Direct Cryptographic Computation of the Cosmological Constant Ω_Λ

Charles Kirkham Rhodes
Department of Physics, University of Illinois at Chicago,
Chicago, IL 60607-7059, USA

Abstract

A direct cryptographic computation of the Cosmological Constant Ω_Λ based solely on a physically anchored prime modulus P_α that stands in full agreement with observational data on Ω_Λ and Ω_m and the conclusion of a flat universe ($\Omega_\Lambda+\Omega_m=1.0$) is demonstrated. The simplification derives from the fact that Ω_Λ defines the symmetry point of the cryptographic system.
I. Introduction

Previous work [1] has shown how a cryptographic analysis [2] can relate the Higgs mass to the theorem of Quadratic Reciprocity [3], the founding statement of modern number theory first proved by Gauss. A subsequent study [4] showed that the Higgs state, a supersymmetric pair that defined the symmetry point of the cryptographic system, can be interpreted as the Cosmological Constants \(\Omega_\Lambda \) and \(\Omega_m \), with values that stand in full agreement with observation [5,6] and the condition for an exactly flat universe

\[
\Omega_\Lambda + \Omega_m = 1.0 \quad ,
\]

(1)
as shown in Figs. (1) and (2). This latter outcome is legislated theoretically by the concept of supersymmetry [2], specifically, that the two residues \(B_{hh1} \) and \(B_{hh2} \) representing the Higgs states sum to modulus with the relation

\[
B_{hh1} + B_{hh2} = P^2_\alpha
\]

(2)
in the quadratic extension field \(\mathbb{F}_{p^2_\alpha} \). Related analyses [2,7,8] demonstrated the ability to provide both a theoretical basis and a predicted magnitude for the observed value [9-12] of the fine structure constant \(\alpha \) that expresses a level of agreement with measured data of \(~250\) ppt, as quantitatively summarized in Fig. (3), using the identical cryptographic approach. An interesting aspect of the data presented in Fig. (3) is the discrepancy [8] between the direct determination of \(\alpha \) with Rb recoils [10] and the corresponding indirect measurement of \(\alpha \) that involves the experimental value of the electron \(g-2 \) combined with a tenth order QED analysis [11]. This difference points to the failure of the conventional QED picture at sufficiently high precision [8].

Overall, these results [1,2,4,7,8] culminated in the ability to show that \(\Omega_\Lambda, \Omega_m, \) and \(\alpha \) are precisely related by a physically motivated algorithm and that the entire \((\Omega_\Lambda, \Omega_m, \alpha)\) triad is ultimately and perforce connected to Quadratic Reciprocity [3], hence also, the symmetry point of the cryptographic system. Thereby, basic physical entities align with a comparably fundamental mathematical statement. Physically, this means that (1) \(\alpha, \Omega_\Lambda, \) and \(\Omega_m \) are rigorously connected, (2) do not constitute independent quantities, and (3) the calculation of any member of the \((\Omega_\Lambda, \Omega_m, \alpha)\) triple is likewise an equivalent calculation of the other two parameters[4]. These interlocking associations are, of course, mirrored precisely in the corresponding mathematical relations. Ultimately, these results construct a coherent synthesis [1,2,4,7,8], in full conformance with observational data, that quantitatively and mutually relates the six physically intrinsic universal parameters \(\alpha, G, h, c, \Omega_\Lambda, \) and \(\Omega_m \).

The organizing principle underlying these findings stems from the identification of an observationally grounded [1,2,4,7,8] modulus \(P_\alpha \) and the subsequent construction of a modular counting system that correctly represents the physical entities. Equivalently, the theoretical picture transforms the physical analysis into a physically and mathematically doubly anchored cryptographic code-breaking problem in which the modulus \(P_\alpha \) defines the counting rule.
Importantly, the computational system used is established a priori by measured data, contains no free or adjustable parameters, and hence, cannot utilize a fitting procedure a posteriori; accordingly, the numerical results shown in Figs. (1) to (3) stand or fall without a safety net.
Cryptographic Computation of Ω_Λ and Ω_m as Super Higgs States in \mathbb{F}_{2^2}.

Fig. (1): Comparison of the computed values of Ω_Λ and Ω_m from the Super Higgs Congruence in \mathbb{F}_{2^2} with the assembly of correlated data restricting the ranges of Ω_Λ and Ω_m. The concept of supersymmetry legislates the condition of $B_{\rm H1} + B_{\rm H2} = P_2$, a statement equivalent to perfect flatness given by $\Omega_\Lambda + \Omega_m = 1.0$. The inset shown at the upper left details the central zone illustrating the agreement between the calculated and experimental values. The theoretical values of Ω_Λ and Ω_m are compared directly with the experimental limits at 68% confidence ($0.712 < \Omega_\Lambda < 0.758$, $0.242 < \Omega_m < 0.308$) in the box placed in the lower left panel. The flat universe $\Omega = 1$ contour is shown for reference. The figure is adopted from Ref. [5] and used with permission.
Cryptographic Computation of Ω_Λ and Ω_m as Super Higgs States in $P^{2\alpha}_P$

Fig. (2): Comparison of the computed values of Ω_Λ and Ω_m from the Super Higgs Congruence in $P^{2\alpha}_P$ with the assembly of correlated data restricting the ranges of Ω_Λ and Ω_m derived from a geometric measure based on bound galactic pairs [6]. Perfect agreement of the computed values with the data is manifest. The concept of supersymmetry legislates the condition of $B_{\text{fin1}} + B_{\text{fin2}} = P^2_\alpha$, a statement equivalent to perfect flatness given by $\Omega_\Lambda + \Omega_m = 1.0$, the condition specified by the black diagonal line. The figure is adapted from Ref. [6] and used with permission.
Determination of the Fine Structure Constant
Status November 2012

Fig. (3) Comparison of five values of the inverse of the fine structure constant α^{-1} obtained by various methods that presents the status as of November 2012. The direct non-QED-dependent value determined in 2011 from h/m_{Rb} recoils [10,12] gives $\alpha^{-1}=137.035999049(90)$; the value derived from a measurement [9] of the electron g-2 with eighth order QED analysis yields $\alpha^{-1}=137.035999084(51)$ and with tenth order QED analysis [11] gives the revised value of $\alpha^{-1}=137.035999173(35)$; the CODATA 2010 assessment [12] is stated as $\alpha^{-1}=137.035999074(44)$; and the cryptographic [2] theoretical prediction (2003) has the value, to 22 digits, $\alpha^{-1}=137.03599910474374444154$. The tenth order QED-dependent value [11] stands in disagreement with both the direct h/m_{Rb} finding [10] and the eighth order QED-dependent result [9] based on the electron g-2 measurement. The cryptographic value is in agreement with both the non-QED-dependent h/m_{Rb} recoil value and the CODATA 2010 assessment. Notably, the determination of α using the tenth order QED analysis [11] stands apart from all other values. The breadth Δ represents the level of uncertainty in α in 2003.
II. Computation

A. Higgs Congruence

The two fundamental congruences [1,2,4] governing the Higgs residues B_{Higgs} are expressed respectively as

$$B_{Higgs}^2 \equiv -1 \text{ (mod } P_{\alpha})$$

(3)

and

$$B_{Higgs}^2 \equiv -1 \text{ (mod } P_{\alpha}^2)$$

(4)

in the prime $\mathbb{F}_{P_{\alpha}}$ and quadratic extension $\mathbb{F}_{P_{\alpha}^2}$ fields. The solutions in the extension field $\mathbb{F}_{P_{\alpha}^2}$ correspond [4] to the Cosmological Constants Ω_{Λ} and Ω_{m}. In both Eqs. (3) and (4), the solutions represent the subgroup of order four, the symmetry point of the cryptographic system.

By inspection, it is clear that the solutions of the congruences given by Eqs. (3) and (4) are entirely determined by the physically and mathematically defined [1,2,4] prime modulus P_{α}, since no other quantity is present in the relationships. We will initially consider the solution of Eq. (3) and extend the procedure to Eq. (4).

B. Solution of $B_{Higgs}^2 \equiv -1 \text{ (mod } P_{\alpha})$

The prime P_{α} obeys the congruence [1,2,4,7]

$$P_{\alpha} = 1 \text{ (mod } 4),$$

(5)

and accordingly, on the basis of theorem of Fermat [13], can be represented uniquely as a sum of two squares given by the general form [14,15]

$$a_1^2 + b_1^2 = P_{\alpha}$$

(6)

with $a_1, b_1 \in \mathbb{Z}$. It follows directly by the Fibonacci identity [13] that the parallel statement

$$a_2^2 + b_2^2 = P_{\alpha}^2,$$

(7)
with $a_2, b_2 \in \mathbb{Z}$ also holds.

We now consider the solution of Eq.(3) for Higgs residue B_{Higgs}. Cassels has shown [16] that, given a modulus M composed only of primes $p \equiv 1 \pmod{4}$, the following statements hold:

If we consider pairs $(x, y) \in \mathbb{Z}^2$ that satisfy the congruence

$$x \equiv B_{\text{Higgs}} y \pmod{M},$$

then

$$x^2 + y^2 \equiv 0 \pmod{M}$$

for all (x, y) satisfying Eq.(8). Indeed, there exists a specific pair

$$(x, y) = (a, b)$$

such that

$$a^2 + b^2 = M.$$

Hence, with the choice

$$M = P_\alpha,$$

we obtain

$$a_i \equiv b_i B_{\text{Higgs}} \pmod{P_\alpha}$$

with a_i and b_i both defined by and known from Eq.(6). A direct solution is given by

$$B_{\text{Higgs}} \equiv a_i b_i^{-1} \pmod{P_\alpha}$$

with b_i^{-1} designating the inverse of the integer b_i.
C. Solution of $B_{Higgs}^2 \equiv -1 \pmod{P^2_\alpha}$

The extension of this method to the solution of Eq.(4) is immediate; it yields by inspection

$$B_{Higgs}^2 \equiv a_2 b_2^{-1} \pmod{P^2_\alpha}$$ \hspace{1cm} (15)

with $(a_2, b_2) \in \mathbb{Z}^2$ and correspondingly given explicitly by Eq.(7). It remains to compute the pair (a_2, b_2) from (a_1, b_1). Elementary application of the Fibonacci identity [13] yields the results

$$a_2 = 2a_1b_1$$ \hspace{1cm} (16)

and

$$b_2 = a_1^2 - b_1^2.$$ \hspace{1cm} (17)

Since an earlier study [4] demonstrated that the Higgs states defined by Eq.(4) can be identified with the cosmological constants Ω_Λ and Ω_m, we now have in Eq. (15) a direct computation of these quantities based purely on the representation of P_α given by Eq.(6).

III. Numerical Results

The numerical findings are presented in Table I. Since a_2 and b_2 can play interchangeable roles, two solutions for B_{Higgs} are produced that conform to Eq. (2); upon normalization [4] by P^2_α, these solutions generate the corresponding values of Ω_Λ and Ω_m. Perfect agreement with the earlier computations [4] is found, thereby yielding the identical values of Ω_Λ and Ω_m illustrated in Figs. (1) and (2). The precision of this agreement exceeds one part in 10^{121}.

IV. Conclusions

The cosmological constants Ω_Λ and Ω_m can be directly computed with high precision from the value of the physically and mathematically anchored [1,2,4,7,8] prime modulus P_α with an elementary algorithm. The values of both quantities stand in full agreement with observational data and the existence of a flat universe. The physical identification of these quantities is a supersymmetric particle pair representing the Higgs state.

Acknowledgement: This work was supported by Ultrabeam Technologies, LLC.
Parameter	Integer	Prime Factors
a_1	569782215516975561670061045526	2, 3, 7, 17, 1846817443, 432102431866199813
b_1	25367172244133738938906987625	5^2, 37, 241, 45841, 4383991, 1132451371663
a_1^{-1}	112942122406126866055968966494658727480100892492558403162752	2^5, 3, 9293539, 15200459, 54341009, 56948712213581, 6727843292570936327907
b_1^{-1}	5910809512489068915887893487307524353548265170575355030490525	5^2, 19, 191, 14159, 22082245825229308231, 208374305183502927488761655424881
B_{HI}	1464518162437896293751464687230415731421582430740004414836186	2, 3, 29, 37, 344353, 204901219, 14323448690905379, 2250856354248454784040199
B_{H2}	529506783717048385691240239639344309009897247013069190721115	5, 13, 31, 109, 67, 25717, 165235181, 3158418359, 5645180551, 470014220572174240309
a_2	2890752720532652511354041541853597314032800586053749927631500	2^2, 3, 5^2, 7, 17, 37, 241, 45841, 4383991, 1846817443, 1132451371663, 432102431866199813
b_2	611028250351606894681523369732152977602389731063903833523949	41, 227104379, 1607216894209, 122381429412756089, 33326755644030860709
a_2^{-1}	2171753445364098443948228612625334835003216764185679450634047829395975906	2^2, 92009, 524000072717623007518368941, 112613088628994639416636603447445580853868860762059398
b_2^{-1}	19450662745886479239941142444475315263644017764478768621605169534121671998	5^2, 92009, 524000072717623007518368941, 112613088628994639416636603447445580853868860762059398
B_{H1}	3347796095963539038288108836498788081520717814964612682009307011987706791	3^4, 17, 23, 13221419329, 109323249654152734755456349619, 255819964423985150753871157903541993
B_{H2}	122140426044061405308255305001429612916514009643353348094040656912288750	2, 5, 46663, 190633, 22176136014869, 43515013978215459227, 413749409670718715124749842095365017, 34389534759271995742669674685321854765517
P_α	6759586049754935319866707086869760045020554900870696322757301	P_α
$P_\alpha -1$	6759586049754935319866707086869760045020554900870696322757300	P_α
$P_\alpha +1$	6759586049754935319866707086869760045020554900870696322757302	P_α
p_α^2	45692003564041530913706618865130769443732318240104621548997747776789295542	P_α^2

Table I: Computational results for the solutions of Eq. (14), giving B_{HI} and B_{H2}, and Eq. (15), giving B_{H1} and B_{H2}. The numerical figures stand in precise agreement with the earlier computations [4] of these quantities, confirming the analysis.
References

1. Dai, Y., Borisov, A. B., Longworth, J. W., Boyer K., and Rhodes, C. K., “Quadratic Reciprocity, the Higgs Mass and Complexity,” *Adv. Stud. Cont. Math.* **10**, 149 (2005).

2. Dai, Y., Borisov, A.B., Longworth, J. W., Boyer, K., and Rhodes, C. K., “Cryptographic Unification of Mass and Space Links Neutrino Flavor (ν_e/ν_μ) Transformations with the Cosmological Constant Λ,” *International Journal of Modern Physics* A**18**, 4257 (2003).

3. Lemmermeyer, F., *Reciprocity Laws* (Springer-Verlag, Berlin/New York, 2000).

4. Rhodes, C.K., “Precision Cryptographic Calculation of the Observed Values of Ω_Λ and Ω_m as a Manifestation of the Higgs State in the Extension Field \mathbb{F}_{p^2},” arXiv:genph/1008.4596, August, 2010.

5. Allen, S.W., Rapetti, D.A., Schmidt, R.W., Ebling, H., Morris, R.G., and Fabian, A.C., “Improved Contraints on Dark Energy from *Chandra* X-ray Observations of the Largest Relaxed Galaxy Clusters,” *Mon. Not. R. Astron. Soc.* **383**, 879 (2008).

6. Christian Marioni and Adeline Bussi, “A Geometric Measure of Dark Energy with Pairs of Galaxies”, *Nature* **468**, 539 (2010).

7. Rhodes, C.K., “Unique Physically Anchored Cryptographic Theoretical Calculation of the Fine-Structure Constant α Matching both the $g/2$ and Interferometric High-Precision Measurements,” arXiv:gen-ph/1008.4537, August, 2010.

8. Charles K. Rhodes, “Fine Structure Constant Triple Comparison: Ramsey-Bordé Block Oscillation Determination, Electron g-2 Measurement with QED-Dependent Analysis, and Physically Anchored Cryptographic Theoretical Prediction”, manuscript in preparation.

9. Hanneke, D., Fogwell, J., and Gabrielse, G., “New Measurement of the Electron Magnetic Moment and the Fine Structure Constant,” *Phys. Rev. Lett.* **100**, 120801 (2008).

10. P. Clade et.al., “New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics” *Phys. Rev. Lett.* **106**, 080801 (2011).

11. Tatsumi Aoyama et.al. “Tenth-Order QED Contribution to the Electron g - 2 and an Improved Value of the Fine Structure Constant”, *Phys. Rev. Lett.* **109**, 111807 (2012).

12. P.J. Mohr et.al. “CODATA Recommended Values of the Fundamental Physical Constants: 2010”, *Rev. Mod. Phys.*, in press.

13. Stillwell, J., *Mathematics and its History* (Springer-Verlag, New York, 2010).

14. Cox, D.A., *Primes of the Form x^2+ny^2* (John Wiley and Sons, Inc., New York, 1989).

15. Hardy, G.H., and Wright, E.M., *An Introduction to the Theory of Numbers*, Fifth Edition (Oxford University Press, Oxford, 1979).

16. Cassels, J.W.S., *Rational Quadratic Forms* (Dover Publications, Inc., Mineola, NY, 2008).