Microwave Assisted Condensation Reactions of 2-Aryl Hydrazonopropanals with Nucleophilic Reagents and Dimethyl Acetylenedicarboxylate

Khadijah M. Al-Zaydi* and Rita M. Borik

Department of Chemistry, Girl’s College of Education, Jeddah, P.O. 50918 Jeddah 21533, Kingdom of Saudi Arabia

* Author to whom correspondence should be addressed; E-mail: alzaydi_kh@yahoo.com

Received: 16 February 2007; in revised form: 26 May 2007 / Accepted: 1 June 2007 / Published: 24 August 2007

Abstract: The reaction of methyl ketones 1a-g with dimethylformamide dimethylacetal (DMFDMA) afforded the enaminones 2a-g, which were coupled with diazotized aromatic amines 3a,b to give the corresponding aryl hydrazones 6a-h. Condensation of compounds 6a-h with some aromatic heterocyclic amines afforded iminoarylhydrazones 9a-m. Enaminoazo compounds 12a,b could be obtained from condensation of 6c with secondary amines. The reaction of 6e,h with benzotriazolylacetone yielded 14a,b. Also, the reaction of 6a,b,d-f,h with glycine and hippuric acid in acetic anhydride afforded pyridazinone derivatives 17a-f. Synthesis of pyridazine carboxylic acid derivatives 22a,b from the reaction of 6b,e with dimethyl acetylenedicarboxylate (DMAD) in the presence of triphenylphosphine at room temperature is also reported. Most of these reactions were conducted under irradiation in a microwave oven in the absence of solvent in an attempt to improve the product yields and to reduce the reaction times.

Keywords: 2-Arylhydrazonopropanals, heterocyclic amines, active methylene, microwave irradiation.
Introduction

Over the last 100 years mankind has not paid much attention to the environmental impact of chemistry, but in the last decade this has changed radically and the need for “Green Chemistry” has become apparent. The utility of microwaves in heterocyclic synthesis is also receiving now considerable attention [1-4]. Enaminones has been recently extensively utilized as precursors for the synthesis of heteroaromatics [5-8]. We report herein on the synthesis of iminoarylhydrazonopropanone, azolopyrimidine and 3-oxaloalkanonitrile derivatives of potential interest as pharmaceuticals and photochromic dyes [9-13], starting from enaminones. It has been reported that methylalkyl ketones and methylaryl ketones condense readily with dimethylformamide dimethylacetal (DMFDMA) to yield enaminones, whose chemistry has recently attracted considerable interest [5,6,12-20]. The chemistry of 2-arylhydrazonopropanals has also received considerable interest in the last few years [21-25]. As part of an ongoing project in our laboratory aimed at exploring potential utility of microwave irradiation as a source of heat for producing polyfunctionally substituted heteroaromatics and because of our recent interest in making our synthetic approaches environmentally attractive, we have decided to investigate here the possibility of conducting our reactions in two ways:

(i) Classical conventional heating methods with solvents (Δ).
(ii) Microwave heating without solvent (μω).

The yield of products obtained with the microwave heating technique and the time taken to complete the reactions will be compared with those seen with conventional methods [8, 26].

Results and Discussion

The enaminones required for this investigation were first synthesized via condensation of methyl aryl 1a or heteroaryl ketones 1b-g with DMFDMA in refluxing xylene. The desired compounds were obtained in low yield, consequently we have modified this synthetic approach by condensing the methyl ketones with slightly excess of DMFDMA in the absence of solvent [26] (Scheme 1). In this case the reaction products 2b-g were obtained in almost quantitative yields yield on cooling in a much more economical synthesis.

Scheme 1

R	R
CH₃	2
2-furyl	2
2-pyrrolyl	2
2-pyridyl	2
o-HC₆H₄	e
p-HC₆H₄	f
p-ClC₆H₄	g
Enaminones 2a-g coupled with diazotized methyl anthranilate 3a or diazotized anthranilonitrile 3b in the presence of ethanolic sodium acetate to yield the corresponding aryl hydrazone coupling products 6a-h [17, 27] (Scheme 2).

Scheme 2

When N,N-dimethylamino-3-buten-2-one (2a) and 3-N,N-dimethylamino-1-(4-chloro phenyl)-2-propen-1-one (2g) were treated with excess diazotized anthranilonitrile 3b the bisazo compounds 7a and 7b was formed in a Japp-Klingmann type reaction which proceed via intermediate formation of 6a,b [28] (Scheme 3). The 1H-NMR of the resulting product 7a showed a single absorption signal at δ 15.50 ppm, corresponding to the NH proton resonance. The 13C- NMR showed two absorption signals for the two CN groups at δ 117.05, 117.46 ppm.
Scheme 3.

\[
\begin{align*}
\text{R} & \quad \text{NMe}_2 \\
\text{N} & \quad \text{Cl} \\
\text{O} & \quad \text{H} \\
\text{N} & \quad \text{N}
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{CHO} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{R}
\end{align*}
\]

if \(R = \text{Pyrrolyl}, \ X = \text{CO}_2\text{Me} \)

\[
\begin{align*}
\text{R}_1 & \quad \text{NH}_2 \\
\text{a} & \quad Z = \text{CH}_2 \\
\text{b} & \quad Z = \text{O}
\end{align*}
\]

\[
\begin{align*}
\text{9} & \quad R \quad X \quad R^1 \\
a & \quad \text{CH}_3 \quad \text{CO}_2\text{CH}_3 \quad \text{thiazol-2-yl} \\
b & \quad \text{2-furyl} \quad \text{CO}_2\text{CH}_3 \quad \text{thiazol-2-yl} \\
c & \quad \text{2-pyrrolyl} \quad \text{CN} \quad \text{thiazol-2-yl} \\
d & \quad \text{C}_6\text{H}_4\text{Cl-} \quad \text{CO}_2\text{CH}_3 \quad \text{pyridine-2-yl} \\
e & \quad \text{CH}_3 \quad \text{CN} \quad \text{pyridine-2-yl} \\
f & \quad \text{2-pyrrolyl} \quad \text{CN} \quad \text{pyridine-2-yl} \\
g & \quad \text{2-furyl} \quad \text{CN} \quad \text{pyridine-2-yl}
\end{align*}
\]
We also report herein on the reactivity of 6a-h towards a variety of nitrogen and carbon nucleophiles in the absence of solvent under irradiation (μω) in a domestic microwave oven. The yields of products obtained under the microwave heating technique μω and the time taken to complete the reactions are compared with those obtained by conventional heating (Δ) in Table 2 (see Experimental). Thus, 6a-h were heated with a variety of heterocyclic amines such as 2-aminothiazole (8a), 2-aminopyridine (8b), 2-aminobenzimidazole (8c) and 2-aminobenzothiazole (8d) yielding the corresponding condensation products 9a-m. Several tautomeric forms (cf. 10, 11), seemed possible for the iminoaryl hydrazone condensation products 9a-m, whose structures were established based on spectral data. For example, the 1H-NMR of the 9k showed two singlets, the first at δ 6.89 ppm, corresponding to the resonance of the olefin CH proton and the second at δ 14.46 ppm corresponding to the hydrazone NH proton. The 13C-NMR has also showed the disappearance of the absorption signal of the carbon atom corresponding to the formyl carbonyl group and the appearance of a signal at δ 165.27 ppm for the carbon atom of the HC=N group. The IR of the 9l showed an absorption band at 3350 cm⁻¹ of the NH group, as well as an absorption band at the rather low value of 1684 cm⁻¹ for the carbonyl group. This indicates that there is a hydrogen bond between the hydrazone NH hydrogen and the oxygen of the carbonyl group. Treatment of 6c with secondary amines such as piperidine and morpholine afforded compounds 12a,b in good yield (Scheme 3).

Arylhydrazones 6e,h reacted with benzotriazolylacetone (13) in boiling ethanol in the presence of traces of pyridine as a catalyst to give 14a,b by loss of a water molecule (Scheme 4). The structure of this product is proposed based on its elemental analysis and spectral data. The IR showed an absorption band at 1674 cm⁻¹ and another at 1646 cm⁻¹ for the carbonyl groups, as well as an absorption band at 3308 cm⁻¹ for the NH group. The 1H-NMR showed two singlets at δ 1.99 and 7.20 ppm, corresponding to the resonances of the CH₃ protons and the olefin CH proton. Similar results were obtained when the reaction was performed under microwave irradiation.

Scheme 4.

It was noted that the reaction of 3-arylhydrazono-4-butanals 6a,e and 2-arylhydrazono-3-propanals 6b,d,f,h with glycine or N-acetylglycine and with hippuric acid by boiling in acetic anhydride (Ac₂O) gave similar compounds. The structural formulae 17a-g are proposed for the resulting products based on their elemental analysis and spectral data. Thus the 1H-NMR of compound 17a showed a singlet at δ 2.23 ppm corresponding to the protons of the CH₃ attached to the amide group. Another singlet was
seen at \(\delta \) 8.61 ppm, corresponding to the resonance of the pyridazine ring (HC-4) proton. A third singlet seen at \(\delta \) 10.21 ppm was assigned to the amide group NH proton. The \(^{13}\)C-NMR showed a signal for the carbon atom of the methyl group attached to the amide group (\(\text{NHCOCH}_3 \)) at \(\delta \) 24.83 ppm and an absorption at \(\delta \) 171.98 ppm corresponding to the carbon atom of the amide group carbonyl (\(\text{NHCOCH}_3 \)). The same result was obtained when the reaction was performed by means of microwave irradiation in a microwave oven for 5-15 minutes, in yields of 35-% 50% (Scheme 5).

It is proposed that when \(\text{Ac}_2\text{O} \) is present the glycine is acetylated to \(\text{N}-\text{acetylglycine} \) and then this compound cyclizes to form 2-methyloxazol-5-one (15a) and the latter in turn condensed with the arylhydrazone derivatives 6a,b,d-f,h to form the intermediate 16 which cannot be isolated, but then rearranges to form pyridazinone derivatives 17a-f. Similarly hippuric acid cyclized in the presence of \(\text{Ac}_2\text{O} \) to give 5-phenyloxazol-5-one (15a) and then this compound condensed with arylhydrazone derivative 6a to gave pyridazinone derivative 17g [28,29].
Recently Elnagdi et al. [10, 30, 31] have described a synthesis of pyridazine-5,6-dicarbonates 22a,b via reaction of 6b,e with dimethyl acetylenedicarboxylate in the presence of diphenylphosphine. The exact mechanism has never been discussed. In our hands, a similar reaction took place affording dimethyl-1,6-dihydropyridazines-5,6-dicarboxylate. We believe that the initial step in this reaction is the addition of triphenylphosphine to the dimethyl acetylenedicarboxylate to yield 18, then this compound attacks the formyl carbonyl group yielding 19, which cyclizes to 20 and the latter is then converted into the final product via intermediate 21 (Scheme 6).

Scheme 6

\[R-\text{CHO} + \text{CO}_2\text{Me} + \text{Ph}_3\text{P} \rightarrow \text{18} \]

\[\text{18} \rightarrow \text{19} \]

\[\text{19} \rightarrow \text{20} \]

\[\text{20} \rightarrow \text{21} \]

\[\text{21} \rightarrow \text{22} \]

\[a: R=2\text{-furyl, } \text{Ar}=\text{C}_6\text{H}_4\text{-CO}_2\text{CH}_3\text{-o} \]

\[b: R=\text{CH}_3, \text{Ar}=\text{C}_6\text{H}_4\text{-CN-o} \]
Experimental

General

All melting points were measured on a Gallenkamp Electrothermal melting point apparatus and are uncorrected. The IR absorption spectra (KBr disks) were measured on a Nicolet Magna 520FT IR Spectrophotometer. 1H-NMR and 13C-NMR spectra were recorded in deuterated dimethylsulfoxide (DMSO-d$_6$) or deuterated chloroform (CDCl$_3$) at 200 MHz on a Varian Gemini NMR spectrometer or a Bruker DPX 400 MHz spectrometer using tetramethysilane (TMS) as an internal reference and results are expressed as δ values (ppm). Mass spectra were recorded on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV. Microwave irradiation was carried out using a commercial microwave oven (SGO 390W). Elemental analyses were carried out at the Microanalytical Center of Cairo University, Egypt.

General Procedure for the preparation of enaminones 2a-g

Method I (Δ): Dimethylformamide dimethylacetal (DMFDMA) (0.1 mol) was added to solution of methyl ketone (0.1 mol) in dry xylene (30 mL) or dry toluene (30 mL), and the reaction mixture was refluxed for 8 hours. Removal of the solvent under reduced pressure yielded the crude product, which was recrystallized from xylene.

Method II (Δ without solvent): A mixture of dimethylformamide dimethylacetal (DMFDMA, 0.1 mol) and the corresponding methyl ketone (0.1 mol) was refluxed for 9 hours and was allowed to cool. The solid product formed was collected and recrystallized from xylene.

Method III (μω): Dimethylformamide dimethylacetal (DMFDMA, 0.1 mol) and methyl ketone (0.1 mol) were placed in the microwave oven and irradiated at full power for 1-5 min., left to cool to room temperature and the solid formed was collected and recrystallized from xylene.

Yields and properties of the products are summarized in Table 1.

NO.	COMPOUND	M.P./°C	REF.
2a	4-Dimethylamino-3-buten-2-one	-	15
2b	3-Dimethylamino-1-(2-furyl)propenone	92	15
2c	3-Dimethylamino-1-(2-pyrrolyl)propenone	94	15
2d	3-Dimethylamino-1-(2-pyridyl)propenone	135	15
2e	3-Dimethylamino-1-(2-hydroxyphenyl)propenone	123	-
2f	3-Dimethylamino-1-(4-hydroxyphenyl)propenone	-	-
2g	3-Dimethylamino-1-(4-chlorophenyl)propenone	88	-
Preparation of 2-arylhydrazono-3-oxo-3-substituted-propanals 6a-h [15]

A cold solution of aryl diazonium salt (10 mmol) was prepared by adding a solution of sodium nitrite (1 g in 10 mL H2O) to a cold solution of aryl amine hydrochloride (10 mmol of aryl amine in 5 mL concentrated HCl) with stirring as described earlier [15]. The resulting solution of the aryl diazonium salt was then added to a cold solution of enamino in EtOH (50 mL) containing sodium acetate (1g in 10 mL H2O). The mixture was stirred at room temperature for 1h and the solid product thus formed was collected by filtration and crystallized from the appropriate solvent.

2-(2-methoxycarbonylphenylhydrazono)-3-oxo-butanal (6a). Orange crystals (from ethanol); yield 63%; m.p. 126 °C; IR νmax cm⁻¹: 3568 (br, NH), 2954 (CH aldehyde), 1695 (C=O ester), 1647 (C=O aldehyde), 1600 (C=O ketone); 1H-NMR: δ = 2.52, 2.65 (s, 3H, CH3), 4.02, 4.03 (s, 3H, OCH3), 7.20-8.15 (m, 4H, Ar-H), 9.59, 10.19 (s, 1H, CHO), 15.57, 15.89 (s, 1H, NH); MS: (M⁺ +1) 249; Anal. Calcd. for C12H12N2O4 (248.224): C, 58.07; H, 4.67; N, 11.28; Found: C, 58.37; H, 4.71; N, 11.58.

3-(2-furyl)-2-(2-methoxycarbonylphenylhydrazono)-3-oxo-propanal (6b). Dark yellow crystals (from dioxane); yield 90%; m.p. 195 °C; IR νmax cm⁻¹: 3468 (br, NH), 2837 (CH aldehyde), 1705 (C=O ester), 1652 (C=O aldehyde) and 1615 (C=O ketone); 1H-NMR: δ = 4.05 (s, 3H, CH3), 6.60 (m, 1H, furyl H-4), 7.21-7.74 (m, 4H, Ar-H), 7.95-8.12 (m, 2H, furyl H-3, H-5), 10.23 (s, 1H, CHO) and 15.66 (s, 1H, NH) ppm; MS: (M⁺) 300; Anal. Calcd. for C15H12N2O5 (300.256): C, 60.00; H, 4.00; N, 9.33; Found: C, 59.99; H, 4.01; N, 9.43.

2-(2-methoxycarbonylphenylhydrazono)-3-oxo-3-(2-pyrrolyl)propanal (6c). Pale orange crystals (from dil. dioxane); yield 45%; m.p. 186 °C; IR νmax cm⁻¹: 3468 (br, NH), 2837 (CH aldehyde), 1720 (C=O ester), 1662 (C=O aldehyde) and 1645 (C=O ketone); MS: (M⁺ +1) 298; Anal. Calcd. for C15H13N3O4 (299.27): C, 60.20; H, 4.34; N, 14.05; Found: C, 60.31; H, 4.40; N, 14.12.

3-(4-Chlorophenyl)-2-(2-methoxycarbonylphenylhydrazono)-3-oxo-propanal (6d). Yellow crystals (from ethanol); yield 80%; m.p. 189 °C; IR νmax cm⁻¹ (this compound shows a complex spectrum due to the to H-bond between O and NH): 3022 (CH aromatic), 1711 (C=O ester), 1650 (C=O aldehyde), 1638 (C=O ketone) and 1586 (C=N); 1H-NMR: δ = 4.05 (s, 3H, CH3), 7.20-8.09 (m, 8H, Ar-H), 10.25 (s, 1H, CHO) and 15.69 (s, 1H, disappeared after D2O exchange, NH); 13C-NMR: δ = 52.90 (COOC6H3), 116.19, 116.40, 118.98, 128.36, 133.33, 138.75 (C₆H₄-CO₂M-o), 124.98, 131.59, 131.89, 134.74, 135.50 (C₆H₄-Cl-p), 143.54 (C≡N-N), 166.87 (COC₆H₃), 188.23 (C=O) and 190.49 (CHO); MS: (M⁺) 344; Anal. Calcd. for C17H13N3O4Cl (344.76): C, 59.23; H, 3.80; N, 8.13; Found: C, 59.33; H, 3.82; N, 8.15.

2-(2-Cyanophenylhydrazono)-3-oxo-butanal (6e). Orange crystals (from ethanol); yield 80%; m.p. 130 °C; IR: νmax cm⁻¹: 3406 (br, NH), 2221 (CN), 1693 (C=O aldehyde) and 1670 (C=O ketone); 1H-NMR: δ = 2.52, 2.63 (s, 3H, CH3), 7.22-8.02 (m, 4H, Ar-H), 9.58, 10.26 (s, 1H, CHO) and 14.4, 15.4 (s, 1H, NH); MS: (M⁺) 215; Anal. Calcd. for C11H9N3O2 (215.2): C, 61.39; H, 4.21; N, 19.53; Found: C, 61.48; H, 4.30; N, 19.58.
3-(2-Furyl)-2-(2-cyanophenylhydrazono)-3-oxopropanal (6f). Orange yellowish crystals (from dioxane); yield 78%; m.p. 205 °C; IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3543 (br, NH), 2221 (CN), 1651 (C=O aldehyde) and 1648 (C=O ketone); \(^1\)H-NMR: \(\delta = 6.76 \) (m, 1H, furyl H-4), 7.34-7.52 (m, 4H, Ar-H), 7.56-8.10 (m, 2H, furyl H-3, H-5), 10.02 (s, 1H, CHO) and 14.49 (s, 1H, NH); \(^13\)C-NMR: \(\delta = 112.54, 115.30, 148.22, 149.63 \) (furoyl carbon), 116.09 (CN), 122.08, 125.49, 133.66, 133.14, 143.70 (C\(_6\)H\(_4\)-CN-o), 152 (C=N-N), 176.15 (CHO) and 188.95 (C=O); MS: (M\(^+\)) 267; Anal. Calcd. for C\(_{14}\)H\(_{9}\)N\(_3\)O\(_3\) (267.23): C, 62.92; H, 3.37; N, 15.73; Found: C, 62.99; H, 3.40; N, 15.81.

2-(2-Cyanophenylhydrazono)-3-oxo-3-(2-pyrrolyl)propanal (6g). Pale brown crystals (from dioxane); yield 65%; m.p. 172 °C; IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3450 (br, NH), 2216 (CN), 1680 (C=O aldehyde) and 1648 (C=O ketone); \(^1\)H-NMR: \(\delta = 6.37 \) (m, 1H, pyrrolyl H-4), 7.15-7.31 (m, 4H, Ar-H), 7.64-7.91 (m, 2H, pyrrolyl H-3, H-5), 9.85 (br s, 1H, NH), 10.23 (s, 1H, CHO) and 14.98 (s, 1H, NH); MS: (M\(^+\)) 266; Anal. Calcd. for C\(_{14}\)H\(_{10}\)N\(_4\)O\(_2\) (266.24): C, 63.16; H, 3.76; N, 21.05; Found: C, 63.23; H, 3.79; N, 21.07.

3-(4-Chlorophenyl)-2-(2-cyanophenylhydrazono)-3-oxo-propanal (6h). Brown crystals (from 1:1 ethanol/dioxane); yield 88%; m.p. 225 °C; IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3320 (NH), 3019 (CH aromatic), 2221 (CN), 1675 (C=O aldehyde) and 1640 (C=O ketone); MS: (M\(^+\)) 311; Anal. Calcd. for C\(_{16}\)H\(_{10}\)N\(_3\)O\(_2\)Cl (311.73): C, 61.65; H, 3.23; N, 13.48; Found: C, 61.70; H, 3.15; N, 13.55.

General procedure for the preparation of bisazo compounds 7a,b

A cold solution of aryldiazonium salt (10 mmol, a slight excess) was prepared by adding a solution of sodium nitrite (1g in 10 mL H\(_2\)O) with stirring to a cold solution of arylamine hydrochloride (10 mmol of arylamine in 5 mL concentrated HCl) as described earlier. The resulting solution of the aryldiazonium salt was then added to a cold solution of enaminoe in EtOH (50 mL) containing sodium acetate (1g in 10 mL H\(_2\)O). The mixture was stirred at room temperature for 1 h and the solid product thus formed was collected by filtration and crystallized from the appropriate solvent.

3-\{[(2-cyanophenyl)diazo]-3-[(2-cyanophenyl)hydrazono]propan-2-one (7a). Brown crystals (from ethanol); yield 82%; m.p. 179 °C; IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3066 (CH aromatic), 2935 (CH aliphatic), 2222 (CN), 1666 (C=O); \(^1\)H-NMR: \(\delta = 2.63 \) (s, 3H, CH\(_3\)), 7.20-7.81 (m, 8H, Ar-H), and 15.50 (s, 1H, NH); \(^13\)C-NMR: \(\delta = 52.26 \) (CH\(_3\)), 117.05, 117.46 (2C\(_{\equiv}N\)), 100.67, 108.74, 117.96, 118.86, 125.05, 127.74, 133.39, 133.67, 134.10, 134.35, 144.75 (2C\(_{6}\)H\(_4\)-CN-o), 151.75 (C=N-NH) and 197.41 (C=O); MS: (M\(^{-1}\)) 315; Anal. Calcd. for C\(_{17}\)H\(_{12}\)N\(_6\)O (316.32): C, 64.55; H, 3.82; N, 26.57; Found: C, 64.60; H, 3.75; N, 26.49.

1-(4-chlorophenyl)-2-\{[(2-cyanophenyl)diazo]-2-[(2-cyanophenyl)hydrazono]-ethan-1-one (7b). Dark brown crystals (from 1:1 ethanol/dioxane); yield 80%; m.p. 226 °C; IR \(\nu_{\text{max}} \) cm\(^{-1}\): 3069 (CH aromatic), 2935 (CH aliphatic), 2222 (CN), 1646 (C=O); \(^1\)H-NMR: \(\delta = 7.18-7.96 \) (m, 12H, Ar-H) and 15.75 (s, 1H, NH); \(^13\)C-NMR: \(\delta = 101.38, 107.99, 117.17, 119.84, 125.17, 127.56, 133.18, 133.54, 133.57, 134.17, 134.34, 145.48
Molecules 2007, 12 2071

(2C₆H₄-CN-o), 116.09, 116.36 (2C=), 151.74 (C=N-NH) and 190.07 (C=O). MS: (M⁺-1) 411; Anal. Calcd. for C₂₂H₁₃N₆OCl (412.84): C, 64.01; H, 3.17; N, 20.36; Found: C, 64.15; H, 3.20; N, 20.39.

Reaction of 2-Arylhydrazones with heterocyclic amines:

Method I (Δ): A mixture of compounds 6a-h (0.1 mol) and amine (0.1 mol) was refluxed in ethanol (30 mL) for 2 hours, then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

Method II (μω): A mixture of compounds 6a-h (0.1 mol) and amine (0.1 mol) and a few drops of ethanol was placed in the microwave oven and irradiated at 390 w for 5 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

Methyl 2-{N′-[2-Oxo-1-(thiazol-2-yliminomethyl)-propylidene]hydrazino}benzoate (9a). Brown crystals (from methanol); yield 80%; m.p. 145 °C; IR νmax cm⁻¹: 3450 (br, NH), 3087 (CH aromatic), 2954 (CH aliphatic), 1706 (C=O ester), 1660 (C=O ketone) and 1571 (C=N); MS: (M +) 330; Anal. Calcd. for C₁₅H₁₄N₄O₃S (330.37): C, 54.54; H, 3.69; N, 14.65; Found: C, 54.56; H, 3.70; N, 14.66.

Methyl 2-{N′-[2-Furan-2-yl-2-oxo-1-(thiazol-2-yliminomethyl)ethylidene]hydrazino}benzoate (9b). Light brown crystals (from methanol); m.p. 162 °C; ¹H-NMR δ = 3.97 (s, 3H, CH₃O), 6.79 (m, 1H, furyl H-4), 7.24 (d, 1H, furyl H-3), 7.3, 7.52 (d, 2H, thiazole H-4, H-5), 7.57-8.06 (m, 4H, Ar-H), 7.8 (s, 1H, CH olefinic), 8.13 (d, 1H, furyl H-5) and 15.37 (s, 1H, NH); MS: (M⁺) 382; Anal. Calcd. for C₁₈H₁₄N₄O₄S (382.40): C, 56.54; H, 3.69; N, 14.66.

2-{N′-[2-Oxo-2-(1H-pyrrol-2-yl)-1-(thiazol-2-yliminomethyl)ethylidene]hydrazino}benzonitrile (9c). Brown crystals (from ethanol); m.p. 201ºC; IR νmax cm⁻¹: 3490 (br, NH), 3066 (CH aromatic), 2223 (CN), 1665 (C=O) and 1551 (C=N); ¹H-NMR: δ = 7.25, 7.47 (m, 2H, pyridyl H-4, H-5), 7.62-8.03 (m, 8H, Ar-H), 8.63 (d, 1H, pyridyl H-3), 8.58 (d, 1H, pyridyl H-6), 9.66 (s, 1H, CH olefinic) and 15.73 (s, 1H, NH); MS: (M⁺) 420; Anal. Calcd. for C₁₇H₁₄N₆O₃Cl (420.86): C, 62.79; H, 4.07; N, 13.31; Found: C, 62.70; H, 4.20; N, 13.39.

Methyl 2-{N′-[2-(1H-pyrrol-2-yl)-2-oxo-1-(pyridin-2-yliminomethyl)ethylidene]hydrazino}benzoate (9d). Orange crystals (from 2:1 ethanol/dioxane); m.p. 255 °C; IR νmax cm⁻¹: 3320 (NH), 3007 (CH aromatic), 1645 (C=O ketone), and 1588 (C=N); ¹H-NMR: δ = 3.99 (s, 3H, CH₃O), 7.25, 7.47 (m, 2H, pyridyl H-4, H-5), 7.62-8.03 (m, 8H, Ar-H), 8.63 (d, 1H, pyridyl H-3), 8.58 (d, 1H, pyridyl H-6), 9.66 (s, 1H, CH olefinic) and 15.73 (s, 1H, NH); MS: (M⁺) 420; Anal. Calcd. for C₂₂H₁₇N₆O₃Cl (420.86): C, 62.79; H, 4.07; N, 13.31; Found: C, 62.70; H, 4.20; N, 13.39.

2-{N′-[2-Oxo-1-(pyridin-2-yliminomethyl)propylidene]hydrazino}benzonitrile (9e). Dark orange crystals (from ethanol); m.p. 198 °C; IR νmax cm⁻¹: 3267 (2 NH), 3050 (CH aromatic), 2917 (C=O) and 1553 (C=N); ¹H-NMR: δ = 3.99 (s, 3H, CH₃O), 7.25, 7.47 (m, 2H, pyridyl H-4, H-5), 7.62-8.03 (m, 8H, Ar-H), 8.63 (d, 1H, pyridyl H-3), 8.58 (d, 1H, pyridyl H-6), 9.66 (s, 1H, CH olefinic) and 15.73 (s, 1H, NH); MS: (M⁺) 382; Anal. Calcd. for C₁₈H₁₄N₄O₄S (382.40): C, 56.54; H, 3.69; N, 14.66.

2-{N′-[2-Oxo-1-(pyridin-2-yliminomethyl)-2-(1H-pyrrol-2-yl)-ethylidene]hydrazino}benzonitrile (9f). Dark orange crystals (from ethanol); m.p. 232 °C; IR νmax cm⁻¹: 3267 (2 NH), 3050 (CH aromatic),
Molecules 2007, 12
2072

2222 (CN), 1618 (C=O) and 1539 (C=N); MS: (M⁺) 342; Anal. Calcd. for C₁₉H₁₄N₆O (342.36): C, 66.66; H, 4.12; N, 24.55; Found: C, 66.56; H, 4.20; N, 24.59.

2-{N′-[2-Furan-2-yl-2-oxo-1-(pyridin-2-yliminomethyl)ethylidene]hydrazino}benzonitrile (9g). Brown crystals (from ethanol); m.p. 259 ºC; IR ν max cm⁻¹: 3500 (br, NH), 3105 (CH aromatic), 2220 (CN), 1631 (C=O) and 1549 (C=N); MS: (M +) 343; Anal. Calcd. for C₁₉H₁₃N₅O₂ (343.35): C, 66.47; H, 3.82; N, 20.40; Found: C, 66.50; H, 3.89; N, 20.35.

Methyl 2-(N′⁻¹-{1-[(1H-Benzimidazol-2-ylimino)-methyl]-2-furan-2-yl-2-oxo-ethylidene]hydrazino}benzoate (9h). Brown crystals (from 2:1 ethanol/dioxane); m.p. 240 ºC; ¹H-NMR: δ = 4.0 (s, 3H, OCH₃), 6.83 (dd, 1H, furyl H-4), 7.22-7.25 (m, 4H, imidazole-H), 7.36 (m, 1H, furyl H-3), 7.63-7.99 (m, 4H, Ar-H), 9.47 (s, 1H, CH olefinic), 12.11 (s, 1H, NH imidazole) and 15.85 (s, 1H, NH hydrazone) ppm; MS: (M⁺) 415; Anal. Calcd. for C₂₂H₁₇N₅O₄ (415.41): C, 63.61; H, 4.12; N, 16.86; Found: C, 63.67; H, 4.22; N, 16.90.

Methyl 2-(N′⁻¹-{1-[(1H-Benzimidazol-2-ylimino)-methyl]-2-(4-chlorophenyl)-2-oxo-2-ethylidene]hydrazino}benzoate (9j). Orange crystals (from 2:1 ethanol/dioxane); m.p. 257 ºC; IR ν max cm⁻¹ (shows complex spectra due to H-bond between O and NH): 3354 (NH imidazole), 1690 (C=O ester), 1640 (C=O ketone) and 1586 (C=N); MS: (M⁺-18) 441; Anal. Calcd. for C₂₄H₁₈N₅O₃Cl (459.90): C, 62.68; H, 3.95; N, 15.23; Found: C, 62.58; H, 3.90; N, 15.33.

Methyl 2-{N′⁻¹-[1-(Benzothiazol-2-yliminomethyl)-2-oxo-2-(1H-pyrrol-2-yl)-ethylidene]hydrazino}benzoate (9k). Brown crystals (from methanol); m.p. 189 ºC; IR ν max cm⁻¹: 3492, 3224 (2NH), 3023 (CH aromatic), 1720 (C=O ester), 1664 (C=O ketone) and 1575 (C=N); ¹H-NMR: δ = 3.96 (s, 3H, OCH₃), 6.41 (m, 1H, pyrrolyl H-4), 6.75 (d, 2H, pyrrolyl H-3), 6.89 (s, 1H, CH olefinic), 6.95 (d, 1H, pyrrolyl H-5), 7.22, 7.36 (d, 2H, benzothiazole H-4, H-7), 7.38-7.44 (m, 2H, benzothiazole H-5, H-6), 7.53 (s, 1H, NH pyrrolyl), 7.62-7.69 (m, 2H, Ar H-4, H-5), 7.89, 7.91 (d, 2H, Ar H-3, H-6), and 14.46 (s, 1H, NH hydrazone) ppm; ¹³C-NMR: δ = 52.46 (OCH₃), 110.33, 121.24, 126.57, 131.30 (pyrrolyl carbon), 113.21, 114.03, 116.90, 119.54, 134.21, 136.84 (C₆H₄-CO₂Me-o), 121.58, 123.18, 124.77, 134.32, 137.45 (C₆H₄NS), 140.50 (C=⁻N-N), 144.82 (N-C=S), 165.27 (HC=⁻N), 167.31 (COOCH₃) and 173.42 (C=O) ppm; MS: (M⁺) 431; Anal. Calcd. for C₂₂H₁₇N₅O₃S (431.48): C, 61.24; H, 3.97; N, 16.23; Found: C, 61.34; H, 3.87; N, 16.40.
2-{N’-[1-(Benzothiazol-2-yliminomethyl)-2-oxo-propylidene]-hydrazino}-benzonitrile (9I). Brown crystals (from 2:1 ethanol/dioxane); m.p. 223 ºC; IR ν_{max} cm$^{-1}$: 3350 (NH), 3061 (CH aromatic), 2921 (CH aliphatic), 2216 (C≡N), 1684 (C=O) and 1560 (C=N); 1H-NMR: δ = 2.60 (s, 3H, CH$_3$), 7.24-7.99 (m, 8H, Ar-H), 9.50 (s, 1H, CH olefinic) and 15.29 (s, 1H, NH) ppm, 13C-NMR: δ = 25.10 (CH$_3$CO), 101.32, 115.80, 121.92, 134.23, 134.38, 145.82 (C$_6$H$_4$-CN-o), 116.32 (C$_6$H$_4$-N=N), 123.56, 125.45, 125.48, 126.81, 133.12 (C$_6$H$_4$NS), 151.55 (C=O-N=N), 153.34, 153.49 (N-C-S), 168.40 (HC-CN=O) and 196.56 (C=O) ppm; MS: (M$^+$) 347; Anal. Calcd. for C$_{18}$H$_{13}$N$_5$OS (347.40): C, 62.23; H, 3.77; N, 20.16; Found: C, 62.40; H, 3.97; N, 20.20.

2-{N’-[1-(Benzothiazol-2-yliminomethyl)-2-(4-chlorophenyl)-2-oxo-ethylidene]-hydrazino}-benzonitrile (9m). Brown crystals (from 2:1 ethanol/dioxane); m.p. 259 ºC; IR ν_{max} cm$^{-1}$: 3600 (br, NH), 3070 (CH aromatic), 2219 (C≡N), 1650 (C=O) and 1559 (C=N); 1H-NMR: δ = 6.97-8.35 (m, 12H, Ar-H), 8.13 (s, 1H, CH olefinic) and 15.10 (s, 1H, NH) ppm; MS: (M$^+$) 443; Anal. Calcd. for C$_{23}$H$_{14}$N$_5$OClS (443.92): C, 62.23; H, 3.18; N, 15.78; Found: C, 62.40; H, 3.28; N, 15.68.

Methyl 2-[2-piperidin-1-yl-1-(1H-pyrrol-2-carbonyl)-vinylazoethylidene] benzoate (12a). Brown crystals (from ethanol); m.p. 200 ºC; IR ν_{max} cm$^{-1}$: 3158 (NH pyrrolyl), 3009 (CH aromatic), 2932 (CH aliphatic), 1672 (C=O ketone), 1573 (C=O ester) and 1495 (N=N); 1H-NMR: δ = 1.43-2.75 (m, 10H, piperidin H), 5.57 (s, 1H, NH pyrrolyl), 6.50 (m, 1H, pyrrolyl H-4), 6.82 (d, 1H, pyrrolyl H-3), 6.95-6.99 (m, 1H, Ar H-3), 7.21 (d, 1H, pyrrolyl H-5), 7.49-7.53 (m, 1H, Ar H-5), 7.86, 7.98 (d, 2H, Ar-H-3, H-6) and 8.12 (s, 1H, CH olefinic) ppm; 13C-NMR: δ = 24.54, 26.18, 48.43 (piperidinyl carbons), 52.37 (COOC$_3$H$_7$), 109.35, 112.88, 114.03 (pyrrolyl carbons), 116.13, 120.77, 123.43, 131.34, 134.32, 135.38 (C$_6$H$_4$-CO$_2$M-o), 139.45 (HC=C-N), 145.59 (HC=C-N), 167.42 (COOCH$_3$) and 174.40 (C=O) ppm; MS: (M$^+$) 366; Anal. Calcd. for C$_{20}$H$_{22}$N$_4$O$_3$ (366.42): C, 65.56; H, 6.05; N, 15.29; Found: C, 65.69; H, 6.25; N, 15.15.

Methyl 2-[2-morpholin-4-yl-1-(1H-pyrrol-2-carbonyl)-vinylazol] benzoate (12b). Brown crystals (from ethanol); m.p. 190 ºC; IR ν_{max} cm$^{-1}$: 3115 (NH pyrrolyl), 3018 (CH aromatic), 1697 (C=O ester), 1660 (C=O ketone) and 1495 (N=N); 1H-NMR: δ = 2.47-2.79 (m, 4H, morpholinyl H), 3.58, 3.93 (d, 4H, morpholinyl H), 5.93 (s, 1H, NH pyrrolyl), 6.60 (m, 1H, pyrrolyl H-4), 6.87 (d, 1H, pyrrolyl H-3), 7.20 (d, 1H, pyrrolyl H-5), 7.55-7.97 (m, 4H, Ar-H) and 8.10 (s, 1H, CH olefinic) ppm; MS: (M$^+$) 368; Anal. Calcd. for C$_{19}$H$_{22}$N$_4$O$_4$ (368.40): C, 61.95; H, 5.47; N, 15.21; Found: C, 61.92; H, 5.50; N, 15.30.

General procedure for the reaction of 2-arylhydrazono derivatives with active methylene compounds

With benzotriazolacetone

Method I (Δ): A solution of compounds 6e,h (0.1 mol) in ethanol (30 mL) was treated with benzotriazolylacetone (0.1 mol) in the presence of a few drops of piperidine and refluxed for 3 hours. The precipitated material was isolated by filtration and crystallized from the appropriate solvent.
Method II (μω): Compounds 6e,h (0.1 mol) and benzotriazolylacetone (0.1 mol) in the presence of a few drops of piperidine was placed in the microwave oven and irradiated at 390 W for 2-15 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

5-Benzotriazolyl-3-(2-cyanophenylhydrazono)-4-hepten-2,6-dione (14a). Brown crystals (from dioxane); m.p. 235 °C; ¹H-NMR: δ = 2.20, 2.30 (s, 3H, CH₃), 6.64-7.98 (m, 9H, Ar-H + CH olefinic) and 14.12 (s, 1H, NH) ppm; ¹³C-NMR: δ = 19.77, 19.80 (2CH₃), 112.11 (HC), 116.50 (CN), 110.11, 115.82, 119.20, 132.81, 133.65, 150.22 (C₆H₄CN-o), 128.59, 129.89, 130.23, 131.79 (benzotriazolyl carbons), 144.70 (N-C=CO), 155.39 (C=N-N) and 196.55, 199.75 (2C=O) ppm; MS: (M⁺) 372; Anal. Caled. for C₂₀H₁₆N₆O₂ (372.39): C, 64.51; H, 4.33; N, 22.57; Found: C, 64.65; H, 4.23; N, 22.59.

4-Benzotriazolyl-1-(4-chlorophenyl)-2-(2-cyanophenylhydrazono)-3-hexaen-1,5-dione (14b). Green crystals (from ethanol); m.p. 259 °C; IR ν max cm⁻¹: 3400 (NH), 3068 (CH aromatic), 2320 (C≡N), 1674 (C=O) and 1646 (C=O ketone); ¹H-NMR: δ = 1.99 (s, 3H, CH₃), 7.20 (s, 1H, CH olefinic), 7.61-8.11 (m, 12H, Ar-H) and 13.89 (s, 1H, NH) ppm; MS: (M⁺) 468; Anal. Calcd. for C₂₅H₁₇N₆O₂Cl (468.91): C, 64.04; H, 3.65; N, 17.92; Found: C, 64.45; H, 3.59; N, 17.99.

With glycine or N-acetylglycine or hippuric acid

Method I (Δ): Each of compounds 6a,b,d,e,f,h (0.1 mol) and glycine or N-acetylglycine or hippuric acid (0.1 mol) was refluxed in acetic anhydride (20 mL) for 1 hour, then left to cool at room temperature and poured into ice-cold water. The solid product so formed was collected by filtration and crystallized from the appropriate solvent.

Method II (μω): Each of compounds 6a,b,d,e,f,h (0.1 mol) and glycine or N-acetylglycine or hippuric acid (0.1 mol) and drops from acetic anhydride (20 mL) was placed in the microwave oven and irradiated at 390 W for 5-15 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.

4-Acetylamino-6-acetyl-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17a). Brown crystals (from ethanol); m.p. 238 °C; ¹H-NMR: δ = 2.23, 2.43 (s, 3H, 2CH₃CO), 3.66 (s, 3H, OCH₃), 7.66-8.01 (m, 4H, Ar-H), 8.61 (s, 1H, pyridazinyl H-5) and 10.21 (s, 1H, NH) ppm; ¹³C-NMR: δ = 24.83 (NHCOCH₃), 25.11 (CH₃CO), 52.98 (COOCH₃), 108.76, 136.98, 143.87 (pyridazine ring), 127.78, 128.99, 130.17, 130.90, 134.02, 144.89 (C₆H₄=CO₂Me-o), 156.25 (C=O ring), 165.54 (COOCH₃), 171.98 (NHCOCH₃) and 195.66 (CH₃CO) ppm; MS: (M⁺) 329; Anal. Caled. for C₁₆H₁₅N₃O₅ (329.32): C, 58.36; H, 4.59; N, 12.76; Found: C, 58.40; H, 4.55; N, 12.86.

4-Acetylamino-6-(2-furylcarbonyl)-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17b). Dark brown crystals (from ethanol); m.p. 214 °C; ¹H-NMR: δ = 2.25 (s, 3H, CH₃CO), 3.66 (s, 3H, OCH₃), 6.73 (m, 1H, furyl H-4), 7.51 (d, 1H, furyl H-3), 7.68-7.89 (m, 4H, Ar H), 8.02 (d, 1H, furyl H-5), 8.69
(s, 1H, pyridazinyl H-5) and 10.26 (s, 1H, NH) ppm; MS: (M+) 381; Anal. Calcd. for C_{19}H_{15}N_{3}O_{6} (381.35): C, 59.84; H, 3.96; N, 16.08; Found: C, 59.79; H, 3.99; N, 16.25.

4-Acetylamino-6-(4-chlorophenylcarbonyl)-2-(2-methoxycarbonylphenyl)-2-hydropyridazin-3-one (17c). Light yellow crystals (from ethanol); m.p. 246 °C; IR ν_{max} cm\(^{-1}\): 3285 (NH), 1713 (C=O ester and C=O ketone) and 1644 (C=O amide and C=O pyridazine ring); \(^{1}\)H-NMR: δ = 2.21 (s, 3H, CH_{3}CO), 3.85 (s, 3H, OCH_{3}), 7.53-8.03 (m, 8H, Ar-H), 8.70 (s, 1H, pyridazinyl H-5) and 10.19 (s, 1H, NH) ppm; MS: (M+) 425; Anal. Calcd. for C_{21}H_{16}N_{3}O_{5}Cl (425.83): C, 59.23; H, 3.79; N, 9.87; Found: C, 59.35; H, 3.70; N, 9.96.

4-Acetylamino-6-acethyl-2-(2-cyanophenyl)-2-hydropyridazin-3-one (17d). Dark brown crystals (from ethanol); m.p. 244 °C; IR ν_{max} cm\(^{-1}\): 3323 (NH), 3107 (CH aromatic), 2900 (CH aliphatic), 2234 (C≡N), 1702 (C=O ketone), 1656 (C=O amide) and 1608 (C=O pyridazine ring); \(^{1}\)H-NMR: δ = 2.26, 2.49 (s, 3H, 2CH_{3}CO), 7.73-8.15 (m, 4H, Ar-H), 8.64 (s, 1H, pyridazinyl H-5) and 10.33 (s, 1H, disappeared after D_{2}O exchange, NH) ppm; MS: (M+) 296; Anal. Calcd. for C_{15}H_{12}N_{4}O_{3} (296.29): C, 60.81; H, 4.08; N, 18.91; Found: C, 60.91; H, 4.25; N, 18.75.

4-Acetylamino-2-(2-cyanophenyl)-6-(2-furyl carbonyl)-2-hydropyridazin-3-one (17e). Brown crystals (from ethanol); m.p. 242 °C; IR ν_{max} cm\(^{-1}\): 3295 (NH), 3037 (CH aromatic), 2236 (C=N), 1702 (C=O ketone), 1656 (C=O amide) and 1608 (C=O pyridazine ring); \(^{1}\)H-NMR: δ = 2.28, 6.76 (m, 1H, furyl H-4), 7.64, 8.13 (d, 2H, furyl H-3, H-5), 7.74-8.05 (m, 4H, Ar-H), 8.70 (s, 1H pyridazinyl H-5) and 10.41 (s, 1H, NH) ppm; MS: (M+) 348; Anal. Calcd. for C_{18}H_{12}N_{4}O_{4} (348.32): C, 62.07; H, 3.47; N, 16.08; Found: C, 62.25; H, 3.40; N, 16.32.

4-Acetylamino-6-(4-chlorophenylcarbonyl)-2-(2-cyanophenyl)-2-hydropyridazin-3-one (17f). Brown crystals (from 1:1 ethanol/dioxane); m.p. 252 °C; IR ν_{max} cm\(^{-1}\): 3225 (NH), 3050 (CH aromatic), 2220 (CN), 1718 (C=O ketone), 1640 (C=O amide) and 1635 (C=O pyridazine ring); MS: (M+) 392; Anal. Calcd. for C_{20}H_{13}N_{4}O_{3}Cl (392.80): C, 61.16; H, 3.34; N, 14.26; Found: C, 61.25; H, 3.30; N, 14.29.

6-Acetyl-4-Benzoylamino-2,3-dihydro-2-(2-methoxycarbonylphenyl)pyridazin-3-one (17g). Brown crystals (from ethanol); m.p. 170 °C; IR ν_{max} cm\(^{-1}\): 3339 (NH), 3077 (CH aromatic), 1799 (C=O ester), 1750 (C=O ketone), 1690 (C=O amide) and 1640 (C=O pyridazine ring); MS: (M+) 391; Anal. Calcd. for C_{21}H_{17}N_{3}O_{5} (391.39): C, 64.45; H, 4.38; N, 10.74; Found: C, 64.55; H, 4.28; N, 10.80.

General Procedure for the reaction of 2-aryldiazonio derivatives with dimethyl acetylenedicarboxylate (DMAD):

Method I (Δ): To stirred solution of triphenylphosphine (0.1 mol) and each of compound 6b,e (0.1 mol) in dichloroethane (10 mL) was added a few drops of DMAD solution (0.1 mol) in dichloroethane (10 mL) then left at room temperature overnight. The solvent was removed and the residue cooled to deposit a solid, which was crystallized from the appropriate solvent.
Table 2. Comparison between microwave and conventional heating reactions.

Product	Time/min	Yield%	Method II (μω)			
	Δ With Solvent	Δ Without Solvent	μω	Δ With Solvent	Δ Without Solvent	μω
2a	2100	-	-	-	-	-
2b	420	480	3	79	85	96
2c	420	480	5	89	90	97
2d	420	480	5	60	77	96
2e	420	480	1	75	88	99
2f	420	480	1	80	87	98
2g	420	480	5	61	88	97
9a	120	-	5	65	-	70
9b	120	-	15	70	-	75
9c	120	-	5	54	-	65
9d	120	-	7	40	-	95
9e	120	-	15	60	-	99
9f	120	-	7	55	-	73
9g	120	-	15	73	-	80
9h	120	-	10	60	-	99
9i	120	-	10	56	-	99
9j	120	-	10	95	-	98
9k	120	-	10	46	-	60
9l	120	-	5	50	-	70
9m	120	-	15	65	-	70
12a	180	-	2	30	-	70
12b	180	-	2	50	-	87
14a	180	-	2	16	-	25
14b	180	-	40	-	-	-
17a	60	-	-	20	-	-
17b	60	-	-	80	-	-
17c	60	-	15	25	-	35
17d	60	-	5	25	-	40
17e	60	-	-	61	-	-
17f	60	-	-	25	-	-
17g	60	-	10	35	-	50
22a	1440	-	27	-	-	-
22b	1440	-	30	24	-	60

Method II (μω): Each of compounds 6b,e (0.1 mol) and triphenylphosphine (0.1 mol) and a few drops of DMAD solution (0.1 mol), was placed in the microwave oven and irradiated at 390 W for 10-30 min., then left to cool to room temperature and the solid was collected and crystallized from the appropriate solvent.
2,3-Dihydro-3,4-dimethoxycarbonyl-6-(2-furylcarbonyl)-2-(2-methoxycarbonylphenyl)pyridazine (22a). Yellow crystals (from ethanol); m.p. 141 °C; IR: $\nu_{\text{max}} \text{ cm}^{-1}$: 3305 (NH), 3077 (CH aromatic), 2962 (CH aliphatic), 1780, 1750 (3C=O ester) and 1681 (C=O ketone); 1H-NMR: $\delta = 3.55, 3.70, 3.89$ (s, 3H, 3CH$_3$), 6.01 (s, 1H, pyridazine H-3), 6.48 (m, 1H, furyl H-4), 7.36-7.65 (m, 4H, Ar-H), 7.47, 7.77 (d, 2H, furyl H-3, H-5) and 7.83 (s, 1H, pyridazine H-5) ppm; 13C-NMR: $\delta = 52.24, 52.68, 53.20$ (3COOC$_3$H$_7$), 57.88, 126.88, 141.01, 149.94 (pyridazine carbons), 112.29, 117.20, 121.94, 131.04, 132.34, 144.40 (C$_6$H$_4$CO$_2$Me-o), 122.35, 123.91, 126.89, 147.20 (furyl carbons), 164.84, 167.03, 168.70 (3COOCH$_3$) and 174.63 (C=O) ppm; MS: (M$^+$) 426; Anal. Calcd. for C$_{21}$H$_{18}$N$_2$O$_8$ (426.39): C, 59.16; H, 4.26; N, 6.57; Found: C, 59.10; H, 4.39; N, 6.69.

2-(2-Cyanophenyl)-2,3-dihydro-3,4-dimethoxycarbonyl-6-acetylpyridazine (22b). Yellow crystals (from ethanol); m.p. 175 °C; IR: $\nu_{\text{max}} \text{ cm}^{-1}$: 3415 (NH), 3013 (CH aromatic), 2959 (CH aliphatic), 2221 (C≡N), 1746, 1717 (2C=O ester) and 1673 (C=O ketone); 1H-NMR: $\delta = 2.20$ (s, 3H, CH$_3$), 3.67, 3.76 (s, 3H, 2OCH$_3$), 6.20 (s, 1H, pyridazine H-3), 6.61-7.32 (m, 4H, Ar-H) and 7.80 (s, 1H, pyridazine H-5) ppm; 13C-NMR: $\delta = 19.80$ (CH$_3$), 50.55, 50.81 (2CO-OC$_3$H$_7$), 62.80, 126.85, 142.20, 150.45 (pyridazine carbons), 101.32, 113.00, 117.62, 132.81, 133.52, 147.82 (C$_6$H$_4$CN-o), 116.50 (CN), 165.05, 171.20 (2COOCH$_3$) and 196.56 (C=O) ppm; MS: (M$^{+1}$) 342; Anal. Calcd. For C$_{17}$H$_{15}$N$_3$O$_5$ (341.33): C, 59.82; H, 4.43; N, 12.31; Found: C, 59.98; H, 4.35; N, 12.48.

References

1. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacqnault, P.; Mathe, D. New solvent-free organic synthesis using focused microwaves. *Synthesis* **1998**, 1213-1234.

2. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted synthesis. *Tetrahedron* **2001**, **57**, 9225-9283.

3. Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. *J. Photochem. Photobiol. B.* **2005**, **6**, 139-167.

4. Al-Mousawi, S.; Ellassar, A.; El-Apasery, M. A Microwave Assisted Diazo Coupling Reaction. *Phosphorus, Sulfur, and Silicon* **2006**, **181**, 1755-1771.

5. Al-Zaydi, K.-M.; Hafez, E.-A. 1,3-Dipolar Cycloadditions of Some Nitrilimines and Nitrile Oxides to 3-N,N-Dimethylamino-1-oxopropene Derivatives. *J. Chem. Res. (S)* **1999**, 360-361.

6. Al-Omran, F.; Al-Awadi, N.; Yousef, O.; Elnagdi, M.-H. New Routes to 1-Functionally Substituted Arylbenzotriazoles: 3-Benzotriazol-1-yl-pyridazine-4-ones, 5-Benzotriazol-1-yl-pyridazine-6-ones and 5-Benzotriazol-1-yl-pyridazine-6-imines. *J. Heterocycl. Chem.* **2000**, **37**, 167-170.

7. Al-Saleh, B.; Abdelkhalik, M.-M.; Darwich, E.; Salah, O.-A.; Elnagdi, M.-H. Functionally Substituted Alkylbenzotriazoles: Reactivity of Alkylbenzotriazoles Toward Electrophilic and Nucleophilic Reagents. *Heteroatom Chem.* **2001**, **12**, 1-5.

8. Al-Saleh, B.; Behbehani, H.; El-Apasery, M.-A.; Elnagdi, M.-H., Enaminones as building blocks in heterocyclic synthesis: Syntheses of polyfunctionally substituted 3-azolylypyridines and azolyazoloazines by thermal and microwave heating. *J. Chem. Res.* **2004**, **575-577.**
9. Al-Zaydi, K.-M.; Hafez, E.-A.; Elnagdi, M.-H. Studies with functionally substituted heteroaromatics: a new routes for synthesis of pyridazino[2,3-a]quinazoline and pyridazino-6-imine derivatives. *J. Chem. Res. (S)* 2000, 154-155.

10. Al-Zaydi, K.-M. Synthesis of some new 4-arylazoloxazoles, 4-arylazopyrazles, 4-aroyl-2-aryl-1,2,3-trizoles and 3-aroylpyrazidinones. *J. Saudi Chem. Soc.* 2002, 6, 477-484.

11. Abdelkhalik, M.-M.; Eltoukhy, A.-M.; Agamy, S.-M.; Elnagdi, M.-H. Enaminones as building blocks in heterocyclic synthesis: New syntheses of nicotinic acid and thienopyridine derivatives. *J. Heterocycl. Chem.* 2004, 41, 431-435.

12. Ghozlan, S. A.-S.; Abdelhamid, I.-A.; Gaber, H.-M.; Elnagdi, M.-H. Studies on Enaminonitriles: a New Synthesis of 1,3-Substituted Pyrazole-4-carbonitrile. *J. Heterocycl. Chem.* 2005, 42, 1-5.

13. Al-Zaydi, K.-M.; Nhare, L.M. Synthesis and Chemistry of Enaminones. *Orient. J. Chem.* 2006, 22, 1-28.

14. Abu-Shanab, F.-A.; Wakefield, B.; Al-Omran, F.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. Alkyl-(oxo)pyridazinonitriles as Building Blocks in Heterocyclic Synthesis: Novel Syntheses of Pyrido[3,4-c]pyridazines, Pyrido[3,4-d]pyridazines, Thiopyrano[3,4-c]pyridazines and 1,3,4-Thiadiazacacenaphthyleneis. *J. Chem. Res. (S)* 1995, 488-489.

15. Al-Omran, F.; Al-Awadi, N.; Abou El-Kair, A.; Elnagdi, M.-H. Synthesis of new aryl and heteroaromatic substituted pyridines, pyrazoles, pyrimidens and pyrazolo[3,4-d] pyridazines. *OPPI.* 1997, 29(3), 285-292.

16. Al-Zaydi, K. M.; Al-Shiekh, M.-A.; Hafez, E.-A. Enaminonitriles in heterocyclic synthesis: new routes for the synthesis of some novel azolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimidazole, pyrido[1,2-a]benzimidazole, pyrazolo[3,4-b]pyridine, pyrazole and pyrimidine derivatives. *J. Chem. Res. (S)* 2000, 13-15.

17. Al-Saleh, B.; Al-Awadi, N.; Al-Kanderi, H.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. Studies with 2H-pyranones: Synthesis of new 3-substituted-4-hydroxy-2H-pyran-2-ones. *J. Chem. Res. (S)* 2000, 16-17.

18. Hassanien, A.-A.; Ghozlan, S. A.-S.; Elnagdi, M.-H. Enaminones as building blocks inorganic synthesis: a Novel route to polyfunctionally substituted benzonitriles, pyridines, eneyl-benzotriazoles and diazepines. *J. Heterocycl. Chem.*, 2003, 40, 225-228.

19. Al-Saleh, B.; El-Apasery, M.-A.; Abdel-Aziz, R.-S.; Elnagdi, M.-H. Enaminones In Heterocyclic Synthesis and Chemical Reactivity of 3-Anilino-1-Substituted-2-Pepone-1-One. *J. Heterocycl. Chem.* 2005, 42, 1-4.

20. Al-Omran, F.; El-Khair, A.-A. 2-(3-Arylhydrazono-3-formyl-2-oxopropyl)-1H-isoindole-1,3(2H)-dione in heterocyclic synthesis. Novel derivatives of pyridazin-6(1H)-one,pyridazin-6(1H)-imine, and pyrazolo[5,1-c][1,2,4]triazine incorporating an N-(2-oxyethyl)phthalimide moiety. *J. Chem. Res.* 2006, 6-9.

21. Al-Omran, F.; Abdel-Khalik, M.-M.; Abuel-Khair, A.; Elnagdi, M.-H. Studies With Functionally Substituted Heteroaromatics: A Novel Route for the Synthesis of 1-Aryl-6-oxopyrazidinones, of 1-Arylpyridazine-6-Imines and of 1-Aryl-6-imino-4- pyridazinals. *Synthesis* 1996, 91-94.

22. Agamy, S.-M. 1-Substituted 3-dimethylaminoprop-2-en-1-ones as building blocks in heterocyclic synthesis: new routes to 6-aroylpyrazidin-3-ones, 4,6-diaroylpyridazin-3-imines and 3-aroylpyrazolo[5,1-c][1,2,4]triazines. *J. Chem. Res. (S)* 2001, 349-350.
23. Al-Zaydi, K.-M.; Elnagdi, M.-H. Pyridopyridazines, Benzimidazolopyrimidines Triazolopyrimidines, 9-Oxo-2,3,6,7-tetraazabicyclo[3.3.1]nona-3,7-diene and Aroylcinnolines from 2-Arylhydrazono-3-oxopropanals. *Z. Naturforsch.* **2004**, *59b*, 1-5.

24. Al-Saleh, B.; El-Apasery, M.-A.; Elnagdi, M.-H. Studies with 3-substituted 2-arylhydrazono-3-oxoaldehydes: new routes for synthesis of 2-arylhydrazono-3-oxonitriles, 4-unsubstituted 3,5-diacylpyrazoles and 4-arylazophenols. *J. Chem. Res. (S)* **2004**, 578-580.

25. El-Dusouqui, O. M.-E.; Abdelkhalik, M.-M.; Al-Awadi, N.; Dib, H.-H.; Georg, B.-J.; Elnagdi, M.-H. Chemistry of 2-arylpyrazoles: utility of substituted 2-arylhydrazono-3-oxoalkanals as precursors for 3-oxoalkanenitriles, 3-aminoisoxazole and 1,2,3- and 1,2,4-triazoles. *J. Chem. Res. (S)* **2006**, 295-302.

26. Al-Zaydi, K.-M. Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3-Substituted Coumarins and Benzocoumarins by Microwave Irradiation of Corresponding Enaminones. *Molecules* **2004**, *8*, 541-555.

27. Al-Zaydi, K.-M.; Borik, R.-M.; Elnagdi, M.-H. 2-Arylhydrazonopropanals as Building Blocks in Heterocyclic Chemistry: Microwave Assisted Condensation of 2-Arylhydrazonopropanals with Amines and Active Methylene Reagents. *Molecules* **2004**, 9, 910-923.

28. Abdellah, S.-O.; Metwally, N.-H.; Anwar, H.-F.; Elnagdi, M.-H. Synthesis and chemical reactivity of 3-oxo-2-arylhydrazono-propanenitriles. *J. Heterocycl. Chem.* **2005**, 42, 781-786.

29. Behbehani, H.; Abdel-Khalik, M.-M.; Elnagdi, M.-H. New syntheses of substituted pyridazin-6-ones and pyridazin-6-imines. *Org. Prep. Proced. Int.* **1999**, *31*, 551-557.

30. Abdel-Khalik, M.-M.; Agamy S.-M.; Elnagdi, M.-H. Chemistry of 2-Aryl hydrazonopropanals: Novel Synthesis of 1,6-Dihydropyridazines and 5-Heteroaryl Substituted Pyrazolo[1,5-a]pyrimidines and Pyrazolo[3,4-b]pyridines. *Synthesis* **2001**, 1-5.

31. Al-Shiekh, M.-A.; Salah El-Din, A.-M.; Hafez, E.-A.; Elnagdi, M.-H. α-Enones in heterocyclic synthesis, Part I. Classical synthetic and environmentally friendly synthetic approaches to alkyl and acyl azoles and azines. *J. Chem. Res.* **2004**, 174-179.

Sample Availability: Contact author.

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.