RESUMO

Objetivo: Caracterizar a tendência temporal e o comportamento espacial da hanseníase no Brasil, de 2011 a 2021. **Métodos:** Estudo ecológico, com dados do Sistema de Informação de Agravos de Notificação, obtidos em junho de 2022. Calculou-se a taxa de detecção anual de casos novos de hanseníase por 100 mil habitantes. Para estimar a tendência das séries 2011–2019 e 2011–2021, empregou-se o modelo de regressão polinomial, testando polinômios de primeira, segunda e terceira ordem. Para a espacialidade, utilizaram-se as quebras naturais e, posteriormente, as estatísticas univariadas de Moran global e local. Adotou-se o nível de significância de 5% e as análises foram realizadas no **Statistical Package for the Social Sciences — SPSS®, GeoDa® e QGIS®.** **Resultados:** Os achados apontaram para a tendência crescente da incidência de hanseníase no Brasil, nas regiões e em 20 unidades da federação entre 2011 e 2019; contudo, houve decréscimo em grande parte do país ao se considerarem os anos pandêmicos. A espacialidade revelou que as maiores taxas de detecção, em todo o período, foram observadas nas Regiões Norte, Centro-Oeste e Nordeste, com clusters de alto risco, e as menores nas Regiões Sul e Sudeste, com aglomerados de baixo risco. **Conclusão:** A taxa de detecção da hanseníase apresentou tendência crescente no Brasil entre 2011 e 2019, com maior concentração espacial nas Regiões Norte, Nordeste e Centro-Oeste. Entretanto, o estudo traz um alerta para a sustentabilidade programática do controle da hanseníase no Brasil, dada a queda evidenciada na pandemia, presumivelmente por influência da reorganização da oferta de ações e serviços anteposta à COVID-19. **Palavras-chave:** Estudos ecológicos. Hanseníase. Análise espaço temporal. Saúde pública.

AUTOR CORRESPONDENTE: Lucas Vinícius de Lima. Av. Colombo, 5.790, Bloco 2, Zona 7, Campus Universitário, CEP: 87020-900, Maringá (PR), Brasil. E-mail: lvl.vinicius@gmail.com

CONFLITOS DE INTERESSE: nada a declarar.

COMO CITAR ESSE ARTIGO: Lima LV, Pavinati G, Silva IGP, Moura DRO, Gil NL, Magnabosco GT. Tendência temporal, distribuição e autocorrelação espacial da hanseníase no Brasil: estudo ecológico, 2011 a 2021. Rev Bras Epidemiol. 2022; 25:e220040. https://doi.org/10.1590/1980-549720220040.2

Esse é um artigo aberto distribuído sob licença CC-BY 4.0, que permite cópia e redistribuição do material em qualquer formato e para qualquer fim desde que mantidos os créditos de autoria e de publicação original.

Recebido em: 11/08/2022
Revisado em: 12/09/2022
Aceito em: 26/09/2022
INTRODUÇÃO

A hanseníase é uma condição infectocontagiosa crônica, ocasionada pelo *Mycobacterium leprae*, que acomete principalmente a pele e os nervos periféricos, com potencial para causar incapacidades¹. Seu registro é milenar, contudo diversos avanços foram alcançados nas últimas décadas², sobretudo pelas “Estratégias Globais para Enfrentamento da Hanseníase (2016–2020 e 2021–2030)” propostas pela Organização Mundial da Saúde (OMS)³.

Em 2020, foram descobertos 127.396 novos casos de hanseníase em todo o mundo, representando queda de 37,1% em comparação a 2019 como possível consequência da pandemia da COVID-19⁴. Brasil, Índia e Indonésia juntamente corresponderam a 74,0% do total de casos da doença registrados em 2020⁵. Para mais, o Estado brasileiro figura entre os 22 países com cargas mais altas da doença, ocupando a 2ª posição de maior incidência de casos¹.

Nesse cenário, compreende-se que a hanseníase persiste como problema de saúde pública no Brasil, mesmo com a existência de diretrizes para vigilância, atenção e eliminação da doença¹,³. A complexidade da hanseníase agrava-se pela inerência de determinantes sociais e econômicos associados à doença, a qual, além de ocasionar deformidades físicas e invalidez, traz consigo o peso social de estigma e discriminação das pessoas acometidas¹,⁴.

No Brasil, o enfrentamento da hanseníase vem sendo implementado desde a publicação das “Diretrizes Nacionais para Vigilância, Atenção e Eliminação da Hanseníase como Problema de Saúde Pública” em 2016⁵, e, mais recentemente, pela “Estratégia Nacional para Enfrentamento da Hanseníase (2019–2022)”, de 2020, que visa fortalecer a gestão, enfrentar a doença e suas complicações e promover a inclusão social da pessoa acometida⁷.

Entretanto, sabe-se que a hanseníase apresenta comportamento heterogêneo, tendo em vista que sua ocorrência é influenciável por fatores sociais, ambientais, econômicos e demográficos¹,⁶. Dito isso, urge assumir a investigação do comportamento espacotemporal da hanseníase considerando-se os diferentes cenários territoriais de uma localidade, principalmente pelo fato de que sua prevalência é maior em camadas sociais desfavorecidas⁶.

Dada a alta carga da hanseníase no Brasil e reconhecendo-se a heterogeneidade da ocorrência da doença, sobretudo em contextos socioeconômicos de maior vulnerabilidade, faz-se necessário investigar o padrão temporal e espacial da hanseníase no país. Assim, este estudo objetivou caracterizar a tendência temporal e o comportamento espacial da hanseníase no Brasil, de 2011 a 2021.

MÉTODOS

Estudo epidemiológico, com delineamento observacional, de desenho ecológico, em que foram empregadas análises em função do tempo e do espaço. Os dados foram extraídos em 20 de junho de 2022 do Sistema de Informação de Agravos de Notificação (SINAN) e do Instituto Brasileiro de Geografia e Estatística (IBGE), no sítio eletrônico do Departamento de Informática do Sistema Único de Saúde (DATASUS).

O Brasil, cenário deste estudo, constitui-se em 26 estados e o Distrito Federal, denominados unidades federadas (UF), que se organizam em cinco regiões: Norte, Nordeste, Sudeste, Sul e Centro-Oeste, as quais correspondem à população estimada de 213.317.639 habitantes e à extensão territorial de 8.510.345,540 km² (Figura 1)⁸.

A população do estudo foi definida como os casos de hanseníase registrados no SINAN entre 2011 e 2021, considerando-se os dados mais recentes disponíveis na data de realização do estudo. Foram selecionados os casos novos, segundo local de residência (UF, regiões e Brasil), diagnosticados nos respectivos anos em análise.

Calculou-se a taxa de detecção anual de casos novos de hanseníase por 100 mil habitantes, um indicador preconizado pelo Ministério da Saúde para medir força de morbidade, magnitude e tendência da endemia⁵. O cálculo deu-se pela razão dos casos novos residentes em determinado local e ano, pela projeção da população total residente, no mesmo local e período, e o resultado foi multiplicado por 100 mil.

Posteriormente, procedeu-se à análise de tendência empregando modelos de regressão polinomial, em que a taxa foi considerada a variável dependente (y) e os anos a independente (x)⁹. Considerando-se a possibilidade de influência do período pandêmico na série histórica, foram estimadas a tendência temporal em dois períodos, 2011–2019 e 2011–2021, com o intuito de analisar e comparar o comportamento da incidência da hanseníase no contexto da COVID-19.

Fonte: Adaptado do IBGE, 2022.

Figura 1. Mapa do Brasil, segundo regiões e unidades federadas.
Para evitar a correlação serial, empregou-se o artifício de transformação da variável ano na variável ano-centrizada, e, para suavizar as taxas, utilizou-se o artefato de alisamento pela média móvel de três pontos. Foram testados modelos de primeira \((y=\beta_0+\beta_1 x)_1\), segunda \((y=\beta_0+\beta_1 x+\beta_2 x^2)_2\) e terceira ordem \((y=\beta_0+\beta_1 x+\beta_2 x^2+\beta_3 x^3)_3\). Escolheu-se aquele com melhor significância estatística \((p<0,05)\), coeficiente de determinação \((r^2)\) mais próximo de 1,00 e análise dos resíduos sem viés\(9\).

Nesse tipo de modelagem, de alto poder estatístico e fácil interpretação, \(\beta_0\) é caracterizado como a taxa média da série histórica (intercepto) e \(\beta_1\), \(\beta_2\) e \(\beta_3\) como os coeficientes da regressão (evolução), representando a variação/aceleração média anual da taxa. O sinal dos coeficientes determina a tendência crescente (+) ou decrescente (–). Quando os critérios foram semelhantes para os polinômios, optou-se pelo modelo mais simples (ou seja, o de menor ordem)\(9\).

Para a distribuição espacial, os dados foram agrupados em três períodos: 2011–2014, 2015–2017 e 2018–2021. Levando-se em conta a possibilidade de flutuações aleatórias, a taxa de cada período deu-se pela razão da soma dos casos novos, pela soma da população de cada ano no mesmo local, e o resultado foi multiplicado por 100 mil. Os mapas foram construídos tendo como unidade as UF, com base no shapefile obtido no IBGE, por meio de intervalos de quebras naturais em que as cores escusas representam taxas mais altas e cores claras taxas mais baixas.

Ademais, avaliou-se a dependência espacial da taxa de detecção pelo coeficiente de autocorrelação espacial de Moran, que se subdivide em índice de Moran global (I) e índice de Moran local (L). Utilizou-se o critério de vizinhança tipo queen. Inicialmente, calculou-se o Moran global univariado para cada período, determinando-se a significância pelo teste de pseudossignificância com 999 permutações. Quando significante \((p<0,05)\), determinou-se o Moran local (LISA, do inglês local indicator of spatial association) univariado, identificando aglomerados (clusters) com risco semelhante\(10\).

Os clusters do LISA dividiram-se em: alto-alto (AA), estados e vizinhos com altas taxas; baixo-baixo (BB), estados e vizinhos com baixas taxas; alto-baixo (AB), estados com altas taxas e vizinhos com baixas taxas; e não significante (NS), estados e vizinhos sem tendência espacial clara\(10\). As análises estatísticas foram realizadas no software Statistical Package for the Social Sciences (SPSS)\(9\), v. 20.1, e as espaciais no GeoDa\(9\), v.1.20, com construção dos mapas no QGIS\(9\), v.2.8.

Por se tratar de pesquisa com dados de fontes secundárias, sem identificação de sujeitos e cujo acesso é de domínio público, não foi necessária submissão ao Comitê de Ética em Pesquisa, conforme preconizado pela Resolução nº 510, de 2016, do Conselho Nacional de Saúde. Entretanto, menciona-se que foram seguidos e respeitados os preceitos éticos da legislação vigente.

RESULTADOS

No período de 2011 a 2021 foram registrados 309.638 novos casos de hanseníase no Brasil. Entre 2011 e 2019, a tendência de detecção revelou-se significativamente crescente para o país \((r^2=0,99; p<0,001)\) e suas regiões, sendo o incremento mais expressivo percebido na Centro-Oeste \((r^2=0,97; p=0,008)\). Ao considerar os anos pandêmicos, observou-se tendência de queda para o Brasil \((r^2=0,92; p<0,001)\) e para as regiões, exceto a Sul \((r^2=0,99; p<0,001)\) (Tabela 1).

Na análise entre 2011 e 2019, houve tendência crescente para 19 estados e o Distrito Federal, sendo Mato Grosso \((r^2=0,94; p=0,003)\) e Tocantins \((r^2=0,92; p=0,005)\) as UF com maior incremento anual. Por outro lado, entre os sete estados em queda, os maiores decréscimos foram visualizados nos Amazonas \((r^2=0,96; p<0,001)\), em Sergipe \((r^2=0,93; p<0,001)\) e na Bahia \((r^2=0,92; p=0,001)\). Nas séries históricas com 2020 e 2021, 12 dos 19 estados passaram de aumento para queda (Tabela 1).

A distribuição espacial dos casos revelou que, nos três períodos de agrupamento da análise (2011–2014, 2015–2017 e 2018–2021), as maiores taxas de detecção da doença estiveram concentradas nas Regiões Norte, Nordeste e Centro-Oeste, com destaque para os estados de Mato Grosso e Tocantins. Da mesma forma, notaram-se menores taxas nas Regiões Sul e Sudeste (Figura 2).

Os índices de Moran global e os respectivos pseudova- lores de p para 2011–2014 \((l=0479; p=0,001)\), 2015–2017 \((l=0,393; p=0,007)\) e 2018–2021 \((l=0,304; p=0,013)\) apontaram dependência espacial positiva significante, portanto empregou-se o LISA, com clusters significativos a 5% \((p<0,05)\). Visualizou-se autocorrelação do tipo alta-alta para Mato Grosso, Tocantins e Pará nos três períodos. Ademais, observaram-se clusters do tipo baixo-baixo para os estados das Regiões Sul e Sudeste (Figura 3).

DISCUSSÃO

Os achados apontaram para a tendência crescente dos casos novos de hanseníase no Brasil, nas regiões e em 20 UF entre 2011 e 2019; contudo, houve decréscimo em grande parte do país ao se considerarem os anos pandêmicos. A espacialidade revelou que as maiores taxas de detecção, em todo o período, foram observadas nas Regiões Norte, Centro-Oeste e Nordeste, com clusters de alto risco, e as menores nas Regiões Sul e Sudeste, com aglomerados de baixo risco.

A hanseníase é considerada uma doença tropical negligenciada que persiste como problema de saúde pública em diversos países, momentaneamente subdesenvolvidos ou em desenvolvimento, como o Brasil e a Índia\(11,12\). A maior ocorrência da hanseníase nesses países relaciona-se a piores condições de vida, visto que situações de precariedade e desigualdade socioeconômica atuam como determinantes da doença\(12,13\).

Assim, entender o fenômeno polissêmico representa- do pela hanseníase permite a compreensão de seu com-
Tabela 1. Modelos de tendência das taxas de casos novos de hanseníase, segundo unidades federadas e regiões do Brasil, 2011 a 2021.

Local	Modelo 2011–2019	r²	p	T	Modelo 2011–2021	r²	p	T
Região Norte	y=31,90-1,78+0,38	0,98	<0,001	↑↑	y=31,21-0,84+0,00-0,09	0,96	<0,001	↓↓
Rondônia	y=34,31-2,78+0,66	0,94	0,003	↓↑	y=34,43-2,70	0,87	<0,001	↓↑
Acre	y=16,17-0,85+0,39-0,09	1,00	<0,001	↑↑	y=15,45-0,48+0,16-0,07	0,99	<0,001	↑↑
Amazonas	y=13,91-1,32	0,96	<0,001	↓	y=12,66-1,27	0,97	<0,001	↓
Roraima	y=18,50-0,62+0,72	0,79	0,044	↑↑	y=19,83+1,07-0,04-0,20	0,86	0,014	↑↑
Pará	y=36,98-4,18+0,27+0,14	1,00	<0,001	↑↑	y=35,04-3,11	0,97	<0,001	↓↓
Amapá	y=14,07-1,60+0,34-0,04	0,99	<0,001	↑↑	y=13,63-0,47+0,09-0,06	0,97	<0,001	↑↑
Tocantins	y=70,92+5,25+1,45	0,92	0,005	↑↑	y=80,05+10,25-0,78-0,67	0,92	0,003	↑↑
Região Nordeste	y=22,64-1,48+0,06+0,07	1,00	<0,001	↑↑	y=21,58-1,18	0,95	<0,001	↓
Maranhão	y=52,02-2,88+0,02+0,08	1,00	<0,001	↑↑	y=50,30-2,96-0,25	0,98	<0,001	↑↑
Piauí	y=33,32-0,72	0,94	<0,001	↓	y=33,06-0,73-0,28-0,06	0,97	<0,001	↑↑
Ceará	y=21,05-1,80+0,01+0,08	0,99	<0,001	↑↑	y=19,81-1,25	0,98	<0,001	↓
Rio Grande do Norte	y=7,56-0,40	0,91	0,001	↓	y=7,17-0,40	0,95	<0,001	↓
Paraíba	y=13,35-1,50+0,25+0,08	0,99	<0,001	↑↑	y=12,94-0,72+0,13	0,90	0,029	↑↑
Pernambuco	y=25,11-1,91+0,26+0,14	0,98	0,003	↑↑	y=25,05+1,03	0,83	0,001	↓
Alagoas	y=9,95-0,54+0,13	0,98	<0,001	↑↑	y=9,74-0,23+0,03-0,02	0,97	<0,001	↑↑
Sergipe	y=16,91-1,05	0,93	<0,001	↓	y=15,88-1,04	0,97	<0,001	↓
Bahia	y=15,85-0,57	0,92	0,001	↓	y=15,51-0,79-0,09	0,98	<0,001	↓
Região Sudeste	y=4,89-0,39+0,06	1,00	<0,001	↑↑	y=4,64-0,25+0,02-0,01	0,99	<0,001	↑↑
Minas Gerais	y=5,61-0,30+0,05	0,99	<0,001	↑↑	y=5,43-0,17+0,01-0,01	0,99	<0,001	↑↑
Espírito Santo	y=14,48-1,81+0,30	0,99	<0,001	↑↑	y=13,50+1,08+0,03-0,07	0,98	<0,001	↑↑
Rio de Janeiro	y=6,60-0,66+0,11	0,99	<0,001	↑↑	y=6,16-0,42+0,05-0,01	0,99	<0,001	↑↑
São Paulo	y=5,06-0,19+0,30	0,99	<0,001	↑↑	y=2,93-0,13+0,01-0,00	0,99	<0,001	↑↑
Região Sul	y=3,41-0,33+0,03	0,99	<0,001	↑↑	y=3,13+0,29+0,02	0,99	<0,001	↑↑
Paraná	y=6,31-0,69+0,08	0,99	<0,001	↑↑	y=5,76-0,60+0,05	0,99	<0,001	↑↑
Santa Catarina	y=2,35-0,18	0,94	<0,001	↓	y=2,11-0,15+0,01	0,97	<0,001	↑↑
Rio Grande do Sul	y=1,12-0,12+0,00-0,01	0,98	0,002	↑↑	y=1,05-0,08	0,97	<0,001	↓
Região Centro-Oeste	y=36,89-2,25+0,34+0,23	0,97	0,008	↑↑	y=36,87-1,07	0,55	0,021	↓
Mato Grosso do Sul	y=26,99-7,45-0,39+0,52	0,99	<0,001	↑↑	y=22,04-5,53+0,09+0,19	0,95	<0,001	↑↑
Mato Grosso	y=93,44+5,59-1,73	0,94	0,003	↑↑	y=106,15+10,61-0,80-0,68	0,77	0,044	↑↑
Goiás	y=25,97-2,93+0,15+0,08	1,00	<0,001	↑↑	y=24,50-2,22	0,98	<0,001	↓
Distrito Federal	y=4,75-0,89-0,14+0,06	0,96	0,012	↑↑	y=6,65-0,83+0,00+0,04	0,90	0,005	↑↑
Brasil	y=14,31-0,98+0,11+0,04	0,99	<0,001	↑↑	y=13,92-0,76	0,92	<0,001	↓

r²: coeficiente de determinação; T: tendência; ↑: crescente; ↓: decrescente.

Fonte: Dados da pesquisa, 2022.

Figura 2. Mapas da distribuição espacial das taxas de casos novos de hanseníase, por quebras naturais, segundo unidades federadas do Brasil, 2011 a 2021.

Fonte: Dados da pesquisa, 2022.
Portamento em diversos aspectos, principalmente o epidemiológico. Nesse sentido, deve-se considerar que as disparidades comportamentais da hanseníase no Brasil, cuja extensão territorial atinge proporções continentais, podem estar atreladas às desigualdades sociais, econômicas e programáticas existentes entre as regiões do país, já mostradas em estudos anteriores.

A tendência de queda da taxa de detecção da hanseníase observada entre 2011 e 2019 está em consonância com outros estudos realizados em UF do país. Esse declínio pode atribuir-se à adequada implementação do “Programa Nacional de Controle da Hanseníase” no Brasil, o qual estimulou e proporcionou a descentralização das ações de enfrentamento da doença para a Atenção Primária à Saúde (APS). Por outro lado, houve aumento dos casos para a maioria das UF, com maior concentração no Mato Grosso, Tocantins e Pará, localizados nas Regiões Centro-Oeste, Nordeste e Norte, respectivamente, assim como observado em outros estudos. Sabe-se que, historicamente, as Regiões Norte, Centro-Oeste e Nordeste revelam-se em contextos desfavoráveis. Assim, entende-se que as disparidades sociais, econômicas e de saúde do Brasil atuam como fatores de vulnerabilidade para a maior ocorrência da hanseníase, favorecendo o comportamento regional heterogêneo.

A despeito do ligeiro aumento observado ao fim das séries históricas das Regiões Sul e Sudeste, reconhece-se que seus estados têm apresentado os menores coeficientes de detecção da doença. Esses achados sugerem que há melhor implementação das medidas de prevenção e controle da hanseníase nessas regiões, com aumento na busca ativa de casos, na vigilância epidemiológica e na educação em saúde da população.

Ademais, o contraste do comportamento da hanseníase entre as regiões deve considerar não apenas a efetividade de programática, mas também aspectos socioeconômicos que influenciam no adoecimento. As disparidades regionais do território brasileiro têm relação histórica com a epidemiologia de certas condições infectocontagiosas, sobretudo por força de indicadores de desenvolvimento. As Regiões Sudeste e Sul encontram-se no estrato socioeconômico consideravelmente favorável, enquanto as Regiões Nordeste, Norte e Centro-Oeste revelam-se em contextos desfavoráveis. Assim, entende-se que as disparidades sociais, econômicas e de saúde do Brasil atuam como fatores de vulnerabilidade para a maior ocorrência da hanseníase, favorecendo o comportamento regional heterogêneo.

Nessa conjuntura, ainda há que se considerar que, no Brasil, existem fragilidades relacionadas ao subdiagnóstico e à subnotificação de casos novos de hanseníase. Essa problemática pode associar-se à baixa qualificação de sistemas de vigilância e atenção, com maior evidência em áreas de alta endemicidade e piores indicadores de desenvolvimento, o que impacta a capacidade de desenvolvimento de estratégias de controle da doença.

O cenário torna-se ainda mais crítico quando se levam em conta as consequências atuais do enfrentamento da pandemia da COVID-19, que impôs a necessidade de reorganização dos serviços e dos sistemas de saúde para viabilizar respostas à emergência sanitária, as quais, muitas vezes, prevaleceram perante outros agravos. A desassistência provocada pelas restrições de acesso ou pelo medo das pessoas de buscar os serviços de saúde culminaram em situações de instabilidade do controle programático das condições crônicas e aumentaram sua morbimortalidade.
Nessa lógica, foi possível observar a sobrecarga assistencial dos três níveis de atenção e, também, da vigilância em saúde. Tal situação pode ter prejudicado e interferido na manutenção das ações de programas de controle de agravos crônicos, transmissíveis e não transmissíveis, o que, consequentemente, acabou influenciando no número de notificações e na taxa de detecção da hanseníase em grande parte do país, conforme observado neste estudo.

Outrossim, percebe-se a necessidade de que as ações de vigilância, atenção e eliminação da hanseníase se pautem nas particularidades regionais, concentrando-se em intervenções para a detecção precoce de casos e para a interrupção da cadeia de transmissão. Para tanto, estudos epidemiológicos como este são de suma importância para entender o comportamento espaço-temporal das condições transmissíveis, bem como para avaliar e direcionar as políticas públicas.

Compreende-se que os achados se refletem em cenários prioritários, abrindo possibilidades para a elaboração, adaptação e/ou operacionalização de estratégias mais assertivas às UF do Brasil com maior carga da doença, consideradas as particularidades regionais. O controle efetivo de condições socialmente determinadas requer uma abordagem complexa e integral, ancorada na articulação intersectorial, sobretudo no Brasil, onde a oferta de ações e serviços de saúde é desigual.

Cumpre pontuar que este estudo apresenta limitações. A primeira refere-se ao tipo de desenho epidemiológico empregado, o qual impede a observação do contexto sanitário específico dos municípios brasileiros. A outra limitação diz respeito ao uso de dados secundários, pois reconhece-se que pode haver erros no preenchimento das notificações e subnotificação dos casos, especialmente no contexto pandêmico.

Em suma, conclui-se que a taxa de detecção da hanseníase apresentou tendência crescente no Brasil entre 2011 e 2019, nas regiões e na maioria das UF, com maior concentração espacial nas Regiões Norte, Nordeste e Centro-Oeste. Nessa lógica, revelou-se disparidade do comportamento da doença no país, tornando necessários novos estudos para entender os contextos social, econômico e de saúde que podem associar-se à ocorrência.

O estudo traz um alerta sobre a sustentabilidade programática do controle da hanseníase no Brasil, dada a queda evidenciada na pandemia, presumivelmente por influência da reorganização da oferta de ações e serviços anteposta a COVID-19. Destarte, desvela-se a necessidade de fortalecimento das estratégias de atenção e vigilância, visto que a hanseníase persiste como problema de saúde pública no Brasil, carecendo de maior atenção da sociedade, de profissionais de saúde, de pesquisadores e de gestores.

REFERÊNCIAS

1. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Doenças de Condições Crônicas e Infeções Sexualmente Transmissíveis. Estratégia nacional para enfrentamento da hanseníase: 2019-2022. [Internet]. Brasília: Ministério da Saúde; 2020. Disponível em: https://www.gov.br/aids/pt-br/centrais-de-conteudo/publicacoes/2020/estrategia-nacional-para-enfrentamento-da-hanseniasis-2019-2022
2. World Health Organization. Global leprosy (Hansen disease) update, 2020: impact of COVID-19 on global leprosy control. [Internet]. Geneva: World Health Organization; 2021. Disponível em: https://www.who.int/publications/i/item/who-wer9636-421-444
3. Laurino CR, Vidal SL, Gama BMM, Loures LF, Fernandes GAB, Coelho ACO. Trajetória de casos de hanseníase e fatores relacionados. Cienc Cuid Saúde 2018; 17(3). http://dx.doi.org/10.4025/cienci cuidi saude.v17i3.42275
4. Pinheiro MGC, Simpson CA, Mendes FRP, Miranda Fan. Perfil de pacientes que concluíram o tratamento poliquimioterápico da hanseníase: um estudo transversal. Cienc Cuid Saúde 2021; 20:e58386. http://dx.doi.org/10.4025/cienci cuidi saude.v20i58386
5. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância das Doenças Transmissíveis. Diretrizes para vigilância, atenção e eliminação da hanseníase como problema de saúde pública: manual técnico-operacional. [Internet]. Brasília: Ministério da Saúde; 2016. Disponível em: http://portal.saude.gov.br/sites/portal.saude.gov.br/files/diretrizes_para_eli minacao_hanseniasis_-manual_-3fev16_isbn_nucom_final_2.pdf
6. Battista JV, Freitas EL, Rodrigues EL, Borda JA, Rosa H, Marinheiro JC. Características epidemiológicas da hanseníase no Brasil entre os anos de 2015 e 2020. Braz J Infect Dis 2022; 26(S1): 101996. https://doi.org/10.1016/j.bjid.2021.102089
7. Fujishima MA, Lemos LKO, Matos HJ. Distribuição espacial da hanseníase em menores de 15 anos de idade, no município de Belém, estado do Pará, Brasil. Rev Pan-Amaz Saúde 2020; 11:e202000229. http://dx.doi.org/10.5123/s2176-6223202000229
8. Instituto Brasileiro de Geografia e Estatística. Portal do IBGE [Internet]. Brasília: Instituto Brasileiro de Geografia e Estatística; 2022. Disponível em: https://www.ibge.gov.br/.
9. Latorre MRDO, Cardoso MRA. Análise de séries temporais em epidemiologia: uma introdução sobre os aspectos metodológicos. Rev Bras Epidemiol 2001; 4(3): 145-52. https://doi.org/10.1590/S1415-79072001000200002
10. Luzardo AJR, Castañeda Filho RF, Rubim IB. Análise espacial exploratória com o emprego do índice de Moran. GEoGraphia 2017; 19(40): 161-79. https://doi.org/10.22409/GEOgraphia.2017.v19i40.a13807
11. Sarode G, Sarode S, Anand R, Patil S, Jafer M, Baeshen H, et al. Epidemiological aspects of leprosy. Dis Mon 2020; 66(7): 102089. https://doi.org/10.1179/2042819420Y.10.1179/2042819420Y200038
12. Assis IS, Arcoverde MAM, Ramos ACV, Alves LS, Berra TZZ, Arroyo LH, et al. Social determinants, their relationship with leprosy risk and temporal trends in a tri-border region in Latin America. PLoS Negl Trop Dis 2018; 12(4): e0006407. https://doi.org/10.1371/journal.pntd.0006407
ABSTRACT

Objective: To characterize the temporal trend and spatial behavior of leprosy in Brazil, from 2011 to 2021.

Methods: This is an ecological study, with data from the Notifiable Diseases Information System, obtained in June 2022. The annual detection rate of new leprosy cases per 100 thousand inhabitants was calculated. To estimate the trend of the 2011–2019 and 2011–2021 series, the polynomial regression model was used, testing first-, second-, and third-order polynomials. For spatiality, natural breaks were used and, later, the univariate global and local Moran's indexes. A significance level of 5% was adopted and the analyses were performed using SPSS® and QGIS® software.

Results: The findings indicated an upward trend in the incidence of leprosy in Brazilian regions and in 20 federative units between 2011 and 2019. However, there was a decrease in most of the country when considering the COVID-19 pandemic years. Spatiality showed that the highest detection rates throughout the period were observed in the North, Midwest, and Northeast regions, with high-risk clusters, and the lowest detection rates in the South and Southeast regions, with low-risk clusters.

Conclusion: The leprosy detection rate showed an upward trend in Brazil between 2011 and 2019, with greater spatial concentration in the North, Northeast, and Midwest regions. Nevertheless, the study raises an alert for the programmatic sustainability of leprosy control in Brazil, considering the drop in the COVID-19 pandemic, presumably due to the influence of the new leprosy cases per 100 thousand inhabitants was calculated. To estimate the trend of the 2011–2019 and 2011–2021 series, the polynomial regression model was used, testing first-, second-, and third-order polynomials. For spatiality, natural breaks were used and, later, the univariate global and local Moran's indexes. A significance level of 5% was adopted and the analyses were performed using SPSS® and QGIS® software.

Results: The findings indicated an upward trend in the incidence of leprosy in Brazilian regions and in 20 federative units between 2011 and 2019. However, there was a decrease in most of the country when considering the COVID-19 pandemic years. Spatiality showed that the highest detection rates throughout the period were observed in the North, Midwest, and Northeast regions, with high-risk clusters, and the lowest detection rates in the South and Southeast regions, with low-risk clusters.

Conclusion: The leprosy detection rate showed an upward trend in Brazil between 2011 and 2019, with greater spatial concentration in the North, Northeast, and Midwest regions. Nevertheless, the study raises an alert for the programmatic sustainability of leprosy control in Brazil, considering the drop in the COVID-19 pandemic, presumably due to the influence of the reorganization of the development of initiatives and provision of services in face of COVID-19.

Keywords: Ecological studies. Leprosy. Spatio-temporal analysis. Public health.

CONTRIBUIÇÕES DOS AUTORES: Lima, L.V.: Administração do projeto; Análise formal; Conceituação; Curadoria de dados; Escrita – primeira redação; Escrita – revisão e edição; Investigação; Metodologia; Obtenção de financiamento; Recursos; Software; Supervisão; Validação; Visualização. Pavinati, G.: Administração do projeto; Análise formal; Conceituação; Curadoria de dados; Escrita – primeira redação; Escrita – revisão e edição; Investigação; Metodologia; Obtenção de financiamento; Recursos; Software; Supervisão; Validação; Visualização. Moura, D.R.O.: Escrita – revisão e edição; Supervisão; Validação; Visualização. Gil, N.L.M.: Escrita – revisão e edição; Supervisão; Validação; Visualização. Magnabosco, G.T.: Administração do projeto; Análise formal; Conceituação; Curadoria de dados; Escrita – primeira redação; Escrita – revisão e edição; Investigação; Metodologia; Recursos; Software; Supervisão; Validação; Visualização.

FONTE DE FINANCIAMENTO: O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Código de Financiamento 001.