Endophytes of Terrestrial Plants: A Potential Source of Bioactive Secondary Metabolites

Nasiruddin1,2, Guangying Chen1,2,*, Yu Zhangxin1,2, Ting Zhao1,2

1Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127, P. R. China
2Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, P. R. China
*Corresponding author: chgying123@163.com

Received June 23, 2020; Revised July 24, 2020; Accepted August 04, 2020

Abstract Endophytes are plant inhabiting microorganisms that possess a big and untapped source of natural products with unique chemical structures and biological activities for pharmaceutical and agriculture industry. About, several hundred of endophytes are associated with plants. Metabolites isolated from endophytes with diverse structures belong to alkaloids, steroids, terpenoids, flavonoids, phenols, flavonoids and others. The discovery of an array of therapeutic products has diverted the scientist’s interest from plants to these microorganisms. Hundreds of natural compounds have been obtained and structurally classified while other new active metabolites are under investigation. This present review is an approach to summarize some chemical classes of bioactive compounds obtained from these microorganisms and paving the way for future work.

Keywords: bioactivities, endophytes, natural products, secondary metabolites

Cite This Article: Nasiruddin, Guangying Chen, Yu Zhangxin, and Ting Zhao, “Endophytes of Terrestrial Plants: A Potential Source of Bioactive Secondary Metabolites.” Journal of Food and Nutrition Research, vol. 8, no. 7 (2020): 362-377. doi: 10.12691/jfnr-8-7-8.

1. Introduction

Endophytes are microorganisms (fungi, bacteria and actinomycetes) inhabiting healthy plant intercellularly and/or intracellularly without causing any visible symptoms of disease [1,2]. De Bary was first to introduce the term “Endophyte” in 1866 [3], which was initially referred to all those organisms that found within a plant causing nonvisible infections entirely within plant tissues showing no apparent symptoms of disease [1]. Endophytes dwell all plant species reported to date throughout the globe in a symbiotic relation [4].

During the last decades, endophytes have been searched out for important metabolites. It is evident from research that endophytes are a new source and gold-mine of novel natural products to treat different ailments in human and plants. They are synthesizers of chemical entities that are extensively used as agrochemicals, antibiotics, immunosuppressant, antiparasitics, and anticancer agents [5]. As a routine work, medical herbs are directly used for therapeutic components to isolate and characterize. However, the discovery of plant endophytes with potential of medicinal compounds tremendously attracted the interest of chemists to search for new drugs. Among these microbes, endophytic fungi have been found bountiful of unexploited biologically active small molecules [6].

Based on the studies about microorganisms, actinomycetes and fungi have been reported to be the most productive source of therapeutic agents. Fungi are vital for a balanced ecosystem and biodiversity conservation [7,8]. The endophyte was first discovered in 1904 [9]. Endophytes attracted dramatic attention when their ability of synthesizing biologically active components having structures were realized. Hence, for the last 20 years, over 100 endophytes of various hosts have been investigated for chemical and biological assessment of a huge number of metabolites. Among them, many have been found to have unique structures and interesting biological functions. Gusman and Vanhaelen first isolated natural compounds from 38 endophytic fungi and studied their pharmacology [10].

About 138 natural products of endophytes were communicated by Tan and Zou [11]. These secondary metabolites may be mainly classified as; alkaloids, flavonoids, phenolic acids, quinones and many others [12]. Schulz et al. [13], Strobel [14,15] and Strobel et al. [16] have explained their own research on endophytes. This review aims to present some previous and new interventions related to isolation of metabolites from endophytes.

1.1. Types of Endophytes

Endophytes have been described as; Bacterial endophytes are found best producers of different therapeutic compounds. About 76% of them obtained from Streptomyces [17]. They are either gram-positive or gram-negative, such as, Actinobacter, Agrobacterium, Bacillus, Microbacterium and Pseudomonas etc. [18]. More than 200 genera serve as endophytes [19].
Actinomycetes possessing mycelium like fungus and forms spores. These microorganisms were thought out transitional forms between the fungi and bacteria [20,21]. They are bacteria like but actinomycetes have thin cells and an organized chromosome in a prokaryotic nucleoid and a peptidoglycan cell wall. This class has demonstrated synthesis of numerous chemical entities of unique structures that have significant medicinal value [22,23].

Fungi are heterotrophic organisms with various life cycles that inhabit symbiotically a wide variety of autotrophic organisms [24]. Endophytic fungi have been branched into clavicipitaceous and non-clavicipitaceous endophytes. The first are inhabitants of some grasses while the other of non-vascular plants and higher plants restricted to Ascomycota or Basidiomycota group. Most of known antibiotic and anticancer drugs were derived from these organisms. For example, Penicillenols and Taxol were potent drugs isolated from Penicillium sp. and Taxomyces andreanae, respectively. More than 20,000 bioactive products having unprecedented structures have been reported in the literature [25].

1.2. Distribution in Nature

Endophytes are ubiquitous and almost all vascular plant species studied to date were found to anchor endophytic bacteria and/or fungi [26,27]. Endophytes play a vital role in biodiversity of microbes [28]. They are host specific and a plant may harbor many species. The population of endophytes also depends on environmental conditions of the host plants [29], and the tropical areas may have variegated endophyte profile. Tropical endophytes may be hyper diverse and unevenly scattered in a specific area [27]. Genotypic diversity is also found in some endophytes of conifers and grasses. Hence, endophytes are omnipresent depending on host and location for their population [30,31,32,33].

2. Isolation and Identification

Different methods of isolation like Agar Plate Method and Standard Moist Blotter method are used to isolate mycologia from medicinal plants [34,35,36]. Cultivation-independent assays and in situ hybridization-confocal laser scanning microscopy are used for their detection [37,38]. Mostly isolation from sterilized tissue of inhabitant’s plant is used to detect endophytes. Different methods of isolation have also been described by Rehman et al. [39] and Karunai & Balagengatharilagam [40].

Morphological characteristics and biochemical tests are also usually used to identify bacteria, fungi, and actinomycetes [41,42]. Due to recent advancement in molecular studies, ribosomal DNA Internal Transcribed Spacer (ITS) sequence technique is a frequent practice to identify microorganisms [43]. Primarily, Pleurostoma and Chaetomium along with others were identified as endophytes by ITS technique [44].

3. Review: Bioactive Compounds

During the last few years a number of secondary metabolites originated from endophytes have been documented. They are indispensable due to their chemical and diverse biological properties. Some of the bioactive compounds are reviewed under the following groups.

3.1. Alkaloids

Alkaloids are naturally occurring nitrogenous chemical compounds of plant origin. They have pronounced physiological effects on humans and other animals. Camptothecin (1, CPT) is topoisomerase inhibitor and most potent cytotoxic compound [45,46] having anticancer activities. CPT and its derivatives such as 10-hydroxycamptothecin (2) and 9-methoxycamptothecin (3) were derived from Fissarium solani; inhabitant of Apodytes dimidiata [47]. Eupenicillium sp. was isolated from Murraya paniculata and produced alanditrypinone (4), alantryphenone (5), alantypinene B (6) and alantyleunone (7) [48]. Asperfumoid (8) is a new alkaloid and was isolated from Aspergillus fumigatus CY018, an endophyte of Cynodon dactylon. This metabolite caused inhibition of Candida albicans [49]. Aspergerin (9) was produced by Aspergillus niger IFB-E003 (having same host), demonstrated growth inhibition of tumor cells [50].

Phomoenamide (10) was isolated from fungus Phomopsis sp. PUS-D15; an endophyte of Garcinia dulcis Kuiz leaves. The compound has antibacterial activity against Mycobacterium tuberculosis H37Ra [51]. An endophyte Xylaria sp. was cultured from Ginkgo biloba L., which produced a compound 7-amino-4-methylcoumarin (11) having strong antibacterial and antifungal activities [52]. A novel product; 7-O-methylvariecolortide A (12) was produced by an endophyte found inside the stems of Hibiscus tiliaceus [53]. Phomopsichalasin (13), a novel alkaloid produced by fungus Phomopsis living on Salix gracilistylora. The compound proved to have antibacterial and antifungal properties [54].

Chaetoglobosins A (14) and C (15), were obtained from C. globosum; an endophyte of Ginkgo biloba. These two compounds proved to have antibacterial activity against Mucor miehei. [55]. Fungus Cladosporium (CLI-2) derived from young A. amstelodami -VR177L, C. ledgeriana; an endophyte of Hibiscus畅 leaves. The compound has antibacterial activity against Kuiz leaves. The compound has antibacterial activity against C. globosum; an endophyte of C. globosum; an endophyte of K. vulgaris. A novel product; 7- amino-4-methylcoumarin (16) having strong antibacterial and antifungal activities [52]. A novel product; 7-O-methylvariecolortide A (12) was produced by an endophyte found inside the stems of Hibiscus tiliaceus [53]. Phomopsichalasin (13), a novel alkaloid produced by fungus Phomopsis living on Salix gracilistylora. The compound proved to have antibacterial and antifungal properties [54].

Chaetoglobosins A (14) and C (15), were obtained from C. globosum; an endophyte of Ginkgo biloba. These two compounds proved to have antibacterial activity against Mucor miehei. [55]. Fungus Cladosporium (CLI-2) derived from young A. amstelodami -VR177L, C. ledgeriana; an endophyte of Hibiscus畅 leaves. The compound has antibacterial activity against C. globosum; an endophyte of C. globosum; an endophyte of K. vulgaris. A novel product; 7- amino-4-methylcoumarin (16) having strong antibacterial and antifungal activities [52]. A novel product; 7-O-methylvariecolortide A (12) was produced by an endophyte found inside the stems of Hibiscus tiliaceus [53]. Phomopsichalasin (13), a novel alkaloid produced by fungus Phomopsis living on Salix gracilistylora. The compound proved to have antibacterial and antifungal properties [54].

Chaetoglobosins A (14) and C (15), were obtained from C. globosum; an endophyte of Ginkgo biloba. These two compounds proved to have antibacterial activity against Mucor miehei. [55]. Fungus Cladosporium (CLI-2) derived from young A. amstelodami -VR177L, C. ledgeriana; an endophyte of Hibiscus畅 leaves. The compound has antibacterial activity against C. globosum; an endophyte of C. globosum; an endophyte of K. vulgaris. A novel product; 7- amino-4-methylcoumarin (16) having strong antibacterial and antifungal activities [52]. A novel product; 7-O-methylvariecolortide A (12) was produced by an endophyte found inside the stems of Hibiscus tiliaceus [53]. Phomopsichalasin (13), a novel alkaloid produced by fungus Phomopsis living on Salix gracilistylora. The compound proved to have antibacterial and antifungal properties [54].

3.2. Steroids

A steroid is a biologically active organic compound with four rings of carbon atoms arranged in a specific molecular configuration. Examples include lipid cholesterol and anti-inflammatory drug dexamethasone etc. [59]. Isolation of novel compounds, (14β,22E)-9, 14-dihydroxyergosta-4,7,22-triene-3,6-dione (20) and (5α,6β,15β,22E)-6-ethoxy-5,15-dihydroxyergosta-7,22-
3.3. Terpenoids

Terpenoids are a large and diverse class of naturally occurring organic chemicals derived from five-carbon isoprene units. Terpenoids comprise the largest group of natural products. A number of terpenoids have been isolated from plant endophytes. The xylarenones A (32), B (33) and xylarenic acid (34) were obtained from the endophytic fungus Xylaria sp.NCY2, obtained from Torreya jackii. The compounds exhibited moderate antitumor activities against HeLa cells [67]. Endophyte Phomopsis cassiae associated with Cassia spectabilis resulted two diastereoisomeric compounds named (7S, 9S, 10S)-3,9,12-trihydroxycalamenes (35, 36), 3,12 dihydroxycalamene (37), 3,12-dihydroxyacaladene (38) and 3,11,12-trihydroxyacaladene (39) [68]. Botryosphaerins A-E (40-44) along with acrostellaric acid (45), acrostellaric acid (46), agathic acid (47) and isocmpressic acid (48) were identified from Botryosphaeria sp. MHF derived from Maytenus hookeri [69]. Endophyte Xylaria sp. PSU-D14 resulted xylaroside A (49) and B (50). While Eutypella scoparia PSU-D44 produced scopararanes A (51), B (52) and diaportheins A (53), B (54). Both species are associated with Garcinia dulcis [70,71].

Endophytic fungus Phomopsis sp. XZ-26 collected from Camptotheca acuminate produced a new monoterpenoid termed as dihydroxyabane (55) [72]. The preaustinoid B2 (56), preaustinoid A3 (57), austinolide (58) and isoaustinone (59) were identified from fungi Penicillium sp. found in the root bark of Melia azedarach [73]. Fungi P. brasiliunum (inhabiting same host) resulted novel compounds, called preaustinoid A1 (60), A2 (61) and B1 (62) [74]. Guanacastepene A (63) and guanacastepene (64) were characterized from endophytes of Daphnopsis americana. Whereas, periconicine A (65) and periconine B (66) were discovered from Periconia sp. These four novel diterpenoids proved as antibiotics [75]. Three new metabolites, namely lithocarpin B (67), C (68) and D (69) were obtained from the endophytic fungus Diaporthe lithocarpus A740 derived from Morinda officinalis. Compounds B and C showed weak inhibitory activities against four tumor cell lines [76].

3.4. Quinones

Quinones are a class of cyclic organic compounds containing two carbonyl groups, > C = O, either adjacent or separated by a vinylene group, -CH = CH-, in a six-membered unsaturated ring. Herbarin (70) and its analogue herbardine A (71) have been isolated from an endophytic fungus D. nanum derived from F. religiosa [77]. Three new compounds named preussomerin J (72), K (73) and L (74) having antibacterial and antifungal activities were synthesized by an endophytic fungus Mycelia sterile isolated from the roots of Atropa belladonna. [78]. Amelopomycyces sp., an endophyte of Uropernum picroides, produced 3-O-methylalaternin (75) and tetrahydroanthraquinone altersolanol A (76). Both compounds were active against the bacteria S. aureus, S. epidermis and E. faecalis at different MIC levels [79].

A bioactive compound, termed as 4-dehydroxyaltersolanol A (77) was produced by an endophytic fungus, Nigrospora oryzae, isolated from leaves of Combretum dolichopetalum. The compound proved to be cytotoxic against mouse lymphoma cells [80]. Bipolaris sorokiniana A606 derived from Pogostemon cablin resulted novel metabolites termed as isocochlioquinones D and E (78, 79) and cochlioquinones G and H (80, 81). These metabolites showed cytotoxicity towards tumor cell lines [81]. Endophyte Fusarium solani was originated from the roots of Aponogeton undulatus Roxb, resulted two cytotoxic compounds, named 7-desmethylscorpinone (82) and 7- desmethyl-6-methylbromycin (83). Eurotium rubrum; an endophyte living on Suaeda salsa L., produced rubrulon (84). The compound inhibited Top I relaxation activity [82].

3.5. Flavonoids

Flavonoids are phenolic secondary metabolites containing 15 carbon atoms and a heterocyclic ring. They are beneficial nutrients for health and treatment of different disorders. Kaempferol (85) has been obtained from endophytic fungi Mucor fragilis collected from rhizomes of Sinopodophyllum hexandrum [83]. Luteolin (86) from endophyte Aspergillus fumigatus of Cajanus cajan displayed remarkable antioxidiant activity [84]. Two new flavonoids, 7- methoxy-3,3',4',6-tetrahydroxylavone (87) and 2',7- dihydroxy-4',5'-dimethoxyisoflavone (88) with one known compound fisetin (89) were produced by Streptomyces sp. BT01 isolated from root tissues of Boesenbergia rotunda [85]. Apigenin (4', 5', 7-tetrahydroxylavone) (90) has also been reported to be produced by Chaetomium globosum from the roots of C. cajan [86].

Three secondary metabolites, silybin A (91), silybin B (92), and isosilybin A (93) were reported for the first time.
from Aspergillus tizukae cultured from S. marianum leaves [87]. Naringenin (94) having antioxidant and neuroprotective effect was detected in the extract of the endophytic fungus Verticillium sp. isolated from Lippia sidoides Cham [88]. Quercetin (95) was predicted in four endophytic bacterial strains of Kenikir leaves. It has shown anticancer, antibacterial and antifungal activities due to its toxicity [89].

3.6. Peptides

Peptides consist of two or more α-amino acids linked in a chain; the carboxyl group of each acid being joined to the amino group of the next by a bond of the type –OC-NH. Bioactive peptides have demonstrated potential for application as health promoting agents. Endophytic fungus of Castaniopsis fissa produced cyclo-(L-Val-L-Leu-L-Val-L-Leu) (96) and cyclo-(L-Leu-L-Ala-L-Leu-L-Ala) (97) [90,91]. The compounds showed anticancer properties. Further, curvularides A-E (98-102) were isolated from Curvularia geniculata originated from Catunaregam tomentosa [92]. For the first time, cycloaspetide A (103) was obtained from Penicillium janczewskii K. M. Zaleskyy collected from Prunus pythis andina. The compound was less toxic against human lungs fibroblasts [93].

Trichomides A (104) and B (105) are two new cyclodepsipeptides isolated from the fungus Trichothecium roseum IFB-E066, which dwells in the roots of Imperata cylindrical. Trichomide A proved to have immunosuppressive effect [94]. Endophyte Pestalotiopsis sp. of Acreostichum aureurm origin resulted two new antibacterial compounds named cyclo (Pro-Thr) (106) and cyclo (Pro-Tyr) (107) [95].

3.7. Phenols and Phenolic Acids

Phenol, also known as carbolic acid, is an aromatic organic compound with the molecular formula C₆H₅OH. They are sometime called phenolics and contribute many benefits to human health.

A novel phenolic compound, 4-(2,4,7-trioxabicyclo[4.1.0]heptan-3-yl) (108) with antifungal and antibacterial activity, was isolated from Pestalotiopsis mangiferae, an endophytic fungus of Mangifera indica Linn. [96]. Isolation of an antioxidant compound; graphilactone A (109) was carried out from Cephalosporium sp. IFB-E001 hosted by Trachelospermum jasminoides, [97]. A compound, 2-methoxy-4-hydroxy-6-methoxymethyl-benzaldehyde (110) was isolated from Pezicula sp. strain 553 residing on coniferous trees [98]. Three phenolic compounds, p-hydroxyphenylacetic acid (111), tyrosol (112) and protocatechuic (113) acid were isolated from endophytic fungi Pseudofusisoccum sp. derived from Annona muricata. All these compounds exhibited antioxidant activities [99]. Pestalachlorides A-C (114-116) as new chlorinated benzophenone derivatives isolated from a plant endophyte Pestalotiopsis adusta. Compounds A and B demonstrated significant antifungal activities [100]. A new antimicrobial tridepside colletotric acid (117) was produced by Colletotrichum gloeosporioides cultured from Artemisia mongolica [11]. A new cytotoxic benzophenone derivative, tenllone I (118) was isolated from the endophytic fungus Diaportha li-thocarpus A740 of Morinda officinalis [76].

3.8. Aliphatic Compounds

Those organic compounds whose carbon atoms are linked in open chains, either straight or branched, rather than containing a benzene ring, are known as aliphatic compounds.

An antimicrobial compound, brefeldin A (119) was obtained from an endophytic fungi Cladosporium sp. residing in Quercus variabilis [101]. New cyclohexane derivatives, pestalofones A-E (120-124) were obtained from Pestalotiopsis fici, an endophyte fungus inhabitant of the branches of an unidentified tree in Hangzhou, China [102]. Gamamonolides A (125) and B (126) were isolated from E. typhina living on Phleum pretense [103]. A new 6-hydroxyphomodiol (127) metabolite was characterized from an endophytic Phomopsis sp. xz-01 isolated from Camptotheca acuminate. The compound showed selective activity against HepG2 cancer cell lines [104]. A novel azaphilone derivative, chaetomugilin D (128) was derived from C. globosum that resides on Ginkgo biloba. The compound proved to cause significant growth inhibition of brine shrimp and Mucor miehet [55].

**Table 1. SECONDARY METABOLITES OF PLANT ENDOPHYTES AND THEIR PHARMACOLOGICAL ACTIVITIES**

| No. | Compound Name | Source of origin | Bioactivities | References |
|-----|---------------|------------------|--------------|------------|
| 1   | Camptothecin   | *F. solani*      | Anticancer   | [45,46]    |
| 2   | 10-hydroxycamptothecin | *F. solani* | Antitumor | [47] |
| 3   | 9-methoxy camptothecin | *F. solani* | antitumor | [47] |
| 4   | Alantryptinone | *Eupenicillium sp.* |          | [48] |
| 5   | Alantyphene    | *Eupenicillium sp.* |          | [48] |
| 6   | Alantryptinne B | *Eupenicillium sp.* |          | [48] |
| 7   | Alantryleneunone | *Eupenicillium sp.* |          | [48] |
| 8   | Asperfuniloid  | *A. fumigatus CY018* | Antifungal | [49] |
| 9   | Aspernigerin   | *A. niger IFB-E003* | Antitumor | [50] |
| 10  | Phomoenamide   | *Phomopsis sp. PUS-D15* | Antibacterial | [51] |
| 11  | 7-amino-4-methylcoumarin | *Nelaria sp.* | Antibacterial, antifungal | [52] |
| 12  | 7-O-methylvariecoltride A | *E. rubrum* |          | [53] |
| 13  | Phomospichalasin | *Phomopsis* | Antibacterial, antifungal | [54] |
| 14  | Chaelotogobolin A | *C. globosum* | Antibacterial | [55] |
| 15  | Chaelotogobolin C | *C. globosum* | Antibacterial | [56] |
| 16  | Cunchorane     | *Cladosporium CLJ-2* |            | [56] |
| 17  | Herquilune B   | *T. pinophilus*   | Antimicrobial | [57] |
| 18  | Vincristine    | *Pestalotiopsis sp.* | Antitumor | [58] |
| 19  | Vinblastine    | *Pestalotiopsis sp.* | Antitumor | [58] |
| No. | Compound Name | Source of origin | Bioactivities | References |
|-----|---------------|------------------|--------------|------------|
| 20  | (14Z,22E)-9,14-dihydroxyergosta-4,7,22-triene-3,6-diene | *Phomopsis* | Antifungal | [60] |
| 21  | (5α,6β,15β,22E)-6-ethoxy-5,15-dihydroxyergosta-7,22-dien-3-one | *Phomopsis* | Antifungal | [60] |
| 22  | (22E,24R)-3-acetoxy-19(10→6)-abeo-ergosta-5,7,9,22-tetraena-3beta-ol | *Colletotrichum sp.* | Antibacterial | [61] |
| 23  | 3β,5α-dihydroxy-6β-acetoxyergosta-7,22-diene | *Colletotrichum sp.* | Antifungal | [62] |
| 24  | 3β,5α-dihydroxy-6β-phenyl-acetoxyergosta-7,22-diene | *Colletotrichum sp.* | Antifungal | [62] |
| 25  | Globasterol | C. globoSUM ZY-22 |  | [63] |
| 26  | Tetrahydroxylated ergosterol (22E, 24R)-ergosta-7,22-diene-3β,5α,6β, 9α-tetraol | C. globoSUM ZY-22 |  | [63] |
| 27  | 5α,8α-epidioxyergosterol | *Nodosusporium* sp. |  | [64] |
| 28  | Solanic acid | *R. solani* | Antibacterial | [65] |
| 29  | Fusaristerol B | *Fusarium* sp. | Antiflammatory | [66] |
| 30  | Fusaristerol C | *Fusarium* sp. | Antiflammatory | [66] |
| 31  | Fusaristerol D | *Fusarium* sp. | Antiflammatory | [66] |
| 32  | Xylarenone A | *Xylaria* sp. NCY2 | Antitumor | [67] |
| 33  | Xylarenone B | *Xylaria* sp. NCY2 | Antitumor | [67] |
| 34  | Xylarenic acid | *Xylaria* sp. NCY2 | Antitumor | [67] |
| 35  | (7S, 9R, 10S)-3, 9, 12-trihydroxy calamene, | *P. cassiae* | Antifungal | [68] |
| 36  | (7S, 9R, 10S)-3, 9, 12-trihydroxy calamene | *P. cassiae* | Antifungal | [68] |
| 37  | 3, 12-dihydroxy calamene | *P. cassiae* | Antifungal | [68] |
| 38  | 3, 12-dihydroxy calamene | *P. cassiae* | Antifungal | [68] |
| 39  | 3, 11, 12-trihydroxy calamene | *P. cassiae* | Antifungal | [68] |
| 40  | Botryosphaerin A | *Botryosphaeria* sp. MHF |  | [69] |
| 41  | Botryosphaerin B | *Botryosphaeria* sp. MHF |  | [69] |
| 42  | Botryosphaerin C | *Botryosphaeria* sp. MHF |  | [69] |
| 43  | Botryosphaerin D | *Botryosphaeria* sp. MHF |  | [69] |
| 44  | Botryosphaerin E | *Botryosphaeria* sp. MHF |  | [69] |
| 45  | Acrostalidic acid | *Botryosphaeria* sp. MHF |  | [69] |
| 46  | Acrostalidic acid | *Botryosphaeria* sp. MHF |  | [69] |
| 47  | Agathic acid | *Botryosphaeria* sp. MHF |  | [69] |
| 48  | Isocoumepic acid | *Botryosphaeria* sp. MHF |  | [69] |
| 49  | Xylaroside A | *Xylaria* sp. PSU-D14 | Antifungal | [70] |
| 50  | Xylaroside B | *Xylaria* sp. PSU-D14 | Antifungal | [70] |
| 51  | Scoparanone A | *E. scoparia* PSU-DS44 | Antimicrobial | [71] |
| 52  | Scoparanone B | *E. scoparia* PSU-DS44 | Antimicrobial | [71] |
| 53  | Diaporthein A | *E. scoparia* PSU-DS44 | Antimicrobial | [71] |
| 54  | Diaporthein B | *E. scoparia* PSU-DS44 | Antimicrobial | [71] |
| 55  | Dihydroxysabinane | *Phomopsis* sp. XZ-26 |  | [72] |
| 56  | Preaustiodin B2 | *Penicillium* sp. |  | [73] |
| 57  | Preaustiodin A3 | *Penicillium* sp. |  | [73] |
| 58  | Austinolide | *Penicillium* sp. |  | [73] |
| 59  | Isoustinone | *Penicillium* sp. |  | [73] |
| 60  | Preaustiodin A1 | *P. brasiliarum* |  | [74] |
| 61  | Preaustiodin A2 | *P. brasiliarum* |  | [74] |
| 62  | Preaustiodin B1 | *P. brasiliarum* |  | [74] |
| 63  | Guanacastepene A | CR115 | Antibacterial | [75] |
| 64  | Guanacastepene | CR115 | Antibacterial | [75] |
| 65  | Periconicin A | *Periconia* sp. |  | [75] |
| 66  | Perichein B | *Periconia* sp. |  | [75] |
| 67  | Lithocarin B | *D. lithocarpus* A740 | Antitumor | [76] |
| 68  | Lithocarin C | *D. lithocarpus* A740 | Antitumor | [76] |
| 69  | Lithocarin D | *D. lithocarpus* A740 | Antitumor | [76] |
| 70  | Herbarin | *D. nanum* | Antiinflammatory, antidiabetic | [77] |
| 71  | Herbaridine A | *D. nanum* |  | [77] |
| 72  | Preussomerin J | *Myelia sterile* | Antibacterial, antifungal | [78] |
| 73  | Preussomerin K | *Myelia sterile* | Antibacterial, antifungal | [78] |
| 74  | Preussomerin L | *Myelia sterile* | Antibacterial, antifungal | [78] |
| 75  | 3-O-methylalaternin | *Amelonodes* sp. | Antibacterial | [79] |
| 76  | Altersolanol A | *Amelonodes* sp. | Antibacterial | [79] |
| 77  | 4-dihydroxylaltersolanol A | *N. erytrea* | Anticancer | [80] |
| 78  | Isocochliioquinone D | *B. sorokiniana* A606 | Antitumor | [81] |
| 79  | Isocochliioquinone E | *B. sorokiniana* A606 | Antitumor | [81] |
| 80  | Cochliioquinone G | *B. sorokiniana* A606 | Antitumor | [81] |
| 81  | Cochliioquinone H | *B. sorokiniana* A606 | Antitumor | [81] |
| 82  | 7-desmethylosoconiphroline | *F. solani* | Anticancer | [82] |
| 83  | 7-desmethyl-6-methylbostrycoidin | *F. solani* | Anticancer | [82] |
| 84  | Rubrulonol | *E. rubrum* | Top 1 relaxation activity inhibitor | [82] |
| No. | Compound Name               | Source of origin                  | Bioactivities                                      | References |
|-----|-----------------------------|-----------------------------------|----------------------------------------------------|------------|
| 85  | Kaempferol                  | *M. fragilis*                     | Anticancer, antiinflammatory                       | [83]       |
| 86  | Luteolin                    | *A. fumigatus*                    | Antiinflammatory                                   | [84]       |
| 87  | 7-methoxy-3,3',4',6-tetrahydroxyflavone | *Streptomyces sp. BT01*         | Antibacterial                                       | [85]       |
| 88  | 2',7-dihydroxy-4',5'-dimethoxyisoflavone | *Streptomyces sp. BT01*         | Antibacterial                                       | [85]       |
| 89  | Fisetin                     | *Streptomyces sp. BT01*          | Antibacterial                                       | [85]       |
| 90  | Apigenin                    | *C. globosum*                    | Antioxidant                                         | [86]       |
| 91  | Silybin A                   | *A. iizukae*                     | Anticancer, antibacterial                           | [87]       |
| 92  | Silybin B                   | *A. iizukae*                     | Anticancer                                          | [87]       |
| 93  | Isoisoybin A                | *A. iizukae*                     | Anticancer                                          | [87]       |
| 94  | Naringenin                  | *Verticillium sp.*               | Antioxidant, neuroprotective                        | [88]       |
| 95  | Quercetin                   | *Serralia sp.*, *Nettseria sp.*, *Yersinia sp.* | Antibacterial, antifungal, anticancer                | [89]       |

| Peptides |
|----------|
| 96       | Cyclo-(L-Val-L-Leu-L-Val-L-Leu) | *C. fissa*                      | Anticancer                                         | [90,91]    |
| 97       | Cyclo-(L-Leu-L-Ala-L-Leu-L-Ala) | *C. fissa*                      | Anticancer                                         | [90,91]    |
| 98       | Curcularide A                | *C. geniculata*                 |                                                    | [92]       |
| 99       | Curcularide B                | *C. geniculata*                 |                                                    | [92]       |
| 100      | Curcularide C                | *C. geniculata*                 |                                                    | [92]       |
| 101      | Curcularide D                | *C. geniculata*                 |                                                    | [92]       |
| 102      | Curcularide E                | *C. geniculata*                 |                                                    | [92]       |
| 103      | Cycloaspetide A              | *P. janczewskii K. M. Zalessky*  | Cytotoxic against human lung fibroblasts           | [93]       |
| 104      | Trichomide A                 | *T. roseum IFB-E066*            | Immunosuppressant                                  | [94]       |
| 105      | Trichomide B                 | *T. roseum IFB-E066*            | Immunosuppressant                                  | [94]       |
| 106      | Cyclo (Pro-Thr)              | *Penicillium sp.*               | Antibacterial                                       | [95]       |
| 107      | Cyclo (Pro-Tyr)              | *Penicillium sp.*               | Antibacterial                                       | [95]       |

| Phenols and Phenolic Acids |
|---------------------------|
| 108          | 4-(2, 4, 7-trioxa-bicycle (4.1.0) heptan-3-yl) | *P. mangiferae* | Antifungal, antibacterial                          | [96]       |
| 109          | Graphisactone A              | *Cephalosporium sp. IFB-E001*   | Antioxidant                                         | [97]       |
| 110          | 2-Methoxy-4-hydroxy-6-methoxymethyl-benzaldehyde | *Pezicula sp. strain 553*    | Antifungal, antibacterial                           | [98]       |
| 111          | p-hydroxyphenylacetic acid   | *Pseudofuscococum sp.*         | Antibacterial, antioxidant                          | [99]       |
| 112          | Tyrosol                     | *Pseudofuscococum sp.*         | Antioxidant                                         | [99]       |
| 113          | Protocatechic acid           | *Pseudofuscococum sp.*         | Antioxidant                                         | [99]       |
| 114          | Pestalacthloride A           | *P. adusta*                    | Antifungal                                          | [100]      |
| 115          | Pestalacthloride B           | *P. adusta*                    | Antifungal                                          | [100]      |
| 116          | Pestalacthloride C           | *P. adusta*                    | Antifungal                                          | [100]      |
| 117          | Colletotric acid             | *C. gloeosporoides*            | Antimicrobial                                       | [11]       |
| 118          | Tenuifolone I                | *D. illirocapatus A740*        |                                                    | [76]       |

| Aliphatic Compounds |
|---------------------|
| 119          | Brefeldin A                | *Cladosporium sp.*            | Antitumor, antifungal, antiviral                    | [101]      |
| 120          | Pestalofone A              | *P. fici*                     | Antiviral                                           | [102]      |
| 121          | Pestalofone B              | *P. fici*                     | Antiviral                                           | [102]      |
| 122          | Pestalofone C              | *P. fici*                     | Antifungal                                          | [102]      |
| 123          | Pestalofone D              | *P. fici*                     | Antifungal                                          | [102]      |
| 124          | Pestalofone E              | *P. fici*                     | Antiviral, antifungal                               | [102]      |
| 125          | Gamanolide A               | *E. typhina*                  | Antifungal                                          | [103]      |
| 126          | Gamanolide B               | *E. typhina*                  | Antifungal                                          | [103]      |
| 127          | 6-hydroxyxanthomodiol       | *Phomopsis sp. xz-01*         | Anticancer                                          | [104]      |
| 128          | Chaetomugilin D            | *C. globosum*                 | Antifungal, brine shrimp growth inhibition          | [55]       |

**Alkaloids:**

![Camptothecin](image)

![10-hydroxycamptothecin](image)

![9-methoxycamptothecin](image)

![Alantyrpinone](image)

![Alantyrphenone](image)

![Alantyrpimine B](image)
Journal of Food and Nutrition Research

Phenolic and Phenolic Acids:

- Curvularide B
- Curvularide D
- Curvularide E
- Cycloaspertidene A
- Trichormide A
- Trichormide B
- Cydo-(Pro-Thr)
- Cydo-(Pro-Tyr)

4-(2,4,7-trioxabicyclo[4.1.0]heptan-3-yl)
4-Hydroxyphenylacetic acid
Tyrosol
Protocatechuic acid

Graphistactone A
2-Methoxy-4-hydroxy-6-methoxymethylbenzaldehyde

Pestalochloride A
Pestalochloride B
Pestalochloride C
Tanilene 1
4. Conclusion and Future Perspectives

It is evident from the literature and data available about the active metabolites produced by plant endophytes that the field is of great interest for Chemists and Biologists. Biology of endophytic microorganisms has developed as a new arena to hunt for novel compounds. A number of bioactive compounds have been isolated and reported so far. Endophytes are continuously under investigation to report many novel compounds of high biological importance.

The existence behavior of endophytes needs better understanding to select and study relevant plants for microfloral compounds. The progress to find new endophytes like *Muscodor albus*, and *Pestalotiopsis microspora*, *Piriformospora indica*, and *Taxomyces andreanae* has made scientists attracted towards new drugs and technological development [105]. Searching for bioactive compounds, based on endophytes would be a possible way to avoid drug resistance of bacterial strains [106]. Hence, new acquisitions in this field will be fundamental in order to exploit microbial strains for highly effective and large-scale production of plant derived drugs [107].

Acknowledgments

This work was supported by the Key Research and Development Project of Hainan Province (ZDYF2019165), the Innovative Research Team Project of Ministry (IRT-16R19), and the National Natural Science Foundation of China (Nos. 21662012 and 41866005).

References

[1] Wilson, D., Endophyte: The evolution of a term, and clarification of its use and definition. *Oikos*, 1995, 73(2), 274-276.
[2] Nair, D. N. and Padmavathy, S., Impact of endophytic microorganisms, plants, environment and humans. *Sci World J.*, 2014, Article ID 250693, 11 pages.
[3] Bary, A. D., Morphology and physiology of fungi, lichens and myxomycetes. In *Hofmeister's Handbook of Physiological Botany*. Leipzig, Germany, 1866, Vol. 2, pp. 1831-1888.
[4] Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P. and Qin, L., Recent developments and future prospects of antimicrobial metabolites produced by endophytes. *Microbiol Res.*, 2010, 165(6), 437-449.
[5] Gunatilaka, A. A., Natural products from plant-associated...
microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 549-566.

[6] Caroll, G. Fungal endophytes in stem and leaves: from latent pathogen to mutualistic symbiont. Ecology, 1988, 69(1), 2-9.

[7] Clay, K. and Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science, 1999, 285(5434), 1742-1745.

[8] Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y. and Su, W., Brefeldin A, a cytotoxic produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreira grandis. FEMS Immunol. Med. Micr., 2002, 34(1), 51-57.

[9] Shashank, A. T., Rakesh, K. K. L., Ramakrishna, D., Kiran, S., Kosturtkova, G. and Ravishankar, A. G., Current understandings of endophytes: their relevance, importance and industrial potentials. IOSR J. Biotechnol. Biochem., 2017, 3(3), 43-59.

[10] Gussman, J. and Vanhaelen, M., Endophytic fungi: an underexplored source of biologically active secondary metabolites. Recent Rev. Dev. Phytomed., 2000, 1, 187-206.

[11] Tan, R. X. and Zou, W. X., Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 2001, 18, 448-459.

[12] Godstine, O.C., Enwa, F.O., Augustino, J.O., Christopher, E.O., Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens -A review. J. Pharm. Chem. Biol. Sci., 2014, 2(2), 77-85.

[13] Schulz, B., Boyle, C., Draeger, S., Rommert, A. K. and Krohn, L., Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 2006, 106(6), 996-1004.

[14] Strobel, G. A., Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol., 2002, 22(4), 315-333.

[15] Strobel, G. A., Endophytes as source of bioactive products. Microbes Infect., 2003, 5(6), 535-544.

[16] Strobel, G. A., Daisy, B. H., Castillo, U. and Harper, J., Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268.

[17] Berdy, J., Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot., 2012, 65(8), 385-395.

[18] Hui, S., Yan, H., Qing, X., Renyuan, Y. and Yongqiang, T. Isolation, characterization and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr. J. Microbiol. Res., 2013, 7(16), 1496-1504.

[19] Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H. and Rai, M., Endophytic actinobacteria of medicinal plants: diversity and functional metabolites. J. Appl. Microbiol., 2013, 114(5), 951-962.

[20] Chen, X. Y., Qi, Y. D., Wei, J. H., Zhang, Z., Wang, D. L., Feng, J. D. and Gan, B. C., Molecular identification of endophytic fungi from medicinal plants of virudhunagar district for antimicrobial activity. Int. J. Sci. Nature, 2014, 5(1), 147-155.

[21] Subramanian, C. V., Hypomycetes an account of Indian species except Cercospora. Council of Agricultural Research, New Delhi, 1971, 180-189.

[22] Barnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi, 3rd ed.; Burgers Company, Minneapolis, 1972.

[23] Youngbae, S., Kim, S. and Park, C. W., A phylogenetic study of polygonum sect. Polygonoidea (Polygonaceae) based on ITS sequences of nuclear ribosomal DNA. J. Plant Biol., 1997, 40(1), 47-52.

[24] Chen, X. Y., Qi, Y. D., Wei, J. H., Zhang, Z., Wang, D. L., Feng, J. D. and Gan, B. C., Molecular identification of endophytic fungi from medicinal plant Hupehia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol., 2010, 27(3), 495-503.

[25] Hsiang, Y. H., Hertzberg, R., Hecht, S. and Liu, L. F., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260, 14873-14878.

[26] Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6, 789-802.

[27] Shiwata, S., Zuehlke, S., Ramesha, B.T., Priti, V., Kumar, P. M., Ravikanth, G., Spitteler, M., Vasudeva, R. and Shaanker, R. U., Endophytic fungal strains of Psasrium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71, 117-122.

[28] Fabio, A., Proença, B. and Edson, R. F., Four spiroquinazoline alkaloids from Exacrisium sp. isolated as an endophyte fungus from the leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol., 2005, 33(3), 257-268.

[29] Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zhou, W. X. and Tan, R. X., Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon L. as a versatile producer of new bioactive metabolites. J. Biotechnol., 2004, 114(1), 279-287.

[30] Shen, L., Ye, H. Y., Wang, X. T., Zhu, H. L., Xu, C., Song, Y. C., Li, H. and Tan, R. X., Structure and total synthesis of aspernigerin: a novel Cytotoxic endophyte metabolite. Chem-Eur. J., 2006, 12(16), 4393-4396.

[31] Rukachaisirikul, V., Sornmart, U., Phongpaichit, S., Sakayaroj, J. and Kittikajorn, K., Metabolites from the endophytic fungus Phomopsis sp. PSU-D151. Phytochemistry, 2008, 69(3), 783-787.
Yin, W.Q., Zou, J.M., She, Z.G., Vrijmoed, L.L.P., Jones, E.B.G. and Lin, Y.C., Two cyclic peptides produced by the endophytic fungus Castaniopsis fissa. Chin. Chem. Lett., 2005, 16, 219-222.

Chomcheon, P., Wiyakrutta, S., Aree, T., Sriubolmas, N., Ngamrojanavanich, N., Mahidol, C., Ruchirawat, S. and Kittakoop, P., Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chem-Eur. J., 2010, 16 (36), 11178-11185.

Abdalla, M. A. and Matasyoh, J. C., Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect., 2014, 4 (5), 257-270.

Zhang, A. H., Wang, X. Q., Han, W. B., Sun, Y., Guo, Y., Wu, Q., Ge, H. M., Song, Y. C., Ng, S. W., Xu, Q. and Tan, R. X., Discovery of a New Class of Immunosuppressants from Trichothecium roseum Co-inspired by Cross-Kingdom Similarity in Innate Immunity and pharmacophore motif. Chem. Asian J., 2013, 8 (12), 3101-3107.

Cui, H. B., Mei, W. L., Miao, C. D., Lin, H. P., Hong, K. and Dai, H. F., Antibacterial Constituents from the endophytic fungus Penicillium sp.0935030 of mangrove plant Acrostichum aureurm. Chem. J. Chinese U., 2008, 33, 407-410.

Liu, L., Liu, S., Chen, X., Guo, L. and Che, Y., Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorgan. Med. Chem., 2009, 17(2), 606-613.

Mousa, W. K. and Raizada, M. N., The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol., 2013, 4, 65.

Lin, T., Wang, G. H., Lin, X., Hu, Z. Y., Chen, Q. C., Xu, Y., Zhang, X. K. and Chen, H. F., Three new Oblongolides from Phomopsis sp. XZ-01, an endophytic fungus from Camptotheca acuminata. Molecules, 2011, 16(4), 3351-3359.

Deshmukh, S., Gupta, M., Prakash, V. and Saxena, S., Endophytic Fungi: A source of potential antifungal compounds. J. Fungi, 2018, 4(3), 77.

Alvin, A., Kristin, I. M. and Brett, A. N., Exploring the potential of endophytes from medicinal plants as source of anticymocbacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495.

© The Author(s) 2020. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).