LAZARSFELD-MUKAI BUNDLES ON K3 SURFACES ASSOCIATED WITH A PENCIL COMPUTING THE CLIFFORD INDEX

SARBESWAR PAL

Abstract. Let \(X \) be a smooth projective K3 surface over the complex numbers and let \(C \) be an ample curve on \(X \). In this paper we will study the semistability of the Lazarsfeld-Mukai bundle \(E_{C,A} \) associated to a line bundle \(A \) on \(C \) such that \(|A|\) is a pencil on \(C \) and computes the Clifford index of \(C \). We give a necessary and sufficient condition for \(E_{C,A} \) to be semistable.

1. Introduction

Let \(X \) be a smooth projective K3 surface over the complex numbers and \(C \) be a smooth projective ample curve in \(X \). Given a globally generated line bundle \(A \) on \(C \), the Lazarsfeld-Mukai bundle \(E_{C,A} \) is defined as the dual of the kernel of the evaluation map

\[
H^0(A) \otimes \mathcal{O}_X \to \iota_*(A),
\]

where \(\iota : C \to X \) is the inclusion. To study the behavior of certain invariants of a curve \(C \) along a linear system (for example Clifford index, gonality, gonality sequence etc) it has been essential to investigate the properties of the Lazarsfeld-Mukai bundles. Several authors have studied the Lazarsfeld-Mukai bundle in several contexts for example see [2], [4], [8], [7] and the references therein.

The study of the stability (Gieseker or slope) of vector bundles with respect to a given ample line bundle on algebraic varieties is a very active topic in algebraic geometry. The purpose of this paper is to study the stability of the Lazarsfeld-Mukai bundle \(E_{C,A} \) associated to a curve \(C \) on a K3 surfaces \(X \) and a globally generated line bundle \(A \) on \(C \). In [7] Margherita Lelli-Chiesa proved that if \(C \) is a \(\lfloor \frac{g+3}{2} \rfloor \)-gonal curve of genus \(g \) and Clifford dimension one and degree of \(A = d \) satisfies \(\rho(g, 1, d) = 2d - g - 2 > 0 \), then \(E_{C,A} \) is stable with respect to \(\mathcal{O}_X(C) \). In [5], Watanable has shown that if \(E_{C,A} \) is not slope semistable with respect to \(\mathcal{O}_X(C) \), the maximal destabilizing subsheaf of it contains an initialized and ACM line bundle with respect to \(\mathcal{O}_X(C) \), which gives a sufficient condition for \(E_{C,A} \) to be \(\mathcal{O}_X(C) \)-slope semistable and gave some examples.

Key words and phrases. K3 surface, Lazarsfeld-Mukai bundles, Clifford index.
In this article, we will show that if the Clifford index of \(C \) is strictly smaller than \(\left\lfloor \frac{g-1}{2} \right\rfloor - 1 \) and \(A \) is a pencil on \(C \) computing the Clifford index of \(C \), then \(E_{C,A} \) is never \(O_X(C) \)-slope stable. In fact we shall show that if \(E_{C,A} \) is semistable then it is free, that is, \(E_{C,A} \) is a direct sum of line bundles of the same slope. Hence \(C \) must have a decomposition of the form \(C \sim 2D \), where \(D \) is an effective divisor. More precisely we will prove the following theorem:

Theorem 1.1. Let \(C \) be a smooth projective curve on a smooth projective \(K3 \) surface \(X \) of Clifford index \(< \left\lfloor \frac{g-1}{2} \right\rfloor - 1 \). Let \(A \) be a globally generated pencil on \(C \) computing the Clifford index of \(C \). If \(E_{C,A} \) is semistable then it splits as a direct sum of line bundles of the same slope with respect to \(O_X(C) \) and \(C \) decomposes as \(C \sim 2D \) for some effective divisor \(D \) and the Clifford index of \(C \), is \(\left\lfloor \frac{g-1}{2} \right\rfloor - 2 \). In particular \(E_{C,A} \) can never be stable. Furthermore, if the Clifford index of \(C \), is strictly smaller that \(\left\lfloor \frac{g-1}{2} \right\rfloor - 2 \), then \(E_{C,A} \) is never semi-stable. Conversely, if the Clifford index of \(C \), is equals to \(\left\lfloor \frac{g-1}{2} \right\rfloor - 2 \) and \(C \) can be decomposed as \(C \sim 2D' \) but \(C \sim 2D' + kE + k\Delta \), where \(k \) is a positive integer, \(E \) is a smooth elliptic curve and \(\Delta \) is a \((-2)\) curve, then for a pencil \(A \) computing Clifford index of \(CE_{C,A} \) is semistable.

Notations and Conventions

We work over the complex number field \(\mathbb{C} \). Surfaces and curves are smooth and projective. For a curve \(C \), we denote by \(K_C \) the canonical line bundle of \(C \). For a line bundle \(L \) on a smooth projective variety \(X \), we denote by \(|L|\) the linear system defined by \(L \), i.e., \(|L| = \mathbb{P}(H^0(L)^*)\).

For a line bundle \(A \) on a curve \(C \), the Clifford index of \(A \) is defined as follows:

\[
\text{Cliff}(A) := \text{degree}(A) - 2\dim(|A|).
\]

The Clifford index of a curve \(C \) is defined as follows;

\[
\text{Cliff}(C) := \min\{\text{Cliff}(A) | h^0(A) \geq 2, h^1(A) \geq 2\}.
\]

Clifford’s theorem states that \(\text{Cliff}(C) \geq 0 \) with equality if and only if \(C \) is hyperelliptic, and similarly \(\text{Cliff}(C) = 1 \) if and only if \(C \) is trigonal or a smooth plane quintic. At the other extreme, if \(C \) is a general curve of genus \(g \) then \(\text{Cliff}(C) = [(g-1)/2] \), and in any event \(\text{Cliff}(C) \leq [(g-1)/2] \). We say that a line bundle \(A \) on \(C \) contributes to the Clifford index of \(C \) if \(A \) satisfies the inequalities in the definition of \(\text{Cliff}(C) \); it computes the Clifford index of \(C \) if in addition \(\text{Cliff}(C) = \text{Cliff}(A) \).

2. Linear System on K3 Surfaces

In this section we recall some classical results about line bundles and divisors on K3 surfaces.

Proposition 2.1. Let \(D \) be a non-zero effective divisor with \(D^2 \geq 0 \) on a K3 surface \(X \). Then one can write \(D \sim D' + \Delta \), where \(\Delta \) is the fixed component of \(D \) and \(D' \) is base point free. Let \(\Delta_1, \Delta_2, ..., \Delta_n \) be the connected reduced
components of Δ. Then one of the following holds:

(i) there exists an elliptic curve E, such that $D' \sim kE$, for some integer $k \geq 2$ and there exist one and only one connected reduced component Δ_1 of Δ such that $E \cdot \Delta_1 = 1$ and $\Delta_i \cdot E = 0$, for $i \neq 1$.

(ii) D' is an irreducible and $D' \cdot \Delta_i = 0$ or 1, $i = 1, 2, \ldots, n$.

Proof. See [9, 2.7].

Remark 2.2. (a) Note that any connected reduced component of Δ has self intersection number ≤ -2. Thus if Δ_1 is a connected reduced component of Δ, and the second case occurs then $D \cdot \Delta_1 < 0$. Thus if D is nef, then we get a contradiction. In other words, if D is nef then case (ii) does not occur. Similarly, in case (i), one can see that if D is nef, then $D \sim kE + \Delta$, where $k \geq 2$ and Δ is an irreducible (-2) curve.

(b) Further more if $D^2 = 0$, then $\Delta = 0$, hence $D \sim kE$ for some non-negative integer k.

Proposition 2.3. Let L be a line bundle on a K3 surface X such that $|L| \neq \emptyset$ and such that $|L|$ has no fixed components. Then either

(i) $L^2 > 0$, and the generic member of $|L|$ is an irreducible curve of arithmetic genus $\frac{1}{2}(L.L) + 1$. In this case $h^1(L) = 0$, or

(ii) $L^2 = 0$, then $L \cong (O_X(E))^\oplus k$, where k is an integer ≥ 1 and E an irreducible curve of arithmetic genus 1. In this case $h^1(L) = k$ and every member of $|L|$ can be written as a sum $E_1 + E_2 + \ldots + E_k$, where $E_i \in |E|$ for $i = 1, 2, \ldots, k$.

Proof. See [9, Proposition 2.6].

Proposition 2.4. Let L be a line bundle on a K3 surface X such that $|L| \neq \emptyset$. Then $|L|$ has no base points outside its fixed components.

Proof. See [9, Corollary 3.2].

Theorem 2.5. Let $|L|$ be a complete linear system on a K3 surface X, without fixed components, and such that $L^2 \geq 4$. Then L is hyperelliptic only in the following cases:

(i) There exists an irreducible curve E such that $p_a(E) = 1$ and $E.L = 1$ or 2.

(ii) There exists an irreducible curve B such that $p_a(B) = 2$ and $L \cong O_X(2B)$.

Proof. See [9, Theorem 5.2].

3. Structure of Lazarsfeld-Mukai bundles

In this section we recall the basic properties of the bundle $E_{C,A}$ of Lazarsfeld [6], associated to an irreducible smooth curve C in X and a globally generated line bundle A.

3
Let X be a $K3$ surface. Let C be an irreducible smooth curve in X and let A be a globally generated line bundle on C. Viewing A as a sheaf on X, consider the evaluation map:

$$H^0(C, A) \otimes O_X \rightarrow A.$$

Let $F_{C,A}$ be its kernel and $E_{C,A} := F^*_{C,A}$. Then $F_{C,A}$ fits in the following exact sequence on X.

$$0 \rightarrow F_{C,A} \rightarrow H^0(C, A) \otimes O_X \rightarrow A \rightarrow 0.$$

It is easy to check that $F_{C,A}$ is locally free. Dualizing the above exact sequence one gets

$$0 \rightarrow H^0(C, A)^* \otimes O_X \rightarrow E_{C,A} \rightarrow O_C(C) \otimes A^* \rightarrow 0.$$

Then it is easy to check that the following properties hold:

Lemma 3.1.
1. Rank of $E_{C,A} = h^0(C, A)$.
2. $\det(E_{C,A}) = O_X(C)$.
3. $c_2(E_{C,A}) = \deg(A)$.
4. $h^0(X, E_{C,A}^*) = h^1(X, E_{C,A}^*) = 0$.
5. $E_{C,A}$ is generated by its global sections off a finite set.
6. If $\rho(g,d,r) = g - (r + 1)(g - d + r) < 0$, then $E_{C,A}$ is non-simple.

Furthermore if $E_{C,A}$ is of rank 2, that is, $|A|$ is a pencil then $E_{C,A}$ has the following characterization.

Lemma 3.2. Let F be a non-simple vector bundle of rank 2 on X. There exists line bundles M, N on X and a zero-dimensional subscheme $Z \subset X$ such that F fits in an exact sequence

$$0 \rightarrow M \rightarrow F \rightarrow N \otimes I_Z \rightarrow 0$$

and either

(a) $M \geq N$ or
(b) Z is empty and the sequence splits, $F \cong M \oplus N$.

Proof. See [3, Lemma 4.4].

4. **The main theorem**

In this section we will prove the main theorem.

Lemma 4.1. Let C be an ample curve of genus g on X such that C can be decomposed as $C \sim C_1 + C_2$ such that $C_1.C = C_2.C$ with $C_1.C_2 \leq \left\lfloor \frac{g-1}{2} \right\rfloor$. If C has another decomposition $C \sim D_1 + D_2$ with $D_1.D_2 \leq \left\lfloor \frac{g-1}{2} \right\rfloor$ such that $D_1.C > D_2.C$, then $D_1.D_2 \leq C_1.C_2$, and the equality holds if and only if $D_1 \sim D_2 + kE + k\Delta$ where k is a positive integer, E is an elliptic curve and Δ is either zero or a connected reduced (-2) curve.
Proof. Note that since $C_1C_2 \leq \lfloor \frac{g-1}{2} \rfloor$, $(C_1 - C_2)^2 = C_1^2 + C_2^2 - 2C_1C_2 = C_2^2 - 4C_1C_2 \geq 0$. Thus $O_X(C_1 - C_2)$ has a section up to exchanging C_1 and C_2. Then we have two possibilities. (i) $C_1 - C_2 \sim 0$, then $C_1 - C_2 \sim D$ for some effective divisor D. Or (ii), $C_1 - C_2 \sim 0$.

If D is non-zero effective then since C is ample, $C.D > 0$, a contradiction. Thus $C_1 \sim C_2$. Since $D_1.D_2 \leq \lfloor \frac{g-1}{2} \rfloor$ and $D_1 \sim D_2$, as before $D_1 - D_2 \sim D$ for some non-zero effective divisor D. Thus we have

$$2D_1 \sim C + D \text{ and } 2D_2 \sim C - D,$$

which gives that $D_1^2 + D_2^2 = \frac{C_1^2}{2} + \frac{D^2}{2}$. Thus we have

$$C_1^2 = D_1^2 + D_2^2 + 2D_1.D_2$$

$$= \frac{C_1^2}{2} + \frac{D^2}{2} + 2D_1.D_2 \text{ which implies}$$

$$\frac{C_1^2}{2} - \frac{D^2}{2} = 2D_1.D_2. \quad (4)$$

On the other hand, $\frac{C_1^2}{2} = 2C_1C_2$. Thus we have

$$2C_1C_2 = 2D_1.D_2 + \frac{D^2}{2}. \quad (5)$$

Since $D^2 \geq 0$, $D_1.D_2 \leq C_1C_2$ and equality holds if and only if $D^2 = 0$. By Remark 2.2, $D \sim kE + k\Delta$ (Δ could be 0) where k is a positive integer and E is a smooth elliptic curve and Δ is a (-2) curve, which concludes the Lemma.

Lemma 4.2. Let C be an ample curve on a K3 surface X with Clifford index $\leq \lfloor \frac{g-1}{2} \rfloor$. Let A be a globally generated pencil on C computing the Clifford index. Then $E_{C,A}$ fits in an exact sequence of the form

$$0 \to M \to E_{C,A} \to N \to 0$$

where M, N are line bundles with $h^0(M), h^0(N) \geq 2$ and N is base point free.

Proof. Let A be a line bundle on C of degree d such that $h^0(A) = 2$ and A computes the Clifford index of C. Note that $c = d - 2$. By Riemann-Roch, we have $h^0(K_C \otimes A^*) = g - c - 1$. Thus from the exact sequence (2), we have

$$h^0(E_{C,A}) = 2 + h^0(K_C \otimes A^*) = g + 1 - c.$$

On the other hand, by Lemma 3.2, there are line bundles M, N satisfying the hypothesis of the Lemma and a zero-dimensional subscheme $Z \subset X$ such that $E_{C,A}$ fits in the following exact sequence:

$$0 \to M \to E_{C,A} \to N \otimes \mathcal{I}_Z \to 0.$$

Note that since $E_{C,A}$ is globally generated, N is also globally generated, hence $h^0(N) \geq 2$. If Z is empty, then M is also globally generated and if
Z is non-empty, then $M \geq N$. Thus in any case $h^0(M), h^0(N) \geq 2$. Let us assume that Z is non-empty. It is easy to see that $M|_C$ computes the Clifford index of C. Thus we have

$$c = M.C + 2 - 2h^0(M|_C)$$

which gives $h^0(M|_C) = \frac{M.C}{2} + 1 - \frac{c}{2}$.

On the other hand, by Riemann-Roch, we have

$$h^0(N|_C) = N.C + 1 - g + h^1(N|_C) = N.C + 1 - g + h^0(M|_C)$$

$$= N.C + 1 - g + \frac{M.C}{2} + 1 - \frac{c}{2}.$$

Since $E_{C,A}$ is globally generated off a finite set and by Proposition 2.4, N cannot have base points outside a fixed component, N is base point free. Thus if Z is nonempty, then $h^0(N \otimes \mathcal{I}_Z) < h^0(N)$. Thus we have,

$$g + 1 - c = h^0(E_{C,A})$$

$$\leq h^0(M) + h^0(N \otimes \mathcal{I}_Z)$$

$$< h^0(M) + h^0(N)$$

$$\leq h^0(M|_C) + h^0(N|_C)$$

$$= \frac{M.C}{2} + 1 - \frac{c}{2} + N.C + 1 - g + \frac{M.C}{2} + 1 - \frac{c}{2}$$

$$= M.C + N.C + 3 - g - c$$

$$= (M + N).C + 3 - g - c$$

$$= C^2 + 3 - g - c$$

$$= 2g - 2 + 3 - g - c$$

$$= g + 1 - c,$$

a contradiction. Thus $E_{C,A}$ fits in the following exact sequence

(7) \hspace{1cm} 0 \to M \to E_{C,A} \to N \to 0.

\[\square\]

Remark 4.3. Note that if the sequence, in the above Lemma does not split, then $M \geq N$. Thus $(M - N).C \geq 0$ for any irreducible curve C. In other words, $M \otimes N^*$ is nef.

Proof of the Theorem 1.1:

By Lemma 4.2, $E_{C,A}$ fits in an exact sequence of the form 7. If $M \sim N$ then, $h^1(M \otimes N^*) = h^1(O_X) = 0$. Hence the sequence splits and we are done. Let us assume $M \not\sim N$. Note that $M.N = c_2(E_{C,A}) = d$.

6
Now
\[(8) \]
\[
c_1(M \otimes N^*)^2 = M^2 + N^2 - 2M.N = M^2 + N^2 + 2M.N - 4M.N
\]
\[
= c_1(M \otimes N)^2 - 4d
\]
\[
= C^2 - 4d
\]
\[
= 2g - 2 - 4d \geq 0, \text{ since } c = d - 2 < \left\lfloor \frac{g-1}{2} \right\rfloor - 1.
\]

Since \(M \geq N \), the Euler characteristic computation says that \(M \otimes N^* \) has a section. In other words, \(|M \otimes N^*| \) contains an effective divisor.

Claim: \(h^1(M \otimes N^*) = 0 \)

Proof of the claim:

By Remark 4.3, \(M \otimes N^* \) is nef. Thus if \(M \otimes N^* \) is not base point free, then by Remark 2.2, there exists a smooth elliptic curve \(E \) and a rational curve \(\Gamma \) such that \(M \otimes N^* \cong \mathcal{O}_X(kE + \Gamma) \), where \(k \) is an integer \(\geq 2 \) and \(E, \Gamma = 1 \).

But \(h^0(\mathcal{O}_X(kE + \Gamma)) = k + 1 \). Thus the Euler characteristic computation says that \(h^1(\mathcal{O}_X(kE + \Gamma)) = 0 \).

Let us assume \(M \otimes N^* \) is base point free.

If \(c_1(M \otimes N^*)^2 > 0 \), then by Proposition 2.3, \(h^1(M \otimes N^*) = 0 \) and we are done in this case. If \(c_1(M \otimes N^*)^2 = 0 \), then by Proposition 2.3, \(M \otimes N^* \cong \mathcal{O}_X(kE) \), where \(k \) is a positive integer and \(h^1(M \otimes N^*) = k - 1 \).

Note that \(M \otimes 2 = \mathcal{O}_X(C + kE) \). Thus we have \(2M.C = C^2 + kC.E > 2g - 2 \).

On the other hand, since \(E_{C,A} \) is semistable with respect to \(\mathcal{O}_X(C) \), \(M.C \leq g - 1 \) which is a contradiction. Thus we have \(h^1(M \otimes N^*) = 0 \), in other words, the sequence (7) splits and \(E_{C,A} \cong M \oplus N \).

Since \(E_{C,A} \) is semistable, \(M.\mathcal{O}_X(C) = N.\mathcal{O}_X(C) \). Thus \(C \) has a decomposition of the form \(C \sim C_1 + C_2 \), where \(\mathcal{O}_X(C_1) = M \) and \(\mathcal{O}_X(C_2) = N \) and \(C.C_1 = C.C_2 \). From the proof of Lemma 4.1, we have \(C_1 \sim C_2 \). Thus we have \(C \sim 2D \) for some effective divisor \(D \) and

\[
\text{Cliff}(C) = d - 2 = M.N - 2 = D^2 - 2 = \frac{2g - 2}{4} - 2 = \frac{g - 1}{2} - 2.
\]

That proves the first part of the Theorem 1.1.

Conversely, let \(C \sim 2D \) but \(C \sim 2D' + kE \) for any positive integer \(k \) and for any elliptic curve \(E \) and \(\text{Cliff}(C) = \left\lceil \frac{g-1}{2} \right\rceil - 2 \). Let \(A \) be a globally generated pencil computing the Clifford index of \(C \). Let us assume that \(E_{C,A} \) is not semistable. If the subbundle \(M \) in 7 is not destabilizing, that is \(M.\mathcal{O}_X(C) \leq g - 1 \), then from the first part of the proof one can see that the sequence 7 splits. Thus \(E_{C,A} = M \oplus N \) and \(N \) destabilizes \(E_{C,A} \). Therefore in any case either \(M.\mathcal{O}_X(C) \) or \(N.\mathcal{O}_X(C) \) is bigger than or equals to \(g \). Write \(M = \mathcal{O}_X(D_1) \) and \(N = \mathcal{O}_X(D_2) \), where \(D_1, D_2 \) are effective divisors.

Without loss of generality we assume, that \(C.D_1 > C.D_2 \). Thus we have a decomposition of \(C \) of the form \(C \sim D_1 + D_2 \) with \(C.D_1 > C.D_2 \). By Lemma 4.1, we have \(D_1.D_2 \leq D^2 = \frac{g-1}{2} \). If \(D_1.D_2 < \frac{g-1}{2} \), then \(\text{Cliff}(C) < \frac{g-1}{2} - 2 \),
a contradiction. Thus \(D_1 \cdot D_2 = D^2 \). Again by Lemma 4.1, this can happen if and only if \(C \sim 2D' + kE + k\Delta \) for some positive integer \(k \), where \(E \) is an elliptic curve and \(\Delta \) is a \((-2)\) curve. But by hypothesis, that is not possible. Hence we get a contradiction. Therefore \(E_{C,A} \) is semistable.

5. Examples

Let \(X \) be the K3 surface given by a smooth quartic hypersurface in \(\mathbb{P}^3 \). Let \(C \) be a quadric hypersurface section. In other words, \(C \) is a complete intersection of two hypersurfaces of degree 4 and 2 respectively. Clearly \(C \) is an ample curve in \(X \). Then we have the following facts [1, p.199, F-2]:

- \(W^1_3(C) = \emptyset \)
- \(W^1_4(C) \neq \emptyset \)
- \(W^3_8(C) \neq \emptyset \)
- \(W^3_8(C) - W^2_2(C) \subset W^1_4(C) \)
- \(W^2_7(C) = W^2_8(C) - W^1_1(C) \).

Thus the Clifford index of \(C \) is 2 and computed by a line bundle \(A \) of degree 4. Also note that the genus of the curve \(C \) is 9. Thus the Clifford index of \(C \) satisfies the hypothesis of the Theorem 1.1. It is easy to check that \(C \) has a decomposition as \(C \sim 2D \) where \(D \) is hyperplane section of \(X \). Thus \(C \) and \(A \) satisfies the hypothesis of the Theorem 1.1. Hence \(E_{C,A} \) is semistable.

References

[1] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J.: Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985.
[2] Ciliberto, Ciro; Pareschi, Giuseppe Pencils of minimal degree on curves on a K3 surface. J. Reine Angew. Math. 460 (1995), 15-36.
[3] Donagi, Ron; Morrison, David R., Linear systems on K3-sections. J. Differential Geom. 29 (1989), no. 1, 49-64.
[4] Green, Mark; Lazarsfeld, Robert, Special divisors on curves on a K3 surface. Invent. Math. 89 (1987), no. 2, 357-370.
[5] Kenta Watanabe, Slope semistability of rank 2 Lazarsfeld-Mukai bundles on K3 surfaces and ACM line bundles, https://arxiv.org/pdf/1503.06682.pdf
[6] Lazarsfeld, Robert, Brill-Noether-Petri without degenerations. J. Differential Geom. 23 (1986), no. 3, 299-307.
[7] Lelli-Chiesa, Margherita, Generalized Lazarsfeld-Mukai bundles and a conjecture of Donagi and Morrison. Adv. Math. 268 (2015), 529-563.
[8] Pal, Sarbeswar, An elementary proof of Lelli-Chiesa’s theorem on constancy of second coordinate of gonality sequence, https://arxiv.org/pdf/1708.00641.pdf
[9] Saint-Donat, B. Projective models of K3 surfaces. Amer. J. Math. 96 (1974), 602-639.