Singlet and triplet doped-hole configurations in $\text{La}_2\text{Cu}_{0.5}\text{Li}_{0.5}\text{O}_4$

V.I. Anisimov1, S.Yu. Ezhov1 and T.M. Rice2

1 Institute of Metal Physics, Russian Academy of Sciences, 620219 Ekaterinburg
GSP-170, Russia
2 Theoretische Physik, Eidgenössische Technische Hochschule-Hönggerberg, 8093 Zürich, Switzerland

Abstract. The ordered alloy $\text{La}_2\text{Li}_{0.5}\text{Cu}_{0.5}\text{O}_4$ is found to be a band insulator in local density approximation (LDA) calculations with the unoccupied conduction band having predominantly $d_{x^2-y^2}$-symmetry and substantial weight in O 2p-orbitals. This is equivalent to a predominant local singlet configuration d^9L or a low spin Cu$^{3+}$-ion with both holes in orbits having $d_{x^2-y^2}$-symmetry, i.e. Zhang-Rice singlets. A fairly modest reduction of the apical Cu-O bondlength is sufficient to stabilize a high spin triplet Cu$^{3+}$-ionic configuration with holes in both $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbits in LDA + U calculations. This leads us to identify the low energy triplet excitation found in NQR studies by Yoshinari et al. as a local high spin Cu$^{3+}$-ionic configuration accompanied by a substantial reduction of the apical Cu-O separation, i.e. a anti-Jahn-Teller triplet polaron.
The substitution of lithium for copper in La$_2$CuO$_4$ is formally equivalent to Sr doping on the La site as each donates one hole per dopant. In lightly doped samples Li and Sr doping have essentially indistinguishable effects on the magnetic properties and lattice structure \cite{1,2}. However in-plane substitutions for Cu and out-of-plane substitutions for La were found to be very different in the conductivity. Li$^{+1}$ has ionic radius essentially the same as that of Cu$^{+2}$, and brings a hole with it into the plane. But the alloys La$_2$Cu$_{1-x}$Li$_x$O$_4$ are never metallic nor superconducting so that this hole must be localized in contrast to the mobile holes introduced by out-of-plane substitutions. The solid solubility of Li is such that complete filling of the copper band (at 50% Li) can be achieved. At this composition the Li and Cu ions form an ordered superlattice \cite{3} in which all Cu ions are surrounded by four in-plane Li$^{+1}$ ions (1s2, closed shell electronic configuration), leading to isolated CuO$_4$ clusters. This compound was found to be a diamagnetic insulator.

The Nuclear Quadrupole Resonance (NQR) study of La$_2$Cu$_{0.5}$Li$_{0.5}$O$_4$ \cite{4} reveals a magnetic excitation of the doped-hole state with an energy of \(\approx 130 \) meV. This energy is much smaller than the estimation of the singlet-triplet splitting of the local Zhang-Rice singlet \cite{5} which is of the order of few eV. There are also indications that this magnetic excitation is coupled to the charge fluctuation or lattice distortion around the Cu site \cite{4}.

La$_2$Cu$_{0.5}$Li$_{0.5}$O$_4$ is not the only compound with formally trivalent copper which is a diamagnetic insulator. Another example is NaCuO$_2$ \cite{6}. Spectroscopy measurements and Configuration Interaction (CI) calculations by Mizokawa et al. \cite{7} led them to conclude that the ground state of NaCuO$_2$ is dominated by d^9L (L: ligand hole) configurations and not by d^8 as for a simple Cu$^{3+}$ ion. The ligand holes L are not metallic because strong $p-d$ hybridization between d^8 and d^9L configurations leads to a split-off d^9L-like discrete state above the oxygen continuum.

Calculation of the electronic structure of NaCuO$_2$ in Local (Spin) Density Approximation (L(S)DA) \cite{8} showed that this compound can be described as a conventional insulator with a band gap arising from simple covalent effects ($p-d$ hybridization). The unoccupied band has more oxygen character than copper thus confirming the conclusion from CI calculations that ”doped” holes are situated predominantly on oxygen orbitals. The key structural element of the crystal structure of NaCuO$_2$ is the same as in layered cuprates (for example La$_2$CuO$_4$): CuO$_4$ plaquettes with the Cu atoms in the center of a square of oxygen atoms. However in layered compounds the squares are corner-sharing and the
Cu-O-Cu bond angles are nearly 180° resulting in very broad \(pd\sigma \)-band, while in NaCuO\(_2\) the squares are edge-sharing and those angles are close to 90° and the corresponding bandwidth is much smaller.

In La\(_2\)Cu\(_{0.5}\)Li\(_{0.5}\)O\(_4\) the CuO\(_4\) plaquettes are separated by Li ions, so that there is no Cu-O-Cu bonds at all and one can expect an even narrower \(pd\sigma \)-band than in NaCuO\(_2\). We have performed LDA calculation for La\(_2\)Cu\(_{0.5}\)Li\(_{0.5}\)O\(_4\) using the linearized muffin-tin orbital method in an atomic-spheres approximation (LMTO-ASA) \[9\]. The results (Fig. 1) show that, indeed, the ground state is a nonmagnetic insulator with a sizable gap value (\(\approx 1\) eV), compared to the 0.3 eV value in NaCuO\(_2\) \[8\]. The unoccupied band is again rather narrow and with a symmetry of Cu centered \(d_{x^2-y^2} \) orbitals. It contains 40% Cu3d orbitals and 60% O2p states, indicating the strongly covalent nature of the singlet ground state. The top of the valence band is predominantly oxygen in origin, however there is significant admixture of \(d_{3z^2-r^2} \) orbitals of copper.

Our results shows that in order to reproduce singlet ground state of the doped hole in La\(_2\)Cu\(_{0.5}\)Li\(_{0.5}\)O\(_4\) there is no need to take into account Coulomb interaction corrections to the one-electron LDA. However the magnetic excited state cannot be explored in a calculation scheme which does not include Coulomb interactions inside the \(d \)-shell of copper. For example the undoped cuprates experimentally are antiferromagnetic insulators while LDA gives a paramagnetic metallic ground state. The reason for this discrepancy is that while in LSDA the splitting between majority and minority spin states is driven only by the exchange interaction with a value of the Stoner parameter of \(\approx 1\) eV, the real driving force for the antiferromagnetic insulator solution must be the much larger direct Coulomb interaction parameter \(U \approx 8\) eV. This contradiction was resolved in the so-called LDA+U method where orbital-spin polarization caused by the Coulomb interaction is directly taken into account \[10,11\].

The main idea of the LDA + U method is that LDA gives a good approximation for the average Coulomb energy of \(d-d \) interactions \(E_{av} \) as a function of the total number of \(d \)-electrons \(N = \sum_{mσ} n_{mσ} \) where \(n_{mσ} \) is the occupancy of a particular \(d_{mσ} \)-orbital:

\[
E_{av} = \frac{1}{2} U N(N - 1) - \frac{1}{4} J N(N - 2).
\]

But LDA does not properly describe the full Coulomb and exchange interactions between \(d \)-electrons in the same \(d \)-shell. So Anisimov et al. \[10,11\] suggested to subtract \(E_{av} \) from the LDA total energy functional and to add orbital- and spin-dependent contributions to
obtain the exact (within a mean-field approximation) formula:

\[E = E_{LDA} - E_{av} + \frac{1}{2} \sum_{m,m',\sigma} U_{mm'} n_{m\sigma} n_{m'\sigma} \]
\[+ \frac{1}{2} \sum_{m \neq m',m',\sigma} (U_{mm'} - J_{mm'}) n_{m\sigma} n_{m'\sigma} \] \hspace{1cm} (2)

Taking the derivative w.r.t. \(n_{m\sigma} \) gives the orbital-dependent one-electron potential:

\[V_{m\sigma}(\vec{r}) = V_{LDA}(\vec{r}) + \sum_{m'} (U_{mm'} - U_{eff}) n_{m'\sigma} \]
\[+ \sum_{m' \neq m} (U_{mm'} - J_{mm'} - U_{eff}) n_{m\sigma} \]
\[+ U_{eff}(\frac{1}{2} - n_{m\sigma}) - \frac{1}{4} J \] \hspace{1cm} (3)

with \(U_{eff} = U - \frac{1}{2} J \). The Coulomb and exchange matrices \(U_{mm'} \) and \(J_{mm'} \) are expressed through the integrals over products of three spherical harmonics and screened Coulomb and exchange parameters \(U \) and \(J \) [10].

A nontrivial problem is what value of the screened Coulomb interaction \(U \) to use. For insulators, such as late transition-metal oxides a good approximation is to calculate static screening of the \(d-d \) intrashell Coulomb interaction in a supercell LDA calculation [12].

The question is what symmetry should the lowest energy excited states have? The band gap separates states which are both mainly oxygen but due to the hybridization with Cu3d orbitals the states have symmetry of \(x^2 - y^2 \) and \(3z^2 - r^2 \) for the unoccupied and occupied bands respectively. The \(x^2 - y^2 \) band is higher in energy due to the Jahn-Teller-distorted CuO6 octahedra in La2Cu0.5Li0.5O4 crystal structure: the length of the Cu-O bond in the ab-plane is 1.8 Å but the distance to the apical oxygen is larger \(- 2.4 \text{ Å} \) [3]. It follows that the lowest energy excitation will be from the (formally) \(d_{x^2-y^2\uparrow} d_{3z^2-r^2\uparrow} \) singlet configuration to the \(d_{x^2-y^2\downarrow} d_{3z^2-r^2\downarrow} \) triplet configuration.

We have performed LDA+U method calculations for both singlet and triplet configurations. We find that a starting triplet configuration is not a stable solution but self-consistently converges to the singlet solution. (The singlet solution of LDA+U method is practically the same as for pure LDA, because in the absence of the orbital-spin polarization the LDA+U correction to LDA is irrelevant.) However, if the copper-apical oxygen bond length is contracted by 16% (0.38 Å), then a stable triplet solution appears and becomes the ground state. For 16% contraction the total energy of the magnetic solution is still 0.06 eV higher than the nonmagnetic one, however already for 17% contraction the triplet energy is 0.1 eV lower.
It is instructive to follow the changes, with copper-apical oxygen bond contraction, of the two bands below and above Fermi energy (Fig.2). For the undistorted structure (Fig.2a) those bands (the lower one of $d_{3z^2-r^2}$ symmetry and the higher one of $d_{x^2-y^2}$) are well separated from each other and the admixture of the $d_{3z^2-r^2}$-orbitals to the valence band is relatively small. With distortion the hybridization of the Cu3$d_{3z^2-r^2}$-orbitals with the apical oxygen 2p$_z$ orbitals becomes stronger and the antibonding band goes higher in energy and the admixture of the $d_{3z^2-r^2}$-orbitals in this band becomes stronger (Fig.2b). In order for the magnetic state to be stable, the splitting between spin-up and spin-down bands must become large enough that the top of the spin-up $d_{x^2-y^2}$ band does not overlap with the bottom of spin-down $d_{3z^2-r^2}$ band (in other words magnetic energy must overcome kinetic energy). The Fig.2c shows that for the critical value of the distortion (16%) this condition is nearly satisfied.

Similar effects were found in a supercell LDA+U calculation for a doped hole in La$_{2-x}$Sr$_x$CuO$_4$. In that work two solutions were found for a hole introduced in the CuO$_2$ plane: one solution had the symmetry $x^2 - y^2$ with the hole spin antiparallel to the d-hole of Cu atom, while the other one had $3z^2 - r^2$ symmetry and spin parallel to the Cu spin. The latter solution was present only for a contracted apical Cu-O distance (0.26Å contraction). The total energy calculation in a full-potential scheme including the lattice relaxation showed that the total energy minima for these two solutions were very close in energy with the triplet state only 54 meV higher than the ground state singlet.

As the hopping between CuO$_6$ octahedra in La$_{2}$Cu$_{0.5}$Li$_{0.5}$O$_4$ is smaller than in La$_2$CuO$_4$, one would expect more localized states in the former and, hence, a larger separation between the singlet ground state and excited triplet state. The value found in NQR measurements looks quite reasonable from this point of view.

We would like to emphasize that while the excited magnetic state is a triplet with $S=1$, the actual magnetic moment residing in Cu3d orbitals found in LDA+U calculation is very small: 0.8 μ_B. That is due to the fact that the bands (or Wannier orbitals) of $x^2 - y^2$ and $3z^2 - r^2$ symmetry have only 40% of Cu3d orbitals contribution, being mainly oxygen in origin as implied by the predominance of d^9L many electron configurations in model CI calculations.

In conclusion, we find that LDA correctly gives a band insulator ground state for La$_{2}$Li$_{0.5}$Cu$_{0.5}$O$_4$ with the unoccupied conduction band having predominantly $d_{x^2-y^2}$-symmetry and substantial weight in O 2p-orbitals – a state equivalent to a formal va-
lence Cu$^{3+}$ in a low spin configuration or a Zhang-Rice singlet. A reduction of the Cu-O apical distance stabilizes a high spin configuration and this leads us to identify the 130 meV triplet excitation observed in NQR with such a local configuration i.e. an anti-Jahn-Teller polaron. Two aspects of the experiments remain to be clarified – the origin of the low energy nuclear spin relaxation process which dominates at lower temperature at $T \lesssim 170$K and secondly the absence of a significant activated contribution to the uniform susceptibility from the 130 meV triplet excitations – at least below room temperature.

The work was partly supported by Russian Basic Research Foundation (RFBR grant 96-02-16167). One of us (VIA) wishes to thank the ‘Zentrum für Theoretische Studien’ at the Institute for Theoretical Physics, ETH-Zürich for hospitality.
REFERENCES

[1] A. Rykov, H. Yasuoka, Yu. Ueda, Physica C 247, 327 (1995)

[2] M.A. Kastner, R.J. Birgeneau, C.Y. Chen, Y.M. Chiang, D.R. Gabbe, H.P. Jenssen, T. Junk, C.J. Peters, P.J. Picone, T. Thio, T.R. Thurston, H.L. Tuller, Phys. Rev. B 37, 111 (1988)

[3] J.P. Attfield and G. Ferey, J. Sol. St. Chem. 80, 112 (1989)

[4] Y. Yoshinari, P.C. Hammel, J.A. Martindale, E. Moshopolou, J.D. Thompson, J.L. Sarrao, Z. Fisk, submitted to Phys. Rev. Lett.

[5] F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988)

[6] P. Steiner, V. Kinsinger, I. Sander, B. Siegward, S. Huefner, C. Politics, R. Hoppe, H.P. Muller, Z. Phys. B 67, 497 (1987)

[7] T. Mizokawa, H. Namatame, A. Fujimori, K. Akeyama, H. Kondoh, H. Kuroda, N. Kosugi, Phys. Rev. Lett. 67, 1638 (1991)

[8] D.J. Singh, Phys. Rev. B 49, 1580 (1994)

[9] O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

[10] V.I. Anisimov, J. Zaanen and O.K. Andersen, Phys. Rev. B 44, 943 (1991); V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).

[11] A.I. Lichtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, 5467 (1995).

[12] V.I. Anisimov and O. Gunnarson, Phys. Rev. B 43, 7570 (1991).

[13] V.I. Anisimov, M.A. Korotin, J. Zaanen, O.K. Andersen, Phys. Rev. Lett. 68, 345 (1992)
FIGURES

FIG. 1. The total (a) and partial (O2p (b) and Cu 3d (c)) densities of states (DOS) for \(\text{La}_2\text{Li}_{0.5}\text{Cu}_{0.5}\text{O}_4 \) calculated in the undistorted crystal structure. The bands formed by different d-orbitals are marked by arrows.

FIG. 2. The partial Cu 3d densities of states (DOS) for \(\text{La}_2\text{Li}_{0.5}\text{Cu}_{0.5}\text{O}_4 \). Upper panel (a): nonmagnetic solution in the undistorted crystal structure. Middle panel (b): nonmagnetic solution with 16% contraction of the copper-apical oxygen bond length. Lower panel (c): magnetic solution with 16% contraction of the copper-apical oxygen bond length.
