The RHEA-project robot for tree crops pesticide application

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

Original Citation:
The RHEA-project robot for tree crops pesticide application / Daniele Sarri ; Marco Rimediotti ; Riccardo Lisci ; Marco Vieri. - ELETTRONICO. - (2013), pp. -. -. (Intervento presentato al convegno 9th European Conference on Precision Agriculture tenutosi a Lleida (Spain) nel 7-11 July 2013) [10.4081/jae.2013.(s1):e71].

Availability:
This version is available at: 2158/814299 since: 2017-10-09T13:49:15Z

Publisher:
Università de Lleida

Published version:
DOI: 10.4081/jae.2013.(s1):e71

Terms of use:
Open Access

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:
The RHEA-project robot for tree crops pesticide application

Daniele Sarrìa, Ricardo Liscib, Marco Rimièdottic, Marco Vierid\footnote{aGEASA Department Agricultural, Food Production and Forest Management - University of Florence - Piazzale delle Cascine 15, 50144 Firenze, Italy bInstitute of Agricultural Engineering and Automation cAgricola di Milano (IM), Via Piazzale de’ Righi, 36 - 20090 Belgirate (VA) dDepartment of Electrical and Information Engineering (DIET), University of Florence, Italy}

Introduction

Our society is moreover demanding lower impacts on environment and higher standards in food safety. The new Community rules on the risks management in woody crops. Present work is related to the third case study considered i.e. the mobile unit development for spraying in woody crops specifically in olive trees. The design involved the analysis of the following variables:

- the equipment configuration; single side or double side and the number of modules;
- the device system (DS) and the control system or Low Level Actuation System (LLAS);
- the main parameters controlled, spray cloud features, liquid flow rate, air flow rate and the air jet variable direction.

Results

The design has led to the development of an air blast sprayer (Fig. 5d), with the following features:

- Maximum height of the vertical boom 2.5 m; canopy band to be treated 2.7 m (3.0 - 3.5 m maximum crop height);
- total equipment weight (empty tank) 400 kg;
- tank 300 L;
- hydraulic pump with maximum flow rate of 100 L min\(^{-1}\) at 25 bar and maximum 5 kW of power requirement to the tank;
- fan maximum 15 kW to the p.t.o.;
- the equipment is semi-loaded and coupled at the three point hitch point but when it is working an additional weight is added such as the wheels.

In view of the objectives, and starting from the basic configuration of the Nobil Octopus air blast sprayer, the following changes were designed:

- The detection system composed of eight ultrasonic sensors to reach data on canopy width of each vertical band;
- variable control of the liquid flow rate in each module to adapt to the canopy width on each band with the following rules: 100% canopy thickness – 100% dose; 50% canopy thickness – 70% dose; < 50% canopy thickness – 30% dose, absence of canopy – 0 dose;
- for these two solutions were developed and tested: an intermittent spray nozzle driven by frequency and duty cycle electronically managed and double nozzles for the upper and lower air blast zones.

Materials and methods

The initial project focused on the RHEA ground mobile units (GMUs) configuration, took into account very small vehicles with 200-400 kg and less than 15 kW power, operating at a forward speed of 1.5 m s\(^{-1}\) with only one operating arm. This setting, is really feasible only for spot spraying technique e.g. in the insects control, but it is not appropriate for other diseases like fungi etc. In these cases, at least, two problems are: the first one is the dosage that, even in a modern intensive tree plant, has an average of 500 mL of canopy volume per hectare, requires not less than 100 200 L h\(^{-1}\). The second is the necessity of an air assisted device to optimize the distribution inside the canopy. Furthermore, the use of one single spray diffuser, at the prescribed forward speed, produces an unacceptable unequal sinusoidal application. Because of these issues, the RHEA-Consortium approved a more suitable ground mobile unit with other new specifications: 4x4 wheel drive, CVT transmission, 37,3 kW gross power, with a 10% of available electric power, maximum mass of 1600 kg, three hitch points lift and standard 52 rad 1 p.t.o.

The expected pesticide dosage saving is about 50% of the conventional application rate maintaining, at the same time, the quality of the folage deposition.

CONCLUSIONS

- The Rhea air blast sprayer introduces an important innovation in the studies concerning the pesticide variable rate application in agricultural field in general and in real time in function of the canopy thickness.
- The spraying configuration designed provides eight different vertical bands of independent treatment with the possibility to manage, in a site specific way, the pesticide applied and the air flow direction and its rate;
- The spraying robot module has both remote and proximal controls; remote for tractor control and proximal for the spraying control, which has a double aim i.e. to have an innovative sprayer usable and testable as independent autonomous equipment or else, coupled with suitable tractors;
- The expected pesticide dosage savings is about 50% of the conventional application rate maintaining, at the same time, the quality of the folage deposition.

References

Gonzalez-de-Santos, P., Vieli, M., Ribero, A., Rathaefi, M., Emmi, L., Fontanella, M., Rimièdotti, M., Fresconi, C., Sarrì, D. & Peruzzi A. 2011. The RHEA project: a fleet of autonomous robots for precision chemical and non-chemical weed management in cranberry plantations. Proceedings of the 1st International Conference on Robotics and associated High Technologies and Equipment for agriculture, Application of automated systems and robotics for crop protection in sustainable precision agriculture. RHEA-Plus, Pisa, September 19-21, 2012. Pg 93-98.

Vieli, M., Rathaefi, M., Emmi, L., Peruzzi A., Rathaefi M., Emmi, L., Fresconi, C., Marco Vieri 2012. RHEA projects: achievements, lessons learned and perspectives. Proceedings of the 12th International Conference of Agricultural Engineering, CIGR, AgriGlo2012 – Valencia Conference Center, 8-12 July 2012, Valencia. Spain: Report 1356. ISBN 978-84-15- 9292-4

\[End\]
9th European Conference on Precision Agriculture
Facing new challenges, providing new solutions
Book of Posters

Edited by
Alex Escola
Jaume Arnó
Ricardo Sanz
Lluís Puigdomènech

Lleida, Catalonia, Spain
July 7th-11th 2013
The RHEA-project robot for tree crops pesticide application

D. Sari1, R. Lisci1, M. Rinediotti1, M. Vieri1
1GESAAF Department Agricultural, Food Production and Forest Management, University of Florence, Piazzalle delle Cascine 15, 50144 Firenze (Italy)
marco.vieri@unifi.it

Abstract

The sustainable use of PPP (Plant Protection Products) and the need of a renewed integrated system of agricultural knowledge and management, focus the designing of the EU FP7 RHEA Project (Robot fleets Highly for Effective Agriculture and forestry management – www.rhea-project.eu). The objectives are the design, development, and testing of a new automatic generation of robotic systems to perform field operations for the sustainable crop management. The project affects three case study: chemical, physical, mechanical and thermal effective weed management in maize and wheat cultivations and chemical pesticide management in woody crops. To achieve the goals, a fleet of small and heterogeneous robots – ground and aerial – equipped with advanced sensors, innovative end actuators and decision control algorithms were realized. Six integrated modules make up the RHEA system: Mission Manager (MM), Perception System (PS), Communication and location System (CS), Actuation System (AC) divided into High Level and Low Level Decision, Mobile Units (MUs) and the Base Station and Graphic User Interfaces (GUI). Present work is related to the third case study considered i.e. the spraying in woody crops specifically in olive trees. The initial project proposal, about the RHEA ground mobile units configuration, took into account very small vehicles with 200-400 kg and less than 15 kW power, operating at a forward speed of 1.5 m s⁻¹ with only one operating arm. This setting, is really feasible only for spot spraying technique e.g. in the insects control, but it is not appropriate for other diseases like fungi etc. Because of this issue, the RHEA Consortium approved a more suitable ground mobile unit (GMI) with other new specifications: 4x4 wheel drive, CVT transmission, 37.3 kW gross power, with a 10% of which available as electric power, maximum mass of 1600 kg, three hitch points lift and standard 52 rad s⁻¹ p.t.o. These new features, make it possible to adopt a common ready to use and innovative air assisted sprayer. Another important choice, was the scenario for the final demonstration trials: the RHEA Consortium approved an intensive olive plantation. This decision was taken because the olive growing is, at the same time, quite similar to modern orchard crops and woody tree crops. The plantation pattern was 4.0 m inter-row and 1.5 m distance on the row to reach a foliar wall as flat and regular as possible. With these variables, different solutions about pesticide spraying and air vector devices management were investigated. On these basis, the final decision on woody perennial crops treatment device system, was oriented toward a complete double side air blast sprayer (based on Nobili Octopus air blast sprayer) with eight separate spraying modules on four vertical bands of the canopy. After the upgrade, the new configuration is characterized by a detection system composed of eight ultrasonic sensors, to detect data on canopy width in four vertical band. To control flow rate, two solutions were developed: the first one consists of an intermittent spray nozzle driven by frequency and duty cycle electronically managed. The second, involves the use of double nozzles on each module with 70% and 30% of needed flow rate on each band, which are simultaneously open with full canopy. To manage the air blast flow rate, butterfly valves (step motor controlled) located on the main inlet manifold and in the fan calotte collector were designed. Finally, actuation rules for each devices to better fit optimum spray features (air and liquid flow rate) on each vertical bands of the canopy were defined. Rhea air blast sprayer introduces an important innovation in the studies concerning the pesticide variable rate treatment, i.e. the management possibility of air flow in site specific way and in real time in function of the target. The innovative devices developed and the wide versatility of the actuators designed, make it possible to optimize the treatments efficiency.

Keywords: variable spray, sprayer, dose adjustment, robot, air flow management.