New rotation periods in the open cluster NGC 1039 (M 34), and a derivation of its gyrochronology age

D. J. James1,2, S. A. Barnes3, S. Meibom4, G. W. Lockwood3, S. E. Levine5, C. Deliyannis6, I. Platais7, A. Steinhauer8 and B. K. Hurley1

1 Hōkū Ke `a Observatory, Department of Physics & Astronomy, University of Hawai`i at Hilo, 200 West Kawili Street, Hilo, HI 96720, USA e-mail: david.james@hawaii.edu
2 Department of Physics & Astronomy, Vanderbilt University, Box 1807 Station B, Nashville, TN 37235, USA
3 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ 86001, USA
4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
5 United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521, USA
6 Astronomy Department, Indiana University, Swain Hall West 319, 727 East 3rd Street, Bloomington, IN 47405-7105, USA
7 Department of Physics & Astronomy, Johns-Hopkins University, Baltimore, MD 21218, USA
8 Department of Physics and Astronomy, 1 College Circle, SUNY Geneseo, Geneseo, NY 14454, USA

Received: 18 August 2009
Accepted: 16 March 2010

Abstract

\textit{Aims.} Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the cluster’s age in a distance independent way, i.e., the so-called gyrochronology method.

\textit{Methods.} We present an analysis of 55 new rotation periods, using light curves derived from differential photometry, for solar type stars in the open cluster NGC 1039 [M 34]. We also exploit the results of a recently-completed, standardized, homogeneous \textit{BVic} CCD survey of the cluster, performed by the Indiana Group of the WIYN open cluster survey, in order to establish photometric cluster membership and assign \textit{B–V} colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (\textit{interface or I-star}), a differentially rotating star (\textit{convective or C-star}) or an object which is in some transitory state in between the two (\textit{gap or g-star}). Fitting the period.
and photometric colour of each I-sequence star in the cluster, we derive the cluster’s mean gyrochronology age.

Results. Of the photometric variable stars in the cluster field, for which we derive a period, 47 out of 55 of them lie along the loci of the cluster main sequence in $V/B - V$ and $V/V - I$ space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 ± 9 Myr.

Conclusions. Using differential photometry, members of a young open cluster can be easily identified in a colour–magnitude diagram from their periodic photometric variability alone. Such periodicity can be used to establish a period–colour distribution for the cluster, which for M 34, we have used to derive its gyrochronology age of 193 ± 9 Myr. Formally, our gyro age of M 34 is consistent (within the errors) with that derived using several *distance–dependent*, photometric isochrone methods $(250 \pm 67$ Myr).

Key words: methods: data analysis / starspots / stars: fundamental parameters / globular clusters: individual: NGC 1039 (M 34)

* Appendices A–C are only available in electronic form at http://www.aanda.org

** Data of Appendices A–C are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A100

© ESO, 2010
A color-period diagram for the open cluster M 48 (NGC 2548), and its rotational age
A&A 583, A73 (2015)

Lithium abundance dispersion in the Pleiades and M 34
A&A 566, A72 (2014)

The rotation period distribution of the rich Pleiades-age southern open cluster NGC 2516 — Existence of a representative zero-age main sequence distribution
A&A 641, A51 (2020)