Intrinsic activation energy for twin wall motion

W. T. Lee, E. K. H. Salje, L. Goncalves-Ferreira, M. Daraktchiev and U. Bismayer

1) Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
2) Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg.

Even in a topologically perfect crystal, a moving twin wall will experience forces due to the discrete nature of the lattice. The potential energy landscape can be described in terms of one of two parameters: the Peierls energy, which is the activation energy for domain wall motion in a perfect crystal; and the Peierls stress, the maximum pinning stress that the potential can exert. We investigate these parameters in a one order parameter discrete Landau-Ginzburg model and a classical potential model of the ferroelastic perovskite CaTiO$_3$. Using the one order parameter model we show that the Peierls energy scales with the barrier height of the Landau double well potential and calculate its dependence on the width of the wall numerically. In CaTiO$_3$ we calculate the Peierls energy and stress indirectly from the one order parameter model and directly from the interatomic force field. Despite the simplicity of the one order parameter model, its predictions of the activation energy are in good agreement with calculated values.

PACS numbers: 62.20.Dc, 61.72.Mm

I. INTRODUCTION

The motion of ferroelastic or ferroelectric-ferroelastic twin walls plays a significant role in determining the elastic, dielectric, piezoelectric and ferroelectric properties of a number of materials of scientific and technological interest. The lower mantle of the Earth is known to consist mainly of magnesium silicate perovskite, a ferroelastic polymorph of MgSiO$_3$. Recent work has explored the possibility that the seismic properties of the lower mantle, such as attenuation, can be explained in terms of the elastic response of domain walls. The large piezoelectric and dielectric coefficients of barium titanate and lead titanate have been shown to have significant contributions from the motion of twin walls. Finally, ferroelectric switching, which is currently being exploited for computer random access memory applications, is known to be entirely due to the motion of twin walls.

To understand the properties of these materials, and the systems in which they are found, we must understand the factors which affect the motion of twin walls. Unlike magnetic domain walls, with widths of 100’s of nanometres, ferroelastic and ferroelectric walls are atomistically thin, with wall widths of the order of the unit cell parameter. We must understand their behaviour from an atomic perspective. In essence this requires an understanding of the energy landscape through which twin walls move.

A schematic of this energy landscape is shown in Fig. 1. As a wall moves through the crystal it experiences a potential which oscillates between E_{minimum} at local minima and E_{saddle} at transition states (saddle points) between two minima. If the motion of the wall is a thermally activated process then the mobility of the wall depends on the difference between these two energies.

\[\mu_{\text{wall}} = \mu_0 \exp \left(\frac{E_{\text{saddle}} - E_{\text{minimum}}}{kT} \right) \] \hspace{1cm} (1)

As shown in the figure there are two contributions to the potential energy landscape. These can be labelled intrinsic and extrinsic. The intrinsic contribution to the energy landscape is present even in a chemically and topologically perfect crystal and is due to the periodicity of the lattice. This contribution is parameterised by the Peierls energy E_{Peierls}, which is the activation energy for twin wall motion far from point defects. The second, extrinsic contribution to the energy landscape is due to...
defects in the perfect lattice such as vacancies, impurity atoms, dislocations and other twin walls.

There have been attempts to understand this energy landscape using both experimental and simulation methods. Experimentally, it is clear that extrinsic pinning due to point defects is far more significant than lattice pinning, which is often too small to detect, except by very sensitive methods. Simulations of oxygen vacancies in ferroelastic calcium titanate and ferroelectric lead zirconate have already been carried out, showing that an oxygen vacancy has an energy approximately 1 eV lower in the wall than in the bulk. These simulations provide information about E_{minimum}, but in order to complete the picture, calculations of E_{saddle} are also necessary.

In this work we only consider intrinsic pinning. We investigate pinning in a one order parameter discrete Landau-Ginzburg model, building on previous work by Ishibashi and Combs and Yip. Then we investigate intrinsic pinning in an empirical potential model of orthorhombic calcium titanate CaTiO$_3$ developed by Calleja et al. We compare the results of the one order parameter model with the results of a transition state calculation and show a good agreement between the two values.

II. A ONE PARAMETER MODEL

In this section we investigate the intrinsic pinning of domain walls in the discrete Landau-Ginzburg or ϕ^4 model. Intrinsic pinning in this model has been investigated by Ishibashi and Combs and Yip. We report the results of a numerical calculation of the pinning energy showing, in agreement with previous work, that when the wall width is two lattice spacings the activation energy is practically zero.

The most successful theoretical tool for describing phase transitions in ferroelectric and ferroelastic materials is Landau-Ginzburg theory. Through the Landau-Ginzburg free energy the theory provides a framework which can be used to predict both macroscopic behaviour, such as the specific heat capacity and elastic constants of a material going through a phase transition, and microstructural details, such as the structure of domain walls.

Usually a continuum formulation of the Landau-Ginzburg free energy is used, in which the discrete nature of the lattice is neglected. This approach has been very successful even in predicting the structure of twin walls, where the continuum approximation might be expected to break down. It is not possible to calculate the Peierls energy within the continuum limit and so we use a discrete form of the Landau-Ginzburg energy,

$$ F = \sum_i \Delta E \left[(Q_i^2 - 1)^2 + \left(\frac{w}{2a} \right)^2 (Q_{i+1} - Q_i)^2 \right] $$

The first term is a double well potential, where ΔE is height of the barrier between the two walls. The second term is the discrete analogue of the Ginzburg term. w is the wall width and a is the lattice parameter. The figure shows that when the wall width is twice the lattice parameter and w the wall width.

Figure 2. Dimensional quantities of the general model. (a) The Landau double well potential is characterised by an energy barrier ΔE. (b) The discrete nature of the lattice means the model contains two length scales: a the lattice parameter and w the wall width.

Dimensional analysis tells us that the Peierls energy E_{Peierls} must be given by

$$ E_{\text{Peierls}} = \Delta E f \left(\frac{w}{a} \right) $$

where f is to be determined. It is easy to deduce the limiting values of $f(x)$ in the cases when x is very small or very large.

In the case $w = 0$ the free energy of the discrete Landau-Ginzburg model is

$$ F = \sum_i \Delta E (Q_i^2 - 1)^2 $$

The system consists of a collection of independent order parameters Q_i, moving in double well potentials. The domain wall moves when one order parameter flips from one state to another. The activation energy for this process is ΔE and thus

$$ \lim_{x \to 0} f(x) = 1 $$

If w is very large then the discrete nature of the lattice is irrelevant and a continuum approximation may be used. In the continuum theory the energy of a domain wall is independent of its position, and thus there is no activation energy for domain wall motion

$$ \lim_{x \to \infty} f(x) = 0 $$

For intermediate cases we calculate $f(x)$ numerically. We calculate the energy of a single wall in a 200 site system, both without constraints (E_{minimum}) and with the constraint that $Q_{100} = 0$ (E_{saddle}). The difference between the two energies divided by ΔE gives us $f(x)$, shown in Fig. [3]. The figure shows that when the wall width is twice the lattice parameter the Peierls energy is already practically zero.

In a crystal the width of a twin wall can be affected by two parameters: temperature and velocity. Elementary Landau-Ginzburg theory predicts that the twin wall...
width should diverge as \(T \) approaches \(T_c \). This prediction has been confirmed experimentally. As the temperature approaches \(T_c \) the activation energy for wall motion will decrease. The second factor which can affect the wall width is the velocity of the wall. If the speed of the wall \(v \) approaches the velocity of sound in the material \(c \) then the width of the wall is ‘Lorentz contracted’ by a factor of

\[
\sqrt{1 - \frac{v^2}{c^2}}
\]

As a wall accelerates the forces it experiences due to the lattice potential increase.

III. TWIN WALL MOTION IN CaTiO\(_3\)

To test the validity of the above approach we compared the value of the activation energy calculated by the method described above with a direct transition state energy calculation. We used an empirical potentials model to investigate twin walls in CaTiO\(_3\). We calculate the structure of the twin walls of the system and calculate the Peierls energy and stress.

CaTiO\(_3\) is a ferroelastic, but not ferroelectric, perovskite. The crystal structure consists of corner linked TiO\(_6\) octahedra with Ca atoms distributed between the octahedra. At high temperatures the crystal structure is cubic but at room temperature the crystal structure is orthorhombic, with a space group of \(Pbnm \) and a Glazer octahedral tilt system of \(a^+ a^+ c^- \). The crystal structure and the coordinate system used in this work is shown in Fig. 3. When measurements of wall widths are given below they are given in units of the pseudocubic unit cell, containing a single formula unit.

A. Structure of static twin walls.

In this work we consider a ferroelastic wall perpendicular to the \(x \)-axis. The structure of the wall can be described in terms of order parameters and strains. The Glazer tilt system allows us to define order parameters \((Q_x, Q_y, Q_z) \) associated with rotations of octahedra about the \(x \)-, \(y \)-, and \(z \)-axes \((\theta_x, \theta_y, \theta_z) \). If the position of an octahedron in the crystal is labelled by integers \((i_x, i_y, i_z) \), then the order parameters are defined by

\[
\theta_x = Q_x (-1)^{i_x + i_y + i_z}
\]

\[
\theta_y = Q_y (-1)^{i_x + i_y + i_z}
\]

\[
\theta_z = Q_z (-1)^{i_x + i_y}
\]

The compatibility conditions limit the strains which can vary across an interface. For an interface perpendicular to the \(x \)-axis only the strains \(\varepsilon_{xx}, \varepsilon_{xy} \) and \(\varepsilon_{zz} \) can be non-zero. Furthermore the symmetry of the crystal constrains the strain \(\varepsilon_{xx} \) to be zero. The strain \(\varepsilon_{xy} \) is the ferroelastic strain. This changes sign across a ferroelastic wall. The strain \(\varepsilon_{zz} \) is a secondary strain, which only takes non-zero values within the wall.

Calleja et al.\(^2\) developed an empirical potential set for this mineral and investigated the interaction between oxygen vacancies and twin walls in a configuration containing \(26 \times 10 \times 6 \) cells. The authors simulated a single domain structure and then rotated part of their configuration through 90\(^\circ\) to generate twin walls. This procedure generates an interface consisting of the combination of a ferroelastic twin wall (with an order parameter \(Q_y \)) with an antiphase boundary (with an order parameter \(Q_z \)). These two types of wall can exist independently so in this work we consider simple ferroelastic twin walls in a system of \(14 \times 6 \times 4 \) octahedra implemented in DL_POLY\(^2\) using Calleja et al.’s potential set. Periodic boundary conditions make it impossible to simulate a single twin wall so instead we simulate a system with two walls. The order parameters and strains in the walls relaxed at absolute zero are shown in Figs. 5 and 6. The order parameter \(Q_y \) and the shear strain \(\varepsilon_{xy} \) change sign across the walls. Fitting \(Q_y \) to a hyperbolic tangent profile gives a wall width \(w = 1.3a \). \(Q_x, Q_z, \) and \(\varepsilon_{xx} \) show anomalies across the wall. This is the behaviour expected from secondary order parameters.\(^18\)

B. Activation energy for twin wall motion in CaTiO\(_3\).

We compare two methods of calculating the Peierls energy \(E_{Peierls} \). The first method is an indirect calculation
at least five parameters show anomalies. POLY secondary strain and Q shows a hyperbolic tangent variation across the wall, and the Peierls energy and stress. (This approach was necessary because DL_POLY cannot directly resolve the energy differences involved.) Again the results of these calculations are summarised in Table I.

The agreement between our two results is very good—less than a factor of two—especially given the small value of the Peierls energy compared with the interaction energy of a twin wall with an oxygen vacancy, which, as noted above, is of the order of 1 eV. The residual discrepancy may be due to the complexity of the system. Equation [B] was developed for a domain wall which can be described by a single order parameter. As shown in Figs. [A] and [B] at least five parameters show anomalies across the wall. The energies of these anomalies may lead to an overestimation of ΔE calculated from the interfacial energy γ of the wall.

C. Simulation of a moving domain wall

Our results suggest that if a pressure greater than $\sigma_{\text{Peierls}} \approx 3$ MPa is applied to a twin wall it will move freely, rather than as a thermally activated process. In this section we demonstrate that this is the case by molecular dynamics simulation. Working in an NVT ensemble we shear the system to generate a force on the walls and observe their motion.

In order to calculate the force on the wall generated by a shear stress we need to calculate the Eshelby force on the wall. The stress on a wall σ_{wall} generated by an externally applied shear stress σ_{xy} is given by

$$\sigma_{\text{wall}} = 4\sigma_{xy} \epsilon_{xy}$$

where ϵ_{xy} is the spontaneous strain of the transition. For CaTiO$_3$ $\epsilon_{xy} = 4 \times 10^{-3}$ (see Fig. [C]).

We started with a configuration of $26 \times 10 \times 6$ octahedra from the simulation of Calleja et al, containing, as noted above, both ferroelastic walls and antiphase boundaries. On annealing at 10 K using DL_POLY the antiphase boundaries spontaneously moved together and annihilated each other, leaving only the ferroelastic walls. DL_POLY does not allow the direct imposition of a constant shear stress.

	Indirect Calculation	Direct Calculation
γ	0.116 J m$^{-2}$	0.034 J m$^{-2}$
ΔE	0.530 mJ m$^{-2}$	4.35 MPa
w/a	1.13	2.57 MPa
$f(w/a)$	0.016	

Table I. Indirect and direct calculation of the activation energy and Peierls stress. The results of the calculations are in good agreement.
Table II. Parameters used in the simulation of a moving twin wall. The stresses acting on the system and the wall are only initial values. As the walls move in response to the forces these stresses will relax.

Parameter	Value
Timestep	1.0 fs
Thermostat relaxation time	0.5 ps
Simulation duration	10.0 ps
Initial shear stress on crystal	6.0 GPa
Initial pressure on walls	100.0 MPa
Peierls stress	3.0 MPa

Figure 7. Observed motion of the two twin walls of the simulated system.

so instead we sheared the whole system (both coordinates and velocities) through an angle of 0.3°, generating an initial shear stress. (The NVT ensemble prevents the relaxation of this stress by a macroscopic shear of the system.) The Eshelby force on the wall exceeded the Peierls stress and so motion of the wall was observed. The parameters of the simulation are summarised in Tab. II.

In response to these forces the walls move as shown in Fig. 7. Initially the walls accelerate because the pressure acting on them is higher than the Peierls stress. The walls traverse several unit cells and then decelerate, as the stress acting on them decreases.

IV. CONCLUSIONS

A complete picture of twin wall motion in ferroelastic and ferroelectric materials would shed light on questions such as the fatigue problem in ferroelectric memories and the contribution of twin wall motion to the seismic properties of the Earth’s lower mantle. Such a picture requires an understanding of the energy landscape through which the twin wall moves in the presence and absence of point defects. We have shown that the Peierls energy and stress of a ferroic material can be accurately estimated using an indirect approach by mapping the system on to a one order parameter model.

ACKNOWLEDGMENTS

The authors wish to thank Mark Calleja for providing the atomic configuration used as a starting point in section III C.

1R. J. Harrison and S. A. T. Redfern, Physics of the Earth and Planetary Interiors 134, 252 (2002).
2R. J. Harrison, S. A. T. Redfern, A. Buckley, and E. K. H. Salje, J. Appl. Phys. 95, 1706 (2004).
3R. J. Harrison, S. A. T. Redfern, and E. K. H. Salje, Phys. Rev. B 69, 144101 (2004).
4A. J. Moulson and J. M. Herbert, Electroceramics (Wiley (Chichester, UK), 2003).
5D. Damjanovic and M. Demartin, J. Phys. Cond. Matt. 9, 4943 (1997).
6J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).
7E. K. H. Salje, S. A. Hayward, and W. T. Lee, Acta Crystallogr. Sect. A 61 (2005).
8H. Ma, W.-J. Kim, J. S. Horwitz, S. W. Kirchoefer, and J. Levy, Phys. Rev. Lett. 91, 217601 (2003).
9M. Calleja, M. T. Dove, and E. K. H. Salje, J. Phys. Cond. Mat. 15, 2301 (2003).
10H. He and D. Vanderbilt, Phys. Rev. B 68 (2003).
11Y. Ishibashi, Journal of the Physical Society of Japan 46, 1254 (1979).
12J. A. Combs and S. Yip, Phys. Rev. B 28, 6873 (1983).
13J. A. Combs and S. Yip, Phys. Rev. B 29, 438 (1984).
14L. D. Landau and E. M. Lifshitz, Statistical Physics, vol. 1 (Butterworth–Heinemann, Oxford, 1980), 3rd ed.
15E. K. H. Salje, Phase transitions in ferroelastic and co-elastic crystals (Cambridge University Press, Cambridge, UK, 1999).
16E. K. H. Salje, ed., Physical properties and thermodynamic behaviour of minerals (Dordrecht, D. Reidel Publishing Co, 1988), chap. Structural phase transitions and specific heat anomalies.
17M. A. Carpenter and E. K. H. Salje, Eur. J. Mineral. 10, 693 (1998).
18W. T. Lee, K. H. Salje, and U. Bismayer, Phase Transitions 76, 81 (2003).
19I. Chrosch and E. K. H. Salje, J. Appl. Phys. 85, 722 (1999).
20A. T. Redfern, J. Phys. Cond. Matt. 8, 8267 (1996).
21A. M. Glazer, Acta Cryst. B 28, 3384 (1972).
22W. Smith and T. R. Forester, J. Mol. Graph. 14, 136 (1996).
23D. Eshelby, J. Elasticity 5, 321 (1975).