Original Article

Title: Updated trends in cancer in Japan: incidence in 1985-2015 and mortality in 1958-2018 - a sign of decrease in cancer incidence

Authors: Kota Katanoda¹, Megumi Hori¹, Eiko Saito¹, Akiko Shibata², Yuri Ito³, Tetsuji Minami⁴,⁵, Sayaka Ikeda¹,⁶, Tatsuya Suzuki⁷, Tomohiro Matsuda²

Affiliations:
1. Division of Cancer Statistics Integration, Center for Cancer Control and Information Services, National Cancer Center, Tokyo, Japan
2. Center for Cancer Registries, Center for Cancer Control and Information Services, National Cancer Center, Tokyo, Japan
3. Department of Medical Statistics, Research & Development Center, Osaka Medical College, Osaka, Japan
4. Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
5. Division of Prevention, Center for Public Health Sciences, National Cancer
Center, Tokyo, Japan

6. Department of Society and Environmental Medicine, Osaka University, Osaka, Japan

7. Department of Hematology, National Cancer Center Hospital, Tokyo, Japan

Corresponding author: Kota Katanoda
Division of Cancer Statistics Integration, Center for Cancer Control and Information Services, National Cancer Center
5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 JAPAN (e-mail: kkatanod@ncc.go.jp).

Running title: Japanese cancer incidence (1985-2015) and mortality (1958-2018)

Number of tables: 5

Number of figures: 5

Number of supplementary materials: 3 tables, 4 figures

Number of words: 4215
ABSTRACT

Background: Unlike many North American and European countries, Japan has observed a continuous increase in cancer incidence over the last few decades. We examined the most recent trends in population-based cancer incidence and mortality in Japan.

Methods: National cancer mortality data between 1958 and 2018 were obtained from published vital statistics. Cancer incidence data between 1985 and 2015 were obtained from high-quality population-based cancer registries maintained by three prefectures (Yamagata, Fukui, and Nagasaki). Trends in age-standardized rates (ASR) were examined using Joinpoint regression analysis.

Results: For males, all-cancer incidence increased between 1985 and 1996 (annual percent change (APC): +1.1% [95% confidence interval: 0.7, 1.5]), increased again in 2000-2010 (+1.3% [0.9, 1.8]), and then decreased until 2015 (-1.4% [-2.5, -0.3]). For females, all-cancer incidence increased until 2010 (+0.8% [0.6, 0.9] in 1985-2004, +2.4% [1.3, 3.4] in 2004-2010), and stabilized thereafter until 2015. The post-2000 increase was mainly attributable to prostate in males and breast in females, which slowed or
levelled during the first decade of the 2000s. After a sustained increase, all-cancer mortality for males decreased in 1996-2013 (-1.6% [-1.6, -1.5]) and accelerated thereafter until 2018 (-2.5% [-2.9, -2.0]). All-cancer mortality for females decreased intermittently throughout the observation period, with the most recent APC of -1.0% [-1.1, -0.9] in 2003-2018. The recent decreases in mortality in both sexes, and in incidence in males, were mainly attributable to stomach, liver and male lung.

Conclusion: The ASR of all-cancer incidence began decreasing significantly in males and levelled off in females in 2010.

Keywords: Incidence, Mortality, Neoplasms, Population surveillance, Vital statistics
Introduction

Globally, the incidence of major cancers is entering a decreasing phase. For example, a significant decrease in age-standardize rate (ASR) has been observed for colorectal, male lung, female breast, and cervical cancer incidence in North American1,2 and European countries,3,4 as well as Asian population.5 These decreasing trends have been interpreted as having resulted from effective cancer control policies, including tobacco control and screening interventions.6-10 By contrast, Japan is reported to be experiencing a significant increase in ASR of cancer incidence for all major cancer sites except stomach and liver.11-13 These reports are relatively outdated, however, with the most recent year of diagnosis being 2012, and subsequent trends in incidence in Japan have yet to be identified. Further, trends in cancers other than major cancer sites have not been sufficiently documented.11-16 Japan enacted the Cancer Registration Promotion Act in 2013, under which the registration of diagnosed cancer cases was started in 2016 under the new National Cancer Registry (NCR) system. Incidence data collected under the NCR to date has been published for diagnosed cases in 2016 and 2017 only, and at least a decade will be required before the secular trends in these
national data can be evaluated. Accordingly, the present study aimed to examine secular trends in cancer incidence and mortality in Japan, including non-major cancer sites, with the use of the most recent data available from selected high-quality population-based cancer registries and national vital statistics.

Material and Methods

Cancer incidence data were obtained in the framework of the Monitoring of Cancer Incidence in Japan (MCIJ) project.\(^{17,18}\) Annual cancer incidence data between 1985 and 2015 (before introduction of the NCR) were obtained from population-based cancer registries in four prefectures (Miyagi, Yamagata, Fukui, and Nagasaki), which were selected because of the availability of long-term high-quality data.\(^{19}\) Although we had confirmed the validity of using data from these four prefectural cancer registries in terms of representativeness for Japan,\(^{19}\) the updating of data from Miyagi prefecture was unstable as a result of the ongoing data transfer process related to the start of NCR. Therefore, as adopted in our previous study,\(^{11,12}\) the present study used cancer incidence data from three prefectures (Yamagata, Fukui,
and Nagasaki). The validity of using these three prefectures was previously confirmed.¹²

For cancer mortality, we obtained the population and number of annual cancer deaths between 1958 and 2018 from published vital statistics.²⁰ Prefectural population data were obtained from the Center for Cancer Control and Information Services, National Cancer Center, Japan for the years 1985-2006,²¹ and from the Bureau of Statistics, Ministry of Internal Affairs and Communications for the years 2007-2015.²²

We analyzed site-specific cancers and all cancers combined with reference to the International Classification of Diseases (ICD) version 10 codes (C00-C96, additionally D00-D09 for incidence, and C00-C97 for mortality). Twenty-five cancer sites were selected according to the list of cancers adopted by the National Cancer Center, Japan,²³ which were the same as those analyzed in our previous analysis.¹¹,¹² We defined “major cancer sites” as the five leading cancers, and “sub-major cancer sites” as the sixth to tenth leading cancers in the latest cancer statistics (either in males or females and in incidence or mortality).²³ Specifically, major cancer sites were stomach, colon/rectum, liver, pancreas, lung, female breast, uterus, and prostate;
sub-major cancer cites were esophagus, gallbladder and bile ducts, ovary, urinary bladder, kidney and other urinary organs (except bladder), thyroid, and malignant lymphoma. For these major and sub-major cancers, we discussed potential factors underlying the observed trends in incidence and mortality. We added the analysis of all-cancer incidence excluding stomach, stomach and liver, prostate and female breast to examine the effect of these influential cancer sites. ASR were standardized to the 1985 model Japanese population for cancer incidence and mortality.

A Joinpoint regression model24 was applied using the Joinpoint Regression Program version 4.7.0.0, developed by the U.S. National Cancer Institute. In the Joinpoint Regression analysis, the number of incidence or death was assumed to follow a Poisson distribution; the maximum number of joinpoints was set at five; the minimum number of observations from a joinpoint to either end of the data was set at two; and the minimum number of observations between two joinpoints was set at three.

To identify cancer sites contributing to the recent decrease in all-cancer mortality rates, we calculated the degree of contribution of each cancer site using the same method as that adopted in our previous study.12 Briefly, we
calculated the average APC (AAPC) during the last 10 years for the trend of all-cancer and site-specific ASR of mortality for each sex, calculated the amount of change in ASR by multiplying the 10th power of (1+AAPC) by the ASR in the first year of the 10-year period, and then calculated the proportion of each cancer site in terms of the amount of change. For cancer incidence, since a joinpoint was observed during the last 10 years for both sexes (more specifically, the trend changed from significant increase to significant decrease or levelling off), the contribution of each cancer site was calculated using the same method as that used for cancer mortality, during each of the last significant increasing segment and the subsequent decreasing segment (if significant).

This study was approved by the institutional review board of the National Cancer Center, Japan (2019-202).

Results

Figure 1-1 shows annual trends in ASRs of incidence for all-cancer and major cancer sites in the three selected prefectures in Japan. The ASR of all-cancer incidence for males was 376.2 in 1985, which then peaked at 464.5
in 2010 and decreased to 431.8 in 2015. For females, the ASR was 228.3 in 1985, which then peaked at 307.5 in 2013 and decreased to 302.2 in 2015. Trends for sub-major cancers are shown in Figure 1-2.

Table 1 shows the results of the Joinpoint regression analysis on the trends in all-cancer incidence in the three selected prefectures. For males and females combined, the ASR of all-cancer incidence intermittently increased from 1985 through 2010 with a significant APC of +1.0% between 1985-1996 and +1.7% between 2000-2010, and then levelled off after 2010. Similar patterns were seen in the separate analyses for males and females; for males the decrease after 2010 was statistically significant. Overall results were the same when stomach and liver cancers were excluded, when prostate or female breast cancer were excluded (Table 1) or when the data were restricted to ages under 75 years old (eTable 1). Corresponding results that included carcinoma in situ are shown in eTables 2.

Tables 2-1 and 2-2 show the corresponding site-specific results of cancer incidence for males and females, respectively. For major cancer sites in males, pancreatic and prostate cancers showed significant increases through the observation period. The increase in pancreatic cancer was monotonous. On
the other hand, prostate cancer significantly increased in the most recent segment, but the APC was much smaller than in the previous segment (1.3% in 2004-2015 vs. 22.4% in 2000-2004). Major cancers that showed a significant decrease during the most recent segment (the period including the most recent year) were stomach, liver, and lung. Among sub-major cancer sites, esophagus, kidney and other urinary organs except bladder, and malignant lymphoma showed a significant increase in the most recent segment, while gallbladder and bile ducts and urinary bladder showed a significant decrease. For females, significantly increasing major cancers in the most recent segment were colon, rectum, (also colon and rectum combined), pancreas, lung, cervix uteri, and corpus uteri (also uterus as a whole). Notably, a long-term increase in breast cancer (APC: 4.0% in 1985-2010) stopped in 2010. Thyroid cancer significantly increased in 2002-2008 (APC: 6.5%), but levelled off thereafter. Significant decreases were seen in the most recent segment for stomach and liver. Among sub-major cancer sites, esophagus, ovary, kidney and malignant lymphoma showed significant increases in the most recent segment, while gallbladder and urinary bladder showed a significant decrease. Among the other cancer
sites, oral cavity and pharynx, skin and multiple myeloma showed a significant increase in both sexes.

Figure 2 shows the contribution of cancer sites to the significant increase or decrease in all-cancer incidence. For males, prostate cancer accounted for 64.5% of the most recent significant increase in all-cancer incidence between 2000 and 2010. The contributions of other cancer sites were less than 10% (lung: 9.3%, malignant lymphoma: 5.8%, kidney and other urinary organs except bladder: 5.4%, and oral cavity and pharynx: 3.8%). For females, the largest contribution of cancer site to the significant all-cancer increase in incidence between 2004 and 2010 was breast (51.1%), followed by thyroid (8.8%), lung (8.6%), and colon/rectum (7.2%). For males, all-cancer incidence significantly decreased after 2010, and this decrease was mainly accounted for by stomach (41.1%), lung (26.8%), and liver (24.1%) cancers. For females, there was no significant increase in all-cancer incidence after 2010.

Figure 3·1 shows the annual trends in ASRs of mortality for all-cancer and major cancer sites in Japan (national data). The ASR of all-cancer mortality for males was 182.6 in 1958, which then peaked at 226.1 in 1995 and decreased to 152.1 in 2018. For females, the ASR was 130.7 in 1958, which
then peaked at 132.0 in 1960 and decreased to 84.5 in 2015. Trends of sub-major cancers are shown in Figure 3-2.

Table 3 shows the results of the Joinpoint regression analysis of all-cancer mortality from the national data of Japan. For males, the ASR of all-cancer mortality intermittently increased from 1958 through 1996 and decreased thereafter. The decrease accelerated from 2013 from the APC of -1.6% (1996-2013) to -2.5% (2013-2018). For females, the ASR of all-cancer mortality showed a long-term decreasing trend from 1968, with the APCs of -0.8% (1968-1993), -1.4% (1997-2003), and -1.0% (2003-2018). A similar decreasing trend was seen for males and females combined, with the APCs of -0.2% (1966-1993), -1.4% (1997-2015), and -2.2% (2015-2018). Overall results were the same when the data were restricted to ages under 75 years old (eTable 3).

Tables 4·1 and 4·2 show the corresponding site-specific results of cancer mortality for males and females, respectively. For major cancer sites in males, pancreatic cancer alone showed a significant increase during the most recent segment. Conversely, all the remaining major cancer sites showed a significant decrease during the most recent segment: stomach, colon, rectum
(also colon and rectum combined), liver, lung, and prostate. Among sub-major cancer sites also, all cancer sites showed a significant decrease during the most recent segment, except malignant lymphoma, which significantly decreased in 2001-2005. For females, significantly increasing major cancers in the most recent segment were pancreas, breast, cervix uteri, and corpus uteri, (also uterus as a whole). Similarly to males, all the remaining major cancer sites showed a significant decrease during the most recent segment, except colon, which significantly decreased in 1993-2008 and levelled off thereafter. Among sub-major cancer sites, all cancer sites except kidney and malignant lymphoma showed a significant decrease during the most recent segment.

Figure 4 shows the contribution of specific cancer sites to the significant decrease in all-cancer mortality in the most recent 10 years (2009-2018). For males, stomach cancer accounted for 29.8% of the decrease of all-cancer incidence, followed by liver (25.2%) and lung (22.3%). These three sites accounted for 77.3% of the all-cancer decrease. Esophagus, and gallbladder and bile ducts accounted for less than 10% (7.1% and 4.2%, respectively). For females also, stomach, liver, and lung accounted for nearly 75% of the
all-cancer decrease (34.4%, 28.7%, and 11.8%, respectively). Unlike the result in males, however, the contribution of gallbladder and bile ducts was slightly larger than that of lung (12.6%), while ovary contributed 3.7%.

The contributions of cancer sites to the significant changes in all-cancer incidence and mortality under 75 years old are shown in eFigures 1 and 2, respectively. The largest contributions of prostate in males and breast in females were the same as in the results for all ages. There was no significant decrease in all-cancer incidence when age was restricted to under 75 years old. The large contributions of stomach, liver, lung, and gallbladder and bile ducts to the recent reduction in all-cancer mortality were also the same as the result of all ages.

Figure 5-1 shows the trends in incidence and mortality of all cancers combined. There was a marked divergence between the trends in incidence and mortality in both males and females. For males, the divergence became wider after the late 1990s due to the decrease in mortality. For females, the gap between incidence and mortality widened constantly. Figures 5-2 and 5-3 show the trends in incidence and mortality of major and sub-major cancer sites, respectively. Similar to all cancers combined, a divergence between
incidence and mortality was a common feature observed in almost all cancer sites. The results of cancers other than major and sub-major sites are shown in eFigure 3.

Table 5 summarizes the description of observed trends in incidence and mortality and potential interpretations for each cancer site. Decreases in exposure to major risk factor such as infectious agents and tobacco smoking were considered to be associated with the decreases in incidence and/or mortality of related cancers (stomach, liver, lung, and urinary bladder). Effects of the introduction and dissemination of cancer screening were considered to have been reflected in the trends in incidence and/or mortality of several cancers (stomach, colon/rectum, female breast, and prostate), among which the increase in prostate cancer incidence was most remarkable. Improvements in diagnostic measures and treatments were common factors associated with the divergence of incidence and mortality. Potential overdiagnosis was considered to be included in the increase in incidence of prostate and thyroid cancers.

Discussion
This study analyzed the trends in cancer incidence and mortality in Japan with updated representative datasets. A notable finding was that the ASR of all-cancer incidence started to significantly decrease in males and level off in females in 2010, after a long-term intermittent increase.11,12,25 The leading cancer sites that contributed to the past long-term increase were prostate in males and breast in females, but these slowed down or levelled off during the first decade of 2000s. For males, the main contributing cancer sites to this significant decrease were stomach, liver and lung cancers.

The ASR of prostate cancer incidence dramatically increased between 2000 and 2004 (APC: 22.4\%) and slowed down thereafter (APC: 1.3\% in 2004-2015). As summarized in Table 5, this rapid increase in the early 2000s was prominent for localized cancer and suggested the contribution of the spread of prostate-specific antigen (PSA) screening.26 Indeed, PSA screening increased almost threefold in 2003 both in terms of the number of participants and the number of municipalities that adopted it as an organizational screening program, and subsequently shifted to a slow increase.27,28

The levelling off of ASR of female breast cancer incidence after 2010
observed in the present study is an unprecedented phenomenon.11-13 The mortality of female breast cancer 12 also slowed a slowing down of its increasing trend. Long-term increase in incidence as well as mortality can be interpreted as the effect of changes in reproductive factors in Japanese females (Table 5).11,29,30 This effect might be converging in breast cancer, but cancers of the corpus uteri and ovary, which share common reproductive risk factors, continued to increase in incidence. The participation rate of female breast cancer screening (mammography) has been increasing in Japan, and early-stage cancer and carcinoma in situ of the breast was reported to have increased in a study using a prefectural cancer registry.31 Together with the slowing down of the increasing trend in mortality observed in the present study, these changes in trends could have partially reflected the dissemination of breast cancer screening.11

The significant decrease in ASR of all-cancer incidence in males after 2010 was accounted for by stomach, liver and lung cancers. These cancer sites also contributed to the decrease in all-cancer mortality in both males and females (77.3% and 74.9%, respectively; Figure 4). Stomach cancer consistently decreased during the whole observation period with regard to both incidence
and mortality, which can be interpreted to be the result of dramatic reduction of Helicobacter pylori (H. pylori) infection, combined with improvements in sanitation, diet (reduced salt intake), and food preservation techniques (Table 5).11,32,33 A study using data from a hospital-based registry in 2007-2015 showed a decrease in the proportion of cancer in the pylorus, the main subsite of H. pylori-induced cancer.34 A related factor is the eradication of H. pylori, which was covered by the universal health insurance in Japan in 2013 as part of the treatment for chronic gastritis as well as for gastric and duodenal ulcer. Indeed, the reported number of eradication doubled after this extension of coverage.35 Although we observed an acceleration in the decrease in stomach cancer mortality in males (APC: -3.2\% in 1996-2012, -4.6\% in 2012-2018; Table 4-1), this was not consistent for incidence nor in females. Thus, the effect of H. pylori eradication is not clear at the population level.

Evidence of a relation between the absence of H. pylori infection and risk of adenocarcinoma of the esophagus is accumulating.36 The long-term decrease in the prevalence of H. pylori in Japan may be related to the increase in esophageal cancer incidence observed in the present study,
through the pathway from gastroesophageal reflux disease to the occurrence of esophageal cancer (Table 5).

Liver cancer is another site that showed a dramatic decrease in incidence and mortality. As discussed in previous literature, the long-term decrease in liver cancer in Japan is mainly due to the decrease in the prevalence of hepatitis C virus (HCV).11,13,37 The observed acceleration both in incidence and mortality in 2008 or 2010 (Tables 2 and 4) can be interpreted as a reflection of therapeutic improvements made in the early 2000s such as pegylated interferon in 2004 and a protease inhibitor (Telaprevir) in 2011.11,38-40 Improvements in differential diagnosis could have also affected the divergence between incidence and mortality since 1980s (Table 5).

Cancer of the gallbladder and bile ducts had a similar pattern of trends to that of liver cancer. Chronic infections have been proposed as one of the risk factors for gallbladder cancer as well as gallstones and obesity (Table 5).41-43 Control over communicable diseases could have resulted in the reduction of incidence rate of gall bladder cancer.44 Regarding cholangiocarcinoma (CCA), overlapping of risk factors and misclassification between intra- and extra-hepatic CCA45 might explain the similarity to the trends in liver cancer
and cancer of the combined category of gallbladder and bile ducts.

The decrease in lung cancer incidence in males was a phenomenon that had never been observed in previous literature,11-13 Trends in lung cancer incidence in Osaka by histological type revealed that the ASR of adenocarcinoma continuously increased, whereas those of squamous and small-cell carcinomas decreased from 1990s, which was interpreted to be the result of the spread of diagnostic use of computed tomography and the decreasing trend in smoking prevalence, respectively.46,47 Another possibility is the shift from nonfilter to filtered cigarettes in the consumption of tobacco products in Japan (Table 5), which may be more influential because the increase in adenocarcinoma was observed even before the introduction of major diagnostic advances.48 The decrease in overall lung cancer incidence observed in the present study could have reflected the predominant effect of declining smoking prevalence, albeit that analysis stratified by histological type is needed to clarify this possibility. Cancers of the kidney and urinary tracts are also strongly related to tobacco smoking,49,50 but no similarity was found between the trends in these cancers and smoking prevalence except for bladder cancer incidence in males (Table 5).
An important feature of our results is that a decrease in incidence was not observed for colorectal cancer, which can be prevented by organizational screening. The ASR of colorectal cancer has been significantly decreasing in many countries.\(^1\)-\(^3,\(^5\) Using simulation modeling techniques one study revealed that the reduction in colorectal cancer in the U.S. was a combined effect of cancer control measures for prevention and screening.\(^6\) Cervical cancer also showed a sharp contrast; the ASR of this cancer has been consistently decreasing overseas, including the Republic of Korea,\(^1\),\(^2,\(^5\) whereas the present study showed a significant increase in incidence and mortality, just as was observed in our previous analysis.\(^11\)-\(^13\) The increase in mortality of cervical cancer (cancer of the corpus uteri as well) in Japan should be interpreted with caution because it could have included the shift from cancer of the ‘uterus, not otherwise specified (NOS)’. However, the proportion of NOS had been stable since the late 1990s, and the increase was also observed in incidence.\(^11,\(^13\) Cervical cancer can be prevented by a combination of organizational screening and human papillomavirus (HPV) vaccination.\(^7,\(^9,\(^51,\(^52\) In Japan, the national HPV vaccination program has been substantially halted by the fear of potential adverse effects.\(^53,\(^54\) A simulation
modeling study demonstrated that rapid restoration of vaccination coverage and catch-up for missed cohorts could avoid approximately 50,000 cervical cancer cases in 50 years.55 Realizing a reduction in colorectal and cervical cancer incidence by promoting the primary and secondary preventive measures is a major challenge for Japan.

Pancreatic cancer was another example that showed a long-term increase both in incidence and mortality. Increase in risk factors such as type 2 diabetes may be related to the increase in incidence56 and mortality as well. Improvements in diagnostic measures and biopsy for histologic confirmation have also been proposed as underlying factors of the increasing trend in earlier years.57

Monitoring cancer incidence trends is useful in examining the possibility of overdiagnosis at a population level. In the U.S., prostate, female breast, skin, kidney, thyroid, and lung cancers have been listed as examples of potential overdiagnosis, characterized as a sharp increase in incidence in the absence of a clear change in mortality.58 In the present study, this typical pattern seemed to be observed for prostate and thyroid cancers (Figure 5 and Table 5). A common background factor of these cancers is the availability of
non-invasive tests (i.e. PSA for prostate cancer and ultrasonography for thyroid cancer).11,26,58-61 In addition to this descriptive approach, empirical or modelling approaches that compare screened and unscreened (or tested and untested) populations are needed to quantitively examine overdiagnosis.62 Despite the possibility of overdiagnosis, both prostate and thyroid cancers showed significant decreases in mortality. Refinements in diagnosis, treatment and disease management could have contributed to those trends in mortality.60,61,63,64 Malignant lymphoma showed a pattern of a sharp increase in incidence and no clear change in mortality, but changes in lifestyle, improvements in diagnosis and prognosis as well as coding of registry data have been proposed as underlying factors.65,66

Some of the reduction in cancer mortality observed in the present and previous studies 11-13 likely reflects improvements in the prognosis of cancer patients. This effect can be seen in the divergence between trends in incidence and mortality (Figure 5), which is consistent with the evidence of improved diagnosis, treatment, and disease management cited in Table 5. Indeed, several studies on hematological cancers showed that the introduction of a new drug or treatment was associated with a reduction in
mortality at the national level. Studies using population-based cancer registries have also reported increases in survival rates that can be interpreted as a reflection of improvements in treatment. Our study group is planning to update these reports using the most recent MCIJ dataset (patients diagnosed in 1993-2015).

A strength of the present study is the representativeness of the data. Mortality data were from the national vital statistics and based on a complete mandatory reporting system. Incidence data were from three prefectures, but the representativeness of the data in terms of secular trends has been validated.

One of the limitations of the present study is that the trends in cancer incidence might have been affected by an improvement in the completeness and data quality of prefectural cancer registries. Indeed, even in the three present prefectures that have long-term high-quality data, there was a slight increase in completeness and quality indices during the first decade of 2000s (eFigure 4). The observed increases in incidence in this period might therefore reflect an improvement in data completeness. A second limitation is that our analysis was only descriptive. Furthermore, the cancers we
analyzed were not grouped into clinically relevant subtypes. As stated above, further research is required to clarify factors underlying the observed cancer trends, such as analyses according to clinical stage or histological type and modelling approaches.

In conclusion, this analysis of cancer trends in Japan revealed that the ASR of all-cancer incidence started to decrease significantly in males and level off in females in 2010, after a long-term intermittent increase. The convergence of an increase in all-cancer incidence was mainly due to the slowing down of prostate and breast cancers in males and females, respectively. The ASR of all-cancer mortality continued to decrease, the main contributing cancer sites of which were still stomach, liver, and male lung.

FUNDING

This work was supported by a Grant-in-aid for Cancer Control Policy from the Ministry of Health, Labour, and Welfare, Japan (201908015A).

Potential conflicts of interest

Kota Katanoda received a JMWH Bayer Grant (funded by Bayer) from the Japan Society for Menopause and Women's Health. Eiko Saito received a
grant from the Pfizer Health Research Foundation. Tatsuya Suzuki received a personal fee from Chugai Pharmaceutical. All of these financial relationships are outside the present study and did not affect any part of the work.
Figure 1-1. Annual trends in age-standardized rates of all-cancer and site-specific cancer incidence: data from three prefectures (1985–2015): Major sites a,b.

a. Yamagata, Fukui, and Nagasaki prefectures.

b. Standardized to the Japanese model population in 1985.

c. Cervix and corpus uteri are shown in Figure 1-2.

Figure 1-2. Annual trends in the age-standardized rates of all-cancer and site-specific cancer incidence: data from three prefectures (1985–2015): Sub-major sites a,b.

a. Yamagata, Fukui, and Nagasaki prefectures.

b. Standardized to the Japanese model population in 1985.

Figure 2. Contribution of cancer sites to changes in incidence.

Figure 3-1. Annual trends in age-standardized rates of all-cancer and
site-specific cancer mortality: national data (1958–2018): Major sites a.

a. Standardized to the Japanese model population in 1985.

b. Cervix and corpus uteri are shown in Figure 3-2.

Figure 3-2. Annual trends in the age-standardized rates of all-cancer and site-specific cancer mortality: national data (1958–2018):

Sub-major sites a

a. Standardized to the Japanese model population in 1985.

Figure 4. Contribution of cancer sites to the decrease in mortality in the most recent 10 years (2009-2018).

Figure 5-1. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: All cancers combined.

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures,
Mortality: national data.

b. Standardized to the Japanese model population in 1985.

Figure 5-2. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: Major sites

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures,
Mortality: national data.

b. Standardized to the Japanese model population in 1985.

Figure 5-3. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: Sub-major sites.

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures,
Mortality: national data.

b. Standardized to the Japanese model population in 1985.
References

1. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer 2020.

2. Canadian Cancer Statistics 2019. Canadian Cancer Society, [Apr. 1, 2020 accessed]; Available from: http://cancer.ca/Canadian-Cancer-Statistics-2019-EN.

3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683-691.

4. Dafni U, Tsourti Z, Alatsathianos I. Breast Cancer Statistics in the European Union: Incidence and Survival across European Countries. Breast Care (Basel) 2019; 14: 344-353.

5. Hong S, Won YJ, Park YR, Jung KW, Kong HJ, Lee ES, et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2017. Cancer Res Treat 2020; 52: 335-350.

6. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, et al. Annual report to the nation on the status of cancer, 1975-2006,
featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010; 116: 544-73.

7. Guo F, Cofie LE, Berenson AB. Cervical Cancer Incidence in Young U.S. Females After Human Papillomavirus Vaccine Introduction. Am J Prev Med 2018; 55: 197-204.

8. Holford TR, Meza R, Warner KE, Meernik C, Jeon J, Moolgavkar SH, et al. Tobacco control and the reduction in smoking-related premature deaths in the United States, 1964-2012. JAMA 2014; 311: 164-71.

9. Lee JH, Kim H, Choi H, Jeong H, Ko Y, Shim SH, et al. Contributions and Limitations of National Cervical Cancer Screening Program in Korea: A Retrospective Observational Study. Asian Nurs Res (Korean Soc Nurs Sci) 2018; 12: 9-16.

10. Thun M, Peto R, Boreham J, Lopez AD. Stages of the cigarette epidemic on entering its second century. Tob Control 2012; 21: 96-101.

11. JACR Monograph Supplement 2 "Cancers truely on the rise or decline". Tokyo, Japan: Japanese Association of Cancer Registries; 2016. [in Japanese]
12. Katanoda K, Hori M, Matsuda T, Shibata A, Nishino Y, Hattori M, et al. An updated report on the trends in cancer incidence and mortality in Japan, 1958-2013. Jpn J Clin Oncol 2015; 45: 390-401.

13. Katanoda K, Matsuda T, Matsuda A, Shibata A, Nishino Y, Fujita M, et al. An updated report of the trends in cancer incidence and mortality in Japan. Jpn J Clin Oncol 2013; 43: 492-507.

14. **Fukui Prefecture Cancer Registry.** Fukui Prefecture, [Nov. 13, 2020 accessed]; Available from: https://www.pref.fukui.lg.jp/doc/kenkou/gantouroku.html. [in Japanese]

15. **Nagasaki Prefecture Cancer Registry Report.** Nagasaki Prefecture, [Nov. 13, 2020 accessed]; Available from: http://gantaisaku.pref.nagasaki.jp/nagasaki_report.html. [in Japanese]

16. **Yamagata Prefecture Cancer Incidence Data Tables.** Yamagata Prefecture, [Nov. 13, 2020 accessed]; Available from: https://www.pref.yamagata.jp/090015/kenfuku/iryo/gan/kankeishamuke/gantouroku/syuukei.html. [in Japanese]

17. Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H, et al. Cancer incidence and incidence rates in Japan in 2009: a study of 32
population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 2015; 45: 884-91.

18. Matsuda T, Sobue T. Recent trends in population-based cancer registries in Japan: the Act on Promotion of Cancer Registries and drastic changes in the historical registry. Int J Clin Oncol 2015; 20: 11-20.

19. Katanoda K, Ajiki W, Matsuda T, Nishino Y, Shibata A, Fujita M, et al. Trend analysis of cancer incidence in Japan using data from selected population-based cancer registries. Cancer Sci 2012; 103: 360-368.

20. Vital Statistics Japan 2018. Health and Welfare Statistics Association, [Apr. 21, 2020 accessed]; Available from: http://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do. [in Japanese]

21. Population files for population-based cancer registry. Center for Cancer Control and Information Services, National Cancer Center, [Apr. 21, 2020 accessed]; Available from: https://ganjoho.jp/reg_stat/statistics/dl/statistics_p05.html. [in Japanese]

22. Estimated population (e-Stat). Bureau of Statistics, Ministry of Internal Affairs and Communications accessed]; Available from: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei
23. Cancer Statistics in Japan: Table download. Cancer Information Services, National Cancer Center, Japan, [Aug. 10, 2020 accessed]; Available from: https://ganjoho.jp/en/professional/statistics/table_download.html.

24. Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000; 19: 335-51.

25. Graph Database. Center for Cancer Control and Information Services, National Cancer Center, Japan, [May 18, 2020 accessed]; Available from: http://gdb.ganjoho.jp/graph_db/index?changeLang=Submit.

26. Saito E, Hori M, Matsuda T, Yoneoka D, Ito Y, Katanoda K. Long-term Trends in Prostate Cancer Incidence by Stage at Diagnosis in Japan Using the Multiple Imputation Approach, 1993-2014. Cancer Epidemiol Biomarkers Prev 2020; 29: 1222-1228.

27. Final report on the prostate cancer screening study (Heisei 13-17). Tokyo: The Japan Foundation for Prostate Research, 2011. [in Japanese]

28. Situation of the implementation of prostate cancer screening by
municipality -June 2015 survey. Tokyo: The Japan Foundation for Prostate Research, 2015. [in Japanese]

29. Hosokawa M, Imazeki S, Mizunuma H, Kubota T, Hayashi K. Secular trends in age at menarche and time to establish regular menstrual cycling in Japanese women born between 1930 and 1985. BMC Womens Health 2012; 12: 19.

30. Annual trends in number of birth, birth rate, male-to-female birth ratio, and total fertility rate. e-Stat (Portal site for Japanese Government Statistics), [Nov. 13, 2020 accessed]: Available from: https://www.e-stat.go.jp/en/dbview?sid=0003214664. [in Japanese]

31. Toyoda Y, Tabuchi T, Nakayama T, Hojo S, Yoshioka S, Wakabayashi Y, et al. Trends in the clinical stage distribution of breast cancer in Osaka, Japan. Breast Cancer 2018; 25: 250-256.

32. Pham TM, Quy PN, Horimatsu T, Muto M, Shack L, Cheung WY, et al. Premature mortality due to stomach cancer in Japan: a nationwide analysis from 1980 to 2015. Ann Epidemiol 2020; 47: 19-24.

33. Wang C, Nishiyama T, Kikuchi S, Inoue M, Sawada N, Tsugane S, et al. Changing trends in the prevalence of H. pylori infection in Japan
(1908-2003): a systematic review and meta-regression analysis of 170,752 individuals. Sci Rep 2017; 7: 15491.

34. Koizumi S, Motoyama S, Watanabe N, Matsuhashi T, Iijima K. Chronological Changes in the Gastric Cancer Subsite in Akita, Japan: The Trends from the Data of a Hospital-Based Registration System. Tohoku J Exp Med 2018; 246: 131-140.

35. Tsuda M, Asaka M, Kato M, Matsushima R, Fujimori K, Akino K, et al. Effect on Helicobacter pylori eradication therapy against gastric cancer in Japan. Helicobacter 2017; 22: e12415.

36. Lagergren J. Adenocarcinoma of oesophagus: what exactly is the size of the problem and who is at risk? Gut 2005; 54 Suppl 1: i1-5.

37. Tanaka H, Uera F, Tsukuma H, Ioka A, Oshima A. Distinctive change in male liver cancer incidence rate between the 1970s and 1990s in Japan: comparison with Japanese-Americans and US whites. Jpn J Clin Oncol 2007; 37: 193-6.

38. Lange CM, Jacobson IM, Rice CM, Zeuzem S. Emerging therapies for the treatment of hepatitis C. EMBO Mol Med 2014; 6: 4-15.

39. Cortez KJ, Kottilil S. Beyond interferon: rationale and prospects for
newer treatment paradigms for chronic hepatitis C. Ther Adv Chronic Dis 2015; 6: 4-14.

40. Suzuki T, Nakashima K, Chida T, Ito M. Advances in drug development for hepatitis C. Uirusu 2015; 65: 239-244. [in Japanese]

41. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective. Continuous Update Project Expert Report. World Cancer Research Fund/American Institute for Cancer Research, [Nov. 13, 2020 accessed]; Available from: https://www.wcrf.org/dietandcancer.

42. Rawla P, Sunkara T, Thandra KC, Barsouk A. Epidemiology of gallbladder cancer. Clin Exp Hepatol 2019; 5: 93-102.

43. Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23: 3978-3998.

44. Kumar S, Kumar S, Kumar S. Infection as a risk factor for gallbladder cancer. J Surg Oncol 2006; 93: 633-9.

45. Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int 2019; 39 Suppl 1: 19-31.

46. Kinoshita FL, Ito Y, Morishima T, Miyashiro I, Nakayama T. Sex
differences in lung cancer survival: long-term trends using population-based cancer registry data in Osaka, Japan. Jpn J Clin Oncol 2017; 47: 863-869.

47. Toyoda Y, Nakayama T, Ioka A, Tsukuma H. Trends in lung cancer incidence by histological type in Osaka, Japan. Jpn J Clin Oncol 2008; 38: 534-9.

48. Ito H, Matsuo K, Tanaka H, Koestler DC, Ombao H, Fulton J, et al. Nonfilter and filter cigarette consumption and the incidence of lung cancer by histological type in Japan and the United States: analysis of 30-year data from population-based cancer registries. Int J Cancer 2011; 128: 1918-28.

49. The Health Consequences of Smoking - 50 Years of Progress A Report of the Surgeon General. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, [Nov. 13, 2020 accessed]; Available from: https://www.cdc.gov/tobacco/data_statistics/sgr/50th-anniversary/index.ht
50. *Smoking and Health Report of the Committee on Health Effects of Smoking.* Ministry of Health, Labour and Welfare, [Jan. 8, 2019 accessed]: Available from: https://www.mhlw.go.jp/stf/shingi2/0000135586.html. [in Japanese]

51. Luostarinen T, Apter D, Dillner J, Eriksson T, Harjula K, Natunen K, et al. Vaccination protects against invasive HPV-associated cancers. *Int J Cancer* 2018; 142: 2186-2187.

52. Smith M, Canfell K. Impact of the Australian National Cervical Screening Program in women of different ages. *Med J Aust* 2016; 205: 359-364.

53. Hanley SJ, Yoshioka E, Ito Y, Kishi R. HPV vaccination crisis in Japan. *Lancet* 2015; 385: 2571.

54. Tsuda K, Yamamoto K, Leppold C, Tanimoto T, Kusumi E, Komatsu T, et al. Trends of Media Coverage on Human Papillomavirus Vaccination in Japanese Newspapers. *Clin Infect Dis* 2016; 63: 1634-1638.

55. Simms KT, Hanley SJB, Smith MA, Keane A, Canfell K. Impact of HPV vaccine hesitancy on cervical cancer in Japan: a modelling study. *Lancet*
Public Health 2020; 5: e223-e234.

56. Luo G, Zhang Y, Guo P, Ji H, Xiao Y, Li K. Global Patterns and Trends in Pancreatic Cancer Incidence: Age, Period, and Birth Cohort Analysis. Pancreas 2019; 48: 199-208.

57. Lucas AL, Malvezzi M, Carioli G, Negri E, La Vecchia C, Boffetta P, et al. Global Trends in Pancreatic Cancer Mortality From 1980 Through 2013 and Predictions for 2017. Clin Gastroenterol Hepatol 2016; 14: 1452-1462 e4.

58. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst 2010; 102: 605-13.

59. Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer 2019; 19: 349-358.

60. Li R, Wang Y, Du L. A rapidly increasing trend of thyroid cancer incidence in selected East Asian countries: Joinpoint regression and age-period-cohort analyses. Gland Surg 2020; 9: 968-984.

61. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer
62. Ripping TM, Ten Haaf K, Verbeek ALM, van Ravesteyn NT, Broeders MJM. Quantifying Overdiagnosis in Cancer Screening: A Systematic Review to Evaluate the Methodology. J Natl Cancer Inst 2017; 109.

63. Damber JE. Decreasing mortality rates for prostate cancer: possible role of hormonal therapy? BJU Int 2004; 93: 695-701.

64. Baade PD, Youlde DR, Cramb SM, Dunn J, Gardiner RA. Epidemiology of prostate cancer in the Asia-Pacific region. Prostate Int 2013; 1: 47-58.

65. Carioli G, Malvezzi M, Bertuccio P, Hashim D, Waxman S, Negri E, et al. Cancer mortality in the elderly in 11 countries worldwide, 1970-2015. Ann Oncol 2019; 30: 1344-1355.

66. Chihara D, Ito H, Matsuda T, Shibata A, Katsumi A, Nakamura S, et al. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol 2014; 164: 536-45.

67. Chihara D, Ito H, Matsuda T, Katanoda K, Shibata A, Saika K, et al. Decreasing trend in mortality of chronic myelogenous leukemia patients after introduction of imatinib in Japan and the U.S. Oncologist 2012; 17: 1547-50.
68. Chihara D, Ito H, Matsuda T, Katanoda K, Shibata A, Taniguchi S, et al. Association between decreasing trend in the mortality of adult T-cell leukemia/lymphoma and allogeneic hematopoietic stem cell transplants in Japan: analysis of Japanese vital statistics and Japan Society for Hematopoietic Cell Transplantation (JSHCT). Blood Cancer J 2013; 3: e159.

69. Usui Y, Ito H, Koyanagi Y, Shibata A, Matsuda T, Katanoda K, et al. Changing trend in mortality rate of multiple myeloma after introduction of novel agents: a population-based study. Int J Cancer 2020.

70. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018; 391: 1023-1075.

71. Yoshimura A, Ito H, Nishino Y, Hattori M, Matsuda T, Miyashiro I, et al. Recent Improvement in the Long-term Survival of Breast Cancer Patients by Age and Stage in Japan. J Epidemiol 2018; 28: 420-427.

72. Oze I, Ito H, Nishino Y, Hattori M, Nakayama T, Miyashiro I, et al.
Trends in Small-Cell Lung Cancer Survival in 1993-2006 Based on Population-Based Cancer Registry Data in Japan. J Epidemiol 2019; 29: 347-353.

73. Inoue S, Hosono S, Ito H, Oze I, Nishino Y, Hattori M, et al. Improvement in 5-Year Relative Survival in Cancer of the Corpus Uteri From 1993-2000 to 2001-2006 in Japan. J Epidemiol 2018; 28: 75-80.

74. Nakagawa H, Ito H, Hosono S, Oze I, Mikami H, Hattori M, et al. Changes in trends in colorectal cancer incidence rate by anatomic site between 1978 and 2004 in Japan. Eur J Cancer Prev 2017; 26: 269-276.

75. Wong MCS, Huang J, Lok V, Wang J, Fung F, Ding H, et al. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. Clin Gastroenterol Hepatol 2020.

76. Takayama K. Progress of medical therapy for advanced lung cancer. Journal of Kyoto Prefectural University of Medicine 2016; 125: 19-25. [in Japanese]

77. Shigeta S, Shida M, Nagase S, Ikeda M, Takahashi F, Shibata T, et al. Epidemiological guideline influence on the therapeutic trend and patient outcome of uterine cervical cancer in Japan: Japan society of gynecologic
oncology guideline evaluation committee project. Gynecol Oncol 2020; 159: 248-255.

78. Utada M, Chernyavskiy P, Lee WJ, Franceschi S, Sauvaget C, de Gonzalez AB, et al. Increasing risk of uterine cervical cancer among young Japanese women: Comparison of incidence trends in Japan, South Korea and Japanese-Americans between 1985 and 2012. Int J Cancer 2019; 144: 2144-2152.

79. Yagi A, Ueda Y, Kakuda M, Tanaka Y, Ikeda S, Matsuzaki S, et al. Epidemiologic and Clinical Analysis of Cervical Cancer Using Data from the Population-Based Osaka Cancer Registry. Cancer Res 2019; 79: 1252-1259.

80. Shigeta S, Nagase S, Mikami M, Ikeda M, Shida M, Sakaguchi I, et al. Assessing the effect of guideline introduction on clinical practice and outcome in patients with endometrial cancer in Japan: a project of the Japan Society of Gynecologic Oncology (JSGO) guideline evaluation committee. J Gynecol Oncol 2017; 28: e76.

81. Kato H, Nakajima M. Treatments for esophageal cancer: a review. Gen Thorac Cardiovasc Surg 2013; 61: 330-5.
82. Kato K, Chiba T, Shimada T, Shibuya D. Management of screening endoscopy for population-based screening for gastric cancer. Gastroenterological Endoscopy 2016; 58: 2251-2261.

83. Sugiyama T. Gynecologic cancers. Japanese Journal of Chemotherapy 2006; 54: 239-48. [in Japanese]

84. Kigawa J, Katabuchi H, Yaegashi N. Evaluation and revision of treatment guidelines for ovarian cancer (2010). Japanese Journal of Chemotherapy 2010; 37: 617-9. [in Japanese]

85. Aoe J, Ito Y, Fukui K, Nakayama M, Morishima T, Miyashiro I, et al. Long-term trends in sex difference in bladder cancer survival 1975-2009: A population-based study in Osaka, Japan. Cancer Med 2020.

86. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol 2017; 71: 96-108.

87. Atkins MB, Choueiri TK. *Epidemiology, pathology, and pathogenesis of renal cell carcinoma.* [No. 16, 2020 accessed]; Available from: https://www.uptodate.com/contents/epidemiology-pathology-and-pathogenesis-of-renal-cell-carcinoma.
88. Bagheri MH, Ahlman MA, Lindenberg L, Turkbey B, Lin J, Cahid Civelek A, et al. Advances in medical imaging for the diagnosis and management of common genitourinary cancers. Urol Oncol 2017; 35: 473-491.

89. Pal SK, Ghate SR, Li N, Swallow E, Peeples M, Zichlin ML, et al. Real-World Survival Outcomes and Prognostic Factors Among Patients Receiving First Targeted Therapy for Advanced Renal Cell Carcinoma: A SEER-Medicare Database Analysis. Clin Genitourin Cancer 2017; 15: e573-e582.

90. Washio M, Mori M, Khan M, Sakauchi F, Watanabe Y, Ozasa K, et al. Diabetes mellitus and kidney cancer risk: the results of Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study). Int J Urol 2007; 14: 393-7.

91. Washio M, Mori M, Sakauchi F, Watanabe Y, Ozasa K, Hayashi K, et al. Risk factors for kidney cancer in a Japanese population: findings from the JACC Study. J Epidemiol 2005; 15 Suppl 2: S203-11.
Table 1. Results of joinpoint regression analysis on the trends in all-cancer incidence data from three prefectures (1985-2015)

Age	Sex	Cancer site	ICD-10	Number of joinpoints	Start	End	Annual %	95% confidence interval	Line segment	
All ages	Male and female	All cancers	C00-C96	3	1985	1996	1.0	0.7	1.3	
					1996	2000	-0.5	-2.6	1.6	
					2000	2010	1.7	1.3	2.0	*
					2010	2015	-0.5	-1.4	0.4	
		All cancers excluding stomach	C00-C96 (excluding C16)	3	1985	1996	1.9	1.6	2.3	*
					1996	2000	0.2	-2.1	2.6	
					2000	2010	2.2	1.8	2.6	*
					2010	2015	-0.3	-1.3	0.6	
		All cancers excluding stomach and liver	C00-C96 (excluding C16 and C22)	2	1985	2005	1.7	1.5	1.9	*
					2005	2010	2.8	1.1	4.6	*
					2010	2015	0.1	-1.3	1.1	
Male	All cancers	C00-C96	3	1985	1996	1.1	0.7	1.5		*
					1996	2000	-0.9	-3.6	1.9	
					2000	2010	1.3	-0.9	3.1	
					2010	2015	-1.4	-2.5	0.3	*
	All cancers excluding stomach	C00-C96 (excluding C16)	3	1985	1996	2.1	1.6	2.6		*
					1996	2000	-0.2	-3.4	3.1	
					2000	2010	1.8	1.3	2.4	*
					2010	2015	-1.3	-2.6	0.0	*
	All cancers excluding stomach and liver	C00-C96 (excluding C16 and C22)	1	1985	2010	1.8	1.6	1.9		*
					2010	2015	-0.6	-2.1	0.9	
					2010	2015	-0.6	-1.0	-0.2	*
	All cancers excluding prostate	C00-C96 (excluding C63)	3	1985	1995	1.0	0.6	1.4		*
					1995	2005	-0.6	-1.0	-0.2	*
					2005	2009	1.8	-0.4	4.0	
					2009	2015	-1.3	-2.0	-0.5	*
Female	All cancers	C00-C96	2	1985	2004	0.8	0.6	0.9		*
					2004	2010	2.4	1.3	3.4	*
					2010	2015	0.2	-0.8	1.2	
	All cancers excluding stomach	C00-C96 (excluding C16)	2	1985	2005	1.6	1.4	1.7		*
					2005	2010	3.0	1.4	4.7	*
					2010	2015	0.3	-0.8	1.4	
	All cancers excluding stomach and liver	C00-C96 (excluding C16 and C22)	2	1985	2005	1.6	1.5	1.8		*
					2005	2010	3.3	1.7	4.9	*
					2010	2015	0.5	-0.6	1.6	
	All cancers excluding breast	C00-C96 (excluding C50)	2	1985	2005	0.2	0.1	0.4		*
					2005	2012	1.6	0.7	2.4	*
					2012	2015	-1.2	-1.8	1.3	

a. Yamagata, Fukui and Nagasaki prefectures.

*Annual % change was statistically significantly different from zero (P < 0.05).
Table 2-1. Results of joinpoint regression analysis on the trends in site-specific cancer incidence: data from three prefectures (1985-2015); Male*

Cancer site	ICD-10	Number of joinpoints	Line segment Start	Line segment End	Annual % change	95% confidence interval Lower	95% confidence interval Upper
Major							
Stomach	C16	2	1985	2005	-1.7	-1.9	-1.5 *
Colon	C18	1	1985	1995	6.1	4.8	7.4 *
Rectum	C19-C20	1	1985	1994	4.3	2.3	6.2 *
Colon/rectum	C18-C20	1	1985	1994	5.8	4.4	7.2 *
Liver	C22	2	1985	1991	3.3	0.9	5.8 *
Pancreas	C25	0	1985	2015	0.6	0.3	0.8 *
Lung, trachea	C33-C34	1	1985	2010	0.8	0.6	0.9 *
Prostate	C61	2	1985	2000	4.7	3.0	6.5 *
Sub-major							
Esophagus	C15	0	1985	2015	1.0	0.7	1.2 *
Gallbladder and bile ducts	C23-C24	0	1985	2015	-0.8	-1.1	-0.4 *
Urinary bladder	C67	1	1985	2003	0.9	0.3	1.4 *
Kidney and other urinary organs (except bladder)	C64-C66 C68	0	1985	2015	2.8	2.4	3.2 *
Thyroid	C73	2	1985	2002	2.0	0.9	3.2 *
Maligineant lymphoma	C81-C85 C96	1	1985	2000	0.9	0.1	1.7 *
Others							
Oral cavity and pharynx	C00-C14	0	1985	2015	2.3	1.9	2.8 *
Larynx	C32	0	1985	2015	-0.5	-1.0	0.0 *
Skin	C43-C44	0	1985	2015	2.6	2.1	3.1 *
Breast	C50	0	1985	2015	1.7	0.2	3.2 *
Brain, nervous system	C70-C72	0	1985	2015	-0.1	-0.6	0.5
Multiple myeloma	C88-C90	0	1985	2015	0.8	0.4	1.2 *
Leukemia	C91-C95	0	1985	2015	0.0	-0.3	0.3

* Yamagata, Fukui and Nagasaki prefectures.

* Annual % change was statistically significantly different from zero (P < 0.05).
Table 2-2. Results of joinpoint regression analysis on the trends in site-specific cancer incidence: data from three prefectures (1985-2015); Female

Cancer site	ICD-10	Number of joinpoints	Line segment	Annual % change	95% confidence interval		
			Start	End	Lower	Upper	
Major							
Stomach	C16	1	1985	2003	-2.6	-3.0	-2.2 *
		2003 2015			-1.2	-2.0	-0.4 *
Colon	C18	1	1985	1995	3.6	2.6	4.6 *
		1995 2015			0.5	0.2	0.8 *
Rectum	C19-C20	2	1985	1999	1.9	1.5	2.3 *
		1999 2004			-3.2	-5.5	-0.7 *
		2004 2015			1.4	0.9	2.0 *
Colon/rectum	C18-C20	2	1985	1996	3.2	2.6	3.7 *
		1996 2003			-0.7	-1.8	0.4
		2003 2015			0.9	0.5	1.3 *
Liver	C22	2	1985	1995	2.8	1.4	4.2 *
		1995 2010			-1.2	-1.9	-0.4 *
		2010 2015			-8.5	-12.2	-4.7 *
Pancreas	C25	0	1985	2015	1.3	1.0	1.6 *
Lung, trachea	C33-C34	0	1985	2015	1.9	1.6	2.1 *
Breast	C50	1	1985	2010	4.0	3.8	4.2 *
		2010 2015			1.7	-0.2	3.6
Uterus	C53-C55	1	1985	1991	-4.6	-7.8	-1.4 *
		1991 2015			2.8	2.3	3.2 *
Cervix uteri	C53	1	1985	1991	-5.3	-9.8	-0.6 *
		1991 2015			1.3	0.7	2.0 *
Corpus uteri	C54	0	1985	2015	5.0	4.5	5.4 *
Sub-major							
Esophagus	C15	1	1985	1996	-2.8	-5.3	-0.1 *
		1996 2015			2.1	0.9	3.2 *
Gallbladder and bile ducts	C23-C24	1	1985	1997	-1.1	-2.0	-0.2 *
		1997 2015			-3.0	-3.5	-2.5 *
Ovary	C56	0	1985	2015	1.8	1.4	2.1 *
Urinary bladder	C67	0	1985	2015	-0.6	-1.1	0.0
Kidney and other urinary organs (except bladder)	C64-C66 C68	0	1985	2015	2.9	2.5	3.3 *
Thyroid	C73	3	1985	1991	10.3	5.5	15.4 *
		1991 2002			-0.5	-2.3	1.4
		2002 2008			6.5	1.4	11.8 *
		2008 2015			-1.2	-3.9	1.7
Malignant lymphoma	C81-C85 C96	0	1985	2015	3.7	3.4	4.1 *
Others							
Oral cavity and pharynx	C00-C14	0	1985	2015	2.2	1.5	2.8 *
Larynx	C32	0	1985	2015	0.6	-1.3	2.7
Skin	C43-C44	2	1985	1997	-1.3	-2.6	0.0
		1997 2003			6.9	2.1	11.8 *
		2003 2015			1.9	0.9	3.0 *
Brain, nervous system	C70-C72	0	1985	2015	-0.6	-1.4	0.1
Multiple myeloma	C88-C90	0	1985	2015	0.8	0.4	1.2 *
Leukemia	C91-C95	0	1985	2015	0.3	-0.2	0.8

a. Yamagata, Fukui and Nagasaki prefectures.

* Annual % change was statistically significantly different from zero (P < 0.05).
Table 3. Results of joinpoint regression analysis on the trends in all-cancer mortality: national data (1958-2018)

Age	Sex	Cancer site	ICD-10	Number of joinpoints	Annual % change	95% confidence interval		
				Start		Lower	Upper	
All ages	Male and female	All cancers	C00-C97	4	0.4 - 0.8	0.1 - 0.8		
				1958-1966				
				1966-1993	-0.2 - 0.1	0.0 - 0.3		
				1993-1997	1.4 - 0.6	0.3 - 2.2		
				1997-2015	1.0 - 1.4	1.0 - 2.9		
				2015-2018	-2.2 - 2.0	-3.0 - 1.4		
				*				
				All cancers excluding stomach	1.1 - 2.5	0.9 - 2.2		
				1958-1975				
				1975-1994	-0.6 - 0.6	0.0 - 1.4		
				1994-2000	0.2 - 1.6	0.0 - 3.0		
				2000-2015	-1.4 - 1.6	-2.1 - 0.2		
				*				
				All cancers excluding stomach and liver	2.0 - 5.1	0.0 - 3.0		
				1958-1976				
				1976-1993	0.5 - 1.4	0.1 - 2.5		
				1993-1997	1.2 - 2.3	0.0 - 2.7		
				1997-2015	1.2 - 2.3	1.1 - 2.5		
				2015-2018	-1.2 - 0.2	-2.0 - 0.4		
				*				
				All cancers excluding prostate	1.1 - 3.0	0.0 - 4.0		
				1958-1963				
				1963-1982	0.2 - 2.6	0.0 - 3.3		
				1982-2000	0.0 - 2.7	0.0 - 3.3		
				2000-2015	1.0 - 2.5	1.0 - 2.6		
				*				
				All cancers excluding breast	0.3 - 0.8	0.0 - 0.8		
				1958-1976				
				1976-1984	0.1 - 0.4	0.0 - 0.8		
				1984-1992	0.2 - 0.8	0.1 - 0.9		
				1992-1997	0.1 - 0.3	0.0 - 0.6		
				1997-2000	-0.8 - 0.3	-1.3 - 0.0		
				2000-2015	-1.4 - 0.5	-2.0 - 0.1		
				*				
* Annual % change was statistically significantly different from zero (P < 0.05).
| Cancer site and stage | Code-10 | Number of joinpoints | Start | End | Annual % change | 95% confidence interval | |
|---|---|---|---|---|---|---|---|
| Major | | | | | | |
| Stomach | C16 | 5 | 1958 | 1989 | -0.5 | -0.7 |
| | | | 1958 | 1981 | -1.6 | -2.0 |
| | | | 1980 | 1992 | -3.3 | -3.6 |
| | | | 1990 | 1996 | -1.4 | -2.9 |
| | | | 1996 | 2012 | -1.2 | -3.1 |
| | | | 2012 | 2018 | -4.6 | -5.1 |
| Colon | C18 | 4 | 1958 | 1985 | 4.7 | 4.8 |
| | | | 1985 | 1996 | 3.0 | 2.7 |
| | | | 1996 | 2009 | -1.3 | -1.4 |
| | | | 2006 | 2015 | 0.1 | 0.6 |
| | | | 2015 | 2018 | -.3 | -2.4 |
| Rectum | C18-C20 | 2 | 1958 | 1975 | 2.2 | 2.8 |
| | | | 1975 | 1998 | -0.3 | 0.0 |
| | | | 1998 | 2018 | -1.0 | -1.1 |
| | | | 2009 | 2018 | -1.0 | -1.1 |
| Liver | C22 | 5 | 1958 | 1974 | -6.1 | -5.0 |
| | | | 1974 | 1986 | 3.8 | 3.9 |
| | | | 1986 | 1988 | 1.0 | 0.6 |
| | | | 1988 | 1989 | 2.2 | 1.9 |
| | | | 1989 | 1996 | 1.0 | 0.6 |
| | | | 1996 | 2007 | -0.9 | -1.0 |
| | | | 2009 | 2018 | -2.6 | -2.2 |
| Pancreas | C25 | 3 | 1958 | 1968 | 7.3 | 6.4 |
| | | | 1968 | 1987 | 3.1 | 2.9 |
| | | | 1987 | 2002 | 0.0 | 0.3 |
| | | | 2002 | 2018 | 0.5 | 0.6 |
| Lung, trachea | C32-C34 | 5 | 1958 | 1963 | 7.5 | 6.8 |
| | | | 1963 | 1981 | 4.6 | 4.8 |
| | | | 1981 | 1989 | 2.2 | 2.0 |
| | | | 1989 | 1996 | 1.0 | 0.6 |
| | | | 1996 | 2012 | -0.9 | -1.0 |
| Prostate | C61 | 3 | 1958 | 1993 | 3.3 | 3.3 |
| | | | 1993 | 1997 | 5.7 | 5.8 |
| | | | 1997 | 2005 | 0.1 | 0.6 |
| | | | 2005 | 2018 | -1.7 | -1.9 |
| Sub-major | | | | | | |
| Esophagus | C15 | 5 | 1958 | 1971 | 1.4 | 1.0 |
| | | | 1971 | 1977 | -2.1 | -3.3 |
| | | | 1977 | 1984 | -0.1 | 0.0 |
| | | | 1984 | 1999 | 2.8 | 2.1 |
| | | | 1999 | 2008 | -1.1 | -1.4 |
| | | | 2008 | 2018 | -2.9 | -2.2 |
| Urinary bladder | C67 | 3 | 1958 | 1980 | 0.0 | 0.4 |
| | | | 1980 | 1988 | -1.6 | -2.0 |
| | | | 1988 | 1989 | 0.5 | 0.7 |
| | | | 1989 | 1996 | 0.6 | 0.5 |
| Kidney and other urinary organs (except bladder) | C64-C66 | 3 | 1958 | 1977 | 4.1 | 3.7 | 4.6 |
| | | | 1977 | 1979 | 0.6 | 0.5 |
| | | | 1979 | 1996 | 2.3 | 2.9 |
| | | | 1996 | 2005 | 0.9 | 0.7 |
| Thyroid | C73 | 2 | 1958 | 1995 | 7.4 | 6.3 |
| | | | 1995 | 1997 | 0.8 | 0.9 |
| | | | 1997 | 2001 | -1.0 | -1.3 |
| Malignt lymphoma | C81-C85 | 4 | 1958 | 1967 | 4.0 | 3.9 |
| | | | 1967 | 1980 | 2.4 | 2.9 |
| | | | 1980 | 2001 | 0.7 | 0.9 |
| | | | 2001 | 2015 | -2.6 | -2.4 |
| Others | | | | | | |
| Oral cavity and pharynx | C00-C14 | 3 | 1958 | 1982 | 1.8 | 1.7 | 2.0 |
| | | | 1982 | 1995 | 7.4 | 6.8 |
| | | | 1995 | 2008 | 0.5 | 0.0 |
| Gallbladder and bile ducts | C23-C24 | 4 | 1958 | 1965 | 10.1 | 10.1 | 12.0 |
| | | | 1965 | 1977 | 4.4 | 4.2 |
| | | | 1977 | 1980 | 0.4 | 0.1 |
| | | | 1980 | 2016 | -1.5 | -1.7 |
| Liver, biliary tract | C25 | 2 | 1958 | 1972 | 0.3 | 0.2 |
| | | | 1972 | 1981 | -3.2 | -3.5 |
| | | | 1981 | 1997 | 0.7 | 1.0 |
| | | | 1997 | 2012 | -1.5 | -1.8 |
| Kidney | C70 | 2 | 1958 | 1974 | 1.3 | 1.2 |
| | | | 1974 | 1987 | -4.8 | -5.8 |
| | | | 1987 | 2007 | 0.0 | -0.3 |
| Bladder, nervous system | C76-C72 | 4 | 1958 | 1970 | 1.3 | 0.3 | 2.9 |
| Multiple myeloma | C80-C89 | 3 | 1958 | 1968 | 12.8 | 9.8 | 15.8 |
| Leukaemia | C81-C89 | 4 | 1958 | 1976 | 2.3 | 2.1 | 2.6 |

*Annual % change was statistically significantly different from zero (P < 0.05).
Table 4-2. Results of joinpoint regression analysis on the trends in site-specific cancer mortality: national data (1958-2018); Female

Cancer site	ICD-10	Number of	Line segment	% change	95% confidence interval	Lower	Upper	
Leukemia								
C11	3	1958-1979	-0.6	-1.8	-0.6 **			
C10	3	1970-1978	-3.2	-1.5	-2.9 **			
C10	3	1979-1980	-4.4	-4.6	-4.2			
C10	3	1981-1988	-3.3	-3.8	-2.8 **			
C11	3	1989-2013	-3.9	-4.8	-3.9			
C12	3	1986-2014	-3.3	-3.3	-3.3			
C12	3	1991-2018	-3.3	-3.3	-3.3			
C13	3	1991-2019	-3.3	-3.3	-3.3			
Lung, trachea	C33-C34	3	1958-1979	-1.5	-0.1	-0.1		
C33	3	1960-1979	0.6	0.6	0.6			
C33	3	1970-1980	0.1	0.1	0.1			
C33	3	1980-1989	0.3	0.3	0.3			
C33	3	1990-1999	0.6	0.6	0.6			
C33	3	2000-2018	0.6	0.6	0.6			
C34	3	2000-2018	0.6	0.6	0.6			
C34	3	2018-2018	0.6	0.6	0.6			

Note: *Annual % change was statistically significantly different from zero (P < 0.05).
Table 5. Summary of the trends in age-standardized incidence and mortality for major and sub-major cancer sites.

Cancer Site	Gender	Period of Incidence	Incident/ Mortality Trend	Possible Interpretation
Breast	Female	Increased until 1990s (1985-1990)	Long-term increase in incidence and mortality	Divergence between incidence and mortality, leading to overdiagnosis
	Female	Increased until 2000s (1985-2000)	Long-term increase in incidence and mortality	Divergence between incidence and mortality, leading to overdiagnosis
	Female	Increased continuously (1985-2015)	Continuous increase in incidence and mortality	Long-term increase in incidence and mortality
Female	Male	Decreased from 1990s (1985-1990), levelled off thereafter (2000-2015)	Long-term decrease in incidence and mortality	Divergence between incidence and mortality, leading to underdiagnosis
	Male	Increased intermittently until 2010s (1985-2015)	Long-term increase in incidence and mortality	Divergence between incidence and mortality, leading to overdiagnosis
	Male	Decreased continuously (1969-1980)	Long-term decrease in incidence and mortality	Divergence between incidence and mortality, leading to underdiagnosis
Thyroid	Female	Increased until 2000s (1961-2000)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased until 1990s (1961-1990)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased continuously until 2010s (1961-2010)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
Urinary Bladder	Female	Increased until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased until 1990s (1961-1990)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased continuously until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
Ovary	Female	Increased until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased until 1990s (1961-1990)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased continuously until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
Gallbladder and Bile Ducts	Female	Increased until 1990s (1961-1990)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased continuously until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
Breast	Female	Increased until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased until 1990s (1961-1990)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
	Female	Increased continuously until 2010s (1961-2015)	Long-term increase in incidence and mortality	Long-term increase in incidence and mortality
Figure 1–1. Annual trends in the age-standardized rates of all-cancer and site-specific cancer incidence: data from three prefectures (1985–2015): Major sites

- a. Yamagata, Fukui, and Nagasaki prefectures.
- b. Standardized to Japanese model population in 1985.
- c. Cervix and corpus uteri are shown in Figure 1–2.
Figure 1-2. Annual trends in the age-standardized rates of all-cancer and site-specific cancer incidence: data from three prefectures (1985–2015): Sub-major sites a,b.

a Yamagata, Fukui, and Nagasaki prefectures.

b Standardized to Japanese model population in 1985.
Figure 2. Contribution of cancer sites to the changes in incidence

1) Last significantly increasing segment

Male (2000-2010)

- Prostate; 64.5%
- Kidney and other urinary organs (except bladder); 5.4%
- Lung, trachea; 9.3%
- Malignant lymphoma; 5.8%
- Others; 11.2%
- Oral cavity and pharynx; 3.8%

Female (2004-2010)

- Breast; 51.1%
- Thyroid; 8.8%
- Colon/rectum; 7.2%
- Others; 24.2%
- Lung, trachea; 8.6%

2) Last significantly decreasing segment

Male (2010-2015)

- Stomach; 40.9%
- Liver; 24.0%
- Lung, trachea; 26.7%
- Urinary bladder; 6.3%
- Others; 0.4%
- Gallbladder and bile ducts; 1.7%

Female

(No significant change after 2010)
Figure 3-1. Annual trends in the age-standardized rates of all-cancer and site-specific cancer mortality: national data (1958–2018): Major sites

a. Standardized to Japanese model population in 1985.
b. Cervix and corpus uteri are shown in Figure 3-2.
Figure 3-2. Annual trends in the age-standardized rates of all-cancer and site-specific cancer mortality: national data (1958–2018): Sub-major sites *a

*a. Standardized to Japanese model population in 1985.
Figure 4. Contribution of cancer sites to the decrease in mortality in recent 10 years (2009-2018)

Male
- Stomach: 29.8%
- Liver: 25.2%
- Lung, trachea: 22.3%
- Esophagus: 7.1%
- Others: 11.4%
- Gallbladder and bile ducts: 4.2%

Female
- Stomach: 34.4%
- Liver: 28.7%
- Lung, trachea: 11.8%
- Gallbladder and bile ducts: 12.6%
- Ovary: 3.7%
- Others: 8.8%
Figure 5-1. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: All cancers combined.

- **Incidence:** data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
- **Standardized to Japanese model population in 1985.**

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
b. Standardized to Japanese model population in 1985.
Figure 5-2. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: Major sites

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
b. Standardized to Japanese model population in 1985.
Figure 5-2. (Continued)

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
b. Standardized to Japanese model population in 1985.
Figure 5.2. (Continued)

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures. Mortality: national data.
b. Standardized to Japanese model population in 1985.
Figure 5-3. Observed and modelled trends in cancer incidence (1985-2015) and mortality (1958-2018) rates: Sub-major sites.

a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
b. Standardized to Japanese model population in 1985.
a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures. Mortality: national data.
b. Standardized to Japanese model population in 1985.
a. Incidence: data from Yamagata, Fukui, and Nagasaki prefectures, Mortality: national data.
b. Standardized to Japanese model population in 1985.