Supporting Information

Low-temperature Processed TiO\textsubscript{x} Electron Transport Layer for Efficient Planar Perovskite Solar Cells

Md. Shahiduzzaman 1,*, Daiki Kuwahara 2, Masahiro Nakano 2, Makoto Karakawa 1,2,3, Kohshin Takahashi 2, Jean-Michel Nunzi 1,4 and Tetsuya Taima 1,2,3,*

1 Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; karakawa@staff.kanazawa-u.ac.jp (M.K.); nunzijm@queensu.ca (J.-M.N.)

2 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; kuworld.shining.0626@gmail.com (D.K.); masahiro-nakano@se.kanazawa-u.ac.jp (M.N.); ktakaha@kvj.biglobe.ne.jp (K.T.)

3 Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

4 Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada

* Correspondence: shahiduzzaman@se.kanazawa-u.ac.jp (M.S.); taima@se.kanazawa-u.ac.jp (T.T.); Tel.: +81-76-234-4937 (M.S.)
Table of Contents

Figure S1. XRD pattern of low-temperature treated-TiOₓ film on an FTO-substrate... S3

Figure S2: Forward Scan and Reverse Scan J-V curves of (a) TiOₓ and TiO₂ films deposited on an FTO-substrate; (b) TiOₓ film grown on ITO-substrate ... S4

Table S1. Nyquist plots fitting analysis parameters .. S5

Table S2. Summary of device performance characteristics with TiOₓ and TiO₂ based PSCs ... S6

Table S3. Summary of device performance characteristics with TiOₓ film deposited on an ITO-substrate based PSCs .. S7
Figure S1. XRD pattern of low-temperature treated-TiOx film on FTO-substrate.
Figure S2. Forward Scan and Reverse Scan J-V curves of (a) TiO$_x$ and TiO$_2$ films deposited on FTO-substrate; (b) TiO$_x$ film grown on ITO-substrate.
ETLs Layer	Rs (Ω)	R1(Ω)	CPE1-T	CPE1-P	R2(Ω)	CPE2-T	CPE2-P
TiOx	36.8	160.6	2.02E-8	1.05	123.5	3.05E-8	0.946
TiO2	28.3	105.4	3.73E-8	1.02	116	5.26E-8	0.920
Table S2. Summary of device performance characteristics with TiO$_x$ and TiO$_2$ based PSCs.

ETLs Layer	Scan direction	J_{sc} (mA/cm2)	V_{oc} (V)	FF	PCE (%)
TiO$_x$	Forward	20.44	1.10	0.50	11.21
	Reverse	20.64	1.12	0.63	14.51
TiO$_2$	Forward	21.21	1.04	0.46	10.12
	Reverse	21.06	1.08	0.68	15.50
Table S3. Summary of device performance characteristics with TiOx film deposited on ITO-substrate based PSCs.

ETLs Layer	Scan direction	J_{sc} (mA/cm²)	V_{oc} (V)	FF	PCE (%)
ITO-TiOx	Forward	16.94	0.99	0.54	9.13
	Reverse	19.02	1.01	0.58	11.13