On 2 - Domination Number of Some Graphs

V. Maheswari, N.H. Anantha Kiruthika, A. Nagarajan
Assistant Professor, M. Phil Scholar, Associate Professor
PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women,
PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for
Women, Thoothukudi-628002PG & Research Department of Mathematics,
V.O. Chidambaram College, Thoothukudi-628008
Afflicted to Manonmaniam Sundaranar University, Abishekappa, Tirenvelvi-627012,
TN, India

Email: maheswari@apcmcollege.ac.in ,kiruthika.ak97@gmail.com

ABSTRACT
Domination and 2 - domination numbers are defined only for graphs with non-isolated
vertices. In a Graph G = (V, E) each vertex is said to dominate every vertex in its closed
neighborhood. In a graph G, a subset S of V(G) is called a 2 - dominating set of G if every
vertex in v ∈ V, is in V-S and has atleast two neighbors in S. The smallest cardinality of a
2 - dominating set of G is known as the 2 - domination number γ2(G). In this paper, we
find 2 - dominating set of some special graphs and also find the 2 - domination number of
graphs.

Keywords: Dominating set, 2 - Dominating Set, 2 - Domination Number

I.INTRODUCTION
Fink and Jacobson introduced the concept of 2 – Domination Number [3]. Domination Number and 2 -
Domination Number are defined only for graphs with non-isolated vertices. Every Graph with non
-isolated vertex has a 2 - dominating set. In a graph G = (V,E), a subset D of V such that every vertex
in V-D has a neighbor in D, such a set said to be a dominating set of G. The Dominating Number γ(G)
is the minimum size of the dominating set of vertices in G. In a graph G = (V, E), subset S of V is a 2
-dominating set if every vertex v ∈ V, is in V – S has atleast two neighbors in S. The minimum
cardinality of a 2 - dominating set of G is known as the 2 - domination number of γ2(G).

II.DEFINITIONS
2.1. Dominating Set
A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex v ∈ V
is either an element of S or is adjacent to an element of S.

2.2. Domination Number
The domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set
of G.

2.3. 2 Dominating Set
A dominating set S ⊆ V(G) is said to be a 2 - dominating set if every vertex in V – S has atleast
two adjacent vertices in S.
2.4. 2 - Domination Number

The minimum cardinality taken over all the minimal 2 - dominating set is called the 2 - domination number and it is denoted by $\gamma_2(G)$.

III. DEFINITIONS OF SOME SPECIAL GRAPHS

3.1. Flower Graph

A flower graph F_n is a graph obtained from a helm by adjoining each pendant vertex to the central vertex of the helm graph H_n.

3.2. Banana Tree Graph

A banana tree graph $B(n, k)$ is a graph obtained by connecting one leaf of each of n – copies of an k – star with a single root vertex that is distinct from all the stars.

3.3. Coconut Tree Graph

A coconut tree graph $CT(m, n)$ is a graph obtained from the path P_n by appending m new pendant edges at an end vertex of P_n.

3.4. Lollipop Graph

A lollipop graph $L(m, n)$ is a special type of graph consisting of a complete graph K_m on m vertices and a path graph P_n on n vertices connected with a bridge.

3.5. Tadpole Graph

A tadpole graph $T(m, n)$ is a special graph consisting of a cycle graph C_m on m vertices and a path graph P_n on n vertices connected with a bridge.

IV. 2 – DOMINATION NUMBER OF SOME SPECIAL GRAPHS

Theorem 4.1

For any Flower Graph F_n ($n \geq 3$), 2 - domination number is $\gamma_2(F_n) = n + 1$

Proof

The flower graph has a universal vertex v connecting all the vertices of the cycle C_n having n vertices namely $\{x_1, x_2, ..., x_n\}$ and each node of the cycle adjoining a pendant edge. Let $\{y_1, y_2, ..., y_n\}$ be the pendant vertices joining to the central vertex v.

Here the central vertex v and either the pendant vertices or the vertices of the cycle are enough to dominate all the vertices of the graph F_n. Let us consider the dominating set of $F_n = \{v, x_1, x_2, ..., x_n\}$ or $\{v, y_1, y_2, ..., y_n\}$.

Thus, the 2 - domination number is γ_2 is $|\{v, x_1, x_2, ..., x_n\}|$ or $|\{v, y_1, y_2, ..., y_n\}|$ Hence $\gamma_2(F_n) = n + 1$.
Theorem 4.2

For any Banana Tree Graph \(B(n, k) \), \(n \geq 2 \) & \(k \geq 3 \), \(2 \) - domination number \(\gamma_2(B(n, k)) = n(k - 1) \)

Proof

A Banana tree Graph \(B(n, k) \) is a graph obtained by connecting one leaf of each \(n \) copies of an \(k \) – star graph to a root vertex \(v \).

Let the \(k \) – star graph has \(k - 1 \) leaf vertices and one internal node.

Here, the leaf vertices of the star graph are enough to dominate the graph \(B(n, k) \) for \(n \) times since we have \(n \) copies of \(k \) – star.

Thus, the \(2 \) - domination number of a banana tree graph is \(\gamma_2(B(n, k)) = n(k - 1) \).

Theorem 4.3

For a coconut tree graph \(CT(m, n) \), \(m, n \geq 2 \), \(2 \) - domination number

\[
\gamma_2(CT(m, n)) = \begin{cases} \left(\frac{n+1}{2} \right) + m, & \text{for odd } n \geq 3 \\ \left(\frac{n}{2} \right) + m, & \text{for even } n \geq 2 \end{cases}
\]

Proof.

Case (I)

For odd value of \(n \geq 3 \)

The coconut tree graph has \(m \) pendant vertices adjoining the path \(P_n \) to an end vertex. For odd value of \(n \), choose the alternative vertex from the end vertex in the path graph and stop when all the alternative vertices are executed. Thus, we get \(\left(\frac{n+1}{2} \right) \) vertices. Here the \(m \) pendant vertices and the chosen \(\left(\frac{n+1}{2} \right) \) vertices from the path graph are enough to dominate all the vertices of \(CT(m, n) \).

Hence the domination number is \(\gamma_2(CT(m, n)) = \left(\frac{n+1}{2} \right) + m \)

Case (II)

For even value of \(n \geq 2 \)

Choose the alternative vertices in the path graph starting from the end vertex and stop when all the alternative vertices are executed. Thus, we get \(\left(\frac{n}{2} \right) \) vertices. Here the \(m \) pendant vertices and the chosen \(\left(\frac{n}{2} \right) \) vertices from the path graph are enough to dominate \(CT(m, n) \).

Hence the domination number is \(\gamma_2(CT(m, n)) = \left(\frac{n}{2} \right) + m \).

Theorem 4.4

For a lollipop graph \(L(m, n) \), the domination number
\[\gamma_2(L(m, n)) = \begin{cases} \left(\frac{n+1}{2}\right) + 2, & \text{for odd } n \geq 3 \\ \left(\frac{n}{2}\right) + 2, & \text{for even } n \geq 2 \end{cases} \]

Proof. Case (I)

For odd value of \(n \geq 3\)

For a path graph with odd value of \(n\) vertices. Choose the alternative vertices starting from the end vertex and stop until all the alternative vertices are executed. Thus, we get \(\left(\frac{n+1}{2}\right)\) vertices. Then from the complete graph of \(m\) vertices choose a vertex adjoin to the path graph and then choose any one of the vertices from the complete graph other than the chosen vertex. Thus, we get 2 vertices. Thus, the chosen vertices dominate all the vertices of the graph \(L(m, n)\).

Hence the domination number \(\gamma_2(L(m, n)) = \left(\frac{n+1}{2}\right) + 2\)

Case (II)

For even value of \(n \geq 2\)

For a path graph with even value of \(n\) vertices. Choose an alternative vertex from the end vertex, continue like this and stop when all the alternative vertices are executed. Collect all such vertices we get \(\left(\frac{n}{2}\right)\) vertices. Then from the complete graph choose a vertex adjoin to the path graph and then choose any one of the vertices the complete graph other than the chosen vertex. Thus, we get 2 vertices from the complete graph. Thus, the chosen vertices dominate all the vertices of the graph \(L(m, n)\).

Hence the domination number \(\gamma_2(L(m, n)) = \left(\frac{n}{2}\right) + 2\)

Theorem 4.5

For a Tadpole graph \(T(m, n)\), the 2 - domination number

\[\gamma_2(T(m, n)) = \begin{cases} \frac{m+n+2}{2}, & \text{for odd } m \geq 3, \text{ odd } n \geq 3 \\ \frac{m+n}{2}, & \text{for even } m \geq 4, \text{ even } n \geq 2 \\ \frac{m+n+1}{2}, & \text{for odd } m \geq 3, \text{ even } n \geq 3 \\ \frac{m}{2}, & \text{for even } m \geq 4, \text{ odd } n \geq 3 \end{cases} \]

Proof.

First consider the cycle graph \(C_m\).

For odd value of \(m\), choose a vertex that adjoins the path graph and then choose the alternative vertices in the cycle, continue like this and stop when all the alternative vertices are executed. Thus, we get \(\left(\frac{m+1}{2}\right)\) vertices.

For even value of \(m\), choose a vertex that adjoins the path graph and then choose the alternative vertices in the cycle, continue this process until all the alternative vertices are executed.

Thus, we get \(\left(\frac{m}{2}\right)\) chosen vertices.

Next consider the path graph \(P_n\).
For odd value of \(n \), choose the end vertex and then choose the alternative vertices, continue like this and stop when all the alternative vertices are executed. Thus, we get \(\left(\frac{n+1}{2} \right) \) vertices.

For even value of \(n \), choose the end vertex and then choose the alternative vertices, continue this process and stop when all the alternative vertices are executed. Thus, we get \(\left(\frac{n}{2} \right) \) chosen vertices.

Case i

For odd value of \(m \geq 3 \) & odd value of \(n \geq 3 \).

From the above algorithm, we get \(\left(\frac{m+1}{2} \right) \) vertices and \(\left(\frac{n+1}{2} \right) \) vertices i.e., \(\left(\frac{m+n+2}{2} \right) \) vertices to dominate all the vertices of the graphs \(T (m, n) \). Hence the 2 - domination number

\[\gamma_2 (T (m, n)) = \left(\frac{m+n+2}{2} \right) \]

Case ii

For even value of \(m \geq 3 \) & even value of \(n \geq 2 \).

From the above algorithm, we get \(\left(\frac{m}{2} \right) \) vertices and \(\left(\frac{n}{2} \right) \) vertices i.e., \(\left(\frac{m+n}{2} \right) \) vertices to dominate all the vertices of the graph \(T (m, n) \). Hence the 2 - domination number,

\[\gamma_2 (T (m, n)) = \left(\frac{m+n}{2} \right) \]

Case iii

For odd value of \(m \geq 3 \) & even value of \(n \geq 2 \).

From the above algorithm, we get \(\left(\frac{m+1}{2} \right) \) vertices and \(\left(\frac{n}{2} \right) \) vertices i.e., \(\left(\frac{m+n+1}{2} \right) \) vertices to dominate all the vertices of the graph \(T (m, n) \).

Hence the 2 - domination number

\[\gamma_2 (T (m, n)) = \left(\frac{m+n+1}{2} \right) \]

Case iv

For even value of \(m \geq 4 \) & odd value of \(n \geq 3 \).

From the above algorithm, we get \(\left(\frac{m}{2} \right) \) vertices and \(\left(\frac{n+1}{2} \right) \) vertices i.e., \(\left(\frac{m+n+1}{2} \right) \) vertices to dominate all the vertices of the graph.

Hence the 2 - domination number is

\[\gamma_2 (T (m, n)) = \left(\frac{m+n+1}{2} \right) \]

V. CONCLUSION

In this paper, we have computed the 2 - dominating set and the 2 - domination number of some special graphs such as Flower graph, Banana tree, Coconut Tree, Lollipop Graph and Tadpole Graph.

REFERENCES

1. From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/.
2. F. Harary, Graph Theory, Narosa Publishing House Reading, New Delhi (1988).
3. J.F. Fink, M.S. Jacobson, “n – Domination in graphs”. Graph Theory with Applications to Algorithms and Computer Science (Kalamazoo, Mich., 1984), Wiley – Intersci.Publ., Wiley, New York (1985), pp. 283 – 300.

4. A. Frendup, M.A. Henning, B. Randerath, P.D. Vestergaard, “An upper bound on the domination number of graphs with minimum degree 2”. Discrete Math.309(2009) 639-646.

5. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, “Fundamental of Domination in Graphs”. Marcel Dekker, Inc., New York, 1998.

6. Manjula. C. Gudgeri, Varsha, “Double Domination Number of Some Families of Graph”, International Journal of Recent Technology and Engineering (IJRTE) ISSN:2277-3878, Volume-9 Issue-2, July 2020.

7. Wolfram Math World, https://mathworld.wolfram.com/.