Floristic Survey of the Herbaceous-Shrub Layer of a Gallery Forest in Alto Paraíso de Goiás - Go, Brazil

Eduardo Chaves and Lucia Helena Soares-Silva

1Universidade de Brasília; Brasília - DF - Brasil. 2Departamento de Botânica; Universidade de Brasília; Brasília - DF - Brasil

ABSTRACT

Flowering species of the herbaceous and shrubby layer were sampled in a gallery forest at Portal da Chapada, Alto Paraíso de Goiás-GO in the Chapada dos Veadeiros during 12 months growing within 4.5 meters on either side of a raised pathway 2.4 Km long. The collections were included to University of Brasilia Herbarium (UB). A total of 138 species (103 genera and 40 families) were recorded; the most species-rich families were Asteraceae (22), Poaceae (14), Rubiaceae (12), Fabaceae (11) and Melastomataceae (7). The richest family in number of genera was Asteraceae (19), followed by Poaceae (8), Fabaceae (8) and Rubiaceae (7). The results showed a meaningful increase in the Chapada dos Veadeiros flora, especially considering the herbaceous-shrubby layer of the gallery forests (223.6%). Despite the richness of the flora, the number of endemics species in the Goiás State was only 1.5%.

Key words: Floristic survey, Cerrado, Chapada dos Veadeiros

INTRODUCTION

The Cerrado biome of Central Brazil, extends across nine states (Bahia, Goiás, Maranhão, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Piauí and Tocantins, as well in the Federal District), including some disjunct areas in the states of Amapá, Amazonas, Pará, Paraná, Rondônia, Roraima and São Paulo (Cavalcanti 2002). This territory occupies an area of approximately two million square kilometers (Ribeiro and Walter 2001), an area far more extensive than, for example the Pantanal, and qualifies the Cerrado as the second largest Brazilian biome, being smaller only to the Amazon rainforest. Among the phytophysionomies present in this biome, the gallery forests, ecosystems associated with the water (Ribeiro and Walter 1998) have been object of various studies in recent decades, which is of fundamental importance to sustainable exploration and restoration of these environments. Although the gallery and riverine forests occupy only 5% of the Cerrado biome, they contain nearly 33% of all known flowering plant species in the biome (Felfili et al. 2001), and although they are similar, these two forest types show some differences. These forest formations can be differentiated in three aspects (Ribeiro and Walter 2001): the width of the river which is adjacent to them, being narrower in the gallery forests, so that the tree crowns touch across the river (forming a gallery) while in the riparian forests, which can occur on the lake shores and the larger rivers (usually not exceeding 100 meters wide), the crowns do not touch, the deciduousness, which is much more evident in riparian forests and the floristic composition (with deciduous species predominant in the riparian forest and evergreen...
species in the gallery forests). Gallery forests can also be divided into flooded and non-flooded (Ribeiro and Walter 1998).

In the gallery forests of the Federal District, the number of herbs and shrub species can be well represented compared to the floristic composition of the tree stratum. In a section of gallery forest which has a high degree of human disturbance along the Guará stream in the Guará Ecological Park-DF, 49 tree species and 56 shrub and herbaceous were found (Nogueira et al. 2002). In the Cafuringa Environmental Protection Area in the Northern Federal District, there exists at least 108 herb and shrub species and 125 trees in the gallery forests (Silva et al. 1996). Gallery forests of the Biosphere Nuclear Area Reserve in the Federal District have more than 700 terrestrial flowering plant species, with 374 herbaceous and shrubby species and 340 trees (Mendonça et al. 2001). Felfili et al. (2001) reported that the floral diversity in the gallery forests was, in general, very similar to an equivalent area in other tropical forests and richer than those of the adjacent savanna formations. Gallery forests also tend to have many endemic species (Silva Junior et al. 1998).

According to Felfili et al. (2001), the gallery forests of Cerrado biome have, in general, similar numbers of species in the herbaceous and shrub and tree layers. However, the studies involving the vegetation of these forests were almost exclusively in the tree stratum (Eira and Martins Netto 1998; Fonseca and Ribeiro 1998; Haridasan 1998; Souza 1999, Correia et al. 2001; Schiavini et al. 2001; Silva et al. 2001; Silva Júnior et al. 2001; Ribeiro and Walter 2001).

In the region of Alto Paraíso, various studies have contributed to improving the floral knowledge of the Chapada dos Veadeiros region, but they did not prioritize the herbaceous-shrub layer when undertaken in the gallery forests. Munhoz and Proença (1998) reported 1310 flowering plant species in various vegetation types in the region of Chapada dos Veadeiros; 55 of which were herbaceous and shrub species and 69 tree species in the gallery forests. Souza (1999) conducted a floristic survey on a farm in the municipality of Cavalcante-GO, adjacent to the Chapada dos Veadeiros National Park, sampling various vegetation types, and found five herbaceous, two shrub and 27 tree species for the gallery forests. Silva et al. (2001), identified in gallery forests in the region, 23 flowering plant species utilized by the local people, including six herbaceous and shrub species and 17 trees. In a floristic tree survey carried out in the Portal da Chapada, Alto Paraíso, Soares-Silva (2005) found 136 tree species in the same area of gallery forest of Couros river sampled in this present study, using the same collection criteria.

This work studied the herb-shrub species, along a section of gallery forest on the margins of the Couros river, and has been, therefore, a complementary study to that by Soares-Silva (2005) to provide more data on the same area, also allowing the comparison of data.

There is a clear discrepancy between the number of studies undertaken on tree species and the herb-shrub layer, and consequently the herbs, shrubs and sub-shrubs are less well-known in the gallery forests. Knowledge on the floristic composition of the shrub layer may also be important in the projects of regenerating degraded areas, where not only trees but also shrub species can be used, information that corroborates that of Rezende (1998).

Herbaceous species may contribute to a rapid soil cover, improving the soil moisture conditions, increasing organic matter by accelerated decomposition, reducing erosion and also creating better conditions for development of tree species. In addition, the Chapada dos Veadeiros region has a well-developed ecotourism centre and for this activity, knowledge about the local flora would be of great importance, especially the herb-shrub layer of gallery forests, which are little known.

MATERIAL AND METHODS

Area of study

The study area is a forest formation with some flooded areas on the right bank of the Couros river, comprising 2.16 hectares, adjacent to an area of moist grassland. This area is located on the private property Portal da Chapada (14° 09 'S, 47° 35' W, alt. 1164 m) in the municipality of Alto Paraíso de Goiás-GO in the Chapada dos Veadeiros region, about 240 km from Brasília-DF (Fig. 1). The forest is intercut by small streams and is in an excellent condition of conservation, with well-developed specimens of copaiba (*Copaifera langsdorffii* Desf.), cajarana (*Cabralea canjerana* (Vell.) Mart.), peroba-branca (*Aspidosperma spruceanum* Benth. ex Muell. Arg.) and palmito (*Euterpe edulis* Mart.).
Floristic survey

Part of the gallery forest was bisected by a trail, on which a wooden walkway (1m wide and 2.4 Km long) was mounted, following the right bank of the Couros river. This catwalk, about 70 cm above the soil, was used as the reference point for the collections. Most of it passed through the forest interior, and sometimes along the border (ecotone forest-wet grassland). Each day samples were collected, of all flowering plants in the herbaceous and shrub layer up to 4.5 m on each side of the walkway, throughout its extension. When the catwalk was along the forest border, the collections were made only of the forest side. This field procedure was repeated fortnightly for twelve months, totaling 25 sampling days.

Figure 1 - Location of the State of Goiás, Chapada dos Veadeiros and Portal da Chapada in Brazil.

Species of terrestrial herbs, shrubs and semi-shrubs, flowering and /or fruiting, up to 2.5 m tall, had up to four samples collected, according to the availability of material. The most relevant characteristics of each species collected, such as height, colour and reproductive status were recorded in the field. Photographic records of specimens were taken with an Olympus digital camera with a resolution of 4 megapixels, to help the identification and create a photographic record. The specimens collected were processed according to standard methodology and were incorporated into the UB Herbarium (University of Brasilia).

The identifications were made by comparison with the herbarium material, consulting the relevant literature (Wanderley 1989; Filgueiras 1995; Judd et al. 1999; Barbosa and Amaral Jr. 2001, Cavalcanti et al. 2001; Barroso et al. 2002; Assis 2002; Carvalho-Silva and Cavalcanti 2002, Lombardi 2002; Mendonca and Amaral Jr. 2002; Chautems 2003, Souza and Lorenzi 2005) and consultations with the specialists (Araceae, Asteraceae, Fabaceae, Lythraceae, Myrtaceae, Orchidaceae, Poaceae and Rubiaceae). The classification of the species was based on APG III (2009). The online databases consulted were Flora do Brasil, IPNI and MOBOT. In this study, the following definitions related to habit following Eiten (1992) were used:

Herb
The plant with herbaceous aerial shoots (devoid of a woody cylinder), which may be persistent (evergreen), pseudo-persistent, recurrent, biannual and annual.

Shrub
The plant with many fine aerial shoots (up to 3 cm in diameter), woody to the apex; subdivided into persistent, pseudo-persistent and recurrent.
Semi-shrub
The plant with aerial stem and woody base and herbaceous in the distal part, subdivided into persistent, pseudo-persistent, base persistent, recurrent, biannual and annual.

RESULTS AND DISCUSSION
A total of 138 species were recorded belonging to 103 genera and 40 families (Table 1), a value similar to that found by Soares-Silva (2005) for the tree layer - 136 species in the same area. These results supported the study of Felfili et al (2001). The families with the highest number of species were Asteraceae (22 species), Poaceae (14), Rubiaceae (12), Fabaceae (11) and Melastomataceae (7), indicating that 47.8% of species were concentrated in 12.5% of the families.

Table 1 - Herbaceous and shrub flowering plants of the gallery forest on the right side of the Couros river, at the Portal da Chapada, in Alto Paraíso de Goiás-GO. UB – University of Brasília Herbarium. LF - life form: Ss – Semi-shrub, Sh – Shrub, He – Herb. Habitat: GF – Gallery Forest Interior, FB- Gallery Forest Border; Fl - Flower; Fr - Fruit. Numbers 1-12 = months of the year.

Family/Species	UB	LF	Habitat	Fl.	Fr.
Acanthaceae					
Aphelandra longiflora (Lindl.) Profice	16382	Ss	GF	4-6	7-10
Justicia chrysotrichoma Pohl ex Nees	19598	Ss	FB*	6-8	-
Justicia irwinii Washh.	16371	Ss	GF	4-7	7-8
Justicia lanstyakii Rizzini	19491	Ss	FB*	6-9	9
Lepidagathis floribunda (Pohl) Kameyama	16375	Ss	GF	3-7	7-9
Alstroemeriaceae					
Alstroemeria stenopetala Schenk	19403	He	FB	2-4	4-6
Amaranthaceae					
Gomphrena sp.	19463	He	FB	6	-
Apocynaceae					
Mandevilla emarginata (Vell.) C. Ezcurra	19386	Ss	FB*	2-7	7-8
Araceae					
Philodendron mayoi E. G. Gonç.	19521	He	GF	9-10	11
Philodendron wullschlaegelii Schott	19522	He	GF	2-3	8
Araliaceae					
Hydrocotyle quinqueloba Ruiz and Pav.	16389	He	GF, FB	7-5	3-9
Asteraceae					
Ageratum fastigiatum (Gardner) R. M. King and H. Rob.	19482	He	FB*	6-8	7
Aspilia foliacea (Spreng.) Baker	19266	He	FB*	12	-
Astroeupatorium inulaefolium (Kunth) R. M. King and H. Rob.	17707	Ss	FB	4-5	-
Calea teucrifolia (Gardner) Baker	19358	Ss	FB*	1-8	-
Campuloclinium megacephalum (Mart. ex Baker) R. M. King and H. Rob.	19381	He	FB*	2	-
Chresta angustifolia Gardner	17877	He	GF	10	-
Chromolaena chaseae (B. L. Rob.) R. M. King and H. Rob.	19426	Ss	FB*	4-6	6-8
Chromolaena stachyophylla (Spreng.) R. M. King and H. Rob.	19284	Ss	FB*	11	12
Chrysolaena desertorum (Mart. ex DC.) Dematt.	19251	Ss	FB*	10	-
Elephantopus mollis Kuntz	19462	He	FB*	5-6	-
Graziella intermedia (DC.) R. M. King and H. Rob.	19360	Ss	FB	1-2	-

(Cont. …)
(Cont. Table 1)

Family/Species	UB	LF	Habitat	Fl.	Fr.
Lepidaploa aurea (Mart. ex DC.) H. Rob.	16372	Ss	FB	4-6	5-8
Lessingianthus argyrophyllus (Less.) H. Rob.	19370	Ss	FB*	1	-
Lessingianthus ligulifolius (Mart. ex DC.) H. Rob.	19283	Ss	FB*	2	-
Rauninoreitzia tremula (Hook and Arn.) R. M. King and H. Rob.	19483	Ss	FB*	6	-
Senecio adamantinus Bong.	19301	He	FB*	12	-
Stevia heptactaetua DC.	19461	He	FB*	5	-
Symphyopappus reticulatus Baker	19351	Ss	FB*	1	-
Vernonanthura ferruginea (Less.) H. Rob.	19511	Ss	GF	5-9	7-8
Viguiera grandiflora (Gardner) Gardner	19250	Ss	FB*	10	-
Bromeliaceae					
Aechmea bromeliifolia (Rudge) Baker	19277	He	GF	5-10	11-12
Bromelia antiacantha Bertol.	19520	He	GF	12	12
Burmanniaceae					
Apteria aphylla (Nutt.) Barnhart ex Small	19503	He	GF	7	-
Dictyostega orobanchoides (Hook.) Miers	19435	He	GF	4-5	-
Campanulaceae					
Centropogon cornatus (L.) Druce	17723	Ss	GF	6-2	-
Siphocampylus corymbiferus Pohl	19492	Ss	GF	6-7	-
Chloranthaceae					
Hedyosmum brasiliense Miq.	16378	Ss	GF	-	4-5
Clusiaceae					
Kielmeyera pumila Pohl	19336	Ss	FB*	12	-
Commelinaceae					
Commelina erecta L.	19319	He	FB	1-4	4
Commelina obliqua Vahl	16381	He	GF	4-6, 10-11	4-5
Cyperaceae					
Cyperus aggregatus (Willd.) Endl.	17734	He	GF	4-11	-
Rhynchospora armerioides J. Presl and C. Presl	19278	He	FB*	11	-
Rhynchospora brasiliensis Boeckeler	19399	He	FB	9-5	8-5
Rhynchospora exaltata Kunth	17735	He	GF, FB	1-12	1-12
Scleria latifolia Sw.	16383	He**	GF	1-12	1-12
Eriocaulaceae					
Paepalanthus amoenus (Bong.) Körn.	19398	He	FB*	2-6	6-7
Paepalanthus chlorcephalus Silveira	19480	He	FB*	6	-
Syngonanthus caulescens (Poir.) Ruhland	17733	He	GF	10	-
Erythroxylaceae					
Erythroxylum deciduum A. St.-Hil.	19337	Sh	FB	8-1	9-2
Erythroxylum suberosum A. St.-Hil.	17873	Sh	FB*	8-12	9-1
Euphorbiaceae					
Croton antisyphiliticus Mart.	19248	Ss	FB*	10-11	11-12
Sapium glandulosum (L.) Morong	19268	Sh	FB	10-11	12
Microstachys bidentata (Mart. and Zucc.) Esser	19354	He	FB*	1	5
Sebastiania myrtilloides (Mart.) Pax	19357	He	FB*	1	1
Fabaceae					
Aeschynomene paniculata Willd. ex Vogel	16373	He	FB*	4-5	4-5
Bionia coriacea (Nees and Mart.) Benth.	17731	Ss	FB	3-9	5-6
Chamaecrista desvauxii (Collad.) Killip	19400	Ss	FB*	5-6, 10-2	6, 11

(Cont. …)
(Cont. Table 1)

FAMILY/SPECIES	UB	LF	Habitat	Fl.	Fr.
Chamaecrista nictitans (L.) Moench	19428	Ss	FB*	3	-
Chamaecrista paniculata (Benth.) H. S. Irwin and Barneby	19519	Ss	GF	5-7	1
Crotalaria micans Link	19429	Ss	FB	3	-
Crotalaria velutina Benth.	19382	Ss	FB*	2	-
Eriosema brevipes Grear	19340	Ss	FB*	12-3	12-3
Periandra mediterranea (Vell.) Taub.	17729	Sh	GF	4-10	5, 8-12
Senna corifolia (Benth.) H. S. Irwin and Barneby	16386	Sh	FB*	4-5	5
Stylosanthes guianensis (Aubl.) Sw.	17710	He	FB*	1-5	-
Gesneriaceae	19364	He	GF, FB	3-5	-
Sinningia elatior (Kunth.) Chautems	16384	He	GF, FB	3-5	-
Iridaceae	19365	He	FB*	12-1	12-1
Bermudiana incurvata (Gardn.) Kuntze	19436	Ss	FB*	1-4	-
Lamiaceae	19369	Ss	FB*	1-4	-
Amasonia campestris (Aubl.) Moldenke	19460	Ss	FB	4-10	6-7
Hyptenia calycina (Pohl ex Benth.) Harley	17730	Ss	FB	5	5
Hypenia sp.	19465	Ss	FB	5	5
Hyptis cuneata Pohl ex Benth.	17736	He	FB*	10	-
Hyptis rubiginosa Mart. ex Benth.	19474	Ss	FB*	5	-
Marsypianthes montana Benth.	19388	Ss	FB*	2-7	7-8
Lentibulariaceae	19376	He	FB*	2	-
Utricularia hispida Lam.	19385	Ss	FB*	10-3	10-3
Lythraceae	19443	Ss	FB*	4	-
Cuphea spermacoce A. St.-Hil.	19285	Ss	FB*	10-3	10-3
Diplusodon incanus Gardn.	19443	Ss	FB*	4	-
Malpighiaceae	19343	Ss	FB*	12	-
Tetrapteryx macronata Cav.	17727	Ss	FB	9-10	-
Malvaceae	19343	Ss	FB*	12	-
Bytneria jaculifolia Pohl	19343	Ss	GF	5	9
Pavonia malacophylla (Link and Otto) Garcke	17719	Ss	GF	5	9
Sida glomerata Cav.	19437	Sh	GF	4	-
Melastomataceae	19246	Sh	FB	10-11	11
Leandra lacunosa Cogn	19246	Sh	FB	10-11	11
Leandra polystachya (Naudin.) Cogn	17878	Sh**	FB	10-11	10-11
Leandra salicina (DC.) Cogn	19419	Sh	GF	3	-
Miconia albicans (Sw.) Triana	17870	Sh	FB	10-11	-
Miconia chamossois Naud.	19245	Ss	FB	10-11	-
Microlicia euphorbioidea Mart.	19349	Sh	FB	1	-
Tibouchina aegopogon (Naudin) Cogn	19334	Ss	GF	12	-
Myrsinaceae	19411	Ss	GF	9	9-5
Cybianthus goyazensis Mez	19411	Ss	GF	9	9-5
Myrtaceae	19252	Ss	GF	10-12	12
Campomanesia eugenioides (Cambess.) D. Legrand	19252	Ss	GF	10-12	12
Campomanesia pubescens (mart. ex DC.) O. Berg	19253	Ss	FB	9-10	10
Myrcia tocantinensis Glaziou (nom. nud.)	19341	Ss	FB	12	12
Orchidaceae	19422	He	FB	3-8	6-8
Epidendrum secundum Jacq.	19422	He	FB	3-8	6-8
Malaxis cf. excavata (Lindl.) Kuntze	19433	He	GF	-	4
Oeceoclades maculata (Lindl.) Lindl.	19504	He	GF	-	7-8
Prescottia stachyodes (Sw.) Lindl.	19502	He	GF	7-8	9

(Cont. …)
FAMILY/SPECIES	UB	LF	Habitat	Fl.	Fr.
Oxalidaceae					
Oxalis diamantinae R. Knuth	19265	He	FB	11	-
Piperaceae					
Piper aduncum L.	19481	Sh	GF	6-9	9
Piper cernuum Vell.	19348	Sh	GF	1, 7-9	-
Piper crassinervium Kunth	19505	Sh	GF	7-8	7-8
Piper xylosteoides (Kunth) Steud.	16377	Sh	GF	4-11	8-12
Poaceae					
Echinolaena inflexa (Poir.) Chase	19430	He	FB*	3-5	5-6
Ichnanthus bambusiflorus (Trin.) Döll	19309	He	FB	12-1	-
Ichnanthus aff. longiglumis Mez	19280	He	FB*	12-3	-
Ichnanthus mollis Ekman	19362	He	FB, GF	1-7	-
Ichnanthus sp.	17720	He	GF	5	-
Loudetiporis chrysanthrix (Nees) Conert	19431	He	FB*	3-6	-
Ocellochloa rudis (Nees) Zuloaga and Morrone	19361	He	FB, GF	1-5	-
Oplismenus hirtellus (L.) P. Beauv.	16380	He	GF	4-5	-
Panicum parvifolium Lam.	17732	He	GF	10	-
Panicum pilosum Sw.	19449	He	GF	4	-
Panicum sp.	19397	He	FB, GF	1-3, 8	-
Paspalum coryphaeum Trin.	19372	He	FB	1	-
Paspalum sp.	19487	He	FB	6	-
Trachypogon spicatus (L. f.) Kuntze	19439	He	FB*	4	-
Polygalaceae					
Polygala poaya Mart.	17871	Ss	GF, FB	6-10	-
Rubiaceae					
Cordiera concolor (Cham.) Kuntze	17726	Sh	GF	4, 8-11	6-12
Cordiera sessilis (Vell.) Kuntze	17879	Sh	GF	10-11	-
Borleria latifolia (Aubl.) K. Schum.	19332	He	GF, FB	12-6	3-6
Coccocypselum aureum (Spreng.) Cham. and Schltdl.	19264	He	GF, FB	12-5	4-11
Coccocypselum lanceolatum (Ruiz and Pav.) Pers.	16374	He	GF	12-5	3-6
Ferdinandusa speciosa Pohl	16385	He	FB	4-5, 9	4-5
Galium noxium (A. St.-Hil.) Dempster	19387	He	FB	1-2	-
Palicourea crocea (Sw.) Roem. and Schult.	17711	Ss	GF	7-5	1-7
Psychotria capitata Ruiz and Pav.	19255	Sh	GF	10-7	12-8
Psychotria hoffmanseggiana (Willd. ex Schult.) Müll. Arg.	16376	Ss	GF	9-5	12-6
Psychotria subtriflora Müll. Arg.	19241	Ss	GF	5-3	10-5
Psychotria vellosiana Benth.	19305	Ss	GF	11-12	12
Siparunaceae					
Siparuna brasiliensis (Spreng.) A. DC.	19344	Sh	GF, FB	12	12-1
Solanaceae					
Brunfelsia brasiliensis (Spreng.) L. B. Sm. and Downs	19368	Sh	GF	1-2	-
Turneraceae					
Piriqueta sidifolia (Cambess.) Urb.	19356	Ss	FB*	1, 5	5
Turnera oblongifolia Cambess.	19464	Ss	FB	5	-
Velloziaceae					
Vellozia squamata Pohl	16388	Sh	FB*	4-5	5-9

(Cont. …)
Similar results were found by Mendonça et al. (2000), in a preliminary survey of the flora in the core areas of the Cerrado Reserve, Federal District, including the IBGE Ecological Reserve and National Park of Brasília, showing that for these habitats, 36.4% of species in gallery forests were found in these same five families. It should be noted that Mendonça et al. (2000) included epiphytes within the herbaceous habit, which were not included in this work, leading to some distortion in the compared data. This could be very significant, since over half the species of the orchid family (one of the largest) in gallery forests, were epiphytes (Felfili et al. 2001). Therefore, without these differences in the methodology, the percentages of the five families would be even closer when comparing the two studies. Asteraceae, Poaceae, Rubiaceae, Melastomataceae and Fabaceae, have also been cited among the most species-rich families both for the Cerrado biome (Mendonça et al. 2000; Mendonça et al. 2008; Munhoz and Proença 1998), and also for the riverine and gallery forests (Felfili et al. 2001), which indicated their wide representation and distribution in the context of the biome.

The families with highest number of genera were Asteraceae (19 genera), Fabaceae (8), Poaceae (8) and Rubiaceae (7), totaling 40.8% of all genera sampled. Among the genera, the most representative were *Ichnanthus* (Poaceae), *Piper* (Piperaceae) and *Psychotria* (Rubiaceae), with four species each. The species distribution in the studied area was: 46 species (33.3%) restricted to inside the forest; 82 (59.4%) only in the forest border; and 10 species were registered on both the sites. Among the border species, 53 species (38.4%) were typical of open areas, such as campo limpo úmido, vereda and Cerrado sensu stricto (Munhoz and Proença 1998; Mendonça et al. 2008). Twenty nine (21%) species were typical of gallery forest border. Despite a very rich flora, only two species, *Chresta angustifolia* and *Cybianthus goyazensis* were endemics to the Goiás State. It is notable that 52 of the species found were not cited for the Gallery forest or its border by Silva et al. (1996), Munhoz and Proença (1998), Mendonça et al. (2000), Felfili et al. (2001), Proença et al. (2001) and Mendonça et al. (2008) studies. These authors recorded no representatives of the Xyridaceae family in the gallery forests, while in this study, samples of *Xyris jupical* were collected on the banks of a small stream, in a tributary of the Couros river and *Xyris hymenachne* along the gallery forest border. Felfili et al. (2001), Mendonça et al. (2000) and Silva et al. (1996) reported that, in general, the herbaceous shrub layer has a higher percentage of woody or semi-woody plants than herbs in riparian and gallery forests. In the present study, similar results were found, with 43.5% of the plants sampled in this layer being herbaceous.

Over the 25 sampling days, some species were frequently found, while others were recorded only once. *Coccocypselum lanceolatum, Justicia irwinii, Palicourea crocea, Piper xylsteoides, Psychotria capitata* and *Scleria latifolia* were found relatively easily at various points in the forest. The species *Alstroemeria stenopetala, Bromelia anticantha, Coccocypselum aureum* and *Miconia albicans* were also found easily, however, in small isolated areas. *Epidendrum secundum, Leandra salicina, Oxalis dianamintae, Pavonia malacophylla, Psychotria vellosiana* and *Sinningia elatior* were rare in the Couros river gallery forest.

The data obtained in this study were compared with those in Silva et al. (2001) and Munhoz and Proença (1998), who studied the areas near to the Portal da Chapada in the Chapada dos Veadeiros and showed a significant increase in the number of species in the region. It was observed that 65

FAMILY/SPECIES	UB	LF	Habitat	Fl.	Fr.
Verbenaceae					
Lippia rotundifolia Cham.	17725	Ss	FB*	9-1	1
Xyridaceae					
Xyris hymenachne Mart.	19364	He	FB*	1	-
Xyris jupical Rich	19375	He	GF	2	-

* species collected along border of the Gallery Forest, however also typical in other phytophysionomies such as: campo limpo úmido, vereda or cerrado sensu stricto.
** Species not cited by Munhoz and Proença (1998) and Mendonça et al (2008).
species (47%) had not yet been reported for the flora of the region based on these authors. According to the same studies, 123 species were not included as part of the gallery forests neither in the interior or along the border. Out of the total number of species cited by Munhoz and Proença (1998) for the Chapada dos Veadeiros region, 57 were found in the herbaceous-shrub layer of Gallery Forest and its border, and 14 of them found in this study. Therefore, the increases in the flora were 5% for the region as a whole, 99.2% for the gallery forests and 223.6% for the herbaceous-shrub layer of the gallery forests in the Chapada dos Veadeiros region. The data provided here showed the lack of studies in the region, particularly for life forms. The richness observed in this study could be related to the systematization of the study, allowing the sampling of the species throughout the year in different phenological phases.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Dr. Carolyn Proença up to 2009, the curator of the UB Herbarium, Mr. Antonio Cabral, owner of the Portal da Chapada for logistical support; Mr. Wandélio Mendes and collaborators for their support during field work; and to the botanical specialists for confirmation of the taxa.

REFERENCES

APG III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc. 2009; 161: 105-21.
Assis MC. Alstroemeriaceae. In: Cavalcanti TB & Ramos AE. editors. Flora do Distrito Federal, Brasil. v2. Brasília: EMBRAPA-CPAC; 2002. p. 21-32.
Barbosa AVG, Amaral Júnior. A. Flora do Estado de Goiás e Tocantins: Erythroxylaceae. Coleção Rizzo 29. UFG; 2001.
Barroso GM, Guimarães EF, Ichaso CLF, Costa CG, Peixoto AL. Sistemática de Angiospermas do Brasil. v1. Viçosa: Editora da UFV; 2002.
Carvalho-Silva M & Cavalcanti TB. Piperaceae. In: Cavalcanti TB & Ramos AE. editors. Flora do Distrito Federal, Brasil. v2. Brasília: EMBRAPA-CPAC; 2002. p. 93-124.
Cavalcanti RB. Coordenação Cerrado e Pantanal. In: Biodiversidade Brasileira. Brasília: MMA-SBF; 2002.
Cavalcanti TB, Graham SA, Silva MC. Flora do Estado de Goiás e Tocantins: Lythraceae. Coleção Rizzo 28. UFG; 2001.
Chautems A. Gesneriaceae. In: Cavalcanti TB & Ramos AE. editors. Flora do Distrito Federal, Brasil. v3. Brasília: EMBRAPA-CPAC; 2003. p. 185-97.
Correia JR, Haridasan M, Reatto A, Martins ES, Walter BMT. Influência de fatores edáficos na distribuição de espécies arbóreas em Matas de Galeria na região do Cerrado: uma revisão. In: Ribeiro JF, Fonseca CEL, Sousa-Silva JC, editors. Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina: EMBRAPA-CERRADOS: 2001. p. 51-76.
Eira MTS, Martins Netto DA. Germinação e conservação de sementes de espécies lenhosas. In: Ribeiro JF. editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 95-117.
Eiten G. Formas de crescimento das plantas vasculares. In: HERBÁRIO UB, 2º Boletim Informativo. Brasília: UnB; 1992. p. 6-13.
Felfili JM, Mendonça RC, Walter BMT, Silva Júnior MC, Nóbrega MGG, Fagg CW, et al. Flora panarógâmica das Matas de Galeria e Ciliáres do Brasil Central. In: Ribeiro JF, Fonseca CEL, Sousa-Silva JC, editors. Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina: EMBRAPA-CERRADOS; 2001. p. 195-263.
Filgueiras TS. Flora do Estado de Goiás e Tocantins: Gramineae (Poaceae). Coleção Rizzo 17. UFG; 1995.
Fonseca CEL, Ribeiro JF. Produção de mudas e crescimento inicial de espécies arbóreas. In: Ribeiro JF editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 119-33.
Haridasan M. Solos de matas de galeria e nutrição mineral de espécies arbóreas em condições naturais. In: Ribeiro JF. editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 17-28.
Judd WS, Campbell CS, Kellogg EA, Stevens PF. Plant Systematics: a phylogenetic approach. Sunderland: Sinauer Associates, Inc.; 1999.
Lombardi JA. Vitaceae. In: Cavalcanti TB & Ramos AE. editors. Flora do Distrito Federal, Brasil. v2. Brasília: EMBRAPA-CPAC; 2002. p. 143-53.
Mendonça JO, Amaral Júnior A. Erythroxylaceae. In: Cavalcanti TB, Ramos AE. editors. Flora do Distrito Federal, Brasil. v2. Brasília: EMBRAPA-CPAC; 2002. p. 53-71.
Mendonça RC, Felfili JM, Silva JCS. Diversidade e composição florística das áreas nucleares da Reserva da Biosfera do Cerrado – Fase I. In: Schenkel CS, Brummer BM. editors. Vegetação no Distrito Federal: tempo e espaço. Brasília: UNESCO; 2000. p. 31-2.
Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras TS, et al. Flora vascular do Cerrado. In: Sano SM, Almeida SP. editors. Cerrado: Ambiente e flora. Planaltina: EMBRAPA-CPAC; 1998. p. 290-556.

Munhoz CBR, Proença CEB. Composição florística do município de Alto Paraíso de Goiás na Chapada dos Veadeiros. Bol Herb Ezechias Paulo Heringer. 1998; 3: 102-50.

Nogueira PE, Nóbrega MGG, Silva GP. Levantamento florístico e fisionomias do Parque Ecológico Ezechias Heringer (Parque do Guarã), Distrito Federal, Brasil. Bol Herb Ezechias Paulo Heringer. 2002; 10:31-56.

Proença CEB, Munhoz CBR, Jorge CL, Nóbrega MGG. Listagem e nível de proteção das espécies de fanerógamas do Distrito Federal, Brasil. In: Cavalcanti TB, Ramos AE. editors. Flora do Distrito Federal, Brasil. v1. Brasília: EMBRAPA-CENARGEN; 2001. p. 89-359.

Rezende AV. Importância das matas de galeria: manutenção e recuperação. In: Ribeiro JF. editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 95-117.

Ribeiro JF, Schiavini I. Recuperação das Matas de Galeria: integração entre a oferta ambiental e a biologia das espécies. In: Ribeiro JF. editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 135-53.

Ribeiro JF, Walter BMT. Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP. Editor. Cerrado: Ambiente e flora. Planaltina: EMBRAPA-CPAC; 1998. p. 89-166.

Ribeiro JF, Walter BMT. As Matas de Galeria no contexto do Bioma Cerrado. In: Ribeiro JF, Fonseca CEL, Sousa-Silva JC. editors. Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina: EMBRAPA-CERRADOS; 2001. p. 29-47.

Schiavini I, França JC, Aquino FG. Dinâmica de populações de espécies arbóreas em mata de galeria e mata mesófila na margem do Ribeirão Panga, MG. In: Ribeiro JF, Fonseca CEL, Sousa-Silva JC. editors. Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina: EMBRAPA-CERRADOS; 2001. p. 265-299.

Silva BA, Mecenas VV, Leite FQ, Cardoso ES. Apa de Cafuringa: o retrato do cerrado. Brasília: Paralelo 15; 1996.

Silva SR, Silva AP, Munhoz CB, Silva Júnior MC, Medeiros MB. Guia de plantas do cerrado utilizadas na Chapada dos Veadeiros. Brasília: WWF; 2001.

Silva Júnior MC, Felfili JM, Nogueira PE, Rezende AV. Análise florística das Matas de Galeria no Distrito Federal. In: Ribeiro JF editor. Cerrado: Matas de Galeria. Planaltina: EMBRAPA-CPAC; 1998. p. 51-84.

Silva Júnior MC, Felfili JM, Walter BMT, Nogueira PE, Rezende AV, Morais RO et al. Análise da flora arbórea de Matas de Galeria no Distrito Federal: 21 levantamentos. In: Ribeiro JF, Fonseca CEL, Sousa-Silva JC, editors. Cerrado: caracterização e recuperação de Matas de Galeria. Planaltina: EMBRAPA-CERRADOS; 2001. p. 143-91.

Soares-Silva LH. Levantamento florístico das espécies arbóreas do Portal da Chapada, Alto Paraíso, GO. In: Congresso Nacional de Botânica; 2005; Curitiba. Anais do Congresso Nacional de Botânica; 2005.

Souza CD. Florística, fitossociologia e etnobotânica na região do entorno do Parque Nacional da Chapada dos Veadeiros, Goiás, Brasil. [Dissertação de Mestrado]. Brasil: Universidade de Brasília; 1999.

Souza VC, Lorenzi H. Botânica Sistemática. Nova Odessa: Instituto Plantarum de Estudos da Flora LTDÁ; 2005.

Wanderley, M. das G. L. 1989. Flora do Estado de Goiás e Tocantins: Xyridaceae. Coleção Rizzo 11. UFG.