On Canonical Subfield Preserving Polynomials

Giacomo Micheli, Davide Schipani
Institut für Mathematik
Universität Zürich

August 1, 2014

Abstract

Explicit monoid structure is provided for the class of canonical subfield preserving polynomials over finite fields. Some classical results and asymptotic estimates will follow as corollaries.

1 Introduction

Let q be a prime power and m a natural number. In [1] the structure of the group consisting of permutation polynomials \mathbb{F}_{q^m} having coefficients in the base field \mathbb{F}_q was made explicit. We start observing that, if f is a permutation of \mathbb{F}_{q^m} with coefficients in \mathbb{F}_q then

$$f(\mathbb{F}_q) = \mathbb{F}_q \quad \text{and} \quad \forall \; d, s \mid m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) = \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}.$$

Indeed for any integer $s \geq 1$, since f has coefficients in \mathbb{F}_q and \mathbb{F}_{q^s} is a field, we have $f(\mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^s}$. Being f also a bijection, this is also an equality. The property above follows then directly (see also [1, Lemma 2]).

It is natural now to ask which are the polynomials f, having coefficients in \mathbb{F}_q, such that

$$f(\mathbb{F}_q) \subseteq \mathbb{F}_q \quad \text{and} \quad \forall \; d, s \mid m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}.$$

(1)

Let us call T_{q^m} the set of such polynomials. We remark that this is a monoid under composition and its invertible elements $(T_{q^m})^\ast$ consist of the group of permutation polynomials with coefficients in \mathbb{F}_q mentioned above. In this paper we give the explicit semigroup structure of T_{q^m}, obtaining the main result of [1] (i.e. the group structure mentioned above) as a corollary. The explicit semigroup structure will allow us to compute the probability that a polynomial chosen uniformly at random having coefficients in \mathbb{F}_q satisfies condition [1]. This will imply the following remarkable results:

- Given p prime, for q relatively large, the density of T_{q^p} is approximately zero.
- Given q, for p relatively large prime, the density of T_{q^p} is approximately one.
- For $q = p$ large prime the density of T_{p^p} is approximately $1/e$.
2 Preliminary definitions

Definition 1. We say \(f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m} \) to be \textit{subfield preserving} if
\[
f(\mathbb{F}_q) \subseteq \mathbb{F}_q \quad \text{and} \quad \forall \; d, s \mid m \quad f(\mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}) \subseteq \mathbb{F}_{q^d} \setminus \mathbb{F}_{q^s}.
\] (2)

Moreover, we will say \(f \) to be \textit{\(q \)-canonical} if its polynomial representation has coefficients in \(\mathbb{F}_q \) (or simply \textit{canonical} when \(q \) is understood).

Remark 2. One of the reasons why we use the term \textit{canonical} to address the property of having coefficients in a subfield is that, under this property, the induced application \(\tilde{f} \) of \(f(x) \) is always well defined no matter what irreducible polynomial we choose for the representation of the finite field extension \(\mathbb{F}_{q^m} \).

Denote by \(\mathcal{L}_{\mathbb{F}_{q^m}} \) the set of all subfield preserving polynomials.

Remark 3. If we drop the condition on the coefficients, the semigroup structure becomes straightforward:
\[
\mathcal{L}_{\mathbb{F}_{q^m}} \cong \bigtimes_{k | m} M_{[k\pi(k)]}.
\]
with \(\pi(k) \) being the number of monic irreducible polynomials of degree \(k \) over \(\mathbb{F}_q \) and \(M_{[n]} \) being the set of all maps from \(\{1, \ldots, n\} \) to itself.

Remark 4. Clearly not all subfield preserving polynomials are canonical, which can also be checked by a cardinality count with the results later in the paper.

In the rest of the paper we will need the following lemma, whose proof can be easily adapted from [1] and [2].

Lemma 5. Let \(f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m} \) be a map. Then \(f \in \mathbb{F}_q[x] \) if and only if \(f \circ \varphi_q = \varphi_q \circ f \) where \(\varphi_q(x) = x^q \).

Indeed the set of functions we are looking at consists of \(T_q^m = \mathcal{L}_{\mathbb{F}_{q^m}} \cap \mathcal{C}_{\varphi_q} \)
where \(\mathcal{C}_{\varphi_q} := \{ f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m} \mid f \circ \varphi_q = \varphi_q \circ f \} \).

3 Combinatorial underpinning

Let \(S \) be a finite set and \(\psi : S \to S \) a bijection. For any \(T \subseteq S \), let
\[
\mathcal{K}_\psi(T) := \{ f : T \to T \mid \forall x \in T \; f \circ \psi(x) = \psi \circ f(x) \}.
\]
For any partition \(\mathcal{P} \) of \(S \) into sets \(P_k \), let
\[
M_S(\mathcal{P}) := \{ f : S \to S \mid \forall k \; f(P_k) \subseteq P_k \}.
\]
When \(\mathcal{P} = \{ S \} \) is the trivial partition, we will denote \(M_S(\{ S \}) = M_S \) namely the monoid of applications from \(S \) to itself.

For any bijection \(\phi : S \to S \), define \(\phi_k \) for any \(k \) as the composition of the cycles of \(\phi \) of length \(k \), and set \(\phi_k = (\emptyset) \) if \(\phi \) has no cycles of length
Let W denote the set $\{1, \ldots, |S|\}$, then $\phi = \prod_{k \in W, \phi_k \neq \emptyset} \phi_k$. If $\text{supp}(\phi_k)$ denotes the set of elements moved by ϕ_k, then ϕ induces a partition P_ϕ on $S = \bigcup_{k \in W} S_k$, with $S_k = \text{supp}(\phi_k)$, for $k \geq 2$, and S_1 being the set of fixed points of ϕ.

Lemma 6.

$$M_S(P_\phi) \cap K_\phi(S) \cong \bigtimes_{k \in W, \phi_k \neq \emptyset} K_{\phi_k}(S_k)$$

Proof. Clearly any $f \in K_{\phi_k}(S_k)$ can be extended to S as the identity and then the extension \tilde{f} belongs to $K_\phi(S) \cap M_S(P_\phi)$. Indeed we have a natural injection

$$\bigtimes_{k \in W, \phi_k \neq \emptyset} K_{\phi_k}(S_k) \to M_S(P_\phi) \cap K_\phi(S).$$

This is also a surjection: in fact let $f \in M_S(P_\phi) \cap K_\phi(S)$ and define

$$f_k(x) := \begin{cases} f(x) & \text{if } x \in S_k, \\ x & \text{otherwise.} \end{cases}$$

Since $M_S(P_\phi) \cap K_\phi(S) \subseteq M_S(P_\phi)$, then $f_k(S_k) \subseteq S_k$ which implies

$$f_k|_{S_k} \in K_{\phi_k}(S_k).$$

As the S_k form a partition, the composition of all the f_k coincides with f. \hfill \square

Now, for $n, k \in \mathbb{N}$ let U_n^k be a set with kn elements and ψ a bijection of U_n^k having n cycles of length k. Let us put indeces on the elements of the set in the following way: let a_{ij} be the j-th element of the i-th cycle, with $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, k\}$.

Let $[h]$ denote $\{1, \ldots, h\}$ for a natural number h. We say $\lambda : [h] \to [h]$ to be a cyclic shift of $[h]$ if $\lambda(j + \ell) = \lambda(j) + \ell$ modulo h for any $j, \ell \in [h]$.

Let $\gamma_1, \ldots, \gamma_n$ be cyclic shifts of $[k]$ and $\sigma : [n] \to [n]$ a map. We construct then $f_\sigma^2 : U_n^k \to U_n^k$ as follows:

$$f_\sigma^2(a_{ij}) := a_{\sigma(i)\gamma(j)}.$$

Theorem 7. $g \in K_\psi(U_n^k) \iff \exists \gamma := (\gamma_1, \ldots, \gamma_n), \gamma_i \text{ cyclic shifts of } [k], \text{ and } \exists \sigma : [n] \to [n] \text{ map such that } g = f_\sigma^2.$

Proof. Suppose first $g \in K_\psi(U_n^k)$. Then

$$g(a_{ij}) = g(\psi^{j-1}(a_{i1})) = \psi^{j-1}(g(a_{i1})).$$

Define $\sigma(i) := [g(a_{i1})]_1$ and $\gamma_i(j) := [g(a_{ij})]_2$, where the subscripts $[x]_1$ and $[x]_2$ refer to the two indeces of $x \in U_n^k$ in the representation a_{ij} above.

Observe that for all $i \in [n]$, γ_i is a cyclic shift, indeed it holds modulo k:

$$\gamma_i(j + \ell) = [g(a_{i j+\ell})]_2 = [g(\psi^\ell(a_{ij}))]_2 = [\psi^\ell(g(a_{ij}))]_2 = [g(a_{ij})]_2 + \ell = \gamma_i(j) + \ell.$$
Moreover remark that
\[g(a_{ij}) = g(\psi^{j-1}(a_{i1})) = \psi^{j-1}(g(a_{i1})) = \psi^{j-1}(a_{\sigma(i)\gamma_i(1)}) = \]
\[a_{\sigma(i)\gamma_i(1)+j-1} = a_{\sigma(i)\gamma_i(j)} = f_\sigma^j(a_{ij}). \]
Let us prove now the other implication:
\[\psi(f_\sigma^j(a_{ij})) = \psi(a_{\sigma(i)\gamma_i(j)}) = a_{\sigma(i)\gamma_i(j)+1} = \]
\[a_{\sigma(i)\gamma_i(j+1)} = f_\sigma^j(a_{i,j+1}) = f_\sigma^j(\psi(a_{ij})) \]
for all \(i \in [n] \) and \(j \in [k] \).

3.1 Semidirect product of monoids

We now recall the definition of semidirect product of monoids

Definition 8. Let \(M, N \) be monoids and let \(\Gamma : M \to \text{End}(N) \) with \(m \mapsto \Gamma_m \) be an antihomomorphism of monoids (i.e. \(\Gamma_{m_1m_2} = \Gamma_{m_2} \circ \Gamma_{m_1} \)). We define \(M \ltimes \Gamma N \) as the monoid having support \(M \times N \) and operation \(\ast \) defined by the formula
\[(m_1, n_1) \ast (m_2, n_2) = (m_1m_2, \Gamma_{m_2}(n_1)n_2) \]

Remark 9. It is straightforward to verify that the associative property holds.

We will now prove an easy lemma that will be useful in Section 4. For any monoid \(H \) let us denote by \(H^* \) the group of invertible elements of \(H \).

Lemma 10. Let \(M \ltimes \Gamma G \) be a semidirect product of monoids where \(G \) is a group. Then
\[(M \ltimes \Gamma G)^* = M^* \ltimes \Gamma G \]

Proof. The inclusion \((M \ltimes \Gamma G)^* \subseteq M^* \ltimes \Gamma G \) is trivial, since if \((m, g) \in (M \ltimes \Gamma G)^* \) then there exists \((m', g') \) such that
\[(m, g) \ast (m', g') = (e_1, e_2) \]
so \(mm' = e_1 \) identity element of \(M \). Let us now prove \((M \ltimes \Gamma G)^* \supseteq M^* \ltimes \Gamma G \). Let \((m, g) \in M^* \ltimes \Gamma G \), then its inverse is \((m^{-1}, \Gamma_{m^{-1}}(g^{-1})) \).

We are now ready to prove the main proposition of this section as a corollary of Theorem 7.

We first observe that the set of cyclic shifts of \([k]\) is clearly isomorphic to \(C_k \), the cyclic group of order \(k \), and each cyclic shift can be identified by its action on 1.

Corollary 11.
\[\mathcal{K}_\psi(U_n^k) \cong M_{[n]} \ltimes \Gamma C_k^n \]
where \(\Gamma \) is defined by
\[\Gamma(\sigma)(\gamma) := \Gamma_\sigma(\gamma) := \gamma_\sigma := (\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}) \]
for any \(\gamma \in C_k^n \).
Proof. The reader should first observe

\[\Gamma(\gamma(1), \ldots, \gamma(n)) = (\gamma(\mu(1)), \ldots, \gamma(\mu(i)), \ldots, \gamma(\mu(n))) \]

for any \(\sigma, \mu \in M_n \). This can be easily seen by denoting \(\gamma(\sigma(i)) = g_i \). Therefore, \(\Gamma \) is an antihomomorphism, as we wanted:

\[\Gamma(\sigma \mu)(\gamma) = \gamma(\sigma \mu) = (\gamma(\sigma(1)), \ldots, \gamma(\sigma(i)), \ldots, \gamma(\sigma(n))) = \Gamma(\sigma) \circ \Gamma(\mu)(\gamma). \]

Let

\[\Delta : M_n \semidirect C_k^m \rightarrow K \psi(U_n) \]

be defined as

\[(\sigma, \gamma) \mapsto f^\gamma_{\sigma}. \]

\(\Delta \) is clearly a bijection by Theorem 7. It is also an automorphism since

\[\Delta((\sigma, \gamma) * (\sigma, \gamma))(a_{i,j}) = \Delta(\sigma \circ \gamma, \gamma)(a_{i,j}) = f_{\sigma \gamma}^{-1}(a_{i,j}) = f_{\gamma}^{-1}(a_{i,j}) = (\Delta(\sigma, \gamma) \circ \Delta(\sigma, \gamma))(a_{i,j}) \]

for all \(i \in [n] \) and all \(j \in [k] \).

4 Semigroup structure of \(T^m_q \)

Consider now \(T^m_q \) and notice that, since \(M_{q^m}(\mathcal{P}_{\varphi_q}) = L_{q^m} \) and \(K_{q^m}(\mathbb{F}_{q^m}) = C_{q^m} \), then we have

\[T^m_q = L_{q^m} \cap C_{q^m} = M_{q^m}(\mathcal{P}_{\varphi_q}) \cap K_{q^m}(\mathbb{F}_{q^m}). \tag{3} \]

Indeed the condition

\[f(S_k) \subseteq S_k \]

for each \(S_k \) in the partition induced by \(\varphi_q \) is equivalent to the subfield preserving requirement [2], being

\[S_1 = \mathbb{F}_q \quad \text{and} \quad S_k = \bigcap_{a | k, a \neq k} (\mathbb{F}_{q^k} \setminus \mathbb{F}_{q^a}) \quad \text{for} \quad k \geq 2. \]

Any element \(\alpha \) in a cycle of length \(d \) is associated to the irreducible polynomial

\[\prod_{i=0}^{d-1} (x - \alpha^{q^i}) \in \mathbb{F}_q[x], \]

so there is a bijection between the cycles of \(\varphi_q \) of length \(d \) and the monic irreducible polynomials of degree \(d \) over \(\mathbb{F}_q \), whose cardinality is

\[\pi(d) = \frac{1}{d} \sum_{j \mid d} \mu(d/j)q^j \]

with \(\mu \) being the Moeibus function. Now, write

\[\varphi_q = \prod_{k \mid m} \phi_k \]

similarly as above with \(\phi = \varphi_q \) and label the elements of the finite field as follow: \(a^{(k)}_{i,j} \) is the \(j \)-th element living in the \(i \)-th \(k \)-cycle.
Example 12. Let $F_{2^2} = F_2[\alpha]/(\alpha^2 + \alpha + 1)$ consisting of $\{0, 1, \alpha, \alpha + 1\}$. Indeed
\[\varphi_0 = \phi_1 \phi_2 = (0)(1)(\alpha, \alpha + 1) \]
and then $a_{1,1}^{(1)} = 0$, $a_{1,1}^{(2)} = 1$, $a_{1,1}^{(2)} = \alpha$ and $a_{1,2}^{(2)} = \alpha + 1$.

Theorem 13.
\[T_q^m \cong \prod_{k|m} M_{[\pi(k)]} \rtimes C^\pi(k) \]

Proof. It follows from Lemma 6 and Corollary 11 using the partition induced by the Frobenius morphism. Indeed, using equation 3 and Lemma 6 we get
\[T_q^m \cong \prod_{k \in W, \phi_k \neq (\emptyset)} K_{\phi_k}(S_k). \]

Using now Corollary 11 we get
\[T_q^m \cong \prod_{k|m} M_{[\pi(k)]} \rtimes C^\pi(k). \]

More explicitly, the action of $t \in \prod_{k|m} M_{[\pi(k)]} \rtimes C^\pi(k)$ on an element $a_{i,j}^{(k)} \in S_k \subseteq F_q^m$ is given by
\[t(a_{i,j}^{(k)}) = (\sigma^{(k)}, \gamma^{(k)})(a_{i,j}^{(k)}) = f_{\pi(k)}^{\gamma^{(k)}}(a_{i,j}^{(k)}) = a_{\pi(k)(i),\pi(k)(j)}^{(k)} \]
where $\gamma^{(k)}$ and $\sigma^{(k)}$ are the components indexed by k. \hfill \Box

Corollary 14.
\[(T_q^m)^* \cong \prod_{k|m} S_{\pi(k)} \rtimes C^\pi(k) \]
where $S_{\pi(k)}$ is the permutation group of $\pi(k)$ elements.

Proof. Observe that
\[(T_q^m)^* \cong \prod_{k|m} (M_{[\pi(k)]} \rtimes C^\pi(k))^* \]
holds trivially. Applying now Lemma 14 yields
\[(T_q^m)^* \cong \prod_{k|m} (M_{[\pi(k)]} \rtimes C^\pi(k))^* \cong \prod_{k|m} S_{\pi(k)} \rtimes C^\pi(k). \]

Corollary 15.
\[|T_q^m| = \prod_{k|m} k^{\pi(k)} \pi(k)^{\pi(k)} \]
\[|(T_q^m)^*| = \prod_{k|m} k^{\pi(k)} \pi(k)! \]
Remark 16. Corollary [14] corresponds to [11] Theorem 2] and Corollary [15] generalizes the corollary of [11] Theorem 2].

Remark 17. Let us observe that a simpler construction as a direct product for \((T_m^q)^*\) can also be seen as follows:

- First notice that any permutation polynomial over \(\mathbb{F}_q\) can be extended to a permutation polynomial over \(\mathbb{F}_{q^m}\) with coefficients in \(\mathbb{F}_q\) by simply defining it as the identity function on \(\mathbb{F}_{q^m} \setminus \mathbb{F}_q\) and Lagrange interpolating over the whole field. The produced permutation polynomial over \(\mathbb{F}_{q^m}\) has coefficients in \(\mathbb{F}_q\), since it commutes with \(\varphi_q\), which is easily checked by looking at the base field and the rest separately.

- \((T_m^q)^*\) has then a normal subgroup isomorphic to \(S_q\) consisting of \(\{ s \in T_m^q \mid s \text{ is the identity on } \mathbb{F}_{q^m} \setminus \mathbb{F}_q \}\).

- Let

\[
H_m^q := \{ h \in (T_m^q)^* \mid h \text{ is the identity on } \mathbb{F}_q \}.
\]

\(H_m^q\) is also normal in \((T_m^q)^*\).

- \(S_q \times H_m^q = (T_m^q)^*\). Indeed note first that \(H_m^q \cap S_q = 1\). Now given \(f \in (T_m^q)^*\) we have to prove that it can be written as a composition of an element of \(H_m^q\) and an element of \(S_q\). Let \(s_2 \in S_q\) such that \(s_2\) restricted to \(\mathbb{F}_q\) is \(f\). Let \(s_1(x) \in S_q\) such that \(s_1\) restricted to \(\mathbb{F}_q\) is the inverse permutation of the restriction of \(f\) to \(\mathbb{F}_q\). In other words \(f(s_1(x))\) restricted to \(\mathbb{F}_q\) is the identity. Observe then that, since \(f(s_1(x))\) has also coefficients in \(\mathbb{F}_q\), it lives in \(H_m^q\). Verify that \(s_2(f(s_1(x))) = f\). And so we have written \(f\) as a composition of an element of \(S_q\) and an element of \(H_m^q\).

5 Asymptotic density of \(T_m^q\)

Let us first compute the asymptotic density of the group of permutation polynomials described in [1] inside the whole group of permutation polynomials, and inside the monoid of the polynomial functions having coefficients in the subfield \(\mathbb{F}_q\). We will restrict to the case \(\mathbb{F}_{q^p}\), \(p\) prime.

Theorem 18. Consider an element of \(\mathbb{F}_{q}[x]/(x^{q^p} - x)\) chosen uniformly at random. The probability that this is a permutation polynomial tends to 0 as \(p\) and/or \(q\) tends to \(\infty\).

Proof. Given Corollary [15] we need to consider

\[
L := \lim_{p \vee q \to \infty} \frac{q!(p)^{\frac{q^p-q}{p} \left(\frac{q^p-q}{p}\right)!}}{q^{q^p}}.
\]

By Stirling approximation this is

\[
L = \lim_{p \vee q \to \infty} \frac{q!(p)^{\frac{q^p-q}{p} \left(\frac{q^p-q}{p}\right) \frac{2\pi q^p \sqrt{2\pi q^p}}{p}}}{q^{q^p}}.
\]
Now notice that
\[\lim_{p \vee q \to \infty} \left(\frac{q^p - q}{q^p} \right)^{q^{p-q}} = \lim_{p \vee q \to \infty} \left(1 - \frac{1}{q^{p-1}} \right)^{q^{p-1} \frac{q^{p-q}}{p}} \]

By the continuity of the exponential function, this can be written as
\[\lim_{p \vee q \to \infty} e^{\frac{q^p}{p} \ln \left(1 - \frac{1}{q^{p-1}} \right) q^{p-1} \frac{q^{p-q}}{p}} = e^{- \lim_{p \vee q \to \infty} \frac{q}{p}} \]
so that
\[L = \lim_{p \vee q \to \infty} q! e^{\frac{q}{p} \ln \left(1 - \frac{1}{q^{p-1}} \right) q^{p-1} \frac{q^{p-q}}{p}} = 0, \]
as one can easily see by exploring the cases \(q \to \infty \) with Stirling and \(q \) fixed.

By observing that \(q^p! > q^p \) definitively for large \(p \) and/or \(q \), we have also the following:

Corollary 19. Consider a permutation of the set \(\mathbb{F}_{q^m} \) chosen uniformly at random. The probability that its associated permutation polynomial has coefficients in the subfield \(\mathbb{F}_q \) tends to 0 as \(p \) and/or \(q \) tends to \(\infty \).

We are now interested in an asymptotic estimate for the density of \(T^p_q \) in \(\mathbb{F}_q[x]/(x^{q^p} - x) \) for \(p \) prime number. We will show in fact that the monoid of canonical subfield preserving polynomials has nontrivial density inside the monoid of polynomial functions having coefficients in the subfield \(\mathbb{F}_q \). Given Corollary 15, the probability that an element of \(\mathbb{F}_q[x]/(x^{q^p} - x) \) chosen uniformly at random is subfield preserving is
\[\frac{|T^p_q|}{q^{q^p}} = q^q (q^p - q) \frac{q^{p-q}}{q^{q^p}}. \]

Theorem 20. Consider an element of \(\mathbb{F}_q[x]/(x^{q^p} - x) \) chosen uniformly at random. The probability that this is subfield preserving tends to \(e^{- \lim_{p \vee q \to \infty} \frac{q}{p}} \) as \(p \) and/or \(q \) tends to \(\infty \).

Proof. We need to consider
\[\ell := \lim_{p \vee q \to \infty} q^q \frac{(p^q - q) \frac{p}{q}}{q^{q^p}}. \]

With similar arguments as in Theorem 18, this transforms to
\[\ell = \lim_{p \vee q \to \infty} q^q \left(\frac{p^q - q}{q^{q^p}} \right) e^{- \lim_{p \vee q \to \infty} \frac{q}{p}} = e^{- \lim_{p \vee q \to \infty} \frac{q}{p}} \]
\[\square \]
Corollary 21.

- \(\lim_{p \to \infty} \frac{|T_p|}{q} = 1 \), if \(q \) is fixed.
- \(\lim_{q \to \infty} \frac{|T_p|}{q} = 0 \), if \(p \) is fixed.

Corollary 22. Let \(q = p \).

- \(\lim_{p \to \infty} \frac{|T_p|}{p^p} = 1/e \)

Remark 23. Clearly all the limits above are computed for \(p \) and \(q \) running over the natural numbers, but they hold in particular for the subsequences of increasing primes \(p \) and possible orders of finite fields \(q \).

6 Example

Let us consider the structure of \(T_2^2 \) as an example. Let \(\alpha \) be a root of \(x^2 + x + 1 = 0 \), so that \(\mathbb{F}_{2^2} = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1) \). It is easy to check that for each polynomial \(f \in L \) with

\[L := \{ 0, 1, x^2 + x, x^2 + x + 1, x^3 + x^2 + x, x^3 + x^2 + x + 1 \} \]

we have \(f(\alpha) \in \mathbb{F}_2 \). We know that \(T_2^2 \) contains 8 polynomials, so that

\[T_2^2 = \frac{\mathbb{F}_2[x]}{(x^4 - x)} \setminus L = \{ x, x + 1, x^2, x^2 + 1, x^3 + x^2 + 1, x^3 + x^2 + x + 1 \} \]

The structure is \(C_2 \times M_2 \).

Indeed \(C_2^2 \times M_2 = M_2 \) and consists of

\[\{ x, x^2 + 1, x^3 + x^2, x^3 + x + 1 \} \]

that is those functions which fix \(\mathbb{F}_4 \setminus \mathbb{F}_2 \) and act as \(M_2 \) on \(\mathbb{F}_2 \).

Also \(C_2 \times M_1 = C_2 \) and consists of

\[\{ x, x^2 \} \]

that is those functions which fix \(\mathbb{F}_2 \) and act as \(C_2 \) on \(\mathbb{F}_4 \setminus \mathbb{F}_2 \). This is also \(H_2^2 \).

7 Conclusions

The set of canonical subfield preserving polynomials has been studied and a monoid structure has been provided via combinatorial arguments (Section 3 and 4). The density of this set has been addressed yielding curious results at least for the case of prime degree extension (Section 5). A simple example has also been given (Section 6).
References

[1] L. Carlitz, D.R. Hayes, Permutations with coefficients in a subfield. *Acta Arithmetica*, 21, 1972, pp.131-135.

[2] Z. Chen, Permutation-type formulas of Frobenius map and their applications, *Ars Combinatoria*, 39, 1995, pp.175-181.

[3] R. Lidl, H. Niederreiter, *Finite Fields*, Cambridge University Press, 1997.