Spin-1 $J_1 - J_2 - J_3$ ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice: A bosonic approach

D. C. Carvalho1, A. S. T. Pires1, L. A. S. Mól1

1Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, C.P. 702, 30123-970 Belo Horizonte, MG - Brazil.

Abstract

We examine the phase diagram of the spin-1 $J_1 - J_2 - J_3$ ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice, in which J_1 is the ferromagnetic exchange interaction between nearest neighbors, J_2 is the antiferromagnetic exchange interaction between next-nearest neighbors and J_3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. Using the bond-operator formalism, we investigate the phase transitions between the disordered paramagnetic phase and the ordered ones. We show that the nature of the quantum phase transitions change as the frustration parameters $(\frac{J_1}{J_2}, \frac{J_1}{J_3})$ are varied. The zero-temperature phase diagram exhibits second- and first-order transitions, depending on the energy gap behavior. Remarkably, we find a disordered nonmagnetic phase, even in the absence of a crystal field, which is suggested to be a quantum spin liquid candidate. We also depict the phase diagram at finite temperature for some values of crystal field and frustration parameters.

Keywords: Quantum phase transition; bond-operator formalism; quantum spin liquid; frustrated Heisenberg model; single-ion anisotropy.

1. Introduction

The investigation of frustrated quantum spin models has attracted a lot of attention since Anderson proposed theoretically the existence of a non-magnetic ground state in a triangular lattice \cite{1}. Such a disordered state is known as a quantum spin liquid. From a theoretical point of view, the association between frustration and quantum fluctuations are believed to give rise to this novel quantum phase \cite{2}. While quantum fluctuations are introduced by the non-commutativity of quantum mechanics spin operators, frustration arises either from competition between different interactions, e.g. ferromagnetic and antiferromagnetic couplings \cite{3, 4}, or from geometry of the lattice, e.g. spins that interact via antiferromagnetic coupling on several lattices \cite{5, 6}.

As a result, spin models that have both strong quantum fluctuations and frustration are candidates to exhibit quantum spin liquid phase. In fact, most of theoretical researches have been concentrated on spin-1/2 models in one- and two-dimensional lattices, since, in these cases, quantum fluctuations are enhanced (see, for example, Refs. \cite{7, 8, 9}). However, three-dimensional compounds have recently been suggested to present a quantum spin liquid phase \cite{10, 11, 12}, which turns our attention to the theoretical investigation of three-dimensional models.

In this paper, we study the phase diagram of spin-1 $J_1 - J_2 - J_3$ ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice, which is defined by the following Hamiltonian

$$
\mathcal{H} = -\frac{J_1}{2} \sum_{\vec{r}, \vec{\delta}_1} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}+\vec{\delta}_1} + \frac{J_2}{2} \sum_{\vec{r}, \vec{\delta}_2} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}+\vec{\delta}_2} + \frac{J_3}{2} \sum_{\vec{r}, \vec{\delta}_3} \vec{S}_{\vec{r}} \cdot \vec{S}_{\vec{r}+\vec{\delta}_3} + D \sum_{\vec{r}} (S_{\vec{r}}^z)^2, \quad (1)
$$

where $\sum_{\vec{r}, \vec{\delta}_i}$ sums over the first neighbors for $i = 1$, over the second neighbors for $i = 2$, and over the third neighbors for $i = 3$. J_1 is the ferromagnetic exchange interaction between nearest neighbors, J_2 is the antiferromagnetic exchange interaction between next-nearest neighbors and J_3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. The last sum is over the total number of sites on the cubic lattice, N, and $D > 0$ is the easy-plane crystal field that gives rise to a single-ion anisotropy. $\vec{S}_{\vec{r}}$ is the spin operator at site \vec{r} with $S_{\vec{r}}^z$ taking the eigenvalues $-1, 0, 1$.

To the best of our knowledge, the above Hamiltonian has not been examined yet. Only its counterpart model with all antiferromagnetic couplings (J_1, J_2, J_3) has been treated in Ref. \cite{13}, which is less interesting because in this case, J_1 and J_3 does not compete with each other. Thus the present Hamiltonian \cite{14} is much more suitable to seek quantum spin liquid candidates. In addition, compounds with both ferromagnetic and antiferromagnetic exchange interactions have been reported in the literature (see Ref. \cite{3} and references therein), which indicates that
the present model with competitive interactions may be interesting not only from a theoretical perspective. In order to study the phase diagram of this frustrated Heisenberg model, we use an analytical approach that has been successfully employed to describe transitions from a gapped to a gapless phase, namely bond-operator formalism \cite{14,15,16,17}. In a few words, within the framework of the bond-operator theory, the spin Hamiltonian is mapped into a Hamiltonian of non-interacting bosons, and phase transitions are located when the energy gap vanishes.

It should be pointed out that, in general, analytical approaches are more adequate to treat three-dimensional frustrated quantum spin systems than numerical methods, by reason of the limited amount of computational power. In particular, it is well known that quantum Monte Carlo suffers from the minus-sign problem which restricts its applicability: only non-frustrated quantum spin systems \cite{18}.

The present paper is organized as follows. In the next section we describe the bond-operator formalism and how phase transitions are characterized within this framework. In Section 3 we show the results for the phase diagrams at finite temperature and at absolute zero as well. We also discuss the physical meaning of the obtained results. We close with some concluding remarks.

2. Bond-operator Formalism

We employ the bond-operator formalism in order to investigate the phase diagram of the present model. This procedure was originally devised by Sachdev and Bhatt \cite{10}, for spin-1/2, and generalized by Wang et al. \cite{20,14}, for spin-1, some years later. To begin we describe the method briefly below.

For spin-1, by introducing three boson operators, it is possible to represent the three eigenstates of S^z as follows

\begin{align}
|1\rangle &= u^\dagger |v\rangle,
|0\rangle &= t^1_1 |v\rangle,
|-1\rangle &= d^\dagger |v\rangle,
\end{align}

where $|v\rangle$ is the vacuum state from which bosons are created. These boson operators must also obey the local constraint

\begin{align}
u^u + d^d + t^1_tz = 1
\end{align}

in order to keep the dimension of the local Hilbert space invariant.

Now, we can write the spin operators S^x, S^y and S^z in terms of these bosons operators

\begin{align}
S^x &= \frac{1}{\sqrt{2}}[(u^\dagger + d^\dagger)t_z + t^1_2(u + d)],
S^y &= \frac{1}{\sqrt{2}}[(u^\dagger - d^\dagger)t_z - t^1_2(u - d)],
S^z &= u^u - d^d.
\end{align}

Substituting the above relations into Eq. (1), the Hamiltonian can be rewritten as a sum of four components

\begin{align}
\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_3 + \mathcal{H}_4,
\end{align}

with

\begin{align}
\mathcal{H}_1 &= \frac{J_1}{2} \sum_{\vec{r},\vec{s},\vec{t},\vec{u}} \left[t^2(d^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + \frac{1}{2} \right. \\
&\hspace{1cm} \left. + d^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + H.c. \right],
\mathcal{H}_2 &= \frac{J_2}{2} \sum_{\vec{r},\vec{s},\vec{t},\vec{u}} \left[t^2(d^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + \frac{1}{2}
ight. \\
&\hspace{1cm} \left. + d^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + H.c. \right],
\mathcal{H}_3 &= \frac{J_2}{2} \sum_{\vec{r},\vec{s},\vec{t},\vec{u}} \left[t^2(d^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + u^\dagger \vec{r} d_{\vec{s}+\vec{t}+\vec{u}} + \frac{1}{2}
ight. \\
&\hspace{1cm} \left. + d^\dagger \vec{r} u_{\vec{s}+\vec{t}+\vec{u}} + H.c. \right],
\mathcal{H}_4 &= D \sum_{\vec{r}} \left[u^\dagger \vec{r} u_{\vec{r}} + d^\dagger \vec{r} d_{\vec{r}} + \mu_{\vec{r}}(u^\dagger \vec{r} u_{\vec{r}} + d^\dagger \vec{r} d_{\vec{r}} + t^2 - 1) \right],
\end{align}

where, by following the standard procedure \cite{14}, t_z bosons have been condensed, i.e. $\langle t_z \rangle = \langle t_z^\dagger \rangle = t$, and a temperature-dependent chemical potential, $\mu_{\vec{r}}$, has been introduced to guarantee the single-site occupancy. $H.c.$ means Hermitian conjugate.

In order to diagonalize the Hamiltonian, it is necessary to decouple the four-operator terms of the Hamiltonian components (\mathcal{H}_1, \mathcal{H}_2 and \mathcal{H}_3) into product of two operators. To this end, we make a mean-field decoupling as done in Ref. \cite{14}. For the component \mathcal{H}_1, for example, one obtains

\begin{align}
\langle u^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} - d^\dagger \vec{r} d_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle &\approx \frac{1}{2} (1 - t^2) \langle u^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle + \frac{1}{2} \langle u^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle \\
&\hspace{1cm} - p_1 \langle u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} d_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} + H.c. \rangle - \frac{1}{2} (1 - t^2)^2 + 2p_1^2,
\end{align}

where $p_1 = \langle d^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle = \langle d^\dagger v_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle$. Similarly, one gets

\begin{align}
p_2 = \langle d^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle = \langle d^\dagger v_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle \text{ and } p_3 = \langle d^\dagger \vec{r} u_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle = \langle d^\dagger v_{\vec{r}+\vec{s}+\vec{t}+\vec{u}} \rangle,
\end{align}

2
for components H_2 and H_3, respectively. In addition, we make another approximation: the local constraint is replaced by a global constraint, that is, we assume that μ is site-independent.

As a result, we arrive at a quadratic Hamiltonian involving boson operators. The next step in diagonalizing it is to take advantage of translational invariance by using Fourier transformed operators

$$d_\phi = \frac{1}{\sqrt{N}} \sum_k e^{-i k \phi} d_k,$$

$$d_\phi^\dagger = \frac{1}{\sqrt{N}} \sum_k e^{i k \phi} d_k^\dagger,$$

$$u_\phi = \frac{1}{\sqrt{N}} \sum_k e^{-i k \phi} u_k,$$

$$u_\phi^\dagger = \frac{1}{\sqrt{N}} \sum_k e^{i k \phi} u_k^\dagger,$$

However, this is not sufficient to diagonalize completely the Hamiltonian. Hence, we make use of a linear combination of Fourier transformed operators

$$\alpha_k = \chi_k u_k + \rho_k d_k^\dagger,$$

$$\beta_k = \chi_k d_k + \rho_k u_k^\dagger,$$

provided that $\chi_k^2 - \rho_k^2 = 1$. This is known as Bogoliubov transformation.

Finally, we write the diagonal form of the Hamiltonian

$$H = \sum_k (\omega_k \alpha_k^\dagger \alpha_k + \beta_k^\dagger \beta_k) + \sum_k (\omega_k - \Lambda_k) + C,$$

where

$$\omega_k = \sqrt{\Lambda_k^2 - \Delta_k^2},$$

$$\Lambda_k = \frac{1}{2} (1 - t^2) (-z_1 + \eta z_2 + \alpha z_3) + g(k) t^2 + D - \mu,$$

$$\Delta_k = g(k) t^2 - F(k),$$

$$g(k) = -z_1 \gamma_k_1 + \eta z_2 \gamma_k_2 + \alpha z_3 \gamma_k_3,$$

$$F(k) = -z_1 \gamma_k_1 p_1 + \eta z_2 \gamma_k_2 p_2 + \alpha z_3 \gamma_k_3 p_3,$$

$$\gamma_k_1 = \frac{1}{3} (\cos k_x + \cos k_y + \cos k_z),$$

$$\gamma_k_2 = \frac{1}{3} (\cos k_x \cos k_y + \cos k_z + \cos k_x \cos k_z),$$

$$\gamma_k_3 = \cos k_x \cos k_y \cos k_z.$$

$$C = \frac{N(1 - t^2)^2}{4} (z_1 - \eta z_2 - \alpha z_3) + N \mu (1 - t^2) + \sum_{\alpha} (z_1 p_1^\alpha + \eta z_2 p_2^\alpha + \alpha z_3 p_3^\alpha).$$

Two frustration parameters have been defined, namely $\eta = \frac{\hbar}{\pi}$ and $\alpha = \frac{\hbar}{2}$, and we have fixed $J_1 = 1$.

We can derive the energy of the ground state from the Hamiltonian of non-interacting bosons by setting $\alpha_k \alpha_k^\dagger = \beta_k \beta_k^\dagger = 0$, since these operators count the number of bosons (excitations). Thus,

$$E_0 = C + \sum_k (\omega_k - \Lambda_k).$$

It is also straightforward to obtain the Gibbs free energy

$$G = E_0 - \frac{2}{\beta} \sum_k \ln[1 + n(\omega_k)],$$

where

$$n(\omega_k) = \frac{1}{e^{\beta \omega_k} - 1}$$

and $\beta = \frac{1}{k_B T}$ is the Boltzmann factor.

By minimizing the Gibbs free energy, we obtain a set of coupled equations from which the phase diagram of the model can be examined,

$$2 - t^2 = \frac{1}{N} \sum_k \frac{\Lambda_k}{\omega_k} \coth \left(\frac{\beta \omega_k}{2} \right),$$

$$\mu = \frac{1}{N} \sum_k \frac{\Lambda_k - \Delta_k}{\omega_k} g(k) \coth \left(\frac{\beta \omega_k}{2} \right),$$

$$p_i = \frac{1}{2N} \sum_k \frac{\Lambda_k}{\omega_k} \gamma_{ki} \coth \left(\frac{\beta \omega_k}{2} \right),$$

with $i = 1, 2, 3$.

Taking the continuum limit, the summation over k can be replaced by a triple integral, then these integrals are solved numerically by using the Gauss-Legendre method. We also apply the Newton-Raphson technique for solving these coupled equations.

2.1. Phase Transitions

The classical version of the Hamiltonian with $D = 0$ has two ordered phases at absolute zero:

(i) A ferromagnetic phase (F) characterized by $\vec{k}_F = (0, 0, 0)$;

(ii) A collinear antiferromagnetic phase (CAF) characterized by $\vec{k}_{CAF} = (0, 0, \pi)$ or $\vec{k}_{CAF} = (0, \pi, 0)$ or $\vec{k}_{CAF} = (\pi, 0, 0)$.
It should be mentioned that in contrast to the classical \(J_1 - J_2 - J_3 \) antiferromagnetic Heisenberg model, the collinear antiferromagnetic phase with \(\vec{k} = (0, \pi, \pi) \) is never stable in its ferromagnetic counterpart.

In order to verify the presence of these ordered phases in the quantum Hamiltonian \([1]\), we must analyze the energy gap for both phases F and CAF. According to the bond-operator formalism, phase transitions are obtained from the gapped phase (disordered) to the gapless phase (ordered) when the gap closes at the critical point.

For the F order, the boson modes become gapless at \(k_F \) and therefore \(\omega_{k_F} = 0 \), which characterizes a phase transition between the disordered paramagnetic phase and the ferromagnetic phase. For the CAF order, the energy gap goes to zero at \(k_{CAF} \), then \(\omega_{k_{CAF}} = 0 \), which characterizes a phase transition between the disordered paramagnetic phase and the collinear antiferromagnetic phase.

3. Results and Discussion

In this section, we show numerical results obtained by solving the coupled equations \([26,28]\) in the continuum limit. Phase diagrams at zero temperature as well as at finite temperature are analyzed as a function of the parameters of the Hamiltonian \([1]\).

3.1. Quantum Phase Diagram (\(T = 0 \))

Figure 1 shows the quantum phase diagram for \(\alpha = 0 \). One notes the presence of two ordered phases below the critical lines, namely F and CAF. For \(0 \leq \eta < 0.227 \), the ferromagnetic phase is stable, while for \(0.239 < \eta \leq 1 \), the collinear antiferromagnetic phase is stable. A remarkable finding is a narrow nonmagnetic phase between F and CAF phases along \(\eta \)-axis, for \(0.227 \leq \eta < 0.239 \), which is clearly depicted in the inset. Such a gapped phase, which is absent in the corresponding classical model, is a quantum spin liquid candidate. Thus, our results indicate that even a three-dimensional model is able to host a quantum spin liquid phase, despite the fact that quantum fluctuations decreases with the increase of lattice dimensionality. Recently, a quantum spin liquid phase candidate has also been suggested on the cubic lattice for the spin-1/2 \(J_1 - J_2 - J_3 \) antiferromagnetic Heisenberg model by using the variational cluster approach \([21]\), which corroborates our finding.

One can also see that the nature of the phase transitions varies with \(\eta \). For \(\eta = 0.227 \) and \(\eta = 0.239 \), the energy gap does not vanish continuously, as one would expect at a critical point, by contrast, it passes through a finite minimal value. This is shown in Figure 2 for \(\eta = 0.227 \). From \(D = 1.7 \), we see clearly that the energy gap, \(\omega_{k_F} \), decreases with decreasing \(D \), passes through a minimum, and then increases. Hence, we believe that the model undergoes first-order transitions for those values of \(\eta \).

It is also worth analyzing the effect of the crystal field on the stability of the ordered phases. Note that the critical crystal field, \(D_{c} \), for the F phase, decreases with increasing \(\eta \), while for the CAF phase \(D_{c} \) increases. This can be understood as a result of the frustration that destroys the ferromagnetic order and favors the collinear antiferromagnetic one.

A similar phase diagram is obtained by letting \(\alpha = 0.1 \). As shown in Figure 3, when we include the third-neighbor coupling, \(J_3 \), the ordered phases, F and CAF, are still present as well as the magnetically disordered one. However, the \(J_3 \) interaction reduces the F phase and increases the CAF order. Considering \(D < D_{c} \), the F phase is stable for \(0 \leq \eta < 0.127 \), while CAF phase is stable for \(0.137 < \eta \leq 1 \).

For \(0 \leq \alpha < 0.23 \), the phase diagram seems the ones shown in Figures 1 and 3. By contrast, for \(\alpha \geq 0.23 \), the phase diagram is modified, namely only the CAF phase is stabilized along the \(\eta \)-axis. A phase diagram in this range of frustration parameter is depicted in Figure 4. Therefore the competition between \(J_1 \) and \(J_3 \) is responsible to suppress the ferromagnetic order for \(\alpha \geq 0.23 \), since \(J_3 \) frustrates the \(J_1 \) coupling. We remark that this feature is not observed in the corresponding model with both \(J_1 \) and \(J_3 \) antiferromagnetic, by reason of \(J_3 \) does not frustrate \(J_1 \), then, in this case, the Néel order is enhanced in contrast to the collinear one \([13]\).

For the sake of completeness, the phase diagram for \(D = 0 \) is depicted in Figure 5. We show the first-order phase transitions between the non-magnetic phase (disordered) and the ordered phase (F or CAF). As one can see, the disordered phase is very narrow and its width remains approximately constant as the frustration parameters are varied. In addition, we observe that both frustration parameters, \(\alpha \) and \(\eta \), have the same effect on the phase di-
agram: upon increasing α or η the phase transitions always occur from the ferromagnetic phase to the disordered phase, and then to the collinear phase.

3.2. Phase Diagram at Finite Temperature

Up to now, we have set $T = 0$. In this section, we turn our attention to the effect of temperature on the phase diagram of the present model. Thus, in contrast to the quantum phase transitions, the phase transitions analyzed here is driven by thermal fluctuations.

The behavior of the critical temperature, $T_c^{F(CAF)}$, as a function of the crystal field, for some values of η, is shown in Figure 5. Phase transitions between the F phase and the disordered phase is depicted in Figures 6(a)-(b) while the transitions between CAF phase and the disordered
one is depicted in Figures 6(c)-(d). A common feature is shared by all lines in the Figure 6, the critical temperature passes through a maximum upon increasing crystal field, and then decreases toward the quantum critical point. It should be mentioned that this is not a consequence of frustration, since unfrustrated Heisenberg model also exhibits it [14, 22]. We believe that the quantum nature of the model, which is introduced by the non-commutativity of quantum mechanics spin operators, is responsible for this effect because in the classical Heisenberg model such characteristic is not observed: the critical temperature increases as the crystal field increases, and asymptotically approaches a constant value [23]. Consequently, in contrast to its quantum counterpart, the spins order down to absolute zero, even if the easy-plane anisotropy is very strong.

In Figures 6(a)-(b), one notices that T_c^F decreases with increasing η, since the frustration weakens the ferromagnetic order, then less thermal fluctuations are required to drive the phase transition. By contrast, in Figures 6(c)-(d), one can see that T_c^{CAF} increases as η increases because the collinear order is strengthened by the presence of J_2 coupling. We also conclude, by setting η, that T_c^F is greater for $\alpha = 0$ (red line in Fig. 6(a)) than for $\alpha = 0.1$ (blue line in Fig. 6(b)). On the other hand, by doing the same, we observe that T_c^{CAF} is greater for $\alpha = 0.1$ (red and black lines in Fig. 6(d)) than for $\alpha = 0$ (red and black lines in Fig. 6(c)).

It seems worthwhile to analyze the behavior of the critical temperature as a function of η for some values of α with $D \neq 0$. The results that are shown in Figure 7(a) for $D = 6$ indicate that the magnetically disordered region between F and CAF becomes smaller with increasing α. For $\alpha \geq 0.2$, as depicted in Figure 7(b), the F phase is completely destroyed and the CAF region becomes larger.

4. Concluding Remarks

We have studied the spin-1 $J_1 - J_2 - J_3$ ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice by using the bond-operator formalism. Phase diagrams have been examined at finite and at zero temperatures. The zero-temperature phase diagrams exhibit a narrow magnetically disordered phase between the ferromagnetic and collinear antiferromagnetic phases for $D = 0$ and $0 \leq \alpha < 0.23$. We suggest that such a disordered phase is a quantum spin liquid candidate. Second- and first-order phase transitions have been located according to the energy gap behavior. The effect of the crystal field, frustration and temperature on the stability of the ordered phases has also been analyzed in some cases.

One should mention that applications of numerical procedures to the present model would be very welcome in order to be compared with our analytical results, mainly to confirm the first-order transitions between the ordered and the disordered phases. Although, in general, numerical methods are not suitable to treat quantum systems,
in three dimensions, the variational cluster approach has been recently extended to study such systems [21], and then it can be used to verify the nature of these transitions.

As a final remark, the possibility of defining a nematic order induced by the crystal field ($D \neq 0$) at absolute zero in the present model will be subject of future investigation, since a nematic order has been found in its two-dimensional counterpart [3]. Furthermore, the extension of the present calculations to three-dimensional lattices with more complex geometries, such as hyperhoneycomb and stripyhoneycomb [10-12], deserves serious consideration.

5. Acknowledgements

The authors thank FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial support.

6. References

References

[1] P. W. Anderson, Mater. Res. Bull 8, 153 (1973).
[2] L. Balents, Nature 464, 199 (2010).
[3] H. Feldner, D. C. Cabra, and G. L. Rossini, Phys. Rev. B 84, 214406 (2011).
[4] A. S. T. Pires, Sol. State Comm. 209, 18 (2015).
[5] J. Oitmaa and R. R. P. Singh, Phys. Rev. B 84, 094424 (2011).
[6] C. Waldtmann et al., Eur. Phys. J. B 2, 501 (1998).
[7] T. P. Cysne and M. B. Silva Neto, [arXiv:1504.01832] (2015).
[8] J. Richter, R. Darradi, J. Schulemburg, D. J. J. Farnell, and H. Rosner, Phys. Rev. B 81, 174429 (2010).
[9] K. Majumdar and T. Datta, J. Stat. Phys. 139, 714 (2010).
[10] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys.Rev. Lett. 99, 137207 (2007).
[11] I. Kimchi, J. G. Analytis, and A. Vishwanath, Phys. Rev. B 90, 205126 (2014).
[12] T. Takayama et al, Phys. Rev. Lett. 114, 077202 (2015).
[13] G. M. A. Sousa and A. S. T. Pires, Sol. State Comm. 152, 1094 (2012).
[14] H-T. Wang and Y. Wang, Phys. Rev. B 71, 104429 (2005).
[15] A. S. T. Pires, J. Magn. Magn. Mater 370, 106 (2014).
[16] M. A. Griffith, M. A. Continentino, and A. S. T. Pires, J. Magn. Magn. Mater 389, 61 (2015).
[17] A. S. T. Pires, Sol. State Comm 217, 61 (2015).
[18] T. Troyer and U. Wiese, Phys. Rev. Lett. 94, 170201 (2005).
[19] S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).
[20] H-T. Wang and J-L. Shen and Z-B. Su, Phys. Rev. B 56, 14435 (1997).
[21] M. Laubach et al, [arXiv:1506.07894] (2015).
[22] D. C. Carvalho, J. A. Plascak, and L. M. Castro, Phys. Rev. E 88, 032111 (2013).
[23] D. C. Carvalho, L. M. Castro, and J. A. Plascak, Physica A 391, 1149 (2012).