Corner occupying theorem for the two-dimensional integral rectangle packing problem

HUANG WenQi¹, YE Tao¹* & CHEN DuanBing²

¹School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; ²Web Sciences Center, School of Computer Science, University of Electronic Science and Technology of China, Chengdu 611731, China

Received February 29, 2012; accepted August 19, 2012

Abstract This paper proves a corner occupying theorem for the two-dimensional integral rectangle packing problem, stating that if it is possible to orthogonally place \(n \) arbitrarily given integral rectangles into an integral rectangular container without overlapping, then we can achieve a feasible packing by successively placing a rectangle onto a bottom-left corner in the container. Based on this theorem, we might develop efficient heuristic algorithms for solving the integral rectangle packing problem. In fact, as a vague conjecture, this theorem has been implicitly mentioned with different appearances by many people for a long time.

Keywords rectangle packing, bottom-left, corner occupying theorem, NP hard

Citation Huang W Q, Ye T, Chen D B. Corner occupying theorem for the two-dimensional integral rectangle packing problem. Sci China Inf Sci, 2012, 55: 2466–2472, doi: 10.1007/s11432-012-4702-8

1 Introduction

In the integral rectangle packing (IRP) problem, we are given a set \(J = \{1, 2, \ldots, n\} \) of \(n \) integral rectangles, each having width \(w_j \) and height \(h_j \), and an integral rectangular container of width \(W \) and height \(H \). The problem is to determine whether all the rectangles can be orthogonally placed into the container without overlapping. If the answer is yes, we should present a non-overlapping packing pattern. In this paper, we assume that: (1) \(w_j, h_j, W \) and \(H \) are positive integers, and each vertex of each rectangle must be placed at integral coordinate positions. (2) Rectangles are rotatable, i.e., each rectangle can be horizontally or vertically placed into the container.

The rectangle packing problem arises in many industrial applications, such as cutting wood, glass, paper and steel in manufacturing, packing goods in transportation, arranging articles and advertisements in publishing. Various algorithms have been proposed to solve this problem. They can be divided into three categories: approximate algorithms, heuristic algorithms and exact algorithms [1,2].

Most algorithms solve the IRP problem by successively placing a new rectangle into the container. Then a basic problem arises: where to place a new rectangle when the container is already partially occupied by some previously placed rectangles? To handle this problem, people have proposed several kinds of placement heuristics specifying admissible positions for a rectangle [3–7].

*Corresponding author (email: yeetao@gmail.com)
However, for a specific placement heuristic, there exists an important question: when there exist feasible solutions, can we achieve one by successively placing a rectangle into the container using this placement heuristic? If the answer is yes, then we say the placement heuristic is complete; otherwise, incomplete. If a placement heuristic is incomplete, then any algorithm based on it is doomed to fail on some instances.

For example, Ref. [3] proved that the Bottom-Left heuristic, which places a rectangle onto the lowest possible position in the container and left-justifies it, is incomplete. They found an instance for which any feasible solution cannot be achieved using the Bottom-Left heuristic, no matter what ordering of the rectangles is used. Ref. [8] proposed a placement heuristic and developed an exact algorithm for the three-dimensional bin packing problem. Later, Ref. [9] found that some instances cannot be solved using the placement heuristic proposed by [8].

It is usually very difficult to prove a placement heuristic’s completeness or incompleteness. Nevertheless, for a special case of the rectangle packing problem, the 2D rectangular perfect packing problem, Ref. [10] showed that the Bottom-Left heuristic is complete. They presented the following theorem: For every perfect packing, there is a permutation of the rectangles that yields that packing using the Bottom-Left heuristic. An efficient branch and bound algorithm is also developed based on this theorem. Besides this result, we have not found any other paper in literature proving a certain placement heuristic’s completeness.

For the general IRP problem, this paper formulates a placement heuristic and proves its completeness. The following corner occupying theorem is presented that if it is possible to orthogonally place \(n \) arbitrary given integral rectangles into an integral rectangular container without overlapping, then we can achieve a feasible packing by successively placing an integral rectangle onto a bottom-left corner in the container. This theorem lays a solid foundation for understanding many efficient algorithms for solving the IRP problem [11–13]. It might be possible to develop new efficient and effective heuristic algorithms based on this theorem.

The rest of the paper is organized as follows. Section 2 presents several notations and definitions. Section 3 proves the corner occupying theorem. Finally, Section 4 presents a counterexample to show why the proof of the corner occupying theorem cannot be directly extended to the three-dimensional case.

2 Notations and definitions

We designate the bottom-left corner point of the container as the origin of the \(xy \)-plane and let its four sides parallel to \(x \) and \(y \) axis, respectively. The placement of rectangle \(i \) \((i = 1, 2, \ldots, n)\) in the container can be described by three variables \((x_i, y_i, v_i)\), where \(x_i, y_i \in \mathbb{N} = \{0, 1, 2, \ldots\}\) is the coordinate of its bottom-left corner point, and \(v_i \in \{0, 1\}\) denotes its orientation. \(v_i = 1\) means it is vertically placed, \(v_i = 0\) horizontally. A packing pattern of \(n \) rectangles can be described by a vector of \(3n \) elements: \(X = (x_1, y_1, v_1, x_2, y_2, v_2, \ldots, x_n, y_n, v_n)\). We give the following definitions.

Definition 1 (Feasible packing). A feasible (or non-overlapping) packing \(X\) satisfies the following two conditions: 1) each rectangle does not overstep each border of the container; 2) the overlapping area between any two rectangles is zero.

Definition 2 (Rectangle \(j \) over rectangle \(i \)). We say rectangle \(j \) is over rectangle \(i \) (or rectangle \(i \) is under rectangle \(j \)) if and only if there exists a positive number \(d \) such that if rectangle \(i \) moves upwards by a distance of \(d \), then the overlapping area between rectangles \(i \) and \(j \) is greater than zero. In Figure 1, rectangles 2 and 3 are over rectangle 1, rectangles 4 and 5 are not over rectangle 1. We say rectangle \(i \) can move upwards freely if and only if no rectangle is over rectangle \(i \).

Definition 3 (Rectangle \(j \) on the right of rectangle \(i \)). We say rectangle \(j \) is on the right of rectangle \(i \) (or rectangle \(i \) is on the left of rectangle \(j \)) if and only if there exists a positive number \(d \) such that if rectangle \(i \) moves rightwards by a distance of \(d \), then the overlapping area between rectangles \(i \) and \(j \) is greater than zero. In Figure 2, rectangles 2 and 3 are on the right of rectangle 1, rectangles 4 and 5 are
Figure 1 Rectangles 2 and 3 are over rectangle 1.

Figure 2 Rectangles 2 and 3 are on the right of rectangle 1.

Figure 3 Bottom-left stability and bottom-left corners.

Figure 4 A feasible packing and its equivalent bottom-left stable packing. (a) Not bottom-left stable; (b) bottom-left stable.

not on the right of rectangle 1. We say rectangle i can move rightwards freely if and only if no rectangle is on the right of rectangle i.

Definition 4 (Bottom-left stability). In a feasible packing, a rectangle is bottom-left stable if and only if it cannot move downwards or leftwards without overlapping others [14]. A feasible packing is bottom-left stable if and only if each rectangle in this packing is bottom-left stable. In Figure 3, rectangles 1, 2, 3, 4 are bottom-left stable; rectangles 5, 6, 7, 8 are not bottom-left stable.

Definition 5 (Bottom-left corner). A bottom-left corner is an unoccupied area where a suitable rectangle has bottom-left stability. In Figure 3, A, B, C, D, E, F, G are bottom-left corners.

Definition 6 (Corner occupying action). A corner occupying action is an action that places a rectangle onto a bottom-left corner and makes that rectangle bottom-left stable. Let the placed rectangle be rectangle i. Then the rectangles forming the bottom-left corner where rectangle i is located satisfy the following two conditions: 1) they touch rectangle i; 2) they are under or on the left of rectangle i.

3 Corner occupying theorem

This section proves the corner occupying theorem. We first present two lemmas.

Lemma 1. Any feasible packing can be replaced by another feasible packing where each rectangle has bottom-left stability.

Proof. In Figure 4, the left packing can be replaced by the right bottom-left stable one. Given a feasible packing X_0, we prove that an equivalent bottom-left stable packing can be found from X_0. Keep the
orientation of each rectangle unchanged, suppose that each rectangle can move freely and consider the following function:

$$O = O(x_1, y_1, x_2, y_2, \ldots, x_n, y_n) = \sum_{i=0}^{n-1} \sum_{j=i+1}^{n} O_{ij},$$ \hspace{1cm} (1)$$

where $O_{ij} (i, j = 1, 2, \ldots, n)$ is the overlapping area between rectangles i and j. $O_{0j} (j = 1, 2, \ldots, n)$ is the overlapping area between rectangle j and the outside of the container. Let S_0 be the set of all zero points of O: $S_0 = \{(x_1, y_1, x_2, y_2, \ldots, x_n, y_n) | O(x_1, y_1, x_2, y_2, \ldots, x_n, y_n) = 0\}$. Then each point in S_0 corresponds to a non-overlapping packing. Because X_0 corresponds to a zero point of O, S_0 is not empty. And because each rectangle can only be placed at integer coordinate positions, S_0 is a finite set.

Then let’s consider another function L defined on S_0:

$$L = \sum_{i=1}^{n} (x_i + y_i).$$ \hspace{1cm} (2)$$

Because S_0 is a non-empty and finite set, there exists a point $(x_1^*, y_1^*, x_2^*, y_2^*, \ldots, x_n^*, y_n^*)$ in S_0 where L is minimal. Note that $(x_1^*, y_1^*, x_2^*, y_2^*, \ldots, x_n^*, y_n^*)$ corresponds to a feasible packing where each rectangle cannot move downwards or leftwards without overlapping others; otherwise, we can find another point in S_0 with a smaller L, contradicting the fact that L attains its minimum at $(x_1^*, y_1^*, x_2^*, y_2^*, \ldots, x_n^*, y_n^*)$.

Lemma 1 has been explicitly mentioned by Refs. [8,11,12] as a conjecture and implicitly used by many algorithms for solving the rectangle packing problem.

Lemma 2 (Escaping lemma). In any feasible packing, if we take away the four borders of the container, then there is a rectangle which can move upwards and rightwards freely.

Proof. In Figure 5(a), the highlighted rectangle can move upwards and rightwards freely. Given a feasible packing with n rectangles, we sort the top-right corner points of the rectangles lexicographically by increasing (x, y) and renumber the rectangles according to this order (See Figure 5(b)). We search for the rectangle which can move rightwards and upwards freely as follows. First, we consider the highest numbered rectangle among all n rectangles, i.e., rectangle n (12 in Figure 5(b)). Its top-right corner point is the rightmost; thus it can move rightwards freely. If no rectangle is over rectangle n, then n is the rectangle we want to find. Otherwise, we consider the highest numbered rectangle among all the rectangles over rectangle n. Let it be rectangle i (10 in Figure 5(b)). Its top-right corner point is the rightmost among all the rectangles over rectangle n. Therefore, it can move rightwards freely. If no rectangle is over rectangle i, then i is the rectangle we want to find. Otherwise we consider the highest numbered rectangle among all the rectangles over rectangle i and continue the search as described above.

Because there are only finite (n) rectangles, the above search will terminate and we can finally find a rectangle which can move upwards and rightwards freely.
Theorem 1. For any feasible, bottom-left stable packing, there exists a numbering of \(n \) rectangles such that rectangle \(i \) (\(i = 1, 2, \ldots, n \)) is located on a bottom-left corner formed by rectangles \(1, 2, \ldots, i - 1 \) and the four borders of the container.

Proof. According to Lemma 2, there is always a rectangle which can move rightwards and upwards freely in any feasible packing. Consequently, for a feasible packing with \(n \) rectangles, we can empty the container by successively taking out a rectangle which can move rightwards and upwards freely. We then number the rectangles according to the order in which rectangles are taken out. Under this numbering, a higher numbered rectangle is not over or on the right of a lower numbered rectangle (See Figure 6(a)).

Now we consider a new numbering which is the reversion of the previous numbering, i.e., the number of rectangle \(i \) (\(i = 1, 2, \ldots, n \)) becomes \(n - i + 1 \) (See Figure 6(b)). Under this new numbering, a lower numbered rectangle is not over or on the right of a higher numbered rectangle. Then, for rectangle \(i \) (\(i = 1, 2, \ldots, n \)), the labeled numbers of the rectangles forming the bottom-left corner where rectangle \(i \) is located are smaller than \(i \).

The new numbering of the rectangles can be taken as an order in which rectangles are placed into the container. Under this order, when we place rectangle \(i \) into the container, rectangles \(1, 2, \ldots, i - 1 \) are already in the container and rectangles \(i + 1, i + 2, \ldots, n \) are not. Thus, it is shown that, any feasible, bottom-left stable packing can be achieved through a sequence of placement actions, among which the \(i \)th \((i = 1, 2, \ldots, n) \) action is to place rectangle \(i \) onto a bottom-left corner formed by rectangles \(1, 2, \ldots, i - 1 \) and the four borders of the container. That is to say, any feasible, bottom-left stable packing can be achieved through a sequence of corner occupying actions.

Theorem 2 (Corner occupying theorem). Arbitrarily given \(n \) rectangles and a rectangular container, if it is possible to orthogonally place all the rectangles into the container without overlapping, then we can find a feasible packing through a sequence of corner occupying actions.

Proof. According to Lemma 1, there exists a feasible packing where each rectangle has bottom-left stability. Then according to Theorem 1, this bottom-left stable packing can be found through a sequence of corner occupying actions.

Note that, in the above proof, the escaping lemma determines the order in which rectangles are placed into the container. And we can find that, when we place rectangle \(i \) onto a bottom-left corner in the container, no rectangle in the container is over or on the right of rectangle \(i \). Therefore, in practical implementation, in order to reduce the computing time, the corner occupying theorem can be enhanced as follows: Arbitrarily given \(n \) rectangles and a rectangular container, if it is possible to orthogonally place all the rectangles into the container without overlapping, then we can find a feasible packing by successively placing a rectangle onto a bottom-left corner in the container where the placed rectangle is then under and on the left of no rectangle.

4 The three-dimensional case

In this section, we investigate the following problem: can the lemmas and theorems presented in Section 3 be extended to the three-dimensional case? Scientists have done some research on the three-dimensional
In the three-dimensional case, rectangle j has width w_j, height h_j and depth d_j, and the container is of width W, height H and depth D. Similarly, we can extend the notations and definitions presented in Section 2 to the three-dimensional case, and get new definitions like: rectangle j in front of rectangle i (or rectangle i in behind of rectangle j), bottom-left-behind corner, bottom-left-behind stability. And then the corner occupying action is to place a rectangle onto a bottom-left-behind corner in the container.

We find that Lemma 1 and its proof can be easily extended to the three-dimensional case. However, the escaping lemma is wrong in the three-dimensional case. Figure 7 presents a counterexample where no rectangle can move along the positive x-axis, positive y-axis, and positive z-axis freely. The coordinate position of each rectangle in Figure 7 is presented in Table 1.

As shown in Section 3, in the two-dimensional case, the proof of the corner occupying theorem is based on Lemma 1 and the escaping lemma. Since the escaping lemma is wrong in the three-dimensional case, we cannot directly extend the proof of the corner occupying theorem to the three-dimensional case. However, the incorrectness of escaping lemma in the three-dimensional case might not imply that the corner occupying theorem is incorrect in the three-dimensional case. Therefore, we get an open problem: is the corner occupying theorem correct in the three-dimensional case? Or specifically, in the three-dimensional case, if it is possible to orthogonally place n arbitrarily given rectangles into a rectangular container without overlapping, can we achieve a feasible packing by successively placing a rectangle onto a bottom-left-behind corner in the container?

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61070235, 61100144, 61173180).

References

1. Lodi A, Martello S, Monaci M. Two-dimensional packing problems: a survey. Eur J Oper Res, 2002, 141: 241–252
2 Hopper E, Turton B. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur J Oper Res, 2001, 128: 34–57
3 Baker B S, Jr C E G, Rivest R L. Orthogonal packings in two dimensions. SIAM J Comput, 1980, 9: 846–855
4 Berkey J O, Wang P Y. Two-dimensional finite bin-packing algorithms. J Oper Res Soc, 1987, 38: 423–429
5 Burke E K, Kendall G, Whitwell G. A new placement heuristic for the orthogonal stock-cutting problem. Oper Res, 2004, 4: 655–671
6 Huang W, Chen D, Xu R. A new heuristic algorithm for rectangle packing. Comput Oper Res, 2007, 34: 3270–3280
7 Huang W, He K. A caving degree approach for the single container loading problem. Eur J Oper Res, 2009, 196: 93–101
8 Martello S, Pisinger D, Vigo D. The three-dimensional bin packing problem. Oper Res, 2000, 48: 256–267
9 Boer E D, Korst J, Martello S, et al. Erratum to “the three-dimensional bin packing problem”: robot-packable and orthogonal variants of packing problems. Oper Res, 2005, 53: 735–736
10 Lesh N, Marks J, Memahon A, et al. Exhaustive approaches to 2D rectangular perfect packings. Inf Process Lett, 2004, 90: 7–14
11 Christofides N, Whitlock C. An algorithm for two-dimensional cutting problems. Oper Res, 1977, 1: 30–44
12 Hadjiconstantinou E, Christofides N. An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur J Oper Res, 1995, 83: 39–56
13 Kenmochi M, Imamichi T, Nonobe K, et al. Exact algorithms for the two-dimensional strip packing problem with and without rotations. Eur J Oper Res, 2009, 198: 73–83
14 Chazelle B. The bottom-left bin-packing heuristic: an efficient implementation. IEEE Trans Comput, 1983, 100: 697–707