INTRODUCTION

Cytochrome P450 2E1 (CYP2E1) is the major component of the microsomal enzyme oxidizing system, which is one of the major pathways of oxidative metabolism of ethanol[1,2] as well as a large number of xenobiotics[3]. CYP2E1 is induced to greater activity by its substrate ethanol, probably via a number of mechanisms, including transcriptional, post-transcriptional and post-translational[4,8].

CYP2E1 activity is expressed in the liver, at sites of maximal alcohol induced damage[6], and in the pancreas, where it is also induced by chronic alcohol consumption[7,8]. These two are the major sites of damage following chronic consumption of ethanol. In addition, it is found in the brain[9], also a site of ethanol induced damage.

The genetic predisposition to both alcoholism and alcohol induced end-organ damage is an area of debate. Alcohol-induced pancreatitis occurs in approximately 5% of alcoholics[10] while no, or minimal, fibrosis is found in 32% of pancreata of alcoholics[11]. Alcoholic cirrhosis occurs in around 10% and hepatitis in 10-35%[12].

The heterogeneity of the response to alcohol implicates genetic factors. Family and twin studies suggest a genetic component to alcoholism[13,14]. Some evidence suggests that the majority of genetic predisposition to psychosis and liver disease may be accounted for by disposition to alcoholism[15].

Recently, an insertion polymorphism in the promoter
region of the gene coding for the enzyme CYP2E1 has been described; sequencing has shown a 96-bp insertion as a series of eight repeats, as opposed to six in the wild type. This corresponds to the restriction fragment length polymorphism, between positions -2270 and -1672. Presence of which is associated with higher CYP2E1 metabolic activity (employing an in vivo chlorazoxazone 6-hydroxylation test) in the presence of recently consumed alcohol or obesity. We have therefore analyzed the frequency of this polymorphism in patients with a history of excessive alcohol consumption, with and without end-organ damage, and normal controls.

The 96-bp insertion, previously described, is a 729-bp fragment employing the PCR based analysis of Fritzsche et al. The wild type allele is 633 bp in length. In addition, a GenBank record also exists for a 48-bp deletion (accession no. J02843), corresponding to 585 bp.

MATERIALS AND METHODS

Subjects
Venous blood samples were drawn from patients giving informed consent and local research ethics committee approval was obtained. We collected samples on 239 Caucasian subjects (ALC) fulfilling the ICD 10 criteria. The age range was 2-45 years; median 10 years. The subjects were sub-divided as follows:

Sixty-seven (36 British and 31 German) subjects without known end-organ disease, AC, collected from clients at alcohol rehabilitation centers.

One hundred and seventy-two with alcohol-related end-organ disease (AEOD). Of which, one hundred and forty-four (39 British and 105 German) patients had alcohol-induced chronic pancreatitis (AICP); all fulfilled the criteria for late- or end-stage AICP, as defined by the Zurich criteria. The twenty-eight patients with alcohol-induced chronic pancreatitis (AICP) had biopsy proven cirrhosis, with jaundice associated with excess alcohol consumption, and without end-organ damage, and normal controls.

Comparing ALC to AC for the presence of the insertion was comparable (P=0.049) (Table 2). The same comparison for genotype of the insertion was comparable (P=0.030) (Table 2).

To delineate whether the difference may have been for alcohol problems per se or end organ disease we initially employed Fisher’s exact test for the presence of the insertion using a three by two contingency table of normal controls, AC and AEOD. This revealed a statistically significant difference (P=0.045), and analysis for insertion genotypes was comparable (P=0.011) (Table 3). Thus, we further analyzed the sub-groups. Comparing AC with NC and comparisons within alcoholic (ALC) subgroups analysis did not reveal any significant differences, as might be expected with such a low frequency in the patient.
DISCUSSION

Polymorphisms in CYP2E1, other than that studied here, have been looked at in previous studies, though some have used small numbers. Their association with alcoholism has been studied: no association was found for the c1/c2 alleles in most studies. A positive association for the D form of the C/D polymorphism was found in Japanese subjects. Although some studies used non-alcoholic controls, in alcohol induced end-organ disease association for these polymorphisms has been found: for ALD and the c2 allele and fatty liver and the c2 allele. However, the positive association with end-organ disease has not been found in a number of studies and two studies found an association with the c1 allele.

The original study describing the polymorphism assessed in this study, showed greater CYP2E1 metabolic activity associated with the 96 bp insertion. In that study chlorazoxazone hydroxylation was higher in the patients with the presence of the polymorphism and who were obese or recent consumers of alcohol; both circumstances when CYP2E1 is induced. The two later descriptions delineate the pattern of 8 repeats of 42-60 bp, as opposed to 6 in the wild type. The first sequencing data showed a run of five repeats (accession no. J02843), which had not been seen in the two further studies; this form would correspond to the smaller band seen in four of our 447 samples (Figure 1B). Hu et al did not find an increased constitutive

Table 1 Full genotype data on all subjects

	Normal controls (n = 208)	ALC (n = 239)	Of ALC	Of AED	Of AEOD	
	AC (n = 67)	AEOD (n = 172)				
Homozygote wildtype	194	232	63	169	141	28
Heterozygote for insertion	12	4	3	1	1	0
Heterozygote for insertion	0	1	0	1	1	0
Heterozygote for deletion	2	2	1	1	1	0

Table 2 Normal control and alcoholic figures and comparisons

	Normal controls n = 208 (%)	ALC n = 239 (%)	Fisher’s exact test
Presence of insertion polymorphism	12 (5.8)	5 (2.1)	P = 0.049 (χ² = 4.110, P = 0.043)
Genotype for insertion polymorphism			
Heterozygote	12 (5.8)	4 (1.7)	P = 0.030
Homozygote	0 (0.0)	1 (0.4)	

Table 3 Alcoholic subgroup figures and analyses

	Normal controls n = 208 (%)	Alcoholic controls n = 67 (%)	Alcoholic end organ disease n = 172 (%)	Fisher’s exact test
Presence of insertion polymorphism	12 (5.8)	3 (4.5)	2 (1.2)	P = 0.045
Genotype for insertion polymorphism				
Heterozygote	12 (5.8)	3 (4.5)	1 (0.6)	P = 0.011
Homozygote	0 (0.0)	0 (0.0)	1 (0.6)	

Figure 1 A: Agarose gel showing wild type homozygotes (633 bp, lanes 1, 3, 5–7) and a heterozygote for the insertion polymorphism (729 bp, lane 4). Run alongside a molecular weight marker (M). B: Agarose gel showing wild type homozygotes (633 bp, lanes 1–3 and 5) and a heterozygote for the deletion polymorphism (565 bp, lane 4). Run alongside a molecular weight marker (M).
expression in luciferase transfection experiments, for the insertion polymorphism, which would agree with McCarver et al.'s findings of increased enzymatic activity only in the induced state (obese subjects and recent alcohol consumers). To our knowledge, this is the first study to look at this polymorphism in patient groups. In previous studies of healthy groups of American Caucasoids, frequencies of 6.9% and 4.2% are seen. Another previous study found the insertion in only 2.1% of healthy Swedish subjects.

At low frequencies these results, on Caucasian subjects, could all be consistent with the frequencies found in our patient, as well as our control, groups; of 5.8% controls (British), 2.2% German ALC and 2% British ALC. However, in the large numbers in our study our results do indicate a statistically significant difference, which remains when isolating the smaller numbers of only British subjects for insertion genotype between NC and ALC (P = 0.03). Population stratification is a confounding factor in all genetic association studies and the possibility of this is recognized, raising the question as to whether our results are biologically as well as statistically significant.

We have shown a significantly lower frequency of this polymorphism, which is associated with increased activity, in the gene coding for the enzyme CYP2E1 when comparing those with alcohol dependence or abuse and normal controls. This could be explained and be analogous to the association found in the functional variations in ADH. It has been shown that high activity forms of ADH (and low activity forms of ALDH) are associated with the protection against alcoholism in a number of studies, as previously reviewed. This is believed to be due to the increased production (or decreased metabolism) of the ethanol metabolite acetaldehyde (and possibly other toxic metabolites), to which associated unpleasant side effects such as flushing are ascribed.

Due to the low frequency in our patient populations it was not possible to delineate whether there was only a relationship to alcohol misuse per se, or a relationship to end-organ disease. If a lower frequency existed in alcoholics, it could then be expected to be increased in those with end-organ disease compared to alcoholic controls. The sole homozygote was a patient with AICP and genotype analysis of those with end-organ disease vs AC approached significance, with P = 0.068. However, to infer a finding from such a result would not be justified.

Further analysis in ethnic populations with a frequency of this polymorphism which is sufficiently common to a component of this is further assessed. We have shown for the first time frequencies of this functional polymorphism in patient groups and there appears to be an association with this high activity polymorphism in the gene coding for cytochrome P450 2E1 and genetic protection against alcohol consumption. However, further studies are required in other populations.

ACKNOWLEDGMENTS

The authors would like to thank David Wright for his statistical input and the staff and clients of Broadreach Drug and Alcohol Treatment Centre, Plymouth.

REFERENCES

1 Lieber CS, DeCarli LM. Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J Biol Chem 1970; 245: 2805-2912
2 Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997, 77, 517-544
3 Parkinson A. Biotransformation of xenobiotics. In: Klassen CD, Amdu MO, Doull J. eds. Cassettes and Doull's Toxicology: The Basic Science of Poisons. 5th ed. New York: McGraw-Hill, 1996 : 113-186
4 Ohnishi K, Lieber CS. Reconstitution of the microsomal ethanol-oxidizing system. Qualitative and quantitative changes of cytochrome P-450 after chronic ethanol consumption. J Biol Chem 1977; 252: 7124-7131
5 Takahashi T, Lasker JM, Rosman AS, Lieber CS. Induction of cytochrome P-450E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993; 17: 236-245
6 Tsutsumi M, Lasker JM, Shimizu M, Rosman AS, Lieber CS. The intralobular distribution of ethanol-inducible P450IE1 in rat and human liver. Hepatology 1989; 10: 437-446
7 Kessova IG, DeCarli LM, Lieber CS. Inducibility of cytochromes P-450IE1 and P-450IIE1 in the rat pancreas. Alcohol Clin Exp Res 1998; 22: 501-504
8 Norton ID, Apte MV, Haber PS, McCaughan GW, Pirolo RC, Wilson JS. Cytochrome P450IE1 is present in rat pancreas and is induced by chronic ethanol administration. Gut 1998; 42: 426-430
9 Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E1) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 2000; 373: 23-34
10 Dreilling DA, Koller M. The natural history of alcoholic pancreatitis: update 1985. Mt Sinai J Med 1985; 52: 340-342
11 Pitchumoni CS, Glasser M, Saran RM, Panchacharam P, Thelmo W. Pancreatic fibrosis in chronic alcoholics and nonalcoholics without clinical pancreatitis. Am J Gastroenterol 1984; 79: 382-389
12 Grant BF, Dufour MC, Harford TC. Epidemiology of alcoholic liver disease. Semin Liver Dis 1988; 8: 12-25
13 National Institute of Alcohol Abuse and Alcoholism. Genetic and psychosocial influences. In: Tenth Special Report to the U. S. Congress on Alcohol and Health. Maryland: NIAAA, 2000: 159-196
14 Reed T, Page WF, Viken RJ, Christian JC. Genetic predisposition to organ-specific endpoints of alcoholism. Alcohol Clin Exp Res 1996; 20: 1528-1533
15 Hu Y, Hakkola J, O'Carson M, Ingelmann-Sundberg M. Structural and functional characterization of the 5′-flanking region of the rat and human cytochrome P450 2E1 genes: identification of a polymorphic repeat in the human gene. Biochem Biophys Res Commun 1999; 263: 286-293
16 Fritsche E, Pittman GS, Bell DA. Localization, sequence analysis, and ethnic distribution of a 96-bp insertion in the promoter of the human CYP2E1 gene. Mutat Res 2000; 432: 1-5
McCarver DG, Byun R, Hines RN, Hichme M, Wegenek W. A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. *Toxicol Appl Pharmacol* 1998; **152**: 276-281

Ammann RW. A clinically based classification system for alcoholic chronic pancreatitis: summary of an international workshop on chronic pancreatitis. *Pancreas* 1997; **14**: 215-221

Carr LG, Hartleroad JY, Liang Y, Mendenhall C, Moritz T, Thomasson H. Polymorphism at the P450IIE1 locus is not associated with alcoholic liver disease in Caucasian men. *Alcohol Clin Exp Res* 1995; **19**: 182-184

Maezawa Y, Yamauchi M, Toda G, Suzuki H, Sakurai S. Alcohol-metabolizing enzyme polymorphisms and alcoholism in Japan. *Alcohol Clin Exp Res* 1995; **19**: 951-954

Carr LG, Yi IS, Li TK, Yin SJ. Cytochrome P4502E1 genotypes, alcoholism and alcoholic cirrhosis in Han Chinese and Atayal Natives of Taiwan. *Alcohol Clin Exp Res* 1996; **20**: 43-46

Kee JY, Kim MO, You IY, Hong ES, An SC, Kim H, Park SM, Youn SJ, Chae HB. Effects of genetic polymorphisms of ethanol-metabolizing enzymes on alcohol drinking behaviors [*Taehan Kan Hakhoe Chi* 2003; **9**: 89-97]

Iwashashi K, Ameno S, Ameno K, Okada N, Kinoshita H, Sakae Y, Nakamura K, Watanabe M, Ijiri I, Harada S. Relationship between alcoholism and CYP2E1 C/D polymorphism. *Neuropsychobiology* 1998; **38**: 218-221

Tsutsumi M, Takada A, Wang JS. Genetic polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. *Gastroenterology* 1994; **107**: 1430-1435

Tanaka F, Shiratori Y, Yokosuka O, Imazeki F, Tsukada Y, Omata M. Polymorphism of alcohol-metabolizing genes affects drinking behavior and alcoholic liver disease in Japanese men. *Alcohol Clin Exp Res* 1997; **21**: 596-601

Grove J, Brown AS, Daly AK, Blossendine MF, James OF, Day CP. The RsaI polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: effect on age of presentation and dependence on alcohol dehydrogenase genotype. *Pharmacogenetics* 1998; **8**: 335-342

Piao YF, Li JT, Shi Y. Relationship between genetic polymorphism of cytochrome P450IIE1 and fatty liver. *World J Gastroenterol* 2003; **9**: 2612-2615

Itoga S, Nomura F, Harada S, Tsutsumi M, Takase S, Nakai T. Mutations in the exons and exon-intron junction regions of human cytochrome P-450IIE1 gene and alcoholism. *Alcohol Clin Exp Res* 1999; **23**: 138-165

Burim RV, Canalle R, Martinelli Ade L, Takahashi CS. Polymorphisms in glutathione S-transferases GSTM1, GSTT1 and GSTP1 and cytochromes P450 CYP2E1 and CYP1A1 and susceptibility to cirrhosis or pancreatitis in alcoholics. *Mutagenesis* 2004; **19**: 291-298

Verlaan M, Te Morsche RH, Roelofs HM, Laheij RJ, Jansen JB, Peters WH, Drenth JP. Genetic polymorphisms in alcohol-metabolizing enzymes and chronic pancreatitis. *Alcohol Alcohol* 2004; **39**: 20-24

Maezawa Y, Yamauchi M, Toda G. Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to alcoholic liver cirrhosis. *Am J Gastroenterol* 1994; **89**: 561-565

Kim MS, Lee DH, Kang HS, Park HS, Jung S, Lee JW, Kwon KS, Kim PS, Kim HG, Shin YW, Kim YS, Baek I, Lee MS. [Genetic polymorphisms of alcohol-metabolizing enzymes and cytokines in patients with alcohol induced pancreatitis and alcoholic liver cirrhosis] [*Korean J Gastroenterol* 2004; **43**: 355-363]

Umeno M, McBride OW, Yang CS, Gelboin HV, Gonzalez FJ. Human ethanol-inducible P450IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression. *Biochemistry* 1988; **27**: 9006-9013

Bosron WF, Ehrig T, Li TK. Genetic factors in alcohol metabolism and alcoholism. *Semin Liver Dis* 1993; **13**: 126-135