The study on gastropods on edible macroalgae was conducted at Kodingareng island on the west-side of South Sulawesi. Macroalgae of the genera *Hypnea*, *Gelidium* and *Acanthophora* were sampled together with their molluscan fauna. A total of 36 genera of gastropods were found on the three genera of algae. The genera *Helic cus*, *Clypeomorus*, *Cerithium*, *Pyrene*, *Columbella*, *Mitra*, and *Morula* were present on all three genera of algae. *Cerithium* and *Rhinoclavis* were the most common herbivores on *Gelidium* and *Hypnea*, while *Littorina* was the most common herbivores on *Acanthophora*.

1. Introduction
Seaweed provide as feeding ground, shelter and protection from predators [1, 2, 3]. Information on gastropods occurring on macroalgae is limited, although it is well known that many herbivorous species depend on algae for food and as a substratum for laying of eggs, and carnivorous species prey on herbivores living on the algae [4, 5, 6, 7]. The aim of this study was to investigate if certain species of gastropods are living on specific genera of macroalgae.

2. Materials and Methods
The study sampling was conducted at Kodingareng, west of Makassar. Kodingareng island is about 2 hectares. Salinity is about 32 ppm with 7 pH, and water temperature range between 22 – 25 °C. Samples were collected randomly in the afternoon (after sunset) and early morning (before sunrise). Algae were placed in clear plastic bags, which were tied at the base. The algae together with associated fauna were cut from the substratum. Formaldehyde 4 % was used for preservation of both gastropods and macroalgae. Identification of gastropods was done to the generic level using [8, 9, 10, 11, 12]. Macroalgae were identified according to [13, 14, 15]. The species of gastropods present on algae was analysed by their relative frequency [16].

3. Results and Discussion
There were 36 genera of gastropods in 2 classes, 4 orders, 23 families on the three genera of macroalgae (Table 1). There were also contained 16 genera herbivores and 20 genera were carnivores.

A total of 28 genera were found on the red algae *Gelidium*. The genus *Cerithium* had the highest relative frequency (18%), followed by *Cypraea* (13%), *Morula* (11%), and *Rhinoclavis* (10%). The lowest relative frequency was for *Euchelus*, *Turbo*, *Littorina*, *Tectarius*, *Plinices*, *Natica*, *Tonna*, *Pissania*, *Thriss*, and *Atys*. A total of 21 genera of snails were present on *Hypnea*. The genus *Pyrene* had the highest relative frequency (20%), followed by *Littorina* (14%) and *Mitra* (12%). The lowest relative frequency was found for *Trochus*, *Turbo*, *Cypraea*, *Strombus*, *Chantarus*, *Conus*, *Peristina* and *Terebra*.
Tabel 1. Checklist of macrogastropodes on Hypnea, Gelidium, and Acanthophora

Order	Family	Genus	Herbivores / Carnivores	Relative frequency					
			Hypnea	Gelidium	Acanthophora				
Class Prosobranchia	Archeogastropoda	Neritida	Nerita	Herbivores	0.9	-			
		Trochidae	Euchelus	Herbivores	0.4	-			
			Clanculus	Herbivores	8.6	-			
			Trochus	Herbivores	1.1	2.2			
			Monilea	Herbivores	2.2	-			
	Turbinidae	Turbo	Herbivores	1.1	0.4	-			
Mesogastropoda	Architectonidae	Heliacus	Carnivores	1.3	1.7	2.1			
	Cerithiidae	Clypeomorus	Carnivores	5.5	8.7	6.3			
		Rhinoclavis	Carnivores	-	10.0	18.1			
		Cerithium	Carnivores	2.2	18.2	20.1			
	Cypraeidae	Cypraea	Carnivores	1.1	13.5	-			
	Littorinidae	Littorina	Carnivores	14.2	0.4	-			
	Naticidae	Polinices	Carnivores	-	0.4	-			
		Nativa	Carnivores	-	0.4	-			
	Potamididae	Cerithidea	Carnivores	3.2	1.2	2.0			
	Strombidae	Strombus	Carnivores	1.1	1.3	-			
	Tonniidae	Tonna	Carnivores	-	0.4	-			
	Turritellidae	Turritella	Carnivores	-	1.3	-			
Neogastropoda	Buccinidae	Engina	Carnivores	-	0.0	21.2			
		Pissania	Carnivores	-	0.4	-			
		Pollia	Carnivores	-	-	2.1			
		Chantarius	Carnivores	1.1	-	-			
	Columbellidae	Pyrene	Carnivores	20.5	8.2	2.1			
		Columbellae	Carnivores	6.2	2.2	5.2			
	Conidae	Conus	Carnivores	1.1	-	6.1			
	Costellariidae	Vexillum	Carnivores	-	0.7	-			
		Zierliana	Carnivores	2.1	3.4	-			
	Fasciolariidae	Peristina	Carnivores	1.1	-	-			
	Mitidae	Mitra	Carnivores	12.0	1.2	2.1			
	Muricidae	Morula	Carnivores	3.3	11.2	4.2			
	Terebridae	Terebra	Carnivores	1.1	-	-			
	Turridae	Clavus	Carnivores	-	0.9	4.2			
		Turris	Carnivores	-	0.4	-			
	Volutidae	Melo	Carnivores	-	9.1	4.2			
Class Opistobranchia	Cephalospidae	Buttidae	Ays	Herbivores	9.9	0.4	-		
					16	20	100.0	100.0	100.0

A total of 13 genera were on Acanthophora. The genera Cerithium and Engina had the highest relative frequency (21%) followed by Rhinoclavis (19%). The lowest relative frequency was of order Cephalospidae (10.3%). The genera Heliacus, Clypeomorus, Cerithium, Pyrene, Columbella, Mitra, and Morula were present on all three genera of algae. According to Dharma [9, 10] all the recorded genera of gastropods are common in shallow water and intertidal areas. The three genera Cerithium, Cypraea, and Rhinoclavis were common on the red algae Gelidium. They are herbivorous and probably feeding on it. Morula was also common but this genus is carnivorous probably feeding on the herbivores [17, 18]. Similarly, Cerithium, Rhinoclavis and Engina were common on the Acanthophora. The first two are herbivores while Engina is carnivorous. Pyrene, Littorina and Mitra had the highest relative frequency of occurrence on the green alga Hypnea. Littorina is herbivorous while the two others are carnivorous.
The present study indicates that some genera of gastropods were present on all three genera of algae. However, some genera of snails were only found on certain species of algae indicating a preference which might be related to the existence of specific food webs. Carnivore (20 species) and herbivore (16 species) snails were found in equal proportions indicating that the algae both may serve as a food source for herbivores as well as a preying ground for carnivores. The most complex web was recorded on Gelidium while the least complex web was found on Acanthophora. Thus, marine macroalgae provide microhabitat which is beneficial for abundant and diverse fauna [19, 20, 21, 22, 23, 24].

4. Conclusion
A total of 28 genera were found on the red algae Gelidium, 21 genera of snails were present on Hypnea, and 13 genera were on Acanthophora. The present study indicates that some genera of carnivores (20 species) and herbivores (16 species) snails were present on all three genera of algae.

Acknowledgment
The financial supported by the Research Grand of Faculty of Mathematical and Natural Sciences, University of Hasanuddin, Indonesia is acknowledged..

References
[1] Jacobi C M, Langevin R 1996 Habitat Geometry of Benthic Substrata Effects on Arrival and Settlement of Mobile Epifauna Journal of Experimental Biology and Ecology 206 39-54
[2] Seed R, O’Connor R J 1981 Community organization in marine algal epifaunas Annual Review of Ecology and Systematics 12 49-74
[3] Duffy J E, Hay M 2000 Seaweed adaptations to Herbivory Bioscience 40 368-379
[4] Nontji A 1987 Laut Nusantara Djambatan Jakarta p236 in Indonesian
[5] Nybakken J W 1992 Biologi Laut Suatu Pendekatan Ekologi PT Gramedia Pustaka Utama Jakarta p556 in Indonesian
[6] Fosca P P L, Mirna R S T, Carlo M C 2009 Gastropods associated with the green seaweed Caulerpa racemosa, on two beaches of the Northern coast of the State of São Paulo Brazil Strombus 16 1-10
[7] Margaret O A, Yusheng M H, Winfried E, James B M, Charles D A 2015 Abundance and diversity of gastropods associated with dominant subtidal macroalgae from the western Antarctic Peninsula Polar Biology Springer-Verlag Berlin Heidelberg p13
[8] Keen M A 1971 Sea Shells of Tropical West America 2nd edition Stanford University Press, California USA p422
[9] Dharma B 1988a Siput dan Kerang Indonesia I PT Sarana Graha Jakarta p111
[10] Dharma B 1988b Siput dan Kerang Indonesia II Verlag Christa Hemmen PT Sarana Graha Jakarta p135
[11] Houbrick R S 1992 Monograph of The Genus Cerithium bruguieri In The Indo Pacific (Cerithiidae: Prosobranchia) Smithsonian Institution Press Washington DC p386
[12] Kraus O 1993 Architectonicidae of the Indo-Pacific (Mollusca, Gastropoda) Gustav Fischer Verlag Stuttgart Jena New York Semper ~ Wollgrasweg 49 D-70599
[13] Taylor W R 1972 Marine Algae of The Eastern Tropical and Subtropical Coasts of The Americas Ann Arbor The University of Michigan Press p867
[14] Trono G C, Fortes E T G 1988 Philippine Seaweeds National Book Store incooperation Philippine p326
[15] Jha B, Reddy C R K, Thakur M C, Rao M U 2009 Seaweeds of India: The Diversity and Distribution of Seaweeds of the Gujarat Coast Springer Dordrecht Heidelberg, London p213
[16] Mueller-Dombois D, Ellenberg H 1974 Aims and Methods of Vegetation Ecology John Wiley & Sons New York p462
[17] Dance S P 1977 The Encyclopedia of Shell A Carter Nash Cameron Book London p288
[18] Tomascik T, Mah A J, Nontji A, Moosa M K 1997 The Ecology of Indonesian Seas Part I The Ecology of Indonesia Series Volume VII Periplus Editions Singapore p642
[19] Jansson A M 1967 The food-web of the Cladophora-belt fauna Helgoländer Wissenschaftliche Meeresuntersuchungen 15 574-588
[20] Johnson S C, Scheibling R E 1987 Structure and dynamics of epifaunal assemblages on intertidal macroalgae Ascophyllum nodosum and Fucus vesiculosus in Nova Scotia Canada Marine Ecology Progress Series 209-227
[21] Norderhaug K M, Christie H, Fosså J H, Fredriksen S 2005 Fish–macrofauna interactions in a kelp (Laminaria hyperborea) forest Journal of the Marine Biological Association of the United Kingdom 85 (05) 1279-1286
[22] Pascal R, Carole E, Cédric L 2009 Trophic ecology of the rocky shore community associated with the Ascophyllum nodosum zone (Roscoff, France): A investigation Estuar. Coast. Shelf Science 81 143-148.
[23] Saarinen A, Salovius-Laurén S, Mattila J 2017 Epifaunal community composition in five macroalgal species – What are the consequences if some algal species are lost? Estuarine, Coastal and Shelf Science
[24] Tano S A, Eggertsen M, Wikström S A, Berkström C, Buriyo A S, Halling C 2016 Tropical seaweed beds are important habitats for mobile invertebrate epifauna Estuarine, Coastal and Shelf Science 1 - 54