Topological Susceptibility with Three Flavors of Staggered Quarks

MILC Collaboration: C. Aubin a, C. Bernard a, Brian Billetter b, C. DeTar b,*, Steven Gottlieb c, E.B. Gregory d, U.M. Heller e, J.E. Hetrick f, J. Osborn b, R.L. Sugar g, and D. Toussaint d

aDepartment of Physics, Washington University, St. Louis, MO 63130, USA
bPhysics Department, University of Utah, Salt Lake City, UT 84112, USA
cDepartment of Physics, Indiana University, Bloomington, IN 47405, USA
dDepartment of Physics, University of Arizona, Tucson, AZ 85721, USA
eAmerican Physical Society, One Research Road, Box 9000, Ridge, NY 11961, USA
fPhysics Department, University of the Pacific, Stockton, CA 95211, USA
gDepartment of Physics, University of California, Santa Barbara, CA 93106, USA

As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light sea quark flavors. Our study is done in the presence of 2+1 flavors of dynamical quarks in the improved staggered fermion formulation. Variance-reduction techniques provide better control of statistical errors. New results from staggered chiral perturbation theory account for taste-breaking effects in the low-quark mass behavior of the susceptibility, thereby reducing scaling violations from this source. Measurements over a range of quark masses at two lattice spacings permit a rough continuum extrapolation to remove the remaining lattice artifacts. The results are consistent with chiral perturbation theory with the correct flavor counting.

1. INTRODUCTION

The continuum Euclidean partition function for QCD, restricted to topological charge sector \(\nu \) with \(n_f \) degenerate flavors is

\[
Z_\nu = \int [dU] \exp[S(U)] \det[M(U)]^{n_f}
\]

\[
\det[M(U)] = m^{n_f} \prod_n (\lambda_n^2 + m^2)
\]

(1)

where \(U \) is the gauge field, \(S(U) \), the Yang-Mills action, and \(\lambda_n \) are the nonzero eigenvalues of the Dirac operator \(D(U) \), where \(M(U) = D(U) + m \). As the quark mass \(m \) vanishes, nonzero values of \(\nu \) are suppressed and the topological susceptibility

\[
\chi = \langle \nu^2 \rangle /V = \sum_\nu \nu^2 Z_\nu /Z
\]

for Euclidean four-volume \(V \) vanishes. Chiral perturbation theory predicts

\[
1/\chi = 2/\mu f^2 \sum_i n_i/m_i
\]

(2)

for several flavors of degeneracy \(n_i \) and mass \(m_i \).

The lattice partition function for staggered fermions has a similar form. But to compensate for the unwanted four-fold “taste” degeneracy, it is common to replace \(\det[M(U)] \) by \(\det[M(U)]^{n_f/4} \) (fourth-root trick) with the hope that the continuum limit recovers Eq. (1). Two principal lattice artifacts modify Eq. (2). First, topological charge counting becomes ambiguous on the scale of the lattice spacing. Second, the spectrum of eigenvalues of the fermion matrix \(M(U) \) is modified so that would-be zero modes are shifted away from zero and the four-fold taste degeneracy required by the fourth-root trick is only approximate.
We work to quadratic order in the fields and in the mean-field approximation and follow Leutwyler and Smilga [11] to obtain the susceptibility with a degeneracy of \(n_i \) flavors of four tastes each:

\[
\chi = \langle \nu^2 \rangle / V = \frac{f^2/16}{\sum_{i=1}^{4} n_i (1/m_{t,I}^2 + 1/m_0^2)}
\]

where the bare flavor-neutral, taste-singlet pseudoscalar masses are

\[
m_{t,I}^2 = 2\mu m_i + a^2 \Delta I
\]

in terms of the bare quark masses \(m_i \) and the taste splitting \(\Delta I \). To eliminate the taste degeneracy, leaving only two degenerate \(u \) and \(d \) quarks and one \(s \) quark we put \(n_{ud} = 1/2 \) and \(n_s = 1/4 \), giving, finally

\[
\chi = \frac{f^2 m_{t,I}^2/8}{1 + m_{s,I}^2/2m_{ss,I}^2 + 3m_{t,I}^2/2m_0^2}
\]

This leading-order formula is identical to that of continuum chiral perturbation theory, except that it requires the taste-singlet meson masses. It interpolates [6] between the perturbative and quenched regimes and reproduces the Witten-Veneziano formula at infinite meson mass [7].

3. SIMULATION AND ANALYSIS

The topological charge density was measured as described in [2] on an ensemble of lattices (quenched and with up, down, and strange improved Asqtad staggered quarks) of two lattice spacings: “coarse” \((a \approx 0.125 \text{ fm})\) and “fine” \((a \approx 0.09 \text{ fm})\), as listed in the upper and lower tables respectively [8]. Included in this analysis is a new fine-lattice \(40^3 \times 96\) ensemble with \(u \) and \(d \) quark masses at 1/10 the nominal strange quark mass.

To determine the susceptibility, we use a variance reduction technique [9], based on the observation that with large lattice volumes we gain statistically by writing the susceptibility as a local, intensive observable, rather than a global observable:

\[
\langle \nu^2 \rangle / V = \sum_r C_{\text{meas}}(r),
\]
where the measured topological charge density correlation function, is

\[C_{\text{meas}}(r) = \langle \rho(0) \rho(r) \rangle \]

and \(\rho \) is the topological charge density operator.

The correlator has the asymptotic form \[^{10}\]

\[C_{\text{fit}}(r) = b_0 D(m_\eta, r) + b_{\eta'} D(m_{\eta'}, r) + \ldots \]

where \(D(m, r) \) is the Euclidean scalar propagator.

We fit the correlator to this form for large \(|r| \) and use it to model the large distance behavior, thereby reducing the variance due to contributions at large \(|r| \):

\[\langle \nu^2 \rangle / V = \sum_{|r| \leq |r_{\text{cut}}|} C_{\text{meas}}(r) + \sum_{|r| > |r_{\text{cut}}|} C_{\text{fit}}(r). \]

4. RESULTS

As we have seen, at lowest order in chiral perturbation theory the staggered fermion artifact is removed by writing the susceptibility as a function of the taste-singlet pion mass, rather than the Goldstone pion mass. The improvement can be seen by comparing Figs. 1 and 2.

Residual lattice artifacts come from the lattice operator definition of topological charge density.

It is plausible that they scale as \(O(a^2) \). The continuum extrapolation of Fig. 2 at fixed abscissa is based on that assumption.

This work is supported by the US NSF and DOE. Computations were done with Fermilab/SciDAC resources and at NCSA. Gauge configurations were generated at SDSC, ORNL, PSC, and NCSA.

REFERENCES

1. See, for example, H. Leutwyler and A. Smilga, Phys. Rev. D 46 (1992) 5607.
2. C. Bernard et al., Phys. Rev. D 68 (2003) 114501
3. E. Follana, A. Hart and C. T. H. Davies, arXiv:hep-lat/0406010; S. Dür, C. Hoelbling and U. Wenger, arXiv:hep-lat/0406027
4. B. Billeter, C. DeTar, and J. Osborn, arXiv:hep-lat/0406032
5. W. J. Lee and S. R. Sharpe, Phys. Rev. D 60 (1999) 114503; C. Aubin and C. Bernard, Phys. Rev. D 68 (2003) 034014 and 074011.
6. S. Dür, Nucl. Phys. B 611 (2001) 281
7. E. Witten, Nucl. Phys. B 156 (1979) 269; G. Veneziano, Nucl. Phys. B 159 (1979) 213.
8. C. Aubin et al., arXiv:hep-lat/0402030
9. MILC collaboration (in preparation).
10. E. V. Shuryak and J. J. M. Verbaarschot, Phys. Rev. D 52 (1995) 295.