Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from *Bacillus vallismortis* RG-07

Rajeeva Gaur* and Soni Tiwari

Abstract

Background: The rising concerns about the scarcity of fossil fuels, the emission of green house gasses and air pollution by incomplete combustion of fossil fuel have also resulted in an increasing focus on the use of cellulases to perform enzymatic hydrolysis of the lignocellulosic materials for the generation of bioethanol. The aim of this study was to isolate a potential thermo-solvent tolerant cellulase producing bacterium from natural resources, and then applied for purification and characterization. The purified enzyme was to be accessible for the bioethanol production as well as industrial exploitation (discuss in our next study).

Results: It is the first instance when thermo-solvent tolerant cellulase producing bacterium was isolated from soil sample. The culture was identified as *Bacillus vallismortis* RG-07 by 16S rDNA sequence analysis. *Bacillus vallismortis* RG-07 reported maximum cellulase production from sugarcane bagasse (4105 U ml$^{-1}$) used as agro-waste carbon source. The cellulase enzyme produced by the *Bacillus* sp. was purified by (NH$_4$)$_2$SO$_4$ precipitation, ion exchange and gel filtration chromatography, with overall recovery of 28.8%. The molecular weight of purified cellulase was 80 kDa as revealed by SDS-PAGE and activity gel analysis. The optimum temperature and pH for enzyme activity was determined as 65°C and 7.0 and it retained 95 and 75% of activity even at 95°C, and 9.0 respectively. The enzyme activity was enhanced in the presence of organic solvents (30%) n-dodecane, iso-octane, n-decane, xylene, toluene, n-haxane, n-butanol, and cyclohexane, after prolonged incubation (7 days). The enzyme activity was also stimulated by Ca$^{2+}$, mercaptoethanol, Tween-60, and Sodium hypochloride whereas strongly inhibited by Hg. Kinetic analysis of purified enzyme showed the K_m and $V_{	ext{max}}$ to be 1.923 mg ml$^{-1}$ and 769.230 μgm l$^{-1}$ min$^{-1}$, respectively.

Conclusion: The unique property of solvent-thermostable-alkalophilic, nature proves the potential candidature of this isolate for current mainstream biomass conversion into fuel and other industrial process.

Keywords: *Bacillus vallismortis*, 16S rDNA, Solvent tolerant, Heavy metal, Thermotolerant

Background

In present time, Cellulases have attracted much attention because of their application in various industrial processes, including food, textiles, laundry, pulp and paper as well as in agriculture [1]. Cellulases contribute to 8% of the worldwide industrial enzyme load and the demand is expected to increase by 100% within 2014 [2]. The increasing concern about the shortage of remnant energy, the release of green house gasses by incomplete burning of fossil fuel which create air pollution have resulted in rising center on the use of cellulases to carry out enzymatic hydrolysis of the lignocellulosic waste materials for the production of bioethanol [3,4]. Cellulases have a group of three enzymes namely endo-1,4-β-glucanase (Endoglucanase), exo-1,4-β-glucanase (Exoglucanases) and β-glucosidase that synergistically hydrolyzed cellulose into soluble sugars and glucose [5]. Endoglucanases attack the cellulose crystalline structure at random places, breaking the linear chains of glucose molecules to produce shorter chains. Each break generates two new chain ends. Exoglucanases act to these exposed ends of the chains and, working down the chains, liberate cellobiose and...
some glucose. Finally, β-glucosidases completes the saccharification by breaking cellobiose and small cello-
oligosaccharides into glucose molecules [6].

Cellulases are inducible enzymes which are synthe-
sized by microorganisms during their growth on cellu-
losic materials. Several microorganisms can produce
cecellulase enzyme including fungi, bacteria and actino-
mycetes. Presently, the majority of the commercial and
laboratory cellulases are achieved by fungi due to their
high enzyme activity, but several factors suggest that
bacteria may have excellent potential [7]. Bacteria fre-
cently have a higher growth rate than fungi allowing for
higher rate of enzyme production. Most significantly, they
show affinity to be more heat stable and are easier for gen-
etic purpose. Various bacterial genera reported for cellulo-
lytic activities include Bacillus, Clostridium, cellulosmonas,
Rummminococcus, Alteromonas, Acetivibrio etc. Among
bacteria, Bacillus sp. including B. brevis [8], B. puimilis
[9], B. amyoliquefaciens DL-3 [10], and Bacillus subtilis
Yj1 [11] Bacillus sp. [12,13] are well recognized cellulase
production under submerged condition [14,15]. The
present study was to isolate a potential organic-solvent-
thermostable alkalophilic cellulase producing bacteria
from natural ecosystem. Afterthat, the cellulase enzyme
was applied for purification and characterization of dif-
ferent parameters and purify enzyme was applied for
the ethanol production and industrial exploitation
which discuss in our next study.

Results and discussion
Isolation, screening and identification of thermotolerant
cellulase producing bacterial cultures
Fifty (50) bacterial strains were isolated from the soil
samples on CMC agar plates. For checking the cellulol-
ytic activity of the isolates on plates, plates were stained
with congo-red and NaOH solution. The zones of clear-
ance by isolates reflect their extent of cellulolytic activity.
Those having clearance zone greater than >1.0 cm were
considered as significant. Among fifty (50) bacterial iso-
lates, only twenty nine (29) bacterial isolates exhibited
good cellulase activity which was reassessed by loading
their culture broth in the wells on CMC agar plates which
stained with congo-red and NaOH solution. The
culture broth of good cellulase producers cleared more
than >1.0 cm zone within 4–5 h of incubation at 65°C,
thereby indicating an extra-cellular nature of the cellu-
lase. The isolate RG-07, showing maximum clearance
zone diameter was selected for further studies.

The efficient strain RG-07 was rod-shaped, gram-
positive, aerobe and facultative, motile, with positive
acetylmethylcarbinol, catalase and oxidase test. It grew
over a wide range of pH (4.0-11), temperature (10-85°C),
NaCl concentration (0.0-12%), and was able to hydrolyze
gelatin, casein, starch, tween-20, tween-40 and tween-80
and produce acid from glucose, xylose, mannitol and
arabinose. It gives positive test for citrate utilization
and nitrate reduction. The strain was halotolerant as it
grew in the presence of 0.0-12% NaCl. On account of
morphological and biochemical characteristics, it was
identified as Bacillus sp. by MTCC IMTECH, Chandigarh
(India). Analysis of 16S rDNA sequence revealed
its 99.8% homology with Bacillus vallismortis strains,
and was designated as Bacillus vallismortis RG-07. The
16S rDNA sequence was submitted to Gene bank [JQ:
619483] which doi is http://www.ncbi.nlm.nih.gov/
nuccore/JQ619483 (Additional file 1). The strain RG-07
was in the same cluster of phylogenetic tree (Figure 1)
with different strains of Bacillus vallismortis. However, the
16S rDNA sequence analysis indicates that it is a different
and novel strain of Bacillus vallismortis.

Effect of agro-waste materials on cellulase production
The effect of agro-waste materials as carbon source on
cell growth and cellulase production by Bacillus vallismor-
tis was investigated with sugarcane bagasse, rice
bran, wheat bran, rice husk and maize bran. From
Figure 2 it revealed that 2% sugarcane baggae (4105
U ml⁻¹) was found as most suitable substrate for cellu-
lase production followed by rice husk (3509 U ml⁻¹)
and rice bran (3110 U ml⁻¹), within 48 h. Minimum cellulase
production was reported from the wheat bran (2890
U ml⁻¹) and maize bran (2545 U ml⁻¹). Similarly, Sadhu
et al. [16] also reported that sugarcane bagasse was the
best carbon sources for cellulase production by Bacillus
sp. Annamalai et al. [17] and Jo et al. [14] were also re-
ported that rice husk and rice bran were the best carbon
source for cellulase production by Bacillus halodurans
CAS 1 and Bacillus amy-loliquefaciens DL-3, respecti-
vately. The cellulosic waste materials such as rice bran,
sugarcane baggase and rice hulls were used as best
 carbon sources for cellulase production due to their
inducible nature [18]. The cellulase produced by the
hydrolysis of cellulosic biomass by Bacillus vallismortis
could be valuable for bio-ethanol production, single
cell protein and other industrially required chemicals.

Purification of extracellular cellulase
The crude enzyme extract was first concentrated by
ammonium sulphate precipitation. Maximum activity
was observed in the fraction obtained by the addition of
ammonium sulphate in 80% with protein content of
21.54 mg ml⁻¹. This fraction had 14864.94 U mg⁻¹ of spe-
cific activity with recovery of 83.8% and with regard to
purification it showed 4.7-fold purification (Table 1).

The active fraction of ammonium sulphate precipita-
tion method was used for further purification by using ion
exchange chromatography. Sample (1 ml) was loaded into
the Q-Sepharose column pre-equilibrated with sodium
phosphate buffer (100 mM, pH 7.0) and allowed to pass through the column. The un-bound fraction was collected and analyzed for cellulase activity and protein content. There was no cellulase activity in the un-bound fraction, while 1.8 mg ml\(^{-1}\) of protein was estimated. The absence of enzyme in un-bound fraction suggested that total cellulase was bound to matrix. The bound enzyme was eluted by sodium phosphate buffer (100 mM, pH 7.0) having NaCl with increasing concentration at gradient of 0.1 M. 10 ml solution of each concentration of NaCl was used to

Figure 1 Phylogenetic tree showing relation between Strain RG-07 and other Bacillus strains. In phylogenetic tree analysis, the strain was in the same cluster with different strains of Bacillus and showed only 99.8% homology to other Bacillus vallismortis sp., so it could be stated that therefore it is different the from reported Bacillus vallismortis. The phylogenetic tree was drawn by MEGA 5 software using Neighbour-joining method and the significance of junctions was established using bootstrap method (1000 replicates).

Figure 2 Effect of different agro-waste materials on cellulase production by Bacillus vallismortis RG-07. Five different agro-waste materials like sugarcane baggase, rice barn, rice husk, wheat bran and maize barn (2%) used as carbon sources for cellulose production, which inoculated with bacterial culture and incubated at 65°C, pH-7.0 for 12-96h.
evade the bound enzyme. The cellulase activity was detected in the fraction released by the addition of 0.5 M NaCl anion-exchange chromatography of cellulase on column resulted in one prominent peak at the 21st fraction (Figure 3a).

The active fraction was applied on Sephadex G-75 column. Figure 3b shows the fractionation pattern of cellulase on Sephadex G-75 column. One distinctive protein peak was appeared that overlapped with the cellulase activity. The purification process resulted in 39.1-fold purification factor and a final recovery of 28.8% of the enzyme with specific activity of 123560.56 U mg⁻¹ (Table 1). Vijayaraghavan and Vincent, [12] reported 14.5-fold purified cellulase with 24% recovery after gel chromatography for purification of cellulase from Bacillus sp.

The purity of the enzyme was confirmed by the presence of a single band on SDS-PAGE and its molecular weight was approximately 80 kDa (Figure 4), which was similar to alkalophilic Bacillus sp. HSH-810 where it is 80 kDa [19] but different from Bacillus sp. cellulase (54 kDa) [10,20].

Characterization of purified enzyme

Effect of temperature on enzyme activity and stability

Effect of temperature on purified enzyme activity was recorded over a broad range of temperature (30-80°C) with the optimal activity at 65°C and declined thereafter (Figure 5). The cellulase of strain RG-07 was completely stable in the broad temperature range of 30-90°C during 1 h incubation. However, with further increase in every 5°C temperature, there was a gradual decrease in enzyme stability ranging between 15-20% upto 105°C. The enzyme retained 95, 90 and 73% activity even after treatment at 95, 100 and 105°C, respectively (Figure 5). Similarly, endoglucanase of Bacillus licheniformis C108 was highly stable up to 100°C [21]. The cellulase of strain RG-07 is more thermostable than cellulase studied by several other researchers. Most of workers have reported that thermostable cellulase stable up to 60-100°C but retained only ~50% activity at 100°C [22,21]. Most other thermotolerant Bacillus cellulase reported to so far, cellulases exhibited higher temperature optimum for activity and showed good thermal stability [23,24]. These are the properties considered to be very important for industrial cellulose saccharification. Hence it is evident that the cellulase of strain RG-07 is more thermostable, and may be applied to several biotechnological and industrial purposes.

Effect of pH on enzyme activity and stability

The pH activity and stability of the purified cellulase was determined by measuring the enzyme activity at varying pH values ranging from 4–10 using different suitable buffers. It observed that maximum cellulase activity was established at pH 7.0, however it was found to be most stable at pH 7.5 (Figure 6). Similar optimum enzyme activity was also found at pH 7.0 in Pseudomonas fluorescenc [25], Bacillus amyloliquefaciens DL3 [10]. The relative activities at pH 4.0, 4.5, 5.0 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0 were determined to be 53, 62, 75, 85, 95, 104, 135, 110 and 98%, respectively. At pH above 7.5, the cellulase activity decreased rapidly. The cellulase from Bacillus vallismortis RG-07 was stable in a range of pH 4.0-9.0 and at pH 10.0 approximately 80% of its activity was retained (Figure 6). Cellulases are generally stable over a wide range of pH from 5 to 10 [19,24].

Effect of metal ions on enzyme activity and stability

Bacillus vallismortis RG-07 cellulase was activated by 10 mM Ca²⁺, Mg²⁺, and Na⁺ but inhibited by all other metal ions to a variable extent. Results suggest that cellulase showed maximum relative activity (184.4, 175.1 and 141.4%) and stability (160.3, 130.3, and 125.3%) in the presence of calcium, magnesium and sodium ions. Yoon et al. [26] and Bakare et al. [25] had also reported that Ca²⁺, Mg²⁺, and Na⁺ ions strongly stimulated cellulase activity. Similarly Wang et al. [27] also reported that Paenibacillus sp. strain B39 showed maximum enzyme activity in the presence of 1 mM Ca²⁺. Cellulase activity was slightly inhibited was by Ni²⁺, Cu²⁺ and Zn²⁺ (Table 2). Cellulase was strongly inhibited in the presence of Mn²⁺, and Hg²⁺. Similar results were reported for Bacillus strain [23,16] and Bacillus amyloliquefaciens DL-3 [10]. It has been reported that the inhibition of cellulase activity by Hg²⁺ ion might be related to its binding with thiol groups, tryptophan residue, or the carboxyl group of amino acid residues in the enzyme [28]. The inhibition of cellulase by Co²⁺, and Cu²⁺ ions could be due to competition between the exogenous cations and the protein-associated cations, resulting in decreased metallo-enzyme activity.

Table 1 Purification of cellulase from Bacillus vallismortis RG-07

Purification steps	Total activity (U)	Total protein (mg)	Specific activity (U/mg)	Yield (%)	Purification fold
Crude	387,788	120.75	3161.81	100	1.0
Ammonium sulphate	320,190.9	21.54	14864.94	83.8	4.7
Q-Sepharose	280,089.4	7.79	36981.95	75.4	11.6
Sephadex G-75	109,968.9	0.89	123560.56	28.8	39.1

Gaur and Tiwari BMC Biotechnology (2015) 15:19
Figure 3 (See legend on next page.)
Effect of organic solvents on cellulase stability

In another approach, the effect of various organic solvents (30%, v/v) on cellulase stability was also investigated for one week, and the results are depicted in Table 3. The cellulase of *Bacillus vallismortis* RG-07 is extraordinarily stable in the presence of all organic solvents under study. It was observed that except benzene, propanol and ethanol, presence of other solvents enhanced the cellulase activity. After incubation with n-dodecane, n-decane, xylene, iso-octane, toluene, n-hexane, n-butanol, acetone, methanol, and cyclohexane the cellulase activity increased to 242.5 (48 h), 178.7 (48 h), 117 (48 h), 170.3 (24 h), 180.2 (24 h), 143 (24 h), 160.3(24 h), 115.9 (24 h), 131.9 (48 h), and 133% (48 h), respectively. The presence of benzene, ethanol and propanol marginally reduced the cellulase with residual activities of 79.9, 88.2 and 84.2%, respectively (Table 3).

Annamalai et al. [17] also reported an organic solvent stable alkaline cellulase of *Bacillus halodurans* CAS 1 strain rand with enhanced activity in the presence of organic solvents (25%, v/v). Zaks and Klibanov, [29] suggested that stimulation of enzyme activity by organic solvents might be due to the residues of carried-over non-polar hydrophobic solvent providing an interface, thereby keeping the enzyme in an open conformation which resulting stimulated activation. It is therefore; evident from our study that cellulase of *Bacillus vallismortis* RG-07 is remarkably stable in the presence of broad range hydrophilic as well as hydrophobic organic solvents employed in this study.

Effect of inhibitors on enzyme stability

When the *Bacillus vallismortis* RG-07 cellulase enzyme was incubated with EDTA, Iodo-acetic acid (IAA), p-chloromercuribenzoate (p-CMB), Dithiothreitol (DTT), Urea and β-mercaptoethanol, the enzyme activity was retained at 110%, 70%, 50%, 134%, 114%, and 167% of the original activity at 10 mM (Table 4). Similarly, Yin et al. [11] reported that *Bacillus subtilis* YJ1 retained full activity in the presence of 10 mM EDTA and β-mercaptoethanol, while Wang et al. [30] reported that cellulase of *Paenibacillus* sp. showed 22 and 29% activity with 10 mM. IAA and PCMB inhibits cellulase activity because they can bind with the SH group with different degree interaction and subsequently inhibit the activity. However, the β-mercaptoethanol and DTT can reduce the disulfide bonds and re-nature their activity, if the oxidation or aggregation of these enzyme proteins occurs during purification and storage. These phenomenons suggested that the active site of the enzyme contains -SH group [31].
Effect of surfactant, detergent and oxidizing agents on enzyme stability

In order to have applications in detergent industries, cellulase must be stable to various detergent ingredients, such as surfactants. As shown in Table 5 the enzyme was appreciably stable in the presence of non-ionic surfactants like tween-40, tween-60, tween-80 and tritone-100 and detergent SDS. However, these compounds slightly inhibited the cellulase activity with 89.6, 93, 87, 92.5, 95.7% of residual activity at concentration 1.0% (v/v). Though, cellulase from a halotolerant isolate, \textit{Bacillus} sp. L1 retained 91% activity towards triton X-100, tween-20, and tween-80 and lost about 41.1% activity in the presence of SDS [32]. Yin et al. [11] reported that, a highly thermo-stable and alkaline cellulase enzyme, there was 95% stability after 1 h incubation with SDS (10 mM). In another study, Sadhu et al. [16] and Wang et al. [30] have reported that SDS and tween-80 moderately inhibited cellulase activity 59-71% and 50-59%, respectively. Thus from the above study it clear that cellulase of \textit{Bacillus vallismortis} RG-07 highly stable with 1% SDS (95%). This resistance, which is essential requirements, suggests that the enzyme may be used as an effective additive in detergents.

The cellulase was substantially stable with commercial detergents at lower concentration (0.1%, w/v). However, higher concentration (1.0%, w/v) led to decrease the enzyme activity. The enzyme showed maximum stability in the presence of ariel, having residual activity of 89% after incubation at 65°C for 1 h (Table 5). The enzyme had 80%, 75.5, 68.4 and 55.9% residual activities in the presence of surf excel, tide, fena and henko, respectively under similar condition (Table 5). Annamalai et al. [17] reported that purified cellulase from \textit{B. halodurans} CAS 1 retained its activity in the presence of some commercial detergents such as rin (85.33%), ariel (76.67%), henko (64.67%) and tide (80.33%). Sadhu et al. [16] also reported 57-72% residual activity with cellulase from \textit{Bacillus} strain in the presence of commercial detergents. Similar results are reported from \textit{Thermonospora} sp. with different commercial detergent [33].

Among the oxidizing agents tested the cellulase activity enhanced in presence of sodium hypochlorite and \(\text{H}_2\text{O}_2 \) with residual activities 127.2 and 118.7% at concentration 0.1%, whereas, higher concentrations (0.5 and 1.0%) decreased the stability except sodium hypochlorite (115.4% residual activity at concentration 0.5%, w/v) (Table 5). Likewise, Wang et al. [27] also reported that lipase from \textit{B. cepacia} was highly stable in the presence of hydrogen peroxide, sodium hypochlorite and sodium perborate after 1 h. The stability profile of the cellulase in the presence of detergents and oxidizing agents prove its potential application in the detergent formulations as these agents are the active components of house hold detergents.
Kinetic analysis

Kinetic analysis with CMC revealed the K_m and V_{max} to be 1.923 mg ml$^{-1}$ and 769.230 μgml l$^{-1}$ min$^{-1}$, respectively by Lineweaver-Burk plot (Figure 7). Mawadza et al. [23] also reported similar value of K_m (1.5 and 1.7 mg ml$^{-1}$) and V_{max} (1.5 and 0.9 mmol min$^{-1}$ mg$^{-1}$) from *Bacillus* sp. using CMC as substrate. If the K_m value is low, it means that enzyme had a stronger affinity with substrate.

Conclusion

It is the first instance when a thermo-tolerant cellulase being reported from a thermo-tolerant solvent tolerant *Bacillus vallismortis* RG-07 isolate. The strain is unique with respect to increased cellulase activity in the presence of various solvents of greater hydrophobicity (log $P \geq 4.5$). The cellulase activity in broad pH and temperature range of 4.0-10.0 and 30-105°C clearly indicate the thermo-alkaline nature of this enzyme. Considering its stability under high temperature as well as mild alkaline condition, cellulase may be exploited for industrial usage.

Methods

Isolation, screening and identification of thermo-tolerant cellulase producing bacteria

The soil samples were collected aseptically from different garden site of University campus (Dr. Ram Manohar Lohia Avadh University Faizabad) to isolate cellulase producing bacteria. 1 g soil was suspended in 9.0 ml sterile distilled water, agitated for a min and 0.1 ml suspension was spread over CMC agar plates (pH 7.0) containing, 2.0%, CMC; 0.5%, Ammonium sulphate; 2%, agar and incubated at 65°C, till sufficient growth appeared. After sufficient growth incubated plates were overlaid with congo-red solution (0.1%) for 10 min and then washed with 1 N NaOH solution for de-staining. If a strain was cellulolytic then it started hydrolyzing the cellulose present in the surrounding and in the zone degradation there was no red color formation. Selection was done as per colonies with and without clear and transparent zone as cellulase producing and cellulase non-producing strain, respectively. Bacterial colonies showing clear zones were selected, streaked twice on CMC agar plates for purification and maintained as pure culture over CMC agar slants (pH 7.0, 4°C).

Organic solvents (30%)	log P	Residual activity (%)							
		1 h	24 h	48 h	72 h	96 h	120 h	144 h	168 h
Methanol	−0.76	100.5	124.8	131.9	125.3	119.9	112.4	106.5	97.1
Iso-propanol	−0.28	90.7	104.3	99.5	92.5	91.8	91.0	88.3	84.2
Ethanol	−0.24	98	106.9	105.1	102.9	98.8	95.1	91.6	88.2
Benzene	2.13	99.7	112	120	109	96	89	85	79.9
Cyclohexane	3.3	90	118	133	123.9	112.9	109	93	89.9
Acetone	−0.23	105.2	115.9	110.9	104.1	101	96	92	90.3
Butanol	−0.80	120.7	160.3	145.2	130.4	122.6	112.3	107	100
Toluene	2.5	120.9	180.2	150.4	128.5	120.9	112.8	105.2	102.4
Iso-octane	2.9	120.5	170.3	135.6	130.2	123.2	120.4	115.6	100.2
Xylene	3.1	90	112	117	113	110	102	96	90
Hexane	3.6	128	143	124	128	113	114	104	100
n-decane	5.6	135.6	161.8	178.7	158.6	136.5	111.9	107	97.0
n-dodecane	6.0	141.6	170.7	242.5	168.4	179.8	130.5	113.0	100.0

Enzyme was pre-incubated with different organic solvents at a concentration of 30% (v/v) at 65°C for different time period and assayed as standard assay method. The enzyme activity without incubation with organic solvent was taken as 100%. Mean standard deviation for all the values is $< \pm 5.0\%$.
having maximum clearance zone was selected for further studies. The selected bacterial isolate RG-07 was identified by morphological and biochemical characterization as per the Bergey's Manual of Systematic Bacteriology [34]. The identity of RG-07 was authenticated from Institute of Microbial Technology (IMTECH), Chandigarh, India based on the phenotypic (16S r DNA) and biochemical tests.

Crude enzyme preparation and enzyme assay

To obtain crude enzyme 24 h old cultures were transferred to micro-centrifuge tubes and centrifuged at 12000 rpm for 10 min. Cells were discarded and resultant supernatant was used as the crude enzyme for various enzyme assay. Cellulase was assayed by measuring the reducing sugar released by reaction on CMC. Cellulase assay was done by Nelsom [35] and Somogy [36] methods, in this method a reaction was performed in which a reaction mixture contain 500 μl of substrate (1.0% soluble CMC in 1.0 M phosphate buffer pH 7.0.), 100 μl of the enzyme and 400 μl distilled water. The reaction mixture was incubated for 10 min at 65°C. Reaction was stopped by adding 1 ml of alkaline copper tartrate solution and incubated in boiling water bath for 10 min and cooled, then added arsennomolybdate solution for color stabilization. Optical density of each sample with reaction mixture was taken at 620 nm in a spectrophotometer (Shimadzu, Japan). One unit of enzyme activity was defined as the amount of enzyme that liberates 1.0 μg of glucose min/ml.

Effect of agro-waste materials on cellulase production

To study the effect of agro-waste materials for cellulase production, growth was carried out in 150 ml Erlenmeyer flasks in 50 ml of basal medium contained; 0.05% ammonium sulphate, 0.5% MgSO₄·7H₂O (pH 7.0) supplemented with 2% (w/v) agro-waste materials to be investigated such as sugarcane bagasse, rice bran, rice husk, wheat bran, and maize bran at 65°C for 12–96 h. The enzyme activity was estimated by Nelsom [35] and Somogy [36] methods as discuss in enzyme assay section.

Cellulase purification

The crude culture supernatant obtained from 24 h old cultures of Bacillus vallismortis RG-07 grown under optimal conditions was subjected to purification. All the purification steps were carried out at 4°C. The crude
culture filtrate was subjected to a cooling centrifugation at 10,000 rpm to remove the cells and the residual medium. Supernatant was precipitated overnight with (NH₄)₂SO₄ (80% saturation) and the pellets was recovered by centrifugation at 12000 rpm for 10 min. The pellet was re-suspended in a small amount 100 mM phosphate buffer, pH 7.0, and dialyzed overnight against the same buffer. The corresponding precipitates were recovered, dissolved individually in fresh buffer and assayed for both total protein content and cellulase activity. The dialyzed sample was applied to a Q-Sepharose (Sigma-Aldrich, USA) column equilibrated with sodium phosphate buffer (100 mM, pH 7.0). The desired enzyme fraction was allowed to bind with matrix for 2 h at 4°C. The unbound fraction was collected and analyzed for enzyme activity and for protein content. The bound fractions were eluted with a linear gradient of NaCl (0.1-0.5 M, 10 ml each) in the same buffer. The bound fractions were collected and dialyzed against sodium phosphate buffer (pH 7.0). The dialyzed sample was further purified by gel-filtration chromatography for purification up to homogeneity. The Sephadex-75 column (Sigma Aldrich Pvt. Ltd., USA, 1.5 × 40 cm) was equilibrated with sodium phosphate buffer (100 mM, pH 7.0) and 1 ml of concentrated sample was applied to the column. The flow rate was adjusted to 5–6 ml h⁻¹ and fraction of 2 ml each was collected. Cellulase activity and estimation of protein content were determined for each individual fraction.

Determination of protein concentrations
The protein content of individual fraction obtained after different steps of chromatography was monitored by measuring the extinction at 280 nm. Quantified protein for each fraction was done by the method of Lowry et al. [37] using Bovine serum albumin (BSA) as standard and expressed as mg ml⁻¹.

Polyacrylamide gel electrophoresis
The active fraction, with maximum specific activity, obtained after gel filtration chromatography along with crude, ammonium sulphate and anion-exchange chromatography was electrophoresed by Sodium Dodecyl Sulphate-Poly Acrylamide Gel Electrophoresis in a 12.5% polyacrylamide gel according to the method of Laemmli [38]. Approximate molecular weight of the cellulase was estimated by SDS-PAGE against the molecular mass markers i.e. lysozyme (14.3 kDa), β-lactoglobulin (20 kDa), Carbonic anhydrase (29 kDa), ovalbumin (43 kDa), bovine serum albumin (66 kDa) and phosphorylase B (97.4 kDa) (Sigma-Aldrich Pvt Ltd., USA) run with the samples.

Characterization of purified enzyme
Effect of temperature on enzyme activity and stability
The influence of temperature on activity of cellulase was studied by incubating the reaction mixture at different temperatures (30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, and 105°C). The enzyme was incubated at different temperatures (30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, and 105°C) for 1 h to study the stability of the enzyme. The residual cellulase activity was measured by conducting the reaction at temperature 65°C and pH 7.0 [35,36]. The activity of the enzyme was considered as 100% under standard assay conditions.

Effect of pH on cellulase activity and stability
The effect of pH on cellulase activity was measured in the pH range of 4 to 10, using the appropriate buffers at concentration of 100 mM (4.0–6.0, sodium acetate; 6.0–8.0, sodium phosphate; 8.0–10.0, Tris–HCl) under standard assay conditions [35,36]. To study stability as a function of pH, 100 µl of the purified enzyme was mixed with 100 µl of the buffer solutions and incubated at 65°C for 1 h then aliquots of the mixture were taken to measure the residual cellulase activity (%) under standard assay conditions [35,36].

Effect of metal ions on enzyme activity and stability
The effect of various metal ions (5 mM and 10 mM) on enzyme activity was investigated using FeSO₄, CaCl₂, KCl, NaCl, MgCl₂, MnCl₂, ZnSO₄, CuSO₄, HgCl₂ and NiCl₂. The enzyme was incubated with different metals at 65°C for 1 h to study metal ion stability and assayed under standard assay conditions [35,36].

Effect of organic solvent on cellulase stability
Purified enzyme having maximum cellulase activity was incubated with 30% (v/v) of different organic solvent viz., n-dodecane, n-decane, iso-octane, xylene, n-hexane, n-butanol, cyclohexane, acetone, toluene, benzene, ethanol, methanol and propanol for one week in screw capped tubes at 65°C and 120 rpm. The residual cellulase activity was estimated against the control, in which solvent was not present [35,36].

Effect of inhibitors on cellulase activity
The effects ethylene diamine tetra acetic acid (EDTA), β-mercaptoethanol, Phenyl methyl sulphonyl flouride (PMSF) and urea as inhibitors on cellulase activity were investigated at a concentration of 5 mM and 10 mM in order to characterize enzyme. Crude enzyme was pre-incubated with the above mentioned reagents for 1 h at 65°C and residual activity (%) was determined under standard assay conditions [35,36].
Effect of surfactants, commercial detergents and oxidizing agents on enzyme stability

The cellulase sample was incubated with surfactants viz., Triton-X-100, Tween-40, Tween-60, Tween-80, SDS (0.1 and 1.0%, v/v), commercial detergents viz., surf, aerial, ghari, henko and fena (0.1 and 1.0%, w/v), and oxidizing agents viz., H$_2$O$_2$ (0.1 and 1.0%, v/v), sodium perborate and sodium hypochlorite (0.1, 0.5 and 1.0%, v/v) for 1 h at 65°C and then the residual activity (%) was tested under standard assay conditions [35,36].

Kinetic analysis

The influence of substrate concentration on the reaction velocity of the purified cellulase was studied with CMC [39]. The purified cellulase was incubated with various concentration of CMC ranged from 0.25-4.0 mg ml$^{-1}$. In all cases, the enzymatic activity was assayed under standard conditions.

The Michaelis constant (K_m) and maximum velocity (V_{max}) was determined from Lineweaver-Burk plots of Michaelis-Menten equation [40].

Statistical analysis

Each experiment was performed twice, each in triplicate and standard deviation for each experimental results were calculated using the Microsoft Excel.

Availability of Supporting Data’ (ASD)

Name of the repository is NCBI (National Center for Biotechnology Information) where our data is deposited and a link to the dataset DOI is http://www.ncbi.nlm.nih.gov/nuccore/JQ619483. The supporting data also include in this manuscript as a supporting file [41].

Additional file

Additional file 1: Bacillus vallismortis strain RG-07 16S ribosomal RNA gene, partial sequence.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

ST carried out the research work and drafted the manuscript. RG has designed the experiment, contributed substantially to analysis and interpretation of data and have given final approval of the version to be published. Both authors read and approved the final manuscript.

Acknowledgements

Financial assistance by Council of science and technology, U.P., is greatly acknowledged by Rajeeva Gaur and Soni Tiwari.

Received: 12 October 2014 Accepted: 24 February 2015
Published online: 19 March 2015

References

1. Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 1997;15:583–620.
2. Costa RB, Silva MFA, Freitas FC, Leitao VSF, Lacenda PSB, Ferrara MA, et al. Mercado e Perspectivas de Uso de Enzimas Industriais e Especiais no Brasil. In: Bon EPS, Ferrara MA, Corvo ML, Vermelho AB, Paiva CLA, Alencastro RB, Coelho RRR, editors. Enzimas em Biotecnologia, Producao, Aplicac oes e Mercados. 1st ed. Rio de Janeiro: Interdiscipencia; 2008. p. 463–88.
3. Zaldívar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56:17–34.
4. Sun Y, Cheng I. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioreour Technol. 2002;83:1–11.
5. Lynd LR, Weimer PJ, Zyl WH, Isak S. Microbial cellulase utilization: fundamentals and biotechnology microbiology. Mole Biol Reviews. 2002;66:506.
6. Harrison ML, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, et al. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. European J Biochem. 1998;256:119–27.
7. Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD. Reduced genomic potential for secreted plant cell wall degrading enzymes in the ectomycorrhizal fungus Arumona bisporangia, based on the secretome of Trichoderma reesei. Fungal Gene Biol. 2009;46:427–35.
8. Singh VK, Kumar A. Production and purification of an extracellular cellulase from Bacillus brevis VS-1. Biocherm Molecul Biol Inter. 1998;45:43–52.
9. Gachomo WE. Bacillus pumilus BPCR1: a promising candidate for cellulase production under conditions catabolite repression. Afri J Biotechnot. 2003;2:140–6.
10. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, et al. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3. Biochem J. 2008;993:79–86.
11. Yin LJ, Lin HH, Xiao ZR. Purification and characterization of a cellulase from Bacillus subtilis YJ1. J Marine Sci Technol. 2009;16:382–8.
12. Vijayaraghavan P, Vincet SGP. Purification and characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Polish J Microbiol. 2012;61:51–5.
13. Rawat R, Tewari L. Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LTFS. Extremophiles. 2012;16:37–44.
14. Jo K, Lee YJ, Kim BK, Lee BH, Jung CH, Nam SW. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens L-3. Biotechnol Bioprocess Eng. 2008;13:182–8.
15. Mayende L, Wilhelmi BS, Pietrzechki BL. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol Biochem. 2006;38:2963–6.
16. Sadhu S, Saha P, Sen SK, Mayarla S, Mati TK. Production, purification and characterization of a novel thermostolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springer Plus. 2013, 2:10. http://www.springerplus.com/content/2/1/10 (25)
17. Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T. Thermostable, halalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohy Poly. 2013;94:409–15 [27].
18. Lee BH, Kim BK, Lee YJ, Chung CH, Lee JW. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzy Microb Technol. 2010;46:38–42.
19. Kim JY, Hur SH, Hong JH. Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol Lett. 2005;27:313–6.
20. Bajaj BK, Pangotra H, Masood A, Wani Sharma P, Sharma A. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Indian J Chem Technol. 2009;16:382–7.
21. Aygan A, Kardoglu L, Arkan B. Alkaline thermostable and halophilic endoglucanase from Bacilluslicheniformis C108. Afri J Biotechnol. 2011;10:789–96.
22. Liang Y, Feng Z, Yesuf J, Blackburn JW. Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulosytic bacterium, Anaerobacillus sp. Appl Biochem Biotechnol. 2009, doi:10.1007/s12010-009-8677-x.
23. Mawada C, Hatti-Kaul R, Zvauya R, Mattiasson B. Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol. 2000;83:177–87.
24. Tahir SR, Bakhsh A, Rao AQ, Naz M, Saleem M. Isolation, purification and characterization of extracellular β-glucosidase from Bacillus sp. Adv Environ Biol Report. 2009;2:269.
25. Bakare MK, Adewale IO, Ajai A, Shonukan OO. Purification and characterization of cellulase from the wild-type and two improved mutants of *Pseudomonas fluorescens*. Afr J Biotechnol. 2005;4:898–904.

26. Yoon S, Kim MK, Hong JS, Kim MS. Production of polygalacturonase from *Ganoderma lucidum*. Korean J Mycol. 1994;22:286–97.

27. Wang X, Yu X, Xu Y. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from *Burkholderia cepacia* ATCC 25416. Enzy Microb Technol. 2009;45:94–102.

28. Lusterio DD, Suizo FG, Labunos NM, Valledor MN, Ueda S, Kawai S, et al. Alkali-resistant, alkaline endo-1,4-β-glucanase produced by *Bacillus* sp. PKM-5430. Biosci Biotechnol Biochem. 1992;56:1671–2.

29. Zaks A, Klivanov AM. Enzymatic catalysis in nonaqueous solvents. J Biol Chem. 1988;263:3194–201.

30. Wang C-M, Shyu C-L, Ho S-P, Chiou S-H. Characterization of a novel thermostable, cellulosedegrading bacterium *Paenibacillus* sp. strain B39. Lett Appl Microbiol. 2008;47:46–53.

31. Singh A, Agrawal AK, Abidi AB, Darmwal NS. Properties of cellobiase from *Aspergillus niger*. Appl Microbiol Biotechnol. 1990;34:356–8.

32. Li X, Yu HY. Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, *Bacillus* sp. L1. J Indus Microbiol Biotechnol. 2012;39:1117–24.

33. George PS, Ahmad A, Rao MB. Studies on carboxymethyl cellulose produced by an alkali-thermophilic actinomycete. Bioresour Technol. 2001;77:171–5.

34. Creig RN, Holt GJ. Bergey’s manual of systematic bacteriology. London: Williams and Wilkins; 1984.

35. Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 1944;153:375–80.

36. Somogyi M. Notes on sugar determination. J Biol Chem. 1952;195:19–23.

37. Lowry OH, Rosenbrough MJ, Farr AL, Randell RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;193:265–75.

38. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

39. Robyt JF, White BJ. Biochemical techniques: Theory and practical. Inc Illinois, U.S.A.: Waveland Press; 1990.

40. Lineweaver H, Burk D. The determination of enzyme dissociating constants. J Am Chem Soc USA. 1934;56:58–66.

41. Rai P, Tiwari S, Gaur R. *Bacillus vallismortis* strain RC-07 16S ribosomal RNA gene, partial sequence. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/nuccore/JQ619483.