Интеграция помощи людям с РАС: этиология и жизненный цикл

Ципан Р.М.
Калифорнийский университет в Беркли, Сан-Франциско, США, ORCID: https://orcid.org/0000-0002-2585-9415 e-mail: rachel.tsipan@berkeley.edu

Паренте Ч.И.
Калифорнийский университет в Сан-Франциско, Сан-Франциско, США, ORCID: https://orcid.org/0000-0001-6812-9263 e-mail: China.Parenteau@ucsf.edu

Хендрен Р.Л.
Калифорнийский университет в Сан-Франциско, Сан-Франциско, США, ORCID: https://orcid.org/0000-0001-8470-4862 e-mail: Robert.Hendren@ucsf.edu

Расстройства аутистического спектра (РАС) связаны с большим количеством генетических, эпигенетических и средовых факторов, что усложняет организацию помощи людям с данным диагнозом. Во множестве опубликованных работ описываются преимущества перинатальных, ранних и более поздних вмешательств. Как правило, врачам бывает непросто диагностировать РАС, однако после постановки диагноза родители, ознакомленные с эффективными стратегиями помощи, могут оказать существенное положительное влияние на развитие своего ребенка. Исследования детей, подростков и молодых людей с РАС, выполненные с применением методов нейровизуализации, показывают, что структуры их мозга меняются с течением времени, и что они также могут меняться под воздействием подходящих вмешательств. Данные вмешательства также адаптируют для взрослых РАС таким образом, чтобы они лучше соответствовали их потребностям; примером могут служить программы профессиональной подготовки. В статье представлен обзор многих факторов риска и типов вмешательств. Это позволит уменьшить проблемы, с которыми сталкиваются люди с РАС в своей повседневной жизни.

Ключевые слова: аутизм, факторы риска, энцефалотипы, вмешательство, адаптивное функционирование, первичная помощь.

Для цитаты: Ципан Р.М., Паренте Ч.И., Хендрен Р.Л. Интеграция помощи людям с РАС: этиология и жизненный цикл // Аутизм и нарушения развития. 2020. Том 18. № 3. С. 28–37. DOI: https://doi.org/10.17759/autdd.2020180304 (In Russ.).

Integrating Treatment for Autism: Etiology and Life Cycle

Rachel M. Tsipan
University of California Berkeley, San Francisco, United States, ORCID: https://orcid.org/0000-0002-2583-9415, e-mail: rachel.tsipan@berkeley.edu

China I. Parenteau
University of California San Francisco, San Francisco, United States, ORCID: https://orcid.org/0000-0001-6812-9263, e-mail: China.Parenteau@ucsf.edu

CC BY-NC
Autism Spectrum Disorder (ASD) is linked to a multitude of genes, epigenetics, and environmental factors, which contribute to the complexities of treating ASD. A large body of literature suggests benefits from perinatal, early, and later intervention. It is common for physicians to struggle with making a diagnosis of ASD, but once it is made, parents who have been taught effective strategies can be impactful in their child’s positive development. Neuroimaging studies of children, adolescents and young adults with ASD suggest that their brain structures change over time and are also capable of being shaped through appropriate interventions. Interventions are also being adapted for adults with ASD to better address their needs, such as employment training programs. We review the wide array of risk factors and interventions to mitigate the challenges individuals with ASD face in their daily lives.

Keywords: autism, risk factors, endophenotypes, intervention, adaptive functioning, primary care.

For citation: Tsipan R.M., Parenteau C.I., Hendren R.L. Integrating Treatment for Autism: Etiology and Life Cycle. Autism and Developmental Disorders. 2020. Vol. 18, no. 3, pp. 28—37. DOI: https://doi.org/10.17759/autdd.2020180304 (In Russ.).

Согласно данным Центра по контролю и профилактике заболеваний (Center for Disease Control), в настоящее время число людей с расстройствами аутистического спектра (РАС) в США данный диагноз получает 1 ребенок из 44. Хотя причины этого явления неизвестны, на него могут влиять такие факторы как утолщение признаков о диапазоне и его критериями, увеличение количества исследований и мониторинг, изменение эпигенетических процессов, воздействие инфекций и токсинов, присутствующих в окружающей среде. Учитывая гетерогенный характер РАС, мы понимаем, что люди с такими расстройствами сталкиваются с уникальными трудностями, для решения которых может потребоваться гибкий и креативный подход в рамках многоуровневого целенаправленного воздействия. Принимая во внимание число людей с РАС, совершенно необходимо рассмотреть самые эффективные пути профилактики, вмешательства и терапии данных расстройств в течение всего жизненного цикла.

Генетическая и средовая этиология

Существует сильная взаимосвязь между определенными генами и РАС. С РАС связано множество генов, включая CHD8, DYRK1A, FMR1, TSC1, TSC2, CNTNAP2, SMARCC2, CDH8, SHANK3, NRXN1, 15q11.2q13, 15q13.3, 16p11.2, NLGN2, GRIN2B, CDH8, и PTEN [8]. Примерно в 25% случаев РАС имеют четкую генетическую этиологию [32]. Во многих исследованиях было обнаружено, что коэффициент конкордантности у идентичных близнецов с РАС составляет 64–88%, а у дизиготных близнецов данный показатель находится на уровне 9–40%, в случае если хотя бы у одного из них есть РАС [32; 39]. Мутации de novo в генах, отвечающих за неврологические проявления, связаны с РАС, что может существенно влиять на развитие. Согласно данным сиблинговых исследований, количество мутаций, приводящих к нарушению генетических структур (сайт сплайсинга, сдвиг рамки считывания и вариация числа копий) у детей с РАС было значительно выше, чем у их братьев или сестер без данного расстройства [20]. Исследователи из Швеции пришли к заключению, что наследственность является причиной РАС примерно в 50% случаев [45]. И в таком случае, приводит к возникновению этого расстройства в оставшихся 50%

Возникновение РАС определяется не только генетическими факторами. Предрасположенность к РАС в большей степени связана с окружающей средой, нежели с наследственностью. В полигенных моделях спонтанные мутации в кодирующих участках в большом количестве генов увеличивают риск развития РАС в 5–20 раз [34]. Согласно недавним генетическим исследованиям, причины возникновения РАС также связаны со взаимодействием генов и окружающей среды, проявляющимся в эпигенетических процессах [15; 17; 44]. Эпигенетика — обратимая регуляция генетических механизмов, независимых от последовательности ДНК; она в значительной степени опосредована метилированием ДНК, последовательностью хроматина и РНК-опосредованной экспрессией генов [1]. Связанные с этими факторами эндоденотипы соединяют глубинные биологические аспекты заболевания с наблюдаемыми симптомами [42]. Исследования показывают, что эпигенетические процессы могут быть обратимы благодаря таковым факторам как питание, социализация, поведенческие вмешательства и лекарственные препараты [43].
кислоты и талидомида в пренатальном или раннем постнатальном периоде [36]. Кроме того, существуют некоторые данные в отношении таких факторов как метаболические нарушения у матери, лихорадка во время беременности, возраст матери/отца, прием селективных ингибиторов обратного захвата серотонина (СИОЗС), курение во время беременности и загрязнение окружающей среды [2; 18; 19; 46; 60]. Необходимы дополнительные исследования для подтверждения связи повышения риска развития РАС и таких факторов как ртуть, свинец, токсины из окружающей среды, вакцины, недостаток витамина D [4; 11; 30; 40; 52; 58].

Здоровье родителей до зачатия

Согласно недавним исследованиям, жизнь родителей до зачатия ребенка также оказывает воздействие на него посредством передачи эпигенетической информации. В одном исследовании в сперматозоидах и яйцеклетках были обнаружены вариации метилирования цитозина, структурирования хроматина, некодирующих РНК и метионондири [23]. Трансгенерационные эпигенетические эффекты часто вступают в взаимодействие с условиями во время зачатия, определяя траекторию развития эмбриона и плода, что будет влиять на здоровье ребенка на протяжении всей его жизни. Например, Mazina et al. [28] связывают вариации числа копий генов и перенесенные матерью инфекции с социально-коммуникативными нарушениями и повторяющимися/ограниченным поведением участников исследования. Дальнейшее исследование подобных явлений может помочь в понимании того, как эпигенетические изменения способствуют развитию РАС.

Риски возникновения РАС

К аутизму могут привести различные особенности организма матери во время беременности. Например, женщины в возрасте 35 лет и старше с меньшей вероятностью будут принимать пищевые добавки, содержащие железо, а вероятность рождения ребенка с РАС у этой группы женщин в пять раз выше [48]. Кроме того, изменение уровня стресса в организме беременной женщины может привести к гормональным нарушениям плода и увеличить риск возникновения РАС у ребенка [13]. Во время родов недоношенные дети с малым для своего гестационного возраста весом, а также дети, рожденные посредством кесарева сечения, находятся в группе умеренно-высокого риска [12; 54; 59]. Согласно исследованию Lyall et al. [26], добавление в рацион беременной женщины большего количества определенных питательных веществ и пищевых добавок, содержащих фолиевую кислоту, снижает риск развития РАС у ребенка. В исследованиях на грызунах показана сильная причинно-следственная связь между активацией иммунной системы организма самки во время беременности и симптомами РАС у ее потомства [49].

Вследствие определенных недочетов в системе здравоохранения родители, ожидающие появления ребенка, не всегда получают важную информацию о рисках, связанных с окружающей средой. В исследовании Stotland et al. [51] был проведен опрос участников Американского конгресса акушеров и гинекологов и трех фокусных групп акушеров. Семьдесят восемь процентов акушеров согласились с тем, что влияние отрицательных факторов окружающей среды может быть уменьшено в случае надлежащего консультирования пациентов, однако 50% акушеров заявили, что они редко обсуждают данные факторы с будущими родителями. Кроме того, менее 20% опрошенных из США обычно задают своим пациентам вопросы о влиянии вредных факторов окружающей среды на жизнь родителей. Необходимо более активно распространять информацию о влиянии вредных факторов окружающей среды, потенциального отсутствия возможности у пациентов снизить воздействие вредных факторов и из-за нежелания врачей выяснять у женщин беспокойство в связи с этой темой. Необходимо более активно распространять информацию о влиянии вредных факторов окружающей среды (описанных в следующем разделе) среди медиков и будущих родителей.

Можно ли предотвратить аутизм?

Как уже было сказано, на возникновение РАС могут оказывать влияние различные факторы. К ним относится избегание токсичных веществ в окружающей среде, более продолжительное грудное вскармливание, изменение состава кишечной флоры благодаря приему пробиотиков, улучшение питания, отказ от приема антибиотиков и/или избегание инфекционных заболеваний. В исследовании Mumper et al. [33] рассматривалось состояние 294 детей с 2005 по 2013 год. Согласно данным исследования, в семьях, следовавших вышеперечисленным рекомендациям, не было отмечено случаев РАС у детей. Кроме того, в данном исследовании пациенты также принимали витамин D3, фолиевую кислоту, омега-3 и вакцинировались с увеличенными интервалами между прививками. Принимая во внимание распространенность РАС, следует изучить возможность снизить риск развития данного расстройства посредством всеобъемлющей первичной медико-санитарной помощи. В других исследованиях приводятся данные, подтверждающие эффективность приема добавок с фолиевой кислотой во время беременности, а также
приема холина и железа во время развития плода для снижения количества случаев РАС у детей [21; 24; 48]. Кроме того, существуют программы, помогающие семьям понять, какие факторы влияют на РАС.

Раннее вмешательство

В большинстве исследований и клинических программах ученые ориентируются на помощь детям раннего возраста, поскольку их неврологическое развитие более пластично. В одном из подобных исследований Keen et al. [22] получили предварительные данные о влиянии вмешательства, осуществяемого семьей. В момент постановки диагноза РАС или вскоре после этого родителей обучали тому, каким образом они могут эффективно поддерживать коммуникацию со своим ребенком. Они обучались по видео на DVD или посещали семинар родительской группы и занимались с куратором на дому в течение 10 встреч. Участники, прошедшие обучение в очном формате, продемонстрировали более значительное улучшение навыков рабо- ты с родительским стRESSом и больший рост эффективности по сравнению с теми, кто посмотрел тренинг на DVD. В группе, работавшей с куратором, навыки социальной коммуникации улучшились значительно больше, чем в группе, занимавшейся самостоятельно; кроме того, в первой группе наблюдалось значительное улучшение адаптивного поведения среди участни- ков, показавших низкий уровень в начале исследования, что является многообещающим результатом. Многие педиатры испытывают трудности при работе с пациентами с РАС и даже не осознают свои ограничения. Например, практикующие врачи оценивают свои способности работать с потребностями людей с РАС и с другими подобными расстройствами выше, чем родители [5]. Согласно исследованию Zuckerman et al. [62], родители детей с РАС были впервые обес- покоены их состоянием и обратились к специалисту на более раннем этапе, чем родители детей с ИН/НР (интеллектуальными нарушениями/нарушениями развития). Однако по сравнению с родителями с ИН/НР, родители детей с РАС чаще встречались в таких ситуациях с пассивным отношением или с об- надеживающими заверениями, чем с проактивным подходом специалиста. В случаях, когда специалисты следовали проактивному подходу, дети получали диагноз РАС раньше, чем в случаях, когда они проявля- ли пассивность или давали обнадеживающие ответы. Более того, РАС в четыре раза чаще диагностируют у мальчиков, чем у девочек; неизвестно ли это с тем, что мужской пол является фактором риска развития РАС, или с тем, что у девочек наблюдают иные симптомы, которые врачи могут легко упустить [14]. Несмотря на то, что родители проявляют обес- покоенность на раннем этапе, диагноз очень часто ставится с задержкой, особенно в тех случаях, когда специалист обнадеживает родителей или проявляет пассивность, что показывает необходимость целевых улучшений в системе первичной помощи.

Вмешательство на более позднем этапе

Многие спрашивают, не слишком ли поздно осу- ществлять вмешательство в позднем подростковом и раннем взрослом возрасте. Исследования с применением методов нейровизуализации показывают, что это не так. На снимках структурной МРТ детей раннего возраста с РАС видно увеличение объема мозга до размеров, которых мозг типично развивающихся детей достигает только к возрасту шести-восьми лет. Более того, у детей с РАС отмечается ускоренный рост объема лобной и височной доли [9]. Это приво- дит к изменению последовательности развития ви- сочной доли и других участков мозга по сравнению с типичным ранним развитием. После раннего подросткового возраста в развитии мозга преобладает ускоренный возрастной спад общего объема мозга, а также толщины коры и площади поверхности.

Были выявлены связи между генами, отвечающи- ми за риск развития РАС, и плотностью нейронных связей. Например, ген CNTNAP2, связанный с риском развития типичных для детей с РАС особенно- стей речевого развития, связан с атипичной струк- турной и функциональной плотностью нейронных связей [37]. Таламус, ключевая сенсорная зона, связанная с РАС, развивается у детей с РАС иначе, чем в популяции без данного расстройства. У детей с РАС присутствует четко выраженная таламическая микроструктура, однако эти групповые различия со временем сокращаются, что говорит о том, что тала- мус продолжает меняться во взрослом возрасте [29]. В другом исследовании были проанализированы раз- личия в сети динамических функциональных меж- нейронных связей у участников с РАС и участников без данного расстройства. В группе с РАС было вы- явлено увеличение временных нейронных связей между гипоталамусом/субталамусом и некоторыми сенсорными сетями в определенных функциональ- ных областях и снижение общей динамики метасо- стояний всей функциональной сети мозга. Согласно Плана диагностического обследования при аутизме (ADOS) эти необычные паттерны динамики связаны с симптомами аутизма [10]. Дальнейшее исследова- ние генетически обусловленных нейронных различий позволит осуществлять целевые вмешательства на протяжении всей жизни людей с данным рас- стройствами.

Исследователи обнаружили многообещающее улучшение социально-эмоциональных функций молодых взрослых с РАС, занимавшихся по методу об- учения социальным навыкам PEERS. После занятий участники проявляли меньше агрессии, тревоги и от- чуждения и больше — эмоциональной отзывчивости, адаптивности, лидерства; кроме того, они также чаще
вовлекались в повседневные дела [25]. Эти данные говорят о том, что улучшение социального, поведенческого и эмоционального функционирования может способствовать развитию и поддержанию качественного взаимодействия со сверстниками и устранению социальной изоляции у подростков с РАС.

Адаптивное функционирование при РАС

Адаптивное функционирование включает навыки, необходимые человеку для того, чтобы достигать успеха в своей среде и жить вместе с другими людьми. Многие люди с РАС испытывают проблемы в данной сфере, что ведет к серьезному ухудшению переходных периодов. Matthews et al. [27] оценили адаптивное функционирование 75 участников с РАС в возрасте 16—58 лет, используя шкалу адаптивного поведения Вайнленд. Эта шкала включает такие разделы, как повседневные житейские навыки, коммуникация и социализация; каждый раздел имеет свои подразделы. У взрослых участников (но не у подростков) повседневные житейские навыки были развиты относительно лучше, чем навыки коммуникации и социализации. В среднем участники показали наилучший результат в навыках письма (подраздел коммуникации) и наихудший результат в навыках межличностного взаимодействия (подраздел социализации). Вне зависимости от когнитивных способностей участников все стандартные показатели находились на уровне значительно ниже среднего, что указывает на то, что для адаптивного функционирования взрослым с РАС необходимы соответствующие вмешательства на протяжении всей жизни.

Wallace et al. [53] полагают, что дефициты исполнительного функционирования у людей с РАС связаны с характерными симптомами и сложностями в сфере адаптивного функционирования и не зависят от возраста или IQ. У детей и подростков с РАС ухудшились все навыки планирования/организации и гибкость, которые во многом связаны с дефектами адаптивного функционирования. Благодаря подходящим вмешательствам в сфере адаптивного функционирования подростки с РАС могут получить поддержку в переходные периоды к новым жизненным этапам.

Трудоустройство молодых взрослых с РАС после окончания средней школы

Многие люди с РАС сталкиваются с барьерами при трудоустройстве. Было проведено сравнение опыта трудоустройства после окончания средней школы для молодых взрослых с РАС и для людей с другими нарушениями здоровья [41]. Примерно половина (53.4%) молодых взрослых с РАС иногда-либо работала за плату вне дома, что является наиболее низким показателем среди людей с различными типами инвалидности. Молодые взрослые с РАС зарабатывали в среднем 8, 10 долларов США в час, что значительно ниже, чем средняя заработная плата в группах сравнения; кроме того, они работали на участках, не требующих серьезных профессиональных навыков. Вероятность когда-либо найти оплачиваемую работу была выше для людей более старшего возраста из более обеспеченных семей, имеющих более развитые коммуникативные или функциональные навыки.

Wehman et al. [56] использовали дизайн рандомизированного контролируемого исследования (РКИ) для оценки результатов трудоустройства молодых взрослых с РАС, обучающихся в последнем классе старшей школы. Участники терапевтической группы прошли три различные стажировки в медицинском учреждении продолжительностью 10—12 недель, в течение которых они также были проинструктированы о том, как достичь мастерства в профессиональных навыках и развить способность к адаптивному поведению в рабочих условиях. Их направили в различные подразделения, включая детское и неотделение реанимации и интенсивной терапии, отделение помощи пациентам с сахарным диабетом, более обеспеченных семей, имеющих более развитые навыки труда и социализации. Эти данные о более частых случаях болезни Паркinson, склонных к опасному поведению, хроническим заболеваниям (рахит, туберкулез, эпидемиологических заболеваний) свидетельствуют о том, что РАС является глобальным следствием, требующим серьезных профессиональных навыков. Starkstein et al. [50] опубликовали предварительные данные о более частых случаях болезни Парк-
кисоны у взрослых с РАС старше 39 лет. Предварительное исследование включало непосредственный осмотр и постановку диагноза 19 взрослым с РАС в возрасте старше 49 лет. Данный метод также применялся для оценки независимой выборки из 37 взрослых с РАС в возрасте старше 39 лет. Частота случаев болезни Паркинсона возросла с 20% в первом исследовании до 25% во втором исследовании. Связь между этими двумя заболеваниями требует дальнейшего изучения, однако полученные результаты могут привести к лучшему пониманию неврологических основ РАС и болезни Паркинсона. Эти данные также необходимы при оценке услуг по уходу за нежными людьми с РАС.

В другом исследовании рассматривался уровень качества жизни 52 взрослых с РАС, средний возраст которых составил 49 лет. Оценивались показатели, которые набирали испытуемые по опроснику качества жизни Всемирной организации здравоохранения (World Health Organisation Quality of Life Brief Questionnaire). Согласно полученным данным, выявлена значительная отрицательная корреляция между качеством жизни и повторяющимся поведением, а также положительная связь качества жизни с более высоким уровнем социального положения и связью во взрослом возрасте (риск развития трофикума, отношений и независимого проживания). Однако, согласно рейтингам участников опроса, качество жизни слабо коррелировало с какими-либо факторами из детства или взрослой жизни. Не все участники могли или хотели заполнять самоотчет [31]. Возможно, что этот популярный метод имеет низкую надежность, и существует потребность в новом инструменте оценки благополучия взрослых с РАС.

Первичная медицинская помощь взрослым с РАС

В большинстве исследований, посвященных проблемам людей с РАС, рассматриваются дети раннего возраста и их семьи. К сожалению, наблюдается недостаток исследований, в которых анализируется состояние взрослых с РАС и рассматриваются клиники, успешно оказывающие помощь людям с данным диагнозом [6]. Нехватку надлежащей медицинской помощи людям с РАС можно объяснить биологическими проблемами, упомянутыми в предыдущем разделе, вопросами социальной поддержки, трудоустройства, уровня образования, доступа к подходящим медицинским услугам и оказанием соответствующих услуг, а также возрастом при постановке диагноза [3]. Сильные и слабые стороны людей с РАС могут варьироваться. Они могут развитить прекрасные способы в своей области интересов или использовать свою потребность в упорядоченности, для того чтобы снизить проявления хронических заболеваний, а также поддерживать тесные дружеские или романтические отношения. Несмотря на все это, люди с РАС тем не менее сталкиваются со множеством индивидуальных проблем, включая проблемы в области владения речью, умении общаться в письменной форме, выполнения повседневных действий, потребности в упорядоченности, сенсорной чувствительности и сложности с регуляцией эмоций [35]. Молодые люди с РАС и ИН (интеллектуальными нарушениями) в возрасте от 11 до 22 лет реже говорили о том, что довольны своей жизнью, чем их сверстники только с интеллектуальными нарушениями. Групповые различия в социально-коммуникативных способностях и участие в образовательных занятиях определили взаимосвязь между РАС и более слабым чувством удовлетворенности жизнью у студентов [57].

Приемные и необходимость ожидания представляют основные трудности, с которыми сталкиваются взрослые с РАС при обращении за медицинской помощью. В особенности это касается людей с интеллектуальными нарушениями, агрессивным поведением или судорожными припадками в анамнезе, которым было намного удобнее проходить осмотр по телефону [47]. Коммуникативные барьеры, возникающие при общении с персоналом медицинских учреждений, также представляют собой трудность, с которой люди с РАС сталкиваются при обращении за первичной медицинской помощью. Потенциальное решение данной проблемы связано с созданием персонализированных каналов коммуникации между медицинскими сотрудниками и пациентами, создающим условия для общения в клиниках (например, использованием закругленных углов и белого шума), а также с созданием условий, в которых люди с РАС будут проще контролировать свой стресс (наличие отвлекающих факторов, тихого помещения или часов, ведущих обратный отсчет до назначенного времени). Использование информации, полученной от людей с РАС, в отношении их мнения о различных медицинских учреждениях, может положительно влиять на доступность медицинских услуг и равенство при их получении.

Оказание первичной медицинской помощи взрослым с РАС с точки зрения врача

При оказании помощи взрослым с РАС врачи сталкиваются с большим количеством трудностей. На системном уровне эти проблемы включают недостаток услуг и поддержки для пациентов с РАС, общей нехваткой учреждений здравоохранения, готовых работать с людьми с данными расстройствами и негативные финансовые факторы, связанные с потенциальным увеличением времени, затрачиваемого медицинским учреждением на оказание помощи таким пациентам. Проблемы на уровне клиники/организации, оказывающей помощь, включают временные ограничения, сложность вовлечения семьи, физиче-
В течение своей жизни люди с РАС сталкиваются с различными проблемами, некоторые из которых выявлены в данной категории пациентов. Важно отметить, что подростки и взрослые с РАС также нуждаются в поддержке и в продолжении терапии. Для достижения всеобъемлющего понимания данных расстройств одинаково важно исследовать как определенные гены и мутации, связанные с РАС, так и факторы среды, такие как осложения при родах, воздействие токсинов и дефицит витаминов.

В данном обзоре рассматриваются многообещающие идеи и вмешательства, в рамках которых к расстройствам подходят с несколькими точек зрения, а именно: предоставление будущим матерям конкретных рекомендаций для снижения риска РАС у новорожденного, обучение родителей оказанию поддержки детям в спектре аутизма, развитие социальных навыков и адаптивного функционирования у молодых людей с РАС, а также тренинги по вопросам трудоустройства. Принимая во внимание полученные результаты, мы также предлагаем сделать учреждения, оказывающие первичную медико-санитарную помощь, более доступными для взрослых с РАС, стимулируя их чаще оказывать помощь данной категории пациентов, повышая качество обучения работе с пациентами с РАС и внедряя новые практики в условиях клиники. Благодаря проведению опросов людей с РАС об их предложениях в отношении изменений в учреждениях, оказывающих первичную медицинскую помощь, мы сможем внедрить новые решения. Кроме того, очень важно продолжать дальнейшие исследования в области здоровья и благополучия пожилых людей с РАС.

В заключение, забота о пациентах с РАС должна быть более систематической, и единство в отношении РАС, организовать взаимодействие с практикующими специалистами для врачей в начале их карьеры, а также обучать администрационных сотрудников из их команды [55].

Литература/References
1. Allis C.D., Jenauwein T. The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 2016, vol. 17, no. 8, pp. 487—500. DOI: 10.1038/nrg.2016.59
2. Bölte S., Girdler S., Marschik P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cellular and Molecular Life Sciences, 2018, vol. 76, no. 7, pp. 1275—1297. DOI: s00018-018-2988-4
3. Calleja S., Islam F., Kingsley J., McDonald R. The disparities of healthcare access for adults with autism spectrum disorder. Protocol for a systematic review. Medicine, 2019, vol. 98, no. 7, p. e14480. DOI: 10.1097/MD.00000000000014480
4. Cannell J.J. Vitamin D and Autism, What's New? Reviews in Endocrine and Metabolic Disorders, 2017, vol. 18, no. 4, pp. 183—193. DOI: 10.1007/s11154-017-9409-0
5. Carbone P.S., Murphy N.A., Norlin C., Azor V., Sheng X., Young P.C. Vitamin D and Autism: What’s New? Reviews in Endocrine and Metabolic Disorders, 2017, vol. 18, no. 4, pp. 964—972. DOI: 10.1007/s11154-017-9407-0
6. Cashin A., Buckley T., Trollor J.N., Lennox N. A scoping review of what is known of the physical health of adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 2013, vol. 43, no. 4, pp. 964—972. DOI: 10.1007/s10803-012-1640-7
7. Data & Statistics on Autism Spectrum Disorder / Centers for Disease Control and Prevention [Web resource]. URL: https://www.cdc.gov/ncbddd/autism/data.html (Accessed 20.08.2020).
8. De la Torre-Ubieta L., Won H., Stein J., Geschwind D.H. Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 2016, vol. 22, no. 4, pp. 345—361. DOI: 10.1038/nm.4071
33. Mumper E. Can Awareness of Medical Pathophysiology in Autism Lead to Primary Care Autism Prevention Strategies? *North American Journal of Medicine and Science*, 2013, vol. 6, no. 3, pp. 134–144. DOI:10.7156/najms.2013.0603134

34. Neale B.M., Kou Y., Liu L., Ma’ayon A., Samocha K.E., Sabo A., Lin C.F., Stevens C., Wang L.S., Makarav V., Polak P., Yoon S., Maguire J., Crawford E.L., Campbell N.G., Geller E.T., Valladares O., Schaefer C., Liu H., Daly M.J. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. *Nature*, 2012, vol. 485, no. 7397, pp. 242–345. DOI:10.1038/nature11011

35. Nicolaidis C., Kripke C.C., Raymaker D. Primary care for adults on the autism spectrum. *Medical Clinics of North America*, 2014, vol. 98, no. 5, pp. 1169–1191. DOI:10.1016/j.mcna.2014.06.011

36. Ornay A., Weinstein-Fudim L., Erzag Z. Prenatal factors associated with autism spectrum disorder (ASD). *Reproductive Toxicology*, 2015, vol. 56, pp. 155–169. DOI:10.1016/j.reprotox.2015.05.007

37. Petkagarkano O., Geschwind D.H. What does CNTNAP2 reveal about Autism Spectrum Disorder? *Trends in Molecular Medicine*, 2012, vol. 18, no. 3, pp. 156–163. DOI:10.1016/j.molmed.2012.01.003

38. Robison J.E. Autism prevalence and outcomes in older adults. *Autism Research*, 2019, vol. 12, no. 3, pp. 370–374. DOI:10.1002/aur.2080

39. Rosenberg R.E., Law J.K., Yenokyan G., McEachern K., Kaufmann W.E., Law P.A. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. *Archives of Pediatric and Adolescent Medicine*, 2009, vol. 163, no. 10, pp. 907–914. DOI:10.1001/archpediatrics.2009.98

40. Rossignol D.A., Genais S.J., Frye R.E. Environmental toxins and autism spectrum disorders: a systematic review. *Translational Psychiatry*, 2014, vol. 4, no. 2, article no. e360. DOI:10.1038/trp.2014.4

41. Roux A.M., Shattuck P.T., Cooper B.P., Anderson K.A., Wagner M., Narendorf S.C. Postsecondary employment experiences among young adults with an autism spectrum disorder. *Journal of the American Academy of Child and Adolescent Psychiatry*, 2013, vol. 52, no. 9, pp. 931–939. DOI:10.1016/j.jaac.2013.05.019

42. Rubenstein E., Wiggins L.D., Lee L. A Review of the Differences in Developmental, Psychiatric, and Medical Endophenotypes Between Males and Females with Autism Spectrum Disorder. *Journal of Developmental and Physical Disabilities*, 2013, vol. 27, no. 1, pp. 119–139. DOI:10.1007/s10803-014-9297-x

43. Rutten B.P.F., Mill J. Epigenetic Mediation of Environmental Influences in Major Psychotic Disorders. *Schizophrenia Bulletin*, 2009, vol. 35, no. 5, pp. 1045–1056. Article no. 10.1093/schbul/sbp104

44. Sanders S., Martha M., Gupta A., Murdoch J.D., Rauschen M.J., Wilkey J.A.A., Erceg-Senecke G., DiLallo N.N., Neelroop N., Parikhsh J.L., Stein M.F., Walker G.T., Ober N.A., Teran Y.S., El-Fishawy P., Martha R.C., Choi M., Overture J.D., Bjornson R.D., State M.W. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. *Nature*, 2012, vol. 484, no. 7397, pp. 237–241. DOI:10.1038/nature10945

45. Sandin S., Lichtenstein P., Kaja-Hallkala R., Larsson H., Hallman C.M., Reichenberg A. The familial risk of autism. *The Journal of the American Medical Association*, 2014, vol. 311, no. 17, pp. 1770–1777. DOI:10.1001/jama.2014.14144

46. Sandin S., Schendel D., Magnusson P., Hallman C., Surén P., Susser E., Granberg T., Gissler M., Gannes N., Gross R., Henning M., Bresnahan M., Sourander A., Horning M., Carter K., Francis R., Parner E., Leonard H., Rosanoff M., Stoltenberg C., Reichenberg A. Autism risk associated with parental age and with increasing difference in age between the parents. *Molecular Psychiatry*, 2016, vol. 21, no. 5, pp. 693–700. DOI:10.1038/mp.2015.70

47. Sagar Y., Braun E., Porter K., Barroite D., Hanks C. Addressing medical needs of adolescents and adults with autism spectrum disorders in a primary care setting. *Autism*, 2018, vol. 22, no. 1, pp. 51–61. DOI:10.1177/1362361317709970

48. Schmidt R.J., Tancredi D.J., Krakowiak P., Hansen R.L., Ozonoff S. Autism risk associated with parental age and with increasing difference in age between the parents. *Molecular Psychiatry*, 2013, vol. 18, no. 3, pp. 156–163. DOI:10.1016/j.molmed.2012.01.003

49. Sokol C.M., Faroqui N., Verly M., Lim T.K., Ruthazer E.S. Maternal immune activation in neurodevelopmental disorders. *Translational Psychiatry*, 2014, vol. 4, no. 2, article no. e360. DOI:10.1038/trp.2014.4

50. Starkstein S., Gellar S., Parlier M., Payne L., Piven J. High rates of parkinsonism in adults with autism. *Journal of Neurodevelopmental Disorders*, 2015, vol. 7, article no. 29. DOI:10.1186/s11689-015-9125-6

51. Stotland N.E., Sutton P.M., Trowbridge J., Atchley D.S., Conry J.A., Trasande L., Gerbert B., Charlesworth A., Woodruff T.J., Storton E.C., parentheses L., Ozonoff S. Autism risk associated with parental age and with increasing difference in age between the parents. *Molecular Psychiatry*, 2016, vol. 21, no. 5, pp. 693–700. DOI:10.1038/mp.2015.70

52. Stubbins G., Henley K., Green J. Autism: Will vitamin D supplementation during pregnancy and early childhood reduce the recurrence rate of autism in newborn siblings? *Medical Hypotheses*, 2016, vol. 88, no. 17, pp. 74–78. DOI:10.1016/j.mehy.2016.01.015

53. Wallace G.L., Kenworthy L., Pugliese C.E., Popal H.S., White E., Brodsky E., Martin A. Real-World Executive Functions in Adults with Autism Spectrum Disorder: Profiles of Impairment and Associations with Adaptive Functioning and Co morbidity Anxiety and Depression. *Journal of Autism and Developmental Disorders*, 2016, vol. 46, no. 3, pp. 1071–1083. DOI:10.1007/s10803-015-2655-7

54. Wang C., Geng H., Liu W., Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. *Medicine (Baltimore)*, 2017, vol. 96, no. 18, e6696. DOI:10.1097/MD.0000000000006696

55. Warfield M.E., Crossman M.K., Delahaye J., De Werder E., Kuhlthau K.A. Physician Perspectives on Providing Primary Medical Care to Adults with Autism Spectrum Disorders (ASD). *Journal of Autism and Developmental Disorders*, 2015, vol. 45, no. 7, pp. 2209–2217. DOI:10.1007/s10803-015-2366-9

56. Wehman P.H., Schluch M.C., McDonough J., Kregel J., Brooke V., Molinelli A., Ham W., Graham C.W., Erin Riehle J., Collins H.T., Thiss W. Competitive employment for youth with autism spectrum disorders: early results from a randomized clinical trial. *Journal of Autism and Developmental Disorders*, 2014, vol. 44, no. 3, pp. 487–500. DOI:10.1007/s10803-013-1892-x
57. Weiss J.A., Burnham Riosa P. Thriving in Youth with Autism Spectrum Disorder and Intellectual Disability. Journal of Autism and Developmental Disorders, 2015, vol. 45, no. 8, pp. 2474–2486. DOI:10.1007/s10803-015-2412-y
58. Yassa H.A. Autism: A form of lead and mercury toxicity. Environmental Toxicology and Pharmacology, 2014, vol. 38, no. 3, pp. 1016–1024. DOI:10.1016/j.etap.2014.10.005
59. Yip B.H.K., Leonard H., Stock S., Stoltenberg C., Francis R.W., Gissler M., Gross R., Schendel D., Sandin S. Caesarean section and risk of autism across gestational age: a multi-national cohort study of 5 million births. International Journal of Epidemiology, 2017, vol. 46, no. 2, pp. 429–439. DOI:10.1093/ije/dyw336
60. Zerbo O., Joss A.M., Walker C., Ozonoff S., Hansen R.L., Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (Childhood Autism Risks from Genetics and Environment) study. Journal of Autism and Developmental Disorders, 2013, vol. 43, no. 1, pp. 25–33. DOI:10.1007/s10803-012-1540-x
61. Zerbo O., Massolo M.L., Qian Y., Croen L.A. A Study of Physician Knowledge and Experience with Autism in Adults in a Large Integrated Healthcare System. Journal of Autism and Developmental Disorders, 2015, vol. 45, no. 12, pp. 4002–4014. DOI:10.1007/s10803-015-2579-2
62. Zuckerman K.E., Lindly O.J., Sinche B.K. Parental concerns, provider response, and timeliness of autism spectrum disorder diagnosis. The Journal of Pediatrics, 2015, vol. 166, no. 6, pp. 1431–1439. DOI:10.1016/j.jpeds.2015.03.007

Информация об авторах
Ципан Рейчел М., научный сотрудник Департамента психиатрии, Калифорнийский университет в Беркли, Сан-Франциско, США, ORCID: https://orcid.org/0000-0002-2585-9415, e-mail: rachel.tsipan@berkeley.edu
Паренте Чина И., координатор клинических исследований Департамента психиатрии, Калифорнийский университет в Сан-Франциско, СФ, США, ORCID: https://orcid.org/0000-0001-6812-9263 e-mail: China.Parenteau@ucsf.edu
Хендрен Роберт Л., DO, профессор психиатрии, директор программы исследований нейроонтогенетических и трансляционных результатов (PRONTO), Калифорнийский университет в Сан-Франциско, Сан-Франциско, США, ORCID: https://orcid.org/0000-0001-8470-4862 e-mail: Robert.Hendren@ucsf.edu

Information about the authors
Rachel M. Tsipan, Research Assistant of the Department of Psychiatry, University of California Berkeley, San Francisco, United States, ORCID: https://orcid.org/0000-0002-2585-9415, e-mail: rachel.tsipan@berkeley.edu
China I. Parenteau, Clinical Research Coordinator of the Department of Psychiatry, University of California San Francisco, San Francisco, United States, ORCID: https://orcid.org/0000-0001-6812-9263, e-mail: China.Parenteau@ucsf.edu
Robert L. Hendren, DO, Professor of Psychiatry, Director of Program for Research on Neurodevelopmental and Translational Outcomes (PRONTO), University of California San Francisco, San Francisco, United States, ORCID: https://orcid.org/0000-0001-8470-4862, e-mail: Robert.Hendren@ucsf.edu

Получена 06.04.2020
Принята в печать 11.08.2020