Inheritance and Assessment of Bentazon Herbicide Tolerance in ‘Santaka’ Pepper

Richard L. Fery* and Howard F. Harrison, Jr.†
U.S. Vegetable Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 2875 Savannah Highway, Charleston, SC 29414

Abstract. Experiments were developed to study the inheritance of the high level of tolerance to the herbicide bentazon exhibited by the pepper (Capsicum annuum L.) cultivar Santaka. Parental, F₁, F₂, and backcross populations of the cross ‘Santaka’ × ‘Keystone Resistant Giant’ were evaluated for injury in a greenhouse test using bentazon at a rate of 4.5 kg·ha⁻¹ (1.1 kg·ha⁻¹ is the rate recommended for most applications). Additionally, parental and F₁ populations were evaluated for injury under field conditions using sequential bentazon applications of 4.5, 4.5, 6.75, and 9.0 kg·ha⁻¹. A single, dominant gene determined tolerance. F₂ hybrid plants (heterozygous at the locus conditioning tolerance) exhibited a high level of tolerance under field conditions. Results of the greenhouse test suggested a possible cytoplasmic involvement in the expression of the tolerance gene, but the results of the field test provided strong evidence that cytoplasm does not play a significant role. We propose that this gene be designated Bentazon tolerance and symbolized Btₙ. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Bentazon is a selective postemergence herbicide used to control certain broadleaf weeds and sedges in various major agronomic crops. Although highly toxic to many pepper cultivars and not currently registered for general use on the crop, bentazon is of interest to the pepper industry because it controls several broadleaf weeds and sedges [particularly yellow nutsedge (Cyperus esculentus L.)] that cannot be controlled by currently registered herbicides. Additionally, most of the herbicides presently used by pepper growers are applied preplant and not currently registered for general use on the crop, benzthiazuron, is the rate recommended for most applications). Additionally, parental and F₁ populations were evaluated for injury under field conditions using sequential bentazon applications of 4.5, 4.5, 6.75, and 9.0 kg·ha⁻¹. A single, dominant gene determined tolerance. F₂ hybrid plants (heterozygous at the locus conditioning tolerance) exhibited a high level of tolerance under field conditions. Results of the greenhouse test suggested a possible cytoplasmic involvement in the expression of the tolerance gene, but the results of the field test provided strong evidence that cytoplasm does not play a significant role. We propose that this gene be designated Bentazon tolerance and symbolized Btₙ. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Except for the tabasco pepper (C. frutescent L.), virtually all commercial peppers grown in the United States are C. annuum. ‘Santaka’ holds considerable promise for use as parental material in breeding bentazon-tolerant C. annuum cultivars. The breeding value of any herbicide-tolerant germplasm would be enhanced greatly if the mode of inheritance were understood. Additionally, many modern pepper cultivars are hybrids and the utility of specific genes in development of such cultivars depends on the availability of detailed information about gene action under field conditions. These needs prompted us to study, under greenhouse and field conditions, the inheritance of the bentazon tolerance exhibited by ‘Santaka’.

Materials and Methods

The data reported here are from greenhouse and field studies conducted at the U.S. Vegetable Laboratory, Charleston, S.C. Seeds of all parental, F₁, F₂, and backcross generations of the cross ‘Santaka’ × ‘Keystone Resistant Giant’ were produced in the greenhouse using standard crossing and selfing procedures. The bentazon-tolerant ‘Santaka’ has a determinate growth habit and small, hot fruit borne in an erect position; the accession used in these studies was obtained in 1981 from the late A. Hugh Dempsey, Univ. of Georgia, Georgia Experiment Station, Experiment, Ga. ‘Keystone Resistant Giant’ is a popular bell pepper that is susceptible to bentazon injury. Except for the reciprocal of the F₂ cross, all plants selected for tests of the progeny populations contained ‘Santaka’ cytoplasm.

Greenhouse test. Seeds of the parental, F₁, F₂, and backcross populations of the ‘Santaka’ × ‘Keystone Resistant Giant’ cross were germinated in vermiculite, and newly emerged seedlings were transplanted in 400-ml styrofoam pots containing a commercial sphagnum peat–vermiculite mix. The experimental design was a randomized complete block with four replications, each containing 310 single-plant plots. Each replicate contained 30 plants of each of the parents, 20 plants of each of the F₁, and reciprocal F₁ populations, and 70 plants of each backcross and F₂ population. Ten plants of each population of each replicate were designated as untreated controls. All plants were fertilized weekly with a complete nutrient solution. The greenhouse was maintained between 24 and 32C.

Bentazon was applied 25 days after transplanting at a rate of 4.5 kg·ha⁻¹ with a laboratory sprayer that delivered a spray

Received for publication 18 Sept. 1989. We acknowledge the assistance of N.L. Kelly, R.B. Cuthbert, H., and F.P. Maguire, agricultural research technicians. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

*Research Geneticist.
†Research Agronomist.
Fig. 1. Examples of effects of bentazon (4.5 kg·ha⁻¹; 2 weeks after application) on greenhouse-grown plants of the susceptible ‘Keystone Resistant Giant’ (left), the tolerant ‘Santaka’ (right), and the tolerant F₁ of ‘Keystone Resistant Giant’ × ‘Santaka’ (center). The leaves of the susceptible plant are severely damaged and only minimal damage is evident on the leaves of the tolerant plants.

Field test. The parental and reciprocal F₁ populations of the ‘Santaka’ × ‘Keystone Resistant Giant’ cross were seeded in the greenhouse on 28 Mar. and the plants were transplanted to the field on 10 May. The experimental design was a randomized complete block with four replications, each containing 12 plots. Each replicate contained four plots of each of the parental populations and two plots of each of the reciprocal F₁ populations. Two of the four parental population plots in each replicate were designated as untreated controls. Each plot consisted of a single row of 10 plants spaced 76 cm apart on beds 1 m apart.

Each treated plot received four bentazon applications. The herbicide was applied with a tractor-mounted sprayer as follows (in kg·ha⁻¹): 16 June, 4.5; 30 June, 4.5; 11 July, 6.75; and 27 July, 9.0. The sprayer delivered a spray volume of 187 liters·ha⁻¹; a crop oil concentrate was included at 0.0125% of the spray volume. Each plant was rated on 23 June, 5 and 15 July, and 2 Aug. using the herbicide injury scale (0-10) described above.

Results and Discussion

General. The procedures used to evaluate pepper plants for tolerance to bentazon were rapid and reliable. The major lesson learned was that care needs to be exercised to select uniform-sized plants for testing; poorly developed or weak seedlings of tolerant lines can be severely damaged, particularly under greenhouse conditions, by high dosages of bentazon and easily misclassified. Plant growth in one replicate of the greenhouse test was uneven, probably because of an error in fertilizer application. Because the three remaining undamaged replications contained adequate population sizes for the type of analysis planned, the data from the damaged replicate were discarded. Analyses of the injury ratings of plants in the greenhouse test indicated that the responses at 1 and 2 weeks were similar. Consequently, only data for the first week are presented. Preliminary analyses revealed no significant differences between replications for either the greenhouse test or the field test. As a result, replications were combined for all analyses.

Greenhouse test. The reactions of the parent lines to the 4.5-kg bentazon/ha treatment were as expected (Fig. 1). ‘Keystone Resistant Giant’ plants exhibited severe injury, a 28% reduction in shoot height and a 54% reduction in shoot weight (Table 1). ‘Santaka’ plants exhibited a high level of tolerance, but they were not immune; the leaves exhibited slight to moderate injury, shoot height was reduced 8.7%, and shoot dry weight was reduced 17%. Comparison of the relative values of the injury rating, shoot height, and shoot dry weight means of the parental and progeny populations indicates that bentazon tolerance is inherited as a dominant trait. The comparative frequency distributions of reactions (injury ratings) of the plants in these populations to bentazon also indicate that the trait is inherited in a dominant manner (Fig. 2).

Segregation for bentazon tolerance in the progeny generations indicates that the bentazon tolerance in ‘Santaka’ is conditioned by a single dominant gene (Table 2). All but one of the 30 F₁ plants exhibited high levels of tolerance, with an injury rating of 0 or 1 (no obvious injury) and a shoot height and dry weight comparable to the control. The exceptions were two plants with injury ratings of 3 and 5, but these were not significantly different from the control. The results are consistent with the hypothesis of a single dominant gene for bentazon tolerance in ‘Santaka’.

Table 1. Injury rating, shoot height, and shoot dry weight of bentazon-treated plants of the parental, F₁, F₂, and backcross populations of the cross ‘Santaka’ × ‘Keystone Resistant Giant’ (greenhouse test).”

Test population	No. plants	Injury ratinga (%)	Shoot ht (% control)	Shoot dry wt (% control)
Santaka (S)	60	2.00 ± 0.17	91.3 ± 1.3	82.9 ± 2.5
Keystone Resistant Giant (K)	60	7.25 ± 0.22	72.4 ± 2.6	46.0 ± 3.7
F₁ (S × K)	30	2.93 ± 0.16	85.6 ± 2.0	80.8 ± 3.8
F₁ (K × S)	30	3.83 ± 0.34	81.3 ± 2.7	70.7 ± 4.7
F₂ (S × K)	179	3.55 ± 0.12	80.6 ± 1.1	67.4 ± 1.7
BC-S [S × F₁ (S × K)]	180	2.54 ± 0.06	88.9 ± 1.0	81.2 ± 1.2
BC-K [F₁ (S × K) × K]	179	4.89 ± 0.16	76.6 ± 1.3	57.5 ± 1.9

*Mean ± SE.

Each plant rated on a scale of 0 to 10; 0 = no obvious injury and 10 = dead plant.
Fig. 2. Comparative frequency distributions of reactions (O = no injury; 10 = dead plant) of greenhouse-grown plants from the parental, F₁, F₂, and backcross populations of the cross ‘Santaka’ × ‘Keystone Resistant Giant’ to a single 4.5-kg·ha⁻¹ application of bentazon.

('Santaka' × 'Keystone Resistant Giant') plants and all but three of the 180 F₁ × 'Santaka' backcross plants were of the expected tolerant phenotype. The F₂ segregated three tolerant : one susceptible and the F₁ × 'Keystone Resistant Giant' backcross segregated one tolerant : one susceptible.

Comparison of the two F₁ populations suggests possible cytoplasmic involvement in the expression of the bentazon tolerance gene in ‘Santaka’. While only one of the 30 F₁ plants with ‘Santaka’ cytoplasm was rated as susceptible, eight of the 30 F₁ plants with ‘Keystone Resistant Giant’ cytoplasm were rated susceptible (Table 2). Comparison of the injury rating, shoot height, and shoot dry weight means also suggests that the F₁ with ‘Santaka’ cytoplasm is more tolerant than the F₁ with ‘Keystone Resistant Giant’ cytoplasm (Table 1). However, comparison of the frequency distributions for the two F₁ populations does not illustrate a cytoplasmic effect (Fig. 2); the distributions of the tolerant plants (toxicity score < 4) in both populations are similar. A likely explanation for the unexpected “bimodal” distribution observed in the F₁ (‘Keystone Resistant Giant × ‘Santaka’) population is that we did not select uniform plants for testing and that genetically tolerant but weak plants were injured by the bentazon treatment and subsequently misclassified.

Field test. The results of this test demonstrate clearly that ‘Santaka’ is highly tolerant to bentazon under field conditions (Fig. 3). Not only did this cultivar not suffer any serious injury...
as a result of the initial 4.5-kg·ha⁻¹ application (four times the rate recommended for most applications), but it did not sustain serious injury as a result of additional sequential applications of 4.5, 6.75, and 9.0 kg·ha⁻¹. The susceptible ‘Keystone Resistant Giant’ suffered severe injury in all instances.

Both of the F₁ hybrid populations exhibited a high level of tolerance to each of the four sequential bentazon applications. This observation indicates that the heterozygous condition at the locus for the gene conditioning bentazon tolerance is sufficient to condition a high level of tolerance. Thus, the production of bentazon-tolerant hybrid pepper cultivars should be a readily achievable plant breeding objective. This goal should be quickly achieved by using a backcross breeding procedure to incorporate the dominant bentazon tolerance gene into just one of the inbred parental lines.

The frequency distributions of reactions of field-grown plants from the F₁ hybrid populations to sequential applications of bentazon provide strong evidence that cytoplasm does not play a significant role in the expression of the bentazon tolerance gene (Fig. 3). The frequency distributions for the F₁ population with ‘Santaka’ cytoplasm are similar to the distributions for the F₁ populations with ‘Keystone Resistant Giant’ germplasm. This finding means that plant breeders and hybrid seed producers can use bentazon-tolerant breeding lines as either seed or pollen parents without fear of losing some of the tolerance.

Table 2. Segregation for bentazon tolerance in parental, F₁, F₂, and backcross populations of the cross ‘Santaka’ × ‘Keystone Resistant Giant’ (greenhouse test).

Test population	No. plants in classes	Expected ratios (T:S)	Chi square	Probability	
	Tolerant¹	Susceptible²			
Santaka (S)	60	0	All T	---	---
Keystone Resistant Giant (K)	1	59	All S	---	---
F₁ (S × K)	29	1	All T	---	---
F₁ (K × S)	22	8	All T	---	---
F₂ (S × K)	136	43	3:1	0.09	0.76
BC-S [S × F₁ (S × K)]	177	3	All T	---	---
BC-K [F₁ (S × K) × K]	84	95	1:1	0.68	0.41

¹ Injury rating ≤ 4.
² Injury rating ≥ 5.
³ T = tolerant; S = susceptible.

Conclusions

The results of the present study indicate that a single, dominant gene conditions the high level of tolerance in the pepper cultivar Santaka to the herbicide bentazon. We propose that this gene be designated Bentazon tolerance and symbolized Bzt. The ease and reliability of evaluating plants for bentazon tolerance and the availability of a simply inherited source of tolerance makes bentazon tolerance a viable objective in pepper breeding programs. The objective should be readily obtainable by the application of classical genetics and plant breeding methodologies.

Literature Cited

Baltazar, A. M., T. J. Monaco, and D. M. Peele. 1984. Bentazon selectivity in hot pepper (Capsicum chinense) and sweet pepper (Capsicum annuum). Weed Sci. 32:243–246.

Faulkner, J. S. 1982. Breeding herbicide-tolerant crop cultivars by conventional methods, p. 235–256. In: H. M. LaBaron and J. Gressel (eds.). Herbicide resistance in plants. Wiley, New York.

Harrison, H. F., Jr., and R. L. Fery. 1989. Assessment of bentazon tolerance in pepper (Capsicum sp.). Weed Tech. 3:307–312.

Machado, V. S., S. C. Phatak, and I. L. Nonnecke. 1982. Inheritance of tolerance of the tomato (Lycopersicon esculentum Mill.) to metribuzin herbicide. Euphytica 31:129-138.