Pharmacological Therapies for Osteoporosis: A Bayesian Network Meta-Analysis

Jiping Shen
Zheng Ke
Shuangshuang Dong
Minzhi Lv
Ying Yuan
Le Song
Kefen Wu
Kan Xu
Yu Hu

Corresponding Author: Yu Hu, e-mail: hu.yu@zs-hospital.sh.cn

Financial support: This work was supported by the National Natural Science Foundation of China (Grant No.: 81570795) and Chugai Pharma China Co., Ltd.

Conflict of interest: This study was supported by Chugai Pharma China Co., Ltd. Yu Hu received consulting fees from Chugai Pharma China Co., Ltd. Zheng Ke and Shuangshuang Dong are employees of Chugai Pharma China Co., Ltd.

Background: Numerous randomized controlled trials (RCTs) have evaluated pharmacological therapies for osteoporosis. The aim of this Bayesian network meta-analysis was to compare the efficacy and safety of pharmacological therapies for osteoporosis patients.

Material/Methods: The electronic databases of PubMed, Embase, and Cochrane Library were systematically searched for eligible RCTs from their inception up to January 2021. The primary endpoints were all fractures, vertebral fractures, and non-vertebral fractures, while the secondary endpoints were fractures at hip or peripheral locations, bone mineral density (BMD) at various sites, and potential adverse events.

Results: We included 79 RCTs reporting a total of 108 797 individuals in the final quantitative analysis. The results of network analysis indicated that romosozumab (92.1%) was the most effective in reducing the risk for all fractures, with the best therapeutic effects on vertebral fracture (97.2%) and non-vertebral fracture (88.0%). Romosozumab (92.5%) provided better therapeutic effects for the reduction of hip fracture. The best treatment agents for improving whole-body BMD (100.0%), spine BMD (95.7%), hip BMD (92.4%), femoral neck BMD (86.7%), and trochanter BMD (95.5%) were alendronate, strontium ranelate, ibandronate, risedronate, and ibandronate, respectively. Finally, the use of bazedoxifene was associated with the highest incidence of any upper-gastrointestinal event, nasopharyngitis, and back pain, while risedronate was associated with higher incidence of abdominal pain and dyspepsia.

Conclusions: This study found that romosozumab yielded the best effects for preventing fracture risk, while abaloparatide was the most effective in reducing the risk of vertebral fracture and non-vertebral fracture.

Keywords: Bone Density • Fractures, Bone • Network Meta-Analysis • Pharmacological and Toxicological Phenomena

Abbreviations: BMD – bone mineral density; RCT – randomized controlled trial; SUCRA – surface under the cumulative ranking

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/935491
META-ANALYSIS

Background

Osteoporosis is a chronic metabolic bone disease that is highly prevalent in the elderly population, especially in postmenopausal women [1]. Osteoporosis morbidity is rapidly increasing with the increase in the aging population, with an estimated 200 million people affected worldwide [2]. Changes in bone mineral density (BMD) in postmenopausal women are significantly associated with hormonal changes related to ovarian function after menopause [3]. Moreover, nearly half of women and one-third of men with osteoporosis present with bone fractures during their lives [4]. The crude estimated prevalence of osteoporotic fractures is 9 million worldwide, which has a direct impact on morbidity, mortality, quality of life, and treatment cost [5]. Although numerous pharmacological therapies remain to be developed for reducing the risk of fractures, fractures mainly occur in individuals with osteoporosis who are receiving treatment but show inadequate responses to therapy.

Currently, bisphosphonates are widely used to prevent and treat osteoporosis; however, the long-term use of bisphosphonates can induce bone micro-damage accumulation, excessive acceleration of mineralization, and atypical insufficiency fractures in the skeletal system [6]. Several systematic reviews have been conducted to compare various drugs for treating osteoporosis [7-9]. Murad et al included 116 randomized controlled trials (RCTs) and found that teriparatide, bisphosphonates, and denosumab are the most effective agents for preventing fragility fracture risk, but the differences in effectiveness among the investigated drugs were not significant [7]. Freemantle et al suggested that osteoporotic patients who received denosumab, risedronate, and zoledronate have a significantly lower risk of non-vertebral and hip fractures, while alendronate, strontium ranelate, and teriparatide yield beneficial effects for non-vertebral fractures. Moreover, mixed comparison results indicated that denosumab was associated with a greater reduction in new vertebral fractures than strontium ranelate, raloxifene, alendronate, and risedronate [8]. Barrionuevo et al enrolled 107 RCTs and comprehensively examined the effectiveness of various agents on the risk of fragility fractures in postmenopausal women [9].

Recently, the effectiveness of various pharmacological therapies to reduce the risk of fractures and improve BMD at various sites in osteoporotic patients has been studied in numerous RCTs, and the therapeutic effects of these drugs should be re-evaluated and updated. Moreover, prior meta-analyses did not address safety outcomes [7-9]. Therefore, our study systematically analyzed the current existing treatment options for osteoporosis, and a Bayesian network meta-analysis was performed to summarize the evidence through direct and indirect comparisons of different pharmacological therapies.

Material and Methods

This network meta-analysis was registered in PROSPERO (CRD42020158203) [10] and was conducted and reported following the network meta-analysis version of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-NMA Checklist) [11].

Search Strategy and Selection Criteria

We identified the studies published in English through a systematic search of PubMed, Embase, and the Cochrane Library from inception to January 2021, using the following search terms: “osteoporosis,” “therapeutic,” and “random.” The details of the search strategy in PubMed are presented in the Supplementary Material. We also scrutinized the reference lists of all relevant reviews and those of the eligible publications. Moreover, ClinicalTrials.gov (US NIH) was searched to identify completed studies that have not yet published data. After the exclusion of duplicate studies, 2 investigators independently reviewed the titles and abstracts of the remaining articles according to predefined inclusion criteria. The inclusion criteria were the following: (1) Study design: RCT; (2) Participants: osteoporosis; (3) Intervention and control: abaloparatide, alendronate, alfacalcidol, bazedoxifene, calcitonin, calcitriol, denosumab, elcatonin, eldecalcitol, ibandronate, heparin, ibandronate, lacosam, risedronate, raloxifene, raloxifene, risedronate, romosozumab, strontium ranelate, and zoledronate; and (4) Outcomes: all fracture, vertebral fracture, non-vertebral fracture; fractures at hip, or peripheral locations, whole-body BMD, BMD at the spine, hip, femoral neck, and trochanter; and any potential adverse events.

Data Collection and Quality Assessment

The data collected included the first author’s surname, publication year, country, sample size, mean age, sex, interventions and controls, co-calcium, co-vitamin D, follow-up duration, and investigated outcomes. The Jadad scale was used to evaluate methodological quality, as it is quite comprehensive and has been validated for assessing the quality of RCTs in meta-analyses [12]. Data extraction and quality assessment were conducted independently by 2 authors. Information was examined and adjudicated independently by another author referring to the original studies.

Statistical Analyses

We initially performed a pairwise meta-analysis using a random-effects model because it is likely the most appropriate and conservative methodology to account for between-trial heterogeneity within each comparison [13]. We estimated the relative treatment effects of the competing interventions.
using odds ratios for dichotomous outcomes and standardized mean differences for continuous outcomes. For indirect and mixed comparisons, we used Bayesian network meta-analysis to compare different drugs [14]. To check for the presence of inconsistency, we used the loop-specific approach to assess the difference between direct and indirect estimates for a specific comparison in the loop [15]. To check the assumption of consistency in the entire network, we used the design-by-treatment interaction inconsistency model [14]. Because of the heterogeneity in patients, we still used the inconsistent model to analyze data. To rank the treatments for each outcome, we used surface under the cumulative ranking (SUCRA) probabilities [16]. Comparison-adjusted funnel plots were used to determine whether small-study effects were present in our analysis [17]. The summary results for adverse events for each drug were calculated using the random-effects model [13,18], and heterogeneity was assessed using I^2 and Q statistics [19,20]. All tests were two-tailed, and a P value of <0.05 was considered statistically significant. Data analyses were performed using Stata software (version 12.0; Stata Corporation, College Station, TX, USA).

Results

Literature Search

The results of the study selection process are shown in Figure 1. The initial electronic searches provided 5434 articles after removal of duplicates. After reviewing the titles and abstracts, 5077 of these articles were excluded owing to irrelevant topics. The remaining 357 articles were retrieved for full-text evaluations, and 278 were excluded for the following reasons: other drugs (n=85), affiliate studies (n=81), review (n=75), and insufficient data (n=37). A manual search of the reference lists of these studies did not yield any new eligible studies. Finally, 79 RCTs that assessed a total of 108,797 patients were included in our systematic review. The baseline characteristics of these studies are summarized in the Supplementary Material.

![Figure 1. PRISMA flowchart for the literature search and study selection.](image)

![Figure 2. Network of comparisons for all fracture included in the analysis, Stata software (version 12.0; Stata Corporation, College Station, TX, USA).](image)
Study Characteristics

These studies were published from 1984 to 2020, with 39 to 9331 patients included in each trial, and the follow-up period was 0.5-5.0 years. Eleven RCTs included men only, 56 RCTs included women only, and the remaining 12 RCTs included both males and females. Sixty-nine trials reported patients using calcium supplementation, and 57 trials reported patients using vitamin D supplementation in intervention and control groups. Study quality was evaluated using the Jadad scale, in which 36 trials scored 4, 30 trials scored 3, 9 trials scored 2, and the remaining 4 trials scored 1.

Primary Endpoints

In the network meta-analysis, eligible comparisons of outcomes are presented in the network plot (Figure 2). In the figure, the nodes are weighted according to the number of studies that evaluated each treatment, and the edges were weighted according to the precision of the direct estimate for each pairwise comparison. An inconsistency plot was produced to assume the loop-specific heterogeneity estimate, exp (IF), which showed no significant differences among the studies. We ranked the comparative effects of the drugs with SUCRA probabilities (%). The results indicated that romosozumab (92.1%) and zoledronate (90.6%) were more effective in preventing all fracture risks (Figure 3). The details of the pairwise comparisons agents are presented in Figure 4.

Figure 3. The SUCRA rank test for all fracture, Stata software (version 12.0; Stata Corporation, College Station, TX, USA).
A comparison-adjusted funnel plot used to assess publication bias and determine the presence of small-study effects did not suggest that there was any publication bias (Figure 5).

The network meta-analysis comparing the effectiveness of various drugs to reduce the risk of vertebral and non-vertebral fracture is presented in Figure 6. The loop-specific heterogeneity inconsistency plot showed no significant differences. The SUCRA rank showed that abaloparatide (97.2%), denosumab (85.5%), and romosozumab (91.2%) were more effective for reducing the risk of vertebral fractures (Figure 7A), while abaloparatide (88.0%), and zoledronate (85.0%) were most likely to prevent the risk of non-vertebral fractures (Figure 7B). The details of the pairwise comparisons agents for the risk of vertebral and non-vertebral fractures are shown in Figure 8 and Supplementary Material. There was no significant publication bias for the risk of vertebral and non-vertebral fracture (Figure 9).

Secondary Endpoints

The results of the network meta-analysis comparing the effectiveness of various drugs to reduce the risk of hip fracture and

Figure 4. The pairwise comparisons agents for all fracture, Stata software (version 12.0; Stata Corporation, College Station, TX, USA).

Figure 5. Funnel plot for all fracture, Stata software (version 12.0; Stata Corporation, College Station, TX, USA).
Peripheral fracture are shown in the Supplementary Material. We noted the best treatment agent for hip fracture was romosozumab (92.5%), while alendronate (61.0%), calcitonin (64.9%), and zoledronate (64.7%) provided similar effects on the risk of peripheral fracture. The pairwise comparisons agents supported the results for hip fracture, while no significant differences were obtained for the risk of peripheral fracture (Supplementary Material).

The network meta-analysis showing the effects of various drugs on BMD at various sites are shown in the Supplementary Material. The results of the SUCRA rank tests indicated that alendronate (100.0%), strontium ranelate (95.7%), ibandronate (92.4%), risendronate (86.7%), and ibandronate (95.5%) provided better effects for improving whole-body BMD, spine BMD, hip BMD, femoral neck BMD, and trochanter BMD, respectively (Supplementary Material). The results of pairwise comparisons agents for BMD at various sites were consistent with the SUCRA rank (Supplementary Material). We did not find significant publication bias for whole-body BMD, while potential significant publication bias for spine BMD, hip BMD, femoral neck BMD, and trochanter BMD was observed (Supplementary Material).

The safety profiles for each drug were also pooled and listed in the Supplementary Material. The use of bazedoxifene was associated with the highest incidence of any upper-gastrointestinal event (incidence: 0.48; 95% CI: 0.42-0.54), nasopharyngitis (incidence: 0.57; 95% CI: 0.51-0.63), headache (incidence: 0.10; 95% CI: 0.07-0.14), and back pain (incidence: 0.18;
95% CI: 0.13-0.22). The highest incidence of musculoskeletal pain was observed with denosumab (incidence: 0.13; 95% CI: 0.10-0.17). The use of calcitonin was associated with the highest incidence of nausea (incidence: 0.15; 95% CI: 0.14-0.17).

Discussion

In this study, we performed a network meta-analysis to compare the effectiveness of various pharmacological therapies for osteoporotic patients. This large quantitative study included 108,797 individuals from 79 RCTs with a broad range of baseline characteristics. This meta-analysis indicated that romosozumab and zoledronate yielded better pharmacological outcomes for all fractures. Abaloparatide, denosumab, and romosozumab were found to be effective for preventing vertebral fractures. Abaloparatide and zoledronate were the most effective for preventing non-vertebral fractures. Romosozumab was the most effective for preventing hip fracture, while alendronate (61.0%), calcitonin (64.9%), and zoledronate provided similar reduction of the risk of peripheral fracture. Furthermore, the best therapeutic effects for improving whole-body BMD, spine BMD, femoral neck BMD, and trochanter BMD were alendronate, strontium ranelate, ibandronate, risedronate, and ibandronate, respectively. Finally, several adverse events should be addressed in clinical practice, including bazedoxifene-related to upper-gastrointestinal events, nasopharyngitis, headache, and back pain, denosumab related to musculoskeletal pain, and calcitonin related to nausea.

Several systematic reviews and meta-analyses have previously compared various pharmacological therapies for osteoporosis...
Moreover, a recent network meta-analysis conducted by Kataoka et al to compare the recommendation pharmacological therapies for postmenopausal osteoporosis and found no apparent discrepancy between guideline recommendations and drug prescribing rankings [21]. Deng et al identified 56 RCTs and found that bisphosphonates, teriparatide, and denosumab were associated with a reduced risk of fracture in patients undergoing glucocorticoids, while the anti-fracture efficacy of vitamin D metabolites and analogs were superior to plain vitamin D [22]. A network meta-analysis performed by Liu et al found teriparatide and ibandronate had the best effect in reducing vertebral and non-vertebral fractures in patients with glucocorticoid-induced osteoporosis [23]. Lin et al identified 94 RCTs and indicated that parathyroid hormone had the best effect in reducing hip fractures, while strontium ranelate, fluoride, and hormone replacement therapy provided the best efficacy in increasing BMD at total hip, lumbar spine, and distal radius [24]. Migliorini et al identified 64 RCTs and found denosumab had the best effect in increasing BMD at spine, hip, and femur in selected women with postmenopausal osteoporosis [25]. However, these studies focused on fractures at vertebral, non-vertebral, or hip, and BMD at various sites, while several other important outcomes, including all fractures, peripheral fractures, and safety profiles, were not addressed. Moreover, the analyses in prior meta-analyses contained several abandoned drugs, and the results might be overestimates based on network analysis. Furthermore, recently published RCTs should be entered into meta-analysis, and the pooled

Figure 7. The SUCRA rank test for vertebral fracture (A) and non-vertebral fracture (B). Stata software (version 12.0; Stata Corporation, College Station, TX, USA).
Figure 8. The pairwise comparisons agents for vertebral fracture (A) and non-vertebral fracture (B), Stata software (version 12.0; Stata Corporation, College Station, TX, USA).
conclusions require re-evaluation. Therefore, we performed a Bayesian network meta-analysis to provide evidence regarding better pharmacological therapies for osteoporosis treatment.

The study results indicated that romosozumab and zoledronate provided enhanced effectiveness for preventing all fractures. Several factors might explain these results: romosozumab provides a dual effect on bones owing to the changes in bone formation and bone resorption through binding and inhibiting sclerostin [26-30]; and the beneficial effects of zoledronate could be explained by the high potency of bisphosphonates and high compliance rate of patients [31]. Additionally, the relatively better agents for preventing vertebral and non-vertebral fractures were abaloparatide, denosumab, or romosozumab; and abaloparatide and zoledronate, respectively. Abaloparatide selectively binds to the RG versus R0 conformation of the parathyroid hormone type 1 receptor [32-37], subsequently affecting BMD, restoration of bone microarchitecture, and increased bone strength [38-40].

Our study also suggests the best agents for improving whole-body BMD, spine BMD, hip BMD, femoral neck BMD, and trochanter BMD were alendronate, strontium ranelate, ibandronate, risedronate, and ibandronate, respectively, which had already been illustrated in numerous studies [41-49]. Although our study found several other agents that more effectively improved BMD at various sites, these results might not be stable due to the smaller number of trials reporting these data. Further large-scale RCTs are required to verify these data. Finally, although numerous traditional systematic reviews and meta-analyses have already illustrated the effectiveness of pharmacological treatment for osteoporotic patients, direct or indirect comparisons among various agents remain inconclusive. The present comprehensive network meta-analysis studied various medicinal treatments for osteoporotic patients to further clarify the effectiveness of pharmacological therapies for osteoporosis. In addition, our study calculated the pooled incidences for adverse events related to each drug. However, Bayesian network meta-analysis was not conducted for specific adverse events because they were relatively uncommon.

Several limitations in our study should be acknowledged: (1) the use of vitamin D and calcium supplements by patients may have introduced heterogeneity across included trials; (2) the inconsistent results regarding the Bayesian network meta-analyses and pairwise comparisons should be verified by further direct comparison RCT; (3) nearly half of included studies had low to moderate quality, and the outcomes of this study should be interpreted cautiously; (4) although no significant publication bias was observed, the potential publication bias was inevitable owing to the analysis of our study based on published articles; and (5) there are inherent limitations for meta-analyses based on study level, and more detailed analyses are needed.

Conclusions

This network meta-analysis presents the optimal pharmacological therapies for preventing fracture, improving BMD at various sites, and potential adverse events in osteoporosis patients. These findings could be recommended in clinical practice for individuals at high risk of fractures. Further comprehensive network meta-analyses should be conducted to compare the cost-effectiveness of pharmacological therapies for osteoporosis.
Declaration of Figures’ Authenticity

All figures submitted have been created by the authors who confirm that the images are original with no duplication and have not been previously published in whole or in part.

References:

1. Chesnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: The present recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000;109(4):267-76

2. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. University of Sheffield, UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases. University of Sheffield; 2007

3. Briot K, Cortet B, Thomas T, et al. 2012 update of French guidelines for the pharmacological treatment of postmenopausal osteoporosis. Joint Bone Scl. 2012;79(3):304-13

4. Ross PD. Osteoporosis. Frequency, consequences, and risk factors. Arch Intern Med. 1996;156(13):1399-411

5. El-Hajj Fuleihan G, Chakhtoura M, Cauley JA, Chamoun N. Worldwide fracture prediction. J Clin Densitom. 2017;20(3):397-424

6. Whyte MP, Wenkert D, Clements KI, et al. Bisphosphonate-induced osteonecrosis. N Engl J Med. 2003;349(5):457-63

7. Murad MH, Drake MT, Mullen RI, et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: A systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1871-80

8. Freemantle N, Cooper C, Diez-Perez A, et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: A meta-analysis. Osteoporos Int. 2013;24(1):209-17

9. Barrionuevo P, Kapoor E, Asi N, et al. Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: A network meta-analysis. J Clin Endocrinol Metab. 2019;104(5):1623-30

10. Hu Y, Ke Z, Han J. Effectiveness of pharmacological therapies on bone mineral density and fracture at various sites: A network meta-analysis of randomized controlled trials. PROSPERO 2020 CRD42020158203 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020158203

11. Hutton B, Salant G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann Intern Med. 2015;162(6):777-84

12. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12

13. Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25(6):646-54

14. White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: Model estimation using multivariate meta-regression. Res Synth Methods. 2012;3(2):111-25

15. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50(6):683-91

16. Li D, Wang T, Shen S, et al. Effects of fluoroquinolones in newly diagnosed, post-surgical patients with osteoporosis. A meta-epidemiological study. Arch Osteoporos. 2020;15(1):21

17. Kataoka Y, Luo Y, Chaimani A, et al. Cumulative network meta-analyses, practice guidelines, and actual prescriptions for postmenopausal osteoporosis: A meta-epidemiological study. Arch Osteoporos. 2020;15(1):21

18. Deng J, Jie S, Huang E, et al. Pharmacological prevention of fractures in patients undergoing glucocorticoid therapies: A systematic review and network meta-analysis. Rheumatology (Oxford). 2021;60(2):649-57

19. Liu Z, Zhang M, Shen Z, et al. Efficacy and safety of 18 anti-osteoporotic drugs in the treatment of patients with osteoporosis caused by glucocorticoids: A network meta-analysis of randomized controlled trials. PLoS One. 2020;15(12):e0243851

20. Lin SY, Hung MC, Chang SF, et al. Efficacy and safety of postmenopausal osteoporosis treatments: A systematic review and network meta-analysis of randomized controlled trials. J Clin Med. 2021;10(14):3043

21. Magliani F, Maffulli N, Colarozi G, et al. Effect of drugs on bone mineral density in postmenopausal osteoporosis: A Bayesian network meta-analysis. J Orthop Surg Res. 2021;16(1):533

22. Liu Y, Cao Y, Zhang S, et al. Romosozumab treatment in postmenopausal women with osteoporosis: A meta-analysis of randomized controlled trials. Clincametric. 2018;21(2):189-95

23. Lim SY, Bolster MB. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des Devel Ther. 2017;11:1221-31

24. Ominsky MS, Boyd SK, Varea A, et al. Romosozumab improves bone mass and strength while maintaining bone quality in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2017;32(4):788-801

25. Kendall DL, Bone HG, Massari F, et al. Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos Int. 2019;30(12):2437-48

26. Geusens P, Oates M, Miyachi A, et al. The effect of 1 year of romosozumab on the incidence of clinical vertebral fractures in postmenopausal women with osteoporosis: Results from the FRAME study. JBMR Plus. 2019;3(10):e10211

27. Ruza J, Mirfakhraee S, Orwoll E, Gruntmanis U. Clinical experience with intravenous zoledronic acid in the treatment of male osteoporosis: Evidence and opinions. Ther Adv Musculoskelet Dis. 2013;5(4):182-98

28. Hattersley G, Dean T, Corbin BA, et al. Binding selectivity of abaloparatide for PTH-type 1-receptor conformations and effects on downstream signalling. Endocrinology. 2016;157(1):141-49

29. Leder BZ, O’Dea LS, Zanchetta JR, et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100(2):697-706

30. Reid CL, Mitlak BH, Wang Y, et al. Response rates for hip, femoral neck, and lumbar spine bone mineral density in patients treated with abaloparatide followed by alendronate: Results from phase 3 ACTIVExextend. Bone Rep. 2019;11:00230

31. Chandler H, Lanske B, Varea A, et al. Abaloparatide, a novel osteoanabolic PTHrP analog, increases cortical and trabecular bone mass and architecture in ovariectomized rats by increasing bone formation without increasing bone resorption. Bone. 2019;120:148-55

32. Miller PD, Hattersley G, Lau E, et al. Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: Results from the ACTIVE phase 3 trial. Bone. 2019;120:137-40

33. McCluskey EV, Fitzpatrick LA, Hu MY, et al. Effect of abaloparatide on vertebral, nonvertebral, major osteoporotic, and clinical fractures in a subset of postmenopausal women at increased risk of fracture by FRAX probability. Arch Osteoporos. 2019;14(1):15

34. Bahar H, Gallagher K, Downall J, et al. Six weeks of daily abaloparatide treatment increased vertebral and femoral bone mineral density, microarchitecture and strength in ovariectomized osteopenic rats. Calcif Tissue Int. 2016;99(5):489-99
39. Doyle N, Varela A, Haile S, et al. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos Int. 2018;29(3):685-97
40. Varela A, Chouinard L, Lesage E, et al. One Year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in ovariectomized ovariectomized rats without increasing bone resorption. J Bone Miner Res. 2017;32(1):24-33
41. Cranney A, Wells G, Willan A, et al. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev. 2002;23(4):508-16
42. Cranney A, Tugwell P, Wells G, et al. The Osteoporosis Research Advisory Group. Meta-analyses of therapies for postmenopausal osteoporosis. I. Systematic reviews of randomized trials in osteoporosis: introduction and methodology. Endocr Rev. 2002;23(4):496-507
43. Cranney A, Guyatt G, Griffith L, et al. Meta-analyses of therapies for postmenopausal osteoporosis. IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev. 2002;23(4):570-78
44. Zhu S-Y, Deng Y, Wang Y-F, et al. Bone protection for early menopausal women in China: Standard or half-dose estrogen with progesterin? A one-year prospective randomized trial. Gynecol Endocrinol. 2019;35(2):165-69
45. Sullivan SD, Lehman A, Nathan NK, et al. Age of menopause and fracture risk in postmenopausal women randomized to calcium + vitamin D, hormone therapy, or the combination: Results from the Women’s Health Initiative Clinical Trials. Menopause. 2017;24(4):371-78
46. Watts NB, Cauley JA, Jackson RD, et al. No increase in fractures after stopping hormone therapy: Results from the women’s health initiative. J Clin Endocrinol Metab. 2017;102(1):302-8
47. Saarelainen J, Hassi S, Honkanen R, et al. Bone loss and wrist fractures after withdrawal of hormone therapy: The 15-year follow-up of the OSTPRE cohort. Maturitas. 2016;85:49-55
48. Cauley JA. Estrogen and bone health in men and women. Steroids. 2015;99:11-15
49. Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Menopause Review. 2014;13:213-20

Supplementary Material

1. Search strategy

No	Terms
1	exp osteoporosis/ or osteopenia/ or osteoporos*.mp. or osteopeni*.mp. or osteopaen*.mp. or fragil*.mp.
2	exp bone density conservation agents/ or exp calcium/ or exp selective estrogen receptor modulators/ or exp vitamin d/
3	alendronate.mp. or ibandronate/ or residronate.mp. or zolendronate.mp. or bisphosphonate.mp. or disphosphonate.mp. or calcitonin.mp.
4	(raloxifen* or tamoxifen* or abaloparatide or ralosuzumab or bazedoxifene or losfoxifene or denosumab or pth).mp.
5	randomized controlled trial.pt.
6	controlled clinical trial.pt.
7	randomized controlled trials/
8	random allocation.sh.
9	double blind method.sh.
10	single-blind method.sh.
11	clinical trials.pt.
12	exp clinical trials/
13	((singl$ or doubl$ or trebl$ or tripl$) adj (blind$ or mask$)).ti,ab.
14	placebo$.ti,ab.
15	randomized ti,ab.
16	research design.sh.
17	exp evaluation studies/
18	follow up studies.sh.
19	prospective studies.sh.
20	limit 23 to (“human”) and English

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
2. The baseline characteristics of included studies

Study	Country	Sample size	Mean age (years)	Sex	Intervention	Control	Calcium	Vitamin D	Follow-up (years)	Study quality	
Gruber 1984 [s1]	USA	45 (24/21)	65.8/65.1	Women	Calcitonin	Placebo	Yes	Yes	2.0	1	
Overgaard 1992 [s2]	Denmark	208 (156/52)	70.0/70.0	Women	Calcitonin	Placebo	Yes	No	2.0	4	
Rico 1995 [s3]	Spain	72 (36/36)	68.8/69.6	Women	Calcitonin	Placebo	Yes	No	2.0	1	
Liberman 1995 [s4]	Multicountries	878 (523/355)	64.0/64.0	Women	Alendronate	Placebo	Yes	No	3.0	4	
Black 1996 [s5]	USA	2,027 (1,022/1,005)	70.7/71.0	Women	Alendronate	Placebo	Yes	Yes	3.0	4	
Clemmesen 1997 [s6]	Multicountries	132 (88/44)	67.5/70.0	Women	Risedronate	Placebo	Yes	No	2.0	3	
Cummings 1998 [s7]	USA	4,432 (2,214/2,218)	67.6/67.7	Women	Alendronate	Placebo	Yes	NA	4.2	4	
Lufkin 1998 [s8]	USA	143 (95/48)	68.6/68.2	Women	Raloxifene	Placebo	Yes	Yes	1.0	3	
Pols 1999 [s9]	Multicountries	1,908 (950/958)	62.8/62.8	Women	Alendronate	Placebo	Yes	No	1.0	2	
Ettinger 1999 [s10]	Multicountries	6,828 (4,356/2,992)	66.0/66.3	Women	Raloxifene	Placebo	Yes	Yes	3.0	4	
Harris 1999 [s11]	USA	2,458 (1,638/820)	69.0/68.0	Women	Risedronate	Placebo	Yes	Yes	3.0	4	
Chesnut 2000 [s12]	Multicountries	1,255 (944/311)	68.4/68.2	Women	Calcitonin	Placebo	Yes	Yes	5.0	3	
Fogelman 2000 [s13]	Multicountries	541 (361/180)	65.0/64.0	Women	Risedronate	Placebo	Yes	No	2.0	3	
Reginster 2000 [s14]	Multicountries	1,226 (818/408)	71.0/71.0	Women	Risedronate	Placebo	Yes	Yes	3.0	4	
Orwell 2000 [s15]	USA	244 (146/95)	63.0/63.0	Men	Alendronate	Placebo	Yes	Yes	2.0	4	
Ushiyama 2001 [s16]	Japan	151 (99/52)	53.9/51.0	Women	Calcitonin	Placebo	No	Yes	2.0	2	
McClung 2001 [s17]	Multicountries	9,331 (6,197/3,134)	77.7/77.8	Women	Risedronate	Placebo	Yes	Yes	2.0	4	
Ringe 2001 [s18]	Germany	134 (66/68)	53.3/52.7	Men	Alfacalcidol	Alendronate	Yes	No	2.0	3	
Ebeling 2001 [s19]	Australia	39 (20/19)	57.5/60.5	Men	Calcitriol	Placebo	Yes	No	2.0	2	
Dursun 2001 [s20]	Turkey	151 (101/50)	61.8/60.3	Women	Calcitriol	Alendronate	Yes	No	1.0	2	
Greenspan 2002 [s21]	USA	327 (163/164)	78.5	Women	Alendronate	Placebo	Yes	Yes	2.0	4	
Reid 2002 [s22]	Multicountries	351 (292/59)	64.0/57.0	Women	Zoledronate	Placebo	Yes	No	1.0	4	
Morii 2003 [s23]	Japan	280 (183/97)	64.9/64.3	Women	Raloxifene	Placebo	Yes	Yes	1.0	4	
Shiraki 2003 [s24]	Japan	166 (123/43)	60.5/60.5	Both	Risedronate	Placebo	Yes	No	0.8	3	
Study	Country	Sample size	Mean age (years)	Sex	Intervention	Control	Calcium	Vitamin D	Follow-up (years)	Study quality	
---------------	----------------	-----------------	------------------	-----	--------------	---------	---------	-----------	------------------	--------------	
Chesnut 2004	Multicountries	2,929 (1,954/975)	69.0/69.0	Women	Ibandronate	Placebo	Yes	Yes	3.0	4	
Ishida 2004	Japan	198 (66/66/66)	69.0/71.0/68.0	Women	Calcitonin; alfacalcidol	Placebo	NA	No	2.0	3	
Recker 2004	Multicountries	2,860 (1,911/949)	67.0/67.0	Women	Ibandronate	Placebo	Yes	Yes	3.0	4	
Luckey 2004	USA	456 (223/233)	63.8/64.7	Women	Placebo	Alendronate	Raloxifene	Yes	No	1.0	4
Meunier 2004	Multicountries	1,442 (719/723)	69.4/69.2	Women	Strontium ranelate	Placebo	Yes	Yes	3.0	4	
Matsumoto 2005	Japan	219 (166/53)	67.0/68.0	Both	Eldecalcitol	Placebo	No	Yes	1.0	4	
Coop 2005	Australia	383 (257/126)	52.7/52.6	Women	Placebo	NA	Yes	No	2.0	3	
Reginster 2005	Multicountries	4,932 (2,479/2,453)	76.7/76.8	Women	Strontium ranelate	Placebo	Yes	Yes	3.0	4	
Cascella 2005	Italy	40 (20/20)	72.4/73.0	Women	Neridronate	Placebo	Yes	Yes	1.0	3	
McClung 2006	USA	365 (272/47/6)	62.1/62.8/63.7	Women	Denosumab; alendronate	Placebo	Yes	Yes	1.0	4	
Recker 2007	USA	1,423 (716/707)	65.7/65.5	Women	Placebo	Alendronate	Raloxifene	Yes	Yes	0.9	3
Lyles 2007	Multicountries	2,127 (1,065/1,062)	74.4/74.6	Both	Zoledronate	Placebo	Yes	Yes	1.9	4	
Ruff 2007	Germany	60 (30/30)	66.4/65.7	Both	Alfacalcidol	Alendronate	No	Yes	2.0	2	
Iwamoto 2008	Japan	122 (61/61)	70.3/68.5	Women	Placebo	Alendronate	Raloxifene	Yes	No	1.0	1
Silverman 2008	Multicountries	7,492 (3,758/1,849/1,885)	66.4/66.4/66.5	Women	Placebo	Bazedoxifene; raloxifene	Yes	Yes	3.0	3	
Miller 2008	Multicountries	1,733 (874/859)	65.6/65.6	Women	Ibandronate	Alendronate	Placebo	Yes	Yes	1.0	3
Cosman 2009	USA	99 (52/47)	67.8/68.3	Women	Placebo	Alendronate	Raloxifene	Yes	Yes	1.5	2
Cummings 2009	Multicountries	7,808 (3,902/3,906)	72.3/72.3	Women	Placebo	Denosumab	Yes	Yes	3.0	4	
Yan 2009	China	560 (280/280)	65.2/64.7	Women	Placebo	Alendronate	Placebo	Yes	Yes	1.0	4
Grey 2009	New Zealand	50 (25/25)	62.0/65.0	Women	Placebo	Zoledronate	Placebo	No	No	2.0	3
Rogers 2009	UK	51 (26/25)	63.4/63.6	Women	Placebo	Lasosofxine	Placebo	Yes	Yes	2.0	3
McClung 2009	USA	160 (77/83)	53.7/53.4	Women	Placebo	Ibandronate	Placebo	Yes	Yes	1.0	4
Xia 2009	China	150 (74/76)	70.4/70.4	Women	Placebo	Alendronate	Placebo	Yes	Yes	1.0	3
Boonen 2009	Multicountries	284 (191/93)	60.0/62.0	Men	Placebo	Risedronate	Placebo	Yes	Yes	2.0	4
Ringe 2009	Germany	316 (158/158)	55.8/58.0	Men	Placebo	Risedronate	Placebo	Yes	Yes	2.0	1
Study	Country	Sample size	Mean age (years)	Sex	Intervention	Control	Calcium	Vitamin D	Follow-up (years)	Study quality	
-----------------------	----------------	--------------	------------------	-----	------------------	---------	---------	-----------	-------------------	---------------	
Cummings 2010 [s50]	Multicountries	8,556 (5,704/2,852)	67.4/67.5	Women	Lasofoxifene	Placebo	Yes	Yes	5.0	4	
Ringe 2010 [s51]	Germany	152 (76/76)	60.3/59.5	Men	Strontium ranelate	Alendronate	Yes	Yes	1.0	2	
Orwoll 2010 [s52]	USA	302 (154/148)	64.5/63.5	Men	Zoledronate	Alendronate	Yes	Yes	2.0	3	
Orwoll 2010 [s53]	USA	132 (85/47)	63.9/65.0	Men	Iblandronate	Placebo	Yes	Yes	1.0	3	
Matsumoto 2011 [s54]	Japan	1,054 (528/526)	72.1/72.1	Both	Eldecalcitrol	Alfacalcidol	NA	Yes	3.0	4	
Cosman 2011 [s55]	Multicountries	275 (137/138)	65.0/63.8	Women	Zoledronate	Placebo	Yes	Yes	1.0	3	
Itabashi 2011 [s56]	Japan	387 (259/128)	63.1/64.1	Men	Bazedoxifene	Placebo	Yes	Yes	2.2	3	
Iwamoto 2011 [s57]	Japan	194 (97/97)	77.7/81.9	Women	Alendronate	Elcatonin	No	No	0.5	2	
Boonen 2012 [s58]	Multicountries	1,199 (588/611)	66.0/66.0	Men	Zoledronate	Placebo	Yes	Yes	2.0	4	
Orwoll 2012 [s59]	USA	242 (121/121)	64.9/65.0	Men	Denosumab	Placebo	Yes	Yes	1.0	3	
Bai 2013 [s60]	China	483 (242/241)	56.5/57.2	Women	Zoledronate	Placebo	Yes	Yes	2.0	2	
Recknor 2013 [s61]	Multicountries	833 (417/416)	67.2/66.2	Women	Denosumab	Iblandronate	Yes	Yes	1.0	3	
Kaufman 2013 [s62]	Multicountries	73.1/72.6	Men	Strontium ranelate	Placebo	Yes	Yes	2.0	4		
Nakamura 2013 [s63]	Japan	1,134 (758/376)	72.5/73.0	Both	Iblandronate	Risedronate	Yes	Yes	3.0	3	
Grey 2014 [s64]	New Zealand	172 (129/43)	65.3/65.0	Women	Zoledronate	Placebo	No	No	2.0	3	
Nakamura 2014 [s65]	Japan	952 (472/480)	69.9/69.0	Both	Denosumab	Placebo	Yes	Yes	2.0	3	
Sakai 2015 [s66]	Japan	219 (110/109)	71.5/71.6	Both	Eldecalcitrol	Placebo	Yes	No	1.0	3	
Greenspan 2015 [s67]	USA	181 (89/92)	85.4/85.5	Women	Zoledronate	Placebo	Yes	Yes	2.0	4	
Cosman 2016 [s68]	Multicountries	7,180 (3,589/3,591)	70.9/70.8	Women	Romosozumab	Placebo	Yes	Yes	1.0	4	
Henriksen 2016 [s69]	Multicountries	4,665 (2,334/2,331)	66.5/67.0	Women	Calcitonin	Placebo	Yes	Yes	3.0	4	
Koh 2016 [s70]	Korea	135 (69/66)	67.0/66.0	Women	Denosumab	Placebo	Yes	Yes	0.5	3	
Miller 2016 [s71]	Multicountries	1,645 (824/821)	68.9/68.7	Women	Abaloparatide	Placebo	Yes	Yes	1.5	4	
Miller 2016 [s72]	Multicountries	643 (321/322)	68.5/69.5	Women	Denosumab	Zoledronate	Yes	Yes	1.0	4	
Saag 2017 [s73]	Multicountries	4,093 (2,046/2,047)	74.4/74.2	Women	Romosozumab	Alendronate	Yes	Yes	2.0	4	
Nakamura 2017 [s74]	Japan	661 (330/331)	74.0/74.3	Both	Zoledronate	Placebo	Yes	Yes	2.0	3	
Study	Country	Sample size	Mean age (years)	Sex	Intervention	Control	Calcium	Vitamin D	Follow-up (years)	Study quality	
-------	---------	-------------	-----------------	-----	--------------	---------	---------	-----------	-----------------	--------------	
Reid 2018	New Zealand	2,000 (1,000/1,000)	71.0/71.0	Women	Zoledronate	Placebo	No	No	1.5	4	
Saag 2019	Multicountries	795 (398/397)	62.3/61.5	Both	Denosumab	Risedronate	Yes	Yes	2.0	4	
Jiang 2019	China	249 (128/121)	66.0/64.9	Both	Eldecalcitol	Alfacalcidol	No	No	1.0	3	
Anastasiakis 2019	Greece	57 (30/27)	64.8/65.2	Women	Denosumab	Risedronate	Yes	Yes	2.0	3	
Matsumoto 2020	Japan	360 (178/182)	58.5/58.4	Both	Eldecalcitol	Alfacalcidol	Yes	No	2.0	3	

3. Reference lists

51. Gruber HE, Ivey JL, Baylink DJ, et al. Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism. 1984;33(4):295-303
52. Overgaard K, Hansen MA, Jensen SB, Christiansen C. Effect of calcitonin given intranasally on bone mass and fracture rates in established osteoporosis: A dose-response study. BMJ. 1992;305(6853):556-61
53. Rico H, Revilla M, Hernández ER, et al. Total and regional bone mineral content and fracture rate in postmenopausal osteoporosis treated with salmi- calcalcitonin: a prospective study. Calcif Tissue Int. 1995;56(1):181-85
54. Liberhan UA, Weiss SR, Broll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med. 1995;333(23):1437-43
55. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures, Fracture Intervention Trial Research Group. Lancet. 1996;348(9041):1535-44
56. Cleemput S, Ravn P, Geesink R, et al. A 2-year phase II study with 1-year of follow-up of risedronate (NE-58095) in postmenopausal osteoporosis. Osteoporos Int. 1997;7(5):488-95
57. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: Results from the Fracture Intervention Trial. JAMA. 1998;280(24):2077-82.
58. Luftig EG, Whitaker MD, Nickelsen T, et al. Treatment of established postmenopausal osteoporosis with roxalofene: A randomized trial. J Bone Miner Res. 1998;13(11):1747-54
59. Pols HA, Felsenberg D, Hanley DA, et al. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture rate in postmenopausal women with low bone mass. Results of the FOSIT study. Fosamax International Trial Group. Osteoporos Int. 1999;9(5):461-68
60. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: Results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282(7):637-45
61. Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344-52
62. Chesnut CH 3rd, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19(8):1241-49
63. Ishida Y, Kawai S. Comparative efficacy of hormone replacement therapy, etidronate, calcitonin, alfacalcidol, and vitamin K in postmenopausal women with osteoporosis: The Yamaguchi Osteoporosis Prevention Study. Ann Intern Med. 2002;136(10):742-46
64. Reider IR, Brown JP, Burchhardt P, et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med. 2002;346(9):653-61
65. Morii H, Ohashi Y, Taketani Y, et al. Effect of raloxifene on bone mineral density and biochemical markers of bone turnover in Japanese postmeno- pausal women with osteoporosis: Results from a randomized placebo-control- trolled trial. Osteoporos Int. 2003;14(10):793-800
66. Shiraki M, Fukunaga M, Kushida K, et al. A double-blind dose-ranging study of risedronate in Japanese patients with osteoporosis (a study by the Risedronate Late Phase II Research Group). Osteoporos Int. 2003;14(3):225-34
67. Chesnut CH 3rd, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19(8):1241-49
68. Iida H, Shibuya K, Hasegawa T, et al. Randomized controlled trial of oral ibandronate in the prevention of vertebral fractures in postmenopausal women with established osteoporosis. J Bone Miner Res. 2004;19(8):1241-49
69. Reiser R, Stakkestad JA. Alendronate for the treatment of osteoporosis in elderly women. N Engl J Med. 2004;350(5):459-68
S50. Cummings SR, Ensrud K, Delmas PD, et al. Lasofoxifene in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2005;90(9):5031-36

S51. Ringe JD, Dorst A, Farahmand P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneimittelforschung. 2010;60(5):267-72

S52. Orwoll ES, Miller PD, Adachi JD, et al. Efficacy and safety of a once-yearly i.v. infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: A randomized, multicenter, dou-
bled-blind, active-controlled study. J Bone Miner Res. 2009;25(10):2319-50

S53. Orwoll ES, Binkley NC, Lewiecki EM, et al. Efficacy and safety of monthly ibandronate in men with low bone density. Bone. 2010;46(4):970-76

S54. Matsumoto T, Ito M, Hayashi Y, et al. A new active vitamin D3 analog, elicalcitrol, prevents the risk of osteoporotic fractures – a randomized, ac-
tive comparator, double-blind study. Bone. 2011;49(4):605-12

S55. Cosman F, Eriksen EF, Recknor C, et al. Efficacy of intravenous zoledronic acid plus subcutaneous teriparatide [rPTH(H1-34)] in postmenopausal os-
teoporosis. J Bone Miner Res. 2011;26(3):503-11

S56. Iwamoto J, Makita K, Sato Y, et al. Alendronate is more effective than etala-
ton in improving pain and quality of life in postmenopausal women with osteoporosis. Osteoporos Int. 2011;22(10):2735-42

S57. Boonen S, Reginster JY, Kaufman JM, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714-23

S58. Orwoll E, Tegbjaerg CS, Langdahl BL, et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab. 2012;97(9):3161-69

S59. Bai H, Jing Q, Gao Y, Yin S. Randomized controlled trial of zoledronic acid for treatment of osteoporosis. J Int Med Res. 2013;41(3):679-704

S60. Recknor C, Czerniowski E, Bone HG, et al. Denosumab compared with iband-
ronate in postmenopausal women previously treated with bisphosphonate therapy: A randomized open-label trial. Osteoporos Int. 2013;60(5):267-72

S61. Kaufman JM, Audram M, Blanchi G, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab. 2013;98(2):592-601

S62. Nakamura T, Nakano T, lto M, et al. Clinical efficacy on fracture risk and safe-
ty of 0.5 mg or 1 mg/month intravenous ibandronate versus 2.5 mg/day oral risedronate in patients with primary osteoporosis. Calcif Tissue Int. 2013;92(2):137-46

S63. Grey A, Bolland M, Mihov B, et al. Duration of antiresorptive effects of low-
dose zoledronic in osteoporotic postmenopausal women: A randomized, placebo-controlled trial. J Bone Miner Res. 2014;29(1):166-72

S64. Nakamura T, Matsumoto T, Sugimoto T, et al. Clinical Trials Express: Fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis. Denosumab fracture intervention randomized pla-
cebo controlled trial (DIRECT). J Clin Endocrinol Metab. 2014;99(7):2559-67

S65. Sakai A, Ito M, Tomomitsu T, Tsukumihara K, et al. Efficacy of combined treat-
ment with alendronate (ALN) and etidronalcalcit, a new active vitamin D analog, compared to that of concomitant ALN, vitamin D plus calcium treat-
mint in Japanese patients with primary osteoporosis. Osteoporos Int. 2015;26(3):1193-202

S66. Greenspan SL, Perera S, Ferchak MA, et al. Efficacy and safety of single-
dose zoledronic acid for osteoporosis in frail elderly women: A randomized clinical trial. JAMA Intern Med. 2015;175(15):1532-43

S67. Cosman F, Cittenden BD, Adachi JD, et al. Romosozumab treatment in post-
menopausal women with osteoporosis. N Engl J Med. 2016;375(16):1512-43

S68. Henriksen K, Byrjaalens I, Andersson JR, et al. A randomized, double-blind, multicenter, placebo-controlled study to evaluate the efficacy and safety of oral salmon calcitonin in the treatment of osteoporosis in postmen-
opausal women taking calcium and vitamin D. Bone. 2016;91:122-29

S69. Koh JM, Chung DI, Chung YS, et al. Assessment of denosumab in Korean post-
menopausal women with osteoporosis: Randomized, double-blind, place-
based-controlled trial with open-label extension. Yonsei Med J. 2016;57(4):905-14

S70. Miller PD, Hattersley G, Riis BJ, Williams GC, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with os-
teoporosis: A randomized clinical trial. JAMA. 2016;316(7):722-33

S71. Miller PD, Pannacciulli N, Brown JP, et al. Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab. 2016;101(8):3163-70

S72. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417-27
4. The therapeutic effects of pairwise comparisons agents on all fractures

Treatment/comparator	Alendronate	Alfacalcidol	Calcitriol	Denosumab	Raloxifene	Zoledronate
Alendronate	(1.58, 0.81)	(1.11, 1.51)	(1.21, 1.74)	(1.51, 2.22)	(0.66, 1.36)	(0.61, 1.51)
Alfacalcidol	(0.61, 0.33)	(1.39, 2.22)	(0.77, 2.87)	(0.09, 0.50)	(1.16, 1.10)	(0.83, 0.53)
Calcitriol	(0.13, 0.34)	(0.31, 0.61)	(1.18, 0.83)	(0.22, 0.31)	(0.11, 0.32)	(0.43, 0.30)
Denosumab	(0.51, 0.33)	(0.51, 0.61)	(0.51, 0.61)	(0.69, 0.75)	(0.49, 0.71)	(0.38, 0.60)
Raloxifene	(0.40, 0.01)				(0.64, 0.48)	(0.71, 0.49)
Zoledronate	(0.68, 0.25)					(0.65, 0.53)

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
5. The therapeutic effects of pairwise comparisons agents on vertebral fractures

Treatment	Comparator	Abaloparatide	Alendronate	Alfacalcidol	Bazedoxifene	Calcitonin	Calcitriol	Denosumab	Eclatomin	Eldecalcitol
Abaloparatide		4.08	7.19	4.45	5.92	12.48	2.55	65.96	6.11	
		(1.38, 12.07)	(2.15, 24.06)	(1.49, 13.30)	(2.00, 17.53)	(1.73, 90.15)	(0.86, 7.60)	(3.04, 1433.35)	(1.80, 20.78)	
Alendronate	0.25	1.76	1.09	1.45	3.06	0.63	16.16	1.5		
		(0.97, 3.20)	(0.77, 1.55)	(1.05, 2.01)	(0.57, 16.48)	(0.45, 0.88)	(0.91, 288.33)	(0.79, 2.82)		
Alfacalcidol	0.14	0.57	0.62	0.82	1.73	3.06	9.17	0.85		
		(0.31, 1.03)	(0.33, 1.17)	(0.44, 1.53)	(0.30, 10.15)	(0.19, 0.67)	(0.48, 173.98)	(0.61, 1.19)		
Bazedoxifene	0.22	0.92	1.62	0.75	2.11	0.43	11.15	1.03		
		(0.65, 3.06)	(0.93, 1.89)	(0.52, 15.21)	(0.39, 0.83)	(0.81, 269.96)	(0.70, 2.68)			
Calcitonin	0.17	0.69	1.22	0.75	2.11	0.43	11.15	1.03		
		(0.50, 0.96)	(0.53, 1.07)	(0.39, 11.38)	(0.30, 0.62)	(0.61, 202.55)	(0.53, 2.00)			
Calcitriol	0.08	0.31	0.58	0.36	0.2	0.04	0.9			
		(0.06, 1.76)	(0.07, 1.94)	(0.04, 1.11)	(0.01, 0.70)	(0.09, 0.33)	(0.19, 148.86)	(0.08, 2.90)		
Denosumab	0.39	1.6	2.82	1.74	8.49	25.83	2.39			
		(1.50, 5.29)	(1.20, 2.53)	(1.62, 3.31)	(0.90, 26.44)	(1.42, 470.19)	(1.24, 4.63)			
Eclatomin	0.02	0.05	0.06	0.07	1.18	0.09	0.19	0.04		
		(0.00, 0.33)	(0.00, 0.27)	(0.00, 1.10)	(0.00, 1.10)	(0.01, 0.33)	(0.01, 0.70)	(0.00, 0.92)		
Eldecalcitol	0.16	0.67	1.18	0.73	2.04	0.42	10.8			
		(0.35, 1.26)	(0.37, 1.42)	(0.50, 1.88)	(0.35, 12.09)	(0.22, 0.81)	(0.56, 206.39)			
Ibandronate	0.21	0.85	1.49	0.92	1.23	2.59	0.53	13.69		
		(0.84, 1.65)	(0.86, 1.67)	(0.47, 13.60)	(0.37, 0.73)	(0.73, 242.22)	(0.64, 2.38)			
Lasofoxifene	0.43	1.76	3.1	1.92	5.38	28.44	2.63			
		(0.78, 2.71)	(0.63, 1.29)	(0.47, 13.60)	(0.37, 0.73)	(0.73, 242.22)	(0.64, 2.38)			
Neridronate	0.13	0.52	0.93	0.57	1.6	0.33	8.48	0.79		
		(0.42, 0.66)	(0.52, 1.65)	(0.60, 0.96)	(0.30, 0.52)	(0.25, 0.42)	(0.47, 152.71)	(0.43, 1.45)		
Placebo	0.24	0.97	1.71	1.06	2.96	0.61	15.65	1.45		
		(0.72, 1.31)	(0.79, 1.41)	(1.04, 1.90)	(0.55, 15.94)	(0.43, 0.85)	(0.86, 283.72)	(0.76, 2.78)		
Raloxifene	0.23	0.95	1.67	1.03	2.9	0.59	15.33	1.42		
		(0.91, 3.08)	(0.74, 1.43)	(1.02, 1.86)	(0.54, 15.58)	(0.43, 0.81)	(0.85, 277.85)	(0.74, 2.71)		
Risedronate	0.08	0.22	2.08	1.29	1.71	0.74	19.06	1.77		
		(0.91, 3.76)	(0.87, 1.91)	(1.18, 2.48)	(0.66, 19.62)	(0.50, 1.08)	(1.04, 347.75)	(0.90, 3.47)		

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Treatment	Comparator	Ibandronate	Lasofoxifene	Neridronate	Placebo	Raloxifene	Risedronate	Romosozumab	Strontium-ranelate	Zoledronate
Ibandronate		4.62	4.95	2.32	7.77	4.21	4.3	2.02	4.27	3.46
Alendronate		1.18	1.21	0.57	1.9	1.03	1.05	0.49	1.05	0.85
Alfacalcidol		0.67	0.69	0.32	1.08	0.59	0.6	0.28	0.59	0.48
Bazedoxifene		1.08	1.11	0.52	1.75	0.95	0.97	0.45	0.96	0.78
Calcitriol		0.39	0.4	0.19	0.62	0.34	0.34	0.16	0.34	0.28
Denosumab		1.89	1.94	0.91	3.05	1.65	1.68	0.79	1.67	1.36
Etidronate		0.07	0.08	0.04	0.12	0.06	0.07	0.03	0.06	0.05
Elcatonin		0.79	0.81	0.38	1.27	0.69	0.7	0.33	0.7	0.57
Ibandronate		0.97	0.97	0.86	1.7	0.85	0.81	0.61	0.86	0.72
Lasofoxifene		0.71	0.72	0.19	1.37	0.87	0.87	0.61	0.86	0.72
Neridronate		1.09	2.13	1.34	1.37	1.82	0.87	0.87	1.54	1.49
Placebo		0.62	0.64	0.3	0.54	0.55	0.26	0.55	0.45	0.45
Raloxifene		1.14	1.17	0.55	1.85	1.02	1.04	0.87	0.99	0.8
Risedronate		1.12	1.15	0.54	1.81	0.98	0.47	0.99	0.99	0.8
Romosozumab		2.39	2.45	1.15	3.85	2.09	2.13	2.11	1.71	1.71
Strontium-ranelate		1.13	1.16	0.54	1.82	0.99	1.01	0.47	0.81	0.81
Zoledronate		1.39	1.43	0.67	2.25	1.22	1.24	0.58	0.58	1.23
6. The therapeutic effects of pairwise comparisons agents on nonvertebral fractures

Treatment	Comparator	Abaloparatide	Alendronate	Alfacalcidol	Bazedoxifene	Calcitonin	Calcitriol	Denosumab	Eldecalcitoli	Ibandronate	Lasofoxifene
Abaloparatide	0.41	1.07	16.26	1.15	1.07	1.73	1.26	1.67	1.77	1.17	0.83
Alendronate	0.62	1.07	10.5	1	0.81	1.17	1.07	1.17	1	0.83	
Alfacalcidol	0.41	0.86	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Bazedoxifene	0.82	0.81	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Calcitonin	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Calcitriol	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Denosumab	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Eldecalcitoli	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Ibandronate	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Lasofoxifene	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Placebo	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Raloxifene	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Risedronate	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Rolosozumab	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Strontium-ralenate	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Zoledonate	0.94	0.73	0.73	1	0.81	1.17	1.07	1.17	1	0.83	
Treatment	Comparator	Placebo	Raloxifene	Risedronate	Romosozumab	Strontiumranelate	Zoledronate				
-----------------	------------	---------	------------	-------------	-------------	-------------------	-------------				
		1.88	1.7	1.33	1.28	1.65	1.21				
		(1.05, 3.36)	(0.93, 3.09)	(0.71, 2.49)	(0.69, 2.37)	(0.87, 3.15)	(0.66, 2.23)				
Abaloparatide		1.21	1.1	0.86	0.83	1.07	0.78				
		(1.07, 1.37)	(0.91, 1.32)	(0.67, 1.11)	(0.69, 0.99)	(0.79, 1.44)	(0.64, 0.97)				
Alendronate		1.22	1.1	0.87	0.83	1.07	0.79				
		(0.50, 2.94)	(0.45, 2.69)	(0.35, 2.15)	(0.34, 2.04)	(0.43, 2.70)	(0.32, 1.94)				
Alfacalcidol		1.13	1.03	0.81	0.78	1	0.73				
		(0.95, 1.36)	(0.86, 1.23)	(0.60, 1.07)	(0.59, 1.01)	(0.72, 1.39)	(0.57, 0.94)				
Bazedoxifene		1.19	1.08	0.85	0.81	1.05	0.77				
		(0.94, 1.51)	(0.82, 1.43)	(0.61, 1.18)	(0.60, 1.11)	(0.73, 1.51)	(0.58, 1.03)				
Calcitonin		0.12	0.1	0.08	0.08	0.1	0.07				
		(0.01, 0.97)	(0.01, 0.88)	(0.01, 0.70)	(0.01, 0.67)	(0.01, 0.87)	(0.01, 0.63)				
Calcitriol		1.21	1.09	0.86	0.83	1.07	0.78				
		(1.02, 1.43)	(0.88, 1.36)	(0.65, 1.13)	(0.64, 1.07)	(0.77, 1.47)	(0.62, 0.99)				
Denosumab		1.49	1.35	1.06	1.02	1.31	0.97				
		(0.59, 3.75)	(0.53, 3.44)	(0.41, 2.74)	(0.40, 2.60)	(0.50, 3.44)	(0.38, 2.47)				
Eldedcalcitol		1.04	0.94	0.74	0.71	0.91	0.67				
		(0.82, 1.31)	(0.71, 1.23)	(0.56, 0.97)	(0.52, 0.96)	(0.64, 1.31)	(0.50, 0.89)				
Ibandronate		1.21	1.09	0.86	0.83	1.06	0.78				
		(1.04, 1.41)	(0.89, 1.33)	(0.65, 1.13)	(0.64, 1.06)	(0.78, 1.46)	(0.62, 0.98)				
Lasoxifene		1.1	0.91	0.71	0.68	0.88	0.65				
		(0.78, 1.05)	(0.57, 0.89)	(0.56, 0.84)	(0.67, 1.16)	(0.55, 0.77)	(0.55, 0.77)				
Placebo		0.96	1.27	0.96	1.24	0.91	0.91				
Raloxifene		(1.12, 1.76)	(0.97, 1.66)	(0.71, 1.30)	(0.71, 1.30)	(0.87, 1.77)	(0.69, 1.21)				
Risedronate		1.46	1.32	1.04	1.29	0.95	0.95				
		(1.20, 1.79)	(1.04, 1.69)	(0.77, 1.40)	(0.92, 1.81)	(0.73, 1.23)	(0.73, 1.23)				
Romosozumab		1.13	1.03	0.81	0.81	0.78	0.74				
		(0.86, 1.49)	(0.75, 1.40)	(0.57, 1.15)	(0.55, 1.09)	(0.53, 1.02)	(0.53, 1.02)				
Strontiumranelate		1.54	1.4	1.1	1.06	1.36	1.36				
		(1.30, 1.83)	(1.12, 1.75)	(0.83, 1.45)	(0.81, 1.37)	(0.98, 1.88)	(0.98, 1.88)				
7. Hip fracture

Supplementary Figure 7-1. Network of comparisons for hip fractures included in the analysis.

Supplementary Figure 7-2. The SUCRA rank test for hip fracture.

Treatment	SUCRA	PrBest	MeanRank
alendronate	62.8	0.1	4.7
calcitonin	77.2	30.1	3.3
denosumab	65.7	4.7	4.4
ibandronate	58.3	8.5	5.2
lasofoxifene	33.1	0.1	7.7
placebo	12.3	0.0	9.8
raloxifene	10.7	0.0	9.9
risedronate	48.0	0.1	6.2
romosozumab	92.5	54.8	1.7
strontiumranelate	30.0	0.0	8.0
zoledronate	59.4	1.6	5.1
Supplementary Figure 7-3. The pairwise comparisons agents for hip fracture.

Supplementary Figure 7-4. Funnel plot for hip fracture.
8. Peripheral fracture

Supplementary Figure 8-1. Network of comparisons for peripheral fractures included in the analysis.

Supplementary Figure 8-2. The SUCRA rank test for peripheral fracture.
Supplementary Figure 8-3. The pairwise comparisons agents for peripheral fracture.

Supplementary Figure 8-4. Funnel plot for peripheral fracture.
9. Whole-body BMD

Supplementary Figure 9-1. Network of comparisons for whole-body BMD included in the analysis.

Supplementary Figure 9-2. The SUCRA rank test for whole-body BMD.

Treatment	SUCRA	PrBest	MeanRank
Alendronate	100.0	100.0	1.0
Placebo	0.0	0.0	3.8
Raloxifene	50.0	0.0	2.0
Supplementary Figure 9-3. The pairwise comparisons agents for whole-body BMD.

Supplementary Figure 9-4. Funnel plot for whole-body BMD.
10. Spine BMD

Supplementary Figure 10-1. Network of comparisons for spine BMD included in the analysis.

Supplementary Figure 10-2. The SUCRA rank test for spine BMD.

Treatment	SUCRA	PrBest	MeanRank
Alendronate	64.9	1.8	3.8
Alfacalcidol	49.7	6.5	5.0
Calcitonin	36.2	2.1	6.1
Calcitriol	29.5	0.3	6.6
Neridronate	49.9	4.8	5.0
Placebo	23.5	0.0	7.1
Raloxifene	42.5	1.1	5.6
Risedronate	58.1	1.2	4.3
Strontiumranelate	95.7	82.2	1.3
Supplementary Figure 10-3. The pairwise comparisons agents for spine BMD.

Supplementary Figure 10-4. Funnel plot for spine BMD.
11. Hip BMD

Supplementary Figure 11-1. Network of comparisons for hip BMD included in the analysis.

Supplementary Figure 11-2. The SUCRA rank test for hip BMD.

Treatment	SUCRA	PrBest	MeanRank
Alendronate	45.0	0.0	5.4
Alfacalcidol	35.1	1.5	6.2
Calcitonin	30.2	0.6	6.6
Calcitriol	21.0	0.0	7.3
Ibandronate	73.9	18.4	3.1
Neridronate	56.6	6.4	4.5
Placebo	17.5	0.0	7.6
Risedronate	86.7	35.4	2.1
Strontiumranelate	84.0	37.6	2.3
Supplementary Figure 11-3. The pairwise comparisons agents for hip BMD.

Supplementary Figure 11-4. Funnel plot for hip BMD.
12. Femoral neck BMD

Supplementary Figure 12-1. Network of comparisons for femoral neck BMD included in the analysis.

Treatment	SUCRA	PrBest	MeanRank
Alendronate	38.4	0.1	3.5
Ibandronate	92.4	72.5	1.3
Placebo	3.0	0.0	4.9
Raloxifene	38.3	0.4	3.5
Strontiumranelate	77.9	27.0	1.9

Supplementary Figure 12-2. The SUCRA rank test for femoral neck BMD.
Supplementary Figure 12-3. The pairwise comparisons agents for femoral neck BMD.

Supplementary Figure 12-4. Funnel plot for femoral neck BMD.
13. Trochanter BMD

Supplementary Figure 13-1. Network of comparisons for trochanter BMD included in the analysis.

Supplementary Figure 13-2. The SUCRA rank test for trochanter BMD.
Supplementary Figure 13-3. The pairwise comparisons agents for trochanter BMD.

Supplementary Figure 13-4. Funnel plot for trochanter BMD.
14. The summary results for adverse events

AEs	Abaloparatide	Alendronate	Alfacalcidol	Bazedoxifene	Calcitonin	Denosumab	Eldecalcitol	Ibandronate
Abdominal pain	0.09 (0.07-0.12)	–	–	0.05 (0.02-0.07)	0.07 (0.06-0.08)	–	–	0.02 (0.02-0.03)
Musculoskeletal pain	0.04 (0.03-0.06)	0.02 (-0.01-0.04)	–	–	0.13 (0.10-0.17)	0.05 (0.01-0.09)	–	
Nausea	0.08 (0.06-0.10)	0.06 (0.04-0.08)	0.03 (0.00-0.06)	–	0.15 (0.14-0.17)	0.09 (0.06-0.12)	0.05 (0.01-0.09)	0.05 (0.04-0.06)
Dyspepsia	–	0.07 (0.03-0.10)	–	–	0.10 (0.09-0.11)	0.06 (0.00-0.11)	–	0.06 (0.02-0.10)
Constipation	0.05 (0.03-0.06)	0.03 (0.02-0.05)	0.11 (0.08-0.13)	0.12 (0.08-0.16)	0.07 (0.06-0.08)	0.07 (0.01-0.13)	0.07 (0.05-0.10)	0.07 (-0.02-0.15)
Diarrhea	–	0.04 (0.03-0.04)	0.07 (0.05-0.09)	0.06 (0.04-0.09)	0.07 (0.06-0.08)	0.07 (0.04-0.10)	0.07 (0.01-0.12)	0.05 (0.03-0.06)
Acid regurgitation/reflux	–	0.05 (0.03-0.08)	–	–	0.07 (0.04-0.10)	–	0.05 (0.00-0.10)	–
Gastritis	–	0.03 (0.02-0.03)	0.04 (0.01-0.08)	0.05 (0.03-0.08)	–	0.04 (-0.00-0.09)	0.05 (-0.00-0.09)	0.02 (0.01-0.02)
Gastric ulcer	–	0.01 (0.00-0.01)	–	–	–	–	–	0.00 (0.00-0.01)
Esophagitis	–	0.01 (0.00-0.01)	–	–	0.01 (0.01-0.02)	–	–	0.00 (0.00-0.00)
Esophageal ulcer	0.00 (0.00-0.00)	–	–	–	–	–	–	–
Duodenal ulcer	–	0.00 (-0.00-0.00)	–	–	–	–	–	0.00 (-0.00-0.00)
Any upper gastrointestinal event	0.26 (0.16-0.36)	–	0.48 (0.42-0.54)	–	0.02 (0.01-0.03)	0.14 (-0.08-0.36)	0.20 (-0.03-0.43)	–
Vomiting	–	0.01 (-0.00-0.02)	0.06 (0.04-0.08)	0.04 (0.01-0.06)	0.03 (0.02-0.04)	–	0.06 (0.04-0.09)	0.03 (0.02-0.04)
Influenza syndrome	0.06 (0.05-0.08)	0.04 (0.03-0.06)	–	0.06 (0.05-0.07)	0.08 (0.05-0.11)	–	0.06 (0.04-0.07)	–
Hypertension	0.07 (0.05-0.09)	0.06 (0.05-0.07)	0.07 (0.05-0.09)	–	0.10 (0.09-0.11)	0.05 (0.02-0.07)	0.08 (0.05-0.10)	0.08 (0.06-0.10)
Nasopharyngitis	0.06 (0.05-0.07)	0.10 (0.01-0.18)	0.26 (-0.07-0.60)	0.57 (0.51-0.63)	0.17 (0.06-0.27)	0.09 (0.03-0.15)	0.26 (-0.10-0.62)	0.21 (-0.09-0.50)
Headache	0.08 (0.06-0.09)	0.05 (0.03-0.08)	0.07 (0.05-0.10)	0.10 (0.07-0.14)	0.04 (0.03-0.05)	0.05 (-0.02-0.12)	0.07 (-0.02-0.12)	–
Nephrolithiasis	–	0.01 (-0.01-0.03)	–	–	0.02 (-0.01-0.05)	–	–	0.01 (0.00-0.02)
Myalgia	–	0.04 (0.01-0.07)	–	–	–	0.06 (0.00-0.11)	–	0.06 (0.01-0.12)
Pyrexia	–	0.05 (0.02-0.09)	–	–	–	–	–	–
Arthralgia	0.09 (0.07-0.11)	0.07 (0.04-0.11)	0.09 (0.07-0.12)	0.14 (0.10-0.18)	0.12 (0.11-0.14)	0.07 (0.02-0.12)	0.10 (0.08-0.12)	0.09 (0.04-0.14)
Blood calcium increased	–	–	0.09 (0.03-0.15)	–	–	–	0.11 (0.03-0.19)	–
AEs	Abaloparatide	Alendronate	Alfacalcidol	Bazedoxifene	Calcitonin	Denosumab	Eldecalcitol	Ibandronate
-----	--------------	-------------	-------------	-------------	-----------	-----------	-------------	-------------
Urine calcium increased	–	0.04 (0.00-0.09)	0.07 (0.00-0.15)	–	–	–	0.11 (0.01-0.22)	–
Back pain	0.09 (0.07-0.10)	0.13 (0.03-0.22)	0.12 (0.06-0.19)	0.18 (0.13-0.22)	0.13 (0.12-0.15)	0.08 (0.03-0.13)	0.12 (0.08-0.16)	0.09 (0.02-0.16)
Urinary tract infection	0.05 (0.04-0.07)	0.07 (0.01-0.14)	0.10 (0.05-0.16)	–	–	0.08 (0.05-0.11)	0.08 (0.04-0.13)	0.02 (0.01-0.02)

| AEs | Lasofoxifene | Neridronate | Raloxifene | Risedronate | Romosozumab | Strontium ranelate | Zoledronate |}
|-----|-------------|------------|-----------|-------------|-------------|-------------------|------------|}
| Abdominal pain | – | – | 0.07 (0.00-0.13) | 0.10 (0.08-0.12) | – | – | – |}
| Musculoskeletal pain | – | – | – | 0.01 (-0.01-0.02) | – | – | 0.13 (0.00-0.26) | – |}
| Nausea | – | – | 0.03 (0.02-0.04) | 0.04 (0.01-0.07) | – | 0.04 (-0.00-0.08) | 0.09 (0.06-0.12) | – |}
| Dyspepsia | – | – | – | 0.10 (0.08-0.12) | – | – | – | – |}
| Constipation | – | – | – | 0.05 (-0.00-0.11) | – | 0.05 (0.00-0.10) | 0.07 (0.03-0.11) | – |}
| Diarrhea | – | – | 0.02 (0.01-0.03) | 0.01 (-0.01-0.03) | – | 0.07 (0.04-0.11) | 0.05 (0.01-0.08) | – |}
| Acid regurgitation/reflux | – | – | – | – | – | – | 0.02 (-0.00-0.04) | – |}
| Gastritis | – | – | – | 0.03 (0.01-0.04) | – | – | – | – |}
| Gastric ulcer | – | – | – | 0.01 (0.00-0.01) | – | – | – | – |}
| Esophagitis | – | – | – | 0.02 (0.01-0.02) | – | – | – | – |}
| Esophageal ulcer | – | – | – | 0.00 (0.00-0.01) | – | – | – | – |}
| Duodenal ulcer | – | – | – | 0.01 (0.00-0.01) | – | – | – | – |}
| Any upper gastrointestinal event | – | – | 0.13 (0.08-0.17) | 0.19 (0.14-0.25) | – | 0.05 (0.00-0.10) | – | – |}
| Vomiting | – | – | – | – | – | – | – | – |}
| Influenza syndrome | – | 0.55 (0.33-0.77) | 0.13 (0.13-0.14) | 0.06 (0.02-0.09) | – | – | 0.04 (0.01-0.07) | – |}
| Hypertension | – | – | 0.07 (0.07-0.08) | 0.03 (0.02-0.05) | – | 0.10 (0.06-0.15) | 0.08 (0.06-0.10) | – |}
| Nasopharyngitis | – | – | – | 0.06 (0.03-0.09) | 0.17 (0.14-0.19) | – | 0.22 (-0.04-0.47) | – |}
| Headache | – | – | – | 0.05 (0.02-0.08) | – | 0.03 (-0.01 to 0.06) | 0.09 (0.03-0.15) | – |}
| Nephrolithiasis | – | – | – | – | – | 0.03 (-0.01-0.07) | – | – |}
| Myalgia | – | – | – | – | – | – | 0.10 (0.04-0.17) | – |
AEs	Lasofoxifene	Neridronate	Raloxifene	Risedronate	Romosozumab	Strontium ranelate	Zoledronate
Pyrexia							0.15 (0.07-0.24)
Arthralgia	0.26 (0.25-0.27)			0.06	0.16	0.06 (0.03-0.08)	0.13 (0.05-0.21)
Blood calcium							
increased							
Urine calcium							0.06 (0.03-0.10)
increased							
Back pain				0.05 (0.03-0.07)	0.15 (0.11-0.18)	0.09 (0.05-0.13)	0.10 (0.05-0.16)
Urinary tract							
infection							