Introduction

Obesity is a major and rising global health problem. Among others, it increases significantly the risk of cardiovascular disease and premature death [1]. A key mechanism explaining this association appears to be the release by adipocytes of the so-called adipokines, such as leptin and adiponectin [2], a family of mediators that influences body weight homeostasis, insulin resistance and inflammation, and eventually causes endothelial dysfunction and atherosclerosis [3]. In addition, external risk factors such as smoking often contribute to enhance the adverse effects of obesity on cardiovascular health [3].

Bariatric surgery (BS) results in significant and sustained weight loss in morbidly obese subjects with minor morbidity or mortality [4–6]. Previous studies indicate that systemic inflammation in obese subjects appears to be reduced after BS [4;7]. Notwithstanding, the inflammatory response is complex and includes the contribution of many different cells and mediators [8]. Network analysis allows a more comprehensive approach to complex biological systems [9] with the potential of unraveling novel interplays among apparently disconnected mediators and clinical manifestations [10,11]. This research strategy has already proved to be useful to dissect the biological and environmental determinants of obesity [12] and smoking [13], as well as to

Abstract

Introduction: Obesity is associated with low-grade systemic inflammation. The “inflammome” is a network layout of the inflammatory pattern. The systemic inflammome of obesity has not been described as yet. We hypothesized that it can be significantly worsened by smoking and other comorbidities frequently associated with obesity, and ameliorated by bariatric surgery (BS). Besides, whether or not these changes are mirrored in the lungs is unknown, but obesity is often associated with pulmonary inflammation and bronchial hyperresponsiveness.

Objectives: We sought to: (1) describe the systemic inflammome of morbid obesity; (2) investigate the effects of sex, smoking, sleep apnea syndrome, metabolic syndrome and BS upon this systemic inflammome; and, (3) determine their interplay with pulmonary inflammation.

Methods: We studied 129 morbidly obese patients (96 females; age 46±12 years; body mass index [BMI], 46±6 kg/m²) before and one year after BS, and 20 healthy, never-smokers, (43±7 years), with normal BMI and spirometry.

Results: Before BS, compared with controls, all obese subjects displayed a strong and coordinated (inflammome) systemic inflammatory response (adiponectin, C-reactive protein, interleukin (IL)-8, IL-10, leptin, soluble tumor necrosis factor-receptor 1(sTNF-R1), and 8-isoprostane). This inflammome was not modified by sex, smoking, or coexistence of obstructive sleep apnea and/or metabolic syndrome. By contrast, it was significantly ameliorated, albeit not completely abolished, after BS. Finally, obese subjects had evidence of pulmonary inflammation (exhaled condensate) that also decreased after BS.

Conclusions: The systemic inflammome of morbid obesity is independent of sex, smoking status and/or comorbidities, it is significantly reduced by BS and mirrored in the lungs.
characterize the systemic inflammatory pattern (so-called, inflamma-
monic) associated with smoking and chronic obstructive pulmo-
nary disease (COPD) [6]. In this study we describe for the first
time the inflammation of morbid obese individuals and test the
hypothesis that it could be significantly worsened by smoking or
other comorbidities frequently associated to severe obesity, such as
the obstructive sleep apnea syndrome (OSAS) and the metabolic
syndrome (MS) and be ameliorated after BS. Besides, given that
obesity is often associated with pulmonary inflammation and
bronchial hyper-reactiveness [14–16], we also sought to inves-
tigate potential relationships between systemic and pulmonary
inflammation in the morbid obese, so that we also quantified a
number of inflammatory markers in the exhaled gas condensate in
morbid obese, both before and after BS.

Methods

For more information see Methods S1.

Study Design, Participants and Ethics

This was a prospective, observational study in which we
enrolled: (1) 129 obese individuals (96 females/33 males; age
46 ±12 years) with a body mass index (BMI) ≥40 kg/m² (or ≥
35 kg/m² in those with comorbidities) without major cardiovas-
cular and chronic obstructive airway diseases, candidates to BS;
and, (2) 20 healthy, normal weighted, sex- (16 females/4 males)
and age-matched (43±7 years) non-smokers with normal spirom-
etry, who served as controls. Obese participants were studied
before (mean, 8±4 weeks; median, 5 weeks) and one year (15±4
months; median, 13 months) after BS. The project was approved
by the Ethics Committee for Clinical Research (Comitè Etic
d’Investigació Clínica) of Hospital Clinic of Barcelona (2008/
4015) and all participants signed their written informed consent.

Measurements

The following measurements were obtained in all obese subjects
before and after BS. Forced spirometry, plethysmographic lung
volumes, arterial blood gases and the 6-minute walking test
(6MWT) were determined according to international recommen-
dations [17–19]. Reference values were those of Roca et al. [20–
22]. An apnea/hypopnea index (AHI) ≥15 events/h was consid-
ered indicative of OSAS [23].

Serum was obtained after overnight fasting by peripheral
venopuncture followed by centrifugation and stored at −80°C
until analysis. The serum concentration of adiponectin, C-reactive
protein (CRP), interleukin (IL)-8, IL-10, leptin, soluble tumor
necrosis factor-receptor 1 (sTNF-R1), and 8-isoprostane were
measured, as previously reported [24]. The serum concentra-
tion of C-reactive protein (CRP) were determined using an immuno-
turbidimetry method (Advia Chemistry, Siemens Tarrytown, NY,
USA) and those of leptin (Diagnostic Biochem Canada Inc.
Ontario, Canada), serum adiponectin, soluble tumor necrosis
factor-receptor 1 (sTNF-R1), interleukin (IL)-8, IL-10 and 8-
isoprostane by ELISA (US Biological Salem, MA, USA; IBL
international Hamburg, Germany; ANOGEN Ontario, Canada
and Cayman Chemical Company, Ann Arbor, MI, US, respec-
tively). All biomarkers were quantified in duplicate and their mean
values were used for analysis. In some individuals serum
biomarker concentrations were below the lower limit of quanti-
fication (LLQ). To avoid a down ward bias of biomarkers, a
nominal level of half of the LLQ value was used in the analysis in
individuals with values below the LLQ [25]. Exhaled breath
condensate samples were obtained using an EcoScreen condenser
(Jaeger, Würzburg, Germany) following international recommen-
dations [26-27] and the concentrations of IL-8, IL-10 and 8-
isoprostane were measured by ELISA (Cayman Chemical
Company, Ann Arbor, MI, US).

Forced spirometry and serum and exhaled biomarker concentra-
tions were determined in control participants only once.

Statistical Analysis

Results are described as mean ± standard deviation (SD),
median [interquartile range] [IQR] or absolute and relative
frequencies (%), as appropriate. Quantitative variables, were tested
for normality using a Kolgomorov-Smirnov test and parametric
(paired and unpaired t-test) and non-parametric (Wilcoxon and
Mann-Whitney tests) were used accordingly to compare quanti-
tative variables between patients and controls (at baseline) and
between patients before and after BS. Fisher’s exact test and
McNemar test were used for qualitative variables.

As described previously [8], we used the 95th (and 5th) percentile
value determined in controls as the upper (and lower) normal
levels, so biomarker concentrations beyond these threshold were
considered abnormal in obese subjects. Cross tabulations between
healthy and obese subjects, before and after BS and also in
different subsets of obese individuals according to sex, smoking
status and coexistence of OSAS and MS, were determined to
analyze biomarker alterations and their interactions. All statisti-
cal tests were two sided and a p value <0.05 was considered
significant. Due to the observational characteristics of this study
p values presented were nominal and not adjusted for multiplicity.
Data analysis was carried out with SPSS 20.0 (IBM Corporation).

Results

Characterization of Participants

Table 1 presents the main demographic and clinical charac-
teristics of participants. BMI, waist and waist-to-hip ratio were, as
compared to control, higher in obese subjects, but age and
proportion of females were similar in the two populations. Only 21
obese subjects were current smokers (≥10 pack-years). Most obese
subjects were non- (<10 pack-years) or former (>1 year after
cessation) smokers, and their level of dyspnea was mild-to-
moderate. Comorbidities were common in obese individuals,
especially OSAS (67%) and MS (78%). As shown in Table 2
obese, as compared to control participants, had reduced forced
spirometric and pulseoximetry values, although within normal
limits, along with diminished expiratory reserve volume (ERV)
and functional residual capacity (FRC) values. Mean PaO2 (range,
57-119 mmHg) was within normal limits and mean alveolar-
arterial PO2 difference (AaPO2) was abnormally enlarged (range,
0-51 mmHg). The former two values were more abnormal in
males than in females (Tables S1 and S2).

Systemic Inflammation

The mean concentration of most serum inflammatory biomar-
cers was significantly higher in obese than in control subjects,
except for adiponectin, which was lower (Table 2). Figure 1
presents the frequency distribution of the number of abnormal
serum biomarker values in obese individuals (>95th percentile
of controls or <5th percentile in the case of adiponectin) [8]. Not a
single obese subject had a normal battery of biomarkers and the
majority exhibited at least 5 or more abnormal biomarkers. We
observed that BMI was significantly associated to the serum
consensations of CRP (Rho, 0.31; p<0.001) and leptin (Rho,
0.41; p<0.001) values, whereas descriptors of central adiposity, i.e.
wast circumference, were associated to sTNF-R1 (Rho, 0.25; p<
0.01) and adiponectin (Rho, -0.18; p<0.05) levels.
The systemic inflammation is a network representation (Figure 2) of the prevalence and relationships between the different inflammatory markers determined in serum [8;28]. In obese subjects, all nodes were significantly larger than in control participants (indicating a higher prevalence of abnormal values) and there were many significant interactions among the different inflammatory biomarkers determined (Figure 2). By contrast, in control subjects, nodes were by definition small, many of them were not linked to the others and, in any case, links were few and thin, indicating the virtual absence of systemic inflammation.

We explored the effects of a number of factors that can potentially influence the systemic inflammome of morbid obesity, including sex, smoking status, and coexistence of OSAS or MS [24;29–31]. By and large, differences between males and females (Figure S1), current or former and non-smokers (Figure S2), and/or or participants with or without OSAS and/or MS (Figures S3 and S4, respectively) were modest or absent, indicating that morbid obesity by itself was the main driving force of the systemic inflammome in these patients. Nevertheless, some (small) changes deserve comment.

Pulmonary Inflammation

A large proportion of obese subjects had abnormal levels (>95th percentile of controls) of exhaled IL-8 (56%) and IL-10 (13%) so that their mean values were significantly higher in obese subjects (Table 2). On the other hand, albeit exhaled 8-isoprostane was within the normal range in all obese individuals, mean values were significantly lower (Table 2). We did not observe significant differences in any of these exhaled inflammatory markers according to sex, smoking status and/or presence of OSAS and/or MS. The AHI and the concentration of exhaled breath biomarkers were not significantly related. By contrast, we observed a positive correlation between the concentration of exhaled IL-8 and serum sTNF-R1 (Rho, 0.24; p<0.01) and between exhaled IL-8 and serum 8-isoprostane (Rho, 0.27; p<0.01) as well.

Findings One Year after Bariatric Surgery

Sleeve gastrectomy was performed in 60 (53%) and Roux-en-Y gastric bypass in 61 (47%) obese subjects. Ninety-one percent of obese subjects (n = 118) had an excess weight loss ≥50% (75±18%), a marker of BS success [4].

Tables 1 and 2 show that most clinical and functional outcomes improved and most inflammatory markers were reduced after BS. All lung function tests improved significantly after BS but it should be noted that they were already within normal limits before surgery. It is of note that the 6MWT substantially increased and this was a novel post-operative finding in morbid obese.

The effects of BS upon systemic inflammation are illustrated in Figures 1 and 2. There was a dramatic downward shift of the frequency distribution of obese subjects with abnormal biomarkers with a marked shrinking of the systemic inflammome after BS, both in terms of node size and link width. Of note, however, that the 6MWT substantially increased and most inflammatory markers were reduced after BS (Table 2).

Discussion

This study describes, for the first time to our knowledge, the systemic inflammome associated with morbid obesity and shows that it is: (1) barely modified by sex, smoking status and/or

Table 1. Main demographic and clinical characteristics of control and obese participants (mean ± SD or n (%)).

	CONTROL SUBJECTS	OBESE SUBJECTS
	BEFORE BS	AFTER BS
Demographics		
Age, years	43±7	46±12
Female, %	83	74
Body mass index, kg/m²	22±3	23±6
Waist circumference, cm	80±8	130±14
Waist-to-hip ratio	0.84±0.09	0.93±0.09
Clinical features		
Non-Smokers, n (%)	20	75 (58)
Current smokers, n (%)	0	21 (16)
Tobacco, pack-years	0	34±32
Ex-smokers, n (%)	0	33±26
Tobacco, pack-years	0	35±24
Dyspnea level (mMRC)	0	1.2±0.8
Obstructive Sleep Apnea, n (%)	—	87 (67)
Apnea Hypopnea Index, events/h	—	60±34
Metabolic Syndrome, n (%)	0	100 (78)
Diabetes Mellitus type 2, n (%)	0	52 (40)
Hypertension, n (%)	0	77 (60)

Demographic and clinical characteristics of healthy and obese individuals, before and after bariatric surgery. NA: not applicable; * p-values for comparisons between controls individuals and obese subjects before bariatric surgery whereas † indicate p-values for comparisons between obese subjects before and after bariatric surgery. doi:10.1371/journal.pone.0107859.0001
Previous Studies

Several previous studies have shown that severe obesity is associated with systemic inflammation that is considerably reduced after BS [4;7]. Our findings confirm and expand these previous results by providing an integrated network approach of the interplay among the different inflammatory markers (inflammome) as well as the effects of potential confounders, such as sex, smoking, OSAS and/or MS, and BS. This approach has been used successfully in other diseases, such as COPD [8;32]. On the other hand, it is also worth noting that many previous papers have also investigated the effects of obesity on lung function [14–16;33], including a recent report by our group that used the multiple inert gases elimination technique (MIGET) to investigate the pulmonary and non-pulmonary factors governing gas exchange in a small subset of females [24].

Interpretation of Findings

Several observations of our study deserve specific discussion. First, our results confirm [3;34–35] that morbid obesity is associated with a notable systemic inflammation component (Figure 1), here illustrated for the first time as an inflammome (Figure 2). Adipose tissue is an active endocrine organ capable of producing cytokines and hormones that regulate metabolism and immune responses [36]. Hotamisligil et al. coined the term “meta-inflammation” (metabolically triggered inflammation) to describe a condition triggered by nutrients that engages a similar set of

Table 2. Lung function and inflammatory markers in control and obese participants, before and after bariatric surgery (mean ± SD or median [interquartile range]).

CONTROL SUBJECTS	OBESE PATIENTS				
	P Value *	BEFORE BS	P Value †	AFTER BS	
Lung function					
FVC,% pred	103±13	0.003	91±13	<.001	103±13
FEV1,% pred	102±13	0.02	94±15	<.001	104±14
FEV1/FVC,%	71±4	0.008	82±5	<.001	79±9
FRC,% pred	ND	---	73±13	<.001	113±25
ERV,% pred	ND	---	34±23	<.001	106±36
TLC,% pred	ND	---	92±10	<.001	106±13
RV/TLC,%	ND	---	35±7	0.14	36±8
SGaw, s-1·cmH2O-1	ND	---	0.11±0.04	0.002	0.13±0.10
PaO2, mmHg	ND	---	82±12	<.001	93±11
PaCO2, mmHg	ND	---	37±4	<.001	39±5
AaPO2, mmHg	ND	---	23±10	<.001	9±11
SaO2,%	98±1	0.046	97±3	0.36	97±7
6MWT, m	ND	---	471±75	<.001	546±76

Serum markers

Leucocytes, 10⁹/l	6,215 [5490–7682]	<.001	8,010 [6,825–9,395]	<.001	6,700 [5,600–7,855]
C-Reactive Protein, mg/l	0.40 [0.16–0.70]	<.001	7.80 [4.30–14.50]	<.001	6.60 [3.02–1.45]
Fibrinogen, mg/dl	320 [280–350]	<.001	420 [368–480]	<.001	370 [333–438]
Leptin, ng/ml	13.60 [5.66–18.93]	<.001	63.00 [42.85–101.35]	<.001	15.00 [6.70–28.85]
Adiponectin, μg/ml	22.66 [18.70–25.92]	<.001	9.58 [4.88–15.85]	<.001	17.12 [9.68–22.55]
sTNF-R1, ng/ml	0.24 [0.07–0.43]	<.001	1.50 [1.01–2.24]	<.001	0.89 [0.34–1.61]
IL-8, pg/ml	4.00 [4.00–5.56]	0.019	9.22 [4.00–25.02]	0.012	4.00 [0.98–13.66]
IL-10, pg/ml	3.50 [3.50–148.54]	0.72	3.50 [3.50–16.59]	0.46	3.50 [3.50–11.45]
8-isoprostane, pg/ml	40.24 [23.90–58.50]	<.001	162.25 [108.30–211.90]	0.26	163.30 [93.27–213.36]

Exhaled condensate markers

Exhaled IL-8, pg/ml	0.60 [0.33–1.36]	<.001	4.77 [2.21–8.74]	0.019	3.83 [1.26–6.79]
Exhaled IL-10, pg/ml	4.71 [2.32–7.46]	<.013	8.84 [4.75–15.24]	0.004	6.13 [4.07–10.29]
Exhaled 8-isoprostane, pg/ml	350.91 [177.31–603.23]	0.018	231.80 [113.15–362.69]	0.86	216.00 [129.65–372.65]

ND: Not done; FRC: functional residual capacity; ERV: expiratory reserve volume; TLC: total lung capacity; RV: residual volume; SGaw: specific conductance; 6MWT: 6-minute walking test; sTNF-R1: soluble tumor necrosis factor-receptor 1; IL: interleukin. * p-values for comparisons between controls individuals and obese subjects before bariatric surgery whereas † indicate p-values for comparisons between obese subjects before and after bariatric surgery.

doi:10.1371/journal.pone.0107859.t002

coexistence of OSAS and/or MS; (2) significantly reduced, albeit not fully normalized, after BS; and, (3) related to pulmonary inflammation.
molecules and signaling pathways to those involved in other, more classical, forms of inflammation [37]. It is also known that, in obesity, the hypertrophic adipose tissue becomes infiltrated with pro-inflammatory macrophages, produces more pro-inflammatory cytokines and less adiponectin (an anti-inflammatory adipokine) and contributes to the systemic complications of obesity, including diabetes type 2 and MS, as well as to increased cardiovascular risk in these populations [37–38].

Second, contrary to our working hypothesis, we were not able to identify a clear effect of sex, smoking, OSAS or MS upon the systemic inflammome of morbidly obese individuals (Figures S1–S4), indicating that obesity per se is likely the main driving force of systemic inflammation in this clinical setting. By contrast, we observed a very significant effect of BS (Figure 2). Our findings confirm that BS is a safe and effective option for the treatment of very severe obesity but also showed that it has a profound effect on the systemic inflammome of these individuals (Figures 1 and 2). This may be related to the reduction of macrophage infiltration of adipose tissue, as well as to the change in the pro-inflammatory macrophage phenotype that has been reported after weight loss [39]. This further supports a key role of obesity in the pathobiology of systemic inflammation in these patients.

Finally, an important novel observation of our study relates to pulmonary inflammation in morbid obesity. In keeping with previous studies [30–31;40], we found evidence of airway inflammation in obese subjects (Table 2), but our results extend and complement these previous reports by showing that there was a significant interplay between systemic and pulmonary biomarkers and, notably, that BS not only reduced systemic inflammation but had a similar anti-inflammatory effect in the lungs as well. Most previous studies of pulmonary inflammation in obese subjects included individuals with OSAS [30–31;40–42], which was in fact believed to be the main pathogenic driver of the observed pulmonary inflammation. In contrast, we observed that airway inflammation was not different in obese patients with or without OSAS (and/or MS, or smoking). In keeping with these observations, a recent study in adults with obesity and OSAS has shown that the combined use of CPAP and weight-loss did not reduce serum CRP levels more than either intervention alone [43]. The fact that pulmonary inflammation was significantly reduced after BS in our study further supports the key role played by obesity in the pathogenesis of both systemic and pulmonary inflammation. In closing, exhaled 8-isoprostane, derived from free radical-catalyzed peroxidation of arachidonic acid, is a reliable biomarker of oxidative stress [44–45]. Pre-operative exhaled breath condensate levels of 8-isoprostane in obese patients were lower than in control participants (Table 2), suggesting that either oxidative stress does not play a key role in airway inflammation of morbidly obese subjects and/or that these individuals have developed a more efficient anti-oxidant capacity.

Strengths and Limitations

Our study has both strengths and limitations. As alluded to this is the first study to use a more comprehensive network approach to investigate the inflammatory pattern associated with morbid obesity, as well as the effects of potential confounding factors and BS, both in the systemic and pulmonary compartments. We acknowledge that we quantified a relatively low number of biomarkers and that we did not measure their levels in adipose or lung tissue.

Conclusion

Morbid obesity is associated with a significant systemic inflammome that is not influenced by sex, smoking status, presence of obstructive sleep apnea and/or metabolic syndrome, is related to pulmonary inflammation, and is significantly ameliorated after bariatric surgery.
Supporting Information

Figure S1 Systemic inflammome in obese participants classified according to sex before BS (for further explanation, see legend to Figure 2).

(TIF)

Figure S2 Systemic inflammome in obese participants classified according to smoking habits before BS. Current smokers (≥10 pack-years); non- (<10 pack-years) or former (>1 year after cessation) smokers (for further explanation, see legend to Figure 2).

(TIF)

Figure S3 Systemic inflammome in obese participants classified according to the presence or absence of obstructive sleep apnea syndrome (OSAS) before BS. OSAS was defined as apnea/hypopnea index ≥ 15 events/hour (for further explanation, see legend of Figure 2).

(TIF)

Figure S4 Systemic inflammome in obese participants classified according to the presence or absence of metabolic syndrome (MS) before BS (for further explanation, see legend to Figure 2).

(TIF)

Figure 2. Systemic inflammome in healthy and obese individuals before and after BS. Each node represents one inflammatory marker and color indicates the type of inflammatory marker considered (acute phase reactants, cytokines, adipokines or oxidative stress). The node diameter is proportional to the prevalence of abnormal values (i.e., >95th or <5th of controls) of that particular biomarker in the population under consideration (control or obese individuals) and the thickness of the edges linking pairs of nodes is proportional to the prevalence of co-occurrence of abnormal biomarkers of that particular pair of nodes.

doi:10.1371/journal.pone.0107859.g002

Table S1 Demographic and clinical characteristics (mean ± SD or median [interquartile range]).

(DOC)

Table S2 Functional characteristics and serum and Exhaled Breath Condensate Biomarkers in Obese Individuals divided according to sex.

(DOC)

Methods S1 Additional information regarding methods.

(DOC)

Acknowledgments

The authors thank the participants in the study for their willingness to contribute to medical research, and Maribel Diaz, PhD, Yolanda Torralba, MC; Conchi Gistau, RT, and Conchita Ruiz, RT, Patricia Molina, RT, Marc Pino, RT (all at Hospital Clinic), and Mónica Vila-Ubach, RT (Hospital del Mar) for their skillful technical help.

Author Contributions

Conceived and designed the experiments: RRR JV AA EA. Performed the experiments: EA ER EB. Analyzed the data: EA AA RRR JV JR. Contributed reagents/materials/analysis tools: EA AA RRR JV JR EB. Wrote the paper: EA AA RRR.
References

1. Wilson PW, D'Agostino RB, Sullivan L, Parrie H, Kannel WB (2002) Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med; 162: 1067–72.

2. Agusti A, Barbera JA, Wouters EF, Pfeffer U, Jeffery PK (2013) Lungs, bone marrow, and adipose tissue. A network approach to the pathobiology of chronic obstructive pulmonary disease. Am J Respir Crit Care Med; 188: 1936–40.

3. Van Gaal LF, Meteun H, De Block CE (2008) Mechanisms linking obesity with cardiovascular disease. Nature; 444: 873–80.

4. Jimenez A, Casamitjana R, Flores L, Vialpanda J, Corellus R, et al. (2012) Long-term effects of sleeve gastrectomy and Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. Ann Surg; 256: 1023–9.

5. Moy J, Pomp A, Dukin G, Parikh M, Gagner M (2008) Laparoscopic sleeve gastrectomy for morbid obesity. Am J Surg; 196: e36–e59.

6. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, et al. (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med; 357: 741–52.

7. Morinigo R, Casamitjana R, Delgado S, Lacy A, Deulofeu R, et al. (2007) Insulin resistance, inflammation, and the metabolic syndrome following Roux-en-Y gastric bypass surgery in severely obese subjects. Diabetes Care; 30: 1906–11.

8. Agusti A, Edwards LD, Rennard SI, Macnee W, Tal-Singer R, et al. (2012) Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One; 7: e37483.

9. Agusti A, Sobradillo P, Coli B (2011) Addressing the complexity of chronic respiratory diseases in adults: recommendations for syndrome definition and management. Respir Med; 92: 454–60.

10. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. (2005) Standardisation of the measurement of lung volumes. Eur Respir J; 26: 511–22.

11. van HA, Cabezas MC, Birnie E, Van de Geijn GJ, Rudolphus A, et al. (2013) Systemic inflammation and lung function impairment in morbidly obese subjects with the metabolic syndrome. J Obes; 2013: 131549.

12. Ferrante AW Jr (2007) Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med; 262: 408–14.

13. Chirinos JA, Gurubhagavatula I, Teff K, Rader DJ, Wadden TA, et al. (2014) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J; 46: 523–48.

14. Ferrante AW Jr (2007) Obesity-induced inflammation and immunity. Nat Rev Immunol; 6: 772–83.

15. van HA, Cabezas MC, Birnie E, Van de Geijn GJ, Rudolphus A, et al. (2013) Systemic inflammation and lung function impairment in morbidly obese subjects with the metabolic syndrome. J Obes; 2013: 131549.

16. Ferrante AW Jr (2007) Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med; 262: 408–14.

17. Vanhaecke P, Michiels L, Rutgeerts P, Milsom J, Neukirch F, et al. (2001) Multimorbidity and the Lung in the elderly. Eur Respir J [In Press].

18. Agusti A, Barbera JA, Wouters EF, Peinado VI, Jeffery PK (2013) Lungs, bone, and inflammation in obesity: linking the language of inflammation. J Intern Med; 262: 408–14.

19. Brown SL, Heymsfield SB, Ailhaud G, McLean W, Ross R, et al. (2006) Evidence of gender differences in the muscle-bone phenotype and insulin action in obesity. Obesity; 14: 207–14.

20. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

21. DiMeglio LA, Bertolini D, Agostino CB, Bistrian BR, Mesiano S, et al. (2004) Body mass index and insulin resistance in children and adolescents with obesity: a meta-analysis. J Pediatr; 145: 16–23.

22. Enright PL, Sherrill DL (1998) Reference equations for the six-minute walk in children. Arch Pediatr Adolesc Med; 152: 1054–60.

23. Kaminsky DA, Whittaker-Leclair LA, Forgione PM, Pratley RE, Dixon AE (2008) Insulin resistance, inflammation, and the metabolic syndrome following Roux-en-Y gastric bypass surgery in severely obese subjects. Diabetes Care; 30: 1906–11.

24. Rivas E, Arisendi E, Agusti A, Sanchez M, Delgado S, et al. (2014) Pulmonary gas exchange abnormalities in obesity: findings one year after bariatric surgery. Chest [Under review].

25. Muir K, Gomers R (2004) Pharmacokinetics in Drug Development: Clinical Study Design and Analysis. Non-compartmental analysis. Bonate PL, Howard DR ed pp. 235–66.

26. Horvath J, Hunt J, Barnes JR, Allen K, Antczak A, et al. (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J; 26: 523–48.

27. Rodriguez-Trigo G, Zock JP, Pozo-Rodriguez F, Gomez FP, Monyarch G, et al. (2010) Health changes in fishermen 2 years after clean-up of the Prestige oil spill. Ann Intern Med; 153: 489–98.

28. American Association of Immunologists (2011) The definition of the immune system. An AIOM recommendation for the NIH “Roadmap for Medical Research” The American Association of Immunologists newsletter. pp 7.

29. Kallio SG, Agusti A (2014) Systemic inflammatory response to smoking in chronic obstructive pulmonary disease: evidence of a gender effect. PLoS One; 9: e57401.

30. Carpinello GE, Spanavello A, Sabbato R, Depalo P, Padalino GP, et al. (2010) Systemic and airway inflammation in sleep apnea and obesity: the role of ICAM-1 and IL-8. Transl Res; 155: 55–63.

31. Carpagnano GE, Spanavello A, Sabato R, Depalo P, Palladino GP, et al. (2010) Systemic and airway inflammation in sleep apnea and obesity: the role of ICAM-1 and IL-8. Transl Res; 155: 55–63.

32. Garcia-Aymerich J, Gomez FP, Benet M, Farrarero E, Basagana X, et al. (2011) Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax; 66: 430–7.

33. Ferrante AW Jr (2007) Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med; 262: 408–14.

34. Vaitkevicius PV, Stueve MA, Zuckerman RP, Burt VL, Williams C, et al. (2008) Prevalence of Sleep-disordered breathing in U.S. adults: findings from the Sleep Heart Health Study. Sleep; 31: 209–17.

35. Vaitkevicius PV, Stueve MA, Zuckerman RP, Burt VL, Williams C, et al. (2008) Prevalence of Sleep-disordered breathing in U.S. adults: findings from the Sleep Heart Health Study. Sleep; 31: 209–17.

36. Vaitkevicius PV, Stueve MA, Zuckerman RP, Burt VL, Williams C, et al. (2008) Prevalence of Sleep-disordered breathing in U.S. adults: findings from the Sleep Heart Health Study. Sleep; 31: 209–17.

37. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

38. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

39. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

40. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

41. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

42. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

43. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

44. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

45. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

46. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

47. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.

48. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature; 444: 860–7.