Emotional and interpersonal mechanisms in community SSRI treatment of social anxiety disorder

Lance M. Rappaport, PhD; Michael D. Hunter, PhD; Jennifer J. Russell, PhD; Gilbert Pinard, MD; Pierre Bleau, MD; D.S. Moskowitz, PhD

Introduction

Social anxiety disorder (also known as social phobia) describes a syndrome of characteristic physiologic, affective, cognitive and behavioural responses that reflect persistent anxiety related to social or interpersonal situations. Within the cognitive–behavioural formulation, anticipation and interpretation of negative social outcomes contribute to elevated anxiotypic physiologic and affective responses. For example, the diagnostic criteria for social anxiety disorder describe fear that one will be negatively evaluated in social interactions with others.¹ Through limiting social interaction, interpersonal behaviours reduce exposure to anticipated negative evaluation and may provide temporary relief from attendant social anxiety.² Over time, persistent anxiety may lead individuals with social anxiety disorder to develop a greater sensitivity to anxiotypic responses,³ which could increase avoidance of social situations. However, interpersonal behaviour (e.g., quarrelsome behaviour) may beget negative responses (e.g., quarrelsome behaviour) from others.¹⁴ Thus, interpersonal behaviours that limit social interaction may also increase the likelihood of negative social outcomes, including feared negative social evaluation.

Serotonergic medications (e.g., selective serotonin reuptake inhibitors [SSRIs]) have demonstrated effectiveness in treating social anxiety disorder in adults⁵,⁶ and currently comprise first-line pharmacological treatment for social anxiety disorder.⁷,⁸ However, specific mechanisms by which SSRI medications ameliorate social anxiety disorder symptoms are largely unknown. Consistent with broad interest in mechanisms of action,⁹ a growing body of research examines putative biological, neural and psychological targets that may explain the anxiolytic effects of SSRI medications.¹⁰ Administration of SSRIs to adults with social anxiety disorder may modulate specific physiologic, cognitive, affective and interpersonal patterns that contribute to the maintenance of social anxiety disorder. For example, research with community adults and...
with nonhuman primates demonstrated that serotonin modulation — such as through the administration of tryptophan, SSRIs or selective serotonin and norepinephrine reuptake inhibitors is associated with increased communal (e.g., agreeable) behaviour, increased dominant behaviour and decreased aggression.

Two theories, the Social Interaction Model and the Cognitive Neuropsychological Model, implicate serotonergic regulation in cognitive, affective and interpersonal processes. Although they identify different putative mechanisms, both theories suggest that improvements in characteristic cognitive, affective or interpersonal processes may mediate and explain the well-documented effectiveness of serotonergic medications. As proposed by Young and colleagues, the Social Interaction Model suggests that serotonergic medications increase prosocial behaviour and decrease behavioural variability, which subsequently improves the quality of a person’s interpersonal interactions and social relationships. Alternatively, the Cognitive Neuropsychological Model, proposed by Harmer and colleagues, suggests that serotonergic and norepinephrine medications facilitate changes in cognitive processing (e.g., attention and memory), ameliorating deficits previously implicated in multiple anxiety disorders.

Existing research describes psychological (i.e., cognitive, affective, behavioural) and neural correlates of serotonergic pharmacotherapy, but further research is needed to identify whether changes in psychological function follow from or precede and influence subsequent improvements. Statistical innovations can distinguish between these 2 scenarios. The latent difference score framework leverages structural equation modelling to examine change over time and lagged associations of absolute level and change in multiple processes over time. For example, Hawley and colleagues used a latent difference score model to find that higher monthly perfectionism predicted less subsequent reduction in symptom severity over the following month of psychotherapy for major depressive disorder.

Extant research has been largely limited to self-report and laboratory-based assessment of change in psychological processes. Although laboratory-based assessment is well suited to the study of specific cognitive, affective and neural processes, examination of the social aspects of social anxiety disorder indicates the need to clarify the naturalistic manifestation of psychological processes in individuals’ daily lives. Ecological momentary assessment and related methodologies provide high temporal density assessments taken during participants’ daily lives. These methodologies are appropriate for clarifying the naturalistic manifestation of psychological processes in diverse real-world contexts relevant to the interpersonal problems critical to social anxiety disorder. For example, ecological momentary assessment research identified replicable dynamics of affect and inter- personal behaviour that predict later functional impairment. Moreover, temporal patterns derived from ecological momentary assessments provide enhanced reliability and are not as influenced by traditional limitations of self-report, such as recall bias.

The present study presents secondary data analysis of a study that demonstrated improvement in specific affective and behavioural patterns characteristic of social anxiety disorder (e.g., communal behaviour) during pharmacological treatment as usual, namely during SSRI treatment (i.e., paroxetine) administration. Because SSRI medications are well established first-line treatments for adult social anxiety disorder, the present study examines whether improvements in affect and communal behaviour preclude and predict later improvements in social anxiety symptom severity during community psychopharmacological treatment.

This study was conducted in Canada following the principles of the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans, which states that randomized clinical trials with 2 or more treatment groups can be conducted only when there is equipoise or genuine uncertainty among experts regarding the relative effectiveness of each treatment. Previous clinical trials have demonstrated the efficacy and effectiveness of paroxetine compared to placebo. Therefore, there is no equipoise between paroxetine and placebo treatment groups; the inclusion of a placebo group would have been inconsistent with the Tri-Council Policy Statement. Instead, paroxetine was administered in an open-label design with no placebo or control condition. In the present study, rather than evaluating the clinical effectiveness of SSRI medications, paroxetine administration facilitated an examination of whether changes in affective and behavioural correlates of social anxiety disorder mediated improvement in symptom severity.

Methods

Participants

Participants aged 20 to 60 years (mean ± standard deviation 33.92 ± 11.49) were recruited from the Montreal metropolitan area via community advertisements for a study of social anxiety disorder. Of participants who called to express interest, 48 provided informed consent and attended a baseline assessment, which included a description of the study and clinical assessment to establish the primary diagnosis of social anxiety disorder, baseline severity of social anxiety disorder, concurrent diagnoses and suitability for treatment with paroxetine (Paxil). Nine participants (18.75%) withdrew before paroxetine administration. The 39 participants who began paroxetine administration approximated the educational distribution of Montreal, Quebec, although psychiatric comorbidity was lower than expected. Baseline assessment (see Measures) indicated severe symptoms of social anxiety disorder and mild depressive symptoms based on the Montgomery–Åsberg Depression Rating Scale.

Inclusion criteria, exclusion criteria and demographic details about the sample are provided in Rappaport and colleagues. As reported in that paper, 31 participants (79.49%) completed baseline assessment and at least 3 months of treatment. Four (8.33%) discontinued treatment after 1 month; 4 (8.33%) discontinued after 2 months. Compared to participants who started paroxetine administration, withdrawal...
before 3 months was not associated with age, sex, native language, education, employment, marital status or baseline severity of social anxiety disorder or depressive symptoms.

Design and procedure

This study followed an open-label, single-arm, nonrandomized, uncontrolled design that followed adults during the first 4 months of psychopharmacological treatment as usual for social anxiety disorder. Affect and communal behaviour were assessed using a measurement-burst design: participants completed 1 week of a standardized event-contingent recording procedure at baseline (i.e., before initiating paroxetine administration) and after 4, 8, 12 and 16 weeks of treatment. Following baseline assessment, to minimize potential adverse effects, study psychiatrists (G.P. and P.B.) supervised participants in initiating paroxetine controlled-release (Paxil CR) titrated from 12.5 mg/d to 25 mg/d according to each participant’s response. Participants met with study psychiatrists monthly (i.e., at 4, 8, 12 and 16 weeks) to evaluate adverse effects and complete clinician- and participant-report assessments of the severity of social anxiety disorder symptoms. Participants provided informed consent before baseline assessment. This study was approved by the McGill University Research Ethics Board.

Event-contingent recording procedure

Participants reported on their affect (positive and negative), interpersonal behaviour (agreeable, quarrelsome, dominant, submissive) and perception of the behaviour of others with whom they interacted. To minimize recall bias, participants completed a record immediately following substantial interpersonal interactions, defined as interactions lasting longer than 5 minutes.

Measures

Clinical assessment

Psychiatric diagnoses were evaluated using the semistructured Mini-International Neuropsychiatric Interview version 5.41 conducted by study psychiatrists. The severity of social anxiety and depressive symptoms were assessed dimensionally via clinician report on the Liebowitz Social Anxiety Scale (LSAS)42 and via participant report on the Social Interaction-Anxiety Scale (SIAS) and Social Phobia Scale (SPS).43 On the LSAS, study psychiatrists rated participant fear/anxiety and avoidance of 24 social situations; on the SIAS and SPS, participants endorsed agreement with 20 items reflecting anxiety in social situations (e.g., “When mixing socially, I am uncomfortable”). Two items in the SIAS were reverse-coded. Previous research has demonstrated the reliability and validity of the LSAS, SIAS and SPS, including reliability at each time point for the present data.44

Affect

Participants recorded event-level positive and negative affect based on 9 items balanced for affective intensity.44 Items were averaged at each event to compute occasion-specific positive and negative affect. Positive and negative affect were then averaged separately over events within each measurement wave (i.e., within each monthly 1-week assessment) to compute the average positive and average negative affect reported by each participant at each assessment wave. Previous research demonstrated reliability and validity in ecological momentary assessment and event-contingent recording procedures in similar community29 and clinical samples,45 including the present study.34

Interpersonal behaviour

The present study conceptualized interpersonal behaviour according to the interpersonal circumplex model, which organizes the range of interpersonal behaviours on a biaxial system defined by orthogonal dimensions of communal (agreeable v. quarrelsome) and agentic (dominant v. submissive) behaviour. Participants reported their agreeable, quarrelsome, dominant and submissive behaviours at each event by reporting on representative behaviours using the Social Behaviour Inventory (SBI; e.g., “I showed sympathy”).29,46 Items representing each of the 4 poles were summed and ipsatized at each event to adjust for each participant’s general endorsement tendency.47 Similar to affect, agreeable behaviour and quarrelsome behaviour were averaged separately over events within each measurement wave to compute the average agreeable and quarrelsome behaviour reported by each participant at each assessment wave. Agreeable and quarrelsome behaviour assessments were then multiplied by 10 to enable computational modelling. Within an event-contingent recording procedure, the SBI has demonstrated strong psychometric properties,29 including agreement with observer report of participant behaviour,48 suitability for use in clinical samples49 and sensitivity to change during pharmacological intervention.12,34

Data analysis

Data analysis followed 3 steps to build bivariate latent change score models, which evaluate time-lagged associations of affect and communal behaviour with later change in social anxiety severity.24,25 First, we developed a measurement model for social anxiety symptom severity and extracted latent social anxiety severity from a factor model as indicated by monthly clinician- and participant-report assessments (see Appendix 1, Table S1, available at jpn.ca/190164-a1). Second, we fit separate latent change score models to each construct (e.g., mean positive affect) to examine change in social anxiety severity, agreeable and quarrelsome behaviour, and positive and negative affect over time. Each latent change score model followed the dual-change score framework to partition linear change over time from proportional change over each month of pharmacological treatment.25 Within each latent change score model, we found no statistical evidence of phi (ϕ; p values > 0.10), which assesses whether early change in each process (e.g., from baseline to month 1) predicts the magnitude of later change (e.g., from month 1 to month 2). Subsequent analyses were conducted without ϕ paths.

Finally, in separate models, we combined the latent change score model describing change in social anxiety severity with that describing change in agreeable behaviour, quarrelsome
behaviour, positive affect and negative affect. Thus, following the approach developed by Grimm and colleagues,24 4 bivariate latent change score models evaluated time-lagged associations of affect and communal behaviour with previous and subsequent change in social anxiety severity. The resulting bivariate latent change score models examined whether the level of each affective or interpersonal process (e.g., mean positive affect) predicted subsequent change in social anxiety severity. These models simultaneously examined whether the change in each process predicted subsequent change in social anxiety severity. In both cases, the bivariate latent change score model adjusted for linear and nonlinear change across time. Importantly, the bivariate latent change score model represented both variables together and allowed for reciprocal influence. Thus, the bivariate latent change score models also examined and adjusted for the alternative possibility that the level of, or change in, social anxiety severity may predict subsequent change in each process (e.g., mean positive affect).

Given the large number of bivariate latent change score models under consideration, the present study limited examination to affect and communal (i.e., agreeable and quarrelsome) behaviour, which extant evidence implicates in the pharmacological treatment of social anxiety disorder.50,51 Relative to change from baseline to 12 weeks, there was little additional change in affect, communal behaviour or social anxiety severity from 12 to 16 weeks of treatment.34 Therefore, to examine temporal patterns of change, the present study analyzed only data collected before the final assessment in week 16. Analyses were conducted in R version 3.5.250 using the ggplot251 and OpenMx packages.52 Structural equation modelling estimation used full information maximum likelihood, which is robust to data missing at, or conditionally at, random.53 Because of model complexity, confidence intervals (CIs) were estimated using bootstrapping.

Ethical standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Results

Change in affect, communal behaviour and social anxiety symptom severity

Over time, participants demonstrated increased mean positive affect and agreeable behaviour, along with decreased mean negative affect, quarrelsome behaviour and social anxiety symptom severity (see Table 1 for descriptive data, and Table 2 and Fig. 1 for change described by each latent change score model). Improvements in symptom severity, affect and interpersonal behaviour were consistent with previous evidence from multilevel, mixed-effects growth curve and location-scale analyses.34 Including latent social anxiety severity, all 5 individual latent change models indicated good or adequate fit to the data (Table 2). For all 4 models of affect and communal behaviour, strict measurement invariance was confirmed by nonsignificant increases in the log-likelihood when constraining all residual variances to be equal across time ($p > 0.13$; see Appendix 1 for information on time invariance of social anxiety severity). Parameter estimates (Table 2) and expected means (Fig. 1) represented each latent change score model of best fit (i.e., with no ϕ paths and time invariant residual variances).

Association of change in affect and communal behaviour with change in social anxiety symptom severity

Having clarified the models of best fit for change in affect, communal behaviour and social anxiety severity, we used bivariate latent change score models to examine time-lagged associations of change in social anxiety severity with levels of and change in positive affect, negative affect, agreeable behaviour and quarrelsome behaviour (Fig. 2). All 4 models fit the data well or adequately (Table 3). Three of the 4 models indicated that improvements in affect and agreeable behaviour preceded and predicted subsequent improvements in social anxiety severity. Higher levels of positive affect ($B = -1.41, 95\% CI -3.84 to -0.31; p = 0.009$) and agreeable behaviour ($B = -2.16, 95\% CI -7.66 to -0.29; p = 0.001$) predicted greater subsequent reduction in social anxiety severity over each following month. Similarly, higher levels of negative affect ($B = 1.31, 95\% CI 0.45 to 3.87; p < 0.001$), but not

Table 1: Descriptive statistics at each assessment wave

Measure	Baseline*	Time 1*	Time 2*	Time 3*
Liebowitz Social Anxiety Scale	85.96 ± 19.03	60.79 ± 28.92	47.11 ± 24.77	44.83 ± 27.22
Social Phobia Scale	45.74 ± 14.26	34.08 ± 15.78	25.11 ± 15.76	22.81 ± 16.28
Social Interaction–Anxiety Scale	54.64 ± 9.56	41.90 ± 14.54	33.16 ± 15.48	31.47 ± 16.56
Positive affect†	2.17 ± 1.04	2.55 ± 1.17	2.85 ± 1.23	2.83 ± 1.34
Negative affect†	1.34 ± 0.75	0.84 ± 0.70	0.59 ± 0.55	0.48 ± 0.50
Agreeable behaviour†	1.05 ± 0.96	1.65 ± 0.95	1.81 ± 1.14	1.80 ± 1.19
Quarrelsome behaviour†	−1.43 ± 0.86	−1.69 ± 0.89	−1.63 ± 0.91	−1.79 ± 0.70

*All values are mean ± standard deviation. Time 1 indicates 4 weeks after treatment initiation; time 2 indicates 8 weeks after treatment initiation; time 3 indicates 12 weeks after treatment initiation.
†Mean of event-contingent recording reports within each assessment wave (i.e., each monthly 1-week assessment) for each participant; behaviour assessments were multiplied by 10 to enable computational models.
Table 2: Parameter estimation and model fit for “univariate” latent change score models of anxiety symptom severity, affect and communal behaviour

Measure	Social anxiety	Positive affect	Negative affect	Agreeable behaviour	Quarrelsome behaviour
Parameter, B (95% CI)	β* −0.56 (−0.68 to −0.44)‡	−0.49 (−0.80 to −0.11)§	−0.49 (−0.66 to −0.29)‡	−0.77 (−1.06 to −0.42)‡	−0.79 (−1.27 to −0.24)§
M₀	5.81 (5.62 to 5.99)‡	2.18 (1.88 to 2.48)‡	1.33 (1.11 to 1.55)‡	1.05 (0.78 to 1.33)‡	−1.44 (−1.69 to −1.20)‡
s²₀	0.43 (0.38 to 0.90)¶	0.85 (0.77 to 1.42)‡	0.52 (0.34 to 0.84)‡	0.50 (0.19 to 0.99¶	0.52 (0.27 to 0.92)‡
M₀_slope	2.26 (1.63 to 2.92)‡	1.50 (0.52 to 2.34¶	0.19 (−0.02 to 0.40)	1.42 (0.88 to 1.95)‡	−1.36 (−2.20 to −0.47)¶
s²_slope	0.36 (0.32 to 0.63)‡	0.36 (0.32 to 0.95¶	0.08 (0.03 to 0.16)¶	0.49 (0.44 to 1.04)‡	0.37 (0.33 to 0.97)‡
Covariance (int. with slope)	0.08 (−0.06 to 0.25)	0.47 (0.12 to 0.95)¶	0.06 (−0.05 to 0.18)	0.27 (0.03 to 0.63)§	0.26 (0.03 to 0.62)§
eᵦ†	—	0.23 (0.16 to 0.32)	0.08 (0.06 to 0.11)	0.40 (0.29 to 0.57)	0.22 (0.16 to 0.32)

Model fit

χ²	χ²₀ = 2.49	χ²₁ = 6.99	χ²₂ = 14.86	χ²₃ = 4.74	χ²₄ = 10.03
p₀ = 0.64	p = 0.43	p = 0.04	p = 0.69	p = 0.19	
CFI	1.01	1.00	0.90	1.05	0.95

RMSEA (95% CI) 0 (0 to 0.20) 0 (0 to 0.20) 0.15 (0 to 0.28) 0 (0 to 0.16) 0.09 (0 to 0.23)

CFI = comparative fit index; CI = confidence interval; Covariance (int. with slope) = covariance of the mean intercept (baseline severity) with the mean slope describing the average linear change over time; eᵦ = error variances; M₀ = the mean intercept (baseline severity); M₀_slope = the mean slope describing linear change over time; RMSEA = root mean square error of approximation; s²₀ = between-person variance of the intercept; s²_slope = between-person variance of the slope describing linear change over time.

*Similar to multilevel models or latent growth curve models in other structural equation modeling approaches, β represents the regression of change over each month on prior level.
†Significance tests were not conducted for error variances; see Data Analysis for information on the time invariance of anxiety symptom severity.
‡p < 0.001.
§p < 0.05.
¶p < 0.01.

Fig. 1: Expected means for latent social anxiety severity, negative affect, positive affect, agreeable behaviour and quarrelsome behaviour over time.
Fig. 2: Example of a bivariate latent change score model. This model was run 4 separate times to examine the association of change in social anxiety severity with change in positive affect, negative affect, agreeable behaviour and quarrelsome behaviour, which were entered in the observed variables o_{t0}, o_{t1}, o_{t2} and o_{t3}. Solid lines indicate estimated paths; dotted lines indicate paths fixed at 1; a indicates time-invariant regression of change in social anxiety severity on prior level of the psychological process; b indicates time-invariant regression of change in the psychological process on prior level of social anxiety severity; c indicates regression of change in social anxiety severity on prior change in the psychological process; d indicates regression of change in the psychological process on prior change in social anxiety severity. A time-invariant covariance was estimated between concurrent measures of the psychological process and social anxiety severity (e.g., o_{t1} with sa_{t1}). Δ = change; $B0$ = intercept for the psychological process modelled; $B1$ = linear slope for the psychological process modelled; $B0sa$ = intercept for social anxiety severity; $B1sa$ = linear slope for social anxiety severity; o = one of the 4 psychological processes (e.g., positive affect); sa = the factor score for latent social anxiety severity (see Data Analysis); sanx = social anxiety; $t0$ = baseline; $t1$ = 4 weeks after treatment initiation; $t2$ = 8 weeks after treatment initiation; $t3$ = 12 weeks after treatment initiation.

Table 3: Model fit for “bivariate” latent change score models of affect and communal behaviour with social anxiety symptom severity

Measure	Positive affect	Negative affect	Agreeable behaviour	Quarrelsome behaviour
χ^2	$\chi^2_{o_{t0}} = 22.95$	$\chi^2_{o_{t1}} = 21.07$	$\chi^2_{o_{t2}} = 29.67$	$\chi^2_{o_{t3}} = 34.59$
p	0.35	0.45	0.10	0.03
CFI	0.99	1.00	0.95	0.92
RMSEA (95% CI)	0.04 (0 to 0.15)	0.01 (0 to 0.14)	0.09 (0 to 0.18)	0.12 (0 to 0.19)

CFI = comparative fit index; CI = confidence interval; RMSEA = root mean square error of approximation.
quarrelsome behaviour ($B = 3.70$, 95% CI -3.38 to 14.57; $p = 0.18$), predicted less subsequent reduction in social anxiety severity over each following month.

Despite limited power, we found no evidence that level of or change in social anxiety symptom severity predicted subsequent change in positive affect or communal behaviour ($p > 0.35$). Notwithstanding possible inflation due to multiple testing, higher levels of social anxiety severity — but not change in social anxiety severity ($p = 0.11$) — may predict greater subsequent reduction in negative affect ($B = -0.23$, 95% CI -0.90 to 0.08; $p = 0.03$). Similarly, we found no evidence that change in affect or communal behaviour predicted subsequent change in social anxiety severity ($p > 0.25$). After adjusting for temporally lagged associations, we found no evidence of concurrent correlations of social anxiety symptom severity with affect or communal behaviour at baseline ($p > 0.06$) or of correlated linear change over the course of treatment ($p > 0.09$).

Discussion

The present study documents increased positive affect and agreeable behaviour, along with decreased negative affect and quarrelsome behaviour, in the daily lives of adults receiving SSRI treatment (i.e., paroxetine) for social anxiety disorder. Moreover, in 3 of 4 models tested, improvements in affect and agreeable behaviour preceded and predicted greater subsequent reduction of social anxiety symptom severity as reported by participants and their treating psychiatrists.

Evidence that improved agreeable behaviour predicts subsequent clinical improvement is consistent with the Social Interaction Model. For example, extant evidence also demonstrates that serotonin modulation via administration of tryptophan or SSRI medication increases prosocial behaviour and reduces behavioural variability, including among individuals with social anxiety disorder, the SBI does not include rarer, clinically relevant behaviours. For example, given evidence implicating serotonergic dysregulation in aggression, future research is needed to examine changes in interpersonal aggression that is more severe than quarrelsome behaviour.

The present study also provides an initial examination into whether affective and interpersonal changes precede or follow from improvements in social anxiety symptom severity. Given the relatively small sample size, evident statistically significant results in 3 of 4 models illustrate the strength of the associations documented here. Future research with a larger sample is necessary to fully rule out an alternative explanation that social anxiety severity may also predict latter change in affect or communal behaviour.

Finally, consideration of ethical research practice — specifically the principle of equipoise — prevented the inclusion of a placebo control group, randomization and clinical blinding. Future research is needed to evaluate alternative explanations, such as the beneficial impact of clinical attention or reflecting on one’s affect and interpersonal behaviour. However, previous research with community adults demonstrates that mean affect and interpersonal behaviour are highly stable over multiple weeks. High stability over time suggests that the event-contingent recording procedure may not substantially bias participant report.

Conclusion

The present study extends previous evidence of increased prosocial behaviour, increased positive affect and reduced negative affect following serotonin modulation with SSRI medication. Specifically, the present study demonstrates that during treatment as usual with paroxetine, improvements in affect and agreeable behaviour in participants’ daily lives temporally precede and predict subsequent reduction in social anxiety symptom severity. Although it is preliminary, evidence that affective and interpersonal changes mediate clinical improvement during pharmacological treatment as usual encourages further research to examine affect and interpersonal behaviour as putative mechanisms of action to partially explain and refine the treatment of social anxiety disorder.

Affiliations: From the Department of Psychology, University of Windsor, Windsor, Ont., Canada (Rappaport); the Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA (Rappaport);
the Department of Psychology, McGill University, Montreal, Que., Canada (Rappaport, Russell, Moskowitz); the School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA (Hunter); and the Department of Psychiatry, McGill University, Montreal, Que., Canada (Russell, Pinard, Bleau).

Funding: The research was partially supported by a grant from the National Institute of Mental Health (T32MH020303) and a grant from GlaxoSmithKline, who was not authorized to review the findings or manuscript, or to comment on publication as per the policy of McGill University.

Data sharing: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests: None declared.

Contributors: J. Russell, G. Pinard, P. Bleau and D. Moskowitz initially designed the study and acquired the data. L. Rappaport designed the present study as a secondary analysis of previously collected data and conducted planned analyses with M. Hunter. L. Rappaport, M. Hunter and D. Moskowitz wrote the article, which all authors reviewed. All authors approved the final version to be published and can certify that no other individuals not listed as authors have made substantial contributions to the paper.

Content licence: This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY-NC-ND 4.0) licence, which permits use, distribution and reproduction in any medium, provided that the original publication is properly cited, the use is non-commercial (i.e. research or educational use), and no modifications or adaptations are made. See: https://creativecommons.org/licenses/by-nc-nd/4.0/

References

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington (DC): APA; 2013.
2. Alden LE, Bieling P. Interpersonal consequences of the pursuit of safety. Behav Res Ther 1996;36:53-64.
3. Schmidt NB, Short N, Stanley I, et al. Anxiety sensitivity. In: Olatunji BO, editor. The Cambridge handbook of anxiety and related disorders. Cambridge: Cambridge University Press; 2019:121-62.
4. Strong SR, Hills H, Kilmartin CT, et al. The dynamic relations among interpersonal behaviors: a test of complementarity and anticomplementarity. J Pers Soc Psychol 1988;54:798-810.
5. Fedoroff IC, Taylor S. Psychological and pharmacological treatments of social phobia: a meta-analysis. J Clin Psychopharmacol 2001;21:311-24.
6. Stein MB, Liebowitz MR, Lydiard RB, et al. Paroxetine treatment of generalized social phobia (social anxiety disorder): a randomized controlled trial. JAMA 1998;279:708-13.
7. Katzman MA, Bleau P, Blier P, et al; the Canadian Anxiety Guidelines Initiative Group on behalf of the Anxiety Disorders Association of Canada/Association Canadienne des troubles anxieux and McGill University. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry 2014;14(Suppl 1):S1.
8. Canadian Psychiatric Association. Clinical practice guidelines: management of anxiety disorders. Can J Psychiatry 2006;51:95-915.
9. Harmer CJ, Duman RS, Cowen PJ. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 2017;4:409-18.
10. Harmer CJ. Emotional processing and antidepressant action. In: Cowen P, Sharp T, Lau J, editors. Behavioral neurobiology of depression and its treatment: current topics in behavioral neurosciences. Berlin: Springer; 2012.
11. Raleigh MJ, McGuire MT. Bidirectional relationships between tryptophan and social behavior in vervet monkeys. Adv Exp Med Biol 1991;294:289-98.
12. Moskowitz DS, Pinard G, Zuroff DC, et al. The effect of tryptophan on social interaction in everyday life: a placebo-controlled study. Neuropsychopharmacology 2001;25:277-89.
13. Young SN. Behavioral effects of dietary neurotransmitter precursors: basic and clinical aspects. Neurosci Biobehav Rev 1996;20:313-23.
14. Tse WS, Bond A. Serotonergic intervention affects both social dominance and affiliative behaviour. Psychopharmacology (Berl) 2002;161:324-30.
15. Tse WS, Bond AJ. Difference in serotonergic and noradrenergic regulation of human social behaviours. Psychopharmacology (Berl) 2002;159:216-21.
16. Tse WS, Bond AJ. Reboxetine promotes social bonding in healthy volunteers. J Psychopharmacol 2003;17:189-95.
17. Aan het Rot M, Moskowitz DS, Pinard G, et al. Social behaviour and mood in everyday life: the effects of tryptophan in quarrelsome individuals. J Psychiatry Neurosci 2006;31:253-62.
18. Knutson B, Wolkowitz OM, Cole SW, et al. Selective alteration of personality and social behavior by serotonergic intervention. Am J Psychiatry 1998;155:373-9.
19. Raleigh MJ, McGuire MT, Brammer GL, et al. Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Res 1991;559:181-90.
20. Bjork JM, Dougherty DM, Moeller FG, et al. The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology (Berl) 1996;124:22-30.
21. Young SN, Moskowitz DS, aan het Rot M. Possible role of more positive social behaviour in the clinical effect of antidepressant drugs. J Psychiatry Neurosci 2014;39:60-5.
22. Harmer CJ, Cowen PJ. ‘It’s the way that you look at it’ — a cognitive neuropsychological account of SSR1 action in depression. Philos Trans R Soc Lond B Biol Sci 2013;368:20120407.
23. Harmer CJ, Goodwin GM, Cowen PJ. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 2009;195:102-8.
24. Grimm KJ, An Y, McArld JE, et al. Recent changes leading to subsequent changes: extensions of multivariate latent difference score models. Struct Equ Modeling 2012;19:268-92.
25. McArld JE. Latent variable modeling of differences and changes with longitudinal data. Annu Rev Psychol 2009;60:577-605.
26. Hawley LL, Ho M-HR, Zuroff DC, et al. The relationship of perfectionism, depression, and therapeutic alliance during treatment for depression: latent difference score analyses. J Consult Clin Psychol 2006;74:930-42.
27. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol 2008;4:1-32.
28. Houben M, Van Den Noortgate W, Kuppens P. The relation between short-term emotion dynamics and psychological well-being: a meta-analysis. Psychol Bull 2015;141:901-30.
29. Moskowitz DS, Sadikaj G. Event-contingent sampling. In: Mehl T, Conner T, editors. Handbook of research methods for studying daily life. New York: Guilford Press; 2011:160-75.
30. Côté S, Moskowitz DS, Zuroff DC. Social relationships and intradividual variability in interpersonal behavior: correlates of interpersonal spin. J Pers Soc Psychol 2012;102:646-59.
31. Sadikaj G, Rappaport LM, Moskowitz DS, et al. Consequences of interpersonal spin on couple-relevant goal progress and relationship satisfaction in romantic relationships. J Pers Soc Psychol 2015;109:722-37.
32. Eid M, Diener E. Intraindividual variability in affect: reliability, validity, and personality correlates. J Pers Soc Psychol 1999;76:662-72.
33. Mogg K, Mathews A, Weinman J. Memory bias in clinical anxiety. J Abnorm Psychol 1987;96:94-8.
34. Rappaport LM, Russell JJ, Hedeker D, et al. Affect, interpersonal behaviour and interpersonal perception during open-label, uncontrolled paroxetine treatment of people with social anxiety disorder: a pilot study. J Psychiatry Neurosci 2018;43:407-15.
35. Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Council of Canada. Tri-Council policy statement: ethical conduct for research involving humans. Ottawa (ON): Secretariat on Responsible Conduct of Research; 2018.
36. Distribution of the population aged 25 to 64 by highest level of education attained, Montréal and all of Québec, 2011–2015 (table). Québec; Institut de la statistique du Québec; 2017. Available: http://www.stat.gouv.qc.ca/statistiques/profil06/societe/education/niveau_scolarite06_an.htm (accessed 2020 Jun 25).

37. Kessler RC, Berglund P, Demler O, et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Co-morbidity Survey Replication. Arch Gen Psychiatry 2005;62:593-602.

38. Brown EJ, Turovsky J, Heimberg RG, et al. Validation of the Social Interaction Anxiety Scale and the Social Phobia Scale across the anxiety disorders. Psychol Assess 1997;9:21.

39. Mennin DS, Fresco DM, Heimberg RG, et al. Screening for social anxiety disorder in the clinical setting: using the Liebowitz Social Anxiety Scale. J Anxiety Disord 2002;16:661-73.

40. Mittmann N, Mitter S, Borden EK, et al. Montgomery-Asberg severity gradations. Am J Psychiatry 1997;154:1320-1.

41. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59:22-33.

42. Liebowitz MR. Update on the diagnosis and treatment of social anxiety disorder. J Clin Psychiatry 1999;60(Suppl 18):22-6.

43. Mattick RP, Clarke JC. Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behav Res Ther 1998;36:455-70.

44. Diener E, Emmons RA. The independence of positive and negative affect. J Pers Soc Psychol 1984;47:1105-17.

45. Russell JJ, Moskowitz DS, Zuroff DC, et al. Stability and variability of affective experience and interpersonal behavior in borderline personality disorder. J Abnorm Psychol 2007;116:578-88.

46. Wolitzky TS, Rosen BD, Baer BA, et al. Inventory of interpersonal problems: psychometric properties and clinical applications. J Consult Clin Psychol 1988;56:885-92.

47. Mongrain M, Vettese LC, Shuster B, et al. Perceptual biases, affect, and behavior in the relationships of dependents and self-critics. J Pers Soc Psychol 1998;75:230-41.

48. Russell JJ, Moskowitz DS, Zuroff DC, et al. Anxiety, emotional security and the interpersonal behavior of individuals with social anxiety disorder. Psychol Med 2011;41:545-54.

49. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018. Available: https://www.R-project.org/ (accessed 2020 Jun 25).

50. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

51. Neale MC, Hunter MD, Pritikin JN, et al. OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika 2016;81:535-49.

52. Little TD, Jorgensen TD, Lang KM, et al. On the joys of missing data. J Pediatr Psychol 2014;39:151-62.

53. Moskowitz DS, Zuroff DC, Allen RA, et al. Tryptophan and interpersonal spin. J Res Pers 2011;45:692-6.

54. Harmer CJ, Bhagwagar Z, Perrett DI, et al. Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology 2003;28:148-52.

55. Tranter R, Bell D, Gutting P, et al. The effect of serotonergic and noradrenergic antidepressants on face emotion processing in depressed patients. J Affect Disord 2009;118:87-93.

56. Dalili MN, Penton-Voak IS, Harmer CJ, et al. Meta-analysis of emotion recognition deficits in major depressive disorder. J Affect Disord 2013;155:133-44.

57. Horowitz LM, Rosenberg SE, Baer BA, et al. Inventory of interpersonal problems: psychometric properties and clinical applications. J Consult Clin Psychol 1988;56:885-92.