On the volume of the intersection of two L^n_p balls

by

G. Schechtman * and J. Zinn**

1. Introduction

This note deals with the following problem, the case $p = 1, q = 2$ of which was introduced to us by Vitali Milman: What is the volume left in the L^n_p ball after removing a t-multiple of the L^n_q ball? Recall that the L^n_p ball is the set \(\{(t_1, t_2, \ldots, t_n); t_i \in \mathbb{R}, n^{-1} \sum_{i=1}^{n} |t_i|^r \leq 1\} \) and note that for $0 < p < q < \infty$ the L^n_q ball is contained in the L^n_p ball.

In Corollary 4 below we show that, after normalizing Lebesgue measure so that the volume of the L^n_p ball is one, the answer to the problem above is of order $e^{-ct^n_p^{p/q}}$ for $T < t < \frac{1}{2}n^{\frac{1}{p}-\frac{1}{q}}$, where c and T depend on p and q but not on n.

The main theorem, Theorem 3, deals with the corresponding question for the surface measure of the L^n_p sphere. Theorem 3 and Corollary 4 together with some other remarks form Section 3. In Section 2 we introduce a class of random variables to be used in the proof of the main theorem. These random variables are related to L^n_p in the same way that Gaussian variables are related to L^2.

* Supported in part by the US-Israel BSF and by the Glikson Foundation

** Supported in part by NSF DMS-86-01250 and by Texas Advanced Research Program Grant no. 3825
2. Preliminaries

Here we introduce a class of random variables to be used in the proof of the main theorem and summarize some of their properties. Fix a $0 < p < \infty$ and let x, x_1, x_2, \ldots, x_n be independent random variables each with density function $c_p e^{-t^p}$, $t > 0$. Note that necessarily $c_p = p/\Gamma(1/p)$. The first claim is known, though we could not locate a reference.

Lemma 1. Put $S = \left(\sum_{i=1}^{n} x_i^p\right)^{1/p}$, then $\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right)$ is uniformly distributed over the positive quadrant of the sphere of l_p^n, i.e., over the set $\Delta_p = \{(t_1, t_2, \ldots, t_n) ; t_i \geq 0, \sum t_i^p = 1\}$ equipped with the $(n-1)$-dimensional normalized Lebesgue measure. Moreover, $\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right)$ is independent of S.

Proof. For any Borel subset A of Δ_p,

$$P\left(\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right) \in A \mid S = a\right) =$$

$$\lim_{\epsilon \to 0} \frac{P((x_1, \ldots, x_n) \in \mathbb{R}_+ A \& a - \epsilon \leq S \leq a + \epsilon)}{P(a - \epsilon \leq S \leq a + \epsilon)}$$

$$= \lim_{\epsilon \to 0} \int_{(a-\epsilon)^p \leq \sum t_i^p < (a+\epsilon)^p} e^{-\sum t_i^p} \frac{dt}{\int_{(a-\epsilon)^p \leq \sum t_i^p < (a+\epsilon)^p} e^{-\sum t_i^p} \ dt}$$

$$\leq \limsup_{\epsilon \to 0} e^{-(a-\epsilon)^p + (a-\epsilon)^p} \int_{(a-\epsilon)^p \leq \sum t_i^p < (a+\epsilon)^p} dt / \int_{(a-\epsilon)^p \leq \sum t_i^p < (a+\epsilon)^p} dt$$

$$= \lambda(A),$$

where λ is the normalized Lebesgue measure on Δ. Similarly,

$$P\left(\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right) \in A \mid S = a\right) \geq \lambda(A).$$

This proves that $P\left(\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right) \in A\right) = \lambda(A)$ and that $\left(\frac{x_1}{S}, \frac{x_2}{S}, \ldots, \frac{x_n}{S}\right)$ is independent of S.

In the next claim we gather some more properties of the random variables \(x_i \).

Lemma 2. Let \(x, x_1, \ldots, x_n \) be as above, then

1. \(c_p \) is bounded away from zero and infinity when \(p \to \infty \).

2. For all \(h > 0 \) and all \(0 < p < \infty \), \(\mathbb{E} e^{-hx^p} = \left(\frac{1}{1+h} \right)^{1/p} \). In particular,

\[
\mathbb{E} e^{-hx^p} \geq e^{-h/p} \text{ for all } h > 0 \text{ and } \mathbb{E} e^{-hx^p} \leq e^{-h/2p} \text{ for all } 0 < h \leq 1.
\]

3. For all \(0 < u < \infty \) and all \(0 < p < \infty \), \(P(x^p > u) \geq \frac{c_p}{2p} e^{-2u} \). If \(p \geq 1 \) and \(u \geq 1 \), then also \(P(x^p > u) \leq \frac{c_p}{p} e^{-u/2} \). In particular, for \(p \geq 1 \) and all \(u \), \(P(x^p > u) \leq C e^{-u/2} \) for some universal \(C \).

4. For all \(1 \leq p \leq q < \infty \), \(\mathbb{E} \left(\sum_{i=1}^n x_i^q \right)^{1/q} \) is equivalent, with universal constants, to \(q^{1/p} n^{1/q} \), if \(q \leq \log n \), and to \((\log n)^{1/p} \) otherwise.

Proof.

1. Follows easily from the fact that \(c_p = p/\Gamma(1/p) = \Gamma(\frac{1}{p} + 1)^{-1} \).

2. is a simple computation.

3. is also simple, here is a sketch of the proof.

\[
P(x^p > u) = c_p \int_{u^{1/p}}^\infty e^{-t^p} \, dt
\geq c_p \int_{u^{1/p}}^{(u+1)^{1/p}} \frac{pt^{(p-1)}}{p(u+1)^{(p-1)/p}} e^{-t^p} \, dt
= \frac{c_p}{p(u+1)^{(p-1)/p}} \left(1 - \frac{1}{e} \right) e^{-u}
\geq \frac{c_p}{2p(u+1)} e^{-u}
\geq \frac{c_p}{2p} e^{-2u}.
\]

The other inequality in 3 is proved in a similar way.

4. First note that for all \(0 < p, q < \infty \)

\[
\mathbb{E}x^q = c_p \int_0^\infty t^q e^{-t^p} \, dt = \frac{c_p}{p} \Gamma\left(\frac{q+1}{p} \right)
\]
so that, by the triangle inequality and 1, if $1 \leq p \leq q < \infty$

$$\mathbb{E}\left(\sum_{i=1}^{n} x_i^q\right)^{1/q} \leq \left(\sum_{i=1}^{n} \mathbb{E} x_i^q\right)^{1/q} = \left(\frac{c_p}{p} \Gamma\left(\frac{q+1}{p}\right)\right)^{1/q} n^{1/q} \leq C q^{1/p} n^{1/q}$$

for some universal C. For the lower bound in the case $q \leq \log n$, divide \{1, 2, \ldots, n\} into approximately n/e^q disjoint sets of cardinality approximately e^q each, then

$$\mathbb{E}\left(\sum_{i=1}^{n} x_i^q\right)^{1/q} = \mathbb{E}\left(\sum_{j} \left(\sum_{i \in \sigma_j} x_i^q\right)^{q/q}\right)^{1/q}$$

$$\geq \mathbb{E}\left(\sum_{j} \left(\max_{i \in \sigma_j} x_i\right)^q\right)^{1/q}$$

$$\geq \left(\sum_{j} \left(\mathbb{E}\max_{i \in \sigma_j} x_i\right)^q\right)^{1/q}$$

$$\geq c' (\log e^q)^{1/p} (n/e^q)^{1/q}$$

$$\geq c'' q^{1/p} n^{1/q}.$$

Now, for the case $q > \log n$ we note first that, by 3,

$$P\left(\max_{1 \leq i \leq n} x_i > t\right) \geq 1 - \left(1 - \frac{c_p}{2p} e^{-2t^p}\right)^n.$$

For n smaller than an absolute multiple of p, the lower bound follows easily from the fact that $\mathbb{E} x_1$ is larger that a universal positive constant, so assume that $n \geq 20p/c_p$ and put $t = 2^{-1/p} \left(\log \frac{nc_p}{2p}\right)^{1/p}. Then, for some universal c,

$$P\left(\max_{1 \leq i \leq n} x_i > c (\log n)^{1/p}\right) \geq 1/2.$$

In particular, $\mathbb{E}\max_{1 \leq i \leq n} x_i \geq c (\log n)^{1/p}$, which implies the lower bound in this case since $\left(\sum_{i=1}^{n} x_i^q\right)^{1/q}$ is universally equivalent to $\max_{1 \leq i \leq n} x_i$. The upper bound in this case, though a bit harder, is also standard and since we don’t use it in the sequel we shall leave it to the reader.
The statement in 4, for the case \(p = 2 \), was noticed by the first named author several years ago while seeking a precise estimate for the dimension of the Euclidean sections of \(l^n_p \) spaces (see [MS] p.145 Remark 5.7). The original proof was more complicated. The proof presented here is an adaptation of a proof of the case \(p = 2 \) shown to us by J. Bourgain.

3. The main result

Theorem 3. For all \(1 \leq p < q < \infty \) there are constants \(c = c(p,q) \), \(C = C(p,q) \) and \(T = T(p,q) \) such that if \(\mu \) denotes the normalized Lebesgue measure on the positive quadrant of the unit sphere of \(L^n_p \) then

\[
\mu(\|u\|_{L^n_q} > t) \leq \exp(-ct^{p}n^{p/q}) \tag{1}
\]

for all \(t > T \), and

\[
\mu(\|u\|_{L^n_q} > t) \geq \exp(-Ct^{p}n^{p/q}) \tag{2}
\]

for all \(2 \leq t \leq \frac{1}{2}n^{\frac{1}{p}-\frac{1}{q}} \).

Moreover, for \(q > 2p \) (or any other universal positive multiple of \(p \)), one can take \(c(p,q) = \gamma_p \), \(C(p,q) = \Gamma_p \) and \(T(p,q) = \tau \min\{q, \log n\}^{1/p} \leq q^{1/p} \). Here \(\gamma, \Gamma \) and \(\tau \) are universal constants.

Proof. By Lemma 1 above,

\[
\mu(\|u\|_{L^n_q} > t) = P\left(n^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{i=1}^{n} x_i^q\right)^{1/q}/\left(\sum_{i=1}^{n} x_i^p\right)^{1/p} > t\right)
\]

where \(x_i \) are independent random variables each with density \(c_p e^{-t^p} \). Assume, for the simplicity of the presentation, that \(n \) is even. Put \(S = (\sum_{i=1}^{n} x_i^p)^{1/p} \) and let \(p_j, \ j = 1, 2, \ldots, n/2 \) be positive numbers with sum \(\leq 1/2 \). Then

\[
P\left(n^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{i=1}^{n} x_i^q\right)^{1/q}/\left(\sum_{i=1}^{n} x_i^p\right)^{1/p} > t\right) =
\]
\[= P\left(\sum_{i=1}^{n} x_i^q > \frac{t^q \left(\sum_{i=1}^{n} x_i^p\right)^{q/p}}{n^{p-1}}\right)\]
\[\leq \sum_{i=1}^{n/2} P\left(x_i^* > t p_j^{1/q} S / n^{\frac{1}{p} - \frac{1}{q}}\right) + P\left(\sum_{i=n/2+1}^{n} x_i^q > t^q S^q / 2n^{\frac{q}{p}-1}\right) \tag{3}\]

where \(\{x_i^*\}\) denotes the nonincreasing rearrangement of \(|x_j|\).

Since
\[\sum_{j=n/2+1}^{n} x_i^q \leq \frac{n}{2} x_{n/2}^q \leq \frac{n}{2} \left(\sum_{i=1}^{n/2} x_i^{*p}\right)^{q/p}\]
\[\leq 2^{\frac{q}{p}-1} S^q / n^{\frac{q}{p}-1},\]
we get that, if \(t \geq 2^{1/p}\), the second term in (3) is zero.

To evaluate the first term in (3), fix \(1 \leq j \leq n/2\). Then,
\[P(x_j^* > t p_j^{1/q} S / n^{\frac{1}{p} - \frac{1}{q}}) \leq \binom{n}{j} P(x_1, \ldots, x_j > t p_j^{1/q} S / n^{^\frac{1}{p} - \frac{1}{q}})\]
\[\leq \binom{n}{j} P\left(x_1^p, \ldots, x_j^p > t p_j^{p/q} \sum_{i=j+1}^{n} x_i^p / n^{1-p/q}\right).\]

From Lemma 2 (first 3 and then 2) we get that the last expression is dominated by
\[\binom{n}{j} C^j \mathbb{E} \exp\left(-j p_j^{p/q} t^{p} \sum_{i=j+1}^{n} x_i^p / n^{1-p/q}\right)\]
\[\leq \binom{n}{j} C^j \exp\left(-j p_j^{p/q} t^{p} (n-j)/ 2pn^{1-p/q}\right)\]
for some universal \(C\). Note that the last inequality holds if \(j n^{p/q-1} p_j^{p/q} t^{p} \leq 1\). If this is not the case the probability we are trying to evaluate is zero. Finally, the last term is dominated by
\[\exp\left(j \left(\log \frac{en}{j} + C - \frac{p_j^{p/q} t^{p} n^{p/q}}{4p}\right)\right). \tag{4}\]
Now, for \(\alpha \) to be chosen momentarily, let \(p_j, j = 1, \ldots, n/2 \), be such that

\[
j \left(\log \frac{en}{j} + C - \frac{p_j^{p/q} q_n^{p/q}}{4p} \right) = -\alpha n^{p/q} t^p
\]

i.e.,

\[
p_j = \left(4p \frac{\log \frac{en}{j}}{t^p n^{p/q}} + \frac{4Cp}{t^p n^{p/q}} + \frac{\alpha}{j} \right)^{q/p}.
\]

We thus get that, for some universal constant \(C \),

\[
p_j \leq 2^{\frac{q}{p}-1} \frac{(Cp)^{q/p} (\log \frac{en}{j})^{q/p}}{t^q n} + 2^{\frac{q}{p}-1} \alpha^{q/p} \frac{(4p)^{q/p}}{j^{q/p}}.
\]

(5)

It is easy to see that, for \(1 \leq p < q < \infty \),

\[
\sum_{j=1}^{n/2} (\log \frac{en}{j})^{q/p} \leq An \min \{q^{1/p}, (\log n)^{q/p}\}
\]

for some universal \(A \). Thus the sum over \(j \) of the first terms in (5) is smaller than \(1/4 \) if, for some universal \(\gamma \), \(t > \gamma \min \{q^{1/p}, (\log n)^{1/p}\} \). The sum over \(j \) of the second terms in (5) is bounded by \(1/4 \) if \(\alpha < B \frac{1}{p} (\frac{q}{p} - 1)^{p/q} \), for some universal \(B \). Choosing \(\alpha \) to satisfy this inequality and using (3), (4) and (5) we get that, for \(t > \gamma \min \{q^{1/p}, (\log n)^{1/p}\} \),

\[
\mu(\|u\|_{L_q^n} > t) \leq \frac{n}{2} e^{-\alpha n^{p/q} t^p}.
\]

Under the conditions on \(t \), the factor \(n/2 \) can be absorbed in the second term (changing \(\alpha \) to another constant of the same order of magnitude as a function of \(p \)), thus proving (1).

We now turn to the proof of the lower bound (2) which is simpler. Using Claim 1 again,

\[
\mu(\|u\|_{L_q^n} > t) = P(n^{\frac{1}{p} - \frac{1}{q}} \left(\sum_{i=1}^{n} x_i^q \right)^{q/q} / \left(\sum_{i=1}^{n} x_i^p \right)^{1/p} > t) \\
\quad \geq P(x_1 > St/n^{\frac{1}{p} - \frac{1}{q}}) \\
\quad = P \left(x_1 > \frac{t}{(n(1 - p/q) - t) / n} \left(\sum_{i=2}^{n} x_i^p \right)^{1/p} \right).
\]
Since $t^p \leq \frac{1}{2} n^{(1-p/q)}$, this dominates

$$P(x_1 > \frac{2^{1/p} t}{n^{1-p/q}} \left(\sum_{i=2}^{n} x_i^p\right)^{1/p}).$$

Now, by Claim 2.3.,

$$P\left(x_1 > \frac{2^{1/p} t}{n^{1-p/q}} \left(\sum_{i=2}^{n} x_i^p\right)^{1/p}\right) \geq \frac{c_p}{2p} E \exp(-4t^p \sum_{i=2}^{n} x_i^p/n^{(1-p/q)})$$

$$= \frac{c_p}{2p} \left(E \exp(-4t^p x_1^p/n^{(1-p/q)})\right)^{n-1}$$

$$= \frac{c_p}{2p} \left(1 + \frac{4t^p}{n^{1-p/q}}\right)^{(n-1)/p} \quad \text{(by Claim 2.2.)}$$

$$\geq \frac{c_p}{2p} \exp\left(-\frac{4t^p(n-1)}{pn^{1-p/q}}\right)$$

$$\geq \frac{c_p}{2p} e^{4t^p n^{p/q}/p}.$$

Finally observe that, since c_p is bounded away from zero and $t \geq 2$, the factor $\frac{c_p}{2p}$ can be absorbed in the second term (changing 4 to another universal constant).

Remarks:

1. It follows from the proof that, for n large enough and q close to p, one can take $c(p, q) = \frac{\alpha}{p} \left(\frac{\alpha}{p} - 1\right)$ for some universal constant c.

2. It follows from the statement of the theorem that, for $q = \infty$,

$$\mu(\|u\|_{\infty} > t) \leq e^{-\gamma t^p/p}$$

for all $t > \tau (\log n)^{1/p}$, and

$$\mu(\|u\|_{\infty} > t) \geq e^{-\Gamma t^p/p}$$

for all $2 \leq t \leq \frac{1}{2} n^{\frac{1}{p}}$, where γ, Γ and τ are universal constants.

3. Note that it follows from Claim 1 and Claim 2.4. that the order of magnitude of T is the correct one.
4. The restriction $p \geq 1$ in Theorem 3 above and in Corollary 4 below can be replaced by $p > 0$ if one replaces the inequality $t \geq 2$ with $t \geq d$, for some d depending only on p and q, and removes the “moreover” part. We didn’t check the dependence of the constants on p and q in this case.

The last remark is that one can get a similar statement for the full balls. We state it as a corollary.

Corollary 4. For all $1 \leq p < q < \infty$ there are constants $c = c(p, q)$, $C = C(p, q)$ and $T = T(p, q)$ such that if ν denotes the normalized Lebesgue measure on the ball of L^n_p then, for all n large enough,

$$\nu(\|u\|_{L^n_q} > t) \leq \exp(-ct^n p/n^{p/q})$$ \(6\)

for all $t > T$, and

$$\nu(\|u\|_{L^n_q} > t) \geq \exp(-Ct^n p/n^{p/q})$$ \(7\)

for all $2 \leq t \leq \frac{1}{2}n^{\frac{1}{p}} - \frac{1}{q}$. Moreover, for $q > 2p$ (or any other universal positive multiple of p), one can take $c(p, q) = \frac{\gamma}{p}$, $C(p, q) = \Gamma$ and $T(p, q) = \tau \min\{q, \log n\}^{1/p} \leq q^{1/p}$, where γ, Γ and τ are universal constants.

The proof follows easily from Theorem 3 and the formula

$$\nu(A) = n \int_0^1 r^{n-1} \mu\left(\frac{A}{r}\right) dr$$

which holds for all Borel sets A in the ball of L^n_p.

References

[MS] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. Vol. 1200, Springer (1986).

Department of Theoretical Mathematics,
The Weizmann Institute of Science,
Rehovot, Israel

Department of Mathematics,
Texas A&M University,
College Station, Texas 77843, USA