Research Article

Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root

Mikhail Olugbemiro Nafiu, Taoheed Adedeji Abdulsalam, and Musbau Adewumi Akanji

Department of Biochemistry, University of Ilorin, P. M. B. 1515 Ilorin, Nigeria

Correspondence should be addressed to Mikhail Olugbemiro Nafiu; olumikail@gmail.com

Received 16 April 2013; Revised 26 June 2013; Accepted 14 July 2013

1. Introduction

Malaria is an enormous health, social, and economic burden for over 40% of the world’s population. It remains one of the most important infectious diseases of mankind, killing 1–3 million people and causing morbidity in more than 500 million people annually [1]. Almost 90 per cent of the deaths from malaria occur in sub-Saharan Africa, where the vulnerable groups are children under 5 years and the pregnant women [2].

The control of malaria is hampered by the rapid selection of parasites resistant to antimalarials. Indeed, there is no single antimalarial in clinical use to which the parasite has not yet developed resistance [3, 4]. Antimalaria drug resistance has become one of the greatest challenges against malaria control. There is widespread multidrug resistance to common antimalarial drugs [1, 5].

Rodent plasmodia such as Plasmodium berghei are commonly used as malaria models in mice and have tremendous impact on the investigations of antimalarial activities of plant extracts. The need to search and develop more effective antimalarial drugs that are inexpensive and readily available to people in the developing countries like Nigeria has necessitated this study. Medicinal plants have been the focus of many anti-infective drugs and alternative sources of antimalarial agents in various parts of the world since long ago [6]. One of such plants claimed to possess antimalarial activities is root of Lecaniodiscus cupanioides.

Lecaniodiscus cupanioides is a tropical plant widely distributed in Africa and Asia. It belongs to the Sapindaceae family and it is identified by various names in Nigeria, such as Ukpo (Igbo), Utantan (Edo), Kafi-nama-zaki (Hausa), and Akika (Yoruba). The plant is ethnomedically reputed to be useful in the treatment of wounds and sores, abdominal swelling caused by liver abscess, fevers, measles, hepato-megaly and burns, among others [7]. The present study was carried out to assess the antimalarial activities of the aqueous extract of root of Lecaniodiscus cupanioides in mice.
2. Materials and Methods

2.1. Plant Materials. The root of *Lecaniodiscus cupanioides* (Sapindaceae) was obtained from "Oja-Oba," Ilorin, Kwara state, and was identified in the Department of Plant Biology, University of Ilorin, Ilorin, Kwara state, Nigeria.

2.2. Aqueous Extraction. The root of the plant was air-dried to constant weight and ground into powdered form with an electric milling machine. Aqueous extract was prepared by soaking 200 g of the powered root in 1.2 liters of distilled water for 24 hours in amber colored bottles. The contents of the bottles were filtered with Whatman no. 1 filter paper and the filtrate collected was evaporated to dryness with steam on water bath (40°C). The dried extract was weighed and reconstituted into desired doses.

2.3. Phytochemical Analysis. A portion of the root powder was subjected to phytochemical analysis, using standard chemical test as described by [8, 9].

2.4. Experimental Animals. Albino mice with average weight of 21.1 g were obtained from the small Animal Holding Unit, Department of Biochemistry, University of Ilorin, Ilorin, Nigeria. The animals were housed in well ventilated plastic cages under standard conditions, and the study was conducted in accordance with the recommendations from the declaration of Helsinki on guiding principles in the care and use of animals.

2.5. Drugs and Reagents. Artesunate used in this study was obtained from Mekophar Chemical Pharmaceutical Joint Stock Company, Vietnam, while chloroquine was from May and Baker Pharmaceutical Company Limited, Nigeria. Other reagents were of analytical grade and were prepared in all glass bottles.

2.6. Malaria Parasite. *Plasmodium berghei* (chloroquine sensitive NK65 strain) was obtained from the Institute for Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Ibadan Nigeria.

2.7. Inoculation of Experimental Mice. Albino mice were infected by intraperitoneal injection of standard inoculum (0.2 mL of 1 × 10⁷ infected erythrocytes) from a single donor mouse previously infected with *Plasmodium berghei* (29 per cent parasitaemia).

2.8. Animal Groupings. The animals were randomly divided into 6 groups of 3 mice each, after confirmation of parasitaemia 72 hours after infection. Group 1 (control) was left untreated but administered appropriate volume of distilled water. Groups 2, 3, and 4 were administered aqueous extract of *Lecaniodiscus cupanioides* through oropharyngeal canulla at the doses of 50, 150, and 250 mg/kg body weight, respectively. Group 5 received artemesunate at a dose of 1.75 mg/kg body weight daily for 3 days while Group 6 animals were treated with 5 mg/kg body weight of chloroquine for the same period.

2.9. Estimation of Percentage Parasitaemia. Percentage parasitaemia was estimated at the end of the observational period of 28 days using the formula

\[
\text{percentage parasitaemia} = \frac{\text{parasitized RBC}}{\text{parasitized RBC} + \text{nonparasitized RBC}} \times 100. \tag{1}
\]

2.10. Estimation of Percentage Chemosuppression. The percentage chemo-suppression of parasite multiplication per days was calculated by using the formula

\[
\% \text{chemo-suppression} = \frac{B - C}{C} \times 100, \tag{2}
\]

where \(B\) = parasitaemia in study group, \(C\) = parasitaemia in control.

2.11. Estimation of Mean Survival Time (MST). The number of days each animal survived was recorded for the animals in each group and mean survival time calculated using the formula

\[
\text{MST} = \frac{\text{sum of days of survival of animals/group}}{\text{total number of animals in the group}}. \tag{3}
\]

2.12. Statistical Analysis. Data were presented as mean of three determinations ± SEM. Statistical analysis was carried out using one-way analysis of variance (ANOVA). Differences were considered statistically significant at \(P < 0.05\).

3. Results

Qualitative and quantitative screening of the components of the plant root revealed the phytochemicals shown in Table 1. The phytochemicals that were present included Alkaloids, saponin, tannins, phenol and anthraquinone.

3.1. Percentage Parasitaemia. Estimation of percentage parasitaemia at the end of 12 days showed the results in Figure 1. The 50 mg/kg body weight of the extract prevented further increase in the baseline parasitaemia until after day 8 before a noticeable rise in parasitaemia was observed. The 150 and 250 mg/kg body weights of the extract also initially reduced the parasitaemia baseline parasitaemia at day 5 but could not maintain the reduction compared to the 50 mg/kg body weight. A reduction in baseline parasitaemia was observed in the artemesunate treated group before resurgence was in the level on day 6. Chloroquine reduced the parasitaemia level throughout the experimental days.

3.2. Mean Survival Time (MST). Table 2 showed the mean survival time for the animals in each group. The least MST of 14 days was recorded for the control group that was left untreated. The mice in the artemesunate group recorded MST of 16 days. The MST of 17 days was recorded for the groups that
Hence it was an appropriate parasite for the study. As this Plasmodium berghei mefloquine, and more recently artemisinin derivatives [13].

Conventional antimalarials, such as chloroquine, halofantrine, also been validated through the identification of several compounds.

Lecaniodiscus cupanioides has been implicated in antimalarial activity of many plants [10]. Saponin, tannin, phenol, and anthraquinone. Alkaloids have been found to be detrimental to several infectious protozoans such as Plasmodium falciparum [11]. Triterpenoid and steroid saponins have been found to be detrimental to several infectious protozoans such as Plasmodium falciparum [11].

Although primate models provide a better prediction of efficacy in humans than the rodent models, the latter have also been validated through the identification of several conventional antimalarials, such as chloroquine, halofantrine, mefloquine, and more recently artemisinin derivatives [13]. Plasmodium berghei are used in the prediction of treatment outcomes. Hence it was an appropriate parasite for the study. As this parasite is sensitive to chloroquine, this drug was employed as a standard drug in this study.

Rane test is a standard test commonly used for antimalarial screening. It relies on the ability of standard inoculum of Plasmodium berghei to kill the recipient mouse thereafter. The extension of survival by the test compound beyond 12 days is regarded as active [14].

When a standard antimalarial drug is used in mice infected with Plasmodium berghei, it suppresses parasitaemia to non-detectable level [15], which is in agreement with the effect of chloroquine in this study. Results from this study showed that the aqueous root extract of Lecaniodiscus cupanioides possesses antimalarial activity that was comparable to that of chloroquine. The observed antimalarial activity was not dose dependent but at a dose of 50 mg/kg body weight a reduction in parasitaemia was recorded with 70% chemo-suppression on day 12 (Table 4). It was also reported that potent antimalarial activities exhibited by Eurycoma longifolia with 80% parasitaemia inhibition at 10 mg/kg and Ardisia crispa [16].

The high parasitaemia obtained at 150 and 250 mg/kg of the extract compared to 50 mg/kg after the fifth day (Figure 1) may mean that at higher doses the extract exacerbated the infection. This may be due to immunosuppressive activity of the extract. It had been reported that oral administration of phytochemicals like saponin, tannins, and phenols possessed ability to suppress cellular immunity [17].

Table 1: Parasitaemia changes following treatment with different doses of aqueous extract of Lecaniodiscus cupanioides and standard drugs.

Treatments	4	5	6	Days	7	8	9	12
Control	1.80 ± 0.12\(^a\)	0.83 ± 0.08\(^a\)	1.90 ± 0.40\(^a\)	1.97 ± 0.14\(^a\)	5.53 ± 1.98\(^b\)	6.60 ± 1.41\(^b\)	9.47 ± 1.18\(^c\)	
Chloroquine	1.80 ± 0.12\(^a\)	0.40 ± 0.40\(^b\)	0.27 ± 0.27\(^a\)	0.23 ± 0.23\(^a\)	0.20 ± 0.00\(^b\)	0.80 ± 0.29\(^a\)	0.40 ± 0.17\(^b\)	
Artesunate	1.80 ± 0.12\(^a\)	1.10 ± 0.59\(^a\)	1.40 ± 0.70\(^a\)	2.07 ± 1.03\(^a\)	4.43 ± 2.41\(^b\)	4.33 ± 0.53\(^b\)	7.50 ± 2.82\(^c\)	
50 mg/kg b.wt extract	1.80 ± 0.12\(^a\)	1.00 ± 0.58\(^a\)	0.43 ± 0.43\(^a\)	0.73 ± 0.38\(^a\)	0.23 ± 0.12\(^a\)	2.10 ± 0.45\(^a\)	2.10 ± 1.3\(^a\)	
150 mg/kg b.wt extract	1.80 ± 0.12\(^a\)	0.53 ± 0.53\(^a\)	1.00 ± 1.00\(^a\)	1.33 ± 1.33\(^a\)	3.50 ± 1.75\(^a\)	3.40 ± 1.70\(^a\)	3.50 ± 0.35\(^a\)	
250 mg/kg b.wt extract	1.80 ± 0.12\(^a\)	2.07 ± 0.54\(^a\)	1.90 ± 0.00\(^a\)	1.67 ± 0.83\(^a\)	2.40 ± 1.44\(^a\)	5.30 ± 0.00\(^b\)	12.47 ± 1.07\(^c\)	

Data are mean of 3 replicates ± SEM. Values carrying different superscripts from the control are significantly different (P < 0.05).

Table 2: Phytochemical constituents of the aqueous root extract of Lecaniodiscus cupanioides.

Phytochemicals	Percentage
Alkaloids	2.37
Saponin	0.336
Tannin	0.012
Phenol	0.008
Anthraquinone	0.002
Steroids	nd
Phlobatannin	nd
Terpenes	nd
Cardiac glycosides	nd
Flavonoids	nd

nd: not detected.

Figure 1: Parasitaemia changes following treatment with different doses of aqueous extract of Lecaniodiscus cupanioides and standard drugs. Values carrying different superscript from the control are significantly different (P < 0.05).
Table 3: Mean survival time of animals for the experiment.

Group	Mean survival time (days)
Control	14
50 mg/kg	17
150 mg/kg	19
250 mg/kg	17
Artesunate	16
Chloroquine	28

Table 4: Percentage chemosuppression of parasitaemia by the aqueous root extract of *L. cupanioides* and standard drugs.

Days	% suppression					
Group	5	6	7	8	9	12
50 mg/kg	60	60	60	90	70	70
150 mg/kg	60	30	30	50	60	10
250 mg/kg	50	40	30	20	20	20
Artesunate	50	20	30	20	30	10
Chloroquine	70	90	90	60	90	100

The determination of percentage inhibition of parasitaemia is the most reliable parameter in antimalarial screening. A mean group parasitaemia level of less than or equal to 90 per cent of that of treated control animals usually indicates that the test compound is active in standard screening studies [14]. Therefore, it is clear from the result (Table 3) that the *P. berghei*–infected mice treated with the aqueous root extract of *L. cupanioides* reduced in percentage parasitaemia compared to those of the untreated control animals. The possible active compounds responsible for the antimalarial activity of *L. cupanioides* may be alkaloid and saponin. The results from this study, therefore, lent scientific credence to the folkloric use of the root extract of *L. cupanioides* for the treatment of malaria in Africa.

5. Conclusion

The present study revealed that oral administration of aqueous root extract of *L. cupanioides* exhibited antimalarial activity in *P. berghei*–infected mice. This suggests the beneficial effects of the herb. It is, however, very important to note that the extract at 50 mg/kg body weight showed the best action. The effect of the extract compared favourably with chloroquine and artemesate. These findings have lent scientific support to the folkloric use of aqueous root extract of *L. cupanioides*.

References

[1] WHO, *The Word Malaria Report From WHO and UNICEF World Health Organization*, Geneva, Switzerland, 2005.
[2] WHO, *Making a difference: Rolling Back Malaria: The World Health Report*, 1999.
[3] N. J. White, “Antimalarial drug resistance,” *Journal of Clinical Investigation*, vol. 113, no. 8, pp. 1084–1092, 2004.
[4] A. Nzila, “Inhibitors of de novo folate enzymes in *Plasmodium falciparum*,” *Drug Discovery Today*, vol. 11, no. 19-20, pp. 939–944, 2006.
[5] F. W. Muregi, S. C. Chhabra, E. N. M. Njagi et al., “In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects,” *Journal of Ethnopharmacology*, vol. 84, no. 2-3, pp. 235–239, 2003.
[6] B. G. Schuster, “Demonstrating the validity of natural products as anti-infective drugs,” *Journal of Alternative and Complementary Medicine*, vol. 7, no. 1, pp. S73–S82, 2001.
[7] O. K. Yemiti and O. O. Adeyemi, “CNS depressant activity of *Lecaniodiscus cupanioides*,” *Fitoterapia*, vol. 76, no. 5, pp. 412–418, 2005.
[8] G. E. Tease and W. C. Evans, *A Text-Book of Pharmacognosy*, Bailliere Tindall, London, UK, 1989.
[9] A. Sofowora, *Medicinal Plants and Traditional Medicines in Africa*, John, Willey & Sons, Chichester, UK, 1993.
[10] S. B. Christensen and A. Kharazmi, “Antimalarial natural products isolation characterization and biological properties,” *Bioactive Compounds from Natural Sources Isolation Characterization and Biological Properties*, pp 379–432, 2001.
[11] H. A. A. Abdulelah and B. A. H. Zainal-Abidin, “In vivo Antimalaria tests of Nigella sativa (Black Seed) different extracts,” *American Journal of Pharmacology and Toxicology*, vol. 2, no. 2, pp. 46–50, 2007.
[12] F. Delmas, C. Di Giorgio, R. Elias et al., “Antileishmanial activity of three saponins isolated from ivy, *α* -hederin, *β*-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro,” *Planta Medica*, vol. 66, no. 4, pp. 343–347, 2000.
[13] A. F. David, J. R. Philip, L. C. Simon, B. Reto, and N. Solomon, “Antimalarial drug discovery: efficacy models for compound screening,” *Nature Reviews Drug Discovery*, vol. 3, no. 6, pp. 509–520, 2004.
[14] I. T. Peter and V. K. Anatoli, *The Current Global Malaria Situation. Malaria Parasite Biology, Pathogenesis, and Protection*, ASM Press, Washington, DC, USA, 1998.
[15] K. Kamei, H. Matsuoka, S.-I. Furuhata et al., “Anti-malarial activity of leaf-extract of Hydrangea macrophylla, a common Japanese plant,” *Acta Medica Okayama*, vol. 54, no. 5, pp. 227–232, 2000.
[16] R. Basir, K. Chan, M. F. Yam et al., “Antimalarial activity of selected Malaysian medicinal plants,” *Phytopharmacol*, vol. 3, no. 1, pp. 82–92, 2012.
[17] M. Sankari, V. Chitra, R. Jubilee, P. Silambu Janaki, and D. Raju, “Immunosuppressive activity of aqueous extract of *Lagenaria sicerarian* (standley) in mice,” *Scholars Research Library*, vol. 2, pp. 291–296, 2010.