Diagnosis in children with exercise-induced respiratory symptoms: A multi-center study

Eva S. L. Pedersen PhD1,2 | Cristina Ardura-Garcia MD, PhD1 | Carmen C. M. de Jong MD, PhD1,3 | Anja Jochmann MD4 | Alexander Moeller MD5 | Dominik Mueller-Suter MD6 | Nicolas Regamey MD7 | Florian Singer MD, PhD8,9 | Myrofora Goutaki MD, PhD1,8 | Claudia E. Kuehni MD, MSc1,8

1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
2Graduate School for Health Sciences, University of Bern, Bern, Switzerland
3Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
4Division of Paediatric Pulmonology, University Children’s Hospital, University of Basel, Basel, Switzerland
5Division of Paediatric Pulmonology, University Children’s Hospital Zurich, Zürich, Switzerland
6Division of Paediatric Pulmonology, Kantonsspital Aarau, Aarau, Switzerland
7Division of Paediatric Pulmonology, Children’s Hospital Lucerne, Switzerland
8Paediatric Respiratory Medicine, Children’s University Hospital of Bern, University of Bern, Bern, Switzerland
9PedNet, Children’s University Hospital of Bern, University of Bern, Bern, Switzerland

Correspondence
Claudia E. Kuehni, MD, MSc, Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland. Email: Claudia.kuehni@ispm.unibe.ch

Funding information
Lungenliga Schweiz; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 320030_182628

Abstract
Objective: Exercise-induced respiratory symptoms (EIS) are common in childhood and reflect different diseases that can be difficult to diagnose. In children referred to respiratory outpatient clinics for EIS, we compared the diagnosis proposed by the primary care physician with the final diagnosis from the outpatient clinic and described diagnostic tests and treatments.

Design: An observational study of respiratory outpatients aged 0–16 years nested in the Swiss Paediatric Airway Cohort (SPAC).

Patients: We included children with EIS as the main reason for referral. Information about diagnostic investigations, final diagnosis, and treatment prescribed came from outpatient records. We included 214 children (mean age 12 years, range 2–17, 54% males) referred for EIS.

Results: The final diagnosis was asthma in 115 (54%), extrathoracic dysfunctional breathing (DB) in 35 (16%), thoracic DB in 22 (10%), asthma plus DB in 23 (11%), insufficient fitness in 10 (5%), chronic cough in 6 (3%), and other diagnoses in 3 (1%). Final diagnosis differed from referral diagnosis in 115 (54%, 95% CI 46%–60%). Spirometry, body plethysmography, and exhaled nitric oxide were performed in almost all, exercise-challenge tests in a third, and laryngoscopy in none. 91% of the children with a final diagnosis of asthma were prescribed inhaled medication and 50% of children with DB were referred to physiotherapy.

Conclusions: Diagnosis given at the outpatient clinic often differed from the diagnosis proposed by the referring physician. Diagnostic evaluations, management, and follow-up differed between clinics and diagnostic groups highlighting the need for evidence-based diagnostic guidelines and harmonized procedures for children seen for EIS.

Keywords
childhood asthma, diagnosis, dysfunctional breathing, exercise-induced symptoms, pediatric
Exercise-induced respiratory symptoms (EIS) are common in childhood, but are not easy to diagnose because different aetiologies share similar clinical presentations. EIS are typically due to asthma or exercise-induced bronchoconstriction, but other diseases can cause EIS such as dysfunctional breathing disorders, insufficient fitness level, chronic cough, or rare aetiologies (Figure 1). Dysfunctional breathing (DB) disorders are abnormal biomechanical patterns of breathing classified as either extrathoracic (eg, inducible laryngeal obstruction [ILO]) or thoracic (eg, pattern disordered breathing). Besides functional causes (eg, ILO, pattern disordered breathing) dysfunctional breathing can result from structural abnormalities such as laryngomalacia. The diagnosis in children with EIS is complicated by possible coexistence of the different causes. When investigating children with EIS a thorough history, physical examination, and additional diagnostic procedures are essential. Spirometry and measurement of exhaled nitric oxide are helpful to diagnose asthma, particularly combined with a bronchodilator test. The exercise-challenge test is helpful to reproduce exercise-induced bronchoconstriction or other symptoms reported by the patient and can be indicative of ILO. Cardiopulmonary exercise testing monitors gas exchange during exercise and is typically used for proving hyperventilation or an insufficient fitness level. Flexible laryngoscopy allows us to directly visualize laryngeal function during exercise. There are however no comprehensive international guidelines that recommend which tests should be used and in which order. Published recommendations focus on a single etiology, such as exercise-induced bronchoconstriction. Most clinics use only a selection of diagnostic tests based on the availability and personal interest of the physicians. This leads to variability in diagnostic practices among clinics. Delayed or faulty diagnosis can lead to physical activity avoidance, reduced quality of life, and overtreatment with inhaled corticosteroids if mistakenly diagnosed as asthma. Only a few studies have investigated diagnostic practices, diagnoses given, and treatment prescribed to children seen for EIS and all have focused on selected groups of patients usually after excluding those with asthma. No studies have compared referring diagnosis with the diagnosis given at specialized respiratory clinics. This study aimed to describe the current situation of diagnostic evaluation and management of EIS in children in the German-speaking part of Switzerland by describing the handling of this problem in respiratory outpatient clinics of pediatric teaching hospitals. We wanted to describe how often the investigations performed in the specialized setting changed the referring primary care physician’s diagnosis, but also to investigate the types and consistency of tests used at the five pulmonary clinics to arrive at differential diagnosis and to review treatment prescribed before the respiratory outpatient clinic visit. This knowledge is important to understand the relevance of specific investigations, but also to understand the shortcomings of current practice and the need for possible harmonization and improvement.

2 METHODS

2.1 Study design

We used data from the Swiss Paediatric Airway Cohort (SPAC), an observational national multi-center clinical cohort from Switzerland.

FIGURE 1 Classification of causes of exercise-induced symptoms used in this study
(www.spac-study.ch). The SPAC study describes the clinical picture of outpatients but also diagnostic evaluations, prescribed treatments, and long term outcomes of all children (aged 0-16 years) who are referred to the pediatric respiratory outpatient clinic of participating hospitals for respiratory problems such as wheeze, cough, dyspnea, sleep- or exercise-related symptoms. This analysis focused on a sub-cohort, namely all those referred specifically for evaluation of exercise-induced symptoms. The SPAC study is observational; no diagnostic evaluations are done specifically for the study. Management is done as clinically indicated at each clinic, and diagnostic tests are documented in the database. Recruitment for SPAC started on July 1, 2017 and is ongoing. By the time we extracted data for this analysis (October 22, 2019), SPAC recruited patients from five pediatric respiratory outpatient clinics in Switzerland. Among 2436 children invited, 1405 (58%) agreed to participate. The SPAC study was approved by the Bern Cantonal Ethics Committee (Kantonale Ethikkomission Bern 2016-02176). Written informed consent was obtained from parents and directly from patients older than 13 years. This paper is reported following the STROBE statement.

2.2 | SPAC study procedures and data sources

Eligible patients were recruited at their first clinical visit, where a physician explained the SPAC study. Parents filled in a questionnaire before or shortly after the visit including information on symptoms, medication, environmental exposures, and health behaviors. After the visit, the SPAC study team collected referral letters with information on referral diagnosis and outpatient clinic letters with information on symptoms history, previous treatments, physical examination, diagnostic tests are done, and final diagnosis. Results from diagnostic tests were collected from the clinic records and all information was entered into a Research Electronic Data Capture (REDCap) database.

2.3 | Inclusion criteria

We included children who were referred to the pediatric outpatient clinics with EIS as the main referral reason. EIS was defined as the main reason for a referral if the letter sent by the referring physician described EIS as the only or main reason for referral (E-Table S1). We excluded children with a missing referral letter or missing letter from the outpatient clinic with information on the final diagnosis.

2.4 | Referral diagnosis

Referral diagnosis was the diagnosis described as the cause of EIS in the referral letter from the referring physician. Reasons for referral differed between primary care physicians. For example, some referred children who did not respond well to asthma treatment. Suspected referral diagnoses were categorized into three categories: asthma (including asthma, recurrent wheeze, or exercise-induced bronchoconstriction); DB (including extrathoracic or thoracic DB); or unknown etiology if no suspected diagnosis was described.

2.5 | Final diagnosis given at the outpatient clinic

The final diagnosis was defined as the diagnosis described in the outpatient clinic letter that was sent back to the referring physician after completion of the diagnostic evaluation (which sometimes required more than one visit). The diagnosis was based on medical history, clinical examination, and all test results from objective tests performed at the clinic. Combinations of diagnoses were considered where coexisting diagnoses were listed. We grouped diagnoses into seven categories suggested in previous publications (Figure 1). Asthma, extrathoracic DB, thoracic DB, asthma plus any DB, chronic cough, insufficient fitness level, and other diagnoses. We grouped DB into extrathoracic DB (functional: induced laryngeal obstruction, and structural: laryngomalacia, subglottic stenosis) and thoracic DB (functional: pattern disordered breathing, hyperventilation, sighing). For some analyses, we merged rare diagnoses (insufficient fitness level, chronic cough, other diagnoses) into one category (E-Table S1). Even in children who had received a set of diagnostic tests, the final diagnosis in the clinic was often described as "suspected." For the analysis, we categorized the diagnosis as suspected if the word "suspected" was included in the diagnosis given in the outpatient clinic.

2.6 | Diagnostic tests performed at the outpatient clinic

We extracted information on diagnostic testing from the outpatient clinic letter. Tests included: spirometry, body plethysmography, bronchodilator test, fraction of exhaled nitric oxide (FeNO), allergy tests (skin prick test or specific IgE), chest X-ray, and bronchial challenge tests such as methacholine and exercise-challenge test. Diagnostic tests were performed according to published guidelines. Challenge tests were often performed at a follow-up visit and we, therefore, collected challenge tests also from follow-up visits. Children withheld short-acting beta2-agonists (SABA) for 8 h, inhaled corticosteroids (ICS), leukotriene antagonists, and long-acting beta2-agonists (LABA) for 24 h, and antihistamines and sodium cromoglycate for 72 h before the outpatient clinic visit. All tests were performed by experienced lung function technicians who also assessed the quality of the tests.

2.7 | Prescribed treatments and other variables

We extracted information about treatment taken before the first outpatient clinic visit from the referral letter (described by a
referring physician) and the first outpatient clinic letter (described in clinical history). The treatment prescribed at the outpatient clinic was taken from the outpatient clinic letter with the latest data and summarized as: SABA, ICS, and LABA or combinations. Information on referral to physiotherapy or other specialty and any planned follow-up visits were taken from the outpatient clinic letter. Information about age, sex, height, and weight was taken from the outpatient clinic letter. We calculated body mass index (BMI) as weight (kg) / height*height (cm) and calculated age-adjusted BMI z-scores based on reference values from the World Health Organization,30 defining overweight as BMI z-score >1 and obesity as BMI z-score >2. We used information on parental education, environmental factors, and physical activity from the standardized parental questionnaire.

2.8 Statistical analysis

We described demographics, referral diagnosis, final diagnosis, diagnostic tests, and treatment prescribed using proportions and percentages for categorical variables and means and standard deviations (SD) for continuous variables. We compared the characteristics of children receiving different diagnoses using χ^2, fisher’s exact, and analysis of variance tests. Our data set had few missing values of which the variables parental education (7%) and BMI (2%) had the most, and we reported these variables only for children who had valid information. Our main factors of interest (diagnostic evaluation, diagnosis, and treatment) had no missing values. We used STATA version 14 for statistical analysis.

3 RESULTS

Of the 1065 children who had their first outpatient visit after June 1, 2017, 214 (20%) had EIS as the main reason for referral (E-Figure S1). We included data from five clinics. The largest clinic contributed 71 patients and the smallest 26 patients (Table 1). On average, children were 12 years old (SD: 3, age range 2–17 years) and 115 (54%) were male (Table 2). The most common referral diagnosis was asthma in 126 (59%); 12 (6%) were suspected to have DB, and 74 (35%) were referred with EIS of unknown etiology. Eighty-nine (43%) had at least one follow-up visit. The average time between baseline and last visit was 3.7 months (range 0.4–16.8).

Final diagnoses from the outpatient clinic letter included asthma ($n = 115, 54%$); extrathoracic DB ($n = 35, 16%$); thoracic DB ($n = 22, 10%$); asthma plus any DB ($n = 23, 11%$), insufficient fitness level ($n = 10, 5%$), chronic cough ($n = 6, 3%$), and other (pleural effusion $n = 1$, unknown etiology $n = 2$) (Table 3). The final diagnosis was described as suspected most often for children diagnosed with asthma plus DB ($n = 16, 70%$) and least often for children diagnosed with thoracic DB ($n = 7, 32%$; Table 2). Of the 35 children diagnosed with extrathoracic DB, 32 had functional DB (ILO) and 3 had structural DB. Of the 21 with thoracic DB, all had functional DB (pattern disordered breathing $n = 16$, hyperventilation $n = 2$, sighing tics $n = 4$). In the 23 with asthma plus DB, 19 had asthma plus ILO and 4 had asthma plus pattern disordered breathing. The relative frequency of diagnoses differed between clinics (Table 1). Children diagnosed with DB or asthma plus DB were slightly older, more often female, and had a lower BMI z-score than children diagnosed exclusively with asthma or other diagnoses. The referral diagnosis often differed from the final diagnosis. Of the 126 referred for suspected asthma, 37 (29%) got another diagnosis at the outpatient clinic (Table 2 and Figure 2). In most (10 of 12) children referred for suspected DB, the diagnosis was confirmed at the outpatient clinic. Of the 76 children with unknown diagnosis at referral, only 24 (32%) were diagnosed with asthma, the majority ($n = 41$) were diagnosed with DB.

The diagnostic tests most often performed at the first outpatient clinic visit were spirometry in 208 (97%), body plethysmography in 171 (80%), and FeNO in 199 (93%; Table 1). A methacholine challenge test was performed in 50 (23%) and an exercise challenge in 80 (37%). Cardiopulmonary exercise tests or flexible laryngoscopy were not performed. Diagnostic procedures differed by clinic and diagnosis. Children diagnosed with thoracic DB performed exercise-challenge more often (68%) than children diagnosed with asthma (37%; Table 2).

Before referral, 65% of all children were on inhaled asthma therapy (30% SABA as needed, 2% ICS and 33% on SABA/ICS or LABA/ICS combinations (Table 3). After evaluation at the outpatient clinic, ICS ± SABA or ICS + LABA was prescribed almost exclusively to children with asthma or asthma plus any DB. SABA alone was mostly prescribed in children with asthma (30%) or asthma plus any DB (22%), but also in those with extrathoracic DB (17%), thoracic DB (9%), and other diagnoses (26%). Forty-two children (20%) were referred to physiotherapy for breathing/speech training and all of them were diagnosed with extrathoracic or thoracic DB or asthma plus any DB. Follow-up visits were planned in most children (78%) diagnosed with asthma, but only in 23% children diagnosed with extrathoracic DB and 9% with thoracic DB.

4 DISCUSSION

This multicentre study of children referred for EIS found that in almost half of the children the diagnosis was revised at the clinic. The most common final diagnoses apart from asthma were extrathoracic and thoracic DB, but often the final diagnosis was described as suspected, indicating remaining uncertainty of specialists. Relative frequency of final diagnoses and the set of diagnostic tests performed differed between clinics reflecting the lack of guidelines.

4.1 Strengths and limitations

This pragmatic study is the first to report diagnostic evaluation and management in a real-life clinical setting in children referred to respiratory outpatient clinics for any type of EIS. The broad inclusion...
criteria (children referred for any type of EIS as main reason for referral) ensured a wide clinical spectrum of children with EIS. Recruitment from five different outpatient clinics in Switzerland made it possible to report on clinical practices and to study variations between different tertiary clinics. A weakness resulting from the observational real-life study design is that diagnostic evaluations and description of final diagnosis were not standardized between clinics. The final diagnosis reported in the outpatient clinic letter was described as suspected in 97 (45%) children, indicating remaining uncertainty in the final diagnosis even after the specialist consultation. In these children, the final diagnosis may change in the future based on response to treatments or further tests. The limited use of cardiopulmonary exercise testing and lack of specific invasive tests to diagnose extrathoracic DB such as flexible laryngoscopy adds to the uncertainty of diagnosis. These diagnoses were made by ruling out asthma rather than performing a specific conclusive test. The final diagnosis was made by the responsible physician based on all available test results. The selection of diagnostic tests also reflects personal preferences which vary between physicians. This might explain the variability in frequency of diagnosis between clinics.

4.2 Comparison with other studies and interpretation

We identified six previous studies reporting diagnoses given to children seen for exercise-induced symptoms, however, all six studies included children with EIS unlikely to be caused by asthma (E-Table S2). In our study, we included all children with EIS without excluding those with suspected asthma, and for this reason a larger proportion was diagnosed with asthma (57%) compared with previous studies (8%–22% asthma). We found that 33 (15%) were diagnosed with ILO, which in previous studies varied between 3% and 30%. Thoracic DB (eg, hyperventilation syndrome, sigh dyspnea, cough), accounted for 10% in our study. In previous studies it varied both in regard to prevalence (4%–34%) and labeling of diagnoses, making comparisons difficult. In two previous studies, many patients (19%–67%) were diagnosed as having no disease, because their symptoms represented a normal physiological response to exercise with a normal fitness level. In our study, none were diagnosed with normal physiological response to exercise, but 10 children were diagnosed with insufficient fitness level. Compared to these two

TABLE 1	Suspected referral diagnosis, final diagnosis, and diagnostic tests described in outpatient clinic letter, in total and by center (N = 214)
Referral diagnosis (n = 214)	
Suspected asthma	126 (59)
Suspected DB	12 (6)
Unknown etiology	76 (35)
Final diagnosis from clinic (n = 214)	
Asthma	115 (54)
Extrathoracic DB	35 (16)
Thoracic DB	22 (10)
Asthma + DB	23 (11)
Final diagnosis described as suspected in clinical letter (n = 214)	
Spirometry	208 (97)
Body plethysmography	171 (80)
Bronchodilator test (n = 208)	106 (51)
FeNO	199 (93)
Allergy test (skin prick, specific IgE)	124 (58)
Thorax X-ray	17 (8)

| Abbreviations: DB, dysfunctional breathing; FeNO, fraction of exhaled nitric oxide; ICS, inhaled corticosteroids; ILO, inducible laryngeal obstruction; LABA, long-acting beta2 agonist; SABA, short-acting beta2 agonist. |
| aInsufficient fitness level, chronic cough, EIS of unclear etiology, pleural effusion. |

PEDERSEN ET AL.
TABLE 2 Patient characteristics, referral reason, asthma treatment before first visit, and diagnostic tests performed at an outpatient clinic by final diagnosis

Characteristics	Total	Asthma	Extra-thoracic DB	Thoracic DB	Asthma + DB	Other	p-Value^a
Demographics							
Age (years), mean (SD)	12 (3)	11 (3)	12 (3)	13 (2)	13 (2)	10 (4)	.004
Sex (male)	115 (54)	71 (62)	12 (34)	10 (45)	7 (30)	15 (79)	.001
BMI z-score, mean (SD)	0.4 (1.1)	0.6 (1.1)	0.3 (1.0)	0.3 (0.9)	-0.2 (1.0)	0.9 (1.4)	.030
Sports apart from school (n = 203)	172 (85)	95 (86)	29 (91)	18 (86)	18 (82)	12 (71)	.415
Mother tertiary education^b (<i>n</i> = 198)	59 (30)	34 (32)	8 (24)	9 (45)	4 (19)	4 (22)	.301
Father tertiary education^b (<i>n</i> = 197)	80 (41)	48 (45)	12 (36)	5 (28)	9 (43)	6 (33)	.856
Referral reason							
Asthma/EIB	126 (59)	89 (77)	12 (34)	3 (14)	14 (61)	8 (42)	
Dysfunctional breathing	12 (6)	2 (2)	7 (20)	3 (14)	0	0	
Unknown etiology	76 (35)	24 (21)	16 (46)	16 (73)	9 (39)	11 (58)	
Final diagnosis described as suspected in clinical letter	97 (45)	41 (36)	22 (63)	7 (32)	16 (70)	11 (58)	.002
Diagnostic tests done at first visit^c							
Spirometry	208 (98)	113 (99)	35 (100)	22 (100)	23 (100)	15 (79)	<.001
Body plethysmography	171 (81)	96 (84)	26 (74)	18 (82)	20 (87)	11 (58)	.095
Bronchodilator test	106 (51)	64 (57)	16 (46)	10 (45)	12 (52)	4 (27)	.316
FeNO	199 (93)	111 (97)	32 (91)	21 (95)	20 (87)	15 (79)	.014
Allergy test	124 (58)	72 (63)	18 (51)	8 (36)	15 (65)	11 (58)	.241
Thorax X-ray	17 (8)	5 (4)	1 (3)	0	3 (13)	8 (42)	<.001
Diagnostic tests done at first or second visit							
Bronchial challenge test (any)	121 (57)	48 (42)	25 (71)	18 (82)	18 (78)	12 (63)	<.001
Methacholine challenge	50 (23)	25 (22)	8 (23)	6 (29)	7 (30)	4 (21)	.851
Exercise challenge	80 (37)	25 (22)	18 (51)	15 (68)	13 (57)	9 (47)	<.001
Asthma treatment before first visit^c							
No prior treatment	75 (35)	28 (24)	18 (51)	14 (64)	6 (26)	9 (47)	
SABA only	64 (30)	37 (32)	7 (20)	7 (32)	9 (39)	4 (21)	
ICS only	4 (2)	2 (2)	0	1 (5)	0	1 (5)	
SABA + ICS ± LABA	70 (33)	48 (42)	10 (29)	0	8 (35)	4 (21)	
Treatment prescribed at clinic							
No inhaled treatment prescribed	73 (34)	8 (7)	28 (80)	20 (91)	4 (17)	13 (68)	<.001
SABA only	52 (24)	34 (30)	6 (17)	2 (9)	5 (22)	5 (26)	.332
SABA + ICS ± LABA	54 (25)	47 (41)	0	0	7 (30)	0	<.001
ICS ± LABA alone	35 (16)	26 (23)	1 (3)	0	7 (30)	1 (5)	.001
Referral to:							
Physiotherapy/speech therapy	42 (20)	0	20 (57)	11 (50)	11 (48)	0	<.001
Other specialty^d	18 (8)	11 (10)	2 (6)	3 (14)	0	2 (11)	.437
Follow-up visit planned at clinic	116 (54)	90 (78)	8 (23)	2 (9)	13 (57)	3 (16)	<.001

^ap-Value from overall tests performed for difference between diagnosis groups (Fisher’s exact for all except age (ANOVA) and sex (χ²).

^bDegree from university of applied sciences or university.

^cToo many degrees of freedom and too few observation in single cells to calculate p-value.

^dInformation extracted from first and second outpatient clinic letter.

^eInformation extracted from referral letters and first outpatient clinic letter.

^fCardiology, endocrinology, allergology, other.

Abbreviations: DB, dysfunctional breathing; EIB, exercise-induced bronchoconstriction; FeNO, fraction of exhaled nitric oxide; ICS, inhaled corticosteroids; LABA, long acting beta2 agonist; SABA, short acting beta2 agonist; SD, standard deviation.
Abbreviations: DB, dysfunctional breathing; EIB, exercise disordered breathing.

Prior studies which did exercise-challenge tests in all children, only around half of the children in our population had an exercise-challenge test performed. This difference might partly explain why more children in previous studies were diagnosed with normal physiological response to exercise than in our study. The frequency of diagnoses in our study differed from previous studies, but also differed considerably between clinics (eg, extrathoracic DB varied from 7% in Clinic 4 to 47% in Clinic 3). This suggests a lack of agreement on how to diagnose and define different diagnoses between clinics.

In most children referred for EIS, basic investigations for asthma were performed including measurement of FeNO, allergy tests, and lung function testing (spirometry and body plethysmography). Further tests that are diagnostic for other diseases than asthma were done in a minority of children. Exercise challenge testing, recommended to reproduce symptoms in patients with EIS, was only done in 37%. By the time of data collection, none of the clinics performed flexible laryngoscopy and cardiopulmonary exercise test, although laryngoscopy is considered the reference standard for diagnosing extrathoracic DB and cardiopulmonary exercise test is used to diagnose hyperventilation syndrome and insufficient fitness level. Therefore the prevalence of extrathoracic and thoracic DB might be underestimated in our study. The same applies to insufficient fitness level. The tests are time consuming and costly and are thus not done on a regular basis in general respiratory outpatient clinics outside of funded study. We found that diagnostic investigations differed between clinics, especially methacholine (0%–65%) and exercise challenge tests (7%–71%). This indicates little agreement on which diagnostic investigations should be done. The difference in diagnostic procedures between clinics may also partly explain the difference in the distribution of final diagnoses given at the clinics. In Clinic 4, more children were diagnosed with asthma + DB (27%) compared to most other clinics in which around 10% were diagnosed with asthma + DB. All this indicate the need for more standardized approaches and recommendations for the evaluation of exercise-induced symptoms. A validated evidence-based diagnostic algorithm based on standardized prospective studies would be useful.

Prescribed treatments were less consistent between clinics and with final diagnosis than we would have expected. We would have expected that 100% of the children diagnosed with asthma would have been prescribed some sort of bronchodilator, at least for exercise, but in our study, it was only in 93%. In contrast also 20% of patients diagnosed with extrathoracic DB alone were prescribed SABA. This was unexpected but could indicate diagnostic uncertainty. For DB, physiotherapy or speech therapy are recommended treatments. In our study, only half of the children diagnosed with isolated DB (extrathoracic or thoracic) were referred to physiotherapy/speech therapy. The reason for this could be that the paediatric pulmonologist considered the disease as mild and selected a wait-and-see policy after careful instructions about the benign etiology of the symptoms. This could also be due to the lack of therapists specialized on this topic in some regions. We compared treatment prescribed before and after the outpatient clinic visit and found that of the 35 children finally diagnosed with extrathoracic DB, 10 (29%) had received SABA + ICS before. We do not have information on how long these children had taken SABA + ICS before the outpatient clinic visit and therefore cannot ascertain if these children received unnecessary treatment or only a short trial treatment to assess response. However, it emphasizes the importance of referring children with EIS for further evaluation. In children finally diagnosed with thoracic DB, only 1 child had received ICS before the outpatient clinic visit. Most children diagnosed with asthma (78%) had a planned follow-up visit, but only 23% with extrathoracic DB and 9% with thoracic DB had a planned follow-up visit at the clinic. This was also unexpected and might again reflect a lack of experience in handling these cases.

In summary, we found that final diagnosis given at the outpatient clinic differed in half of the children from the suspected referral diagnosis highlighting the importance of specialist evaluations. Extrapulmonary and thoracic DB were common diagnoses in children with EIS but had rarely been suspected by the referring physician and were also not well followed up. Increased awareness both among
primary care physicians and among respiratory specialists of how common DB are in children with EIS might lead to faster referral to specialized clinics and better treatment. Diagnostic evaluation, management and follow-up were inconsistent between clinics and diagnostic groups which highlights the need for evidence-based data, diagnostic guidelines, and harmonized procedures for children seen for exercise-induced symptoms.

ACKNOWLEDGMENTS
We would like to thank the families who took part in the SPAC study. We would also like to thank the outpatient clinic assistants, nurses, and doctors for recruiting patients. This study was funded by the Swiss National Science Foundation (SNSF 320030_182628) and the Swiss Lung Association. Further funding to develop the SPAC cohort came from the Allergiestiftung U. Müller-Gierok and the Lung league St. Gallen.

DATA AVAILABILITY STATEMENT
The SPAC data set is available on reasonable request by contacting Claudia Kuehni by email: Claudia.kuehni@ispm.unibe.ch.

CONFLICT OF INTERESTS
Dr. Singer reports personal fees from Novartis, personal fees from Vertex, outside the submitted work. All other authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTIONS
Eva S. L. Pedersen, Cristina Ardura-Garcia, Carmen C. M. de Jong, Myrofora Goutaki and Claudia E. Kuehn made substantial contributions to the study conception and design. Eva S. L. Pedersen drafted the manuscript. Eva S. L. Pedersen and Carmen C. M. de Jong collected and prepared data from the SPAC study. Eva S. L. Pedersen, Carmen C. M. de Jong, Cristina Ardura-Garcia, Anja Jochmann, Alexander Moeller, Dominik Mueller-Suter, Nicolas Regamey, Florian Singer, Myrofora Goutaki, and Claudia E. Kuehni critically revised and approved the manuscript.

ORCID
Eva S. L. Pedersen https://orcid.org/0000-0003-0293-9954
Cristina Ardura-Garcia https://orcid.org/0000-0001-7924-518X
Alexander Moeller https://orcid.org/0000-0001-7284-4251
Florian Singer https://orcid.org/0000-0003-3471-5664
Myrofora Goutaki https://orcid.org/0000-0001-8036-2092

REFERENCES
1. Bhatia R, Abu-Hasan M, Weinberger M. Exercise-induced dyspnea in children and adolescents: differential diagnosis. Pediatr Ann. 2019; 48(3):e121-e127.
2. Cichalewski Ł, Majak P, Jerzyńska J, et al. Prevalence of exercise-induced cough in schoolchildren: a pilot study. Allergy Asthma Proc. 2015;36(1):65-69.
3. Johansson H, Norlander K, Berglund L, et al. Prevalence of exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction in a general adolescent population. Thorax. 2015;70(1):57-63.

4. Depiazzi J, Everard ML. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea. Breathe. 2016;12(2):120-129.

5. Balkissoon R, Kenn K. Asthma: vocal cord dysfunction (VCD) and other dysfunctional breathing disorders. Semin Respir Crit Care Med. 2012;33(6):595-605.

6. Ullmann N, Mirra V, Di Marco A, et al. Asthma: differential diagnosis and comorbidities. Front Pediatr. 2018;6:276.

7. Abu-Hasan M, Tannous B, Weinberger M. Exercise-induced dyspnea in children and adolescents: if not asthma then what? Ann Allergy Asthma Immunol. 2005;94(3):366-371.

8. Barker N, Everard ML. Getting to grips with ‘dysfunctional breathing’. Paediatr Respir Rev. 2015;16(1):53-61.

9. Davies SJC, Jackson PR, Ramsay LE. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea. Breathe. 2016;12(2):120-129.

10. Gruber C, Lehmann C, Weiss C, Niggemann B. Somatoform re¬

11. Connett GJ, Thomas M. Dysfunctional breathing in children and adolescents: if not asthma then what? Ann Allergy Asthma Immunol. 2005;94(3):366-371.

12. Ullmann N, Mirra V, Di Marco A, et al. Asthma: differential diagnosis and comorbidities. Front Pediatr. 2018;6:276.

13. Abu-Hasan M, Tannous B, Weinberger M. Exercise-induced dyspnea in children and adolescents: if not asthma then what? Ann Allergy Asthma Immunol. 2005;94(3):366-371.

14. Christensen PM, Heimdal JH, Christopher KL, et al. ERS/ELS/ACCP practical approach to definition and classification. Thorax. 2015;70(1):57-63.

15. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine spiratory disorders in children and adolescents: panic disorder needs to be considered. BMJ. 2001;323(7313):631.

16. Johansson H, Norlander K, Berglund L, et al. Prevalence of exercise-induced bronchoconstriction in a general adolescent population. Thorax. 2015;70(1):57-63.

17. Johansson H, Norlander K, Malinovschi A. Increased prevalence of exercise-induced airway symptoms – a five-year follow-up from adolescence to young adulthood. Respir Med. 2019;154:76-81.

18. Christensen PM, Thomsen SF, Rasmussen N, Backer V. Exercise-induced laryngeal obstructions: prevalence and symptoms in the general public. Eur Arch Otorhinolaryngol. 2011;268(9):1313-1319.

19. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing 1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors. Thorax. 2000;160(6):1360-1369.

20. Hammo AH, Weinberger MM. Exercise-induced hyperventilation: a pseudoasthma syndrome. Ann Allergy Asthma Immunol. 1999;82(6):574-578.

21. Hseu A, Sandler M, Ericson D, Ayele N, Kawai K, Nuss R. Paradoxical vocal fold motion in children presenting with exercise-induced dyspnea. Int J Pediatr Otorhinolaryngol. 2016;90:165-169.

22. Mahut B, Fuchs-Climent D, Plantier L, et al. Cross-sectional assessment of exertional dyspnea in otherwise healthy children. Pediatr Pulmonol. 2014;49(8):772-781.

23. Sears MR. Predicting asthma outcomes. J Allergy Clin Immunol. 2015;136(4):829-836.

24. Buchvald F, Phillipson LD, Hjuler T, Nielsen KG. Exercise-induced inspiratory symptoms in school children. Pediatr Pulmonol. 2016;51(11):1200-1205.

25. Pedersen ESL, de Jong CCM, Ardura-Garcia C, et al. The Swiss Paediatric Airway Cohort (SPAC). ERJ Open Res. 2018;4(4):00050-2018.

26. von Elm E, Altman DG, Egger M, Pocock SJ, Gotszche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-349.

27. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.

28. Standardization of Spirometry. 1994 Update. American Thoracic Society. Am J Respir Crit Care Med. 1995;152(3):1107-1136.

29. Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 1999;160(6):2104-2117.

30. Van den Broeck J, Willie D, Younger N. The World Health Organiz¬
