PREDICTION BY COMPRESSION

JOEL RATSABY

Abstract. It is well known that text compression can be achieved by predict-
ing the next symbol in the stream of text data based on the history seen up to
the current symbol. The better the prediction the more skewed the conditional
probability distribution of the next symbol and the shorter the codeword that
needs to be assigned to represent this next symbol. What about the opposite
direction? Suppose we have a black box that can compress text stream. Can
it be used to predict the next symbol in the stream? We introduce a novel
criterion based on the length of the compressed data and use it to predict
the next symbol. We examine empirically the prediction error rate and its
dependency on some compression parameters.

1. Introduction

Data compression is an area in the field of information theory that studies
ways of obtaining efficient representations of information. Given some general data,
for instance, text, picture, movie, represented in some form of a binary computer
file the aim in data compression is to obtain a new shorter binary description of
this data. This is done by assuming or searching for a structure in the data that
permits removing unimportant repetitions or redundancy that exists in the original
representation of the data. The development of data compression algorithm can
be divided into two phases. The first phase is referred to as modelling. In this
phase we try to remove any redundancy that exists in the data and describe it in
the form of a model. The second phase is coding. In this phase a description of
the model and a description of how the data differs from the model are encoded.
Producing this description is based on a prediction step. For instance, in lossless
image compression the CALIC algorithm decides what will be the value of the next
pixel in a picture, then encodes the difference between this predicted value and true
value using Huffman or arithmetic coding. Another example is in text compression:
the PPM algorithm computes the probability distribution of the next symbol and
uses arithmetic coding to encode the value.

In this paper we pose the following question: can a compressor be used for pre-
diction? That is, given some compressor can we use it as a black-box (i.e., not
changing its internal workings) to predict the next symbol in a data sequence of
symbols? The motivation behind this question is mainly theoretical since practi-
cally one can design a predictor by tackling the problem directly without the need
for data compression. For instance, by modeling the source that produces the data
and doing statistical estimation to learn the model’s parameters and then use the
estimator to predict the next symbol given the observed part of the sequence. In
contrast to other works that consider compression as a means of doing infer-
ence by expanding on Rissanen’s minimum description length principle we take a
direct approach that uses a ‘ready-made’ compression algorithm as stage in our
inference. Theoretically, the question that we pose is interesting since prediction
by compression, if it is possible, would further strengthen a basic principle of pat-
tern recognition and statistical learning theory. The principle is known as Occam’s

Key words and phrases. Statistical prediction, data compression, binary sequence prediction.
razor (see [1] [7]): it says that given several possible explanations for an observed data one should choose the simplest explanation that is consistent with the data.

As far as prediction is concerned we may interpret this principle as follows: let $\mathcal{A} = \{a_1, a_2, \ldots, a_M\}$ be a finite alphabet consisting of M symbols and denote by \mathcal{A}^* the space of all finite sequences of symbols. Given a sequence $x \in \mathcal{A}^*$ representing some observed data $x = s_1 s_2 \cdots s_n$, $s_i \in \mathcal{A}$, $1 \leq i \leq n$, then according to this principle one should predict the next symbol y as one which requires the shortest additional description given x. The word ‘shortest’ is crucial since it is the basis of Occam’s principle. But how should one obtain the shortest description of a data sequence?

An obvious approach is to use data compression. Let us denote by $[xy]$ the concatenation of a sequence x of symbols from \mathcal{A} with some symbol $y \in \mathcal{A}$. Denote by $\Xi = \{0, 1\}$ and let Ξ^* denote the space of all finite binary encoding sequences. Suppose we have a ‘data compression box’ represented as a mapping $C : \mathcal{A}^* \rightarrow \Xi^*$ from the space of symbol sequences to their unique binary encodings. Consider several candidate sequences $[xy_1], [xy_2], \ldots, [xy_M]$, representing all the possible continuations of the data sequence x. Compress each one and measure the length $\ell(C([xy_j])), 1 \leq j \leq M$, of their corresponding binary encodings. Then the idea is to predict the next symbol to be y_j, where $j^* = \arg\min_{1 \leq j \leq M} \ell(C([xy_j]))$.

This is our theoretical interpretation of Occam’s principle for the prediction paradigm. The current paper aims to check if this interpretation works in reality.

2. Setup

Our setup consists of a source capable of producing random binary sequences. The source is based on a Markov chain with states $s \in \{0, 1, \ldots, N - 1\}$ which we represent as the set of binary vectors $\{(0, \ldots, 0), (0, 0, \ldots, 0, 1), \ldots, (1, 1, \ldots, 1)\}$, respectively, using $\log_2 N$ bits. This number of bits is referred to as the order of the source which we denote by p. We alternatively use the decimal or binary representations of states. Given that the source is at a state $b = (b(0), \ldots, b(k - 1)) \in \{0, 1\}^p$ then it can change into one of only two states $(b(1), b(2), b(3), \ldots, b(k - 1), 0)$ or $(b(1), b(2), b(3), \ldots, b(k - 1), 1)$. We denote the transitions into these states as the 0-transition and 1-transition, respectively. Associated with state i there is a conditional probability distribution $[P(1|i), P(0|i)]$ which gives the probability of making a 0-transition or a 1-transition. The source produces a finite binary sequence x of length n. It will be convenient to refer to the i^{th} bit of x as the bit value $x(i)$ at discrete time i.

The prediction problem that we consider is incremental. We start by having the first m bits of x as observables and predict the $(m + 1)^{th}$ bit. After seeing the true value $x(m + 1)$, we add it to the observables and predict the $(m + 2)^{th}$ bit. This iterative process is repeated until we finish predicting the n^{th} bit. Let us denote by $D(i)$ the binary value decided by the predictor at time i, where $m + 1 \leq i \leq n$. In predicting the value of a bit $x(i)$, the predictor makes an error if its decision $D(i)$ at time i differs from $x(i)$. As a measure of goodness of the predictor, we estimate the probability that it makes an error in the future as the number of errors that it makes on the $n - m$ bit predictions divided by $n - m$. We denote this estimate as $P(err)$.

As discussed in section [1] we are considering a predictor that bases its decision on a compressor. For compression we use the PPMd algorithm [3] [8]. The PPMd algorithm is based on a predictive model that estimates the probability of the next symbol and encodes it by arithmetic coding. The specific implementation that we use (called 7zip) permits to set the maximal context size d of the PPM algorithm up to a value of 32 with a default value of 6 (this is the number of symbols that
it uses as the given observables to estimate the probability of the next yet unseen symbol). We will use d as one of the parameters that controls the predictor. Another parameter is the history size h. We define a window of length h bits. At prediction time i, $m + 1 \leq i \leq n$, instead of using all previous $i - 1$ bits as observables we let the predictor see only the last h bits of x at time instants $i - h$, $i - h + 1$, \ldots, $i - 1$. We denote this by $x_h(i)$ and refer to this subsequence as the 'history' for prediction time i. In our tests, we consider different values for the parameters d and h. Let $C(x)$ be the binary string obtained from compressing the binary sequence x and $\ell(x)$ the length of x. Write $\lambda(x)$ for $\ell(C(x))$.

2.1. Initial investigation.

We chose a source with $N = 4$ and conditional probability distribution $[P(1|i), P(0|i)] = [0.3, 0.7]$ for each of the four states $0 \leq i \leq 3$. Here the Bayes optimal decision is 0 at every state and the Bayes error is 0.3. For the compressor we used PPMd without controlling the d parameter (the maximal possible context size is left to be the default size of 6). Our first attempt at a compression-based predictor was to try to predict not just the next single bit of x but a whole future subsequence y (of length $\ell(y) = l$) of x. With each prediction time i we associated two counters α_i, β_i which keep the number of times that we covered bit i and the number of times we predicted the value 1 for this time instant i, respectively. We divided the prediction process into two phases. In the first phase initialize all counts to zero then at each prediction time we considered 2^l prediction candidates and chose the one with the best score value (score is specified below).

Once a subsequence $y_i = (y_i(0), \ldots, y_i(l - 1))$ was decided at time i we incremented by one the counts α_i of all covered time instants $i \leq t \leq i + l - 1$ and incremented by one the counts β_i corresponding to those time instants in the range $i \leq t \leq i + l - 1$ whose value $y_i(t - i) = 1$. We left the counts of the remaining time instants unchanged. This was repeated for all prediction times $m + 1 \leq i \leq n - l$. Then the second phase started. For all time $m + 1 \leq i \leq n$, decide the value $D(i) = 1$ if $\beta_i \geq \alpha_i/2$ else decide $D(i) = 0$.

We let the candidate length l in bits be a parameter and together with the parameter h (describe above) we repeated the prediction over many runs where for each run we set a different parameter value (h, l), $100 \leq h \leq 2000$, in increments of 100 and $1 \leq l \leq 8$.

We used the following function to score a prediction candidate subsequence y given the history $x_h(i)$ for all times i:

$$S(x_h, y) = \lambda([x_h y])$$

where $[x_h y]$ denotes the concatenation of the strings x_h and y. This score represents the description length necessary for describing y and the observed x_h. With Occam’s principle the intuition says that the lower $S(x_h, y)$ the better the candidate y. However this scheme led to unsatisfactory results as the prediction error was significantly higher than Bayes error for all runs. Another score function that we tried is

$$S(x_h : y) = \lambda(x_h) - (\lambda([y x_h]) - \lambda(y))$$

We may regard $\lambda([y x_h]) - \lambda(y)$ as the extra description length needed for describing x_h given the knowledge of y (extra meaning beyond what is needed to describe just y). Note $\lambda(x_h | y)$ resembles Kolmogorov’s combinatorial notion of conditional entropy \cite{4} (see also \cite{5 6}). $S(x_h : y)$ resembles Kolmogorov’s combinatorial information measure. Indeed $S(x_h : y)$ measures the information that y provides about x_h since it shows the reduction in description length of x_h once y is used as an input for describing x_h. However still, this did not improve the previous results.
At this point we decided to change the source. We increased the number of states to 8 still with only two possible transitions outgoing from each state with probability 0.3 and 0.7. Thus the Bayes error is 0.3. This made the source more complex, however, unlike before, here we used 8 bit combinations chosen at random (and not 3 bits) to represent each of the states and the sequence x was now generated based on the state combinations in a non-overlapping manner. This introduced redundancy in the sequence representation. For instance, suppose the state combinations are the strings 00000001, 00000010, \ldots, 10000000 and suppose that the transitions are obtained by shifting in a circular manner the 1 bit to the left or right by one position. Then an example of a sequence x is: 00000001 00000010 00000001 10000000 \ldots. Such a scheme led to some improvement but the minimal error obtained was still above 0.4 hence larger than Bayes error.

2.2. Injecting redundancy by transition-encoding. At this point we had some more insight, mainly, that adding redundancy to the source somewhat improves prediction by compression. But in general one cannot change the source of the data. So we chose to leave the source as generating the data sequence prediction by compression. But in general one cannot change the source.

\[
\chi^{(r)} = A \Rightarrow D, A \Rightarrow D, A \Rightarrow D, \\
D \Rightarrow A, D \Rightarrow A, D \Rightarrow A, A \Rightarrow G, A \Rightarrow G, A \Rightarrow G, G \Rightarrow
\]

(2.3)

where the symbol \Rightarrow has a UTF-8 code 0xBB. Note, the last transition (the trailer) is half full, in this example it is $G \Rightarrow$, and consists of the state (in this case G) on the right of the last transition ($A \Rightarrow G$). Thus $\chi^{(r)}$ is a sequence of bytes that encode perceived-state characters, a comma or the arrow symbol. Clearly, $\chi^{(r)}$ has more redundancy than x since its length is $O(kr)$ times longer than x yet it contains the same amount of information. Obviously if the source’s order ρ is known to the
predictor then a good choice is to let \(k = \rho \). If it is not known, this method can still be used by scanning over all values \(2 \leq k \leq 7 \) while testing the probability of error (on some training sequence \(x \)). This way a value for \(k \) will be selected when the minimal probability of error is obtained over this range.

Can the score function defined in (2.3) be used here? Instead of \(x_h \) we have \(\chi_h \) so we need to represent prediction candidates \(y \) in the UTF-8 symbol sequence format, denoted as \(\xi \), of the from \(A \Rightarrow B \). Only after converting \(y \) into \(\xi \) we may attempt to concatenate them to form an UTF-8 symbol sequence \(\xi \chi \). In this new representation we are coding transitions between states rather than absolute states. Prediction candidates \(\xi \) should represent a transition starting from the state that corresponds to the symbol on the right of the last pairwise transition of \(\xi \). For instance in the above example, this last pairwise transition is \(A \Rightarrow G \) hence we should only consider the two candidates \(\xi \) that code transitions of the from \(G \Rightarrow \cdot \) where \(\cdot \) is a symbol whose \(k \)-bit codeword starts with the first \(k - 1 \) bits of the codeword of \(G \) and ends either with a 0 or 1 (denote them as the \(\xi_0 \) and \(\xi_1 \) candidates). But to form the concatenation \(\xi \chi \) means that the right symbol of these two candidates must be the left symbol of the first transition of \(\chi_h \) (in the above example this is the symbol \(A \)). Hence there may be a conflict constraints in determining the two candidates since as in this example the symbol \(A \) may not be a symbol whose codeword agrees on the first \(k - 1 \) bits with the symbol \(G \). Hence the score (2.2) is not suitable.

This led us to consider the following new scoring function,

\[
S(\xi : \chi_h) = \lambda(\xi) - (\lambda(\chi_h \xi) - \lambda(\chi_h))
\]

(2.4)

Note that we may regard \(\lambda(\chi_h \xi) - \lambda(\chi_h) \equiv \lambda(\xi)\chi_h \) as the extra description length needed for describing \(\xi \) given the knowledge of \(\chi_h \). In a similar way as we interpreted \(S(x_h : y) \) above, here \(S(\xi : \chi_h) \) is what Kolmogorov \[4\] calls the information that \(\chi_h \) provides about \(\xi \). Note that to evaluate (2.4) we just need to convert \(y \) into \(\xi \) and \(x_h \) into \(\chi_h \) (using the above process). Unlike the string \(\xi \chi_h \) considered above, now the concatenated string \(\chi_h \xi \) is well-defined since we just look at the UTF-8 symbol of the trailer of \(\chi_h \) (in the above example it is \(G \)) and only consider the two candidates \(\xi \) that encode transitions of the form \(G \Rightarrow \cdot \) where \(\cdot \) is a symbol whose \(k \)-bit word starts with the last \(k - 1 \) bits of the codeword of \(G \) and ends either with a 0 or 1. In the above example, suppose that corresponding to the 0 and 1 candidates the two candidate symbols are \(V \) and \(W \) then we will form the candidate sequences

\[
\xi_0 = G \Rightarrow V \\
\xi_1 = G \Rightarrow W
\]

Note that the candidates sequences depend on the trailer of \(\chi_h \) (in this example it is the symbol \(G \)). When we form the concatenated sequence \(\chi_h \xi \) we first remove the trailer of \(\chi_h \) and then attach \(\xi \) form the right. Hence in the above example we get

\[
\chi_h \xi_0 = A \Rightarrow D, A \Rightarrow D, A \Rightarrow D, \\
D \Rightarrow A, D \Rightarrow A, A \Rightarrow G, A \Rightarrow G, A \Rightarrow G, G \Rightarrow V
\]

Using this representation scheme we did several runs with a source of order \(\rho = 3 \) and a predictor with peeling size \(k = 3 \). We obtained encouraging results with the prediction error being smaller than in the previous trials but staying around 0.4 hence not close enough to the Bayes error even when the history size \(h \) is large.

We then observed the second term of the score function (2.4) for several sample runs and saw that most of the times both candidates \(\xi_0, \xi_1 \) have the same value for
compressed length \(\lambda(\xi_h \xi_1) = \lambda(\xi_h \xi_1) \) and \(\lambda(\xi_0) = \lambda(\xi_1) \). This makes them be indistinguishable which leads to random prediction (since we predict a 1 with probability 0.5 when the scores are the same). We realized that this is a result of the compression algorithm imperfection. It has some constant minimal file size that it never goes below no matter how short the sequence to be compressed is. Hence the next idea was to consider extending the length of each candidate \(\xi \) by repeating it \(qr \) times (where \(r \) is the repeat factor for \(\chi_h \)). For instance, in the above example 2.3 where \(r = 3 \) using \(\xi_0 = G \Rightarrow V \), then if \(q = 2 \) its extension is \(\xi_0^{(qr)} = G \Rightarrow V, G \Rightarrow V, G \Rightarrow V, G \Rightarrow V, G \Rightarrow V \)

Now, the lengths of the compressed version of the two strings \(\lambda(\chi_h^{(r)} \xi_0^{(qr)}), \lambda(\chi_h^{(r)} \xi_1^{(qr)}) \) become distinguishable (in our experiments we used \(r = 20 \) and \(q = 100 \)). Doing that led to significant improvement and we can now see the prediction error decreasing towards the Bayes error with increasing history size \(h \) and increasing PPM order \(d \). Note that we are still treating the case where the peeling size equals the source order (which is less-realistic since the predictor may not know the source’s order).

2.3. The predictor. Let us summarize the features of the final version of the predictor:

- **Aim**: Given history \(x_h \) at bit time \(i \), we want to predict bit \(i, m + 1 \leq i \leq n \)
- Peel \(k \)-codewords from \(x_h \) and map them into UTF-8 symbols representing predictor’s perceived states
- Represent the transitions between these states in the form \(A \Rightarrow B \) and repeat each \(r \) times to form the sequence \(\chi_h^{(r)} \)
- There are two prediction candidates, \(\xi_0, \xi_1 \) corresponding to the two possible binary predictions of the next bit in \(x_h \). We use the same representation of state transition to represent the two candidates. We use a repeat factor of \(qr \) to obtain \(\xi_0^{(qr)}, \xi_1^{(qr)} \).
- Use the scoring function \(S(\xi : \chi_h) \) to score each of the two candidates. If both have the same value then predict 1 with probability 0.5.
- Otherwise, predict the next bit \(i = \arg \max_{j \in \{0,1\}} S(\xi_j^{(qr)} : \chi_h^{(r)}) \)

The next series of trials were more realistic as we allowed the predictor’s peeling size \(k \) to be different from the source’s order. Let us review the results.

3. Results

In the first test we considered a source of order \(\rho = 3 \) and peeling size \(k = 4 \). In this case the number of perceived states \(2^k = 16 \) is greater than the number of source’s states \(N = 8 \). To see the effect of the compressor’s PPM order \(d \) on the predictor’s error \(P(\text{err}) \) we performed several trial runs changing the history size \(h \) and PPM order \(d \) and measuring the prediction error \(P(\text{err}) \). Figure 3.1a shows how \(P(\text{err}) \) decreases with respect to \(d \). We plot the error for each value of \(d \) averaged out over 5 runs of the same history size \(h \) and where \(h = 1000, 2000, \ldots, 6000 \). At this rate of decrease the prediction error would reach the Bayes error of 0.3 at about \(d = 14 \). Note that the error starts decreasing from its maximal value only at \(d = 3 \). At this value the PPM compression captures the full trailer of \(\chi_h \). Its context conditional probability distribution for the next character in the sequence contains full information about the perceived state (in the above example this is the state G). This is a necessary condition for PPM to estimate the transition probability correctly. Figures 3.1a shows that \(P(\text{err}) \) decreases steadily as we increase the PPM order \(d \). Figure 3.1b shows that there is hardly any effect on the error as the history size \(h \) increases.
Figure 3.1. Source model has 8 states ($\rho = 3$ bits), predictor’s peeling size is 4. Initially prediction is bad but as PPM order increases we see steady decrease in error. The predictor is rich enough as for each 3-bit source state it has two perceived states (each 4 bits long). Hence with sufficiently large order it is able to reach low error rates.

What happens when $\rho = k$? We tested a predictor of peeling size $k = 4$ on a sequence produced by a source of order $\rho = 4$. Figures 3.2a and 3.2b show that already from $d = 2$ we see an error close to the Bayes error.
PREDICTION BY COMPRESSION

Figure 3.2. Source model has 16 states \((\rho = 4)\), peeling size is 4. The problem is easy as can be seen from the low error (close to Bayes error of 0.3) obtained already at the starting PPM order value of 2.

Next, we tested a predictor of peeling size \(k = 4\) on a sequence produced by a source of order \(\rho = 5\). Figures 3.3a and 3.3b show that the predictor is inaccurate since even when the order \(d\) is high we still see an error which is only slightly better than pure guessing.
Figure 3.3. Source model has 32 states ($\rho = 5$), peel size is 4. It takes a large value of PPM order d before we start seeing a prediction error which is slightly lower than pure guessing (i.e., 0.5 error rate).

Next, we tested a predictor of peeling size $k = 6$ on a sequence produced by a source of order $\rho = 5$. We let the history size reach up to 12000. Figures 3.4a and 3.4b show that the predictor’s error decreases with increasing PPM order albeit at a slower rate than the case of $k = 4$ and $\rho = 3$ (Figures 3.1a,3.1b). This suggests that the error rate not only depends on the difference $|k - \rho|$ (which in both case equals 1) but also on ρ itself.

Finally, we changed the compressor’s algorithm from PPM to LZMA which is a recently developed algorithm that incorporates the Lempel-Ziv dictionary-based compressor with a new predictive component. We tested the predictor with LZMA on the problem of $\rho = 4$ and $k = 4$ and instead of PPM order we used the dictionary size as a parameter. As Figure 3.5 shows, the error initially decreases but remains
Above the 0.4 level even as we increase the dictionary size at an exponential rate. On this same problem the PPM predictor performed very well (Figure 3.2). We are not sure why the LZMA underperforms compared to the PPM approach. Perhaps doing prediction based on dictionary-based compression requires a different transition-encoding scheme. This requires further investigation.
Figure 3.5. Source model has 16 states ($\rho = 4$), peeling size is 4. The predictor is based on LZMA compression, a dictionary-based algorithm. The prediction error is plotted with respect to $\log_2(D)$, where D is size of the dictionary.

4. Conclusions

In this paper we raise a new question: can a compression algorithm be used as a 'black-box' to obtain prediction? We introduced a new scoring function $S(\xi : \chi_h)$ which measures the amount of information that the history χ_h gives about a candidate future prediction ξ. We showed through a series of empirical results that this scoring function leads to successful prediction by a predictor whose decision for the next bit is obtained by maximizing the score. Prediction-by-compression works and agrees with the intuition that says to choose the candidate future prediction ξ for which the history gives a maximal amount of information.

References

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. Information Processing Letters, 24:377–380, 1987.
[2] B. Choi. Inductive inference using information compression. Computational Intelligence, 19(2):164–185, 2003.
[3] J.G. Cleary and I.H. Witten. Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32(4):396–402, 1984.
[4] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1:1–17, 1965.
[5] J. Ratsaby. Information efficiency. In SOFSEM (1), pages 475–487, 2007.
[6] J. Ratsaby. Information width. Technical Report # arXiv:0801.4790v2, 2008.
[7] J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in Computer Science. World Scientific, 1989.
[8] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, second edition, 2000. ISBN 1-55860-558-4.

Department of Electrical and Electronics Engineering, Ariel University Center, Ariel 40700, ISRAEL
E-mail address: ratsaby@ariel.ac.il