Research Article

Dynamical Behavior in a Four-Dimensional Neural Network Model with Delay

Changjin Xu1 and Peiluan Li2

1 Guizhou Key Laboratory of Economics System Simulation, School of Mathematics and Statistics, Guizhou College of Finance and Economics, Guiyang 550004, China
2 Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, China

Correspondence should be addressed to Changjin Xu, xcj403@126.com

Received 9 October 2011; Revised 29 November 2011; Accepted 30 November 2011

Abstract

A four-dimensional neural network model with delay is investigated. With the help of the theory of delay differential equation and Hopf bifurcation, the conditions of the equilibrium undergoing Hopf bifurcation are worked out by choosing the delay as parameter. Applying the normal form theory and the center manifold argument, we derive the explicit formulae for determining the properties of the bifurcating periodic solutions. Numerical simulations are performed to illustrate the analytical results.

1. Introduction

The interest in the periodic orbits of a delay neural networks has increased strongly in recent years and substantial efforts have been made in neural network models, for example, Wei and Zhang [1] studied the stability and bifurcation of a class of n-dimensional neural networks with delays, Guo and Huang [2] investigated the Hopf bifurcation behavior of a ring of neurons with delays, Yan [3] discussed the stability and bifurcation of a delayed trineuron network model, Hajihosseini et al. [4] made a discussion on the Hopf bifurcation of a delayed recurrent neural network in the frequency domain, and Liao et al. [5] did a theoretical and empirical investigation of a two-neuron system with distributed delays in the frequency domain. For more information, one can see [6–23]. In 1986 and 1987, Babcock and Westervelt [24, 25] had analyzed the stability and dynamics of the following simple neural network model of two neurons with inertial coupling:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_3, \\
\frac{dx_2}{dt} &= x_4, \\
\frac{dx_3}{dt} &= -2\xi x_3 - x_1 + A_2 \tanh(x_2), \\
\frac{dx_4}{dt} &= -2\xi x_4 - x_2 + A_1 \tanh(x_1).
\end{align*}
\]

(1)

where \(x_i (i = 1, 2)\) denotes the input voltage of the \(i\)th neuron, \(x_j (j = 3, 4)\) is the output of the \(j\)th neuron, \(\xi > 0\) is the damping factor and \(A_i (i = 1, 2)\) is the overall gain of the neuron which determines the strength of the nonlinearity. For a more detailed interpretation of the parameters, one can see [24, 25]. In 1997, Lin and Li [26] made a detailed investigation on the bifurcation direction of periodic solution for system (1).

Considering that there exists a time delay (we assume that it is \(\tau\)) in the response of the output voltages to changes in the input, then system (1) can be revised as follows:

\[
\begin{align*}
\frac{dx_1}{dt} &= x_3, \\
\frac{dx_2}{dt} &= x_4, \\
\frac{dx_3}{dt} &= -2\xi x_3 - x_1 + A_2 \tanh(x_2(t - \tau)), \\
\frac{dx_4}{dt} &= -2\xi x_4 - x_2 + A_1 \tanh(x_1(t - \tau)).
\end{align*}
\]

(2)
As is known to us that the research on the Hopf bifurcation, especially on the stability of bifurcating periodic solutions and direction of Hopf bifurcation is very critical. When delays are incorporated into the network models, stability, and Hopf bifurcation analysis become much complex. To obtain a deep and clear understanding of dynamics of neural network model with delays, we will make a investigation on system (2), that is, we study the stability, the local Hopf bifurcation for system (2).

The remainder of the paper is organized as follows. In Section 2, local stability for the equilibrium state of system (2) is discussed. We investigate the existence of the Hopf bifurcations for system (2) choosing time delay as the bifurcation parameter. In Section 3, the direction and stability of the local Hopf bifurcation are analyzed by using the normal form theory and the center manifold theorem by Hassard et al. [27]. In Section 4, numerical simulations for justifying the theoretical results are illustrated.

2. Stability of the Equilibrium and Local Hopf Bifurcations

The object of this section is to investigate the stability of the equilibrium and the existence of local Hopf bifurcations for system (2). It is easy to see that if the following condition:

\((H1) \, A_1A_2 < 1 \)

holds, then (2) has a unique equilibrium \(E(0,0,0,0) \). To investigate the local stability of the equilibrium state we linearize system (2). We expand it in a Taylor series around the origin and neglect the terms of higher order than the first order. The linearization of (2) near \(E(0,0,0,0) \) can be expressed as:

\[
\begin{align*}
\frac{dx_1}{dt} & = x_3, \\
\frac{dx_2}{dt} & = x_4, \\
\frac{dx_3}{dt} & = -x_1 - 2\xi x_3 + A_2x_2(t-\tau), \\
\frac{dx_4}{dt} & = -x_2 - 2\xi x_4 + A_1x_1(t-\tau),
\end{align*}
\]

whose characteristic equation has the form

\[
\det\begin{pmatrix}
\lambda & 0 & -1 & 0 \\
0 & \lambda & 0 & -1 \\
1 & -A_2e^{-\xi\tau} & \lambda + 2\xi & 0 \\
-A_1e^{-\xi\tau} & 1 & 0 & \lambda + 2\xi
\end{pmatrix} = 0,
\]

namely,

\[
\lambda^4 + 4\xi\lambda^3 + (4\xi^2 + 2)\lambda^2 + 4\xi\lambda + 1 - A_1A_2e^{-2\xi\tau} = 0.
\]

In order to investigate the distribution of roots of the transcendental equation (5), the following Lemma is necessary.

Lemma 1 (see [28]). For the transcendental equation:

\[
P(\lambda, e^{-\lambda\tau}, \ldots, e^{-\lambda m}) = \lambda^n + p_1^{(0)}\lambda^{n-1} + \cdots + p_n^{(0)} + p_1^{(1)}\lambda + p_n^{(1)} + \cdots
\]

\[
+ \left[p_1^{(1)}\lambda^{n-1} + \cdots + p_n^{(1)} + p_1^{(2)}\lambda + p_n^{(2)} + \cdots \right] e^{-\lambda_1\tau} + \cdots
\]

\[
+ \left[p_1^{(m)}\lambda^{n-1} + \cdots + p_n^{(m)} + p_1^{(m+1)}\lambda + p_n^{(m+1)} \right] e^{-\lambda_m\tau} = 0,
\]

as \((\tau_1, \tau_2, \tau_3, \ldots, \tau_m)\) vary, the sum of orders of the zeros of \(P(\lambda, e^{-\lambda\tau}, \ldots, e^{-\lambda m})\) in the open right half plane can change, and only a zero appears on or crosses the imaginary axis.

For \(\tau = 0, \lambda^4 + 4\xi\lambda^3 + (4\xi^2 + 2)\lambda^2 + 4\xi\lambda + 1 - A_1A_2 = 0.\)

In view of the Routh–Hurwitz criteria, we know that all roots of (7) have a negative real part if the following condition:

\[(H2) \, 4\xi^2 + A_1A_2 > 0\]

is satisfied.

For \(\omega > 0, i\omega\) is a root of (5) if and only if

\[
\omega^4 - 4\xi\omega^2i - (4\xi^2 + 2)\omega^2 + 4\xi\omegai + 1 - A_1A_2(\cos 2\omega\tau - i\sin 2\omega\tau) = 0.
\]

Separating the real and imaginary parts gives

\[
A_1A_2 \cos 2\omega\tau = \omega^4 - (4\xi^2 + 2)\omega^2 + 1,
\]

\[
A_1A_2 \sin 2\omega\tau = 4\xi\omega^2 - 4\xi\omega.
\]

It follows from (9) that

\[
\left[\omega^4 - (4\xi^2 + 2)\omega^2 + 1 \right]^2 + [4\xi\omega^2 - 4\xi\omega]^2 = A_1^2A_2^2,
\]

which is equivalent to

\[
\omega^8 + m_1\omega^6 + m_2\omega^4 + m_3\omega^2 + m_5 = 0,
\]

where

\[
m_1 = -4(2\xi^2 + 1), \quad m_2 = 16\xi^4 + 32\xi^2 + 6,
\]

\[
m_3 = -32\xi^2, \quad m_4 = 8\xi^2 - 4, \quad m_5 = 1 - A_1^2A_2^2.
\]

Without loss of generality, we assume that (11) has eight positive roots, denoted by \(\omega_k(k = 1,2,3,\ldots,8)\). Then by (9), we derive

\[
\tau_k^{(j)} = \frac{1}{2\omega_k} \left\{ \arccos \left[\frac{\omega^4 - (4\xi^2 + 2)\omega^2 + 1}{A_1A_2} \right] + 2j\pi \right\},
\]

where \(k = 1,2,3,\ldots,8; \quad j = 0,1,\ldots\), then \(\pm i\omega_k\) are a pair of purely imaginary roots of (5) when \(\tau = \tau_k^{(j)}\). Define

\[
\tau_0 = \tau_k^{(0)} = \min_{k\in\{1,2,3,\ldots,8\}} \{ \tau_k^{(0)} \}.
\]

The above analysis leads to the Lemma as follows.
Lemma 2. If (H1) and (H2) hold, then all roots of (5) have a negative real part when \(\tau \in [0, \tau_0) \) and (5) admits a pair of purely imaginary roots \(\pm \omega_k \) when \(\tau = \tau_k^{(j)}(k = 1, 2, 3, \ldots; j = 0, 1, 2, \ldots) \).

Let \(\lambda(\tau) = \alpha(\tau) + i \omega(\tau) \) be a root of (5) near \(\tau = \tau_k^{(j)} \), and \(\alpha(\tau_k^{(j)}) = 0 \), and \(\omega(\tau_k^{(j)}) = \omega_k \). Due to functional differential equation theory, for every \(\tau_k^{(j)} \), \(k = 1, 2, \ldots, 8; j = 0, 1, 2, \ldots \), there exists \(\epsilon > 0 \) such that \(\lambda(\tau) \) is continuously differentiable in \(\tau \) for \(|\tau - \tau_k^{(j)}| < \epsilon \). Substituting \(\lambda(\tau) \) into the left hand side of (5) and taking derivative with respect to \(\tau \), we have

\[
\left[\frac{d\lambda}{d\tau} \right]^{-1} = \frac{2\lambda^3 + 6\xi_2 \lambda + 2(2\xi_1 + 1)\lambda + 2\xi_2}{\lambda A_1 A_2 e^{-2\lambda \tau}} - \frac{\tau}{\lambda},
\]

Then

\[
\left[\frac{d(Re(\lambda(\tau)))}{d\tau} \right]^{-1} \bigg|_{\tau = \tau_k^{(j)}} = Re\left\{ \frac{2\lambda^3 + 6\xi_2 \lambda + 2(2\xi_1 + 1)\lambda + 2\xi_2}{\lambda A_1 A_2 e^{-2\lambda \tau}} \right\} \bigg|_{\tau = \tau_k^{(j)}}
\]

\[
= Re\left\{ \frac{2\xi_1 - 6\xi_2 \omega_k^3 + (4\xi_2^2 \omega_k + 2\omega_k - 2\xi_2) i}{\lambda A_1 A_2 \omega_k \sin 2\omega_k \tau_k^{(j)} + i A_1 A_2 \omega_k \cos 2\omega_k \tau_k^{(j)}} \right\}
\]

\[
= \frac{1}{A_1 A_2 \omega_k} \left\{ \left(2\xi_1 - 6\xi_2 \omega_k^3 \right) A_1 A_2 \omega_k \sin 2\omega_k \tau_k^{(j)} - \left(4\xi_2^2 \omega_k + 2\omega_k - 2\xi_2 \right) A_1 A_2 \omega_k \cos 2\omega_k \tau_k^{(j)} \right\}
\]

\[
= \frac{1}{A_1 A_2 \omega_k} \left\{ \left(2\xi_1 - 6\xi_2 \omega_k^3 \right) \omega_k \left(4\xi_2^2 \omega_k - 4\xi_2 \omega_k \right) - \left(4\xi_2^2 \omega_k + 2\omega_k - 2\xi_2 \right) \omega_k \times \left[\omega_k^3 - (4\xi_2^2 + 2) \omega_k^2 + 1 \right] \right\}
\]

\[
= \frac{2\Lambda}{A_1 A_2},
\]

where

\[
\Lambda = 4\omega_k^6 - 3(2\xi_1 + 1)\omega_k^2 - 12\xi_2 \omega_k^4 + (8\xi_1^2 + 8\xi_2^2 + 12\xi_2 + 3) \omega_k^2 + 4\xi_2^2 \omega_k - (6\xi_2^2 + 1).
\]

We assume that the following condition holds:

(H3) \(\Lambda \neq 0 \).

According to above analysis and the results of Kuang [29] and Hale [30], we have the following theorem.

Theorem 3. If (H1) and (H2) hold, then the equilibrium \(E(0, 0, 0, 0) \) of system (2) is asymptotically stable for \(\tau \in [0, \tau_0) \). Under the conditions (H1) and (H2), if the condition (H3) holds, then system (2) undergoes a Hopf bifurcation at the equilibrium \(E(0, 0, 0, 0) \) when \(\tau = \tau_k^{(j)} \), \(k = 1, 2, 3, \ldots; j = 0, 1, 2, \ldots \).

3. Direction and Stability of the Hopf Bifurcation

In this section, we discuss the direction, stability and the period of the bifurcating periodic solutions. The used methods are based on the normal form theory and the center manifold theorem introduced by Hassard et al. [27]. From the previous section, we know that if \(\tau = \tau_k^{(j)} \), \(k = 1, 2, 3, \ldots; j = 0, 1, 2, \ldots \) any root of (5) of the form \(\lambda(\tau) = \alpha(\tau) + i \omega(\tau) \) satisfies \(\alpha(\tau_k^{(j)}) = 0 \), \(\omega(\tau_k^{(j)}) = \omega_k \) and \(d\omega(\tau)/d\tau \bigg|_{\tau = \tau_k^{(j)}} \neq 0 \).

For convenience, let \(E(\tau) = \xi(\tau \xi(t) \in \{1, 2, 3, 4\} \) and \(\tau = \tau_k^{(j)} + \mu \), where \(\tau_k^{(j)} \) is defined by (13) and \(\mu \in \mathbb{R} \), drop the bar for the simplification of notations, then system (3) can be written as an FDE in \(C = \{1, 0, R^4 \} \) as

\[
\dot{u}(t) = L \mu(u(t) + F(u(t)),
\]

where \(u(t) = \{x_1(t), x_2(t), x_3(t), x_4(t) \}^T \in C \) and \(\mu \in \mathbb{R} \). From the discussion in Section 2, we know that if \(\mu = 0 \), then system (18) undergoes a Hopf Bifurcation at the equilibrium \(E(0, 0, 0, 0) \) and the associated characteristic equation of system (18) has a pair of simple imaginary roots \(\pm \omega_k \tau_k^{(j)} \).

By the representation theorem, there is a matrix function with bounded variation components \(\eta(\theta, \mu) \), \(\theta \in [-1, 0] \) such that

\[
L \mu \phi = \int_{-1}^{0} d\eta(\theta, \mu) \phi(\theta) \quad \text{for} \quad \phi \in \mathbb{C}.
\]
Figure 1: Continued.
Figure 1: Continued.
In fact, we can choose

$$\eta(\theta, \mu) = \frac{1}{\tau_k} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -2\xi & 0 \\ 0 & -1 & 0 & -2\xi \end{pmatrix} \delta(\theta)$$

(21)

where δ is the Dirac delta function.

For $\phi \in C([-1, 0], R^4)$, define

$$A(\mu)\phi = \begin{cases} \frac{d\phi}{d\theta}, & -1 \leq \theta < 0, \\ \int_0^\theta d\eta(s, \mu)\phi(s), & \theta = 0, \\ 0, & 0 \leq \theta < 0, \\ f(\mu, \phi), & \theta = 0. \end{cases}$$

(22)

Then (18) is equivalent to the abstract differential equation

$$u_t = A(\mu)u_t + R(\mu)u_t,$$

(23)

where $u_t(\theta) = u(t+\theta)$, $\theta \in [-1, 0]$. For $\psi \in C([-1, 0], (R^4)^*)$, define

$$A^*\psi(s) = \begin{cases} -\frac{d\psi}{ds}, & s \in (0, 1], \\ \int_0^s d\eta(t, 0)\psi(-t), & s = 0. \end{cases}$$

(24)

For $\phi \in C([-1, 0], R^4)$ and $\psi \in C([-1, 0], (R^4)^*)$, define the bilinear form

$$\langle \psi, \phi \rangle = \overline{\psi}(0)\phi(0) - \int_{-1}^0 \int_{\xi=0}^\theta \psi^T(\xi - \theta) d\eta(\theta)\phi(\xi) d\xi,$$

(25)

where $\eta(\theta) = \eta(\theta, 0)$, the $A = A(0)$ and A^* are adjoint operators. By the discussions in Section 2, we know that $\pm i\omega_k\tau_k^{(j)}$ are eigenvalues of $A(0)$, and they are also eigenvalues of A^* corresponding to $i\omega_k\tau_k^{(j)}$ and $-i\omega_k\tau_k^{(j)}$ respectively. By direct computation, we can obtain

$$q(\theta) = (1,\alpha,\beta,\gamma)^T e^{i\omega_k\tau_k^{(j)}},$$

$$q^*(s) = D(1,\alpha^*,\beta^*,\gamma^*) e^{i\omega_k\tau_k^{(j)}},$$

(26)

where

$$\alpha = \frac{1 - \omega_k^2 + 2\xi \omega_k i}{A_2 e^{-i\omega_k\tau_k^{(j)}}}, \quad \beta = i\omega_k,$$

$$\gamma = \frac{\omega_k(1 - \omega_k^2 + 2\xi \omega_k i)}{A_2 e^{-i\omega_k\tau_k^{(j)}}}, \quad \alpha^* = \frac{1 - \omega_k^2 - 2\xi \omega_k i}{A_1 e^{i\omega_k\tau_k^{(j)}}},$$

$$\beta^* = \frac{1}{2\xi - i\omega_k}, \quad \gamma^* = \frac{1 - \omega_k^2 - 2\xi \omega_k i}{A_1 e^{i\omega_k\tau_k^{(j)}}(2\xi - i\omega_k)},$$

$$D = \frac{1}{1 + \overline{\alpha}\alpha^* + \overline{\beta}\beta^* + \overline{\gamma}\gamma^* + \tau_k^{(j)}(A_1\gamma^* + A_2\beta^*\overline{\alpha}) e^{i\omega_k\tau_k^{(j)}}}.$$

(27)

Furthermore, $\langle q^*(s), q(\theta) \rangle = 1$ and $\langle q^*(s), \overline{q}(\theta) \rangle = 0$.

Next, we use the same notations as those in Hassard et al. [27] and we first compute the coordinates to describe the center manifold C_0 at $\mu = 0$. Let u_t be the solution of (18) when $\mu = 0$.

Define

$$z(t) = (q^*, u_t), \quad W(t, \theta) = u_t(\theta) - 2\text{Re}\{z(t)q(\theta)\},$$

(28)

on the center manifold C_0, and we have

$$W(t, \theta) = W(z(t), \overline{z}(t), \theta),$$

(29)
Figure 2: Continued.
Figure 2: Continued.
where

\[W(z(t), \bar{z}(t), \theta) = W(z, \bar{z}) = W_0 z^2 + W_{11} z \bar{z} + W_{02} \bar{z}^2 + \cdots, \]

and \(z \) and \(\bar{z} \) are local coordinates for center manifold \(C_0 \) in the direction of \(q^* \) and \(\bar{q}^* \). Noting that \(W \) is real, we consider only real solutions. For solutions \(u_t \in C_0 \) of (18),

\[z(t) = i \omega_k r_k^{(j)} z + \bar{q}^*(\theta) f(0, W(z, \bar{z}, \theta) + 2 \text{Re} \{zq(\theta)\}) \]

\[= i \omega_k r_k^{(j)} z + \bar{q}^*(0) f_0. \]

That is,

\[\dot{z}(t) = i \omega_k r_k^{(j)} z + g(z, \bar{z}), \]

where

\[g(z, \bar{z}) = g_{20} z^2 + g_{11} z \bar{z} + g_{02} \bar{z}^2 + g_{21} z^2 \bar{z} + \cdots. \]

Hence we have

\[g(z, \bar{z}) = \bar{q}^*(0) f_0(z, \bar{z}) = \bar{q}^*(0) f(0, u_t) \]

\[= \tau_k^{(j)} D \left(1, \alpha^*, \beta^*, \gamma^* \right) \begin{pmatrix} 0 \\ 0 \\ A_2 x_2^3(-1) + \text{h.o.t.} \\ A_1 x_1^3(-1) + \text{h.o.t.} \end{pmatrix} \]

\[= D r_k^{(j)} \left[3 \beta^* e^{-i \omega_k t_i^{(j)}} + 3 \gamma^* \alpha^2 \bar{q} e^{-2i \omega_k t_i^{(j)}} \right] z^2 \bar{z} + \text{h.o.t.} \]

and we obtain

\[g_{20} = \bar{g}_{11} = \bar{g}_{02} = 0, \]

\[g_{21} = 2D r_k^{(j)} \left[3 \beta^* e^{-i \omega_k t_i^{(j)}} + 3 \gamma^* \alpha^2 \bar{q} e^{-2i \omega_k t_i^{(j)}} \right]. \]

Therefore, we can compute the following values:

\[c_1(0) = \frac{i}{2 \omega_k r_k^{(j)}} \left(g_{20} \bar{g}_{11} - 2 \left| g_{11} \right|^2 - \frac{|g_{02}|^2}{3} \right) + \frac{g_{21}}{2}, \]

\[\mu_2 = - \frac{\text{Re} \{c_1(0)\}}{\text{Re} \{\lambda' (T_k^{(j)})\}}, \]

\[\beta_2 = 2 \text{Re} \{c_1(0)\}, \]

\[T_2 = - \frac{\text{Im} \{c_1(0)\} + \mu_2 \text{Im} \{\lambda' (T_k^{(j)})\}}{\omega_k r_k^{(j)}}, \]

which determine the quantities of bifurcation periodic solutions on the center manifold at the critical value \(T_{k_j}^{(j)} \) (\(k = 1, 2, 3, \ldots, 8; \ j = 0, 1, 2, 3, \ldots, \)), \(\mu_2 \) determines the direction of the Hopf bifurcation: If \(\mu_2 > 0 (\mu_2 < 0), \) then the Hopf bifurcation is supercritical (subcritical); \(\beta_2 \) determines the stability of the bifurcating periodic solutions: the periodic solutions are stable (unstable) if \(\beta_2 < 0 (\beta_2 > 0); \) and \(T_2 \) determines the period of the bifurcating periodic solutions: the period is increases (decreases) if \(T_2 > 0 (T_2 < 0). \)

4. Numerical Examples

To illustrate the analytical results found, let \(\xi = 0.1, A_1 = 0.4, A_2 = 0.2, \) then system (2) becomes

\[\frac{dx_1}{dt} = x_3, \]

\[\frac{dx_2}{dt} = x_4, \]

\[\frac{dx_3}{dt} = -0.2x_3 - x_1 + 0.2 \tanh(x_2(t - \tau)), \]

\[\frac{dx_4}{dt} = -0.2x_4 - x_2 + 0.4 \tanh(x_1(t - \tau)), \]

which has a unique equilibrium \(E_0(0, 0, 0, 0) \) and satisfies the conditions indicated in Theorem 3. The equilibrium \(E_0(0, 0, 0, 0) \) is asymptotically stable for \(\tau = 0. \) For \(j = 0, \)
using the software Matlab, we derive \(\omega_0 \approx 3.4233, \tau_0 \approx 0.9, \lambda_1(\tau_0) \approx 0.2556 - 2.3588i, g_{31} \approx -0.2409 - 3.7451i. \) Thus by the algorithm (36) derived in Section 3, we get \(c_1(0) \approx -0.1205 - 1.8726i, \mu_2 \approx -0.4714, \beta_2 \approx -0.2410, \gamma_9 \approx 0.9687. \) Thus the equilibrium \(E_0(0, 0, 0, 0) \) is stable when \(\tau < \tau_0 \approx 0.9. \) When \(\tau \) passes through the critical value \(\tau_0 \approx 0.9, \) the equilibrium \(E_0(0, 0, 0, 0) \) loses its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate from the equilibrium \(E_0(0, 0, 0, 0). \) Since \(\mu_2 > 0 \) and \(\beta_2 < 0, \) the direction of the Hopf bifurcation is \(\tau > \tau_0 \approx 0.9, \) and these bifurcating periodic solutions from \(E_0(0, 0, 0, 0) \) at \(\tau_0 \approx 0.9 \) are stable. Figures 1(a)–1(j) suggest that Hopf bifurcation occurs from the equilibrium \(E_0(0, 0, 0, 0) \) when \(\tau = 1.5 > \tau_0 \approx 0.9. \)

Acknowledgments

This work is supported by National Natural Science Foundation of China (no. 60902044), the Doctoral Foundation of Guizhou College of Finance and Economics (2010), and the Science and Technology Program of Hunan Province (no. 2010FJ6021).

References

[1] J. Wei and C. Zhang, “Bifurcation analysis of a class of neural networks with delays,” *Nonlinear Analysis: Real World Applications*, vol. 9, no. 5, pp. 2234–2252, 2008.

[2] S. Guo and L. Huang, “Hopf bifurcating periodic orbits in a ring of neurons with delays,” *Physica D*, vol. 183, no. 1-2, pp. 19–44, 2003.

[3] X. P. Yan, “Hopf bifurcation and stability for a delayed tri-neuron network model,” *Journal of Computational and Applied Mathematics*, vol. 196, no. 2, pp. 579–595, 2006.

[4] A. Hajishosseini, G. R. Rokni Lamooki, B. Beheshiti, and F. Maleki, “The Hopf bifurcation analysis on a time-delayed recurrent neural network in the frequency domain,” *Neurocomputing*, vol. 73, no. 4–6, pp. 991–1005, 2010.

[5] X. Liao, S. Li, and G. Chen, “Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain,” *Neural Networks*, vol. 17, no. 4, pp. 545–561, 2004.

[6] B. Zheng, Y. Zhang, and C. Zhang, “Global existence of periodic solutions on a simplified BAM neural network model with delays,” *Chaos, Solitons and Fractals*, vol. 37, no. 5, pp. 1397–1408, 2008.

[7] S. Guo, X. Tang, and L. Huang, “Stability and bifurcation in a discrete system of two neurons with delays,” *Nonlinear Analysis: Real World Applications*, vol. 9, no. 4, pp. 1323–1335, 2008.

[8] S. Guo, “Equi-invariant Hopf bifurcation for functional differential equations of mixed type,” *Applied Mathematics Letters*, vol. 24, no. 5, pp. 724–730, 2011.

[9] J. Wei and C. Zhang, “Bifurcation analysis of a class of neural networks with delays,” *Nonlinear Analysis: Real World Applications*, vol. 9, no. 5, pp. 2234–2252, 2008.

[10] J. Wei and M. Y. Li, “Global existence of periodic solutions in a tri-neuron network model with delays,” *Physica D*, vol. 198, no. 1-2, pp. 106–119, 2004.

[11] S. Li, X. Liao, C. Li, and K. W. Wong, “Hopf bifurcation of a two-neuron network with different discrete time delays,” *International Journal of Bifurcation and Chaos*, vol. 15, no. 5, pp. 1589–1601, 2005.

[12] W. Yu and J. Cao, “Stability and hopf bifurcation on a two-neuron system with time delay in the frequency domain,” *International Journal of Bifurcation and Chaos*, vol. 17, no. 4, pp. 1355–1366, 2007.

[13] Y. Song, M. Han, and J. Wei, “Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays,” *Physica D*, vol. 200, no. 3–4, pp. 185–205, 2005.

[14] C. Zhang, B. Zheng, and L. Wang, “Multiple Hopf bifurcations of symmetric BAM neural network model with delay,” *Applied Mathematics Letters*, vol. 22, no. 4, pp. 616–622, 2009.

[15] H. Zhao and L. Wang, “Hopf bifurcation in Cohen-Grossberg neural network with distributed delays,” *Nonlinear Analysis: Real World Applications*, vol. 8, no. 1, pp. 73–89, 2007.

[16] C. Xu, X. Tang, and M. Liao, “Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays,” *Neural Networks*, vol. 23, no. 7, pp. 872–880, 2010.

[17] C. Xu, X. Tang, and M. Liao, “Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays,” *Neurocomputing*, vol. 74, no. 5, pp. 689–707, 2011.

[18] W. Yu and J. Cao, “Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays,” *Physics Letters A*, vol. 351, no. 1-2, pp. 64–78, 2006.

[19] P. D. Gupta, N. C. Majee, and A. B. Roy, “Stability, bifurcation and global existence of a Hopf-bifurcating periodic solution for a class of three-neuron delayed network models,” *Nonlinear Analysis: Theory, Methods and Applications*, vol. 67, no. 10, pp. 2934–2945, 2007.

[20] R. Curtu, “Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network,” *Physica D*, vol. 239, no. 9, pp. 504–514, 2010.

[21] H. Zhao, L. Wang, and C. Ma, “Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay,” *Nonlinear Analysis: Real World Applications*, vol. 9, no. 1, pp. 103–113, 2008.

[22] S. A. Campbell, S. Ruan, and J. Wei, “Qualitative analysis of a neural network model with multiple time delays,” *International Journal of Bifurcation and Chaos*, vol. 9, no. 8, pp. 1585–1595, 1999.

[23] L. Olien and J. Bélair, “Bifurcations, stability, and monotonicity properties of a delayed neural network model,” *Physica D*, vol. 102, no. 3-4, pp. 349–363, 1997.

[24] K. L. Babcock and R. M. Westervelt, “Dynamics of simple electronic neural networks,” *Physica D*, vol. 28, no. 3, pp. 305–316, 1987.

[25] K. L. Babcock and R. M. Westervelt, “Stability and dynamics of simple electronic neural networks with added inertia,” *Physica D*, vol. 23, no. 1–3, pp. 464–469, 1986.

[26] Y. P. Lin and J. B. Li, “The Hopf bifurcation direction of a four dimensional electronic neural network system,” *System Science and Mathematical Sciences*, vol. 10, no. 4, pp. 337–343, 1997.

[27] B. Hassard, D. Kazarino, and Y. Wan, *Theory and Applications of Hopf Bifurcation*, Cambridge University Press, Cambridge, UK, 1981.

[28] S. Ruan and J. Wei, “On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,” *Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis*, vol. 10, no. 6, pp. 863–874, 2003.
[29] Y. Kuang, *Delay Differential Equations With Applications in Population Dynamics*, Academic Press, New York, NY, USA, 1993.

[30] J. Hale, *Theory of Functional Differential Equation*, Springer, New York, NY, USA, 1977.
Submit your manuscripts at http://www.hindawi.com