Neutron star structure with a new force between quarks

Jeffrey M. Berryman
Department of Physics, University of California, Berkeley, CA 94720, USA and
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA

Susan Gardner
Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA

The discovery of nondiffuse sources of gravitational waves through compact-object mergers opens new prospects for the study of physics beyond the Standard Model. In this paper, we study the effects of a new force between quarks, suggested by the gauging of baryon number, on pure neutron matter at supranuclear densities. This leads to a stiffening of the equation of state, allowing neutron stars to be both larger and heavier and possibly accommodating the light progenitor of GW190814 as a neutron star. The role of conventional three-body forces in neutron star structure is still poorly understood, though they can act in a similar way, implying that the mass and radius do not in themselves resolve whether new physics is coming into play. However, a crucial feature of the scenario we propose is that the regions of the new physics parameter space that induce observable changes to neutron star structure are testable at low-energy accelerator facilities. This testability distinguishes our scenario from other classes of new phenomena in dense matter.

Introduction. The environment of a proto-neutron star (NS) has long been known to be exquisitely sensitive to the appearance of light, new physics (NP), such as axions [1–7] or dark photons [8–10], through cooling effects. Dark matter can also be captured by NSs, altering them so severely that the established existence of NSs constrains dark matter properties [11, 12]. With the advent of gravitational wave (GW) observations of compact object mergers [13], new windows on the nature of matter at supranuclear densities open [14]. There has been much discussion of emergent phenomena within QCD at near-zero temperature T with neutron chemical potential μ_n, with transitions to condensed phases [15] of pions [16] and kaons [17], or to a spin-color-flavor-locked qq phase [18, 19], or to states with substantial admixtures of s and \bar{s} quarks all possible [20,22]. The structure of NSs is also sensitive to new neutron decay channels, as noted in new physics models for the neutron lifetime anomaly [23–24], yielding severe constraints [25,27].

Here, we consider minimal extensions of the Standard Model (SM) that give rise to new, short-range interactions between quarks. In particular, we consider U(1)$_X$ extensions that couple to baryon number B; such models have proven popular in searches for light hidden sectors in low-energy accelerator experiments [28] because the possibility that the neutrino has a Majorana mass predicates that the $B - L$ symmetry of the SM is broken. If B symmetry is spontaneously broken to give a gauge boson X no lighter than a few hundred MeV, then the new interaction is largely shielded from constraints from low-energy experiments. In particular, its contribution to the nucleon-nucleon (NN) force can be hidden within the short-distance repulsion of the phenomenological NN force in the SM, recalling, e.g., the repulsive hard core of the Reid potential at separations of $r_{nc} = 0.5$ fm [29], yet it can modify the neutron matter equation of state (EoS) at supranuclear densities, i.e., beyond the saturation number density of ordinary nuclear matter, n_{sat} [30]. We expect these models to be accompanied by electromagnetic signatures, such as, e.g., brighter kilonovae, due to $X - \gamma$ mixing, but reserve this for later work [31].

Theoretical Framework. The lighter compact object in GW190814 is of $2.50 - 2.67 M_\odot$ (90% credible level) in mass [32], and is likely too heavy to be a NS, at least within a nonrelativistic many-body approach using NN forces from chiral effective theory, with low-energy constants (LECs) determined from nuclear data [32]. Relativistic mean-field models can generate masses in excess of $2.6 M_\odot$ [33], though they are challenged by constraints from heavy-ion collisions (HIC) [34]; we note Refs. [35–56] for further discussion of the light progenitor of GW190814 as a neutron star. We consider our NP model within a nonrelativistic many-body framework. Drischler et al. [57] recognize the importance of relativistic corrections but also think that knowledge of the high-density EoS is likely inadequate. In particular, they adopt a piecewise EoS: beyond some density cutoff, the EoS is given by the stiffest form allowed by causality. They choose a cutoff density in the region $(1 - 2)n_{sat}$ and claim that the modified EoS and NS outcomes below that cutoff can be made without relativistic corrections.

The chiral effective theory approach uses NN and nuclear data to determine the LECs, with independent two- and three-body forces coming into play [58,59]. In contrast, our Abelian NP model directly yields two-body forces only. To sharpen the distinction between SM and NP effects, we employ the AV18 NN interaction [60], whose properties are determined by NN observables only. Studies of the AV18 interaction in pure neutron matter (PNM) with different nonrelativistic methods show that it compares favorably with other interactions up to about $4n_{sat}$ [61]. Here, we compare
computations of the PNM EoS using Brueckner-Hartree-Fock (BHF) theory with the AV18 interaction with and without NP.

Secret Interactions of Quarks. That new interactions could exist between quarks is a long-standing possibility [62,66], and SM extensions in which a new vector mediator couples to baryon number B could give rise to Eq. (1) and thus be operative. For example, if X models [65, 78] could give rise to Eq. (1) and thus be operative. We consider partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.

A primary source of uncertainty in nuclear matter calculations is the precise many-body technique employed. For instance, Ref. [61] contrasts several such methods and finds that the in-medium potential energies may differ by a factor of ≈ 2 at supernuclear densities for the same NN potential. However, our purpose is to identify the new interaction produces significant changes to NS properties. To remedy this, we have also considered partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.

A primary source of uncertainty in nuclear matter calculations is the precise many-body technique employed. For instance, Ref. [61] contrasts several such methods and finds that the in-medium potential energies may differ by a factor of ≈ 2 at supernuclear densities for the same NN potential. However, our purpose is to identify the new interaction produces significant changes to NS properties. To remedy this, we have also considered partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.

A primary source of uncertainty in nuclear matter calculations is the precise many-body technique employed. For instance, Ref. [61] contrasts several such methods and finds that the in-medium potential energies may differ by a factor of ≈ 2 at supernuclear densities for the same NN potential. However, our purpose is to identify the new interaction produces significant changes to NS properties. To remedy this, we have also considered partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.

A primary source of uncertainty in nuclear matter calculations is the precise many-body technique employed. For instance, Ref. [61] contrasts several such methods and finds that the in-medium potential energies may differ by a factor of ≈ 2 at supernuclear densities for the same NN potential. However, our purpose is to identify the new interaction produces significant changes to NS properties. To remedy this, we have also considered partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.

A primary source of uncertainty in nuclear matter calculations is the precise many-body technique employed. For instance, Ref. [61] contrasts several such methods and finds that the in-medium potential energies may differ by a factor of ≈ 2 at supernuclear densities for the same NN potential. However, our purpose is to identify the new interaction produces significant changes to NS properties. To remedy this, we have also considered partial waves up to $J_{\text{max}} = 11$, facilitating comparison with Ref. [61]. Considering only the AV18 potential, we obtain $E/A = 13.7$ MeV at $n = n_{\text{sat}} = 0.16$ fm$^{-3}$, compared to 13.4 MeV [61]; for $n = 0.3$ fm$^{-3}$, we obtain 26.0 MeV, in perfect agreement.
PNM. The results are also shown in Fig. 1a; the curves have the same interpretation as for the BHF case. Here we find $M_{\text{TOV}} \sim 2.1 M_\odot$ — this is consistent with the mass of PSR J0740+6620, $2.14^{+0.10}_{-0.09} M_\odot$, but is still too light to explain GW190814. In both cases, the new interaction generates larger NS masses, as anticipated, but also increases the radius of NSs of a given mass.

To contextualize Fig. 1a, we show the region in the M-R plane in which the NS becomes a black hole (BH), as well as a limit on NS properties from causality [93]. Moreover, we show the posterior probability on the radius of a $1.4 M_\odot$ NS, $P(R_{1.4}|d)$, conditioned on data d from heavy pulsars, gravitational wave events and NICER observations of PSR J0030+0451, adapted from Fig. 10 of Ref. [86]. Lastly, we have included the EoS derived for quarkyonic matter in Ref. [85] as an example with a quark/hadron QCD phase transition. The salient feature of this EoS is that the transition from hadronic to mixed hadron-quark matter induces a spike in c_s^2 at a few times saturation density; similar features are present in some of the sound speed profiles considered in Ref. [94]. This rapid stiffening of the EoS is sufficient to allow for heavier NSs and is consistent with inferences of c_s^2 from HIC, shown in shading. As with PNM, the pure BHF EoS is too soft to accommodate observations, but the APR EoS is a plausible candidate. The new interaction stiffens the EoS, as expected, but not so much that the HIC constraint is violated. For context, we show several mean-field EoS [33, 95–97]. We note that the pressure for APR+NP is nonzero at empirical saturation density; we expect this to be resolved with a more refined treatment, while still generating nontrivial effects at higher densities.

Constraints. In Fig. 3 we show the region in the $\alpha_B M_X^2 = (600 \text{ MeV})^{-2}$ for four finite values of M_X. Also shown are the contact-interaction limit and the baseline APR EoS. Lighter states generate larger contributions to the EoS, and thus to NS properties, owing largely to their effects on higher partial-wave potentials. Contact interactions only contribute to s-wave scattering, whereas finite-mass states contribute at all orders. Because higher partial waves become more important at higher densities, the outcome is shown in Fig. 1b. The pure contact interaction produces a result that is barely distinguishable from the nominal APR curve.

In Fig. 1b, we fix the interaction strength to be $\alpha_B M_X^2 = (600 \text{ MeV})^{-2}$ for four finite values of M_X. Also shown are the contact-interaction limit and the baseline APR EoS. Lighter states generate larger contributions to the EoS, and thus to NS properties, owing largely to their effects on higher partial-wave potentials. Contact interactions only contribute to s-wave scattering, whereas finite-mass states contribute at all orders. Because higher partial waves become more important at higher densities, the outcome is shown in Fig. 1b. The pure contact interaction produces a result that is barely distinguishable from the nominal APR curve.

We also calculate the EoS of symmetric nuclear matter (SNM) using the same techniques with $J_{\text{max}} = 8$. In Fig. 2 we show the pressure determined in our BHF and APR schemes, and we include NP with $\alpha_B = 1$ and $M_X = 600$ MeV. We compare these with inferences of the EoS from HIC, shown in shading. As with PNM, the pure BHF EoS is too soft to accommodate observations, but the APR EoS is a plausible candidate. The new interaction stiffens the EoS, as expected, but not so much that the HIC constraint is violated. For context, we show several mean-field EoS [33, 95–97]. We note that the pressure for APR+NP is nonzero at empirical saturation density; we expect this to be resolved with a more refined treatment, while still generating nontrivial effects at higher densities.

Constraints. In Fig. 3 we show the region in the $\alpha_B -$
M_X plane in which M_{TOV} is increased by $0.1 - 0.5M_\odot$ relative to the APR EoS. We now turn to potential constraints on this scenario from low-energy physics. The presence of NP induces a contribution to the NN scattering lengths. In the Born limit, the $n\,^1S_0$ scattering length is modified by

$$\Delta a_{1S_0} = \frac{\alpha_B a m_N}{M_X^2} \approx (0.5 \text{ fm}) \times \alpha_B \left(\frac{600 \text{ MeV}}{M_X} \right)^2.$$

We emphasize the AV18 potential is phenomenological — it is fit to low-energy NN data, not derived from first principles. If the potential parameters were determined in the presence of NP, the effects of NP would presumably be obscured; we leave a detailed study to future work [31].

Therefore, low-energy NN scattering does not provide a robust constraint on this scenario. New baryon-coupled physics can also be probed by lead-neutron scattering [104, 105]. Ref. [105] presents a constraint for masses below 40 MeV; Ref. [70] extends this into the $O(100)$ MeV mass range. However, if the range of the new force is not longer than the range of the nuclear force, then it is difficult to disentangle the two without a first-principles description of the latter, and the treatments of Refs. [104, 105] are unsuitable to this mass region. As such, we do not consider this constraint further.

We calculate the contribution of our new boson to several rare η^0 decays using the vector meson dominance model [106–109]. We assume that the decays proceed via $\eta^0 \rightarrow X\gamma$, $X \rightarrow \pi^0\gamma$, $\pi^+\pi^-\pi^0\eta$, through X-meson mixing and that the SM contribution is zero. The observables are ratios of the rare decay widths to the widths for $\eta \rightarrow \pi^0\gamma$ [103]. The solid curve in Fig. 3 shows the constraint derived from $\eta \rightarrow \pi^0\gamma$. Following Ref. [70], we require that the contribution from X not exceed 3×10^{-4} [103]; equality gives the curve shown. The SM contributions to $\eta^0 \rightarrow \pi^0\gamma$ are not negligible; moreover, different width assessments exist [98–102] and further exploration is needed [31]. The upcoming JLab Eta Factory (JEF) experiment [110, 111] can perform a bump hunt in $\pi^0\gamma$ invariant mass, greatly enhancing the sensitivity to the X gauge boson while mitigating sensitivity to the theoretical production rate [112].

Figure 3 also shows constraints from decays of η' to $\pi^0\gamma$ [113], $\pi^+\pi^-\pi^0\eta$ [114] and $\eta\gamma$ [115]. The possibility of gluonium content in the η' [116, 117] also complicates their interpretation. Analyses of neutral meson radiative decays do not agree on its size [118, 119], where the inclusion of $\Gamma(\eta' \rightarrow \gamma\gamma)/\Gamma(\pi^0 \rightarrow \gamma\gamma)$ data drives this difference and a larger effect [119]. Our estimates assume this is zero, so that observed deviations between SM predictions and experiment could also derive from this effect. An alternative strategy for observing X would be to search for bumps in invariant mass distributions in these decays. We caution, however, that there are regions in parameter space in which we expect the X to be wide: this is so for $\alpha_B \gtrsim O(10^{-1})$ around the ω resonance, and for $\alpha_B \gtrsim O(1)$ above $M_X \sim 1 \text{ GeV}$. In these regimes, the X would not present as a localized feature in invariant mass and bump hunts would become less effective. These decays could be measured precisely at JEF.
and REDTOP [120][122], though the sensitivities have not been benchmarked. Additionally, the ultimate sensitivity of GlueX to X photoproduction ($\gamma p \rightarrow p X$) affords a sensitivity to couplings of order $O(10^{-5} - 10^{-4})$ for narrow X off the ω resonance [124]; this is also shown in Fig. 3.

Summary. We have considered how a new force between first-generation quarks can make NSs for a fixed EoS and many-body method both heavier and puffier. This mechanism has not been considered previously, though new forces for strange quarks have been considered [125]; the attractive AN interaction has long made the existence of $\approx 2M_\odot$ NSs a puzzle [88], though three-body forces may reduce the effect [126]. We have described how our NP scenario can be tested through studies of rare η and η' decays [112][122] and of X photoproduction [124] at low-energy accelerators. Finally, we have not resolved the nature of the $\approx 2.6M_\odot$ compact object in GW190814, this mechanism allows it to more naturally be a NS. The spin of that object, though poorly determined, may have been sufficient to increase its mass by $(0.1-0.4)M_\odot$; differential rotation can push this even higher [133][135], but these configurations are not expected to be stable over long time scales. Combining spin effects with NP could yield additional heavy NSs; thus more compact objects in excess of $2M_\odot$ may eventually be identified, promoting the possibility of new baryonic interactions.

Acknowledgements. We thank the Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS) for an inspiring environment and support. J.M.B. acknowledges support from the National Science Foundation, Grant PHY-1630782, and the Heising-Simons Foundation, Grant 2017-228, and S.G. acknowledges partial support from the U.S. Department of Energy under contract DE-FG02-96ER40989.

[1] N. Iwamoto, Axion Emission From Neutron Stars, Phys. Rev. Lett. 53, 1198 (1984).
[2] M. S. Turner, Axions from SN1987A, Phys. Rev. Lett. 60, 1797 (1988).
[3] R. P. Brinkmann and M. S. Turner, Numerical rates for nucleon-nucleon, axion bremsstrahlung, Phys. Rev. D 38, 2338 (1988).
[4] A. Burrows, M. S. Turner, and R. P. Brinkmann, Axions and SN 1987A, Phys. Rev. D 39, 1020 (1989).
[5] H.-T. Janka, W. Keil, G. Raffelt, and D. Seckel, Nuclear Spin Fluctuations and the Supernova Emission of Neutrinos and Axions, Phys. Rev. Lett. 76, 2621 (1996).
[6] C. Hanhart, D. R. Phillips, and S. Reddy, Neutrino and axion emissivities of neutron stars from nucleon-nucleon scattering data, Phys. Lett. B 499, 9 (2001).
[7] A. Sedrakian, Axion cooling of neutron stars, Phys. Rev. D 93, 065044 (2016).
[8] J. B. Dent, F. Ferrer, and L. M. Krauss, Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling, arXiv e-prints, arXiv:1201.2683 (2012).
[9] H. K. Dreiner, J.-F. Fortin, C. Hanhart, and L. Ubaldi, Supernova constraints on MeV dark sectors from e+e- annihilations, Phys. Rev. D 89, 105015 (2014).
[10] D. Kazanas, R. N. Mohapatra, S. Nussinov, V. L. Teplitz, and Y. Zhang, Supernova bounds on the dark photon using its electromagnetic decay, Nuclear Physics B 890, 17 (2015).
J. M. Berryman and S. Gardner (2021), unpublished.

I. Tews, P. T. H. Pang, T. Dietrich, M. W. Coughlin, P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 329, 1592 (2002) arXiv:nucl-th/0208016.

N.-B. Zhang and B.-A. Li, GW190814's Secondary Component with Mass 2.50–2.67 Msun as a Superfast Pulsar, Astrophys. J. 902, 38 (2020) arXiv:2007.02513 [astro-ph.HE].

A. Tsukayama, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298, 1592 (2002) arXiv:nucl-th/0208016.

I. A. Rather, A. A. Usmani, and S. K. Patra, Rotating Neutron stars and their implications, Phys. Rev. C 103, 055814 (2021) arXiv:2012.13485 [nucl-th].

A. Ayriyan, D. Blaschke, A. G. Grunfeld, D. Alvarez-Castillo, H. Grigorian, and V. Abgaryan, Bayesian analysis of multimessenger M-R data with interpolated hyperon cores, Phys. Rev. C 103, 058801 (2021) arXiv:2102.04067 [nucl-th].

A. Kanaki-Pegios, P. S. Koliogiannis, and C. C. Moustakidis, Probing the Nuclear Equation of State from the Existence of a ~ 2.6 Msun Neutron Star: The GW190814 Puzzle, Symmetry 13, 183 (2021) arXiv:2012.09580 [astro-ph.HE].

D. Blaschke and M. Cierniak, Studying the onset of deconfinement with multi-messenger astronomy of neutron stars, Astron. Nachr. 342, 227 (2021) arXiv:2012.15785 [astro-ph.HE].

I. A. Rather, U. Rahaman, M. Imran, H. C. Das, A. A. Usmani, and S. K. Patra, Rotating Neutron stars with Quark cores, Phys. Rev. C 103, 055814 (2021) arXiv:2102.04067 [nucl-th].

A. Ayriyan, D. Blaschke, A. G. Grunfeld, D. Alvarez-Castillo, H. Grigorian, and V. Abgaryan, Bayesian analysis of multimessenger M-R data with interpolated hybrid EoS (2021), arXiv:2102.13485 [astro-ph.HE].

I. A. Rather, U. Rahaman, V. Dexeheimer, A. A. Usmani, and S. K. Patra, Heavy Magnetic Neutron Stars, Astrophys. J. 917, 46 (2021) arXiv:2104.05950 [nucl-th].

C. Drischler, S. Han, J. M. Lattimer, M. Prakash, S. Reddy, and T. Zhao, Limiting masses and radii of neutron stars and their implications, Phys. Rev. C 103, 045808 (2021) arXiv:2009.06441 [nucl-th].

J. L. Friar, D. Huber, and U. van Kolck, Chiral symmetry and three nucleon forces, Phys. Rev. C 59, 53 (1999) arXiv:nucl-th/9809065.
A. E. Nelson and N. Tetradis, Constraints on a New R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, An Ac-
D. C. Bailey and S. Davidson, Is there a vector boson S. Gardner, R. J. Holt, and A. S. Tadepalli, New
B. A. Dobrescu and C. Frugiuele, Hidden GeV-scale L. Okun, Mirror particles and mirror matter: 50 years
T. Lee and C.-N. Yang, Conservation of Heavy Particles M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, and
P. Fileviez P´erez and M. B. Wise, Baryon and lepton C. D. Carone and H. Murayama, Possible Light U(1) Gauge Boson Coupled to Baryon Number, Phys. Rev. Lett. 74, 3122 (1995) [arXiv:hep-ph/9411256 [hep-ph]].

50 years of speculations and search, Phys. Usp. 50, 380 (2007) [arXiv:1003.2947 [hep-ph]].

348

T. Lee and C.-N. Yang, Conservation of Heavy Particles L. Okun, Mirror particles and mirror matter: 50 years
Talks of heavy particles, Phys. Rev. D 1501 (1955).

1501 (1955).

A. E. Nelson and N. Tetradis, Constraints on a New R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, An Ac-
D. C. Bailey and S. Davidson, Is there a vector boson U(1) Gauge Boson Coupled to Baryon Number, Phys. Rev. Lett. 74, 3122 (1995) [arXiv:hep-ph/9411256 [hep-ph]].

348

T. Lee and C.-N. Yang, Conservation of Heavy Particles L. Okun, Mirror particles and mirror matter: 50 years
Talks of heavy particles, Phys. Rev. D 1501 (1955).

A. E. Nelson and N. Tetradis, Constraints on a New R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, An Ac-
D. C. Bailey and S. Davidson, Is there a vector boson U(1) Gauge Boson Coupled to Baryon Number, Phys. Rev. Lett. 74, 3122 (1995) [arXiv:hep-ph/9411256 [hep-ph]].

348

T. Lee and C.-N. Yang, Conservation of Heavy Particles L. Okun, Mirror particles and mirror matter: 50 years
Talks of heavy particles, Phys. Rev. D 1501 (1955).

A. E. Nelson and N. Tetradis, Constraints on a New R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, An Ac-
D. C. Bailey and S. Davidson, Is there a vector boson U(1) Gauge Boson Coupled to Baryon Number, Phys. Rev. Lett. 74, 3122 (1995) [arXiv:hep-ph/9411256 [hep-ph]].

348

T. Lee and C.-N. Yang, Conservation of Heavy Particles L. Okun, Mirror particles and mirror matter: 50 years
Talks of heavy particles, Phys. Rev. D 1501 (1955).
E. Oset, J. Bijnens, A. Bramon, and F. Cornet, Chiral perturbation theory for $\eta \rightarrow \pi^0 \gamma \gamma$, Phys. Lett. B 276, 185 (1992).

J. Bijnens, A. Fayyazuddin, and J. Prades, The $\gamma \gamma \rightarrow \pi^0 \pi^0$ and $\eta \rightarrow \pi^0 \gamma \gamma$ transitions in the extended NJL model, Phys. Lett. B 379, 209 (1996), arXiv:hep-ph/9512374.

E. Oset, J. R. Pelaez, and L. Roca, $\eta \rightarrow \pi^0 \gamma \gamma$ decay within a chiral unitary approach, Phys. Rev. D 67, 073013 (2003), arXiv:hep-ph/0210282.

E. Oset, J. R. Pelaez, and L. Roca, $\eta \rightarrow \pi^0 \gamma \gamma$ decay within a chiral unitary approach revisited, Phys. Rev. D 77, 073001 (2008), arXiv:0801.2633 [hep-ph].

R. Escribano, S. González-Solís, R. Jora, and E. Royo, Theoretical analysis of the doubly radiative decays $\eta^{(')} \rightarrow \pi^0 \gamma$ and $\eta \rightarrow \eta \gamma \gamma$, Phys. Rev. D 102, 034026 (2020), arXiv:1812.08454 [hep-ph].

P. A. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020, 083C01 (2020).

R. Barbieri and T. E. O. Ericson, Evidence Against the Existence of a Low Mass Scalar Boson from Neutrino-Nucleus Scattering, Phys. Lett. B 57, 270 (1975).

H. Leeb and J. Schmiedmayer, Constraint on hypothetical light interacting bosons from low-energy neutron experiments, Phys. Rev. Lett. 68, 1472 (1992).

M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida, Is rho Meson a Dynamical Gauge Boson of Hidden Local Symmetry?, Phys. Rev. Lett. 54, 1215 (1985).

M. Bando, T. Kugo, and K. Yamawaki, On the Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries, Nucl. Phys. B 259, 493 (1985).

T. Fujiwara, T. Kugo, H. Terao, S. Uehara, and K. Yamawaki, Non-Abelian Anomaly and Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries, Progress of Theoretical Physics 73, 926 (1985).

M. Bando, T. Kugo, and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164, 217 (1988).

L. Gan et al., Symmetry Tests of Rare Eta Decays to All-Neutral Final States: The JLab Eta Factory (JEF) Experiment, Available at https://www.jlab.org/exp-prog/proposals/14/PR12-14-004.pdf().

L. Gan et al., Update to the JEF proposal (PR12-14-004), Available at https://misportal.jlab.org/pacProposals/proposals/1354/attachments/98421/Proposal.pdf().

L. Gan, B. Kubis, E. Passemar, and S. Tulin, Precision tests of fundamental physics with η and η' mesons, arXiv e-prints (2020), arXiv:2007.00664 [hep-ph].

M. Ablikim et al. (BESIII), Observation of the doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$, Phys. Rev. D 96, 012005 (2017), arXiv:1612.05721 [hep-ex].

M. Ablikim et al. (BESIII), Precision Measurement of the Branching Fractions of η' Decays, Phys. Rev. Lett. 122, 142002 (2019), arXiv:1902.03823 [hep-ex].

M. Ablikim et al. (BESIII), Search for the decay $\eta' \rightarrow \gamma \eta$, Phys. Rev. D 100, 052015 (2019), arXiv:1906.10346 [hep-ex].

J. L. Rosner, Quark Content of Neutral Mesons, Phys. Rev. D 27, 1101 (1983).

E. Kou, On the eta-prime gluonic admixture, Phys. Rev. D 63, 054027 (2001), arXiv:hep-ph/9908214.

R. Escribano and J. Nadal, On the gluon content of the η and η' mesons, Journal of High Energy Physics 2007, 006 (2007), arXiv:hep-ph/0703187 [hep-ph].

KLOE Collaboration, F. Ambrosino, et al., Measurement of the pseudoscalar mixing angle and η' gluonium content with the KLOE detector, Physics Letters B 648, 267 (2007), arXiv:hep-ex/0612029 [hep-ex].

C. Gatto, B. Fabela Enriquez, and M. I. Pedraza Morales (REDTOP), The REDTOP project: Rare Eta Decays with a TPC for Optical Photons, PoS ICHEP2016, 812 (2016).

D. González, D. León, B. Fabela, and M. I. Pedraza, Detecting physics beyond the Standard Model with the REDTOP experiment, J. Phys. Conf. Ser. 912, 012042 (2017).

C. Gatto (REDTOP), The REDTOP experiment, arXiv e-prints (2019), arXiv:1910.08505 [physics.ins-det].

S. Adhikari et al. (GluEX), The GLUEX beamline and detector, Nucl. Instrum. Meth. A 987, 164807 (2021), arXiv:2006.14272 [physics.ins-det].

C. Fanelli and M. Williams, Photoproduction of lepto-phobic bosons, J. Phys. G 44, 014002 (2017), arXiv:1605.07161 [hep-ph].

M. I. Krivoruchenko, F. Šimkovic, and A. Faessler, Constraints for weakly interacting light bosons from existence of massive neutron stars, Phys. Rev. D 79, 125023 (2009), arXiv:0902.1825 [hep-ph].

D. Gerstung, N. Kaiser, and W. Weise, Hyperon-nucleon three-body forces and strangeness in neutron stars, Eur. Phys. J. A 56, 175 (2020), arXiv:2001.10563 [nucl-th].

G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, Rapidly rotating neutron stars in general relativity: Realistic equations of state, Astrophys. J. 424, 823 (1994).

J.-P. Lasota, P. Haensel, and M. A. Abramowicz, Fast rotation of neutron stars, Astrophys. J. 456, 300 (1996), arXiv:astro-ph/9508118.

C. Breu and L. Rezzolla, Maximum mass, moment of inertia and compactness of relativistic stars, Mon. Not. Roy. Astron. Soc. 459, 646 (2016), arXiv:1601.06833 [gr-qc].

P. S. Koliogiannis and C. C. Moustakidis, Effects of the equation of state on the bulk properties of maximally-rotating neutron stars, Phys. Rev. C 101, 015805 (2020), arXiv:1907.13375 [nucl-th].

E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star, Mon. Not. Roy. Astron. Soc. 499, L82 (2020), arXiv:2006.14601 [astro-ph.HE].

R. Essick and P. Landry, Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass, Astrophys. J. 904, 80 (2020), arXiv:2007.01372 [astro-ph.HE].

T. W. Baumgarte, S. L. Shapiro, and M. Shibata, On the maximum mass of differentially rotating neutron stars, Astrophys. J. Lett. 528, L29 (2000), arXiv:astro-ph/9910565.

D. Gondev-Rosinska, I. Kowalska, L. Villain, M. Ansong, and M. Kucaba, A new view on the maximum mass of differentially rotating neutron stars, Astrophys. J. 837, 58 (2017), arXiv:1609.02336 [astro-ph.HE].

L. R. Weih, E. R. Most, and L. Rezzolla, On the stability
and maximum mass of differentially rotating relativistic stars, Mon. Not. Roy. Astron. Soc. 473, L126 (2018), arXiv:1709.06058 [gr-qc].