Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings

Takahiro Chiba1, Gerrit E. W. Bauer1,2,3, and Saburo Takahashi1

1 Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
2 WPI-AIMR, Tohoku University, Sendai, Miyagi 980-8577, Japan
3 Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Dated: April 24, 2015)

We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e. antiferromagnetically exchange-coupled spin valves in which applied magnetic fields tune the magnetic configuration to become noncollinear. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferromagnet-normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the static interlayer non-local and the dynamic exchange interactions. We predict non-collinearity-induced additional damping that can be sensitively modulated by an applied magnetic field. The theoretical results compare favorably with published experiments.

I. INTRODUCTION

Antiferromagnets (AFMs) boast many of the functionalities of ferromagnets (FM) that are useful in spintronic circuits and devices: Anisotropic magnetoresistance (AMR)4 tunneling anisotropic magnetoresistance (TAMR)5 current-induced spin transfer torque6 and spin current transmission7 have all been found in or with AFMs. This is of interest because AFMs have additional features potentially attractive for applications. In AFMs the total magnetic moment is (almost) completely compensated on an atomic length scale. The AFM order parameter is, hence, robust against perturbations such as external magnetic fields and do not generate stray fields themselves either. A spintronic technology based on AFM elements is therefore very attractive14,15. Drawbacks are the difficulty to control AFMs by magnetic fields and much higher (THz) resonance frequencies14,16, which are difficult to match with conventional electronic circuits. Man-made magnetic multilayers in which the layer magnetizations in the ground state is ordered in an antiparallel fashion17, i.e. so-called synthetic antiferromagnets, do not suffer from this drawback and have therefore been a fruitful laboratory to study and modulate antiferromagnetic couplings and its consequences18,19 but also found applications as magnetic field sensors19. Transport in these multilayers including the giant magnetoresistance (GMR)20,21 are now well understood in terms of spin and charge diffusive transport. Current-induced magnetization switching in F/N/F spin valves and tunnel junctions22 has been a game-changer for devices such as magnetic random access memories (MRAM)23. A key parameter of magnetization dynamics is the magnetic damping; a small damping lowers the threshold of current-driven magnetization switching24 whereas a large damping suppresses “ringing” of the switched magnetization25,26.

Magnetization dynamics in multilayers generates “spin pumping”, i.e. spin current injection from the ferromagnet into metallic contacts. It is associated with a loss of angular momentum and an additional interface-related magnetization damping26,27. In spin valves, the additional damping is suppressed when the two magnetizations precess in-phase, while it is enhanced for a phase difference of π (out-of-phase)27,28. This phenomenon is explained in terms of a “dynamic exchange interaction”, i.e. the mutual exchange of non-equilibrium spin currents, which should be distinguished from (but coexists with) the oscillating equilibrium exchange-coupling mediated by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. The equilibrium coupling is suppressed when the spacer thickness is thicker than the elastic mean-free path23,29 while the dynamic coupling is effective on the scale of the usually much larger spin-flip diffusion length.

Antiparallel spin valves provide a unique opportunity to study and control the dynamic exchange interaction between ferromagnets through a metallic interlayer for tunable magnetic configurations30,31. An originally antiparallel configuration is forced by relatively weak external magnetic fields into a non-collinear configuration with a ferromagnetic component. Ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) are two useful experimental methods to investigate the nature and magnitude of exchange interactions and magnetic damping in multilayers32. Both methods observe two resonances, i.e. acoustic (A) and optical (O) modes, which are characterized by their frequencies and linewidths33,34.

Timopheev \textit{et al}. observed an effect of the interlayer RKKY coupling on the FMR and found the linewidth to be affected by the dynamic exchange coupling in spin valves with one layer fixed by the exchange-bias of an inert AFM substrate35. They measured the FMR spectrum of the free layer by tuning the interlayer coupling (thickness) and reported a broadening of the linewidth by the dynamic exchange interaction. Tamiguchi \textit{et al}. addressed theoretically the enhancement of the Gilbert damping constant due to spin pumping in noncollinear F/N/F trilayer systems, in which one of the magnetizations is excited by FMR while the other is off-resonant, but adopt a role as spin sink36. The dynamics of coupled spin valves in which both layer magnetizations are free to move has been computed by one of us37 and by Skarsvåg \textit{et al}.38 but only for collinear (parallel and antiparallel) configurations. Current-induced high-frequency oscillations without applied magnetic field in ferromagnetically coupled spin valves has been predicted39.

In the present paper, we model the magnetization dynamics of the simplest of synthetic antiferromagnets, i.e. the antiferromagnetically exchange-coupled spin valve in which the (in-plane) ground state magnetizations are for certain spacer thicknesses ordered in an antiparallel fashion by the RKKY interlayer coupling40. We focus on the coupled magnetization...
modes in symmetric spin valves in which in contrast to previous studies, both magnetizations are free to move. We include static magnetic fields in the film plane that deform the antiparallel configuration into a canted one. Microwaves with longitudinal and transverse polarizations with respect to an external magnetic field then excite A and O resonance modes, respectively. We develop the theory for magnetization dynamics and damping based on the Landau-Lifshitz-Gilbert equation with mutual pumping of spin currents and spin transfer torques based on the spin diffusion model with quantum mechanical boundary conditions. We confirm that the additional damping of O modes is larger than that of the A modes. We report that a noncollinear magnetization configuration induces additional damping torques that to the best of our knowledge have not been discussed in magnetic multilayers before. The external magnetic field strongly affects the dynamics by modulating the phase of the dynamic exchange interaction. We compute FMR linewidths as a function of applied magnetic fields and find good agreement with experimental FMR spectra on spin valves. The dynamics of magnetic multilayers as measured by ac spin transfer torque excitation reveals a relative broadening of the O modes linewidths that is well reproduced by our spin valve model.

In Sec. III we present our model for noncollinear spin valves based on spin-diffusion theory with quantum mechanical boundary conditions. In Sec. III we consider the magnetization dynamics in antiferromagnetically coupled noncollinear spin valves as shown in Fig. II(b). We derive the linearized magnetization dynamics, resonance frequencies, and lifetimes of the acoustic and optical resonance modes in Sec. IV We discuss the role of dynamic spin torques on noncollinear magnetization configurations in relation to external magnetic field dependence of the linewidth. In Sec. V we compare the calculated microwave absorption and linewidth with published experiments. We summarize the results and end with the conclusions in Sec. VI.

II. SPIN DIFFUSION TRANSPORT MODEL

We consider F1|NM|F2 spin valves as shown in Fig. II(a), in which the magnetizations \(\mathbf{M}_j \) of the ferromagnets \(F_j \) \((j = 1, 2)\) are coupled by an antiparallel interlayer exchange interaction and tilted towards the direction of an external magnetic field. Applied microwaves with transverse polarizations with respect to an external magnetic field cause dynamics and, via spin pumping, spin currents and accumulations in the normal-metal (NM) spacer. The longitudinal component of the spin accumulation diffuses into and generates spin accumulations in F that we show to be small later, but disregard initially. Let us denote the pumped spin current \(\mathbf{J}^p \), while \(\mathbf{J}^B \) is the diffusion (back-flow) spin current density induced by a spin accumula-
The diffusion spin-current density in NM reads
\[
J_{s1}(z) = \frac{\sigma}{2\epsilon} \partial_z \mu_s(z),
\]
where \(\sigma = \rho^{-1}\) is the electrical conductivity and \(\mu_s(z) = A e^{-(z/\lambda)^\alpha} + B e^{-(z/\lambda)^\beta}\) the spin accumulation vector that is a solution of the spin diffusion equation \(\partial^2 \mu_s = \mu_s / \lambda^2\), where \(\lambda = \sqrt{D_T \tau_{sf}}\) is the spin-diffusion length, \(D\) the diffusion constant, and \(\tau_{sf}\) the spin-flip relaxation time. The vectors \(A\) and \(B\) are determined by the boundary conditions at the F1|NM (\(z = 0\)) and F2|NM (\(z = d_N\)) interfaces: \(J_{s1}(0) = J_{s1}^G + J_{s1}^B = J_{s1}\) and \(J_{s1}(d_N) = -J_{s1}^G - J_{s1}^B = -J_{s1}\). The resulting spin accumulation in \(N\) reads
\[
\mu_s(z) = \frac{2e\alpha}{\sinh(\frac{d_N}{\lambda})} \left[J_{s1} \cosh(\frac{z - d_N}{\lambda}) + J_{s2} \cosh(\frac{z}{\lambda}) \right],
\]
with interface spin currents
\[
J_{s1} = \frac{\eta S}{1 - \eta^2} \left[\delta J_1^P + \frac{\eta^2 (m_2 \cdot \delta J_1^P)}{1 - \eta^2 (m_1 \cdot m_2)^2} m_1 \times (m_1 \times m_2) \right],
\]
\[
J_{s2} = -\frac{\eta S}{1 - \eta^2} \left[\delta J_2^P + \frac{\eta^2 (m_1 \cdot \delta J_2^P)}{1 - \eta^2 (m_1 \cdot m_2)^2} m_2 \times (m_2 \times m_1) \right].
\]

Here
\[
\delta J_1^P = J_1^P + \eta m_1 \times (m_1 \times J_1^P),
\]
\[
\delta J_2^P = J_2^P + \eta m_2 \times (m_2 \times J_2^P),
\]
\(S = \sinh(d_N/\lambda)/g_r\) and \(\eta = g_r/\left[\sinh(d_N/\lambda) + g_r \cosh(d_N/\lambda)\right]\) are the efficiency of the back flow spin currents, and \(g_r = 2\lambda_0 G\), is dimensionless. The first terms in Eqs. (4a) and (4b) represent the mutual pumping of spin currents while the second terms may be interpreted as a spin current induced by the noncollinear magnetization configuration, including the back flow from the NM interlayer.

III. MAGNETIZATION DYNAMICS WITH DYNAMIC SPIN TORQUES

We consider the magnetic resonance in the non-collinear spin valve shown in Fig. 1. The magnetization dynamics are described by the Landau-Lifshitz-Gilbert (LLG) equation,
\[
\partial_t m_1 = -\gamma m_1 \times \mathbf{M}_{\text{eff}1} + \alpha_0 m_1 \times \partial_t m_1 + \tau_1,
\]
\[
\partial_t m_2 = -\gamma m_2 \times \mathbf{M}_{\text{eff}2} + \alpha_0 m_2 \times \partial_t m_2 - \tau_2.
\]
The first term in Eqs. (6a) and (6b) represents the torque induced by the effective magnetic field
\[
\mathbf{M}_{\text{eff}1(2)} = \mathbf{H} + h(t) - 4\pi M_s m_{1(2)} \hat{z} + \frac{J_{ex}}{M_s d_f} m_{2(1)},
\]
which consists of an in-plane applied magnetic field \(\mathbf{H}\), a microwave field \(h(t)\), and the demagnetization field \(-4\pi M_s m_{1(2)} \hat{z}\) with saturation magnetization \(M_s\). The interlayer exchange field is \(J_{ex}/(M_s d_f) m_{2(1)}\) with areal density of the interlayer exchange energy \(J_{ex} < 0\) (for antiferromagnetic-coupling) and F layer thickness \(d_f\). The second term is the Gilbert damping torque that governs the relaxation characterized by \(\alpha_0\) towards an equilibrium direction. The third term, \(\tau_1/2)\), is the spin-transfer torque induced by the absorption of the transverse spin currents of Eqs. (4a) and (4b), and \(\gamma\) and \(\alpha_0\) are the gyromagnetic ratio and the Gilbert damping constant of the isolated ferromagnetic films, respectively. Some technical details of the coupled LLG equations are discussed in Appendix A. Introducing the total magnetization direction \(m = (m_1 + m_2)/2\) and the difference vector \(n = (m_1 - m_2)/2\), the LLG equations can be written
\[
\partial_t m = -\gamma m \times (H + h) + 2\gamma M_s (m \times n + n \times \partial_t n) + \tau_m,
\]
\[
\partial_t n = -\gamma n \times (H + h + J_{ex}/M_s d_f) + 2\gamma M_s (n \times m + m \times n) + \tau_n,
\]
where the spin-transfer torques \(\tau_m = (\tau_1 + \tau_2)/2\) and \(\tau_n = (\tau_1 - \tau_2)/2\) become
\[
\tau_m/\alpha_m = m \times \partial_t m + n \times \partial_t n + 2\eta \left[\frac{n \cdot (m \times \partial_t m) \cdot n}{1 - \eta C} + \frac{m \cdot (n \times \partial_t n) \cdot n}{1 + \eta C} \right],
\]
\[
\tau_n/\alpha_n = m \times \partial_t n + n \times \partial_t m - 2\eta \left[\frac{m \cdot (n \times \partial_t m) \cdot n}{1 - \eta C} - \frac{n \cdot (m \times \partial_t n) \cdot n}{1 + \eta C} \right],
\]
and \(C = m^2 - n^2\), while
\[
\alpha_m = \frac{\alpha_1 g_r}{1 + g_r \coth(d_N/2A)},
\]
\[
\alpha_n = \frac{\alpha_1 g_r}{1 + g_r \tanh(d_N/2A)},
\]
with \(\alpha_1 = \gamma h^2/(4e^2 \lambda_0 M_s d_f)\).
IV. CALCULATION AND RESULTS

We consider the magnetization dynamics excited by linearly polarized microwaves with a frequency ω and in-plane magnetic field $\mathbf{h}(t) = (h_x, h_y, 0) e^{i\omega t}$ that is much smaller than the saturation magnetization. For small angle magnetization precession the total magnetization and difference vector may be separated into a static equilibrium and a dynamic component as $\mathbf{m} = \mathbf{m}_0 + \delta \mathbf{m}$ and $\mathbf{n} = \mathbf{n}_0 + \delta \mathbf{n}$, respectively, where $\mathbf{m}_0 = (0, \sin \theta, 0)$, $\mathbf{n}_0 = (\cos \theta, 0, 0)$, $C = -\cos 2\theta$, and $s = -2 \sin 2\theta$. The equilibrium (zero torque) conditions $\mathbf{m}_0 \times \mathbf{H} = 0$ and $\mathbf{n}_0 \times (\mathbf{H} + J_{ex}/(M_s d_f) \mathbf{m}_0) = 0$ lead to the relation

$$\sin \theta = H/H_s,$$

where $H_s = -J_{ex}/(M_s d_f) = |J_{ex}|/(M_s d_f)$ is the saturation field. The LLG equations read

$$\frac{\partial \delta \mathbf{m}}{\partial t} = -\gamma \delta \mathbf{m} \times \mathbf{H} - \gamma \mathbf{m}_0 \times \mathbf{h} + 2\pi M_s \delta \mathbf{m}_0 \times \hat{\mathbf{z}},$$

$$\frac{\partial \delta \mathbf{n}}{\partial t} = -\gamma \delta \mathbf{n} \times \mathbf{H} - \gamma \mathbf{n}_0 \times \mathbf{h} + 2\pi M_s \delta \mathbf{n}_0 \times \hat{\mathbf{z}},$$

with linearized spin-transfer torques

$$\frac{\partial \delta \mathbf{m}}{\partial t} = \frac{\eta \sin 2\theta}{1 + \eta \cos 2\theta} \gamma \delta \mathbf{m}_0 \times \hat{\mathbf{z}} + \frac{\eta \sin 2\theta}{1 + \eta \cos 2\theta} \gamma \delta \mathbf{n}_0 \times \hat{\mathbf{z}},$$

$$\frac{\partial \delta \mathbf{n}}{\partial t} = \frac{\eta \sin 2\theta}{1 + \eta \cos 2\theta} \gamma \delta \mathbf{m}_0 \times \hat{\mathbf{z}} + \frac{\eta \sin 2\theta}{1 + \eta \cos 2\theta} \gamma \delta \mathbf{n}_0 \times \hat{\mathbf{z}}.$$

To leading order in the small precessing components $\delta \mathbf{m}$ and $\delta \mathbf{n}$, the LLG equations in frequency space become

$$\delta m_x = \gamma H_s \omega \left(\frac{\omega^2 - \omega_A^2 - i\Delta_{A}\omega}{\omega^2 - \omega_A^2 - i\Delta_{A}\omega} \right) \sin^2 \theta,$$

$$\delta n_y = -\gamma H_s \omega \left(\frac{\omega^2 - \omega_A^2 - i\Delta_{A}\omega}{\omega^2 - \omega_A^2 - i\Delta_{A}\omega} \right) \cos \theta \sin \theta,$$

$$\delta m_z = \gamma H_s \omega \left(\frac{\omega^2 - \omega_A^2 - i\Delta_{A}\omega}{\omega^2 - \omega_A^2 - i\Delta_{A}\omega} \right) \sin \theta,$$

where Δ_{A} is always larger than α_m and α_{Λ} while that in Δ_{O} scales with α_{n} and α_{O} in.

The A modes ($\delta m_x, \delta n_y, \delta m_z$) are excited by h_z, while the O modes ($\delta n_x, \delta m_z, \delta m_n$) couple to h_v. The poles in $\delta \mathbf{m}(\omega)$ and $\delta \mathbf{n}(\omega)$ define the resonance frequencies and linewidths that do not depend on the magnetic field since we disregard anisotropy and exchange-bias.

A. Acoustic and Optical modes

An antiferromagnetically exchange-coupled spin valves generally have non-collinear magnetization configurations by the presence of external magnetic fields. For $H < H_s$ ($0 < \theta < \pi/2$), the acoustic mode:

$$\omega_A = \gamma H \sqrt{1 + (4\pi M_s/H_s)},$$

$$\Delta_A = \alpha_0 \gamma \left(H_s + 4\pi M_s + H_s \sin^2 \theta \right) + \alpha_n \gamma \left(H_s + 4\pi M_s + \alpha_{\Lambda}(\theta) \gamma H_s \right),$$

and the optical mode:

$$\omega_O = \gamma \sqrt{(4\pi M_s/H_s)(H_s^2 - H^2)},$$

$$\Delta_O = \alpha_0 \gamma \left(4\pi M_s + H_s \cos^2 \theta \right) + \alpha_n 4\pi M_s + \alpha_{\Lambda}(\theta) \gamma H_s,$$

where

$$\alpha_{\Lambda}(\theta) = \frac{\alpha_{g_{1\lambda}} \sin^2 \theta}{1 + g_{1\lambda} \tanh (d_{k}/2\lambda) + g_{2\lambda} \sin^2 \theta \sinh (d_{k}/\lambda)}$$

$$\alpha_{O}(\theta) = \frac{\alpha_{g_{2\lambda}} \cos^2 \theta}{1 + g_{2\lambda} \tanh (d_{k}/2\lambda) + g_{2\lambda} \cos^2 \theta \sinh (d_{k}/\lambda)}.$$

The additional broadening in Δ_A is proportional to α_m and α_{Λ} while that in Δ_O scales with α_n and α_O in. Figure 2(a) shows α_m and α_{Λ} as a function of spacer layer thickness, indicating that α_n is always larger than α_m, and that α_n (α_m) strongly increases (decreases) with decreasing N layer thickness, especially for $d_N < \lambda$ and large $g_{1\lambda}$. Figure 2(b) shows the dependence of α_A and α_O on the tilted angle θ for different values of d_N. As θ increases, α_A increases from 0 to α_m while α_O decreases to 0. The additional damping can be explained by the dynamic exchange. When two magnetizations in spin valves precess in-phase, each magnet receives a spin current that compensates the pumped one, thereby reducing the interface damping. When the magnetizations precess out of phase, the π phase difference between both spin currents means that the moduli have to be added, thereby enhancing the damping.

When the magnetizations are tilted by an angle θ as sketched in Fig. 1, we predict an additional damping torque expressed by the second terms of Eqs. (4a) and (4b). Figure 3 shows the ratios $\alpha_A(\theta)/\alpha_m$ and $\alpha_O(\theta)/\alpha_O$ as a function of θ and $g_{1\lambda}$ for different values of λ/d_{k}, thereby emphasizing the additional damping in the presence of noncollinear magnetizations. In Fig. 3(a,b) with $\lambda/d_{k} = 1$, i.e. for a spin-diffusive interlayer, the additional damping of both A- and O-modes is significant in a large range of parameter space. On the other
hand, in Fig. 3(c,d) with $\lambda/d_N = 10$, i.e. for an almost spin-ballistic interlayer, the additional damping is more important for the A-mode, while the O-mode is affected only close to the collinear magnetization. In the latter case the intrinsic damping α_0 dominates, however.

B. In-phase and Out-of-phase modes

When the applied magnetic field is larger than the saturation field ($H > H_s$), both magnetizations point in the \hat{y} direction, and the δm (A) and δn (O) modes morph into in-phase and 180° out-of-phase (anitphase) oscillations of δm_1 and δm_2, respectively. The resonance frequency\(^{53}\) and linewidth of the in-phase mode for $H > H_s$ ($\theta = \pi/2$) are

\[
\omega_A = \gamma \sqrt{H (H + 4\pi M_s)},
\]

\[
\Delta_A = 2(a_0 + \alpha_m)\gamma (H + 2\pi M_s),
\]

while those of the out-of-phase mode are

\[
\omega_O = \gamma \sqrt{H (H + 4\pi M_s)},
\]

\[
\Delta_O = 2(a_0 + \alpha_n)\gamma (H - H_s + 2\pi M_s).
\]

Figure 3(a) shows the calculated resonance frequencies of the A and O modes as a function of an applied magnetic field H while 3(b) displays the linewidths for $\alpha_1/\alpha_0 = 1$, which is representative for ferromagnetic metals, such as permalloy (Py) with an intrinsic magnetic damping of the order of $\alpha_0 = 0.01$ and a comparable additional damping α_1 due to spin pumping. A value $g_r = 4/5$ corresponds to $\lambda = 20/200$ nm, $\rho = 10/2.5 \mu\Omega\text{cm}$ for N-Ru/Cu,\(^{54,55}\) $G_y = 2/1 \times 10^{15} \Omega^{-1}\text{m}^{-2}$ for the N(Co(Py)) interface\(^{56,57}\), and $d_F = 1$ nm, for example. The colors in the figure represent different relative layer thicknesses d_N/λ. The linewidth of the A mode in Fig. 3(b) increases with increasing H, while that of the O mode starts to decrease until a minimum at the saturation field $H = H_s$. Figure 3(c) shows the linewidths for $\alpha_1/\alpha_0 = 10$, which describes ferromagnetic materials with low intrinsic damping, such as Heusler alloys\(^{58}\) and magnetic garnets.\(^{59}\) In this case, the linewidth of the O mode is much larger than that of the A mode, especially for small d_N/λ.

In the limit of $d_N/\lambda \to 0$ is easily established experimentally. The expressions of the linewidth in Eqs. (17) and (19) are then greatly simplified to $\Delta_A = \gamma (H + 4\pi M_s + H_s \sin^2 \theta)\alpha_0$ and $\Delta_O = \gamma (4\pi M_s + H_s \cos^2 \theta)\alpha_0 + (4\pi M_y) g_r \alpha_1$, and $\Delta_A \ll \Delta_O$ when $g_r \alpha_1 \gg \alpha_0$. The additional damping, Eq. (10), reduces to $\alpha_m \to 0$ and $\alpha_n \to 2[\gamma/4(4\pi M_y) d_F(h/e^2)G_y]$ when the magnetizations are collinear and in the ballistic spin transport limit.\(^{22}\) In contrast to the acoustic mode, the dynamic exchange interaction enhances damping of the optical mode. $\Delta_O \gg \Delta_A$ has been observed in Py/Ru/Py trilayer spin valves\(^{52}\) and Co/Cu multilayers,\(^{30}\) consistent with the present results.

For spin valves with ferromagnetic metals, the interface backflow spin-current\(^{41b}\) reads

\[
\mathbf{j}_j = (G_i/e) \left[\xi_F (\mathbf{m}_j \cdot \mathbf{\mu}_s) \mathbf{m}_j - \mathbf{\mu}_s \right],
\]

where $\xi_F = \text{a}

FIG. 2. (a) α_m (dashed line) and α_n (solid line) as a function of λ/d_N for different values of the dimensionless mixing conductance g_r. (b) α_{AC} (dashed line) and α_{OP} (solid line) as a function of tilt angle θ for $g_r = 5$ and different values of λ/d_N.**

FIG. 3. (a,c) $\alpha_A(\theta)/\alpha_m$ and (b,d) $\alpha_O(\theta)/\alpha_n$ as a function of θ and g_r for different values of λ/d_N. (a,b) with $\lambda/d_N = 1$, (c,d) with $\lambda/d_N = 10$.**
1 − (G/2G₀)(1 − p²)(1 − η_F) (0 ≤ ξ_F ≤ 1), G is the N/F interface conductance per unit area, and p the conductance spin polarization. Here the spin diffusion efficiency is

\[\eta_F = 1 + \frac{\sigma_F \tanh(d_F/\lambda_F)}{G \lambda_F \cosh(d_F/\lambda_F)}, \]

where \(\sigma_F, \lambda_F, \) and \(d_F \) are the conductivity, the spin-flip diffusion length, and the layer thickness of the ferromagnets, respectively. For the material parameters of a typical ferromagnet with \(d_F = 1 \text{ nm}, \) the resistivity \(\rho_F = 10 \text{ } \mu\Omega\text{cm}, \) \(G = 2G₀ = 10^{15} \text{ } \Omega^{-1}\text{m}^{-2}, \) \(\lambda_F = 10 \text{ nm}, \) and \(p = 0.7, \xi_F = 0.95, \) which justifies disregarding this contribution from the outset.

V. COMPARISON WITH EXPERIMENTS

FMR experiments yield the resonant absorption spectra of a microwave field of a ferromagnet. The microwave absorption

![Image](image_url)

FIG. 4. (a) Resonance frequencies of the A and O modes as a function of magnetic field for \(H_s/(4\pi M_s) = 1. \) (b), (c) Linewidths of the A (dashed line) and the O (solid line) modes for \(H_s/(4\pi M_s) = 1, \) \(g_r = 5, \) and different values of \(d_N/\lambda. \) (b) \(\alpha_1/\alpha_0 = 1 \) and (c) \(\alpha_1/\alpha_0 = 10. \)

FIG. 5. (a) Derivative of the microwave absorption spectrum \(dP/dH \) at frequency \(\omega/(2\pi) = 9.22 \text{ GHz} \) for different angles \(\varphi \) between the microwave field and the external magnetic field for \(H_s/(4\pi M_s) = 0.5, \) \(\omega/(4\pi M_s) = 0.35, \) \(d_N/\lambda = 0.1, \) \(d_F/\lambda = 0.3, \) \(\alpha_0 = \alpha_1 = 0.02, \) and \(g_r = 4. \) The experimental data have been adopted from Ref. [31]. (b) Computed linewidths of the A and O modes of a Co/Cu multilayer (solid line) compared with experiments on a Co/Cu valve (dashed line) compared with experiments on a Co/Cu multilayer (dashed line).

The power \(P = 2 \langle \textbf{h}(t) \cdot \partial_t \textbf{m}(t) \rangle \) becomes in our model

\[P = \frac{1}{4} \frac{\gamma^2 M_s (H_s + 4\pi M_s) \Delta_A}{(\omega - \omega_A)^2 + (\Delta_A/2)^2} h^2 \sin^2 \theta \]

\[+ \frac{1}{4} \frac{\gamma^2 M_s (4\pi M_s) \Delta_O}{(\omega - \omega_O)^2 + (\Delta_O/2)^2} h^2 \cos^2 \theta. \]

Power \(P \) depends sensitively on the character of the resonance, the polarization of the microwave, and the strength of the applied magnetic field. In Figure 5(a) we plot the normalized derivative of the microwave absorption spectra \(dP/(\omega P) \) at different angles \(\varphi \) between the microwave field \(\textbf{h}(t) \) and the external magnetic field \(\textbf{H}, \) where \(P_0 = \gamma M_s h^2 \) and \(\textbf{h}(t) = h(\sin \varphi, \cos \varphi, 0) e^{\text{i} \omega t}. \) Here we use the experimental values \(H_s = 5 \text{ Koe}, 4\pi M_s = 10 \text{ Koe}, d_N = 1 \text{ nm}, \) \(d_F = 3 \text{ nm}, \) and microwave frequency \(\omega/(2\pi) = 9.22 \text{ GHz} \) as found for a symmetric Co/Ru/Co trilayer. \(\lambda = 20 \text{ nm for} \)
We partially reproduce the experimental data for magnetic exchange-dipolar discrepancies in the applied magnetic field dependence might exceed our spin valve model in the macrospin approximation. Including the spin transfer torques by spin pumping based on Lifshitz-Gilbert equations for the coupled magnetizations in a model for synthetic antiferromagnets. We derive the Landau-Co(3.2 nm)|Ru(0.95 nm)|Co(1 nm) well.

Figure 3(b) shows the calculated linewidths of A and O modes as a function of an applied magnetic field for a Co(1 nm)|Cu(1 nm)|Co(1 nm) spin valve. The experimental values $\lambda = 200$ nm and $\rho = 2.5 \mu \Omega \text{cm}$ for Cu, $\alpha_0 = 0.01$ and $4\pi M_s = 15$ kOe for Co, and $g_s = 5$ (corresponding to $G_e = 10^{-15} \Omega^{-1} \text{m}^{-2}$) for the interface have been adopted.

We partially reproduce the experimental data for magnetic multilayers; for the weak-field broadenings of the observed linewidths agreement is even quantitative. The remaining discrepancies in the applied magnetic field dependence might reflect exchange-dipolar and/or multilayer spin waves beyond our spin valve model in the macrospin approximation.

VI. CONCLUSIONS

In summary, we modelled the magnetization dynamics in antiferromagnetically exchange-coupled spin valves as a model for synthetic antiferromagnets. We derive the Landau-Lifshitz-Gilbert equations for the coupled magnetizations including the spin transfer torques by spin pumping based on the spin diffusion model with quantum mechanical boundary conditions. We obtain analytic expressions for the linewidths of magnetic resonance modes for magnetizations canting by applied magnetic fields and achieve good agreement with experiments. We find that the linewidths strongly depend on the type of resonance mode (acoustic and optical) as well as the strength of magnetic fields. The magnetic resonance spectra reveal complex magnetization dynamics far beyond a simple precession even in the linear response regime. Our calculated results compare favorably with experiments, thereby proving the importance of dynamic spin currents in these devices. Our model calculation paves the way for the theoretical design of synthetic AFM material that is expected to play a role in next-generation spin-based data-storage and information technologies.

VII. ACKNOWLEDGMENTS

The authors thank K. Tanaka, T. Moriyama, T. Ono, T. Yamamoto, T. Seki, and K. Takanashi for valuable discussions and collaborations. This work was supported by Grants-in-Aid for Scientific Research (Grant Nos. 22540346, 25247056, 25220910, 268063) from the JSPS, FOM (Stichting voor Fundamenteel Onderzoek der Materie), the ICC-IMR, EU-FET Grant InSpin 612759, and DFG Priority Programme 1538 “Spin-Caloric Transport” (BA 2954/2).

Appendix A: Coupled Landau-Lifshitz-Gilbert equations in noncollinear spin valves

Both magnets and interfaces in our NM|F|NM spin valves are assumed to be identical with saturation magnetization M_s and G_e, the real part of the spin-mixing conductance per unit area (vanishing imaginary part). When both magnetizations are allowed to precess as sketched in Fig. 4(a), the LLG equations expanded to include additional spin-pump and spin-transfer torques read

\[
\frac{\partial \mathbf{m}}{\partial t} = -\gamma \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha_0 \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} + \alpha_{\text{SP}} \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} \cdot \eta \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} + \eta \left(\mathbf{m} \cdot \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t} \right) \mathbf{m} + \alpha_{\text{SP}}^{\text{nc}}(\phi) \mathbf{m} \times \left(\mathbf{m} \times \mathbf{m} \right),
\]

where γ and α_0 are the gyromagnetic ratio and the Gilbert damping constant of the isolated ferromagnetic films labeled by i and thickness d_{Fi}. Asymmetric spin valves due to the thickness difference d_{Fi} suppress the cancellation of mutual spin-pump in A-mode, which may be advantage to detect both modes in the experiment. The effective magnetic field

\[
\mathbf{H}_{\text{eff}} = \mathbf{H}_i + \mathbf{h}(t) + \mathbf{H}_{\text{di}}(t) + \mathbf{H}_{\text{sij}}(t)
\]

consists of the Zeeman field \mathbf{H}_i, a microwave field $\mathbf{h}(t)$, the dynamic demagnetization field $\mathbf{H}_{\text{di}}(t)$, and interlayer exchange field $\mathbf{H}_{\text{sij}}(t)$. The Gilbert damping torque parameterized by α_0 governs the relaxation towards an equilibrium direction. The third term in Eq. (A1) represents the mutual spin pumping-induced damping-like torques in terms of damping parameter

\[
\alpha_{\text{SP}}^{\text{nc}}(\phi) = \frac{\alpha_{\text{SP}} h^2}{1 - \eta^2 (\mathbf{m} \cdot \mathbf{m})^2} \left[(\mathbf{m} \cdot \mathbf{m}) \times \frac{\partial \mathbf{m}}{\partial t} \right] (\mathbf{m} \cdot \mathbf{m})
\]
\[\gamma \hbar^2 G_r \eta S \quad (A4) \]

where

\[\eta = \frac{g_r}{\sinh(d_S/\lambda) + g_r \cosh(d_S/\lambda)} \quad (A5) \]

and \(g_r = 2 \lambda p G_r \) is dimensionless. The fourth term in Eq. (A4) is the damping Eq. (A2) that depends on the relative angle \(\phi \) between the magnetizations. When \(\bm{m}_i \) is fixed along the \(\mathbf{H}_i \) direction, i.e., a spin-sink limit, Eq. (A4) reduces to the dynamic stiffness in spin valves without an electrical bias.60

When the magnetizations are noncollinear as in Fig. 11, we have to take into account the additional damping torques described by the second terms in Eqs. (41) and (42). In the ballistic limit \(d_S/\lambda \to 0 \) and collinear magnetizations, Eq. (A4) reduces to the well known LLG equation with dynamic exchange interaction.27,28,38

1. X. Marti, I. Fina, C. Frontera, Jian Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367 (2014).
2. B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nat. Mater. 10, 347 (2011).
3. P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo, and A. H. MacDonald, Phys. Rev. B 75, 174428 (2007).
4. Z. Wei, A. Sharma, A. S. Núñez, P. M. Haney, R. A. Duine, J. Bass, A. H. MacDonald, and M. Tsoi, Phys. Rev. Lett. 98, 116603 (2007).
5. S. Urazhdin and N. Anthony, Phys. Rev. Lett. 99, 046602 (2007).
6. Y. Xu, X. Wang, and K. Xia, Phys. Rev. Lett. 100, 226602 (2008).
7. K. M. D. Hals, Y. Tserkovnyak, and A. Brataas, Phys. Rev. Lett. 106, 107206 (2011).
8. H. V. Gomonay, R. V. Kunitsyn, and V. M. Loktev, Phys. Rev. B 85, 134446 (2012).
9. C. Hahn, G. de Loubens, V. V. Naletov, J. B. Youssef, O. Klein, and M. Viret, Eur. Phys. Lett. 108, 57005 (2014).
10. H. Wang, C. Du, P. C. Hammel, and F. Yang, Phys. Rev. Lett. 113, 097202 (2014).
11. T. Moriyama, M. Nagata, K. Tanaka, K. Kim, H. Almasi, W. Wang, and T. Ono, ArXiv e-prints (2014), [arXiv:1411.4100].
12. R. Duine, Nat. Mater. 10, 344 (2011).
13. A. H. MacDonald and M. Tsoi, Phil. Trans. Royal Soc. A 369, 3098 (2011).
14. A. V. Kivel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature (London) 435, 655 (2005).
15. T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010).
16. S. Wienholdt, D. Hinzke, and U. Nowak, Phys. Rev. Lett. 108, 247207 (2012).
17. P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2448 (1986).
18. P. Grünberg, D. E. Bürgler, H. Dassow, A. D. Rata, C. M. Schneider, Acta Materialia 55, 1171 (2007).
19. S. S. P. Parkin, X. Jiang, C. Kaiser, P. Chupela, K. Roche, and M. Samant, Proc. IEEE 91, 661 (2003).
20. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2478 (1988).
21. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
22. A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012).
23. E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang, S. Wolf, A. W. Ghosh, J. Lu, S. J. Poon, M. Stan, W. Butler, S. Gupta, C. K. A. Mewes, T. Mewes, and P. Visscher, IEEE Trans. Magn. 46, 1873 (2010).
24. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
25. M. J. Carey, N. Smith, S. Maat, and J. R. Childress, Appl. Phys. Lett. 93, 102509 (2008).
26. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
27. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).
28. B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, and G. E. W. Bauer, Phys. Rev. Lett. 90, 187603 (2003).
29. S. Takahashi, Appl. Phys. Lett. 104, 052407 (2014).
30. K. Tanaka, T. Moriyama, M. Nagata, T. Seki, K. Takahashi, S. Takahashi, and T. Ono Appl. Phys. Express 7, 063010 (2014).
31. Z. Zhang, L. Zhou, P. E. Wigen, and K. Onadjelj, Physica. Rev. Lett. 73, 336 (1994).
32. M. Belmeguenai, T. Martin, G. Woltersdorf, M. Maier, and G. Bayreuther, Phys. Rev. B 76, 104414 (2007).
33. H. Skarsvåg, G. E. W. Bauer, and A. Brataas, Phys. Rev. B 90, 054401 (2014).
34. R. L. Stamps, Phys. Rev. B 49, 339 (1994).
35. S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rep. 348, 441 (2001).
36. J. F. Cochran, J. Rudd, W. B. Muir, B. Heinrich, and Z. Celinski, Phys. Rev. B 42, 508 (1990).
37. B. K. Kuan, M. Buchmeier, D. E. Bürgler, and P. Grünberg, J. Appl. Phys. 91, 7209 (2002).
38. A. A. Timopheeve, Yu. G. Pogorelov, S. Cardoso, P. P. Freitas, G. N. Kakazei, and N. A. Sobolev, Phys. Rev. B 89, 144410 (2014).
39. T. Taniguchi and H. Imamura Phys. Rev. B 87, 020409(R) (2013).
40. A. Layadi and J. O. Artman, J. Magn. Magn. Mate. 176, 175 (1997).
41. B. K. Kuan, M. Buchmeier, R. R. Garcev, D. E. Bürgler, R. Schreiber, and P. Grünberg, J. Appl. Phys. 93, 3427 (2003).
42. R. F. Evans, T. A. Ostler, R. W. Chantrell, I. Radu, and T. Rasing, Appl. Phys. Lett. 104, 082410 (2014).
43. D. E. Gonzalez-Chavez, R. Dutra, W. O. Rosa, T. L. Marcondes, A. Mello, and R. L. Sommer, Phys. Rev. B 88, 104431 (2013).
44. X. M. Liu, Hoa T. Nguyen, J. Ding, M. G. Cottam, and A. O. Adeyeye, Phys. Rev. B 90, 064428 (2014).
45. J. J. Krebs, P. Lubitz, A. Chaiken, and G. A. Prinz, J. Appl. Phys. 67, 5920 (1990).
47 T. Chiba, G. E. W. Bauer, and S. Takahashi, Phys. Rev. Appl. 2, 034003 (2014).
48 T. Chiba, M. Schreier, G. E. W. Bauer, and S. Takahashi, J. Appl. Phys. 117, 17C715 (2015).
49 H. Skarsvåg, André Kapelrud, and A. Brataas, Phys. Rev. B 90, 094418 (2014).
50 Z. Yuan, K. M. D. Hals, Y. Liu, A. A. Starikov, A. Brataas, and P. J. Kelly, Phys. Rev. Lett. 113, 266603 (2014).
51 H. Jiao and G. E.W. Bauer, Phys. Rev. Lett. 110, 217602 (2013).
52 X. Jia, K. Liu, K. Xia, and G. E. W. Bauer, Europhys. Lett. 96, 17005 (2011).
53 Z. Zhang and P. E. Wigen, High frequency processes in magnetic materials, edited by G. Srinivasan and A. N. Slavin (World Scientific, Singapore, 1995).
54 K. Eid, R. Fonck, M. AlHaj Darwish, W. P. Pratt Jr., and J. Bass, J. Appl. Phys. 91, 8102 (2002).
55 S. Yakata, Y. Ando, T. Miyazaki, and S. Mizukami, Jpn. J. Appl. Phys. 45, 5A (2006).
56 X. Jia, Y. Li, K. Xia, and G. E. W. Bauer, Phys. Rev. B 84, 134403 (2011).
57 K. Xia, P. J. Kelly, G. E. W. Bauer, A. Brataas, and I. Turek, Phys. Rev. B 65, 220401 (2002).
58 S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai, and T. Miyazaki, J. Appl. Phys. 105, 07D306 (2009).
59 J. M. D. Coey, Magnetism and magnetic materials (Cambridge University Press, Cambridge, 2010).
60 Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, Phys. Rev. B 67(R), 140404(2003).