Testing coupled dark energy with large scale structure observation

Weiqiang Yanga and Lixin Xua,b

aInstitute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 P.R. China
bState Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 P.R. China

E-mail: d11102004@mail.dlut.edu.cn, lxxu@dlut.edu.cn

Received April 17, 2014
Revised June 18, 2014
Accepted July 16, 2014
Published August 14, 2014

Abstract. The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is \(\dot{Q} = 3H\xi_{x}\rho_{x} \). In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and \(f\sigma_{8}(z) \) data points from redshift-space distortion. The results show the interaction rate in 3\(\sigma \) regions: \(\xi_{x} = 0.00328^{+0.000536+0.000816-0.000736-0.000549-0.000816} \), which means that the recently cosmic observations favor a small interaction rate which is up to the order of \(10^{-2} \), meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the 1\(\sigma \) region.

Keywords: cosmological parameters from LSS, cosmological parameters from CMBR, dark energy theory

ArXiv ePrint: 1401.5177
In the theoretical frame of general relativity, the accelerated expansion of the Universe could be successfully explained by so-called dark energy: an exotic and mysterious component with negative pressure. Recently, the Planck data [1–3], covering a wide range of angular scales up to multipole number $l \sim 2500$ with respect to the measurements of the cosmic microwave background (CMB) anisotropy, tells us that dark energy occupies about 68% of the Universe, dark matter accounts for 28%, and baryonic matter occupies 4%. The simplest dark energy model consists of the cosmological constant and cold dark matter, which is dubbed as the ΛCDM model. Although the standard scenario is in good agreement with the new observational data, it meets with a fundamental puzzle, that is, the coincidence problem [4–6]: why the densities of dark matter and dark energy are of the same order of magnitude, given that they evolve so differently with redshift?

An effective method to alleviate the coincidence problem is to consider the coupling between dark matter and dark energy. The coupling allows the energy and momentum exchanges in the dark components, it would be possible to evoke such coupled mechanism to help mitigate the coincidence problem. This is a primary motivation for coupled dark energy. Since the nature of both dark matter and dark energy remain a mystery, there is as yet no reliable basis in fundamental theory for determining the coupling form. In most cases, the coupled dark energy models are on the basis of phenomenological consideration [7–64]. A kind of popular method to specialize the coupling form is designing it as the linear combinations about the energy densities of the dark components

$$Q = A_c\bar{\rho}_c + A_x\bar{\rho}_x,$$

where \bar{Q} denotes the background energy exchange between dark matter and dark energy, $A_i = \Gamma_i$ or $A_i = 3\xi_i H$ ($i = c, x$), both Γ_i/H_0 and ξ_i are constants which might be called as interaction rate, whose absolute values of ranges are generally $[0, 1]$ in the cosmological constraints [19, 26, 29, 60, 62]. The first type of coupled model is only related to the energy densities of the dark fluids, which is determined by local quantities [7–19]. The second type of coupled model is proportional to the Hubble parameter and the energy densities of the dark components, which is influenced by the expansion rate of the Universe [22–52].
In addition, some other coupling forms have been discussed in refs. [53–65]. According to the phenomenological approach, in a flat Friedman-Robertson-Walker (FRW) universe, the coupling could be introduced into the background conservation equations for dark matter and dark energy

\[
\dot{\bar{\rho}}_c + 3\mathcal{H}\bar{\rho}_c = -a\bar{Q},
\]

\[
\dot{\bar{\rho}}_x + 3\mathcal{H}(1 + w_x)\bar{\rho}_x = a\bar{Q},
\]

where the subscript \(c\) and \(x\) respectively stand for dark matter and dark energy, the prime denotes the derivative with respect to conformal time \(\tau\), \(a\) is the scale factor of the Universe, \(\mathcal{H} = a'/a\) is the conformal Hubble parameter, \(w_x = \bar{p}_x/\bar{\rho}_x\) is the equation of state (EoS) parameter of dark energy. \(\bar{Q} > 0\) presents that the direction of energy transfer is from dark matter to dark energy, which changes the dark matter and dark energy redshift dependence acting as an extra contribution to their effective EoS; \(\bar{Q} < 0\) means the opposite direction of the energy exchange.

The coupling between the dark components could significantly affect not only the expansion history of the Universe, but also the evolutions of the density perturbations, which would change the growth history of cosmic structure, one can see refs. [9, 13, 14, 19, 28, 56]. Moreover, the structure growth of dark matter could distinguish the coupled dark energy model from the uncoupled one even if the two models own the almost identical background evolutions. In other words, the large scale structure information could provide the key to break the possible existing degeneracy at the background level. In the linear regime, peculiar velocity makes the galaxy redshift-space power spectrum anisotropic when the underlying real space linear power spectrum is isotropic. This anisotropy is dubbed as redshift-space distortion (RSD), which allows to measure the amplitude of fluctuations in the velocity field. Based on the RSD test, a model-dependent measurement of \(f\sigma_8(z)\) has been suggested in ref. [66], where \(\sigma_8(z)\) is the overall normalisation of the matter density fluctuations. The RSD measurements have been released from a variety of galaxy surveys in table 1, which include the 2dFGRS [67], the WiggleZ [68], the SDSS LRG [69], the BOSS CMASS [70], and the 6dFGRS [71] surveys. These measurements from large scale structure could be used to carry out the constraints on the cosmological models. Under the inspiration of this idea, in combination with the RSD test and geometric measurements which mainly include CMB, baryon acoustic oscillation (BAO), and type Ia supernovae (SNIa), cosmological constraints on several models have been investigated in refs. [72, 75–79], the results show that information provided by the RSD-derived \(f\sigma_8(z)\) test significantly enhances the precision of the constraints on the cosmological parameters compared to the case where only geometric measurements are adopted. In particular, for the coupled dark energy model, the geometry measurements mildly favor the coupling between the dark components [19, 26, 29, 60, 62], at the same time, the measurement about the growth rate of dark matter perturbations possibly rules out large interaction rate, which was indicated in ref. [19]. Therefore, the \(f\sigma_8(z)\) test would provide a very powerful and robust constraints on the interaction rate. Along this point of view, Yang and Xu combined the geometric tests with the RSD measurement to constrain the dark energy model when the momentum transfer was vanished in the dark matter frame [25], the joint data sets are able to estimate the parameter space to high precision and evidently tighten the constraints. They concluded that the recently cosmic observations favored a small interaction rate between the dark components, at the same time, the measurement of redshift-space distortion could rule out the large interaction rate in 1σ region. In this paper, we also try to add the RSD measurement to constrain the
Table 1. The data points of $f\sigma_8(z)$ measured from RSD with the survey references. The former nine data points at $z \in [0.067, 0.78]$ were summarized in ref. [72]. The data point at $z = 0.8$ was released by the VIPERS in ref. [73]. Then, a lower growth rate from RSD than expected from Planck was also pointed out in ref. [74].

coupled dark energy model for the disappeared momentum transfer in the rest frame of dark energy. It is worthwhile to anticipate that the large scale structure measurement will help to significantly tighten the cosmological constraints and some evidences could rule out large interaction rate.

This paper is organized as follows. In the next section, for the $\xi w\text{CDM}$ model (the coupled $w\text{CDM}$ model, which is composed by cold dark matter and dark energy with a constant EoS), we review the perturbation equations of the dark components in the rest frame of dark energy. Moreover, we consider $Q = 3H\xi_x\bar{\rho}_x$ as the coupling form, which could be successfully free from the large scale instability of the perturbations. In section 3, we show the effects on the CMB temperature power spectra, matter power spectra, and evolution curves of $f\sigma_8(z)$ for varied interaction rate. Then, we conduct a global fitting on the coupled dark energy model by the Markov Chain Monte Carlo (MCMC) approach, and discuss the results of the cosmological constraints, particularly, with respect to the interaction rate. In the final section, our conclusions are presented.

2 The perturbation equations of dark fluids

In a flat universe described by the FRW metric, we parameterize the interaction as follows

$$\nabla_\nu T^{\mu\nu}_{(x)} = Qu^\mu_{(x)},$$

$$\nabla_\nu T^{\mu\nu}_{(c)} = -Q u^\mu_{(c)},$$

(2.1)

(2.2)

where $T^{\mu\nu}_{(c)} = \bar{T}^{\mu\nu}_{(c)} + \delta T^{\mu\nu}_{(c)}$ and $T^{\mu\nu}_{(x)} = \bar{T}^{\mu\nu}_{(x)} + \delta T^{\mu\nu}_{(x)}$ are the energy-momentum tensors for the dark matter and dark energy, respectively. $u^\mu_{(c)}$ is the four-velocity of dark energy, which means that the energy transfer four-vector is parallel to the four-velocity of dark energy [14, 19]. Q is the scalar energy transfer rate between the dark components. Here, we consider that the energy transfer rate is proportional to the Hubble parameter and the energy density of dark energy, that is, $Q = \bar{Q} + \delta Q = 3\xi_x H\bar{\rho}_x (1 + \delta_x)$. This coupling form is free of large scale
instability [17, 19, 23]. Furthermore, in the light of refs. [19, 23], the stability conditions of the perturbations are $\xi_x > 0$ and $(1 + w_x) > 0$. As for the phantom case $w_x < -1$, together with $\xi_x < 0$, which does not suffer from the instability, but we exclude it on account of the unphysical property [80]. For the momentum transfer potential, we assume it as zero in the rest frame of either dark matter or dark energy [14, 17]. This leads to two cases of simple interacting model which include energy transfer four-vector parallel to the four-velocity of dark matter or dark energy [14, 19].

In the synchronous gauge, for the $\xi \omega CDM$ model, the continuity and Euler equations of the dark energy and dark matter read [25]

\begin{equation}
\delta'_x + (1 + w_x) \left(\theta_x + \frac{h'}{2} \right) + 3\mathcal{H}(c_{sx}^2 - w_x)\delta_x + 9\mathcal{H}^2(1 + w_x)(c_{sx}^2 - w_x)\frac{\theta_x}{k^2} = 9\mathcal{H}^2(c_{sx}^2 - w_x)\xi_x \frac{\theta_x}{k^2},
\end{equation}

\begin{equation}
\delta'_c + \theta_c + \frac{h'}{2} = 3\mathcal{H}\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c}(\delta_c - \delta_x),
\end{equation}

\begin{equation}
\theta'_x + \mathcal{H}(1 - 3c_{sx}^2)\theta_x - \frac{c_{sx}^2}{1 + w_x}k^2\delta_x = 3\mathcal{H}\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c}[b(\theta_c - \theta_x) - c_{sx}^2\theta_x],
\end{equation}

\begin{equation}
\theta'_c + 3\mathcal{H}\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c}(1 - b)(\theta_c - \theta_x),
\end{equation}

where c_{sx}^2 is the physical sound speed of dark energy in the rest frame, its definition is $c_{sx}^2 = \delta p_x/\delta \rho_x|_{\text{restframe}}$ [17, 81–83]. In order to avoid the unphysical instability, c_{sx}^2 should be taken as a non-negative parameter [17]. In the above equations, $b = 1$ corresponds to the coupled model with $Q^\mu \parallel u^\mu_{(c)}$ [25]; $b = 0$ corresponds to the coupled model with $Q^\mu \parallel u^\mu_{(x)}$ in this paper.

3 Cosmological implications and constraint results

3.1 Theoretical predictions of CMB temperature, matter power spectra, and $f \sigma_8(z)$ evolution

When the coupling case $Q^\mu \parallel u^\mu_{(x)}$ ($b = 0$) happened, in the modified CAMB code, we fix some input parameters and only vary the interaction rate ξ_x so that we could gain an insight into the physical implications of the coupling between the dark components. The two panels of figure 1 show the CMB temperature and matter power spectra for four values of ξ_x with all other cosmological parameters set to mean values in the fourth column of table 4. Positive ξ_x presents that the direction of energy transfer is from dark matter to dark energy, when the fractional dimensionless density parameter Ω_c is fixed today, the energy density of dark matter would have been correspondingly greater in the past than without the uncoupled model. It means that a larger proportion of dark matter and a more significant effect from photon driving before decoupling, which could make the amplitude of the CMB temperature power spectra decreased and the position of the peaks shifted. Moreover, the deviation from the standard evolution law a^{-3} of dark matter affects the CMB temperature power spectra at the low l part via the integrated Sachs-Wolfe (ISW) effect due to the evolution of gravitational potential. The present matter power spectra represent a relative increase for varied interaction rate ξ_x, since in the past the more energy density of dark matter naturally leads to more structure formation and an increase in the amplitude of the matter power.
spectra. We also show the CMB temperature and matter power spectra of the coupled model with $Q^\mu \parallel u^\mu (b = 1)$ in figure 1, and do not find significant differences between the two coupling cases. The CMB temperature power spectra at the low-l part and matter power spectra at very large scale have slight differences.

3.2 Modified growth of structure

We consider dark energy does not cluster on sub-Hubble scales [14, 19], we could ignore the term about δc in eq. (2.4) and obtain the second-order differential equation of density perturbation about dark matter

$$
\ddot{\delta}_c + \left(1 - 6\xi_x \frac{\dot{\rho}_c}{\rho_c}\right)H\dot{\delta}_c = 4\pi G a^2 \rho_0 \delta_b + 4\pi G a^2 \dot{\rho}_c \delta_c \left[1 + 2\xi_x \frac{\rho_{\text{tot}}}{\rho_c} \frac{\dot{\rho}_c}{\rho_c} \left(\frac{H'}{H^2} + 1 - 3w_x + 3\xi_x\right) + 3\xi_x \frac{\dot{\rho}_c}{\rho_c} \theta_x, \right]
$$

(3.1)

where $H^2 = 8\pi G a^2 \rho_{\text{tot}}/3$. During matter domination, the velocity perturbations of dark energy θ_x is small enough to be negligible. When $\xi_x = 0$, the above equation could be turned into the standard evolution of matter perturbations $\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G(\delta \rho + 3\delta p) = 0$ [84].

The evolutions of δ_c for the coupled model also bring about the deviations from the standard model from another two aspect. The first one is the modified Hubble friction term H_{eff}; the second one is the modified source term, which is from the modified effective gravitational constant G_{eff}. We present the evolutions of H_{eff}/H and G_{eff}/G in figure 2. When the interaction rate is large, from the early times to the late times, the evolution of H_{eff}/H shows exponential decreasement, meanwhile, the evolution of G_{eff}/G takes on exponential increasement. Furthermore, we find the obvious differences from H_{eff}/H and G_{eff}/G between the two coupled models with $b = 0$ and $b = 1$, particularly, when the interaction rate obviously
deviates from zero.

\[
\frac{H_{\text{eff}}}{H} = 1 - 6\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c},
\]

\[
\frac{G_{\text{eff}}}{G} = 1 + 2\xi_x \frac{\bar{\rho}_{\text{tot}}}{\bar{\rho}_c} \frac{\bar{\rho}_x}{\bar{\rho}_c} \left(\frac{H'}{H^2} + 1 - 3w_x + 3\xi_x \right).
\]

As usual, we define the growth rate as \(f_m = d\ln \delta_m / d\ln a \). In fact, this is because that the Euler equation is unchanged, the dark matter could follow geodesics. If the Euler equation is modified, the dark matter no longer follows geodesics in general [14]. In this case, we choose a gauge invariant variable \(\Delta_m = \delta_m + 3H\theta_m / k^2 \), and define the growth rate according to \(f_m = d\ln \Delta_m / d\ln a \) [85]. Moreover, we should pay attention to \(\Delta_c \), which is related to both the scale factor \(a \) and the wavenumber \(k \). This alerts us to notice the scale-dependence of the RSD measurement, though refs. [25, 70, 72] have claimed that the linear growth is scale-independent in the theoretical frame of general relativity. From the relation \(\Delta_m = (\bar{\rho}_c / \Delta_c + \bar{\rho}_b \Delta_b) / (\bar{\rho}_c + \bar{\rho}_b) \), the matter density perturbations could be written as

\[
\Delta_m = \frac{\bar{\rho}_c \delta_c + \bar{\rho}_b \delta_b}{\bar{\rho}_c + \bar{\rho}_b} + \frac{3}{k^2} \frac{H\theta_c}{\bar{\rho}_c} \frac{\bar{\rho}_c}{\bar{\rho}_c + \bar{\rho}_b}.
\]

In order to clearly show the difference between the two coupling cases \(Q^\mu \parallel u^\mu_{(z)} \) and \(Q^\mu \parallel u^\mu_{(c)} \), we also present the corresponding matter density perturbations for \(b = 1 \),

\[
\delta_m|_{(b=1)} = \frac{\bar{\rho}_c \delta_c + \bar{\rho}_b \delta_b}{\bar{\rho}_c + \bar{\rho}_b}.
\]

Moreover, the growth rate reads

\[
f_m = \frac{d\ln \Delta_m}{d\ln a} = \frac{1}{\bar{H}} \frac{\Delta'_m}{\Delta_m}.
\]
where

\[\Delta_m' = \frac{3H[\xi_x \bar{\rho}_x + \bar{\rho}_c + \bar{\rho}_b] \delta_m - (\xi_x \bar{\rho}_x \delta_c + \bar{\rho}_c \delta_c + \bar{\rho}_b \delta_b)] + \bar{\rho}_c \delta_c' + \bar{\rho}_b \delta_b'}{\bar{\rho}_c + \bar{\rho}_b} + \frac{3}{k^2} \bar{\theta}_c \left[H' - H^2 - \frac{3H^2 \xi_x \bar{\rho}_x \bar{\rho}_b}{(\bar{\rho}_c + \bar{\rho}_b) \bar{\rho}_c} \right]. \]

The growth rate is different from the one of \(Q^μ \parallel u^μ_{(c)} \),

\[
\begin{align*}
\frac{d \ln \delta_m}{d \ln a} &= \frac{1}{H} \frac{\delta'_m}{\delta_m}, \\
\frac{\delta'_m}{\delta_m} &= \frac{3H[\xi_x \bar{\rho}_x + \bar{\rho}_c + \bar{\rho}_b] \delta_m - (\xi_x \bar{\rho}_x \delta_c + \bar{\rho}_c \delta_c + \bar{\rho}_b \delta_b)] + \bar{\rho}_c \delta_c' + \bar{\rho}_b \delta_b'.
\end{align*}
\]

From the expressions of \(\Delta_m \) and \(\Delta'_m \), we know the growth rate is scale-dependent, which is different from the coupled model with \(Q^μ \parallel u^μ_{(c)} \) in ref. [25]. Particularly, from the second terms of \(\Delta_m \) and \(\Delta'_m \), it is easy to see that the growth history would be significantly affected, when the wavenumber \(k \) is small enough. According to \(f_m = \Delta'_m / (H \Delta_m) \), one could modify the CAMB code [86, 87], and put the wavenumber \(k \), redshift \(z \), and growth rate \(f_m \) into a three-dimensional table. To clearly show the modified growth history, we present the three-dimensional plots of \(k, z, f_m \) in the left panel of figure 3. Obviously, the growth rate is scale-dependent when \(k \) is small enough. Fortunately, the analysis of redshift-space distortion is valid in the range of the wavenumber \(k \in (0.01, 0.20)[h \text{Mpc}^{-1}] \). In this range, we also show the three-dimensional plots in the right panel of figure 3, the growth rate is almost scale-independent. Therefore, we could safely obtain the model parameter space with the \(fσ_y(z) \) data points. In order to strongly confirming this opinion from the cosmological constraint, we would constrain the coupled model for several different scales in the next section.

Modified evolution of the matter perturbation \(\Delta_m \) determines that the growth history would deviate from the standard case in the theoretical frame of general relativity. The evolutions of growth rate are shown in figure 4. From this figure, we clearly see that the interaction rate \(\xi_x \) could significantly affect the growth history of the Universe, the growth rate presents large differences at late times. It means that the growth history of dark matter is significantly sensitive to the varied interaction rate. Moreover, in figure 4, we find the obvious differences from the growth rate between the two coupling cases, particularly, when the interaction rate obviously deviates from zero. Why are they different? We should look for the answer from the Euler equation (2.6), we follow the discussion of refs. [14, 19] and analyze the velocity bias for the coupled model with \(b = 1 \).

Here, we recall the Euler equation of the baryons

\[\theta'_b + H\theta_b = 0. \]

From the above equation and Euler equation of dark matter (2.6), it is easy to see that the Euler equation of dark matter for the coupling case \(b = 1 \) is the same as the uncoupled model, that is, there is no dark matter-baryon velocity difference. However, for the coupled model with \(b = 0 \), the right-hand side of the Euler equation (2.6) is nonzero, then dark matter no longer follows the geodesics and breaks the weak equivalence principle [14]. In the coupled
dark energy model with $b = 0$, the Euler equations of dark matter and baryons imply

$$(\theta_c - \theta_b)' + \left(1 - 3\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c}\right) \mathcal{H}(\theta_c - \theta_b) = -3\mathcal{H}\xi_x \frac{\bar{\rho}_x}{\bar{\rho}_c}(\theta_x - \theta_b). \quad (3.9)$$

Therefore, there would be the velocity bias between dark matter and baryons in the coupled model with $Q^{\mu} \parallel u_{(s)}^\mu$. Modified Euler equation brings about the different structure formation histories for the two coupled models. In the coupled model with $b = 0$, the dark matter receives a change in the momentum from the dark energy perturbations, as expressed by its modified Euler equation (2.6), leading to more structure growth at late times relative to the coupled model with $b = 1$ (we could see it from figure 4). At the same time, dark energy would be weaker for the coupled model with $b = 0$ at late times, different growth rates lead to correspondingly dissimilar ISW signatures. Therefore, when the interaction rate of the two coupled models is fixed on the same value, such as 0.2 or 0.5, at the low-l region of present CMB temperature power spectra in figure 1, the ISW signal is slightly lower relative to the coupled model with $b = 1$.

Since the growth history of the coupled dark energy model is obviously sensitive to the interaction rate, it is worthwhile to anticipate that the large scale structure measurement will help to significantly tighten the cosmological constraints and some evidences could rule out large interaction rate. In order to adopt the RSD measurement, we add a new module CosmoMC package [88, 89] to import f_m from CAMB which could be used to calculate the theoretical values of $f\sigma_8(z)$ at ten different redshifts. For constraining the other cosmological models with the RSD analysis, please see refs. [25, 75–79].

Furthermore, in figure 5, we also plot the evolutions of $f\sigma_8(z)$ when the interaction rate is varied. Positive interaction rate denotes a transfer of energy from dark matter to dark energy, with fixed Ω_c today, the dark matter energy density would be greater in the past than the uncoupled model. A larger proportion of dark matter naturally leads to more structure growth (as is shown in figure 4) and the increase of present matter power spectra (as is shown in the right panel of figure 1), which are correspondingly the larger growth rate and the higher σ_8 (σ_8 could be obtained by the integration with regard to the matter power spectra [66, 90]). Therefore, the values of $f\sigma_8(z)$ are enhanced than the uncoupled
model, and the amplitude of enhancement becomes obvious with raising the values of ξ_x. Besides, from eqs. (3.1), (3.2), and (3.3), we also could know why the changed amplitude of $f\sigma_8(z)$ becomes large with reducing the redshift. For fixed ξ_x, at the higher redshift, the component of dark energy is subdominant, the modified Hubble friction term and source term are trivial, which would slightly affect the evolutions of growth rate and σ_8. Nonetheless, at the lower redshift, the dark energy gradually dominate the late Universe, the modified H_{eff} and G_{eff} would significantly increase the cosmic structure growth, which could bring about more obvious enhancement on the evolutions of $f\sigma_8(z)$. Besides, the evolutions of $f\sigma_8(z)$ are slightly different from the coupling case $Q^u \parallel u^\mu_{(c)} (b = 1)$. The reason is that the two coupled models undergo different growth histories, dissimilar growth rates lead to different evolutions of $f\sigma_8(z)$. At late times, that is, at the lower redshift, with increasing the interaction rate, the difference of the $f\sigma_8(z)$ evolutions between the two models become relatively obvious. Furthermore, it is easy to see that the case of $\xi_x = 0.00328$ (corresponds the IwCDM model with mean value) and that of $\xi_x = 0$ (corresponds to the uncoupled wCDM model) are differentiable from the evolution curves of $f\sigma_8(z)$, which is different from the evolutions of CMB temperature and matter power spectra. It means that, to some extent, the RSD test could break the possible degeneracy between the IwCDM model and the uncoupled wCDM model. Besides, in figures 4 and 5, from the comparison between the two coupled models with $b = 0$ and $b = 1$, it turns out that there actually are differences on the modified growth history between the two models, however, it is also clear that it will be vary hard to distinguish them.

3.3 Data sets and constraint results

To constrain the interaction rate from the currently available cosmic observations, we adopt the MCMC method to perform the likelihood analysis under the stability conditions $\xi_x > 0$.

Figure 4. The evolutions for the growth rate of the matter for $k = 0.065[h{\text{Mpc}}^{-1}]$. The black solid, red thick dashed, green dotted-dashed, and blue dotted lines are for $\xi_x = 0$, 0.00328, 0.2, and 0.5, respectively; $\xi_x = 0$ corresponds to the case of standard model; the other relevant parameters are fixed with the mean values as shown in the fourth column of table 4. The gray dashed, dotted-dashed, and dotted lines are the corresponding ones for the coupled model with $Q^u \parallel u^\mu_{(c)} (b = 1)$.
Figure 5. The fitting evolutionary curves of $f \sigma_8(z)$ about the redshift z for varied interaction rate ξ_x. The black solid, red thick dashed, green dotted-dashed, and blue dotted lines are for $\xi_x = 0$, 0.00328, 0.01, and 0.02, respectively; the brown error bars denote the $f \sigma_8(z)$ observations at different redshifts, which are listed in table 1; the other relevant parameters are fixed with the mean values as shown in the fourth column of table 4. The gray dashed, dotted-dashed, and dotted lines are the corresponding ones for the coupled model with $Q^\mu \parallel u^\mu_{(c)}$ ($b = 1$) and $(1 + w_x) > 0$. We do this by making use of the publicly available CosmoMC package. The code is modified in the light of the perturbation evolutions of the ξwCDM model for the case of $b = 0$. We consider the following eight-dimensional parameter space for the coupled model

$$P \equiv \{ \Omega_b h^2, \Omega_c h^2, \Theta_S, \tau, w_x, \xi_x, n_s, \log[10^{10} A_S] \},$$

(3.10)

where $\Omega_b h^2$ and $\Omega_c h^2$, respectively, stand for the density of the baryons and dark matter, $\Theta_S = 100 \theta_{MC}$ refers to the ratio of sound horizon and angular diameter distance, τ indicates the optical depth, w_x is the EoS of dark energy, ξ_x is the interaction rate between the dark components, n_s is the scalar spectral index, and A_s represents the amplitude of the initial power spectrum. The priors to the basic model parameters are listed in the second column of table 3. Here, the pivot scale of the initial scalar power spectrum $k_{s0} = 0.05 \text{Mpc}^{-1}$ is used. Then, based on the MCMC method, we perform a global fitting for the coupled model with $Q^\mu \parallel u^\mu_{(c)}$ when the model parameters satisfy $\xi_x > 0$ and $(1 + w_x) > 0$. Here, we choose $c_{sx}^2 = 1$ which could avoid the unphysical sound speed [15, 17, 19].

For our numerical calculations, the total likelihood χ^2 can be constructed as

$$\chi^2 = \chi^2_{\text{CMB}} + \chi^2_{\text{BAO}} + \chi^2_{\text{SNIa}} + \chi^2_{\text{RSD}},$$

(3.11)

where the used data sets for our MCMC likelihood analysis are listed in table 2. Some detailed descriptions about the observed data sets have been shown in appendix C of ref. [25].
Table 2. The used data sets for our MCMC likelihood analysis on the coupled dark energy model, where l is the multipole number of power spectra, and WMAP9 is the abbreviation of nine-year Wilkinson Microwave Anisotropy Probe.

Parameters	Prior	mean ($k = 0.015$)	best-fit	mean ($k = 0.065$)	best-fit	mean ($k = 0.165$)	best-fit
$\Omega_b h^2$	$[0.005,0.1]$	0.0180$^{+0.0004}_{-0.0004}$	0.0179	0.0085$^{+0.0003}_{-0.0003}$	0.0084	0.0045$^{+0.0002}_{-0.0002}$	0.0044
$\Omega_c h^2$	$[0.01,0.99]$	0.114$^{+0.004}_{-0.0035}$	0.113	0.0212$^{+0.0011}_{-0.0011}$	0.0211	0.0042$^{+0.0002}_{-0.0002}$	0.0041
$100\theta_{MC}$	$[0.5,10]$	1.014$^{+0.005}_{-0.0056}$	1.0144	1.0411$^{+0.0057}_{-0.0052}$	1.0412	1.0416$^{+0.0058}_{-0.0051}$	1.0417
τ	$[0.01,0.8]$	0.0875$^{+0.013}_{-0.012}$	0.0964	0.0887$^{+0.012}_{-0.011}$	0.0830	0.0888$^{+0.0119}_{-0.0117}$	0.0890
ξ	$[0.1]$	0.0035$^{+0.000026}_{-0.000016}$	0.000149	0.00328$^{+0.000076}_{-0.000054}$	0.000142	0.00335$^{+0.000073}_{-0.000057}$	0.000923
w_x	$[-1.0]$	$-0.971^{+0.007}_{-0.008}$	-0.971	$-0.964^{+0.004}_{-0.004}$	-0.994	$-0.970^{+0.0054}_{-0.0052}$	-0.998
n_s	$[0.5,1.5]$	$0.97^{+0.0055}_{-0.0042}$	0.979	$0.977^{+0.0053}_{-0.0052}$	0.978	$0.977^{+0.0054}_{-0.0052}$	0.979
$\ln[10^{10}A_s]$	$[2.4,4]$	$3.082^{+0.225}_{-0.229}$	3.106	$3.085^{+0.230}_{-0.228}$	3.079	$3.085^{+0.230}_{-0.228}$	3.087
Ω_b	–	$0.706^{+0.0097}_{-0.0079}$	0.702	$0.706^{+0.0081}_{-0.0080}$	0.710	$0.706^{+0.0083}_{-0.0082}$	0.712
Ω_c	–	$0.291^{+0.0096}_{-0.0026}$	0.298	$0.291^{+0.0131}_{-0.0120}$	0.290	$0.294^{+0.0126}_{-0.0121}$	0.288
σ_8	–	$0.805^{+0.0122}_{-0.0124}$	0.815	$0.805^{+0.0130}_{-0.0122}$	0.803	$0.806^{+0.0130}_{-0.0122}$	0.810
α_{ν}	–	$10.689^{+0.015}_{-0.0132}$	11.485	$10.783^{+0.016}_{-0.0142}$	10.333	$10.804^{+0.017}_{-0.0152}$	10.805
H_0	–	$68.317^{+0.226}_{-0.227}$	68.191	$68.297^{+0.224}_{-0.225}$	68.889	$68.281^{+0.225}_{-0.225}$	69.246
$\alpha_{\text{Age/Gyr}}$	–	$13.789^{+0.030}_{-0.031}$	13.791	$13.790^{+0.030}_{-0.031}$	13.784	$13.791^{+0.030}_{-0.031}$	13.755

Table 3. The mean values with $1, 2, \sigma$ errors and the best-fit values of the parameters on the ξcCDM model for several different scales ($k = 0.015, 0.065$, and $0.165[h\text{Mpc}^{-1}]$), where CMB from Planck + WMAP9, BAO, SNIa, and RSD data sets have been used.

For several different scales, we have constraint the coupled model with CMB, BAO, SN, and RSD. The mean values with $1, 2, \sigma$ errors and best-fit values of the parameters were presented in table 3 after running eight chains in parallel on the computer. In figures 6, we also show the one-dimensional (1D) marginalized distributions of the parameters (Ω_m, w_x, ξ, λ) and two-dimensional (2D) contours with 68% C.L., 95% C.L., and 99.7% C.L. From table 3 and figure 6, it is easy to see that the model parameter space is almost the same when the wavenumber $k \in (0.01, 0.20)[h\text{Mpc}^{-1}]$, particularly, the mean value of interaction rate is in the same order. This conclusion is in line with the analysis of the growth history in the right panel of figure 3. It means that, we could safely obtain the model parameter space for the coupled model $Q^\nu \parallel u^\nu_{(x)}$ from the redshift-space distortion measurement.
Figure 6. For several different scales, the 1D marginalized distributions on the parameters (Ω_m, w_x, ξ_x) and 2D contours between each other with 68% C.L., 95% C.L., and 99.7% C.L., where CMB from Planck + WMAP9, BAO, SNIa, and RSD data sets have been used. The green dotted, red solid, and blue dashed lines are for $k = 0.015$, 0.065, and 0.165\,h\,\text{Mpc}^{-1}$, respectively.

Then, choosing one of the constraint results ($k = 0.065\,h\,\text{Mpc}^{-1}$), we concretely show the mean values with 1, 2, 3\,σ errors and best-fit values of the parameters in table 4, and the one-dimensional (1D) marginalized distributions of the parameters and two-dimensional (2D) contours with 68% C.L., 95% C.L., and 99.7% C.L. in figures 7. In order to compare with the constraint without RSD data, we also constrain the ξCDM model without the $f\sigma_8(z)$ data set, the results are shown in the second and third columns of table 4. Obviously, the results with RSD test give a tighter constraint. Moreover, the interaction rate is more sensitive than the other parameters, which agrees with the discussion about modified growth of structure.

Furthermore, based on the same observed data sets (CMB from Planck + WMAP9, BAO, SN and RSD), the ξCDM model has another two parameters w_x and ξ_x which give rise to the difference of the minimum χ^2 with the ΛCDM model, $\Delta\chi^2_{\text{min}} = 2.593$. Besides, we compare our constraint results of $Q^\mu \parallel u^\mu(x)$ with ones of $Q^\mu \parallel u^\mu(c)$ in ref. [25]. We obtain the compatible constraint results and the same conclusion with ref. [25]. From the fourth column of table 4, we find the recently cosmic observations indeed favor small interaction rate $\xi_x = 0.00328^{+0.000736}_{-0.000328} + 0.00549 + 0.00328$ after the RSD measurement is added. Moreover, in 1\,σ region, the $f\sigma_8(z)$ test could rule out large interaction rate.

4 Summary

Based on the large scale stability of the perturbations, we considered the coupling form $\bar{Q} = 3H\xi_x\bar{\rho}_x$ as our research emphasis. For the dark energy model, we took dark energy
as a fluid with a constant equation of state parameter w_x. The coupling between the dark components gave rise to the uncoupled model. In the evolution of background equations, the effective EoS of dark energy was changed. As for the cosmological perturbations, we derived the evolution equations of the density and velocity perturbations for the ξwCDM model by combining the background energy transfer with vanishing momentum transfer potential in the rest frame of dark energy. By changing the interaction rate ξ_x and fixing the other parameters, we have gained the insight into the physical implications of the coupling between the dark components, which mainly included the evolutions of CMB temperature power spectra, matter power spectra, and $f\sigma_8(z)$. From the comparison between the two coupled models with $b = 0$ and $b = 1$, it turned out that there actually were differences on the modified growth history between the two models, however, it was also clear that it would be very hard even in the future to distinguish them. Moreover, the figures told us that $f\sigma_8(z)$ evolution could significantly break the degeneracy between the ξwCDM model and ωCDM model, but the power spectra could not make it. Both the theoretical analysis on the modified growth and the constraint results for several different scales told us that we could safely obtain the model parameter space with the redshift-space distortion measurement. Then, using CMB from Planck + WMAP9, BAO, SNIa, and the RSD measurement, we conducted a full MCMC likelihood analysis for the coupled model. The joint data sets are able to estimate the parameter space to high precision and evidently tighten the constraints as the case without $f\sigma_8(z)$ test. The results showed the interaction rate in 3σ regions: $\xi_x = 0.00328^{+0.000736}_{-0.00328} + 0.00549 + 0.00816$. It meant that the currently available cosmic observations favored a small interaction rate which is up to the order of 10^{-2}, at the same time, the $f\sigma_8(z)$ test could rule out the large interaction rate in 1σ region.

In the future work, when the expansion rate of the Universe is perturbed [24], we try to constrain the coupled model by combining the RSD measurement with the geometry test. It is worthwhile to anticipate that the large scale structure measurement will help to significantly tighten the constraints for some other cosmological models and give the constructive suggestions for theoretical research.

Table 4. The mean values with 1, 2, 3σ errors and the best-fit values of the parameters for the ξwCDM model ($k = 0.065/[hMpc^{-1}]$) and the ΛCDM model, where CMB from Planck + WMAP9, BAO, SNIa, with or without RSD data sets have been used.
Figure 7. The 1D marginalized distributions on individual parameters and 2D contours between each other with 68% C.L., 95% C.L., and 99.7%, where CMB from Planck + WMAP9, BAO, SNIa, and RSD data sets have been used.

Acknowledgments

L. Xu’s work is supported in part by NSFC under the Grants No. 11275035 and “the Fundamental Research Funds for the Central Universities” under the Grants No. DUT13LK01.

References

[1] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results, arXiv:1303.5062 [nSPIRE].

[2] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XV. CMB power spectra and likelihood, arXiv:1303.5075 [nSPIRE].

[3] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [nSPIRE].

[4] I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 [astro-ph/9807002] [nSPIRE].

[5] L.P. Chimento, A.S. Jakubi, D. Pavon and W. Zimdahl, Interacting quintessence solution to the coincidence problem, Phys. Rev. D 67 (2003) 083513 [astro-ph/0303145] [nSPIRE].
[6] G. Huey and B.D. Wandelt, *Interacting quintessence. The Coincidence problem and cosmic acceleration*, *Phys. Rev. D* **74** (2006) 023519 [astro-ph/0407196] [inSPIRE].

[7] W.J. Potter and S. Chongchitnan, *A Gauge-invariant approach to interactions in the dark sector*, *JCAP* **09** (2011) 005 [arXiv:1108.4414] [inSPIRE].

[8] A. Aviles and J.L. Cervantes-Cota, *Dark degeneracy and interacting cosmic components*, *Phys. Rev. D* **84** (2011) 083515 [Erratum ibid. D 84 (2011) 089905] [arXiv:1108.2457] [inSPIRE].

[9] G. Caldera-Cabral, R. Maartens and B.M. Schaefer, *The Growth of Structure in Interacting Dark Energy Models*, *JCAP* **07** (2009) 027 [arXiv:0905.0492] [inSPIRE].

[10] G. Caldera-Cabral, R. Maartens and I.A. Urena-Lopez, *Dynamics of interacting dark energy*, *Phys. Rev. D* **79** (2009) 063518 [arXiv:0812.1827] [inSPIRE].

[11] C.G. Boehmer, G. Caldera-Cabral, N. Chan, R. Lazkoz and R. Maartens, *Quintessence with quadratic coupling to dark matter*, *Phys. Rev. D* **81** (2010) 083003 [arXiv:0911.3089] [inSPIRE].

[12] C.G. Boehmer, G. Caldera-Cabral, R. Lazkoz and R. Maartens, *Dynamics of dark energy with a coupling to dark matter*, *Phys. Rev. D* **78** (2008) 023505 [arXiv:0801.1565] [inSPIRE].

[13] Y.-S. Song, L. Hollenstein, G. Caldera-Cabral and K. Koyama, *Theoretical Priors On Modified Growth Parametrisations*, *JCAP* **04** (2010) 018 [arXiv:1001.0969] [inSPIRE].

[14] K. Koyama, R. Maartens and Y.-S. Song, *Velocities as a probe of dark sector interactions*, *JCAP* **10** (2009) 017 [arXiv:0907.2126] [inSPIRE].

[15] E. Majerotto, J. Valiviita and R. Maartens, *Adiabatic initial conditions for perturbations in interacting dark energy models*, *Mon. Not. Roy. Astron. Soc.* **402** (2010) 2344 [arXiv:0907.4981] [inSPIRE].

[16] J. Valiviita, R. Maartens and E. Majerotto, *Observational constraints on an interacting dark energy model*, *Mon. Not. Roy. Astron. Soc.* **402** (2010) 2355 [arXiv:0907.4987] [inSPIRE].

[17] J. Valiviita, E. Majerotto and R. Maartens, *Instability in interacting dark energy and dark matter fluids*, *JCAP* **07** (2008) 020 [arXiv:0804.0232] [inSPIRE].

[18] B.M. Jackson, A. Taylor and A. Berera, *On the large-scale instability in interacting dark energy and dark matter fluids*, *Phys. Rev. D* **79** (2009) 043526 [arXiv:0901.3272] [inSPIRE].

[19] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens and J. Valiviita, *Interacting Dark Energy: Constraints and degeneracies*, *Phys. Rev. D* **85** (2012) 043007 [arXiv:1109.6234] [inSPIRE].

[20] R. Bean, E.E. Flanagan and M. Trodden, *Adiabatic instability in coupled dark energy-dark matter models*, *Phys. Rev. D* **78** (2008) 023009 [arXiv:0709.1128] [inSPIRE].

[21] R. Bean, E.E. Flanagan and M. Trodden, *The Adiabatic Instability on Cosmology’s Dark Side*, *New J. Phys.* **10** (2008) 033006 [arXiv:0709.1124] [inSPIRE].

[22] S. Chongchitnan, *Cosmological Perturbations in Models of Coupled Dark Energy*, *Phys. Rev. D* **79** (2009) 043522 [arXiv:0810.5411] [inSPIRE].

[23] M.B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena and S. Rigolin, *Dark coupling*, *JCAP* **07** (2009) 034 [Erratum ibid. 1005 (2010) E01] [arXiv:0901.1611] [inSPIRE].

[24] M.B. Gavela, L. Lopez Honorez, O. Mena and S. Rigolin, *Dark Coupling and Gauge Invariance*, *JCAP* **11** (2010) 044 [arXiv:1005.0295] [inSPIRE].

[25] W. Yang and L. Xu, *Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data*, *Phys. Rev. D* **89** (2014) 083517 [arXiv:1401.1286] [inSPIRE].

[26] V. Salvatelli, A. Marchini, L. Lopez-Honorez and O. Mena, *New constraints on Coupled Dark Energy from the Planck satellite experiment*, *Phys. Rev. D* **88** (2013) 023531 [arXiv:1304.7119] [inSPIRE].
[27] M. Quartin, M.O. Calvao, S.E. Joras, R.R.R. Reis and I. Waga, Dark Interactions and Cosmological Fine-Tuning, *JCAP* 05 (2008) 007 [arXiv:0802.0546] [INSPIRE].

[28] L.L. Honorez, B.A. Reid, O. Mena, L. Verde and R. Jimenez, Coupled dark matter-dark energy in light of near Universe observations, *JCAP* 09 (2010) 029 [arXiv:1006.0877] [INSPIRE].

[29] A.A. Costa, X.-D. Xu, B. Wang, E.G.M. Ferreira and E. Abdalla, Testing the Interaction between Dark Energy and Dark Matter with Planck Data, *Phys. Rev.* D 89 (2014) 103531 [arXiv:1311.7380] [INSPIRE].

[30] F. De Bernardis, M. Martinelli, A. Melchiorri, O. Mena and A. Cooray, Future weak lensing constraints in a dark coupled universe, *Phys. Rev.* D 84 (2011) 023504 [arXiv:1104.0652] [INSPIRE].

[31] J.-H. He, B. Wang and E. Abdalla, Testing the interaction between dark energy and dark matter via latest observations, *Phys. Rev.* D 83 (2011) 063515 [arXiv:1012.3904] [INSPIRE].

[32] J.-H. He, B. Wang, E. Abdalla and D. Pavon, The Imprint of the interaction between dark sectors in galaxy clusters, *JCAP* 12 (2010) 022 [arXiv:1001.0079] [INSPIRE].

[33] J.-H. He and B. Wang, Effects of the interaction between dark energy and dark matter on cosmological parameters, *JCAP* 06 (2008) 010 [arXiv:0801.4233] [INSPIRE].

[34] E. Abdalla, L.R. Abramo and J.C.C. de Souza, Signature of the interaction between dark energy and dark matter in observations, *Phys. Rev.* D 82 (2010) 023508 [arXiv:0910.5236] [INSPIRE].

[35] H.M. Sadjadi, $w_d = -1$ in interacting quintessence model, *Eur. Phys. J.* C 66 (2010) 445 [arXiv:0904.1349] [INSPIRE].

[36] G. Olivares, F. Atrio-Barandela and D. Pavon, Dynamics of Interacting Quintessence Models: Observational Constraints, *Phys. Rev.* D 77 (2008) 063513 [arXiv:0706.3860] [INSPIRE].

[37] G. Olivares, F. Atrio-Barandela and D. Pavon, Matter density perturbations in interacting quintessence models, *Phys. Rev.* D 74 (2006) 043521 [astro-ph/0607604] [INSPIRE].

[38] G. Olivares, F. Atrio-Barandela and D. Pavon, Observational constraints on interacting quintessence models, *Phys. Rev.* D 71 (2005) 063523 [astro-ph/0503242] [INSPIRE].

[39] C.-Y. Sun and R.-H. Yue, Stable large-scale perturbations in interacting dark-energy model, *JCAP* 08 (2013) 018 [arXiv:1303.0684] [INSPIRE].

[40] H.M. Sadjadi and M. Alimohammadi, Cosmological coincidence problem in interactive dark energy models, *Phys. Rev.* D 74 (2006) 103007 [gr-qc/0610080] [INSPIRE].

[41] J. Sadeghi, M. Khurshudyan, A. Movsisyan and H. Farahani, Interacting Ghost Dark Energy Models with Variable G and Λ, *JCAP* 12 (2013) 031 [arXiv:1308.3450] [INSPIRE].

[42] M.-J. Zhang and W.-B. Liu, Observational constraint on the interacting dark energy models including the Sandage-Loeb test, arXiv:1312.0224 [INSPIRE].

[43] T. Koivisto, Growth of perturbations in dark matter coupled with quintessence, *Phys. Rev.* D 72 (2005) 043516 [astro-ph/0504571] [INSPIRE].

[44] F. Simpson, B.M. Jackson and J.A. Peacock, Unmodified Gravity, *Mon. Not. Roy. Astron. Soc.* 411 (2011) 1053 [arXiv:1004.1920] [INSPIRE].

[45] O. Bertolami, F. Gil Pedro and M. Le Delliou, Dark Energy-Dark Matter Interaction and the Violation of the Equivalence Principle from the Abell Cluster A586, *Phys. Lett.* B 654 (2007) 165 [astro-ph/0703462] [INSPIRE].

[46] P.P. Avelino and H.M.R. da Silva, Effective dark energy equation of state in interacting dark energy models, *Phys. Lett.* B 714 (2012) 6 [arXiv:1201.0550] [INSPIRE].
[47] C. Quercellini, M. Bruni, A. Balbi and D. Pietrobon, Late universe dynamics with scale-independent linear couplings in the dark sector, Phys. Rev. D 78 (2008) 063527 [arXiv:0803.1976] [nSPIRE].

[48] A. Khodam-Mohammadi and M. Malekjani, Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff, Gen. Rel. Grav. 44 (2012) 1163 [arXiv:1101.1632] [nSPIRE].

[49] M. Sharif and A. Jawad, Cosmological evolution of interacting new holographic dark energy in non-flat universe, Eur. Phys. J. C 72 (2012) 2097 [arXiv:1101.1632] [nSPIRE].

[50] A. Khodam-Mohammadi and M. Malekjani, Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff, Gen. Rel. Grav. 44 (2012) 1163 [arXiv:1101.1632] [nSPIRE].

[51] M. Sharif and A. Jawad, Cosmological evolution of interacting new holographic dark energy in non-flat universe, Eur. Phys. J. C 72 (2012) 2097 [arXiv:1101.1632] [nSPIRE].

[52] Y.-B. Wu, S. Li, M.-H. Fu and J. He, A modified Chaplygin gas model with interaction, Gen. Rel. Grav. 39 (2007) 653 [arXiv:0803.1976] [nSPIRE].

[53] J.D. Barrow and T. Clifton, Cosmologies with energy exchange, Phys. Rev. D 73 (2006) 103520 [gr-qc/0604063] [nSPIRE].

[54] W. Zimdahl and D. Pavon, Interacting quintessence, Phys. Lett. B 521 (2001) 133 [astro-ph/0105479] [nSPIRE].

[55] S.Z.W. Lip, Interacting Cosmological Fluids and the Coincidence Problem, Phys. Rev. D 83 (2011) 023528 [arXiv:1009.4942] [nSPIRE].

[56] X.-m. Chen, B. Wang, N. Pan and Y.-g. Gong, Constraining the interacting dark energy models from weak gravity conjecture and recent observations, Phys. Lett. B 695 (2011) 30 [arXiv:1008.3455] [nSPIRE].

[57] X.-m. Chen, Y.-g. Gong and E.N. Saridakis, Phase-space analysis of interacting phantom cosmology, JCAP 04 (2009) 001 [arXiv:0812.1117] [nSPIRE].

[58] N.A. Koshelev, On the growth of perturbations in interacting dark energy and dark matter fluids, Gen. Rel. Grav. 43 (2011) 1309 [arXiv:0912.0120] [nSPIRE].

[59] Z.-K. Guo, N. Ohta and S. Tsujikawa, Probing the Coupling between Dark Components of the Universe, Phys. Rev. D 76 (2007) 023508 [astro-ph/0702015] [nSPIRE].

[60] Y.-H. Li and X. Zhang, Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints, Phys. Rev. D 89 (2014) 083009 [arXiv:1312.6328] [nSPIRE].

[61] Y.L. Bolotin, A. Kostenko, O.A. Lemets and D.A. Yerokhin, Cosmological Evolution With Interaction Between Dark Energy And Dark Matter, arXiv:1310.0085 [nSPIRE].

[62] L.P. Chimento, M.G. Richarte and I.E. Sánchez García, Interacting dark sector with variable vacuum energy, Phys. Rev. D 88 (2013) 087301 [arXiv:1310.5335] [nSPIRE].

[63] L.P. Chimento and M.G. Richarte, Interacting dark matter and modified holographic Ricci dark energy plus a noninteracting cosmic component, Phys. Rev. D 85 (2012) 127301 [arXiv:1207.1492] [nSPIRE].

[64] L.P. Chimento and M.G. Richarte, Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas, Phys. Rev. D 84 (2011) 123507 [arXiv:1107.4816] [nSPIRE].

[65] M. Forte, On extended sign-changeable interactions in the dark sector plus a non interactive component, arXiv:1311.3921 [nSPIRE].
[66] Y.-S. Song and W.J. Percival, Reconstructing the history of structure formation using Redshift Distortions, *JCAP* 10 (2009) 004 [arXiv:0807.0810] [SPIRE].

[67] 2dFGRS collaboration, W.J. Percival et al., The 2dF Galaxy Redshift Survey: Spherical harmonics analysis of fluctuations in the final catalogue, *Mon. Not. Roy. Astron. Soc.* 353 (2004) 1201 [astro-ph/0406513] [SPIRE].

[68] C. Blake et al., The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift $z = 0.9$, *Mon. Not. Roy. Astron. Soc.* 415 (2011) 2876 [arXiv:1104.2948] [SPIRE].

[69] L. Samushia, W.J. Percival and A. Manera et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at $z = 0.57$ from anisotropic clustering, *Mon. Not. Roy. Astron. Soc.* 420 (2012) 2102 [arXiv:1102.1014] [SPIRE].

[70] B.A. Reid, L. Samushia, M. White, W.J. Percival, M. Manera et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing Deviations from Λ and General Relativity using anisotropic clustering of galaxies, *Mon. Not. Roy. Astron. Soc.* 429 (2013) 1514 [arXiv:1206.5309] [SPIRE].

[71] F. Beutler et al., The 6dF Galaxy Survey: $z \approx 0$ measurement of the growth rate and σ_8, *Mon. Not. Roy. Astron. Soc.* 423 (2012) 3430 [arXiv:1204.4725] [SPIRE].

[72] L. Samushia et al., The Clustering of Galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: Testing Deviations from Λ and General Relativity using anisotropic clustering of galaxies, *Mon. Not. Roy. Astron. Soc.* 429 (2013) 1514 [arXiv:1206.5309] [SPIRE].

[73] S. de la Torre, L. Guzzo, J.A. Peacock, E. Branchini, A. Iovino et al., The VIMOS Public Extragalactic Redshift Survey (VIPERS). Galaxy clustering and redshift-space distortions at $z = 0.8$ in the first data release, *Astron. Astrophys.* 557 (2013) A54 [arXiv:1303.2622] [SPIRE].

[74] E. Macaulay, I.K. Wehus and H.K. Eriksen, Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck, *Phys. Rev. Lett.* 111 (2013) 161301 [arXiv:1303.6583] [SPIRE].

[75] L. Xu, Constraints on the Holographic Dark Energy Model from Type Ia Supernovae, WMAP7, Baryon Acoustic Oscillation and Redshift-Space Distortion, *Phys. Rev. D* 87 (2013) 043525 [arXiv:1302.2291] [SPIRE].

[76] L. Xu, Growth Index after Planck, *Phys. Rev. D* 88 (2013) 084032 [arXiv:1306.2683] [SPIRE].

[77] L. Xu, Confronting DGP braneworld gravity with cosmic observations after Planck data, *JCAP* 02 (2014) 048 [arXiv:1312.4679] [SPIRE].

[78] W. Yang and L. Xu, Constraints on warm dark matter with redshift-space distortion after Planck data, [arXiv:1311.3419] [SPIRE].

[79] W. Yang, L. Xu, Y. Wang and Y. Wu, Constraints on a decomposed dark fluid with constant adiabatic sound speed by joining the geometry test and growth rate after Planck data, *Phys. Rev. D* 89 (2014) 043511 [arXiv:1312.2769] [SPIRE].

[80] R.R. Caldwell, M. Kamionkowski and N.N. Weinberg, Phantom energy and cosmic doomsday, *Phys. Rev. Lett.* 91 (2003) 071301 [astro-ph/0302506] [SPIRE].

[81] H. Kodama and M. Sasaki, Cosmological Perturbation Theory, *Prog. Theor. Phys.* 78 (1984) 1.

[82] W.T. Hu, Structure formation with generalized dark matter, *Astrophys. J.* 506 (1998) 485 [astro-ph/9801234] [SPIRE].

[83] C. Gordon and W.T. Hu, A Low CMB quadrupole from dark energy isocurvature perturbations, *Phys. Rev. D* 70 (2004) 083003 [astro-ph/0406496] [SPIRE].
[84] E.V. Linder and A. Jenkins, *Cosmic structure and dark energy*, *Mon. Not. Roy. Astron. Soc.* 346 (2003) 573 [astro-ph/0305286] [rsSPIRE].

[85] R. Bean and M. Tangmatitham, *Current constraints on the cosmic growth history*, *Phys. Rev. D* 81 (2010) 083534 [arXiv:1002.4197] [rsSPIRE].

[86] A. Lewis, A. Challinor and A. Lasenby, *Efficient computation of CMB anisotropies in closed FRW models*, *Astrophys. J.* 538 (2000) 473 [astro-ph/9911177] [rsSPIRE].

[87] http://camb.info/.

[88] A. Lewis and S. Bridle, *Cosmological parameters from CMB and other data: A Monte Carlo approach*, *Phys. Rev. D* 66 (2002) 103511 [astro-ph/0205436] [rsSPIRE].

[89] http://cosmologist.info/cosmomc/.

[90] W.J. Percival and M. White, *Testing cosmological structure formation using redshift-space distortions*, *Mon. Not. Roy. Astron. Soc.* 393 (2009) 297 [arXiv:0808.0003] [rsSPIRE].

[91] WMAP collaboration, G. Hinshaw et al., *Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results*, *Astrophys. J. Suppl.* 208 (2013) 19 [arXiv:1212.5226] [rsSPIRE].

[92] F. Beutler et al., *The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant*, *Mon. Not. Roy. Astron. Soc.* 416 (2011) 3017 [arXiv:1106.3366] [rsSPIRE].

[93] N. Padmanabhan et al., *A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations — I. Methods and application to the Sloan Digital Sky Survey*, *Mon. Not. Roy. Astron. Soc.* 427 (2012) 2132 [arXiv:1202.0090] [rsSPIRE].

[94] M. Manera, R. Scoccimarro, W.J. Percival, L. Samushia, C.K. McBride et al., *The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues*, *Mon. Not. Roy. Astron. Soc.* 428 (2012) 1036 [arXiv:1203.6609] [rsSPIRE].

[95] SNLS collaboration, J. Guy et al., *The Supernova Legacy Survey 3-year sample: Type Ia Supernovae photometric distances and cosmological constraints*, *Astron. Astrophys.* 523 (2010) A7 [arXiv:1010.4743] [rsSPIRE].

[96] SNLS collaboration, A. Conley et al., *Supernova Constraints and Systematic Uncertainties from the First 3 Years of the Supernova Legacy Survey*, *Astrophys. J. Suppl.* 192 (2011) 1 [arXiv:1104.1443] [rsSPIRE].

[97] SNLS collaboration, M. Sullivan et al., *SNLS3: Constraints on Dark Energy Combining the Supernova Legacy Survey Three Year Data with Other Probes*, *Astrophys. J.* 737 (2011) 102 [arXiv:1104.1444] [rsSPIRE].