Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats

Yun Pan 1, Jin-Xian Qian 2, Shi-Qi Lu 1, Jing-Wei Chen 3, Xiao-Dong Zhao 3, Yan Jiang 4, Lin-Hui Wang 4, Guo-Xing Zhang 4*

1 Department of Emergency, The First Affiliated Hospital, Soochow University, 188 Shi-Zi Road, Suzhou 215006, P.R. China
2 Department of Emergency, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, P.R. China
3 Department of Internal Medicine, The Affiliated Suzhou Chinese Traditional Medicine Hospital, Nanjing University of Chinese Medicine, Yang-Su Road, Suzhou 215003, P.R. China
4 Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, P.R. China

ARTICLE INFO

Article type: Original article

Article history:
Received: May 9, 2016
Accepted: Oct 20, 2017

Keywords:
Apoptosis
Autophagy
Ischemia/reperfusion (I/R)
Tanshinone IIA sodium sulfonate (TSS)

ABSTRACT

Objective(s): This study investigated the protective effect of tanshinone IIA sodium sulfonate (TSS) on ischemia-reperfusion (I/R) induced cardiac injury, and the underlying mechanism of action.

Materials and Methods: Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by 24 hours' reperfusion. Half an hour before the left coronary artery ligation, rats were pretreated with TSS in three different dosages (15, 30, 70 mg/kg, IP). Twenty-four hours later, cardiac function was measured and the ratio of infarct size to area at risk (AAR) was calculated. Western blotting examined the expression of the inflammatory mediator high-mobility group box 1 (HMGB-1), anti-apoptotic protein Bcl-2, pro-apoptotic mediators such as Bax and Caspase-3, markers of autophagy such as ratio of LC3B/LC3A and Beclin-1 expression.

Results: Our results showed that TSS dose-dependently improves cardiac function, accompanied with decrease of HMGB1 level, increase of LC3B/LC3A ratio and increase of Beclin-1 expression. TSS treatment down-regulates Bax and Caspase-3 expression, while up-regulating Bcl-2 levels.

Conclusion: TSS ameliorates I/R induced myocardial injury and improves cardiac function by reducing inflammation and apoptosis, while enhancing autophagy.

Introduction

Myocardial infarction (MI) is still a major public health problem worldwide with high mortality and morbidity (1, 2). While it is critical to re-establish blood flow as early as possible, reperfusion injury will be sustained. Various signaling pathways are responsible for inducing reperfusion injury, and exacerbating ischemic damage of the cardiac tissue (3). Therefore, exploring novel pharmacological agents to help salvage ischemia-reperfusion (I/R) damaged cardiac tissue may provide beneficial clinical outcomes for MI patients.

The mechanisms responsible for I/R injury have been widely investigated. Calcium overload, excess production of reactive oxygen species (ROS), and the release of inflammatory factors are the major causative factors of cardiac I/R injury (4, 5). All of these factors finally contribute to the cardiomyocyte death, by necrosis and apoptosis, resulting in a decline of myocardial tissue function (6, 7). Inhibiting cardiomyocyte apoptosis is a proven strategy to protect against I/R injury. Moreover, up-regulation of the pro-inflammatory factors, chemokines, cytokines, and adhesive molecules also contribute to I/R induced tissue injury. It has been demonstrated that blockade of high-mobility group box 1 (HMGB-1), a pro-inflammatory mediator, can suppress inflammation, and attenuate myocardial apoptosis and I/R injury (8, 9).

Autophagy reportedly protects against cardiac injury (10). Moreover, autophagy was found to be impaired in cardiac I/R-induced injury (11, 12). We previously observed that autophagic markers, such as Beclin-1 and the ratio of LC3B/LC3A, were increased in response to cardiac I/R injury (13). Up-regulation of autophagy protects against myocardial I/R injury in the clinically relevant in vivo swine model of acute myocardial infarction (14). To date, data are still inconsistent about the regulation of autophagy signal pathway in response to I/R. Mild-to-moderate I/R may up-regulate autophagy.

*Corresponding author: Guo-Xing Zhang, Department of Physiology, Medical College of Soochow University, 199 Ren-Ai Road, Dushu Lake Campus, Suzhou Industrial Park, Suzhou 215123, P.R. China. Tel: +86-512658080127; Fax: +86-512658080127; email: zhangguoxing@suda.edu.cn

Please cite this article as:
Pan Y, Qian JX, Lu SHQ, Chen JW, Zhao XD, Jiang Y, Wang LJ, Zhang GX. Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats. Iran J Basic Med Sci 2017; 20:308-315; http://dx.doi.org/10.22038/ijbms.2017.8361
level to play protective effects; however, severe I/R may impair autophagy levels thereafter play a detrimental role in the context of I/R.

Tanshinone II A sodium sulfonate (TSS) is one of the major active constituents of Salvia miltiorrhiza bunge, which has been widely used for thousands of years in China for the treatment of various microcirculatory disturbance-related diseases (15). Previous studies have also shown that TSS is used for prevention and treatment of numerous diseases (8), (16). In the circulatory system, it has been demonstrated that TSS could protect against ischemia-reperfusion injury via inducing coronary artery vasodilatation (17). Recently, a number of studies have confirmed the protective effects of TSS in animal models such as improving cardiac function, limiting infarct size and exerting anti-apoptotic effect in response to I/R injury (18, 19). However, the effects and possible mechanisms of TSS on I/R induced cardiac injury require further investigation.

We hypothesized that cardioprotective effects of TSS involve not only the anti-apoptotic, but also its anti-inflammatory, as well as its pro-autophagic effects.

Materials and Methods

Experimental animals

Ten-week-old male Sprague-Dawley rats were purchased from Shanghai Laboratory Animal Center. Rats were housed under optimal conditions with standard hygiene, kept at a temperature of 25 °C with a 12/12 light/dark cycle, fed with standard rat chow and water ad libitum. The experiments were performed in accordance with the National Institutes of Health Guidelines for the Use of Laboratory Animals (NIH, publication number 85-23, revised 1996), which were approved and performed according to guidelines for the care and use of animals established by Soochow University.

Myocardial I/R model

The I/R model was performed as described previously (20). Briefly, rats were anesthetized with 10% chloral anesthesia (350 mg/kg, IP), and hemodynamic parameters were measured using a heart performance analysis system (ALCBIO, Shanghai Alcott Biotech CO., LTD). The left femoral artery and right common carotid artery were isolated. A polystyrene PE-50 catheter was inserted into the left ventricle via right common carotid artery, with the other end connected to the analysis system. The major parameters of cardiac function were derived or calculated from the continuously obtained pressure signal and included systolic arterial pressure (SAP), the rate of maximum positive and negative left ventricular pressure development (+LVdp/dtmax), and the left ventricular end-diastolic pressure (LVEDP).

Measurement of ratio of myocardial infarct area to area at risk

After rat cardiac function was measured under anesthetized condition with 10% chloral anesthesia (350 mg/kg, IP), rat hearts were excised immediately after cardiac function measurements and perfused with Evans blue (1%, 4 ml) via the coronary artery under ligation of the left descending coronary artery with the remaining sutures. Hearts were traversely cut into 1-2 mm slices along the ligation point, placed in 1.25% 2,3,5-triphenyltetrazolium chloride (TTC; Sigma, USA) solution in phosphate-buffered saline (PBS), incubate for 10 min at 37 °C. The ischemic regions (area at risk, AAR) and the infarct area (white area is not stained by TTC) were recorded by digital camera, and the blue area (stained by Evans blue; non-ischemic area) were analyzed with a digital imaging system (NIH Image software). The ratio of myocardial infarct area to area at-risk (AAR) was calculated.

Western blot analysis

Myocardial tissues (AAR tissue) were homogenized with radioimmunoprecipitation assay (RIPA) buffer (50 mm Tris, pH 7.0, 150 mM NaCl, 1% Triton-X-100) containing phenylmethanesulfonyl fluoride (R&D Systems Inc., Minneapolis, US). Homogenates were centrifuged at 12,000 × g for 10 min at 4 °C. Cell protein were separated by SDS-PAGE and transferred to PVDF membranes (Hybond TM-ECL; Amersham Pharmacia Biotech, Inc.). The membranes were blocked in 5% nonfat milk in PBS and 0.1% Tween-20 at room temperature. The blots were then incubated with primary antibody: anti-Gaspase-3 antibody (1:1000, abcam, Inc.), anti-Bcl-2 antibody (1:1000, Immunoway Biotech, Inc.), anti-Bax antibody (1:1000, abcam, Inc.), anti-Beclin-1 (1:1000, Santa Cruz Biotech, Inc.), anti-LC3 (1:1000, abcam, Inc.), anti-HMGB1 (1:1000, abcam,
Table 1. Effect of tanshinone IIA sodium sulfonate (TSS) on the expression of HMGB1 protein. To determine the effect of TSS on inflammatory cytokine expression, western blot analysis was performed. The expression of HMGB1 in the TSS-pretreated group was significantly lower than that in the I/R group. These results suggest that TSS may exert protective effect through inhibition of inflammatory cytokine expression.

Results

TSS improves cardiac function after I/R injury

To determine the effects of TSS on cardiac function in rats subjected to I/R injury, cardiac function measurements were performed 24 h after reperfusion. I/R significantly decreases cardiac function relative to the sham control group, by decreasing the SAP, $P_{max} \pm \text{dP/dt}_{max}$, LVEDP and other parameters (Table 1). TSS dose-dependently improves the cardiac function parameters relative to I/R group.

TSS reduces myocardial infarct size after I/R injury

Cardiomyocyte injury is characterized by myocardial infarct size. To determine whether TSS attenuates I/R-induced cardiomyocyte injury, ratio of infarct size to AAR was calculated. Our data show that TSS significantly reduces the ratio of infarct size to AAR in a dose-dependent manner (Figure 1).

TSS suppresses inflammatory cytokine HMGB1 expression in rat I/R model

To investigate the effects of TSS on inflammatory factors, the expression of HMGB1 was determined by western blot analysis. The data demonstrated that cardiac I/R markedly increased the HMGB1 protein expression compared with the sham group ($P<0.05$, Figure 2). Pretreatment with TSS significantly suppresses HMGB1 expression compared with the I/R group ($P<0.05$, Figure 2). These results suggest that TSS may exert protective effect through inhibition of inflammatory cytokine expression.

TSS inhibits expression of pro-apoptotic proteins and increases expression of anti-apoptotic proteins after myocardial I/R

Bcl-2 and Bax genes are reported to play a crucial role in cell survival or death after apoptotic stimuli (22). Caspase-3 is also an important component of the apoptotic

Figure 1. Effects of tanshinone IIA sodium sulfonate (TSS) on myocardial infarct size of I/R rats. A: Cross-section of rat left ventricle ring following myocardial I/R injury. Representative photos show the effect of TSS pretreatment reducing infarct size. B: The ratio of infarct size (white area is not stained by TTC) to area at risk (red area is stained by TTC) was measured. Sham: Sham group (n=10); I/R: ischemic/reperfusion group (n=10); I/R+TSS-L: Low dose (15 mg/kg) TSS pretreatment group (n=10); I/R+TSS-M: Medium dose (30 mg/kg) TSS pretreatment group (n=9); I/R+TSS-H: High dose (70 mg/kg) SS pretreatment group (n=9). All data were expressed as mean±SEM. *$P<0.05$ compared with sham group. †$P<0.05$ compared with I/R group.

Figure 2. Effect of tanshinone IIA sodium sulfonate (TSS) on the expression of HMGB1 protein. Top: the representative Western blot of each group. Down: Densitometric analysis of HMGB1 expression normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. All data were expressed as mean±SEM. *$P<0.05$ compared with sham group. †$P<0.05$ compared with I/R group.
pathway. The effect of TSS on Bcl-2, Bax, and caspase-3 expression in myocardial tissue were analyzed by Western blot. Compared with those in sham group, I/R treatment significantly increases the levels of caspase-3 (*P<0.05, Figure 3B) and Bax (*P<0.05, Figure 3C), and decreases the levels of Bcl-2 (*P<0.05, Figure 3D).

Table1. Effects of tanshinone IIA sodium sulfonate (TSS) on cardiac function in response to I/R in rat

	Sham	I/R	I/R+TSS-L	I/R+TSS-M	I/R+TSS-H
HR(bpm)	332.5±20.4	369.5±16.6	377.8±33.1	354.4±25.4	374.6±34.3
RRI(ms)	205.5±16.5	177.6±11.2	195.4±37.5	197.3±20.0	236.2±71.5
SAP (mmHg)	83.8±2.9	61.7±8.8	68.9±8.4	89.6±3.3†	71.5±5.7
DAP (mmHg)	61.1±3.0	47.2±6.4	50.8±7.3	66.2±3.8	58.7±4.1
MAP (mmHg)	70.3±2.3	53.4±7.3	57.9±7.6	75.8±3.1	66.4±4.5
PP (mmHg)	22.7±3.8	14.5±3.1	18.2±3.2	23.3±3.8	18.4±3.8
P max (mmHg)	98.2±2.5	68.9±3.9*	84.8±4.8*	93.1±1.2†	93.3±1.8†
P min (mmHg)	2.8±0.9	8.0±3.5	6.8±1.3	7.8±2.1	4.1±1.2
P max (mmHg)	42.9±1.8	30.9±7.2*	42.4±3.0†	49.6±1.6†	44.5±2.0†
Lvedp (mmHg)	15.4±2.3	43.8±5.9*	35.4±5.6	22.8±3.8†	22.2±4.9†
P@dp/dt max (mmHg)	69.3±2.2	43.8±9.5	65.6±4.9	74.6±2.6	68.7±3.6
P@dp/dt min (mmHg)	50.4±2.4	32.6±7.6	53.3±3.3	58.8±2.5	55.2±2.0
RPP	32449±1761	21823±4507	31632±2907	35224±2321	35558±3181
dp/dt max (mmHg/s)	4943±142	2262±187*	3265±120†	4297±203†	3901±133†
-dp/dt max (mmHg/s)	4479±155	2047±161*	2787±257†	4010±176†	3859±189†
A1(CFL)(CFU)	102.2±15.4	25.1±2.6*	59.6±13.2	92.0±16.6	90.1±4.1
A2(CFL)(CFU)	28.9±5.1	7.1±0.8*	13.3±3.4	23.5±6.3	13.6±0.9
A3(CFL)(CFU)	18.5±0.8	5.3±0.6*	10.1±1.2	17.1±3.1†	13.3±0.7†
A4(CFL)(CFU)	35.6±9.1	6.3±1.5	23.6±7.4	36.2±9.2	49.5±22.5
As(CFL)(CFU)	47.5±5.2	11.8±1.3*	23.5±4.4	40.5±8.4	26.8±1.3*
Ad(CFL)(CFU)	50.8±9.8	10.9±2.3*	36.2±9.5	51.5±10.1	63.2±2.26†
S max(CRHL)	313.7±15.4	151.8±11.4	201.5±13.9	297.5±35.3	241.0±12.5†
S max(CRHL)(mmHg2/s2)	-408.3±18.6	-157.1±14.5	-253.3±22.3	-359.2±27.6	-271.3±21.9†
D max(CRHL)(mmHg2/s)	321.3±15.2	178.7±23.2*	197.3±31.2	312.6±22.2	247.6±23.3†
D max(CRHL)(mmHg2/s2)	-299.9±16.8	-135.3±17.8*	-226.3±25.9†	-320.0±24.5†	-252.4±22.2†
Pan et al

Tanshinone IIA in cardiac I/R injury

Iran J Basic Med Sci, Vol. 20, No.3, Mar 2017

Figure 3: Effects of tanshinone IIA sodium sulfonate (TSS) on the expression of Bcl-2, Bax, Caspase-3. A: the representative Western blot for each group (n=9). B: Densitometric analysis of caspase-3 expression normalized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. C: Densitometric analysis of Bcl-2 expression normalized by GAPDH expression. D: Densitometric analysis of Bax expression normalized by GAPDH expression. All data were expressed as means±SEM. * P<0.05 compared with sham group. † P<0.05 compared with I/R group.

Compared with those in I/R group, pretreatment with TSS significantly reduces levels of caspase-3 (P<0.05, Figure 3B) and Bax (P<0.05, Figure 3C), and enhances the levels of Bcl-2 (P<0.05, Figure 3D). These results indicate that TSS could reduce I/R induced cardiac apoptosis.

TSS up-regulates the expression of Beclin-1 and increases the ratio of LC3B to LC3A in I/R model rat

To investigate the effects of TSS on autophagy levels, the expression of Beclin-1 and the ratio of LC3B to LC3A were determined by western blot analysis (Figure 4B) and the ratio of LC3B to LC3A (P<0.05, Figure 4C). Pretreatment with TSS increases the expression of Beclin-1 (P<0.05, Figure 4B) and ratio of LC3B to LC3A (P<0.05, Figure 4C) in a dose-dependent manner compared with the I/R group. These results suggest that TSS may protect cardiac I/R induced injury via up-regulation of autophagy levels.

Discussion

Although the rapid restoration of blood flow through the occluded left coronary artery is the most effective therapy to reduce infarct area and enhance the clinical outcome after acute myocardial infarction. Reperfusion itself causes additional cardiomyocyte apoptosis and triggers inflammation in a process termed ‘myocardial I/R injury’ (23). The major finding of present study is that TSS could improve cardiac function and reduce myocardial injury by inhibiting cell apoptosis cascades, reducing the release of inflammatory factors, and activating autophagic pathways.

The most important therapy in response to cardiac I/R injury is to restore cardiac function to prevent organ failure. The preservation of cardiac function is the critical benchmark to measure when evaluating the clinical efficacy of various treatments for infarct patients (24). Previous reports have demonstrated that...
TSS could prevent I/R-induced cardiac injury (18, 21, 25). However, these observations do not provide data of the effect of TSS on cardiac function in response to I/R. In our study, we clearly demonstrated that TSS improves cardiac function after I/R injury. Our data also shows that TSS ameliorates both the constriction and relaxation function of the heart, which can be observed from SAP, Pmax ± dp/dmax and LVEDP data. Our results strongly support the protective effects of TSS on I/R induced cardiac injury. It should be noted that previous studies have demonstrated that TTS exerts protective effects even with lower dose of 10 mg/kg (21) or 20 mg/kg (25) than our effective dose of 30 mg/kg, this discrepancy may be due to the different models applied. Since, in the present study we could not find any more protective effects of TTS at dose of 70 mg/kg compared with dose of 30 mg/kg, we assume that the most effective dose of TTS is around 30 mg/kg.

Traditionally, it has been well recognized that cellular responses to I/R is highly related to the activation of apoptotic pathways, and various strategies were explored to suppress the activation of apoptosis (23, 26-28). As reported previously, TSS protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation (21). Findings have also demonstrated that TSS inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation (18). TSS protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway (25). We demonstrated that TSS dose-dependently suppresses the expression of pro-apoptotic proteins Bax and caspase-3, and up-regulates anti-apoptotic protein Bcl-2. These data suggest that TSS regulates the balance of pro-apoptotic and anti-apoptotic signaling pathways to exert protective effects, which are concordance with previous studies(18, 21, 25). Also, it should be noted that although our present observation does not focus on the effects of TTS on apoptotic signal pathways, we just speculated that TTS exerts anti-apoptotic effects via above-mentioned signal pathways such as Akt and ERK1/2 phosphorylation (18) and PI3K/Akt/FOXO3A/Bim pathway (25). More investigation should be performed to explore if there is other anti-apoptotic signal pathway involved in cardiac protective effects of TTS on I/R injury.

Under stress conditions, autophagy is activated either to meet the increased requirements for repair and detoxification, as a result of exposure to various damaging factors, or to produce energy and deliver building blocks for anabolic processes under starvation. Reportedly, autophagy has protective role in cardiac I/R injury (29). Up-regulation of autophagy increases resistance to myocardial I/R injury in the clinically relevant in vivo swine model of acute M1 (14). Recently, it was also demonstrated that autophagy is impaired in cardiac I/R injury (11). We previously demonstrated that autophagic pathways are activated under cardiac I/R (13). Although several studies have demonstrated that TSS could protect I/R induced cardiac injury through various mechanisms, its effects on autophagy are unclear. This study shows that TSS up-regulates autophagic makers, Beclin-1 and the ratio of LC3B/LC3A. This suggests a novel mechanism for the protective effects of TSS in I/R induced cardiac injury model, which may occur via the activation of self-repair mechanisms to rescue damaged cells. Whether TSS up-regulates autophagic levels via two pathways responsible for I/R-induced autophagy involving either BNIP3(30) or AMPK(31) still needs further investigation.

The activation of inflammatory cytokines and their contribution to I/R-induced cardiac injury have been widely investigated. HMGB-1, as a pro-inflammatory mediator, which is a non-chromosomal nuclear protein that maintains the nucleosome and regulates gene transcription, is released by necrotic cells, and activates innate macrophages, monocytes and apoptotic cells (32). HMGB-1 can significantly promote the apoptosis of neonatal myocytes and decrease the cell viability (32, 33). The HMGB1-TLR4 axis contributes to myocardial I/R injury via the up-regulation of cardiomyocyte apoptosis (9). Furthermore, it has been reported that HMGB-1 is related to tissue autophagy (34), which may also contribute the cell repair or damage. Several studies have demonstrated that TSS regulates the expression of inflammatory factors (35, 36). However, the effect of TSS on HMGB-1 remains unexplored. We demonstrated in this study that TSS suppresses HMGB-1 levels in cardiac tissue in response to I/R injury. This suggests that the protective effects of TSS may also occur via the regulation of pro-inflammatory factor HMGB-1.

It should be noted that the present study only focused on the short-term cardioprotective effect of TSS against I/R injury in rats. Further studies are needed to clarify whether TSS provides long-term functional cardioprotection, such as anti-cardiac remodeling. In addition, further investigations are required to investigate whether drug combination therapy will provide more beneficial strategies in the clinical application of TSS. However, adverse reactions of TSS administration have been observed clinically (37), which necessitates further studies on the optimal treatment conditions to optimize infract patient outcomes.

Conclusion

We demonstrate that TSS protects against I/R injury via reducing inflammatory factors, inhibiting apoptosis, and inducing autophagy.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (81270316, 81470563), the Research Program of Soochow University.
A novel compound derived from \(\text{Tanshinone IIA} \) sulfonate protects against myocardial ischemia/reperfusion injury in rats. Atherosclerosis 2014; 235:318-327.

Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur J Pharmacol 2013; 699:219-226.

Pan et al.

References

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update; a report from the American Heart Association. Circulation. 2013;127(1):e6.
2. Lopes AD, Murray CC. The global burden of disease, 1990-2020. Nat Med 1998; 4:1241-1243.
3. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 2013;123:92-100.
4. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008; 88:581-609.
5. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res 1999; 43:860-878.
6. Kwak W, Ha YS, Soni N, Lee W, Park S, Ahn H, et al. Apoptosis imaging studies in various animal models using radioiodinated peptide. Apoptosis 2015; 20:110-121.
7. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434:62-658.
8. Zhi C-J, Zhang M-q, Zhang Y, Xu H-x, Wang J-m, An G-p, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGBl-dependent phospho-JNK/Bax pathway. Acta Pharmacol Sin 2012; 33:1477-1487.
9. Ding H-S, Yang J, Chen P, Yang J, Bo S-Q, Ding J-W, et al. The HMGBl-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene. 2013; 527:389-393.
10. Deppe C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev 2007; 12:307-317.
11. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Diwan A. Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 2012; 8:1394-1396.
12. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012; 125:3170-3181.
13. Chen C, Hu L-X, Dong T, Wang G-Q, Wang L-H, Zhou X-P, et al. Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats. Life Sci 2013; 93:265-270.
14. Przyklenk K, Undalya VV, Wider J, Sala-Mercado JA, Gottlieb RA, Mentzer RM, Jr. Acute induction of autophagy as a novel strategy for cardioprotection: getting to the heart of the matter. Autophagy 2011; 7:432-433.
15. Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 2011; 13:319-327.
16. Pan L-L, Liu X-H, Jia Y-L, Wu D, Xiong Q-H, Gong Q-H, et al. A novel compound derived from danshensu inhibits apoptosis via upregulation of heme oxygenase-1 expression in SH-SYSY cells. Biochim Biophys Acta 2013; 1830:2861-2871.
17. Wu G-b, Zhou E-x, Qing D-x. Tanshinone II (A) elicited vasodilation in rat coronary arterioles: Roles of nitric oxide and potassium channels. Eur J Pharmacol 2009; 617:102-107.
18. Yin Y, Yuan Y, Duan J, Wei G, Zhu Y, Quan W, et al. Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur J Pharmacol 2013; 699:219-226.
19. Wei B, Li WW, Ji J, Hu QH, Ji H. The cardioprotective effect of sodium tanshinone IIA sulfonate and the optimizing of therapeutic time window in myocardial ischemia/reperfusion injury in rats. Atherosclerosis 2014; 235:318-327.
20. Zhang G-X, Kimura S, Murao K, Obata K, Matsuoyoshi H, Takaki M. Inhibition of cytochrome c release by 10-N-onyl acridine orange, a cardiopin-specific dye, during myocardial ischemia-reperfusion in the rat. Am J Physiol Heart Circ Physiol 2010; 298:H433-H439.
21. Yang R, Liu A, Ma X, Li L, Su D, Liu J. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation. J Cardiovasc Pharmacol 2008; 51:396-401.
22. Scarfo L, Ghia P. Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett 2013; 155:36-39.
23. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357:1121-35.
24. Dominguez-Rodriguez A, Abreu-Gonzalez P, Reiter RJ. Cardioprotection and pharmacological therapies in acute myocardial infarction: Challenges in the current era. World J Cardio 2014; 6:100-106.
25. Zhang M-q, Zheng Y-L, Chen H, Tu J-F, Chen Y, Guo J-p, et al. Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway. Acta Pharmacol Sin 2013; 34:1386-1396.
26. Bagai A, Dansga GD, Stone GW, Granger CB. Reperfusion strategies in acute coronary syndromes. Circ Res 2014; 114:1918-1928.
27. Xu T, Wu X, Chen Q, Zhu S, Liu Y, Pan D, et al. The Anti-Apoptotic and Cardioprotective Effects of Salvianolic Acid A on Rat Cardiomyocytes following Ischemia/Reperfusion by DUSP-Mediated Regulation of the ERK1/2/JNK Pathway. PLoS One 2014; 9:e102292.
28. Umantsky SR, Cuenco GM, Khutzian SS, Barr PJ, Tomei LD. Post-ischemic apoptotic death of rat neonatal cardiomyocytes. Cell Death Differ 1995; 2:235-241.
29. Decker RS, Wildenthal K. Lysosomal alterations in heme oxygenase-1 expression in SH-SYSY cells. Biochim Biophys Acta 2013; 1830:2861-2871.
30. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves...
Bnip3 and autophagy. Cell Death Differ 2007; 14:146-157.
31. Russell RR, 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004; 114:495-503.
32. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93:865-873.
33. Hu X, Zhou X, He B, Xu C, Wu L, Cui B, et al. Minocycline protects against myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats. Eur J Pharmacol 2010; 638:84-89.
34. Sun X, Tang D. HMGB1-dependent and-independent autophagy. Autophagy 2014;10:1873-1976.
35. Yu Q, Chen H, Sheng L, Liang Y, Li Q. Sodium tanshinone IIA sulfonate prolongs the survival of skin allografts by inhibiting inflammatory cell infiltration and T cell proliferation. Int Immunopharmacol 2014; 22:277-284.
36. Sun N, Li E, Wang Z, Zhao J, Wang S, He J, et al. Sodium tanshinone IIA sulfonate inhibits porcine reproductive and respiratory syndrome virus via suppressing N gene expression and blocking virus-induced apoptosis. Antivir Ther 2014; 19:89-95.
37. Liu HC, Liu HH. [Adverse reactions of tanshinone II(A) sodium sulfonate injection in treating 18 cases: an analysis of clinical features]. Zhongguo Zhong Xi Yi Jie He Za Zhi 2013; 33:1287-1289.