	1	50.0
Hymenoscyphus	7	5	71.4
Metarhizium	7	6	85.7
Neosartorya	2	1	50.0
Neurospora	6	4	66.7
Pseudogymnoascus	16	15	93.8
Pyrenochaeta	3	1	33.3
Rhytidhysterion	2	1	50.0
Rutstroemia	2	1	50.0
Sclerotinia	3	2	66.7
Sporothrix	3	1	33.3
Trichoderma	8	4	50.0
Trichophyton	6	5	83.3
Trichosporon	2	1	50.0
Figure S1. Gene abundances of *narG*, *napA*, *nirK*, *p450nor*, and flavohemoglobins (colored bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the cladogram were derived from the NCBI taxonomy using the online tool phyloT (http://phylot.biobyte.de/index.html).
Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective NO reductase (p450nor) gene sequence(s). On the left, an amino acid phylogeny of 238 concatenated single copy orthologues from fungal species in which one or more p450nor gene(s) were detected. The p450nor nucleotide phylogeny (right) demonstrates many instances of incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.
Figure S3. Cophylogenetic plot of napA-containing fungal species (left, N = 75) and the napA nucleotide tree (right, N = 78). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90%. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.
Figure S4. Cophylogenetic plot of nirK-containing fungal species (left, N = 82) and the nirK nucleotide tree (right, N = 83). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90 %. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.
Figure S5. Plot of alien index values observed for *p450nor* genes (N = 178). Points above the hashed line at the origin are indicative of HGT. Names of fungal species with alien index values above zero are ordered as their points appear on the graph. Thick horizontal lines represent the median alien index value. See Materials and Methods in Supplementary Materials for details on alien index calculations.
Figure S6. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes (left, N = 55) and cytochrome P450 family 105 amino acid sequences (right, N = 57). Both phylogenies represent 50% majority-rule consensus trees. The tree on the left is rooted with proteobacterial sequences as outgroup to the *Actinobacteria*. The tree on the right is midpoint rooted. Nodes with posterior probabilities ≥ 0.95 are indicated by black circles on an adjacent branch.
Figure S7. Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of cytochrome P450 sequences (N = 408) demonstrating the affiliation of P450nor with other sequences belonging to members of the bacterial phyla Actinobacteria and Proteobacteria. Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on branches (left tree) indicate ≥0.95 posterior probability or ≥90 % bootstrap replication (right tree). The colored legend indicates the cytochrome P450 family specified by shared amino acid identity of ≥40 % (39).
Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.
Figure S9. Genome regions chosen for in depth presentation of protein coding genes surrounding p450nor in predicted BGC regions. Labels above genes are functional annotations from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each gene. Numbers in parentheses represent the proportion of these genes shown that are also found within closely related genomes where available.