Associated Quarkonium Hadroproduction at High-Energy Colliders

Nodoka Yamanaka¹, Jean-Philippe Lansberg¹, Hua-Sheng Shao², and Yu-Jie Zhang³

¹IPNO, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
²Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
³Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, and School of Physics, Beihang University, Beijing 100191, China

E-mail: yamanaka@ipno.in2p3.fr

(Received April 27, 2019)

Quarkonium production in proton-proton collision is interesting in profiling the partons inside the nucleon. Recently, the impact of double parton scatterings (DPSs) was suggested by experimental data of associated quarkonium production ($J/\psi + Z$, $J/\psi + W$, and $J/\psi + J/\psi$) at the LHC and Tevatron, in addition to single parton scatterings (SPSs). In this proceedings contribution, we review the extraction of the effective parameter of the DPS (σ_{eff}) through the evaluation of the SPS contributions under quark-hadron duality.

KEYWORDS: Nucleon structure, double parton scattering, quarkonia

1. Introduction

The prime motivation to study quarkonium production is to unveil novel nonperturbative and perturbative features of QCD [1–4]. In this context, an interesting class of processes is that of the associated quarkonium production, which is being studied to probe double parton scatterings (DPS) [5–7] and even triple parton scatterings [8]. A representative case is di-J/ψ production, which was measured in many experiments (NA3 [9], D0 [10], CMS [11], ATLAS [12], and LHCb [13, 14]), and was studied in many theoretical works [15–18]. Recently, experimental data of associated production with vector bosons were released by the ATLAS Collaboration ($J/\psi + W$ [19] and $J/\psi + Z$ [20]). The single parton scattering (SPS) contributions to these processes were theoretically computed in NRQCD [21–26], and the predictions have difficulties in explaining the yields in several regions of the phase space. This proceedings contribution summarizes the results of the calculations of the SPS of $J/\psi + W$, $J/\psi + Z$, and $J/\psi + J/\psi$ [18, 27–29] production in the color evaporation model (CEM) which provides us indirect informations about the DPS.

2. The double parton scattering

Let us parametrize the DPS. If we assume two uncorrelated parton scatterings, the DPS cross section can be written as

$$\sigma_{\text{DPS}}(A + B) = \frac{1}{1 + \delta_{AB}} \frac{\sigma(A)\sigma(B)}{\sigma_{\text{eff}}},$$

with $\delta_{AB} = 1$ for the case where we have $A = B$ in the final state, where A or B (or both) is a quarkonium.
3. The color evaporation model

The CEM is a model to calculate heavy quarkonium production processes based on quark-hadron duality [4,30–33]. In this model, the quarkonium Q is produced as a quark-antiquark pair $Q \bar{Q}$ having its invariant mass below the open-heavy flavor threshold $2m_{\text{thr}}$. The cross section in the model is given by

$$\sigma_Q^{(NLO, \text{direct \ prompt})} = \mathcal{P}_Q^{(NLO, \text{direct \ prompt})} \int_{2m_{\text{thr}}}^{\infty} \frac{d\sigma_Q^{(NLO)}}{dm_Q \bar{Q}} dm_Q \bar{Q},$$

where we assume universal parameters $\mathcal{P}_Q^{(NLO, \text{prompt})}$. For J/ψ, we have $\mathcal{P}_{J/\psi}^{(NLO, \text{prompt})} = 0.014$ (LO), 0.009 (NLO) [34], obtained from the fit of the single inclusive J/ψ production data. A caveat is that the single-quarkonium production cross section predicted by the model overshoots the experimental data at high transverse momentum p_T [2, 4, 34]. It is understood that the dominance of the gluon fragmentation in the model yields too hard a p_T spectrum, which should also apply to the associated quarkonium production with vector bosons, discussed in the next section.

4. Analysis of the ATLAS data for $J/\psi + Z$ and $J/\psi + W$ productions in the CEM

Let us now consider the $J/\psi + Z$ and $J/\psi + W$ productions. As we mentioned in the previous section, the single quarkonium production in the CEM is dominated by the gluon fragmentation topologies at large p_T, which also happens for the cases of $J/\psi + Z$ and $J/\psi + W$. Since the CEM predictions overshoot the experimental data at high p_T, we can set conservative upper limits to the SPS contribution of both these processes. The SPS is evaluated at NLO in α_s with MadGraph5_AMC@NLO [35].

	ATLAS	NLO CEM
$J/\psi + Z$	1.6 ± 0.4 pb [20]	$0.19^{+0.10}_{-0.04}$ pb [34]
$J/\psi + W$	$4.5^{+1.9}_{-1.4}$ pb [19]	0.28 ± 0.07 pb [36]

Table I shows the results of the associated J/ψ productions with vector bosons. We see that the NLO CEM SPS predictions alone are smaller than the ATLAS experimental data (see also Fig. 1).

Let us now fit σ_{eff} by assuming that the DPS fills the gap between the SPS and the measured total cross section. The result is shown in Fig. 1. We obtain $\sigma_{\text{eff}} = (4.7^{+2.4}_{-1.5})$ mb [34] ($J/\psi + Z$) and $\sigma_{\text{eff}} = (6.1^{+3.3}_{-1.9})$ mb [36] ($J/\psi + W$).

5. Analysis of di-J/ψ production in the CEM

Let us now evaluate the di-J/ψ production in the CEM. The regions of the phase space of interest are at the large invariant mass $M_{\psi\psi}$ and rapidity separation Δy, where the experimental data of CMS and ATLAS are overshooting the color singlet model SPS prediction [11, 12, 18, 27].

By computing the SPS contribution to the di-J/ψ production at LO, we obtain the result of Fig. 2. No particular enhancements at large $M_{\psi\psi}$ and Δy are seen in the CEM. Our result is suggesting the dominance of the DPS in these regions of the di-J/ψ production. By assuming the dominance of the DPS, the σ_{eff} value extracted from the CMS [11] ($\sigma_{\text{eff}} = (8.2 \pm 2.0_{\text{stat}} \pm 2.9_{\text{sys}})$ mb [18]), D0
Fig. 1. The p_T distribution of the J/ψ in the $J/\psi + Z$ [34] (left panel) and $J/\psi + W$ [36] (right panel) production cross section in the CEM. The ATLAS experimental data [19, 20] are also displayed for comparison.

Fig. 2. The invariant mass (left panel) and Δy (right panel) differential cross sections of di-J/ψ production (CMS setup, $\sqrt{s} = 7$ TeV).

$(\sigma_{\text{eff}} = (4.8 \pm 0.5_{\text{stat}} \pm 2.5_{\text{sys}}) \text{ mb})$ [10], and ATLAS Collaborations $(\sigma_{\text{eff}} = (6.3 \pm 1.6_{\text{stat}} \pm 1.0_{\text{sys}}) \text{ mb})$ [12] are all consistent with each other, as well as with those of the $J/\psi + W$ and $J/\psi + Z$ productions. In Fig. 3, we summarize the extractions of σ_{eff} from different processes and experimental data.

Fig. 3. Summary of several extractions of σ_{eff}. Quarkonium related extractions are shown in color (see Ref. [36]).
6. Conclusion

To summarize, we analyzed the production processes of \(J/\psi + W/Z \) (NLO) and \(J/\psi + J/\psi \) (LO) in the CEM. For the case of \(J/\psi + W/Z \), it is possible to extract the DPS yield from the experimental data by setting an upper limit on the SPS contribution. We obtained \(\sigma_{\text{eff}} = (4.7^{+2.4}_{-1.5}) \text{mb} (J/\psi + Z) \), and \(\sigma_{\text{eff}} = (6.1^{+3.3}_{-1.9}) \text{mb} (J/\psi + W) \), which emphasizes the importance of the DPS and is compatible with other extractions from other central rapidity quarkonium data. This \(\sigma_{\text{eff}} \) is also in agreement with the enhancement of the di-\(J/\psi \) production at large \(\Delta y \) and invariant mass.

References

[1] J. P. Lansberg, arXiv:1903.09185 [hep-ph].
[2] A. Andronic et al., Eur. Phys. J. C 76, no. 3, 107 (2016) [arXiv:1506.03981 [nucl-ex]].
[3] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011) [arXiv:1010.5827 [hep-ph]].
[4] J. P. Lansberg, Int. J. Mod. Phys. A 21, 3857 (2006) [hep-ph/0602091].
[5] M. Diehl, T. Kasemets and S. Keane, JHEP 1405, 118 (2014) [arXiv:1401.1233 [hep-ph]].
[6] M. Diehl and J. R. Gaunt, Adv. Ser. Direct. High Energy Phys. 29, 7 (2018) [arXiv:1710.04408 [hep-ph]].
[7] M. G. A. Buffing, M. Diehl and T. Kasemets, JHEP 1801, 044 (2018) [arXiv:1708.03528 [hep-ph]].
[8] H. S. Shao and Y. J. Zhang, arXiv:1902.04949 [hep-ph].
[9] J. Badier et al. [NA3 Collaboration], Phys. Lett. B 36, 85 (1985).
[10] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 90, 111101 (2014) [arXiv:1406.2380 [hep-ex]].
[11] V. Khachatryan et al. [CMS Collaboration], JHEP 1409, 094 (2014) [arXiv:1406.0484 [hep-ex]].
[12] M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 77, 76 (2017) [arXiv:1612.02950 [hep-ex]].
[13] R. Aaij et al. [LHCb Collaboration], Phys. Lett. B 707, 52 (2012) [arXiv:1109.0963 [hep-ex]].
[14] R. Aaij et al. [LHCb Collaboration], JHEP 1706, 047 (2017) [arXiv:1612.07451 [hep-ex]].
[15] C. H. Kom, A. Kulesza and W. J. Stirling, Phys. Rev. Lett. 107, 082002 (2011) [arXiv:1105.4186 [hep-ph]].
[16] S. P. Baranov and A. H. Rezaeian, Phys. Rev. D 93, 114011 (2016) [arXiv:1511.04089 [hep-ph]].
[17] C. Borschensky and A. Kulesza, Phys. Rev. D 95, 034029 (2017) [arXiv:1610.00666 [hep-ph]].
[18] J. P. Lansberg and H. S. Shao, Phys. Lett. B 751, 479 (2015) [arXiv:1410.8822 [hep-ph]].
[19] G. Aad et al. [ATLAS Collaboration], JHEP 1404, 172 (2014) [arXiv:1401.2831 [hep-ex]].
[20] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75, 229 (2015) [arXiv:1412.6428 [hep-ex]].
[21] G. Li, M. Song, R. Y. Zhang and W. G. Ma, Phys. Rev. D 83, 014001 (2011) [arXiv:1012.3798 [hep-ph]].
[22] M. Song, W. G. Ma, G. Li, R. Y. Zhang and L. Guo, JHEP 1102, 071 (2011) Erratum: [JHEP 1212, 010 (2012)] [arXiv:1102.0398 [hep-ph]].
[23] B. Gong, J. P. Lansberg, C. Lorce and J. Wang, JHEP 1303, 115 (2013) [arXiv:1210.2430 [hep-ph]].
[24] J. P. Lansberg and C. Lorce, Phys. Lett. B 726, 218 (2013) Erratum: [Phys. Lett. B 738, 529 (2014)] [arXiv:1303.5327 [hep-ph]].
[25] J. P. Lansberg and H. S. Shao, Nucl. Phys. B 916, 132 (2017) [arXiv:1611.09303 [hep-ph]].
[26] H. S. Shao and J. Y. Zhang, Phys. Rev. Lett. 117, 062001 (2016) [arXiv:1605.03061 [hep-ph]].
[27] J. P. Lansberg and H. S. Shao, Phys. Rev. Lett. 111, 122001 (2013) [arXiv:1308.0474 [hep-ph]].
[28] Z. G. He and B. A. Kniehl, Phys. Rev. Lett. 115, 022002 (2015) [arXiv:1609.02786 [hep-ph]].
[29] L. P. Sun, H. Han and K. T. Chao, Phys. Rev. D 94, 074033 (2016) [arXiv:1404.4042 [hep-ph]].
[30] H. Fritzsch, Phys. Lett. 67B, 217 (1977).
[31] F. Halzen, Phys. Lett. 69B, 105 (1977).
[32] J. F. Amundson, O. J. P. Eboli, E. M. Gregores and F. Halzen, Phys. Lett. B 372, 127 (1996) [hep-ph/9512248].
[33] J. F. Amundson, O. J. P. Eboli, E. M. Gregores and F. Halzen, Phys. Lett. B 390, 323 (1997) [hep-ph/9605295].
[34] J. P. Lansberg and H. S. Shao, JHEP 1610, 153 (2016) [arXiv:1608.03198 [hep-ph]].
[35] J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301 [hep-ph]].
[36] J. P. Lansberg, H. S. Shao and N. Yamanaka, Phys. Lett. B 781, 485 (2018) [arXiv:1707.04350 [hep-ph]].