On maximizing a monotone k-submodular function subject to a matroid constraint

Shinsaku Sakaue*

August 12, 2016

Abstract

A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a $1/2$-approximation algorithm. Iwata et al. also provided a $k/(2k-1)$-approximation algorithm for monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints.

In this paper, we prove that a greedy algorithm outputs a $1/2$-approximate solution for monotone k-submodular maximization with a matroid constraint. The algorithm runs in $O(M |E|(MO+kEO))$ time, where M is the size of a maximal optimal solution, $|E|$ is the size of the ground set, and MO, EO represent the time for the membership oracle of the matroid and the evaluation oracle of the k-submodular function, respectively.

1 Introduction

Let E be a finite set and 2^E be the family of all subsets in E. A function $f : 2^E \rightarrow \mathbb{R}$ is called submodular if it satisfies

$$f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y)$$

for all pairs of $X, Y \in 2^E$. It is well known that the following diminishing return property characterizes the submodular function:

$$f(X \cup \{e\}) - f(X) \geq f(Y \cup \{e\}) - f(Y)$$

for any $X \subseteq Y$ and $e \in E \setminus Y$. The diminishing return property often appears in practice, and so various problems can be formulated as submodular function maximization (e.g., sensor placement [13, 14], feature selection [11], and document summarization [16]). Unfortunately, submodular function maximization is known to be NP-hard. Therefore,
approximation algorithms that can run in polynomial time have been extensively studied for submodular function maximization, some of which consider various constraints (e.g., [13] [14] [17] [19]).

Recently, Huber and Kolmogorov [8] proposed k-submodular functions, which express the submodularity on choosing k disjoint sets of elements, instead of a single set. More precisely, let \((k + 1)^E := \{(X_1, \ldots, X_k) \mid X_i \subseteq E \ (i = 1, \ldots, k), \ X_i \cap X_j = \emptyset \ (i \neq j)\}\). Then, a function \(f : (k + 1)^E \rightarrow \mathbb{R}\) is called k-submodular if, for any \(x = (X_1, \ldots, X_k)\) and \(y = (Y_1, \ldots, Y_k)\) with \(X_i \subseteq Y_i\) for \(i = 1, \ldots, k\). It is known that k-submodular functions arise as relaxation of NP-hard problems. k-submodular functions also appear in many applications. Therefore, the k-submodular function is recently a popular subject of study [6, 7]. If \(k = 1\), the above definition is equivalent to that of submodular functions. If \(k = 2\), the k-submodular function is equivalent to the so-called bisubmodular function, for which maximization algorithms have been widely studied [9, 20]. For unconstrained nonnegative k-submodular maximization, Ward and Živný [20] proposed a max\(\{1/3, 1/(1 + a)\}\)-approximation algorithm, where \(a = \max\{1, \sqrt{(k - 1)/4}\}\). Iwata et al. [10] improved the approximation ratio to 1/2. They also proposed a \(k/(2k - 1)\)-approximation algorithm for monotone k-submodular maximization, and proved that, for any \(\varepsilon > 0\), a \((k + 1)/2k + \varepsilon)\)-approximation algorithm for maximizing monotone k-submodular functions requires exponentially many queries. This means their approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida [18] proposed a 1/2-approximation algorithm for monotone k-submodular maximization with a total size constraint (i.e., \(\bigcup_{i \in \{1, \ldots, k\}} X_i \leq N\) for a nonnegative integer \(N\)) and a 1/3-approximation algorithm for that with individual size constraints (i.e., \(|X_i| \leq N_i\) for \(i = 1, \ldots, k\) with associated nonnegative integers \(N_1, \ldots, N_k\)

In this paper, we prove that 1/2-approximation can be achieved for monotone k-submodular maximization with a matroid constraint. This approximation ratio is asymptotically tight due to the aforementioned hardness result by Iwata et al. [10]. Given \(\mathcal{F} \subseteq 2^E\), we say a system \((E, \mathcal{F})\) is matroid if the following holds:

\((\text{M1})\) \(\emptyset \in \mathcal{F}\),

\((\text{M2})\) If \(A \subseteq B \in \mathcal{F}\) then \(A \in \mathcal{F}\),

\((\text{M3})\) If \(A, B \in \mathcal{F}\) and \(|A| < |B|\) then there exists \(e \in B \setminus A\) such that \(A \cup \{e\} \in \mathcal{F}\).

The elements of \(\mathcal{F}\) are called independent, and we say \(A \in \mathcal{F}\) is maximal if no \(B \in \mathcal{F}\) satisfies \(A \subsetneq B\). Matroids include various systems; the total size constraint can be written as a special case of a matroid constraint. For example, the following systems \((E, \mathcal{F})\) are matroids:
(a) E is a finite set, and $\mathcal{F} := \{F \subseteq E \mid |F| \leq N\}$ where N is a nonnegative integer.

(b) E is the set of columns of a matrix over some field, and $\mathcal{F} := \{F \subseteq E \mid \text{The columns in } F \text{ are linearly independent over the field}\}$.

(c) E is the set of edges of a undirected graph G with a vertex set V, and $\mathcal{F} := \{F \subseteq E \mid \text{The graph } (V, F) \text{ is a forest}\}$.

(d) E is a finite set partitioned into ℓ sets E_1, \ldots, E_ℓ with associated nonnegative integers N_1, \ldots, N_ℓ, and $\mathcal{F} := \{F \subseteq E \mid |F \cap E_i| \leq N_i \text{ for } i = 1, \ldots, \ell\}$.

The total size constraint corresponds to (a), which is called a uniform matroid. Since submodular functions and matroids are capable of modeling various problems, approximation algorithms for submodular function maximization (i.e., $k = 1$) with a matroid constraint have been extensively studied [2] [3] [4] [5] [15]. However, to the best of our knowledge, no approximation algorithm has been studied for k-submodular maximization with a matroid constraint. Therefore, we show that a greedy algorithm provides a $1/2$-approximate solution for the following monotone k-submodular maximization with a matroid constraint:

\[
\text{maximize } f(x) \quad \text{subject to } \bigcup_{\ell \in \{1, \ldots, k\}} X_\ell \in \mathcal{F},
\]

where $x = (X_1, \ldots, X_k)$. We also show that our algorithm incurs $O(M|E|(\text{MO} + k\text{EO}))$ computation cost, where M is the size of a maximal optimal solution, and MO, EO represent the time for the membership oracle of the matroid and the evaluation oracle of the k-submodular function, respectively. We see in Section 2 that all maximal optimal solutions for problem (1) have equal size, which we denote by M throughout this paper.

The rest of this paper is organized as follows. Section 2 reviews some basics of k-submodular functions and matroids. Section 3 discusses a greedy algorithm for problem (1) and proves the $1/2$-approximation. We conclude this paper in Section 4.

2 Preliminaries

We elucidate some properties of a k-submodular function f where $k \in \mathbb{N}$. Let $[k] := \{1, 2, \ldots, k\}$. For $x = (X_1, \ldots, X_k)$ and $y = (Y_1, \ldots, Y_k)$ in $(k + 1)^E$, we define a partial order \preceq such that $x \preceq y$ if $X_i \subseteq Y_i$ for all $i \in [k]$. For $x, y \in (k + 1)^E$ satisfying $x \preceq y$, we use $x < y$ if $X_i \subsetneq Y_i$ holds for some $i \in [k]$. We also define

$$\Delta_{e,i} f(x) := f(X_1, \ldots, X_{i-1}, \{e\}, X_i, \ldots, X_k) - f(X_1, \ldots, X_k)$$

for $x \in (k + 1)^E$, $e \notin \bigcup_{\ell \in [k]} X_\ell$ and $i \in [k]$, which is a marginal gain when adding $e \in E$ to the i-th set of $x \in (k + 1)^E$. It is not hard to see that the k-submodularity implies the orthant submodularity [20]:

$$\Delta_{e,i} f(x) \geq \Delta_{e,i} f(y)$$

for any $x, y \in (k + 1)^E$ with $x \preceq y$, $e \notin \bigcup_{j \in [k]} Y_j$, and $i \in [k]$, and the pairwise monotonicity:

$$\Delta_{e,i} f(x) + \Delta_{e,j} f(x) \geq 0$$

for any $x \in (k + 1)^E$, $e \notin \bigcup_{\ell \in [k]} X_\ell$, and $i, j \in [k]$ with $i \neq j$. Actually, these properties characterize k-submodular functions:

Theorem 1 (Ward and Živný [20]). A function $f : (k + 1)^E \to \mathbb{R}$ is k-submodular if and only if f is orthant submodular and pairwise monotone.
For notational ease, we identify \((k + 1)^E\) with \(\{0, 1, \ldots, k\}^E\), that is, we associate \((X_1, \ldots, X_k) \in (k + 1)^E\) with \(x \in \{0, 1, \ldots, k\}^E\) by \(X_i = \{e \in E \mid x(e) = i\}\) for \(i \in [k]\). We sometimes abuse the notation, and simply write \(x = (X_1, \ldots, X_k)\) by regarding a vector \(x\) as disjoint \(k\) subsets of \(E\). For \(x \in \{0, 1, \ldots, k\}^E\), we define \(\text{supp}(x) := \{e \in E \mid x(e) \neq 0\}\); the size of \(x\) can be written as \(|\text{supp}(x)|\). Let \(0\) be the zero vector in \(\{0, 1, \ldots, k\}^E\). In what follows, we assume that the monotone \(k\)-submodular function \(f\) in problem (1) satisfies \(f(0) = 0\) without loss of generality; if \(f(0) \neq 0\), we redefine \(f(x) := f(x) - f(0)\) where \(x \in (k + 1)^E\).

We now turn to some properties of matroid \((E,F)\). An independent set \(A \in F\) is called a bases if it is a maximal independent set. We denote the set of all bases by \(B\). It is known that each element in \(B\) has the same size (see, e.g., [12, Theorem 13.5]); the size is denoted by \(M\) throughout this paper. Thus, we have the following lemma for the size of the maximal optimal solutions for problem (1).

Lemma 1. The size of any maximal optimal solution for problem (1) is \(M\).

Proof. Assume there is a maximal optimal solution \(o\) such that \(|\text{supp}(o)| < M\). Let \(x \in (k + 1)^E\) be an arbitrary vector such that \(\text{supp}(x) \in B\). Then, by (M3), there exists \(e \in \text{supp}(x)\) such that \(\text{supp}(o) \cup \{e\} \in F\). Since \(f\) is monotone, by assigning arbitrary \(i \in [k]\) to \(o(e)\), we get \(\Delta_{e,i}f(o) \geq 0\); more precisely, \(\Delta_{e,i}f(o) = 0\) since \(o\) is an optimal solution. This contradicts to the assumption that \(o\) is a maximal optimal solution. \(\square\)

We also introduce the following lemma for later use.

Lemma 2. Suppose \(A \in F\) and \(B \in B\) satisfy \(A \subseteq B\). Then, for any \(e \notin A\) satisfying \(A \cup \{e\} \in F\), there exists \(e' \in B \setminus A\) such that \(\{B \setminus \{e'\}\} \cup \{e\} \in B\).

Proof. If \(|B| - |A| = 1\), by defining \(e' = B \setminus A\), we get \(\{B \setminus \{e'\}\} \cup \{e\} = A \cup \{e\} \in F\). Since \(|A \cup \{e\}| = |B|\), we have \(\{B \setminus \{e'\}\} \cup \{e\} \in B\).

If \(|B| - |A| \geq 2\), then \(|A \cup \{e\}| < |B|\). Thus, by applying (M3) iteratively, we can obtain \(|B| - |A| - 1\) elements \(e_1, \ldots, e_{|B| - |A| - 1} \in B \setminus \{A \cup \{e\}\}\) such that

\[
\{A \cup \{e\}\} \cup \{e_1\} \cup \cdots \cup \{e_{|B| - |A| - 1}\} \in B.
\]

Therefore, defining \(e' = B \setminus \{A \cup \{e_1\} \cup \cdots \cup \{e_{|B| - |A| - 1}\}\}\), we get

\[
\{B \setminus \{e'\}\} \cup \{e\} = \{A \cup \{e\}\} \cup \{e_1\} \cup \cdots \cup \{e_{|B| - |A| - 1}\} \in B.
\]

This completes the proof. \(\square\)

3 Maximizing a monotone \(k\)-submodular function with a matroid constraint

We present a greedy algorithm for problem (1): it runs in \(O(M|E|(MO + kEO))\) time where \(MO\) and \(EO\) stand for the time for the membership oracle of matroid and the evaluation oracle of \(k\)-submodular function, respectively. We then prove that the greedy algorithm outputs a \(1/2\)-approximate solution for problem (1). In summary, this section proves the following theorem:

Theorem 2. For problem (1), a \(1/2\)-approximate solution can be obtained in \(O(M|E|(MO + kEO))\) time.
Algorithm 3.1 A greedy algorithm for k-submodular maximization with a matroid constraint

Input: a monotone k-submodular function $f : (k + 1)^E \rightarrow \mathbb{R}$ and a matroid (E, \mathcal{F}).

Output: a vector s satisfying $\text{supp}(s) \in \mathcal{B}$.

1: $s \leftarrow \emptyset$.
2: for $j = 1$ to M do
3: \quad $e_{\text{last}} \leftarrow \emptyset$, Value $\leftarrow 0$.
4: \quad for each $e \in E \setminus \text{supp}(s)$ such that $\text{supp}(s) \cup \{e\} \in \mathcal{F}$ do
5: \quad \quad $i \leftarrow \arg \max_{i \in [k]} \Delta_{e,i}f(s)$
6: \quad \quad if $\Delta_{e,i}f(s) \geq \text{Value}$ then
7: \quad \quad \quad $s(e_{\text{last}}) \leftarrow 0$ unless $e_{\text{last}} = \emptyset$.
8: \quad \quad \quad $s(e) \leftarrow i$.
9: \quad \quad \quad $e_{\text{last}} \leftarrow e$ and Value $\leftarrow \Delta_{e,i}f(s)$.
10: \quad end if
11: end for
12: end for
13: return s.

3.1 Greedy algorithm and its complexity analysis

We consider applying Algorithm 3.1 to problem \[1\]. First, we make a remark on using Algorithm 3.1 in practice. In Step 2, the algorithm requires the value of M, the size of a maximal independent set. However, in practice, we need not calculate the value of M beforehand. Instead, we continue the iteration while there exists $e \in E \setminus \text{supp}(s)$ satisfying $\text{supp}(s) \cup \{e\} \in \mathcal{F}$, which we check in Step 4. We can confirm that this modification does not change the output as follows. As long as $|\text{supp}(s)| < M$, exactly one element is added to $\text{supp}(s)$ at each iteration due to the monotonicity and (M3), and, if $|\text{supp}(s)| = M$, the iteration stops since $\text{supp}(s)$ is a maximal independent set. Algorithm 3.1 is described using M to make it easy to understand the subsequent discussions. Note that, defining $s^{(j)}$ as the solution obtained after the j-th iteration, we have $|\text{supp}(s^{(j)})| = j$ for $j \in [M]$.

We now examine the time complexity of Algorithm 3.1. Let $E\text{O}$ be the time for the evaluation oracle of the k-submodular function f, and MO be the time for the membership oracle of the matroid (E, \mathcal{F}). At the j-th iteration, the membership oracle is used at most $|E|$ times in Step 4, and the evaluation oracle is used at most $k|E|$ times in Step 5. Thus, the time complexity of Algorithm 3.1 is given by $O(M|E|(MO + kE))$.

3.2 Proof for 1/2-approximation

We now prove that Algorithm 3.1 gives a 1/2-approximate solution for problem \[1\]. To prove this, we define a sequence of vectors $o^{(0)}, o^{(1)}, \ldots, o^{(M)}$ as in \[10\], \[18\], \[20\].

Let $(e^{(j)}, i^{(j)})$ be the pair chosen greedily at the j-th iteration, and $s^{(j)}$ be the solution after the j-th iteration; we let $s = s^{(M)}$, the output of Algorithm 3.1. We define $s^{(0)} := \emptyset$ and let o be a maximal optimal solution. In what follows, we show how to construct a sequence of vectors $o^{(0)} = o, o^{(1)}, \ldots, o^{(M-1)}, o^{(M)} = s$ satisfying the following:

(2) $s^{(j)} \preceq o^{(j)}$ if $j = 0, 1, \ldots, M - 1$, and $s^{(j)} = o^{(j)} = s$ if $j = M$.

(3) $O^{(j)} \in \mathcal{B}$ for $j = 0, 1, \ldots, M$.

More specifically, we see how to obtain $o^{(j)}$ from $o^{(j-1)}$ satisfying (2) and (3). Note that $s^{(0)} = \emptyset$ and $o^{(0)} = o$ satisfy (2) and (3). We define $S^{(j)} := \text{supp}(s^{(j)}), O^{(j)} := \text{supp}(o^{(j)})$
for each $j \in [M]$.

We now describe how to obtain $o^{(j)}$ from $o^{(j-1)}$, assuming that $o^{(j-1)}$ satisfies

$$s^{(j-1)} \prec o^{(j-1)},$$

and $O^{(j-1)} \in \mathcal{B}$.

Since $s^{(j-1)} \prec o^{(j-1)}$ means $S^{(j-1)} \subseteq O^{(j-1)}$, and $e^{(j)}$ is chosen to satisfy $S^{(j-1)} \cup \{e^{(j)}\} \in \mathcal{F}$, we see from Lemma 2 that there exists $e' \in O^{(j-1)} \setminus S^{(j-1)}$ satisfying $\{o^{(j-1)}\} \cup \{e^{(j)}\} \in \mathcal{B}$. We let $o^{(j)} = e'$ and define $o^{(j-1/2)}$ as the vector obtained by assigning 0 to the $o^{(j)}$-th element of $o^{(j-1)}$. We then define $o^{(j)}$ as the vector obtained from $o^{(j-1/2)}$ by assigning $i^{(j)}$ to the $e^{(j)}$-th element. The vector thus constructed, $o^{(j)}$, satisfies

$$O^{(j)} = \{O^{(j-1)} \setminus \{o^{(j)}\}\} \cup \{e^{(j)}\} \in \mathcal{B}.$$

Furthermore, since $o^{(j-1/2)}$ satisfies

$$s^{(j-1)} \prec o^{(j-1/2)},$$

we have the following property for $o^{(j)}$:

$$s^{(j)} \prec o^{(j)} \text{ if } j = 1, \ldots, M - 1, \text{ and } s^{(j)} = o^{(j)} = s \text{ if } j = M,$$

where the strictness of the inclusion for $j \in [M - 1]$ can be easily confirmed from $|S^{(j)}| = j < M = |O^{(j)}|$. Thus, applying the above discussion for $j = 1, \ldots, M$ iteratively, we see from (4) and (5) that the obtained sequence of vectors $o^{(0)}, o^{(1)}, \ldots, o^{(M)}$ satisfies (2) and (4).

We now prove the following inequality for $j \in [M]$:

$$f(s^{(j)}) - f(s^{(j-1)}) \geq f(o^{(j-1)}) - f(o^{(j)}).$$

Since $S^{(j-1)} \cup \{o^{(j)}\} \subseteq O^{(j-1)} \in \mathcal{B}$ holds for each $j \in [M]$, we get the following inclusion from (M2):

$$S^{(j-1)} \cup \{o^{(j)}\} \in \mathcal{F}$$

for any $j \in [M]$. Therefore, for the pair $(e^{(j)}, i^{(j)})$, which is chosen greedily, we have

$$\Delta_{e^{(j)}, i^{(j)}} f(s^{(j-1)}) \geq \Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(s^{(j-1)}).$$

Furthermore, since $s^{(j-1)} \prec o^{(j-1/2)}$ holds, orthant submodularity implies

$$\Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(s^{(j-1)}) \leq \Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(o^{(j-1/2)}).$$

Using (4) and (5), we get

$$f(s^{(j)}) - f(s^{(j-1)}) \geq \Delta_{e^{(j)}, i^{(j)}} f(s^{(j-1)})$$

$$\geq \Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(s^{(j-1)})$$

$$\geq \Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(o^{(j-1/2)})$$

$$\geq \Delta_{o^{(j)}, o^{(j-1)}, (o^{(j)})} f(o^{(j-1/2)}) - \Delta_{e^{(j)}, i^{(j)}} f(o^{(j-1/2)})$$

$$= f(o^{(j-1)}) - f(o^{(j)}),$$

where the third inequality comes from the monotonicity, i.e., $\Delta_{e^{(j)}, i^{(j)}} f(o^{(j-1/2)}) \geq 0$.

By (5), we have

$$f(o) - f(s) = \sum_{j=1}^{M} (f(o^{(j-1)}) - f(o^{(j)})) \leq \sum_{j=1}^{M} (f(s^{(j)}) - f(s^{(j-1)})) = f(s) - f(0) = f(s),$$

which means $f(s) \geq f(o)/2$.
4 Conclusions

We proved that a $1/2$-approximate solution can be obtained for monotone k-submodular maximization with a matroid constraint via a greedy algorithm. Our approach follows the techniques shown in [10, 18, 20]. The proved approximation ratio is asymptotically tight due to the hardness result shown in [10]. We also showed that the proposed algorithm incurs $O(M|E|(MO + kEO))$ computation cost.

References

[1] N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz. A tight linear time $(1/2)$-approximation for unconstrained submodular maximization. *SIAM J. Comput.*, 44(5):1384–1402, 2015.

[2] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a matroid constraint. *SIAM J. Comput.*, 40(6):1740–1766, 2011.

[3] Y. Filmus and J. Ward. A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In *Foundations of Computer Science, 2012 IEEE 53rd Annual Symposium on*, pages 659–668. IEEE, 2012.

[4] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing submodular set functions-II. In *Polyhedral combinatorics*, pages 73–87. Springer, 1978.

[5] D. Golovin and A. Krause. Adaptive submodular optimization under matroid constraints. *arXiv preprint arXiv:1101.4450*, 2011.

[6] I. Gridchyn and V. Kolmogorov. Potts model, parametric maxflow and k-submodular functions. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2320–2327, 2013.

[7] H. Hirai and Y. Iwamasa. On k-submodular relaxation. *arXiv preprint arXiv:1504.07830*, 2015.

[8] A. Huber and V. Kolmogorov. Towards minimizing k-submodular functions. In *Proceedings of 2nd International Symposium on Combinatorial Optimization*, pages 451–462. Springer, 2012.

[9] S. Iwata, S. Tanigawa, and Y. Yoshida. Bisubmodular function maximization and extensions. Technical report, Technical Report METR 2013-16, The University of Tokyo, 2013.

[10] S. Iwata, S. Tanigawa, and Y. Yoshida. Improved approximation algorithms for k-submodular function maximization. In *Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 404–413. SIAM, 2016.

[11] C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy sampling. *Oper. Res.*, 43(4):684–691, 1995.

[12] B. Korte and J. Vygen. *Combinatorial Optimization*, volume 2. Springer, 2012.

[13] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation selection. *J. Mach. Learn. Res.*, 9(Dec):2761–2801, 2008.
[14] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. *J. Mach. Learn. Res.*, 9(Feb):235–284, 2008.

[15] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Maximizing nonmonotone submodular functions under matroid or knapsack constraints. *SIAM J. Discrete. Math.*, 23(4):2053–2078, 2010.

[16] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, pages 912–920. Association for Computational Linguistics, 2010.

[17] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions-I. *Math. Program.*, 14(1):265–294, 1978.

[18] N. Ohsaka and Y. Yoshida. Monotone k-submodular function maximization with size constraints. In *Advances in Neural Information Processing Systems*, pages 694–702, 2015.

[19] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. *Oper. Res. Lett.*, 32(1):41–43, 2004.

[20] J. Ward and S. Živný. Maximizing k-submodular functions and beyond. *arXiv preprint arXiv:1409.1399*, 2014.