Universal bound states of one-dimensional bosons with two- and three-body attractions

Yusuke Nishida

Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan

(Dated: March 2017)

When quantum particles are confined into lower dimensions, an effective three-body interaction inevitably arises and may cause significant consequences. Here we study bosons in one dimension with weak two-body and three-body interactions, predict the existence of two three-body bound states when both interactions are attractive, and determine their binding energies as universal functions of the two-body and three-body scattering lengths. We also show that an infinitesimal three-body attraction induces an excited bound state only for 3, 39, or more bosons. Our findings here have direct relevance to a broad range of quasi-one-dimensional systems realized with ultracold atoms.

I. INTRODUCTION

Effective three- and higher-body interactions are ubiquitous and play important roles in various subfields of physics [1,3]. One such example is provided by quantum particles confined into lower dimensions even when their interaction in free space is purely pairwise. As far as low-energy physics relative to the transverse excitation energy is concerned, the system admits an effective low-dimensional description where multibody interactions inevitably arise from virtual transverse excitations. In particular, the three-body interaction in onedimensional systems may cause significant consequences because it breaks the integrability [4–8] and is marginally relevant when attractive [9,10]. The purpose of this work is to elucidate possible consequences of the three-body interaction for bound states of bosons in one dimension.

A. Model and universality

Bosons in one dimension with two-body and three-body interactions are described by

\[H = \int dx \left[\frac{1}{2m} \frac{d^2 \phi(x)}{dx^2} + \frac{u_2}{2m} |\phi(x)|^4 + \frac{u_3}{6m} |\phi(x)|^6 \right], \tag{1} \]

where we set \(\hbar = 1 \) and \(|\phi(x)|^{2n} = |\phi_1(x)|^n |\phi(x)|^n \). When this system is realized by confining weakly interacting bosons with a two-dimensional harmonic potential [11], the two-body and three-body couplings are provided by

\[u_2 = 2 \frac{a_{3D}}{l_\perp^2} \quad \text{and} \quad u_3 = -12 \ln(4/3) \frac{a_{3D}^2}{l_\perp}, \tag{2} \]

respectively, for \(|a_{3D}| \ll l_\perp \), where \(a_{3D} \) is the s-wave scattering length in free space and \(l_\perp \equiv 1/\sqrt{ma_{3D}} \) is the harmonic oscillator length [12,13]. While the two-body interaction can be either attractive or repulsive depending on the sign of \(a_{3D} \), the three-body interaction is always attractive (\(u_3 < 0 \)) because it arises from the second-order perturbation theory [8]. We note that four- and higher-body interactions also exist but are irrelevant to low-energy physics.

It is more convenient to parametrize the two-body and three-body couplings in terms of the scattering lengths. The two-body scattering length is introduced as \(a_2 = -2/u_2 \). With this definition, the binding energy of a two-body bound state (dimer) is provided by \(E_2 = -1/(ma_2^2) \) for \(a_2 \gg l_\perp \) [11]. Similarly, the three-body scattering length is introduced so that the binding energy of a three-body bound state (trimer) is provided by \(E_3 = -1/(ma_3^3) \) for \(a_3 \gg l_\perp \) when the two-body interaction is assumed to be absent [9]. This definition leads to \(a_3 \sim e^{-\sqrt{3} \pi/u_3 l_\perp} \) as we will see later in Eq. (4). While \(a_3 \gg |a_2| \gg l_\perp \) is naturally realized for weakly interacting bosons with \(|a_{3D}| \ll l_\perp \), we study the system with an arbitrary \(-\infty < a_3/a_2 < +\infty \) because the two-body and three-body interactions are independently tunable in principle with ultracold atoms [14,17]. As far as both interactions are weak in the sense of \(|a_2|, a_3 \gg l_\perp \), low-energy physics of the system at \(|E| \ll 1/(ma_2^2) \) is universal, i.e., depends only on the two scattering lengths.

II. THREE-BOSON SYSTEM

A. Formulation

We now focus on the system of three bosons whose Schrödinger equation reads

\[\left[\frac{1}{2m} \sum_{i=1}^{3} \frac{\partial^2}{\partial x_i^2} + \frac{u_2}{m} \sum_{1 \leq i < j \leq 3} \delta(x_{ij}) + \frac{u_3}{m} \delta(x_{12}) \delta(x_{23}) \right] \times \Psi(x_1, x_2, x_3) = E \Psi(x_1, x_2, x_3), \tag{3} \]

where \(x_{ij} \equiv x_i - x_j \) is the interparticle separation. For a bound state with its binding energy \(E \equiv -\kappa^2/m < 0 \), the Schrödinger equation is formally solved in Fourier space.
by

\[\tilde{\Psi}(p_1, p_2, p_3) = -\sum_{i=1}^{3} \tilde{\Psi}_2(P_{123} - p_i; p_i) + \tilde{\Psi}_3(P_{123}), \]

\[\kappa^2 + \sum_{i=1}^{3} \frac{p_i^2}{2}, \]

(4)

where \(P_{123} \equiv p_1 + p_2 + p_3 \) is the center-of-mass momentum and

\[\tilde{\Psi}_2(P; p) = u_2 \int \frac{dq}{2\pi} \tilde{\Psi}(P - q, q, p), \]

(5a)

\[\tilde{\Psi}_3(P) = u_3 \int \frac{dq}{(2\pi)^2} \tilde{\Psi}(P - q, q, r), \]

(5b)

are the Fourier transforms of \(u_2 \Psi(X, X, x) \) and \(u_3 \Psi(X, X, X) \), respectively. After rewriting \(p_1 \to P - p - q, p_2 \to p, \) and \(p_3 \to q \) in Eq. (4), the integration over \(q \) leads to

\[\frac{1}{u_2} \tilde{\Psi}_2(P - p; p) = -\int \frac{dq}{(2\pi)^2} \frac{2\tilde{\Psi}_2(P - q; q)}{2\kappa^2 + \frac{(P - p - q)^2}{4} + p^2 + q^2} \]

\[- \frac{\tilde{\Psi}_2(P - p; p) + \tilde{\Psi}_3(P)}{2\kappa^2 + \frac{(P - p)^2}{4} + p^2}, \]

(6a)

while the integration over \(p \) and \(q \) leads to

\[\frac{1}{u_3} \tilde{\Psi}_3(P) = -\int \frac{dq}{(2\pi)^2} \frac{3\tilde{\Psi}_2(P - q; q)}{2\sqrt{\kappa^2 + \frac{(P - q)^2}{4} + q^2}} \]

\[- \frac{1}{\sqrt{3\pi}} \ln \left(\frac{\Lambda}{\kappa^2 + \frac{q^2}{4}} \right) \tilde{\Psi}_3(P), \]

(6b)

where \(\Lambda \sim \frac{1}{\kappa} \) is the momentum cutoff and Eqs. are used on the left-hand sides. Finally, by substituting the ansatz of \(\tilde{\Psi}_2(P - p; p) \equiv 2\pi \delta(P) \tilde{\psi}_2(p) \) and \(\tilde{\Psi}_3(P) \equiv 2\pi \delta(P) \tilde{\psi}_3 \) (i.e., zero center-of-mass momentum) into Eqs. as well as the two-body and three-body couplings parametrized as

\[u_2 = -\frac{2}{a_2} \quad \text{and} \quad u_3 = -\frac{\sqrt{3\pi}}{\ln(a_3)} \]

(7)

we obtain

\[\left(\frac{a_2}{2} - \frac{1}{2\sqrt{\kappa^2 + 3\pi^2}} \right) \tilde{\psi}_2(p) \]

\[= \int \frac{dq}{2\pi} \frac{2\tilde{\psi}_2(q)}{\kappa^2 + p^2 + q^2 + pq} + \frac{\tilde{\psi}_3}{2\sqrt{\kappa^2 + 3\pi^2}} \]

(8a)

and

\[\frac{\ln(a_3 \kappa)}{\sqrt{3\pi}} \tilde{\psi}_3 = \int \frac{dq}{2\pi} \frac{3\tilde{\psi}_2(q)}{2\sqrt{\kappa^2 + 3\pi^2}} \]

(8b)

Equation \(5b \) with \(\tilde{\psi}_3 \) eliminated by Eq. \(5a \) provides the closed one-dimensional integral equation for \(\tilde{\psi}_3(p) \), which is to be solved numerically. We note that nontrivial solutions exist only in the even-parity channel where \(\tilde{\psi}_2(p) = \tilde{\psi}_2(-p) \).

As we can see in Eq. (7), the positive (negative) two-body scattering length corresponds to the attractive (repulsive) two-body interaction. The two-body attraction increases with increasing \(1/a_2 \) from the strong repulsion \(1/a_2 \to -\infty \) via no interaction \(1/a_2 = 0 \) to the strong attraction \(1/a_2 \to +\infty \). On the other hand, the three-body scattering length is positive definite and the three-body attraction increases with increasing \(1/a_2 \) from the weak attraction \(1/a_3 \to 0 \) to the strong attraction \(1/a_3 \to +\infty \). For later discussion, we identify the prefactor of \(\tilde{\psi}_3 \) in Eq. (8b) as \(-1/\tilde{u}_3(\kappa) \), where

\[\tilde{u}_3(\kappa) \equiv -\frac{\sqrt{3\pi}}{\ln(a_3 \kappa)} \]

(9)

is the renormalized three-body coupling with logarithmic energy dependence \(6 \).

B. Binding energies

The numerical solutions for \(\kappa > \theta(a_2)/a_2 \) are plotted as functions of \(a_3/a_2 \) in Fig. 1 with the different normalizations \(3 \). Here we find that the ground state trimer appears at \(a_3/a_2 \approx -0.149218 \). Its binding energy is \(\kappa = 1/a_3 \) at \(a_3/a_2 = 0 \) by the definition of \(a_3 \) and asymptotically approaches \(\kappa = 2/a_2 \) as

\[\kappa \to \frac{2}{a_2} + \frac{2}{\sqrt{3} a_2 \ln(a_3/a_2)} \quad \text{toward} \quad \frac{a_3}{a_2} \to +\infty. \]

(10)

On the other hand, we find that the excited state trimer appears right at \(a_3/a_2 = 0 \) where the dimer state also appears. Its binding energy asymptotically approaches \(\kappa = 2/a_2 \) as

\[\kappa \to \frac{2}{a_2} + \frac{2}{\sqrt{3} a_2 \ln(a_3/a_2)} \quad \text{toward} \quad \frac{a_3}{a_2} \to +0, \]

(11)

while it asymptotically approaches \(\kappa = 1/a_2 \) as

\[\kappa \to \frac{1}{a_2} + \frac{\pi^2}{18 a_2 \ln^2(a_3/a_2)} \quad \text{toward} \quad \frac{a_3}{a_2} \to +\infty. \]

(12)

The subleading term in Eq. (12) indicates that the atom-dimer term in the scattering length is provided

\(^2 \) Their analytical expressions were recently obtained in Ref. \(22 \).
vanishingly small toward the three-boson threshold \(a_{3K} \to +0 \). Indeed, the subleading terms in Eqs. (10) and (11) for \(\ln(a_{3}/a_{2}) \to \pm\infty \) can both be obtained from the expectation value of the renormalized three-body interaction energy \(V_{3} = \langle \bar{u}_{3}(\kappa)/m \rangle \delta(x_{12})\delta(x_{23}) \) with respect to the wave function of the McGuire trimer; \(\Psi(x_{1}, x_{2}, x_{3}) = \sqrt{\frac{3}{3a_{2}L}} e^{\sum_{1 \leq i < j \leq 3} |x_{ij}|/a_{2}} \).}

III. N-BOSON SYSTEM

While we have so far focused on the system of three bosons, it is straightforward to generalize our formulation and some results to an arbitrary \(N \) number of bosons. In particular, when the three-body interaction is assumed to be absent, McGuire also predicted a single \(N \)-body bound state for every \(N \) with its binding energy \(E_{N}^{(MG)} \equiv -N(N^{2}-1)/(6ma_{2}^{2}) \). Its wave function in the domain of \(x_{1} < x_{2} \cdots < x_{N} \) is provided by

\[
\Psi_{N}(x) = \sqrt{\frac{(N-1)!}{NL}} \frac{2}{a_{2}} \frac{N-1}{a_{2}} \exp\left(\frac{\sum_{i=1}^{N} N + 1 - 2i}{a_{2}} x_{i}\right),
\]

(13)

where \(x \equiv (x_{1}, x_{2}, \ldots, x_{N}) \). Then, the expectation value of the renormalized three-body interaction energy \(V_{3} = \langle \bar{u}_{3}(\kappa)/m \rangle \sum_{1 \leq i < j < k \leq N} \delta(x_{ij})\delta(x_{jk}) \) with respect to the wave function in Eq. (13) leads to the binding-energy shift induced by an infinitesimal three-body attraction, which is found to be

\[
\Delta E_{N} \equiv E_{N} - E_{N}^{(MG)} \to -\sqrt{3}\pi N(N^{2}-1)(N^{2}-4)/45ma_{2}^{2} \ln(a_{3}/a_{2})
\]

(14)

for \(\ln(a_{3}/a_{2}) \to +\infty \).

Similarly, regarding the scattering state consisting of an atom with momentum \(k \) and an \((N-1) \)-body bound state at rest, its wave function in the domain of \(x_{1} < x_{2} \cdots < x_{N} \) is provided by

\[
\Psi_{1,N-1}(x) = \frac{N}{a_{2}} \frac{2}{a_{2}} \exp\left(-\frac{\sum_{i=1}^{N} N + 1 - 2i}{a_{2}} x_{i}\right) \times \frac{e^{ikx_1}}{\sqrt{NL}} \Psi_{N-1}(x \setminus \{x_{j}\}),
\]

(15)

where \(x \setminus \{x_{j}\} \) refers to \(x \) with \(x_{j} \) excluded. Because the wave function factorizes as \(\Psi_{1,N-1}(x) \to \sqrt{\frac{e^{ikx}}{NL}} \Psi_{N-1}(x \setminus \{x_{j}\}) \) at a large separation \(x_{j} \ll x \setminus \{x_{j}\} \), the scattering length between the atom and the \((N-1) \)-body bound state is divergent, i.e., noninteracting. Then, the expectation value of the renormalized three-body interaction energy \(V_{3} = \langle \bar{u}_{3}(\kappa)/m \rangle \sum_{1 \leq i < j < k \leq N} \delta(x_{ij})\delta(x_{jk}) \) with respect to the wave function in Eq. (15) at \(k \to 0 \) is found to be

\[
\lim_{k \to 0} V_{3}(1,N-1) = \Delta E_{N-1} - \frac{N}{(N-1)ma_{1,N-1}L}.
\]

(16)
TABLE I. Values of $\beta_{1,N-1}$ for some selected boson numbers N.

N	$\beta_{1,N-1}$	N	$\beta_{1,N-1}$
3	2/9	20	-2.32241×10^2
4	-3	30	-4.54773×10^3
5	$-184/15$	40	2.94072×10^5
6	$-275/9$	50	4.06680×10^4
7	$-19162/315$	100	2.32605×10^6
8	$-1589/15$	200	6.36300×10^7
9	$-22744/135$	300	3.99017×10^7
10	$-6269/25$	400	1.43180×10^8

where the leading term is just the binding-energy shift in Eq. (14) but the subleading term reflects the interaction between the atom and the $(N - 1)$-body bound state induced by an infinitesimal three-body attraction. The extracted scattering length $a_{1,N-1} \equiv a_2 \ln(a_3/a_2)/[3\pi \alpha_{1,N-1}]$ is plotted in Fig. 2 and turns out to be positive for $N = 3$ and $N = 39$ but negative for $4 \leq N \leq 38$, which correspond to the attractive and repulsive interactions between the atom and the $(N - 1)$-body bound state, respectively. Therefore, they in the former case with $a_{1,N-1} \gg a_2$ constitute another N-body bound state induced by the infinitesimal three-body attraction, whose binding energy measured from the threshold at $E = E_{N-1}$ reads

$$-\frac{N}{2(N-1)m\alpha_{1,N-1}^2} = -\frac{3\pi^2 N \beta_{1,N-1}^2}{2(N-1)m\alpha_{2}^2 \ln^2(a_3/a_2)}$$

for $\ln(a_3/a_2) \rightarrow +\infty$. The values of $\beta_{1,N-1}$ for some selected N are presented in Table I.

Beyond the limit of infinitesimal three-body attraction, the binding energies of N bosons are to be determined by generalizing Eqs. (18) as

$$\frac{1}{\sqrt{3\pi}} \ln \left(a_3 \sqrt{\kappa^2 + \frac{1}{6} \left(\sum_{i=4}^{N} p_i \right)^2 + \sum_{i=2}^{N} \frac{p_i^2}{2} } \right) \tilde{\psi}_3(p \setminus \{p_1, p_2\})$$

and

$$\frac{1}{\sqrt{3\pi}} \ln \left(a_3 \sqrt{\kappa^2 + \frac{1}{6} \left(\sum_{i=4}^{N} p_i \right)^2 + \sum_{i=2}^{N} \frac{p_i^2}{2} } \right) \tilde{\psi}_3(p \setminus \{p_1, p_2, p_3\})$$

While elaborate analyses of these coupled integral equations are deferred to a future work, we note that Eq. (18b)
without ψ_2 was solved numerically for $N = 4$ in the absence of the two-body interaction $a_3/a_2 = 0$ [9]. Here three four-body bound states (tetramers) were found with their binding energies provided by $\kappa = 873.456/a_4$, 11.7181/a_3, and 1.45739/a_3. On the other hand, in the opposite limit $a_3/a_2 \to +\infty$ where the three-body attraction is infinitesimal, we find above that there exists only one tetramer state with its binding energy $\kappa \to \sqrt{10}/a_2$. Therefore, the bound-state spectrum of four or more bosons as a function of a_3/a_2 is rather nontrivial and should be elucidated in the future work.

IV. CONCLUSION

In this work, we studied bosons in one dimension with weak two-body and three-body interactions, predicted the existence of two trimer states when both interactions are attractive, and determined their binding energies as universal functions of the two-body and three-body scattering lengths. We also showed that an infinitesimal three-body attraction induces an excited bound state only for 3, 39, or more bosons. Because the effective three-body attraction inevitably arises by confining weakly interacting bosons into lower dimensions, our findings herein have direct relevance to a broad range of quasi-one-dimensional systems realized with ultracold atoms [11, 22–24]. In particular, when $a_{3D} < 0$ and $|a_{3D}| \ll l_\perp$, the N-body to dimer binding-energy ratios predicted from Eqs. (2), (7), (14), and (17) read

$$\frac{E_N}{E_2} = \frac{E_N^{(MG)}}{E_2} + \frac{4N(N^2 - 1)(N^2 - 4) \ln(4/3)}{15} \left(\frac{a_{3D}}{l_\perp} \right)^2$$

for the ground state and

$$\frac{E_N}{E_2} = \frac{E_{N-1}}{E_2} + \frac{72N^2 \beta_{1,N-1}^2 \ln^2(4/3)}{N - 1} \left(\frac{a_{3D}}{l_\perp} \right)^4$$

for the excited state with $N = 3$ or $N \geq 39$ which may be observable in ultracold atom experiments.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants No. JP15K17727 and No. JP15H05855.

[1] H. Primakoff and T. Holstein, “Many-body interactions in atomic and nuclear systems,” Phys. Rev. 55, 1218-1234 (1939).
[2] B. M. Axilrod and E. Teller, “Interaction of the van der Waals type between three atoms,” J. Chem. Phys. 11, 299-300 (1943).
[3] Y. Muto, “Force between nonpolar molecules,” J. Phys.-Math. Soc. Jpn. 17, 629-631 (1943).
[4] J. Fujita and H. Miyazawa, “Pion theory of three-body forces,” Prog. Theor. Phys. 17, 360-365 (1957).
[5] H.-W. Hammer, A. Nogga, and A. Schwenk, “Colloquium: Three-body forces: From cold atoms to nuclei,” Rev. Mod. Phys. 85, 197-217 (2013).
[6] A. Muryshiev, G. V. Shlyapnikov, W. Ertmer, K. Sengstock, and M. Lewenstein, “Dynamics of dark solitons in elongated Bose-Einstein condensates,” Phys. Rev. Lett. 89, 110401 (2002).
[7] S. Sinha, A. Yu. Cherny, D. Kovalvzhin, and J. Brand, “Fringue and diffusion of matter-wave bright solitons,” Phys. Rev. Lett. 96, 030406 (2006).
[8] T. E. Mazets, T. Schumm, and J. Schmiedmayer, “Breakdown of integrability in a quasi-1D ultracold bosonic gas,” Phys. Rev. Lett. 100, 210403 (2008).
[9] Y. Sekino and Y. Nishida, “Quantum droplet of one-dimensional bosons with a three-body attraction,” Phys. Rev. A 97, 011602(R) (2018).
[10] J. E. Drut, J. R. McKenney, W. S. Daza, C. L. Lin, and C. R. Ordoñez, “Quantum anomaly and thermodynamics of one-dimensional fermions with three-body interactions,” arXiv:1802.01634 [cond-mat.quant-gas].
[11] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885-964 (2008).
[12] M. Olshanii, “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons,” Phys. Rev. Lett. 81, 938-941 (1998).
[13] S. Tan, M. Pustilnik, and L. I. Glazman, “Relaxation of a high-energy quasiparticle in a one-dimensional Bose gas,” Phys. Rev. Lett. 105, 090404 (2010).
[14] A. J. Daley and J. Simon, “Effective three-body interactions via photon-assisted tunneling in an optical lattice,” Phys. Rev. A 89, 053619 (2014).
[15] D. S. Petrov, “Three-body interacting bosons in free space,” Phys. Rev. Lett. 112, 103201 (2014).
[16] D. S. Petrov, “Elastic multibody interactions on a lattice,” Phys. Rev. A 90, 021601(R) (2014).
[17] S. Paul, P. R. Johnson, and E. Tiesinga, “Hubbard model for ultracold bosonic atoms interacting via zero-point-energy-induced three-body interactions,” Phys. Rev. A 93, 043616 (2016).
[18] O. I. Kartavtsev, A. V. Malykh, and S. A. Sofi anos, “Bound states and scattering lengths of three two-component particles with zero-range interactions under one-dimensional confinement,” J. Exp. Theor. Phys. 108, 365-373 (2009).
[19] J. B. McGuire, “Study of exactly soluble one-dimensional N-body problems,” J. Math. Phys. 5, 622-636 (1964).
[20] Y. Castin and C. Herzog, “Bose-Einstein condensates in symmetry breaking states,” C. R. Acad. Sci. Paris 2, 419-443 (2001).
[21] V. A. Yurovsky, A. Ben-Reuven, and M. Olshanii, “One-dimensional Bose chemistry: Effects of nonintegrability,” Phys. Rev. Lett. 96, 163201 (2006).

[22] D. S. Petrov, V. Lebedev, and J. T. M. Walraven, “Controlling integrability in a quasi-one-dimensional atom-dimer mixture,” Phys. Rev. A 85, 062711 (2012).

[23] C. Mora, R. Egger, and A. O. Gogolin, “Three-body problem for ultracold atoms in quasi-one-dimensional traps,” Phys. Rev. A 71, 052705 (2005).

[24] L. Pricoupenko, “A pure confinement induced trimer in one-dimensional atomic waveguides,” arXiv:1803.07783 [cond-mat.quant-gas].

[25] G. Guijarro, G. E. Astrakharchik, J. Boronat, A. Pricoupenko, and D. S. Petrov, “One-dimensional three-boson problem with two- and three-body interactions,” arXiv:1803.08603 [cond-mat.quant-gas].

[26] L. Pricoupenko, talk at “Hadrons and Nuclear Physics Meet Ultracold Atoms: A French-Japanese Workshop,” Institut Henri Poincaré, Paris, Jan. 29-Feb. 2, 2018.