Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management

[version 1; peer review: 5 approved]

Darlene K. Taylor¹, Kristine Holthouser², James H. Segars³, Phyllis C. Leppert⁴

¹Department of Chemistry, North Carolina Central University, Durham, NC, 27707, USA
²Department of Obstetrics and Gynecology, University of Louisville, Louisville, KY, USA
³Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
⁴Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710, USA

Abstract

Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

Keywords

leiomyoma, uterine fibroids, uterine leiomyoma, fibroids, gynecological cancers
Corresponding author: Phyllis C. Leppert (phyllis.leppert@duke.edu)

Competing interests: DKT developed LiquoGel™ with funding from NIH (grant number: NIH K12HD043446-04) and had funding from BioSpecifics Technologies Inc. to optimize the compound; North Carolina Central University has filed a patent for the product, but DKT has no pending obligations to BioSpecifics Technologies or any other company.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2015 Taylor DK et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Taylor DK, Holthouser K, Segars JH and Leppert PC. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management [version 1; peer review: 5 approved] F1000Research 2015, 4 (F1000 Faculty Rev):183 https://doi.org/10.12688/f1000research.6189.1

First published: 06 Jul 2015, 4(F1000 Faculty Rev):183 https://doi.org/10.12688/f1000research.6189.1
Introduction and context

The clinical management of uterine leiomyomas has advanced slowly and the current options remain limited. Advances in our understanding of the basic mechanisms of initiation and development over the past 5 years have elucidated the complexity of the molecular biology of leiomyomas. Although reviews of standard medical therapies have recently been published, this paper focuses on current findings in both basic and clinical research that have advanced the field and may open new strategies for treatment. Our goal is to open a dialog between clinicians and scientists to stimulate additional treatment options for women with uterine leiomyomas.

Background

Leiomyomas, also called fibroids due to their abundant fibrotic tissue, have a 70–80% cumulative incidence in the childbearing years. These benign tumors are known to clinicians as a worldwide public health problem. Estimates of treatment costs of leiomyomas in the US range from $5.9 billion to $34.4 billion annually, and includes the costs of medical and surgical treatment, amount of work time lost and complications attributable to the tumors. These data suggest the estimated costs contribute more to health care expenditures than breast, colon or ovarian cancer. The symptoms of uterine leiomyomas include bleeding with possible subsequent severe anemia, symptoms of pain and pressure leading to difficulty with bowel and bladder function and, in some cases, infertility and pregnancy complications. Notably, the tumors may arise anywhere in the uterine myometrium necessitating individualization of therapy. Large tumors may present with few if any symptoms while small fibroids may cause severe bleeding and pain. Hysterectomy is a common treatment that unfortunately negates the possibility of childbearing. Hysterectomy aside, subserosal or intramural fibroids can negatively impact fertility. Currently, the decisive treatment is hysterectomy, either via abdominal/vaginal route or increasingly through laparoscopic incisions. Myomecetomy, the surgical removal of only tumors, is a popular therapeutic option because it preserves childbearing, an important consideration for women of reproductive age. Uterine artery embolization, and MRI guided focused ultrasound and radiofrequency ablation are also suitable for some women.

Many advances have occurred over the past 5 years and are reviewed here briefly as they have changed our understanding of the nature of leiomyoma. Without this critical basic understanding, advances in non-invasive therapies cannot be developed and optimal individualized therapies adopted.

Advances in basic studies

African-Americans develop benign leiomyomas at younger ages than Caucasians. The tumors appear to decrease in their growth rates before menopause in Caucasians but no decrease in growth is apparent in African-Americans. Although this finding was published in 2008, it has not always been appreciated by active clinicians and researchers. Reported similarities between leiomyomas and keloids are consistent with recent findings. Leiomyoma cells secrete high levels of disarrayed and altered collagen fibrils, fibronectin, and other extracellular matrix components and resist apoptosis. Fibroids vary in uterine location and size up to 20 cm, or greater. One individual may have only one tumor while another might have multiple tumors. Growth is influenced by female gonadal steroids. However, the steroid-dependent growth is tumor-specific and not systemic as the same individual uterus may present multiple fibroids having differing growth patterns—some grow, some regress, and some are stable in the same time period. Thus, leiomyomas exhibit complex mechanisms of development and growth.

Mechanotransduction, the response of cells to the mechanical forces such as compression and stretch, influences the biochemical pathways in all cells that affect growth at the cellular and tissue level, including wound healing responses, growth factors, reproductive hormones and cytokines, and uterine stem cells. Three recent reviews on the topic of mechanotransduction in reproduct expansion in detail on this signaling mechanism. Increasing evidence suggests a role for mechanotransduction in leiomyoma initiation and growth. Both biomechanical and biochemical factors, and not merely one parameter of tumor, cause changes in uterine smooth muscle and leiomyoma cell behavior. These changes occur through bi-directional signaling from individual cells to their matrix microenvironment and back to fibroid cells. Catastrophic genetic alterations called chromothripsis, a sudden episode of chromosomal shattering and rearrangement, have been found in uterine fibroids. However, not all leiomyomas display these genetic alterations; thus it is not clear whether the genetic defects are a primary cause or only associated with the development of some tumors. A recent study analyzed the genetic abnormalities in 256 fibroid tumors from 120 women. In this study, 20 (7.8%) of the fibroids had a chromosomal rearrangement of 12q14-15 reflecting the rearrangement of the HMG2 allele, while 179 (69.9%) of the fibroids exhibited a mutation of mediator complex subunit 12 (MED12), a transcription factor gene. The remaining 22.3% of the tumors were reported as having either another genetic abnormality or no detectable abnormality. Similar findings were recently found in a population of 135 women from the Southern United States with 64.3% of the fibroid tissues having MED12 mutations in exon 2 including deletion mutations. Uterine smooth muscle cells respond to mechanotransduction in a different manner from cardiac muscle, which suggests that their innate qualities are unique. One interesting aspect of leiomyomas is that they are surrounded by a relatively thick wall, a pseudocapsule, which encapsulates the tumors. Investigations of mutations in the MED12 gene have demonstrated that the pseudocapsule is derived from surrounding myometrium and not the tumor itself. Understanding of pseudocapsule development may reveal new therapeutic targets.

Interestingly, while fibroids are clonal tumors, each arising from a single cell, they are grossly and molecularly heterogeneous growths, consisting of the considerable extracellular matrix that provides the characteristic property of tumor stiffness noted on clinical palpation. Leiomyomas are rare in animals and there is no universally-accepted spontaneous animal model. The Eker rat develops tumors that resemble fibroids, but the growths do not exhibit the abundant collagen characteristic of the human tissue. While murine models have been reported, they have not been widely adopted.

Currently, research in the field relies on human tissues and cultured cells from surgical specimens, but the tumor or tumor-derived cells being studied might be in a state of active growth, or alternatively senescence at the time of acquisition. This fact is a significant consideration for the field. Because of this complexity, the identification of key molecular pathways in tumor development remains elusive and presents challenges to pharmaceutical development.
Recent advances in clinical treatment
Clinical management decisions revolve around control of the heavy menstrual bleeding, including anemia which is often severe, chronic pain and pressure, or infertility. These symptoms are severe enough in approximately 25% of women with fibroids to require treatment\(^1\). Here we review pertinent advances and suggest areas of further avenues of inquiry. Several recent articles review in detail the treatment options currently available, including herbal medications\(^2\)\(^-\)\(^5\), and provide clinicians with comprehensive up-to-date information for treatment decision-making. Strategies for prevention or reduction in fibroid growth rate in high-risk women may be possible, as reviewed in Table 1\(^2\)\(^-\)\(^3\). It is worth mentioning that, in addition, multiple \textit{in vivo} and animal studies suggest that Vitamin D presents an attractive strategy to prevent uterine fibroid formation\(^3\)\(^-\)\(^4\), and hopefully clinical trials will show the efficacy of this approach.

Currently, there is no simple, effective screening method to determine if a uterine tumor is indeed benign and not malignant, prior to treatment. It is known that adenomyosis can present clinically in a manner suggestive of fibroids. Recently, it was reported that experienced physicians using preoperative ultrasonograms interpreted myometrial hyperplasia on tissue histopathology as uterine fibroids\(^4\). This study suggests that preoperative ultrasound imaging using current standard technology may be responsible for over diagnosing uterine fibroids. However, the misdiagnosis of leiomyosarcoma is of greater concern. A strategy to determine if a tumor is a leiomyosarcoma is urgently needed. MRI techniques demonstrate the ability to differentiate malignant from benign tumors\(^4\)\(^-\)\(^5\) but have not yet been validated in distinguishing leiomyosarcoma from leiomyoma. While important, this approach is clearly not cost-effective. Using shear wave elastography, a leiomyosarcoma was accurately diagnosed preoperatively, based on the degree of stiffness throughout the tumor\(^4\).

Study	Study design	n	Treatment period	Treatment regimen/dose	Main study results	Statistical significance	Summary of effects
Green tea extract (epigallocatechin gallate:EGCG)	In vivo Xenograft Tumors in mice	n.a.	8 weeks	Placebo (H\(_2\)O)	TFV 288±57	P<0.05	EGCG significantly reduced TFV vs. placebo in nude mouse model
				EGCG 1.25mg/d	129±54		
Zhang et al. 2010\(^2\)							
Zhang et al. 2010\(^2\)							
Roshdy et al. 2013\(^5\)		33	4 months	Placebo	% TFV +24.3	P≤0.05	EGCG significantly reduced TFV, while TFV increased with placebo. Reduced symptom severity, improved QOL and anemia
				EGCG 800mg/d	% TFV -32.6	P<0.0001	
Curcumin	In vitro	n.a.	48 hours	No curcumin, Curcumin 5–40μM	Fibroid cell growth: All decreased	P<0.05	Curcumin decreased fibroid cell proliferation at all concentrations. 20μM curcumin inhibits fibroid cells, insignificant impact on matched myometrial cells P<0.05
Malik et al. 2009\(^5\)							
Tsuiji et al. 2011\(^5\)		n.a.	3 days	DMSO (0.1%) Curcumin 100–500μM	Curcumin >200μM inhibits fibroid cell growth	P<0.01	Curcumin over 200μM significantly inhibited cell growth compared to control via PPARγ activation in fibroid cells
Depot-medroxyprogesterone acetate (DMPA)	Cohort	20	6 months	DMPA 150mg/month	TFV -33%	P<0.001	DMPA significantly reduces UF volume in 6 months
Lumbiganon et al. 1996\(^5\)	CC	910	n.a.	Controls (n=2709) DMPA use 25.6% OR [95% CI] 0.44 (0.36–0.55)	DMPA significantly protective against UF volume: persists >10 yrs after last dose		
Venkatachalam et al. 2004\(^5\)	Cohort	20	6 months	DMPA use 13.3%			

Page 4 of 12
Study	Study design	n	Treatment period	Treatment regimen/dose	Main study results	Statistical significance	Summary of effects
Progestin releasing intrauterine system (Levonorgestrel-releasing intrauterine system: LNG-IUS)	RCT	59	12 months	LNG-IUS vs COC	PBAC score (%)	p=0.02	LNG-IUS more effective than COC in reducing menstrual bleeding. Change in fibroid diameter did not occur.
Sayed et al. 2011	RCT	59	12 months	LNG-IUS vs COC	PBAC score (%)	p=0.02	LNG-IUS more effective than COC in reducing menstrual bleeding. Change in fibroid diameter did not occur.
Combined Oral Contraceptive Pills (COC)	MA	11 cohort and CC studies	n.a.	COC use	RR [95% CI]	n.a.	Meta-analysis indicates current use of COC does not increase fibroid morbidity. Study heterogeneity present. Conclusion: COCs do not increase risk for fibroids and thus COC should be prescribed when indicated.
Qin et al. 2013	MA	11 cohort and CC studies	n.a.	COC use	RR [95% CI]	n.a.	Meta-analysis indicates current use of COC does not increase fibroid morbidity. Study heterogeneity present. Conclusion: COCs do not increase risk for fibroids and thus COC should be prescribed when indicated.
Sabry et al. 2013	CC	154	n.a.	Measured serum 25-(OH) vitamin D correlated with fibroid number and volume as determined by TVUS	Lower serum 25-(OH) vitamin D levels associated with occurrence of fibroids correlates with volume	P=0.01 f=0.31 P=0.002	Lower serum vitamin D correlates inversely with total uterine volume in black subjects, but not significant in whites.
Halder et al. 2014	In vivo Xenograft nude mouse model and uterine fibroid cells	n.a.	Paracalcitrol 300ng/kg/day or 1, 25 di-hydroxy vitamin D 500ng/kg/day	4 weeks	Reduced cell growth 9%	P-calcitrol, P<0.05	Reduced tumor size, but paracalcitrol was more effective.
			Vehicle controls		Reduced cell growth 1%		
					Reduced fibroid size		
					Collagen reduced in culture		

Abbreviations: CC, case control; COC, combined oral contraceptive pill; DMSO, dimethyl sulfoxide; DMPA, depot medroxyprogesterone acetate; EGCG, epigallocatechin gallate; LNG-IUS, levonorgestrel-releasing intrauterine system; OR, odds ratio; PBAC, Pictorial Pain, Bleeding Assessment Chart; PPARγ, peroxisome proliferator-activated receptor gamma; QOL, quality of life; RR, relative risk; TFV, Total fibroid volume; TVUS, transvaginal ultrasound; UF, uterine fibroid.
If this modality were confirmed in larger studies, it would be a major breakthrough for the field. Specifically, power morcellation has been restricted as a modality, even though it reduces complications23–25, but a reliable pre-treatment tool to diagnose leiomyosarcoma would renew interest in that method.

Ulipristal acetate was developed as a selective progesterone receptor modulator with pure progesterone receptor antagonistic activity and minimal antiglucocorticoid effects. Ulipristal is currently marketed as Esmya and was approved by the FDA for 2010 for emergency contraception. It is approved in Europe and Canada for pre-surgical treatment of fibroids. One or three month courses of ulipristal acetate has been shown to induce apoptosis and to decrease proliferation of uterine fibroid cells, and to decrease fibroid size by a variable amount. No relevant affinity for estrogen, androgen or progesterone receptors (ER, AR or PR) has been observed. Several randomized trials demonstrated that ulipristal decreased the volume of leiomyomas significantly in comparison to controls40–51. Ulipristal has also shown to induce amenorrhea40–51. Ulipristal does not induce changes in gonadotropin releasing hormone (GnRH) levels and does not reduce serum estradiol levels below the 50 pg/dl levels necessary to maintain bone mineral density52,53. For many women the advantage of this non-surgical treatment is the ability to preserve fertility. The first study of pregnancy after completed ulipristal treatment was recently published54. Of 21 women who had stopped ulipristal and attempted pregnancy, a pregnancy occurred in 15 women (71\%) with 18 pregnancies during the study period with no regrowth of the leiomyomas. Twelve pregnancies produced healthy live infants and 6 resulted in spontaneous abortion (miscarriage)54. Other selective progesterone modulators, such as proellex, are currently being evaluated and Elagolix, an orally administered formulation of GnRH, is currently being studied in clinical trials.

Possible new therapies on the horizon

A purified bacterial collagenase from Clostridium histolyticum (CCH) has recently been shown in ex vivo leiomyoma tissue to significantly degrade the altered collagen when injected into tumor tissue. When the concentration of the CCH was increased and the injection volume kept small, the penetration of the CCH into the myometrium was limited and indicates that, on refinement of the dose, penetration into the myometrium could be eliminated. CCH is inhibited by serum proteins, a fact which also mitigates the concern for damage to the myometrium. Most importantly, our group in collaboration with Farshid Guilak and his colleagues at Duke University have shown that this collagenase (already FDA approved for use in the treatment of hand contractures due to collagen cord formation and for a disease of the male penis due to abnormal collagen formation), clearly reduced tissue stiffness in leiomyomas54. This reduced stiffness would not only reduce the bulk of the tumor, it is theoretically capable of altering mechanical signaling pathways in the leiomyoma, overcoming the resistance to apoptosis and allowing the cells to die. Clinical studies have demonstrated that the collagenase does not affect blood vessels or nerves. The use of CCH, alone or with other drugs such as a selective progesterone receptor modulator, could potentially be utilized as an injectable therapy for uterine leiomyomas 3–7 cm in size and could be most useful in treating submucosal leiomyomas, the type most associated with infertility52.

The development of materials designed to deliver and protect drug therapeutics by direct injection to the tumor site is an area of active research. Several such drug delivery materials that change phase in response to temperature changes are currently in development as they offer many advantages over conventional drug delivery systems55. These thermoresponsive materials form a solution in aqueous media that reversibly transitions to a gel at physiological temperatures. The system often degrades in a defined period of time, thereby eliminating the need for surgical explantation. In its solution state, the delivery system readily mixes with therapeutic agents to afford a drug formulation that can be administered by a single injection. The injected formulation is a stable solution that transforms into a gel depot at the site of injection as a result of an elevation in temperature.

The marriage of injectable thermoresponsive delivery systems with the unmet need for viable non-surgical options for the management of uterine fibroids offers several advantages. Creating a drug depot inside the fibroid by local injection would impede diffusion and distribution of the drug away from the injected fibroid, prolong release, delay inactivation, and therefore reduce the need for repeat injections. This treatment approach for women wanting to maintain fertility yet seeking relief from fibroid symptoms could be administered by skilled individuals under ultrasound guidance in a doctor’s office. A few examples of the most promising of these thermoresponsive delivery systems are given below (Table 2).

One material developed by our group and listed in Table 2 is particularly worth noting. LiquoGelTM delivers drugs similar to other thermoresponsive delivery systems but distinguishes itself from other materials in that it contains multiple functional groups that enable chemical modifications to covalently link therapeutics. Thus, multiple drugs can be delivered at one time. With the advent of the means to deliver drugs or drug combinations directly to leiomyoma tumors, the potential of reduction and perhaps eradication of tumors prior to the need for surgical or other major interventions (such as focused ultrasounds or uterine artery embolization) could be realized. Multiple drugs could be given as combination chemotherapy, such as an anti-fibrotic agent combined with a selective progesterone receptor modulator, or sequentially, for the benefit of patient care. It could be possible to deliver gene therapy in this manner as well55–58. A number of the more conventional drug therapies for uterine fibroids could be potentially entrapped or covalently linked to LiquoGelTM to afford delivery with potentially reduced side effects, improved efficacy, and controlled release profiles59.

Implications for clinical practice

Even though treatments for fibroids can be developed currently without a complete elucidation of their etiology and molecular biology, ultimately, if the molecular mechanisms for fibroid development and of myometrial proliferation are understood, additional nonsurgical therapeutic interventions may be forthcoming. Taken together, we have evidence that uterine leiomyomas grow due to cell proliferation, but even more because of excessive deposition of altered extracellular matrix due to the persistence of secreting cells. There is a growing appreciation of the complex pathways leading to the formation of uterine leiomyomas which will lead to new therapeutic approaches. Could drug therapy, either a single drug or most likely
Table 2. Thermoresponsive biodegradable injectable drug delivery systems.

	AtriGel®	ReGel™	LiquoGel™
Description	Polymer (1 unit) for physically delivering entrapped pharmaceuticals	Copolymer (3 units) for physically delivering entrapped pharmaceuticals	Copolymer (4 units) for physically delivering entrapped and/or covalently linked pharmaceuticals
Properties	Water-insoluble Biodegradable Liquid: < 0°C – 30°C Gel: 37°C	Water soluble Biodegradable Liquid: < 0°C – 30°C Gel: 37°C	Water soluble Biodegradable Liquid: <4°C – 30°C Gel: 37°C
Mechanism of Drug Release	Diffusion and polymer erosion	Diffusion and polymer erosion	Diffusion and polymer erosion
Drug Release Delay	4–6 weeks	6–8 weeks	12–15 hours
Composition	Polymer platform consisting of one of the following: PLA1, PLG2, PLC3, PAH4	Triblock copolymer of: PLGA-PEG-PLGA	4 Components: Acrylic Acid Polyglycerol N-Isopropylalanine HEMA-LaC5, PAH5
Recent applications	Testosterone reduced: Clinical studies using a depot containing 22.5 mg leuprolide maintained an effective suppression of serum testosterone (50 ng/dL) for more than 3 months.	Cancer: Single drugs were incorporated including paclitaxel, porcin growth hormone, glucagon-like peptide-1 (GLP-1), interleukin 2 (IL-2) and G-CSF	Uterine Fibroids: In Development

Notes: 1poly(DL-lactide); 2poly(DL-lactide-co-glycolide); 3poly(DL-lactide-co-caprolactone); 4polyacryldides; 5hydroxyethyl methacrylate-polylactide; 6Hyperbranched polyglycerol. Modified from reference 23.

Combining chemotherapy, rival the effectiveness of surgical procedures yet preserve the uterine childbearing function? If realized, could such a therapy be administered during a routine visit to the doctor or clinic? Addressing these questions presents unique opportunities at the interface of molecular medicine and clinical care.

The optimal treatment remains one that reduces the bulk of the leiomyoma and reduces blood loss while preserving the ability to have children. Clinician, doctors, patients, and researchers should continue to work together to develop cost-effective and efficacious solutions to leiomyoma disease that are compatible with the woman’s life-style, reducing or eliminating hospital stay and lengthy recovery time11.

Competing interests

DKT developed LiquoGel™ with funding from NIH (grant number: NIH K12HD043446-04) and had funding from BioSpecifics Technologies Inc. to optimize the compound; North Carolina Central University has filed a patent for the product, but DKT has no pending obligations to BioSpecifics Technologies or any other company.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. F Baird DD, Dunson DB, Hill MC, et al.: High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol 2003; 188(1): 100–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
2. C Cardozo ER, Clark AD, Banks NK, et al.: The estimated annual cost of uterine leiomyomas in the United States. Am J Obstet Gynecol 2012; 206(3): 211.e1–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation
3. C Cook H, Ezzati M, Segars JH, et al.: Impact of uterine leiomyomas on reproductive outcomes. Minerva Ginecol 2010; 62(3): 225–36. PubMed Abstract | Publisher Full Text | F1000 Recommendation
4. P Peddada SD, Laughin SK, Miner K, et al.: Growth of uterine leiomyomatosis among premenopausal black and white women. Proc Natl Acad Sci U S A 2008; 105(50): 19887–92. PubMed Abstract | Publisher Full Text | F1000 Recommendation
5. L Leppert PC, Cathérin WH, Segars JH: A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol 2006; 195(2): 415–20. PubMed Abstract | Publisher Full Text | F1000 Recommendation
6. C Cathérin WH, Leppert PC, Stenmark NH, et al.: Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 2004; 40(3): 204–17. PubMed Abstract | Publisher Full Text | F1000 Recommendation
7. C Carrio DA, Mestani S, Barker NM, et al.: Proteoglycans of uterine fibroids and keloid scars: similarity in their proteoglycan composition. Biochem J 2012; 443(2): 361–8. PubMed Abstract | Publisher Full Text
8. L Leppert PC, Baginski T, Prupas C, et al.: Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril 2004; 82(Suppl 3): 1182–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation
9. F Fujiwara C, Castellot JJ Jr: Matrix production and remodeling as therapeutic targets for uterine leiomyoma. J Cell Commun Signal 2014; 8(3): 179–94. PubMed Abstract | Publisher Full Text | F1000 Recommendation
10. Thorne JT, Segal TR, Chang S, et al.: Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 2015; 92(1): 25. PubMed Abstract | Publisher Full Text | F1000 Recommendation
11. Leppert PC, Jaysel FL, Segars JH: The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int 2014; 2014: 783289.

12. Jorge S, Chang S, Barzilai JJ, et al.: Mechanical signaling in reproductive tissues: mechanisms and importance. Reprod Sci. 2014; 21(9): 1093–107.

13. Islam MS, Proct O, Stormont P, et al.: Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril. 2013; 100(1): 178–93.

14. Omo M, Bulun SE, Manyama T: Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod. 2014; 91(6): 149.

15. Moravek MB, Yin P, Omo M, et al.: Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Hum Reprod Update. 2015; 21(1): 1–12.

16. Mehnie M, Kaasinen E, Mäkinen N, et al.: Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013; 369(1): 43–53.

17. Markowski DN, Helmke BM, Bartnitzke S, et al.: Inhibitory effect of curcumin on uterine leiomyoma pseudocapsule and potential biological impact on uterine fibroid biomechanics and mechanical signaling in reproductive systems. Biol Reprod. 2014; 91(6): 1556–67.

18. Jorge S, Chang S, Barzilai JJ, et al.: 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012; 86(4): 116.

19. Halder SK, Osteen KG, Al-Hendy A, et al.: 1,25-dihydroxyvitamin D3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Reprod. 2013; 89(6): 150.

20. Halder SK, Chasan C, Al-Hendy A: 1,25-dihydroxyvitamin D3 treatment inhibits tumor formation in a murine model of uterine fibroids. Biol Reprod. 2012; 86(4): 116.

21. Tommaso S, Massari S, Malvasi A, et al.: Selective genetic analysis of myoma pseudocapsule and potential biological impact on uterine fibroid medical therapy. Expert Opin Ther Targets. 2015; 19(1): 7–12.

22. Evertt JL, Wolf DC, Howe SR, et al.: Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995; 146(6): 1559–67.

23. Taylor DK, Leppert PC: Treatment for Uterine Fibroids: Searching for Effective Drug Therapies. Drug Discov Today Ther Strateg. 2012; 19(1): 41–69.

24. Singh SS, Belland L: Contemporary management of uterine fibroids: focus on emerging medical treatments. Curr Med Res Opin. 2015; 31(1): 1–12.

25. Patel A, Malik M, Britten J, et al.: Alternative therapies in management of leiomyomomas. Fertil Steril. 2014; 102(3): 649–55.

26. Guo XC, Segars JH: The impact and management of fibroids for fertility: an evidence-based approach. Obstet Gynecol Clin North Am. 2012; 39(4): 521–33.

27. Zhang D, Al-Hendy M, Richard-Davis G, et al.: Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am J Obstet Gynecol. 2010; 202(3): 289.e1–9.

28. Rosdhy E, Rajaraman V, Maitra S, et al.: Treatment of symptomatic uterine fibroids with green tea extract: a pilot randomized controlled clinical study. Int J Womens Health. 2013; 5: 477–86.

29. Malik M, Mendoza M, Payson M, et al.: Curcumin, a nutritional supplement with antiinflammatory activity, enhances leiomyoma cell apoptosis and decreases fibroinjection expression. Fertil Steril. 2009; 91(S Suppl): 2177–84.

30. Halder SK, Osteen KG, Al-Hendy A, et al.: 1,25-dihydroxyvitamin D3 reduces tumor formation in a murine model of uterine fibroids. J Clin Endocrinol Metab. 2015; 100(4): E572–82.

31. Halder SK, Chasan C, Al-Hendy A: 1,25-dihydroxyvitamin D3 treatment inhibits tumor formation in a murine model of uterine fibroids. Biol Reprod. 2012; 86(4): 116.

32. Evertt JL, Wolf DC, Howe SR, et al.: Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol. 1995; 146(6): 1559–67.

33. Sayed GH, Zaherah MS, El-Nashar SA, et al.: A randomized clinical trial of a levonorgestrel-releasing intrauterine system and a low-dose combined oral contraceptive for fibroid-related Menorrhagia. Int J Gynaecol Obstet. 2011; 112(2): 126–30.

34. Qiu J, Yang T, Kong F, et al.: Oral contraceptive use and uterine leiomyoma risk: a meta-analysis based on cohort and case-control studies. Arch Gynecol Obstet. 2013; 288(1): 139–48.

35. Sabry M, Halder SK, Al-Hendy A, et al.: Serum vitamin D level inversely correlates with uterine fibroid volume in different ethnic groups: a cross-sectional observational study. Int J Womens Health. 2013; 5: 93–100.

36. Halder SK, Chasan C, Al-Hendy O, et al.: Paricalcitol, a vitamin D receptor activator, inhibits tumor formation in a murine model of uterine fibroids. Biol Reprod. 2012; 86(4): 116.

37. Al-Hendy A, Bacht M: Can vitamin D reduce the risk of uterine fibroids? Womens Health (Lond Engl). 2014; 10(4): 353–8.

38. Al-Hendy A, Diamond MP, El-Sohemy A, et al.: 1,25-dihydroxyvitamin d3 regulates expression of sex steroid receptors in human uterine fibroid cells. J Clin Endocrinol Metab. 2015; 100(4): E572–82.

39. Halder SK, Osteen KG, Al-Hendy A: 1,25-dihydroxyvitamin D3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Reprod. 2013; 89(6): 150.

40. Halder SK, Chasan C, Al-Hendy A: 1,25-dihydroxyvitamin D3 treatment inhibits tumor formation in a murine model of uterine fibroids. Biol Reprod. 2012; 86(4): 116.

41. Halder SK, Goodwin JS, Al-Hendy A: 1,25-Dihydroxyvitamin D reduces TG-induced fibrosis-related gene expression in human uterine leiomyomas. J Clin Endocrinol Metab. 2011; 96(4): E754–62.

42. Lieng M, Berner E, Busund B, et al.: Characterization of uterine leiomyoma from malignant myometrial tumours using MR imaging. Eur Radiol. 2013; 23(8): 2306–14.

43. Lieng M, Berner E, Busund B, et al.: Characterization of uterine leiomyoma from malignant myometrial tumours using MR imaging. Eur Radiol. 2013; 23(8): 2306–14.

44. Lieng M, Berner E, Busund B, et al.: Characterization of uterine leiomyoma from malignant myometrial tumours using MR imaging. Eur Radiol. 2013; 23(8): 2306–14.

45. Lieng M, Berner E, Busund B, et al.: Characterization of uterine leiomyoma from malignant myometrial tumours using MR imaging. Eur Radiol. 2013; 23(8): 2306–14.
53. Chabbert-Buffet N, Piniaux-Kairis A, Bouchard P: Effects of the progesterone receptor modulator VA2914 in a continuous low dose on the hypothalamic-pituitary-ovarian axis and endometrium in normal women: a prospective, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2007; 92(9): 3582–9.

54. Luyckx M, Squifflet J, Jadoul P, et al.: First series of 18 pregnancies after ulipristal acetate treatment for uterine fibroids. Fertil Steril. 2014; 102(5): 1404–9.

55. Brunengraber LN, Jayes FL, Loppert PC: Injectable Clostridium histolyticum collagenase as a potential treatment for uterine fibroids. Reprod Sci. 2014; 21(12): 1452–9.
Open Peer Review

Current Peer Review Status: ✓ ✓ ✓ ✓ ✓ ✓

Version 1

Reviewer Report 14 July 2015

https://doi.org/10.5256/f1000research.6634.r9486

© 2015 Ciarmela P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✓ Pasquapina Ciarmela
Polytechnic University of Marche, Ancona, Italy

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 July 2015

https://doi.org/10.5256/f1000research.6634.r9356

© 2015 Tinelli A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✓ Andrea Tinelli
Department of Gynecology and Obstetrics, Vito Fazzi Hospital, Lecce, Italy

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 July 2015

https://doi.org/10.5256/f1000research.6634.r9355
Alicia Armstrong
Contraceptive Discovery and Development Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 July 2015
https://doi.org/10.5256/f1000research.6634.r9354

Ayman Al-Hendy
Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, 30912, USA

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 06 July 2015
https://doi.org/10.5256/f1000research.6634.r9353

Donna Day Baird
Laboratory of Women's Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA

© 2015 Armstrong A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2015 Al-Hendy A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2015 Baird D. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.