Opportunities for treatment of the hepatitis C virus-infected patient with chronic kidney disease

Marco Ladino, Fernando Pedraza, David Roth

Marco Ladino, Fernando Pedraza, Miller School of Medicine and the Miami Veterans Administration Medical Center, Miami, FL 33136, United States

Marco Ladino, Fernando Pedraza, David Roth, Katz Family Division of Nephrology and Hypertension, University of Miami, Miami, FL 33136, United States

Author contributions: Ladino M, Pedraza F and Roth D contributed equally to this work.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior authors or other coauthors who contributed their efforts to this manuscript. Dr. Roth is on a Scientific Advisory Board for Merck Co. and AbbVie. Drs. Ladino and Pedraza have no disclosures to report.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: David Roth, MD, Katz Family Division of Nephrology and Hypertension, University of Miami, 1120 N.W. 14th Street, Room 813, Miami, FL 33136, United States. d.roth@med.miami.edu
Telephone: +1-305-2436251
Fax: +1-305-2433506

Received: February 1, 2017
Peer-review started: February 7, 2017
First decision: March 28, 2017
Revised: April 13, 2017
Accepted: May 3, 2017
Article in press: May 5, 2017
Published online: July 8, 2017

Abstract

The prevalence of hepatitis C virus (HCV) infection amongst patients with chronic kidney disease (CKD) and end-stage renal disease exceeds that of the general population. In addition to predisposing to the development of cirrhosis and hepatocellular carcinoma, infection with HCV has been associated with extra-hepatic complications including CKD, proteinuria, glomerulonephritis, cryoglobulinemia, increased cardiovascular risk, insulin resistance, and lymphoma. With these associated morbidities, infection with HCV is not unexpectedly accompanied by an increase in mortality in the general population as well as in patients with kidney disease. Advances in the understanding of the HCV genome have resulted in the development of direct-acting antiviral agents that can achieve much higher sustained virologic response rates than previous interferon-based protocols. The direct acting antivirals have either primarily hepatic or renal metabolism and excretion pathways. This information is particularly relevant when considering treatment in patients with reduced kidney function. In this context, some of these agents are not recommended for use in patients with a glomerular filtration rate < 30 mL/min per 1.73 m².

There are now Food and Drug Administration approved direct acting antiviral agents for the treatment of patients with kidney disease and reduced function. These agents have been demonstrated to be effective with sustained viral response rates comparable to the general population with good safety profiles. A disease that was only recently considered to be very challenging to treat in patients with kidney dysfunction is now curable with these medications.

Key words: Hepatitis C virus; Chronic kidney disease; Direct acting antiviral agents; Kidney transplantation

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Advances in the understanding of the molecular
biology of hepatitis C virus (HCV) have ushered in a new era in treatment. Recent studies have shifted the focus to the more difficult-to-treat cohorts of patients. The presence of chronic kidney disease and end stage renal disease were exclusion criteria for the pivotal clinical direct-acting antiviral agents trials, creating a group of patients with a large unmet medical need. This review will update the reader on the use of the direct acting antiviral agents in the HCV-infected patient with kidney disease. Recommendations for the timing of therapy, choice of agents and management of the kidney transplant candidate will be presented.

INTRODUCTION

Hepatitis C virus (HCV) infection is a recognized public health concern with global implications that affects approximately 170 million individuals worldwide\(^{[3,4]}\). Infection with HCV is associated with an increased morbidity and mortality secondary to hepatic injury and associated complications\(^{[4]}\). The infection, however, can also affect other organs with significant extrahepatic manifestations (Figure 1). Most noteworthy of these include insulin resistance, cryoglobulinemic vasculitis, sicca syndrome, neurocognitive dysfunction, B-cell non-Hodgkin lymphoma, and an increase in cardiovascular adverse events\(^{[5-11]}\). On note, patients with HCV infection also have an increased incidence of proteinuria and chronic kidney disease (CKD)\(^{[12]}\), often in the setting of essential mixed cryoglobulinemia or “idiopathic” membranoproliferative glomerulonephritis\(^{[8,9,12]}\). Furthermore, it has also been well established that patients with end stage renal disease (ESRD) have an even higher prevalence of HCV infection that is likely a consequence of greater blood product exposure and patient-to-patient transmission of disease within the dialysis clinics due to breakdowns in universal precautions\(^{[12,13]}\).

This review will summarize the most recent data and treatment options recommended for HCV-infected patients with kidney disease. A population of patients that for years had extremely limited options for therapy can now be successfully and safely treated for eradication of HCV.

HCV AND THE KIDNEY

HCV-related glomerulonephritis with or without cryoglobulinemia

The HCV has an unusual tropism for B lymphocytes through linkage of envelope protein 2 and the CD81 molecule on the B cell. B cell activation can result in expansion of malignant cell lines or the production of unique antibodies that are of the IgM isotype and possess rheumatoid factor like activity\(^{[14-16]}\). As a consequence of these events, clinical syndromes including mixed cryoglobulinemia, lymphoproliferative disorders and glomerulonephritis with distinct histological patterns including membranous or membranoproliferative glomerulonephritis can be seen\(^{[5,6,17,18]}\). Of note, co-infected HIV/HCV patients have an increased mortality and an overall worse prognosis\(^{[10,20]}\).

The glomerular diseases commonly associated with HCV infection are a consequence of the formation of circulating immune complexes that become trapped in the glomerular basement membrane. The clinical expression of this process can occur through type 2 mixed cryoglobulinemia with resulting type 1 membranoproliferative glomerulonephritis (GN), mesangial proliferative and focal proliferative GN, IgA nephropathy, membranous GN and polyarteritis nodosa\(^{[5,14,18]}\). Typically, the patient that develops cryoglobulinemia has been infected with HCV for many years. These patients may present with a skin rash (palpable purpura), polyneuropathy, multi-organ vasculitis, hypertension and the nephritic syndrome\(^{[14]}\).

Suppression of viral replication is necessary to interrupt immune-complex production and subsequent injury to the kidney. The VASCULAR DIC study described the use of sofosbuvir and ribavirin in 24 patients with HCV-vasculitis syndrome and cryoglobulinemia. Patients were treated with direct-acting antiviral agents (DAAs) for 24 wk and achieved a sustained viral response at week 12 (SVR\(^{[21]}\)) of 74% with minimal side effects\(^{[21]}\). The less common presentation of an active vasculitic syndrome as part of the cryoglobulinemic syndrome requires a more aggressive treatment strategy targeted at the ongoing endothelial inflammatory process. Options include high dose corticosteroids, rituximab and therapeutic plasma exchange in addition to appropriate DAA therapy to eradicate viral replication\(^{[21-24]}\).

Hepatitis C and CKD

HCV infection is highly prevalent in CKD patients\(^{[5]}\) and HCV-infected patients have an increased risk for the development of CKD and proteinuria\(^{[5,25,26]}\). Furthermore, emerging data suggests that the rate of CKD progression to ESRD is greater when compared to non-infected patients\(^{[20-23]}\). In this context, HCV-infected patients with CKD stages I (GFR > 90 mL/min per 1.73 m\(^2\)), II (GFR 60-89 mL/min per 1.73 m\(^2\)) and IIIa (GFR 45-59 mL/min per 1.73 m\(^2\)) should be considered for DAA therapy with the goal to slow the progression of CKD. HCV-infected patients with CKD stages IIIb (GFR 30-44 mL/min per 1.73 m\(^2\)), IV (GFR 15-29 mL/min per 1.73 m\(^2\)) and V (GFR < 15 mL/min per 1.73 m\(^2\)) will require a more individualized approach depending on the renal replacement therapy options being considered. The major decision point in this context is whether treatment should...
HCV infection in ESRD patients was associated with an increased risk of death and hospitalization, anemia and worse quality of life scores for physical function, pain, vitality and mental health[44]. Relevant to any discussion on the associated risks accompanying HCV infection is whether successful treatment delivers a positive impact on outcomes. In this context, Hsu et al[45] reported that IFN-based therapy increased survival in HCV-infected ESRD patients. In another report, ESRD patients receiving IFN plus ribavirin obtained improved renal and cardiovascular outcomes compared to those who were untreated[46]. Prospective studies in ESRD patients will be necessary to determine if viral eradication alters the long-term outcome of this challenging population of patients with multiple co-morbidities.

HCV and kidney transplantation

Kidney transplantation is associated with an increase in long-term survival for ESRD patients with HCV infection[47,48]. This was clearly demonstrated in a longitudinal cohort study in which there was a decreased risk of death post-transplantation for the HCV-infected kidney transplant recipients when compared to those remaining on the waiting list[49]. This survival benefit was largely the result of a decrease in cardiovascular events within the first-year post-transplant[50].

HCV infection has been linked to several extrahepatic manifestations that combine to increase morbidity and mortality after kidney transplantation[51]. It has been well established that HCV is the primary cause of liver disease in kidney allograft recipients[52] and these patients experience an increased risk of insulin resistance and diabetes mellitus[53-58]. Furthermore, HCV-infected kidney recipients have a higher probability of developing transplant glomerulopathy[59] and recurrent membranoproliferative glomerulonephritis secondary to immune-complex injury to the renal allograft[55].

DIRECT ACTING ANTIVIRAL TREATMENT OPTIONS IN PATIENTS WITH CKD AND POST KIDNEY TRANSPLANT

The availability of DAAs with high SVR rates and favorable adverse event profiles allowed for the study of these drugs in patients with kidney disease, a group that had been excluded from all the large pivotal trials. Emerging data are now demonstrating an excellent safety and efficacy profile in this patient population (Tables 1 and 2). The HCV-TARGET is a real-world study that collects data on the use of sofosbuvir-based regimens in HCV-infected patients. A total of 73 patients with a GFR ≤ 45 mL/min per 1.73 m² (n = 18 with GFR ≤ 30 mL/min per 1.73 m² and n = 5 on hemodialysis) were included in the analysis[60]. The SVR rate was 83% in patients with GFR ≤ 45 mL/min per 1.73 m² which was similar to patients with GFR > = 45 mL/min per 1.73 m², however patients with a GFR ≤ 45 mL/min per 1.73 m² had higher rates.
of anemia, worsening kidney function and increased adverse events irrespective of the use of ribavirin\(^\text{[60]}\). Two open label treatment studies with simeprevir and dose-adjusted sofosbuvir exhibited high rates of SVR with a low incidence of adverse events in patients with advanced CKD and ESRD\(^\text{[63,64]}\). The RUBY-I trial evaluated the 3D regimen [ombitasvir (OBV)/paritaprevir (PTV)/ritonavir (r) plus dasabuvir (DSV)] in patients with advanced CKD (stages 4/5) and on dialysis. SVR rates were 90% for patients with HCV genotype (GT) 1 with minimal side effects except for the patients with genotype 1a who received ribavirin as part of the protocol\(^\text{[63]}\). This group had more anemia events and required erthropoietin dose adjustments. Grazoprevir and elbasvir were studied in HCV-infected GT 1 patients with advanced CKD and ESRD in the C-SURFER trial. Sustained viral response rates of 99% were reported with a minimal adverse events profile\(^\text{[66]}\). The RUBY-I Cohort 2 study included patients with stage F4 fibrosis and GT 1a who were treated for 24 wk with the 3D regimen plus ribavirin. SVR\(_{12}\) rates of 89% were reported for this cohort with minimal side effects\(^\text{[67]}\). The RUBY-II study evaluated the use of the 3D regimen in CKD 4 and 5 patients with HCV GT 1a (n = 13) infection without the addition of ribavirin. Genotype 4 patients received OBV/PTV/r without DSV (n = 5). Modified intention to treat (mITT) SVR\(_{12}\) rates of 100% were obtained in both groups\(^\text{[68]}\). Finally, a recent report described the use of glecaprevir (NS3/4A inhibitor) and pibrentasvir (NS5A inhibitor) in patients with advance kidney disease and HCV genotype 1-6 infection (n = 104). In this trial, patients with a GFR < 30 mL/min per 1.73 m\(^2\) (n = 13 with GFR 15-29 mL/min per 1.73 m\(^2\), n = 6 with stage 5 CKD and n = 85 on hemodialysis) obtained a 98% ITT SVR\(_{12}\) with no serious adverse events\(^\text{[69]}\) and no viral relapses.

IFN-based protocols have not been recommended after kidney transplantation due to an unacceptably high incidence of rejection events. In contrast, DAA use in kidney transplant recipients has been shown to be safe and effective with minimal side effects\(^\text{[34-37]}\). Caution to avoid drug-drug interactions related to different drug metabolism/interactions (Table 1) is necessary in addition to high vigilance to maintain therapeutic calcineurin inhibitor levels as HCV viremia is suppressed\(^\text{[34,37]}\).

The availability of DAA agents has dramatically changed the way HCV-infected patients with CKD and ESRD can be managed. While providing outstanding results, these excellent outcomes raise new questions as to which patients should be treated and when is the best time to initiate therapy. Further studies will be

Table 1 Direct acting antiviral agents: Dose and use in chronic kidney disease IV, V, end stage renal disease and kidney transplant patients

Medication dose	Use in CKD stage IV, V and ESRD	Use in kidney transplant patients - Interactions with Immunosuppressant
Sofosbuvir/Simeprevir 400 mg daily/150 mg daily	CKD IV - GFR 15-29 mL/min: Not recommended CKD V - GFR < 15 mL/min: Not recommended ESRD (dialysis): Not recommended	Decrease in TAC levels with Simeprevir Increase levels of both CyA and Simeprevir Increase or decrease levels of SRL with Simeprevir
Sofosbuvir/Velpatasvir 400 mg/100 mg daily	CKD IV - GFR 15-29 mL/min: Not recommended CKD V - GFR < 15 mL/min: Not recommended ESRD (dialysis): Not recommended	No changes in CyA levels with Velpatasvir Increase in SRL levels with Velpatasvir
Sofosbuvir/Daclastavir 400 mg daily/60 mg daily	CKD IV - GFR 15-29 mL/min: Not recommended CKD V - GFR < 15 mL/min: Not recommended ESRD (dialysis): Not recommended	No changes in TAC, CyA and SRL with Daclastavir
Sofosbuvir/Ledipasvir 400 mg/90 mg daily	CKD IV - GFR 15-29 mL/min: Not recommended CKD V - GFR < 15 mL/min: Not recommended ESRD (dialysis): Not recommended	No changes in TAC, CyA and SRL with Ledipasvir
Ombitasvir/Paritaprevir/ ritonavir/Dasabuvir 12.5 mg/75 mg/50 mg x 2 tabs/250 mg x 2 tabs	CKD IV - GFR 15-29 mL/min: Dose adjustment not required CKD V - GFR < 15 mL/min: Dose adjustment not required ESRD (dialysis): Dose adjustment not required. Dialysis population studied. Minimal adverse events in patients with advanced CKD and ESRD on hemodialysis	Increase in CyA levels (ritonavir) Increase in SRL levels (ritonavir) No changes in TAC, CyA and SRL with Ombitasvir/ Paritaprevir/Dasabuvir
Grazoprevir/Elbasvir 100 mg/50 mg daily	CKD IV - GFR 15-29 mL/min: Dose adjustment not required CKD V - GFR < 15 mL/min: Dose adjustment not required ESRD (dialysis): Dose adjustment not required. Dialysis population studied. Minimal adverse events in patients with advanced CKD and ESRD on hemodialysis	Increase in TAC levels with Grazoprevir Use of both CyA and Grazoprevir increase levels of Grazoprevir, contraindicated to use together Increase in SRL levels with Grazoprevir

GFR: Glomerular filtration rate; CKD: Chronic kidney disease; ESRD: End stage renal disease; TAC: Tacrolimus; CyA: Cyclosporine; SRL: Sirolimus.
DAA: Direct-acting antiviral agent; GFR: Glomerular filtration rate; CKD: Chronic kidney disease; ESRD: End stage renal disease; HCV: Hepatitis C virus; DAA: Direct-acting antiviral; SVR: Sustained viral response.

necessary to answer these important questions.

REFERENCES

1 Bunchorntavakul C, Manerattanaporn M, Chavalitdhamrong D. Management of patients with hepatitis C infection and renal disease. *World J Hepatol* 2015; 7: 213-225 [PMID: 25729476 DOI: 10.4254/wjh.v7.i2.213].

2 Kwo PY, Agrawal S. HCV/HIV Coinfection: A New Treatment Paradigm. *Gastroenterology* 2015; 148: 1470-1471 [PMID: 25935524 DOI: 10.1053/j.gastro.2015.04.031].

3 Marinaki S, Boletis JN, Sakellariou S, Delladetsima IK. Hepatitis C in hemodialysis patients. *World J Hepatol* 2015; 7: 548-558 [PMID: 25848478 DOI: 10.4254/wjh.v7.i3.548].

4 Davis GL, Albright JE, Cook SF, Rosenberg DM. Projecting future complications of chronic hepatitis C in the United States. *Liver Transpl* 2003; 9: 331-338 [PMID: 12682882 DOI: 10.1053/jlts.2003.50073].

5 Cacoub P, Desbois AC, Isnard-Bagnis C, Rocatello D, Ferri C. Hepatitis C virus infection and chronic kidney disease: Time for reappraisal. *J Hepatol* 2016; 65: 582-589 [PMID: 27641990 DOI: 10.1016/j.jhep.2016.06.011].

6 Jang JY, Chung RT. Chronic hepatitis C. *Gut Liver* 2011; 5: 117-132 [PMID: 21814590 DOI: 10.5009/gnl.2011.5.2.117].

7 Cacoub P, Gragnani L, Comarmond C, Zignego AL. Extrahepatic manifestations of chronic hepatitis C virus infection. *Gut Liver Dis* 2014; 46 Suppl 5: S165-S173 [PMID: 25458776 DOI: 10.1016/j.jdl.2014.10.005].

8 Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. *Kidney Int Suppl* 2008; (109): S1-99 [PMID: 18382440 DOI: 10.1038/ki.2008.81].

9 Johnson RJ, Gretch DR, Yamabe H, Hart J, Bacchi CE, Hartwell P, Couser WG, Corey L, Wener MH, Alpers CE. Membranoproliferative glomerulonephritis associated with hepatitis C virus infection. *N Engl J Med* 1993; 328: 465-470 [PMID: 7678440 DOI: 10.1056/NEJM199302183280703].

10 Morales JM, Kamar N, Rostaing L. Hepatitis C and renal disease: epidemiology, diagnosis, pathogenesis and therapy. *Contrib Nephrol* 2012; 176: 10-23 [PMID: 22310777 DOI: 10.1159/000337772].

11 Ferri C, Sebastiani M, Giuggioli D, Colaci M, Fallahi P, Piliaus, Antonelli A, Zignego AL. Hepatitis C virus syndrome: A constellation of organ- and non-organ specific autoimmune disorders, B-cell non-Hodgkin’s lymphoma, and cancer. *World J Hepatol* 2015; 7: 327-343 [PMID: 25848462 DOI: 10.4254/wjh.v7.i3.327].

12 Martin P, Fahrizi F. Hepatitis C virus and kidney disease. *J Hepatol* 2008; 49: 613-624 [PMID: 18662838 DOI: 10.1016/j.jhep.2008.06.003].

13 Pereira BJ, Milford EL, Kirkman RL, Levey AS. Transmission of hepatitis C virus by organ transplantation. *N Engl J Med* 1991; 325: 454-460 [PMID: 1649402 DOI: 10.1056/NEJM199108133251502].

14 Kupin WL, Viral-Associated GN: Hepatitis C and HIV. *Clin J Am Soc Nephrol* 2016; Epub ahead of print [PMID: 27797895 DOI: 10.1016/j.jasn.2016.03.029].
HCV infection in patients with CKD

10.2215/CJN.04320416

Peveling-Oberhaj J, Arcaini L, Hansmann ML, Zeuzem S. Hepatitis C-associated B-cell non-Hodgkin lymphomas. Epidemiology, molecular signature and clinical management. J Hepatol 2013; 59: 169-177. [PMID: 23520289 DOI: 10.1016/j.jhep.2013.03.018]

Miháilă RG. Hepatitis C virus - associated B cell non-Hodgkin’s lymphoma. World J Gastroenterol 2016; 22: 6214-6223 [PMID: 24768211 DOI: 10.3748/wjg.v22.i27.6214]

Rostaing L, Izipet J, Kammar N. Hepatitis C virus infection in nephropathy patients. J Nephropathol 2013; 2: 217-233 [PMID: 24475454 DOI: 10.12860/JNIP.2013.36]

Sansonno D, Gesualdo L, Manno C, Schena FP, Dammacco F. Hepatitis C virus-related proteins in kidney tissue from hepatitis C virus-infected patients with cryoglobulinemic membranoproliferative glomerulonephritis. Hepatology 1997; 25: 1273-1284 [PMID: 9141444 DOI: 10.1002/hep.50250529]

Scherzer R, Slipag M. Risk factors: Individual assessment of CKD risk in HIV-positive patients. Nat Rev Nephrol 2015; 11: 392-393 [PMID: 25965593 DOI: 10.1038/nrnp.2015.75]

Klein MB, Rollet-Kurjacek KC, Moodie EE, Yafeh S, Tyndall M, Walmsley S, Gill J, Martel-Laferrière V, Cooper C. Mortality in HIV-hepatitis C co-infected patients in Canada compared to the general Canadian population (2003-2013). AIDS 2014; 28: 1957-1965 [PMID: 25259703 DOI: 10.1097/QAD.0000000000000377]

Saadoun D, Thibault V, Si Ahmed SN, Alric L, Mallet M, Guillaud C, Izzedine H, Psaila A, Fontaine H, Costopoulos M, Le Garff-Tavernier M, Hesse M, Salles J, Patel D, Motton J, Gali L, Mallet M. Recommendations for the management of mixed cryoglobulinemia syndrome in hepatitis C virus-infected patients. Autoimmun Rev 2011; 10: 444-454 [PMID: 21303705 DOI: 10.1016/j.autrev.2011.01.008]

Quartuccio L, Loardo G, Romano G, Jaffa Z, Scott CA, De Marchi G, Fabris M, Ferraccioli G, De Vita S. Rituximab treatment for cryoglobulinemic nephropathy in HCV-associated mixed cryoglobulinaemia: efficacy and safety in the absence of steroids. Rheumatology (Oxford) 2006; 45: 842-846 [PMID: 16418196 DOI: 10.1093/rheumatology/keq004]

Pietrogrande M, De Vita S, Zignego AL, Pioltelli P, Sansonno D, Lizzi M, Rovida M, Milla M, Spagnolo P, Martini P. Recent advances on hepatitis C virus in dialysis population. Kidney Blood Press Res 2014; 39: 260-271 [PMID: 25171295 DOI: 10.1159/000355803]

Mohar MR, Alhourani HM, Wall BM, Lu J, Streja E, Kalantar-Zadeh K, Kovesdy CP. Association of hepatitis C viral infection with incidence and progression of chronic kidney disease in a large cohort of US veterans. Hepatology 2015; 61: 1495-1502 [PMID: 25529816 DOI: 10.1002/hep.27664]

Ladino M, Pietraza F, Roth D. Hepatitis C Virus Infection in Chronic Kidney Disease. J Am Soc Nephrol 2016; 27: 2238-2246 [PMID: 27095799 DOI: 10.1681/ASN.2016010030]

Reese P, Abd PL, Blumberg EA, Goldberg DS. Transplanting Hepatitis C-Positive Kidneys. N Engl J Med 2015; 373: 303-305 [PMID: 26020697 DOI: 10.1056/NEJMmp1505074]

Kucirka LM, Singer AL, Ros RL, Montgomery RA, Dagher NN, Segev DL. Underutilization of hepatitis C-positive kidneys for hepatitis C-positive recipients. Am J Transplant 2010; 10: 1238-1246 [PMID: 20353475 DOI: 10.1111/j.1600-6143.2010.03091.x]

Sawinski D, Kaur N, Ajeti A, Trofe-Clark J, Lim M, Bleicher M, Goral S, Forde KA, Bloom RD. Successful Treatment of Hepatitis C in Renal Transplant Recipients With Direct-Acting Antiviral Agents. Am J Transplant 2016; 16: 1588-1595 [PMID: 26604182 DOI: 10.1111/ajt.13620]

Lubetzky M, Chen S, Joelson A, Coco M, Karnal L, Ajamay M, Gaglio P, Akain E, Debocardo G. Safety and Efficacy of Treatment of Hepatitis C in Nephrotic Syndrome. Am J Transplant 2016; 16: 1474-1479 [PMID: 26587971 DOI: 10.1111/ajt.13518]

Patel PR, Thompson ND, Kallen AJ, Arduino MJ. Epidemiology, surveillance, and prevention of hepatitis C virus infections in hemodialysis patients. Am J Kidney Dis 2010; 56: 371-378 [PMID: 20570422 DOI: 10.1053/j.ajkd.2010.01.025]

Ing świadt A, Kamannaol M, Thakkasimian A, Sunakethul K. Survival advantage of kidney transplantation over dialysis in patients with hepatitis C: a systematic review and meta-analysis. Transplantation 2013; 95: 943-948 [PMID: 23425817 DOI: 10.1097/TP.0b013e3182848de2]

Fabrizi F, Dixit V, Messa P. Impact of hepatitis C on survival in dialysis patients: a link with cardiovascular mortality? J Viral Hepat 2012; 19: 601-607 [PMID: 22863263 DOI: 10.1111/j.1365-2893.2012.01633.x]

Fabrizi F, Takkoove B, Lunghi G, Dixit V, Messa P, Martin P. The impact of hepatitis C virus infection on survival in dialysis patients: meta-analysis of observational studies. J Viral Hepat 2007; 14: 697-703 [PMID: 17875004 DOI: 10.1111/j.1365-2893.2007.00868.x]

Fabrizi F, Ganesan SV, Lunghi G, Messa P, Martin P. Antiviral therapy of hepatitis C in chronic kidney diseases: meta-analysis of controlled clinical trials. J Viral Hepat 2008; 15: 600-606 [PMID: 18444984 DOI: 10.1111/j.1365-2893.2008.00990.x]

Kalantar-Zadeh K, Kilpatrick RD, McCallister CJ, Miller LG, Dug ES, Jepson DW, Kopple JD, Greenfield S. Hepatitis C virus infection and death risk in hemodialysis patients. J Am Soc Nephrol 2007; 18: 1584-1593 [PMID: 17429053 DOI: 10.1681/ASN.2006070736]

Goodkin DA, Bieber B, Jadoul M, Martin P, Kanda E, Pisoni RL. Mortality, Hospitalization, and Quality of Life among Patients with Hepatitis C Infection on Hemodialysis. Clin J Am Soc Nephrol 2012; 7: 287-297 [PMID: 22908905 DOI: 10.2215/CJN.07940716]
