RAN-REURINGS THEOREMS
IN ORDERED METRIC SPACES

MIHAI TURINICI

Abstract. The Ran-Reurings fixed point theorem [Proc. Amer. Math. Soc., 132 (2004), 1435-1443] is but a particular case of Maia’s [Rend. Sem. Mat. Univ. Padova, 40 (1968), 139-143]. A functional version of this last result is then provided, in a convergence-metric setting.

1. Introduction

Let X be a nonempty set. Take a metric $d(\cdot, \cdot)$ over it; as well as a self-map $T : X \to X$. We say that $x \in X$ is a Picard point (modulo (d, T)) if i) $(T^n x; n \geq 0)$ (=the orbit of x) is d-convergent, ii) $z := \lim_n T^n x$ is in $\text{Fix}(T)$ (i.e., $z = Tz$). If this happens for each $x \in X$ and iii) $\text{Fix}(T)$ is a singleton, then T is referred to as a Picard operator (modulo d); cf. Rus [23, Ch 2, Sect 2.2]. For example, such a property holds whenever d is complete and T is d-contractive; cf. (b04). A structural extension of this fact – when an order (\leq) on X is being added – was obtained in 2004 by Ran and Reurings [21]. For each $x, y \in X$, denote

(a01) $x <> y$ iff either $x \leq y$ or $y \leq x$ (i.e.: x and y are comparable).

This relation is reflexive and symmetric; but not in general transitive. Call the self-map T, $(d, \leq; \alpha)$-contractive (for $\alpha > 0$), if

(a02) $d(Tx, Ty) \leq \alpha d(x, y), \forall x, y \in X, x \leq y$.

If this holds for some $\alpha \in]0, 1[$, we say that T is (d, \leq)-contractive.

Theorem 1. Let d be complete and T be d-continuous. In addition, assume that T is (d, \leq)-contractive and

(a03) $X(T, <>) := \{x \in X; x <> Tx\}$ is nonempty

(a04) T is monotone (increasing or decreasing)

(a05) for each $x, y \in X$, $\{x, y\}$ has lower and upper bounds.

Then, T is a Picard operator (modulo d).

According to many authors (cf. [1], [4], [8], [18], [19] and the references therein), this result is credited to be the first extension of the classical 1922 Banach’s contraction mapping principle [2] to the realm of (partially) ordered metric spaces. Unfortunately, the assertion is not true: some early statements of this type have been obtained two decades ago by Turinici [27], in the context of quasi-ordered metric spaces. (We refer to Section 5 below for details).

Now, the Ran-Reurings fixed point result found some useful applications to matrix and differential/integral equations. So, it cannot be surprising that, soon after, many extensions of Theorem [1] were provided; see the quoted papers for details. It

2010 Mathematics Subject Classification. 47H10 (Primary), 54H25 (Secondary).

Key words and phrases. Ordered metric space, contraction, fixed point, convergence.
is therefore natural to discuss the position of Theorem 1 within the classification scheme proposed by Rhoades [22]. The conclusion to be derived reads (cf. Section 2): the Ran-Reurings theorem is but a particular case of the 1968 fixed point statement in Maia [15, Theorem 1]. Further, in Section 3, some extensions are given for this last result, in the context of quasi-ordered convergence almost metric spaces. Some trivial quasi-order variants of these are then discussed in Section 4; note that, as a consequence of this, one gets the related contributions in the area due Kasahara [12] and Jachymski [10], as well as the order type statement in O’Regan and Petruşel [19]. Some other aspects will be delineated elsewhere.

2. Main result

Let $(X, d; \leq)$ be an ordered metric space; and $T : X \to X$, a self-map of X. Given $x, y \in X$, any subset $\{z_1, \ldots, z_k\}$ (for $k \geq 2$) in X with $z_1 = x$, $z_k = y$, and $[z_i \not< z_{i+1}, i \in \{1, \ldots, k - 1\}]$ will be referred to as a $\not<$ chain between x and y; the class of all these will be denoted as $C(x, y; \not<)$. Let \sim stand for the relation over X attached to $\not<$ as

$$(b_01) \quad x \sim y \text{ iff } C(x, y; \not<) \text{ is nonempty.}$$

Clearly, (\sim) is reflexive and symmetric; because so is $\not<$. Moreover, (\sim) is transitive; hence, it is an equivalence over X.

The following variant of Theorem 1 is our starting point.

Theorem 2. Let d be complete and T be d-continuous. In addition, assume that T is (d, \leq)-contractive and

$$(b_02) \quad T \text{ is } \not< \text{-increasing } [x \not< y \text{ implies } Tz \not< Ty]$$

$$(b_03) \quad (\sim) = X \times X \ [C(x, y; \not<) \text{ is nonempty, for each } x, y \in X].$$

Then, T is a Picard operator (modulo d).

This result includes Theorem 1 because (a04) \implies (b02), (a05) \implies (b03). For, given $x, y \in X$, there exist, by (a05), some $u, v \in X$ with $u \leq x \leq v$, $u \leq y \leq v$. This yields $x \not< u$, $u \not< y$; wherefrom, $x \sim y$. In addition, it tells us that the regularity condition (a03) is superfluous.

The remarkable fact to be noted is that Theorem 2 (hence the Ran-Reurings statement as well) is deductible from the Maia’s fixed point statement [15, Theorem 1]. Let $e(., .)$ be another metric over X. Call $T : X \to X$, $(e; \alpha)$-contractive (for $\alpha > 0$) when

$$(b_04) \quad e(Tx, Ty) \leq \alpha e(x, y), \forall x, y \in X;$$

if this holds for some $\alpha \in [0, 1[$, the resulting convention will read as: T is e-contractive. Further, let us say that d is subordinated to e when $d(x, y) \leq e(x, y)$, $\forall x, y \in X$. The announced Maia’s result is:

Theorem 3. Let d be complete and T be d-continuous. In addition, assume that T is e-contractive and d is subordinated to e. Then, T is a Picard operator (modulo d).

In particular, when $d = e$, Theorem 3 is just the Banach contraction principle [2]. However, its potential is much more spectacular; as certified by

Proposition 1. Under these conventions, we have Theorem $\exists \implies$ Theorem \exists; hence (by the above) Maia’s fixed point result implies Ran-Reurings’.
Proof. Let $\alpha \in [0, 1]$ be the number in (a02); and fix λ in $[1, 1/\alpha]$. We claim that
\[e(x, y) := \sum_{n \geq 0} \lambda^n d(T^n x, T^n y) < \infty, \text{ for all } x, y \in X. \] (2.1)
In fact, there exists from (b03), a ($\langle z_0, \ldots, z_k \rangle$) (for $k \geq 2$) in X with $z_1 = x$, $z_k = y$. By (b02), $T^n z_i \to z_{i+1}$, $\forall n$, $\forall i \in \{1, \ldots, k-1\}$; hence, via (a02),
\[d(T^n z_i, T^n z_{i+1}) \leq \alpha^n d(z_i, z_{i+1}), \forall n; \]
wherefrom (by the choice of λ)
\[\sum_{n \geq 0} \lambda^n d(T^n x, T^n y) \leq \sum_{n \geq 0} (\lambda \alpha)^n \sum_{i=1}^{k-1} d(z_i, z_{i+1}) < \infty; \]
hence the claim. The obtained map $e : X \times X \to R_+$ is reflexive [\$e(x, x) = 0, \forall x \in X\$], symmetric [\$e(y, y) = e(x, y), \forall x, y \in X\$] and triangular [\$e(x, z) \leq e(x, y) + e(y, z), \forall x, y, z \in X\$]. Moreover, in view of
\[e(x, y) = d(x, y) + \lambda e(Tx, Ty) \geq \lambda e(Tx, Ty), \forall x, y \in X, \]
\[d \text{ is subordinated to } e. \]
Note that e is sufficient in such a case $\{e(x, y) = 0 \implies x = y\}$; hence, it is a (standard) metric on X. On the other hand, the same relation tells us that T is (e, μ)-contractive for $\mu = 1/\lambda \in [\alpha, 1]$; hence, (by definition), e-contractive. This, along with the remaining conditions of Theorem 2, shows that Theorem 3 applies to these data; wherefrom, all is clear.

3. Extensions of Maia’s result

From these developments, it follows that Maia’s result \cite{15} Theorem 1] is an outstanding tool in the area; so, the question of enlarging it is of interest. A positive answer to this, in a convergence-metric setting, will be described below.

Let X be a nonempty set. Denote by $S(X)$, the class of all sequences (x_n) in X. By a (sequential) convergence structure on X we mean, as in Kasahara \cite{12}, any part C of $S(X) \times X$ with the properties
\begin{itemize}
 \item[(c01)] $x_n = x, \forall n \in N \implies ((x_n); x) \in C$
 \item[(c02)] $((x_n); x) \in C \implies ((y_n); x) \in C$, for each subsequence (y_n) of (x_n).
\end{itemize}
In this case, $(x_n); x) \in C$ writes $x_n \xrightarrow{C} x$; and reads: x is the C-limit of (x_n).
The set of all such x is denoted $\lim_{n} x_n$; when it is nonempty, we say that (x_n) is C-convergent; and the class of all these will be denoted $S_c(X)$. Assume that we fixed such an object, with
\begin{itemize}
 \item[(c03)] C=separated: $\lim_n x_n$ is a singleton, for each (x_n) in $S_c(X)$;
\end{itemize}
as usually, we shall write $\lim_n x_n = \{z\}$ as $\lim_n x_n = z$. (Note that, in the Fréchet terminology \cite{6}, this condition is automatically fulfilled, by the specific way of introducing the ambient convergence; see, for instance, Petrusel and Rus \cite{20}). Let (\leq) be a quasi-order (i.e.: reflexive and transitive relation) over X; and take a self-map T of X. The basic conditions to be imposed are
\begin{itemize}
 \item[(c04)] $X(T, \leq) := \{x \in X; x \leq Tx\}$ is nonempty
 \item[(c05)] T is \leq-increasing ($x \leq y \implies Tx \leq Ty$).
\end{itemize}
We say that $x \in X(T, \leq)$ is a Picard point (modulo $\langle C, \leq, T \rangle$) if i) $(T^n x; n \geq 0)$ is C-convergent, ii) $z := \lim_{n \to \infty} T^n x$ is in $\text{Fix}(T)$ and $T^n x \leq z, \forall n$. If this happens for each $x \in X(T, \leq)$ and iii) $\text{Fix}(T)$ is (\leq)-singleton $\{z, w \in \text{Fix}(T), z \leq w \implies z = w\}$, then T is called a Picard operator (modulo $\langle C, \leq \rangle$). Note that, in this case, each $x^* \in \text{Fix}(T)$ fulfills
\begin{equation}
\forall u \in X(T, \leq) : \text{ } x^* \leq u \implies u \leq x^*; \tag{3.1}
\end{equation}
i.e.: x^* is (\leq)-maximal in $X(T, \leq)$. In fact, assume that $x^* \leq u \in X(T, \leq)$. By i) and ii), $(T^n u; n \geq 0)$ C-converges to some $u^* \in \text{Fix}(T)$ with $T^n u \leq u^*, \forall n$; hence, $x^* \leq u \leq u^*$. Combining with iii) gives $x^* = u^*$; wherefrom $u \leq x^*$.

Concerning the sufficient conditions for such a property, an early statement of this type was established by Turinici [27]; cf. Section 5. Here, we propose a different approach, founded on ascending orbital concepts (in short: ao-concepts) and almost metrics. Some conventions are in order. Call the sequence (x, ϕ), ϕ-ascending ϕ-orbital concepts (in short: ao-concepts) $= z$ for each $i \in \mathbb{N}$, i.e.:
\begin{equation}
\forall \psi \in F, \phi \in F, \text{ if } \phi \leq \psi \text{ then } \phi = \psi; \tag{0) = 0 \text{ and } [16]; \text{ but, this is not essential for us]. A basic property of such functions (used in the sequel) is}
\end{equation}
\begin{equation}
(\forall \gamma > 0), (\exists \beta > 0), (\forall t) : 0 \leq t < \gamma + \beta \implies \phi(t) \leq \gamma. \tag{3.2}
\end{equation}
For completeness, we supply a proof of this, due to Jachymski [11]. Assume that the underlying property fails; i.e. (for some $\gamma > 0$):
\begin{equation}
\forall \beta > 0, \exists t \in [0, \gamma + \beta], \text{ such that } \phi(t) > \gamma \text{ (hence, } \gamma < t < \gamma + \beta).\tag{c06}\end{equation}
As $\phi \in F_1(R_+)$, this yields $\phi(t) > \gamma, \forall t > \gamma$. By induction, we get (for some $t > \gamma$) $\phi^n(t) > \gamma, \forall n$; so (passing to limit as $n \to \infty$) $0 \geq \gamma$, contradiction.

Denote, for $x, y \in X$: $H(x, y) = \max\{e(x, T x), e(y, T y)\}$, $L(x, y) = \frac{1}{2}[e(x, T y) + e(T x, y)]$, $M(x, y) = \max\{e(x, y), H(x, y), L(x, y)\}$. Clearly,
\begin{equation}
M(x, T x) = \max\{e(x, T x), e(T x, T^2 x)\}, \forall x \in X. \tag{3.3}
\end{equation}
Call the self-map T, $(\epsilon, M; \leq; \phi)$-contractive (for $\phi \in F(R_+)$), if
\begin{equation}
\epsilon(T x, T y) \leq \phi(M(x, y)), \forall x, y \in X, x \leq y, \tag{c06}\end{equation}
when this holds for at least one comparison function ϕ, the resulting convention reads: T is extended $(\epsilon, M; \leq)$-contractive.
Theorem 4. Suppose that \((c04)\) and \((c05)\), \(T\) is extended \((e, M; \leq)\)-contractive and \((ao, C)\)-continuous, \((e, C)\) is ao-complete, and \((\leq)\) is \((ao, C)\)-self-closed. Then, \(T\) is a Picard operator (modulo \((C, \leq)\)).

Proof. Let \(x^*, u^* \in \text{Fix}(T)\) be such that \(x^* \leq u^*\). By the contractive condition, \(e(x^*, u^*) = 0\); wherefrom, \(x^* = u^*\); and so, \(\text{Fix}(T)\) is \((\leq)\)-singleton. It remains to show that each \(x = x_0 \in X(T, \leq)\) is a Picard point (modulo \((C, \leq, T)\)). Put \(x_n = T^nx, n \geq 0\); and let \(\varphi \in \mathcal{F}(R_+)\) be the comparison function given by the extended \((e, M; \leq)\)-contractivity of \(T\).

\section{I} By the contractive condition and \((\cdot)\),

\[e(x_{n+1}, x_{n+2}) \leq \varphi(M(x_n, x_{n+1})) = \varphi[\max\{e(x_n, x_{n+1}), e(x_{n+1}, x_{n+2})\}], \forall n. \]

If (for some \(n\)) the maximum in the right hand side is \(e(x_{n+1}, x_{n+2})\), then (via \(\varphi \in \mathcal{F}_1(R_+)\)) \(e(x_{n+1}, x_{n+2}) = 0\); so that (as \(e=\)sufficient) \(x_{n+1} \in \text{Fix}(T)\); and we are done. Suppose that this alternative fails: \(e(x_{n+1}, x_{n+2}) \leq \varphi(e(x_n, x_{n+1})), \forall n\). This yields (by an ordinary induction) \(e(x_n, x_{n+1}) \leq \varphi^n(e(x_0, x_1)), \forall n\); wherefrom \(e(x_n, x_{n+1}) \to 0\) as \(n \to \infty\).

\section{II} We claim that \((x_n; n \geq 0)\) is \(e\)-Cauchy in \(X\). Denote, for simplicity, \(E(k, n) = e(x_k, x_{k+n}), k, n \geq 0\). Let \(\gamma > 0\) be arbitrary fixed; and \(\beta > 0\) be the number appearing in \((3.2)\); without loss, one may assume that \(\beta < \gamma\). By the preceding step, there exists a rank \(m = m(\beta)\) such that

\[k \geq m \text{ implies } E(k, 1) < \beta/2 < \beta < \gamma. \quad (3.4) \]

The desired property follows from the inductive type relation

\[\forall n \geq 0: [E(k, n) < \gamma + \beta/2, \text{ for each } k \geq m]. \quad (3.5) \]

The case \(n = 0\) is trivial; while the case \(n = 1\) is clear, via \((3.4)\). Assume that \((3.5)\) is true, for all \(n \in \{1, \ldots, p\}\) (where \(p \geq 1\)); we want to establish that it holds as well for \(n = p + 1\). So, let \(k \geq m\) be arbitrary fixed. By the induction hypothesis and \((3.4)\), \(e(x_k, x_{k+p}) = E(k, p) < \gamma + \beta/2\) and \(H(x_k, x_{k+p}) = \max\{E(k, 1), E(k, p, 1)\} < \beta/2\). Moreover, the same premises give (by the triangular property)

\[L(x_k, x_{k+p}) = (1/2)[E(k, p + 1) + E(k + 1, p - 1)] \leq (1/2)[E(k, p) + E(k + 1, p) + E(k + 1, p - 1)] < \gamma + \beta; \]

wherefrom \(M(x_k, x_{k+p}) < \gamma + \beta\); so, by the contractive condition and \((3.2)\),

\[E(k + 1, p) = e(x_{k+1}, x_{k+p+1}) = e(Tx_k, Tx_{k+p}) \leq \varphi(M(x_k, x_{k+p})) \leq \gamma; \]

which “improves” the previous evaluation \((3.5)\) of our quantity. This, along with \((3.4)\) and the triangular property, gives \(E(k, p + 1) = e(x_k, x_{k+p+1}) < \gamma + \beta/2\).

\section{III} As \((e, C)\) is ao-complete, \((3.5)\) tells us that \(x_n \xrightarrow{C} x^*\) for some \(x^* \in X\). Moreover, as \((\leq)\) is \((ao, C)\)-self-closed, we have \(x_n \leq x^*, \forall n\); hence, in particular, \(x \leq x^*\). Combining with the \((ao, C)\)-continuity of \(T\), yields \(x_{n+1} = Tx_n \xrightarrow{C} Tx^*\); wherefrom (as \(C\) is separated), \(x^* \in \text{Fix}(T)\). \hfill \(\square\)

Now letting \(d\) be a metric on \(X\), the associated convergence \(C := (d)\) is separated; moreover, the ao-complete property of \((e, C)\) is holding whenever \(d\) is complete and subordinated to \(e\). Clearly, this last property is trivially assured if \(d = e\); when Theorem \([11]\) is comparable with the main result in Agarwal, El-Gebeily and O’Regan \([11]\). In fact, a little modification of the working hypotheses allows us getting the whole conclusion of the quoted statement; we do not give details.
4. Particular aspects

Let X be a nonempty set; and $T : X \to X$ be a self-map of X. Further, take a separated (sequential) convergence structure \mathcal{C} on X.

(A) Let $e(.,.)$ be an almost metric over X. A basic particular case of the previous developments corresponds to $(\leq) = X \times X$ (=the trivial quasi-order on X). Then, $(c04)+(c05)$ are holding; and the resulting Picard concept becomes a Picard property (modulo \mathcal{C}) of T, which writes: i) $\text{Fix}(T)$ is a singleton, $\{x^{*}\}$, if this holds for at least one comparison function φ, the resulting convention reads: T is extended (e,M)-contractive. Putting these together, one gets the following version of Theorem 4.

Corollary 1. Suppose that T is extended e-contractive and (o,C)-continuous, and (e,C) is o-complete. Then, T is a Picard operator (modulo \mathcal{C}).

The obtained statement includes Kasahara’s fixed point principle [12], when e is a metric on X. On the other hand, if d is a metric on X and $\mathcal{C} := (\frac{d}{\alpha})$, the o-complete property of (e,C) is assured when d is complete and subordinated to e. This, under a linear choice of the comparison function $(\varphi(t) = \alpha t, t \in R_{+}$, for $0 < \alpha < 1$), tells us that Corollary 1 includes Theorem 6. Finally, when $d = e$, Corollary 1 reduces to Jachymski’s result [10].

(B) An interesting version of Corollary 1 was provided in the 2008 paper by O’Regan and Petruˇ sel [19, Theorem 3.3]. Let (X,T,\mathcal{C}) be endowed with their precise general meaning; and $d(.,.)$ be a (standard) metric on X. As before, we are interested to give sufficient conditions under which T be a Picard operator (modulo \mathcal{C}). Take an order (\leq) on X; and put $X_{(\leq)} = (\leq) \cup (\geq)$, where (\geq) stands for the dual order. This subset is just the graph of the relation $\langle \rangle$ over X introduced as in (a01); so, it may be identified with the underlying relation. As a consequence, $X_{(\leq)}$ is reflexive $[(x,x) \in X_{(\leq)}$, for each $x \in X]$ and symmetric $[(x,y) \in X_{(\leq)}$ iff $(y,x) \in X_{(\leq)}]$; but not in general transitive, as simple examples show. Further, let us say that (d,\mathcal{C}) is o-complete if $[(\text{for each sequence}) d\text{-Cauchy} \implies \mathcal{C}\text{-convergent}].$ Finally, call T, $(d,\leq;\varphi)$-contractive (for $\varphi \in \mathcal{F}(R_{+})$), if

\[(d03) \quad d(Tx, Ty) \leq \varphi(d(x,y)), \forall x, y \in X, x \leq y; \]

when this holds for at least one comparison function φ, the resulting convention reads: T is (d,\leq)-contractive.

Corollary 2. Assume that $(a03)+(b02)$ hold, T is (d,\leq)-contractive and (o,C)-continuous, (d,\mathcal{C}) is o-complete, and

\[(d03) \quad (x,y), (y,z) \in X_{(\leq)} \implies (x,z) \in X_{(\leq)} \quad (i.e.: X_{(\leq)} \text{ is transitive}) \]
\[(d04) \quad (x,y) \notin X_{(\leq)} \implies \exists c = c(x,y) \in X: (x,c), (y,c) \in X_{(\leq)}. \]

Then, T is a Picard map (modulo \mathcal{C}).
Proof. We claim that Corollary 1 is applicable to such data. This will follow from Theorem 5. In fact, let
\[(x, y, c) \in X(\leq) \] such that \((e_01)\) holds. Then,
\[T \in F \] is a Picard operator (modulo \((a_03)+(b_02)\) are superfluous.

In the following, a summary of the 1986 results in Turinici [27] is being sketched, for completeness reasons.

(A) Let \((X, d)\) be a complete metric space and \(T\) be a self-map of \(X\). Assume that for each \(x \in X\) there exists a \(n(x) \in N_0 := N \setminus \{0\}\) such that \(T^{n(x)}\) is (metrically) contractive at \(x\); then, we may ask of under which additional conditions is \(T\) endowed with a Picard property (cf. Section 1). A first answer to this question was given, in the continuous case, by Sehgal [24] through a specific iterative procedure; a reformulation of it for discontinuous maps was performed in Guseman’s paper [7]. During the last decade, some technical extensions — involving the contractive condition — of these results were obtained by Ciric [3], Khazanchi [13], Iseki [9], Matkowski [16], and Singh [25]. The most general statement of this kind, obtained by Matkowski [16], reads as follows. For each \(m \in N_0\), let \(F(R^m_+)\) stand for the class of all functions \(f : R^m_+ \to R_+\); and \(F_i(R^m_+)\) the subclass of all \(f \in F(R^m_+)\), increasing in each variable. The iterative contraction property below is considered:

\[(e_01) \exists f \in F_i(R^m_+) \text{ such that: } \forall x \in X, \exists n(x) \in N_0 \text{ with } d(T^{n(x)}x, T^{n(x)}y) \leq f(d(x, T^{n(x)}x), d(x, y), d(T^{n(x)}x, y), d(T^{n(x)}y, y)), \forall y \in X. \]

Given \(f \in F_i(R^m_+)\) like before, denote \(g(t) = f(t, t, t, 2t, 2t)\), \(t \geq 0\); clearly, it is an element of \(F_i(R_+)\). We shall say that \(f\) is normal provided

\[(e_02) \quad g \in F_1(R_+) \text{ and } |t - g(t) \to \infty \text{ as } t \to \infty \]

\[(e_03) \lim_{n} g^n(t) = 0, \text{ for each } t > 0. \]

(As already remarked, \((e_03)\) implies the first part of \((e_02)\), under the properties of \(g\); we do not give details).

Theorem 5. Suppose that there exists a normal function \(f \in F_i(R^m_+)\) in such a way that \((e_01)\) holds. Then, \(T\) is a Picard operator (modulo \(d\)).

A direct examination of the above conditions shows that, by virtue of

\[d(T^{n(x)}x, y) \leq d(x, T^{n(x)}x) + d(x, y), \quad x, y \in X, \]

\[d(T^{n(x)}y, y) \leq d(x, T^{n(x)}y) + d(x, y), \quad x, y \in X, \]

a slight extension of Theorem 3 might be reached if one replaces \((e_01)\) by

\[(e_04) \quad d(T^{n(x)}x, T^{n(x)}y) \leq F(d(x, T^{n(x)}x), d(x, y), d(x, T^{n(x)}y)), \quad y \in X, \]

where \(F : R^m_+ \to R_+\) is defined as

\[F(\xi, \eta, \zeta) = f(\xi, \eta, \zeta + \eta, \zeta + \eta), \quad \xi, \eta, \zeta \in R_+. \]
A natural question to be solved is that of determining what happens when the right-hand side of (e04) depends on the (abstract) variable \(x \in X \) and the (real) variables \((d(x, T^i x); 1 \leq i \leq n(x)), (d(x, T_j y); 0 \leq j \leq n(x)) \); or, in other words, when the function \(F = F(x) \) acts from \(R^{2n(x)+1}_+ \) to \(R_+ \). At the same time, observe that, from a "relational" viewpoint, the result we just recorded may be deemed as being expressed modulo the trivial quasi-ordering on \(X \); so that, a formulation of it in terms of genuine quasi-orderings would be of interest. It is precisely our main aim to get a generalization – under the above lines – of Theorem 5.

(B) Let \((X, d)\) be a metric space and \(\leq \) be a quasi-ordering (i.e.: reflexive and transitive relation) over \(X \). A sequence \((x_n; n \in N)\) in \(X \) will be said to be increasing when \(x_i \leq x_j \) for \(i \leq j \). Take the self-map \(T \) of \(X \) according to

\[
\begin{align*}
(e05) \quad & Y := \{ x \in X; x \leq T x \} \text{ is not empty} \\
(e06) \quad & T \text{ is increasing} (x \leq y \implies T x \leq T y).
\end{align*}
\]

In addition, the specific condition will be accepted:

\[
\begin{align*}
(e07) \quad & \text{for each } x \text{ in } Y \text{ there exist } n(x) \in N_0, f(x) \in \mathcal{F}_i(R^{2n(x)+1}_+), \text{ with} \\
& d(T^n x, T^n y) \leq f(x)(d(x, T x), ..., d(x, T^n x); d(x, y), ..., d(x, T^n y)), \\
& \text{for all } y \in Y \text{ with } x \leq y.
\end{align*}
\]

For the arbitrary fixed \(x \in Y \), let \(g(x) \) indicate the element of \(\mathcal{F}_i(R_+) \), given as \(g(x)(t) = f(x)(t, ..., t, t, ..., t), t \geq 0 \). We shall say that the family (of (e07)) \(((n(x), f(x))\); \(x \in Y \)) is iterative \(T \)-normal provided, for each \(x_0 \in Y \),

\[
\begin{align*}
(e08) \quad & g(x_0) \in \mathcal{F}_1(R_+) \text{ and } t - g(x_0)(t) \to \infty \text{ as } t \to \infty, \\
(e09) \quad & \lim_k g(x_k) \circ ... \circ g(x_0)(t) = 0, t > 0, \text{ where } [n_0 = n(x_0), x_1 = T^{n_0} x_0] \text{ and,} \\
& \text{inductively, } [n_i = n(x_i), x_{i+1} = T^{n_i} x_i], i \geq 1.
\end{align*}
\]

The following auxiliary fact will be useful.

Proposition 2. Let (e05)-(e07) hold; and the family \(((n(x), f(x)); x \in Y)\) [attached to (e07)] be iterative \(T \)-normal. Then, the following conclusions hold

- (i) for each \(x \in Y \), \((T^m x; m \in N)\) is increasing Cauchy (in \(X \))
- (ii) \(d(T^m x, T^m y) \to 0 \text{ as } m \to \infty, \text{ for all } y \in Y, x \leq y. \)

Proof. Let \(x \in Y \) be given. We firstly claim that

\[
d(x, T^m x) \leq t, m \in N, \text{ for some } t = t(x) > 0. \quad (5.1)
\]

Indeed, it follows by (e08) that, given \(\alpha > 0 \), there exists \(\beta = \beta(\alpha, x) > \alpha \) with

\[
t \leq \alpha + g(x)(t) \text{ implies } t \leq \beta. \quad (5.2)
\]

Put \(\alpha = \max\{d(x, T x), ..., d(x, T^n x)\} \). We claim that (5.1) holds with \(t = \beta \). In fact, suppose that the considered assertion would be false; and let \(m \) denote the infimum of those ranks for which the reverse of (5.1) takes place. Clearly, \(m > n(x), d(x, T^k x) \leq \beta, k \in \{1, ..., m - 1\}, \text{ and } d(x, T^m x) > \beta \); so that, by (e07),

\[
\begin{align*}
d(x, T^m x) & \leq d(x, T^n x) + d(T^n x, T^m x) \\
& \leq \alpha + f(x)(d(x, T x), ..., d(x, T^n x); d(x, T^{m-n(x)} x), ..., d(x, T^m x)) \\
& \leq \alpha + f(x)(\alpha, ..., \alpha, \beta, ..., \beta, d(x, T^m x)) \leq \alpha + g(x)(d(x, T^m x))
\end{align*}
\]

contradicting (5.2) and proving our assertion. In this case, letting \(x = x_0 \in Y \), put \(n_0 = n(x_0), m_0 = n_0, x_1 = T^{m_0} x_0 = T^{m_0} x_0 \text{ and,} \)

inductively,

\[
i = n(x), m_i = n_0 + \ldots + n_i, x_{i+1} = T^{n_i} x_i = T^{m_i} x_0, i \geq 1.
\]
By (5.1), $d(x_0, T^m x_0) \leq t_0$, $m \in N$, for some $t_0 > 0$; so combining with (e07):

\[
d(x_1, T^m x_1) = d(T^m x_0, T^m x_0) \leq f(x_0)(d(x_0, T x_0), \ldots, d(x_0, T^n x_0);
\]

or equivalently, $d(T^m x_0, T^m x_0) \leq g(x_0)(t_0), m \in N$;

or equivalently, $d(T^m x_0, T^m x_0) \leq g(x_1)(t_0), m \geq m_0$. Again via (e07),

\[
d(x_2, T^m x_2) = d(T^n x_1, T^n x_1) \leq f(x_1)(d(x_1, T x_1), \ldots, d(x_1, T^n x_1);
\]

or equivalently: $d(T^m x_0, T^m x_0) \leq g(x_1) \circ g(x_0)(t_0), m \geq m_1$; and so on. By a finite induction procedure one gets $d(x_k+1, T^m x_{k+1}) \leq g(x_k) \cdots g(x_0)(t_0), m, k \in N;$

or equivalently (for each $k \in N$)

\[
d(T^m x_0, T^m x_0) \leq g(x_k) \circ \cdots g(x_0)(t_0), m \geq m_k;
\]

wherefrom, taking (e09) into account, $(T^n x_0; n \in N)$ is an increasing Cauchy sequence. Finally, given $y_0 \in Y$ with $x_0 \leq y_0$, put $y_1 = T^n y_0$ and, inductively,

\[
y_{i+1} = T^n y_i = T^{m_i} y_0, i \geq 1.
\]

Again by (5.1),

\[
d(x_0, T^n x_0), d(x_0, T^n y_0) \leq t_0, m \in N, \text{ for some } t_0 > 0.
\]

This fact, combined with (e07), leads us, by the same procedure as before, at

\[
d(x_{k+1}, T^n x_{k+1}), d(x_{k+1}, T^n y_{k+1}) \leq g(x_k) \circ \cdots g(x_0)(t_0), m, k \in N;
\]

or equivalently (for each $k \in N$)

\[
d(T^n x_0, T^n y_0) \leq g(x_k) \circ \cdots g(x_0)(t_0), m \geq m_k;
\]

proving the desired conclusion and completing the argument. \hfill \Box

(C) Let X, d and \leq be endowed with their previous meaning. Given the sequence $(x_n; n \in N)$ in X and the point $x \in X$, define $x_n \uparrow x$ as: $(x_n; n \in N)$ is increasing and convergent to x. Term the triplet $(X, d; \leq)$, quasi-order complete, provided each increasing Cauchy sequence converges. Note that any complete metric space is quasi-order complete; but the converse is not in general valid. Further, given the self-map T of X, call it continuous at the left when $x_n \uparrow x$ and $x_n \leq x, n \in N$, imply $T x_n \rightarrow T x$. Also, the ambient quasi-ordering \leq will be said to be self-closed when $x \leq y_n, n \in N$ and $y_n \uparrow y$ imply $x \leq y$; note that any semi-closed quasi-ordering in Nachbin’s sense [17, Appendix] is necessarily self-closed. The first main result of the present note is

Theorem 6. Let the conditions of Proposition [2] be fulfilled; and (in addition) $(X, d; \leq)$ is quasi-order complete, \leq is self-closed, and T is continuous at the left. Then, the following conclusions will be valid

\begin{enumerate}
 \item[iii)] $Z := \{x \in X; x = T x\}$ is not empty
 \item[iv)] for every $x \in Y$, $(T^n x; n \in N)$ converges to an element of Z
 \item[v)] if $x, y \in Y$ are comparable, $(T^n x; n \in N)$ and $(T^n y; n \in N)$ have the same limit (in Z).
\end{enumerate}

Proof. By Proposition [2] and the quasi-order completeness of $(X, d; \leq)$, it follows that, for the arbitrary fixed $x \in Y$, $T^n x \uparrow z$ for some $x \in X$. As \leq is self-closed, $T^n x \leq z, n \in N$; so that, combining with the left continuity of T one gets $T^n x \uparrow T z$; hence $z = T z$. The proof is thereby complete. \hfill \Box
Now, it is natural to ask of what happens when \(T \) is no longer continuous at the left. Some conventions are in order. Call \(\leq \), anti self-closed when \(y_n \leq x, n \in N \), and \(y_n \uparrow y \) imply \(y \leq z \); observe at this moment that a sufficient condition for \(\leq \) to be anti self-closed is that \(\geq \) (its dual) be semi-closed. Further, call \(\leq \), interval closed when it is both self-closed and anti self-closed. Our second main result is

Theorem 7. Let the conditions of Proposition 3 be fulfilled; and (in addition) \((X, d; \leq) \) is quasi-order complete and \(\leq \) is an interval closed ordering. Then, conclusions iii)- vi) of Theorem 2 continue to hold; and, moreover,

vi) for each \(x \in Y \) the element \(z = \lim_n T^n x \) in \(Z \) has the properties (a) \(x \leq z \), (b) \(z \leq y \in Y \) implies \(z = y \).

Proof. Let \(x \in Y \) be arbitrary fixed. By Proposition 2 \(T^n x \uparrow z \), for some \(z \in X \). Hence (as \(\leq \) is self-closed), \(x \leq T^n x \leq z, n \in N \). It immediately follows that \(T^n x \leq Tz, n \in N \); so (by the anti self-closedness of \(\leq \)), \(z \in Y \). Now, \(x \leq z \in Y \) gives, again by Proposition 2 \(T^n z \uparrow z \) (hence \(Tz \leq T^n z \leq z, n \in N_0 \)) and therefore (as \(\leq \) is ordering) \(z \in Z \). The remaining part is evident. \(\square \)

It remains now to discuss the alternative:

\((T \text{ is not continuous at the left}) \) and \((\leq \text{ is not an interval closed ordering}) \).

To this end, assume that, for any \(x \in Y \), the function \(f(x) \in F_i(R^{2n(x)+1}_+ x) \) given by (e07) fulfills

\[
(e10) \text{ for each } (\alpha_1, ..., \alpha_{n(x)}) \in R^n_+ \text{ with } \alpha_{n(x)} > 0 \text{ there exists } \beta > 0 \text{ with } \\
\beta + f(x)(\alpha_1, ..., \alpha_{n(x)}; \beta, ..., \beta) < \alpha_{n(x)}
\]

\[
(e11) \text{ for each } (\alpha_1, ..., \alpha_{n(x)}) \in R^n_+ \text{ with } \alpha_1 > 0, \alpha_{n(x)} = 0, \text{ we have } \\
f(x)(\alpha_1, ..., \alpha_{n(x)}; \alpha_1, ..., \alpha_{n(x)}, \alpha_1) < \alpha_1.
\]

Now, as a completion of the above results, we have

Theorem 8. Let the conditions of Proposition 2 be fulfilled; and (in addition) \((X, d; \leq) \) is quasi-order complete, (e10)+(e11) hold, and \(\leq \) is an interval closed quasi-ordering. Then, conclusions iii)- vi) of Theorem 7 still remain valid.

Proof. Let \(x \in Y \) be arbitrary fixed. By the above reasoning, \(T^n x \uparrow z \), for some \(z \in Y \); with, in addition (cf. Proposition 2): \([x \leq T^n x \leq z, n \in N] \) and \([T^n x \uparrow z] \). Assume that \(z \neq T^n(z); \text{ and let } \beta > 0 \text{ be the number attached (via (e10)) to } \alpha_1 := d(z, Tz), ..., \alpha_{n(x)} := d(z, T^n(z)). \text{ By the convergence property above, there exists } k(\beta) \in N \text{ such that } d(z, T^k z) \leq \beta, \forall k \geq k(\beta); \text{ and this gives for all ranks } m \geq k(\beta) + n(z), \\
\]

\[
d(z, T^{(z)} z) \leq d(z, T^m z) + d(T^{(z)} z, T^m z) \leq d(z, T^m z) + \\
f(z)(d(z, Tz), ..., d(z, T^n(z)); d(z, T^{m-n(z)} z), ..., d(z, T^m z)) \leq \\
\beta + f(z)(d(z, Tz), ..., d(z, T^n(z)) \leq \beta, ..., \beta) < d(z, T^n(z));
\]

contradiction; hence \(z = T^n(z) \). Moreover,

\[
d(z, Tz) = d(T^n(z) z, T^n(z) Tz) \leq \\
f(z)(d(z, Tz), ..., d(z, T^n(z)); d(z, Tz), ..., d(z, T^n(z)), d(z, T^n(z) Tz)) = \\
f(z)(d(z, Tz), ..., d(z, T^{n-1}(z)), 0; d(z, Tz), ..., d(z, T^{n-1}(z)), 0, d(z, Tz));
\]

wherefrom, if \(z \neq Tz \), (e11) will be contradicted. Hence the conclusion. \(\square \)
Some remarks are in order. Theorem 6 may be viewed as a quasi-order extension of Sehgal’s result we just quoted (cf. also Dugundji and Granas [5, Ch 1, Sect 3]) while Theorem 7 is a quasi-order “functional” version of Matkowski’s contribution (Theorem 5). At the same time, Theorem 8 - although formulated as a fixed point result - may be deemed in fact as a maximality principle in \((Y, \leq)\); so, it is comparable under this perspective with a related author’s one [20] obtained by means of a “compactness” procedure like in Krasnoselskii and Sobolev [14].

(D) Note added in 2011

From these developments, the following statement is deductible. Let the quasi-ordered metric space \((X, d, \leq)\) the self-map \(T\) of \(X\) be taken as in (e05)+(e06). In addition, the specific condition will be accepted:

\[(e12) \text{there exists } f \in F(R_+) \text{ such that: for each } x \in Y \text{ there exists } n(x) \in N_0 \text{ with } d(T^n(x), T^n(y)) \leq f(d(x, y)), \text{for all } y \in Y \text{ with } x \leq y.\]

Note that, in such a case, the iterative normality of \((n(x); f); x \in Y\) is characterized by (e02)+(e03), with \(f\) in place of \(g\) and referred to as: \(f\) is normal (see above). From Theorem 6 we then get, formally

Theorem 9. In addition to (e05)+(e06), assume that the function \(f\) (appearing in (e12)) is normal, \((X, d, \leq)\) is quasi-order complete, \(\leq\) is self-closed, and \(T\) is continuous at the left. Then, conclusions iii)–v) of Theorem 6 are retainable.

In particular, any linear comparison function \(f\) (in the sense: \(f(t) = \alpha t, t \in R_+, \text{ for } 0 < \alpha < 1\)) is normal. Then, Theorem 9 includes the essential conclusions of the Ran-Reurings result (Theorem 1). [In fact, under appropriate conditions, it may give us all conclusions in the quoted statement; we do not give details]. Note that Theorem 9 is not yet covered by the existing fixed point statements in the realm of quasi-ordered metric spaces. Further aspects will be delineated elsewhere.

References

[1] R. P. Agarwal, M. A. El-Gebeily and D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116.

[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math., 3 (1922), 133-181.

[3] L. B. Ciric, Fixed point theorems for mappings with a generalized contractive iterate at a point, Publ. Inst. Math., 13 (27) (1972), 11-16.

[4] L. B. Ciric, D. Mihet and R. Saadati, Monotone generalized contractions in partially ordered probabilistic metric spaces, Topology and its Appl., 156 (2009), 2838-2844.

[5] J. Dugundji and A. Granas, Fixed Point Theory, vol. I, Warszawa, 1982.

[6] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1-72.

[7] L. F. Guseman Jr., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 26 (1970), 615-618.

[8] G. Gwozdz-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356 (2009), 453-463.

[9] K. Iseki, A generalization of Sehgal-Khazanchi’s fixed point theorem, Math. Sem. Notes Kobe Univ., 2 (1974), 89-95.

[10] J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (1993), 1095-1102.

[11] J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math., 25 (1994), 925-937.

[12] S. Kasahara, On some generalizations of the Banach contraction theorem, Publ. Res. Inst. Math. Sci. Kyoto Univ., 12 (1976), 427-437.
[13] L. Khazanchi, *Results on fixed points in complete metric space*, Math. Japon., 19 (1974), 283-289.
[14] M. A. Krasnoselskii and A. V. Sobolev, *O nepodvizhnih tochkhach razrjennych operatorov*, Sibirsk. Mat. Zh., 14 (1973) 674-677.
[15] M. G. Maia, *Un’osservazione sulle contrazioni metriche*, Rend. Sem. Mat. Univ. Padova, 40 (1968), 139-143.
[16] J. Matkowski, *Fixed point theorems for mappings with a contractive iterate at a point*, Proc. Amer. Math. Soc., 62 (1977), 344-348.
[17] L. Nachbin, *Topology and Order*, Van Nostrand, Princeton, N.J., 1965.
[18] J.J. Nieto and R. Rodriguez-Lopez, *Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations*, Order, 22 (2005), 223-239.
[19] D. O’Regan and A. Petruşel, *Fixed point theorems for generalized contractions in ordered metric spaces*, J. Math. Anal. Appl., 341 (2008), 1241-1252.
[20] A. Petruşel and I. A. Rus, *Fixed point theorems in ordered L-spaces*, Proc. Amer. Math. Soc., 134 (2006), 411-418.
[21] A. C. M. Ran and M. C. Reurings, *A fixed point theorem in partially ordered sets and some applications to matrix equations*, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
[22] B. E. Rhoades, *A comparison of various definitions of contractive mappings*, Trans. Amer. Math. Soc., 226 (1977), 257-290.
[23] I. A. Rus, *Generalized Contractions and Applications*, Cluj University Press, Cluj-Napoca, 2001.
[24] V. M. Sehgal, *A fixed point theorem for mappings with a contractive iterate*, Proc. Amer. Math. Soc., 23 (1969), 631-634.
[25] K. L. Singh, *Fixed point theorems for contractive-type mappings*, J. Math. Anal. Appl., 72 (1979), 283-290.
[26] M. Turinici, *A class of operator equations on ordered metric spaces*, Bull. Malaysian Math. Soc., (2), 4 (1981), 67-72.
[27] M. Turinici, *Fixed points for monotone iteratively local contractions*, Dem. Math., 19 (1986), 171-180.