Characteristics of strong ground motion attenuation in the 2019 M_w 5.8 Changning earthquake, Sichuan, China

J. J. Hu ∗ · H. Zhang · J. B. Zhu · G. H. Liu

Abstract A moderate magnitude earthquake with M_w 5.8 occurred on June 17, 2019, in Changning County, Sichuan Province, China, causing 13 deaths, 226 injuries, and serious engineering damage. This earthquake induced heavier damage than earthquakes of similar magnitude. To explain this phenomenon in terms of ground motion characteristics, based on 58 sets of strong ground motions in this earthquake, the peak ground acceleration (PGA), peak ground velocity (PGV), acceleration response spectra (Sa), duration, and Arias intensity are analyzed. The results show that the PGA, PGV, and Sa are larger than the predicted values from some global ground motion models. The between-event residuals reveal that the source effects on the intermediate-period and long-period ground motions are stronger than those on short-period ground motions. Comparison of Arias intensity attenuation with the global models indicates that the energy of ground motions of the Changning earthquake is larger than those of earthquakes with the same magnitude.

Keywords Changning earthquake · Ground motion attenuation · Residual analysis · PGA · PGV · Response spectra · Duration

1 Introduction

At 22:55:37 (Beijing time) on June 17, 2019 (14:56 UTC), an earthquake with M_w 5.8 occurred in Changning County in the southeast of Sichuan Province, China. According to the report from the China Earthquake Networks Center (CENC) (http://www.cenc.ac.cn/), the epicenter was located in Changning County (28.34° N, 104.90° E) approximately 260 km from the city of Chengdu (CEA 2019). The most serious structural damage occurred in Changning County, especially in the village of Fuxing (http://www.iem.net.cn/). Since December 2018, the occurrence probability of earthquake for $M_s > 5$ has gradually increased in southeast Sichuan. On December 16, 2018, an earthquake with M_w 5.5 (M_s 5.7) occurred in Wenxing County, and on January 16, 2019, an earthquake with M_w 5.1 (M_s 5.3) struck Gongxian County; epicenters of these two earthquakes are very close to that of the Changning earthquake (see Fig. 1) (http://news.cea.gov.cn/). The M_w 5.8 (M_s 6.0) Changning earthquake occurred at a focal depth of 16 km coming from CENC, while Yi et al. (2019)’s seismic inversion results indicate that the focal depths of this series of earthquakes range from 0 to 10 km. Seismic inversion of Yi’s result is adopted in this paper. The main shock was followed by 44 aftershocks that persisted until June 24; among them, there were three M_w 5.0–5.9 aftershocks and four M_w 4.0–4.9 aftershocks as shown in Fig. 1 (http://www.cea.gov.cn/). On the basis of the regional tectonic background, the Changning earthquake was caused by a secondary fault distinct from the
seismogenic faults of the Lushan earthquake and Wenchuan earthquake, which occurred within the Longmenshan thrust fault zone (Yin and Guo 2019).

The fault zone of the Changning earthquake ranged from Shuanghe County to Gongxian County and was oriented roughly northwest-southeast (see Fig. 2). Public buildings, including the schools, hospitals, and government buildings, within the fault zone are mainly reinforced concrete structures, whereas the civil buildings are mainly masonry and masonry-timber structures and a small number of timber structures. Based on field survey, representative structures in the fault zone that were seriously damaged are shown in Fig. 2. Severe ground shaking caused heavy damage to many reinforced concrete buildings, masonry structures, and timber houses. Especially, the failure of filled walls of frame structures is commonly seen (Dai and Yang 2019).

The focal mechanism parameters are given in Table 1 (https://earthquake.usgs.gov/).

As shown in Fig. 2, the nonstructural components, such as the filled walls and dropped ceilings of frame structures, were severely damaged during the earthquake, especially for a large number of rural masonry and timber buildings without seismic design. The main damage failure mode to timber structures in the Changning earthquake was collapse of roofs, cracking, and dislocation of walls (Dai and Yang 2019).

Compared with the Yibin earthquake, Xingwen earthquake, Xiahe earthquake, and Hualian earthquake, the number of deaths and injuries is relatively high in the Changning earthquake, as shown in Table 2 (https://www.cea.gov.cn/cea/dzpd/dzzt/index.html). Thirteen people died, and 226 people were injured during the Changning earthquake, which is similar to the casualties of the Hualien earthquake, but the magnitude of the Hualien earthquake was 6.5, while that of the Changning earthquake was 6.0. The casualties from the Changning earthquake were far more numerous than those from other earthquakes with similar magnitude. Strong motions of the Changning main shock were recorded by the China Strong Motion Network Center (CSMNC). Fifty-eight groups of three-component accelerograms were recorded during the main shock (see the electronic Supplemental Table). The triggered strong-motion stations are mainly located in Sichuan Province at Joyner-Boore distances of 0–394 km. Among these stations, the Joyner-Boore distances of seven strong-motion stations are within 100 km. The largest peak ground acceleration (PGA) of 599 cm/s² during the main shock was recorded in station 51GXT, which is located at a soil site. Of all the 58 strong-motion stations, 49 stations are installed at soil sites, while 9 stations are installed at rock sites. In this paper, to understand the heavy damage caused by the Changning earthquake in terms of the ground motion characteristics, we studied a dataset of strong-motion observations and presented an overview of these data from this event. The characteristics of the strong-motion records are analyzed in terms of the amplitudes,
durations, and spectra of the ground motions. The total residual, within-event residual, and between-event residual are calculated based on the BSSA14 model, CB12 model, and AS16 model (Boore et al. 2013; Campbell and Bozorgnia 2012; Afshari and Stewart 2016). Ultimately, from the perspective of ground motion characteristics, the cause of high amplitude of ground motion during the Changning earthquake from the source, path, and site effects was studied.

2 Strong-motion dataset

The strong-motion data were obtained from the CSMNC (http://www.smsd-iem.com). We select 58 sets of three-component records from free-field stations in Sichuan Province recorded by digital instrument. To achieve more reliable PGAs, PGVs, and PGDs, all 58 sets of three-component records were processed with a bandwidth of 0.1–30.0 Hz by using a Butterworth filter.

Table 1 Earthquake parameters of the Changning main shock and the fault geometry

Parameter	Value	Parameter	Value
Moment magnitude	5.81	Strike (degree)	314
Rupture length (km)	25	Dip (degree)	65
Rupture width (km)	15	Rake (degree)	62
Hypocenter latitude (km)	28.34° N	Fault type	Reversed strike slip
Hypocenter longitude (km)	104.93° E		
Hypocenter depth (km)	11.5		

![Fig. 2 Representative damaged structures in the fault zone. Inner graphs labeled “A” represent schools and “B” is a hospital; they were designed based on the seismic design code. Graph “C” represents residential buildings which had not been designed for earthquake resistance. Graph “D” represents high-rise building which is designed based on the seismic design code. The rectangle is the prediction of the fault plane on the surface given by Shan et al. (2009) |
and baseline adjustment. To obtain more useful information, the values recorded in the Changning earthquake were compared with the estimated values from ground motion models (GMMs) of the NGA-West2 project. The Joyner-Boore distances (R_{jb}) were calculated and used in the GMM of the NGA-West 2 project. The locations of the strong-motion stations used in this study are shown in the Supplemental Material Figure.

Figure 3a shows the strong-motion stations at Joyner-Boore distances of less than 100 km and the fault projection by Shan et al. (2019). The largest PGA was observed at station 51GXT on the hanging-wall side (see Fig. 2) in Gongxian County, the recorded PGA of EW, NS, and UD component is 599.4 cm/s2, 499.0 cm/s2, and 414.7 cm/s2, respectively, while the PGAs at other stations are less than 50 cm/s2. The largest PGV of EW, NS, and UD components is 26.4, 28.1, and 9.4 cm/s, respectively, while the PGVs at other stations are less than 4 cm/s. The largest PGD of EW, NS, and UD components is 1.8, 2.6, and 1.4 cm, respectively, while the PGDs at other stations are less than 1 cm. Figure 3b–d shows the acceleration, velocity, and displacement of UD component, respectively. The horizontal time histories of EW and NS components are given in the Supplemental Material Figure.

To analyze the near-source characteristics of the ground motion on 51GXT, the horizontal components of the ground motion are rotated to the fault normal and fault parallel. The results are shown in Fig. 4: for PGA, the ground motion in fault normal is different from the ground motion in fault parallel. For PGV and PGD, there is almost no difference between the ground motion in fault normal and in fault parallel components.

To study the difference between the observed values and predicted values by the GMMs, a GMM from the NGA-West2 project (Boore et al. 2013) for shallow crustal earthquakes is used in this paper. In this model, the average shear-wave velocity over the upper 30 m (V_{S30}) is used to represent the site condition. The V_{S30} values for most stations in this study are not measured from the velocity profile with depth $z_p > 30$ m; they are adopted from the database by Seyhan et al. (2014) and Yu and Li (2015). The values of V_{S30} are provided in the Supplemental Table.

3 Instrumental seismic intensity

The instrumental seismic intensity is a ground-motion-based parameter which can be used to estimate the extent of structural damage. The instrumental seismic intensity is derived from the related ground-motion parameters (PGA and PGV) through empirical relationships (Trifunac and Brady 1975); it was used in the U.S. Geological survey’s ShakeMap (Wald et al. 1999, Wald et al. 2006). In order to understand the distribution of the seismic intensity of Changning earthquake, the instrumental intensity was calculated based on the calculation code of China (CEA 2015). The corresponding equations are as follows:

$$I_{PGA} = 3.17 \lg (PGA) + 6.59$$

where

$$PGA = \max (a(t_i))$$

$$a(t_i) = \sqrt{a(t_i)^2_{EW} + a(t_i)^2_{NS} + a(t_i)^2_{UD}}$$

and

$$PGV = \max (v(t_i))$$

$$v(t_i) = \sqrt{v(t_i)^2_{EW} + v(t_i)^2_{NS} + v(t_i)^2_{UD}}$$

Table 2: Comparison of casualties from similar magnitude earthquakes

Date	Name	Location	Magnitude M_s	Death	Injuries
03/01/2019	Yibin earthquake	Yibin, Sichuan Province	5.3	0	1
17/06/2019	Changning earthquake	Changning, Sichuan Province	6.0	13	226
06/12/2018	Xingwen earthquake	Xingwen, Sichuan Province	5.7	0	17
28/10/2019	Xiahe earthquake	Xiahe, Gansu Province	5.7	0	7
06/02/2018	Hualien earthquake	Hualien, Taiwan Province	6.5	17	285
Based on the calculation code of China (CEA 2015), instrumental seismic intensity is divided into 12 levels. When the level of instrumental seismic intensity is below VI, people can feel strong ground shaking. When the level of instrumental seismic intensity is between level VI and VII, brittle failure occurs to the structures of the building. When the level of instrumental seismic intensity is larger than level VII, plastic failure occurs to the structures of the building. The higher the instrumental seismic intensity, the more severe the damage. The distribution of the instrumental seismic intensity is shown in Fig. 5. The largest intensity reaches IX at station 51GXT. The mean value of the intensity is approximately V at Joyner-Boore distances from 100 to 200 km.

4 Ground motion amplitude characteristics

4.1 PGA and PGV

The PGA and PGV are the most concerned amplitude parameters of ground motion. Figure 6 presents an overview of the spatial variation of the observed
Fig. 4 a Acceleration, b velocity, and c displacement of ground motion rotated to fault normal and fault parallel direction in station 51GXT.

Fig. 5 Spatial distribution of the instrumental seismic intensity. The regular triangles denote soil stations, while inverted triangles represent rock stations. The rectangle denotes the fault plane of the Changning main shock. Values of the instrumental seismic intensity are shown by the color scale.
horizontal PGA and PGV. The largest PGA and PGV are noted on the hanging wall. The maximum horizontal geometric mean value of the PGA is 536.1 cm/s², and the maximum horizontal geometric mean value of the PGV is 29.6 cm/s. Both of these maximum values are recorded on station 51GXT.

4.2 Ground motion attenuation

The ground motions models are used to describe the attenuation relation of ground motion with distances. A few models have been developed for Western China, of which three attenuation models are often used, the first widely accepted attenuation model for Southwest China given by Huo (1989), the Yu et al. 2006 model for Western China (Yu and Wang 2006), and the Yu et al. 2013 model applied in the latest seismic hazard map of China (Yu et al. 2013). However, these models were basically transferred from the seismic intensity attenuation relation based on field survey, other than directly from strong ground motions, and the site conditions are defined by the Chinese seismic design code (China Ministry of Construction 2010). There is no suitable local GMM that can be used for studying the residuals and evaluate the between-event and within-event components. GMMs in NGA-West2 for shallow crustal earthquakes provided basis for the analysis of residuals in this study (Ancheta et al. 2014). Ren et al. (2018) applied the ASK14 (Abrahamson et al. 2013) and BSSA14 (Boore et al. 2013) models in analyzing the ground motion of M_w 6.6 Lushan earthquake and M_w 6.5 Jiuzhaigou earthquake. In this paper, the BSSA14 model is adopted to study the residuals and evaluate the between-event and within-event components. The functional form of BSSA14 model is given as follows:

$$\ln Y = F_E(M, mech) + F_p(R_{jb}, M, region) + F_s(V_{S30}, R_{jb}, M, region, z_1) + \sigma \quad (6)$$

where $\ln Y$ is the natural logarithm of the observed values, such as PGV, PGA, and Sa. F_E, F_p, and F_s are functions of the source, path, and site effects, respectively. σ is the standard deviation of the BSSA14 model; and the M, V_{S30}, mech, region, R_{jb}, and Z_{TOR} are the variables. The application of the model and the ranges of the variables are shown in Table 3 (Boore et al. 2013).

The observed horizontal PGV, PGA, and Sa values at periods of 0.2 and 2.0 s are compared with the predicted values from BSSA14 model. To calculate the median predicted values of the Changning earthquake, $M_w = 5.8$, $V_{S30} = 370$ m/s, $Z_{TOR} = 0$ km, and reversed strike-slip fault type are used by Boore et al. (2014). As shown in Fig. 7a, the observed values of PGV are larger than the predicted values of BSSA14 model. For PGA and Sa at typical periods of 0.2 and 2.0 s, the difference between the observed and predicted values becomes less pronounced with the increase of period. The total residuals show a clear amplification at distance around 150 km. As we all know, the records of shallow crustal earthquake are characterized in most part by large-amplitude Lg waves for epicentral distances beyond...
These waves travel with a wide ranging between 3.2 and 2.5 km/s. It is recognized that the observed large amplitudes are most likely to be the P and S wave reflections from the Moho discontinuity with the long epicentral distance (Campillo 1990). Usually these effects are noted at high frequencies (PGA, PGV, and Sa at $T = 0.2$ s). As is shown in Fig. 7, the measured values of PGV are larger than the predicted values of PGV with the same magnitude of global shallow crustal earthquakes. The correlation between PGV parameters and structural damage is very good (Li et al. 2007; Zhai et al. 2013). Therefore, the large PGV may also be one of the reasons causing relatively serious damage.

To quantitatively analyze the difference of ground motion between the Changning earthquake and the BSSA14 model with the same magnitude, the residuals are calculated.

$$\delta_{es} = \ln Y_{\text{observed}} - \ln Y_{\text{predicted}}$$

where δ_{es} is the residual, and $\ln Y_{\text{observed}}$ and $\ln Y_{\text{predicted}}$ are the observed values and predicted values for each site. As shown in Fig. 7b, the residuals of PGV, PGA, and Sa of Changning earthquake are basically greater than zero, especially for PGV.

Table 3

Parameter	Application of the model and the range of the variables
Magnitude M_w	[3.0, 8.5]
Distance R_{jb}	[0, 400]
Site station	[150, 1500]
Depth to V_s (km) Z_{TOR}	[0, 3]
Regional variations	1, global; 2, China and Turkey; 3, Italy and Japan
Parameter mech	0, unspecified; 1, SS; 2, NS; and 3, RS

Residual analysis of ground motion is an effective way to analyze the effect of the source, path, and site on the ground motions (Al Atik and Abrahamson 2010). The total residuals of earthquake can be divided into between-event residuals and within-event residuals.

$$\delta_{es} = \delta B_e + \delta W_{es}$$

where e and s represent the earthquake and the station, respectively. The between-event residual (δB_e) means the residual for different earthquakes; the within-event residual (δW_{es}) means the residual at station s for the earthquake e.

The total residuals δ_{es} are calculated in the previous analysis, as shown in Fig. 7b. The between-event residual δB_e is calculated by choosing recordings with the distance R_{jb} within 80 km. The reason is that when the distance is beyond 80 km, crustal structure can have a significant effect on ground motion (Abrahamson et al. 2010). The residuals versus R_{jb}. Residuals are calculated based on the real values of $M_w = 5.8$, V_{S30} for each site, $Z_{TOR} = 0$ km and reversed strike-slip fault type. The point with $R_{jb} = 0$ is plotted on the vertical axis.
The between-event residual δ_{Be} is the average deviation between the chosen recordings and the median of the predicted values from the BSSA14 model. The $\delta_{W_{es}}$ represents the degree of misfit between the observed value at station s and the median prediction for the specific earthquake e. To compare the source, path, and site effect of Changning earthquake with those of earthquakes with similar magnitude ($M_w \sim 6$) in the same region, the Kangding earthquake, Ludian earthquake, Jinggu earthquake, and Changning aftershock are compared (Hu et al. 2015, Hu et al. 2016, and Xu et al. 2019). As shown in Fig. 8, these four earthquakes are plotted on the map. As shown in Fig. 8, records for distance R_{jb} within 80 km are used to calculate the between-event residuals.

The parameters and geometries of the fault planes for the Kangding earthquake, Ludian earthquake, and Jinggu earthquake are shown in Table 4.

The epicenter location and focal depth were provided by the CENC, and the M_W, strike, dip, and, slip values are adopted from the Global Centroid-Moment-Tensor (GCMT) project. The δ_{Be} values of the five earthquakes for different periods are shown in Fig. 9.

As shown in Fig. 9, the between-event residuals of PGA and Sa of Changning main shock are greater than zero for periods over 0.6 s. This means that the source effects are strong in the intermediate and long periods while it is weak in the short periods. As regards the Changning aftershock, the between-event residuals of PGA and Sa are greater than zero for periods over 0.5 s. Compared with the average values of global shallow crustal earthquakes, the source effects are strong in the intermediate and long periods while it is weak in the short periods. These results also indicate that the source effect of Changning main shock and aftershock is stronger than that of the BSSA14 model with the same magnitude of global shallow crustal earthquakes in the intermediate and long period. The source effects of the Ludian, Jinggu, and Kangding earthquakes are all weaker than that of Changning main shock, aftershock, and these from BSSA14 model with the same magnitude of global shallow crustal earthquakes.

As shown in Eq. 8, the within-event residual ($\delta_{W_{es}}$) can be calculated by subtracting the value of between-event residual (δ_{Be}) from the total residual (δ_{es}) in terms of BSSA14 model.

$$\delta_{W_{es}} = \Delta C_3(R_{jb} - R_{ref}) + \delta_{W_R} \tag{9}$$

To study the relationship between the within-event residual ($\delta_{W_{es}}$) and R_{jb}, the form of BSSA14 (Boore et al. 2014) model is adopted. In Eq. 9, the ΔC_3 is an adjustment coefficient of inelastic attenuation, δ_{W_R} is the approximate mean of the within-event residual ($\delta_{W_{es}}$) values at closest distances and $R_{ref} = 1$ km. To ensure the reliability of the regression result, the ground motion recordings in the distance of $R_{jb} = 40-400$ km are adopted as the ground motion recordings within $R_{jb} < 40$ km are very few. The within-event residual ($\delta_{W_{es}}$)
versus R_{sk} for PGA and Sa at the period of 0.5, 2.0, and 5.0 s is shown by the green points in Fig. 10.

The parameter ΔC_3 can be regarded as a quantitative representation of inelastic attenuation, where $\Delta C_3 > 0$ means weak inelastic attenuation and $\Delta C_3 < 0$ means strong inelastic attenuation (Al Atik and Abrahamson 2010; Ren et al. 2018). As shown in Fig. 10, ΔC_3 values for PGA and Sa at the periods of 0.5 s are greater than zero while ΔC_3 values for Sa at the periods of 2.0 and 5.0 s are less than zero. It indicates that the inelastic attenuation for PGA and Sa at the periods of 0.5 s is weak, while inelastic attenuation for Sa at the periods of 2.0 and 5.0 s is strong. In addition, the values of ΔC_3 for Sa at period of $T = 0.01–5.0$ s are shown in Fig. 11.

As shown in Fig. 11, for Kangding earthquake, the values of ΔC_3 at period of $T < 3.0$ s are greater than zero. This means that the inelastic attenuation of Kangding earthquake is weak. The values of ΔC_3 are much similar between Ludian and Jinggu earthquake while the values of ΔC_3 are much different between the Changning earthquake and Jinggu earthquake. For the Jinggu earthquake, the values of ΔC_3 during periods of $T < 5.0$ s are less than zero mostly. This result indicates that the inelastic attenuation of the Jinggu earthquake is very strong. However, as for Changning earthquake, the values of ΔC_3 during periods of $T < 0.5$ s are greater than zero. This result indicates that the inelastic attenuation of the Changning earthquake is weak during

Earthquake	Ludian earthquake	Jinggu earthquake	Kangding earthquake	Changning aftershock
Moment magnitude	6.2	6.1	6.1	5.3
Latitude (N)/longitude (E)	103.34/27.10	100.46/23.39	101.69/30.26	104.90/28.46
Hypocenter depth (km)	12	5	18	11.5
Strike (degree)/dip (degree)/rake (degree)	71/81/−175	329/81/174	143/85/−1	18/27/132
Fault type	Strike slip	Strike slip	Strike slip	Strike slip

As shown in Fig. 9, between-event residuals versus period. The between-event residuals are calculated in terms of the BSSA14 model for the Kangding earthquake, Ludian earthquake, Jinggu earthquake, Changning main shock, and Changning aftershock.
Fig. 10 Within-event residual for PGA and Sa versus R_{jb} based on BSSA14 model. The red fitted curves of δW_{es} versus R_{jb}. The point with $R_{jb} = 0$ is plotted on the vertical axis. a PGA (peak ground acceleration), b $T=0.5$ s (response spectrum value at period 0.5 s), c $T=2.0$ s (response spectrum value at period 2.0 s), d $T=5.0$ s (response spectrum value at period 5.0 s).

Fig. 11 ΔC_3 calculated from the linear regression between within-event residual (δW_{es}) and R_{jb} at the period of $T = 0.01$–5.0 s from the BSSA14 model.
periods of \(T < 0.5\) s. The values of \(\Delta C_3\) at period of \(T > 0.5\) s are less than zero. This result indicates that the inelastic attenuation of the Changning earthquake is strong at periods of \(T > 0.5\) s. The Changning aftershock has the similar trend as the Changning earthquake. There are many reasons causing different inelastic attenuations. As is shown in Fig. 8, the epicenter of Changning earthquake and Kangding earthquake is in the Sichuan province. However, the epicenter of Jinggu earthquake and Ludian earthquake is in Yunnan province. Geological conditions of the two provinces are very different leading to the seismic waves traveling through different geological contexts. For each earthquake, the sampled paths are different. That may cause different inelastic attenuations.

5 Response spectra characteristics

Seven sets of strong motions with \(R_{jb} < 100\) km are recorded in the most serious damaged areas of the Changning earthquake. The response spectra of the seven sets of recordings are compared with the design spectrum, as shown in Fig. 12. The horizontal spectral accelerations are defined as the geometric mean of the spectral accelerations of the EW and NS components. The seismic design intensities of some counties near the epicenter are shown in Table 5 (China Ministry of Construction 2010).

Figure 12 shows that the spectral accelerations at Joyner-Boore distances of less than 50 km are larger than the seismic design spectra (China Ministry of Construction 2010). The Chinese seismic design spectrum is divided into four sections. The first section is a straight line when period \(T = 0\) s, the \(Sa = 0.45\alpha_{max}\), and when the period \(T = 0.1\) s and the \(Sa = \eta_2\alpha_{max}\). The second section is a flat line for periods \(0.1\) s < \(T < T_g\) and \(Sa = \eta_2\alpha_{max}\). The third section is segment of a curve where \(T_g < T < 5T_g\), and \(Sa = \left(\frac{\pi}{2g}\right)^2\eta_2\alpha_{max}\). The last section is also segment of a curve where \(5T_g < T\), and \(Sa = (\eta_2 0.2^r - \eta_1 (T - 5T_g))\alpha_{max}\). Herein, the damping ratio is 0.05, the \(\eta_2\) is 1, \(\eta_1\) is 0.02, and \(r\) is 0.9. For seismic design level of frequently occurred earthquakes, the \(\alpha_{max}\) is 0.04 at the intensity of 6 and \(\alpha_{max}\) is 0.08 at the intensity of 7. From Fig. 12, the predominant periods of acceleration response spectrum (Sa) of the seven records are from 0.1 to 1.0 s. However, the natural periods of buildings in the severely stricken area are mainly from 0.3 to 1.0 s. These values mean that the predominant periods of the ground motions in the Changning earthquake are consistent with the natural periods of the local buildings; due to the resonance effects, this similarity leads to catastrophic engineering damage. However, when the period exceeds 3 s, the spectral accelerations become very small.

6 Arias intensity characteristics

In addition to the parameters directly related to the ground motion amplitude, increasing attention has been paid to the parameters related to the energy of ground motion. Researchers have used the Arias intensity in a variety of engineering applications (Jibson and Keefer 1993; Harp and Wilson 1995). The Arias intensity (Arias 1970) is a ground motion intensity measure proportional to the integral of the absolute value of the acceleration squared over the significant duration of the signal. The equation for the Arias intensity is as follows:

\[
I_A = \frac{\pi}{2g} \int_0^{T_d} a^2(t)dt
\]

where \(g\) represents the gravitational acceleration, \(T_d\) represents the duration of the ground motion, and \(a(t)\) represents the acceleration time history. In order to compare the observed values of Arias intensity of Changning earthquake with that of the same magnitude, the predicted values of CB12 model (Campbell and Bozorgnia 2012) are adopted as shown in Fig. 1. CB12 model is developed using the strong ground motion database that composed of earthquakes from all over the world with magnitudes between 4.3 and 7.9 (Campbell and Bozorgnia 2010). This model is commonly used in some researcher on the Arias intensity.

The observed values of the Arias intensity of Changning earthquake are compared with the predicted values from CB12 model in Fig. 13. Most of the Arias intensity is larger than the predicted values of CB12 model, and most of the residuals are larger than zero. Especially, the Arias intensity is higher than CB12 prediction at distances larger than 100 km. The Arias intensity is a ground motion intensity measure proportional to the integral of the absolute value of the acceleration squared over the significant duration of the ground motion signal. The total residuals of Arias intensity of Changning earthquake show a clear
amplification at distance around 150 km. Large-amplitude Moho reflections have been reported to produce strong shaking from shallow earthquakes in the epicentral distances around 150 km. With the long epicentral distance, the observed large values of as intensity are most likely to be the wave reflections from the Moho discontinuity. These phenomena may cause the energy of the ground motion for the Changning earthquake to be larger than those for earthquakes with the same magnitude at distances larger than 100 km. Such ground motions are more likely to cause serious damage.

7 Duration characteristics

Duration is one of the important parameters of ground motions in structural seismic design. There are more than 40 definitions (Bommer and Martinez-Pereira 2000; Bommer and Stanford 2009) for duration, among which the significant duration (D_{SR}) is one of the most commonly used. In this study, the significant duration D_{SR} (5–75%) and D_{SR} (5–95%) are selected to investigate the duration characteristics of the ground motions. The D_{SR} of Changning earthquake are shown in Fig. 14. The values of D_{SR} are calculated by the geometrical mean of two horizontal components. The empirical equation (AS16 model) for the prediction of significant duration of ground motion is used in active crustal regions (Afshari and Stewart 2016). Ren et al. (2018) applied the AS16 model in analyzing the significant

![Fig. 12 Comparison of horizontal spectral accelerations with 5% damping ratio between the Changning earthquake and Chinese seismic design spectra](image-url)

County	Intensity	T_g (s)	County	Intensity	T_g (s)
Changning	VI	0.4	Jiangan	VI	0.4
Cuiping	VII	0.4	Gaoxian	VII	0.45
Nanxi	VI	0.4	Gongxian	VI	0.45
Xuzhou	VII	0.4	Junlian	VI	0.45
Jiangan	VI	0.4	Pingshan	VI	0.4

T_g is the characteristic period
duration of ground motion of M_w 6.6 Lushan earthquake and M_w 6.5 Jiuzhaigou earthquake in Sichuan, China.

The observed horizontal D_{SR} (5–75%) and D_{SR} (5–95%) are compared with the predicted values from AS16 model in Fig. 14. The observed values are mostly consistent with the predicted values for D_{SR} (5–75%) and D_{SR} (5–95%). As shown in Fig. 14b, residuals are calculated using $M_w = 5.8$, V_{S30} for each site and $Z_{TOR} = 0$ km. For D_{SR} (5–95%), the residuals are very small and near zero. For D_{SR} (5–75%), most of the residuals are lower than zero at the distance of 200 to 300 km. These results indicate that the D_{SR} (5–95%) and D_{SR} (5–75%) of Changning earthquake are similar to those for earthquakes with the same magnitude.

The within-event residuals (δW_{ex}) are shown in Fig. 15. The form of the fitted curve between the within-event residual (δW_{ex}) and R_{rup} is the same as Eq. 9. The values of ΔC_3 are approximately equal to zero. These results indicate that the path effect of Changning earthquake on D_{SR} is similar to that of the AS16 model with the same magnitude.
8 Conclusions

To understand the characteristics of the M_w 5.8 Changning earthquake, based on 58 sets of three-component acceleration data recorded by strong-motion stations in Sichuan Province, the characteristics of these ground motions are analyzed by considering amplitudes, spectra, Arias intensity, and durations through regression and residual analyses. The following conclusions are obtained.

1. The observed horizontal PGAs, PGVs, and Sa are compared with the predicted values from BSSA14 model and the total residuals are calculated. The residuals of the Changning earthquake are basically greater than zero. These results indicate that the values of PGV, PGA, and Sa are larger than those of global shallow crustal earthquakes with the same magnitude from the BSSA14 model. Especially for PGV, larger values of PGV may cause serious damage of structures.

Fig. 14

(a) Observed D_{SR} (5–75%) and D_{SR} (5–95%) of ground motion compared with the predicted values from AS16 model. The solid line represents the predicted values from AS16. The dotted lines are the standard deviation from AS16 model. The green solid points represent the observed values of ground motion.

(b) Residuals versus R_{rup}. Residuals are calculated based on the real values of $M_w = 5.8$, V_{S30} for each site and $Z_{TOR} = 0$ km

Fig. 15

Within-event residuals of D_{SR} (5–95%) and D_{SR} (5–75%) versus R_{rup}. The fitted curves of δW_{es} and R_{rup} are plotted in red.
2. The between-event residuals of the Changning earthquake are calculated based on the BSSA14 model. The between-event residuals of PGA and Sa are greater than zero except for periods from 0.01 to 0.6 s. These results indicate that the source effect of Changning earthquake is stronger in the long periods than that of the BSSA14 model of the same magnitude. The within-event residuals are also analyzed. The values of ΔC_3 at periods of $T < 0.5$ s are greater than zero, which indicates that the inelastic attenuation of the Changning earthquake is weak at these periods. The values of ΔC_3 at periods of $T > 0.5$ s are less than zero, which indicates that inelastic attenuation of the Changning earthquake is strong at these periods.

3. The observed values of Arias intensity are compared with the predicted values from the CB12 model. The result indicates that the observed values of the Arias intensity of Changning earthquake are larger than the predicted values from CB12 model, which implies that the energy of the ground motion of the Changning earthquake is larger than those of earthquakes with the same magnitude. The observed values of D_{SR} (5–75%) and D_{SR} (5–95%) are similar to the predicted values from the AS16 model.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10950-021-09994-z.

Acknowledgements Data for this study were provided by the CSMNC at Institute of Engineering Mechanics, China Earthquake Administration.

Funding The work was supported by the National Natural Science Foundation of China (Grant no. U1939210), the National Key R&D Program of China (Grant no. 2018YFC1504401), and the Heilongjiang Touyan Innovation Team Program. Data availability: The recordings of ground motions for the study in this paper are achieved from the China Strong Motion Network Center (CSMNC) (csmnc@iem.ac.cn, last accessed September 2019).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abrahamson NA, Somerville PG (1996) Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bull Seismol Soc Amer 86(1S):93–99

Abrahamson NA, Silva WJ, EERI M (2013) Summary of the ASK14 ground motion relation for active crustal region. Earthquake Spectra 30(3):1025–1055

Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal region. Earthquake Spectra 30:1025–1055. https://doi.org/10.1193/070913EQS198M

Afshari K, Stewart JP (2016) Physically parameterized prediction equations for significant duration in active crustal regions. Earthq. Spectra 32:2057–2081. https://doi.org/10.1193/063015EQS106M

Al Atik L, Abrahamson NA (2010) Nonlinear site response effects on the standard deviations of predicted ground motions. Bull Seismol Soc Am 100(3):1,288–1,29

Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BS-J et al (2014) NGA-West2 database. Earthquake Spectra 30:989–1005. https://doi.org/10.1193/070913EQS197M

Arias A (1970) A measure of earthquake intensity. MIT Press, Cambridge Massachusetts, pp 483–4829

Bommer JJ, Martinez-Pereira A (2000) Strong motion parameters: definition, usefulness and predictability. 12th Word conf. Earthquake Eng, Auckland, p 206

Bommer JJ, Stanford PJ (2009) Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seismol Soc Am 99(6):3217–3233. https://doi.org/10.1785/0120080298

Boore DM, Stewart JP, Seyhan E, and Atkinson G (2013). NGA-West 2 equations for predicting response spectral accelerations for shallow crustal earthquakes, PEER Report 2013/05, Pacific

Boore DM, Stewart JP, Seyhan E, and Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra 30(3):1057–1085. https://doi.org/10.1193/070113EQS184M

Campbell KW, Bozorgnia Y (2010) A ground motion prediction equation for the horizontal component of cumulative absolute velocity (CAV) using the PEER-NGA database. Earthquake Spectra 26:635–650

Campbell KW, Bozorgnia Y (2012) A comparison of ground motion prediction equations for Arias intensity and cumulative absolute velocity developed using a consistent database and functional form. Earthquake Spectra 28(3):931–941

Campillo M (1990) Propagation and attenuation characteristics of the crustal phase Lg, Pure Appl. Geophys. 132:1–9
China Earthquake Administration (CEA) (2015) Calculation code for instrumental seismic intensity (DB/T 60-2015). Seismological Press, Beijing (in Chinese)

China Earthquake Administration (CEA) (2019) Intensity map of 6.17 Changning M, 6.0, Sichuan strong earthquake. http://www.cea.gov.cn/. Accessed 22 Aug 2019. (in Chinese)

China Ministry of Construction (2010) Code for seismic design of buildings (GB50011-2010). Construction Industry Printing House, Beijing (in Chinese)

Dai JW and Yang YQ (2019) Analysis of seismic damage mechanism of Ms 6.0 earthquake engineering structure in Changning, Sichuan province, 24 July. http://www.iem.ac.cn/. Accessed 22 Aug 2019. (in Chinese)

Harp, E. L, and R. C. Wilson (1995). Shaking intensity thresholds for rock falls and slides: evidence from 1987 Whittier Narrows and Superstition Hills earthquake strong motion records. Bull Seism Soc Am 85(6):1739–1757. https://doi.org/10.1785/0220170238

Hu JJ, Zhang WB, Xie LL (2015) Strong motion characteristics of the Mw 6.6 Lushan earthquake, Sichuan, China - an insight into the spatial difference of a typical thrust fault earthquake. Earthq Eng Eng Vib 14(2):203–216. https://doi.org/10.1007/s11803-015-0017-2

Hu JJ, Zhang Q, Jiang ZJ, Xie LL, Zhou BF (2016) Characteristics of strong ground motions in the 2014Ms6.5 Lushan earthquake, Yunnan, China. J Seismol 20(1):361–373. https://doi.org/10.1007/s10950-015-9532-x

Hu XH, Sheng SZ, Wan YG, Bu YF, Li ZY (2019) Study on focal mechanism and post-seismic tectonic stress field of the Changning, Sichuan, earthquake sequence on June 17 2019. Prog Geophys 35:1675–1681 1-10 (in Chinese)

Huo JR (1989) Study on the attenuation laws of strong earthquake ground motion near the source, Institute of Engineering Mechanics. China Earthquake Administration, Harbin (in Chinese)

Jibson RW, Keefer DK (1993) Analysis of the seismic origin of landslides: examples from the New Madrid seismic zone. Geol Soc Am Bull 105:521–536. https://doi.org/10.1016/0148-9696(93)91641-U

Li S, Xie LL, Hao M (2007) Correlation between seismic ground motion parameters and their relationship with overall damage to structure. J Harbin Inst Technology 39(4):506–509 (in Chinese)

Ren YF, Wen RZ, Yamanaka H (2013) Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake. Earthq Eng Eng Vib 12(2):165–184. https://doi.org/10.1007/s11803-013-0160-6

Ren YF, Wang HW, Xu PB, Dhakal YP, Wen RZ, Ma Q et al (2018) Strong-motion observations of the 2017 Ms 7.0 Juizhaigou earthquake: Comparison with the 2013 Ms 7.0 Lushan earthquake. Seismol Res Lett 89(4):1354–1365. https://doi.org/10.1785/0220170238

Seyhan E, Stewart JP, Ancheta TD, Darragh RB, Graves RB (2014) NGA-West2 site database. Earthquake Spectra 30:1007–1024. https://doi.org/10.1193/062913EQS180M

Shan XJ, Qu CY, Gong WY, Zhang GH, Song XG, Huang ZC, Zhang YF, and Hou LY (2019) Analysis of Ms 6.0 Changning earthquake in Sichuan province, 24 June. http://www.eq-igl.ac.cn/. Accessed 22 Aug 2019

Trifunac MD, and Brady AG (1975). On the correlation of peak acceleration of strong motion with earthquake magnitude, epicentral distance and site conditions, Proc US Natl Conf Earthquake Eng 43–52

Wald DJ, Quitoriano V, Heaton TH, Kanamori H, Scrivner CW, Worden CB (1999) TriNet “ShakeMap”: rapid generation of peak ground motion and intensity maps for earthquakes in southern California. Earthq. Spectra 15:537–555

Wald DJ, Worden CB, Quitoriano V, and Pankow KL (2006). ShakeMap manual, Advanced National Seismic System, 156 pp

Xu PY, Ren YF, Wen RZ, Wang HW (2019) Observations on regional variability in ground-motion amplitude from six Mw ~ 6.0 earthquakes of the north–south seismic zone in China. Pure Appl Geophys 177:247–264. https://doi.org/10.1007/s00024-019-02176-6

Yu G, Long F, Liang M, Zhao M, Wang S, Gong Y, Qiao H, Su J (2019) Focal mechanism solutions and seismogenic structure if the 17 June 2019 Ms 6.0 Sichuan Changning earthquake sequence, Chinese J. Geophys. 62(9):1–15. https://doi.org/10.6038/cjg2019N0297 (in Chinese)

Yin XX and Guo AN. (2019) Analysis of regional tectonic stress field characteristics of Changing Ms 6.0 earthquake in Sichuan Province, China Earthquake Eng J, in publication (in Chinese).

Yu T, Li XJ (2015) Empirical estimation of Vs30 in the sichuan and gansu province. China Earthquake Eng J (in Chinese) 7(2):526–533

Yu YX, Wang SY (2006) Attenuation relations for horizontal peak ground acceleration and response spectrum in Eastern and Western China. Technol Earthquake Disaster Prev 1(3):206–217 (in Chinese). https://doi.org/10.1007/s11589-004-0004-6

Yu YX, Li SY, Xiao L (2013) Development of ground motion attenuation relations for the new seismic hazard map of China. Technol Earthq Disaster Prev 8(1):24–33 (in Chinese). https://doi.org/10.3969/j.issn.1673-5722.2013.01.003

Zhai CH, Chang ZW, Li S, Xie LL (2013) Selection of the most unfavorable real ground motions for low- and mid-rise RC frame structures. J Earthq Eng 17(8):1233–1251

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.