Determination of Magneto-crystalline Anisotropy Energy (MAE) Of ordered L1₀ CoPt and FePt nanoparticles

To cite this article: A. Alsaad et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 305 012017

View the article online for updates and enhancements.
Determination of Magneto-crystalline Anisotropy Energy (MAE) Of ordered L10 CoPt and FePt nanoparticles

A. Alsaad¹, A.A. Ahmad¹ A.A. Shukri² and O.A. Bani-Younes¹

¹Department of Physics, Jordan University of science and technology, P. O. Box 3030, Irbid 22110, Jordan.
²Department of Physics, Tafila Technical University, At-Tafilah, Jordan.
alsaad11@just.edu.jo

Abstract: The structural and magnetic properties of both L10 ordered FePt and CoPt nanoparticles make them potential candidates for optical-electronic and magneto-optical devices. First, we carried out an ab initio total energy minimization study to find the geometrical optimization of both L10 phases of FePt and CoPt nanoparticles. Then, we investigated the magnetocrystalline anisotropy energy (MAE) of both systems along special line joining the points of high symmetry (A, B and C points) using super-cell slap approach with alternating layers Fe/Co and Pt along the (001) direction. We found that the point (A) has the highest MAE value for both systems, where the value of MAE in FePt is 8.89×10^7 erg/cm³ and in CoPt is 6.40×10^7 erg/cm³. Our spin density based calculations indicate that large spin-orbit interaction and the hybridization between Pt 5d states and Fe/Co 3d states are the dominant factors in determining the MAE in both systems.

Keywords: Magneto-crystalline Anisotropy Energy (MAE); L10 CoPt and FePt nanoparticles; Spin density functional theory; Slap approach; Spin-orbit interaction

1. Introduction
A lot of efforts have been devoted to explore the physics of tiny structure for magnetic materials that can help to utilize its desirable properties [1-3]. In recent years, applications of magnetic nanoparticles have arisen, particularly those that have a high anisotropic energy [1, 4-7]. Because of their potential applications such as data storage, optical filters, and biomedical applications, some of magnetic nanoparticles gain crucial importance [8-10]. The value of magneto-crystalline anisotropy energy (MAE) of a magnetic material indicates the magnetic stability in response to the orientation of the magnetic spin moment. The storage devices based on magnetic materials are of great interest from fundamental and technological points of view due to their low cost [11-26]. When the thermal energy is large enough and able to overcome the anisotropy energy, the phenomenon of super paramagnetic occurs [29]. As a result, the magnetization is not stable which causes the damage and loss of the storage data [30]. To overcome this issue, we must look for magnetic materials that have high anisotropic energy [10, 31-32]. The FePt and CoPt nanoparticles adopting the face center tetragonal phase are considered among promising candidates for the field of data storage due to their high magnetic anisotropy energies [2, 16, 26]. Among the variant magnetic nanoparticles and their alloys, ordered ferromagnetic L10 FePt and CoPt alloys have desirable structural and magnetic properties. For instance, they exhibit good response to an external magnetic field; also, they show high magnetocrystalline anisotropy in bulk phase [2, 12]. In addition, The L10 FePt and L10 CoPt structures have huge values of MAE compared to the other magnetic nanoparticles. The MAE’S values lie in the range (7-11 $\times 10^7$ erg/cm³) for L10 FePt structure [11, 13-14] and
approximately 5×10^7 erg/cm3 for L10 CoPt [7, 14-15] structure. The CoPt binary exhibits a ferromagnetic behavior in its disordered A1 phase, while an ordered L12 CoPt phase possesses a cubic anisotropy and is said to be magnetically soft. On the other hand, the L10 FePt and CoPt phases are well known to have very high uniaxial magnetocrystalline anisotropy. The origin of this large anisotropy mainly comes from the significant spin-orbit coupling and the large hybridization between Co (Fe) 3d bands and Pt 5d states [36]. In this work, we attempt to present very accurate calculations of MAE in L10 CoPt and FePt nanoparticles using slap approach and spin density functional theory. The MAE of bulk FePt and CoPt is defined to be the energy difference, $E_{100} - E_{001}$ between the two magnetic configurations in which the magnetic moments are parallel or perpendicular to the Fe (Co) or Pt (0 0 1) planes.

2. Methodology and Calculations

The methodology of the work includes calculations within the spin density functional theory (SDFT) using a plane wave basis set and the Projector augmented wave (PAW) pseudopotentials that are implemented in Vienna ab initio simulation package (VASP) [37-40]. The PAW pseudo potentials include the following valence electrons: Fe: 3p63d74s1 and Pt: 5d95s1. The generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) form was used for the exchange-correlation functional. The used parameters in calculating MAE of both FePt and CoPt SYSTEMS are as following: the plane wave cut-off energy is 400 eV, a 12 x 12 x 1 and 24 x 24 x 1 Monkhorst–Pack k-point meshes are used for both FePt and CoPt, respectively. The relaxed atomic positions were followed by minimizing the total energy (i.e. 0.003eV), and the Hellmann–Faynmann forces. These forces were as small as (0.003eV/Å) at convergence in the unit cell of all different electronic structure relaxations that have been performed. Finally, in order to evaluate the MAE results for both systems we performed self-consistence calculations for total energy for two different magnetic configurations. One configuration is demonstrated by allowing the magnetic moments to be oriented parallel, $E(||)$, and the other by forcing the magnetic moments to be aligned perpendicular, $E(\perp)$, to the easy axis (c-axis). And then MAE can be considered as the energy difference between the two configurations,

$$MAE = E(||) - E(\perp)$$

3. Results
Crystallography Aspects of The L10 Structure

The prototype structure for CoPt and FePt structures is the CuAu (I) type structure. The CoPt and FePt exhibit an A1 phase (the structure with A1 phase possess a disordered face centered cubic (fcc) structure) at high temperatures and they exhibit an ordered L10 or L12 phase at low temperatures. Figure 1 represents the unit cell of ordered L10 phase of both FePt and CoPt nanoparticles. In L10 FePt and CoPt structures, there are two types of atoms, one type of atoms occupy the corners and corresponding to [0 0 0] and [1/2 1/2 0] lattice sites, whereas the second type of atoms are located at the other two face centers with [1/2 0 1/2] and [0 1/2 1/2] site positions. In L10 structure, the arrangement of alternately aligned Co or Fe and Pt planes along the c-axis [001] results in the distortion of the cubic symmetry, this symmetry distortion leads to a slight tetragonal distortion in the unit cell. Hence this structure is referred to as an ordered face centered tetragonal (fct) L10 phase. The space group of the L10 structure is P4/mmm.

We performed an \textit{ab initio} total energy minimization study to find the geometrical optimization of both L10 phases of FePt and CoPt nanoparticles. The calculated values of the equilibrium lattice parameters are $a_0 = 3.880$ Å, $c_0 = 3.780$ Å and $a_0 = 3.814$ Å, $c_0 = 3.710$ Å for FePt and CoPt, respectively. These results are in agreement with data reported in the literature (2, 15-17, 31, 33).

![Fig.1. Unit cell of ordered L10 phase of both FePt and CoPt nanoparticles.](image)

Determination of Magneto-crystalline Anisotropy Energy (MAE)

In magnetic anisotropic materials, the magnetic moment tends to be oriented in the energetically favorable direction, this direction is called "easy axis". By definition the magneto-crystalline Anisotropy Energy (MAE) is defined as the total energy E_{tot} associated with the change in the direction of the magnetization
with respect to the easy axis [34-35]. When the magnetic material has one easy axis, the material is called uniaxial. The L10 ordered FePt and CoPt structures are familiar examples of uniaxial magnetic materials. The MAE for L10 (face centered tetragonal) phase can be defined and calculated as the energy difference between two magnetic orientations as shown in equation [2, 16, 24],

$$\Delta E = E_{100} - E_{001}.$$

we used super-cell slap approach to compute the MAE of the L10 FePt and CoPt systems. The super cell approach is constructed from a relatively atomic layers (slap) separated by vacuum layers. The super cell is repeated throughout all space using periodic boundary conditions as shown in the Figure 2. Here, each slap in the super cell is constructed from ten atoms of Fe and Co and the eight Pt atoms with vacuum layers of 30 Å in z direction.

![Figure 2: Super-cell slap approach which explain the atomic and vacuum layers. The small spheres denote the Fe/Co atoms while large spheres refer to Pt atoms.](image)

We use this approach in order to compute the MAE of the FePt and CoPt along the high symmetry points. These points are symbolized by A, B, and C as shown in Figure3. The point A represents the regular L10 structure whereas point (B) is obtained by shifting the Fe or Co atoms by a displacement of (0.25, 0.25, 0) while the Pt atoms are shifted alternately between x and y coordinates by (0.75, 0.25,0) and (0.25, 0.75, 0). At point C with the shift of (0.5, 0, 0) the crystallites arranged atoms of Pt directly on top of each other across the interface in such a way that it corresponds to ideal FePt and CoPt lattices where one Fe or Co layer is removed. The structure of point C corresponds to a crack with one nearest neighbor across the interface.
Figure 3: The super-cell slap approach of the ordered L10 CoPt and FePt systems, the high symmetry points A, B and C from left to right in regular super-cell structure, red spheres are used for Fe or Co atoms.

Fig. 4: Magnetocrystalline anisotropy energy (MAE) of L10 FePt (Black-dotted) and CoPt (Blue-solid) nanoparticles Plotted versus slip step along high symmetry points A-B-C-A of the regular lattice. Note that 1 J/m3 is equivalent to 1 x 10^{-5}Merg/cm3.

Figure 4, represents the MEA per unit volume of L10 FePt and L10CoPt at the high symmetry points. In FePt, point A has the highest MEA (8.89×10^7 erg/cm3), followed by point B (3.314×10^7 erg/cm3), and point C has the lowest MEA (3.087×10^7 erg/cm3). In CoPt system, the corresponding MAE values are at point A (6.40×10^7erg/cm3), at point B (2.15×10^7erg/cm3), and at point C (1.98×10^7erg/cm3). It is obvious from Figure 3 the MAE decreases in along the line A→
B → C → A in both L10 FePt and L10 CoPt nano systems. The physical interpretation of our striking result comes from the spin-polarized band calculations including spin-orbit interaction for L10 FePt and CoPt ordered alloys performed within the framework of local spin density functional approximation. We have found that strong magnetocrystalline anisotropy of both ordered systems along the A → B → C → A line is due to a large spin-orbit coupling of Pt atom with Fe and Co atoms and a strong hybridization of Pt d bands with highly polarized Fe (Co) d bands. These two effects decrease along the A → B → C → A line for both ordered systems. This can be regarded as being associated with the behavior that the MAE of both systems decrease with decreasing of the strength of the spin-orbit coupling of Pt d-band with Fe (Co) bands, as well as, a significant decrease of Pt d-band hybridization with Fe (Co) d-bands.

4. Conclusion
We report our results on the structural and magnetic properties of L10 FePt and CoPt ordered systems using spin density functional theory. The spin-polarized band calculations including spin-orbit interaction for L10 FePt and CoPt ordered systems have been performed within local spin density functional approximation. Magnetocrystalline Anisotropy Energy (MAE) of L10 ordered FePt and CoPt nanoparticles were computed using super-cell slap approach within the framework of local spin density approximation. The (MAE) was computed at high symmetry points that are carefully selected in L10 ordered FePt and L10 CoPt systems. The points were chosen because of their importance from fundamental and experimental points of view. We found that MAE’s of L10 FePt ordered structures decreases from $8.89 \times 10^7 \text{ erg/cm}^3$ to $3.087 \times 10^7 \text{ erg/cm}^3$ and that of L10 CoPt decreases from $6.40 \times 10^7 \text{ erg/cm}^3$ to $1.98 \times 10^7 \text{ erg/cm}^3$ along the A → B → C → A line joining points of high symmetry. This significant decrease in MAE’s values of both ordered systems can be explained as being related with the observed decrease of the strength of the spin-orbit coupling of Pt d-band with Fe (Co) bands, as well as, a drastic decrease of Pt d-band hybridization with Fe (Co) d-bands. Our results are quite important for magnetic devices whose functionalities depend extremely on the magnetic reversal. This finding is very important and could be a guide for experimental research groups who are interested in growing both L10 FePt and L10 CoPt nano systems along the prescribed line joining the symmetry points. Our results could be used as guidelines for studying cracks that are formed during the growth of L10 FePt and L10 CoPt nanoparticles.

Acknowledgements

The authors would like to acknowledge university of Nebraska for providing us an access for the Holland computing center to perform our calculations. We would like to acknowledge the financial and technical support provided by Jordan University of Science and Technology. Our gratitude’s go to Professor Renat Sabirianov of university of Nebraska at Omaha and Dr. Nabil Al-Aqtash of Hashemite university/Jordan for useful discussions.
References

[1] Kabir A, Hu J, Turkowski V, Wu R, Camley R, Rahman TS. Effect of structure on the magnetic anisotropy of L10 FePt nanoparticles. Physical Review B. 2015 92(5) 054424.
[2] Alsaad A, Al-Aqtash N, Sabirianov RF. Generalized stacking fault in FePt nanoparticles and effects of extended defects on magnetocrystalline anisotropy energy. Journal of Magnetism and Magnetic Materials. 2015 374 525-9.
[3] Bell AT. The impact of nanoscience on heterogeneous catalysis. Science. 2003 299(5613) 1688-91.
[4] Stampfl C, Mannstadt W, Asahi R, Freeman A. Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Physical Review B. 2001 63(15) 155106.
[5] McHenry M, Laughlin D. Nano-scale materials development for future magnetic applications. Acta materialia. 2000 48(1) 223-38.
[6] Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of chemical research. 2009 42(8) 1097-107.
[7] Barmak K, Kim J, Lewis L, Coffey K, Toney M, Kellock A, et al. On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films. Journal of Applied Physics. 2005 98(3) 033904.
[8] Lu AH, Salabas EeL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007 46(8) 1222-44.
[9] Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. International journal of molecular sciences. 2013 14(11) 21266-305.
[10] Gubin SP. Magnetic nanoparticles: John Wiley & Sons; 2009.
[11] Lyubina J, Opahle I, Müller K-H, Gutfleisch O, Richter M, Wolf M, et al. Magnetocrystalline anisotropy in L10 FePt and exchange coupling in FePt/Fe3Pt nanocomposites. Journal of Physics: Condensed Matter. 2005 17(26) 4157.
[12] Alam A, Kraczek B, Johnson DD. Structural, magnetic, and defect properties of Co-Pt-type magnetic-storage alloys: Density-functional theory study of thermal processing effects. Physical Review B. 2010 82(2) 024435.
[13] Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000 287(5460) 1989-92.
[14] Barmak K, Kim J, Lewis L, Coffey K, Toney M, Kellock A, et al. On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films. Journal of Applied Physics. 2005 98(3) 033904.
[15] MacLaren JM, Duplessis RR, Stern RA, Willoughby S. First principles calculations of FePt, CoPt, Co 3 Pt, and Fe 3 Pt alloys. Magnetics, IEEE Transactions on. 2005 41(12) 4374-9.
[16] Han L. FePt and CoPt nanoparticles prepared by micellar method: Effects of A1→ L10 transition on oxidation resistance and magnetic properties: Ulm, Univ., Diss., 2011.
[17] Laughlin DE, Srinivasan K, Tanase M, Wang L. Crystallographic aspects of L10 magnetic materials. Scripta Materialia. 2005 53(4) 383-8.
[18] Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials. 2006 18(4) 393-403.
[19] Klemmer T, Shukla N, Liu C, Wu X, Svedberg E, Mryasov O, et al. Structural studies of L10 FePt nanoparticles. Applied Physics Letters. 2002 81(12) 2220-2.
[20] Maxwell DO. Structural and Electronic properties of β-Al2X3 (X= O, Se, Te): University of Toledo; 2011.
[21] Chinnasamy C, Huang J, Lewis L, Latha B, Vittoria C, Harris V. Direct chemical synthesis of high coercivity air-stable SmCo nanoblades. Applied Physics Letters. 2008 93(3) 032505.
[22] Aroyo M, Perez-Mato J, Orobengoa D, Tasci E, De La Flor G, Kirov A. Crystallography online: Bilbao crystallographic server. Bulg Chem Commun. 2011 43(2) 183-97.
[23] Galanakis I, Alouani M, Dreyssé H. Calculated magnetic properties of low-dimensional systems: the AuCu-and AuCu 3-type ferromagnets. Journal of Magnetism and Magnetic Materials. 2002 242 27-32.
[24] Halilov S, Perlov AY, Oppeneer P, Yaresko A, Antonov V. Magnetocrystalline anisotropy energy in cubic Fe, Co, and Ni: Applicability of local-spin-density theory reexamined. Physical Review B. 1998 57(16) 9557.
[25] Takahashi Y, Koyama T, Ohnuma M, Ohkubo T, Hono K. Size dependence of ordering in FePt nanoparticles. Journal of Applied Physics. 2004 95(5) 2690-6.
[26] Reiss G, Hütten A. Magnetic nanoparticles: applications beyond data storage. Nature materials. 2005 4(10) 725-6.
[27] Kardelky S, Gebert A, Guttleisch O, Hoffmann V, Schultz L. Prediction of the oxidation behaviour of Sm–Co-based magnets. Journal of Magnetism and Magnetic Materials. 2005 290 1226-9.
[28] Su Y-K, Qin D-H, Zhang H-L, Li H, Li H-L. Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays. Chemical physics letters. 2004 388(4) 406-10.
[29] Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials. 2006 18(4) 393-404.
[30] Entel P, Gruner M. Large-scale ab initio simulations of binary transition metal clusters for storage media materials. Journal of Physics: Condensed Matter. 2009 21(6) 064228.
[31] Yang Y. High anisotropy CoPt (L10 & L11 phase) magnetic recording media films: NATIONAL UNIVERSITY OF SINGAPORE; 2012.
[32] Frey NA, Sun S. Magnetic nanoparticle for information storage applications. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives, CRC Press, Boca Raton, USA. 2010 33-67.

[33] Manchanda P, Kumar P, Kashyap A, Lucis M, Shield JE, Mubarok A, et al. Intrinsic Properties of Fe-Substituted Magnets. Magnetics, IEEE Transactions on. 2013 49(10) 5194-8.

[34] Steneteg P. Development of molecular dynamics methodology for simulations of hard materials. 2012.

[35] Rajalingam S. Theoretical investigations of β-Ga_2O_3, β-Ga_2Se_3 and β-Ga_2Te_3 using ab-initio calculations. 2012.

[36] Nakajima N, Koide T, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nývlt M and Suzuki Y, Phys. Rev Lett. 1998 81 5229

[37] Kresse G and Hafner H. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993 47 558

[38] Kresse G and Hafner H. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994 49 14251

[39] Kresse G and Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 1996 6 15

[40] Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996 54 11169