Abstract. The aim of the present study was to retrospectively investigate the risk factors of local failure for T1 glottic carcinoma irradiated with a prescription dose of 66 Gy. Between July 2006 and December 2017, 64 patients with T1 glottic squamous cell carcinoma treated with 66 Gy/33 fractions were analyzed for risk factors of local failure. The sex, age, performance status, T stage, overall treatment time, anterior commissure involvement, smoking status during/after treatment, histological tumor grade and pretreatment hemoglobin level were investigated. The maximum, mean and minimum doses, and the homogeneity index for the glottic larynx were calculated for dosimetric risk factors of local failure. The median follow-up duration was 51 months. Local failure was observed in 6 patients (9.5%). Among all risk factors, only the minimum dose to the glottic larynx was found to be significantly associated with local failure (P=0.025). The 5-year local control rates for a minimum dose to the glottic larynx of <65 and ≥65 Gy were 79 and 95%, respectively, with a statistically significant difference (P=0.015). No patients exhibited grade ≥3 late adverse effects. The minimum dose to the glottic larynx was the only factor significantly associated with local failure. Thus, local control of T1 glottic carcinoma may improve with a minimum prescription dose of ≥65 Gy to the glottic larynx. In conclusion, radiotherapy with a minimum prescription dose of ≥65 Gy to the glottic larynx appears to be safe and achieves a high local control rate for T1 glottic carcinoma.

Introduction

Radiotherapy (RT) is a well-established treatment modality for patients with early laryngeal carcinoma; however, laser therapy and partial laryngectomy may also be used to definitively treat early laryngeal carcinomas (1-3). The goals of treatment are cancer cure, preservation of the vocal cords with acceptable voice quality, and minimal treatment-related mortality. Definitive RT may achieve all these goals in the majority of patients with early laryngeal carcinoma, and salvage laryngectomy may be effective in cases of relapse. The local control rate for patients with early laryngeal carcinoma who undergo salvage laryngectomy for recurrence after initial RT is 90-100% (4-9).

Laryngeal carcinoma is classified into glottic, supraglottic and subglottic types according to the place of origin, with glottic carcinomas being the most common (70%). The majority of glottic carcinomas are at an early stage and account for ~70% of all cases. The most commonly used dose-fractionation schedule for T1 glottic carcinoma is 66 Gy/33 fractions. The local control rate for T1N0 glottic carcinoma treated with conventional fractionation schedule for T1 glottic carcinoma is 66 Gy/33 fractions. The local control rate for T1N0 glottic carcinoma treated with conventional fractionation schedule for T1 glottic carcinoma is 66 Gy/33 fractions. Thus, RT alone results in an adequate local control rate for T1 glottic lesions, with a low incidence rate of severe complications. However, some patients may experience local failure. The local control rate for T1 glottic carcinoma may be improved by identifying the risk factors for local failure. Therefore, the aim of the present study was to retrospectively investigate the risk factors of local failure in patients with T1 glottic carcinoma irradiated with a prescription dose of 66 Gy.

Patients and methods

Patients. Between July 2006 and December 2017, 69 consecutive patients with early (T1) glottic squamous cell carcinoma were treated with definitive RT. All patients provided written informed consent, and the study was approved by the Ethics Review Board of the Tokyo Medical University Hospital (Tokyo, Japan). Among the 69 patients, 64 who underwent irradiation with a dose-fractionation schedule of 66 Gy/33 fractions were selected for the retrospective analysis. The characteristics of the 64 patients are listed in Table I. Tumor stage was defined according to the 2016 TNM classification (13) (8th edition, International Union Against Cancer). Of the 64 patients, 57 were men and 7 were women. The median patient age was 72 years (range, 47-86 years). A total of 98% of the patients had an Eastern Cooperative Oncology Group performance status score of 0 or 1. The primary tumor stage
The local control rate was plotted using the gross tumor volume and beam's eye view. The maximum, mean and minimum doses and the homogeneity index (HI) for the glottic larynx, CTV and PTV were calculated. The HI was calculated as the maximum dose divided by the minimum dose to the target volume. Three-dimensional RT was planned and performed using the Eclipse™ (Varian Medical Systems) treatment planning system. The standard RT technique involved parallel opposing lateral fields using photons of 4-MV X-rays for all patients over 5 days per week. The volume and beam's eye view are shown in Fig. 1. Irradiation was delivered via local portals (mostly 5x5x5-6 cm) covering only the primary lesion. The cervical lymph nodes were not electively treated. The dose and fractionation for all patients was 66 Gy/33 fractions delivered over 6.6 weeks.

Evaluation of local response and adverse effects. The local response was evaluated by laryngoscopy at 1 month after completion of RT. In the absence of clinical symptoms, regular follow-up visits were performed at 2-3-month intervals for the first 2 years, and every 4-6 months thereafter. At each follow-up visit, the evaluation included laryngoscopy, medical history taking, physical examination, CT, and tumor marker assessment. The data pertaining to adverse effects were collected retrospectively from patient files. Local failure was considered to occur when local recurrence developed after an initial complete response. The Common Terminology Criteria for Adverse Events (14), version 3.0 (CTCAE v3.0) were used for evaluating the acute and late effects of RT.

Risk factors for local failure. The following factors were investigated to determine the clinical risk factors for local failure: Sex, age, performance status, T stage, overall treatment time (OTT), anterior commissure involvement (ACI), smoking status during/after treatment, histological tumor grade, and pretreatment hemoglobin levels. The pretreatment hemoglobin level was measured within 1 month prior to the initiation of RT. The maximum, mean and minimum doses and the homogeneity index (HI) for the glottic larynx, CTV and PTV were evaluated as dosimetric risk factors for local failure. The HI was calculated as the maximum dose divided by the minimum dose to the target volume (15).

Statistical analysis. The endpoint was local control, calculated from the first date of RT. The associations between local failure and the clinical factors were calculated using the Fisher’s exact probability test. The associations between local failure and dosimetric factors were analyzed using the Mann-Whitney U test. The local control rate was plotted using the Kaplan-Meier method, with statistical significance assessed by the log-rank test. Univariate logistic regression analyses were performed to evaluate the data using SPSS 20.0 (IBM Corp.). Differences with P-values <0.05 were considered statistically significant.

Results

Local control and overall survival. The median follow-up duration was 51 months (range, 4-132 months). All patients with local failure of the primary lesion treatment who were successfully salvaged by surgery were considered to have had local failure with RT. The overall survival and local control curves are shown in Figs. 2 and 3. The 5-year overall survival rate was 96%, and 2 (3.1%) of the 64 cases died from gastric cancer and pneumonia. The 5-year local control rate was 92%, and local failure was observed in 6 (9.5%) of the 64 cases; local failure alone occurred in 5 patients, whereas local failure and neck metastasis occurred in 1 patient. The median time for local failure was 12 months (range, 2-94 months) after the start of RT.

Table I. Patient and tumor characteristics (n=64).

Characteristics	No. (%)
Sex	
Male	57 (89)
Female	7 (11)
Age, years [median (range)]	72 (47-86)
Performance status score	
0	60
1	3
2	0
3	1
Stage of primary tumors	
T1a	43 (67)
T1b	21 (33)
Smoking during/after treatment	
Yes	28 (44)
No	36 (56)
Anterior commissure involvement by tumor	
Yes	23 (36)
No	41 (64)
Histological grade	
Well-differentiated	45 (70)
Moderately/poorly differentiated	19 (30)
Pretreatment hemoglobin level, g/dl	
≤14	25 (39)
>14	39 (61)
The associations between the clinical factors and local failure are summarized in Table II. No factor exhibited a significant association. Multivariate analysis was not performed owing to the limited data. The associations between the dosimetric factors and local failure in all the patients are shown in Table III. On univariate analysis, the minimum dose to the glottic larynx, calculated using Mann–Whitney U test, was the only factor significantly associated with the occurrence of local failure (P=0.025). The median minimum dose to the glottic larynx was ~65 Gy. The 5-year local control rates for patients with minimum doses to the glottic larynx of <65 and ≥65 Gy were 79 and 95%, respectively (Fig. 4). The difference in the local control rate between patients who received <65 and ≥65 Gy as the minimum dose to the glottic larynx, calculated using the log-rank test, was statistically significant (P=0.015).

Adverse effects. The acute and late adverse effects of RT are shown in Table IV. Of the 64 patients, 16 (25%) had grade 2 acute dermatitis and 2 (3%) had grade 3 acute dermatitis. Although 28 patients (44%) had grade 2 acute mucositis, none demonstrated acute adverse effects or late adverse effects of grade ≥3.

The clinical data and dosimetric factors for all cases are listed in Tables V and VI.
Discussion

In the present study, the 5-year local control rates for T1 glottic carcinomas treated with minimum doses of <65 and ≥65 Gy to the glottic larynx were 79 and 95%, respectively. The difference in the local control rate between patients treated with minimum doses of <65 and ≥65 Gy to the glottic larynx was statistically significant (P=0.015).

Several previous studies have reported on the risk factors for local failure in patients with T1 glottic carcinoma. The
Table V. Clinical risk factors for local failure in all cases.

No.	Age, years	Sex	PS score	T stage	OTT (days)	ACI (yes vs. no)	Smoking (yes vs. no)	Histological tumor grade (well vs. moderate/poorly differentiated)	Pretreatment hemoglobin (g/dl)
1	52	M	0	1a	45	Yes	Yes	Well	14.6
2	73	M	0	1b	46	Yes	Yes	Well	15
3	65	M	0	1b	50	Yes	Yes	Well	14.8
4	80	M	0	1a	45	Yes	No	Well	14.4
5	79	M	0	1a	47	No	No	Well	15.6
6	77	F	0	1b	45	Yes	No	Well	11
7	57	M	0	1a	44	No	Yes	Moderate-poor	15.7
8	83	M	0	1b	45	Yes	No	Well	15.4
9	65	F	0	1a	45	Yes	No	Moderate-poor	14.5
10	55	F	0	1a	47	Yes	No	Well	13
11	75	M	0	1a	44	No	No	Well	13.2
12	63	M	0	1b	44	Yes	No	Well	15.5
13	58	F	0	1a	39	No	No	Well	14.5
14	47	M	0	1a	50	No	Yes	Well	14
15	71	M	3	1a	46	Yes	Yes	Moderate-poor	11.3
16	72	M	0	1b	49	No	No	Well	14.7
17	73	M	0	1a	44	No	Yes	Moderate-poor	15.9
18	76	M	0	1a	47	No	No	Moderate-poor	14.9
19	64	M	0	1a	51	No	Yes	Well	15.6
20	71	M	0	1a	45	No	Yes	Moderate-poor	14.8
21	73	M	0	1b	50	No	Yes	Well	12.4
22	76	M	0	1a	50	Yes	No	Well	14.5
23	84	M	0	1a	45	No	No	Well	14.3
24	70	M	0	1a	45	No	No	Moderate-poor	16.5
25	65	M	0	1b	44	No	Yes	Well	13.6
26	70	M	0	1a	47	No	Yes	Well	15.9
27	73	M	0	1a	43	No	No	Well	10.6
28	70	M	0	1a	44	No	Yes	Moderate-poor	15.1
29	82	M	0	1a	45	No	No	Moderate-poor	14.3
30	65	M	0	1b	46	Yes	No	Well	14.4
31	58	M	0	1a	43	No	Yes	Well	14.2
32	64	M	0	1b	45	Yes	No	Moderate-poor	14
33	69	M	0	1a	46	No	Yes	Well	13.6
34	75	M	0	1a	46	No	No	Moderate-poor	14.4
35	70	M	0	1a	45	Yes	Yes	Moderate-poor	14.8
36	73	M	0	1b	46	Yes	No	Well	18
37	86	M	1	1a	49	No	No	Well	15
38	81	M	0	1a	48	No	No	Well	12.4
39	80	M	0	1b	44	Yes	No	Well	13.6
40	86	M	0	1a	46	No	No	Well	12.4
41	70	M	0	1b	44	No	No	Well	15.9
42	84	M	0	1a	50	No	No	Moderate-poor	13.3
43	63	F	0	1a	49	No	Yes	Well	13.2
44	70	M	0	1a	44	No	No	Well	15
45	77	M	0	1a	48	No	No	Well	14
46	79	M	0	1a	49	No	Yes	Well	12.6
47	64	F	0	1a	52	No	No	Well	13.6
48	66	M	0	1a	51	Yes	Yes	Well	15.5
49	84	M	0	1a	44	Yes	No	Well	15.2
local control rate for T1 tumors with an overall treatment time of 42-49 days was previously reported to be significantly higher compared with that of tumors with corresponding treatment times of >49 days (P<0.02) (11). In addition, previous studies have demonstrated an association between low hemoglobin levels and poor local control, i.e., pre-treatment anemia was an adverse factor for survival in patients with early-stage glottic carcinoma (16,17); this was not observed in the present study. There was a significant decrease in the 10-year overall survival rate in patients with pre-RT anemia compared with those without pre-RT anemia (52 vs. 68%, respectively) (18). Furthermore, a recent systematic review and meta-analysis was performed to determine the risk factors for RT failure in early-stage glottic carcinoma (19). There was a higher risk of RT failure in male patients [relative risk (RR)=0.927, P<0.001], patients with low hemoglobin levels (RR=0.891, P<0.001), tumors with ACI (RR=0.904, P<0.001), tobacco use during/after therapy (RR=0.824, P<0.001), and ‘bulky’ tumors (RR=1.270, P<0.001) or large tumors (RR=1.332, P<0.001). In most previous studies, sex, age, comorbidities, tobacco use during/after RT, alcohol consumption, hemoglobin level, tumor stage, ACI, tumor size/volume, subglottic extension and grade, among others, were predictive factors for the survival of patients with early glottic squamous cell carcinomas following definitive RT. By contrast, in the present study, none of these clinical factors were indicative of RT failure in early-stage glottic carcinoma.

To the best of our knowledge, only a few studies have evaluated the dosimetric risk factors for local failure. Several studies investigated the association between total dose and local failure in early glottic carcinomas (18,20-26). The majority of those studies compared the total dose between ≤66 and >66 Gy with regard to local failure, which was not significantly different. The present study was the first to investigate the dosimetric factors of local failure for early-stage glottic carcinoma that was definitively irradiated to a prescription dose of 66 Gy. Furthermore, in the present study, the HI for glottic larynx did not reach the required levels of significance to be considered as a confounding factor. However, the P-value was reasonably low, confirming its importance. This finding indicates that techniques using RT for uniform dose distribution to the target volume, such as intensity-modulated RT (IMRT), may improve the local control rate for early-stage glottic carcinoma treated with definitive RT. Only a limited number of studies have evaluated the treatment outcomes of IMRT for early-stage squamous cell carcinoma of the glottis (27,28). In these studies, the local control rate did not differ significantly between patients treated with IMRT and those treated with RT. However, the prescription dose for patients treated with IMRT was 63 Gy/28 fractions. Therefore, there is potential for improving the local control rate in patients treated with IMRT by setting the prescription dose to 66 Gy/33 fractions, and the minimum dose of the glottic larynx to ≥65 Gy.

The main limitation of the present study was the possible selection bias for the predictive factors owing to the retrospective nature of the study. Therefore, prospective studies are required in the future to confirm our findings.

In conclusion, the minimum dose to the glottic larynx was the only factor found to be significantly associated with the occurrence of local failure. Setting the minimum dose to the glottic larynx at ≥65 Gy may improve the local control rate for early-stage glottic carcinomas irradiated to a prescription dose of 66 Gy.

Table V. Continued.

No.	Age, years	Sex	PS score	T stage	OTT (days)	ACI (yes vs. no)	Smoking (yes vs. no)	Histological tumor grade (well vs. moderate/ poorly differentiated)	Pretreatment hemoglobin (g/dl)
50	84	M	1	1a	44	No	No	Moderate-poor	11
51	85	M	0	1b	45	Yes	No	Well	13.6
52	72	M	0	1b	48	Yes	Yes	Moderate-poor	14.9
53	72	M	0	1b	45	No	Yes	Well	12.5
54	66	M	0	1b	44	No	Yes	Moderate-poor	15.4
55	80	F	0	1a	45	No	No	Well	13.8
56	83	M	0	1b	44	No	No	Well	12.1
57	67	M	0	1a	44	Yes	No	Moderate-poor	16.6
58	73	M	0	1a	45	No	Yes	Well	15.8
59	84	M	0	1b	49	Yes	No	Moderate-poor	13.4
60	71	M	0	1a	44	No	Yes	Well	16.2
61	84	M	1	1a	45	No	Yes	Moderate-poor	14.8
62	70	M	0	1b	45	Yes	Yes	Well	14.2
63	76	M	0	1a	48	No	Yes	Well	14.3
64	68	M	0	1b	48	Yes	Yes	Well	13.6

OTT, overall treatment time; ACI, anterior commissure involvement; M, male; F, female; PS, performance status.
No.	Max Dose to glottic larynx (Gy)	Mean	Min	Max Dose to PTV (Gy)	Mean	Min	Max Dose to CTV (Gy)	Mean	Min	Max	HI	Local control duration (months)
1	68.5	67.0	65.4	1.047	68.6	65.7	62.2	1.103	68.2	65.2	36.7	2.024
2	66.9	66.1	65.3	1.025	67.0	65.4	63.2	1.060	67.2	65.1	25.0	1.111
3	66.5	66.5	66.8	1.026	66.6	66.2	62.0	1.092	66.9	64.5	51.3	1.823
4	67.7	65.5	63.8	1.061	67.8	64.6	59.4	1.141	67.9	64.0	41.1	2.716
5	68.4	66.3	64.5	1.060	68.1	65.5	61.1	1.115	68.4	64.5	49.6	1.333
6	66.6	66.4	66.0	1.090	66.7	65.8	63.8	1.045	66.4	64.1	35.9	1.623
7	66.9	66.6	66.0	1.045	66.9	67.3	62.0	1.103	66.9	64.1	38.0	1.379
8	67.9	67.0	66.1	1.027	67.1	66.9	62.1	1.093	67.9	65.1	32.4	1.891
9	68.6	67.3	66.1	1.015	68.6	66.8	62.9	1.045	68.6	66.3	47.8	1.761
10	66.0	66.0	66.0	1.015	66.1	65.7	62.0	1.045	66.1	64.9	37.8	1.217
11	67.0	67.0	66.0	1.015	67.1	66.1	62.0	1.045	67.1	64.9	37.8	1.217
12	66.9	66.6	66.0	1.042	67.0	66.4	62.0	1.090	67.0	64.4	42.2	1.214
13	67.5	67.0	66.1	1.038	67.4	66.4	62.4	1.086	67.5	64.5	26.0	1.414
14	67.9	67.2	67.0	1.055	67.2	66.9	63.5	1.076	67.5	65.1	24.5	1.487
15	68.2	68.0	66.8	1.068	68.1	66.6	62.7	1.096	68.2	65.5	26.0	1.414
16	68.8	68.0	67.0	1.067	68.1	66.6	62.7	1.096	68.2	65.5	26.0	1.414
17	67.5	66.8	66.0	1.029	67.3	66.4	62.9	1.046	67.3	65.5	35.3	2.115
18	67.9	67.0	66.1	1.029	67.3	66.4	62.9	1.046	67.3	65.5	35.3	2.115
19	67.6	67.0	66.1	1.046	67.1	66.4	62.4	1.090	67.1	65.5	26.0	1.414
20	67.3	66.5	66.0	1.045	67.1	66.4	62.4	1.090	67.1	65.5	26.0	1.414
21	67.1	66.4	66.0	1.025	67.0	66.4	62.3	1.080	67.0	65.5	26.0	1.414
22	67.8	67.0	66.0	1.058	67.4	66.4	62.7	1.090	67.4	65.5	26.0	1.414
23	66.9	66.4	66.0	1.035	66.5	66.4	62.4	1.080	66.5	65.5	26.0	1.414
24	67.2	66.9	66.0	1.070	67.3	66.4	62.4	1.090	67.3	65.5	26.0	1.414
25	66.5	66.4	66.0	1.035	66.5	66.4	62.4	1.090	66.5	65.5	26.0	1.414
26	66.9	66.3	66.0	1.058	66.3	66.3	62.7	1.090	66.3	65.5	26.0	1.414
27	67.1	66.9	66.0	1.070	67.2	66.4	62.4	1.090	67.2	65.5	26.0	1.414
28	70.4	67.7	66.3	1.089	70.4	66.3	62.0	1.122	70.5	65.5	28.9	1.289
29	71.1	68.0	66.3	1.089	71.1	66.3	62.4	1.122	71.1	65.5	28.9	1.289
30	70.3	67.9	66.0	1.080	70.4	66.3	62.1	1.119	70.4	65.5	28.9	1.289
31	69.6	67.9	66.3	1.105	69.6	67.9	62.1	1.119	69.6	65.5	28.9	1.289
32	67.8	67.0	66.7	1.032	68.0	66.8	62.1	1.105	68.0	65.5	28.9	1.289
33	69.6	67.1	66.8	1.074	69.5	67.5	62.7	1.105	69.6	65.5	28.9	1.289
Table VI. Dosimetric risk factors for local failure in all cases.

No.	Dose to glottic larynx (Gy)	Dose to CTV (Gy)	Dose to PTV (Gy)	Local control	Local control duration (months)									
	Max	Mean	Min	HI										
34	67.9	66.1	64.0	1.061	68.5	64.7	57.9	1.183	68.9	63.8	13.6	1.535	Control	55
35	70.3	68.5	65.4	1.075	70.8	66.9	62.2	1.138	70.8	65.9	45.8	3.092	Failure	9
36	67.7	66.9	64.2	1.055	67.7	65.7	59.4	1.140	67.7	64.1	12.6	4.978	Control	69
37	66.6	65.2	66.7	1.014	66.6	65.8	62.8	1.061	66.6	65.3	39.1	1.454	Control	12
38	68.7	68.0	66.3	1.036	69.2	67.3	63.4	1.091	69.5	66.4	8.9	5.516	Control	53
39	67.4	65.8	61.2	1.024	67.8	66.2	63.8	1.063	68.9	65.7	19.1	1.762	Control	52
40	68.5	66.5	60.6	1.139	69.0	67.0	60.6	1.078	70.3	67.6	41.7	3.681	Control	57
41	70.3	68.7	65.4	1.075	70.8	66.9	62.2	1.138	70.8	65.9	45.8	3.092	Failure	9
42	69.0	67.8	66.2	1.042	69.6	67.1	63.3	1.100	69.6	66.2	23.7	2.017	Control	50
43	69.0	68.3	67.1	1.028	69.0	67.5	65.2	1.058	69.0	66.6	47.3	1.555	Control	48
44	70.3	68.9	67.2	1.046	70.3	67.5	62.1	1.132	70.3	66.6	45.9	2.966	Control	48
45	68.9	68.4	67.3	1.024	68.9	67.5	63.7	1.082	68.9	66.9	55.3	1.457	Control	48
46	68.2	66.9	66.0	1.033	68.7	66.0	59.1	1.162	68.7	65.2	25.8	1.497	Control	46
47	69.9	69.7	69.4	1.007	69.9	68.9	66.6	1.050	70.0	68.0	52.8	1.266	Control	47
48	67.7	67.5	66.7	1.015	68.6	66.7	63.9	1.074	68.8	65.8	31.9	2.667	Control	46
49	69.3	68.0	65.3	1.061	69.6	66.3	56.5	1.232	69.6	65.7	51.1	1.318	Control	40
50	69.5	68.6	66.9	1.039	69.5	67.3	62.3	1.116	69.5	66.8	37.7	2.179	Control	39
51	68.8	67.4	65.1	1.057	69.6	66.5	55.7	1.250	70.1	65.3	48.0	1.372	Control	24
52	69.2	68.2	66.5	1.041	69.2	66.3	61.1	1.133	69.2	66.0	59.8	1.836	Control	36
53	69.1	68.2	66.1	1.045	69.3	67.0	62.8	1.104	69.4	66.9	30.2	1.446	Control	35
54	70.3	69.3	66.8	1.052	70.5	67.7	62.3	1.132	71.5	67.7	22.0	1.196	Control	35
55	68.3	67.6	66.0	1.035	68.3	66.6	64.3	1.062	68.3	66.3	60.5	2.262	Control	32
56	70.3	69.7	68.2	1.031	70.4	67.8	64.8	1.086	70.5	67.5	35.3	3.205	Control	6
57	70.9	69.5	67.0	1.058	70.9	67.6	62.6	1.133	71.2	67.9	37.2	1.177	Control	29
58	69.3	67.6	65.6	1.056	70.4	67.7	61.0	1.154	70.6	66.6	59.4	2.000	Control	29
59	69.0	66.7	63.7	1.083	70.3	65.8	57.8	1.216	70.6	65.5	49.2	1.898	Control	21
60	68.5	67.4	65.4	1.047	68.5	65.4	61.0	1.123	68.7	65.7	49.8	1.157	Control	15
61	68.9	66.8	63.5	1.085	69.3	65.0	56.2	1.233	70.0	64.8	45.2	1.423	Control	9
62	69.9	68.9	66.8	1.046	70.1	67.5	63.9	1.097	70.3	67.6	49.2	1.412	Control	16
63	67.3	64.9	62.7	1.073	69.8	65.4	52.1	1.340	70.1	64.7	36.7	1.551	Control	12
64	69.9	67.9	65.3	1.070	70.7	66.2	58.8	1.202	70.7	65.8	25.0	1.437	Control	12

CTV, clinical target volume; PTV, planning target volume; HI, homogeneity index.
Acknowledgements

The authors wish to thank the radiographer Mr Hideaki Tiba, and Dr Yu Tajima, Department of Radiology, Tokyo Medical University Hospital, for their professional assistance.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions

MO, TI, TS and ShS conceived the study, and wrote and revised the manuscript. RM, AS and SaS reviewed, collected and analyzed the data. JP, KT and KS designed the study and acquired the data. All authors contributed to the writing of the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

The present study was approved by the Institutional Review Board of Tokyo Medical University Hachioji Medical Center (Tokyo, Japan) and patient written informed consent was waived due to the retrospective design.

Patient consent for publication

Patient consent for publication was waived due to retrospective design.

Competing interests

The authors declare that they have no competing interests.

References

1. Mendenhall WM, Werning JW, Hinerman RW, Amdur RJ and Villaret DB: Management of T1-T2 glottic carcinomas. Cancer 100: 1786-1792, 2004.
2. Beittler JJ and Johnson JT: Transoral laser excision for early glottic cancer. Int J Radiat Oncol Biol Phys 56: 1063-1066, 2003.
3. Back G and Sood S: The management of early laryngeal cancer: Options for patients and therapists. Curr Opin Otolaryngol Head Neck Surg 13: 85-91, 2005.
4. Akine Y, Tokita N, Ogino T, Tsukiyama I, Egawa S, Saikawa M, Ohyama W, Yoshizumi T and Ebihara S: Radiotherapy of T1 glottic cancer with 6 MeV X-rays. Int J Radiat Oncol Biol Phys 20: 1215-1218, 1991.
5. Pein DA, Lee WR, Hanlon AL, Ridge JA, Curran WJ and Coia LR: Do overall treatment time, field size, and treatment energy influence local control of T1-T2 squamous cell carcinomas of the glottic larynx? Int J Radiat Oncol Biol Phys 34: 823-831, 1996.
6. Mendenhall WM, Parsons JT, Stringer SP, Cassisi NJ and Million RR: T1-T2 vocal cord carcinoma: A basis for comparing the results of radiotherapy and surgery. Head Neck Surg 10: 373-377, 1988.
7. Rudoltz MS, Benhammar A and Mohiuddin M: Prognostic factors for local control and survival in T1 squamous cell carcinoma of the glottis. Int J Radiat Oncol Biol Phys 26: 767-772, 1993.
8. Small W Jr, Mittal BB, Brand WN, Shetty RM, Rademaker AW, Beck GG and Hoover SV: Results of radiation therapy in early glottic carcinoma: Multivariate analysis of prognostic and radiation therapy variables. Radiology 183: 789-794, 1992.
9. Reddy SP, Hong RL, Nagda S and Emani B: Effect of tumor bulk on local control and survival of patients with T1 glottic cancer: A 30-year experience. Int J Radiat Oncol Biol Phys 69: 1389-1394, 2007.
10. Sakata K, Aoki Y, Karasawa K, Hasezawa K, Muta N, Nakagawa K, Terahara A, Onogi Y, Sasaki Y and Akamura A: Radiation therapy in early glottic carcinoma: Uni- and multivariate analysis of prognostic factors affecting local control. Int J Radiat Oncol Biol Phys 30: 1059-1064, 1994.
11. Nishimura Y, Nagata Y, Okajima K, Mitsumori M, Hiraoka M, Masunaga S, Ono K, Shohi K and Kojima H: Radiation therapy for T1,2 glottic carcinoma: Impact of overall treatment time on local control. Radiat Oncol 40: 225-232, 1996.
12. Mendenhall WM, Parsons JT, Million RR and Fletcher GH: T1-T2 squamous cell carcinoma of the glottic larynx treated with radiation therapy: Relationship of dose-fractionation factors to local control and complications. Int J Radiat Oncol Biol Phys 15: 1267-1273, 1988.
13. Asian MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC et al (eds): AJCC Cancer Staging Manual. 8th edition. New York: Springer International Publishing, 2017.
14. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) [Internet], 2018 (cited 2019 Aug 5). Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50
15. Kataria T, Sharma K, Subramani V, Karrthick KP and Bisht SS: Homogeneity index: An objective tool for assessment of conformal radiation treatments. J Med Phys 37: 207-213, 2012.
16. Zhao KL, Liu G, Jiang G, Wang Y, Zhong LJ, Wang Y, Yao WQ, Guo XM, Wu GD, Zhu LX, et al: Association of haemoglobin level with morbidity and mortality of patients with locally advanced oesophageal carcinoma undergoing radiotherapy-a secondary analysis of three consecutive clinical phase III trials. Clin Oncol (R Coll Radiol) 18: 621-627, 2006.
17. Shin NR, Lee YY, Kim SH, Choi CH, Kim TJ, Lee JW, Bae DS and Kim BG: Prognostic value of pretreatment hemoglobin level in patients with early cervical cancer. Obstet Gynecol Sci 57: 28-36, 2014.
18. Al-Mamgani A, van Rooij PH, Woutersen DP, Mehriali R, Tans L, Monserez D and aatenburg de Jong RJ: Radiotherapy for T1-N0 glottic cancer: A multivariate analysis of predictive factors to local control and survival in 1050 patients and a prospective assessment of quality of life and voice handicap index in a subset of 233 patients. Clin Otolaryngol 38: 306-312, 2013.
19. Eskizmirz G, Baskın Y, Yalçın F, Ellidokuz H and Ferris RL: Risk factors for radiation failure in early-stage glottic carcinoma: A systematic review and meta-analysis. Oral Oncol 62: 90-100, 2016.
20. Franchin G, Minatel E, Gobitti C, Talamini R, Sartor G, Caruso G, Grando G, Politi D, Gigante M, Toffoli G, et al: Radiation treatment of squamous cell carcinoma, stage I and II: Analysis of factors affecting prognosis. Int J Radiat Oncol Biol Phys 40: 541-548, 1998.
21. Marshak G, Brenner B, Shvero J, Shakipira J, Ophir D, Hochman I, Marshak G, Sulkes A and Rakowsky E: Prognostic factors for local control and survival in T1 glottic cancer: The Rabin Medical Center retrospective study on 207 patients and a prospective assessment of quality of life and voice handicap index in a subset of 233 patients. Clin Otolaryngol 38: 306-312, 2013.
22. Nakagawa K, Terahara A, Onogi Y, Sasaki Y and Akanuma A: Radiation therapy for T1-T2 glottic carcinoma: Multivariate analysis of predictive factors to local control and complications. Int J Radiat Oncol Biol Phys 30: 1059-1064, 1994.
23. Masunaga S, Ono K, Shoji K and Kojima H: Radiation therapy for T1-T2 glottic carcinoma: A multivariate analysis of predictive factors for local control and survival in T1 squamous cell carcinoma of the glottic larynx treated with radiation therapy: Relationship of dose-fractionation factors to local control and complications. Int J Radiat Oncol Biol Phys 15: 1267-1273, 1988.
25. Murakami R, Nishimura R, Baba Y, Furusawa M, Ogata N, Yumoto E and Yamashita Y: Prognostic factors of glottic carcinomas treated with radiation therapy: Value of the adjacent sign on radiological examinations in the sixth edition of the UICC TNM staging system. Int J Radiat Oncol Biol Phys 61: 471-475, 2005.

26. Tong CC, Au KH, Ngan RK, Cheung FY, Chow SM, Fu YT, Au JS and Law SC: Definitive radiotherapy for early stage glottic cancer by 6 MV photons. Head Neck Oncol 4: 23, 2012.

27. Berwouts D, Swimberghe M, Duprez F, Boterberg T, Bonte K, Deron P, De Gersem W, De Neve W and Madani I: Intensity-modulated radiotherapy for early-stage glottic cancer. Head Neck 38 (Suppl 1): E179-E184, 2016.

28. Zumsteg ZS, Riaz N, Jaffery S, Hu M, Gelblum D, Zhou Y, Mychalczak B, Zelefsky MJ, Wolden S, Rao S and Lee NY: Carotid sparing intensity-modulated radiation therapy achieves comparable locoregional control to conventional radiotherapy in T1-2N0 laryngeal carcinoma. Oral Oncol 51: 716-723, 2015.