OPTIMAL CONTROL OF PARAMETERIZED MAXWELL’S SYSTEM: REDUCED BASIS, CONVERGENCE ANALYSIS, AND A POSTERIORI ERROR ESTIMATES∗

HARBIR ANTIL† AND TRAN NHAN TAM QUYEN‡

Abstract. We consider control constrained optimal control problems governed by parameterized stationary Maxwell’s system with the Gauss’s law. The parameters enter through dielectric, magnetic permeability, and charge density. Moreover, the parameter set is assumed to be compact. We discretize the electric field by a finite element method and use variational discretization concept to discretize the control. We create a reduced basis method for the optimal control problem and establish uniform convergence of the reduced order solutions to that of the original high dimensional problem provided that the snapshot parameter sample is dense in the parameter set, with an appropriate parameter separability rule. Finally, we establish the absolute a posteriori error estimator for the reduced order solutions and the corresponding cost functions in terms of the state and adjoint residuals.

Key words. Maxwell’s system, Parameterized partial differential equation, Optimal control, Reduced basis method, Model order reduction, Convergence analysis, A posteriori error estimates.

AMS subject classifications. 35Q61; 35Q93; 65M60; 65M12; 65K10; 49M25.

1. Introduction. Maxwell’s equations with the Gauss’s law play a central role in many day-to-day applications. However, the underlying coefficients in these equations, such as dielectric, magnetic permeability, and charge density contains parameters which must be inferred from experiments or treated as random variables. In many cases, these parameterized equations must be queried for different parameters, many times over and thus the problem quickly becomes intractable. This issue is only exacerbated when dealing with optimization problems with such parameterized equations as constraints. The goal of this paper is to create efficient numerical methods, using reduced basis method, to solve the optimization problems governed by stationary Maxwell’s system with the Gauss’s law as constraints.

We discretize these equations using a finite element method and carry out a variational discretization for the control. The finite element system for the PDE is a parameterized constrained saddle point system. It can be very expensive to solve, especially on fine meshes and for many parameter queries (cf. [22, 35, 17, 18]). From a reduced basis point of view, one needs a surrogate model for the system. Furthermore, since the reduced basis approach considers a suboptimal problem, convergence analysis and error estimates for the reduced order solution to that of the original high dimensional problem are crucial, which are investigated in the present paper.

For completeness, we mention that the optimal control problems governed by the non-parameterized Maxwell systems have attracted a great deal of attention from many scientists in the last decades. For surveys on the subject, we refer the reader to, e.g., [7, 30, 34, 38] and the references therein. The construction of the reduced basis methods for parameterized Maxwell systems can be found in [6, 10, 11, 19, 20, 21]. Moreover, an incomplete list of references that considers the analysis of parameterized
optimal control problems (not Maxwell) can be found in [4, 14, 26, 28, 29, 32, 36].

We in §3.3 first present numerical analysis for Maxwell systems with Nédélec finite elements. To the best of our knowledge, the optimal control of such a system is not known. The main results of our paper are contained in Theorem 5.5, where we prove the uniform convergence of reduced order solution, to the optimal control problem, to that of the original high dimensional problem, and in Theorem 6.3 where we establish the absolute a posteriori error estimator for the reduced order solutions. Numerical implementation will be part of a future work.

The remainder of the paper is organized as follows. In Section 2, we state the problem under consideration. Section 3 is devoted to some functional spaces and the finite element method for the system (2.1). Primal reduced basis approach for the optimal control problem and first order optimality conditions are presented in Section 4. Convergence analysis and a posteriori error estimates for the reduced basis approximations are respectively discussed in Section 5 and Section 6.

2. Problem Formulation. Let Ω be an open, bounded and connected set in \(\mathbb{R}^3\) with the Lipschitz boundary \(\partial \Omega\), and \(\mathcal{P} \subset \mathbb{R}^p\) is a compact set of parameters. In this paper we deal with the following \(\mu\)-parameterized stationary Maxwell’s system fulfilled by the electric field \(E\):

\[
\begin{aligned}
\nabla \times (\sigma^{-1}(\mathbf{x}; \mu) \nabla \times \mathbf{E}(\mathbf{x}; \mu)) &= \epsilon(\mathbf{x}; \mu) \mathbf{u}(\mathbf{x}), \quad (\mathbf{x}; \mu) \in \Omega \times \mathcal{P}, \\
\nabla \cdot (\epsilon(\mathbf{x}; \mu) \mathbf{E}(\mathbf{x}; \mu)) &= \rho(\mathbf{x}; \mu), \quad (\mathbf{x}; \mu) \in \Omega \times \mathcal{P}, \\
\mathbf{E}(\mathbf{x}; \mu) \times \mathbf{n}(\mathbf{x}) &= \mathbf{0}, \quad (\mathbf{x}; \mu) \in \partial \Omega \times \mathcal{P},
\end{aligned}
\]

(2.1)

where \(\mathbf{n} := \mathbf{n}(\mathbf{x})\) is the unit outward normal on \(\partial \Omega\). In (2.1) the dielectric \(\epsilon := \epsilon(\mathbf{x}; \mu)\), the magnetic permeability \(\sigma := \sigma(\mathbf{x}; \mu)\) and the charge density \(\rho := \rho(\mathbf{x}; \mu)\) are assumed to be known with

\[
\rho \leq \rho(\mathbf{x}; \mu) \leq \mathcal{P}, \quad \underline{\epsilon} \leq \epsilon(\mathbf{x}; \mu) \leq \overline{\epsilon} \quad \text{and} \quad \underline{\sigma} \leq \sigma(\mathbf{x}; \mu) \leq \overline{\sigma}
\]

a.e. in \(\mathbf{x} \in \Omega\), all \(\mu \in \mathcal{P}\) for some given constants \(\underline{\rho}, \overline{\rho}, \underline{\epsilon}, \overline{\epsilon}, \underline{\sigma}, \overline{\sigma}\) and \(\overline{\sigma}\) independent of both \(\mathbf{x}\) and \(\mu\), where \(\underline{\epsilon} > 0\) and \(\underline{\sigma} > 0\). Furthermore, we assume that Gauss’s law is applied to the current source, i.e.

\[
\nabla \cdot (\epsilon(\mathbf{x}; \mu) \mathbf{u}(\mathbf{x})) = 0, \quad (\mathbf{x}; \mu) \in \Omega \times \mathcal{P}.
\]

The function \(\mathbf{u}\) denotes the control variable. For

\[
\mathbf{u} \in \mathbf{U}_{ad} := \left\{ \mathbf{u} \in \mathbf{L}^2(\Omega) := \left(\mathbf{L}^2(\Omega)\right)^3 \mid \nabla \cdot (\epsilon \mathbf{u}) = 0 \quad \text{and} \quad \underline{\mathbf{u}} \leq \mathbf{u} \leq \overline{\mathbf{u}} \right\}
\]

given, we solve (2.1) for the electric field \(\mathbf{E} := \mathbf{E}(\mathbf{x}, \mathbf{u}; \mu) := \mathbf{E}(\mathbf{u}; \mu) \in \mathbf{H}_0(\text{curl}; \Omega)\) depending on \(\mathbf{u}\) and the parameter \(\mu\) as well (see Section 3 for the definition of functional spaces). Here \(\underline{\mathbf{u}}\) and \(\overline{\mathbf{u}}\) are given lower and upper bounds of the control. Therefore, for any given \(\mu \in \mathcal{P}\) we define the \textit{control-to-state} operator \(\mathbf{E} : \mathbf{U}_{ad} \rightarrow \mathbf{H}_0(\text{curl}; \Omega)\) that maps each \(\mathbf{u}\) to the unique weak solution \(\mathbf{E}(\mathbf{u}; \mu)\) of (2.1).

Let \(D\) be a measurable subset of \(\Omega\) and \(\mathbf{E}_d(\mu) \in \mathbf{L}^2(D), \mathbf{u}_d(\mu) \in \mathbf{L}^2(\Omega)\) respectively be the desired state and control, both of which can be parameter dependent.

In this paper we consider the parameterized control problem

\[
\min_{(\mathbf{u}, \mathbf{E}) \in \mathbf{U}_{ad} \times \mathbf{H}_0(\text{curl}; \Omega)} J(\mathbf{u}, \mathbf{E}; \mu), \quad (\mathcal{P}_e)
\]
where\(^1\) the cost functional is defined as
\[
J(u, E; \mu) := \frac{1}{2}\|\sqrt{\epsilon(\mu)}(E(\mu) - E_d(\mu))\|^2_{L^2(D)} + \frac{\alpha}{2}\|\sqrt{\epsilon(\mu)}(u - u_d(\mu))\|^2_{L^2(\Omega)}
\]
and \(\alpha > 0\) is the regularization parameter. We assume that the desired state and control are uniformly \(L^2\)-bounded with respect to the parameter, i.e.,
\[
\|E_d(\mu)\|_{L^2(D)} \leq e_d \quad \text{and} \quad \|u_d(\mu)\|_{L^2(\Omega)} \leq u_d
\]
for all \(\mu \in \mathcal{P}\) with \(e_d\) and \(u_d\) some positive constants. Furthermore, \(E_d\) fulfills the Gauss’s law in \(D\), i.e.,
\[
\nabla \cdot (\epsilon(\mu)E_d(\mu)) = \rho(\mu) \quad \text{in} \ D.
\]

Let \((\mathcal{E}_h, V_h)\) be the finite element space associated with the system (2.1) and \(E_h(\mu)\) be the finite element approximation of \(E(\mu)\) (cf. Subsection 3.3). Adopting the variational discretization concept introduced in [23] (where control is not directly discretized), we approximate the “exact” problem \((P_e)\) by the discrete one
\[
\min_{(u, E_h) \in U_{ad} \times \mathcal{E}_h} J(u, E_h; \mu), \quad (P_h)
\]
subject to
\begin{align}
(\sigma^{-1}(\mu)\nabla \times E_h(\mu), \nabla \times \Phi_h)_{L^2(\Omega)} &= (\epsilon(\mu)u, \Phi_h)_{L^2(\Omega)} \\
(\epsilon(\mu)E_h(\mu), \nabla \phi_h)_{L^2(\Omega)} &= -(\rho(\mu), \phi_h)_{L^2(\Omega)}
\end{align}
for all \((\Phi_h, \phi_h) \in \mathcal{E}_h \times V_h\).

As mentioned in the introduction, the constrained saddle point system (2.5) is expensive to solve. Our goal is to create a reduced basis method for \((P_h)\), prove its convergence, and derive a posteriori error estimates.

3. Preliminaries. We start this section by presenting the definition of functional spaces which are utilized in the paper, for more details one can consult [2, 31]. Well-posedness and finite element discretization, including a priori error estimates, of (2.1) are given in Subsections 2.1 and 3.3, respectively.

3.1. Functional spaces. In this paper bold typeface is used to indicate a point in \(\mathbb{R}^3\), a (three-dimensional) vector-valued function or a Hilbert space of vector-valued functions. The Hilbert spaces
\[
H(\text{div}; \Omega) := \{ \Phi \in L^2(\Omega) \mid \nabla \cdot \Phi \in L^2(\Omega) \} \quad \text{and} \\
H(\text{curl}; \Omega) := \{ \Phi \in L^2(\Omega) \mid \nabla \times \Phi \in L^2(\Omega) \}
\]
are respectively equipped the inner product
\[
(\Phi, \Psi)_{H(\text{div}; \Omega)} := (\Phi, \Psi)_{L^2(\Omega)} + (\nabla \cdot \Phi, \nabla \cdot \Psi)_{L^2(\Omega)} \quad \text{and} \\
(\Phi, \Psi)_{H(\text{curl}; \Omega)} := (\Phi, \Psi)_{L^2(\Omega)} + (\nabla \times \Phi, \nabla \times \Psi)_{L^2(\Omega)}.
\]

\(^1\)The subscript \(e\) in the problem \((P_e)\) refers to “exact”.
The normal trace operator \(\gamma_n(\Phi) := \mathbf{n} \cdot \Phi |_{\partial \Omega} \) for all \(\Phi \in C^\infty(\overline{\Omega}) \) can be extended to a surjective, continuous linear map from \(H(\text{div}; \Omega) \to H^{-1/2}(\partial \Omega) := (H^{1/2}(\partial \Omega))^* \) such that Green’s formula (cf. [31, §3])
\[
(\nabla \cdot \Phi, \phi)_{L^2(\Omega)} = -\langle \Phi, \nabla \phi \rangle_{L^2(\Omega)} + \langle \gamma_n(\Phi), \phi \rangle_{(H^{-1/2}(\partial \Omega), H^{1/2}(\partial \Omega))}
\]
holds true for all \(\Phi \in H(\text{div}; \Omega) \) and \(\phi \in H^1(\Omega) \). The tangential trace operator \(\gamma_t(\Phi) := \mathbf{n} \times \Phi |_{\partial \Omega} \) for all \(\Phi \in C^\infty(\overline{\Omega}) \) can be also extended to a continuous linear map from \(H(\text{curl}; \Omega) \to H^{-1/2}(\partial \Omega) \). Further, Green’s formula [31, Theorem 3.29]
\[
(\nabla \times \Phi, \Psi)_{L^2(\Omega)} = (\Phi, \nabla \times \Psi)_{L^2(\Omega)} + \langle \gamma_t(\Phi), \Psi \rangle_{(H^{-1/2}(\partial \Omega), H^{1/2}(\partial \Omega))}
\]
holds true for all \(\Phi \in H(\text{curl}; \Omega) \) and \(\Psi \in H^1(\Omega) \).

We conclude this subsection by the following definition
\[
H_0(\text{div}; \Omega) := \overline{C^\infty(\Omega)} H(\text{div}; \Omega) \quad \text{and} \quad H_0(\text{curl}; \Omega) := \overline{C^\infty(\Omega)} H(\text{curl}; \Omega),
\]
where the closures are respectively taken with respect to the norm of the space \(H(\text{div}; \Omega) \) and \(H(\text{curl}; \Omega) \) and \(C^\infty(\Omega) \) is the space of all infinitely continuously differential functions with compact support in \(\Omega \). Notice that
\[
H_0(\text{div}; \Omega) := \{ \Phi \in H(\text{div}; \Omega) \mid \gamma_n(\Phi) = 0 \},
\]
\[
H_0(\text{curl}; \Omega) := \{ \Phi \in H(\text{curl}; \Omega) \mid \gamma_t(\Phi) = 0 \}.
\]

3.2. Variational formulation of the system (2.1).
For any given \(\mu \in \mathcal{P} \) and \(u \in L^2(\Omega) \) an element \(E := E(\mu) := E(u; \mu) \in H_0(\text{curl}; \Omega) \) is said to be a weak solution of (2.1) if
\[
\begin{cases}
(\sigma^{-1}(\mu) \nabla \times E(\mu), \nabla \times \Phi)_{L^2(\Omega)} = (\epsilon(\mu) u, \Phi)_{L^2(\Omega)}, & \forall \Phi \in H_0(\text{curl}; \Omega) \\
(\epsilon(\mu) E(\mu), \nabla \phi)_{L^2(\Omega)} = - (\rho(\mu), \phi)_{L^2(\Omega)}, & \forall \phi \in H_0^1(\Omega).
\end{cases}
\]
The first equation in (3.3) is obtained by multiplying the first equation of (2.1) with \(\Phi \in H_0(\text{curl}; \Omega) \), and then using the identity (3.2). The second equation of (3.3) is obtained by using the second equation in (2.1) and the Green’s formula (3.1).

We define
\[
V := \{ \tau \in H_0(\text{curl}; \Omega) \mid \nabla \cdot (\epsilon \tau) = 0 \}.
\]
Then by the compactness of the embedding \(V \hookrightarrow L^2(\Omega) \) (for \(\epsilon \) piecewise smooth) and
\[
\{ \tau \in V \mid \nabla \times \tau = 0 \} = \{ \tau \in L^2(\Omega) \mid \nabla \times \tau = 0, \nabla \cdot (\epsilon \tau) = 0, \mathbf{n} \times \tau |_{\partial \Omega} = 0 \} = \{ 0 \}
\]
(see, [13, 38]), an application of Peetre’s lemma (see, [27, Lemma 2]) yields that there exists a positive \(C^\Omega \) such that
\[
\| \tau \|_{L^2(\Omega)} \leq C^\Omega \| \nabla \times \tau \|_{L^2(\Omega)}
\]
for all \(\tau \in V \). Thus, with the aid of the condition (2.2), we have the coercivity condition
\[
\| v \|_{H(\text{curl}; \Omega)}^2 \leq C^\Omega \langle \sigma^{-1} \nabla \times v, \nabla \times v \rangle_{L^2(\Omega)}
\]
for all $\mathbf{v} \in \mathbf{V}$, where the constant $C^2_{\text{div}} > 0$ is independent of \mathbf{v}. Due to the standard theory of the mixed variational problems (see, e.g., [9, 16]), we conclude that the system (3.3) attains a unique solution $\mathbf{E} = \mathbf{E}(\mathbf{u}, \mu) \in H_0(\text{curl}; \Omega)$ which satisfies

$$\|\mathbf{E}\|_{H(\text{curl}; \Omega)} \leq C^2_{\text{div}} \left(\|\mathbf{u}\|_{L^2(\Omega)} + \|\rho\|_{L^2(\Omega)} \right) \leq C^{\Omega}_{\text{curl}} |\Omega|^{1/2} (\mathcal{P} + \|\mathbf{u}\|_{\mathbb{R}^3}) := C_\mathbf{E}. \tag{3.6}$$

We therefore can define for any fixed $\mu \in \mathcal{P}$ the map

$$S_\mu : \mathbf{U}_{ad} \to H_0(\text{curl}; \Omega) \quad \text{with} \quad \mathbf{u} \mapsto S_\mu(\mathbf{u}) := \mathbf{E}(\mathbf{u})$$

and for any fixed $\mathbf{u} \in \mathbf{U}_{ad}$ the one

$$S_\mathbf{u} : \mathcal{P} \to H_0(\text{curl}; \Omega) \quad \text{with} \quad \mu \mapsto S_\mathbf{u}(\mu) := \mathbf{E}(\mu).$$

3.3. Finite element discretization.

Hereafter, we assume $(\mathcal{T}_h)_{h>0}$ is a quasi-uniform family of regular triangulations of the domain Ω with the mesh size h (cf. [33]). For discretization of the state variable solving the system (3.3) let us denote the Nédélec finite element spaces (cf. [8]). For discretization of the state variable solving the system (3.3) let us denote the Nédélec finite element spaces (cf. [33])

$$\mathcal{E}_h := \{ \mathbf{E}_h \in H_0(\text{curl}; \Omega) \mid \mathbf{E}_{h|T} = \mathbf{a}_T + \mathbf{b}_T \times \mathbf{x}, \ \forall T \in \mathcal{T}_h \ \text{with} \ \mathbf{a}_T, \mathbf{b}_T \in \mathbb{R}^3 \},$$

$$\mathcal{V}_h := \{ \phi_h \in H^1_0(\Omega) \mid \phi_{h|T} = a_T + \mathbf{b}_T \cdot \mathbf{x}, \ \forall T \in \mathcal{T}_h \ \text{with} \ a_T \in \mathbb{R}, \mathbf{b}_T \in \mathbb{R}^3 \},$$

where $\nabla \mathcal{V}_h \subset \mathcal{E}_h$.

The discrete variational formulation corresponding to the system (3.3) then reads: find $\mathbf{E}_h \in \mathcal{E}_h$ such that (2.5) is satisfied for all $(\mathbf{F}_h, \phi_h) \in \mathcal{E}_h \times \mathcal{V}_h$. Similarly to (3.5), since the discrete Poincaré-Friedrichs-type inequality (cf. [25, Theorem 4.7], [31, §7])

$$\|\mathbf{v}_h\|_{L^2(\Omega)} \leq C^\Omega \|\nabla \times \mathbf{v}_h\|_{L^2(\Omega)} \tag{3.7}$$

is satisfied for all discrete ϵ-divergence-free functions, i.e.

$$\mathbf{v}_h \in \mathcal{D}^{(\epsilon)}_h := \left\{ \mathbf{E}_h \in \mathcal{E}_h \mid (\epsilon \mathbf{E}_h, \nabla \phi_h)_{L^2(\Omega)} = 0 \quad \text{for all} \quad \phi_h \in \mathcal{V}_h \right\}, \tag{3.8}$$

we have that

$$\|\mathbf{v}_h\|_{H(\text{curl}; \Omega)}^2 \leq C^{\epsilon}_{\text{curl}} (\sigma^{-1}\nabla \cdot \mathbf{v}_h, \nabla \times \mathbf{v}_h)_{L^2(\Omega)} \tag{3.9}$$

for all $\mathbf{v}_h \in \mathcal{D}^{(\epsilon)}_h$. Therefore, we conclude that the system (2.5) has a unique solution $\mathbf{E}_h \in \mathcal{E}_h$ satisfying the estimate $\|\mathbf{E}_h\|_{H(\text{curl}; \Omega)} \leq C_\mathbf{E}$.

For all $s \geq 0$ we denote by

$$H^s(\text{curl}; \Omega) := \{ \mathbf{\Phi} \in H^s(\Omega) \mid \nabla \times \mathbf{\Phi} \in H^s(\Omega) \}.$$

Equipped with the norm

$$\|\mathbf{\Phi}\|_{H^s(\text{curl}; \Omega)} := \left(\|\mathbf{\Phi}\|_{H^s(\Omega)}^2 + \|\nabla \times \mathbf{\Phi}\|_{H^s(\Omega)}^2 \right)^{1/2},$$

it is a Banach space. Before going further, we state the following result.

Theorem 3.1. For any given $\mu \in \mathcal{P}$ let $\mathbf{E}(\mu)$ and $\mathbf{E}_h(\mu)$ be the unique solution to (3.3) and (2.5), respectively. Then:
(i) There holds the limit
\[
\lim_{h \to 0} \| \nabla \times (E(\mu) - E_h(\mu)) \|_{L^2(\Omega)} = 0.
\]

(ii) In addition \(e(\mu), \sigma^{-1}(\mu) \in W^{1,\infty}(\Omega) \) we get the regularity \(E(\mu) \in H^s(\text{curl}; \Omega) \) for some \(s \in (1/2, 1] \). Furthermore, there exist constants \(\nu, \nu' \in (1/2, 1] \) such that the estimates
\[
\| E(\mu) - E_h(\mu) \|_{H^s(\text{curl}; \Omega)} \leq C h^s \| E(\mu) \|_{H^s(\text{curl}; \Omega)}
\]
and
\[
\| \nabla \cdot (E(\mu) - E_h(\mu)) \|_{H^{-\nu}(\Omega)} \leq C h^{s+\nu-1} \left(\| \nabla \times E(\mu) \|_{L^2(\Omega)} + \| \rho(\mu) \|_{H^{\nu'-1}(\Omega)} \right)
\]
hold true.

Proof. The regularity \(E \in H^s(\text{curl}; \Omega) \) follows from [12, Lemma 3.6]. Further, the assertion is based on standard arguments, it is therefore omitted here.

4. Primal reduced basis approach. By standard arguments (see, e.g., [24, 37]), one can verify that the problem \((P_e) \) attains a unique solution for each the parameter \(\mu \in \mathcal{P} \). Furthermore, we can derive the following, for instance using Lagrangian approach, first order optimality system satisfied by the optimal control, state and adjoint.

Theorem 4.1. Given \(\mu \in \mathcal{P} \), the pair \((u^*_e(\mu), E^*_e(\mu)) \in U_{ad} \times H_0(\text{curl}; \Omega)\) is the unique solution\(^2\) of the problem \((P_e)\) if and only if there exists an adjoint state \(F^*_e(\mu) \in H_0(\text{curl}; \Omega) \) such that the triple \((u^*_e(\mu), E^*_e(\mu), F^*_e(\mu))\) satisfies the system

\[
\begin{align*}
(4.1a) & \quad (\sigma^{-1}(\mu) \nabla \times E^*_e(\mu), \nabla \times \Phi)_{L^2(\Omega)} = (e(\mu) u^*_e(\mu), \Phi)_{L^2(\Omega)},
(4.1b) & \quad (e(\mu) E^*_e(\mu), \nabla \phi)_{L^2(\Omega)} = (\rho(\mu), \phi)_{L^2(\Omega)},
(4.1c) & \quad (\sigma^{-1}(\mu) \nabla \times F^*_e(\mu), \nabla \times \Phi)_{L^2(\Omega)} = (e(\mu)(E^*_e(\mu) - E_d(\mu)), \Phi)_{L^2(\Omega)},
(4.1d) & \quad (e(\mu) F^*_e(\mu), \nabla \phi)_{L^2(\Omega)} = 0,
(4.1e) & \quad \left(e(\mu) (u - u^*_e(\mu)), u_d(\mu) - \frac{1}{\alpha} F^*_e(\mu) - u^*_e(\mu) \right)_{L^2(\Omega)} \leq 0
\end{align*}
\]

for all \((\Phi, \phi, u) \in H_0(\text{curl}; \Omega) \times H_0^1(\Omega) \times U_{ad}\).

Notice that the following inequality holds true for all \(\mu \in \mathcal{P} \)
\[
(4.2) \quad \| F^*_e(\mu) \|_{L^2(\Omega)} \leq C_{T, \Phi}^\Omega (e_d + C_E) := C_F
\]

Based on the finite element approach in Subsection 3.3, next we approximate the “exact” problem \((P_e)\) by the discrete one \((P_h)\). Then, the associated first order optimality system for the problem \((P_h)\) reads:

Theorem 4.2. Given \(\mu \in \mathcal{P} \), the pair \((u^*_h(\mu), E^*_h(\mu)) \in U_{ad} \times \mathcal{E}_h\) is the unique solution of the problem \((P_h)\) if and only if there exists an adjoint state \(F^*_h(\mu) \in \mathcal{E}_h\)

\[\text{The superscript } ^* \text{ refers to “optimality”.}\]
such that the triple \((u_h^*(\mu), E_h^*(\mu), F_h^*(\mu))\) satisfies the system

\[
\begin{align*}
(4.3a) \quad & (\sigma^{-1}(\mu)\nabla \times E_h^*(\mu), \nabla \times \Phi_h)_{L^2(\Omega)} = (\epsilon(\mu)u_h^*(\mu), \Phi_h)_{L^2(\Omega)}, \\
(4.3b) \quad & (\epsilon(\mu)E_h^*(\mu), \nabla \phi_h)_{L^2(\Omega)} = -(\rho(\mu), \phi_h)_{L^2(\Omega)}, \\
(4.3c) \quad & (\sigma^{-1}(\mu)\nabla \times F_h^*(\mu), \nabla \times \Phi_h)_{L^2(\Omega)} = (\epsilon(\mu)(E_h^*(\mu) - E_d(\mu)), \Phi_h)_{L^2(D)}, \\
(4.3d) \quad & (\epsilon(\mu)F_h^*(\mu), \nabla \phi_h)_{L^2(\Omega)} = 0, \\
(4.3e) \quad & \left(\epsilon(\mu)(u - u_h^*(\mu)), u_d(\mu) - \frac{1}{\alpha}F_h^*(\mu) - u_h^*(\mu)\right)_{L^2(\Omega)} \leq 0
\end{align*}
\]

for all \((\Phi_h, \phi_h, u) \in \mathcal{E}_h \times V_h \times U_{ad}.

The above optimality system (4.3a)–(4.3e) constitutes several sets of variational equations and inequalities which may be computationally expensive. Thus the surrogate model approach will be considered next, where the original high dimensional problem is replaced by a reduced order approximation.

Assume that we are given the reduced basis spaces

\[(\mathcal{E}_N, V_N) \subset (\mathcal{E}_h, V_h).\]

Furthermore, to guarantee the existence of a solution to the constraint system, we assume that the coercivity condition (3.9) is fulfilled on \((\mathcal{E}_N, V_N)\). We can then consider the reduced basis problem

\[
\min_{(u, E_N) \in U_{ad} \times \mathcal{E}_N} J(u, E_N; \mu),
\]

subject to

\[
(4.4) \quad \begin{cases}
(\sigma^{-1}(\mu)\nabla \times E_N(\mu), \nabla \times \Phi_N)_{L^2(\Omega)} = (\epsilon(\mu)u, \Phi_N)_{L^2(\Omega)} \\
(\epsilon(\mu)E_N(\mu), \nabla \phi_N)_{L^2(\Omega)} = -(\rho(\mu), \phi_N)_{L^2(\Omega)}
\end{cases}
\]

for all \((\Phi_N, \phi_N) \in \mathcal{E}_N \times V_N\). The associated first order optimality system reads:

Theorem 4.3. Given \(\mu \in \mathcal{P}\), the pair \((u_N^*(\mu), E_N^*(\mu)) \in U_{ad} \times \mathcal{E}_N\) is the unique solution of the problem \((\mathcal{P}_N)\) if and only if there exists an adjoint state \(F_N^*(\mu) \in \mathcal{E}_N\) such that the triple \((u_N^*(\mu), E_N^*(\mu), F_N^*(\mu))\) satisfies the system

\[
\begin{align*}
(4.5a) \quad & (\sigma^{-1}(\mu)\nabla \times E_N^*(\mu), \nabla \times \Phi_N)_{L^2(\Omega)} = (\epsilon(\mu)u_N^*(\mu), \Phi_N)_{L^2(\Omega)}, \\
(4.5b) \quad & (\epsilon(\mu)E_N^*(\mu), \nabla \phi_N)_{L^2(\Omega)} = -(\rho(\mu), \phi_N)_{L^2(\Omega)}, \\
(4.5c) \quad & (\sigma^{-1}(\mu)\nabla \times F_N^*(\mu), \nabla \times \Phi_N)_{L^2(\Omega)} = (\epsilon(\mu)(E_N^*(\mu) - E_d(\mu)), \Phi_N)_{L^2(D)}, \\
(4.5d) \quad & (\epsilon(\mu)F_N^*(\mu), \nabla \phi_N)_{L^2(\Omega)} = 0, \\
(4.5e) \quad & \left(\epsilon(\mu)(u - u_N^*(\mu)), u_d(\mu) - \frac{1}{\alpha}F_N^*(\mu) - u_N^*(\mu)\right)_{L^2(\Omega)} \leq 0
\end{align*}
\]

for all \((\Phi_N, \phi_N, u) \in \mathcal{E}_N \times V_N \times U_{ad}.

We conclude this section by performing the greedy sampling procedure [18, 22, 35] applied to the problem under consideration. Note that, by the discrete Helmholtz decomposition (see, [31, §7.2.1]), for all \(z_h^j \in \mathcal{E}_h\), there exists a unique pair \((z_h^j, H(z_h^j)) \in D_h^{(1)} \times V_h\) such that \(z_h^j = z_h^j + \nabla H(z_h^j)\).
Algorithm 4.1 Greedy procedure

Choose $S_{\text{train}} \subset \mathcal{P}$, an arbitrary $\mu^1 \in S_{\text{train}}$, $\epsilon_{\text{tol}} > 0$ and $N_{\text{max}} \in \mathbb{N}$

Set $N := 1$, and

$$
\mathcal{E}_N := \text{span}\{E_h^*(\mu^N), F_h^*(\mu^N), \nabla H(E_h^*(\mu^N)), \nabla H(F_h^*(\mu^N))\}
$$
$$
V_N := \text{span}\{H(E_h^*(\mu^N)), H(F_h^*(\mu^N))\}
$$

while $\max_{\mu \in S_{\text{train}}} \Delta_N(\mathcal{E}_N, V_N; \mu) > \epsilon_{\text{tol}}$ and $N \leq N_{\text{max}}$
do

$\mu^{N+1} := \arg \max_{\mu \in S_{\text{train}}} \Delta_N(\mathcal{E}_N, V_N; \mu)$

$$
\mathcal{E}_{N+1} := \text{span}\{E_h^*(\mu^{N+1}), F_h^*(\mu^{N+1}), \nabla H(E_h^*(\mu^{N+1})), \nabla H(F_h^*(\mu^{N+1}))\} \cup \mathcal{E}_N
$$
$$
V_{N+1} := \text{span}\{H(E_h^*(\mu^{N+1})), H(F_h^*(\mu^{N+1}))\} \cup V_N
$$

$N := N + 1$
end while

In Algorithm 4.1, the sampling parameter set $S_{\text{train}} \subset \mathcal{P}$ is finite, but rich enough to so that it is a good approximation of the full parameter set \mathcal{P}. The initial parameter μ^1 is chosen arbitrarily in S_{train}, ϵ_{tol} is a desired error tolerance and N_{max} is the maximum number of iterations. The pair $\{E_h^*(\mu^N), F_h^*(\mu^N)\}$ is the optimal state and adjoint state defined by the optimality system (4.3a)-(4.3e) at the parameter $\mu = \mu^N$. The quantity $\Delta_N(\mathcal{E}_N, V_N; \mu)$ is an error estimator between solutions of the problem (\mathcal{P}_h) and the reduced one (\mathcal{P}_N) at the given parameter μ, that will be described the detail in Section 6.

5. Convergence of the reduced basis method. Our aim in this section is to investigate the uniform convergence

$$
\lim_{N \to \infty} \sup_{\mu \in \mathcal{P}} ||u_h^*(\mu) - u_N^*(\mu)||_{L^2(\Omega)} = 0
$$

of reduced basis optimal solutions to the original one. To do so, we assume that the snapshot parameter sample $\mathcal{P}_N := \{\mu^1, ..., \mu^N\}$, where μ_i are chosen via Algorithm 4.1, is dense in the compact set \mathcal{P}, i.e. the full-distance

$$
\kappa_N := \sup_{\mu \in \mathcal{P}} \text{dist}(\mu, \mathcal{P}_N)
$$

tends to zero as N to infinity, where $\text{dist}(\mu, \mathcal{P}_N) := \inf_{\mu' \in \mathcal{P}_N} ||\mu - \mu'||_{\mathcal{P}}$.

A crucial property for an efficiently computational procedure of reduced basis approaches is the parameter separability that can be defined as follows (cf. [15]). Such separability conditions, for instance, can be easily obtain by using the Empirical Interpolation Method (EIM) [5], see also [3].

Definition 5.1. Assume that the functions σ, ϵ, the desired control and state u_b and E_d admit the expansions

$$
\sigma^{-1}(\cdot; \mu) := \sum_{q=1}^{Q^*} \Theta_q^\sigma(\mu) \sigma_q^{-1}(\cdot), \quad \epsilon(\cdot; \mu) := \sum_{q=1}^{Q^*} \Theta_q^\epsilon(\mu) \epsilon_q(\cdot),
$$
$$
u_d(\cdot; \mu) := \sum_{q=1}^{Q^{ue}_d} \Theta_q^{u_d}(\mu) u_{d_q}(\cdot), \quad E_d(\cdot; \mu) := \sum_{q=1}^{Q^{ue}_d} \Theta_q^{E_d}(\mu) E_{d_q}(\cdot),
$$

where Q^p, Q^r, Q^{ud} and Q^{Ed} are finite positive integers, the functions Θ^p_q, Θ^r_q, Θ^{ud}_q and $\Theta^{Ed}_q : \mathcal{P} \rightarrow \mathbb{R}$, while the functions σ^{-1}_q, ϵ_q, u_{dq} : $\Omega \rightarrow \mathbb{R}$ as well as $E_d : D \rightarrow \mathbb{R}$ are independent of the parameter μ.

Due to (2.2) and (2.4), without loss of generality we assume that
\[
\sigma^{-1}_q \in [\sigma^{-1}, \underline{\sigma}], \quad \epsilon_q \in [\underline{\epsilon}, \overline{\epsilon}], \quad \|u_{dq}\|_{L^2(\Omega)} \leq u_d \quad \text{and} \quad \|E_d\|_{L^2(D)} \leq \epsilon_d
\]
for all the index q. We start with some auxiliary results.

Lemma 5.2. (i) For any given $\mu \in \mathcal{P}$ the inequality
\[
\|S_\mu^1(\mu) - S_\mu^2(\mu)\|_{H(\text{curl}; \Omega)} \leq C_\mu^\Omega \|u^1 - u^2\|_{L^2(\Omega)}
\]
is satisfied for all $u^1, u^2 \in U_{ad}$.

(ii) For any fixed $\mu \in U_{ad}$ the estimate
\[
\|S_\mu^1(\mu) - S_\mu^2(\mu)\|_{H(\text{curl}; \Omega)} \leq C_\mu^Q \sum_{q=1}^{Q^p} |\Theta^p_q(\mu^1) - \Theta^p_q(\mu^2)| + C_\mu^\Omega \|\mu\|_{\Omega}^{1/2} \sum_{q=1}^{Q^r} |\Theta^r_q(\mu^1) - \Theta^r_q(\mu^2)|
\]
holds true.

Proof. (i) For any $\Phi \in H_0(\text{curl}; \Omega)$ from the system (3.3) have that
\[
(\sigma^{-1}_1 \nabla \times (S_{\mu^1}(\mu) - S_{\mu^2}(\mu)), \nabla \times \Phi)_{L^2(\Omega)} = (\epsilon(\mu)(u^1 - u^2), \Phi)_{L^2(\Omega)}.
\]
Taking $\Phi = S_{\mu^1}(\mu) - S_{\mu^2}(\mu)$, with the aid of (2.2) and (3.5), we obtain
\[
\|S_{\mu^1}(\mu) - S_{\mu^2}(\mu)\|^2_{H(\text{curl}; \Omega)} \leq C_\mu^\Omega \|\mu\|_{\Omega}^{1/2} \|S_{\mu^1}(\mu) - S_{\mu^2}(\mu)\|_{L^2(\Omega)},
\]
which yields the desired inequality.

(ii) Likewise, we get
\[
(\sigma^{-1}_1 \nabla \times (S_{\mu^1}(\mu) - S_{\mu^2}(\mu)), \nabla \times \Phi)_{L^2(\Omega)} = (\epsilon(\mu)(u^1 - u^2), \Phi)_{L^2(\Omega)}
\]
\[
= (\sigma^{-1}_1(\mu_1) \nabla \times S_{\mu^1}(\mu^2), \nabla \times \Phi)_{L^2(\Omega)} + ((\epsilon(\mu_1) - \epsilon(\mu_2))u^1, \Phi)_{L^2(\Omega)}.
\]
Taking $\Phi = S_{\mu^1}(\mu) - S_{\mu^2}(\mu)$, we thus obtain
\[
\|S_{\mu^1}(\mu) - S_{\mu^2}(\mu)\|_{H(\text{curl}; \Omega)} \leq C_\mu^\Omega \sum_{q=1}^{Q^p} |\Theta^p_q(\mu^1) - \Theta^p_q(\mu^2)| + C_\mu^\Omega \sum_{q=1}^{Q^r} |\Theta^r_q(\mu^1) - \Theta^r_q(\mu^2)| \|\mu\|_{L^2(\Omega)}
\]
which together with (3.6) yield the desired inequality. The proof completes.
Lemma 5.3. Let u^*_μ be the solution of the problem (\mathbb{P}_ε) with respect to the parameter $\mu \in \mathcal{P}$. Then, the estimate

$$
\|u^\mu(\mu_1) - u^\mu(\mu_2)\|_{L^2(\Omega)}^{1/2} \leq \sqrt{C_{1/2}^\mu} \left(\sum_{q=1}^{Q^\mu} |\Theta^\mu_q(\mu_1) - \Theta^\mu_q(\mu_2)| \right)^{1/2} + \sqrt{C_{1}^\mu} \left(\sum_{q=1}^{Q^\mu} |\Theta^\mu_q(\mu_1) - \Theta^\mu_q(\mu_2)| \right)^{1/2}
$$

is satisfied for all $\mu_1, \mu_2 \in \mathcal{P}$, where

$$
C_{1/2}^\mu := 8C_E^\mu C_{\varepsilon_0} \alpha^{-1} \underline{a}^{-1} \underline{e}^{-1} \tau (e_d + C_E), \\
C_1^\mu := 8 \left((C_E^\mu)^2 \tau (e_d + C_E) + C_F \right) \alpha^{-1} \underline{a}^{-1} \tau \|U\|_{\mathbb{H}}^{1/2}, \\
C_1^u := 4 \left((C_E^\mu)^2 \tau (e_d + C_E)^2 + \left(\alpha (u_d + |\Omega|^{1/2} \|\mathbb{H}\|_{\mathbb{H}}^2 + C_F \right)^2 \right) \alpha^{-2} \underline{e}^{-2} \tau, \\
C_1^{u_d} := 4 \underline{e}^{-2} \tau u_d^2 Q_u \text{ and} \\
C_1^{E_d} := 8C_E^\mu C_{\varepsilon_0} \alpha^{-1} \underline{a}^{-1} \underline{e} d (Q_{E_d})^{1/2}. \\
$$

Proof. By the variational inequality (4.1e), we have

$$
\left((\varepsilon(\mu_1))(u^*_\mu(\mu_2) - u^*_\mu(\mu_1)), u_d(\mu_1) - \frac{1}{\alpha} F^*_\varepsilon(\mu_1) - u^*_\mu(\mu_1) \right)_{L^2(\Omega)} \leq 0
$$

$$
\left((\varepsilon(\mu_2))(u^*_\mu(\mu_1) - u^*_\mu(\mu_2)), u_d(\mu_2) - \frac{1}{\alpha} F^*_\varepsilon(\mu_2) - u^*_\mu(\mu_2) \right)_{L^2(\Omega)} \leq 0
$$

which yield

$$
\alpha \|u^*_\mu(\mu_2) - u^*_\mu(\mu_1)\|_{L^2(\Omega)}^{2} \leq \left((\varepsilon(\mu_1))(u^*_\mu(\mu_2) - u^*_\mu(\mu_1)), u_d(\mu_1) - u_d(\mu_1) \right)_{L^2(\Omega)} + \left((\varepsilon(\mu_2))(u^*_\mu(\mu_2) - u^*_\mu(\mu_1)), u_d(\mu_2) - u_d(\mu_2) - F^*_\varepsilon(\mu_2) - u^*_\mu(\mu_2) \right)_{L^2(\Omega)} + \left((\varepsilon(\mu_1))(u^*_\mu(\mu_2) - u^*_\mu(\mu_1)), F^*_\varepsilon(\mu_1) - F^*_\varepsilon(\mu_2) \right)_{L^2(\Omega)} := I_1 + I_2 + I_3.
$$

We bound for the terms I_1, I_2 and I_3. First, we get

$$
I_1 \leq \|u^*_\mu(\mu_2) - u^*_\mu(\mu_1)\|_{L^2(\Omega)} \cdot \alpha \tau u_d (Q_{u_d})^{1/2} \left(\sum_{q=1}^{Q_{u_d}} |\Theta_{u_d}^{\mu_2}(\mu_2) - \Theta_{u_d}^{\mu_1}(\mu_1)| \right)^{1/2}
$$

$$
\leq 4^{-1} \alpha \|u^*_\mu(\mu_2) - u^*_\mu(\mu_1)\|_{L^2(\Omega)}^{2} + \alpha \underline{a}^{-2} u_d^2 Q_{u_d} \sum_{q=1}^{Q_{u_d}} |\Theta_{u_d}^{\mu_2}(\mu_2) - \Theta_{u_d}^{\mu_1}(\mu_1)|^{2}
$$

10
and, by (4.2),
\begin{align*}
I_2 & \leq \left\| (\epsilon(\mu^2) - \epsilon(\mu^1)) (u^*_c(\mu^2) - u^*_c(\mu^1)) \right\|_{L^2(\Omega)} \\
& \quad \cdot \left(\alpha \|\mathbf{u}_d(\mu^2)\|_{L^2(\Omega)} + C_F + \alpha \|u^*_c(\mu^2)\|_{L^2(\Omega)} \right) \\
& \leq \tau \sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^2) - \Theta_q^c(\mu^1) \right| \|u^*_c(\mu^2) - u^*_c(\mu^1)\|_{L^2(\Omega)} \left(\alpha \left(u_d + |\Omega|^{1/2} \|\mathfrak{m}\|_{\mathbb{R}^3} \right) + C_F \right) \\
& \leq 4^{-1} \alpha \|u^*_c(\mu^2) - u^*_c(\mu^1)\|_{L^2(\Omega)}^2 \\
& \quad + \alpha^{-1} \tau^2 \left(\alpha \left(u_d + |\Omega|^{1/2} \|\mathfrak{m}\|_{\mathbb{R}^3} \right) + C_F \right)^2 \left(\sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^2) - \Theta_q^c(\mu^1) \right| \right)^2.
\end{align*}

For I_3 we write
\begin{align*}
I_3 &= \left((\epsilon(\mu^1) - \epsilon(\mu^2))u^*_c(\mu^1), F^*_c(\mu^2) \right)_{L^2(\Omega)} - \left((\epsilon(\mu^1) - \epsilon(\mu^2))u^*_c(\mu^2), F^*_c(\mu^2) \right)_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^2)u^*_c(\mu^1), F^*_c(\mu^2))_{L^2(\Omega)} - (\epsilon(\mu^2)u^*_c(\mu^2), F^*_c(\mu^2))_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^1)(E^*_c(\mu^1) - E_d(\mu^1)), S_{u^*_c(\mu^2)}(\mu^1) - E^*_c(\mu^1))_{L^2(\Omega)} \\
& \leq 2\tau C_F |\Omega|^{1/2} \|\mathfrak{m}\|_{\mathbb{R}^3} \sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^2) - \Theta_q^c(\mu^1) \right| \\
& \quad + (\epsilon(\mu^2)(E^*_c(\mu^2) - E_d(\mu^2)), S_{u^*_c(\mu^2)}(\mu^2) - E^*_c(\mu^2))_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^1)(E^*_c(\mu^1) - E_d(\mu^1)), S_{u^*_c(\mu^2)}(\mu^1) - E^*_c(\mu^1))_{L^2(\Omega)} := I_3^* + I_3^1 + I_3^2
\end{align*}
with
\begin{align*}
I_3^* &= \left((\epsilon(\mu^1) - \epsilon(\mu^2))(E^*_c(\mu^1) - E_d(\mu^1)), S_{u^*_c(\mu^2)}(\mu^1) - E^*_c(\mu^1) \right)_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^2)(E^*_c(\mu^2) - E_d(\mu^2)), S_{u^*_c(\mu^2)}(\mu^2) - S_{u^*_c(\mu^2)}(\mu^2))_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^2)(E^*_c(\mu^2) - E_d(\mu^2)), S_{u^*_c(\mu^1)}(\mu^2) - S_{u^*_c(\mu^1)}(\mu^1))_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^2)(E^*_c(\mu^2) - E_d(\mu^2)), S_{u^*_c(\mu^2)}(\mu^1) - E^*_c(\mu^1))_{L^2(\Omega)} \\
& \quad + (\epsilon(\mu^2)(E^*_c(\mu^2) - E_d(\mu^2)), S_{u^*_c(\mu^1)}(\mu^1) - E^*_c(\mu^1))_{L^2(\Omega)} \\
& := J_1 + J_2 + J_3 + J_4 + J_5.
\end{align*}

Since $E^*_c(\mu^1) = S_{u^*_c(\mu^1)}(\mu^1)$, we with the aid of (2.4), (3.6) and Lemma 5.2 get
\begin{align*}
J_1 & \leq \tau \sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^1) - \Theta_q^c(\mu^2) \right| \\
& \quad \cdot \left(\|E^*_c(\mu^1)\|_{L^2(\Omega)} + \|E_d(\mu^1)\|_{L^2(\Omega)} \right) \cdot \left(\|S_{u^*_c(\mu^2)}(\mu^1) - S_{u^*_c(\mu^2)}(\mu^1)\|_{L^2(\Omega)} \right) \\
& \leq C_F \tau^2 (e_d + C_E) \sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^1) - \Theta_q^c(\mu^2) \right| \|u^*_c(\mu^2) - u^*_c(\mu^1)\|_{L^2(\Omega)} \\
& \leq 4^{-1} \alpha \|u^*_c(\mu^2) - u^*_c(\mu^1)\|_{L^2(\Omega)}^2 \\
& \quad + (C_F)^2 \alpha^{-1} \tau^2 (e_d + C_E)^2 \left(\sum_{q=1}^{Q'} \left| \Theta_q^c(\mu^1) - \Theta_q^c(\mu^2) \right| \right)^2
\end{align*}
and

\[J_2 + J_3 \leq 2C_2^\epsilon C_E \sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_2)| \]

\[+ 2C_4^\epsilon \epsilon \|\mathbf{T}\|_{L^2(\Omega)} |\Omega|^{1/2} \sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_2)| \]

and

\[J_4 + J_5 = (\epsilon(\mu^2)(\mathbf{E}_d(\mu^1) - \mathbf{E}_d(\mu^1)), \mathbf{E}_c^\epsilon(\mu^2) - \mathbf{E}_c^\epsilon(\mu^1))_{L^2(D)} \]

\[+ (\epsilon(\mu^2)(\mathbf{E}_c^\epsilon(\mu^2) - \mathbf{E}_d(\mu^1)), \mathbf{E}_c^\epsilon(\mu^1) - \mathbf{E}_c^\epsilon(\mu^2))_{L^2(D)} \]

\[+ (\epsilon(\mu^2)(\mathbf{E}_c^\epsilon(\mu^1) - \mathbf{E}_d(\mu^2)), \mathbf{E}_c^\epsilon(\mu^1) - \mathbf{E}_c^\epsilon(\mu^2))_{L^2(D)} \]

\[\leq (\epsilon(\mu^2)(\mathbf{E}_d(\mu^1) - \mathbf{E}_d(\mu^2)), \mathbf{E}_c^\epsilon(\mu^1) - \mathbf{E}_c^\epsilon(\mu^2))_{L^2(D)} \]

\[- \epsilon \|\mathbf{E}_d^\epsilon(\mu^2) - \mathbf{E}_c^\epsilon(\mu^1)\|_{L^2(D)}^2 \]

\[\leq \epsilon \left(\|\mathbf{E}_c^\epsilon(\mu^1)\|_{L^2(D)} + \|\mathbf{E}_d^\epsilon(\mu^2)\|_{L^2(D)} \right) \|\mathbf{E}_d(\mu^1) - \mathbf{E}_d(\mu^2)\|_{L^2(D)} \]

\[\leq 2C_E \|\mathbf{T}\|_{L^2(D)} \left(\sum_{q=1}^{Q^d} |\Theta_q^d(\mu_1) - \Theta_q^d(\mu_2)|^2 \right)^{1/2} \]

Therefore, we arrive at

\[I_3 \leq 2C_E |\Omega|^{1/2} \|\mathbf{T}\|_{L^2(\Omega)} \sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_1)| \]

\[+ 4^{-1} \|\mathbf{u}_c^\epsilon(\mu_2) - \mathbf{u}_c^\epsilon(\mu_1)\|_{L^2(\Omega)}^2 \]

\[+ (C_2^\epsilon)^2 \alpha^{-1} \|\mathbf{T}\| (e_d + C_E)^2 \left(\sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_2)| \right)^2 \]

\[+ 2C_2^\epsilon C_E \|\mathbf{T}\|_{L^2(\Omega)} \sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_2)| \]

\[+ 2C_4^\epsilon \epsilon \|\mathbf{T}\|_{L^2(\Omega)} |\Omega|^{1/2} \sum_{q=1}^{Q^*} |\Theta_q^\epsilon(\mu_1) - \Theta_q^\epsilon(\mu_2)| \]

\[+ 2C_E \|\mathbf{T}\|_{L^2(\Omega)} \left(\sum_{q=1}^{Q^d} |\Theta_q^d(\mu_1) - \Theta_q^d(\mu_2)|^2 \right)^{1/2} \]

The desired estimate follows from the bounds for I_1, I_2, I_3 and Lemma 5.2, which finishes the proof. \[\Box \]

Now we state the similar results for the finite dimensional approximation problem (P_b) and the reduced basis approach (P_N), their proofs follow exactly as in the continuous case (P_c), therefore omitted here.

Lemma 5.4. Let $\mathbf{u}_c^\epsilon(\mu)$ and $\mathbf{u}_N^\epsilon(\mu)$ respectively be the solution of the problems
\((\mathbb{P}_h)\) and \((\mathbb{P}_N)\) at the given parameter \(\mu \in \mathcal{P}\). Then, the estimates

\[
\|u_h^\mu(\mu^1) - u_h^\mu(\mu^2)\|_{L^2(\Omega)} \leq \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right) + \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right)
\]

\[
+ \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| + \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right) \right)
\]

\[
+ \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^{\mu^1} - \Theta_q^{\mu^2}|^2 \right)^{1/4}
\]

and

\[
\|u_N^\mu(\mu^1) - u_N^\mu(\mu^2)\|_{L^2(\Omega)} \leq \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right) + \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right)
\]

\[
+ \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| + \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^\mu(\mu^1) - \Theta_q^\mu(\mu^2)| \right) \right)
\]

\[
+ \sqrt{C_1^{1/2}} \left(\sum_{q=1}^{Q^*} |\Theta_q^{\mu^1} - \Theta_q^{\mu^2}|^2 \right)^{1/4}
\]

hold true for all \(\mu^1, \mu^2 \in \mathcal{P}\).

We are in the position to state the main result of this section on the uniform convergence of reduced order solutions. To do so, we assume \(u_h^\mu(\mu) = \mathbf{u}_N^\mu(\mu)\) for \(\mu\) belonging to the parameter sample \(\mathcal{P}_N\). For the state equation, this assumption is the basic consistency property of an Reduced Basis scheme, which simply put is the reproduction of solutions (cf. [17, Proposition 2.20]). For a justification of this assumption for optimal control problems, see [1, pp. A283].

Theorem 5.5. Assume that the functions \(\Theta_q^\sigma, \Theta_q^\epsilon, \Theta_q^{u_d}, \Theta_q^{E_d} : \mathcal{P} \to \mathbb{R}\) are Hölder continuous, i.e.

\[
|\Theta_q^\sigma(\mu^1) - \Theta_q^\sigma(\mu^2)| \leq L^\sigma \|\mu^1 - \mu^2\|_{\mathcal{P}}^{\sigma}
\]

\[
|\Theta_q^\epsilon(\mu^1) - \Theta_q^\epsilon(\mu^2)| \leq L^\epsilon \|\mu^1 - \mu^2\|_{\mathcal{P}}^{\epsilon}
\]

\[
|\Theta_q^{u_d}(\mu^1) - \Theta_q^{u_d}(\mu^2)| \leq L^{u_d} \|\mu^1 - \mu^2\|_{\mathcal{P}}^{u_d}
\]

\[
|\Theta_q^{E_d}(\mu^1) - \Theta_q^{E_d}(\mu^2)| \leq L^{E_d} \|\mu^1 - \mu^2\|_{\mathcal{P}}^{E_d}
\]

for all \(\mu^1, \mu^2 \in \mathcal{P}\) and all the index \(q\) with some positive constants \(L^\sigma, L^\epsilon, L^{u_d}, L^{E_d}\) and \(\gamma^\sigma, \gamma^\epsilon, \gamma^{u_d}, \gamma^{E_d}\). For any given \(\mu \in \mathcal{P}\) let \(u_h^\mu(\mu)\) and \(u_N^\mu(\mu)\) be the solutions of the problems \((\mathbb{P}_h)\) and \((\mathbb{P}_N)\), respectively. Then the estimate

\[
\|u_h^\mu(\mu) - u_N^\mu(\mu)\|_{L^2(\Omega)} \leq C\kappa_N
\]

is established, where \(\gamma := \frac{1}{2} \min(\gamma^\sigma, \gamma^\epsilon, 2\gamma^{u_d}, \gamma^{E_d}) > 0\).
Proof. For all $\mu^1, \mu^2 \in \mathcal{P}$ we deduce from Lemma 5.4 that
\[
\max \left(\|u_h^N(\mu^1) - u_h^N(\mu^2)\|_{L^2(\Omega)}, \|u_h^N(\mu^1) - u_h^N(\mu^2)\|_{L^2(\Omega)}\right) \\
\leq C \left(\|\mu^1 - \mu^2\|_{\mathbb{R}^p} + \|\mu^1 - \mu^2\|_{\mathbb{R}^p}^{\gamma/2} + \|\mu^1 - \mu^2\|_{\mathbb{R}^p} + \|\mu^1 - \mu^2\|_{\mathbb{R}^p}^{\gamma_d/2}\right),
\]
where the positive constant C is independent of the parameters. For any fixed $\mu \in \mathcal{P}$, since the set \mathcal{P}_N is finite, there exists $\mu^* \in \arg \min_{\mu' \in \mathcal{P}_N} \|\mu - \mu'\|_{\mathbb{R}^p}$. By $\mu^* \in \mathcal{P}_N$, we get $u_h^*(\mu)^* = u_h^N(\mu^*)$ and therefore obtain that
\[
\|u_h^*(\mu) - u_h^N(\mu)\|_{L^2(\Omega)} \\
= \|u_h^*(\mu) - u_h^N(\mu^*) + u_h^N(\mu^*) - u_h^N(\mu)\|_{L^2(\Omega)} \\
\leq \|u_h^*(\mu) - u_h^N(\mu^*)\|_{L^2(\Omega)} + \|u_h^N(\mu^*) - u_h^N(\mu)\|_{L^2(\Omega)} \\
\leq C \left(\|\mu - \mu^*\|_{\mathbb{R}^p} + \|\mu - \mu^*\|_{\mathbb{R}^p}^{\gamma/2} + \|\mu - \mu^*\|_{\mathbb{R}^p} + \|\mu - \mu^*\|_{\mathbb{R}^p}^{\gamma_d/2}\right) \\
\leq C N^\gamma,
\]
which finishes the proof. \qed

6. A posteriori error estimation. In the greedy sampling procedure, a possibility for the error estimator is that
\[
\Delta_N(\mathcal{E}_N, V_N; \mu) = \|u_h^*(\mu) - u_h^N(\mu)\|_{L^2(\Omega)}.
\]
However, this estimator depends on $u_h^N(\mu)$, i.e. the high dimensional problem (\mathbb{P}_h). In view of a posteriori error estimates we wish to construct an error estimator which is independent of the solution to (\mathbb{P}_h).

For a given $\mu \in \mathcal{P}$ let $(u_h^N(\mu), E_h^N(\mu), F_h^N(\mu))$ satisfy the system (4.5a)–(4.5e). Assume that $\mathbf{E}_h(\mu) \in \mathcal{E}_h$ and $\mathbf{F}_h(\mu) \in \mathcal{E}_h$ are defined by
\[
\begin{align*}
\left\{ \begin{array}{l}
(\sigma^{-1}(\mu) \nabla \cdot \mathbf{E}_h(\mu), \nabla \cdot \mathbf{F}_h(\mu))_{L^2(\Omega)} = (\epsilon(\mu) u_h^N(\mu), \Phi_h)_{L^2(\Omega)} \\
(\epsilon(\mu) \mathbf{E}_h(\mu), \nabla \phi_h)_{L^2(\Omega)} = - (\rho(\mu), \phi_h)_{L^2(\Omega)}
\end{array} \right.
\end{align*}
\]
and
\[
\begin{align*}
\left\{ \begin{array}{l}
(\sigma^{-1}(\mu) \nabla \cdot \mathbf{F}_h(\mu), \nabla \cdot \mathbf{F}_h(\mu))_{L^2(\Omega)} = (\epsilon(\mu) (E_h^N(\mu) - E_h(\mu)), \Phi_h)_{L^2(D)} \\
(\epsilon(\mu) \mathbf{F}_h(\mu), \nabla \phi_h)_{L^2(\Omega)} = 0
\end{array} \right.
\end{align*}
\]
for all $(\Phi_h, \phi_h) \in \mathcal{E}_h \times V_h$, respectively. We further define the residuals $R_{\mathbf{E}} := R_{\mathbf{E}}(\cdot; \mu) \in \mathcal{E}_h^*$ and $R_{\mathbf{F}} := R_{\mathbf{F}}(\cdot; \mu) \in \mathcal{E}_h^*$ via the following identities
\[
\begin{align*}
R_{\mathbf{E}}(\Phi_h; \mu) &:= (\epsilon(\mu) u_h^N(\mu), \Phi_h)_{L^2(\Omega)} - (\sigma^{-1}(\mu) \nabla \cdot \mathbf{E}_h(\mu), \nabla \cdot \mathbf{F}_h)_{L^2(\Omega)} \\
R_{\mathbf{F}}(\Phi_h; \mu) &:= (\epsilon(\mu) (E_h^N(\mu) - E_h(\mu)), \Phi_h)_{L^2(D)} - (\sigma^{-1}(\mu) \nabla \cdot \mathbf{F}_h(\mu), \nabla \cdot \mathbf{F}_h)_{L^2(\Omega)}
\end{align*}
\]
for all $\Phi_h \in \mathcal{E}_h$.

To begin, we present some auxiliary results.
Lemma 6.1. Let \((u^*_N(\mu), E^*_N(\mu), F^*_N(\mu))\) and \((u^*_N(\mu), E^*_N(\mu), F^*_N(\mu))\) respectively satisfy the systems (4.3a)--(4.3c) and (4.5a)--(4.5c) at a given \(\mu \in \mathcal{P}\). Then the following inequalities

\[
\|E^*_N(\mu) - \hat{E}_h(\mu)\|_{H(\text{curl};\Omega)} \leq C^\Omega \|u^*_N(\mu) - u^*_N(\mu)\|_{L^2(\Omega)}
\]

\[
\|F^*_N(\mu) - \hat{F}_h(\mu)\|_{H(\text{curl};\Omega)} \leq C^\Omega \|E^*_N(\mu) - E^*_N(\mu)\|_{L^2(\Omega)}
\]

are satisfied.

Proof. By (3.9), we have

\[
\|E^*_N - \hat{E}_h\|_{H(\text{curl};\Omega)}^2 \leq C^\Omega \langle \sigma^{-1} \nabla \times (E^*_N - \hat{E}_h), \nabla \times (E^*_N - \hat{E}_h) \rangle_{L^2(\Omega)}
\]

\[
= C^\Omega \langle \epsilon (u^*_N - u^*_N), E^*_N - \hat{E}_h \rangle_{L^2(\Omega)}
\]

\[
\leq C^\Omega \|u^*_N - u^*_N\|_{L^2(\Omega)} \|E^*_N - \hat{E}_h\|_{H(\text{curl};\Omega)}
\]

which implies the first inequality. Likewise, we get

\[
\|F^*_N - \hat{F}_h\|_{H(\text{curl};\Omega)}^2 \leq C^\Omega \langle \sigma^{-1} \nabla \times (F^*_N - \hat{F}_h), \nabla \times (F^*_N - \hat{F}_h) \rangle_{L^2(\Omega)}
\]

\[
= C^\Omega \langle \epsilon (E^*_N - E^*_N), F^*_N - \hat{F}_h \rangle_{L^2(\Omega)}
\]

\[
\leq C^\Omega \|E^*_N - E^*_N\|_{L^2(\Omega)} \|F^*_N - \hat{F}_h\|_{H(\text{curl};\Omega)}
\]

The proof completes.

Lemma 6.2. The inequalities

\[
\mathcal{E} \| R_E(\cdot; \mu) \|_{H(\text{curl};\Omega)^*} \leq \| E^*_N(\mu) - \hat{E}_h(\mu) \|_{H(\text{curl};\Omega)} \leq C^\Omega \| R_E(\cdot; \mu) \|_{H(\text{curl};\Omega)^*}
\]

\[
\mathcal{E} \| R_F(\cdot; \mu) \|_{H(\text{curl};\Omega)^*} \leq \| F^*_N(\mu) - \hat{F}_h(\mu) \|_{H(\text{curl};\Omega)} \leq C^\Omega \| R_F(\cdot; \mu) \|_{H(\text{curl};\Omega)^*}
\]

hold true.

Proof. We have

\[
\|E^*_N - \hat{E}_h\|_{H(\text{curl};\Omega)}^2 \leq C^\Omega \langle \sigma^{-1} \nabla \times (E^*_N - \hat{E}_h), \nabla \times (E^*_N - \hat{E}_h) \rangle_{L^2(\Omega)}
\]

\[
= C^\Omega \langle \epsilon u^*_N, \hat{E}_h - E^*_N \rangle_{L^2(\Omega)}
\]

\[
- C^\Omega \langle \sigma^{-1} \nabla E^*_N, \nabla (\hat{E}_h - E^*_N) \rangle_{L^2(\Omega)}
\]

\[
= C^\Omega \| R_E(\cdot; \mu) \|_{H(\text{curl};\Omega)^*} \| \hat{E}_h - E^*_N \|_{H(\text{curl};\Omega)}
\]

To show the lower bound, we first take \(r_E \in \mathcal{E}_h\) such that

\[
R_E(\Phi_h) = (r_E; \Phi_h)_{H(\text{curl};\Omega)}, \forall \Phi_h \in \mathcal{E}_h \text{ and } \| r_E \|_{H(\text{curl};\Omega)} = \| R_E \|_{H(\text{curl};\Omega)^*},
\]
by Riesz Representation Theorem. In view of the above argument, we arrive at

\[
\|R_E\|_{H^1(\Omega)^*}^2 = (r_E, r_E)_{H^1(\Omega)} = R_E(r_E) = (\epsilon u_N^*, r_E)_{L^2(\Omega)} - (\sigma^{-1} \nabla \times E_N^*, \nabla \times r_E)_{L^2(\Omega)} = \left(\sigma^{-1} \nabla \times (\hat{E}_h - E_N^*), \nabla \times r_E\right)_{L^2(\Omega)} \leq \|r_E\|_{H^1(\Omega)} \|\hat{E}_h - E_N^*\|_{H^1(\Omega)} = \sigma^{-1} R_E\|_{H^1(\Omega)^*} \|\hat{E}_h - E_N^*\|_{H^1(\Omega)}.
\]

The remaining inequalities follows by the same arguments, therefore omitted here. □

We now state the main results of the section.

Theorem 6.3. Let \((u_N^*(\mu), E_N^*(\mu), F_N^*(\mu))\) and \((u_N^*(\mu), E_N^*(\mu), F_N^*(\mu))\) satisfy the systems (4.3a)–(4.3c) and (4.5a)–(4.5c) at a given \(\mu \in \mathcal{P}\), respectively. Then the estimates

\[
\delta \leq \|u_N^*(\mu) - u_N^*(\mu)\|_{L^2(\Omega)} + \|E_N^*(\mu) - E_N^*(\mu)\|_{H^1(\Omega)}
\]

are satisfied, where

\[
\delta = \delta_E\|R_E(\cdot; \mu)\|_{H^1(\Omega)} + \delta_F\|R_F(\cdot; \mu)\|_{H^1(\Omega)}
\]

\[
\delta_E = \sigma \max(2, C_{\mu}^2) \frac{1}{\mu} \left(1 + C_{\mu}^2 \right) \left(1 + \epsilon^{-1} \frac{1}{\mu} \right)
\]

\[
\delta_F = \sigma \max(1, 2C_{\mu}^2) \frac{1}{\mu} \left(1 + C_{\mu}^2 \right) \left(1 + \epsilon^{-1} \frac{1}{\mu} \right)
\]

and

\[
\delta = \delta_E\|R_E(\cdot; \mu)\|_{H^1(\Omega)} + \delta_F\|R_F(\cdot; \mu)\|_{H^1(\Omega)}
\]

\[
\delta_E = \sigma \max(2, C_{\mu}^2) \frac{1}{\mu} \left(1 + C_{\mu}^2 \right) \left(1 + \epsilon^{-1} \frac{1}{\mu} \right)
\]

\[
\delta_F = \sigma \max(1, 2C_{\mu}^2) \frac{1}{\mu} \left(1 + C_{\mu}^2 \right) \left(1 + \epsilon^{-1} \frac{1}{\mu} \right)
\]

Proof. First we establish the upper bound. By variational inequalities (4.3c) and (4.5e), we have

\[
\left(\epsilon (u_N^* - u_h^*), u_d - \frac{1}{\alpha} F_N^* - u_h^*\right)_{L^2(\Omega)} \leq 0, \quad \left(\epsilon (u_N^* - u_h^*), u_d - \frac{1}{\alpha} F_N^* - u_h^*\right)_{L^2(\Omega)} \leq 0
\]

which implies that

\[
\alpha \|u_N^* - u_N^*\|_{L^2(\Omega)}^2 \leq (\epsilon (u_N^* - u_h^*), F_N^* - F_N^*)_{L^2(\Omega)}
\]

\[
= \left(\epsilon (u_N^* - u_h^*), F_N^* - \hat{F}_h\right)_{L^2(\Omega)} + \left(\epsilon (u_N^* - u_h^*), \hat{F}_h - F_N^*\right)_{L^2(\Omega)}.
\]
Now we from (6.1), (4.3a), (4.3c) and (6.2) get
\[
\left(\epsilon(u^*_N - u^*_h), F^*_h - \tilde{F}_h\right)_{L^2(\Omega)} \\
= \left(\sigma^{-1}\nabla \times (\tilde{E}_h - E^*_N), \nabla \times (F^*_h - \tilde{F}_h)\right)_{L^2(\Omega)} \\
= \left(\epsilon(E^*_h - E^*_N), \tilde{E}_h - E^*_N\right)_{L^2(D)} \\
= \left(\epsilon(E^*_h - E^*_N), \tilde{E}_h - E^*_N + E^*_N - E^*_h\right)_{L^2(D)} \\
\leq \left(\epsilon(E^*_h - E^*_N), \tilde{E}_h - E^*_N\right)_{L^2(D)} - \epsilon\|E^*_h - E^*_N\|^2_{L^2(D)} \\
\leq 2^{-1}\alpha\leq \|\tilde{E}_h - E^*_N\|^2_{H(\text{curl};\Omega)} \\
\text{(6.4)}
\]
and
\[
\left(\epsilon(u^*_N - u^*_h), \tilde{F}_h - F^*_N\right)_{L^2(\Omega)} \\
\leq 2^{-1}\alpha\leq \|u^*_N - u^*_h\|^2_{L^2(\Omega)} + 2^{-1}\alpha\leq \|\tilde{F}_h - F^*_N\|^2_{H(\text{curl};\Omega)} \\
\leq 2^{-1}\alpha\leq \|\tilde{E}_h - E^*_N\|^2_{H(\text{curl};\Omega)} + 2^{-1}\alpha\leq \|\tilde{F}_h - F^*_N\|^2_{H(\text{curl};\Omega)}. \\
\text{(6.5)}
\]
We thus have from (6.3)–(6.5) that
\[
\|u^*_N - u^*_h\|^2_{L^2(\Omega)} \\
\leq \alpha^{-1/2}\leq \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} + \alpha^{-1}\leq \|\tilde{F}_h - F^*_N\|_{H(\text{curl};\Omega)} \\
\text{(6.6)}
\]
An application of Lemma 6.1 and (6.6) yield
\[
\|E^*_h - E^*_N\|_{H(\text{curl};\Omega)} \\
\leq \|E^*_h - \tilde{E}_h\|_{H(\text{curl};\Omega)} + \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} \\
\leq C_{D, \alpha} \|u^*_h - u^*_N\|_{L^2(\Omega)} + \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} \\
\leq \left(C_{D, \alpha} \alpha^{-1/2}\leq \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} \right) \\
\leq \left(C_{D, \alpha} \alpha^{-1/2}\leq \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} \right) \\
\text{(6.7)}
\]
and
\[
\|F^*_h - F^*_N\|_{H(\text{curl};\Omega)} \\
\leq \|F^*_h - \tilde{F}_h\|_{H(\text{curl};\Omega)} + \|\tilde{F}_h - F^*_N\|_{H(\text{curl};\Omega)} \\
\leq C_{D, \alpha} \left(C_{D, \alpha} \alpha^{-1/2}\leq \|\tilde{F}_h - F^*_N\|_{H(\text{curl};\Omega)} \right) \\
\text{(6.8)}
\]
Combining the inequalities (6.6)–(6.8) with Lemma 6.2, we therefore arrive at the upper bound. Next, we will derive for the lower bound. We from Lemma 6.1 and Lemma 6.2 get that
\[
\|\text{RE}(\cdot; \mu)\|_{H(\text{curl};\Omega)} \leq \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} + \|E^*_h - E^*_N\|_{H(\text{curl};\Omega)} \\
\leq C_{D, \alpha} \|u^*_h - u^*_N\|_{L^2(\Omega)} + \|\tilde{E}_h - E^*_N\|_{H(\text{curl};\Omega)} \\
\leq \max(2, C_{D, \alpha}) \left(\|u^*_h - u^*_N\|_{L^2(\Omega)} + 2^{-1}\|E^*_h - E^*_N\|_{H(\text{curl};\Omega)} \right).
\]
\[\| R_F(\cdot; \mu) \|_{H(\text{curl}; \Omega)} \leq \| \bar{F}_h - F_N^\star \|_{H(\text{curl}; \Omega)} + \| F_h - F_N^\star \|_{H(\text{curl}; \Omega)} \leq C \| \tau (C_E + \epsilon_d) \|_{L^\infty} (C_D \alpha^{-1/2} \tau^{-\gamma}/\tau + 1) + \alpha \| \tau (\| \mathfrak{u}^\star \|_{L^2(\Omega)} + \| \mathfrak{u}^\star \|_{L^2(\Omega)} + 2 \| \mathfrak{u}^\star \|_{L^2(\Omega)}) \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \leq 2 \tau (C_E + \epsilon_d) \| \mathfrak{u}^\star - E_N^\star \|_{L^2(\Omega)} + 2 \tau \alpha \| \mathfrak{u}^\star \|_{L^2(\Omega)} \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \]

which completes the proof.

We aim towards an error bound for the cost functional.

Theorem 6.4. Let \((u_h^\star(\mu), E_N^\star(\mu), F_N^\star(\mu))\) and \((u_N^\star(\mu), E_N^\star(\mu), F_N^\star(\mu))\) satisfy the systems (4.3a)–(4.3e) and (4.5a)–(4.5e) at a given \(\mu \in \mathcal{P}\), respectively. Then,

\[|J(u_h^\star, E_N^\star; \mu) - J(u_N^\star, E_N^\star; \mu)| \leq \delta^J, \]

with

\[\delta^J = \delta_D^J \| R_E(\cdot; \mu) \|_{H(\text{curl}; \Omega)} + \delta_F^J \| R_F(\cdot; \mu) \|_{H(\text{curl}; \Omega)} \]

where

\[\delta_D^J = C \| \tau (C_E + \epsilon_d) \|_{L^\infty} (C_D \alpha^{-1/2} \tau^{-\gamma}/\tau + 1) + \alpha \| \tau (\| \mathfrak{u}^\star \|_{L^2(\Omega)} + \| \mathfrak{u}^\star \|_{L^2(\Omega)} + 2 \| \mathfrak{u}^\star \|_{L^2(\Omega)}) \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \]

and

\[\delta_F^J = C \| \tau (C_E + \epsilon_d) \|_{L^\infty} (\| \mathfrak{u}^\star \|_{L^2(\Omega)} + \| \mathfrak{u}^\star \|_{L^2(\Omega)} + 2 \| \mathfrak{u}^\star \|_{L^2(\Omega)}) \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \]

Proof. We get that

\[2 |J(u_h^\star, E_N^\star; \mu) - J(u_N^\star, E_N^\star; \mu)| \]

\[\leq \tau (\| \mathfrak{u}^\star \|_{L^2(\Omega)} + \| \mathfrak{u}^\star \|_{L^2(\Omega)} + 2 \| \mathfrak{u}^\star \|_{L^2(\Omega)}) \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \]

\[+ \tau \alpha \| \mathfrak{u}^\star \|_{L^2(\Omega)} \| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \]

By (6.7), (6.6) and Lemma 6.2, we have

\[\| \mathfrak{u}^\star - u_h^\star \|_{L^2(\Omega)} \leq C \alpha^{-1/2} \tau^{-\gamma}/\tau \|

The desired inequality follows directly from the estimates (6.9)–(6.11), which finishes the proof.

We derive a posteriori error estimators.
Theorem 6.5. The absolute a posteriori error estimator

\[\| u^*_h(\mu) - u^*_N(\mu) \|_{L^2(\Omega)} \leq \Delta^a_N(\mu) \]

is established, where

\[\Delta^a_N(\mu) := C\mu^{-1/2}\| R_E(\cdot; \mu) \|_{H(\text{curl}; \Omega)} + C\mu^{-1}\| R_{F}(\cdot; \mu) \|_{H(\text{curl}; \Omega)}. \]

Furthermore, in case \(\frac{2\Delta^a_N}{\| u^*_h(\mu) \|_{L^2(\Omega)}} \leq 1 \) we have the relative a posteriori error estimator

\[\frac{\| u^*_h(\mu) - u^*_N(\mu) \|_{L^2(\Omega)}}{\| u^*_h(\mu) \|_{L^2(\Omega)}} \leq \Delta^r_N(\mu) := \frac{2\Delta^a_N}{\| u^*_N(\mu) \|_{L^2(\Omega)}}. \]

Proof. By (6.11), it remains to show (6.12) only. We get

\[\| u^*_N \|_{L^2(\Omega)} - \| u^*_h \|_{L^2(\Omega)} \leq \| u^*_h - u^*_N \|_{L^2(\Omega)} \leq \Delta^a_N \leq 2^{-1}\| u^*_N \|_{L^2(\Omega)} \]

and (6.12) is derived, which finishes the proof. ☐

REFERENCES

[1] A.A. Ali and M. Hinze, Reduced Basis Methods--An Application to Variational Discretization of Parametrized Elliptic Optimal Control Problems, SIAM J. Sci. Comput., 42(1), A271A291, 2020.
[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21(1998), 823–864.
[3] H. Antil, M. Heinenschloss, and D.C. Sorensen, Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems, MS&A. Model. Simul. Appl., Springer, Cham, 9(2014), 101–136.
[4] E. Bader, M. K¨archer, M. A. Grepl, and K. Veroy, Certified reduced basis methods for parametrized distributed elliptic optimal control problems with control constraints, SIAM J. Sci. Comput., 38(2016), 3921–3946.
[5] M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, 339(2004), 667–672.
[6] P. Benner and M. Hess, Reduced basis approximations for Maxwells equations in dispersive media, in Model Reduction of Parametrized Systems, 107–119, Springer: New York, 2017.
[7] V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50(2016), 237261.
[8] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, New York: Springer, 2008.
[9] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Francaise Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(1974), 129–151.
[10] Y. Chen, J. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Method for 2D Maxwell’s Problem: An Introduction, In Spectral and High Order Methods for Partial Differential Equations, 141–152: Springer, 2011.
[11] Y. Chen, J. Hesthaven, Y. Maday and J. Rodríguez, Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell’s Equations, SIAM J. Sci. Comput. 32(2010), 970–996.
[12] P. Jr. Ciarlet, H. Wu and J. Zou, Edge element methods for Maxwell’s equations with strong convergence for Gauss’ laws, SIAM J. Numer. Anal. 52(2014), 779–807.
[13] M. Costabel, A Remark on the Regularity of Solutions of Maxwell’s Equations on Lipschitz Domains, Math. Methods Appl. Sci. 12(1990), 365–368.
[14] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM J. Sci. Comput. 32(2010) 997–1019.
[15] J. L. Eftang, A. T. Patera and E. M. Ronquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations, SIAM J. Sci. Comput. 32(2010), 3170–3200.

[16] N. G. Gatica, A Simple Introduction to the Mixed Finite Element Method, Heidelberg New York Dordrecht London: Springer, 2014.

[17] B. Haasdonk, Reduced basis methods for parametrized pdes – a tutorial introduction for stationary and instationary problems, Model Reduction and Approximation: Theory and Algorithms, SIAM, 2017.

[18] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: M2AN 42(2008), 277–302.

[19] M. Hammerschmidt, S. Herrmann, J. Pomplun, L. Zschiedrich, S. Burger and F. Schmidt, Reduced basis method for Maxwell’s equations with resonance phenomena, in SPIE Optical Systems Design, SPIE, Philadelphia, USA, 2015.

[20] M. Hess and P. Benner, Fast evaluation of time-harmonic Maxwell’s equations using the reduced basis method, IEEE Transactions on Microwave Theory and Techniques 61(2013), 2265–2274.

[21] M. Hess, S. Grundel and P. Benner, Estimating the inf-sup constant in reduced basis methods for time-harmonic Maxwell’s equations, IEEE Transactions on Microwave Theory and Techniques 63(2015): 3549–3557.

[22] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations, SpringerBriefs in Mathematics (2016): xiii+i+131.

[23] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, Comput. Optim. Appl. 30(2005), 45–61.

[24] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, volume 23. Springer Science & Business Media, 2008.

[25] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11(2002), 237–339.

[26] K. Ito and S. S. Ravindran, A reduced-order method for simulation and control of fluid flows, J. Comput. Phys. 143(1998), 403–425.

[27] U. Kangro and R. Nicolaides, Divergence boundary conditions for vector Helmholtz equations with divergence constraints, ESAIM: M2AN 3(1999), 479–492.

[28] M. Kärcher and M. A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems, ESAIM: COCV 20(2014), 416–441.

[29] M. Kärcher, Z. Tokoutsi, M. A. Grepl and K. Veroy, Certified Reduced Basis Methods for Parametrized Elliptic Optimal Control Problems with Distributed Controls, J. Sci. Comput. 75(2018), 276–307.

[30] M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34(2012), 785–809.

[31] F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput. 35(2013), A2316–A2340.

[32] J. C. Nédélec, Mixed finite elements in \mathbb{R}^3, Numer. Math. 35(1980), 315–341.

[33] S. Nicaise, S. Stingelin, and F. Tröltzsch, On two optimal control problems for magnetic fields, Comput. Methods Appl. Math., 14(2014), 555573.

[34] A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations, Unitext, Springer, Cham, 92(2016), xi+296.

[35] T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and pod a posteriori error estimators for an elliptic linear-quadratic optimal control problem, Math. Comput. Model. Dyn. 17(2011), 355–369.

[36] F. Tröltzsch, Optimal Control of Partial Differential Equations, Providence, RI: American Mathematical Society, 2010.

[37] I. Yousept and J. Zou, Edge element method for optimal control of stationary Maxwell system with Gauss law, SIAM J. Numer. Anal. 55(2017), 2787–2810.