ABSTRACT
The sub-Antarctic islands of the Southern Ocean harbor biogeographically peculiar biotas which are under threat from climate change, biological invasions and their interactions. Understanding both the indigenous and changing non-indigenous components of these islands is essential for the conservation and management of their biotas. Based on several years of systematic sampling, we present an updated list of terrestrial, free-living macro-invertebrates (insects and spiders) present on the islands of Possession (Crozet Archipelago) and Kerguelen. Ninety-four species were recorded in total on both islands. Forty-one are strictly endemic to one of the two islands, 16 are endemic to the South Indian Ocean Province, and only three were recorded on other sub-Antarctic islands. Beetles and more particularly weevils are the most characteristic group of the fauna of these islands: they include 35 species of which 89% are native and 66% are endemic. One third of the species (30 of 94) are non-indigenous species now naturalized. We discuss these results in terms of biogeography, ecological disharmony and impact of biological invasions.

RÉSUMÉ
Les macro-arthropodes terrestres des îles subantarctiques de Possession (archipel Crozet) et des Kerguelen : inventaire des espèces natives et non-natives. Les îles subantarctiques de l’océan Austral constituent des biotopes isolés et originels, actuellement menacés par le changement climatique, les invasions biologiques et leurs interactions. Il est essentiel de comprendre les modifications de la faune autochtone et allochtone pour en assurer la conservation et la gestion. Sur la base de plusieurs années d’échantillonnage systématique, nous présentons une liste actualisée des macro-invertébrés terrestres libres (insectes et araignées) présents sur les îles Kerguelen et sur l’île de la Possession (archipel Crozet). Quatre-vingt-quatorze espèces y ont été recensées au total. Quarante-et-une espèces sont strictement endémiques à l’une des deux îles, 16 sont endémiques à la province Antarctique de l’océan Indien, et seulement trois ont été recensées sur d’autres îles subantarctiques. Les coléoptères, et plus particulièrement les charançons, constituent le groupe le plus caractéristique de la faune de ces îles : ils comprennent 35 espèces, dont 89% sont indigènes et 66% sont endémiques. Un tiers des espèces présentes (30 sur 94) sont des espèces introduites aujourd’hui naturalisées. Nous discutons ces résultats en termes de biogéographie, de disharmonie écologique et d’impact des invasions biologiques.
INTRODUCTION
The sub-Antarctic Islands of the South Indian Ocean (SIO) Province have well-developed biotas representing the only terrestrial life in a region dominated by ocean. These biotas are biogeographically and functionally unusual, given their complex relationships to the surrounding continents and characteristics such as outstanding high proportions of flightlessness among the insects (Roff 1990; Vernon et al. 1998; Leihy et al. 2018). Owing to these features and the significant numbers and global proportions of seabirds nesting on the islands, all of them enjoy significant conservation status (de Villiers et al. 2006), and most of them are now declared World Heritage Areas (Inscription of the French Austral Lands and Seas, France, on the World Heritage List, Decision n°43 COM 8B.6, https://whc.unesco.org/en/decisions/?id_decision=7362&). Nonetheless, the biotas of these islands face significant conservation challenges, among which the effects of climate change, biological invasions, and their interactions are most important (Frenot et al. 2005). Terrestrial invertebrates are considered especially vulnerable to such changes, including through the ongoing introduction of non-indigenous species (Lebouvier et al. 2011; Chown & Convey 2016; McClelland et al. 2018). The focus is thus on understanding these impacts and how best they might be mitigated and managed (Lebouvier et al. 2011; Preston et al. 2018). A critical aspect of doing so is to comprehensively understand the faunas, including their non-indigenous component, and how these are changing through time, either owing to impacts or to the establishment of new non-indigenous species (Heget et al. 2009; McGeoch et al. 2015).

Over the past decade, a range of systematic inventories or overviews of the biotas of the South Indian Ocean Province islands has been undertaken (reviewed in Chown & Convey 2016)). Some of them have been based on several years of systematic sampling at a given island or set of islands (e.g. Chown & Froneman 2008). Among these, however, the Kerguelen and Crozet islands have largely been under-studied. While new species discoveries and range extensions have been reported for some groups (e.g. Hullé et al. 2003b; Laparie 2011), comprehensive information was lacking. Such a situation is problematic given the biogeographical significance of these islands (Craig et al. 2003; Voisin et al. 2017), and the substantial threats facing their biotas from both climate change and biological invasions. Given this significance, the status of the islands as reserves, and their recent declaration as World Heritage Areas, there is an urgent need to provide a comprehensive updated inventory. Here we do so, for the macro-arthropods (spiders and insects), based on 12 years of systematic sampling, targeted searches for rare species, and recent developments in systematic knowledge of the biotas (Voisin et al. 2017; Broadley et al. 2018; Orlov et al. 2019).

Discovered at the end of the 18th century, the Crozet and Kerguelen islands have been visited many times since the 19th and early 20th centuries (Duhamel & Williams 2011), in a first step mainly by sea lions and elephant seals hunters, in a second step, and regularly, after the establishment of permanent scientific bases (Port-aux-Français at Kerguelen Is.; Alfred Faure at Possession Is.) in 1950 and 1960, respectively.

The indigenous species of the islands were initially recorded through successive scientific expeditions between 1840 and 1940, such as Erebus and Terror (1840), Challenger (1874), Gazelle, Volage and Gans (1874), Valdivia (1898), J. B. Charcot (1908-1909) and Bougainville (1939), and then through scientific programs set up shortly after the permanent bases were built up. The first native species described were the weevil Ectemnorhinus viridis G. R. Waterhouse, 1853 and the snail Notodiscus bokieri (Reeve, 1854). Two thirds of the native species were then described before 1950 by scientists such as A. E. Eaton (Diptera), G. Enderlein (Coleoptera Linnaeus, 1758, Hemiptera Linnaeus, 1758, Diptera Linnaeus, 1758), V. V. Hickman (Araneae Clerck, 1757), R. Jeannel (Coleoptera), C. O. Waterhouse (Coleoptera). The remaining third of native species have been described since 1950. The first species introduced into the Kerguelen and Crozet Islands were mentioned following the Bougainville cruise in 1938-1939 with the entomologist R. Jeannel on board (Badonnel 1947; Jeannel 1940; Séguy 1940).

Species lists concerning particular islands or taxonomic groups and including native and alien species have also been published: entomofauna of Penguins Island (Crozet archipelago) (Dreux et al. 1988, 1993) and Apostles Islets (Crozet archipelago) (Vernon & Voisin 1990), aphids (Hullé et al. 2003a, b; Remaudière & Étienne 1988), spiders (Ledoux 1991), weevils (Chown 1992, 1994), and beetles (Voisin et al. 2017).

Our work builds on these previous studies, but also using annual systematic surveys and targeted searches for species known from the literature to have been previously recorded on the islands, but rarely found in recent times. The latter approach was adopted given evidence both from these islands (e.g. Renaud et al. 2013; Ouisse 2016) and elsewhere (McClelland et al. 2018) that environmental change impacts can have significant effects on the abundance and diversity of insect assemblages.

MATERIAL AND METHODS

STUDY AREA (Fig. 1)
Hereinafter, ‘Kerguelen Is.’ is used to refer to the main island called Grande Terre and all the peripheral islands except the Cloudy Islands and the Leygues Islands.

Both Kerguelen and Possession islands are in the middle of the South Indian Ocean. Kerguelen Is. is located at 49°21’S, 70°13’E and Possession Is. at 46°24’S, 51°46’E. They are respectively 3250 and 2800 km south of Reunion Is., 3800 and 2400 km south-east of South Africa and 1900 and 2100 km north of the Antarctic Continent. Kerguelen Is. and Heard Is. were built up. The first native species described were the weevil Ectemnorhinus viridis G. R. Waterhouse, 1853 and the snail Notodiscus bokieri (Reeve, 1854). Two thirds of the native species were then described before 1950 by scientists such as A. E. Eaton (Diptera), G. Enderlein (Coleoptera Linnaeus, 1758, Hemiptera Linnaeus, 1758, Diptera Linnaeus, 1758), V. V. Hickman (Araneae Clerck, 1757), R. Jeannel (Coleoptera), C. O. Waterhouse (Coleoptera). The remaining third of native species have been described since 1950. The first species introduced into the Kerguelen and Crozet Islands were mentioned following the Bougainville cruise in 1938-1939 with the entomologist R. Jeannel on board (Badonnel 1947; Jeannel 1940; Séguy 1940).

Species lists concerning particular islands or taxonomic groups and including native and alien species have also been published: entomofauna of Penguins Island (Crozet archipelago) (Dreux et al. 1988, 1993) and Apostles Islets (Crozet archipelago) (Vernon & Voisin 1990), aphids (Hullé et al. 2003a, b; Remaudière & Étienne 1988), spiders (Ledoux 1991), weevils (Chown 1992, 1994), and beetles (Voisin et al. 2017).

Our work builds on these previous studies, but also using annual systematic surveys and targeted searches for species known from the literature to have been previously recorded on the islands, but rarely found in recent times. The latter approach was adopted given evidence both from these islands (e.g. Renaud et al. 2013; Ouisse 2016) and elsewhere (McClelland et al. 2018) that environmental change impacts can have significant effects on the abundance and diversity of insect assemblages.
The morphology of Kerguelen Is. is mainly related to its magmatic origin and glacial erosion. Its geological history is long. The most ancient parts emerged about 35 to 40 million years ago and the last magmatic events date back to about 30,000 years ago (Giret et al. 2003a). Mount Ross rises in the south to 1830 m. An ice cap rises to 1000 m and covers about 550 km² of the western and central region. The north and the west are mountainous and rise to 1260 m. The southeast constitutes a vast area of glacial erosion of low altitude and dotted with numerous lakes (Giret et al. 2003a). Possession Is. (elevation of 934 m) was formed between 8 million years ago and about 10,000 years ago (the last episodes of eruption) (Giret et al. 2003b).

Both islands have an oceanic cold climate, strongly influenced by the southern Indian Ocean. The annual mean air temperature at sea level (period 1973-2021) is 5.1°C at Kerguelen Is. and 5.4°C at Possession Is. Seasonal variations are low, between 2.3°C (coldest month) and 8°C (warmest month) at Kerguelen Is. and 2.9°C and 7.9°C at Possession Is. (data available on www.infoclimat.fr/globale/iles-kerguellen-port-aux-francais/61998.html and www.infoclimat.fr/globale/ile-de-lapossession-alfred-faure/61997.html). Summer temperatures may temporarily reach 15°C. At Kerguelen Is. average temperatures increased by 1.9°C between 1964 and 1981 and then stabilized around 5.1°C. Correlatively the number of freezing days has decreased from 130 days per year in the 1960s to 100 days per year presently. At Possession Is. the number of freezing days is less than 60 days per year. Air temperature decreases with c. 0.8°C per 100 m increase in altitude (Gremmen et al. 2007). This rapid decrease means that the development thermal thresholds of many insects are rapidly reached with elevation.

The average rainfall for Possession Is. is high with 2390 mm per year. For Kerguelen Is., there is a rainfall gradient from west to east. Port-aux-Français, located east of Kerguelen, receives only 700 mm a year. On Kerguelen Is., the rainfall oscillates between years of drought like 1965 with 350 mm and wetter years like 1987 with 1150 mm. Winds are predominantly from the north-west, west and south-west. Strong winds are frequent. The average wind speed is 35 km/h on Kerguelen Is. maximum speeds may exceed 200 km/h or 55 m/s (data from Météo France).

The main biotopes hosting terrestrial invertebrates are shown in Figure 2.

INVENTORY
All published records of species from the islands were initially considered based on a systematic search of the literature. All the species thus reported from the literature have been researched in the field using different approaches since the 2000s. First of all, we used the systematic field surveys on both islands as part of an ongoing research program of the French Polar Institute Paul Emile Victor (IPEV - Subancteco program: http://www.institut-polaire.fr). These surveys mainly consisted of
permanent sampling. Two pitfall traps and one yellow trap are regularly opened five days a month in three different sites in the vicinity of the research stations on each of the two islands. We compiled all of these sampling datasets and supplemented them with intensive field research in as many off-base sites as possible during five summer campaigns from 2007 to 2015. These complementary explorations were made by hand searching. In addition to these systematic surveys, dedicated searches for species listed as previously known from the islands, but not found during the systematic surveys, were also undertaken. For example, the weevils Disker tenuicornis (Jeannel, 1940) and Canonopsis sericea C. O. Waterhouse, 1875 are known from a relatively small number of specimens in the Museum national d’Histoire naturelle (MNHN) in Paris, but not seen during any of the systematic surveys. Targeted sampling for them, based on previous collection localities and discussions with experts were undertaken.

All material was identified based on 1) available keys such as Voisin et al. (2017) for Coleoptera or Séguy (1940) for Diptera and 2) a guide to the species that has been compiled based on these keys and on specialist taxonomic expertise (Hullé et al. 2018). The material collected on the field was then checked again on return to INRAE/Le Rheu. All identified specimens are kept at the UMR 6553 CNRS, ECOBIO of the University of Rennes 1 (Curator Romain Georges). Three reference collections have also been deposited, one at the UMR 6553 CNRS ECOBIO and the other two in each of the two scientific bases of the Kerguelen and Possession islands.

The species names used are mainly those of the INPN TAXREF (https://inpn.mnhn.fr/programme/referentiel-taxonomique-tarxreflg-en), an implementation of the national repository on fauna and flora of metropolitan France and overseas territories, and Encyclopedia of Life (http://eol.org/), unless very recent taxonomic revisions have not yet been incorporated into these two lists. In the case of weevil species described by either C. O. Waterhouse or G. R. Waterhouse, the first name initials have been added to distinguish these two authors.

Species were distinguished according to their native or introduced and naturalized nature (Falk-Petersen et al. 2006). Native species were separated into strict endemics (present on one of the two islands), endemics of the sub-Antarctic province of the Indian Ocean (present on at least two of Kerguelen, Crozet, Heard or Prince Edward Islands) or as sub-Antarctic species (if also present in the sub-Antarctic provinces of the Atlantic or Pacific Oceans) (Lewis Smith 1984).

RESULTS

In this section, we present the taxonomic results with comments clarifying these results, when necessary.

Ninety-four species of free-living macro-arthropods have been recorded to date on Kerguelen and Possession Islands (Tables 1, 2; Figs 3, 4). Thirty species are common to both islands.

Nearly one third of species (30 out of 94) are naturalized alien species. The native fauna is specific of the SOI province: 41 species are strictly endemic to one of the two islands, 16 are endemic to the SIO province (present on at least two of the four groups of islands) and only three are also recorded on other sub-Antarctic islands, either of the South Atlantic Ocean or the New Zealand provinces. The number of introductions and the rate of endemism are different from one island to the other. On Possession Is., 29% of the species are alien compared to 56% on Kerguelen. Conversely, 49% of the species on Possession Is. are endemic compared to 12% on Kerguelen.

The orders including main native species are the Araneae, the Coleoptera and the Diptera. Together, they represent 79% and 77% of the native species on Possession Is. and Kerguelen Is., respectively. Other orders are poorly represented on both islands. Flies and aphids are the two main taxa of alien groups with 67% and 59% of the naturalized species on Possession Is. and Kerguelen Is., respectively.

ARACHNIDAE CUVIER, 1812

Only two native spider species (from two families) are present on Kerguelen Is. compared to seven species (from four families) on Possession Is. On Possession Is. the family Desidae Pocock, 1895 comprises four out of five species present in the SIO province, among which Myro jeanneli Berland, 1947 and M. pumilus Ledoux, 1991 are endemic.

The naturalized alien species belong to three families, the Linyphiidae Blackwall, 1859 (three species), the Theridiidae Sundevall, 1833 (two species) and the Agelenidae Koch, 1837 (one species). Four of them (Ostearius melanopygius Pickard-Cambridge, 1879, Tegenaria domestica (Clerk, 1758), Steatoda grossa (Koch, 1838) and S. triangulioidea (Walckenaer, 1802)) are confined to the buildings of the Alfred Faure scientific research base on Possession Is. and the Port-aux-Français research and administration facilities on Kerguelen Is. Only Tenuiptantes tenus (Blackwall, 1852) can be abundant in the wild and is therefore considered invasive.

Opiliones and Pseudoscorpiones are uncommon and are each represented by only one endemic species on Possession Is.

COLEOPTERA

Coleoptera have the highest species richness with 31 native species and only four introduced species. This is particularly true on the Possession Is. where there is a single introduced species and 22 native species, 18 of which are endemic.

The family Curculionidae Latreille, 1802 is the best represented with 23 species including 17 strict endemics. Of the six species of weevils endemic to the SIO province, four are known from Kerguelen and Heard (Bathrometopus brevis (C. O. Waterhouse, 1875), B. gracilipes (C. O. Waterhouse, 1875), Canonopsis sericea and Ectemnorhinus viridis, and one on Possession and the Prince Edward Islands (B. randi Jeannel, 1953). Only Palirhoeus eatoni (C. O. Waterhouse, 1876) is present in the whole province. Ectemnorhinus fuscus Enderlein, 1903 has not been observed since its discovery in 1939 (Jeannel 1940) but it could have been confused with E. viridis (Voisin et al. 2017; Chapelin-Viscardi et al. 2010). This species is therefore counted but not yet validated.
Inventory of the terrestrial macro-arthropods of the sub-Antarctic Kerguelen and Possession Islands

Fig. 2. — Some typical habitats of sub-Antarctic islands: A, wide open valley; B, wet coastal cliffs; C, slopes covered with Acaena magellanica; D, fell field; E, native vegetation; F, introduced vegetation; G, coastal slopes and foreshore; H, marine animal colonies. Photos: Maurice Hulé.
Fig. 3. — Some indigenous arthropod species: Arachnida: A, Hahnia crozetensis Hickman, 1939; B, Myro paucispinosus Berland, 1947; Coleoptera: C, Ectemnorhinus viridis G. R. Waterhouse, 1853; D, Palirhoeus eatoni (C. O. Waterhouse, 1876); E, Amblystogenium pacificum (Putzeys, 1869); F, Meropatus chuni Enderlein, 1901; Diptera: G, Calycopteryx moseleyi Eaton, 1875; H, Anatalanta aptera Eaton, 1875. Photos: Bernard Chaubet.
Among the family Staphylinidae Latreille, 1802, the indigenous species, *Leptusa atriceps* (C. O. Waterhouse, 1875), is the one with the broadest distribution being also present on the sub-Antarctic islands of the southern Atlantic Ocean (Falkland Islands and South Georgia) (Gressitt 1970; Crawford et al. 1986; Orlov et al. 2019).

The family Trechidae Bonelli, 1810 is worth studying because it comprises three endemic species on Possession Is. and a single introduced species, *Merizodus soledadinus* (Guérin-Méneville, 1830) on Kerguelen. The expansion of this predatory species has currently a dramatic effect on the native fauna and in particular on the Diptera (Chevrier et al. 1997; Lebouvier et al. 2011; Lebouvier et al. 2020).

Diptera

Diptera is the second-most speciose order with 27 species on both islands. It is also the most diverse with 15 families, eight of which include native species. Diptera also include 11 alien species. Three taxa were not yet identified to species, but currently under study: one Carnidae Newman, 1834 and two Chironomidae Newman, 1834 (*Smittia* sp. and *Bryophagenocladius* sp.).
Species	Possession Is.	Kerguelen Is.	Conservation status	Distribution
Arachnida Araneae				
Tegenaria doméstica (Clerck, 1758)	–	*	Int	–
Crozetulus minutus Hickman, 1939	–	–	End	Po
Desidae				
Myro jeanneli Berland, 1947	*	–	End	Po
Pholciidae				
Myro kerguelensis kerguelensis Enderlein, 1909	–	*	Sub-Ant	H K Mc
Myro paucispinosus Berland, 1947	–	–	SIO	Po PE
Myro pumilus Ledoux, 1991	–	–	End	Po
Hahnidiae				
Hahnia crozetensis Hickman, 1939	–	–	End	Po
Linyphiidiae				
Lepthyphantes leprosus (Ohlert, 1865)	–	*	Int	–
Neomano antarcticus (Hickman, 1939)	–	–	End	K
Osteanus melanopygius Pickard-Cambridge, 1879	*	–	Int	–
Ringina antarctica (Hickman, 1939)	–	–	End	Po
Tenuiphantes tenuis (Blackwall, 1852)	*	–	Int	–
Arachnida Opiliones				
Thorellia insignis Vital de Castri, 1868	*	–	End	Po
Arachnida Pseudoscorpiones				
Promecostethus unifalcatus Enderlein, 1909	*	–	End	Po
Coleoptera				
Bothrometopus sulcatus Jeannel, 1953	–	*	End	K
Canonopsis sericea C.O. Waterhouse, 1875	–	–	SIO	H K
Christensenia antarctica Brinck, 1945	*	–	End	Po
Disker tenuicornis (Jeannel, 1940)	–	*	End	K
Ectemnorhinus bougainvillei Jeannel, 1940	–	–	End	Po
Ectemnorhinus drygalskii Enderlein, 1909	–	*	End	K
Ectemnorhinus fuscus Enderlein, 1903	–	–	End	Po
Ectemnorhinus gravis Enderlein, 1940	–	*	End	Po
Ectemnorhinus richtersi Enderlein, 1904	–	–	End	Po
Ectemnorhinus viridis G.R. Waterhouse, 1853	–	*	SIO	H K
Neocanonopsis dreuxi (Hoffmann, 1939)	–	–	End	Po
Palirhoeus eatoni (C.O. Waterhouse, 1876)	–	*	SIO	Po H K
Xanium vanhoeffenianum Enderlein, 1904	–	–	End	Po
Hydraenidae				
Meropatus chuni Enderlein, 1901	–	*	End	K
Meropatus randi Enderlein, 1953	–	*	SIO	Po PE
Latridiidae				
Cartodere nodifer (Westwood, 1839)	–	*	Int	–
Latridius minutus (Linnaeus, 1767)	–	–	Int	–
Ptiliidae				
Pinus tectus Boieldieu, 1866	–	–	Int	–
Staphylinidae				
Antarctotachinus crozetensis Enderlein, 1909	–	–	End	Po
Leptus atriceps (C.O. Waterhouse, 1875)	–	*	Sub-Ant	SIO, F, SG
Xanium vanhoeffenianum Enderlein, 1904	–	–	End	Po
Tenebrionidae				
Amblystomus minimum Luff, 1972	–	*	End	Po
Amblystomus pacificus (Putzeys, 1869)	–	*	End	Po
Merizodus soledadinus (Guérin-Méneville, 1859)	–	–	Int	–
Temnostega antarctica Enderlein, 1905	–	–	End	Po
Diptera				
Anthomyiidae				
Fucellia tergina (Zetterstedt, 1845)	–	–	Int	–
Calliphoridae				
Calliphora vicina Robineau-Desvoidy, 1830	–	–	Int	–
Canacidae				
Apetaurus enderleini (Enderlein, 1909)	–	*	SIO	Po K PE
Apetaurus litoralis Eaton, 1875	–	*	SIO	Po K PE
Kerguelen Is. hosts more introduced species than native ones. We know that *Fucellia tergina* (Zetterstedt, 1845), *Limnophyes minimus* (Meigen, 1818) and Sciaridae Billberg, 1820 species were introduced before the end of the first half of the 20th century because they were already observed by Jeannel during the Bougainville expedition to Kerguelen in 1938-1939 (Séguy 1940). Séguy described three new species of sciarids from Jeannel’s collection (Séguy 1940), but a recent study has reclassified them into two species, *Lycoriella sativae* (Johannsen, 1912) and *Lycoriella ingenua* (Dufour, 1839), both likely introduced (Broadley et al. 2018). *Fucellia tergina* first observed by Jeannel was neither observed in 1965 (Dreux 1966) nor in 1968 (Davies 1973). It was then regularly observed by the scientists of the IPEV-Subanteco program and is now one of the most widespread insect species.}

Table 1 — Continuation.

Species	Possession Is.	Kerguelen Is.	Conservation status	Distribution
Carnidae				
Species 1			**Int**	–
Chironomidae			**End Po**	
Bellica albipes (Séguy, 1965)	* –	**End Po**		
Bryophanaclidus sp Thienemann, 1934	* –	**Int**		
Limnophyes minimus (Meigen, 1818)	* –	**Int**		
Microzeta mirabilis Séguy, 1965	* –	**End Po**		
Parochius crozetensis Serra-Tsio, 1986	* –	**End Po**		
Smitia sp Holmgren, 1869	– **Unknown**			
Telmatogoton amphibius (Eaton, 1875)	* –	**SIo Po K PE**		
Ephyridida				
Amalopteryx amphitima Eaton, 1875	* –	**Sub-Ant Po K H Mc**		
Helomyzidae				
Paractora durexi Séguy, 1965	* –	**SIo Po PE**		
Micropezidae			–	
Calycopteryx moseleyi Eaton, 1875	* –	**SIo H K**		
Keroplatidae			**End Po**	
Macrotera crozetensis Colless, 1970	* –	**End Po**		
Psychodidae			**Int**	
Psychoda parthenogenetica Tonnoir, 1940	* –	**Int**		
Scatopside			**End Po**	
Scatopsse notata (Linnaeus, 1758)	* –	**Int**		
Sciaridae			**Int**	
Lycoriella sativae (Johannsen, 1912)	* –	**Int**		
Lycoriella ingenua (Dufour, 1839)	* –	**Int**		
Simuliidae			**End Po**	
Croetzia crozetensis (Womersley, 1937)	* –	**End Po**		
Croetzia seguyi Beauconnu-Saguey & Vernon, 1990	* –	**End Po**		
Sphaeroceridae				
Anatalanta aptera Eaton, 1875	* –	**SIo Po H K**		
Anatalanta crozetensis Enderlein, 1908	* –	**End Po**		
Leptocera curvinervis (Stenhammar, 1855)	* –	**Int**		
Siphlopteryx antarctica Enderlein, 1909	* –	**End Po**		

Species	Possession Is.	Kerguelen Is.	Conservation status	Distribution
Trichoceridae			**Int**	–
Trichocera maculipennis Meigen, 1818	– **Int**	–	–	–
Hemiptera			–	
Aulacorthum solani (Kaltenbach, 1843)	– **Int**	–	–	–
Macrosiphum euphorbiae (Thomas, 1878)	– **Int**	–	–	–
Myzus ascalonicus Doncaster, 1946	– **Int**	–	–	–
Myzus ornatus Laing, 1932	– **Int**	–	–	–
Myzus persicae (Sulzer, 1776)	– **Int**	–	–	–
Rhopalosiphum padi (Linnaeus, 1758)	– **Int**	–	–	–
Enicocephalidae			–	
Phthirocoris antarcticus Enderlein, 1904	– **End Po**	–	–	–
Hymenoptera			–	
Figitidae			–	
Kleidotoma icarus (Quinlan, 1964)	– **SIo Po K PE**	–	–	–
Lepidoptera			–	
Plutellidae			–	
Embryonopsis halticella Eaton, 1875	– **SIo H K PE**	–	–	–
Tineida			–	
Pringleophaga crozetensis Enderlein, 1905	– **End Po**	–	–	–
Pringleophaga kerguelensis Enderlein, 1905	– **SIo Po K PE**	–	–	–
Pscoptera			–	
Ellipsocida			–	
Antarctopsocus daviesi Badonnel, 1970	– **End Po**	–	–	–
Trogidae			–	
Lepinotus patruelis Pearman, 1931	– **Int**	–	–	–
Psoquillidae			–	
Rhysopsocus eclipicus Hagen, 1876	– **Int**	–	–	–
Thysanoptera			–	
Thripidae			–	
Apterothrips apterus (Daniel, 1904)	– **Int**	–	–	–
Hemiptera

With the exception of the small edaphic bug, *Phthirocoris antarcticus* Enderlein, 1904, endemic to Crozet, this order is represented only by introduced species belonging to the family Aphididae Latreille, 1802. Six aphid species were introduced and have established (Hullé *et al.* 2003b). *Myzus ascalonicus* Doncaster, 1946 and *Rhopalosiphum padi* (Linnaeus, 1758) are the two most common species in the wild. *Myzus ascalonicus*, first observed in the 1960s (J.-F. Voisin, pers. comm.) has become the most invasive insect species on Kerguelen, being present in all locations where it was sought. *Macrospira euphorbiae* (Thomas, 1878) was first introduced on Possession Is. (Hullé *et al.* 2003b). Observed for the first time on Kerguelen in 2012, it is currently expanding its range on Kerguelen. Initially confined to the immediate vicinity of the base, it is now regularly observed at a distance of 10 km to the south-east since 2014 or 20 km to the west since 2016. In contrast, *Myzus persicae* (Sulzer, 1776) appears to be in significant decline. Observed for the first time in 2000 in a greenhouse at Port-aux-Français and then outside, it has not been observed since 2010.

Other species are regularly seen during passages of the supply boat. Most certainly brought with fresh food, these species have so far never been able to establish themselves. Thus *Nasonovia ribisnigri* (Mosley, 1841) on lettuce and *Brachycassus helichrysi* (Kaltenbach, 1843) on various vegetables are often detected on bases just after the ship stopovers.

Hymenoptera Linnaeus, 1758

The order Hymenoptera includes only one species, *Kleidotoma icarus* (Quinlan, 1964) which is native and present in SIO province. This is a flightless parasitoid of sub-Antarctic flies.

Diptera Linnaeus, 1758

Only three native Lepidoptera species have been recorded on both islands. This order does not present any naturalized alien species. Some alien species are however regularly observed especially on Possession Is., but remain transient without reproducing. The Nymphalidae Rafinesque, 1815 *Vanessa cardui* (Linnaeus, 1758) is thus frequently observed on Possession Is. during transoceanic flights as well as on Marion Is. (Crafford *et al.* 1986; Hänel 1999). In the same way, observations of a Noctuidae Latreille, 1809 (*Agrotis ipsilon*) took place recently: This species does not seem to be *Agrotis ipsilon* (Hufnagel, 1766) which was already recorded on Possession Is. in 1972 (Barbut & Voisin 2014), Marion (Crafford *et al.* 1986), Macquarie (Greenslade *et al.* 1999) and South Georgia in 2000 (Convey 2005). In 2018, a living specimen of the Pyralidae Latreille, 1809 *Plodia interpunctella* (Hübner, 1813) was recorded in one of the buildings of the Alfred Faure base. It was probably introduced with dried goods.

Psocoptera Shipley, 1904

The order Psocoptera was known by four species previously reported from the islands but these descriptions are confused and the status of these species needs to be revised. At present, only two species are retained. *Antarctopsocus daviesi* Badonnel, 1970 was considered endemic to Crozet, but it has been recently reported also from Kerguelen. The second species, *Leptinotus patruelis* Pearman, 1931 was introduced to both islands.

Thysanoptera Haliday, 1836

Only one species of Thysanoptera, *Apterostrips apteris* (Daniel, 1904), occurs on both Kerguelen and Possession Islands. This introduced species was first observed on Crozet in 1968 (Davies 1973) and has also been reported from the Prince Edward Islands (Crafford *et al.* 1986; Barendse & Chown 2001).

Remark

Despite the increase in sub-Antarctic invertebrate knowledge, complementary taxonomic studies are still needed for a few groups. These include: 1) identifications that need to be completed; 2) taxonomic problems that need to be resolved; and 3) possible intraspecific variability (at the scale of an island or between the two islands) that needs to be investigated (Table 3).

DISCUSSION

An enigmatic native fauna

The biogeographical origin of the fauna of the Kerguelen and Possession Islands is far from being elucidated. Jeannel (1965) pointed out that a significant part of the native fauna of the sub-Antarctic islands (and mainly that of Possession Island) has similarities with species from southern and eastern Africa. These species are the Coleoptera *Amblystogonium pacificum* Luff, 1972, *Antarctomathecus crozetensis* Enderlein, 1909, *Pseudoplectus antarcticus* Enderlein, 1909, the Diptera...
Siphlopteryx antarctica Enderlein, 1909, the Hemiptera Phthirocoris antarcticus, and the spiders Habnia crozetensis Hickman, 1939 and Crozetulus minutus Hickman, 1939. Jeannel’s hypothesis was based on the putative existence of a continental bridge between Africa, Madagascar and the sub-Antarctic islands, which would now have disappeared. However, this hypothesis is today highly controversial: the recent geological history of the Crozet Islands made it possible to convincingly refute this hypothesis (see e.g. Meyzen et al. 2016). To explain these similarities, other hypotheses must therefore be considered. They all depend on air or sea transport from Africa to Crozet: active flight, airborne drift, hitching a ride on other animals, or rafting on floating objects. But the geographical position, the distance to be covered and the time required to cover it (which presupposes a significant capacity for survival) make such assumptions unlikely. This debate therefore remains open.

The extreme geographic isolation of these oceanic islands does not currently explain why the number of the native free macroarthropods is higher on Possession Is. than on Kerguelen Is., which is almost 50 times larger. Similarly, despite its much smaller size and much more recent geological age, Possession Is. hosts almost six times more endemic species than Kerguelen Is. (Table 2). This noteworthy difference has been discussed by Craig (2003) and Craig et al. (2003), and is not yet completely understood.

Taxonomic and functional disharmony of native fauna

Sixty years ago, Gressitt & Weber (1959) already emphasized the disharmonic nature of the sub-Antarctic entomofauna, a remarkable feature Gressitt latter considered in greater detail (Gressitt 1970). Two holometabolous insect orders, Coleoptera and Diptera account for 71% and 75% of the native macroarthropod species on Possession Is. and Kerguelen Is., respectively. Orders usually well represented in temperate fauna such as Lepidoptera and Hymenoptera have very few species here. Functional disharmony is often associated to taxonomic disharmony: when only insects are considered, the dominance of decomposers, the comparatively low number of phytophagous species, and the deficiency of predatory species in sub-Antarctic terrestrial food-webs have often been noted (e.g. Vernon et al. 1998). This statement must however be modulated with the progress in the taxonomic knowledge of sub-Antarctic weevils as phytophagous species (Voisin et al. 2017) and also when spiders as predators are taken into account in this kind of analysis.

Anthropogenic changes in native fauna

Since the discovery by humans of these two archipelagos, the arrival of non-native species from the continents or the transport of native species between the different archipelagos of the Indian Ocean or between the islands of the same archipelago have been made possible because of a significant number of human visitors since the 19th century (Basberg & Headland 2008; Duhamel & Williams 2011). The introduction of non-native species has then been accelerated since the establishment of permanent bases in the middle of the 20th century. Twenty years ago, 14% and 33% of naturalized aliens were observed in Possession Is. and Kerguelen Is., respectively (Chown et al. 1998), when in the current work these percentages reach 26% (Possession Is.) and 53% (Kerguelen Is.). Increasing temperatures very likely play a key role for the establishment of non-native species (Lebouvier et al. 2011). The establishment of species belonging to orders already present on the islands such as spiders, beetles or flies has generated competitive phenomena. This is the case, for example, of the ground beetle Merizodus soledadinus which has become the main predator of native species such as Anatalanta aptera or the blowfly Calliphora vicina which lays eggs in the same corpses as A. aptera but with a greater efficiency (Chapuis et al. 1995; Lebouvier et al. 2020). The functioning of food webs has also been disrupted by the introduction of non-existent functional groups such as sap-feeding insects. Five aphid species have been introduced since the 1960s, including Myzus ascalonicus, which is extremely invasive and feeds preferentially on native plants (Hullé 2012) and Rhopalosiphum padi, which has transmitted phytopathogenic viruses to the native plant Poa cookii Hook.f., 1879 (Svanella-Dumas et al. 2013). It is now important to adhere to and even amplify the control measures put in place in 2006 with the creation of a nature reserve in order to limit as much as possible the arrival and, above all, the installation and expansion of new species.
Acknowledgements
This research was supported by the French Polar Institute (IPV, “programme 136 Subanteco”) and the French National Center for Scientific Research (CNRS, Zone Atelier de Recherche sur l’Environnement antarctique et subantarctique). We thank Steven Chown and Sylvain Hugel for their insightful comments and suggestions. We also thank Christelle Buchard and Romain Georges for their help in samples management and identification as well as all the young scientific volunteers who helped during fieldwork.

REFERENCES

BADONNEL A. 1947. — Procophtères, in JEANNEL R. (ed.), Croisière du Bougainville aux îles australiennes françaises XIV. Muséum national d’Histoire naturelle, Paris, 119 p. (Mémoires du Muséum national d’Histoire naturelle - Nouvelle Série (1935-1950) ; 20 (1)): 25-30.

BARRUT J. & VOISIN J. F. 2014. — Deux espèces de Noctuidae introduites dans l’archipel Crozet (Océan indien austral) (Lepidoptera). L’Entomologiste 70: 121-122.

BARENDE J. & CHOWN S. L. 2001. — Abundance and seasonality of mid-altitude fallfield arthropods from Marion Island. Polar Biology 24: 73-82. https://doi.org/10.1007/s003000000172

BASBERG B. L. & HEADLAND R. K. 2008. — The 19th Century Antarctic Sealing Industry. Sources, Data and Economic Significance. SCAR/LASC IPY Open Science Conference. St Petersburg: Norges Handelsøkshoy, Discussion paper: 1-24.

BRADLEY A., KAUSCHKE E. & MOHR W. 2018. — Black fungus gnats (Diptera: Sciaridae) found in association with cultivated plants and mushrooms in Australia, with notes on cosmopolitan pest species and biosecurity interceptions. Zootaxa 4415: 201-242. https://doi.org/10.11646/zootaxa.4415.2.1

CHAPELIN-VISCARDI J. D., VOISIN J. F., PONEIL P. & VAN DER PUTTEN N. 2010. — Pachnoda dreuxi n. g., n. sp., ses occurrences modernes et fossiles sur l’archipel Crozet (Coléoptère Curculionidae Ectemnorhinae). Annales de la Société entomologique de France (N.S.) 46: 125-131. https://doi.org/10.1058/00397271.2010.1069764

CHAPUIS J.-L., BARNAUD G., BIOROT E., LEBOUVIER M. & PASCAL M. 1995. — L’édification des espèces introduites, un préalable à la restauration des milieux insulaires. Cas des îles françaises. Natures, Sciences, Sociétés, Hors-Série 3: 53-67.

CHEVERRI M., VERNON P. & FRENOT Y. 1997. — Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen islands, ThBattaglia B., VALENCIA J. & WALTON D. W. H. (eds) Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press: 424-431.

CHOWN S. L. 1992. — A Preliminary Analysis of Weevil Assemblages in the Sub-Antarctic: Local and Regional Patterns. Journal of Biogeography, 19: 87-98.

CHOWN S. L. 1994. — Historical ecology of sub-Antarctic weevils (Coleoptera: Curculionidae): patterns and processes on isolated islands. Journal of Natural History 28: 411-433.

CHOWN S. L. & CONVEY P. 2016. — Antarctic Entomology. Annual Review of Entomology, 61: 119-137. https://doi.org/10.1146/annurev-ento-010715-023537

CHOWN S. L. & FRONEMAN P. W. 2008. — The Prince Edward Islands, Land-Sea Interactions in a Changing Ecosystem, Stellenbosch, Sun Press, 469 p.

CHOWN S. L., GREMEN N. J. M. & GASTON K. J. 1998. — Ecological Biogeography of Southern Ocean Islands: Species-Area Relationships, Human Impacts, and Conservation. American Naturalist, 152: 562-575.

CONVEY P. 2005. — Recent lepidopteran records from sub-Antarctic South Georgia. Polar Biology 28: 108-110. https://doi.org/10.1007/s00300-004-0681-6

CRAFFORD J. E., SCHOLTZ C. H. & CHOWN S. L. 1986. — The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen Biogeographical Province. South African Journal of Antarctic Research 16: 42-84.

CRAIG D. A. 2003. — Deconstructing Gondwana — words of warning from the Crozet Island Simulidae (Diptera). Cimbebasia 19: 157-164.

CRAIG D. A., CURRIE D. C. & VOISIN P. 2003. — Crozetia Davies (Diptera: Simulidae): redescription of Cr. crozetensis, Cr. segyi, number of larval instars, phylogenetic relationships and historical biogeography. Zootaxa 259: 1-39.

DAVES L. 1973. — Observations on the distribution of surface-living land arthropods on the Subantarctic Île de la Possession, Îles Crozet, Journal of Natural History 7: 241-253.

DE VILLIERS M. S., COOPER J., CARMICHAEL N., GLASS J. P., LIDDLE G. M., MCIOR E., MICOI T. & ROBERTS A. 2006. — Conservation Management at Southern Ocean Islands: towards the Development of Best-Practice Guidelines. Polarforschung 75: 113-131.

DREUX P. 1966. — La faune entomologique de l’archipel Crozet et son endémisme. CNFRA (Comité national français des Recherches antarctiques) 15: 35-55.

DREUX P. & VOISIN J. F. 1993. — Faune entomologique de l’île des Pingouins (archipel Crozet). Bulletin de la Société entomologique de France 97: 453-464.

DREUX P., FRENOT Y., JOUVENUT P., MASSE L. & VERDIER O. 1988. — First scientific expedition to Île des Pingouins, Archipel Crozet. Polar Record 24: 235-238.

DUHAMEL G. & WILLIAMS R. 2011. — History of whaling, sealing, fishery and aquaculture trials in the area of the Kerguelen Plateau. Cibium 35: 15-28.

FALK-PETERSEN J., BOHN T. & SANDLUND O. 2006. — On the Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarctic Science 19: 17-24. https://doi.org/10.1017/S0954102007000041

FRENOT Y., CHOWN S. L., WHINAM J., SELKIRK P. M., CONVEY P., SKOTNICKI M. & BERGSTRÖM D. M. 2005. — Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews 80: 45-72. https://doi.org/10.1017/S1464793104006542

GIRET A., WELS D., GREGOIRE M., MATTIELLI N., MOINE B., MICHON G., SCOTAES J., TOURPIN S., DELPECH G., GERRE M. C., DOUCET S., ETHIEN R. & COTTIN J. Y. 2003a. — L’Archipel de Kerguelen: les plus vieilles îles dans le plus jeune océan. Géologues 137: 23-39.

GIRET A., WELS D., ZHOU X., COTTIN J. Y. & TOURPIN S. 2003b. — Les îles Crozet. Géologues 137: 15-23.

HAGENDAAS P., FRAWO B. A. & SMITH J. M. B. 1999. — Long distance migration of insects to a subantarctic island. Journal of Biogeography 26: 1161-1167. https://doi.org/10.1046/j.1365-2699.1999.00356.x

GREMMEN N. J. M., VAN DE VIJVER B., FRENOT Y. & LEBOUVIER M. 2007. — Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarctic Science 19: 17-24. https://doi.org/10.1017/S0954102007000041

GREFFITT J. L. 1970. — Subantarctic entomology and biogeography. Pacific Insects Monograph 23: 295-374.

GREFFITT J. L. & WEBER N. A. 1959. — Bibliographic introduction to antarctic - subantarctic entomology. Pacific Insects 1: 441-480.

HANEL C. 1999. — The distribution and abundance of macro-invertebrates in the major vegetation communities of Marion Island and the impact of alien species. Msc. University of Pretoria, 121 p.

HEGER T. J., MITCHELL E. A. D., LEDEGANCK P., VINCE S., VAN DE VIJVER B. & BEYENS L. 2009. — The curse of taxonomic uncertainty in biogeographical studies of free-living terrestrial protists: a case study of testate amoebae from Amsterdam Island. Journal of Biogeography 36: 1551-1560. https://doi.org/10.1111/j.1365-2699.2009.02094.x

HULLE M. 2012. — Myzus ascalonicus, an Aphid Recently Introduced to Sub-Antarctic Islands, Prefers Native to Exotic Host-Plants. Environmental Entomology 41: 1398-1404. https://doi.org/10.1603/en12057
Hulle M., Pannetier D., Maurice D., Courmont L., Chaillon C., Chaillon P.-E., Sacone P., Hébert C., Gracia M., Biffin J., Simon J.-C. & Frenot Y. 2003a. — Aphids from Kerguelen and Crozet Islands, Subantarctic. In Huiskes A. H. L., Gieskes W. W. C., Rozema J., Schorno R. M. L., Van Der Vies S. M. & Wolff W. J. (eds) Antarctic Biology in a Global Context. Leiden: Backhuys Publishers: 308-312.

Hulle M., Pannetier D., Simon J.-C., Vernon P. & Frenot Y. 2003b. — Aphids of sub-Antarctic Iles Crozet and Kerguelen: species diversity, host range and spatial distribution. Antarctic Science 15: 203-209.

Vernon P. & Renaud D. 2020. — Spotlight on the invasion of a carabid beetle on an oceanic island over a 105-year period. Scientific Reports 10: 17103. https://doi.org/10.1038/s41598-020-72754-5

Lebouvier M., Labaret P., Garnier A., Convey P., Frenot Y., Vernon P. & Renaud D. 2020. — Climate change and invasion success of two alien insects at the Kerguelen Islands: role of morphological and ecophysiological adjustments to the novel environmental conditions. Thesis, Biology, University of Rennes 1, 200 p.

Lebouvier M., Labaret P., Hulle M., Marais A., Cozic Y., Lalouette L., Vernon P., Candresse T., Frenot Y. & Renaud D. 2011. — The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biological Invasions 13: 1195-1208. https://doi.org/10.1007/s10530-011-9946-5

Ledoux J. C. 1991. — Araignées des îles subantarctiques françaises (Crozet et Kerguelen). Revue Arachnologique 9: 119-164.

Lehy R. I., Duffy G. A. & Chown S. L. 2018. — Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere 9: e02359. https://doi.org/10.1002/ecs2.2359

Lewis Smith R. I. 1984. — Plant biology of the Sub-Antarctic and Antarctic. In Laws R. M. (ed.) Antarctic Ecology. London: Academic Press: 61-162.

McClelland G. T. W., Altwegg R., Van Aarde R. J., Ferreira S., Burger A. E. & Chown S. L. 2018. — Climate change leads to increasing population density and impacts of a key island invader. Ecological Applications 28: 212-224. https://doi.org/10.1002/1051-0761.12619

McGeoch M. A., Shaw J. D., Terauds A., Lee J. E. & Chown S. L. 2015. — Monitoring biological invasion across the broader Antarctic: A baseline and indicator framework. Global Environmental Change 32: 108-125. https://doi.org/10.1016/j.gloenvcha.2014.12.012

Mezey C. M., Marzoli A., Belliemi G. & Levresse G. 2016. — Magmatic Activity on a Motionless Plate: the Case of East Island, Crozet Archipelago (Indian Ocean). Journal of Petrology 57: 1409-1436. https://doi.org/10.1093/petrology/egw045

Orlov I., Solodovnikov A. & Leschen R. A. B. 2019. — Systematics and biogeography of the subantarctic Leptusa (Coleoptera: Staphylinidae: Aleocharinae: Holomorphini). Systematics and Biodiversity 17: 60-79. https://doi.org/10.1080/14772000.2018.1547329

Ouisse T. 2016. — Phenotypic and genetic characterisation of the carabid beetle Merizodorus soledadinus along its invasion gradient at the subantarctic Kerguelen islands. Thesis, Biology, University of Rennes 1, 158 p.

Preston G. R., Dilley B. J., Cooper J., Beaumont J., Chauke L. F., Chown S. L., Devanathan N., Dopololo M., Fikizo L., Heine J., Henderson S., Jacobs C. A., Johnson E., Kelly J., Makhadu A. B., Marais C., Maroga J., Mayekiso M., McClelland G., Mphoja J., Muir D., Ngcaba N., Ngcobo N., Parkes J. P., Paulsen E., Schoomiae S., Springier K., Stringer S., Valentine H., Wannles R. M. & Ryan P. G. 2018. — Monitoring biological invasion across the broader Southern Ocean Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biological Invasions 13: 1195-1208. https://doi.org/10.1007/s10530-011-9946-5

Remaudière G. & Étienne J. 1988. — Les Aphididae (Hom.) des îles et archipels de l’Océan Indien. L’agronomie tropicale 43: 327-346.

Renaud S., Hardouin E. A., Pisani B. & Chapuis J. L. 2013. — Invasive house mice facing a changing environment on the Sub-Antarctic Guillou Island (Kerguelen Archipelago). Journal of Evolutionary Biology 26: 612-624. https://doi.org/10.1111/jeb.12079

Roff D. A. 1990. — The Evolution of Flightlessness in Insects. Ecological Monographs, 60: 389-421. https://doi.org/10.2307/1943013

Seguy E. 1940. — IV. Diptères, in Jeannel R. (ed.) Croisère du Bougainville aux îles australes françaises. Muséum national d’Histoire naturelle, Paris (Mémoires du Muséum national d’Histoire naturelle - Nouvelle Série (1935-1950) ; 14): 63-201.

מתרלן ר. (ed.) The Evolution of Flightlessness in Insects. Ecological Monographs, 60: 389-421. https://doi.org/10.2307/1943013

Seymour A. R., Russell J. C. & West C. J. (eds) 2013. — South Africa works towards eradicating introduced house mice from sub-Antarctic Marion Island: the largest island yet attempted for mice, in Veitch C. R., Clout M. N., Martin A. R., Russell J. C. & West C. J. (eds) Island Invasives: Scaling up to Meet the Challenge. Gland: IUCN: 40-46.

Sylvie A. 2008. — La signification de la sub-Antarctique Kerguelen et Crozet. Les Coléoptères de la province de Kerguelen (îles subantarctiques de l’océan Indien). Faune de France 99, Série (1935-1950) ; 14): 63-201.

Thierry D. 2019. — Sys-