INTRODUCTION

Malaria continues to be a major public health issue in Malawi, with an estimated 4.4 million cases reported in 2020.1 Malawi’s entire population of 19 million is at risk, and transmission occurs throughout the year. The Malawi National Malaria Control Program (NMCP) has the overall responsibility for developing malaria policies and strategies, and for providing technical leadership to the Ministry of Health and its partners. Key among the partners are funding organizations such as Global Fund, United States Agency for International Development/President’s Malaria Initiative (PMI), and academic and research institutions such as the Malaria Alert Center (MAC) (Figure 1). Traditionally, the Malawi NMCP has used evidence from malaria research to direct policy.3 For example, in 1993, based on research evidence, Malawi was the first country to switch from chloroquine to sulfadoxine–pyrimethamine as a first-line antimalarial drug treatment of uncomplicated malaria.4 Implementation of other evidence-based strategies and policies has also helped to reduce Plasmodium infection prevalence in children younger than 5 years by nearly 50% between 2010 and 2017.5 However, the decline in malaria morbidity in Malawi has not decreased at the pace seen in surrounding countries. Disease burden still remains high. In 2020, annual malaria illness incidence varied by district from ~155 to ~1,050 cases per 1,000 population.6

The long-term vision of Malawi’s NMCP is to eliminate malaria disease, with the intermediate goal of reducing the burden of malaria to a level where it is no longer a disease of public health significance.7 The 2017–2022 Malaria Control Strategic Plan prioritizes reducing malaria morbidity and mortality through 1) vector control, primarily by the distribution and use of quality long-lasting insecticide-treated bed nets (LLINs) and localized use of indoor residual spraying (IRS); 2) prompt access to effective treatment; and 3) widespread use of intermittent preventive treatment in pregnancy.7,8 The success of the strategic plan depends on continued generation of local research findings to inform evidence-based policy development.7 The Malawi International Center of Excellence for Malaria Research (ICEMR) has, for the past decade, conducted malaria policy-relevant research. This report highlights evidence generated by the Malawi ICEMR, through interactions with Malawi governmental agencies and national and international partners, and the potential impact of this research output on influencing malaria policy and practice.

MALAWI ICEMR: OVERVIEW, COLLABORATION, AND PARTNERSHIPS

In 2010, the U.S. National Institute of Allergy and Infectious Diseases established the ICEMR program. The aim was to address existing deficiencies in malaria research in endemic settings; most research projects were observed to have a narrow scientific scope, done in single field sites with a limited catchment area, and a population at risk that was relatively homogeneous.9,10 To address these gaps, the ICEMR program was designed to conduct multidisciplinary research
on malaria in different endemic eco-epidemiological settings. The first ICEMR program ran from 2010 to 2017 in 10 centers, including Malawi. The first Malawi ICEMR program (ICEMR 1) aimed at understanding burden and patterns of malaria infection and disease, and analyzing transmission by *Anopheles* vector species in both urban and rural ecological settings. The program was renewed in 2017 for another 7 years. The overall goal of the second Malawi ICEMR (ICEMR 2) is to identify why the standard malaria control and prevention efforts in Malawi have had only a limited impact on malaria disease incidence and parasite prevalence. Ongoing studies in ICEMR 2 aim at understanding factors that influence effectiveness of LLINs, as well as vector and human behavioral risk factors for *Plasmodium* infection transmission and malaria disease. Both ICEMR projects have been supported by the Malawi NMCP, with a view of using data generated for the development of new policies and practices.

The Malawi ICEMR program is implemented through the MAC, a research center established in 2001 as part of Kamuzu University of Health Sciences (formerly University of Malawi, College of Medicine). It focuses on operational and implementation research studies on malaria, including entomological monitoring. In addition to the Malawi ICEMR, the MAC collaborates with the United States Agency for International Development/PMI, the CDC, the WHO, World Vision International, VectorLink Malawi, Save the Children, and universities to support local and global agencies with data that can be used to drive malaria policies (Figure 1).

In Malawi, malaria policy decisions are initiated in various technical working groups (TWGs) comprised of experts from academia, key implementation partners such as non-governmental organizations, and the donor community. In Malawi, there are four main TWGs: Malaria Integrated Vector Management, Malaria Case Management, Intermittent Preventive Treatment in Pregnancy, and Monitoring and Evaluation. Their mandate is to review new evidence, evaluate global trends and guidelines, and advise the NMCP on new policy initiatives and how to address implementation bottlenecks. The local malaria research-to-policy framework is used; local evidence is prioritized in policy decision making. Recommendations from the TWGs are referred to the Malaria Advisory Committee (Figure 1), which is the ultimate body that advises the NMCP on policy changes. Malawi ICEMR scientists are members of the TWGs, and some sit on the Malaria Advisory Committee. Their involvement in these key policy decision-making bodies means they are able to leverage data from all research projects on which they are collaborating as they participate in the development of national malaria policies, and at the same time gain an understanding of the key research needs of the policymakers.

VECTOR CONTROL

The use of LLINs is the mainstay of malaria vector control in Malawi. Since 2012, the Malawi NMCP has conducted nationwide mass LLIN distribution campaigns every 3 years, with the goal of increasing LLIN coverage and use. As a result of these efforts, household access to a LLIN increased from 37% in 2012 to 63% in 2017, with a corresponding
increase in LLIN use, from 41% to 55%. In addition, IRS has been deployed, although at a smaller scale. Recent efforts in IRS implementation started in 2007 with one district, and were scaled-up to seven districts in 2012. Because of inadequate funding, IRS is being conducted in only four of the country’s 29 districts. Despite enhanced vector control activities, data suggest that the decline in malaria incidence has recently stalled in Malawi, as in some malaria-endemic countries. The decreasing effectiveness of LLINs may be contributing to this plateau, and for this reason, monitoring for effectiveness of both LLINs and IRS is imperative.

Monitoring the effectiveness of LLINs in malaria control in Malawi. Researchers at the MAC in Malawi have been monitoring the effectiveness of LLINs for malaria control in Malawi since 2013, comparing incidence of *Plasmodium* infection in LLIN users and non-users in areas of Malawi where pyrethroid resistance in the primary vector (*Anopheles funestus*) was high. In two CDC-funded studies, use of LLINs was associated with a 30% reduction in the incidence of malaria infection compared with non-users in one study, despite high levels of pyrethroid resistance and no difference in protection detected in a second study. Based on these findings and similar evidence from other malaria-endemic countries, conventional pyrethroid-based LLINs remained the cornerstone of malaria control in Malawi until 2019, when more compelling evidence from epidemiological data showed that conventional LLINs were less effective than piperonyl butoxide (PBO)-LLINs. Therefore, the NMCP made a decision to move away from conventional LLINs completely. The Malawi ICEMR 2 program has expanded on objectives of these two foundational studies. These studies are designed to identify factors impinging on the effectiveness of LLINs over their life span and to compare the effect of conventional LLINs and PBO-LLINs on malaria infection. We have established community-based cohort and cross-sectional qualitative studies to identify and understand barriers to LLIN program success. However, the COVID-19 pandemic prompted us to shut down cohort follow-up 2 months earlier than planned and to halt temporarily other research activities. Analysis of the findings of these ICEMR 2 studies is forthcoming.

In support of the Malawi government’s nationwide LLIN distribution campaigns, the MAC had previously carried out analyses of insecticide resistance in vector populations. Results revealed a spectrum of phenotypic and genotypic resistance attributes, and in particular showed that many populations of *An. funestus* and *Anopheles arabiensis* are resistant to pyrethroids in Malawi. Furthermore, experimental huts studies funded by the PMI/VectorLink of PermaNet 3.0 and Olyset Plus showed that PBO-enhanced LLINs performed better than the conventional nets in reducing mosquito blood feeding in Malawi. In a countrywide facility-based study by Topazian et al., malaria incidence during the high transmission months declined by 60.8%, from 28.6 cases per 100 people in 2018 to 11.2 cases per 100 people in 2019 in five districts that received PBO-LLINs compared with 23.5% (26.8 cases per 100 people in 2018 to 20.5 cases per 100 people in 2019) in districts with conventional LLINs. These findings and WHO recommendations on deployment of PBO-LLINs formed the basis for the Malawi NMCP’s decision to switch from conventional nets to PBO-LLINs. Therefore, only PBO-LLINs will be distributed during the nationwide mass distribution campaigns and through routine distribution to pregnant women and children younger than 5 years.

For the past 3 years, the Malawi ICEMR 2 program has been evaluating the effectiveness of PBO-LLINs in two districts through community-based cohort studies, one with PBO-LLINs and the other with conventional LLINs. Results from our preliminary entomological study showed high rates of human feeding by vectors in both PBO-LLIN and conventional LLIN sites. However, the number of infectious *Anopheles* bites per person-year was 44 in the district deploying conventional LLINs and 22 in the district deploying PBO-LLINs. The human blood index was also significantly greater in the district deploying conventional LLINs and 22 in the district deploying PBO-LLINs. The human blood index was also significantly greater in the district deploying conventional LLINs and 22 in the district deploying PBO-LLINs. We are continuing to explore how effective PBO-LLINs will be in reducing *Plasmodium* transmission, especially over the 3-year life span of the LLINs.

Physical durability of LLINs. Measuring the physical condition of LLINs under field conditions is important for malaria control programs to guide decisions on how frequently to replace LLINs. Our team has shown that LLINs are associated with greater rates of *Plasmodium falciparum* infection. It has also been shown that most of the nets had acquired holes through wear-and-tear by 2 years, and that there is net attrition of 20% or more within the first year of receiving LLINs (Mzilhaowa, personal communication). These findings corroborate observations from other sub-Saharan African countries. The totality of these research findings has led to a major policy shift, in which the Malawi NMCP will now conduct mass distribution campaigns every 2 years starting in 2021, instead of every 3 years as in previous campaigns. The COVID-19 pandemic, however, caused a disruption in the distribution of LLINs and the nets were not deployed in some districts of the country. The national distribution campaign will be completed in May 2022. Ongoing studies in the Malawi ICEMR 2 program are continuing to explore the effect of net condition on malaria infection and disease.

Epidemiology of malaria in Malawi

Malaria in school-age children. The Malawi ICEMR corroborated earlier reports identifying high prevalence rates of malaria infection in school-age children. School-age children have also been identified as major contributors to transmission. Therefore, understanding the special role these children play in maintaining malaria is critical to moving toward the policy goal of transitioning from malaria control to malaria elimination.

Malawian research and recent studies from elsewhere have shown that current malaria control interventions have not affected infections in school-age children effectively. Indeed, our investigations have demonstrated that these children are less likely than other age groups to use LLINs or to seek treatment in the formal health sector. Furthermore, infections in school-age children contribute disproportionately to perpetuating *P. falciparum* transmission. These studies have contributed to an important policy recommendation: interventions that specifically target
schoolchildren that are likely to have larger, community-wide impacts that reduce malaria prevalence. In addition, the insight that school-age children are less likely to seek treatment from the formal sector has led the Malawi NMCP to endorse pilot programs of school-based testing and treatment. Furthermore, the NMCP included school-based LLIN distribution in the Malawi Malaria Strategic Plan (2015–2022), which is aimed at increasing access and use of LLINs. The Malawi ICEMR has also been conducting studies to identify the barriers to consistent use of malaria interventions, including LLINs among school-age children. Our preliminary findings have supported the design and funding of a clinical trial of school-based preventive treatment and feasibility studies of integrating school-based malaria interventions with ongoing and new school health programs, such as deworming programs. Last, Malawi ICEMR findings are being used to advocate for chemoprevention in school-age children as well as to develop integrated school health packages.

Malaria in urban settings. Although the entire sub-Saharan African region is exposed to malaria risk, considerable heterogeneity in transmission patterns exists and is influenced by demographic, socioeconomic, and urban-versus-rural contexts. In general, it has been considered that people living in urban and peri-urban areas have a lower risk of malaria than those in rural settings. However, urban areas, even within the same country, are highly heterogeneous. Urbanization, which includes the colonization of land, changing population densities, evolution of infrastructure (including housing), and small-scale crop production, is heterogeneous with respect to malaria resulting in diverse ecologies, exposure patterns, and prevention opportunities.

Our team has demonstrated that transmission occurs regularly in urban settings through the presence of An. funestus s.s and An. gambiae s.l. in the periphery of Blantyre city in Malawi. Furthermore, small-scale agriculture, poverty, and poor-quality housing are major influences of the local abundance of malaria vectors in urban settings. Our ICEMR data also show that, among residents of urban areas, travel to rural areas strongly increased risk of malaria illness. Thus, interventions targeting mobile urban dwellers may lead to reductions in malaria prevalence in urban settings. Indeed, we recently demonstrated how the urban–rural continuum of malaria risk poses challenges for intervention policies that ignore local conditions within the broader settings of “urban” and “rural.” Malawi currently does not have a stratified malaria control program because it is assumed that the entire population is at high risk of infection. However, research, including that from Malawi ICEMR, has reignited debate on whether a stratified malaria program that uses different combinations of interventions should be introduced in the country. In addition, currently there are no global or local policies developed specifically to address the challenges of urban malaria. Nevertheless, our findings are being used by the WHO to support the development of urban malaria policies (Mathanga, personal communication). Our findings could also guide future implementation and cost-benefit analysis studies evaluating optimal delivery of control measures that include a mix of those in current common use (e.g., LLINs, prompt diagnosis and treatment) and those currently used infrequently (IRS, larval control, and environmental management). The goal is to guide future policy development for urban dwellers with insufficient protection from malaria parasite transmission resulting from poor housing and living conditions, and limited financial resources.

INTRODUCTION OF THE RTS, S VACCINE

Malawi is one of three countries implementing an RTS, S/AS01 malaria vaccine pilot program. The aim is to evaluate the feasibility of delivering the vaccine within the Expanded Program on Immunization, investigate the safety signals identified during the phase 3 trials, and document the impact of the vaccine on mortality. Some of our ICEMR study sites are receiving the vaccine, whereas others are not. The NMCP also introduced IRS and PBO-LLINs in some of these same sites. Thus, the Malawi ICEMR is partnering with the NMCP in a unique opportunity to evaluate the interactions and impact of these interventions on malaria parasite transmission. Our preliminary data show that the odds of malaria infection were less in children who had received RTS, S or who used PBO-LLINs compared with those who had used conventional LLINs only. Our findings so far support the WHO recommendation for the broad use of the vaccine among young children in Africa and in other areas with moderate to high transmission of Plasmodium falciparum. Findings from our studies, in collaboration with the NMCP and the WHO, should have implications for policymakers, because understanding both the direct and indirect population-level benefits of malaria vaccination and PBO-LLINs will be critical when countries decide whether to adopt these intensive interventions. Our findings can also be used to enhance program effectiveness, both at national and international levels.

CONCLUSION

The NMCP sits at the heart of malaria prevention and control efforts in malaria-endemic countries. Timely and high-quality research results are necessary to guide evidence-based policy and programmatic decision making and action effectively. The Malawi ICEMR was designed to help address knowledge gaps in malaria epidemiology and parasite transmission, to assess the use and impact of current malaria control strategies, and to guide the implementation of established and new interventions by providing evidence-based recommendations to policymakers. This article highlights policy-relevant research findings from the Malawi ICEMR that can influence malaria policy, both in Malawi and internationally. Evidence from our studies has strengthened malaria vector surveillance and insecticide resistance monitoring, inspired pilot programs for school-based malaria interventions, is contributing to the development of WHO policy on urban malaria, and is expanding our understanding of how the RTS, S malaria vaccine reduces disease risk. Continued and improved interaction between ICEMR researchers and policymakers is therefore central to promoting the translation of research into decision making and policy development, and also to advocating for more policy-relevant studies.

There are still outstanding policy questions that Malawi needs to answer, and these include the effectiveness of PBO-LLINs over their life span, effectiveness of IRS in reducing Plasmodium infection over the yearly spraying cycle, and appropriate malaria intervention mix and delivery strategies for school-age children, among others. Therefore, there is a
stronger need for research funding agencies such as the NIH to continue investing in malaria research in Malawi to generate evidence that will guide policy and contribute to the Malawi NMCP goal of malaria elimination by 2030.

Received December 6, 2021. Accepted for publication May 14, 2022.

Acknowledgments: We express our sincere gratitude to our motivated study participants from all our studies, community leaders, and health workers. We also thank the study site team members, students, and trainees, and laboratory and administrative staff for their commitment and dedication. We appreciate the input and guidance from our NIH Scientific Advisory Group. We also appreciate the input and support of several partners who have worked with the MAC and ICEMR researchers in various projects, the United States Agency for International Development/PMI, the CDC, and the Global Fund (through World Vision International).

Financial support: The Malawi ICEMR is supported by NIH grant U19AI129388

Disclaimer: The funding agency was not involved in any aspect of the study, including design, analysis, and interpretation of the results.

Authors’ addresses: Charles Mangani, Department of Epidemiology and Biostatistics, School of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi, E-mail: cman@kuhac.mw.ac.mw, Thembza Mzilahowa, Peter Ntenda, Alick Sixpence, and Jessy Goupeyou-Youmsi, Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi, E-mails: tmzilahowa@mac.kuhac.mw, pntenda@mac.kuhac.mw.ac.mw, asxpence@mac.kuhac.mw.ac.mw, and jgoupeyou@mac.kuhac.mw.ac.mw. Lauren Cohee and Miriam Laufer, Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, E-mails: lcohee@som.umaryland.edu and mlaufer@som.umaryland.edu. Michael Kayange, Amini Gumbo, and Sosten Lankhulani, National Malaria Control Program, Ministry of Health, Lilongwe, Malawi, E-mails: mkayange@yahoo.co.com, agumb0@yaho.co.uk and slankhulani@yahoo.com. Edward Walker, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, E-mail: walker@msu.edu. Clarissa Valim, Department of Global Health, Boston University School of Public Health, Boston, MA, E-mail: clarissa.valim@gmail.com. Karl Seydel and Terrie Taylor, Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, E-mail: seydel@msu.edu and ltmalavi@msu.edu. Mark L. Wilson, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, E-mail: wilsonml@umich.edu. Don P. Mathanga, Department of Epidemiology and Biostatistics, School of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi, and Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi, E-mail: dmathang@mac.kuhac.mw.ac.mw.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. World Health Organization, 2021. World Malaria Report 2021. Geneva, Switzerland: WHO.

2. Mwendera CA, De Jager C, Longwe H, Hongoro C, Phiri K, Mutero CM, 2017. Development of a framework to improve the utilisation of malaria research for policy development in Malawi. Health Res Policy Syst 15: 97.

3. Mwendera CA, De Jager C, Longwe H, Phiri K, Hongoro C, Mutero CM, 2016. Facilitating factors and barriers to malaria research utilization for policy development in Malawi. Malar J 15: 512.

4. Mwendera CA, De Jager C, Longwe H, Phiri K, Hongoro C, Mutero CM, 2016. Malaria research and its influence on antimalarial drug policy in Malawi: a case study. Health Res Policy Syst 14: 41.

5. Chipeta MG et al., 2019. Geostatistical analysis of Malawi’s changing malaria transmission from 2010 to 2017. Wellcome Open Res 4: 1–28.

6. Ministry of Health, 2021. HMIS dhs2. Available at: https://dhis2.health.gov.mw/dhis-web-reporting/showDataSetReportForm.

7. National Malaria Control Programme, 2017. Malaria Strategic Plan 2017–2022. Lilongwe, Malawi: Ministry of Health.

8. Mathanga DP, Walker ED, Wilson ML, Ali D, Taylor T, Laufer MK, 2012. Malaria control in Malawi: current status and directions for the future. Acta Trop 121: 212–217.

9. Rao M, 2012. The International Centers of Excellence for Malaria Research. Acta Trop 121: 157.

10. Rao MR, 2015. Foreword: International Centers of Excellence for Malaria Research. Am J Trop Med Hyg 93: 1–4.

11. Mwendera CA, De Jager C, Longwe H, Phiri K, Hongoro C, Mutero CM, 2017. Changing the policy for intermittent preventive treatment in malaria in Malawi. Malar J 16: 1–13.

12. National Malaria Control Programme (NMCP), ICF, 2018. Malawi Malaria Indicator Survey 2017. Lilongwe, Malawi: NMCP.

13. Lindblade KA et al., 2015. Effectiveness of ITNs to prevent malaria in an area of moderate pyrethroid resistance, Malawi. Malar J 14: 31.

14. Mathanga DP, Mwandumda DA, Bauleni A, Chisaka J, Shah MP, Landman KZ, Lindblade KA, Steinhardt LC, 2015. The effectiveness of long-lasting, insecticide-treated nets in a setting of pyrethroid resistance: a case-control study among febrile children 6 to 59 months of age in Machinga District, Malawi. Malar J 14: 1–8.

15. Kleinschmidt I et al., 2018. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis 18: 640–649.

16. Topazian HM et al., 2021. Effectiveness of a national mass distribution campaign of long-lasting insecticide-treated nets and indoor residual spraying on clinical malaria in Malawi, 2018–2020. BMJ Glob Health 6: 1–9.

17. Mzilahowa T et al., 2016. Increasing insecticide resistance in Anopheles funestus and Anopheles arabiensis in Malawi, 2011–2015. Malar J 15: 1–15.

18. Kawali K, Gimnig JE, Mzilahowa T. Evaluating the efficacy of PermaNet® 3.0 and Olyset™ Plus in experimental huts trial in an area of known pyrethroid resistance in Chikwawa District, southern Malawi. (in prep.).

19. World Health Organization, 2017. Conditions for Deployment of Mosquito Nets Treated with a Pyrethroid and Piperonyl Butoxide. Geneva, Switzerland: WHO.

20. Mbewe RB, Keven JB, Mzilahowa T, Wilson ML, Mathanga D, Cohee L, Laufer MW, 2022. Blood-feeding patterns of Anopheles vectors of human malaria in Malawi: implications for malaria transmission and effectiveness of LLIN interventions. Malar J 21: 67.

21. Andronescu LR et al., 2019. Net age, but not integrity, may be the utilisation of malaria research for policy development in Malawi. Health Res Policy Syst 15: 97.

22. Bhatt S et al., 2015. Coverage and system efficiencies of insecticide-treated nets in Africa from 2000 to 2017. eLife 4: e09672.

23. Lorenz LM et al., 2020. Comparative functional survival and equivalent annual cost of 3 long-lasting insecticidal net (LLIN) products in Tanzania: a randomised trial with 3-year follow up. PLoS Med 18: e1003248.

24. Mathanga DP et al., 2015. The high burden of malaria in primary school children in southern Malawi. Am J Trop Med Hyg 93: 779–789.

25. Nankabirwa J, Brooker SJ, Clarke SE, Fernando D, Gitonga CW, Schellenberg D, Greenwood B, 2014. Malaria in school-age children in Africa: an increasingly important challenge. Trans R Soc Trop Med Hyg 109: 1294–1309.

26. Goncalves BP et al., 2017. Examining the human infectious resistance to malaria in Malawi: a case study. Health Res Policy Syst 14: 41.

27. Coalsen JK, Cohee LM, Buchwald AG, Nyamalbo A, Kubale J, Seydel KB, Mathanga D, Taylor TE, Laufer MK, Wilson ML,
2018. Simulation models predict that school-age children are responsible for most human-to-mosquito Plasmodium. *Malar J* 17: 147.

28. Ouedraogo AL et al., 2016. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. *J Infect Dis* 213: 90–99.

29. Walldorf JA, Cohee LM, Coalson JE, Bauleni A, Nkanauna K, Kapito-tembo A, Seydel KB, Ali D, 2015. School-age children are a reservoir of malaria infection in Malawi. *PLoS One* 10: 7.

30. Rek J et al., 2020. Non-adherence to long-lasting insecticide treated bednet use following successful malaria control in Tororo, Uganda. *PLoS One* 15: 11.

31. Andolina C et al., 2021. Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: a longitudinal, observational cohort study. *Lancet Infect Dis* 21: 1568–1578.

32. Buchwald AG et al., 2016. Bed net use among school-aged children after a universal bed net campaign in Malawi. *Malar J* 15: 1–8.

33. Coalson JE, Cohee LM, Walldorf JA, Bauleni A, Mathanga DP, Taylor TE, Wilson ML, Laufer MK, 2019. Challenges in treatment for fever among school-age children and adults in Malawi. *Am J Trop Med Hyg* 100: 287–295.

34. Cohee LM, Nankabirwa JL, Greenwood B, Djimde A, Mathanga DP, 2021. Time for malaria control in school-age children. *Lancet Child Adolesc Health* 5: 537–538.

35. Mphwatiwa T, Witek-McManus S, Mtali A, Okello G, Nguluwe P, Chatsika H, Roschnik N, Halliday KE, Brooker SJ, Mathanga DP, 2017. School-based diagnosis and treatment of malaria by teachers using rapid diagnostic tests and artemisinin-based combination therapy: experiences and perceptions of users and implementers of the Learner Treatment Kit, southern Malawi. *Malar J* 16: 1–11.

36. Halliday KE et al., 2020. Impact of school-based malaria case management on school attendance, health and education outcomes: a cluster randomised trial in southern Malawi. *BMJ Glob Health* 5: 1–14.

37. Cohee LM, Chilombe M, Ngwira A, Jemu SK, Mathanga DP, Laufer MK, 2018. Pilot study of the addition of mass treatment for malaria to existing school-based programs to treat neglected tropical diseases. *Am J Trop Med Hyg* 98: 95–99.

38. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW, 2011. Europe PMC Funders Group urbanization, malaria transmission and disease burden in Africa. *Nat Rev Microbiol* 3: 81–90.

39. Wong J, Shah MP, Mwandama D, Gimnig JE, Lindblade KA, Mathanga DP, 2015. Home visits to assess the reliability of caregiver-reported use of insecticide-treated bednets by children in Machinga District, Malawi. *Am J Trop Med Hyg* 92: 825–827.

40. Dear NF, Kadangwe C, Mzilahowa T, Bauleni A, Mathanga DP, Duster C, Walker ED, Wilson ML, 2018. Household-level and surrounding peri-domestic environmental characteristics associated with malaria vectors Anopheles arabiensis and Anopheles funestus along an urban–rural continuum in Blantyre, Malawi. *Malar J* 17: 229.

41. Mathanga DP, Tembo AK, Mzilahowa T, Bauleni A, Mtimaokena K, Taylor TE, Valim C, Walker ED, Wilson ML, 2016. Patterns and determinants of malaria risk in urban and peri-urban areas of Blantyre, Malawi. *Malar J* 15: 590.

42. Larson PS, Eisenberg JNS, Berrocal VJ, Mathanga DP, Wilson ML, 2021. An urban-to-rural continuum of malaria risk: new analytic approaches characterize patterns in Malawi. *Malar J* 20: 1–14.

43. Adepoju P, 2019. RTS,S malaria vaccine pilots in three African countries. *Lancet* 393: 1685.