Multipartite entanglement swapping and mechanical cluster states

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Ottaviani, Carlo et al. "Multipartite entanglement swapping and mechanical cluster states." Physical Review A 99, 3 (March 2019): 030301(R) © 2019 American Physical Society

As Published
http://dx.doi.org/10.1103/PhysRevA.99.030301

Publisher
American Physical Society

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/120974

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
We present a protocol for generating multipartite quantum correlations across a quantum network with a continuous-variable architecture. An arbitrary number of users possess two-mode entangled states, keeping one mode while sending the other to a central relay. Here a suitable multipartite detection is implemented, by multiple homodyne detections at the outputs of the interferometer, to conditionally generate a cluster state on the retained modes. This cluster state can be suitably manipulated by the parties and used for tasks of quantum communication in a fully optical scenario. More interestingly, the protocol can be used to create a purely-mechanical cluster state starting from a supply of optomechanical systems. We show that detecting the optical parts of optomechanical cavities may efficiently swap entanglement into their mechanical modes, creating cluster states up to five modes under suitable cryogenic conditions.

DOI: 10.1103/PhysRevA.99.030301

Introduction. Quantum teleportation [1–3] is one of the most important protocols in quantum information. Once two remote parties, say Alice and Bob, have distilled maximum entanglement, they can teleport quantum information with perfect fidelity from one location to another. In this kind of "disembodied" transport, the Bell detection [4,5] is one of the key operations. Connected with quantum teleportation is the teleportation of entanglement, also known as entanglement swapping [6–12]. Here, Alice and Bob start with two pairs of entangled states; then they send one part of each pair to a relay that performs Bell detection. This is a key mechanism for quantum repeaters [13–16], measurement-device independent quantum cryptography [17–22], as well as one of the tools of a future quantum internet [23,24].

In this work we introduce a multipartite entanglement swapping protocol for continuous-variable (CV) systems, such as optical and/or mechanical oscillators [25–29]. We consider an arbitrary number N of users, or “Bobs,” each having the same identical two-mode Gaussian state ρ_{AB}. The B modes are kept, while the A modes are sent to a central relay performing multipartite Bell detection. The latter consists of an N-port interferometer, composed of N−1 cascaded beam splitters with suitable transmissivities, followed by N homodyne detections. The outcomes of homodyne detection are then publicly broadcast to all the users, which may locally apply conditional displacement operations.

The multipartite Bell detection is designed in such a way that the output multipartite state is a symmetric Gaussian state, i.e., invariant under the permutation of any two Bobs. In this way, we generate a type of Greenberger-Horne-Zeilinger (GHZ) cluster state that the Bobs may exploit for network tasks. In the literature, bosonic cluster states (also dubbed graph states) have been created with different procedures [25,30–34], typically via unitary processes, e.g., by applying an interferometer to squeezed states [35,36]. Contrary to these schemes, our strategy fully extends the approach of Ref. [6] to a hybrid network [37,38], where a large supply of bipartite states with optomechanical entanglement are measured in the optical modes so that multipartite entanglement is swapped in the mechanical modes.

Following this idea, we present an application of the proposed protocol to the platform provided by cavity optomechanics [39], which has emerged in recent years as a promising route for the engineering of nonclassical features in mesoscopic systems. Various interesting schemes have been suggested and, in some cases, implemented with the scope of engineering quantum states of coupled optical and mechanical subsystems [40–45]. However, we lack a matching effort aimed at the preparation of nonclassical states of massive mechanical degrees of freedom [46–49]. In this respect, the protocol put forward here provides an interesting avenue toward the achievement of such a tantalizing goal.

Multiparticle entanglement swapping. Consider an ensemble of 2N bosonic modes which are arranged into N pairs. We use the index k = 1, . . . , N for the pairs, and A, B for the modes within each pair (see Fig. 1). The whole system is described by a vector of quadratures

\[\xi = (\xi^A_1, \xi^A_2, \xi^B_1, \xi^B_2, \ldots, \xi^A_N, \xi^A_N, \xi^B_N, \xi^B_N)^T, \] (1)

such that \([\xi_l, \xi_m] = \Omega_{lm} \Omega_{lm}^T\), where \(l, m = 1, \ldots, 2N\) and \(\Omega\) is the symplectic form [25]. Within each pair k, modes A and B are prepared in an entangled state \(\rho_{AB}\). The A modes are sent to the interferometer depicted in Fig. 1, which is defined by \(N−1\) beam splitters with transmissivities \(T_k = 1−k^{-1}\) for \(k = 2, \ldots, N\). This interferometer transforms the input
The transmissivities T_k detections are a zero-mean Gaussian state with covariance matrix (CM) and the relations [26], which are then measured as in Fig. 1. The outcomes γ are broadcast to the users, so that their multipartite state collapses into a conditional cluster state. The detrimental role of the asymmetries can also be appreciated in Fig. 2(b), where η is plotted versus γ. The computation of the CM of such N-mode conditional state, after the action of the interferometer, can be found in Ref. [53] (Supplemental Material). Here we give a brief summary. Consider a system of N pairs of bosonic modes, labeled A and B, with quadrature vector of the jth pair denoted $\xi_j = (X^A_j, P^A_j, X^B_j, P^B_j)^T$, for $j = 1, \ldots, N$. In a symmetric setting all the pairs of modes are prepared in the same state of Eq. (7). To represent the system of $2N$ modes, we may define the quadrature vector as follows:

$$\xi = (\xi^A, \xi^B)^T = (X^A_1, \ldots, X^A_N, P^A_1, \ldots, P^A_N, X^B_1, \ldots, X^B_N, P^B_1, \ldots, P^B_N)^T,$$

in terms of which the CM of the multimode can be written as

$$V = \begin{pmatrix} xI_N & 0 & zI_N & 0 \\ 0 & xI_N & 0 & -zI_N \\ zI_N & 0 & yI_N & 0 \\ 0 & -zI_N & 0 & yI_N \end{pmatrix},$$

where I_N denotes the $N \times N$ identity matrix. Noticing that the evolution of the input state through the interferometer and the local homodyne detections on the A modes commute, as long as the input state has the form of Eq. (8), we can first apply the local homodynes and then evolve the resulting state through the interferometer. After the multipartite Bell detection of modes A and the broadcast of the outcome γ, the conditional cluster state $\rho_{B_1 : \ldots : B_N | \gamma}$ of the B modes is a symmetric Gaussian state, described by the following CM:

$$V_{B_1 : \ldots : B_N | \gamma} = \begin{pmatrix} V & C' & \cdots & C' \\ C' & V' & \cdots & \vdots \\ \vdots & \cdots & \cdots & C' \\ C' & \cdots & \cdots & V' \end{pmatrix},$$

where the blocks are given by

$$V' = \begin{pmatrix} y - \frac{(N-1)z^2}{N} & 0 & 0 \\ 0 & y - \frac{z^2}{N} & 0 \\ 0 & 0 & z^2 \end{pmatrix}, \quad C' = \frac{z^2}{N} Z.$$

Using Eq. (9), we may connect the log negativity [27] $E^{(N)}_N$ between any two Bobs, B_i and B_j, with the log negativity E^{in}_{N} of the input state ρ_{AB}. For $N = 2$ we may show a quasi-monotonic relation as in Fig. 2(a), where the gray region is generated by randomly sampling the input CM of Eq. (7) with a known parametrization [54]. The upper bound is achieved by two-mode squeezed vacuum (TMSV) states, while the lower bound corresponds to states with large asymmetry parameter $d := (x - y)/2$. The detrimental role of the asymmetries can also be appreciated in Fig. 2(b), where $E^{(2)}_N$ is plotted versus d.

Cluster states in optical networks. In applications of quantum communication, the users may be located remotely so as to access the Bell detection via lossy optical links. Because of the fundamental limitations affecting these links [55], the cluster state is also degraded by loss and noise. Assume that each Bob has a TMSV state with variance $\mu \geq 1$ [25]. After propagating the A mode through a thermal-loss channel with transmissivity η and thermal noise ω, the input state ρ_{AB} has CM as in Eq. (7) with $x = \eta \mu + (1 - \eta) \omega$, $y = \mu$, and $z = \sqrt{\eta(\mu^2 - 1)}$.

FIG. 1. Multipartite entanglement swapping. We start from N independent copies of the state ρ_{AB}. The A systems are sent to a relay for a multipartite CV Bell detection. The latter is an interferometer with a suitable cascade of beam splitters, followed by homodyne detections ($N - 1$ in the X quadratures, and a final one in the P quadrature). The outcomes γ are broadcast to the users, so that their multipartite state collapses into a conditional cluster state $\rho_{B_1 : \ldots : B_N | \gamma}$. The transmissivities T_k of the beam splitters are chosen so that the cluster state is invariant under permutation of the users.

The computation of the CM of such N-mode conditional state, after the action of the interferometer, can be found in Ref. [53] (Supplemental Material). Here we give a brief summary. Consider a system of N pairs of bosonic modes, labeled A and B, with quadrature vector of the jth pair denoted $\xi_j = (X^A_j, P^A_j, X^B_j, P^B_j)^T$, for $j = 1, \ldots, N$. In a symmetric setting all the pairs of modes are prepared in the same state of Eq. (7). To represent the system of $2N$ modes, we may define the quadrature vector as follows:

$$\xi = (\xi^A, \xi^B)^T = (X^A_1, \ldots, X^A_N, P^A_1, \ldots, P^A_N, X^B_1, \ldots, X^B_N, P^B_1, \ldots, P^B_N)^T,$$

in terms of which the CM of the multimode can be written as

$$V = \begin{pmatrix} xI_N & 0 & zI_N & 0 \\ 0 & xI_N & 0 & -zI_N \\ zI_N & 0 & yI_N & 0 \\ 0 & -zI_N & 0 & yI_N \end{pmatrix},$$

where I_N denotes the $N \times N$ identity matrix. Noticing that the evolution of the input state through the interferometer and the local homodyne detections on the A modes commute, as long as the input state has the form of Eq. (8), we can first apply the local homodynes and then evolve the resulting state through the interferometer. After the multipartite Bell detection of modes A and the broadcast of the outcome γ, the conditional cluster state $\rho_{B_1 : \ldots : B_N | \gamma}$ of the B modes is a symmetric Gaussian state, described by the following CM:

$$V_{B_1 : \ldots : B_N | \gamma} = \begin{pmatrix} V & C' & \cdots & C' \\ C' & V' & \cdots & \vdots \\ \vdots & \cdots & \cdots & C' \\ C' & \cdots & \cdots & V' \end{pmatrix},$$

where the blocks are given by

$$V' = \begin{pmatrix} y - \frac{(N-1)z^2}{N} & 0 & 0 \\ 0 & y - \frac{z^2}{N} & 0 \\ 0 & 0 & z^2 \end{pmatrix}, \quad C' = \frac{z^2}{N} Z.$$
From Eq. (9) we can compute the corresponding N-user symmetric cluster state that is generated by the multipartite Bell detection. From the N-partite system of Eq. (9), we consider the bipartite case where $N = 2$. We write the CM of a bipartite in the following general form:

$$
\tilde{\mathbf{V}} = \begin{pmatrix}
a & 0 & c & 0 \\
0 & b & 0 & c' \\
c & 0 & a & 0 \\
0 & c' & 0 & b
\end{pmatrix},
$$

(11)

from which we compute the log negativity, defined as

$$
E_N = \max[0, -\ln v_-],
$$

(12)

where v_- is the smallest symplectic eigenvalue of the partially transposed CM obtained from $\tilde{\mathbf{V}}$ applying the following transformation:

$$
\mathbf{V}^{PT} = \Lambda \tilde{\mathbf{V}} \Lambda,
$$

(13)

where diagonal matrix $\Lambda := \text{diag}[1, 1, 1, -1]$. The symplectic spectrum is obtained diagonalizing matrix $\mathbf{M} = |i\Omega\mathbf{V}^{PT}|$ [25], from which one has

$$
\nu_- = \sqrt{(a-c)(b+c')}, \quad \nu_+ = \sqrt{(a+c)(b-c')}.
$$

(14)

Setting $a = y - \frac{z^2}{x}$, $b = y$, and $c' = -z^2 = -c$ in Eq. (11), ν_- takes the form

$$
\nu_- = \sqrt{\left(y - \frac{z^2}{x}\right)\left(y - \frac{z^2}{x}\right)} = y - \frac{z^2}{x}.
$$

(15)

From the expression of $x = \eta \mu + (1-\eta)\omega$, $y = \mu$, $z = \sqrt{\eta(\mu^2 - 1)}$, and using the definition of Eq. (12), we obtain the log negativity of the bipartite system

$$
E_N^{(2)} = \ln \frac{\eta \mu + (1-\eta)\omega}{\eta + (1-\eta)\mu \omega}.
$$

(16)

Now, consider an arbitrary block of the general multipartite state of Eq. (9), describing a reduced bipartite system. The smallest symplectic eigenvalue is given by

$$
\nu_-^{(N)} = \sqrt{\left(y - \frac{z^2}{x}\right)\left(y - \frac{2z^2}{N\omega}\right)}.
$$

(17)
From this one can write
\[
\nu_{\alpha}^{(N)} = \left(y - \frac{z^2}{x} \right) \left(y^2 - \frac{2z^2}{N} \right) \left(y - \frac{z^2}{2x} + \frac{z^2}{x} - \frac{2z^2}{N} \right),
\]
\[
= \left(y - \frac{z^2}{x} \right) \left(1 + \frac{N - 2}{N} \eta \right) \eta \left(\mu^2 - 1 \right) \mu \omega,
\]
\[
= \left(y - \frac{z^2}{x} \right) \left(1 + \frac{N - 2}{N} \alpha \right),
\]
(18)
where \(\alpha := \eta (\mu^2 - 1) \left[\eta + \left(1 - \eta \right) \mu \omega \right]^{-1} \). Using the definition of Eqs. (12), (15), and (16), one finds that the log negativity \(E_{\alpha}^{(N)} \) between any pair of Bobs is given by
\[
E_{\alpha}^{(N)} = E_{\alpha}^{(2)} - \frac{1}{2} \ln \left(1 + \alpha \frac{N - 2}{N} \right),
\]
(19)
where \(\alpha := \eta (\mu^2 - 1) \left[\eta + \left(1 - \eta \right) \mu \omega \right]^{-1} \). The presence of \(\alpha \) in Eq. (19) shows that loss \(\eta \) and noise \(\omega \) destroy entanglement more rapidly as \(N \) increases [56].

Once the cluster state has been generated, the users may also cooperate in such a way to concentrate the multipartite entanglement into more robust bipartite forms. For instance, they may localize the entanglement into a pair of users by means of quantum operations performed by all the others [57]. If these operations are Gaussian, this is called Gaussian localized entanglement (GLE) [58,59]. In such a case, the entanglement between two arbitrary subsets \(A \) and \(B \) of users, with cardinality \(N_A \) and \(N_B \), such that \(N_A + N_B \leq N \), is equivalent to the entanglement between two modes described by the following CM:
\[
V_{AB} = \begin{pmatrix}
\gamma_A & 0 & \delta & 0 \\
0 & \delta & \gamma_B & 0 \\
\delta & 0 & \gamma_B & 0 \\
0 & -\delta & 0 & \gamma_B
\end{pmatrix},
\]
(20)
where \(\gamma_A = y - \frac{N - N_A - 1}{N} z \), \(\gamma_B = y - \frac{N - N_B - 1}{N} z \), and \(\delta = \sqrt{\frac{N - N_A - 1}{N}} \).

The localizable entanglement is defined as the maximum entanglement (quantified by a suitable entanglement measure) that can be localized between a given pair of users by optimizing operations on the other \(N - 2 \) users. By applying a unitary transformation on \(N - 2 \) users, our state can always be reduced to a three-mode Gaussian state with CM [58]
\[
V_{loc} = \begin{pmatrix}
\Delta & 0 & \epsilon & 0 \\
0 & \Delta' & 0 & -\epsilon \\
\epsilon & 0 & \Delta & 0 \\
0 & -\epsilon & 0 & \Delta' \\
\epsilon' & 0 & 0 & \Phi \\
0 & -\epsilon' & 0 & \Phi'
\end{pmatrix},
\]
(21)
where \(\Delta = y - \frac{N - 1}{N} z \), \(\Delta' = y - \frac{1}{N} z \), \(\Phi = y - \frac{2}{N} z \), \(\Phi' = y - \frac{N - 2}{N} z \), \(\epsilon = \frac{1}{\sqrt{2}} \), and \(\epsilon' = \frac{1}{\sqrt{2}} \). Since the original state is symmetric under the permutation of the users, the results of Ref. [59] imply that homodyne detection on the third mode is optimal (among Gaussian measurements) to maximize the logarithmic negativity between the first pair of modes. We find that the GLE log negativity between any pair of Bobs in the \(N \)-user cluster state is
\[
E_{\alpha}^{(N,GLE)} = E_{\alpha}^{(2)} - \frac{1}{2} \ln \left(1 + \frac{N - 2}{\alpha N + 2} \right).
\]
(22)
Suppose instead that the Bobs split into two groups of \(N' \) users, so that \(2N' \leq N \). Passive unitary operations within the two groups may map the state into a tensor product of \(2N' - 2 \) uncorrelated single-mode states and one correlated two-mode state [60]. The log negativity of the block entanglement associated with the symmetric splitting \((N', N') \) of the Bobs is given by
\[
E_{\alpha}^{(N,N')} = E_{\alpha}^{(2)} - \frac{1}{2} \ln \left(1 + \alpha \frac{N - 2N'}{N} \right).
\]
(23)
Note that this is just equal to \(E_{\alpha}^{(2)} \) for the “full-house” splitting \(N' = N/2 \). This is a robust concentration of entanglement because it no longer depends on \(N \).

Generation of mechanical cluster states. We now consider the generation of a mechanical cluster state by applying the multipartite Bell detection to the optical parts of \(N \) optomechanical systems. More precisely, consider \(N \) systems embodied by single-sided Fabry-Perot optomechanical cavities, driven by external laser fields of suitable intensity. The mechanical systems embody modes \(B_k \), while the corresponding cavity fields are the \(A_k \)'s. In a reference frame rotating at the frequency of the input driving field, each \(A_k \)-\(B_k \) interaction is modeled through the standard radiation-pressure Hamiltonian
\[
\hat{H}_k = \hbar \Delta \hat{a}_k \hat{\alpha}_k + \frac{\hbar \omega_m}{2} (\hat{q}_k^2 + \hat{p}_k^2)
\]
\[
- \hbar \Gamma \hat{a}_k \hat{q}_k + i E \hbar (\hat{a}_k^\dagger - \hat{a}_k).
\]
(24)
Here, \(\hat{q}_k \) and \(\hat{p}_k \) are the dimensionless quadrature operators of the \(k \)-th mechanical system, \(\hat{a}_k \) and \(\hat{a}_k^\dagger \) are the ladder operators of the corresponding cavity field, \(\omega_m \) is the frequency of the mechanical mode (assumed to be the same for all the mechanical systems), \(G_0 \) is the optomechanical coupling rate, and \(E \) is the amplitude of the laser drive. Finally, \(\Delta \) is the laser-driven cavity detuning.

The dynamics resulting from the Hamiltonian \(\hat{H}_k \) is affected by the cavity energy decay (at a rate \(\kappa \)) and the Brownian motion of the mechanical oscillator (induced by the contact of each mechanical system with a background of phonons in thermal equilibrium at temperature \(T \)), characterized by the coupling strength \(\gamma_m \). The mechanical system is thus assumed to be prepared, prior to the optomechanical interaction, in a thermal state at temperature \(T \). The cavity is instead in a coherent state with amplitude determined by the choice of \(E \) and \(\kappa \) [61,62].

Under such conditions, the open dynamics at hand is well described by a set of Langevin equations obtained considering the fluctuations around the mean values of the operators in the problem and neglecting any nonlinearity. This is a well-established technique allowing for the gathering of information on the quantum statistical properties of the system, as far as the fluctuations of the operators are small compared to the mean values. References [61,62] provide the details of the formal approach and steps to take to derive the explicit form of the CM of the \(k \)-th optomechanical system. From this point on,
our proposed protocol for multipartite entanglement swapping can be applied as per the previous sections.

The results are shown in Fig. 2(c) for the case of $N = 2$ and three different choices of parameters in the optomechanical building block. The first consideration to make is that, in line with the analysis of random Gaussian states previously reported, the symmetry between modes A_i and B_i facilitates the success of the protocol: our numerical study shows that only for $T \ll 1$, which makes the variances associated with the fluctuation operators of the mechanical mode close to those of the cavity field, all-mechanical entanglement might arise from the application of the protocol. Second, such entanglement benefits of a suitably strong optomechanical coupling rate, resulting in values that can approach the upper boundary to the distribution in Fig. 2(a). The parameters used for the simulation reported in Fig. 2(c) are close to those currently available in photonic-crystal-based optomechanical platform, where acoustic modes ranging from a few megahertz to a few gigahertz and couplings in the 10 MHz range are available for $\kappa \simeq 50$ MHz [63].

Our results demonstrate the effectiveness of the proposed scheme as a method for the achievement of all-mechanical entanglement through optical measurements only. However, the significance of the scheme goes beyond such a fundamental result and extends to the potential preparation of multipartite entangled mechanical states. Indeed, we have verified that the protocol remains successful when applied to systems of up to $N = 5$ optomechanical building blocks, as shown in Fig. 2(d), where we report the value of the maximum entanglement achieved as N grows from 2 to 5, for the most realistic choice of the effective optomechanical coupling strength. By assuming that, following the preparation of the mechanical cluster state, each mechanical mode is subjected to dissipation into individual baths at temperature T, it is possible to show that such entanglement persists within the engineered multipartite state for a time that depends on the number of particles involved in the protocol. The inset of Fig. 2(d) shows the time at which E_N^Y disappears. Such times allow for ≈ 100 coherent operations on the mechanical system at the optomechanical coupling rate assumed in Fig. 2(d).

Conclusions. We have introduced a protocol of multipartite entanglement swapping for CV systems, based on a multipartite version of the standard CV Bell detection. We have studied how this protocol is able to generate an entangled cluster state in an optical lossy network, whose entanglement can be suitably manipulated and localized by the users. Such multipartite CV entangled states are useful for tasks of quantum communication, cluster-state quantum computation [25], multiuser quantum cryptography, and distributed quantum sensing.

We have then proposed a powerful implementation of our protocol that exploits an optomechanical interface designed to efficiently transfer entanglement onto the mechanical modes of N optomechanical cavities. Our results pave the way toward applications for quantum technologies and networking with hybrid architecture providing a potentially fruitful alternative to recent experimental demonstrations of all-mechanical entanglement [64,65].

Acknowledgments. S.P., C.O., and C.L. acknowledge support from the EPSRC via the “UK Quantum Communications HUB” (Grant No. EP/M013472/1) and the Innovation Fund Denmark (Qubiz project). A.F. is supported by the UK EPSRC (Grant No. EP/N508664/1). M.P. acknowledges the DfE-SFI Investigator Programme (Grant No. 15/IA/2864), the Royal Society, and the COST Action CA15220 “Quantum Technologies in Space.”

[1] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[2] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).
[3] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Nat. Photonics 9, 641 (2015).
[4] H. Weinfurter, Europhys. Lett. 25, 559 (1994).
[5] S. L. Braunstein and A. Mann, Phys. Rev. A 51, R1727 (1995).
[6] S. Pirandola, D. Vitali, P. Tombesi, and S. Lloyd, Phys. Rev. Lett. 97, 150403 (2006).
[7] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).
[8] P. van Loock and S. L. Braunstein, Phys. Rev. A 61, 010302(R) (1999).
[9] R. E. S. Polkingtonhorne and T. C. Ralph, Phys. Rev. Lett. 83, 2095 (1999).
[10] S. Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 57, 822 (1998).
[11] A. M. Goebel, C. Wagenknecht, Q. Zhang, Y.-A. Chen, K. Chen, J. Schmiedmayer, and J.-W. Pan, Phys. Rev. Lett. 101, 080403 (2008).
[12] C.-Y. Lu, T. Yang, and J.-W. Pan, Phys. Rev. Lett. 103, 020501 (2009).
[13] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).
[14] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59, 169 (1999).
[15] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature (London) 414, 413 (2001).
[16] S. Pirandola, arXiv:1601.00966.
[17] S. L. Braunstein and S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012).
[18] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).
[19] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Ghering, C. S. Jacobsen, and U. L. Andersen, Nat. Photonics 9, 397 (2015).
[20] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Ghering, C. S. Jacobsen, and U. L. Andersen, Nat. Photonics 9, 773 (2015).
[21] C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, Phys. Rev. A 91, 022320 (2015).
In fact, according to Eqs. (2) and (3), the first projection onto X_2 gives (up to a constant) $X_A^2 - X_B^2 = 0$. By using the latter in the expression of X_3, we derive $\sqrt{6} X_3 = 2 X_A^3 - X_B^3$. The projection onto X_3 gives therefore the second condition $X_A^3 - X_B^3 = 0$, and so on.

[22] P. Papanastasiou, C. Ottaviani, and S. Pirandola, Phys. Rev. A 96, 042332 (2017).
[23] H. J. Kimble, Nature (London) 453, 1023 (2008).
[24] S. Pirandola and S. L. Braunstein, Nature (London) 532, 169 (2016).
[25] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).
[26] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
[27] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).
[28] G. Adesso, S. Ragy, and A. R. Lee, Open Syst. Inf. Dyn. 21, 1440001 (2014).
[29] A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (Taylor & Francis, Oxford, 2017).
[30] D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).
[31] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
[32] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).
[33] J. Zhang and S. L. Braunstein, Phys. Rev. A 73, 032318 (2006).
[34] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sorrnphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat. Photon. 7, 982 (2013).
[35] P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84, 3482 (2000).
[36] H. Yonezawa, T. Aoki, and A. Furusawa, Nature (London) 431, 430 (2004).
[37] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, Nat. Phys. 11, 713 (2015).
[38] G. Kurizki et al., Proc. Natl. Acad. Sci. U.S.A. 112, 3866 (2015).
[39] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).
[40] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Science 342, 710 (2013).
[41] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, Nature (London) 530, 313 (2016).
[42] T. Palomaki, J. Harlow, J. Teufel, R. Simmonds, and K. Lehnert, Nature (London) 495, 210 (2013).
[43] D. W. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, Nature (London) 488, 476 (2012).
[44] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampell, and C. A. Regal, Phys. Rev. X 3, 031012 (2013).
[45] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, Nature (London) 500, 185 (2013).
[46] D. Vitali, S. Mancini, and P. Tombesi, J. Phys. A: Math. Theor. 40, 8055 (2007).
[47] M. Abdi, S. Pirandola, P. Tombesi, and D. Vitali, Phys. Rev. Lett. 109, 143601 (2012).
[48] M. Abdi, S. Pirandola, P. Tombesi, and D. Vitali, Phys. Rev. A 89, 022331 (2014).
[49] O. Houhou, H. Aissaoui, and A. Ferraro, Phys. Rev. A 92, 063843 (2015).
[50] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp. 73–76.
[51] In fact, according to Eqs. (2) and (3), the first projection onto X_2 gives (up to a constant) $X_A^3 - X_B^3 = 0$. By using the latter in the expression of X_3, we derive $\sqrt{6} X_3 = 2 X_A^3 - X_B^3$. The projection onto X_3 gives therefore the second condition $X_A^3 - X_B^3 = 0$, and so on.
[52] S. Pirandola, A. Serafini, and S. Lloyd, Phys. Rev. A 79, 052327 (2009).
[53] C. Ottaviani, C. Lupo, R. Laurenza, and S. Pirandola, arXiv:1709.06988.
[54] G. Adesso and F. Illuminati, Phys. Rev. A 72, 032334 (2005).
[55] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8, 15043 (2017).
[56] In lossless and noiseless conditions ($\eta = \omega = 1$), for large μ we may write $E^{(N)} = -\frac{1}{N} \ln (1 - 2/N)$, which is always positive but scales as $O(1/N)$.
[57] M. Popp, F. Verstraete, M. A. Martín-Delgado, and J. I. Cirac, Phys. Rev. A 71, 042306 (2005).
[58] J. Fiurášek, and L. Mišta, Jr., Phys. Rev. A 75, 060302(R) (2007).
[59] L. Mišta, Jr. and J. Fiurášek, Phys. Rev. A 78, 012359 (2008).
[60] A. Serafini, G. Adesso, and F. Illuminati, Phys. Rev. A 71, 032349 (2005).
[61] M. Paternostro et al., New J. Phys. 8, 107 (2006).
[62] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007).
[63] M. Kalae, T. K. Paraš, H. Pfeifer, and O. Painter, Opt. Express 24, 21308 (2016).
[64] R. Riedinger, A. Wallucks, I. Marinkovic, C. Losschmier, M. Aspelmeyer, S. Hong, and S. Gröblacher, Nature 556, 473 (2018).
[65] C. F. Ockeloen-Korppi, E. Dansskagg, J.-M. Pirkkalainen, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpaa, Nature (London) 556, 478 (2018).