Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways

Valberg SJ, Perumbakkam S, McKenzie EC, Finno CJ. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol Genomics 50: 1036–1050, 2018. First published October 5, 2018; doi:10.1152/physiolgenomics.00044.2018.—Equine myofibrillar myopathy (MFM) causes exertional muscle pain and is characterized by myofibrillar disarray and ectopic desmin aggregates of unknown origin. To investigate the pathophysiology of MFM, we compared resting and 3 h postexercise transcriptomes of gluteal muscle and the resting skeletal muscle proteome of MFM and control Arabian horses with RNA sequencing and isobaric tags for proteome and transcriptome profiling of equine myofibrillar myopathy (MFM) that causes muscle stiffness and intermittent ER (45, 63).

Across species, MFM comprises a group of muscle diseases defined by morphological characteristics of Z-disc disarray, disruption of myofiber alignment, and ectopic accumulation of proteins that contain a variety of cytoskeletal and Z-disc material, depending upon the causative genetic mutation (56). The extent of ectopic protein aggregation, degree of change in mitochondrial staining, and severity of muscle weakness in equine MFM is frequently less than that described for human patients with MFM (53, 56, 63). Approximately half of all MFM cases in human medicine are caused by mutations in genes encoding sarcormeric and extrasarcomeric proteins, including desmin, filamin C, plectin, ZASP, myotilin, αB-crystallin, and BAG3, while the remaining diseases are due to still unresolved gene defects (20, 34). Although common in humans, Arabian horses with MFM do not appear to have impaired cardiac function as they have no clinical indicators of heart failure. Even when over 20 yr of age, MFM horses complete endurance rides without abnormal elevations in heart rates that are routinely evaluated at compulsory veterinary evaluations during and after endurance races (45). The etiopathology of MFM in horses and the protein(s) or gene(s) responsible remain unknown.

RNA-Seq and proteomic analyses have been of value in defining pathophysiological mechanisms for MFM and muscular dystrophies in human patients (24, 27). Three studies have evaluated the equine exercise transcriptome in healthy Thoroughbred or Arabian racehorses performing near-maximal to maximal exercise (7, 43, 52). To date, no studies have investigated the gluteal muscle equine transcriptome or proteome after aerobic exercise. We hypothesized that transcriptome and proteome analyses of skeletal muscle before and several hours after aerobic exercise would provide critical insights into the pathophysiology of MFM in horses.
MATERIALS AND METHODS

Aim

The objectives of the present study were to compare the skeletal muscle transcriptome and proteome of healthy and MFM affected Arabian horses at rest, to compare the alterations in gene expression that occurred with aerobic exercise and to compare the transcriptome of MFM and control horses 3 h after exercise. Procedures were approved by the Oregon State University Institutional Animal Care and Use Committee #4480, and horse owners provided informed consent.

Horses

Horses for the study were recruited by contacting a large group of active endurance riders in the Pacific Northwestern US and selecting four Arabian and one Arabian-cross horse (age 15.8 ± 7.1 yr, 3 castrated males, 2 females) that had clear evidence of MFM based on clinical history of an exertional myopathy and histopathologic evaluation of muscle samples including desmin immunohistochemistry. Six control Arabian horses (13.0 ± 6.2 yr, 4 castrated males, 2 females) that were located on the same property and had similar feeding and exercise routines and no apparent histopathology in muscle biopsies were used as a matched control. All MFM horses had abnormal desmin-positive aggregates in gluteal muscle fibers (data reported previously) (63). ER was previously documented in 5 MFM horses, with the last episode at least 6 mo before taking part in the study. Control horses had participated in endurance activities for a minimum of 3 yr with no prior evidence of ER and had no evidence of muscle pathology in gluteal muscle biopsies. The muscle biopsy specimens utilized in the current experiment were aliquots of those obtained for previously published studies (45, 63).

Standardized Exercise Test

An aerobic exercise test was used that all horses could complete regardless of their current fitness. The details of the test and the metabolic responses of the MFM and control horses included in the present study have been published previously (45). In brief, horses were stall rested for 24–48 h, and then a rider with a global positioning system-enabled watch guided the horse through a 47 min exercise test consisting of precise intervals of walk, trot, and canter over 6.4–7.2 km (4.0–4.5 miles). One owner of one control horse elected not to perform the exercise test, leaving five MFM and five control horses to complete the test with no differences in heart rate response, blood lactate, blood glucose, or plasma electrolyte concentrations identified between MFM and control horses (45). No horses displayed clinical signs of muscle stiffness during or after the exercise test. Plasma creatine kinase activities were within normal limits before and 3 h following exercise in all but one MFM horse that had a mild ~2-fold elevation in creatine kinase activity (1116 U/l; normal range 145–633 U/l) following exercise (45).

Muscle Samples

A 6 mm Bergstrom needle biopsy of the middle gluteal muscle was obtained at a depth of ~6 cm at a standardized site 17 cm along a line running from the dorsal tuber coxa to the tail head before and 3 h after exercise ceased on alternate sides of the gluteal muscle (63). Three hours postexercise was chosen because in a previous equine study, little differential expression (DE) of genes was noted immediately after exercise, whereas significant changes occurred 4 h after exercise (43). Samples for transcriptome analysis were immediately frozen in liquid nitrogen and stored at −80°C until analysis.

Muscle Histochemistry

Samples for muscle histopathology obtained at rest were affixed to cork squares with optimal cutting temperature media and frozen in isopentane suspended in liquid nitrogen. Muscle fiber types were determined with myosin ATPase staining on 7 μm thick cryostat sections with 5 min preincubation at pH 4.4 (13). Muscle fiber type composition for type 1, 2A, and 2X fibers was determined by counting a minimum of 300 muscle fibers per horse. A one-way ANOVA and Tukey post hoc test was used to compare fiber type proportions between MFM and controls. Hematoxylin and eosin (HE) staining was performed on 7 μm thick cryostat sections.

Immunohistochemistry

Immunohistochemistry was used to investigate desmin aggregation, regeneration, and myosin isoforms that had altered gene expression as well as peptide expression in the proteomic profile. Staining was performed for desmin (1:100 anti-desmin-mouse monoclonal D33; Agilent Technologies, Santa Clara CA) and MHCd (1:50 mouse monoclonal anti-MHCd; Leica Biosystems, Buffalo Grove, IL) as previously described (63, 64). For MYH13 staining, flash-frozen muscle samples 7 μm thick were placed on charged slides and air-dried overnight at 25°C. Endogenous enzyme blocking was performed in 0.3% hydrogen peroxide/Tris-buffered saline (TBS). After rinsing in tap water, pH adjustment was made with TBS, pH 7.4 (Sctektek Laboratories, Logan, UT). Subsequently, standard micropolymer complex staining steps were performed at room temperature on the IntelliPath Flex Autostainer. All staining steps were followed by rinses in TBS Autowash buffer (Biocare Medical, Concord, CA). After blocking for nonspecific protein with Background Punisher for 10 min (Biocare), sections were incubated in rabbit polyclonal anti-MYH13 (PA5-70173; Thermo Fisher Scientific, Rockford, IL) diluted 1:50 in normal antibody diluent (Sctektek). After rinsing, Promark Rabbit on Farma horseradish peroxidase micropolymer (Biocare) was applied for 30 min. Immunoreactivity was detected by using Romulin AEC for 5 min (Biocare). Slides were counterstained with CATHE hematoxylin.

Transcriptomics

RNA extraction and sequencing. Total muscle RNA was isolated with TRizol/chloroform extraction and a biopulverizer (BioSpec Products, Bartlesville, OK) as previously described (22). DNase treatments were performed in columns (Direct-zol RNA MiniPrep Plus; Zyno, Irvine, CA) with TURBO DNase (ThermoFisher, Wilmington, DE) according to manufacturer’s instructions. Quantification and quality of RNA, along with degree of rRNA contamination, were assessed with the Pico chip on the Agilent Bioanalyzer 2100 (Santa Clara, CA), and samples with an RNA integrity number ≥7 were used for library preparation and quantification. Library construction with a strand-specific polyA+ capture protocol (TruSeq Stranded RNA, Illumina) was performed and sequencing completed using the Illumina HiSeq 2000 genome analyzer (100 bp PE) at a targeted 35 million reads/sample.

Mapping and assembling. All paired end RNA-Seq reads were initially assessed for quality with FASTQC (1). Samples that passed through the quality threshold of 30 (Q ≥ 30) were aligned with the STAR aligner (16) to Ensembl horse CDS (EquCab2.86). A total of 26,993 sequences were used to create the index file and map RNA-Seq reads. The final number of reads aligned ranged from 31 to 38 M per sample, with uniquely mapped reads falling in the range of 87.92–94.12% (Supplemental Table S1). (The online version of this article contains supplemental material.) Count data for each sample were generated from the STAR-aligned BAM files using the internal flag in STAR. Differential gene expression (DE) was identified with EdgeR (51) generalized linear models (GLMs) available through R/Bioconductor (R Core Team, 2016), making assumptions to shrink gene-specific variance toward an underlying common variance for all genes (41, 51). The number of counts per million (CPM) were set to include a minimum of five horse samples. Pairwise differences among means and linear combinations of parameter models were used to evaluate the DE between control and MFM affected horses. The fixed effects model can be represented as: $y = \mu + \alpha_i + \beta_j + \alpha \beta$, where μ is the
overall mean, β_1 represents effects due to any confounding effects, β_2 represents effects due to specific treatment, and σ_{d}^2 represents interaction among effects. Such models are also flexible to incorporate nested effects, and specifically for these data we represent the model as: μ represents the overall mean, and σ_{d}^2 is the treatment effect nested within horse to accommodate repeated measures over each individual horse. There were no confounding covariates included in our model. All gene lists derived from pairwise comparisons were false discovery rate (FDR) corrected for multiple testing at a threshold of $P < 0.05$.

Enrichment and pathway analysis of transcriptomics. Significant gene lists ($P < 0.05$) derived from pairwise comparison of transcriptomics data were analyzed with Cluego (2.3.2) (6), a Cytoscape (version 3.4.0) framework-based plug-in to visualize biological terms and large gene data sets and perform pathway analysis. The ENSEMBL gene IDs were mapped to the Gene Ontology (GO) database using all evidence without electronic annotation (IEA), which excludes computational annotations. Data were assessed at the biological level in GO. Default enrichment/depletion analysis was performed with a suitable background comprising ~11,000 genes, and P values were adjusted for multiple testing by Bonferroni step-down, which is the default in Cluego. The final list of genes evaluated in this study was derived from those genes that had enriched GO terms. Further information regarding the function of these genes was obtained from gencards.org.

Transcriptome Profiling

After using the CPM feature to ensure that each transcript was present across at least five horses, we reduced the initial 26,993 transcripts identified in Ensembl to 11,330 transcripts, constituting the final transcripts used for identification of DE genes. Using the resulting list of genes from the final transcripts, we made pair-wise comparisons (pre- vs. postexercise, MFM vs. control at rest, MFM vs. control postexercise, MFM postexercise vs. control pre-exercise) with FDR-corrected significant genes ($P < 0.05$) were used for GO term analysis.

Quantitative Real-time Polymerase Chain Reaction

Genes with $>\log_2$ fold higher or lower expression in MFM vs. control muscle were also evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Primer design is provided in Table 1. Thermocycling was conducted with EvaGreen dye (Biotium, Fremont, CA), ROX Reference Dye (Invitrogen, Life Technologies), and Thermocycling was conducted with EvaGreen dye (Biotium, Fremont, CA). For each sample, 150 µl was transferred to a PCT tube (Pressure Biosciences) and cyclced between 35 kpsi for 30 s and 0 kpsi for 15 s for 40 cycles at 37°C. The PCT tube was uncapped, and 200 mM methyl methanethiosulfonate (MMTS) was added to a final concentration of 8 mM MMTS, recapped, inverted several times, and incubated 15 min at room temperature. The samples were transferred to a new 1.5 ml microfuge Eppendorf Protein LoBind tube. Two aliquots for each sample were taken for protein concentration determination by Bradford assay.

For in-solution proteolytic digestion and isobaric tags for relative and absolute quantitation (iTRAQ) labeling, a 100 µg aliquot of each sample was transferred to a new 1.5 ml microfuge tube and brought to the same volume with protein extraction buffer and 8 mM MMTS. All samples were diluted fourfold with ultrapure water and trypsin (Promega, Madison, WI), added in a 1:35 ratio of trypsin to total protein. Samples were incubated overnight for 16 h at 37°C after which they were frozen at −80°C for 30 min and dried in a vacuum centrifuge. Each sample was then cleaned with a 4 ml Extract Clean C18 SPE denaturation at 95°C for 10 min, annealing at 60°C for 1 min; melt curve stages at 95°C for 15 s, 60°C for 1 min, and 95°C for 15 s. Cycle thresholds (CT) were automatically calculated by the QuantStudio 3 Real-Time PCR System. For each gene of interest 100% geometric efficiency was established. Nontemplate controls run for each gene showed no amplification. Mann-Whitney test was used to determine statistical significance with $P < 0.05$.

Coding Sequence of Desmin

Potential mutations in the coding sequences of desmin were investigated as a putative cause of MFM by using initial raw fastq files realigned using the STAR two-pass alignment method (13), and the resulting BAM files were sorted; duplicates were marked (http://broadinstitute.github.io/picard/), realigned, and recalibrated with GATK (44). The resulting BAM files were then used as an input to call variants with SAMtools (38). The resulting VCF file was filtered by BCFTools (46), and a final list of single nucleotide polymorphisms (SNPs) was compared with a case vs. control setup using SnpSift (10). The resulting SNP data were also annotated for variant function (synonymous or nonsynonymous).

Proteomics

Sample preparation, peptide fractionation, and mass spectrometry. We reconstituted 20 mg samples of frozen ground tissue from the same gluteal muscle biopsy obtained at rest from a subset of horses used for RNA-Seq (3 MFM mean age 20 yr, 3 castrated males and 3 control mean age 17 yr, 3 castrated males) with a ratio of 10 µl extraction buffer [7 M urea, 2 M thiourea, 0.4 M triethylammonium bicarbonate (TEAB) pH 8.5, 20% acetonitrile and 4 mM Tris (2-carboxyethyl) phosphine] per mg of tissue, while on ice. The samples were vortexed briefly and then sonicated at 30% amplitude for 7 s in a Branson Digital Sonifier 250 (Branson Ultrasonics, Danbury, CT). For each sample, 150 µl was transferred to a PCT tube (Pressure Cycling Technology; Pressure Biosciences, S. Easton, MA) with a 150 µl cap for the Barocycler NEP2320 (Pressure Biosciences) and cyclced between 35 kpsi for 30 s and 0 kpsi for 15 s for 40 cycles at 37°C. The PCT tube was uncapped, and 200 mM methyl methanethiosulfonate (MMTS) was added to a final concentration of 8 mM MMTS, recapped, inverted several times, and incubated 15 min at room temperature. The samples were transferred to a new 1.5 ml microfuge Eppendorf Protein LoBind tube. Two aliquots for each sample were taken for protein concentration determination by Bradford assay.

For in-solution proteolytic digestion and isobaric tags for relative and absolute quantitation (iTRAQ) labeling, a 100 µg aliquot of each sample was transferred to a new 1.5 ml microfuge tube and brought to the same volume with protein extraction buffer and 8 mM MMTS. All samples were diluted fourfold with ultrapure water and trypsin (Promega, Madison, WI), added in a 1:35 ratio of trypsin to total protein. Samples were incubated overnight for 16 h at 37°C after which they were frozen at −80°C for 30 min and dried in a vacuum centrifuge. Each sample was then cleaned with a 4 ml Extract Clean C18 SPE

Table 1. Primers sets

Primer Set	Loci	Forward Primer (5’-3’)	Reverse Primer (5’-3’)	Annealing Temp., °C	Product Size, bp
ACTC1 (XM023620570.1)	Exon 4–5	TGGTCCGGATCTCACTGACTTC	*ACGTTCCGCAAGTGCTGACAA	57.5/57.1	76
DFP (XM023624425.1)	Exon 6–7	*AACCTGGGAGGAAAGGCTCTTG	TCGGATCTGGTGATCGACAT	57.3/56.7	102
USH2A (XM001915645.3)	Exon 1–2	TTTCTCTCTCTCTCTCTCTCCAAGC	*GCCGCTTTTTCAATACAGACATTA	56.2/53.2	99
DLK1 (XM001917562.3)	Exon 3–4	GGACCTGGGAGGAAAGGCTCTG	*CAGGGCGGGATGCTTGAAGCT	57.3/56.4	80
CBS (XM023630242.1)	Exon 10–11	CGGATGGGGAGGAAAGGCTCTG	CGGCTTGGAGGAAAGGCTCT	58.9/57.2	78
GAPDH (NM001163856.1)	Exon 4–5	ATGATGTCCCACCCATCGGAGCTT	*GAGATCCTGGCTCTCGAGAGATG	59	100

Primers sets used for quantitative RT-PCR sequencing of cardiac alpha actin (ACTC1), desmoplakin (DFP), Ushearin (USH2A), delta notch-like protein 1 (DLK1), cysatathione beta synthase (CBS), and housekeeping gene glyceraldehyde 3 phosphate dehydrogenase (GAPDH). *Whether exon junction was on the forward or reverse primer.
cartridge from Grace-Davidson (Deerfield, IL); eluates were vacuum dried and suspended in dissolution buffer (0.5 M TEAB, pH 8.5) to a final 2 μg/μl concentration. We labeled 40 μg for each sample with iTRAQ 8-plex reagent (AB Sciex, Foster City, CA) per manufacturer’s protocol. After labeling, the 40 μg aliquot of each sample was multiplexed together into one 1.5 ml tube and vacuum-dried. The multiplexed sample was cleaned with a 3C Oasis MCX SPE cartridge (Waters, Milford, MA), and the eluate was dried in vacuo.

The iTRAQ-labeled samples were resuspended in buffer A (10 mM ammonium formate pH 10 in 98:2 water-acetonitrile) and fractionated offline by high-pH C18 reversed-phase (RP) chromatography (69). A MAGIC 2002 HPLC (Michrom BioResources, Auburn, CA) was used with a C18 Gemini-NX column, 150 mm × 2 mm internal diameter, 5 μm particle, 110 Å pore size (Phenomenex, Torrence, CA). Buffer A was 10 mM ammonium formate, pH 10 in 98:2 water-acetonitrile, and buffer B was 10 mM ammonium formate, pH 10 in 10:90 water-acetonitrile. The flow rate was 200 μl/min with a gradient from 5 to 35% buffer B over 60 min, followed by 35–60% over 5 min. Fractions were collected every 2 min, and UV absorbances were monitored at 215 and 280 nm. Peptide containing fractions were divided into two equal numbered groups: “early” and “late.” The first early fraction was concatenated with the first late fraction, and so on. Concatenated samples were dried in vacuo, resuspended in loading solvent (98:2:0.01, water-acetonitrile-formic acid), and 1–1.5 μg aliquots were run on a Velos Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) as described previously (39) with the following modifications: lock mass was not used, HCD activation time was 20 ms, dynamic exclusion duration was 15 s, and the minimum signal threshold for data dependent trigger was 20,000 counts. The mass spectrometer RAW data were converted to mzXML using MS Convert software from the ProteoWizard Toolkit (PMID: 23051804) and to MGF files using TINT raw-to-mgf converter (in-house tool).

Protein identification and statistical analysis. MGF-formatted files were used for identification of peaks by using several search engines to limit potential pitfalls of using a single algorithm/method and to perform a more exhaustive survey of the spectra (57). Multiple search engines such as OMSSA (version 2.1.9) (25), XTandem Vengeance (2015.12.15.2) (12), Andromeda (version 1.5.3.4) (11), MS Amanda (version 1.1.7.001) (17), MS-GF+ (version Beta v10282) (33), Comet (version 2016.01 rev. 2) (19), MyriMatch (version 2.2.140) (58), and Tide (15) were invoked within the SearchGUI (version 3.2.12) framework (65), and results collated with PeptideShaker (version 1.16.4) (65).

Protein identification was conducted against a concatenated target/ decoy (18) version of the Equus caballus (28,232, >99.9%), Equus ferus caballus (1, <0.1%), Sus scrofa (1, <0.1%) complement of the UniProtKB (version October, 2016) (2), with 28,234 (target sequences). The decoy sequences were created by reversing the target sequences in SearchGUI. The identification settings were as follows: 1) trypsin, specific cleavage, with a maximum of two missed cleavages 10.0 ppm as MS1 and 0.05 Da as MS2 tolerances; 2) fixed modifications: carbamidomethylation of C (+57.021464 Da); 3) iTRAQ specific modifications 8-plex of peptide N-term (+304.199039 Da) and iTRAQ 8-plex of K (+304.199039 Da); and 4) variable modifications: oxidation of M (+15.994915 Da), iTRAQ 8-plex of Y (+304.199039 Da).

Peptides and proteins were inferred from the spectrum identification results with PeptideShaker (version 1.16.4) (65). Peptide spectrum matches (PSMs), peptides, and proteins were validated at a 1.0% FDR estimated from the decoy-hit distribution. The resulting file was imported into Reporter package (version 0.7.2) (http://compomics.github.io/projects/reporter.html), which was included as complementary tool within the SearchGUI platform. Peptides that could belong to different members of the same protein family were handled by using stringent filtering and the Occam’s razor approach. The three rules used by this approach were 1) For two proteins to be clustered, the sum of the probabilities of their shared peptides must be at least 95%; 2) The proteins must share at least 50% of their evidence. This is determined by summing the probabilities of the shared peptides and comparing this value with the summed probabilities of all of the peptides for each individual protein. If the sum of the probabilities of the shared peptides is greater than or equal to half of the sum of the peptide probabilities for either of the individual proteins, a cluster is formed. 3) A protein may be included in an existing cluster if it meets the above criteria with a member protein of the cluster. For two proteins to be clustered in a group, the sum of the probabilities of their shared peptides must be at least 95%.

To normalize data to controls, ratios were created per protein by dividing mean MFM values by mean control values. The resulting data table was exported as a text file, log transformed, and analyzed to determine significance between treatments with Perseus (62). P values were adjusted for multiple testing by the permutation-based FDR method included within Perseus. Individual spectra for all proteins with >log2 fold change were manually checked for each sample/animal to ensure there were no missing data. The biological significance of the final list of confident proteins was assessed with the Panther protein classification tool (59).

Transcriptomic vs. Proteomic Analyses

To find intersecting IDs between transcriptomics and proteomic data sets, we first converted all confident proteins (673 protein IDs) expressed in MFM and control horses to gene names with the ENSEMBL Biomart resource. Significant gene IDs (<0.05) from MFM vs. Control transcriptomics at rest (284 genes) and MFM vs. Control transcriptomics after exercise (191 genes) were evaluated for genes that had overlap with Gene IDs identified from confident proteins in the proteomics data. Because long-term changes in gene expression are required to alter protein expression, proteomic analysis was performed only on at-rest and not on postexercise samples (24).

RESULTS

Muscle Fiber Type Composition and Histopathology

There was no significant difference in skeletal muscle fiber type composition between MFM and control horses (Fig. 1, A and B). Fiber type composition was type I (MFM 17 ± 3%; control 17 ± 3%), type 2A (MFM 56 ± 7%; control 52 ± 8%), and type 2X fibers (MFM 27 ± 4%; control 31 ± 8%). Neither acute myofiber necrosis nor macrophage infiltration was evident in HE stains. Mature myofibers with small internalized myonuclei were present in 5/5 MFM horses and in 2/6 control horses. Increased endomysial or perimysial connective tissue was not evident in all MFM horses; however, two of the most severely affected MFM horses appeared to have a slight increase in endomysial connective tissue in some regions (Fig. 1, C and D).

Immunohistochemistry. Immunohistochemistry identified desmin-positive aggregates in scattered myofibers of MFM but not control horses (Fig. 2, A and B). Neither small basophilic fibers with centrally located nuclei nor fibers staining positively for developmental myosin MYHd typical of regeneration were present in control horses. Increased endomysial connective tissue was not evident in all MFM horses; however, two of the most severely affected MFM horses appeared to have a slight increase in endomysial connective tissue in some regions (Fig. 1, C and D).

Downloaded from journals.physiology.org/journal/physiolgenomics (065.021.193.086) on February 27, 2022.
could reflect overlap in amino acid sequence with vascular smooth muscle myosin.

Transcriptomics

Control horses: effect of aerobic exercise. The comparison of transcriptomes of control horses at rest vs. after aerobic exercise identified 330 DE genes (adj. \(P < 0.05 \)) (Supplemental Table S1). After GO enrichment analysis, 12 genes had significant GO terms in biological processes involving corticosteroid receptor pathways (GO:0031958, GO:0042921, GO:2000322, GO:2000323), organic cation/quaternary ammonium transport (GO:0015695, GO:0015697, GO:0015101, GO:0072488, GO:0015651), and antigen processing via major histocompatibility class I (GO:0002474) (Fig. 3A). With an additional stringent threshold of \(>1.0 \log_2 \) fold change applied to these 330 DE genes, the aryl hydrocarbon receptor nuclear translocator-like protein 1 (\(\text{ARNTL} \downarrow 2.50 \text{MFM} \)), a clock gene involved in circadian rhythm, and an organic cation solute carrier (\(\text{SLC22A3} \downarrow 1.76 \text{MFM} \)) were identified as downregulated, and a clock gene (\(\text{PER1} \uparrow 1.32 \text{MFM} \)) was upregulated (Table 2).
MFM horses: effect of aerobic exercise.

The comparison of MFM transcriptomes at rest vs. postexercise identified 349 DE genes (adj. \(P < 0.05 \)) (Supplemental Table S1). These genes had different GO terms compared with rest vs. after exercise in control horses (Fig. 3B). After enrichment analysis, 27 genes had significant GO terms in biological processes that involved regulation of intracellular signal transduction (GO:1902531) and response to stimulus (GO:0048583), small GTPase signaling (GO:0007264), and cell differentiation (GO:0030154) (Fig. 3B). When the additional stringent filter of \(>1.0 \) log2 fold change was applied, 3 genes were significantly enriched in GO categories related to intracellular signal transduction, response to stimulus, and cell differentiation.

Fig. 3. Gene Ontology (GO) term analysis for enriched biological pathways of differentially expressed (DE) genes obtained through pair-wise comparison between each treatment. y-axis represents GO categories identified in the GO analysis. Similar GO categories are identified by similar colors. The x-axis represents the number of GO terms. Numbers within bar plots represent the number of GO terms significantly \((P < 0.05) \) associated with the enriched pathway for each biological function. A: glucocorticoid signaling (blue) and cation transport (green) were primarily modified by exercise in control horses (pre- vs. postexercise). B: unlike control horses, signal transduction and cell differentiation were primarily modified in MFM horses (pre- vs. postexercise). C: pathways involved in anatomic structure, fiber organization, and cell differentiation were primarily different in MFM vs. control horses at rest. D: after exercise, pathways exclusively involving sulfur containing compounds that impact cysteine metabolism were different between MFM vs. control horses 3 h after exercise. E: GO pathways involved in inflammation or the immune system were primarily different when comparing muscle from MFM horses after exercise to resting control muscle.
Table 2. Genes significantly differentially expressed

Gene Symbol	Gene Name	GO Term	Log2 Fold	Adj. P Value
ACTC1	actin, alpha, cardiac muscle 1	supramolecular fiber organization	2.47	1.05E-06
DSP	desmoplakin	supramolecular fiber organization	2.38	8.89E-24
MYOZ2	myozin 2	supramolecular fiber organization	1.03	1.82E-13
FREM2	FRAS1 related extracellular matrix protein 2	extracellular matrix component	1.17	1.36E-06
USH2A	usherin	extracellular matrix component	2.93	1.48E-10
PITX3	paired like homeodomain 3	tissue development/transcription	1.01	7.70E-04
FEZ1	fasciation and elongation protein zeta 1	cell differentiation/axonal growth	1.19	5.06E-05
PLCG2	phospholipase C gamma 2	cell differentiation/inflammation	1.01	6.72E-06
DLK1	delta like noncanonical Notch ligand 1	calcium ion binding	2.79	1.36E-04
ASTN2	actrastot 2	calcium ion binding	1.40	4.83E-15
CBS	cystathionine-beta-synthase	cysteine metabolic process	2.17	1.93E-09
SLC7A10	solute carrier family 7 member 10	cysteine membrane transport	1.80	4.08E-07
SLC24A1	cationic amino acid transporter 4-like	amino acid membrane transport	1.11	4.38E-05
GADD45G	growth arrest and DNA damage inducible gamma	regulation of response to stimulus	1.68	1.53E-04
ARNTL	aryl hydrocarbon receptor nuclear translocator-like protein 1	regulation of response to stimulus	2.18	7.64E-10
RCAN1	regulator of calcineurin 1	regulation of response to stimulus	1.07	2.62E-06
ARHGAP30	Rho GTPase activating protein 30	small GTPase mediated signaling	1.39	4.91E-05
SYK	spleen-associated tyrosine kinase	cell differentiation	1.36	1.27E-02
SPI1	Spi-1 proto- oncogene	cell differentiation	1.05	6.28E-03
PER1	period circadian clock 1	corticosteroid receptor signaling (circadian rhythm)	1.31	1.14E-05
ARNTL	aryl hydrocarbon receptor nuclear translocator-like protein 1	corticosteroid receptor signaling (circadian rhythm)	2.50	3.33E-15

Genes significantly differentially expressed with RNA-Seq after Gene Ontology (GO) term analysis >1.0 log2 fold change in horses at rest (A), after exercise (B), and comparing rest with after exercise (C, D). MFM, myofibrillar myopathy.

MFM vs. Control Horses at Rest

We found 284 genes showing significant DE (adj. P < 0.05) between MFM and control horses at rest (Supplemental Table S1). After enrichment analysis, 62 genes had significant GO terms for biological processes involving structural morphogenesis (GO:0009653), muscle fiber organization (GO:0097435), tissue development (GO:0098888), cell differentiation (GO:0030154, GO:0045595), and protein heterotrimerization (GO:0070208) (Fig. 3C). Expression of four genes was altered >1.0 log2 fold in MFM vs. control horses (Table 2); cardiac alpha actin (ACTC1, ↑2.47 MFM) and myozin 2 (MYOZ2, ↓1.03 MFM) in the sarcomere; desmoplakin (DSP, ↑2.3 MFM) in the cytoskeleton; usherin (USH2A, ↓2.93 MFM), and FRAS1-related extracellular matrix protein 2 (FREM2, ↑1.17 MFM) in the basement membrane/extracellular matrix; paired like homeodomain 3 (PITX3, ↑1.02 MFM), phospholipase C gamma 2 (PLCG2, ↑1.00 MFM), and fasciation and elongation protein zeta 1 (FEZ1, ↑1.19 MFM) involved in cell differentiation and delta like noncanonical Notch ligand 1 (DLK1, ↓2.39 MFM) and astrotactin (ASTN2, ↓1.40 MFM) involved in calcium ion binding (Table 2).

MFM vs. Control Horses Following Aerobic Exercise

We found 191 genes showing significant DE (adj. P < 0.05) in muscle of MFM compared with control horses following exercise (Supplemental Table S1). After enrichment analysis, there were nine genes with significant GO terms that involved amino acid transport (GO:0015179, GO:0015297) and sulfur compound or sulfur amino acid metabolic processes (methionine, cysteine, taurine) (GO:0006790, GO:0000096, GO:009069, GO:006534) (Fig. 3D). Three genes had >1.0 log2 fold DE in MFM vs. control horses: cystathionine-beta-synthase (CBS, ↓4.51 MFM) involved in cysteine synthesis and two membrane transporters, one for cysteine and neutral amino acids (SLC7A10, ↓1.79 MFM) and the other a potassium-dependent sodium/calcium exchanger (SLC24A1, ↓2.16 MFM) (Table 2, Fig. 3B).

MFM Horses Postexercise vs. Resting Control Horses

This analysis was performed to compare the extremes: DE expression after exercise in MFM horses to a healthy resting horse. Significant DE of 883 genes was found when comparing MFM muscle after exercise to resting control muscle. This encompassed 305 genes with 22 significant GO terms (Table 3), many involving inflammation/immune response and cell activation (Fig. 3E). Four sarcomeric genes had >1.0 log2 higher expression in MFM (ACTC1, ↑2.75 MFM); ankrin repeat domain 1 (ANKRD1, ↑1.50 MFM), a myofibrillar stretch sensor and regulator of lipid metabolism; myosin heavy chain 13 (MYH13, ↑1.63 MFM, P = 1.17E-33); myosin heavy chain 3 (MYH3, ↑1.27 MFM, P = 1.19E-06); as well as cytokeskeletal gene DSP (↑1.36 MFM). Other genes with >1.0 log2 altered expression that overlapped...
with those DE in comparisons of MFM vs. control at rest or after exercise included GADD45G (\(\uparrow 1.57\) MFM), ASTN2 (\(\downarrow 1.50\) MFM), PERI1 (\(\downarrow 1.67\) MFM), ARHGAP30 (\(\uparrow 1.34\) MFM), SYK (\(\uparrow 1.16\) MFM), and SPI1 (\(\uparrow 1.17\) MFM) (Supplemental Table S1).

qRT-PCR Validation of DE Transcripts

The transcripts with \(>2\) \(\log_2\) fold change in expression in resting RNA-Seq data (MFM vs. control) included ACTC1 (\(\uparrow \log_2 2.5\) FC), DSP (\(\uparrow \log_2 2.4\) FC), DLK1 (\(\downarrow \log_2 2.4\) FC), and USH2A (\(\downarrow \log_2 2.9\) FC). A similar pattern of increased or decreased expression was found for these genes by qRT-PCR (Table 4). A significant increase in expression was found for DLK1 (\(P = 0.004\)), and USH2A approached statistical significance (\(P = 0.052\)) with the small number of samples in the comparison (5 MFM vs. 6 control). Additionally, lower CBS expression in RNA-Seq data for MFM vs. control after exercise (\(\downarrow \log_2 4.5\) FC) was also found with qRT-PCR, and this difference approached statistical significance (\(P = 0.056\)) (Table 4).

Desmin Coding Sequence from RNA-Seq

Thirty-eight variants existed in the coding sequence of desmin between MFM and control horses; however, not one variant was consistently present in each MFM horse and consistently absent in control horses. There was one synonymous variant (Asp89Asp) that was present in five MFM as well as five control horses. The other identified variants were intronic (\(n = 37\)), of which nine were potential splice region variants that did not segregate exclusively in MFM horses.

Table 3. Significant GO IDs for enriched biological pathways of DE genes comparing postexercise MFM muscle with resting control muscle

GO Term Biological Process	GO ID	DE Genes, \(n\)
Cellular response to interferon-gamma	GO:0071346	7
Cellular activation	GO:0001775	34
Positive regulation of immune response	GO:0050778	26
Leukocyte migration	GO:0050900	18
Leukocyte chemotaxis	GO:0030595	14
Myeloid leukocyte migration	GO:007529	13
Leukocyte activation	GO:0045321	31
Leukocyte proliferation	GO:070661	18
Regulation of leukocyte proliferation	GO:070663	14
Regulation of lymphocyte proliferation	GO:050670	14
Lymphocyte proliferation	GO:046651	17
Regulation of T cell proliferation	GO:042129	13
T cell proliferation	GO:0042098	16
T cell activation	GO:0042110	21
Regulation of mononuclear cell proliferation	GO:003294	14
Mononuclear cell proliferation	GO:002943	17
Granulocyte migration	GO:007530	11
Granulocyte chemotaxis	GO:0071621	11
Neutrophil migration	GO:1990266	10
Neutrophil chemotaxis	GO:0030593	10
Immune response-regulating cell surface receptor signaling pathway	GO:0002768	14
Immune response-activating cell surface receptor signaling pathway	GO:0002429	13

DE, differentially expressed.

Table 4. Quantitative real-time PCR validation of specific transcripts from RNA-Seq

Gene	dCT MFM	dCT Control	\(2^{-\Delta\Delta CT}\)	\(P\) Value
MFM vs. control at rest				
ACTC1	8.02	9.41	2.62	0.178
DSP	12.88	13.77	1.85	0.662
USH2A	11.82	9.15	0.16	0.052
DLK1	13.81	9.65	0.06	0.004
MFM vs. control after exercise				
CBS	14.81	12.82	0.25	0.056

Statistical significance was determined with Mann-Whitney test.
Overlap between Significantly DE Genes and Identified Proteins

Out of the total 673 confident proteins, 543 had encoding gene IDs present in both transcriptomic and proteomic data sets. These confident proteins were identified but not DE in MFM and control horses. When comparing the proteomic data set with DE genes in resting MFM vs. control muscle, we found seven significantly DE genes that had proteins identified by proteomic analysis (Fig. 5B). These included adenylylhomocysteinease (LOC100054381), two proteins involved in ketone body metabolism (OXCT1, PGFS), and extraocular muscle myosin MYH13.
identified proteins (UniProtKB IDs with Gene IDs) in MFM and control muscle at rest and listed in Table 5.

When we compared DE genes in postexercise MFM vs. control muscle with all the identified proteins in the resting muscle proteomic data set, two proteins, PDLIM1 (cytoskeletal protein) and HSPB7, which act to prevent protein misfolding, overlapped with the DE genes (Fig. 5B). There were five proteins identified in the proteomic data set of MFM and control horses that had encoding gene transcripts DE in MFM vs. control both at rest and after exercise (Fig. 5B). These included a cysteine endopeptidase (CAPN1), phospholipase C (PLCD4), a vesicle transport protein (NIPSNAP3B), and four proteins involved in the extracellular matrix (COL1A1, COL1A2, COL6A1, LAMB2). None of these five proteins were DE in MFM horses, and none of the DE genes had log2 fold MFM), the enzyme responsible for transport of long chain fatty acids into mitochondria. β-oxidation of free fatty acids during aerobic exercise though energy efficient, is also a primary generator of reactive oxygen species (ROS). ROS are generated primarily via mitochondrial Complex I and III of the electron transport chain and must be reduced by specific enzymes to prevent cellular damage. In MFM horses, the increased subsequent flux of electrons could arise from enhanced uptake of fatty acids into mitochondria in MFM horses, increased subsequent flux of electrons

DISCUSSION

The present study represents the first study of the combined proteome and exercise transcriptome in horses and the first to utilize these analyses to probe muscle disease pathogenesis in horses. MFM Arabian horses showed DE of genes and proteins involved in pathways of sarcomere and cytoskeletal structure, oxidoreductase activity, fatty acid and amino acid metabolism, proteosomal degradation, and apoptosis. These alterations in expression do not appear to reflect a general myopathic process, because microarray studies of equine polysaccharide storage myopathy (PSSM1) and equine recurrent exertional rhabdomyolysis (RER) do not show overlap with DE genes in the present study, particularly when evaluating the top 10 DE genes in these studies (4, 5). Future RNA-Seq and proteomic analyses of other equine myopathies will help to elucidate which specific proteins and genes are DE as secondary effects of muscle disease and which are specific to MFM in Arabian horses.

Increases in connective tissue and muscle fiber regeneration are common features of many myopathies. It was interesting to note that four collagen and laminin proteins involved in the extracellular matrix had expressed peptides and DE genes in resting MFM vs. control muscle consistent with increased connective tissue. There was also a >2-fold log2 increased expression of the basement membrane-associated gene USH2A in resting MFM vs. control muscle. Histologically, however, only a slight increase in endomyosial connective tissue was apparent in two of the most severely affected MFM horses (most desmin aggregates). Regeneration was not apparent in MFM muscle based on HE and MHCd stains, and notably, DLK1 was significantly downregulated in MFM vs. control horses. Ablation of DLK1 in murine models results in impaired muscle regeneration (67).

A high proportion of high oxidative type 1 and 2A fibers in gluteal muscle is a feature of successful endurance racing Arabian horses and was found in the horses in the present study (49). This fiber type composition serves to delay fatigue by enhancing oxidation of free fatty acids during aerobic exercise and sparing muscle glycogen. Compared with control horses, MFM horses had a higher capacity to transport fatty acids into mitochondria for β-oxidation as indicated by the significantly higher content of carnitine palmitoyl transferase (↑3.5 log2 fold MFM), the enzyme responsible for transport of long chain fatty acids into mitochondria. β-oxidation of free fatty acids during aerobic exercise though energy efficient, is also a primary generator of reactive oxygen species (ROS). ROS are generated primarily via mitochondrial Complex I and III of the electron transport chain and must be reduced by specific enzymes to prevent cellular damage. In MFM horses, the content of two out of 24 identified Complex I subunit proteins was >2 log2 fold lower than in control horses (36). The potential to generate more ROS in MFM vs. control horses could arise from enhanced uptake of fatty acids into mitochondria in MFM horses.
through Complex I and increased ROS produced because of an altered Complex I subunit composition (Fig. 6). Notably, oxidoreductase activity was one of the primary pathways dysregulated in MFM in the present study. To compoud the effect of ROS generation further, MFM horses appeared to have a lower capacity to neutralize ROS than controls, with a significantly lower content of the antioxidant PRDX6 \((2.4 \text{ fold MFM})\) (Fig. 6).

PRDX6 is a widely distributed cytoplasmic cytoprotective nonseleno peroxidase that reduces hydrogen peroxides and quite uniquely, phospholipid hydroperoxides, by using a cysteine-containing active site (23). Glutathione S transferase, a cysteine selenoprotein that reduces PRDX6, was among the DE genes in MFM vs. control muscle \((2.0 \text{ fold change MFM})\) (23). While increased PRDX6 is described in a number of neurodegenerative diseases and some cancers, only one disease, alcoholic steatitis, reports decreased PRDX6 protein content with a much lesser decrement in PRDX6 than that found for MFM horses \((1.6-\text{fold vs. } 18-\text{fold})\) (47). A decrease in the amount of PRDX6 could arise from decreased synthesis or from irreversible cysteine oxidation to sulfinic (SO2H) and sulfonic acid (SO3H) with subsequent ubiquitination and degradation by the proteasome (42). Enhanced proteasomal degradation was suggested in proteomic data by 2.4 \text{ log}_2 \text{ fold change}.

Table 5. Proteins that were differentially expressed at \(>2 \text{ log}_2 \text{ fold} \) in MFM compared with control horses at rest

Protein Group	Gene Symbol	Gene Name	Process	Log2 FC	Adj. P Value
F7AX9	PRDX6	peroxiredoxin-6	thiol-specific antioxidant	\(4.14\)	0.0001*
F6S97T2	CPT1B	carnitine palmitoyltransferase 1	oxidative/fat metabolism	\(3.49\)	0.0001*
F6WY50	NDUF5	NADH dehydrogenase iron-sulfur protein 4	oxidative metabolism	\(2.64\)	0.133
K9KEN6	NDUF5	NADH dehydrogenase 1 alpha subcomplex subunit 5	oxidative metabolism	\(2.44\)	0.115
F7AY21	UNCSB5	protein unc-45 homolog B	sarcomere formation/myosin	\(2.27\)	0.121
F7A281	TPITM	tropomyosin beta chain	sarcomere structure/actin	\(3.24\)	0.039*
F6ZJR3	TGP	telethonin	sarcomere structure/actin	\(2.49\)	0.114
F6ZTR4	TPM5	tropomyosin alpha-3 chain	sarcomere structure/actin	\(2.03\)	0.182
F6TY28, F6UU2	TPM5	tropomyosin alpha-3 chain	sarcomere structure/actin	\(2.17\)	0.130
D2KAT3	PRDX6	26S protease regulatory subunit 6A	proteosome/peroxisome	\(2.40\)	0.111
F7D7B2	DIABLO	Diablo homolog	apoptosis	\(2.85\)	0.12
F6Y6W2	RPL24	60S ribosomal protein L24	ribosomal/purine synthesis	\(2.68\)	0.130
F7DBJ7	RPS7	40S ribosomal protein S7	ribosomal/purine synthesis	\(2.37\)	0.111
Q5SM34	IGHH	immunoglobulin gamma 1 heavy chain constant region	immune system	\(2.29\)	0.112

*Significantly DE proteins.
upregulation of the 26S proteasome subunit in MFM vs. control muscle. Notably the only gene with >1.0-fold \log_2 upregulation comparing rest to after exercise in MFM horses was GADD45G, a gene that regulates DNA repair in response to stimuli such as oxidative stress (70).

Following exercise, a remarkably focused lower expression of genes involved in cysteine transport and biosynthesis was identified in MFM compared with control muscle (Fig. 6). Cysteine beta synthase (CBS) and a cysteine transporter had >1.8 \log_2 fold lower expression in postexercise MFM compared with postexercise control muscle. In addition, adenylylhydrocysteinase, a key enzyme involved in synthesizing cysteine from methionine, was one of only five genes/proteins common to the transcriptomic and proteomic data sets of MFM vs. control horses. Cysteine residues are among the most sensitive to oxidation relative to other amino acids, and alterations in the redox state of cysteine residues can modify protein structure and enzyme activity (14, 26). Cysteine oxidation can result in a diverse array of modifications, some of which are reversible in vivo through interactions with glutathione, PRDX, or thioredoxin (14). Reversible cysteine oxidative modifications include intramolecular disulfides, S-nitrosylation, S-glutathionylation, and sulfonic acid, whereas irreversible cysteine oxidative modifications include sulfenic and sulfonic acid (14). One of the functions of PRDX6 and glutathione is to prevent irreversible oxidation of cysteine (Fig. 6). A deficiency of intracellular cysteine and PRDX6 in skeletal muscle following exercise in MFM horses could impair synthesis of cysteine-dependent antioxidants such as PRDX6 and glutathione, which could further impair PRDX6 availability and lead to irreversible oxidation of cysteine, an essential protein in MFM muscle (Fig. 6). The possibility that MFM horses have an underlying defect in cysteine biosynthesis and the redox system is intriguing. Clearly, alterations in antioxidant function, cysteine uptake, and metabolism are worthy of further investigation in MFM horses.

Our initial focus in the present study was desmin and sarcomeric proteins because desmin aggregates and disruption of myofilaments and the Z-disc typify MFM in both equine and human cases (34, 53). Although desmin aggregates were evident in histologic sections of equine MFM muscle, significant differences in desmin protein or gene expression were not detected (63). One synonymous and several intronic variants were identified in the desmin gene; however, there was not a mutation that was consistently present in all MFM horses and absent in control horses. Thus, a mutation in desmin does not appear to be responsible for Arabian MFM. Myotilin, filamin C, LIM protein, and αβ-crystallin protein content were similar between MFM and control horses. Furthermore, only one protein, a 26S proteosomal subunit, overlapped with proteins identified in a proteomic analysis of human patients with mutations in desmin and filamin C (40). The lack of overlap with sarcomere proteins in equine vs. human MFM could be because the present study used whole muscle samples vs. laser capture isolation of myofibers with desmin aggregates in the human study (40). Alternatively, the findings in the present study could suggest that the basis for equine MFM differs from desmin or filamin C-related MFM.

Desmin is a major target for oxidation and nitrosylation, which is well described in human MFM (31). In fact, the antioxidants N-acetyl cysteine and α-tocopherol have been shown to prevent desmin aggregation in cultured cells that express a desmin mutation (8, 54). The role of oxidation in desmin-related myopathies is also highlighted by the fact that a myopathy once classified as MFM based on desmin aggregation, selenoprotein 1-related myopathy, was found to be caused by mutations in SEPN1, which is involved in oxidative homeostasis (3, 9, 21). Thus, there are several precedents for disturbances in oxidoreductase activity causing the type of desmin aggregation noted in horses with MFM.

Tropomyosin was the third significantly altered protein in MFM compared with control muscle. Lower tropomyosin (↓3.2 \log_2 fold MFM) content in MFM muscle could be the result of protein oxidation or alternatively, could reflect a primary underlying disorder (30, 35, 36). Decreased tropomyosin content is known to occur in limb girdle muscular dystrophy 2A and hereditary inclusion body myositis (24), (55), which have different histopathologic appearances compared with MFM in horses (63, 64). Mutations in the Z-disc protein MYOZ2 can cause myofibrillar disarray and hypertrophic cardiomyopathy and gene expression of MYOZ2 was significantly decreased in resting MFM vs. control horses (45). Muscle from horses with MFM also had significantly higher DE of a desmin cross-linking gene, desmoplakin, primarily expressed in cardiac muscle. Mutations in genes encoding other members of the plakin family, plectin and dystonin, disrupt the sarcomere in a fashion similar to that seen with MFM (37). Two elements involving the cytoskeleton (PDML1) and protein misfolding (HSPB7) were also common to the proteomic data set and the MFM vs. control DE transcripts after exercise. Deficiency of HSPB7 can cause myofibrillar disarray (32). Thus, tropomyosin, myozennin 2, desmoplakin, and HSPB7 are also candidates for further investigation in equine MFM.

The power of combining RNA-Seq and iTRAQ proteomic analysis in the present study was highlighted by our ability to detect distinct but overlapping pathways such as DE of cysteine transporters and cysteine synthetic enzymes in RNA-Seq and cysteine-dependent PRDX6 content in proteomics. qRT-PCR was used to validate DE of those genes with >2-fold \log_2 expression and revealed similar direction of changes to RNA-Seq data. With iTRAQ, we identified >600 confidently expressed proteins in equine muscle, which is more than the 400 proteins identified in human myopathies (55) and more than the 540 proteins found in studies of porcine muscle (29). Of the 673 proteins identified, 543 had expression in both the transcriptome and proteome. Little association was found, however, between DE of the same gene ID in the transcriptome and general expression in the proteome, similar to previous studies of myopathies such as murine muscular dystrophy (50). This may reflect the fact that long-term changes in gene expression are required to alter protein expression and that altered protein expression can arise not only from increased synthesis but also from enhanced or abnormal degradation (28).

Identification of many proteins and genes in the present study was limited by the lack of annotation provided in the current EquCab2.86 reference genome. Identification of small proteins was also potentially limited in the present study by use of whole muscle homogenates containing substantial amounts of large contractile proteins that could impair detection of less abundant smaller proteins. We used homogenates so that we were able to examine sarcomere and cytoskeletal proteins,
which were of interest due to their importance in MFM. Previous iTRAQ analyses have utilized \(t \)-tests without correction for multiple testing to compare protein concentrations (48, 71). We utilized stringent correction for multiple testing, resulting in identification of only three highly significant proteins. We also included those proteins with \(>2 \log_2 \) fold changes to fully evaluate pathways associated with MFM.

Conclusions

In conclusion, this study defines for the first time a potential pathophysiological basis for an exertional myopathy in Arabian horses. Transcriptomic and proteomic profiles at rest and with exercise indicate that equine MFM is characterized by differential regulation of pathways involved in fatty acid metabolism, oxidoreductase activity, cysteine metabolism, sarcoplasmic and cytoskeleton structure, as well as tissue regeneration and cell differentiation. A deficiency of cysteine-containing antioxidants and enhanced generation of ROS in MFM horses could lead to oxidative stress during exercise, oxidation of key proteins such as desmin and altered cysteine synthesis following endurance exercise.

ACKNOWLEDGMENTS

The authors thank Natalie Barnes and Melissa Schott for technical assistance and LeeAnn Higgins and Todd Markowski at the Center for Mass Spectrometry and Proteomics at the University of Minnesota. The work of the Amy S. Porter and Kathleen A. Joseph, HT at the Investigative Histology Pathology Laboratory, Department of Physiology, Michigan State University is gratefully acknowledged. We also express our appreciation to the reviewers of this manuscript for productive improvements to the paper.

GRANTS

Support was provided by the Morris Animal Foundation Grant D14EQ-021. Support for C. J. Finno was provided by National Institutes of Health Grants 1K01OD-015134 and L40 TR-001136. The funding sources did not contribute to study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

S.J.V., E.C.M., and C.J.F. performed experiments; S.J.V., S.P., and C.J.F. analyzed data; S.J.V., S.P., and C.J.F. interpreted results of experiments; S.J.V. and S.P. prepared figures; S.J.V., S.P., E.C.M., and C.J.F. edited and revised manuscript; S.J.V., S.P., and C.J.F. approved the final version of manuscript.

REFERENCES

1. Andrew S. FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.org. [April 10, 2017].
2. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32: D115–D119, 2004. doi:10.1093/nar/gkh131.
3. Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol 65: 677–686, 2009. doi:10.1002/ana.21644.
4. Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Albright O, Gidrol X, Mata X, Vaiman A, Guérin G. Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet 43: 271–281, 2012. doi:10.1111/j.1365-2052.2011.02246.x.
5. Barrey E, Mucher E, Jeansoule N, Larcher T, Guigand L, Herszberg B, Chaffaux F, Guérin G, Mata X, Benech P, Canale M, Albright O, Maltere P, Gidrol X. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions. BMC Vet Res 5: 29, 2009. doi:10.1186/1746-6148-5-29.
6. Bindeja G, Galon J, Mlecnik B. ChuePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29: 661–663, 2013. doi:10.1093/bioinformatics/btt019.
7. Bryan K, McGivney BA, Farries G, McGitigan PA, McGivney CL, Gough KF, MacHugh DE, Katz LM, Hill EW. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components. BMC Genomics 18: 595, 2017. doi:10.1186/s12864-017-4007-9.
8. Cabet E, Batonnet-Pichon S, Delort F, Gausserès B, Vicart P, Lilienbaum A. Antioxidant Treatment and Induction of Autophagy Cooperative to Reduce Desmin Aggregation in a Cellular Model of Desminopathy. PLoS One 10: e0137009, 2015. doi:10.1371/journal.pone.0137009.
9. Casets P, Lescure A, Guicheny P, Allamand V. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med (Berl) 90: 1095–1107, 2012. doi:10.1007/s00109-012-0896-x.
10. Cingolani P, Patel VM, Coon M, Nguyen T, Muntoni F, Ferreiro A. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3: 35, 2012. doi:10.3389/fgen.2012.00035.
11. Cox J, Neuhausser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805, 2011. doi:10.1021/pr101065j.
12. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20: 1466–1467, 2004. doi:10.1093/bioinformatics/bth092.
13. Cummings WJK, Fulthorpe J, Hodgson P, Mahon M. Color Atlas of Muscle Pathology. London: Mosby-Wolfe, 1994.
14. Danielson SR, Held JM, Oo M, Riley R, Gibson BW, Andersen JK. Quantitative mapping of reversible mitochondrial Complex I cysteine oxidation in a Parkinson disease mouse model. J Biol Chem 286: 7601–7608, 2011. doi:10.1074/jbc.M110.190118.
15. Diament BJ, Noble WS. Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res 10: 3871–3879, 2011. doi:10.1021/pr101196n.
16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21, 2013. doi:10.1093/bioinformatics/bnt635.
17. Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, Mechtler K, MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res 13: 3679–3684, 2014. doi:10.1021/pr500202e.
18. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210, 2002.
19. Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604: 55–71, 2010. doi:10.1007/978-1-60761-444-9_5.
20. Eng JK, Jahan TA, Hoopman MR. Comet: an open-source MSMS sequence database search tool. Proteomics 13: 22–24, 2013. doi:10.1002/pmic.201200439.
21. Feldkirchner S, Schessl J, Müller S, Schoser B, Hanisch F-G. Patient-specific protein aggregates in myofibrillar myopathies: laser microdissection and differential proteomics for identification of plaque components. Proteomics 12: 3598–3609, 2012. doi:10.1002/pmic.201100559.
22. Ferrero A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Farudeau M, Martin J-J, Goebel HH, Richard R, Guicheny P, Bönninger CG. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 55: 676–686, 2004. doi:10.1002/ana.20077.
23. Finno CJ, Bordbari MH, Valberg SJ, Lee D, Herron J, Hines K, Monsour T, Scott E, Bannasch DL, Mickelson J, Xu L. Transcriptome profiling of equine vitamin E deficient neuroaxonal dystrophy identifies upregulation of liver X receptor target genes. Free Radic Biol Med 101: 261–271, 2016. doi:10.1016/j.freeradbiomed.2016.10.009.
24. Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Antioxid Redox Signal 15: 831–844, 2011. doi:10.1089/ars.2010.3412.
Bannasch DL. Evaluation of allele frequencies of inherited disease genes in subgroups of American Quarter Horses. J Am Vet Med Assoc 234: 120–125, 2009. doi:10.2460/javma.234.1.120.

Tyano S, Temu T, Sinitcyn P, Carlson A, Hein M, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (pro)teomics data. Nat Methods 13: 731–740, 2016. doi:10.1038/nmeth.3901.

Valberg SJ, McKenzie EC, Eyrich LV, Shivers J, Barnes NE, Finno CJ. Suspected myofibrillar myopathy in Arabian horses with a history of exertional rhabdomyolysis. Equine Vet J 48: 548–556, 2016. doi:10.1111/evj.12493.

Valberg SJ, Nicholson AM, Lewis SS, Reardon RA, Finno CJ. Clinical and histopathological features of myofibrillar myopathy in Warmblood horses. Equine Vet J 49: 739–745, 2017. doi:10.1111/evj.12702.

Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L. SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11: 996–999, 2011. doi:10.1002/pmic.201000595.

Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44: 11033, 2016. doi:10.1093/nar/gkw880.

Waddell JN, Zhang P, Wen Y, Gupta SK, Yevtodyienko A, Schmidt JV, Bidwell CA, Kumar A, Kuang S. Dlk1 is necessary for proper skeletal muscle development and regeneration. PLoS One 5: e15055, 2010. doi:10.1371/journal.pone.0015055.

Wilberger MS, McKenzie EC, Payton ME, Rigas JD, Valberg SJ. Prevalence of exertional rhabdomyolysis in endurance horses in the Pacific Northwestern United States. Equine Vet J 47: 165–170, 2015. doi:10.1111/evj.12255.

Yang F, Shen Y, Camp DG II, Smith RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9: 129–134, 2012. doi:10.1586/14740743.9.2.129.

Zhang L, Yang Z, Liu Y. GADD45 proteins: roles in cellular senescence and tumor development. Exp Biol Med (Maywood) 239: 773–778, 2014. doi:10.1177/1535370214531879.

Zhang S, Zhou R, Zhao H, Korpelainen H, Li C. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies. Proteomics 16: 614–628, 2016. doi:10.1002/pmic.201500197.

Physiol Genomics • doi:10.1152/physiolgenomics.00044.2018 • www.physiolgenomics.org
Downloaded from journals.physiology.org/journal/physiolgenomics (065.021.193.086) on February 27, 2022.