Commentary

Identification of murine mammary stem cells: implications for studies of mammary development and carcinogenesis

Max S Wicha

Comprehensive Cancer Center, University of Michigan, E. Medical Center Drive, Ann Arbor, MI 48109-0942, USA

Corresponding author: Max S Wicha, mwicha@umich.edu

Published: 23 August 2006

Breast Cancer Research 2006, 8:109 (doi:10.1186/bcr1540)

Abstract

The epithelial components of the mammary gland are thought to arise from a stem cell capable of both self-renewal and multi-lineage differentiation. Furthermore, there is increasing evidence that mammary carcinomas originate in these cells or their immediate progeny. The recent identification of murine mammary stem cells should facilitate their molecular characterization and help to elucidate their role in mammary carcinogenesis. In addition, an understanding of the biology of these cells including the pathways that regulate their self-renewal and differentiation may suggest new approaches for the prevention and treatment of breast cancer.

The recent report by Shackleton and colleagues [1] demonstrating the generation of a functional mammary gland in the mouse from a single stem cell has important implications for understanding mammary development and carcinogenesis. The existence of stem cells capable of generating the entire epithelial components of the mammary gland has long been postulated. Stem cells are defined by their ability to undergo self-renewal, as well as lineage specific differentiation. Previous studies providing indirect evidence for the existence of these cells utilized transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definitive evidence for the existence of these cells utilizing transplantation of retrovirus tagged epithelial fragments into the cleared fat pads of recipient mice [2]. Evidence for the existence of mammary stem and progenitor cells has also been provided by in vitro studies. These studies have identified cell populations capable of giving rise to all three epithelial cell types found in the adult gland, ductal and alveolar epithelial cells and myoepithelial cells. Shackleton and colleagues provide more definite...
mammary stem cell self-renewal and differentiation. These interactions define a stem cell 'niche'. This niche is thought to be composed of both cellular as well as extracellular elements. It is postulated that stem cells receive paracrine signals from 'niche' cells that regulate stem cell behavior, including self-renewal and differentiation. The nature of the stem cell 'niche' that regulates behavior of normal and malignant mammary stem cells has recently been reviewed by Bissell and colleagues [8] and Li and colleagues [9]. The ability to transplant both murine and human cells into such a "niche" should allow the further elucidation of key regulatory pathways for stem cell self-renewal and lineage specific differentiation.

The isolation and characterization of mammary stem cells also has important implications for understanding mammary carcinogenesis. Recent studies in the mammary gland and other organs have given impetus to the "cancer stem cell hypothesis", which has two interrelated components. The first is that cancers arise from stem cells or their immediate progeny, and the second is that tumors contain a hierarchy of cells, including "cancer stem cells" that drive tumorigenesis [10]. The study of Shackleton and colleagues [1] supports such a model. They examined the percentage of cells expressing the stem cell phenotype Lin−CD29hiCD24+ in MMTV-wnt transgenic mice. It has previously been shown that these mice develop carcinomas containing cells that display markers of both epithelial and myoepithelial lineages [11]. Shackleton and colleagues report that there was a 6.4-fold increase in the absolute number of cells bearing the stem cell phenotype in these mice. Wnt signaling has been shown to play a role in the self-renewal of several normal stem cells [12]. Interestingly, when Shackleton and colleagues transplanted CD29hiCD24+ cells from these transgenic mice into cleared fat pads of wild-type recipients, the recipients produced hyperplastic outgrowths. This is consistent with the stem cell model in which perturbation of the self-renewal of stem cells gives rise to stem cell expansion and hyperplasia, which in turn provides targets for further transforming events [10]. Indeed, we have found that disruption of Hedgehog signaling in normal human mammary stem/progenitor cells results in the generation of ductal hyperplasia when these cells are transplanted into the humanized cleared fat pads of NOD/SCID mice [7]. Interestingly, expansion of the stem cell compartment was not seen in MMTV-neu mice, which develop luminal tumors. These studies suggest that, while MMTV-wnt affects a primitive mammary cell, MMTV-neu affects a more committed epithelial specific progenitor. These studies are also consistent with our recent characterization of stem cells in human breast cancer, which are characterized as CD44+CD24−Lin− [13]. Both Shackleton and colleagues and Stingl and colleagues localized the majority of mammary repopulating cells to the basal compartment in the normal gland, while human breast cancer cells express CD44, a basal marker [13]. This suggests that there may be a link between normal and tumorigenic breast stem cells. In addition, transcription of different mammary stem or progenitor cells may account for the different molecular subtypes of breast cancer detected in molecular profiling studies [14]. It remains unclear whether markers utilized to identify normal and malignant mammary stem cells play a functional role. CD29 and CD49 recognize alpha-6 beta-1 integrin, a molecule that has also been described as expressed in other stem cells. This integrin may play a role in anchoring stem cells in the stem cell "niche". CD44 is a receptor for haluronic acid, which has been shown to play a role in tumor migration and metastasis [15]. CD24 has recently been described as a negative regulator of CXCR4, a cytokine receptor important in facilitating breast cancer metastasis [16]. Interestingly, although the studies of Shackelton and colleagues suggest that murine repopulating cells are CD24+, more recent studies by this group and others have suggested that high levels of CD24 are expressed on luminal precursors, whereas an intermediate level of expression is found on more primitive mammary repopulating cells [17]. In the studies by Shakelton and colleagues, as well as our own studies, cells displaying lineage specific markers were eliminated to further enrich the stem cell populations. Together, these studies suggest that there are important similarities between markers expressed by both normal and tumorigenic mammary stem cells. Furthermore, these markers may play a functional role in stem cell behavior.

The further identification of markers that identify cells at different stages of mammary development should greatly facilitate our understanding of normal development and carcinogenesis. An understanding of the biology of the cells that drive tumorigenesis has the potential to lead to new therapeutic approaches for breast cancer.

Competing interests
MW is a consultant for and has financial holdings in OncoMed Pharmaceuticals.

Acknowledgements
MW is supported by NIH grant CA101860, DoD BC030214, and University of Michigan Cancer Center Support Grant 5P53CA46592.

References
1. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE: Generation of a functional mammary gland from a single stem cell. Nature 2006, 439:84-88.
2. Kordon EC, Smith GH: An entire functional mammary gland may comprise the progeny from a single cell. Development 1998, 125:1921-1930.
3. Osawa M, Hanada K, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34− low/negative hematopoietic stem cell. Science 1996, 273:242-245.
4. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li H, Evans CJ: Purification and unique properties of mammary epithelial stem cells. Nature 2006, 439:993-997.
5. Dontu G, Abdallah WM, Foley JM, Jackson K, Kawamura M, Clarke M, Wicha M: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17:1253-1270.
6. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA: Reconstruction of functionally normal and malignant human breast tissues in mice. *Proc Natl Acad Sci USA* 2004, 101:4966-4971.

7. Liu S, Dontu G, Mantle I, Patel S, Ahn N, Jackson K, Suri P, Wicha M: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. *Cancer Res* 2006, 66:6063-6071.

8. Bissell MJ, Labarge MA: Context, tissue plasticity, and cancer: are tumor stem cells also regulated by microenvironment? *Cancer Cell* 2005, 7:17-23.

9. Li L, Neaves WB: Normal stem cells and cancer stem cells: the niche matters. *Cancer Res* 2006, 66:4553-4557.

10. Wicha M, Liu S, Dontu G: Cancer stem cells: an old idea-a paradigm shift. *Cancer Res* 2006, 66:1883-1890.

11. Li Y, Welm B, Podospania K: Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. *Proc Natl Acad Sci USA* 2003, 100:15853-15858.

12. Lu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal pathways, and carcinogenesis. *Breast Cancer Res* 2005, 7:86-95.

13. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. *Proc Natl Acad Sci USA* 2003, 100:3983-3988.

14. Dontu G, El-Ashry D, Wicha MS: Breast cancer, stem/progenitor cells and the estrogen receptor. *Trends Endocrinol Metab* 2004, 15:193-197.

15. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJJ: CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. *Cancer Res* 2004, 64:5702-5711.

16. Schabath H, Runz S, Joumaa S, Altevogt P: CD24 affects CXCR4 function in pre-β lymphocytes and breast carcinoma cells. *J Cell Sci* 2006, 119:314-325.

17. Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, Visvader JE, Lindeman GJ: Steroid hormone receptor status of mouse mammary stem cells. *J Natl Can Inst* 2006, 98:1011-1014.