Arterial Blood Gas as a Predictor of Mortality in COVID Pneumonia Patients Initiated on Noninvasive Mechanical Ventilation: A Retrospective Analysis

Bhavna Gupta1, Gaurav Jain2, Saurabh Chandrakar2, Nidhi Gupta3, Ankit Agarwal2

ABSTRACT

Background: The alveolar–arterial oxygen (A-a) gradient measures the difference between the oxygen concentration in alveoli and the arterial system, which has considerable clinical utility.

Materials and methods: It was a retrospective, observational cohort study involving the analysis of patients diagnosed with acute COVID pneumonia and required noninvasive mechanical ventilation (NIV) over a period of 3 months. The primary objective was to investigate the utility of the A–a gradient (pre-NIV) as a predictor of 28-day mortality in COVID pneumonia. The secondary objective included the utility of other arterial blood gas (ABG) parameters (pre-NIV) as a predictor of 28-day mortality. The outcome was also compared between survivors and nonsurvivors. The outcome variables were analyzed by receiver-operating characteristic (ROC) curve, Youden index, and regression analysis.

Results: The optimal criterion for A–a gradient to predict 28-day mortality was calculated as ≤430.43 at a Youden index of 0.5029, with the highest area under the curve (AUC) of 0.755 (p < 0.0001). On regression analysis, the odds ratio for the A–a gradient was 0.99. A significant difference was observed in ABG predictors, including PaO2, PaCO2, A–a gradient, AO2, and arterial–alveolar (a–A) (%) among nonsurvivors vs survivors (p-value < 0.001). The vasopressor requirement, need for renal replacement therapy, total parenteral requirement, and blood transfusion were higher among nonsurvivors; however, a significant difference was achieved with the vasopressor need (p < 0.001).

Conclusion: This study demonstrated that the A–a gradient is a significant predictor of mortality in patients initiated on NIV for worsening respiratory distress in COVID pneumonia. All other ABG parameters also showed a significant AUC for predicting 28-day mortality, although with variable sensitivity and specificity.

Key messages: COVID-19 pneumonia shows an initial presentation with type 1 respiratory failure with increased A–a gradient, while a subsequent impending type 2 respiratory failure requires invasive ventilation.

A significant difference was observed in ABG predictors, including PaO2, PaCO2, A–a gradient, AO2, and a–A (%) among nonsurvivors vs survivors. (p-value < 0.001).

The vasopressor requirement, need for renal replacement therapy, total parenteral requirement, and blood transfusion need were higher among nonsurvivors than survivors; however, a significant difference was achieved with the vasopressor need (p < 0.001).

Keywords: COVID-19 Acute Respiratory Distress Syndrome, Critically ill adults, Mortality predictors.

Indian Journal of Critical Care Medicine (2021): 10.5005/jp-journals-10071-23917

INTRODUCTION

Severe acute respiratory syndrome–related coronavirus-2 (SARS-CoV-2) is a virus-targeted respiratory disorder with a broad range of symptoms ranging from asymptomatic cases to severe pneumonia or acute respiratory distress syndrome (ARDS); the reported mortality rate is as high as 78% in critically ill patients. For efficient use of limited healthcare resources, early detection of risk factors and timely management are critical to minimize the adverse outcome.

The alveolar–arterial oxygen gradient (A–a gradient), which measures the difference between the oxygen concentration in alveoli and the arterial system, has considerable clinical utility in narrowing the differential diagnosis for the cause of hypoxemia. Although a perfect system should have a zero A–a gradient, the underlying heterogeneity in capillary perfusion and alveolar ventilation from the apical to basal lung units leads to a physiological A–a gradient throughout the lung. It is further affected by demographic characteristics and various pathological processes. The pulmonary disorders that alter the ventilation–perfusion ratio or disturb the oxygen transfer from the alveoli to pulmonary circulation compromise the arterial oxygenation and increase this gradient.

©Jaypee Brothers Medical Publishers. 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
ABG as a Predictor of Mortality in COVID Pneumonia Patients on NIV

The recent literature on COVID-19 pneumonia shows an initial presentation with type 1 respiratory failure with increased A–a gradient, while a subsequent impending type 2 respiratory failure requires invasive ventilation. A higher A–a gradient at the initiation of noninvasive mechanical ventilation (NIV) signifies a higher degree of ventilation–perfusion mismatch or interstitial pathology. So, we hypothesized that it should reflect subsequent mortality in such patients. Thus, we aimed to assess the utility of ABG parameters as a predictor of 28-day mortality in COVID pneumonia patients initiated on NIV.

Materials and Methods

After institutional ethical clearance (via letter no AIIMS/IEC/21/17, dated January 9, 2021), under a retrospective, observational cohort design, this study involved the collection, classification, and analysis of patients aged >18 years of either sex, admitted to this tertiary care institute in between July and September 2020 (3-month data), diagnosed with acute COVID pneumonia, and required NIV. We excluded those with any previous history of cardiopulmonary disease, renal disorder, psychiatric illness, pregnancy, lactation, recent hospitalization (past 3 months), immunocompromised status, or malignancy. We also followed the patient’s data till discharge or death or 28 days since admission, whichever occurred first, through hospital records.

We categorized a patient as COVID-positive case on getting a positive reverse-transcriptase–polymerase chain reaction report from a nasal or pharyngeal swab specimen. According to the institution guidelines, patients were classified as moderate- or severe based on the presence of hypoxia (SpO₂ <93%) or radiological evidence of pneumonia or ARDS and organ impairment and shock. A high-resolution computed tomographic scan was done for COVID-19 patients with inconclusive chest X-ray and persistent symptoms. The indication for initiation of NIV included standard protocol as followed in our tertiary care institute. The indications included symptoms of ARDS, such as dyspnea at rest, respiratory rate >25 breath/minute, use of accessory respiratory muscles, or paradoxical breathing, and signs of disturbed alveolar gas exchange in ABG parameters, including partial pressure of carbon dioxide (PaCO₂) >45 mm Hg, arterial power of hydrogen (pH) <7.25, the partial pressure of oxygen (PaO₂) <60 mm Hg or ratio of the partial pressure of oxygen or fraction of inspired oxygen (PaO₂/FiO₂) <200. The indication for initiation of invasive mechanical ventilation included the following: poor patient compliance/leaking interface with no improvement in respiratory condition despite all efforts, Glasgow coma scale <9 or deterioration >3, hemodynamic instability, cardiac arrhythmia, the inability of the NIV to improve respiratory distress or gas exchange disturbance within 2 hours of initiation, apnea or respiratory rate (RR)>35 breaths/minute, or inability to maintain a patent airway.

The data collected comprise stay and 28-day mortality. The ABG parameters included PaO₂, PaCO₂, bicarbonate (HCO₃⁻), a fraction of inspired oxygen concentration (FiO₂), PaO₂/FiO₂, A–a gradient, respiratory index, and arterial–alveolar (a–A) oxygen ratio, by following equations:

- A–a ratio was calculated by the following equations:
 \[\text{PaO}_2 = \text{FiO}_2 \times (P_\text{a} - 47) - \text{PaCO}_2 / R \]
 \[\text{PaO}_2 = 0.21 \times (760 - 47) - \text{PaCO}_2 / 0.8 \]

- PaO₂ = 150 – PaCO₂/0.8

Here PaO₂ = partial pressure of alveolar oxygen, PaCO₂ = partial pressure of arterial carbon dioxide, FiO₂ = fraction of inspired oxygen, Patm = atmospheric pressure (at sea level = 760 mm Hg), PH₂O = water partial pressure in alveolus, 100% saturated (at sea level = 47 mm Hg) and R = respiratory quotient (normally 0.8).

- Respiratory index was calculated by dividing pO₂ from A–a gradient:
 Respiratory index (RI) (RI = pO₂(A – a)/pO₂(a))

- PaO₂/FiO₂ ratio was calculated by dividing alveolar oxygen to inspired oxygen

- a–A ratio was calculated as a ratio of arterial and alveolar PaO₂.

Aims and Objectives

The primary objective was to investigate the utility of A–a gradient (pre-NIV) as a predictor of 28-day mortality in COVID pneumonia patients initiated on NIV.

The secondary objective included the utility of other ABG parameters (pre-NIV) as a predictor of 28-day mortality in the above patients. The outcome studied in terms of ABG parameters and other variables like the vasopressor requirement, the need for renal replacement therapy, total parenteral requirement, and blood transfusion was compared between survivors and nonsurvivors.

The sample size was calculated using Medcalc statistical software version 14.8.1. Taking into account a receiver-operating characteristic (ROC) curve value of 0.70 as significant for pre-NIV A–a gradient as a predictor of 28-day mortality, a null hypothesis ROC curve value of 0.50, an alpha error of 0.05, an 80% power, and a survival: mortality ratio of 3:1, we required sample size of 88 (66:22). To increase the significance of results, we aim to recruit all eligible cases for the assessment period. The statistical analysis was performed with Statistical Package for the Social Sciences version 23.0 software (SPSS, IBM Corp. Armonk, New York, United States). The data were expressed as means and standard deviation (SD) or as number and percentage. The outcome variables were analyzed by a ROC curve, Youden index, and regression analysis. Continuous data were analyzed by Student’s t-test. The Chi-square test analyzed the categorical parameters. A p-value <0.05 denotes statistical significance.

Results

We included 165 patients in the final analysis. Thirty-four patients expired (nonsurvivors), while the remaining (survivors) had a successful outcome. The mean age of included patients was 53.3 years; males were 61% and females 39%, most had no comorbidities, while others had hypertension or diabetes. The mean pre-NIV A–a gradient was 403.83 (range: 379.66–427.99). The mean FiO₂ patients were receiving at this time point was 69.7% (range: 21–100%) through nasal prongs, face masks, venturi masks, or rebreathing masks. The mean pre-NIV PaO₂ was 56.03 mm Hg (range: 28–96 mm Hg), and the mean PaCO₂ was 29.7 mm Hg (range: 18–53 mm Hg), suggesting type I respiratory failure in the majority of the patients. The mean pH was 7.43 (range: 7.28–7.54), while the mean HCO₃⁻ was 21.48 mEq/L (range 12.5–34), and the mean PaO₂/FiO₂ ratio was 89.87 (22.3–217.85) (Table 1). Mean ICU stay was 14.2 days.
For validity analysis, we plotted a ROC curve for each ABG parameter. The optimal criterion for A–a gradient to predict 28-day mortality was calculated as ≤430.43 (sensitivity: 67.94%, specificity: 82.35%) at a Youden index of 0.5029, with the highest area under the curve (AUC) of 0.755 (p < 0.0001). On regression analysis (Table 2), the odds ratio (OR) for the A–a gradient was 0.99, indicating no further increase in the log-odds of mortality with an increase in A–a gradient above the threshold value.

The optimal criterion for PaO₂/FiO₂ to predict 28-day mortality was measured as >110 (sensitivity 61.3%, specificity 100%) at a Youden index of 0.31 and AUC of 58% (p-value: 0.0793). The optimal criterion for the respiratory index to predict 28-day mortality was found to be ≤4.96 (sensitivity 35.11%, specificity 100%) at a Youden index of 0.35 and AUC of 60% (p-value: 0.0194). The optimal criterion for a–A percentage to predict 28-day mortality was observed to be >24.9 (sensitivity 35.11%, specificity 100%) at a Youden index of 0.35 and AUC of 60% (p-value: 0.0194). The optimal criterion for PaCO₂ to predict 28-day mortality was observed to be >24.9 (sensitivity 88.5%, specificity 55.9%) at a Youden index of 0.388 and AUC of 72.9% (p-value < 0.0001). The optimal criterion of PaO₂ to predict 28-day mortality was observed to be ≤54 (sensitivity 56.5%, specificity: 82.5%, % LR+ 3.2) at a Youden index of 0.44 and AUC of 66.7% (p-value: 0.0014). The optimal pH criterion to predict 28-day mortality was observed to be ≤7.468 (sensitivity 79.4%, specificity: 64.7%, %LR+ 2.25, LR-0.32) at a Youden index of 0.44 and AUC of 66% (p-value: 0.0076). The optimal criterion of HCO₃⁻ to predict 28-day mortality was observed to be >19.7 (sensitivity: 61.1%, specificity: 82.4%) at a Youden index of 0.4342 and an AUC of 66.3% (p-value: 0.0016) (Table 3 and Fig. 1).

A significant difference was observed in ABG predictors, including PaO₂, PaCO₂, A–a gradient, Ao₂, and a–A (%) among nonsurvivors vs survivors (p-value < 0.001). The vasopressor requirement, need for renal replacement therapy, total parenteral requirement, and blood transfusion need were higher among nonsurvivors than survivors; however, a significant difference was achieved with the vasopressor need (p < 0.001) (Table 4).

Discussion

This study demonstrated that the A–a gradient is a significant predictor of mortality in patients initiated on NIV for worsening respiratory distress in COVID pneumonia. The optimal criterion for the A–a gradient to predict above was observed to be ≤430.43. All other ABG parameters also showed a significant AUC for predicting 28-day mortality, although with variable sensitivity and specificity.

It is known that increased cardiopulmonary vascular shunt or altered alveolar diffusion barrier can substantially affect the A–a gradient. Given the impact of COVID-19 interstitial pulmonary involvement on gas exchange, ventilation–perfusion mismatch, and shunting, we decided to test ABG parameters’ validity, particularly A–a gradient, in predicting mortality. The available data indicate that around 40% of COVID-19 patients develop ARDS (20% severe cases), with 5–10% requiring ICU admission and invasive ventilation. Although most patients survive an acute illness, a subset develops fibro-proliferative response marked by fibrosis, pleural effusion, and decreased carbon dioxide metabolism.

Table 1: Pre-noninvasive ventilation, arterial blood gas, and other parameters

Parameters	Mean and SD	95% CI
Age (years)	53.30 ± 12.99	51.305–55.301
ICU length (days)	14.20 ± 6.80	4–40
A–a gradient	403.83 ± 157.21	379.663–427.998
PaO₂/FiO₂	89.88 ± 3.42	22.3–217.86
Respiratory index	8.35 ± 0.40	1.39–28.99
A–A (%)	26.08 ± 2.75	3.58–250
FiO₂	69.70 ± 22.02	66.318–73.088
HCO₃⁻	21.48 ± 12.98	19.489–23.482
K⁺	3.74 ± 0.48	3.672–3.823
Na⁺	135.07 ± 6.46	134.085–136.073
PaCO₂	29.69 ± 6.08	28.756–30.627
PaO₂	56.03 ± 19.54	53.033–59.042
PaO₂/FiO₂	89.87 ± 43.94	83.119–96.632
pH	7.432 ± 0.06	7.423–7.442

Table 2: Validity parameters for arterial blood gas and derived parameters

Parameter	AUC	YI	Criterion	Sensitivity	Specificity	+LR	−LR	p-value
A–a gradient	0.76	0.5	≤430.43	67.94	82.35	3.85	0.39	<0.0001
PaO₂/FiO₂	0.58	0.31	>110	31.30	100.00	0.69	0.073	
Respiratory index	0.60	0.35	≤4.96	35.11	100.00	0.65	0.0194	
A–A (%)	0.60	0.35	>24.99	35.11	100.00	0.65	0.0194	
PaO₂	0.67	0.39	≤54	56.49	82.35	3.2	0.53	0.0014
PaCO₂	0.73	0.44	>24.9	88.55	55.88	2.01	0.2	<0.0001
pH	0.66	0.44	≤7.47	79.39	64.71	2.25	0.32	0.0076
HCO₃⁻	0.66	0.43	>19.7	61.07	82.35	3.46	0.47	0.0016

PaO₂, partial pressure of oxygen (mm Hg); PaCO₂, the partial pressure of carbon dioxide; pH, arterial power of hydrogen; PaO₂/FiO₂, ratio of the partial pressure of oxygen or fraction of inspired oxygen; A–a gradient, alveolar–arterial gradient (mm Hg); HCO₃⁻, bicarbonate (mEq/L); a–A (%), arterial–alveolar (percentage); K⁺, Potassium (mEq/L); Na⁺, Sodium (mEq/L); SD, standard deviation; CI, confidence interval.

Table 3: Regression analysis for A–a gradient

Variable	Odds ratio	95% CI	p-value
A–a gradient	0.9934	0.9904–0.9964	<0.0001
Sample size	165	Nonsurvivors: 34 (20.61%)	Survivors: 131 (79.39%)
by fibroblast aggregation and deposition of collagen and other extracellular matrix components in the lung. Historically, the occurrence of severe fibro-proliferative pulmonary desease has been associated with a poor prognosis, causing high mortality and/or prolonged ventilation dependence. In the present study, we found that the A–a gradient effectively predicted mortality in moderate to severe COVID-19 patients. Previous studies have shown that the A–a gradient was higher among nonsurvivors than survivors who had community-acquired pneumonia (AUC 0.78), with a mean A–a gradient of 148.64 and 90.16 among nonsurvivors and survivors, respectively. In another published literature, AaDO2 (A–a gradient) and AaDO2 augmentation displayed good accuracy (AUC: 0.952 and 0.810, respectively) to predict ICU admission in patients with COVID-19. However, their cutoff value was 56.6 ± 17.5 in the ICU group and 25.9 ± 9.7 in the non-ICU group; given small sample size, strong emphasis cannot be laid upon results. Farina et al. also investigated the role of A–a gradient in predicting the need for hospitalization, the survival rate, and identifying pneumonia in patients with SARS-CoV-2 infection. They reported that out of 168 patients with AaDO2 ≤27, only 3 (1.8%) required readmission within 7 days; it could be attributed to the inclusion of patients with less disease severity. In our study, all patients were in respiratory failure requiring NIV, which could account for higher cutoff values of observed mean A–a gradient.

In recent years, the a–A tension ratio (PaO2/FiO2), sometimes denoted a–APO2, has been used as an index of pulmonary gas exchange. While the a–A tension difference (A–aPO2) is known to depend strongly on the FiO2, a–APO2 is less dependent on the extrapulmonary factors. The PaO2/FiO2 ratio is also widely used as a clinical indicator of hypoxemia, though its diagnostic utility is controversial. The optimal criterion for PaO2/FiO2 respiratory index, and a–A percentage to predict 28-day mortality in our study were also found to have significant differences, as expected. We observed a considerable difference in ABG predictors, including PaO2, PaCO2, A–a gradient, AO2, and a–A (%) among nonsurvivors vs survivors (p-value <0.001), which was expected in the disease. The hallmark of disease severity in COVID-19 patients is hypoxemia, although the associated symptoms, including respiratory distress, develop late in the disease (“silent hypoxemia”). We calculated a criterion value of >24.9, ≤54, and ≤7.468 for PaCO2, pO2, and pH, respectively, to predict 28-day mortality in patients developing respiratory distress and requiring NIV. Tendon et al. also demonstrated a significant difference in PaO2 among survivors and nonsurvivors; a statistical difference was not observed for PaCO2 and pH.

We also compared morbidity predictors, and patient course during the ICU stay, and higher need for vasopressor requirement, continuous renal replacement therapy requirement, total parenteral nutrition requirement, and blood transfusion need among nonsurvivors. The underlying cause is multifactorial, including hypovolemia (fever, restricted fluid administration to prevent overload), vasodilation (sepsis, deep sedation during mechanical ventilation), and right or/and left ventricular dysfunction (mechanical ventilation with high positive end-expiratory pressure, pulmonary embolism, and circulating cytokines decreasing contractility, myocarditis). Although the requirement for vasopressor support is quite common in COVID-19 ICU patients, the detailed hemodynamic profile or phenotype remains poorly documented. A similar duration of ICU stay was due to the development of the fibro-proliferative phase requiring oxygen supplementation, and it is further reflected by the similar need for parenteral nutrition, blood transfusion, and renal replacement therapy.

There were several limitations in this study. Although we followed a standard protocol for initiating invasive and NIV, changing guidelines from time to time concerning steroid therapy, antiviral therapy initiation, and self-proning protocol may have affected the patient outcome. Another limitation included the delayed availability of high-flow nasal cannula, which can also affect the outcome. The fact that the research was performed at

Parameters	Survivors (n = 131)	Nonsurvivors (n = 34)	p-value
Age	51.34 ± 13.09	60.97 ± 9.34	0.154
pH	7.43 ± 0.0595	7.46 ± 0.061	0.012
pCO2 (mm Hg)	30.67 ± 6.08	25.93 ± 4.49	0.000
pO2 (mm Hg)	53.77 ± 19.29	64.79 ± 18.24	0.003
HCO3 (mm Hg)	22.21 ± 14.37	18.70 ± 3.7	0.162
A–a gradient based on pO2	375.49 ± 157.15	513.04 ± 100.31	0.000
ICU length of stay	13.927 ± 6.86	15.206 ± 6.61	0.334
respiratory index	8.27 ± 5.6	8.69 ± 3.22	0.676
AO2	321.71 ± 161.2	448.25 ± 99.92	0.000
a–A (%)	28.90 ± 39.21	15.19 ± 5.75	0.000
Mechanical ventilation days	12.00 ± 1.2	11.40 ± 5.56	0.917
Vasopressor requirement	0.130 ± 0.33	0.515 ± 0.50	0.000
CRRT requirement	0.137 ± 0.345	0.176 ± 0.387	0.568
TPN requirement	0.092 ± 0.28	0.176 ± 0.38	0.159
Blood transfusion requirement	0.099 ± 0.30	0.206 ± 0.410	0.09

PaCO2, carbon dioxide; pH, arterial power of hydrogen; PaO2, the partial pressure of oxygen; PaO2/FiO2, ratio of the partial pressure of oxygen to fraction of inspired oxygen; A–a, alveolar–arterial; HCO3, bicarbonate; a–A (%), arterial–arterial (percentage); CRRT, continuous renal replacement therapy; TPN, total parenteral nutrition.
Figs 1A to H: Receiver-operating characteristic curve for (A) a gradient; (B) pO$_2$/FiO$_2$; (C) respiratory index; (D) a–A (%); (E) PaO$_2$; (F) PaCO$_2$; (G) pH; (H) HCO$_3$.
one center is also a limitation of the study, restricting the findings’
generalizability.

Conclusion
The A–a gradient is a significant predictor of mortality in patients
initiated on NIV for worsening respiratory distress in COVID
pneumonia. All other ABG parameters also showed a significant AUC
for predicting 28-day mortality, although with variable sensitivity
and specificity.

Highlights
The routine analysis of these simple, quick, readily accessible, and
cost-effective ABG parameters, especially the A–a gradient, reliably
predicted the poor prognosis of patients at NIV initiation. It will
aid in the early initiation of NIV and prognostication of adverse
outcomes.

Orcid
Bhavna K Gupta @https://orcid.org/0000-0002-3108-0408
Gaurav Jain @https://orcid.org/0000-0002-1205-7237
Saurabh Chandrakar @https://orcid.org/0000-0003-2449-2153
Nidhi Gupta @https://orcid.org/0000-0001-7952-5317
Ankit Agarwal @https://orcid.org/0000-0003-4963-7101

References
1. Li X, Ma X. Acute respiratory failure in COVID-19: is it "typical" ARDS?
 Crit Care 2020;24(1):198. DOI: 10.1186/s13054-020-02911-9.
2. Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care
 in patients with COVID-19: a systematic review and meta-analysis
 of observational studies Anaesthesia 2020;75(10):1340–1349. DOI:
 10.1111/anae.15201.
3. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G,
et al. Risk factors associated with mortality among patients with
COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med
2020;180(10):1345–1355. DOI: 10.1001/jamainternmed.2020.3539.
4. Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung
 India 2017;34(1):47–60. DOI: 10.4103/0970-2113.197116.
5. Dhont S, Derom E, Braeckel E, Depuydt P, Lambrecht BN. The
 pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir Res
 2020;21(1):198. DOI: 10.1186/s12931-020-01462-5.
6. Sharma S, Hashmi M, Burns B. Alveolar gas equation. In: Treasure
 Island (FL); 2020.
7. Brosnahan S, Jonkman A, Kugler M, Munger J, Kaufman D. COVID-19
 and respiratory system disorders. Arterioscler Thromb Vasc Biol
 2020;40(11):2586–2597. DOI: 10.1161/ATVBAHA.120.314515.
8. Burnham EL, Janssen WJ, Riches DH, Moss M, Downey GP. The
 fibroproliferative response in acute respiratory distress syndrome:
 mechanisms and clinical significance. Eur Respir J 2014;43(1):276–285.
 DOI: 10.1183/09031936.00196412.
9. Avci S, Perincek G. The alveolar-arterial gradient, pneumonia severity
 scores and inflammatory markers to predict 30-day mortality in
 pneumonia. Am J Emerg Med 2020;38(9):1796–1801. DOI: 10.1016/j.
 ajem.2020.05.048.
10. Farina G, Gianstefani A, Salvatore V, Anziati M, Baldassarri F, Beleffi M,
et al. Alveolar-to-arterial oxygen gradient: role in the management
 of COVID-19 infection mild population. Res Sq [Internet] 2021. DOI:
 10.21203/rs.3.rs-100668/v1.
11. Gilbert R, Keighley JF. The arterial-alveolar oxygen tension ratio.
 An index of gas exchange applicable to varying inspired oxygen
 concentrations. Am Rev Respir Dis 1974;109(1):142–145. DOI: 10.1164/
 arrd.1974.109.1.142.
12. Xie J, Tong Z, Guan X, Du B, Qiu H. Clinical characteristics of patients
 who died of coronavirus disease 2019 in China. JAMA Netw Open
 2020;3(4):e205619. DOI: 10.1001/jamanetworkopen.2020.5619.
13. García-Tardón N, Abbes AP, Gerrits A, Slingerland RJ, Den Besten
 G. Laboratory parameters as predictors of mortality in COVID-19
 patients on hospital admission. J Lab Med 2020;44(6):357–359. DOI:
 10.1515/jabmed-2020-0087.