Metric-Affine Manifold

Aleks Kleyn

Abstract. We call a manifold with torsion and nonmetricity the metric-affine manifold. The nonmetricity leads to a difference between the auto parallel line and the extreme line, and to a change in the expression of the Frenet transport and moving basis. The torsion leads to a change in the Killing equation. We also need to add a similar equation for the connection.

The analysis of the Frenet transport leads to the concept of the Cartan transport and an introduction of the connection compatible with the metric tensor. The dynamics of a particle follows to the Cartan transport. We need additional physical constraints to make a nonmetricity observable.

1. Torsion Tensor in General Relativity

Close relationship between the metric tensor and the connection is the basis of the Riemann geometry. At the same time, connection and metric as any geometrical object are objects of measurement. When Hilbert derived Einstein equation, he introduced the lagrangian where the metric tensor and the connection are independent. Later on, Hilbert discovered that the connection is symmetric and found dependence between connection and metric tensor. One of the reasons is in the simplicity of the lagrangian.

Since an errors of measurement are inescapable, analysis of quantum field theory shows that either symmetry of connection or dependence between connection and metric may be broken. This assumption leads to metric-affine manifold which is space with torsion and nonzero covariant derivative of metric (section 2). Independence of the metric tensor and the connection allows us to see which object is responsible for different phenomenon in geometry and therefore in physics. Even we do not prove empirically existence of torsion and nonmetricity we see here very interesting geometry.

The metric-affine manifold appears in different physical applications. It is very important to understand what kind of geometry of this space is, how torsion influences on physical phenomena. This is why small group of physicists continue to study gravitation theory with torsion [1, 2, 3, 4, 5].

In particular we have two different definitions of a geodesic curve in the Riemann manifold. We consider a geodesic curve either as line of extreme length (such line is called extreme), or as line such that tangent vector keep to be tangent to line during parallel transfer (such line is called auto parallel). Nonmetricity means that parallel transport does not conserve a length of vector and an angle between vectors. This

Key words and phrases. Differential geometry, general relativity, metric-affine manifold, Frenet transport, extreme line, Killing equation, Lie derivative.

AleksKleyn@MailAPS.org.

I wish to express my thanks to my teachers Gavrilchenko Michael Leonidovich and Rahula Meido Oscarovich for their help and support in my research.
leads to a difference between definitions of auto parallel and extreme lines ([6] and section 5) and to a change in the expression of the Frenet transport. The change of geometry influences the second Newton law which we study in section 11. I show in theorems 10.1 and 11.1 that a free falling particle chooses an extreme line transporting its momentum along the trajectory without change.

Pattern of the Newton second law depends on choice of potential. In case of scalar potential the Newton second law holds the relationship between force, mass and acceleration. In case of vector potential analysis of motion in a gravitational field shows that the field-strength tensor depends on the derivative of the metric tensor.

Nonmetricity dramatically changes law how orthogonal basis moves in space time. However learning of parallel transport in space with nonmetricity allows us to introduce the Cartan transport and an introduction of the connection compatible with the metric tensor (section 10). The Cartan transport holds the basis orthonormal and this makes it valuable tool in dynamics (section 11) because the observer uses an orthonormal basis as his measurement tool. The dynamics of a particle follows to the Cartan transport. The question arises from this conclusion.

We can change the connection as we show in section 10. Why we need to learn manifolds with an arbitrary connection and the metric tensor? The learning of the metric-affine manifold shows why everything works well in the Riemann manifold and what changes in a general case. What kind of different physical phenomena may result in different connections? Physical constraints that appear in a model may lead to appearance of a nonmetricity [4, 7, 8]. Because the Cartan transport is the natural mechanism to conserve orthogonality we expect that we will interpret a deviation of the test particle from the extreme line as a result of an external to this particle force\(^1\). In this case the difference between two types of a transport becomes measurable and meaningful. Otherwise another type of a transport and nonmetricity are not observable and we can use only the transport compatible with metric.

I see here one more opportunity. As follows from the paper [7] the torsion may depend on quantum properties of matter. However the torsion is the part of the connection. This means that the connection may also depend on quantum properties of matter. This may lead to breaking of the Cartan transport. However this opportunity demands additional research.

The effects of torsion and a nonmetricity are cumulative. They may be small but measurable. We can observe their effects not only in strong fields like black hole or Big Bang but in regular conditions as well. Studying geometry and dynamics of point particle gives us a way to test this point of view. There is mind to test this theory in condition when spin of quantum field is accumulated. We can test a deviation from second Newton law or measure torsion by observing the movement of two different particles.

\(^{1}\)For instance if we extend the definition (11.2) of a force to a general case (11.1) we can interpret a deviation of a charged particle in electromagnetic field as result of the force

$$F^j = \frac{e}{cu} g^{ij} F_{k\bar{u}} u^l$$

The same way we can interpret a deviation of the auto parallel line as the force

$$F^i = -\frac{mc}{w^i} \Gamma(C)_{k\bar{l}} u^k u^l$$

I remind that the Cartan symbol is the tensor.
To test if the spacetime has the torsion we can test the opportunity to build a parallelogram in spacetime. We can get two particles or two photons that start their movement from the same point and using a mirror to force them to move along opposite sides of the parallelogram. We can start this test when we do not have quantum field and then repeat the test in the presence of quantum field. If particles meet in the same place or we have the same interference then we have torsion equal 0 in this thread. In particular, the torsion may influence the behavior of virtual particles.

2. Metric-affine Manifold

For connection \([11]-(4.2)\) we defined the torsion form
\[
T^a = d^2 x^a + \omega^a_b \wedge dx^b
\]
(2.1)

From \([11]-(4.2)\) it follows
\[
\omega^a_b \wedge dx^b = (\Gamma^a_{bc} - \Gamma^a_{cb})dx^c \wedge dx^b
\]
(2.2)

Putting (2.2) and \([11]-(4.14)\) into (2.1) we get
\[
T^a = T^a_{cb}dx^c \wedge dx^b = -c^a_{cb}dx^c \wedge dx^b + (\Gamma^a_{bc} - \Gamma^a_{cb})dx^c \wedge dx^b
\]
(2.3)

where we defined torsion tensor
\[
T^a_{cb} = \Gamma^a_{bc} - \Gamma^a_{cb} - c^a_{cb}
\]
(2.4)

Commutator of second derivatives has form
\[
[u^a_{;kl} - u^a_{;lk}] = R^a_{b\ell k}u^b_{;} - T^a_{;bp}u^b_{;p}
\]
(2.5)

From (2.5) it follows that
\[
\xi^a_{;cb} - \xi^a_{;bc} = R^a_{b\ell k}\xi^d_{;} - T^a_{;bp}\xi^d_{;p}
\]
(2.6)

In Riemann space we have metric tensor \(g_{ij}\) and connection \(\Gamma^k_{ij}\). One of the features of the Riemann space is symmetry of connection and covariant derivative of metric is 0. This creates close relation between metric and connection. However the connection is not necessarily symmetric and the covariant derivative of the metric tensor may be different from 0. In latter case we introduce the nonmetricity
\[
Q^i_{j;k} = g^i_{;k} = g^i_{;k} + \Gamma^i_{pj}g^{pj} + \Gamma^i_{pk}g^{ip}
\]
(2.7)

Due to the fact that derivative of the metric tensor is not 0, we cannot raise or lower index of a tensor under derivative as we do it in regular Riemann space. Now this operation changes to next
\[
a^i_{;k} = g^{ij}a_{jk} + g^{ij}_{;k}a_j
\]

This equation for the metric tensor gets the following form
\[
g^{ab}_{;k} = -g^{ai}g^{bj}g_{ij;k}
\]

Definition 2.1. We call a manifold with a torsion and a nonmetricity the **metric-affine manifold** [1].

If we study a submanifold \(V_n\) of a manifold \(V_{n+m}\), we see that the immersion creates the connection \(\Gamma^\alpha_{\beta\gamma}\) that relates to the connection in manifold as
\[
\Gamma^\alpha_{\beta\gamma}c^l_\alpha = \Gamma^l_{mk}c^m_\beta c^k_\gamma + \partial c^l_\beta / \partial u^\gamma
\]
Therefore there is no smooth immersion of a space with torsion into the Riemann space.

3. Geometrical Meaning of Torsion

Suppose that \(a \) and \(b \) are non collinear vectors in a point \(A \) (see figure 3.1). We draw the geodesic \(L_a \) through the point \(A \) using the vector \(a \) as a tangent vector to \(L_a \) in the point \(A \). Let \(\tau \) be the canonical parameter on \(L_a \) and

\[
\frac{dx^k}{d\tau} = a^k
\]

We transfer the vector \(b \) along the geodesic \(L_a \) from the point \(A \) into a point \(B \) that defined by any value of the parameter \(\tau = \rho > 0 \). We mark the result as \(b' \).

We draw the geodesic \(L_b \) through the point \(A \) using the vector \(b \) as a tangent vector to \(L_b \) in the point \(A \). Let \(\phi \) be the canonical parameter on \(L_b \) and

\[
\frac{dx^k}{d\phi} = b^k
\]

We define a point \(C \) on the geodesic \(L_b \) by parameter value \(\phi = \rho \).

Formally lines \(AB \) and \(DE \) as well as lines \(AD \) and \(BC \) are parallel lines. Lengths of \(AB \) and \(DE \) are the same as well as lengths of \(AD \) and \(BC \) are the same. We call this figure a parallelogram based on vectors \(a \) and \(b \) with the origin in the point \(A \).

Theorem 3.1. Suppose \(CBADE \) is a parallelogram with a origin in the point \(A \); then the resulting figure will not be closed \([6]\). The value of the difference of coordinates of points \(C \) and \(E \) is equal to surface integral of the torsion over this parallelogram

\[
\Delta_{CE}x^k = \int \int T^{k}_{mn}dx^m \wedge dx^n
\]

Proof. We can find an increase of coordinate \(x^k \) along any geodesic as

\[
\Delta x^k = \frac{dx^k}{d\tau} + \frac{1}{2} \frac{d^2x^k}{d\tau^2} \tau^2 + O(\tau^2) = \frac{dx^k}{d\tau} - \frac{1}{2} \Gamma^k_{mn} \frac{dx^m}{d\tau} \frac{dx^n}{d\tau} \tau^2 + O(\tau^2)
\]

where \(\tau \) is canonical parameter and we take values of derivatives and components \(\Gamma^k_{mn} \) in the initial point. In particular we have

\[
\Delta_{AB}x^k = a^k \rho - \frac{1}{2} \Gamma^k_{mn}(A)a^m a^n \rho^2 + O(\rho^2)
\]

Proof of this statement I found in \([9]\).
along the geodesic L_a and
\begin{equation}
\Delta_{BC} x^k = b_k^\prime \rho - \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 + O(\rho^2)
\end{equation}
along the geodesic L_b'. Here
\begin{equation}
b_k^\prime = b_k - \Gamma_{mn}^k (A) b^m dx^n + O(dx)
\end{equation}
is the result of parallel transfer of b_k from A to B and
\begin{equation}
dx^k = \Delta_{AB} x^k = a_k^\prime \rho
\end{equation}
with precision of small value of first level. Putting (3.3) into (3.2) and (3.2) into
(3.1) we will receive
\begin{equation}
\Delta_{BC} x^k = b_k^\prime \rho - \Gamma_{mn}^k (A) b^m a^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 + O(\rho^2)
\end{equation}
Common increase of coordinate x^K along the way ABC has form
\begin{equation}
\Delta_{ABC} x^k = \Delta_{AB} x^k + \Delta_{BC} x^k = \\
= (a_k^\prime + b_k^\prime) \rho - \Gamma_{mn}^k (A) b^m a^n \rho^2 - \\
- \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) a^m a^n \rho^2 + O(\rho^2)
\end{equation}
Similar way common increase of coordinate x^K along the way ADE has form
\begin{equation}
\Delta_{ADE} x^k = \Delta_{AD} x^k + \Delta_{DE} x^k = \\
= (a_k^\prime + b_k^\prime) \rho - \Gamma_{mn}^k (A) a^m b^n \rho^2 - \\
- \frac{1}{2} \Gamma_{mn}^k (D) a^m a^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) b^m b^n \rho^2 + O(\rho^2)
\end{equation}
From (3.4) and (3.5), it follows that
\begin{equation}
\Delta_{ADE} x^k - \Delta_{ABC} x^k = \\
= \Gamma_{mn}^k (A) b^m a^n \rho^2 + \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 + \frac{1}{2} \Gamma_{mn}^k (A) a^m a^n \rho^2 - \\
- \Gamma_{mn}^k (A) a^m b^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (D) a^m a^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) b^m b^n \rho^2 + O(\rho^2)
\end{equation}
For small enough value of ρ underlined terms annihilate each other and we get integral sum for expression

$$ \Delta_{ADE} x^k - \Delta_{ABC} x^k = \int \int (\Gamma_{nm}^k - \Gamma_{mn}^k) \, dx^m \wedge dx^n $$

However it is not enough to find the difference

$$ \Delta_{ADE} x^k - \Delta_{ABC} x^k $$
to find the difference of coordinates of points C and E. Coordinates may be anholonomic and we have to consider that coordinates along closed loop change

$$ \Delta x^k = \oint_{ECBADE} dx^k = \int \int c_{mn}^k \, dx^m \wedge dx^n $$

where c is anholonomity object.

Finally the difference of coordinates of points C and E is

$$ \Delta_{CE} x^k = \Delta_{ADE} x^k - \Delta_{ABC} x^k + \Delta x^k = \int \int (\Gamma_{nm}^k - \Gamma_{mn}^k - c_{mn}^k) \, dx^m \wedge dx^n $$

Using (2.4) we prove the statement. \square

4. Relation between Connection and Metric

Now we want to find how we can express connection if we know metric and torsion. According to definition

$$ -Q_{kij} = g_{ij,k} = g_{ij,k} - \Gamma_{ik}^p g_{pj} - \Gamma_{jk}^p g_{pi} $$

$$ -Q_{kij} = g_{ij,k} - \Gamma_{ik}^p g_{pj} - \Gamma_{jk}^p g_{pi} - S_{jk}^p g_{pi} $$

We move derivative of g and torsion to the left-hand side.

(4.1) $g_{ij,k} + S_{jk}^p g_{pi} = \Gamma_{ik}^p g_{pj} + \Gamma_{jk}^p g_{pi}$

Changing order of indexes we write two more equations

(4.2) $g_{jk,i} + Q_{ijk} - S_{kj}^p g_{pi} = \Gamma_{ik}^p g_{pj} + \Gamma_{jk}^p g_{pi}$

(4.3) $g_{ki,j} + Q_{jki} - S_{ij}^p g_{pk} = \Gamma_{kj}^p g_{pi} + \Gamma_{ij}^p g_{pk}$

If we substract equation (4.1) from sum of equations (4.2) and (4.1) we get

$$ g_{ki,j} + g_{jk,i} - g_{ij,k} + Q_{ijk} + Q_{jki} - Q_{kij} - S_{ij}^p g_{pk} - S_{kj}^p g_{pi} + S_{jk}^p g_{pi} = 2 \Gamma_{jk}^p g_{pk} $$

Finally we get

$$ \Gamma_{ji}^p = \frac{1}{2} g^{rk} (g_{ki,j} + g_{jk,i} - g_{ij,k} + Q_{ijk} + Q_{jki} - Q_{kij} - S_{ij}^r g_{rk} - S_{ki}^r g_{rj} + S_{jk}^r g_{ri}) $$
5. LINE WITH EXTREME LENGTH

There are two different definitions of a geodesic curve in the Riemann manifold. One of them relies on the parallel transport. We call an appropriate line auto parallel. Another definition depends on the length of trajectory. We call a n
appropriate line extreme. In a metric-affine manifold these lines have different equations [6]. Equation of auto parallel line does not change. However, the equation of extreme line changes³.

Theorem 5.1. Let \(x^i = x^i(t, \alpha) \) be a line depending on a parameter \(\alpha \) with fixed points at \(t = t_1 \) and \(t = t_2 \) and we define its length as

\[
s = \int_{t_1}^{t_2} \sqrt{g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} \, dt
\]

Then

\[
\delta s = \int_{t_1}^{t_2} \left(\frac{1}{2} (g_{kj;i} - g_{ik;j} - g_{ij;k}) \frac{dx^k}{ds} \frac{dx^j}{ds} ds - g_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds} ds \right) \delta x^i
\]

where \(\delta x^k \) is the change of a line when \(\alpha \) changes.

Proof. We have

\[
\frac{ds}{dt} = \sqrt{g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}}
\]

and

\[
\delta s = \int_{t_1}^{t_2} \frac{\delta \left(g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt} \right)}{2 \frac{ds}{dt}} dt
\]

We can estimate the numerator of this fraction as

\[
g_{ij;k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} = g_{ij;k} \delta x^k \frac{dx^i}{dt} dt + 2g_{ij} \delta x^i \frac{dx^j}{dt} dt = g_{ij;k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} dt + 2g_{ij} \delta x^i \frac{dx^j}{dt} dt =
\]

and we have

\[
\delta s = \int_{t_1}^{t_2} \frac{g_{ij;k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta x^i \frac{dx^j}{dt} dt}{2 \frac{ds}{dt}}
\]

\[
= \int_{t_1}^{t_2} \left(\frac{1}{2} g_{ij;k} \delta x^k \frac{dx^i}{ds} \frac{dx^j}{ds} + g_{ij} \delta x^i \frac{dx^j}{ds} \right) \delta x^i
\]

First term is 0 because points, when \(t = t_1 \) and \(t = t_2 \), are fixed. Therefore, we have got the statement of the theorem. □

³To derive the equation (5.3) I follow the ideas that Rashevsky [10] implemented for the Riemann manifold
Theorem 5.2. An extreme line satisfies equation

\[
\frac{D^2x^j}{ds^2} = \frac{1}{2} g^{ij} \left(g_{kj;i} - g_{ik;j} - g_{ij;k} \right) \frac{dx^k}{ds} \frac{dx^j}{ds}
\]

Proof. To find a line with extreme length we use the functional (5.1). Since \(\delta s = 0 \),

\[
\frac{1}{2} \left(g_{kj;i} - g_{ik;j} - g_{ij;k} \right) \frac{dx^k}{ds} \frac{dx^j}{ds} = \frac{g_{ij}}{2} \frac{dx^j}{ds} \frac{dx^j}{ds} = 0
\]

follows from (5.2). \(\square \)

Theorem 5.3. Parallel transport along an extreme line holds length of tangent vector.

Proof. Let

\[
v^i = \frac{dx^i}{ds}
\]

be the tangent vector to extreme curve. From theorem 5.2 it follows that

\[
\frac{Dv^l}{ds} = \frac{g^{il}}{2} \left(g_{kj;i} - g_{ik;j} - g_{ij;k} \right) v^k v^j
\]

and

\[
\frac{Dg_{kl} v^k v^l}{ds} = \frac{Dg_{kl}}{ds} v^k v^l + g_{kl} \frac{Dv^k}{ds} v^l + g_{kl} v^k \frac{Dv^l}{ds} =
\]

\[
+ g_{kl} g^{ik} \frac{1}{2} \left(g_{rj;i} - g_{ir;j} - g_{ij;r} \right) v^r v^l v^j + g_{kl} v^k \frac{g_{il}}{2} \left(g_{rj;i} - g_{ir;j} - g_{ij;r} \right) v^r v^j =
\]

\[
= g_{kl} v^p v^k v^l + \left(g_{rj;i} - g_{ir;j} - g_{ij;r} \right) v^r v^j = 0
\]

Therefore length of the vector \(v^i \) does not change along extreme curve. \(\square \)

6. Frenet Transport

All equations that we derived before are different, however they have something common in their structure. All these equations express movement along a line and in the right side of them we can see the curvature of this line.

By definition curvature of a line is

\[
\xi(s) = \left| \frac{D^2x^j}{ds^2} \right|
\]

Therefore we can introduce unit vector \(e_1 \) such that

\[
\frac{Dx^l}{ds} = \xi e_1^l
\]

Knowledge of the transport of a basis along a line is very important, because it allows us to study how spacetime changes when an observer moves through it. Our task is to discover equations similar to the Frenet transport in the Riemann space.

We design the accompaniment basis \(v^i_k \) the same way we do it in the Riemann space.

Vectors

\[
\xi^i(t) = \frac{dx^i(t)}{dt}, \quad \frac{D\xi^i}{dt}, \quad \ldots \quad \frac{D^{n-1}\xi^i}{dt^{n-1}}
\]
in general are linearly independent. We call plane that we create on the base of first \(p \) vectors as \(p \)-th osculating plane \(R_p \). This plane does not depend on choice of parametr \(t \).

Our next task is to create orthogonal basis which shows us how line changes. We get vector \(\nu^i_1 \in R_1 \) so it is tangent to line. We get vector \(\nu^i_p \in R_p, p > 1 \) such that \(\nu^i_p \) is orthogonal to \(R_{p-1} \). If original line is not isotropic then each \(\nu^i_p \) also is not isotropic and we can get unit vector in the same direction. We call this basis accompaniment.

Theorem 6.1. The Frenet transport in the metric-affine manifold gets the form

\[
\frac{D\nu^i_p}{dt} = \frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_p \nu^l_p - \epsilon_p \nu^i_{p-1} + \epsilon_p \nu^i_{p+1}
\]

Here \(\nu^i_p \) is vector of basis, moving along line,

\[
\epsilon_k = \text{sign}(g_{pq}\nu^p_k \nu^q_k)
\]

Proof. We introduce vectors \(\nu^i_k \) in this way that

\[
\frac{D\nu^i_p}{dt} = \frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_p \nu^l_p + a^q_p \nu^i_q
\]

where \(a^q_p = 0 \) when \(q > p + 1 \). Now we can determine coefficients \(a^q_p \). If we get derivative of the equation

\[
g_{ij} \nu^i_p \nu^j_q = \text{const}
\]

and substitute (6.2) we get the equation

\[
\frac{dg_{ij} \nu^i_p \nu^j_q}{ds} = \frac{Dg_{ij}}{ds} \nu^i_p \nu^j_q + g_{ij} \frac{D\nu^i_p}{ds} \nu^j_q + g_{ij} \nu^i_p \frac{D\nu^j_q}{ds} = g_{ij} \nu^i_p \nu^j_q +
\]

\[
+ g_{ij} (\frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_p \nu^l_p + a^q_a \nu^i_q) \nu^j_q +
\]

\[
+ g_{ij} \nu^i_p (\frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_p \nu^l_p + a^q_a \nu^j_q) =
\]

\[
= g_{ij} \nu^i_p \nu^j_q +
\]

\[
+ g_{ij} (\frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_a \nu^l_q + g_{ij} a^q_a \nu^i_q \nu^j_q) +
\]

\[
+ g_{ij} (\frac{1}{2}g^{im}(g_{kl;m} - g_{kl;i} - g_{ml;k})\nu^k_a \nu^l_p + g_{ij} a^q_a \nu^i_p \nu^j_q) =
\]

\[
= \frac{1}{2} \nu^k_a \nu^l_p (2g_{ij;k} + g_{ki;j} - g_{kj;i} - g_{kj;i} + g_{ji;k} - g_{ki;j} - g_{ij;k}) +
\]

\[
+ \epsilon_p a^b_a + \epsilon_a a^b_p = 0
\]

\(a^q_p = 0 \) when \(q > p + 1 \) by definition. Therefore \(a^q_p = 0 \) when \(q < p - 1 \).

Introducing \(\xi_p = a^p_{p+1} \) we get

\[
a^p_{p+1} = -\epsilon_p \xi_{p+1}
\]

When \(q = p \) we get

\[
a^p_p = 0
\]

We get (6.1) when substitute \(a^q_p \) in (6.2). \(\square \)
7. Lie Derivative

Vector field ξ^k on manifold generates infinitesimal transformation

$$x'^k = x^k + \epsilon_k^k$$

which leads to the Lie derivative. Lie derivative tells us how the object changes when we move along the vector field.

Theorem 7.1. Lie derivative of metric has form

$$\mathcal{L}_\xi g_{ab} = \xi^<_{<a>g_{kb}} + \xi^<_{}g_{ka} + T^i_{ka}g_{ib}\xi^k + T^i_{kb}g_{ia}\xi^k + g_{ab,\langle k}\xi^k$$

Proof. We start from transformation (7.1). Then

$$g_{ab}(x') = g_{ab}(x) + g_{ab,c}\epsilon_c^c$$

$$g_{ab}'(x') = \frac{\partial x^c}{\partial x^b} \frac{\partial x^d}{\partial x^a} g_{cd}(x)$$

$$= g_{ab} - \epsilon_c^a g_{cb} - \epsilon_c^b g_{ac}$$

According to definition of Lie derivative we have

$$\mathcal{L}_\xi g_{ab} = g_{ab}(x') - g_{ab}'(x')$$

$$= g_{ab,c}\epsilon_c^c + \epsilon_{<a>g_{kb}} + \epsilon_{}g_{ka}$$

$$= (g_{ab,c}\epsilon_c^c + \Gamma^d_{ac}g_{db} + \Gamma^d_{be}g_{ad})\epsilon_c^c$$

$$+ \epsilon (\xi^<_{<a>} - \Gamma^d_{da}\epsilon_d^c)g_{cb} + \epsilon (\xi^<_{} - \Gamma^d_{db}\epsilon_d^c)g_{ac}$$

$$\mathcal{L}_\xi g_{ab} = g_{ab,\langle c}\epsilon_c^c + \Gamma^d_{ac}g_{db}\epsilon_c^c + \Gamma^d_{be}g_{ad}\epsilon_c^c$$

$$+ \xi^c_{\langle a>}g_{cb} - \Gamma^d_{da}\epsilon_d^c g_{cb} + \xi^c_{\langle b>}g_{ac} - \Gamma^d_{db}\epsilon_d^c g_{ac}$$

(7.2) follows from (7.3) and (2.4).

Theorem 7.2. Lie derivative of connection has form

$$\mathcal{L}_\xi \Gamma^a_{bc} = -\Gamma^a_{bc,p}\epsilon^p - \Gamma^b_{bp,c}\epsilon^c - \Gamma^c_{bc,p}\epsilon^p + \Gamma^a_{bc,\langle c}\epsilon_c^c + \xi^a_{\langle c>}$$

Proof. We start from transformation (7.1). Then

$$\Gamma^a_{bc}(x') = \Gamma^a_{bc}(x) + A^a_{bc}(x')$$

$$\Gamma^a_{bc}'(x') = \Gamma^a_{bc}(x') + A^a_{bc}(x')$$

$$= \Gamma^a_{bc}(x) + \Gamma^a_{bc,p}\epsilon^p + A^a_{bc,\langle c}\epsilon_c^c + \xi^a_{\langle c>}$$

$$= \Gamma^a_{bc}(x) + \Gamma^a_{bc,p}\epsilon^p$$

$$\Gamma^a_{bc}(x') = \Gamma^a_{bc}(x) + A^a_{bc}(x')$$

$$= \frac{\partial x^e}{\partial x^a} \frac{\partial x^f}{\partial x^b} \Gamma^g_{ef}(x) + \frac{\partial x^g}{\partial x^e} \frac{\partial x^h}{\partial x^b} \delta_x^e + \frac{\partial x^h}{\partial x^e} \frac{\partial x^m}{\partial x^f} \delta_x^m A^g_{ef}(x)$$

$$= \Gamma^a_{bc} + \epsilon_{\xi^a_{\langle c},\Gamma^a_{bc}} - \epsilon_{\xi^a_{\langle c},\Gamma^a_{bc}} + \epsilon_{\xi^a_{\langle c},\Gamma^a_{bc}}$$

By definition

$$\xi^a_{\langle c>} = \xi^a_{\xi_{\langle c},p} + \Gamma^a_{pe}\epsilon^p$$

(7.5)
\(\xi_{\gamma,ef}^a = \xi_{\gamma,ef}^a + \Gamma_{\gamma,pe}^{\gamma, ep} + \Gamma_{\gamma,pe}^{\gamma, f} + \Gamma_{\gamma,pe}^{\gamma, p} - \Gamma_{\gamma,ef}^{\gamma, p} \)
\(= \xi_{\gamma,ef}^a + \Gamma_{\gamma,pe}^{\gamma, ep} + \Gamma_{\gamma,pe}^{\gamma, f} + \Gamma_{\gamma,pe}^{\gamma, p} - \Gamma_{\gamma,ef}^{\gamma, p} \)
\(= \xi_{\gamma,ef}^a + \Gamma_{\gamma,pe}^{\gamma, ep} + \Gamma_{\gamma,pe}^{\gamma, f} + \Gamma_{\gamma,pe}^{\gamma, p} - \Gamma_{\gamma,ef}^{\gamma, p} \)
\((7.8) \)
\(\xi_{\gamma,ef}^a = \xi_{\gamma,ef}^a - \Gamma_{\gamma,pe}^{\gamma, ep} - \Gamma_{\gamma,pe}^{\gamma, f} + \Gamma_{\gamma,pe}^{\gamma, p} - \Gamma_{\gamma,ef}^{\gamma, p} \)

We substitute (7.8) and (7.7) into (7.6) and get

\[\Gamma_{\gamma, bc}^{\gamma, } = \Gamma_{\gamma, bc} + \epsilon \left(\xi_{\gamma, bc}^a \right) \epsilon^{-1} \]

\[= \left(\Gamma_{\gamma, bc} + \Gamma_{\gamma, bc,p} \epsilon \right) \epsilon^{-1} \]

\((7.9) \)
\[\Gamma_{\gamma, bc}^{\gamma, } = \Gamma_{\gamma, bc} + \epsilon \left(\xi_{\gamma, bc}^a \right) \epsilon^{-1} \]

According definition of Lie derivative we have using (7.5) and (7.9)

\[\mathcal{L}_\xi \Gamma_{\gamma, bc}^{\gamma, } = \left(\Gamma_{\gamma, bc}^{\gamma, } - \Gamma_{\gamma, bc}^{\gamma, } \right) \epsilon^{-1} \]

\[= \left(\Gamma_{\gamma, bc} + \Gamma_{\gamma, bc,p} \epsilon \right) \epsilon^{-1} \]

\((7.10) \)
\[\mathcal{L}_\xi \Gamma_{\gamma, bc}^{\gamma, } = \Gamma_{\gamma, bc} + \epsilon \left(\xi_{\gamma, bc}^a \right) \epsilon^{-1} \]

From (7.10) and (2.4) it follows

\[\mathcal{L}_\xi \Gamma_{\gamma, bc}^{\gamma, } = \Gamma_{\gamma, bc} + \epsilon \left(\xi_{\gamma, bc}^a \right) \epsilon^{-1} \]

\((7.11) \)

From (7.11) and [11]-[4.23] it follows

\[\mathcal{L}_\xi \Gamma_{\gamma, bc}^{\gamma, } = \Gamma_{\gamma, bc} + \epsilon \left(\xi_{\gamma, bc}^a \right) \epsilon^{-1} \]

\[= \left(\Gamma_{\gamma, bc} + \Gamma_{\gamma, bc,p} \epsilon \right) \epsilon^{-1} \]
From (7.12) and (8.1) it follows
\[
\mathcal{L}_\xi \Gamma^a_{bc} = \frac{T^a_{cpe}}{T^c_{ebp}} \xi_p + \frac{T^a_{bce}}{T^c_{epb}} \xi_e + \frac{T^a_{ecb}}{T^c_{bpe}} \xi_b
\]
\[
+ T^a_{bc:p} \xi_p \xi_p + T^a_{bpe} \xi_e \xi_p + T^a_{ecb} \xi_b \xi_b
\]
\[
+ T^a_{epb} \xi_e \xi_p + T^a_{bpc} \xi_b \xi_p + T^a_{ecb} \xi_b \xi_b
\]
\[
+ T^a_{bpe} \xi_e \xi_p + T^a_{ecb} \xi_b \xi_b
\]
\[
+ T^a_{bpe} \xi_e \xi_p + T^a_{ecb} \xi_b \xi_b
\]
\[
(7.13) \quad \mathcal{L}_\xi \Gamma^a_{bc} = -\frac{T^a_{bpc}}{T^c_{ebp}} \xi_p - \frac{T^a_{bpe}}{T^c_{epb}} \xi_e - \frac{T^a_{ecb}}{T^c_{bpe}} \xi_b
\]
\[
- \frac{T^a_{ecb}}{T^c_{bpe}} \xi_e \xi_p - \frac{T^a_{bpe}}{T^c_{epb}} \xi_e \xi_p
\]
\[
- \frac{T^a_{bpc}}{T^c_{ebp}} \xi_p \xi_p + \xi_a^{eb}
\]
We substitute (2.6) into (7.13)
\[
(7.14) \quad \mathcal{L}_\xi \Gamma^a_{bc} = -\frac{T^a_{bpc}}{T^c_{ebp}} \xi_p - \frac{T^a_{bpe}}{T^c_{epb}} \xi_e - \frac{T^a_{ecb}}{T^c_{bpe}} \xi_b
\]
\[
- \frac{T^a_{ecb}}{T^c_{bpe}} \xi_e \xi_p - \frac{T^a_{bpe}}{T^c_{epb}} \xi_e \xi_p
\]
\[
- \frac{T^a_{bpc}}{T^c_{ebp}} \xi_p \xi_p + \xi_a^{eb}
\]
(7.4) follows from (7.14).

Corollary 7.3. Lie derivative of connection in Rieman space has form
\[
(7.15) \quad \mathcal{L}_\xi \Gamma^a_{bc} = -R^a_{bcp} \xi_p + \xi_a^{cb}
\]
Proof. (7.15) follows from (7.4) when \(T^a_{bc} = 0\)

8. **Bianchi Identity**

Theorem 8.1. The first Bianchi identity for the space with torsion has form
\[
T^k_{ij;} + T^k_{m;i} + T^k_{j;m} = \Gamma^k_{ji,m} - \Gamma^k_{jm,i} + \Gamma^k_{im,j} - \Gamma^k_{mi,j} - \Gamma^k_{mj,i} - \Gamma^k_{jm,i}
\]
(8.1)

Proof. Differential of equation (2.3) has form
\[
T^k_{ij,m} \theta^m \wedge \theta^i \wedge \theta^j = (\Gamma^k_{ij,m} - \Gamma^k_{jm,i}) \theta^m \wedge \theta^i \wedge \theta^j
\]
Two forms are equal when their coefficients are equal. Therefore
\[
T^k_{ij,m} + T^k_{m;i} + T^k_{j;m} = \Gamma^k_{ji,m} - \Gamma^k_{jm,i} + \Gamma^k_{im,j} - \Gamma^k_{mi,j} - \Gamma^k_{mj,i} - \Gamma^k_{jm,i}
\]
We express derivatives using covariant derivatives and change order of terms
\[
T^k_{ij;} + T^k_{m;i} + T^k_{j;m} = \Gamma^k_{ji,m} - \Gamma^k_{jm,i} + \Gamma^k_{im,j} - \Gamma^k_{mi,j} - \Gamma^k_{mj,i} - \Gamma^k_{jm,i}
\]
(8.2)
(8.1) follows from (8.2).
If we get a derivative of form \([11\cdot4.22]\) we will see that the second Bianchi identity does not depend on the torsion.

9. **Killing Vector**

Invariance of the metric tensor \(g\) under the infinitesimal coordinate transformation (7.1) leads to the **Killing equation**.

Theorem 9.1. Killing equation in the metric-affine manifold has form
\[
\xi^k_{;a}g_{bk} + \xi^k_{;b}g_{ka} + T^k_{ka}g_0\xi^k + T^l_{kb}g_0\xi^k + g_{ab,;k}\xi^k = 0
\]

Proof. Invariance of the metric tensor \(g\) means that its Lie derivative equal 0
\[
\mathcal{L}_\xi g_{ab} = 0
\]
(9.1) follows from (9.2) and (7.2). □

Theorem 9.2. The condition of invariance of the connection in the metric-affine manifold has form
\[
\xi^a_{;bc} = R^a_{bcp}\xi^p + T^a_{bp;\langle c}}\xi^p + T^a_{bp}\xi^p_{;\langle c}
\]

Proof. Because connection is invariant under the infinitesimal transformation we have
\[
\mathcal{L}_\xi \Gamma^a_{bc} = 0
\]
(9.3) follows from (9.4) and (7.4). □

We call equation (9.3) the **Killing equation of second type** and vector \(\xi^a\) a **Killing vector of second type**.

Theorem 9.3. Killing vector of second type satisfies equation
\[
0 = R^a_{bcp}\xi^p + R^a_{cpb}\xi^p + R^a_{pbc}\xi^p + T^a_{bp;\langle c}}\xi^p + T^a_{bp}\xi^p_{;\langle c}
\]

Proof. From (9.3) and (2.6) it follows that
\[
R^a_{pbc}\xi^p - T^a_{bp;\langle c}}\xi^p = R^a_{bcp}\xi^p + T^a_{cp;\langle b}}\xi^p + T^a_{cp}\xi^p_{;\langle b}
\]
(9.6) follows from (9.6). □

Corollary 9.4. The Killing equation of second type in the Riemann space is the identity. The connection in the Riemann space is invariant under any infinitesimal transformation (7.1)

Proof. First of all the torsion is 0. The rest is the consequence of the first Bianchi identity. □
10. Cartan Transport

Theorems 5.2 and 6.1 state that the movement along a line causes an additional to the parallel transport transformation of a vector. This transformation is very important and we call it the Cartan transport. We introduce the Cartan symbol

\[\Gamma(C)_{kl}^i = \frac{1}{2} g^{im} (g_{kl;m} - g_{km;l} - g_{ml;k}) \]

and the Cartan connection

\[\Gamma^i_{kl} = \Gamma^i_{kl} - \Gamma(C)_{kl}^i = \Gamma^i_{kl} - \frac{1}{2} g^{im} (g_{kl;m} - g_{km;l} - g_{ml;k}) \]

Using the Cartan connection we can write the Cartan transport as

\[da^i = - \Gamma^i_{kl} a^k dx^l \]

Respectively we define the Cartan derivative

\[\nabla_l a^i = a^i_{(l)} = \partial_l a^i + \Gamma^i_{kl} a^k \]

\[\mathcal{D} a^i = da^i + \Gamma^i_{kl} a^k dx^l \]

Theorem 10.1. The Cartan transport along an extreme line holds length of the tangent vector.

Proof. Let

\[v^i = \frac{dx^i}{ds} \]

be the tangent vector to an extreme curve. From theorem 5.2 it follows that

\[\frac{Dv^l}{ds} = \frac{1}{2} g^{il} (g_{kj;i} - g_{ik;j} - g_{ij;k}) v^j v^k \]

and

\[\frac{Dg_{kl} v^k v^l}{ds} = \frac{Dg_{kl}}{ds} v^k v^l + g_{ki} \frac{Dv^k}{ds} v^l + g_{kl} v^k \frac{Dv^l}{ds} = \]

\[= g_{kl;p} v^p v^k v^l + \frac{1}{2} (g_{kj;i} - g_{ik;j} - g_{ij;k}) v^r v^j v^l + \]

\[= g_{kl;p} v^p v^k v^l + g_{kj;i} - g_{ik;j} - g_{ij;k} v^r v^j v^l = 0 \]

Therefore the length of the vector \(v^i \) does not change along the extreme curve. \(\square \)

We extend the Cartan transport to any geometrical object like we do for the parallel transport.

Theorem 10.2.

\[g_{ij;\{l\}} = 0 \]
Proof.
\[
\begin{align*}
\nabla_l g_{ij} &= \partial_l g_{ij} - \Gamma^k_{il} g_{kj} - \Gamma^k_{jl} g_{ik} \\
&= g_{ij;l} + \frac{1}{2} g^{km} (g_{il;m} - g_{im;l} - g_{ml;i}) g_{kj} + \frac{1}{2} g^{km} (g_{jl;m} - g_{jm;l} - g_{ml;j}) g_{ik} = 0
\end{align*}
\]
\[\square\]

The Cartan connection \(\Gamma^i_{kl}\) differs from the connection \(\Gamma^i_{kl}\) by additional term which is symmetric tensor. For any connection we introduce standard way derivative and curvature. Statements of geometry and physics have the same form independently of whether I use the connection \(\Gamma^i_{kl}\) or the Cartan connection. To show this we can generalize the idea of the Cartan connection and consider connection defined by equation
\[(10.1)\]
\[
\Gamma^i_{kl} = \Gamma^i_{kl} + A^i_{kl}
\]
where \(A\) is 0, or the Cartan symbol or any other symmetric tensor. Respectively we define the derivative
\[
\nabla_l a^i = a^i_{;l} = \partial_l a^i + \Gamma^k_{il} a^k
\]
and curvature\[(10.2)\]
\[
R^a_{bde} = \partial_i \Gamma^a_{bde} - \partial_j \Gamma^a_{bdi} + \Gamma^a_{ci} \Gamma^c_{bde} - \Gamma^a_{ci} \Gamma^c_{bde}
\]
This connection has the same torsion\[(10.3)\]
\[
T^a_{cb} = \Gamma^a_{bc} - \Gamma^a_{cb}
\]
In this context theorem 10.1 means that extreme line is geodesic line for the Cartan connection.

Theorem 10.3. Curvature of connection \((10.1)\) has form
\[(10.4)\]
\[
R^a_{bde} = R^a_{bde} + A^a_{bced} - A^a_{bdce} + A^a_{ca} A^c_{be} - A^a_{ce} A^c_{bd} + S^p_{de} A^p_{bp}
\]
where \(R^a_{bde}\) is curvature of connection \(\Gamma^i_{kl}\)
Proof.

\[
R_{bde}^a = \Gamma_{b,e,d}^a - \Gamma_{b,d,e}^a + \Gamma_{c,d}^a \Gamma_{c,e}^a - \Gamma_{e,c}^a \Gamma_{b,d}^a
\]

\[
= \Gamma_{b,e,d}^a + A_{b,e,d}^a - \Gamma_{b,d,e}^a - A_{b,d}^a
\]

\[
+ (\Gamma_{c,d}^a + A_{c,d}^a)(\Gamma_{c,e}^a + A_{c,e}^a) - (\Gamma_{c,e}^a + A_{c,e}^a)(\Gamma_{b,d}^a + A_{b,d}^a)
\]

\[
= \Gamma_{b,e,d}^a + A_{b,e,d}^a - \Gamma_{b,d,e}^a - A_{b,d}^a
\]

\[
+ \Gamma_{c,d}^a \Gamma_{c,e}^a + A_{c,d}^a \Gamma_{c,e}^a + A_{c,d}^a \Gamma_{c,e}^a
\]

\[
- \Gamma_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a
\]

\[
= R_{bde}^a + A_{b,e,d}^a - A_{b,d}^a
\]

\[
+ \Gamma_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a
\]

\[
- A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a
\]

\[
= R_{bde}^a + A_{b,e,d}^a - A_{b,d}^a
\]

\[
+ \Gamma_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a
\]

\[
- A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a
\]

\[
= R_{bde}^a + A_{b,e,d}^a - A_{b,d}^a
\]

\[
+ \Gamma_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a + A_{c,d}^a \Gamma_{b,c}^a
\]

\[
- A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a - A_{c,e}^a \Gamma_{b,d}^a
\]

\[
R_{bde}^a = R_{bde}^a - \Gamma(C)^a_{b,e,d} + \Gamma(C)^a_{b,d,e}
\]

\[
+ \Gamma(C)^a_{c,d} \Gamma(C)^a_{c,e} - \Gamma(C)^a_{c,e} \Gamma(C)^a_{b,d} - T^a_{d,e} \Gamma(C)^a_{b,p}
\]

Corollary 10.4. Cartan curvature has next form

\[
(10.5)
R_{bde}^a = R_{bde}^a - \Gamma(C)^a_{b,e,d} + \Gamma(C)^a_{b,d,e}
\]

\[
+ \Gamma(C)^a_{c,d} \Gamma(C)^a_{c,e} - \Gamma(C)^a_{c,e} \Gamma(C)^a_{b,d} - T^a_{d,e} \Gamma(C)^a_{b,p}
\]

11. Newton’s Laws: Scalar Potential

The knowledge of dynamics of a point particle is important for us because we can study how the particle interacts with external fields as well as the properties of the particle itself.

To study the movement of a point particle we can use a potential of a certain field. The potential may be scalar or vector.

In case of scalar potential we assume that a point particle has rest mass \(m \) and we use lagrangian function in the following form

\[
L = -mc^2 ds - U dx^0
\]

where \(U \) is scalar potential or potential energy.

Theorem 11.1. (First Newton law) If \(U = 0 \) (therefore we consider free movement) a body chooses trajectory with extreme length.

Theorem 11.2. (Second Newton law) A trajectory of point particle satisfies the differential equation

\[
(11.1)
\frac{D}{ds} u^j = \frac{u^j}{mc} F^j
\]

\[
u^j = \frac{dx^j}{ds}
\]
where we introduced force

\[F^i = g^{il} \frac{\partial U}{\partial x^l} \]

Proof. Using (5.2), we can write variation of the lagrangian as

\[
\frac{1}{2} mc (g_{kl;i} - g_{ik;l} - g_{il;k}) u^k u^l ds - mc g_{ij} Du^j + \frac{\partial U}{\partial x^l} dx^l \delta x^0 = 0
\]

The statement of the theorem follows from this. □

12. **Newton’s Laws: Vector Potential**

In section 11 we learned dynamics when potential is scalar. However in electrodynamics we have vector potential \(A^k \). In this case action is

\[
S = \int_{t_1}^{t_2} \left(-mc ds - \frac{e}{c} A_l dx^l \right)
\]

\[A_c = g_{cd} A^d \]

Theorem 12.1. The trajectory of a particle moving in the vector field satisfies the differential equation

\[
\frac{\hat{D}}{ds} u^j = \frac{e}{mc} \hat{g}^{ij} F_{li} u^l
\]

where we introduce a field-strength tensor

\[
F_{dc} = A_{d,c} - A_{c,d} + S_{dc}^p A_p = \nabla_c A_d - \nabla_d A_c + S_{dc}^p A_p
\]

Proof. Using (5.2), we can write the variation of the action as

\[
\delta S = \int_{t_1}^{t_2} \left(\frac{1}{2} (g_{k;i} - g_{ij;k} - g_{ik;j}) u^k u^l ds - g_{ij} Du^j \right) \delta x^i - \frac{e}{c} \left(\delta A_l dx^l + A_l \delta x^l \right)
\]

We can estimate the second term like

\[
- \frac{e}{c} \left(A_{l,k} dx^l \delta x^k + A_l \delta x^l \right) = - \frac{e}{c} \left(\partial_l [A_{k;l} \delta x^k] + \Gamma_{lk}^p A_p dx^k \delta x^l + \partial_l [d(A_l \delta x^k)] \right)
\]

The integral of the underlined term is 0 because points, when \(t = t_1 \) and \(t = t_2 \), are fixed. Therefore

\[
-mc \left(\frac{1}{2} (g_{k;i} - g_{ij;k} - g_{ik;j}) u^k u^l ds - g_{ij} Du^j \right) - \frac{e}{c} F_{li} dx^l = 0
\]

The statement of the theorem follows from this. □
The dependence of field-strength tensor on derivative of metric follows from this theorem. It changes form of Einstein equation and momentum of gravitational field appears in case of vector field.

Theorem 12.2. A field-strength tensor does not change when vector potential changes like

\[A'_j = A_j + \partial_j \Lambda \]

where \(\Lambda \) is an arbitrary function of \(x \).

Proof. Change in a field-strength tensor is

\[
(\partial_d \Lambda)_c - (\partial_c \Lambda)_d + S^p_{dc} \partial_p \Lambda = \\
\partial_{cd} \Lambda - \Gamma^p_{dc} \partial_p \Lambda - \partial_{dc} \Lambda + \Gamma^p_{cd} \partial_p \Lambda + S^p_{dc} \partial_p \Lambda = 0
\]

This proves the theorem.

13. References

[1] Eckehard W. Mielke, Affine generalization of the Komar complex of general relativity, *Phys. Rev. D* 63, 044018 (2001)

[2] Yu. N. Obukhov and J. G. Pereira, Metric-affine approach to teleparallel gravity, *Phys. Rev. D* 67, 044016 (2003), eprint arXiv:gr-qc/0212080 (2002)

[3] Giovanni Giachetta, Gennadi Sardanashvily, Dirac Equation in Gauge and Affine-Metric Gravitation Theories, eprint arXiv:gr-qc/9511035 (1995)

[4] Frank Gronwald and Friedrich W. Hehl, On the Gauge Aspects of Gravity, eprint arXiv:gr-qc/9602013 (1996)

[5] Yuval Neeman, Friedrich W. Hehl, Test Matter in a Spacetime with Non-metricity, eprint arXiv:gr-qc/9604047 (1996)

[6] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, General relativity with spin and torsion: Foundations and prospects, *Rev. Mod. Phys.* 48, 393 (1976)

[7] O. Megged, Post-Riemannian Merger of Yang-Mills Interactions with Gravity, eprint arXiv:hep-th/0008135 (2001)

[8] Yu.N. Obukhov, E.J. Vlachynsky, W. Esser, R. Tresguerres and F.W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges, eprint arXiv:gr-qc/9604027 (1996)

[9] G. E. Shilov, Calculus, Multivariable Functions, Moscow, Nauka, 1972

[10] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967

[11] Aleks Kleyn, Reference Frame in General Relativity, eprint arXiv:gr-qc/0405027 (2004)
14. INDEX

auto parallel line 7
Cartan connection 14
Cartan curvature 16
Cartan derivative 14
Cartan symbol 14
Cartan transport 14
extreme line 7
field-strength tensor 17
first Newton law 16
Frenet transport 9
metric-affine manifold 3
nonmetricity 3
parallelogram 4
potential energy 16
scalar potential 16
second Newton law 16
torsion form 3
torsion tensor 3
vector potential 17
15. Special Symbols and Notations

\(a^i_{\langle l \rangle} \) derivative 15

\(\hat{D} a^i \) Cartan derivative 14
\(\hat{D} a^i \) derivative 15

\(R^a_{\mu} \) Cartan curvature 16
\(R^a_{\mu ij} \) curvature 15

\(\Gamma^i_{(C)jk} \) Cartan symbol 14
\(\Gamma^i_{kl} \) connection 15
\(\Gamma^i_{kl} \) Cartan connection 14

\(\nabla_i a^i \) Cartan derivative 14
\(\nabla_i a^i \) derivative 15
Метрико--affинное многообразие

Александр Клейн

Аннотация. Мы будем называть многообразие с кручением и неметричностью метрико-affинным многообразием. Неметричность приводит к различию между линейно-параллельными и экстремальными кривыми и к изменению в выражении переноса Френе и подвижного базиса. Кручение приводит к изменению в уравнениях Килинга. Нам нужно также добавить аналогичное уравнение для связности.

Анализ переноса Френе ведёт к концепции переноса Картана и введению связи, совместимой с метрическим тензором. Динамика частицы приводит к переносу Картана. Необходимы дополнительные физические условия, чтобы сделать неметричность наблюдаемой.

1. Тензор кручения в общей теории относительности

Тесная связь между метрическим тензором и связностью является основой римановой геометрии. В то же время, связность и метрика, как любой геометрический объект, являются объектом измерения. Когда Гильберт выводил уравнение Эйнштейна, он определил гауссовский, в котором метрический тензор и связность независимы. Позже Гильберт обнаружил, что связность симметрична, и нашёл зависимость между связностью и метрическим тензором. Одна из причин этого - простота гауссовского.

Анализ квантовой теории поля показывает, что либо симметрии связности, либо зависимости связности и метрики могут быть нарушены, поскольку неизбежны ошибки измерения. Это допущение приводит к метрико-affинному многообразию, которое является пространством с кручением и неуловимой ко-вариантной произведённой метрического тензора (раздел 2). Независимость метрического тензора и связности позволяет нам видеть, какие объекты ответственны за различные явления в геометрии и, следовательно, в физике. Даже несмотря на то, что мы не доказали эмпирически существование кручения и неметричности, мы видим здесь очень интересную геометрию.

Метрико-affинное многообразие появляется в разных физических приложениях. Очень важно понять какова геометрия этого пространства, как кручение может влиять на физические процессы. Именно поэтому небольшая группа физиков продолжает изучать теорию гравитации с кручением [1, 2, 3, 4, 5].

Key words and phrases. Differential geometry, general relativity, метрико-affинное многообразие, перенося Френе, extreme line, Killing equation, Lie derivative.

Aleksei_Kleyn@MailAPS.org.

I wish to express my thanks to my teachers Gavrilenko Michael Leonidovich and Rahula Meido Oscarovich for their help and support in my research.
Александр Клейн
Метрико-аффинное многообразие

В частности, мы имеем два разных определения геодезической в римановом многообразии. Мы можем рассматривать геодезическую либо как кривую экстремальной длины (соответствующую кривую мы называем экстремальной), либо как кривую, вдоль которой касательный вектор переносится параллельно, оставаясь касательным к кривой (соответствующую кривую мы называем аффинопараллельной). Неметричность приводит к тому, что параллельный перенос не сохраняет длину вектора и угол между векторами. Это приводит к различию между определениями аффинопараллельной и экстремальной кривых (6) и раздел 5) и к изменению в выражении переноса Френе. Изменение геометрии влияет на второй закон Ньютона, который мы изучаем в разделе 11.

Я показываю в теоремах 10.1 и 11.1, что свободно падающая частица предпочитает экстремальную кривую, перенося свой импульс вдоль траектории без изменения.

Форма второго закона Ньютона зависит от выбора формы потенциала. В случае скалярного потенциала второй закон Ньютона сохраняет соотношение между силой, массой и ускорением. В случае векторного потенциала анализ движения в гравитационном поле показывает, что тензор напряженностей поля зависит от произвольной метрического тензора.

Неметричность значительно изменяет закон движения в пространстве времени ортогонального базиса. Однако изучение параллельного переноса в пространстве с неметричностью позволяет нам ввести перенос Картана и введение связности, совместимой с метрическим тензором (раздел 10). Перенос Картана сохраняет базис ортогональным и это делает его важным инструментом в динамика (раздел 11), так как наблюдатель использует ортогональный базис как инструмент измерения. Динамика частицы основана на переносе Картана. Тогда появляется вопрос: Мы можем изменить связность как мы показали в разделе 10. Почему мы должны изучать многообразия с произвольной связностью и метрическим тензором? Изучение метрико-аффинного многообразия показывает, почему всё работает хорошо в римановом многообразии и что меняется в общем случае. К какого рода различные физические явления являются следствием различных связностей? Физические ограничения, которые появляются в модели, могут вести к появлению неметричности [4, 7, 8]. Так как перенос Картана - естественный механизм сохранения ортогональности, мы ожидаем, что мы будем интерпретировать отклонение пробной частицы от экстремальной кривой как результат силы, внешней по отношению к этой частице. В этом случае различие между двумя типами переноса становится измеримым и осмысленным. В противном случае другой тип переноса и неметричность не наблюдаемы и мы можем использовать только переносом, совместимым с метрикой.

1 Например, если мы распространяем определение (11.2) силы на общий случай (11.1), мы можем интерпретировать отклонение заряженной частицы в электромагнитном поле как результат силы

\[F^j = \frac{e}{cu} g^{ij} F_{ik} u^k \]

Аналогично, мы можем интерпретировать отклонение аффинопараллельной кривой как силу

\[F^i = \frac{mc}{uv^2} \Gamma(C)_{kl}^i u^k u^l \]

Я напоминаю что символ Картана - тензор
Я вижу ещё одну возможность. Как следует из статьи [7], кручение может зависеть от квантовых свойств материи. Тем не менее, кручение является частью связности. Следовательно, связность может также зависеть от квантовых свойств материи. Это может привести к нарушению переноса Картана. Однако эта возможность требует дополнительного исследования.

Кручение и неметричность имеют интеграционные эффекты. Они могут быть малыми, но измеримыми. Мы можем наблюдать эти эффекты не только в сильных полях, подобных чёрной дыре или большому взрыву, но также в обычных условиях. Изучение геометрии и динамики точечной частицы даёт нам возможность проверить эту точку зрения. Есть смысл проверить эту теорию в условиях, когда спин квантового поля накоплен. Мы можем проверить отклонение от второго закона Ньютона либо измерить кручение, наблюдая движение двух различных частиц.

Чтобы проверить, имеет ли пространство время кручение, мы можем проверить возможность построить параллелограмм в пространстве времени. Мы можем взять две частицы или два фотона, которые начинают своё движение из одной и той же точки и, пользуясь зеркалами, заставить их двигаться вдоль противоположных сторон параллелограмма. Мы можем начать этот эксперимент, когда квантового поля нет, и затем повторить эксперимент в присутствии квантового поля. Если частицы встретятся в одном и том же месте или мы имем одинаковую интерференцию, то мы имеем кручение равное 0 в этой среде. В частности, кручение может действовать на поведение виртуальных частиц.

Чтобы проверить, имеет ли пространство время неметричность, мы можем измерить отклонение экстремальной кривой от автотпировальных либо отклонение единичного вектора скорости от его параллельного переноса.

2 Метрико-аффинное многообразие

В случае связности [11]-(4.2) мы определим форму кручение

\[T^a = d^2 x^a + \omega^a_b \wedge dx^b \]

Из [11]-(4.2) следует

\[\omega^a_b \wedge dx^b = (\Gamma^a_{bc} - \Gamma^a_{cb}) dx^c \wedge dx^b \]

Подставив \((2.2) \) и [11]- (4.14) в (2.1) мы получим

\[T^a = T^a_{cb} dx^c \wedge dx^b = -c^a_{cb} dx^c \wedge dx^b + (\Gamma^a_{bc} - \Gamma^a_{cb}) dx^c \wedge dx^b \]

где мы определили тензор кручение

\[T^a_{cb} = \Gamma^a_{bc} - \Gamma^a_{cb} - c^a_{cb} \]

Коммутатор вторых производных имеет вид

\[u^a_{;kl} - u^a_{;lk} = R^a_{jkl} u^j - T^a_{jk} u_p^a \]

Из (2.5) следует, что

\[\xi^a_{;cb} - \xi^a_{;bc} = R^a_{dbc} \xi^d - T^a_{bc} \xi^a_{;p} \]

В римановом пространстве мы have metric tensor \(g_{ij} \) и связность \(\Gamma^k_{ij} \). Одно из свойств римановой пространства - это симметрия связности и равенство нулю ковариантной производной метрики. Это порождает тесную связь между
Александр Клейн
Метрико--affинное многообразие

метрикой и связностью. However связность is not necessarily symmetric и covariantная производная метрического тензора может быть отлична от 0. В последнем случае мы введем **неметричность**

\[(2.7) \quad Q^i_k = g^i_j = g^i_j + \Gamma^i_{pj} g^{pj} + \Gamma^i_{pk} g^{jp}\]

Так как производная метрического тензора не равна 0, мы не можем поднимать или опускать индекс тензора внутри производной как мы это делаем в обычном римановом пространстве. Теперь эта операция принимает следующий вид

\[a^i_k = g^{ij} a_{j;k} + g^i_j a_j\]

Это равенство для метрического тензора принимает следующий вид

\[g^{ij}_{;k} = -g^{ai}_b g^{bj} g_{ij;k}\]

Определение 2.1. Мы будем называть многообразие с кручением и неметричностью **метрико-affинным многообразием** [1].

Если мы изучаем подмногообразие \(V_n \) многообразия \(V_{n+m} \), мы видим, что иерархия порождает связность \(\Gamma^\alpha_{\beta\gamma} \), которая связана со связностью в многообразии соотношением

\[\Gamma^a_{\beta\gamma} e^d = \Gamma^a_{mk} e^m_{\beta} e^d_k + \frac{\partial e^d_{\beta}}{\partial u^\gamma}\]

Следовательно, не существует непрерывного вложения пространства с кручением в риманово пространство.

3. **Геометрический смысл кручения**

Предположим, что \(a \) и \(b \) - неколинейные векторы в точке \(A \) (см. фиг. 3.1). Мы проведём геодезическую \(L_a \) через точку \(A \), используя вектор \(a \) как касательный вектор к \(L_a \) в точке \(A \). Пусть \(\tau \) - канонический параметр на \(L_a \) и

\[\frac{dx^k}{d\tau} = a^k\]

Мы перенесём вектор \(b \) вдоль геодезической \(L_a \) из точки \(A \) в точку \(B \), определённую значением параметра \(\tau = \rho > 0 \). Мы обозначим результат \(b' \).

Мы проведём геодезическую \(L_{b'} \) через точку \(B \), используя вектор \(b' \) как касательный вектор к \(L_{b'} \) в точке \(B \). Пусть \(\varphi' \) - канонический параметр на \(L_{b'} \) и

\[\frac{dx^k}{d\varphi'} = b'^k\]

Мы определим точку \(C \) на геодезической \(L_{b'} \) значением параметра \(\varphi' = \rho\)

Мы проведём геодезическую \(L_{b'} \) через точку \(D \), используя вектор \(a' \) как касательный вектор к \(L_{b'} \) в точке \(D \). Пусть \(\tau' \) - канонический параметр на \(L_{b'} \) и

\[\frac{dx^k}{d\tau'} = a'^k\]

Мы определим точку \(E \) на геодезической \(L_{a'} \) значением параметра \(\tau' = \rho \)
Рис. 3.1. Meaning of Torsion

Формально линии AB и DE так же, как линии AD и BC, параллельны. Длины отрезков AB и DE равны так же, как длины отрезков AD и BC равны. Мы называют такую фигуру параллелограммом, построенным на векторах a и b с вершиной в точке A.

Теорема 3.1. Предположим $CB$$ADE$ - параллелограм с вершиной в точке A; тогда построенная фигура не будет замкнута [6]. Величина различия координат точек C и E равна поверхностному интегралу кручения над этим параллелограммом 2

$$\Delta_{CE}x^k = \int \int \Gamma^k_{mn} dx^m \wedge dx^n$$

Доказательство. Мы можем найти приращение координаты x^k вдоль геодезической в виде

$$\Delta x^k = \frac{dx^k}{d\tau} \tau + \frac{1}{2} \frac{d^2 x^k}{d\tau^2} \tau^2 + O(\tau^2) =$$

$$= \frac{dx^k}{d\tau} \tau - \frac{1}{2} \Gamma^k_{mn} \frac{dx^m}{d\tau} \frac{dx^n}{d\tau} \tau^2 + O(\tau^2)$$

gде τ - канонический параметр и мы вычисляем производные и компоненты Γ^k_{mn} в начальной точке B частности

$$\Delta_{AB}x^k = a^k \rho - \frac{1}{2} \Gamma^k_{mn}(A) a^m a^n \rho^2 + O(\rho^2)$$

вдоль геодезической L_a и

$$\Delta_{BC}x^k = b^k \rho - \frac{1}{2} \Gamma^k_{mn}(B) b^m b^n \rho^2 + O(\rho^2)$$

вдоль геодезической L_b. Здесь

$$b^k = b^k - \Gamma^k_{mn}(A) b^m dx^n + O(dx)$$

результат параллельного переноса b^k из A в B и

$$dx^k = \Delta_{AB}x^k = a^k \rho$$

2Доказательство этого утверждения я нашёл в [9]
с точностью до малой первого порядка. Подставляя (3.3) в (3.2) и (3.2) в (3.1), мы получим

$$\Delta_{BC}x^k = b^k \rho - \Gamma_{mn}^k (A) b^m a^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 + O(\rho^2)$$

Общее приращение координаты x^K вдоль пути ABC имеет вид

$$\Delta_{ABC}x^k = \Delta_{AB}x^k + \Delta_{BC}x^k =$$

$$= (a^k + b^k) \rho - \Gamma_{mn}^k (A) b^m a^n \rho^2 -$$

$$- \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) a^m a^n \rho^2 + O(\rho^2)$$

Аналогично общее приращение координаты x^K вдоль пути ADE имеет вид

$$\Delta_{ADE}x^k = \Delta_{AD}x^k + \Delta_{DE}x^k =$$

$$= (a^k + b^k) \rho - \Gamma_{mn}^k (A) b^m b^n \rho^2 -$$

$$- \frac{1}{2} \Gamma_{mn}^k (D) a^m a^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) b^m b^n \rho^2 + O(\rho^2)$$

Из (3.4) и (3.5) следует, что

$$\Delta_{ADE}x^k - \Delta_{ABC}x^k =$$

$$= \Gamma_{mn}^k (A) b^m a^n \rho^2 + \frac{1}{2} \Gamma_{mn}^k (B) b^m b^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (D) a^m a^n \rho^2 -$$

$$- \Gamma_{mn}^k (A) a^m b^n \rho^2 - \frac{1}{2} \Gamma_{mn}^k (A) b^m a^n \rho^2 + O(\rho^2)$$

Для достаточно малого значения ρ подчёркнутые слагаемые взаимно уничтожаются и мы получаем интегральную сумму для выражения

$$\Delta_{ADE}x^k - \Delta_{ABC}x^k = \int \int_S (\Gamma_{mn}^k - \Gamma_{mn}^k) dx^m \wedge dx^n$$

Однако недостаточно найти разность

$$\Delta_{ADE}x^k - \Delta_{ABC}x^k$$

чтобы найти разность координат точек C и E. Координаты могут быть неголономными и мы должны учесть, что координаты вдоль замкнутого пути изменяются [11]-[4.15]

$$\Delta x^k = \oint_{ECBADE} dx^k = - \int \int_S c_{mn}^k dx^m \wedge dx^n$$

где c - объект неголономности.

Окончательно разность координат точек C и E имеет вид

$$\Delta_{CE}x^k = \Delta_{ADE}x^k - \Delta_{ABC}x^k + \Delta x^k = \int \int_S (\Gamma_{mn}^k - \Gamma_{mn}^k - c_{mn}^k) dx^m \wedge dx^n$$

Используя (2.4), мы доказали утверждение.
4. Соотношение между связностью и метрикой

Сейчас мы хотим найти, как мы можем выразить связность, если известны метрика и кручение. Согласно определению

\[-Q_{kij} = g_{ij,k} = g_{ij,k} - \Gamma^p_{ik}g_{pj} - \Gamma^p_{jk}g_{pi} \]

\[-Q_{kij} = g_{ij,k} - \Gamma^p_{ik}g_{pj} - \Gamma^p_{jk}g_{pi} - S^p_{ijk}g_{pi} \]

Перенесём производную \(g \) и кручение в левую часть

(4.1)

\[g_{ij,k} + Q_{kij} - S^p_{ijk}g_{pi} = \Gamma^p_{ik}g_{pj} + \Gamma^p_{kj}g_{pi} \]

Меняя порядок индексов, мы записываем ещё два уравнения

(4.2)

\[g_{jk,i} + Q_{ijk} - S^p_{kij}g_{pi} = \Gamma^p_{ij}g_{pk} + S^p_{ij}g_{pi} \]

(4.3)

\[g_{ki,j} + Q_{jki} - S^p_{ijk}g_{pk} = \Gamma^p_{ij}g_{pk} + \Gamma^p_{ji}g_{pk} \]

Если мы вычтем равенство (4.1) из суммы равенств (4.2) и (4.1), то мы получим

\[g_{kij} + g_{jk,i} - g_{ij,k} + Q_{ijk} + Q_{jki} - Q_{kij} - S^p_{ijk}g_{pi} = 2\Gamma^p_{ij}g_{pk} \]

Окончательно мы получаем

\[\Gamma^p_{ij} = \frac{1}{2}g^{pk}(g_{kj,i} + g_{jk,i} - g_{ij,k} + Q_{ijk} + Q_{jki} - Q_{kij} - S^r_{ijk}g_{rk} - S^r_{jk}g_{ri}) \]

5. Кривая экстремальной длины

Существует два разных определения геодезической в римановом многообразии. Одно из них опирается на параллельный перенос. Мы будем называть соответствующую кривую автопереносной. Другое определение опирается на длину траектории. Мы будем называть соответствующую кривую экстремальной. В метрико-аффинном многообразии эти линии имеют различные уравнения [6]. Уравнение автопереносной кривой не меняется. Однако, уравнение экстремальной кривой меняется.\(^3\)

Теорема 5.1. Пусть \(x^i = x^i(t, \alpha) \) - кривая, зависящая от параметра \(\alpha \), с фиксированными точками при \(t = t_1 \) и \(t = t_2 \), и мы определяем её длину как

\[s = \int_{t_1}^{t_2} \sqrt{g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}} dt \]

Тогда

\[\delta s = \int_{t_1}^{t_2} \left(\frac{1}{2} \left(g_{k;i} - g_{ik;j} - g_{ij;k} \right) \frac{dx^k}{ds} \frac{dx^j}{ds} - g_{ij} \frac{dx^j}{ds} \right) \delta x^i \]

где \(\delta x^i \) - изменение длины, когда \(\alpha \) меняется.

\(^3\) Чтобы вывести уравнение (5.3), я следую идеям, которые Рашенский [10] использовал для Риманова многообразия
Доказательство. Имеем
\[
\frac{ds}{dt} = \sqrt{g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}}
\]
и
\[
\delta s = \int_{t_1}^{t_2} \frac{\delta \left(g_{ij} \frac{dx^i}{dt} \frac{dx^j}{dt}\right)}{2 \frac{ds}{dt}} dt
\]
Мы можем оценить знаменатель этой дроби
\[
g_{ij,k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta \frac{dx^i}{dt} \frac{dx^j}{dt} =
\]
\[
g_{ij,k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta x^i \frac{dx^j}{dt} =
\]
\[
g_{ij,k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta x^i \frac{dx^j}{dt} + 2g_{ij} \frac{\delta x^i}{dt} \frac{dx^j}{dt}
\]
и мы имеем
\[
\delta s = \int_{t_1}^{t_2} g_{ij,k} \delta x^k \frac{dx^i}{dt} \frac{dx^j}{dt} + 2g_{ij} \delta x^i \frac{dx^j}{dt} dt
\]
\[
= \int_{t_1}^{t_2} \left(\frac{1}{2} g_{ij,k} \delta x^k \frac{dx^i}{ds} \frac{dx^j}{ds} + g_{ij} \frac{\delta x^i}{ds} \frac{dx^j}{ds}\right) dt
\]
\[
= \left(\frac{g_{ij} \delta x^i \frac{dx^j}{ds}}{ds}\right)_{t_1}^{t_2} + \int_{t_1}^{t_2} \left(\frac{1}{2} (g_{kj,i} - g_{ij,k} - g_{ik,j}) \frac{dx^k}{ds} \frac{dx^j}{ds} ds - g_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds}\right) \delta x^i
\]
Первое слагаемое равно 0, так как точки, где \(t = t_1 \) и \(t = t_2 \), зафиксированы. Следовательно, мы доказали утверждение теоремы.

Теорема 5.2. Экстремальная кривая удовлетворяет уравнению

(5.3) \[
\frac{D \frac{dx^i}{ds}}{ds} = \frac{1}{2} \frac{g_{ij} \delta x^i \frac{dx^j}{ds}}{ds} + \frac{d}{ds} \left(\frac{g_{ij,k} \delta x^k \frac{dx^j}{ds}}{ds} - g_{ij} \frac{\delta x^i}{ds} \frac{dx^j}{ds}\right)
\]

Доказательство. Чтобы найти линию экстремальной длины, мы воспользуемся функционалом (5.1). Так как \(\delta s = 0 \), то
\[
\frac{1}{2} (g_{kj,i} - g_{ij,k} - g_{ik,j}) \frac{dx^k}{ds} \frac{dx^j}{ds} ds - g_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds} = 0
\]
следует из (5.2).

Теорема 5.3. Параллельный перенос вдоль экстремальной кривой сохраняет длину касательного вектора.

Доказательство. Пусть
\[
v^i = \frac{dx^i}{ds}
\]
- касательный вектор к экстремальной кривой. Из теоремы 5.2 следует, что
\[
\frac{Dv^i}{ds} = \frac{g_{kl} \frac{1}{2} (g_{kj,i} - g_{ij,k} - g_{ik,j}) v^k v^j}{ds}
\]
и
\[
\frac{Dg_{kl} v^k v^l}{ds} = \frac{Dg_{kl}}{ds} v^k v^l + \frac{g_{kl} \frac{Dv^k}{ds} v^l + g_{kl} \frac{Dv^l}{ds} v^k}{ds} =
\]
Метрико-аффинное многообразие

\[= g_{kt;p} v^p v^k v^l + \]

+ \[g_{kl} g^{ik} \frac{1}{2} (g_{rj;i} - g_{ij;r}) v^v v^i v^l + g_{kl} g^v g \frac{1}{2} (g_{rj;i} - g_{ij;r}) v^v v^j = \]

\[= g_{kt;p} v^p v^k v^l + (g_{rj;i} - g_{ij;r}) v^v v^j v^l = 0 \]

Следовательно длина вектора \(v^i \) не меняется вдоль экстремальной кривой.

6. ПЕРЕНОС ФРЕНЕ

Все уравнения, которые мы выводили до сих пор, различны, однако они имеют нечто общее в своей структуре. Все эти уравнения выражают движение вдоль кривой в и в их правой части мы можем видеть кривизну этой кривой.

По определению, кривизна кривой равна

\[\xi(s) = \left| \frac{d x^k}{d s} \right| \]

Следовательно, мы можем определить единичный вектор \(e_1 \) такой, что

\[\frac{d x^i}{d s} = \xi e^i_1 \]

Значение переноса базиса вдоль кривой очень важно, так как это позволяет нам изучать как изменяется пространство время, когда наблюдатель совершает движение. Наша задача - найти уравнения, подобные переносу Френа в римановом пространстве. Мы строим сопутствующий базис \(\nu^i_k \) таким же образом, как мы это делаем в римановом пространстве.

Векторы

\[\xi^i(t) = \frac{d x^i(t)}{dt}, \quad \frac{d \xi^i}{dt}, \quad ... \quad \frac{d^{n-1} \xi^i}{d t^{n-1}} \]

вообще говоря, линейно независимы. Мы называем плоскость, построенную на базе первых \(p \) векторов, \(p \)-ой соприкасающейся плоскостью \(R_p \). Эта плоскость не зависит от выбора параметра \(t \).

Наша следующая задача - построить ортогональный базис, который показывает нам, как кривая изменяется. Мы берём вектор \(\nu^i_1 \in R_1 \) так, что он касательен к кривой. Мы берём вектор \(\nu^i_p \in R_p, p \geq 1 \) так, что \(\nu^i_p \) ортогонален \(R_{p-1} \). Если исходная кривая не изотропна, то каждый \(\nu^i_p \) также не изотропен и мы можем взять единичный вектор в том же направлении. Мы называем этот базис сопутствующим.

Теорема 6.1. Перенос Френе в метрико-аффинном многообразии имеет вид

\[\frac{D \nu^i_p}{dt} = \frac{1}{2} \sum_{m=1}^{n} \left(g_{kmt} - g_{mt;k} \right) \nu^k_1 \nu^i_p - \]

\[\xi_p \nu^i_{p-1} - \xi_p \nu^i_{p+1} \]

\[\epsilon_k = \text{sign}(g_{pq} \nu^p_k \nu^q_k) \]

Этот \(\nu^i_k \) - вектор базиса, движущегося вдоль кривой.

\[\epsilon_k = \text{sign}(g_{pq} \nu^p_k \nu^q_k) \]
Доказательство. Мы определяем векторы \(\nu^a_p \) таким образом, что

(6.2) \[
\frac{D\nu^i_p}{dt} = \frac{1}{2} g^{im}(g_{kl;m} - g_{km;l} - g_{ml;k})\nu^k_p \nu^l_p + a^q_p \nu^i_q
\]

где \(a^q_p = 0 \), когда \(q > p + 1 \). Теперь мы можем определить коэффициенты \(a^q_p \). Если мы возьмём производную уравнения

\[
g_{ij} \nu^i_p \nu^j_p = \text{const}
\]

и подставим (6.2), мы получим уравнение

\[
\frac{dg_{ij} \nu^i_p \nu^j_p}{ds} = \frac{Dg_{ij} \nu^i_p \nu^j_p}{ds} + g_{ij} \frac{D\nu^i_p}{ds} + g_{ij} \frac{D\nu^j_p}{ds} =
\]

где

\[
a^q_p = 0, \text{ когда } q > p + 1 \text{ по определению. Следовательно } a^q_p = 0, \text{ когда } q < p + 1.
\]

Полагая \(\xi_p = a^p_{p+1} \), мы получим

\[
a^p_{p+1} = -\epsilon_p e_{p+1} \xi_p
\]

Когда \(q = p \), мы получим

\[
a^p_{p,p} = 0
\]

Мы получим (6.1), когда подставим \(a^q_p \) в (6.2).

7. Производная Ли

Векторное поле \(\xi^k \) на многообразии порождает инфинитезимальное преобразование

(7.1) \[
x^i = x^i + \epsilon^i k
\]

которое ведёт к произвольной Ли. Производная Ли говорит нам, как объект изменяется, когда мы движемся вдоль векторного поля.

Теорема 7.1. Производная Ли метрики имеет вид

(7.2) \[
\mathcal{L}_{\xi} g_{ab} = \xi^k \delta_{<a}^k g_{kb} + \xi^k \delta_{<b}^k g_{ka} + T^i_{ka} g_{ib} \xi^k + T^i_{kb} g_{ia} \xi^k + g_{ab,<k} \xi^k
\]

10
Доказательство. Мы начнем с преобразования (7.1). Тогда

\[g_{ab}(x') = g_{ab}(x) + g_{abc} \xi^c \]

\[g'_{ab}(x') = \frac{\partial x^e}{\partial x'^a} \frac{\partial x^d}{\partial x'^b} \xi_{cd}(x) \]

\[= g_{ab} - \epsilon^a_{\ c} g_{cb} - \epsilon^c_{\ b} g_{ac} \]

Согласно определению производной Ли, мы имеем

\[L_\xi g_{ab} = g_{ab}(x') - g_{ab}(x) \]

\[= g_{ab, e} \xi^c + \epsilon^c_{\ a} g_{cb} + \epsilon^c_{\ b} g_{ac} \]

\[= (g_{ab, e} + \Gamma_{ac}^d g_{db} + \Gamma_{bc}^d g_{ad}) \xi^c \]

\[+ \epsilon (\xi_{ce} - \Gamma_{cd}^e) g_{cb} + \epsilon (\xi_{cb} - \Gamma_{bc}^e) g_{ac} \]

\[L_\xi g_{ab} = g_{ab, e} \xi^c + \Gamma_{ac}^d g_{db} + \Gamma_{bc}^d g_{ad} \xi^c \]

\[+ \xi_{ce} g_{cb} - \Gamma_{ce}^d g_{cb} + \xi_{cb} g_{ac} - \Gamma_{cb}^d g_{ac} \]

(7.3)

(7.2) следует из (7.3) и (2.4). □

Теорема 7.2. Производная Ли связности имеет вид

\[L_\xi \Gamma_{bc}^a = -R_{bcep}^a - T_{bc, e}^a - T_{bc, e}^a + \xi_{ab}^e \]

Доказательство. Мы начнем с преобразования (7.1). Тогда

\[\Gamma_{bc}^a(x') = \Gamma_{bc}^a(x) + A_{bc, p}^a \xi^p \]

(7.5)

\[\Gamma_{bc}^a(x') = \Gamma_{bc}^a(x) + A_{bc, p}^a \xi^p \]

\[= \frac{\partial x^a}{\partial x'^a} \frac{\partial x^b}{\partial x'^a} f_{g}(x) + \frac{\partial x^a}{\partial x'^b} \frac{\partial x^b}{\partial x'^a} f_{g}(x) + \frac{\partial x^a}{\partial x'^b} \frac{\partial x^b}{\partial x'^a} A_{f}^a(x) \]

\[= \Gamma_{bc}^a + \xi_{bc}^e \Gamma_{bc}^a - \xi_{ec}^e \Gamma_{bc}^a + \frac{\partial x^a}{\partial x'^b} \frac{\partial x^b}{\partial x'^a} A_{f}^a(x) \]

\[= \Gamma_{bc}^a + \xi_{bc}^e \Gamma_{bc}^a - \xi_{ec}^e \Gamma_{bc}^a - \xi_{ec}^e \Gamma_{bc}^a - \xi_{ec}^e \Gamma_{bc}^a \]

(7.6)

По определению

\[\xi_{bc}^e = \xi_{bc}^e + \Gamma_{pe}^a \xi^p \]

(7.7)

\[\xi_{bc}^e = \xi_{bc}^e + \Gamma_{pe}^a \xi^p \]

(7.8)
Мы подставим (7.8) и (7.7) в (7.6) и получим

\[\Gamma_{bc}^{\alpha}(x') = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]

(7.9) \[\Gamma_{bc}^{\alpha}(x') = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]

Согласно определению производной Ли, мы имеем, пользуясь (7.5) и (7.9),

\[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = (\Gamma_{bc}^{\alpha}(x') - \Gamma_{bc}^{\alpha}(x')) \epsilon^{-1} \]

(7.10) \[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = (\Gamma_{bc}^{\alpha}(x') - \Gamma_{bc}^{\alpha}(x')) \epsilon^{-1} \]

Из (7.10) и (2.4) следует, что

\[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]

(7.11) \[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]

из (7.11) и (11)-(4.23) следует, что

\[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]

(7.12) \[\mathcal{L}_{\xi} \Gamma_{bc}^{\alpha} = \Gamma_{bc}^{\alpha} + \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) - \epsilon(\xi_{\alpha}^{a}, _{\alpha} > A_{T}, T_{\alpha}^{e}) \]
из (7.12) и (8.1) следует, что

\[
\mathcal{L}_\xi \Gamma^a_{bc} = \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p \\
+ \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p \\
- \xi^a_{i<e>c} T_{e} - \xi^a_{i<e>c} T_{e} + \xi^a_{i<e>c} T_{e} \\
- \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p
\]

(7.13) \(\mathcal{L}_\xi \Gamma^a_{bc} = -\frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \xi^a_{i<e>c} T_{e} - \xi^a_{i<e>c} T_{e} + \xi^a_{i<e>c} T_{e} \\
+ \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \xi^a_{i<e>c} T_{e} \\
\]

Мы подставим (2.6) в (7.13)

(7.14) \(\mathcal{L}_\xi \Gamma^a_{bc} = -\frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p - \xi^a_{i<e>c} T_{e} - \xi^a_{i<e>c} T_{e} + \xi^a_{i<e>c} T_{e} \\
+ \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \frac{T^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \xi^a_{i<e>c} T_{e} \\
\]

(7.4) следует из (7.14).

\[
\text{Следствие 7.3. Производная Ли связности в римановом пространстве имеет вид}
\]

(7.15) \(\mathcal{L}_\xi \Gamma^a_{bc} = -\frac{\mathcal{R}^a_{epbc}}{\mathcal{R}_{epbc}} \mathcal{E}^p + \xi^a_{i<e>c} T_{e} \)

Доказательство. (7.15) следует из (7.4), когда \(T^a_{bc} = 0 \)

8. Тождество Бианки

Теорема 8.1. Первое тождество Бианки для пространства с кручением имеет вид

(8.1) \(T^k_{ij;m} + T^k_{jm;i} + T^k_{jm;i} = R^k_{jmi} + R^k_{ijm} + R^k_{mij} \)

Доказательство. Дифференциальное равенство (2.3) имеет вид

\[
T^k_{ij;m} \theta^m \wedge \theta^j = (\Gamma^k_{ij,m} - \Gamma^k_{ij,m}) \theta^m \wedge \theta^j \wedge \theta^i
\]

Две формы равны, когда их коэффициенты равны. Следовательно

\[
T^k_{ij;m} + T^k_{jm;i} + T^k_{jm;i} = \Gamma^k_{jm,i} - \Gamma^k_{jm,i} + \Gamma^k_{im,j} - \Gamma^k_{im,j} + \Gamma^k_{mj,i} - \Gamma^k_{mj,i}
\]

Мы выразим производные, пользуясь ковариантными производными, и изменим порядок слагаемых

\[
T^k_{ij;m} = \frac{\Gamma^k_{jm,i} - \Gamma^k_{jm,i}}{\mathcal{R}_{jm,i}} + \frac{\Gamma^k_{im,j} - \Gamma^k_{im,j}}{\mathcal{R}_{im,j}} + \frac{\Gamma^k_{jm,i} - \Gamma^k_{jm,i}}{\mathcal{R}_{jm,i}} + \frac{\Gamma^k_{im,j} - \Gamma^k_{im,j}}{\mathcal{R}_{im,j}} + \frac{\Gamma^k_{mj,i} - \Gamma^k_{mj,i}}{\mathcal{R}_{mj,i}} + \frac{\Gamma^k_{mj,i} - \Gamma^k_{mj,i}}{\mathcal{R}_{mj,i}}
\]

(8.2) \(T^k_{ij;m} = \frac{R^k_{jm,i} + R^k_{ijm} + R^k_{mij}}{\mathcal{R}_{jm,i}} \)
(8.1) следует из (8.2).

Если мы возьмем производную формы [11]-[4.22], мы увидим, что второе тождество Банкки не зависит от кручения.

9. Вектор Килинга

Инвариантность метрического тензора г при инфинитезимальном координатном преобразовании (7.1) приводит к уравнению Килинга.

Теорема 9.1. Уравнение Килинга в метрико-аффинном многообразии имеет вид

\[\xi^k g^a_{<bc>} \xi^{<a} g^{} + \xi^k g^a_{} + T^l_{ka} g^a_{<k>} + T^l_{<k>} g^a_{<k>} + g_{ab;}<k>^k = 0 \]

Доказательство. Инвариантность метрического тензора г означает, что его производная Ли равна 0

\[L_{\xi} g_{ab} = 0 \]

(9.2) следует из (9.2) и (7.2).

Теорема 9.2. Условие инвариантности связности в метрико-аффинном многообразии имеет вид

\[\xi^a_{<bc>} = \frac{\xi^a_{<b=} + T^a_{=+} + T^a_{} + T^a_{} + T^a_{}}{L_{\xi} \xi_{bc} = 0} \]

(9.3) следует из (9.4) и (7.4).

Мы называем уравнение (9.3) уравнением Килинга второго рода и вектор \(\xi^a \) вектором Килинга второго рода.

Теорема 9.3. Вектором Килинга второго рода удовлетворяет уравнению

\[0 = R_{=+} \xi^a + R_{} \xi^a + R_{} \xi^a + T^a_{b=} \xi^a + T^a_{} + T^a_{} + T^a_{} + T^a_{} \]

Доказательство. Из (9.3) и (2.6) следует, что

\[T^a_{bc} \xi^a - T^a_{bc} \xi^a = \xi^a_{=+} + T^a_{=+} + T^a_{} + T^a_{} + T^a_{} + T^a_{} + T^a_{} + T^a_{} \]

(9.6) следует из (9.6).

Следствие 9.4. Уравнением Килинга второго рода в римановом пространстве является тождеством. Связность в римановом пространстве инвариантна при любом инфинитезимальном преобразовании (7.1)

Доказательство. Прежде всего, кручение равно 0. Остальное является следствием первого тождества Банкки.
10. **Перенос Картана**

Теоремы 5.2 и 6.1 утверждают, что движение вдоль кривой порождает преобразование вектора, дополнительное к параллельному переносу. Это преобразование очень важно и мы будем называть его **переносом Картана**. Мы определим **символ Картана**

\[\Gamma(C)^i_{kl} = \frac{1}{2} g^{im} (g_{kl;m} - g_{km;l} - g_{ml;k})\]

и **связь Картана**

\[\Gamma^i_{kl} = \Gamma^i_{kl} - \Gamma(C)^i_{kl} = \Gamma^i_{kl} - \frac{1}{2} g^{im} (g_{kl;m} - g_{km;l} - g_{ml;k})\]

Пользуясь связностью Картана, мы можем записать перенос Картана в виде

\[da^i = - \Gamma^i_{kl} a^k dx^l\]

Соответственно, мы определим **производную Картана**

\[\nabla^i_a = a^i_{(l)} = \partial a^i + \Gamma^i_{kl} a^k\]

\[\tilde{\nabla}^i_a = da^i + \Gamma^i_{kl} a^k dx^l\]

Теорема 10.1. Перенос Картана вдоль экстремальной кривой сохраняет длину касательного вектора.

Доказательство. Пусть

\[v^i = \frac{dq^i}{ds}\]

- касательный вектор к экстремальной кривой. Из теоремы 5.2 следует, что

\[\frac{Dv^l}{ds} = \frac{1}{2} g^{il} (g_{kj};i - g_{ik;j} - g_{ij;k}) v^k v^j\]

и

\[\frac{Dg_{kl} v^k v^l}{ds} = \frac{Dg_{kl}}{ds} v^k v^l + g_{kl} \frac{Dv^l}{ds} v^k + g_{kl} v^k \frac{Dv^l}{ds} = g_{kl;p} v^p v^k v^l + \frac{1}{2} g_{kl} g^{ik} (g_{kj};i - g_{ik;j} - g_{ij;k}) v^k v^j v^l + \frac{1}{2} g_{kl} g^{ik} (g_{kj};i - g_{ik;j} - g_{ij;k}) v^k v^j v^l = 0\]

Следовательно длина вектора \(v^l\) не меняется вдоль экстремальной кривой. \(\square\)

Мы распространим перенос Картана на любой геометрический объект подобно тому, как мы это делаем для параллельного переноса.

Теорема 10.2.

\[g_{ij;l} = 0\]
Доказательство.

\[\nabla_i g_{ij} = \partial_i g_{ij} = \Gamma^k_{il} g_{kj} - \Gamma^k_{jl} g_{ik} = \]

\[g_{ij} + \frac{1}{2} g^{km} (g_{ik;m} - g_{im;k}) g_{kj} + \frac{1}{2} g^{km} (g_{jl;m} - g_{jm;l}) g_{ik} = 0 \]

Связь Картана \(\tilde{\Gamma}_{kl} \) отличается от связи \(\Gamma_{kl} \) на дополнительное слагаемое, которое является симметрическим тензором. Для любой связи мы определяем стандартным образом производную и кривизну. Утверждения геометрии и физики имеют одну и ту же форму, независимо от того использую ли я связь \(\Gamma_{kl} \) или связь Картана. Чтобы это показать, мы можем обобщить понятие связи Картана и изучать связь, определённую равенством

\[(10.1) \quad \tilde{\Gamma}_{kl} = \Gamma_{kl} + A_{kl} \]

где \(A \) - это 0, или символ Картана или любой другой симметрический тензор. Соответственно мы определяем производную

\[\nabla_i a^i = a^i_{\langle l \rangle} = \partial_i a^i + \tilde{\Gamma}_{kl} a^k \]

и кривизну

\[(10.2) \quad R^a_{bde} = \partial_i \tilde{\Gamma}^a_{bde} - \partial_j \tilde{\Gamma}^a_{bei} + \tilde{\Gamma}^a_{cl} \tilde{\Gamma}^c_{bde} - \tilde{\Gamma}^a_{dl} \tilde{\Gamma}^c_{bei} \]

Эта связь имеет тоже кручение

\[(10.3) \quad T^a_{cb} = \tilde{\Gamma}^a_{bc} - \tilde{\Gamma}^a_{cb} \]

С этой точки зрения теорема 10.1 означает, что экстремальная кривая является геодезической для связи Картана.

Теорема 10.3. Кривизна связности (10.1) имеет вид

\[(10.4) \quad R^a_{bde} = R^a_{bde} + A^a_{bce} - A^a_{bd,e} + A^a_{cd} A^c_{be} - A^a_{ce} A^c_{bd} + S^p_{de} A^a_{bp} \]

где \(R^a_{bde} \) - кривизна связности \(\Gamma_{kl} \).
Доказательство.

\[
R^a_{bde} = \Gamma^a_{be,d} - \Gamma^a_{bd,e} + \Gamma^a_{cd} \Gamma^c_{be} - \Gamma^a_{ce} \Gamma^c_{bd} = \\
\Gamma^a_{be,d} + A^a_{be,d} - \Gamma^a_{bd,e} - A^a_{bd,e} = \\
\Gamma^a_{cd} \Gamma^c_{be} + A^a_{cd} \Gamma^c_{be} - (\Gamma^a_{ce} + A^a_{ce}) (\Gamma^c_{bd} + A^c_{bd}) = \\
\Gamma^a_{ce} \Gamma^c_{bd} - A^a_{ce} \Gamma^c_{bd} - A^a_{ce} \Gamma^c_{bd} = \\
R^a_{bde} + A^a_{be,d} - A^a_{bd,e} = \\
\Gamma^a_{cd} A^c_{be} + A^a_{cd} \Gamma^c_{be} + A^a_{cd} \Gamma^c_{be} = \\
- A^a_{ce} \Gamma^c_{bd} - A^a_{ce} \Gamma^c_{bd} = \\
R^a_{bde} = \\
A^a_{be,d} - \Gamma^a_{ps} \Gamma^p_{bd,e} + \Gamma^a_{bd,e} \Gamma^p_{de} A^p_{bd} + \Gamma^a_{cd} \Gamma^c_{bd} = \\
A^a_{bd,e} + \Gamma^a_{ps} \Gamma^p_{bd,e} - \Gamma^a_{bd,e} \Gamma^p_{de} - A^a_{de} A^p_{bd} = \\
\Gamma^a_{cd} A^c_{bd} + A^a_{cd} A^c_{be} + A^a_{cd} A^c_{be} = \\
- \Gamma^a_{bd} A^c_{bd} - A^a_{ce} A^c_{bd} = \\
\Gamma^a_{cd} A^c_{bd} - \Gamma^a_{bd} A^c_{bd} = \\
R^a_{bde} = \\
\Gamma^a_{cd} A^c_{bd} - \Gamma^a_{bd} A^c_{bd} = \\
R^a_{bde}
\]

\[\Gamma^a_{cd} A^c_{bd} - \Gamma^a_{bd} A^c_{bd} = \Gamma^a_{cd} A^c_{bd} - \Gamma^a_{bd} A^c_{bd}\]

\[\square\]

Следствие 10.4. Кривизна Каратаева имеет вид

\[\mathbf{R}^a_{bde} = R^a_{bde} - \Gamma(C)^a_{bde} + \Gamma(C)^a_{bde} = \]

11. Закон Ньютона: скалярный потенциал

Знание динамики точечной частицы важно для нас, так как мы можем изучать как частица взаимодействует с внешними полями, так же как свойства самой частицы.

Чтобы изучить движение точечной частицы, мы можем использовать потенциал определённых полей. Потенциал может быть скалярным или векторным.

В случае скалярного потенциала мы положим, что точечная частица имеет массу покоя \(m\) и мы пользуемся функцией Лагранжа в следующем виде

\[L = -mc^2 - Ud^2\]

где \(U\) - скалярный потенциал или потенциальная энергия.

Теорема 11.1. (Первый закон Ньютона) Если \(U = 0\) (следовательно, мы рассматриваем свободное движение), то тело выбирает траекторию с экстремальной длиной.

Теорема 11.2. (Второй закон Ньютона) Траекторию точечной частицы удовлетворяет дифференциальному уравнению

\[\frac{D^2 u^i}{ds^2} = \frac{u^0}{mc} F^i\]

\[u^i = \frac{dx^i}{ds}\]

\[17\]
где мы определяем силу

\[F^i = g^{ij} \frac{\partial U}{\partial x^j} \]

Доказательство. Пользуясь (5.2), мы можем записать вариацию лагранжiana в виде

\[\frac{1}{2} mc (g_{ki} - g_{ik} - g_{ik}) u^k u^j ds - mc g_{ij} Du^j + \frac{\partial U}{\partial x^i} dx^0 = 0 \]

Отсюда следует утверждение теоремы.

12. Закон Ньютона: векторный потенциал

В разделе 11 мы изучили динамику скалярного потенциала. Однако в электродинамике мы рассматриваем векторный потенциал \(A^k \). В этом случае действие имеет вид

\[S = \int_{t_1}^{t_2} \left(-mc ds - \frac{e}{c} A^i dx^i \right) \]

\[A_c = g_{cd} A^d \]

Теорема 12.1. Траектория частицы, движущейся в векторном поле, удовлетворяет дифференциальному уравнению

\[\frac{\widehat{D}}{ds} u^j = \frac{e}{mc} g^{ij} F_{ij} u^l \]

\[u^j = \frac{dx^j}{ds} \]

где мы определяем тензор напряжённости поля

\[F_{dc} = A_{d;c} - A_{c;d} + S^p_{dc} A_p = \nabla_c A_d - \nabla_d A_c + S^p_{dc} A_p \]

Доказательство. Пользуясь (5.2), мы можем записать вариацию действия в виде

\[\delta S = \]

\[= \int_{t_1}^{t_2} \left(-mc \left(\frac{1}{2} (g_{kj;i} - g_{ij;k} - g_{ik;j}) u^k u^j ds - g_{ij} Du^j \right) \delta x^i - \frac{e}{c} \left(\delta A^i dx^i + A^i \delta dx^i \right) \right) \]

Мы можем оценить второе слагаемое

\[\frac{e}{c} \left(A^i \delta x^i \delta x^k + A_i \delta dx^i \right) = \]

\[= \frac{e}{c} \left(A^i \delta x^i \delta x^k + \Gamma^p_{ik} A_p \delta x^i \delta x^k + A_i \delta dx^i \right) = \]

\[= \frac{e}{c} \left(A^i \delta x^i \delta x^k + (A_{i;k} - A_{k;i}) \delta x^i \delta x^k + S^p_{ik} A_p \delta x^i \delta x^k + \Gamma^p_{ik} A_p \delta x^i \delta x^k + A_i \delta dx^i \right) = \]

\[= \frac{e}{c} \left(D A^i \delta x^i + A_k \delta x^k + (A_{i;k} - A_{k;i}) \delta x^i \delta x^k + S^p_{ik} A_p \delta x^i \delta x^k \right) = \]

\[= \frac{e}{c} \left(D A^i \delta x^i + A_{i;k} \delta x^k + (A_{i;k} - A_{k;i}) \delta x^i \delta x^k + S^p_{ik} A_p \delta x^i \delta x^k \right) \]

Интеграл подчёркнутого слагаемого равен 0, так как точки, когда \(t = t_1 \) и \(t = t_2 \), фиксированы. Следовательно,

\[-mc \left(\frac{1}{2} (g_{kj;i} - g_{ij;k} - g_{ik;j}) u^k u^j ds - g_{ij} Du^j \right) - \frac{e}{c} F_{ij} dx^i = 0 \]

Отсюда следует утверждение теоремы.
из этой теоремы следует зависимость тензора напряжённости поля от производной метрики. Это изменяет форму уравнения Эйнштейна и импульс гравитационного поля появляется в случае векторного поля.

теорема 12.2. Тензор напряжённости поля не изменяется, когда векторный потенциал изменяется согласно правилу

\[A'_j = A_j + \partial_j \Lambda \]

где \(\Lambda \) - произвольная функция \(x \).

доказательство. Изменение в тензоре напряжённости поля имеет вид

\[
(\partial_d \Lambda)_c - (\partial_c \Lambda)_d + S^p_{dc} \partial_p \Lambda = \\
\partial_{cd} \Lambda - \Gamma^p_{dc} \partial_p \Lambda - \partial_{dc} \Lambda + \Gamma^p_{cd} \partial_p \Lambda + S^p_{dc} \partial_p \Lambda = 0
\]

это доказывает теорему.

13. Список литературы

[1] Eckehard W. Mielke, Affine generalization of the Komar complex of general relativity, Phys. Rev. D 63, 044018 (2001)
[2] Yu. N. Obukhov and J. G. Pereira, Metric-affine approach to teleparallel gravity, Phys. Rev. D 67, 044016 (2003), eprint arXiv:gr-qc/0212080 (2002)
[3] Giovanni Giachetta, Gennadi Sardanashvily, Dirac Equation in Gauge and Affine-Metric Gravitation Theories, eprint arXiv:gr-qc/9511035 (1995)
[4] Frank Gronwald and Friedrich W. Hehl, On the Gauge Aspects of Gravity, eprint arXiv:gr-qc/9602013 (1996)
[5] Yuval Neeman, Friedrich W. Hehl, Test Matter in a Spacetime with Nonmetricity, eprint arXiv:gr-qc/9604047 (1996)
[6] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48, 393 (1976)
[7] O. Megged, Post-Riemannian Merger of Yang-Mills Interactions with Gravity, eprint arXiv:hep-th/0008135 (2001)
[8] Yu.N. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres and F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges, eprint arXiv:gr-qc/9604027 (1996)
[9] Г. Е. Шилов, Математический анализ, Функции нескольких вещественных переменных, части 1 - 2. М., Наука, 1972
[10] П. К. Рашевский, Риманова геометрия и тензорный анализ, М., Наука, 1967
[11] Александр Клейн, Система отсчета в общей теории относительности, eprint arXiv:gr-qc/0405027 (2004)
14. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

автопараллельная кривая 7

векторный потенциал 18
второй закон Ньютона 17

cривизна Картана 17
метрико-аффинное многообразие 4

неметричность 4

параллелотрим 5
первый закон Ньютона 17
перенос Картана 15
перенос Френе 9
потенциальная энергия 17

производная Картана 15

связность Картана 15
символ Картана 15
скалярный потенциал 17

tензор кручения 3
tензор напряжённости поля 18

форма кручение 3

экстремальная кривая 7
15. Специальные символы и обозначения

\(a_{<l>} \) произвольная 16

\(D a^i \) произвольная Картана 15
\(\overline{D} a^i \) произвольная 16

\(R_{ikl} \) кривизна Картана 17
\(\overline{R}_{ikl} \) кривизна 16
\(\Gamma(C)_{ij}^k \) символ Картана 15
\(\Gamma_{kl} \) связность 16
\(\overline{\Gamma}_{kl} \) связность Картана 15

\(\nabla_j a^i \) произвольная Картана 15
\(\overline{\nabla}_j a^i \) произвольная 16