The centralisers of nilpotent elements in the classical Lie algebras

O.S. Yakimova

INTRODUCTION

Let \mathfrak{g} be a Lie algebra over a field \mathbb{K}. Consider the coadjoint representation $\text{ad}^\ast(\mathfrak{g})$. The index of \mathfrak{g} is the minimum of dimensions of stabilisers \mathfrak{g}_α over all covectors $\alpha \in \mathfrak{g}^\ast$

$$\text{ind} \mathfrak{g} = \min_{\alpha \in \mathfrak{g}^\ast} \dim \mathfrak{g}_\alpha.$$

The definition of index goes back to Dixmier [3, 11.1.6]. This notion is important in Representation Theory and also in Invariant Theory. By Rosenlicht’s theorem [12], generic orbits of an arbitrary action of a linear algebraic group on an irreducible algebraic variety are separated by rational invariants; in particular, $\text{ind} \mathfrak{g} = \text{tr.deg} \mathbb{K}(\mathfrak{g}^\ast)^G$.

The index of a reductive algebra equals its rank. Computing the index of an arbitrary Lie algebra seems to be a wild problem. However, there is a number of interesting results for several classes of non-reductive subalgebras of reductive Lie algebras. For instance, parabolic subalgebras and their “relatives” (nilpotent radicals, seaweeds) are considered in [4], [8], [13]. The centralisers of elements form another interesting class of subalgebras. The last topic is closely related to the theory of integrable Hamiltonian systems.

Let G be a semisimple Lie group (complex or real), $\mathfrak{g} = \text{Lie} G$, and Gx an orbit of a covector $x \in \mathfrak{g}^\ast$. Let \mathfrak{g}_x denote the stabiliser of x. It is well-known that the orbit Gx possesses a G-invariant symplectic structure. There is a family of commuting with respect to a Poisson bracket polynomial functions on \mathfrak{g}^\ast constructed by the argument shift method such that its restriction to Gx contains $\frac{1}{2} \dim(Gx)$ algebraically independent functions if and only if $\text{ind} \mathfrak{g}_x = \text{ind} \mathfrak{g}$.

Conjecture (´Elashvili). Let \mathfrak{g} be a reductive Lie algebra. Then $\text{ind} \mathfrak{g}_x = \text{ind} \mathfrak{g}$ for each covector $x \in \mathfrak{g}^\ast$.

Recall that if \mathfrak{g} is reductive, then the \mathfrak{g}-modules \mathfrak{g}^\ast and \mathfrak{g} are isomorphic. In particular, it is enough to prove the “index conjecture” for stabilisers of vectors $x \in \mathfrak{g}$.

Given $x \in \mathfrak{g}$, let $x = x_s + x_n$ be the Jordan decomposition. Then $\mathfrak{g}_x = (\mathfrak{g}_{x_s})x_n$. The subalgebra \mathfrak{g}_{x_s} is reductive and contains a Cartan subalgebra of \mathfrak{g}. Hence, $\text{ind} \mathfrak{g}_{x_s} = \text{ind} \mathfrak{g} = \text{rk} \mathfrak{g}$. Thus, a verification of the ”index conjecture” is reduced to the computation of $\text{ind} \mathfrak{g}_{x_n}$ for nilpotent elements $x_n \in \mathfrak{g}$. Clearly, we can restrict ourselves to the case of simple \mathfrak{g}.

Note that if x is a regular element, then the stabiliser \mathfrak{g}_x is commutative and of dimension $\text{rk} \mathfrak{g}$. The “index conjecture” was proved for subregular nilpotents and nilpotents of height 2 [2], and also for nilpotents of height 3 [10]. (The height of a nilpotent element e is the maximal number m such that $(\text{ad} e)^m \neq 0$.) Recently, Êlashvili’s conjecture was proved by Charbonnel [2] for $\mathbb{K} = \mathbb{C}$.

In the present article, we prove in an elementary way, that for any nilpotent element $e \in \mathfrak{g}$ of a simple classical Lie algebra the index of \mathfrak{g}_e equals the rank of \mathfrak{g}. We assume that the
ground field \mathbb{K} contains at least k elements, where k is the number of Jordan blocks of a nilpotent element $e \in \mathfrak{g}$. For the orthogonal and symplectic algebras, it is also assumed that $\text{char } \mathbb{K} \neq 2$. Note that if a reductive Lie algebra \mathfrak{g} does not contain exceptional ideals, then \mathfrak{g}_x has the same property. Thus, the “index conjecture” is proved for the direct sums of classical algebras.

By Vinberg’s inequality, which is presented in [21 Sect. 1], we have $\text{ind } \mathfrak{g}_x \geq \text{ind } \mathfrak{g}$ for each element $x \in \mathfrak{g}^*$. It remains to prove the opposite inequality. To this end, it suffices to find $\alpha \in (\mathfrak{g}_x)^*$ such that the dimension of its stabiliser in \mathfrak{g}_x is at most $\text{rk } \mathfrak{g}$. For $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sp}(V)$, we explicitly indicate such a point $\alpha \in \mathfrak{g}_e^*$. In case of the orthogonal algebra, the proof is partially based on induction.

In the last two sections, \mathbb{K} is assumed to be algebraically closed and of characteristic zero. It is shown that the stabilisers $(\mathfrak{g}_e)_\alpha$ constructed for $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sp}(V)$ are generic stabilisers for the coadjoint representation of \mathfrak{g}_e. For the orthogonal case, we give an example of a nilpotent element $e \in \mathfrak{so}_8$ such that the coadjoint action of \mathfrak{g}_e has no generic stabiliser. Similar results for parabolic and seaweed subalgebras of simple Lie algebras were obtained by Panyushev and also by Tauvel and Yu. In [13], there is an example of a parabolic subalgebra of \mathfrak{so}_8 having no generic stabilisers for the coadjoint representation. The affirmative answer for series A and C is obtained by Panyushev in [11].

In the last section, we consider the commuting variety of \mathfrak{g}_e and its relationship with the commuting variety of triples of matrices.

This research was supported in part by CRDF grant RM1–2543–MO–03.

1. Preliminaries

Suppose \mathfrak{g} is a simple classical Lie algebra or a general linear algebra. Let $e \in \mathfrak{g}$ be a nilpotent element and $\mathfrak{z}(e)$ its centraliser in \mathfrak{g}. Note that there is no essential difference between $\mathfrak{g} = \mathfrak{gl}(V)$ and $\mathfrak{g} = \mathfrak{sl}(V)$. However, the first case is more suitable for calculations. In case of orthogonal and symplectic algebras, we need some facts from the theory of symmetric spaces.

Let $(\ , \)_V$ be a non-degenerate symmetric or skew-symmetric form on a finite dimensional vector space V given by a matrix J, i.e., $(v, w)_V = v^tJw$, where the symbol t stands for the transpose. The elements of $\mathfrak{gl}(V)$ preserving $(\ , \)_V$ are exactly the fixed vectors $\mathfrak{gl}(V)^\sigma$ of the involution $\sigma(\xi) = -J\xi^tJ^{-1}$. There is the $\mathfrak{gl}(V)^\sigma$-invariant decomposition $\mathfrak{gl}(V) = \mathfrak{gl}(V)^\sigma \oplus \mathfrak{g}_1$. The elements of \mathfrak{g}_1 multiply the form $(\ , \)_V$ by -1, i.e., $(\xi v, w)_V = (v, \xi w)_V$ for every $v, w \in V$.

Set $\mathfrak{g} = \mathfrak{gl}(V)^\sigma$, and let $e \in \mathfrak{g}$ be a nilpotent element. Denote by $\mathfrak{z}(e)$ and $\mathfrak{z}_{\mathfrak{gl}}(e)$ the centralisers of e in \mathfrak{g} and $\mathfrak{gl}(V)$, respectively. Since $\sigma(e) = e$, σ acts on $\mathfrak{z}_{\mathfrak{gl}}(e)$. Clearly, $\mathfrak{z}_{\mathfrak{gl}}(e)^\sigma = \mathfrak{z}(e)$. This yields the $\mathfrak{z}(e)$-invariant decomposition $\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{z}(e) \oplus \mathfrak{z}_1$. Given $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$, let $\tilde{\alpha}$ denote its restriction to $\mathfrak{z}(e)$.

Proposition 1. Suppose $\alpha \in \mathfrak{z}_{\mathfrak{gl}}(e)^*$ and $\alpha(\mathfrak{z}_1) = 0$. Then $\mathfrak{z}(e)\tilde{\alpha} = \mathfrak{z}_{\mathfrak{gl}}(e)\alpha \cap \mathfrak{z}(e)$.

2
Proof. Take $\xi \in \mathfrak{z}(e)$. Since $[\xi, \mathfrak{z}_1] \subset \mathfrak{z}_1$, $\alpha([\xi, \mathfrak{z}(e)]) = 0$ if and only if $\alpha([\xi, \mathfrak{z}_{gl}(e)]) = 0$. In particular, $\mathfrak{z}(e)_a = \mathfrak{z}(e)_a$. □

Suppose \mathfrak{h} is a Lie algebra and $\tau \in \text{Aut}\mathfrak{h}$ an involution, which defines the decomposition $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$. Each point $\gamma \in \mathfrak{h}^*_0$ determines a skew-symmetric 2-form $\hat{\gamma}$ on \mathfrak{h}_1 by $\hat{\gamma}(\xi, \eta) = \gamma([\xi, \eta])$.

Lemma 1. In the above notation, we have $\text{ind}\mathfrak{h} \leq \text{ind}\mathfrak{h}_0 + \min_{\gamma \in \mathfrak{h}^*_0} \dim(Ker \hat{\gamma})$.

Proof. Consider γ as a function on \mathfrak{h}, which is equal to zero on \mathfrak{h}_1. Then $\mathfrak{h}_\gamma = (\mathfrak{h}_0)_\gamma \oplus (\mathfrak{h}_\gamma \cap \mathfrak{h}_1) = (\mathfrak{h}_0)_\gamma \oplus (\text{Ker} \hat{\gamma})$. We have $\dim(\mathfrak{h}_0)_\gamma = \text{dim}\mathfrak{h}_0$ for generic points (= points of some Zariski open subset $U_1 \subset \mathfrak{h}^*_0$). The points of \mathfrak{h}^*_0, where $\text{Ker} \hat{\gamma}$ has the minimal possible dimension, form another open subset, say $U_2 \subset \mathfrak{h}^*_0$. For the points of the intersection $U_1 \cap U_2$, the dimension of the stabiliser in \mathfrak{h} equals the required sum. □

2. General linear algebra

Consider a nilpotent element $e \in \mathfrak{gl}(V)$, where V is an n-dimensional vector space over \mathbb{K}. Denote by $\mathfrak{z}(e)$ the centraliser of e. Let us show that the index of $\mathfrak{z}(e)$ equals n.

Let k be a number of Jordan blocks of e and $W \subset V$ a k-dimensional complement of $\text{Im} e$ in V. Denote by $d_i + 1$ the dimension of i-th Jordan block. Choose a basis w_1, w_2, \ldots, w_k in W, where w_i is a generator of an i-th Jordan block, i.e., the vectors $e^{s_i}w_i$ with $1 \leq i \leq k$, $0 \leq s_i \leq d_i$ form a basis of V. Let $\varphi \in \mathfrak{z}(e)$. Since $\varphi(e^{s_i}w_i) = e^{s_i}\varphi(w_i)$, the map φ is completely determined by its values on w_i, $i = 1, \ldots, k$. Each value $\varphi(w_i)$ can be written as

$$\varphi(w_i) = \sum_{j,s} c^{j,s}_i e^{s}w_j,$$

where $c^{j,s}_i \in \mathbb{K}$. (1)

That is, φ is completely determined by the coefficients $c^{j,s}_i = c^{j,s}_i(\varphi)$. Note that $\varphi \in \mathfrak{z}(e)$ preserves the space of each Jordan block if and only if $c^{j,s}_i(\varphi) = 0$ for $i \neq j$.

The centraliser $\mathfrak{z}(e)$ has a basis $\{\xi^{i,s}_i\}$, where

$$\begin{align*}
\xi^{i,s}_i(w_i) &= e^{s}w_j, \\
\xi^{i,s}_i(w_i) &= 0 \text{ for } t \neq i, \\
d_j - d_i &\leq s \leq d_j \text{ for } d_j \geq d_i, \\
0 &\leq s \leq d_i \text{ for } d_j
\end{align*}$$

Consider a point $\alpha \in \mathfrak{z}(e)^*$ defined by the formula

$$\alpha(\varphi) = \sum_{i=1}^{k} a_i \cdot c^{i,d_i}_i, \quad a_i \in \mathbb{K},$$

where $c^{j,s}_i$ are the coefficients of $\varphi \in \mathfrak{z}(e)$ and $\{a_i\}$ are non-zero pairwise distinct numbers. We have $\alpha(\xi^{i,s}_i) = a_i$ if $i = j$, $s = d_i$ and zero otherwise.

Theorem 1. The stabiliser $\mathfrak{z}(e)_\alpha$ of α in $\mathfrak{z}(e)$ consist of all maps preserving the Jordan blocks, i.e., $\mathfrak{z}(e)_\alpha$ is the linear span of the vectors $\xi^{i,s}_i$.

3
Proof. Suppose $\varphi \in \mathfrak{z}(e)$ is defined by formula (1). (Some of $c_i^{j,s}$ have to be zeros, but this is immaterial here.) For each basis vector $\xi_i^{j,b}$, we have

$$
\alpha([\varphi, \xi_i^{j,b}]) = \alpha(\sum_{t,s} c_t^{i,s} \xi_t^{s,j,b} - \sum_{t,s} c_j^{t,s} \xi_t^{1,j,b}) = a_j \cdot c_i^{j,-d_j} - a_i \cdot c_i^{j,d_i} - b.
$$

The element φ lies in $\mathfrak{z}(e)_\alpha$ if and only if $\alpha([\varphi, \xi_i^{j,b}]) = 0$ for all $\xi_i^{j,b}$.

Note that if φ preserves the Jordan blocks, i.e., $c_i^{j,s} = 0$ for $i \neq j$, then $\alpha([\varphi, \mathfrak{z}(e)]) = 0$.

Let us show that $\mathfrak{z}(e)_\alpha$ contains no other elements. Assume that $c_i^{j,s} \neq 0$ for some $i \neq j$. We have three different possibilities: $d_i < d_j$, $d_i = d_j$ and $d_i > d_j$.

If $d_j \leq d_i$, then put $\xi(w_j) = e^{(d_i-s)} w_i$ and $\xi(w_j) = 0$ for $t \neq j$. It should be noted that $0 \leq s \leq d_j \leq d_i$, hence the expression $e^{(d_i-s)}$ is well defined. One has to check that $e^{d_j+1}(\xi(w_j)) = 0$. Adding the powers of e, we get $e^{d_j+1}(\xi(w_j)) = e^{d_j+1+d_i-s} w_i = e^{d_j-s}(e^{d_i+1} w_i) = 0$. We have $\alpha([\varphi, \xi]) = a_i \cdot c_i^{j,s} - a_j \cdot c_j^{i,d_j-d_i+s}$. In case $d_j = d_i$, we obtain $(a_i - a_j) \cdot c_i^{j,s} \neq 0$. If $d_j > d_i$, then $s > d_j - d_i + s$. Choose the minimal s such that $c_i^{j,s} \neq 0$. For this choice, we get $\alpha([\varphi, \xi]) = a_i \cdot c_i^{j,s} \neq 0$.

Suppose now that $d_j > d_i$ and s is the minimal number such that $c_i^{j,s} \neq 0$. Set $\xi(w_j) = e^{(d_j-s)} w_i$ and $\xi(w_i) = 0$ for $t \neq j$. As in the previous case, we have $0 \leq s \leq d_j$. In particular, $d_j - s \geq 0, (d_j + 1 + d_j - s) > d_i + 1$ and, thereby, $e^{d_j+1}(\xi(w_j)) = 0$. We obtain

$$
\alpha([\xi, \varphi]) = a_j \cdot c_i^{j,s} - a_i \cdot c_i^{j,d_j-d_i+s} = a_j \cdot c_i^{j,s} \neq 0.
$$

Here $c_i^{j,d_j-d_i+s} = 0$, since $d_i - d_j + s < s$.

\[\square \]

Corollary. The index of $\mathfrak{z}(e)$ equals n.

Proof. The stabiliser $\mathfrak{z}(e)_\alpha$ consist of all maps preserving Jordan blocks. In particular, it has dimension n. Hence, $\text{ind} \mathfrak{z}(e) \leq n$. On the other hand, it follows from Vinberg’s inequality that $\text{ind} \mathfrak{z}(e) \geq n = \text{rk} \mathfrak{g}l(V)$.

\[\square \]

Let us give another proof of the inequality $\text{ind} \mathfrak{z}(e) \leq n$.

Example 1. Let $e \in \mathfrak{g}l_n$ be a nilpotent element and $\mathfrak{h} = \mathfrak{z}(e)$ the centraliser of e. We may assume that the first Jordan block of e is of maximal dimension. Then $V = V_{d_1+1} \oplus V_{\text{oth}}$ and $e = e_1 + e_2$, where V_{d_1+1} is the space of the first Jordan block and V_{oth} is the space of all other Jordan blocks; $e_1 \in \mathfrak{g}l_{d_1+1}, e_2 \in \mathfrak{g}l_{n-d_1-1}$. Let $\tau \in \mathfrak{g}l(V)$ be the conjugation by a diagonal matrix of order two such that $\mathfrak{g}l(V)^\tau = \mathfrak{g}l_{d_1+1} \oplus \mathfrak{g}l_{n-d_1-1}$. The involution τ acts on $\mathfrak{h} = \mathfrak{z}(e)$ and induces the decomposition $\mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1$, where $\mathfrak{h}_0 = \mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2)$ (the centralisers are considered in the algebras $\mathfrak{g}l_{d_1+1}$ and $\mathfrak{g}l_{n-d_1-1}$, respectively). Assume that the “index conjecture” is true for all $m < n$; in particular, $\text{ind} \mathfrak{z}(e_2) = n - d_1 - 1$. The subalgebra $\mathfrak{z}(e_1)$ is commutative and its index equals $d_1 + 1$. According to Lemma 1, $\text{ind} \mathfrak{z}(e) \leq \text{ind} (\mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2)) + \min \dim(\text{Ker} \dot{\gamma}) \leq n + \min \dim(\text{Ker} \dot{\gamma})_\gamma$. Now, we make a special choice for γ. Set $\gamma(\xi_1^{d_1}) = 1$ and $\gamma(\xi_i^{j,s}) = 0$ for all other $\xi_i^{j,s}$. The subspace \mathfrak{h}_1 is
generated by the vectors \(\xi_i^{1,s} \) and \(\xi_1^{i,s} \) with \(i \neq 1 \). We have
\[
\begin{cases}
\hat{\gamma}(\xi_1^{i,s}, \xi_i^{1,d_i-s}) = 1, \\
\hat{\gamma}(\xi_1^{i,s}, \xi_i^{1,b}) = 0 \text{ if } s + b \neq d_1, \\
\hat{\gamma}(\xi_i^{i,s}, \xi_i^{1,b}) = \hat{\gamma}(\xi_1^{i,s}, \xi_1^{1,b}) = 0.
\end{cases}
\]
The form \(\hat{\gamma} \) defines a non-degenerate pairing between the spaces \(U_1 := \langle \xi_1^{i,s} | 0 \leq s \leq d_1 \rangle \) and \(U_i^1 := \langle \xi_i^{i,s} | d_1 - d_i \leq s \leq d_1 \rangle \). Hence, \(\hat{\gamma} \) is non-degenerate and \(\text{ind} \, \mathfrak{z}(e) \leq n \).

3. SYMPLECTIC ALGEBRA

In this section \(\mathfrak{g} = \mathfrak{sp}_{2n} = \mathfrak{sp}(V) \), where \(V \) is an \(2n \)-dimensional vector space over \(\mathbb{K} \). As above, \(e \in \mathfrak{sp}_{2n} \) is a nilpotent element and \(\mathfrak{z}(e) \subset \mathfrak{g} \) is the centraliser of \(e \). Let \(\{w_i\} \) be generators of Jordan blocks associated with \(e \). We may assume that the space of each even-dimensional Jordan block is orthogonal to the space of all other Jordan blocks. If \(d_i \) is even, then the restriction of \(\mathfrak{sp}_{2n} \)-invariant form \((\ , \,)_V \) on the space of \(i \)-th Jordan block is zero. One can choose generators \(\{w_i\} \) such that the odd-dimensional blocks are partitioned in pairs \((i, i') \), where \(i' \) is the number of the unique Jordan block which is not orthogonal to the \(i \)-th one. Note that \(d_i = d_i \).

Let \(\mathfrak{z}_0(e) \) be the centraliser of \(e \) in \(\mathfrak{gl}_{2n} \). Recall that \(\mathfrak{z}(e) = \mathfrak{z}_0(e)^\sigma \oplus \mathfrak{z}_1 \), where \(\sigma \) is an involutive automorphism of \(\mathfrak{gl}_{2n} \). For elements of \(\mathfrak{z}_0(e) \) we use notation introduced in the previous section.

Let \(\alpha \in \mathfrak{z}_0(e)^* \) be a function determined just like in the previous case:
\[
\alpha(\varphi) = a_1 \cdot c_1^{1,d_1} + a_2 \cdot c_2^{2,d_2} + \ldots + a_{2n} \cdot c_k^{k,d_k},
\]
where \(\varphi \) is given by its coefficients \(c_i^{j,s} \), and \(\{a_i\} \) are pairwise distinct non-zero numbers with \(a_{i'} = -a_i \).

Lemma 2. In the above notation, we have \(\alpha(\mathfrak{z}_1) = 0 \).

Proof. Assume that there is \(\psi \in \mathfrak{z}_1 \) such that \(\alpha(\psi) \neq 0 \). Then there is a non-zero coefficient \(c_i^{j,d_i} \) of \(\psi \). Recall that \(\sigma(\psi) = -\psi \). The element \(\psi \) multiplies the \(\mathfrak{sp}_{2n} \)-invariant skew-symmetric form \((\ , \,)_V \) by \(-1 \), in particular, \((\psi(w_i), v)_V = (w_i, \psi(v))_V \) for each vector \(v \in V \). Clearly, \(\psi(w_i) \) and \(w_i \) have to be orthogonal with respect to the skew-symmetric form. If \(d_i \) is odd, then \((w_i, e^{d_i}w_i)_V \neq 0 \), hence, \(c_i^{j,d_i} = 0 \). If on the contrary \(d_i \) is even, then
\[
c_i^{j,d_i}(e^{d_i}w_i, w_i)V = (\psi(w_i), w_i)_V = (w_i, \psi(w_i))_V = c_i^{j,d_i}(w_i, e^{d_i}w_i)_V = (1)^{d_i}c_i^{j,d_i}(e^{d_i}w_i, w_i)V = c_i^{j,d_i}(e^{d_i}w_i, w_i)V.
\]
Hence, \(c_i^{j,d_i} = c_i^{j',d_i} \). Combining this equality with defining formula of \(\alpha \) we get a sum over pairs of odd-dimensional blocks
\[
\alpha(\psi) = \sum_{(i,i')} (a_i + a_{i'}) c_i^{j,d_i},
\]
which is zero since \(a_i = -a_{i'} \). \(\square \)

Denote by \(\hat{\alpha} \) the restriction of \(\alpha \) to \(\mathfrak{z}(e) \).
Theorem 2. The dimension of the stabiliser \(z(e)_\alpha = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap \mathfrak{sp}_{2n} \) equals \(n \).

Proof. The stabiliser of \(\alpha \) in \(\mathfrak{z}_{\mathfrak{gl}}(e) \) consist of all maps preserving the spaces of the Jordan blocks. By Proposition 1, \(z(e)_\alpha = \mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \cap z(e) \). Describe the intersection of \(\mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \) with the symplectic subalgebra. If \(w_i \) is a generator of an even-dimensional block, then \(\xi_{i,s}^i \) multiply the skew-symmetric form by \((-1)^{s+1} \), i.e., \((\xi_{i,s}^i(e^b w_i), e^c w_i) = (-1)^{s}(e^b w_i, \xi_{i,s}^i(e^c w_i)) \). Consider a space of a pair \((i, i')\) of odd-dimensional blocks. If \(s_i \) is a generator of an even-dimensional block, then \(\xi_{i,s}^i \) multiply the skew-symmetric form by \((-1)^{s+1} \), i.e., \((\xi_{i,s}^i(e^b w_i), e^c w_i) = (-1)^{s}(e^b w_i, \xi_{i,s}^i(e^c w_i)) \).

4. THE ORTHOGONAL CASE

In this section \(\mathfrak{g} = \mathfrak{so}_n \). As above \(e \in \mathfrak{so}_n \) is a nilpotent element, \(z(e) \) is the centraliser of \(e \) in \(\mathfrak{g} \). Let \(\{w_i\} \) be generators of Jordan blocks associated with \(e \). We may assume that the space of each odd-dimensional Jordan block is orthogonal to the space of all other Jordan blocks. If \(d_i \) is odd, then the restriction of \(\mathfrak{so}_n \)-invariant form \((\cdot, \cdot)_V \) on the space of \(i \)-th Jordan block is zero. One can choose generators \(\{w_i\} \) such that the even-dimensional blocks are partitioned in pairs \((i, i^*)\), where \(i^* \) is the number of the unique Jordan block which is not orthogonal to the \(i \)-th one. Note that \(d_{i^*} = d_i \).

Like the symplectic algebra, the orthogonal algebra is a symmetric subalgebra of \(\mathfrak{gl}_n \). Denote by \(\sigma \) the involution defining it. Since \(\sigma(e) = e \), we have \(\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{z}(e) \oplus \mathfrak{z}_1 \) similarly to the symplectic case. If \(d_i \) is even, set \(i^* = i \). Assume that \((w_{i^*}, e^{d_i} w_i)_V = \pm 1 \) and \((w_i, e^{d_i} w_i)_V = 1 \) for \(i = i^* \). The algebra \(\mathfrak{z}(e) \) is generated (as a vector space) by the vectors \(\xi_{i,j}^{i,j-s} + \varepsilon(i, j, s)\xi_{j,i}^{i,j-s} \), where \(\varepsilon(i, j, s) = \pm 1 \) depending on \(i, j \) and \(s \). In its turn, the subspace \(\mathfrak{z}_1 \) is generated by the vectors \(\xi_{i,j}^{i,j-s} - \varepsilon(i, j, s)\xi_{j,i}^{i,j-s} \). Recall that \((e^s w_i, e^{d_i-s} w_i)_V \neq 0 \) if \(e^s w_i \neq 0 \).

We give some simple examples of linear functions with zero restrictions to \(\mathfrak{z}_1 \). Let \(\varphi \in \mathfrak{z}_{\mathfrak{gl}}(e) \) be a linear map defined by Formula (1). Set \(\beta_i(\varphi) = c_i^{j,d_i-1} \), \(\gamma_{i,j}(\varphi) = c_i^{j,d_j} \).

Lemma 3. If \(i = i^*, j = j^*, t \neq t^* \), then functions \(\beta_i, \beta_j, \gamma_{i,j} - \gamma_{j,i} \) and \(\gamma_{i,t} + \gamma_{t,i} \) are equal to zero on \(\mathfrak{z}_1 \).

Proof. Suppose \(\psi \in \mathfrak{z}_1 \) is defined by Formula (1). Since \(\sigma(\psi) = -\psi \) and \((\psi(w_i), ew_i)_V = c_i^{j,d_i}(e^{d_i-1} w_i, ew_i)_V \), we have

\[
(\psi(w_i), ew_i)_V = (w_i, \psi(ew_i)_V = (w_i, ew_i)_V = -(ew_i, \psi(w_i)_V = -c_i^{j,d_i-1}(ew_i, e^{d_i-1} w_i)_V.
\]

The form \((\cdot, \cdot)_V \) is symmetric and \((ew_i, e^{d_i-1} w_i)_V \neq 0 \), hence \(\beta_i(\psi) = c_i^{j,d_i-1} = 0 \).

Similarly,

\[
c_i^{j,d_i}(e^{d_i} w_j, w_j)_V = (\psi(w_j), w_j)_V = (w_j, \psi(w_j)_V = c_i^{j,d_j}(w_j, e^{d_j} w_j)_V;
\]

\[
c_i^{j,d_j}(w_i, w_i)_V = (w_i, w_i)_V = (w_i, \psi(w_i))_V = c_i^{j,d_j}(w_i, e^{d_i} w_i)_V.
\]
Recall that by our choice \((e^{d_j}w_j, w_j)_V = (w_i, e^{d_i}w_i)_V = 1, \) \((e^{d_i}w_i, w_{i^*})_V = -(w_i, e^{d_i}w_{i^*})_V \). Hence \(c_i^{j,d_j} = c_j^{i,d_i}, c_i^{l,d_l} = -c_l^{t,d_t} \).

Let us prove the inequality \(\text{ind } \mathfrak{z}(e) \leq \text{rk } \mathfrak{so}_n \) by the induction on \(n \). In the following two cases, the induction argument does not go through. Therefore we consider them separately.

The first case. If \(e \in \mathfrak{so}_{2m+1} \) is a regular nilpotent element, then \(\mathfrak{z}(e) \) is a commutative \(m \)-dimensional algebra.

The second case. Let \(e \in \mathfrak{so}_{4d} \) be a nilpotent element with two Jordan blocks of size \(2d \) each. Set \(\alpha = c_1^{1,2d-2} - c_2^{2,2d-2} \), where \(\varphi \) is defined by Formula (1). One can easily check that \(\mathfrak{z}(e)_\alpha \) has a basis \(\xi_1, -\xi_2 \) with \(0 \leq s \leq 2d - 1 \) and that \(\dim \mathfrak{z}(e)_\alpha = 2d \).

Order the Jordan blocks of \(e \) according to their dimensions \(d_1 \geq d_2 \geq \ldots \geq d_k \). Here \(d_i + 1 \) stands for the dimension of the \(i \)-th Jordan block, similarly to the case of \(\mathfrak{gl}_n \). Note that the numbers \(n \) and \(k \) have the same parity. Assume that \(k > 1 \) and if \(k = 2 \), then both Jordan blocks are odd dimensional. Then we have the following three possibilities:

1. For some even number \(2p < k \) the restriction of \((\ , \)_V \) to the space of the first \(2p \) Jordan blocks is non-degenerate;
2. The number \(d_i \) is even for \(i = 1, k \) and odd for all other \(i \);
3. The number \(d_i \) is even if and only if \(i = 1 \).

Each of these three possibilities is considered separately. In the first two cases we make an induction step. In the third one a point \(\alpha \in \mathfrak{z}(e)_\ast \) is given such that \(\dim \mathfrak{z}(e)_\alpha \leq \text{rk } \mathfrak{so}_n \).

1. Suppose the space \(V_{2m} \) of the first \(2p \) Jordan blocks has dimension \(2m \) and the restriction of \((\ , \)_V \) to \(V_{2m} \) is non-degenerate. Then \(V = V_{2m} \oplus V_{\text{other}} \). Let \(\tau \) be an involution of \(\mathfrak{gl}_n \) corresponding to these direct sum, i.e., \(\mathfrak{gl}_n = \mathfrak{gl}(V_{2m}) \oplus \mathfrak{gl}(V_{\text{other}}) \). Set \(\mathfrak{h} = \mathfrak{z}(e), \mathfrak{h}_0 = \mathfrak{z}(e)^\tau \). Then \(\mathfrak{h}_0 = \mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2) \), where the centralisers of \(e_1 \) and \(e_2 \) are taken in \(\mathfrak{so}_{2m} \) and \(\mathfrak{so}_{n-2m} \), respectively. By the inductive hypothesis, \(\text{ind } \mathfrak{z}(e_1) = m, \text{ind } \mathfrak{z}(e_2) = [n/2] - m \). Hence, \(\text{ind } \mathfrak{z}(e) \leq [n/2] + \min \text{dim}(\text{Ker } \hat{\gamma}) \). To conclude we have to point out a function \(\gamma \in \mathfrak{h}_0^\ast \) such that \(\hat{\gamma} \) is non-degenerate. Recall that the involutions \(\sigma \) and \(\tau \) commute with each other, preserve \(e \) and determine the decomposition \(\mathfrak{z}_\mathfrak{gl}(e) = (\mathfrak{z}(e_1) \oplus \mathfrak{z}(e_2) \oplus \mathfrak{h}_1) \oplus \mathfrak{z}_1 \). If \(\gamma(\mathfrak{z}_1) = \gamma(\mathfrak{h}_1) = 0 \), then \(\text{Ker } \hat{\gamma} = (\mathfrak{h}_1 \cap \mathfrak{z}_\mathfrak{gl}(e))_\gamma \).

Divide odd-dimensional Jordan blocks into pairs \((i, i') \) (it is assumed that \(i, i' \leq 2p \)). Define a point \(\gamma \) by

\[
\gamma(\varphi) = \sum_{(i,i'), i,i' \leq 2p} (c_i^{i',d_{i'}} - c_i^{j,d_i}) + \sum_{j \leq 2p, (d_j+1) \text{ is even}} c_j^{j,d_j},
\]

where \(\varphi \in \mathfrak{z}_\mathfrak{gl}(e) \) is given by its coefficients \(c_i^{j,d_j} \). The first summand is a sum of \((\gamma_{i,i'} - \gamma_{i',i}) \) over pairs of odd-dimensional blocks, the second is the sum of \((\gamma_{j,j} + \gamma_{j',j'}) \) over pairs of even-dimensional blocks. According to Lemma 3, both summands are identical zeros on \(\mathfrak{z}_1 \). Moreover, by the definition \(\gamma(\mathfrak{h}_1) = 0 \).

Set \(j' := j \) for even-dimensional blocks. Assume that an element \(\psi \in \mathfrak{h}_1 \) determined by (1) lies in the kernel of \(\hat{\gamma} \), i.e., \(\gamma([\psi, \mathfrak{h}_1]) = 0 \). Then \(\gamma([\psi, \mathfrak{h}_1]) = \gamma([\psi, \mathfrak{z}_\mathfrak{gl}(e)]) = 0 \). Since \(\psi \in \mathfrak{so}_n \),
and \(\psi \neq 0 \), we may assume that \(c^{j,s}_i \neq 0 \) for some \(j > 2p \geq i \). We have
\[
\gamma([\psi, \eta]) = \pm c^{j,s}_i \neq 0.
\]
Thus we have proved that \(\hat{\gamma} \) is non-degenerate and \(\text{ind} \(e \) \leq \lceil n/2 \rceil \).

(2) Consider a decomposition \(V = V_{\text{oth}} \oplus V_{d_k+1} \), where the second summand is the space of the smallest (odd-dimensional) Jordan block and the first one is the space of all other blocks. As above \(e = e_1 + e_2 \), where nilpotent element \(e_2 \) corresponds to the smallest (odd-dimensional) Jordan block. We define an involution \(\tau \), algebras \(z(e_1, e_2) \), \(z(e_2) \), \(h_0 \) and a subspace \(h_1 \) in the same way as in case (1).

Let \(\gamma \) be the following function
\[
\gamma(\varphi) = c_1^{d_1-1} + \sum_{i=2}^{k-1} c_i^{i,d_i},
\]
where \(\varphi \) is given by formula (1). The first summand is \(\beta_1 \), the second summand is a sum of \((\gamma_{j,j} + \gamma_{j^*,j^*}) \) over pairs of even-dimensional blocks. Due to Lemma \(\Box \) \(\gamma(\xi_1) = 0 \). Suppose \(\psi \in h_1 \) is given by its coefficients \(c^{j,s}_i \).

One can see that the kernel of \(\hat{\gamma} \) is one-dimensional and generated by \((\xi_1^{k,b} - \xi_1^{k,d_k}) \). Hence, \(\text{ind} \(e \) \leq \lceil n/2 \rceil - 1 + 1 = \lceil n/2 \rceil \).

(3) In this case \(n \) and \(k \) are odd, and \(e \) has a unique odd-dimensional Jordan block whose size is maximal. Assume that \(k = 2m+1 \). Enumerate the Jordan blocks by integers ranging from \(-m\) to \(m \). Let the unique odd-dimensional block has number zero. Suppose that pairs of blocks \((-i,i)\) and \((-j,j)\) are orthogonal to each other if \(i \neq \pm j \), and dimensions of Jordan blocks are increasing from \(-m\) to \(0 \) and decreasing from \(0 \) to \(m \), i.e., if \(|i| \leq |j| \), then \(d_i \geq d_j \).

Note that \(d_i = d_{-i} \). Such enumeration is shown on Picture 1. Choose the generators \(w_i \) of Jordan blocks such that \(i(w_i,e^{d_i}w_{-i})_V = |i| \) for \(i \neq 0 \) and \((w_0,e^{d_0}w_0)_V = 1 \).

\begin{center}
\text{Picture 1.}
\end{center}
Suppose \(\varphi \in \mathfrak{z}_{gl}(e) \) is given by Formula (1). Consider the following point \(\alpha \in \mathfrak{z}_{gl}(e)^* \):

\[
\alpha(\varphi) = \sum_{i=-m+1}^{m} c_{i,d_i}^i.
\]

One can check by direct computation that \(c_{i,d_i}^i(\psi) = -c_{-i}^{1-i,d_{i-1}}(\psi) \) for each \(\psi \in \mathfrak{z}_1 \) and, hence, \(\alpha(\mathfrak{z}_1) = 0 \). Let \(\mathfrak{a} \in \mathfrak{z}(e)^* \) be the restriction of \(\alpha \). Let us describe the stabiliser \(\mathfrak{z}(e)_{\mathfrak{a}} = \mathfrak{z}_{gl}(e)_{\mathfrak{a}} \cap \mathfrak{z}(e) \). Note that \(\alpha([\varphi, \xi_i^q]) = c_{i,d_i-1}^i(\varphi) = c_{i}^{j+1,d_{i+1}^j-1} \).

Lemma 4. Suppose \(\varphi \in \mathfrak{z}(e) \) and \(\text{ad}^*(\varphi) \alpha = 0 \). Then \(c_{i}^{j+1} = c_{i}^{j+1} \) for \(i < j \).

Proof. Assume that the statement is wrong and take a maximal \(i \) for which there are \(j > i \) and \(s \) such that \(c_{i}^{j,s} = 0 \). Because \(\varphi \) preserves \((\ ,)_V \), \(c_{-i}^{-i,d_i-1} = \pm c_{j}^{j,s} \neq 0 \). Hence, \(-j \leq i < j, j > 0, |i| \leq j \) and \(d_i \geq d_j \). Moreover, \(-j < (i+1) \leq j \) and \(d_{i+1} \geq d_j \). Evidently, \(d_{i+1} - s \geq d_j - s \geq 0 \) and there is an element \(\xi_j^{i+1,d_{i+1}-s} \in \mathfrak{z}_{gl}(e) \). We have

\[
0 = \alpha([\varphi, \xi_j^{i+1,d_{i+1}-s}]) = c_{i}^{j,s} - c_{i+1}^{j,\delta} = c_{i}^{j,s}.
\]

Here we do not give a precise value of \(\delta \). Anyway all coefficients \(c_{i}^{j+1} \) are zero, because \(j + 1 > i + 1 > i \). We get a contradiction. Thus the lemma is proved. \(\square \)

Let us say that \(\varphi \in \mathfrak{z}_{gl}(e) \) has a step \(l \) whenever \(c_{i}^{j,s} = 0 \) for \(j \neq i + l \). Each vector \(\varphi \in \mathfrak{z}_{gl}(e) \) can be represented as a sum \(\varphi = \varphi_{-2m} + \varphi_{-2m+1} + \ldots + \varphi_{2m-1} + \varphi_{2m} \), where the step of \(\varphi \) equals \(l \). The notion of the step is well-defined on \(\mathfrak{z}(e) \), due to an equality \((-i) - (-j) = j - i \). From the definition of \(\alpha \), one can deduce that \(\alpha(\varphi_l, \varphi_l) = 0 \) only if \(l + t = 1 \). The stabiliser \(\mathfrak{z}(e)_{\alpha} \) is a direct sum of its subspaces \(\Phi_l \), consisting of elements having step \(l \). As we have seen, \(\Phi_l = \varnothing \) if \(l > 0 \). It is remains to describe elements with non-positive steps.

Example 2. Let us show that \(\dim \Phi_l \leq d_l/2 \). Suppose \(\varphi \in \Phi_0, \varphi \neq 0 \) and \(\varphi(w_0) = 0 \). Take a minimal by the absolute value \(i \) such that \(\varphi(w_i) \neq 0 \). Since \(\varphi \in \mathfrak{so}_n \), we have also \(\varphi(w_{-i}) \neq 0 \). Assume that \(i > 0 \) and a coefficient \(c_{i}^{j,s} \) of \(\varphi \) is non-zero. Then \(|i - 1| < i \), \(d_{i-1} \geq d_i \), there is an element \(\xi_i^{1,d_i-1} \in \mathfrak{z}_{gl}(e) \) and \(0 = \alpha([\xi, \varphi]) = c_{i}^{j,s} - c_{i-1}^{j,s} = c_{i}^{j,s} \). Hence, if \(\varphi(w_0) = 0 \), then also \(\varphi = 0 \). Thus, a vector \(\varphi \in \Phi_0 \) is entirely determined by its value on \(w_0 \). In its turn \(\varphi(w_0) = c_1 w_0 + c_3 e^3 w_0 + \ldots + c_{d_0-1} e^{d_0-1} w_0 \).

Lemma 5. If \(q = 2l \) or \(q = 2l - 1 \), where \(0 < l \leq m \), then \(\dim \Phi_{-q} \leq (d_l + 1)/2 \).

Proof. Similarly to the previous example, we show that if \(\varphi \in \Phi_{-q} \) and \(\varphi(w_l) = 0 \), then also \(\varphi = 0 \). Since \(\varphi \in \mathfrak{so}_n \), if \(\varphi(w_l) \neq 0 \), then also \(\varphi(w_{q-l}) \neq 0 \). Suppose \(\varphi(w_j) \neq 0 \) for some \(j \). If \(j < l \), then \(j - q \geq l \), but \(\varphi(w_l) = 0 \), hence \(j > l \). Find the minimal \(j > l \) such that \(\varphi(w_j) \neq 0 \). Suppose \(c_{j-1}^{l,q,s} = c_{j-1}^{l,q,s}(\varphi) \neq 0 \). We have \(-j < -l \leq j - q - 1 < j \), \(d_j \leq d_{j-q}-1, d_j - s \geq 0 \). Hence, there is an element \(\xi := c_{j-1}^{l,q,s} \in \mathfrak{z}_{gl}(e) \). As above

\[
0 = \alpha([\xi, \varphi]) = c_{j-1}^{l,-q} - c_{j-1}^{l,-q,q} = c_{j-1}^{l,-q} \text{ (we do not give a precise value of } \delta, \text{ anyway, } \varphi(w_{j-1}) = 0, \text{ since } l \leq j - 1 < j \).
\]

To conclude we describe possible values \(\varphi(w_l) \). If \(q = 2l \), then \(\varphi(w_l) = c_0 w_1 + c_2 e^2 w_1 + \ldots + c_{d_l} e^{d_l} w_1 \). In case \(q = 2l - 1 \) we get an equation on...
coefficients of φ:
$$0 = \alpha[(\xi_{-1}^{t,b}, \varphi)] = c_{l}^{-l+1,d_{l-1}-b} - c_{l-1}^{-l,d_{l}-b},$$
i.e., $c_{l}^{-l+1,d_{l-1}-b} = c_{l-1}^{-l,d_{l}-b}$. This is possible only for odd b. \hfill \Box

Theorem 3. Suppose $e \in \mathfrak{so}_n$ is a nilpotent element. Then $\text{ind} \ z(e) = \text{rk} \mathfrak{so}_n = [n/2]$.

Proof. If possibility (3) takes place, i.e., only one Jordan block of e is odd-dimensional and it is also maximal, then, as we have seen, $\mathfrak{z}(e)_\alpha = \bigoplus_{q=0}^{m} \Phi_{-q}$. Moreover, $\dim \Phi_q$ is at most half of dimension of the Jordan block with number $[(q+1)/2]$. Thereby, $\dim \mathfrak{z}(e)_\alpha \leq ((d_0+1)/2 + (\sum_{l=1}^{m} d_l)) = [n/2]$. On the other hand, according to Vinberg’s inequality, $\text{ind} \ z(e) \geq [n/2]$.

In cases (1) and (2) the inequality $\text{ind} \ z(e) \leq \text{rk} \mathfrak{so}_n$ was proved by induction.

If none of these three possibilities takes place, then either $k = 1$ and e is a regular nilpotent element, or $k = 2$ and both Jordan blocks of e are even-dimensional. These two cases have been considered separately. \hfill \Box

5. Generic points

In this section we assume that \mathbb{K} is algebraically closed and of characteristic zero. Suppose we have a linear action of a Lie algebra \mathfrak{g} on a vector space V.

Definition. A vector $x \in V$ (a subalgebra \mathfrak{g}_x) is called a *generic point* (a *generic stabiliser*), if for every point $y \in U \subset V$ of some open in Zariski topology subset U algebras \mathfrak{g}_y and \mathfrak{g}_x are conjugated in \mathfrak{g}.

It is well known that generic points exist for any linear action of a reductive Lie algebra.

It is proved in [3, §1] that a subalgebra \mathfrak{g}_x is a generic stabiliser if and only if $V = V^\mathfrak{g}_x + \mathfrak{g}_x$, where $V^\mathfrak{g}_x$ is the subspace of all vectors of V invariant under \mathfrak{g}_x.

Tauvel and Yu have noticed that in case of a coadjoint representation $\mathfrak{g}_x = (\mathfrak{g}/\mathfrak{g}_x)^* = \text{Ann}(\mathfrak{g}_x)$, $(\mathfrak{g}^*)^\mathfrak{g}_x = \text{Ann}(x_{\mathfrak{g}_x, \mathfrak{g}})$. From this observation they have deduced a simple and useful criterion.

Theorem 4. [13, Corollaire 1.8.] Let \mathfrak{g} be a Lie algebra and $x \in \mathfrak{g}^*$. The subalgebra \mathfrak{g}_x is a generic stabiliser of the coadjoint representation of \mathfrak{g} if and only if $[\mathfrak{g}_x, \mathfrak{g}] \cap \mathfrak{g}_x = \{0\}$.

Unfortunately, the authors of [13] were not aware of the aforementioned Élashvili’s result and have proved it anew.

Let $e \in \mathfrak{gl}_n$ be a nilpotent element and $\mathfrak{z}(e)$ the centraliser of e. Set $\mathfrak{h} = \mathfrak{z}(e)_\alpha$, where $\alpha \in \mathfrak{z}(e)^*$ is the same as in Section 2.

Proposition 2. There is an \mathfrak{h}-invariant decomposition $\mathfrak{z}(e) = \mathfrak{h} \oplus \mathfrak{m}$, where \mathfrak{m} is generated by the vectors $\xi_i^{i,s}$ with $i \neq j$.

Proof. Recall that \mathfrak{h} is generated by the vectors $\xi_i^{i,s}$. The inclusion $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ follows immediately from the equality

$$[\xi_i^{i,s}, \xi_j^{l,b}] = \begin{cases}
\xi_i^{i,s+b} & \text{if } i = j, i \neq t; \\
-\xi_j^{i,s+b} & \text{if } i = t, i \neq j; \\
0 & \text{otherwise.}
\end{cases}$$

10
There is a similar decomposition in the case of symplectic algebras. Let \(e \in \mathfrak{sp}(V) \subset \mathfrak{gl}(V) \). Denote by \(\mathfrak{z}_{\mathfrak{gl}}(e) \) and \(\mathfrak{z}_{\mathfrak{sp}}(e) \) the centralisers of \(e \) in \(\mathfrak{gl}(V) \) and \(\mathfrak{sp}(V) \), respectively. We use notation of Section 3. Suppose \(\mathfrak{z}_{\mathfrak{gl}}(e) = \mathfrak{h} \oplus \mathfrak{m} \). Evidently, this decomposition is \(\sigma \)-invariant and \(\mathfrak{z}_{\mathfrak{sp}}(e) = \mathfrak{h}^\sigma \oplus \mathfrak{m}^\sigma \), where \(\mathfrak{h}^\sigma = \mathfrak{z}_{\mathfrak{sp}}(e)_{\tilde{\alpha}} \).

Theorem 5. The Lie algebras \(\mathfrak{z}_{\mathfrak{gl}}(e)_\alpha \) and \(\mathfrak{z}_{\mathfrak{sp}}(e)_{\tilde{\alpha}} \) constructed in Sections 2 and 3 in cases of general linear and symplectic algebras are generic stabilisers of the coadjoint actions of \(\mathfrak{z}_{\mathfrak{gl}}(e) \) and \(\mathfrak{z}_{\mathfrak{sp}}(e) \).

Proof. Let us verify the condition of Theorem 4. Since \([\mathfrak{h}, \mathfrak{z}_{\mathfrak{gl}}(e)] = [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m} \), we have \([\mathfrak{h}, \mathfrak{z}_{\mathfrak{gl}}(e)] \cap \mathfrak{h} = 0 \). Similarly, \([\mathfrak{h}^\sigma, \mathfrak{z}_{\mathfrak{sp}}(e)] \subset \mathfrak{m}^\sigma \). □

In case of orthogonal algebras it can happen that a generic stabiliser of the coadjoint action of \(\mathfrak{z}(e) \) does not exist.

Example 3. Let \(e \in \mathfrak{so}_8 \) be a subregular nilpotent element. Then it has two Jordan blocks of dimensions 3 and 5. Choose the generators \(w_1, w_2 \) of Jordan blocks such that \((w_1, e^2w_1)_V = (w_2, e^4w_2)_V = 1 \). The dimension of \(\mathfrak{z}(e) \) is 6 and \(\mathfrak{z}(e) \) has a three-dimensional center, generated by the vectors \(e, e^3 = \xi_2^{2,3} \) and \(\varphi_3 = \xi_1^{2,4} - \xi_1^{1,2} \). Since \(\text{ind} \mathfrak{z}(e) = 4 \), we have \(\dim \mathfrak{z}(e)_\alpha = 4 \) for points of some open subset \(U \subset \mathfrak{z}(e)^\ast \).

Assume that a generic stabiliser of the coadjoint action of \(\mathfrak{z}(e) \) exists and denote it by \(\mathfrak{f} \). Evidently, \(\mathfrak{f} \) contains the center of \(\mathfrak{z}(e) \). Consider an element \(\varphi_2 = \xi_1^{2,3} + \xi_2^{1,1} \in \mathfrak{z}(e) \). Clearly, the subspace \([\varphi_2, \mathfrak{z}(e)] \) is a linear span of \(e^3 \) and \(\varphi_3 \). In particular, it is contained in the center of \(\mathfrak{z}(e) \), and, hence, in \(\mathfrak{f} \). Hence, \([\varphi_2, \mathfrak{f}] \subset \mathfrak{f} \), and, by Theorem 4 \(\mathfrak{f} \subset \mathfrak{z}(e)_{\varphi_2} \). Since \(\dim \mathfrak{z}(e)_{\varphi_2} = 4 \), we have \(\mathfrak{f} = \mathfrak{z}(e)_{\varphi_2} \). On the other hand, \(\mathfrak{z}(e)_{\varphi_2} = \langle e, e^3, \varphi_3, \varphi_2 \rangle_{\mathfrak{g}} \) is a normal, but not a central subalgebra of \(\mathfrak{z}(e) \).

Consider the embedding \(\mathfrak{so}_8 \subset \mathfrak{so}_9 \) as the stabiliser of the first basis vector in \(\mathbb{K}^9 \). By a similar argument one can show that a generic stabiliser does not exist for the coadjoint action of \(\mathfrak{z}_{\mathfrak{so}_9}(e) \) either.

6. **Commuting varieties**

Let \(\mathfrak{g} \) be a Lie algebra over an algebraically closed field \(\mathbb{K} \) of characteristic zero. A closed subset \(Y = \{(x, y)|x, y \in \mathfrak{g}, [x, y] = 0\} \subset (\mathfrak{g} \times \mathfrak{g}) \) is called the *commuting variety* of the algebra \(\mathfrak{g} \). The question of whether \(Y \) is irreducible or not is of a great interest. In case of a reductive algebra \(\mathfrak{g} \) the commuting variety \(Y \) is irreducible and coincides with the closure of \(G(\mathfrak{a}, \mathfrak{a}) \), where \(\mathfrak{a} \subset \mathfrak{g} \) is a Cartan subalgebra and \(G \) is a connected algebraic group with \(\text{Lie} G = \mathfrak{g} \).

Let \(e \in \mathfrak{gl}_n \) be a nilpotent element and \(\mathfrak{z}(e) \) the centraliser of \(e \). We use notation introduced in Section 2. Set \(\mathfrak{h} = \mathfrak{z}(e)_\alpha \). Consider a subalgebra \(\mathfrak{t} \subset \mathfrak{z}(e) \) generated by the vectors \(\xi_i^{0,0} \). Evidently, \(\mathfrak{t} \subset \mathfrak{h} \). Moreover, since \([\xi_i^{0,s}, t_i \xi_i^{0,0} + t_j \xi_j^{0,0}] = (t_j - t_i) \xi_i^{s,0} \), the algebra \(\mathfrak{h} \) coincides with the normaliser (= centraliser) of \(\mathfrak{t} \) in \(\mathfrak{z}(e) \). Hence, \(\mathfrak{h} \) coincides with its normaliser in \(\mathfrak{z}(e) \).
Let $Z(e)$ be the identity component of the centraliser of e in GL_n. Then $Y_0 = \overline{Z(e)(\mathfrak{h}, \mathfrak{h})}$ is an irreducible component of Y of maximal dimension. As in the reductive case, Y is irreducible if and only if $Y_0 = Y$. It is known that if a nilpotent element e has at most two Jordan blocks, then Y is irreducible \[7\]. In the general case, the statement is not true, since it would lead to the irreducibility of the commuting varieties of triples of matrices.

Example 4. Assume that $Y_0 = Y$ for all nilpotent elements $e \in \mathfrak{gl}_m$ with $m \leq n$. Consider the set of triples of commuting matrices

$$C_3 = \{(A, B, C)|A, B, C \in \mathfrak{gl}_n, [A, B] = [A, C] = [B, C] = 0\}.$$

Let $\mathfrak{a} \subset \mathfrak{gl}_n$ be a subalgebra of diagonal matrices. Clearly, $\overline{\text{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$ is an irreducible component of C_3. Let us prove by induction that it coincides with C_3. There is nothing to prove for $n = 1$. Let $n > 1$. We show that each triple (A, B, C) of commuting matrices is contained in the closure $\overline{\text{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$. Without loss of generality, we may assume that $A, B, C \in \mathfrak{sl}_n$. Let $A = A_s + A_n$ be the Jordan decomposition of A. If $A_s \neq 0$, consider the centraliser $\mathfrak{z}(A_s)$ of A_s in \mathfrak{gl}_n. Clearly, $A, B, C \in \mathfrak{z}(A_s)$ and $\mathfrak{z}(A_s)$ is a sum of several algebras \mathfrak{gl}_n with strictly smaller dimension. We may assume that $\mathfrak{a} \subset \mathfrak{z}(A_s)$. Then, by the inductive hypothesis

$$(A, B, C) \in \overline{Z(A_s)(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})} \subset \overline{\text{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}.$$

Suppose now that all three elements A, B, C are nilpotent and at least one of them, say A, is not regular. Consider the centraliser $\mathfrak{z}(A) \subset \mathfrak{gl}_n$. We have assumed that $Y_0 = Y$, i.e., the pair (B, C) lies in the closure of $Z(A)(\mathfrak{h}, \mathfrak{h})$. It will be enough to show that $(A, \mathfrak{h}, \mathfrak{h}) \subset \overline{\text{GL}_n(\mathfrak{a}, \mathfrak{a}, \mathfrak{a})}$. Let $x \in \mathfrak{t} \subset \mathfrak{h}$ be a non-central semisimple element. Then $A \in (\mathfrak{gl}_n)_x$ and $\mathfrak{h} \subset (\mathfrak{gl}_n)_x$. Once again we can make an induction step, passing to a subalgebra $(\mathfrak{gl}_n)_x$.

If all three elements A, B, C are regular nilpotent, then there is a non-trivial linear combination A' of them, which is non-regular. In particular, the triple (A, B, C) is equivalent under the action of GL_n to some other triple (A', B', C') of commuting nilpotent matrices.

It is known that for $n > 31$ the variety C_3 is reducible, see \[6\]. Hence, the commuting variety Y is certainly reducible for some nilpotent elements. It will be interesting to find minimal (in some sense) nilpotent elements for which Y is reducible and/or describe some classes of nilpotent elements for which Y is irreducible.

References

[1] A.V. Bolsinov, A completeness criterion for a family of functions in involution constructed by the argument shift method, *Soviet Math. Dokl.*, (1989) 38, no. 1, 161–165.

[2] J.-Y. Charbonnel. Propriétés (Q) and (C). Variété commutante, *Bull. Soc. Math. France*, (2004) 132, 477-508.

[3] J. Dixmier, Algèbres enveloppantes, (Gauthier-Villars, 1974).

[4] A.G. Elashvili, On the index of orispherical subalgebras of semisimple Lie algebras, *Proc. Razmadze Math. Institute, Tiflis*, (1985) 77, 116–126.

[5] A.G. Elashvili, Canonical form and stationary subalgebras of points in general position for simple linear Lie groups, *Funct. Anal. Appl.* 6, no. 1 (1972), 44–53.
[6] R.M. Guralnick, A note on commuting pairs of matrices, *Linear and Multilinear Algebra*, (1992) **31**, 71–75.

[7] M.G. Neubauer and B.A. Sethuraman, Commuting Pairs in the Centralizers of 2-Regular Matrices, *J. Algebra*, (1999) **214**, no. 1, 174–181.

[8] D. Panyushev, Inductive formulas for the index of seaweed Lie algebras, *Mosc. Math. J.*, (2001) **1**, no.2, 221–241.

[9] D. Panyushev, The index of a Lie algebra, the centralizer of a nilpotent element, and the normalizer of the centralizer, *Math. Proc. Cambr. Phil. Soc.*, (2003) **134**, no.1, 41–59.

[10] D. Panyushev, Some amazing properties of spherical nilpotent orbits, *Math. Z.*, (2003) **245**, no.3, 557–580.

[11] D. Panyushev, An extension of Raïs’ theorem and seaweed subalgebras of simple Lie algebras. Preprint.

[12] M. Rosenlicht, A remark on quotient spaces, *An. Acad. Brasil. Cienc.*, (1963) **35**, 487–489.

[13] P. Tauvel and R.W.T. Yu, Indice et formes linéaires stables dans les algèbres de Lie, *J. Algebra*, (2004) **273**, no. 2, 507–516.