Diversity of Ascomycota in Jilin: Introducing Novel Woody Litter Taxa in Cucurbitariaceae

Wenxin Su 1,2, Rong Xu 1,2, Chitrabhanu S. Bhunjun 3,4*, Shangqing Tian 1,2, Yueting Dai 1,2, Yu Li 1,* and Chayanard Phukhamsakda 1,2,*

Abstract: Cucurbitariaceae has a high biodiversity worldwide on various hosts and is distributed in tropical and temperate regions. Woody litters collected in Changchun, Jilin Province, China, revealed a distinct collection of fungi in the family Cucurbitariaceae based on morphological and molecular data. Phylogenetic analyses of the concatenated matrix of the internal transcribed spacer (ITS) region, the large subunit (LSU) of ribosomal DNA, the RNA polymerase II subunit (rpb2), the translation elongation factor 1-alpha (tef1-α) and β-tubulin (β-tub) genes indicated that the isolates represent Allocucurbitaria and Parafenestella species based on maximum likelihood (ML), maximum parsimony (MP) and Bayesian analysis (BPP). We report four novel species: Allocucurbitaria mori, Parafenestella changchunensis, P. ulmi and P. ulnicola. The importance of five DNA markers for species-level identification in Cucurbitariaceae was determined by Assemble Species by Automatic Partitioning (ASAP) analyses. The protein-coding gene β-tub is determined to be the best marker for species level identification in Cucurbitariaceae.

Keywords: ASAP; fungal barcode; multi-loci phylogeny; northeast China; Pleosporales; taxonomy

1. Introduction

Fungi are known to have a high diversity; however, the number of named and classified fungi is still lower than the estimated number of species [1–4]. This could be because several regions are yet to be explored. China is the third largest country in the world by area, with several different climatic conditions [5–8]. Jilin is a province located in northeast (NE) China where the temperature is hot and dry in summers and has a harsh winter with temperatures down to −20 °C [9]. The vegetation in the eastern mountains includes tree genera such as the Betula, Fraxinus, Juglans, Larix, Pinus, Quercus, Salix, Sorbus and Ulmus [10]. These trees are common in the northern hemisphere and in temperate climates [11].

The family Cucurbitariaceae was established by Winter [12], and it is characterized by clustered ascomata and scattered, black, and shiny ostioles, surrounded with olivaceous-to-brown hyphae and having yellow-to-dark olivaceous, brown and muriform ascospores [13–15]. Asexual morphs are known to occur as pycnidia with hyaline conidia [14]. Cucurbitariaceae has received much attention in recent years, and it includes 13 genera: Allocucurbitaria Valenz.-Lopez, Stchigel, Guarro & Cano, Astragalicola Jaklitsch & Voglmayr, Cucitella Jaklitsch & Voglmayr, Cucurbitaria Gray (=Pleurostromella Petr.), Fenestella Tul. & Tul C., Neocucurbitaria Wan., E.B.G. Jones & K.D. Hyde, Paracucurbitaria Valenz.-Lopez Stchigel, Guarro & Cano, Parafenestella Jaklitsch & Voglmayr, Protopenestella Jaklitsch & Voglmayr, Rhytidella Zalasky, Seltsamia Jaklitsch & Voglmayr, Syncarpella Theiss. & Syd. and Syngenestella Jaklitsch & Voglmayr [13]. Jaklitsch et al. [15] provided a comprehensive study of fenestelloid
clades of Cucurbitariaceae using fresh collections. Various type specimens were verified, and all the genera of Cucurbitariaceae formed a well-supported clade in a multi-locus phylogeny [15]. However, the phylogenetic placement of Rhytidiella and Syncarpella remain to be confirmed as they lack molecular data [15]. Fenestella, Neocucurbitaria and Parafenestella have a wide distribution mainly in temperate regions and can be found on various hosts [14,16–19]. For example, Parafenestella salicum was found on the twigs of Salix alba and Fenestella parafenestrata on the branches of Quercus robur in Austria, while Neocucurbitaria subcaespitosa was isolated from the twigs of Sorbus aria in Switzerland [14,15].

This study mainly focuses on ascomycetous fungi from the northern part of China. The novel taxa are introduced based on morphology and molecular data. In this study, Allocucurbitaria was used to demonstrate important characteristics for distinguishing the asexual morph at the generic level. This study also determines the best barcode out of five DNA markers for species delineation in Cucurbitariaceae by applying assemble species by automatic partitioning (ASAP) analyses.

2. Materials and Methods

2.1. Collection and Isolation

Dried branches of Morus alba, Populus species and Ulmus pumila were collected from Jilin Agricultural University in Changchun, Jilin Province, China (longitude: 125.410385; latitude: 43.810433). Specimens were kept in sealed paper bags indicating the location, time and host details. The specimens were processed following Senanayake et al. [20] for isolation. Single-spore isolation was performed using potato dextrose agar (PDA) and incubated at 25 °C in the dark [16]. Germinated ascospores were transferred aseptically to PDA and grown at 25 °C for 2 weeks. Pure cultures were deposited at the Engineering Research Center of the Chinese Ministry of Education for Edible and Medicinal Fungi at the Jilin Agricultural University (CCMJ), Changchun, China, and type specimens were deposited in the Herbarium of Mycology, Jilin Agricultural University (HMJAU). The new taxa were registered with Mycobank [17,18].

2.2. Morphological Observation

The specimens were examined using a Zeiss Stemi 2000C stereomicroscope equipped with a Leica DFC450C (Leica, Heidelberg, Germany) digital camera. A thin section of partial ascoma was prepared and placed on glass slides with a drop of sterile water. The structure and size of microcharacters were observed and photographed using a digital Axiocam 506 color camera equipped with Zeiss Image A2 (Zeiss, Oberkochen, Germany). Fructification of asexual morph in the sterile culture was observed after four weeks of incubation in the dark.

2.3. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was extracted using NuClean PlantGen DNA Kit (CWBio, Taizhou, China) according to the manufacturer’s protocol. The internal transcribed spacer region of ribosomal DNA (ITS) [21], the large subunit (LSU) of ribosomal DNA [22], the RNA polymerase II second-largest subunit (rpb2) [23], the translation elongation factor 1-alpha (tef1-α) and beta-tubulin (β-tub) were amplified as described in Table 1. The amplification reactions were performed using 20 µL PCR mixtures containing 9 µL of ddH2O, 10 µL of 2× EsTag MasterMix (Dye), 0.4 µL of DNA template and 2 µL of 2 µmol/µL of each forward and reverse primer. All PCR products were visualized with electrophoresis using a 1% agarose gel. The PCR products were sequenced by Sangon Biotech (Shanghai) Co., Ltd., China.
Table 1. The PCR primers and amplifying conditions used in this study.

Amplification Loci (Primer Pair Forward/Reverse)	PCR Conditions	References
ITS (ITS5/ITS4)	An initial denaturation step of 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 56 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C, and 10 °C for holding temperature	White et al. [21]
rpb2 (fRPB2-5F/fRPB2-7cR)		Vilgalys et al. [23]
tef1-a (2218F/983R)		Carbone and Kohn [24]
		Rehner and Buckley [25]
LSU (LROR/LR5)	An initial denaturation step of 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 45 s at 53 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C, and 10 °C for holding temperature	Vilgalys and Hester [22]
B-tub (T1/Bt2b)		O'Donnell and Cigelnik [26]

2.4. Phylogenetic Analysis

The sequence data were assembled using Geneious Prime 2021 (Biomatters Ltd., Auckland, New Zealand). The closest matches for the new strains were obtained using BLASTn searches (http://www.blast.ncbi.nlm.nih.gov/, accessed on 17 December 2021), and reference sequence data were downloaded from recent publications [14,15]. The sequences were aligned with MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/, accessed on 8 July 2022) [27], and ambiguous nucleotides were manually adjusted following visual examination in AliView version 1.26 [28]. Leading or trailing gaps exceeding the primer binding site were trimmed from the alignments, and the alignment gaps were treated as missing data. The concatenation of the multilocus data was created using Sequence Matrix version 1.8 [29].

Phylogenetic analyses were conducted using maximum likelihood, maximum parsimony and Bayesian inference methods. Maximum likelihood analysis was performed using RAxML-HPC2 on XSEDE on the CIPRES web portal (http://www.phylo.org/portal2/, accessed on 8 July 2022) [30–32]. The GTR+I+G model of nucleotide evolution was used for the datasets, and RAxML rapid bootstrapping of 1000 pseudo-replicates was performed [33]. The best-fit evolutionary models for individual and combined datasets were estimated under the Akaike information criterion (AIC) using jModeltest 2.1.10 on the CIPRES web portal for posterior probability [34]. The GTR+I+G model was the best model for the datasets. Maximum parsimony analysis of the combined matrices was performed using a parsimony ratchet approach. Descriptive tree statistics for parsimony (Consistency Index [CI], Homoplasy Index [HI] Tree Length [TL], Retention Index [RI] and Relative Consistency Index [RC]) were calculated for the trees generated under the different optimality criteria. The resulting best trees were then analyzed using PAUP and subjected to a heuristic search with TBR branch swapping (MulTrees option in effect, steepest descent option not in effect) [35]. Bayesian inference analyses were conducted using MrBayes v. 3.2.6 on the CIPRES web portal. Simultaneous Markov chains were run for seven million generations, and trees were sampled every 100th generation [36]. The phylogenetic trees were visualized in FigTree 1.4.3 [37] and edited in Adobe Illustrator CS v. 6 (Adobe, San Jose, CA, USA).

2.5. Analysis of Matrix Partitions by Assemble Species by Automatic Partitioning

Puillandre et al. [38] introduced the assemble species by automatic partitioning (ASAP) method to build species partitions. The ASAP method circumscribes species partitions using an implementation of a hierarchal clustering algorithm based on pairwise genetic distances (Kimura 2-Parameter). The pairwise genetic distances are used to build a list of partitions ranked by a score that is computed using the probabilities of groups to define panmictic species. The ASAP delimitations were run on the online version (https://bioinfo.mnhn.fr/abi/public/asap/ (accessed on 13 January 2022)) using single-locus datasets that included 107 strains of Cucurbitariaceae. The partition with the lowest ASAP score is known to represent the best partitions [38,39], and thus partitions with the lowest ASAP score were considered for each dataset [39,40].
3. Results
3.1. Phylogenetic Analyses

The final concatenated dataset comprised 110 ingroup taxa and two outgroup taxa, with 4607 characters including gaps (651 bases for ITS, 911 bases for LSU, 1063 bases for \texttt{rpb2}, 1281 bases for \texttt{tef1-\alpha}, and 701 bases for \texttt{\beta-tub}). The RAxML analysis yielded a best-scoring tree with a final ML optimization likelihood value of -39123.587750. The matrix consisted of 1740 distinct alignment patterns, with 25.90% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.234707, C = 0.269983, G = 0.265086, T = 0.230223; substitution rates AC = 1.287870, AG = 4.563896, AT = 1.434736, CG = 1.144629, CT = 6.919700, GT = 1.000000; proportion of invariable sites I = 0.606319; gamma distribution shape parameter α = 0.967784. The maximum parsimony dataset consisted of 1230 parsimony-informative characters and 246 variable characters. The parsimony analysis yielded 256 most parsimonious trees out of 1000 (TL = 6467, CI = 0.368, RI = 0.806, RC = 0.296, HI = 0.632). In the BPP analysis, 2437 trees were sampled after the 20% burn-in with a stop value of 0.009904. The maximum parsimony dataset consisted of 3132 parsimony-informative characters and 241 variable characters. The parsimony analysis yielded 512 most parsimonious trees out of 1000 (TL = 6468, CI = 0.368, RI = 0.806, RC = 0.297, HI = 0.632). In the BPP analysis, 1461 trees were sampled after the 20% burn-in with a stop value of 0.009955. The phylogenetic trees generated from the ML, MP and BPP had similar topologies (Figures S6 and S7).

In the ML analysis of the ITS region, \textit{Parafenestella ulmi} (CCMJ 5001 and CCMJ 5002) and \textit{P. ulmicola} (CCMJ 5003 and CCMJ 5004) clustered together with high support (ML = 95%), while \textit{P. changchunensis} (CCMJ 5007) formed a clade with \textit{P. vindobonensis} (CBS 145256) with relatively low support (ML = 63%) in \textit{Parafenestella} (Figure S1). \textit{Parafenestella ostryae} (MFLU 16-0184) and \textit{P. pittospori} (CPC 34462) resided in the \textit{Neocucurbitaria} clade (Figure 1) similar to the combined dataset. \textit{Allocucurbitaria mori} (CCMJ 5005 and CCMJ 5006) formed a clade with \textit{A. botulispora} (CBS 142452), \textit{Seltsamia galinsogisoli} (CBS 140956), \textit{S. ulmi} (CBS 143002) and two unidentified \textit{Seltsamia} species (EAB-67-11b and SGSF207) (ML = 100%). The LSU locus could not accurately distinguish taxa at the genus and species level in \textit{Cucurbitariaceae} (Figure S2). In the ML analysis of \texttt{\beta-tub} gene, \textit{Parafenestella ulmi} (CCMJ 5001 and CCMJ 5002) and \textit{P. ulmicola} (CCMJ 5003 and CCMJ 5004) formed a clade with high support (ML = 94%), while \textit{P. changchunensis} (CCMJ 5007) clustered with \textit{P. pseudosalicis} (CBS 145264) with moderate support (ML = 71%). \textit{Allocucurbitaria mori} (CCMJ 5005 and CCMJ 5006) and \textit{A. botulispora} (CBS 142452) formed a clade with moderate support (ML = 54%, Figure S5). In the \texttt{tef1-\alpha} analysis, \textit{Parafenestella ulmi} (CCMJ 5001 and CCMJ 5002) and \textit{P. ulmicola} (CCMJ 5003 and CCMJ 5004) formed a clade with relatively high support (ML = 89%) (Figure S4). \textit{Parafenestella changchunensis} (HMJAU 60182) formed a clade with \textit{P. salicis} (CBS 145270 and C303), \textit{P. pseudosalicis} (CBS 145264), \textit{P. vindobonensis} (CBS 145265) and \textit{P. alpina} (CBS 145263 and C249) with relatively high support (ML = 79%). \textit{Allocucurbitaria mori} (CCMJ 5005 and CCMJ 5006) clustered with \textit{Synfenestella pyri} (CBS 144855) with low support (ML = 41%).

In the multi-locus phylogenetic analysis, \textit{Parafenestella ulmi} (CCMJ 5001 and CCMJ 5002) and \textit{P. ulmicola} (CCMJ 5003 and CCMJ 5004) formed a clade with high support (ML = 100%; MP = 100%; BPP = 1.00). \textit{Parafenestella changchunensis} (CCMJ 5007) clustered with \textit{P. pseudosalicis} (CBS 145264) and \textit{P. salicis} (CBS 145270 and C303) with high support (ML = 99%; MP = 96%; BPP = 1.00). \textit{Parafenestella changchunensis} (CCMJ 5007) is closely related to \textit{P. pseudosalicis} (ML = 75%; MP = 96%). The fresh collections from \textit{Morus alba} revealed a new species \textit{Allocucurbitaria mori} (CCMJ 5005 and CCMJ 5006). The two isolates (CCMJ 5005 and CCMJ 5006) formed a close relationship to an unidentified \textit{Seltsamia} species (SGSF207) with strong statistical support (ML = 100%; MP = 100%; BPP = 1.00).
Figure 1. The Bayesian 50% majority-rule consensus phylogram based on a concatenated ITS, LSU, rpb2, tef1-α and β-tub dataset of Cucurbitariaceae. The tree is rooted with *Pyrenochaetopsis americana* (UTHSC DI16225) and *P. confluens* (CBS 142459). Bootstrap support values for maximum likelihood and maximum parsimony analysis greater than 70% (ML = left; MP = middle) and Bayesian posterior probabilities ≥ 0.90 (BPP, right) are shown at the nodes. The new species are indicated in blue. The type-derived strains are indicated in bold and marked with T.
3.2. ASAP: Assemble Species by Automatic Partitioning

Five single-locus datasets were used that comprised 110 sequences of ITS, 109 sequences of LSU, 101 sequences of rpb2, 96 sequences of β-tub and 88 sequences of tef1-a. The ASAP analysis of the ITS region assigned all members of Cucurbitariaceae into 45 groups (Figure 2); β-tub gene into 65 groups (Figure 2); LSU into 43 groups (Figure S8); rpb2 gene into 65 groups (Figure S9); tef1-a gene into 45 groups (Figure S10).

Figure 2. Dendrogram from ASAP analysis based on two datasets (ITS and β-tub markers). The results of species delimitation are indicated by red bars. Sequences generated in this study are in blue.

The ASAP analysis recovered *P. ulmi* (CCMJ 5001 and CCMJ 5002), *P. ulmicola* (CCMJ 5003 and CCMJ 5004) and twelve other strains including *P. pseudoplataini* (CBS 142392), *P. austriaca* (CBS 145262), *P. rosaccarum* (C203, FM1, C269, C283, CBS 145268, C315, CBS145272, C320), *P. germanica* (CBS 145267) and *P. tetratrupha* (CBS 145266) as one group in the LSU data. *Parafenestella changchunensis* (CCMJ 5007) and *P. pseudosalici* (CBS 145264) were recovered as one group in the LSU data. The ASAP analysis of the ITS region recovered *P. ulmi* and *P. ulmicola* as one group (Figure 2). The ASAP result of the β-tub gene was similar to the combined dataset (Figure 2). *Parafenestella ulmi* and *P. ulmicola* were not delineated by the tef1-a and rpb2 genes (Figures S9 and S10). *Parafenestella changchunensis*, *P. pseudosalici* (CBS 145264) and *P. salici* (CBS 145270 and C303) were recovered as one group in the tef1-a data. *Allocucurbitaria mori* (CCMJ 5005 and CCMJ 5006) grouped with *Synfenestella pyri* (CBS 144855) in the ASAP analysis of the tef1-a gene, but both were recovered as individual groups in the ITS, LSU, rpb2, and β-tub datasets.

In the ASAP analysis, the β-tub gene was the best marker for identifying *Parafenestella* and *Allocucurbitaria* taxa. *Parafenestella ulmi* and *P. ulmicola* were recovered as a group in ASAP analysis of the ITS and other markers but were recovered as separate groups in the β-tub dataset (similar to the combined dataset). *Parafenestella changchunensis* and *P.
vindobonensis (CBS 145265) were recovered as a group in the ITS region but were recovered as distinct species in the \(\beta \)-tub dataset. Alloccurbitaria mori was recovered as an individual group in all single-marker analyses (except \(tef1-\alpha \) gene). Based on the current results, the \(\beta \)-tub gene is the best marker for the identification of Cucurbitariaceae taxa at the species level.

3.3. Taxonomy

Allocurbitaria mori W.X. Su, Phukhams. & Y. Li, *sp. nov.* (Figure 3).

MycoBank Number: MB844413.

Etymology: Named after the host genus *Morus*.

Holotype: HMJAU 60183.

Description: Saprobic on dead twigs of *Morus alba*.

Sexual morph: Undetermined.

Asexual morph: Stromata poorly developed, multiloculate, with 5–8 locules forming groups in stromata, immersed. Conidiomata 108–180 × 103–201 \(\mu m \) (\(\overline{\mu} = 142 \times 143 \mu m, n = 6 \)), pycnidia, solitary or aggregated, sometimes confluent, semi-immersed, visible as black protrusions, globose to ellipsoid, coriaceous, black, without distinguishable ostioles. Pycnidial wall 5–9 \(\mu m \) wide, thick-walled, composed of 7–10 layers of thin-walled cells of textura angularis, dark brown on the outside to gradually lighter on the inside, inner layer subhyaline, lining layer bearing conidiogenous cells. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 6–14 × 1–5 \(\mu m \) (\(\overline{\mu} = 10 \times 2 \mu m, n = 30 \)), enteroblastic, solitary, long cylindrical, arising from the inner layer of conidioma, smooth-walled, hyaline. Conidia 3–5 × 1–2 \(\mu m \) (\(\overline{\mu} = 4 \times 1.5 \mu m, n = 50 \)), oblong, hyaline, aseptate, with a minute guttule, smooth.

Cultural characters: Colonies on MEA reaching 32–38 mm diam after 4 weeks at 25 \(^\circ \)C. Cultures from above, gray at the center, dense in the middle, sparse at the edge, circular, papillate, black lumps produced on the surface of cultures, white at the edge.

Material examined: CHINA, Jilin Province, Changchun, Jilin Agricultural University, from *Morus alba* (Moraceae) twigs, 20 May 2021, Wenxin Su and C. Phukhamsakda, S057 (HMJAU 60183, holotype); ex-type living culture, CCMJ5005; isotype = HMJAU 60184; ex-isotype living culture, CCMJ5006.

GenBank accession numbers: CCMJ5005: LSU = OL897171, ITS = OL996120, \(tef1-\alpha \) = OL944601, \(rpb2 \) = OL944505, and \(\beta \)-tub = OL898725. CCMJ5006: LSU = OL897172, ITS = OL996121, \(tef1-\alpha \) = OL944602, \(rpb2 \) = OL944506 and \(\beta \)-tub = OL898720.

Notes: Alloccurbitaria mori (CCMJ5005 and CCMJ5006) formed a separate clade in Allocurbitaria/Seltsamia with high support (ML = 98%; MP = 97%; BPP = 1.00). Morphologically, *A. mori* (HMJAU 60183) is similar to *A. botulispora* (CBS 142452) and *S. galinsogisoli* (CBS 140956) in having cylindrical, enteroblastic, solitary conidiogenous cells and aseptate conidia [41,42] (Figure 4). However, *S. galinsogisoli* (CBS 140956) has longer conidia, while *A. botulispora* (CBS 142452) has distinct guttulate at the conidia ends [41,42].

A BLASTn search of the ITS region of *A. mori* strain CCMJ 5005 showed a high query cover and similarity (99.80%) to an unidentified Seltsamia sp. (SGSF207) from soil. However, there are no other loci available in public databases for comparison. Hence, we introduce *Allocurbitaria mori* as a novel species, and this is the first report of *Allocurbitaria* on *Morus* tree [41–43].
ever, there are no other loci available in public databases for comparison. Hence, we introduce *Allocucurbitaria* *mori* as a novel species, and this is the first report of *Allocucurbitaria* on *Morus* tree [41–43].

Figure 3. *Allocucurbitaria* *mori* (HMJAU 60183, holotype) The red arrow indicates the conidiomata in face view. (a,b) Appearance of conidiomata on host substrate. (c,d) Vertical section of partial conidiomata. (e) Section of partial conidioma wall. (f–h) Conidiogenous cells and conidia. (i) Conidia. (j) Culture characteristics on PDA. Scale bars: (a) = 500 μm; (b) = 200 μm; (c,f) = 100 μm; (d) = 50; (e,g,h) = 10 μm; (i) = 5 μm.
Parafenestella changchunensis W. X. Su, Phukhams. & Y. Li, sp. nov. (Figure 5).

MycoBank Number: MB844412.

Etymology: referring to Changchun City where the sample was collected.

Holotype: HMJAU 60182.

Description: Saprobic on dead stems of Populus L.

Sexual morph: Ascomata 174–416 × 226–486 μm (x = 280 × 353 μm, n = 5), single or gregarious, scattered, globose to depressed globose, submersed, visible as black dots and protruding host surface, solitary or aggregated. Ostioles 61 × 100 μm, center, protruding filled with periphyses. Peridium 12–27 μm wide, thick-walled, composed of 6–10 wall layers, outer part comprising dark brown cells of textura angularis, inner layer thin-walled, dark brown from the outside radiating light brown cells to hyaline towards the inside. Hamathecium of dense, 1.6–2.0 μm (x = 1.7 μm, n = 10) wide, filamentous, septate, cellular pseudoparaphyses surrounding asci. Asci 95–138 × 16–21 μm (x = 121 × 18 μm, n = 10), 6–8 ascospores, bitunicate, fissitunicate, broad cylindrical, some curved, short-pedicellate, apically rounded with an ocular chamber. Ascospores 18–25 × 8–13 μm (x = 21 × 10 μm, n = 30), uniseriate, partially overlapping, fusiform to oval, slightly asymmetrical, the
middle of ascospores is slightly contracted, with 4–6 transverse septa, 2–3 vertical septa, the upper part is slightly larger than the lower part, light yellow to dark brown.

Asexual morph: *Pyenia* produced in PDA after 2 weeks of incubation in the dark, mycelium white. **Conidiomata** confluent or scattered, superficial, covered with dense vegetative hyphae, with turbid whitish drops, globose, black. **Conidia** 5–8 × 2.5–4.5 µm (X = 6.5 × 3.7 µm, n = 30), oblong to allantoid, hyaline, aseptate, with 1–2 guttules.

Culture characteristics: Colonies on PDA, reaching 26–31 mm diam after 2 weeks at 25 °C. Culture from above, mycelium dense and producing hyphal coil structures; from the center to the outer edge, the color changes from grey to greyish-green to white, with obvious concentric wheel patterns, a clear radiation pattern at the back, round.

Material examined: CHINA, Jilin Province, Changchun, Jilin Agricultural University, from dead stems of *Populus L. (Salicaceae)*, 18 April 2021, Wenxin Su, S12-16 (HMJAU 60182, holotype); ex-type living culture, CCMJ5007.

GenBank accession numbers: CCMJ5007: LSU = OL897170, SSU = OL891808, ITS = OL996119, tef-α = OL944600, and β-tub = OL898719.

Notes: In our phylogenetic analysis, *P. changchunensis* (CCMJ5007) is closely related to *P. pseudosalicis* (CBS 145264) with moderate support (ML = 75%; MP = 96 %; Figure 1). *Parafenestella changchunensis* is morphologically similar to *P. pseudosalicis* in having immersed, concave apex ascomata, with the upper part of young ascospores often wider, ends concolorous and smooth walled [14]. The immature spores of *P. changchunensis* have four horizontal septa and form 2–3 vertical septa during the maturation process. However, the immature spores of *P. pseudosalicis* have 2 transverse septa turning into 2–4 longitudinal septa during the maturation process [15]. *Parafenestella changchunensis* mycelium nodules gradually form fruiting bodies on the medium, while there are no reports of the asexual morph of *P. pseudosalicis* [15].

A BLASTn search of the ITS region of *P. changchunensis* (CCMJ 5007) showed a high similarity and query cover (98.81%) to *P. vindobonensis* (CBS 145265). The β-tub sequence of *P. changchunensis* (CCMJ 5007) showed a high query cover and similarity (96.82%) to *P. pseudosalicis* (C301). There were 0.96% (6/627 bases), 0.34% (3/885), 1.78% (13/730) and 7.99% (43/538 bases) base differences in the ITS, LSU, tef-α and β-tub genes between *P. changchunensis* (CCMJ 5007) and *P. vindobonensis* (CBS 145265), excluding gaps. There were 1.75% (11/627 bases), 0.11% (1/885), 1.10% (8/730) and 3.16% (17/538 bases) base differences in the ITS, LSU, tef-α and β-tub genes of *P. changchunensis* (CCMJ 5007) and *P. pseudosalicis* strain C301, excluding gaps. Therefore, we introduce *P. changchunensis* as a novel species, and this is the first report of *Parafenestella* on the *Populus* tree [14,15].

Parafenestella ulmi W.X. Su, Phukhams., & Y. Li, sp. nov. (Figure 6).

Mycobank Number. MB844410.

Etyymology: Named after the host genus *Ulmus*.

Holotype: HMJAU 60178.

Description: Saprobic on dead stems of *Ulmus pumila*.

Sexual morph: Ascomata 170–225 × 194–260 µm (X = 201 × 229 µm, n = 5), immersed, visible as black spots or having a convex surface, solitary, scattered, globose to ellipsoid, flat at the base, coriaceous, black. **Peridium** 19–39 µm wide, composed of 6–10 layers, outer part comprising dark brown cells of *textura angularis*, inner layer comprising thin-walled, light brown cells of *textura angularis*. **Hamathecium** of dense, 1.5–4.5 µm wide (X = 2.2 µm, n = 20), filamentous, septate, pseudoparaphyses surrounding asci. **Asci** 115–181 × 11–15 µm (X = 132 × 13 µm, n = 20), 8 ascospores, bitunicate, cylindrical, mostly curved, short-pedicellate, apically rounded with an oscular chamber, clearly visible when immature. **Ascospores** 18–24 × 8–12 µm (X = 22 × 10 µm, n = 30), uniseriate to partially overlapping, broadly ellipsoid, slightly pointed at both ends, 5–8 transversely septate, 1–2 vertically septate, mature spores constricted at the middle septum, slightly curved, initially hyaline, becoming yellowish to brown at maturity, the cell above median septum slightly wider, smooth-walled.
Figure 5. Parafenestella changchunensis (HMJAU 60182, holotype). (a) Ascomata on host surface. (b) Vertical section through partial ascoma. (c) Ostioles. (d) Partial peridium. (e) Pseudoparaphyses. (f–i) Asci. (j–v) Development stages of ascospores. (w) Germinating ascospore (x) Culture characteristics on PDA. (y) Pycnidia. (z) Hyphal coil structures formed by mycelia. (a1) Conidia. Scale bars: (a) = 500 µm; (b,c) = 100 µm; (d,e) = 20 µm; (f–i) = 50 µm; (j–v,a1) = 10 µm.

Asexual morph: Pycnidia produced in PDA after 2 weeks of incubation in the dark, mycelium greenish, 1–3 µm (μ = 2.2 µm, n = 20), uniloculate, confluent or scattered, superficial, covered with dense vegetative hyphae, globose, dark brown to black. Conidiogenous cells 18–24 × 8–12 µm (μ = 22 × 10 µm, n = 30), enteroblastic, phialidic, determinate,
conidia 3–5 × 1–2 µm (± 4.3 × 1.5 µm, n = 30), long ellipsoid to cylindrical, aseptate, with two small guttulate at the polar ends, hyaline, smooth-walled.

Culture characteristics: Colonies on PDA, reaching 45–48 mm diam after two weeks at 25 °C. Culture from above the center to the outer edge, the color radiating from black to dark green to yellow and white edges, with obvious concentric wheel patterns, dense intermediate hyphae and sparse white mycelium at the outer circle; reverse greenish-black, round.

Material examined: CHINA, Jilin Province, Changchun, Jilin Agricultural University, from Ulmus pumila (Ulmaceae) stem litter, 15 March 2021, Wexin Su and C. Phukhamsakda, S12 (HMJAU 60178, holotype); ex-type living culture, CCMJ 5001, isotype = HMJAU 60179; ex-isotype living culture, CCMJ 5002.

GenBank accession numbers: CCMJ5001: LSU = OL897166, SSU = OL891806, ITS = OL996115, tef1-α = OL944596, rpb2 = OL944501, and β-tub = OL898723. CCMJ5002: LSU = OL897167, ITS = OL996116, tef1-α = OL944597, rpb2 = OL944502, and β-tub = OL898717.

Notes: In our phylogenetic analysis, P. ulmi (CCMJ 5001 and CCMJ 5002) and P. ulmicola were found on dead branches of Ulmus pumila in Jilin Province, China, which lies in the temperate zone. Parafenestella taxa are mainly recorded in Austria, followed by England, Germany and Ukraine, which are all temperate countries [15]. Morphologically, the ascomata of P. ulmi and P. ulmicola are semi-immersed, visible as black spots or convex surfaces. The asci of P. ulmi are longer than P. ulmicola but similar in width (132 × 13 vs. 119 × 13 µm). The immature ascospores of P. ulmi present 2–3 transverse septa without longitudinal septate, but the spores have 4–8 transverse septa with 1–3 longitudinal septate at mature stages. The ascospores of P. ulmicola showed indentation when immature that disappeared during maturation. The ascospores of P. ulmicola showed 5–8 transverse septa and 1–2 vertically septate after maturity with less constriction at the septum. The ascospores of P. ulmi are yellowish to brown, while P. ulmicola have dark brown ascospores at maturity. In PDA, the colonies of P. ulmicola have wavy and aggregated colony edges. The colonies of P. ulmi are blue-black (reverse view) with back-green edges, while P. ulmicola is gray-brown with white edges.

A BLASTn search of the ITS region of P. ulmi strain CCMJ 5001 showed a high query cover and similarity (96.45%) to P. tetratrupha (CBS 145266) while the β-tub sequence of P. ulmi strain CCMJ 5001 showed a high similarity and query cover (97.07%) to P. germanica strain C307. Therefore, we introduce P. ulmi as a novel species.

Parafenestella ulmicola W.X. Su, Phukhams., & Y. Li, sp. nov. (Figure 7).

Mycobank Number: MB844411.

Etymology: Named after the host genus Ulmus.

Holotype: HMJAU 60180.

Description: Saprobic on twigs debris of Ulmus pumila L.

Sexual morph: Ascomata 242–434 × 310–462 µm (± 306 × 359 µm, n = 5) µm wide, semi-immersed, visible as a convex hemisphere, globose to subglobose, solitary or mostly aggregated, scattered, coarse-walled, coriaceous, black, with a papilla. Ostiole 21–24 µm, centrally located. Peridium 21–68 µm wide, composed of 11–20 wall layers, with dark brown cells of textura angularis. Asci 105–153 × 11–14 µm (± 119 × 13 µm, n = 20), 8 ascospores, bitunicate, fissitunicate, broadly cylindrical, apically rounded, some curved, short-pedicellate, ocular chamber is not visible at maturity. Ascospores 17–22 × 8–12 µm (± 19 × 9 µm, n = 30), uniseriate, rarely overlapping, broadly oval, blunt at both ends, narrow towards the ends, with 4–8 transversely separte, 1–3 vertically separte, constricted at the middle septum, initially hyaline, becoming yellowish to brown at maturity, smooth-walled.
Figure 6. Parafenestella ulmi (HMJAU 60178, holotype). (a) Ascomata on host surface. (b) Vertical section through ascoma. (c) Partial peridium in vertical section. (d,e) Asci arrangement along with pseudoparaphyses. (f–h) Development stages of asci. (i–s) Development stages of ascospores. (t) Germinating ascospore. (u) Four-week-old culture characteristics on PDA. (v) Pycnidia formed in sterile culture after two weeks of incubation on PDA. (w,x) Conidiogenous cells and conidia. (y) Conidia. Scale bars: (a) = 500 μm; (b) = 100 μm; (c–h) = 50 μm; (i–s) = 20 μm; (v) = 200 μm; (w–y) = 5 μm.
Asexual morph: Pycnidia produced in cultures on PDA after four weeks of incubation in the dark, mycelium greenish, 41–158 μm diam, covered with white mycelium, ellipsoid, semi-immersed, scattered or aggregated, black, ostiole central. Peridium with brown cells of textura angularis. Conidia 1.4–2.5 × 0.6–0.9 μm (x = 1.9 × 0.7 μm, n = 30), cylindrical to allantoid, hyaline, smooth, aseptate, with a minute guttulate.

Culture characteristics: Colonies on PDA reaching 35–41 mm diam after 2 weeks at 25 °C. Culture from above the center to the outer edge, the color changes from grey to white, with obvious concentric wheel patterns; a few weeks later, the outer circle hyphae grow into round dark green hyphae with a thin surface.

Material examined: CHINA, Jilin Province, Changchun, Jilin Agricultural University, from Ulmus pumila (Ulmaceae) twigs debris, 15 March 2021, Wexin Su and C. Phukham-sakda, S16 (HMJAU 60180, holotype); ex-type living culture, CCMJ 5003, isotype = HMJAU 60181; ex-isotype living culture, CCMJ 5004.

GenBank accession numbers: CCMJ5003: LSU = OL897168, SSU = OL891807, ITS = OL946117, tef1-α = OL944598, rpb2 = OL944503 and β-tub = OL898724. CCMJ5004: LSU = OL897169, ITS = OL996118, tef1-α = OL944599, rpb2 = OL944504 and β-tub = OL898719.

Notes: Sixteen Parafenestella species are listed in Species Fungorum [44], of which six species were reported on Rosaceae, four on Salicaceae and three on Betulaceae, while one species was reported on Pittosporaceae, Salicaceae and Sapindaceae [14,15,45,46]. Parafenestella ulmicola (CCMJ 5003 and CCMJ 5004) is closely related to P. ulmi (CCMJ 5001 and CCMJ 5002) within Parafenestella (ML = 100%; MP = 100%; BPP = 1.00, Figure 1). There were 2.31% (12/518) base differences in the β-tub, 0.14% (1/733) base differences in the tef1-α and 0.27% (2/736) base differences in the rpb2 gene between P. ulmicola (CCMJ 5003 and CCMJ 5004) and P. ulmi (CCMJ 5001 and CCMJ 5002), excluding gaps. There were no base differences in the ITS and LSU sequences.

Parafenestella ulmi and P. ulmicola are phylogenetically close to P. tetraprupha but differ from P. tetraprupha by having a less longitudinal septa being visible at the surface [20]. Parafenestella tetraprupha ascospores are ellipsoid, yellow-brown to reddish-brown to dark brown, with 1–3 main septa, 8–17 distinct transverse and 2–4 longitudinal septa; they are darker and longer than P. ulmi and P. ulmicola (26.5–33.5 × 13–16.5 vs. 18–24 × 8–12 vs. 17–22 × 8–12 μm) and have more transverse septa than P. ulmi and P. ulmicola (Table 2). In the multi-locus phylogenetic analysis, although P. rosacearum was divided into six groups (Figure 1), it was still identified as one species because the tef1-α sequences of C203, C283 and C309 are almost the same. The rpb2 sequences of strains C203, C315, FM1 and FP11 are identical, while C269 and C283 differ from C203, C283 and C309 by 20 nucleotides [15]. In the phylogenetic analysis, P. germanica and P. pseudoplatani clustered in the same clade as P. parasalicum and P. salicium. These strains were identified as different species due to morphological distinctiveness [15]. The ascospores of P. germanica were larger than P. pseudoplatani (29–39.5 × 13–16.5 vs. 25–29 × 12–14 μm). The ascospores of P. parasalicum were larger than P. salicium (36–44 × 15.8–19.3 vs. 27–33 × 12.5–16 μm) (Table 3). There were 0.40% (2/494) base differences in the ITS, 2.28% (16/701) base differences in β-tub, 0.51% (4/789) base differences in tef1-α and 1.41% (15/1063) base differences in rpb2 between P. germanica and P. pseudoplatani. There were 3.42% (24/701) base differences in β-tub, 1.90% (15/789) base differences in tef1-α and 1.32% (14/1063) base differences in rpb2 between P. parasalicum and P. salicium. Thus, the species boundaries of P. ulmi and P. ulmicola were justified based on their distinct morphological traits and nucleotides differences. Therefore, we introduce P. ulmicola as a novel species, and this is first report of Parafenestella on Ulmus trees.
Figure 7. *Parafenestella ulmicola* (HMJAU 60180, holotype). (a) Ascomata on host surface. (b) Vertical section through ascoma. (c) Ostiole. (d) Partial peridium wall. (e) Pseudoparaphyses. (f–h) Asci. (i–s) Developmental stages of ascospores. (t) Germinating ascospore. (u) Pycnidia produced in four weeks old cultures on PDA. (v) Conidiomata. (w) Conidia. (x) Four weeks old culture on PDA. Scale bars: (b) = 100 μm; (c) = 50 μm; (d,e) = 20 μm; (f–h) = 50 μm; (i–s) = 10 μm; (u) = 200 μm; (v) = 100 μm; (w) = 5 μm.
Table 2. The dataset used for phylogenetic analysis. The type-derived sequences are in bold.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers					
Allocucurbitaria botulispora	CBS 142452	human scab on leg	Holotype	LT592932	LN907416	LT593070	–	LT593001	
Allocucurbitaria mori	HMJAU 60183	*Morus alba*	Holotype	OL996120	OL897171	OL944505	OL944601	OL898725	
Allocucurbitaria mori	HMJAU 60184	*Morus alba*	Isotype	OL996121	OL897172	OL944506	OL944602	OL898720	
Astragalicola amorpha	CBS 142999	*Astragalus angustifolius*	Holotype	MF795753	MF795753	MF795795	MF795842	MF795883	
Cucitella opali	CBS 142405	*Acer opalus*	Holotype	MF795754	MF795754	MF795796	MF795843	MF795884	
Cucurbitaria berberidis	C39	*Berberis vulgaris*	–	MF795755	MF795755	MF795797	MF795844	MF795885	
Cucurbitaria berberidis	CB	*Berberis vulgaris*	–	MF795757	MF795757	MF795799	MF795846	MF795887	
Cucurbitaria berberidis	CBS 130007 = CB1	*Berberis vulgaris*	Epitype	MF795758	MF795758	MF795800	–	–	
Cucurbitaria oromediterranea	CBS 142401 = C241	*Berberis sp.*	–	MF795756	MF795756	MF795798	MF795845	MF795886	
Cucurbitaria oromediterranea	C265	*Berberis aetnensis*	–	MF795762	MF795762	MF795804	MF795850	MF795891	
Cucurbitaria oromediterranea	C29	*Berberis hispanica*	–	MF795759	MF795759	MF795801	MF795847	MF795888	
Cucurbitaria oromediterranea	C86	*Berberis hispanica*	–	MF795760	MF795760	MF795802	MF795848	MF795889	
Cucurbitaria oromediterranea	CB2	*Berberis cretica*	–	MF795763	MF795763	MF795805	MF795851	MF795892	
Cucurbitaria oromediterranea	CB3	*Berberis hispanica*	–	MF795764	MF795764	MF795806	MF795852	–	
Cucurbitaria oromediterranea	CBS 142399 = C229	*Berberis cretica*	Holotype	MF795761	MF795761	MF795803	MF795849	MF795890	
Fenestella crataegi	C287	*Crataegus monogyna*	–	MK356281	MK356281	MK357554	–	MK357598	
Fenestella crataegi	CBS 144857 = C314	*Crataegus monogyna*	Epitype	MK356282	MK356282	MK357512	MK357555	MK357599	
Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers					
-------------------------	---------------	----------------	---------------------	--------------------------					
				ITS	LSU	rpb2	tef1-α	β-tub	
Fenestella fenestrata	CBS 143001 = FP9	*Alnus glutinosa*	Epitype	MF795765	MF795765	MF795807	MF795853	MF795893	
Fenestella gardienneti	CBS 144859 = FM	*Acer saccharum*	Holotype	MK356283	MK356283	MK357513	MK357556	MK357600	
Fenestella granatensis	CBS 144854 = C279	*Acer granatense*	Holotype	MK356284	MK356284	MK357514	MK357557	MK357601	
Fenestella media	CBS 144860 = FP	*Corylus avellana*	Epitype	MK356285	MK356285	MK357515	MK357558	MK357602	
Fenestella media	FCO	*Carpinus orientalis*	–	MK356286	MK356286	MK357516	MK357559	–	
Fenestella media	FP1	*Corylus avellana*	–	MK356287	MK356287	MK357517	MK357560	MK357603	
Fenestella media	FP3	*Acer pseudoplatanus*	–	MK356288	MK356288	MK357518	MK357561	MK357604	
Fenestella media	FP7	*Castanea sativa*	–	MK356289	MK356289	MK357519	MK357562	MK357605	
Fenestella media	FP10	*Tilia cordata*	–	MK356290	MK356290	MK357520	MK357563	MK357606	
Fenestella parafenestrata	CBS 144856 = C306	*Quercus robur*	Holotype	MK356291	MK356291	MK357521	MK357564	MK357607	
Fenestella parafenestrata	C317	*Salix sp.*	–	MK356292	MK356292	MK357522	MK357565	MK357608	
Fenestella subsymmetrica	CBS 144861 = FP6	*Acer campestre*	Holotype	MK356297	MK356297	MK357525	MK357569	MK357610	
Fenestella subsymmetrica	C285	*Juglans regia*	–	MK356293	MK356293	MK357523	MK357566	–	
Fenestella subsymmetrica	C286	*Juglans regia*	–	MK356294	MK356294	–	MK357567	–	
Fenestella subsymmetrica	C286x	*Juglans regia*	–	MK356295	MK356295	–	–	–	
Fenestella subsymmetrica	FP4	*Corylus avellana*	–	MK356296	MK356296	MK357524	MK357568	MK357609	
Fenestella subsymmetrica	FP8	*Salix caprea*	–	MK356298	MK356298	MK357526	MK357570	MK357611	
Fenestella viburni	CBS 144863 = FVL	*Viburnum lantana*	Holotype	MK356300	MK356300	MK357528	MK357572	MK357613	
Table 2. Cont.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers				
				ITS	LSU	rpb2	tef1-α	β-tub
Fenestella viburni	FP2	*Viburnum lantana*	–	MK356299	MK356299	MK357527	MK357571	MK357612
Neocucurbitaria	CBS 142398 = C225	*Genista acanthoclada*	Holotype	MF795766	MF795766	MF795808	MF795854	MF795894
acanthocladae								
Neocucurbitaria	C26a	*Acer pseudoplatanus*	–	MF795767	MF795767	MF795809	MF795855	MF795895
acerina	CBS 142403 = C255	*Acer pseudoplatanus*	–	MF795768	MF795768	MF795810	MF795856	MF795896
Neocucurbitaria	CBS 142404 = C261	*Genista aetnensis*	Holotype	MF795769	MF795769	MF795811	MF795857	MF795897
aetnensis	C270	*Genista aetnensis*	–	MF795770	MF795770	MF795812	MF795858	MF795898
Neocucurbitaria	CBS 297.74	Sea water	Holotype	LT623221	EU754177	LT623278	–	LT623238
aquatica								
Neocucurbitaria	CBS 115979	–	–	–	–	–	–	–
cava	CBS 257.68	Wheat-field soil	Epitype	JF740260	EU754199	LT717681	–	KT389844
Neocucurbitaria	CBS 142406 = KU9	*Genista cinerea*	Holotype	MF795771	MF795771	MF795813	MF795859	MF795899
cinerea	CBS 142402 = C244	*Cistus monspeliensis*	Holotype	MF795772	MF795772	MF795814	MF795860	MF795900
Neocucurbitaria	CBS 142109 = CPC 28920	*Hakea*	Holotype	KY173436	KY173526	KY173593	–	KY173613
hakeae								
Neocucurbitaria	CBS 142791	Subcutaneous tissue from injured human arm	Holotype	LT592916	LN907372	LT593054	–	LT592985
irregularis	C316	*Quercus rubra*	–	MK356301	MK356301	MK357529	MK357573	MK357614
Neocucurbitaria	CBS 142390 = BW6	*Juglans regia*	Holotype	MF795773	MF795773	MF795815	MF795861	MF795901
juglandicola								
Neocucurbitaria	CBS 121759	From human corneal scrapings (keratitis)	Holotype	EU885415	LT623215	LT623275	–	LT623236
keratinophila								
Table 2. Cont.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers
Neocucurbitaria populi	CBS 142393 = C28	Populus sp.	Holotype	MF795774
				MF795774
Neocucurbitaria prunicola	CBS 145033	Prunus padus	–	MK442594
				MK442594
Neocucurbitaria quercina	CBS 115095	Quercus robur	Neotype	LT623220
				GQ387619
Neocucurbitaria rhamni	CBS 142391 = C1	Rhamnus frangula	Epitype	MF795775
				MF795775
Neocucurbitaria rhamni	C112	Rhamnus frangula	–	MF795776
				MF795776
Neocucurbitaria rhamni	C133	Rhamnus frangula	–	MF795777
				MF795777
Neocucurbitaria rhamni	C190	Rhamnus frangula	–	MF795778
				MF795778
Neocucurbitaria rhamni	C277	Rhamnus saxatilis	–	MF795779
				MF795779
Neocucurbitaria rhamnicola	CBS 142396 = C185	Rhamnus lycioides	Holotype	MF795780
				MF795780
Neocucurbitaria rhamnicola	KRx	Rhamnus alaternus	–	MF795781
				MF795781
Neocucurbitaria rhamnioides	C222	Rhamnus saxatilis subsp. prunifolius	–	MF795783
				MF795783
Neocucurbitaria rhamnioides	C223	Rhamnus saxatilis subsp. prunifolius	–	MF795784
				MF795784
Neocucurbitaria rhamnioides	CBS 142395 = C118	Rhamnus myrtifolius	Holotype	MF795782
				MF795782
Neocucurbitaria ribicola	CBS 142394 = C55	Ribes rubrum	Holotype	MF795785
				MF795785
Neocucurbitaria ribicola	C155	Ribes rubrum	–	MF795786
				MF795786
Neocucurbitaria unguis-hominis	CBS 111112	Agapornis sp.	–	LT623222
				GQ387623

Note: The table continues with additional entries for GenBank Accession Numbers.
Table 2. Cont.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers				
				ITS	LSU	rpb2	tef1-α	β-tub
Neocucurbitaria vachelliae	CBS 142397 = C192	Vachellia gummitfera	Holotype	MF795787	MF795787	MF795829	MF795875	MF795913
Paracucurbitaria italica	CBS 234.92	Olea europaea	Holotype	LT623219	EU754176	LT623274	–	LT623235
Paracucurbitaria riggenbachii	CBS 248.79	Fraxinus excelsior with bacterial canker	Holotype	LT903672	GQ387608	LT903673	–	LT900365
Parafenestella alpina	CBS 145263 = C198	Cotoneaster integerrimus	Holotype	MK356302	MK356302	MK357530	MK357574	MK357615
Parafenestella alpina	C249	Salix appendiculata	–	MK356303	MK356303	MK357531	MK357575	MK357616
Parafenestella austriaca	CBS 145262 = C152	Rosa canina	Holotype	MK356304	MK356304	MK357532	MK357576	MK357617
Parafenestella changchunensis	HMJAU 60182	Populus L.	Holotype	OL996119	OL897170	–	OL944600	OL898719
Parafenestella faberi	MFLUCC 16-1451	Rosa canina	Holotype	KY563071	KY563074	–	–	–
Parafenestella germanica	CBS 145267 = C307	Corylus avellana	Holotype	MK356305	MK356305	MK357533	MK357577	MK357618
Parafenestella ostryae	MFLU 16-0184	Ostrya carpinifolia	–	KY563072	KY563075	–	–	–
Parafenestella pittospori	CPC 34462	Pittosporum tenuifolium	Holotype	MN562098	MN567606	–	–	–
Parafenestella pseudoplatani	CBS 142392 = C26	Acer pseudoplatanus	Holotype	MF795788	MF795788	MF795830	MF795876	MF795914
Parafenestella pseudosalicis	CBS 145264 = C301	Salixcf. alba	Holotype	MK356307	MK356307	MK357535	MK357579	MK357620
Parafenestella rosacearum	CBS 145268 = C309	Pyracantha coccinea	Holotype	MK356311	MK356311	MK357539	MK357583	MK357624
Parafenestella rosacearum	C203	Pyrus communis	–	MK356308	MK356308	MK357536	MK357580	MK357621
Table 2. Cont.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers
			ITS LSU rpb2 tef1-α β-tub	
Parafenestella rosacearum	C269	Crataegus monogyna	–	MK356309 MK356309 MK357537 MK357581 MK357622
Parafenestella rosacearum	C283	Pyrus communis	–	MK356310 MK356310 MK357538 MK357582 MK357623
Parafenestella rosacearum	C315	Rosa canina	–	MK356312 MK356312 MK357540 MK357584 MK357625
Parafenestella rosacearum	C320	Sorbus aria	–	MK356315 MK356315 MK357543 MK357587 –
Parafenestella rosacearum	CBS 145272 = FP11	Prunus domestica	–	MK356314 MK356314 MK357542 MK357586 MK357627
Parafenestella rosacearum	FM1	Rosa canina	–	MK356313 MK356313 MK357541 MK357585 MK357626
Parafenestella salicis	CBS 145270 = C313	Salix alba	Neotype	MK356317 MK356317 MK357545 MK357589 MK357629
Parafenestella salicis	C303	Salix alba	–	MK356316 MK356316 MK357544 MK357588 MK357628
Parafenestella salicic	CBS 145269 = C311	Salix alba	Holotype	MK356318 MK356318 MK357546 MK357590 MK357630
Parafenestella tetratrupha	CBS 145266 = C304	Alnus glutinosa	Epitype	MK356319 MK356319 MK357547 MK357591 MK357631
Parafenestella ulmi	HMJAU 60178	Ulmus pumilaL.	Holotype	OL996115 OL97166 OL944501 OL944596 OL898723
Parafenestella ulmi	HMJAU 60179	Ulmus pumilaL.	Isotype	OL996116 OL97167 OL944502 OL944597 OL898717
Parafenestella ulmicola	HMJAU 60180	Ulmus pumilaL.	Holotype	OL996117 OL97168 OL944503 OL944598 OL898724
Parafenestella ulmicola	HMJAU 60181	Ulmus pumilaL.	Isotype	OL996118 OL97169 OL944504 OL944599 OL898718
Parafenestella vindobonensis	CBS 145265 = C302	Salix babylonica	Holotype	MK356320 MK356320 MK357548 MK357592 MK357632
Protofenestella ulmi	CBS 143000 = FP5	Ulmus minor	Holotype	MF795791 MF795791 MF795833 MF795879 MF795915
Table 2. Cont.

Taxon	Strain	Host/Substrate	Typification Status	GenBank Accession Numbers				
				ITS	LSU	rpb2	tef1-α	β-tub
Pyrenochaeta nobilis	CBS 407.76 = AFTOL-ID 1856	Laurus nobilis leaves	Neotype	MF795792	MF795792	MF795834	MF795880	MF795916
Pyrenochaetopsis americana	UTHSC DI16-225		Holotype	LT592912	LN907368	LT593050	–	LT592981
Pyrenochaetopsis confluens	CBS 142459	Deep tissue/ fluids from human blood sample	Holotype	LT592950	LN907446	LT593089	–	LT593019
Seltsamia galinosogisoli	CBS 140956 = CGMCC 3.17981 = SYPF 7336	Soil of a Galinsoga parvisflora	Epitype	KU759584	KU759581	–	–	–
Seltsamia sp.	EAB-67-11b	Emerald ash borer	–	MT777389	–	–	–	–
Seltsamia sp.	SGSF207		–	MK192899	–	–	–	–
Seltsamia ulmi	CBS 143002 = L150	Ulmus glabra	Holotype	MF795794	MF795794	MF795836	MF795882	MF795918
Synfenestella pyri	CBS 144855 = C297	Pyrus communis	Holotype	MK356321	MK356321	MK357549	MK357593	MK357633
Synfenestella sorbi	C298	Sorbus aucuparia	–	MK356325	MK356325	MK357553	MK357597	MK357636
Synfenestella sorbi	CBS 144858 = C196	Sorbus aucuparia	Holotype	MK356324	MK356324	MK357552	MK357596	MK357635
Synfenestella sorbi	CBS 144862 = FR	Sorbus aucuparia	Epitype	MK356322	MK356322	MK357550	MK357594	MK357634
Synfenestella sorbi	FRa	Sorbus aucuparia	–	MK356323	MK356323	MK357551	MK357595	–
Taxon	Ascomata	Sexual Morph	Ascospores					
-----------	---	---	---					
		Asci	24–30.5 × 12–14 µm, typically ellipsoid to fusoid often inequilateral, pale or yellowish-brown, eventually dark brown, with 7–15 transverse and 2–4 longitudinal septa.					
P. alpina	240–375 µm diam, globose, subglobose or pyriform, usually tightly aggregated in bark on a perithecial host fungus in small numbers, with brown to black, subicular hyphae.	170–208 × 18.5–21.5 µm, cylindrical to oblong, a short stipe and simple or knob-like base, containing 6–8 ascospores in uniseriate arrangement.	27–32.5 × 13–15 µm, broadly ellipsoid, symmetric, dark brown or dark reddish-brown, with 9–14 distinctly spaced transverse and 3–5 longitudinal septa.					
P. austriaca	283–431 µm diam, subglobose to pyriform, scattered or aggregated, basally and laterally surrounded by subhyaline to dark brown subicular hyphae.	159–205 × 16–19.5 µm, cylindrical, with a short stipe and simple or knob-like base, containing 4–8 ascospores in uniseriate arrangement.	18–25 × 8–13 µm, fusiform to oval, light yellow to dark brown, developing 2 main septa, 4–6 transverse septa, 2–3 longitudinal septa.					
P. changchunensis	280 × 353 µm, globose to depressed globose, solitary or aggregated forming visible black bumps submerged under bark.	95–138 × 16–21 µm, broad cylindrical, short-pedicellate, curved, some curved, 6–8 spores ocular chamber is not visible at maturity, uniseriate arrangement.	28.5–36 × 12.5–16 µm, variable in shape, pale or yellowish-brown to dark brown, with 1–4 main septa, 7–14 transverse and 1–5 longitudinal septa.					
P. faberi	300–500 µm diam, tightly or loosely aggregated in small numbers, with ostiolar, partly erumpent through bark fissures, maxing with Cytospora species.	135–180 × 18.5–23.5 µm, cylindrical to oblong or narrowly clavate, a short stipe and simple or knob-like base, 4–8 ascospores in uniseriate to partly biseriate arrangement.	29–39.5 × 13–16.5 µm, ellipsoid to broadly fusoid, turning yellow to yellow-brown to dark brown, with 1–3 main septa, 8–15 transverse and 3–6 longitudinal septa.					
P. germanica	230–450 µm diam, black, solitary or in small groups on inner bark or on the ostiolar level of old Diaporthe decedens.	140–173 × 17.5–22 µm, cylindrical to oblong, with a short stipe and simple or knob-like base, containing 2–8 ascospores (obliquely or overlapping), uniseriate arrangement.	36–44 × 15.8–19.3 µm, fusoid or ellipsoid, yellow-brown to dark brown, with 2 main septa, 11–16 distinct transverse septa and 3–5 longitudinal septa.					
P. parasalicum	270–400 µm diam, immersed in bark, globose, subglobose or pyriform, forming groups, maxing with Cytospora species.	185–219 × 22–27 µm, cylindrical to oblong, with a short stipe and simple or knob-like base, containing 4–8 ascospores (overlapping, obliquely), uniseriate to partly biseriate arrangement.	25–29 × 12–14 µm, ellipsoid, yellow-brown to dark brown, with 1–3 main septa, 7–11 transverse and 2–4 longitudinal septa, with minute guttules.					
P. pseudosalicis	300–400 diam, subglobose to subpyriform, immersed in bark or on ascomata of an effete perithecial fungus, often with concave apex, covered with subicular hyphae.	186–215 × 17.5–19 µm, cylindrical to oblong, with a short stipe and simple or knob-like base, containing 4–8 ascospores in uniseriate arrangement.	25–29 × 12–14 µm, ellipsoid, yellow-brown to dark brown, with 1–3 main septa, 7–11 transverse and 2–4 longitudinal septa, with minute guttules.					
Table 3. Cont.

Taxon	Ascomata	Sexual Morph	Ascospores
P. rosacearum	285–432 µm diam, globose, subglobose to subpyriform, immersed on often blackened inner bark, scattered or in small groups, erumpent through bark fissures.	181–240 × 19–22 µm, cylindrical to oblong, with a short-contorted stipe and simple or knob-like base, containing 2–8 ascospores in uniseriate, rarely partly biseriate arrangement.	28–35 × 13.5–16.5 µm, ellipsoid, symmetric to inequilateral, yellow-brown to dark brown, with 1–3 main septa, 7–15 transverse and 2–5 longitudinal septa.
P. salicis	275–442 µm diam, globose, subglobose to pyriform or subconical, immersed below the epidermis on inner bark, partly erumpent through bark fissures.	141–188 × 16–19 µm, cylindrical to oblong, with a short stipe and simple or knob-like base, containing 1–8 ascospores in (obliquely) uniseriate to partly biseriate arrangement.	23–29 × 11–13.5 µm, ellipsoid to fusoid, symmetric, golden yellow-brown (when fresh) to dark brown, with 1–3 main septa, 5–11 transverse and 1–3 longitudinal septa.
P. salicum	270–420 diam, globose, subglobose or pyriform, immersed in bark, the inner bark layers connected to the host, scattered or aggregate, cover with subicular hyphae.	181–228 × 19.5–24 µm, cylindrical, with a short stipe and simple or knob-like base, containing 6–8 ascospores in (overlapping) uniseriate arrangement.	27–33 × 12.5–16 µm, broadly ellipsoid to broadly fusoid, first 2-celled and hyaline, turning golden yellow to dark brown or dark reddish-brown, with 9–14 transverse and 3–4 longitudinal septa.
P. tetratrupha	300–500 µm diam, globose, subglobose or pyriform, immersed, tightly or loosely aggregated in whitish to dark brown subiculum, erumpent through fissures.	154–229 × 18.5–22.2 µm, cylindrical, with a short stipe and simple or knob-like base, containing 2–8 ascospores in uniseriate arrangement.	26.5–33.5 × 13–16.5 µm, ellipsoid, yellow-brown to reddish-brown to dark brown, with 1–3 main septa, 8–17 distinct transverse and 2–4 longitudinal septa.
P. ulmi	170–225 × 194–260 µm, globose to ellipsoid, immersed under the host epidermis, visible as black spots or having a convex surface.	115–181 × 11–15 µm, cylindrical, mostly curved, short-pedicellate, containing 8 ascospores, uniseriate to partially overlapping.	18–24 × 8–12 µm, broadly ellipsoid, yellowish to brown, with 5–8 transversely septate, 1–2 longitudinal septa.
P. ulmicola	242–434 × 310–462 µm, globose to subglobose, on the surface, semi-immersed, visible as a convex hemisphere, with a papilla.	105–153 × 11–14 µm, broad cylindrical, some curved, short-pedicellate, containing 8 ascospores, short-pedicellate, uniseriate, rarely overlapping.	17–22 × 8–12 µm, broadly oval, yellowish to brown, with 4–8 transversely septate and 1–3 vertical septate.
P. vindobonensis	308–425 µm diam, globose, subglobose or pyriform, immersed in bark, partially erumpent, tightly aggregated in small groups on inner bark mixing with pseudostromata of a *Cytospora* sp.	179–214 × 13.5–15.5 µm, cylindrical, with a short stipe and simple or knob-like base, containing 4–8 ascospores in uniseriate arrangement.	24.5–30.5 × 9.5–11 µm, oblong, fusoid or narrowly ellipsoid, turning yellowish to medium brown, 1–6 main septa, when mature with 7–11 thick transverse and 1–3 septa, containing minute droplets.
4. Discussion

The family

\[Cucurbitariaceae \]

was introduced by Winter [12] and typified by

\[Cucurbitaria berberidis \] (Pers.) Gray [46]. Members of this family occur worldwide and are commonly recorded in Austria, Germany, England and Ukraine as saprobic or necrotrophic on various substrates including plant debris, soil and wood [14,15,47]. Although ribosomal markers and the ITS region are important for phylogenetic analyses, other loci are often needed for better resolution at the species level [48–51]. The ITS region can have low support values on key evolutionary nodes and cannot be used to accurately classify species in most genera [52,53]. Housekeeping genes and protein-coding genes such as \(\alpha\text{-tub} \), \(\beta\text{-tub} \), \(\text{cal} \), \(\text{gapdh} \), \(\text{rpb}2 \) and \(\text{tef}1\text{-}\alpha \) are thus usually recommended for a stable and reliable topology in phylogenetic analyses [54–56].

In this study, ASAP [38] was used to determine the most informative loci for

\[Parafenestella \]. The \(\beta\text{-tub} \) gene provided the best species level identification of

\[Parafenestella \], followed by \(\text{rpb}2 \), \(\text{tef}1\text{-}\alpha \), ITS and LSU based on ASAP analyses (Figure 2, Figures S8–S11). ASAP analyses based on the \(\beta\text{-tub} \) gene provided the best resolution of

\[P. ulmi \] and

\[P. ulnicola \], in addition to

\[P. changchunensis \],

\[P. pseudosalis \] and

\[P. salis \] (Figure 2). The ITS region is an important marker; however, it could not delineate between

\[P. pseudoplantani \] (CBS 142392),

\[P. parasallicum \] (CBS 145271),

\[P. salicum \] (CBS 145269),

\[P. australica \] (CBS 145262),

\[P. germanicola \] (CBS 145267) and

\[P. rosacearum \] (C203, C269, C283, C315, C320, CBS 145272, CBS 145268, FM1) as they were recovered as a group in ASAP analysis. In the ASAP analysis of the \(\beta\text{-tub} \) gene, this clade was divided into seven groups: (1)

\[P. australica \] (CBS 145262),

(2)

\[P. germanicola \] (CBS 145267),

(3)

\[P. rosacearum \] (C269, C283, C315, FM1), (4)

\[P. rosacearum \] (CBS 145272, CBS 145268) and

\[P. rosacearum \] (C203), (5)

\[P. pseudoplantani \] (CBS 142392), (6)

\[P. parasalicum \] (CBS 145271) and (7)

\[P. salicum \] (CBS 145269) (Figure 2). The \(\beta\text{-tub} \) gene exists in all eukaryotes and is involved in the formation of the spindle during cell division [57]. \(\beta\text{-tubulin} \) plays an important role in defining the characteristics of species [58]. The ASAP analysis of the \(\beta\text{-tub} \) gene likely reflects the interspecific relationship within

\[Parafenestella \]. Thus, we encourage the inclusion of \(\beta\text{-tub} \) in the phylogenetic studies of

\[Parafenestella \] species. This result is also supported by the phylogeny of single genes, two loci datasets (ITS + \(\beta\text{-tub} \), Figure S14); ITS + \(\text{rpb}2 \), Figure S12); ITS + \(\text{tef}1\text{-}\alpha \), Figure S13) and multi-loci dataset (Figures S7 and S11).

Valenzuela-Lopez et al. [58] established

\[Allocurbitaria \] in

\[Cucurbitariaceae \] based on morphological and phylogenetic analysis.

\[Allocurbitaria botulispora \] (CBS 142452) was classified as

\[Pyrenochaeta \] species [43]. Valenzuela-Lopez et al. [41] examined the morphology of

\[Pyrenochaeta \] and suggested that

\[A. botulispora \] was more similar to phoma-like taxa. As it clustered in

\[Cucurbitariaceae \], the authors classified the species under the genus

\[Allocurbitaria \] within

\[Cucurbitariaceae \] [41].

\[Seltsamia \] was introduced with the unique characteristics of pleomassaria-like fungus [14]. There is no confirmed report of the holomorph character of the type species (\(S. ulmi \)), and thus the generic status is constrained. Three species of

\[Allocurbitaria \] are listed in Species Fungorum [44], with one species reported on

\[Ulmus glabra \] in Norway, one species from soil in China and one species reported from diseased human scab in the USA [41,59]. Notably, the

\[Allocurbitaria \] strains can be saprophyte and can harbor soil and/or opportunistic fungal disease in humans [41–43]. We provide the first report of

\[Allocurbitaria \] on dead twigs of

\[Populus morus \].

\[Parafenestella \] is the fourth most speciose genera in

\[Cucurbitariaceae \] (\(Cucurbitaria \) 94 species;

\[Fenestella \] 28 species;

\[Neocucurbitaria \] 21 species;

\[Parafenestella \] 14 species;

\[Synccarpella \] 7 species;

\[Rhytidella \] 4 species;

\[Allocurbitaria \] 2 species;

\[Astragalicola \] 2 species;

\[Paracucurbitaria \] 2 species;

\[Synfenestella \] 2 species;

\[Cucitella \] 1 species;

\[Protofenestella \] 1 species;

\[Seltsamia \] 1 species) [44].

\[Parafenestella \] species are commonly distributed over temperate areas including northeast China but are rarely found in the tropical regions [11,13]. All three novel species in this study were collected during early spring in Changchun, Jilin Province, China. Jilin Province (40°52′–46°18′ N) belongs to a temperate continental climate, and the study of similar vegetation from similar climates is likely to result in many

\[Parafenestella \] taxa [60]. We speculate that extensive investigations in the temperate regions would result
in numerous Parafenestella members. Climate conditions also affect the infection degree of Cucurbitariaceae fungi to hosts, as temperatures below 0 °C may stop fungal development [15]. The age of the host including branch size and thickness may also affect the development of Cucurbitariaceae [15].

Parafenestella is characterized by immersed to erumpent and aggregated or clusters of ascomata [15]. The number of ascomata in Parafenestella (as a cluster) is often less than 10, which is higher than in Fenestella and Synfenestella [14,15]. Parafenestella does not form distinct pseudostromata, while Fenestella forms a pustular pseudostroma appearing as bumps, and Synfenestella forms conspicuous pseudostromatic pustules on pseudostromata [15]. The ascospores of Parafenestella are irregularly arranged and partially overlapping, while the ascospores of Fenestella and Synfenestella are borne in a uniseriate arrangement [14,15]. The sexual morph of Cucurbitariaceae is usually found on the wood and bark of trees and shrubs (Corylus avellana, Prunus domestica, Rosa canina, Sorbus aucuparia) [15]. The asexual morph of Parafenestella has not been reported from the natural host and is successfully produced only in culture [14,15]. However, pycnidia in artificial culture often lack conidiophores, which could be due to environmental conditions [61].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/jof8090905/s1, Figure S1: The best-scoring RAxML tree based on a concatenated ITS dataset. Figure S2: The best-scoring RAxML tree based on a concatenated LSU dataset. Figure S3: The best-scoring RAxML tree based on a concatenated rpb2 dataset. Figure S4: The best-scoring RAxML tree based on a concatenated tef1-a dataset. Figure S5: The best-scoring RAxML tree based on a concatenated tub2 dataset. Figure S6: The best-scoring RAxML tree based on a concatenated ITS, LSU, rpb2, tef1-a and tub2 dataset. Figure S7: Phylogram generated from maximum parsimony analysis based on combined ITS, LSU, rpb2, tef1-a and tub2 dataset. Figure S8: Phylogram generated from ASAP analysis using LSU sequence data. Figure S9: Phylogram generated from ASAP analysis using rpb2 sequence data. Figure S10: Phylogram generated from ASAP analysis using tef1-a sequence data. Figure S11: Phylogram generated from ASAP analysis using ITS, LSU, rpb2, tef1-a and tub2 dataset. Figure S12: The best-scoring RAxML tree based on a concatenated ITS + rpb2 dataset. Figure S13: The best-scoring RAxML tree based on a concatenated ITS + tef1-a dataset. Figure S14: The best-scoring RAxML tree based on a concatenated ITS + tub2 dataset.

Author Contributions: Conceptualization, Y.L. and C.P.; Writing—original draft and formal analysis, W.S.; Data curation, W.S., R.X., C.P. and C.S.B.; Investigation, W.S. and C.P.; Methodology, W.S., R.X., C.P., C.S.B., S.T. and Y.D.; Supervision, Y.L. and C.P.; Writing—review & editing, W.S., C.S.B. and C.P.; funding acquisition, Y.L. and C.P. All of the authors have read and approved the final draft. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) for granting a Youth Science Fund Project (number 32100007) and the Program of Creation and Utilization of Germplasm of Mushroom Crop of “111” Project (No. D17014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequences generated in this study were submitted to GenBank.

Acknowledgments: Chayanard Phukhamsakda (Postdoctoral number 271007) would like to thank Jilin Agricultural University. Chitrabhanu S. Bhunjun would like to thank the National Research Council of Thailand (NRCT) grant “Total fungal diversity in a given forest area with implications towards species numbers, chemical diversity and biotechnology” (grant no. N42A650547). The authors would like to thank Yong Ping Fu from Jilin Agricultural University, Changchun, China.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. *Mycolological* 2001, 105, 1422–1432. [CrossRef]

2. Bhunjun, C.S.; Niskanen, T.; Suwannarach, N.; Wannathes, N.; Chen, Y.J.; McKenzie, E.H.; Maharachchikumbura, S.S.; Buyck, B.; Zhao, C.L.; Fan, Y.G.; et al. The numbers of fungi: Are the most speciose genera truly diverse? *Fungal Divers.* 2022, 27, 387–462. [CrossRef]

3. Phukhamsakda, C.; Nilsson, R.H.; Bhunjun, C.S.; de Farias, A.R.; Sun, Y.R.; Wijesinghe, S.N.; Raza, M.; Bao, D.F.; Lu, L.; Tiplompra, S.; et al. The numbers of fungi: Contributions from traditional taxonomic studies and challenges of metabarcoding. *Fungal Divers.* 2022, 28, 327–386. [CrossRef]

4. Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. *Mycolology* 2019, 10, 127–140. [CrossRef]

5. Liu, J.; Diamond, J. China’s environment in a globalizing world. *Nature* 2005, 435, 1179–1186. [CrossRef][PubMed]

6. Luo, Z.L.; Hyde, K.D.; Liu, J.K.; Bhat, D.J.; Bao, D.F.; Li, W.L.; Su, H.Y. Lignicolous freshwater fungi from China II: Novel *Distoseptispora* (*Distoseptisporaceae*) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. *Mycosphere* 2018, 9, 444–461. [CrossRef]

7. Zheng, H.; Wan, Y.K.; Li, J.; Rafael, F.C.R.; Yu, Z.F. *Phialolunuluspora ternisspora* (*Chaetosphaeriaceae, Sordariomycetes*), a novel asexual genus and species from freshwater in southern China. *Mycoses* 2020, 76, 17. [CrossRef]

8. Zhang, Z.K.; Wang, X.C.; Zhuang, W.Y.; Cheng, X.H.; Zhao, P. New species of *Talaromyces* (Fungi) isolated from soil in Southwestern China. *Biologia* 2021, 70, 415. [CrossRef]

9. Zheng, P. *China’s Geography*. China Intercontinental Press: Beijing, China, 2006.

10. Zhang, X.; Wang, W.C.; Fang, X.Q.; Ye, Y. Vegetation of Northeast China during the late seventeenth to early twentieth century as revealed by historical documents. *Reg. Environ. Change* 2011, 11, 869–882. [CrossRef]

11. Yuan, D.Y.; Zhu, L.J.; Cherubini, P.; Li, Z.S.; Zhang, Y.D.; Wang, X.C. Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. *Ecol. Indic.* 2021, 133, 108389. [CrossRef]

12. Winter, H.G. Pilze—Ascomyceten. In *GL Rabenhorst’s Kryptogrammen-Flora von Deutschland, Oesterreich und der Schweiz*; Verlag von Eduard Kummer: Leipzig, Germany, 1885; Volume 1, pp. 65–528.

13. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Apte, S.; Leonтьev, D.V.; Saxena, R.K.; et al. Outline of fungi and fungus-like taxa. *Mycosphere* 2020, 11, 1060–1456. [CrossRef]

14. Jaklitsch, W.M.; Checa, J.; Blanco, M.N.; Olariaga, I.; Tello, S.; Voglmayr, H. A preliminary account of the *Cucurbitariaceae*. *Mycologia* 2019, 105, 30, 71–118. [CrossRef][PubMed]

15. Jaklitsch, W.M.; Voglmayr, H. Fenestelloid clades of the *Cucurbitariaceae*. *Persoonia* 2020, 44, 1–40. [CrossRef][PubMed]

16. Monka, J.; Tiplompra, S.; Manowong, A.; Mapook, A.; Norphanphoun, C.; Hyde, K.D.; Promputtha, I. Discovery of three novel *Cytopsora* species in Thailand and their antagonistic potential. *Diversity* 2021, 13, 488. [CrossRef]

17. Index Fungorum. 2022. Available online: http://www.indexfungorum.org/names/names.asp (accessed on 11 April 2022).

18. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.; Bhat, D.J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The faces of fungi database: Fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers.* 2015, 74, 3–18. [CrossRef]

19. De Hoog, G.S.; Gerrits van den Ende, A.H.G. Molecular diagnostics of clinical strains of filamentous basidiomycetes. *Mycoses* 1998, 41, 183–189. [CrossRef]

20. Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Pem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. *Mycosphere* 2020, 11, 2678–2754. [CrossRef]

21. White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic, *PCR Protoc. Guid. Methods Appl.* 1990, 172, 4238–4246. [CrossRef]

22. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. *J. Bacteriol.* 1990, 172, 4328–4329. [CrossRef]

23. Voglmayr, H.; Akulov, O.Y.; Jaklitsch, W.M. Reassessment of *Allantonectria*, phylogenetic position of *Thyronectria*, and *Thyronectria caraganae* sp. nov. *Mycol. Prog.* 2016, 15, 921. [CrossRef][PubMed]

24. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 1999, 91, 553–556. [CrossRef]

25. Rehner, S.A.; Buckley, E. A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycologia* 2005, 97, 84–98. [CrossRef]

26. O’Donnell, K.; Cigelnik, E.; Weber, N.S.; James, M.T. Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. *J. Mol. Evol.* 1997, 48, 48–65. [CrossRef]

27. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* 2019, 20, 1160–1166. [CrossRef]

28. Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. *Bioinformatics* 2014, 30, 3276–3278. [CrossRef]
57. Chen, H.R. Structural and Functional Relationship between JWA and α-Tubulin. Master’s Thesis, Nanjing Medical University, Nanjing, China, 2004.

58. Samson, R.A.; Seifert, K.A.; Kuijpers, A.F.A.; Houbraken, J.A.M.P.; Frisvad, J.C. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol. 2004, 49, 175–200.

59. Magaña-Dueñas, V.; Stchigel, A.M.; Cano-Lira, J.F. New Coelomycetous fungi from freshwater in Spain. J. Fungi 2021, 7, 368. [CrossRef] [PubMed]

60. Chen, Y.L.; Xu, T.L.; Veresoglou, S.D.; Hu, H.W.; Hao, Z.P.; Hu, Y.J.; Liu, L.; Deng, Y.; Rillig, M.C.; Chen, B.D. Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol. Biochem. 2017, 110, 12–21. [CrossRef]

61. De Gruyter, J.; Woudenberg, J.H.C.; Aveskamp, M.M.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 2010, 102, 1066–1081. [CrossRef] [PubMed]