Towards deeper understanding of multifaceted chemistry of magnesium alkylperoxides

Tomasz Pietrzak1, Iwona Justyniak2, Karolina Zelga1, Krzysztof Nowak1, Zbigniew Ochal1 & Janusz Lewiński1,2

Despite considerable progress in the multifaceted chemistry of non-redox-metal alkylperoxides, the knowledge about magnesium alkylperoxides is in its infancy and only started to gain momentum. Harnessing the well-defined dimeric magnesium tert-butylperoxide \([(\text{f}5\text{BDI})\text{Mg}(\mu-\eta^2:\eta^1-\text{OOtBu})_2]\), incorporating a fluorinated \(\beta\)-diketiminate ligand, herein, we demonstrate its transformation at ambient temperature to a spiro-type, tetranuclear magnesium alkylperoxide \([(\text{f}5\text{BDI})_2\text{Mg}_4(\mu-\text{OOtBu})_6]\). The latter compound was characterized by single-crystal X-ray diffraction and its molecular structure can formally be considered as a homo-lleptic magnesium tert-butylperoxide \([\text{Mg}(\mu-\text{OOtBu})_2]_2\) terminated by two monomeric magnesium tert-butylperoxides. The formation of the tetranuclear magnesium alkylperoxide not only contradicts the notion of the high instability of magnesium alkylperoxides, but also highlights that there is much to be clarified with respect to the solution behaviour of these species. Finally, we probed the reactivity of the dimeric alkylperoxide in model oxygen transfer reactions like the commonly invoked metathesis reaction with the parent alkylmagnesium and the catalytic epoxidation of trans-chalcone with tert-butylhydroperoxide as an oxidant. The results showed that the investigated system is among the most active known catalysts for the epoxidation of enones.
on-redox-metal alkylperoxides (NRMOOR) represent an important class of reactive intermediates that may act as efficient oxidants in oxygen-transfer organic transformations like the epoxidation of enones1,2 or synthesis of α-amino-peroxides3. Moreover, a combination of non-redox-metal-based organometallic complexes with dioxygen have also been exploited as radical initiators for various organic reactions4,5. While the formation of NRMOOR species was already postulated in 18996, knowledge on their multifaceted chemistry is rather scarce, which essentially hampers the further development of stoichiometric and catalytic systems involving NRMOOR complexes. Owing to frequently encountered exceptional reactivity of NRMOOR species, the controlled synthesis and subsequent isolation of this family of compounds still appear to be a challenge6,7,8. In the last three decades, a few examples of heteroleptic Group 13, 12, 13, 16, 21 and 13, 22–36 metal alkylperoxides have occasionally been isolated. In particular, systematic research on the oxygenation chemistry of organozincs has marked an important milestone in a deeper understanding of the reactivity of ZnOOR species5. For example, it has been convincingly proved that the O-O bond scissions in an alkylperoxide moiety, affording the oxyl ZnO and alkoxyl `OR, precedes for the formation of various products spanning from zinc oxo7,8 and hydroxido9–11 even to carboxylate12,13 clusters. Our recent studies also strongly contradicted to the widely accepted textbook mechanism involving the metastable reaction between a highly reactive NRMOOR and the parent NRMR moieties14,15. In turn, homoleptic compounds of the type [NRMOOR]2 are scant and only limited to structurally characterized lithium dodecane–mercury (H–LiOOR)2 complexes. All these lithium alkylperoxides were synthesized by the protonolysis of the parent lithium precursors with the respective organic hydroperoxide. To the best of our knowledge, no structure has yet been reported for a homoleptic magnesium alkylperoxide.

More importantly, the knowledge about magnesium alkylperoxides is in its infancy and only started to gain momentum16,17,18,19,20,21. Although the first records about the putative formation of MgOOR species came from 19099, it was not until 2003 that the first magnesium alkylperoxide complex was structurally characterized14,15. However, this magnesium alkylperoxide stabilized by a β-diketiminate ligand was isolated as co-crystals with the corresponding magnesium alkoxide complex which raised doubts as to the reactivity and stability of the magnesium alkylperoxide species. Strikingly, in 2016 our group re-investigated this reaction system and showed that the selective formation of magnesium alkylperoxide is viable in a highly controlled manner, whilst the formation of the magnesium alkoxide is due to the transformation of the alkylperoxide complex at room temperature (Fig. 1a)14. Recently, the first monomeric magnesium alkylperoxide was successfully isolated via the controlled oxygenation of neo-pentylmagnesium complex with the β-diketiminate ligand15.

To investigate the influence of steric and electronic contributions of a supporting ligand on the reactivity of magnesium alkylperoxides, we turned our attention to β-diketiminate ligands with fluorinated N-aryl substituents. Previously, we demonstrated that the oxygenation of a tert-butylmagnesium complex incorporating deprotonated 2-[(2,3,4,6-pentafluorophenyl)amino]-4(2,3,4,6-pentafluorophenyl)imino]-pent-2-ene (hereafter [FBDI] as a β-diketiminate ligand with perfluorinated N-aryl substituents. Herein, we report the transformation of a new dimeric magnesium tert-butylperoxide ([FBDI]Mg(μ−η2−η1-OOtBu))2 complex to a spiro-type, tetracnuclear magnesium alkylperoxide ([FBDI]2Mg4(μ−η2−η1−OOtBu))2 upon prolonged storage of a toluene solution of the former at ambient temperature, and probe the catalytic activity of the former alkylperoxide in the epoxidation of trans-chalcone as a model enone.

Results and discussion

Synthesis and structures of magnesium alkylperoxides incorporating a fluorinated β-diketiminate ligand. The parent tert-butylmagnesium complex, ([FBDI]MgBu(Et2O)) (1), was easily prepared in almost quantitative yield by salt metathesis using a solution of tert-butylmagnesium chloride in Et2O and a lithium salt of BDI-H (for 1H NMR spectra see Supplementary Fig. 1). The controlled oxygenation of a toluene solution of 1 at −20 °C followed by concentration of the reaction mixture and crystallization at −30 °C led to the reproducible isolation of a dimeric magnesium tert-butylperoxide ([FBDI]Mg(μ−η2−η1−OOtBu))2 (2) (we note that the isolated alkylperoxide is not solvated by the Et2O, for 1H NMR spectra see Supplementary Fig. 2). In contrast to our previous observation14, increase in the oxygenation temperature does not influence the reaction outcome, and compound 2 was also the only isolable product from the oxygenation of 1 at room temperature. Thus, these results demonstrate that subtle change in the fluorinated β-diketiminate ligand may govern the stability of magnesium alkylperoxide subunit. Much to our surprise, extended storage of a toluene solution of 2 for ca. 7 days at room temperature followed by concentration of the reaction mixture and crystallization at −30 °C allowed to isolate a minute amount of a spiro-type, tetracnuclear magnesium tert-butylperoxide ([FBDI]2Mg4(μ−η2−η1−OOtBu))2 (3) (Fig. 1b). Based on our current knowledge on the chemistry of magnesium alkylperoxides, the uniqueness of the compound 3 seems manifold. Firstly, the formation of 3 strongly contradicts with the previously encountered ubiquitous transformation of the magnesium alkylperoxides to the respective alkoxides13–15. Whilst it is premature to propose a detailed mechanism that accounts for the formation of 3, it seems reasonable to suggest that 2 is kinetically labile in a toluene solution and very slowly undergoes a ligand scrambling24,47,49. Moreover, the molecular structure of 3 can formally be considered as the first structurally authenticated homoleptic magnesium tert-butylperoxide [Mg(μ−OOtBu)]2, terminated by two monomeric magnesium tert-butylperoxides ([FBDI]Mg(OOtBu)]. Finally, a spiro-type structure has hitherto been encountered for zinc alkoxides and is without precedent in the chemistry of non-redox-metal alkylperoxide47. Thus, the isolation of magnesium alkylperoxide 3 appears to be a turn-up for the books owing to the exceptional instability of this class of compounds.

The identities of the peroxides 2 and 3 were unambiguously established by single-crystal X-ray diffraction (for details see Supplementary Figs. 3 and 4 and Supplementary Tables 1–4). Compound 2 crystallizes in the triclinic space group P-1 as a dimer with the bridging tert-butylperoxide group with μ−η2−η1 binding mode (Fig. 2a). The Mg−Mg separation between magnesium centres equals 2.927(1) Å. The Mg–O bond lengths (2.003–2.026 Å) fall in the typical range observed for other magnesium alkylperoxide systems13–15. The O–O bond length (1.485(2) Å) is slightly longer to that found in the previously...
reported dimeric (1.442(3) Å and 1.383(6) Å)14 and monomeric (1.480(5) Å)15 magnesium alkylperoxides incorporating the β-diketiminate ligands. The differences in the O–O bond length likely result from the presence of the additional electron-withdrawing fluoro substituents in the β-diketiminate ligand, which decrease the electron density on the alkylperoxide moiety. The alkylperoxide 3 crystallizes in the triclinic space group P-1 as a tetranuclear aggregate with an almost linear arrangement (Fig. 2b). Four magnesium centres are bridged by six tert-butylperoxide groups with μ-η2-η1 binding mode (Fig. 2c). The terminal five-coordinate magnesium atoms are capped by the fluorinated β-diketiminate ligands, whereas both inner magnesium centres are six-coordinate. The O–O bond length of 1.386(4) Å in the central bridging tert-butylperoxide groups is shorter than the analogous bond distance in the remaining tert-butylperoxide ligands (1.482(3) Å in O(1)–O(2) and 1.454(3) Å in O(3)–O(4)).

Reactivity of the alkylperoxide 2\textsubscript{2} in model oxygen-transfer reactions. Having in mind high oxidation propensity of the magnesium alkylperoxides, we wondered if 2\textsubscript{2} can oxidize the parent tert-butylmagnesium complex 1 with the formation of the corresponding magnesium alkoxide, as commonly postulated13. To this aim, a toluene solution of 1 was added to a solution of 2\textsubscript{2} at −20 °C and then the reaction mixture was stirred up for 24 h at ambient temperature (Fig. 3a). Interestingly, the alkylperoxide 2\textsubscript{2} was inert toward the parent alkylmagnesium compound and the subsequent crystallization from the reaction mixture resulted in full recovery of 2\textsubscript{2}. Thus, our results demonstrate that neither metathesis reaction leading to the respective magnesium alkoxide, nor the ligand redistribution process might be observed under these conditions.

Non-redox-metal alkylperoxides may act as an efficient catalysts in the epoxidation of electron-deficient olefins. However, in contrast to well established Zn-based catalysts50–54, the application of the magnesium relatives still remains a highly unexplored research area. Up to now, there are two magnesium-based catalytic systems for the epoxidation of enones55,56, of which only one is well-defined14. Moreover, electron-withdrawing β-diketimine ligands with different fluoro-containing substituents may have a profound effect on the activity of various catalytic systems14,57. Thus, in the next step, the activity of 2\textsubscript{2} as a potential catalyst in the epoxidation of electron-deficient olefins with TBHP as an oxidant was tested. In a control experiment, trans-chalcone as a model enone, TBHP and catalytic amount of 2\textsubscript{2} were mixed in toluene at 0 °C and the reaction was conducted further at this temperature (Fig. 3b). The conversion to epoxide...
was monitored by gas chromatography. Our results clearly indicate that 22 exhibited high activity in the epoxidation reaction and the 2-benzoyl-3-phenyloxirane was formed in almost quantitative yield after ca. 20 min. Thus, the presence of the perfluorinated N-aryl substituents of the β-diketimine ligand in 22 results in a significant increase in the catalytic ability in comparison to the non-fluorinated [(dippBDI)Mg(μ-OOtBu)]₂-based catalytic system. The observed reaction time places the investigated system among the most active known catalysts for the epoxidation of enones1-3. For example, catalytic epoxidation of trans-chalcone using an ill-defined magnesium system nBu₂Mg/diethyl tartrate/TBHP or a well-defined zinc system (N,N’)-ZnOOtBu/TBHP (where N,N’ = enaminooxazolinate ligand) takes 24 h58 or 1 h52, respectively. Thus, the described relatively rare example of structurally well-defined catalysts, its very high activity and the potential to build up a metal-friendly catalytic system for the asymmetric epoxidation of enones appears to be main advantages of these studies. The observed formation of 3 during the prolonged storage of 22 indicates a dynamic behaviour of magnesium alkylperoxide in a toluene solution, which is likely associated with the cleavage of one or both alkylperoxide bridges. The simplified catalytic cycle for the oxidation of trans-chalcone is shown in Fig. 3c. On this stage of studies, we may propose that the magnesium alkylperoxide reacts with trans-chalcone with the formation of the epoxide and the corresponding tert-butylmagnesium alkoxide. Next, the subsequent reaction of the latter with TBHP allows to recover the catalyst and closes the catalytic cycle (Fig. 3c).

Conclusion

The elucidation of molecular structure and reactivity of non-redox-metal alkylperoxides has posed significant difficulties for decades. In this report we fill a gap in the molecular-level knowledge of magnesium alkylperoxides. The controlled oxygenation of tert-butylmagnesium complex supported by the perfluorinated N-aryl substituents led to the dimeric magnesium alkylperoxide, which does not transform to the corresponding magnesium alkoxide at ambient temperature. Instead, ligand scrambling process with the formation of a spiro-type, tetranuclear magnesium tert-butylperoxide was observed for the first time. The formation of the latter not only demonstrates an exceptional stability of the alkylperoxide unit towards further transformations, but also highlights that there is much to be clarified with respect to the solution behaviour of magnesium alkylperoxides. Interestingly, the magnesium alkylperoxide [(f5BDI)Mg(μ-η²:2-η¹-OOtBu)]₂ bearing the electron-withdrawing fluorine atoms on the N-aryl substituents in the supporting β-diketiminate ligand possesses higher catalytic activity in comparison to the [(dippBDI)Mg(μ-OOtBu)]₂-based catalytic system with the non-fluorinated N-aryl substituents. Moreover, despite the high oxidation properties of the dimeric tert-butylperoxide incorporating the perfluorinated β-diketiminate ligand in the catalytic epoxidation of enones, its σ-bond metathesis reaction with the parent alkyl did not occur. Overall, our studies provided an important aspect of knowledge on the stability of magnesium alkylperoxide compounds. We believe that these intriguing findings will stimulate further...
Fig. 3 Reactivity of the magnesium alkylperoxide H_2BuOO in model oxygen-transfer reactions.

- **a** Reaction of the magnesium alkylperoxide H_2BuOO with the parent tert-butylmagnesium complex 1.
- **b** Catalytic epoxidation of trans-chalcone mediated by magnesium alkylperoxide 2.
- **c** The simplified catalytic cycle for the oxidation of trans-chalcone.

systematic studies on the chemistry of non-redox-metal alkylperoxides as well as support the rational design of NR-MOOR reagents for various oxygen-transfer organic processes, including efficient catalytic systems for the asymmetric oxidation of electron-deficient olefins.

Methods

All reactions were conducted under argon atmosphere using standard Schlenk and glovebox techniques (<0.1 ppm O$_2$, <0.1 ppm H$_2$O). Toluene, benzene, n-hexane and n-pentane were degassed with nitrogen, dried over activated aluminium oxide (MBrain SP5) and stored over 3 Å molecular sieves. Deuterated solvents were dried over Na/K alloy and distilled under argon atmosphere, and a solution of tert-butylmagnesium chloride in Et$_2$O (Sigma-Aldrich) was used as receive. 2-[(2,3,4,5,6-pentafluorophenyl)amino]-4[(2,3,4,5,6-pentafluorophenyl)imino]-pent-2-ene (H_3BDI) was synthesized according to the literature procedure25.

The oxygenation reactions were carried out using pure dioxygen dried by passing it through a tube filled with anhydrous NaOH/KOH. NMR spectra were acquired on Varian Inova 500 MHz and Varian Mercury 400 MHz spectrometers at 298 K. Elemental analysis were performed using an UNICUBE (Elementar Analysensysteme GmbH).

Caution. The metal alkylperoxides are potentially explosive and should be handled with care; however, we have not encountered this type of sensitivity in the investigated compounds under the studied conditions.

Synthesis of [(εBDI)Mg2(tBu)6]2 (1). A yellow solution of εBDI-H (0.538 g, 1.25 mmol) in toluene (10 mL) was cooled to $-78 \degree$C and 0.47 mL of a solution of tBuLi in heptane (1.31 mmol) was slowly added by means of a syringe. The reaction mixture was allowed to warm to room temperature and stirred for 24 h. During this time, change of the solution colour from yellow to orange crystals was observed. Next, a solution of tBuMgCl (1.25 mmol, 1.0 mL) in Et$_2$O was slowly added by means of a syringe at room temperature and the reaction mixture was stirred overnight. Then the volatile materials were removed under reduced pressure and the product was extracted into toluene (10 mL) and filtered. The volatile materials were removed under reduced pressure. The resulting residue was washed with cold pentane (3×5 mL) and dried under vacuum yielding 1 as an oily product with essentially quantitative yield. The product was used in the next step without further purification. 1H NMR (400.0 MHz, 298 K); δ [ppm] = 0.94 (t, 6H, Et$_2$O), 1.02 (s, 9H, C(CH$_3$)$_3$), 1.69 (s, 6H, CCH$_3$), 3.56 (q, 4H, Et$_2$O), 4.88 (s, 1H, a-CH) ppm.

Synthesis of [(εBDI)Mg2(tBu)6]2 (2). Method 1: A solution of 1 (233 mg, 0.4 mmol) in toluene (6 mL) was cooled to $-20 \degree$C. Next, the Schlenk headspace was replaced by dry O$_2$ for 1 h. The headspace was then replaced by dry N$_2$, and the resulting solution was concentrated. Compound 2 was obtained as yellow crystals after crystallization at $-27 \degree$C (98 mg). Isolated yield 45%. Method 2: 1 was dissolved in toluene under an N$_2$ atmosphere at room temperature. Next, the Schlenk headspace was replaced by dry O$_2$ for 1 h under this conditions. The headspace was then replaced by dry N$_2$ and the resulting solution was concentrated. Compound 2 was obtained as yellow crystals after crystallization at 0 \degreeC (88 mg). Isolated yield 41%. 1H NMR (400 MHz, C$_6$D$_6$, 298 K); δ [ppm] = 1.00 (s, 18H, C(CH$_3$)$_3$), 1.37 (s, 12H, CCH$_3$), 3.56 (q, 4H, Et$_2$O), 4.88 (s, 2H, a-CH) ppm. 13C(1H) NMR (125 MHz, C$_6$D$_6$, 298 K): δ [ppm] = 171.68, 129.15, 128.39, 125.22, 98.52, 82.64, 32.48, 25.11, 23.55; elemental analysis: calcd (%) for C$_{42}$H$_{32}$N$_4$O$_{12}$F$_{20}$Mg$_4$: C 46.48; H 2.97; N 5.16; found C 46.65; H 4.68; N 3.71.

Synthesis of [(εBDI)Mg2(tBu)6]2 (3). A yellowish solution of 2 (100 mg, 0.18 mmol) in toluene (5 mL) was stored at ambient temperature for ca. 1 week under an N$_2$ atmosphere. Next, the resulting solution was filtered and concentrated. A few crystals of compound 3 was obtained after crystallization for 7 days at $-27 \degree$C. Element analysis: calcd (%) for C$_{58}$H$_{68}$N$_4$O$_{12}$F$_{20}$Mg$_4$: C 46.74; H 4.68; N 5.16; found C 46.65; H 3.09; N 5.09.

Metathesis reaction of 1 and 2. A solution of 1 in toluene was added (0.16 mmol, 93.5 mg, 2 mL) to the stirred solution of 2 (0.08 mmol, 87 mg, 2 mL) in toluene at $-20 \degree$C. The reaction mixture was warmed to room temperature and the reaction was continued for 24 h. Compound 2 was obtained after concentration of the reaction mixture followed by crystallization overnight at $-27 \degree$C.
Catalytic epoxidation of trans-chalcone mediated by Zn^2+. To a toluene solution of $\text{Zn}(2.0 \text{ mmol}, 109 \text{ mg}, 4 \text{ mL})$ at 0 °C, the solutions of the chosen enone (1.5 mmol, 0.25 M) and TRIPH (2.0 mmol, 4.0 M) in toluene was added. Next, the reaction was continued at this temperature and the conversion was monitored by gas chromatography. In order to prepare the sample, 1 mL of the reaction mixture was hydrolysed with a saturated aqueous solution of $\text{KF}(2 \text{ mL})$ followed by the drying of the organic phase with anhydrous MgSO$_4$.

Crystallographic measurements for 22 and 3. The crystals of all complexes were selected under Paratone-N oil, mounted on the nylon loops and positioned in the cold stream on the diffractometer. The X-ray data for complex 22 and 3 were collected at 100(2)K on a Nonius KappaCAD4 diffractometer using CuKα radiation ($\lambda = 1.54184 \text{ Å}$) and MoKα radiation ($\lambda = 0.70735 \text{ Å}$, respectively). The data were processed with CrystalClear99. The structures 22 and 3 were solved by direct methods and refined using the SHELX9700. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added to the structure model geometrically idealized coordinates and refined as riding atoms.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Crystallographic data (excluding structure factors) for the structures 22 and 3 reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC-$\text{(}2045430$ and CCDC-$\text{(}2045431$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk. The crystallographic information of compounds 22 and 3 is available in Supplementary Data 1 and 2, respectively.

Received: 11 May 2021; Accepted: 2 August 2021;
Published online: 25 August 2021

References

1. Porter, J. R. & Skidmore, J. Asymmetric epoxidation of electron-deficient olefins. Chem. Commun. 1215–1225 (2000).
2. Xia, Q.-H., Ge, H.-Q., Ye, C.-P., Liu, Z.-M. & Su, K.-X. Advances in multilinearity in asymmetric epoxidation. Chem. Rev. 105, 1603–1662 (2005).
3. Diez, D. et al. Asymmetric epoxidation of electron-deficient olefins. Curr. Org. Synth. 5, 186–216 (2008).
4. Monleón, A., Montesinos-Magraner, M., Sanz-Marco, A., Blay, G. & Pedro, J. R. Three-component synthesis of α-aminooximes using primary and secondary dialkylic zirconyls with O_2 and α-aminido sulfones. Org. Lett. 22, 5380–5384 (2020).
5. Yamada, K. & Tomioka, K. Exploration of dimethylzinc-mediated radical reactions. Chem. Rev. 15, 854–871 (2015).
6. Abildtræ, T., Yamada, K. & Tomioka, K. Dimethylzinc-initiated radical reactions. Acc. Chem. Res. 42, 345–355 (2009).
7. Kubisik, M. et al. Development of zinc alkyl/air systems as radical initiators for organic reactions. Chem. Sci. 6, 3102–3108 (2015).
8. Mileo, E., Benfatti, F., Cozzi, P. G. & Lucarini, M. Me_2Zn as a radical source in heterocycles. Chem. Rev. 105, 9395–9435 (2005).
9. Kosinski, J. et al. First structurally authenticated zinc alkylperoxide: a model of organoalkaline peroxides. Angew. Chem. Int. Ed. 49, 4009–4012 (2009).
10. Porcel, S., Bouchard, G., Saffon, N., Maron, L. & Bourissou, D. Reaction of singlet dioxygen with phosphine-borane derivatives: from transient phosphine peroxides to crystalline peroxoboranes. Angew. Chem. Int. Ed. 49, 6186–6189 (2010).
11. Touroumaki, E., Sung, J., Kim, D. & Osuka, A. Stable boron peroxides with a subphosphoryrinato ligand. Angew. Chem. Int. Ed. 55, 2596–2599 (2016).
12. Kong, L., Lu, W., Li, Y., Ganguly, R. & Kinjo, R. Azaborabutadienes: synthesis by metal-free carboboration of nitriles and utility as building blocks for N-heterocycles. Angew. Chem. Int. Ed. 55, 14718–14722 (2016).
13. Sigmoid, L. M. et al. Dioxygen activation and pyrrole a-clearage with calix[4]pyrroloato aluminates: enamine model by structural constraint. Angew. Chem. Int. Ed. 50, 15632–15640 (2011).
14. Prinič, G., G., Lozinie, M. & Iskra, J. Expanding the boron peroxide chemistry on BODIPY scaffold. Dyes. Pigment. 190, 109290 (2021).
15. Lewiski, J. et al. Oxidation of alkylzinc complexes with pyrrolylketiminate ligand: access to alkylperoxide versus-oxygen-encapsulated complexes. Chem. Commun. 119, 215–217 (2009).
16. Lewiski, J. et al. Alkylzinc carboxylates as efficient precursors for zinc oxocarboxylates and sulfido-carboxylates. Angew. Chem. Int. Ed. 47, 537–538 (2008).
17. Mąkolśki, L. et al. Probing the role of n interactions in the reactivity of oxygen species: a case of ethylzinc aryloxides with different dispositions of aromatic rings toward the metal center. Chem. Eur. J. 20, 14790–14799 (2014).
18. Sobotta, P. et al. Probing secondary coordination sphere influence on the oxidation of alkylzinc formation of a unique zinc peroxide species. Chem. Commun. 49, 10477–10479 (2013).
19. Pietrzak, T. et al. Oxidation chemistry of magnesium alkyls: Incorporating β-diketiminate ligands revisited. Chem. Eur. J. 22, 17776–17783 (2016).
20. Pietrzak, T. et al. Reaching milestones in the oxygenation chemistry of magnesium alkyls towards intimate states of O_2 activation and the first mononercor well-defined magnesium alkylperoxide. Chem. Eur. J. 25, 2503–2510 (2019).
21. Lewiski, J., Marciniak, W., Lipkowski, J. & Justyniak, I. New insights into the reaction of zinc alkyls with dioxygen. J. Am. Chem. Soc. 125, 12698–12699 (2003).
22. Lewiski, J. et al. First structurally authenticated zinc alkylperoxide: a model system for the epoxidation of enones. Angew. Chem. Int. Ed. 42, 4643–4646 (2003).
The authors would like to acknowledge the National Science Centre - Grant OPUS DEC-2017/27/B/ST5/02329, and European Union, Regional Development Fund within a project of Foundation for Polish Science - POMOST/2013–8/15 (K.Z.) and Foundation for Polish Science START scholarship no. 064/2021 (T.P.) for financial support. T.P. is a recipient of a scholarship awarded by the Polish Ministry of Education and Science to outstanding young scientists.

Author contributions
T.P. carried out the synthetic experiments and analysed the experimental data. K.Z. analysed the experimental data. Z.O. analysed the data concerning the epoxidation reaction. K.N. performed the experiments on the metathesis reaction. I.J. carried out the X-ray single-crystal structure analyses. J.L. originated the central idea, coordinated the work and analysed the experimental data. J.L. and T.P. wrote the manuscript.

Competing interests
The authors declare no competing interest.

Additional information

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s42004-021-00560-9.

Correspondence
and requests for materials should be addressed to J.Lns.

Peer review information
Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

44. Boche, G., Móbus, K., Harms, K., Lohrenz, J. C. W. & Marsch, M. [Lithium tert-butyropheroxide]$_2$: crystal structure of an aggregated oxenoid. *Chemistry* **2**, 604–607 (1996).
45. Han, R. & Parkin, G. [Tris(pyrazolyl)hydroborato]magnesium alkyl derivatives: reactivity studies. *J. Am. Chem. Soc.* **114**, 748–757 (1992).
46. Ren, W., Zhang, S., Xu, Z. & Ma, X. Reactivity of a β-diketiminate-supported magnesium alkyl complex toward small molecules. *Dalton Trans.* **48**, 3109–3115 (2019).
47. Małkowska, I. et al. Unravelling structural mysteries of simple organozinc alkoxides. *Chemistry* **27**, 5666–5674 (2021).
48. Komorski, S., Leszczyński, M. K., Justyniak, I. & Lewiński, J. Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles. *Dalton Trans.* **49**, 17388–17394 (2020).
49. de Vries, F., Traveso-Puente, R., Roewen, P. & Otten, E. Three-coordinate zinc methyl complexes with sterically demanding formazanate ligands. *Organometallics* **40**, 63–71 (2021).
50. Karaman, H. S., Kliç, H. & Şahin, E. Asymmetric epoxidation of enones using cumyl hydroperoxide and in situ generated zinc complexes of chiral pyrrolidinyl alcohols. *Tetrahedron*: *Asymmetry* **28**, 1626–1632 (2017).
51. Enders, D., Zhu, J. & Raabe, G. Asymmetric epoxidation of enones with oxygen in the presence of diethylzinc and (R,R)-N-methylpseudoephedrine. *Angew. Chem. Int. Ed.* **35**, 1725–1728 (1996).
52. Raheem Kerei, A., Justyniak, I., Jurczak, J. & Lewiński, J. Quest for efficient catalysts based on zinc tert-buty1 peroxides for asymmetric epoxidation of enones: C_3 vs C_2-symmetric auxiliaries. *Adv. Synth. Catal.* **358**, 864–868 (2016).
53. Łowicki, D., Bai, S. & Mlynski, J. Chiral zinc catalysts for asymmetric synthesis. *Tetrahedron* **71**, 1339–1394 (2015).
54. Kubisiak, M. et al. Catalytic epoxidation of enones mediated by zinc alkylperoxide/tert-BuOOH systems. *Organometallics* **32**, 5263–5265 (2013).
55. Jacques, O., Richards, S. J. & Jackson, R. F. W. Catalytic asymmetric epoxidation of aliphatic enones using tartrate-derived magnesium alkoxides *Chem. Commun.* **2712–2713** (2001).
56. Hinch, M. et al. Effective asymmetric oxidation of enones and alkyl aryl sulfides. *J. Mol. Catal. A Chem.* **251**, 123–128 (2006).
57. Lin, F. et al. Chain transfer to toluene in styrene coordination polymerization. *Angew. Chem. Int. Ed.* **59**, 4324–4328 (2020).
58. Elston, C. I., Jackson, R. F. W., MacDonald, S. J. F. & Murray, P. J. Asymmetric epoxidation of chalcones with chirally modified lithium and magnesium tert-buty1 peroxides. *Angew. Chem. Int. Ed. Engl.* **36**, 410–412 (1997).
59. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307–326 (1997).
60. Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr.* **A 64**, 112–122 (2008).