Menstrual factors, reproductive history, hormone use, and Urothelial carcinoma risk: A prospective study in the EPIC cohort

Leila Lujan-Barroso 1,2,3, Edoardo Botteri 4, 5, Saverio Caini 6, Börje Ljungberg 7, Nina Roswall 8, Anne Tjønneland 8,9, Bas Bueno-de-Mesquita 10, 11, 12, 13, Inger T. Gram 14, Rosario Tumino 15, Lambertus A. Kiemeyen 16, Fredrik Liedberg 17, Tanja Stocks 18, Marc J. Gunter 19, Neil Murphy 19, Iris Cervenka 20, Agnès Fournier 20, Marina Kvaskoff 20, Christel Häggström 21, 22, Kim Overvad 23, Eiliv Lund 14, Marit Waaseth 24, Renée Turzanski Fortner 25, Tilman Kühn 25, Virginia Menéndez 26, Maria-Jose Sánchez 27,28,29,30 Carmen Santiuste 29,31, Aurora Perez-Cornago 32, Raul Zamora-Ros 1,2, Amanda J. Cross 33, Antonia Trichopoulou 34, Anna Karakatsani 34,35, Eleni Peppa 34, Domenico Palli 6, Vittorio Krogh 36, Veronica Sciannameo 37, Amalia Mattiello 38, Salvatore Panico 38, Carla H. van Gils 39, N. Charlotte Onland-Moret 39, Aurelio Barricarte 29, 40, 41, Pilar Amiano 29, 42, Kay-Tee Khaw 43, Heiner Boeing 44, Elisabet Weiderpass 19, Eric J. Duell 45, 46.

1. Unit of Nutrition and Cancer. Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Gran Via de L'Hospitalet 199-203, 08908, L’Hospitalet de Llobregat, Barcelona, Spain.
2. Bellvitge Biomedical Research Institute – IDIBELL, Gran Via de L’Hospitalet 199-203, 08908, L’Hospitalet de Llobregat, Barcelona, Spain.
3. Department of Nursing of Public Health, Mental Health and Maternity and Child Health School of Nursing Universitat de Barcelona, Carrer de la Feixa Llarga s/n, 08907, L’Hospitalet de Llobregat, Barcelona, Spain.
4. Cancer Registry of Norway, Oslo University Hospital, Ullernchausseen 64, 0379, Oslo, Norway.
5. Norwegian National Advisory Unit for Women's Health, Women's Clinic, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway.
6. Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50139, Florence, Italy.
7. Department of surgical and perioperative sciences, urology and andrology, Umeå University, 901 85, Umeå, Sweden.
27. Escuela Andaluza de Salud Pública (EASP), Cuesta del Observatorio 4, 18011 Granada, Spain.
28. Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain.
29. Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
30. Universidad de Granada, Av. del Hospicio 1, 18012 Granada, Spain.
31. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Ronda de Levante 11, 30008, Murcia, Spain.
32. Cancer Epidemiology Unit, Nuffield Department of Population Health University of Oxford, OX3 7LF, Oxford, United Kingdom.
33. Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, London, UK.
34. Hellenic Health Foundation, Kaisareias 13 & Alexandroupoleos, GR-115 27, Athens, Greece.
35. 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462, Haidari, Greece.
36. Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano-Italy.
37. Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco (Turin), Italy.
38. Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Via Pansini 5, 80131, Naples, Italy.
39. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
40. Navarra Public Health Institute, C/Leyre 15, 31003, Pamplona, Spain.
41. Navarra Institute for Health Research (IdiSNA), C/Irunlarrea 3, 31008, Pamplona, Spain.
42. Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa. Biodonostia Research Institute: Paseo Doctor Begiristain s/N, 20014 Donostia/Gipuzkoa, Gipuzkoa, Spain.
43. Department of Public Health and Primary Care, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Rd, Cambridge CB2 0SP, United Kingdom.
44. German Institute of Human Nutrition Potsdam-Rehbruecke (DHE), Arthur-Scheunert-Allee 114 – 116, 14558 Nuthetal, Germany.
45. Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Gran Via de L’Hospitalet 199-203, 08908, L’Hospitalet de Llobregat, Barcelona, Spain.
46. ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet 199-203, 08908, L’Hospitalet de Llobregat, Barcelona, Spain.
*These authors contributed equally to this work.
Running title: Reproductive factors and Urothelial carcinoma

Abbreviations list:

UC: Urothelial carcinoma
EPIC: European Prospective Investigation into Cancer and Nutrition Cohort
FTP: Number of full-term pregnancies
MHT: Menopausal hormone therapy
OC: Oral contraceptives
WHI: Women’s Health Initiative
CIS: Carcinoma in situ
HR: Hazard ratio
CI: Confidence interval
BMI: Body mass index
AIC: Akaike information criterion
LRT: Likelihood ratio test
PAHs: Polycyclic aromatic hydrocarbons
ER: Oestrogen receptors
PR: Progesterone receptors

Corresponding author:
Leila Lujan-Barroso, MSc
Unit of Nutrition and Cancer
Cancer Epidemiology Research Program
Cantalan Institute of Oncology (ICO-IDIBELL)
Avda. Gran Via 199-203
08908 L’Hospitalet de Llobregat, Barcelona, Spain
Tel: +34 93 260 7401
Fax: +34 93 260 7787
email: llujan@iconcologia.net
ORCID: 0000-0001-6224-1764

Conflict of interest: The authors declare that they have no conflicts of interest.
Abstract:

Background: Urothelial carcinoma (UC) is the predominant (95%) bladder cancer subtype in industrialised nations. Animal and epidemiological human studies suggest that hormonal factors may influence UC risk.

Methods: We used an analytic cohort of 333,919 women from the European Prospective Investigation into Cancer and Nutrition Cohort (EPIC). Associations between hormonal factors and incident UC (overall and by tumour grade, tumour aggressiveness, and non-muscle invasive UC) risk were evaluated using Cox proportional hazards models.

Results: During a mean of 15 years of follow-up, 529 women developed UC. In a model including number of full-term pregnancies (FTP), menopausal status, and menopausal hormone therapy (MHT), number of FTP was inversely associated with UC risk (HR_{≥5vs1}=0.48, 0.25-0.90; P-trend in parous women=0.010) and MHT-use (compared to non-use) was positively associated with UC risk (HR=1.27, 1.03-1.57), but no dose-response by years of MHT-use was observed. No modification of HRs by smoking status was observed. Finally, sensitivity analyses in never-smokers showed similar HR patterns for the number of FTP, while no association between MHT-use and UC risk was observed. Association between MHT-use and UC risk only remained significant in current-smokers. No heterogeneity of the risk estimations in the final model was observed by tumour aggressiveness or by tumour grade. A positive association between the MTH-use and non-muscle invasive UC risk was observed.

Conclusion: Our results support that increasing the number of FTP may reduce UC risk.

Impact: More detailed studies on parity are needed to understand the possible effects of perinatal hormone changes in urothelial cells.

Key words: Bladder cancer; menopausal hormone therapy; menstrual and reproductive factors; parity; urothelial carcinoma.
Introduction:

Bladder cancer is the 12th most common cancer in the world, accounting for 4.8% and 1.5% of incident cancers in men and women, respectively (1). In 2018, the estimated male:female sex ratio in Europe was 4.7 to 1 (1). Although, men are at higher risk than women of developing bladder cancer; women present more advanced stages at diagnosis (2). In Europe, the 5-year relative survival rate is 84% in men and 75% in women (3). The predominant bladder cancer subtype is urothelial carcinoma (UC), accounting for 95% of all cases in industrialised nations (4) and almost 71% of men and 63% of women are diagnosed non-muscle invasive UC (2).

Between 50-64% of UC cases in men and 20-50% in women are attributable to tobacco use; and the risk increases with both intensity and duration of smoking (5). Other established risk factors for UC include occupational exposure to aromatic amines and dyes, ingestion of inorganic arsenic via drinking water, a positive family history, and constitutional variants in at least a dozen genes (4,6).

Sex differences in UC incidence may be explained to a large extent by sex differences in the prevalence and intensity of exposure to known risk factors (4). However, after adjusting for these factors differential risk of bladder cancer persists (2). Thus, several studies support that female hormones may have a beneficial effect on UC risk. An experimental animal study that examined the effect of the hormones on oncogenesis in male rat bladders showed that induced incidence of bladder cancer was higher in the group injected with testosterone supplementation than in the group injected with oestrogen supplementation (7). Moreover, castration of male mice and pregnancy and/or lactation in female mice can decrease the growth of bladder cancer (8). Previous epidemiological studies have reported a reduced risk of UC in parous women compared
to nulliparous women (9–12); and an increased risk in postmenopausal women, particularly those with an earlier age at menopause (11,13,14). In general, no associations between age at menarche, use of oral contraceptives (OC), age at first full-term pregnancy, breastfeeding and UC risk were observed (9–19). A meta-analysis by menopausal hormone therapy (MHT) formulation (11), based on four studies, showed a possible reduction in risk of UC in women who used oestrogen plus progestin MHT compared to never users of MHT. Nevertheless, in the Women's Health Initiative (WHI), which included a clinical trial of MHT component and an observational study of MHT component, no such association was observed (18). To our knowledge, previous studies examining the association of reproductive factors with UC risk did not stratified by tumour characteristics (based on tumour grade and tumour stage).

We used a large number of cases (most of them with detailed UC’s characteristics) within a large multi-centric prospective study of European women with a long follow-up (15-years) to assess the associations between menstrual factors, reproductive history, use of exogenous hormones, and the risk of developing UC, overall and by tumour grade, tumour aggressiveness, and non-muscle invasive UC, and accounting for smoking status.

Methods:

Study design and population

The European Prospective Investigation into Cancer and Nutrition Cohort (EPIC) is an ongoing multicentre cohort study that recruited participants from 23 centres located in ten European countries. The EPIC study was performed in accordance with the Declaration of Helsinki. All participants signed an informed consent form, and each centre obtained approval from the local Ethics Committee. At recruitment (baseline), information on diet, lifestyle, and anthropometric measurements was collected. Lifestyle questionnaires
included questions on education, occupation, medical history, lifetime history of consumption of tobacco, alcoholic beverages, and physical activity. Questionnaires specific to women were used to collect information on menstrual factors, reproductive history, and use of exogenous hormones. Details on the study design have been described previously (20). A total of 521 324 participants were recruited between 1992 and 2000. Participants with prevalent cancers, except non-melanoma skin cancer, or participants with missing follow-up information were excluded (n=29 332). Only women were eligible for the present analysis (n=343 985). Women with incomplete information on dietary intake or lifestyle or who had extreme or implausible caloric intake (top or bottom 1% of the ratio of energy intake to estimated energy required (21)) were excluded (n=10 066). After these exclusions, the present analysis included 333 919 women.

Hormonal and reproductive factors

Self-reported menstrual factors, and exogenous hormone use included: age at menarche (<12, 12, 13, 14, >14 years), history (yes/no) and duration of OC use (non-user, >0-≤1, >1-5, >5-10 years), menopausal status at baseline (premenopausal: ≥9 cycles over the past 12 months, perimenopausal: <9 cycles, natural menopause in case of no menses, and surgical menopause in case of bilateral oophorectomy), age at natural menopause (surgical menopause were excluded, ≤46, 47-49, 50-52, ≥53 years), age at any menopause (surgical and natural, ≤46, 47-49, 50-52, ≥53 years), MHT-use (yes/no) and duration (non-user, >0-≤1.25, >1.25-4, >4 years), type of MHT (oestrogen alone, progestin alone, or oestrogen plus progestin), oophorectomy (yes/no), hysterectomy (yes/no), and calculated cumulative duration of menstrual cycling. Cumulative duration of menstrual cycling (in years) is an accepted proxy for total endogenous exposure and was calculated as follows (14,22): for postmenopausal women, it was the difference between the age at menopause and the age at menarche minus the total time pregnant.
(number of full-term pregnancies (FTP) x 9 months, due to the absence of menstrual cycles of 9 months for each pregnancy). For pre- and perimenopausal women, cumulative duration of menstrual cycling was the difference between age at recruitment and age at menarche minus the total time pregnant. Total time taking OCs was subtracted from cumulative duration of menstrual cycling for pre-, peri-, and postmenopausal women. To assess for hormonal changes during pregnancy and exogenous hormones through OC use, those models were additionality adjusted for number of FTP and OC-use.

Self-reported reproductive history included: parity (yes/no), number of FTP (including livebirths and stillbirths; 0, 1, 2, 3, 4, ≥5), age at first FTP (in parous women; ≤20, 21-13, 24-25, 26-30, ≥30 years), number of induced (never pregnant, 0, 1, ≥2) and spontaneous abortions (never pregnant, 0, 1, ≥2), breastfeeding (in parous women; yes/no), and duration of breastfeeding (in parous women who breastfeed; 0>-≤3, >3-12, >12 months).

Bladder cancer assessments

Incident bladder cancers were identified through population registries (Denmark, Italy, The Netherlands, Norway, Spain, Sweden, and United Kingdom) and active follow-up, including use of health insurance records, hospital registries, and direct contacts with participants or next-of-kin (France, Germany, and Greece). For these analyses, the follow-up for UC was completed between December 2011 and December 2013, depending on the centre.

Bladder cancers were defined by ICD-O-3, including first invasive cancer (coded C67 based) and UC (morphology codes 812*-813*)(23). Only incident UC was included in the present analyses; since it represents 95% of all bladder cancers. Definitions of UC subtype classifications are heterogeneous in the literature. In previous EPIC studies, UC was classified by pathology reports as aggressive (pT1 and higher or carcinoma in situ (CIS) or World Health Organization (WHO) Grade 3), and non-aggressive (pTa Grade 1
and 2)(23). We also analysed UC by tumour grade (using WHO-defined Grades 2 and 3 as “high-grade” and Grade 1 as “low-grade”)(24). Finally, in centres where tumour stage information was available (available in all centres except San Sebastian, United Kingdom, Greece, Malmö, and Norway), we analysed UC restricted to non-muscle invasive subtype (pT1, pTa, or CIS).

Statistical analysis

To evaluate associations between hormonal factors and UC risk, Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (95%CI). Ordinal variables were scored and trend tests were calculated on these scores, “unknown” category was excluded for trend test calculation. Estimations of “unknown” categories were provided when more than 10% of the cases were classified as “unknown”. Age was used as the time scale, with age at recruitment as the entry time, and age at the date of UC or the end of follow-up (whichever came first) as the exit time. Additional models were performed to describe the risk of UC by tumour aggressiveness, tumour grade (using the Wald test statistic to assess the heterogeneity of the risk between outcomes using the SAS macro %subtype(25)), and non-muscle invasive UC. All models were stratified by age at recruitment (1 year-categories) and study centre. Stratified models by center allowed us to give each center its own baseline hazard, thus the variation in menstrual and reproductive history, hormone use, and cancer patterns across centers were included in the model. Further, stratified by age provided left truncation of the data (the risk of developing the outcomes of interest was only included during the follow-up). Finally, these stratified models assumed proportional hazard between the centers. All models were adjusted for smoking status and intensity at baseline (never-smokers, current smokers ≤15 cigarettes/day, current smokers >15 cigarettes/day, ex-smokers ≤10 years, ex-smokers >10 years, current: pipe/cigar/occasional cigarette smokers, current/former:
missing intensity, and unknown), and fruit and vegetable intakes (both entered as
continuous variable g/d) (4), which change estimate effect of the hormone variables by
more than >10%. Physical activity and body mass index (BMI) were not included as
adjustment covariates because they did not change effect estimates >10%. Occupations
with potential exposure to bladder carcinogens are potential confounder given the
established effect of a number of chemicals and substances (e.g. heavy metal, dyes, and
polycyclic aromatic hydrocarbons [PAHs]) on sex hormones levels among healthy
women(26–28). Other potential confounders were occupations with potential exposure to
bladder carcinogens. To adjust models for occupational exposure a dichotomous score
(yes/no) was defined, where it was coded as “yes” if the participant worked in occupations
with potential exposure to heavy metals (present in foundries, in metal industries, and in
occupations related to welding, turning and electroplating), aromatic amines (present in,
e.g. dye production, textile and leather dying, and hairdressers), PAHs (associated with
refineries, asphalt work, the transport sector, and car repair stations), and environmental
tobacco smoking (particularly elevated for workers in bars and restaurants), detailed
information in Büchner et al (2009)(29). Nevertheless, occupation was ultimately not
included in the multivariable-adjusted models because <7% of women worked in a
job/occupation with potential exposure to bladder carcinogens, and adjusting for
occupational exposure did not change any estimated HRs. To evaluate all identified
factors in one model, mutually-adjusted models were evaluated. The proportional hazard
assumption was checked using Schoenfeld residuals. Also, all the time-dependent
variables (interactions of predictors and time) were included in the mutually-adjusted
model and evaluated. Restricted cubic splines with 3-5 knots were used to explore
linearity in the trend in the risk with number of FTP. Akaike information criterion (AIC)
was used to select the best representation of the relation between number of FTP (among parous women) and UC risk (Supplemental Figure 1).

Modification of the HRs by tobacco use at baseline (never, former, and current) was evaluated using a likelihood ratio test (LRT). Joint effect variables (with a common referent group) for tobacco with each variable included in the final model were also evaluated.

Sensitivity analyses were performed in never smokers to reduce the likelihood of residual confounding by smoking at baseline. Finally, to address possible changes in the reproductive history during the follow-up, a sensitivity analysis including only women with completed reproductive history (peri-/postmenopausal women at recruitment) was performed for the final model.

All statistical tests were two-sided and evaluated at α-level 0.05. All analyses were performed using SAS v. 9.4 (Cary, North Carolina, USA).

Results:

Descriptive statistics

After a median follow-up time of 15 years, 529 UC cases were identified including 146 non-aggressive tumours, 230 aggressive tumours, and 153 with unknown tumour aggressiveness; and among the 529 cases, there were 80 low-grade tumours, 233 high-grade tumours, and 216 with unknown tumour grade. The median age at recruitment was 51 years (y) (25th and 75th percentile (p25-p75): 45-58-y) for the whole cohort and 58-y (p25-p75: 52-63-y) for UC cases. The median age at diagnosis was 68-y (p25-p75: 62-74-y). Baseline characteristics of participants by country are presented in Table 1.
Menstrual factors, and exogenous hormone use

Age at menarche, cumulative duration of menstrual cycling, history and duration of OC use, age at natural menopause, oophorectomy, and hysterectomy showed no association with UC risk (Table 2, Table 3). Elevated and statistically significant HRs for UC were observed for postmenopausal status (natural or surgical) compared to premenopausal status (HR_{postnaturalvspre}: 1.88; 95%CI, 1.09-3.25; HR_{postsurgicalvspre}: 2.15; 95%CI, 1.10-4.20) (Table 1). MHT use in peri-/postmenopausal women (natural or surgical) was positively associated with overall UC independently of the duration of MHT use (Table 3). For the 67% (n=52,892, 82 cases) of women with information on formulation of MHT available, 25% (n=13,123, 32 cases) took oestrogen alone (HR: 1.43; 95%CI: 0.97-2.10). No association was observed for use of oestrogen plus progestin MHT formulations (HR: 1.08; 95%CI, 0.77-1.51) (Table 3).

Reproductive factors

There was a statistically significant inverse association for number of FTP and UC risk (HR_{3vs1FTP}: 0.70; 95%CI, 0.52-0.94; HR_{≥5vs1FTP}: 0.46; 95%CI, 0.25-0.88; P-trend in parous women only = 0.008). No statistically significant associations were observed for the other variables in Table 4.

Mutually-adjusted Cox proportional hazards regression for UC

Models included number of FTP and menopausal status, where peri-/postmenopausal women were further classified by MHT history. Statistically significant inverse associations between number of FTP and UC risk were observed (HR_{3vs1FTP}: 0.70; 95%CI, 0.52-0.94; HR_{≥5vs1FTP}: 0.48; 95%CI, 0.25-0.90; P-trend in parous women only 0.010) (Table 5). Further, the HR for peri-/postmenopausal MHT-users compared to peri-/postmenopausal women never-users was 1.27 (95%CI, 1.03-1.57) (Table 5).
Study of the heterogeneity of the risk between non-aggressive tumours and aggressive tumours

MHT-use was positively associated with risk of non-aggressive UC (HR_{yes/no}: 1.93; 95%CI, 1.29- 2.87). Parity was inversely associated with non-aggressive UC risk (HR_{yes/no}: 0.59; 95%CI, 0.39- 0.90). Natural and surgical menopause were statistically significantly associated with risk of aggressive UC (HR_{natural vs pre}: 2.47; 95%CI, 1.01-6.03; HR_{surgical vs pre}: 3.25; 95%CI, 1.18-8.97) (Supplemental Table 1). Despite these statistically significant individual associations, statistically significant heterogeneity of the risk for menstrual factors and exogenous hormone use by tumour aggressiveness was not observed for each individual model, and for the mutually-adjusted model (all P_{het}-value > 0.05).

Study of the heterogeneity of the risk between low-grade tumours and high-grade tumours

MHT-use was positively associated with low-grade tumours (HR: 2.37; 95%CI, 1.37-4.12), while the number of spontaneous abortions (comparisons based on 17 women in the referent group) was statistically significant and inversely associated with the risk of low-grade tumours. Parity was inversely associated with low-grade tumours (HR_{yes/no}: 0.44; 95%CI, 0.26- 0.75; comparisons based on 18 women in the referent group). No associations were observed between hormonal factors and high-grade UC risk (Supplemental Table 1).

Statistically significant heterogeneity in the risk estimates by tumour grade was observed in relation to the number of spontaneous abortions (P_{het}-value=0.026) and parity (P_{het}-value=0.011). Finally, once the identified variables were included in one model, estimations of the risk were similar by tumour grade (P_{het}-value=0.079).
Risk estimation between hormonal and reproductive factors and non-muscle invasive UC

Positive association was observed between MHT-users and non-muscle invasive UC risk (HR: 1.38; 95%CI, 1.01-1.90), especially in women which treatment’s formulation was oestrogen alone (HR: 1.90; 95%CI, 1.15-3.13) (Supplemental Table 1).

Modification of the HRs by tobacco

No evidence for modification of HRs for each factor and UC by cigarette smoking status was found (all likelihood ratio statistics P-value>0.05) with the exception of induced abortions (P-value=0.028). Different estimations of the HR of the number of induced abortions were observed by smoking status. While no association between number of induced abortions and the risk of UC was observed; HR for never smoking women with at least 2 induced abortions compare to 0 abortions was 2.52 (95%CI: 1.33- 4.78, P-trend = 0.012) (Supplemental Table 2).

No modification of HRs by cigarette smoking status in the mutually-adjusted model was observed. Nonetheless, the higher risk of MHT-use was only observed in peri-/postmenopausal women (natural or surgical) who were smokers at baseline (HR: 1.56; 95%CI: 1.10, 2.21) (Supplemental Table 3). No statistically significant associations were observed when joint-effect variables for tobacco and FTP, and tobacco and menopausal status were evaluated.

Sensitivity analyses

In general, patterns of HRs did not change substantially when we restricted analyses to the subgroup of never smokers (Supplemental Table 2 and Table 5), or in the subgroup of participants who were peri-/postmenopausal at recruitment (Table 5).
smokers, no association between MHT-use and UC risk was observed in the final mutually adjusted model (Table 5).

Discussion:

The present analyses based on 529 women, showed evidence that women who had experienced more than one birth are at lower risk of developing UC compared to uniparous women; further, we observed evidence of an inverse trend between UC risk and number of births. No associations were observed for the remaining menstrual factors, reproductive history variables, or exogenous hormone use variables. We observed no evidences of differences in the estimations of UC risk by the number of full-term pregnancies or other menstrual factors, reproductive history factor, or exogenous hormone use according to tumour characteristics (based on tumour grade and tumour stage).

Previous studies(11,12,18) and two meta-analyses(10,17) observed a reduced risk of UC in parous women, independent of the number of births(10,11,13,14,16–18). Nearly all these studies used “nulliparous” as the referent category(11,13,14,16,17). Nulliparous women likely represent a heterogeneous group that includes women with and women without fertility problems. In our study, “one birth” was used as a referent category, and we found a linear trend of decreasing UC risk with increasing number of FTP. This reduction in risk with increasing FTP was also observed in never-smokers. The observed trend in our study was similar to the trend reported by Weibull et al. (HR for ≥3 vs. 1 FTP: 0.76; 95%CI: 0.68-0.86)(12).

Women experience several hormonal changes during pregnancy, including an increase in oestrogen and progesterone levels(30). An animal study observed that these increased levels, particularly progesterone levels, may be related with changes in the bladder
structure related to greater bladder capacity and compliance (31). Further, it has been shown that oestrogen receptors (ER) and progesterone receptors (PR), that mediate oestrogen and progesterone levels, are expressed in both normal and cancerous urothelial cells (32, 33). ERs have different roles in cancer biology, in general ER-α has been related with cell growth, while ER-β has been suggested to act as a suppressor of tumour growth, thus ER-α and ER-β may have opposing effects on cellular processes (34). It has been observed that ER-β is the dominant receptor expressed in urothelial carcinoma cells (8, 32). Few studies have been done in relation to ERs and progesterone in urothelial carcinoma cells, but it has been suggested that progesterone suppresses ER expression during pregnancy (35). Consequently, it can be hypothesized that these increased levels of oestrogen and progesterone may reduce UC risk in parous women (9–12, 17, 36).

Two previous studies have examined the association between induced abortions and the risk of UC (15, 37). These two case-control studies did not observe that the number of induced abortions was associated with UC risk. Our results on never-smokers were based on a small number of cases, and in view of the large number of associations tested, the association in never-smokers between induced abortion and UC risk may be due to chance.

It has been hypothesized that earlier age at menopause increases UC risk due to lower levels of oestrogen after menopause (14). Earlier age at menopause (natural or surgical) was associated with an increased risk of UC in a meta-analysis (17), that included 4 case-control studies and 3 cohort studies. We observed no association between earlier age at menopause and UC, in agreement with other recent prospective cohort studies (10, 11, 18). The higher UC risk we observed in peri-/postmenopausal MHT users, when compared to peri-/postmenopausal non-users, is inconsistent with previous studies which found no relation (10, 17, 18). Our results and previous studies showed no dose-response by years of
MHT-use(10,11,13,16,18). The WHI found no influence of the formulation of MHT on
the risk of UC (results for oestrogen: n=136 cases; HR: 0.93; 95%CI: 0.74-1.17; results
for oestrogen plus progestin: n=103 cases; HR: 1.05; 95%CI: 0.81-1.36)(18). A meta-
analysis (based on 4 cohort studies) of MHT by formulation (oestrogen or oestrogen plus
progestin) showed a 39% decreased UC risk in users of oestrogen plus progestin (n=84
cases; RR: 0.61; 95%CI: 0.47-0.78), and no effect for users of oestrogen alone (n=217
cases; RR: 1.03; 95%CI: 0.87-1.24)(11). Our results, based on smaller sample sizes (52
UC for oestrogen, and 30 UC for oestrogen plus progestin), were in agreement with those
from the WHI, however we observed a positively statistically significant estimation in
current-smokers who used oestrogen alone or reported unknown type of MHT. Since we
observed no association in never-smokers, and the MHT effect (overall and by
formulation) only remained significant in current-smokers, residual confounding from
tobacco smoking and possible chance are a likely explanation for our MHT results.

Our study strengths include its prospective cohort design and a relatively large number of
incident cases from 10 European countries, which allowed us to investigate associations
by strata of smoking status. To our knowledge, this is the first study on menstrual factors,
reproductive history, hormone use, and UC risk that includes information on tumour
classification. However, non-muscle invasive UC classification was not available in San
Sebastian, Oxford, Cambridge, Malmö, and Norway centres.

One potential weakness of our analysis is that information on reproductive history and
hormone use was available only at cohort enrolment; however, we noted that 78.7% of
the cases were postmenopausal at recruitment, so reproductive history was essentially
complete for most participants. We performed sensitivity analyses restricted to
postmenopausal women, whose reproductive exposures were unlikely to change. We
observed similar results for the final mutually-adjusted model in the analysis restricted to
postmenopausal women as we observed for all study participants, suggesting our results
were unlikely to be affected by any changes in reproductive history after enrolment. Another potential weakness of our study was the large number of missing values in the MHT variables (duration and formulation). Also, information on MHT was not periodically updated, and therefore, we could not evaluate risk in women who started using MHT or who modified their use after enrolment. Further, tumour grade and tumour aggressiveness had a large number of missing values which could bias HR estimates. We would also like to highlight that information on smoking habits, and fruit and vegetables intakes were not periodically updated, so could not evaluate changes after baseline for any variables. Results from the sensitivity analyses in never smoking women showed that, except for MHT, our results were not affected by residual confounding by smoking status. Finally, we could not consider occupational exposure in our analysis, as not all EPIC-centres collected such information. Further, occupational exposure was available for 32% (n=169) of UC cases; of which 10% (n=17) reported jobs considered at risk. Despite this, a sensitivity analysis was performed including occupational exposures in the final UC model and similar HR estimates for menopausal status, MHT-use, and number of full-term pregnancies were observed.

Conclusion:

Our results confirm the increasing benefit of each birth after the first on UC risk. More studies on number of FTP are needed to elucidate the putative protective effects of parity. Further investigations of the role of perinatal hormonal changes and how these changes may affect ER and PR levels and urothelial cells in the bladder are needed.
Additional Information:

Disclaimer: Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.

Funding: None

Author’s contribution

LLB, EB, SC, EW, and EJD analyzed and interpreted the data. LLB and EJD wrote the manuscript. BL, NR, AT, BBdM, ITG, RT, LAK, FL, TS, MG, NM, IC, AF, MK, CH, KO, EL, MW, RTF, TK, VM, MJS, CS, APC, RZR, AJC, AT, AK, EP, DP, VK, VS, AM, SP, CHvG, NCOM, AB, PA, KTK, HB, and EW collected the data and provided critical comments on the manuscript.

Acknowledgments:

We thank CERCA Program / Generalitat de Catalunya for institutional support. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by: Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Compagnia di SanPaolo (Naples, Italy); Dutch Ministry of Public Health,
Welfare and Sports (VWS), Comprehensive Cancer Center The Netherlands (IKNL), Zorg Onderzoek Nederland Medische Wetenschappen (ZONMW), World Cancer Research Fund (WCRF), Dutch Cancer Society (KWF), Statistics Netherlands (The Netherlands), Health Research Fund (FIS) - Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology - ICO (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (UK). Raul Zamora-Ros would like to thank the “Miguel Servet” program (CP15/00100) from the Institute of Health Carlos III and European Social Fund (ESF). For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php.

References:

1. Global Cancer Observatory [Internet]. [cited 2018 Oct 23]. Available from: http://gco.iarc.fr/

2. Shariat SF, Sfakianos JP, Droller MJ, Karakiewicz PI, Meryn S, Bochner BH. The effect of age and gender on bladder cancer: a critical review of the literature. BJU Int. 2010;105:300–8.

3. European Cancer Information System [Internet]. [cited 2019 Apr 24]. Available from: https://ecis.jrc.ec.europa.eu/explorer.php?50-2

4. Malats N, Real FX. Epidemiology of bladder cancer. Hematol Oncol Clin North Am. 2015;29:177–89, vii.

5. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC. Association between smoking and risk of bladder cancer among men and women. JAMA. 2011;306:737–45.

6. Bladder cancer statistics | World Cancer Research Fund International [Internet]. [cited 2017 Apr 11]. Available from: http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/bladder-cancer-statistics
7. Tanahashi NK, Suzawa N, Azuma C. Effects of sex hormones on oncogenesis in rat urinary bladder by N-butyl-N-(4-hydroxybutyl)-nitrosamine. Int J Clin Pharmacol Biopharm. 1977;15:101–5.

8. Johnson AM, O’Connell MJ, Messing EM, Reeder JE. Decreased bladder cancer growth in parous mice. Urology. 2008;72:470–3.

9. Huang A-T, Kogevinas M, Silverman DT, Malats N, Rothman N, Tardon A, et al. Bladder cancer and reproductive factors among women in Spain. Cancer Causes Control. 2009;20:1907–13.

10. Davis-Dao CA, Henderson KD, Sullivan-Halley J, Ma H, West D, Xiang Y-B, et al. Lower risk in parous women suggests that hormonal factors are important in bladder cancer etiology. Cancer Epidemiol Biomarkers Prev. 2011;20:1156–70.

11. Daugherty SE, Lacey JV, Pfeiffer RM, Park Y, Hoover RN, Silverman DT. Reproductive factors and menopausal hormone therapy and bladder cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer. 2013;133:462–72.

12. Weibull CE, Eloranta S, Altman D, Johansson ALV, Lambe M. Childbearing and the risk of bladder cancer: a nationwide population-based cohort study. Eur Urol. 2013;63:733–8.

13. McGrath M, Michaud DS, De Vivo I. Hormonal and reproductive factors and the risk of bladder cancer in women. Am J Epidemiol. 2006;163:236–44.

14. Prizment AE, Anderson KE, Harlow BL, Folsom AR. Reproductive risk factors for incident bladder cancer: Iowa Women’s Health Study. Int J Cancer. 2007;120:1093–8.

15. Pelucchi C, La Vecchia C, Negri E, Dal Maso L, Franceschi S. Smoking and other risk factors for bladder cancer in women. Prev Med. 2002;35:114–20.

16. Cantwell MM, Lacey JV, Schairer C, Schatzkin A, Michaud DS. Reproductive factors, exogenous hormone use and bladder cancer risk in a prospective study. Int J Cancer. 2006;119:2398–401.

17. Dietrich K, Demidenko E, Schned A, Zens MS, Heaney J, Karagas MR. Parity, early menopause and the incidence of bladder cancer in women: a case-control study and meta-analysis. Eur J Cancer. 2011;47:592–9.

18. Kabat GC, Kim MY, Luo J, Hou L, Cetnar J, Wactawski-Wende J, et al. Menstrual and reproductive factors and exogenous hormone use and risk of transitional cell bladder cancer in postmenopausal women. Eur J Cancer Prev. 2013;22:409–16.

19. Fernandez E, Gallus S, Bosetti C, Franceschi S, Negri E, La Vecchia C. Hormone replacement therapy and cancer risk: a systematic analysis from a network of case-control studies. Int J Cancer. 2003;105:408–12.

20. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.
21. Ferrari P, Slimani N, Ciampi A, Trichopoulou A, Naska A, Lauria C, et al. Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002;5:1329–45.

22. al DE et. Menstrual and reproductive factors, exogenous hormone use, and gastric cancer risk in a cohort of women from the European Prospective Investigation... PubMed - NCBI [Internet]. [cited 2018 Jan 9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=duell+gastric+cancer+hormones

23. Roswall N, Freisling H, Bueno-de-Mesquita HB, Ros M, Christensen J, Overvad K, et al. Anthropometric measures and bladder cancer risk: a prospective study in the EPIC cohort. Int J Cancer. 2014;135:2918–29.

24. Compérat EM, Burger M, Gontero P, Mostafid AH, Palou J, Rouprêt M, et al. Grading of Urothelial Carcinoma and The New “World Health Organisation Classification of Tumours of the Urinary System and Male Genital Organs 2016.” Eur Urol Focus. 2018;5:457–66.

25. Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, et al. Statistical Methods for Studying Disease Subtype Heterogeneity. Stat Med. 2016;35:782–800.

26. Nagata C, Wada K, Tsuji M, Hayashi M, Takeda N, Yasuda K. Association of hair dye use with circulating levels of sex hormones in premenopausal Japanese women. Eur J Public Health. 2015;25:895–9.

27. Yin S, Tang M, Chen F, Li T, Liu W. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum. Environ Pollut. 2017;220:1429–37.

28. Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Albert PS, Jones RL, et al. Cadmium, Lead, and Mercury in Relation to Reproductive Hormones and Anovulation in Premenopausal Women. Environ Health Perspect. 2011;119:1156–61.

29. Büchner FL, Bueno-de-Mesquita HB, Ros MM, Kampman E, Egevad L, Overvad K, et al. Consumption of vegetables and fruit and the risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2009;125:2643–51.

30. Modugno F, Laskey R, Smith AL, Andersen CL, Haluska P, Oesterreich S. Hormone response in ovarian cancer: time to reconsider as a clinical target? Endocr Relat Cancer. 2012;19:R255–79.

31. Rodriguez LV, Wang B, Shortliffe LMD. Structural changes in the bladder walls of pregnant and hormone-treated rats: correlation with bladder dynamics. BJU Int. 2004;94:1366–72.

32. Shen SS, Smith CL, Hsieh J-T, Yu J, Kim IY, Jian W, et al. Expression of estrogen receptors-alpha and -beta in bladder cancer cell lines and human bladder tumor tissue. Cancer. 2006;106:2610–6.
33. Blakeman PJ, Hilton P, Bulmer JN. Oestrogen and progesterone receptor expression in the female lower urinary tract, with reference to oestrogen status. BJU Int. 2000;86:32–8.

34. Thomas C, Gustafsson J-Å. The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer. 2011;11:597.

35. Batra SC, Iosif CS. Progesterone receptors in the female lower urinary tract. J Urol. 1987;138:1301–4.

36. Bai Y, Wang X, Yang Y, Tang Y, Wang J, Han P. Parity and bladder cancer risk: a dose-response meta-analysis. BMC Cancer [Internet]. 2017 [cited 2017 May 31];17. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219774/

37. La Vecchia C, Negri E, Franceschi S, Parazzini F. Long-term impact of reproductive factors on cancer risk. Int J Cancer. 1993;53:215–9.
| Cohort | France (n=67 403) | Italy (n=30 513) | Spain (n=24 850) | United Kingdom (n=52 566) | The Netherlands (n=26 912) | Greece (n=15 233) | Germany (n=27 379) | |
|---|---|---|---|---|---|---|---|---|
| Urothelial Carcinoma cases | 529 | 40 | 72 | 32 | 68 | 80 | 7 | 25 |
| Age at recruitment(years)* | 51 (45-58) | 51 (47-57) | 51 (44-57) | 48 (41-55) | 48 (36-58) | 53 (46-59) | 54 (43-64) | 48 (41-57) |
| Age at diagnosis(years)* | 68 (62-74) | 65 (60-71) | 65 (59-71) | 64 (57-71) | 63 (52-73) | 67 (59-73) | 65 (54-75) | 59 (52-67) |
| Body mass index(kg/m²)* | 24.1 (21.9-27.2) | 22.5 (20.8-24.7) | 25.0 (22.6-27.9) | 27.5 (24.7-30.9) | 23.4 (21.4-26.1) | 24.5 (22.3-27.3) | 28.2 (24.8-31.6) | 24.7 (22.3-28.0) |
| Physical activity b | | | | | | | | |
| Inactive | 73 114 (21.9) | 12 623 (18.7) | 11 201 (36.7) | 12 071 (48.6) | 12 581 (23.9) | 1 897 (7.1) | 8 157 (53.6) | 4 756 (17.4) |
| Moderately inactive | 113 292 (33.9) | 26 969 (40.0) | 11 940 (39.1) | 8 745 (35.2) | 18 867 (35.9) | 6 410 (23.8) | 3 997 (26.2) | 10 378 (37.9) |
| Moderately active | 90 980 (27.3) | 21 813 (32.4) | 4 557 (14.9) | 2 983 (12.0) | 12 075 (23.0) | 6 480 (21.6) | 2 460 (16.2) | 7 110 (26.0) |
| Active | 50 782 (15.2) | 5 998 (8.9) | 2 815 (9.2) | 1 051 (4.2) | 8 056 (15.3) | 9 399 (619) | 5 129 (4.1) | 18.7 (1.8) |
| Smoking status and intensityb | | | | | | | | |
| Never | 161 061 (48.2) | 25 164 (37.3) | 12 657 (41.5) | 17 740 (71.4) | 31 544 (60.0) | 10 938 (40.6) | 1 1101 (72.9) | 15 352 (56.0) |
| Current ≤15 cigarettes/day | 40 802 (12.2) | 2 971 (4.4) | 4 611 (15.1) | 2 950 (11.9) | 3 675 (7.0) | 4 435 (16.5) | 1 425 (9.4) | 3 491 (12.8) |
| Current >15 cigarettes/day | 21 518 (6.4) | 1 924 (2.9) | 3 360 (11.0) | 1 660 (6.7) | 1 409 (2.7) | 2 540 (9.4) | 1 162 (7.6) | 1 467 (5.4) |
| Former quit ≤10 years | 27 394 (8.2) | 3 628 (5.4) | 2 959 (9.7) | 1 473 (5.9) | 4 887 (9.3) | 3 011 (11.2) | 478 (3.1) | 2 363 (8.6) |
| Former quit >10 years | 44 918 (13.2) | 8 581 (12.7) | 3 188 (9.5) | 936 (3.2) | 8 977 (17.5) | 5 215 (19.4) | 298 (9.0) | 4 361 (15.1) |
| Current, pipe/cigar/ occasional cigarette smokers | 27 610 (8.3) | 21 818 (32.4) | 3 719 (12.2) | 13 (0.1) | 145 (0.3) | 46 (0.2) | 44 (0.1) | 21 (0.1) |
| Current/Former, missing | 4 854 (1.5) | 1 312 (2.0) | 18 (0.1) | 66 (0.3) | 907 (1.7) | 633 (2.4) | 46 (0.3) | 294 (1.1) |
| Vegetables intake(g/day)* | 186 (118-286) | 264 (189-356) | 162 (109-232) | 216 (138-315) | 256 (186-347) | 127 (98-162) | 412 (317-527) | 117 (89-136) |
| Fruit intake(g/day)* | 216 (125-332) | 242 (153-339) | 320 (221-443) | 286 (176-436) | 229 (143-345) | 195 (123-288) | 344 (244-457) | 126 (92-204) |
| Job exposure b,c,d, yes | 6 920 (6.4) | 1 177 (4.7) | 599 (5.4) | 465 (3.1) | 2 479 (9.1) |
| Diabetes b, yes | 7 422 (2.4) | 1 379 (2.1) | 633 (2.1) | 1 124 (4.5) | 633 (1.7) | 581 (2.2) | 1 016 (6.7) | 775 (2.8) |

* Median (percentile 25th and percentile 75th) // a n (%) // b Available in Spain, Cambridge, Greece, Germany, Denmark, and Norway // c Job exposure in jobs with potential exposure to heavy metals, aromatic amines, polycyclic aromatic hydrocarbons, and environmental tobacco smoke.
Table 2: Multivariable-adjusted models for each individual menstrual factor in relation to UC risk in EPIC Women.

Age at menarche, years	Person-years	Cases (%) n=529	HR (95%CI) a	P-trend
<12	678 236	64 (12.1)	1.00 (referent)	0.845
12	955 271	103 (19.5)	1.10 (0.80- 1.51)	
13	1 166 665	128 (24.2)	1.05 (0.78- 1.43)	
14	976 383	108 (20.4)	0.92 (0.67- 1.26)	
>14	718 342	113 (21.4)	1.07 (0.78- 1.48)	

Cumulative duration of menstrual cycling, accounting for OC use, years b

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
<23	960 018	72 (13.6)	1.00 (referent)	0.924
23- <30	693 105	96 (18.2)	1.01 (0.73- 1.39)	
30- <35	920 740	108 (20.4)	0.87 (0.63- 1.21)	
≥35	805 979	142 (26.8)	1.00 (0.71- 1.40)	
Unknown	1 011 360	111 (21.0)	1.05 (0.74- 1.48)	

Menopausal status

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
Premenopausal	1 654 703	49 (9.3)	1.00 (referent)	
Perimenopausal	896 065	64 (12.1)	1.32 (0.77- 2.8)	
Natural postmenopausal	1 992 700	394 (74.5)	1.88 (1.09- 3.25)	
Surgical postmenopausal	117 733	22 (4.2)	2.15 (1.10- 4.20)	

Age at natural menopause, years c

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
≤46	385 834	85 (21.6)	1.17 (0.87- 1.58)	0.527
47- 49	337 177	68 (17.3)	1.08 (0.79- 1.48)	
50- 52	509 460	97 (24.6)	1.00 (referent)	
≥53	305 850	79 (20.1)	1.33 (0.99- 1.80)	
Unknown	454 379	65 (16.5)	1.21 (0.86- 1.70)	

Age at any menopause, years

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
≤46	450 220	100 (24.0)	1.21 (0.91- 1.60)	0.853
47- 49	360 268	70 (16.8)	1.04 (0.76- 1.42)	
50- 52	527 478	101 (24.3)	1.00 (referent)	
≥53	315 160	80 (19.6)	1.31 (0.97- 1.77)	
Unknown	457 307	65 (15.6)	1.20 (0.86- 1.68)	

Oophorectomy d

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	3 407 081	344 (76.1)	1.00 (referent)	
Unilateral	145 533	28 (6.2)	1.32 (0.90- 1.95)	
Bilateral	131 175	23 (5.1)	1.12 (0.73- 1.72)	
Unknown	965 580	55 (12.2)	0.91 (0.47- 1.78)	

Hysterectomy d

	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	3 640 275	344 (76.1)	1.00 (referent)	
Yes	472 260	76 (16.8)	1.09 (0.84- 1.40)	

UC: Urothelial Carcinoma // OC: oral contraceptive // Numbers may not sum to totals due to missing values

Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.

Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake.

Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake, OC use, and full-term pregnancies

Women who had surgical menopause were excluded.

Available in all centres except Malmö.
Table 3: Multivariable-adjusted models for each individual exogenous hormone use in relation to UC risk in EPIC Women.

Use of OC	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	1 859 302	278 (52.6)	1.00 (referent)	
Yes	2 668 828	239 (45.2)	0.93 (0.77- 1.14)	
Unknown	133 072	12 (2.3)		

Duration OC use, years

Duration	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	1 859 302	278 (52.6)	1.00 (referent)	0.259
>0-≤1	495 753	34 (6.4)	0.70 (0.49- 1.01)	
>1-5	780 263	63 (11.9)	0.94 (0.71- 1.26)	
>5-10	594 859	69 (13.0)	1.22 (0.92- 1.63)	
>10	546 567	51 (9.6)	0.82 (0.59- 1.13)	
Unknown duration	251 386	22 (4.2)		

Missing use of OC | 133 072 | 12 (2.3) | | |

Use of MHT

Use of MHT	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	1 740 862	247 (51.5)	1.00 (referent)	
Yes	1 072 357	172 (35.8)	1.28 (1.04- 1.58)	
Unknown	193 278	61 (12.7)	1.32 (0.90- 1.95)	

Duration MHT use, years

Duration	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
No	1 740 862	247 (51.5)	1.00 (referent)	0.152
>0-≤1.25	321 348	51 (10.6)	1.33 (0.98- 1.81)	
>1.25-4	336 578	47 (9.8)	1.37 (0.99- 1.90)	
>4	310 366	56 (11.7)	1.27 (0.93- 1.73)	
Unknown duration	104 065	18 (3.8)		
Unknown use of MHT	193 278	61 (12.7)	1.03 (0.74- 1.43)	

Type of MHT

Type of MHT	Person-years	Cases (%) n=529	HR (95%CI)	P-trend
Non-users of MHT	1 527 202	215 (58.0)	1.00 (referent)	
Oestrogen alone	178 339	32 (8.6)	1.43 (0.97- 2.10)	
Oestrogen + Progestin	527 153	50 (13.5)	1.08 (0.77- 1.51)	
Unknown type of MHT	329 620	74 (20.0)	1.37 (1.04- 1.81)	

UC: Urothelial Carcinoma // OC: oral contraceptive // MHT: menopause hormone therapy

Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.
a Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake.

b In peri- and postmenopausal (natural or surgical).
c Available in France, Italy, Spain, United Kingdom, The Netherlands, Germany, Denmark, and Norway.
Table 4: Multivariable-adjusted models for each individual reproductive factor in relation to UC risk in EPIC Women.

Parity	Person-years	Cases (%)	HR (95%CI)	P-trend
No	686 624	73 (13.8)	1.00 (referent)	
Yes	3 774 138	440 (83.2)	0.87 (0.68-1.12)	

Number of full-term pregnancies	Person-years	Cases (%)	HR (95%CI)	P-trend
No	686 624	69 (13.5)	0.92 (0.67-1.25)	0.008
Yes	742 124	192 (37.6)	0.86 (0.66-0.99)	
	845 995	89 (17.4)	0.71 (0.56-0.90)	
	253 868	35 (6.9)	0.76 (0.57-1.00)	

Age at first full-term pregnancy, years	Person-years	Cases (%)	HR (95%CI)	P-trend
≤20	546 150	68 (15.5)	1.00 (referent)	0.688
21-23	1 001 554	119 (27.1)	1.03 (0.76-1.40)	
24-25	712 124	142 (33.6)	0.73 (0.56-0.95)	
≥30	1 086 124	139 (31.6)	0.78 (0.55-1.09)	

Breastfeeding	Person-years	Cases (%)	HR (95%CI)	P-trend
No	523 624	57 (14.1)	1.00 (referent)	
Yes	2 984 829	341 (83.8)	0.85 (0.64-1.14)	

Duration of breastfeeding, all pregnancies, months	Person-years	Cases (%)	HR (95%CI)	P-trend
≥0-≤3	854 602	115 (33.7)	1.00 (referent)	0.092
>3-12	1 327 975	142 (41.6)	0.73 (0.56-0.95)	
>12	771 517	79 (23.2)	0.78 (0.55-1.09)	

Induced abortions	Person-years	Cases (%)	HR (95%CI)	P-trend
Never pregnant	483 030	48 (12.4)	1.19 (0.91-1.56)	0.759
0	2 466 069	269 (69.7)	1.00 (referent)	
1	404 767	45 (11.7)	1.12 (0.81-1.56)	
≥2	176 646	19 (4.9)	1.01 (0.62-1.64)	

Spontaneous abortions	Person-years	Cases (%)	HR (95%CI)	P-trend
Never pregnant	508 626	56 (12.1)	1.14 (0.85-1.52)	0.497
0	2 469 123	295 (63.7)	1.00 (referent)	
1	587 558	78 (16.9)	1.10 (0.86-1.42)	
≥2	200 186	27 (5.8)	1.05 (0.71-1.56)	

Infertility problems	Person-years	Cases (%)	HR (95%CI)	P-trend
No	2 872 888	255 (83.3)	1.00 (referent)	
Yes	142 531	16 (5.2)	1.61 (0.97-2.69)	
Unknown	151 702	35 (11.4)	1.72 (0.24-12.51)	

UC: Urothelial Carcinoma // Numbers may not sum to totals due to missing values
Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.
a Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake.
b Available in all centres except Bilthoven.
c Including nulliparous women and women without full-term pregnancies.
d In parous women.
e Available in all centres except Bilthoven and Umeå.
f In parous women who has ever breastfed.
g Available in all centres except Bilthoven, Malmö, Umeå, and Norway.
h Available in all centres except Bilthoven, Umeå, and Norway.
i Available in France, Italy, Spain, United Kingdom, Utrecht, Greece, and Germany.
Table 5: Mutually-adjusted models for menopause status, MHT, and parity in relation to UC risk in EPIC women.

Menopausal status & use of MHT	Overall	Never smokers				
	Cases (%) n=529	HR (95%CI)	P-trend	Cases (%) n=195	HR (95%CI)	P-trend
Premenopausal						
	49 (9.26)	0.73 (0.43- 1.22)		18 (9.23)	1.23 (0.52- 2.43)	
Peri-/Postmenopausal & non-users of MHT	247 (46.7)	1.00 (referent)		105 (53.9)	1.00 (referent)	
Peri-/Postmenopausal & users of MHT	172(32.5)	1.27 (1.03- 1.57)		52 (26.7)	1.02 (0.71- 1.47)	
Peri-/Postmenopausal & unknown MHT-use	61 (11.5)	1.35 (0.88- 2.07)		20 (10.26)	1.12 (0.53- 2.39)	
Number of full-term pregnancies						
0^d	69 (13.5)	0.92 (0.67- 1.25)	0.010^e	19 (9.7)	0.72 (0.40- 1.29)	0.069^e
1	99 (19.4)	1.00 (referent)		32 (16.4)	1.00 (referent)	
2	192 (37.6)	0.80 (0.62- 1.02)		83 (42.6)	0.95 (0.63- 1.45)	
3	89 (17.4)	0.70 (0.52- 0.94)		39 (20.0)	0.85 (0.52- 1.37)	
4	35 (6.9)	0.80 (0.54- 1.19)		9 (4.6)	0.57 (0.27- 1.21)	
≥5	11 (2.2)	0.48 (0.25- 0.90)		5 (2.6)	0.49 (0.18- 1.29)	

UC: Urothelial Carcinoma // MHT: menopausal hormone therapy // Numbers may not sum to totals due to missing values

Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.

^aCox proportional hazards model stratified by centre and age at recruitment and adjusted by menopausal status and MHT, number of full-term pregnancies, smoking status and intensity, fruits and vegetables intake.

^bCox proportional hazards model stratified by centre and age at recruitment and adjusted by menopausal status and MHT, number of full-term pregnancies.

^cAvailable in all centres have information except Bilthoven.

^dIncluding nulliparous women and women without full-term pregnancies.

^e In parous women
Supplemental Figure 1: Restricted cubic splines plots of the association between number of full-term pregnancies and UC risk in EPIC women.

Cox proportional hazards model stratified by centre and age at recruitment and adjusted by menopausal status and MHT, number of full-term pregnancies, smoking status and intensity, fruits and vegetables intake.
Supplemental Table 1: Reproductive factors, menstrual, menopausal factors, and exogenous hormone use in relation to muscle invasive tumour in EPIC Women.

Age at menarche, years	Nonaggressive (n=146)	Aggressive (n=230)	Low-Grade (n=80)					
	Cases(%)	HR(95%CI)	Cases(%)	HR(95%CI)	Cases(%)	HR(95%CI)		
<12	12(8.4)	1.00(referent)	33(14.4)	1.00(referent)	10(12.5)	1.00(referent)		
12	26(17.8)	1.39(0.70-2.76)	45(19.6)	0.96(0.61-1.51)	7(8.8)	0.47(0.18-1.24)		
13	37(25.3)	1.64(0.85-3.17)	55(23.9)	0.91(0.59-1.41)	23(28.8)	1.29(0.61-2.75)		
14	36(24.7)	1.74(0.90-3.39)	45(19.6)	0.74(0.47-1.18)	20(25.0)	1.26(0.58-2.76)		
>14	32(21.9)	1.80(0.91-3.57)	47(20.4)	0.81(0.51-1.29)	19(23.8)	1.46(0.65-3.24)		
Unknown	3(2.1)		5(2.2)		1(1.3)			
P-trend	0.075		0.188		0.057			
Cumulative duration of menstrual cycling, accounting for OC use, years								
<23	17(11.6)	1.00(referent)	29(12.6)	1.00(referent)	9(11.3)	1.00(referent)		
23-<30	31(21.2)	1.29(0.70-2.36)	41(17.8)	1.09(0.67-1.78)	18(22.5)	1.59(0.69-3.65)		
30-<35	32(21.9)	1.14(0.62-2.12)	47(20.4)	0.94(0.58-1.53)	19(23.8)	1.48(0.63-3.46)		
≥35	37(25.3)	1.14(0.61-2.12)	63(27.4)	1.17(0.73-1.87)	21(26.2)	1.57(0.66-3.71)		
Unknown	29(18.9)	1.19(0.60-2.35)	50(21.7)	1.01(0.61-1.67)	13(16.3)	1.53(0.59-3.98)		
P-trend	0.396		0.610		0.348			
Use of OC								
No	80(54.8)	1.00(referent)	123(53.5)	1.00(referent)	38(47.5)	1.00(referent)		
Yes	65(44.5)	0.79(0.54-1.15)	103(44.8)	0.90(0.67-1.21)	42(52.5)	0.98(0.59-1.63)		
Unknown	1(0.7)		4(1.7)		2(0.9)			
Duration OC use, years	No	0-1	1-5	5-10	>10	Unknown duration	Unknown use of OC	P trend
------------------------	----	-----	-----	------	-----	----------------	------------------	---------
	80(54.8)	1.00(referent)	123(53.5)	1.00(referent)	38(47.5)	1.00(referent)	137(58)	
>0-1	6(4.1)	0.40(0.17-0.82)	19(8.3)	0.84(0.51-1.39)	5(6.3)	0.65(0.25-1.70)	14(6.0)	
>1-5	16(11.0)	0.79(0.45-1.40)	24(10.4)	0.85(0.54-1.35)	10(12.5)	0.94(0.45-1.98)	19(8.2)	
>5-10	19(13.0)	1.03(0.60-1.78)	28(12.2)	1.12(0.72-1.74)	15(18.8)	1.53(0.79-2.99)	25(10.7)	
>10	17(11.6)	0.86(0.48-1.53)	22(9.6)	0.74(0.46-1.21)	6(7.5)	0.41(0.20-1.31)	25(10.7)	
Unknown duration	7(4.8)	10(4.4)	6(7.5)	11(4.7)				
Unknown use of OC	1(0.7)	4(1.7)	2(0.9)					
P trend	0.769	0.469	0.712					

Menopausal status							
Premenopausal	18(12.3)	1.00(referent)	15(6.5)	1.00(referent)	12(15.0)	1.00(referent)	23(9.9)
Perimenopausal	21(14.4)	0.87(0.37-2.04)	22(9.6)	1.64(0.67-4.00)	15(18.8)	1.19(0.39-3.58)	25(10.7)
Natural postmenopausal	102(69.9)	1.26(0.52-3.02)	180(78.3)	2.47(1.01-6.03)	51(63.8)	1.16(0.35-3.81)	175(75.1)
Surgical postmenopausal	5(3.4)	1.11(0.33-3.75)	13(5.7)	3.25(1.18-8.97)	2(2.5)	0.80(0.13-4.81)	10(4.3)

Age at natural menopause, years							
≤46	21(20.6)	1.14(0.64-2.05)	39(21.7)	1.14(0.73-1.76)	8(15.7)	0.84(0.35-2.02)	39(22.3)
47-49	23(22.6)	1.40(0.79-2.47)	28(15.6)	1.00(0.62-1.63)	12(23.5)	1.32(0.60-2.89)	25(14.3)
50-52	26(25.5)	1.00(referent)	43(23.9)	1.00(referent)	14(27.5)	1.00(referent)	45(25.7)
≥53	16(15.7)	1.01(0.54-1.91)	40(22.2)	1.49(0.96-2.31)	10(19.6)	1.21(0.52-2.79)	36(20.6)
Unknown	16(15.7)	1.26(0.63-2.51)	30(16.7)	1.18(0.72-.95)	7(13.7)	1.11(0.41-.66)	30(17.3)
P-trend	0.688	0.324	0.53				

Age at menopause, years							
≤46	24(22.4)	1.14(0.65-2.0)	49(25.4)	1.19(0.79-1.80)	9(17.0)	0.83(0.36-1.96)	47(25.4)
47-49	24(22.4)	1.37(0.78-2.38)	28(14.5)	0.92(0.57-1.47)	13(24.5)	1.37(0.64-2.95)	25(13.5)
50-52	27(25.2)	1.00(referent)	46(23.8)	1.00(referent)	14(26.4)	1.00(referent)	47(25.4)
Oophorectomy	102(81.0)	171(77.4)	1.00(referent)	56(82.4)	170(78)		
--------------	-----------	-----------	----------------	---------	---------		
Unilateral	5(4.0)	16(7.2)	1.51(0.90-2.52)	3(4.4)	11(5.1)		
Bilateral	5(4.0)	14(6.3)	1.36(0.78-2.36)	2(2.9)	11(5.1)		
Unknown if unilateral or bilateral	0(0)	1(0.5)	19(10.3)	24(11.3)			
Unknown	14(11.1)	19(8.6)					
Hysterectomy	No	Yes	Unknown				
--------------	----	-----	---------				
	99 (78.6)	20 (15.9)	7 (5.6)				
	169 (76.5)	38 (17.2)	14 (6.3)				
	55 (80.5)	11 (16.2)	2 (2.9)				
	166 (78.7)	37 (17.1)	13 (6.0)				
Parity	No	Yes	Unknown				
	27 (18.5)	115 (78.8)	4 (2.7)				
	29 (12.6)	29 (12.5)	5 (2.2)				
	18 (12.6)	29 (12.5)	3 (1.8)				
	28 (14.1)	28 (14.1)	9 (5.0)				
Number of full-term pregnancies	0	1	≥3				
	26 (18.7)	23 (16.5)	43 (30.9)				
	26 (11.9)	43 (19.6)	89 (40.6)				
	0.79 (0.48-1.29)	1.00 (referent)	0.81 (0.56-1.17)				
	18 (23.1)	14 (18.0)	24 (30.8)				
	1.70 (0.83-3.46)	1.00 (referent)	0.65 (0.33-1.28)				
	25 (11.4)	39 (18.0)	77 (35.5)				
Age at first full term pregnancy, years	≤20	21-23	24-25				
	15 (13.0)	30 (26.1)	21 (18.3)				
	33 (16.8)	57 (29.1)	33 (16.8)				
	1.00 (referent)	1.09 (0.70-1.68)	0.88 (0.53-1.44)				
	12 (20.3)	13 (22.0)	9 (15.3)				
	1.00 (referent)	0.57 (0.26-1.26)	0.51 (0.21-1.25)				
	28 (14.3)	49 (24.6)	38 (19.3)				
	26 (30.0)	38 (28.1)	37 (23.8)				
	0.96 (0.61-1.52)	0.96 (0.61-1.52)	0.96 (0.61-1.52)				
	22 (37.3)	22 (37.3)	22 (37.3)				
	0.79 (0.37-1.65)	0.79 (0.37-1.65)	0.79 (0.37-1.65)				
	60 (30.2)	60 (30.2)	60 (30.2)				
	23 (11.6)	23 (11.6)	23 (11.6)				
Unknown	1 (0.5)	1 (0.5)	1 (0.5)				
Breastfeeding	No	Yes	Unknown				
	19 (18.1)	20 (15.9)	7 (5.6)				
	24 (13.4)	38 (17.2)	14 (6.3)				
	11 (20.0)	11 (16.2)	2 (2.9)				
	32 (17.1)	37 (17.1)	13 (6.0)				
Duration of breastfeeding, all pregnancies, months	Yes	Unknown	P-trend				
---	-----	---------	---------				
>0≤3	83(79.1)	3(2.9)	0.600				
>3-12	35(79.1)	3(2.9)	0.600				
>12	15(79.1)	3(2.9)	0.600				
Unknown	15(79.1)	3(2.9)	0.600				
P-trend	0.600	0.234	0.388				

Spontaneous abortions

Never pregnant	Yes	Unknown	P-trend
0	83(79.1)	3(2.9)	0.600
1	35(79.1)	3(2.9)	0.600
≥2	15(79.1)	3(2.9)	0.600
Unknown	15(79.1)	3(2.9)	0.600
P-trend	0.600	0.234	0.388

Fertility problems

No	Yes	Missing
83(79.1)	7(6.3)	23(20.5)
107(77.5)	4(2.9)	27(19.6)
45(75.0)	2(3.3)	13(21.7)

OC: oral contraceptive // MHT: menopause hormone therapy

Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.

Notes:
- OC: oral contraceptive // MHT: menopause hormone therapy
- Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.
Available in all centres except San Sebastian, United Kingdom, Greece, Malmö, and Norway.

*Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake.

*Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake, OC use, and full-term pregnancies.

Women who had surgical menopause were excluded

In peri and postmenopausal women (natural or surgical).

Available in France, Italy, Spain, United Kingdom, The Netherlands, Germany, Denmark, and Norway.

Available in all centres except Malmö.

Available in all centres except Bilthoven.

Including nulliparous women and women without full-term pregnancies.

In parous women.

Available in all centres except Bilthoven and Umeå.

In parous women who has ever breastfed.

Available in all centres except Bilthoven, Umeå, Malmö, and Norway

Available in all centres except Bilthoven, Umeå, and Norway.

Available in France, Italy, Spain, United Kingdom, Utrecht, Greece, and Germany.
Supplemental table 2: Multivariable-adjusted models for each individual reproductive factor, menstrual, menopausal factors, and exogenous hormone use in relation to UC by smoking status in EPIC Women.

Age at menarche, years	Never Cases (%) n=195	HR (95%CI)*	Former Cases (%) n=133	HR (95%CI)*	Current Cases (%) n=197	HR (95%CI)*
≤12	25 (12.8)	1.00 (referent)	13 (9.8)	1.00 (referent)	26 (13.2)	1.00 (referent)
12	35 (18.0)	0.95 (0.57-1.60)	31 (23.3)	1.73 (0.90-3.34)	37 (18.8)	0.99 (0.60-1.65)
13	46 (23.6)	0.96 (0.59-1.58)	26 (19.6)	1.01 (0.51-1.99)	55 (27.9)	1.17 (0.72-1.90)
14	40 (20.5)	0.86 (0.52-1.43)	32 (24.1)	1.24 (0.64-2.41)	35 (17.8)	0.76 (0.45-1.29)
>14	43 (22.1)	1.07 (0.64-1.78)	29 (21.8)	1.26 (0.64-2.49)	39 (19.8)	0.97 (0.57-1.63)
Unknown	6 (3.1)	2 (1.5)	2 (1.5)	0.847	8 (4.1)	0.725
Cumulative duration of menstrual cycling, accounting for OC use, years						
≤23	26 (13.3)	1.00 (referent)	13 (9.8)	1.00 (referent)	33 (16.6)	1.00 (referent)
23- <30	27 (13.9)	0.62 (0.35-1.09)	30 (22.6)	1.86 (0.93-3.71)	39 (19.8)	0.99 (0.60-1.61)
30- <35	37 (19.0)	0.55 (0.31-0.96)	33 (23.3)	1.18 (0.56-2.49)	47 (23.9)	1.05 (0.64-1.74)
≥35	64 (32.8)	0.75 (0.43-1.28)	31 (23.3)	1.24 (0.58-2.64)	45 (22.8)	1.15 (0.67-1.97)
Unknown	41 (21.0)	0.93 (0.53-1.64)	36 (27.1)	1.81 (0.87-3.77)	33 (16.8)	0.73 (0.40-1.33)
P trend	0.863	0.857	0.874	0.506	0.725	
Use of OC						
No	123 (63.1)	1.00 (referent)	64 (48.1)	1.00 (referent)	90 (45.7)	1.00 (referent)
Yes	68 (34.9)	0.84 (0.60-1.18)	66 (49.6)	1.07 (0.72-1.59)	102 (51.8)	0.93 (0.67-1.28)
Unknown	4 (2.1)	3 (2.3)	3 (2.3)		5 (2.5)	
Duration OC use, years						
No	123 (63.1)	1.00 (referent)	64 (48.1)	1.00 (referent)	90 (45.7)	1.00 (referent)
>0-≤1	11 (5.6)	0.71 (0.38-1.33)	4 (3.0)	0.38 (0.14-1.06)	19 (9.6)	0.85 (0.51-1.44)
>1-5	15 (7.7)	0.69 (0.40-1.21)	17 (12.8)	1.03 (0.58-1.82)	30 (15.2)	1.08 (0.69-1.68)
>5-10	20 (10.3)	1.20 (0.72-1.99)	24 (18.1)	1.76 (1.05-2.95)	23 (11.7)	0.93 (0.57-1.53)
>10	17 (8.7)	0.93 (0.53-1.61)	9 (6.8)	0.59 (0.28-1.24)	25 (12.7)	0.92 (0.57-1.51)
Unknown duration	5 (2.6)	12 (9.0)	5 (2.5)		5 (2.5)	
Missing use of OC	4 (2.1)	3 (2.3)	3 (2.3)		5 (2.5)	
P trend	0.359	0.72	0.615		0.615	
Menopausal status						
Premenopausal	18 (9.5)	1.00 (referent)	9 (6.8)	1.00 (referent)	22 (11.2)	1.00 (referent)
Perimenopausal	19 (10.0)	1.05 (0.46-2.39)	100 (75.2)	1.48 (0.46-4.78)	140 (71.1)	3.57 (1.55-8.24)
Natural postmenopausal	150 (78.9)	0.78 (0.34-1.78)	18 (13.5)	1.22 (0.39-3.89)	27 (13.7)	2.31 (1.01-5.30)
Surgical postmenopausal	8 (1.6)	1.07 (0.38-3.05)	6 (4.5)	2.06 (0.51-8.33)	8 (4.1)	3.81 (1.33-10.94)
Age at natural menopause, years						
≤46	25 (16.7)	1.15 (0.67-1.93)	19 (19.0)	1.01 (0.55-1.85)	41 (29.3)	1.23 (0.76-1.97)
47-49	26 (17.3)	1.25 (0.75-2.10)	16 (16.0)	1.14 (0.60-2.15)	26 (18.6)	0.92 (0.54-1.55)

*Models additionally adjusted for smoking status, age, BMI, body length, and education level.
Age at any menopause, years	50 - 52	5 - 2	26 (26.0)	1.00 (referent)	36 (27.0)	1.00 (referent)	35 (25.0)	1.00 (referent)
≥53	35 (23.3)	1.25 (0.73 - 2.10)	22 (22.0)	1.27 (0.71 - 2.29)	19 (13.6)	1.12 (0.63 - 2.00)		
Unknown	28 (18.7)	1.84 (1.07 - 3.16)	17 (17.0)	1.07 (0.55 - 2.10)	19 (13.6)	1.05 (0.57 - 1.93)		
P trend	0.532	0.592	0.562					
Use of MHT \(^b\)	No	105 (59.3)	1.00 (referent)	63 (47.4)	1.00 (referent)	77 (39.1)	1.00 (referent)	
Yes	52 (29.4)	1.02 (0.71 - 1.47)	45 (33.8)	1.21 (0.80 - 1.84)	73 (37.1)	1.58 (1.12 - 2.23)		
Unknown	20 (11.3)	1.14 (0.58 - 2.25)	25 (18.8)	0.87 (0.41 - 1.85)	47 (23.9)	2.55 (1.34 - 4.86)		
Duration MHT use, years \(^c\)	No	105 (59.3)	1.00 (referent)	63 (47.4)	1.00 (referent)	77 (39.1)	1.00 (referent)	
>0- ≤1.25	18 (10.2)	1.16 (0.69 - 1.95)	10 (7.5)	1.07 (0.54 - 2.11)	22 (11.2)	1.73 (1.06 - 2.82)		
>1.25-4	12 (6.8)	0.87 (0.47 - 1.62)	14 (10.5)	1.50 (0.82 - 2.76)	21 (10.7)	1.87 (1.12 - 3.10)		
>4	19 (10.7)	1.24 (0.73 - 2.11)	14 (10.5)	1.23 (0.66 - 2.30)	22 (11.2)	1.26 (0.75 - 2.11)		
Unknown duration	3 (1.7)	1.14 (0.58 - 2.25)	7 (5.3)	0.87 (0.41 - 1.85)	47 (23.9)	2.55 (1.34 - 4.86)		
Unknown use of MHT	20 (11.3)	1.14 (0.58 - 2.25)	25 (18.8)	0.87 (0.41 - 1.85)	47 (23.9)	2.55 (1.34 - 4.86)		
P trend	0.567	0.412	0.421					
Type of MHT \(^d\)	Non-users of MHT	88 (63.8)	1.00 (referent)	52 (57.1)	1.00 (referent)	73 (52.5)	1.00 (referent)	
Oestrogen alone	7 (5.1)	0.87 (0.40 - 1.92)	8 (8.8)	1.41 (0.65 - 3.07)	17 (12.2)	2.08 (1.19 - 3.62)		
Oestrogen + Progestin	22 (15.9)	1.22 (0.72 - 2.08)	14 (10.5)	1.21 (0.63 - 2.32)	13 (9.4)	0.79 (0.42 - 1.48)		
Unknown type of MHT	21 (15.2)	1.10 (0.67 - 1.80)	17 (18.7)	1.49 (0.84 - 2.66)	36 (25.9)	1.68 (1.10 - 2.56)		
Oophorectomy \(^e\)	No	141 (82.0)	1.00 (referent)	76 (70.4)	1.00 (referent)	125 (74.4)	1.00 (referent)	
Unilateral	9 (5.2)	1.21 (0.61 - 2.40)	6 (5.6)	1.03 (0.44 - 2.39)	13 (7.7)	1.51 (0.84 - 2.70)		
Bilateral	8 (4.7)	0.91 (0.44 - 1.87)	6 (5.6)	1.21 (0.52 - 2.83)	9 (5.4)	1.25 (0.62 - 2.52)		
Unknown if unilateral or	1 (0.93)							
bilateral	Unknown	14 (8.1)	0.07 (0.00 - 1.29)	19 (17.6)	1.25 (0.45 - 3.48)	21 (12.5)	2.00 (0.79 - 5.03)	
Hysterectomy \(^f\)	No	139 (80.8)	1.00 (referent)	76 (70.4)	1.00 (referent)	127 (75.6)	1.00 (referent)	
Yes	23 (13.4)	0.83 (0.53 - 1.30)	20 (18.5)	1.11 (0.67 - 1.84)	32 (19.1)	1.38 (0.92 - 2.08)		
Unknown	10 (5.8)	0.61 (0.19 - 1.95)	12 (11.1)	1.22 (0.42 - 3.53)	9 (5.4)	0.89 (0.27 - 2.94)		
Parity	No	19 (9.7)	1.00 (referent)	26 (19.6)	1.00 (referent)	27 (13.7)	1.00 (referent)	
Yes	170 (87.2)	1.23 (0.76 - 1.99)	103 (77.4)	0.61 (0.39 - 0.95)	164 (83.3)	1.35 (0.51 - 3.61)		
Unknown	6 (3.1)	4 (3.0)	6 (3.1)					
Number of full-term								
pregnancies \(^g\)	0	19 (9.8)	0.72 (0.40 - 1.28)	25 (19.7)	1.17 (0.67 - 2.06)	27 (12.8)	0.81 (0.48 - 1.35)	
Infertility problems	Spontaneous abortions	Induced abortions	Prolonged breastfeeding in months	Duration of breastfeeding, all pregnancies, years				
----------------------	----------------------	------------------	---------------------------------	---				
Never pregnant	14 (9.0)	0.90 (0.51-1.59)	17 (19.8)	1.77 (1.01-3.09)				
1	114 (73.1)	1.00 (referent)	56 (65.1)	1.00 (referent)				
2	15 (9.6)	1.29 (0.73-2.26)	9 (10.5)	1.23 (0.58-2.86)				
≥3	12 (7.7)	2.52 (1.33-4.78)	2 (2.3)	0.65 (0.15-2.74)				
≥5	6 (3.1)	0.074	0.015	0.341				
P-trend								
UC: urothelial carcinoma // OC: oral contraceptive // MHT: menopause hormone therapy								
Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.
All P value for the interaction were >0.05, with the exception of the induced abortions were P for interaction = 0.028
a Cox proportional hazards model stratified by centre and age at recruitment and adjusted by fruits and vegetables intake.

b Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking intensity (number of cigarettes per day in current-smokers and time since quitting smoking in former-smokers), fruits and vegetables intake.

c Cox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking status and intensity, fruits and vegetables intake, OC use, and full-term pregnancies.

d Women who had surgical menopause were excluded.

e In peri- and postmenopausal (natural or surgical).

f Available in France, Italy, Spain, United Kingdom, The Netherlands, Germany, Denmark, and Norway.

g Available in all centres except Malmö.

h Available in all centres except Bilthoven.

i Including nulliparous women and women without full-term pregnancies.

j In parous women.

k Available in all centres except Bilthoven and Umeå.

l In parous women who has ever breastfed.

m Available in all centres except Bilthoven, Malmö, Umeå, and Norway.

n Available in all centres except Bilthoven, Umeå, and Norway.

o Available in France, Italy, Spain, United Kingdom, Utrecht, Greece, and Germany.
	Never (HR (95% CI)^a)	Former (HR (95% CI)^b)
Menopausal status & use of MHT		
Premenopausal	18 (9.23) 1.23 (0.52-2.43)	9 (6.8) 0.83 (0.27-2.54)
Peri-/Postmenopausal & non-users of MHT	105 (53.9) 1.00 (referent)	63 (47.4) 1.00 (referent)
Peri-/Postmenopausal & users of MHT	52 (26.7) 1.02 (0.71-1.47)	45 (33.8) 1.20 (0.79-1.83)
Peri-/Postmenopausal & unknown MHT-use	20 (10.26) 1.12 (0.53-2.39)	16 (12.0) 0.89 (0.40-2.00)
Number of full-term pregnancies^c		
0^d	19 (9.7) 0.72 (0.40-1.29)	26 (19.6) 1.17 (0.67-2.06)
1	32 (16.4) 1.00 (referent)	26 (19.6) 1.00 (referent)
2	83 (42.6) 0.95 (0.63-1.45)	36 (27.1) 0.57 (0.34-0.96)
3	39 (20.0) 0.85 (0.52-1.37)	25 (18.8) 0.74 (0.42-1.30)
4	9 (4.6) 0.57 (0.27-1.21)	11 (8.3) 0.94 (0.45-1.95)
≥5	5 (2.6) 0.49 (0.18-1.29)	6 (3.1) 0.80 (0.33-1.95)
Unknown	8 (4.1) 0.72 (0.40-1.29)	9 (6.8) 0.89 (0.40-2.00)
P-trend^e	0.069	0.209

UC: urothelial carcinoma // MHT: menopause hormone therapy

Estimation of “Unknown” category is provided when more than 10% of the cases are classified as “Unknown”.

All P value for the interaction were >0.10

^aCox proportional hazards model stratified by centre and age at recruitment and adjusted by fruits and vegetables intake.

^bCox proportional hazards model stratified by centre and age at recruitment and adjusted by smoking intensity (number of cigarettes per day in current smokers and time since quitting smoking in former-smokers), fruits and vegetables intake.

^cAvailable in all centres except Bilthoven.

^dIncluding nulliparous women and women without full-term pregnancies.

^eIn parous women.