Mortality Factors in Severe Head Injury (SHI) at the Neurosurgical Intensive Care of the University Hospital Center of FANN (Dakar-Senegal)

Coulibaly Théodore Habib Maxime1*, Dramé Ahmadou Ibrahim1, Timbiné Kalba2, Dama Mahamadou2

1Neurosurgical Intensive, Care of the University, Hospital Center of FANN (Dakar-Senegal)
2Neurosurgical Intensive, Care of the Hospital of Mali

DOi: 10.36347/sasjs.2020.v06i12.003 | Received: 29.11.2020 | Accepted: 12.12.2020 | Published: 18.12.2020

*Corresponding author: Coulibaly Théodore Habib Maxime

Abstract

Severe head injury is a major public health problem. About half of the deaths from traumatic causes are due to head trauma. The essential goal of early treatment is to prevent and/or limit the occurrence of secondary cerebral aggression factors of systemic origin. In developing countries, difficulties in accessing emergency diagnostic means and the availability of suitable drugs pose a problem of care. The aim of this study was to determine the factors of death of severe head injuries. This is a retrospective, descriptive and analytical study over a period of 5 years carried out in the neurosurgical intensive care unit of the UHC of FANN. It concerned all patients aged 15 and over received for SHI. The 15-44 age group was the most represented with a predominance of the male gender. Road accidents were the predominant causes followed by falls. In pre-hospitalization, more than half of the patients had received no treatment. Hemorrhagic contusion in the brain was the most common lesion seen on computed tomography. In the majority of cases was isolated SHI. In rare cases, lesions of the thorax and pelvis were associated. Factors correlated with death were: age, arterial hypotension, hypoxia and hypernatremia.

Keywords: SHI, arterial hypotension, hypoxia, hypernatremia, road traffic accident.

Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

A traumatic head injury is the consequence of accident (trauma) on the cephalic extremity. It’s serious if the Glasgow score ≤ 8 during the treatment. The severe traumatic brain injury (TBI) is a major cause of death and invalidity of young adult. If he is sometimes isolated, it’s most often part of a polytraumatism. The causes are still dominated by road accidents, but the falls of old people also take a significant place. It’s specificity in rapport to affected extra brain expresses itself by its great responsibility in the death causes in the polytraumatic person responsible of 68% of deaths [1-3]. The objective of this study was to identify the factors responsible of the mortality in severe traumatic brain injury in order to improve their taking care.

MATERIAL AND METHODS

It’s a retrospective study, descriptive and analytic exhibited on a period of 50 months (January 1st 2018 to December 31st 2013) and realized at the unity of the reanimation of neuron chirurgical service of the UHC of FANN. It concerned all adult patients (age>15 years) admitted to intensive care for coma due to severe traumatic brain injury isolated or associated to other traumatic injuries regardless of sex and trauma mechanism during the period of our study. Were not included in our study all adult patients admitted to intensive care for other causes of coma and patients whose files were not usable. Our data were collected on the basis of hospitalization records, treatment and monitoring files. The variables measured were: socio-demographic data, clinical and para-clinical data, causes of trauma, means of transport, what to do and the factors that caused the death. The test of Chi2 and the test of FISHER were used to analyze the conditions of applicability.

RESULTS

Of the 265 traumatic brain injury admitted to intensive care during the study period 106 were severe including 95 men (89, 6%) and 11 women (10,4%). The majority of our patients were between 15 and 44 years old (78, 30%). More than the majority of patients were from Dakar region (51, 90%) followed by regions (47, 16%) and one patient was from the Gambia. The majority of patients were admitted following an public road accident (61, 30%) following by floor fall (18%)
and bawl (10, 30%). In pre-hospital, non-medical transport was the most used mode of transport (57,53%) (Table -1).

Table-1: Distribution of patients by mode of transport

Transport	Effective(n)	Percentage (%)
Medical ambulance	31	29,26
SAMU	14	13,21
Firefighter	28	26,41
Non-medical ambulance	16	15,09
Taxi	04	03,77
Total	106	100,00

Neurological examination found initial loss consciousness in 52 patients (49, 10%), a seizure in 11 patients (10, 40%), and a papillary abnormality (37, 65%). The deadline for taking charge was not specified in 77, 40 (Table-2).

Table-2: Distribution of patients by the deadline of taking charge

Deadline	Effective (n)	Percentage (%)
0-2H	13	12,30
3-5H	09	08,50
6-12	02	01,80
Unspecified	82	77,40
Total	106	100,00

For pre-hospital care, oxygen therapy was performed in 42, 90% of patients, including 18, 90% with hight concentration mask and 23, 60% with orotracheal intubation. Diazepam was the most commonly used hypnotic for Orotracheal intubation (32%) followed by thiopental (24%). The most used combination for sedation was diazepam and fentanyl. Half of the patients were almost admitted within the first six hours (48, 11%). More than half of the patients had a Glasgow score between 7 – 8 (64 cases). Arterial hypotension was observed in 31,10% of patients. Hypoxia with an SPO2 less than 90% was observed in 61,32% of patients. Anemia with a hemoglobin level below 7g/dl was observed in 35,84%. In biochemistry, hyponatremia was the most observed ionic disorder (12,30%). Hyperglycemia was observed in 28,30% of patients. Only one patient had received a blood gas. Brain CT was performed in 90% of patients. Numerous lesions were observed: subdural hematoma (24 cases), extradural hematoma (13 cases), hemorrhagic contusion of the brain (31 cases), intra parenchymal hemorrhage (8 cases), commitments (15 cases), diffuse cerebral edema (8 cases), diffuse axonal lesion (4 cases) and cranial cerebral wounds. Other lesions were associated with severe head injury including the thorax (5 cases), pelvis (5 cases) and spine (2 cases). For hospital care, orotrachel intubation was performed in all admitted non-intubated patients. Thiopental was the most used drug for orotracheal intubation (22 cases) followed by diazepam and propofol in the same proportion (19 cases). Mannitol was administrated in 31,10% of patients and transfusion performed in 29,20% of patients. The surgical procedure was performed (33%) within an unspecified time frame (78,30%). A mechanical thromoprophylaxis was performed (15,10%). During the hospitalization, many secondary brain attacks of systemic origin had occurred of which the most observed were hypotension (49,05%) and hyperthermia (47,16%) (Table-3).

Table-3: Distribution according secondary brain attacks of systemic origin during hospitalization

Secondary brain attacks of systemic origin	Effective (n)	Percentage (%)
Hypotension	52	49,05
Hypertension	16	15,09
Hypoxia	25	23,58
Hyperglycemia	38	35,84
Hyponatremia	15	14,15
Hyperthermia	25	23,58
Anemia	50	47,16
Amines	38	35,84

Amines were used in 21,70% of patients. The most common combination used for sedation was diazepam and fentanyl. Pneumopathia acquired under mechanical ventilation was the most frequent infectious complication (15,09%) with two isolated germs: Klebsiella pneumonea and Pseudomonas aeruginosa.
The mean duration of sedation was 11.77 days with extremes ranging from one to 13 days. The average duration of orotracheal intubation was 6.62 days with extremes ranging from one to 18 days. The tracheotomy was performed in 9.43 of patients and this after 13 days of hospitalization. More than half of the patients died (69.80%) and the majority of deaths occurred after the 48th hour (71.60%).

Mortality according to hypernatremia

Death is correlated with hypernatremia with a statistically significant difference (p=0.0229) (Table 4).

Hypernatremia	Death	P-value
Yes	74	0.0229
No	32	

Mortality according to age

Death is correlated with age with a statistically significant difference (p=0.0009) (Table 5).

Age	Death	P-value
YES		
15-44 years	54	0.0009
45-59 years	14	
> 60 years	6	
NO	32	

Mortality based on arterial hypotension and hypoxia

All the patients with board of arterial hypotension and hypoxia died.

DISCUSSION

In the series of our patients, the majority of our patients were young subjects with an age between 15-44 years (89.6%). Our result is close to certain series [4, 5] which had reported that traumatic brain injury mainly affected young subjects with ages varying between 15-25 years.

This high frequency of SHI in young subjects can be explained by the fact that they were more exposed to road accidents. In our study, the male gender was mostly affected (89.6%). This could be explained by the fact that men perform more activities that expose them to head trauma than women. Several authors [4, 6, 7], had reported this male predominance. More than half of our patients came from Dakar (51.90%). In our study, road accidents were the predominant cause of serious head injuries (61.30%) followed by falls with 18%. Our results were close to those of Tinet et al., [8] who observed that 60% of SHI were due to road accidents and 33% were due to falls. Same observation with Aguèmon AR [9] with 86%. Unlike Servadei et al., [10], falls and aggressions were more responsible for SHI with 72% to 47% respectively. The increase in accidents on public roads is due to poor condition of vehicles and certain roads, excessive speed and also overload. In our study the neurological examination focused on the Glasgow score, the state of the pupils and the occurrence of initial loss of consciousness. In literature [11] the initial examination showed not only the Glasgow score (GCS) but also the mean arterial pressure (MAP) and the arterial saturation in O2. This observation was different from ours. Papillary abnormalities associated with initial loss of consciousness were observed in 37.65% and 49.10, respectively. Our results were different from those of MALEOMBHO JP [12] in Ivory Coast, which found 50% papillary anomaly. Convulsions and vomiting were observed in 10.40% and 18.90% respectively. In the literature [13, 14] we found 85.9% and 90% respectively of cases of convulsion. These results exceeded by far our results. Our results were not comparable to those of Y. BANDE [15] in Burkina Faso which had found 50% of signs of intracranial hypertension in particular nausea, vomiting and headache. In the majority of cases, the time to pre-hospital taking charge was not specified (77.40%). Orotracheal intubation was performed in 23.60% and 18.90 had received oxygen therapy with a mask. 84% of the intubated patients were sedated. The effects of orotracheal intubation with mechanical ventilation on the outcome of patients with SHI had been evaluated in a study of 600 patients [4]. The authors had observed over successive periods an increase in the proportion of patients intubated, ventilated and sedated for transfer, a reduction in the frequency of hypoxia on arrival and an improvement in the outcome of the patients [14, 5].

The first objective of pre-hospital intensive care is to fight against hypoxemia and hypercapnia. Thus, any traumatic brain injury with a Glasgow score less than or equal to 8 must benefit from endotracheal intubation and controlled ventilation with continuous monitoring of arterial saturation in O2 and PETCO2 [16]. In our study, the drugs used for orotracheal intubation were the combination of diazepam + suxamethonium and thiopental + suxamethonium with respectively 32% and 24%. According to some authors [16] for anesthetic induction in these patients at risk (full stomach, unknown history, sometimes precarious hemodynamic state), etomidate is the most suitable hypnotic and to date suxamethonium remains the reference curare. Maintenance of sedation is carried out with an morphine hypnotic association (fentanyl). More than half of our patients (57.53%) were admitted to hospital by unsafe transport. This finding was close to that of Cissé N [17] who found 69.7%. Medical transports have greatly contributed to the speed of diagnosis and therefore to the quality of treatment of SHI [6]. In our study the SAMU, which is a structure specializing in the transport of these cases, intervened...
intubation was systematically performed on admission in all our patients who were not intubated and then they were put on controlled ventilation. This finding was comparable to that in the literature [15, 26] with 65.5% and 60% of cases of Otrachkeal intubation on admission, respectively, in patients with a Glasgow score < 8. Some studies have shown the benefit of early tracheal intubation in the prevention of morbidity associated with SHI [27]. Thiopental and succinylcholine were the most widely used drugs for Otrachkeal intubation, at 27.20%. According to several studies [17, 5] thiopental was the most used drug at induction in the majority of cases. Our result is super imposable on these results. Moreover, according to Audibert G and al [28], the choice can be made between thiopental or etomidate depending on the hemodynamic state of the patient. In severe TBI, the combination of etomidate succinylcholine is recommended [24]. Arterial hypotension markedly worsens cerebral filing with 0.9% saline and hydroxyl-ethyl-starch [16]. Sedation was assured in 38.68% of patients by diazepam and fentanyl, the mean duration of this sedation was 11.77 days with extremes of one to 13 days. The combination of a hypnotic and morphine was the most frequently used technique. The high use of the combination diazepam-fentanyl, would be due to its low cost and its accessibility. The transfusion was performed in 29.20% of our patients within the first 24 hours. According to the literature [29, 30], the clan transfusion threshold (7 to 8g /dl) probably needs to be raised in certain patients with severe cerebral aggression. A recent review of clinical and experimental studies [30] carried out in neuro-intensive care patients had shown that anemia up to 7g/dl was well tolerated without a history, that the transfusion worsened the prognosis in terms of mortality, disability and length of stay. Only 15.10% of our patients had received mechanical thrombophrophylaxis. Mannitol was used in 31.10% of patients. Our result was different from some studies [31, 32] in which mannitol was used in all patients. Several studies had shown that mannitol was the most classic means of obtaining cerebral relaxation [24, 25]. Until recent years, it was clan to recommend the infusion of low doses of mannitol (0.5g/kg). The surgical procedure was carried out in 33% of patients and this within an unspecified time frame in the majority of cases, i.e. 78.30%. The evacuation of hematoma was the most performed gesture. Our result was different from those of ETORI P [18] in 1999 at the university hospital center of Point-G and NABOULOUM [23] in Burkina Faso which found respectively 3.70% and 17.5% of performing a surgical procedure. Arterial hypotension was the most observed secondary brain attacks of systemic origin (49.50%) followed by hyperthermia (47.16%). Hypotension and hypoxia were the most common, respectively 28.6% of cases in the study by Cissé N. [24]. These results were different from ours. Both secondary brain attacks of systemic origin (hypotension and hypoxia) are particularly common. However, several studies had
emphasized their importance [25] and had reported high mortality in patients with both. Secondary brain attacks of systemic origin management must be a priority in pre-hospital care. Secondary brain attacks of systemic origin are decisive in the survival prognosis of patients. Among the complications encountered were glycemic disturbances, hemodynamic instability and septic shock which would probably be due to the registered pneumonia. Hyperglycemia should also be sought, blood glucose greater than 1.8g/l must be treated, with targets of 1.08 to 1.44g/l, hyperglycemia leads to cerebral ischemia [33]. Klebsiella pneumoniae and pseudomonas aeruginosa were the germs found in the same proportion, 50%. However, no study had made case of germs responsible for infectious complications. Amines were used in 21.70% of patients and the most used was adrenaline. The average duration Orotracheal intubation was 6,62 days with extremes ranging from one to 18 days. Our result was close to that of Cissé N. [17] in whom the mean duration of the Orotracheal intubation was to allow very rapid weaning from ventilator. More than half of the patients died either 69,80% and more than half of the deaths occurred after 48 hours either 71,60%. In our study, all of the deceased patients presented with a picture of arterial hypotension and hypoxia. Death was correlated with age with a statistically significant difference (p=0,0009). The part of hypernatremia in mortality is explained by the severity of the lesions. Cooke and al [36] ha thus reported that the risk of mortality increased significantly if the time to treatment was longer than 2 hours (p=0,028). Boyd [37] had insisted on the relationship between mortality and associated lesions.

CONCLUSION

Severe head injury is major public health problem. About half of the deaths from traumatic causes are due to head trauma. The essential aim of treatment is to prevent and/or limit the occurrence of secondary cerebral aggression factors of system origin. In recent years, the better understanding of the effect of therapeutics and the appearance of new agents have greatly simplified management in the majority of situations. This apparent ease should not make us lose sight of the very high mortality of severe head injury.

REFERENCES

1. Chesnut RM, Marshall LF. Management of severe head injury. In: Rapper AA, ed. Neurological and neurosurgical intensive care. New York: Raven Press, 1993; 203-46.
2. Maas A. Pathophysiology, monitoring and treatment of severe head injury. In: Vincent JL., ed. Yearbook of intensive care and emergency medicine (Springer Verlag, Brussels), 1993; 564-78.
3. Mathé JP, Richard I, Rome J. (2005) Public health and severe head injury. Epidemiological and financial aspects, healthcare structures and channels. Ann Fr Anesth Réanim. (24), 688-694.
4. National Agency for Accreditation and health Evaluation. Management of severe head injury in the early phase. Ann Fr Anesth Réanim. 1999; (18), 1-172.
5. Sharma D, Monica B, Vavilala S. Preoperative management of adult traumatic brain injury. Anesthesiology Clin. 2012; (30), 333-346.
6. Alliez JR, Balan C, Leone M, Kaya JM, Reynier Y, Alliez B. Post-traumatic intracranial hematomas in the acute phase. Encycl. Méd. Chir (Elsevier Masson SAS, Paris), Neurologie. 2008; (17), 17-585-A-20.
7. Alliez JR, Hilal N, Kaya JM, Leone M, Reynier Y, Alliez B. Extraduraux intracranial hematomas: about 100 recent cases. Journal Neurochir. 2005; (54), 464-70.
8. Tiet L, Haushers E, Thiocoipe M, Garros B, Maurette P, Castel JP. The epidemiology of head trauma in Aquitaine, 1986: a community based study of hospital admissions and deaths. Int J epidemiol. 1990; (19), 133-40.
9. Aguemon AR, Padonou JL, Yevegnon SR, Hounkpe, Madougou S, Djagnikpo AK, Atehade D. Severe head injury in intensive care in Benin in 1998-2002. Ann Fr Anesth Réanim. 2005; 24(1): 36-9.
10. Servadei F. (1997) Prognostic factors in severely head injured adult patients with acute subdural hematomas. Acta Neurochir. (139), 279-85.
11. Rouxel JPM, Tazarourte K, Le Moigno S, Ract, Vigue B. Pre-hospital care of head trauma. Ann Fr Anesth Réanim. 2004; (23): 6-14.
12. Maleombho JP. Severe crania-cerebral trauma: medico-surgical aspect. Thesis : Méd : University of Abidjan. 2005.
13. Coulibaly M. Management of cranial trauma in the multi-purpose intensive care unit of the UHC of Kati. Thesis: Med : University of Bamako. 2010.
14. Hermo J. Head trauma in the Moroccan environment. Ann. Med. Chir. 1975; 6(1- 2), 39-77.
15. Bande Y. Management of cranial trauma in the multi-purpose intensive care unit of the UHC of Bobo-Dioulasso. Thesis: Med: University of Bobo-Dioulasso. 2008.
16. Tentillier E, Ammirati C. Pre-hospital care of trauma head injury. Ann Fr Anesth Réanim. 2000; (19): 275-281.
17. Cissé N. Pre-operative management of head trauma in 81cases in the UHC of FANN. End of cycle memory: Med : University Cheik Anta Diop of Dakar. 2014.
18. Etori P. Management of cranial trauma in the multi-purpose intensive care unit of the UHC of Point G. Thesis: Med : University of Bamako. 1999.
19. Sieyamjdi C. Investigation of 92 cases of severe head trauma recruited from the emergency surgical and intensive care units of the UHC.
Gabriel Touré of Bamako. Thesis: Méd : University of Bamako. 2007.
20. Traore M. Contribution to the study of trauma head injury in the UHC Gabriel Touré of Bamako. Thesis: Méd : University of Bamako. 2003.
21. Hind EH. Secondary cerebral attacks of systemic origin in head trauma. Thesis: Méd : Medicine and pharmacy faculty of Casablanca. 2006; (140).
22. Bruder N, Gouvitsos F. Vascular filling in the first 24 hours after severe head injury. Ann Fr Anesth Réanim. 2000; (19), 316-325.
23. Naboutoum B. Trauma head injury aspects tomodensitométrie in the CHUSS of Bobo Dioulasso. Thesis: Med: University of Bobo Dioulasso. 2008.
24. Audibert G, Steinmann G, Charpentier C, Mertes PM. Management of the patient with acute intracranial hypertension. Ann Fr Anesth Réanim. 2005; (24), 492-501.
25. Bruder N. Anesthesia and acute intracranial hypertension oncerebral edema. Anal Fr Anesth Réanim. 2003; (22), 226-34.
26. Berte O. Become of severe head trauma victims in intensive care in the UHC Gabriel Touré of Bamako. Thesis: Med: Université de Bamako. 2009.
27. Damas F, Hans P. Management of trauma severe head injury during the first 24 hours. What specific therapies. Ann Fr Anesth Réanim. 2000; 19(4): 329.
28. Barone FC, Feuerstein GZ, White RF. Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosc Biobehav Rev. 1997; (21), 31-44.
29. Bruder N, Ravussin P. Anesthesia in neurosurgery. Encycl Med Chir (Elsevier Masson SAS, Paris). 2005; (10), 36-613.
30. Mertes PM, Baumann A, Audiert G. Transfusion in neurosurgery. Encycl Med Chir (Elsevier Masson SAS, Paris). 2008; (15), 205-11.
31. Mendi J. Severe encephalic head trauma in the child. Thesis: Méd : University Cheik Anta Diop of Dakar. 2002.
32. Coriat P. Medico-surgical emergency : anesthesia in intensive care today. Ed Arnettes, Paris. 1990.
33. Lescot T, Abdennour L, Degos V, Boch AL, Puybasset L. Management of severe traumatic brain injury. Presse medicale (Paris, France: 1983). 2007;36(7-8):1117-26.
34. Koné M, Niang B, Wade K. Become of trauma head injury victims with a Glasgow less than 8, intubated and ventilated at the main hospital of Dakar. Ann Fr Anesth Réanim. 2004; (23), R190.
35. Toma K, DjibrilmA, Mouzou T, Sama H, Chobli M. Severe trauma head injury in university hospital center of Tokoin in Lomé (Togo) from March 1st to Augut 31st 2008. Journal of scientific research of the University of Lomé. 2011; 13:2.
36. Cooke RS, Mcnicholl BP, Byrnes DP. Use of the injury score in head injury. Pubme. 1995; (26), 339-400.
37. Boyd CR, Tolson MA, Copes WS. (1987). Evaluating trauma care: the triss method. J Traum. (27), 370-8.