Electronic and lattice dynamical properties of Ti$_2$SiB MAX phase

Aysenur Gencer1 and Gokhan Surucu1,2,*

1 Department of Physics, Middle East Technical University, Ankara, Turkey
2 Department of Electric and Energy, Ahi Evran University, Kirsehir, Turkey
3 Photonics Application and Research Center, Gazi University, Ankara, Turkey

E-mail: g_surucu@yahoo.com

Keywords: MAX phases, electronic properties, mechanical properties, phonon, Bader charge analysis

Abstract
The structural, electronic, mechanic, vibrational and thermodynamic properties of Ti$_2$SiB which is a hypothetical MAX phase compound, have been investigated using density functional theory calculations. The structural optimization of Ti$_2$SiB has been performed and the results have been compared with Ti$_x$SiC, Ti$_x$SiN, and Ti$_x$AlB that are studied in the literature. Then the band structure and corresponding partial density of states are computed. In addition, charge density and Bader charge analysis have been performed. The elastic constants have been obtained, then the secondary results such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and Vickers Hardness of polycrystalline aggregates have been derived, and the relevant mechanical properties have been discussed. Moreover, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Poisson ratio, Young’s and Shear moduli. Furthermore, the phonon dispersion curves as well as corresponding phonon PDOS, and thermodynamical properties such as free energy, entropy and heat capacity have been computed and the obtained results have been discussed in detail. This study provides the first considerations of Ti$_2$SiB that could have a potential application in nuclear industry.

1. Introduction

MAX phases have M$_{(n+1)}$AX$_n$ formula with $n = 1, 2$ and 3 where M is a transition metal, A is an A group element and X is Carbon and/or Nitrogen [1]. The MAX phases crystallize in P6$_3$/mmc hexagonal structure and their ionic, metallic and covalent bonding give them unique properties [2]. The MAX phases have both metallic and ceramic properties that lead to good damage tolerance, high strength and stiffness at high temperatures, good electrical and thermal conductivity and good corrosion resistance [3–5]. Owing to these properties, the MAX phases can be implemented for applications such as wear and corrosion resistant coatings [6], superconducting materials [7], and nuclear industry [8].

The MAX phases are studied experimentally, for example, Hu et al [9] fabricated Nb$_2$AlC$_3$ using spark plasma sintering and investigated its thermal expansion and electrical conductivity and Barsoum and Radoovic [5] reviewed the results of the measurement of elastic properties of some selected MAX phases. Also, theoretical study of MAX phases are available in the literature, for example, Bouhemadou and Khenata [10] studied the structural, elastic and electronic properties of M$_x$SC ($M = Ti, Zr, Hf$) and He et al [11] studied the lattice constants, Bulk modulus, band structure and partial density of states for Ti$_2$InC, Zr$_2$InC, and Hf$_2$InC. Also, Aryal et al studied possible MAX phases and obtained 669 MAX phases with their mechanical and electronic properties to investigate the relation between these properties [12]. The given studies are examples and there are many studies for MAX phases. Furthermore, studies of the MAX phases are focused on different combinations of M- and A-site atoms and X site atom is kept C and/or N [2]. Recently, MXenes which are 2D materials, are layered MAX phases and has been investigated to explore their properties [13]. Moreover, the MAX phases of Ti$_2$SiC$_2$, Ti$_3$AlC$_2$ and Ti$_2$AlC have been examined how they behave under neutron radiation [14] and they are radiation hard similar to SiC which is one of the most used material in nuclear reactors. On the other hand,
Borides of MAX phases would be an alternative new material for control rods at nuclear reactors due to having the high neutron cross section of Boron. Moreover, Borides of MAX phases would be used in nuclear industry due to their stability. There are very few studies that have X site as Boron [15–17] and therefore, the aim of this study is to determine the properties of Ti_2SiB compound which has Boron for X site atom and could have potential application in nuclear industry.

In this study, Ti_2SiB is investigated for the first time as we know up to date and compared with Ti_2SiC and Ti_2SiN that are studied in detail in the literature [18–28] and also Ti_2AlB from a previous study [16]. Calculation details for Ti_2SiB are illustrated in section 2. The structural optimization results, electronic properties and charge density analysis of Ti_2SiB are presented in section 3. The calculated formation enthalpy indicates that Ti_2SiB is a stable phase. After these results, mechanical properties such as elastic constants, bulk modulus, shear modulus, etc are detailed in section 4. The phonon band structure and thermodynamic properties are presented in section 5 where the Raman modes are also included. Finally, the study concludes with a brief summary in section 6.

2. Calculation details

The DFT calculations are performed using the Vienna Ab initio Simulation Package (VASP) [29]. The pseudopotentials are chosen according to Perdew–Burke–Ernzerhof (PBE) parametrization of the generalized gradient approximation (GGA) for the exchange and correlation terms of the electron-electron interaction [30]. For the electron–ion interaction, Projector Augmented Wave (PAW) method [31] has been implemented and the kinetic energy cut off is chosen 500 eV. The 16 × 16 × 4 k-point mesh has been generated which is centered at the Γ-point. The electronic energy change is kept 10^{-11} eV. The structure is optimized with the minimization of the stresses and the Hellman-Feynman forces. The elastic constants are calculated using the stress-strain method with VASP. The anisotropic elastic properties are obtained with ELATE program [32] where the calculated elastic constants are employed. The phonon calculations are performed for a 2 × 2 × 1 supercell with the Phonopy code [33].

3. Structural optimization and electronic properties

The lattice structure of Ti_2SiB compound which belongs to the space group of 194 (P6$_3$/mmc) is given in figure 1. The Ti atoms are interleaved with the Si atoms and the octahedral sides are filled with the B atoms as shown in figure 1. The Si atoms occupy at 4 f, the Si atoms occupy at 2d and the B atoms occupy at 2a Wyckoff positions.

Lattice parameters, formation energy and z parameter of the Wyckoff positions of the Ti_2SiB compound are given in table 1 and the results from the literature for Ti_2SiC [23, 25], Ti_2SiN [18, 27] and Ti_2AlB [16] are also listed. The lattice parameters are increasing when the X atom goes from nitrogen to boron for Ti_2SiX as can be seen in table 1. Once Ti_2SiB and Ti_2AlB are compared, c parameter of Ti_2AlB is around 8% higher than that of Ti_2SiB. The Ti_2SiB compound is hypothetical therefore there is no experimental data nor theoretical study in order to compare the calculation results. The formation energy is calculated using equation (1) and negative formation energy indicates that the compound is thermodynamically stable. Hence, the results specify that these compounds can be synthesized.

$$E_{\text{formation}} = E_{\text{Ti}_2\text{SiB}} - 2E_{\text{Ti}} - E_{\text{Si}} - E_{\text{B}} \quad (1)$$

The band structure for Ti_2SiB is predicted along the high symmetry directions in the first Brillouin zone from the calculated equilibrium lattice constant. The band structures and corresponding partial and total electronic density of state (DOS) are drawn and given in figures 2 and 3, respectively.

It is clear that the compound is metallic due to the fact that the DOS values differ from zero at the Fermi level. The most significant contribution to PDOS comes from the s states of B and Si atoms between −6 eV and −5 eV energy range and from d states of Ti between −2 eV and 3 eV energy range as seen in figure 3.

After these electronic structure calculations, the charge density and bader charge analysis is performed in order to determine the bonding nature and charge of the ions for Ti_2SiB. The charge density plot of Ti_2SiB indicates that Ti_2SiB has dominantly ionic bonding as shown in figure 4. Bader charge population analysis is also performed in order to get the bonding nature of Ti_2SiB. The calculation is performed with VASP and analysis is performed using the algorithm developed by Henkelman et al. [34] which is based on Bader’s suggestion [35]. Table 2 lists the Bader net charge of the ions for Ti_2SiB. If the Bader net charge is positive, the charge is transferred away from the atom, vice versa for the negative Bader net charge [36]. The charge is transferred away
Figure 1. The lattice structure of Ti$_2$SiB compound.

Figure 2. Band structure of Ti$_2$SiB.

Table 1. Lattice parameters, formation energy and z parameter of the Wyckoff positions of the Ti$_2$SiB, Ti$_2$SiC and Ti$_2$SiN compounds.

Material	Reference	a (Å)	c (Å)	ΔH_f (eV/atom)	z
Ti$_2$SiB	This study	3.151	12.979	−3.972	0.095
Ti$_2$SiC	Theory [23]	3.052	12.873	—	0.092
Ti$_2$SiC	Theory [25]	3.052	12.873	−0.860	0.092
Ti$_2$SiN	Theory [18]	2.979	12.82	—	0.093
Ti$_2$SiN	Theory [27]	2.984	12.822	—	0.093
Ti$_2$AlB	Theory [16]	3.148	14.064	−3.577	0.087
from Ti atom, while the charge is transferred to Si and B atoms. The bond length of Ti-Si is 2.712 Å and it is 2.198 Å for Ti-B.

4. Mechanical properties

Mechanical properties of Ti$_2$SiB are investigated after the structural optimization. The elastic constants (C$_{ij}$) are calculated using the stress-strain method with VASP which are listed in table 3. In addition, to compare the
obtained results with the literature, the table contains the results for Ti$_2$SiB [23, 25], Ti$_2$SiN [18, 27], and Ti$_2$AlB [16]. Also, the elastic constants of Ti$_2$SiB has lower value when compared to the values of Ti$_2$SiC and Ti$_2$SiN. On the other hand, this value is higher than the value given for Ti$_2$AlB. The stability of Ti$_2$SiB are determined using Born stability criteria [37] and found that it is mechanically stable.

The mechanical properties of Ti$_2$SiB, which are obtained with the calculation of the elastic constants, are listed in table 4. The literature results for Ti$_2$SiC and Ti$_2$SiN are also given in table 4. The Bulk modulus (B) and the shear modulus (G) are calculated with the Voigt-Reuss-Hill approximations [38–40]. Voight approximation gives the lower limit while Reuss approximation gives the upper limit of these moduli. Hill approximation takes the average of the Voigt and Reuss results which is generally consistent with the experimental results. As it is well known that Bulk modulus (B) is the volume change of a material if there is a stress on it. So, it defines the incompressibility of a material. The Bulk modulus of Ti$_2$SiX compound increases when X element goes from Boron to Nitrogen. On the other hand, if Ti$_2$SiB and Ti$_2$AlB are compared, Ti$_2$AlB has higher Bulk modulus then Ti$_2$SiB. Shear modulus (G) is also known as the length change of a material when a shear stress is applied. So, it is a measure of the resistance of the transverse deformations. Once the Shear modulus of Ti$_2$SiB compound is compared, it has lower Bulk modulus than that of Ti$_2$SiC and Ti$_2$SiN while it has higher Bulk modulus than Ti$_2$AlB. Young’s modulus (E) is defined as the length change of a material when a pull or push is applied. It is also called modulus of elasticity. Young’s modulus of Ti$_2$SiB shows similar behavior with the Shear modulus. Poisson’s ratio (\(\nu\)) is the ratio of the transverse strain to axial strain. It is used to determine the bonding characteristics of a material. The material has ionic bonding if \(\nu\) is around 0.25 while if \(\nu\) is small around 0.1, it has covalent bonding [41]. \(\nu\) value of Ti$_2$SiB compound indicates that it has dominantly ionic bonding. Also, the literature results for Ti$_2$SiC, Ti$_2$SiN and Ti$_2$AlB show that they both have dominantly ionic bonding. B/G ratio determines the ductility or brittleness of a material and if it is higher than 1.75, the material is ductility, otherwise, it is brittle [42, 43]. Ti$_2$SiB compound is brittle that can be inferred from B/G ratio. G/B ratio is called Pugh’s modulus and it is used to determine the bonding nature of a material. If G/B is around 1.1, the material has dominantly ionic bonding [41]. On the other hand, the ionic character is dominant if G/B ratio is around 0.6 [41]. Ti$_2$SiB compound has dominantly ionic bonding as can be concluded from G/B ratio which is consistent with the results from \(\nu\) value and the charge density analysis. The hardness of Ti$_2$SiB is also calculated

| Table 2. Bader net charge of the atoms for Ti$_2$SiB in units of e. |
|-----------------|--------|
| Atom | Bader charge |
| Ti | 0.552 |
| Si | -0.282 |
| B | -0.822 |

| Table 3. The calculated elastic constants (in GPa) of the Ti$_2$SiB and Ti$_2$SiC and Ti$_2$SiN taken from the literature. |
|-----------------|--------------|--------------|--------------|--------------|--------------|
| Material | Reference | C$_{11}$ | C$_{12}$ | C$_{13}$ | C$_{33}$ | C$_{44}$ |
| Ti$_2$SiB | This study | 250.1 | 74.8 | 80.9 | 262.8 | 119.6 |
| Ti$_2$SiC | Theory [24] | 311.4 | 85.8 | 111.5 | 324.2 | 146.1 |
| Ti$_2$SiN | Theory [20] | 311.0 | 84.0 | 40.0 | 107.0 | 135.0 |
| Ti$_2$SiN | Theory [18] | 298.0 | 96.0 | 127.0 | 347.0 | 153.0 |
| Ti$_2$SiN | Theory [27] | 296.7 | 100.2 | 126.3 | 347.8 | 155.1 |
| Ti$_2$AlB | Theory [16] | 234.0 | 73.9 | 80.6 | 261.9 | 115.1 |

| Table 4. The calculated mechanical properties (Bulk Modulus—B (in GPa), Shear modulus—G (in GPa), Young’s modulus—E (in GPa), Poisson’s ratio—\(\nu\), B/G ratio, G/B ratio) of the Ti$_2$SiB and Ti$_2$SiC and Ti$_2$SiN taken from literature. |
|-----------------|--------------|--------------|--------------|--------------|--------------|
| Material | Reference | B | G | E | \(\nu\) | B/G | G/B | Hv |
| Ti$_2$SiB | This study | 137.2 | 99.3 | 239.9 | 0.208 | 1.381 | 0.723 | 17.6 |
| Ti$_2$SiC | Theory [24] | 173.6 | 122.0 | 296.6 | 0.215 | 0.70 | 0 | — |
| Ti$_2$SiC | Theory [20] | 172.0 | 128.5 | 309 | 0.20 | 1.34 | — | — |
| Ti$_2$SiN | Theory [18] | 182 | 118 | 291 | 0.233 | — | — | — |
| Ti$_2$SiN | Theory [27] | 181.9 | 117.8 | 290.7 | 0.234 | — | — | — |
| Ti$_2$AlB | Theory [16] | 134.0 | 93.6 | 227.4 | 0.215 | 1.420 | 0.703 | 16.3 |

| Table 5. The calculated mechanical properties (Bulk Modulus—B (in GPa), Shear modulus—G (in GPa), Young’s modulus—E (in GPa), Poisson’s ratio—\(\nu\), B/G ratio, G/B ratio) of the Ti$_2$SiB and Ti$_2$SiC and Ti$_2$SiN taken from literature. |
|-----------------|--------------|--------------|--------------|--------------|--------------|
| Material | Reference | B | G | E | \(\nu\) | B/G | G/B | Hv |
| Ti$_2$SiB | This study | 137.2 | 99.3 | 239.9 | 0.208 | 1.381 | 0.723 | 17.6 |
| Ti$_2$SiC | Theory [24] | 173.6 | 122.0 | 296.6 | 0.215 | 0.70 | 0 | — |
| Ti$_2$SiC | Theory [20] | 172.0 | 128.5 | 309 | 0.20 | 1.34 | — | — |
| Ti$_2$SiN | Theory [18] | 182 | 118 | 291 | 0.233 | — | — | — |
| Ti$_2$SiN | Theory [27] | 181.9 | 117.8 | 290.7 | 0.234 | — | — | — |
| Ti$_2$AlB | Theory [16] | 134.0 | 93.6 | 227.4 | 0.215 | 1.420 | 0.703 | 16.3 |
using Chen et al approach [44]. It is given as: \(H_V = C k^m G^n \); where the parameter \(k \) is the Pugh’s modulus ratio. \(C \) is a proportional coefficient, and \(m \) and \(n \) are constants. In our case, the constants are: \(C = 1.887 \), \(m = 1.171 \), and \(n = 0.591 \).

As shown in table 4, \(Ti_2SiB \) has the hardness (17.6 GPa) value that is higher than the value given for \(Ti_2AlB \) (16.3 GPa). Thus, \(Ti_2SiB \) could be considered as the hard material.

The anisotropic elastic properties are studied because this calculation is important in order to complete the elastic properties of a material. The anisotropic properties provide to determine some material properties under maximum and minimum values for these parameters are given in table 5. Furthermore, the results for \(Ti_2AlB \) [16] are also listed in table 5 as well. Young’s modulus and linear compressibility are isotropic in all planes. Shear modulus and Poisson’s ratio are anisotropic in \(xy \) and \(xz \) planes, while they are isotropic in \(yz \) plane.

5. Vibrational and thermal properties

The dynamical stability of \(Ti_2SiB \) is calculated using finite displacement method in the Phonopy code for a \(2 \times 2 \times 1 \) supercell. The force constants and phonon dispersion frequencies are obtained. The phonon dispersion curve is shown in figure 6 with partial density of states. \(Ti_2SiB \) is a dynamically stable material which has only real phonon branches. There are 24 branches where three of them is acoustic and remaining of them are optical. For these branches, \(Ti \) atoms contribute at the lower frequencies and \(B \) atoms contribute higher frequencies as can be seen in figure 6.

Additionally, the phonon frequencies at \(\Gamma \) point for \(Ti_2SiB \) have been listed in table 6.

The classification of the phonon modes for this material has been obtained by group theoretical analysis (using the Bilbao Crystallographic Server [45]) and it can be given as: \(A_{1g} + 3A_{2u} + 2B_{1g} + 2B_{2u} + 2E_{2u} + 2E_{2g} + 3E_{1u} + E_{1g} \). Here, \(A_{2u} + E_{1u} \) belongs to acoustic phonon modes and the others belong to varied optic phonon modes. These optic modes are Raman Active Modes (\(\Gamma_R = A_{1g} + E_{1g} + 2E_{2g} \)), Hyper Raman Active Modes (\(\Gamma_{HR} = 2B_{1g} + 2B_{2u} + 2E_{2u} \)) and Infrared Active Modes (\(\Gamma_1 = 2A_{2u} + 2E_{1u} \)). It is known that the acoustic phonon modes have zero value so these

Reference	Young’s modulus	Linear compressibility	Shear modulus	Poisson’s ratio
	\(E _min _E _max \)	\(\beta _min _\beta _max \)	\(G _min _G _max \)	\(\vartheta _min _\vartheta _max \)
\(Ti_2SiB \)	214.11 _261.87	2.26 _2.52	87.62 _119.63	0.07 _0.29
\(Ti_2AlB \)	197.67 _252.56	2.17 _2.68	1.00 _115.10	0.09 _0.30

Figure 5. Young’s modulus (a), linear compressibility (b), Shear modulus (c) and Poisson’s ratio (d) in \(xy \), \(xz \) and \(yz \) planes for \(Ti_2SiB \).

Table 5. The maximum and minimum values of Young’s modulus (\(E \), in GPa), linear compressibility (\(\beta \)), shear modulus (\(G \), in GPa) and Poisson’s ratio (\(\vartheta \)) of \(Ti_2SiB \).
values have not been given in table 6. Phonon frequencies of these compounds at Γ point can provide useful information for future experiments to identify the predicted new phases.

The thermal properties are calculated after phonon calculations. Figure 7 shows the entropy, free energy, enthalpy, and heat capacity as a function of temperature. The entropy increases while the free energy decreases as the temperature goes from 0 to 2000 K and the enthalpy also increases linearly with the temperature after 300 K as can be seen from figure 7. Figure 7 shows the heat capacity as a function of temperature. It is realized from the figure that when $T < 750$ K, the C_v increases very rapidly with the temperature; when $T > 750$ K, the C_v increases slowly with the temperature, and it almost approaches a constant value called as Dulong–Petit limit for this compound.

6. Conclusion

The structural, mechanic, electronic, and dynamic properties of Ti_2SiB have been calculated using VASP. The formation enthalpy of Ti_2SiB indicates that this compound is energetically stable and therefore could be synthesized. The band structure shows that Ti_2SiB has a metallic character. Moreover, the charge density illustrates that Ti_2SiB has dominantly ionic bonding. The calculated elastic constants showed that this
compound is mechanically stable. In the calculated phonon dispersion curves, there are no soft modes at any wave vectors, which confirms the dynamical stability of Ti_2SiB.

Furthermore, the Raman frequencies are obtained in order to offer practical information for the future experiments. The study has been completed with the investigation of thermodynamic properties of Ti_2SiB. Consequently, in this study, Ti_2SiB compound, a hypothetical MAX phase, has been investigated and due to its B atom, it is a possible candidate material for the nuclear applications. This is the first study of Ti_2SiB as best of our knowledge that could provide insights for both theoretical and experimental studies.

Acknowledgments

This work was supported by the Ahi Evran University Research Project Unit under Project No PYOKMY.4001.15.001.

ORCID iDs

Gokhan Surucu https://orcid.org/0000-0002-3910-8575

References

[1] Barsoum M W 2014 The Mn$^+$-1AXn phases and their properties Ceramics Science and Technology (Berlin: Wiley) pp 299–347
[2] Magnuson M and Mattesi M 2017 Chemical bonding and electronic structure in MAX phases as viewed by x-ray spectroscopy and density functional theory Thin Solid Films 621 108–30
[3] Radovic M and Barsoum M W 2013 MAX phases: bridging the gap between metals and ceramics Am. Ceram. Soc. Bull. 92 20–7
[4] Sun Z M 2011 Progress in research and development on MAX phases: a family of layered ternary compounds Int. Mater. Rev. 56 143–66
[5] Barsoum M W and Radovic M 2011 Elastic and mechanical properties of the MAX phases Annu. Rev. Mater. Res. 41 195–227
[6] Lange C, Barsoum M W and Schaaf P 2007 Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition Appl. Surf. Sci. 254 1232–5
[7] Shein I R and Ivanovskii A I 2011 Elastic properties of superconducting MAX phases from first-principles calculations Phys. Status Solidi b 248 228–32
[8] Lee W E, Giorgi E, Harrison R, Maître A and Rapaud O 2014 Nuclear applications for ultra-high temperature ceramics and MAX phases Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (Westerville, OH: The American Ceramic Society) ch 15 pp 391–403
[9] Hu C, Sakka Y, Tanaka H, Nishimura T and Grasso S 2009 Low temperature thermal expansion, high temperature electrical conductivity, and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering J. Alloys Compd. 487 675–81
[10] Bouhemadou A and Khenata R 2008 Structural, electronic and elastic properties of M2SC (M = Ti, Zr, Hf) compounds Phys. Lett. A 372 648–52
[11] He X, Bai Y, Li Y, Zhu C and Li M 2009 Ab initio calculations for properties of MAX phases T_2InC, Zr_2InC, and Hf_2InC Solid State Commun. 149 564–6
[12] Aryan S, Sakidja R, Barsoum M W and Ching W-Y 2014 A genomic approach to the stability, elastic, and electronic properties of the MAX phases Phys. Status Solidi 251 1480–97
[13] Anasori B, Lukatskaya M R and Gogotsi Y 2017 2D metal carbides and nitrides (MXenes) for energy storage Nat. Rev. Mater. 2 16098
[14] Hoffman E N, Vinson D W, Sindelar R L, Tallman D J, Kohse G and Barsoum M W 2012 MAX phase carbides and nitrides: properties for future nuclear power plant in-core applications and neutron transmutation analysis Nucl. Eng. Des. 244 17–24
Khazaeei M, Arai M, Sasaki T, Estili M and Sakka Y 2014 Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AIC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases J. Phys.: Condens. Matter 26 505503

Surucu G 2018 Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: an ab initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds Mater. Chem. Phys. 203 106–17

Surucu G and Eriksen A 2017 An ab initio study on the investigation of structural, electronic, mechanical and lattice dynamical properties of the M2AX type MAX phases Sc2AlB5C0.5, Sc2AlB6.5N0.5 and Sc2AlC0.5N0.5 compounds Mater. Res. Express 4 065620

Gan Y P, Qian X K, He X D, Chen Y X, Yun S N and Zhou Y 2011 Structural, elastic and electronic properties of a new ternary-layered Ti3SiN5 Phys. B 406 3847–50

Li H et al 2015 Phonon and electronic properties of Ti3SiC from first-principles calculations Solid State Commun. 204 37–40

Ghebovili B, Ghebovili M A, Fatmi M, Louail L, Chihi T and Bouhemadou A 2015 First-principles calculations of structural, electronic, elastic and thermal properties of phase M2SiC (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W) Trans. Nonferrous Met. Soc. China (English Ed.) 25 915–25

Palmquist J P et al 2004 Mn + 1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations Phys. Rev. B 70 1–15

Ekland P, Beckers M, Jansson U, Högbom H and Hultman J 2010 The Mn + 1AXnphases: materials science and thin-film processing Thin Solid Films 518 1851–78

Mo Y, Rulis P and Ching W Y 2012 Electronic structure and optical conductivities of 20 MAX-phase compounds Phys. Rev. B 86 1–10

Ching W Y, Mo Y, Ayrad S and Rulis P 2013 Intrinsic mechanical properties of 20 MAX-phase compounds J. Am. Chem. Soc. 96 2292–7

Hug G 2006 Electronic structures of and composition gaps among the ternary carbides Ti2MC Phys. Rev. B 74 1–7

Keast V J, Harris S and Smith D K 2009 Prediction of the stability of the Mn + 1AXn phases from first principles Phys. Rev. B 80 214113

Li H, Wang Z, Sun G, Yu P and Zhang W 2016 First-principles study on the structural, elastic and electronic properties of Ti3SiC under high pressure Solid State Commun. 237–238 24–7

Ghebovili M A, Ghebovili B, Fatmi M and Bouhemadou A 2011 Theoretical prediction of the structural, elastic and thermal properties of the MAX phases X2SiC (X = Ti and Cr) Intermetallics 19 1936–42

Kresse G and Furthmüller J 1996 Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 6 15–50

Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8

Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758–75

Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C and Evans K E 2010 ELAM: a computer program for the analysis and representation of anisotropic elastic properties Comput. Phys. Commun. 181 2102–15

Togo A and Tanaka I 2015 First principles phonon calculation in materials science Scr. Mater. 108 1–5

Henkelman G, Arnaldsson A and Jónsson H 2006 A fast and robust algorithm for Bader decomposition of charge density Comput. Mater. Sci. 36 354–60

Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: Clarendon)

Pan R K, Yao J C, Ji R L, Liu W W and Yin D F 2018 First-principles study on elastic and electronic properties of bialkali alanates M2MAlH6 Int. J. Hydrogen Energy 43 3862–70

Born M and Miura R D 1940 On the stability of crystal lattices. IV Math. Proc. Cambridge Philos. Soc. 36 466

Voigt W 1966 Lehrbuch Der Kristallphysik (Wiesbaden: Vieweg + Teubner Verlag)

Reuss A 1929 Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle., ZAMM 7

Hill R 1952 The elastic behaviour of a crystalline aggregate London, Edinburgh, Wiesbaden: Vieweg

Bannikov V V, Shein I R and Ivanovskii A I 2007 Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3 Phys. Status Solidi 189–91

Pugh S F 1954 XCI. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals London, Edinburg, Dublin, Philos. Mag. J. Sci. 45 823–43

Shein I R and Ivanovskii A I 2008 Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations J. Phys.: Condens. Matter 20 015218

Chen X Q, Niu H, Li D and Li Y 2011 Modeling hardness of polycrystalline materials and bulk metallic glasses Intermetallics 19 1275–81

Kroumova E, Aroyo M J, Perez- Mata J M, Kirov A, Capillas C, Ivanchev S and Wondratschek H 2003 Bilbao crystallographic server: useful databases and tools for phase-transition studies Phase Transit. 76 155–70