Shallow Neural Network can Perfectly Classify an Object following Separable Probability Distribution

Youngjae Min and Hye Won Chung
KAIST
July 11, 2019
2019 IEEE International Symposium on Information Theory
Motivation

Problem in Machine Learning (ML)
- Choosing an architecture is very burdensome

Research Question
- From given data, can we find a proper architecture?
- What is a sufficient size of it?
Prior Works

- Universal Approximation Theorem
 "2-layer NN can approximate any function.."

 → Just feasibility

- C. Zhang et al., *Understanding deep learning requires rethinking generalization*, ICLR’17
 constructed 2-layer ReLU NN with $2n + d$ weights to fit a dataset with n finite samples in \mathbb{R}^d

- H. Valvi and P. J. Ramadge, *An upper-bound on the required size of a neural network classifier*, ICASSP’18
 extended the result considering the separability of a finite dataset

 → Just finite samples

Can we guarantee the generalization beyond a finite dataset?
Our Purpose: Generalization

Can we guarantee the generalization beyond a finite dataset?

- An architecture which fits any datasets from a good distribution

For the rest,

- Simple Separability
- 2-layer NN for Simple Separability
- Extended Separability
- 4-layer NN for Extended Separability
Definition 1

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = [1 : c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is \textit{k-separable with δ-margin} (for some $\delta > 0$) if there exist a projection vector $a \in \mathbb{R}^d$ with $\|a\|_2 = 1$ and constants $b_1 < b_2 < \cdots < b_{k+1}$ such that, for $\mathcal{X}_i := \{x \in \mathcal{X} : b_i + \delta < a^T x < b_{i+1} - \delta\}$, $i \in [1 : k]$,

1. $\mathbb{P}(x,y) \sim D (y = y_i \mid \mathcal{X}_i) = 1$ for some $y_i \in \mathcal{Y}$,
2. $\mathbb{P}(x,y) \sim D \left(\bigcup_{i=1}^{k} \mathcal{X}_i \right) = 1$.

$\{x \in \mathcal{X} : \mathbb{P}_{(x,y) \sim D} (y = 1) > 0\}$ $\{x \in \mathcal{X} : \mathbb{P}_{(x,y) \sim D} (y = 2) > 0\}$ $\{x \in \mathcal{X} : \mathbb{P}_{(x,y) \sim D} (y = 3) > 0\}$
Simple Separability

Definition 1

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = [1 : c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is k-separable with δ-margin (for some $\delta > 0$) if there exist a projection vector $a \in \mathbb{R}^d$ with $\|a\|_2 = 1$ and constants $b_1 < b_2 < \cdots < b_{k+1}$ such that, for $X_i := \{x \in \mathcal{X} : b_i + \delta < a^T x < b_{i+1} - \delta\}$, $i \in [1 : k]$,

1. $\mathbb{P}(x,y) \sim D (y = y_i \mid X_i) = 1$ for some $y_i \in \mathcal{Y}$,
2. $\mathbb{P}(x,y) \sim D (\bigcup_{i=1}^k X_i) = 1$.
2-layer NN for Simple Separability

D: k-separable with δ-margin distribution, $a \in \mathbb{R}^d$: projection vector, $\{b_1, \ldots, b_{k+1}\}$: boundary of intervals

For $(x, y) \in \mathcal{X} \times \mathcal{Y}$, x: input, y: label, $f(y) \in \mathbb{R}^m$: desired output of NN ($f: \mathcal{Y} \to \mathbb{R}^m$ is injective)

Theorem 1

For any $\epsilon > 0$, the 2-layer neural network, $g: \mathcal{X} \to \mathbb{R}^m$ with parameters $a \in \mathbb{R}^d$, $\{b_1, \ldots, b_k\}$,

$$W = \begin{bmatrix} f(y_1)^T \\ f(y_2)^T - f(y_1)^T \\ \vdots \\ f(y_k)^T - f(y_{k-1})^T \end{bmatrix} = [w_1 \ w_2 \ \cdots \ w_m], \text{ and}$$

$$c_s = \frac{1}{\delta} \log \left(\left(\frac{\sqrt{k} \cdot \max_{1 \leq j \leq m} \|w_j\|_2}{\epsilon} \right) \right)$$

satisfies

$$\mathbb{P}_{(x, y) \sim D} \left(\max_{1 \leq j \leq m} |g_j(x) - f_j(y)| > \epsilon \right) = 0$$

where f_j and g_j denote the j-th components of f and g, respectively.

This network is specified by total $(d + (m + 1)k)$ parameters.
Main Idea: Saturation of Sigmoid through Scaling

Output: \(\rho(a^T x - b_1) \)
Main Idea: Saturation of Sigmoid through Scaling

Output: \(\rho(c_s(a^T x - b_1)) \)

\[
\rho(c_s(a^T x - b_1)) \\
\rho(a^T x - b_1)
\]

\[
0 \leq a^T x - b_1 \times c_s \leq 1
\]
Group Behavior in Hidden Layer as $c_s \to \infty$

We can compute W s.t.

$$
\begin{bmatrix}
-h_1 \\
-h_2 \\
\vdots \\
-h_k \\
\end{bmatrix}
W =
\begin{bmatrix}
-f(y_1)^T \\
-f(y_2)^T \\
\vdots \\
-f(y_k)^T \\
\end{bmatrix}
$$

since the left matrix in LHS is invertible.

$h_1 = [1 0 0 0 0]$ $h_2 = [1 1 0 0 0]$ $h_3 = [1 1 1 0 0]$ $h_4 = [1 1 1 1 0]$ $h_5 = [1 1 1 1 1]$
Allowing ϵ Errors in Output Layer

$c_s \to \infty$ is impractical \Rightarrow Can we confine c_s by allowing some error?

\[
1 - e^{-t} < \rho(t) = 1/(1 + e^{-t}) < e^t
\]

\[
err < e^{-c_s \delta}
\]

If $c_s \geq (1/\delta) \log \left(\left(\sqrt{k} \cdot (\max_{1 \leq j \leq m} ||w_j||_2) \right) / \epsilon \right)$,

then, in each node of output layer, $err \leq \epsilon / \left(\sqrt{k} \cdot (\max_{1 \leq j \leq m} ||w_j||_2) \right)$

Inference and Information for Data Science Lab
2-layer NN for Simple Separability - Simulation

- f: one-hot encoding \Rightarrow maximum allowable error: $\epsilon = 1/2$
- Synthetic data: 6k samples from a 20-separable with 0.1-margin distribution
- Sufficient $c_s = (1/\delta) \log \left(\left(\sqrt{k} \cdot \max_{1 \leq j \leq m} \|w_j\|_2 \right) / \epsilon \right) \approx 11.02$
What if the data does not follow simple separability?

- Different colors for different labels
What if the data does not follow simple separability?

- Different colors for different labels
Extended Separability

Definition 2

Let $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = [1 : c]$. A distribution D over $\mathcal{X} \times \mathcal{Y}$ is \((k_1, k_2, \cdots, k_n)\)-separable with δ-margin (for some $\delta > 0$) if there exist projection vectors $a_1, a_2, \cdots, a_n \in \mathbb{R}^d$ with $\|a_s\|_2 = 1$ and constants $b_{s,1} < b_{s,2} < \cdots < b_{s,k_s+1}$ for $1 \leq s \leq n$, such that, for $\mathcal{X}_i = \{x \in \mathcal{X} : b_{s,i_s} + \delta < a_s^T x < b_{s,i_s+1} - \delta \text{ for } 1 \leq s \leq n\}$, $\mathbf{i} = (i_1, i_2, \cdots, i_n)$, with $i_s \in [1 : k_s]$ for $1 \leq s \leq n$,

1. $\mathbb{P}_{(x,y) \sim D}(y = y_i \mid \mathcal{X}_i) = 1$ for some $y_i \in \mathcal{Y}$,
2. $\mathbb{P}_{(x,y) \sim D}(\bigcup_i \mathcal{X}_i) = 1$.
4-layer NN for Extended Separability

\(D: (k_1, k_2, \cdots, k_n) \)-separable with \(\delta \)-margin distribution, \(a_1, a_2, \cdots, a_n \in \mathbb{R}^d \): projection vectors
For \((x, y) \in \mathcal{X} \times \mathcal{Y} \), \(x \): input, \(y \): label, \(f(y) \in \mathbb{R}^m \): desired output of NN (\(f: \mathcal{Y} \to \mathbb{R}^m \) is injective)

Theorem 2

For any \(\epsilon > 0 \), there exists a 4-layer NN, \(g : \mathcal{X} \to \mathbb{R}^m \), with \((n(d+1) + 2 \sum_{s=1}^{n} k_s + (m+1) \prod_{s=1}^{n} k_s)\) parameters such that

\[
P_{(x,y) \sim D} \left(\max_{1 \leq j \leq m} |g_j(x) - f_j(y)| > \epsilon \right) = 0
\]

where \(f_j \) and \(g_j \) denote the \(j \)-th components of \(f \) and \(g \), respectively.
2 Steps to Construct the 4-layer NN

Step 1. Mapping to Simple Separable Data

Step 2. Constructing 2-layer NN for Simple Separability (Thm. 1)
Step 1. Mapping to Simple Separable Data

Lemma

For data \((x, y)\) following a distribution \(D\) that is \((k_1, k_2, \ldots, k_n)\)-separable with \(\delta\)-margin by \(n\) projection vectors \((a_1, \ldots, a_n)\), there exists a 2-layer NN that implements \(p : \mathcal{X} \rightarrow \mathbb{R}^n\) such that \((p(x), y)\) follows a distribution \(D'\) that is \((\prod_{s=1}^{n} k_s)\)-separable with \(\left(\frac{1}{4\sqrt{n}}\right)\)-margin by a projection vector \(a = \frac{1}{\sqrt{n}}[1, 1, \ldots, 1]^T \in \mathbb{R}^n\).

Main Idea

- Projection into \(a = \frac{1}{\sqrt{n}}[1, 1, \ldots, 1]^T\) is a (scaled) component-wise summation
- Each parallel NN (approximately) outputs differently scaled integers ex) \(\{0, 1, \ldots, k_1\}\) for \(a_1\), \(\{0 \times k_1, 1 \times k_1, \ldots, k_2 \times k_1\}\) for \(a_2\), and so on
4-layer NN for Extended Separability

\[D: (k_1, k_2, \cdots, k_n) \text{-separable with } \delta \text{-margin distribution, } a_1, a_2, \cdots, a_n \in \mathbb{R}^d: \text{ projection vectors} \]

For \((x, y) \in \mathcal{X} \times \mathcal{Y}, x: \text{ input, } y: \text{ label, } f(y) \in \mathbb{R}^m: \text{ desired output of NN (} f: \mathcal{Y} \rightarrow \mathbb{R}^m \text{ is injective}) \]

Theorem 2

For any \(\epsilon > 0\), there exists a 4-layer NN, \(g: \mathcal{X} \rightarrow \mathbb{R}^m\), with \((n(d+1) + 2 \sum_{s=1}^{n} k_s + (m+1) \prod_{s=1}^{n} k_s)\) parameters such that

\[
P_{(x,y) \sim D} \left(\max_{1 \leq j \leq m} |g_j(x) - f_j(y)| > \epsilon \right) = 0
\]

where \(f_j\) and \(g_j\) denote the \(j\)-th components of \(f\) and \(g\), respectively.
Conclusion

- Construct 4-layer sigmoid-type NN that could generalize to any datasets under the separable condition.
- Demonstrate potential benefit of saturation of sigmoid func. in the generalization beyond finite samples.

Remaining Questions

- How to find projection vectors and boundaries for given separable dataset?
- Can we approximate a general dataset as a separable one?
 - Error for approximating a Gaussian mixture.

Full paper in arXiv:1904.09109