A randomized controlled phase IIb wound healing trial of cutaneous leishmaniasis ulcers with 0.045% pharmaceutical chlorite (DAC N-055) with and without bipolar high frequency electro-cauterization versus intralesional antimony in Afghanistan

Hans-Christian Stahl1,5, Faridullah Ahmadi2, Ulrike Schleicher3, Rainer Sauerborn1, Justo Lorenzo Bermejo4, Mohammed Latif Amirih2, Ibrahim Sakhayee2, Christian Bogdan3 and Kurt-Wilhelm Stahl5*

Abstract

Background: A previously published proof of principle phase IIa trial with 113 patients from Kabul showed that bipolar high-frequency (HF) electro-cauterization (EC) of cutaneous leishmaniasis (CL) ulcers and subsequent moist wound treatment (MWT) closed 85% of all Leishmania (L.) tropica lesions within 60 days.

Methods: A three-armed phase IIb, randomized and controlled clinical trial was performed in Mazar-e-Sharif. L. tropica- or L. major-infected CL patients received intradermal sodium stibogluconate (SSG) (Group I); HF-EC followed by MWT with 0.045% DAC N-055 (Group II); or MWT with 0.045% DAC N-055 in basic crème alone (Group III). The primary outcome was complete epithelialisation before day 75 after treatment start.

Results: 87 patients enrolled in the trial were randomized into group I (n = 24), II (n = 32) and III (n = 31). The per-protocol analysis of 69 (79%) patients revealed complete epithelialisation before day 75 in 15 (of 23; 65%) patients of Group I, in 23 (of 23; 100%) patients of Group II, and in 20 (of 23; 87%) patients of Group III (p = 0.004, Fisher’s Exact Test). In the per-protocol analysis, wound closure times were significantly different between all regimens in a pair-wise comparison (p = 0.000039, Log-Rank (Mantel-Cox) test). In the intention-to-treat analysis, wound survival times in Group II were significantly different from those in Group I (p = 0.000040, Log-Rank (Mantel-Cox) test). Re-ulcerations occurred in four (17%), three (13%) and seven (30%) patients of Group I, II or III, respectively (p = 0.312, Pearson Chi-Square Test).

Conclusions: Treatment of CL ulcers with bipolar HF-EC followed by MWT with 0.045% DAC N-055 or with DAC N-055 alone showed shorter wound closure times than with the standard SSG therapy. The results merit further exploration in larger trials in the light of our current knowledge of in vitro and in vivo activities of chlorite.

Clinicaltrials.gov ID: NCT00996463. Registered: 15th October 2009.

Keywords: Cutaneous leishmaniasis, Wound healing, DAC N-055, Sodium stibogluconate, High-frequency bipolar electrocauterization

* Correspondence: stahlkw@orphandrug.org

© 2014 Stahl et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

In developed countries chronic wounds are an advanced age disease. In Afghanistan, cutaneous leishmaniasis (CL) ulcers resulting from parasite infections disfigure non-covered parts of the body especially at youngerage. Advanced age wounds elicit industrial R&D efforts, whereas particularly in the Near, Middle and Far East CL wounds constitute a neglected field of clinical research, although their incidence of approximately 0.5% to 1% is of the same magnitude [1,2].

In 1986, a randomized controlled trial (RCT) has shown that moist dressing with a sodium chlorite (NaClO2)-based drug is beneficial for rapid wound cleansing and granulation [3]. If not further concentrated under vacuum (which is commonly practiced with industrial NaClO2), pharmaceutical chlorite contains a chlorine peroxide contaminant, formerly called tetradechloroxygen (TDCO), a chemical name refuted by the German Health Authorities [4]. The chlorine peroxide seems to be important for systemic regenerative effects in stem cell compartments of rats [5,6]. Recent advances in bacterial heme protein biochemistry [7,8] have reformed our understanding of chloride biochemistry [9] showing that in vivo reactions of chlorite with heme analogues can either produce hypochlorite, which in turn can react with H2O2 to form singlet oxygen 1O2, or which can dismutate to Cl− and 1O2. In animal experiments with non-thermal (NTP) [10] or cold atmospheric plasma (CAP) [11] lower μM levels 1O2 have shown to induce wound healing.

Simple physical wound debridement practised with bi-polar high frequency electrosurgical cauterisation (HF-EC) as a first step seemed to be of crucial importance [12] to achieve faster wound healing than obtained with sodium stibogluconate (SSG) [13]. As recently advocated [14], special attention should be given to the wound disease character of Old World Cutaneous Leishmaniasis (OWCL) lesions with frequent bacterial and fungal contaminations [15] which are typical for chronic wounds [16].

Within the present randomized controlled three-armed clinical trial we investigated the benefit of applying local wound treatment to OWCL ulcers. The overall aim of this RCT phase IIb trial in Mazar-e-Sharif, Afghanistan, was (a) to confirm previous results [12] using bipolar HF-EC combined with subsequent moist wound treatment (MWT) with 0.045 % of the pharmaceutical sodium chlorite solution (DAC N-055); and to directly compare the results (b) with topical anti-parasitic SSG and (c) with 0.045% DAC N-055 MWT alone, known to promote tissue regeneration [3,5,6]. The trial was further encouraged by the previous successful treatment of four patients with facial lupoid leishmaniasis, in whom the topical application of 0.045% DAC N-055 led to a rejuvenation of the faces [17,18].

Methods

Trial design

The study was designed as a mono-centric, three armed, open label, randomized (1:1:1), controlled, phase IIb trial with tissue biopsy [19] without any amendments to the protocol after trial start.

Ethics

Ethical clearance was obtained from the Ethics Committees of the Medical Faculties of Heidelberg and Erlangen in Germany and the International Review Board at the Ministry of Public Health in Kabul, Afghanistan (Clinicaltrials.gov ID: NCT00996463. Registered: 15th October 2009). As nearly all patients could neither read nor write or count, an oral informed consent before patient screening was obtained by the medical doctor after thorough and comprehensible explanation of the aims and the protocol of the clinical trial.

Participants

Patients presenting CL lesions with Leishmania-positive Giemsa smears without prior CL treatment were included. Exclusion criteria were: age <12 years, more than one skin lesion (to exclude intra-individual variations in this phase IIb analysis), lesion age >3 months, lesions located on eye lids, lips or nose, drug addiction, co-infection with Mycobacterium tuberculosis or HIV, and diabetes. All patients who had agreed to participate in this trial had respected our call regarding patients’ age, lesion age and lesion location. No patients were lost during the screening process due to drug addiction, tuberculosis, HIV infection, or diabetes. Patients not available for follow-up were also ineligible. Medical services and drugs were free of charge and patients received no remuneration.

Location

The trial was carried out at the Leishmania and Malaria Centre (LMC) of the Provincial Balkh Civil Hospital Mazar-e-Sharif treating 4,000 new CL cases every year [20]. Before trial start the centre was renovated under the supervision of the NGO Waisenmedizin e.V. and equipped with a solar power system guarantying electrical power supply for 24 h per day.

Data capture system

Cameras, computers, and the internet-based on- and offline electronic case report system Leishmedoc (Waisenmedizin – PACEM e.V. Freiburg, Germany) in combination with Skype™ (Microsoft Corporation, Redmond, USA) communication enabled real-time trial monitoring from Germany.
Protocol of visits
Patients were registered after informed consent (see Ethics) with demographic details, cell phone numbers and a patient's identification number on a patient card. After physical examination, the location and initial state of the lesion were documented and referenced by the patient's identification number and a scale. Six visits were scheduled in the first week, two visits per week from weeks 2 to 4, and one visit per week thereafter until complete wound closure. Follow-up visits were required once a month until day 180 after treatment start.

Drugs for interventional therapy
Sodium stibogluconate (3 g/30 ml) was imported from India (Albert David Ltd., India). 4.5% (500 mM) alkaline sodium chlorite solution for pharmaceutical use (DAC N-055; Kyrochem GmbH, Wedemark, Germany) was diluted in the constituent formulas of the poly-acrylate jelly and basic crème (Additional files 1 and 2). The German DAC N-055 contains peroxides [21] (Na₂Cl₂O₆ and NaCClO₆) at an app. 1:10 molar ratio, if produced from chlorine dioxide in a way to minimize the chlorate content. DAC N-055, formerly known as TCDO, promotes tissue regeneration, as does hydrogen peroxide at concentrations <10⁻⁵ M [22,23]. In contrast to hydrogen peroxide, DAC N-055 is catalase (EC 1.11.1.6) resistant [24]. Vials of sterile distilled water and 1% lidocaine were purchased from local pharmacies in Mazar-e-Sharif. Jellies were freshly prepared every day by the dermatologist (IS) of the Balkh Province Civil Hospital of Mazar-e-Sharif, who had been trained in the Unguator® Technology (GAKO® International GmbH, Munich, Germany) at the Pharmaceutical Institute of the University Freiburg, Germany. EuRho® DAC 2003 cream (Euro OTC Pharma GmbH, Bönen, Germany) is a magistral preparation available in German pharmacies (Additional file 2).

Other drugs
In case of clinically diagnosed wound infections, topical wound disinfection was allowed for 5 consecutive days with saline containing 970 ppm chlorine dioxide (freshly prepared by acidification of 0.27 % DAC N-055 in physiological saline to pH 5). In case of failure, a systemic therapy with antibiotics or with anti-mycotics of little anti-parasitic effect was recommended. Prontosan® (B. Braun Medical AG, Sempach, Switzerland) with the detergent undecylenamidopropyl betaine (CAS 133798-12-6) at a concentration of 0.1 % was used for gently sloughing off crusts after SSG injections to detect complete epithelialisation (Figure 1).

Medical devices for interventional therapy
The electrosurgical Minicutter™ with a specially designed bipolar angled forceps with a 1 mm distance holder and a maximum bipolar current mode of 70 mA (HMC 80 HF Chirurgie, KLS Martin, Umkirch, Germany) was imported from Germany.

Randomization
The LMC principal dermatologist investigator (IS) determined the patients’ eligibility. Each patient was randomly assigned to one of the three regimens by the random allocation generator in the computer-based Leishmedoc system.

Treatment protocols
The patients’ OWCL lesion was treated (1) by intradermal injections of 0.6 ml SSG according to a protocol used by Zeglin (2009) [25] (Group I), or (2) by aseptic MWT with 0.045% DAC N-055 following a single initial superficial wound debridement with HF-EC which was performed under local anaesthesia after wound cleansing and disinfection with gauzes soaked in physiological saline solution containing 320 ppm chlorine dioxide (pH 5.5 acidified 0.09% DAC N-055) for 15 minutes (Group II), or (3) by MWT with 0.045% DAC N-055 alone (Group III).

The topical treatment schedule was identical in all three regimens: daily treatments (with the exception of Fridays) during the first week, followed by topical treatments at the LMC twice a week until the end of week 4 and thereafter once a week until wound closure. In

Figure 1 Photo-documentation of wound epithelialization of crusted lesions after removal of the crusts. (Panel a) Lesion status prior to the start of the intradermal SSG treatment start at day 0. (Panel b) Lesion status after 12 intradermal SSG injections on day 51; (Panel c) Lesion status after gentle sloughing off with Prontosan® detergent on day 90. Crusts, that were close to slough off, were removed after 30 min incubation with aseptic 0.1% Prontosan® containing the detergent undecylenamidopropyl betaine. Afterwards, the wound was photo-documented including the patient’s identification number and a linear scale to analyse the wound size.
Group I, the SSG treatment was discontinued after week 4. In Groups II and III, patients dressed their lesion themselves after week 4 with the topical NaClO₂-basicleer from the margins of the lesions and placed into modified Al Hucheimi [26]. In addition, skin biopsies were taken were confirmed with the slit-skin method described by 3 weeks.

pared poly-acrylate jelly containing 0.045% DAC N-055, in a sterile syringe, which allowed self-treatment for relatives were trained to dress wounds, receiving 10 g (Additional file 1).

During week 1, patients of Groups II and III and their relatives were trained to dress wounds, receiving 10 g EuRho® DAC 2003 cream preparation (Additional file 2) until lesion closure, with the exception of Group II, in which for 6 days after HF-EC debridement of the CL lesions the wounds were daily dressed with freshly prepared poly-acrylate jelly containing 0.045% DAC N-055 (Additional file 1).

During week 1 patients of Groups II and III and their relatives were trained to dress wounds, receiving 10 g EuRho® DAC 2003 cream containing 0.045% DAC N-055, in a sterile syringe, which allowed self-treatment for 3 weeks.

Parasitological analyses and Leishmania species determination
At the LMC, Leishmania parasites within the lesion were confirmed with the slit-skin method described by Al Hucheimi [26]. In addition, skin biopsies were taken from the margins of the lesions and placed into modified Schneider’s Drosophila insect medium, transported with the German Army to the Microbiology Institute in Erlangen, Germany, where mini-exon polymerase chain reaction (PCR) and multiple restriction fragment length polymorphism analyses for parasite species determination and limiting dilution analyses for determination of the parasite loads per gram biopsy tissue were carried out as previously described [12].

Outcome
The primary outcome of the study was the ratio of closed versus open wounds at day 75 (D75) in the PP analysis for each regimen.

Sample size
The specific hypotheses were (i) that the proportion of primary closed lesions before D75 is significantly higher in patients treated with HF-EC with subsequent MWT using 0.045% DAC N-055 (Group II) than in patients who received topical intradermal SSG (Group I); and (ii) that MWT with 0.045% DAC N-055 alone, which is known to exert tissue regenerative activity in vivo [3,18], also promotes the closure of chronic Leishmania lesions (Group III).

The HF-EC debridement started with a superficial coagulation of the epidermis using the strongest relative current of the Minicutter™ (position 10) for approximately two seconds necessary to boil off the excess physiological saline on the lesion. After the coagulated epidermis was mechanically removed with moist gauze, the parasite-infected dermal layer became visible as a reddish granulomatous area and was specifically targeted by a second coagulation until the area turned into a slightly brownish colour. This procedure was performed only once. The wounds of Groups II and III were dressed with a EuRho® DAC 2003 cream preparation (Additional file 2) until lesion closure, with the exception of Group II, in which for 6 days after HF-EC debridement of the CL lesions the wounds were daily dressed with freshly prepared poly-acrylate jelly containing 0.045% DAC N-055 (Additional file 1).

During week 1 patients of Groups II and III and their relatives were trained to dress wounds, receiving 10 g EuRho® DAC 2003 cream containing 0.045% DAC N-055, in a sterile syringe, which allowed self-treatment for 3 weeks.

Parasitological analyses and Leishmania species determination
At the LMC, Leishmania parasites within the lesion were confirmed with the slit-skin method described by Al Hucheimi [26]. In addition, skin biopsies were taken from the margins of the lesions and placed into modified Schneider’s Drosophila insect medium, transported with the German Army to the Microbiology Institute in Erlangen, Germany, where mini-exon polymerase chain reaction (PCR) and multiple restriction fragment length polymorphism analyses for parasite species determination and limiting dilution analyses for determination of the parasite loads per gram biopsy tissue were carried out as previously described [12].

Outcome
The primary outcome of the study was the ratio of closed versus open wounds at day 75 (D75) in the PP analysis for each regimen.

Sample size
The specific hypotheses were (i) that the proportion of primary closed lesions before D75 is significantly higher in patients treated with HF-EC with subsequent MWT using 0.045% DAC N-055 (Group II) than in patients who received topical intradermal SSG (Group I); and (ii) that MWT with 0.045% DAC N-055 alone, which is known to exert tissue regenerative activity in vivo [3,18], also promotes the closure of chronic Leishmania lesions (Group III).

The specific hypotheses were (i) that the proportion of primary closed lesions before D75 is significantly higher in patients treated with HF-EC with subsequent MWT using 0.045% DAC N-055 (Group II) than in patients who received topical intradermal SSG (Group I); and (ii) that MWT with 0.045% DAC N-055 alone, which is known to exert tissue regenerative activity in vivo [3,18], also promotes the closure of chronic Leishmania lesions (Group III).

The sample size calculation was based on the per-protocol (PP) analysis, defined as all patients evaluable with respect to the primary endpoint. Based on the Reithinger [13] trial and our previous findings in Kabul [12] we defined D75 as endpoint to evaluate a clinically relevant difference of 40% between the percentage of wound closures in Group I (50% at D75) and Group II (90% at D75), respectively. We assumed that SSG chemotherapy does not directly accelerate the wound healing process. In Group III a percentage of 75% at D75 was estimated, since MWT promotes wound healing. A power calculation based on Group I and II showed that 42 patients were needed in each arm to reject the null hypothesis of equal cure rates with a 90% probability using the Fisher’s exact test (Type I error probability 1%). An interim analysis was planned when 50% of the patients (42/2 = 21) had efficacy assessments. Bonferroni adjustment was used to calculate $p_1 = 2p_{\text{min}}$, where p_{min} was the smallest of $p_{\text{Group I vs Group II}}$ versus $p_{\text{Group I vs Group III}}$ [27]. Based on the pre-specified stopping boundaries $\alpha_1 = 0.01$, $\beta_1 = 0.15$ and $\alpha_2 = 0.1871$ and decision rules (Additional file 3), the trial could be stopped at stage I for efficacy.

Statistical analysis
The present trial is a phase IIb efficacy assessment trial. The intention-to-treat analysis (ITT) is solely added as additional information. Patients that could not be evaluated were patients that were lost immediately after registration before treatment started. Within the group of evaluable patients we distinguished between patients whose lesion could be evaluated with respect to D75 and those that were lost to follow-up before D75 with no wound closure. The former were included in the per-protocol-analysis (PP) and the latter were additionally included in the ITT. Screened patients lost immediately after registration, were not included in our definition of the ITT analysis.

Baseline characteristics were analysed using the Pearson Chi-Square Test or the Kruskal-Wallis Test. Hazard ratios and potential covariates were analysed with Cox-Regression. Re-ulceration rates were compared using the Pearson Chi-Square Test. Statistical analyses were performed with IBM® SPSS® Statistics version 21 (IBM Deutschland GmbH, Ehningen, Germany), except the statistics on the Leishmania load per gram biopsy tissue that were calculated with GraphPad Prism version 4.0 (Graphpad Software Inc., La Jolla, CA, USA).
Results

Enrolled patients

In total, 87 patients were enrolled, with 24 (27.5%), 32 (36.8%), and 31 (35.6%) in Groups I, II, and III, respectively (Figure 2). 81 out of 87 patients (93.1%) were suitable for the ITT and 69 (79.3%) for the PP analysis (Additional file 4).

Recruitment

Patients were enrolled from November 2009 to August 2010. The efficacy value of \(p_1 \) was found smaller than the stopping boundary of \(\alpha_1 = 0.01 \) pre-defined in the protocol. Therefore the study was stopped (Additional file 3).

Baseline data

Sixty-nine patients (37 [54%] females, 32 [46%] males) with a mean age of 29 years (CI 25–33) followed the protocol. The analysed baseline data were comparable in all three regimens in the PP (Table 1) as well as ITT analysis (Table 2). In 44 out of 69 patients analysed, 28 (64%) lesions were infected with *L. tropica* and 16 (36%) with *L. major*. *L. major* infections dominated from September to March, *L. tropica* from March to August.

Primary outcome

15 out of 23 (65%), 23 out of 23 (100%), and 20 out of 23 (87%) patients attained complete epithelialisation until D75 in Groups I, II and III, respectively (Group I

Figure 2 Flow chart summarizing the enrolment, randomization, and follow-up of study patients.
versus II: \(p = 0.004 \) [PP]; Table 3). For the intention to treat results see Table 4.

Secondary outcome
The frequent attendance of the study participants allowed plotting wound survival curves (Figures 3 and 4). In a Kaplan-Meier analysis (days until primary wound closure), the survival curves of the three investigated treatments differed significantly in an overall comparison (\(p = 0.000039 \) [PP]; \(p = 0.000616 \) [ITT], Log-Rank [Mantel-Cox] test). In the ITT analyses, mean and median lesion wound survival times in Group II (35 [CI 30–40]/34 days [CI 29–39]) were significantly different from those in Group I (69 days [CI 50–90]/63 days [CI 50–75]) (Tables 5 and 6); in contrast, the pair-wise comparison of the Group III versus Group I survival times did not reveal significant differences (\(p = 0.508 \), Log-Rank [Mantel-Cox] test) (Tables 5 and 6). In the PP analysis, pair-wise comparison for all three groups showed significant differences in wound survival time (\(p = 0.023 \) [Group II vs. III]; \(p = 0.047 \) [Group III vs. I], Log-Rank [Mantel-Cox] test) (Tables 6 and 7). Hazard ratios of Group II versus Group I equaled to 4.415 (CI 2.219-8.783) in the PP (\(p = 0.000023 \)) and 3.270 (CI 1.687-6.341) in the ITT analysis (\(p = 0.000453 \)). The lesion closed three to four times faster in Group II than in Group I.

Covariates analysis
In the Cox-regression analysis, gender, age of the patient age, and age of the lesion were no significant covariates for primary closure. Lesion size at baseline was a significant (\(p = 0.016 \)) covariate with a hazard ratio of 0.883 (CI 0.798-0.977) in the PP, but not in the ITT analysis (\(p = 0.312 \)) with a hazard ratio of 0.954 (CI 0.872-1.045).

Non-desired effects (NDEs)
In the PP analysis, re-ulceration rates were similar in Group I (four patients) and in Group II (three patients), but were more frequent in Group III (seven patients) (\(p = 0.312 \), Pearson Chi-Square test). No final closure was documented for two patients (D131 and D269), one patient (D186), and five patients (D90, D142, D143, D143, D176) in Groups I, II, and III respectively.

Table 1 Baseline characteristics of the PP patients enrolled in the three treatment groups of the trial

Per protocol (PP) evaluation	Male	Female	Age (95% CI)	Lesion age (95% CI)	Lesion size (95% CI)	L. major	L. tropica	Not determined	Parasite species	Lesion location	Parasite load according to Giemsa staining	Biopsy prior to treatment
Group I	13	10	26 (19–34)	9 (7–11)	3.7 (2.3-5.0)	4	5	14	5	5	Low (+)	Evaluable
Group II	8	15	28 (22–33)	8 (7–10)	2.5 (1.7-3.3)	4	13	10	4	0	Moderate (++)	Not evaluable
Group III	11	12	33 (25–40)	7 (6–9)	3.0 (2.0-4.1)	7	10	10	2	1	High (+++)	Not evaluable
Total	32	37	29 (25–33)	8 (7–9)	3.1 (2.5-3.7)	7	12	21	14	2	2	

*Statistical tests were used as indicated (\(p < 0.05 \) indicates a significant proportion, *\(p \)-values refer to observations with complete information).
number of patients in the three arms of this trial was too small to make a meaningful comparison as to which treatment mode yields the best cosmetic scar outcome. However, in Group II, the flat scars showed the typical livid borders with hypo-pigmented central zones, taking weeks to months to fade away as also observed in our previous phase IIa trial in Kabul [12]. In Group II, two scar keloids (8.6%, 4 mm in diameter) formed at D172 and D239.

Discussion
This phase IIb study was conducted according to the state of the art in the analysis of chronic wound healing [28,29] and anticipated recommendations for RCTs in CL [30]. Rapid healing in Group II confirmed the robustness of the findings in the Kabul trial [12].

Limitations
By its nature the present trial could not be conducted as either a double or a single blinded trial due to the physical nature of the applied interventions.

Table 2 Baseline characteristics of the ITT patients enrolled in the three treatment groups of the trial

	Intention to treat (ITT) evaluation	Test			
	Group I	Group II	Group III	Total	p-value
Male	14	12	15	41	
Female	10	17	13	40	0.446*
Age (95% CI)	26 (19–33)	28 (23–33)	32 (25–38)	29 (25–32)	0.252*
Lesion age (95% CI)	9 (7–10)	9 (8–11)	7 (6–8)	8 (7–9)	0.187*
Lesion size (95% CI)	3.6 (2.3–4.9)	2.3 (1.7–3.0)	2.7 (1.8–3.6)	2.8 (2.3–3.4)	0.204*
Parasite species					
L. major	5	7	9	21	
L. tropica	5	14	11	30	
Not determined	14	8	8	30	0.614*
Lesion location					
Head	5	4	4	13	
Trunc	0	0	1	1	
Upper extr.	12	19	16	47	
Lower extr.	7	5	7	19	0.799*
Parasite load according to Giemsa staining					
Low (+)	13	16	11	40	
Moderate (+++)	8	13	16	37	
High (+++)	1	0	1	2	
Not determined	2	0	0	2	0.534*
Biopsy prior to treatment					
Evaluable	17	23	22	62	
Not evaluable	7	6	6	19	0.800*
Parasite load/g tissue (SEM)	2.773 (1.554)x10⁶	3.430 (1.736)x10⁶	2.368 (1.526)x10⁶	2.889 (0.932)x10⁶	0.691*

*Statistical tests were used as indicated (p < 0.05 indicates a significant proportion, * p-values refer to observations with complete information).

Table 3 Per protocol analysis of the primary endpoint

	Per protocol (PP) evaluation	Test			
	Group I	Group II	Group III	Total	p-value
< D75	15	23	20	58	
≥ D75	8	0	3	11	0.004*
Unknown	NA	NA	NA	NA	
Total	23	23	23	69	

*Pearson Chi-Square Test (Exact-Sign).

Table 4 Intention to treat analysis of the primary endpoint

	Intention to treat (ITT) evaluation	Test			
	Group I	Group II	Group III	Total	p-value
< D75	15	23	20	58	
≥ D75	8	0	4	12	
Unknown	1	6	4	11	0.009*
Total	24	29	28	81	

*Pearson Chi-Square Test (Exact-Sign).
Figure 3 Wound closure time in PP patients of Group I versus Group II versus Group III. Statistically significant difference between Group II versus Group I ($p = 0.000001$, Log-Rank [Mantel-Cox] test). Statistical significant differences were found between all groups (see Table 6).

Figure 4 Wound closure time in ITT patients of Group I versus Group II versus Group III. Statistically significant difference between Group II versus Group I ($p = 0.000004$, Log-Rank [Mantel-Cox] test).
Generalizability

So far, six physical treatment regimens have been proposed and clinically tested to dis inhibit the healing delay of chronic wounds. In CL ulcers, thermotherapy (TT) [13,31,32] sparing host tissue, photodynamic therapy (PDT) [33-35] producing tissue $^{1}O_{2}$ [36], cryotherapy (N$_2$) [37-39], CO$_2$ laser [40-43], and HF-EC [12] all elicited short-term constructive inflammatory reactions with beneficial ROS production in the tissue [44] and destroyed parasites and commensal bacteria together with host cells. Similarly, CAP presumably also acted by forming ROS in non-CL skin lesions [45,46]. After initial debridement by HF-EC CL ulcers healed despite of residual, persisting parasites, and MWT treatment with pharmaceutical chlorite showed an additional beneficial healing effect in lesions with high pre-treatment parasite loads [12]. In 2008, Gonzalez et al. highlighted on page 33 of their Cochrane meta-analysis: “We found no RCTs on the use of wound healing to treat OWCL” [47]. This initiated the introduction of MWT with 0.045% DAC N-055 alone as third regimen in the present RCT, without previous HF-EC treatment.

Interpretation

Pharmaceutical chlorite did not shorten wound-healing times in the Kabul trial [12], when it was performed after HF-EC wound debridement, which already promoted wound granulation to a maximum extent. However, in spite of the small sample size of the present trial, MWT with 0.09% DAC N-055 alone showed a significantly shorter wound closure time in the PP analysis than topical anti-parasitic SSG, suggesting that pharmaceutical chlorite has an intrinsic effect on wound healing, which might be $^{1}O_{2}$ or other ROS.

Table 5 Intention to treat analysis of mean and median wound survival time (days)

	Group I	Group II	Group III	Overall
Mean (95% CI)	69 (50–90)	35 (30–40)	66 (41–91)	58 (46–70)
Median (95% CI)	63 (50–75)	34 (29–39)	51 (17–85)	44 (32–56)

Table 6 P-values: pairwise comparison of the survival functions

	Group I	Group II	Group III
Group I	0.000001/0.000040	0.047032/0.507623	
Group II	0.000001/0.000040	0.022813/0.013589	
Group III	0.047032/0.507623	0.022813/0.013589	

Log-Rank (Mantel-Cox) test, p-values refer to the per-protocol (left value) and the intention-to-treat analysis (right value).

Table 7 Per protocol analysis of mean and median wound survival time (days)

	Group I	Group II	Group III	Overall
Mean (95% CI)	69 (49–89)	33 (29–37)	45 (34–56)	49 (41–57)
Median (95% CI)	63 (47–79)	32 (27–37)	35 (21–49)	37 (31–43)

Light nitrogen, the CO$_2$ laser, bipolar HF-EC, PDT, and pharmaceutical chlorite applied to the wound [3,5,6] or to the skin [17,18], where NaClO$_2$ reacts with heme or bacterial dismutases, are likely to have a common denominator for the of wound healing, which might be $^{1}O_{2}$ or other ROS.

0.045% DAC N-055 basic crème contains 5 mM NaClO$_2$ diffusing slowly into the skin and wound tissue. For NaClO$_2$ to act as a protracted source of $^{1}O_{2}$ in the range of 10^{-5} to 10^{-6} M in the wound tissue, it would be sufficient that 1 to 10% of the applied DAC N-055 inoculum enters a heme-catalyzed dismutase reaction which leads to the formation of hypochlorite and subsequently to $^{1}O_{2}$. In 1984, it was apparently wrong to speculate on pharmaceutical chlorite as a direct source of oxygen supply for the respiratory chain [52].

Skin defects are always at risk of microbial colonization and infection, especially in the problematic hygienic hospital environment of poor countries such as Afghanistan. Therefore, rapid wound closure is highly desirable. Moreover, physical treatment techniques have the advantage that they do not induce parasite resistance, which is an increasing concern for CL therapy with pentavalent antimony [53].

In contrast to HF-EC, less intrusive therapies such as the application of N$_2$ or PDT are not administered in “one session only” and require supposedly more resources. Both the CO$_2$ laser and bipolar HF-electrosurgery have been used for single session debridement in patients with as many as 4–5 lesions (Reto Steiner and KW Stahl, German Medical Service Kabul, unpublished results). However, in contrast to the CO$_2$ laser, the HF-EC device is a robust instrument with practically no maintenance costs for decades. The HF-EC device can be run with a car battery in the absence of electrical power supply. In contrast to a...

CO₂ laser, bipolar HF-EC treatment is more superficial, allows a loophole-free destruction of the lesion tissue, and the cauterization process is less unrestricted in space than with laser beams, which induce deep and very narrow thermal tissue coagulation [54]. From our experience in Kabul with the German Medical Service (GMS), the CO₂ laser seems to be especially helpful to treat multiple small recurrent CL lesions in the face.

Already in 2005, results from murine experiments have claimed that the wound repair response controls the outcome of cutaneous leishmaniasis [55], but so far, to our knowledge, this has not inspired any clinical research work to test this hypothesis in humans. Of course, direct extrapolation from “mice to men” is problematic and our clinical results do not give any straightforward answer to the question, whether mechanisms found in the mouse model also apply to humans [56-58]. However, it is noteworthy to mention that a high degree of microbial and fungal contaminations and superinfections have been observed in leishmanial wounds [15]. They lead to chronic inflammatory processes which counteract the wound healing and involve peroxidase secretions from macrophages and neutrophils. Interestingly, recent biochemical work has shown that human peroxidases, such as lactoperoxidase and myeloperoxidase, are key targets of μM concentrations of chlorite, which destroys these enzymes by heme catalysis [59].

Non-desired effects

Every scarring process of full thickness wounds with or without topical CL treatment comprises an inevitable risk of late keloid formation. Keloïds were registered in six (5.3%) patients within the phase IIa trial in Kabul [12] and in two (8.7%) patients of Group II in the present RCT. Asilian and colleagues found hypertrophic scars in five (6%) patients treated with CO₂ laser [41]. Wound healing in the absence of a strong parasitocidal intervention (Group III) seemed to bear a higher risk of recurrences than observed in Groups I and II, where parasites were killed by SSG or HF-EC, respectively. As DAC N-055 has a strong wound healing effect, but only a limited leishmanicidal activity notably against intracellular parasites [12] (US and CB, unpublished data), future clinical trials should investigate the combination of DAC N-055 MWT with a strong leishmanicidal regimen.

Conclusions

In CL endemic regions with poor infrastructure, bipolar HF-EC is a robust technology to debride CL lesions under local anaesthesia. The combination with DAC N-055 MWT provides additional anti-parasitic, antimicrobial and wound healing effects. Well designed and controlled prospective cohort studies with a large sample of patients and a post-treatment monitoring period of one to two years are the only way of investigating the frequency and impact of NDEs such as keloid or hypertrophic scars, permanent pigmental disorders, or persisting erythemas. The cost-effectiveness of the proposed interventions is currently under investigation.

Additional files

Additional file 1: Formula of 0.045% DAC N-055 jelly (adjusted with NaN₉ to pH 7–8).
Additional file 2: Formula of 0.045% DAC N-055 basic cream (adjusted to pH 8 with acetic acid).
Additional file 3: Decision rules in the adaptive drop-loser statistical sample design with α₁=0.01, β₁=0.15 and α₂=0.1871.
Additional file 4: Patients that could not be considered in the per protocol (PP) statistical analysis. Three (9.3%) patients in Group II regimen and three (9.7%) patients in Group III dropped out during treatment. There were no differences in the dropout rates between the regimens within the ITT analysis (p=0.374, Chi-Square (Exact Sign.)). Eighteen patients listed in Additional file 4, out of the total of 87 randomized patients, could not be considered in the PP analysis due to protocol breaches. Two of these patients with mixed treatment were kept in the ITT analysis after being assigned to their randomized groups.

Abbreviations

AA: German Federal Foreign Office; AFPAK: Afghanistan and Pakistan Stabilization Pact; BMBF: German Federal Ministry for Education and Research; BMZ: German Federal Ministry for Economic Cooperation and Development; CAP: Cold atmospheric plasma; CL: Cutaneous leishmaniasis; DAAD: German Academic Exchange Service; DAC: German Drug Codex; DAC N-055: Pharmaceutical sodium chlorite listed in the German Drug Codex; EC 1.11.1.6: Enzyme classification; EC: Bipolar electrocauterization; GMS: German Medical Service; HF: High-frequency; ITT: Intention to treat; IDKF: Interdisciplinary Centre of Clinical Research; L major: Leishmania major; L. tropica: Leishmania tropica; LMC: Leishmania and Malaria Centre; MoPH: Ministry of Public Health; MWT: Moist wound treatment; NDE: Non desired effects; NMLCP: National Malaria and Leishmania Control Program; NTP: Non thermal plasma; PP: Per protocol; RCT: Randomized controlled trial; ROS: Reactive oxygen species; SSG: Sodium stibogluconate; WHO: World Health Organization.

Competing interests

The funders had no role in study design, data collection, data analysis, and interpretation, decision to publish, or preparation of the manuscript. KWS and HCS are members of the Board and CB is a member of the non-profit NGO Waisenmedizin – PACEM e.V, promoting access to essential medicine. Authors’ contributions

The authors accept full responsibility for the overall content of this report. HCS, KWS, CB, and JLB designed the trial. KWS and IS were the principal investigators for the clinical part of the trial, whereas the CB and US were principal investigators for the laboratory part of the trial; FA, MLA, and IS enrolled and managed patients, collected laboratory and clinical data; HCS, KWS, US, and CB contributed to writing of the paper. HCS and JLB analysed the data. RS participated in supervision. All authors read and approved the final manuscript.

Acknowledgements

We are grateful to the National Malaria and Leishmania Control Program (NMLCP) Director at the Ministry of Public Health (MoPH) in Kabul, Afghanistan; Sami Nahzat, MD, MPH for his administrative support; to Yousofy Ghafar, MD (Director of Leishmania and Malaria Centre (LMC), Provincial Civil Balkh Hospital, Mazar-e-Sharif, Afghanistan) for his help and local support in conducting the study; to Heidi Sebald and Andrea Debus (Mikrobiologisches Institut, Universitätsklinikum Erlangen, Germany) for their expert technical assistance and organizational help throughout the years; and to Philippe Roos (Albert-Ludwigs-Universität Freiburg, Germany) for his
help as medical trainee during an elective period in Mazar-e-Sharif. We wish to express our sincere thanks to the German Federal Foreign Office (AA, Berlin, Germany) for providing 8,000 vials of sodium stibogluconate and the funds for renovation of the LMC in Mazar-e-Sharif within the APPAK-Stability Pact, to the German Federal Ministry for Economic Cooperation and Development (BMZ, Berlin, Germany) for installing the solar power system at the LMC in Mazar-e-Sharif, and to the German Defense Ministry for enabling the transportation of the punch biopsies from Mazar-e-Sharif to the lab of US and CB in Erlangen. We specifically thank KLS Martin GmbH (D-79224 Umkirch, Germany) for helping us to adapt the HF microcutter to bipolar HF-EC. The German Academic Exchange Service (DAAD, Bonn, Germany) supported KWS with grants. US and CB were supported by the Interdisciplinary Centre of Clinical Research (IZKF, project A49, CB) also by a grant from the "Medicinal Redox Inorganic Chemistry Consortium" funded by the Emerging Field Initiative (EFI) of the FAU Erlangen-Nürnberg. This study was only made possible through the initial and generous support by German Federal Ministry for Education and Research (BMBF grant AFG 08/002, RS and HCS) to the Institute of Public Health at the University Hospital Heidelberg, Germany.

Funding

German Federal Ministry for Education and Research, German Federal Foreign Office, German Federal Ministry for Economic Cooperation and Development, German Federal Defence Ministry, German Academic Exchange Service, Interdisciplinary Centre for Clinical Research of the University Hospital Erlangen, Germany, Medicinal Redox Inorganic Chemistry Consortium of the Emerging Field Initiative of the FAU Erlangen-Nürnberg.

Summary of article’s main point

Cutaneous leishmaniasis results from an infection with Leishmania parasites and frequently causes chronic wounds. This study reports on a randomized controlled three-armed trial, which demonstrates the superiority in closing the skin defects of two wound-healing regimens compared to the standard chemotherapy with topical pentavalent antimony.

Author details

1. Institute of Public Health, University Hospital Heidelberg, Heidelberg, Germany.
2. Provinzial Bāgh Hospital, Mazar-e-Sharif, Afghanistan.
3. Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany.
4. Institut für Medizinische Biometrie, Universität Heidelberg, Heidelberg, Germany.
5. Wassermedizin e.V. – PACE, Freiburg, Germany.

Received: 2 April 2014 Accepted: 7 November 2014

Published online: 25 November 2014

References

1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M. WHO Leishmaniasis Control Team: Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012, 7(5):e35671.
2. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Estimations of its incidence. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012, 7(5):e35671.
3. Hinz J, Hautzinger H, Stahl KW. Rationale for and results from a randomized, double-blind trial of tetrachlorodecaoxide and sodium chloride solution (NaClO2) with equimolar chlorite content on bone marrow and peripheral blood of BDIX rats. Drugs Exp Clin Res 1983, 19(4):165–174.
4. Kempt SR, Blaszkiewitz K, Rein M, Ivanovic S. Comparative study on the effects of chlorite oxide reaction product TCDO (tetrachlorodecaoxide) and sodium chloride solution (NaClO2) with equimolar chlorite content on bone marrow and peripheral blood of BDIX rats. Drugs Exp Clin Res 1983, 19(4):165–174.
5. Kempt SR, Port RE, Ivanovic S. Anticancerogenic effect of tetrachlorodecaoxide after total-body gamma irradiation in rats. Radiat Res 1994, 139(2):226–231.
6. Mayfield JA, Blanc B, Rodgers NR, Lukat-Rodgers GS, Dubois J. Peroxidase-type reactions suggest a heterolytic/nucleophilic O-O’joining mechanism in the heme-dependent chlorite dismutase. Biochemistry 2013, 52(40):6982–6994. doi:10.1021/bi4005599. Epub 2013 Sep 23.
7. Mayfield JA, Dehner CA, Dubois J. Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol 2011, 15(2):260–266. doi:10.1016/j.cbpa.2011.02.002. Epub 2011 Feb 19.
8. Keifl JM, Abu-Ornay MM, Hall MB. Computational investigation of the concerted dismutation of chlorite ion by water-soluble iron porphyrins. Inorg Chem 2011, 50(17):7928–7930. doi:10.1021/ic2009732. Epub 2011 Aug 1.
9. Kalgatagi S, Kelly CM, Cerchar E, Torabib A, Alexeev O, Fridman A, Friedman G, Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One 2011, 6(11):e26270. doi:10.1371/journal.pone.0026270. Epub 2011 Jun 14.
10. Lebarn F, Schleicher U, Steiner R, Wenzler P, Mahfuz S, Stahl HC, Amin FM, Bogdan C, Stahl KW. Rapid healing of cutaneous leishmaniasis by high-frequency electrocoagulation and hydrogels wound care with or without DAC N-055: a randomized controlled phase IIa trial in Kabul. PloS Negl Trop Dis 2014, 8(2):e2694. doi:10.1371/journal.pntd.0002694. Epub 2013 Apr 30.
11. Montez G, Kendjo E, Mour O, Thellier M, Pérignon A, Foulet F, Cordoliani F, Bourrat E, Laffitte E, Alcaraz I, Bodak N, Kral C, Vray M, Grogl M, Mazier D, Caumes E, Lachaud L, Buffet PA. Cutaneous Leishmaniasis French Study Group: Travelers with cutaneous leishmaniasis cured without systemic therapy. Clin Infect Dis 2013, 57(3):370–380. doi:10.1093/cid/cis269. Epub 2013 Apr 30.
12. Doudi M, Settou M, Narimani M. Bacterial superinfection in zoonotic cutaneous leishmaniasis. Med Sci Monit 2012, 18(9):BR565–BR566.
13. Perical SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 2012, 20(5):647–657.
14. Modabber F, Buffet PA, Torreelle E, Milon G, Croft SL. Consultative meeting to develop a strategy for treatment of cutaneous leishmaniasis. Institute Pasteur, Paris – 13 – 15 June, 2006. New technologies for the treatment of cutaneous leishmaniasis. Wound Repair Regen 2010, 18(4):243–250. doi:10.1111/j.1524-475X.2009.00559.x.
15. Faullde MK, Hey GI, Amrelli ML. Zoonotic cutaneous leishmaniasis. Afghanistan. Emerg Infect Dis 2006, 12(10):1623–1624.
16. Stahl KW, Sakhayeee IG. Efficacy of topical neutralization with sodium stibogluconate in Afghanistan treated with 0.054% DAC N-055. BMC Proceedings 2011, 5(Suppl 6):P247.
17. Panuncialman J, Hammerman S, Carson P, Falinga V. Wound edge biopsy sites in chronic wounds heal rapidly and do not result in delayed overall healing of the wound. Wound Repair Regen 2010, 18(12):21–25. doi:10.1111/j.1524-475X.2009.00559.x.
18. Faullde MK, Hey GI, Amrelli ML. Zoonotic cutaneous leishmaniasis. Afghanistan. Emerg Infect Dis 2006, 12(10):1623–1624.
19. Stahl KW, Sakhayee IG. Efficacy of topical neutralization with sodium stibogluconate in Afghanistan treated with 0.054% DAC N-055. BMC Proceedings 2011, 5(Suppl 6):P247.
20. Panuncialman J, Hammerman S, Carson P, Falinga V. Wound edge biopsy sites in chronic wounds heal rapidly and do not result in delayed overall healing of the wound. Wound Repair Regen 2010, 18(12):21–25. doi:10.1111/j.1524-475X.2009.00559.x.
21. Elstner EF. Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J Huzhong Univ Sci Technol Med Sci 2011, 31(3):390–394. doi:10.1007/s11596-011-0387-2. Epub 2011 Jun 14.
22. Reithinger R, Mohns M, Wahid M, Bismullah M, Quinnell RJ, Davies CR, Kolacinski J, David JR. Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: a randomized, controlled trial. Clin Infect Dis 2005, 40(8):1148–1155. Epub 2005 Mar 15.
23. Zeglin O. Reaction mechanism of the chlorite dismutation and microbiologic methods. J Infect Dis 1988, 157:1998–2003.
24. Gottrup F, Apelqvist J, Price P, European Wound Management Association Patient Outcome: Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 2010, 19(9):237–268.

Stahl et al. BMC Infectious Diseases 2014, 14:619
http://www.biomedcentral.com/1471-2334/14/619 Page 11 of 12
29. Keast DH, Bowering CK, Evans AW, Mackean GL, Burrows C, D’Souza L: MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment. Wound Repair Regen 2004, 12(3 Suppl):S1–S17.

30. Olliaro P, Vaillant M, Arana B, Grogl M, Modabber F, Magill A, Lapujade O, Buffet P, Alvar J: Methodology of clinical trials aimed at assessing interventions for cutaneous leishmaniasis. PLoS Negl Trop Dis 2013, 7(3):e2130. doi:10.1371/journal.pntd.0002130. Epub 2013 Mar 21.

31. Aronson NE, Wortmann GW, Byrne WR, Howard RS, Bernstein WB, Marovich PM: A randomized controlled trial of local heat therapy versus intravenous sodium stibogluconate for the treatment of cutaneous Leishmania major infection. PLoS Negl Trop Dis 2010, 4(3):e628. doi:10.1371/journal.pntd.0000628.

32. Safi N, Davis GD, Nadir M, Hamid H, Robert LL, Case AJ: Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of Old World cutaneous leishmaniasis: a placebo-controlled, randomized clinical trial. Clin Exp Dermatol 2006, 31(5):634–637. Epub 2006 Jun 15.

33. Morton CA, Seemies RM, Sidroff A, Braathen LR: European guidelines for topical photodynamic therapy part 2: emerging indications–field cancerization, photorejuvenation and inflammatory/infective dermatoses. J Eur Acad Dermatol Venereol 2013, 27(5):254–256. doi:10.1111/1460-2592.12106x.

34. Ngafor S, Cornejo O, Mirshams M, Miranbaygi MH, Hosseini ZK: Successful dissociation of disease field isolates through a cDNA-AFLP approach. Exp Parasitol 2011, 128(3):e2130. doi:10.1016/j.exppara.2011.06.010x.

35. González U, Pinart M, Reveiz L, Alvar J: Interventions for Old World cutaneous leishmaniasis. Cochrane Database Syst Rev 2008, 4(3):CD005067. doi:10.1002/14651858.CD005067.pub3.

36. Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Karrer S, Landthaler M, Zimmermann J., Bosserhoff AK, Karrer S: Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 2007, 8(9):722–728.

37. Stahl BS, Huffnagle GB: The microbiome in wound repair and tissue fibrosis. J Pathol 2013, 229(3):325–331. doi:10.1002/path.4118. Epub 2012 Nov 29.

38. Wang X, Fang H, Huang Z, Shang W, Hou T, Cheng A, Cheng H: Imaging ROS signaling in cells and animals. J Mol Med (Berl) 2013, 91(8):917–927. doi:10.1002/jm.21067-4. Epub 2013 Jul 20.

39. Arndt S, Ungar P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S: Hydrogen peroxide, heme peroxidases. Arnhold J, Obinger C: Mechanism of reaction of chlorite with mammalian heme peroxidases. Proc Natl Acad Sci U S A 2014, 111(19):E902–E907. doi:10.1073/pnas.1402339111.

40. Rodríguez ME, Inguanzo P, Ramos A, Pérez J: Photodymatology Photoimmunol Photomed (CAP) changes gene expression of Key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 2013, 8(11):e79325. doi:10.1371/journal.pone.0079325.

41. Asilian A, Sharif A, Faghihi G, Enshaeieh S, Shariati F, Siadat AH: Photodynamic therapy as a new treatment of cutaneous leishmaniasis. Photodermatol Photoimmunol Photomed 2014, 30(6):280–282. doi:10.1111/j.1365-3083.2010.03781.x. Epub 2010 Mar 15.

42. Handman E, Foote SJ: The wound repair response controls outcome to cutaneous leishmaniasis. PLoS Negl Trop Dis 2005, 9(3):e628. doi:10.1371/journal.pntd.0000628.

43. Baldwin T, Sakthinandeswaren A, Elso CM, Simpson R, Curtis JM, Kumar B, Speed TP, Handman E, Foote SJ: The wound repair response controls outcome to cutaneous leishmaniasis. PLoS Negl Trop Dis 2011, 5(6):e591. doi:10.1371/journal.pntd.0000628.

44. Ryan AW, Wolf T, Spetzler RF, Coons SW, Fink V, Preul MC: Application of a flexible CO2 laser fiber for neurosurgery: laser-tissue interactions. J Neurosurg 2010, 112(2):343–347. doi:10.3171/2009.7.JNS09356.

45. Baldwin T, Sakthinandeswaren A, Curtis JM, Kumar B, Smyth GK, Foote SJ, Handman E: Wound healing response is a major contributor to the severity of cutaneous leishmaniasis in the ear model of infection. Parasite Immunol 2007, 29(10):501–513.

46. Elso C, Kumar B, Smyth G, Foote S, Handman E: Dissociation of disease susceptibility, inflammation and cytokine profile in lmr1/2 congenic mice infected with Leishmania major. Genes Immun 2004, 5(3):188–196. PMID: 14762988.

47. Kim DH, Lee SH, Kim TH, Kim T, Shin JY, Yoon HW, Park SC, Son HH, Lee ES, Kim TH: Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 2013, 14:10–19. doi:10.1038/nrm3478.

48. Jakopic T, Perker V, Fleiner J, Hofbauer S, Schlorke D, Furmuller PG, Arnold J, Obringer C: Mechanism of reaction of chlorine with mammalian heme peroxidases. J Inorg Biochem 2014, 135:10–19. doi:10.1016/j.jinorgbio.2014.02.010. Epub 2014 Feb 28. PMID: 24632343.

Cite this article as: Stahl et al: A randomized controlled phase Ib wound healing trial of cutaneous leishmaniasis with 0.95% pharmaceutical chloride (DAC Na55) with and without bipolar high frequency electro-cauterization versus intralesional antimony in Afghanistan. BMC Infectious Diseases 2014 14:619.