Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu Province in China

Xiao Feng Xu 1, Dan Dan Li 1, Yang Liu 1, Yue Gao 1, Zi Yuan Wang 1, Yu Chen Ma 1, Shuo Yang 1, Yuan Yin Cao 1, Yuan Hu Xuan Corresp. 1, Tian Ya Li Corresp. 1

1 College of Plant Protection, Shenyang Agricultural University, Shenyang, China

Corresponding Authors: Yuan Hu Xuan, Tian Ya Li
Email address: xuyuanh115@syau.edu.cn, litianya11@syau.edu.cn

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, severely affects wheat production, but it has been effectively controlled in China since the 1970s. However, the appearance and spread of wheat stem rust races Ug99 (TTKSK, virulence to Sr31), TKTTF (virulence to SrTmp) and TTTTF (virulence to the cultivars carrying Sr9e and Sr13) have received attention. It is important to clarify the effectiveness of resistance genes in a timely manner, especially for the purpose of using new resistance genes in wheat cultivars for durable-resistance. However, little is known about the stem rust resistance genes present in widely used wheat cultivars from Gansu. This study aimed to determine the resistance level at the seedling stage of the main wheat cultivars in Gansu Province. A secondary objective was to assess the prevalence of Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 using molecular markers. The results of the present study indicated that 38 (50.7%) wheat varieties displayed resistance to all the tested races of Puccinia graminis f. sp. tritici. The molecular marker analysis showed that 13 out of 75 major wheat cultivars likely carried Sr2; 25 wheat cultivars likely carried Sr31; and 9 wheat cultivars likely carried Sr38. No cultivar was found to have Sr25 and Sr26, as expected. Surprisingly, no wheat cultivars carried Sr24. The wheat lines with known stem rust resistance genes could be used as donor parent for further breeding programs.
Evaluation and identification of stem rust resistance genes $Sr2$, $Sr24$, $Sr25$, $Sr26$, $Sr31$ and $Sr38$ in wheat lines from Gansu Province in China

Xiao Feng Xu*, Dan Dan Li*, Yang Liu*, Yue Gao, Zi Yuan Wang, Yu Chen Ma, Shuo Yang, Yuan Yin Cao, Yuan Hu Xuan*, Tian Ya Li*

College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China

*These authors contributed equally to this work.

*Corresponding authors

Phone/Fax: +86 24 8834 2056, litianya11@163.com (Tian Ya Li) or Phone/Fax: +86 24 8834 2056, xuanyuanhu115@syau.edu.cn (Yuan Hu Xuan)

Abstract

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, severely affects wheat production, but it has been effectively controlled in China since the 1970s. However, the appearance and spread of wheat stem rust races Ug99 (TTKSK, virulence to $Sr31$), TKTTF (virulence to $SrTmp$) and TTTTF (virulence to the cultivars carrying $Sr9e$ and $Sr13$) have received attention. It is important to clarify the effectiveness of resistance genes in a timely manner, especially for the purpose of using new resistance genes in wheat cultivars for durable-resistance. However, little is known about the stem rust resistance genes present in widely used wheat cultivars from Gansu. This study aimed to determine the resistance level at the seedling stage of the main wheat cultivars in Gansu Province. A secondary objective was to assess the prevalence of $Sr2$, $Sr24$, $Sr25$, $Sr26$, $Sr31$, and $Sr38$ using molecular markers. The results of the present study indicated that 38 (50.7%) wheat varieties displayed resistance to all the tested races of Puccinia graminis f. sp. tritici. The molecular marker analysis showed that 13 out of 75 major wheat cultivars likely
carried Sr_2; 25 wheat cultivars likely carried $Sr31$; and 9 wheat cultivars likely carried $Sr38$. No cultivar was found to have $Sr25$ and $Sr26$, as expected. Surprisingly, no wheat cultivars carried $Sr24$. The wheat lines with known stem rust resistance genes could be used as donor parent for further breeding programs.

Introduction

Puccinia graminis Pers. f. sp. *tritici* Eriks. and E. Henn (*Pgt*) causes one of the most potentially destructive wheat diseases, seriously threatening world grain production (Pardey et al., 2013). Disease-resistance breeding to control wheat stem rust is economic, effective, and protective of the environment, and has been proved to be the best control method by repeated practice (Goutam et al., 2015). Wheat stem rust has been effectively controlled with the wide use of resistance gene $Sr31$ from a 1BL/1RS wheat–rye chromosome arm translocation (Rouse et al., 2012). However, a new race Ug99 virulent to $Sr31$ was identified in Uganda and classified as TTKS by the North American Nomenclature System of *Pgt* in 1999 (Pretorius et al., 2000). Ug99 has broad virulence, and mutates and spreads quickly. Since 1999, 13 variants of Ug99 have been found in 13 countries (FAO, 2017). Recently, Ug99 has been monitored in Egypt, which is the main wheat production area of the Middle East, revealing that its mode of spread is similar to that of a virulent stripe rust pathogen race to *Yr9* predicted by Geographic Information System of CIMMYT (CIMMYT, 2007). Following the identification and spread of the Ug99 race group, a new race TKTTF caused a wheat stem rust epidemic with an estimated 20,000 to 40,000 ha likely planted to ‘Digalu’ (with resistance to Ug99 race group) in Southern Ethiopia during 2013-2014 (Olivera et al., 2015). Currently it has been confirmed in 11 countries, and given the rapid and
destructive nature of race TKTTF, close monitoring of this race is advised – especially in countries which have cultivars carrying the \textit{SrTmp} resistance gene.

A new race TTTTF with virulence to \textit{Sr9e} and \textit{Sr13} attacked thousands of hectares of durum wheat in Sicily, Italy, in 2016, resulting in the largest burst of wheat stem rust in Europe since the 1950s (Bhattacharya, 2017). The large number of spores produced by TTTTF may continue the epidemic in 2017. Moreover, the researchers from the Global Rust Research Center shared a major concern in the warning report that TTTTF could infect not only durum wheat and bread wheat but also dozens of laboratory-grown strains of wheat (FAO, 2017). In view of this, in February 2017, ‘Nature’ highlighted the potential threat to European wheat production of this race (Bhattacharya, 2017). Therefore, the spread of Ug99, TKTTF and TTTTF, and their variants, threaten the wheat production safety in China.

Gansu Province, located in the northwest of China, plays a significant role in the epidemic and spread of wheat stem rust in China (Cao, 1994). Resistance breeding for this disease has not been a primary objective because it has been effectively controlled in China since the 1970s (Wu et al., 2014). However, durable resistance to stem rust has been re-emphasized with the occurrence and spread of new races of \textit{Pgt}. It is necessary to analyze the resistance genes in wheat cultivars (lines) from Gansu Province, and the information provided here will be important for developing potentially durable combinations of stem rust resistance genes in cultivars.

\textbf{Materials and Methods}

\textbf{Wheat cultivars and near-isogenic lines}

A total of 75 tested wheat cultivars in Gansu Province were provided by Dr. Fangping Yang from the Wheat Research Institute, Gansu Academy of Agricultural Sciences.
Molecular markers linked to six Sr genes were tested: Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38. Near-isogenic lines carrying 45 Sr genes were used to confirm the validity of these molecular markers. The near-isogenic lines carrying these resistance genes were provided by Dr. Yue Jin from USDA-ARS, Cereal Disease Laboratory, University of Minnesota, USA.

The tested Pgt races included the 21C3CTHTM, 21C3CFHQ, 34MKGQM, 34MKGSM, 34C3MTGQM and 34C3RTGQM (race 34C3MTGQM and 34C3RTGQM identified from the alternative host Berberis). These races were named according to the methods described in a published study (Li et al., 2016b). The full names of the races and their virulence/avirulence patterns are shown in Table 1. They were isolated and identified by the Plant Immunity Institute, Shenyang Agricultural University, China.

Seedling resistance evaluation

The cultivars were planted in porcelain pots with a 12-cm-diameter. Seven days later, the leaves were moistened by water with 0.1% Tween 20 using an atomizer and then sprayed with 1 g of fresh urediniospores and dried talc in a ratio of 1:20 (v:v). The inoculated seedlings were transferred to a greenhouse with the temperature in a range of 18 to 22 ± 1°C. Three biological replicates of the seedling assays were performed for each Pgt race. After 14 days of inoculation, the infection types (ITs) were recorded using the 0–4 IT scale (Stakman, Stewart & Loegering, 1962). ITs were then grouped into low (‘0’, ‘;’, ‘1’, ‘1+’, ‘2’, ‘2+’, and X) and high (‘3–’, ‘3’, ‘3+’, and ‘4’) infection types. The ITs used in this study are shown in Fig. 1.

DNA extraction

DNA was extracted from young leaves of 10-day-old seedlings using a genomic DNA extraction
kit (http://www.sangon.com/, China). The DNA quality was examined by 1.2% (w/v) agarose gels and DNA quantification was performed using the NanoDrop-1000 version 3.3.1 spectrophotometer.

Polymerase chain reaction (PCR)-specific primers were synthesized by Shanghai Biotech Biotech Co., Ltd, China (Table 2). PCR amplifications were carried out in 25 μL volume, including 0.5 μL of 10 mmol·L\(^{-1}\) deoxyribonucleoside triphosphates, 2.5 μL of 10× buffer (Mg\(^2+\)), 0.2 μL of 5 U·μL\(^{-1}\) Taq polymerase, 1 μL of 10 μmol·L\(^{-1}\) of each primer, and 2 μL of 30 ng·μL\(^{-1}\) DNA. De-ionized water was used to achieve 25 μL volume. Condition of PCR amplification were as follows: 94°C for 4 min, 30 cycles of 94°C for 45 s, 60°C for 45 s, and 72°C for 1 min, followed by the final extension at 72°C for 8 min; other specific conditions were as described in previous studies (Table 1).

Results

Wheat seedling resistance

The resistance test results of 75 main wheat cultivars in Gansu to the races 21C3CTHTM, 21C3CFHQ, 34MKGQM, 34MKGSM, 34C3MTGQM, and 34C3RTGQM are shown in Table 3. Thirty-eight (50.7%) of the 75 tested wheat cultivars showed different resistance levels (ITs 0, ;, ;1, 1+, and 2) to the six races at the seedling stage (Table 4). The remaining 38 (50.7%) wheat cultivars showed varying levels of susceptibility (ITs 3, 3−, 3+, and 4) (Table 3).

Validity of the markers
Six specific PCR markers closely linked with resistance genes *Sr2*, *Sr24*, *Sr25*, *Sr26*, *Sr31*, and *Sr38* were validated using 45 single differentials carrying known resistance genes. Table 5 shows that these ten markers amplified only specific bands in the expected wheat genetic stocks. For example, primer *SCSS30.2* amplified only 576-bp specific bands in Siouxland, Sisson, *Sr31*/6*LMPG*, and Federation*4/Kavl*, while in other wheat lines without *Sr31*, no bands were amplified, indicating that these markers are able to be well applied for the molecular detection of the six resistance genes.

Sr2 screening

A DNA marker was developed to accurately predict *Sr2* in diverse wheat germplasm for the partial resistance of *Sr2* is very difficult to screen under field conditions (Mago et al., 2011). Two markers, *Xgwm533* and *csSr2*, were used to detect *Sr2* in wheat cultivars of Gansu Province. A specific PCR band with 120-bp in size was amplified with marker *Xgwm533*, but no PCR product was amplified using marker *csSr2* in Hope with *Sr2*. In this study, a similar 120-bp band was detected in the 13 cultivars, indicating that these cultivars carried *Sr2* (Table 6).

Sr24 screening

Two markers, *Sr24*#12 and *Sr24*#50, were developed to detect *Sr24*, located on chromosome 3DL in Agent- or 1BS in Amigo-derived lines (Mago et al., 2005). These two markers were applied to detect *Sr24* existence in the 75 major wheat cultivars (lines) of Gansu Province in this study. The results showed that marker *Sr24*#12 amplified a 500-bp specific band and marker *Sr24*#50 amplified an approximately 200-bp specific band in the *Sr24* control LcSr24Ag. No PCR fragment was amplified in Little Club (LC) and the tested cultivars, indicating that these cultivars lacked *Sr24*.
Sr25 screening

Because of the resistance of *Sr25* to the new race Ug99 and related strains, a dominant marker *Gb* was developed for haplotyping *Sr25*, (FAO, 2017; Liu et al., 2010; Pretorius et al. 2000). The presence of the marker was confirmed by detection of a 130-bp fragment. The PCR results indicated that the 130-bp band was only amplified using the *Sr25*-positive line Agatha/9*LMPG* (monogenic *Sr25*) genomic DNA (Liu et al., 2010; Yu et al., 2010), but not with other cultivar DNA samples, indicating that all 75 lines from Gansu Province examined lack *Sr25*.

Sr26 screening

Stem rust resistance gene *Sr26* was transferred into the long arm of wheat chromosome 6A from *Thinopyrum ponticum* (Mago et al., 2005). Although the cultivars carrying *Sr26* displayed resistance to all the dominant *Pgt* races in China, it is not utilized in wheat breeding. A dominant STS marker *Sr26#43* was developed for detecting this wheat stem rust resistance gene and a 207-bp band was amplified in wheat lines with *Sr26* (Mago et al., 2005). Marker *Sr26#43* was used to detect this fragment in tested wheat cultivars. No any visible band was detected, suggesting that these varieties do not carry *Sr26*, as expected.

Sr31 screening

Two markers, *SCSS30.2* 576 and *Iag95* linked to resistance gene *Sr31*, were used for detecting this locus. *SCSS30.2* 576 amplified a 576-bp fragment and marker *Iag95* amplified an 1100-bp PCR fragment in *Sr31*-carrying lines such as *Sr31/6*LMPG and Siouxland (Fig. 2). No fragment was amplified in the negative control LC. These two markers were used to detect *Sr31* in the tested cultivars. The result showed that these two fragments were detected in the 25 tested cultivars (Table 6).
Sr38 screening

The Lr37-Sr38-Yr17 rust resistance gene cluster was transferred to the short arm of bread wheat chromosome 2AS from a segment of Triticum ventricosum (Tausch) Cess. chromosome 2NS (Helguera et al., 2003). The 2NS-specific primer VENTRIUP-LN2 and 2AS-specific primer URIC-LN2 were developed to detect this rust resistance gene cluster in commercial wheat cultivars and 262-bp and 285-bp PCR products were amplified in wheat line carrying Lr37-Sr38-Yr17, whereas none of these amplification products were found in negative control LC (without Lr37-Sr38-Yr17). In this study, both 262-bp and 285-bp PCR fragments were amplified in nine wheat cultivars, suggesting that these wheat cultivars carried Sr38 (Table 6).

Discussion

The broad-spectrum wheat stem rust resistance gene Sr2 confers adult plant resistance to stem rust and is located on chromosome arm 3BS. It originated in tetraploid Yaroslav emmer (T. dicoccum) and later was transferred to the susceptible bread wheat ‘Marquis’ in the 1920s (McFadden, 1930). Several varieties with Sr2 were cultivated worldwide (Singh et al., 2011). Markers Xgwm533 and csSr2 were used to detect Sr2 in wheat cultivars from Gansu. However, marker csSr2 failed to predict Sr2. Only marker Xgwm533 amplified a 120-bp band in the positive control and 13 tested cultivars, but the 120-bp band also occurred in many North American and CIMMYT lines which are considered not to have Sr2. Therefore, it is difficult to conclude that all the accessions that showed a 120-bp fragment size for this marker carry Sr2.

The stem rust resistance gene Sr24 is completely associated with leaf rust resistance gene Lr24. It has been widely used in wheat breeding programs worldwide, since it was introgressed into wheat lines (McIntosh, Wellings & Park, 1995). Gene Sr24 was ineffective to
some variants of Ug99 but is effective to the new races TKTTF, TTTTF, and many Pgt races in China (Bhattacharya, 2017; Han, Cao & Sun, 2010). Therefore, two markers, Sr24#12 and Sr24#50, developed by Mago et al. (2005) were used to detect the gene in Gansu wheat cultivars in this study. Surprisingly, no wheat cultivars carried this gene. However, it is reported that Chinese wheat cultivars in other provinces carry Sr24 (Cao et al., 2007; Li et al., 2016b).

Wheat plants carrying stem rust resistance gene Sr25 were susceptible to several strains of Chinese Pgt races (Cao et al., 2007). Sr25 and its linked leaf rust resistance gene Lr19, were transferred into wheat, and observed its existence in the long arm to wheat chromosome 7D and 7A from Thinopyrum ponticum (Friebe et al., 1994; Zhang et al., 2005). The use of Sr25-Lr19 was initially limited because of linkage with another Th. ponticum derived gene producing undesirably yellow flour. It has been further backcrossed into the Australian and CIMMYT wheat backgrounds with the mutant line (which contains Sr25-Lr19), but with white flour (Bariana et al., 2007; Knott, 1980). The use of this gene in wheat programs are increasing for its resistance to new races TTTTF and Ug99 race group, having potential yield increases under irrigated conditions (FAO, 2017; Liu et al., 2010; Monneveux et al., 2003; Singh et al., 1998). In this study, 75 wheat varieties from Gansu Province were examined for presence of marker Gb. The result showed that all 75 wheat varieties lack Sr25.

In Australia, Sr26 has been released in the cultivar Eagle since 1971 (Martin, 1971). Later, other major cultivars including Flinders, Harrier, Kite, Takari, and Sunelg, were cultivated. Lines containing the Sr26 fragment are resistant to new stem rust pathogen races such as Ug99 and its associated strains. None of the cultivars had Sr26 in the present study, as expected, and similar results were observed in our previous study (Li et al., 2016a).
The stem rust resistance gene \textit{Sr31} on 1BL/1RS was transferred into the bread wheat from ‘Petkus’ rye (Graybosch, 2001). Since then a higher number of wheat cultivars carrying \textit{Sr31} have been released in global wheat breeding (Das et al., 2006). It is reported that more than 60\% (1.3 \times 10^7 \text{hm}^2) of the total wheat planting areas carried this translocation in China (Jiang et al., 2007). Although the gene is ineffective to Ug99 and related variants, it is also an effective gene against all \textit{Pgt} races in China and the new races TKTTF and TTTTF. Molecular marker detection showed that 25 wheat cultivars carried \textit{Sr31}. All these cultivars (lines) produced resistance ITs (0, ; ;1, 1+, and 2) to all tested \textit{Pgt} races, as expected. Moreover, pedigree tracking indicated that resistant materials carrying the 1BL/1RS translocation such as ‘Kavkaz’ and ‘Rye’ were widely used in wheat breeding in Gansu Province, revealing the origin of \textit{Sr31} in these wheat varieties.

Rust resistance gene cluster \textit{Yr17-Lr37-Sr38} was initially transferred into the winter bread wheat line ‘VPM1’ from \textit{T. ventricosum} and was located in a 2NS/2AS translocation (Bariana & McIntosh, 1993; Cao et al., 2007; Maia, 1967). PCR assays using restriction fragment length marker \textit{cMWG682} were developed for selecting the 2NS/2AS translocation in wheat cultivars (Helguera et al., 2003). \textit{Sr38} became susceptible to new races related to Ug99 but no virulent \textit{Pgt} race to \textit{Sr38} has been found in China. The results showed that nine wheat cultivars carried the gene cluster. The resistance of these cultivars against the tested \textit{Pgt} races might be attributed to this gene.

Conclusion

Breeding resistant cultivars is an economic and effective way to protect wheat from disease. The development of molecular technology facilitated the identification and utilization of molecular markers for durable resistance breeding, leading to increased crop production. The molecular
markers associated with \(Sr2, Sr24, Sr25, Sr26, Sr31, \) and \(Sr38 \) were used to detect the occurrence of these genes in 75 major wheat cultivars (lines) in Gansu Province in this study. The results showed that 35 tested cultivars might carry one of these genes. This information can be used in breeding for stem rust resistance in the future.

Acknowledgments

We appreciate very much Dr. Fangping Yang at Wheat Research Institute, Gansu Academy of Agricultural Sciences for providing the wheat cultivars.

Reference

Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, and Lu M. 2007. Breeding triple rust resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. *Australian Journal of Agricultural Research* 58:576–587.

Bariana HS, and McIntosh RA. 1993. Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. *Genome* 36:476-482.

Bhattacharya S. 2017. Deadly new wheat disease threatens Europe’s crops. *Nature* 542:145-146.

Cao SQ, Zhang B, Li MJ, Xu SC, Luo HS, Jin SL, Jia QZ, Huang J, Jin AM, and Shuang XW. 2011. Postulation of stripe rust resistance genes and analysis of adult resistance in 50 wheat varieties (lines) in Gansu Province. *Acta Agronomica Sinica* 37:1360–1371.

Cao YY. 1994. On epiphytotic pattern, long dispersion of *Puccinia graminis* f. sp. *tritici* and its gene control through systematic engineering in China (in Chinese). D. Phil. Thesis, Shenyang Agricultural University.
Cao YY, Han JD, Zhu GQ, and Zhang L. 2007. Ug99, a new virulent race of *Puccinia graminis* f. sp. *tritici*, and its effect on China. *Plant Protection* **33**:86-89 (in Chinese).

CIMMYT. 2007. Dangerous wheat disease jumps Red Sea-devasta-ring fungal pathogen spreads from Eastern Africa to Yemen, following path scientists predicted. Available at http://huliq.coin.

Das BK, Saini A, Bhagwat SG, and Jawali N. 2006. Development of SCAR markers for identification of stem rust resistance gene *Sr31* in the homozygous or heterozygous condition in bread wheat. *Plant Breeding* **125**:544-549.

FAO. 2017. Spread of damaging wheat rust continues: new races found in Europe, Africa, Central Asia. 3 February. Available at http://www.fao.org/news/story/en/item/469467/icode/.

Friebe B, Jiang J, Knott DR, and Gill BS. 1994. Compensation indexes of radiation induced wheat *Agropyron-elongatum* translocations conferring resistance to leaf rust and stemrust. *Crop Science* **34**:400–404.

Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, and Goya AK. 2015. Recent trends and perspectives of molecular markers against fungal diseases in wheat. *Frontiers in Microbiology* **6**:861.

Graybosch RA. 2001. Uneasy unions: Quality effects of rye chromatin transfers to wheat. *Journal of Cereal Science* **33**:3-16.

Han JD, Cao YY, and Sun ZG. 2010. 2007-2008 Race dynamics of *Puccinia graminis* f. sp. *tritici* in China and the virulence of CIMMYT wheat germplasm resistant to Ug99. *Journal of Triticeae Crops* **30**:163-166 (in Chinese).

Hayden MJ, Kuchel H, and Chalmers KJ. 2004. Sequence tagged microsatellites for the
Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). *Theoretical and Applied Genetics* **109**:1641–1647.

Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, and Dubcovsky J. 2003. PCR assays for the *Lr37-Yr17-Sr38* cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. *Crop Science* **43**:1839-1847.

Jiang YY, Chen WQ, Zhao ZH, and Zeng J. 2007. Threat of new wheat stem rust race Ug99 to wheat production in China and countermeasure. *China Plant Protection* **27**:14–16.

Knott DR. 1980. Mutation of a gene for yellow pigment linked to *Lr19* in wheat. *Canada Journal of Genetics and Cytology* **22**:651–654.

Li TY, Cao YY, Wu XX, Xu XF, and Wang WL. 2016a. Seedling resistance to stem rust and molecular marker analysis of resistance genes in wheat cultivars of Yunnan, China. *Plos One* **11**:e0165640.

Li TY, Wu XX, Xu XF, Wang WL, and Cao YY. 2016b. Postulation of seedling stem rust resistance genes of Yunnan wheat cultivars in China. *Plant Protection Science* **4**:242–249.

Liu S, Yu LX, Singh RP, Jin Y, Sorrells ME, and Anderson JA. 2010. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes *Sr25* and *Sr26*. *Theoretical and Applied Genetics* **120**:691-697.

Mago R, Verlin D, Zhang P, Bansal U, Bariana H, Jin Y, Ellis J, Hoxha S, and Dundas I. 2013. Development of wheat-*Aegilops speltoides* recombinants and simple PCR-based markers for *Sr32* and a new stem rust resistance gene on the 2s#1 chromosome. *Theoretical and Applied Genetics* **126**:2943–2955.
Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, and Ellis JG. 2005. Development of PCR markers for the selection of wheat stem rust resistance genes \(Sr24 \) and \(Sr26 \) in diverse wheat germplasm. *Theoretical and Applied Genetics* **111**:496–504.

Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, and Spielmeyer W. 2011. An accurate DNA marker assay for stem rust resistance gene \(Sr2 \) in wheat. *Theoretical and Applied Genetics* **122**:735–744.

Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, and Pryor AJ. 2002. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. *Theoretical and Applied Genetics* **104**:1317–1324.

Maia N. 1967. Obtention des bles tendres résistants au pietin-verse par croisements interspécifiques bles\(\times \)Aegilops. *Canada Research Academy Agriculture* **53**:149-154.

Martin RH. 1971. Eagle-a new wheat variety. *Agricultural Gaz NSW* 82:206-207.

McFadden ES. 1930. A successful transfer of emmer characters to vulgare wheat. *Agronomy Journal* **22**:1020-1034

McIntosh RA, Wellings CR, and Park RF. 1995. Wheat rusts, an atlas of resistance genes. CSIRO, Melbourne.

Monneveux P, Reynolds MP, Aguilar JG, and Singh RP. 2003. Effects of the 7DL.7Ag translocation from *Lophopyrum elongatum* on wheat yield and related morphophysiological traits under different environments. *Plant Breeding* **122**:379–384

Olivera P, Newcomb M, Szabo LJ, Rouse M, Johnson J, Gale S, Luster DG, Hodson D, Cox JA, Burgin L, Hort M, Gilligan CA, Patpour M, Justesen AF, Hovmøller MS, Woldeab G, Hailu E, Hundie B, Tadesse K, Pumphrey M, Singh RP, and Jin Y. 2015. Phenotypic and genotypic
characterization of race TKTTF of *Puccinia graminis* f. sp. *tritici* that caused a wheat stem rust Epidemic in Southern Ethiopia in 2013–14. *Phytopathology* **105**:917-928.

Pardey PG, Beddow JM, Kriticos DJ, Hurley TM, Park RF, Duveiller E, Sutherst RW, Burdon JJ, and Hodson D. 2013. Right-sizing stem-rust research. *Science* **340**:147-148.

Pretorius ZA, Singh RP, Wagoire WW, and Payne TS. 2000. Detection of virulence to wheat stem rust resistance gene *Sr31* in *Puccinia graminis* f. sp. *tritici* in Uganda. *Plant Disease* **84**:203.

Rouse MN, Nava IC, Chao S, Anderson JA, and Jin Y. 2012. Identification of markers linked to the race Ug99 effective stem rust resistance gene *Sr28* in wheat (*Triticum aestivum* L.). *Theoretical and Applied Genetics* **125**:877-885.

Seah S, Bariana H, Jahier J, Sivasithamparam K, and Lagudah ES. 2012. The introgressed segment carrying rust resistance genes *Yr17*, *Lr37* and *Sr38* in wheat can be assayed by a cloned disease resistance gene-like sequence. *Theoretical and Applied Genetics* **102**:600-605.

Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA. Sing D, Sing PK, Velu G, Masson RE, Jin Y, Njau P, and Crossa J. 2011. Race non-specific resistance to rust diseases in CIMMYT spring wheats. *Euphytica* **179**: 175–186.

Singh RP, Huerta-Espino J, Rajaram S, and Crossa J. 1998. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. *Crop Science* **38**:27–33

Stakman EC, Stewart DM, and Loegering WQ. 1962. Identification of physiologic races of *Puccinia graminis* var. *tritici*. US Department of Agric ARSE-617, p53.

The TT, Gupta RB, Dyck PL, Applels R, Hohmann U, and McIntosh RA. 1992. Characterization of stem rust resistance derivatives of wheat variety Amigo. *Euphytica* **58**:245-252.

Wu XX, Li TY, Chen S, Wang GQ, Cao YY, and Ma SL. 2014. Stem rust resistance evaluation
and Ug99-resistance gene detection of 139 wheat cultivars. *Scientia Agricultural Sinica* 47:4618-4626 (in Chinese).

Yu L, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Gina BJ, Bhavani S, Morgounov A, He Z, Huerta-Espino J, and Sorrells ME. 2010. Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. *Molecular Breeding* 26:667–680.

Zhang W, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, and Dubcovsky J. 2005. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (*Lr19*) and yellow pigment (*Y*) genes from *Lophopyrum ponticum*. *Theoretical and Applied Genetics* 111:573–582.
Figure 1

Infection types used in this study.
Figure 2

Amplification result for some of the tested wheat varieties of wheat varieties with SCSS30.2 576 and Iag95.

Lane 1-11, Monogenic Sr31, Little Club, Wuchun 7, Dingxi 41, Longchun 31, Longchun 22, Ganchun 25, Longchun 25, Longchun 23, Longchun 26, Ganchun 24, Yinchun 9, ‘M’ indicates 2000 bp DNA ladder and black arrow indicates the position of the specific band.
Table 1 (on next page)

Virulence/avirulence patterns of six races of *P. graminis* f. sp. *tritici*
Race	Ineffective Sr genes	Effective Sr genes
21C3CTHTM	6, 7b, 8a, 9a, 9b, 9d, 9f, 9g, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 28, 29, 34, 35, Tmp, McN	5, 9c, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 36, 37, 38, 47
21C3CFHQc	7b, 8a, 9a, 9b, 9d, 9f, 9g, 12, 13, 14, 15, 16, 17, 18, 28, 29, 34, 35, McN	5, 6, 9c, 10, 11, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 37, 38, 47, Tmp
34MKGQM	5, 6, 7b, 8a, 9a, 9b, 9d, 9f, 9g, 12, 15, 16, 20, 24, 27, 28, 29, McN	9c, 10, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 26, 30, 31, 32, 33, 34, 35, 36, 37, 38, 47, Tmp
34MKGSM	5, 6, 7b, 8a, 9a, 9b, 9d, 9f, 9g, 10, 12, 15, 16, 20, 24, 27, 28, McN	9c, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 26, 30, 31, 32, 33, 34, 35, 36, 37, 38, 47, Tmp
34C3RKQGM	5, 6, 7b, 8a, 9a, 9b, 9d, 9f, 9g, 12, 16, 19, 21, 23, 24, 27, 28, 29, McN	9c, 10, 11, 13, 14, 15, 17, 18, 20, 22, 25, 26, 30, 31, 32, 33, 34, 35, 36, 37, 38, 47, Tmp
34C3MTGQM	7b, 8a, 9a, 9b, 9d, 9f, 9g, 11, 12, 13, 14, 15, 16, 17, 18, 28, 29, 34, 35, McN	5, 6, 9c, 10, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 37, 38, 47, Tmp
The markers linked to resistance genes *Sr2, Sr24, Sr26, Sr31* and *Sr38* with their forward and backward primers.		
Genes	Marker	Forward primer
--------	--------	----------------
Xgwm533	GTS	5'-GTTGCTTTTAGGGAAAAAGCC
csSr2	GTS	5'-CAAGGGTGTAGTAGGATTTGAAAAAC
Sr2	GTS	5'-CACCCGTGACATGCTGTA
Sr24	GTS	5'-CCCAGCATCGTGAAAGAA
Sr25	GTS	5'-CATCCTTGGGACCCT
Sr26	GTS	5'-AATCGTCCACATGGGCTTCT
Sr31	GTS	5'-GTCCGACAATCGAAGATT
Sr38	GTS	5'-CTCTGTTGATGTACAGTACGA
Sr38	GTS	5'-AGGGGCTACTGACACAGCT
Sr38	GTS	5'-GGTCGGCCCTTGGCTGACCT
Table 3 (on next page)

Resistant proportion of 75 wheat cultivars to six races of *P. graminis* f. sp. *tritici*
Races	Susceptible	Resistance		
	Number of cultivars	Percentage/%	Number of cultivars	Percentage%
21C3CTHTM	28	37.3	47	62.7
21C3CFHQC	25	33.3	50	66.7
34MKGQM	30	40.0	45	60.0
34MKGSM	26	34.7	49	65.3
34C3RKGQM	26	34.7	49	65.3
34C3MTGQM	25	33.3	50	66.7
All tested races	37	49.3	38	50.7
Table 4 (on next page)

Seedling infection types produced by six races of *P. graminis* f. sp. *tritici* on 75 wheat cultivars (lines)
Cultivars(lines)	Pedigree	21C3CTHQM	21C3CFHQC	34MKGQM	34MKGSM	34C3RTGQM	34C3MTGQM
Ningchun 39	Yong 833/Ningchu 4	0	1	0	1	0	0
Dingfeng 10	Tal 73-3/Mota	0	0	1	0	0	;
Linmai 32	Ganfu 92-310/Xianyang-dasui	4	4	4	3-	3	4
Wuchun 8	Shi 1269/Shi 1269	1+	0	3-	1	0	0
Wuchun 7	Yong 434/Jian 94-114	4	3-	4	1	4	3-
Dingxi 41	8124-10/Dongxiang 77-011	;	0	0	;	0	0
Longchun 31	Generic male sterility of Taigu	0	;1	0	1	0	;
Longchun 22	CHIL/BUC	0	0	0	3	0	2
Ganchun 25	M34IBWSN-262/M34IBWSN-252/ Zhanhun 11/Yongliang 4	0	0	0	0	0	0
Longchun 25	Yong 1265/Corydon	;	1	2	0	2	0
Longchun 23	Introduced from CIMMYT	0	1	0	1+	0	;
Longchun 26	Yong 3263/Gaoyuan 448	0	0	0	1	0	0
Ganchun 24	Zhanhun11/93-7-31//23416-8-1//Aibai/ Kavkaiz	0	2	0	;	0	;
Yinchen 9	Dingxi 35/Xihan 1//Dingxi 37/9208	0	0	0	0	0	2
Longchun 28	8858-2/Longchun 8	;	1	0	3	;	3
Wuchun 5	7906/ROBLIN//21-27	1+	1	3	4	;	3-
Ganchun 20	88-862/630	4	4	4	4	4	3+
Ningchun 4	Sonora 64/Hongtu	4	4	3-	4	4	4
Linmai 35	Yong 2H15/Gui 86101/79531-1	4	4	4	4	4	1
Xihan 2	8917C/Qinmai 3/72114	4	4	4	3	2	;
Dingxi 38	RFMII-101-A/Dingxi 32	;1	0	1	0	0	0
Ganchun 21	Aibai/Zhanhun 11/2014/82166-1-2//Zhanhun 17	4	4	1	4	4	;
Dingxi 40	8152-8/Yong 257	4	3	4	1	4	4
Wuchun 4	80-62-3/7586/Rye/India Aisheng/Liaochun 10/Paulin	0	0	0	1	0	0
Wuchun 3	Y15/Shi 857	4	4	4	3+	4	3
Jinchun 5	Shangqianhong/Funo	;	;	0	2	0	1
Gansu 26	Unknown	1+	;1	1	1	1	2
Linmai 33	92 Yuan 11/Guiong 20	1	1	;	0	1	;
Longchun 33	Longchun 19/Longchun 23	4	1	3	1	4	0
Jiuchun 6	Jiu 9615/Jiu 9061	;	0	0	0	1+	0
Longchun 27	8858-2/Longchun 8	1	1+	1	1	;1	1
Linmai 34	94 Xuan 419/Guiong 20//82316/Linmai 26	0	0	0	0	2	;
Dingfeng 12	Tal 73-3/Mota/Dingfeng 1	0	1+	2	2	1	;1
Dingfeng 16	8447/CMS420	4	3	2	1	4	;
Zhangchun 21	Gaoyuan 602/1 97-2//Gaoyuan 602	1	1	0	;	1+	0
Wuchun 6	80-62-3/Ningchun 4//Rye/India Aisheng/Liaochun 10/Paulin	0	0	0	2	0	1-
Lantian 23	SXAF4-7/87-121	3+	;	4	1	0	;
Lantian 19	Mega/Lantian 10	4	4	4	4	4	4
Lantian 25	95-173-4/Baoefeng 6	3+	0	4	4	0	4
Lantian 13	A21//832809/872121-7	;	4	3	4	0	4
Xifeng 27	83183-1-3-1/CA837	;	2	1	1+	;	1+
Lantian 26	Flansers/Lantian 10	0	2	1	1+	1	1
Longjian 101	85(1)F3 Xuan (2)-4/Shanhan 8968//85-173-12-2	4	1	4	4	4	4
Variety	Location	Infection Types (ITs)					
------------------	-----------------------------------	-----------------------					
Hangxuan 1	Unknown	0 0 0 0 0 0					
Lantian 14	Qinghong 895/Zhongliang 17	0 1+ 0 0 0 ;					
Lantian 31	Long Bow/Lantian 10	0 1 3- 3 2 3					
Pingliang 42	тал Changwu 131/Pingliang 38/82(51)	1 3- 3- 2 4 3					
Xifeng 20	Xifeng 18/CA8055	1 3- 2 2 1 1					
Lantian 4	Xifeng 20/Zhong 210	0 1 2 2 1 1					
Changwu 131	7014-5/Zhongsu 68/F16-71	4 4 4 4 4 4					
Zhongliang 18	Kangyin 655/Elytrigia trichophora/Jingai 21	4 3 0 1 4 4					
Zhongliang 22	Zhong/Syu/Xiamong 4	0 0 ; 1 1 0 0					
Lantian 10	Xifeng 16/Predgornajia/68286-0-1-1	; 2 0 1 1 1					
Tianxuan 39	Unknown	1 1+ ; 1 0 0 1					
Huandong 6	Unknown	4 0 4 0 4 3					
Longjian 196	64035/Taiyuau 89/Qinnong 4	4 4 4 4 4 4					
Lantian 30	95-111-3/Shan167	1 2 2 3 1 2					
Longnan 2000-8-2-1	Unknown	0 1 0 ; 1 1 2					
Longjian 301	DW803/7992	1+ 1 ; 1+ 1 2					
Longyuan 2	Longdong 3 ½/82(348)/9002-1-1	0 1 1 1 1 1					
Longjian P430	Unknown	0 1 ; 1 1 0					
Longjian 103	Longjian 127/MotW697	4 4 4 2 4 2					
Lantian 29	82F-37/83-44-20/8380	4 3 4 4 4 3					
Lan 092	Unknown	0 2 1- 4 1 0					
Qingnong 1	7084/2037	4 4 4 3 4 3+					
Pingyuan 50	Local cultivar	3+ 4 4 4 4 4					
Longyuan 034	Unknown	0 2 0 1+ 0 1					
Lan 05-9-1-4	Unknown	4 4 4 2 4 3+					
Gandong 017	Unknown	0 2 2 ; 1 0 1					
Longjian 19	Jinan 2/Qinnong 4	4 3 4 3 4 4					
Lantian 24	92R137/87-121-2	4 0 4 4 4 2					
863-13	Xiamong 4/Tianxuan 42	0 0 0 0 0 0					
01-426c-1	Unknown	3+ 4 3 4 4 3					
Tian 01-29	Unknown	; 2 2 2 ; 2					
Tian 01-104	Unknown	4 4 4 3- 4 4					

* Infection types (ITs): are based on a 0-to-4 scale where ITs of 0, ;, 1, and 2 are indicative of a resistant (low) response and ITs of 3 or 4 of a susceptible (high) response; Symbols + and – indicate slightly larger and smaller pustule sizes, respectively (Stakman, Stewart & Loegering, 1962).
Table 5 (on next page)

Amplification results for the known Sr genes by markers
Line	Sr Gene	Source	Xgwm35	cs	Sr24	Sr24/50	Gb	Sr26	SCSS30.2	Iag	VENTRI	URIC-
SrS-Ra	5	11Aberdeen	*	+	+	+	+	+	+	*	-	-
CanTmono der	21	11Aberdeen	-	-	-	-	-	-	-	-	-	-
Verastine	4c	11Aberdeen	-	+	-	-	-	-	-	-	-	-
SrT7-Ra	7b	11Aberdeen	-	-	-	-	-	-	-	-	-	-
TF11-Ra	11	11GH	+	+	+	+	+	+	+	+	+	+
ISr-Ra	6	11GH	+	+	+	+	+	+	+	+	+	+
SrC-Ra	3a	11Aberdeen	-	-	-	-	-	-	-	-	-	-
CnSaSo	9a	11Aberdeen	+	+	+	+	+	+	+	+	+	+
W7601GcT7v-1	26	11GH	-	-	-	-	-	-	-	-	-	-
W7601Gcrh	4b	11Aberdeen	-	-	-	-	-	-	-	-	-	-
RsG00Wet	30	11Aberdeen	+	-	-	-	-	-	-	-	-	-
Combination VII	17+11	11Aberdeen	+	+	+	+	+	+	+	+	+	+
IC60a.Ra	4c	11Aberdeen	-	-	-	-	-	-	-	-	-	-
TG60a.Ra	6a	11Aberdeen	-	-	-	-	-	-	-	-	-	-
W7601Sc10	10	11Aberdeen	+	+	+	+	+	+	+	+	+	+
SrNcTmso	Tmso	11Aberdeen	+	+	+	+	+	+	+	+	+	+
1Sr273Mo	7d	11Aberdeen	+	+	+	+	+	+	+	+	+	+
Sr11/6i1 MPG	U1	11Aberdeen	+	+	+	+	+	+	+	+	+	+
Triticum	16	11Aberdeen	-	-	-	-	-	-	-	-	-	-
McNair 701	McN	Griff 7010	-	-	-	-	-	-	-	-	-	-
Line F	-	00AR	-	-	-	-	-	-	-	-	-	-
Arme	4a	00AR	-	-	-	-	-	-	-	-	-	-
Slowerland	74+11	7011	-	+	+	+	+	+	+	+	+	+
Griff 7010	T11+16	Griff 7010	-	-	-	-	-	-	-	-	-	-
SrSc777T R	77	17GH	+	+	+	+	+	+	+	+	+	+
Angelica C61 MNG	75	00AR	-	-	-	-	-	-	-	-	-	-
Fusole	76	10AR	-	-	-	-	-	-	-	-	-	-
71 71A 71/81 MH95	77	00AR	-	-	-	-	-	-	-	-	-	-
Endosperm R/Kul	15	10AR	-	-	-	-	-	-	-	-	-	-
FR 5155	17	10AR	-	-	-	-	-	-	-	-	-	-
Triticum antatnch A?	22	00AR	-	-	-	-	-	-	-	-	-	-
Mol975YQG701Q	35	10AR	-	-	-	-	-	-	-	-	-	-
W306Y1	37	00Aaced	-	-	-	-	-	-	-	-	-	-
1St607	20	10AR	-	-	-	-	-	-	-	-	-	-
1St603	A10	10AR	-	-	-	-	-	-	-	-	-	-
Tau	22	10AR	-	-	-	-	-	-	-	-	-	-
DAS15	47	10AR	+	+	+	+	+	+	+	+	+	+
Catus	Cont.	00Aaced	-	-	-	-	-	-	-	-	-	-
TAM 107.1	14	17GH	-	-	-	-	-	-	-	-	-	-
Fed513C5n871H	R	10AR	-	-	-	-	-	-	-	-	-	-
Ixora	0.17	00GH	-	-	-	-	-	-	-	-	-	-
Iroko	9c-13	-	+	+	+	+	+	+	+	+	+	+
Iroko	-	-	+	+	+	+	+	+	+	+	+	+
ST464	11	00GH	-	-	-	-	-	-	-	-	-	-

* Symbol ‘+’ indicates the cultivar (line) carry the tested genes; ‘–’ indicates the cultivar (line) don’t carry the tested genes.
Table 6 (on next page)

Molecular detection of resistance genes \(Sr2, Sr24, Sr25, Sr26, Sr31, \) and \(Sr38 \) in the 75 wheat cultivars (lines)
Cultivars (lines)	Sr2	Sr2	Sr24	Sr24	Sr25	Sr26	Sr31	Sr31	Sr38	Sr38
Xgwm533										
csSr2										
Sr24#12										
Sr24#50										
Gb										
Sr26#43										
SCSS30.2_1/4										
Iag95										
URIC-LN2										
VENTRIUP-LN2										
Ningchun 39	*									
Dingfeng 10										
Linmai 32	+	*								
Wuchun 7		*								
Dingxi 41		*								
Longchun 31	+									
Longchun 22		*								
Ganxian 25		*								
Longchun 25		*								
Longchun 23		*								
Longchun 26	+									
Ganxian 24	+									
Yinchun 9	+									
Longchun 28		*								
Wuchun 5		*								
Ganxian 20		*								
Ningchun 4	+									
Linmai 35		*								
Xihan 2		*								
Dingxi 38		*								
Ganxian 21	+									
Dingxi 40		*								
Wuchun 4		*								
Wuchun 3		*								
Jinchun 5	+									
Gansu 26	+									
Linmai 33		*								
Longchun 33	+									
Juchun 6	+									
Longchun 27	+									
Linmai 34		*								
Dingfeng 12	+									
Dingfeng 16		*								
Zhangchun 21	+									
Wuchun 6	+									
Lantian 23		*								
Lantian 19		*								
Lantian 25		*								
Lantian 13		*								
Cultivar	-	-	-	-	-	+	+	-	-	
---------------	---	---	---	---	---	---	---	---	---	
Lantian 26						+	+		-	
Longian 101						-	-	+	-	
Hangxuan 1		-	-	-	-	-	-	+	+	
Lantian 14	+	-	-	-	-	+	+	+	+	
Lantian 31		-	-	-	-	-	-	-	-	
Pingliang 42		-	-	-	-	-	-	+	-	
Xifeng 20		-	-	-	-	-	-	-	-	
Longyu 4		-	-	-	-	-	-	-	-	
Changwu 131		-	-	-	-	-	-	+	-	
Zhongliang 18	+	-	-	-	-	-	-	-	-	
Zhongliang 22		-	-	-	-	+	+	+	+	
Lantian 10		-	-	-	-	+	+	+	+	
Tianxuan 39		-	-	-	-	+	+		-	
Huandong 6		-	-	-	-	+	+		-	
Longian 196		-	-	-	-	-	-	-	-	
Lantian 30		-	-	-	-	-	-	-	-	
Longnan-2000-8-2-1		-	-	-	-	-	-	-	-	
Longian 301		-	-	-	-	+	+		-	
Longyu 2		-	-	-	-	+	+		-	
Longian P430		-	-	-	-	+	+		-	
Longian 103		-	-	-	-	-	-	-	-	
Lantian 29		-	-	-	-	-	-	-	-	
Lan 092		-	-	-	-	-	-	-	-	
Qingnong 1		-	-	-	-	-	-	-	-	
Pingyuan 50		-	-	-	-	-	-	-	-	
Longyuan 034		-	-	-	-	+	+		-	
Lan 05-9-1-4		-	-	-	-	-	-	-	-	
Gandong 017		-	-	-	-	+	+		-	
Longian 19		-	-	-	-	-	-	-	-	
Lantian 24		-	-	-	-	-	-	-	-	
863-13		-	-	-	-	+	+		-	
01-426e-1	+	-	-	-	-	+	+		-	
Tian 01-29		-	-	-	-	+	+		-	
Tian 01-104		-	-	-	-	-	-	-	-	

* Symbol ‘+’ indicates the cultivar (line) carry the tested genes; ‘–’ indicates the cultivar (line) don’t carry the tested genes.