Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population

Chutirat Jirabanditsakul, MSc1,2, Sumana Dakeng, PhD2, Chutima Kunacheewa, MD1, Yaowalak U-pratya, MSc1, and Weerapat Owattanapanich, MD1

Abstract
Multiple myeloma is an incurable malignancy of plasma cells resulting from impaired terminal B cell development. Almost all patients with multiple myeloma eventually have a relapse. Many studies have demonstrated the importance of the various genomic mutations that characterize multiple myeloma as a complex heterogeneous disease. In recent years, next-generation sequencing has been used to identify the genomic mutation landscape and clonal heterogeneity of multiple myeloma. This is the first study, a prospective observational study, to identify somatic mutations in plasma cell disorders in the Thai population using targeted next-generation sequencing. Twenty-seven patients with plasma cell disorders were enrolled comprising 17 cases of newly diagnosed multiple myeloma, 5 cases of relapsed/refractory multiple myeloma, and 5 cases of other plasma cell disorders. The pathogenic mutations were found in 17 of 27 patients. Seventy percent of those who had a mutation (12/17 patients) harbored a single mutation, whereas the others had more than one mutation. Fifteen pathogenic mutation genes were identified: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Most have previously been reported to be involved in the RAS/MAPK pathway, the nuclear factor kappa B pathway, the DNA-repair pathway, the CRBN pathway, tumor suppressor gene mutation, or an epigenetic mutation. However, the current study also identified mutations that had not been reported to be related to myeloma: GNA13 and FBXW7. Therefore, a deep understanding of molecular genomics would inevitably improve the clinical management of plasma cell disorder patients, and the increased knowledge would ultimately result in better outcomes for the patients.

Keywords
genetic, molecular, multiple myeloma, next-generation sequencing, Thailand

Abbreviations
AL, amyloid light-chain amyloidosis; BM, bone marrow; CR, complete remission; gDNA, genomic DNA; M3P, a targeted MM-specific gene panel NGS sequencing; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; NGS, next-generation sequencing; PCD, plasma cell disorder; PCR, polymerase chain reaction; RISS, revised international staging system; POEMS, polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes; RRMM, relapsed/refractory multiple myeloma; sCR, stringent complete remission; VAF, variant allele frequency; VGPR, very good partial remission

Received: January 27, 2022; Revised: May 30, 2022; Accepted: June 16, 2022.

Introduction
Multiple myeloma (MM) is an incurable malignancy of plasma cells resulting from impaired terminal B cell development.1,2 Plasma cells are immunoglobulin-secreting cells with a low proliferative capacity.3,4 When plasma cells become myeloma cells, they secrete a monoclonal protein (M protein), which

1 Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
2 Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand

Corresponding Author:
Weerapat Owattanapanich, Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand.
Email: weerapato36733@gmail.com
can be detected with serum protein electrophoresis and serum-free light chain assays. MM is the second most common hematologic malignancy with incidences that differ according to ethnicity. Patients with MM in Asia account for approximately 35% of all cases worldwide. The incidence is high in many Asian countries, particularly China, Japan, South Korea, Singapore, Taiwan, and Thailand. The incidence of MM in Thailand ranks third among the hematologic malignancies being surpassed by non-Hodgkin’s lymphoma, and leukemia. MM is a heterogeneous disease, and the median age at diagnosis is 70 years. Currently, the diagnosis of MM is based on the 2016 International Myeloma Working Group criteria and risk stratification using the revised international staging system (RISS). However, recent studies have shown the importance of other genetic abnormalities that are not included in the RISS. As a result, several methods are being investigated to identify the most accurate strategy for stratifying the risk of patients, including fluorescence in situ hybridization and next-generation sequencing (NGS). Although the use of genetically guided therapy is currently not standard practice, genetic mutational data would benefit guided treatment strategies, such as precision medicine. Fifteen novel agents have also been approved for MM treatment. Among them are proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, and chimeric antigen receptor T cells. The use of such agents has resulted in a dramatic improvement in the survival of patients with MM with a rise from 3 years to 10 years in the last decade. Nevertheless, almost all patients with MM eventually have a relapse.

MM is a complex heterogeneous disease resulting from various genomic mutations that lead to a variety of clinical characteristics and treatment outcomes. The concept of clonal and subclonal evolution of MM has been the focus of research. Molecular events, such as somatic mutations and epigenetic and chromosomal copy-number changes, have driven a multistep clonal evolution process. This process is important for the progression from the premalignant stage to MM, and then from MM to end-stage disease through lineage or branching patterns. Moreover, the genetic mutations can guide therapeutic approaches. In recent years, NGS technology, which involves whole-exome sequencing, has been used to identify the genomic mutation landscape and clonal heterogeneity in MM. There is an MM-specific gene panel for targeting NGS sequencing (M3P v3.0) that includes 88 frequently mutated genes and drug-related genes. Although the genomic complexity of MM disease has been extensively studied in Western countries, data on Southeast Asian populations are still lacking. Therefore, this study set out to detect plasma cell disorders (PCDs) with genetic mutations in the Thai population by using targeted gene sequencing with the NGS technique.

Materials and Methods
This prospective observational study was conducted on Thai patients diagnosed with PCDs between May 2020 and March 2021. The inclusion criteria were as follows:

1. Patients aged 18 years or older.
2. Patients with PCDs. These included monoclonal gammopathy of undetermined significance (MGUS), smoldering MM, POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes) syndrome, amyloid light-chain (AL) amyloidosis, newly diagnosed MM (NDMM), and relapsed/refractory MM (RRMM).
3. Patients requiring treatment and follow-up at Siriraj Hospital, Thailand.

All participants signed a consent form prior to enrollment. The baseline patient characteristics and initial laboratory results were recorded. This study was approved by the Siriraj Institutional Review Board (COA. No. SI 334/2020) and was registered in the Thai Clinical Trials Registry (number: TCTR20211020003).

Sample Preparation
As a routine practice of NGS testing in our institute, at least 12 mL of bone marrow (BM) aspiration was collected for mutational analysis. CD138+ plasma cells were then purified from those cells using the EasySep Human CD138 Positive Selection Kit (STEMCELL Technologies Inc).

Targeted Gene Sequencing by NGS
The initial process was DNA extraction, which was done using a QIAamp DNA Mini kit (Qiagen). A frozen pellet of CD138+ plasma cells was suspended in phosphate buffered saline, and the manufacturer’s instructions were then followed. The concentration of extracted genomic DNA (gDNA) was measured using a Nanodrop System (Thermo Fisher Scientific) and a Qubit dsDNA HS assay (Qubit 3.0 Fluorometer; Life Technologies). The GeneReader QIAct Custom Panel (Qiagen), lymphoid neoplasms, and myeloma panel covering 59 targeted genes were used in the QIAGEN GeneReader NGS System.

An input of 40 ng of gDNA was used as the starting material for the construction of the DNA template library. Unique molecular index technology was integrated into a gene-specific primer-based target enrichment process.

The library preparation consisted of a single controlled multienzyme reaction for fragmentation, the end-repairing and A-tailing of the gDNA samples, adapter ligation, a target enrichment polymerase chain reaction (PCR), and a universal PCR that was complimentary with the adapter sequence. These processes generated the sequencing-ready DNA template. Next, the clonal amplification of the DNA template and emulsion PCR was performed to obtain the final library. This process was carried out using an automated GeneReader QIAcube instrument in accordance with the manufacturer’s instructions. The sequencing of the DNA library template in the QIAGEN platform used sequencing-by-synthesis technology with fluorescently labeled, reversibly terminated deoxyribonucleotide triphosphates. The library templates were
sequenced for 150 cycles on a GeneReader instrument with an automated protocol.

Sequence Data Processing and Interpretation

Secondary analysis of the FASTQ reads, the output of the sequencing process by GeneReader, was performed by QIAGEN Clinical Insight Analyze (QCI-A) software. The read and call variants were aligned by the software using the hg19 reference. In addition, QCI-A automatically generated a quality control report and visualization of the sequencing results. The quality control criteria of the NGS in this study were qualified by the GeneRead QIAact Custom Panel certificate. In brief, each sample must consist of at least 95% of all regions of interest with a minimum UMI coverage of 30x, and at least 90% of all regions of interest with a minimum UMI coverage of 50x. The threshold to detect the variant allele frequency (VAF) was 3%. The final step with the QIAGEN GeneReader NGS System involved QIAGEN Clinical Insight Interpret (QCI-I), a web-based software. All mutations were manually reanalyzed by 2 investigators (C.J. and W.O.) using the COSMIC cancer database, VARSOME, and dbSNP. If different decisions were made on the conflicting results, the mutations in question were discussed until a consensus was reached. Mutations in NRAS, BRAF, ATM, and TP53 genes by the NGS technique were confirmed by utilizing the Sanger sequencing technique.

Results

The 27 patients with PCDs comprised 17 with NDMM, 5 with RRMM, and 5 with other PCDs (3 patients with MGUS and 2 patients with AL amyloidosis). There were slightly more men than women, and the median age at the time of diagnosis was more than 60 years. Most of the patients had lytic bone lesions and anemia. In addition, the laboratory results showed a wide range of percentages for the plasma cells in the BM lesions and anemia. In addition, the laboratory results showed a wide range of percentages for the plasma cells in the BM lesions and anemia.

Ten of the 27 patients enrolled did not have mutations. Of those 10, 5 patients had NDMM, 2 had relapsed MM, and 3 had other PCDs (2 patients with AL amyloidosis and 1 with MGUS). The remaining 17 patients harbored at least one pathogenic mutation. Most (12/17; 70.6%) had only one pathogenic mutation, 4 had 2 pathogenic mutations, while 1 had 3 pathogenic mutations. The NDMM patients had a higher number of gene mutations than the patients in the other groups. The mean number of gene mutations was 1.1, 0.6, and 0.4 for the NDMM, RRMM, and PCD groups, respectively, but there were no statistically significant differences between the groups (P = .239; Figure 1). Of the mutations, 18 variants were classified as pathogenic or likely pathogenic in the following 15 genes: ATM, BRAF, CYLD, DIS3, DNMT3A, FBXW7, FLT3, GNA13, IRF4, KMT2A, NRAS, SAMHD1, TENT5C, TP53, and TRAF3. Two mutational variants were found in the FBXW7, NRAS, and TENT5C genes. Regarding pathogenic mutations found in more than 1 of the 27 patients, 4 patients had variants in the GNA13 gene, whereas 3 patients had variants in the NRAS gene. However, 2 patients had variants in each of the following 3 genes: DIS3, FBXW7, and TENT5C. The oncoplots of the mutations in the 27 PCDs are presented in Figure 2.

Most pathogenic mutations were found in patients with NDMM. Mutations in those patients involved 13 genes. The gene reported the most frequently was GNA13 (3/17; 17.6%). Each of the other genes (NRAS, FBXW7, and TENT5C) was found in 11.8% of the patients. In patients with MGUS, the mutated DNMT3A gene was commonly found. Mutations in the DIS3 gene were found only in patients with relapsed MM. The GNA13 mutated gene was present in both the NDMM and other PCDs groups, while the NRAS mutated gene was detected in the NDMM and relapse groups (Figure 3).

The VAF of the mutations ranged widely (3.6%-77.0% VAF). Most mutations (7/15; 46.7%) had a VAF less than 10% VAF, 40% of the mutated genes had a 15% to 50% VAF, and only 2 mutated genes had a VAF greater than 50%. The FBXW7 mutated gene showed evidence of both 49% and 3.7% VAF. In contrast, the NRAS mutated gene only had clonal mutations, with 35%, 49%, and 77% VAF.

Discussion

To our knowledge, this was the first study to have identified somatic mutations in PCDs in the Thai population using targeted NGS. Due to the limited healthcare infrastructure, economic problems, and resource limitations in Thailand, several treatment modalities recommended by MM management guidelines were not available locally. Targeted NGS is a comprehensive technology that enhances the understanding of genomic complexity in extremely heterogeneous PCDs. Moreover, the combination of fluorescence in situ hybridization and NGS data would likely be applied in the future to facilitate the decision-making on individual treatment protocols.

We identified 15 pathogenic mutation genes in 27 patients. Most of the mutations were previously reported. There was also clear evidence that mutations in the RAS/MAPK signaling pathway, such as mutations of the KRAS, NRAS, BRAF, and NF1 genes play a role in the progression of myeloma, which was comparable to our results. Two oncogenes (NRAS and...
and BRAF) were detected in the NDMM and RRMM groups, accounting for 18.2% (4/22). Our findings were comparable with a previous report that showed an NRAS mutation rate of approximately 20%.33,34 Our study also found 2 important mutations. They were the CYLD and TRAF3 genes of the noncanonical NF-kB signaling pathway, which plays a key role in late-stage B-cell development.35 These 2 mutations were found in 7.4% of our patients. However, this proportion was less than for the NDMM in general, which usually showed a rate of around 20%.36,37 Moreover, we found that one patient with NDMM (7.4%) had both the ATM and TP53 mutations. These mutations in the DNA repair pathway were important for the progression of the disease from its premalignant state to MM.38 Their presence also indicated a poor prognosis for the disease.27

An E3 ligase is a target of cereblon modulators in the control of ubiquitinated proteins, particularly IRF4, a key transcription factor of plasma cell development.39 Mutation of IRF4 is rare. It was recently reported that this mutation led to the increased survival of myeloma cells and could affect the response to cereblon modulator treatment.40 One of our patients harbored the IRF4 mutation. He was treated with bortezomib and dexamethasone, but unfortunately, his response was sluggish.

The DIS3 and FAM46C (TENT5C) mutated genes, which were putative tumor suppressor genes, were each identified in 7.4% of the patients. These genes have also been reported to be the most frequently found tumor-suppressor mutated genes in MM.30 In our investigation, the DIS3 gene was found only in relapsed patients. However, published reports have tended to minimize the potential of the DIS3 mutation in familial MM.41 Furthermore, this mutation was commonly found to be associated with deletion 13, which had a poor prognosis.42

We identified epigenetic mutations similar to previous reports on PCDs.43,44 These involved the genes related to the

Table 1. Data on Gene Mutations and Results of the Treatments of Individual Patients.

Patient	Group	Pathogenic variant detected	Variant details	VAF	Induction regimen	Treatment response	
M1	NDMM	GNA13	c.243_244delCG	p.E82fs*19	3.66%	VCD	CR
M2	NDMM	TENT5C	c.531dupT	p.E178*	6.87%	VCD	VGPR
M5	NDMM	CYLD	c.1525G>T	p.E509*	5.56%	TCD	Nonresponse
M6	NDMM					VCD	CR
M8	NDMM	FLT3	c.2546G>A	p.R849H	52.0%	VCD	CR
M10	NDMM	FBXW7	c.187 °C > T	p.Q624*	49.0%	VCD	Nonresponse
M11	NDMM	GNA13	c.243_244delCG	p.E82fs*19	3.57%	VCD	Nonresponse
M12	NDMM	BRAF	c.1780G>A	p.D594N	15.0%	VCD	VGPR
M13	NDMM	ATM	c.4235C>T	p.P1412L	46.0%	VCD	VGPR
M14	NDMM	IRF4	c.368A>G	p.K123R	38.0%	Vel/dex	Nonresponse
M15	NDMM					VCD	Nonresponse
M16	NDMM	SAMHD1	c.316C>T	p.R106*	44.0%	VCD	CR
M17	PCDs (MGUS)	DNMT3A	c.1453C>T	p.Q485*	19.0%	-	
M18	NDMM					MPT	VGPR
M19	NDMM					D-VMP	CR
M20	NDMM	NRAS	c.182A>G	p.Q61R	35.0%	VCD	Nonresponse
M21	NDMM	GNA13	c.243_244delCG	p.E82fs*19	3.57%	VCD	Nonresponse
M22	NDMM					VCD	CR
M25	PCDs (MGUS)					-	-
M26	PCDs (MGUS)	GNA13	c.243_244delCG	p.E82fs*19	6.06%	-	-
M28	PCDs (AL)					VCD	CR
M29	PCDs (AL)					VCD	CR
M30	RRMM					-	-
M34	RRMM					-	-
M45	RRMM	NRAS	c.181C>A	p.Q61K	77.0%	-	-
M51	RRMM	DIS3	c.1996delC	p.Q666fs*18	4.05%	VCD	CR
M52	NDMM	FBXW7	c.349_351delGAG	p.E117del	3.72%	VCD	CR
M54	RRMM	DIS3	c.1996delC	p.Q666fs*18	7.48%	-	-

Abbreviations: AL, amyloidosis; CR, complete remission; D-VMP, daratumumab-bortezomib-melphalan-prednisone; MGUS, monoclonal gammopathy of undetermined significance; MPT, melphalan/prednisolone/thalidomide; NDMM, newly diagnosed multiple myeloma; PCD, plasma cell disorder; RRMM, relapsed/refractory multiple myeloma; TCD, thalidomide/cyclophosphamide/dexamethasone; VAF, variant allele frequency; VCD, bortezomib/cyclophosphamide/dexamethasone; Vel/dex, bortezomib/dexamethasone; VGPR, very good partial remission.
DNA methylation regulators, histone methylation (\textit{KMT2A} [3.7\%]), and DNA methyltransferase (\textit{DNMT3A} [3.7\%]). The \textit{KMT2A} mutated gene was found in MM, while the mutation of the \textit{DNMT3A} gene was identified in patients with MGUS.45

Additionally, one of our NDMM patients had an \textit{FLT3} mutation. The former study established that the FMS-like tyrosine kinase 3 ligand (\textit{FLT3L}) level in the plasma and the \textit{FLT3} over-expression correlated with the stage of the MM disease.46,47 Moreover, the mutated \textit{SAMHD1} gene, associated with the DNA repair in MM oncogenic pathways,48 was also found in our study (Table 2).

Our study also identified new mutations that had not previously been reported to be related to myeloma; namely, \textit{GNA13} and \textit{FBXW7} (Figure 3). The \textit{GNA13} mutated gene was reported in other B-cell lymphoid malignancies, which was related to the cell migration pathway.52 In contrast, the \textit{FBXW7} mutated gene was reported in T-cell leukemia and chronic lymphocytic leukemia, which was related to the NOTCH pathway.53,54 Interestingly, the \textit{FBXW7} mutation was found to be correlated with post-radiation induced thymic lymphomas from the mice model.55 Nevertheless, further research is needed on the correlations of these gene mutations with PCDs.
Figure 3. The mutational genes detected in 3 groups of patients.

Table 2. Proportions of Mutations in Multiple Myeloma Patients in This Study and Other Research.

Patients’ country	Method	Patient numbers	Mutation incidence		
			(range, average)		
	USA	targeted NGS (M3P v2.0)	142 NDMM	0-8, 1.5	
	Germany	targeted NGS(M3P v3.0)	50 RRMM	0-13, 2.7	
	USA	targeted NGS (M3P)	A sequential sample post treatment	25MM patients	1.92, 2.12
	Thailand	custom targeted NGS	17 NDMM and 5 RRMM	0-3,1	

| Abbreviation: M3P, a targeted MM-specific gene panel NGS sequencing; MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; NGS, next-generation sequencing; NR, not reported; RRMM, relapsed/refractory multiple myeloma. |
Although the spectrum of the mutations and the treatment outcomes of the patients were broad, patients without pathogenic mutations appeared to have a good response to the induction therapy. The results showed that the \textit{NRAS}, \textit{CYLD}, \textit{TRAF3}, and \textit{IRF4} mutated genes were found in patients with stable disease. Moreover, the \textit{NRAS} mutated gene mutation was found in both stable disease and relapse patients. Interestingly, these mutated genes may play a role in the progression of myeloma. On the other hand, patients with the same mutation had different response outcomes. For instance, patients who had 49\% VAF of the \textit{FBXW7} mutated gene did not respond to the induction therapy, whereas the patients who had 3.7\% VAF of the mutation responded well to therapy. Of note, the burden of the mutation might affect the outcome of these patients.

There were some limitations of this study. This pilot study had a small sample size, which could not compare the number of mutations between NDMM and RRMM, the clinical outcomes between the mutated- and wild-type genes, and was difficult to derive an interpretation of the causative variants. However, the present investigation represented a solid starting point for more work on genomic complexities in Thai patients with PCDs. Our research is underway to expand the sample size in order to explore the exact incidence of the mutational landscape in the Thai population. Furthermore, the confirmation of the mutations by Sanger sequencing in this study was performed only in common gene mutations because of the limited funding. Therefore, we plan to confirm other uncommon mutations by the Sanger sequencing technique in the near future after collecting more samples.

Conclusions

The genetic landscape of Thai patients with plasma cell disorders demonstrates the heterogeneity of mutations. A deep understanding of molecular genomics would inevitably improve the clinical management of PCD patients, and the increased knowledge would ultimately result in better outcomes for the patients.

Acknowledgements

CJ is partly supported by the Graduate Scholarship of the Faculty of Medical Technology, Mahidol University. The authors are grateful to Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital for supporting the equipment and instrument. The authors thank Ms. Pattaraporn Tunsing for assistance with the data collection and statistical analyses.

Authors’ Note

Ethical approval to report this case was obtained from the Ethics Committee for Research in Human Subjects at the Siriraj Institutional Review Board (SI 334/2020). And the written informed consent was obtained from the patient(s) for their anonymized information to be published in this article.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Faculty of Medicine Siriraj Hospital, Mahidol University.

ORCID iD

Weerapat Owattanapanich https://orcid.org/0000-0002-1262-2005

References

1. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. \textit{Oncogene}. 2001;20(40):5611-5622. doi:10.1038/sj.onc.1204641
2. Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. \textit{Blood}. 2015;125(20):3049-3058. doi:10.1182/blood-2014-11-568881
3. Anderson KC, Carrasco RD. Pathogenesis of myeloma. \textit{Ann Rev Pathol}. 2011;6:249-274. doi:10.1146/annurev-pathol-011110-130249
4. Minges Wols HA. 2015. Plasma Cells. In eLS, John Wiley & Sons, Ltd (Ed.). https://doi.org/10.1002/9780470015902.a0004030.pub2
5. Kyrtsonis M-C, Koulieris E, Bartzis V, et al. April 10, 2013. Monoclonal Immunoglobulin, Multiple Myeloma—A Quick Reflection on the Fast Progress, Roman Hajek, IntechOpen, DOI: 10.5772/55855. Available from: https://www.intechopen.com/chapters/44074
6. Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. \textit{Nat Rev Dis Primers}. 2017;3:17046. doi:10.1038/nrdp.2017.46
7. Mehta GR, Suhail F, Haddad RY, Zalzaleh G, Lerma EV. Multiple myeloma. \textit{Dis Mon}. 2014;60(10):483-488. doi:10.1016/j.disamonth.2014.08.002
8. Röllig C, Knop S, Bornhäuser M. Multiple myeloma. \textit{Lancet}. 2015;385(9983):2197-2208. doi:10.1016/S0140-6736(14)60493-1
9. Tan D, Chng WJ, Chou T, et al. Management of multiple myeloma in Asia: resource-stratified guidelines. \textit{Lancet Oncol}. 2013;14(12):e571-e581. doi:10.1016/S1470-2045(13)70404-2
10. Palumbo A, Anderson K. Multiple myeloma. \textit{N Engl J Med}. 2011;364(11):1046-1060. doi:10.1056/NEJMra1011442
11. Dispensieri A, Kyle RA. Multiple myeloma: clinical features and indications for therapy. \textit{Best Pract Res Clin Haematol}. 2005;18(4):553-568. doi:10.1016/j.beha.2005.01.008
12. Landgren O, Rajkumar SV. New developments in diagnosis, prognosis, and assessment of response in multiple myeloma. \textit{Clin Cancer Res}. 2016;22(22):5428-5433. doi:10.1158/1078-0432.CCR-16-0866
13. Rajkumar SV. Evolving diagnostic criteria for multiple myeloma. \textit{Hematology Am Soc Hematol Educ Program}. 2015;2015:272-278. doi:10.1182/asheducation-2015.1.272
14. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the
international Myeloma working group. Blood. 2016;127(24):2955-2962. doi:10.1182/blood-2016-01-631200

15. Kumar SK, Rajkumar SV. The multiple myelomas—current concepts in cyogenetic classification and therapy. Nat Rev Clin Oncol. 2018;15(7):409-421. doi:10.1038/s41571-018-0018-y

16. Kunacheewa C, Orlowski RZ. New drugs in multiple Myeloma. Annu Rev Med. 2019;70:521-547. doi:10.1146/annurev-med-112017-091045

17. Abramson MN. Monoclonal antibodies for the treatment of multiple myeloma: an update. Int J Mol Sci. 2018;19(12):3924. doi: 10.3390/ijms19123924

18. Anderson KC. Progress and paradigms in multiple myeloma. Clin Cancer Res. 2016;22(22):5419-5427. doi:10.1158/1078-0432.CCR-16-0625

19. Sonneveld P. Management of multiple myeloma in the relapsed/refractory patient. Hematology Am Soc Hematol Educ Program. 2017;2017(1):508-517. doi:10.1182/asheducation-2017.1.508

20. Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia. 2019;33(4):863-883. doi:10.1038/s41373-018-0362-z

21. Brioli A, Melchor L, Cavo M, Morgan GJ. The impact of intraclonal heterogeneity on the treatment of multiple myeloma. Br J Haematol. 2014;165(4):441-454. doi:10.1111/bjh.12805

22. Corre J, Munshi N, Avet-Loiseau H. Genetics of multiple myeloma: another heterogeneity level? Blood. 2015;125(12):1870-1876. doi:10.1182/blood-2014-10-567370

23. Fakhri B, Vij R. Clonal evolution in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2016;16 Suppl:S130-S134. doi:10.1016/j.clml.2016.02.025

24. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. doi:10.1038/ncomms3997

25. Neri P, Bahlis NJ. Genetic instability in multiple myeloma: mechanisms and therapeutic implications. Expert Opin Biol Ther. 2013;13 Suppl 1:S69-82. doi:10.1517/14712598.2013.814637

26. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14(2):100-113. doi:10.1038/nrclinonc.2016.122

27. ©Agilent Technologies, Inc. An NGS primer for Multiple Myeloma. https://www.agilent.com/cs/library/whitepaper/public/MM_White_Paper_5991-7258EN.pdf. Published January 5, 2017. Accessed December 14, 2021.

28. Soliman AM, Das S, Teoh SL. Next-generation biomarkers in multiple myeloma: understanding the molecular basis for potential use in diagnosis and prognosis. Int J Mol Sci. 2021;22(14):7470. doi:10.3390/ijms22144740

29. Weaver CJ, Tariman JD. Multiple myeloma genomics: a systematic review. Semin Oncol Nurs. 2017;33(3):237-253. doi:10.1016/j.socn.2017.05.001

30. Lionetti M, Neri A. Utilizing next-generation sequencing in the management of multiple myeloma. Expert Rev Mol Diagn. 2017;17(7):653-663. doi:10.1080/14737519.2017.1332996

31. Ruiz-Heredia Y, Sánchez-Vega B, Onecha E, et al. Mutational screening of newly diagnosed multiple myeloma patients by deep targeted sequencing. Haematologica. 2018;103(11):e544-e548. doi:10.3324/haematol.2018.188839

32. Walker BA, Boyle EM, Wardell CP, et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33(33):3911-3920. doi:10.1200/JCO.2014.59.1503

33. Barwick BG, Neri P, Bahlis NJ, et al. Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. Nat Commun. 2019;10(1):1911. doi:10.1038/s41467-019-09555-6

34. Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467-472. doi:10.1038/nature09837

35. Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2010;2(6):a001009. doi:10.1101/cshperspect.a001009

36. Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115-130. doi:10.1016/j.ccr.2007.07.004

37. Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131-144. doi:10.1016/j.ccr.2007.07.003

38. Bustoros M, Sklavenitis-Pistofidis R, Park J, et al. Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J Clin Oncol. 2020;38(21):2380-2389. doi:10.1200/JCO.20.00437

39. Holstein SA, Hillengass J, McCarthy PL. Next-Generation drugs targeting the cereblon ubiquitin ligase. J Clin Oncol. 2018;36(20):2101-2104. doi:10.1200/JCO.2018.77.9637

40. Fedele PL, Liao Y, Gong JN, et al. The transcription factor IRF4 represses proapoptotic BIM and BIM to license multiple myeloma survival. Leukemia. 2021;35(7):2114-2118. doi:10.1038/s41375-020-01078-0

41. Pertiwi M, Vallée M, Wei X, et al. Exome sequencing identifies germline variants in DIS3 in familial multiple myeloma. Leukemia. 2019;33(9):2324-2330. doi:10.1038/s41375-019-0452-6

42. Todoerti K, Ronchetti D, Favasuli V, et al. DIS3 mutations in multiple myeloma impact the transcriptional signature and clinical outcome [published online ahead of print, 2021 May 6]. Haematologica. 2020. doi:0.3324/haematol.2021.278342

43. Dupérê-Richer D, Licht JD. Epigenetic regulatory mutations and epigenetic therapy for multiple myeloma. Curr Opin Hematol. 2017;24(4):336-344. doi:10.1097/MOH.0000000000000358

44. Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 2017;17(9):543-556. doi:10.1038/nrc.2017.63

45. Issa ME, Takhasha FS, Chirumamilla CS, Perez-Novó C, Vandén Berghe W, Cuendet M. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clin Epigenetics. 2017;9:17. doi:10.1186/s13148-017-0319-5

46. Steiner N, Jöhrer K, Plewan S, et al. The FMS like Tyrosine Kinase 3 (FLT3) is overexpressed in a subgroup of multiple myeloma patients with Inferior prognosis. Cancers (Basel). 2020;12(9):2341. doi:10.3390/cancers12092341

47. Steiner N, Hajek R, Sevcikova S, et al. High levels of FLT3-ligand in bone marrow and peripheral blood of patients with advanced multiple myeloma. PLoS One. 2017;12(7):e0181487. doi:10.1371/journal.pone.0181487
48. Hoang PH, Dobbins SE, Cornish AJ, et al. Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. *Leukemia*. 2018;32(11):2459-2470. doi:10.1038/s41375-018-0103-3

49. Kortuem KM, Braggio E, Bruins L, et al. Panel sequencing for clinically oriented variant screening and copy number detection in 142 untreated multiple myeloma patients. *Blood Cancer J*. 2016;6(2):e397. doi:10.1038/bcj.2016.1

50. Kortüm KM, Mai EK, Hanafiah NH, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. *Blood*. 2016;128(9):1226-1233. doi:10.1182/blood-2016-02-698092

51. Kortüm KM, Langer C, Monge J, et al. Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P). *Ann Hematol*. 2015;94(7):1205-1211. doi:10.1007/s00277-015-2344-9

52. Rosenquist R, Beà S, Du MQ, Nadel B, Pan-Hammarström Q. Genetic landscape and deregulated pathways in B-cell lymphoid malignancies. *J Intern Med*. 2017;282(5):371-394. doi:10.1111/joim.12633

53. Yeh CH, Bellon M, Pancewicz-Wojtkiewicz J, Nicot C. Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. *Proc Natl Acad Sci U S A*. 2016;113(24):6731-6736. doi:10.1073/pnas.1601537113

54. Close V, Close W, Kugler SJ, et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. *Blood*. 2019;133(8):830-839. doi:10.1182/blood-2018-09-874529

55. Jen KY, Song IY, Banta KL, Wu D, Mao JH, Balmain A. Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas. *Blood*. 2012;119(3):805-809. doi:10.1182/blood-2011-03-327619