A genetic association study of heart failure: more evidence for the role of BAG3 in idiopathic dilated cardiomyopathy

Simon de Denus1,2,3*, Fannie Mottet1,2,4, Sandra Korol1,2, Yassamin Feroz Zada1,3, Sylvie Provost1,3, Ian Mongrain1,3, Géraldine Asselin1,3, Essaïd Oussaid2,3, David Busseuil1, Guillaume Lettre1,4, John Rioux1,4, Normand Racine1,4, Eileen O’Meara1,4, Michel White1,4, Jean Rouleau1,4, Jean Claude Tardif1,4 and Marie-Pierre Dubé1,3,4

1Montreal Heart Institute, 5000 Bélanger, Montreal, QC H1T 1C8, Canada; 2Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada; 3Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, QC, Canada; 4Faculty of Medicine, Université de Montréal, Montreal, QC, Canada

Abstract

Aims Few investigations have been conducted to identify genetic determinants of common, polygenetic forms of heart failure (HF), and only a limited number of these genetic associations have been validated by multiple groups.

Methods and results We performed a case–control study to further investigate the potential impact of 14 previously reported candidate genes on the risk of HF and specific HF sub-types. We also performed an exploratory genome-wide study. We included 799 patients with HF and 1529 controls. After adjusting for age, sex, and genetic ancestry, we found that the C allele of rs2234962 in BAG3 was associated with a decreased risk of idiopathic dilated cardiomyopathy (odds ratio 0.42, 95% confidence interval 0.25–0.68, \(P = 0.0005 \)), consistent with a previous report. No association for the other primary variants or exploratory genome-wide study was found.

Conclusions Our findings provide independent replication for the association between a common coding variant (rs2234962) in BAG3 and the risk of idiopathic dilated cardiomyopathy.

Keywords Heart failure; Genetics; B-cell lymphoma 2-associated anthanogene protein

Background

Heart failure (HF) and various associated characteristics, including neurohormonal activation and left ventricular structure, are heritable complex phenotypes.1,2 Yet few investigations have been conducted to identify genetic determinants of common, polygenetic forms of HF. In recent years, a small number of common variants have been associated with unselected cases of HF, HF with reduced left ventricular ejection fraction (LVEF; HF-REF), and non-familial cases of dilated cardiomyopathy.3,4 Few of these genetic associations have been validated by other groups. Thus, we performed a case–control study to further investigate the potential impact of previously reported candidate genes on the risk of HF and specific HF sub-types.

Methods

Study design and study participants

We conducted a case–control study that included participants from the Montreal Heart Institute (MHI) Hospital Cohort.5 Cases were individuals who had a prior history of HF and a document LVEF prior to the baseline inclusion visit.
in the MHI Hospital Cohort. The control group consisted of individuals who had no history of HF or any other established cardiac or valvular diseases, coronary artery disease, any clinically significant arrhythmia, stroke, or deep vein thrombosis. The study was limited to unrelated individuals of genetically determined Caucasian ancestry. In addition, as a sensitivity analysis for the BAG3 replication, we conducted a matched case–control analysis where cases were matched with up to three controls from the MHI Hospital Cohort based on sex, age (±2 years), history of myocardial infarction and diabetes, and smoking status. All patients provided written consent to participate in the MHI Hospital Cohort. The MHI Hospital Cohort and this study were approved by the Scientific and Ethics Review Boards of the MHI.

Genetic analyses

Patients were genotyped using a custom Agena MassArray (San Diego, CA) panel that included genetic variants that had been associated with HF susceptibility (e.g. CLCNKA and BAG3), HF drug response, or HF-related pathways such as genes coding for the angiotensin-converting enzyme (ACE), adrenergic receptors (e.g. ADRB1), and B-type natriuretic peptide (NPPB), and with the HumanExome-12 v1.1 and HumanExome-24 v1.0 array by Illumina (San Diego, CA), which include >240 000 exonic variants according to methods previously described. Data clean-up and imputation were performed according to published methods.

Statistical analyses

The significance threshold for replication of the 14 primary variants (listed in Table 2) was set at a $P < 0.0045$, as the effective number of independent tests was calculated to be of 11 ($P = 0.05/11 = 0.0045$). Because the Bonferroni correction assumes independence among the tests, we have applied this multiple testing correction that takes into account the linkage disequilibrium between single nucleotide polymorphisms (SNPs). Associations with P-values between 0.05 and 0.0045 presenting a concordant risk direction with previous reports were deemed as suggestive of a replication of the association. We also performed an exploratory genome-wide study. All genetic association analyses were performed using a logistic regression, with a log additive genetic model, controlling for age, sex, and genetic ancestry (10 principal components). Genetest 0.3.0 and SAS 9.4 were used to conduct the statistical analyses.

Results

We included 799 patients with HF and 1529 controls. As anticipated, HF patients were older and were more likely to be male and present cardiovascular risk factors (Table 1). In patients with idiopathic dilated cardiomyopathy (IDC; LVEF: 38.6 ± 14.5%; lowest LVEF documented: 24.6 ± 12.0%), we found that the allele C of rs2234962 in BAG3 was associated with a decreased risk of IDC [odds ratio (OR) 0.42, 95% confidence interval 0.25–0.68, $P = 0.0005$], after adjusting for age, sex, and genetic ancestry, which is consistent with a previous report of sporadic dilated cardiomyopathy. No association was found between this BAG3 variant and the risk of HF in the overall population or for the HF-REF subgroup. No association for the other primary variants was found significant according to the pre-established threshold (Table 2). In the matched case–control sensitivity analysis (102 cases and 283 matched controls; Supporting Information, Table S1), BAG3 was also significantly associated with a reduction of the risk of idiopathic cardiomyopathy (effect allele: C; effect allele frequency IDC: 0.088; effect allele frequency matched controls: 0.223; OR 0.39, 95% confidence interval 0.23–0.68, $P = 0.0008$).

We further explored whether other variants genotyped or imputed in BAG3 were associated with idiopathic cardiomyopathy. Although other variants were associated with the

Table 1 Characteristics of the study population
Characteristic
n = 799
Female
Age
Body mass index
Diabetes
Hypertension
Atrial fibrillation/flutter
Previous myocardial infarction
Left ventricular ejection fraction
Heart failure aetiology
Ischaemic cardiomyopathy
Valvular
Hypertrophic
Myocarditis
Tachyarrhythmic
Hypertension
Alcoholic
Post-partum
Post-chemotherapy
Other

aNot applicable.

bValue corresponds to comparison between cases and controls using Fisher for categorical variables or Kruskal–Wallis for continuous variables.

ESC Heart Failure 2020; 7: 4384–4389
DOI: 10.1002/ehf2.12934
phenotype, all were intronic and in strong linkage disequilibrium with rs2234962 (all \(r^2 > 0.99 \); Table S2). The associations with the two other exonic variants were not statistically significant.

We found multiple nominal associations with HF or tested subgroups (\(P = 0.05–0.0045 \)). The HF-REF sub-phenotype provided the greatest number of findings that were consistent with previous reports of IDC or HF-REF. Indeed, four of the 14 primary SNPs were nominally (\(P < 0.05 \), Table 2) associated with HF-REF with risk associations consistent with previous reports (\(HSPB7, CLCNKA,^3 MLIP^3 \) and \(ALPK3^3 \)). \(ALPK3 \) and \(SLC39A8 \) also showed a similar trend in the investigation of the overall HF group, while \(ALPK3 \) was also nominally associated with IDC (Table 2).^3 The exploratory genome-wide investigations did not provide significant results (data not shown).

Table 2 Genetic associations of candidate variants in all-cause HF, HF-REF, and idiopathic HF

Ref	SNP	Gene	Chr	Position^a	Ref allele	OR (95% CI)	P	Ref allele	OR (95% CI)	P	Ref allele	OR (95% CI)	P
Esslinger et al. ^3	rs848210	SPEN	1	16 259 813	G A	0.424	1.06	0.4090.44	1.04	0.6250.457	1.14	0.377	
Esslinger et al. ^3	rs10927875	ZBTB17	1	16 299 312	C T	0.319	0.96	0.5620.284	0.90	0.2600.298	0.94	0.690	
Cappola et al. ^14	rs1739843	HSPB7	1	16 343 254	C T	0.394	0.88	0.0770.344	0.81	0.0200.327	0.78	0.107	
Cappola et al. ^15	rs10927887	CLCNKA	1	16 351 275	G A	0.427	0.89	0.0910.373	0.82	0.0240.35	0.77	0.082	
Esslinger et al. ^3	rs3829746	TTN	2	179 427 536	T C	0.235	1.03	0.7130.230	0.97	0.7640.207	0.85	0.371	
Cappola et al. ^14	rs6787362	FRMD4B	3	69 227 379	A G	0.114	0.94	0.5550.113	1.00	0.9880.144	1.32	0.193	
Esslinger et al. ^3	rs13107325	SLC39A8	4	103 188 709	C T	0.077	1.28	0.0440.103	1.26	0.1290.115	1.43	0.134	
Esslinger et al. ^3	rs4712056	MLIP	6	53 989 526	A G	0.369	1.13	0.0910.399	1.21	0.0380.423	1.33	0.066	
Esslinger et al. ^3	rs2291569	FLNC	7	128 488 734	G A	0.080	1.08	0.5600.098	1.20	0.2530.067	0.77	0.386	
Villard et al. ^8	rs2234962	BAG3	10	121 429 633	T C	0.201	0.97	0.7550.167	0.88	0.2570.087	0.42	0.0005	
Esslinger et al. ^3	rs3188055	INPP5F	10	121 586 882	A G	0.342	1.12	0.1410.369	1.09	0.340.380	1.17	0.306	
Esslinger et al. ^3	rs1051168	NMB	15	85 200 520	G T	0.292	1.11	0.1910.315	1.16	0.1160.346	1.25	0.153	
Esslinger et al. ^3	rs3803403C	ALPK3	15	85 383 145	C G	0.286	1.20	0.0160.325	1.26	0.0170.363	1.38	0.038	
Esslinger et al. ^3	rs2303510	FHOD3	18	34 324 091	G A	0.309	1.14	0.6000.313	1.00	0.9690.279	0.85	0.315	

Chr, chromosome; CI, confidence interval; EAF, effect allele frequency; HF, heart failure; HF-REF, HF with a reduced left ventricular ejection fraction; OR, odds ratio; Ref, reference; SNP, single nucleotide polymorphism.

Association in same direction as previously reported and \(P < 0.0045 \) (yellow highlight) or \(P = 0.05–0.0045 \) (blue highlight).

^aPosition of variants from NCBI Build 37 assembly.

^bFor the 'all HF', all patients with a history of HF were included, even if they had since undergone heart transplantation. Patients who had undergone heart transplant (\(n = 53 \)) were excluded from all other sub-type analyses. All analyses were performed using a logistic regression controlling for age, sex, and 10 principal components.

^cImputed variant.
Conclusions

Our findings provide independent replication for the association between a common non-synonymous variant (rs2234962; c.451T>C, p.Cys151Arg) in BAG3 and the risk of IDC. This association was consistent when using controls without cardiac disease or a matched population (OR 0.42 and 0.39, respectively). This genetic variant has been associated with the risk of sporadic IDC in patients of European descent, initially by Villard et al., which they ultimately validated in six populations of European Ancestry. More recently, a large case–control study of the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) consortium has also identified BAG3 as a likely HF genetic determinant. Consistent with these results, a genome-wide analysis of 16,923 European UK Biobank participants found that BAG3 was associated with LVEF as well as LV end-systolic and end-diastolic volumes.

BAG3, which encodes the B-cell lymphoma 2-associated anarthrogenene (BAG3) protein, is most prominently expressed in the heart and serves as a co-chaperone of the heat shock protein family. Reduced myocardial levels have been associated with HF. BAG3 appears critical in autophagy to maintain cardiac protein homeostasis, in decreasing apoptosis, and is involved in myocardial contraction by stabilizing the Z-disk and through coupling with the L-type calcium channel and the β1-adrenergic receptor. The cysteine to arginine substitution associated with rs2234962 may modulate autophagy because of its location between two conserved Ile-Pro-Val motifs that are involved in complex formation between BAG3 and HSPB6 and HSPB8. This potential mechanism requires investigation. Our results also suggest that BAG3 does not have a major impact on the risk of HF of other aetiologies, although, given our sample size, an effect of a smaller magnitude cannot be excluded. This potential difference also supports the possibility that preventive treatment for HF could be personalized according to genetic factors.

Rare coding mutations have also been associated with familial dilated cardiomyopathies. Interestingly, Myers et al. have found that rare variants in BAG3 contributing to dilated cardiomyopathy differed considerably between individuals of European and African ancestry. Unfortunately, rs2234962 was not investigated in that study and, to our knowledge, in any dilated cardiomyopathy association study of patients of African Ancestry. Given the fact that rs2234962 is relatively common in African-Americans (0.03 allele frequency), investigations of its impact in individuals of African and other ancestry do appear warranted.

Our study also provides supporting evidence for the association of HSPB7, CLCNKA, MLIP, ALPK3 with HF-REF, and SLC39A8 with all cases of HF, even though these associations did not meet our significance threshold. Yet the magnitude of the allelic effect was consistent with previous reports. The pathophysiological mechanisms by which these genes modulate the risk of HF remain uncertain. In particular, whether these variants actually predispose to LV dysfunction or in fact modulate HF risk factors, such as coronary artery disease, remains to be determined. Nonetheless, the current study provides further evidence to support future investigations focusing on the contribution of these genes and their proteins in the development of HF.

It should also be highlighted that we were not able to validate some previously reported associations. One immediate potential cause is our relatively small sample size. Yet the magnitude of the effect observed for some of the variants was surprisingly consistent with some of the original reports, even if the association did not reach statistical significance. For example, in the subgroup of patients with idiopathic cardiomyopathy, in addition to the significant and nominal association with BAG3 and ALPK3, the ORs observed were remarkably consistent with the original report for SNPs in the TTN gene (0.85 vs. 0.81), SLC39A8 (1.43 vs. 1.35), NMB (1.25 vs. 1.27), FHOD3 (0.85 vs. 0.82), SPEN (1.14 vs. 1.18), and FLNC (0.77 vs. 0.65). Given that only a limited number of these common variants have been validated in multiple cohorts, further investigations are required to validate the association between these common variants and the various types of HF. In fact, the importance of validating newly discovered variants and genes has recently been highlighted in the largest study of sequenced monogenic dilated cardiomyopathy. In this study, Mazzarotto et al. found that of 56 commonly tested genes, a clear implication was demonstrated for only 12 genes, including BAG3.

In summary, we have replicated the association between a genetic variant rs2234962 in BAG3 and IDC, and we observed many other signals concordant with previous genetic association studies of HF. The replication of genetic associations in well-characterized HF patient populations is essential to support advances in our understanding of the contribution of genetic factors in HF. More importantly, the identification of novel pathways involved in HF can lead to new therapeutic targets to prevent the development and progression of this deadly disease.

Acknowledgements

We thank Sylvain Versailles and Yannik Couture for the sample management and sample preparation. We thank Marie-Josée Gaulin-Marion and Diane Valois for their thorough work on the HumanExome Infinium and MassArray genotyping.
Conflict of interest

S.d.D. was supported through grants from Pfizer, AstraZeneca, Roche Molecular Science, DalCor, and Novartis. J.R. reports being a consultant for AstraZeneca and Novartis. J.C.T. reports grants from Amarin, AstraZeneca, DalCor, Esperion, Ionis, Sanofi, and Servier; honoraria from Amarin, DalCor, Sanofi, and Servier; minor equity in DalCor; and is an author of a patent on pharmacogenomics-guided CETP inhibition. M.-P.D. reports being an author of a patent pertaining to pharmacogenomics-guided CETP inhibition; minor equity interest in DalCor; honoraria from Dalcor; and research support (access to samples and data) from AstraZeneca, Pfizer, Servier, Sanofi, and GlaxoSmithKline.

Funding

This study was supported by the Montreal Heart Institute Foundation and the Université de Montréal Beaulieu-Saucier Chair in Pharmacogenomics.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Sex and age for the matched cases and controls groups.

Table S2. Genetic associations of BAG3 variants in idiopathic dilated cardiomyopathy (position from build37 121,410,859 to 121,437,331 bp).

References

1. Lee DS, Pencina MJ, Benjamin EJ, Wang TJ, Levy D, O’Donnell CJ, Nam BH, Larson MG, D’Agostino RB, Vasan RS. Association of parental heart failure with risk of heart failure in offspring. N Engl J Med 2006; 355: 138–147.

2. Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left ventricular mass: the Framingham Heart Study. Hypertension 1997; 30: 1025–1028.

3. Esslinger U, Garnier S, Korniat A, Proust C, Kararigas G, Muller-Nurayid M, Empana JP, Morley MP, Perret C, Stark K, Bick AG, Prasad SK, Kriebel J, Li J, Tietl L, Strauch K, O’Regan DP, Marguiles KB, Seidman JG, Boutouyrie P, Lacolley P, Jouven X, Hengstenberg C, Komajda M, Hakonarson H, Isnard R, Arbustini E, Grallert H, Cook SA, Seidman CE, Regitz-Zagrosek V, Cappola TP, Charron P, Cambien F, Villard E. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One 2017; 12: e0172995.

4. Cappola TP, Markovich SJ, Wang W, van Booven D, Li M, Wang X, Qu L, Sweitzer NK, Fang JC, Reilly MP, Hakonarson H, Nerbonne JM, Dorn GW. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proceedings of the National Academy of Sciences 2011; 108: 2456–2461.

5. Auer PL, Teumer A, Schick U, O’Shaughnessy A, Lo KS, Chami N, Carlson C, de Denus S, Dube MP, Haessler J, Jackson RD, Kooperberg C, Perreault LP, Nauck M, Peters U, Rioux JD, Schmidt F, Turcot V, Volker U, Volzke H, Greinacher A, Hsu L, Tardif JC, Diaz GA, Reiner AP, Lettre G. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet 2014; 46: 629–634.

6. de Denus S, Rouleau JL, Mann DL, Huggins GS, Cappola TP, Shah SH, Keleti J, Zada YF, Provost S, Bardhadi S, Phillips MS, Normand V, Mongrain I, Dube MP. A pharmacogenetic investigation of in-travenous furosemide in decompensated heart failure: a meta-analysis of three clinical trials. Pharmacogenomics J 2017; 17: 192–200.

7. Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 2008; 32: 361–369.

8. Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C, Ruppert V, Arbustini E, Wichter T, Germain M, Dubourg O, Tavazzii L, Aumont MC, DeGroot P, Fauchier L, Trochu JN, Gibelin P, Aupetit JF, Stark K, Erdmann J, Hetzer R, Roberts AM, Barton PJ, Regitz-Zagrosek V, Cardiogenics C, Aslam U, Duboscq-Bidot L, Meyborg M, Maisch B, Madeira H, Waldenstrom A, Vale G, Clesland JG, Dorent R, Roizes J, Blankert L, Isard R, Komajda M, Charron P, Cambien F. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 2011; 32: 1065–1076.

9. Shah S, Henry A, Roselli C, Lin H, Sveinbjornsson G, Fatemifar G, Hedman AK, Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P, Andersson C, Aragam KG, Arlov J, Backman JD, Biggs MS, Bloom HL, Brandimarto J, Brown MR, Buckbinder L, Carey DJ, Chasan DI, Chen X, Chen X, Chung J, Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dorr M, Dudley SC, Dunn ME, Engstrom G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis V, Giuliani F, Gottliener JS, Gross S, Guethbuchartson DF, Gutmann R, Haggerty CM, van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavoussi M, Khaw KT, Kleber ME, Kober L, Kockemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Marguiles KB, Marz W, Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW, Nelson CP, Niessner A, Niranen T, O’Donoghue ML, Owens AT, Palmer CNA, Parry HM, Perola M, Portilla-Fernandez E, Psaty BM, Regenon Ge-netics C, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelsey DT, Smith NL, Stender S, Stott DJ, Sponsen P, Tammsoo ML, Taylor KD, Teder-Laving M, Teumer A, Thorgerisson G, Thorsteinsdottur U, Torp-Pedersen C, Trompet S, Tyll B, Uitlinden AG, Veluchamy A, Volker U, Voors AA, Wang X, Wareham NJ, Waterworth D, Week H, Weis R, Wiggins KL, Xing H, Yerges-Armstrong LM, Yu B, Zannad F.
Zhao JH, Hemingway H, Samani NJ, McMurray JJV, Yang J, Visscher PM, Newton-Cheh C, Malarstig A, Holm H, Lubitz SA, Sattar N, Holmes MV, Cappola TP, Asselbergs FW, Hingorani AD, Kuchnebacker K, Ellinor PT, Lang CC, Stefansson K, Smith JG, Vasan RS, Swerdlow DI, Lumbers RT. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun 2020; 11: 163.

10. Aung N, Vargas JD, Yang C, Cabrera CP, Warren HR, Fung K, Tzianis E, Barnes MR, Rotter JI, Taylor KD, Manichaikul AW, Lima JAC, Bluemke DA, Piechnik SK, Neubauer S, Munroe PB, Petersen SE. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 2019; 140: 1318–1330.

11. Myers VD, McChung JM, Wang J, Tahrir FG, Gupta MK, Gordon J, Kontos CH, Khalili K, Cheung JY, Feldman AM. The multifunctional protein BAG3: a novel therapeutic target in cardiovascular disease. JACC Basic Transl Sci 2018; 3: 122–131.

12. Liu L, Sun K, Zhang X, Tang Y, Xu D. Advances in the role and mechanism of BAG3 in dilated cardiomyopathy. Heart Fail Rev 2019.

13. Myers VD, Gerhard GS, McNamara DM, Tomar D, Madesh M, Kaniper S, Ramsey FV, Fisher SG, Ingersoll RG, Kasch-Semenza L, Wang J, Hanley-Yanes K, Lemster B, Schwisow JA, Ambardekar AV, Degann SH, Bristow MR, Sheppard R, Alexis JD, Tilley DG, Kontos CD, McChung JM, Taylor AL, Yancy CW, Khalili K, Seidman JG, Seidman CE, McIntiernan CF, Cheung JY, Feldman AM. Association of variants in BAG3 with cardiomyopathy outcomes in African American individuals. JAMA Cardiol 2018; 3: 929–938.

14. Cappola TP, Li M, He J, Ky B, Gilmore J, Qu L, Keating B, Reilly M, Kim CE, Glessner J, Frackelton E, Hakonarson H, Syed F, Hindes A, Matkovich SJ, Cresci S, Dorn GW 2nd. Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circ Cardiovasc Genet 2010; 3: 147–154.

15. Cappola TP, Matkovich SJ, Wang W, van Booven D, Li M, Wang X, Qu L, Sweitzer NK, Fang JC, Reilly MP, Hakonarson H, Nerbonne JM, Dorn GW 2nd. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc Natl Acad Sci U S A 2011; 108: 2456–2461.

Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes TJW, Felkin LE, Ahmad M, Theotokis PI, Edwards E, Ing AY, Thomson Kl, Chan LLH, Sim D, Baksi AJ, Pantazis A, Roberts AM, Watkins H, Funke B, O’Regan DP, Olivotto I, Barton PJR, Prasad SK, Cook SA, Ware JS, Walsh R. Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation. 2020;141: 5:387–398. https://doi.org/10.1161/circulationaha.119.037661

ESC Heart Failure 2020; 7: 4384–4389
DOI: 10.1002/ehf2.12934