Respiratory electron transfer pathways in plant mitochondria

Peter Scherli and Hans-Peter Braun*

Abteilung Pflanzenproteomik, Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany

The respiratory electron transport chain (ETC) couples electron transfer from organic substrates onto molecular oxygen with proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by the ATP synthase complex for ATP formation. In plants, the ETC is especially intricate. Besides the “classical” oxidoreductase complexes (complex I–IV) and the mobile electron transporters cytochrome c and ubiquinone, it comprises numerous “alternative oxidoreductases.” Furthermore, several dehydrogenases localized in the mitochondrial matrix and the mitochondrial intermembrane space directly or indirectly provide electrons for the ETC. Entry of electrons into the system occurs via numerous pathways which are dynamically regulated in response to the metabolic state of a plant cell as well as environmental factors. This mini review aims to summarize recent findings on respiratory electron transfer pathways in plants and on the involved components and supramolecular assemblies.

Keywords: plant mitochondria, electron transport chain, dehydrogenase, alternative oxidase, respiratory supercomplex

INTRODUCTION

During cellular respiration, organic compounds are oxidized to generate usable chemical energy in the form of ATP. The respiratory electron transport chain (ETC) of mitochondria is at the center of this process. Its core consists of four oxidoreductase complexes, the NADH dehydrogenase (complex I), the succinate dehydrogenase (complex II), the cytochrome c reductase (complex III) and the cytochrome c oxidase (complex IV), as well as of two mobile electron transporters, cytochrome c, and the lipid ubiquinone. Overall, electrons are transferred from the coenzymes NADH or FADH2 onto molecular oxygen which is reduced to water. Three of the four oxidoreductase complexes (complexes I, III and IV) couple their electron transfer reactions with proton translocation across the inner mitochondrial membrane. As a result, a proton gradient is formed which can be used by the ATP synthase complex (complex V) for the phosphorylation of ADP. In its classically described form, cellular respiration is based on a linear ETC (from NADH via complexes I, III, and IV to molecular oxygen). However, electrons can enter and leave the ETC at several alternative points. This is especially true for the plant ETC system, which is highly branched. In this review we aim to integrate current knowledge on the ETC system in plants with respect to its components, electron transport pathways and supramolecular structure.

COMPONENTS OF THE PLANT ETC SYSTEM

The “classical” oxidoreductase complexes of the respiratory chain (given in dark blue in Figure 1) resemble their homologues in animal mitochondria but at the same time have some clear distinctive features (reviewed in Millar et al., 2008, 2011; Rasmussen and Moller, 2011; van Dongen et al., 2011; Jacoby et al., 2012). Each of these complexes has more than 30 subunits. In animal mitochondria, the core complexes contain nearly 50 different subunits (Braun et al., 2014). Compared to its homologs from bacteria and other eukaryotic lineages it has an extra domain which includes carbonic anhydrase-like proteins. The function of this additional domain is currently unclear but it has been suggested to be important in the context of an inner-mitochondrial CO2 transfer mechanism to provide mitochondrial CO2 for carbon fixation in chloroplasts (Braun and Zabaleta, 2007; Zabaleta et al., 2012). Complex II is composed of four subunits in bacteria and mitochondria of animals and fungi. In plants complex II includes homologs of these subunits but additionally four extra proteins of unknown function (Millar et al., 2004; Huang and Millar, 2013). In contrast, the subunit composition of complex III from plants is highly similar to the ones in yeast and bovine mitochondria (Braun and Schmitz, 1995a). The two largest subunits of this protein complex, termed “core proteins” in animals and fungi, are homologous to the two subunits of the mitochondrial processing peptidase (MPP) which removes pre-sequences of nuclear-encoded mitochondrial proteins after their import into mitochondria. In animal mitochondria, the core proteins are proteolytically inactive. Instead, an active MPP is present within the mitochondrial matrix. In contrast, the core subunits of complex III from plants have intact active sites (Braun et al., 1992; Glaser et al., 1994). Indeed, complex III isolated from plant mitochondria efficiently removes pre-sequences of mitochondrial pre-proteins. The differing functional states of complex III in diverse eukaryotic lineages might reflect different evolutionary stages of this protein complex (Braun and Schmitz, 1995b). Also complex IV has some extra subunits in mitochondria of plants (Millar et al., 2004). Eight subunits are homologous to complex IV subunits from other groups of eukaryotes and another six putative subunits represent proteins of unknown functions.
Within the mitochondrial matrix (M) numerous dehydrogenases generate NADH by oxidizing various carbon compounds. NADH subsequently is re-oxidized at the inner mitochondrial membrane (IM) by the respiratory electron transfer chain (ETC). The electrons of NADH can enter the ETC through complex I or at the ubiquinone level via alternative NAD(P)H-dehydrogenases. Besides, some dehydrogenases of the mitochondrial matrix transfer electrons to ubiquinone via the ETF/ETFQOR system. Proline dehydrogenase possibly directly transfers electrons onto ubiquinone. In the intermembrane space (IMS), electrons from NAD(P)H generated in the cytoplasm can be inserted into the ETC via alternative NAD(P)H dehydrogenases. Furthermore, some dehydrogenases of the IMS can directly transfer electrons onto ubiquinone or cytochrome c. Color code—dark blue, protein complexes of the ETC; blue, AOX; purple, ETF/ETFQOR system; light green, alternative NAD(P)H dehydrogenases of the ETC; green, dehydrogenases; red, ubiquinone and cytochrome c; yellow, NADH produced by dehydrogenases of the mitochondrial matrix/NADH re-oxidized by complex I or internal alternative NADH dehydrogenases; dark gray, ATP synthase complex; light green background, NADH producing dehydrogenases of the mitochondrial matrix. Abbreviations—alphabetically ordered: I, complex I; II, complex II; III, complex III; IV, complex IV; V, complex V; α-KGDH, α-ketoglutarate dehydrogenase; AOX, alternative oxidase; BCKDH, branched-chain α-ketoacid dehydrogenase complex; c, cytochrome c; D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone oxireductase; FDH, formate dehydrogenase; GDC, glycine dehydrogenase; GDH, glutamate dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; G3-PDH, glyceraldehyde 3-phosphate dehydrogenase; HDH, histidinol dehydrogenase; IDH, isocitrate dehydrogenase; IVDH, isovaleryl-coenzyme A dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; MMSDH, methylmalonate-semialdehyde dehydrogenase; NDA1/2, NDB2/3/4, alternative NADH dehydrogenase; NDC1, NDB1, alternative NADPH dehydrogenase; P5CDH, pyrroline-5-carboxylate dehydrogenase; PDH, pyruvate dehydrogenase, ProDH, proline dehydrogenase; SPDH, saccharopine dehydrogenase; SSADH, succinic semialdehyde dehydrogenase; UQ, ubiquinone. For further information of the enzymes see Table 1.

The ETC of plant mitochondria additionally includes several so-called “alternative oxidoreductases”: the alternative oxidase (AOX; light blue in Figure 1) and several functionally distinguishable alternative NAD(P)H dehydrogenases (alternative NDs, light green in Figure 1). Findings on their functional roles have been reviewed recently (Rasmusson et al., 2008; Rasmusson and Møller, 2011; Moore et al., 2013). AOX directly transfers electrons from ubiquinol to molecular oxygen and therefore constitutes an alternative electron exit point of the ETC. As a result, complexes III and IV are excluded from respiratory electron transport. The alternative NAD(P)H dehydrogenases serve as alternative electron entry points of the plant ETC and may substitute complex I. They differ with respect to co-factor requirement and localization at the outer or inner surface of...
Table 1 | Mitochondrial dehydrogenases in Arabidopsis thaliana.

Enzyme	Accession no.	Catalysed reaction	Oligomeric state	Publication for Arabidopsis	Publication for other plants
Malate dehydrogenase	At1g53240	Malate + NAD⁺ ⇔ Oxaloacetate + NADH	At1g53240: 89 kDa/42 kDa	Journet et al., 1981	Gietl, 1992
	At3g15020		At3g47520: 157 kDa/38 kDa	Krömer, 1995	Nunes-Nesi et al., 2005
				Lee et al., 2008	Tomaz et al., 2010
Isocitrate dehydrogenase	At4g35260	Isocitrate + NAD⁺ ⇔ α-Ketoglutarate + CO₂ + NADH	At4g35260: 89 kDa/42 kDa	Behal and Oliver, 1998	Lancien et al., 1998
	At5g14590		At5g14590: 140 kDa/53 kDa	Lin et al., 2004	Lemaitre and Hodges, 2006
	At4g35650		At3g09810: 138 kDa/40 kDa	Lemaitre et al., 2007	Lemaitre et al., 2007
	At3g09810		At5g03290: 138 kDa/40 kDa		
	At2g317130				
α-Ketoglutarate dehydrogenase complex	At3g55410 (E1)	α-Ketoglutarate + coenzyme A + NAD⁺ ⇔ succinyl-CoA + CO₂ + NADH	At3g55410: 207 kDa/91 kDa	Poulsen and Wedding, 1970	
	At5g05750 (E1)			Wedding and Black, 1971a,b	
	At4g26910 (E2)			Dry and Wiskich, 1987	
	At3g55070 (E2)			Millar et al., 1999	
	At3g17240 (E3)			Araújo et al., 2008	
	At1g48030 (E3)			Araújo et al., 2013	
	At3g13930 (E3)				
Glutamate dehydrogenase	At5g18170	Glutamate + H₂O + NAD⁺ ⇔ α-Ketoglutarate + NH₄⁺ + NADH	At5g18170: 209 kDa/48 kDa	Yamaya et al., 1984	Turano et al., 1997
	At5g07440		At5g07440: 209 kDa/48 kDa	Aubert et al., 2001	Fontaine et al., 2012
	At3g03910		At3g03910: 209 kDa/48 kDa	Miyashita and Good, 2008a,b	Fontaine et al., 2012
Malic enzyme	At2g13560	Malate + NAD⁺ ⇔ Pyruvate + NADH + CO₂	At2g13560: 370 kDa/63 kDa	Jenner et al., 2001	Tronconi et al., 2008
	At4g00570		At4g00570: 370 kDa/63 kDa	Tronconi et al., 2010	Tronconi et al., 2012
	At1g79750				
Pyruvate dehydrogenase	At1g59900 (E1)	Pyruvate + coenzyme A + NAD⁺ ⇔ Acetyl-CoA + CO₂ + NADH	At1g59900: 1500 kDa/54 kDa	Luethy et al., 1994	Grof et al., 1995
	At1g24180 (E1)		At1g24180: 470 kDa/41 kDa	Zou et al., 1999	Tovar-Méndez et al., 2003
	At3g50850 (E1)		At1g50850: 150 kDa/39 kDa	Srinivasan and Oliver, 1995	Szurmack et al., 2003
	At3g52200 (E2)		At1g59900: 138 kDa/44 kDa		Yu et al., 2012
	At1g54220 (E2)				
	At3g13930 (E3)				
	At3g17240 (E3)				
	At1g48030 (E3)				
Glycine dehydrogenase	At4g33010 (P)	Glycine + H₂ folate + NAD⁺ ⇔ methylene-H₂ folate + CO₂ + NH₄⁺ + NADH	At4g33010: 144 kDa/91 kDa	Somerville and Ogren, 1982	Oliver et al., 1990
	At2g26080 (P)		At2g26080: 209 kDa/41 kDa	Oliver, 1994	Oliver, 1994
	At1g32470 (H)		At1g11860: 148 kDa/46 kDa	Srinivasan and Oliver, 1995	
	At2g35120 (H)			Doucet et al., 2001	
	At2g35370 (H)				
	At1g11860 (T)				
	At4g12130 (T)				
	At3g17240 (L)				
	At1g48030 (L)				

(Continued)
Enzyme	Accession no.	Catalysed reaction	Oligomeric state	Publication
Branched-chain alpha keto acid dehydrogenase complex	At5g09300 (E1) At1g21400 (E1) At1g55510 (E1) At3g13450 (E1) At3g06850 (E2) At3g13930 (E3) At3g17240 (E3) At1g48030 (E3)	Branched chain alpha keto-acids + CoA + NAD⁺ ⇔ Acyl-CoA + NADH	At1g55510: 150 kDa/39 kDa (0.95 MDa complex)	Fujiki et al., 2000 Mooney et al., 2000 Fujiki et al., 2001 Fujiki et al., 2002 Taylor et al., 2004 Binder, 2010
Formate dehydrogenase	At5g14780	Formate + NAD⁺ ⇔ CO₂ + NADH	(200 kDa complex)	Halliwell, 1974 Colas des Francs-Small et al., 1993 Hourton-Cabassa et al., 1998 Jänsch et al., 1996 Bykova et al., 2003 Baack et al., 2003 Olson et al., 2000 Alekseeva et al., 2011
Methylmalonate semialdehyde dehydrogenase	At2g14170	(S)-methylmalonate-semialdehyde + coenzyme A + NAD⁺ + H₂O ⇔ propanoyl-CoA + bicarbonate + NADH	At2g14170: 200 kDa/59 kDa	Oguchi et al., 2004 Tanaka et al., 2005 Kirch et al., 2004
Isovaleryl-CoA dehydrogenase	At3g45300	Isovaleryl-CoA + acceptor (ETF) ⇔ 3-methylbut-2-enoyl-CoA + reduced acceptor (ETF) (also considerable activity with other acyl-CoAs)	At3g45300: 132 kDa/46 kDa (homodimeric complex)	Däschner et al., 1999 Reinard et al., 2000 Faivre-Nitschke et al., 2001 Däschner et al., 2001 Goetzman et al., 2005 Araújo et al., 2010
D-2-Hydroxyglutarate dehydrogenase	At4g36400	D-2-hydroxyglutarate + acceptor (ETF) ⇔ 2-oxoglutarate + reduced acceptor (ETF) (homodimeric complex)		Engqvist et al., 2009 Araújo et al., 2010 Engqvist et al., 2011
Saccharopine dehydrogenase	At5g39410	Saccharopine + NAD⁺ + H₂O ⇔ Glutamate + -Amino adipate semialdehyde + NADH	not known	Zhu et al., 2000 Headlewood et al., 2003
Pyrroline-5-carboxylate dehydrogenase	At5g62530	Pyrroline-5-carboxylate + NAD⁺ ⇔ Glutamate (Glutamate-5-semialdehyde) + NADH	At5g62530: 158 kDa/59 kDa	Forlani et al., 1997 Deuschle et al., 2001 Deuschle et al., 2004 Miller et al., 2009
Proline dehydrogenase	At3g30775 At5g38710	L-Proline ⇔ Pyrroline-5-Carboxylate	not known	Elthon and Stewart, 1981 Verbruggen et al., 1996 KiyoSue et al., 1996 Mani et al., 2002 Szabados and Savouré, 2010 Funck et al., 2010 Sharma and Verslues, 2010 Schertl et al., in press
Table 1 | Continued

Enzyme	Accession no.	Catalysed reaction	Oligomeric state	Publication
L-Galactono-1,4-lactone dehydrogenase	At3g47930	L-Galactono-1,4-Lactone ⇔ L-Ascorbate	(420 kDa, 470 kDa, 850 kDa complexes)	Mapson and Breslow, 1958
				Siendones et al., 1999
				Leferink et al., 2008
				Pineau et al., 2008
				Leferink et al., 2009
				Schertl et al., 2012
D-Lactate dehydrogenase	At5g06580	D-Lactate ⇔ Pyruvate	Homodimeric complex	Bari et al., 2004
				Atlante et al., 2005
				Engqvist et al., 2009
				Wienstroer et al., 2012
Glycerol-3-phosphate dehydrogenase	At3g10370	Glycerol 3-phosphate ⇔ Dihydroxyacetonephosphate	At3g10370: 160 kDa/65 kDa	Shen et al., 2003
				Shen et al., 2006
Dihydroorotate dehydrogenase	At5g23300	Dihydroorotate ⇔ Orotate	At5g23300: 156 kDa/49 kDa	Ullrich et al., 2002
				Doremus and Jagendorf, 1985
				Miersch et al., 1987
Succinic semialdehyde dehydrogenase	At1g79440	Succinic semialdehyde ⇔ Succinate	At1g79440: 163 kDa/55 kDa	Busch and Fromm, 1999
				Bouché et al., 2003
				Kirch et al., 2004
				Toyokura et al., 2011
Histidinol dehydrogenase	At5g63890	L-histidinol + NAD⁺ ⇔ L-histidine + NADH	At5g63890: 115 kDa/51 kDa	Nagai and Scheidegger, 1991
				Ingle, 2011
Alternative NAD(P)H dehydrogenases	At1g07180	NAD(P)H + UQ ⇔ NAD(P)⁺ + UQH₂	At1g07180: 160 kDa/65 kDa	Escobar et al., 2004
(NDA1, NDB4, NDA2, NDB2, NDB3, NDB1, NDC1)	At2g20800		At2g20800: 163 kDa/55 kDa	Rasmusson et al., 2004
	At2g29990		At2g29990: 163 kDa/55 kDa	Rasmusson et al., 2008
	At4g06020		At4g06020: 160 kDa/65 kDa	Wulff et al., 2009
	At4g21490		At4g21490: 160 kDa/65 kDa	Wallström et al., 2014a,b
	At4g28220		At4g28220: 160 kDa/65 kDa	
	At5g08740		At5g08740: 160 kDa/65 kDa	

a Mitochondrial dehydrogenases without complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) of the respiratory chain. This list corresponds to the dehydrogenases shown in Figure 1.

b Accession numbers in accordance with The Arabidopsis Information Resource (TAIR).

c Oligomeric state: native mass and monomer mass according to GelMap (https://gelmap.de/231).

d Key publications for Arabidopsis (other plants).

the inner mitochondrial membrane (external alternative NDs, internal alternative NDs). Some of the genes encoding alternative NDs are activated by light (Rasmusson et al., 2008; Rasmusson and Moller, 2011). The latter enzymes are considered to be important during photorespiration and all alternative enzymes during various stress conditions. Since none of the alternative oxidoreductases couple electron transfer with proton translocation across the inner mitochondrial membrane, their enzymatic function is believed to be important in the context of an overflow protection mechanism for the ETC which is especially relevant during high-light conditions.

Finally, dehydrogenases (dark green in Figure 1; Table 1) can directly or indirectly insert electrons into the respiratory chain (Rasmusson et al., 2008; Rasmusson and Moller, 2011). Numerous dehydrogenases of the mitochondrial matrix generate NADH which is re-oxidized by complex I and the internal alternative NDs. However, some dehydrogenases directly transfer electrons onto ubiquinone [dihydroorotate dehydrogenase (DHODH), glyceraldehyde 3-phosphate dehydrogenase (G3-PDH) and possibly proline dehydrogenase (ProDH)] or onto cytochrome c [L-galactono-1,4-lactone dehydrogenase (GLDH) and D-lactate dehydrogenase (DLDH)]. Furthermore, at least two dehydrogenases [isovaleryl-coenzyme A dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH)] transfer electrons onto ubiquinone via a short electron transfer chain composed of the “electron transfer flavoprotein” and the “electron transfer flavoprotein-ubiquinone oxidoreductase” (ETF and ETF-Q-OR, purple in Figure 1) (Ishizaki et al., 2005, 2006; Araújo et al., 2010). IVDH is involved in the branched chain amino acid catabolism and D-2HGDH in the catabolism of lysine. In
plants, degradation of amino acids for respiration was shown to be especially important during carbon starvation conditions, e.g., extended darkness (Araújo et al., 2011). In contrast to animal mitochondria, fatty acid oxidation does not take place in plant mitochondria and the involved dehydrogenases consequently are absent. Instead, additional metabolic pathways occur in plants, e.g., the final step of an ascorbic acid biosynthesis pathway, which is catalyzed by GLDH. Electrons of L-galactono-1,4-lactone (GL) oxidation are inserted into the ETC via cytochrome c (Bartoli et al., 2000). Proline, besides being a building block for protein biosynthesis, is used as an osmolyte in plant cells. Proline is catabolized in mitochondria by a two-step process involving pyrroline-5-carboxylate dehydrogenase (P5CDH) and ProDH (Szabados and Savouré, 2010). P5CDH produces NADH, whereas ProDH represents a flavoenzyme which is assumed to transfer electrons directly or indirectly onto ubiquinone. Some additional dehydrogenases occur in plant mitochondria in the mitochondrial matrix and the intermembrane space which also contribute electrons to the ETC (Figure 1, Table 1). However, in some cases their mitochondrial localization is not entirely certain and should be further investigated by future research.

ELECTRON ENTRY PATHWAYS INTO THE ETC

All electrons enter the ETC via NAD(P)H (generated by a variety of dehydrogenases in the mitochondrial matrix or the intermembrane space/the cytoplasm) or via flavine nucleotides (FADH$_2$, FMNH$_2$), which generally are bound to proteins termed flavoproteins. Consequently, the following electron entry pathways into the ETC can be defined: (i) the Matrix NAD(P)H pathway, (ii) the Matrix-FADH$_2$ pathway, (iii) the Intermembrane-space-NAD(P)H pathway, and (iv) the Intermembrane-space-FADH$_2$/FMNH$_2$ pathway (Figure 2).

Different metabolic processes, which vary depending on the physiological state of the plant cell, contribute to the four electron entry pathways. During stable carbohydrate conditions, electrons...
for the respiratory chain can be supplied by NADH and FADH$_2$ provided by the tricarboxylic acid (TCA) cycle. This is believed to be the standard mode of cellular respiration in non-green plant tissues or green tissues at night and resembles the basic situation in animal cells. However, during photosynthesis, NADH generation of the TCA cycle is reduced because some of its intermediates are used for anabolic reactions (reviewed in Sweetlove et al., 2010). Furthermore, the pyruvate dehydrogenase (PDH) complex is deactivated in plant mitochondria in the light by phosphorylation (Budde and Randall, 1990). At the same time photorespiration leads to an increase in NADH formation in the mitochondrial matrix by the activity of the glycine dehydrogenase complex (GDC). Indeed, at high-light conditions, NADH formed by GDC is believed to be the main substrate of the ETC, and not the NADH formed by the enzymes of the TCA cycle. At the same time, plant cells might become over-reduced in the presence of high-light. In this situation alternative oxidoreductases can insert excess electrons into the respiratory chain without contributing to the proton gradient. Upon carbon starvation conditions (e.g., extended darkness) electrons from the breakdown of amino acids are provided to the ETC (Araújo et al., 2011). Especially after release of salt stress the amino acid proline is used as an electron source (Szabados and Savouré, 2010). In summary, electron entry into the ETC is a highly flexible process in plants which much depends on light, the metabolic state of the cell as well as environmental stress factors.

SUPRAMOLECULAR STRUCTURE OF THE ETC SYSTEM

The ETC is based on defined protein-protein interactions. Most stable interactions occur within the four “classical” oxidoreductase complexes of the respiratory chain. Indeed, complexes I to IV can be isolated in intact form by various biochemical and electrophoretic procedures. Furthermore, several lines of evidence indicate that complexes I, III and IV interact within the inner mitochondrial membrane forming respiratory supercomplexes (reviewed in Dudkina et al., 2008). Complex I as well as complex IV associate with dimeric complex III (I + III$_2$ and IV$_2$ + III$_2$ supercomplexes). An even larger supercomplex includes complexes I, III$_2$, and IV and was proposed to be called “respirasome” because it can autonomously catalyzes the overall ETC reaction in the presence of ubiquinone and cytochrome c. The alternative oxidoreductases of the plant ETC seem not to be part of the respiratory supercomplexes. However, alternative NDs were found to be part of other protein complexes of about 160 kDa (Klodmann et al., 2011) or 150–700 kDa (Rasmusson and Agius, 2001).

Experimental data also indicate that several of the mitochondrial dehydrogenases form protein complexes. TCA cycle...
enzymes can assemble forming multienzyme clusters (Barnes and Weitzman, 1986). In addition, some of the mitochondrial dehydrogenases interact with ETC complexes, e.g., malate dehydrogenase has been reported to interact with complex I in animal mitochondria (Fukushima et al., 1989; see Braun et al., 2014 for review). Information on the native state of mitochondrial dehydrogenases furthermore comes from the GelMap project (Klodmann et al., 2011). Using 2D Blue native/SDS PAGE and systematic protein identifications, various dehydrogenases were described (Figure 3, Table 1). Native molecular mass of the dehydrogenases in many cases much exceeds the molecular mass of the monomeric proteins (Table 1, column 3). This indicates that probably most mitochondrial dehydrogenases form part of defined higher order structures.

CONCLUSION AND OUTLOOK

Cellular respiration in plants is an especially dynamic system. The classical protein complexes of the ETC have extra functions and several alternative oxidoreductases occur. A network of mitochondrial dehydrogenases directly or indirectly supplies electrons for the respiratory chain. Insertion of electrons via various pathways is highly dependent on the metabolic state of the plant cell. The regulation of electron entry pathways into the respiratory chain is only partially understood and might, besides others, depend on the formation of supramolecular structures. Non-invasive experimental procedures will be necessary to physiologically investigate the function of these structures by future research.

ACKNOWLEDGMENTS

We thank Tatjana Hildebrandt and Holger Eubel, Leibniz University Hannover, for critically reading the manuscript. This research project was supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br 1829/10-2. Furthermore we acknowledge support by the Open Access Publishing Fund of Leibniz Universität Hannover, which is funded by the DFG.

REFERENCES

Alekeeva, A. A., Savin, S. S., and Tishkov, V. I. (2011). NAD (+)-dependent formate dehydrogenase from plants. Acta Nat. Sci. 3, 38–54.

Araújo, W. L., Ishizaki, K., Nunes-Nesi, A., Larson, T. R., Tohge, T., Krahnert, I., et al. (2010). Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking isine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22, 1549–1563. doi: 10.1105/tpc.110.079630

Araújo, W. L., Nunes-Nesi, A., Trenkamp, S., Bunik, V. I., and Fernie, A. R. (2008). Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol. 148, 1782–1796. doi: 10.1104/pp.108.126219

Araújo, W. L., Tohge, T., Ishizaki, K., Leaver, C. J., and Fernie, A. R. (2011). On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. Amino Acids 44, 683–700. doi: 10.1007/s00726-012-1392-x

Atlante, A., de Baric, L., Valenti, D., Pizzuto, R., Paventi, G., and Passarella, S. (2005). Transport and metabolism of D-lactate in Jerusalem artichoke mitochondria. Biochim. Biophys. Acta 1708, 13–22. doi: 10.1016/j.bbabio.2005.03.003

Aubert, S., Bligny, R., Douce, R., Gout, E., Ratcliffe, R. G., and Roberts, J. K. (2001). Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by (13)C and (31)P nuclear magnetic resonance. J. Exp. Bot. 52, 37–49. doi: 10.1093/jxb/er454

Baack, R. D., Markwell, J., Herman, P. L., and Osterman, J. C. (2003). Kinetic behavior of the Arabidopsis thaliana leaf formate dehydrogenase is thermally sensitive. J. Plant Physiol. 160, 445–450. doi: 10.1017/S0161-6117-09995

Barnes, S. I., and Weitzman, P. D. (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201, 267–270. doi: 10.1016/0014-5793(86)80621-4

Bartoli, C. G., Pastori, G. M., and Foyer, C. H. (2000). Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol. 123, 335–344. doi: 10.1104/pp.123.1.335

Behl, R. H., and Oliver, D. J. (1998). NAD (+)-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Characterization of two closely related subunits. Plant Mol. Biol. 36, 691–698. doi: 10.1023/A:1005923410940

Binder, S. (2010). Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Biol. Book 8, e0137. doi: 10.1199/tab.0137

Bouché, N., Fait, A., Bouchez, D., Möller, S. G., and Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminoxybutryate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. U.S.A. 100, 6843–6848. doi: 10.1073/pnas.100532100

Braun, H. P., Binder, S., Brennicke, A., Eubel, H., Fernie, A. R., Finkelmeier, I., et al. (2014). The life of plant mitochondrial complex I. Mitochondr. doi: 10.1016/j.mito.2014.02.006. [Epub ahead of print]

Braun, H. P., Emmernann, M., Kruft, V., and Schmitz, U. K. (1992). The general mitochondrial processing peptide from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J. 11, 3219–3227.

Braun, H. P., and Schmitz, U. K. (1995a). The bifunctional cytochrome c reductase-processing peptide complex from plant mitochondria. J. Bioenerg. Biomet. 27, 423–436. doi: 10.1007/BF02110005

Braun, H. P., and Schmitz, U. K. (1995b). Are the “core” proteins of the mitochondrial bc1 complex evolutionarily relics of a processing peptide? Trends Biochem. Sci. 20, 171–175. doi: 10.1016/S0968-0004(00)88999-9

Braun, H. P., and Zabaleta, E. (2007) Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiolologia Plantarum 129, 114–122. doi: 10.1119/1.2430534.000773.x

Busch, K. B., and Fromm, H. (1999). Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol. 121, 589–597. doi: 10.1104/pp.121.5.589

Bykova, N. V., Stensballe, A., Egggaard, H., Jensen, O. N., and Möller, I. M. (2003). Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J. Biol. Chem. 278, 26021–26030. doi: 10.1074/jbc.M300245200

Colas des Francs-Small, C., Ambard-Bretteville, E., Small, I. D., and Rémy, R. (1993). Identification of a major soluble protein in mitochondria from nonphosphorytotic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 102, 1171–1177. doi: 10.1104/pp.102.4.1171

Däschner, K., Couée, I., and Binder, S. (2001). The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 126, 601–612. doi: 10.1104/pp.126.6.601

Däschner, K., Thalheim, C., Guha, C., Brennicke, A., and Binder, S. (1999). In plants a putative isovaleryl-CoA dehydrogenase is located in mitochondria. Plant Mol. Biol. 39, 1273–1282.

Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., et al. (2004). The role of [Deltal]1-pyrrole-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16, 3413–3425. doi: 10.1105/tpc.104.023622

Deuschle, K., Funck, D., Hellmann, H., Däschner, K., Binder, S., and Frommer, W. B. (2001). A nuclear gene encoding mitochondrial Delta-pyrrole-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J. 27, 345–356. doi: 10.1046/j.1365-313X.2001.01101.x
a flavoprotein involved in vitamin C biosynthesis. FEBS J. 275, 713–726. doi: 10.1111/j.1742-4658.2007.06223.x

Leferink, N. G. H., van Duijn, E., Barendrecht, A., Heck, A. J. R., and van Berkel, W. J. H. (2009). Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C. Plant Physiol. 150, 596–605. doi: 10.1104/pp.109.136929

Lemaître, T., and Hodges, M. (2006). Expression analysis of Arabidopsis thaliana NAD-dependent isocitrate dehydrogenase genes shows the presence of a functional subunit that is mainly expressed in the pollen and absent from vegetative organs. *Plant Cell Physiol.* 47, 634–643. doi:10.1093/pcp/pct030

Lemaître, T., Urbansczyk-Wochniak, E., Flesch, V., Bimuth, E., Fernie, A. R., and Hodges, M. (2007). NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. *Plant Physiol.* 144, 1546–1558. doi:10.1104/pp.107.100677

Lin, M., Behal, R. H., and Oliver, D. J. (2004). Characterization of a mutation in the IDH-II subunit of the NAD1-dependent isocitrate dehydrogenase from *Arabidopsis thaliana*. *Plant Sci.* 166, 983–988. doi:10.1016/j.plantsci.2003.12.012

Luethy, M. H., Miernyk, J. A., and Randall, D. D. (1994). The nucleotide and deduced amino acid sequences of a cDNA encoding the E1 beta-subunit of the *Arabidopsis thaliana* mitochondrial pyruvate dehydrogenase complex. *Biochim. Biophys. Acta* 1187, 95–98. doi:10.1016/0005-2728(94)90171-6

Mani, S., van de Cotte, B., van Montagu, M., and Verbruggen, N. (2002). Altered expression of proline oxidation enzymes. *J. Exp. Bot.* 53, 1334–1341. doi:10.1093/jxb/erw238

Millar, A. H., Small, I. D., Day, D. A., and Whelan, J. (2008). Mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. *Biochem. J.* 343(Pt 2), 327–334. doi:10.1042/0264-6021:3430327

Millar, A. H., Hill, S. A., and Leaver, C. J. (1999). Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. *Biochem. J.* 343(Pt 2), 327–334. doi:10.1042/0264-6021:3430327

Poulsen, L. L., and Wedding, R. T. (1970). Purification and properties of the alpha-ketoacid dehydrogenase complex from *Arabidopsis thaliana*. *Biomed. Biochim. Acta* 29, 1851–1857. doi:10.1104/pp.104.055566

Oguchi, K., Tanaka, N., Komatsu, S., and Akaoo, S. (2004). Methylmalonate-semialdehyde dehydrogenase is induced in auxin-stimulated and zinc-stimulated root formation in rice. *Plant Cell Rep.* 22, 848–858. doi:10.1007/s11103-004-0077-x

Oliver, D. J. (1994). The glyceric decarboxylase complex from plant mitochondria. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 45, 323–338. doi:10.1146/annurev.pp.45.061994.011543

Oliver, D. J., Neuburger, M., Bourguignon, J., and Douce, R. (1990). Interaction between the component enzymes of the glyceric dehydroxylase multienzyme complex. *Plant Physiol.* 94, 833–839. doi:10.1111/j.1365-3040.2010.02188.x

Olson, B. J., Skavadahl, M., Ramberg, H., Osterman, J. C., and Markwell, J. (2000). Formate dehydrogenase in *Arabidopsis thaliana*: characterization and possible targeting to the chloroplast. *Plant Sci.* 159, 205–212. doi:10.1016/S0168-9452(00)00337-X

Pinaue, B., Layoune, O., Danon, A., and Paepe, R., de (2008). L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. *J. Biol. Chem.* 283, 32500–32505. doi:10.1074/jbc.M805320200

Pineau, B., Cabassa, C., Saadallah, K., Bordenave, M., Savouré, A., and Braun, H.P. (in press). Biochemical characterization of ProDH activity in Arabidopsis mitochondria. *FEBS J.* doi:10.1111/febs12821

Rasmusson, A. G., Soele, K. L., and Elthon, T. E. (2004). Alternative NAD(P)H dehydrogenases of plant mitochondria. *Annu. Rev. Plant Biol.* 55, 23–39. doi:10.1146/annurev.arplant.55.031903.141720

Raspe, A., Van Damme, J., Dejager, A., and Van Damme, M. (2006). Identification of a gene for an acyl-CoA dehydrogenase from *Psammomonas saturna* L and purification and characterization of its product as an isovaleryl-CoA dehydrogenase. *J. Biol. Chem.* 281, 13378–13384. doi:10.1074/jbc.M004178200

Scheller, R., Cabassa, C., Saadallah, K., Bordenave, M., Savouré, A., and Braun, H.P. (in press). Biochemical characterization of ProDH activity in Arabidopsis mitochondria. *FEBS J.* doi:10.1111/febs12821

Shen, W., Wei, Y., Dauk, M., Tan, Y., Taylor, D. C., Selvaraj, G., et al. (2006). Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate dehydrogenase in Arabidopsis thaliana. *Plant Physiol.* 141, 1414–14141. doi:10.1104/pp.111.105344

Sharma, S., and Verslues, P. E. (2010). Mechanisms independent of asbics acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. *Plant Cell Environ.* 33, 1838–1851. doi:10.1111/j.1365-3040.2010.02188.x

Shen, W., Wei, Y., Dauk, M., Tan, Y., Taylor, D. C., Selvaraj, G., et al. (2006). Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. *Plant Cell* 18, 422–441. doi:10.1105/tpc.105.039750

Somerville, C. R., and Ogren, W. L. (1982). Mutants of the cruciferous plant *Arabidopsis thaliana* lacking glyceric dehydrate activity. *Biochem.* 202, 378–380.

Trends Plant Sci. 15, 462–470. doi:10.1016/j.tpls.2010.05.006

Frontiers in Plant Science | Plant Physiology

April 2014 | Volume 5 | Article 163 | 10

Scherli and Braun

Electron pathways in plant mitochondria

...
Szabados, L., and Savouré, A. (2010). Proline: a multifunctional amino acid. *Trends Plant Sci.* 15, 89–97. doi: 10.1016/j.tplants.2009.11.009

Szürmack, B., Strokovskaya, L., Mooney, B. P., Randall, D. D., and Miernyk, J. A. (2003). Regulation of pyruvate dehydrogenase in insect cell cytoplasm. *Protein Expr. Purif.* 28, 357–361. doi: 10.1016/S1046-5928(02)00712-X

Tanaka, N., Takahashi, H., Kitano, H., Matsuoka, M., Akao, S., Uchimiya, H., et al. (2005). Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin. *J. Proteome Res.* 4, 1575–1582. doi: 10.1021/pr050114f

Tarasenko, V. I., Garnik, E. Y., and Konstantinov, Y. M. (2013). Rate of alternative electron transport in arabidopsis mitochondria affects the expression of the glutamate dehydrogenase gene gdh2. *Dokl. Biochem. Biophys.* 452, 234–236. doi: 10.1134/S1607672913050037

Taylor, N. L., Heazlewood, J. L., Day, D. A., and Millar, A. H. (2004). Lipico acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. *Plant Physiol.* 134, 838–848. doi: 10.1104/pp.103.035675

Tomaz, T., Bagard, M., Pracharoenwattana, I., Lindén, P., Lee, C. P., Carroll, A. J., Tovar-Méndez, A., Miernyk, J. A., and Randall, D. D. (2003). Regulation of pyruvate dehydrogenase in Arabidopsis thaliana affects central metabolism and vegetative growth. *Mol. Plant.* 7, 356–368. doi: 10.1093/mp/sts115

Wallström, S. V., Florez-Sarasa, I., Araújo, W. L., Aidemark, M., Fernández-Fernández, M., Fernie, A. R., et al. (2014a). Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. *Mol. Plant.* 7, 356–368. doi: 10.1093/mp/sts115

Wallström, S. V., Florez-Sarasa, I., Araújo, W. L., Escobar, M. A., Geider, D. A., Aidemark, M., et al. (2014b). Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. *Plant Cell Physiol.* 50, 1009–1013. doi: 10.1093/pcp/pcu021. [Epub ahead of print].

Wedding, R. T., and Black, M. K. (1971a). Evidence for tighter binding of magnesium-thiamine pyrophosphate to -ketoglutarate dehydrogenase when activated by adenosine monophosphate. *J. Biol. Chem.* 246, 4097–4099.

Wedding, R. T., and Black, M. K. (1971b). Nucleotide activation of cauliflower alpha-ketoglutarate dehydrogenase. *J. Biol. Chem.* 246, 1638–1643.

Wienstroer, J., Engqvist, M. K. M., Kunz, H.-H., Flügge, U.-I., and Maurino, V. G. (2012). D-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. *FEBS Lett.* 586, 36–40. doi: 10.1016/j.febslet.2011.11.020

Wulf, A., Oliveira, H. C., Saviani, E. E., and Salgado, I. (2009). Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. *Nitric Oxide* 21, 132–139. doi: 10.1016/j.niox.2009.06.003

Yamaya, T., Oks, A., and Matsumoto, H. (1984). Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. *Plant Physiol.* 76, 1009–1013. doi: 10.1104/pp.76.4.1009

Yu, H., Du, X., Zhang, F., Zhang, F., Hu, Y., Liu, S., et al. (2012). A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle. *Planta* 236, 387–399. doi: 10.1007/s00425-012-1620-3

Zabaleta, E., Martin, M. V., and Braun, H.-P. (2012). A basal carbon concentrating mechanism in plants? *Plant Sci.* 187, 97–104. doi: 10.1016/j.plantsci.2012.02.001

Zhu, X., Tang, G., and Galili, G. (2000). Characterization of the two saccharopine dehydrogenase isoforms of lysine catabolism encoded by the single composite AtLKR=SDH locus of Arabidopsis. *Plant Physiol.* 124, 1363–1372. doi: 10.1104/pp.124.3.1363

Zou, J., Qi, Q., Katavic, V., Marillia, E. E., and Taylor, D. C. (1999). Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. *Plant Mol. Biol.* 41, 837–849. doi: 10.1023/A:100693726018

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 February 2014; accepted: 07 April 2014; published online: 29 April 2014. Citation: Schertl P and Braun H-P (2014) Respiratory electron transfer pathways in plant mitochondria. *Front. Plant Sci.* 5:163. doi: 10.3389/fpls.2014.00163 This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science. Copyright © 2014 Schertl and Braun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.