Uremic pruritus and associated factors in hemodialysis patients: A multi-center study

Nurten Ozen1, Fatma Ilknur Cinar2, Dilek Askin3, Dilek Mut4

1Department of Midwifery, Faculty of Health Sciences, Istitinye University, Istanbul, Turkey
2Department of Internal Disease Nursing, University of Health Sciences, Gulhane School of Nursing, Ankara, Turkey
3Department of Pediatrics, Haydarpaşa Sultan Abdulhamid Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
4Department of Obstetrics and Gynecology, Dogubayazit Doç. Dr. Yasar Eryilmaz State Hospital, Agri, Turkey

Background: Uremic pruritus is a common and disturbing problem in hemodialysis patients. Although its pathogenesis is not completely understood, it is thought to be multifactorial. The aim of this study was to identify risk factors of uremic pruritus in hemodialysis patients.

Methods: A total of 249 patients from four dialysis centers were included in this study. Data were collected using a questionnaire, the visual analogue scale, and the Hospital Anxiety and Depression Scale. We investigated whether socio-demographic and biochemical parameters were correlated to uremic pruritus.

Results: Pruritus was present in 53.4% of the hemodialysis patients. The mean visual analogue scale severity was 6.47 ± 1.56. Patients with white blood cell (WBC) counts > 6.7 x 10^3/μL had 1.73 times (95% confidence interval [CI], 1.360–2.888; P = 0.036) more pruritus than did those with WBC counts < 6.7 x 10^3/μL. Patients with dry skin were 0.2 times (95% CI, 0.070–0.182; P = 0.028) more likely to suffer from very severe pruritus than were those with normal skin.

Conclusion: Uremic pruritus remains a serious problem in dialysis patients. The WBC level and presence of dry skin are thought to be among its causes. Therefore, data regarding the possible risk factors of uremic pruritus must be followed closely in patients at risk.

Keywords: Dry skin, Hemodialysis, Pruritus, Uremic, Leukocytes

Introduction

Uremic pruritus (UP) is a common and disturbing problem in patients undergoing hemodialysis (HD) treat-

Original Article
Kidney Res Clin Pract 37:138-147, 2018
pISSN: 2211-9132 • eISSN: 2211-9140
https://doi.org/10.23876/j.krcp.2018.37.2.138
an increase in the κ receptor agonist has the opposite effect [6].

Although the pathophysiology of UP is not completely understood, several factors are thought to be involved in its development [7]. These predisposing risk factors include increased blood urea nitrogen (BUN), calcium, phosphorus and β₂-microglobulin [8]. Other contributing factors are as follows: serum magnesium and vitamin A excess; an increased aluminum level; anemia; erythropoietin deficiency; high ferritin levels; low transferrin and albumin levels; secondary hyperparathyroidism; increased calcium, phosphate and magnesium levels; and an increase in substances released from mast cells (histamine, interleukin [IL]-2, protease, etc.) [9]. Dry skin is caused by sweat gland atrophy and dehydration of the skin’s stratum corneum layer. These factors are also reported to play a role in UP development [7].

Patients with UP have difficulty coping with it, and develop associated stress [4]. UP is an increasingly important problem among dialysis patients. It has a negative effect on patients’ quality of life, sleep, emotional state, and social relations [1,10]. Pruritus also contributes to the development of skin and soft tissue lesions and/or infections [10]. UP affects close to 90% of dialysis patients, and corresponds to increased morbidity and mortality [7]. The mortality risk of UP was found to be > 17% based on 18,000 HD patients in the International Dialysis Outcomes and Practice Patterns Study (DOPPS) [2]. Overall, UP is typically resistant to treatment and difficult to manage.

Despite multiple attempts to identify the risk factors of UP, including calcium and phosphate levels, dialysis adequacy, depression, and anxiety, controversy remains [10–13]. Dry skin, which develops due to reduced sweat gland volume, is thought to play a role in UP development; however, these data are also contradictory [13,14]. UP causes depressive symptoms in dialysis patients, which have been reported to be related to an increase in hospitalization and mortality rates [15]. However, only a few studies have investigated the relationship between UP and depression [2,16] and anxiety [17,18].

In this study, we have two aims: 1) we evaluated the socio-demographic and medical factors and biochemical factors that play a role in pruritus development, the various factors involved in the effect of pruritus on sleep and the social support, and anxiety and depression states all together; and 2) we conducted the study in four dialysis centers in Turkey, a country with an increasing number of patients on HD treatment, so that the results would guide health care professionals in the presentation of health care services.

Methods

Patients and study design

This descriptive study was conducted between November 2015 and June 2016 at four dialysis centers in Ankara, Turkey. The study inclusion criteria were as follows: 1) patients who had been undergoing HD treatments for four hours a day, three days a week for a minimum of six months; 2) patients 18 years old or over; 3) no communication difficulty; 4) no psychiatric disorders that may lead to cognitive deficiencies such as Alzheimer’s disease or psychosis; and 5) no diagnosis of active infection, skin disease, acute hepatitis, cholestatic liver disease or cancer. The dialysis technique was HD. There were various dialysis machines and sets used at the four dialysis centers where the study was conducted. The HD water purifying systems were regularly inspected by the relevant authorities. A total of 249 patients met the inclusion criteria and were accepted to participate. Ethical consent was obtained from the hospital ethical committee (session number: 12, registration number: 384). All of the participating dialysis centers gave permission for their participation. The investigators explained the purpose of study to the patients by the investigators. The participants then provided written informed consent to participate.

Data collection and procedure

Data collection forms were completed face-to-face by the investigators during the second hour of an HD treatment session. The patients were verbally informed about the study, and their consent was obtained before data collection began. The patients were asked to answer the questions with regard to the last month. The forms took approximately 15 to 20 minutes to complete. Biochemical parameters from the prior month were obtained from hospital records. The data collection form consisted of the following five sections: 1) Patient characteristics form; 2) Data collection form for pruritus status; 3) Visual
analog scale (VAS); 4) Laboratory parameters form; and 5) the Hospital Anxiety and Depression Scale (HADS).

Identification of uremic pruritus

UP was defined as pruritus lasting for longer than three months with a VAS score of 4 or more (where 0 indicates no pruritus, and 10 unbearable pruritus) [5]. The patients answered the VAS questionnaire by only considering the last month.

Patient characteristics form

The patient characteristics form was developed based on a review of the relevant literature [1,5–9]. It includes data regarding the socio-demographic and clinical characteristics of the patients. The socio-demographic data included age and gender. The medical data included duration of dialysis, interdialytic weight gain (IDWG), causes of chronic renal failure, diabetes, hypertension, cardiovascular or pulmonary disease, erythropoietin and high-flux dialysis use, and anxiety and depression scores. The IDWG was defined as the difference between the predialytic weight and the weight at the end of the previous dialysis session. The skin structure was determined by researchers as “normal” or “dry.”

Data collection form for pruritus status

The data collection form for pruritus status evaluated the following parameters: 1) the most involved area, including either head-neck, back, abdomen, arm, leg, or entire body; 2) the period of most intense pruritus, including during dialysis, the day of dialysis, the day after dialysis, or the evening before dialysis; 3) the pruritus severity with VAS; 4) pre-medications used for pruritus; and 5) sleep changes due to pruritus, such as: “I do not wake up, I wake up several times a night, I wake up quite often, or I am always sleepless.”

Visual analogue scale

The VAS is the most commonly used scoring system for UP severity [12,14]. VAS is used to convert values that cannot be measured numerically into numerical values. This a 10-point scale in which 0 indicates no pruritus, and 10 indicates very severe pruritus. The numerical values are separated by one cm intervals. We used the categorization by Reich et al [19] as a reference when classifying the VAS score. We classified the severity of pruritus as follows: < 4 points was considered mild; ≥ 4 points but < 7 points was moderate; ≥ 7 points but < 9 points severe; and ≥ 9 points very severe pruritus.

Data collection form for biochemical characteristics

The following biochemical parameters were recorded: entry and exit values for Kt/V, urea reduction ratio (URR), calcium, white blood cell (WBC), hemoglobin, hematocrit, albumin, phosphorus, calcium-phosphorus (CaxP), parathyroid hormone, C-reactive protein (CRP), ferritin and BUN. These measurements are routinely performed every month at the dialysis centers included in the study. Biochemical parameters of the last month were evaluated. The Daugirdas formula was used in the calculation of the Kt/V value [20].

The patients were divided into two groups according to their WBC level (either < 6.7 × 10^3/μL or ≥ 6.7 × 10^3/μL) similar to the methods of Pisoni et al [2]. In the study of Pisoni et al [2], the laboratory values with the likelihood of patients having moderate to extreme pruritus vs. mild/no pruritus in the combined DOPPS I and II study sample. The National Kidney Foundation Dialysis Outcomes Quality Initiative (K/DOQI) guide [21] recommends that the CaxP level be < 55 mg^2/dL^2. Therefore, patients were divided into two groups according to a CaxP level < 55 mg^2/dL^2 or ≥ 55 mg^2/dL^2. The target values recommended by the Hemodialysis Adequacy 2006 Work Group [22] for Kt/V and URR are 1.4 and 70%, respectively. The patients in this study were divided into two groups according to Kt/V levels of < 1.4 or ≥ 1.4, and URR levels of < 70% or ≥ 70%.

Hospital Anxiety and Depression Scale

The HADS was developed by Zigmond and Snaith [23] in order to identify anxiety and depression risk in patients. The HADS also measures the level and severity of anxiety and depression. Aydemir et al [24] studied the validity and reliability of the HADS scale for Turkey. The HADS is used to quickly diagnose anxiety and depression, and to determine the risk group. However, it is not used...
to diagnose patients with other medical disease. Seven of the 14 questions measure anxiety, while the other seven address depression. The responses are scored based on a four-point Likert scale, with each response ranging 0 to 3. The lowest score that a patient can achieve from either subscale is 0, and the highest is 21. The cut-off points of the Turkish HADS are 10 for the anxiety subscale, and 7 for the depression subscale.

Statistical analysis

The SPSS software program for Windows (ver. 15.00; SPSS Inc., Chicago, IL, USA) was used for data evaluation and statistical analysis. The descriptive statistics are shown as numbers and percentages for counted numerical variables (such as gender, marital status), and means ± standard deviations for measured numerical variables (such as age, calcium and albumin value). The Kolmogorov–Smirnov test was used to evaluate the normality of the data. According to the data distribution, either the t test for independent groups or Mann–Whitney U test was used for comparisons between the two groups. The chi-square test was used for nominal data in pairwise comparisons. The multivariate logistic regression analysis was conducted to determine the factors associated with pruritus development. Variables were included in the regression analysis as candidate variables if they had a P value of ≤ 0.25, and demonstrated clinical importance in the single comparisons. P values < 0.05 were considered statistically significant.

Results

Patient characteristics

We found that 53.4% of the included patients were experiencing pruritus. Table 1 presents the subjects’ descriptive characteristics and presence of pruritus. The mean age of the patients with pruritus was 62.54 ± 12.77 years. A slight majority of the patients were male (54.1%). The mean HD treatment duration was 61.35 ± 43.30 months. There was a low risk of anxiety in 78.2% of patients. However, there was a high of depression in 50.4% of patients. The mean age of patients without pruritus was 62.46 ± 14.31 years, 56.0% of whom were male. The mean HD treatment duration was 66.28 ± 52.81 months in those without pruritus. There was a low risk of anxiety in 87.9% of these patients. Again, however, there was a high risk of depression in 84.5%.

Patients without pruritus had statistically significantly lower risks of cardiovascular disease and anxiety than did those with pruritus ($\chi^2 = 4.649, P = 0.031$ and $\chi^2 = 4.110, P = 0.043$, respectively). There were no statistically significant differences between the groups with regard to the other variables ($P > 0.05$).

Prevalence and characteristics of uremic pruritus

The descriptive characteristics of patients with pruritus are presented in Table 2. The pruritus affected the whole body in 35.3% of patients, and was most intense on the day after the dialysis in 39.1%. The mean pruritus severity was 6.47 ± 1.56, and 50.4% experienced moderate pruritus. Pruritus led to sleep disturbances in 33.8% of patients. In addition, 60.9% of patients used medications, such as oral antihistamines or topical therapies, for their pruritus. There was no significant relationship between the type of medication and the pruritus severity (data not presented, $Z = -0.813; P = 0.416$).

Table 3 demonstrates the relationship between the VAS level and HADS score in patients with pruritus. There was a weakly positive relationship between the VAS score and the Hospital Depression Score in patients with pruritus ($P = 0.034$).

Univariate regression analysis was used to identify factors potentially correlated to pruritus development. The odds ratio (OR) of WBC was 0.220 (95% confidence interval [CI]). Patients with dry skin were 0.2 times more likely to suffer from very severe pruritus than were those with normal skin (Table 4). None of the other variables had a statistically significant effect on pruritus development.

Multivariate regression analysis was used to identify the factors potentially related to pruritus development. The OR for WBC was 0.225 (95% CI). Patients with dry skin were 0.194 times more likely to suffer from very severe pruritus compared to those with normal skin (Table 5). However, the data in this model had a weak fit ($R^2 = 0.11$). None of the other variables were significantly associated with pruritus development.

Table 6 presents the biochemical parameters according to the presence of pruritus. WBC counts $\geq 6.7 \times 10^3/\mu L$ were significantly more common in the group with prur-
Table 1. Descriptive characteristics based on the presence of pruritus

Characteristic	Pruritus present	Pruritus not present	P value
Subjects	133 (53.4)	116 (46.6)	
Age (yr)	62.54 ± 12.77	62.46 ± 14.31	0.718
Gender			
Male	72 (54.1)	65 (56.0)	0.764
Female	61 (45.9)	51 (44.0)	
Duration of dialysis (mo)	61.35 ± 43.30	66.28 ± 52.81	0.712
IDWG (kg)*	2.35 ± 0.83	2.22 ± 0.90	0.219
Chronic renal failure cause			0.732
Diabetes			
Yes	34 (25.6)	30 (25.9)	0.430
No	99 (74.4)	86 (74.1)	
Hypertension			
Yes	56 (42.1)	55 (47.4)	0.401
No	77 (57.9)	61 (52.6)	
Glomerulonephritis			
Yes	12 (9.0)	7 (6.0)	0.251
No	55 (41.0)	48 (42.6)	
Unknown	37 (27.8)	30 (25.9)	
Other†	14 (10.5)	18 (15.5)	
Diabetes			
Yes	34 (25.6)	30 (25.9)	0.430
No	99 (74.4)	86 (74.1)	
Hypertension			
Yes	56 (42.1)	55 (47.4)	0.401
No	77 (57.9)	61 (52.6)	
Treatment with erythropoietin			
Yes	42 (31.6)	29 (25.0)	0.251
No	91 (68.4)	67 (75.0)	
Cardiovascular disease			
Yes‡	27 (20.3)	12 (10.3)	0.031
No	106 (79.7)	98 (89.7)	
Lung disease			0.510
Yes†	4 (3.0)	2 (1.7)	
No	129 (97.0)	114 (98.3)	
Use of high-flux dialyzer			
Yes (synthetic)	30 (22.6)	36 (31.0)	0.131
No (polysulfone)	103 (77.4)	80 (69.0)	
Hospital Anxiety Score			0.043
Low (0–10)	104 (78.2)	102 (87.9)	
High (11–21)	29 (21.8)	14 (12.1)	
Hospital Depression Score			0.160
Low (0–7)	30 (22.6)	18 (15.5)	
High (8–21)	103 (77.4)	98 (84.5)	
Skin type			0.239
Normal	73 (54.9)	55 (47.4)	
Dry	60 (45.1)	61 (52.6)	

Data are represented as means ± standard deviation or number (%).
IDWG, interdialytic weight gain.
*IDWG was calculated as the difference between the predialytic weight and the weight at the end of the previous dialysis session. †Drug intoxication, polycystic kidney, pyelonephritis, renal artery stenosis, post-surgery, urinary tract infection. ‡Ischemic heart disease, hearth failure, atrial fibrillation, coronary artery disease, valve disease, atherosclerosis. §Chronic obstructive pulmonary disease, asthma.
P values were calculated using the Pearson chi-square test for categorical data and Mann–Whitney U test for continuous data.
ritus ($\chi^2 = 3.883$, $P = 0.049$) than in that without pruritus. However, there was no statistically significant difference between the groups with regard to other variables ($P > 0.05$).

Determinants of the prevalence and intensity of uremic pruritus

Logistic regression analysis was used to identify factors that are potentially related to pruritus development. The OR for WBC count was 1.730 (95% CI), as shown in Table 7. The other variables did not have a statistically significant effect on the possibility of pruritus development.

Discussion

This study sought to identify the risk factors of UP in HD patients. UP is a common symptom in HD patients that can cause severe discomfort. It is difficult to treat, as its underlying pathophysiological mechanism is not precisely known [10]. The prevalence of UP varies between 30% and 64% in the literature [2,5,25–28]. We found that 53.4% of our patients had UP, which is comparable to...
prior reports. The UP severity was 7/10 in more than half of studies that evaluated its severity. Similarly, the mean pruritus severity was 6.47 (0-10) in this study. We found that WBC counts ≥ 6.7 × 10^3/μL were also relevant to UP development, and increased its risk by 1.73 times. Prior literature has emphasized the importance of inflammation and proinflammatory factors in the development of UP [29]. We found that the levels of serum pro-inflammatory cytokines (such as IL-6) and CRP were higher in UP patients than in those without UP. The WBC count is also thought to be an important marker, with a WBC count > 6.7 × 10^3/μL particularly significant for UP development [2,5]. Kimata et al [30] found that higher WBC counts increased the risk of UP development by 1.04-fold. Similarly, Pisoni et al [2] found that a WBC count > 8.4 × 10^3/μL increased the risk of UP develop-

Table 5. Severity of uremic pruritus by multivariate regression

Variable (reference value)	β	SE	OR	95% CI	P value
Skin type (dry, 1/normal, 0)	0.607	0.265	0.194	0.081 to 0.132	0.024
White blood cell	−0.156	0.059	0.225	−0.273 to −0.038	0.010
Hospital Depression Score	0.055	0.041	0.113	−0.026 to 0.137	0.182
Kt/V	−2.629	1.290	0.371	−5.182 to 0.076	0.54
Urea reduction ratio	0.073	0.043	0.306	−0.013 to 0.158	0.095

CI, confidence interval; OR, odds ratio; SE, standard error.

R^2 = 0.11 (P = 0.04)
The backward LR method was used.

Table 6. Comparing biochemical parameters according to the presence of pruritus

Characteristic	Pruritus present (n = 133)	Pruritus not present (n = 116)	P value
Calcium, albumin adjusted (mg/dL)	9.00 ± 0.90	8.84 ± 0.87	0.196
Albumin (g/dL)	3.84 ± 0.40	3.75 ± 0.34	0.063
CRP (mg/dL)	26.14 ± 45.75	19.84 ± 31.77	0.087
Parathyroid hormone (pg/mL)	417.55 ± 348.72	390.76 ± 319.14	0.655
Ferritin (ng/mL)	615.48 ± 439.34	646.59 ± 424.60	0.436
White blood cell			
< 6.7 × 10^3/μL	50 (37.6)	58 (50.0)	0.049
≥ 6.7 × 10^3/μL	83 (62.4)	58 (50.0)	
Kt/V			
< 1.4	36 (27.1)	33 (28.4)	0.808
≥ 1.4	79 (72.9)	83 (71.6)	
Urea reduction ratio (%)			
< 70	40 (30.1)	35 (30.2)	0.987
≥ 70	93 (69.9)	81 (69.8)	
CaxP (mg^2/dL^2)			
< 55	108 (81.2)	99 (85.3)	0.384
≥ 55	25 (18.8)	17 (14.7)	
Hemoglobin (g/dL)	11.62 ± 1.31	11.69 ± 1.31	0.679
Hematocrit (%)	35.82 ± 4.66	35.81 ± 4.52	0.988
BUN (mg/dL)			
Before hemodialysis	109.95 ± 44.00	121.10 ± 46.66	0.054
After hemodialysis	31.63 ± 13.73	34.53 ± 14.83	0.096
Phosphorus (mg/dL)	5.11 ± 1.14	4.85 ± 1.15	0.068

Data are presented as means ± standard deviation or number (%).

BUN, blood urea nitrogen; CaxP, product of albumin-adjusted serum calcium and serum phosphorus; CRP, C-reactive protein.
P values were calculated using the Pearson chi-square test for categorical data, and the Mann–Whitney U test and Student t test for continuous data.
UP frequently causes significant mood impairment, including depression and anxiety [16]. Similarly, patients with depressive symptoms have significantly higher odds of developing severe pruritus [31]. Depression was reported to develop 1.3 to 1.7 times more commonly in UP patients [2,15] In addition, Araujo et al [16] reported a significant relationship between depressive symptoms and UP. Other groups have not identified a statistically significant correlation between pruritus and depression using the HADS [17,18]. We also did not find that depression was a risk factor for UP development, although the depression score increased with increasing VAS scores. This discrepancy with the findings in the literature may be a result of the use of a self-administered questionnaire to assess anxiety and depression. Prior studies have mandated psychiatric consultation in cases in which depression or anxiety is suspected based on the self-administered questionnaires [32]. In contrast, psychiatric involvement was not included in our protocol. Therefore, further studies are needed in which a definite diagnosis (of a psychiatric disorder) is made by a physician once it is suspected by self-administered questionnaires. Prior studies of HD patients have focused more on depression than on anxiety. Therefore, the relationship between anxiety and UP development must be studied further.

Dry skin, caused by sweat gland atrophy and dehydration of the stratum corneum layer, is thought to play a role in the development of UP. Dry skin has previously been suggested as a potential causative factor for UP [7]. Kiliç Akça and Taşcı [25] reported that the incidence of UP in patients with dry skin is 3.9 times higher than in those without dry skin. We similarly found that dry skin is a risk factor for UP.

In conclusion, we found that a WBC count ≥ 6.7 × 10³/μL was a risk factor for UP development in HD patients. Overall, despite its high prevalence and negative impact on quality of life, UP is disregarded by many health care professionals. Therefore, we recommend that providers monitor the potential risk factors for UP, such as the WBC count, in their HD patients who are at risk.

Conflicts of interest

All authors have no conflicts of interest to declare.
References

[1] Mathur VS, Lindberg J, Germain M, et al. A longitudinal study of uremic pruritus in hemodialysis patients. Clin J Am Soc Nephrol 5:1410-1419, 2010

[2] Pisoni RL, Wikström B, Elder SJ, et al. Pruritus in haemodialysis patients: International results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant 21:3495-3505, 2006

[3] Narita I, Iguchi S, Omori K, Gejyo F. Uremic pruritus in chronic hemodialysis patients. J Nephrol 21:161-165, 2008

[4] Biró T, Ko MC, Bromb B, et al. How best to fight that nasty itch – from new insights into the neuroimmunological, neuroendocrine, and neurophysiological bases of pruritus to novel therapeutic approaches. Exp Dermatol 14:225-240, 2005

[5] Kimmel M, Alscher DM, Dunst R, et al. The role of microinflammation in the pathogenesis of uremic pruritus in haemodialysis patients. Nephrol Dial Transplant 21:749-755, 2006

[6] Berger TG, Steinhoff M. Pruritus and renal failure. Semin Cutan Med Surg 30:99-100, 2011

[7] Aramwit P, Supasyndh O. Uremic pruritus; its prevalence, pathophysiology and management. In: Suzuki H, ed. Updates in hemodialysis. London: InTechOpen, 2015

[8] Keithi-Reddy SR, Patel TV, Armstrong AW, Singh AK. Uremic pruritus. Kidney Int 72:373-377, 2007

[9] Prasad PVS, Kaviarasan PK, Nethra T, Kannambal. Uremic pruritus-a review. Glob Dermatol 2:218-224, 2015

[10] Narita I, Alchi B, Omori K, et al. Etiology and prognostic significance of severe uremic pruritus in chronic hemodialysis patients. Kidney Int 69:1626-1632, 2006

[11] Duque MI, Thevarajah S, Chan YH, Tuttle AB, Freedman B, Yosipovitch G. Uremic pruritus is associated with higher kt/V and serum calcium concentration. Clin Nephrol 66:184-191, 2006

[12] Zucker I, Yosipovitch G, David M, Gafter U, Boner G. Prevalence and characterization of uremic pruritus in patients undergoing hemodialysis: uremic pruritus is still a major problem for patients with end-stage renal disease. J Am Acad Dermatol 49:842-846, 2003

[13] Dyachenko P, Shustak A, Rozenman D. Hemodialysis-related pruritus and associated cutaneous manifestations. Int J Dermatol 45:664-667, 2006

[14] Szepietowski JC, Reich A, Szepietowski T. Emollients with endocannabinoids in the treatment of uremic pruritus: discussion of the therapeutic options. Ther Apher Dial 9:277-279, 2005

[15] Lopes AA, Albert JM, Young EW, et al. Screening for depression in hemodialysis patients: associations with diagnosis, treatment, and outcomes in the DOPPS. Kidney Int 66:2047-2053, 2004

[16] Arai J, de Bruin VM, Daher E, Almeida GH, Medeiros CA, de Bruin P. Risk factors for depressive symptoms in a large population on chronic hemodialysis. Int Urol Nephrol 44:1229-1235, 2012

[17] Weiss M, Mettag T, Tschulena U, Passlick-Deetjen J, Weisshaar E. Prevalence of chronic itch and associated factors in haemodialysis patients: a representative cross-sectional study. Acta Derm Venereol 95:816-821, 2015

[18] Weiss M, Mettag T, Tschulena U, Weisshaar E. Health-related quality of life in haemodialysis patients suffering from chronic itch: results from GEHIS (German Epidemiology Haemodialysis Itch Study). Qual Life Res 25:3097-3106, 2016

[19] Reich A, Heisig M, Phan NQ, et al. Visual analogue scale: evaluation of the instrument for the assessment of pruritus. Acta Derm Venereol 92:497-501, 2012

[20] Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol 4:1205-1213, 1993

[21] National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42(4 Suppl 3):S1-S201, 2003

[22] Hemodialysis Adequacy 2006 Work Group. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 48 Suppl 1:S2-S90, 2006

[23] Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361-370, 1983

[24] Aydemir Ö, Güvenir T, Küey L, Kültür S. Validity and reliability of Turkish version of Hospital Anxiety and Depression Scale. Turk J Psychiatry 8:280-287, 1997

[25] Kılıç Akça N, Taşcı S. An important problem among hemodialysis patients: uremic pruritus and affecting factors. Turk Neph Dial Transpl 23:210-216, 2014

[26] Malekmakan L, Malekmakan A, Sayadi M, Pakfetrat M, Sepaskhah M, Roozbeh J. Association of high-sensitive C-reactive protein and dialysis adequacy with uremic pruritus. Saudi J Kidney Dis Transpl 26:890-895, 2015

[27] Momose A, Kudo S, Sato M, et al. Calcium ions are abnormally distributed in the skin of haemodialysis patients with uraemic pruritus. Nephrol Dial Transplant 19:2061-2066,
Mirnezami M, Rahimi H. Factors associated with uremic pruritus in patients undergoing hemodialysis: a report from Arak Valiasr hospital. *Iran J Dermatol* 13:12-15, 2010

Suzuki H, Omata H, Kumagai H. Recent advances in treatment for uremic pruritus. *Open J Nephrol* 5:1-13, 2015

Kimata N, Fuller DS, Saito A, et al. Pruritus in hemodialysis patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study (JDOPPS). *Hemodial Int* 18:657-667, 2014

Yamamoto Y, Hayashino Y, Yamazaki S, et al. Depressive symptoms predict the future risk of severe pruritus in hemodialysis patients: Japan Dialysis Outcomes and Practice Patterns Study. *Br J Dermatol* 161:384-389, 2009

Reich A, Szepietowski JC. Pruritus intensity assessment: challenge for clinicians. *Expert Rev Dermatol* 8:291-299, 2013