Laparoscopic management of benign splenic tumors in children

Chen Qingjiang, Linyan Wang, Xiaoli Chen, Yuebin Zhang, Lifeng Zhang, Kun Zhu, Qixing Xiong, Zhigang Gao

ABSTRACT

Background The splenic tumor is relatively rare in children. However, diagnosing and managing this disease remain controversial. This study aimed to evaluate the clinical characteristics and pathological features of benign splenic tumors and to explore the feasibility and safety of laparoscopic splenectomy in children.

Methods The clinical data of all patients who were diagnosed with benign splenic tumors and admitted to our center between January 2014 and December 2020 were analyzed retrospectively. Factors that were documented included demographic criteria, clinical manifestations, preoperative examinations, surgical methods, histopathological characteristics, postoperative complications and outcomes.

Results Totally, 24 consecutive patients with a mean age of 10.21±2.59 years were operated laparoscopically. Nine patients presented with recurrent abdominal pain, vomiting or backache. The remaining 15 cases were asymptomatic and were identified incidentally. Laparoscopic total splenectomy (LTS) was performed in 12 cases, laparoscopic partial splenectomy (LPS) in 9 cases and deroofing of splenic cyst in 3 cases. No significant differences were observed in operation time, intraoperative bleeding and postoperative abdominal drainage between the LTS and LPS groups. Histopathology examination reported 12 cases of splenic epithelial cyst, 5 cases of splenic lymphangioma or lymphatic malformation, 3 cases of splenic hamartoma, 3 cases of splenic littoral cell angioma and 1 case of splenic hemangioma. No postoperative complications and tumor recurrence were observed.

Conclusions It is still difficult to precisely diagnose the splenic tumor preoperatively. Laparoscopic splenectomy is safe and feasible in treating the benign splenic tumors, and partial splenectomy is of great significance in preserving the immune function in children.

INTRODUCTION

Primary splenic tumors are uncommon in children and only account for 0.64% of the whole body tumors. They encompass both congenital and proliferative lesions, as well as benign and malignant tumors, with the majority being benign tumors. There is no consensus on tumor classification owing to complex tissue origins and varied pathological types. Morgenstern et al proposed classifying spleen tumors into four categories: tumor-like lesions, vascular tumors, lymphoid tumors and non-lymphoid tumors. Splenic hemangioma is the most common solid benign tumor, while lymphoma is the most common malignant lesion of the spleen in children. Other less common lesions include lymphangioma, hamartomas, littoral cell angioma, fibroma, lipoma, angiosarcoma, and lymphangiosarcoma. The clinical and pathological characteristics of splenic tumors in children remain partially understood owing to the relative rarity of the disease, which affects the formulation of individualized diagnosis and treatment strategies.

Some controversy in managing splenic tumors in children remains. Surgical resection is the first choice for treatment of splenic tumors, while debate exists as to whether the lesion can be left alone and with regular follow-up. With the development of minimally invasive technology and a deep understanding of spleen immune function and complications after total splenectomy, more and more attention has been paid to the laparoscopic splenectomy, especially laparoscopic partial splenectomy (LPS) in children. However, only a few reports exist on the laparoscopic
METHODS
A retrospective study was conducted on pediatric patients diagnosed with splenic tumor admitted to the Children’s Hospital of Zhejiang University School of Medicine between January 2014 and December 2020. Patients with benign splenic tumor and treated by laparoscopy were included in this study; while patients with malignant splenic tumors, operated with the open approach, managed by intervention methods or conservative treatment, were excluded from this study. We recorded the data of demographic characteristics, clinical manifestations, details of preoperative examination, the surgical procedure performed, intraoperative findings, histological results, short-term and midterm complications, and outcomes. The follow-up period ranged from 6 months to 5 years.

All data were processed using descriptive statistical procedures for calculating means, SDs, frequencies, and percentages. Statistical analysis was completed using the SPSS (V.19.0) to perform Student’s t-test. P<0.05 was considered statistically significant.

RESULTS
General clinical data
Totally, 24 children (12 boys and 12 girls) were diagnosed with a benign splenic tumor in our department. The patient’s age ranged from 6.25 to 14.50 years (mean 10.21±2.59 years). Among them, 9 cases were diagnosed by abdominal ultrasonic examination due to intermittent abdominal pain, vomiting, backache or abdominal mass; 2 cases were found during hospitalization because of ‘erythrocytosis’ and ‘precocious puberty’; the remaining 13 cases were asymptomatic, found accidentally during outpatient ultrasonography. No obvious hematological disorder, such as anemia or thrombocytopenia, was found. However, the masses gradually increased in size during the observation period. In one case of splenic cyst complicated with infection, percutaneous drainage and antibiotics treatment were performed initially and laparoscopic splenectomy was postponed for 6 months later. Two cases of splenic cyst underwent ultrasound-guided percutaneous ethanol perfusion; no obvious regression was obtained, and they resorted to surgery.

Imaging examination
Preoperative workup included sonographic examination in all patients, CT in 19 cases and MRI in 12 cases. The imaging revealed a splenic cyst in 12 cases, hemangioma in 9 cases, hamartoma in 1 case and unidentified results in 2 cases (figure 1). The diagnostic rate of preoperative imaging was 58.33% (14 of 24) only, as proven by histopathological results. The tumors were located in the upper pole of the spleen in 7 cases, the lower pole in 10 cases, diffusely distributed in 5 cases and close to the splenic hilum in 2 cases. The average diameter of the tumor was 9.04±3.77 cm, and the median volume of

Figure 1 Imaging examination of splenic tumor. (A–C) Splenic cyst (asterisk). (A) Sonography demonstrated a huge anechoic mass with internal septations and intraacural echogenic debris in the spleen; (B) CT scan showed a thin-walled hypovascularles, well-defined splenic mass, without contrast enhancement; (C) MRI showed a hyperintense area with sharp margin and uniform homogeneous signal on T2-weighted image. (D–F) Splenic hamartoma (arrowhead). (D) A hyperechoic mass with increased blood flow in the lower pole of spleen was detected on color Doppler images; (E) A well-circumscribed round mass with marked enhancement on CT scan; (F) A well-margined mass with slightly hyperintense on T1-weighted MRIs. (G–I) Splenic littoral cell angioma (asterisk). (G) A well-circumscribed homogeneous and hypoechoic mass with hypervascular signal was seen in the lower pole of spleen; (H,I) a well-defined mass with obvious enhancement and mottled area can be seen in the lower pole of spleen on contrast-enhanced CT. (J–L) Splenic lymphangioma (arrowhead). (J) Various sized masses with isoechoic and homogeneous signal were detected under sonography; (K) multiple thin-walled low-attenuation masses with sharp margins and no significant contrast enhancement were seen on CT scan; (L) multiple heterogeneous masses with slightly long T2-weighted signals and focal short T2-weighted signals under MRI. Asterisks and arrowheads indicate lesions.
the tumor was 242.12 cm³ (ranging from 86.40 cm³ to 2601.76 cm³).

Surgical methods

Laparoscopic total splenectomy (LTS) was performed in 12 patients with giant masses, multiple occupying lesions, unknown tumor nature, or tumors located near the splenic hilum. LPS was performed in nine patients with localized lesions in the upper or lower pole of the spleen. LPS was difficult to perform in three cases as splenic cysts were located near the splenic hilum; thus, they underwent cyst deroofing.

After general anesthesia, the patients were placed in semilateral right decubitus and slightly reversed Trendelenburg position. A 12 mm periumbilical optical port was positioned by the Hasson technique. The other two 5 mm ports (8 mm ports in robotic-assisted laparoscopy) were placed in the upper middle abdomen and parallel to the umbilicus in the left mid-clavicular line. A traction stitch was sewed when necessary. LPS (including two cases performed under the da Vinci surgery system) was performed on nine patients (figure 2). The perisplenic ligaments were dissected to mobilize the resecting pole of the spleen. After carefully dissecting and exposing the splenic hilum, the splenic lobar vessels going towards the pathologic lesion of the spleen were selectively ligated with hemolock or silk thread. A harmonic scalpel (Ethicon, New Jersey, USA) was used to transect the splenic parenchyma within 1 cm of the well-defined demarcation line of the ischemic zone. Hemostasis of the cutting surface was obtained using electrocauterization (Covidien, Missouri, USA). A total of 12 cases of LTS were performed. The perisplenic ligaments were dissected, and the splenic pedicle was exposed and ligated by silk thread or clamped by hemolock near the splenic hilum while being careful to avoid damage to the distal pancreas. Finally, the splenophrenic ligament was transected. Three cases of splenic cysts were performed with cyst deroofing, which were unsuitable for partial splenectomy. The cyst wall and septum were removed as much as possible, and the inner membrane of the residual cyst was destroyed by electric cauterization. The spleen was morcellated within the specimen bag and was removed through the slightly enlarged umbilical incision. A closed suction drain was placed routinely in the splenic fossa.

Histopathological examination

Postoperative histopathology staining (H&E) or immunohistochemistry (IHC) was performed routinely. The pathological results reported 12 cases of splenic cyst (figure 3A–C): 2 cases of splenic hamartoma and 1 case of benign splenic proliferative nodule with foreign body granuloma, which was considered hamartoma with foreign body granuloma (figure 3D–F); 3 cases of splenic littoral cell angioma (figure 3G–I); 5 cases of splenic lymphangioma (including 3 cases of splenic cavernous
lymphangioma; 1 case of splenic nodular lymphangioma; 1 case of splenic vascular tumor, which was considered lymphangioma under IHC) (figure 3J–L); and 1 case of cavernous vascular malformation (figure 3M–O).

Intraoperative results and postoperative outcomes

All the surgeries were performed successfully under laparoscopy, without conversion to laparotomy and intraoperative blood transfusion. There was no significant difference observed in operative time (142.15±32.22 min vs 126.63±50.76 min, p=0.440) or intraoperative bleeding (46.15±13.09 mL vs 57.50±23.90 mL, p=0.371) between LTS and LPS groups. There was less postoperative drainage in the LTS group than in the LPS group (89.25±33.76 mL vs 110.54±43.72 mL), but no significant difference was observed (p=0.090). Compared with the basic platelet count before the surgery, the postoperative platelet level in the LTS group was elevated significantly more than that in the LPS group (293±11 vs 130±0.35 times, p<0.001). After total splenectomy, platelets were routinely monitored for about 2 weeks. The postoperative hospital stay in LTS group (12.46±3.10 days) was significantly longer than that in LPS group (8.75±1.98 days, p=0.020).

Benzathine penicillin was administered once a month for 1 year to prevent overwhelming post-splenectomy infection (OPSII), and the patients were recommended for vaccination against Streptococcus pneumoniae, Haemophilus influenzae and meningococci. The patients were followed up from 6 months to 5 years, with a median follow-up period of 31 weeks. The platelet level was monitored routinely every 2 weeks for 3 months after operation, and sonography was performed every 3–6 months. No postoperative complications, such as bleeding, pancreatic injury, subphrenic abscess, vascular embolism, intestinal obstruction and severe infection, were observed. There was no tumor recurrence after LTS or LPS. In one case of the deroofed splenic cyst, the residual cyst was slightly enlarged 1 year after surgery and was still under observation.

DISCUSSION

Primary splenic tumors are rare in children, with 60%–76% being benign, whereas splenic cysts and vascular tumors are common.6 Controversy remains in the diagnosis and management of this disease. Surgical resection is indicated for symptomatic or complicated forms, but no guidelines are available for the standard treatment. Total splenectomy has been considered to be the gold standard for the treatment of splenic tumors. Still, it is associated with a risk of serious infectious complications, especially the infection of encapsulated microorganisms.7 OPSI is the most serious complication after total splenectomy. It can occur in as many as 4.4% of the patients with splenectomy and carries a mortality risk of approximately 50%–80%.7–9 With the increased understanding of the spleen’s immunologic function, various parenchyma-preserving procedures are becoming the preferred approach for most pediatric surgeons. However, this approach carries the risk of relatively high tumor recurrence rate.

The primary splenic epithelial cyst is the most common type of splenic cyst observed in children. Most patients are asymptomatic and incidentally diagnosed during abdominal imaging or physical examination. Spontaneous resolution of the small splenic cyst has been reported, and conservative management with close observation has been proposed.10 11 However, medical intervention is recommended when the cyst is symptomatic or larger than 5 cm. Percutaneous aspiration with and without sclerotherapy has been proposed but requires repeated procedures under general anesthesia; moreover, the recurrence rate remains high.12 13 Other reports demonstrated encouraging results for partial cystectomy or deroofing procedures, with short operating times and low complication rates. Nevertheless, the recurrence rate was as high as 60%.14 15 In these 12 cyst cases, 2 cases underwent percutaneous ethanol-based sclerosis and 1 case once deroofing, but no obvious reduction or residual cyst enlargement was observed thus resorted to splenectomy. Three cases of cyst deroofing were performed in this group. The cyst wall was removed as much as possible, the fibrous septa were removed, and the endothelium of the cyst was destroyed by argon beam coagulator or electrocautery to achieve adequate drainage while minimizing the risk of recurrence. Sonography demonstrated small residual asymptomatic cysts remained postoperatively, and one of them was slightly increased in size at 1-year follow-up. Therefore, for giant splenic cysts, total splenectomy should be considered when no obvious splenic parenchyma remains. For localized splenic cysts, partial splenectomy should be the most suitable choice; while for cysts located close to the hilum and unsuitable for partial splenectomy, sclerotherapy or partial cystectomy should be considered.

There is still lack of consensus on treating splenic vascular tumors in children. For asymptomatic masses smaller than 5 cm, close observation is recommended as an appropriate management strategy.16 Many parenchyma-preserving methods have been proposed as well. Satisfactory results have been reported using aspiration, drainage, and irradiation treatment for splenic lymphangiomas and using embolization and antiangiogenic treatment for hemangiomas.17–19 Whether it can maintain long-term remission is still uncertain. However, the biologic behavior of vascular tumors has not been well characterized, and several studies have reported littoral cell angiomma with malignancy.20 21 Diagnostic difficulties influence the treatment of splenic vascular tumors, especially for multiple occupying lesions, which cannot be clearly distinguished from malignant lesions. Complete surgical resection is generally accepted as the best choice for splenic tumors with splenectomy or partial splenectomy. The surgical procedure selection must be considered based on the site and size of the tumors, the
patient’s age and immune function. For focal lesions with well-defined margins, partial splenectomy or simple tumor resection is a reasonable choice. Total splenectomy is generally required for huge lesions, multiple bulging nodules, tumors with unclear boundaries or unknown properties, and tumors located close to the hilum.

With a better understanding of the spleen’s immunologic function and the end-vascular distribution of intrasplenic vessels, parenchyma-preserving surgical procedures have attracted more and more attention, especially for children with immature immune systems. Growing evidence supports that preservation of 25%–30% of the splenic parenchyma with adequate perfusion was sufficient to preserve the immunologic function of the spleen. Partial splenectomy is an effective method to prevent post-splenectomy infections, but it is often associated with a bleeding risk while separating the parenchyma. According to the anatomy of splenic vessels, the spleen has distinct segments, where each segment has its artery supply and venous drainage, with an avascular zone between segments. Ligation of splenic artery branches can lead to an ischemic demarcation zone clearly seen on the spleen surface. Dissection of the splenic parenchyma within the ischemia line by LigaSure energy platform or harmonic scalpel can significantly reduce intraoperative bleeding. In our study, nine cases of LPS were performed, with no significant differences in intraoperative hemorrhage, postoperative intraperitoneal drainage and postoperative complications as compared with those of LTS. The postoperative platelet level was significantly lower than LTS, which could significantly reduce postoperative complications, such as vascular embolism and pulmonary hypertension. There was no tumor recurrence during the follow-up period. LPS is as safe and effective as LTS for benign splenic tumors. The spleen slices autograft is recommended as an alternative method to preserve the function of the spleen, but in regard of spleen tissue regeneration, blood filtration, reticuloendothelial tissue clearance and immune function preservation, and autologous spleen slices transplantation are not as effective as partial splenectomy.

Laparoscopic splenectomy in the pediatric age group is generally accepted as a technically demanding procedure owing to the limited abdominal space, the fragility of spleen tissue and the relative rarity of splenic disease, especially the splenic tumors. Feng et al evaluated the efficacy and complication profile of laparoscopic splenectomy in children during a decade. They concluded that laparoscopy was safe and provided similar outcomes without undue increases in morbidity, duration of stay and mortality and with less traumatic and better cosmetic outcomes. A total of 21 consecutive spleen benign tumor cases underwent LTS or LPS in our group, without conversion to laparotomy. After the superior/inferior lobar vessels going toward the lesions were dissected and ligated, parenchymal transection within the ischemia line and careful cauterizing of the residual spleen’s cut surface significantly reduced the intraoperative bleeding. Additionally, the volume of abdominal drainage after LTS was even less than that of LPS. When performing LTS, splenic hilar dissection was carefully performed. First, the splenic artery and vein were ligated in order. Specific attention was paid to the gastrosplenic ligament and the splenophrenic ligaments while performing perisplenic ligament dissection, as the site had insufficient exposure and was prone to bleeding. Owing to the advantages of improved three-dimensional high-definition visualization, enhanced refined movements and additional df, robot-assisted laparoscopic surgery can provide more accurate manipulation than traditional laparoscopic surgery, especially while dealing with the subdiaphragmatic area. Robot-assisted laparoscopic surgery will be a good indication for splenectomy and partial splenectomy.

In conclusion, a definite diagnosis of splenic tumors is still difficult in children, and comprehensive evaluation with various diagnostic methods, including pathological examination, is necessary. LPS does not increase the operation time and intraoperative bleeding, while having advantages in preserving spleen function and reducing postoperative complications. Thus, it should be selected as the preferred method for treating benign splenic tumors in children.

Twitter Zhigang Gao @zggzk

Contributors CQ—conceptualization, methodology, software, investigation, formal analysis and writing (original draft). LW—data curation and writing (original draft). XC—statistics and investigation. YZ—resources and supervision. LZ—data curation and statistics. KZ—data curation. QX—visualization and writing (review and editing). ZG—conceptualization, resources, supervision and writing (review and editing).

Funding This study was supported by the Natural Science Foundation of Zhejiang Province Programs (grant number LY20H030007).

Competing interests None declared.

Patient consent for publication Participants gave informed consent to participate in the study before taking part.

Ethics approval This study involves human participants and was approved by the Ethics Committee (EC) of Children's Hospital of Zhejiang University School of Medicine (EC approval number: 2022-IRB-016).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available from the corresponding author upon reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Chen Qingjiang http://orcid.org/0000-0003-4598-5897
Yuebin Zhang http://orcid.org/0000-0001-9295-9398

REFERENCES
1 Fotiadiis C, Georgopoulos I, Stoidis C, et al. Primary tumors of the spleen. Int J Biomed Sci 2009;5:85–91.
2 Morgenstern L, Rosenberg J, Geller SA. Tumors of the spleen. World J Surg 1985;9:668–76.
3 Kaza RK, Azar S, Al-Hawary MM, et al. Primary and secondary neoplasms of the spleen. Cancer Imaging 2010;10:173–82.
4 Silver DS, Pointer DT, Slakey DP. Solid tumors of the spleen: evaluation and management. J Am Coll Surg 2017;224:1104–11.
5 Pugalenthith A, Bradley C, Gonen M, et al. Splenectomy to treat splenic lesions: an analysis of 148 cases at a cancer center. J Surg Oncol 2013;108:521–5.
6 Warshawer DM, Hall HL. Solitary splenic lesions. Semin Ultrasound CT MR 2006;27:370–88.
7 Liu G, Fan Y. Feasibility and safety of laparoscopic partial splenectomy: a systematic review. World J Surg 2019;43:1505–18.
8 Thelacker C, Ludewig K, Serr A, et al. Overwhelming postsplenectomy infection: a prospective multicenter cohort study. Clin Infect Dis 2016;62:871–8.
9 Madenci AL, Armstrong LB, Kwon NK, et al. Incidence and risk factors for sepsis after childhood splenectomy. J Pediatr Surg 2019;54:1445–8.
10 Delforge X, Chaussy Y, Borrego P, et al. Management of nonparasitic splenic cysts in children: a French multicenter review of 100 cases. J Pediatr Surg 2017;52:1465–70.
11 Hassoun J, Ortega G, Burkhalter LS, et al. Management of nonparasitic splenic cysts in children. J Pediatr Surg Res 2018;223:142–8.
12 Accinni A, Bertocchini A, Madafierri S, et al. Ultrasound-guided percutaneous sclerosis of congenital splenic cysts using ethyl alcohol 96% and minocycline hydrochloride 10%; A pediatric series. J Pediatr Surg 2016;51:1480–4.
13 López JJ, Lodwick DL, Cooper JN, et al. Sclerotherapy for splenic cysts in children. J Pediatr Surg 2017;52:19:1–4.
14 Schier F, Waag K-L, Ure B. Laparoscopic unroofing of splenic cysts results in a high rate of recurrences. J Pediatr Surg 2007;42:1860–3.
15 Sinha CK, Agrawal M. Nonparasitic splenic cysts in children: current status. Surgeon 2011;9:49–53.
16 Huang Y, Mu G, Qin X, et al. 21 cases reports on haemangioma of spleen. J Cancer Res Ther 2016;12:1323.
17 Zheng L, Deng C, Li J, et al. Treatment of hemangioma of the spleen by preoperative partial splenic arterial embolization plus laparoscopic partial splenectomy: a case report. Medicine 2018;97:e0498.
18 Zhang X, Yang J, Yan L. Successful management of a symptomatic splenic haemangioma by radiofrequency ablation. Dig Liver Dis 2012;44:e6.
19 Ioannidis I, Kahn AG. Splenic lymphangioma. Arch Pathol Lab Med 2015;139:278–82.
20 Sarandria JJ, Escano M, Kamangar F, et al. Massive splenomegaly correlates with malignancy: 180 cases of splenic littoral cell tumors in the world literature. Minerva Chir 2014;69:229–37.
21 Peckova K, Michal M, Hadravsky L, et al. Littoral cell angiomia of the spleen: a study of 25 cases with confirmation of frequent association with visceral malignancies. Histopathology 2016;69:762–74.
22 Wang X, Wang M, Zhang H, et al. Laparoscopic partial splenectomy is safe and effective in patients with focal benign splenic lesion. Surg Endosc 2014;28:3273–8.
23 Tracy ET, Haas KM, Gentry T, et al. Partial splenectomy but not total splenectomy preserves immunoglobulin M memory B cells in mice. J Pediatr Surg 2011;46:1706–10.
24 Costi R, Castro Ruiz C, Romboli A, et al. Partial splenectomy: who, when and how. A systematic review of the 2130 published cases. J Pediatr Surg 2019;54:1527–38.
25 Cai H, An Y, Wu D, et al. Laparoscopic partial splenectomy: a preferred method for select patients. J Laparoendosc Adv Surg Tech A 2016;26:1010–4.
26 Ates U, Tastekin NY, Golu G, et al. Laparoscopic splenectomy in pediatric age: long-term follow-up. Arch Argent Pediatr 2017;115:e385–90.
27 Utria AF, Goffredo P, Keck K, et al. Laparoscopic splenectomy: has it become the standard surgical approach in pediatric patients? J Surg Res 2019;240:109–14.
28 Feng S, Qiu Y, Li X, et al. Laparoscopic versus open splenectomy in children: a systematic review and meta-analysis. Pediatr Surg Int 2016;32:253–9.
29 Mbaka M, Robl E, Camps JL. Laparoscopic versus Robot-Assisted Splenectomy in the Pediatric Population: Our Institutional Experience. Am Surg 2017;83:358–9.
30 Shelby R, Kulaflat AN, Villeva A, et al. A comparison of robotic-assisted splenectomy and laparoscopic splenectomy for children with hematologic disorders. J Pediatr Surg 2021;56:1047–50.