Data Article

Data set for analyzing livestock snow disasters in the Qinghai-Tibetan Plateau

Tao Ye a, *, Yijia Li a, Weihang Liu b, a, Yu Gao a

a State Key Laboratory of Earth Surface Processes and Resource Ecology, Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
b School of Geographic Science, East China Normal University, Shanghai 200241, China

Article info

Article history:
Received 30 December 2017
Received in revised form 19 February 2019
Accepted 25 February 2019
Available online 2 March 2019

Abstract

This data set contains a small sample data of livestock snow disasters in the Qinghai-Tibetan Plateau, including historical loss, snow hazard measures, during disaster temperature and wind speed, and pre-disaster summer vegetation condition. This data set can be used to test/verify the method used in the method in the corresponding article published in Stoten, entitled “Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: quantification based on generalized additive models” (Y. Li et al. 2018). The data is supplied as a supplementary file attached in the research article.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The data set contains the information of historical livestock snow disaster events and their corresponding meteorological conditions. It contains following data fields:
Specifications table

Subject area	Environment; geography
More specific	Disaster
subject area	

Type of data	Links, table (.xls file)
How data was acquired	Livestock loss data from yearbooks;
	Meteorological data from station observations;
	Snow cover, snow depth, and vegetation index data from remote sensing products.

Data format	Filtered & analyzed
Experimental factors	Livestock mortality of snow disaster events
	End-year livestock number (herd size)
	Duration of each snow disaster
	Max, mean and min snow cover rate during the snow disaster period
	Max, mean and min snow depth during the snow disaster period
	Max, mean, and min daily temperature during the snow disaster period
	Max daily maximum wind speed during the snow disaster period
	Annual maximum NDVI and its anomaly
	Growing season (May-Sep) aggregate precipitation and its anomaly
Experimental features	Data were analyzed with generalized additive models with data dredge analysis

Data source location	Data from various sources all adapted to county-level

Data accessibility	In the sample data, 30 out of the 80 records were supplied for sample analysis.						
	To access to full data:						
	* Livestock loss data from yearbooks: partial available (1954–2008) upon request.						
	* Meteorological data from station observations: not public repository, can contact China Meteorological Science Data Sharing Service System (CMSDS, http://data.cma.cn/en/?r=	data		detail&dataCode=A.0029.0001)
	* Snow cover data: aggregated from the six-hour data provided by the National Centers for Environmental Prediction, https://rda.ucar.edu/datasets/ds094.0/#description						
	* Snow depth data: public repository, can be found at Arid Regions Science Data Center at Lanzhou (http://westdc.westgis.ac.cn/data/di	40346a-0202-4ee2-0dd1-a9099968d86d, in Chinese).				
	* NDVI data: public repository, can be found at websites after registration. For GIMMS NDVI 1980–2006, please refer to the Environmental and Ecological Science Data Center for West China, National Natural Science Foundation of China http://westdc.westgis.ac.cn/data/1cad1a32-ca8d-431a-b2b2-45d9916d86d (in Chinese). For MODIS NDVI 2007–2015, please refer to NASA-MODIS data website for MODIS vegetation index product- Vegetation Indices 16-Day L3 Global 500 m (MOD13A1) (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php).						

| Related research article | Y. Li, T. Ye, W. Liu, Y. Gao, Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: Quantification based on generalized additive models, Sci. Total Environ. 625 (2018) 87–95. https://doi.org/10.1016/j.scitotenv.2017.12.230 [1] |

Value of the data

- Compared to earlier studies on livestock snow disasters, great efforts have been input to make a good balance of the number of factors considered and the spatial extent of the event set.
- Provided with the quality of the data, our analysis is not exhaustive. Only a generalized additive model has been applied to analyse the relationship between livestock snow disaster mortality (rate) and environment stress. Other quantitative methods can further be applied, and such a relationship can be thoroughly studied by other researchers.
- This dataset can be used as a seed, and further expansion of the dataset would be extremely valuable. Livestock snow disasters occur not only in Qinghai-Tibetan Plateau, but also in the temperate steppe/meadow in the vast regions of central-to-eastern Asia. Collecting similar datasets from those regions will further allow researchers to find the commons and special issues of those regions.

- **CODE**: event code
- **Station**: National reference meteorological station ID for the corresponding place that the disaster occurred
- **t**: The year that the disaster occurred.
- **Month1 and day1**: the date of the snow disaster started
- **Month2 and day2**: the date of the snow disaster ended
• County: Id of the county that the snow disaster occurred
• ELE: elevation of the county centroid. Unit: m
• L: loss in number (heads) in the snow disaster
• LR: loss rate of the snow disaster; as L divided by the herd size of the county at the end of the year before the disaster. Unit: %
• N: the herd size of the county (heads) at the end of the year before the disaster
• NDVI: growing season (May–Sep) maximum normalized difference vegetation index of the county before the snow disaster.
• NDVI_a: Anomaly of NDVI according to the time series of 1980–2012. Unit: %
• P: growing season (May–Sep) cumulative precipitation as recorded by the national reference meteorological station in the county before the snow disaster. Unit: mm
• P_a: Anomaly of P according to the time series of 1980–2012. Unit: %
• Dur: Duration of the snow disaster; as counted by the days from the starting date to the ending date of the snow disaster. Unit: d.
• SC_min: Minimum daily snow-cover as a percentage of land area in the county during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: %
• SC_max: Maximum daily snow-cover as a percentage of land area in the county during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: %
• SC_mean: Mean daily snow-cover as a percentage of land area in the county during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: %
• SD_min: Minimum county-average daily snow-depth during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: mm
• SD_max: Maximum county-average daily snow-depth during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: mm
• SD_mean: Mean county-average daily snow-depth during the disaster period, calculated from satellite retrieved snow cover data (25km*25km). Unit: mm
• T_mean: Mean daily mean temperature during the disaster period as measured by the national reference meteorological station in the county. Unit: Celsius degree
• T_max: Mean daily maximum temperature during the disaster period as measured by the national reference meteorological station in the county. Unit: Celsius degree
• T_min: Mean daily minimum temperature during the disaster period as measured by the national reference meteorological station in the county. Unit: Celsius degree
• V: maximum daily mean wind speed during the disaster period as measured by the national reference meteorological station in the county. Unit: m/s

2. Experimental design, materials and methods

Generalized additive models (GAMs) were used to accurately predict livestock mortality and mortality rates due to snow disasters [1]. Livestock mortality (L) and mortality rates (LR) were the variables that we intended to estimate and predict. Three groups of predictors were considered: 1) snow hazard intensity, including snow disaster duration Dur, snow depth variables (SD_max, SD_min, and SD_mean), and snow cover variables (SC_max, SC_min, and SC_mean), 2) during disaster environmental stress, including wind speed \(v \) and temperature (T_max, T_mean, and T_min), and 3) pre-season environmental stressors concerning vegetation conditions from the previous summer, including annual maximum NDVI, NDVI_a, and growing season cumulative precipitation P, and their anomalies, NDVI_a and P_a, respectively. Time trends, elevation, and herd size were considered as the controlling variables in building models. A time index variable \(t \), which uses the year of the disaster, was considered to remove any collinearity related to time. Elevation, ELE, was considered to control for any elevation-related effects.

The fitting of GAMs includes following the steps [2]: 1) The Pearson correlation for all variables. Highly correlated predictors (with correlation coefficient \(>0.7 \)) were not entered into the model simultaneously. 2) Multi-collinearity diagnostics. Variance-inflation factor (VIF) > 10 will not be considered to enter the model. 3) Finding the most promising GAMs by screening the variables of highest aggregate Akaike weights.
In our analysis, GAMs were fitted using the mgcv package of R 3.3.3 [3,4], and the dredge analyses [5] were carried out using the MuMIn package of R 3.3.3 [6]. For each fitting, the pseudo adjusted-R^2 and the total deviance explained were calculated as indicators of goodness-of-fit. Additionally, a 10-fold cross validation (CV) was carried out to test the prediction power of the underlying model. Metrics of predictive errors were also recorded, including the root mean square error (RMSE), the mean absolute error (MAE) and the mean error (ME).

Codes for running a GAM with dredge analysis is:

```r
rate52pre <- gam (log(LR)~s(t) + s(v) + s(Dur) + s(Ele) + s(SC_mean) + s(T_mean) + s(SD_max) + s(P_a), data = d) %runing a single gam model.

drate52pre = dredge(rate52pre, extra = c("R^2", F = function(x)summary(x)$f-statistic([1]))) % dredge analysis, by runing all combinations of predictors, and provide the AIC results of each model as well as its adjusted R^2

head(drate52pre, n = 20) % showing the first 20 columns of dredge results.
```

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103809.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103809.

References

[1] Y. Li, T. Ye, W. Liu, Y. Gao, Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: quantification based on generalized additive models, Sci. Total Environ. 625 (2018) 87–95, https://doi.org/10.1016/j.scitotenv.2017.12.230.

[2] D. Anderson, R.A. Davidson, K. Himoto, C. Scawthorn, Statistical modeling of fire occurrence using data from the Tōhoku, Japan earthquake and Tsunami, Risk Anal. 36 (2016) 378–395, https://doi.org/10.1111/risa.12455.

[3] S. Wood, Package "mgcv," R Packag, 2016.

[4] S.N. Wood, Generalized Additive Models: An Introduction with R, Chapman Hall, UK, 2006, https://doi.org/10.1111/j.1541-0420.2007.00905_3.x.

[5] K.P. Burnham, D.R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2002, https://doi.org/10.1016/j.ecolmodel.2003.11.004.

[6] K. Barton, MuMIn: Multi-Model Inference. R Package Version 1.10.5., R Packag, 2014. http://cran.r-project.org/package=MuMIn.