Case Report

An Exceptional Cause of Progressive Dyspnoea in a Renal Transplant Recipient: Hemangioma of the Mitral Valve

Ivana Juric a Irzal Hadzibegovic b Petar Kes a Bojan Biocina c Davor Milicic d
Nikolina Basic-Jukic a,b

a Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, and School of Medicine, University of Zagreb, Zagreb, b Department of Cardiac Surgery, University Hospital Centre Zagreb, and School of Medicine, University of Zagreb, Zagreb, c Department of Cardiology, University Hospital Centre Zagreb, and School of Medicine, University of Zagreb, Zagreb

Key words
Hemangioma • Mitral valve • Renal transplantation • Dyspnea

Abstract
Primary cardiac hemangioma is a very rare benign vascular tumor, with valvular hemangiomas being even less frequent as valves are generally avascular structures. We present the first case of mitral valve hemangioma in a renal transplant recipient. Patient presented with progressive dyspnea. Transesophageal echocardiogram (TEE) demonstrated a 0.8x0.9-cm pedunculated tumor mass on the posterior leaflet of the mitral valve. Coronary angiography identified a small artery which filled from the circumflex artery and fed the tumor. The tumor was surgically removed. Histopathological examination revealed a hemangioma. The postoperative course was uneventful with stable graft function.

Introduction
Primary cardiac hemangioma is a very rare benign vascular tumor. Valvular hemangiomas are even less frequent as the valves are generally avascular structures [1, 2]. They can be found in any age group, but occur most commonly in childhood. To our knowledge, less than 10 cases of mitral valve hemangiomas have been documented in the literature [3-11].

We present the first case of mitral valve hemangioma in a renal transplant recipient.
Case report

A 49-year-old woman with progressive dyspnea was admitted to the cardiology ward. Her medical history included chronic pyelonephritis with development of the end-stage renal disease. She had been treated with hemodialysis for 9 years, and in 2006 received a renal transplant from a deceased donor. Graft function was excellent with serum creatinine 89 µmol/L. Five years after transplantation she presented with symptoms of progressive dyspnea and chest tightness that worsened especially during intensive physical activity. Physical examination revealed a normal heart rhythm with clear sounds and a systolic murmur over the mitral valve. Laboratory tests including routine hematology, biochemistry and coagulation were all within the normal range. She was afebrile. A transesophageal echocardiogram (TEE) demonstrated a 0.8x0.9-cm pedunculated tumor mass on the posterior leaflet of the mitral valve (Fig. 1) which was not present on the heart ultrasound two years before. Coronary angiography revealed a small artery filling from the circumflex artery and feeding the tumor (Fig. 2). Cardiac surgery was indicated.

A median sternotomy was performed. The left atrium was opened and a 0.8x0.6-cm solid red mass was excised form the posterior leaflet of the mitral valve. The operation lasted 44 minutes, with 18 minutes of cardiac ischaemia. Histopathological examination revealed hemangioma (Fig. 3).

The postoperative course was uneventful. Graft function remained stable and the patient was discharged from hospital 7 days after the surgery in good condition, with complete regression of cardiac symptoms. The control heart ultrasound revealed a functionally competent mitral valve with no residual tumor mass. After 8 months she is still doing well, with no signs of hemangioma recurrence, with normal cardiac and renal function.

Discussion

Solid organ transplantation with chronic immunosuppression is associated with an increased risk of malignacies [12, 13]. There are national registries reporting increased incidence of malignancies in renal transplant recipients [14-19]. However, until now there is no evidence suggesting an increased risk of heart hemangioma in general or heart valve

Fig. 1. Echocardiography result (TTE + TEE).
Mitral Valve Hemangioma in a Renal Transplant Recipient

There is only one isolated report of an accidental finding of aortic valve hemangioma found in a renal transplant recipient [20]. Our case would be the second case of valve hemangioma following renal transplantation and solid organ transplantation in general and the first case of mitral valve hemangioma in a renal transplant recipient described in the literature.

Primary cardiac tumors are rare findings [1]. Their incidence found on autopsy was 1.7 per 100,000 cases, with about 75% being benign [21]. Of these, cardiac hemangiomas are extremely rare tumors which may involve endocardium, myocardium or epicardium [2], and account for less than 3% of all primary cardiac tumors [22] and 5-10% of all benign cardiac tumors [21]. Valvular hemangiomas are even less frequent as cardiac valves are predominantly avascular structures.

Based on our review of the literature there is no data on the growth dynamic of mitral valve hemangioma. All reported cases were diagnosed after symptoms occurred with no prior evidence of any echocardiography finding or/and no data regarding the time between the last echocardiography finding and diagnosis of mitral valve hemangioma. Our case shows relatively quick growth of the hemangioma, hence it was absent in an echocardiogram performed two years before the presentation. The growth hemodynamics of heart hemangiomas in general are unpredictable ranging from dormancy, to accelerated growth, to spontaneous regression/involution [23, 24]. Lesions are typically discovered incidentally during routine diagnostic procedures [22] as the majority of patients remain asymptomatic. Their clinical presentation varies according to the size, location and mobility of the tumor. However, the majority of lesions are incidental finding. The presenting symptoms of heart valve hemangiomas may include palpitations and syncope, exertional dyspnea, heart failure due to hemodynamic disturbances, and atypical chest pain [3, 6, 9, 10, 25-27]. In addition to these symptoms, the presenting symptoms of a cardiac hemangioma localized elsewhere than on the valves may be arrhythmias [28, 29], embolic incidents [30-32], sudden cardiac death [33], pericardial effusion [34, 35] and heart tamponade [36]. Echocardiography may raise suspicion of this rare tumor; however, it may be very challenging as less than one third of reported cases of hemangiomas were diagnosed preoperatively [37]. Coronary angiography may delineate feeding vessels to the tumor with a characteristic „tumor blush” [28, 38]. In our patient the tumor was supplied by a branch of the circumflex artery and this finding was suggestive of a vascular etiology of the tumorous formation with definitive confirmation of the benign nature of the lesion on the pathohistological finding.
Only one case of incidentally found aortal valve hemangioma in a renal transplant recipient has been reported in the literature. This was 62-year-old man who presented with syncope and dyspnea. He had chronic, degenerative aortic valve stenosis, and hemangioma was discovered during aortic valve replacement [20].

Potential life-threatening complications of valvular hemangiomas require prompt surgical intervention. Long-term prognosis is excellent after complete recovery. There is no evidence of cardiac hemangioma recurrence in the longer time follow up period [4, 39]. Other reported cases reveal data from a shorter follow up period such as one to two years [9, 10], or no data at all [26, 40]. No recurrences of cardiac hemangioma have been reported so far, but given the rarity of the condition and hence the uncertain prognosis, regular follow up is probably warranted [3].

Conclusion

In conclusion, our case demonstrates that renal transplant recipients may suffer from different cardiovascular problems including very rare cardiac tumors. The diagnosis of a cardiac valve tumor should be taken into consideration in renal transplant recipients presenting with typical symptoms. Echocardiography is the most appropriate initial screening and diagnostic imaging modality. Surgical excision is recommended with regular ultrasound follow-up to discover possible tumor recurrences.

Conflict of Interests

The authors of this manuscript state that they have no conflicts of interest.

References

1 Strauss R, Merliss R: Primary tumors of the heart. Arch Pathol 1945;39:74-78.
2 Thomas J: Unusual primary tumors of the heart. Semin Thorac Cardiovasc Surg 2000;12:89-100.
3 Yaganti V, Patel S, Yaganti S, Victor M: Cavernous hemangioma of the mitral valve: a case report and review of literature. J Cardiovascular Med (Hagerstown) 2009;10:420-422.
4 Luo GH, Ma WG, Sun HS, Pan SW, Huang ZX, Wang HY, Zhu XD: Surgical treatment for primary mitral valve tumor: a 25-year single-center experience. Cardiology 2011;119:81-87.
5 Cook AL, Williams DA, Bergman S, Hines MH: Atypically located cardiac haemangioma of the mitral valve. Cardiol Young 2011;21:598-600.
6 Muzzi L, Davoli G, Specchia L, Chiavarelli M: Primary hemangioma of the mitral valve: an unusual presentation. J Heart Valve Dis 2007;16:209-211.
7 Kutay V, Yakut C, Ekim H: Mitral annual tumors: report of two cases in childhood. J Card Surg 2006;21:191-194.
8 Ugras S, Bayram I: cavernous haemangioma of the mitral valve in a child: report of a case and review of the literature. Pathology 2005;37:396-398.
9 Nye SW, Orsinelli DA, Baker PB, Brown DA: Surgical treatment of a hemangioma of the mitral valve. Ann Thorac Surg 2001;71:345-347.
10 Abad C, de Varona S, Limeres MA, Morales J, Marrero J: Resection of a left atrial hemangioma. Report of a case and overview of the literature on resected cardiac hemangiomas. Tex Heart Inst J 2008;35:69-72.
11 Dod HS, Burri MV, Hooda D, Saaj V, Qureshi W, Massinople D, Nazim MH, Murray C, Prabhakar G, Williams HJ, Warden B, Beto R, Jain AC, Nanda NC: Two- and three-dimensional transthoracic and transesophageal echocardiographic findings in epithelioid hemangioendothelioma involving the mitral valve. Echocardiography 2008;25:443-445.

12 Collett D, Mumford L, Banner NR, Neuberger J, Watson C: Comparison of the incidence of malignancy in recipients of different types of organ: a UK Registry audit. Am J Transplant 2010;10:1889-1896.

13 Génébès C, Brouchet L, Kamar N, Lepage B, Prévot G, Roaing L, Didier A, Mazières J: Characteristics of thoracic malignancies that occur after solid-organ transplantation. J Thorac Oncol 2010;5:1789-1795.

14 Villeneuve PJ, Schaebel DE, Fenton SS, Shepherd FA, Jiang Y, Mao Y: Cancer incidence among Canadian kidney transplant recipients. Am J Transplant 2007;7:941-948.

15 Adami J, Gabel H, Lindelöf B, Ekström K, Rydh B, Glimelius B, Adami HO, Granath F: Cancer risk following organ transplantation: A nationwide cohort study in Sweden. Br J Cancer 2003;89:1221-1227.

16 Hoshida Y, Tsukuma H, Yasunaga Y, Xu N, Fujita MQ, Satoh T, Ichikawa Y, Kurihara K, Imanishi M, Matsuno T, Aozasa K: Cancer risk after renal transplantation in Japan. Int J Cancer 1997;71:517-520.

17 Kyllonen L, Pukkala E, Eklund B: Cancer incidence in a kidney-transplanted population. Transpl Int 1994;7:S350-S352.

18 Chapman JR, Webster AC: Cancer Report: ANZDATA Registry 2004 report. Adelaide, Australia. Australia and New Zealand Dialysis and Transplant Registry, 2004.

19 Kasiske BL, Snyder JJ, Gilbertson DT, Wang C: Cancer after kidney transplantation in the United States. Am J Transplant 2004;4:905-913.

20 Val-Bernal JF, Cuadrado M, Garijo MF, Revuelta JM: Incidental in vivo detection of an isolated hemangioendothelioma of the aortic valve in a man with a history of renal transplantation. Virchows Arch 2006;449:121-123.

21 Burke A, Virmani R: Tumors of the heart and great vessels: atlas of tumor pathology, third series, fascicle 16. Washington: Armed Forces Institute of Pathology, 1996, pp. 79-90.

22 Thomas JE, Eror AT, Kenney M, Caravalho J: Asymptomatic right atrial cavernous hemangioma: a case report and review of the literature. Cardiovasc Pathol 2004;13:341-344.

23 Nakamura K, Funahashi N, Miyauchi H, Aminaka M, Uehara M, Ueda M, Murayama T, Hori Y, Nakayama T, Daimon M, Kuroda N, Kobayashi Y, Komuro I: Hemangioma located just above the left main coronary artery, in a subject who had cardiac arrest due to ventricular fibrillation, led to a diagnosis of Brugada syndrome. Int J Cardiol 2008;127:437-441.

24 Palmer TE, Tresch DD, Bonchek LI: Spontaneous resolution of a large, cavernous hemangioma of the heart. Am J Cardiol 1986;58:184-185.

25 Yaganti V, Patel S, Yaganti S, Victor M: Cavernous hemangioma of the mitral valve: a case report and review of literature. J Cardiovasc Med (Hagerstown) 2009;13:420-422.

26 Floria M, Guedes A, Buche M, Deperon R, Marchandise B: A rare primary cardiac tumour: cavernous hemangioma of the tricuspid valve. Eur J Echocardiogr 2011;12:477.

27 Ray R, Rishi A, Venugopal P, Chopra P: Hemangioma of the tricuspid valve: a report of two cases with review of literature. Cardiovasc Pathol 2004;13:120-122.

28 Murthy A, Jain A, Nappi AG: Tumor blush: left ventricular cardiac hemangioma with supply from both the left anterior descending and circumflex arteries. J Invasive Cardiol 2012;24:138-139.

29 Huang CL, Peng AN, Chuang YC, Lan GY, Hsiung MC, Lee JY, Yin WH, Young MS: Malignant presentation of cardiac hemangioma: a rare cause of complete atroventricular block. Circ Cardiovasc Imaging 2008;1:1-3.

30 Nemati MH, Astaneh B, Joubel A: Cardiac hemangioma presenting with neurological manifestations. Gen Thorac Cardiovasc Surg 2009;57:155-158.

31 Pasquino S, Balucani C, di Bella I, Alberti A, da Col U, Caso V, Ramoni E, Paciaroni M, Agnelli G, Ragni T: Cardiac hemangioma of the right atrium: a possible cause of cerebellar stroke. Cerebrovasc Dis 2007;24:154-155.

32 Koçak H, Ozyazıcıoğlu A, Güngördü C, Sevimli S: Cardiac hemangioma complicated with cerebral and coronary embolization. Heart Vessels 2005;20:296-297.

33 Patel J, Sheppard MN: Sudden death owing to right atrial hemangioma. J Forensic Sci 2011;56:529-530.

34 Yoshihara M, Hayashi T, Sato T, Akiba T, Watarai J, Nakamura C: A case of pericardial hemangioma with consumption coagulopathy cured by radiotherapy. Pediatr Radiol 1987;17:3 49-150.
35 Cartagena AM, Levin TL, Issenberg H, Goldman HS: Periatrial effusion and cardiac hemangioma in the neonate. Pediatr Radiol 1993;23:384-385.
36 Sata N, Moriyama Y, Hamada N, Horinouchi T, Miyahara K: Recurrent periatrial tamponade from atrial hemangioma. Ann Thorac Surg 2004;78:1472-1575.
37 Turkoz R, Gulcan O, Oguzkurt L, Atalay H, Bolat B, Sezgin A: Surgical treatment of a huge cavernous hemangioma surrounding the right coronary artery. Ann Thorac Surg 2005;79:1765-1767.
38 Pigato JB, Subramanian VA, McCaba JC: Cardiac hemangioma. A case report and discussion. Tex Heart Inst J 1998;25:83-85.
39 Steger CM, Hager T, Ruttmann E: Primary Cardiac Tumours: A Single-Center 41-Year Experience. ISRN Cardiol DOI: 10.5402/2012/906109.
40 Lapenna E, De Bonis M, Torracca L, La Canna G, Dell’Antonio G, Alfieri O: Cavernous hemangioma of the tricuspid valve: minimally invasive surgical resection. Ann Thorac Surg 2003;76:2097-2099.