Histone demethylases in chromatin biology and beyond

Emilia Dimitrova†, Anne H Turberfield† & Robert J Klose*

Abstract

Histone methylation plays fundamental roles in regulating chromatin-based processes. With the discovery of histone demethylases over a decade ago, it is now clear that histone methylation is dynamically regulated to shape the epigenome and regulate important nuclear processes including transcription, cell cycle control and DNA repair. In addition, recent observations suggest that these enzymes could also have functions beyond their originally proposed role as histone demethylases. In this review, we focus on recent advances in our understanding of the molecular mechanisms that underpin the role of histone demethylases in a wide variety of normal cellular processes.

Keywords chromatin; demethylase; epigenetics; histone methylation
DOI 10.15252/embr.201541113 | Received 30 July 2015 | Revised 28 September 2015 | Accepted 6 October 2015 | Published online 12 November 2015
EMBO Reports (2015) 16: 1620–1639

See the Glossary for abbreviations used in this article.

Introduction

Multicellular organisms require diverse cell types to support the complex yet orchestrated processes inherent to their development, physiology and reproduction. To initiate and maintain functionally diverse cell types, mechanisms to precisely control how cells use their DNA-encoded information have evolved. This is in part achieved by wrapping DNA around histone proteins to form chromatin, which can regulate how genes are expressed, DNA information is replicated and segregated during cell division, and DNA damage is sensed and repaired.

Through studying the function of chromatin in these fundamental processes, it has become clear that many of its effects are mediated through post-translational modifications on histone proteins. This is exemplified by methylation, which occurs on numerous lysine and arginine residues in histones and has been intensely studied since enzymes that catalyse these modifications were discovered. Histone lysine methylation (me) can occur in the mono- (me1), di- (me2), or tri-methyl (me3) state, while arginine methylation is found in various symmetric and asymmetric mono- and dimethylated states (reviewed in [1,2]). In some very specific instances, histone methylation can directly affect chromatin structure. However, it appears that “reader” proteins, which bind specifically to methylated histones and recruit additional activities to drive functional outcomes on surrounding chromatin, are the central determinants underpinning the function of these post-translational modifications. Reader proteins often have the capacity to recognize defined methylation states, meaning that individual residues can encode different functional outcomes depending on their methylation state [3].

Initially, it was believed that histone methylation may be irreversible, despite early biochemical work suggesting that enzymatic activities that remove these modifications may exist in cells [4,5]. This discrepancy was resolved with the discovery of the histone demethylase KDM1A/LSD1, which actively removes methylation from histone H3 on lysine 4 (H3K4) via the activity of its amine oxidase domain, using FAD as a cofactor [6]. Shortly after this important discovery, KDM2A/JHDM1A/FBXL11 was shown to demethylate H3K36 via its JmJC domain, which coordinates iron to mediate a 2-OG-dependent demethylation reaction [7]. Since these initial discoveries, an extended family of related demethylase enzymes has been identified and their substrate specificities have been characterized in detail (reviewed in [8–10]). This has revealed that most of the abundantly methylated lysine residues in histones have a corresponding demethylase enzyme. In addition, it has been proposed that a JmJC domain-containing protein, JMJ6, may function as an arginine-specific histone demethylase [11,12]; however, the precise nature and biological relevance of this reaction remains a matter of dispute [13–15]. The study of histone lysine demethylase enzymes over the past decade has revealed that dynamic regulation of histone methylation plays central roles in fundamental chromatin-based processes. Importantly, misregulation of histone demethylases has been implicated in a wide range of human disorders, including cancer. Based on these observations, histone demethylases are now emerging as central therapeutic targets for small-molecule-based inhibition [16].

A series of excellent reviews have provided an extensive and detailed examination of individual histone demethylases, the biochemical characterization of their substrates and the general roles these factors play in development and disease biology [8,9,17,18]. Here, we will instead focus on a series of new discoveries that together are beginning to illuminate some of the more general yet fundamental molecular principles that guide how
demethylases recognize their appropriate substrates, control gene expression in cell fate transitions and protect genomic integrity in normal cells.

Beyond the active site

Histone lysine demethylases are often large multi-domain proteins, suggesting that these additional domains may play a role in their targeting, substrate selection and activity. Indeed, very early structural studies on KDM1A revealed that its SWIRM and oxidase domains interact, anchoring the active site to the histone tail through different mechanisms. The oxidase domain recognizes its appropriate substrates, control gene expression in cell fate transitions and protect genomic integrity in normal cells.

Recognizing chromatin substrates, targeting histone demethylases and regulating their activity

Genome-wide mapping of histone lysine methylation in cells has demonstrated that these modifications are often restricted to, or absent from, very specific regions of the genome [19]. The establishment of these profiles relies on the regulated activity of histone methyltransferases and demethylase enzymes. Although we have detailed information about how the active site defines histone residue specificity for these enzymes [20–26], additional and more complex targeting and regulatory mechanisms must underpin the genome-wide methylolation patterns observed in vitro. Recently, it has become clear that non-catalytic domains within histone demethylases and interactions with other proteins are key determinants in controlling chromatin targeting and catalytic activities. This has revealed that a series of generic and sequence-specific targeting mechanisms determine the binding and activity of these factors on chromatin (Fig 1).

Glossary

Term	Definition
2-OG	α-ketoglutarate
S3BP1	S3 binding protein 1
AR	androgen receptor
ARID	AT-rich interaction domain
ATM	Ataxia-Telangiectasia mutated kinase
BRCA1	breast cancer type 1 susceptibility protein
BUBR1	BUB1-related protein kinase
CDK1	cyclin-dependent kinase 1
CK2	casein kinase 2
c-Myc	myelocytomatosis oncogene
CoREST	REST corepressor
DNMT1	DNA methyltransferase 1
Epe1	enhancement of position effect 1
ES cell	embryonic stem cell
FAD	flavin adenine dinucleotide
FBXL	F-box and leucine-rich repeat protein
HCF-1	host cell factor 1
HDAC	histone deacetylase
HP1γ	heterochromatin protein 1 y
IPS cell	induced pluripotent stem cell
JARID	jumonji domain ARID-containing protein
JHDM	jmJC domain-containing histone demethylation protein
jmJC	jumonji C
KDM	histone lysine demethylase
IncRNA	long non-coding RNA
LSD	lysine specific demethylase
MAD2	mitotic arrest deficient 2
MINAS3	Myc-induced nuclear antigen 53
MLL	mixed-lineage leukaemia
MRE11	meiotic recombination 11
MRG-15	MORF-related gene on chromosome 15
NFATc1	nuclear factor of activated T-cells, cytoplasmic,
	calcineurin-1
NO66	nucleolar protein 66
NuRD	nucleosome remodelling deacetylase
O-GlcNAc	O-linked N-acetyl/gluosamine
OGT	O-GlcNAc transferase
PARP1	poly (ADP-ribose) polymerase 1
PARYlation	poly (ADP-ribosylation)
PCNA	proliferating cell nuclear antigen
PHD	plant homeodomain
PHF	PHD-finger protein
PKA	protein kinase A
Pol II	polymerase II
PPARγ	peroxisome proliferator-activated receptor
PRC	polycomb repressive complex
Prm1	protamine 1
RADS1	radiation sensitive mutant 51
RBP2	Retinoblastoma-binding protein 2
REST	RE1-silencing transcription factor
RNAi	RNA interference
RNF	Ring-finger protein
SCF	Skp1-Cul1-Fbox complex
SCNT	somatic cell nuclear transfer
SETD2	SET domain-containing protein 2
SIN3	switch-independent 3
SMCX	selected mouse cDNA on X
SPT6	suppressor of Ty6
SUMO	small ubiquitin-like modifier
SVIL	supervilin
SWI/SNF	Switch/sucrose non-fermentable
SWIRM	Swi3p, Rsc8p and Moira domain
Tnp1	transition nuclear protein 1
TPR	tetraticopeptide repeat region
TYW5	TRNA-YW synthesizing protein 5
U2AF65	U2 auxiliary factor 6
UTX	ubiquitously transcribed X-chromosome
UTY	ubiquitously transcribed Y-chromosome
WD-40	Tryptophan-aspartic acid (W-D) repeat 40
ZF	Zinc-finger domain

Beyond the active site

Histone lysine demethylases are often large multi-domain proteins, suggesting that these additional domains may play a role in their targeting, substrate selection and activity. Indeed, very early structural studies on KDM1A revealed that its SWIRM and oxidase domains interact, anchoring the active site to the histone tail through different mechanisms. The oxidase domain recognizes its appropriate substrates, control gene expression in cell fate transitions and protect genomic integrity in normal cells.

Instruction from histones

Interestingly, many of the non-catalytic protein domains found in histone lysine demethylases encode “reader” domains, such as TPR, casein kinase 1, and coREST.
Tudor and PHD domains, that bind to histones and recognize post-translational modifications (Fig 1A) [8,35,36]. For example, KDM7 demethylases encode a PHD domain that binds to H3K4me2/3 and recruits these enzymes to regions of the genome enriched for this modification [37–42]. Reader domain interactions can also have functions beyond simple targeting, as KDM7B/PHF8/JHDM1F binding to H3K4me3 via its PHD domain leads to an allosteric activation of its demethylase activity, stimulating the removal of transcriptionally repressive H3K9me2 and H4K20me1 modifications [37,39]. H3K4me3 is often associated with transcriptionally permissive regions of chromatin, suggesting that recruitment and activation of KDM7B at these sites may limit repressive histone modifications from spreading into these regions [37–39,43,44]. In keeping with this possibility, loss of KDM7B results in abnormal silencing of genes [42,45,46].

Reader binding may constitute a more widespread and underappreciated mechanism by which histone demethylases identify target regions in the genome and catalyse demethylation. This is supported by the observation that KDM2 demethylases encode a Zn-finger CxxC domain that specifically recognizes non-methylated CpG.

Figure 1. Mechanisms regulating targeting and occupancy of histone demethylases on chromatin. (A) Generic targeting mechanisms. Many histone demethylases encode “reader domains”, including PHD, Tudor and TPR domains (left), that bind and read histone modifications found broadly throughout the genome. These interactions function to target histone demethylases to chromatin and regulate their activity. Some histone demethylases interact with chromatin via direct binding to DNA. This is exemplified by the KDM2 histone demethylases that are targeted generically to CpG islands, resulting in localization of removal of histone methylation at these sites (middle). Histone demethylases are often found in large multi-protein complexes, which contain other chromatin-binding proteins that function to target these enzymes to chromatin (right). (B) Sequence-specific targeting mechanisms. Histone demethylases in some instances are targeted to specific sites in the genome through interaction with transcription factors (left) or with lncRNAs (right).
histone demethylases, targeting these enzymes to regions of the genome associated with gene promoters, called CpG islands (Fig 1A) [52]. Here, the KDM2 enzymes play an important role in removing H3K36me1/2, a histone modification associated with transcriptional repression, suggesting the KDM2 enzymes protect CpG island regulatory elements from this repressive modification [53,54]. Interestingly, a number of other histone demethylases encode potential DNA-binding domains, including several distinct classes of Zn-finger and ARID DNA-binding domains [35,55]. It will be interesting to examine in more detail how these potential DNA-binding activities are integrated with histone reader domains to identify target sites in the genome and to regulate the activity of histone demethylases.

Teaming up with others to regulate and alter activity

Although histone demethylases are often large multi-domain proteins with inherent capacity to recognize chromatin, detailed proteomic studies have revealed that many of these enzymes assemble into larger protein complexes that further regulate or even dramatically change their substrate specificity. This is exemplified by KDM1A, which was originally identified as an H3K4me1/2 demethylase that forms a stable component of the CoREST protein complex [56,57]. CoREST is a large molecular machine that also contains histone deacetylase activity and, via a combination of these activities, contributes to transcriptional repression [58,59]. However, early reports also suggested that KDM1A could form an alternative complex with the androgen receptor (AR), playing a role in gene activation of AR target genes via the removal of repressive H3K9me1/2 modifications [60]. It was proposed that this switch in substrate specificity was partly mediated by histone H3T6 phosphorylation during AR-mediated gene activation, which prevented H3K4me1/2 demethylation by KDM1A [61]. However, at the biochemical level, it has remained enigmatic how KDM1A could so dramatically change its target substrate specificity. A potential explanation for these puzzling observations came recently with the discovery that a splice variant of KDM1A, called KDM1A*8a, interacts with a protein called SVIL. This interaction activates H3K9me1/2 demethylase activity in KDM1A*8a and, in this context, KDM1A functions as an activator of transcription [62]. While this study did not directly test whether this KDM1A variant could account for the alteration in KDM1A substrate specificity upon interaction with the AR, it is interesting to note that SVIL has previously been shown to bind to the AR [63]. Together, these observations suggest that subtle alterations in the amino acid sequence of histone demethylases and interaction with defined protein partners can profoundly affect substrate specificity and activity.

Hijacking readers to recognize substrates

As more histone demethylase protein complexes are characterized, it is becoming clear that their capacity to interact with histones via reader domains may be a central mechanism employed to identify substrates and catalyse demethylation, even when the demethylase does not itself encode a reader domain. For example, the H3K36-specific histone demethylase NO66, which lacks histone reader domains, interacts with PHF19. PHF19 can bind to H3K36me3 through its Tudor domain, recruiting NO66 to substrates on chromatin [64]. Furthermore, histone demethylases often form protein complexes with multiple reader domains. For example, the vertebrate KDM5A/JARID1A/RBP2 and KDM5B/JARID1B/PLU1 proteins encode functional PHD domains [35,49], but also form part of a larger SIN3 histone deacetylase co-repressor complex [65–67]. The SIN3 complex contains proteins with WD-40 repeats, which bind unmodified histones, and a chromodomain-containing protein, MRG-15, which binds to H3K36me3 [68]. Together, these observations suggest that histone demethylase complexes likely exploit multiple reader domains and combinatorial interactions with chromatin substrates to achieve appropriate targeting and activity in vivo (Fig 1A).

Sequence-specific targeting through DNA-binding factors and non-coding RNAs

The activity of histone demethylases and their targeting to chromatin substrates appears to significantly rely on reading histone modification state and, in some instances, generic DNA-binding activities. In contrast, there is only a limited number of examples in which sequence-specific DNA-binding transcription factors have been demonstrated experimentally to directly target histone demethylases to chromatin (Fig 1B) [38,69–72]. Some of these involve the KDM1 histone demethylases, often in conjunction with hormone-dependent gene activation [60,61,73–75]. Interestingly however, when the occupancy of histone demethylases and their proposed transcription factor targeting molecules have been compared at the genome-scale, the overlap is often modest. For example, KDM5C/JARID1C/SMCX interacts biochemically with c-MYC in mouse ES cells and KDM5C is enriched at c-MYC binding sites [71]. However, the majority of KDM5C-bound regions are not occupied by c-MYC and, similarly, a large proportion of c-MYC-bound sites do not show enrichment for KDM5C [71]. This suggests that physical interaction between KDM5C and c-MYC does not broadly define KDM5C occupancy on chromatin. In fact, some recent work has provided evidence that histone demethylases may actually function upstream of transcription factors to create the appropriate chromatin environment for DNA binding [76,77].

Additional attempts to identify sequence-specific histone demethylase targeting determinants have suggested that, in some instances, this may rely on interaction with long non-coding RNAs (lncRNAs) (Fig 1B). For example, the KDM1A/CoREST complex can interact with the lncRNA HOTAIR, recruiting the demethylase complex to target sites and creating a repressed chromatin state [78]. Similarly, an RNA-dependent targeting mechanism has also been proposed to target H3K9me3 demethylase KDM4D/JMJD2D/JHDM3D [79]. It will be interesting to understand whether lncRNAs contribute more widely to histone demethylase targeting in vivo.

Given that there are currently limited numbers of specific examples where transcription factors or non-coding RNA solely define the occupancy of histone demethylases on chromatin, more generic DNA-binding activities or histone reading domains may predominate in achieving histone demethylase targeting. Alternatively, combinatorial interactions that rely on reader domains and generic or site-specific targeting activities may be exploited to regulate and achieve more complex chromatin-binding patterns and functionality. Clearly, a challenge for future work remains to understand at the molecular level the determinants that drive histone demethylase chromatin-binding patterns in vivo.
Regulating histone demethylase activity through post-translational modification

A wide range of mechanisms appear to have evolved to guide histone demethylases to their appropriate substrates on chromatin. In addition, there is an emerging body of evidence to suggest that post-translational modification of the enzymes themselves is exploited to regulate their levels and activity. For example, the H3K9me2 demethylase KDM7C/PHF2/JHDME1 shows no apparent activity in vitro but becomes enzymatically active upon phosphorylation by PKA [80]. Phosphorylation-dependent activation of KDM7C stimulates its interaction with the DNA-binding protein ARID5B, leading to the recruitment of the demethylase complex to chromatin, presumably through the generic DNA-binding activity of ARID5B [80]. Similarly, phosphorylation by cyclin E-CDK2 stimulates the H3K9me1/2 demethylase activity of the related protein KDM7B and this plays a role in the regulation of gene expression during cell cycle progression [81]. In addition to these specific examples where post-translational modifications control enzymatic activity, ubiquitylation and proteasomal degradation are emerging as key determinants in regulating the levels of histone demethylases. For example, multiple studies have demonstrated that histone demethylases are substrates of SCF E3 ligase complexes and can be polyubiquitylated and targeted for proteasomal degradation [82–85]. This appears to be particularly important for regulating the balance of histone demethylase protein levels to ensure that they function at appropriate stages during development.

Regulating gene expression and resetting transcriptional networks

Some of the very earliest descriptions of histone modifications noted their conspicuous relationship with transcriptional activity [86], and since then, it has become clear that chromatin modifications, including histone lysine methylation, are involved in regulating gene expression. Not surprisingly, since the discovery of histone lysine demethylases, it has emerged that they contribute significantly to the specification of transcriptionally active chromatin states, transcriptional repression and cellular reprogramming events (Fig 2) [8,10]. A series of recent advances have begun to shed light on how histone demethylases contribute to these processes at a molecular level and during development.

H3K27 demethylases contribute to the establishment of a transcriptionally permissive chromatin environment during lineage commitment

As described above, the KMD2 histone demethylases are constitutively recruited to promoter-associated CpG islands to counteract repressive H3K36me1/2 [54]. This may function as a way of demarcating these regions as transcriptionally permissive. In contrast to these more generic targeting mechanisms, histone demethylases also play key roles in actively removing repressive marks from specific gene promoters during the transition from a repressed to a transcriptionally activated state [60,62,73,87]. This is most evident at genes required for cell lineage commitment, which are silent in embryonic and other stem cell types and occupied by the polycomb repressive complex 2 (PRC2), which places repressive H3K27me. It is thought that polycomb group proteins function at these genes to maintain their silent state and protect cell identity [88]. As cells differentiate, they must acquire new transcriptional programs and do so through the activation of genes normally repressed by the polycomb system in the progenitor cell. Several in vitro differentiation studies have revealed an acute requirement for the KDM6 H3K27me2/3 demethylases, KDM6A/UTX and KDM6B/JMJD3, in overcoming this repressive chromatin state to achieve normal gene expression during lineage commitment [87,89–94]. In contrast to the generic targeting mechanisms employed by the KDM2 demethylases, the KDM6A and KDM6B enzymes appear to be actively guided to specific enhancers and promoters through the function of lineage-specific transcription factors that activate these genes [93,95–97]. Interestingly, KDM6 recruitment to activate genes during cell lineage commitment appears to function as part of an intricate chromatin-based cascade to initiate and then maintain gene expression. This occurs initially through the interaction of KDM6 proteins with the MLL H3K4 methyltransferase complex, leading to removal of H3K27me2/3 and deposition of H3K4me during gene activation [98–100]. Following gene induction, KDM6 proteins play a second and equally important role in promoting transcription elongation. They achieve this through forming a complex with factors bound to the elongating form of RNA Pol II, including the H3K36 methyltransferase SETD2 and the elongation factor SPT6 [101,102]. As transcription proceeds, KDM6 enzymes travel with the polymerase and spread into the coding regions of genes, removing H3K27me2/3 and contributing to efficient migration of RNA Pol II [93,101–104].

Although cell culture model systems have indicated an important role for the KDM6 demethylases in creating normal gene expression programs during cell lineage commitment in vitro, how essential their activities are for cell fate transitions during early development in vivo remains less clear. For example, male mice lacking both KDM6A and KDM6B survive to term and display no major increases in global H3K27me2/3. Furthermore, when double null ES cells are derived from these animals and induced to differentiate with retinoic acid, newly activated genes lose repressive H3K27me2/3 and are induced appropriately [105]. In contrast, the phenotype of female KDM6A knockout mice is much more severe and they fail to undergo normal embryonic development [106–108]. These sex-specific differences in phenotype may be a result of partial compensation for loss of the X-chromosome-encoded KDM6A/UTX protein by the Y-chromosome-encoded KDM6C/UTY protein in males. Although preliminary bioinformatic and biochemical analyses of KDM6C had predicted that it was catalytically inactive due to an amino acid substitution in the JmjC domain [109,110], simultaneous depletion of KDM6A and KDM6C in male mouse embryos phenocopies the early embryonic lethality observed in KDM6A null females [111]. Based on the presumption that KDM6C is catalytically inactive, its capacity to compensate for KDM6A during development has largely been attributed to demethylase-independent functions [111,112]. However, recent structural and biochemical evidence has demonstrated, at least in vitro, that KDM6C can demethylate H3K27me, albeit less efficiently than KDM6A [113]. This suggests that loss of demethylase activity may indeed underpin the developmental defects observed in KDM6A/B null mice.

Together, these observations functionally implicate KDM6 proteins in early mouse development and in other cell lineage commitment models, perhaps through regulation of transcription.
Nevertheless, whether KDM6 involvement in these processes relies on histone demethylation still remains unclear as most of these studies have relied on complete gene knockdown or deletion approaches. Interestingly, the *C. elegans* KDM6A orthologue, UTX-1, is essential for worm development. However, the lethality appears to be independent of demethylase activity, with UTX-1 instead primarily being required for formation of the UTX-1/SET16 H3K4 methyltransferase complex [114]. In contrast, studies in zebrafish have demonstrated that the demethylase activity of KDM6A is required for normal development as a catalytically deficient KDM6A protein is unable to rescue the defects in KDM6A-depleted embryos [110]. Therefore, it remains to be carefully addressed whether an inability to demethylate histones is sufficient to drive the observed phenotypes in mouse KDM6 models. New precisely engineered mouse strains, in which the catalytic domains of KDM6 enzymes are subtly mutated to abrogate catalytic activity, yet leave the remainder of the protein intact and capable of interacting with protein partners, are required. This will also provide the opportunity to examine in vivo the role of demethylase activity in cell lineage commitment.

Figure 2. Histone demethylases shape chromatin architecture at gene regulatory elements to regulate gene expression.

(A) Demethylases actively remove histone methylation to establish new chromatin environments at gene regulatory elements. Removal of repressive modifications, such as H3K27me2/3, helps to create transcriptionally permissive chromatin (top), while removal of transcriptionally permissive modifications, such as H3K4me3, contributes to the formation of more repressive chromatin states (bottom). These processes appear to be particularly important in achieving new gene expression programs during lineage commitment and cellular reprogramming. (B) Histone demethylases play a key role in the maintenance of established chromatin states by preventing the spurious accumulation of alternative histone methylation states. For example, the H3K4me2/3 demethylase KDM5C contributes to the maintenance of enhancer identity by maintaining local H3K4me1 levels.
H3K4 demethylases control gene regulatory element identity and function

The process of active transcription is intimately coupled with the deposition of H3K4 methylation at gene promoters, which is thought to contribute to the activation and maintenance of gene expression [115]. Based on the relationship between H3K4me and gene promoters, it is not surprising that links between KDM1A, the first identified demethylase enzyme, and the repression of gene transcription were originally identified [56, 57]. Subsequently, KDM5 demethylases were discovered and shown to act at gene promoters to maintain low levels of H3K4me [69, 116–122].

Detailed genome-wide examination of KDM1 and KDM5 protein occupancy on chromatin has provided a series of new and interesting observations that suggest that H3K4 demethylases also play critical roles in shaping H3K4me at distal gene regulatory elements, including enhancers, which are typically enriched for H3K4me1 [123–125]. For example, KDM1A occupies promoters and enhancers of active genes in mouse ES cells. Despite being associated with gene promoters, the loss of KDM1A in mouse ES cells does not cause major defects in the pluripotency-associated transcriptional program nor a loss of normal cell identity [126]. This argues that KDM1A and its demethylase activity do not profoundly affect the maintenance of normal gene expression networks in these cells. However, KDM1A activity becomes essential during differentiation, where it is required to efficiently repress ES cell specific gene expression programs during lineage commitment. This appears to rely on KDM1A removing H3K4me1 from enhancers, effectively decommissioning these regulatory elements and driving efficient transcriptional silencing of pluripotency genes during normal cellular differentiation [126, 129]. In the absence of KDM1A, H3K4me1 persists at pluripotency gene-associated enhancers and the associated genes remain partially transcribed [126]. In keeping with these molecular defects observed in mouse ES cells, deletion of KMD1A in the developing embryo results in misregulation of key developmental genes and KDM1A null embryos fail to develop past embryonic day 5.5, displaying gastrulation defects [127, 128, 130].

In contrast, the KDM5 H3K4 demethylases appear to be required to maintain, rather than limit, enhancer function. Like KDM1A, KDM5C binds to gene promoters and enhancers [71]. At promoters, it negatively regulates transcription by removing H3K4me2/3. However, at enhancers, it stimulates gene activity by removing spurious H3K4me3/2 modifications and maintaining enhancer-associated H3K4me1 (Fig 2B) [71]. This enhancer maintaining activity may be shared amongst KDM5 enzymes, as KDM5B also appears to function to remove repressive H3K9me from the promoters of the transition nuclear protein Tnp1 and protamine Prm1 genes, supporting their expression in post-meiotic male germ cells [142]. TNP1 and PRM1 are then involved in histone replacement and sperm maturation [144]. In fact, during spermatogenesis, KDM3A appears to function to remove repressive H3K9me from the promoters of the transition nuclear protein Tnp1 and protamine Prm1 genes, supporting their expression in post-meiotic male germ cells [142]. TNP1 and PRM1 are then involved in histone replacement and sperm maturation [144]. By regulating the expression of these specific genes, KDM3A indirectly results in a dramatic reconfiguration of sperm chromatin through a mechanism that does not rely on global
changes of H3K9me. It will be interesting to understand whether other histone demethylases function more directly to reset epigenetic states in female gamete formation where maternal histones are not replaced by protamines.

It is clear that histone demethylases contribute to normal germline formation in some animals and it will be important to determine how directly this relies on removal of histone methylation and resetting of epigenetic states. Nevertheless, recent findings in plants demonstrate that histone demethylases also play an important role in the removal of histone methylation during plant gametogenesis, suggesting many phyla may exploit these enzymes to reset the epigenetic landscape prior to passing chromatin-based information on to subsequent generations [145].

Coercing cells to take on alternative cell fates

In addition to their proposed involvement in reshaping chromatin states during gamete formation and early development, histone demethylases have also been identified as key determinants in alternative reprogramming paradigms. This is evident in a naturally occurring transdifferentiation phenomenon that occurs during *C. elegans* larval development, where the epigenome of a single rectal epithelial cell is changed so that it can transform into a motor neuron [146]. Using genetic screens to identify factors that contribute to or inhibit this process, it has become clear that normal transdifferentiation relies on the H3K4 methyltransferase SET-1 and the H3K27me demethylase JMJ3-1. Through interactions with transcription factors, SET-1 and JMJ3-1 are recruited to promoters of neuronal genes during transdifferentiation. Here, SET-1 is thought to play a role in poising neuronal genes for activation and JMJ3-1 to subsequently remove repressive H3K27me to drive gene activation and efficient transdifferentiation. These activities reshape the chromatin landscape during this natural reprogramming event and help to effect gene expression programs that are required to achieve the motor neuron cell fate [146].

An understanding of the genetic determinants that support mammalian ES cell specification and maintenance led to the discovery that the introduction of certain DNA-binding transcription factors into somatic cells under defined culture conditions could drive cellular reprogramming to an induced pluripotent stem (iPS) cell state [147]. This revolutionary technique has provided new insights into naturally occurring reprogramming systems and has led to the discovery of additional factors that contribute to the process. For example, the histone demethylase KDM4D has been shown to act as a phosphorylation-dependent switch to activate the enzymatic activity of KDM7C [80,167]. It is tempting to speculate that Epe1 may also require this tyrosine to be phosphorylated in order to activate its enzymatic activity [7,163]. Interestingly, Epe1 encodes a tyrosine in its active site that in vertebrate KDM7C has been shown to act as a phosphorylation-dependent switch to activate the enzymatic activity of KDM7C [80,167]. It is tempting to speculate that Epe1 may also require this tyrosine to be phosphorylated in order to activate its enzymatic activity.

Further studies are required to improve our understanding of the molecular mechanisms by which these histone demethylases regulate reprogramming.

Maintaining epigenetic stability

Histone demethylases have a clear function in resetting chromatin states in the germline and other reprogramming paradigms, but studies in fission yeast suggest that histone demethylation can also function to fine-tune how chromatin states are epigenetically transmitted to daughter cells. In fission yeast, H3K9me is targeted to centromeres by the RNAi system [157]. H3K9me then spreads from these initiation sites over large distances by a copying mechanism that relies on a reader protein that binds H3K9me to recruit more methyltransferase [157–159]. Given this copying mechanism, it was proposed that H3K9me chromatin domains may be epigenetically transmitted following DNA replication, with modified histones being segregated to newly replicated chromatin and sustaining initiator-independent copying of this chromatin modification state. Surprisingly, recent studies exploiting a regulatable tethering system that allows the controlled initiation of broad domains of H3K9me at an ectopic site away from centromeres revealed that, following removal of the initiator, there was a rapid and active removal of H3K9me [160,161]. This was unexpected, as no histone H3K9 demethylase had been characterized in fission yeast. However, removal of Epe1, a JmjC domain-containing protein, resulted in a remarkable stabilization of these ectopic H3K9me chromatin domains, allowing them to be stably transmitted across mitosis and meiosis [160–162]. Demethylase activity had not been previously detected for Epe1 in vitro [7,163]. However, mutation of residues in Epe1 that correspond to cofactor binding sites in other active histone demethylases resulted in epigenetic stabilization of H3K9me, suggesting that Epe1 may demethylate H3K9me [160,161]. These observations are in agreement with previous results demonstrating a role for Epe1 in regulating H3K9me spreading at natural centromeres and fine-tuning this epigenetic state to maintain normal chromosome segregation [164–166]. Interestingly, Epe1 encodes a tyrosine in its active site that in vertebrate KDM7C has been shown to act as a phosphorylation-dependent switch to activate the enzymatic activity of KDM7C [80,167]. It is tempting to speculate that Epe1 may also require this tyrosine to be phosphorylated in a regulated manner to efficiently catalyse H3K9 demethylation, and this could potentially account for the lack of demethylase activity in recombinantly produced Epe1 [7,163]. Nevertheless, these new studies highlight a completely new role for histone demethylases that is distinct from simple epigenetic reprogramming and suggests that histone demethylases may function to limit or control the spreading or persistence of epigenetic states. It will be interesting to examine the extent to which histone demethylase systems fine-tune epigenetically transmitted chromatin states in higher eukaryotes.

Histone demethylases as emerging players in regulation of DNA replication and cell division

In addition to the central roles that histone lysine demethylases play in gene regulation, cell fate decisions and reprogramming, it has recently emerged that these enzymes are also involved in...
Forming origins and DNA replication

The initiation of DNA replication and the copying of genetic information is a highly regulated and precisely controlled process. Establishing the correct chromatin environment is essential for proper formation of replication origins and replication itself [168–170]. Interestingly, recent studies have implicated histone demethylases in several aspects of DNA replication. For example, the H3K4me3 demethylase KDM5C appears to play an important role in forming origins and initiating replication at actively transcribed early-replicating genes [171]. This relies on an elevated expression of KDM5C during early S phase where it functions to actively remove H3K4me3 from replication origins, promoting the formation of the pre-initiation complex and driving occupancy of PCNA. In the absence of KDM5C, or its demethylase activity, H3K4me3 persists at these sites and early origins fail to efficiently initiate replication, leading to cell cycle arrest [171,172]. It is still unclear precisely how removal of H3K4me3 is involved in this process; however, several proteins in the origin of replication complex are known to encode chromatin reader domains [173]. Perhaps components of the origin of replication complex or other replication-associated factors are responsive to the modification state of H3K4.

Once replication has been initiated, the process of ongoing replication is also regulated by the activity of histone demethylases. The levels of the H3K9me3 demethylase KDM4A/JMJD2A/JHDM3A are elevated at S phase, coincident with loss of H3K9me3 and an increase in H3K9me1/2 during replication [174,175]. H3K9me3 in chromatin is normally bound by the chromodomain-containing protein HP1γ, which contributes to the formation of condensed heterochromatic structures [176]. During S phase, KDM4A demethylase activity counteracts HP1γ binding at heterochromatic regions, creating more accessible chromatin required for passage of the DNA replication machinery [174]. This system appears to be tightly controlled through the cell cycle by regulating KDM4A protein levels which is required for accurate replication timing [83,174]. KDM4A-dependent effects on DNA replication are observed in mammalian cells and the model organism C. elegans, suggesting that this is an evolutionarily conserved function of the enzyme [174]. In keeping with a role for KDM4A activity in controlling DNA replication, over-expression of KDM4A leads to genomic instability in a demethylase-dependent manner, through driving re-replication and site-specific copy gain in genomic regions implicated in cancer [177].

As we begin to understand more about the function of the histone demethylases, it seems likely that they have more widespread, conserved and even co-opted functions in the regulation of DNA replication. This is supported by observations in S. pombe demonstrating that KDM1A and KDM1B contribute to programmed replication fork pausing that promotes imprinting and mating-type switching [178]. Together, these observations suggest that there is likely an underappreciated role for histone demethylases in regulating the processes that initiate and regulate accurate replication of the genome.

Cell cycle transitions and organizing chromosomes

Control of cell cycle timing and dynamics is essential for proper cell division and recent work has demonstrated that histone demethylases play several distinct roles in controlling normal cell division (Fig 3) [10]. One specific way this is achieved is through their capacity to directly regulate the expression of genes required for normal cell cycle progression [72,81,179–182]. This is exemplified by the demethylase KDM7B, which binds to the promoters of several key cell cycle regulators, DNA replication, segregation of chromosomes, and genomic stability during cell division. Misregulation of these histone demethylases, or their activity, often causes cell cycle arrest and may also lead to genomic instability in cancer.
associated with transcriptionally permissive chromatin states during mitosis [184,186]. For example, KDM8/JMJD5 is involved in repression of transcription at non-coding satellite repeat regions, possibly by removal of H3K36me2. In the absence of KDM8 activity, elevated H3K36me leads to defective spindle formation and causes abnormal cell division and genomic instability [184]. However, the mechanism by which KDM8 regulates H3K36me remains contentious as other studies failed to observe histone demethylase activity for KDM8 and, instead, suggest that KDM8 may act as a protein hydroxylase [187–189].

Interestingly, during cell cycle transitions, histone demethylases can also function independently of their effects on gene transcription. As cells enter into prophase of mitosis, they need to deposit H4K20me1 on chromatin in order to load Condensin II, a structural protein complex required for chromosome condensation [179,190]. As chromatin-bound KDM7B would normally demethylate H4K20me1, its removal from chromatin is required to stabilize H4K20me1 and promote this transition. The cell achieves this through CDK1/cyclin B-dependent phosphorylation of KDM7B, which then leads to KDM7B dissociation from chromatin in prophase [179]. Although this dynamic engagement between KDM7B and chromatin is in fitting with its functions during the cell cycle, other histone demethylases appear to support normal chromosome segregation through alternative mechanisms. KDM4C/JMJD2C/JHDM3C remains associated with chromosomes throughout mitosis and is proposed to maintain low levels of H3K9me and regulate chromosome segregation [183]. However, deletion of KDM4C in mouse does not appear to overtly affect development, physiology or reproduction, suggesting that some of the effects observed in cell culture may not completely reflect an essential requirement in vivo [191]. Moving forward, a better understanding of how histone demethylases are involved in cell cycle progression and cell division in animals will be essential, given that misregulation of how histone demethylases are involved in cell cycle progression and cell division in cancer.

Protecting the genome by regulating the DNA damage response

In order to protect the integrity of genetic information, living organisms exploit highly specialized systems to sense and repair DNA damage. In eukaryotes, these systems have evolved to use histone post-translation modifications as key regulators of the DNA damage response [192]. Fittingly, there appears to be a concerted drive to regulate how histone demethylases engage with chromatin and also to precisely control the levels of these proteins during damage sensing and repair.

Modifying demethylases to alter chromatin binding and regulate histone methylation during the DNA damage response

Like a host of other chromatin-modifying enzymes, KDM4B/JMJD2B/JHDM3B and KDM4D are specifically recruited to sites of DNA damage. This relies on their post-translational poly-ADP ribosylation by PARP1, a key signalling event that drives early cellular responses to DNA damage [193,194]. Experimental depletion of KDM4D impairs the formation of DNA damage-induced RAD51 and 53BP1 foci and this inhibits double-strand break repair through homology-directed repair and non-homologous end joining [193]. The contribution of KDM4 proteins to the repair process relies on their demethylase activity, and a rapid decrease in H3K9me is observed in response to DNA damage, suggesting that these effects are mediated through chromatin [193,194]. Interestingly, there may be a more concerted PARP1-dependent drive to recruit demethylase activity to sites of DNA damage. PARylated KDM5B is recruited to macroH2A1.1 at double-stranded DNA breaks, where its demethylase activity is required to nucleate Ku70 and BRCA1 and effect non-homologous end joining and homology-directed repair [195]. These studies suggest that PARylation may be an important driver of the histone demethylase response to DNA damage. However, the molecular mechanisms that integrate PARylation with the recruitment of these demethylase enzymes to sites of DNA damage and mechanistically how the removal of histone methylation contributes to DNA repair process remain poorly defined and interesting areas for future work.

Other post-translational modifications also appear to control how histone demethylases respond to DNA damage. During DNA damage, KDM1A is phosphorylated by CK2, allowing it to interact with RNF168 which then recruits KDM1A to sites of DNA damage. Once bound KDM1A removes H3K4me2 and is required for normal 53BP1 recruitment and DNA repair [196,197]. In addition, the KDM2A H3K36 demethylase is phosphorylated by ATM kinase in response to double-strand breaks and, instead of recruiting KDM2A to break sites, phosphorylation abrogates its chromatin-binding activity. This is proposed to protect H3K36me2 at damage sites, which helps to recruit the MRE11 complex to efficiently repair double-strand breaks [198,199]. Overexpression of KDM2A, but not a phosphomimetic mutant, leads to decreased H3K36me2, inefficient double-strand break repair and reduced cell survival [198,199]. In addition to phosphorylation, the SUMOylation of histone demethylases has recently emerged as a novel regulator of targeting during the DNA damage response. KDM5C is SUMOylated in response to DNA damage and this causes an increase in its chromatin occupancy where it removes transcriptionally permissive H3K4me3, which is proposed to contribute to transcription inhibition prior to DNA repair [200]. Understanding the molecular mechanisms through which post-translational modifications regulate the engagement of histone demethylases with chromatin remains a key challenge in elucidating how the DNA damage response exploits chromatin modification in sensing and repairing DNA damage, and also in further defining how demethylases recognize and are recruited to new chromatin substrates.

Turning over histone demethylases in response to DNA damage

If executed correctly, sensing and then effecting DNA repair is a multistep process that by its very nature is dynamic. Therefore, it is not surprising that many of the factors involved occupy damage sites in a transient and regulated manner. In agreement with this, live cell imaging has shown that KDM1A and KDM4 recruitment to DNA damage sites occurs early in the damage response and that their occupancy is transient [193,194,196,197]. An understanding of the precise mechanisms that underpin these transient interactions at DNA damage sites is currently limited, but in the case of the KDM4 demethylases this may in part be driven by active protein turnover. During the DNA damage response, RNF8 and RNF168 are recruited to sites of damage and polyubiquitylate KDM4A and KDM4B,
leading to their proteasomal degradation [201]. This was originally proposed to act as a generic mechanism to dislodge KDM4 from chromatin at DNA damage sites, as KDM4 enzymes encode H4K20me-binding Tudor domains that could block efficient occupancy of the damage response protein 53BP1 [201], which also recognizes this modification [202,203]. Given that we now know that KDM4 enzymes are also actively targeted to sites of DNA damage [193,194,204], it is tempting to speculate that during the early stages of the DNA damage response, KDM4 activity counteracts H3K9me3 which might normally create chromatin structures that are inhibitory to the DNA repair process. Following demethylation, the recruitment of RNF8 and RNF168 to these sites could then evict the KDM4 enzymes to create a binding site for 53BP1. This would reconcile observations that both the recruitment and removal of KDM4 enzymes from chromatin are required for the formation of 53BP1 foci and DNA repair. It is likely that additional histone demethylases will also be subject to proteasomal control in shaping the DNA damage response, as it was recently shown that SUMOylated KDM5B is ubiquitylated by the SUMO-specific E3 ligase RNF4, leading to the proteasomal degradation of KDM5B in response to DNA damage [200]. Together, these new insights are beginning to reveal how histone demethylases help to shape the DNA damage response and suggest that they play important roles in maintaining genomic integrity. As these studies are still in their infancy, it remains a future challenge to understand how histone demethylation contributes to the repair processes at the molecular level and to determine whether misregulation of histone demethylases has direct implications for genome integrity in cancer.

New functions that are independent of histone demethylation

As discussed above, histone demethylases contribute significantly to gene expression, chromatin organization and genomic integrity. In most cases, this has been attributed to their histone demethylase activities. However, it has more recently emerged that these proteins also have numerous activities that are distinct from histone demethylation (Fig 4), raising the question of whether their primary functions inside the cell rely on histone demethylase activity.

Protein demethylases rather than just histone demethylases?

There are now numerous examples where demethylase enzymes with previously defined roles in histone demethylation also appear to demethylate non-histone proteins to regulate their abundance, stability or activity (Fig 4A). For example, KDM1A can demethylate p53, blocking its function as a transcriptional activator by preventing an interaction between p53 and 53BP1 [205]. KDM1A also demethylates the transcription factor E2F1 in response to DNA damage. This stabilizes E2F1 and promotes apoptosis via induction of E2F1 target genes [206,207]. Interestingly, the stability of the central DNA methyltransferase, DNMT1, is also subject to a lysine methylation–demethylation cycle that is regulated by KDM1A, and, therefore, KDM1A demethylase activity indirectly controls global DNA methylation levels during development [128].

Importantly, a series of studies have expanded on these observations and shown that several JmjC domain-containing demethylases are similarly involved in the demethylation of non-histone substrates [80,208–212], possibly justifying an argument that histone demethylases should instead be considered protein demethylases. With this in mind, recent large-scale proteomic studies have demonstrated that a much larger fraction of non-histone proteins are methylated than previously appreciated [213,214]. This includes a wide range of transcription factors, regulators of chromatin organization and proteins involved in many other nuclear and cytoplasmic processes [213].

In fitting with JmjC domain-containing demethylases also functioning on cytoplasmic substrates, a new and unexpected role for KDM4A in protein synthesis has recently been identified [215,216]. KDM4A was shown to associate with the translation machinery and regulate the distribution of initiation factors on polysomes. Interestingly, depletion of KDM4A led to reduced protein synthesis. Although the mechanism by which KDM4A regulates protein translation is still unclear, it seems likely that this relies on its demethylase activity, as treatment with a small molecule inhibitor of the JmjC domain led to defects in translational initiation.

This realization that demethylases potentially play widespread roles in protein demethylation raises an important question of whether the primary biological functions currently attributed to demethylases result from histone demethylation or other uncharacterized non-histone protein demethylase activities. A wealth of new information detailing protein methylation and the realization that histone demethylases function more broadly as protein demethylases highlight a new and emerging role for dynamic protein methylation in basic biology. Future work focussed in this area is required to understand how demethylase enzymes are involved in these processes.

Other reactions catalysed by jmjC domain-containing proteins

JmjC domain-containing demethylases comprise a large family of more than 30 proteins in human. Central to their demethylase activity is an oxygenase activity that couples decarboxylation of 2-OG with the oxidation of N-methyl groups, leading to the spontaneous release of formaldehyde and ultimately demethylation. Therefore, the primary reaction catalysed by these enzymes is actually a hydroxylation reaction. A systematic analysis of the substrate-selectivity of different JmjC catalytic domains in vitro demonstrated that these enzymes have the capacity to function more broadly as protein 2-OG oxygenases, catalysing the removal of other N-alkyl groups, in addition to methyl groups [189]. In keeping with these alternative substrates, the JmjC domain-containing proteins MINA53 and NO66 catalyse the histidyl hydroxylation of ribosomal proteins [217,218] and KDM8 has been proposed to hydroxylate the transcription factor NFATc1 to promote its proteasomal degradation [187,188]. These observations are also supported by structural studies showing that this hydroxylase activity is evolutionary conserved from bacteria to humans [217,218]. Similarly, JMJ6H has been shown to catalyse the lysyl hydroxylation of the splicing factor U2AF65 and to be involved in regulation of mRNA splicing [13,219]. Interestingly, JMJ6D was also reported to specifically bind single-stranded RNA [219,220], raising the possibility that it may also modify RNA. In fact, another JmjC domain-containing protein, TYW5, acts as a tRNA hydroxylase [221]. Together, these findings demonstrate that the function of JmjC domain-containing proteins may extend far beyond protein demethylation, supporting a complex series of protein and nucleic acid hydroxylation reactions.
that provide potentially exciting new regulatory principles in biological processes (Fig 4B).

A demethylase with split (enzymatic) personality

In studying histone demethylases, their activity towards methylated substrates has been the main focus. As this large class of proteins is studied in more detail, new and more diverse functions are likely to emerge. This has recently been the case for KDM1B, which also appears to function as an E3 ubiquitin ligase independently of its H3K4me1/2 demethylase activity. As an E3 ligase, KDM1B targets polyubiquitylation of the O-GlcNAc transferase OGT, which leads to its proteasomal degradation (Fig 4C) [222]. OGT is often upregulated in cancer and has been previously linked to regulation of gene expression via O-GlcNAcylation of chromatin-binding factors [223]. For example, OGT O-GlcNAcylates and cleaves HCF-1, which promotes HCF-1 proteolytic maturation [224,225]. HCF-1 is a component of SET1/MLL H3K4 methyltransferase complexes and promotes their recruitment to chromatin [226–229]. Therefore, OGT is both a regulator of H3K4 methyltransferase complexes and itself regulated by a H3K4 demethylase, suggesting it may play a central role in coordinating H3K4 methylation. Importantly, loss of KDM1B E3 ligase activity leads to

Figure 4. Emerging functions that are independent of histone demethylation.

(A) Histone demethylases have also been demonstrated to remove methyl groups from non-histone protein substrates to regulate their abundance, stability or activity. (B) Histone demethylases function more generally as 2-OG oxygenases, catalysing the hydroxylation of various protein and non-protein substrates, including ribosomal proteins, transcription factors and tRNA. (C) Histone demethylases can possess alternative enzymatic activities. For example, KDM1B functions as an E3 ubiquitin ligase that ubiquitylates OGT leading to its proteasomal degradation. (D) Histone demethylases appear to function as molecular scaffolds, exploiting their chromatin-binding capacity to recruit other proteins and chromatin remodelling activities.
abnormal expression of a group of oncogenes, demonstrating that KDM1B may act as a suppressor of tumorigenesis through its E3 ligase activity and effects on OGT stability [222]. It will be interestingly to examine whether other histone demethylases also have enzymatic activities outside of their well-characterized roles in hydroxylation and demethylation.

It is not all about enzymatic activity—demethylases as molecular scaffolds
Histone demethylase proteins often encode chromatin-binding domains and are part of large multiprotein complexes. In some instances, this allows them to recruit their associated proteins to chromatin in a manner that does not rely on demethylase or hydroxylase activity, effectively allowing them to function as molecular scaffolds that target other chromatin-modifying activities (Fig 4D).

This appears to be the case for KDM2B, which stably associates with polycomb repressive complex 1 (PRC1), an H2AK119 E3 ubiquitin ligase, and targets the complex to CpG islands via the KDM2B Znfinger CxxC DNA-binding domain, without a requirement for histone demethylase activity [230–233]. Similarly, JARID2, another JmjC domain-containing protein which lacks demethylase activity altogether, is required for targeting PRC2 to chromatin [234]. This suggests that histone demethylases, and their inherent chromatin-binding activities, may have been co-opted in certain instances to drive the recruitment of proteins complexes that carry out functions that do not directly require their enzymatic activity.

Histone demethylases have also been demonstrated to contribute to chromatin organization through targeting nucleosome remodelling factors. A recent study demonstrated that KDM3A functions as a signal-sensing scaffold linking PPARγ and the SWI/SNF chromatin remodelling complex to long-range promoter/enhancer interactions in gene regulation [235]. This scaffolding mechanism relies on phosphorylation of KDM3A by PKA during β-adrenergic stimulation in adipocytes and is important for the activation of key thermogenic genes [235]. Similarly, KDM6 demethylases have also been proposed to play a role in chromatin remodelling by linking T-box transcription factors and SWI/SNF chromatin remodelling complexes through mechanisms that are independent of their enzymatic activity [112]. These examples highlight potentially novel roles for histone demethylases proteins as molecular scaffolds that support protein and chromatin interactions.

Conclusion and outlook
A decade on from the initial discovery of histone lysine demethylases, our understanding of how these fascinating enzymes function in cells has progressed at an immensely rapid pace. During this time, the emergence of genome-wide technologies has allowed us to examine the function of these enzymes on chromatin with unprecedented breadth and precision. This has provided a surprisingly detailed understanding of the fundamental roles that these enzymes play in controlling gene expression, cell fate decisions during development, and the reprogramming of chromatin states. Furthermore, new functions for histone demethylases as critical regulators of other important cellular processes, including DNA replication, cell cycle dynamics and the repair of DNA damage, have been identified that clearly warrant further investigation.

Sidebar A: In need of answers

(i) How much do chromatin reader and sequence-specific recruitment mechanisms contribute to histone demethylase target recognition and activity? Are these functions integrated?
(ii) Is there interplay or coordination between the function of histone demethylases that have the same substrates? If so, how is this regulated during development?
(iii) How do histone demethylases recognize sites of DNA damage and how do they contribute to DNA repair at the molecular level?
(iv) Do the phenotypes observed in knockout animal models result from the loss of histone demethylase activity or other demethylase-independent functions?
(v) Is removing methyl groups from histones the primary function of histone demethylases?

Perhaps not surprisingly given their discovery as histone demethylases, these enzymes and their cellular functions have been studied within the guise of histone demethylation. However, it is now increasingly clear that these proteins also catalyse other hydroxylation reactions that regulate both protein and nucleic acid based processes. A clear challenge for the future will be to understand the primary molecular determinants that underpin the phenotypes that result from perturbing demethylase enzymes. Does this rely on histone demethylase activity, protein demethylase activity or the hydroxylation of other cellular substrates? Alternatively, are these outcomes driven independently of enzymatic activity all together? Addressing these important questions, particularly within the context of developmental transitions where these proteins appear to be of central importance, will inevitably rely on the generation of new animal models, where specific activities can be disrupted to study and define the molecular principles that underpin the function of these fascinating proteins in normal biology and, ultimately, disease.

Acknowledgements
We apologize to our colleagues whose important work on histone demethylases may not have been cited due to the restricted breadth and focus of this review article. We would also like to thank Dr Nathan Rose for helpful comments and discussion. Work in the Klose laboratory is supported by the Wellcome Trust and the Lister Institute of Preventive Medicine.

Conflict of interest
The authors declare that they have no conflict of interest.

References
1. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21: 381–395
2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705
3. Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19: 1218–1227
4. Paik WK, Kim S (1973) Enzymatic demethylation of calf thymus histones. Biochem Biophys Res Commun 51: 781–788
5. Paik WK, Kim S (1974) Epsilon-alkyllysinate. New assay method, purification, and biological significance. Arch Biochem Biophys 165: 369–378
6. Shi Y, Lan F, Matson C, Mulligan P, Whetstone Jr, Cole PA, Casero RA, Shi Y (2004) Histone demethylati
4. on mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941 – 953
5. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylati
4. on family by a domain-containing proteins. Nature 439: 811 – 816
6. Kooistra SM, Helin K (2012) Molecular mechanisms and potential func-
4. ons of histone demethylases. Nat Rev Mol Cell Biol 13: 297 – 311
7. Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U (2014) The roles of jumonji-type oxygenases in human disease. Epigenomics 6: 89 – 120
8. Black JC, Van Rechem C, Whetstone JR (2012) Histone lysine methyla-
4. tion dynamics: establishment, regulation, and biological impact. Mol Cell 48: 491 – 507
9. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318: 444 – 447
10. Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J, Aggarwal AK, Rosenfeld MG (2013) Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155: 1581 – 1595
11. Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, Nielsen ML, Schmitz C, Butler DS, Yates JR III et al (2009) JMJD6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325: 90 – 93
12. Mantri M, Krojer T, Bagg EA, Webby CJ, Butler DS, Kochan G, Kavanagh KL, Oppermann U, McDonough MA, Schofield CJ (2010) Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. J Mol Biol 403: 211 – 222
13. Bottger A, Islam MS, Chowdhury R, Schofield CJ, Wolf A (2015) The oxygenase JMJD6–a case study in conflicting assignments. Biochem J 468: 191 – 202
14. Hoffeldt JW, Agger K, Helin K (2013) Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12: 917 – 930
15. Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20: 662 – 671
16. Nottke A, Colaiacovo MP, Shi Y (2009) Developmental roles of the histone lysine demethylases. Development 136: 879 – 889
17. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57 – 74
18. Couture JF, Collazo E, Ortiz-Tello PA, Brunzelne J, Trievel RC (2007) Specificity and mechanism of the JmjD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 14: 689 – 695
19. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, Lienard BM, Bray JE, Savitsky P, Gileadi O, von Delft F et al (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448: 87 – 91
20. Hou H, Yu H (2010) Structural insights into histone lysine demethyla-
4. tion. Curr Opin Struct Biol 20: 739 – 748
21. Krishnan S, Trievel RC (2013) Structural and functional analysis of JMJD20 reveals molecular basis for site-specific demethylation among JMJD20 demethylases. Structure 21: 98 – 108
22. Cheng Z, Cheung P, Kuo AJ, Yuki ET, Wilmot CM, Gozani O, Patel DJ (2014) A molecular threading mechanism underlies jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes Dev 28: 1758 – 1771
23. Tsal CL, Shi Y, Tainer JA (2014) How substrate specificity is imposed on a histone demethylase–lessons from KDM2A. Genes Dev 28: 1735 – 1738
24. Pilka ES, James T, Lisztwan JH (2015) Structural definitions of jumonji family demethylase selectivity. Drug Discov Today 20: 743 – 749
25. Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A (2005) Human histone demethylase LSD1 reads the histone code. J Biol Chem 280: 41360 – 41365
26. Wang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwi-
4. nowski Z, Yu H (2006) Structural basis for CoREST-dependent demeth-
4. ylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 23: 377 – 387
27. Tochio N, Umezura T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tono Y, Hanada M et al (2006) Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure 14: 457 – 468
28. Da G, Lenkart J, Zhao K, Shiekhattar R, Cairns BR, Marmorstein R (2006) Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc Natl Acad Sci USA 103: 2057 – 2062
29. Stavropoulos P, Blobel G, Hoeld A (2006) Crystal structure and mecha-
4. nism of human lysine-specific demethylase-1. Nat Struct Mol Biol 13: 626 – 632
30. Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y, Lei M (2006) Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc Natl Acad Sci USA 103: 13956 – 13961
31. Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Gong W, Fang R, Shi YG, Li Z et al (2013) Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 23: 306 – 309
32. Zhang Q, Qi S, Xu M, Yu L, Tao Y, Deng Z, Wu W, Li J, Chen Z, Wong J (2013) Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1B. Cell Res 23: 225 – 241
33. Klose R, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7: 715 – 727
34. Yap KL, Zhou MM (2010) Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 45: 488 – 505
35. Horton JR, Upadhayay AK, Qi HH, Zhang X, Shi Y, Cheng X (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17: 38 – 43
36. Kleine-Kohlbrecher D, Christensen J, Vandamme J, Abarrategui I, Bak M, Tommerup N, Shi X, Gozani O, Rappsilber J, Salcini AE et al (2010) A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell 38: 165 – 178
37. Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of intron genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17: 445 – 450
38. Fortschegger K, de Graaf P, Ouchkhourou NV, van Schaik FM, Timmers HF, Shiekhattar R (2010) PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol Cell Biol 30: 3286 – 3298
39. Wen H, Li J, Song T, Lu F, Kan PY, Lee MG, Sha B, Shi X (2010) Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J Biol Chem 285: 9322 – 9326
40. Qiu J, Shi G, Jia Y, Li J, Wu M, Li J, Dong S, Wong J (2010) The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20: 908 – 918
41. Yu L, Wang Y, Huang S, Wang J, Deng Z, Zhang Q, Wu W, Zhang X, Liu Z, Gong W et al (2010) Structural insights into a novel histone demethylase PHF8. Cell Res 20: 166 – 173
42. Loenarz C, Ge W, Coleman ML, Rose NR, Cooper CD, Klose RJ, Ratcliffe PJ, Schofield CJ (2010) PHF8, a gene associated with clef}
EMBO reports

Histone demethylases in chromatin biology and beyond Emilia Dimitrova et al

and mental retardation, encodes for an Npsd1-demethyl lysine demethylase. Hum Mol Genet 19: 217 – 222
45. Zhu Z, Wang Y, Li X, Wang Y, Xu L, Wang X, Sun T, Dong X, Chen L, Mao H et al (2010) PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis. Cell Res 20: 794 – 801
46. Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M et al (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofa-
cial development. Nature 466: 503 – 507
47. Torres IO, Kuchenbecker KM, Nnadi CI, Fletterick RJ, Kelly MJ, Fujimori DG (2015) Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat Commun 6: 6204
48. Zhang Y, Yang H, Guo X, Rong N, Song Y, Xu Y, Lan W, Zhang X, Liu M, Xu Y et al (2014) The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B. Protein Cell 5: 837 – 850
49. Klein BJ, Piao L, Xi Y, Rincon-Arono H, Rothbart SB, Peng D, Wen H, Larson C, Zhang X, Zheng X et al (2014) The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep 6: 325 – 335
50. Pilotto S, Speranzini V, Tortorici M, Durand D, Fish A, Valente S, Forneris F, Mai A, Sixma TK, Vachette P et al (2015) Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation. Proc Natl Acad Sci USA 112: 2752 – 2757
51. Kim SA, Chatterjee N, Jennings MJ, Bartholomew B, Tan S (2015) Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex. Nucleic Acids Res 43: 4868 – 4880
52. Long HK, Blackledge NP, Klose RJ (2013) 2F–CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 41: 727 – 740
53. Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38: 179 – 190
54. Blackledge NP, Klose R (2011) CpG island chromatin: a platform for gene regulation. Epigenetics 6: 147 – 152.
55. Patiasiou A, Wilsker D, Moran E (2005) DNA-binding properties of ARID family proteins. Nucleic Acids Res 33: 66 – 80
56. Lee MG, Wynder C, Cooch N, Sheikhattar R (2005) An essential role for CoREST in nucleosomal histone H3 lysine 4 demethylation. Nature 437: 432 – 435
57. Shi YJ, Matson C, Lan F, Ivase S, Baba T, Shi Y (2009) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19: 857 – 864
58. Forneris F, Binda C, Dall’Aglio A, Fraajeja MW, Battagliolo E, Mattevi A (2006) A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem 281: 35289 – 35295
59. Ouyang J, Shi Y, Valin A, Xuan Y, Gill G (2009) Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 34: 145 – 154
60. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437: 436 – 439
61. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Muller JM, Greshchik H, Kirfel J, Ji S et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464: 792 – 796
62. Laurent B, Ruitu L, Murn J, Hempel K, Ferraro R, Xiang Y, Liu S, Garcia BA, Wu H, Wu F et al (2015) A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell 57: 957 – 970
63. Ting Hj, Yeh S, Nishimura K, Chang C (2002) Supervillins associates with androgen receptor and modulates its transcriptional activity. Proc Natl Acad Sci USA 99: 661 – 666
64. Brien GL, Gambero G, O’Connell DJ, Jerman E, Turner SA, Egan CM, Dunne Ej, Jurgens MC, Wyneke K, Piao L et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PR2 and demethylase N066 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19: 1273 – 1281
65. van Oevelen C, Wang J, Asp P, Yan Q, Kaelin WG Jr, Kluger Y, Dynlacht BD (2008) A role for mammalian Sin3 in permanent gene silencing. Mol Cell 32: 359 – 370
66. Hayakawa T, Ohtani Y, Hayakawa N, Shimyozu K, Saito M, Ishikawa F, Nakayama I (2007) RBP2 is an Mrg15 complex component and down-regulates intragenic histone H3 lysine 4 methylation. Genes Cells 12: 811 – 826
67. Xie L, Pelz C, Wang W, Bashar A, Variamova O, Shadle S, Impey S (2011) KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J 30: 1473 – 1484
68. Kadamb R, Mittal S, Bansal N, Batra H, Saluja D (2013) Sin3 insight into its transcriptional regulatory functions. Eur J Cell Biol 92: 237 – 246
69. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y (2007) The histone H3K4 demethylase SMYD links REST target genes to X-linked mental retardation. Nature 447: 601 – 605
70. Ge Z, Li W, Wang N, Liu C, Zhu Q, Bjorkholm M, Gruber A, Xu D (2010) Chromatin remodeling: recruitment of histone demethylase RBP2 by Mad1 for transcriptional repression of a Myc target gene, telomerase reverse transcriptase. FASEB J 24: 579 – 586
71. Ouchikourov NS, Muino JM, Kaufmann K, van Ijcken WF, Groot Koerkamp MJ, van Leenen D, de Graaf P, Holstege FC, Gросved FG, Timmers HT (2013) Balancing of histone H3K4 methylation states by the Kdm5c/ SMYD histone demethylase modulates promoter and enhancer function. Cell Rep 3: 1071 – 1079
72. Wong PP, Miranda F, Chan KW, Berlato C, Hurst HC, Scibetta AG (2012) Histone demethylase KDM5B collaborates with TAFAP2C and Myc to repress the cell cycle inhibitor p21(cip) (CDKN1A). Mol Cell Biol 32: 1633 – 1644
73. Wissmann M, Yin N, Muller JM, Greshchik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R et al (2007) Cooperative demethylation by JMJDC2 and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9: 347 – 353
74. Nair SS, Nair BC, Cortez V, Chakravartty D, Metzger E, Schule R, Brann DW, Tekmal RR, Vadlamudi RK (2010) PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 11: 438 – 444
75. Garcia-Bassetts I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, Ju BG, Ohgi KA, Wang J, Escoubet-Lozach L et al (2007) Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128: 505 – 518
76. Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN, Gaughan L (2015) The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res 43: 196 – 207
77. Cardamone MD, Tanasa B, Chan M, Cederquist CT, Andricovich J, Rosenfeld MG, Periassi V (2014) GPS2/KDM4A pioneering activity
regulates promoter-specific recruitment of PPARgamma. Cell Rep 8: 163 – 176

78. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329: 689 – 693

79. Zoabi M, Nader-Ponniah PT, Khoury-Haddad H, Usaj M, Budowski-Tal I, Haran T, Henn A, Mandel-Gutfreund Y, Ayoub N (2014) RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation. Nucleic Acids Res 42: 13026 – 13038

80. Baba A, Ohtake F, Okuno Y, Yokota K, Okada M, Imai Y, Ni M, Meyer CA, Igarashi K, Janno K et al (2011) PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol 13: 668 – 675

81. Sun L, Huang Y, Wei Q, Tong X, Cai R, Nalepa G, Ye X (2015) Cyclin E/Cdk2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem 290: 4075 – 4085

82. Han X, Gui B, Xiong C, Zhao L, Liang J, Sun L, Yang X, Yu W, Yan R et al (2014) Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibiarking system in neural development. Mol Cell 55: 482 – 494

83. Van Rechem C, Black JC, Abbas T, Allen A, Rinehart CA, Yuan GC, Dutta A, Whetstine JR (2011) The SKP1-Cullin-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/jumonji domain-containing 2A (JMJD2A) protein. J Biol Chem 286: 30462 – 30470

84. Tan MK, Lim HJ, Harper JW (2011) SCF(BBX22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteodegradation. Mol Cell Biol 31: 3687 – 3699

85. Mersman DP, Du HN, Fignerman IM, South PF, Briggs SD (2009) Polyubiquitination of the histone demethylase Jhd2 controls histone methylation and gene expression. Genes Dev 23: 951 – 962

86. Allfrey VG, Faulkner R, Misroy AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51: 786 – 794

87. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappisier J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449: 731 – 734

88. Grossniklaus U, Paro R (2014) Transcriptional silencing by polycomb-group proteins. Cold Spring Harb Perspect Biol 6: a019331

89. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130: 1083 – 1094

90. Burgold T, Sprefacio F, De Santa F, Totaro MG, Prosperini E, Natoli G, Testa G (2008) The histone H3 lysine 27-specific demethylase jmjd3 is required for neural commitment. PLoS ONE 3: e3034

91. De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bugci G, Caganova M, Notarbartolo S, Casoal S et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28: 3341 – 3352

92. Park DH, Hong SJ, Salinas RD, Liu SJ, Sun SW, Sgualdino J, Testa G, Matzuk MM, Iwamori N, Lim DA (2014) Activation of neuronal gene expression by the JMJD3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep 8: 1290 – 1299

93. Seenundun S, Rampalli S, Liu QC, Aziz A, Palli C, Hong S, Blais A, Brand M, Ge K, Dilworth FJ (2010) UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis. EMBO J 29: 1401 – 1411

94. Rocha-Viegas L, Villa R, Gutierrez A, Iriondo O, Shi ekkhatar R, Di Croce L (2014) Role of UTX in retinoic acid receptor-mediated gene regulation in leukemia. Mol Cell Biol 34: 3765 – 3775

95. Kartikasari AE, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, Magnuson MA, Lowry WE, Bhushan A (2013) The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 32: 1393 – 1408

96. Li Q, Wang HY, Chepelev I, Zhu Q, Wei G, Zhao K, Wang RF (2014) Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development. PLoS Genet 10: e1004524

97. Yang D, Okamura H, Nakashima Y, Haneji T (2013) Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem 288: 33530 – 33541

98. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318: 447 – 450

99. Issaeva I, Zonis Y, Rozovskiaia T, Orlovsky K, Croce CM, Nakamura T, Mazo A, Eisenbach L, Canaani E (2007) Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 27: 1889 – 1903

100. Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, Copeland TD, Kulkam M et al (2007) PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 282: 20395 – 20406

101. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, Lv R, Li X, Villen J, Gygi SP et al (2012) The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev 26: 1364 – 1375

102. Wang AH, Zare H, Moussavi K, Wang C, Moravec CE, Sirotkin HI, Ge K, Gutiierrez-Cruz G, Sartorelli V (2013) The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. EMBO J 32: 1075 – 1086

103. Smith ER, Lee MG, Winter B, Droz NM, Eisenbach L, Canaani E, Shiekhattar R, Shilatifard A (2008) Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol 28: 1041 – 1046

104. Estarás C, Fueyo R, Azkuiz N, Beltran S, Martinez-Balbas MA (2013) RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Cell Biol 24: 351 – 360

105. Shpargel KB, Starmer J, Yee D, Pohlers M, Magnuson T (2014) KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLoS Genet 10: e1004507

106. Welstead GG, Creghtyon MP, Bilodeau S, Cheng AW, Markouallasi S, Young RA, Jenaichs R (2012) X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci USA 109: 13004 – 13009

107. Lee S, Lee JW, Lee SK (2012) UTX, a histone H3 lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell 22: 25 – 37

108. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, Ge K (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylation activity. Proc Natl Acad Sci USA 109: 15324 – 15329

109. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of jmjC domain-containing UTX and jmjd3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104: 18439 – 18444
110. Lan F, Bayliss PE, Rinn JL, Whetstone JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449: 689 – 694.

111. Shapargel KB, Sengoku T, Yokoyama S, Magnuson T (2012) UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet 8: e1002964.

112. Miller SA, Mohn SE, Weinmann AS (2010) Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 40: 594 – 605.

113. Walport LJ, Hopkinson RJ, Vollmar M, Madden SK, Giles AE, Oppermann U, Johansson C (2014) Human UTy(KDM6C) is a male-specific N-methyl lysyl demethylase. J Biol Chem 289: 18302 – 18313.

114. Vandamme J, Lettier S, Sidoli S, Di Schiavi E, Norregaard Jensen Ø, Vandamme J, Lettier G, Sidoli S, Di Schiavi E, Norregaard Jensen Ø (2014) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome by the ENCODE pilot project. Nature 487: 501 – 516.

115. Vandamme J, Lettier S, Sidoli S, Di Schiavi E, Norregaard Jensen Ø, Vandamme J, Lettier G, Sidoli S, Di Schiavi E, Norregaard Jensen Ø (2014) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 15: 7 – 18.

116. Christiansen J, Angger K, Cloos PAC, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for Tri-and dimethylated lysine 4 on Histone 3. Cell 128: 1063 – 1076.

117. Xiang Y, Zhu Z, Han G, Ye X, Xu B, Peng Z, Ma Y, Yu Y, Lin H, Chen AP et al (2007) JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104: 19226 – 19231.

118. Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr (2007) The X-linked mental retardation protein RBP1 interacts with the genome-wide epigenetic reprogramming in migrating primordial gonadal germ cells. Genet Biol 8: R69.

119. Ivase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstone JR, Bonni A, Roberts TM, Shi Y (2007) The X-linked mental retardation gene SMCD1/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128: 1077 – 1088.

120. Lee MG, Norman J, Shilatifard A, Shiekhattar R (2007) Physical and functional association of a trimethyl H3K4 demethylase and Ring6A/MBL1, a polycomb-like protein. Cell 128: 877 – 887.

121. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25: 801 – 812.

122. Seward DJ, Cubberley G, Kim S, Schonewald M, Zhang L, Triplet B, Bentley DL (2007) Demethylation of trimethylated histone H3 lysine 4 in vivo by JARID1B JmJD1c proteins. Nat Struct Mol Biol 14: 240 – 242.

123. Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799 – 816.

124. Koch CM, Andrews RM, Flice P, Dillon SC, Karaoz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Coutett P et al (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17: 691 – 707.

125. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311 – 318.

126. Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, Cowley SM, Young RA (2012) Enhancer decompensation by LSD1 during embryonic stem cell differentiation. Nature 482: 221 – 225.

127. Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, Barlev N, Bradley A, Cowley SM (2010) Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 30: 4851 – 4863.

128. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41: 125 – 129.

129. Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S, O’Brien K, Fujirawa Y, Peng C, Nguyen M, Orkin SH (2013) Histone demethylase LSD1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. eLife 2: e00633.

130. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bass et al (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446: 882 – 887.

131. Kidder BL, Hu G, Zhao K (2014) KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation. Genome Biol 15: R3.

132. Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137: 308 – 320.

133. Nottke AC, Beece-Sims SE, Pantalena LF, Reinke V, Shi Y, Colaiacovo MP (2011) SPR-5 is a histone H3K4 demethylase with a role in meiotic double-strand break repair. Proc Natl Acad Sci USA 108: 12805 – 12810.

134. Greer EL, Beece-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, Aristizábal-Corrales D, Chen S, Badeaux AI, Jin Q et al (2014) A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep 7: 113 – 126.

135. Kerr SC, Ruppersburg CC, Francis JW, Katz D (2014) SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc Natl Acad Sci USA 111: 9509 – 9514.

136. Kaser-Pebernard S, Muller F, Wicky C (2014) LET-418/Mi2 and SRF–LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells. Stem Cell Rep 2: 547 – 559.

137. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278: 440 – 458.

138. Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y, Saga Y, Tachibana M, Shinkai Y, Saitou M (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134: 2627 – 2638.

139. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Cesari F, Lee K, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452: 877 – 881.

140. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM18 is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461: 415 – 418.

141. Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, Shinkai Y, Tachibana M (2013) JMJ1C, a jmj c domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod 89: 93.

142. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450: 119 – 123.
143. Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J (2010) Jmjd1a demethylase-regulated histone modification is essential for CAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 285: 2758 – 2770

144. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839: 155 – 168

145. Crevillon P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, Cao X, Dean C (2014) Epigenic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515: 587 – 590

146. Zury S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jari- ault S (2014) Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 345: 826 – 829

147. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663 – 676

148. Mansour AA, Cafihi O, Weinberger L, Zivran A, Ayash M, Rais Y, Krupalnik V, Zerbib M, Aman-Malik L, Maza I et al (2012) The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488: 409 – 413

149. Antony J, Oback F, Chamley LW, Oback B, Laible G (2013) Transient JmjD2-mediated reduction of H3K9me3 levels improves reprogramming of embryonic stem cells into cloned embryos. Mol Cell Biol 33: 974 – 983

150. Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A, Zhang Y (2014) Embryonic development following somatic cell nuclear transfer impeded by persistent histone methylation. Cell 159: 884 – 895

151. Tran KA, Jackson SA, Olufs ZPG, Zadik Y, Leng N, Kendziorski C, Roy S, Sridharan R (2015) Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun 6: 6188

152. Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban Miguel A, Pan G et al (2011) The Histone Demethylases Jhdmi1a/b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner. Cell Stem Cell 9: 575 – 587

153. Liang G, He J, Zhang Y (2012) Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol 14: 457 – 466

154. Zhao W, Li Q, Ayers S, Gu Y, Shi Z, Zhu Q, Chen Y, Wang Helen Y, Wang R-F (2013) Jmj3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152: 1037 – 1050

155. Li W, Zhou H, Abujour R, Zhu S, Young Joo J, Lin T, Hao E, Scholer HR, Hayek A, Ding S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27: 2992 – 3000

156. Caccavellii D, Trapnell C, Ziller MJ, Soumillo M, Cesana M, Karkin R, Donaghay J, Smith ZD, Ratnasumranvoot S, Zhang X et al (2015) Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162: 412 – 424

157. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14: 100 – 112

158. Zhang K, Mosch K, Fischle W, Grewal SI (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15: 381 – 388

159. Bayne EH, White SA, Kagnasty A, Bijos DA, Sanchez-Pulido L, Hoe KL, Kim DU, Park HO, Ponting CP, Rappsilber J et al (2010) Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140: 666 – 677

160. Ragunathan K, Ji G, Moazed D (2015) Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348: 1258699

161. Audergon PN, Catania S, Kagsansky A, Tong P, Shukla M, Pidoux AL, Allshire RC (2015) Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348: 132 – 135

162. Wang J, Reddy BD, Jia S (2015) Rapid epigenetic adaptation to uncontrolled heterochromatin spreading. eLife 4: e06179

163. Zofall M, Grewal SI (2006) S6i/HP1 recruits a jmjC domain protein to facilitate transcription of heterogeneous repeats. Mol Cell 22: 681 – 692

164. Trewick SC, Minc E, Antonelli R, Urano T, Allshire RC (2007) The jmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26: 4670 – 4682

165. Isaac S, Waflrichsson J, Zohar T, Lazar D, Kahan T, Ekwall K, Cohen A (2007) Interaction of Epe1 with the heterochromatin assembly pathway in Schizosaccharomyces pombe. Genetics 175: 1549 – 1560

166. Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, Cohen A (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 23: 4365 – 4370

167. Horton JR, Upadhyay AK, Hashimoto H, Zhang X, Cheng X (2011) Structural basis for human PHF2 Jumonji domain interaction with metal ions. J Mol Biol 406: 1 – 8

168. Aggarwal BD, Calvi BR (2004) Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372 – 376

169. Unnikrishnan A, Gafken PR, Tsukiyama T (2010) Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 17: 430 – 437

170. Annunziato AT (2015) The Fork in the Road: histone Partitioning During DNA Replication. Genes 6: 353 – 371

171. Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, Cittaro D, Segalla S, Lemaire JM, Tonon G (2015) H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res 43: 2560 – 2574

172. Radman-Livaja M, Liu CL, Friedman N, Schreiber SL, Rando OJ (2010) Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet 6: e1000837

173. Musialek MW, Rybaczkek D (2015) Behavior of replication origins in Eukaryota – spatio-temporal dynamics of licensing and firing. Cell Cycle 14: 2251 – 2264

174. Black JC, Allen A, Van Rechem C, Forbes E, Longworth M, Tschop K, Rinet Hart C, Quiton J, Walsh R, Smallwood A et al (2010) Conserved antagonism between Jmjd2a/Kdm4a and H1p1gamma during cell cycle progression. Mol Cell 40: 736 – 748

175. O’Sullivan RJ, Kubicek S, Schreiber SL, Karlsseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17: 1218 – 1225

176. Black JC, Whetstone JR (2011) Chromatin landscape: methylation beyond transcription. Epigenetics 6: 9 – 15

177. Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C et al (2013) Kdm4a lysine demethylase induces site-specific copy gain and dereplication of regions amplified in tumors. Cell 154: 541 – 555

178. Holmes A, Roseaulin L, Schurr C, Wakin H, Lambert S, Zaratiegui M, Martienssen RA, Arcangioli B (2012) Lsd1 and Lsd2 control programmed
replication fork pauses and imprinting in fission yeast. Cell Rep 2: 1513 – 1520

179. Liu W, Tanasa B, Tyurina OV, Zhou YT, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466: 508 – 512

180. Lim HJ, Dimova NV, Tan MK, Sigoillot FD, King RW, Shi Y (2013) The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol 33: 4166 – 4180

181. Lv S, Bu W, Jiao H, Liu B, Zhu L, Zhao H, Liao J, Li J, Xu X (2010) LSD1 is required for chromosome segregation during mitosis. Eur J Cell Biol 89: 557 – 563

182. Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N (2010) The histone demethylase Kdm4c regulates cell cycle progression by repressing cell-cycle regulators. Mech Dev 127: 31 – 42

183. Kupersmith I, Khoury-Haddad H, Awwad SW, Guttman-Raviv N, Ayoub N (2014) KDM4C (GASC1) lysine demethylation is associated with mitotic chromatin and regulates chromosome segregation during mitosis. Nucleic Acids Res 42: 6168 – 6182

184. Marcon E, Ni Z, Pu S, Turinsky AL, Trumble SS, Olsen JB, Silverman-Gavrilov R, Silverman-Gavrilov L, Phanse S, Guo H et al (2014) Human chromatin-related protein interactions identify a demethylase complex required for chromosome segregation. Cell Rep 8: 297 – 310

185. Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, Elentoboba-Johnson KS, Katz RA, Pagano M (2008) KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 7: 3539 – 3547

186. Ishimura A, Minehata K, Terashima M, Kondoh G, Hara T, Suzuki T, Pedersen MT, Agger K, Laugesen A, Johansen JV, Cloos PA, Christensen J, Youn MY, Yokoyama A, Fujiyama-Nakamura S, Ohtake F, Minehata K, Lv S, Bu W, Jiao H, Liu B, Zhu L, Zhao H, Liao J, Xu X (2010) LSD1/KDM1A promotes the DNA damage response. J Cell Biol 203: 457 – 470

187. Peng B, Wang J, Hu Y, Zhao H, Hou W, Zhao H, Wang H, Liao J, Xu X (2015) Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent S3BP1 recruitment in response to DNA damage. Nucleic Acids Res 43: 5936 – 5947

188. Fnu S, Williamson EA, De Haro LP, Breenman N, Wray J, Shahem A, Radhakrishnan K, Lee SH, Nickoloff JA, Hromas R (2011) Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proc Natl Acad Sci USA 108: 540 – 545

189. Cao LL, Wei F, Du Y, Song B, Wang D, Chen X, Lu X, Cao Z, Yang Q, Cao Y et al (2015) ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene doi:10.1038/onc.2015.81

190. Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal AC (2015) SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Rep 10: 1778 – 1791

191. Mallette FA, Mattioli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S (2012) RNF8- and RNF168-dependent degradation of KDM4A/MJJD2A triggers S3BP1 recruitment to DNA damage sites. EMBO J 31: 1865 – 1878

192. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by S3BP1 and Crb2 in DNA repair. Cell 127: 1361 – 1373

193. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzardies T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119: 603 – 614

194. Palomer-Sanchez Z, Buic-o-Mendez A, Valadez-Graham V, Reynaud E, Zurita M (2010) Drosophila ps3 is required to increase the levels of the dKDM4B demethylase after UV-induced DNA damage to demethylate histone H3 lysine 9. J Biol Chem 285: 31370 – 31379

195. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jennewein T et al (2007) ps3 is regulated by the lysine demethylase LSD1. Nature 449: 105 – 108

196. Kontaki H, Talainidis I (2010) Lysine methylation regulates E2F1-induced cell death. Mol Cell 39: 152 – 160

197. Xie Q, Bai Y, Wu J, Sun Y, Yang W, Zhang Y, Mei P, Yuan Z (2011) Methylation-mediated regulation of E2F1 in DNA damage-induced cell death. J Recept Signal Transduct Res 31: 139 – 146

198. Ponnaluri VK, Vavilala DT, Putty S, Guthrie WL, Mukherji M (2009) Identification of non-histone substrates for MJJD2A-C histone demethylases. Biochem Biophys Res Commun 390: 280 – 284

199. Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, Gudkov AV, Stark GR (2010) Regulation of NF-kappaB by LSD1/FBX11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA 107: 46 – 51

200. Zhao L, Zhang Y, Gao Y, Geng P, Lu Y, Liu X, Yao R, Hou P, Liu D, Lu J et al (2015) MJJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein. Cell Death Differ 22: 1630 – 1640
211. Lu L, Gao Y, Zhang Z, Cao Q, Zhang X, Zou J, Cao Y (2015) Kdm2a/b lysine demethylases regulate canonical Wnt signaling by modulating the stability of nuclear beta-catenin. Dev Cell 6: 660–674

212. Jung ES, Sim YJ, Jeong HS, Kim SJ, Yun YJ, Song JH, Jeon SH, Choe C, Park KT, Kim CH et al. (2015) JmjC2 increases MyoD transcriptional activity through inhibiting G9a-dependent Myod degradation. Biochim Biophys Acta 1849: 1081–1094

213. Cao XJ, Amaudo AM, Garcia BA (2013) Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8: 477–485

214. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16: 5–17

215. Van Rechem C, Black JC, Boukhali M, Ayee MJ, Graslund S, Haas W, Benes CH, Whetstine JR (2015) Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis. Cancer Discov 5: 255–263

216. Van Rechem C, Black JC, Greninger P, Zhao Y, Donado C, Burrowes PD, Ladd B, Christian DC, Benes CH, Whetstine JR (2015) A coding single-nucleotide polymorphism in lysine demethylase KDM4A associates with increased sensitivity to mTOR inhibitors. Cancer Discov 5: 245–254

217. Chowdhury R, Sekirnik R, Brissett NC, Krojer T, Ho CH, Ng SS, Clifton IJ, Ge W, Kershaw NJ, Fox GC et al. (2014) Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 510: 422–426

218. Ge W, Wolf A, Feng T, Ho CH, Sekirnik R, Zayer A, Granatino N, Cockman ME, Loenarz C, Kato M et al. (2012) Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat Chem Biol 8: 960–962

219. Heim A, Grimm C, Muller U, Haussler S, Mackeen MM, Merl J, Hauck SM, Kessler BM, Schofield CJ, Wolf A et al. (2014) Jumonji domain containing protein 6 (JMJD6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Res 42: 7833–7850

220. Hong X, Zang J, White J, Wang C, Pan CH, Zhao R, Murphy RC, Dai S, Henson P, Kappler JW et al. (2010) Interaction of JMJD6 with single-stranded RNA. Proc Natl Acad Sci USA 107: 14568–14572

221. Noma A, Ishitani R, Kato M, Nagao A, Nureki O, Suzuki T (2010) Expanding role of the jumonji C domain as an RNA hydroxylase. J Biol Chem 285: 34503–34507

222. Yang Y, Yin X, Yang H, Xu Y (2015) Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell 58: 47–59

223. Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13: 312–321

224. Capotosto F, Guernier S, Lammers F, Waridel P, Cai Y, Jin J, Conaway JW, Conaway RC, Herr W (2011) O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144: 376–388

225. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, Vogel JL, Kristie TM, Affar el B (2011) Cross talk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci USA 108: 2747–2752

226. Tyagi S, Chabes AL, Wysocka J, Herr W (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 27: 107–119

227. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639–5649

228. Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/ash2 histone H3-K4 methylesterase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17: 896–911

229. Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E et al. (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32: 645–655

230. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y et al. (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445–1459

231. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW et al. (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife 1: e00205

232. Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49: 1134–1146

233. He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 15: 373–384

234. Herz HM, Shilatifard A (2010) The JARID2-PRC2 duality. Genes Dev 24: 857–861

235. Abe Y, Rozzie R, Matsumura Y, Kawamura T, Nakari R, Tsurutani Y, Taninuma-Inagaki K, Shiono A, Magaroo K, Nakamura K et al. (2015) JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nat Commun 6: 7052

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.