Demazure Slices of Type $A_{2l}^{(2)}$

Masahiro Chihara

Received: 28 March 2020 / Accepted: 20 January 2021 / Published online: 20 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We consider a Demazure slice of type $A_{2l}^{(2)}$, that is an associated graded piece of an infinite-dimensional version of a Demazure module. We show that a global Weyl module of a hyperspecial current algebra of type $A_{2l}^{(2)}$ is filtered by Demazure slices. We calculate extensions between a Demazure slice and a usual Demazure module and prove that a graded character of a Demazure slice is equal to a nonsymmetric Macdonald-Koornwinder polynomial divided by its square norm. In the last section, we prove that a global Weyl module of the special current algebra of type $A_{2l}^{(2)}$ is a free module over the polynomial ring arising as the endomorphism ring of itself.

Keywords
Affine Lie algebra · Demazure modules · Macdonald-Koornwinder polynomials · Weyl modules

Mathematics Subject Classification (2010) 17B10

1 Introduction

A Demazure module in a highest weight module $L(\lambda)$ of a Kac-Moody Lie algebra \mathfrak{g} is studied for a long time. For an affine Lie algebra \mathfrak{g}, there are two types of Demazure modules in the literature [17, 20]. One is a thin Demazure module, that is usual Demazure module. The other is a thick Demazure module, that is an infinite-dimensional version of a thin Demazure module. Consider an affine Lie algebra of type $X_{l}^{(r)}$ ($X = A, D, E$) and $r = 1, 2, 3$ that is called type I in [2]. Its level one thin Demazure module has special features. Sanderson [25] and Ion [13] showed that its graded character is equal to a nonsymmetric Macdonald polynomial specialized at $t = 0$ in $X_{l}^{(r)} \neq A_{2l}^{(2)}$-case and equal to a nonsymmetric Macdonald-Koornwinder polynomial specialized at $t = 0$ in $A_{2l}^{(2)}$-case. Another special feature is the connection with a local Weyl module of a current algebra.

Presented by: Vyjayanthi Chari

Masahiro Chihara
chihara@math.kyoto-u.ac.jp

1 Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa, Sakyo Kyoto, 606-8502, Japan
that is a hyperspecial maximal parabolic subalgebra of \mathfrak{g} [6]. Chari-Loktev [3], Fourier-Littelmann [3], Fourier-Kus [10] and Chari-Ion-Kus [6] showed that a $\mathfrak{c}_\mathfrak{g}$-stable level one thin Demazure module is isomorphic to a local Weyl module as a $\mathfrak{c}_\mathfrak{g}$-module.

Less is known about a thick Demazure module compared to a thin Demazure module. A thick Demazure module is a module of a lower Borel subalgebra that is generated from an extremal weight vector of $L(\Lambda)$. Cherednik and Kato [7] recently studied a Demazure slice that is defined as a quotient module of a thick Demazure module. In type I but not of type $A(2)_2$, they showed that a global Weyl module of $\mathfrak{c}_\mathfrak{g}$ have a filtration by level 1 Demazure slices. Moreover they calculated extensions between a level one Demazure slice and a level one thin Demazure module. As a result, they showed graded characters of a level one Demazure slice and a thin Demazure module are orthogonal to each other with respect to the Euler-Poincaré-pairing. In particular, the graded character of a Demazure slice is equal to a nonsymmetric Macdonald polynomial specialized at $t = \infty$ divided by its square norm.

In this paper, we provide analogues of these results in [7] for $A(2)_2$. Let \mathfrak{g} be an affine Kac-Moody Lie algebra of type $A(2)_2$ and \mathfrak{g} be a simple Lie algebra of type $\mathfrak{c}_\mathfrak{g}$ contained in \mathfrak{g}. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. Let \mathfrak{p} be the integral weight lattice of \mathfrak{g} and \mathfrak{p}^+ be the set of dominant integral weights of \mathfrak{g}. For each $\lambda \in \mathfrak{p}^+$, we have a $\mathfrak{c}_\mathfrak{g}$-module $W(\lambda)$, that is called a global Weyl module. Level one Demazure slices and thin Demazure modules are parametrized by $\lambda \in \mathfrak{p}^+$ as D_λ and D_{λ}, respectively. Let Λ_0 be the unique level one dominant integral weight of \mathfrak{g} and let δ be the simple imaginary root of \mathfrak{g}. Let \tilde{W} be the Weyl group of \mathfrak{g}. Let b_- be a lower-triangular Borel subalgebra of \mathfrak{g}.

Theorem A (Theorem 3.28) For each $\lambda \in \mathfrak{p}^+$, the global Weyl module $W(\lambda) \otimes \mathbb{C}_{\Lambda_0}$ has a filtration by Demazure slices as b_--module and each D_μ ($\mu \in \tilde{W} \lambda$) appears exactly once.

Let \mathcal{B} be a full subcategory of the category of $U(b_-)$-modules and $\langle -, - \rangle_{\text{Ext}}$ be the Euler-Poincaré-pairing associated to $\text{Ext}^\mathcal{B}$ (see Section 1 for their precise definitions).

Theorem B (Theorem 3.42) For each $\lambda, \mu \in \mathfrak{p}$, $m \in \frac{1}{2}\mathbb{Z}$ and $k \in \mathbb{Z}$, we have

$$\dim_{\mathbb{C}} \text{Ext}^m_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathbb{C}} \mathcal{C}_{m\delta+k\Lambda_0}, D^\mu_\nu) = \delta_{n,0}\delta_{m,0}\delta_{k,0}\delta_{\lambda,\mu} \quad n \in \mathbb{Z}^+,$$

where ν means the restricted dual.

For each $\lambda \in \mathfrak{p}$, let $\tilde{E}_\lambda(x_1, ..., x_l, q)$ and $E^\dagger_\lambda(x_1, ..., x_l, q)$ be nonsymmetric Macdonald polynomials specialized at $t = 0, \infty$ respectively. Let $(-, -)$ be the Weyl group invariant inner product on the dual of a Cartan subalgebra \mathfrak{h}^* normalized so that the square length of the shortest roots of \mathfrak{g} with respect to $(-, -)$ is 1. Let $\text{gch} M$ be a graded character of M (see Section 2.6 for the definition). As a corollary of Theorem B, we have

Theorem C (Corollary 3.44) For each $\lambda \in \mathfrak{p}$, we have

$$\text{gch} \mathbb{D}^\lambda = q^{\langle b \mid b \rangle} E^\dagger_\lambda(x_1^{-1}, ..., x_l^{-1}, q^{-1})/(\tilde{E}_\lambda, E^\dagger_\lambda)_{\text{Ext}}.$$

In this paper, we refer to a maximal parabolic subalgebra of affine Lie algebra that contains a finite dimensional simple Lie algebra as a current algebra. For an affine Lie algebra
of type \(A_{2/l}^{(2)} \), two kind of current algebras are studied in the literature. They contain simple Lie algebras of type \(C_l \) and \(B_l \), respectively. The former is called a hyperspecial current algebra. A dimension formula of a local Weyl module of a hyperspecial current algebra and freeness of a global Weyl module over its endomorphism ring are proved in [6]. The latter is called a special current algebra and a dimension formula of a local Weyl module of a special current algebra is proved in [10] and [8]. Let \(\mathfrak{C} \hat{g}^\dagger \) be a special current algebra of \(g \). Then \(\mathfrak{C} \hat{g}^\dagger \) contains a simple Lie algebra \(\hat{g}^\dagger \) of type \(B_l \). Let \(W(\lambda)^\dagger \) be a global Weyl module of \(\mathfrak{C} \hat{g}^\dagger \). In the last section, we prove the following theorem.

Theorem D (=Theorem 4.15+Theorem 4.16) Let \(\lambda \) be a dominant integral weight of \(\hat{g}^\dagger \). The endomorphism ring \(\text{End}_{\mathfrak{C} \hat{g}^\dagger}(W(\lambda)^\dagger) \) is a polynomial ring and \(W(\lambda)^\dagger \) is free over \(\text{End}_{\mathfrak{C} \hat{g}^\dagger}(W(\lambda)^\dagger) \).

The organization of the paper is as follows: In section one, we prepare basic notation and definitions. Section two is about a Demazure slice. Main contents of section two are the relation between a global Weyl module and a Demazure slice (Theorem A), and calculation of extensions between a Demazure slice and a thin Demazure module (Theorem B). As a corollary, we prove a character formula of a Demazure slice (Theorem C). In section three, we study a global Weyl module of a special current algebra of type \(A_{2/l}^{(2)} \). We prove the endomorphism ring of a global Weyl module is isomorphic to a polynomial ring and a global Weyl module is free over its endomorphism ring (Theorem D).

2 Preliminaries

We refer to [24], [16, Chapter 6] and [2] for general terminologies throughout this section. Mainly we refer to [16] for Sections 2.2 and 2.4 and refer to [2] for the Section 2.3.

2.1 Notations

We denote the set of complex numbers by \(\mathbb{C} \), the set of integers by \(\mathbb{Z} \), the set of nonnegative integers by \(\mathbb{Z}_+ \), the set of rational numbers by \(\mathbb{Q} \), and the set of natural numbers by \(\mathbb{N} \). We work over the field of complex numbers. In particular, a vector space is a \(\mathbb{C} \)-vector space. For each \(x \in \mathbb{Q} \), we set \(\lfloor x \rfloor := \max\{z \in \mathbb{Z} | x \geq z\} \). We set \(x(r) := x^r / r! \) for an element \(x \) of a \(\mathbb{C} \)-algebra.

2.2 Affine Kac-Moody Algebra of Type \(A_{2/l}^{(2)} \)

Let \(\mathfrak{g} \) be an affine Kac-Moody algebra of type \(A_{2/l}^{(2)} \) and \(\mathfrak{h} \) be its Cartan subalgebra. We denote the set of roots of \(\mathfrak{g} \) with respect to \(\mathfrak{h} \) by \(\Delta \) and fix a set of simple roots \(\{\alpha_0, \alpha_1, \ldots, \alpha_l\} \), where \(\alpha_0 \) is the shortest simple root of \(\mathfrak{g} \). Let \(\Delta_+ \) and \(\Delta_- \) be the set of positive and negative roots, respectively. We set the simple imaginary root as \(\delta := 2\alpha_0 + \alpha_1 + \cdots + \alpha_l \), the set of imaginary roots as \(\Delta_{im} := \mathbb{Z}\delta \), and the set of real roots \(\Delta_{re} := \Delta \setminus \Delta_{im} \). We set \(\mathcal{Q} := \bigoplus_{i=0}^{l} \mathbb{Z}\alpha_i \), \(\hat{\mathcal{Q}} := \bigoplus_{i=1}^{l} \mathbb{Z}\alpha_i \), and \(\hat{\mathcal{Q}}^\dagger := \bigoplus_{i=0}^{l-1} \mathbb{Z}\alpha_i \). We set \(\mathcal{Q}_+ := \bigoplus_{i=0}^{l} \mathbb{Z}_+\alpha_i \), \(\hat{\mathcal{Q}}_+ := \bigoplus_{i=1}^{l} \mathbb{Z}_+\alpha_i \), and \(\hat{\mathcal{Q}}^\dagger_+ := \bigoplus_{i=0}^{l-1} \mathbb{Z}_+\alpha_i \). Let \(\hat{\Delta} = \Delta \cap \hat{\mathcal{Q}} \). The set \(\hat{\Delta} \) is a root system of type \(C_l \). Using the standard basis \(\varepsilon_1, \ldots, \varepsilon_l \) of \(\mathbb{R}^l \), we have:

\[
\hat{\Delta} = \{ (\pm \varepsilon_i \pm \varepsilon_j), \pm 2\varepsilon_i | i, j = 1, \ldots, l \}.
\]
We denote the set of short roots of \(\hat{\mathfrak{g}} \) by \(\hat{\Delta}_s \) and the set of long roots of \(\hat{\mathfrak{g}} \) by \(\hat{\Delta}_l \). We have
\[
\Delta_{re} = (\hat{\Delta}_s + \mathbb{Z}\delta) \cup (\hat{\Delta}_l + 2\mathbb{Z}\delta) \cup \frac{1}{2}(\hat{\Delta}_l + (2\mathbb{Z} + 1)\delta)
\]
and
\[
\alpha_0 = \frac{\delta}{2} + \varepsilon_1, \quad \alpha_1 = -\varepsilon_1 + \varepsilon_2, \ldots, \alpha_{l-1} = -\varepsilon_{l-1} + \varepsilon_l, \quad \alpha_l = -2\varepsilon_l.
\]
We set \(\Delta_{i\pm} := \Delta_\pm \cap \Delta_i, \Delta_{s\pm} := \Delta_\pm \cap \Delta_s \) and \(\hat{\Delta}_\pm := \Delta_\pm \cap \hat{\Delta} \). For each \(\alpha \in \Delta_{re} \), let \(\check{\alpha} \in \mathfrak{h} \) be the corresponding coroot of \(\mathfrak{g} \). Let \(\theta \) be the highest root of \(\hat{\Delta} \). Let \(d \in \mathfrak{h} \) be the scaling element that satisfies \(\alpha_i(d) = \delta_i,0 \). We denote a central element of \(\mathfrak{g} \) by \(K = \hat{\alpha}_0 + 2\hat{\alpha}_1 + \cdots + 2\hat{\alpha}_l \). For each \(\alpha \in \Delta \), we denote the root space corresponding to \(\alpha \) by \(\mathfrak{g}_\alpha \). For each \(\alpha \in \Delta_{re} \), the root space \(\mathfrak{g}_\alpha \) is one dimensional and we denote a nonzero vector in \(\mathfrak{g}_\alpha \) by \(e_\alpha \). A Borel subalgebra \(\mathfrak{b}_\pm \) and a maximal nilpotent subalgebra \(\mathfrak{n}_\pm \) of \(\mathfrak{g} \) are
\[
\mathfrak{b}_+ = \mathfrak{h} \oplus n_+, \quad n_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha, \quad \mathfrak{b}_- = \mathfrak{h} \oplus n_-, \quad \text{and} \quad n_- = \bigoplus_{\alpha \in \Delta_-} \mathfrak{g}_\alpha.
\]
For each \(i \in \{0, 1, \ldots, l\} \), we define \(\Lambda_i \in \mathfrak{h}^\ast \) by
\[
\Lambda_i(\check{\alpha}_j) = \delta_{i,j}, \quad \Lambda_i(d) = 0.
\]
We set
\[
P := \mathbb{Z}\Lambda_0 \oplus \cdots \oplus \mathbb{Z}\Lambda_l \oplus \mathbb{Z}\frac{\delta}{2}, \quad \text{and} \quad P_+ := \mathbb{Z}_+\Lambda_0 \oplus \cdots \oplus \mathbb{Z}_+\Lambda_l \oplus \mathbb{Z}_+\frac{\delta}{2}.
\]
We set \(\sigma_i := \Lambda_i - 2\Lambda_0 \) (\(i \in \{1, \ldots, l\} \)),
\[
\hat{P} = \mathbb{Z}\sigma_1 \oplus \cdots \oplus \mathbb{Z}\sigma_l \quad \text{and} \quad \hat{P}_+ = \mathbb{Z}_+\sigma_1 \oplus \cdots \oplus \mathbb{Z}_+\sigma_l.
\]
We set \(\hat{Q}' := \hat{Q} + \frac{1}{2}\mathbb{Z}\hat{\Delta}_l \) and \(\hat{Q}'_+ := \hat{Q}_+ + \frac{1}{2}\mathbb{Z}_+\hat{\Delta}_l \).

2.3 Hyperspecial Current Algebra of \(A_{2l}^{(2)} \)

We set \(\hat{\mathfrak{h}} := \bigoplus_{i=1}^l \mathbb{C}\alpha_i, \quad \hat{\mathfrak{g}} := \bigoplus_{\alpha \in \Delta} \mathfrak{g}_\alpha \oplus \hat{\mathfrak{h}}, \) and \(\hat{\mathfrak{b}}_+ := \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha \). Then \(\hat{\mathfrak{g}} \) is a finite dimensional simple Lie algebra of type \(\mathfrak{c}_l \), the Lie subalgebra \(\hat{\mathfrak{h}} \) is a Cartan subalgebra of \(\hat{\mathfrak{g}} \), the Lie subalgebra \(\hat{\mathfrak{b}}_+ \) is a Borel subalgebra of \(\hat{\mathfrak{g}} \), and \(\hat{\Delta} \) is the set of roots of \(\hat{\mathfrak{g}} \) with respect to \(\hat{\mathfrak{h}} \). The lattice \(\hat{P} \) is the integral weight lattice of \(\hat{\mathfrak{g}} \), and \(\hat{P}_+ \) is the set of dominant integral weight of \(\hat{\mathfrak{g}} \). A hyperspecial current algebra \(\mathfrak{c}_l \) is a maximal parabolic subalgebra of \(\mathfrak{g} \) that contains \(\hat{\mathfrak{g}} \), i.e.,
\[
\mathfrak{c}_l := \hat{\mathfrak{g}} + \mathfrak{b}_-.
\]
We set \(\mathfrak{c}_l' := \{\mathfrak{c}_l, \mathfrak{c}_l\} \).

Remark 2.1 Usually \(\mathfrak{c}_l' \) is called current algebra in the literature. We have \(\mathfrak{c}_l = \mathfrak{c}_l' \oplus \mathfrak{g} \oplus \mathfrak{K} \).

We define a subalgebra \(\mathfrak{c}_{\mathfrak{g}_{im}} \) of \(\mathfrak{c}_l \) by
\[
\mathfrak{c}_{\mathfrak{g}_{im}} := \bigoplus_{n \in \mathbb{N}} \mathfrak{g}_{n\delta},
\]
and define a subalgebra \(\mathfrak{n}_+ \) of \(\mathfrak{c}_l \) by
\[
\mathfrak{n}_+ := \bigoplus_{\alpha \in (\hat{\Delta}_+ - \mathbb{Z}\delta) \cup (\hat{\Delta}_+ - 2\mathbb{Z}\delta) \cap \frac{1}{2}(\hat{\Delta}_+ - (2\mathbb{Z} + 1)\delta)} \mathfrak{g}_\alpha.
\]
2.4 Weyl Group

Let \(s_\alpha \in \text{Aut}(\mathfrak{h}^*) \) be the simple reflection corresponding to \(\alpha \in \Delta_{re} \). We have
\[
s_\alpha(\lambda) = \lambda - \langle \lambda, \alpha^* \rangle \alpha, \quad \text{for } \lambda \in \mathfrak{h}^*.
\]

We set \(W \) as the subgroup of \(\text{Aut}(\mathfrak{h}^*) \) generated by \(s_\alpha \) \((\alpha \in \Delta_{re})\), and \(\hat{W} \) as the subgroup generated by \(s_\alpha \) \((\alpha \in \Delta)\). For each \(i = 0, \ldots, l \), let \(s_i := s_{\alpha_i} \). Then \(W \) is generated by \(s_i \) \((i = 0, \ldots, l)\), and \(\hat{W} \) is generated by \(s_i \) \((i = 1, \ldots, l)\). Let \((-|-)\) be a \(W \)-invariant bilinear form on \(\mathfrak{h}^* \) normalized so that \((\alpha_0|\alpha_0) = 1 \). For each \(\mu \in \hat{P} \), we define \(t_\mu \in \text{Aut}(\mathfrak{h}^*) \) by
\[
t_\mu(\lambda) = \lambda + \langle \lambda, K \rangle \mu - \left(\frac{1}{2} \langle \mu | \mu \rangle \langle \lambda, K \rangle \right) \delta.
\]
We have \(t_\mu \in W \) and
\[
W = \hat{W} \ltimes \hat{P}. \tag{2.1}
\]

For each \(\lambda \in \hat{P} \), we denote the unique element of \(\hat{W} \lambda \cap \pm P_+ \) by \(\lambda_+ \), respectively. We set \(\rho := \frac{1}{2} \sum_{\alpha \in \Delta_{re}} \alpha \). For each \(w \in \hat{W} \lambda \) and \(\lambda \in \hat{P} \), we define \(w \circ \lambda := w(\lambda + \rho) - \rho \). For each \(\Lambda \in P \), we set \(W^\Lambda := \{ w \in W \mid w \Lambda = \Lambda \} \). We denote the set of minimal coset representatives of \(\hat{W} \lambda \) by \(W \).

Definition 2.2 (Reduced expression) Each \(w \in W \) can be written as a product \(w = s_{i_1} s_{i_2} \cdots s_{i_n} \) \((i_j \in \{0, \ldots, l\})\). If \(n \) is minimal among such expressions, then \(s_{i_1} s_{i_2} \cdots s_{i_n} \) is called a reduced expression of \(w \) and \(n \) is called the length of \(w \) (written as \(l(w) \)).

Definition 2.3 (Left weak Bruhat order) Let \(w \in W \) and \(i = 0, \ldots, l \). We write \(s_i w > w \) if \(l(s_i w) > l(w) \) holds. Left weak Bruhat order is the partial order on \(W \) generated by \(> \).

Definition 2.4 (Macdonald order) We write \(\mu \succeq \lambda \) if and only if one of the following two conditions holds:

1. \(\mu - \lambda \in \hat{Q}_+ \) if \(\mu \in \hat{W} \lambda \);
2. \(\lambda_+ - \mu_+ \in \hat{Q}_+ \) if \(\mu_+ \neq \lambda_+ \).

For \(w \in W \) and \(\mu \in \hat{P} \), let \(w(\mu) \in \hat{P} \) be the restriction of \(w(\mu + \Lambda_0) \) to \(\mathfrak{h} \). For each \(\lambda \in \hat{P} \), let \(\pi_\lambda \in W \) be a minimal length element such that \(\pi_\lambda(00) = \lambda \). For each \(\mu \in \hat{P} \), we denote the convex hull of \(\hat{W} \mu \) by \(C(\mu) \).

Lemma 2.5 ([21] Proposition 2.6.2) If \(\mu \in \hat{P} \), then \(C(\mu) \cap (\mu + \hat{Q}') \subseteq \bigcap_{w \in \hat{W}} w(\mu - \hat{Q}_+'). \)

Proof The set \(w(\mu_+ - \hat{Q}_+') \) is the intersection of \(\mu_+ + \hat{Q}' \) with the convex hull of \(w(\mu_+ - \hat{Q}_+) \). The set \(\hat{W} \mu \) is contained in \(\bigcap_{w \in \hat{W}} w(\mu_+ - \hat{Q}_+) \). Hence we have \(C(\mu) \cap (\mu + \hat{Q}') \subseteq \bigcap_{w \in \hat{W}} w(\mu_+ - \hat{Q}_+) \). \(\square \)

Lemma 2.6

1. If \(w > v \in W \), then \(v(0) \succeq w(0) \);
2. Let \(b, c \in \hat{P} \) satisfy \(b = s_i(\langle c \rangle) \) for some \(i = 0, \ldots, l \). Then
\[
c \succ b \iff c = \pi_{s_i} \pi_c > \pi_c.
\]

Proof First, we prove (1). It is enough to prove the assertion for \(w = s_i v \). Since \(w > v \), we have \(\langle v \Lambda_0, \alpha_i \rangle \geq 0 \). This implies \(v \Lambda_0 - w \Lambda_0 \in Q_+ \). Hence we have \(v(0) \succeq w(0) \).
$w(0)$ if $i \neq 0$. If $i = 0$, then we have $w(0) - v(0) = \langle v \Lambda_0, \delta_0 \rangle \theta/2$. We set $N = \langle v \Lambda_0, \delta_0 \rangle$. We have $\langle w(0), \Theta \rangle = (N + 1)/2$. Hence $s_0(w(0)) = w(0) - N+1/2$ and $v(0) = N + 1 w(0)$. Therefore, $v(0) \in C(w(0)) \cap (w(0) + \tilde{Q}')$. By Lemma 2.5, $w(0)+ - v(0)+ = 0$. Hence $v(0) \geq w(0)$.

Next, we prove (2). We already proved (\Leftarrow). So we prove (\Rightarrow). By Definition 2.3, we have $s_i c > \pi c$ or $s_i c < \pi c$. From $c > b$ and (1), we have $s_i c > \pi c$ and $\pi b > s_i \pi b$. We have $(s_i c)(0) = b$ thanks to $b = s_i (c)$. We show that $\pi b = s_i c$. If $\pi b \neq s_i c$, then we have $l(s_i c) > l(\pi b)$ by the minimality of $l(\pi b)$. Since $l(\pi b) = l(s_i c) + 1$, $l(s_i c) = l(\pi c) + 1$ and $l(s_i c) > l(\pi c)$, we get $l(\pi c) > l(s_i c)$. This contradicts the minimality of $l(\pi c)$. Hence the assertion follows.

2.5 Macdonald-Koornwinder Polynomials

In this subsection, we recall materials presented in [24, §3] and [13], and we specialize parameters t, t_0, u_0, u_l in [24] as $t_0 = t_l = u_0 = t$ and $u_l = 1$ [13].

2.5.1 Nonsymmetric Case

We set $\mathbb{F} := \mathbb{Q}(t, q^{1/2})$. Let $\mathbb{F}[\hat{P}]$ be a group ring of \hat{P} over \mathbb{F} and X^λ be an element of $\mathbb{F}[\hat{P}]$ corresponding to $\lambda \in \hat{P}$. We identify $\mathbb{F}[X_1^{\pm 1}, ..., X_l^{\pm 1}]$ with $\mathbb{F}[\hat{P}]$ by $x_i = X^{\varepsilon_i}$ for each $i \in \{1, ..., l\}$. We define

$$\Delta(x) := \Delta(x)_+ \Delta(x)^{-1}_+ \prod_{n \in \mathbb{N}} (1 - q^n) \in \mathbb{F}[X_1^{\pm 1}, ..., X_l^{\pm 1}]$$

by

$$\Delta(x)_+ := \prod_{i=1, \ldots, l} \frac{(x_i)_\infty (-x_i)_\infty (q^{1/2} x_i)_\infty}{(tx_i)_\infty (-tx_i)_\infty (q^{1/2} x_i)_\infty} \prod_{1 \leq i < j \leq l} \frac{(x_i x_j)_\infty (x_i x_j^{-1})_\infty}{(tx_i x_j)_\infty (tx_i x_j^{-1})_\infty}.$$

Here $(u)_\infty = \prod_{n \in \mathbb{Z}_+} (1 - q^n u)$. We define

$$\varphi(x) := \prod_{i=1, \ldots, l} \frac{(x_i - t)(x_i + t)}{x_i - 1} \prod_{1 \leq i < j \leq l} \frac{(x_i x_j - t)(x_i x_j^{-1} - t)}{(x_i x_j - 1)(x_i x_j^{-1} - 1)}$$

and $C(x) := \Delta(x) \varphi(x)$. We have

$$\Delta(x)_+|_{t=0} = \prod_{i=1, \ldots, l} \frac{1}{(x_i)_\infty (-x_i)_\infty (q^{1/2} x_i)_\infty} \prod_{1 \leq i < j \leq l} \frac{(x_i x_j)_\infty (x_i x_j^{-1})_\infty}{(tx_i x_j)_\infty (tx_i x_j^{-1})_\infty}$$

and

$$\varphi(x)|_{t=0} = \prod_{i=1, \ldots, l} \frac{1}{1 - x_i^{-2}} \prod_{1 \leq i < j \leq l} \frac{1}{(1 - x_i^{-1} x_j^{-1})(1 - x_i^{-1} x_j)}.$$

Under the identification $x_i = X^{\varepsilon_i}$, we have

$$\Delta(x)|_{t=0} = \prod_{\alpha \in \Delta \text{ and } \alpha(d) \leq 0} (1 - X^\alpha)^{\dim g_\alpha} \text{ and } \varphi(x)|_{t=0} = \prod_{\alpha \in \Delta_+} \frac{1}{1 - X^\alpha}.$$

Hence we have

$$C|_{t=0} = \prod_{\alpha \in \Delta_-} \frac{1}{1 - X^\alpha}.$$
Definition 2.7 We define an inner product on \(\mathbb{F}[x_1^{\pm 1}, \ldots, x_l^{\pm 1}] \) by
\[
\langle f, g \rangle'_{\text{nonsym}} := \text{the constant term of } fg^* C \in \mathbb{F}.
\]
Here \(\star \) is the involution on \(\mathbb{F}[x_1^{\pm 1}, \ldots, x_l^{\pm 1}] \) such that \(q^\star = q^{-1}, x_i^\star = x_i^{-1} \) and \(t^\star = t^{-1} \).

Definition 2.8 The set of nonsymmetric Macdonald-Koornwinder polynomials \(\{ E_\lambda(x, q, t) \}_{\lambda \in \hat{P}} \) is a collection of elements in \(\mathbb{F}[\hat{P}] \) indexed by \(\hat{P} \) with the following properties:

1. \(\langle E_\lambda, E_\mu \rangle'_{\text{nonsym}} = 0 \) if \(\lambda \neq \mu \);
2. \(E_\lambda = X^\lambda + \sum_{\mu > \lambda} c_\mu X^\mu \).

As in [13, §3.2], we set \(\bar{E}_\lambda := \lim_{t \to 0} E_\lambda \) and \(E^\dagger := \lim_{t \to 0} E_\lambda^* \).

Let \(\langle -, - \rangle_{\text{nonsym}} \) be a specialization of \(\langle -, - \rangle'_{\text{nonsym}} \) at \(t = 0 \).

2.5.2 Symmetric Case

The Weyl group \(\hat{W} \) acts linearly on \(\mathbb{F}[\hat{P}] \) by \(w(e^{\lambda}) = e^{\lambda} \) for each \(w \in \hat{W} \) and \(\lambda \in \hat{P} \).

Definition 2.9 We define an inner product on \(\mathbb{F}[x_1^{\pm 1}, \ldots, x_l^{\pm 1}] \) by
\[
\langle f, g \rangle_{\text{sym}} := \text{the constant term of } fg \Delta(x) \in \mathbb{F}.
\]

We set \(\bar{E}_\lambda \) and \(E^\dagger \) as above.

Definition 2.10 The set of symmetric Macdonald-Koornwinder polynomials \(\{ P_\lambda(x, q, t) \}_{\lambda \in \hat{P}} \) is a collection of elements in \(\mathbb{F}[\hat{P}]^\hat{W} \) indexed by \(\hat{P}_+ \) with the following properties:

1. \(\langle P_\lambda, P_\mu \rangle_{\text{sym}} = 0 \) if \(\lambda \neq \mu \);
2. \(P_\lambda = X^\lambda + \sum_{\mu > \lambda} c_\mu X^\mu \).

We set \(\bar{P}_\lambda := \lim_{t \to 0} P_\lambda \).

Let \(\langle -, - \rangle_{\text{sym}} \) be a specialization of \(\langle -, - \rangle'_{\text{sym}} \) at \(t = 0 \). We abbreviate \(\bar{E}_\lambda(x_1, \ldots, x_l, q) \), \(E^\dagger(x_1, \ldots, x_l, q) \), \(\bar{P}_\lambda(x_1, \ldots, x_l, q) \) and \(P^\dagger(x_1, \ldots, x_l, q) \) as \(\bar{E}_\lambda(X, q) \), \(E^\dagger(X, q) \), \(\bar{P}_\lambda(X, q) \) and \(P^\dagger(X, q) \), respectively.

Proposition 2.11 ([13] Theorem 4.2) For each \(\lambda \in \hat{P}_+ \), we have
\[
\bar{P}_\lambda(X^{-1}, q^{-1}) = \bar{E}_\lambda(X^{-1}, q^{-1}).
\]

2.6 Representation of \(b_- \) and \(\mathfrak{g} \) and Their Euler-Poincaré-Pairing

2.6.1 Representations of \(b_- \)

For each \(b_- \)-module \(M \) and \(\lambda \in \hat{P} \), we set \(M_\lambda := \{ m \in M | hm = \lambda(h)m \text{ for } h \in h \} \). Let \(\mathfrak{B} \) be the full subcategory of the category of \(U(b_-) \)-module such that a \(b_- \)-module \(M \) is an
object of \(\mathcal{B} \) if and only if \(M \) has a weight decomposition
\[
M = \bigoplus_{\lambda \in P} M_{\lambda},
\]
where \(M_{\lambda} \) has at most countable dimension for all \(\lambda \in P \). We set \(\text{wt } M := \{ \lambda \in P \mid M_{\lambda} \neq \{0\} \} \). Let \(\mathcal{B}' \) be the full subcategory of \(\mathcal{B} \) such that \(M \in \mathcal{B} \) is an object of \(\mathcal{B}' \) if and only if \(M \) is a \(b_- \)-module such that the set of weights \(\text{wt } M \) is contained in \(\bigcup_{i=1,\ldots,k} (\mu_i - Q_+) \) for some \(\mu_i \in P \), and every weight space is finite dimensional. Let \(\mathcal{B}_0 \) be the full subcategory of \(\mathcal{B}' \) consisting of finite dimensional \(b_- \)-modules. For each \(M \in \mathcal{B}' \), we define a graded character of \(M \) by the following formal sum
\[
\text{gch } M := \sum_{\lambda - m\delta \in P \oplus \frac{1}{2} \mathbb{Z}\delta} q^m X^\lambda \dim \mathbb{C} \text{Hom}_{\mathfrak{h} \oplus \mathfrak{d}} (\mathbb{C}_{\lambda - m\delta}, M),
\]
where \(\mathbb{C}_{\lambda - m\delta} \) is a 1-dimensional \(\mathbb{h} \oplus \mathbb{d} \)-module with its weight \(\lambda - m\delta \). For each \(\Lambda \in P \), let \(\mathbb{C}'_{\Lambda} \) be the 1-dimensional \(\mathbb{h} \)-module with its weight \(\Lambda \), and \(\mathbb{C}_{\Lambda} \) be the 1-dimensional simple module of \(b_- \) with its weight \(\Lambda \). For each \(\Lambda \in P \), we set \(P(\Lambda) := U(b_-) \otimes_{U(\mathfrak{h})} \mathbb{C}'_{\Lambda} \) and \(N(\Lambda) := \sum_{\mu \in P\setminus\{\Lambda\}} P(\Lambda)_{\mu} \). Then \(N(\Lambda) \) is a \(b_- \)-submodule of \(P(\Lambda) \) and \(\mathbb{C}_{\Lambda} \cong P(\Lambda)/N(\Lambda) \).

Proposition 2.12 For each \(\Lambda \in P \), the \(b_- \)-module \(P(\Lambda) = U(b_-) \otimes_{U(\mathfrak{h})} \mathbb{C}'_{\Lambda} \) is a projective cover of \(\mathbb{C}_{\Lambda} \) in \(\mathcal{B} \).

Proof For each \(M \in \mathcal{B} \), we have \(\text{Hom}_{\mathcal{B}} (P(\Lambda), M) = \text{Hom}_{\mathfrak{h}} (\mathbb{C}_{\Lambda}, M) \). Hence, \(P(\Lambda) \) is a projective cover of \(\mathbb{C}_{\Lambda} \) in \(\mathcal{B} \).

Proposition 2.13 ([9] Lemma 5.2) The category \(\mathcal{B} \) has enough projectives.

Definition 2.14 Let \(M \) be a \(b_- \)-module with \(\mathfrak{h} \)-weight decomposition \(M = \bigoplus_{\mu \in \mathfrak{h}^*} M_{\mu} \). Then \(M^\vee := \bigoplus_{\mu \in \mathfrak{h}^*} M^*_{\mu} \) is a \(b_- \)-module with a \(b_- \)-action defined by
\[
X f (v) := - f (X v) \text{ for } X \in b_-, \ f \in M^\vee \text{ and } v \in M.
\]

Definition 2.15 For each \(M \in \mathcal{B}' \) and \(N \in \mathcal{B}_0 \), we define the Euler-Poincaré-pairing \(\langle M, N \rangle_{\text{Ext}} \) as a formal sum by
\[
\langle M, N \rangle_{\text{Ext}} := \sum_{p \in \mathbb{Z}^+, m \in \frac{1}{2} \mathbb{Z}} (-1)^p q^m \dim \mathbb{C} \text{Ext}_{\mathcal{B}}^p (M \otimes_{\mathbb{C}} \mathbb{C}_{m\delta}, N^\vee).
\]

Proposition 2.16 For each \(M \in \mathcal{B}' \) and \(N \in \mathcal{B}_0 \), the following hold:

1. The pairing \(\langle M, N \rangle_{\text{Ext}} \) is an element of \(\mathbb{C}(q^{1/2}) \);
2. This pairing depends only on the graded characters of \(M \) and \(N \).

Proof First, we prove (1). Let \(S \) be the set of highest weight vectors of \(M \). Since \(\text{wt } M \) is bounded from above, we have a surjection \(\phi^0 : P^0 := \bigoplus_{v \in S} P(\text{wt}(v)) \to M \), where \(\text{wt}(v) \) is the \(\mathfrak{h} \)-weight of \(v \). If \(v \in S \) such that \((\text{wt}(v) + Q_+ \setminus \{0\}) \cap \text{wt } M = \emptyset \), then the vector \(v \) is
not an element of \(\ker \varphi^0 \). Hence the set \(\ker \varphi^0 \) is a proper subset of \(\ker P^0 \). For \(\ker \varphi^0 \), we define \(\varphi^1 : P^1 \to \ker \varphi^0 \) in the same way. Repeating this procedure, we get a projective resolution \(\cdots \to P^1 \to P^0 \to M \to 0 \) such that \(\ker P^{k+1} \) is a proper subset of \(\ker P^k \) for all \(k \in \mathbb{Z}_+ \). The complex \(P^* \otimes_C C_{m\delta} \) is a projective resolution of \(M \otimes_C C_{m\delta} \). For each \(m \in \frac{1}{2} \mathbb{Z} \), we have \((P^k \otimes_C C_{m\delta}) \cap \ker P^0 = 0 \) for all \(k \gg 0 \) since \(N \) and every weight space of \(M \) are finite dimensional. This implies \(\text{Ext}_B^k(M \otimes_C C_{m\delta}, N^\vee) = \{0\} \) for all \(k \gg 0 \). Hence \(\sum_{k \in \mathbb{Z}_+} (-1)^k q^m \text{dim}_C \text{Ext}_B^k(M \otimes_C C_{m\delta}, N^\vee) \) is well-defined. Since \(b_- \)-action on \(P^0 \) does not increase \(d \)-eigenvalues, and the set of weights of an object of \(\mathcal{B}' \) is bounded from above, the intersection of the set of \(d \)-eigenvalues of \(N^\vee \) and \(P^0 \otimes_C C_{m\delta} \) is empty for all \(m \ll 0 \). This implies the assertion.

Next, we prove (2). Let \(N' \) be an object of \(\mathcal{B}_0 \) such that \(\text{gch} \ N = \text{gch} \ N' \). The sets of composition factors of \(N \) and \(N' \) are the same. We denote the set of composition factors by \(S \). For each exact sequence \(0 \to L_1 \to L_2 \to L_3 \to 0 \), we have \((M, L_2)_{\text{Ext}} = (M, L_1)_{\text{Ext}} + (M, L_3)_{\text{Ext}} \). This implies \((M, N)_{\text{Ext}} = \sum_{\lambda \in S} (M, C_{\lambda})_{\text{Ext}} = (M, N')_{\text{Ext}} \). Hence the assertion for the second argument follows. Let \(K^0 := \bigoplus_{v \in S} N(\text{wt}(v)) \) be a \(b_- \)-submodule of \(P^0 \). We set \(N^0 := M \) and \(N^1 := \varphi^0(K^0) \). We define a \(b_- \)-submodule \(N^2 \) of \(N^1 \) instead of \(M \). Repeating this, we get a sequence of \(b_- \)-submodules \(M = N^0 \supset N^1 \supset N^2 \supset \cdots \). Since every weight space of \(M \) is finite dimensional, for each \(\mu \in P \), we have \(\text{wt}^s(\mu) = \{0\} \) for \(s \gg 0 \) by construction. We can take a composition series \(M = M^0 \supset \cdots \supset M^s \supset M^{s+1} \supset \cdots \) of \(M \) as a refinement of the above sequence of \(b_- \)-submodules. Since \(N \) is finite dimensional, for \(s \gg 0 \), we have \(\text{wt}(v) - \text{wt}(u) \notin \mathbb{Q}_+ \) for each \(v \in M^s \) and \(u \in N \). By taking a projective resolution of \(M^s \) as in the proof of (1), we have \(\text{Ext}_B^k(M^s \otimes_C C_{m\delta}, N^\vee) = \{0\} \) for \(s \gg 0 \). Using this composition series, we can prove the assertion for the first argument in the same way.

Thanks to Proposition 2.16, we get a bilinear map from \(\mathbb{C}[[q^{1/2}]] \langle \hat{P} \rangle \times \mathbb{C}[[q^{1/2}]] \langle \hat{P} \rangle \) to \(\mathbb{C}[[q^{1/2}]] \langle \hat{P} \rangle \), that we denote also \(\langle -,- \rangle_{\text{Ext}} \)

Proposition 2.17 For each \(M \in \mathcal{B} \) and \(N \in \mathcal{B}_0 \), we have \(\langle \text{gch} \ M, \text{gch} \ N \rangle_{\text{Ext}} = \langle \text{gch} \ M, \text{gch} \ N \rangle_{\text{nsym}} \).

Proof \(\langle \text{gch} \ C_{\lambda} \rangle_{\text{Ext}} \) and \(\langle \text{gch} \ P(\Lambda) \rangle_{\text{Ext}} \) are \(\mathbb{C}[[q^{1/2}]] \)-basis of \(\mathbb{C}[[q^{1/2}]] \langle \hat{P} \rangle \). Therefore, it suffices to check the assertion for \(M = C_{\lambda} \) and \(N = P(\Lambda) \). By the PBW theorem, we have \(\text{ch} \ P(\Lambda) = X^\lambda / \prod_{\alpha \in A_+} (1 - X^\alpha)^{\text{dim}_C \varphi_\alpha} \). Hence we have \(\text{ch} \ P(\Lambda) = X^\lambda / C_{t=0} \). Hence we get

\[
\langle \text{gch} \ P(\Lambda), \text{gch} \ C_{\lambda} \rangle_{\text{Ext}} = 1 = \langle \text{gch} \ P(\Lambda), \text{gch} \ C_{\lambda} \rangle_{\text{nsym}}.
\]

The assertion follows.

2.6.2 Representations of \(\mathfrak{g}_G \)

Let \(\mathfrak{g}_G \)-mod_{wt} be the full subcategory of the category of \(\mathfrak{g}_G \)-modules such that \(M \) is an object of \(\mathfrak{g}_G \)-mod_{wt} if and only if \(M \) is a \(\mathfrak{g}_G \)-module which has a weight decomposition

\[
M = \bigoplus_{\Lambda \in P} M_\Lambda
\]

such that every weight space has at most countable dimension. Let \(\mathfrak{g}_G \)-mod_{int} be the full subcategory of the category \(\mathfrak{g}_G \)-mod_{wt} such that an object \(M \) of \(\mathfrak{g}_G \)-mod_{wt} is an object of \(\mathfrak{g}_G \)-mod_{int} if and only if \(M \) is an integrable \(\hat{g} \)-module and the set of weights \(\text{wt} \ M = \{ \lambda \in \mathfrak{g}_G \})
\[P \mid M_\lambda \neq \{0\} \] is contained in \(\bigcup_{i=1,...,k} (\mu_i - Q_+) \) for some \(\mu_i \in P \) and every weight space is finite dimensional. For each \(\lambda \in \hat{P}_+, \mu \in \hat{P} \) and \(n, 2m \in \mathbb{Z} \), we set
\[
P(\lambda + n\Lambda_0 + m\delta)_{\text{int}} := U(\mathcal{C}_g) \otimes_{U(\hat{\mathfrak{g}} + \mathfrak{h})} V(\lambda + n\Lambda_0 + m\delta)
\]
and
\[
P(\mu + n\Lambda_0 + m\delta)_{\text{wt}} := U(\mathcal{C}_g) \otimes_{U(\mathfrak{h})} \mathcal{C}_{\mu + n\Lambda_0 + m\delta},
\]
where \(V(\lambda + n\Lambda_0 + m\delta) \) is the highest weight simple module of \(\hat{\mathfrak{g}} + \mathfrak{h} \) with its highest weight \(\lambda + n\Lambda_0 + m\delta \) and \(\mathcal{C}_{\mu + n\Lambda_0 + m\delta} \) is the 1-dimensional module of \(\mathfrak{h} \) with its weight \(\mu + n\Lambda_0 + m\delta \).

Let \(\pi : \mathcal{C}_g \to \hat{\mathfrak{g}} \) be a homomorphism of Lie algebras defined by
\[
\pi |_{\hat{\mathfrak{g}}} = \text{id}_{\hat{\mathfrak{g}}}, \quad \pi (\mathcal{C}_g \neq 0) = \{0\},
\]
where \(\mathcal{C}_g \neq 0 := \{X \in \mathcal{C}_g \mid [d, X] \neq 0\} \). We can prove the following proposition in the same way as Proposition 2.12, and we omit its proof.

Proposition 2.18 For each \(\mu \in \hat{P} \) and \(n, 2m \in \mathbb{Z} \), the \(\mathcal{C}_g \)-module \(P(\mu + n\Lambda_0 + m\delta)_{\text{wt}} \) is a projective module.

Proposition 2.19 ([2] Proposition 2.3) Let \(\lambda \in \hat{P}_+ \) and \(n, 2m \in \mathbb{Z} \).

1. \(\pi^* V(\lambda + n\Lambda_0 + m\delta) \) is a simple object in \(\mathcal{C}_g \)-mod\text{int}.
2. \(P(\lambda + n\Lambda_0 + m\delta)_{\text{int}} \) is a projective cover of its unique simple quotient \(\pi^* V(\lambda + n\Lambda_0 + m\delta) \) in \(\mathcal{C}_g \)-mod\text{int}.

Proposition 2.20 The categories \(\mathcal{C}_g \)-mod\text{wt} and \(\mathcal{C}_g \)-mod\text{int} have enough projectives.

Proof We can prove that \(\mathcal{C}_g \)-mod\text{wt} has enough projectives in the same way as Proposition 2.13. Let \(M \) be an object of \(\mathcal{C}_g \)-mod\text{int}. Since \(M \) is an integrable \(\hat{\mathfrak{g}} \)-module, for each \(\hat{\mathfrak{g}} \)-highest weight vector \(v \in M \) with its weight \(\Lambda \), we have a morphism of \(\mathcal{C}_g \)-module \(P(\Lambda)_{\text{int}} \to M \). Collecting them for all \(\hat{\mathfrak{g}} \)-highest weight vector, we obtain a surjection from a projective module to \(M \). \(\square \)

Definition 2.21 For each \(M, N \in \mathcal{C}_g \)-mod\text{int} such that \(N \) is finite dimensional, we define the Euler-Poincaré-pairing \(\langle M, N \rangle_{\text{int}} \) as a formal sum by
\[
\langle M, N \rangle_{\text{int}} := \sum_{p \in \mathbb{Z}_+, m \in \frac{1}{2} \mathbb{Z}} (-1)^p q^m \text{dim}_\mathbb{C} \text{Ext}_{\mathcal{C}_g \text{-mod\text{int}}}^p (M \otimes_{\mathbb{C}} \mathcal{C}_{m\delta}, N).\]

We can prove the following proposition in the same way as Proposition 2.16, and we omit its proof.

Proposition 2.22 For each \(M, N \in \mathcal{C}_g \)-mod\text{int} such that \(N \) is finite dimensional, the following hold:

1. The pairing \(\langle M, N \rangle_{\text{int}} \) is an element of \(\mathbb{C}((q^{1/2})) \);
2. This pairing depends only on the graded characters of \(M \) and \(N \).
3 Demazure Modules

We continue to work in the setting of the previous section.

3.1 Representations of \(g \)

3.1.1 Highest Weight Simple Module

Definition 3.1 Let \(\Lambda \in P \) and let \(C_{\Lambda} \) be the corresponding 1-dimensional module of \(b_+ \). The Verma module \(M(\Lambda) \) of highest weight \(\Lambda \) is a \(g \)-module defined by

\[
M(\Lambda) := U(g) \otimes_{U(b_+)} C_{\Lambda}.
\]

The Verma module \(M(\Lambda) \) has a unique simple quotient (see [16] Proposition 9.2). We denote it by \(L(\Lambda) \).

Theorem 3.2 (see [16] Proposition 3.7, Lemma 10.1 and §9.2) For each \(\Lambda \in P \), the following hold.

1. \(L(\Lambda) \) is an integrable \(g \)-module if and only if \(\Lambda \in P_+ \);
2. For each \(\Lambda \in P_+ \) and \(w \in W \), we have \(\dim_{\mathbb{C}} L(\Lambda)_w \Lambda = 1 \);
3. \(L(\Lambda) \) has a \(h \)-weight decomposition

\[
L(\Lambda) = \bigoplus_{\mu \in P} L(\Lambda)_\mu
\]

and \(L(\Lambda)_\mu \) is finite-dimensional for all \(\mu \in P \).

We remark that \(g_{\text{ch}} L(\Lambda) \) is well-defined thanks to Theorem 3.2 (3).

3.1.2 Realization of \(L(\Lambda_0) \)

Definition 3.3 (Heisenberg algebra) For each \(l \in \mathbb{N} \), let \(S_l \) be a unital \(\mathbb{C} \)-algebra generated by \(x_{i,n} (i = 1, \ldots, l, 0 \neq n \in \mathbb{Z}) \) and \(K \) which satisfy the following conditions:

1. \([x_{i,n}, x_{j,m}] = n\delta_{i,j} \delta_{n,-m} K\);
2. \([K, S_l] = 0\).

We set \(R = \mathbb{C}[y_{i,n} \mid i \in \{1, \ldots, l\}, \ n \in \mathbb{N}] \). We define a representation \(p : S_l \to \text{End}_{\mathbb{C}}(R) \) by

\[
p(x_{i,-n}) = y_{i,n}, \quad p(x_{i,n}) = n \frac{\partial}{\partial y_{i,n}}, \quad p(K) = \text{id}_R \ (n > 0).
\]

Let \(g_{im} := \bigoplus_{n \in \mathbb{Z} \setminus \{0\}} g_{n\delta} \). The algebra \(S_l \) is a \(\mathbb{Z} \)-graded algebra by setting \(\deg x_{i,n} = n \) and \(\deg K = 0 \), and \(U(g_{im} \oplus \mathbb{C} K) \) is a \(\mathbb{Z} \)-graded algebra by the \(\mathbb{Z} \)-grading induced from the adjoint action of the scaling element \(d \). For \(g \) of type \(A_{2l}^{(2)} \), we have \(\dim_{\mathbb{C}} g_{n\delta} = l \) for \(n \in \mathbb{Z} \), and we have the following.

Proposition 3.4 (see [16] Proposition 8.4) The algebras \(U(g_{im} \oplus \mathbb{C} K) \) and \(S_l \) are isomorphic as \(\mathbb{Z} \)-graded algebras.
By Proposition 3.4, we identify S_l with $U(\mathfrak{gl}_m \oplus \mathbb{C} K)$. Since \mathfrak{h} and $U(\mathfrak{gl}_m \oplus \mathfrak{h} \oplus \mathbb{C} K)$ are mutually commutative, the following \mathbb{C}-algebra homomorphism $p_\lambda : U(\mathfrak{gl}_m \oplus \mathfrak{h} \oplus \mathbb{C} K) \to \operatorname{End}_\mathbb{C} (R) (\lambda \in \hat{P})$ is well-defined

$$p_\lambda|_{S_l} = p \quad \text{and} \quad p_\lambda(h) = \lambda(h) \text{id}_R \quad \text{for} \quad h \in \mathfrak{h}.$$

We denote this $U(\mathfrak{gl}_m \oplus \mathfrak{h} \oplus \mathbb{C} K)$-module by \mathbb{R}_λ.

Theorem 3.5 ([27] Theorem 6.4) We put $\tilde{p} := \prod_{\lambda \in \hat{P}} p_\lambda : U(\mathfrak{gl}_m \oplus \mathfrak{h} \oplus \mathbb{C} K) \to \operatorname{End}_\mathbb{C} \left(\bigoplus_{\lambda \in \hat{P}} R_\lambda \right)$. Then \tilde{p} extends to an algebra homomorphism $U(\mathfrak{g}) \to \operatorname{End}_\mathbb{C} \left(\bigoplus_{\lambda \in \hat{P}} R_\lambda \right)$ and $\bigoplus_{\lambda \in \hat{P}} R_\lambda$ is isomorphic to $L(\Lambda_0)$ as a \mathfrak{g}-module.

3.2 Thin and Thick Demazure Modules

Definition 3.6 For each $w \in W$ and $\Lambda \in P_+$, we define \mathfrak{b}_--modules

$$D_{w\Lambda} := U(\mathfrak{b}_-) v_{w\Lambda}^* \subset L(\Lambda)^\vee \quad \text{and} \quad D^{w\Lambda} := U(\mathfrak{b}_-) v_{w\Lambda} \subset L(\Lambda).$$

Here $v_{w\Lambda} \in L(\Lambda)_{w\Lambda}$ and $v_{w\Lambda}^* \in (L(\Lambda)_{w\Lambda})^*$ are nonzero vectors. By Theorem 3.2 (3), these vectors are unique up to scalars. Hence $D_{w\Lambda}$ and $D^{w\Lambda}$ are well-defined. We call $D_{w\Lambda}$ a thin Demazure module and $D^{w\Lambda}$ a thick Demazure module.

Remark 3.7 A Demazure module in [20] means the thin Demazure module $D_{w\Lambda}$.

Lemma 3.8 ([16] Proposition 3.6) For each $w \in W$, $\Lambda \in P_+$ and $\alpha \in \Delta_+$, we have

$$v_{\alpha w\Lambda} \in \begin{cases} \mathfrak{g}_{\alpha}^{(w\Lambda, \alpha)} v_{w\Lambda} & (\langle w\Lambda, \alpha \rangle > 0) \\ \mathfrak{g}_{-\alpha}^{-(w\Lambda, \alpha)} v_{w\Lambda} & (\langle w\Lambda, \alpha \rangle < 0) \\ \mathbb{C} v_{w\Lambda} & (\langle w\Lambda, \alpha \rangle = 0) \end{cases},$$

where $\mathfrak{g}_\alpha^m = \{X_1 X_2 \cdots X_m \in U(\mathfrak{g}) \mid X_i \in \mathfrak{g}_\alpha\}$.

Lemma 3.9 and Corollary 3.12 in the below are proved in [7] for the dual of the untwisted affine Lie algebra. The proofs in [7] are also valid for type $A_{2l}^{(2)}$.

Lemma 3.9 ([7] Corollary 4.2) For each $w, v \in W$ and $\Lambda \in P_+$, we have the following:

1. If $w \leq v$, then $D^v \subseteq D^w$.
2. If w and v are minimal representatives of cosets in W/W^Λ and $D^v \subseteq D^w$, then $w \leq v$.

Lemma 3.9 allows us to define as follows:

Definition 3.10 For each $w \in W$ and $\Lambda \in P_+$, we define a $U(\mathfrak{b}_-)$-module $\mathbb{D}^{w\Lambda}$ as

$$\mathbb{D}^{w\Lambda} := D^{w\Lambda} / \sum_{w < v} D^v.$$

We call this module a Demazure slice.
Proposition 3.11 ([18] Corollary 2.22) For each \(\Lambda \in P_+ \) and \(S \subset W \), there exists \(S' \subset W \) such that

\[
\bigcap_{w \in S} D^{w\lambda} = \sum_{w \in S'} D^{w\Lambda}.
\]

Corollary 3.12 ([7] Corollary 4.4) For each \(w, v \in W \) and \(\Lambda \in P_+ \), we have

\[
(D^{w\Lambda} \cap D^{v\Lambda})/\left(D^{v\Lambda} \cap \sum_{u > w} D^{u\Lambda}\right) = D^{w\Lambda} \text{ or } \{0\}.
\]

3.3 Level One Case

In this subsection, we consider level one Demazure modules. The unique level one dominant integral weight of \(A(2)_2 \) is \(\Lambda_0 \). From Eq. 2.1,

\[
\hat{P} \ni \lambda \mapsto \lambda + \Lambda_0 + \frac{\langle \lambda, \lambda \rangle}{2} \delta \in W\Lambda_0
\]

is a bijection. For each \(\lambda \in \hat{P} \), we set

\[
D_{\lambda} := D_{\pi_{\lambda}}, \quad D^\lambda := D^{\pi_{\lambda}}, \quad D_{\lambda} := D^{\pi_{\lambda}}.
\]

Lemma 3.13 For each \(\lambda, \mu \in \hat{P} \), we have \(D^\lambda \subsetneq D^\mu \) if and only if \(\mu \succ \lambda \).

Proof If \(D^\lambda \subsetneq D^\mu \), then we have \(\pi_{\mu} < \pi_{\lambda} \) by Lemma 3.9. Then, Lemma 2.6 (1) implies \(\mu \succ \lambda \). Conversely, we assume that \(\mu \succ \lambda \). There exists \(w \in W \) such that \(\mu > \lambda = w(\mu) \). Let \(w = s_{i_1} \cdots s_{i_n} \) be a reduced expression of \(w \) such that \((s_{i_k+1} \cdots s_{i_1})(\mu) > (s_{i_k} s_{i_k+1} \cdots s_{i_1})(\mu) \) for all \(k \). If \(n = 1 \), then Lemma 2.6 (2) implies \(\pi_{\mu} < \pi_{\lambda} \). Hence, we have \(D^\lambda \subsetneq D^\mu \). If \(n > 1 \), then we have \(D^\lambda \subsetneq D^{(s_{i_2} \cdots s_{i_n})(\mu)} \subsetneq \cdots \subsetneq D^\mu \) inductively. \(\square \)

Theorem 3.14 ([13] Theorem 1) For each \(\lambda \in \hat{P} \), we have

\[
gch D_{\lambda} = q^{(b|b)} E_{\lambda}(X^{-1}, q^{-1}).
\]

3.4 Weyl Modules

Definition 3.15 ([6] §3.3) For each \(\lambda \in \hat{P}_+ \), the global Weyl module is a cyclic \(\mathbb{C}g \)-module \(W(\lambda) \) generated by a vector \(v_{\lambda} \) that satisfies following relations:

1. \(h v_{\lambda} = \lambda(h) v_{\lambda} \) for each \(h \in \mathfrak{h} \);
2. \(e_{-a}^{(\lambda, \lambda)+1} v_{\lambda} = 0 \) for each \(a \in \Delta_+ \);
3. \(\mathfrak{e}_{\pi_{\lambda}} v_{\lambda} = 0 \).

Definition 3.16 ([6] §3.5 and §7.2) For each \(\lambda \in \hat{P} \), the local Weyl module is a cyclic \(\mathbb{C}g \)-module \(W(\lambda)_{loc} \) generated by a vector \(v_{\lambda} \) that satisfies relations (1), (2), (3) of Definition 3.15 and

4. \(X v_{\lambda} = 0 \) for \(X \in \mathbb{C}g_{im} \).
Theorem 3.17 ([6] Theorem 2) *Let* \(\lambda \in \hat{P}_+ \). *Then* \(D_\lambda \otimes_\mathbb{C} \mathbb{C}_{(\lambda|\lambda)\delta/2-\Lambda_0} \) *is isomorphic to* \(W(\lambda)_{\text{loc}} \) *as* \(\mathfrak{g} \)-*module, where \(\mathbb{C}_{(\lambda|\lambda)\delta/2-\Lambda_0} \) *is the 1-dimensional module with its h-weight* \((\lambda|\lambda)\delta/2-\Lambda_0 \).

Corollary 3.18 *For each* \(\lambda \in \hat{P}_+ \), *we have*
\[
gch W(\lambda)_{\text{loc}} = q^{-\frac{\langle \lambda, \lambda \rangle}{2}} \bar{P}_\lambda(X^{-1}, q^{-1}).
\]

Proof *By Theorem 3.17, we have*
\[
gch W(\lambda)_{\text{loc}} = gch D_\lambda.
\]

By Proposition 2.11 and Theorem 3.14, the assertion follows.

Theorem 3.19 ([2] Theorem 2.5 (3), Theorem 4.7 and [19] Theorem 7.21) *For each* \(\lambda, \mu \in \hat{P}_+ \) *and* \(m \in \frac{1}{2}\mathbb{Z} \), *we have*
\[
\dim_{\mathbb{C}} \text{Ext}^n_{\mathfrak{g}}(W(\lambda) \otimes_{\mathbb{C}} \mathbb{C}_{m\delta}, W(\mu)^\vee_{\text{loc}}) = \delta_{m,0}\delta_{0,n}\delta_{\lambda,\mu}.
\]

Corollary 3.20 *For each* \(\lambda, \mu \in \hat{P}_+ \), *we have*
\[
gch W(\lambda), gch W(\mu)_{\text{loc}} \rangle_{\text{int}} = \delta_{\lambda,\mu}.
\]

Proof *The assertion follows from Definition 2.21 and Theorem 3.19.*

3.4.1 Extensions Between Weyl Modules in \(\mathcal{B} \)

In this subsection, we prove the following corollary of Theorem 3.19.

Theorem 3.21 *For each* \(\lambda, \mu \in \hat{P}_+ \), *and* \(m \in \mathbb{Z}, n \in \mathbb{Z}_+ \), *we have*
\[
\dim_{\mathbb{C}} \text{Ext}^n_{\mathcal{B}}(W(\lambda) \otimes_{\mathbb{C}} \mathbb{C}_{m\delta}, W(\mu)^\vee_{\text{loc}}) = \delta_{m,0}\delta_{0,n}\delta_{\lambda,\mu}.
\]

Definition 3.22 ([11] §2.1) *Let* \(\mathcal{C}, \mathcal{D} \) *be abelian categories. A contravariant* \(\delta \)-*functor from* \(\mathcal{C} \) *to* \(\mathcal{D} \) *consists of the following data:

1. A collection \(T = \{T^i\}_{i \in \mathbb{Z}_+} \) of contravariant additive functors from \(\mathcal{C} \) to \(\mathcal{D} \);
2. For each exact sequence \(0 \rightarrow M'' \rightarrow M \rightarrow M' \rightarrow 0 \), a collection of morphisms \(\{\delta^n : T^n(M'') \rightarrow T^{n+1}(M')\}_{n \in \mathbb{Z}_+} \) with the following conditions:
 1. For each exact sequence \(0 \rightarrow M'' \rightarrow M \rightarrow M' \rightarrow 0 \), there is a long exact sequence
 \[
 0 \rightarrow T^0(M') \rightarrow T^0(M) \rightarrow T^0(M'') \delta^0 \rightarrow T^1(M') \rightarrow \cdots \rightarrow T^{n-1}(M'') \delta^{n-1} \rightarrow T^n(M') \rightarrow T^n(M) \rightarrow T^n(M'') \delta^n \rightarrow \cdots;
 \]
 2. For each morphism of short exact sequence
 \[
 0 \longrightarrow M'' \longrightarrow M \longrightarrow M' \longrightarrow 0 \quad \text{with} \quad 0 \longrightarrow N'' \longrightarrow N \longrightarrow N' \longrightarrow 0,
 \]

we have the following commutative diagram

\[
\begin{array}{ccc}
T^{n-1}(N'') & \xrightarrow{\delta^{n-1}} & T^n(N') \\
\downarrow & & \downarrow \\
T^{n-1}(M'') & \xrightarrow{\delta^{n-1}} & T^n(M')
\end{array}
\]

Definition 3.23 ([11] §2.1) For each contravariant δ-functors $T = \{T^i\}_{i \in \mathbb{Z}_+}$ and $S = \{S^i\}_{i \in \mathbb{Z}_+}$, a morphism of δ-functor from $T = \{T^i\}_{i \in \mathbb{Z}_+}$ to $S = \{S^i\}_{i \in \mathbb{Z}_+}$ is a collection of natural transformations $F = \{F^i : T^i \rightarrow S^i\}_{i \in \mathbb{Z}_+}$ with the following condition:

(\ast) For each exact sequence $0 \rightarrow M'' \rightarrow M \rightarrow M' \rightarrow 0$, the following diagram is commutative

\[
\begin{array}{ccc}
T^{n-1}(M'') & \xrightarrow{\delta^{n-1}} & T^n(M') \\
F^{n-1}(M'') & \downarrow & F^n(M') \\
S^{n-1}(M'') & \xrightarrow{\delta^{n-1}} & S^n(M')
\end{array}
\]

Definition 3.24 ([11] §2.2) A contravariant δ-functor $T = \{T^i\}_{i \in \mathbb{Z}_+}$ is called a universal δ-functor if for each δ-functor $S = \{S^i\}_{i \in \mathbb{Z}_+}$ and for each natural transformation $F^0 : T^0 \rightarrow S^0$, there exists a unique morphism of δ-functor $\{F^i : T^i \rightarrow S^i\}_{i \in \mathbb{Z}_+}$.

Definition 3.25 ([11] §2.2) An additive functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is called coeffaceable if for each object M of \mathcal{C}, there is a epimorphism $P \rightarrow M$ such that $F(P) = 0$.

Theorem 3.26 ([11] Proposition 2.2.1) For each \mathcal{C}, \mathcal{D} be abelian categories and let $T = \{T^i\}_{i \in \mathbb{Z}_+}$ be a contravariant δ-functor from \mathcal{C} to \mathcal{D}. If T^i is coeffaceable for $i > 0$, then T is universal.

Lemma 3.27 (Shapiro’s lemma) For each $M \in \mathcal{B}$, $N \in \mathcal{C}_g$-mod_{wt} and $n \in \mathbb{Z}_+$, we have

\[
\text{Ext}_\mathcal{B}^n(M, N) = \text{Ext}_{\mathcal{C}_g}$-$\text{mod}_{\text{wt}}^n\left(U(\mathcal{C}_g) \otimes_{U(\mathcal{B})} M, N\right).
\]

Proof Let $P^* \rightarrow M \rightarrow 0$ be a projective resolution of M in \mathcal{B}. Since $U(\mathcal{C}_g)$ is free over $U(\mathcal{B})$, the complex $U(\mathcal{C}_g) \otimes_{U(\mathcal{B})} P^*$ is a projective resolution of $U(\mathcal{C}_g) \otimes_{U(\mathcal{B})} M$ in \mathcal{C}_g-mod_{wt}. The assertion follows from the Frobenius reciprocity. \hfill \Box

Lemma 3.28 We have the following:

1. For each M, $N \in \mathcal{C}_g$-mod^{int}, we have

\[
\text{Ext}_{\mathcal{C}_g}$-$\text{mod}_{\text{wt}}^k(M, N^\vee) = \text{Ext}_{\mathcal{C}_g}$-$\text{mod}_{\text{wt}}^k(M, N^\vee) \ k \in \mathbb{Z}_+;
\]

2. For each $N \in \mathcal{C}_g$-mod^{int}, we have

\[
\text{Ext}_{\mathcal{C}_g}$-$\text{mod}_{\text{wt}}^k\left(U(\mathcal{C}_g) \otimes_{U(\mathcal{B})} \mathbb{C}_0, N^\vee\right) = \text{Ext}_{\mathcal{C}_g}$-$\text{mod}_{\text{wt}}^k(\mathbb{C}_0, N^\vee) \ k \in \mathbb{Z}_+.
\]
Proof First, we prove the first assertion. The sets of functors \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}_{\text{wt}}}(-, N^\vee) \}_{k \in \mathbb{Z}_+} \) and \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}^{\text{int}}(-, N^\vee) \}_{k \in \mathbb{Z}_+} \) are contravariant \(\delta \)-functors from \(\mathcal{C} \text{-mod}_{\text{wt}} \) to the category of vector spaces. From Theorem 3.26, \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}_{\text{wt}}}(-, N^\vee) \}_{k \in \mathbb{Z}_+} \) is a universal \(\delta \)-functor.

We prove \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}_{\text{wt}}}(-, N^\vee) \}_{k \in \mathbb{Z}_+} \) is also a universal \(\delta \)-functor. From Theorem 3.26, it is sufficient to show \(\text{Ext}^l_{\mathcal{C} \text{-mod}_{\text{wt}}}(P(\lambda + n\Lambda_0 + m\delta)_{\text{int}}, N^\vee) = \{0\} \) for \(\lambda \in \hat{P}_+, n, 2m \in \mathbb{Z} \) and \(l > 0 \). From the BGG-resolution, we have an exact sequence

\[
\cdots \to \bigoplus_{w \in \hat{W}, l(w) = n+1} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta) \to \bigoplus_{w \in \hat{W}, l(w) = n} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta) \to \cdots
\]

\[
\cdots \to \bigoplus_{w \in \hat{W}, l(w) = 1} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta) \to \tilde{M}(\lambda + n\Lambda_0 + m\delta) \to V(\lambda + n\Lambda_0 + m\delta) \to 0,
\]

where

\[
\tilde{M}(\mu) := U(\hat{g} + h) \otimes_{U(\hat{b}_+ + h)} \mathbb{C}_\mu.
\]

Since \(U(\mathcal{C} \mathfrak{g}) \) is free over \(U(\hat{g} + h) \), by tensoring \(U(\mathcal{C} \mathfrak{g}) \), we obtain a projective resolution \(P^* \to P(\lambda + n\Lambda_0 + m\delta)_{\text{int}} \to 0 \) of \(P(\lambda + n\Lambda_0 + m\delta)_{\text{int}} \) in \(\mathcal{C} \text{-mod}_{\text{wt}} \) such that \(P^n = \bigoplus_{w \in \hat{W}, l(w) = n} U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{g} + h)} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta) \). For each \(l(w) > 0 \),

\[
\text{Hom}_{\mathcal{C} \text{-mod}_{\text{wt}}}(U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{g} + h)} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta), N^\vee) = \{0\}.
\]

This implies \(\text{Ext}^l_{\mathcal{C} \text{-mod}_{\text{wt}}}(P(\lambda + n\Lambda_0 + m\delta)_{\text{int}}, N^\vee) = \{0\} \) for \(l > 0 \). Hence \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}_{\text{wt}}}(-, N^\vee) \}_{k \in \mathbb{Z}_+} \) is a universal \(\delta \)-functor by Theorem 3.26. Since \(\text{Ext}^0_{\mathcal{C} \text{-mod}_{\text{wt}}}(-, N^\vee) = \text{Ext}^0_{\mathcal{C} \text{-mod}^{\text{int}}}(-, N^\vee) \), the assertion follows.

Next, we prove the second assertion. Two sets of functors \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}_{\text{wt}}}(U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{b}_-)} \mathbb{C}_0, (-)^\vee) \}_{k \in \mathbb{Z}_+} \) and \(\{ \text{Ext}^k_{\mathcal{C} \text{-mod}^{\text{int}}}(\mathbb{C}_0, (-)^\vee) \}_{k \in \mathbb{Z}_+} \) are contravariant \(\delta \)-functors from \(\mathcal{C} \text{-mod}^{\text{int}} \) to the category of vector spaces. Since \(\mathbb{C}_0 \) is an object of \(\mathcal{C} \text{-mod}^{\text{int}} \), we can prove that the latter is a universal \(\delta \)-functor by the same argument as in the proof of (1). We show that \(\text{Ext}^l_{\mathcal{C} \text{-mod}_{\text{wt}}}(U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{b}_-)} \mathbb{C}_0, P(\lambda + n\Lambda_0 + m\delta)_{\text{int}}) = \{0\} \) for each \(l > 0 \). For each \(w \in \hat{W} \), by the PBW theorem and the Frobenius reciprocity, we have

\[
\text{Hom}_{\mathcal{C} \mathfrak{g}}(U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{b}_-)} \mathbb{C}_0, (U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{g} + h)} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta))^\vee)
\]

\[
= \text{Hom}_{\mathcal{C} \mathfrak{g}}(U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{g} + h)} \tilde{M}(w \circ \lambda + n\Lambda_0 + m\delta), (U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{b}_-)} \mathbb{C}_0)^\vee)
\]

\[
= \text{Hom}_{\hat{b}_+ + h}(\mathbb{C}_{w \circ \lambda + n\Lambda_0 + m\delta}, (U(\mathcal{C} \mathfrak{g}) \otimes_{U(\hat{b}_-)} \mathbb{C}_0)^\vee)
\]

\[
= \text{Hom}_{\hat{b}_+ + h}(\mathbb{C}_{w \circ \lambda + n\Lambda_0 + m\delta}, (U(\hat{b}_+ + h) \otimes_{U(\hat{b}_-)} \mathbb{C}_0)^\vee)
\]

\[
= \text{Hom}_{\hat{b}_+ + h}(U(\hat{b}_+ + h) \otimes_{U(\hat{b}_-)} \mathbb{C}_0, \mathbb{C}_{-w \circ \lambda - n\Lambda_0 - m\delta})
\]

\[
= \text{Hom}_{\hat{b}_+ + h}(\mathbb{C}_0, \mathbb{C}_{-w \circ \lambda - n\Lambda_0 - m\delta}).
\]

If \(l(w) > 0 \), then \(\text{Hom}_{\hat{b}_+ + h}(\mathbb{C}_{w \circ \lambda + n\Lambda_0 + m\delta}, (U(\hat{b}_+ + h) \otimes \mathbb{C}_0)^\vee) \) = \{0\}. Using the projective resolution of \(P(\lambda + n\Lambda_0 + m\delta)_{\text{int}} \) considered in the proof of (1), this
implies $\text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^l(U(\mathcal{C}_g) \otimes_{U(b_{-})} \mathcal{C}_0, P(\lambda + n \Lambda_0 + m \delta)_{\operatorname{int}}) = \{0\}$ for each $l > 0$. Hence $\text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^k(U(\mathcal{C}_g) \otimes_{U(b_{-})} \mathcal{C}_0, (-)_{\mathcal{C}}) = \{0\}$ is a universal δ-functor. Since $\text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^0(U(\mathcal{C}_g) \otimes_{U(b_{-})} \mathcal{C}_0, N_{\mathcal{C}}) = \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^0(\mathcal{C}_0, N_{\mathcal{C}})$, the assertion follows.

Lemma 3.29 For each $M, N \in \mathcal{B}$, we have

$$\text{Ext}_{\mathcal{B}}^n(M, N_{\mathcal{C}}) = \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(\mathcal{C}_0, M_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) \text{ for } n \in \mathbb{Z}_+.$$

Proof We show that $\{\text{Ext}_{\mathcal{B}}^n(\mathcal{C}_0, (-)_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}})\}_{n \in \mathbb{Z}_+}$ is a universal δ-functor. For each injective object $I \in \mathcal{B}$, the object $I \otimes_{\mathcal{C}} N_{\mathcal{C}}$ is an injective object in \mathcal{B}. Hence we have $\text{Ext}_{\mathcal{B}}^n(\mathcal{C}_0, P_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) = \{0\}$ for each projective object $P \in \mathcal{B}$ and $k \in \mathbb{N}$. From Theorem 3.26, this implies $\text{Ext}_{\mathcal{B}}^n(\mathcal{C}_0, (-)_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}})_{n \in \mathbb{Z}_+}$ is a universal δ-functor. For each $R \in \mathcal{B}$, we have $\text{Hom}_{\mathcal{B}}(R, N_{\mathcal{C}}) = \text{Hom}_{\mathcal{B}}(\mathcal{C}_0, R_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}})$. Since $\{\text{Ext}_{\mathcal{B}}^n(-, N_{\mathcal{C}})\}_{n \in \mathbb{Z}_+}$ is a universal δ-functor, this implies $\{\text{Ext}_{\mathcal{B}}^n(-, N_{\mathcal{C}})\}_{n \in \mathbb{Z}_+} \cong \{\text{Ext}_{\mathcal{B}}^n(\mathcal{C}_0, (-)_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}})\}_{n \in \mathbb{Z}_+}$. Hence the assertion follows.

Remark 3.30 The conclusion of Lemma 3.29 remains valid if we replace $\text{Ext}_{\mathcal{B}}^n$ with $\text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n$ by the same argument.

Theorem 3.31 For $M, N \in \mathcal{C}_g\text{-mod}^{\operatorname{int}}$, we have

$$\text{Ext}_{\mathcal{B}}^n(M, N_{\mathcal{C}}) = \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(M, N_{\mathcal{C}}).$$

Proof We have

$$\text{Ext}_{\mathcal{B}}^n(M, N_{\mathcal{C}}) = \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(\mathcal{C}_0, M_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) \text{ from Lemma 3.29}$$

$$= \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(U(\mathcal{C}_g) \otimes_{U(b_{-})} \mathcal{C}_0, M_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) \text{ from Lemma 3.27}$$

$$= \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(\mathcal{C}_0, M_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) \text{ from Lemma 3.28 (2)}$$

$$= \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(\mathcal{C}_0, M_{\mathcal{C}} \otimes_{\mathcal{C}} N_{\mathcal{C}}) \text{ from Lemma 3.28 (1)}$$

$$= \text{Ext}_{\mathcal{C}_g\text{-mod}^{\operatorname{int}}}^n(M, N_{\mathcal{C}}) \text{ from Remark 3.30}.$$

Proof of Theorem 3.31 If we set $M = W(\lambda) \otimes_{\mathcal{C}} C_{m \delta}$ and $N = W(\mu)_{\operatorname{loc}}$ in Theorem 3.31, then we obtain Theorem 3.31.

Corollary 3.32 For each $f, g \in \mathbb{C}(\langle q^{1/2} \rangle)[\hat{P}]^\mathbb{W}$, we have

$$\langle f, g \rangle_{\text{int}} = \langle f, g \rangle_{\text{Ext}}.$$

Proof From Theorem 3.31, we have

$$\langle \text{gch} W(\lambda), \text{gch} W(\mu)_{\operatorname{loc}} \rangle_{\mathcal{C}} = \langle \text{gch} W(\lambda), \text{gch} W(\mu)_{\operatorname{loc}} \rangle_{\mathcal{C}}_{\mathbb{W}}$$

for each $\lambda, \mu \in \hat{P}_+$. Since $\{\text{gch} W(\lambda)\}_{\lambda \in \hat{P}_+}$ and $\{\text{gch} W(\lambda)_{\operatorname{loc}}\}_{\lambda \in \hat{P}_+}$ are $\mathbb{C}(\langle q^{1/2} \rangle)$-basis of $\mathbb{C}(\langle q^{1/2} \rangle)[\hat{P}]^\mathbb{W}$, we obtain the assertion.
3.4.2 Demazure-Joseph Functors

For each \(i = 0, \ldots, l \), let \(\mathfrak{sl}(2, i) \) be a Lie subalgebra of \(\mathfrak{g} \) isomorphic to \(\pm \alpha_i \) and \(p_i := \mathfrak{b}_- + \mathfrak{sl}(2, i) \). For each \(i = 0, \ldots, l \) and a \(\mathfrak{b}_- \)-module \(M \) with semisimple \(\mathfrak{h} \)-action, \(D_i(M) \) is the unique maximal \(\mathfrak{sl}(2, i) \)-integrable quotient of \(U(p_i) \otimes M \). Then \(D_i \) defines a functor called Demazure-Joseph functor [14].

Theorem 3.33 ([14]) For each \(i = 0, \ldots, l \) and a \(\mathfrak{b}_- \)-semisimple \(\mathfrak{h} \)-module \(M \), the following hold:

1. The functors \(\{ D_i \}_{i=0, \ldots, l} \) satisfy braid relations of \(\mathcal{W} \);
2. There is a natural transformation \(\text{Id} \to D_i \);
3. If \(M \) is an \(\mathfrak{sl}(2, i) \)-integrable \(p_i \)-module then \(D_i(M) \cong M \);
4. If \(N \) is an \(\mathfrak{sl}(2, i) \)-integrable \(p_i \)-module then \(D_i(M \otimes N) \cong D_i(M) \otimes N \);
5. The functor \(D_i \) is right exact.

For a reduced expression \(w = s_{i_1} s_{i_2} \cdots s_{i_n} \in \mathcal{W} \), we define

\[
D_w := D_{i_1} \circ D_{i_2} \circ \cdots \circ D_{i_n}.
\]

This is well-defined by Theorem 3.33 (1).

Theorem 3.34 For each \(\Lambda \in P_+ \), \(w \in \mathcal{W} \) and \(i \in \{ 0, \ldots, l \} \), we have

\[
D_i(D_w \Lambda) = \begin{cases} D_{w \Lambda} & (w \geq s_i w) \\ D_{s_i w \Lambda} & (w < s_i w). \end{cases}
\]

Proof By Lemma 3.8 and the PBW theorem, \(D_{w \Lambda} \) has an integrable \(\mathfrak{sl}(2, i) \)-action if \(w \geq s_i w \). Hence Theorem 3.33 (3) implies \(D_i(D_w \Lambda) = D_{w \Lambda} \) if \(w \geq s_i w \). If \(w < s_i w \), then \(D_{s_i w \Lambda} \) is a \(p_i \)-module with an integrable \(\mathfrak{sl}(2, i) \)-action by Lemma 3.8 and the PBW theorem, and we have an inclusion \(D_{w \Lambda} \to D_{s_i w \Lambda} \). Hence we have a morphism of \(p_i \)-module \(U(p_i) \otimes D_{w \Lambda} \to D_{s_i w \Lambda} \). This morphism is surjective since \(D_{s_i w \Lambda} \) is generated by a vector with its weight \(w \Lambda \) as \(p_i \)-module. Therefore we obtain a surjection \(D_i(D_w \Lambda) \to D_{s_i w \Lambda} \) by taking a maximal \(\mathfrak{sl}(2, i) \)-integrable quotient. By [17, Proposition 3.3.4], we have \(\text{gch} \ D_i(D_w \Lambda) = \text{gch} \ D_{s_i w \Lambda} \). Hence the above surjection is an isomorphism. \(\square \)

We set \(D_i^\# := \vee \circ D_i \circ \vee \).

Proposition 3.35 ([9] Proposition 5.7) For each \(i = 0, 1, \ldots, l, n \in \mathbb{Z}_+ \), \(M \in \mathcal{B}' \), \(N \in \mathcal{B}_0 \), we have

\[
\text{Ext}_n^{\mathfrak{g}}(D_i(M), N) \cong \text{Ext}_n^{\mathfrak{g}}(M, D_i^\#(N)) \quad n \in \mathbb{Z}_+.
\]

3.4.3 Realization of Global Weyl Modules

For each \(\lambda \in \tilde{P}_+ \), we define

\[
\text{Gr}^\lambda D := D^\lambda / \sum_{\lambda > \mu, \mu \notin \tilde{W} \lambda} D^\mu.
\]

\(\text{Springer} \)
From the PBW theorem and Lemma 3.8, D^λ and $\sum_{\lambda \succ \mu, \mu \notin \hat{W}_\lambda} D^\mu$ are stable under the action of \mathfrak{g}. Hence $\operatorname{Gr}^\lambda D$ admits a \mathfrak{g}-module structure.

Proposition 3.36 Let $\lambda \in \hat{P}_+$. Then $\operatorname{Gr}^\lambda D$ has a filtration of \mathfrak{b}_--submodules

$$\{0\} = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_{N-1} \subset F_N = \operatorname{Gr}^\lambda D$$

such that

$$\{F_i/F_{i-1}\}_{i=1,\ldots,N} = \{D^\mu\}_{\mu \in \hat{W}_\lambda}.$$

Proof Let \geq' be a total order on W such that if $w \geq v$ then $w \geq' v$. For each $w \geq \pi \lambda$, define

$$F_w := \left(\sum_{v \geq' w} D^w_{\lambda_0} + \sum_{\lambda \succ \mu, \mu \notin \hat{W}_\lambda} D^\mu \right) / \sum_{\lambda \succ \mu, \mu \notin \hat{W}_\lambda} D^\mu.$$

This is a \mathfrak{b}_--submodule of $\operatorname{Gr}^\lambda D$ and $F_w \subseteq F_v$ if $w \geq' v$.

By Corollary 3.12, $\{F_w\}_{w \in W}$ gives the assertion. \square

Lemma 3.37 We have the following equality of graded characters.

$$\operatorname{gch} L(\Lambda_0) = \sum_{\lambda \in \hat{P}_+} q^{(\lambda, \lambda)/2} \operatorname{gch} W(\lambda).$$

Proof Let $\lambda \in \hat{P}_+$ and $k \in \mathbb{Z}_+$. By Theorem 3.17,

$$\operatorname{Ext}^k_{\mathfrak{g} \text{-mod int}}(L(\Lambda_0), (\mathbb{C}_{-(\lambda, \lambda)/2} \otimes \mathbb{C} W(\lambda)_{\text{loc}})^\vee) = \operatorname{Ext}^k_{\mathfrak{g} \text{-mod int}}(L(\Lambda_0), D^{\lambda \vee}_\lambda).$$

Applying Theorem 3.34 and Proposition 3.35 repeatedly, we have

$$\operatorname{Ext}^k_{\mathfrak{g} \text{-mod int}}(L(\Lambda_0), D^{\lambda \vee}_\lambda) = \operatorname{Ext}^k_{\mathfrak{g} \text{-mod int}}(L(\Lambda_0), D^0_0)^\vee$$

$k \in \mathbb{Z}_+$.

Here D_0 is isomorphic to the trivial \mathfrak{g}-module \mathbb{C}_{Λ_0} with its weight Λ_0. By [12, Theorem 3.6], We have a projective resolution of a \mathfrak{g}-module

$$\cdots \rightarrow P^1 \rightarrow P^0 \rightarrow \mathbb{C}_{\Lambda_0} \rightarrow 0,$$

where $P^n = \bigoplus_{w \in W^0, l(w)=n} P(w \circ 0 + \Lambda_0)_{\text{int}}$. Since $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathfrak{g}}(P^n, \mathbb{C}_{\Lambda_0}) = \delta_{0,n}$, we obtain

$$\dim_{\mathbb{C}} \operatorname{Ext}^k_{\mathfrak{g} \text{-mod int}}(L(\Lambda_0), (\mathbb{C}_{-(\lambda, \lambda)/2} \otimes \mathbb{C} W(\lambda)_{\text{loc}})^\vee) = \delta_{0,k} \quad k \in \mathbb{Z}_+.$$

Therefore, we have

$$\langle \operatorname{gch} L(\Lambda_0), \operatorname{gch} (\mathbb{C}_{-(\lambda, \lambda)/2} \otimes \mathbb{C} W(\lambda)_{\text{loc}})^\vee \rangle_{\text{int}} = 1.$$

By Corollary 3.18, the set of graded characters $\{\operatorname{gch} W(\lambda)_{\text{loc}}\}_{\lambda \in \hat{P}_+}$ is an orthogonal $\mathbb{C}((q^{1/2}))$-basis of $\mathbb{C}((q^{1/2}))[\hat{P}]$. Hence Corollary 3.20 implies the assertion. \square

If a \mathfrak{b}_--module M admits a finite sequence of \mathfrak{b}_--submodules such that every successive quotient is isomorphic to some D^{μ} ($\mu \in \hat{P}$), then we say M is filtered by Demazure slices. Let $f, g \in \mathbb{C}((q^{1/2}))[\hat{P}]$. Here we make a convention that $f \geq g$ means all the coefficients of f and g belong to \mathbb{Z}_+.

@ Springer
Theorem 3.38 For each $\lambda \in \check{P}_+$, the global Weyl module $W(\lambda) \otimes_{C} C_{\check{A}_0}$ is isomorphic to $\text{Gr}^D \check{D}$ as $C_{\check{g}}$-module. In particular, $W(\lambda) \otimes_{C} C_{\check{A}_0}$ is filtered by Demazure slices and each D_{μ} ($\mu \in \check{W}_{\lambda}$) appears exactly once as a successive quotient.

Proof First, we show that there exists a surjection $W(\lambda) \otimes_{C} C_{\check{A}_0} \rightarrow \text{Gr}^D \check{D}$. Let $v_{\lambda} \in \text{Gr}^D \check{D}$ be the nonzero cyclic vector with its weight $\lambda + \check{A}_0 - (\lambda | \lambda) / 2 \delta$. We check v_{λ} satisfies Definition 3.15 (1), (2), (3). The condition (1) is trivial from the definition of v_{λ}. Since $L(\check{A}_0)$ is an integrable g-module, v_{λ} is an extremal weight vector. This implies the condition (2). We check the condition (3) in the sequel. Since $\langle \lambda, \check{\alpha} \rangle \geq 0$ and v_{λ} is an extremal weight vector, we have $e_{\alpha} v_{\lambda} = 0$ for $\alpha \in \check{\Delta}_+$. For each $\mu \in \check{P}$, we set $|\mu\rangle := 1 \in R_{\mu}$. For each $\beta = \alpha + n\delta \in \check{\Delta}$ with $n \in -\mathbb{Z}_+/2$ and $\alpha \in \check{\Delta}_+ \cup \frac{1}{2} \check{\Delta}_{l+}$, we have $v := e_{\alpha + n\delta} \langle \lambda \rangle \in U(C_{\check{g}}) |\lambda + \alpha\rangle$ by Theorem 3.5. Since $U(\check{g}) v$ is finite dimensional, $U(\check{g}) v$ has a highest weight vector whose weight is v. Then, $v \in U(C_{\check{g}}(m)) U(\check{n}_-) |v\rangle \subset D^v$. Hence $v - \lambda \in \check{Q}_+$. Since λ and v is dominant, we have $\lambda > v$. Therefore D^v is 0 in $\text{Gr}^D \check{D}$ as $|v\rangle \in D^v$. This implies $v = 0$ and we have the desired surjection. In particular, we have an inequality $q^{(\lambda, \lambda)/2} \text{gch} W(\lambda) \geq \text{gch} \text{Gr}^D \check{D}$.

On the other hand, we have,

$$\text{gch} L(\check{A}_0) = \sum_{\lambda \in \check{P}_+} \text{gch} \text{Gr}^D \check{D}$$

and

$$\text{gch} L(\check{A}_0) = \sum_{\lambda \in \check{P}_+} q^{(\lambda, \lambda)/2} \text{gch} W(\lambda)$$

by Lemma 3.37. Thus the above inequality is actually an equality and the assertion follows.

3.5 Extensions Between D^λ and D_μ

3.5.1 Demazure-Joseph Functor and Demazure Slices

Theorem 3.39 For each $w \in \check{W}$ and $i \in \{0, \ldots, l\}$, we have the following:

$$D_i(D^w) = \begin{cases} D^{s_i w} & \text{if } s_i w < w \\ D^w & \text{if } s_i w \geq w. \end{cases}$$

Proof The proof is the same as proof of Theorem 3.34 using the analog of [17, Proposition 3.3.4] for thick Demazure modules (cf. [17, §4]).
Proof We set $M_c := \sum_{c \succ a} D^a$. We have a short exact sequence

$$0 \to M_c \to D^c + M_c \to W(c) \to 0.$$

The module M_c is invariant under D_i by Theorem 3.39, and hence we obtain a following exact sequence

$$\mathbb{L}^{-1} D_i(W(c)) \to M_c \to D^c + M_c \to D_i(W(c)) \to 0.$$

Here

$$c' = \begin{cases} s_i c & (s_i c \succeq c) \\ c & (s_i c \prec c) \end{cases}$$

and $\mathbb{L} \cdot D_i$ is the left derived functor of D_i. By Theorem 3.33 (2), we have the following commutative diagram

$$\begin{array}{ccc} M_c & \longrightarrow & D^c + M_c \\
\| & & \| \\
M_c & \longrightarrow & D^{c'} + M_c \end{array}.$$

Since $L(\Lambda_0)$ is completely reducible as a $\mathfrak{sl}(2, i)$-module and $D^c + M_c$ is a b-submodule of $L(\Lambda_0)$, the above morphism $D^c + M_c \to D^c + M_c$ is injective by [14, Lemma 2.8 (1)]. Hence $M_c \to D^{c'} + M_c$ is injective. Therefore we obtain $D_i(W(c)) \cong (D^{c'} + M_c)/M_c$ from the above exact sequence.

Proposition 3.41 ([7] Corollary 4.15) Let $i \in \{0, 1, ..., l\}$ and $c \in \hat{P}$. If $s_i c > c$, then we have an exact sequence

$$0 \to \mathbb{D}^c \to D_i(\mathbb{D}^c) \to \mathbb{D}^{s_i c} \to 0$$

and $D_i(\mathbb{D}^{s_i c}) = \{0\}$.

Proof We set $S := \{ w \in W | w \not\leq \pi_c, s_i w \not\leq \pi_c \}$ and $M := \sum_{w \in S} D^w$. Then we have $D^c \cap M = \sum_{\pi_c < w} D^w$. Hence we have an exact sequence

$$0 \to M \to D^c + M \to \mathbb{D}^c \to 0.$$

As $s_i(S) \subset S$, we have $D_i(M) \cong M$. By the same argument as in the proof of Proposition 3.40, applying D_i, we obtain

$$0 \to M \to D^{s_i c} + M \to D_i(\mathbb{D}^c) \to 0.$$

In particular, we have

$$\mathbb{D}^c \cong (D^c + M)/M \quad \text{and} \quad D_i(\mathbb{D}^c) \cong (D^{s_i c} + M)/M.$$

Hence we have

$$0 \to \mathbb{D}^c \to D_i(\mathbb{D}^c) \to (D^{s_i c} + M)/(D^c + M) \to 0.$$

Here $(D^{s_i c} + M)/(D^c + M) \cong D^{s_i c}/(D^{s_i c} \cap (D^c + M))$ is isomorphic to $\mathbb{D}^{s_i c}$ since $D^{s_i c} \cap (D^c + M) = \sum_{w > s_i \pi_c} D^w$. Hence the first assertion follows. Applying D_i to the last exact sequence, from right exactness of D_i, we have an exact sequence

$$D_i(\mathbb{D}^c) \to D_i^2(\mathbb{D}^c) \to D_i(\mathbb{D}^{s_i c}) \to 0.$$
From Theorem 3.33 (3), the above homomorphism $D_t(D^\ast) \to D^2_t(D^\ast)$ is an isomorphism. This implies the second assertion.

3.5.2 Calculation of $\text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_\mu)$

The following theorem is an $A_{2\mathcal{B}}^{(2)}$ version of [7, Theorem 4.18].

Theorem 3.42 For each λ, $\mu \in \hat{P}$, $m \in \frac{1}{2}\mathbb{Z}$ and $k \in \mathbb{Z}$, we have

$$\dim_{\mathcal{C}} \text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_\mu) = \delta_{n,0}\delta_{m,0}\delta_{k,0}\delta_{\lambda,\mu} \quad n \in \mathbb{Z}_+.$$

Proof By comparing the level, the extension vanishes if $k \neq 0$. We prove the assertion by induction on μ with respect to \triangleright. By Theorem 3.33 (3), we have $D_w(D_0) = D_0$ for all $w \in \hat{W}$. If λ is not anti-dominant, then there exists $i \in \{1, ..., l\}$ such that $s_i \lambda > \lambda$. Hence

$$\text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_\mu) = \text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_i(D^\gamma_0)) = \text{Ext}^n_{\mathcal{B}}(D_t(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}), D^\gamma_0) = \{0\}.$$

Here we used Proposition 3.35 in the second equality and Proposition 3.41 in the third equality. If λ is anti-dominant, then we have $D_{w_0}(\mathbb{D}^\lambda) = W(\lambda_+) \otimes_{\mathcal{C}} C_{\Lambda_0}$ for the longest element w_0 of \hat{W} by Proposition 3.40. Hence we have $\text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_0) = \text{Ext}^n_{\mathcal{B}}(W(\lambda_+) \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, W(0)^{\text{loc}})_{\lambda}$ by Theorem 3.17. From Theorem 3.21, the assertion follows in this case.

Let $s_i \mu > \mu$. We set $\mathbb{D}^\gamma_\lambda := \mathbb{D}^\lambda \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}$ for $\lambda \in \hat{P}$. By Proposition 3.41, we have the following exact sequence

$$0 \to \text{Ext}^0_{\mathcal{B}}(\mathbb{D}^\gamma_{s_i \lambda}, D^\gamma_\mu) \to \text{Ext}^0_{\mathcal{B}}(D_t(\mathbb{D}^\gamma_\lambda), D^\gamma_\mu) \to \text{Ext}^0_{\mathcal{B}}(\mathbb{D}^\gamma_\lambda, D^\gamma_\mu) \to \cdots \to \text{Ext}^0_{\mathcal{B}}(\mathbb{D}^\gamma_{s_i \lambda}, D^\gamma_\mu) \to \text{Ext}^0_{\mathcal{B}}(D_t(\mathbb{D}^\gamma_\lambda), D^\gamma_\mu) \to \text{Ext}^0_{\mathcal{B}}(\mathbb{D}^\gamma_\lambda, D^\gamma_\mu) \to \cdots.$$

From Theorem 3.34 and Proposition 3.35, we have

$$\text{Ext}^n_{\mathcal{B}}(D_t(\mathbb{D}^\gamma_{s_i \lambda} \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}), D^\gamma_\mu) \cong \text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\gamma_{s_i \lambda} \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_\mu) \cong \text{Ext}^n_{\mathcal{B}}(\mathbb{D}^\gamma_{s_i \lambda} \otimes_{\mathcal{C}} C_{m\delta+k\Lambda_0}, D^\gamma_\mu).$$

Therefore, the assertion follows from the induction hypothesis and the long exact sequence.

Corollary 3.43 For each λ, $\mu \in \hat{P}$, we have

$$\langle \text{gch} \mathbb{D}^\lambda, q^{-\frac{1}{2}}E_{\mu}(X^{-1}, q^{-1}) \rangle_{\text{Ext}} = \delta_{\lambda,\mu}.$$

Proof By Theorem 3.42, we have

$$\langle \text{gch} \mathbb{D}^\lambda, \text{gch} D_\mu \rangle_{\text{Ext}} = \delta_{\lambda,\mu}.$$

Using Theorem 3.14, we obtain the assertion.

Corollary 3.44 For each $\lambda \in \hat{P}$, we have

$$\text{gch} \mathbb{D}^\lambda = q^{\frac{1}{2}}E_{\lambda}(X^{-1}, q^{-1})/\langle \tilde{E}_{\lambda}, E_{\lambda}^\dagger \rangle_{\text{Ext}}.$$
\textbf{Proof} Since \(\{ E_{\lambda}(X^{-1}, q^{-1})/\langle \bar{E}_{\lambda}, E_{\lambda}^\dagger\rangle_{\text{Ext}} \}_{\mu \in \hat{P}} \) is a \(\mathbb{C}(q^{1/2}) \)-basis of \(\mathbb{C}(q^{1/2})[\hat{P}] \), we have
\[
gch \mathbb{D}^\lambda = \sum_{\mu \in \hat{P}} a_\mu E_{\lambda}(X^{-1}, q^{-1})/\langle \bar{E}_{\lambda}, E_{\lambda}^\dagger\rangle_{\text{Ext}}
\]
for some \(a_\mu \in \mathbb{C}(q^{1/2}) \). Since \(\langle - , - \rangle_{\text{nonsym}} \mid_{\lambda=0} = \langle - , - \rangle_{\text{Ext}} \), and \(\{ E_{\lambda}(X, q) \}_{\lambda \in \hat{P}} \) are orthogonal with respect to \(\langle - , - \rangle_{\text{nonsym}} \) each other, we have
\[
\langle \bar{E}_{\lambda}(X^{-1}, q^{-1}), E_{\mu}(X^{-1}, q^{-1}) \rangle_{\text{Ext}}/\langle \bar{E}_{\lambda}, E_{\lambda}^\dagger \rangle_{\text{Ext}} = \delta_{\lambda, \mu}.
\]
Hence we have \(\langle \text{gch } \mathbb{D}^\lambda, \text{gch } D_\mu \rangle_{\text{Ext}} = a_\mu \) by Theorem 3.14. Therefore the assertion follows from Corollary 3.43.

\[\square\]

\section{Weyl Modules for Special Current Algebra of \(A^{(2)}_{2l} \)}

We continue to work in the setting of the previous section.

\subsection{Special Current Algebra of \(A^{(2)}_{2l} \)}

In this subsection, we refer for general terminologies to [10, Chapter 2], [8, §2.2] and [1, Appendix]. We set
\[
\mathfrak{h}^\dagger := \bigoplus_{i=0}^{l-1} \mathbb{C} \alpha_i, \quad \Delta^\dagger := \Delta \cap \hat{Q}^\dagger \quad \text{and} \quad \mathfrak{g}^\dagger := \left(\bigoplus_{\alpha \in \Delta^\dagger} \mathfrak{g}_\alpha \right) \oplus \mathfrak{h}^\dagger.
\]
Then \(\mathfrak{g}^\dagger \) is a finite dimensional simple Lie algebra of type \(B_l \). The subalgebra \(\mathfrak{h}^\dagger \) is a Cartan subalgebra of \(\mathfrak{g}^\dagger \), and \(\Delta^\dagger \) is the set of roots of \(\mathfrak{g}^\dagger \) with respect to \(\mathfrak{h}^\dagger \). Using the standard basis \(v_1, ..., v_l \) of \(\mathbb{R}^l \), we have:
\[
\hat{\Delta}^\dagger = \{ \pm (v_i \pm v_j) \mid \pm v_i \mid 1 \leq i \neq j \leq l \}.
\]
We denote the set of short roots of \(\mathfrak{g}^\dagger \) by \(\hat{\Delta}_s^\dagger \) and the set of long roots of \(\mathfrak{g}^\dagger \) by \(\hat{\Delta}_l^\dagger \). We have
\[
\hat{\Delta}_s^\dagger = \{ \pm v_i \mid 1 \leq i \leq l \}
\]
and
\[
\hat{\Delta}_l^\dagger = \{ \pm (v_i \pm v_j) \mid 1 \leq i \neq j \leq l \}.
\]
Let \(\{ \alpha_1^\dagger, ..., \alpha_l^\dagger \} \) be a set of simple roots of \(\mathfrak{g}^\dagger \). We have \(\alpha_i^\dagger = -v_i + v_{i+1} \) if \(i \neq l \) and \(\alpha_l^\dagger = -v_l \). In the notation of §1.2, we have \(\alpha_i^\dagger = \alpha_{l-i} \). We set \(\hat{Q}_+^\dagger := \bigoplus_{i=1, ..., l} \mathbb{Z} \alpha_i^\dagger \). We have
\[
\Delta_{re} = (\hat{\Delta}^\dagger + \mathbb{Z} \delta) \cup (2\hat{\Delta}^\dagger + (2\mathbb{Z} + 1)\delta).
\]
The special current algebra \(\mathfrak{c}_\mathfrak{g}^\dagger \) is the maximal parabolic subalgebra of \(\mathfrak{g} \) that contains \(\hat{\mathfrak{g}}^\dagger \). We have \(\mathfrak{c}_\mathfrak{g}^\dagger = \hat{\mathfrak{g}}^\dagger + \mathfrak{b}_- \). We set
\[
\mathfrak{c}_\mathfrak{g}^\dagger_{im} := \mathfrak{c}_\mathfrak{g}^\dagger_{im}, \quad \mathfrak{c}_\mathfrak{g}^\dagger' := [\mathfrak{c}_\mathfrak{g}^\dagger, \mathfrak{c}_\mathfrak{g}^\dagger]
\]
and
\[
\mathfrak{c}_n^\dagger_+ := \bigoplus_{\alpha \in (\hat{\Delta}^\dagger_{-} - \mathbb{Z} \delta) \cup (2\hat{\Delta}^\dagger_{+} - (2\mathbb{Z} + 1)\delta)} \mathfrak{g}_\alpha
\]
Let \(\hat{\mathbb{P}}^\dagger \) be the integral weight lattice of \(\hat{\mathfrak{g}}^\dagger \) and \(\hat{\mathbb{P}}^\dagger_+ \) be the set of dominant integral weights of \(\hat{\mathfrak{g}}^\dagger \). Let \(\mathfrak{c}_s^\dagger \) (\(i = 1, ..., l \)) be the fundamental weights of \(\hat{\mathfrak{g}}^\dagger \). We identify \(\hat{\mathbb{P}}^\dagger \) and \(\mathbb{Z} \mathfrak{c}^\dagger_{1} \oplus \mathbb{Z} \mathfrak{c}^\dagger_{2} \oplus \mathbb{Z} \mathfrak{c}^\dagger_{3} \oplus \mathbb{Z} \mathfrak{c}^\dagger_{4} \).
\[\cdots \oplus \mathbb{Z} \omega_i^+ \oplus \mathbb{Z} \omega_i^+ \] by \(\omega_i^+ = \Lambda_{i-1} - \Lambda_i \) for \(i \neq 1 \) and \(\omega_1^+ = \Lambda_0 - \Lambda_1 / 2 \). Let \(W^+ \) be the subgroup of \(W \) generated by \(\{ s_\alpha \}_{\alpha \in \Delta^+} \).

4.2 Realization of \(\mathcal{C}_g^\dagger \)

We refer to [6, §4.6] in this subsection. Let \(X_i, j \) be a \((2l + 1) \times (2l + 1)\) matrix unit whose \(i j \)-entry is one. We set \(H_i = X_{i, i} - X_{i+1,i+1} \) \((i = 1, \ldots, 2l)\). The Lie algebra \(\mathfrak{sl}_{2l+1} \) is spanned by \(X_{i, j} \) \((i \neq j)\) and \(H_i \) \((i = 1, \ldots, 2l)\). The assignment

\[
X_{i, i+1} \rightarrow X_{2l+1-i, 2l+2-i}, \quad X_{i+1, i} \rightarrow X_{2l+2-i, 2l+1-i}
\]

extends on \(\mathfrak{sl}_{2l+1} \) as a Lie algebra automorphism. We write this automorphism by \(\sigma \). Let \(L(\mathfrak{sl}_{2l+1}) = \mathfrak{sl}_{2l+1} \otimes \mathbb{C}[t^{\pm 1}] \) be the loop algebra corresponding to \(\mathfrak{sl}_{2l+1} \) and extend \(\sigma \) on \(L(\mathfrak{sl}_{2l+1}) \) by \(\sigma(X \otimes f(t)) = \sigma(X) \otimes f(-t) \). We denote the fixed point of \(\sigma \) in \(\mathfrak{sl}_{2l+1} \otimes \mathbb{C}[t] \) by \((\mathfrak{sl}_{2l+1} \otimes \mathbb{C}[t])^\sigma \).

Proposition 4.1 (see [16] Theorem 8.3) *The Lie algebra \((\mathfrak{sl}_{2l+1} \otimes \mathbb{C}[t])^\sigma \) is isomorphic to \(\mathcal{C}_g^\dagger \).*

4.3 Weyl Modules for \(\mathcal{C}_g^\dagger \)

Definition 4.2 For each \(\lambda \in \hat{P}_+ \), the global Weyl module is a cyclic \(\mathcal{C}_g^\dagger \)-module \(W(\lambda)^\dagger \) generated by \(v_\lambda \) that satisfies the following relations:

1. \(h v_\lambda = \lambda(h) v_\lambda \) for each \(h \in \mathfrak{h}; \)
2. \(e_\alpha^{(\lambda, \alpha)+1} v_\lambda = 0 \) for each \(\alpha \in \Delta_+^\dagger; \)
3. \(\mathcal{C}_g^\dagger v_\lambda = 0. \)

Definition 4.3 For each \(\lambda \in \hat{P} \), the local Weyl module is a cyclic \(\mathcal{C}_g^\dagger \)-module \(W(\lambda)_{loc}^\dagger \) generated by \(v_\lambda \) satisfies relations (1), (2), (3) of Definition 4.2 and

4. \(X v_\lambda = 0 \) for each \(X \in \mathcal{C}_g^\dagger_{im}. \)

Theorem 4.4 ([10] Corollary 6.0.1 and [8] Corollary 2.19) *For each \(\lambda \in \hat{P}_+^\dagger \), we have

1. If \(\lambda = \sum_{i=1}^{l-1} m_i \sigma_i^\dagger + (2k - 1) \sigma_l^\dagger \), then
 \[
 \dim_{\mathbb{C}} W(\lambda)^\dagger_{loc} = \left(\prod_{i=1}^{l-1} \binom{2l + 1}{i} \right) \binom{2l + 1}{k-1} \binom{2l}{l};
 \]
2. If \(\lambda = \sum_{i=1}^{l-1} m_i \sigma_i^\dagger + 2m_l \sigma_l^\dagger \), then
 \[
 \dim_{\mathbb{C}} W(\lambda)^\dagger_{loc} = \prod_{i=1}^l \binom{2l + 1}{i}^{m_i}.
 \]

4.4 The Algebra \(\mathcal{A}_\lambda \)

Let \(\lambda \in \hat{P}_+^\dagger \). We set

\[\text{Ann}(v_\lambda) := \{ X \in \mathcal{C}_g^\dagger_{im} \mid X v_\lambda = 0 \} \quad \text{and} \quad \mathcal{A}_\lambda := \mathcal{C}_g^\dagger_{im} / \text{Ann}(v_\lambda), \]
where v_λ is the cyclic vector of $W(\lambda)_{loc}^\dagger$ in Definition 4.2.

Proposition 4.5 ([6] §7.2) For each $\lambda \in \hat{P}_+^\dagger$, the algebra A_λ acts on $W(\lambda)^\dagger$ by

\[X.Yv_\lambda := YXv_\lambda \text{ for } X \in A_\lambda \text{ and } Y \in U(C \xi^\dagger). \]

4.4.1 Generators of A_λ

For $i = 1, ..., l - 1$, we set

\[
\begin{align*}
 h_{i,0} &:= H_i + H_{2l+1-i}, \quad h_{i,1} := H_i - H_{2l+1-i}, \\
 x_{i,0} &:= X_{i,i+1} + X_{2l+1-i,2l+2-i}, \quad x_{i,1} := X_{i,i+1} - X_{2l+1-i,2l+2-i}, \\
 y_{i,0} &:= X_{i,i+1} + X_{2l+2-i,2l+1-i}, \quad y_{i,1} := X_{i,i+1} - X_{2l+2-i,2l+1-i}
\end{align*}
\]

and

\[
\begin{align*}
 h_{l,0} &:= 2(H_l + H_{l+1}), \quad h_{l,1} := H_l - H_{l+1}, \\
 x_{l,0} &:= \sqrt{2}(X_{l,l+1} + X_{l+1,l+2}), \quad x_{l,1} := -\sqrt{2}(X_{l,l+1} - X_{l+1,l+2}), \\
 y_{l,0} &:= \sqrt{2}(X_{l+1,l} + X_{l+2,l+1}), \quad y_{l,1} := -\sqrt{2}(X_{l+1,l} - X_{l+2,l+1}).
\end{align*}
\]

The Lie algebra generated by $\{x_{i,0}, y_{i,0}, h_{i,0}\}_{i=1, ..., l}$ is isomorphic to the simple Lie algebra of type B_l and $\{h_{i,0}\}_{i=1, ..., l}$ is the set of its simple coroots [1, Theorem 9.19]. We set $z_{l,1} := \frac{1}{\sqrt{2}}[y_{l,0}, y_{l,1}]$. As in [5, §3.3], we define $p_{i,r} \in U(C \xi^\dagger_{im})$ ($i = 1, ..., l$ and $r \in \mathbb{Z}_+$) by

\[
\sum_{r \in \mathbb{Z}_+} p_{i,r}z^r := \exp \left(-\sum_{k=1}^{\infty} \frac{h_{i,0}}{k} \otimes t^{-2k} - \frac{h_{i,1}}{2k - 1} z^{2k} \right)
\]

for $i \neq l$ and

\[
\sum_{r \in \mathbb{Z}_+} p_{i,r}z^r := \exp \left(-\sum_{k=1}^{\infty} \frac{h_{i,0}/2}{2k} \otimes t^{-2k} + \frac{h_{i,1}}{2k - 1} z^{2k} \right)
\]

Proposition 4.6 The algebra $U(C \xi^\dagger_{im})$ is isomorphic to the polynomial ring $\mathbb{C}[p_{i,r} | i = 1, ..., l, r \in \mathbb{Z}_+]$.

Proof We have $\mathbb{C}[p_{i,r} | i = 1, ..., l, r \in \mathbb{Z}_+] \subset U(C \xi^\dagger_{im})$. The set of generators of $U(C \xi^\dagger_{im})$ is $\{h_{n,\xi} \otimes t^{-2k+\xi} | n \in \{1, ..., l\}, k \in \mathbb{N} \text{ and } \xi \in \{0, 1\}\}$. It suffices to see that $h_{n,\xi} \otimes t^{-2k+\xi} \in \mathbb{C}[p_{i,r} | i = 1, ..., l, r \in \mathbb{Z}_+]$ for each $i \in \{1, ..., l\}$, $k \in \mathbb{N}$ and $\xi \in \{0, 1\}$. We have $h_{l,\xi} \otimes t^{-1} = p_{l,1}$ up to a constant multiple. By definition, $p_{l,2k-\xi} + (h_{l,\xi} \otimes t^{-2k+\xi})/(2k - \xi)$ is an element of $\mathbb{Q}[h_{l,s} | s < 2k - \xi]$ if $i \neq l$, and $p_{l,2k-\xi} - (1)^{\xi+1}h_{l,s}z^{1-\xi} \otimes t^{-2k+\xi} / (2k - \xi)$ is an element of $\mathbb{Q}[h_{l,s} | s < 2k - \xi]$. The assertion follows by induction on $2k - \xi$.

Lemma 4.7 ([5] Lemma 3.2, Lemma 3.3 (iii) (b) and [4] Lemma 1.3 (iii)) Let V be a $C \xi^\dagger$-module and $v \in V$ be a nonzero vector such that $C \xi_{im}v = 0$. We have the following:

1. For $i \neq l$, we have $(x_{i,1} \otimes t^{-1})(y_{i,0})(r)v = (-1)^{r} p_{i,r}v$ for $r \in \mathbb{N}$;
2. We have $(x_{l,0})(2r)(z_{l,1} \otimes t^{-1})(r)v = (-1)^{r} p_{l,r}v$ for $r \in \mathbb{N}$.

Proposition 4.8 Let $\lambda \in \hat{P}_+^\dagger$, $i \in \{1, ..., l - 1\}$ and v_λ be cyclic vector of $W(\lambda)^\dagger$ with its weight λ. We have $p_{i,r}v_\lambda = 0$ for $r > \langle \lambda, \alpha_i^\dagger \rangle$, and $p_{l,r}v_\lambda = 0$ for $r > |\langle \lambda, \alpha_l^\dagger \rangle|$.\[\square\]
Proof Definition 4.2 (3) implies the set of \(\hat{h}^{\dagger} \)-weights of \(W(\lambda)^{\dagger} \) is the subset of \(\lambda - \hat{Q}^{\dagger} \).

From Definition 4.2 (2) and Lemma 4.7 (1), we get \(p_{l,r} v_{\lambda} = 0 \) for \(r > \langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle \). By Definition 4.2 (2), \(W(\lambda)^{\dagger} \) is an \(\hat{g}^{\dagger} \)-integrable module. Since the set of \(\hat{h}^{\dagger} \)-weights of \(W(\lambda)^{\dagger} \) is contained in \(\lambda - \hat{Q}^{\dagger} \), this implies \(\lambda - k\alpha_{l}^{\dagger} \) for \(k > \langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle \) is not a weight of a vector of \(W(\lambda)^{\dagger} \). Since \((z_{l,1} \otimes t) \) is a root vector corresponding to \(2\alpha_{l}^{\dagger} - \delta \), we obtain \(p_{l,r} v_{\lambda} = 0 \) for \(r > \left\lfloor \frac{\langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle}{2} \right\rfloor \).

We set \(A^{\prime}_{\lambda} := \mathbb{C}[p_{i,r} \mid 1 \leq r \leq \langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle \text{ for } i \neq l, \ 1 \leq r \leq \left\lfloor \frac{\langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle}{2} \right\rfloor \text{ for } i = l] \).

Corollary 4.9 For each \(\lambda \in \hat{P}^{\dagger}_{+} \), there exists a \(\mathbb{C} \)-algebra surjection \(A^{\prime}_{\lambda} \rightarrow A_{\lambda} \).

Proof By Proposition 4.8, we have \(p_{i,r}, p_{l,k} \in \text{Ann}(v_{\lambda}) \) for each \(r > \langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle \) (\(i \neq l \)) and each \(k > \left\lfloor \frac{\langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle}{2} \right\rfloor \). Hence we have a surjection \(A^{\prime}_{\lambda} \rightarrow A_{\lambda} \) by Proposition 4.6.

We set \(\hat{P}^{\dagger}_{+} := \{ \lambda \in \hat{P}^{\dagger}_{+} \mid \langle \lambda, \hat{\alpha}_{l}^{\dagger} \rangle \in 2\mathbb{Z}_{+} \} \).

Theorem 4.10 ([6] §5.6 and Theorem 1) For each \(\lambda \in \hat{P}^{\dagger}_{+} \) and nonzero element \(f \in A^{\prime}_{\lambda} \), there exists a quotient of \(W(\lambda)^{\dagger} \) such that \(f \) acts nontirivially on the image of the cyclic vector \(v_{\lambda} \) of \(W(\lambda)^{\dagger} \).

In particular \(A_{\lambda} \cong A^{\prime}_{\lambda} \).

Lemma 4.11 ([6] Lemma 5.4) For each \(1 \leq s \leq k \), let \(V_{s} \) be representations of \(\mathbb{C}^{g^{\dagger}} \) and let \(v_{s} \) be vectors of \(V_{s} \) such that \(C^{n_{l}} v_{s} = 0 \). We have

\[p_{i,r}(v_{1} \otimes \cdots \otimes v_{k}) = \sum_{r=j_{1}+\cdots+j_{k}, \ j_{i} \geq 0} p_{i,j_{i}} v_{1} \otimes \cdots \otimes p_{i,j_{k}} v_{k} \]

for all \(1 \leq i \leq l \) and \(r \in \mathbb{Z}_{+} \).

4.4.2 Dimension Inequalities

For each maximal ideal \(I \) of \(A_{\lambda} \), we define

\[W(\lambda, I)^{\dagger} := (A_{\lambda}/I) \otimes W(\lambda)^{\dagger} \]

Let \(U(\mathbb{C}^{g_{im}})_{+} \) be the augmentation ideal of \(U(\mathbb{C}^{g_{im}}) \) and \(I_{\lambda,0} \) be a maximal ideal of \(A_{\lambda} \) defined by \((U(\mathbb{C}^{g_{im}})_{+} + \text{Ann}(v_{\lambda}))/\text{Ann}(v_{\lambda}) \).

Proposition 4.12 For each \(\lambda \in \hat{P}^{\dagger}_{+} \), we have \(W(\lambda)^{\dagger}_{loc} \cong W(\lambda, I_{\lambda,0})^{\dagger} \).

Proof The assertion follows from Definition 4.3 (4).

Proposition 4.13 ([6] Proposition 6.4 and 6.5) Let \(\lambda \in \hat{P}^{\dagger}_{+} \) and let \(I \) be a maximal ideal of \(A_{\lambda} \).

\[\Box \text{ Springer} \]
If \(\mu \in \hat{P}_+ \) satisfies \(\lambda - \mu \in \hat{P}_+^\vee \), then we have
\[
\dim_{\mathbb{C}} W(\lambda, I)^\dagger \geq \dim_{\mathbb{C}} W(\mu)_{\text{loc}}^{\dagger} \left(\prod_{i=1}^{l-1} \binom{2l + 1}{i} \right)^{(\lambda - \mu)(\alpha_i^\vee) (l+1) \binom{(l-\mu)(\alpha_i^\vee)/2}}.
\]

We have
\[
\dim_{\mathbb{C}} W(\lambda)^\dagger \geq \dim_{\mathbb{C}} W(\lambda, I)^\dagger.
\]

Corollary 4.14 ([6] Theorem 10 when \(\lambda \in \hat{P}_+^\vee \)) For each \(\lambda \in \hat{P}_+^\vee \) and each maximal ideal \(I \) of \(A_\lambda \), the dimension \(\dim_{\mathbb{C}} W(\lambda, I)^\dagger \) does not depend on \(I \) and is given by Theorem 4.4.

Proof If \(\lambda = \sum_{i=1}^{l-1} m_i \sigma_i^\vee + 2m_l \sigma_l^\vee \), then we have
\[
\dim_{\mathbb{C}} W(\lambda)^\dagger \geq \dim_{\mathbb{C}} W(\lambda, I)^\dagger \geq \prod_{i=1}^{l-1} \binom{2l + 1}{i}^{m_i} \binom{2l + 1}{l}^{k-1}
\]

by Proposition 4.13. From Theorem 4.4 (2), this inequality is actually equality. If \(\lambda = \sum_{i=1}^{l-1} m_i \sigma_i^\vee + (2k - 1) \sigma_l^\vee \), then we have
\[
\dim_{\mathbb{C}} W(\lambda)^\dagger \geq \dim_{\mathbb{C}} W(\lambda, I)^\dagger \geq \dim_{\mathbb{C}} W(\sigma_l^\vee)_{\text{loc}}^{\dagger} \left(\prod_{i=1}^{l-1} \binom{2l + 1}{i}^{m_i} \binom{2l + 1}{l}^{k-1}
\]

by Proposition 4.13. From Theorem 4.4 (1), this inequality is actually equality. Hence the assertion follows.

4.5 Freeness of \(W(\lambda)^\dagger \) over \(A_\lambda \)

In this subsection, we prove the following theorem

Theorem 4.15 For each \(\lambda \in \hat{P}_+^\vee \), the global Weyl module \(W(\lambda)^\dagger \) is free over \(A_\lambda \).

To prove this theorem, we need the following preparatory result:

Theorem 4.16 For each \(\lambda \in \hat{P}_+^\vee \), the algebra \(A_\lambda \) is isomorphic to \(A_\mu^\prime \).

Theorem 4.16 and Corollary 4.14 imply Theorem 4.15 by [23, 26]. We prove Theorem 4.15 after proving Theorem 4.16.

Proof of Theorem 4.16 We show that the surjection \(A_\lambda^\prime \to A_\lambda \) is the isomorphism. We have \(\dim_{\mathbb{C}} A_\lambda^\prime = 1 \). Since \(\dim_{\mathbb{C}} A_{\sigma_l^\vee}^\prime \geq 1 \). Hence \(A_\lambda^\prime \to A_{\sigma_l^\vee}^\prime \) is the isomorphism. If \(\lambda \in \hat{P}_+^\vee \), then the assertion is Theorem 4.10. We prove the assertion for \(\lambda = \sum_{i=1}^{l-1} m_i \sigma_i^\vee + (2m + 1) \sigma_l^\vee \). Let \(f \in A_\lambda^\prime \) be a nonzero element. It is suffice to show that there exists a quotient of \(W(\lambda)^\dagger \) such that \(f \) acts nontrivially on the image of the cyclic vector \(v_\lambda \) of \(W(\lambda)^\dagger \). Let \(\mu := \lambda - \sigma_l^\vee \). We have \(A_\lambda^\prime \cong A_\mu^\prime \). By checking the defining relations, we have a homomorphism of \(\mathbb{C}g^\vee \)-module
\[
W(\lambda)^\dagger \to W(\sigma_l^\vee)^\dagger \otimes_{\mathbb{C}} W(\mu)^\dagger
\]
which maps \(v_\lambda \) to \(v_{\sigma_i^j} \otimes v_\mu \). By Theorem 4.10, we have a quotient module \(V \) of \(W(\mu)^\dagger \) such that \(f \) acts nontrivially on the image of \(v_\mu \in W(\mu)^\dagger \). We have a homomorphism

\[
W(\lambda)^\dagger \to W(\sigma_i^j)^\dagger \otimes_C V \to W(\sigma_i^j)^{\dagger \text{loc}} \otimes_C V.
\]

Let \(v \in V \) and \(w_{\sigma_i^j}^\dagger \in W(\sigma_i^j)^{\dagger \text{loc}} \) be the image of \(v_\mu \) in \(V \) and the image of \(v_{\sigma_i^j} \) in \(W(\sigma_i^j)^{\dagger \text{loc}} \), respectively. By Lemma 4.11, we have \(p_{i,r}(w_{\sigma_i^j}^\dagger \otimes v) = w_{\sigma_i^j}^\dagger \otimes p_{i,r}(v) \) for each \(i \in \{1, \ldots, l\} \) and \(r \in \mathbb{Z}_+ \). Therefore, \(f \) acts nontrivially on the highest weight vector \(w_{\sigma_i^j}^\dagger \otimes v \) of \(W(\sigma_i^j)^{\dagger \text{loc}} \otimes V \). Hence \(f v_\lambda \neq 0 \). Hence the assertion follows.

\[\square\]

Proof of Theorem 4.15 We set \(N := \dim W(\lambda)^{\dagger \text{loc}} \). Let \(\mathfrak{m} \) be a maximal ideal of \(A_\lambda \). By Nakayama's lemma [22, Lemma 1.M], there exists \(f \not\in \mathfrak{m} \) such that \((W(\lambda)^\dagger)_f \) is generated by \(N \) elements as \((A_\lambda)_f\)-module, where \((W(\lambda)^\dagger)_f \) and \((A_\lambda)_f \) are the localization of \((W(\lambda)^\dagger) \) and \((A_\lambda) \) by \(f \), respectively. Since \((A_\lambda)_f \) is Noetherian, we have an exact sequence

\[
(A_\lambda)_f \xrightarrow{\phi} (A_\lambda)_f^{\oplus N} \xrightarrow{\psi} (W(\lambda)^\dagger)_f \to 0.
\]

For any maximal ideal \(\mathfrak{n} \) such that \(f \not\in \mathfrak{n} \), the induced morphism \(\overline{\psi} : (A_\lambda)_f^{\oplus N} / \mathfrak{n}(A_\lambda)_f^{\oplus N} \to (W(\lambda)^\dagger)_f / \mathfrak{n}(W(\lambda)^\dagger)_f \) is an isomorphism by Corollary 4.14. This implies the matrix coefficients of \(\phi \) are contained in the Jacobson radical of \((A_\lambda)_f \). Since \((A_\lambda)_f \) is an integral domain and finitely generated over \(C \), we deduce \(\phi = 0 \). It follows that \((W(\lambda)^\dagger) \) is flat over \(A_\lambda \) by [15]. Since \(A_\lambda \) is a polynomial ring, \((W(\lambda)^\dagger) \) is a projective \(A_\lambda \)-module. From [23, 26], a finitely generated projective module over a polynomial ring is free. Hence the assertion follows.

\[\square\]

Acknowledgements The author thanks Syu Kato and Ievgen Makedonskyi for much advice and discussion.

References

1. Carter, R.: Lie Algebras of Finite and Affine Type. Cambridge University Press, Cambridge (2010)
2. Chari, V., Ion, B.: BGG reciprocity for current algebras. Compos. Math. 151, 7 (2015)
3. Chari, V., Loktev, S.: Weyl, Demazure and fusion modules for the current algebra of \(\mathfrak{sl}_2 \). Int. Math. Res. Not. 5038 (2008)
4. Chari, V., Ion, B.: BGG reciprocity for current algebras. Compos. Math.
5. Carter, R.: Lie Algebras of Finite and Affine Type. Cambridge University Press, Cambridge (2010)
6. Heckenberger, I., Kolb, S.: On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras. Transform. Groups 12(4), 647–655 (2007)
7. Joseph, A.: On the Demazure character formula. Ann. Sci. l’E.N.S. 389–419 (1985)
8. Feigin, E., Kato, S., Makedonskyi, I.: Representation theoretic realization of non-symmetric Macdonald polynomials at infinity, Preprint: arXiv:1703.04108. J. Reine Angew. Math. to appear (2017)
9. Joseph, A.: On the Demazure character formula. Ann. Sci. l’E.N.S. 389–419 (1985)
15. Jothilingam, P.: When is a flat module projective, Indian. J. pure appl. Math. 15(1), 65–66 (1984)
16. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
17. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71, 839–858 (1993)
18. Kato, S.: Frobenius splitting of thick flag manifolds of Kac-Moody algebras. Int. Math. Res. Not. my174 July (2018)
19. Kleshchev, A.: Affine highest weight categories and affine quasi-hereditary algebras. Proc. Lond. Math. Soc. 110(4), 841–882 (2015)
20. Kumar, S.: Kac-Moody Groups, Their Flag Varieties and Representation Theory, volume 204 of Progress in Mathematics. Birkhäuser Boston, Inc, Boston (2002)
21. Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials Cambridge Tracts in Mathematics, vol. 157. Cambridge University Press, Cambridge (2003)
22. Matsumura, H.: Commutative Algebra. Benjamin/Cummings (1980)
23. Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)
24. Sahi, S.: Some Properties of Koornwinder Polynomials. q-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math. 254. AMS, Providence (2000)
25. Sanderson, Y.B.: On the connection between Macdonald polynomials and Demazure characters. J. Algebraic Combin. 11, 269 (2000). https://doi.org/10.1023/A:1008786420650
26. Suslin, A.A.: Projective modules over polynomial rings are free. Dokl. Akad. Nauk SSSR 229(5), 1063–1066 (1976)
27. Xia, L.-M., Hu, N., Bai, X.: Vertex representations for twisted affine Lie algebra of type $A_{2l}^{(2)}$, arXiv:0811.0215 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.