CLOSED GENERALIZED EINSTEIN MANIFOLDS WITH RADIIALLY FLAT RICCI CURVATURE

SEUNGSU HWANG, MARCIO SANTOS, AND GABJIN YUN*

Abstract. In this paper, we show that a closed n-dimensional generalized $(\lambda, n+m)$-Einstein manifold of constant scalar curvature with weakly radially zero Ricci curvature is isometric to either a sphere S^n, or a product $S^1 \times S^{n-1}$ of a circle with an $(n-1)$-dimensional Einstein manifold of positive Ricci curvature, up to finite cover and rescaling. Furthermore, if we assume (M, g) has positive isotropic curvature, M must be isometric to either a sphere S^n, or a product $S^1 \times S^{n-1}$ of a circle with an $(n-1)$-sphere.

1. Introduction

A closed generalized $(\lambda, n+m)$-Einstein manifold is a triple (M^n, g, f), where (M^n, g) is a closed n-dimensional Riemannian manifold and f is a smooth function on M satisfying

$$Ddf = \frac{f}{m}(\text{Ric} - \lambda g).$$

Furthermore, λ is a smooth function on M and m is a positive real number. In particular, (M, g, f) will be called a $(\lambda, n+m)$-Einstein manifold if λ is constant.

The motivation to approach this type of manifolds is studying Einstein manifolds that have a structure of warped product. In fact, if $m > 1$ is an integer and $f > 0$, it is known [13] that (M^n, g, f) is a $(\lambda, n+m)$-Einstein manifold if and only if there is a smooth $(n+m)$-dimensional warped product Einstein manifold having M as the base space. We also observe that if we define the function ϕ by $e^{-\frac{\lambda}{m}} = f$, the equation (1.1) becomes

$$\text{Ric}^m_{\phi} := \text{Ric} + Dd\phi - \frac{d\phi \otimes d\phi}{m} = \lambda g.$$

Here, the tensor Ric^m_{ϕ} is the well-known m-Bakry-Émery Ricci tensor. Taking $m \to \infty$, we get the gradient (generalized) Ricci soliton equation

$$\text{Ric} + Dd\phi = \lambda g.$$

A generalized $(\lambda, n+m)$-Einstein manifold (M^n, g, f) is called trivial if the potential function f is constant, and in this case (M, g) is Einstein. We point out that, if a closed $(\lambda, n+m)$-Einstein manifold has constant scalar curvature, f does not change sign on M and λ is constant, it follows from the maximum principle that (M^n, g, f) is trivial. On the other hand, if λ is non-constant, a closed generalized $(\lambda, n+m)$-Einstein manifold with constant scalar curvature and $f > 0$ is Einstein and isometric to a sphere, see [1]. Motivated by these results, from now on, we always assume that

$$\min_M f := a < 0 < b := \max_M f$$

so that $f^{-1}(0)$ is a non-empty set whenever we consider closed generalized $(\lambda, n+m)$-Einstein manifolds.

In this paper, we consider closed generalized $(\lambda, n+m)$-Einstein manifolds satisfying a 2-form $\omega = df \wedge i\nabla_f z_g = 0$, where z_g is the traceless Ricci curvature tensor defined by $z_g = \text{Ric} - \frac{\text{Scal}}{n} g$ and $i\nabla_f z$ denotes the interior...
product. We can see that the vanishing of ω is equivalent to $z_\theta(\nabla f, X) = 0$ for any vector field X orthogonal to ∇f, or $\text{Ric}_g(\nabla f, X) = 0$ since vacuum static space have constant scalar curvature.

Our main result is the following.

Theorem 1.1. Let (M^n, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Suppose that (M, g) has constant scalar curvature and $\omega = df \wedge \imath_{\nabla f} z = 0$. Then, up to finite cover and rescaling, we have the following.

1. If $f^{-1}(0)$ is connected, then (M, g) is isometric to a sphere \mathbb{S}^n.
2. If $f^{-1}(0)$ is disconnected, then $f^{-1}(0)$ has exactly two connected components and (M, g) is isometric to the product $\mathbb{S}^1 \times \Sigma^{n-1}$. Here Σ is an $(n-1)$-dimensional Einstein manifold of positive Ricci curvature.

We point out that, when (M^n, g, f) is a closed $(\lambda, n + m)$-Einstein manifold, that is, λ is a constant function, the condition $\omega = 0$ is equivalent to constant scalar curvature, see Lemma 6.1. W can also easily show that there are no critical points on the set $f^{-1}(0)$ and each connected component of $f^{-1}(0)$ is totally geodesic (see Section 2). Moreover, motivated by [10], we show that the vanishing of $\omega = 0$ implies that the potential function f does not have critical points except at minimum and maximum points. Finally, supposing that (M, g) has constant scalar curvature, we are able to provide a proof of the above result.

Furthermore, if we assume that (M, g) has positive isotropic curvature (PIC in short), then Σ can be shown to be a sphere \mathbb{S}^{n-1}.

Theorem 1.2. Let (M^n, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Suppose that (M, g) has PIC, constant scalar curvature and $\omega = df \wedge \imath_{\nabla f} z = 0$. If $f^{-1}(0)$ is disconnected, then, up to finite cover and rescaling, (M, g) is isometric to the product $\mathbb{S}^1 \times \Sigma^{n-1}$.

We recall that a Riemannian manifold M has positive isotropic curvature if and only if, for every orthonormal four-frame $\{e_1, e_2, e_3, e_4\}$, we have that

$$R_{1313} + R_{1414} + R_{2323} + R_{2424} - 2R_{1234} > 0.$$

The positive isotropic curvature was first introduced by Micalleff and Moore [15] in consideration of the second variation of energy of maps from surfaces into M. It is easy to see that a standard sphere \mathbb{S}^n and a product $\mathbb{S}^{n-1} \times \mathbb{S}^1$ or $\mathbb{S}^{n-1} \times \mathbb{R}$ have PIC. It is also well-known that if the sectional curvature of a Riemannian manifold is pointwise strictly quarter-pinched, then it has PIC, and the connected sum of manifolds with PIC admits a PIC metric (see [15] and [16]). This condition was also used by Brendle and Schoen to prove the celebrated differentiable pointwise 1/4-pinching sphere theorem, see [4].

Convention and Notations: Basically, we follow curvature conventions and operator conventions in [2] except only one the Laplace operator. Hereafter, for convenience and simplicity, we denote curvatures $\text{Ric}_g, z_\theta, \text{Scal}_g,$ and the Hessian and Laplacian of $f, D_g df, \Delta_g$ by $r, z, s,$ and $Ddf, \Delta,$ respectively, if there is no ambiguity. We also use the notation $\langle \cdot, \cdot \rangle$ for metric g or inner product induced by g on tensor spaces.

2. Basic Properties

In this section, we give some basis properties on closed generalized $(\lambda, n + m)$-Einstein manifolds. Before doing this, we first enumerate equivalent equations to (1.1) and basic identities which are used later.

Basic Identities:

1. Taking the trace of (1.1), we have

$$\Delta f = -\frac{n}{m} \left(\lambda - \frac{s}{n} \right) f \quad \text{or} \quad \Delta f = \frac{f}{m} (s - n \lambda). \quad (2.1)$$
Denoting $Ddf = Ddf - \frac{\Delta f}{n} g$, (1.1) is reduced to

$$fz = mDdf.$$

Since $\frac{\lambda f}{m} = \frac{1}{n} \left(sf - \Delta f \right)$ in (2.1), by substituting this into (1.1), we obtain

$$Ddf = \frac{f}{m} r - \frac{1}{n} \left(sf - n g \right).$$

Using $z = r - \frac{s}{n} g$, from (1.1), we have

$$fz = mDdf + \left(\lambda - \frac{s}{n} \right) fg = mDdf - \frac{m}{n} (\Delta f) g.$$

Letting $\mu := \lambda f - \frac{s}{n-1} f$, from (2.2), we have

$$fz = mDdf - \frac{sf}{n} g + \left(\mu + \frac{s}{n-1} \right) g.$$

Taking the trace of (2.3), we obtain

$$\Delta f = -\frac{s}{m(n-1)} f - \frac{n}{m} \mu.$$

Lemma 2.1. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Then, the set \(\{ f > 0 \} \cap \{ \lambda \geq \frac{s}{n} \} \) is nonempty.

Proof. Suppose, on the contrary, that \(\{ f > 0 \} \cap \{ \lambda \geq \frac{s}{n} \} = \emptyset \). Multiplying (2.1) by f and integrating it over the set $f \geq 0$, we obtain

$$\int_{f \geq 0} |\nabla f|^2 = \frac{n}{m} \int_M \left(\lambda - \frac{s}{n} \right) f^2 \leq 0,$$

which shows that $\nabla f = 0$ and so $f = 0$ on the set \(\{ f > 0 \} \), a contradiction. \qed

The same argument in the proof of Lemma 2.1 shows that

$$\{ f < 0 \} \cap \{ \lambda \geq \frac{s}{n} \} \neq \emptyset.$$

Lemma 2.2. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Then, there are no critical points on the set $f^{-1}(0)$.

Proof. Suppose that there is a critical point $p \in f^{-1}(0)$ of f. Let γ be a unit-speed geodesic starting at p and define $h(t) = f(\gamma(t))$. From (2.2), we have

$$h''(t) = \frac{1}{m} \left[z(\gamma'(t), \gamma'(t)) - \left(\lambda - \frac{s}{n} \right) h(t) \right]$$

with $h(0) = 0$ and $h'(0) = 0$. So, it follows from the uniqueness of ODE solution that f vanishes identically, which is a contradiction. \qed

We can easily deduce from Lemma 2.2 that any connected component of the set $f^{-1}(0)$ is a hypersurface of M. Moreover, we can easily see that $|\nabla f|^2$ is a positive constant on each connected component of $f^{-1}(0)$. In fact, if X is tangent to (a connected component of) $f^{-1}(0)$, by (2.2), we have $X(|\nabla f|^2) = 0$. Furthermore, we have the following.

Lemma 2.3. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Then, any connected component of $f^{-1}(0)$ is a totally geodesic hypersurface in M.

Proof. We can take \(N = \frac{\nabla f}{|\nabla f|} \) as a unit normal vector field on (a component of) \(f^{-1}(0) \) by Lemma 2.2. Choosing a local frame \(\{N, e_2, e_3, \ldots, e_n\} \) so that \(\{e_2, e_3, \ldots, e_n\} \) are tangent to \(f^{-1}(0) \), we have \(e_i(\nabla f) = e_i \left(\frac{\nabla f}{|\nabla f|} \right) = 0 \) on the set \(f^{-1}(0) \), which implies \(D_{e_i}N = 0 \). \(\square \)

It is well-known that the following identities hold for a Riemannian manifold in general.
\[
\delta r = -\frac{1}{2} ds \quad \text{and} \quad \delta z = -\frac{n-2}{2n} ds.
\] (2.4)

Here \(\delta = -\text{div} \) denotes the negative divergence operator.

Lemma 2.4. Let \((M, g, f)\) be a generalized \((\lambda, n+m)\)-Einstein manifold. Let \(\mu := \lambda f - \frac{s}{n-1} f \). Then we have
\[
(m-1)i\nabla f z + \frac{m-1}{n} sdf = \frac{1}{2} f ds + (n-1)d\mu.
\] (2.5)

Proof. Taking the divergence operator \(\delta \) of (2.3), we obtain
\[
-i\nabla f z + f\delta z = m(-i\nabla f r - d\Delta f) - \frac{s}{n(n-1)} df - \frac{f}{n(n-1)} ds - d\mu.
\] (2.6)

Note that, by (2.4) and definition, \(\delta z = -\frac{n-2}{2n} ds \), \(i\nabla f r = i\nabla f z + \frac{s}{n} df \) and \(\Delta f = -\frac{s}{m(n-1)} f - \frac{n}{m} \mu \). Substituting these into (2.6), we obtain
\[
(m-1)i\nabla f z + \frac{m-1}{n} sdf = \frac{1}{2} f ds + (n-1)d\mu.
\] \(\square \)

Recall that, from a result in [1], we always assume that \(f^{-1}(0) \) is nonempty whenever we consider generalized \((\lambda, n+m)\)-Einstein manifolds. When \(m = 1 \), we have the following.

Corollary 2.5. Let \(m = 1 \). Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset \). If the scalar curvature \(s \) is constant, then \(s \) should be positive and \(\lambda \) is also a positive constant. In fact, we have
\[
\lambda = \frac{s}{n-1}.
\]

Proof. Suppose that \(s \) is constant. Letting \(\mu = \lambda f - \frac{s}{n-1} f \), it follows from Lemma 2.4 that \(\mu \) is constant. Since \(f^{-1}(0) \neq \emptyset \), we have \(\mu = 0 \) and so \(\lambda = \frac{s}{n-1} \), which shows that \(\lambda \) is constant. By (2.1), we have
\[
\Delta f = sf - n\lambda f = -\frac{s}{n-1} f.
\]

Hence \(s \) should be positive by maximum principle. \(\square \)

Theorem 2.6. Let \(m = 1 \). Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset \). If \((M, g)\) has constant scalar curvature and \(\omega = df \wedge i\nabla f z = 0 \), then, up to finite cover and rescaling, \(M \) is isometric to a sphere \(S^n \) or the product \(S^1 \times \Sigma^{n-1} \) of a circle and an \((n-1)\)-dimensional Einstein manifold \(\Sigma \) of positive Ricci curvature.

Proof. From Corollary 2.5, we have \(\lambda = \frac{s}{n-1} \) and so the equation (2.2) is reduced to
\[
f z = Ddf + \frac{s}{n(n-1)}.
\]
which is exactly a vacuum static space. Thus, applying the main result in [12], we obtain the conclusion. \(\square \)

In case of positive isotropic curvature, we have the following.

Corollary 2.7. Let \(m = 1 \). Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold of constant scalar curvature with \(f^{-1}(0) \neq \emptyset \). Suppose that \((M, g)\) has PIC and \(\omega = 0 \). Then, up to finite cover and rescaling, \(M \) is isometric to a sphere \(S^n \) or the product \(S^1 \times S^{n-1} \).
From now on, we assume $m > 1$ for generalized $(\lambda, n + m)$-Einstein manifolds (M^n, g, f) throughout the paper. For the case $m > 1$, we can also show that the scalar curvature is positive as Corollary 2.5 if it is constant.

Proposition 2.8. Let $m > 1$ be an integer. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. If the scalar curvature s is constant, then s should be positive.

Proof. Letting $\mu = \lambda f - \frac{m}{n-1} f$, it follows from Lemma 2.4 that

$$(m-1)i_{\nabla f}z + \frac{m-1}{n} sdf = (n-1)d\mu.$$

Taking the divergence operator δ of this equation, we have

$$(m-1)\delta i_{\nabla f}z - \frac{m-1}{n} s\Delta f = -(n-1)\Delta \mu.$$

Since $\delta i_{\nabla f}z = -\frac{n-2}{2n}(\nabla s, \nabla f) - \frac{1}{m} |z|^2 = -\frac{1}{m} |z|^2$, we obtain

$$\Delta \left[(n-1)\mu - \frac{m-1}{n} sf\right] = \frac{m-1}{m} f|z|^2.$$

Applying the maximal principle to $(n-1)\mu - \frac{m-1}{n} sf$ on the set $f \geq 0$, from $(n-1)\mu - \frac{m-1}{n} sf = 0$ on the set $f^{-1}(0)$, we have

$$(n-1)\mu - \frac{m-1}{n} sf \leq 0$$

on the set $f \geq 0$. Substituting $\mu = \lambda f - \frac{m}{n-1} f$ into this inequality, we have

$$n\lambda \leq \frac{m+n-1}{n-1} s = s + \frac{m}{n-1} s$$

on the set $f \geq 0$. Since $\{f > 0\} \cap \{n\lambda > s\} \neq \emptyset$ by Lemma 2.1 and s is constant, we must have $s > 0$. \hfill \Box

3. Tensorial Properties

In this section, we investigate relations of generalized $(\lambda, n + m)$-Einstein manifolds to the Bach tensor, Cotton tensor, Weyl tensor and a structural tensor T which will be defined later.

Let (M^n, g) be a Riemannian manifold of dimension n with the Levi-Civita connection D, and let h be a symmetric 2-tensor on M. The differential $d^D h$ is defined by

$$d^D h(X, Y, Z) = D_X h(Y, Z) - D_Y h(X, Z)$$

for any vectors X, Y and Z.

Definition 3.1. The Cotton tensor $C \in \Gamma(\Lambda^2 M \otimes T^* M)$ is defined by

$$C = d^D \left(\text{Ric} - \frac{s}{2(n-1)} g \right) = d^D r - \frac{1}{2(n-1)} ds \wedge g,$$

where $ds \wedge g$ is defined by $ds \wedge g(X, Y, Z) = ds(X)g(Y, Z) - ds(Y)g(X, Z)$ for vectors X, Y, Z.

Related to the Cotton tensor C, the followings are well-known.

- The Weyl tensor w satisfies

$$\delta w = -\frac{n-3}{n-2} d^D \left(\text{Ric} - \frac{s}{2(n-1)} g \right) = -\frac{n-3}{n-2} C$$

under the following identification

$$\Gamma(T^* M \otimes \Lambda^2 M) \cong \Gamma(\Lambda^2 M \otimes T^* M).$$

- Using $r = z + \frac{z}{n} g$, the Cotton tensor can be written as

$$C = d^D z + \frac{n-2}{2n(n-1)} ds \wedge g.$$ \hfill (3.1)
• Introducing a local orthonormal frame \(\{e_i\} \), and denoting \(C_{ijk} = C(e_i, e_j, e_k) \), we have

\[
\langle \delta C, z \rangle = -C_{ijk;i} z_{ijk} = -(C_{ijk} z_{jk};i) + C_{ijk} z_{jk;i}
\]

\[
= -(C_{ijk} z_{jk};i) + \frac{1}{2} |C|^2,
\]

where the semi-colon denotes covariant derivative.

• The cyclic summation of indices in \(C \) vanishes: \(C_{ijk} + C_{jki} + C_{kij} = 0 \), and trace of \(C \) in any two summands also vanishes.

For a generalized \((\lambda, n + m)\)-Einstein manifold, \((M, g, f)\), define a 3-tensor \(T \) as

\[
T = \frac{1}{n - 2} df \wedge z + \frac{1}{(n - 1)(n - 2)} i_{\nabla f z} \wedge g,
\]

where \(i_{\nabla f z} \) denotes the interior product given by \(i_{\nabla f z}(X) = z(\nabla f, X) \) for any vector field \(X \).

Then we have the following identity.

Lemma 3.2. Let \((M, g, f)\) be a generalized \((\lambda, n + m)\)-Einstein manifold. Then

\[
f C = m i_{\nabla f} W - (m + n - 2) T.
\]

Here \(i_{\nabla f} W \) is defined by \(i_{\nabla f} W(X, Y, Z) = W(X, Y, Z, \nabla f) \).

Proof. Taking \(d^D \) in (2.2), we obtain

\[
d f \wedge z + f d^D z = m \tilde{i}_{\nabla f} R - \frac{m}{n} d \Delta f \wedge g,
\]

where \(R \) denotes the Riemannian curvature tensor. From the following curvature decomposition

\[
R = W + \frac{s}{2n(n - 1)} g \otimes g + \frac{1}{n - 2} z \otimes g,
\]

we have

\[
\tilde{i}_{\nabla f} R = \tilde{i}_{\nabla f} W - \frac{s}{n(n - 1)} d f \wedge g - \frac{1}{n - 2} d f \wedge z - \frac{1}{n - 2} i_{\nabla f z} \wedge g.
\]

Recall that, from (3.1), the Cotton tensor can be written as

\[
C = d^D z + \frac{n - 2}{2n(n - 1)} d s \wedge g.
\]

Thus,

\[
f C = f d^D z + \frac{n - 2}{2n(n - 1)} f d s \wedge g
\]

\[
= m \tilde{i}_{\nabla f} R - \frac{m}{n} d \Delta f \wedge g - d f \wedge z + \frac{n - 2}{2n(n - 1)} f d s \wedge g
\]

\[
= m \tilde{i}_{\nabla f} W - \frac{m + n - 2}{n - 2} d f \wedge z - \frac{m}{n - 2} i_{\nabla f z} \wedge g
\]

\[
+ \frac{1}{n - 1} \left(\frac{n - 2}{2n} f d s \wedge g - \frac{m}{n} d f \wedge g \right) - \frac{m}{n} d \Delta f \wedge g.
\]

Next, by taking the divergence operator \(\delta \) in (2.2), we have

\[
- i_{\nabla f z} + f \delta z = m (-i_{\nabla f r} - d \Delta f) + \frac{m}{n} d \Delta f.
\]

Since \(\delta z = -\frac{n - 2}{2n} d s \) and \(i_{\nabla f r} = i_{\nabla f z} + \frac{s}{n} d f \), we obtain

\[
(m - 1) i_{\nabla f z} = \frac{n - 2}{2n} f d s \wedge g - \frac{m}{n} d f \wedge g - \frac{m(n - 1)}{n} d \Delta f \wedge g.
\]

Substituting this into (3.3), we have

\[
f C = m \tilde{i}_{\nabla f} W - \frac{m + n - 2}{n - 2} d f \wedge z - \frac{m + n - 2}{(n - 1)(n - 2)} i_{\nabla f z} \wedge g
\]

\[
= \tilde{i}_{\nabla f} W - (m + n - 2) T.
\]
For the Weyl tensor \(W \) and the traceless Ricci tensor \(z \), the symmetric 2-tensor \(\tilde{W}z \) is defined by
\[
\tilde{W}z(X, Y) = z(W(X, e_i)Y, e_i)
\]
for a local frame \(\{e_i\} \).

Lemma 3.3. Let \((M, g, f)\) be a generalized \((\lambda, n + m)\)-Einstein manifold. Then
\[
\delta(i\nabla_f W) = -\frac{n-3}{n-2} \tilde{C} + \frac{f}{m} \tilde{W}z,
\]
where \(\tilde{C} \) is a 2-tensor defined as
\[
\tilde{C}(X, Y) = C(Y, \nabla f, X)
\]
for any vectors \(X, Y \).

Proof. From definition together with (2.2), we have
\[
\delta(i\nabla_f W)(X, Y) = -D_e(i\nabla_f W)(e_i, X, Y) = -e_i(W(e_i, X, Y, \nabla f))
\]
\[
= -D_eW(e_i, X, Y, \nabla f) - W(e_i, X, Y, D_e \nabla f)
\]
\[
= \delta W(X, Y, \nabla f) - Df(e_i, e_j)W(e_i, X, Y, e_j)
\]
\[
= \delta W(X, Y, \nabla f) - \frac{f}{m}z(e_i, e_j)W(e_i, X, Y, e_j) \quad (\because \text{tr}_{14}W = 0)
\]
\[
= -\frac{n-3}{n-2}C(Y, \nabla f, X) - \frac{f}{m}z(e_i, e_j)W(e_i, X, Y, e_j)
\]
\[
= \frac{n-3}{n-2}C(Y, \nabla f, X) + \frac{f}{m} \tilde{W}z(X, Y).
\]

For a closed generalized \((\lambda, n + m)\)-Einstein manifold \((M, g, f)\), the vanishing of the tensor \(T \) shows that \((M, g)\) satisfies some constrained geometric structures. We say that \((M, g)\) has harmonic Weyl curvature if \(\delta W = 0 \), and is Bach-flat if the Bach tensor \(B \) defined by
\[
B = \frac{1}{n-3} \delta D \delta W + \frac{1}{n-2} \tilde{W}z
\]
vanishes. It is easy to see, from definition and (3.1), that \((n-2)B = -\delta C + \tilde{W}z \).

Theorem 3.4. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold. If \(T = 0 \), then \((M, g)\) has harmonic Weyl curvature and is Bach-flat.

Proof. By the definition of \(T \), for an orthonormal frame \(\{e_i\}_{1 \leq i \leq n} \) with \(e_1 = N = \frac{\nabla_f}{|\nabla_f|} \), we have
\[
(n-2)i\nabla_f T(e_i, e_j) = |\nabla f|^2 z(e_i, e_j) + \frac{1}{n-1} z(\nabla f, \nabla f) \delta_{ij}
\]
\[
- \frac{1}{n-1} z(\nabla f, e_i) df(e_j) - z(\nabla f, e_j) df(e_i).
\]
Since \(T = 0 \) by assumption, for \(2 \leq i, j \leq n \)
\[
z_{ij} = z(e_i, e_j) = -\frac{1}{n-1} \alpha \delta_{ij}.
\]
Also, for \(2 \leq i \leq n \)
\[
0 = (n-2)i\nabla_f T(e_i, N) = \frac{n-2}{n-1} z(e_i, N) |\nabla f|^2,
\]
implying that
\[
z(e_i, N) = \frac{\alpha}{n-1} C(\nabla f, e_i, e_i) = \frac{\alpha}{n-1} C(\nabla f, N, N) = 0.
\]
for \(2 \leq i \leq n \). By (3.4) and (3.5), we have
\[
\langle i\nabla_f C, z \rangle = -\frac{\alpha}{n-1} \sum_{i=1}^{n-1} C(\nabla f, e_i, e_i) = \frac{\alpha}{n-1} C(\nabla f, N, N) = 0.
\]
On the other hand, it follows from Lemma 3.2 together with $T = 0$ that
\[fC = m\tilde{i}_{\nabla f}W. \]
(3.7)

In particular, for any vector fields X and Y, we have $C(X, Y, \nabla f) = 0$, and since the cyclic summation of C is vanishing, this implies
\[C(Y, \nabla f, X) + C(\nabla f, X, Y) = 0. \]

So,
\[\tilde{C} = -i_{\nabla f}C. \]

By taking the divergence δ of (3.7), we have the following
\[-i_{\nabla f}C + f\delta C = m\delta(i_{\nabla f}W) = -\frac{m(n - 3)}{n - 2}\tilde{C} + f\dot{W}z. \]

That is,
\[f\delta C = i_{\nabla f}C + \frac{m(n - 3)}{n - 2}i_{\nabla f}C + f\dot{W}z \]
\[= \frac{n - 2 + m(n - 3)}{n - 2}i_{\nabla f}C + f\dot{W}z. \]
(3.8)

It follows from the definition of $\dot{W}z$ together with (3.7) that
\[\dot{W}z(\nabla f, X) = -\frac{f}{m}(i_{X}C, z) \]
for any vector field X. In particular, by (3.6), we have
\[\dot{W}z(\nabla f, \nabla f) = -\frac{f}{m}(i_{\nabla f}C, z) = 0. \]

Consequently, by (3.8) and (3.9)
\[\delta C(N, N) = \dot{W}z(N, N) = 0. \]

Therefore, by (3.6) and (3.9) again,
\[f\langle \delta C, z \rangle = \frac{n - 2 + m(n - 3)}{n - 2}f(i_{\nabla f}C, z) + f(\dot{W}z, z) = f \sum_{2\leq i,j\leq n} \dot{W}z(e_i, e_j)z_{ij} \]
\[= -\frac{\alpha f}{n - 1} \sum_{2\leq i\leq n} \dot{W}z(e_i, e_i) = \frac{\alpha f}{n - 1} \dot{W}z(N, N) = 0, \]
implying that
\[\langle \delta C, z \rangle = 0. \]

Hence, from
\[0 = \int_{M} \langle \delta C, z \rangle = \frac{1}{2} \int_{M} |C|^2, \]
we have $C = 0$, and hence $i_{\nabla f}W = 0 = \dot{W}z$. Therefore
\[\delta W = -\frac{n - 3}{n - 2}C = 0 \quad \text{and} \quad (n - 2)B = -\delta C + \dot{W}z = 0. \]

Now, we define a 2-form ω by
\[\omega := df \wedge i_{\nabla f}z. \]
(3.10)

By the definition of T, for any vector fields X and Y
\[T(X, Y, \nabla f) = \frac{1}{n - 1}df \wedge i_{\nabla f}z(X, Y) = \frac{1}{n - 1}\omega(X, Y) = -\frac{f}{m + n - 2}i_{\nabla f}C(X, Y). \]

Here, the last equality follows from (3.2). Thus, we have
\[\omega = (n - 1)i_{\nabla f}T = -\frac{n - 1}{m + n - 2}f i_{\nabla f}C. \]
(3.11)
Let \(\{e_i\}_{i=1}^n \) be a local orthonormal frame with \(e_1 = N = \nabla f /|\nabla f| \). It is clear that
\[
\omega(e_j, e_k) = 0
\]
for \(2 \leq j, k \leq n \) by definition of \(\omega \). Thus, if \(\tilde{i}_f C(N, e_i) = 0 \) for \(2 \leq i \leq n \), then \(\omega = 0 \).

Lemma 3.5. As a 2-form, we have
\[
\tilde{i}_f C = \text{div}_f z - \frac{n-2}{2n(n-1)} df \wedge ds.
\]
In particular, if \((M, g)\) has constant scalar curvature, then \(\tilde{i}_f C \) is an exact form.

Proof. Choose a local orthonormal frame \(\{e_i\} \) which is normal at a point \(p \in M \), and let \(\{\theta^i\} \) be its dual coframe so that \(d\theta^i|_p = 0 \). Since \(i_f z = \sum_{i,k=1}^n f_iz_k\theta^k \) with \(e_i(f) = f_i, e_i(s) = s_i \) and \(z(e_i, e_k) = z_{ik} \), by (2.2) and (3.1), we have
\[
d\text{div}_f z = \sum_{j,k} \sum_l (f_{ij}z_{lk} + f_{ij}\delta_{lk}) \theta^j \wedge \theta^k
= \sum_{j<k} \sum_l (f_{ij}z_{lk} - f_{ik}z_{lj} + f_{ij}(z_{lk} - z_{lj})) \theta^j \wedge \theta^k
= \sum_{j<k} \sum_l \left[\left(\frac{f}{m} z_{ij} + \frac{1}{n} \delta_{ij} \right) z_{lk} - \left(\frac{f}{m} z_{ik} + \frac{1}{n} \delta_{ik} \right) z_{lj} \right] \theta^j \wedge \theta^k
+ \sum_{j<k} \sum_l f_i \left[C_{ijkl} - \frac{n-2}{2n(n-1)} (s_j \delta_{lk} - s_k \delta_{lj}) \right] \theta^j \wedge \theta^k
= \sum_{j<k} \sum_l f_i C_{ijkl} \theta^j \wedge \theta^k - \frac{n-2}{2n(n-1)} \sum_{j<k} (f_k s_j - f_j s_k) \theta^j \wedge \theta^k
= \tilde{i}_f C - \frac{n-2}{2n(n-1)} \sum_{j<k} (f_k s_j - f_j s_k) \theta^j \wedge \theta^k.
\]

Lemma 3.6. \(\omega \) is a closed 2-form, i.e., \(d\omega = 0 \).

Proof. Choose a local orthonormal frame \(\{e_i\} \) with \(e_1 = N = \nabla f /|\nabla f| \), and let \(\{\theta^i\} \) be its dual coframe. Then, by Lemma 3.5
\[
d\text{div}_f z = \sum_{j<k} \sum_l f_i C_{ijkl} \theta^j \wedge \theta^k - \frac{n-2}{2n(n-1)} \sum_{j<k} (f_k s_j - f_j s_k) \theta^j \wedge \theta^k
= \sum_{j<k} |\nabla f| C_{ijkl} \theta^j \wedge \theta^k + \frac{n-2}{2n(n-1)} |\nabla f| \sum_{k=2}^n s_k \theta^1 \wedge \theta^k
= |\nabla f| \sum_{k=2}^n C_{1kl} \theta^1 \wedge \theta^k + \frac{n-2}{2n(n-1)} |\nabla f| \sum_{k=2}^n s_k \theta^1 \wedge \theta^k.
\]
Thus, by taking the exterior derivative of \(\omega \) in (3.10), we have
\[
d\omega = -df \wedge d\text{div}_f z = -|\nabla f| \theta^1 \wedge \left(|\nabla f| \sum_{k=2}^n C_{1kl} \theta^1 \wedge \theta^k \right)
- |\nabla f| \theta^1 \wedge \frac{n-2}{2n(n-1)} |\nabla f| \sum_{k=2}^n s_k \theta^1 \wedge \theta^k
= 0.
\]
In this section we will prove that there are no critical points of \(f \) in \(M \) for any tangent vector \(X \). First of all, recall that both totally geodesic, or each set contains only a single point.

Lemma 4.1. Let \((M,g,f) \) be a closed generalized \((\lambda,n+m)\)-Einstein manifold. Assume that \(\omega = 0 \). Then \(D_{\nabla f} N = 0 \) and the function \(\alpha \) is constant along each level hypersurface \(f^{-1}(t) \) of \(f \).

Proof. Note that \(N(\nabla f) = Ddf(N,N) = \frac{af}{m} + \frac{\Delta f}{n} \) and
\[
N \left(\frac{1}{|\nabla f|^2} \right) = - \frac{1}{|\nabla f|^2} \left(\frac{af}{m} + \frac{\Delta f}{n} \right).
\]

So,
\[
D_{\nabla f} N = N \left(\frac{1}{|\nabla f|^2} \right) \nabla f + \frac{1}{|\nabla f|^2} D_N df
\]
\[
= - \frac{1}{|\nabla f|^2} \left(\frac{af}{m} + \frac{\Delta f}{n} \right) \nabla f + \frac{1}{|\nabla f|^2} \left(\frac{f}{m} z(N,N) + \frac{\Delta f}{n} N \right)
\]
\[
= - \frac{1}{|\nabla f|^2} \left(\frac{af}{m} + \frac{\Delta f}{n} \right) \nabla f + \frac{1}{|\nabla f|^2} \left(\frac{af}{m} + \frac{\Delta f}{n} \right) \nabla f
\]
\[
= 0.
\]

Now, let \(X \) be a vector field orthogonal to \(\nabla f \). Since \(D_{\nabla f} N = 0 \), we have \(g(D_{\nabla f} X,N) = -g(X,D_{\nabla f} N) = 0 \) and so
\[
D_{\nabla f} z(X,N) = - z(D_{\nabla f} X,N) - z(X,D_{\nabla f} N) = 0.
\]

Since \(i_{\nabla f} C = 0 \) by (3.11), we have
\[
0 = C(X,N,\nabla f) = D_X z(N,\nabla f) - D_N z(X,\nabla f) = D_X z(N,\nabla f) = |\nabla f| X(\alpha),
\]

implying that \(\alpha \) is a constant on \(f^{-1}(t) \).

Remark 4.2. The property \(D_{\nabla f} N = 0 \) also implies that \([X,N] \) is orthogonal to \(\nabla f \). Using this, one can show that \(|z|^2 \) is also constant along each level hypersurface \(f^{-1}(t) \) of \(f \).
Lemma 4.3. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Assume that $\omega = 0$. Then α is constant and, in particular, $\langle \nabla s, \nabla f \rangle = 0$ on the set $f^{-1}(0)$.

Proof. To show α is constant, it suffices to prove $\langle \nabla \alpha, \nabla f \rangle = 0$ on M from Lemma 4.1. Since $i_{\nabla f}C = 0$ by (3.11) and $div_f = \alpha d f$, we can see, in the proof of Lemma 3.5 and Lemma 3.6, that

$$da = \frac{n-2}{2n(n-1)} \sum_{k=2}^{n} s_k \theta^k,$$

which implies that $\langle \nabla \alpha, \nabla f \rangle = 0$. (Note that by taking $N = e_1$, we have $f_1 = |\nabla f|, f_k = 0$ for $k \geq 2$.)

Now since α is constant and $i_{\nabla f} = \alpha d f$, we have $\delta i_{\nabla f} = -\alpha \Delta f$. Also, from the definition of divergence, we have

$$\delta i_{\nabla f} = -\frac{n-2}{2n} \langle \nabla s, \nabla f \rangle - \frac{f}{m} |z|^2,$$

and hence

$$\frac{n-2}{2n} \langle \nabla s, \nabla f \rangle = \alpha \Delta f - \frac{f}{m} |z|^2. \quad (4.1)$$

In particular, we have $\langle \nabla s, \nabla f \rangle = 0$ on the set $f^{-1}(0)$ since $\Delta f = 0$ on $f^{-1}(0)$. \qed

Corollary 4.4. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Assume that $\omega = 0$. If $\langle \nabla s, \nabla f \rangle \geq 0$ on M, then α is nonpositive constant. Furthermore, if $\alpha = 0$, then M is Einstein, and so isometric to a sphere $S^n(r)$.

Proof. From (4.1), we have the following inequality

$$\frac{n-2}{2n} \int_{f>0} \langle \nabla s, \nabla f \rangle = -\alpha \int_{f=0} \langle \nabla f - \frac{1}{m} \int_{f>0} f |z|^2 \rangle,$$

which shows that α is nonpositive on the set $f^{-1}(0)$. Since α is constant, $\alpha \leq 0$ on the whole M. If $\alpha = 0$, then we have $z = 0$ from (4.1) on the set $f > 0$, and so $\langle \nabla s, \nabla f \rangle = 0$ on the set $f > 0$. By elliptic theory, we have $z = 0$ on the whole M. The argument on existence of a conformal vector field in [8] (Proposition 1) also does work in our case and we can deduce the conclusion. \qed

Lemma 4.5. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Assume that $\omega = 0$. Then ∇s is parallel to ∇f. In particular $\nabla s = 0$ on the set $f^{-1}(0)$.

Proof. Since $i_{\nabla f} = \alpha d f$ and α is constant, by taking the differential operator d of (2.5), we obtain

$$\left(\frac{m-1}{n} + \frac{1}{2} \right) ds \wedge df = 0,$$

which shows ∇s is parallel to ∇f. In particular, since $\langle \nabla s, \nabla f \rangle = 0$ on $f^{-1}(0)$, by Lemma 4.3, we have $\nabla s = 0$ on the set $f^{-1}(0)$ because $\nabla f \neq 0$ on $f^{-1}(0)$. \qed

Lemma 4.6. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold. Assume that $\omega = 0$ and s is a (positive) constant. Then we have

$$\lambda = \frac{m+n-1}{n(n-1)} s + \frac{m-1}{n-1} \alpha. \quad (4.2)$$

In particular, λ is a positive constant and $s < n \lambda$ on M.

Proof. Since $i_{\nabla f} = \alpha d f$ and α is constant, it follows from Lemma 2.4 that

$$(m-1) \alpha df + \frac{m-1}{n} s df = \frac{1}{2} fds + (n-1) d \mu,$$

which shows that

$$(m-1) \alpha f + \frac{m-1}{n} sf - (n-1) \mu = 0$$
on the whole M. Substituting $\mu = \lambda f - \frac{s}{m} f$, we obtain

$$\lambda = \frac{m + n - 1}{n(n - 1)} s + \frac{m - 1}{n - 1} \alpha.$$

In particular, λ is constant. If $\lambda \leq 0$, from $\Delta f = \frac{f}{m} (s - n \lambda)$, the function f is subharmonic on the set $f \geq 0$, which is a contradiction to the maximum principle. \hfill \square

Lemma 4.7. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. If the scalar curvature s is constant and $\omega = 0$, we have

$$\text{Ric}(N, N) \geq 0$$
on the set M.

Proof. Suppose that $\text{Ric}(N, N) < 0$ at a point $x \in M$. Since $\text{Ric}(N, N) = \alpha + \frac{s}{n}$ is constant, $\text{Ric}(N, N) < 0$ on the whole M. Considering a connected component Γ of $f^{-1}(0)$ which is totally geodesic by Lemma 2.3, we have

$$\int_{\Gamma} \left[|\nabla^\Gamma \varphi|^2 - \text{Ric}(N, N) \varphi^2 \right] \geq 0$$

for any smooth function φ defined on Γ. By Fredholm alternative (cf. [7], Theorem 1), there exists a positive $\varphi > 0$ on Γ satisfying

$$\Delta^\Gamma \varphi + \text{Ric}(N, N) \varphi = 0.$$

However, it follows from the maximum principle φ must be a constant which is impossible. \hfill \square

Lemma 4.8. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. If the scalar curvature s is constant and $\omega = 0$, then

$$\text{Ric}(N, N) = \frac{(n - 1) \lambda - s}{m - 1}.$$

In particular, we have $(n - 1) \lambda \geq s$.

Proof. Following [9], we define a tensor $P := \text{Ric} - \rho g$ with $\rho = \frac{(n - 1) \lambda - s}{m - 1}$. By taking the divergence of (1.1), we can obtain (cf. [8])

$$\frac{f \nabla s}{2(m - 1)} - \frac{(n - 1) f \nabla \lambda}{m - 1} + P(\nabla f, \cdot) = 0.$$

Since $\omega = 0$ and the scalar curvature s is constant, λ is also constant by Lemma 4.6. Thus, we have

$$P(\nabla f, \cdot) = 0.$$

In particular, we have

$$\text{Ric}(N, N) = \rho = \frac{(n - 1) \lambda - s}{m - 1}.$$

The last inequality follows from Lemma 4.7. \hfill \square

Lemma 4.9. Let (M, g, f) be a closed generalized $(\lambda, n + m)$-Einstein manifold with $f^{-1}(0) \neq \emptyset$. Assume that $\omega = 0$ and s is a (positive) constant. Then there are no critical points of f except at the minimum and maximum points of f.

Proof. We have $s > 0$, $\alpha \leq 0$, $s - n \lambda < 0$ and these are all constants. If $\alpha = 0$, then M is Einstein and so is isometric to a sphere by Corollary 4.4. So, we may assume $\alpha < 0$. Moreover, we have

$$\Delta f = \frac{s - n \lambda}{m} f \quad \text{and} \quad \alpha \Delta f = \frac{f}{m} |z|^2 \quad \text{(4.3)}$$

and so $|z|^2 = \alpha (s - n \lambda)$ is also a positive constant. It follows from the Bochner-Weitzenb"{o}ck formula that

$$\frac{1}{2} \Delta |\nabla f|^2 = |Dd f|^2 + \langle \nabla \Delta f, \nabla f \rangle + z(\nabla f, \nabla f) + \frac{s}{n} |\nabla f|^2.$$
From (2.2), we have
\[z(\nabla f, \nabla f) = \frac{m}{f} Ddf(\nabla f, \nabla f) - \frac{m}{n} \frac{\Delta f}{f} |\nabla f|^2 = \frac{m}{2f} \nabla f(|\nabla f|^2) - \frac{s-n\lambda}{n} |\nabla f|^2. \]

Thus,
\[\frac{1}{2} \Delta |\nabla f|^2 - \frac{m}{2f} \nabla f(|\nabla f|^2) = |Ddf|^2 + \left(\frac{s-n\lambda}{m} + \lambda \right) |\nabla f|^2. \tag{4.4} \]

Note that (4.4) is valid only in \(f > 0 \) and \(f < 0 \).

Assertion: We claim \(\frac{s-n\lambda}{m} + \lambda > 0 \).

From Lemma 4.6, we have
\[\frac{s-n\lambda}{m} = - \frac{s}{n-1} - \frac{n(m-1)}{m(n-1)} \alpha. \]

So, by Lemma 4.8,
\[\frac{s-n\lambda}{m} + \lambda = \lambda - \frac{s}{n-1} - \frac{n(m-1)}{m(n-1)} \alpha > 0 \]

Now applying the maximum principle to (4.4) on the set \(f > 0 \), the function \(|\nabla f|^2 \) cannot have its local maximum in \(f > 0 \).

Now, suppose that there is a critical point \(p \) of \(f \) with \(0 < f(p) = c < b = \max f \). Since \(|\nabla f| \) is constant on each level set of \(f \), \(|\nabla f| = 0 \) on \(f^{-1}(c) \). However, this implies that there should be a local maximum of \(|\nabla f|^2 \) in the set \(\{ x \in M \mid c < f(x) < b \} \), which is impossible by the above maximum principle.

Since \(|\nabla f|^2 \) cannot have its local maximum in the set \(f > 0 \), the exactly same argument as above shows that \(f \) cannot have its critical points in the set \(f < 0 \).

Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset \). Assume that \(\omega = 0 \) and \(s \) is a (positive) constant. Let \(\min_M f = a \) and \(\max_M f = b \) with \(a < b < b \). Lemma 4.9 shows that the sets \(f^{-1}(a) \) and \(f^{-1}(b) \) are both connected, and either each set is a single point or a hypersurface by the Isotopy lemma. In fact, if \(f^{-1}(a) \) has at least two components, \(f \) may have a critical point other than \(f^{-1}(a) \).

Lemma 4.9 also shows that if \(f^{-1}(0) \) is disconnected, then it has only two connected components. Furthermore, if \(f^{-1}(0) \) is connected, then both \(f^{-1}(a) \) and \(f^{-1}(b) \) consist of only a single point, and in this case each level hypersurface including \(f^{-1}(0) \) is homotopically an \((n-1)\)-sphere \(\mathbb{S}^{n-1} \).

The following result shows that if \(f^{-1}(a) \) contains a single point, then so does \(f^{-1}(b) \), and vice versa. Moreover in case of hypersurface, it should be a totally geodesic stable minimal hypersurface.

Lemma 4.10. Let \((M^n, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset \). Assume that \(\omega = 0 \) and \(s \) is a (positive) constant. Let \(\min_M f = a \) and \(\max_M f = b \) with \(a < b < b \). If \(f^{-1}(a) \) contains only a single point, then so does \(f^{-1}(b) \), and vice versa. Furthermore, if \(f^{-1}(a) \) is a single point, then every level set \(f^{-1}(t) \) except \(t = a \) and \(t = b \) is a hypersurface and is homotopically a sphere \(\mathbb{S}^{n-1} \).

Proof. Suppose that \(f^{-1}(a) \) is a hypersurface, but \(f^{-1}(b) \) is a single point. It follows from Lemma 4.9 together with Isotopy lemma that the set \(f^{-1}(b) \) consists of only two points, and the set \(M - f^{-1}(a) \) has two connected components.

If \(\alpha = 0 \), then \((M, g)\) is Einstein by Corollary 4.4. We may assume that \(\alpha < 0 \) and so, from (4.1),
\[\Delta f = \frac{f}{m\alpha} |z|^2. \tag{4.5} \]

Applying the maximum principle to (4.5) on each connected component of \(M - f^{-1}(a) \), \(f \) attains its maximum on the boundary \(f^{-1}(a) \), which is a contradiction.
Lemma 4.11. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). Assume that \(\omega = 0\) and \(s\) is a (positive) constant. Suppose that \(\Sigma := f^{-1}(b) [\Sigma = f^{-1}(a)]\) is a hypersurface for \(b = \max_M f\) \([a = \min_M f]\) and assume \(\nu\) is a unit normal vector field on \(\Sigma\). Then we have the following.

1. \(\alpha = z(\nu, \nu) = \frac{n - 1}{m} (n\lambda - s) < 0\) and \(Dd f_p(X, X) = 0\) for a vector \(X\) orthogonal to \(\nu\) at any point \(p \in \Sigma\).

2. \(\Sigma\) is totally geodesic.

Proof. First, we will show that \(Dd f|_\Sigma = 0\). For a sufficiently small \(\epsilon > 0\), \(f^{-1}(a - \epsilon)\) has two connected components \(\Sigma^+\) and \(\Sigma^-\). Let \(\nu\) be a unit normal vector field on \(\Sigma = f^{-1}(a)\). On a tubular neighborhood of \(\Sigma\), \(\nu\) can be extended smoothly to a vector field \(\tilde{\nu}\) such that \(\tilde{\nu}|_{\Sigma} = \nu\) with \(\tilde{\nu}|_{\Sigma^+} = \frac{\nabla}{\nabla \nu|_{\Sigma^+}}\) and \(\tilde{\nu}|_{\Sigma^-} = -\frac{\nabla}{\nabla \nu|_{\Sigma^-}}\).

The Laplacian of \(f\) on \(f^{-1}(a - \epsilon) = \Sigma^- \cup \Sigma^+\) is given by

\[
\Delta f = \Delta' f + Dd f(\tilde{\nu}, \tilde{\nu}) + H(\tilde{\nu}, \nabla f),
\]

where \(\Delta'\) and \(H\) denote the intrinsic Laplacian and the mean curvature of \(f^{-1}(a - \epsilon)\), respectively. Since \(\nabla f = 0\) at \(\Sigma\) and \(\Delta' f = 0\) in (4.6), by letting \(\epsilon \to 0\), we have

\[
\Delta f = Dd f(\nu, \nu)
\]

on \(\Sigma\). It is clear that \(H\) is bounded around \(\Sigma\). Thus,

\[
\frac{n\lambda - s}{m} a = \Delta f = Dd f(\nu, \nu) = \frac{a}{m} z(\nu, \nu) - \frac{n\lambda - s}{mn} a,
\]

implying that

\[
zm(\nu, \nu) = -\frac{n - 1}{n} (n\lambda - s) < 0.
\]

Now let \(p \in \Sigma\) be a point and choose an orthonormal basis \(\{e_i\}_{i=1}^n\) at \(p\) with \(e_1 = \nu\). Since \(\Sigma\) is the maximum set of \(f\), we have

\[
Dd f_p(e_i, e_i) = \frac{a}{m} z_p(e_i, e_i) - \frac{n\lambda - s}{mn} a \leq 0
\]

for \(2 \leq i \leq n\), and so

\[
z_p(e_i, e_i) \leq \frac{n\lambda - s}{n} = \frac{1}{n - 1} z_p(\nu, \nu).
\]

Since \(\sum_{i=2}^n z_p(e_i, e_i) = -z_p(\nu, \nu)\), this implies that

\[
z_p(e_i, e_i) = \frac{n\lambda - s}{n} > 0
\]

and so

\[
Dd f_p(e_i, e_i) = 0
\]

on \(\Sigma\) for each \(i, 2 \leq i \leq n\). In case of minimum set \(\Sigma = f^{-1}(a)\) with \(a = \min_M f\), the inequalities are just reversed above and we have the same conclusion.

Second, we will show that \(\Sigma\) is totally geodesic. Since \(z(\nu, X) = 0\) for \(X\) orthogonal to \(\nu\) at \(p \in \Sigma\), we may take the previously mentioned orthonormal basis \(\{e_i\}_{i=1}^n\) so that \(\{e_i\}_{i=2}^n\) are tangent to \(\Sigma\).

For \(e_2\), let \(\gamma : [0, l) \to M\) be a unit speed geodesic such that \(\gamma(0) = p, \gamma'(0) = e_2\) for some \(l > 0\). Defining \(\varphi(t) = f \circ \gamma(t)\), we have \(\varphi'(0) = df_p(\gamma'(0)) = 0\), and by (4.8)

\[
\varphi''(0) = Dd f(\gamma'(0), \gamma'(0)) = Dd f_p(e_2, e_2) = 0.
\]

Note that

\[
\varphi''(t) = Dd f(\gamma'(t), \gamma'(t)) = \left[z(\gamma'(t), \gamma'(t)) + \frac{(s - n\lambda)}{m} \right] \varphi(t).
\]

So, it follows from the uniqueness of ODE solution that \(\varphi\) vanishes identically, which implies that \(\gamma(t)\) stays in \(\Sigma\). Since \(e_2\) is an arbitrary tangent vector, \(\Sigma\) is totally geodesic.

\[\square\]
Let \((M^n, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). Assume that \(\omega = 0\) and \(s\) is a (positive) constant. By Lemma 4.8, we have

\[
\text{Ric}(N, N) = \rho = \frac{(n-1)\lambda - s}{m-1} \geq 0 \tag{4.8}
\]

and so

\[
\alpha = z(N, N) = \text{Ric}(N, N) - \frac{s}{n} = \frac{(n-1)\lambda - s}{m-1} - \frac{s}{n} \tag{4.9}
\]

Furthermore, from (4.7), we have

\[
\frac{(n-1)\lambda - s}{m-1} - \frac{s}{n} = \alpha = -\frac{n-1}{n}(n\lambda - s)
\]

So, we obtain

\[
(n-1)\lambda - s = 0
\]

and hence

\[
\text{Ric}(N, N) = 0.
\]

By continuity, this equality hold on the whole \(M\) including the set \(\Sigma = f^{-1}(a)\) for \(a = \min_M f\) or \(\Sigma = f^{-1}(b)\) for \(b = \max_M f\) if we assume \(\Sigma\) is a hypersurface. Finally, since \(n\lambda - s = \lambda\), it follows from (4.7) again that

\[
z(N, N) = \alpha = -\frac{n-1}{n}\lambda = -\frac{s}{n}.
\]

Since \(\Sigma\) is totally geodesic, we have

\[
s\Sigma = s - 2\text{Ric}(\nu, \nu) = s.
\]

Lemma 4.12. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). Assume that \(\omega = 0\) and \(s\) is a (positive) constant. Suppose that \(\Sigma := f^{-1}(a) [\Sigma = f^{-1}(b)]\) is a hypersurface for \(a = \min_M f\) \([b = \max_M f]\) and assume \(\nu\) is a unit normal vector field on \(\Sigma\). Then we have

\[
\lambda = \frac{s}{n-1}, \quad \alpha = -\frac{s}{n} \quad \text{and} \quad \text{Ric}(N, N) = 0.
\]

Moreover, \(\Sigma\) is stable.

Proof. The stability operator becomes

\[
\int_{\Sigma} \left\{ |\nabla \varphi|^2 - (|A|^2 + \text{Ric}(\nu, \nu))\varphi^2 \right\} = \int_{\Sigma} |\nabla \varphi|^2 \geq 0
\]

for any function \(\varphi\) on \(\Sigma\). Here \(A\) denotes the second fundamental form of \(\Sigma\). \(\square\)

Theorem 4.13. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). Assume that \(\omega = 0\) and \(s\) is a (positive) constant. If \(f^{-1}(a)\) is a hypersurface for \(a = \max_M f\) or \(a = \min_M f\), then \((M, g)\) has harmonic Weyl curvature and Bach-flat.

Proof. Note that

\[
|T|^2 = \frac{2}{(n-2)^2} |\nabla f|^2 \left(|z|^2 - \frac{n}{n-1} \alpha^2 \right).
\]

By (4.3), we have

\[
|z|^2 = \alpha(s - n\lambda) = -\alpha \lambda.
\]

So,

\[
|z|^2 - \frac{n}{n-1} \alpha^2 = \frac{\alpha}{n-1} (n-1)\lambda + n \alpha
\]

\[
= \frac{n}{n-1} ((n-1)\lambda - s) = 0,
\]

which means \(T = 0\). The conclusion follows from Theorem 3.4. \(\square\)
Let \((M^n, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). Assume that \(\omega = 0\) and \(s\) is a (positive) constant. If \(f^{-1}(a)\) is a hypersurface for \(a = \max_M f\) or \(a = \min_M f\) so that \(f^{-1}(0)\) has two connected components which are both totally geodesics, then \(T = 0\) and so we have

\[z_{ij} = -\frac{\alpha}{n - 1} \delta_{ij} = \frac{s}{n(n - 1)} \delta_{ij} \quad \text{for} \quad 2 \leq i, j \leq n \]

and

\[z_{1k} = \alpha \delta_{1k} = -\frac{s}{n} \delta_{1k} \quad \text{for} \quad 1 \leq k \leq n. \]

That is,

\[\text{Ric}_{ij} = \frac{s}{n - 1} \delta_{ij} \quad \text{for} \quad 2 \leq i, j \leq n \]

and

\[\text{Ric}_{1k} = 0. \]

In particular, on each level hypersurface \(f^{-1}(t)\), we have

\[\frac{s}{n(n - 1)} g - z = 0 \]

and from \(\frac{s}{n(n - 1)} g(N, N) - z(N, N) = \frac{s}{n - 1}\), we obtain

\[\frac{s}{n(n - 1)} g = z + \frac{s}{n - 1} \frac{df}{|df|} \otimes \frac{df}{|df|}. \]

On the other hand, for the curvature tensor \(R\) with \(N = \nabla f / |\nabla f|\), \(R_N\) is defined as follows

\[R_N(X, Y) = R(X, N, Y, N) \]

for any vector fields \(X\) and \(Y\). From \(C = 0\) and Lemma 3.2, we have

\[i_{\nabla f} \mathcal{W} = 0. \]

So, from the curvature decomposition

\[R = \frac{s}{2n(n - 1)} g \otimes g + \frac{1}{n - 2} z \otimes g + \mathcal{W} \]

we can obtain

\[R_N(X, Y) = \frac{s}{n(n - 1)} g(X, Y) + \frac{1}{n - 2} z(X, Y) + \frac{\alpha}{n - 2} g(X, Y) + \mathcal{W}_N(X, Y) \]

\[= \left(\frac{s}{n(n - 1)} + \frac{s}{n(n - 1)(n - 2)} - \frac{s}{n(n - 2)} \right) g(X, Y) \]

\[= 0 \]

for any vector fields \(X\) and \(Y\) orthogonal to \(\nabla f\).

Since \(\Sigma = f^{-1}(a)\) with \(a = \max_M f\) or \(a = \min_M f\) is totally geodesic by Lemma 4.11, it follows from the Gauss equation that

\[\text{Ric}^\Sigma(X, X) = \lambda - R(X, \nu, X, \nu) = \lambda, \]

which shows that \(\Sigma\) is an Einstein manifold with positive Ricci curvature. From the same reason, any connected component of the set \(f^{-1}(0)\) is also Einstein by Lemma 3.2. In fact, since \((M, g)\) has harmonic Weyl curvature and \(i_{\nabla f} \mathcal{W} = 0\), from a result in [6] \(g\) is locally a warped product of an interval with an Einstein manifold around any regular point of \(f\). In our case, from (4.10), we can see that \(g\) is, in fact, a product of a circle \(S^1\) with an Einstein manifold \(\Sigma_0\) which is totally geodesic and Einstein with positive Ricci curvature.

Therefore, we have the following.
Lemma 4.15. Let \((M^n, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold of constant scalar curvature with \(f^{-1}(0) \neq \emptyset\) and \(\omega = 0\). Assume that \((M, g)\) has PIC and \(f^{-1}(0)\) is disconnected. Then \(f^{-1}(0)\) has only two connected components and \(M\) is isometric to \(S^1 \times \Sigma^{n-1}\) up to finite cover and rescaling.

Theorem 4.15. Let \((M^n, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold of constant scalar curvature with \(f^{-1}(0) \neq \emptyset\) and \(\omega = 0\). Assume that \((M, g)\) has PIC and \(f^{-1}(0)\) is disconnected. Then \(f^{-1}(0)\) has only two connected components and \(M\) is isometric to \(S^1 \times \Sigma^{n-1}\), up to finite cover and rescaling.

5. Compact Generalized Manifold with Connected Zero Set

Throughout this section, we assume that \((M^n, g, f)\) is a closed generalized \((\lambda, n+m)\)-Einstein manifold with constant scalar curvature \(s\). We also assume that \((M, g)\) has \(\omega = df \wedge \mathcal{L}_f z = 0\) and the zero set \(f^{-1}(0)\) is connected. Under these hypotheses, we show that \(M\) is isometric to a sphere \(S^n\), up to finite cover and rescaling.

Recall that \(\alpha \leq 0\), and if \(\alpha = 0\), it follows from Lemma 4.9 and Lemma 4.10 that the minimum set \(f^{-1}(a)\) with \(a = \min_M f\) and the maximum set \(f^{-1}(b)\) with \(b = \max_M f\) consist of a single point, respectively, and \(f^{-1}(0)\) must be connected. In particular, we have \(\text{Ric}(N, N) > 0\). The following shows that the converse is also true.

Lemma 5.1. Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold with constant scalar curvature \(s\). If \(\omega = 0\) and \(f^{-1}(0)\) is connected, then we have \(\text{Ric}(N, N) > 0\) on the set \(M\).

Proof. By Lemma 4.7, we have \(\text{Ric}(N, N) \geq 0\). Suppose that \(\text{Ric}(N, N) = 0\) on \(M\) so that \(\alpha = -\frac{s}{n}\) and \((n-1)\lambda - s = 0\) by (4.9). Then as in the proof of Theorem 4.13 and the argument just below it, we have \(T = 0\) in this case, and so the metric \(g\) has the same form as (4.10):

\[
\frac{s}{n(n-1)} g = z + \frac{s}{n-1} \frac{df}{|df|} \otimes \frac{df}{|df|}
\]

which shows that \(g\) is, in fact, a product metric. However, since \(f^{-1}(0)\) is connected, both minimum set \(f^{-1}(a)\) and maximum set \(f^{-1}(b)\) consist of a single point, respectively, the metric \(g\) cannot be a product, a contradiction. \(\square\)

Let \((M^n, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold. Assume the scalar curvature \(s\) is constant. If \((M, g)\) has PIC and \(f^{-1}(0)\) is connected, then, from Lemma 4.10 and [15], \(M\) is homeomorphic to a sphere.

Now, we introduce a warped product metric involving \(\frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|}\) as a fiber metric on each level set \(f^{-1}(c)\). Consider a warped product metric \(\tilde{g}\) on \(M\) by

\[
\tilde{g} = \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} + |\nabla f|^2 g_r,
\]

where \(g_r\) is the restriction of \(g\) to \(\Gamma := f^{-1}(0)\). Note that, from Lemma 4.9, the metric \(\tilde{g}\) is smooth on \(M\) except, possibly at two points, the maximum and minimum points of \(f\).

The following lemma shows that \(\nabla f\) is a conformal vector field with respect to the metric \(\tilde{g}\).
Lemma 5.2. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with constant scalar curvature \(s\) and \(\omega = 0\). Then,
\[
\frac{1}{2} \mathcal{L}_f \bar{g} = N((\nabla f)) \bar{g} = \frac{1}{n}(\bar{\Delta} f) \bar{g}.
\]
Here, \(\mathcal{L}\) denotes the Lie derivative.

Proof. Note that, by (1.1) we have,
\[
\frac{1}{2} \mathcal{L}_f g = D_g df = \frac{f}{m} (\text{Ric} - \lambda g).
\]
By the definition of Lie derivative,
\[
\frac{1}{2} \mathcal{L}_f (df \otimes df)(X, Y) = Ddf(X, \nabla f) df(Y) + df(X) Ddf(Y, \nabla f)
\]
\[= \frac{2f}{m} (\text{Ric}(N, N) - \lambda) df \otimes df(X, Y).\]
Therefore,
\[
\frac{1}{2} \mathcal{L}_f \left(\frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} \right) = N(|\nabla f|) \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|}. \tag{5.1}
\]
Since
\[
\frac{1}{2} \mathcal{L}_f(|\nabla f|^2 g_\Sigma) = \frac{1}{2} \nabla f(|\nabla f|^2) g_\Sigma = Ddf(\nabla f, \nabla f) g_\Sigma = N(|\nabla f|)|\nabla f|^2 g_\Sigma,
\]
we conclude that
\[
\frac{1}{2} \mathcal{L}_f \bar{g} = \bar{D} df = N(|\nabla f|) \bar{g}.
\]
In particular, we have \(\bar{\Delta} f = nN(|\nabla f|)\). \qed

Lemma 5.3. Let \((M^n, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with constant scalar curvature \(s\) and \(\omega = 0\). If \(f^{-1}(0)\) is connected, then \(T = 0\) on \(M\).

Proof. Let \(p, q \in M\) be the only two points such that \(f(p) = \min_M f\) and \(f(q) = \max_M f\), respectively, and let \(\bar{M} = M \setminus \{p, q\}\). Due to Lemma 4.9 together with our assumption that \(f^{-1}(0)\) is connected and Lemma 5.2, we can apply Tashiro’s result [17] and can see that \((\bar{M}, \bar{g})\) is conformally equivalent to \(S^n \setminus \{\bar{p}, \bar{q}\}\), where \(\bar{p}\) and \(\bar{q}\) are the points in \(S^n\) corresponding to \(p\) and \(q\), respectively. In particular, by Theorem 1 in [5], the fiber space \((\Gamma, g|_r)\) is a space of constant curvature. Thus,
\[
(\Gamma, g|_r) \equiv (S^{n-1}, r \cdot g_{S^{n-1}}),
\]
where \(r > 0\) is a positive constant and \(g_{S^{n-1}}\) is a round metric.

Now, replacing \(\Gamma = f^{-1}(0)\) by \(\Gamma_t := f^{-1}(t)\) in (5.1), it can be easily concluded that the warped product metric \(\bar{g}_t\) also satisfies Lemma 5.2, and hence, the same argument mentioned above shows that, for any level hypersurface \(\Gamma_t := f^{-1}(t)\),
\[
(\Gamma_t, g|_{r_t}) \equiv (S^{n-1}, r(t) \cdot g_{S^{n-1}}).
\]
Therefore, the original metric \(g\) can also be written as
\[
g = \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} + b(f)^2 g_\Gamma, \tag{5.2}
\]
where \(b(f) > 0\) is a positive function depending only on \(f\). From (5.1) and the following identity
\[
\frac{1}{2} \mathcal{L}_f (b^2 g_\Gamma) = b(\nabla f, \nabla b) g_\Gamma = b|\nabla f|^2 \frac{db}{df} g_\Gamma,
\]
we obtain
\[
\frac{1}{2} \mathcal{L}_f g = N(|\nabla f|) \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} + b|\nabla f|^2 \frac{db}{df} g_\Gamma. \tag{5.3}
\]
On the other hand, from (1.1) and (5.2), we have
\[
\frac{1}{2} \mathcal{L}_f g = \frac{f}{m} (\text{Ric} - \lambda g) = N (|\nabla f| \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|}) + \frac{f}{m} \text{Ric} - \frac{f}{m} \text{Ric}(N, N) \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} - \frac{\lambda f}{m} b^2 g.
\]
Comparing this to (5.3), we obtain
\[
(\frac{b^2}{n-1} \frac{db}{df} + \frac{\lambda f}{m} b^2) g_T = \frac{f}{m} \left(\text{Ric} - \text{Ric}(N, N) \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} \right).
\]
Now, let \{e_1, e_2, \ldots, e_n\} be a local frame with \(e_1 = N\). Then, by applying \((e_j, e_j)\) for each \(2 \leq j \leq n\) to (5.4), we have
\[
\frac{b^2}{n-1} \frac{db}{df} = \frac{f}{m} \text{Ric}(e_j, e_j) - \frac{\lambda f}{m} b^2
\]
for \(2 \leq j \leq n\). Summing up these, we obtain
\[
(n-1) \frac{b^2}{n-1} \frac{db}{df} = \frac{f}{m} [s - \text{Ric}(N, N)] - \frac{(n-1) \lambda f}{m} b^2.
\]
Substituting this into (5.4), we get
\[
\frac{1}{n-1} [s - \text{Ric}(N, N)] g_T = \left(\frac{\text{Ric} - \text{Ric}(N, N)}{|\nabla f|} \frac{df}{|\nabla f|} \otimes \frac{df}{|\nabla f|} \right).
\]
Replacing \((\Gamma, g_T)\) by \((\Gamma_t, g_{T_t})\), we can see that the argument mentioned above is also valid. Thus, (5.5) shows that, on each level hypersurface \(f^{-1}(t)\), we have
\[
\text{Ric}(e_j, e_j) = \frac{1}{n-1} [s - \text{Ric}(N, N)]
\]
for \(2 \leq j \leq n\), which is equivalent to
\[
z(e_i, e_i) = -\frac{\alpha}{n-1}.
\]
Hence,
\[
|z|^2 = \alpha^2 + \frac{n-1}{n} \alpha^2 = \frac{n}{n-1} |z_N|^2,
\]
since \(z(N, e_i) = 0\) for \(i \geq 2\). As a result, we have \(T = 0\).

\[\square\]

Theorem 5.4. Let \((M, g, f)\) be a closed generalized \((\lambda, n+m)\)-Einstein manifold. Assume the scalar curvature \(s\) is constant and \(\omega = 0\) If \(f^{-1}(0)\) is connected, then \(M\) is isometric to a sphere \(\mathbb{S}^n\).

Proof. By Lemma 5.1 together with (4.8) and (4.9), we have
\[
\text{Ric}(N, N) = \frac{(n-1) \lambda - s}{m-1} > 0 \quad \text{and} \quad \alpha = \frac{(n-1) \lambda - s}{m-1} - \frac{s}{n} \leq 0.
\]
Suppose that \(\alpha < 0\). From Lemma 5.3 and (4.3), we have
\[
\frac{n}{n-1} \alpha^2 = |z|^2 = \alpha (s - n \lambda)
\]
and so
\[
\alpha = \frac{n-1}{n} s - (n-1) \lambda = [s - (n-1) \lambda] - \frac{s}{n}.
\]
Comparing this to (5.6), we have \((n-1) \lambda - s = 0\), which contradicts \(\text{Ric}(N, N) > 0\). Hence we have \(\alpha = 0\) and consequently \((M, g)\) is Einstein. Finally, using an argument in [8], we can show that \((M, g)\) is isometric to a sphere.

\[\square\]
6. Final Remarks

Let \((M^n, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). If \(\omega = 0\) and the scalar curvature \(s\) is constant, by Lemma 4.6, the function \(\lambda\) is also a (positive) constant (see also Corollary 2.5 for \(m = 1\) without vanishing of \(\omega\)). In case of \(m \geq 1\), we can show that the converse is also true. Namely, we have the following.

Lemma 6.1. Let \((M, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold with \(f^{-1}(0) \neq \emptyset\). If \(\omega = 0\) and the function \(\lambda\) is constant, then the scalar curvature \(s\) is also a (positive) constant.

Proof. Suppose that \(\lambda\) is constant. We recall that, from Lemma 4.3, the function \(\alpha\) is constant. Since \(i_{\xi} f z = o df\), it follows from Lemma 2.4 that

\[
ds + \frac{2(m + n - 1)}{n} s df = 2 [(n - 1)\lambda - (m - 1)\alpha] df.
\]

Now let \(k_1 = \frac{m+n-1}{n}\) and \(k_2 = (n - 1)\lambda - (m - 1)\alpha\). Considering the set \(M^0 = \{ x \in M : f(x) > 0 \}\) and multiplying by \(\frac{1}{f}\), we obtain, on the set \(M^0\),

\[
\nabla s + 2k_1 s \nabla \ln f = 2k_2 \nabla \ln f. \quad (6.1)
\]

Defining \(\varphi = 2k_1 \ln f\), we can rewrite (6.1) as

\[
\nabla s + s \nabla \varphi = \frac{k_2}{k_1} \nabla \varphi,
\]

or equivalently

\[
\nabla (se^{\varphi}) = \frac{k_2}{k_1} \nabla e^{\varphi}.
\]

Since \(k_1\) and \(k_2\) are constants, we conclude that

\[
s = \frac{k_2}{k_1} + c_0 e^{-\varphi} = \frac{k_2}{k_1} + \frac{c_0}{f^{2k_1}}.
\]

Consequently, we obtain

\[
s f^{2k_1} = \frac{k_2}{k_1} f^{2k_1} + c_0
\]

on the set \(M^0 = \{ x \in M : f(x) > 0 \}\). Taking a sequence \(p_l \in M^0\) tending to a point \(p \in f^{-1}(0)\) as \(l \to \infty\), we have \(c_0 = 0\) and hence

\[
s = \frac{k_2}{k_1} = \frac{n [(n - 1)\lambda - (m - 1)\alpha]}{m + n - 1} \quad (6.2)
\]

which shows that \(s\) is constant on the set \(f > 0\). The same argument works on the set \(M_0 := \{ x \in M : f(x) < 0 \}\) and the proof is complete. \(\square\)

Note that (6.2) is exactly the same as (4.2) in Lemma 4.6. Applying Theorem 4.15 and Theorem 5.4, we have the following result.

Theorem 6.2. Let \((M^n, g, f)\) be a closed generalized \((\lambda, n + m)\)-Einstein manifold. Assume \((M, g)\) has PIC and the function \(\lambda\) is constant. Then

1. if \(f^{-1}(0)\) is connected, then \(M\) is isometric to a sphere \(S^n\).
2. if \(f^{-1}(0)\) is disconnected, then, it has only two connected components and \(M\) is isometric to \(S^1 \times S^{n-1}\), up to finite cover and rescaling.

Acknowledgement We are grateful to Professors G. Catino, S. Borghini and L. Mazzieri for their concern on our manuscript and point out some valuable suggestions. In particular, Borghini and Mazzieri [3] pointed out that positive isotropic curvature condition, in general, does not imply vanishing of our structural 2-form \(\omega = df \wedge i_{\xi} f z\) obtained from the condition that weakly radially zero Ricci curvature.
REFERENCES

[1] A. Barros, J. N. Gomes, A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl. 401 (2013), 792–705.
[2] A. L. Besse, Einstein Manifolds, New York: Springer-Verlag 1987.
[3] S. Borghini, L. Mazziere, Counterexamples to a divergence lower bound for the covariant derivative of skew-symmetric 2-tensor fields, Preprint.
[4] S. Brendle, R. Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287—307.
[5] M. Brozos-Vázquez, E. García-Río and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, J. Math. Phys. 46 (2), 022501 (2005), 11 pp.
[6] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), 751–756.
[7] D. Fischer-Colbrie, R. Schoen, The Structure of Complete Stable Minimal Surfaces in 3-Manifolds of Non-Negative Scalar Curvature, Comm. Pure and App. Math. 33 (1980), 199–211.
[8] A. Freitas, M. Santos, Boundary topology and rigidity results for generalized $(\lambda, n + m)$-Einstein manifolds, Annali di Matem- atico Pura ed Applicata, 199 (2020), 2511–2520.
[9] C. He, P. Petersen, W. Wylie, On the classification of warped product Einstein manifolds, Commun, Anal. Geom. 20 (2012), no. 2, 271–311.
[10] S. Hwang, G. Yun, Besse conjecture with Positive isotropic curvature, Ann. Glob. Anal. Geom., 2022.
[11] S. Hwang and G. Yun, Erratum to: Besse conjecture with positive isotropic curvature, Ann. Glob. Anal. Geom., 11 (2022), no. 3, 507–532.
[12] S. Hwang, G. Yun, Vacuum Static spaces with radially flat Ricci curvature, In Preparation.
[13] D. S. Kim, Y. H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc., 131 (2003), no. 8, 2573–2576.
[14] P. Li, Geometric Analysis, Cambridge studies in advanced mathematics, 134, Cambridge University Press.
[15] M. Micallef, J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. Math. 127 (2) (1988), 199–227.
[16] M. Micallef, M. Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (3) (1993), 649–672.
[17] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275.
[18] H. Wu, The Bochner Technique in Differential Geometry, in; Mathematical Reports, vol. 3, Pt 2, Harwood Academic Publishing, London, 1987.
[19] P. Zhu, Harmonic two-forms on manifolds with non-negative isotropic curvature, Ann. Glob. Anal. Geom. 40 (2011), 427–434.

Seungsu Hwang
Department of Mathematics
Chung-Ang University
221 HeukSuk-dong, DongJak-ku, Seoul, Korea 156-756
E-mail:seungsu@cau.ac.kr

Marcio Santos
Departamento de Matemática
Universidade Federal da Paraíba
João Pessoa, PB, Brazil
E-mail:marcio.santos@academico.ufpb.br

Gabjin Yun
Department of Mathematics and the Natural Science of Research Institute
Myong Ji University
San 38-2, Nam-dong, Yongin-si, Gyeonggi-do, Korea, 17058
E-mail:gabjin@mju.ac.kr