The Influence of Mineral Fertilizer Combined With a Nitrification Inhibitor on Microbial Populations and Activities in Calcareous Uzbekistanian Soil Under Cotton Cultivation

Dilfuza Egamberdiyeva¹*, Muhiddin Mamiev¹, and Svetlana K. Poberejskaya²

¹Institute of Microbiology, Uzbek Academy of Sciences, Abdulla Qadiriyy str. 7 B, 700128 Tashkent, Uzbekistan; ²Institute of General and Inorganic Chemistry, 700170 Tashkent, Uzbekistan

Application of fertilizers combined with nitrification inhibitors affects soil microbial biomass and activity. The objective of this research was to determine the effects of fertilizer application combined with the nitrification inhibitor potassium oxalate (PO) on soil microbial population and activities in nitrogen-poor soil under cotton cultivation in Uzbekistan. Fertilizer treatments were N as urea, P as ammophos, and K as potassium chloride. The nitrification inhibitor PO was added at urea and ammophos at the rate of 2%. Three treatments—N200P140K60 (T1), N200POP140K60 (T2), and N200P280PK60 (T3) mg kg⁻¹ soil—were applied for this study. The control (C) was without fertilizer and PO. The populations of oligotrophic bacteria, ammonifying bacteria, nitrifying bacteria, denitrifying bacteria, mineral assimilating bacteria, oligonitrophilic bacteria, and bacteria group Azotobacter were determined by the most probable number method. The treatments T2 and T3 increased the number of oligonitrophilic bacteria and utilization mineral forms of nitrogen on the background of reducing number of ammonifying bacteria. T2 and T3 also decreased the number of nitrifying bacteria, denitrifying bacteria, and net nitrification. In conclusion, our experiments showed that PO combined with mineral fertilizer is one of the most promising compounds for inhibiting nitrification rate, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the cotton plants. PO combined with mineral fertilizer has no negative effects on nitrogen-fixing bacteria Azotobacter and oligonitrophilic bacteria.

KEY WORDS: ammonophos, cellulose decomposition, microorganisms, nitrification inhibitor, urea

DOMAINS: agronomy, soil microbiology

INTRODUCTION

Nitrogen fertilizers in the form of urea are commonly applied in Uzbekistan in order to increase cotton yield in less fertile soils. The ammonia (NO₃⁻) formed through nitrification of urea is susceptible to loss through leaching and may contribute to NO₃ pollution of surface and groundwaters. Treatments of fertilizers in combination with nitrification inhibitors have been suggested as a technique to reduce nitrification rate and NH₃ volatilization[1,2,3,4]. A nitrification inhibitor may potentially reduce NO₃⁻ losses due to leaching from NH₃-N—liberating fertilizer materials, including organic nitrogen sources, by maintaining nitrogen as NH₄⁺, which is less susceptible to loss from the soil through this route and through NH₃ volatilization[5,6,7,8]. Soil microorganisms are thus of great importance to the nitrogen nutrition of crop vegetation. Such microorganisms are sensitive to changes in the surrounding soil[9,10], and it has been shown that microbial populations change after fertilization[11,12,13]. Fertilizer can directly stimulate the growth of microbial populations as a whole by supplying nutrients, and may affect the composition of...
individual nitrification inhibitor potassium oxalate (PO) on soil microbial populations has, however, not been investigated for Calcosol. The purpose of this study was to investigate the influence of mineral fertilizer combined with PO on the soil microbial population, activities, and nitrification rate in nitrogen-deficient calcareous soil under cotton cultivation in Uzbekistan.

MATERIALS AND METHODS

Study Site and Soil Sampling

Sites used in this study represent continuously cultivated (more than 50 years) cotton fields located in Kalinin province north-eastern part of Uzbekistan. Soil type is calcareous Calcosol having a calcic horizon within 80 cm of the surface. The orichic horizon is low in organic matter. The climate is semiarid with mean annual air temperatures of 16 and 18°C, and mean annual rainfall of 200 mm. Soil samples were taken from the top 10 cm of soil in an existing cotton field. The cores were pooled; field-moist soils were sieved (<2 mm) directly after collection. The soil samples were kept in black polyethylene bags and stored at 4°C. These “fresh” field-moist, sieved samples were used for the incubation study.

Pot Experiments

Soil microbial activity and nitrogen transformation in soils amended with the mineral fertilizers combined with PO were studied in small pots in laboratory experiments with three replicates. Field-moist subsamples (1 kg) of each treatment replicate were placed in pots and treated with N as urea at a rate of 200 mg kg⁻¹, ammonium as P at a rate of 140 mg kg⁻¹, and potassium chloride as K at a rate of 60 mg kg⁻¹ soil. PO was added to urea and ammonophos at a rate of 2%. The control pots (NPK) received no PO or fertilizer. Three treatments—N₂₀₋₅₀P₁₄₀K₂₀ (T1), N₂₀₀P₁₄₀K₂₀(T2), and N₂₀₀P₁₄₀₀K₂₀ (T3)—were applied for this study. The tested pots were then placed in incubators maintained at 27°C for 45 days.

Soil Chemical and Physical Analysis

Air-dried samples were analyzed for the total C, N, P, K, and Mg contents. Soil particle distribution was determined using natrium phosphate. The soil chemical and physical properties are presented in Table 1. The total carbon content (C_tot) was identified by elementary analysis, while total nitrogen content (N_tot) was determined by the Kjeldahl method. The molybdenum blue method determined the total phosphorus content (P_tot) in the soil. Potassium (K) was determined using the flame photometric method[17]. The atom absorption spectrophotometer (AAS) was employed to measure calcium chloride (CaCl₂) and extractable magnesium[18]. Soil pH value was measured by means of an electrometer.

Soil Microbiological Analyses

After 45 days the pots were removed from the incubation and were analyzed for microbiologic tests. The plate dilution method was used for determination of numerous microorganisms using an agar medium. In order to count the number of microorganisms, 10 g of soil were shaken with 90 ml of ster.-distilled water. From this suspension the serial dilution (1:10) was prepared; plate counts were performed in triplicate and incubated until growth occurred (usually 3 to 7 days). Colony forming units (CFU) of ammonifying bacteria were enumerated on glycerine peptone agar. Mediums containing 10 g of starch, 2 g of (NH₄)₂SO₄, 1 g of K₂HPO₄, 1 g of MgSO₄, 3 g CaCO₃, 1 g of NaCl, and 15 g of agar 1⁻¹ were used for mineral assimilating bacteria. Nitrifying bacteria were determined on plates containing 2 g of (NH₄)₂SO₄, 1 g of K₂HPO₄, 0.5 g of MgSO₄, 0.1 g FeSO₄, 5 g CaCO₃, and 0.4 g NaCl ¹⁻ for liquid medium. Denitrifying bacteria and Clostridium were determined on Giltay medium containing 1 g KNO₃, 1 g K₂HPO₄, 2 g MgSO₄, 0.2 g CaCl₂, 0.1 mg FeCl₃, and 0.1% solution of bromthymol blue. Oligotrophic bacteria were determined on soil agar containing 900 ml water, 100 g soil, and 18 g agar ¹⁻. Oligonitrophilic bacteria and Azotobacter were determined on Ephsi agar containing 0.2 g K₂HPO₄, 0.2 g MgSO₄, 0.2 g of NaCl, 0.1 g K₂SO₄, 5 g CaCl₂, 20 g sacharose, and agar 15 g ¹⁻.

Soil Biochemical Measurements

Cellulose-degrading activity and amino acid formation of the soil was measured according to the methods in Swyaginzev[19]. Cellulose material was placed into the soil for an incubation period of 45 days. The material was then removed and the cellulose degradation percentage was analyzed. Net nitrifications were measured by incubating the soil samples with the soil moisture content adjusted to 60% of the water holding capacity (WHC), at 28°C for 45 days. The method used is described in detail in Arisitowskaya[20]. The data were analyzed using the statistical analysis of variance by outlined in Tepper[21].

Table 1: The Soil Chemical and Physical Properties
Soil Chemical Properties, mg 100 g⁻¹ (0 to 30 cm soil depth)
C_tot
200
RESULTS AND DISCUSSION

Changes in Soil Microbial Populations

T2 and T3 decreased the number of oligotrophic bacteria compared to the control (Fig. 1). The decrease of colonization frequency of oligotrophic bacteria after inhibitor nitrification in cotton plants has also been reported[6]. Oligotrophic microorganisms are able to survive in nutrient-poor soil; the input of high concentrations of nutrients inhibited their activity. The T1 and T2 decreased the number of mineral-assimilating bacteria, while control and ammonospos increased the number of these group bacteria (Fig. 1). In particular, decreasing soil water potential following mineral N application and declining pH resulting from nitrification of NH₄⁺ sources are known to reduce the activity of mineral-assimilating microorganisms[22].

The number of ammonifying bacteria was reduced by T1, T2, and T3 (Fig. 1). This shows the utilization of mineral forms of nitrogen in soil on the background of reducing number of ammonifying bacteria. A decreased number of ammonifying bacteria after application nitrification inhibitor in Calciisol soil has been previously reported[6]. The decrease in microbial indices in the fertilizer treatments could indicate a change in the quality of organic matter to a less available substrate for ammonifying bacteria than in the unfertilized soil[23]. T1, T2, and T3 exhibited an oligonitrophilic bacteria population seven times that of the control (Fig. 1). None of the treatments had a negative effect on nitrogen-fixing bacteria Azotobacter (data not shown). According to Miyana et al.[24], Kucharski[25], and Govenderica et al.[26] the treatments of nitrification inhibitors also increased the number of oligonitrophilic bacteria and had no negative effects on Azotobacter.

The application of fertilizer without nitrification inhibitors had no effect on nitrifying bacteria. Treatments T2 and T3 decreased the number of nitrifying bacteria compared to the control (Fig. 2). The results showed that PO inhibited nitrifiers, which was reflected in the reduction of NO₃⁻ losses through leaching from fertilizer material. Other authors also reported that Thio-urea inhibited the nitrifying activity of nitrifiers, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the rice plants and indicated a potentiality as a nitrification inhibitor[27,28].

The number of denitrifying bacteria in the T2 and T3 samples decreased significantly (by a factor of 25) in comparison with the control (Fig. 2). Denitrifying activity is an indicator of carbon mineralization of soil. Nitrogen fertilization may result in an unbalanced nutrient composition in the soil, which can reduce the denitrifying activity of bacteria. Nitrification inhibitors have a very marked effect on denitrifying microorganisms’ production of N₂ and N₂O through reduction of NO₃ because it blocks reduction of N₂O to N₂ by these microorganisms[29]. It has also been found that urea fertilization increases pH value and results in decreased microbial biomass and activity[30].

Changes in Biochemical Properties

The application of fertilizer increased net nitrification by six times compared to the control (Fig. 3). T2 and T3 decreased the net nitrification compared with fertilizer alone. Nitrification inhibitors reduced the rate of nitrification and so increased the thermal time required for NH₄-N depletion and NO₃-N accumulation in soil amended with NH₄-N–forming materials, compared with fertilizer alone. Some authors suggest the reduction of nitrification after application of nitrification inhibitors[3,8,13]. Our results indicate that PO slows the rate of nitrification and may effectively reduce potential NO₃- leaching losses.

To assess the potential value of a PO in soil, it is important to have information on other studies concerning the formation of nitrogen in soil. The study of the effect of PO on cellulose degradation activity in soil showed that T1, T2, and T3 increased the cellulose degradation activity of soil, which indicates an increased number of cellulose-degrading microorganisms (Fig. 4). Other authors also found that after the application of mineral fertilizers, the number of cellulytic microorganisms became

![FIGURE 1. Influence of mineral fertilizer combined with PO on the number of oligotrophic and mineral-assimilating bacteria (left) and ammonifying and oligonitrophilic bacteria (right) (T1: N₂O₃P₂O₅K₂O; T2: N₂O₅P₂O₅K₂O; T3: N₂O₅P₁₄K₁₀).](image)
higher[26]. Additionally, all treatments increased the amino acid formation in the soil (Fig. 4). Similar results were found after the application of nitrification inhibitors AFGUM in Calciisol soil[6].

CONCLUSIONS

It was clearly demonstrated that fertilization supplemented with a nitrification inhibitor influenced soil microorganisms. All combinations of mineral fertilizers combined with PO during the incubation had an inhibitory effect on the activity of oligotrophic bacteria, ammonifying bacteria, and denitrifying bacteria. The marked stimulus effect on the number of bacteria during the incubation was achieved with T3, the lowest with T2. To summarize, the work reported in this paper suggests that PO combined with mineral fertilizers had no adverse effects on the biological nitrogen fixing bacteria Azotobacter, while increasing the activity of oligonitrophilic bacteria, the cellulose degrading activity, and the amino acid formation in soil. PO was indicated potentially as a nitrification inhibitor for the soil of urea used in this study. The treatment T3 decreased the net nitrification compared with fertilizer alone. In conclusion, PO is one of the promising nitrification inhibitor compounds for reducing potential NO$_3^-$ leaching losses from materials caused by nitrifying microorganisms during cotton plant establishment.
REFERENCES

1. McCarty, G.W. and Bremner, J.M. (1990) Evolution of 2-ethyl-1-pyridine as a soil nitrification inhibitor. Soil Sci. Soc. Am. J. 54, 1017–1021.
2. Malzer, G.L. (1979) Progress with nitrification inhibitors. Down Earth 25, 1–3.
3. Malhi, S.S. and Nylorg, M. (1982) An evaluation of carbon disulphide as a sulphur fertilizer and as a nitrification inhibitor. Plant Soil 65, 203–218.
4. Freney, J.R., Smith, C.J., and Mosier, A.R. (1992) Effect of a new nitrification inhibitor (wax coated calcium carbide) on transformations and recovery of fertilizer nitrogen by irrigated wheat. Fertil. Res. 32, 1–11.
5. Bremner, J.M. and Krogmeier, M.J. (1989) Effects of nitrification inhibitors on germination of various seeds in soil. Biol. Fertil. Soil 8, 369–372.
6. Poberejkaya, S.K. and Egamberdiyeva, D. (1993) The influence of organic and mineral fertilizers on the soil biological activity. In Proceedings from Fertilizer-95, Tashkent, Uzbekistan, 97.
7. Kholdeharin, B., Mozafer, A., and Frossard, E. (1998) Differential inhibition of nitrification by three metabolic inhibitors. J. Plant Nutr. 21, 929–936.
8. Smith, K. and Hadley, P. (1992) Nitrogen fertilizer value of activated sewage derived protein: effect of environment and nitrification inhibitor on NO3-release, soil microbial activity and yield of summer cabbage. Fertil. Res. 33, 47–57.
9. Schinner, F. and Sonnleitner, R. (1996) Bodenökologie: Mikrobiologied und Bodenenzymatik. Springer Verlag, Berlin.
10. Hodges, J.D. (1990) The importance of organic matter. II. Eco-Ag. Future for Farming pp. 10–11.
11. Dobbs, I. (1992) The changing face of soil fertility. Dairying Today. Farmhouse Publications, Auckland, New Zealand. p. 16.
12. Anonymous (1992) Fish fertilizer has proved soil stimulant. Straight Narrow 47, 7.
13. Hyman, M.R., Kim, C.Y., and Arp, D.J. (1990). Inhibition of ammonia monoxygenase in Nitrosomonas europaea by carbon disulfide. J. Bacteriol. 172, 4775–4782.
14. Khonje, D.J., Varsa, E.C., and Klube, B. (1989) The acidulation effects of nitrogenous fertilizers on selected chemical and microbiological properties of soil. Commun. Soil Sci. Plant Anal. 20, 1377–1395.
15. Sarathchandra, S.U., Perrot, K.W., and Littler, R.A. (1989) Soil microbial biomass: influence of simulated temperature changes on the size, activity and nutrient content. Soil Biol. Biochem. 21, 987–993.
16. Khamis, A.A., El-Sherbi, A.E., Awad, E., and Osman, F.A. (1990) Effect of nitrogen fertilizers combined with nitrification inhibitor on cotton plants. Zagasin J. Agric. Res. 13, 195–213.
17. Riehm, H. (1985) Arbeitsvorschrit zur Bestimmung der Phosphorsäure und des Kaliums nach Lakatmethode. Z. Pflanzenernaehr. Dueng. Bodenkld. 40, 52–156.
18. Schachtschnabel, P. and Heinemann, C.G. (1974) Beziehungen zwischen den Kaliumgehalten in Böden und in jungen Haferpflanzen. Z. Pflanzenernaehr. Dueng. Bodenkld. 137, 123–134.
19. Svyaginzev, M. (1987) Pochw i Microorganismi. Moskva, Izd-wo MGU.
20. Aristowskaya, T.W. (1960) Boloish pratikum po microbiologii. Moskva, Wissaya shkola.
21. Tepper, K. D. (1974) Metodi variazionsonoy statistiki. Moskva, Wissayh shtoka.
22. Soderstrom, B. Baath, E., and Lundgren, B. (1983) Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Can. J. Microbiol. 29, 1500–1506.
23. Nohrsedt, H.O., Arnebrant K., Baath, E., and Soderstrom, B. (1989) Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden. Can. J. For. Res. 19, 323–327.
24. Miyan, M.S. Islam, A.B., Zara, S.K., and Bhuian, N.L. (1986) Effect of inorganic N fertilizer and organic residue management on the microbial population in the paddy fields. Proceedings 14. Ann. Bangladesh Sci. Conf., Dhaka. 27–3001, 12–13.
25. Kucharski, J. (1991) Effect of nitrification intensity on the yield of winter wheat. Polish J. Soil Sci. 24, 57–63.
This article should be referenced as follows:

Egamberdiyeva, D., Mamiev, M., and Poberejskaya, S.K. (2001) The influence of mineral fertilizer combined with a nitrification inhibitor on microbial populations and activities in calcareous uzbekistan soil under cotton cultivation. In Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy. TheScientificWorld 1(S2), 108–113.

Received: July 28, 2001
Revised: October 10, 2001
Accepted: October 15, 2001
Published: October 30, 2001

BIOSKETCH

Dr. Dilfuza Egamberdiyeva is a Senior Scientist at the Institute of Microbiology, Tashkent, Uzbekistan. She earned her Ph.D. at the Humboldt University, Department of Agriculture and Horticulture, Berlin, Germany in 2000. In 2001 she conducted Postdoctoral research in the Department of Biosciences, Helsinki University, Finland. She has received several awards to attend international meetings. Dr. Egamberdiyeva has published research works in several books, journals, and proceedings, which are printed in European countries. Her research interests include soil microbiology, soil productivity, soil contamination, agricultural management, mineral and organic fertilizers, plant nutrition, and plant productivity.