miR-340-5p Suppresses Aggressiveness in Glioblastoma Multiforme by Targeting Bcl-w and Sox2

Sanghwa Kim,1,3 Jae Yeon Choi,1,3 Hyun Jeong Seok,1 Myung-Jin Park,1 Hee Yong Chung,2 and In Hwa Bae1

1Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul, Republic of Korea; 2Department of Microbiology, College of Medicine, Hanyang University, Seoul, Republic of Korea

Glioblastoma multiforme (GBM), a particularly aggressive type of malignant brain tumor, has a high mortality rate. Bcl-w, an oncogene, is reported to enhance cell survival, proliferation, epithelial-mesenchymal transition (EMT), migratory and invasive abilities, and stemness maintenance in a variety of cancer cell types, including GBM. In this study, we confirmed that Bcl-w-induced conditional medium (CM) enhances tumorigenic phenotypes of migration, invasiveness, and stemness maintenance. Notably, platelet-derived growth factor-A (PDGF-A) expression, among other factors of the tumor environment, was increased by CM of Bcl-w-overexpressing cells, prompting investigation of the potential correlation between Bcl-w and PDGF-A and their effects on GBM malignancy. Bcl-w and PDGF-A levels were positively regulated and increased tumorigenicity by Sox2 activation in GBM cells. miR-340-5p was further identified as a direct inhibitor of Bcl-w and Sox2. Overexpression of miR-340-5p reduced mesenchymal traits, cell migration, invasion, and stemness in GBM through attenuating Bcl-w and Sox2 expression. Our novel findings highlight the potential utility of miR-340-5p as a therapeutic agent for glioblastoma multiforme through inhibitory effects on Bcl-w-induced PDGF-A and Sox2 activation.

INTRODUCTION

Glioblastoma multiforme (GBM) is a lethal type of astrocytic brain tumor associated with a high mortality rate.1–4 Although the molecular mechanisms underlying GBM progression and treatment strategies have been extensively investigated, effective treatment of brain tumors remains a considerable clinical challenge.5,6 Progression of brain tumors is affected by the tumor microenvironment, which is closely associated with the relationships between cancer cells and multiple factors, including cytokines, chemokines, and growth factors, secreted from stromal cells.7 Glioma cells affected by tumor microenvironment-related factors are reported to exhibit malignant phenotypes, including infiltration, and accelerate cancer progression.7,8

Bcl-w is highly expressed in various cancers, including gastric cancer,9 colorectal adenocarcinoma,10 and GBM.11,12 Our previous studies have indicated that Bcl-w acts as an oncogene contributing to tumorigenicity and metastasis as well as cell survival.11,12 However, the mechanisms by which Bcl-w regulates malignancy in GBM remain to be established.

microRNAs are small non-coding RNAs that regulate gene expression via translational inhibition.13,14 Moreover, miRNAs are involved in pathways regulating multiple physiological processes, such as cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and the resistance to radio- and chemotherapy,1 and can act as either oncogenes or tumor suppressors.1,15 miRNAs may serve as biological tools or provide important information for cancer diagnosis based on their ability to regulate gene expression.12 Therefore, the detailed mechanism analysis of miRNAs in GBM may be useful in developing more effective strategies for cancer diagnosis and potential biomarker discovery.

In the current study, we analyzed Bcl-w-induced microenvironmental factors and their interrelationships, with a view to clarifying the mechanistic pathways underlying malignant transformation by Bcl-w. Based on the collective findings, we have put forward a potential strategy for the treatment of GBM using miR-340-5p that blocks the mechanism of action of Bcl-w.

RESULTS

Conditioned Media (CM) from Bcl-w-Overexpressing Cells Promote Tumorigenicity in GBM

We have previously established that Bcl-w contributes to the mesenchymal properties of GBM.12 To determine whether Bcl-w-induced alterations in the tumor microenvironment promote malignancy, U87 and U251 cells were treated with CM collected from Bcl-w-overexpressing GBM. Expression of the epithelial–mesenchymal transition (EMT)-related genes, such as Vimentin, Twist, and Snail, was increased in U87 and U251 treated with Bcl-w-overexpressing CM

Received 18 December 2018; accepted 24 May 2019; https://doi.org/10.1016/j.omtn.2019.05.022.
3These authors contributed equally to this work.
Correspondence: In Hwa Bae, PhD, Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
E-mail: ibbae@kirams.re.kr

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Migratory and invasive activities of these cells were additionally enhanced, compared with CM of vector-transfected cells (Figures 1B and 1C). Moreover, mRNA levels of matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9 involved in invasive ability, were elevated in cells treated with CM of Bcl-w-overexpressing cells (Figure 1D). To determine the effects on endothelial cells due to Bcl-w-induced changes in the microenvironment, a tube formation assay in vitro was performed using human umbilical vein endothelial cells (HUVECs), which are a well-known model for the reorganization stage of angiogenesis.16 HUVECs treated with CM of Bcl-w-overexpressing cells showed a dramatic increase in tube-formation ability relative to those treated with CM of vector-transfected cells (Figure 1E).

Positive Regulation between PDGF-A and Bcl-w Promotes Aggressiveness of GBM

Cancer cells alter the tumor microenvironment by secreting various growth factors and cytokines, leading to acquisition of malignancy. To investigate the mechanisms underlying the aggressiveness of GBM, we analyzed various factors from CM that may have induced changes in the tumor microenvironment. Since growth factors regulate a variety of cellular processes, such as proliferation, differentiation, and progression, the mRNA levels of MCP3 (monocyte-chemotactic...

Figure 1. Conditioned Media from Bcl-w-Transfected Cells Promote Tumorigenicity in Glioblastoma Multiforme, U87, and U251 Cells

After U87 and U251 cells were transfected with control vector or Bcl-w, each conditioned media (CM) was collected. And then U87 and U251 cells were treated with vector CM or Bcl-w CM for 24 h. (A) Mesenchymal marker proteins including Vimentin, Twist, and Snail were detected in U87 and U251 cells treated with vector CM or Bcl-w CM by western blot assay. β-actin was used as a loading control in all data of western blot assay. (B–D) The migratory (B) and invasive abilities (C) and their related enzymes, MMP-2/9 (D), of vector or Bcl-w CM-treated U87 and U251 cells were examined by wound healing (scale bars, 100 μm), matrigel invasion assay (scale bars, 100 μm), and qRT-PCR. GAPDH mRNA was used for normalization. (E) After HUVECs (human umbilical vein endothelial cells) were resuspended in CM from vector or Bcl-w-transfected U87 and U251 cells and seeded on matrigel-coated plates, tube-formation assay was conducted for 6 h (scale bars, 100 μm). (F) After U87 and U251 cells were treated with each CM from vector or Bcl-w-transfected cells, levels of angiogenesis-related mRNA such as VEGF (vascular endothelial growth factor) and Ang2 (angiopoietin-2) expression were detected by qRT-PCR. (G and H) U87 and U251 cells treated with vector or Bcl-w CM were determined sphere-forming ability (G) and stemness-related protein expressions, Sox2, Oct4, Notch2, Musashi, Nestin, and CD133 (H) by sphere-formation assay (G; scale bars, 100 μm) and western blot assay. The data are presented as the mean ± SD. *p < 0.05, **p < 0.01, and ***p < 0.001. Student’s t test.
Figure 2. The Positive Regulation of Bcl-w and PDGF-A Induces Aggressiveness in GBM

(A) Levels of MCP3, PDGF-A, and EGFR mRNA were measured in control vector or Bcl-w-overexpressing U251 cells by qRT-PCR analysis. (B and C) PDGF-A protein expressions were detected in lysates or CM obtained from control vector and Bcl-w-overexpressing cells (B) and GBM cells treated with CM from Bcl-w-overexpressing cells (C) by western blot assay. Coomassie Blue staining or β-actin was used as loading control. (D and E) After U87 and U251 cells were incubated with or without PDGF (10 ng/mL) (D) or transfected by siRNA against PDGFR (E), Bcl-w expression levels were detected by western blot assay. (F–L) Expressions of EMT-related proteins (β-catenin, Vimentin, Twist, Snail, and Slug) (F), mobility (G), invasiveness (H), mRNA levels of invasiveness-related enzymes (MMP-2 and MMP-9) (I), sphere-forming ability (J), expressions of cancer stem-like cell marker protein (Oct4, Sox2, and Notch2) (K), and expressions of angiogenesis-related factor mRNA (VEGF and Ang2) (L) were conducted by western blot assay, wound-healing assay (G; scale bars, 100 μm), invasion assay (H; scale bars, 100 μm), qRT-PCR analysis, and sphere-formation assay, respectively, in U87 and U251 cells following treatment of PDGF. The data are presented as the mean ± SD. *p < 0.05, **p < 0.01, and ***p < 0.001. Student’s t test.

Bcl-w dramatically increased expression of Sox2 not only in cells treated with CM of Bcl-w-overexpressing cells (Figure 1H) but also in Bcl-w-overexpressing cells (Figure S1). We described the signaling pathway for relationship between Bcl-w and Sox2 expression using siRNAs targeting Sox2 and Bcl-w. Sox2 knockdown using specific siRNAs was performed to confirm whether Bcl-w-induced Sox2 is involved in the aggressive phenotypes of the GBM cell lines U87 and U251. Levels of mesenchymal-related Vimentin, Snail, and Twist proteins (Figure 3A) as well as migratory (Figure 3B) and invasive activities (Figure 3C) of Bcl-w-overexpressing GBM cells were reduced.
upon siRNA-mediated depletion of Sox2. In particular, Bcl-w-induced invasiveness was suppressed through downregulation of MMP-2 and MMP-9 mRNA expression (Figure 3D). Sox2 knockdown further attenuated Bcl-w-induced sphere-formation ability and expression of cancer stem-like cell-related marker proteins (Figures 3E and 3F). Meanwhile, overexpression of Sox2 did not change Bcl-w protein expression in U87 and U251 (Figure S2). Our collective results clearly support that Sox2 was involved in the Bcl-w-induced tumor malignant actions in GBM cells.

miR-340-5p Directly Downregulates Bcl-w and Sox2 Expressions

The above results clearly indicate that Bcl-w and Sox2 contribute to tumor progression of GBM. To investigate the potential miRNA profiles that regulate expression of these two proteins, we employed two miRNA target prediction programs, TargetScan (http://www.targetscan.org) and miRDB (http://www.mirdb.org). Consequently, miR-340-5p was found as a microRNA (miRNA) inducing significant suppression of Bcl-w and Sox2 expression (Figure 4A). Overexpression of a miR-340-5p mimic suppressed both Bcl-w and Sox2 protein and mRNA expression in U87 and U251 cells (Figures 4B–4D). Conversely, overexpression of miR-340-5p inhibitor (anti-miR-340-5p) increased both protein and mRNA expression of Bcl-w and Sox2 (Figures S3A–S3C). In addition, miR-340-5p directly bound to the 3' UTR regions of Bcl-w and Sox2, respectively, as observed via the luciferase assay using wild-type and mutant reporter constructs. The luciferase activities of wild-type Bcl-w/Sox2 reporter and miR-340-5p were significantly decreased relative to those of negative control (NC) miRNA, whereas the luciferase activities of mutant Bcl-w/Sox2 and miR-340-5p constructs were similar to those of the control (Figures 4E and 4F). Since PDGF-A appears to be positively regulated by Bcl-w (Figures 2A–2D), we further investigated the relationship between PDGF-A and miR-340-5p in GBM cells. Overexpression of miR-340-5p led to suppression of PDGF-A as well as Bcl-w and Sox2 expression in GBM cells (Figure 4G).

miR-340-5p Suppresses Tumorigenicity in GBM by Directly Repressing Bcl-w and Sox2

The miR-340-5p mimic induced a marked decrease in the levels of EMT-related proteins, including β-catenin, Vimentin, and Twist (Figure 5A), as well as cell migration (Figure 5B) and invasion (Figure 5C) through suppressing the activities of MMP-2 and MMP-9 transcripts (Figure 5D) in U87 and U251 cells, compared with negative control miRNA. miR-340-5p mimic significantly reduced stemness maintenance, including sphere-formation ability and the expression of the cancer stem-like cell markers and angiogenesis-related factor (Figures 5E–5G). Our results suggest that miR-340-5p...
directly downregulates Bcl-w and Sox2 expression to suppress the tumorigenic mechanism in GBM. Additionally, to confirm Bcl-w or Sox2 as targets of miR-340-5p, we showed that the overexpression of Bcl-w or Sox2 rescued the expression of miR-340-5p-decreased malignant-related factors, including Vimentin, Snail, Notch2, and Oct4 in U87 cells (Figure S4). miR-340-5p significantly repressed these malignant phenotypes (Figures 7D–7F). We also confirmed that miR-340-5p inhibitor increased invasiveness and sphere-formation ability compared to negative control in C2M and X08 cells (Figures S5A and S5B). In patient-derived xenograft mice, X08 cells (1 × 10^6 cells/mouse, n = 20) were injected into brain of nude mice and kept forming brain tumors for 45 days. Immunohistochemical staining revealed increased Bcl-w and Sox2 expressions in the tumor region (T) compared to adjacent regions (N) of brain tissues (Figure 7G). To validate these results in vivo, we analyzed Bcl-w and Sox2 levels in low-grade gliomas and GBM patients. These data were obtained from The Cancer Genome Atlas (TCGA) using cBioPortal for cancer genomics analysis (http://www.cbioportal.org/). Both Bcl-w and Sox2 showed higher expression levels in GBM than low-grade glioma patients (Figure 7H). Our collective findings suggest that Bcl-w is highly expressed in GBM and promotes secretion of PDGF-A as well as Sox2 activation, leading to aggressive tumorigenesis. miR-340-5p inhibits the aggressiveness
of GBM via downregulating Bcl-w, Sox2, and PDGF-A expression (Figure 7I).

In conclusion, Bcl-w-overexpressing GBM cells secrete enhanced levels of PDGF-A owing to changes in the tumor microenvironment, which enhance tumorigenicity. Our novel finding that miR-340-5p functions as a tumor suppressor through attenuation of Bcl-w, Sox2, and PDGF-A highly expressed in GBM supports its utility as a potentially effective therapeutic target for GBM.

DISCUSSION

Previous studies have demonstrated that Bcl-w contributes to tumorigenicity and metastasis. To clarify the mechanism of the aggressive phenotype induced by Bcl-w, we investigated the relationship between Bcl-w-induced PDGF-A and malignancy of GBM in the current study. Our results indicated that changes in the tumor microenvironment triggered by the positive feedback loop of Bcl-w and PDGF-A promote the aggressive characteristics of GBM. Notably, miR-340-5p suppresses the tumorigenic phenotypes of GBM by directly targeting Bcl-w, Sox2, and PDGF-A highly expressed in GBM supports its utility as a potentially effective therapeutic target for GBM.

We showed which PDGF also contributed to increase Bcl-w expression, leading to aggressive phenotypes of GBM through PDGF receptor (PDGFR) using recombinant PDGF and siRNA against PDGFR (Figure 2). These data were supported by previous studies in which PDGF signaling contributes to implicate the development and progression of GBM and PDGF-derived glioma caused the change of the tumor microenvironment. PDGF led to mesenchymal phenotypes through PDGF receptor (PDGFR). PDGFRA is highly expressed in all glioma grades, with highest
detectable levels in glioblastoma. The signaling pathways activated through PDGFR induce cell proliferation, survival, and migration, which contribute to individual cellular responses.

Several studies have demonstrated high expression of Sox2 and Bcl-w in various cancer types, including GBM. Interestingly, Sox2, an oncogene, is involved in malignant progression, including invasion and metastasis of cancer cells. Moreover, Bcl-w enhanced tumorigenicity by increasing Sox2 expression (Figure 3). Our major finding was that Bcl-w overexpressed in GBM facilitates the secretion of various cytokines and changes in the tumor microenvironment, ultimately promoting GBM malignancy.

Since miRNAs play crucial roles as gene regulators involved in modulating cell proliferation, survival, and tumorigenesis, we focused on miRNAs that inhibit the malignant pathway triggered by Bcl-w and Sox2 activation. Consequently, miR-340-5p was identified as a suppressor simultaneously targeting Bcl-w and Sox2, which attenuated aggressiveness of GBM. This finding is in keeping with an earlier study by our group showing that miR-340 inhibits ionizing radiation-induced metastasis through suppressing interleukin-4 (IL-4) expression in human cancer cells. In the current study, several studies have demonstrated that miR-340-5p exerts anti-tumor efficacy by suppressing cancer cell progression and stemness maintenance, whereas inhibition of miR-340 promotes cancer progression, migration, and invasion. Our study also showed that the mesenchymal trait, migratory ability, invasive potential, and stemness maintenance increased by inhibition of miR-340-5p and decreased through suppression of Bcl-w and Sox2 (Figure 6).

Identification of relevant miRNAs and understanding their specific expression patterns and interactions is critical for uncovering potential biomarkers, which provide more effective strategies for diagnosis and therapy of GBM. To this end, several miRNAs, including miR-137, miR-203, and miR-429 have been highlighted as diagnostic biomarkers for predicting various cancers. Based on our current findings, miR-340-5p may serve as a valuable therapeutic target to suppress aggressive GBM tumor growth.

MATERIALS AND METHODS

Cell Culture and Chemical Reagents

U87 and U251 (glioblastoma multiforme; GBM) were purchased from the Korea Cell Line Bank (KCLB) and cultured in minimum essential medium (MEM) (Corning, Corning, NY, USA) at 37°C in a humidified atmosphere containing 5% CO₂. The medium contained 10% fetal bovine serum and 5% penicillin-streptomycin antibiotics (Corning, NY, USA).
HUVECs were cultured in endothelial cell growth medium MV2 with supplement mix (Promo Cell, Heidelberg, Germany). Two patient-derived GSCs, C2M and X08, were cultured with DMEM-F-12 (Corning, Corning, NY, USA) containing B27 serum-free supplement (Gibco, Carlsbad, CA, USA), epidermal growth factor (EGF) (Sigma-Aldrich, St. Louis, MO, USA), human fibroblastic growth factor (hFGF) (Biovision, Milpitas, CA, USA), and 5% penicillin-streptomycin antibiotics (Corning). Recombinant human PDGF (R&D Systems, Minneapolis, MN, USA) dissolved in 0.4 mM HCl was treated with Opti MEM medium to cells.

Isolation of Patient-Derived GSCs

Patient-derived GSCs, C2M, and X08 cells were generated according to previously published protocol.\(^4\) First, primary tumors removed membrane and blood vessels. After digestion with papain (L-cysteine and EDTA), filtration to a 70-μm cell strainer, and centrifugation (300 RCF for 3 min), primary tumor cells were disassociated into single cells. Disassociated single cells were cultured with DMEM/F-12 media supplemented with N2 supplements, EGF, basic fibroblast growth factor (bFGF), and penicillin-streptomycin antibiotics. Isolated GSCs were identified by CD133 expression.

Figure 7. The Relationship between miR-340-5p and Bcl-w/Sox2 Is Confirmed in Patient-Derived GSCs and Xenograft Mice

(A–F) Expressions of tumorigenic phenotype-related proteins (A and D), invasive ability (B and E), and stemness maintenance (C and F) were confirmed in Bcl-w or miR-340-5p mimic-overexpressed C2M and X08 cells, patient-derived GSCs by western blot analysis, matrigel invasion assay (scale bars, 100 μm), and sphere-formation assay (scale bars, 100 μm), respectively; (G) Representative H&E and IHC images for Bcl-w and Sox2 expressions in paraffin-embedded brain tissue of patient-derived xenograft mice using X08 cells (scale bars, 200 μm). (H) The expression levels of Bcl-w (TCGA, Provisional) and Sox2 (TCGA, PanCancer Atlas) were compared in low-grade glioma and GBM patients and were obtained from cBioPortal for cancer genomics analysis (http://www.cbioportal.org). (I) Schematic diagram in which miR-340-5p suppressed aggressiveness of GBM by inhibiting Bcl-w and Sox2 as well as PDGF-A expression. The data are presented as the mean ± SD. *p < 0.05, **p < 0.01, and ***p < 0.001. Student’s t test.

Molecular Therapy: Nucleic Acids

Corning, NY, USA).|
Mountain View, CA, USA). The mRNA and miRNA levels were determined using iCycler real-time PCR detection system (Roche, Basel, Switzerland) following to the manufacturer’s instructions. The primers of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and U6 were used for normalized mRNA and miRNA, respectively. The sequences of the primers were as follows: MMP-2, 5'-CATCAAGGGCATTAGAGGC-3' (forward) and 5'-AGAACA CAGCCCTTCTGCTCC-3' (reverse); MMP-9, 5'-AGGACAGCCGTG AATGGGC ATG-3' (forward) and 5'-ATCGTCCACGGACTCA AAG-3' (reverse); VEGF, 5'-GAC AGACAGACAGACCCGCC-3' (forward) and 5'-GAACGCCAGAGTTGAGC-3' (reverse); Ang2, 5'-ATG GTCTGAGCTAAGCT-3' (forward) and 5'-CTC TGACCCGAGTCAT-3' (reverse); Sox2, 5'-ATTCGCAAGCTA CGACGTGA-3' (forward) and 5'-CTT TTTGCAACCCCCTCCATT-3' (reverse); EGFR, 5'-TCCCCGTAAATTATGTGTCAG AGA-3' (forward) and 5'-ACCCCTTAATGGCCCGCGCC-3' (reverse); PDGFA, 5'-CAC ACCTCTCTGCTGTAATTTA-3' (forward) and 5'-GTT ATCGGTGTAATGTGTCAT CAAA-3' (reverse); MCP-3, 5'-CTTGTGCTGCTGCTAC-3' (forward) and 5'-GGG TACGAC AGATCTCCCT-3' (reverse); Bcl-w, 5'-GGGACATTGGCAAGG TGAA-3' (forward) and 5'-GTCTCCTACTGATGCCAGTT-3' (reverse); miR-340-3p, 5'-TATATAAAGCAATGAGACTGATT-3' (forward) and 5'-GGTACCCGGTGCAACG-3' (reverse).

Wound-Healing Assay
The U87 and U251 confluent cell monolayers were scratched across the 6-well plates using a yellow tip. Cells were washed with PBS and incubated for 16 h to allow migration. The cell morphology was observed and photographed by a cellSens (Olympus).

Matrigel Invasion Assay
The cells were plated in the upper matrigel-coated transwell chambers (8 µm pore) (Corning), and the lower chamber containing 10% fetal bovine serum (FBS) media. The invasion assay was performed following the manufacturer’s instructions. The stained cells were obtained under a light microscope (Olympus, Tokyo, Japan).

Dual Luciferase Reporter Assay
pGL3UC vector constructs kindly was provided by V.N. Kim (School of Basic Sciences, Seoul National University, Korea).29 A DNA fragment of human Bcl-w 3' UTR containing the putative miR-340-5p binding site (88 bp) was constructed and cloned into pGL3UC. The nucleotide sequences of primers for the amplification of the Bcl-w 3' UTRs were 5'-AAATGCTCTAGACGCTATA TCCCTGTATTTTTTATTATAATTTTAAA-3' (forward) and 5'-ACAGGAATCCAAAAATAAAGTGCAAATGCTGTA TTTATATT-3' (reverse), and the Sox2 3' UTRs were 5'-AAAA GCTCTAGAGGCACAGTTTTTGGATTGC ATCTAAATTTT ATAA-3' (forward) and 5'-CCTGGAATCCCATGCGCATTT TTGTGTATTTGATATTAAAATTT-3' (reverse), which contained the binding site of miR-340-5p (TTTATA). The vector of mutant type is constructed out of "AATA" that have site-directed mutagenesis of the Bcl-w and Sox2 3' UTR for binding of miR-340-5p. Then pGL3UC vector were cut by XbaI and EcoRI restriction enzymes, and fragment of PCR product was ligated into pGL3UC vector.

U251 cells were transfected with reporter plasmid containing Bcl-w or Sox2 (200 ng), pRL-CMV-Renilla (Promega, Madison, WI, USA) plasmid (1 ng), and miR-340-5p using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) in 24-well plates. Luciferase reporter system (Promega) was performed according to manufacturer’s protocol. Renilla luciferase activity was used as normalization.

Immunofluorescence Staining
The cells transfected with empty vector or that contained Bcl-w were seeded on slide glasses and incubated for 48 h. The slides were fixed with 4% paraformaldehyde for 10 min at room temperature and incubated with the primary antibodies including Sox2 and Bcl-w (Cell Signaling, Beverly, MA, USA) overnight and then washed with PBS three times. The samples were incubated with the secondary fluorescence-conjugated antibodies (Invitrogen, Carlsbad, CA, USA) and stained with DAPI in PBS. The samples were mounted by ProLong Gold antifade reagent (Invitrogen, Carlsbad, CA, USA) and assessed with a confocal laser scanning microscope (CLSM; Carl Zeiss, Germany).

Patient-Derived Xenograft Model
X08 cells were transplanted following resuspension in DMEM/F-12 with B27, EGF, and hFGF. X08 cells (1 × 10⁴ cells/mouse, n = 20) were orthotopically injected into the left striatum of 5-week-old female BALB/c nude mice. The brain of each mouse was obtained 45 days after injection. Brain samples were fixed in 4% paraformaldehyde for H&E and immunohistochemistry staining. This study was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Korea Institute of Radiological and Medical Science.

H&E and Immunohistochemistry (IHC) Staining
The brain tissue was sectioned and deparaffinized and rehydrated with antigen retrieval. The slides were stained using H&E (Thermo Fisher Scientific). In IHC, primary antibodies were immunoblotting using anti-Bcl-w (Abcam, Cambridge, UK) and anti-Sox2 (Santa Cruz Biotechnology) overnight at 4°C. After washing with Tris buffered saline with Tween 20 (TBST), ABC (avidin-biotin complex) and 3,3'-diaminobenzidine (DAB) kit (Vector Laboratory, Burlingame, CA, USA) were performed following manufacturer’s protocols. The samples were observed and photographed by a cellSens (Olympus).

Tube-Formation Assay
The 96-well plates were coated with matrigel (BD Biosciences, San Jose, CA, USA). 4 × 10⁴ HUVECs (human umbilical vein endothelial cells) with 1% FBS media were seeded on the top of matrigel layers and incubated for 6 h. The tube length was analyzed and counted from 3 difference fields using an invert microscope.
Sphere-Formation Assay
For the sphere-formation assay, cells (1 × 10^3/well) were seeded with DMEM-F-12 (Corning) containing B27 serum-free supplement (50×; Gibco) and 5% penicillin-streptomycin for 7–10 days. After 7–10 days, spheres with a diameter > 20 μm were counted.

Western Blot Assay
U87, U251, C2M, and X08 cells were collected and lysed with RIPA buffer supplemented with protease and phosphatase inhibitors (Roche, Basel, Switzerland). Protein extraction and western blot were conducted as previously described.9,16 The primary antibodies used as follows: β-catenin, Bcl-w, Notch2, Oct4, Snail, Vimentin, phospho-ERK, and Sox2 were purchased from Cell Signaling. Twist was purchased from Abcam (Cambridge, UK). ERK, PDGF-A, phospho-ERK, and Sox2 were purchased from Cell Signaling. VEGF, Ang2, and immunoglobulin G-horseradish peroxidase (IgG-HRP) (Bio-Rad, Hercules, CA, USA).

Statistical Analysis
All data were analyzed by GraphPad statistical software. p < 0.05 was considered as significant, whereas p < 0.01 and < 0.001 were highly considered statistically significant, respectively.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.omtn.2019.05.022.

AUTHOR CONTRIBUTIONS
I.H.B. supervised the work; S.K. and J.Y.C. performed research and analyzed data; I.H.B., S.K., J.Y.C., and H.J.S. designed the experiments and drafted the manuscript. I.H.B., M.-J.P., and H.Y.C. designed and performed animal experiments. All authors discussed the results and commented on the manuscript.

CONFLICTS OF INTEREST
The authors declare no potential conflicts of interest.

ACKNOWLEDGMENTS
Patient-derived GSC, X08 cells were kindly provided by Deric M. Park at the National Cancer Institute (Bethesda, MD, USA). This study was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS) and funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and Ministry of Science and ICT (MSIT), Republic of Korea. (no. NRF-2017M2A2A7A01018542(50035-2019); 50531-2019).

REFERENCES
1. Ahir, B.K., Ozer, H., Engelhard, H.H., and Lakka, S.S. (2017). MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit. Rev. Oncol. Hematol. 120, 22–33.
2. Chen, J., Yang, L., and Wang, X. (2017). Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma. Cancer Biomark. 20, 521–526.
3. Banelli, B., Forlani, A., Allemanii, G., Morabito, A., Pistillo, M.P., and Romani, M. (2017). MicroRNA in glioblastoma: An overview. Int. J. Genomics 2017, 7639084.
4. Liu, X., Gao, Q., Zhao, N., Zhang, X., Cui, W., Sun, J., Fu, J., and Hao, J. (2018). Sox2hi suppresses glioblastoma cell proliferation, migration, and invasion by inhibition of Wnt/β-catenin signaling. Mol. Carcinog. 57, 494–502.
5. Chung, H.J., Choi, Y.E., Kim, E.S., Han, Y.H., Park, M.J., and Bae, I.H. (2015). miR-29b attenuates tumorigenicity and sterness maintenance in human glioblastoma multiforme by directly targeting BCL2L12. Oncotarget 6, 18429–18444.
6. Hoelzinger, D.B., Mariani, L., Weis, J., Woyke, T., Berens, T.J., McDonough, W.S., Sloan, A., Coons, S.W., and Berens, M.E. (2005). Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7, 7–16.
7. Chen, W., Xia, T., Wang, D., Huang, B., Zhao, P., Wang, J., Qu, X., and Li, X. (2016). Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytokine MMP14. Oncotarget 7, 62425–62438.
8. Li, G., Qin, Z., Chen, Z., Tie, L., Wang, R., and Zhao, H. (2017). Tumor Microenvironment in Treatment of Glioma. Open Med. (Wars.) 12, 247–251.
9. Bae, I.H., Park, M.-J., Yoon, S.H., Kang, S.W., Lee, S.-S., Choi, K.-M., and Um, H.D. (2013). Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma. Cancer Biomark. 20, 521–526.
10. Wilson, J.W., Nostro, M.C., Balzi, M., Farzaoni, P., Cianchii, A., and Potten, C.S. (2000). Bcl-w expression in colorectal adenocarcinoma. Br. J. Cancer 82, 178–185.
11. Lee, W.S., Kwon, J., Yun, D.H., Lee, Y.N., Woo, E.Y., Park, M.J., Lee, J.S., Han, Y.H., and Bae, I.H. (2014). Specificity protein 1 expression contributes to Bcl-w-induced aggressiveness in glioblastoma multiforme. Mol. Cells 37, 17–23.
12. Lee, W.S., Woo, E.Y., Kwon, J., Park, M.J., Lee, J.S., Han, Y.H., and Bae, I.H. (2013). Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin. PLoS ONE 8, e68030.
13. Lin, C.-W., Chang, Y.-L., Chang, Y.-C., Lin, J.-C., Chen, C.-C., Pan, S.-H., Wu, C.T., Chen, H.Y., Yang, S.C., Hong, T.-M., and Yang, P.C. (2013). MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat. Commun. 4, 1857.
14. Shi, Z., Wang, L., Shen, H., Jiang, C.F., Ge, X., Li, D.M., Wen, Y.Y., Sun, H.R., Pan, M.H., Li, W., et al. (2017). Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene 36, 2577–2588.
15. Shenouda, S.K., and Alahari, S.K. (2009). MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 28, 369–378.
16. Kim, E.S., Choi, Y.E., Hwang, S.J., Han, Y.H., Park, M.-J., and Bae, I.H. (2016). IL-6, a direct target of miR-340-2, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget 7, 86836–86856.
17. Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschmann-Hogiu, S., Farkas, D.L., Black, K.L., and Yu, J.S. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400.
18. Pastrana, E., Silva-Vargas, V., and Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486–498.
19. Yata, K., Beder, L.B., Tamagawa, M., Hirohashi, Y., Grenman, R., and Yamanaka, N. (2015). MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma. Int. J. Oncol. 47, 1249–1256.
20. Ma, J., Xia, J., Miele, L., Sarkar, F.H., and Wang, Z. (2013). Notch signaling pathway in pancreatic cancer progression. Pancreat. Disord. Ther. 3, 1000114.
21. Bradshaw, A., Wickremesekera, A., Brach, H.D., Chibnall, A.M., Davis, P.F., Tan, S.T., and Itinteang, T. (2016). Cancer stem cells in glioblastoma multiforme. Front. Surg. 3, 48.
22. Neraldi, J., and Veselka, R. (2015). Nestin as a marker of cancer stem cells. Cancer Sci. 106, 803–811.
23. Brescia, P., Ortensi, B., Fornasari, L., Levi, D., Broggi, G., and Pelicci, G. (2013). CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31, 857–869.
