Transcriptional Regulation of VEGFA by the Endoplasmic Reticulum Stress Transducer OASIS in ARPE-19 Cells

Hidetaka Miyagi1,2, Soshi Kanemoto1, Atsushi Saito1, Rie Asada1, Hideo Iwamoto1, Soutarou Izumi1, Miori Kido1, Fumi Gomi3, Kohji Nishida3, Yoshiaki Kiuchi2, Kazunori Imaizumi1*

1 Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 2 Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 3 Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan

Abstract

Background: Vascular endothelial growth factor-A (VEGFA) is the main mediator of angiogenesis. Angiogenesis plays important roles not only in many physiological processes, but also in the pathophysiology of many diseases. VEGFA is one of the therapeutic targets of treatment for ocular diseases with neovascularization. Therefore, elucidation of the regulatory mechanisms for VEGFA expression is important for the development of pharmaceutical drugs. Recent studies have demonstrated that the unfolded protein response is involved in the transcriptional regulation of VEGFA. However, the precise regulation of VEGFA in the human retina is not fully understood.

Principal Findings: When human retinal pigment epithelial cells, ARPE-19, were exposed to endoplasmic reticulum stressors, VEGFA mRNA was significantly upregulated. The unfolded protein response-related transcription factors XBP1, ATF4, ATF6, and OASIS were expressed in ARPE-19 cells. To determine which transcription factors preferentially contribute to the induction of VEGFA expression after endoplasmic reticulum stress, we carried out reporter assays using an approximately 6-kbp 5'-upstream region of the human VEGFA gene. Among these transcription factors, OASIS acted most effectively on the VEGFA promoter in ARPE-19 cells. Based on data obtained for certain deleted and mutated reporter constructs, we determined that OASIS promoted VEGFA expression by acting on a cyclic AMP-responsive element-like site located at around –500 bp relative to the VEGFA transcription start site. Furthermore, we confirmed that OASIS directly bound to the promoter region containing this site by chromatin immunoprecipitation assays.

Conclusions and Significance: We have demonstrated a novel regulatory mechanism for VEGFA transcription by OASIS in human retinal pigment epithelial cells. Chemical compounds that regulate the binding of OASIS to the promoter region of the VEGFA gene may have potential as therapeutic agents for ocular diseases with neovascularization.

Introduction

The endoplasmic reticulum (ER) is an organelle responsible for the synthesis, folding, and post-translational modifications of secretory and transmembrane proteins. Various cellular stresses, including oxidative stress, ischemic insults, and expression of mutated genes, lead to the accumulation of unfolded or misfolded proteins in the ER lumen, and to impairment of ER functions. These states are termed ER stress [1,2]. Eukaryotic cells have a protective system to cope with ER stress, which is composed of translational attenuation, upregulation of ER chaperones to facilitate protein folding, and promotion of the degradation of unfolded proteins (ER-associated degradation; ERAD). This system is called the unfolded protein response (UPR) [3–5]. Mammalian cells have three canonical ER stress transducers; PKR-like endoplasmic reticulum kinase (PERK) [6], inositol-requiring enzyme 1 (IRE1) [7,8], and activating transcription factor 6 (ATF6) [9,10]. These ER stress transducers are transmembrane proteins that localize to the ER membrane and monitor the status of the ER lumen. When cells are exposed to ER stress, PERK phosphorylates eukaryotic initiation factor 2α (eIF2α), a translational complex subunit, followed by translational attenuation. On the other hand, and paradoxically, phosphorylation of eIF2α also upregulates the expression of ATF4 [4]. ATF4 transactivates the expression of both a pro-apoptotic protein, CHOP, and pro-survival proteins, such as ER chaperones and anti-oxidative stress proteins [11]. IRE1 processes unspliced forms of X-box-binding protein-1 (XBP1) mRNA to generate spliced forms of the mRNA [7,8,12–14]. XBP1 proteins derived from the spliced forms of XBP1 mRNA induce the expression of ER-resident chaperones and ERAD-related molecules [15,16]. ATF6 is cleaved at its transmembrane region by site-1 and site-2 proteases in response to ER stress [10,17]. The cleaved ATF6 N-
VEGFA Expression is Induced by ER Stress in ARPE-19

Results

VEGFA Expression Is Induced by ER Stress in ARPE-19 Cells

To check the response of VEGFA expression to ER stress in ARPE-19 cells, we treated the cells with ER stress inducers, 1 μM thapsigargin or 3 μg/ml tunicamycin, for 3, 6, 12, and 24 h. Total RNA was isolated from the cells, and subjected to RT-PCR analysis (Figure 1A). Treatment with thapsigargin and tunicamycin significantly increased the VEGFA mRNA expression levels by 4–13-fold compared with non-treated control cells, indicating that VEGFA expression is regulated by UPR signaling. Next, we examined which UPR-related transcription factors are involved in the expression of VEGFA mRNA in ARPE-19 cells. We checked the expression of several transcription factors, XBPI in the IRE1 pathway, ATF4 in the PERK pathway, ATF6, and OASIS family members including OASIS, CREBH, and CREB4, under normal and ER stress conditions. In both conditions, XBPI, ATF4, ATF6, and OASIS were expressed in ARPE-19 cells, while CREBH and CREB4 were not (Figure 1B). Western blot analyses showed that the former four factors were activated under ER stress conditions, comprising upregulation of XBP1 proteins derived from the spliced mRNA forms and translated ATF4, and increases in the N-terminal fragments of ATF6 and OASIS (Figure 1C). These findings suggest that specific UPR components are expressed and activated in ARPE-19 cells under ER stress and could affect the expression of VEGFA mRNA.

Structure of the Human VEGFA Promoter and Effects of OASIS on its Activities

To analyze the regulation of VEGFA expression in ARPE-19 cells, we carried out reporter assays using VEGFA promoter regions. Two potential XBPI-binding sites within the 6-kbp 5′-upstream region and one ATF4-binding site in the first intron are known to be present around the transcription start site of the human VEGFA gene [39]. In addition, we found five cAMP-responsive element (CRE)-like sites in the 6-kbp 5′-upstream region of the VEGFA gene (Figure 2A), which are elements that OASIS can bind to [20,26]. Therefore, we focused on the transcriptional regulation of the 5′-upstream region of the VEGFA gene by OASIS. A 6-kbp 5′-upstream sequence (−5868 to +313 bp) from the human VEGFA transcription start site was cloned into the pGL3-basic reporter plasmid (pGL3-hVEGFA promoter 6 kb). This reporter plasmid and each UPR-related transcription factor expression vector were co-transfected into ARPE-19 cells, and the luciferase activities were measured. Introduction of the OASIS and XBPI expression vectors significantly increased the luciferase activities, and OASIS was the most effective among the UPR-related transcription factors (Figure 2B). These findings indicate that OASIS may be the most important factor for the transcription of human VEGFA in ARPE-19 cells.

To confirm that OASIS induces the expression of endogenous VEGFA in ARPE-19 cells, we examined the VEGFA expression levels in ARPE-19 cells infected with an adenovirus expressing the N-terminus of OASIS (Figure 2C). The VEGFA mRNA levels were significantly elevated in the OASIS-infected cells. Taken together, these findings indicate that OASIS acts on the 6-kbp promoter region of the VEGFA gene and promotes the expression of VEGFA mRNA in ARPE-19 cells.

OASIS Modulates Human VEGFA Promoter Activities via a CRE-like Site

Among the five CRE-like sites in the 6-kbp promoter of the VEGFA gene, we tried to determine the sites that OASIS specifically acted on. First, we constructed truncated reporter genes that were deleted from the original 6-kbp human VEGFA promoter and contained different numbers of CRE-like sites (Figure 3A). Although the luciferase activities in ARPE-19 cells transfected with the 300-bp (−709 to −205 bp) reporter construct were equal to those in cells transfected with the full-length 6-kbp construct, those in cells transfected with the 200-bp (−436 to −205 bp) construct were dramatically reduced (Figure 3B). This indicates that OASIS acts on the sequence from −709 to −437 bp in the VEGFA promoter to facilitate the reporter activities. Next, to identify the CRE-like sites that OASIS acts upon, we generated mutated reporter constructs that were exchanged from the ACCT core sequence to the AaGg sequence in each CRE-like site (Figure 4A). The reporter activities in cells transfected with the mutated CRE-like site 4 (−509 AaGg −506) construct were significantly reduced, while those in cells transfected with the other mutated constructs were promoted by OASIS (Figure 4B). These findings indicate that OASIS specifically acts on CRE-like site 4.
between -509 and -506 bp in the human VEGFA promoter to activate its transcription.

OASIS Directly Binds to the Promoter Region in the Human VEGFA Gene

To confirm that OASIS directly binds to the promoter region including CRE-like site 4, we performed chromatin immunoprecipitation (ChIP) assays. ARPE-19 cells were transfected with expression vectors for FLAG-tagged OASIS N-terminus or green fluorescent protein (GFP), followed by immunoprecipitation with anti-histone H3, anti-mouse IgG, or anti-FLAG antibodies. The region of -550 to -471 bp in the human VEGFA promoter containing CRE-like site 4 was then amplified from the precipitated DNA using a specific primer set (Figure 5A). Specific bands were detected in the anti-histone H3 antibody immunoprecipitates of lysates from both GFP- and FLAG-OASIS-
transfected cells, but not in the anti-mouse IgG antibody immunoprecipitates. When the anti-FLAG antibody was used for immunoprecipitation, the specific amplified band was observed in cells transfected with FLAG-OASIS expression vectors (Figure 5B). These findings suggest that OASIS directly binds to the promoter region including CRE-like site 4 in the human VEGFA gene.

Discussion

Previous studies showed that UPR signaling affects the transcription of VEGFA mRNA [38,39]. It was suggested that XBPI facilitates the promoter activities by acting on the 5'-upstream region of the human VEGFA gene and that ATF4 promotes these activities by acting on the first intron. In addition, in IRE1α−/− or XBPI−/− mouse embryonic fibroblasts (MEFs), the VEGFA expression levels were significantly reduced under ER stress conditions. These levels were also decreased in ATF4−/− MEFs. Interestingly, however, the VEGFA induction in these cells was partially decreased and did not completely disappear [38,39]. We also confirmed that the decreases in VEGFA expression were small in both IRE1α/β−/− and PERK−/− MEFs (data not shown). These observations allow us to propose the possibility that other UPR-related transcription factors are also involved in the transcriptional regulation of VEGFA.

In the present study, we have demonstrated that OASIS promotes the expression of VEGFA by directly binding to its promoter region in ARPE-19 cells. The reasons for this conclusion are as follows: 1) OASIS was expressed in ARPE-19 cells and cleaved at the membrane region in response to ER stress; 2) OASIS facilitated the expression of a reporter gene carrying the 6-kbp 5'-upstream promoter region in the VEGFA gene; 3) OASIS acted on a specific region, −709 to −437 bp, of the 5'-upstream promoter region; and 4) OASIS directly bound to the promoter region including CRE-like site 4, −509 to −506 bp. XBPI and ATF4 belong to the CREB/ATF family as well as OASIS [18,19]. It is well known that CREB/ATF family transcription factors form heterodimers between the individual molecules via their bZIP domains and promote the transcription of target genes [40]. Therefore, it is possible that OASIS spatiotemporally regulates the expression of VEGFA by forming heterodimers with XBPI or ATF4. However, to clarify the detailed regulation of VEGFA expression under ER stress conditions, further studies including regulated complex formation of OASIS and XBPI or ATF4 are needed.

VEGFA is one of the proangiogenic factors, and is involved in the pathophysiology of some ocular diseases with neovascularization. In fact, treatment of age-related macular degeneration patients with anti-VEGF humanized monoclonal antibodies successfully delays the progression of its pathology [41,42]. Furthermore, it is generally accepted that anti-VEGF antibodies or triamcinolone acetonide, which suppresses VEGF levels [43], are effective treatment for diabetic retinopathy. Therefore, VEGFA is one of the best targets for the development of therapeutic strategies for these diseases. On the other hand, ER stress and UPR signaling are known to be related to the onset or
progression of many ocular diseases, such as retinitis pigmentosa caused by mutated rhodopsin [44], primary open angle glaucoma [45], diabetic retinopathy [46,47], and age-related macular degeneration [48]. Thus, modulators of ER stress or the UPR, including the OASIS signaling pathway, could be potent candidates for therapeutic strategies targeting ocular diseases with neovascularization. However, for the development of new therapeutic medicines for these diseases, it is essential to clarify the in vivo regulation of the UPR in patients.

Materials and Methods

Cell Culture, ER Stress Induction, and Virus Infection

ARPE-19 cells (derived from retinal pigment epithelium, an immortal non-transformed cell line from a human donor) were obtained from American Type Culture Collection (ATCC) and cultured in Dulbecco’s modified Eagle’s medium/F12 human amniotic membrane nutrient mixture (Gibco, Invitrogen) supplemented with 10% fetal bovine serum. The cultures were maintained in a humidified incubator at 37°C in an atmosphere containing 5% CO₂. Thapsigargin (Sigma-Aldrich) and tunicamycin (Sigma-Aldrich) were dissolved in dimethylsulfoxide (DMSO; Sigma-Aldrich) to produce stock solutions. Cells were treated with 1 μM thapsigargin or 3 μg/ml tunicamycin for specified periods of time. To evaluate the effects of DMSO, medium containing only DMSO (1:1000 of total volume) was also examined in each experiment. For adenovirus generation, a recombinant adenovirus carrying OASIS was constructed by homologous recombination between the expression cosmid cassette and the parental virus genome in HEK293 cells, as described previously [49,50]. Cells were infected with the adenovirus at 48 h before analysis.

RNA Isolation and RT-PCR

Total RNA was isolated from ARPE-19 cells using Isogen (Wako) according to the manufacturer’s protocol. First-strand
cDNA was synthesized in 20 μl of reaction volume using a random primer (Takara) and Moloney murine leukemia virus reverse transcriptase (Invitrogen). PCR was performed using specific primer sets in a total volume of 30 μl containing 0.8 μM of each primer, 0.2 mM dNTPs, 3 U of Taq polymerase, and 10× PCR buffer (Agilent). The primer sequences are summarized in Table S1. The PCR products were resolved by electrophoresis in a 4.8% acrylamide gel.

Real-time PCR analyses were performed for 1-μl aliquots of the prepared cDNA samples using KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems) and primers in a LightCycler 480 System II (Roche). The primer sequences are indicated in Table S1. The PCR products were resolved by electrophoresis in a 4.8% acrylamide gel.

Western Blotting
Proteins were extracted from ARPE-19 cells lysed with cell extraction buffer comprising 2.5 mM methionine, 33.3 mM Tris-acetate pH 8.5, 5 mM EDTA, 0.3% SDS, 1.5% Triton X-100, and protease inhibitor cocktail (MBL). The lysates were incubated on ice for 30 min. After centrifugation at 15,000 g for 10 min, the soluble protein concentrations were equalized using BCA protein assay reagents (Pierce). The following antibodies and dilutions were used: anti-actin (Millipore); anti-FLAG M5 (Sigma-Aldrich); anti-XBP1 (Santa Cruz Biotechnology); anti-ATF4 (Santa Cruz Biotechnology); and anti-ATF6 (Santa Cruz Biotechnology). The anti-OASIS monoclonal antibody was generated previously [26]. The density of each band was quantified using Photoshop Elements 2.0 (Adobe Systems).

Reporter Plasmids and Luciferase Assay
The 6-kbp human VEGFA promoter (-5668 to +313 bp) was inserted into the pGL3-basic vector (Promega), and designated pGL3-hVEGFA promoter 6 kbp. All plasmids for VEGFA promoter deletion constructs and mutants were generated by a PCR-based approach using pGL3-hVEGFA promoter (6 kbp) as
transfected with a reporter plasmid

Figure 5. OASIS directly binds to the promoter region in the human VEGFA gene. (A) Schematic representation of the VEGFA promoter and the annealing sites of the primer set used in the ChIP assays. (B) PCR amplification of the VEGFA promoter region including the promoter and the annealing sites of the primer set used in the ChIP assay.

ChIP Assay

ARPE-19 cells were grown to 80% confluence in 10-cm dishes under normal cell culture conditions and then transfected with each expression plasmid (GFP or FLAG-tagged OASIS N-terminus) using an electroporation system (CUY21Vitro-EX; BEX) according to the manufacturer’s protocol. Protein–DNA crosslinking was initiated by directly adding formaldehyde to the culture medium at a final concentration of 1% and cells were incubated for 15 min. To harvest the cells, the plates were rinsed with cold PBS containing protease inhibitors and scraped. Chromatin was prepared using a ChiP Assay Kit (Upstate Biotechnology) according to the manufacturer’s protocol of 30 s × 30 strokes of sonication pulses, which yielded chromatin fragments with apparent sizes of 100–500 bp. An aliquot of each sample representing 5% of the total volume was removed for use as the input fraction and processed with the eluted immunoprecipitates beginning at the crosslink reversal step. Equal amounts of chromatin from each sample were incubated overnight at 4°C with 1 µl of anti-FLAG M2 (Sigma-Aldrich), anti-mouse IgG (Sigma-Aldrich) or anti-histone H3 (Santa Cruz Biotechnology) antibodies. Formaldehyde-induced cross-linking was reversed (>6 h at 65°C) and the DNA was purified by phenol–chloroform extraction and ethanol precipitation. The purified DNAs from the input and immunoprecipitated samples were subjected to 35 cycles of PCR. The PCR products were electrophoresed in 4.8% polyacrylamide gels and visualized by ethidium bromide staining. The primers used for the human VEGFA promoter were: 5′-AAGCTGGGTGAATGGAGCGA-3′ (forward) and 5′-CAACGCAACACACGTACCTCA-3′ (reverse), yielding an 80-bp product.

Supporting Information

Table S1 RT-PCR primer sequences. The following table indicates sets of primers used for RT-PCR.

Acknowledgments

We thank S. Nakagawa, K. Takedachi, and M. Harada for technical support.

Author Contributions

Provided substantial input into the writing of the manuscript: FG KN YK. Conceived and designed the experiments: HM KI. Performed the experiments: HM SK AS RA HI SI MK. Analyzed the data: HM SK AS KI. Provided substantial input into the writing of the manuscript: FG KN YK. Wrote the paper: HM SK KI.

References

1. Rutkowski DT, Kaufman RJ (2004) A trip to the ER. Coping with stress. Trends Cell Biol 14: 20–28.
2. Zhang K, Kaufman RJ (2008) From endoplasmic reticulum stress to the inflammatory response. Nature 454: 453–462.
3. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569: 29–63.
4. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clini Invest 110: 1383–1389.
5. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clini Invest 110: 1389–1398.
6. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.
7. Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12: 1812–1824.
8. Callon M, Zeng H, Urano F, Till JH, Hubbard SR, et al. (2002) Ire1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96.
9. Yoshida H, Okada K, Haze K, Yamagi H, Yura T, et al. (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20: 6755–6767.
10. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BIP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3: 99–111.
11. Harding HP, Zhang Y, Zeng H, Nowoa I, Lu PD, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–633.
12. Wang XZ, Harding HP, Zhang Y, Jelicic EM, Kuroda M, et al. (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J 17: 5708–5717.

13. Yoshida H, Matsui T, Yamamoto O, Okada T, Mori K (2000) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 102: 899–907.

14. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, et al. (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4: 263–271.

15. Lee AH, Ikawashi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23: 7448–7459.

16. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, et al. (2004) XBP1, downstream of IRE1p, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21: 81–93.

17. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBP. Mol Cell 6: 1355–1364.

18. Kondo S, Saito A, Asada R, Kanemoto S, Imaiizumi K (2011) Physiological unfolded protein response regulated by OASIS family members, transmembrane bZIP transcription factors. JBIWM life 63: 233–239.

19. Asada R, Kanemoto S, Kondo S, Saito A, Imaiizumi K (2011) The signaling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149: 507–516.

20. Kondo S, Murakami T, Tatsuki K, Ogata M, Kanemoto S, et al. (2005) OASIS, a CREB/ATF-family member, modulates UPR signaling in astrocytes. Nat Cell Biol 7: 186–194.

21. Murakami T, Kondo S, Ogata M, Kanemoto S, Saito A, et al. (2006) Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem 96: 1090–1100.

22. Saito A, Hino S, Murakami T, Kondo S, Imaiizumi K (2007) A novel ER stress transducer, OASIS, expressed in astrocytes. Antioxid Redox Signal 9: 563–571.

23. Honma Y, Kanazawa K, Mori T, Tanino Y, Tojo M, et al. (1999) Identification of a novel gene, OASIS, which encodes for a putative CREB/ATF family transcription factor in the long-term cultured astrocytes and gliatric tissue. Brain Res Mol Brain Res 69: 93–103.

24. Nikaido T, Yokoya S, Mori T, Hagino S, Iseki K, et al. (2001) Expression of the endoplasmic reticulum stress transducer by a BBF2H7-mediated Sec23a post-transcriptional regulation of proangiogenic factors by the unfolded protein pathway. PLoS One 5: e9575.

25. Chihara K, Saito A, Murakami T, Hino S, Aoki Y, et al. (2009) Increased roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. Nat Commun 9: 967–979.

26. Murakami T, Saito A, Hino S, Kanemoto S, Kondo S, et al. (2009) Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol 11: 1197–1204.

27. Ikehara F, Nishimura R, Matsubara T, Tanaka S, Inoue J, et al. (2004) Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 114: 473–484.

28. Funamoto T, Sekimoto T, Murakami T, Kurogi S, Imaizumi K, et al. (2011) Cloning of mammalian Ire1 reveals diversity in the ER stress response. EMBO J 17: 5708–5717.

29. Saito A, Kanemoto S, Kawasaki N, Asada R, Iwamoto H, et al. (2012) Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat Commun 3: 956–965.