The HOOK region of β subunits controls gating of voltage-gated Ca\(^{2+}\) channels by electrostatically interacting with plasma membrane

Cheon-Gyu Park and Byung-Chang Suh

Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea

ABSTRACT

Recently, we showed that the HOOK region of the β2 subunit electrostatically interacts with the plasma membrane and regulates the current inactivation and phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) sensitivity of voltage-gated Ca\(^{2+}\) (Ca\(_V\)) 2.2 channels. Here, we report that voltage-dependent gating and current density of the Ca\(_V\)2.2 channels are also regulated by the HOOK region of the β subunit. The HOOK region can be divided into 3 domains: S (polyserine), A (polyacidic), and B (polybasic). We found that the A domain shifted the voltage-dependent inactivation and activation of Ca\(_V\)2.2 channels to more hyperpolarized and depolarized voltages, respectively, whereas the B domain evoked these responses in the opposite directions. In addition, the A domain decreased the current density of the Ca\(_V\)2.2 channels, while the B domain increased it. Together, our data demonstrate that the flexible HOOK region of the β2 subunit plays an important role in determining the overall Ca\(_V\) channel gating properties.

KEYWORDS

β2c subunit; current density; electrostatic interaction; HOOK region; plasma membrane; voltage-dependent gating; Voltage-gated Ca\(^{2+}\) (Ca\(_V\)) channel

Introduction

Voltage-gated Ca\(^{2+}\) (Ca\(_V\)) channels adjust the Ca\(^{2+}\) influx in excitable cells. The channels contribute to the diverse physiologic responses, including neurotransmission, hormone secretion, muscle contraction, and gene transcription.1-3 Dysregulation of Ca\(_V\) channels causes various neurologic disorders, such as autism, migraine, and pain.4-7 A high-voltage activated (HVA) Ca\(_V\) channel consists of the pore-forming α1 subunit and the auxiliary β and α2δ subunits. Surface expression of the α1 subunit requires the auxiliary subunits, where they also play critical roles in modulating the biophysical properties of Ca\(_V\) α1 channel gating.8-10 Among the auxiliary subunits, the β subunit is particularly important in regulating the gating and membrane expression of Ca\(_V\) channels.11-13 The β subunit can be divided broadly into 5 regions, such as the N and C terminus, the Src homology 3 (SH3), guanylate kinase (GK) domains, and the flexible HOOK region connecting the 2 domains.12-18 Among the 5 regions of β subunit, N-terminus plays a key role in determining the subcellular localization of the β subunit, which is principally engaged in modulating the gating kinetics and membrane phospholipid sensitivity of Ca\(_V\) channels.19-23 The Ca\(_V\) channel with membrane-anchored β subunit, such as β2a or β2e, exhibits relatively slow current inactivation and low sensitivity to the depletion of phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)), whereas channels with cytosolic β subunit, such as β2b or β3, exhibit the opposite responses.

In our recent works, we found that the HOOK region of the β subunit acts as an important regulator for inactivation kinetics and membrane PIP\(_2\) sensitivity of the Ca\(_V\)2 channels via dynamic electrostatic interaction of the β subunit with the plasma membrane.24 The HOOK region can be further divided into 3 domains on the basis of amino acid composition: S (polyserine), A (polyacidic), and B (polybasic). Acidic residues within the A domain are needed for the increase of channel inhibition by PIP\(_2\) depletion and the fast inactivation of Ca\(_V\)2.2 current like cytosolic β subunits, while basic amino acids within the B region are needed for the decrease in PIP\(_2\) sensitivity and the slow inactivation like membrane-localized β subunits. Therefore, the regulatory mechanism of the
CaV2 channels by the HOOK region looks very similar to the gating regulation by N-terminus-dependent subcellular localization of the β subunit.

It has been known that the subcellular localization of the β subunit is important for determining the current density of the CaV channels.19 The CaV2.2 channels with the cytosolic β3 subunit show significantly lower current density than channels with the membrane-tethered β2a subunit. The Lyn-β3 subunit which is located at the plasma membrane by adding the membrane-targeting Lyn sequence to the cytosolic β3 increases the current density of the CaV2.2 channels, whereas mutant β2a(C3,4S) which localizes in the cytosol by disabling the 2 N-terminal
palmitoylation sites in the β2a subunit decreases the current density of the channels. This suggests that the gating properties of the CaV channels including the inactivation kinetics, PIP2 sensitivity, and current density, are commonly regulated by N-terminus-dependent membrane interaction of the β subunit with the plasma membrane. Here, we further investigated the functional roles of the HOOK region of the β subunit on the gating of CaV2.2 and CaV1.3 channels. Our data demonstrate that through the interaction with the plasma membrane, the HOOK region of the β2c subunit also determines both voltage-dependent gating properties and the current density of the CaV channels.

Results

The HOOK region of the β2c subunit affects the voltage-dependent gating of the CaV2.2 channels

We recently showed that the HOOK region of the β2 subunit is crucial for determining the inactivation kinetics and PIP2 sensitivity of the CaV2.2 channels through dynamic interaction with the plasma membrane.24 Here, we examined whether the HOOK region of the β subunit also affects the voltage-dependent inactivation (VDI) and voltage-dependent activation (VDA) of the CaV channels. Fig. 1A shows the deletion mutants of the β2c HOOK region. When the β2c derivatives were expressed with N-type CaV2.2 channels, the VDI of the CaV2.2 channels with β2c(B) shifted to more positive voltages compared with the β2c control, whereas those channels with β2c(A) shifted to more negative voltages (Fig. 1B and D Left).

In contrast, the VDA of the CaV2.2 channels with β2c (B) shifted to more negative voltages compared with the β2c control, whereas those channels with β2c(A) shifted to more positive voltages (Fig. 1C and D Right). Channels with β2c(S) and β2cΔHOOK did not show any significant changes in VDI and VDA (Fig. 1B–D). Those results suggest that the charged amino acids in the HOOK region plays a key role in determining the voltage-dependent gating properties of the CaV2.2 channels.

Charged amino acids in the HOOK region of β subunit determines the current density of the CaV2.2 channels

Because the subcellular localization of the CaVβ subunit is important in determining the current density of the CaV channels,29 we examined whether the HOOK region of the β2c subunit also affects the current density of the CaV2.2 channels. Fig. 2 shows that the relationship between voltage and current density of the CaV2.2 channels with β2c(S) or β2cΔHOOK was almost the same as those of channels with the β2c control. However, the CaV2.2 channels with β2c(A) showed dramatically lower current density, whereas the channels with β2c(B) showed relatively higher density (Fig. 2A and C).

Since charged amino acids of the HOOK region are mainly important in regulating inactivation kinetics and PIP2 sensitivity of CaV2.2 channels,24 we examined whether the charged amino acids of the HOOK region also influence the current density of the CaV2.2 channels. As shown in Fig. 3A and B,
channels with complete or partial deletion of the A domain and charge-neutralizing mutations in A domain of the β2c subunit showed significantly higher current density than the β2c control, whereas channels with complete deletion of the B domain and charge-neutralizing mutations in B domain showed lower current density (Fig. 3C and D). These results suggest that acidic amino acids of the A domain play a role for decreasing the current density of the CaV2.2 channels, whereas basic amino acids of the B domain are important for increasing the response. We recently found that 2 hydrophobic Phe residues in the B domain are needed for decreasing the inactivation kinetics and PIP2 sensitivity of the CaV2.2 channels.24 Consistently, the Phe-mutated form (β2cPheAla) also slightly decrease the current density of the channels (Fig. 3C and D). Together with the findings of our recent study, the present results indicate that dynamic interaction between the HOOK region and the plasma membrane through charged amino acids in the A and B domains are crucial for determining the current density of the CaV2.2 channels.

The HOOK region of the β subunit modulates the PIP2 sensitivity and inactivation kinetics of the CaV1.3 channels

We reported that N-type CaV2.2 channel gating is tightly modulated by the electrical properties of the HOOK region in the β2c subunit.24 We then examined whether the HOOK region also influences the PIP2 sensitivity and inactivation kinetics of L-type CaV1.3 channels. As shown in Fig. 4A, B, and C, CaV1.3 channels with β2c(A) show faster current inactivation, whereas channels with β2c(B) show slower inactivation. The fast inactivation kinetics of the CaV1.3 channels with β2c(S) and β2cΔHOOK were slightly decreased but not significantly different compared with the CaV1.3 channels with the β2c control. The CaV1.3 channels with β2c(A) showed higher sensitivity to PIP2 depletion mediated by the activation of zebra fish form of voltage-sensing phosphatase (Dr-VSP), whereas channels with β2c(B) showed lower inhibition to PIP2 depletion (Fig. 4D and E). These results demonstrate that the current inactivation
and PIP2 sensitivity of the CaV1.3 channels are commonly regulated by the flexible HOOK region of the β subunit.

Discussion

We recently found that the HOOK region of the β2 subunit regulates the inactivation kinetics and PIP2 sensitivity of CaV2.2 channels via the electrostatic interaction with phospholipids in the plasma membrane. Here, our results enlarge our understanding for functional effects of the HOOK region on CaV channel regulation. (a) The HOOK region of the β2c subunit regulates the voltage-dependent gating of CaV2.2 channels. The β2c subunit containing only the A domain in the HOOK region shifted the VDI and VDA to more negative and positive voltages, respectively, whereas the β2c subunit with only the B domain triggered the responses in the opposite directions. (b) The charged amino acids of the A and B domains are also crucial in determining the current density of the CaV2.2 channels. Acidic residues within the A domain plays an important role in decreasing the current density of the CaV2.2 channels, whereas basic residues within the B domain are important in increasing it. (c) The inactivation kinetics and PIP2 sensitivity of the CaV1.3 channels are also regulated by the HOOK region of the β2c subunit. Together, our results suggest that the HOOK region determines the channel gating and current density of HVA α1 types.

It has been reported that subcellular localization of CaV β subunits is important in regulating the biophysics and PIP2 sensitivity of the CaV channels. Our recent data showed that the net surface charge of dynamic HOOK region of β subunits also performs similar functions in regulating the CaV channel gating. We found that the net charge of HOOK region is mainly determined by the exposure of either A- or B-domain to the β-subunit surface. In resting state, A- and B-domains of HOOK region seem to be masking...
each other through electrostatic interaction, making the HOOK region be more neutral. When the net charge of HOOK region is changed to the basic by exposing B-domain, the β subunit can further move to the plasma membrane and electrostatically interact with phospholipids via the basic HOOK region. When the net charge of HOOK region, meanwhile, is changed to acidic due to A-domain exposure, the β subunit will move toward the cytosol by repulsion between acidic phospholipids in the plasma membrane and the acidic HOOK region. We found that membrane-interacting β subunit of the CaV channels through either N-terminus or HOOK region commonly slows inactivation, enhances PIP₂ sensitivity, and increases the current density of the CaV channels. The reason why the CaV channels with membrane-interacting β subunit exhibit higher current density than the channels with cytosolic β subunit remains unclear. There may be 2 possibilities. First, the membrane-interacting β subunit enhances the expression level of the CaV channel complex in the plasma membrane. Recently, it was reported that the other auxiliary α₂δ subunit elevates the current density by enhancing the channel trafficking to the plasma membrane.⁸ Second, the membrane-tethering β subunit alters the kinetics of channel gating and thus increases the open time of the channel gate. However, in the presence of α1B and α2δ1, the diverse β2c-deletion mutants are present in the plasma membrane, suggesting that the HOOK region of the β2c subunit does not influence the formation of heteromeric CaV channel complex in the plasma membrane. Further studies are needed to define which is important in the gating control of the CaV channels by the membrane-interacting β subunit. It is also reported that N-terminus-dependent subcellular localization of the β subunit

Figure 4. The HOOK region of β2c subunit is crucial in determining the current inactivation and PIP₂ regulation of CaV1.3 channels. (A) Schematic illustration of HOOK region deletion constructs of β2c (Top). Current inactivation was measured during 500-ms test pulses to -10 mV in cells expressing CaV1.3 channels with β2c mutant derivatives (Bottom). (B and C) The current decay of CaV1.3 channels were fitted to a double exponential function. Summary of time constants of fast (\(t_{\text{inact, fast}}\)) and slow (\(t_{\text{inact, slow}}\)) current inactivation. (D) Current inhibition of CaV1.3 channels with β2c mutant derivatives by Dr-VSP-mediated PIP₂ depletion. Schematic diagram of Dr-VSP and test protocol (Top). The currents before (a) and after (b) the depolarizing pulse to 120 mV were superimposed (Bottom). (E) Summary of the Dr-VSP-induced current inhibition (percentage) of CaV1.3 channels with β2c mutant derivatives. Dots display the individual data points for each experiment. * \(P < 0.05\), ** \(P < 0.01\), *** \(P < 0.001\), one-way ANOVA followed by Dunnett's post-hoc test. Data are mean ± SEM.
regulates the gating of L-type CaV1.3 and P/Q-type CaV2.1 channels. Similarly, the phenomena also appeared in our experiments using the mutants of the HOOK region in the CaV1.3 channels, suggesting that the regulation of the CaV channel gating by the N-terminus or HOOK region of the β subunit seems to be a general mechanism for all types of HVA α1 subunit.

In conclusion, our findings provide another modulatory mechanism of CaV channel gating through the dynamic interaction of the HOOK region of the β subunit with the plasma membrane. Recently, it has been reported that the CaV channel gating can be regulated by induced anchoring of intracellular loops of channels to the plasma membrane. Those studies suggested a possibility that by interacting with the β subunit, the intracellular I-II loop of the CaV channel plays a significant role in regulating the CaV channel gating. Further studies are needed to investigate whether the conformational change of the I-II loop using the interacting membrane via the β subunit determines the CaV channel gating in cells.

Materials and Methods

Cell culture and transfection

TsA-201 cells were cultured in a Dulbecco Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS, Invitrogen) and 0.2% penicillin/streptomycin (Invitrogen) in 100-mm culture dishes at 37°C with 5% CO2. For CaV channel expression, the cells were transiently co-transfected with α1, α2δ1 and β2 subunit in a 1:1:1 molar ratio using Lipofectamine 2000 (Invitrogen). Transfected cells were plated onto Poly-L-lysine-coated coverslip chips 24–36 h after transfection, 12 h before the electrophysiological experiments, as described previously.24

Solutions

The bath solution used to record Ba2+ currents contained 10 mM BaCl2, 150 mM NaCl, 1 mM MgCl2, 10 mM HEPES, and 8 mM glucose (adjusted to pH 7.4 with NaOH). The pipette solution contained 175 mM CsCl2, 5 mM MgCl2, 5 mM HEPES, 0.1 mM 1,2-bis(2-aminophenocycl)ethane N,N,N′,N′-tetraacetic acid (BAPTA), 3 mM Na2ATP, and 0.1 mM Na3GTP (adjusted to pH 7.4 with CsOH), as described previously.24

Patch clamp recording

Whole-cell Ba2+ currents were recorded at room temperature (22–25°C) using patch clamp amplifier EPC10 with pulse software (HEKA). Electrodes pulled from glass micropipette capillaries (Sutter Instrument) had resistances of 2–4 MΩ. Series-resistance errors were compensated for >60%. For all recordings, cells were held at -80 mV, as described previously.24

Data analysis

Pulse/Pulse Fit 8.11 software and an EPC-10 patch clamp amplifier (HEKA) were used for data acquisition and analysis. Further data processing used Microsoft Excel, WaveMetrics Igor Pro, and GraphPad Prism version 5.01, as described previously.24 Voltage dependence of steady-state activation and inactivation was fitted by the Boltzmann function of the form 1/(1+exp[-(V-V1/2)/K]), where V1/2 is the half-maximal voltage for activation or inactivation and K is a slope factor. The time course of current inactivation was fitted by the double exponential function of the form as described previously. All quantitative data were presented as the mean ± SEM. Statistical significance was analyzed using one-way ANOVA, followed by Dunnett’s post-hoc test (”,P < 0.05, “P < 0.01, and “”P < 0.001).

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We are grateful to Dr. Veit Flockerzi for providing β2 subunit clones.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4014253), the DGIST R&D Program of the Ministry of Science, ICT & Future Planning (No. 17-BD-06), and the Korea Brain Research Institute (KBRI) basic research program funded by the Ministry of Science, ICT and Future Planning (No. 17-BR-04).

ORCID

Cheon-Gyu Park http://orcid.org/0000-0002-4739-1913
References

[1] Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011; 3:1-23; PMID:21746798; https://doi.org/10.1101/cshperspect.a003947

[2] Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11-21; PMID:11413485; https://doi.org/10.1038/35036035

[3] Clapham DE. Calcium signaling. Cell 2007; 131:1047-58; PMID:17025610; https://doi.org/10.1016/j.cell.2007.11.028

[4] Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Blase R, Napolitano C, Schwartz PJ, Joseph RM, Con-doursis K, et al. CAV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119:19-31; PMID:15454078; https://doi.org/10.1016/j.cell.2004.09.011

[5] Inagaki A, Frank CA, Usachev YM, Benveniste M, Lee A. Pharmacological correction of gating defects in the voltage-gated Cav.1.1 Cav.2.1 channel due to a familial hemiplegic migraine mutation. Neuron 2014; 81:91-102; PMID:24411734; https://doi.org/10.1016/j.neuron.2013.10.056

[6] Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Dooris K, et al. CaV1.2 calcium channel dysfunction and one step beyond. Nat Rev Neurosci 2015; 16:542-55; PMID:22805911; https://doi.org/10.1038/nrn3317

[7] Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Publ Gr 2015; 15:19-34; PMID:26542451; https://doi.org/10.1038/nrd.2015.5

[8] Dolphin AC. Calcium channel auxiliary a2delta and beta subunits: trafficking and one step beyond. Nat Rev Neurosci 2012; 13:542-55; PMID:22805911; https://doi.org/10.1038/nrn3317

[9] Simms BA, Zamponi GW. Trafficking and stability of voltage-gated calcium channels. Cell Mol Life Sci 2012; 69:843-56; PMID:21964928; https://doi.org/10.1007/s00018-011-0843-y

[10] Felix R, Calderón-Rivera A, Andrade A. Regulation of high-voltage-activated Cav.2.2 channel function, trafficking, and membrane stability by auxiliary subunits. Wiley Interdiscip Rev Membr Transp Signal 2013; 2:207-20; PMID:24949251; https://doi.org/10.1002/wms.93

[11] Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC. beta-subunits promote the expression of Cav.2.2 channels by reducing their proteasomal degradation. J Biol Chem 2011; 286:9598-611; PMID:21233207; https://doi.org/10.1074/jbc.M110.195909

[12] Buraei Z, Yang J. The beta subunit of voltage-gated Cav.2 channels. Physiol Rev 2010; 90:1461-506; PMID:20959621; https://doi.org/10.1152/physrev.00057.2009

[13] Buraei Z, Yang J. Structure and function of the beta subunit of voltage-gated Cav.2 channels. Biochim Biophys Acta - Biomembr 2013; 1828:1530-40; PMID:22981275; https://doi.org/10.1016/j.bbamem.2012.08.028

[14] Birnbaumer L, Qin N, Olcese R, Tareilus E, Platano D, Costantin J, Stefani E. Structures and functions of calcium channel beta subunits. J Bioenerg Biomembr 1998; 30:357-75; PMID:9758332; https://doi.org/10.1023/A:1021989622656

[15] Hanlon MR, Berrow NS, Dolphin AC, Wallace BA. Modelling of a voltage-dependent Ca2+ channel beta subunit as a basis for understanding its functional properties. FEBS Lett 1999; 445:366-70; PMID:10094491; https://doi.org/10.1016/S0014-5793(99)00156-8

[16] Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT. Novel functional properties of Ca2+ channel beta subunits revealed by their expression in adult rat heart cells. J Physiol 2002; 541:435-52; PMID:12042350; https://doi.org/10.1113/jphysiol.2002.018515

[17] Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha1 interaction domain. Neuron 2004; 42:387-99; PMID:15134636; https://doi.org/10.1016/S0896-6273(04)00250-8

[18] Van Petegem F, Clark KA, Chatelain FC, Minor DL. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 2004; 429:671-5; PMID:15141227; https://doi.org/10.1038/nature02588

[19] Suh BC, Kim DI, Falkenburger BH, Hille B. Membrane-localized beta-subunits alter the PIP2 regulation of high-voltage activated Cav2 channels. Proc Natl Acad Sci U S A 2012; 109:3161-6; PMID:22308488; https://doi.org/10.1073/pnas.1121434109

[20] Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of Cav2.2 channels by Gq-coupled receptor is facilitated by membrane-localized beta subunit. J Gen Physiol 2014; 144:297-309; PMID:25225550; https://doi.org/10.1085/jgp.201411245

[21] Kim DI, Park Y, Jang DJ, Suh BC. Dynamic phospholipid interaction of beta2e subunit regulates the gating of voltage-gated Cav2.2 channels. J Gen Physiol 2015; 145:529-41; PMID:25964431; https://doi.org/10.1085/jgp.201411349

[22] Kim DI, Kang M, Kim S, Lee J, Park Y, Chang I, Suh BC. Molecular basis of the membrane interaction of the beta2e subunit of voltage-gated Cav2.2 channels. Biophys J 2015; 109:922-35; PMID:26331250; https://doi.org/10.1016/j.bpj.2015.07.040

[23] Kim DI, Kweon HJ, Park Y, Jang DJ, Suh BC. Cav2.2 controls gating of voltage-gated calcium channels by releasing the beta2e subunit from the plasma membrane. Sci Signal 2016; 9:1-14; PMID:27382026; https://doi.org/10.1126/scisignal.aad7247

[24] Park CG, Park Y, Suh BC. The HOOK region of voltage-gated Cav2.2 channel beta subunits senses and transmits PIP2 signals to the gate. J Gen Physiol 2017; 149:261-76; PMID:28087621; https://doi.org/10.1085/jgp.201611677
[25] He LL, Zhang Y, Chen YH, Yamada Y, Yang J. Functional modularity of the β-subunit of voltage-gated Ca^{2+} channels. Biophys J 2007; 93:834-45; PMID:17496037; https://doi.org/10.1529/biophysj.106.101691

[26] Yang T, He LL, Chen M, Fang K, Colecraft HM. Bio-inspired voltage-dependent calcium channel blockers. Nat Commun 2013; 4:14950-7; https://doi.org/10.1038/ncomms3540

[27] Subramanyam P, Colecraft HM. Ion channel engineering: perspectives and strategies. J Mol Biol 2015; 427:190-204; PMID:25205552; https://doi.org/10.1016/j.jmb.2014.09.001