INTRODUCTION

The convergence confluence between nanotechnology and biology has developed a new field of nano biotechnology that reveals the use of biological items including algae and plants in a number of biochemical and biophysical processes [1]. The ability of a biological material to reduce inorganic metallic ions into metal-NPs using its internal biochemical processes has led to a comparatively new and uninvestigated area of research. These bio-nanofactories are able to significantly reduce environmental pollution [2]. Physicochemical synthesis of NPs is often cumbersome and costly with the release of harmful by-products posing a high risk to living systems [3, 4]. Since noble metal nanoparticles, such as gold, silver and platinum are widely applied to human contact areas, there is a growing need to develop environmentally friendly processes of nanoparticle synthesis that do not use toxic chemicals. Green formation of metal nanoparticles by naturally biodegradable components including polysaccharides, biopolymers, vitamins, plant extracts and microorganisms represent sustainable resources in biosynthesis of metal nanoparticles. Biological synthesis of nanoparticles using microbes, enzymes, plants, and algae has been proposed as an alternative to chemical and physical modes of synthesis. Microorganisms, both unicellular and multacellular, are known to produce inorganic materials, often of nanoscale dimensions, either intracellularly or extracellularly.

Among the lower organisms, microalgae have a tremendous role in bioremediation of toxic and precious metals and their biocconversion to different nontoxic forms [5]. Algae are known to hyper accumulate heavy metal ions and possess an exceptional capability to remodel them into more malleable forms [6, 7]. Some of the pragmatic properties of the algae that make them as remarkable ‘nanobiofactories’ are:

- faster doubling time [8]
- easily scalable and well developed systems [8, 9]
- cells can be readily disrupted [10]
- easily harvested [11]
- low cost large-scale synthesis [12] and
- nucleation and crystal growth are accelerated due to the presence of negative charge on the surface of the cell [13].
- Because of these alluring attributes, algae have been foreseen as model organisms for fabricating bio-nanomaterials. In general, algae-mediated synthesis of nanomaterials involves preparation of (i) algal extract, (ii) metal precursor solution, and (iii) incubation of algal extract with metal precursor solution [14].

Algae show more advantageous outcomes over other biological processes because it is more reasonable for large scale bio-production of metal-NPs. Initially, the nanoparticle synthesis was reported to be intracellular [15] but later algae were exploited for an extracellular mode of synthesis [7, 16, 17]. More than a hundred different micro and macro algae have been reported that exhibit the ability to tailor nanoparticles both intracellularly [18] and extracellularly [19].

Nanoparticles present a higher surface to volume ratio with their decreasing size. Among the various noble metallic NPs known so far silver NPs (Ag-NPs) have gained the most attention, exhibiting the highest level of commercialization. Ag-NPs have been synthesized from different microalgae and macroalgae. Silver-NPs have been known to be used for numerous applications including antimicrobial agent [20]. The development of silver-NPs is highly attractive to researchers due to the nobility of this metal and its wide variety of applications, especially in biomedical and biochemistry fields. The mechanism of Ag-NPs by the algal cells may be owing to the presence of metabolites that reduce silver ions into Ag-NPs including enzymes [21].

This review focused on silver nanoparticle (Ag-NPs) synthesis using microalgae and their biological activities. A systematic search was carried out in Pub Med, Scopus and Web of Sciences using a combination of Boolean operators. Peer reviewed papers in English on the keyword silver nanoparticle synthesis by microalgae were retrieved and evaluated based...
on titles and abstracts. The retrieved papers were managed using Mendeley and the data were consolidated.

SILVER NANOPARTICLES (AG-NPS) SYNTHESIS USING MICROALGAE

Xie et al. [22] used the extract of economically important unicellular green alga *Chlorella vulgaris*, for the synthesis of silver nanoparticles. Vivek et al. [23] obtained spherical Ag-NPs of an average size of 22 nm using the aqueous extract of the red alga *Gelidiella acerosa*. Ag-NPs present in the filtrate were well distributed as non-aggregates and showed a broad λmax peak at 408 nm. Tsibakhashvili et al. [24] carried out extracellular synthesis via *Spirulina platensis* and studied the effect of short term and long term exposure of Ag ions along with its dependence on concentration. Barwal et al. [25] reported in vitro and in vivo biosynthesis of rounded and rectangular Ag-NPs from *Chlamydomonas reinhardtii*. In vitro synthesis was found to be slower, taking 13 days, and so-formed NPs possessed size in the range of 5±1 to 15±2 nm, while in vivo synthesis was a comparatively faster process which took 10 h, and the NPs produced were in the range of 5±1 to 35±5 nm. Crystallized silver nanoparticles (SNPs) have been biosynthesized by *Spirulina platensis* in an aqueous system. An aqueous solution of silver ions was treated with a live biomass of *Spirulina platensis* for the formation of SNPs. The synthesized SNPs had an average size of 1.16 nm [26].

During synthesis of Ag-NPs, chromatic changes in the reaction mixture act as a visual marker affirming the continuity of the process. Kannan et al. [27] observed an obvious change of brown to yellow colour after 48 h during reduction of AgNO₃ by the extract of *Codium capillatum* and a time-dependent increase in brown colour intensity at 422 nm. Moreover during reduction of AgNO₃ by *Chlorella vulgaris* extract, the same colour change was observed within 30 minutes and with the increase in incubation time, the brown colour intensity decreased at 422 nm viz characteristic absorption peak of Ag-NPs [28]. Kumar et al. [29] successfully fabricated spherical Ag-NPs with an average size of 48.59 nm at room temperature within 48 h of incubation using *Uva lactuca*. Prasad et al. [30] employed *Cystophora moniliformis* for the synthesis of Ag-NPs. Effect of temperature on the size and agglomeration showed that at temperatures lower than 65 °C, spherical Ag-NPs with size range 50-100 nm and higher temperatures up to 95 °C, NPs of size greater than 2 μm were formed. The NPs so formed were of crystalline nature with FCC geometry as suggested by XRD pattern. Madhiyazhagan et al. [31] reported the synthesis of crystalline spherical Ag-NPs with FCC geometry, ranging from 43 to 79 nm in size using the aqueous extract of *Sargassum muticum*. The synthesis of silver nanospheres was confirmed through visual assessment as the colour of the solution turned from yellowish light brown to dark brown after the addition of 1mM AgNO₃ to 5% (w/v) algal extract at 95°C.

Other green algal species like *Nannochloris oculata* [19], *Chlorella* [32], *Euglena gracilis* [33], *Scenedesmus* sp. [34] etc. have been reported to synthesize Ag-NPs with variable shapes and applications. *Chlorella humicola* was exploited for intracellular and extracellular biosynthesis of Ag-NPs using fresh extracts (in vitro) and whole cells (in vivo) [32]. After incubation of algal extract and whole cells with AgNO₃ (5 mM) solution for 48 h at 28 °C, a spherical, crystalline Ag-NPs ranging from 2 to 16 nm with face-centered cubic geometry were obtained. Cynobacterial mediated synthesis of Ag-NPs at large scale was conducted by Sharma et al. [12], Li et al. [35] reported in vitro and in vivo biosynthesis of Ag-NPs from *Euglena* spp. and found that the decreased concentrations of silver ions in the solutions, which were treated with *Euglena gracilis* and *Euglena intermedia* were almost equal. Cell free aqueous extract of *Microchaeota NCCU-342* was exposed to various cultural and physical conditions for optimizing synthesis of Ag-NPs. Optimal synthesis of Ag-NPs was obtained with biomass quantity of 80 mg/ml at pH 5.5 and 60°C with UV light exposure (60 min) and 1mM AgNO₃ [36].

BIOLOGICAL ACTIVITIES OF MICROALGAE SILVER NANOPARTICLES (AG-NPS)

The antibacterial activity of silver nanoparticles synthesized using macroalgae *Spirogyra varians* was evaluated by Salari et al. [37]. The antibacterial effect on *B. cereus*, *P. aeruginosa* and *Klebsiella* was more significant compared to standard antibiotic. The mechanism of the bacterial antibacterial effect of nanoparticles could be due to SNPs after penetration into the bacteria can inactivate their enzymes, generate hydrogen peroxide and cause bacterial cell death [38]. The antibacterial activity of the silver nanoparticles may be centred on permeability of bacterial cells due to cell wall layers or its charges [39, 40].

In vitro antimicrobial activity of the synthesized nanoparticles of *Enteromorpha flexuosa* exhibited high antibacterial activity against Gram-positive bacteria and low activity against the Gram-negative organisms [41]. Biological synthesis of silver nanoparticles using the cell-free extract of *Spirulina platensis* and its antimicrobial activity was studied by Sharma et al. [12]. The AgNPs had shown maximum zone of inhibition against *P. vulgaris* (31.3 ± 1.11 mm). Aqueous extract of *Spirulina platensis* was used to synthesize AgNPs and evaluated for their antimicrobial activity against isolates obtained from HIV patients [42]. It was observed that *Staphylococcus sciuri* and *P. aeruginosa* are highly susceptible to the antibacterial action of AgNPs with a zone of inhibition of 19 mm followed by *E. coli* with 17.5 mm respectively in the presence of 150 μg/ml AgNPs. Antibacterial activity of Ag-NPs synthesized by cyanobacterial (*Anabaena* sp., *Lyngbya* sp., *Synechococcus* sp. and *Synechocystis* sp. *Cylindrospermopsis*) and green algae strains (*Botryococcus* sp. and *Coelastrium* sp. was tested against bacterial strains for their antibacterial activity [43]. The antibacterial activity of *Pithophora oedogonia* mediated Ag-NPs exhibited potential inhibitory activity against *P. aeruginosa* and *E. coli* [44]. Antimicrobial activity against *Bacillus subtilis* and *Aspergillus flavus* by the red alga, *Laurencia papillosa* synthesized silver nanoparticles was reported by Omar et al. [45]. The green synthesized AgNPs using *Spirulina platensis* were studied its bactericidal activity against *Staphylococcus* sp. and *Klebsiella* sp by Muthusamy et al. [46]. The results indicated that the increasing concentration of AgNPs effectively encountered the bacterial population. El-Kassas et al. [47] reported that Ag-NPs biosynthesized by *T. tetratele* cultures and *H. stipulacea* aqueous extract exerted outstanding negative impacts on *O. simplicissima* in terms of optical density and total chlorophyll. In another study, Ag-NPs from *Oscillatoria limnetica* exhibited strong antibacterial activity against multidrug-resistant *E. coli* and *B. cereus* as well as cytotoxic effects against both human breast (MCF-7) cell line giving IC50 (6.147 μg/ml) and human colon cancer (HCT-116) cell line giving IC50 (5.369 μg/ml) [48].
Table 1: Microalgae mediated silver nanoparticle synthesis and their biological activity

Microalgae	Size and Morphology	Biological activity	Reference
Acanthophora specifera	33–81 nm, cubic	Antimicrobial activity against S. aureus, B. subtilis, Salmonella sp., E. coli, Calbicans	[49]
Acanthophora spicifera	48 nm, spherical	Antimicrobial activity against biofilm forming bacteria S. typhi and S. flexneri	[50]
Amphiroa fragilissima	Crystalline	Antibacterial activity against B. subtilis, S. aureus, E. coli, P. aeruginosa	[51]
Caulerpa racemosa	5–25 nm, 10 nm, face-centered cubic	Antibacterial activity against S. aureus, P. mirabilis	[52]
Caulerpa serrulata	10±2 nm, spherical, face-centered cubic structure	Antibacterial activity against S. aureus, Salmonella typhi, E. coli, P. aeruginosa, Shigella	[17]
Chlorella pyrenoidosa	2–20 nm, average 12 nm, face-centered cubic	Antibacterial activity against K. pneumoniae, A. hydrophila, Acinetobacter sp, S. aureus	[53]
Chlorella vulgaris	5–50 nm, face-centered cubic	Antibacterial activity against E. coli, P. aeruginosa, Candida albicans	[54]
Chlorococcum humicola	16 nm, spherical	Antibacterial activity against E. coli	[34]
Colpomenia sinuosa	20 nm, spherical	Antibacterial activity against S. aureus, E. coli	[55]
Enteromorpha flexuosa	15±1.5 nm, circular	Antimicrobial activity against B. subtilis, S. aureus, E. faecalis, S. flexneri	[41]
Euglena gracilis	47 nm	Antimicrobial activity against E. coli	[35]
Gelidiella acerosa	22 nm, spherical, face-centered cubic	Antifungal against Humicola insolens, Fusarium dimerum, Mucor indicus, Trichoderma reesei	[23]
Gelidiella sp.	40–50 nm, spherical	Anticancerous against Hep 2 cell lines	[56]
Gracilaria birdae	20.3 nm, spherical	Antimicrobial activity against Ecoli	[57]
Gracilaria corticata	18–46 nm	Antimicrobial activity against C. albicans and C. glabrata	[58]
Gracilaria dura	6.0 ± 2 nm, sphere	Antimicrobial activity against B. pumilus	[59]
Gracilaria edulis	55–99 nm, face-centered cubic, spherical	Anticancerous against Human PC3 cell lines	[60]
Jania rubins	12 nm, spherical	Antimicrobial activity against S. aureus, E. coli	[55]
Nannochloropsis oculata and Tetrarselsm tetrathele	13.0–25.2 nm, spherical	Antialgal activity against Oscillatoria simplicissima	[47]
Oscillatoria limnetica	3.30–17.97 nm, quasi-spherical	Antibacterial activity against E. coli and B. cereus	[48]
Padina gymnospora	25–40 nm, spherical	Antibacterial activity against B. cereus	[61]
Padina pavanica	10–72 nm, spherical, polydispers	Antifungal activity against Fusarium oxysporum, Xanthomonas campestris	[62]
Padina tetrastomatica	14 nm, spherical	Antimicrobial activity against Bacillus spp, B. subtilis, Klebsiella planticola, Pseudomonas sp	[63]
Pithophora oedogonia	25–44 nm, cubical and hexagonal-shaped	Antimicrobial activity against E. coli, P. aeruginosa, V. cholera, Shigella flexneri B. subtilis, S. aureus, Micrococcus luteus	[44]
Pterocladia capillaceae	7 nm, spherical	Antimicrobial activity against S. aureus, E. coli	[55]
Sargassum cinereum	45 to 76 nm, triangular	Antimicrobial activity against S. aureus, S. typhi, E. aerogenes, P. vulgaris	[64]
Sargassum ilicifolium	33–40 nm, spherical	Antimicrobial activity against S. aureus, E. coli, K. pneumoniae, S. typhi, Vibrio cholera; Cytotoxic against Artemia salina	[65]
Sargassum longifolium	30 nm, cubical	Anticancerous against Hep 2 cell line	[66]
Sargassum longifolium	40–85 nm, spherical, face-centered cubic	Anticancerous against E. coli, Paeruginosa, S. aureus, E. coli, T. vulgare	[67]
Sargassum muticum	5–15 nm, spherical	Antifungal, antiviral, antiplatelet, antiangiogenesis	[68]
Sargassum muticum	43–79 nm, spherical, crystalline, face-centered cubic	Ovicidal and ovicidal-repant activity against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus	[32]
Sargassum polycystum	5–7 nm, spherical, face-centered cubic	Antibacterial activity against S. aureus, E. coli, P. aeruginosa. K. pneumonia Anticancer against MCF-7 breast cancer cell lines	[69]
Sargassum polycystum	-	Antibacterial activity against E. coli, Streptococcus pyogenes, P. aeruginosa, S. flexneri, M. morganii Cytotoxic activity: Dalton’s lymphoma ascites (DLA)	[70]
Sargassum vulgare	10 nm, spherical	Anticancer: Human myeloblastic leukenic cells HLe60, cervical cancer cells HeLa	[71]
Sargassum wightii G revilli	8–30 nm, spherical	Antibacterial activity against S. aureus, B. rhizoides E. coli, P. aeruginosa	[72]
Scaberia agardhii	40–50 nm, polydispersed	Antibacterial activity against Soil microbial	[73]
Microalgae Mediated Silver Nanoparticles (Ag-NPs) Synthesis and Their Biological Activities

Microalgae	Nanoparticle Size	Shape	Antibacterial Activity/Activity	Reference
Scenedesmus sp.	36 nm	spherical, face-centered cubic	Antibacterial activity against *S. mutans, E. coli*	[74]
Spirogyra	40-80 nm	spherical	Antibacterial activity against *S. aureus, E. coli*	[75]
Spirogyra varians	17.6 nm	face-centered cubic, quasi-spherical	Antibacterial activity against *S. aureus, B. cereus, L. Monocytogenes, S. typhimurium, E. coli, P. aeruginosa, Klebsiella*	[76]
Turbinaria conoides	96 nm	spherical	Antibacterial activity against *B. subtilis, K. planticola*	[77]
Turbinaria conoides	2–17 nm	spherical, face-centered cubic	Antibacterial activity against *Ecoli, Salmonella sp., S. liquefaciens, A. hydrophila*	[78]
Turbinaria ornata	22 nm	spherical, polydisperse	Antibacterial activity against *B. litoralis, Bacillus sp., Micrococcus sp., Corynebacterium sp., Saureus, Flavobacterium sp., Pseudomonas sp., Shigella sp., Aeromonas sp., V cholerae, E.coli, Salmonella, E. aerogens, Klebsiella sp., Chromohalobacter sp.*	[79]
Ulva fasciata	7–20 nm	spherical	Antimicrobial activity	[55]
Ulva fasciata	28–41 nm	spherical	Antibacterial activity against *Xanthomonas campestris pv. Malvacearum*	[80]
Ulva lactuca	20–56 nm	spherical	Anticancer activity: Hep2, MCF7 and HT29 cancer cell lines	[81]
Ulva lactuca	20 nm	spherical	Bacillus sp., Pseudomonas sp., E.coli	[82]
Ulva lactuca	20–50 nm	spherical	Antimicrobial activity against *Bacillus sp., S. aureus, E. coli, K. pneumonia, P. aeruginosa, C. albicans, A. niger, C. parapsilosis*	[83]
Ulva lactuca	20–55 nm	cubical, face-centered cubic	Control of malarial plasmids. *P. falciparum*	[84]
Uropsora sp	20–30 nm	face-centered cubic, spherical	Antibacterial activity against *S. aureus, B. subtilis, E.coli, P. aeruginosa, K. pneumonia*	[85]

Conclusion

Nano-biotechnology is gaining attention due to its eco-friendly, economical and green approach to silver nanoparticle synthesis. The natural products involving in the synthesis of AgNPs received tremendous attention in the field of bio-nanomaterials. Microalgae have been explored to synthesize AgNPs with biological activities. Emerging advanced characterization techniques would facilitate comparative and controlled performance of NPs, which will encourage judicious selection of algae-based NPs. Based on available reports presented in this review, in the future, a remarkable boom may be witnessed in the biosynthesis of algae-based nanoparticles that will be likely to have potential application of antibacterial agent against pathogens and other biological activities.

References

1. Shah M, Fawcett D, Sharma S, Suraj K, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015; 8: 7278–308.
2. Baker S, Harini BP, Rakshit D, Satish S. Marine microbes: invisible nanofactories. J Pharm Res 2013; 6:383–88.
3. Sinha S, Pan I, Chanda P, Sen SK. Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 2009; 19: 1113–30.
4. Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalgae *Sargassum muticum* aqueous extract. Mater. Lett. 2014; 116: 275–77.
5. Mehta SK and Gaur JP. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 2005; 25: 113–52.
6. Zinconvcaia L. Use of bacteria and microalgae in synthesis of nanoparticles. Chem, J. Mold. 2012; 7: 32–8.
7. Fawcett D, Verduin, J], Shah M, Sharma SB, Poinern, GEJ. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seaweeds. J. Nanosci. 2017; 1:1-5.
8. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007; 25: 294–306.
9. Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008; 26:126–31.
10. Chisti Y, Moo-Young M. Disruption of microbial cells for intracellular products. Enzym. Microb. Technol. 1986; 8: 194–204.
11. Grima EM, Belarbi EH, Fernandez FA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 2003; 20: 491–515.
12. Sharma G, Jasuja ND, Kumar M, Ali M. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of *Spirulina platensis*, Journal of Nanotechnology. 2015.
13. Sahoo PK, Kamal SSK, Vimala J, Ghosal P, Ram S, Duni N. A green chemical approach for synthesis of shape anisotropic gold nanoparticles, Int Nano Lett. 2014; 4:109.
14. Sharma AK, Pallavi, Mehta CM, Srivastava R, Arora S. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016; 6: 254.
15. Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. 2007; 23: 2694–99.
16. Dahoumane SA, Djediat G, Yepremian C, Coute A, Fievet F, Coradin T, Brayner R. Species selection for the design of gold nanobioreactor by photosynthetic organisms. J. Nanopart. Res. 2012; 14: 883.
17. Abolelfetoh, EF, Shenody RA, Gobhara, MM. Eco-friendly synthesis of silver nanoparticles using green algae (*Caulerpa serrulata*): reaction optimization, catalytic and antibacterial activities. Environ. Monit. Assess. 2017; 189: 349.
18. Roychoudhury P, Pal R. *Spirogyra submaxima*-a green alga for nanogold production. J. Algal Biomass Utsn. 2014; 5: 15–19.
19. Moheeniazar M, Barin M, Zarreddar H, Alizadeh S, Shanehban D. Potential of microalgae and *Lactobacilli* in biosynthesis of silver nanoparticles. Bioimpacts. 2011; 1: 149–152.
20. Dash A, Singh AAP, Chaudhary BR, Singh SK, Dash D. Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett. 2012; 4: 158–65.

21. Nezhad M, Fattah A, Khalefa M, Zaky SH. Factors affecting antimicrobial activity of Synecococcus leopoldinis. Microbiol Res. 2004; 159: 395–402.

22. Xie J, Lee JY, Wang D, Ting YP. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoparticles in algol solutions. Small. 2007; 3: 672–82.

23. Vivek M, Kumar PS, Steff J, Sadha S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J. Med. Biotechnol. 2011; 3: 1–13.

24. Tsilivakatshvili NY, Kirsalike EI, Pataraaya DT, Gurielidze MA, Kalbegishvili TL, Gorilajadze DN, Tsertsvadze, G, Frontasyeva MV, Zinovcscaia II, Waktstein MS, Khakhanov SN. Microbial synthesis of silver nanoparticles by Streptomyces glauces and Spirulina platensis. Adv. Sci. Lett. 2011; 4: 1–10.

25. Barwal I, Ranjan P, Katariya S, Yadav SC. Cellular oxidoreductive proteins of Chaetomorpha reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol. 2011; 9: 56.

26. Mahdied M, Zolanvari A, Azimee AS, Mahdied M. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci. Iran. 2012; 19: 526–30.

27. Kannan RRR, Strik WA, Van Staden J. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr. J. Bot. 2013b; 86: 1–4.

28. Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalgae Chaetomorpha linum. Appl. Nanosci. 2013; 3: 229–33.

29. Kumar P, Govindaraju M, Santamiselvi S, Premkumar K. Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf. B: Biointerfaces. 2013; 103: 659–61.

30. Prasad TNVK, Kumbala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Physcol. 2013: 25:177–82.

31. Madhiazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Kumar PM, Suresh U, Roni M, Nicoletti M. Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 2015; 114: 4305–17.

32. Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK. Biosynthesis and characterisation of silver nanoparticles using microalgae Chlorella humicola and its antibacterial activity. Int. J. Nanometer. Biostuct. 2013; 3: 1–8.

33. Li X, Schirmer K, Bernard L, Pillai S, Behra R. Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ. Sci. Nano. 2015a; 2: 594–602.

34. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK. Microalgae Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J. Microbiol. Biotechnol. 2014; 24: 522–33.

35. Li Y, Tang X, Song W, Zhu L, Liu X, Yan X, Jin C, Ren Q. Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnol. 2015b; 9: 19–26.

36. Husain S, Arefen S, Yasin D, Afaiz B, Fatma T. Cyanobacteria as a bioreactor for synthesis of silver nanoparticles: an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. J. Microbiol. Methods. 2019; 162: 77–82.

37. Salari JW, Leemakers FAM, Klumperman B. Pickering emulsions: wetting and colloidal stability of hairy particles - a self-consistent field theory. Langmuir. 2011; 27: 6574–83.

38. Das R, Gang S, Nath SS. Preparation and antibacterial activity of silver nanoparticles. J. Biomer. Nanobiotechnol. 2011; 2: 472–75.

39. Zhu DG. Formation of colloidal silver nanoparticles stabilized by Na-poly (y-glutamic acid)-silver nitrate complex via chemical reduction process. Colloid Surf B. 2007; 59: 171–78.

40. Chamakura K, Perez-Ballester R, Luo Z, Bashir S, Liu. Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloid Surf B. 2011; 94:88–96.

41. Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green algae Enteromorpha flexuosa (wuille). J. Agricld. Mater Lett. 2014; 137: 1–4.

42. Suganya KS, Govindaraju K, Kumar VG, Dhas TS, Karkhe V, Singaravelu G, Elanchezhiyan M. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 144: 266–72.

43. Patel V, Berthold D, Puranik P, Gantart M. Screening of cyanoacteria and microalgae for their ability to synthesise silver nanoparticles with antibacterial activity. Biotechnol. Rep. 2015; 5: 112–9.

44. Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci. 2015; 5: 703–9.

45. Omar HH, Fatmah SB, Adel M. El-Gendy. Biopotential application of synthesis nanoparticles as antimicrobial agents by using Laurencia pocillum. International Journal of Pharmacol. 2017; 13 (3): 303-12.

46. Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research. 2017; 24: 7837–49.

47. El-Kassas HY, Ghobrial MG. Biosynthesis of metal nanoparticles using three marine plant species: anti- fungal efficiencies against Oscillatoria simplicissima. Environmental Science and Pollution Research. 2017; 24: 7955–64.

48. Hamouda RA, Hussein MH, Abu-elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports. 2019; 9: 13071.

49. Ibraheem IBM, Abd-Elaziz BEE, Saad WF, Fathy WA. Green biosynthesis and characterisation of silver nanoparticles using marine red algae Acianthophora specifera and its antibacterial activity. J. Nanomed. Nanotech. 2016; 7: 1–4.

50. Kumar P, Santamiselvi S, Lakshmiprabha A, Premkumar K, Muthukumaran R, Visvanathan P, Ganeshkumar RS, Govindaraju M. Efficacy of bio-synthesized silver nanoparticles using Acianthophora specifera to encumber biofilm formation. Dig. J. Nanometer Biostuct. 2012b; 7: 511–22.

51. Sajidha PK, Lakshmi D. Biosynthesis of silver nanoparticles using red algae, Amphipora fragilissima and its antibacterial potential against Gram positive and Gram negative bacteria. Int. J. Curr. Sci. 2016; 19: 93-100.

52. Khatirevan T, Sundaramanickam A, Shammugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine alga Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl. Nanosci. 2015; 5: 499-504.

53. Aziz N, Faraz M, Pandey R, Shair R, Fatma T, Varma A, Barman I, Prasad R. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir. 2015; 31: 11605–12.

54. Annamalai J, Nallamuthu T. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl. Nanosci. 2016; 6: 259–65.
El-Rafie HM, El-Rafie M, Zahran MK. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 2013; 96: 493–10.

Devi JS, Bhimla BV, Ratnam K. In vitro anticancer activity of silver nanoparticles synthesized using the extract of Gelidium sp. Int. J. Pharm Pharm Sci. 2012; 4: 710–15.

de Aragao AP, de Oliveira TM, Queudes PV, Perfeito MLG, Araújo MC, Santiago JDAS, Cardoso VS, Quaresma P, de Almeida JRDS, da Silva DA. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdae and their antibacterial activity. Arab. J. Chem 2016.

Kumar P, Selvi SS, Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Mol. Nanosci. 2013; 3: 495–500.

Shukla MK, Singh RP, Reddy CRK, Jha B. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresearch. Technol. 2012; 107: 295–300.

Priyadharshini R, Prasannaraj G, Geetha N. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol. 2014; 174: 2777–80.

Shyam R, Mukherjee A, Chandrasekaran N. Marine algae mediated synthesis of the silver nanoparticles and its antibacterial efficiency. Int J Pharm Pharm Sci 2013; 5: 239–41.

Saahayara K, Rajesh S, Rathi JM. Silver nanoparticles biosynthesis using marine alga Padina pavonica (lrum.) and its microbical activity. Dig. J. Nanomater Biostruct. 2012; 7: 1557–67.

Rajeshkumar S, Kannan C, Annadurai G. Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetraspermatica. Drug Invent. Today. 2012b; 4: 511–15.

Mohan K, Vijayaraj P, Sargarn M, Rajasabapathy R, Satheeshbabu S, Rao SV, Shiva C, De-Mello L. Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity. J. Invest Dermatol. 2013; 78: 206–09.

Kumar P, Selvi SS, Praba AL, Selvaraj M. Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Dig. J. Nanomater Biostruct. 2012a; 7: 1447–55.

Devi JS, Bhimla BV, Peter DM. Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J. Mar. Sci. 2013; 42: 125–30.

Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnajobitha G, Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int. J. Met. Sci. 2014; 11: 1–8.

Azizi S, Namvaf S, Mahdavi M, Ahmad M, Mohamad R. Biosynthesis of silver nanoparticles using brown marine macroalgae, Sargassum Mutcum aqueous extract. Materials 2013; 6: 5942–50.

Thangaraju N, Venkatalakshmi RP, Chinnasamy A, Kamalayan P. Synthesis of silver nanoparticles and the antibacterial and antifungal activities of the crude extract of Sargassum polysystem C. Agardh Nano Biomed. Eng. 2012; 4: 89–94.

Kanimezhi S, Johnson A, Kala M, Shihla PC, Revathy L. Extracellular synthesis of silver nanoparticles from a marine alga, Sargassum polysystem C. Agardh and their biopotentials. World J. Pharm. Pharm. Sci. 2015; 4: 1388–400.

Govindaraju K, Krishnamoorthy K, Alagaboy S, Singaravelu G, Premanathan M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 2015; 9: 325–30.

Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevei and their antibacterial effects. J. Nanosci. Nanotechnol. 2009; 9: 5497–501.

Prasad TNVK, Elumalai EK. Marine algae mediated synthesis of silver nanoparticles using Scaberia agarðhü Grevei. J. Biol. Sci. 2013; 13: 566–69.

Elumalai S, Santhose BI, Devika R, Revathy S. Collection, isolation, identification, and biosynthesis of silver nanoparticles using microalg Chlorella pyrenoidosa. Nanomotech. Sci. Technol. Int. J. 2013; 4: 59–66.

Pinjarkar H, Gaikwad S, Ingle AP, Gade A, Rai M. Phyecofabrication of silver nanoparticles and their antibacterial activity against human pathogens. Adv. Mater. Lett. 2017; 8: 1016–14.

Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J. Saudi Chem. Soc. 2016; 20: 459–64.

Rajeshkumar S, Kannan C, Annadurai G. Green synthesis of silver nanoparticles using marine brown alge Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Bio Sci. 2012; 3: 502–10.

Vijayan SR, Santhiyagu P, Singamuthu M, Kumari AN, Jayaraman R, Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci. World J. 2014.

Krishnan M, Sivanandham V, Hans-Uwe D, Murugaiyah SG, Seeni, P, Gopalan S, Rathnam AJ. Antifouling assessments on biogenic nanoparticles: a field study from polluted environment. Mar. Pollut. Bull. 2015; 101: 24–26.

Rajesh S, Raja DP, Rathi JM, Sahayara K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delilé) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J. Bioprost. 2012; 5: 119–28.

Devi JS, Bhimla BV. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca inv tro. Sci. Rep. 2012; 1: 242.

Sangeetha N, Saravanan K. Biogenic silver nanoparticles using marine seaweed (Ulva lactuca) and evaluation of its antibacterial activity. J. Nanosci. Nanotechnol. 2014; 2: 99–102.

Bhimla BV, Kumari PR. Phytosynthesis of silver nanoparticles from the extracts of seaweed Ulva lactuca and its antibacterial activity. Int. J. Pharm. Bio Sci. 2014; 5: 66–77.

Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramanian J, Madhiyazhagan P, Dinesh D, Rajaganesh R. Seaweed synthetized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol. Res. 2015; 114: 4087–97.

Suriya J, Bharathi RS, Sekar V, Rajasekaran R. Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol. 2012; 11: 12192–98.

Journal of critical reviews 20