Characterization of inflammation and immune cell modulation induced by low-dose LPS administration to healthy volunteers

M.R. Dillingh¹, E.P. van Poelgeest¹, K.E. Malone², E.M. Kemper³, E.S.G. Stroes³, M. Moerland¹, J. Burggraaf¹

¹Centre for Human Drug Research, Leiden, The Netherlands
²Good Biomarker Sciences, Leiden, The Netherlands
³Amsterdam Medical Center, Amsterdam, The Netherlands
Human endotoxin model – introduction

- A model of systemic inflammation
 - Flu-like symptoms
 - ↑ CRP production
 - ↑ Concentrations pro- and anti-inflammatory cytokines

- Administration of purified LPS (endotoxin) from *E. coli* or other Gram-negative bacteria

- *E. coli*: high reproducibility of effects (*Andreasen et al.*)

- High LPS doses, not preferred
 - Potential effects of immune-modulating interventions might not be observed
 - Not free of risk for the volunteer (a.o. cardiovascular)
 - Other homeostatic mechanisms may be temporarily impaired
LPS hyporesponsiveness

- Follows upon \textit{in vivo} LPS challenge
 - Altered cytokine production
 - ↓ Inflammatory response following LPS rechallenge

- Many negative regulators (e.g. SOCS-1, IRAK-M, and SHIP) of the TLR4 signaling pathway \textit{(Fu et al. 2012, Morris et al. 2011)}
LPS hyporesponsiveness – *Kox et al. 2011*

- **T=0:** *in vivo* challenge
- **T=4hrs and 4 wks:** *ex vivo* challenge

Ex vivo LPS hyporesponsiveness
- Resolved 1 week after *in vivo* LPS challenge
- Exact time course unclear
- Possible differences between read-outs
Study objectives

• To assess the relationship between administration of low doses of LPS (0.5, 1 and 2 ng/kg) and the inflammatory response (cytokine levels and CRP) in healthy male volunteers

• To assess the duration of hyporesponsiveness of the immune system after *in vivo* LPS administration, as determined by *ex vivo* LPS challenges
Study outline (1)

- Randomized, blinded, placebo controlled, sequential-group study
- 24 healthy male subjects
 - 3 cohorts (active-pl: 6-2)
- Ascending single iv doses of 0.5-2ng/kg LPS
 - U.S. Reference *E. Coli* endotoxin Lot#3 (O113:H, 10:K negative, ~10IE/ng)
- IV hydration
 - Pre-hydration 2hrs pre-dose: 1500mL glucose/saline
 - Hydration 6hrs post-dose: 150mL/hr
Study outline (2)

- **Inflammatory response, *in vivo***
 - CRP
 - IL-1β, IL-6, IL-8 and TNF-α (human 4-plex, MSD)

- **Inflammatory response, *ex vivo***
 - Whole blood cultures with LPS (*E. Coli*, O111:B4, ~10IE/ng)
 - 24 hrs incubation at 37°C, 5% CO₂
 - -2hrs, 6, 12, 24, 48 and 72hrs
 - IL-1β, IL-6, IL-8 and TNF-α (human 4-plex, MSD)

- **Safety**
 - AEs / vital signs / ECG / routine labs
Study results – Safety

• Well tolerated, no clinically relevant changes or unexpected treatment-related trends in
 - Urinary or blood laboratory parameters
 - ECG recordings
 - Vital signs
 - AEs: mild severity and self-limiting

• Most frequent reported AEs
 - Headache; 66.7% of the LPS-treated subjects, 33.3% of the placebo-treated subjects
 - Feeling cold; 44.4% of the LPS-treated subjects, none of the placebo-treated subjects
Study results – Safety – Temperature and HR

- BP highly variable over time, max. mean decreases in the range of 0 to -13 mmHg
Study results – *In vivo* CRP

- **Statistical analysis**
 - Significant contrasts, dose groups (0.5, 1, 2ng/kg) vs pl: p<0.0001
Study results – Circulating cytokines (TNF-α, IL-6, IL-8)

• **T_max**: 1.5-3hrs post-dose

• **Statistical analysis**
 - Significant contrasts up to t=6hrs: (0.5, 1, 2ng/kg) vs pl: p<0.0001

• **IL-1β**: ↑ 3-6hrs post-dose (2ng/kg)
Study results – LPS Hyporesponsiveness

- Statistical analysis

	Contrast at 6hrs versus pl	Estimated difference (%)	p-value
IL-1β	1ng/kg	-65.8	<0.0001
	2ng/kg	-84.7	<0.0001
TNF-α	1ng/kg	-66.4	0.0005
	2ng/kg	-74.7	<0.0001
Study results – LPS Hyporesponsiveness

- Statistical analysis

	Contrast at t=6hrs vs pl	Estimated difference (%)	p-value
IL-6			
1ng/kg	-31.3		0.0283
2ng/kg	-41.3		0.0024
IL-8			
0.5ng/kg	55.1		0.0879
1ng/kg	19.2		0.4961
2ng/kg	-4.8		0.8475

- [IL-8] and [IL-6] response ≠ [TNF-α] and [IL-1β]: indication for priming?
Conclusions

• LPS doses 0.5-2ng/kg: well-tolerated

• PD parameters: cytokine release and safety markers (temperature and heart rate)

• LPS doses ≥ 0.5ng/kg: distinct inflammatory response

• LPS dose-dependent hyporesponsiveness observed for IL-1β, IL-6 and TNF-α after ex vivo LPS stimulation:
 - Max. measured 6hrs post-dose
 - Total duration of ~12hrs

• Clinical pharmacology studies: application of a combination of in vivo LPS administration and repeated ex vivo LPS challenges
unlocking the true potential
• Monocyte count: dose-dependent decrease with a minimum change from baseline at 6hrs post-dose, returning to baseline 12-24hrs post-dose
Study results – Safety – Neutrophils / Leucocytes

- Neutrophil count: peak levels at 4hrs post-dose
- Leucocyte count: peak levels at 4-6hrs post-dose

returning to baseline 12-24hrs post-dose
Study results – Safety – Thrombocytes

- Blood platelet count (thrombocytes): dose-dependent decrease with min. mean levels ~4hrs post-dose, returning to baseline levels around 12 (0.5 and 1ng/kg) and 48hrs post-dose (2ng/kg)
Study results – Safety – BP

![Graph showing systolic and diastolic blood pressure over time for different treatments: Placebo, LPS 0.5 ng, LPS 1.0 ng, and LPS 2.0 ng.](image)

- **Systolic BP (mmHg)**
 - Placebo
 - LPS 0.5 ng
 - LPS 1.0 ng
 - LPS 2.0 ng

- **Diastolic BP (mmHg)**
 - Placebo
 - LPS 0.5 ng
 - LPS 1.0 ng
 - LPS 2.0 ng
LPS signaling pathways
Human endotoxin model – Priming

• Follows upon *in vivo* LPS challenge with very low doses
 - ↑ Inflammatory response following LPS rechallenge
 - May enable the immune system to elicit a strong inflammatory response against potential pathogens (*Fu et al.*)

• Priming in animals described extensively, but underlying mechanisms poorly understood
Power calculation (TNF-α, IL-6 and CRP)

- Parallel study design, LPS dose level: 0.5 ng/kg, sample size of 8 subjects per treatment group
 - 80% power to detect (two-sided significance level of 0.05)
 - 28% inhibition in the LPS-induced TNF-α response;
 - 53% inhibition in the LPS-induced IL-6 response;
 - 49% inhibition in the LPS-induced CRP response.

- Inter subject variability on log scale is well comparable between different LPS doses - this power calculation also applies for LPS doses of 1 and 2 ng/kg