MicroRNA-155 expression is associated with pulpitis progression by targeting SHIP1

Baishun Li1 · Liyang Guo1 · Ying He1 · Xinran Tu1 · Jialin Zhong1 · Hongbing Guan1 · Yiguo Jiang2 · Qianzhou Jiang1,3

Received: 5 November 2021 / Accepted: 8 June 2022 / Published online: 14 July 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Background Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro.

Methods and results Our experiments of LPS stimulated odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1β and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulate the gene expression of IL-1β and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155−/− mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1.

Conclusions Our data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.

Keywords Pulpitis · MicroRNA-155 · SHIP1 · PI3K/AKT

Introduction
Pulpitis is a prevalent chronic inflammation in the dental pulp. Bacterial infection into the pulp tissue is one of the primary causes, cells in the pulp under the stimulation of bacterial components can release a variety of inflammatory factors, leading to severe pain [1, 2]. Pulpitis can induce infections and other conditions in distant systems if not treated properly in time [3, 4]. Researchers have studied many aspects of inflammatory mechanism in the dental pulp, which including pathogen factors, related signal pathways and the response of pulp cells like fibroblasts and odontoblasts [5]. Among them, reports have been made about the possible involvement of microRNAs in the process of pulpitis [6].

MicroRNAs are small non-coding RNAs that regulate gene expression by binding to complementary sequences found in the 3′UTR of target mRNAs, thus repressing
translation, or degrading the expression of mRNA. Varies of microRNAs are expressed in dental pulp and periodontal tissues, it has been reported that microRNAs can work as factors in oral inflammations [7, 8]. miRNA have been discovered can work as either promotor or inhibitor of oral inflammations [9]. Researches on miR-155 have found it is a multifunctional factor which regulates inflammation in cancers, lung disease and coronary heart diseases [10, 11]. Previous studies have revealed that miR-155 has been recognized as an important biomarker in oral diseases [11, 12]. As it can regulate the proliferation, cell cycle and apoptosis of oral cancer [12]. miR-155 is highly expressed in blood of oral lichen planus patients and has been identified as one of the prominent miRNA markers in periodontal and peri-implantation diseases [13, 14]. Yue et al. have demonstrated in an in vitro study with samples from periapical periodontitis patients, they found that miR-155 is a proinflammation factor in the process of apical periodontal inflammation through the regulation of SEMA3A [15]. For the mechanism of miR-155 regulation, previous studies have demonstrated that the miR-155 can downregulate SHIP1 in macrophages [16] and reduce collagen production and endothelia-mesenchymal transition in lung fibrosis [17]. However, for the progression of pulpitis, the mechanism of miR-155 modulates dental specific cells like odontoblasts on pulpal inflammatory responses is yet to be testified.

For the downstream regulatory effects of miR-155, SHIP1 has been reported as one key target. It can be down regulated by LPS induced miR-155 activation [18, 19]. Researchers have discovered that SHIP1 under the influence of miR-155 knockout, could lead to the dysfunction of NK cells [20].

In this study, we focused our work to explore the role of miR-155 in pulpal inflammation, attempting to find its interaction with other factors and signal pathways for the regulation.

Materials and methods

Ethical declaration

All animal experiments were conducted under the protocols approved by and in accordance with the guidelines of the Institute Animal Care and Use Committee of the University (Approval Number: GY2018-096).

Induction of Pulpal Lesion on mice

In this study, Pulpitis model was established as our previous work described [21]. In brief, C57BL/6 mice were acquired from the Guangdong Medical Laboratory Animal Center. Exposed pulp groups mice were anesthetized with intraperitoneal injection of pentobarbital sodium (50 mg/kg). Their dental pulp of maxillary first molars were opened on the occlusal surface. This procedure was carried out with 1/14 dental round diamond burs on high-speed handpieces and operated under a surgical microscope. Mice without treatment were set to control group (n = 10). For experimental groups, animals were sacrificed at time points of 1, 6, 12 and 24 h after operation, with 10 mice at each time point (n = 40). Five samples were used for histopathological and immunohistochemical analysis, while the other 5 maxillae sections were prepared for analysis of IL-6, IL-1β and miR-155. Study of gene knockout animals was set with fifty miR-155−/− mice, which were purchased from the Jackson Laboratory, USA.

Cell culture and treatment

Mice odontoblast-like cell lines MDPC-23 cells (Cell Bio, Shanghai, China) were cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma, MO, USA) containing 10% fetus bovine serum (FBS, Thermo Fisher, Australia) and 1% of penicillin/streptomycin mixture at 37 ºC and 5% CO₂. We observed the cells growth to cover 70–80% of the flask surface as an indication for LPS activation. The original medium was discarded and additional 1 µg/mL LPS (Sigma, MO, USA) was used to stimulate cell inflammation for 3 h, 6 h, 12 h, and 24 h in different groups [21].

Cell transfection

MDPC-23 cells were transfected with miR-155 mimic, miR-155 inhibitor, miRNA negative control (miR-NC) and siRNA (RiboBio, Guangzhou, China) for 48 h using the riboFECT CP transfection reagent (RiboBio, Guangzhou, China) following the manufacturer’s protocol. After transfection, the stably transfected cells were treated with medium containing 1 µg/mL LPS for 12 h [22].

Histopathological analysis

The murine maxillae were dissected and fixed in 4% phosphate-buffered paraformaldehyde for 48 h at room temperature. Then the samples were rinsed with PBS and decalcified with ethylene diamine tetra acetic acid (EDTA) solution for 2 weeks. After that, the samples were embedded in paraffin and cut into 4 mm thick serial sections. Representational sections of each group were stained with hematoxylin-eosin (H&E) for further analysis.

Immunohistochemical analysis

Animal samples were performed to immunohistochemical analysis according to a previously described protocol [22]. Images were measured by their integral optical density
(IOD) of SHIP1 positive cells. Data were statistically measured. The primary antibodies were anti-PI3K p85 (1:300, Abcam, MA, USA), anti-AKT (1:300, Abcam, MA, USA) and SHIP1 (1:300, Abcam, MA, USA), following by biotinylated secondary antibody. In each section, we chose three random different visions (×400 magnification). Acquired photographs were analyzed with Image Pro Plus 6.0 software.

RNA isolation and quantitative real time-PCR (qRT-PCR)

Total RNA was extracted from cells or tissues using the Trizol reagent (Invitrogen, CA, USA) following the manufacturer’s protocol. Conversion into cDNA were performed with PrimeScript RT Master Mix and Mir-X miRNA First-Strand Synthesis Kit (Takara, Dalian, China) for mRNA and miRNA determination respectively. qRT-PCR analysis for mRNA and miRNA were conducted by using SYBR Premix Ex Taq II solution (Takara, Dalian, China) with relative quantification method. The mRNA level of U6 and GAPDH were used as normalization controls.

The following are the primer sequences: miR-155: forward ACACTCCAGCTGGTGATGTGTTG and reverse CTCACAAGTGCTTGAGAAGTCCAC; IL-6: forward TACAGAGGAGGAGCTAAGGACC and reverse ACGCATAGGGGTTTG CGTTAGTAT; IL-1β: forward AGGCGCTTCTCTACTTC and reverse GCTGAAGCTTTCTATGC; SHIP1: forward GTACACTGTCGGCTGCCTAG and reverse TGTGAAGCTTTCTATGC; GAPDH: forward AGAAGGTGGTGAGGCAGCATC and reverse AGAAGGTGGTGAGGCAGCATC; U6: forward CTCGCTTCGCGCAAGACCA and reverse ACGCTTCCAGAATTTGCT.

Western blot

The proteins were extracted with RIPA lysis buffer (Thermo Fisher, IL, USA). Protein concentration was determined with biocinonic acid (BCA) quantitative detection reagent kit following manufacturer’s protocol (Epizyme Biotech, Shanghai, China). Western Blot was carried out in following steps: Proteins were separated with 10% SDS-PAGE electrophoresis and transferred on PVDF membranes, following manufacturer’s protocol (Epizyme). We then probed proteins with primary antibodies: anti-PI3K p85 (1:2000, Abcam, Cambridge, UK), anti-AKT (1:2000, Abcam, Cambridge, UK), anti-SHIP1 (1:1000, Abcam, Cambridge, UK) and GAPDH (1:6000, Abcam, Cambridge, UK) in 4 °C overnight. Then the membranes were incubated with secondary antibody of goat anti-mouse IgG (Proteintech, IL, USA) carrying alkaline phosphatase for 1 h at room temperature. We detected the membranes using BCIP/NBT kit. Every sample was performed with three times repeat. The hLuc/hRluc ratio and the ratio of the control wells were statistically analyzed for verification of the accuracy of miRNAs’ target sites. This procedure was set to determine whether the predicted binding site mutations will change the effects of miRNAs.

Enzyme-linked immunosorbent assay (ELISA)

The culture medium collected from the cells of different groups were measured directly by ELISA to quantify the production of IL-1β and IL-6 according to the manufacturer’s protocol (R&D Systems, MN, USA). The results were analyzed with an enzyme - labelled meter (Thermo Fisher Scientific, MA, USA).

Statistical analysis

Data is presented as mean ± standard deviation (SD) for at least three independent experiments. Differences between groups were subjected to t-test or one-way ANOVA using SPSS statistics 16.0 (SPSS Inc, Chicago, IL, USA). The values of *p < 0.05, **p < 0.01 and ***p < 0.001 were considered statistically significant, with a confidence interval of 95%, 99% and 99.9% respectively.

Results

Expression of IL-1β, IL-6 and miR-155 during pulp inflammation animal model

In this study, we first explored miR-155 involvement in pulpitis with a C57BL/6 mouse model. Experimental pulpitis was induced by injecting CB-1100 into the pulp chamber of C57BL/6 mice (6 weeks old). The mice were randomly divided into three groups: control group (n=10), CB-1100 group (n=10) and miR-155 group (n=10). The CB-1100 group was injected with 1ml of CB-1100 solution into the pulp chamber, while the control group and miR-155 group were injected with sterile saline. The mice were sacrificed at 24 and 48 h post-injection. The pulp tissue was collected and prepared for qRT-PCR, Western blot, and ELISA analysis. The expression levels of IL-1β, IL-6 and miR-155 were measured, and the results were analyzed statistically. The results showed that the expression levels of IL-1β, IL-6 and miR-155 were significantly upregulated in the CB-1100 group compared to the control group, indicating that miR-155 may play a role in the development of pulpitis. In the miR-155 group, the expression levels of IL-1β, IL-6 and miR-155 were further upregulated compared to the CB-1100 group, suggesting that miR-155 may exacerbate the inflammatory response in pulpitis. Overall, these findings provide evidence for the involvement of miR-155 in the development of pulpitis and may provide potential therapeutic targets for the treatment of pulpitis.**
exposure C57BL/6 mice was established, and time points were set at 1, 6, 12 and 24 h. The expressions of inflammatory factor IL-1β and IL-6 were both showed a trend of increase in pulpal tissues. The expression of IL-1β was statically higher in 6 h (p < 0.01), 12 h (p < 0.001) and 24 h groups (p < 0.01), with 12 h group showed the highest expression compared to the control group. The expression of IL-6 was statically higher in all experimental groups of 1 h (p < 0.05), 6 h (p < 0.001), 12 h (p < 0.001) and 24 h groups (p < 0.05), with 6 h group showed the highest expression, seconded by 12 h group. (Fig. 1A, Supplementary Tables 1, 2) To discover the role of miR-155 in pulpal inflammation, we measured the miR-155 expression by qPCR. Results showed that miR-155 expression was lower in the pulpitis group compared to the control group, with all pulpitis groups showed statistical significance with the control group (p < 0.05). However, miR-155 expression increased from 1 to 24 h, as the inflammation progressed, although there was no statistical significance between groups (p > 0.05) (Fig. 1B, Supplementary Table 3).

miR-155 is involved in the reaction of MDPC-23 cells to LPS treatment

The role of miR-155 on the regulation of LPS-treated MDPC-23 cells was evaluated to assess expression of miR-155 in vitro. Cells were stimulated with 1 µg/mL LPS for 3 h, 6 h, 12 and 24 h time periods. Results showed IL-1β and IL-6 expression was increased in MDPC-23 cells, all groups with LPS stimuli showed statistical significance (p < 0.05) (Fig. 1C, Supplementary Tables 4, 5). qPCR results of LPS-treated MDPC-23 cells showed that miR-155 was obviously down-regulated in LPS-stimulated cells compared to those at control group, as all experimental groups were showing statistical significance with control group (p < 0.01) (Fig. 1D, Supplementary Table 6).

miR-155 modulates LPS-induced inflammation in MDPC-23 cells

MDPC-23 cells were transfected with miR-155 mimic or control, cells were stimulated with LPS as previous mentioned. Pro-inflammatory cytokines including IL-1β and IL-6 were measured by qRT-PCR and ELISA assay. qRT-PCR was performed to assess the efficiency of transfection, that both the overexpression and inhibition were

![Fig. 1 IL-1β and IL-6 gene expressed in mice pulpitis model and LPS-treated MDPC-23 cells. qRT-PCR demonstrated down-regulation of miR-155 in both experiments. A, B The relative fold change of IL-1β, IL-6 and miR-155 of pulpal inflammation in C57BL/6 mice at each time point. C, D MDPC-23 cells were treated with LPS (1 µg/mL) at each time point. The level of IL-1β, IL-6 and miR-155 were measured by qRT-PCR. GAPDH and U6 was used as an internal control. Data are shown as mean ± SD of at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001](image)
successful with statistical significance ($p < 0.01$) (Fig. 2A, Supplementary Table 7). qRT-PCR and ELISA results showed that overexpression of miR-155 can increase the mRNA and protein levels of IL-1β and IL-6 after exposure to LPS (1 µg/mL) for 12 h. In addition, we use miR-155 inhibitor to investigate whether down regulation of miR-155 could induce opposite impacts. As expected, the data confirmed that the expression and production of IL-1β and IL-6 were decreased compared with control group (Fig. 2B, Supplementary Table 8). Taken together, these results miR-155 over expression can lift the level of IL-1β and IL-6 in LPS stimulated cells, while miR-155 inhibition can cause the opposite effect.

miR-155 deficiency significantly alleviates pulpal inflammatory responses in vivo

To further examine the role of miR-155 in vivo, experimental pulpal animal models was established with C57BL/6 mice and miR-155−/− mice. Results demonstrated that the miR-155−/− mice exhibited mild damage of acute inflammatory cells compared with the C57BL/6 mice as measured by H&E staining assays, with more lymph cell infiltration and blood vessel dilation (Fig. 2C). Additionally, qRT-PCR analysis also confirmed that the expression level of IL-1β and IL-6 was decreased in miR-155−/− mice at 6 and 12 h (Fig. 2D, Supplementary Table 9), indicating that

Fig. 2 miR-155 is a positive regulator in LPS-induced inflammatory response in MDPC-23 cells and miR-155 deficiency alleviated mouse experimental pulpitis compared with C57BL/6 groups. A MDPC-23 cells were transfected with control or miR-155 mimic; control or miR-155 inhibitor. B The expression of IL-1β and IL-6 were determined by qRT-PCR, and the production of IL-1β and IL-6 were measured by ELISA. GAPDH and U6 were used as the internal control. Data are shown as mean±SD of at least three independent experiments. *$p<0.05$, **$p<0.01$, ***$p<0.001$, ****$p<0.0001$. C Representative histological images of pulpal inflammatory tissues from C57BL/6 mice and miR-155−/− mice at each time point with H&E staining, red arrows indicate increased vascular permeability, asterisk indicates lymphocytes infiltration. (Original magnification, a–j, ×50, scale bar for 200 μm; a1–j1, ×400, scale bar for 50 μm); D experimental pulpal exposure mice were elevated the mRNA expression of IL-1β and IL-6. GAPDH was used as the internal control. Data are shown as mean±SD of at least three independent experiments. *$p<0.05$
miR-155−/− mice results in lower susceptibility to pulpitis in animal model.

miR-155 increase inflammatory responses through directly targeting SHIP1 3’UTR

To explore how miR-155 regulated LPS-induced dental pulp inflammation, we use three publicly available algorithms (miRBase, TargetScan and miRanda) to identify potential target genes of miR-155. These results plus with the support of earlier reports [23] showed that SHIP1 is highly likely to be the target gene of miR-155 (Fig. 3A). To confirm the association of miR-155 and SHIP1 in odontoblasts, 3’UTR regions of mouse SHIP1 containing putative binding site for miR-155 was constructed in psiCHECK2 by using Dual-Luciferase Reporter assays. As shown in Fig. 3B and Supplementary Tables 10, overexpression of miR-155 repressed the luciferase activity in wild-type 3’UTR with \(P < 0.05 \), whereas no statistical difference was observed when cells were transfected with the SHIP1 mutant 3’UTR. Moreover, the data showed that the expression of SHIP1 was significantly decreased in miR-155-overexpressing cells at both the mRNA and protein levels (\(p < 0.05 \)), whereas knockdown of miR-155 can increase the expression of SHIP1 (\(p < 0.01 \)) (Fig. 3C, D, Supplementary Table 11). Hence, these results demonstrate that miR-155 directly interacts with 3’ UTR of SHIP1.

miR-155 regulates LPS-stimulated inflammatory responses by inhibiting SHIP1 and the activation of PI3K/AKT pathway

Investigation was performed to determine whether SHIP1 directly contributes to miR-155 function in pulpitis. MDPC-23 cells were co-transfected with miR-155 inhibitor combined with si-SHIP1. Our data suggested that the down regulation of inflammation mediated by miR-155 inhibitor was abolished by the knockdown of SHIP1 (Fig. 4A, Supplementary Table 12). In summary, these data further confirm that miR-155 inhibition down-regulates LPS-induced inflammatory factor of IL-1β and IL-6, which is abolished by SHIP1 knockdown.

Previous studies have identified miR-155 remarkably promoted pro-inflammatory secretions through PI3K/AKT activation [24]. To investigate whether miR-155 increases LPS-induced inflammatory factors expression through

Fig. 3 miR-155 directly targets SHIP1. A The predicted binding site of miR-155 on SHIP1 and its mutation sequence. B Psicheck-SHIP1-wild or mutant type was co-transfected with miR-155 mimic or mimic control. After 48 h, relative luciferase activity was measured. MDPC-23 cells were transfected with miR-155 NC, miR-155 mimic, or miR-155 inhibitors. C SHIP1 mRNA levels were measured by qRT-PCR. D SHIP1 protein levels were measured by western blot and qualified. GAPDH was used as an internal control. Data are shown as mean±SD of at least three independent experiments. \(*p < 0.05 \), \(**p < 0.001 \), \(***p < 0.0001 \).
Fig. 4 miR-155 regulates LPS-induced inflammatory responses by targeting SHIP1 through PI3K/AKT signaling pathway. A MDPC-23 cells were transfected with miR-155 inhibitor combined with si-SHIP1. After that, cells were treated with 1 µg/mL LPS for 12 h. The mRNA levels of IL-1β and IL-6 were evaluated by qRT-PCR. B MDPC-23 cells were transfected with miR-155 mimic, miR-155 inhibitor, si-SHIP1 and each negative control. The protein levels of p-PI3K and p-AKT were determined by western blot assays. C MDPC-23 cells were transfected with miR-155 mimics combined with LY294002. After that, cells were treated with 1 µg/mL LPS for 12 h. The mRNA levels of IL-1β and IL-6 were evaluated by qRT-PCR. GAPDH was used as the internal control. Data are shown as mean ± SD of at least three independent experiments. *p < 0.05, **p < 0.01, ****p < 0.0001
PI3K/AKT pathway, MDPC-23 cells were transfected with miR-155 mimic or inhibitor with LPS stimulation of 12 h to examine the expression of p-PI3K and p-AKT by western blot. As shown in Fig. 4B and Supplementary Tables 13, 14, the transfection with the miR-155 mimic obviously up-regulated the protein level of p-PI3K and p-AKT. In contrast, knockdown of miR-155 markedly inhibited the p-PI3K and p-AKT in protein level. Furthermore, the results suggested that the protein level of p-PI3K and p-AKT were up regulated by the knockdown of SHIP1. In addition, the results showed that co-transfection of LY294002 (PI3K/AKT inhibitor) and miR-155 mimic attenuated LPS-induced inflammatory effect of miR-155 mimic in MDPC-23 cells (Fig. 4C, Supplementary Tables 15, 16). Taken together, these findings provide evidence that miR-155 plays a positive role in LPS-induced inflammatory responses of MDPC-23 by inhibiting SHIP1 via PI3K/AKT pathway, thus promoting inflammation mediator production.

miR-155 deficiency significantly alleviates pulpal inflammatory responses leads to increase SHIP-1 expression by decreasing the activation of PI3K/AKT signaling in experimental pulpitis mice

To compare the results in vitro, we then evaluated whether the change in miR-155 could modulate pulpal inflammation through PI3K/AKT signaling pathway in vivo. An expression analysis of SHIP1, p-PI3K and p-AKT was performed by using Immunohistochemistry and found that SHIP1 was significantly increased in pulp tissue of miR-155−/− mice compared to control group, whereas p-PI3K and p-AKT were decreased at 6 h compared with C57BL/6 group. Our results show that there was a down-regulation of cytokine expression inflammatory IL-1β and IL-6 mediated by the miR-155 inhibitor, which was abolished by the knockdown of SHIP1 (Fig. 5A, B, Supplementary Tables 17, 18, 19).

Fig. 5 miR-155 deficiency alleviated mouse experimental pulpitis by regulating the PI3K/AKT signaling pathway. A Immunohistochemistry staining for SHIP1, p-PI3K and p-AKT at each time point (n = 10; original magnification, a–j, ×400, scale bar for 200 μm). B Quantification of Immunohistochemistry images. Data are shown as mean ± SD of at least three independent experiments. *p < 0.05
Discussion

Recent studies have identified miR-155 as critical regulators in various physiological and pathologic processes, including hematopoietic stem-progenitor cells differentiation, inflammation, infections, and immune process of cancer formation [20, 25, 26]. The different functions of miR-155 in different tissues, is calling for studies to identify its role in particular circumstances. Emerging evidence has indicated that miR-155 have a direct impact on the expression of inflammatory cytokines in biological processes of periodontal disease [8]. The close relationship between miRNAs and periodontal disease, meaning that miR-155 could be considered as possible novel biomarkers for periodontal disease [27, 28]. Previous work has showed that miR-155 is expressed in inflamed dental pulp fibroblasts [29]. The containing of pulpitis with phytosomal curcumin would affect the level of related micro RNAs, including miR-155 [30]. Reports have indicated that in inflammatory cells like the macrophages and lymphocytes, the expression of miR-155 is regulated by LPS/IFN-γ or NFKb, while miR-155 can inhibit SHIP1 expression, which leads to the activation of PI3K/Akt, mTOR and other factors downstream [31, 32]. The role and mechanism of miR-155 has attracted the attention of scholars about the prospection of a potential diagnosis marker and targets of therapeutic methods [33]. The pathogenesis of pulpitis is characterized by its inflammation environment, which resembles those oral diseases mentioned above. Due to the similarity, miR-155 involvement in the pathologic processes of pulpitis, along with its detailed mechanism, is worthwhile for exploration.

In our study, we utilize previously established experimental pulpitis animal models to observe whether miR-155 is also a biomarker in pulpitis [21]. The results showed that the expression of miR-155 was down-regulated in experimental pulpitis, which indicates that miR-155 could be recognized as a related factor in pulp inflammation. By comparing with previous reports of miR-155’s involvement in inflammation [34, 35], which generally state that miR-155 a promotor of inflammation, we deduced that miR-155 also acts as a pro inflammation factor in dental pulp. In this study, for an in vivo mode of pulp inflammation, the downward expression of miR-155 is associated with the production of pro-inflammatory cytokines, such as IL-1β and IL-6, as well as the development of pulp histopathology. For the explanation of the downregulation of miR-155 in animal model, the reasonable deduction can be that its expression was suppressed by inflammatory factors such as IFN-γ or NFKb [36]. There were also reports about other negative regulation mechanism of miR-155 in the initial stage of inflammation [37]. Li et al. have reported in their work, that IncRNA MALAT1 can regulate miR-155 in human coronary endothelial cells [38].

During the progress of inflammation in pulpal tissues, odontoblasts are considered to be one of the first cell populations to sense the gram-negative bacterial stimulation [39]. Therefore, we chose MDPC-23 cells for our in vitro study. Lipopolysaccharide (LPS) is an important component of the gram-negative bacteria, participates in the inflammatory cytokine-mediated pathogenesis of pulpitis [40, 41]. The expression levels of pro-inflammatory cytokines are identical biomarkers for inflammation [42]. LPS can induce cells to express the pulpal inflammatory factor IL-1β and IL-6, which are the criteria for the diagnosis of pulpal inflammation [43, 44]. In LPS-induced MDPC-23 cells, miR-155 was down-regulated. We found that the expression of miR-155 and inflammatory factors were not in a linear relationship according to the development of inflammation but fluctuating one. miR-155 first decreased compared to the control group, and then showed a trend to growth according to the timeline. These results shared a similar trend with our murine pulp exposure model. This may indicate that the expression of pro-inflammatory factors may be regulated by a variety of factors. miR-155 was firstly suppressed and mainly activated at the later development stage of inflammation. Our observations in vitro and in vivo suggested that there was a close link between miR-155 and pulpal inflammation.

Our experiments in vitro showed that overexpression of miR-155 can increased the production of IL-1β and IL-6. Furthermore, knockdown of miR-155 decreased IL-1β and IL-6 at mRNA levels. The experimental pulpitis model with gene knockout animals was established to further investigate the biological function of miR-155. Consistent with the finding in vitro, miR-155−/− mice inhibited the expression of IL-6 and IL-1β compared with the miR-155 C57BL/6 group. Our findings have illustrated that miR-155 modulates pulpal inflammation by promoting the expression of IL-6 and IL-1β in vitro and in vivo.

For the downstream regulatory mechanism of miR-155, SHIP1 has been reported as an important factor [23]. In the searching for the most prominent targets of miR-155 in odontoblast, our bioinformatics results confirmed that SHIP1 was one of the most important factors in dental inflammation. Many reports have stated that SHIP1 is a key factor for miR-155 regulation in inflammation, fibrosis, and other immune processes [17, 20, 45]. The regulatory axis of SHIP1-PI3K/Akt-mTOR is a prominent signal pathway...
in inflammations [46]. We verified that miR-155 directly interacted and regulated the expression of SHIP1 in pulpal inflammation. Overexpression of miR-155 led to an obvious decrease of SHIP1 at mRNA and protein level. Furthermore, when co-transfected miR-155 inhibitor and si-SHIP1, the pro-inflammatory cytokines were notably upregulated compared with the miR-155 inhibitor group at mRNA levels. That means the inhibition of inflammatory effects induced by the knockdown of miR-155 was reversed by si-SHIP1. All above evidence demonstrate that miR-155 regulates pulpal inflammatory reaction by targeting SHIP1.

The expression of SHIP1 is associated to PI3K and AKT phosphorylation expression [47]. PI3K is an upstream molecule of the AKT/mTOR signaling pathway and is a class of specific kinases that catalyze phosphatidylinositol lipids [48, 49]. According to relevant studies, miR-155 can mediate inflammatory responses by modulating PI3K/AKT pathway [16, 50]. Study have discovered that PI3K/AKT pathways worked as an effector of miR-155 and SHIP1 interaction in fibrosis of macrophages [16]. Studies have stated that PI3K/AKT can be a pro-inflammation effector in oral diseases like periodontitis [51]. They can also affect the process of different kinds of oral squamous cancers [52]. However, in pulpitis and dental pulp specific cells like the odontoblasts, their relationship still needs experimental evidence. In our study, further investigations demonstrated that overexpression of miR-155 or SHIP1 silence could enhance PI3K phosphorylation and AKT phosphorylation, whereas knockdown of miR-155 demonstrated an opposite trend in PI3K and AKT phosphorylation. LY294002 is a synthetic molecule, known to inhibit the activation of PI3K/AKT signaling pathway. It was used to further confirm the interaction of miR-155 and PI3K/AKT signaling pathway [53]. Our results demonstrated that LY294002 could reversed the inflammatory responses caused by miR-155 mimic. Similarly, in experimental pulpitis animal model, miR-155−/− mice exhibited lower positive staining of p-PI3K and p-AKT than the mice in C57BL/6 groups. The protein expression in this part of the results showed a non-linear fluctuation, which may be related to the rapid progression of pulpitis in mice. The sharp destruction of inflammation in the pulp tissue of mice reduces the secretion of cells in the pulp tissue, resulting in decreased expression of related proteins.

According to the above results, miR-155 contributes to pulpitis by suppressing SHIP1. Meanwhile, the activation of PI3K/AKT signaling pathway is involved with miR-155 regulated pulpal inflammatory development. The regulation of the miR-155-SHIP1-PI3K/AKT axis might set a novel mechanism for dental inflammation and for odontoblasts specifically.

In summary, our work has showed that miR-155 is a positive regulator in the process of dental pulp inflammation. miR-155 promotes the progression of pulpitis through downregulated SHIP1, and controls the downstream PI3K/AKT pathway, which in turn enhances the expression of IL-6 and IL-1β. Therefore, the inhibition of miR-155 could effectively alleviate pulpitis and cytokine secretion. These results showed the potential of miR-155 as a clinical diagnosis marker, and the possibility of manipulating its expression to confine the inflammation of dental pulp in clinical practice.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11033-022-07690-w.

Acknowledgements This work was supported by the Guangzhou Health Commission (No. 20191A011108), Science and Technology Research Projects of Universities in Guangzhou (No. 1201610402). The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Author contributions Mr. Baishun Li: performed experiments and analyzed data. Dr. Liyang Guo: analyzed data and drafted the manuscript. Ms. Ying He: assisted experiments. Mr. Xingran Tu: assisted experiments. Ms. Jialin Zhong: assisted experiments. Prof. Hongbing Guan: revised manuscript. Prof. Qianzhou Jiang: designed and administrated project. Prof. Yiguo Jiang: administrated project. All authors read and approved the final manuscript.

Data availability The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Consent to participate Not applicable as human participant is not involved in this study.

Consent for publication The manuscript is approved by all authors for publication. Human participant consent is not applicable as this study did not contain data from individual human samples.

Ethical approval All animal experimental procedures were approved by the Animal Ethical Committee in the School of Stomatology, Guangzhou Medical University, Guangzhou, China. Experiments were proceeded according to the guidelines and regulations (Approval Number: GY2018-096).

Informed consent Not applicable as human participant is not involved in this study.

References

1. Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40(4 Suppl):S46–S51. https://doi.org/10.1016/j.joen.2014.01.021

2. Segura-Egea JJ, Cisneros-Cabello R, Llamas-Carreras JM, Velasco-Ortega E (2009) Pain associated with root canal
6. Hui T, Wang C, Chen D, Zheng L, Huang D, Ye L (2017) Epigenetic regulation in dental pulp inflammation. Oral Dis 23(1):22–28. https://doi.org/10.1111/odi.12464

7. Sehic A, Tulek A, Khutu C, Nirvani M, Sand LP, Utheim TP (2017) Regulatory roles of microRNAs in human dental tissues. Gene 596:9–18. https://doi.org/10.1016/j.gene.2016.10.009

8. Li C, Yin W, Yu N, Zhang D, Zhao H, Liu J, Pan Y, Lin L (2019) miR-155 promotes macrophage pyroptosis induced by Porphyromonas gingivalis through regulating the NLRP3 inflammasome. Oral Dis 25(8):2030–2039. https://doi.org/10.1111/odi.13198

9. Muñoz-Carrillo JL, Vázquez-Alcaraz SJ, Vargas-Barbosa JM, Ramos-Gracia LG, Alvarez-Barreto L, Medina-Quiroz A, Díaz-Huerta KK (2021) The role of microRNAs in pulp inflammation. Cells 10(8):2142. https://doi.org/10.3390/cells10082142

10. Mahesh G, Biswas R (2019) MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res 39(6):321–330. https://doi.org/10.1089/jir.2018.0155

11. Zhang B, Li B, Qin F, Bai F, Sun C, Liu Q (2019) Expression of serum microRNA-155 and its clinical importance in patients with heart failure after myocardial infarction. J Int Med Res 47(12):6294–6302. https://doi.org/10.1177/0300060519882583

12. Fu S, Chen HH, Cheng P, Zhang CB, Wu Y (2017) MiR-155 regulates oral squamous cell carcinoma Tca8113 cell proliferation, cycle, and apoptosis via regulating p27Kip1. Eur Rev Med Pharmacol Sci 21(3):937–944.

13. Hu YJ, Zhang J, Ma JZ, Liang XY, Chen GY, Lu R, Du GF, Zhou G (2015) MicroRNA-155-IFN-gamma feedback loop in CD4(+) T cells of erosive type Oral Lichen Planus. Sci Rep 5:16935. https://doi.org/10.1038/srep16935

14. Asa’ad F, Garaicoa-Pazmiño C, Dahlin C, Larsson L (2020) Expression of microRNAs in periodontal and peri-implant diseases: a systematic review and meta-analysis. Int J Mol Sci 21(11):4147. https://doi.org/10.3390/ijms21114147

15. Yue J, Song D, Lu W, Lu Y, Zhou W, Tan X, Zhang L, Huang D (2016) Expression profiles of inflammation-associated microRNAs in periapical lesions and human periodontal ligament fibroblasts inflammation. J Endod 42(12):1773–1778. https://doi.org/10.1016/j.joen.2016.08.013

16. Yang L, Liu L, Ying H, Yu Y, Zhang D, Deng H, Zhang H, Chai J (2018) Acute downregulation of miR-155 leads to a reduced collagen synthesis through attenuating macrophages inflammatory factor secretion by targeting SHIP1. J Mol Histol 49(2):165–174. https://doi.org/10.1007/s10735-018-9766-5

17. Tang H, Mao J, Ye X, Zhang F, Kerr WG, Zheng T, Zhu Z (2020) SHIP-1, a target of miR-155, regulates endothelial cell responses in lung fibrosis. FASEB J 34(2):2011–2023. https://doi.org/10.1096/fj.201902063R

18. Yoon J, Wu MK, Zhu TH, Zhao H, Cheung ST, Chamberlain TC, Mui AL (2020) Interleukin-10 control of pre-miR155 maturation involves CELF2. PLoS ONE 15(4):e0231639. https://doi.org/10.1371/journal.pone.0231639

19. Wang X, Guo P, Tian J, Li J, Yan N, Zhao X, Ma Y (2021) LncRNA GAS5 participates in childhood pneumonia by inhibiting cell apoptosis and promoting SHIP1 expression via downregulating miR-155. BMC Pulm Med 21(1):362. https://doi.org/10.1186/s12890-021-01724-y

20. Kandell WM, Donatelli SS, Trinh TL, Calesicbetta AR, So T, Tu N, Gilvary DL, Chen X, Cheng P, Adams WA, Chen YK, Liu J, Djeu JY, Wei S, Esksigou EA (2020) MicroRNA-155 governs SHIP1 expression and localization in NK cells and regulates subsequent infiltration into murine AT3 mammary carcinoma. PLoS ONE 15(2):e0225810. https://doi.org/10.1371/journal.pone.0225810

21. He Y, Yan G, Lu J, Feng Q, Wang H, Guan H, Jiang Q (2017) Pulpal tissue inflammatory reactions after experimental pulpal exposure in mice. J Endod 43(1):90–95. https://doi.org/10.1016/j.joen.2016.09.003

22. Ma L, Wang SC, Tong J, Hu Y, Zhang YQ, Yu Q (2016) Activation and dynamic expression of Notch signalling in dental pulp cells after injury in vitro and in vivo. Int Endod J 49:1165–1174. https://doi.org/10.1111/iej.12580

23. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 106(17):7113–7118. https://doi.org/10.1073/pnas.0902636106

24. Wang W, Bian H, Li F, Li X, Zhang D, Sun S, Song S, Zhu Q, Ren W, Qin C, Qi J (2018) HBcAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines. Cell Mol Life Sci 75(14):2627–2641. https://doi.org/10.1007/s00018-018-2753-8

25. Ghafari-Fard S, Niazia V, Taheri M (2020) Role of microRNAs and lncRNAs in hematopoietic stem cell differentiation. Noncoding RNA Res 6(1):8–14. https://doi.org/10.1016/j.ncrna.2020.12.002

26. Bergallo M, Dapra V, Calvi C, Montanari P, Galliano I, Ravani P (2018) Is HERV-K and HERV-W expression regulated by miR-155 in kidney transplant patients with human cytomegalovirus infection? Intervirology 61(1):23–29. https://doi.org/10.1159/000490075

27. Xie YF, Shu R, Jiang SY, Liu DL, Zhang XL (2011) Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. J Int Oral Sci 3(5):125–134. https://doi.org/10.3892/ios.2011.4248

28. Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, Kuang Z, Cheng B (2016) Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Sci 37(5):1274–1280. https://doi.org/10.3390/ijms16052529

29. Sipert CR, Morandini AC, Dionisio TJ, Trachtenberg AJ, Kuo WP, Santos CF (2014) MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci 56(2):157–164. doi: https://doi.org/10.2334/josnd.56.157

30. Ayadilord M, Nasseri S, Emadian Razavi F, Saharkhiz M, Rostami Z, Naseri M (2021) Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem Funct 39(7):886–895. https://doi.org/10.1002/cbf.3659

31. Sztebeni GJ, Vizerler C, Kitajka K, Puskas LG (2017) Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediat Inflamm 2017:9294018. https://doi.org/10.1155/2017/9294018

32. Brand H, Barnabas GD, Saposnik Z, Bahr-Shany K, Pozniak Y, Yung Y, Hourvitz A, Geiger T, Jacob-Hirsch J, Levanon K (2020) NF-kB-miR-155 axis activation mediates ovulation-induced...
oncogenic effects in fallopian tube epithelium. Carcinogenesis 31(12):1703–1712. https://doi.org/10.1093/carcin/bga068

33. Neagu M, Constantin C, Cretoiu SM, Zuraç S (2020) miRNAs in the diagnosis and prognosis of skin cancer. Front Cell Dev Biol 28:71. https://doi.org/10.3389/fcell.2020.00071

34. De Smet EG, Van Eeckhoutte HP, Avila Cobos F, Blomme E, Verhaemne FM, Provoost S, Verleden SE, Venken K, Maes T, Joos GF, Mestdagh P, Brusselle GG, Bracke KR (2020) The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD. Mucosal Immunol 13:423–436. https://doi.org/10.1038/s41385-019-0241-6

35. Wan J, Yang X, Ren Y, Li X, Zhu Y, Haddock AN, Ji B, Xia L, Lu N (2019) Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis 10:303. https://doi.org/10.1038/s41419-019-1545-x

36. Imaizumi T, Tanaka H, Tajima A, Yokono Y, Matsumiya T, Yoshida H, Tsuruga K, Aizawa-Yashiro T, Hayakari R, Inoue I, Ito E, Satoh K (2010) IFN-γ and TNF-α synergistically induce microRNA-155 which regulates Table 2/IP-10 expression in human mesangial cells. Am J Pathol 177:1628–1638. https://doi.org/10.1016/j.ajpath.2010.08.005

37. Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Hahn CL, Liewehr FR (2007) Innate immune responses of the gingival fibroblasts in periodontitis (former aggressive periodontitis) in a Spanish population. J Clin Periodontol 48(7):896–906. https://doi.org/10.1111/j.1600-051x.2007.01322.x

38. Li S, Sun Y, Zhong L, Xiao Z, Yang M, Chen M, Wang C, Xie X, Chen X (2018) The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metab Cardiovasc Dis 28(11):1175–1187. https://doi.org/10.1016/j.numecd.2018.06.017

39. Hahn CL, Liewehr FR (2007) Innate immune responses of the dental pulp to caries. J Endod 33(6):643–651. https://doi.org/10.1016/j.joen.2007.01.001

40. Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges JC, Cuturi MC, Moreau A, Alliot-Licht B (2016) Immune cells and molecular networks in experimentally induced pulpitis. J Dent Res 95(2):196–205. https://doi.org/10.1177/0022034515612086

41. Sugiuchi A, Sano Y, Furusawa M, Abe S, Muramatsu T, Ikeda K, Sanada K, Hara T, Inoue I, Ito E, Satoh K (2010) IFN-γ and TNF-α synergistically induce microRNA-155 which regulates Table 2/IP-10 expression in human mesangial cells. Am J Pathol 177:1628–1638. https://doi.org/10.1016/j.ajpath.2010.08.005

42. Rechenberg DK, Galicia JC, Peters OA (2016) Biological markers for pulp inflammation: a systematic review. PLoS ONE 11(11):e0167289. https://doi.org/10.1371/journal.pone.0167289

43. Tokuda M, Sakuta T, Fushuku A, Torii M, Nagaoka S (2001) Regulation of interleukin-6 expression in human dental pulp cell cultures stimulated with Prevotella intermedia lipopolysaccharide. J Endod 27(4):273–277. DOI:10.1097/00004770-200104100-00008

44. Elsalhy M, Azizieh F, Raghupathy R (2013) Cytokines as diagnostic markers of pulp inflammation. Int Endod J 46(6):573–580. https://doi.org/10.1111/iej.12030

45. Mortazavi-Jahromi SS, Aslani M, Omidian S, Ahmadzadeh A, Rezaieyazdi Z, Mirshafiey A (2020) Immunopharmacological effect of β-d-mannuronic acid (M2000), as a new immunosuppressive drug, on gene expression of miR-155 and its target molecules (SOCS1, SHIP1) in a clinical trial on rheumatoid arthritis patients. Drug Dev Res 81(3):295–304. https://doi.org/10.1002/ddr.21619

46. Wang S, Huang Y, Zhou C, Wu H, Zhao J, Wu L, Zhao M, Zhang F, Liu H (2018) The role of autophagy and related micro-RNAs in inflammatory bowel disease. Gastroenterol Res Pract 2018:7565076. https://doi.org/10.1155/2018/7565076

47. Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wang R, Wang XP (2017) MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 23(6):976–985. https://doi.org/10.3748/wjg.v23.i6.976

48. Wu X, Chen S, Orlando SA, Yuan J, Kim ET, Munugalavadla V, Mali RS, Kapur R, Yang FC (2011) p53alpha regulates osteoblast differentiation by cross-talking with the MAPK pathway. J Biol Chem 286(15):13512–13521. https://doi.org/10.1074/jbc.M110.187351

49. Liu J, Wang X, Zheng M, Luan Q (2018) Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 211:133–139. https://doi.org/10.1016/j.lfs.2018.09.023

50. Bhattacharyya S, Balakathiresan NS, Dalgaard C, Guti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R (2011) Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 286(13):11604–11615. https://doi.org/10.1074/jbc.M110.198390

51. de Coo A, Cruz R, Quintela I, Herrera D, Sanz M, Diaz P, Rodriguez Grandio S, Vallcorba N, Ramos I, Oteo A, Serrano C, Esmatges A, Enrile F, Mateos L, Garcia R, Alvarez-Novoa P, Nogueiro B, Zabalegui I, Blanco-Moreno J, Alonso A, Lorenzo R, Carracedo A, Blanco J (2021) Genome-wide association study of stage III/IV grade C periodontitis (former aggressive periodontitis) in a Spanish population. J Clin Periodontol 48(7):896–906. https://doi.org/10.1111/jcpe.13460

52. Reymu A, Chen Y, Song X, Zhou W, Dai J, Jiang F (2021) Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis. World J Surg Oncol 12(1):240. https://doi.org/10.1186/s12957-021-02360-w

53. Chang MC, Lee JJ, Chen YJ, Lin SI, Lin LD, Jein-Wen Liou E, Huang WL, Chan CP, Huang CC, Jung EH (2017) Lysophosphatidylcholine induces cytotoxicity/apoptosis and IL-8 production of human endothelial cells: Related mechanisms. Oncotarget 8(63):106177–106189. https://doi.org/10.18632/oncotarget.22425

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.