Abstract Submitted
for the MAR09 Meeting of
The American Physical Society

Soft modes and elasticity of nearly isostatic lattices: randomness
and dissipation1 XIAOMING MAO, TOM LUBENSKY, Department of Physics
and Astronomy, University of Pennsylvania — Isostatic periodic lattices, such as
the square and kagome lattices in spatial dimension $d = 2$, are systems at the on-
set of rigidity. They are marginally stable with coordination number $z = 2d$, and
they may exhibit a non-extensive number of soft modes that can be removed by
adding an infinitesimal number of additional bonds. Randomly packed frictionless
spheres at the jamming point J represent an important isostatic system that, be-
cause of its randomness, exhibits complexities beyond those of periodic systems.
To study the effects of randomness on phonon response, propagation, and damp-
ing, we constructed model lattices near isostaticity by adding randomly distributed
next-nearest and second-nearest neighbor bonds to the isostatic square and kagome
lattices, respectively. We calculated a number of properties of these models using
the CPA approximation and found them to resemble those of jammed solids near
the point J. In particular, the phonon density of states crosses over from Debye-like
at low frequency ω to the flat frequency-independent behavior of a one-dimensional
systems at a characteristic frequency ω^* that scales as the density of additional ran-
don bonds Δz. The real and imaginary part of the effective random-bond spring
constants become equal at ω^*. We also identify a characteristic length that scales
as $(\Delta z)^{-1}$.

1This work was supported by NSF under grant No. DMR 0804900.

Xiaoming Mao
Department of Physics and Astronomy, University of Pennsylvania

Date submitted: 20 Nov 2008
Electronic form version 1.4