Study on a CNN-HMM Approach for Audio-Based Musical Chord Recognition

Taixiang Li
Longgang Intelligent Technology Co., Ltd, Changsha, 410016, China
Taixiang@lgit.com.cn

Abstract. Convolutional Neural Network (CNN) has shown its strength in image processing task, and Hidden Markov model (HMM) is a powerful tool for modeling sequential data. This paper presents a new architecture for audio-based chord recognition using a CNN-HMM mixture model. This architecture replaces the Gaussian mixture model (GMM) and Deep Neural Network (DNN) layers of GMM-HMM and DNN-HMM models with CNN. The model performance is evaluated through a dataset using different combinations of chroma vectors (STFT, CQT, CENS) as features, based on that, a scale recognition sub-model is tested.

Keywords: Musical chord recognition; CNN; HMM; Chroma features; Musical scale recognition

1. Introduction
Music is widely held as an abstract theme of a particular art form that using sound to convey and elicit emotion between players and listeners. It may be thought that music is just an unorganized subject that expresses feelings through kinds of sound. However, music is not arbitrary, it follows specific rules. Back to the 6th century BC, music has been analyzed in its most mathematical expression, called the "Circle of Fifths", developed by Pythagoras. In the last few centuries, Fourier Transform (FT) presented more analyzable features in the frequency domain. During the last decade, DNN has shown its strong learning ability, and HMM has proved to be a powerful model for sequential data especially in Automatic Speech Recognition (ASR) field [1]. Due to the sequential and frequency characteristics of music (like speech), it is possible to analyze music in an ASR way.

Musical chord is made up of at least three music notes, where notes with the same name from different octaves are considered as one. In musical theory, a scale (key) is defined as a series of musical notes arranged by the fundamental frequency. Due to the principle of octave equivalence, scales are generally considered to span in a single octave. The whole frequency range is divided into 12 scales (Minor scales are just relative scale of Major scales), and most of chords used in Western music are built using the notes of a single scale. Besides, certain categories of music will only use certain chords in a certain order for most of the piece, this order is called chord progression. Chord progression forms the foundation of some of the most popular musical hits in modern music, some of them even sharing the same progressions. Musical chord recognition is a fundamental problem in Music Information Retrieval [2], its analysis is used in both classifying and generating new music pieces.
2. Background theory

2.1. Features: Chroma vectors
As shown by Muller [3], chroma-based audio features are suitable mid-level representations for capturing musical information. Noted that the chroma features are based on the twelve-note attributes C, C#, D, D#, E, F, F#, G, G#, A, A#, B, where each element denotes the energy distribution across the 12 bands. Computing such distributions over time forms a time-frequency representation (chromagram), thus making the chroma-based feature a suitable tool for chord recognition task.

As the input audio is sequential, regular FT will not be considered as it abandons time-domain information. Short-Time Fourier Transform (STFT) converts the time domain signal into an equivalent mixed frequency-time domain signal by adding a window function to the FT. The definition is shown below [4][5].

\[X[n, \omega] = \sum_{m=-\infty}^{\infty} x[m] \cdot w[n-m] \cdot e^{-j\omega m} \]

(1)

However, STFT carries a constant bandwidth function, which leading to a problem that a larger window size will result in higher spectral, but lower temporal resolution. And oppositely, a smaller size will result in a lower spectral, but higher temporal resolution. Constant Q transform (CQT) with a variable window size, luckily fixes this problem. The definition of CQT is listed below [5].

\[X[k] = \frac{1}{N[k]} \sum_{n=0}^{N[k]-1} x[n] \cdot w[n, k] \cdot e^{-j\frac{2\pi n}{N[k]}} \]

(2)

Besides, STFT chroma vectors after quantization and smoothing, called chroma energy normalized statistics (CENS), are useful features for audio matching and similarity tasks. The main idea of CENS is taking statistics over relatively large windows smooths out local deviations in tempo, articulation and execution of note groups such as trills or arpeggios [3]. In this paper, we will compare and discuss the performances of those three features in chord recognition tasks.

2.2. Traditional Acoustic Model
Similar to speech recognition, chord sequences are highly related to time. Markov Model (MM) can partly fix the time correlation problem, assuming that the next state is only associated to its previous with a particular transition probability. In practice, the Markov states are hidden beneath observation states, these being the chroma vectors generated. Based on Markov chain, each state is equipped with a probability function for a hidden state to an observation, called emission probability. The HMM represents this connection using a probabilistic framework. The ideal chord sequence, in other words, path with maximum probability, can be calculated optimally using the Viterbi algorithm as it is the best solution to solve HMMs.

As noted, musical chord recognition has similarities with speech recognition, the most general method is via GMMs based HMMs (Figure 1), Bello and Pickens has shown the possibility of the GMM-HMM model for solving chord recognition problem [6].

![Figure 1. GMM-HMM mixture model](image)
Recently, DNN has shown its strong learning performance in classification tasks, however, it can not be directly used in chord recognition tasks, as the input signal is sequential instead of constant sized. The mixture model combining DNN and HMM (Figure 2) takes over the classification performance of DNN, where HMM solves the sequential signal problem by using HMM to represent the dynamic changes of the audio signal. Besides, using a frame window that contains all the information of the adjacent frames can improve the performance of DNN-HMM model because DNN model somehow mitigate the problem that HMM cannot satisfy the assumption of independence between states by modeling the connections between different frames[1].

![Figure 2. DNN-HMM mixture model](image)

3. Model Design

3.1. CNN-HMM
Based on DNN-HMM with a frame window, the input of DNN can be seen as a graph with size $N \times L$, where N is the number of features, and L is the length of frame window. By transferring the continuous audio model to a graphical model, CNN can be applied since it is the most appropriate model in imaging processing. At this stage, the frame window can be expressed as a chord chromagram of that moment, new features are extracted through convolution and pooling layers, which greatly simplified the network structure. In Section 5, we compared the performances of GMM-HMM, DNN-HMM and CNN-HMM in different conditions.
3.2. Scale Recognition

Noted that a single piece of music is likely built using the notes of an individual scale, and the chords used will be limited. Thus, the classification sets could be largely narrowed after identifying scales. On the basis of knowing the scale, the classification performance can be improved, the CNN-HMM model embedded with scale recognition is shown in Figure 4.

Figure 3. CNN-HMM mixture model

Figure 4. Embedded with scale recognition (C Major Scale detected)
4. Model Characterization

4.1. HMM Characters

Same as speech recognition, HMM used here is to find the most likely explanation of chord progressions. Going back to Bayes’ Rule:

\[
P(S|O) = \frac{P(O|S)P(S)}{P(O)}
\]

The goal is to find the optimal chord sequence \(S \) maximize the probability based on the given observations \(O \) (chroma sequence), the HMM characters \(PI \) (Initial Probability Matrix), \(A \) (Transition Probability Matrix) and \(B \) (Emission Probability Matrix) are defined as following.

\[
\tilde{S} = \arg \max \max P(O|S) = \arg \max \max P(O|\tilde{S}) \cdot P(\tilde{S})
\]

\[
\tilde{S} = \arg \max \max P(O_0|S_0) \cdot P(S_0|S_{-1}) \cdots P(O_n|S_n) \cdot P(S_n|S_{n-1})
\]

\[
= \arg \max \max P(S_0) \cdot \prod_{t=1}^{n} P(S_t|S_{t-1}) \cdot \prod_{t=0}^{n} P(O_t|S_t)
\]

\[
= \arg \max PI \cdot A \cdot B
\]

The first sample taken has no previous chord to rely on, thus \(PI \) matrix is assumed to have a uniform distribution. The transition matrix \(A \) can be calculated through whether training data or the nested circle of fifths (based on music theory) [6], at this stage, we used the predefined nested circle of fifths based version since the training data is not well-balanced.

In GMM-HMM model, \(B \) matrix is expressed as probability density function (pdf) values of a 12-D multivariate Gaussian distribution (\(N=12 \)) with certain mean and covariance matrices [6].

\[
P(O_t|\mu, \Sigma) = (2\pi)^{-\frac{N}{2}} |\Sigma|^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}(O_t-\mu)^T \Sigma^{-1} (O_t-\mu)}
\]

Since HMM needs likelihood probability \(P(O_t|S_t) \), but the Softmax layer in DNN-HMM and CNN-HMM only outputs a posterior probability, it needs to be transferred to likelihood probability through Bayes:

\[
P(O_t|S_t) = \frac{P(S_t=S|O_t)P(O_t)}{P(S_t)} = \frac{P(S_t=S|O_t)}{P(S_t)}
\]

where \(s = T_s/T \) is the prior probability obtained through the training data, \(T_s \) is the number of frames of state \(s \), and \(T \) is the total number of frames [1]. \(P(O_t) \) is ignored because it is irrelevant with chord sequence.

4.2. Window Size

As introduced in Section 2, adding a window can improve the performance of DNN-HMM model, also it is a necessary precondition for CNN model. The size of the window decides the classification performance also the length of processing time. A smaller size will lead to a faster processing speed but lower performance. Oppositely, a larger size will cause higher performance but a time-consuming system. The choice of an appropriate window size will be discussed in the following section.

4.3. Dataset

The primary training data includes over 3 hours' pure chords' audio generated by piano, acoustic guitar, electric guitar and string band, where each instrument is played in 4 different playing techniques (tempo/beats). Model performance is evaluated through over 60 minutes' hit songs (70% in C Major Scale) of Beatles, Bruno Mars, Coldplay, etc. Those tracks are divided into a training (75%) and validation split (25%), and the addition training set is added to the pre-trained model for optimizing purpose.
4.4. Network characters
The GMM model uses constant mean \(\mu \) and covariance \(\Sigma \) matrices summarized from musical rules [6]. The DNN and CNN models both have a Softmax output layer connected with several LeakyReLU layers, and they both use Adam and categorical cross-entropy as their optimizer and loss function. Besides, having a constant Dropout rate of 0.3 on all layers helps to reduce overfitting. We used a mini-batch size of 256 and epochs of 20 for training. The DNN model was trained with three hidden layers with varying number of units. While the CNN model was trained using two 2-D convolution-pooling layers with convolution kernels of \(4 \times 4 \), connected with one hidden layer of 1920 units.

Keep in mind that the output of the Softmax layer is not the final classification result, it was then be transferred to emission probabilities by equation (6). The final chord progression is the output of HMM through Viterbi algorithm.

5. Results
Because of the sequential property of chord progression, random splitting method k-fold validation cannot be applied. Instead, a holdout validation was used. The following tables present the validation results on the given dataset at 25 (24 chords plus one no chord zone) categories. The effect of scale recognition and window size is evaluated by the CNN-HMM model with STFT&CQT&CENS as features.

5.1. Chroma features and Models

Feature	Model (~HMM)		
	GMM	DNN	CNN
STFT	38.3%	61.5%	75.3%
CQT	52.4%	65.0%	84.2%
CENS	29.7%	78.2%	80.8%
STFT&CQT	None	82.5%	83.0%
STFT&CENS	None	75.7%	85.8%
CQT&CENS	None	60.7%	84.7%
STFT&CQT&CENS	None	84.9%	**86.5%**

Table 1 shows the outcomes of different chroma features in various models. It is clear that introducing more features improves the performance of DNN-HMM and CNN-HMM models, while the CNN-HMM performs better (around 1.5% ahead). Since the dataset is limited to a small size, the performance of unsupervised learning GMM is limited, noted that the multiple combination of chroma vectors for GMM were not tested due to the uncertainty of covariance matrix [6].

5.2. Scale recognition

Model	Scale		
	C Major	E Major	A Major
With SR	89.8%	84.5%	79.3%
Without SR	89.5%	82.3%	77.2%
Noted that around 70% of the training songs are in C Major scale, thus the model trained is mostly a model suits C Major song. As shown in Table 2, the accuracy of C Major songs roughly stays constant, but songs in other scales have an increment of 2% in accuracy. It indicates that the scale recognition will correct the model when the training data is not well-balanced.

5.3. Window size

![Figure 5. CNN-HMM with varying window size](image)

As outlined before, adding a frame window will help to strengthen the ability to process sequential data. There is a trade-off when choosing the window size. Figure 5 shows the performance of the CNN-HMM model with various window sizes. The accuracy increases with growing window size, and it roughly stopped when window size number reached 43, where gives an accuracy of 86.2%. Based on that, the recommended window size for this sampling rate is 43.

6. Conclusion and Future work

This paper presents a CNN-HMM approach to solve chord recognition task. Through the analysis of different chroma features, using a combination of STFT&CQT&CENS can largely improve the performance. Besides, embedding a scale recognition model can fix the training data balancing issue to a certain extent. A suitable frame window size helps to model the sequential feature, also it is a necessary condition for transferring DNN to a CNN model.

This small dataset will not cover features for multiple music types such as Pop, Jazz, Blues, R&B, etc., using a comprehensive dataset or modeling based on music type will enlarge the performance for music with different styles. Also, considering the complexity of modeling, we only focused on songs within the 24 basic chords. However, each of the basic chord has a series of sub-chords such as Aug, Dim, Maj7, etc., building such a model that covers all the chords will help to present the diversity of music.

Acknowledgements

This research was inspired by Prof. Margreta Kuijper. I wish to thank Prof. Quangui Wang for his insightful comments and careful reading of the script.
References

[1] Dong Yu, Li Deng. *Automatic Speech Recognition: A Deep Learning Approach*. 2015, p. 1-116.

[2] Matt McVicar, Raúl Santos-Rodriguez, Yizhao Ni, Tijl De Bie. *Automatic Chord Estimation from Audio: A Review of the State of the Art*. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):556–575, 2014.

[3] Meinard Müller. *Fundamentals of Music Processing*. 2015, p. 1-300.

[4] Judith. C. Brown. *Calculation of a constant Q spectral transform*. The Journal of the Acoustical Society of America, vol. 89 (1991), no. 1, p. 425-434.

[5] Shibli Nisar, Omar Usman Khan, Muhammad Tariq. *An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization*. 2016.

[6] Bello, J., Pickens, J. *A Robust Mid-level Representation for Harmonic Content in Music Signals*. 2005.