Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comparison of four regions in the replicase gene of heterologous infectious bronchitis virus strains

Shankar P. Mondal and Carol J. Cardona*

Department of Population Health and Reproduction, University of California, Davis, CA 95616, USA

Received 15 December 2003; returned to author for revision 9 January 2004; accepted 24 March 2004

Abstract

Infectious bronchitis virus (IBV) produces six subgenomic (sg) mRNAs, each containing a 64 nucleotide (nt) leader sequence, derived from the 5' end of the genome by a discontinuous process. Several putative functional domains such as a papain-like proteinase (PLpro), main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and RNA helicase encoded by the replicase gene are important for virus replication. We have sequenced four regions of the replicase genes corresponding to the 5'-terminal sequence, PLpro, Mpro, and RdRp domains from 20 heterologous IBV strains, and compared them with previously published coronavirus sequences. All the coronavirus 5'-termini and PLpro domains were divergent, unlike the Mpro and the RdRp domains that were highly conserved with 28% and 48% conserved residues, respectively. Among IBV strains, the 5' untranslated region including the leader sequence was highly conserved (>94% identical); whereas, the N-terminal coding region and the PLpro domains were highly variable ranging from 84.6% to 100%, and 77.6% to 100% identity, respectively. The IBV Mpro and RdRp domains were highly conserved with 82.7% and 92.7% conserved residues, respectively. The BJ strain was the most different from other IBVs in all four regions of the replicase. Phylogeny-based clustering based on replicase genes was identical to the antigen-based classification of coronaviruses into three groups. However, the IBV strain classification based on replicase gene domains did not correlate with that of the type-specific antigenic groups. The replicase gene sequences of many IBVs recovered from infected chickens were identical to those of vaccine viruses irrespective of serotype, suggesting that either there has been an exchange of genetic material among vaccine and field isolates or that there is a convergent evolution to a specific replicase genotype. There was no correlation between the genotype of any region of the replicase gene and pathotype, suggesting that the replicase is not the sole determinant of IBV pathogenicity.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Coronaviruses; Infectious bronchitis virus; Leader sequence; Main protease; Papain-like proteinase; Recombination; Replicase gene; RNA-dependent RNA polymerase; 5' untranslated region

Introduction

Avian infectious bronchitis virus (IBV), the prototype species of the family Coronaviridae, causes an acute and highly contagious disease of chickens. Numerous IBV strains exist, and clinical signs of the disease they cause vary from mild to severe. More than 20 IBV serotypes have been recognized worldwide, which are defined by cross-reactivity among the structural proteins (Cowen and Hitchner, 1975; Hopkins, 1974). Live vaccines containing strains of IBV from multiple serotypes are routinely used in commercial chicken flocks. Disease outbreaks in commercial flocks occur when new viruses emerge from existing viruses by mutations, insertions, deletions, or recombination (Cavanagh et al., 1992; Gelb et al., 1991; Kusters et al., 1990). However, because these conclusions are based on available sequence from structural genes, viral evolution has only been described for this small part of the genome. Because only two IBVs have been fully sequenced, it has been impossible to fully understand the viral evolutionary process including the extent to which vaccine viruses have contributed genetic material to pathogenic field strains.

Six subgenomic (sg) mRNA species are transcribed from the IBV genome in virus-infected cells. This includes a genome-length mRNA (mRNA 1) of 27.6 kb and five sg species (mRNA 2–6) with sizes ranging from 2 to 7 kb. These mRNAs form a 3'-co-terminal nested structure (Stern and Sefton, 1984), each containing a short nontranslated leader sequence (64 nucleotides (nt)), derived from the 5'
end of the genome by a discontinuous process. The phenomenon of leader switching has been described for several coronaviruses including IBV (Chang et al., 1994; Makino et al., 1988; Stirrups et al., 2000). The mRNA 1 contains two large overlapping open reading frames (ORF 1a and 1b) encoding 441- and 300-kDa polyproteins, respectively (Boursnell et al., 1987). By a unique frameshifting mechanism, the downstream ORF 1b is produced as a fusion protein of 741 kDa with 1a (Brierley et al., 1987, 1989). These polyproteins are proteolytically processed into smaller products required for RNA synthesis and other aspects of viral replication. Four main structural proteins are encoded by sgRNAs: the spike (S) glycoprotein (mRNA 2), the small envelope (E) protein (mRNA 3), the membrane (M) glycoprotein (mRNA 4), and the nucleocapsid (N) protein (mRNA 6) (Lai, 1990; Spaan et al., 1988; Sutou et al., 1988). The S1 fragment of the spike protein carries antigenic epitopes that induce virus-neutralizing (VN) antibody, and also determines virus serotype (Cavanagh et al., 1988). The S1 fragment of the spike protein is highly conserved among all coronaviruses unlike the 5' terminus (Cavanagh and Davis, 1986; Cavanagh et al., 1986).

Two overlapping papain-like protease (PL(pro) domains encoded between nucleotides (nt) 4243 and 5553 (amino acids (aa) 1239–1675), and a picornavirus 3C-like protease (3C-LP) domain encoded between nt 8937 and 9357 (aa 2804–2943), are involved in the production of mature viral proteins required for replication (Liu and Brown, 1995; Liu et al., 1994, 1995, 1997). Proteolytic processing of the polyproteins by equivalent protease activities has been demonstrated in murine and human coronaviruses (reviewed in Lim et al., 2000; Ng and Liu, 2000). Despite the conservation of function, there are some organizational differences in PL(pro) domains between IBV and some other coronaviruses (Herold et al., 1993; Lee et al., 1991). Because of its key role in replicase gene expression, 3C-LP has been termed the coronavirus main protease (M(pro), Ziebuhr et al., 2000). The IBV PL(pro) domain-1 (PL1(pro)), encoded between nt 4243 and 5019 (aa 1239–1497), is responsible for cleavage of the N-terminal regions of 1a and 1a/1b polyproteins in IBV-infected cells, whereas the PL(pro) domain-2 (PL2(pro)) encoded between nt 4681–5553 (aa 1385–1675) is reported to be functionally inactive in IBV (Lim and Liu, 1998; Lim et al., 2000; Liu et al., 1995). A more important role in the processing of polyproteins is played by the M(pro), which is responsible for the cleavage of other regions of the ORF 1a and 1a/1b polyproteins (Liu et al., 1994, 1997, 1998; Ng and Liu, 1998, 2002). The catalytic center of both proteases consists of His and Cys residues in all coronaviruses (reviewed in Lim et al., 2000; Ng and Liu, 2000). The processed products constitute a group of replicative enzymes, including the RNA-dependent RNA polymerase (RdRp) and RNA helicase. Therefore, the significance of the coronavirus leader sequence and several putative functional domains essential for viral replication made them logical choices for sequence analysis and phylogenetic comparisons to correlate with the serological or pathological classification of coronaviruses.

Phylogeny-based clustering based on replicase genes is identical to the original antigen-based classification of coronaviruses (Chouiljenko et al., 2001; Hegyi and Ziebuhr, 2002; Stephensen et al., 1999). However, within the group 3 coronaviruses, no comparisons of replicase-based and antigen-based phylogenies have been made. One report has described the alignment of the 5’-proximal region of replicase genes from a limited number of IBV strains (Stirrups et al., 2000), and a few reports describe IBV M(pro) and RdRp domains from the Beaudette strain only (Hegyi and Ziebuhr, 2002; Stephensen et al., 1999). Here, we have sequenced four regions of the replicase gene corresponding to the 5’-terminal end, PL(pro), M(pro), and RdRp domains from 20 heterologous IBV strains, and compared then with previously published IBV and other coronavirus sequences. We present evidence that (i) the M(pro) and RdRp regions are highly conserved among all coronaviruses unlike the 5’-terminal sequence and PL(pro) domains, (ii) the clustering of heterologous IBV strains based on the replicase gene sequences does not correlate with the antigen-based S1 phylogeny, (iii) several widely used IBV vaccines and field strains isolated over the past decade have closely related replicase genes suggestive of a possible common ancestry or a converging evolution, and (iv) the replicase gene is unlikely to be the sole determinant of IBV pathogenicity.

Results

The 5’-terminal sequences (nt 1–1263)

The nt sequence alignment data obtained from the IBV 5’-termini are presented in Table 1, Figs. 1 and 2a. The leader sequences (nt 1–64) of H52, CU705, CU510, Ark99, ArkDPI, CU805, CU570, GA98, Cal99, CU994, K1699, Gray, and BJ strains are identical to each other and each have 3 nt substitutions compared to the Beaudette strain (Fig. 1). The DE072 virus has four, the vaccine and challenge M41 strains, and CU-T2 have three, Ma5, K0751, and Florida have two, and Conn has a single nt substitution compared to the Beaudette strain (Fig. 1). The leader junction sequences termed as leader transcription-regulating sequences (TRSs) are absolutely conserved in all of the IBV strains compared. The sequence distance data (Table 1) obtained from the whole 5’ UTR (nt 1–528) indicate that nt sequence identities were 94–100% among all IBV strains in this region. The N-terminal coding region (nt 529–1263) of the 5’ terminal sequence is more variable with the lowest identity represented by the BJ strain at 84.6–86% identity with the other strains. Pairwise comparisons of the N-terminal sequences from other strains revealed 89.7–100% identity irrespective of serotype, geographic source, and virulence (Table 1). The challenge strain NV M41 is identical to the vaccine strain M41 in the noncoding region but in the coding region has a single nt change that results in an amino acid change (data not shown). These relationships
are graphically shown in the phylogenetic tree created from the nt sequences of the entire 5′ terminal region (Fig. 2a). No detectable sequence similarity was found when IBV 5′ terminal sequences were compared to those of coronaviruses from other groups (data not shown).

The PLpro domains (nt 4243–5553: aa 1239–1675)

Sequence distance data derived from multiple alignments of the two overlapping PLpro domains of IBV strains revealed 77.6–100% identity in PL1pro and 79–100% in PL2pro.

Table 1

Nucleotide identities in the 5′ UTR (nt 1–528: right-hand side) and the N-terminal coding region (nt 529–1263) of the replicate gene of 21 IBV strains

Virus	5′ UTR	N-terminal coding region
Beau	M41a	Ma5
	98.7	96.8
M41a	92.9	96.8
Ma5	94.6	99.6
H52	94.6	100
K0751	94.1	99.3
CU705	94.0	98.6
Conn	94.4	98.2
CU510	94.4	99.7
Florida	94.4	98.2
CUT2	93.9	99.0
Ark99	94.8	97.0
ADPI	94.7	99.9
DE072	94.6	99.6
CU805	93.5	97.8
CU570	94.0	99.2
GA98	94.6	99.7
Cal99	94.8	99.7
CU994	94.4	99.6
K1699	90.8	99.0
Gray	94.6	99.5
BJ	84.8	85.8

Sequences with >95% identity are indicated in bold letters.

* Because of the overall sequence identity of the vaccine and challenge strains of M41, for brevity, only the vaccine strain is included in this table.

N-terminal coding region

Fig. 1. Alignment of the first 80 nucleotides from cDNA sequences derived from the 5′ end of 22 heterologous IBV strains. The gray shading represents differences between sequences. The leader sequence is denoted by a solid black line above the sequence and the leader junction sequence is boxed.
PL2$^{\text{pro}}$, with the former being more variable than the latter (Table 2). The BJ strain differed the most from other strains by 18.1–22.4% in PL1$^{\text{pro}}$ and 16.5–21% in PL2$^{\text{pro}}$. The catalytic Cys1274 and His1437 residues in the PL$^{\text{pro}}$ domains are conserved in all IBV strains (Fig. 3). In the overlapping area of the PL$^{\text{pro}}$ domains, a region of 24 residues with more heterogeneity has been identified, where only two residues (Phe1470 and Lys1485) are conserved among all IBV strains (Fig. 3). In this heterogeneous region, the vaccine and challenge M41 and BJ strains each differed by 12 aa (50%), Conn, CU510, Florida, CU805, and Gray each differed by 11 aa (45%), CU705, Ark99, and Cal99 strains each differed by 10 aa (40%), and all other strains are identical to each other and differed by 9 aa (37.5%) when compared to the Beaudette strain sequence. In the complete PL$^{\text{pro}}$ domain, the NV M41 challenge strain has 1 nt and 1 aa difference from the M41 vaccine strain. The relationships between the different sequences are shown in the phylogenetic tree derived from analysis of the aa sequences of the entire PL$^{\text{pro}}$ region (aa 1239–1675) (Fig. 2b). No detectable sequence similarity was found when IBV PL$^{\text{pro}}$ sequences were compared to the PL$^{\text{pro}}$ sequences of coronaviruses from other groups (data not shown).

The M$^{\text{pro}}$ (aa ORF1a 2804–2943) and the RdRp (aa ORF1b 548–780) domains

The alignments of the deduced aa sequences of IBV M$^{\text{pro}}$ and RdRp domains are summarized in Table 3. The overall sequences are highly conserved in which there are 82.7% (116 aa) absolutely conserved residues in M$^{\text{pro}}$ and 92.7% (216 aa) absolutely conserved residues in RdRp (data not shown). The remaining 24 aa differences found in M$^{\text{pro}}$ and 17 aa differences in RdRp are distributed throughout the domains (Table 3). The M$^{\text{pro}}$ and RdRp domains of ArkDPI, GA98, and Gray strains are identical to each other and those of the challenge NV M41 and vaccine M41 strains are also identical to each other. These relationships are graphically shown in the phylogenetic tree created from the aa sequences of the M$^{\text{pro}}$ and RdRp domains (Figs. 2c and d).

By aligning with the corresponding regions of prototype members of other coronavirus groups, all M$^{\text{pro}}$ had 28% (40 aa) absolutely conserved residues including catalytic Cys-His dyad and three substrate-binding sites (Tyr-Met-His), and the RdRp had 47.6% (111 aa) absolutely conserved residues (data not shown). The four RdRp motifs (DXXXD, SGXXXTXXXN, SDD, and K) appear to be fully conserved.
in all coronaviruses. The IBV Mpro domains have 38.7–40.1% similarity with 229E, 38.5–41.5% with MHV, 39.2–41.5% with BoCV, and 43.4–44.8% with the SARS coronavirus in pairwise comparisons.

Whereas the IBV RdRp has 60.9–62.7% similarity with 229E, 60.4–61.8% with TGEV, 66.1–68.2% with BoCV, and 66.1–68.2% with SARS coronavirus. The phylogenetic trees created from both Mpro and RdRp of various coronaviruses cluster into the three major antigenic groups (data not shown).

Table 2

Virus	PLPD-1	PLPD-2
Beau		
M41a	89.0	
Ma5	84.2	100
H52	83.8	99.7
K0751	83.8	96.9
CU705	83.2	95.9
Conn	87.3	
CU510	82.8	
Florida	87.3	
CUT2	84.9	
Ark99	89.7	84.5
ADPI	84.2	84.2
DE072	83.5	84.2
CU805	82.5	84.2
CU570	83.8	84.2
GA98	83.8	84.2
Cal99	83.8	84.2
K1699	81.4	84.2
Gray	86.9	84.2
BJ	81.1	84.2

Sequences with >95% identity are indicated in bold letters.

*Because of the overall sequence identity of the vaccine and challenge strains of M41, for brevity, only the vaccine strain is included in this table.

in all coronaviruses. The IBV Mpro domains have 38.7–40.1% similarity with 229E, 45.1–45.8% with TGEV, 38.5–41.5% with MHV, 39.2–41.5% with BoCV, and 43.4–44.8% with the SARS coronavirus in pairwise comparisons. Whereas the IBV RdRp has 60.9–62.7% similarity with 229E, 60.4–61.8% with TGEV, 66.5–68.7% with MHV, 66.1–68.2% with BoCV, and 66.1–68.2% with SARS coronavirus. The phylogenetic trees created from both Mpro and RdRp of various coronaviruses cluster into the three major antigenic groups (data not shown).

Fig. 3. Amino acid sequence alignment of the papain-like proteinase domains of 22 IBV strains indicating the catalytic Cys1274 and His1417 residues marked as asterisks (*) and the more variable region marked by thick bar (—) below the alignment. Residue numbers are given above the sequence; four-digit numbers are ended at the labeled residue. The internal sequences not presented in this alignment are indicated by dashes (—).
Strains	Exchange of aa in the Mpro at position	Exchange of aa in the RdRp at position
Beau	T I Q N H T Q H G T V K E I A T V T V N I H F E I A V S S I I N S P L V F A S E	
M41	S G V N V S I P Y P I Y V F A S E	
Ma5	Y V N N V S I P Y P I Y V F A S E	
H52	V N V S P Y T P D D S I Y S	
K075	S Y V N R D V S I P Y T D S	
C1705	V N N V S I P Y T D S	
Conn	A N R D V S	
CU510	V N V S P Y T D S	
Florida	A N R D V S	
CUT2	H S V N R D V S	
Ark99	S A N R D V S	
ArkDPI	S A N R D V S	
DE072	Y V N N V S P Y T P D D S I Y G	
CU805	V N V S P Y I T V D	
Cu570	A N R D V S	
GA98	S A N R D V S	
Ca99	V N R D V S A V T D S	
Cu3994	S A N R D V S	
K1699	V S A N I R D V S	
Gray	S A N R D V S	
BJ	S D V G N R M S	

(a) Amino acid residues identical to that of Beaudette virus are indicated as dots (.).

(b) Because of the overall sequence identity of the vaccine and challenge strains of M41, for brevity, only the vaccine strain is included in this table.
Discussion

The findings of the present study can be summarized as: (i) the Mpro and RdRp regions are highly conserved among all coronaviruses unlike the 5'-terminal sequence and PLpro domains, (ii) the clustering of heterologous IBV strains based on the replicate gene sequences does not correlate with the antigen-based S1 phylogeny, (iii) several widely used IBV vaccines and field strains isolated over the past decade have closely related replicate gene sequences suggestive of a possible common ancestry or a converging evolution, and (iv) the replicate gene is unlikely to be the sole determinant of IBV pathogenicity.

Coronaviruses fall into three antigenic groups (Dea et al., 1990), which are defined by cross-reactivity among the structural proteins. Unlike the structural proteins, the coronavirus replicate gene name is not subjected to immune selective pressure. Therefore, one would expect that the replicate gene would be highly conserved among coronavirus groups. In fact, this is the case when the Mpro and RdRp sequences are compared (Table 3) and as others have reported for other coronavirus groups (Chouljenko et al., 2001; Gonzalez et al., 2003; Hegyi and Ziebuhr, 2002; Stephensen et al., 1999). We found a high percentage of sequence similarities in coronavirus Mpro (with 28% absolutely conserved residues), including the substrate recognition site, and an even higher similarity in the RdRp (with 48% absolutely conserved residues), including the polymerase motifs. However, two-way sequence comparisons of the coronavirus 5'-termini and the PLpro domains of ORF1a had very low sequence identity between coronaviruses of different groups as has been reported by others (Herold et al., 1999). Despite the fact that these regions have varying degrees of genetic diversity, the relationships between the coronaviruses of different groups are the same, no matter what region of the genome is compared. When recombination occurs (Cavanagh and Davis, 1988), it would seem to occur within the major coronaviruses antigenic groups, but not between them. This is expected because in order for recombination to occur, two viruses must be present in the same cell, which is unlikely between coronaviruses adapted to different host species. The highly conserved Mpro-mediated processing pathways as well as the substrate binding sites of this enzyme in all coronaviruses (Anand et al., 2003; Hegyi and Ziebuhr, 2002) make this proteinase an attractive target for the development of drugs directed against coronaviruses. The active domains of RdRp also maintain a high degree of homology among all coronaviruses, as has been found in other RNA viruses (Koonin and Dolja, 1993; Otsuka et al., 1999), making this proteinase another potential target for drugs controlling coronaviruses.

With IBV, the phylogenies of the four regions of the replicate gene did not correlate with those of the S1 gene, which correspond to the type-specific antigenic groups (Fig. 2). For example, unlike the S1 genes, the replicate genes of the Ma5 and H52 Mass serotype viruses consistently clustered with those of non-Mass strains (Figs. 2a–d). The common clustering of replicate genes of these heterologous IBV strains could be due to an introduction of a replicate gene from a common source through introduction. Others have speculated that IBV strains substitute large genomic fragments in multiple genes (Lee and Jackwood, 2000) because the viability of the progeny viruses depends on the specific interactions of more than one gene working in concert to maintain structural and replicative integrity. Alternatively, it is probably more likely that the smaller S1 genes are exchanged between viruses through recombination and the stable replicate backbone is maintained. It is entirely possible that recombination events have occurred to introduce new replicate or new S1 genes into these viruses.

Leader acquisition in mRNA synthesis appears to be TRS dependent, and the leader-to-body joining is guided by a base-pairing interaction involving leader and body TRSs (Hiscox et al., 1995; Pasternak et al., 2001). The phenomenon of leader switching involves a recombination event over a region comprising the leader sequence and the adjacent 5' UTR (Chang et al., 1996). Previous reports have suggested that the leader sequences of IBV strains may contain higher (17.2%) substitution rates when compared to the complete 5' UTR (4.3%; Stirrups et al., 2000). In our study, the 5' UTR of all 22 IBV strains are highly conserved (94–100% identity), indicating the exchange of leader or adjacent 5' UTR fragments has occurred in mixed infections. This observation is supported by experimental evidence of the exchange of leader sequences among heterologous IBV strains (Stirrups et al., 2000) and in mixed MHV infections (Makino et al., 1986). The sequence comparison scores are more variable in the N-terminal coding region (Table 1), and the most in PLpro domains (Table 2) including a more variable region in the latter (Fig. 3) than the IBV Mpro and RdRp domains (Table 3). The reason for sequence variation in the N-terminal half of ORF1a among IBV strains is not clear.

The genetic variations in the 5' terminal region and PLpro gene suggest that there is some selective pressure on these regions. We speculate that there are some replicate genotypes that may confer a selective advantage to the virus. We examined both the 5' terminal region and the PLpro gene by year and location of isolation, but excluded the Mpro and RdRp genes because they are so highly conserved that no clear differences between isolates can be discerned. In the 5' terminal region and the PLpro gene, the IBV strains isolated from commercial chickens over the past decade cluster with three specific vaccine virus strains, ArkDPI, H52, and Ma5, no matter where in the United States they were isolated. There are three exceptions to this clustering, the 5' terminal region of the Gray virus isolated in 1960 (Winterfield and Hitchner, 1962) clusters with modern field strains (Fig. 2a), although its PLpro gene is more like the Conn and Florida reference viruses isolated in 1956 and 1971, respectively (Jungherr et al., 1956; Winterfield et al., 1971) (Fig. 2b).
addition, there are two modern field isolates, one from China (BJ) and one from California (K1699) isolated in 2003 and 2001, respectively, that are outliers and do not appear to have 5’ termini or PLpro genes that are related to other viruses (Figs. 2a and b). This common clustering of three widely used vaccines and IBV field isolates from the past decade suggests to us that there may be a common evolutionary progression in the 5’ terminal region and in the PLpro gene. Although the 5’ terminal region genotype found in modern isolates was present in 1960, when the Gray virus was isolated, it appears to be more prevalent today. The question arises as to why this type of progression to a specific genotype would have occurred and how it could have happened. As to the question of why, we speculate that the more modern genotype must offer some fitness advantage to the virus. As to how it could have occurred, we consider the widespread use of multiple types of modified live vaccines in both the broiler and egg layer commercial poultry industries as the possible mechanism by which this modern replicase gene genotype was introduced. The Ark, Conn, and Mass (Ma5, H52) strains have been used simultaneously as live vaccines among commercial poultry (Cavanagh and Naqi, 2003). Although we cannot prove or disprove that recombination has occurred, we can point to the evolutionary trends in the S1 gene as compared to the evolutionary trends in the replicase gene. The trends in S1 evolution have been toward ever increasing diversity (Jia et al., 2002), while it appears that the replicase gene is evolving to less variety between isolates. These juxtaposed evolutionary trends suggest that (1) these two regions are under very different selective pressures and thus undergo much different rates and modes of change, and (2) the exchange of genetic material may have occurred between vaccine strains and field isolates.

The genetic basis of IBV pathogenicity is not known. The role of the replicase gene in the virulence of IBV has not been established, and it is likely that some changes in the Mpro or viral polymerase would influence viral replication rate, and thus the pathogenic potential of a virus. In some RNA viruses, replicase genes are known to contain the determinants of species tropism and virulence factors (Brandt et al., 2001; Hatta et al., 2001; Yao et al., 2001). In our study, there were no differences in any essential residues in Mpro and RdRp domains. In addition, we found that there was no clear relationship between viral pathotype and replicase genotype. As an example, the H52 vaccine strain is very closely related to the virulent DE072 isolate in all regions of the replicase (99.8% identity in the 5’ terminus, 99.5% in PLpro, 99.3% in Mpro, 99.6% in RdRp) despite their differences in pathotype. In addition, a direct comparison of the replicase genes of the M41 challenge and vaccine strains where there were very few aa differences between the two strains with clearly different pathotypes. None of the aa changes between the two M41 strains were consistently observed in either all virulent or all avirulent strains. These findings would support our contention that the genotype of the replicase is not the sole determinant of pathogenicity among strains of IBV.

Materials and methods

Experimental design

Twenty IBV strains from nine different serotypes, Mass (M41, NV M41, Ma5, H52, K0751, CU705), Conn (Conn, CU510), Florida, CU-T2, Arkansas (Ark-99, ArkDPI), Delaware 072 (DE072, CU805, CU570), Georgia 98 (GA98), California 99 (Ca99, CU994, K1699), and Gray, were used in this study (Table 4). These virus strains were selected because they are very common vaccine and field strains that are frequently isolated from commercial chickens and are associated with clinical disease. All the reference IBV strains were obtained from Dr. Syed Naqi’s laboratory (Cornell University, Ithaca), where they had been propagated in specific pathogen-free (SPF) embryonated chicken eggs to maintain the stock. In our laboratory, all of the viruses were also propagated in 9-day-old embryonated SPF eggs (Charles River SPAFAS, Wilmington, MA). Four regions of the replicase gene from 20 heterologous IBV strains, which correspond to the 5’-termini, and the PLpro, the Mpro, and the RdRp domains (Fig. 4), were sequenced and compared with those of previously published IBV (Beaudette, BJ) and other coronavirus sequences.

Viral RNA extraction, RT-PCR amplification and sequencing

Genomic RNA was extracted from virus-inoculated allantoic fluid with TRIzol reagent (Invitrogen Co., Carlsbad, CA) following the manufacturer’s instructions. The first strand cDNA synthesis and subsequent PCR were performed using GeneAmp RNA PCR kit (Perkin-Elmer Cetus, Norwalk, CT) following the manufacturer’s instructions. The selected regions of the replicase genes were amplified with primers synthesized from conserved regions designed by aligning IBV Beaudette sequence and sequences from other coronaviruses. The PCR profiles involved an initial denaturation for 4 min at 94 °C followed by 35 cycles of annealing at 55 °C for 30 s, extension at 72 °C for 1 min, and melting at 94 °C for 1 min. The amplified products were directly sequenced at a commercial sequencing facility (Davis Sequencing, Davis, CA). The genome sense Pol32 (5’-CAGAGGTTGCGCATAGA-3’) and anti-sense Pol1501 (5’-GACCACCCTCTGGGTACC-3’) primers were used to amplify the 5’-termini that correspond to nt 32–1501 of the Beaudette sequence (Boursnell et al., 1987). The 5’ ends of all IBV strains were amplified with FirstChoice RLM-RACE cDNA amplification kit (Ambion Inc., Austin, TX) using genomic antisense Pol1263 (5’-GCTTGGCAAGACAAGTTCCTGC-3’) primer according to the manufacturer’s protocol. The Pol1263 paired with another inner site primer Pol133 (5’-
GGCACCTGGCCACCTGTCAGG-3'

V

selected from conserved areas (by aligning 11 IBV sequences including the Beaudette virus) could amplify nt 133–1263 (according to Beaudette sequence) of all IBV strains tested in our laboratory (data not shown). Three more consensus primer pairs were used to amplify other regions as follows: primers for the overlapping PLpro amplification are PL55 (5'-AGGATAAA-GAAATYCTCTTC-3') and PL58 (5'-GGACCACAYAAA-GAACCCTC-3'); primers for Mpro amplification are Mp51 (5'-CGCCACGTTACTCTATTGGT-3') and Mp33 (5'-GCCGCATAGAGCCATGCTAC-3'); and primers for RdRp amplification are Rp52 (5'-CTACTATGACTAATAGGCAG-3') and Rp31 (5'-CTGAGAAAGCTCTTGATAGAG-3').

Sequence analysis

Assembly of contiguous sequences, translation of nt sequence into protein sequence, and initial multiple sequence alignments were performed with Vector NTI Suite 9 software (InforMax, North Bethesda, MD). Selected sequences from GenBank were included in the alignment. After the alignment, the AlignX program constructs a phylogenetic tree employing the neighbor-joining method. Comparisons with published sequences were made by performing BlastN search (GenBank). Pairwise blast searches were also performed when there were no significant hits with BlastN search.

GenBank accession numbers

The accession numbers for IBV replicase gene sequences are as follows: (a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.

(a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.

(a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.

(a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.

(a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.

(a) the 5'-termini: M41, AY392047; NV M41, AY561719; Ma5, AY561720; H52, AY392048; K0751, AY561721; CU705, AY561722; Conn, AY392049; CU510, AY561723; Florida, AY392050; CU-T2, AY561724; Ark99, AY392051; ArkDPI, AY392052; DE072, AY392054; CU805, AY561725; CU570, AY561726; GA98, AY392053; Cal99, AY392055; CU994, AY561727; K1699, AY392058.
AY561728; Gray, AY392056; (b) the PL pro : M41, AY561730, H52, AY392058; K0751, AY561731; CU705, AY561732; Conn, AY392059; CU510, AY561733; Florida, AY392060; CU-T2, AY561734; Ark99, AY392061; ArkDPI, AY392062; DE072, AY392064; CU570, AY561735; GA98, AY392065; CU994, AY561736; K1699, AY561737; Gray, AY392066; (c) the cis-acting motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. J. Virol. 70, 680 –691.

Beaudette, F.R., Hudson, C.B., 1937. Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Asso. 90, 51 –60.

Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., Binns, M.M., 1987. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 68, 57 –77.

Brandt, M., Yao, K., Liu, M., Heckert, R.A., Vakharia, V.N., 2001. Molec-
ular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J. Gen. Virol. 82, 2927–2933.

Cavanagh, D., Hinch, S.B., 1975. Serotyping of avian infectious bronchi-
tis viruses by the virus-neutralization test. Avian Dis. 19, 583 –595.

Dea, S., Verbeek, A.J., Tijssen, P., 1990. Antigenic and genomic relation-
ships among turkey and bovine enteric coronaviruses. J. Virol. 64, 3112 –3118.

Gelb Jr., J., Perkins, B.E., Rosenberger, J.K., Allen, P.H., 1981. Serologic and cross-protection studies with several infectious bronchitis virus iso-
lates from Delmarava-reared broiler chickens. Avian Dis. 25, 655 –666.

Gelb Jr., J., Wolff, J.B., Moran, C.A., 1991. Variant serotypes of infectious bronchitis virus isolated from commercial layer and broiler chickens. Avian Dis. 35, 82 –87.

Cavanagh, D., Davis, P.J., Cook, J.K.A., Li, D., Kant, A., Koch, G., 1992. Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol. 21, 33–43.

Chang, R.Y., Hofmann, M.A., Sethna, P.B., Brian, D.A., 1994. A cis-acting function for the coronavirus leader in defective interfering RNA repli-

Cavanagh, D., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., 1987. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 75, 11974–11982.

Cavanagh, D., Davis, P.J., 1986. Coronavirus IBV: removal of spike glyco-
oprotein S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J. Gen. Virol. 67, 1443–1448.

Cavanagh, D., Davis, P.J., 1988. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 69, 621–629.

Cavanagh, D., Naqi, S., 2003. Infectious bronchitis. In: Saif, Y.M., McDoug-
gald, L.R., et al. (Eds.), Diseases of Poultry, 11th ed. Iowa State Univ. Press, Ames, IA, pp. 101–119.

Cavanagh, D., Davis, P.J., Pappin, D.J., 1986. Coronavirus IBV glyco-

Cavanagh, D., Naqi, S.A., 2003. Infectious bronchitis. In: Saif, Y.M., McDou-
gald, L.R., et al. (Eds.), Diseases of Poultry, 11th ed. Iowa State Univ. Press, Ames, IA, pp. 101–119.

Cavanagh, D., Naqi, S.A., 2003. Infectious bronchitis. In: Saif, Y.M., McDou-
gald, L.R., et al. (Eds.), Diseases of Poultry, 11th ed. Iowa State Univ. Press, Ames, IA, pp. 101–119.
Johnston, R.B., Marquardt, W.W., Newman, J.A., 1973. A new serotype of infectious bronchitis virus responsibe for respiratory disease in Arkansas broiler flocks. Avian Dis. 17, 518–523.

Jungherr, E.L., Chomiak, T.W., Luginbuhl, R.E., 1956. Immunological differences in strains of infectious bronchitis virus. Proceedings of the 60th Annual Meeting of the U.S. Livestock Sanitary Association, Chicago, Illinois, pp. 203–209.

Koonin, E.V., Dolja, V.V., 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28, 375–430.

Kusters, J.G., Jager, E.J., Nieters, H.G., van der Zeijst, B.A., 1990. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine 8, 605–608.

Lai, M.M., 1990. Background paper. Transcription and replication of coronavirus mRNAs can be freely reassorted: evidence for the role of leader sequences of murine coronavirus. Virology 163, 104–111.

Martin, M.P., Waknell, P.S., Woolcock, P., 2001. Evaluation of commercially produced infectious bronchitis virus vaccines against an IBV field isolate obtained from broilers in California. Proceedings of the fiftieth Western Poultry Disease Conference, Sacramento, CA, March 2001.

Mondal, S.P., Lucia-Martinez, B., Naqi, S.A., 2001. Isolation and characterisation of a novel antigenic subtype of infectious bronchitis virus serotype DE072. Avian Dis. 45, 1054–1059.

Ng, L.F., Liu, D.X., 1998. Identification of a 24-kDa polypeptide processed from the coronavirus infectious bronchitis virus 1a polyprotein by the 3C-like proteinase and determination of its cleavage sites. Virology 243, 388–395.

Ng, L.F., Liu, D.X., 2000. Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site. Virology 272, 27–39.

Ng, L.F., Liu, D.X., 2002. Membrane association and dimerization of a cysteine-rich, 16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein. J. Virol. 76, 6257–6267.

Otsuka, J., Kikuchi, N., Kojima, S., 1999. Similarity relations of DNA and RNA polymerases investigated by the principal component analysis of amino acid sequences. Biochim. Biophys. Acta 1434, 221–247.

Pasternak, A.O., van den Born, E., Spaan, W.J.M., Snijder, E.J., 2001. Sequence requirements for RNA strand transfer during nido-virus discontinuous subgenomic RNA synthesis. EMBO J. 20, 7220–7228.

Spaan, W., Cavanagh, D., Horznzic, M.C., 1988. Coronavirus: structure and genome expression. J. Gen. Virol. 69, 2939–2952.

Stephensen, C.B., Casebolt, D.B., Gangopadhyay, N.N., 1999. Phylogenetic analysis of a highly conserved region of the polymerase gene from 11 coronaviruses and development of a consensus polymerase chain reaction assay. Virus Res. 60, 181–189.

Stern, D.F., Selton, B.M., 1984. Coronavirus multiplication: locations of genes for virion proteins on the avian infectious bronchitis virus genome. J. Virol. 50, 22–29.

Stirrup, K., Shaw, K., Evans, S., Dalton, K., Cavanagh, D., Britton, P., 2000. Leader switching occurs during the rescue of defective RNAs by heterologous strains of the coronavirus infectious bronchitis virus. J. Gen. Virol. 81, 791–801.

Sutou, S., Sato, S., Okabe, T., Nakai, M., Sasaki, N., 1988. Cloning and sequencing of genes encoding structural proteins of avian infectious bronchitis virus. Virology 165, 589–595.

Winterfield, R.W., Hitchner, S.B., 1962. Etiology of an infectious nephritis–nephrosis syndrome of chickens. Am. J. Vet. Res. 23, 1273–1279.

Winterfield, R.W., Fadly, A.M., Hanley, J.E., 1971. Characteristics of an isolate of infectious bronchitis virus from chickens in Florida. Avian Dis. 15, 305–311.

Yao, Y., Mingay, L.J., McCauley, J.W., Barclay, W.S., 2001. Sequences in influenza A virus PB2 protein that determine productive infection for an avian influenza virus in mouse and human cell lines. J. Virol. 75, 5410–5415.

Ziebuhr, J., Snijder, E.J., Gorbalenya, A.E., 2000. Virus-encoded proteases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81, 853–879.