Palmitate Induces mRNA Translation and Increases ER Protein Load in Islet β Cells via Activation of the Mammalian Target of Rapamycin Pathway

Abbreviated title: Palmitate Activates mRNA Translation via mTOR

Masayuki Hatanaka1,2, Bernhard Maier1,2, Emily K. Sims1,2, Andrew T. Templin3, Rohit N. Kulkarni4, Carmella Evans-Molina2,3,5,6, and Raghavendra G. Mirmira1,2,3,5,6

1Department of Pediatrics, 2Herman B Wells Center for Pediatric Research, 3Department of Cellular and Integrative Physiology, 5Department of Medicine, and 6Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN

4Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA

Address correspondence to: Raghavendra G. Mirmira, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN 46202, Tel: 317-274-4145, Fax: 317-274-4107; E-mail: mirmira@iu.edu.

Word count: 3991

Number of figures: 8
ABSTRACT

Saturated free fatty acids have complex effects on the islet β cell, acutely promoting adaptive hyperplasia, but chronically impairing insulin release. The acute effects of free fatty acids remain incompletely defined. To elucidate these early molecular events, we incubated mouse β cells and islets with palmitate, then studied mRNA translation by polyribosomal profiling and analyzed signaling pathways by immunoblot analysis. We found that palmitate acutely increases polyribosome occupancy of total RNA, consistent with an increase in mRNA translation. This effect on translation was attributable to activation of mTOR pathways via L-type Ca2+ channels, but was independent of insulin signaling. Longer incubations led to depletion of polyribosome-associated RNA, consistent with activation of the unfolded protein response. Pharmacologic inhibition of mTOR suppressed both the acute effects of palmitate on mRNA translation and the chronic effects on the unfolded protein response. Islets from mice fed a high fat diet for 7 days showed increases in polyribosome-associated RNA and phosphorylation of S6K, both consistent with activation of mTOR. Our results suggest that palmitate acutely activates mRNA translation, and that this increase in protein load contributes to the later unfolded protein response.
Consumption of foods high in saturated fat is associated with obesity and insulin resistance. Obese, “metabolically healthy” individuals maintain normoglycemia in the face of insulin resistance by augmenting insulin release from islet β cells. Failure to maintain the necessary state of augmented β cell mass and/or function leads to the development of type 2 diabetes (T2D) (1,2). The specific signals that cause the initial increases in β cell mass and function in obesity, and the later loss of these parameters in T2D have not been entirely elucidated, but hormonal and cytokine signals emanating from distant sources such as the liver and bone have been variably implicated (3-6). In addition to these organ-derived signals, diet-derived factors such as free fatty acids (FFAs) have also been shown to directly impact β cell responses (6,7). FFAs appear to have a duality of effects on the β cell, either augmenting in the short term or limiting in the long term, insulin release and cellular replication (7-9).

The molecular mechanisms underlying the dichotomous responses of the β cell to FFAs have not been fully elucidated. It has been postulated that the effect of FFAs to augment β cell function (i.e. glucose stimulated insulin secretion) may be important for the early hypersecretion of insulin seen in insulin resistance. This effect of FFAs is thought to occur via several mechanisms. One is through the interaction of FFAs with the FFA receptor 1 (Gpr40), which signals through Gαq/11 to augment glucose stimulated insulin secretion (10,11). A second mechanism is through the cellular metabolism of FFAs (to generate lipid-derived signaling molecules) and glycerolipid/FFA cycling (12). More recently, elegant studies of Zarrouki et al. (6) suggest growth-promoting effects of FFAs in rats in vivo may in part be secondary to growth factor signaling and activation of mammalian target of rapamycin (mTOR). Studies have also shown deleterious effects of FFAs on β cell function—a finding that is thought to be a more
chronic effect and that is frequently observed in the presence of hyperglycemia ("glucolipotoxicity"). It has been suggested that these lipotoxic effects on the β cell are mediated in part by endoplasmic reticulum (ER) stress (13-15). However, the specific mechanisms by which saturated FFAs influence ER protein load and mRNA translation in the β cell has never been investigated.

In this study, we sought to clarify the effect and mechanisms of the major circulating saturated FFA palmitate on mRNA translation in a mouse β cell line and isolated mouse islets. Polyribosome profile (PRP) analysis during short- and long-term incubations revealed that palmitate acutely triggers mRNA translation via mTOR, and increases ER protein load; longer incubations caused activation of the ER stress cascade and a block in mRNA translational initiation. Our results suggest a model whereby the activation of mTOR in a dose-dependent manner by palmitate in β cells may contribute to an early hyperplastic response, and that these effects impose increased protein load on the ER, activating the unfolded protein response (UPR) the long term.
RESEARCH DESIGN AND METHODS

Animals. Male C57BL6/J mice were purchased from Jackson Laboratories. All mouse experiments were approved by the Indiana University Institutional Animal Care and Use Committee. 8 week-old mice were fed a rodent diet containing either 10% or 60% kcal from fat (Research Diets #D12450B or # D12492, respectively). Glucose tolerance tests in mice were performed after 6 days of diet using 2 g/kg glucose injected intraperitoneally (16). Body composition was measured using dual Energy X-Ray Absorptiometry (DEXA) after 6 days of diet using a PixiMus DEXA Scanner. Mouse islets were isolated from 8 week-old chow-fed animals as previously described (17).

Antibodies. Antibodies were commercially acquired as follows: p-Akt (Thr308) (#4056, Cell Signaling Technology), p-Akt (Ser473) (#9271, Cell Signaling), Akt (#2920, Cell Signaling), p-4E-BP1(Thr70) (#9455, Cell Signaling), p-p70 S6K (Thr389) (#9206, Cell Signaling), p70 S6K (#2708, Cell Signaling), p-eIF2α (#9721, Cell Signaling), β-actin (#691002, MP Biomedicals), 4E-BP1 (sc-6024, Santa Cruz), eIF2α (sc-133132, Santa Cruz). Fluorophore-labeled secondary antibodies IRDye 800 and IRDye 700 were from Li-Cor Biosciences.

Cell isolation and culture. MIN6 β cells, β cell insulin receptor knockout (βIRKO) cells, and LOX cells were maintained in 25 mM glucose as previously described (18). On the evening prior to experimentation, cells were incubated in medium containing 5.5 mM glucose, and on the morning of experimentation, glucose concentration was increased to 20 mM. Mouse islets were cultured as in 11 mM glucose as previously described (16) and were allowed to recover overnight prior to experimentation. Human islets were obtained from the Integrated Islet
Palmitate Activates mRNA Translation via mTOR Distribution Program, and cultured in 11 mM glucose as described (19). For polyribosome profile (PRP) experiments, islets were transferred into cold RPMI medium containing 5 mM glucose after isolation and used immediately. Sodium palmitate, sodium oleate, fatty-acid-free bovine serum albumin (BSA), thapsigargin, wortmannin, and rapamycin were purchased from Sigma-Aldrich. Torin1 was from Tocris Bioscience. FFA and fatty acid-free BSA conjugates (at an 8:1 molar ratio of FFA:BSA, unless otherwise stated) were prepared as described previously (20). Control cells were identically treated in terms of glucose concentrations and timing of inhibitors, except that BSA was added without FFA.

Polyribosomal profile (PRP) and RT-PCR experiments. PRP experiments using MIN6 cells and islets proceeded as described previously (21,22), wherein cell lysates were passed through a 10-50% sucrose gradient, and fractionated using a BioComp piston gradient fractionator. RNA absorbance at 254 nm was recorded using an in-line UV monitor, and fractions were collected. Total RNA from the fractions was reverse transcribed and subjected to quantitative real-time PCR. Polysome:monosome (P/M) ratios were quantitated by calculating the area under the curve corresponding to the polyribosome peaks (>2 ribosomes) divided by the area under the curve for the monosome (80S) peak. Reverse-transcribed RNA was analyzed by real-time PCR using SYBR Green I-based methodology (23). Primers for Bip, Xbp1, spliced Xbp1, Chop, Atf4, Pcna, Ki67, and Tbp were described previously (24-27). All samples were corrected for input RNA by normalizing to Tbp message.

Immunoblot analysis. Whole cell extracts from MIN6 cells and mouse islets were prepared as described previously (28). Immunoblot analyses of MIN6 cells and islet extracts were performed
after resolution of protein extracts by 4–20% gradient SDS-PAGE. Immunoblots were visualized using fluorescently labeled secondary antibodies (Li-Cor Biosciences) and were quantified using Li-Cor software.

35S-Met/Cys incubation studies. MIN6 cells or mouse islets were cultured in 12-well plates in the presence or absence of palmitate or cycloheximide for 1h. For the pulse label, the cells or islets were washed and incubated with culture media lacking Met and Cys, supplemented with 125 µCi of a mixture of 35S-Met and 35S-Cys (PerkinElmer) for the final 15 min. of the incubation. Cellular lysates were loaded on a 10% SDS-polyacrylamide gel and subjected to electrophoresis. The gel was dried and exposed to X-ray film overnight, and quantiated using ImageJ Software (NIH).

Statistical analyses. All data are presented as the mean±SEM. Statistical significance of differences between 2 groups was evaluated using a two-tailed Student’s t test. Prism 5 software was used for all statistical analyses. Statistical significance was assumed at P<0.05.
RESULTS

Chronic palmitate incubation reduces polyribosome-associated RNAs in β cells

To study mRNA translation, we employed polyribosome profile (PRP) analysis. PRP analysis involves the isolation of total cellular RNA, then subjecting the RNA to sedimentation through a sucrose gradient, which separates RNAs based on the nature and number of associated ribosome units (29,30). The normal PRP of MIN6 β cells is shown in Fig. 1A (solid line), which identifies the positions of 40S and 60S ribosome-associated RNAs, as well as monoribosome (80S)- and polyribosome (>2 monoribosome)-associated RNA species. To study the effects of saturated FFAs on mRNA translation in β cells, we incubated MIN6 β cells with 0.5 mM palmitate (at an 8:1 molar ratio of palmitate:BSA)/20 mM glucose and subsequently performed PRP analysis. Within 1 h of palmitate addition, there was an increase in the fraction of RNAs associated with polyribosomes (Fig. 1A, dashed line), which was reflected by an increased polyribosome:monoribosome (P/M) ratio (Fig. 1A). The P/M ratio subsequently normalized by 24 h of palmitate incubation (Fig. 1B), and by 72 h of incubation a decrease in the P/M ratio was observed (Fig. 1C).

Decreases in P/M ratios are characteristically associated with the UPR, wherein relative reductions in translation initiation—a result of phosphorylation of eukaryotic translation initiation factor 2α (eIF2α)—cause “runoff” of ribosomes (29). As shown in Fig. 1D, palmitate incubation of MIN6 cells led to increases in phospho-eIF2α (p-eIF2α) with time. Interestingly, the basal level of p-eIF2α also increased with increasing time of incubation, suggestive of an effect of cellular growth. Incubation of MIN6 β cells for 4 h with 1 µM thapsigargin, a very potent inducer of p-eIF2α and the UPR, resulted in a similar (though more dramatic) reduction in
the P/M ratio (Fig. 1E), accompanied by increased p-eIF2α (Fig. 1F). The results in Fig. 1 collectively indicate that palmitate causes a progressive reduction in global translation initiation that is consistent with activation of the UPR.

Acute palmitate incubation leads to activation of the mTOR pathway to promote mRNA translation

Although the decreased P/M ratio after 72 h palmitate incubation was consistent with activation of the UPR, the increase in P/M ratio observed at 1 h was unexpected and suggestive of a different process. Increases in P/M ratios can be caused by either an increase in total mRNA translation (i.e. an increase in global or selected protein synthesis) or by a block in mRNA elongation (31,32). To distinguish these possibilities, we performed 35S-labeling of proteins in MIN6 cells and mouse islets treated with palmitate. As shown in Suppl. Fig. S1A and B, 35S incorporation into total protein was unchanged (though a tendency to increase) in MIN6 cells and mouse islets, respectively, treated with palmitate for 1 h. By contrast, treatment of cells with cycloheximide (an inhibitor of translation elongation) completely blocked 35S incorporation in both cell types (Suppl. Fig. S1A and B). These results suggest that the increased P/M ratios in response to palmitate are not caused by translational blockade, but more likely from increased mRNA translation.

The mammalian target of rapamycin (mTOR) exists as two distinct protein complexes (mTOR complex 1 and mTOR complex 2, or mTORC1 and mTORC2) that couple the sensing of the nutritional/energy status of the cell to protein synthesis and growth (33). We tested the possibility that palmitate activates mTOR complexes to enhance mRNA translation. As shown in Fig. 2A, incubation of MIN6 cells for 1 h with increasing concentrations of palmitate (0.1-0.5
Palmitate activates mRNA translation via mTOR

mM) led to increasing phosphorylation of two major translation-promoting targets of mTORC1, S6 kinase (S6K) at T389 and eIF4E binding protein 1 (4E-BP1) at T70. In accordance with a causative role of the mTOR pathway in palmitate-induced increases in mRNA translation, Fig. 2B and C show that co-incubation with palmitate and the mTORC1 inhibitor rapamycin or with the mTORC1/2 inhibitor Torin1 resulted in reversal of the palmitate-induced increase in polyribosome-associated RNAs in MIN6 cells.

Activation of mTORC1 by palmitate is mediated through the PI3K/Akt pathway

To interrogate the signaling mechanisms linking acute palmitate effects to mTORC1/2 activation, we next assessed the phosphoinositide-3 kinase (PI3K)/Akt pathway. Fig. 3A and B shows that palmitate acutely activates Akt in MIN6 cells and mouse islets within 1 h, as reflected by phosphorylation of Akt residues T308 and S473. These Akt phosphorylation events (and, indeed, even basal levels of phosphorylation) were abrogated by the selective PI3K inhibitor wortmannin, but not by the selective mTORC1 inhibitor rapamycin (Fig. 3A and B)—a result consistent with an upstream dependency of Akt activation on PI3K. The mTORC1/2 inhibitor Torin1 blocked the Akt phosphorylation events in MIN6 cells, in agreement with prior observations that mTORC2 lies upstream of Akt phosphorylation (34).

Major downstream effects of mTORC1 action include the phosphorylations of S6K and the eukaryotic translation initiation factor 4E binding protein (4E-BP1), events that promote mRNA translation (33). As shown in Fig. 3C and D, palmitate incubation led to phosphorylations of S6K and 4E-BP1 within 1 h. These phosphorylation events were blocked by wortmannin, rapamycin, and Torin1 (Fig. 3C and D), placing the effects of palmitate on S6K and 4E-BP1 downstream of mTOR signaling. Importantly, the effects of palmitate on S6K and Akt
phosphorylation events were also observed in isolated human islets (Suppl. Fig. S1C). Additionally, the effects of palmitate on Akt and S6K phosphorylations and on the PRP in MIN6 cells occurred at a lower molar ratio of palmitate:BSA (5:1) and the effects on the PRP were also observed (but with lower magnitude) at a 2.5:1 molar ratio (Suppl. Fig. S2A-C). Suppl. Fig. S2C and D show that phosphorylations of Akt and S6K, and their downstream effects on the PRP, were also seen at low glucose concentrations (3 mM).

To determine if the effects on mTOR activation are specific to saturated FFAs, we performed experiments using the monounsaturated FFA oleate. As shown in Fig. 4A and B, 0.5 mM Oleate caused no significant increase in S6K phosphorylation, and a reduced phosphorylation of Akt(S473) compared to palmitate. Consistent with these findings, oleate did not alter the P/M ratio in the PRP (Fig. 4C).

Palmitate activation of mTOR is independent of insulin signaling, but dependent upon L-type calcium channels

To interrogate the mechanisms linking saturated FFAs to activation of PI3K/Akt/mTOR, we next examined the insulin signaling pathway, a major growth factor pathway known to activate mTOR. We performed experiments using a β cell insulin receptor knockout (βIRKO) cell line described previously (35). Fig. 5A confirms the knockout of the insulin receptor in the βIRKO line (*upper panel*), and shows that palmitate still induced Akt(S473) and S6K phosphorylations in βIRKO cells (*lower panels*). These findings were also confirmed in the absence of serum in the medium (data not shown). Together, these findings suggest that palmitate activation of mTOR *in vitro* does not involve insulin signaling or signaling by other growth factor components in the serum.
Palmitate mobilizes intracellular Ca\(^{2+}\), and Ca\(^{2+}\)/calmodulin has been shown to activate the p85 subunit of PI3K (36). Fig. 5B and C shows that palmitate-induced phosphorylation of Akt (T308 and S473) and S6K in MIN6 cells are blocked by the L-type Ca\(^{2+}\) channel blocker nifedipine. By contrast, nifedipine does not block the same phosphorylation events induced by insulin. These data suggest that the activation of the PI3K/Akt/mTOR pathway by palmitate is dependent upon flux through L-type Ca\(^{2+}\) channels.

Activation of mTOR by palmitate precedes and contributes to the unfolded protein response

Saturated FFAs activate the unfolded protein response (UPR), leading to ER stress and \(\beta\) cell dysfunction (13). Because the UPR is triggered in part by increased ER protein load, we asked if the activation of the mTOR pathway by palmitate temporally and causally precedes the UPR. As shown in Fig. 6A, mRNA parameters of UPR activation, including spliced *Xbp1*, *Bip*, *Atf4*, and *Chop* are increased at 72 h after palmitate incubation in MIN6 cells (trending similarly with 4 h of thapsigargin incubation). A feature of the UPR is the activation of translation initiation of *Atf4* mRNA, wherein *Atf4* mRNA is actively engaged by ribosomal translational machinery to increase ATF4 protein levels (37). Fig. 6B shows that the positioning of the *Atf4* mRNA is unaltered in the PRP of MIN6 cells treated with palmitate for 1 h. By contrast, Fig. 6C shows that *Atf4* mRNA shifts from relative monosome fractions to polysome fractions in response to 72 h incubation with palmitate, in a manner similar to that seen with thapsigargin treatment (Fig. 6D).

We hypothesized that blockade of mTOR would reduce the protein load upon the ER in response to saturated FFAs, and thereby reduce the propensity to trigger the UPR. To test this hypothesis, we performed studies using the mTORC1/2 inhibitor Torin1. As shown in in Fig. 7A
and B, when MIN6 cells are treated with palmitate in the presence of Torin1, phosphorylation of eIF2α at 4 h is blocked, as is the later increase in UPR-related genes (Chop, Atf4, Bip, and Xbp1s) at 10 h (Fig. 7B). Similar inhibition of palmitate-induced UPR gene activation with Torin1 was also observed in mouse islets (Fig. 7C).

High fat diet feeding of C57BL/6J mice increases phosphorylation of Akt and S6K in islets and increases mRNA translation

To study the physiological relevance of mTOR activation in vivo, we examined the short-term effects of a high fat diet (HFD, 60% kcal from fat, mostly saturated fat) vs. a low fat diet (LFD, 10% kcal from fat) on mouse islets. Prior studies showed that 60% high fat diet feeding for one week increased β cell replication and mass (27). As shown in Fig. 8A and B, respectively, one week of HFD feeding led to increases in body weight and fat mass compared to animals on a LFD. Fig. 8C shows that glucose tolerance was worsened upon HFD feeding (when glucose was administered intraperitoneally based on total body weight). Islets from high fat-fed mice revealed increases in phosphorylations of Akt(T308) and S6K, but without changes in phosphorylation of eIF2α (Fig. 8D). In accordance with the activation of mTOR and mRNA translation, islets from HFD-fed mice displayed an increase in genes encoding proteins involved in proliferation (Ki67 and PCNA) and an increase in the P/M ratio in PRP analysis (Fig. 8E-F). These results suggest that 1 week of HFD feeding may be more akin to the short-term incubations of isolated cells with palmitate.
DISCUSSION

By use of PRP analysis, we show that β cells acutely respond to saturated FFAs (typified by palmitate) by increasing association of RNA species with polyribosomes, a process reflective of increased mRNA translation. The increased mRNA translation in response to palmitate emanates from activation of the mTOR pathways, which link nutrient sensing to cellular growth. The growth and function-promoting effect of saturated FFAs on β cells have been the topic of studies in both humans and rodents. In adult humans, short term (<24 h) elevations in FFA levels (via intralipid infusions) result in exaggerated glucose-stimulated insulin secretion (38-40). In rats, elegant studies by Poitout and colleagues showed that 6 month-old rats receiving just 72 h of intralipid infusion exhibit ~50% expansion in β cell mass that was attributed to enhanced mTOR signaling and β cell replication (6,8). These latter studies suggest that mTOR may be a crucial pathway in response to FFA signaling.

The mTOR complexes (mTORC1 and mTORC2) are sensors of ambient nutritional status, and link growth factor signaling and availability of nutrients to protein synthesis and cellular proliferation and size in β cells and other cell types (33). Of the two complexes, mTORC1 is characterized better in β cells. mTORC1 includes mTOR, Raptor, mLST8 and is sensitive to inhibition by rapamycin. Secondary activation of mTORC1 by expression of constitutively active Akt levels in β cells increases cell expansion and results in enhancement of cell cycle proteins (41). Major downstream effects of mTORC1 activation are the phosphorylations of S6K and 4E-BP1. These events are seminal triggers of global translational initiation and elongation of mRNAs, which promote accrual of β cell size and number (33). Our studies are the first to show that palmitate acutely induces an increase in polyribosome-associated RNAs in β cells—a finding consistent with an increase in global mRNA translation.
This effect of palmitate is concordant with an increased activity of the PI3K/Akt signaling pathway and the phosphorylations of S6K and 4E-BP1. We note that the effect of palmitate on global mRNA translation is dependent upon the fraction of free palmitate, since lower palmitate:BSA ratios have attenuated effects. Because inhibitors of mTORC1 appear to completely block S6K and 4E-BP1 phosphorylation events and polyribosome-associated RNA increases, we propose that a direct effect of saturated FFAs is to activate mTOR signaling. The linkage between saturated FFAs, mTOR, and mRNA translation is supported by recent studies in rats in vivo, which revealed that rapamycin blocks the increase in β cell mass, size, and proliferation in response to intralipid infusion in rats (6). Our studies in 1 week HFD-fed mice also support a role for FFAs activating mRNA translation in islets in vivo.

In contrast to the increases in polyribosome-associated RNAs with acute palmitate incubation, more prolonged incubations resulted in reductions in polyribosome-associated RNAs. Such reductions are suggestive of a decline in translation initiation rate relative to elongation rate, resulting in a paucity of ribosomes associated with RNA (29). In agreement with these findings, we observed the onset of the UPR, in which p-eIF2α blocks general (cap-dependent) mRNA translation. The induction of the UPR by palmitate has been observed in a number of studies, and has been variably attributed to several processes, including derangement of cellular calcium homeostasis, induction of mitochondrial oxidative stress, posttranslational modification of proteins, and inhibition of splicing factors and transcription factors (13,42-44). An important factor that contributes to UPR and eventual ER stress is increased protein load on the ER (45,46). Because we found an early increase in mTOR activation and mRNA translation with palmitate incubation, we tested the possibility that this early increase might contribute to later induction of the UPR. Accordingly, inhibition of mTOR with Torin1 blocked the increase
in p-elf2α levels, and Bip, spliced Xbp1, and Chop mRNA levels. These results temporally link the early increase in mRNA translation with the later development of ER stress. However, the contribution of ER protein synthesis vs. other effects of mTOR is unclear from our studies; we note that other studies have linked Torin1 treatment with increases in autophagy, a process that could also help to mitigate ER stress (47).

Activation of the PI3K/Akt/mTOR pathway is linked to growth factor signaling and/or nutrient (e.g. glucose, amino acid) abundance. Although palmitate can acutely augment insulin secretion in the presence of glucose, we show that insulin signaling does not account for mTOR activation, since the phenomenon is observed in β cells lacking insulin receptor. Studies of Poitout and colleagues suggest that EGF signaling in response to intralipid/glucose infusion in rats is important in the activation of mTORC1 in β cells (6), a possibility that may be more relevant in vivo. In this regard, we note that the intralipid infusions employ mixtures of saturated and unsaturated FFAs, which likely activate release of growth factors from other organs, secondarily affecting β cell growth (3,4). We cannot rule out the possibility in our high fat feeding studies in vivo that mTOR activation may have been an indirect consequence of FFAs.

Some prior studies have implicated a role for FFAs in activating mTOR. In hepatocytes, FFAs were shown to increase mTOR signaling, but in an inverse relationship with Akt phosphorylation. In those studies, it was felt that mTOR activation by FFAs lead to insulin resistance (whereas inhibition of mTOR by metformin reduces it) (48). By contrast, studies in cell-free systems suggest that palmitate inhibits protein tyrosine phosphatase 1B, resulting in increases in Akt phosphorylation (49). Our studies in β cells point to a role for L-type Ca²⁺ channels in the activation of Akt. Palmitate acutely increases intracellular Ca²⁺ in human and mouse β cells (50), and increases in intracellular Ca²⁺, via calmodulin, have been shown to
associate with and activate PI3K (51). What remains unclear is how precisely palmitate is linked to L-type Ca\(^{2+}\) channels, and links to FFA transporters (e.g. CD36) and receptors (e.g. GPR40) remain possibilities.

Our results suggest a model whereby palmitate induces pathways that promote increased mRNA translation and ER workload in the β cell. This early effect of palmitate appears to contribute to activation of the UPR, which when prolonged, can lead to β cell apoptosis. We acknowledge some limitations to our studies, the most notable that they involve effects of a single saturated FFA on cells cultured in vitro. Effects in vivo likely are more complex and involve mixtures of FFAs and signaling from different organs. Nevertheless, our studies identify an important effect of palmitate on a key β cell pathway that has heretofore been unappreciated. Future studies focusing on conditional knockouts of mTOR signaling molecules in mice will allow for more definitive conclusions in vivo on the role of mTOR in FFA signaling.
REFERENCES

1. Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest 2006;116:1802–1812.
2. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–110.
3. Ouamari El A, Kawamori D, Dirice E, Liew CW, Shadrach JL, Hu J, Katsuta H, Hollister-Lock J, Qian W-J, Wagers AJ, Kulkarni RN. Liver-derived systemic factors drive β cell hyperplasia in insulin-resistant states. Cell Rep 2013;3:401–410.
4. Yi P, Park J-S, Melton DA. Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell 2013;153:747–758.
5. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 2008;105:5266–5270.
6. Zarrouki B, Benterki I, Fontes G, Peyot M-L, Seda O, Prentki M, Poitout V. Epidermal Growth Factor Receptor Signaling Promotes Pancreatic β-Cell Proliferation in Response to Nutrient Excess in Rats through mTOR and FOXM1. Diabetes 2014;63:982–993.
7. Pascoe J, Hollem D, Stamateris R, Abbasi M, Romano LC, Zou B, O'Donnell CP, Garcia-Ocaña A, Alonso LC. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes 2012;61:632–641.
8. Fontes G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, Moore PC, Prentki M, Rhodes CJ, Jetton TL, Poitout V. Glucolipotoxicity age-dependently impairs β cell function in rats despite a marked increase in β cell mass. Diabetologia 2010;53:2369–2379.
9. Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G. Glucolipotoxicity of the pancreatic β cell. Biochim Biophys Acta 2009;1801:289–298.
10. Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, Macdonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012;55:2682–2692.
11. Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets. Diabetes 2009;58:2607–2615.
12. Prentki M, Madiraju SRM. Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012;353:88–100.
13. Cnop M, Ladriere L, Igoillo-Esteve M, Moura RF, Cunha DA. Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction. Diabetes Obes Metab 2010;12 Suppl 2:76–82.
14. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R. Saturated Fatty Acid and TLR Signaling Link β Cell Dysfunction and Islet Inflammation. Cell Metab 2012;15:518–533.
15. Fonseca SG, Burcin M, Gromada J, Urano F. Endoplasmic reticulum stress in β-cells and development of diabetes. Curr Opin Pharmacol 2009;9:763–770.
16. Evans-Molina C, Robbins RD, Kono T, Tersey SA, Vestermark GL, Nunemaker CS,
Garmey JC, Deering TG, Keller SR, Maier B, Mirmira RG. PPAR-γ Activation Restores Islet Function in Diabetic Mice Through Reduction of ER Stress and Maintenance of Euchromatin Structure. Mol Cell Biol 2009;29:2053–2067.

17. Stull ND, Breite A, McCarthy RC, Tersey SA, Mirmira RG. Mouse Islet of Langerhans Isolation using a Combination of Purified Collagenase and Neutral Protease. J Vis Exp 2012;67:e4137.

18. Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 1990;127:126–132.

19. Evans-Molina C, Garmey JC, Ketchum R, Brayman KL, Deng S, Mirmira RG. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 2007;56:827–835.

20. Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 2001;276:14890–14895.

21. Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, Evans-Molina C, Rickus JL, Maier B, Mirmira RG. Islet β-Cell Endoplasmic Reticulum Stress Precedes the Onset of Type 1 Diabetes in the Nonobese Diabetic Mouse Model. Diabetes 2012;61:818–827.

22. Nishiki Y, Adewola A, Hatanaka M, Templin AT, Maier B, Mirmira RG. Translational Control of Inducible Nitric Oxide Synthase by p38 MAPK in Islet β-Cells. Mol Endocrinol 2013;27:336–349.

23. Chakrabarti SK, James JC, Mirmira RG. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J Biol Chem 2002;277:13286–13293.

24. Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E, Bortell R, Rossini AA, Urano F. Regulation of insulin biosynthesis in pancreatic β cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab 2006;4:245–254.

25. Sachdeva MM, Claiborn KC, Khoo C, Yang J, Groff DN, Mirmira RG, Stoffers DA. Pdx1 (MODY4) regulates pancreatic β cell susceptibility to ER stress. Proc Natl Acad Sci U S A 2009;106:19090–19095.

26. Dwyer JR, Donkor J, Zhang P, Csaki LS, Vergnes L, Lee JM, Dewald J, Brindley DN, Atti E, Tetradis S, Yoshinaga Y, De Jong PJ, Fong LG, Young SG, Reue K. Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc Natl Acad Sci U S A 2012;109:E2486–E2495.

27. Stamateris RE, Sharma RB, Hollem DA, Alonso LC. Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression. Am J Physiol Endocrinol Metab 2013;305:E149–E159.

28. Iype T, Francis J, Garmey JC, Schisler JC, Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC, Mirmira RG. Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes. J Biol Chem 2005;280:16798–16807.

29. Teske BF, Baird TD, Wek RC. Methods for analyzing eIF2 kinases and translational control in the unfolded protein response. Methods Enzymol 2011;490:333–356.
30. Evans-Molina C, Hatanaka M, Mirmira RG. Lost in translation: endoplasmic reticulum stress and the decline of β-cell health in diabetes mellitus. Diabetes Obes Metab 2013;15 Suppl 3:159–169.

31. Roffe M, Beraldo FH, Bester R, Nunziante M, Bach C, Mancini G, Gilch S, Vorberg I, Castilho BA, Martins VR, Hajj GNM. Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci U S A 2010;107:13147–13152.

32. Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009;459:118–121.

33. Blandino-Rosano M, Chen AY, Scheys JO, Alejandro EU, Gould AP, Taranukha T, Elghazi L, Cras-Ménéur C, Bernal-Mizrachi E. mTORC1 signaling and regulation of pancreatic β-cell mass. Cell Cycle 2012;11:1892–1902.

34. Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA. Rictor/mTORC2 is essential for maintaining a balance between β-cell proliferation and cell size. Diabetes 2011;60:827–837.

35. Assmann A, Ueki K, Winnay JN, Kadowaki T, Kulkarni RN. Glucose effects on β-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol Cell Biol 2009;29:3219–3228.

36. Joyal JL. Calmodulin Activates Phosphatidylinositol 3-Kinase. J Biol Chem 1997;272:28183–28186.

37. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol 2004;14:20–28.

38. Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 1999;276:E1055–E1066.

39. Paolisso G, Gambardella A, Amato L, Tortoriello R, D’Amore A, Varricchio M, D’Onofrio F. Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 1995;38:1295–1299.

40. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 2003;52:2461–2474.

41. Balcazar N, Sathyamurthy A, Elghazi L, Gould A, Weiss A, Shiojima I, Walsh K, Bernal-Mizrachi E. mTORC1 activation regulates β-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. J Biol Chem 2009;284:7832–7842.

42. Jeffrey KD, Alejandro EU, Luciani DS, Kalynyk TB, Hu X, Li H, Lin Y, Townsend RR, Polonsky KS, Johnson JD. Carboxypeptidase E mediates palmitate-induced β-cell ER stress and apoptosis. Proc Natl Acad Sci U S A 2008;105:8452–8457.

43. Baldwin AC, Green CD, Olson LK, Moxley MA, Corbett JA. A role for aberrant protein palmitoylation in FFA-induced ER stress and β-cell death. Am J Physiol Endocrinol Metab 2012;302:E1390–E1398.

44. Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, Bugliani M, Ladrière L, Marselli L, McCarthy MI, Marchetti P, Sammeth M, Eizirik DL. RNA-sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes doi: 10.2337/db13-1383.
45. Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 2013;15:481–490.

46. Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R, Munakata Y, Satake C, Katagiri H, Tashiro F, Aburatani H, Tsukiyama-Kohara K, Miyazaki J-I, Sonenberg N, Oka Y. ATF4-mediated induction of 4E-BP1 contributes to pancreatic β cell survival under endoplasmic reticulum stress. Cell Metab 2008;7:269–276.

47. Bachar-Wikstrom E, Wikstrom JD, Ariav Y, Tirosh B, Kaiser N, Cerasi E, Leibowitz G. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013;62:1227–1237.

48. Mordier S, Iynedjian PB. Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem Biophys Res Commun 2007;362:206–211.

49. Shibata E, Kanno T, Tsuchiya A, Kuribayashi K, Tabata C, Nakano T, Nishizaki T. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt. Cell Physiol Biochem 2013;32:871–879.

50. Gwiazda KS, Yang TLB, Lin Y, Johnson JD. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in β-cells. Am J Physiol Endocrinol Metab 2009;296:E690–E701.

51. Cheng A, Wang S, Yang D, Xiao R, Mattson MP. Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J Biol Chem 2003;278:7591–7599.
AUTHOR CONTRIBUTIONS

MH researched data, conceived experiments, and wrote the manuscript. EKS, ATT, and CEM researched data, contributed to discussion, and reviewed and edited the manuscript. BM researched data, conceived experiments, contributed to discussion, and reviewed and edited the manuscript. RNK provided reagents, contributed to discussion, and reviewed and edited the manuscript. RGM researched data, conceived experiments, contributed to discussion, and wrote the manuscript. MH and RGM are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

ACKNOWLEDGEMENTS

This work was supported by NIH grants R01 DK060581 and R01 DK083583 (to RGM), a grant from the Manpei Suzuki Diabetes Foundation (to MH), NIH grant T32 DK065549 (to EKS), a fellowship grant from the American Heart Association (to ATT), NIH grant R01 DK67536 (to RNK), NIH grant R01 DK093954 (to CEM), VA Merit Award I01 BX001733 (to CEM), and grants from the George and Francis Ball Foundation and the Ball Bros. Foundation (both to RGM and CEM).

The authors wish to acknowledge Ms. N. Stull and Ms. K. Benninger, both at Indiana University’s Indiana Diabetes Research Center Islet Core, for isolation of islets.

No potential conflicts of interest relevant to this article were reported.
FIGURE LEGENDS

Figure 1. Acute and chronic effects of palmitate on mRNA translation. A, PRP analysis (*left panel*) and associated polysome:monosome (P/M) ratio (*right panel*) of MIN6 cells after incubation under control or palmitate (0.5 mM) conditions for 1 h. *Numbers* above the peaks indicate numbers of ribosomes; B, PRP analysis (*left panel*) and associated P/M ratio (*right panel*) of MIN6 cells after incubation under control and palmitate conditions for 24 h; C, PRP analysis (*left panel*) and associated P/M ratio (*right panel*) of MIN6 cells after incubation under control and palmitate conditions for 72 h; D, Representative immunoblot (*top panel*) and corresponding quantitation (from *N*=4, *bottom panel*) of p-eIF2α and total eIF2α after incubation of MIN6 cells with control or palmitate for the indicated times; E, PRP analysis (*left panel*) and associated P/M ratio (*right panel*) of MIN6 cells after incubation under control and thapsigargin (1 µM) conditions for 4 h; F, Representative immunoblot (*top panel*) and corresponding quantitation (from *N*=4, *bottom panel*) for p-eIF2α and total eIF2α after incubation of MIN6 cells with control or thapsigargin for 4 h. In all panels, control cells were incubated at the same glucose concentrations as palmitate-treated cells, and BSA was added in place of palmitate:BSA conjugates. Quantitative data represent mean±SEM of at least 3 independent determinations; *P*<0.05.

Figure 2. Palmitate activates mTOR signaling. A, Representative immunoblot for the indicated proteins after incubation of MIN6 cells under control (*CTL*) or with varying concentrations of palmitate (*PAL*) for 1 h; B, Representative PRP analysis of MIN6 cells after incubation under control, palmitate (0.5 mM), or palmitate + rapamycin (*Rapa*, 50 nM) conditions for 1 h; C, Representative PRP analysis of MIN6 cells after incubation under control,
palmitate (0.5 mM), or palmitate + Torin1 (Torin, 250 mM) conditions for 1 h. In all panels, control cells were incubated at the same glucose concentrations as palmitate-treated cells, and BSA was used in place of palmitate:BSA conjugates.

Figure 3. Palmitate activates mTOR via PI3K/Akt. MIN6 cells (*left panels*) and mouse islets (*right panels*) were incubated under control (*C*), palmitate (*P*, 0.5 mM), or palmitate + inhibitor conditions for 1 h (MIN6) or 30 min (islets), then subjected to immunoblot analysis for the indicated proteins. Inhibitors are wortmanin (*Wort*, 200 nM), rapamycin (*Rapa*, 50 nM), and Torin1 (*Torin1*, 250 nM). *A*, Immunoblot for p-Akt (T308) and Akt; *B*, Immunoblot for p-Akt(S473) and Akt; *C*, Immunoblot for p-S6K and Actin; *D*, Immunoblot for p-4E-BP1 and Actin. N=3-6. *P*<0.05 compared to control conditions.

Figure 4. Oleate does not activate mTOR signaling. MIN6 cells were incubated under control (*CTL*), palmitate (*PAL*, 0.5 mM), or oleate (*OLE*, 0.5 mM) for 1 h. *A*, Representative immunoblot (*top panel*) and corresponding quantitation (from N=6, *bottom panel*) of p-Akt(S473) and Akt; *B*, Representative immunoblot (*top panel*) and corresponding quantitation (from N=3, *bottom panel*) of p-S6K and S6K; *C*, Representative PRP analysis of MIN6 cells after incubation under control and oleate conditions for 1 h. *P*<0.05 for the value compared to the corresponding control conditions.

Figure 5. Palmitate activation of mTOR is not dependent on insulin signaling, but requires L-type Ca2+ channels. *A*, The β cell insulin receptor knockout (*βIRKO*) cell line was incubated under control (*CTL*) or palmitate (*PAL*, 0.5 mM) conditions at 20 mM glucose, then subjected to
immunoblotting for the proteins indicated. Upper panel shows representative immunoblot of control (LOX cells) and βIRKO cells for insulin receptor (IR). Lower panel shows two independent immunoblots in βIRKO cells; B, Representative immunoblots from MIN6 cells treated under control (CTL), insulin (INS, 200 nM), palmitate (PAL, 0.5 mM) conditions, with or without nifedipine (Nifed, 10 µM); C, Quantitation of the immunoblot data (for N=4) from panel B. *P<0.05 for the comparison.

Figure 6. Activation of the UPR by palmitate. A, MIN6 cells were incubated under control (C) or palmitate (P, 0.5 mM) conditions for 1 h or 72 h, or with thapsigargin (Tg, 1 µM) for 4 h, then subjected to RT-PCR for the indicated genes (N=4 independent determinations); B, C and D, MIN6 cells were treated under control or palmitate conditions for 1 h (B) and 72 h (C), or under control and thapsigargin conditions for 4 h (D), then subjected to PRP analysis followed by real-time RT-PCR for Atf4 of fractions from the PRP (N=3 independent determinations). The shaded regions in B, C, and D show the representative PRP profile, and the lines represent mRNA levels. *P<0.05 for the value compared to the corresponding control value in all panels.

Figure 7. Inhibition of mTOR inhibits activation of the UPR by palmitate. A, Representative immunoblot (left panel) of p-eIF2α and eIF2α from MIN6 cells under control (CTL) and palmitate (PAL, 0.5 mM) conditions ±Torin1 (250 nM) for 4 h, with corresponding quantitation (N=6, right panel) of the immunoblots; B, real-time RT-PCR data from MIN6 cells under control and palmitate conditions ±Torin1 for 10 h; C, real-time RT-PCR data from mouse islets under control and palmitate conditions ±Torin1 for 10 h All data represent mean±SEM of
at least 3 independent determinations. *P<0.05 for the value compared to the corresponding control.

Figure 8. Activation of mTOR signaling in islets of high fat diet-fed mice. C57BL6/J mice (N=10 per group) were fed a low fat diet (LFD, 10% kcal from fat) or high fat diet (HFD, 60% kcal from fat) for 7 days. A, body weight of mice; B, fat mass of mice, as determined by DXA analysis; C, Results of GTT (left panel) and corresponding AUC analysis (right panel); D, Results of immunoblot analysis for the indicated proteins from islets isolated from LFD- and HFD-fed mice (N=3 mice per group), and corresponding quantitations; E, Results of RT-PCR analysis from islets isolated from LFD- and HFD-fed mice (N=3 mice per group) for the *Ki67* and *Pcna* genes; F, Representative PRP analysis and corresponding P/M ratio (N=3 mice per group) of islets isolated from LFD- and HFD-fed mice. For all panels, *P<0.05 for the HFD compared to the LFD.
Figure 1
186x182mm (300 x 300 DPI)
Figure 2

125x77mm (300 x 300 DPI)
Figure 3

260x440mm (300 x 300 DPI)
Figure 4
85x37mm (300 x 300 DPI)
Figure 5

134x92mm (300 x 300 DPI)
Figure 6
104x56mm (300 x 300 DPI)
Figure 7
180x168mm (300 x 300 DPI)
Figure 8
188x180mm (300 x 300 DPI)
Supplemental Figure S1. Effect of palmitate on protein synthesis in rodent β cells and on mTOR signaling in human islets. A, 35S-Met/Cys incorporation (left panel) into MIN6 cells upon incubation with cycloheximide (CHX, 50 µg/ml), palmitate (PAL, 0.5 mM), or control (CTL) cells. CHX and PAL were added for 1 h, and 35S-Met/Cys was added during the final 15 min. Right panel is the corresponding quantitation of 35S proteins (N=3 experiments); B, Identical to panel A, except that cells were primary mouse islets; C, Human islets (from 3 donors) were incubated with under control (CTL) or palmitate (PAL, 0.5 mM) conditions in the presence of 11 mM glucose for 1 h, then extracts were subjected to immunoblotting for the indicated proteins. Upper panels show representative immunoblots, and lower panels show corresponding quantitations (N=3). *P<0.05 for the value compared to control.
Supplemental Fig. S2. Effect of BSA and glucose concentrations on palmitate-induced mTOR activation in MIN6 cells. A, MIN6 cells were incubated under control (CTL) and palmitate (PAL, 0.5 mM) conditions for 1 h using a palmitate:BSA molar ratio of 5:1, then subjected to immunoblotting for the proteins indicated. Upper panels show representative immunoblots, and lower panels show corresponding quantitations (N=3); B, PRP of MIN6 cells after incubation under control and palmitate (0.5 mM) conditions for 1 h using a palmitate:BSA molar ratio of 5:1 and corresponding quantitation of the P/M ratio (right panel); C, PRP of MIN6 cells after incubation under control and palmitate (0.5 mM) conditions for 1 h using a palmitate:BSA molar ratio of 2.5:1 (left panel) and corresponding quantitation of the P/M ratio (right panel); D, MIN6 cells were incubated under control and palmitate (0.5 mM) conditions for 1 h in 3 mM glucose (palmitate:BSA ratio of 8:1), then subjected to immunoblotting for the proteins indicated. Upper panels show representative immunoblots, and lower panels show corresponding quantitations (N=3); E, PRP of MIN6 cells after incubation under control and palmitate (0.5 mM) conditions for 1 h in 3 mM glucose (palmitate:BSA ratio of 8:1). *P<0.05 for the value compared to control.