TITLE:
Detection of Time-Varying Structures by Large Deformation Diffeomorphic Metric Mapping to Aid Reading of High-Resolution CT Images of the Lung

AUTHOR(S):
Sakamoto, Ryo

CITATION:
Sakamoto, Ryo. Detection of Time-Varying Structures by Large Deformation Diffeomorphic Metric Mapping to Aid Reading of High-Resolution CT Images of the Lung. 京都大学, 2014, 博士(医学)

ISSUE DATE:
2014-05-23

URL:
https://doi.org/10.14989/doctor.k18460

RIGHT:
Sakamoto R, Mori S, Miller MI, Okada T, Togashi K (2014) Detection of Time-Varying Structures by Large Deformation Diffeomorphic Metric Mapping to Aid Reading of High-Resolution CT Images of the Lung. PLoS ONE 9(1): e85580. doi:10.1371/journal.pone.0085580. © 2014 Sakamoto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
論文題目：Detection of Time-Varying Structures by Large Deformation Diffeomorphic Metric Mapping to Aid Reading of High-Resolution CT Images of the Lung
（非線形重ね合わせ方法“Large Deformation Diffeomorphic Metric Mapping”を通じた胸部高解像度CT画像の経時変化の検出）

（論文内容の要旨）
近年における医用画像機器の進歩によりCT撮像は高速化、高分解能化が進んでいる。このようなため一患者あたりの画像枚数増加のみでなく、読影すべき患者数も増加している。さらに治療の高度化に伴い、頻回に画像による治療効果判定が行われる場合が増える。そのため、例えば腫瘍サイズの評価を長径の計測のみで行われており、高解像度画像は必ずしも活用されていない。

このような状況に対して、コンピュータによる診断支援システムの研究が進んでいる。胸部CTにおいて、腫瘍性病変の出現・消退、ないしは増大・縮小を評価することは経過観察として撮影されるCT画像を読影する上で最も重要な項目である。従って経時的に撮影された2時点のCT画像を変形重ね合わせることで腫瘍全体積の経時変化を自動的に検出することはより客観的かつ正確な治療効果の判定に大きく寄与すると考えられる。

体位や吸気量の違いにより胸部含む躯幹部は大きく変形するため、経時的に変化した部分だけ検出するには同一患者であっても2時点のCT画像を非線形に変形させて正確に重ね合わせる必要がある。本研究ではこうした大変形に対してトポロジー（幾何学的連続性）を保ちながら非線形に重ね合わせることが可能なLarge Deformation Diffeomorphic Metric Mapping（以下LDDMMと略す）法を用いて画像の経時変化を検出・評価する方法を検討した。
非線形重ね合わせでは病変部そのものも形態・体積が変化してしまうため、重ね合わせ後の中立画像のみでは経時変化の情報が失われてしまう。そこで画像の変形行列から微小体積の変化率（Jacobian）を算出し、これを画像化したヤコビアンマップを差分画像と併用することで経時変化を検出可能であると考えた。

対象は京都大学附属病院において肺癌悪性腫瘍で経時にCT撮像が行われた15症例。LDDMM法による重ね合わせの精度評価を、代表的な線形重ね合わせ手法であるAffine変換法および従来の非線形重ね合わせ手法であるB-Spline法と比較した。さらにLDDMM法を用いた重ね合わせの数値計算を、どのように腫瘍の経時変化が同定可能かを検討した。
平均の重ね合わせ誤差は肺野の中枢側、外周側の順に、Affine変換法：3.11±2.47mm, 3.99±3.05mm, B-spline法：0.19±0.45mm, 0.33±0.64mm, LDDMM法：0.02±0.16mm, 0.12±0.60mmと計測された。LDDMMによる非線形重ね合わせは、従来法に比較して非常に高精度かつ優位に改善されることが示された（p<0.05）。

以上の研究は胸部CTにおける腫瘍の経時変化を詳細に検出する新たな手法を提唱し、客観的かつ正確な治療効果の判定に寄与するところが多い。したがって、本論文は博士（医学）の学位論文として価値あるものと認める。なお、本学位申請者は、平成26年4月18日実施の論文審査の結果、合格と認められたものである。