Clinical management of nausea and vomiting in pregnancy and hyperemesis gravidarum across primary and secondary care: a population-based study

L Fiaschi, a C Nelson-Piercy, b S Deb, c R King, d LJ Tata a

a Division of Epidemiology & Public Health, University of Nottingham, Nottingham, UK; b Women’s Health Academic Centre, Guy’s & St Thomas’ Foundation Trust, St Thomas’ Hospital, London, UK; c Department of Obstetrics and Gynaecology, Nottingham University Hospital, Queen’s Medical Centre, Nottingham, UK; d Sherwood Health Centre, Nottingham, UK.

Correspondence: L Fiaschi, Division of Epidemiology & Public Health, University of Nottingham, Clinical Sciences Building Phase 2, City Hospital, NG5 1PB Nottingham, UK. Email: linda.fiaschi@nottingham.ac.uk

Accepted 4 February 2019. Published Online 27 March 2019.

Objectives To assess how nausea and vomiting in pregnancy (NVP) and hyperemesis gravidarum (HG) are managed and treated across primary and secondary care.

Design Population-based pregnancy cohort.

Setting Medical records (CPRD-GOLD) from England.

Population 417,028 pregnancies during 1998–2014.

Methods Proportions of pregnancies with recorded NVP/HG diagnoses, primary care treatment, and hospital admissions were calculated. Multinomial logistic regression was employed to estimate adjusted relative risk ratios (aRRRs) with 99% confidence intervals (CIs) for the association between NVP/HG management paths and maternal characteristics.

Main outcome measures NVP/HG diagnoses, treatments, and hospital admissions.

Results Overall prevalence of clinically recorded NVP/HG was 9.1%: 2.1% had hospital admissions, 3.4% were treated with antiemetics in primary care only, and 3.6% had only recorded diagnoses. Hospital admissions and antiemetic prescribing increased continuously during 1998–2013 (trend \(P < 0.001\)). Younger age, deprivation, Black/Asian/mixed ethnicity, and multiple pregnancy were associated with NVP/HG generally across all levels, but associations were strongest for hospital admissions.

Conclusion Previous focus on hospital admissions has greatly underestimated the NVP/HG burden. Although primary care prescribing has increased, most women admitted to hospital have no antiemetics prescribed before this. An urgent call is made to assess whether admissions could be prevented with better primary care recognition and timely treatment.

Keywords Antiemetics, hyperemesis gravidarum, nausea and vomiting in pregnancy, primary care, secondary care.

Tweetable abstract The NVP/HG burden is increasing over time and management optimisation should be high priority to help reduce hospital admissions.

Linked article This article is commented on by J Trovik and AV Vikanes, p. 1212 in this issue. To view this mini commentary visit https://doi.org/10.1111/1471-0528.15824.

Please cite this paper as: Fiaschi L, Nelson-Piercy C, Deb S, King R, Tata LJ. Clinical management of nausea and vomiting in pregnancy and hyperemesis gravidarum across primary and secondary care: a population-based study. BJOG 2019;126:1201–1211.

Introduction

Although nausea and vomiting is a very common symptom in pregnancy (NVP), affecting up to 70% of women, who often do not require treatment, in some cases severity can reach critical levels requiring hospital admission and need for continuous monitoring. This severe condition, referred to as hyperemesis gravidarum (HG), has a reported prevalence of around 1.1% worldwide and is responsible for a range of complications due to malnutrition, dehydration...
and excessive weight loss. Maternal and child health are affected by possible adverse effects of HG and pregnancy complications are more likely. These sequelae have substantial financial impact on the health services and significant burden on professional health care provision.

In June 2016, the Royal College of Obstetricians and Gynaecologists (RCOG) published the first national guidelines on the clinical management of NVP and HG for the United Kingdom (UK) providing an accurate handbook for controversial decision making processes in the management of this condition with prescribed medications. Although this is supported by international reviews of HG, there is no published evidence of how this condition is actually managed by health professionals and what common clinical pathways are followed by affected women. In the UK, the research based on surveys have shown general dissatisfaction with current clinical care from women experiencing HG, with a claim that many hospital admissions could have been avoided had they received timely antiemetic prescribing to curtail worsening severity. It is unknown whether under-prescribing or late recognition of NVP and HG is widespread as there is no population-based studies showing how this condition is managed between primary and secondary care.

Using the Clinical Practice Research Datalink database (CPRD-HES), we have assessed the spectrum of NVP and HG across primary and secondary care and described how severity and pathways of management vary by maternal and pregnancy characteristics and comorbidities. We assessed the extent to which women are prescribed antiemetics in primary care and how this relates to hospital admissions.

Materials and methods

Data source

We used primary and secondary care health records linked at individual patient level from the Clinical Practice Research Datalink (CPRD GOLD), which includes over 15 million patients from 684 general practices (GP) across the UK. Recorded information consists of demographics, symptoms and diagnoses coded using the Read coding system, clinical tests and drug prescriptions. Over half of CPRD GOLD patients are linked with the Hospital Episodes Statistics (HES) database which consists of all admissions to English hospitals. Information within HES includes diagnoses coded using the International Classification of Diseases system (ICD-10) and hospital procedures coded using the Office of Population Censuses and Surveys Classification of Interventions and Procedures (OPCS-4). Maternity data contained in HES includes extensive information on pregnancy, labour and delivery; it is the main data source for monitoring maternity statistics in England and is used to for perinatal epidemiology research. Our previous studies using the CPRD-HES linked population show maternities are representative of those across the English population. Patients were not involved in the development of the research.

Study population

Women with pregnancies ending in live birth or stillbirth between October 1998 and April 2014 who had active primary care registration were selected by extracting information from GP and HES records (operational codes of delivery) to obtain the most complete and precise information on each pregnancy. For live births, a probabilistic matching algorithm was employed to link each mother’s pregnancy records to the corresponding children by matching each delivery date to a child’s estimated birth date or HES birth admission and ensuring they had matching a household code, a unique identifier indicating which individuals in each practice live together. Gestation and pregnancy details were extracted from HES maternity data and, when missing, from the child’s HES birth record, the mother’s or child’s GP records in this order of priority.

Diagnoses and hospital admissions for NVP and HG

To capture the full spectrum of severity, as defined in the national guidelines, we identified all primary care diagnoses and hospital admissions for NVP/HG during pregnancy, using specific Read codes for primary care (Table S1) and ICD-10 codes for secondary care (Table S2) that were approved by co-author CNP who is a consultant in obstetric medicine. Due to controversy over a true distinction between NVP and HG and the lack of a standard approach for the diagnosis and clinical management of these conditions, the risk that these diagnoses could have been used interchangeably by health professionals to refer to the same condition was taken in to consideration by carrying out a comprehensive analysis considering both diagnoses.

To exclude presentations of nausea and vomiting for specific reasons, a restrictive criterion was applied excluding any NVP diagnoses with evidence of differential diagnoses (Tables S3 and S4) recorded in GP data from 1 week before up to 1 week after the NVP diagnosis date or in HES data as a secondary reason of admission. This resulted in 1.9% of GP consultations and 17.6% of hospital admissions for NVP being excluded.

Drug treatment for NVP and HG

Antiemetic prescriptions were extracted from primary care records using selected drugs codes (Table S5) according to national recommendations from the RCOG, and grouped in the following drug classes: antihistamines, phenothiazine dopamine antagonists, serotonin antagonists and steroids. As some drugs have multiple indications, differential diagnostic...
indications were explored to ensure the drugs under analysis were prescribed for the purpose of treating NVP/HG, according to the British National Formulary (BNF).27

Grouping women with NVP/HG by their clinical management pathway
We categorised women into four mutually exclusive groups (Figure 1), broadly representing their level of NVP/HG burden, according to their presentation and treatment in primary care or occurrence of hospital admissions as follows: a primary care diagnosis only, treatment in primary care, early hospital admissions (≥20 weeks gestation), late hospital admissions. We compared these four groups to a control group of all remaining women, i.e. those with no evidence of NVP/HG diagnosis nor treatment.

Maternal characteristics
We assessed maternal characteristics and comorbidities based on their previous evidence as risk factors for NVP/HG28,29 and information currently available in the CPRD-HES source dataset. These were: maternal age at delivery, socioeconomic deprivation as measured by the Index of Multiple Deprivation (IMD 2010) in quintiles,30 ethnicity, smoking status during pregnancy, parity, birth plurality, diabetes, hypertension, pre-eclampsia, parathyroid dysfunction, coronary heart disease, anemia, thyroid dysfunction, hypercholesterolemia and asthma.

Statistical analysis
Numbers and proportions of pregnancies for each NVP/HG group (i.e. diagnosis only, antiemetic treatment, early hospital admission and late hospital admission) were presented overall and the change in prevalence of each group was shown over time. To assess whether maternal characteristics differed by NVP/HG group, we used multinomial logistic regression (mlogit31 with rrr option) to estimate relative risk ratios (RRR) with 99% confidence intervals (CI) for the association of each level of NVP/HG burden with maternal characteristics/comorbidities, compared to the control group. RRRs were adjusted for all the maternal characteristics and pre-existing comorbidities available in the data except for the risk factor of interest (Table 1). In order to account for potential clustering effects from including mothers with more than one pregnancy, a cluster option was set in the analysis. Missing values, present only for three maternal characteristics, namely ethnicity (12.4% missing), smoking (27.8%) and deprivation status (0.2%), were imputed using the multinomial logistic regression imputation method available in Stata MPv15 (Stata Corp, College Station, TX, USA) statistical package,32 applying the mi imp mlogit function,31 setting 10 imputed datasets and using all maternal characteristics available as predictor variables. As a sensitivity analysis to assess whether clear clinical distinctions were actually being made between NVP and HG diagnoses, we conducted stratified analyses by (1)

Figure 1. Categorisations of NVP/HG clinical management within the study population
Table 1. Relative risk ratio of hyperemesis gravidarum level of burden according to maternal characteristics in 417 028 pregnancies

Maternal and pregnancy characteristics	Total pregnancies	Controls	Pregnancies in women with NVP/HG	First hospital admission <20 weeks’ gestation	First hospital admission ≥20 weeks’ gestation
	m = 417 028	n = 379 172			
	%	%	aRRR (99% CI)	aRRR (99% CI)	aRRR (99% CI)
Maternal age at delivery (years)					
<20	26 255	6.1	8.8 1.64 (1.46–1.83)	6.0 1.29 (1.14–1.45)	11.0 2.03 (1.72–2.40)
20–24	72 824	16.9	21.9 1.54 (1.43–1.66)	22.3 1.57 (1.45–1.69)	28.3 2.09 (1.87–2.35)
25–29	107 529	25.6	26.8 1.18 (1.10–1.27)	29.3 1.29 (1.20–1.38)	25.8 1.49 (1.34–1.66)
30–34	124 382	30.2	26.3 Reference	26.8 Reference	21.8 Reference
35–39	70 321	17.3	13.5 0.90 (0.83–0.98)	12.8 0.81 (0.74–0.88)	10.9 0.77 (0.67–0.88)
≥40	15 717	3.9	2.6 0.79 (0.67–0.93)	2.8 0.77 (0.66–0.90)	2.1 0.62 (0.50–0.82)
Socio-economic quintile					
1 (least deprivation)	88 025	21.4	19.5 Reference	18.1 Reference	15.3 Reference
2	83 881	20.3	19.3 1.06 (0.97–1.15)	18.1 0.99 (0.91–1.08)	17.7 1.16 (1.00–1.34)
3	78 182	18.7	19.1 1.09 (1.00–1.19)	19.0 1.07 (0.98–1.16)	17.0 1.26 (1.09–1.45)
4	84 076	20.0	20.6 1.06 (0.98–1.16)	22.0 1.11 (1.02–1.20)	22.8 1.33 (1.16–1.53)
5 (most deprivation)	82 197	19.4	21.4 1.08 (0.98–1.18)	22.6 1.12 (1.03–1.22)	26.9 1.48 (1.29–1.71)
Missing***	667	0.2	0.1	0.2	0.2
Ethnicity					
White	323 598	77.9	74.4 Reference	74.0 Reference	81.5 Reference
Black	12 127	2.7	3.6 1.44 (1.25–1.65)	5.2 1.87 (1.66–2.10)	3.4 2.22 (1.88–2.62)
Asian	18 694	4.2	6.5 1.60 (1.44–1.78)	7.8 1.79 (1.62–1.97)	4.7 1.73 (1.48–2.02)
Chinese	1546	0.4	0.4 1.18 (0.77–1.81)	0.2 0.70 (0.40–1.23)	0.1 0.50 (0.19–1.30) <0.3 0.40 (0.07–2.38)
Other/Mixed	9328	2.2	2.5 1.22 (1.05–1.43)	2.9 1.36 (1.17–1.57)	2.6 1.28 (1.01–1.62)
Missing***	51 735	12.6	12.7	9.9	7.8
Smoking status					
Never	162 148	38.6	38.7 Reference	45.1 Reference	35.0 Reference
Ex	57 895	13.9	13.0 0.98 (0.91–1.05)	15.8 1.04 (0.97–1.11)	12.8 0.86 (0.77–0.96)
Current	81 030	19.5	18.4 0.88 (0.83–0.94)	19.5 0.82 (0.77–0.88)	24.7 0.69 (0.63–0.77)
Unknown***	115 955	28.1	29.8	19.7	27.5
Multiparous	231 254	55.8	48.5 0.80 (0.76–0.85)	55.7 1.04 (0.99–1.10)	53.6 1.03 (0.95–1.12)
Multiple birth	6791	1.6	1.9 1.23 (1.02–1.50)	2.2 1.47 (1.23–1.74)	2.2 2.03 (1.61–2.55)
Diabetes					
Pre-existing	6643	1.6	1.5 0.95 (0.78–1.17)	1.6 0.86 (0.69–1.05)	3.4 1.38 (1.06–1.79)
Gestational	8181	1.9	1.8 0.96 (0.80–1.16)	2.4 1.12 (0.96–1.32)	2.3 0.98 (0.76–1.29)
Hypertension					
Pre-existing	17 463	4.2	3.8 0.94 (0.82–1.08)	4.5 1.01 (0.89–1.15)	5.2 1.04 (0.85–1.27)

© 2019 Royal College of Obstetricians and Gynaecologists
Table 1. (Continued)

Maternal and pregnancy characteristics	Total pregnancies m = 417 028	Controls* n = 379 172	Pregnancies in women with NVP/HG	Primary care diagnosis only n = 14 815	Primary care drug treatment n = 14 226	First hospital admission <20 weeks’ gestation n = 6390	First hospital admission ≥20 weeks’ gestation n = 2425				
				%	%	%	%				
				aRRR (99% CI)	aRRR (99% CI)	aRRR (99% CI)	aRRR (99% CI)				
Gestational	21.536	5.1	5.8	1.09 (0.97–1.22)	5.5	1.10 (0.99–1.23)	7.5	1.13 (0.96–1.34)	6.0	1.43 (1.11–1.83)	
Pre-eclampsia	8504	2.0	2.4	1.16 (0.98–1.38)	2.4	1.19 (1.00–1.40)	2.5	1.21 (0.95–1.54)	2.7	1.09 (0.72–1.64)	
Eclampsia	1208	0.3	0.5	1.69 (1.15–2.47)	0.3	0.82 (0.49–1.36)	0.6	1.33 (0.73–2.44)	0.4	2.24 (1.06–4.73)	
Anaemia											
Pre-existing	24 068	5.7	5.8	n/a****	7.1	n/a****	6.5	n/a****	6.3	n/a****	
Gestational****	35 219	8.2	11.4	1.31 (1.21–1.43)	11.4	1.31 (1.21–1.42)	10.1	1.37 (1.22–1.55)	11.8	1.19 (0.96–1.46)	
Thyroid dysfunction											
Pre-existing	2193	0.5	<0.1	n/a****	0.6	n/a****	0.7	n/a****	0.5	n/a****	
Gestational****	3912	0.9	1.0	1.07 (0.81–1.43)	1.1	1.23 (0.87–1.45)	1.1	1.88 (1.34–2.63)	1.8	1.49 (0.80–2.76)	
Parathyroid dysfunction	55	<0.1	<0.1	n/a****	<0.1	n/a****	<0.1	n/a****	<0.1	n/a****	
Asthma	54 398	12.7	14.8	1.16 (1.08–1.25)	17.5	1.42 (1.33–1.52)	19.3	1.43 (1.30–1.59)	17.7	1.47 (1.24–1.70)	
Coronary heart disease	4504	1.1	1.1	1.15 (0.91–1.45)	1.3	1.26 (1.00–1.58)	1.6	1.30 (0.94–1.79)	1.3	1.38 (0.82–2.33)	
Hypercholesterolemia	8071	1.9	1.9	1.07 (0.90–1.28)	2.5	1.32 (1.13–1.54)	2.6	1.05 (0.81–1.36)	2.1	1.52 (1.06–2.17)	

aRRR, adjusted relative risk ratio; HG, hyperemesis gravidarum; NVP, nausea and vomiting; RRR, relative risk ratio.

*Women with no clinical evidence of primary care diagnosis, treatment or hospital admissions for NVP/HG.

**Significant trend test for socio-economic status (P < 0.001).

***Missing values for these variables are estimated in the regression models using multiple imputation, therefore RRR is not given.

****Not applicable, as the condition is used as confounder and therefore adjusted for.

*****80% of pregnancies had this gestational condition diagnosed for the first time in the third trimester.

******Empty cells indicate there were fewer than five exposed cases, for which statistical analyses were not performed.
dividing the primary care diagnosis only group into (a) those with HG diagnoses and (b) those with only NVP diagnoses, and (2) dividing the primary care treatment group into those with (a) antiemetics prescribed for an HG indication and (b) antiemetics prescribed for an NVP indication only. We assessed the prevalence of these four groups over time and whether they varied by maternal characteristics.

Results

Within the study period, there were 417 028 deliveries ending in live births or stillbirths in 300 858 women. The prevalence of NVP/HG overall was 9.1% (37 856): 3.6% (14 815 pregnancies) with primary care diagnoses that did not obtain treatment, 3.4% (14 226) with primary care diagnoses that were administered antiemetic drug treatment, 1.5% (6390) with first hospital admission before 20 weeks and 0.6% (2425) with late hospital admissions from 20 weeks onwards. Between 1999 and 2013 (Figure 2) there were statistically significant increases in early hospital admissions and antiemetic prescribing such that by 2013, early admissions occurred in 2.1% of pregnancies and antiemetics were prescribed in primary care in 5.2% of pregnancies compared with 2.5% of pregnancies with recognised NVP/HG that were left untreated (P < 0.001 for both).

Management variation by maternal characteristics

Maternal characteristics varied across the groups (Table 1). In general, compared with control pregnancies, those among women with NVP/HG had higher proportions of younger women, with higher socioeconomic deprivation, or with Asian or Black ethnicity, and these proportions increased with level of NVP/HG burden with the highest among women with hospital admissions. The prevalence of comorbidities was generally higher in the affected groups compared with control pregnancies, particularly for pre-existing diabetes, gestational hypertension, pre-eclampsia, gestational anaemia and thyroid dysfunctions, asthma, and hypercholesterolemia.

In the adjusted analysis (Table 1), results showed a clear increased risk of NVP/HG with younger maternal age across all levels of burden with the magnitude of risk highest for hospital admissions; whilst women under 25 years were 1.5 times as likely to be treated in primary care compared with women age 30–34 years, they were over twice as likely to be admitted to hospital. Women from more deprived socio-economic groups had a comparable prevalence of NVP/HG diagnoses; however, they were more likely to be treated with antiemetics in primary care, and to have early hospital admission compared with women from the least deprived group (test for trend P < 0.001 for all groups other than diagnosis only). Asian and Black women had considerable increased risks across all levels of NVP/HG burden, although there was no association between ethnicity and late hospital admission. Current smoking was associated with a decreased risk of NVP/HG across all levels other than late hospital admissions. There was no association with multiparity other than a decreased risk in primary care diagnosis of NVP/HG only. Multiple birth was associated with NVP/HG diagnosed and treated in primary care but the risk was highest in those with early hospital admissions.

Figure 2. Change in proportion of pregnancies with clinically recognised NVP/HG by level of burden
Diabetes and hypertension were not associated with NVP/HG diagnosed or treated in primary care, although they were associated with some increase in late NVP/HG hospital admissions and pre-existing diabetes increased the risk of early hospital admissions. Pre-eclampsia was associated with women treated for NVP/HG in primary care, while eclampsia was associated with NVP/HG diagnoses and late hospital admissions. Asthma and anaemia increased the risk of all levels of NVP/HG. There was an increased risk of primary care treatment and hospital admissions in women with thyroid dysfunction or hypercholesterolemia.

Antiemetic prescribing distribution

Distributions of primary care antiemetic prescribing for women with NVP/HG who were and were not admitted to hospital are shown in Table 2. Of those never admitted to hospital (29 041), antiemetics were prescribed in 49% of pregnancies; first, second and third-line treatment was prescribed for 42%, 11%, and 1% of pregnancies respectively. The most commonly prescribed antiemetic was prochlorperazine (21.1%), followed by the other first line drugs promethazine (15.4%) and cyclizine (13%). Ondansetron and steroids were very rarely prescribed to these women; metoclopramide was the most commonly prescribed.

Line of treatments: medication usage	Total pregnancies*	Managed in primary care only	Pregnancies in women with NVP/HG	First hospital admission <20 weeks’ gestation	First hospital admission ≥20 weeks’ gestation							
	n	%***										
Any medication prescribed	18 954	50.1	14 226	49.0	2447	38.3	3209	50.2	552	22.8	196	8.1
First and second	2764	7.3	1490	5.1	306	4.8	654	10.2	67	2.8	23	0.9
First, second, and third	67	0.2	26	0.1	6	0.1	18	0.3	<5	<0.3	<5	<0.3
First and third	274	0.7	185	0.6	17	0.3	44	0.7	13	0.5	<5	<0.3
Second and third	114	0.3	53	0.2	10	0.2	37	0.6	7	0.3	<5	<0.3
Any first line	16 482	43.5	12 311	42.4	2139	33.5	2635	41.2	440	18.1	144	5.9
Antihistamine												
Promethazine	5632	14.9	4467	15.4	727	11.4	385	6.0	129	5.3	19	0.8
Cyclizine	5955	15.7	3789	13.0	639	10.0	1562	24.4	147	6.1	76	3.1
Phenothiazine												
Prochlorperazine	8482	22.4	6118	21.1	1185	18.5	1185	18.5	254	10.5	59	2.4
Chlorpromazine	31	0.1	22	0.1	<5	<0.08	<5	<0.08	<5	<0.3	<5	<0.3
Any second line	5099	13.5	3315	11.4	590	9.2	1201	18.8	153	6.3	66	2.7
Dopamine antagonists												
Metoclopramide	4382	11.6	2914	10.0	499	7.8	932	14.6	128	5.3	52	2.1
Domperidone	662	1.7	434	1.5	86	1.3	118	1.8	24	1.0	6	0.2
Serotonin antagonists												
Ondansetron	394	1.0	77	0.3	26	0.4	291	4.6	9	0.4	12	0.5
Any third line	458	1.2	302	1.0	39	0.6	85	1.3	41	1.7	14	0.6
Steroids												
Prednisolone	455	1.2	299	1.0	39	0.6	85	1.3	41	1.7	14	0.6
Methylprednisolone	<5	<0.2	<5	<0.2	0	<0.01	0	<0.01	0	<0.01	0	<0.01

HG, hyperemesis gravidarum; NVP, nausea and vomiting in pregnancy.
NVP diagnoses were subject to exclusion criteria for differential diagnoses (see Materials and methods).
*Total pregnancies consist of the entire population excluding the healthy women.
**Antiemetics as defined in Materials and methods section.
***Percentage of pregnancies over the total shown in the main headers.
second-line treatment (10%) followed by domperidone (1.5%).

Of the 6390 pregnancies with early NVP/HG hospital admission (1.5% overall), only 38% had evidence of a primary care prescription of antiemetics before the admission and 50% had antiemetics prescribed following the admission. Overall, 34% received first-line treatment before admission, 9% second-line, and 1% third-line treatment. Individual drugs prescribed were similar to those for unadmitted women, with prochlorperazine being the most common first-line and metoclopramide the most common second-line treatment. Following admissions, cyclizine, metoclopramide and prednisolone prescription rates doubled compared to pre-admission rates and ondansetron increased from 0.4% pre-admission to 4.6% post-admission, reflecting the follow on from the higher level of treatment lines prescribed in secondary care.

Women with late admissions from 20 weeks’ gestation onwards had even lower prescribing of antiemetics before their first admission (23% of pregnancies treated pre-admission) and only 8% had antiemetics prescribed post-admission. First-line treatment was prescribed in 18% of pregnancies pre-admission, with second and third-line treatment prescribed in 6 and 2%, respectively. Prochlorperazine was still the most common drug prescribed pre-admission, followed by cyclizine, metoclopramide, and promethazine.

Sensitivity analysis distinguishing NVP from HG diagnoses made in primary care

Among women with recognised NVP/HG who were never admitted to hospital, the proportions of pregnancies receiving an HG diagnosis (rather than an NVP diagnosis) were 21% of those without drug treatment and 41% of those with drug treatment. These proportions remained constant over time (Supporting Information Figure S1), indicating that NVP and HG diagnoses may have been used interchangeably in the medical records. Furthermore, the distribution of key maternal characteristics and comorbidities was very similar between those with HG diagnosed and those with only NVP diagnosed (Supporting Information Figure S2 and Table S6), again providing a rationale for NVP/HG being considered as the same clinical group.

Discussion

Main findings

We found that 9.1% of pregnancies had NVP/HG that was clinically recognised in primary or secondary care; 7% did not result in hospital admission but were treated by GPs with antiemetics half of the time, and 2.1% resulted in hospital admissions. In all, 38% of women admitted to hospital had received previous antiemetics in primary care. The prevalence of affected women prescribed antiemetics in primary care has increased over time, with a turning point at 2008 after which affected women were more likely to be treated than not. Hospital admissions, however, also increased over time, showing an overall increase in the recognised clinical burden of NVP/HG. Moreover, NVP and HG diagnoses were used in a similar way for antiemetic prescribing and hospital admissions, likely because health professionals considered them a spectrum of illness, despite distinguishing clinical criteria for hyperemesis gravidarum diagnosis.

Strengths and limitations

The CPRD-HES is a well validated data source widely used for epidemiological research, broadly nationally representative, and internationally recognised as an extremely meaningful source of clinical information for studying pregnancy complications and prescribed treatments in England.

To our knowledge, this is the first large epidemiological study evaluating the prevalence of clinically recognised and managed NVP/HG within primary and secondary care.

One of the major strengths of this study was the possibility to assess the antiemetic treatments offered to women with NVP/HG in primary care. However, secondary care prescribing was not available and although discharge prescriptions are usually in short supply, results on prescribing after admission need to be interpreted cautiously. It is possible that we overestimated treatments used for NVP/HG, considering antiemetics have multiple indications, but we think this is unlikely, as we assessed differential diagnoses for each consultation where antiemetics were prescribed and carefully excluded prescriptions for treating other conditions, including corticosteroids used for asthma, Crohn’s disease, and other auto-immune conditions. Some antihistamines are available without prescription; however, we do not think this underestimated prescriptions, as no antiemetics were licensed for use in pregnancy in England during the study period, and pregnant women receive free prescriptions from their GP. We also applied rigorous exclusion criteria for NVP diagnoses that had differential diagnoses for these symptoms, such as gastrointestinal, metabolic, and genitourinary conditions, as indicated in RCOG national guidelines for NVP/HG. We acknowledge that NVP is a common symptom in many diseases and is potentially also attributable to other conditions such as diabetes or pre-eclampsia; however, as these are not differential diagnoses, it is also possible that NVP/HG co-exists with other comorbidities.

We have included an extensive analysis of risk factors; however, results could have been affected by residual confounding, as we did not include certain factors such as
body mass index or family support, which were not comprehensively recorded in the data. In addition, there was sub-optimal recording of certain demographics or lifestyle factors such as ethnicity or smoking status. However, quality of data has improved over time and robust information on pre-existing comorbidities and pregnancy complications was available. Moreover, imputation of missing values for the affected variables was used to minimise this limitation.

We have included women admitted initially for NVP/HG after 20 weeks’ gestation, and although the classic presentation of HG is a hospital admission prior to 20 weeks, some women remain symptomatic throughout pregnancy so it was important to capture this group, who may represent a severe and sustained burden of HG. However, we acknowledge that those women could have been admitted for excessive NVP due to other underlying conditions such as diabetes, gestational hypertension, eclampsia or hypercholesterolemia, which have been shown to be strong risk factors of late admissions.

It is important to acknowledge that our findings represent the clinical prevalence of NVP/HG in pregnancies ending in live and stillbirths only, as we did not include pregnancies ending in spontaneous or non-spontaneous abortion. Although some studies have indicated that HG can lead to pregnancy terminations, more research is needed to assess how severe NVP and HG may relate to both early or late pregnancy losses.

Interpretation

We have shown that the actual prevalence of clinically recognised NVP/HG is higher than previously reported, in agreement with a recently published study based on eight English primary care settings. Using the linked CPRD-HES data source, we have been able to provide this important missing information to complete the picture of NVP and HG management. Most of the current literature that describes the prevalence of HG or NVP is based on either medical records of hospital admissions or questionnaires filled in by the affected women to assess the severity of symptoms in an attempt to detect the actual occurrence of HG or NVP, for which women may not always consult a healthcare professional. We found that overall HG was diagnosed and managed in primary care alone in 2.5% of pregnancies, of which 75% were treated with antiemetics, but had similar risk of diagnosis-only to women from less deprived backgrounds, indicating that earlier treatment may prevent later hospital admissions.

An Australian review revealed that the suboptimal management offered to women affected by NVP was due to the lack of national standard guidelines, concerns about drug teratogenicity, and underestimation of the impact of NVP on women’s lives. A pregnancy Sickness Support survey recently published in the UK also reported significant problems accessing treatment and high levels of dissatisfaction with care. General failure of an appropriate HG treatment provision was reported nationally and internationally, with a consequent feeling of isolation and dissatisfaction among the affected women, exacerbated by further evidence of lack of high-quality studies to support any particular intervention. Despite a general consensus that some women are denied access to antiemetics that could help relieve the severe symptoms of these conditions, we found that use of antiemetics in pregnancy has increased over time. This could be a sign of rising awareness of the impact of these conditions on the quality of life together with a growing confidence in GPs’ prescribing, supported by growing evidence for the safety of antiemetics in pregnancy. Although some studies have indicated that HG is a strong risk factor for pregnancy terminations, with no relevant differences between NVP and HG diagnosis. Doctors’ confidence in prescribing antiemetic drugs to pregnant women is increasing, although 62% of women with hospital admissions were not prescribed an antiemetic, raising urgent calls to clarify whether optimal and timely treatments could help prevent hospital admissions.

Conclusions

The actual burden of clinically recognised NVP/HG is larger than the reported figures, currently affecting almost 10% of pregnancies due to a proportion of women reporting clinically relevant symptoms that are managed at primary care level, half of which are treated with antiemetics. Higher NVP/HG severity levels generally confirm the consolidated knowledge of which women are more at risk of developing this condition, with no relevant differences between NVP and HG diagnosis. Doctors’ confidence in prescribing antiemetic drugs to pregnant women is increasing, although 62% of women with hospital admissions were not prescribed an antiemetic, raising urgent calls to clarify whether optimal and timely treatments could help prevent hospital admissions.

Disclosure of interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author). CN-P reports
personal fees from Alliance Pharma during the conduct of the study; personal fees from Sanofi Aventis, grants from Leo Pharma, personal fees from Warner Chilcott, personal fees from UCB outside the submitted work. All other authors report no potential conflicts of interest. Completed disclosure of interests forms are available to view online as supporting information.

Contribution to authorship
LF conducted data management and the analysis. CN-P, SD, RK, and LJT contributed to the design and analysis and interpretation of the data, and preparation, critical review, and approval of the manuscript. The corresponding author attests that LF, CN-P, SD, RK and LJT meet authorship criteria and that no others meeting the criteria have been omitted.

Details of ethics approval
The study was approved by ISAC (Independent Scientific Advisory Committee) for MHRA Database Research (protocol number 14_165R) on 23 September 2014.

Funding
The work was funded by the Rosetrees Trust and the Stoneygate Trust through external peer review for scientific quality. The funders had no role in study design, data collection, analysis, interpretation of the results, and decision to publish, or preparation of the manuscript. All the authors are independent from the funders. Rosetrees Trust, Grant number RB48AG.

Acknowledgements
None.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Change in proportion of pregnancies with clinically recognised NVP/HG by level of burden, distinguishing NVP diagnosis from HG diagnosis.

Figure S2. Distribution of maternal characteristics across different HG and NVP level of burden groups.

Table S1. Read codes for NVP and HG diagnoses.

Table S2. ICD10 codes for NVP and HG diagnoses.

Table S3. Read codes for NVP differential diagnoses.

Table S4. ICD10 codes for NVP differential diagnoses.

Table S5. Antiemetics codes used for extracting antiemetic prescriptions.

Table S6. Distribution of hyperemesis gravidarum level of burden according to maternal comorbidities for women with NVP diagnosis (with or without treatment) and HG diagnosis (with and without treatment).

References

1. Einaron TR, Piwko C, Koren G. Quantifying the global rates of nausea and vomiting of pregnancy: a meta analysis. *J Popul Ther Clin Pharmacol* 2013;20:e171–83.
2. Jarvis S, Nelson-Piercy C. Management of nausea and vomiting in pregnancy. *BMJ* 2011;342:d3606.
3. Heitmann K, Nordeng H, Havnen GC, Solheimsnes A, Holst L. The burden of nausea and vomiting during pregnancy: severe impacts on quality of life, daily life functioning and willingness to become pregnant again—results from a cross-sectional study. *BMC Pregnancy Childbirth* 2017;17:75.
4. London V, Grube S, Sherer DM, Abulafia O. Hyperemesis gravidarum: a review of recent literature. *Pharmacology* 2017;100:161–71.
5. Mitchell-Jones N, Gallos I, Farren J, Tobias A, Bottomley C, Bourne T. Psychological morbidity associated with hyperemesis gravidarum: a systematic review and meta-analysis. *BJOG* 2017;124:20–30.
6. Fiaschi I, Nelson-Piercy C, Gibson J, Szatkowski L, Tata LJ. Adverse maternal and birth outcomes in women admitted to hospital for hyperemesis gravidarum: a population-based cohort study. *Paediatr Perinat Epidemiol* 2018;32:40–51.
7. Trovik J, Vikanes Å. Hyperemesis gravidarum is associated with substantial economic burden in addition to severe physical and psychological suffering. *Int J Health Policy Res* 2016;5:43.
8. Gazmararian JA, Petersen R, Jamieson DJ, Schild L, Adams MM, Deshpande AD, et al. Hospitalizations during pregnancy among managed care enrollees. *Obstet Gynecol* 2002;100:94–100.
9. Attard CL, Kohli MA, Coleman S, Bradley C, Hux M, Atanackovic G, et al. The burden of illness of severe nausea and vomiting of pregnancy in the United States. *Am J Obstet Gynecol* 2002;186 (Suppl 2):S220–7.
10. RCOG. The management of nausea and vomiting of pregnancy and hyperemesis gravidarum (Green-top Guideline No. 69) [Internet]. Royal College of Obstetricians & Gynaecologists. 2016[www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg69/]. Accessed 17 May 2017.
11. Jueckstock JK, Kaestner R, Mylonas I. Managing hyperemesis gravidarum: a multimodal challenge. *BMJ Med* 2010;8:46.
12. Sheehan P. Hyperemesis gravidarum-assessment and management. *Aust Fam Physician* 2007;36:698–701.
13. Practice bulletin summary no. 153: nausea and vomiting of pregnancy. *Obstet Gynecol* 2015;126:687–8.
14. Dean C, Marsden J. Satisfaction for treatment of hyperemesis gravidarum [Internet]. MIDIRS. 2017[www.midirs.org/satisfaction-treatment-hyperemesis-gravidarum-day-settings-hospital/]. Accessed 27 September 2017.
15. Power Z, Thomson AM, Waterman H. Understanding the stigma of hyperemesis gravidarum: qualitative findings from an action research study. *Birth* 2010;37:237–44.
16. NIHPR, MHRA. Clinical practice research datalink – CPRD [Internet]. 2017[www.cprd.com]. Accessed 15 March 2019.
17. Kontopantelis E, Stevens RJ, Helms PJ, Edwards D, Doran T, Ashcroft DM. Spatial distribution of clinical computer systems in primary care in England in 2016 and implications for primary care electronic medical record databases: a cross-sectional population study. *BMJ Open* 2018;8:e020738.
18. Benson T. The history of the Read Codes: the inaugural James Read Lecture 2011. *Inform Prim Care* 2011;19:173–82.
Severe nausea and vomiting in pregnancy management

19 NHS Digital 1 Trevelyan Square. Hospital episode statistics [Internet]. 2012 [http://content.digital.nhs.uk/nes]. Accessed 27 September 2017.

20 N. H. S. NHS Choices—your health, your choices [Internet]. 2015 [www.nhs.uk/pages/home.aspx]. Accessed 28 May 2015.

21 World Health Organization. International Classification of Diseases, Version 10 [Internet]. 2010[http://apps.who.int/classifications/icd10/browse/2010/en]. Accessed 15 March 2019.

22 Supporting Information: OPCS Classification of Interventions and Procedures [Internet]. Available from: [https://www.datadictionary.nhs.uk/web_site_content/supporting_information/clinical_coding/opcs_classification_of_interventions_and_procedures.asp?shownav=1]. Accessed 15 March 2019.

23 Dattani N, Datta-Nemdharry P, Macfarlane A. Linking maternity data for England 2007: methods and data quality. Health Stat Q 2012;53:4–21.

24 Bragg F, Cromwell DA, Edbozin LC, Guroi-Urganci I, Mahmood TA, Templeton A, et al. Variation in rates of caesarean section among English NHS trusts after accounting for maternal and clinical risk: cross sectional study, BMJ 2010;341:c5065.

25 Ban L, Sprigg N, Abdul Sultan A, Nelson-Piercy C, Bath PM, Ludvigsson JF, et al. Incidence of first stroke in pregnant and nonpregnant women of childbearing age: a population-based cohort study from England. J Am Heart Assoc 2017;6:e004601.

26 Sultan AA, Tata LJ, Grainge MJ, West J. The incidence of first venous thromboembolism in and around pregnancy using linked primary and secondary care data: a population based cohort study from England and comparative meta-analysis. PLoS One 2013;8:e70310.

27 NICE. BNF: British National Formulary—NICE [Internet]. 2018 [https://bfn.nice.org.uk/drugs/]. Accessed 20 February 2018.

28 Fiaschi L, Nelson-Piercy C, Tata LJ. Hospital admission for hyperemesis gravidarum: a nationwide study of occurrence, reoccurrence and risk factors among 8.2 million pregnancies. Hum Reprod 2016;31:1675–84.

29 Louk C, Hernandez-Diaz S, Werker MM, Mitchell AA. Nausea and vomiting in pregnancy: maternal characteristics and risk factors. Paediatr Perinat Epidemio 2006;20:270–8.

30 Department for Communities and Local Government and The Rt Hon Eric Pickles. English indices of deprivation—publications [Internet]. 2010[www.gov.uk/government/statistics/english-indices-of-deprivation]. Accessed 28 May 2015.

31 Stata Bookstore/base reference manual, Release 15 [Internet]. [www.statacom/bookstore/base-reference-manual/]. Accessed 3 January 2019.

32 STATA. Data Analysis and Statistical Software [Internet]. 2018 [www.statacom.com/]. Accessed 18 June 2018.

33 Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: a systematic review. Br J Clin Pharmacol 2010;69:4–14.

34 Abdul Sultan A, Tata LJ, Fleming KM, Crooks CJ, Ludvigsson JF, Dhahwani NN, et al. Pregnancy complications and adverse birth outcomes among women with celiac disease: a population-based study from England. Am J Gastroenterol 2014;109:1653–61.

35 Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data resource profile. clinical practice research datalink (CPRD). Int J Epidemiol 2015;44:827–36.

36 McParlin C, O’Donnell A, Robson SC, Beyer F, Moloney E, Bryant A, et al. Treatments for hyperemesis gravidarum and nausea and vomiting in pregnancy: a systematic review. JAMA 2016;316:1392.

37 Lacroix R, Eason J, Melzack R. Nausea and vomiting during pregnancy: a prospective study of its frequency, intensity, and patterns of change. Am J Obstet Gynecol 2000;182:931–7.

38 Poursarian B, Korst LM, Macgibbon KW, Fejzo MS, Romero R, Goodwin TM. Elective pregnancy termination in a large cohort of women with hyperemesis gravidarum. Contraception 2007;76:451–5.

39 Gadsby R, Rawson V, Dzidzulewicz E, Rousseau B, Collings H. Nausea and vomiting of pregnancy and resource implications: the NVP Impact Study. Br J Gen Pract 2018;69:e217–23.

40 Bolin M, Åkerud H, Cranttingius S, Stephansson O, Wikstrom A. Hyperemesis gravidarum and risk of placental dysfunction: a population-based cohort study. BJOG 2013;120:541–7.

41 Bailit JL. Hyperemesis gravidarum: epidemiologic findings from a large cohort. Am J Obstet Gynecol 2005;193:811–4.

42 Vikanes ÅV, Stær NC, Magnus P, Gribovskii AM. Hyperemesis gravidarum and pregnancy outcomes in the Norwegian mother and child cohort—a cohort study. BMC Pregnancy Childbirth 2013;13:169.

43 Emeljanova S, Mazzotta P, Enarson A, Koren G. Prevalence and severity of nausea and vomiting of pregnancy and effect of vitamin supplementation. Clin Invest Med 1999;22:106–10.

44 Lacasse A, Rey E, Ferreira E, Morin C, Bérard A. Epidemiology of nausea and vomiting of pregnancy: prevalence, severity, determinants, and the importance of race/ethnicity. BMC Pregnancy Childbirth 2009;9:26.

45 Mazzotta P, Stewart DE, Koren G, Magee LA. Factors associated with elective termination of pregnancy among Canadian and American women with nausea and vomiting of pregnancy. J Psychosom Obstet Gynaecol 2001;22:7–12.

46 Tan A, Foran T, Henry A. Managing nausea and vomiting in pregnancy in a primary care setting. Aust Fam Physician 2016;45:564.

47 Gadsby R. General practitioners are wary of treating sickness in pregnancy. BMJ 2004;328:505–6.

48 Gadsby R. Pregnancy nausea and vomiting—the role of the midwife. Pract Midwife 2012;15:17–9.

49 Heitmann K, Solheimssne A, Havnen GC, Nordeng H, Holst L. Treatment of nausea and vomiting during pregnancy—a cross-sectional study among 712 Norwegian women. Eur J Clin Pharmacol 2016;72:593–604.

50 Matthews A, Haas DM, O’Mathúna DPO, Dowswell T, Doyle M. Interventions for nausea and vomiting in early pregnancy. Cochrane Database Syst Rev 2014;(3):CD007575.