Emotional Preferences Towards E-Learning Based on Analytic Hierarchy Process and Kansei for Decision Making

Ana Hadiana

Abstract — Users in software world play key role in determining whether a software, including e-Learning system, has a long time of use or not. Past literatures have highlighted the importance of incorporating emotional requirement into software systems. It is important to consider what users need related to software. One of the critical component of a software systems that directly interacts with users is the interface. Users interface design (UID) could induce critical emotional experience and impression to users the first time they execute a software system. Kansei Engineering is adopted as a methodology to analyze users emotional experience towards the software UID. This research implemented a combination approach of Kansei Engineering and Analytic Hierarchy Process in order to analyze students’ emotional experience as users of e-Learning in higher learning institution, and then determines which of an open source e-Learning system that suits their positive emotional experience. This paper reports an attempt to discover the relationship between UID and users’ emotional experience in e-Learning systems. The research found that there were two critical students’ emotional factors, which are “clear” and “pleasant”. These two factors had a big impact in the selection of an e-Learning system, with factor of clear has larger impact. The research result then suggests the preferred e-Learning system for students based on those that evoked positive emotional experience to students. The result will benefit higher learning institution in promoting e-Learning, to extend the outreach potential of e-Learning among students.

Index Terms — Kansei Engineering, Emotional experience, AHP, UID.

I. INTRODUCTION

E-Learning system in educational institution plays an important role in providing better learning environment over internet, because of its potential to support students’ learning activities and ultimately enhance their learning performance [1, 2].

Today, abundance of open source and proprietary e-Learning systems exist. In general, most of them are similar to each other and have standard functions required to conduct learning activities via internet. It has become harder to determine which ones are appealing and bring positive experience to students, as positive experience appears to be the first phase to success of any electronic or online systems. This hase forced educational institution to find the best mechanism to assess, analyze, and finally select the most suitable one/s to be implemented. It has become a critical matter for education institution, as the implementation of e-Learning system needs to be tailored to students’ implicit requirements.

Software requirements consist of functional aspect and emotional aspect. However, emotional aspect lacks developer’s attention, and e-Learning design and development mostly focuses on functional requirements. Considering about implementation of e-Learning system based on students’ emotional preferences is important to ensure what they need implicitly [3]-[5], and it could encourage the students to enjoy the system, and gather more knowledge during learning.

Nowadays, there have been many kinds of e-Learning system, and all of them functionally have the same facilities for learning such as material learning management, discussion, task management, and so forth. It needs a decision method to determine the suitable e-Learning system for students based on their emotional feeling toward the e-Learning system through its interface.

Kansei Engineering has been widely used in the research of product development including software due to psychological aspects or emotional factors [6], [7]. Kansei Engineering has an ability to describe users’ emotional feeling into an emotional concept of software including e-Learning system [8].

The goal of software design is to make a product that can be understandable easily and communicate effectively [8], [9]. Software designers have to consider users’ emotions and communicate with them to observe what they need implicitly and based on feedback from users it helps to establish the directions of future software [10]. The image of product is subjective, related with users’ experience, and emotional factors [11]. Kansei words in Kansei Engineering are used widely to represent users’ perception for the products. Emotional perception using Kansei words provides good efficiency and satisfaction [12].

Many researchers adopted Kansei Engineering in the field of e-Learning system in order to support and enhance learning performance. Kansei Engineering is targeted to observe what students completely desire about e-Learning based on their learning experiences and tries to translate it into element designs of e-Learning system. Most of evaluations in Kansei Engineering use multivariate statistical method such as principal component analysis and factor analysis [13]-[16]. Multivariate method explores psychological aspects
presented by Kansei Words towards specimens in order to find kind of element designs related to e-Learning system. However, multivariate method has difficulty to find a decision for selecting a specimen of e-Learning system. An education institution needs to take a proper decision by involving students as learning actors, in order to implement an e-Learning system appropriately.

Research [17] applied Kansei Engineering into decision support system, but it still used multivariate analysis to select an object. So, we considered to use Analytic Hierarchy Process (AHP) as method to select an object. AHP generally consider non-emotional factors as attributes such as price, popularity, etc [18].

This research attempted to apply Kansei Engineering into a decision support method of AHP in order to provide an education institution such as university to consider students’ emotional factors based on their learning experiences. The combination of AHP and Kansei Engineering could provide the best decision about what kind of e-Learning system must be implemented in supporting students’ activities. Considering students emotional factors as the fundamental factors on decision of e-Learning system, so the recommended e-Learning system would be used for long time.

II. KANSEI ENGINEERING AND AHP

This research introduced AHP instead of statistical multivariate in evaluating and analyzing the collected data questionnaire. Fig. 1 shows the systematical processes of evaluation in this research to process data questionnaire step by step from raw data questionnaire to final decision.

Five open source e-Learning systems such as Moodle, ATutor, ILIAS, Dokeos, and Opigno are presented by students in order to find kind of element designs related to e-Learning systems. This research constructed an instrument that consists of each Kansei Words with five points Semantic Differential Scale to measure students’ feelings after they look and explore each specimen for a while. 100 university students participated for collecting data questionnaire.

The evaluation begins by calculating the average data of each Kansei Words. After that we have to prepare pairwise comparison of Kansei Words and pairwise comparison of specimens based on each Kansei Words to create matrix comparison. Using matrix comparison of Kansei Words we calculated the weight of each Kansei Words, and also calculate the weight of each specimens based on each Kansei Words. Finally, we combine the weight calculation of Kansei Words and specimens in order to find the most desired an e-Learning system to be recommended. In AHP it is important to check the validity of Kansei Words and specimens to make sure that data consistency and the results are reliable.

III. RESULT AND DISCUSSION

A. Data Questionnaire

The first step is to collect adjective words that have closed relationship to e-Learning system by discussing with educational experts and also from related literatures. This research considered eight adjective words as candidate Kansei Words. These words were enough to express the students’ emotional feelings toward e-Learning system.

Kansei Words (KW)	E-Learning System				
	Moodle	ATutor	ILIAS	Dokeos	Dokeos
1. Dynamic	3.75	3.67	3.77	2.28	2.36
2. Pleasant	4.02	3.94	2.96	2.86	4.18
3. Simple	3.47	2.31	2.25	3.75	3.62
4. Clear	3.76	3.68	3.92	3.86	3.79
5. Harmony	3.81	3.73	3.80	2.11	2.24
6. Unique	2.36	3.82	3.70	2.17	2.25
7. Formal	2.45	3.68	2.23	3.72	2.16
8. Excellent	2.80	2.87	3.16	2.23	2.20

Five open source e-Learning systems such as Moodle, ATutor, ILIAS, Dokeos, and Opigno are prepared as samples or students as learning actors on their popularity in around academic institutions’ environment. Eight Kansei Words are selected to represent students’ emotional factors toward e-Learning systems. This research constructed an instrument that consists of each Kansei Words with five points Semantic Differential Scale to measure students’ feelings after they look and explore each specimen for a while. 100 university students participated for collecting data questionnaire.

After collecting all data questionnaire from 30 respondents of post graduate students who have enough experience of e-Learning, then we calculated them to find the average values of each Kansei Words as shown in Table I. In Kansei research...
commonly used five points semantic differential scale, so each Kansei Words have average’s value between 2 and 4 as shown by the graph in Fig. 2.

For further analysis using AHP, it was important to calculate the average of Kansei Words from all specimens as shown at column average in Table I. This average’s values were used to calculate pairwise comparison between Kansei Words. The average of Kansei Words at each column of specimens are used to calculate the pairwise comparison between specimens per each Kansei Words. These two types of pairwise comparison are fundamental components to calculate and find the final decision in AHP as described in Fig. 3.

![Selecting e-Learning System](image)

Fig. 3. Kansei Words based AHP.

B. Kansei Words’ Weight Calculation

The pair comparisons between Kansei Words are conducted using data at column average in Table I. These pair comparisons are conducted by substitution operator between two Kansei Words. For example, the calculation between dynamic and informative is 3.29-3.85=-0.56, calculation between dynamic and beautiful is 3.29-2.65=0.64. All these operation’s results are shown in Table II.

Data in Table II are then rounded for the next calculation. Because calculation in AHP uses value with starting from 1. Then after rounding process the value has to be incremented by 1 as shown in Table III.

If the result of pairwise comparison is negative then it has to be changed to division, for example the value of pair comparison between dynamic and informative is -2, then it will be changed to $\frac{1}{2}$. With the same way, so all these results are shown in Table IV.

KW	1	2	3	4	5	6	7	8
1	0.42	0.19	0.63	0.03	0.31	0.32	0.52	
2	0.00	0.61	0.21	0.45	0.73	0.74	0.94	
3	0.00	0.82	0.16	0.12	0.13	0.33		
4	0.00	0.66	0.94	0.95	1.15			
5	0.00	0.28	0.29	0.49				
6	0.00	0.01	0.21					
7	0.00	0.20						
8	0.00							

C. Specimens Weight Calculation

The next preparation has to be done is to calculate the pairwise comparison between two specimens based on each Kansei Words. For example, Table V shows the pairwise comparison due to Kansei Word Dynamic using data in Table I, and the completed pairwise comparison are shown in Table VI and Table VII.

| TABLE VI: SPECIMENS PAIRWISE COMPARISON STEP 2 |
|---|---|---|---|---|
| Dynamic | Moodle | ATutor | ILIAS | Dokeos |
| Moodle | 0.00 | 0.08 | -0.02 | 1.67 | 1.39 |
| ATutor | 0.00 | 0.10 | 1.39 | 1.31 |
| ILIAS | 0.00 | 1.49 | 1.41 |
| Dokeos | 0.00 | -0.08 |
| Opigno | 0.00 |

We also have to calculate the pairwise comparison between specimens based on remaining Kansei Words, and all these results can be found in Table VIII until Table XIV.

| TABLE IX: SPECIMENS PAIRWISE COMPARISON STEP 1 |
|---|---|---|---|---|
| Sample | Moodle | ATutor | ILIAS | Dokeos |
| Moodle | 0.00 | 0.08 | -0.02 | 1.67 | 1.39 |
| ATutor | 0.00 | 0.10 | 1.39 | 1.31 |
| ILIAS | 0.00 | 1.49 | 1.41 |
| Dokeos | 0.00 | -0.08 |
| Opigno | 0.00 |

DOI: http://dx.doi.org/10.24018/ejers.2020.5.10.2127
In this research, another interface that also should be considered alternatively in words. The results show that all values of CR are less than CI, CR, and Alpha of specimens based and can be validated to continue further analysis. Table 15 shows pairwise comparison between Kansei Words are reliable values of CI, CR, and Alpha for the result of these results, we found that in order to CR are less than 0.1, it means all values of CR are less than 0.1, it means that pairwise comparison between Kansei Words are reliable and can be validated to continue further analysis. Table 15 shows CI, CR, and Alpha of specimens based on each Kansei Words. The results show that all values of CR are less than 0.1, then all data in this research have good validity.

D. AHP Calculation

This research conducts AHP calculation based on data in Table 4 and Table 7 (including remaining Kansei Words comparison based on specimen). It is important in AHP to check data validity by calculating Consistency Index (CI) and Consistency Ratio (CR).

CI, CR, and Alpha calculation of Table 4 has values of 0.0111, 0.0079, and 8.0775 respectively. Table 8 shows the values of CI, CR, and Alpha for all Kansei Words. According to these results, all values of CR are less than 0.1, it means that pairwise comparison between Kansei Words are reliable and can be validated to continue further analysis. Table 15 shows CI, CR, and Alpha of specimens based on each Kansei Words. The results show that all values of CR are less than 0.1, then all data in this research have good validity.

Final AHP calculations of Kansei Words using online software AHP123 based on data in Table VII – Table XIV are illustrated in Fig. 4 and Fig. 5 to show Kansei Words’ impact and to show the rank of each e-Learning system respectively.

The visualization of Kansei Words’s shown in Fig. 4 describes the rank of weight of each Kansei Words. So, we can figure out the biggest impact of emotional feelings on selection of e-Learning system. According to the result of Fig. 4, we found the two biggest emotional feelings (presented by “pleasant” and “clear”). These two Kansei Words have big impacts on selecting e-Learning system. However, the students’ emotional feeling of “clear” has the biggest impact to prefer a learning system.

Final AHP calculations of Kansei Words using online software AHP123 based on data in Table VII – Table XIV are illustrated in Fig. 4 and Fig. 5 to show Kansei Words’ impact and to show the rank of each e-Learning system respectively.

The visualization of Kansei Words’s shown in Fig. 4 describes the rank of weight of each Kansei Words. So, we can figure out the biggest impact of emotional feelings on selection of e-Learning system. According to the result of Fig. 4, we found the two biggest emotional feelings (presented by “pleasant” and “clear”). These two Kansei Words have big impacts on selecting e-Learning system. However, the students’ emotional feeling of “clear” has the biggest impact to prefer a learning system.

Fig. 4. Kansei Words’ Rank.

Final AHP calculations of Kansei Words using online software AHP123 based on data in Table VII – Table XIV are illustrated in Fig. 4 and Fig. 5 to show Kansei Words’ impact and to show the rank of each e-Learning system respectively.

The visualization of Kansei Words’s shown in Fig. 4 describes the rank of weight of each Kansei Words. So, we can figure out the biggest impact of emotional feelings on selection of e-Learning system. According to the result of Fig. 4, we found the two biggest emotional feelings (presented by “pleasant” and “clear”). These two Kansei Words have big impacts on selecting e-Learning system. However, the students’ emotional feeling of “clear” has the biggest impact to prefer a learning system.

According to these results, we found that in order to enhance students’ learning activities using online learning, it was important to consider the interface of e-Learning system based on perspective of students’ emotional feelings, because the interface plays an critical role as bridge between users and internal system. In this case Kansei Words presented by “clear” and “pleasant” have significant impact to appearance of e-Learning system’s interface. In this research, another emotion that also should be considered alternatively in designing interface of e-Learning system in the future is

Fig. 5. Specimens’ Ranking
“dynamic”.

Through this research we also recommends e-Learning developers to pay more attention to explore students’ implicit requirements such as emotional feelings, because this factor is the same important as functional factor, in order to develop desired product of e-Learning system.

IV. CONCLUSIONS

This research attempts to incorporate Kansei Engineering into AHP in order to find the most suitable e-Learning system based on students’ emotional factors. Kansei Words related to open source e-Learning system were used to describe students’ emotions. Eight adjective words were used as Kansei Words, and five open source e-Learning system were used as specimens. Kansei Words were involved as attributes of AHP in considering a final decision. Kansei Word of clear has the biggest impact on selecting e-Learning system. ATutor e-Learning system is a recommended kind to be implemented as a learning tool at the institution.

Further research could also highlight the importance to assess e-Learning systems and Kansei at larger scale to generalize findings. Furthermore, comparison of AHP with other decision method could also be of importance, as the findings would be useful to find insights whether more decision method could be combined to find clearer decisions.

ACKNOWLEDGMENT

The authors would like to thank to post graduate students of STMIK LIKMI Bandung for collecting data and their great support in discussions and their cooperation during this research. The research also acknowledges the support given by Research Center for Informatics – Indonesian Institute of Sciences (LIPI).

REFERENCES

[1] L. Kun, Z. Ziyin, H. Yeshen, Z. Yulin, T. Wei, and L. Xiaoxia, “Online Behaviour Analysis-Based Student Profile for Intelligent E-Learning”, Journal of Electrical and Computer Engineering. Article ID 9720396, 2017.

[2] D. Rebecca and A. Elizabeth, “An Evaluation of Formative In-Class versus E-Learning Activities to Benefit Student Learning Outcomes in Biomedical Sciences”, Journal of Biomedical Education Article ID 9127978, Article ID 9127978, 2017.

[3] A. Hadiana, A. M. Lokman A. M. “Kansei Evaluation in Open Source E-Learning System”, Jurnal Teknologi 78:12-3: 135-139, 2016.

[4] H. Shimobing, M. Y. Yuhuzti, S. H. Yahaya, and F. Syaifolaida, “The Kansei Design Characteristics towards Learning Style”, Journal of Engineering Education Article ID 584656, 2013.

[5] F. Redzuan, A. M. Lokman, Z. A. Othman, and S. Abdullah, “Kansei Design Model for E-Learning: A Preliminary Finding”, Proceeding of the 10th European Conference on e-Learning (ECEL-2011). Brighton, 2011.

[6] M. Nagamachi, and A. M. Lokman, Innovations of Kansei Engineering Industrial Innovation Series. Adebedji B. Badiru (Eds.), Taylor & Francis Group. Florida, 2011, pp. 85-88.

[7] M. Nagamachi, and A. M. Lokman, Kansei Innovation: Practical Design Applications for Product and Service Development, Taylor & Francis Group, 2015, pp. 123-125.

[8] D. A. Norman, Emotional Design: why we love (or hate) everyday things, New York: Basic Books, 2004, pp. 120-122.

[9] K. G. D. Tharangie, C. M. A. Irfan, C. A. Marasinghe, and K. Yamada, “Kansei engineering assessing system to enhance the usability in E-learning web interfaces: Colour basis”, Proceeding 16th International Conference on Computers in Education(ICCE), Workshop on Testing and Assessment. Taipei, 2008.

[10] A. Hadiana, B. Permana, and D. Tjahjadi. “Kansei Approach in Development of Application Interface Design Based on User’s Emotional Feeling”, European Journal of Engineering Research and Science, vol. 4, no. 10, pp. 121-126, October 2019.

[11] S. Dehaere, The cognitive neuroscience of consciousness. Cambridge, MIT Press, 2001.

[12] C. H. Chen, L. P. Khoo, and W. Yan, “An investigation into affective design using sorting technique and Kohonen self-organising map”, Advanced Engineering Software 37:334-349, 2006.

[13] Y. Chen, “Research on Optimized Design of Kansei Engineering-based Web Interface”, International Conference on Computational and Information Science, 2013.

[14] H. T. Chaminda, A. Basnayake, A. Madurapperuma, and M. Osano, “An interactive E-Learning system using Kansei engineering”, International Conference on Biometrics and Kansei Engineering. 157-162, 2009.

[15] T. C. Sandanayake, and A. P. Madurapperuma, “Conceptual model for E-Learning systems using Kansei Engineering techniques”, International Conference on Biometrics and Kansei Engineering, 148-152, 2009.

[16] F. Redzuan, A. M. Lokman, and Z. A. Othman, “Kansei semantic space for emotion in online learning”, 3rd International Conference on User Science and Engineering (i-USER), Shah Alam, 2014.

[17] N. Sato, M. Anse, and T. Tabe, “A method for constructing a movie-selection support system based on Kansei Engineering”, The 12th International Conference on Human-Computer Interaction (HCII). Beijing, 2007.

[18] T. L. Saaty, “Decision-making with the AHP: Why is the principal Eigenvector Necessary. European Journal of Operational Research. 145:85-91, 2003.

Ana Hadiana was born in 1968. His majority researchs are kansei engineering, software engineering, human computer interface, data mining, distance learning, and enterprise architecture. He is working as researcher at Research Center for Informatics – LIPI – Indonesia, and also is working as lecturer at the postgraduate program STMIK- LIKMI Bandung, Indonesia. He graduated B.Eng. M. Eng from Fuku University – Japan in 1993, 1995 respectively, and graduated Dr. Eng from Shinsyu University – Japan in 2004.