The domination of Saturn’s low-latitude ionosphere by ring ‘rain’

J. O’Donoghue1, T. S. Stallard1, H. Melin1, G. H. Jones2,3, S. W. H. Cowley1, S. Miller3,4, K. H. Baines5 & J. S. D. Blake1

Saturn’s ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation1. At low latitudes the solar radiation should result in a weak planet-wide glow in the infrared, corresponding to the planet’s uniform illumination by the Sun2. The observed electron density of the low-latitude ionosphere, however, is lower and its temperature higher than predicted by models3–5. A planet-to-ring magnetic connection has been previously suggested, in which an influx of water from the rings could explain the lower-than-expected electron densities in Saturn’s atmosphere6–8. Here we report the detection of a pattern of features, extending across a broad latitude band from 25 to 60 degrees, that is superposed on the lower-latitude background glow, with peaks in emission that map along the planet’s magnetic field lines to gaps in Saturn’s rings. This pattern implies the transfer of charged species derived from water in the ring-plane to the ionosphere, an influx on a global scale, flooding between 30 to 43 per cent of the surface of Saturn’s upper atmosphere. This ring ‘rain’ is important in modulating ionospheric emissions and suppressing electron densities.

On 17 April 2011 over two hours of Saturn near-infrared spectral data were obtained by the 10-m W. M. Keck II telescope using the NIRSPEC (Near InfraRed Spectrograph) spectrometer9. The slit on the spectrometer was positioned along Saturn’s noon meridian as shown in Fig. 1. The intensity of two bright H3+ rotational–vibrational emission lines is almost completely visible from pole to pole, so that low-latitude emissions can be studied. Far from being featureless (as we might expect by analogy to Jupiter1; see Supplementary Information), the mid- to low-latitude H3+ emissions show a number of peaks and troughs before increasing strongly towards the two polar auroral regions; a number of these peaks are observed in both spectral lines. The Q(1, 0−) line shows more substantial peaks and troughs at mid- to low latitudes than does the R(2, 2−) line, owing to less contamination by reflected sunlight in neighbouring spectral pixels where methane is not absorbing this light effectively. The apparently symmetric peaks and troughs do not occur at the same latitudes either side of the equator, however: they occur at higher latitudes in the north than in the south. The lack of latitudinal symmetry, along with the absence of a variability similar to Jupiter’s, suggests that the phenomenon is unrelated to weather patterns or other processes produced in the neutral atmosphere.

Instead, the peaks in emission are found to be mapped via planetary magnetic field lines to gaps in Saturn’s rings such as the Cassini division (in which we will include here the Herschel, Laplace, Encke and Keeler gaps) and the Colombo gap. In addition, we define the ‘instability region’ as the region between the inner edge of the B ring and the ‘instability radius’. The inner edge of the B ring and the ‘instability radius’ are regions within which the outward centrifugal forces on particles balance with the inward gravitational forces within the rings, such that particles are unstable and can easily stream along magnetic field lines and enter Saturn’s atmosphere9,10,11. The model used for this mapping uses the most recent internal field coefficients determined from Cassini data12, together with small field perturbations produced by magnetospheric currents (see also the Supplementary Information).

The field lines within the equatorial region, where the H3+ emission features are found, map to Saturn’s main ring system between 1.2Rs and 2.3Rs from the centre of the planet (where Rs is the 1-bar Saturn

Figure 1 | The process of data acquisition. The spectral images shown in a are separated by a thick black line to indicate the different wavelength ranges. The horizontal and vertical axes in these ranges show wavelength and spatial position along the slit, respectively, while intensity ranges from low (black) to high (white). Two spectral lines, Q(1, 0−) at 3.953 μm and R(2, 2−) at 3.622 μm, are centred in each wavelength range, and are from the Q and R branches of the H3+ emission spectrum. These spectra are obtained through the slit of the spectrometer seen in b, which was orientated in the north–south position on Saturn, aligned along the rotational axis. Saturn’s spin axis was tilted by 8.2° towards Earth during conditions of Saturn’s early northern spring. The planet rotates beneath the slit, allowing the acquisition of spectral images at a fixed local time, but varying in Saturn longitude. In the approximately two hours of recorded data, 21% of the longitude of the planet was observed: 101° – 177° longitude. The bright infrared emission measured at the −3 arcsecond position in a across the entire wavelength range is the uniform reflection of sunlight by the rings, and the remaining bright white areas are due to methane reflection. This background methane reflection attenuates the R(2, 2−) line emission more than that of the Q(1, 0−) line, leading to a lower signal-to-noise ratio.
equatorial radius of 60,268 km), as shown by the mapped equatorial distances in Fig. 2. A majority of the emission peaks correspond to prominent gaps in the rings, whereas the troughs map to the dense sections of the rings. This relationship is seen in greater spatial detail in Fig. 3, where ring transparency (as measured by Voyager 2) is compared with the total average H_3^+ intensity from the co-addition of both hemispheres and spectral lines.

Cassini spacecraft observations over Saturn’s rings during its orbit insertion manoeuvre in 2004, unique in the mission to date, indicate the presence of a water-product atmosphere surrounding the rings: this atmosphere is composed of icy grains and is partly ionized by solar ultraviolet radiation, analogously to the planetary ionosphere. Given the correlation between Saturn’s ionosphere and magnetically mapped locations in the rings, we propose that it is this charged material that causes the pattern of features seen on the planet. Water-related ions and electrons must be driven to stream along the field lines into the planetary ionosphere, and we now discuss how this could produce the modulation seen in the ionosphere.

A magnetic link between Saturn’s rings and its atmosphere has previously been invoked to explain the lower-than-expected electron densities and their latitudinal variations in the planetary ionosphere, through the influx of water. These earlier observations show discrete dark bands in the lower atmosphere (beneath the ionosphere) taken by the Voyager 2 spacecraft, which the authors interpreted to be magnetically mapped to the inner edge of the B ring, the instability radius and the orbital path of Enceladus. Comparing our low-latitude profiles with this result, we see that water deposited in the lower atmosphere appears to be co-located with the edges of an ionospheric peak extending from 1.52R_e to 1.62R_e in H_3^+ emission, within a couple of degrees of planetocentric latitude, as seen in Fig. 2.

Water ions flowing from the rings along magnetic field lines into the ionosphere cause the electron density to be reduced through rapid chemical recombination (quenching). Charged species derived from water also deplete H_3^+ because it protonates (charge-exchanges) quickly with molecules heavier than H and He (ref. 15); a drop in H_3^+ density (and thus intensity at latitudes where the most water is delivered to the planet) should therefore be visible. When mapping along field lines from the ionosphere to the equatorial plane, we found that each large trough corresponds to a major subdivision of the rings. In the same manner, the peaks in emission found to map to prominent gaps in the rings. The reason for these peaks in relatively high intensity may be that these are regions in which the influx of water is severely reduced. If so, these peaks are not really peaks at all, but regions in which the ionosphere is quenched less than are the latitudes on either side.

The Cassini division, for example, which maps on average to about 2.1R_e in Fig. 2, occurs at latitudes where an increase in the emission of H_3^+ is clearly visible. Water influx from the A and B rings quenches the ionosphere at locations on either side of these latitudes, leading to the prominent peak seen in between. This occurs in both hemispheres, symmetrical about the magnetic equator of Saturn. One exception to this apparent correlation between water influx and H_3^+ emission is the instability radii. Modelling suggests that water influx should peak at these regions, but our measurements clearly show these regions to lie within a peak in emission, rather than at the locations of quenching. A possible explanation for this anomaly is that

Figure 2 Intensity of H_3^+ infrared emission as a function of position along Saturn’s noon meridian. The horizontal axes show a scale of planetocentric latitude at the top and the planetocentric equatorial distances which those latitudes magnetically map to at the top. The y axis shows the intensity of H_3^+ emission of the two spectral lines that are shown, Q(1, 0$^+$) at 3.953 μm (black line) and R(2, 2$^+$) at 3.622 μm (dashed black line) with a central gap where the observed emission is swamped by solar photon reflection from the planetary rings. The 1-sigma errors in intensity measurements are denoted by the grey shading envelopes for each line. Latitude bands mapping along planetary magnetic field lines to the main ring subdivisions in the equatorial plane are shown blue (water influx), and the ring gaps are shown in red. The yellow shading is the instability region between the stability limits, as discussed in the main text. High- to mid-latitude emission is shaded pink out to the limb of the planet (dashed vertical line), peaking in intensity at about 2 μW m$^{-2}$ for the Q(1, 0$^+$) line and at about 1 μW m$^{-2}$ for the R(2, 2$^+$) line (polar auroral/mid-latitude emission). The errors in latitude are on average 3′, mainly caused by the Earth’s atmospheric attenuation (that is, seeing, of 0.4′ of arc). To remove additional errors, only the best seeing conditions were selected, such that the Q(1, 0$^+$) line derives from the co-addition of about 40% of the data set. However, owing to the weaker signal in the R(2, 2$^+$) line, about 90% of the data set was co-added, leading to a greater error in latitude but a reduction in intensity errors (see also Supplementary Information).
The horizontal axes show latitude in each hemisphere at the top in degrees and the corresponding equatorial distance at the bottom, mapped along magnetic field lines. The H_3^+ intensities from the Q(1, 0) and R(2, 2) lines in both hemispheres are co-added to obtain a high signal-to-noise ratio, and are shown by the red line (pale red shading denotes the 1-sigma error in the intensity measurements); a line-of-sight correction has been applied. The black and grey lines show a smoothed and raw normalized photon transmission count (transparency), respectively, of the rings taken from Voyager 2 Ultraviolet Spectrometer stellar occultation archives. The yellow shading indicates the instability region between the instability radii at 1.52R_S and 1.62R_S. The H_3^+ intensity shows peaks in regions of high ring transparency and troughs where transparency is low, indicating that H_3^+ emission is quenched when it is mapped to high-density regions of the rings. At higher latitudes, one pixel represents more degrees of latitude than at low latitudes, as depicted by the red crosses, which indicate the pixel spacing on the spectrograph charge-coupled device (CCD).

while significantly enhanced water influx occurs on the edges of this region, there could be low densities of water ion influx in between, leading to little or no reduction of H_3^+ density at latitudes mapping to it. The reduced water source here may be the result of the instability radii consuming the local supply at either side of the instability region, effectively cutting off the supply. However, as stated, the uncertainty in mapping here can affect the interpretation of this peak in emission, and we also explore other mechanisms that could create the observed features.

Another interpretation for the observations is that the peaks in intensity correspond to temperature increases in H_3^+, whereas the troughs correspond to the natural background levels of H_3^+ emission produced by solar extreme-ultraviolet ionization. These temperature increases would be the result of Joule heating via the flow of charged particles, which requires that the resultant rise in H_3^+ intensity is large enough to overcome any quenching of H_3^+ density that may take place. Detailed modelling of the effects of ring rain are required to establish what the background H_3^+ emission intensity in these latitudes should be (on the basis of solar extreme-ultraviolet ionization alone), and whether or not the peaks in emission found here are equal to or higher than this level. The shadow cast by the rings is known to create variations in the ion density with latitude, but it cannot explain the features seen here because the shadow falls behind the rings in ground-based geometry. As seen in Fig. 1, the reflection of sunlight by the rings obscures this region entirely.

Atmospheric models still continue to struggle to explain the electron density distribution and underestimate the observed temperature of the neutral gases in the upper atmosphere at low latitudes by many hundreds of Kelvin, in what is known colloquially as the ‘energy crisis’, and this shortfall highlights the acute need for a greater understanding of the systems acting upon the low-latitude atmosphere. The observations here are the first direct measure of Saturn’s ionospheric reaction to ring-water input, rather than through measurements of the deeper atmosphere below it. Previously, only discrete features linked to water influx have been found, but here we can see that the scale of this interaction is global, and that water from the A, B and C rings can quench the ionosphere, mapping to over 30% of Saturn’s surface area. The D-ring mapped latitudes are largely obscured, but their inclusion would imply that up to 43% of the planet is subject to water influx.

Received 27 October 2012; accepted 22 February 2013.

1. Stallard, T. S. et al. Temperature changes and energy inputs in giant planet atmospheres: what are we learning from H_3^+. Phil. Trans. R. Soc. A 370, 5213–5224 (2012).
2. Miller, S., Stallard, T., Melin, H. & Tennyson, J. H_3^+ cooling in planetary atmospheres. Faraday Discuss. 147, 283–291 (2010).
3. Atreya, S. K., Donahue, T. M., Nagy, A. F., Waite, J. H. & McConnell, J. C. Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. In Saturn from Cassini-Huygens (eds Dougherty, M., Esposito, L. & Krimigis, S.) 239–277 (Springer, 1984).
4. Smith, C. G. A., Ayland, A. D., Millward, G. H., Miller, S. & Moore, L. E. An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007).
5. Moore, L., Mueller-Wodarg, I., Galand, M., Kliore, A. & Mendillo, M. Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons. J. Geophys. Res. 115, A11137, http://dx.doi.org/10.1029/2010JA015692 (2010).
6. Connerney, J. E. P. & Waite, J. H. New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312, 136–138 (1984).
7. Connerney, J. E. P. Magnetic connection for Saturn’s rings and atmosphere. Geophys. Res. Lett. 13, 773–776 (1986).
8. Wilson, G. R. & Waite, J. H. Jr. Kinetic modeling of the Saturn ring-ionosphere plasma environment. J. Geophys. Res. 94, 17287–17298 (1989).
9. McLean, I. S. et al. in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 3334 (ed. Fowler, A. M.) 566–578 (SPIE, 1998).
10. Northrop, T. G. & Hill, J. R. Stability of negatively charged dust grains in Saturn’s ring plane. J. Geophys. Res. 87, 6045–6051 (1992).
11. Northrop, T. G. & Hill, J. R. The inner edge of Saturn’s B ring. J. Geophys. Res. 88, 6102–6108 (1983).
12. Burton, M. E., Dougherty, M. K. & Russell, C. T. Saturn’s internal planetary magnetic field. J. Geophys. Res. 37, 24105 (2010).
13. Luhmann, J. G., Johnson, R. E., Tokar, R. L., Ledvina, S. A. & Cravens, T. E. A model of the ionosphere of Saturn’s rings and its implications. Icarus 181, 465–474 (2006).
14. Coates, A. J. et al. Plasma electrons above Saturn’s main rings: CAPS observations. Geophys. Res. Lett. 32, L14S09, http://dx.doi.org/10.1029/2005GL022694 (2005).
15. Miller, S. et al. H_3^+: the driver of giant planet atmospheres. Phil. Trans. R. Soc. Lond. A 364, 3121–3137 (2006).
16. Mendillo, M. et al. Effects of ring shadowing on the detection of electrostatic discharges at Saturn. Geophys. Res. Lett. 32, L14S09, http://dx.doi.org/10.1029/2004GL021934 (2005).
17. Yelle, R. V. & Miller, S. in Jupiter: the Planet, Satellites and Magnetosphere (eds Baggenstos, D., Dowling, T. & McKinnon, W.) 185–218 (Cambridge Univ. Press, 2004).
18. Lillee, C. F., Hord, C. W., Pang, K., Coffeen, D. L. & Hansen, J. E. The Voyager mission photopolarimeter experiment. Space Sci. Rev. 21, 159–181 (1977).

Supplementary Information is available in the online version of the paper. Acknowledgements The data presented here were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The observations were made to support the Cassini auroral campaign. Ring profile data were provided by the Planetary Rings Node website. Discussions within the international team led by T.S.S. on ‘Comparative Jovian Aeronomy’ have greatly benefited this work, this was hosted by the International Space Science Institute (ISSI). The UK Science and Technology Facilities Council (STFC) supported this work through the PhD Studentship of J.O’D. and grant support for T.S.S., H.M. and G.H.J.

Author Contributions J.O’D. analysed and interpreted the data and wrote the paper. T.S.S., S.M. and K.H.B. proposed and designed the study and collected the data. H.M. greatly aided the analysis and interpretation of data. S.W.H.C. provided the magnetic-mapping model and magnetospheric information. G.H.J. provided ring-plane information. J.S.D.B. provided context from Cassini VIMS observations. All authors assisted in the interpretation of data and commented on the manuscript.

Author Information Reprints and permissions information is available at http://www.nature.com/reprints. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.O’D. (jod3@ion.le.ac.uk).