Review Article

Unraveling the Phytochemistry, Traditional Uses, and Biological and Pharmacological Activities of *Thymus algeriensis* Boiss. & Reut

Ismail Mahdi 1, Widad Ben Bakrim 1,2, Gabin Thierry M. Bitchagno 1, Hassan Annaz 1, Mona F. Mahmoud 3, and Mansour Sobeh 1

1Agrobiosciences, Mohamed IV Polytechnic University, Lot 660, Hay Mouday Rachid, Ben Guerir 43150, Morocco
2African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt

Correspondence should be addressed to Mansour Sobeh; mansour.sobeh@um6p.ma

Received 9 March 2022; Revised 11 April 2022; Accepted 21 April 2022; Published 25 May 2022

Academic Editor: Esra K peli Akkol

Copyright © 2022 Ismail Mahdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Growing concern for public health has increased the need to change the paradigm towards a healthcare system that advocates holistic practices while reducing adverse effects. Herbal therapy is becoming an integral part of the therapeutic arsenal, and several successful plant-derived compounds/molecules are being introduced into the market. The medicinal plants belonging to the genus *Thymus* are among the most important species within the Lamiaceae family. One of them is *Thymus algeriensis* which is mainly distributed in the Mediterranean region. For a long time, this species has been used in traditional medicine to treat several disorders and diseases including inflammation, diabetes, rheumatism, digestive, and respiratory affections. This review describes the traditional uses, phytochemical composition, and biological and pharmacological activities of *T. algeriensis* extracts. Data were obtained using electronic databases such as SciFinder® , ScienceDirect, Scopus, and Web of Science. Several plant-based extracts and a broad spectrum of identified secondary metabolites were highlighted and discussed with respective activities and modes of action. *T. algeriensis* represents a promising natural resource for the pharmaceutical industry mainly for antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. Considering these findings, more research is needed to transmute the conventional uses of *T. algeriensis* into scientifically sound information. Moreover, extensive preclinical, clinical, toxicological, and pharmacokinetic trials on this species and its derivatives compounds are required to underpin the mechanisms of action and ensure its biosafety and efficiency. This comprehensive review provides a scientific basis for future investigations on the use of *T. algeriensis* and derived compounds in health maintenance and promotion and disease prevention.

1. Introduction

According to the World Health Organization (WHO), about 80% of the earth’s population relies on folk medicine. Most of ethnopharmacological practices involve the use of plant-based extracts and their bioactive constituents as natural healing remedies [1]. Plants have been used for therapeutic purposes worldwide for thousands of years and still provide the largest drugs to humankind. Therefore, scientists have dedicated a lot of effort to drug discovery willing to identify natural molecules/compounds from plants [2]. Until now, the international market of medicinal and aromatic plants has reached over 60 billion dollars per year, and it is still increasing gradually [3]. In addition, the pharmaceutical industry values medicinal plants for their bioactive constituents such as flavonoids, polyphenols, alkaloids, tannins, and glycosides, which are used as agents in drugs’ synthesis [4]. Nowadays, plant-derived molecules are continuously enriching our drug arsenal (e.g., galantamine, vinblastine, vincristine, and artemisinin) [5].

Thymus is a large plant genus comprising up to 400 species of aromatic and medicinal herbaceous, perennials, and shrubs. They are widely distributed in the Mediterranean region and Asia. *Thymus* species are used traditionally as
herbal teas, culinary spices, and condiments [6]. Additionally, their essential oils are listed as one of the world’s top ten essential oils and known for their broad spectrum of biological activities including antioxidant, antibacterial, and age-delaying properties [7].

One of the most renowned North African Thymus species is *T. algeriensis*. The previous investigations carried out on this plant species have been mainly oriented towards its biological activities and clinical attributes. According to the Scopus database, more than 43.4% of the works relate to biological, pharmacological, biochemical, microbiological, and immunological aspects. The largest number of these studies was carried out by North African researchers and institutions, particularly Algerian, Moroccan, and Tunisian. In the Scopus database, the TITLE-ABS-KEY (*thymus AND algeriensis*) research resulted in 951 documents gathering articles (95.5%), reviews (2.2%), book chapters, and data papers (2.2%) with an increasing trend of document numbers over the years. For instance, it went from 4 to 15 documents per year between 2013 and 2021 indicating the importance that this species arouses among researchers. Therefore, *T. algeriensis* is a promising endemic resource for drug discovery and healthcare systems. Since this *Thymus* species has been the subject of a multitude of studies using both *in vitro* and *in vivo* approaches, and the data related to its phytochemistry and biological properties are distributed in several documents, we thought, here, to comprehensively summarize and review the phytochemical composition of *T. algeriensis* tissues with reference to the biological and pharmacological activities of its various extracts to have a holistic and synoptic view of its benefits and curative potentialities and track down research gaps and future prospects.

2. Botanical Description and Distribution

T. algeriensis is an endemic species of North Africa (Morocco, Algeria, Tunisia, and Libya) (Figure 1) [8]. The *Thymus* genus is represented by numerous aromatic plant species, including *T. algeriensis* which is a short lived, diploid (*2n = 2x = 30*) and gynodioecious shrub [9, 10] belonging to the *Hyphodromi* section and the *Subbracteati* subsection [11]. It grows wildly in diverse bioclimatic areas extending from the subhumid to the lower arid and on poor fertile calcareous soils [12]. In Morocco, it is found in the Middle, the High, and the Western Anti-Atlas, the Rif, and the Oriental (Figure 1).

T. algeriensis is a perennial plant with 4 to 7 mm long internodes emerging as a tuft from the short woody stump [13] (Figure 2(a)). The leaves are opposite with linear-lanceolate (6–12 mm) and have both green surfaces. The flowers are small (5–7 mm) and have a white purplish or pinkish purple corolla color, with the upper lip cleft and the lower one divided into three lopes (Figure 2(b)).
Flowering and fruiting time takes place from late April to June [14, 15].

Due to the anthropic pressures (overcollection, overgrazing, clearing, etc.), *Thymus* populations and cultivars from natural areas are severely affected and tend to occur in scattered metapopulations, often characterized by a low size [9]. Many factors influence the level of differentiation and the genetic drift of *T. algeriensis* populations, mainly habitat fragmentation, special isolation, ecological conditions, and gene flow limitation reducing their adaptation to ecological conditions.
Table 1: Chemical constituents of *T. algeriensis* extracts.

Compound name	Extract type	Ref.
Algeria		
Apigenin-6,8-C-dihexoside^b	H₂O & EtOH–H₂O	[7]
Apigenin-7-O-glucuronide^b	H₂O & EtOH–H₂O	[7]
Aringin^a	EtOH	[23]
Baicalin^b	n–BuOH	[17]
Benzoic acid^b	H₂O	[18]
Caffeoyl rosmarinic acid^a	MeOH–H₂O	[24]
Chlorogenic acid^b	H₂O	[18]
Clove-2,9-diol^a	MeOH	[25]
Diosmin^b	n–BuOH	[17]
Ellagic acid^d	EtOH	[23]
Fumaric acid^b	n–BuOH	[17]
Gentisic acid^b	n–BuOH	[17]
Hesperidin^b	n–BuOH	[17]
Isovanillin^b	EtOH–H₂O & H₂O	[18]
Kaempferol-O-glucuronide^b	H₂O & EtOH–H₂O	[7]
Lithospermic acid^b	H₂O & EtOH–H₂O	[7]
Luteolin glucuronide^a	MeOH	[22]
Methyl ursolate^a	MeOH	[25]
Naringin^b	EtOH–H₂O, H₂O, & n–BuOH	[17, 18]
Neohesperidin^b	n–BuOH	[17]
O-Coumaric acid^b	H₂O	[18]
Oleanolic acid^a	MeOH	[25]
p-Coumaric acid^b	EtOH–H₂O, H₂O	[18]
Epicatechin^b	EtOH	[23]
Rosmarinic acid glucoside^a	MeOH	[22]
Salvianolic acid K^{ab}	MeOH, H₂O, & EtOH–H₂O	[7, 22]
Scutellarin^b	n–BuOH	[17]
Sinapinic acid^b	EtOH–H₂O, H₂O	[18]
t-Ferulic acid^b	H₂O	[18]
Ursolic acid^a	MeOH	[25]
β-Sitosterol^a	MeOH	[25]
2,5-Dihydroxybenzoic acid^a	EtOH	[23]
2,3-Dimethoxybenzoic acid^b	EtOH–H₂O, H₂O	[18]
3-Hydroxybenzoic acid^b	EtOH–H₂O, H₂O	[18]
4-Hydroxybenzoic acid^b	H₂O, EtOH–H₂O, & n–BuOH	[18]
Algeria and Tunisia		
Catechin^b	H₂O	[14, 18]
Gallic acid^b	H₂O & MeOH	[18–20]
Kaempferol^{ab}	MeOH–H₂O, H₂O, & MeOH	[14, 19, 24]
Quercetin^b	H₂O & MeOH	[14, 18, 19, 22]
Rosmarinic acid^{ab}	MeOH–H₂O & MeOH	[7, 21, 24]
Rutin^{ab}	EtOH–H₂O, H₂O, & MeOH	[14, 18–20, 23]
Syringic acid^b	H₂O & MeOH	[18, 20]
Vanillic acid^b	EtOH, MeOH, & H₂O	[18–20, 23]
Epicatechin^b	EtOH–H₂O & H₂O	[14, 18, 19]
Tunisia		
Gallic acid^b	H₂O	[14]
changes [16]. Several chemotypes were described in *T. algeriensis* according to their phytochemical composition (essential oils and main compounds) [15]. The genetic diversity among populations are also reported to be influenced by the level of site destruction, the number of initial founders in populations, and their dispersal and reproductive potentials [16].

3. Sources, Search Strategy, and Eligibility Criteria

The chemical composition and the biological and pharmacological activities of *T. algeriensis* were obtained using the electronic databases SciFinder®, Web of Science, Google Scholar, and Scopus. The search term used was *Thymus algeriensis* Boiss. & Reut. (1210 records). When crosslinked with specific terms, mainly "chemical compounds" (1010 records) and "activities" (1050 records), the number of documents decreased to 989. The cumulative results were then crosslinked with biological activities, *in vitro*, *in vivo*, or pharmacology which resulted in 155 records. In addition, titles and abstracts were screened and subjected to inclusion criteria that were as follows: phytochemical constituents of *Thymus algeriensis* extracts and their biological and pharmacological activities both *in vitro* and *in vivo*. Exclusion criteria were also considered and included other applications of the plant such as agriculture, non-English documents, duplicated papers, and the inability to locate full text. This selection resulted in relevant literature of 87 records that was used to retrieve data represented in this review. Other than the aforementioned records, many other references were sourced from citations of eligible studies.

4. Phytochemical Composition of *T. algeriensis*

The phytochemical analysis of different parts of *T. algeriensis* has shown the presence of diverse phytochemicals like polyphenols, flavonoids, terpenoids, sterols, and volatile compounds. This might be attributed to different factors such as geographic location, temperature, and harvesting time. Furthermore, phytochemical content is reported to vary with the extraction method employed and compounds identified in various parts of *T. algeriensis*. The major active constituents are flavonoids (Figure 3). The plant is also known by the volatile compounds characterizing the essential oil. Tables 1 and 2 demonstrate the reported compounds from *T. algeriensis* of different parts including aerial parts, leaves, flowers, and stem bark. The presence of various phytochemicals in *T. algeriensis* suggests its pluripharmacological properties, and a comprehensive assessment of the various activities of different phytochemicals is included in the sections below.

4.1. Aerial Parts

Most of the studies have been focused on the aerial parts of *T. algeriensis*. Different studies reported that the hydroalcoholic extracts were shown to contain kaempferol-O-glucuronic acid, apigenin-6,8-C-dihexoside and apigenin-7-O-glucuronic acid, and naringenin, identified from the Algerian plants [7, 17, 18], while apigenin was annotated in the polar extracts of the Tunisian plants [14, 19] (Figure 3). In the Tunisian plants, catechin, epicatechin, rutin, flavone, and (+)-catechin hydrate have been identified in the hydroalcoholic and methanolic extracts (Figure 3) [14, 18, 19].

Phenolic acids such as O-coumaric, p-coumaric, salvianolic, and t-ferulic were documented from the Algerian flora [7, 18], while gallic, rosmarinic, syringic, and vanillic acids were detected in the extracts from the Tunisian and Egyptian plants (Figure 4). In contrast, caffeic and ferulic acids characterized the methanolic extract of the plant harvested from Tunisia [20]. In the same line, 2,3-dimethoxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid were identified in the ethanol, hydroalcoholic, and butanolic extracts of the Algerian plants (Figure 5) [18].

4.2. Leaves

T. algeriensis has a high antioxidant activity mainly due to its high content in flavonoids (Figure 3). Most of the flavonoids present in the leaves are in the flavanol and glycoside forms. Kaempferol and rutin were detected in the polar leaves’ extract of the plants from Algeria and Tunisia.

Table 1: Continued.

Compound name	Extract type	Ref.
Naringenin		[14, 19]
Coumaric acid		[14, 19]
Caffeic acid	MeOH	[20]
Ferulic acid		[20]
Flavone		[20]
Hydroxyphenyl acid		[20]
Methyl gallate		[20]
(+)-Catechin hydrate		[20]
Carvacrol		[21]
Kaempferol-O-hexoside		[21]
Kaempferol-O-hexuronide		[21]
Apigenin	H₂O, MeOH	[14, 19]

*Leaves, a*aerial parts.*
Table 2: Chemical constituents of *T. algeriensis* essential oils (EO).

Compound name	Plant part	Quantity (%)	Country	Ref.
1,8-Cineole	Aerial parts	17.70%	Tunisia	[9]
		7.55-22.07% *		[15]
		20.98%		[12]
		19.96%	Tunisia	[20]
	Leaves	11.60%		[28]
	Flowers	12.05%		[69]
	Leaves and flowers	9.12%		[69]
		5.54%		[29]
		5.16-11.21%**		[42]
		7.69%	Algeria	[34]
		6.00%		[136]
		5.94%		[30]
4-Terpineol	Aerial parts	1.55-11.86%*	Tunisia	[15]
	Leaves and flowers	7.36%		[29]
Borneol	Aerial parts	11.16-22.2%**	Algeria	[42]
	Stem bark	11.16%		[30]
	Aerial parts	28%	Morocco	[137]
		18.30%		[53]
		23.48%		[66]
		59%		[93]
Camphene	Aerial parts	7.53-12.86%**	Algeria	[42]
	Stem bark	12.78%		[30]
	Aerial parts	20.90%	Morocco	[137]
		11.80%		[53]
Camphor	Aerial parts	17.45-32.56%**	Algeria	[42]
	Stem bark	22.60%		[30]
	Aerial parts	15.70%	Morocco	[137]
		10.00%		[53]
		27.70%		[50]
		27.70%		[79]
		27.70%		[26]
		19.20%	Tunisia	[20]
		6.8-19.93%*		[15]
		7.46%		[12]
		13.82%		[49]
		8.20%		[9]
	Leaves	10.40%		[28]
	Leaves and flowers	7.82%		[29]
Carvacrol	Aerial parts	48.40%	Algeria	[78]
		28.10%		[138]
	Leaves	64.6-65.9%†	Libya	[78]
	Aerial parts	80.90%		[6]
		14%		[73]
Compound name	Plant part	Quantity (%)	Country	Ref.
--------------------	----------------	--------------	-------------	------
4.59%	Aerial parts	4.59%	Morocco	[43]
36.78%				[124]
Caryophyllene oxide	Roots	21.10%	Tunisia	[28]
17.80%	Stems	17.80%	Tunisia	[28]
cis-Sabinene hydrate	Aerial parts	0.10-12.95%*	Tunisia	[15]
	Leaves and flowers	5.29%		[29]
Elemol	Aerial parts	18.38%	Algeria	[46]
	Leaves	3.98%	Tunisia	[69]
	Flowers	11.30%		[69]
	Stems	10.20%		[28]
Geraniol	Aerial parts	19.60%	Algeria	[35]
	Leaves	7.30%	Morocco	[140]
Linalool	Aerial parts	3.93%	Algeria	[136]
		3.93%		[35]
		47.30%		[141]
		78.80%		[142]
		22.15%	Tunisia	[12]
		17.62%		[49]
	Leaves	3.20%		[69]
		6.2-6.9%%*		[126]
		3%		[139]
p-Cymene	Aerial parts	8.00%	Algeria	[138]
		20.04%		[67]
		14.70%		[78]
		6.80%		[141]
	Leaves	6.2-6.9%%*		[126]
		3%		[139]
Thymol	Aerial parts	20.83%	Algeria	[67]
		5.60%		[78]
		20.20%		[35]
		29.20%		[141]
		62.70%		[124]
	Leaves	71%		[139]
Viridiflorol	Aerial parts	4.00%	Algeria	[136]
		0-11.49%*	Tunisia	[15]
	Roots	42%	Morocco	[93]
	Aerial parts	36.94%	Tunisia	[77]
α-Pinene	Aerial parts	6.80%	Algeria	[23]
		27.14%		[34]
	Stem bark	5.01%		[30]
	Aerial parts	20.50%	Morocco	[50]
Table 2: Continued.

Compound name	Plant part	Quantity (%)	Country	Ref.
20.50%				[79]
20.50%				[26]
7.41-13.94%*	Leaves	Tunisia	[15]	
21.31%				[12]
11.49%				[12]
15.50%				[9]
19.50%				[28]
2.97%				[69]
Leaves and flowers		6.75%		[29]
α-Terpine	Aerial parts	10.66%	Libya	[124]
3.24%		6.41%		[49]
β-Caryophyllene	Aerial parts	11.00%	Algeria	[143]
	Leaves	3.0-3.4%		[126]
γ-Terpine	Aerial parts	14.90%	Algeria	[78]
	Leaves	5.9-6.7%		[126]
δ-Cadinene	Aerial parts	4.00%	Algeria	[143]
		3.39%		[34]
α-Caryophyllene	Aerial parts	9.68%	Algeria	[46]
α-Terpinal acetate		47.40%		[23]
β-Eudesmol		11.50%		[46]
Bornyl acetate		3.86-7.92%*		[140]
γ-Terpine		25.70%		[67]
Germacrene D		29.60%		[143]
Neryl acetate		9.60%		[23]
Eucalyptol		10.04%		[67]
Bicyclogermacrene		4.40%		[143]
-β-Farnesene		7.80%		[143]
2,3-Dehydro-1,4-cineol		36%		[144]
Linalyl acetate		6.39%	Tunisia	[12]
α-Humulene		5.72%		[12]
α-Terpenyl acetate		6.27%		[49]
β-Linalool		3.15%		[77]
Methyl eugenol		6.78%		[12]
Terpinen-4-ol		6.80%		[49]
Terpenyl acetate		0-14.92%**		[15]
β-Myrcene		20.22%	Libya	[124]
Myrcene		8.60%	Morocco	[53]
trans-Caryophyllene	Leaves	2.40%	Morocco	[140]
Geranyl acetate		80.80%		[140]
Acoerenone	Stem bark	5.84%	Algeria	[30]

*Collected during the vegetative and flowering stages and from eight different geographic regions; **collected before, during, and after flowering stage; *effect of different gamma irradiation doses.
Kaempferol-O-hexoside and kaempferol-O-hexuronide have been identified in the methanolic extract of the leaves collected from Tunisia [21], while luteolin glucuronide was identified in the Algerian plants (Figure 3) [22]. From all phenolic acids (Figure 4), the leaves of *T. algeriensis* are rich in vanillic and rosmarinic acids, well-known phenolic acids with previously confirmed biological and pharmacological activities. These two compounds were characterized in the Algerian and Tunisian plants [7, 18–21, 23, 24]. The plant also contained phenolic acid derivatives such as rosmarinic acid glucoside, characterized in the methanolic extract of the Algerian plants [22]. Ursolic acid, a triterpenoid, was identified in the methanolic extract of the leaves. In addition, sterols such as \(\beta \)-sitosterol have been identified in the methanolic extract of the leaves. In addition, oleanolic acid, a triterpenoid, was identified in the leaves [25] (Figure 5).

4.3. Essential Oils of *T. algeriensis*. Essential oils are naturally defined as volatile secondary metabolites of plants and characterized by a strong aromatic nature and a complex chemical composition. The aroma of *T. algeriensis* is strong and contains large quantities of volatile compounds [26, 27]. More than 40 volatile compounds have been identified in *T. algeriensis* (Table 2 and Figure 6).

Several investigations reported the phytochemical composition of the essential oils of different specimen of *T. algeriensis* from different regions including Algeria, Libya, Tunisia, and Morocco (Table 2). The monoterpenoids and

Figure 4: Phenolic and carboxylic acids identified from *T. algeriensis*.
sesquiterpenoids dominated the oil. For instance, the main components of the essential oils of the aerial parts from the Tunisian flora were 1,8-cineole and 4-terpineol [9, 15], while borneol, camphene, camphor, and carvacrol dominated the Algerian and Moroccan plants. p-Cymene and thymol were detected in all flora. In the Tunisian flora, carvophyllene oxide and cis-sabinene hydrate were identified from different parts of the plant with different percentages [15, 28, 29]. Limited studies focused on the isolation and identification of bioactive compounds from the flowers of T. algeriensis. Like the leaves, the flowers were shown to contain 1,8-cineole identified in the Algerian plants. Elemol was identified from the stem bark from the Tunisian plants while acorenone and α-pinene were characterized in the stem bark of the Algerian plants [23, 30]. The variations in the phytochemical composition of the essential oils could be attributed to the harvesting time and stage and the drying methods as well as extraction methods. Some factors like environmental conditions, genetic variations, physiological condition of plants, regions, and evolution also influence the phytochemical variability of T. algeriensis [31]. Overall, T. algeriensis alongside other Lamiaceae species contains high contents of polyphenols, flavonoids, terpenoids, sterols, and volatile compounds.

5. Traditional Uses and Ethnomedicinal Properties

Thymus species have been used by the populations of the Mediterranean and Asian countries for thousands of years [32, 33]. Traditional health uses of Thymus species show high applicability as flu controller, anti-inflammatory, sedative, antirheumatic, analgesic, antiseptic, astringent, and diuretic agents. Generally, Thymus flowers and leaves are mainly used as herbal teas and aromatic and flavoring preparations to treat common cold, cough, sore throat, and indigestion symptoms [33]. Thymus leaves are also used as astringent, expectorant, antiseptic, antirheumatic, diuretic, analgesic, and cicatrizing agents [18]. T. algeriensis is also used either fresh or dried for its antispasmodic, antiabortive, and antifungal properties [34, 35]. In Morocco, its vernacular name is either Zitra, Tazouknit, or Mantha [36]. Infusion
Figure 6: Selected volatile compounds identified from *T. algeriensis*.
Extract	Used method	Effects
Algeria		
Aerial parts		
	DPPH	IC₅₀ (mg/mL) = 69.50 ± 0.68 (PE), 79.92 ± 0.30 (CHCl₃), and 5.05 ± 0.12 (n-BuOH)
	CUPRAC	A₀₋₅₀ (μg/mL) = 22.28 ± 0.24 (PE), 27.81 ± 3.06 (CHCl₃), and 0.94 ± 0.06 (n-BuOH)
	RP	A₀₋₅₀ (μg/mL) = 25.25 ± 0.08 (PE), 24.5 ± 0.52 (CHCl₃), and 4.98 ± 0.48 (n-BuOH)
	TAC	TAC (μg EAA/mg (dw)) = 15.69 ± 0.001 (PE), 16.21 ± 0.02 (CHCl₃), and 20.79 ± 0.19 (n-BuOH)
	FTC	% of inhibition = 27.80 ± 0.37 (PE), 24.25 ± 0.45 (CHCl₃), and 47.43 ± 0.58 (n-BuOH)
	DPPH	IC₅₀ (μg/mL) = 0.052 ± 0.004 (EtOH), not active (H₂O)
	ABTS	IC₅₀ (μg/mL) = 42 ± 0.99 (EtOH), 52 ± 31 (H₂O)
	DPPH	IC₅₀ (μg/mL) = 7.4 ± 0.3
EtOH & H₂O		
		EC₅₀ (μg/mL) = 512 ± 0
MeOH–H₂O	FPβ–Carotene bleaching	% of inhibition = 90 ± 2
	TAC	TAC (μg AAE/mg) = 268 ± 4
	FRAP	FRAP (mM FeSO₄/mg) = 5.3 ± 0.0
	DPPH	EC₅₀ (μg/mL) = 64.8 ± 0.7 (H₂O), 131 ± 3 (EtOH–H₂O)
	RP	EC₅₀ (μg/mL) = 54.0 ± 0.5 (H₂O), 100.2 ± 0.5 (EtOH–H₂O)
	TBARS	EC₅₀ (μg/mL) = 149 ± 3 (H₂O), 85 ± 3 (EtOH–H₂O)
		EC₅₀ (μg/mL) = 26.3 ± 0.2 (H₂O), 40.3 ± 0.3 (EtOH–H₂O)
H₂O & EtOH–H₂O	β–Carotene bleaching	
		EC₅₀ (μg/mL) = 0.290 (EA)
		EC₅₀ (μg/mL) = 1.45 (n–BuOH)
		IC₅₀ (mg/mL) = 10.2 ± 0.9 > 45.0
EA & n–BuOH	DPPH	All extracts possess potential antioxidant activities compared to standards
		AEAC (mg/mL) = 0.148 ± 0.003 – 0.220 ± 0.022
EO		
	DPHH	Not active
	ABTS	IC₅₀ (mg/mL) = 0.150 ± 0.002
	DPPH	IC₅₀ (mg/mL) = 0.235 ± 0.018
	ORAC	ORAC (μmol Trolox equivalent/g) = 38.47 ± 39.71
	RP	IC₅₀ (mg/mL) = 0.025 ± 0.006
	Chelating metal ions	Not active
	HRS	Not active
	Superoxide anion scavenging assay	Not active
	(nonenzymatic method)	

Table 3: *In vitro* antioxidant activities of *T. algeriensis* extracts.
Extract	Used method	Effects	Ref.
HRS	HRS	IC₅₀ (μg/mL) = 2.2 ± 0.03 – 8.5 ± 0.1 (ALG1–ALG3)	
EO	DPPH	% of inhibition = 1.6 ± 0.0 – 53.4 ± 0.2 (chemotype and dose-dependent effect)	[35]
TBARS		IC₅₀ (μg/mL) = 106.7 ± 8.4 – 911.6 ± 7.4 (ALG1–ALG3)	
Leaves			
MeOH	DPPH	EC₅₀ (μg/mL) = 1.60 ± 0.13	[45]
Lipophilic extract using olive oil (OO)		% of inhibition = 64.31 ± 1.9	
EtOH & EO	DPPH	IC₅₀ (mg/mL) = 1.560 ± 0.010 (EtOH), 1.437 ± 4.51 (EO)	
	ABTS	IC₅₀ (mg/mL) = 1.743 ± 0.195 (EtOH), 0.8960 ± 0.203 (EO)	
	RP	AEAC – FRAP assay (μg/mL) = 0.897 ± 0.064 (EtOH), 1.387 ± 0.265 (EO)	[23]
MeOH	Western blot analyses		
H₂O & EO	DPPH	IC₅₀ (mg/L) = 404.08 ± 5.87 (EO), 22.26 ± 0.07 (H₂O)	
	ABTS	IC₅₀ (mg/L) = 10.48 ± 0.49 (EO), 25.29 ± 0.21 (H₂O)	
	TBARS	IC₅₀ (mg/L) = 23.54 ± 0.37 (EO), not active (H₂O)	[126]
	RP	IC₅₀ (mg/L) = 347.84 ± 3.02 (EO), 59.53 ± 0.70 (H₂O)	
EO	ABTS	IC₅₀ (mg/mL) = 10.84	[42]
Stem bark	TAC	TAC (U/L) = 39.27 ± 3.47	
Tunisia			
Aerial parts	DPPH	IC₅₀ (mg/mL) = 83.8	[30]
EO	β–Carotene bleaching		
EO	DPPH	IC₅₀ (μg/mL) = 0.8	[29]
EO aqueous extract	DPPH	IC₅₀ (μg/mL) = 3155 ± 27.56	[49]
H₂O & hexane	DPPH	IC₅₀ (μg/mL) = 0.06	[127]
	FRAP	IC₅₀ (μg/mL) = 0.04	

Samples at vegetative and flowering stages (200, 300, 400, and 500μg/mL) reduced the Fe³⁺ to Fe²⁺ with lower potency than BHT.
Table 3: Continued.

Extract	Used method	Effects	Ref.
EO	DPPH	% of inhibition = 52 – 91.96%	[118]
	DPPH	\(IC_{50} (\mu g/mL) = 43.5 \pm 1.36 \)	
EtOH & H₂O	FRAP	\(IC_{50} (\mu g/mL) = 378.5 \pm 5.24 \)	[147]
β–Carotene bleaching	DPPH	% of inhibition = 52 – 91.96% (EtOH), 82 ± 0.52 – 85 ± 0.57 (EO)	
EO & MeOH	ABTS	% of inhibition = 22 ± 0.9 – 75 ± 0.72 (MeOH), 8 ± 0.7 – 19 ± 0.33 (EO)	[20]
Leaves	DPPH	\(IC_{50} (\mu g/mL) = 8.9 \pm 0.1 – 68.8 \pm 1.0 \)	
MeOH	FRAP	\(EC_{50} (\text{mmol Fe}^{2+}/L) = 1.0 \pm 0.0 – 20.6 \pm 0.2 \)	[21]
β–Carotene bleaching	DPPH	\(IC_{50} (\mu g/mL) = 0.03 \pm 0.0 – 1.81 \pm 0.0 \)	
EO	ABTS	\(IC_{50} (\mu g/mL) = 4.31 \pm 0.7 – 9.23 \pm 1.8 \)	[28]
Leaves & flowers	DPPH	% of inhibition = 25 ± 0.08 – 50 ± 0.12 (MeOH), 4 ± 0.44 – 10 ± 0.52 (EO)	
Leaves	DPPH	\(IC_{50} (\mu g/mL) = 0.347 \pm 0 (L), 0.349 \pm 0 (F) \)	[69]
MeOH & H₂O	ABTS	\(IC_{50} (\mu g/mL) = 3.46 \pm 0.010 – 3.88 \pm 0.015 (H₂O), 3.13 \pm 0.011 – 4.27 \pm 0.010 (MeOH) \)	[19]
Morocco			
Aerial parts	DPPH	\(IC_{50} (\mu g/mL) = 14.8 \)	[148]
EA & MeOH		\(IC_{50} (\mu g/mL) = 59.85 \pm 1.98 \)	
β–Carotene bleaching	DPPH	\(IC_{50} (\mu g/mL) = 745.6 \)	[50]
EO	DPPH	\(IC_{50} (\mu g/mL) = 1800 \)	[53]
	DPPH	\(IC_{50} (\mu g/mL) = 67.85 \)	[131]
Leaves	DPPH	\(IC_{50} (\mu g/mL) = 32.40 \)	[140]
H₂O	DPPH	\(IC_{50} (\mu g/mL) = 6.88 \)	[149]
EO	ABTS	\(IC_{50} (\mu g/mL) = 6.96 \)	
Libya			
Aerial parts	DPPH	\(EC_{50} (\text{mg/mL}) = 1.64 \pm 0.05 \)	[73]
EO	RP	\(EC_{50} (\text{mg/mL}) = 0.68 \pm 0.01 \)	
Table 3: Continued.

Extract	Used method	Effects	Ref.
β-Carotene bleaching		EC_{50} (mg/mL) = 1.56 ± 0.12	
TBARS		EC_{50} (mg/mL) = 0.31 ± 0.01	
DPPH		EC_{50} (mg/mL) = 0.299	[43]
DPPH		EC_{50} (mg/mL) = 0.132	[6]

ABTS: 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid; AEAC: ascorbic acid equivalent antioxidant capacity; BHT: butyl-hydroxytoluene; CUPRAC: cupric reducing antioxidant capacity; DCFDA: dichlorodihydrofluorescein diacetate; DPPH: 2,2-diphenyl-1-picryl-hydrayl-hydrate; EA: ethyl acetate; EAA: equivalents of ascorbic acid; FRAP: ferric-reducing antioxidant power; FTC: ferric thiocyanate; HRS: hydroxyl radical scavenging; ORAC: oxygen radical absorbance capacity; PE: petroleum ether; RP: reducing power; TAC: total antioxidant capacity; TBARS: thiobarbituric acid reactive substances.
Table 4: In vitro activities of *T. algeriensis* extracts.

Extract	Activity	Used method	Country	Effects	Ref
Aerial part					
PE, CHCl₃ and n-BuOH	Anthemolytic	Erythrocyte osmotic fragility	Algeria	IC₅₀ (µg/mL) = 19.51 ± 0.17 (PE), 443.25 ± 0.52 (CHCl₃), 322.85 ± 0.87 (n-BuOH)	[44]
	Anti-inflammatory	Egg albumin denaturation	Algeria	%inhibition = 30.26 (PE), 45.27 (CHCl₃), 26.03 (n-BuOH)	
EA & MeOH	Anticorrosive	Gravimetric and electrochemical	Morocco	%inhibition = 87% (MeOH) IC₅₀ (µg/mL) = 59.85 ± 1.98	[148]
EA & MeOH	Antitumor and cytotoxic	Hepatotoxicity evaluation	Libya	None of the EO showed toxicity at tested concentrations (>400 g/mL) for porcine liver primary cell culture	[73]
EO			Tunisia	IC₅₀ (µg/mL) = 0.083 ± 0.005	
			Tunisia	L. *infantum* IC₅₀ (µg/mL) = 0.25	
			Tunisia	Inhibited the corrosion rate (C₉₀) of mild steel at all concentrations (C₉₀ = 0.012 (EO)) versus 1.23 mg/cm² h (blank) at 313 K	[29]
			Morocco	Acted as mixed-type inhibitor	[137]
			Tunisia	Inhibition efficiency (E₉₀ (%) = 46 – 93	
Leaves	Phytotoxic	*In vitro* seed germination inhibition (allelopathic effect)	Tunisia	100% inhibition of *M. sativa* at 1 mg/mL (dose-dependent effect)	[28]
EO	Insecticidal	Fumigant bioassay against *Spodoptera littoralis* Boisd.	Tunisia	LC₅₀ (µL/L air) (1LD – ULD) = 41.75 – 131	
			Tunisia	LC₅₀ (µL/L air) (LLD – ULD) = 53.25 – 189.25	
			Sicily	LC₅₀ (µg/mL) = 39.8, LC₉₀ (µg/mL) = 59.6 (cytotoxic on HCT116 cell line)	[42]
			Sicily	LC₉₀ and LC₉₀ (µg/mL) > 100 (limited activity against the HepG2 cell line)	
MeOH	Cytotoxic	Mitochondrial-dependent reduction of yellow	Algeria	IC₅₀ (µM) = 12.4 ± 0.49 (COX-1), 0.05 ± 0.01 (COX-2)	[22]
MeOH			Algeria	IC₅₀ (µM) = 2.70 ± 0.23	
MeOH	COX inhibition	Lipoxygenase inhibitor screening	Algeria	Biocompatible on both the immortalized tested cell lines HaCaT and BALB/c-3T3 and slightly toxic on A431 and SVT2 cancer cells at high concentrations (100 µg/mL)	[47]
	LOX inhibition		Algeria	The extract acts as a reducing as well as a stabilizing agent	
MeOH	Cytotoxic	MTT	Algeria	Extract at 10% induced a consistent increase in the intensity of the surface plasmon peak absorbance for AgNPs	[71]
MeOH	Silver nanoparticle	Dropwise addition of the plant extract to the silver nitrate solution	Algeria	The extract acts as a reducing as well as a stabilizing agent	[71]
MeOH	biosynthesis		Algeria	Extract at 10% induced a consistent increase in the intensity of the surface plasmon peak absorbance for AgNPs	[71]
EtOH and EO	Anticancer	MTT	Algeria	LC₅₀ (µg/mL) ≥ 10,000 (EOH), 300 ± 13–1067 ± 96 (EO)	[23]
MeOH	Acetylcholinesterase	Spectrophotometry	Tunisia	%inhibition = 94.5%	[21]
Flowers & leaves	Cytotoxic	MTT	Tunisia	CC₅₀ (µg/mL) = 508 ± 45.32 – 516.81 ± 47.42 (H₂O), 520.12 ± 32.56–528.05 ± 31.37 (MeOH)	[19]
MeOH & H₂O			Tunisia		
and decoction of its stems and/or leaves are traditionally used to treat diabetes and digestive and respiratory infections [37, 38]. To sum up, *T. algeriensis* preparations are traditionally known for their multiple benefits and uses in gastronomy, digestive and cold problems, analgesia, microbial infections, and perfume preparations.

6. In Vitro Pharmacological Properties

Many studies have shown that *T. algeriensis* extracts have several in vitro biological properties mainly antioxidant, anti-inflammatory, antimicrobial, and anticancer activities.

6.1. In Vitro Antioxidant Activity

The oxidation process causes cellular damage by interacting with biological materials within the cell leading to several disorders and chronic diseases such as cardiovascular diseases and cancer. In addition, oxidation forms secondary reaction products in food and alters its nutritional quality and safety [4].

Antioxidant activity was defined as a delay or inhibition of the oxidation of cell molecules mainly proteins, lipids, DNA, and sugars by limiting the oxidative chain reactions. Due to their phytochemicals, plants are generally known as the best source of active antioxidants [39]. This is mainly attributed to their capacity to prevent the oxidation of a substrate by neutralizing reactive oxygen species (ROS) such as superoxide radical and hydroxyl radical. Common mechanisms by which plant-based extracts/molecules block ROS formation include mainly free radical scavenging (e.g., lipoygenase inhibition, transition-metal-chelating activity, and singlet-oxygen-quenching capacity) and lipid peroxidation inhibition [40, 41]. Hence, there is a growing interest in the antioxidant activities of plant-based compounds and their role in promoting health and preventing diseases.

The *in vitro* antioxidant activities of *T. algeriensis* extracts have been extensively explored (Table 3). They have been determined by various methods mainly 2,2-diphenyl-1-picylhydrazil (DPPH) radical scavenging, ferric-reducing antioxidant power (FRAP), β-carotene bleaching, oxygen radical absorbance capacity (ORAC), thiobarbituric acid reactive substances (TBARS), reducing power (RP), phosphomolybdenum, lipid peroxidation inhibition, total antioxidant capacity (TAC), hydroxyl radical scavenging (HRS), metal ion chelation, and superoxide anion scavenging assays (Table 3).

Many studies have been carried out on the *T. algeriensis* aerial parts using mainly EO. However, other extracts such as methanolic, aqueous, and ethanolic were also tested (Table 3). Recently, Ouakouak et al. [42] showed that the EO from the leaves of Algerian *T. algeriensis* are endowed with a moderate antioxidant activity using DPPH (IC$_{50}$ (mg/mL) = 41.09), ABTS (IC$_{50}$ (mg/mL) = 10.84), and TAC (TAC (U/L) = 39.27 ± 3.47) assays. This activity was corroborated in other studies that showed that the EO extracted from the aerial parts of *T. algeriensis* grown in Libya possessed a strong antioxidant activity (IC$_{50}$ = 0.299 mg/mL) better than thymol [43] and inhibited the deoxyribose degradation better than mannitol [35]. The only study on the antioxidant potential of EO from *T. algeriensis* stem bark was conducted in Algeria and showed that the plant exhibited moderate DPPH scavenging activity (IC$_{50}$ = 83.8 mg/mL) [30]. Furthermore, Mokhtari et al. [44] tested the antioxidant activities of other different extracts and showed that, using the DPPH assay, chloroform, petroleum ether, and n–BuOH extracts demonstrated IC$_{50}$ values of 79.92 ± 0.30, 69.50 ± 0.68, and 5.05 ± 0.12 µg/mL, respectively. Noteworthy, the antioxidant potential of all these extracts was dependent on the method used. For instance, using the CUPRAC assay, the chloroform extract was the most effective while the n–BuOH extract was the most active using the FTC assay. In another work, the aqueous extract of leaves of Algerian *T. algeriensis* was active only using ABTS (IC$_{50}$ = 52 ± 31 µg/mL) while the ethanolic extract was active using both the DPPH and ABTS assays with IC$_{50}$ (µg/mL) of 52 ± 4 and 42 ± 0.99, respectively [45]. In contrast, Ziani et al. showed that both aqueous and hydroethanolic extracts exhibit antioxidant activities using DPPH, RP, β–carotene bleaching, and TBARS assays, with a high efficiency of the hydroethanolic fraction except when using β–carotene bleaching in which the aqueous extract demonstrated the highest activity [7]. It was also shown that the ethyl acetate extract is also endowed with an antioxidant capacity (IC$_{50}$ = 0.290 mg/mL) higher than the n–BuOH extract (IC$_{50}$ = 1.45 mg/mL) and ascorbic acid [46]. Interestingly, Rezq et al. [47] demonstrated that methanolic extracts of *T. algeriensis* leaves induced significant increase in the nuclear levels of Nrf–2 (nuclear factor erythroid 2) transcription factor (Table 3). The Nrf–2 upregulates the antioxidant response element-mediated expression of antioxidant enzymes and cytoprotective proteins and protects against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis [48]. The various antioxidant activities of *T. algeriensis* extracts were largely studied and correlated with their phytochemical

Table 4: Continued.

Extract	Activity	Used method	Country	Effects	Ref
EO	Cytotoxic	MTT	Tunisia	CC$_{50}$ (µg/mL) = 725.92 ± 195.25 (L), 733.53 ± 141.96 (F)	[69]
EO	Anticancer	MTT	Morocco	Ta1 is more cytotoxic (100% lysis) than Tb2 (60% lysis) against P815 tumor cell line	[93]

ACE: angiotensin I-converting enzyme; CC: half maximal cytotoxic concentration; COX: cyclooxygenase; EIA: enzyme immunoassay; IC$_{50}$: half maximal inhibitory concentration; IC$_{90}$: concentration resulting in 90% inhibition; IC$_{90}$: half maximal lethal concentration; IC$_{90}$: concentration resulting in 90% lethality; LOX: lipoygenase; MTT: methyl tetrazolium test; PBMC: peripheral blood mononuclear cells.
Table 5: Antibacterial activities of *T. algeriensis* extracts.

Extract	Tested strains	Key results	Ref.	
Aerial part				
MeOH–H₂O	*S. aureus* ATCC 29213	Resistant to all the extracts		
	E. faecalis ATCC 29212	MIC (µg/mL) = 6.25 (n–BuOH)	[44]	
	E. coli ATCC 25922	MIC (µg/mL) = 12.5 (PE & CHCl₃)		
	P. aeruginosa DMS 1117	MIC (µg/mL) = 25 (PE, CHCl₃ & n–BuOH)		
	E. coli SB3	Resistant to all the extracts		
	K. pneumoniae SB4	MBC (mg/mL) = 25, MIC (mg/mL) = 12.5	[105]	
	K. pneumoniae SB5	MBC (mg/mL) = 25, MIC (mg/mL) = 12.5		
	K. pneumoniae SB6	MBC (mg/mL) = 25, MIC (mg/mL) = 3.12		
	M. luteus ATCC 9314	IZ (mm) = 18.0 ± 0.6		
	S. aureus ATCC 43,300	IZ (mm) = 18.0 ± 0.7	[42]	
	E. coli	IZ (mm) = 13.0 ± 0.9		
	S. aureus	MIC (µg/mL) ≤ 0.5		
	L. monocytogenes (EGD-e)	MIC (µg/mL) ≤ 0.5		
	L. monocytogenes (4b)	MIC (µg/mL) ≤ 0.5	[75]	
	E. faecalis	MIC (µg/mL) ≤ 0.5		
	S. Enteritidis	MIC (µg/mL) = 1.0		
	E. coli O157:H7	MIC (µg/mL) = 1.0		
	P. aeruginosa	MIC (µg/mL) = 1.0		
	L. monocytogenes (ATCC 19118)	MIC (%) = 0.025, MBC (%) = 0.05		
	S. aureus (ATCC 25923)	MIC (%) = 0.020, MBC (%) = 0.05	[68]	
	E. coli (ATCC 25922)	MIC (%) = 0.025, MBC (%) = 0.05		
	P. aeruginosa (ATCC 27853)	MIC (%) = 0.025, MBC (%) = 0.05		
	S. typhimurium (ATCC 1402)	MIC (%) = 0.025, MBC (%) = 0.05		
	B. cereus (ATCC10876)	MIC (mg/mL) = 2.34		
	M. luteus (NRRL B-4375)	MIC (mg/mL) = 7.03		
MeOH–H₂O	*P. mirabilis* (ATCC35659)	MIC (mg/mL) = 4.68	[24]	
	E. coli (ATCC25922)	MIC (mg/mL) = 9.37		
	S. typhimurium (ATCC13311)	MIC (mg/mL) = 7.06		
	E. coli (ATCC25922)	IZ (mm) = 7		
n–BuOH	*P. aeruginosa* (ATCC27853)	IZ (mm) = 6.5 ± 0.7	[17]	
	S. aureus (ATCC25923)	IZ (mm) = 8		
	E. faecalis (ATCC29212)	IZ (mm) = 7		
	S. epidermidis ATCC12228	MIC (µg/mL) = 128 (EtOH), 32 (EO)		
	S. aureus ATCC25923	MIC (µg/mL) = 128 (EtOH), 32 (EO)		
	B. subtilis ATCC11562	MIC (µg/mL) = 64 (EtOH), 32 (EO)	[23]	
EtOH & EO	*E. coli* ATCC29425	MIC (µg/mL) = 256 (EtOH), 64 (EO)		
	P. aeruginosa ATCC15442	MIC (µg/mL) = 512 (EtOH), 512 (EO)		
	K. pneumoniae ATCC43816	MIC (µg/mL) = 256 (EtOH), 256 (EO)		
	P. aeruginosa	IZ (mm) = 19 – 55 (H₂O)		
	E. coli	IZ (mm) = 35 – 44 (EO)	[14]	
	S. aureus	IZ (mm) = 44 – 55 (EO)		
	E. aerogenes	IZ (mm) = 19 – 34 (EO)		
Extract	Tested strains	Key results	Ref.	
---------	----------------	-------------	------	
H2O	**EO, EtOH, & MeOH**	**S. typhimurium ATCC 13311**	[70]	
E. coli	IZ (mm) = 13 (MeOH), 10 (EtOH), MIC (µg/mL) = 220 (MeOH), 270 (EtOH)			
K. pneumonia ATCC 4532	IZ (mm) = 0 (MeOH), 0 (EtOH), MIC (µg/mL) = 0 (MeOH), 0 (EtOH)			
P. aeruginosa ATCC 27853	IZ (mm) = 16.5 (MeOH), 14 (EtOH), MIC (µg/mL) = 185 (MeOH), 150 (EtOH)			
MeOH & EtOH	**S. typhimurium ATCC 13311**	IZ (mm) = 9 (MeOH), 12 (EtOH), MIC (µg/mL) = 110 (MeOH), 130 (EtOH)	[70]	
E. coli extended producer of β-lactamases (ESBL)	IZ (mm) = 11.53 ± 0.43 (EO), 10.91 ± 0.05 (EtOH)		[72]	
E. coli	IZ (mm) = 11.52 ± 0.41 (EO)			
S. aureus	IZ (mm) = 0 (EO)			
P. aeruginosa	IZ (mm) = 12.51 ± 0.19 (EO)			
M. morganii	MIC (µg/mL) = 10 (H2O)–5 (EtOH–H2O)			
P. aeruginosa	MIC (µg/mL) = 20 (H2O)–20 (EtOH–H2O)			
E. coli	MIC (µg/mL) = 5 (H2O)–5 (EtOH–H2O)			
EtOH–H2O & H2O	**K. pneumoniae extended producer of β-lactamases (ESBL)**	MIC (µg/mL) = 10 (H2O)–5 (EtOH–H2O)	[7]	
E. faecalis	MIC (µg/mL) = 10 (H2O)–10 (EtOH–H2O)			
L. monocytogenes	MIC (µg/mL) = 10 (H2O)–10 (EtOH–H2O)			
S. aureus (MSSA)	MIC (µg/mL) = 5 (H2O)–2.5 (H2O & EtOH)			
S. aureus (MRSA)	MIC (µg/mL) = 5 (H2O)–2.5 (H2O & H2O)			
K. pneumoniae	IZ (mm) = 28 ± 1.5			
E. coli ATCC 25922	IZ (mm) = 20 ± 1.73		[151]	
S. typhimurium ATCC 1402	IZ (mm) = 12 ± 1.33			
S. aureus ATCC 25923	IZ (mm) = 13 ± 1			
P. aeruginosa ATCC 27853	IZ (mm) = 10 – 13		[118]	
E. coli	IZ (mm) = 8 – 36			
EO	**S. aureus**	IZ (mm) = 10 – 13		
B. subtilis	IZ (mm) = 0			
H2O & MeOH	**K. pneumoniae**	MIC (µg/mL) = 0.25 – 0.5 (H2O), 0.12 – 0.25 (MeOH)	[19]	
S. typhimurium	MIC (µg/mL) = 12 – 0.5 (H2O), 0.12–0.25 (MeOH)			
E. coli	MIC (µg/mL) = 0.5 – 1 (H2O), 1 (MeOH)			
S. aureus	MIC (µg/mL) = 0.12 – 0.5 (H2O), 0.5–1 (MeOH)			
S. aureus (ATCC 6538)	MIC (µg/mL) = 0.08 ± 0.03, MBC (µg/mL) = 0.15 ± 0.05			
S. typhimurium (ATCC 13311)	MIC (µg/mL) = 0.09 ± 0.04, MBC (µg/mL) = 0.18 ± 0.07			
E. cloacae (human isolate)	MIC (µg/mL) = 0.05 ± 0.04, MBC (µg/mL) = 0.11 ± 0.07			
EO	**E. coli (ATCC 35210)**	MIC (µg/mL) = 0.08 ± 0.03, MBC (µg/mL) = 0.11 ± 0.07	[6]	
P. aeruginosa (ATCC 27853)	MIC (µg/mL) = 0.05 ± 0.00, MBC (µg/mL) = 0.11 ± 0.01			
L. monocytogenes (NCTC 7973)	MIC (µg/mL) = 0.04 ± 0.00, MBC (µg/mL) = 0.09 ± 0.02			
M. flavus (ATCC 10240)	MIC (µg/mL) = 0.03 ± 0.00, MBC (µg/mL) = 0.05 ± 0.00			
Extract	Tested strains	Key results	Ref.	
---------	---------------	-------------	------	
$B.\ cerus$ (clinical isolate)	MIC (mg/mL) = 0.04 ± 0.01, MBC (mg/mL) = 0.08 ± 0.02			
$E.\ coli$ ATCC 25922	MIC (mg/mL) = 2.5 mg/mL			
EO	$P.\ aeruginosa$ ATCC 27853	MIC (mg/mL) = 1.66 mg/mL	[136]	
	$S.\ aureus$ ATCC 25923	MIC (mg/mL) = 0.20 mg/mL		
	$K.\ pneumoniae$	MIC (mg/mL) = 2.030 – 2.114, MBC (mg/mL) ≥ 4.227		
	$P.\ aeruginosa$	MIC (mg/mL) ≥ 4.227, MBC (mg/mL) ≥ 4.227		
	$S.\ Typhi$	MIC (mg/mL) = 2.114 – 3.004, MBC (mg/mL) = 4.059 – 3.044		
	$E.\ coli$	MIC (mg/mL) = 3.004 – 3.044, MBC (mg/mL) ≥ 4.059		
EO	$B.\ cereus$	MIC (mg/mL) = 0.264 – 1.015, MBC (mg/mL) = 0.528 – 1.015	[67]	
	$S.\ aureus$	MIC (mg/mL) = 1.015 – 1.057, MBC (mg/mL) = 1.015 – 1.057		
	$S.\ aureus$ (MRSA)	MIC (mg/mL) = 0.528 – 1.015, MBC (mg/mL) = 2.030 – 3.044		
	$E.\ faecalis$	MIC (mg/mL) = 0.507 – 0.528, MBC (mg/mL) = 1.015 – 1.057		
	$E.\ coli$ GM 109	MIC (mg/mL) = 1.80 – 4.20		
	$P.\ aeruginosa$			
EO	$S.\ enteritidis$ ATCC 502	MIC (mg/mL) = 1.50 – 22.00	[20]	
	$S.\ aureus$ ATCC 25923	MIC (mg/mL) = 1.70 – 4.50		
	$B.\ subtilis$ 166	MIC (mg/mL) = 4.00 – 5.50		
	$L.\ monocytogenes$	MIC (mg/mL) = 2.00 – 7.50		
	$S.\ mutans$ (IBR 5001)	MIC (μg/mL) = 40 ± 1.15, MBC (μg/mL) = 80 ± 2.25		
	$S.\ aureus$ (ATCC 25923)	MIC (μg/mL) = 80 ± 2.25, MBC (μg/mL) = 160 ± 4.50		
	$S.\ salivarius$ (IBR 5006)	MIC (μg/mL) = 40 ± 3.00, MBC (μg/mL) = 80 ± 5.95		
	$S.\ sanguinis$ (IBR 5002)	MIC (μg/mL) = 40 ± 0.00, MBC (μg/mL) = 80 ± 0.00		
	$S.\ pyogenes$ (IBR 5004)	MIC (μg/mL) = 40 ± 0.00, MBC (μg/mL) = 80 ± 0.00		
EO	$E.\ feacalis$ (IBR E001)	MIC (μg/mL) = 20 ± 3.40, MBC (μg/mL) = 40 ± 6.75		
	$P.\ aeruginosa$ (IBR P001)	MIC (μg/mL) = 80 ± 2.25, MBC (μg/mL) = 160 ± 4.50		
	$L.\ acidophilus$ (IBR L001)	MIC (μg/mL) = 40 ± 0.00, MBC (μg/mL) = 80 ± 0.00		
	$E.\ coli$ (ATCC 35210)	MIC (mg/mL) = 0.002, MBC (mg/mL) = 0.004		
	$P.\ aeruginosa$ (ATCC 27853)	MIC (mg/mL) = 0.003, MBC (mg/mL) = 0.05		
	$S.\ typhimurium$ (ATCC 13311)	MIC (mg/mL) = 0.05, MBC (mg/mL) = 0.05		
	$P.\ mirabilis$ (human isolate)	MIC (mg/mL) = 0.003, MBC (mg/mL) = 0.05		
	$L.\ monocytogenes$ (NCTC 7973)	MIC (mg/mL) = 0.001, MBC (mg/mL) = 0.05		
EO	$B.\ cereus$ (clinical isolate)	MIC (mg/mL) = 0.001, MBC (mg/mL) = 0.0025		
	$M.\ flavus$ (ATCC 10240)	MIC (mg/mL) = 0.001, MBC (mg/mL) = 0.0025		
	$S.\ aureus$ (ATCC 6538)	MIC (mg/mL) = 0.002, MBC (mg/mL) = 0.003		
EO	$E.\ coli$ O157:H7 VTEC (phage type 34)	Inactivation of 5 log$_{10}$ cycles of $E.\ coli$ O157:H7 at both pH and of $L.\ monocytogenes$ EGD-e at pH4.	[35]	
	$L.\ monocytogenes$ EGD-e			
	$S.\ enteritidis$ (CECT 4155)			
	$E.\ coli$ O157:H7 (CECT 4267)			
	$P.\ aeruginosa$ (CECT 110)			
	$S.\ aureus$ (CECT 239)			
	$E.\ accalis$ (CECT 410)			
	$L.\ monocytogenes$ 4b (CECT 935)			
Extract	Tested strains	Key results	Ref.	
---------	----------------	-------------	------	
L. monocytogenes (EGD-e)	IZ (mm) = 33.7 ± 0.4			
E. coli ATCC 25922	IZ (mm) = 14 ± 1 mm, MIC (μL/mL) = 6			
P. aeruginosa ATCC 27853	IZ (mm) = 14.5 ± 0.5 mm, MIC (μL/mL) = 6			
K. pneumoniae ATCC 13883	IZ (mm) = 13.5 ± 0.5 mm, MIC (μL/mL) = 6	[28]		
S. typhimurium NRRLB 4420	IZ (mm) = 15 ± 0.5 mm, MIC (μL/mL) = 6			
B. cereus ATCC 11778	IZ (mm) = 18.5 ± 0.5 mm, MIC (μL/mL) = 3			
E. faecalis ATCC 29212	IZ (mm) = 17.00 mm	[50]		
B. subtilis	MIC (ν/ν) = 1/250			
M. luteus	MIC (ν/ν) = 1/500	[57]		
S. aureus	MIC (ν/ν) = 1/500			
S. aureus CFSA2	IZ (mm) = 9.33 mm			
L. monocytogenes EGD	IZ (mm) = 11.66 mm			
B. cereus C1060	IZ (mm) = 8.33 mm			
H. pylori strains J99 and 26695	IZ (mm) = 13 – 30 mm			
B. subtilis ATCC 6633	IZ (mm) = 42 mm, MIC (μL/mL) = 0.5			
S. aureus CIP 7625	IZ (mm) = 0 mm, MIC (μL/mL) = 2	[52]		
E. coli CIP 54.8	IZ (mm) = 0 mm, MIC (μL/mL) = 5			
P. aeruginosa CIP A22	IZ (mm) = 0 mm, MIC (μL/mL) = 2			
S. aureus ATCC 25923	Not active towards any of the microorganisms	[89]		
P. aeruginosa ATCC 27853				
E. coli ATCC 25922				
B. cereus ATCC 10876				
S. aureus	MIC (mg/mL) = 1.4			
S. faecalis	MIC (mg/mL) = 1.4			
B. cereus	MIC (mg/mL) = 1.4			
S. epidermis	MIC (mg/mL) = 1.4		[25]	
P. aeruginosa	MIC (mg/mL) = 1.4			
E. coli	MIC (mg/mL) = 1.4			
K. pneumoniae	MIC (mg/mL) = 1.4			
E. coli ATCC 25.922	MIC (μL/mL) = 3.25 – 5			
P. aeruginosa ATCC 9027	MIC (μL/mL) = 3.5 – 5			
S. aureus ATCC 25.923	MIC (μL/mL) = 1.25 – 2.5	[26]		
L. monocytogenes ATCC 7644	MIC (μL/mL) = 1.75 – 4.5			
B. cereus ATCC 11.778	MIC (μL/mL) = 1 – 2.5			
K. pneumoniae				
E. coli	IZ (mm) = 25			
P. aeruginosa	IZ (mm) = 46			
M. luteus	IZ (mm) = 75		[46]	
S. aureus	IZ (mm) = 60			
S. epidermidis	IZ (mm) = 28			
composition. In this regard, it has been shown that the Algerian T. algeriensis EO with high content of thymol and carvacrol exhibited significantly lower antioxidant effect [35]. Similarly, Guesmi et al. [20] concluded that the higher the polarity of the Tunisian T. algeriensis extract, the stronger is the antioxidant effect. In addition, the antioxidant effect was chemotype dependent [20]. This was also reported by Jauadi et al. [21] who showed that T. algeriensis plants growing in upper arid climatic zones of Tunisia were endowed with the best reducing, antiradical, and β-carotene bleaching inhibition potential. Likewise, the antioxidant effect of EO from leaves was reported to vary according to localities [28]. Furthermore, the antioxidant capacity was also reported to be influenced by the development stage of the plant. For instance, the aqueous extract extracted during the flowering stages of Tunisian T. algeriensis had the highest scavenging potential, while the extracts of both vegetative and flowering periods were able to reduce Fe$^{3+}$ to Fe$^{2+}$ [14].

Several studies have compared Thymus species to other plants in terms of their antioxidant activities. For instance, Ahmed et al. observed that EO of T. algeriensis from Tunisia presented a moderate DPPH scavenging effects compared to EO from other plants such as Eucalyptus globulus, Pinus halepensis, Pittantheros tortuusus, Rosmarinus officinalis, and Tetraclinis articulata [49]. Similarly, the EO of Moroccan T. algeriensis had a lower antioxidant activity comparatively to other species mainly T. capitatus, T. ciliatus, and T. bleicherianus [50]. However, because of the bioassay used, it is often biased and difficult to compare the antioxidant activities reported by many different studies [51].

The antioxidant effect of T. algeriensis extracts and EO is attributed to their free radical scavenging and metal chelating properties having a chemoprotective activity against oxidative stress [35]. This should be due to the richness of T. algeriensis in phytochemical active compounds dominated by certain phenolic constituents as well as the synergetic effect between its compounds even at small concentrations such as δ-cadinene and germacrene D [52]. Next to T. algeriensis, other Thymus species such as T. vulgaris, T. serpyllum, T. bleicherianus, and T. hyemalis have been widely explored for their antioxidant potential [50, 53–56]. As a result, the antioxidant potential has diverse downstream biological effects, including anti-inflammatory, anticarcinogenic, and antiatherosclerosis activities [57]. Same as other Lamiaceae species as well as most medicinal plants, T. algeriensis can serve as a good source for antioxidant compounds/molecules with potential applications in pharmaceutical, nutraceutical, and cosmeceutical industries.

Table 5: Continued.

Extract	Tested strains	Key results	Ref.
Leaves & flowers	**B. bronchiseptica**	IZ (mm) = 25	
	E. faecalis	IZ (mm) = 49	
	S. typhimurium	MIC (mg/mL) = 0.5	
	E. coli	MIC (mg/mL) = 0.5	
	S. aureus	MIC (mg/mL) = 0.5	
	S. epidermidis	MIC (mg/mL) = 0.5	[27]
Aerial parts & leaves	EO	Inactivation of the initial cell populations by 4–5 log$_{10}$ cycles in combination with high hydrostatic pressure	[101]
	E. coli O157:H7 VTEC (phage type 34)		
	L. monocytogenes EGD-e		

IC$_{50}$: half-maximal inhibitory concentration; IZ: inhibition zone; MBC: minimum bactericidal concentration; MIC: minimum inhibitory concentration; MRSA: meticillin-resistant Staphylococcus aureus; MSSA: meticillin-sensitive Staphylococcus aureus.

6.2. Anti-Inflammatory Activity. Inflammation is a healing process induced by inflammation-inducing factors such as pathogens, toxic substances, and irradiation. These stimuli trigger the immune system and induce inflammatory responses in the host’s organs which may lead to cell damage and/or diseases [58]. Many diseases are associated with inflammatory processes including type 2 diabetes, asthma, rheumatoid arthritis, neurodegenerative diseases, chronic inflammatory bowel diseases, and cancer [59]. Prominent anti-inflammatory molecules have been isolated from plants and clinically tested in humans. They mainly include curcumin, resveratrol, colchicine, quercetin, capsaicin, and epigallocatechin-3-gallate [5]. The in vitro anti-inflammatory effect of T. algeriensis has been reported by many studies. It was evaluated using egg albumin denaturation, cyclooxygenase (COX–1 and COX–2), and lipoxygenase inhibition assays (Table 4).

Recently, Mokhtari et al. [44] showed that petroleum ether, chloroform, and n-BuOH extracts from the aerial parts of Algerian T. algeriensis inhibited egg albumin denaturation in a concentration-dependent effect. The highest inhibitory effect was observed using the chloroform extract with 45.27% inhibition, followed by petroleum ether (30.26%) and then n-BuOH (26.03%) extracts [44]. This activity could be useful in inhibiting protein denaturation during inflammatory conditions characterized by the production of autoantigens during disorder conditions such as rheumatic arthritis, cancer, and diabetes [60]. As previously suggested, the in vitro antidenaturation of protein activity of these extracts could be due to the interactions of the phyto-compounds and/or molecules such as polyphenols,
Table 6: Antifungal activities of T. algeriensis extracts.

Tested strains	Key results	Ref.
	IZ (mm) = 2.04 ± 0.8	
C. tropicalis	IZ (mm) = 13.0 ± 0.4	[42]
C. albicans IPA200	IZ (mm) = 18.0 ± 0.6	
C. glabrata	MIC (µL/mL) ≤ 0.5	[75]
C. fumigatus (human isolate)	IC₅₀ (µL/L) = nondetermined value	
A. versicolor (ATCC 11730)	IC₅₀ (µL/L) = nondetermined value	
A. ochraceus (ATCC 12066)	MIC (µg/mL) = 0.01 ± 0.00, MFC (µg/mL) = 0.03 ± 0.00	
A. niger (ATCC 6275)	MIC (µg/mL) = 0.01 ± 0.00, MFC (µg/mL) = 0.01 ± 0.00	[6]
T. viride (IAM 5061)	MIC (µg/mL) = 0.01 ± 0.00, MFC (µg/mL) = 0.01 ± 0.00	
P. funiculosum (ATCC 36839)	MIC (µg/mL) = 0.01 ± 0.01, MFC (µg/mL) = 0.03 ± 0.03	
P. ochrochloron (ATCC 9112)	MIC (µg/mL) = 0.01 ± 0.02, MFC (µg/mL) = 0.03 ± 0.02	
P. aurantiogriseum (food isolate)	MIC (µg/mL) = 0.02 ± 0.01, MFC (µg/mL) = 0.04 ± 0.01	
C. albicans	MIC (µg/mL) = 4.510 – 4.697, MFC (µg/mL) ≥ 4.697	[67]
V. destructor	EO at 0.5% decreased the rate of infestation and caused a mortality rate of 32.6%	[78]
P. infestans	IC₅₀ (µL/L) = nondetermined value	
P. ultimum	IC₅₀ (µL/L) = nondetermined value	
B. cinerea	IC₅₀ (µL/L) ≥ 300	[77]
R. solani	IC₅₀ (µL/L) = nondetermined value	
F. oxysporum f. sp. radicis-lycopersici	IC₅₀ (µL/L) ≥ 200	
C. albicans ATCC 10231	MIC (µg/mL) = 10 ± 0.2, MFC (µg/mL) = 20 ± 0.6	[73]
C. tropicalis ATCC 750	MIC (µg/mL) = 5 ± 0.0, MFC (µg/mL) = 10 ± 0.0	
A. flavus (ATCC 9643)	MIC (µg/mL) = 0.002, MFC (µg/mL) = 0.004	
A. fumigatus (human isolate)	MIC (µg/mL) = 0.002, MFC (µg/mL) = 0.003	
A. niger (ATCC 6275)	MIC (µg/mL) = 0.001, MFC (µg/mL) = 0.003	
A. ochraceus (ATCC 12066)	MIC (µg/mL) = 0.001, MFC (µg/mL) = 0.0025	[43]
P. funiculosum (ATCC 36839)	MIC (µg/mL) = 0.001, MFC (µg/mL) = 0.002	
P. ochrochloron (ATCC 9112)	MIC (µg/mL) = 0.001, MFC (µg/mL) = 0.0025	
T. viride (IAM 5061)	MIC (µg/mL) = 0.0005, MFC (µg/mL) = 0.001	
C. albicans (human isolate)	MIC (µg/mL) = 0.025, MFC (µg/mL) = 0.05	
F. solani	IZ (mm) = 31 ± 1.5, MIC (µL/mL) = 1	[29]
A. niger	IZ (mm) = 64 ± 3, MIC (µL/mL) = 2	
A. niger	MIC (µL/L) = 1/500	[27]
P. expansum	MIC (µL/L) = 1/500	
P. digitatum	MIC (µL/L) = 1/500	
G. trabeum	MIC (µL/L) = 1/500	
P. placenta	MIC (µL/L) = 1/250	[26]
C. puteana	MIC (µL/L) = 1/250	
C. versicolor	MIC (µL/L) = 1/250	
C. albicans	IZ (mm) = 9.66	[35]
S. aureus CFSA2	IZ (mm) = 9.33	
phenylpropanoids, and the alpha-lipoic acid with the aliphatic regions surrounding the lysine residue of the albumin protein [61].

Additionally, it was revealed that the methanolic extract of *T. algeriensis* leaves showed higher selectivity against cyclooxygenase (COX–2) (IC$_{50}$ = 0.05 ± 0.01 μM) than both diclofenac and indomethacin used as standard references. Moreover, *T. algeriensis* extract induced similar potency like zileuton and diclofenac to inhibit 5-lipoxygenase (5-LOX) in vitro (IC$_{50}$ = 2.70 ± 0.23 μM) [22]. Similarly, the EO of the aerial parts from *T. algeriensis* grown in Algeria were the most potent in inhibiting the lipoxygenase comparatively to those extracted from *Mentha spicata* and *Ocimum basilicum* [62]. This could be associated with the volatile compounds in EO such as 1,8-cineole, borneol, and camphor which were reported to be determinant for the anti-inflammatory activity [63]. For instance, carnosol and rosemary oil inhibited the adhesion of TNF-α-induced monocytes to endothelial cells during inflammation and suppressed the expression of intercellular adhesion molecule at the transcriptional scale [64]. Using molecular docking of some *T. algeriensis* compounds characterized in the methanolic extract of leaves, Ref. [22] demonstrated that salvianolic acid A and apigenin 6,8-di-C-hexosides interact with amino acid residues of COX–1 and 5-LOX, while rosmarinic acid glucoside interacts with amino acid residues of COX–2. In addition, salvianolic acid A and quercetin pentoside target the amino acid residues of the 5-LOX activating protein (FLAP). This in silico study showed that identified compounds especially rosmarinic acid glucoside, salvianolic acid A, quercetin pentoside, and apigenin 6,8-di-C-hexosides could be developed as safer anti-inflammatory agents. Noteworthy, the anti-inflammatory potential of *T. algeriensis* species growing in other North African countries, namely, Morocco, Tunisia, and Libya, has not been evaluated yet (Table 4). In conclusion, *T. algeriensis* is endowed with an exceptional anti-inflammatory power thanks to its compounds and active molecules that target key stages and mediators of the inflammatory process of different pathologies.

6.3. Antimicrobial Activities

The overuse of antibiotics has become one of the greatest challenges in human health. In addition, the rapid spread of antibiotic resistant pathogens is alarming. Therefore, research and development of a new generation of antimicrobials has become imperative. Antimicrobial agents are a group of materials that selectively destroy pathogens by interfering with their growth or survival. With the emergence of resistance phenomenon to current antibiotics, new alternative compounds such as plant-derived compounds are being explored. Due to the advantages of their inherent biochemical and biophysical
Table 7: *In vivo* activities of *T. algeriensis* extracts.

Extract	Doses	Model	Activity	Effects	Ref.
Algeria Leaves					
	200, 400, and	Male rats	Anti-inflammatory activity	Significant mild reduction in edema thickness using 400 mg/kg by up to 30%	[22]
	600 mg/kg		Leukocyte’s recruitment	A dose-dependent reduction in the total leukocyte number at three doses tested by up to 62%	
	200, 400, and	Swiss albino mice	Acetic acid-induced vascular permeability	Attenuation of vasodilation and decreased vascular permeability in mice at 400 or 600 mg/kg by 63 and 58%, respectively	
	600 mg/kg				
80% MeOH	200 and 400 mg/	Male Wistar rats	Antinociceptive activity by hot plate test	A dose-dependent increase in response latency using 200 and 400 mg/kg by up to 200%	[47]
	kg			94% reduction of the writhing response using 400 mg/kg	
	200 and 400 mg/		Heat hyperalgesia	Restoration of heat response latency when measured at day 14 post chronic constriction injury (CCI) by about 160 and 200% using 200 and 400 mg/kg, respectively	
	kg		Mechanical hyperalgesia (pinprick test)	Increased the withdrawal time of injured hind paw by 8.4- and 6-folds after 7 and 14 days, respectively	
	200 and 400 mg/		Acetone drop test (paw cold allodynia)	Decreased cold alldynia score by about 16- and 10-folds after 7 and 14 days using 200 and 400 mg/kg, respectively	
	kg		Paint-brush test (mechanical dynamic allodynia)	Attenuated the dynamic alldynia score when assessed at day 7 by up to 1.75-folds	
Aqueous extract	2000 and 5000	Albino Wistar rats	Acute toxicity study for 14 days	Normalization of dynamic response score by 400 mg/kg dose level when measured at day 14 post surgery	[119]
	mg/kg			No mortality or signs of toxicity and no significant differences in body weight, food consumption, and absolute organ weights between controls and treated animals	
Aerial part					
			Safety evaluation	No influence on the levels of AST and ALT	
MeOH–H₂O	200, 400, and	Albino male mice	Antioxidant activity	A significant reduction in phosphatase alkaline levels by up to 35% using 400 mg/kg	[24]
	800 mg/kg			No effect on the levels of urea and creatinine	
				Increased the plasma antioxidant levels by 3-folds (22% of inhibition) using 800 mg/kg	
				Increased the iron reducing ability (908 μM FeSO₄ eq/mL) using 800 mg/kg by 2-folds compared to the nontreated group (405 μM FeSO₄ eq/mL)	
				Improved CAT activity by 24 to 86% using 200 to 800 mg/kg	
				Increased GSH levels in mice treated with 400 and 800 mg/kg (34 to 45 nmol/mL) compared to those of the nontreated group (30 nmol/mL)	
				Decreased the MDA levels in the plasma of treated groups at 200 and 400 mg/kg by 50 and 63%, respectively	
Table 7: Continued.

Extract	Doses	Model	Activity	Effects	Ref.
Tunisia					
Aerial part					
180 mg/kg per day dissolved in normal saline	Sprague Dawley rats	Body weight gain, toxicity, and mortality	Body weight gain, no mortality, and no sign of toxicity after 15 days of experiment	Decreased the MDA levels (743.57 ± 41.12 nmol MDA/mg protein) compared to the control group (3648.47 ± 33.22 nmol MDA/mg protein)	[118]
		Assessment of lipid profile		Prevented the toxicity effect of H₂O₂ on the nonenzymatic antioxidant GSH level and the activities of SOD, CAT, GPx, and GST	
		Assessment of antioxidant defense enzymes		No pathological change, normal histoarchitecture, and significant reduction in neuronal damage induced by H₂O₂	[
		Histopathological examination		Decreased the AChE activity by up to 31.5%	
		AChE inhibition		Weight gain by up to 92%	
		Reproductive organs weights		No effect on sperm’s morphology, counts, and mobility	
		Sperm count and motility		Increased the sperm’s viability by up to 46%	
		Sperm viability		Improvement in morphological abnormalities (amorphous head, hookless head, doublet heads, compact head tail with a cytoplasmic droplet, irregular tail, and coiled tail) of sperms	
		Histopathological studies		Prevention of the H₂O₂-induced alterations in GSH level	[
	150 mg/kg	Adult male Wistar rats	DNA fragmentation analysis using gel electrophoresis	Protection against H₂O₂-induced DNA fragmentation in testis	
			Lipid peroxidation	Reduction of the levels of MDA in testicular cells induced by H₂O₂ at 1 mmol/L	
			Assessment of nonenzymatic antioxidants	Prevention of the H₂O₂-induced alterations in GSH level	
			Protein estimation	Increase in total protein	
			Hepatic and renal functional marker enzymes	Attenuation of the increase in AST and reduction in urea and creatinine levels in H₂O₂-treated group	[
			Enzymatic antioxidants and lipid profile	Recovered the levels of CAT (up to 150% increase), SOD (up to 233% increase), GST (up to 15.7% increase) and GPx (up to 71.4% increase) activities, and GSH (up to 98% increase)	
			Histopathological examination	No histopathological changes in the liver and kidney	[122]
			Body and organ weights	Alleviation of the injuries in the glomeruli and proximal tubules (77.7% reduction in damage score)	
			Histology of gastric lesions	Prevention of H₂O₂-induced liver, kidney, and weight loss	
			Assessment of enzymatic and nonenzymatic antioxidants	Lesions inhibition mainly at doses of 180 mg/kg for male rats (88%) and between 117 and 180 mg/kg for female rats (96.25 and 98.85%)	[20]
			Measurement of mucus production	Increase in the mucus production of gastric mucosa compared to control group	
			Acute toxicity study in rodents	No signs of toxicity and absence of abnormal organic damage to the rats’ organs	

AChE: acetylcholine; ALP: alanine transaminase; AST: aspartate transaminase; CAT: catalase; CCI: chronic constriction injury; CDNB: 2,4-dinitrochlorobenzene; GPx: glutathione peroxidase; GSH: glutathione; GST: glutathione S-transferases; MDA: malondialdehyde; SOD: superoxide dismutase. All experiments were done orally.
properties including biocompatibility, biodegradability, and low cytotoxicity, plant biomolecules have huge potential for the antimicrobial application and have been extensively studied in recent years.

Several methods are used to evaluate the antimicrobial activities of plant extracts mainly agar disk diffusion, agar well diffusion, and macrodilution or microdilution methods [65]. These methods determine the inhibition zone diameter and the minimal inhibitory (MIC) and bactericidal concentrations (MBC). The antimicrobial activities of the *T. algeriensis* extracts and EO against a broad set of pathogenic bacteria, fungi, and yeasts were exhaustively studied (Tables 5 and 6).

According to literature, EO were the most explored for the antimicrobial potential. For instance, Ait-Ouazzou et al. tested the effect of the EO from the aerial parts of *T. algeriensis* growing in Morocco against seven bacteria and one fungus and showed their very high effectiveness (MIC ≤ 0.5 μL/mL) towards *S. aureus*, *E. faecalis*, *L. monocytogenes*, and *C. glabrata* and a moderate activity (MIC = 1.0 μL/mL) against *P. aeruginosa*, *S. enteritidis*, and *E. coli* O157:H7 [66]. These bacteria especially *P. aeruginosa* were sometimes shown to exhibit a remarkable resistance against OE of *T. algeriensis* from other countries such as Tunisia and Algeria [20, 28, 67]. Interestingly, Hazzit et al. [35] noticed that *Helicobacter pylori* strains 399 and 26695 were more sensitive (IZ = up to 30 mm) to EO from Algerian *T. algeriensis* aerial parts than all the other five tested strains (IZ = 9.33 – 17 mm) including *Salmonella* sp. and *S. aureus* CFSA2. Similarly, it was found that *Bacillus cereus* (ATCC10876), *Micrococcus luteus* (NRLL B-4375), and *Proteus mirabilis* (ATCC35659) were inhibited at 2.34, 7.03, and 4.68 mg/mL, respectively, of the EO extracted from the aerial parts of *T. algeriensis* growing in the north of Tunisia [68]. In addition, Zaïri et al. revealed that the best antibacterial activity was obtained using the EO from *T. algeriensis* leaves (MIC = 0.5 mg/mL) which also inhibited the fungus *Aspergillus flavus* by up to 42.86% [69]. Moreover, Rezzoug et al. [23] and Guesmi et al. [14] observed the EO from the aerial parts of Algerian and Tunisian *T. algeriensis* demonstrated better antibacterial activity that the ethanolic and aqueous extracts, respectively. For instance, *S. epidermidis* ATCC12228 and *S. aureus* ATCC25923 were inhibited at 128 μg/mL using the methanolic extract and at only 32 μg/mL using EO. More importantly, the antimicrobial efficiency of *T. algeriensis* EO from Libya was shown to be stronger than reference antibiotics such as ampicillin and streptomycin [6]. Additionally, Messaoudi et al. reported that the aerial part’s ethanolic extract of *T. algeriensis* collected in the Algerian southwest has no effect on the growth of *E. cloacaee* ATCC 49452 while it inhibited widely the growth of both *E. faecalis* ATCC 49452 and *S. aureus* ATCC 25923 [70]. However, aqueous extracts from leaves and aerial parts of Algerian *T. algeriensis* showed no inhibitory effect (no halo zone) against five human pathogens. Using methanol as the solvent, the leaves of *T. algeriensis* from the upper arid area of Tunisia showed a bacteriostatic effect against seven human pathogenic bacterial strains (MIC = 1.4 mg/mL) while the bactericidal activity was restricted to *E. coli* [71, 72].

Extract characterization revealed that samples containing carvacrol elicited a remarkable antibacterial activity [21]. Elsewhere, Nikolić et al. found a positive correlation between the antimicrobial activity of selected EO of *T. serpyllum*, *T. algeriensis*, and *T. vulgaris* and their chemical composition, which indicated that the activity may be ascribed to the presence of thymol because it occurs in high proportions [73].

The synergistic combination effect of *T. algeriensis* EO from Morocco and heat or pulsed electric fields against *E. coli* and *L. monocytogenes* was shown to inactivate the bacterial growth by of 5 log10 cycles [66]. Moreover, *T. algeriensis* EO were capable of inactivating 4–5 log10 cycles of the initial cell populations (*E. coli* O157:H7 VTEC (phage type 34) and *L. monocytogenes* (EGD-e)) in combination with high hydrostatic pressure [74]. Comparatively to other plants such as *E. globulus* and *R. officinalis*, EO from *T. algeriensis* were the most potent in inhibiting seven human pathogenic bacteria [75].

Plant pathogens such as *Phytophthora megakarya* (black pod of cocoa) were dose-dependently inhibited using both aqueous and ethanolic extracts of *T. algeriensis* leaves bought at a local market in Cameroon and completely inhibited at 60 and 125 mg/mL, respectively [76]. Similarly, *Botrytis cinerea* was inhibited by the EO from wild Tunisian *T. algeriensis* at >300 μL/L [77]. Another investigation showed that 0.5% EO of *T. algeriensis* collected in northern Algeria decreased the rate of infestation of *Varroa destructor*, causing a mortality rate of 32.6% [78] (Table 6). Taken together, the EO of *T. algeriensis* are more potent than the different other extracts against human and plant pathogenic strains as well as other microbial species. Antibacterial activity of other Moroccan *Thymus* species was also reported in the literature such as *T. bleicherianus* [79], *T. serpyllum* [56], *T. munbyanus* [80], *T. hyemalis*, *T. vulgaris* [54], and *T. zygis* [81].

The mechanisms by which plant extracts trigger microbe survival and growth involve the integrity and the permeability of the membranes as well as the efflux pump systems of resistant Gram-negative bacteria such as *E. coli*, *E. aerogenes*, *K. pneumoniae*, *P. aeruginosa*, and *S. enterica Typhimurium* [82–84]. These effects are often explained by the hydrophobic nature of plant extracts allowing them to accumulate in bacterial cell membranes and disrupt their structure. In addition, the ability of some compounds to chelate transition metals such as copper and iron reduces their bioavailability to microorganisms [85]. Some researchers have observed that the antibacterial activity is correlated with the high contents of monoterpens, phenols, aldehydes, and ketones in plant extracts that affect the cell membrane of microorganisms [86]. Others have been reported to induce a deficiency in microbial enzyme systems due to leakage of intracellular constituents leading to apoptosis [87]. Plant extracts can also trigger the phospholipids of the bacterial cell membrane, coagulate the cytoplasm, and attack lipids and proteins.
For instance, a study reported that *Salix tetrasperma* stem bark extract impaired *P. aeruginosa* virulence by inhibiting swimming and swarming mobilities as well as by reducing its hemolytic and proteolytic activities [89]. The antibacterial activities of plant extracts have been associated with several bioactive compounds such as polyphenols and molecules, namely, furocoumarins and furanocoumarins [85]. In general, the nature of a phytochemical may influence its mechanism of action and therefore its antibacterial activity. Finally, most antimicrobial activities of *T. algeriensis* extracts have been tested in vitro. However, it is interesting to evaluate their potential in vivo using animal models.

The antimicrobial effects of *T. algeriensis* extracts against human pathogenic bacteria and fungi make it an important plant to be explored using fractionation and testing procedures in order to isolate potentially active molecules that can be tested in vivo and through clinical trials.

6.4. Anticancer and Cytotoxic Activity

Nowadays, cancer is the most lethal disease [90]. Although several chemotherapeutic molecules are being used to manage cancer, development of drug resistance, problems of selective toxicity, and severe side effects are still challenging. Therefore, discovering new anticancer drugs is becoming more and more imperative [91]. In this regard, plant-derived compounds are a promising source of chemotherapeutic drugs. In the market today, many of the currently used chemotherapeutic medicines such as taxanes (docetaxel and paclitaxel), vinca alkaloids (vinristine, vinblastine, and semisynthetic drugs vindesine and vinorelbine), camptothecin derivatives (camptothecin and irinotecan), and epipodophyllotoxins (etoposide and etoposide) were initially isolated from medicinal plants [92].

The cytotoxic activity of *T. algeriensis* against cancer cells has been extensively studied using the methyl tetrazolium test (MTT), sulforhodamine B assay, and histopathological analysis (Table 4). Cytotoxicity was mostly assessed using EO. According to Ouakouak et al. [42], leaves’ EO from the Algerian *T. algeriensis* showed high toxicity against the HCT116 tumor cell line (LC$_{50} = 59.6\, \mu$L/mL) while limited effect was seen towards the HePG2 hepatocellular carcinoma cell line (LC$_{50} > 100\, \mu$L/mL). Similarly, it was reported that the EO of *T. algeriensis* leaves and flowers exhibited cytotoxic activities at concentrations higher than 400 μg/mL with CC$_{50} = 725.92 \pm 195.25\, \mu$g/mL and 733.53 \pm 141.96 μg/mL, respectively [69]. Toxicities against other tumor cells such as NCI-H460 (non-small cell lung cancer), MCF-7 (breast), HCT-15 (colon), and AGS (gastric) were also reported using Libya’s *T. algeriensis* EO with CC$_{50}$ ranging from 62.12 to 64.79 μg/mL. However, no toxicity was noticed on the porcine liver primary cell lines at concentrations > 400 g/mL [73]. Noteworthy, Jaafari et al. observed that the EO from the chemotype-rich Moroccan *T. algeriensis* which is carvacrol were more toxic than the other chemotypes’ EO against the p815 mastocytoma tumor model cell line (up to 100% lysis) and had an important proliferative effect on the peripheral blood mononuclear cells (PBMC) [93]. Besides EO, other *T. algeriensis* extracts were also shown to be potent against cancer cell lines. For instance, the leaf methanolic extract of Algerian *T. algeriensis* was slightly toxic on A431 and SVT2 cancer cells at 100 μg/mL. However, biocompatibility on both the immortalized tested cell lines HaCaT and BALB/c-3T3 was observed [47]. The anticancer potential of Tunisian *T. algeriensis* extracts of leaves and flowers on the HCT116 cell line revealed that both the aqueous and methanolic extracts are toxic with CC$_{50}$ (μg/mL) of 516.81 \pm 47.42 and 528.05 \pm 31.37, respectively. However, using *T. capitatus* and *R. officinalis* extracts, the aqueous extracts showed very low toxicities compared with the methanolic extracts [19].

The mechanisms underpinning the cytotoxic activity against cancer cells were linked to the nature of secondary metabolites in the plant extracts. For instance, berberine alkaloids are known to activate the apoptosis-inducing enzymes (caspase 3/9) of the human leukemia HL-60 cells by downregulating telomerase activity and nucleophosmin/vinculin [94]. Additionally, some plant molecules such as curcumin have the potential to downregulate mirt-21 expression in MCF-7 cells through the upregulation of the PTEN/Akt signaling pathway [95]. The anticancer potential of phytochemicals and their regulatory aspects were exhaustively described by Khan et al. [94]. In 2021, a study showed that even at low concentrations, *T. algeriensis* (from Tunisia) oil fraction inhibited HCT116 cell growth. Cleavage of poly(ADP-ribose) polymerase (PARP) and activation of the initiator and effector caspases show that *T. algeriensis* causes apoptotic cell death (caspases 3, 8, and 9). It also increased the expression of death receptors (DRs) while decreasing the expression of TNF-α-related apoptosis-inducing ligand (TRAIL) decoy receptors, according to the findings (DRs). This study also showed that *T. algeriensis* increased MAPK pathway signaling molecules (p38 kinase, ERK, and JNK), downregulated c-FLIP, and overexpressed SP1 and CHOP. The *in vivo* model of cancer showed that intragastric injection of *T. algeriensis* extract (12.5 and 50 mg/mL) inhibited colorectal carcinogenesis in an animal model by preventing multiple phases in the carcinoma [96]. To sum up, the anticancer potential of *T. algeriensis* extracts is mainly attributed to their capacity to enhance the apoptosis-stimulating enzymes and receptors in tumor cells, to downregulate the oncogenic miRNA and genes, and to inhibit the antiapoptotic proteins. The anticancer and cytotoxic activity of *T. algeriensis* extracts is evident as it has been widely proven. It turns out that this plant hides an enormous potential in the induction of apoptosis of cancer cells; that said, it will be extremely interesting to go further through *in vivo* and clinical experiments and to identify, like the compounds mentioned above, potential anticancer molecules with promising medical applications.

6.5. Miscellaneous Activities

T. algeriensis appears to be endowed with other biological activities such as antihemolytic, antiacetylcholinesterase, antilipase, insecticidal, leishmanicidal, and angiotensin converting enzyme (ACE) inhibitory activities (Table 4). Using erythrocyte osmotic fragility test, petroleum ether, chloroform, and n-BuOH extracts of the Algerian *T. algeriensis* (aerial part) induced
resistance of erythrocytes to hemolysis. The highest antihemolytic effect was noted using the n–BuOH extract (IC_{50} = 322.85 ± 0.87 μg/mL), followed by the chloroform extract (IC_{50} = 443.25 ± 0.52 μg/mL). The petroleum ether extract displayed the lowest activity with 19.51% inhibition at 800 μg/mL [44]. The antihemolytic effect of T. algeriensis extracts could be linked to their chemical composition, particularly flavonoids and polyphenols. In fact, previous research has shown that the presence of polyphenols and flavonoids in the crude extracts enhanced the stability of the erythrocyte membrane and inhibited hemolysis [97]. However, the exact mechanism of action of the membrane stabilization by the extract is yet to be elucidated [98]. Studies have also related the antihemolytic effect to the occurrence of molecules having antioxidant activities due to their ability to scavenge free radicals [99].

Previous studies showed that the methanolic extract from the T. algeriensis leaves (Tunisia) showed various abilities to inhibit acetylcholinesterase (AChE) with significant variations among T. algeriensis populations. It was observed that populations growing in the arid zone were the most potent (EC_{50} = 0.1 – 0.2 mg/mL) [21]. The modulation of the activity of AChE has been linked to the phenolic compounds [100, 101]. These latter effects have been reported to protect against neurodegenerative diseases [102]. For instance, rosmarinic acid was reported as an Aβ aggregation inhibitor [103, 104]. Besides, Benguechoua et al. showed, for the first time, that an acetone/water extraction mixture with ethyl acetate and butanol fractions from Algerian T. algeriensis inhibited Candida rugosa lipase [105].

Leaves’ EO from Tunisian T. algeriensis used as a fumigant exhibited insecticidal activity against Spodoptera littoralis Boisd. with LC_{50} ranging from 41.75 to 131 μL/L air [28]. The insecticidal effect of T. algeriensis EO is likely due to its major constituents such as α-pine, 1,8-cineole, carophyllene oxide, camphor, linalool, camphene, and p-eugenol, which were found to be toxic in many previous studies [106, 107]. This level of larvae mortality is higher than those observed using other medicinal plants such as Thymus mastichina, Origanum majorana, and Salvia scarea [108]. According to Al-Nagar et al., terpene compounds constitute a major group of insect feeding deterrents and display a very strong inhibitory activity against larvae of S. littoralis [109]. Tunisian OE from the T. algeriensis aerial parts were also endowed with leishmanicidal activity against two Leishmania species: L. infantum and L. major with IC_{50} of 0.25 and 0.43 μg/mL, respectively [49]. Some investigations indicated that the plant extracts including EO can target the metabolic pathways involved in Leishmania species survival such as MAP kinases, glyoxalase, metacaspases, and sterol pathways [110, 111]. These plant-based compounds include flavones, azoles, and staurosporine [111, 112]. Similarly, Melo et al. demonstrated thatoleanolic acid, which possessed a good activity against L. amazonensis, L. braziliensis, and L. infantum (IC_{50}<70 μM in promastigotes and amastigotes), did not provoke FN-γ-assisted macrophage activation [113]. These findings indicated that this type of triterpene most likely acts on targets located in Leishmania parasites rather than in the host’s macrophages.

Finally, Zouari et al. showed that T. algeriensis EO could be used as angiotensin I-converting enzyme (ACE) inhibitor for hypertension treatment (IC_{50} = 150 μg/mL) [29]. To elucidate the mechanisms underlying ACE inhibition, it was suggested that the flavonoids such as vitexin and isovitexin isolated from various plants that inhibited ACE activity at 0.33 mg/mL by 20% and 45%, respectively, act by competing with the substrate for the ACE active site [114]. In addition, flavonoids are reported to form chelate complexes with the zinc atom within the active site of zinc-dependent metallopeptidases to which ACE belongs [115, 116].

It can be concluded that T. algeriensis extracts act as an antihemolytic by protecting the integrity of the erythrocyte’s membrane, as antiacetylcholinesterase agents by inhibiting the Aβ aggregation, as an insecticidal and leishmanicidal by targeting the metabolic pathways for insects’ survival, and as angiotensin converting enzyme (ACE) inhibitors by competing with the ACE active site. In the light of these various potentialities, some of which are being used traditionally, it would be original to investigate T. algeriensis extracts more deeply for these activities to spotlight the underlying mechanisms both in vitro and in vivo.

7. In Vivo Pharmacological Activities

In the biological systems, there is a growing need for in vivo experiments as most studies focus on in vitro and cell culture-based assays. However, these studies require verification using animal experiments to avoid misleading data and toxicity issues [117]. Indeed, the in vivo studies carried out on T. algeriensis extracts were comparatively limited and were only performed on species growing in Algeria and Tunisia using aerial part and leaf hydromethanolic extracts and EO. Reported studies are summarized in Table 7.

7.1. Safety Studies. As the interactions of plant constituents with biological components such as tissues, cells, proteins, and DNA could disrupt host’s immune response and metabolism, assessing their in vivo behavior would provide a basis for beneficial as well as toxic responses and, more importantly, could lead to predictive models to assess their pharmacokinetics and intended effects [117].

Here, the in vivo toxicological evaluation of T. algeriensis extracts was investigated using animal models mainly Albino male mice and Sprague Dawley rats. Toxicity parameters were mostly related to hepatic and renal functions, mortality, body and organ weights, and histopathological evaluation of tissues (Table 7). Righi et al. showed that the hydromethanolic extract of T. algeriensis aerial parts (Algeria) administrated orally to Albino male mice at 200–800 mg/kg did not influence the hepatic (AST and ALT) and renal functional markers (urea and creatine) [24]. Similarly, Guesmi et al. observed no sign of toxicity or mortality after 15 days of oral administration of EO from Tunisian T. algeriensis at 180 mg/kg per day dissolved in normal saline to Sprague Dawley rats with no pathological change and
normal histoarchitecture [118]. In another study, they showed that \textit{T. algeriensis} EO exhibited no signs of acute toxicity with the absence of abnormal organic damage to the rats’ organs and prevented H\textsubscript{2}O\textsubscript{2}-induced liver, kidney, and organ weight loss [20].

The leaf aqueous extract of Algerian \textit{T. algeriensis} administered by oral route to Albino Wistar male and female mice at the doses of 2000 mg/kg and 5000 mg/kg induced no significant differences in body weight, no mortality, and/or no signs of toxicity. In addition, treated mice showed no change in the biochemical parameters and no histological abnormalities in their organs compared to control animals [119].

The major challenge encountering plant-derived agents is the prediction of their trajectory and location after \textit{in vivo} administration. Hence, the relationship between the properties of a molecule and its distribution and behavior with the biological system should be studied as it is developed by pharmaceutical approaches for drugs. This is known as structure–function/toxicity relationship models [120]. Such data could be investigated before evaluating the systematic effect [117].

According to these studies, it seems that \textit{T. algeriensis} is far from being toxic at least in tested models and at administered doses. However, more in-depth studies using pharmacokinetics and downstream targets of hepatic metabolites resulting from its compounds will have to be explored to ensure its biosafety for humans.

7.2. Antioxidant Activity. As mentioned above, \textit{T. algeriensis} extracts are reported to be endowed with a high antioxidant activity \textit{in vitro}. This was corroborated using \textit{in vivo} experiments especially by Guesmi et al. [20, 118, 121, 122]. Various methods were used to investigate the antioxidant effect \textit{in vivo}, mainly the assessment of the antioxidant machinery (enzymatic and nonenzymatic antioxidants), lipid peroxidation, and ferric reducing ability of plasma (Table 7). For instance, in 2016, these researchers demonstrated that Tunisian EO administrated orally to Sprague Dawley rats (150 mg/kg per day) subjected to low- and high-dose H\textsubscript{2}O\textsubscript{2} treatment recovered the catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities and glutathione (GSH) levels in liver and renal tissues of treated animals. In another study, they showed that \textit{T. algeriensis} EO administrated to adult male Wistar rats preserved the sperms’ viability, improved the morphological abnormalities, and prevented induced DNA fragmentation in their testes. An increase in total protein in the H\textsubscript{2}O\textsubscript{2}-treated group was also noticed [121]. These researchers’ investigations corroborated the same finding [20, 118]. Moreover, it was reported that the aerial part hydromethanolic extract of Algerian \textit{T. algeriensis} increased the plasma antioxidant levels by 3-folds following treatment of Albino male mice with the dose of 800 mg/kg. At the same concentration, the iron reducing ability (908 \textmu M FeSO\textsubscript{4} eq/mL) was twofolds higher than that of the untreated group (405 \textmu M FeSO\textsubscript{4}/ mL). In addition, a significant improvement in CAT activity and GSH levels was seen in mice treated with 400 and 800 mg/kg compared to the nontreated group accompanied with a significant decrease in the MDA levels in the plasma of treated groups by 200 and 400 mg/kg [24]. To sum up, \textit{T. algeriensis} extracts displayed substantial antioxidant activities in several experimental models (\textit{in vitro}: DPPH, FRAP, β–carotene bleaching, ORAC, TBARS, RP, phosphomolybdenum, lipid peroxidation inhibition, TAC, HRS, metal ions chelation, and superoxide anion scavenging assays, and \textit{in vivo}: rats and mice) via diverse molecular targets/mechanisms by increasing the activities of antioxidant enzyme activities such as SOD, GST, and CAT and nonenzymatic antioxidants like GSH, reducing the MDA levels, and preventing the DNA damage. All these protective effects of \textit{T. algeriensis} extracts against oxidative stress sustain the \textit{in vitro} findings and highlight its benefits in the prevention and protection against oxidative stress and its radicals in related disorders and diseases.

7.3. Anti-Inflammatory Activity. The \textit{in vivo} effectiveness of \textit{T. algeriensis} as a source of anti-inflammatory agents has been investigated by Sobeh et al. using the leaf extracts of Algerian species [22] (Table 7). The study showed that the oral administration of the 80% MeOH extract to male rats injected with carrageenan induced a significant mild reduction in edema thickness using the doses of 200 and 400 mg/kg compared to the control rats. In addition, the increased vascular permeability induced by acetic acid injection in mice was reduced by 63 and 58% when animals were pretreated with \textit{T. algeriensis} extracts at 400 or 600 mg/kg, respectively. These effects on the first phase of inflammation were attributed to the capacity of \textit{T. algeriensis} extracts to inhibit the vasodilatation and the release of inflammatory mediators. In conclusion, \textit{T. algeriensis} extracts exhibited prominent anti-inflammatory activities both \textit{in vitro} and \textit{in vivo} by inhibiting the inflammatory mediators such as COX, LOX, PGE\textsubscript{2}, LT, IL-1β, TNF-α, and IL-6 and by increasing the levels of Nrf–2 which controls the intracellular redox environment and redox homeostasis genes. The \textit{in vivo} effects corroborate the anti-inflammatory activities reported \textit{in vitro} and open promising prospects in using \textit{T. algeriensis}-based compounds and derivatives in treating inflammatory related disorders in humans.

7.4. Leukocyte Recruitment. The effect of \textit{T. algeriensis} leaf extracts on carrageenan-induced leukocyte migration into the peritoneal cavity in mice was also evaluated by Sobeh et al. [22] (Table 7). Following intraperitoneal injection of carrageenan, mice pretreated with \textit{T. algeriensis} extract doses (200, 400, and 600 mg/kg) showed a dose-dependent decrease in the number of total leukocytes with up to 62%. This effect was more important that those observed using diclofenac and dexamethasone, which induced 39 and 30% decrease in leucocyte number, respectively. The observed reduction in leucocyte number has been explained by the suppression of inflammatory mediators such as prostaglandins and proinflammatory cytokines. It was also shown that the inhibition of leukocyte migration could be the result of the suppression of adhesion molecule and/or inhibition of the chemotactic of substances’ expression [123]. This investigation confirms the \textit{in vitro} anti-inflammatory activity of
7.5. Antinociceptive Activity. The central and peripheral analgesic activity of *T. algeriensis* leaf extract was studied in mice using the hot plate test and acetic acid-induced abdominal writhing assay, respectively [22] (Table 7). The study showed that oral pretreatment of mice with *T. algeriensis* extracts at 200 and 400 mg/kg prior to acetic acid injection induced a significant peripheral analgesic activity with a dose-dependent reduction in induced writhes. The effect observed by the dose 400 mg/kg (94% reduction) was higher than that achieved by dexamethasone (2 mg/kg) or diclofenac (20 mg/kg). Moreover, central antinociceptive activity was also shown using the extract's doses represented by a longer response latency. In addition, the extract at 400 mg/kg showed similar activity to the reference narcotic analgesic (nalbuphine). It was presumed that the leaf hydro-alcoholic extract of *T. algeriensis* could act on the opioid system and/or other central nervous system (CNS) receptors involved in the antinociception. To sum up, *T. algeriensis* extracts exerted an antinociceptive effect *in vivo* by targeting the opioid system receptors (i.e., mu, delta, and kappa) and CNS nociceptors. This prominent analgesic effect of *T. algeriensis* extracts arouses a lot of interest in the search for metabolites endowed with antinociceptive activity which will certainly lead to good research and application perspectives of plant-based painkillers from *T. algeriensis*.

7.6. Gastroprotective and Antiulcerogenic Activity. The effect of *T. algeriensis* EO was investigated on Tunisian species using induced gastric lesions in adult male and female Wistar rats by 0.3 M HCl/60% ethanol [20] (Table 7). The results showed that oral treatment of rats by the EO (54–180 mg/kg, p.o.) induced a dose-dependent decrease in gastric lesions and reduced the ulcer index and percentage of inhibition mainly at doses of 180 mg/kg for male rats (88%) and between 117 and 180 mg/kg for female rats (96.25 and 98.85%). In addition, the gastric acidity of female rats pretreated with EO was significantly reduced comparatively to the ulcer control rats. The mucosal damage induced by HCl/ethanol in the control group was alleviated using the *T. algeriensis* EO. In fact, mucus production increased significantly in both male and female rats treated with 180 mg/kg. As compared to the acidified group in which visible change in the gross appearance of the gastric mucosa was seen, stomachs of male and female rats treated with the dose of 180 mg/kg showed a normal appearance. The authors suggested that the antiulceration effect of EO from *T. algeriensis* is attributed to their antioxidant effect and inhibition of neutrophil infiltration into ulcerated tissues. Nevertheless, the molecules and their structural aspects determining the observed effect are not yet established. The gastroprotective and antiulcerogenic activities of *T. algeriensis* EO seen in animal models explain its uses in traditional medicine for this purpose and open a great potential of using this plant's volatile constituents in the treatment of peptic ulcers and gastric troubles.

7.7. Neuroprotective Activity. The effects of *T. algeriensis* extracts on chronic neuropathic pain and the underpinning mechanisms were investigated by Rezq et al. [47] (Table 7). Using the chronic constriction injury (CCI) model in male...
Wistar rats, 80% MeOH leaf extracts of Algerian *T. algeriensis* (200 mg/kg and 400 mg/kg) prominently attenuated hyperalgesia and allodynia at day 14 of surgery. Noteworthy, the extracts showed a higher effect than the standard drug (pregabalin) towards both stimuli. In addition, they restored the normal appearance of the nerve fascicle which regained its regular form. Finally, the degeneration of most neurons caused by CCI was restored by the *T. algeriensis* extract at 400 mg/kg with few pyknotic neurons and low and deeply stained nuclei. The extracts also mitigated the increase of caspase 3 and synaptophysin. The underlying mechanisms of the observed neuroprotective activity were (i) inhibition of NOX–1, iNOS; (ii) increase of catalase activity; and (iii) inhibition of inflammatory mediators such as TNF–α, NF–κB, COX–2, and PGE2. These effects suggest the substantial potential of *T. algeriensis* extracts in improving painful peripheral neuropathy. Furthermore, another earlier study on hydrophobic fractions of *T. algeriensis* (HFTS) growing in Tunisia showed that HFTS mitigates neuroinflammation via AChE inhibition and attenuates H$_2$O$_2$-induced brain toxicity [118]. In conclusion, *T. algeriensis* attenuated neuropathic pains and degeneration of neurons via antioxidant and anti-inflammatory properties. This opens new avenues for research of molecules exhibiting neuronal activities. Hence, bio-guided assays on *T. algeriensis* extracts can be envisaged with the aim of isolating molecules with neuroprotector power, unraveling their functional features, identifying their targets, and understanding their mode of actions.

8. Discussion

To the best of our knowledge, this is the first review to summarize and critically evaluate the chemical composition, biological and pharmacological activities, efficacy, and safety of *T. algeriensis* extracts and essential oils. *T. algeriensis* is one of the most well-known *Thymus* species in northern Africa. Most of the prior research on this plant species has focused on its biological activities and pharmacological and preclinical characteristics. Many chemical constituents have been identified from *T. algeriensis* extracts such as flavonoids, mainly kaempferol and rutin, besides luteolin, apigenin, hesperidin, and neohesperidin among others. They also contain phenolic acids such as rosmarinic acid and vanillic acid. Other constituents include sterols (e.g., β-sitosterol) and triterpenoid (e.g., oleanolic acid) [22, 23].

Current evidence revealed that the chemical composition of *T. algeriensis* essential oils (EO) differs according to its source. Its EO contains 40 volatile compounds represented mainly by monoterpenes and sesquiterpenoids. EO from *T. algeriensis* growing in Tunisia contains mainly 1,8-cineole and 4-terpineol [9, 15], while borneol, camphene, camphor, and carvacrol were listed from the Algerian and Moroccan plants. *p*-Cymene and thymol were detected in all flora. β-Myrcene (20.22%) has only been identified in the aerial parts of the essential oil,” “the biological activities,” and the” in vivo activities.” Among them, the field of biological activities is the link between the field of chemical composition and the chemotype of the plant as there is a close relationship with these fields. After further domain structure detection as shown in Figure 8, the main topics in the field of biological activities of *T. algeriensis* were the antibacterial and antioxidant activities, directly related to the richness of the essential oil of the aerial parts of the plant in thymol, carvacrol, and *p*-cymene. The occurrences of these compounds, their absence, or their presence determine the chemotype of the plant.
of the Libyan plants [124], while myrcene characterized the EO of the Moroccan plants [53].

Free radicals are unstable and reactive because they have an unpaired electron. Superoxide, nitric oxide, and hydroxyl radicals, the most reactive and poisonous ROS, are among them. Hydrogen peroxide, singlet oxygen, and ozone are nonradical oxidants that produce free radicals in tissues through a variety of chemical processes. ROS are produced normally in mitochondria during aerobic respiration, by macrophages to fight infection, during induction of cytochrome p450, and by peroxisomes in the cells. Many exogenous factors can stimulate ROS production which damages cells and causes cellular injury and disease development such as tobacco smoke, ionizing radiation, UV light, industrial toxins such as carbon-tetrachloride, drugs, and charcoal-broiled foods [125]. Natural products with antioxidant properties such as T. algeriensis are beneficial in disease prevention and treatment. Antioxidant effects of T. algeriensis were investigated using different methods including DPPH, ABTS, FRAP, TBR, TAC, HRS, and β-carotene bleaching assays [42, 126–128]. These studies showed that T. algeriensis extracts and EO had antioxidant properties. Furthermore, in vitro studies confirmed these in vitro tests. Although the in vitro studies investigated the antioxidant effects of this species, more comparative studies between extracts and EO of T. algeriensis obtained from various geographical areas are required. Moreover, in vivo antioxidant effects of T. algeriensis extracts and EO are not sufficient, and more studies are required.

Inflammation is now recognized as a major factor in cellular and subcellular disorders. Few cells are engaged in this process, which boosts the production of proinflammatory chemical mediators (IL, TNF-α, NO, and PGs). Stimuli and tissue injuries influence mediator overproduction [129]. It was reported that phenolic compounds are similar to nonsteroidal anti-inflammatory drugs (NSAIDs) in their ability to decrease the chemical mediators of inflammation [130]. As mentioned previously in this review, T. algeriensis extracts and EO are rich in different phenolic compounds. In vitro studies showed their ability to inhibit inflammatory enzymes such as COX–1, COX–2, and 5-LOX [22, 44]. Besides, in vivo studies showed that the extracts suppressed the production of proinflammatory cytokines such as NF-κB, TNF-α, lipoxygenase, COX-2 enzymes, and PGE2 [47, 131]. Additionally, the administration of T. algeriensis extracts to animal models enhanced their enzymatic and nonenzymatic antioxidant machinery (CAT, SOD, GPx, and GSH) in response to stress induction (Figure 9). Nevertheless, more studies on the different extracts and EO from T. algeriensis on inflammatory cell lines and in vivo models are still needed.

Moreover, in vitro studies showed that T. algeriensis extracts and EO had anticholinesterase activities [132], while in vivo studies on their use in treatment of Myasthenia gravis, Alzheimer diseases, or other diseases treated with anticholinesterases are lacking. In the same context, in vitro studies on ACE inhibition are promising [133], but no in vivo studies
to our knowledge studied the antihypertensive effects or compared the extract effects with known ACE inhibitors (ACEIs). Similarly, α-glucosidase inhibitory effects of _T. algeriensis_ extracts were explored, but no _in vivo_ study on their antidiabetic effects was carried out [134].

Although gastroprotective, antinociceptive, anti-inflammatory, antioxidative, neuroprotective, and anticancer properties have all been documented for _T. algeriensis_ extracts and EO, several studies are required on other disease models.

9. Conclusions and Future Perspectives

This review profiles the chemical composition of _T. algeriensis_ and synthesizes the biological and pharmacological activities of its extracts and EO. Based on this comprehensive overview, the use of this plant’s extracts in biotechnology seems to be promising because of their wealth in bioactive molecules mainly for antioxidant, antimicrobial, anticancer, anti-inflammatory, antinociceptive, gastro- and neuroprotective, and antiacetylcholinesterase purposes. However, as most of the biological activities have been evaluated _in vitro_, it would be interesting to extend their _in vivo_ activities and uncover the underpinning mechanisms of action. In addition, the activities of _T. algeriensis_ extracts vary depending on the solvents utilized. Moreover, environmental factors, geographical regions of growth, seasonal variations, phenological stages, degree of ripeness, plant part used, and harvesting time as well as postharvest treatment and processing could greatly influence the chemical composition of the plant and thus the related activities. This led to result inconsistency which represents a real issue for the development of bioactive preparations and their reliability. Thus, it could be interesting to study the effect of _T. algeriensis_ domestication on its chemical composition and biological activities as it is a solution to conserve this plant species.

Since _T. algeriensis_ was shown to improve sperm viability and mobility, further investigation could shed light on the potential estrogenic activity of this plant and its effect on reproductive hormones as Lamiaceae species including _Thymus_ genus are traditionally used in Morocco to treat infertility disorders [135]. Additionally, as the revolution for patient safety has gained momentum importance, the safety of _T. algeriensis_ cannot be definitively established from reported studies. More attention should still be given to the toxicity aspect in a more in-depth manner especially when using EO that could be harmful in some individuals. Although the preclinical investigations (_in vitro_, cell-based, and animal studies) on this plant species are available in a large quantity, they should be translated into evidence-based clinical progress using human trials which are completely missing. Having said that, there are many opportunities for the healthcare industry to explore the benefits of _T. algeriensis_ because of the potential growth market of medicinal plants. Therefore, future prospective studies should screen fractions or individual constituents that exhibit health-protecting and curative activities from _T. algeriensis_.

Conflicts of Interest

The authors declare no competing interest.

Authors’ Contributions

I.M., W.B.B., and M.F. reviewed the literature and wrote the manuscript. G.T.M.B. and H.A. revised the manuscript. M.S. revised the manuscript and designed and conceived the work. All authors approved the final version.

Funding

The APC was funded by UM6P.

References

[1] A. H. Gilani and A. Rahman, “Trends in ethnopharmacology,” _Journal of Ethnopharmacology_, vol. 100, no. 1-2, pp. 43–49, 2005.
[2] D. Krishnaiah, R. Sarbatly, and R. Nithyanandam, “A review of the antioxidant potential of medicinal plant species,” _Food and Bioproducts Processing_, vol. 89, no. 3, pp. 217–233, 2011.
[3] M. Gunjan, T. W. Naing, R. S. Saini, A. Ahmad, J. R. Naidu, and I. Kumar, “Marketing trends & future prospects of herbal medicine in the treatment of various diseases,” _World Journal of Pharmaceutical Research_, vol. 4, no. 9, pp. 132–155, 2015.
[4] S. Škrlováková, L. Mišurcová, and L. Machů, “Chapter three - antioxidant activity and protecting health effects of common medicinal plants,” in _Advances in Food and Nutrition Research_, J. Henry, Ed., pp. 75–139, Academic Press, 2012.
[5] R. Fürst and I. Zündorf, “Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress,” _Mediators of Inflammation_, vol. 2014, Article ID 146832, 9 pages, 2014.
[6] D. Bukvicki, A. Giweli, D. Stojkovic et al., “Short communication: cheese supplemented with _Thymus algeriensis_ oil, a potential natural food preservative,” _Journal of Dairy Science_, vol. 101, no. 5, pp. 3859–3865, 2018.
[7] B. E. C. Ziani, S. A. Heleno, K. Bachari et al., “Phenolic compounds characterization by LC-DAD-ESI/MSn and bioactive properties of _Thymus algeriensis_ Boiss. & Reut. and _Ephedra alata Decne_,” _Food Research International_, vol. 116, pp. 312–319, 2019.
[8] E. Le Floch and L. Boulos, _Flore de Tunisie_, Catalogue synony- memique commenté, Montpellier, France, 2008.
[9] E. H. Ali, I. Ben, Y. Zaouali, A. Bejaoui, and M. Boussaid, “Variation of the chemical composition of essential oils in Tunisian populations of _Thymus algeriensis_ Boiss. Et Reut. (Lamiaceae) and implication for conservation,” _Chemistry & Biodiversity_, vol. 7, no. 5, pp. 1276–1289, 2010.
[10] R. Morales, _Studies on the genus, Thymus_, 1996.
[11] E. Stahl-Biskup and F. Sáez, _Thyme: The Genus Thymus_, CRC Press, 2002.
[12] B. E. H. Ali, A. G. Imen, and M. Boussaid, “Chemical and genetic variability of _Thymus algeriensis_ Boiss. et Reut. (Lamiaceae), a North African endemic species,” _Industrial Crops and Products_, vol. 40, pp. 277–284, 2012.
[13] A. Benabid, *Flore et Écosystèmes Du Maroc: Evaluation et Préervation De La Biodiversité*, Ibis Press, Paris (France), 2000.

[14] F. Guesmi, I. Saidi, H. Bouzenna, N. Hfaiedh, and A. Landoulsi, “Phytocompound variability, antioxidant and antibacterial activities, anatomical features of glandular and aglandular hairs of Thymus hirtus Willd. Ssp. Algeriensis Boiss. And Reut. over developmental stages,” *South African Journal of Botany*, vol. 127, pp. 234–243, 2019.

[15] N. Zouari, I. Ayadi, N. Fakhfakh, A. Rebai, and S. Zouari, “Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. Et Reut., a north African endemic species,” *Lipids in Health and Disease*, vol. 11, no. 1, p. 28, 2012.

[16] B. E. H. Ali, A. G. Imen, and M. Boussaid, “Effect of habitat fragmentation on the genetic structure of the gynodioecious Thymus algeriensis Boiss. et Reut. (Lamiaceae) in Tunisia,” *Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology*, vol. 148, no. 2, pp. 217–226, 2014.

[17] F. A. Kaki, R. Benkiniouar, I. Demirtas, A. Merzoug, and A. Toul, “Phytocochemical study of two Algerian plants Orig-anum vulgare L. Sbsp. glandulosum (Desf) Ietswaart and Thymus algeriensis (Boiss. And Reut),” *Asian Journal of Chemistry*, vol. 31, no. 5, pp. 1105–1109, 2019.

[18] N. Boutaoui, L. Zaiter, F. Benayache et al., “Qualitative and quantitative phytocochemical analysis of different extracts from Thymus algeriensis aerial parts,” *Molecules*, vol. 23, no. 2, p. 463, 2018.

[19] A. Zairi, S. Nour, N. M’hamdi et al., “Antioxidant, antimicrobial and the phenolic content of infusion, decoction and methanolic extracts of Thyme and Rosmarinus species,” *Current Pharmaceutical Biotechnology*, vol. 19, no. 7, pp. 590–599, 2018.

[20] F. Guesmi, M. B. Ali, T. Barkaoui et al., “Effects of Thymus hirtus Sp. Algeriensis Boiss. Et Reut. (Lamiaceae) essential oil on healing gastric ulcers according to sex,” *Lipids in Health and Disease*, vol. 13, no. 1, p. 138, 2014.

[21] R. Jaouadi, A. M. S. Silva, M. Bousaid, I. B. H. Yahia, S. M. Cardoso, and Y. Zouali, “Differentiation of phenolic composition among Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae) populations: correlation to bioactive activities,” *Antioxidants*, vol. 8, no. 11, p. 515, 2019.

[22] M. Sobeh, S. Rezq, M. Cheurfa et al., “Thymus algeriensis and Thymus fontanensis: chemical composition, in vivo anti-inflamatory, pain killing and antiptypic activities: a comprensive comparison,” *Biomolecules*, vol. 10, no. 4, p. 599, 2020.

[23] M. Rezzoug, B. Bakchiche, A. Gherib et al., “Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan atlas,” *BMC Complementary and Alternative Medicine*, vol. 19, no. 1, p. 146, 2019.

[24] N. Righi, S. Boumerfeg, P. A. R. Fernandes et al., “Thymus algeriensis Boiss & Reut: relationship of phenolic compounds composition with _in vitro/in vivo_ antioxidant and antibacterial activity,” *Food Research International*, vol. 136, article 109590, 2020.

[25] S. R. Gedara, “Terpenoid content of the leaves of Thymus algeriensis Boiss,” *Mansoura Journal of Pharmaceutical Sciences*, vol. 24, pp. 133–143, 2008.

[26] E. Ajjouri, M. G. Mustapha, B. Satrani et al., “Composition chimique et activité antifongique des huiles essentielles de Thymus algeriensis Boiss. & Reut. et Thymus ciliatus (Desf.) Benth. contre les champignons de pourriture du bois,” *Acta botanica gallica*, vol. 157, no. 2, pp. 285–294, 2010.

[27] F. Amarti, B. Satrani, M. Ghanmi et al., “Chemical composition and antimicrobial activity of the Thymus algeriensis Boiss. & Reut, and Thymus ciliatus (Desf.) Benth. essential oils of Morocco,” *Biotechnologie, Agronomie, Société et Environnement*, vol. 14, no. 1, pp. 141–148, 2010.

[28] B. E. H. Ali, M. C. Imen, R. Bahri, I. Chaieb, M. Boussaid, and F. Harzallah-Skhiri, “Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis Boiss. et Reut,” *Industrial Crops and Products*, vol. 77, pp. 631–639, 2015.

[29] N. Zouari, N. Fakhfakh, S. Zouari et al., “Chemical composition, angiotensin I-converting enzyme inhibitory, antioxidant and antimicrobial activities of essential oil of Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae),” *Food and Bioproducts Processing*, vol. 89, no. 4, pp. 257–265, 2011.

[30] O. Hamza, A. Fahima, and A. Hassan, “Chemical composition, antioxidant activity of the essential oil of Thymus algeriensis Boiss, North Algeria,” *International Letters of Chemistry, Physics and Astronomy*, vol. 59, pp. 72–80, 2015.

[31] W. Zhang, H.-J. Li, L. Chen et al., “Fructan from Polygona-tum cyrtonema Hua as an eco-friendly corrosion inhibitor for mild steel in HCl media,” *Carbohydrate Polymers*, vol. 238, article 116216, 2020.

[32] R. Russo, M. T. Corasaniti, G. Bagetta, and L. A. Morrone, “Exploitation of cytotoxicity of some essential oils for translation in cancer therapy,” *Evidence-based Complementary and Alternative Medicine*, vol. 2015, Article ID 397821, 9 pages, 2015.

[33] B. Salehi, M. S. Abu-Darwish, A. H. Tarawneh et al., “Thymus spp. plants - Food applications and phytopharmacy properties,” *Trends in Food Science & Technology*, vol. 85, pp. 287–306, 2019.

[34] R. Giordani, Y. Hadef, and J. Kaloustian, “Compositions and antifungal activities of essential oils of some Algerian aro-matic plants,” *Fittoterapia*, vol. 79, no. 3, pp. 199–203, 2008.

[35] M. Hazzit, A. Baaliouamer, A. R. Veríssimo, M. L. Faleiro, and M. G. Miguel, “Chemical composition and biological activities of Algerian Thymus oils,” *Food Chemistry*, vol. 116, no. 3, pp. 714–721, 2009.

[36] R. Mariam, D. Allal, and L. Zidane, “Étude ethnobotanique des plantes médicinales dans le Parc National de Talassem-tane (Rif occidental du Maroc),” *Journal of Applied Biosciences*, vol. 97, 2016.

[37] M. Hachi, B. Ouafae, T. Hachi et al., “Contribution to the ethnobotanical study of antidiabetic medicinal plants of the Central Middle Atlas region (Morocco),” *Lazaraa*, vol. 37, 2016.

[38] J. Fakchich and M. Elachouri, “An overview on ethnoanbotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: systematic review (part 1),” *Journal of Ethnopharmacology*, vol. 267, article 113200, 2021.

[39] G. Gulcu, H. Kelebek, and S. Selli, “Chapter 26 - antioxidant activity in olive oils,” in *Olives and Olive Oil in Health and Disease Prevention*, V. R. Preedy and R. R. Watson, Eds., pp. 313–325, Academic Press, San Diego, Second Edition edition, 2021.
I. Hamdani, A. Bouyanzer, B. Hammouti et al., “Comparison of antioxidant and antimicrobial properties for Ginkgo biloba and Rosemary (Rosmarinus officinalis L.) from Egypt,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 41, no. 1, pp. 126–135, 2013.

H. Ouakouak, A. Benafra, M. Messaoudi et al., “Biological properties of essential oils from Thymus algeriensis Boiss,” Plants, vol. 10, no. 4, pp. 786, 2021.

A. A. Giweli, A. M. Džamić, M. D. Soković, M. S. Ristić, and P. D. Marin, “Chemical composition, antioxidant and antimicrobial activities of essential oil of Thymus algeriensis wild-growing in Libya,” Central European Journal of Biology, vol. 8, no. 5, pp. 504–511, 2013.

M. Mokhtari, S. Chabani, S. Mouffouk et al., “Phytochemicals, antihemolytic, anti-inflammatory, antioxidant, and antibacterial activities from Thymus algeriensis,” Journal of Herbs, Spices & Medicinal Plants, vol. 27, no. 3, pp. 253–266, 2021.

A. Bouguerra, S. Djebili, N. Zouaoui, and M. Barkat, “Evaluation of phenolic contents and antioxidant activities of some medicinal plants growing in Algerian Aurès mountains,” Acta Scientifica Naturalis, vol. 7, no. 2, pp. 15–30, 2020.

F. Z. Benabdallah, A. Zellagui, and I. Demirtas, “Chemical composition of essential oils and antioxidant activities of extracts of two endemic plants from Algeria,” International Journal of Pharmaceutical Sciences and Research, vol. 8, no. 1, p. 244, 2017.

S. Rezq, A. E. Alsemeb, L. D’Elia et al., “Thymus algeriensis and Thymus fontanesii exert neuroprotective effect against chronic constriction injury-induced neuropathic pain in rats,” Scientific Reports, vol. 10, no. 1, article 20559, 2020.

H. Zhao, S. Eguchi, A. Alam, and D. Ma, “The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 312, no. 2, pp. L155–L162, 2017.

S. B. H. Ahmed, R. M. Sghaier, F. Guesmi et al., “Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia),” Natural Product Research, vol. 25, no. 12, pp. 1195–1201, 2011.

F. Amarti, B. Satrani, M. Ghanmi et al., “Activité antioxidante et composition chimique des huiles essentielles de quatre espèces de thym du Maroc,” Acta botanica gallica, vol. 158, no. 4, pp. 513–523, 2011.

T. Konishi, “Chapter 4 - antioxidant property is the basic feature of Kampo medicine,” in Japanese Kampo Medicines for the Treatment of Common Diseases: Focus on Inflammation, S. Arumugam and K. Watanabe, Eds., pp. 33–40, Academic Press, 2017.

A. Čančarević, B. Bugarski, K. Šavkin, and G. Zdunić, “Biological activity and ethnomedicinal use of Thymus vulgaris and Thymus serpyllum,” Lekovite sirovine, vol. 33, pp. 3–17, 2013.

I. Hamdani, A. Bouyanzer, B. Hammouti et al., “Chemical composition and antioxidant activity of essential oils of Thymus broussonetii Boiss. and Thymus algeriensis Boiss. from Morocco,” Asian Pacific Journal of Tropical Disease, vol. 4, no. 4, pp. 281–286, 2014.

A. Zeroual, N. Eloutassi, E. H. Sakar et al., “Antimicrobial and antioxidant activities of crude extracts and essential oils from two Thyme species: Thymus vulgaris and Thymus hyemalis from northern Morocco,” International Journal of Biosciences, vol. 12, pp. 391–399, 2018.

S. Jennan, A. Farah, B. Bennani, R. Fouda, and F. Mahjoubi, “Antibacterial and antioxidant activities of the essential oils of Thymus hyemalis and Thymus bleicherianus from Morocco,” International Journal of Pharmacognosy and Phytochemistry, vol. 28, no. 2, pp. 1173–1178, 2013.

C. Alouai Jamali, A. Kasrati, M. Fadli, L. Hassan, D. Leach, and A. Abbad, “Synergistic effects of three Moroccan Thyme essential oils with antibiotic cefixime,” Phytothérapie, 2017.

D. M. Kasote, S. S. Ktyare, M. V. Hegde, and H. Bae, “Significance of antioxidant potential of plants and its relevance to therapeutic applications,” International Journal of Biological Sciences, vol. 11, no. 8, pp. 982–991, 2015.

L. Chen, H. Deng, H. Cui et al., “Inflammatory responses and inflammation-associated diseases in organs,” Oncotarget, vol. 9, no. 6, pp. 7204–7218, 2018.

R. Scivo, M. Vasile, I. Bartosiewicz, and G. Valesini, “Inflammation as "common soil" of the multifactorial diseases,” Autoimmunity Reviews, vol. 10, no. 7, pp. 369–374, 2011.

G. Sangetha and R. Vidhya, “In vitro anti-inflammatory activity of different parts of Pedalium murex (L.),” Inflammation, vol. 4, no. 3, pp. 31–36, 2016.

L. A. D. Williams, A. O’connar, L. Latore et al., “The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process,” West Indian Medical Journal, vol. 57, no. 4, 2008.

B. Boulouanour, G. Abdelaziz, S. Azaa, C. Gago, and M. Graça Miguel, “Antioxidant activities of eight Algerian plant extracts and two essential oils,” Industrial Crops and Products, vol. 46, pp. 85–96, 2013.

M. M. Ehrnhöfer-Ressler, K. Fricke, M. Pignitter et al., “Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts,” Journal of Agricultural and Food Chemistry, vol. 61, no. 14, pp. 3451–3459, 2013.

K.-C. Lian, J.-J. Chuang, C.-W. Hsieh et al., “Dual mechanisms of NF-Kb inhibition in carnosol-treated endothelial cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 21–35, 2010.

M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for in vitro evaluating antimicrobial activity: a review,” Analysis, vol. 6, no. 2, pp. 71–79, 2016.

A. Ait-Ouazzou, L. Espina, L. Cherrat et al., “Synergistic combination of essential oils from Morocco and physical treatments for microbial inactivation,” Innovative Food Science & Emerging Technologies, vol. 16, pp. 283–290, 2012.

H. Benabd, N. G. Khadidja, M. Quinent, I. Bombarda, and M. Yousfi, “Chemical composition, antioxidant and antimicrobial activities of the essential oils of three Algerian Lamia ceae species,” Current Nutrition & Food Science, vol. 13, no. 2, pp. 97–109, 2017.
[96] F. Guesmi, S. Prasad, M. B. Ali, I. A. Ismail, and A. Landoulsi, "Thymus hirtus Sp. algeriensis Boiss. and Reut. volatile oil enhances Hail/Apo2l induced apoptosis and inhibits colon carcinogenesis through upregulation of death receptor pathway," Aging (Albany NY), vol. 13, no. 18, pp. 21975–21990, 2021.

[97] E. O. Awe, J. M. Makinde, O. A. Adeloye, and S. O. Banjoko, "Membrane stabilizing activity of Russelia equisetiformis, Schlecht & Chan," Journal of Natural Products (India), vol. 2, pp. 3–9, 2009.

[98] J. Dima, L. Raghda, and G. A. Jalil, "Evaluation of hemolytic and anti-hemolytic activity of the aerial parts of Sonchus oleraceus extracts," International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 10, no. 3, pp. 3745–3751, 2017.

[99] M. Simon, E. Horovská, M. Grekšák, R. Dušinský, and M. Nakano, "Antihemolytic effect of Rooibos tea (Aspalathus linearis) on red blood cells of Japanese quails," General Physiology and Biophysics, vol. 19, no. 4, pp. 365–371, 2000.

[100] P. Williams, A. Sorribas, and M.-J. R. Howes, "Natural products as a source of Alzheimer's drug leads," Natural Product Reports, vol. 28, no. 1, pp. 48–77, 2011.

[101] P. Costa, S. Gonçalves, P. Valentão, P. B. Andrade, and A. Romano, "Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’her and their antioxidant and anti-cholinesterase potential," Food and Chemical Toxicology, vol. 57, pp. 69–74, 2013.

[102] C. Ramassamy, "Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets," European Journal of Pharmacology, vol. 545, no. 1, pp. 51–64, 2006.

[103] T. Hamaguchi, K. Ono, A. Murase, and M. Yamada, "Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-β aggregation pathway," The American Journal of Pathology, vol. 175, no. 6, pp. 2557–2565, 2009.

[104] T. Iuvone, D. De Filippis, G. Esposito, A. D’Amico, and A. A. P. Costa, S. Gonçalves, P. Valentão, P. B. Andrade, and Y. Q. Liu, M. Xue, Q. C. Zhang, F. Y. Zhou, and J. Q. Wei, "Targeting ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase," PLoS Neglected Tropical Diseases, vol. 9, no. 3, p. e0003588, 2015.

[105] M. Benguechoua, S. Nia, K. Benarous, I. Khachba, and M. Youssi, "Inhibition of Candida rugosa lipase by different extracts of five Algerian plants and their antioxidant activities," Current Enzyme Inhibition, vol. 10, no. 2, pp. 121–128, 2015.

[106] Y. Q. Liu, M. Xue, Q. C. Zhang, F. Y. Zhou, and J. Q. Wei, "Toxicity of B-caryophyllene from Vetex negundo (Lamiales: Verbenaceae) to Aphis gossypii Glover (Homoptera: Aphididae) and its action mechanism," Acta Entomologica Sinica, vol. 53, no. 4, pp. 396–404, 2010.

[107] J. L. Wang, Y. Li, and C. L. Lei, "Evaluation of monoterpenes for the control of Tribolium castaneum (Herbst) and Sitophilus zeamais Motschulsky," Natural Product Research, vol. 23, no. 12, pp. 1080–1088, 2009.

[108] R. Paveša, "Insecticidal activity of some essential oils against larvae of Spodoptera littoralis (Boisd.)," Fitoterapia, vol. 76, no. 7–8, pp. 691–696, 2005.

[109] N. M. A. Al-Nagar, H. K. Abou-Taleb, M. S. Shawir, and S. A. M. Abdelgale, "Comparative toxicity, growth inhibitory and biochemical effects of terpenes and phenylpropanes on Spodoptera littoralis (Boisd.)," Journal of Asia-Pacific Entomology, vol. 23, no. 1, pp. 67–75, 2020.

[110] N. Singh, B. B. Mishra, S. Bajpai, R. K. Singh, and V. K. Tiwari, "Natural product based leads to fight against Leishmaniasis," Bioorganic & Medicinal Chemistry, vol. 22, no. 1, pp. 18–45, 2014.

[111] N. Tiwari, M. R. Gedda, V. K. Tiwari, S. P. Singh, and R. K. Singh, "Limitations of current therapeutic options, possible drug targets and scope of natural products in control of Leishmaniasis," Mini Reviews in Medicinal Chemistry, vol. 18, no. 1, pp. 26–41, 2018.

[112] L.-J. McCall, A. El Aroussi, J. Y. Choi et al., "Evaluation of hemolytic and anti-hemolytic activity of the aerial parts of Sonchus oleraceus extracts," Mini Reviews in Medicinal Chemistry, vol. 29, no. 9, p. e0003588, 2015.

[113] T. S. Melo, C. R.Gattass, D. C. Soares et al., "Oleanolic acid (OA) as an antileishmanial agent: biological evaluation and in silico mechanistic insights," Parasitology International, vol. 65, no. 3, pp. 227–237, 2016.

[114] M. A. Lacaille-Dubois, U. Franck, and H. Wagner, "Search for potential angiotensin converting enzyme (ace)-inhibitors from plants," Phytomedicine, vol. 8, no. 1, pp. 47–52, 2001.

[115] G. A. Spyroulias, A. S. Galanis, G. Pairs, E. Manessi-Zoupa, and P. Cordopatis, "Structural features of angiotensin-I converting enzyme catalytic sites: conformational studies in solution, homology models and comparison with other zinc metallopeptidases," Current Topics in Medicinal Chemistry, vol. 4, no. 4, pp. 403–429, 2004.

[116] T. Boeing, V. Cechinel-Filho, R. Niero, L. Mota da Silva, P. de Souza, and S. Faloni de Andrade, "1,3,5,6-Tetrahydroxyanthone, a natural xanthone, induces diuresis and saluresis in normotensive and hypertensive rats," Chemico-Biological Interactions, vol. 311, article 108778, 2019.

[117] H. C. Fischer and W. C. W. Chan, "Nanotoxicity: the growing need for in vivo study," Current Opinion in Biotechnology, vol. 18, no. 6, pp. 565–571, 2007.

[118] F. Guesmi, H. Bellamine, and A. Landoulsi, "Hydrogen peroxide-induced oxidative stress, acetylcholinesterase inhibition, and mediated brain injury attenuated by Thymus algeriensis," Applied Physiology, Nutrition, and Metabolism, vol. 43, no. 12, pp. 1275–1281, 2018.

[119] Merghem, Mounira, M. Hani, and S. Dahamna, "Acute toxicity study of aqueous extract of leaves of Thymus algeriensis in Swiss albino mice," Plant Cell Biotechnology And Molecular Biology, pp. 79–86, 2021.

[120] S. Kar and K. Roy, "Qsar of phytochemicals for the design of better drugs," Expert Opinion on Drug Discovery, vol. 7, no. 10, pp. 877–902, 2012.

[121] F. Guesmi, H. Beghalem, A. K. Tyagi et al., "Prevention of H2O2 induced oxidative damages of rat testis by Thymus algeriensis," Biomedical and Environmental Sciences, vol. 29, no. 4, pp. 275–285, 2016.

[122] F. Guesmi, A. K. Tyagi, H. Bellamine, and A. Landoulsi, "Antioxidant machinery related to decreased MDA generation by Thymus algeriensis essential oil-induced liver and kidney regeneration," Biomedical and Environmental Sciences, vol. 29, no. 9, pp. 639–649, 2016.

[123] E. R. Sherwood and T. Toliver-Kinsky, "Mechanisms of the inflammatory response," Best Practice & Research. Clinical Anaesthesiology, vol. 18, no. 3, pp. 385–405, 2004.
E. A. Aboutabl and S. I. El-Dahmy, "Chemical composition and antimicrobial activity of essential oil of Thymus algeriensis Boiss.," Bulletin of Faculty of Pharmacy, Cairo University, vol. 33, pp. 87–90, 1995.

K. Brieger, S. Schiavone, F. J. Miller, and K.-H. Krause, "Reactive oxygen species: from health to disease," Swiss Medical Weekly, vol. 142, article w13659, 2012.

B. F. Zohra, Z. Amar, and B. Chawki, "K. El Ouahdani, I. Es-Sa S. Mehalaine, O. Belfadel, T. Menasria, and A. Messaili, "M. Slighoua, I. Mahdi, F. Ez-zahra Amrati et al., "J. Radovič, J. Fakhfakh, V. Brieudes et al., "Chemical composition, antibacterial activity using micro-broth dilution method and antioxidant activity of essential oil and water extract from aerial part of Tunisian Thymus algeriensis Boiss. & Reut.," Journal of Essential Oil-Bearing Plants, vol. 24, no. 2, pp. 449–461, 2018.

A. Ghorbel, M. J. Motilva, and M.-P. Romero, "Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles," Critical Reviews in Food Science and Nutrition, vol. 53, no. 9, pp. 943–953, 2013.

D. L. Ambriz-Pérez, N. Leyva-López, E. P. Gutierrez-Grijalva, and J. B. Heredia, "Phenolic compounds: natural alternative in inflammation treatment. A review," Cogent Food & Agriculture, vol. 2, no. 1, article 1131412, 2016.

K. El Ouahdani, I. Es-Safi, H. Mechchate et al., "Thymus algeriensis and Artemisia herba-alba essential oils: chemical analysis, antioxidant potential and in vivo anti-inflammatory, analgesic activities, and acute toxicity," Molecules, vol. 26, no. 22, p. 6780, 2021.

S. Bendjabeur, O. Benchabane, C. Bensouici, M. Hazzit, A. Baalouamer, and A. Bitam, "Antioxidant and anticholinesterase activity of essential oils and ethanol extracts of Thymus algeriensis and Teucrium polium from Algeria," Journal of Food Measurement and Characterization, vol. 12, no. 4, pp. 2278–2288, 2018.

J. Radovič, R. Suručić, M. Niketić, and T. Kundakovic-Vasovic, Angiotensin I-converting Enzyme (ACE) Inhibitory Activity and Chemical Composition of Alchemilla Viridiflora Rothm, University of Belgrade Faculty of Pharmacy, 2021.

B. F. Zohra, Z. Amar, and B. Chawki, "Chemical analysis, antioxidant, anti-Alzheimer and anti-diabetic effect of two endemic plants from Algeria: Lavandula antaeina and Thymus algeriensis," Jordan Journal of Biological Sciences. All rights reserved-Volume, vol. 14, no. 3, pp. 551–558, 2021.

M. Slighoua, I. Mahdi, F. Ez-zahra Amrati et al., "Ethnopharmacological survey of medicinal plants used in the traditional treatment of female infertility in Fez region, Morocco," Phytothérapie, 2019.

S. Mehalaine, O. Belfadel, T. Menasria, and A. Messaili, "Chemical composition and antibacterial activity of essential oils of three medicinal plants from Algerian semi-arid climatic zone," Phytothérapie, vol. 16, no. S1, pp. S155–S163, 2017.

I. Hamdani, E. El-Ouaraiachi, O. Mokhtari et al., "Chemical constituents and corrosion inhibition of mild steel by the essential oil of Thymus algeriensis in 1.0 M hydrochloric acid solution," Der Pharma Chemica, vol. 7, no. 8, pp. 252–264, 2015.

M. Hazzit and A. Baalouamer, "Essential oil composition of Thymus algeriensis Boiss. et Reut. and Thymus numidicus Poiret from Algeria," Rivista Italiana EPPoS, vol. 17, no. 43, p. 11, 2007.

S. Chemat, R. Cherfalou, B. Y. Meklati, and K. Belanteur, "Composition and microbial activity of thyme (Thymus algeriensis genuinus) essential oil," Journal of Essential Oil Research, vol. 24, no. 1, pp. 5–11, 2012.

A. Salhi, A. Bouyazner, I. El Mounsi et al., "Chemical composition, antioxidant and anticorrosive activities of Thymus algeriensis," Journal of Materials and Environmental Science, vol. 7, no. 11, pp. 3949–3960, 2016.

T. Dob, D. Dahmane, T. Benabdellakader, and C. Chelghoun, "Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boiss. et Reut.," International Journal of Aromatherapy, vol. 16, no. 2, pp. 95–100, 2006.

Z. Houmani, S. Azzoujd, G. Naxakis, and M. Skoula, "The essential oil composition of Algerian Zaatar: Origanum spp. and Thymus spp.," Journal of Herbs, Spices & Medicinal Plants, vol. 9, no. 4, pp. 275–280, 2002.

S. Kebbi, H. Fadel, J.-c. Clalchat et al., "Chemical composition of Algerian Thymus algeriensis Boiss. & Reut. and Marrubium vulgar L. (Lamiaceae) essential oils from the Aures region," Acta Scientifica Naturalis, vol. 7, no. 2, pp. 1–14, 2020.

A. Khemkham, S. Belhadj, R. Meddour et al., "Hs-Spme-Gc/Ms analysis of 3 Lamiaceae plants: Ajuga Iva (L.) Schreb., Salvia Verbenaca L. and Thymus Algeriensis Boiss. & Reut.," Journal of Fundamental and Applied Sciences, vol. 12, no. 2, 2020.

M. Rezzoug, B. Bakchiche, A. Gherib, and O. Elasri, "Phytochemical screening and antioxidant activities of different organic extracts of three Algerian plants," Journal of Drug Delivery and Therapeutics, vol. 10, no. 2–s, pp. 75–79, 2020.

T. Allane and S. Benamara, "Determination of reducing power of 56 Algerian plant products using olive (Olea europaea) oil as extraction solvent," Chemical Engineering Communications, vol. 206, no. 1, pp. 12–21, 2019.

N. Neffati, Z. Aloui, H. Karoui, I. Guizani, M. Boussaid, and Y. Zaouali, "Phytochemical composition and antioxidant activity of medicinal plants collected from the Tunisian flora," Natural Product Research, vol. 31, no. 13, pp. 1583–1588, 2017.

A. Salhi, I. Hamdani, A. Bouyazner et al., "Phytochemical analysis, antioxidant and anticorrosive activities of Thymus algeriensis extracts," Analytical and Bioanalytical Electrochemistry, vol. 10, pp. 1587–1610, 2018.

M. H. Labiad, W. Belmaghraoui, A. Ghanimi et al., "Biological properties and chemical profiling of essential oils of Thymus vulgaris, algeriensis and brousseonettii grown in Morocco," Collections, vol. 57, article 100797, 2022.

M. Sara, B. Yamina, E. Ramazan, G. Mesut, and A. Selma, "Dietary risk of blaESBL producing multidrug resistant Enterobacteriaceae and their inhibition by Artemisia herba-alba and Thymus algeriensis essential oils," Journal of Essential Oil-Bearing Plants, vol. 24, no. 3, pp. 658–670, 2021.

A. Jayari, N. El Abed, and A. Jouini, "Antibacterial activity of Thymus capitatus and Thymus algeriensis essential oils against four food-borne pathogens inoculated in minced beef meat," Journal of Food Safety, vol. 38, no. 1, article e12409, 2018.