Development and preliminary evaluation of a tele-rehabilitation exercise system using computer-generated animation

Nobuhiro Kumazawa, RPT, MS1, Soichiro Koyama, RPT, PhD2, Masahiko Mukaino, MD, PhD3, Kazuhiro Tsuchiyama, RPT, MS2, Tsuyoshi Tatemoto, RPT, PhD2,4, Hiroki Tanikawa, RPT, DMSc2, Kei Ohtsuka, RPT, DMSc2, Masaki Katoh, RPT5, Yohei Otaka, MD, PhD5, Eiichi Saitoh, MD, DMSc3, Shigeo Tanabe, RPT, PhD2

1Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan, 2Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan, 3Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan, 4Tokyo Bay Rehabilitation Hospital, Narashino, Chiba, Japan, 5Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan

Abstract

Objectives: To evaluate the safety and acceptability of a newly developed tele-rehabilitation exercise system using computer-generated animation.

Methods: The participants comprised a convenience sample of 38 diverse individuals in Experiment 1 (15 healthy young people, 16 healthy older people, 5 patients with stroke, and 2 patients with respiratory disease) and 18 healthy older individuals in Experiment 2. Experiment 1 assessed safety in terms of cardiopulmonary vascular aspects and risk of fall, and Experiment 2 assessed treatment acceptability via a subjective evaluation. All participants completed the same exercise program. The safety assessment was conducted using heart rate (HR) and saturation of percutaneous oxygen (SpO\textsubscript{2}), measured before and after exercise. In addition, the occurrence of falls was assessed. For the acceptability assessment, the participants answered five questions (three-point Likert scale) after the exercise program.

Results: The safety assessment indicated that HR and SpO\textsubscript{2} changed from 70.5±10.2 beats per minute and 97.8±1.3% before exercise to 87.6±13.6 beats per minute and 98.2±0.9% after exercise, respectively. In addition, all participants completed the exercises without experiencing any falls. In the acceptability assessment, the score reflecting continuation desire was the highest of the five items examined (2.71±0.46). In contrast, the adequacy of exercise intensity had the lowest score (1.29±0.57).

Conclusions: The present system was confirmed to be safe, and the participants were motivated to continue the exercises. Future developments should incorporate a function to enable participants and medical staff to adjust exercise intensity according to individual physical function.

Keywords: Tele-rehabilitation, Exercise, Computer-generated animation

Introduction

Demographic aging is occurring in developed societies because of a decrease in birth and mortality rates and an increase in life expectancy.1 In 2015, older individuals (>65 years of age) made up 26.6% of the population in Japan,2 and this proportion is expected to increase to approximately 33.3% by 2036.3 Globally, 727 million people in 2020 were estimated to be aged 65 years and older, and this is projected to more than double to over 1.5 billion by 2050. The proportion of the world’s older population is expected to increase continuously from 9.3% in 2020 to 16.0% in 2050. By mid-century, one in six people worldwide will be aged 65 years or older.3

The activities of daily living (ADL) are commonly limited in older people due to a decline in various aspects of physical function, such as muscle weakness,4,5 reduced joint flexibility,6 and decreased motor endurance.7,8 To enable older individuals to continue living at home in the community, various strategies for providing preventive and therapeutic support to maintain physical function are necessary.

A previous meta-analysis showed that exercise therapy for older people improved physical function.9 As a means of exercise therapy, tele-rehabilitation has recently attracted the attention of researchers. Tele-rehabilitation enables people to remotely access rehabilitation services in their homes using real-time telecommunication technology, and had been found to prevent the decline of physical function and the ADL.10 Accordingly, it has been applied with the aim of reducing the length of hospital stays and lowering economic costs for patients and healthcare providers, and also to provide easy access to rehabilitation facilities from patients’ homes.10 Various tele-rehabilitation systems specialized for individual disorders have been proposed. For instance, previous studies have indicated that tele-rehabilitation systems had positive effects in patients with physical and psychological health conditions, such as knee replacement,11,12 breast cancer surgery,13 stroke,14 speech disorders,15–17 mental health issues,18 wounds,19–21 and neurological diseases.22
However, a tele-rehabilitation system for use by a wider range of older people has not been developed. Older individuals commonly have various comorbid disorders and large variability in physical function and endurance. Especially, many older people show a decline in cardiopulmonary function and balance ability that increases their risk of falls. Previous studies have suggested that habitual physical activity can improve cardiopulmonary function and balance ability. Thus, to develop a suitable tele-rehabilitation system for older individuals, exercise intensity and content should be optimized from the perspective of adequate safety, particularly in terms of cardiopulmonary load and fall risk.

In addition, the program contents must be easily understood by the users to ensure appropriate implementation of tele-rehabilitation. Because older people commonly have reduced audiovisual abilities, the information contained in the tele-rehabilitation program must be easy to discern and interpret. As a means of communication, computer-generated (CG) animation is expected to be useful in the application of tele-rehabilitation. Using CG animation, it is easy to edit features of graphics, such as enlarging a character’s body parts and/or adding arrows to encourage the user to pay extra attention to certain elements, thus improving their understanding of the exercises.

In the present study, we developed a tele-rehabilitation exercise system using CG animation and assessed it in terms of feasibility from the perspective of safety and acceptability including ease of interpretation.

Methods

Participants and study design

We conducted two experiments, one to confirm safety (Experiment 1) and one to assess the acceptability (Experiment 2) of the exercise program. A convenience sample of 38 people participated in Experiment 1 (mean age 53.7±25.9 years, 21 males, 17 females): 15 healthy young people (mean age 23.9±2.5 years, 7 males, 8 females), 16 healthy older people (mean age 76.2±5.3 years, 10 males, 6 females), 5 patients with stroke (mean age 63.0±20.3 years, 2 males, 3 females), and 2 patients with respiratory disease (mean age 75.0±5.0 years, 2 males). The patient characteristics are shown in Table 1. A convenience sample of 18 healthy older people participated in Experiment 2 (mean age 64.4±19.5 years, 5 males, 13 females). All participants in both experiments had not taken β-blockers. All participants were informed of the procedures prior to participation and provided written and verbal informed consent. The present study was approved by our University Research Ethics Committee (HM17-312, HM18-027, HM18-310). In both experiments, the exercise program on the PC at the medical facility, the CG system was installed on a PC and connected to a desktop microphone, speakers, and large monitor. A wearable pulse oximeter (MP-1000; Nihon Seimitsu Sokki Co., Ltd., Gunma, Japan) was used to record HR and SpO2. The medical staff used a headset to communicate with the users. The system started automatically after the user pressed the start button, which enabled the user to talk with the medical staff and initiated the recordings of HR and SpO2. When the medical staff started the exercise program on the PC at the medical facility, the CG animation was displayed on the user’s monitor.

Exercise program

The exercise program was developed by certified physical therapists and medical doctors specializing in rehabilitation medicine. The basic concept of the exercise program was to facilitate whole body movements that a wide range of older people, including patients with mild respiratory disease, could perform safely. First, a large number of commonly-used exercises were collected and assessed for suitability from the perspective of physical load and risk of falls. The following specific points were assessed.

Gender	Age (year)	Weight (kg)	Height (m)	BMI (kg/m²)	Disease	Severity	Gait independence
M	77	70.9	166.6	25.7	Cerebral Infarction	SIAS-motor function: 4-4-4-4	Independence
F	76	57.6	153.0	24.6	Cerebral Hemorrhage	SIAS-motor function: 5-5-5-5-4	Independence
M	72	53.1	165.0	19.5	Cerebral Infarction	SIAS-motor function: 4-3-4-3-3	Independence
F	67	45.1	150.0	20.0	Cerebral Hemorrhage	SIAS-motor function: 4-4-4-4	Independence
F	23	55.0	160.0	21.5	Cerebral Hemorrhage	SIAS-motor function: 3-1C-4-4-4	Independence
M	80	51.9	163.5	19.5	Lung Cancer	TNM classification: Stage II	Independence
M	70	51.7	163.0	19.5	Lung Cancer	TNM classification: Stage IV	Independence

BMI, Body Mass Index; M, male; F, female; SIAS, Stroke Impairment Assessment Set; TNM, Tumor-Node-Metastasis
were also considered: exercise sequences that started and ended with warm-up and warm-down exercises; exercises that included a wide range of activities such as upper/lower limb and trunk movements, balance exercises, exercises requiring light cognitive load, and continuous movements. As a result, the exercise program in the proposed system consisted of the following 19 different movements (Figure 2): 1) deep breath with arms spread, 2) neck circles, 3) arm circles with elbow flexion, 4) arm circles with elbow extension, 5) side bends, 6) trunk circles, 7) hand grip and release, 8) strong hand grip and release, 9) quick hand grip and release, 10) leg lifts, 11) leg lifts with hold, 12) squats, 13) heel lifts, 14) heel lifts with hold, 15) thrust hands and leg, 16) side steps with hand clapping, 17) march in place, 18) march in place quickly, and 19) deep breaths with arms spread and raised. The total duration of the exercise program was about 12 minutes. Discontinuation of the exercise was determined individually based on subjective symptoms and visual inspection.

Experiment 1: examination of safety

Before the experiment, the HR at rest was measured to confirm the safety of all participants. All participants were asked to perform the tele-rehabilitation exercise program while in a standing position 2 m from a 55-inch monitor and while watching the CG animation of each exercise. On a computer screen at a remote location, the medical staff observed the participant’s movements, occurrence of falls, HR, and SpO2 during the exercises. Based on this information, the medical staff gave advice to the users to ensure their safe and appropriate movements. The maximum number of participants who could complete the program simultaneously was set to five. In addition, to ensure safety, at least three medical staff members supervised the participants in person at the experimental site. As a measure of safety, HR and SpO2 were recorded before and after the exercises. Some participants who could not maintain a stable standing position were allowed to grasp a chair during the exercises. In addition, a short rest break and a decrease in the number of repetitions were allowed according to each participant’s subjective judgment.

Experiment 2: examination of acceptability

The experimental environment was set up according to the assumption that the older individuals living in a community used a shared TV. As with Experiment 1, before the experiment began, HR at rest was measured to confirm the safety of all participants. Each participant was asked to perform the tele-rehabilitation exercises in a sitting position on a couch located 1.5 m from a 65-inch monitor, while watching the CG animations of the exercises. During the exercises, the medical staff observed the participant’s movements, HR, and SpO2. To assess acceptability, we designed five questions regarding the user experience of the program, scored using a three-point Likert rating scale (1–3) (Table 2). All participants were asked to answer the questions after performing the tele-rehabilitation exercises.

Data analysis

For HR and SpO2 in Experiment 1, we calculated the mean values with standard deviations. We used the Wilcoxon signed rank test to compare the values before vs. after the exercises. For the questions in Experiment 2, we calculated the mean values with standard deviations for each item. The scores of the questions were compared using Friedman’s test followed by Bonferroni’s test for multiple comparisons. All statistical analyses were performed using R (version 4.0.5; Institute of Statistical Mathematics, Tokyo, Japan). The statistical significance was set at a p-value of 0.05.
In all participants, the resting HR was below 120 beats per minute. In both experiments, the participants completed all of the tele-rehabilitation exercises safely, without adverse events including accidents related to falls. The HR and SpO2 values in Experiment 1 are shown in Figure 3. The participant HR was higher after the exercises (87.6±13.6 beats per minute) vs. before the exercises (70.5±10.2 beats per minute) (p<0.05). There was no significant difference in SpO2 before (97.8±1.3%) vs. after the exercises (98.2±0.9%). The scores for the questions in Experiment 2 are shown in Figure 4. The items measuring continuation desire and comprehensibility of the proposed system had high scores (2.71±0.46 and 2.59±0.49, respectively). However, the adequacy of exercise intensity had the lowest score (1.29±0.57). The score for exercise intensity was “suitable” for exercise intensity vs. before the exercises (70.5±10.2 beats per minute) (p<0.05). There was no significant difference in SpO2 before (97.8±1.3%) vs. after the exercises (98.2±0.9%). The scores for the questions in Experiment 2 are shown in Figure 4. The items measuring continuation desire and comprehensibility of the proposed system had high scores (2.71±0.46 and 2.59±0.49, respectively). However, the adequacy of exercise intensity had the lowest score (1.29±0.57). The score for exercise intensity was “suitable” for

Table 2 Survey questions regarding the user experience of the exercise system

Question	1	2	3
Exercise intensity	Very high or low	High or low	Suitable
Difficulty of movements	Very difficult or easy	Difficult or easy	Suitable
Comprehensibility	Incomprehensible	Slightly incomprehensible	Easy to understand
Exercise duration	Very long or short	Long or short	Suitable
Continuation desire	No desire to continue	Intermediate	Desire to continue

Results

In all participants, the resting HR was below 120 beats per minute. In both experiments, the participants completed all of the tele-rehabilitation exercises safely, without adverse events including accidents related to falls. The HR and SpO2 values in Experiment 1 are shown in Figure 3. The participant HR was higher after the exercises (87.6±13.6 beats per minute) vs. before the exercises (70.5±10.2 beats per minute) (p<0.05). There was no significant difference in SpO2 before (97.8±1.3%) vs. after the exercises (98.2±0.9%). The scores for the questions in Experiment 2 are shown in Figure 4. The items measuring continuation desire and comprehensibility of the proposed system had high scores (2.71±0.46 and 2.59±0.49, respectively). However, the adequacy of exercise intensity had the lowest score (1.29±0.57). The score for exercise intensity was “suitable” for
2 participants, “low” for 3 participants, and “very low” for 13 participants. The score for difficulty of movements was “suitable” for 4 participants, “easy” for 7 participants, and “very easy” for 7 participants. The score for exercise duration was “suitable” for 9 participants, “short” for 7 participants, and “very short” for 2 participants.

Discussion

The purpose of this preliminary study was to evaluate the safety and acceptability of the proposed tele-rehabilitation exercise system using CG animation. Our data confirmed that the system was safe for all participants (Experiment 1). Regarding acceptability (Experiment 2), the participants provided relatively positive responses regarding the continuation desire and comprehensibility of the system. Conversely, the exercise intensity was not determined to be sufficient for the older participants in the present study.

From the viewpoint of safety, the proposed tele-rehabilitation exercise program using CG animation was completed by all participants without any adverse events. These results suggest that this system can be used safely from the perspective of cardiopulmonary vascular load and risk of falls. In previous studies, HR and SpO2 have frequently been used as indicators of safety. In the present study, HR was significantly increased after the exercises, but the degree of increase was considered to be within a safe range in all participants according to assessments based on subjective symptoms and visual inspection by the attending medical staff. Conversely, there was no significant difference in SpO2 before vs. after the exercises. In healthy individuals, SpO2 is usually maintained at a constant value of more than 96% during exercise. However, in patients with respiratory or cardiovascular diseases, SpO2 is often decreased during exercise and/or daily activity. Generally, an exercise-induced decrease in SpO2 has a longer time delay than the sensation of dyspnea. That we allowed the participants to rest according to subjective fatigue may have resulted in the lack of change in SpO2 before and after the exercises. In addition, there were no cases of falls or other adverse events. These results suggest that our tele-rehabilitation system can be safely implemented in older people and patients without increasing the risk of falling. Particularly, this program may be suitable for older people and patients with balance disorder, as they are prone to falling in the standing position or walking.

Figure 3 Changes in HR and SpO2. The bars indicate the average HR/SpO2 values before and after the exercises in all participants. Error bars indicate standard deviation. * p<0.05. Gray lines and open circles represent data from individual subjects; black lines and filled circles represent mean data.

Figure 4 The scores for the questions regarding the user experience of the exercise system. The bars indicate the average values for each question. Error bar indicates standard deviation. * p<0.05.

Regarding acceptability, relative perspectives related to the items such as advantages or points to be improved were clarified by comparing the related items. The responses indicated that the participants could easily understand the exercises within the proposed system. Our efforts to make the exercises more clearly comprehensible using CG animation might have contributed to the results. In particular, the presentation of magnified images of limbs and arrows to show the relevant body parts and directions of movement might have been influential. Ali et al. discussed the importance of customizable image size for computer animations designed for use by older people, as well as the use of appropriate
graphical objects such as icons for attracting attention in people with cognitive problems. The high comprehensibility of the activities might have led users to give high scores regarding their desire to continue using the tele-rehabilitation system. Conversely, the participants did not have a positive view of the adequacy of exercise intensity. This suggests that it will be necessary to include an additional function to enable the exercise intensity to be adjusted based on individual physical function in future versions of the proposed system. In addition, as some participants answered that the exercise movements were too easy to perform, future exercise programs might benefit from including more complex movements.

The present study indicates that the safety and acceptability of the proposed system using CG animation is sufficient for use in healthy young people, healthy older people, and patients with stroke or respiratory disease. The general purpose of tele-rehabilitation is to improve the accessibility and continuity of rehabilitation for people in geographically remote locations and patients with various disorders. Tele-rehabilitation also has the potential to save time and reduce economic and human resource costs for health care professionals and facilities. Thus, the proposed system might broaden the availability of tele-rehabilitation exercises.

The present study has some limitations that merit consideration. First, the installation of the proposed tele-rehabilitation exercise system might be difficult for older people. In the present study, prior to each experiment, the system was installed by a member of the research team. Information and communication technology literacy tends to be lower in older people. Therefore, the development of a simple installation procedure might be needed to promote the use of this system.

Second, regarding safety, the exercise load was only measured before and after the sequence of exercises. However, the maximum HR and minimum SpO2 during exercise might provide more information regarding the exercise intensity. In addition, this study did not assess how much rest was needed for each participant. The frequency and duration of rest during the exercise program should be assessed for future studies of optimal exercise intensity. Furthermore, as a safety function, it might be useful to develop a warning function when a user exceeds the safe limits of the exercise load. From the perspective of the risk of falling, future studies could examine participant balance ability to make the proposed system safer for people with various physical conditions.

Third, regarding acceptability, the present study did not include a control group to examine the effect of CG animation on the comprehensibility of the movements in the tele-rehabilitation exercise program. Further studies should compare videos with human actors and those with CG animation to clarify the effect of the animation. In Experiment 2, the participants were recruited from a convenience sample. Accordingly, only healthy older people participated in the study as the main user group. To examine the generality of user acceptability, future studies should recruit participants with various physical and cognitive conditions with a wide age range.

Acknowledgements

This research was supported by the Demonstration Project for Telerehabilitation and Rehabilitation Robots and Knowledge Hub Aichi, a Priority Research Project from the Aichi Prefectural Government. We thank the staff of the Department of Rehabilitation at Fujita Health University Hospital for their contributions to this study.

References

1. He W, Goodkind D, Kowal PR. An aging world: 2015. U.S. Census Bureau; 2016: 1–2165.
2. National Institute of Population and Social Security Research. Population projections for Japan (2016–2065); summary; 2017. <http://www.ipss.go.jp/pp-zenkoku/e/zenkoku_e2017/pp_zenkoku2017e_gaiyou.html> (Accessed April 9, 2021)
3. United Nations Department of Economic and Social Affairs, Population Division. World population ageing 2020 highlights: living arrangements of older persons; 2020: 1–40. <https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pdp2020_world_population_aging_highlights.pdf> (Accessed June 3, 2021)
4. Batsis JA, Germain CM, Vásquez E, Bartels SJ. Prevalence of weakness and its relationship with limitations based on the Foundations for the National Institutes for Health project: data from the Health and Retirement Study. Eur J Clin Nutr 2016; 70: 1168–73.
5. Velázquez Almeida C, Frigoyen Camacho ME, Delgadillo Velázquez J, Lazarovich I. The relationship between sarcopenia, undernutrition, physical mobility and basic activities of daily living in a group of elderly women of Mexico City. Nutr Hosp 2013; 28: 514–21.
6. Jung H, Yamasaki M. Association of lower extremity range of motion and muscle strength with physical performance of community-dwelling older women. J Physiol Anthropol 2016; 35: 30.
7. Sharma N, Raj A, Chugh R, Kalra S. Corelation between knee extensor strength and endurance in dependent and independent elderly. Indian J Physiother Occup Ther 2011; 5: 89–95.
8. Baezoe T, Asakawa Y, Hazaki K, Kuroki H, Morinaga T, Kawano I, Kanazaki H, Aoki N. Muscle strength and muscle endurance required for independent walking in the elderly. J Phys Ther Sci 1997; 9: 19–22.
9. de Vries NM, van Ravensberg CD, Hobbelens JS, Olde Rikkert MG, Staal JB, Nijhuis-van der Sanden MW. Effects of physical exercise therapy on mobility, physical functioning, physical activity and quality of life in community-dwelling older adults with impaired mobility, physical disability and/or multi-morbidity: a meta-analysis. Ageing Res Rev 2012; 11: 136–49.
10. Peretti A, Amenta F, Tayebati SK, Nittari G, Mahdi SS. Telerehabilitation: review of the state-of-the-art and areas of application. JMIIR Rehabil Assist Technol 2017; 4: e7.
11. Tousignant M, Moffet H, Boissy P, Corriveau H, Cabana F, Marquis F. A randomized controlled trial of home telerehabilitation for post-knee arthroplasty. J Teleremed Telecare 2011; 17: 195–8.
12. Moffet H, Tousignant M, Nadeau S, Merette C, Boissy P, Corriveau H, Marquis F, Cabana F, Ranger P, Belzile EL, Dimentberg R. In-home telerehabilitation compared with face-to-face rehabilitation after total knee arthroplasty: a noninferiority randomized controlled trial. J Bone Joint Surg Am 2015; 97: 1129–41.
13. Lozano-Lozano M, Martin-Martín L, Galindo-Castillo N, Alvarez-Salvago F, Cantarero-Villanueva I, Fernandez-Lao C, Sanchez-Salado C, Arroyo-Morales M. Integral strategy to supportive care in breast cancer survivors through occupational therapy and a m-health system: design of a randomized clinical trial. BMC Med Inform Decis Mak 2016; 16: 150.
14. Chen J, Jin W, Zhang XX, Xu W, Liu XN, Ren CC. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis 2015; 24: 2060–6.
15. Duffy JR, Werven GW, Aronson AE. Telemedicine and the diagnosis of speech and language disorders. Mayo Clin Proc 1997; 72: 1116–22.
16. Hill AJ, Theodoros DG, Russell TG, Cahill LM, Ward EC, Clark KM. An internet-based telerehabilitation system for the assessment of motor speech disorders: a pilot study. Am J Speech Lang Pathol 2006;
15: 45–56.
17. Theodoros D, Russell TG, Hill A, Cahill L, Clark K. Assessment of motor speech disorders online: a pilot study. J Telemed Telecare 2003; 9: S66–8.
18. Ball C, McLaren P. The tele-assessment of cognitive state: a review. J Telemed Telecare 1997; 3: 126–31.
19. Halstead LS, Tang T, Elrod M, Covit RJ, Rosen MJ, Woods S. Teleassessment compared with live assessment of pressure ulcers in a wound clinic: a pilot study. Adv Skin Wound Care 2003; 16: 91–6.
20. Rintala DH, Krouskop TA, Wright JV, Garber SL, Friki J, Henson HK, Itani KM, Gaddis W, Matamoros R, Monga TN. Telerehabilitation for veterans with a lower-limb amputation or ulcer: technical acceptability of data. J Rehabil Res Dev 2004; 41: 481–90.
21. Vesmarovich S, Walker T, Hauber RP, Temkin A, Burns R. Use of telerehabilitation to manage pressure ulcers in persons with spinal cord injuries. Adv Wound Care 1999; 12: 264–9.
22. Savard L, Borstad A, Tkachuck J, Lauderdale D, Conroy B. Telerehabilitation consultations for clients with neurologic diagnoses: cases from rural Minnesota and American Samoa. NeuroRehabilitation 2003; 18: 93–102.
23. Corrá U, Agostoni PG, Anker SD, Coats AJS, Crespo Leiro MG, de Boer RA, Harjola VP, Hill L, Lainscak M, Lund LH, Metra M, Ponikowski P, Riley J, Seferovic PM, Piepoli MF. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018; 20: 3–15.
24. Hart LA, Phelan EA, Yi JY, Marcum ZA, Gray SL. Use of Fall Risk-Increasing Drugs Around a Fall-Related Injury in Older Adults: A Systematic Review. J Am Geriatr Soc 2020; 68: 1334–43.
25. Moncada LV. Management of falls in older persons: a prescription for prevention. Am Fam Physician 2011; 84: 1267–76.
26. Barnes AS. Emerging modifiable risk factors for cardiovascular disease in women: obesity, physical activity, and sedentary behavior. Tex Heart Inst J 2013; 40: 293–5.
27. Ramoa Castro A, Oliveira NL, Ribeiro F, Oliveira J. Impact of educational interventions on primary prevention of cardiovascular disease: A systematic review with a focus on physical activity. Eur J Gen Pract 2017; 23: 59–68.
28. Chan YM, Pianta MJ, Kendrick AM. Reduced audiovisual recalibration in the elderly. Front Aging Neurosci 2014; 6: 226.
29. Chan YM, Pianta MJ, Kendrick AM. Older age results in difficulties separating auditory and visual signals in time. J Vis 2014; 14: 13.
30. Brooks CJ, Chan YM, Anderson AJ, Kendrick AM. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss. Front Hum Neurosci 2018; 12: 192.
31. McIntosh K, Charbonneau R, Bensaada Y, Bhatiya U, Ho C. The safety and feasibility of exoskeletal-assisted walking in acute rehabilitation after spinal cord injury. Arch Phys Med Rehabil 2020; 101: 113–20.
32. Sakai T, Hoshino C, Yamaguchi R, Hirao M, Nakahara R, Okawa A. Remote rehabilitation for patients with COVID-19. J Rehabil Med 2020; 52: jrm0095.
33. Sala V, Petrucci L, Monteleone S, Dall’Angelo A, Miracca S, Conte T, Carlisi E, Ricotti S, D’Armini AM, Dalla Toffola E. Oxygen saturation and heart rate monitoring during a single session of early rehabilitation after cardiac surgery. Eur J Phys Rehabil Med 2016; 52: 12–9.
34. Wardini R, Dajzman E, Yang N, Baltzan M, Prefontaine D, Statathos M, Marciano H, Watson S, Wolkove N. Using a virtual game system to innovate pulmonary rehabilitation: safety, adherence and enjoyment in severe chronic obstructive pulmonary disease. Can Respir J 2013; 20: 357–61.
35. Ali D, Dalhir S. A review on user interface design principles to increase software usability for users with less computer literacy. Journal of Computer Science 2013; 9: 1443–50.
36. Seron P, Oliveros MJ, Gutierrez-Arias R, et al. Effectiveness of telerehabilitation in physical therapy: a rapid overview. Phys Ther 2021; 101: pzab053.
37. Kairy D, Lehoux P, Visintin M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. Disabil Rehabil 2009; 31: 427–47.
38. Jo HS, Hwang YS, Dronina Y. Mediating effects of smartphone utilization between attitude and willingness to use home-based healthcare ICT among older adults. Health Inform Res 2021; 27: 137–45.
39. Kapadia V, Ariani A, Li J, Ray PK. Emerging ICT implementation issues in aged care. Int J Med Inform 2015; 84: 892–900.

Copyright©2022 Nobuhiro Kumazawa, RPT, MS et al. This is an Open access article distributed under the Terms of Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.