EFFECTIVE POTENTIAL CALCULATION OF THE MSSM LIGHTEST CP-EVEN HIGGS BOSON MASS∗

REN-JIE ZHANG

Department of Physics, University of Wisconsin, Madison WI 53706 USA

In memory of Prof. Xi-De Xie.

I summarize results of two-loop effective potential calculations of the lightest CP-even Higgs boson mass in the minimal supersymmetric standard model.

Computing the lightest CP-even Higgs boson mass is the most important loop calculation in the minimal supersymmetric standard model because of the paramount importance of a precise m_{h^0} value to the Higgs boson experimental discovery. Tree-level supersymmetry relations require that the Higgs field quartic coupling be related to the electroweak gauge couplings; therefore they impose a strict upper bound $m_{h^0} \leq m_Z$, which is already in conflict with the current lower limit from LEP 2.

It is well-known that this tree-level limit can be drastically changed by radiative corrections. One-loop calculations show that incomplete cancellations of the top and stop loops give positive corrections of the form

$$\Delta m_{h^0}^2 = \frac{3h^2m_t^2}{4\pi^2} \ln \frac{m^2_t}{\tilde{m}_t^2},$$ \hspace{1cm} (1)

where m_t and \tilde{m}_t are top and stop masses respectively. This formula, however, suffers from an ambiguity in the definition of m_t. Numerically, using running or on-shell top-quark mass can amount to about 20% difference in $\Delta m_{h^0}^2$. The problem can only be resolved by an explicit two-loop calculation.

Two-loop calculations in the existing literature have used two different approaches: (a) a renormalization group resummation approach and (b) a two-loop diagrammatic approach. In the first approach, leading and next-to-leading logarithmic corrections are calculated by integrating one- and two-loop renormalization group equations. However, two-loop non-logarithmic finite corrections are not calculable in principle. The second approach was initiated by Hempfling and Hoang using an effective potential method; they restricted their calculation to specific choice of supersymmetry parameters: i.e. large $\tan \beta \rightarrow \infty$ and zero left-right stop mixing. Two-loop QCD corrections were later computed at more general cases in the effective potential

∗Contribution to PASCOS99: 7th International Symposium on Particles, Strings and Cosmology, Granlibakken, Tahoe City, California, 10-16 Dec 1999.
approach. m_{h^0} to the same two-loop QCD order was also computed using an explicit diagrammatic method. These calculations incorporate both two-loop logarithmic and non-logarithmic finite corrections. In the following, I shall concentrate on the effective potential approach.

The general way of calculating corrections to CP-even Higgs boson mass is to compute Higgs self-energy and tadpole diagrams to the required loop order. In an effective potential approach, these diagrams can be derived from a generating functional, i.e. the effective potential, by taking explicit derivatives with respect to the Higgs fields. These quantities then enter the MS SM CP-even Higgs boson mass-squared matrix as follows

$$
\mathcal{M}_h^2 = \begin{bmatrix} m_Z^2 c_\beta + m_A^2 s_\beta + \Delta M_{11}^2 & -(m_Z^2 + m_A^2) s_\beta c_\beta + \Delta M_{12}^2 \\ -(m_Z^2 + m_A^2) s_\beta c_\beta + \Delta M_{21}^2 & m_Z^2 s_\beta + m_A^2 c_\beta + \Delta M_{22}^2 \end{bmatrix},
$$

where ΔM_{ij}^2 represents radiative corrections to the ij-entry. We note that all these corrections are computed at the zero external momentum limit; sometimes it is necessary to calculate self-energy diagrams directly to account for corrections from non-zero external momenta.

The CP-even Higgs boson masses can be calculated by diagonalizing the above matrix in eq. (2). This computation is tedious but can be greatly simplified when one considers the case $m_A^0 \gg m_Z$, where m_A^0 is the mass of the pseudoscalar A^0. In this case, we find the corrections to $m_{h^0}^2$ is

$$
\Delta m_{h^0}^2 = \frac{3m_t^4}{2\pi^2 v^2} \left(\ln \frac{m_{h^0}^2}{m_t^2} + \frac{\hat{X}_t^4}{12} \right)
$$

where V is the effective potential, v the Higgs field VEV, and the last two terms account for non-zero external momentum corrections.

We have carried out this calculation procedure to the two-loop order including leading QCD and top Yukawa corrections. To illustrate our analysis, we present an approximation formula which is derived under the following assumptions: the soft masses for left and right stops, gluino, heavy Higgs bosons and Higgsinos have a common mass M_S, where M_S can be identified as the supersymmetry scale. The two eigenvalues and mixing angle of stops are then accordingly $m_{\tilde{t}_1}^2 = m_{\tilde{t}_1}^2 + m_t X_t$, $m_{\tilde{t}_2}^2 = m_{\tilde{t}_2}^2 - m_t X_t$ and $s_t = c_t = \frac{1}{\sqrt{2}}$, where the average top-squark mass $m_{\tilde{t}}^2 = M_S^2 + m_t^2$, and $X_t = A_t + \mu / \tan \beta$ is the left-right stop mixing parameter.

We find the approximation formula for two-loop QCD+top Yukawa corrections is (in terms of on-shell mass parameters)

$$
\Delta m_{h^0}^2 = \frac{3m_t^4}{2\pi^2 v^2} \left(\ln \frac{m_{h^0}^2}{m_t^2} + \frac{\hat{X}_t^4}{12} \right)
$$
\[
\alpha s m_t^4 \left(-3 \ln^2 \frac{m_t^2}{m_t^2} - 6 \ln \frac{m_t^2}{m_t^2} + 6 \hat{X}_t - 3 \hat{X}_t^2 \ln \frac{m_t^2}{m_t^2} - \frac{3 \hat{X}_t^4}{4} \right) \\
+ \frac{3 \alpha m_t^4}{16 \pi^3 v^2} \left \{ s_\beta^2 \left(3 \ln^2 \frac{M_S^2}{m_t^2} + 13 \ln \frac{M_S^2}{m_t^2} \right) - 1 \right \} \left(1 + \frac{61}{12} s_\beta^2 \right) \hat{X}_t^2 + \frac{2 \pi}{\sqrt{3}} \hat{X}_t^4 \\
+ \frac{c_\beta^2}{2} \left[(3 - 16 K - \sqrt{3} \pi)(4 \hat{X}_t \hat{Y}_t + \hat{Y}_t^2) + \left(16 K + \frac{2 \pi}{\sqrt{3}} \right) \hat{X}_t^3 \hat{Y}_t \right] \\
+ \left(-\frac{4}{3} + 24 K + \sqrt{3} \pi \right) \hat{X}_t \hat{Y}_t^2 - \left(\frac{7}{12} + 8 K + \frac{\pi}{2 \sqrt{3}} \right) \hat{X}_t^4 \hat{Y}_t^2 \right \},
\]

where the constant \(K \approx -0.195 \). We note that two-loop QCD corrections depend only on \(\hat{X}_t = X_t/m_t \) while the top Yukawa corrections depend on \(\hat{Y}_t = (A_t - \mu \tan \beta)/m_t \) as well. This approximation formula is good to a level of 0.5 GeV for most of the parameter space.

Figure 1. Higgs boson mass \(m_{h^0} \) versus \(\hat{X}_t \). The dotted, dot-dashed and solid lines correspond to Higgs boson masses calculated to the orders of one-loop, two-loop QCD and two-loop QCD+top Yukawa respectively.

Fig. 1 shows the Higgs boson mass \(m_{h^0} \) vs. the stop mixing parameter \(\hat{X}_t \), for different choices of \(M_S, \mu \), and \(\tan \beta \). The two-loop QCD corrections agree well with other approaches. They generally decrease \(m_{h^0} \) from their
one-loop values by $10 - 20$ GeV depending on the parameter choice. Two-loop Yukawa corrections are sizeable for large stop mixings, in particular, for $\hat{X}_t \simeq \pm 2$ two-loop Yukawa corrections can increase m_{h^0} by about 5 GeV.

Another interesting feature observed in the literature is that two-loop corrections shift the maximal mixing peaks. At the one-loop level, these peaks are at $\hat{X}_t = \pm \sqrt{6}$. It is easy to see from eq. (4) that the size of shifts is about 10%, i.e. the peaks move to $\hat{X}_t \simeq \pm 2$. This is confirmed by Fig. 1.

Finally, renormalization group resummation technique can be used to derive a particularly nice mass correction formula which has clearer physical interpretations. We find eq. (4) can be transformed into the following form by using solutions to the renormalization group equations

$$\Delta m_{h^0}^2 = \frac{3m_t^4(Q_t)}{2\pi^2 \alpha(Q^*_1)} \ln \frac{m_t^2(Q_{th})}{m_t^2(Q^*_1)} + \frac{3m_t^4(Q_{th})}{2\pi^2 \alpha(Q^*_2)} \left[\frac{\hat{X}_t^2(Q_{th}) - \hat{X}_t^2(Q_{th})}{12} \right] + \Delta_{th}^{(2)},$$

(5)

where $Q^*_1 = e^{-1/3}m_t$, $Q^*_2 = e^{1/3}m_t$, $Q_t = \sqrt{m_t m_{\tilde{t}}}$, $Q_t^* = (m_t m_{\tilde{t}})^{1/3}$ and $Q_{th} = m_{\tilde{t}}$, α and α are the Standard Model \overline{MS} parameters. These choices of scales for evaluating one-loop corrections automatically take into account two-loop leading and next-to-leading logarithmic effects. The leftover finite correction term $\Delta_{th}^{(2)}$ is understood as two-loop threshold corrections and numerically small; its detail form can be found in a forthcoming paper.

I thank J. R. Espinosa for collaborations. This work was supported in part by a DOE grant No. DE-FG02-95ER40896 and in part by the Wisconsin Alumni Research Foundation.

References

1. Y. Okada, M. Yamaguchi, and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83; H.E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815.
2. M. Carena, J.R. Espinosa, M. Quiros and C.E.M. Wagner, Phys. Lett. B355 (1995) 209; M. Carena, M. Quiros and C.E.M. Wagner, Nucl. Phys. B461 (1996) 407; H.E. Haber, R. Hempfling and A.H. Hoang, Z. Phys. C75 (1997) 539.
3. R. Hempfling and A.H. Hoang, Phys. Lett. B331 (1994) 99.
4. S. Heinemeyer, W. Hollik and G. Weiglein, Phys. Rev. D58 (1998) 091701; Eur. Phys. J. C9 (1999) 343.
5. R.-J. Zhang, Phys. Lett. B447 (1999) 89; J.R. Espinosa and R.-J. Zhang, hep-ph/9912230.
6. J.R. Espinosa and R.-J. Zhang, hep-ph/0003240.