FUNDAMENTAL THEOREMS FOR SEMI LOG CANONICAL PAIRS

OSAMU FUJINO

Abstract. We prove that every quasi-projective semi log canonical pair has a quasi-log structure with several good properties. It implies that various vanishing theorems, torsion-free theorem, and the cone and contraction theorem hold for semi log canonical pairs.

Contents

1. Introduction 1
2. Preliminaries 9
3. Supplements to the theory of quasi-log varieties 12
4. Proof of the main theorem 15
5. Proofs of the fundamental theorems 21
6. Appendix: Big \mathbb{R}-divisors 25
References 32

1. Introduction

In this paper, we give a natural quasi-log structure (cf. [A]) to an arbitrary quasi-projective semi log canonical pair. The notion of semi log canonical singularities was introduced in [KS]. By the recent developments of the minimal model program, we know that the appropriate singularities to permit on the varieties at the boundaries of moduli spaces are semi log canonical (see, for example, [Ko1] and [Kv]). Therefore, it is very important to establish some fundamental techniques to investigate semi log canonical pairs. We prove the following theorem.

Theorem 1.1. Let (X, Δ) be a quasi-projective semi log canonical pair. Then $[X, K_X + \Delta]$ has a quasi-log structure with only qlc singularities.
Our proof of Theorem 1.1 heavily depends on the recent developments of the theory of resolution of singularities for reducible varieties (see, for example, [Ko2, Section 9.4], [BM], [BP], and so on). Precisely speaking, we prove the following theorem.

Theorem 1.2 (Main theorem). Let \((X, \Delta)\) be a quasi-projective semi log canonical pair. Then we can construct a smooth quasi-projective variety \(M\) with \(\dim M = \dim X + 1\), a simple normal crossing divisor \(Z\) on \(M\), an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor \(B\) on \(M\), and a projective surjective morphism \(h : Z \to X\) with the following properties.

1. \(B\) and \(Z\) have no common irreducible components.
2. \(\text{Supp}(Z + B)\) is a simple normal crossing divisor on \(M\).
3. \(K_Z + \Delta_Z \sim_{\mathbb{R}} h^*(K_X + \Delta)\) such that \(\Delta_Z = B|_Z\).
4. \(h_*\mathcal{O}_Z(-\Delta_Z^{1/\gamma}) \cong \mathcal{O}_X\).
5. The set of slc strata of \((X, \Delta)\) gives the set of qlc centers of \([X, K_X + \Delta]\). This means that \(W\) is an slc stratum of \((X, \Delta)\) if and only if \(W\) is the \(h\)-image of some stratum of the simple normal crossing pair \((Z, \Delta_Z)\).

By the properties (1), (2), (3), (4), and (5), \([X, K_X + \Delta]\) has a quasi-log structure with only qlc singularities. Note that \(h_*\mathcal{O}_Z \cong \mathcal{O}_X\) by the condition (4).

By Theorem 1.2 we can prove the fundamental theorems, that is, various vanishing theorems, the base point free theorem, the rationality theorem, the cone theorem, and so on, for semi log canonical pairs. Note that all the fundamental theorems for log canonical pairs can be proved without using the theory of quasi-log varieties (see [F8] and [F9]). We also note that all the results in this section except Theorem 1.7 are new even for semi log canonical surfaces.

Example 1.3. Let \(X\) be an equi-dimensional projective variety having only normal crossing points and pinch points. Then \(X\) is a semi log canonical variety. By Theorem 1.2, \(X\) has a natural quasi-log structure. Therefore, all the theorems in this section hold for \(X\).

Note that \(h\) is not necessarily birational in Theorem 1.2. It is a key point of the theory of quasi-log varieties.

Remark 1.4 (Double covering trick due to Kollár). If the irreducible components of \(X\) have no self-intersection in codimension one, then we can make \(h : Z \to X\) birational in Theorem 1.2. For some applications, by using Kollár’s double covering trick (cf. Lemma 5.1), we can reduce the problem to the case when the irreducible components of \(X\) have no self-intersection in codimension one. This reduction sometimes makes the problem much easier not only technically but also psychologically.
Let us quickly recall a very important example. We recommend the reader to see [F4, Section 3.6] for related topics.

1.5 (Whitney umbrella). Let us consider the Whitney umbrella $$X = (x^2 - y^2z = 0) \subset \mathbb{A}^3$$. In this case, we take a blow-up $$Bl_C \mathbb{A}^3 \to \mathbb{A}^3$$ of $$\mathbb{A}^3$$ along $$C = (x = y = 0) \subset \mathbb{A}^3$$ and put $$M = Bl_C \mathbb{A}^3$$ and $$Z = X' + E$$, where $$X'$$ is the strict transform of $$X$$ on $$M$$ and $$E$$ is the exceptional divisor of the blow-up. Then the projective surjective morphism $$h : Z \to X$$ gives a quasi-log structure to the pair $$(X, 0)$$. Since $$Z$$ is a quasi-projective simple normal crossing variety, we can easily use the theory of mixed Hodge structures and obtain various vanishing theorems for $$X$$. It is a key point of the theory of quasi-log varieties. Note that $$K_Z = h^* K_X$$ and $$h_* O_Z \simeq O_X$$. Although $$g = h|_{X'} : X' \to X$$ is a resolution of singularities, it does not have good properties. It is because $$X$$ is not normal and $$O_X \subsetneq g_* O_{X'}$$.

By Theorem 1.2, we can prove the following vanishing theorem (see [KMM, Theorem 1-2-5]). It is a generalization of the Kawamata–Viehweg vanishing theorem.

Theorem 1.6 (Vanishing theorem I). Let $$(X, \Delta)$$ be a semi log canonical pair and let $$\pi : X \to S$$ be a projective morphism onto an algebraic variety $$S$$. Let $$D$$ be a Weil divisor on $$X$$ whose support does not contain any irreducible components of the conductor of $$X$$ and which is $$\mathbb{Q}$$-Cartier, or a Cartier divisor on $$X$$. Assume that $$D - (K_X + \Delta)$$ is $$\pi$$-ample. Then $$R^i \pi_* O_X(D) = 0$$ for every $$i > 0$$.

As a special case of Theorem 1.6, we have the Kodaira vanishing theorem for semi log canonical varieties (cf. [KSS, Corollary 6.6]).

Theorem 1.7 (Kodaira vanishing theorem). Let $$X$$ be a projective semi log canonical variety and let $$L$$ be an ample line bundle on $$X$$. Then $$H^i(X, \omega_X \otimes L) = 0$$ for every $$i > 0$$.

Note that the dual form of the Kodaira vanishing theorem, that is, $$H^i(X, \mathcal{L}^{-1}) = 0$$ for $$i < \dim X$$, is treated by Kovács–Schwede–Smith. For the details, see [KSS, Corollary 6.6]. In general, $$X$$ is not Cohen–Macaulay. Therefore, the dual form does not follow from Theorem 1.7 because the Serre duality does not always hold.

Theorem 1.6 is a special case of the following theorem: Theorem 1.8. It is a generalization of the vanishing theorem of Reid–Fukuda type. The proof of Theorem 1.8 is much harder than that of Theorem 1.6.

Theorem 1.8 (Vanishing theorem II). Let $$(X, \Delta)$$ be a semi log canonical pair and let $$\pi : X \to S$$ be a projective morphism onto an algebraic
variety S. Let D be a Weil divisor on X whose support does not contain any irreducible components of the conductor of X and which is \mathbb{Q}-Cartier, or a Cartier divisor on X. Assume that $D - (K_X + \Delta)$ is nef and log big over S with respect to (X, Δ). Then $R^i \pi_* O_X(D) = 0$ for every $i > 0$.

For applications to the study of linear systems on semi log canonical pairs, Theorem 1.9, which is a generalization of the Kawamata–Viehweg–Nadel vanishing theorem, is more convenient (cf. [F9, Theorem 8.1]). See also Remark 5.2 below.

Theorem 1.9 (Vanishing theorem III). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a projective morphism onto an algebraic variety S. Let D be a Cartier divisor on X such that $D - (K_X + \Delta)$ is nef and log big over S with respect to (X, Δ). Assume that X' is a union of some slc strata of (X, Δ) with the reduced structure. Let $\mathcal{I}_{X'}$ be the defining ideal sheaf of X' on X. Then $R^i \pi_* (\mathcal{I}_{X'} \otimes O_X(D)) = 0$ for every $i > 0$.

Note that our proof of the vanishing theorems uses the theory of the mixed Hodge structures on compact support cohomology groups (cf. [F6, Chapter 2]). Therefore, Theorems 1.6, 1.7, 1.8, and 1.9 are Hodge theoretic (see also [F5], [F9], and [F11]).

We can also prove a generalization of Kollár’s torsion-free theorem for semi log canonical pairs (cf. [KMM] Theorem 1-2-7, [F2] Theorem 2.2], [F9] Theorem 6.3 (iii]], and so on).

Theorem 1.10 (Torsion-free theorem). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a projective morphism onto an algebraic variety S. Let D be a Weil divisor on X whose support does not contain any irreducible components of the conductor of X and which is \mathbb{Q}-Cartier, or a Cartier divisor on X. Assume that there exists an \mathbb{R}-Cartier \mathbb{R}-divisor H on X such that $D - (K_X + \Delta) \sim_{\mathbb{R}, \pi} H$ and that H is nef and log abundant over S with respect to (X, Δ). Then every associated prime of $R^i \pi_* O_X(D)$ is the generic point of the π-image of some slc stratum of (X, Δ) for every i.

By the following adjunction formula, which is a direct consequence of Theorem 1.2, we can apply the theory of quasi-log varieties to any union of some slc strata of a quasi-projective semi log canonical pair (X, Δ).

Theorem 1.11 (Adjunction). Let (X, Δ) be a quasi-projective semi log canonical pair and let X' be a union of some slc strata of (X, Δ) with the reduced structure. Then $[X', (K_X + \Delta)|_{X'}]$ has a natural quasi-log
structure with only qlc singularities induced by the quasi-log structure on $[X, K_X + \Delta]$ constructed in Theorem 1.2. Therefore, W is a qlc center of $[X', (K_X + \Delta)|_{X'}]$ if and only if W is an slc stratum of (X, Δ) contained in X'. In particular, X' is semi-normal.

Theorem 1.12, which is a vanishing theorem for a union of some slc strata, is very powerful for various applications (cf. [F9, Theorem 11.1]). See Remark 1.15 below.

Theorem 1.12 (Vanishing theorem IV). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a projective morphism onto an algebraic variety S. Assume that X' is a union of some slc strata of (X, Δ) with the reduced structure. Let L be a Cartier divisor on X' such that $L - (K_X + \Delta)|_{X'}$ is nef over S. Assume that $(L - (K_X + \Delta)|_{X'})|_W$ is big over S where W is any slc stratum of (X, Δ) contained in X'. Then $R^i(\pi|_{X'})_*\mathcal{O}_{X'}(L) = 0$ for every $i > 0$.

Theorem 1.12 directly follows from Theorem 1.11 by the theory of quasi-log varieties.

By Theorem 1.2, we can use the theory of quasi-log varieties to investigate semi log canonical pairs. The base point free theorem holds for semi log canonical pairs (cf. [KMM, Theorem 3-1-1]).

Theorem 1.13 (Base point free theorem). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a projective morphism onto an algebraic variety S. Let D be a π-nef Cartier divisor on X. Assume that $aD - (K_X + \Delta)$ is π-ample for some real number $a > 0$. Then $\mathcal{O}_X(mD)$ is π-generated for every $m \gg 0$, that is, there exists a positive integer m_0 such that $\mathcal{O}_X(mD)$ is π-generated for every $m \geq m_0$.

We can prove the base point free theorem of Reid–Fukuda type for semi log canonical pairs. It is a slight generalization of Theorem 1.13. Note that Theorem 1.13 is sufficient for the contraction theorem in Theorem 1.17.

Theorem 1.14 (Base point free theorem II). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a projective morphism onto an algebraic variety S. Let D be a π-nef Cartier divisor on X. Assume that $aD - (K_X + \Delta)$ is nef and log big over S with respect to (X, Δ) for some real number $a > 0$. Then $\mathcal{O}_X(mD)$ is π-generated for every $m \gg 0$, that is, there exists a positive integer m_0 such that $\mathcal{O}_X(mD)$ is π-generated for every $m \geq m_0$.

From some technical viewpoints, we give an important remark.
Remark 1.15. We can prove Theorem 1.13 without using the theory of quasi-log varieties. The proofs of the non-vanishing theorem and the base point free theorem in [F9] can be adapted to our situation in Theorem 1.13 once we adopt Theorem 1.12. For the details, see [F9, Sections 12 and 13]. On the other hand, the theory of quasi-log varieties seems to be indispensable for the proof of Theorem 1.14. Therefore, the proof of Theorem 1.14 is much harder than that of Theorem 1.13.

It is known that the rationality theorem holds for quasi-log varieties. Therefore, as a consequence of Theorem 1.12, we obtain the rationality theorem for semi log canonical pairs (cf. [KMM, Theorem 4-1-1]). Note that Theorem 1.16 is just an application of Theorem 1.9 and that the proof of Theorem 1.16 does not need the theory of quasi-log varieties (see [F9, Theorem 8.1 and the proof of Theorem 15.1]).

Theorem 1.16 (Rationality theorem). Let \((X, \Delta)\) be a semi log canonical pair and let \(\pi : X \rightarrow S\) be a projective morphism onto an algebraic variety \(S\). Let \(H\) be a \(\pi\)-ample Cartier divisor on \(X\). Assume that \(K_X + \Delta\) is not \(\pi\)-nef and that there is a positive integer \(a\) such that \(a(K_X + \Delta)\) is \(\mathbb{R}\)-linearly equivalent to a Cartier divisor. Let \(r\) be a positive real number such that \(H + r(K_X + \Delta)\) is \(\pi\)-nef but not \(\pi\)-ample. Then \(r\) is a rational number, and in reduced form, it has denominator at most \(a(\dim X + 1)\).

By using Theorem 1.13 and Theorem 1.16, we obtain the cone and contraction theorem for semi log canonical pairs.

Theorem 1.17 (Cone and contraction theorem). Let \((X, \Delta)\) be a semi log canonical pair and let \(\pi : X \rightarrow S\) be a projective morphism onto an algebraic variety \(S\). Then we have the following properties.

1. There are (countably many) rational curves \(C_j \subset X\) such that \(0 < -(K_X + \Delta) \cdot C_j \leq 2 \dim X\), \(\pi(C_j)\) is a point, and
 \[
 \overline{NE}(X/S) = \overline{NE}(X/S)_{(K_X+\Delta)\geq 0} + \sum \mathbb{R}_{\geq 0}[C_j].
 \]

2. For any \(\varepsilon > 0\) and any \(\pi\)-ample \(\mathbb{R}\)-divisor \(H\),
 \[
 \overline{NE}(X/S) = \overline{NE}(X/S)_{(K_X+\Delta+\varepsilon H)\geq 0} + \sum \text{finite} \mathbb{R}_{\geq 0}[C_j].
 \]

3. Let \(F \subset \overline{NE}(X/S)\) be a \((K_X + \Delta)\)-negative extremal face. Then there is a unique morphism \(\varphi_F : X \rightarrow Z\) over \(S\) such that \((\varphi_F)_* O_X \simeq O_Z\), \(Z\) is projective over \(S\), and that an irreducible curve \(C \subset X\) where \(\pi(C)\) is a point is mapped to a point by \(\varphi_F\) if and only if \([C] \in F\). The map \(\varphi_F\) is called the contraction associated to \(F\).
(4) Let \(F \) and \(\varphi_F \) be as in (3). Let \(L \) be a line bundle on \(X \) such that \(L \cdot C = 0 \) for every curve \([C] \in F\). Then there is a line bundle \(M \) on \(Z \) such that \(L \simeq \varphi_F^*M \).

Although we have established the cone and contraction theorem for semi log canonical pairs, a simple example (cf. Example 5.4) shows that we can not run the minimal model program even for semi log canonical surfaces.

We can prove many other powerful results by translating the results for quasi-log varieties. For the details of the theory of quasi-log varieties, see [F6] and [F7]. We recommend the reader to see [F9] for various vanishing theorems, the non-vanishing theorem, the base point free theorem, the cone theorem, and so on, for pairs \((X, \Delta)\), where \(X \) is a normal variety and \(\Delta \) is an effective \(R \)-divisor on \(X \) such that \(K_X + \Delta \) is \(R \)-Cartier. The arguments in [F9] are independent of the theory of quasi-log varieties and only use normal varieties for the above fundamental theorems. For the abundance conjecture for semi log canonical pairs, see [F1], [G], [FG], and [HX]. These papers are independent of the techniques discussed in this paper.

Finally, in this paper, we are mainly interested in non-normal algebraic varieties. So we have to be careful about some basic definitions.

1.18 (Big \(R \)-Cartier \(R \)-divisors). Let \(X \) be a non-normal complete irreducible algebraic variety and let \(D \) be a \(\mathbb{Q} \)-Cartier \(\mathbb{Q} \)-divisor on \(X \) such that \(m_0D \) is Cartier for some positive integer \(m_0 \). We can consider the asymptotic behavior of \(\dim H^0(X, \mathcal{O}_X(m_0D)) \) for \(m \to \infty \) since \(\mathcal{O}_X(m_0D) \) is a well-defined line bundle on \(X \) associated to \(m_0D \). Therefore, there are no difficulties to define big \(\mathbb{Q} \)-Cartier \(\mathbb{Q} \)-divisors on \(X \). Let \(B \) be an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor, that is, a finite \(\mathbb{R} \)-linear combination of Cartier divisors, on \(X \). In this case, there are some difficulties to consider the asymptotic behavior of \(\dim H^0(X, \mathcal{O}_X(mB)) \) for \(m \to \infty \). It is because the meaning of \(\mathcal{O}_X(mB) \) is not clear. It may happens that the support of \(mB \) is contained in the singular locus of \(X \). Therefore, we have to discuss the definition and the basic properties of big \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisors on non-normal complete irreducible varieties.

We summarize the contents of this paper. In Section 2 we collect some basic definitions and results. Section 3 contains supplementary results for the theory of quasi-log varieties. Section 4 is devoted to the proof of the main theorem: Theorem 1.2. The proof heavily depends on the recent developments of the theory of resolution of singularities for reducible varieties (cf. [Ko2, Section 9.4], [BM, BP]). In Section 5, we treat the fundamental theorems in Section 1 as applications of Theorem 1.2. In Section 6, which is an appendix, we discuss the notion
of big \mathbb{R}-divisors on non-normal algebraic varieties because there are no good references on this topic.

We fix the basic notation.

Notation. Let B_1 and B_2 be two \mathbb{R}-Cartier \mathbb{R}-divisors on a variety X. Then B_1 is linearly (resp. \mathbb{Q}-linearly, or \mathbb{R}-linearly) equivalent to B_2, denoted by $B_1 \sim B_2$ (resp. $B_1 \sim_\mathbb{Q} B_2$, or $B_1 \sim_\mathbb{R} B_2$) if

$$B_1 = B_2 + \sum_{i=1}^{k} r_i(f_i)$$

such that $f_i \in \Gamma(X, \mathcal{K}_X)$ and $r_i \in \mathbb{Z}$ (resp. $r_i \in \mathbb{Q}$, or $r_i \in \mathbb{R}$) for every i. Here, \mathcal{K}_X is the sheaf of total quotient rings of \mathcal{O}_X and \mathcal{K}^*_X is the sheaf of invertible elements in the sheaf of rings \mathcal{K}_X. We note that (f_i) is a principal Cartier divisor associated to f_i, that is, the image of f_i by $\Gamma(X, \mathcal{K}^*_X) \to \Gamma(X, \mathcal{K}_X/\mathcal{O}^*_X)$, where \mathcal{O}^*_X is the sheaf of invertible elements in \mathcal{O}_X.

Let $f : X \to Y$ be a morphism. If there is an \mathbb{R}-Cartier \mathbb{R}-divisor B on Y such that $B_1 \sim_\mathbb{R} f^* B$, then B_1 is said to be relatively \mathbb{R}-linearly equivalent to B_2. It is denoted by $B_1 \sim_{\mathbb{R}, f} B_2$.

When X is complete, B_1 is numerically equivalent to B_2, denoted by $B_1 \equiv B_2$, if $B_1 \cdot C = B_2 \cdot C$ for every curve C on X.

Let D be a \mathbb{Q}-divisor (resp. \mathbb{R}-divisor) on an equi-dimensional variety X, that is, D is a finite formal \mathbb{Q}-linear (resp. \mathbb{R}-linear) combination

$$D = \sum_i d_i D_i$$

of irreducible reduced subschemes D_i of codimension one. We define the round-up $\lceil D \rceil = \sum_i \lceil d_i \rceil D_i$ (resp. round-down $\lfloor D \rfloor = \sum_i \lfloor d_i \rfloor D_i$), where every real number x, $\lceil x \rceil$ (resp. $\lfloor x \rfloor$) is the integer defined by $x \leq \lceil x \rceil < x + 1$ (resp. $x - 1 < \lfloor x \rfloor \leq x$). The fractional part $\{D\}$ of D denotes $D - \lfloor D \rfloor$. We put

$$D^{< 1} = \sum_{d_i < 1} d_i D_i, \quad D^{\geq 1} = \sum_{d_i \geq 1} D_i.$$

We call D a boundary (resp. subboundary) \mathbb{R}-divisor if $0 \leq d_i \leq 1$ (resp. $d_i \leq 1$) for every i.

Let X be a normal variety and let Δ be an \mathbb{R}-divisor on X such that $K_X + \Delta$ is \mathbb{R}-Cartier. Let $f : X \to Y$ be a resolution such that $\text{Exc}(f) \cup f_*^{-1} \Delta$, where $\text{Exc}(f)$ is the exceptional locus of f and $f_*^{-1} \Delta$ is
the strict transform of Δ on Y, has a simple normal crossing support. We can write
\[K_Y = f^*(K_X + \Delta) + \sum_i a_i E_i. \]
We say that (X, Δ) is sub log canonical (sub lc, for short) if $a_i \geq -1$ for every i. We usually write $a_i = a(E_i, X, \Delta)$ and call it the discrepancy coefficient of E with respect to (X, Δ). If (X, Δ) is sub log canonical and Δ is effective, then (X, Δ) is called log canonical (lc, for short).

If (X, Δ) is sub log canonical and there exist a resolution $f : Y \to X$ and a divisor E on Y such that $a(E, X, \Delta) = -1$, then $f(E)$ is called a log canonical center (lc center, for short) with respect to (X, Δ).

Let X be a smooth projective variety and let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then $\kappa(X, D)$ denotes Iitaka’s D-dimension of D (cf. [N, Chapter II. 3.2. Definition]). If D is nef, then $\nu(X, D)$ denotes the numerical D-dimension of D (cf. [N, Chapter V. §2.]).

Acknowledgments. The author was partially supported by the Grant-in-Aid for Young Scientists (A) #20684001 from JSPS. He would like to thank Professor Noboru Nakayama for discussions on the topics in Section 6. He would like to thank Professor János Kollár for giving him a preliminary version of his book [Ko2].

We will work over \mathbb{C}, the complex number field, throughout this paper. Note that, by the Lefschetz principle, all the results hold over any algebraically closed filed k of characteristic zero.

2. Preliminaries

In this section, we collect some basic definitions and results. First, let us recall the definition of conductors.

Definition 2.1 (Conductor). Let X be an equi-dimensional variety which satisfies Serre’s S_2 condition and is normal crossing in codimension one and let $\nu : X^\nu \to X$ be the normalization. Then the conductor ideal of X is defined by
\[\text{cond}_X := \mathcal{H}om_{\mathcal{O}_X}(\nu_* \mathcal{O}_{X^\nu}, \mathcal{O}_X) \subset \mathcal{O}_X. \]
The conductor \mathcal{C}_X of X is the subscheme defined by cond$_X$. Since X satisfies Serre’s S_2 condition and X is normal crossing in codimension one, \mathcal{C}_X is a reduced closed subscheme of pure codimension one in X.

Definition 2.2 (Double normal crossing points and pinch points). An n-dimensional singularity $(x \in X)$ is called a double normal crossing point if it is analytically (or formally) isomorphic to
\[(0 \in (x_0 x_1 = 0)) \subset (0 \in \mathbb{C}^{n+1}). \]
It is called a pinch point if it is analytically (or formally) isomorphic to

\[(0 \in (x_0^2 = x_1x_2^2)) \subset (0 \in \mathbb{C}^{n+1}).\]

We recall the definition of semi log canonical pairs.

Definition 2.3 (Semi log canonical pairs). Let \(X\) be an equi-dimensional algebraic variety which satisfies Serre’s \(S_2\) condition and is normal crossing in codimension one. Let \(\Delta\) be an effective \(\mathbb{R}\)-divisor whose support does not contain any irreducible components of the conductor of \(X\). The pair \((X, \Delta)\) is called a semi log canonical pair (an slc pair, for short) if

1. \(K_X + \Delta\) is \(\mathbb{R}\)-Cartier, and
2. \((X^\nu, \Theta)\) is log canonical, where \(\nu : X^\nu \to X\) is the normalization and \(K_{X^\nu} + \Theta = \nu^*(K_X + \Delta)\).

We introduce the notion of semi log canonical centers. It is a direct generalization of the notion of log canonical centers for log canonical pairs.

Definition 2.4 (Slc center). Let \((X, \Delta)\) be a semi log canonical pair and let \(\nu : X^\nu \to X\) be the normalization. We put

\[K_{X^\nu} + \Theta = \nu^*(K_X + \Delta).\]

A closed subvariety \(W\) of \(X\) is called a semi log canonical center (an slc center, for short) with respect to \((X, \Delta)\) if there exist a resolution of singularities \(f : Y \to X^\nu\) and a prime divisor \(E\) on \(Y\) such that the discrepancy coefficient \(a(E, X^\nu, \Theta) = -1\) and \(\nu \circ f(E) = W\).

For our purposes, it is very convenient to introduce the notion of slc strata for semi log canonical pairs.

Definition 2.5 (Slc stratum). Let \((X, \Delta)\) be a semi log canonical pair. A subvariety \(W\) of \(X\) is called an slc stratum of the pair \((X, \Delta)\) if \(W\) is a semi log canonical center with respect to \((X, \Delta)\) or \(W\) is an irreducible component of \(X\).

For the basic properties of semi log canonical pairs, see [Ko2, Section 5.2].

In this paper, we mainly discuss non-normal algebraic varieties and divisors on them. We have to be careful when we use Weil divisors on non-normal varieties.

2.6 (Divisorial sheaves). Let \(D\) be a Weil divisor on a semi log canonical pair \((X, \Delta)\) whose support does not contain any irreducible components of the conductor of \(X\). Then the reflexive sheaf \(\mathcal{O}_X(D)\) is well-defined. In this paper, we do not discuss Weil divisors whose supports contain
some irreducible components of the conductor of X. Note that if D is a Cartier divisor on X then $\mathcal{O}_X(D)$ is a well-defined invertible sheaf on X without any assumptions on the support of D.

For the details, we recommend the reader to see [Ko2, 5.6] and [FA, Chapter 16] by Alesio Corti. The remarks in [2.6] are sufficient for our purposes in this paper. So we do not pursue the definition of $\mathcal{O}_X(D)$ any more.

Next, let us recall the definition of nef and abundant \mathbb{R}-Cartier \mathbb{R}-divisors (cf. [KMM, Definition 6-1-1] and [N, Chapter V. 2.2. Definition]). For related topics, see Section 6.

Definition 2.7 (Nef and abundant \mathbb{R}-Cartier \mathbb{R}-divisors). Let X be an irreducible complete algebraic variety and let D be a nef \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then D is abundant if $\kappa(Y, f^*D) = \nu(Y, f^*D)$ where $f : Y \to X$ is a projective birational morphism from a smooth projective variety Y. It is independent of $f : Y \to X$ and well-defined.

Let $\pi : X \to S$ be a proper surjective morphism from an irreducible algebraic variety X onto an algebraic variety S and let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then D is nef and abundant over S (or, π-nef and π-abundant) if D is π-nef and $D|_{X_\eta}$ is nef and abundant on X_η where X_η is the generic fiber of π.

Remark 2.8. We consider $X = \mathbb{P}^1$ and take $P, Q \in X$ with $P \neq Q$. We put $D = \sqrt{2}P - \sqrt{2}Q$. Then it is obvious that $D \sim_{\mathbb{R}} 0$. However, $\kappa(X, D) = -\infty$ because $\deg mD < 0$ for every positive integer m. Note that \mathbb{R}-linear equivalence does not preserve Iitaka’s D-dimension.

Definition 2.9 (Nef and log big and nef and log abundant divisors on slc pairs). Let (X, Δ) be a semi log canonical pair and let $\pi : X \to S$ be a proper surjective morphism onto an algebraic variety S. Let D be a π-nef \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then D is nef and log big (resp. nef and log abundant) over S with respect to (X, Δ) if $D|_W$ is big (resp. abundant) over S for every slc stratum of (X, Δ).

Finally, let us recall the definition of simple normal crossing pairs. In [Ko2] and [BP], a simple normal crossing pair is called a semi-snc pair.

Definition 2.10 (Simple normal crossing pairs). We say that the pair (X, D) is simple normal crossing at a point $a \in X$ if X has a Zariski open neighborhood U of a that can be embedded in a smooth variety Y, where Y has regular local coordinates $(x_1, \ldots, x_p, y_1, \ldots, y_r)$ at $a = 0$ in which U is defined by a monomial equation

$$x_1 \cdots x_p = 0$$
and

\[D = \sum_{i=1}^{r} \alpha_i(y_i = 0)|_U, \quad \alpha_i \in \mathbb{R}. \]

We say that \((X, D)\) is a simple normal crossing pair if it is simple normal crossing at every point of \(X\). We say that a simple normal crossing pair \((X, D)\) is embedded if there exists a closed embedding \(\iota : X \to M\), where \(M\) is a smooth variety of \(\dim X + 1\). If \((X, 0)\) is a simple normal crossing pair, then \(X\) is called a simple normal crossing variety. If \(X\) is a simple normal crossing variety, then \(X\) has only Gorenstein singularities. Thus, it has an invertible dualizing sheaf \(\omega_X\). Therefore, we can define the canonical divisor \(K_X\) such that \(\omega_X \cong \mathcal{O}_X(K_X)\). It is a Cartier divisor on \(X\) and is well-defined up to linear equivalence.

Let \(X\) be a simple normal crossing variety and let \(X = \bigcup_{i \in I} X_i\) be the irreducible decomposition of \(X\). A stratum of \(X\) is an irreducible component of \(X_{i_1} \cap \cdots \cap X_{i_k}\) for some \(\{i_1, \cdots, i_k\} \subset I\).

Let \(X\) be a simple normal crossing variety and let \(D\) be a Cartier divisor on \(X\). If \((X, D)\) is a simple normal crossing pair and \(D\) is reduced, then \(D\) is called a simple normal crossing divisor on \(X\).

Let \((X, D)\) be a simple normal crossing pair such that \(D\) is a sub-boundary \(\mathbb{R}\)-divisor on \(X\). Let \(\nu : X^\nu \to X\) be the normalization. We define \(\Xi\) by the formula

\[K_{X^\nu} + \Xi = \nu^*(K_X + D). \]

Then a stratum of \((X, D)\) is an irreducible component of \(X\) or the \(\nu\)-image of a log canonical center of \((X^\nu, \Xi)\). We note that \((X^\nu, \Xi)\) is sub log canonical. When \(D = 0\), this definition is compatible with the above definition of the strata of \(X\). When \(D\) is a boundary \(\mathbb{R}\)-divisor, \(W\) is a stratum of \((X, D)\) if and only if \(W\) is an slc stratum of \((X, D)\).

Note that \((X, D)\) is semi log canonical if \(D\) is a boundary \(\mathbb{R}\)-divisor.

The reader can find various vanishing theorems and a generalization of the Fujita–Kawamata semi-positivity theorem for simple normal crossing pairs in [F6], [F11], and [FF]. All of them depend on the theory of the mixed Hodge structures on compact support cohomology groups.

3. SUPPLEMENTS TO THE THEORY OF QUASI-LOG VARIETIES

In this section, let us give supplementary arguments to the theory of quasi-log varieties (cf. [A]). For the details of the theory of quasi-log varieties, see [F6, Chapter 3] and [F7]. First, let us recall the definition of quasi-log varieties with only qlc singularities.
Definition 3.1 (Quasi-log varieties with only qlc singularities). A quasi-log variety with only qlc singularities is a (not necessarily equidimensional) variety X with an \mathbb{R}-Cartier \mathbb{R}-divisor ω, and a finite collection $\{C\}$ of reduced and irreducible subvarieties of X such that there is a proper morphism $f : (Y, \Delta_Y) \to X$ from a globally embedded simple normal crossing pair satisfying the following properties.

1. $f^* \omega \sim_{\mathbb{R}} K_Y + \Delta_Y$ such that Δ_Y is a subboundary \mathbb{R}-divisor.
2. There is an isomorphism $\mathcal{O}_X \simeq f_* \mathcal{O}_Y(\frac{1}{n} - \Delta_Y^{\leq 1})$.
3. The collection of subvarieties $\{C\}$ coincides with the image of the (Y, Δ_Y)-strata.

The subvarieties C are called the qlc centers of $[X, \omega]$, and $f : (Y, \Delta_Y) \to X$ is called a quasi-log resolution of $[X, \omega]$. We sometimes simply say that $[X, \omega]$ is a qlc pair, or the pair $[X, \omega]$ is qlc.

In Definition 3.1, we used the notion of globally embedded simple normal crossing pairs, which is much easier than the notion of embedded simple normal crossing pairs from some technical viewpoints. It is obvious that a globally embedded simple normal crossing pair is an embedded simple normal crossing pair.

Definition 3.2 (Globally embedded simple normal crossing pairs). Let Y be a simple normal crossing divisor on a smooth variety M and let B be an \mathbb{R}-divisor on M such that $\text{Supp}(B + Y)$ is a simple normal crossing divisor and that B and Y have no common irreducible components. We put $\Delta_Y = B|_Y$ and consider the pair (Y, Δ_Y). We call (Y, Δ_Y) a globally embedded simple normal crossing pair.

Let us recall the following very useful lemma. By this lemma, it is sufficient to treat globally embedded simple normal crossing pairs for the theory of qlc pairs.

Lemma 3.3 (cf. [F6, Proposition 3.57]). Let (Y, Δ_Y) be an embedded simple normal crossing pair such that Δ_Y is a subboundary \mathbb{R}-Cartier \mathbb{R}-divisor on Y. Let M be the ambient space of Y. Then we can construct a sequence of blow-ups

$$M_k \xrightarrow{\sigma_k} M_{k-1} \xrightarrow{\sigma_{k-1}} \cdots \xrightarrow{\sigma_2} M_1 \xrightarrow{\sigma_1} M_0 = M$$

with the following properties.

1. $\sigma_{i+1} : M_{i+1} \to M_i$ is the blow-up along a smooth irreducible component of $\text{Supp}\Delta_{Y_i}$ for every i.

We put $Y_0 = Y$ and $\Delta_{Y_0} = \Delta_Y$. We define Y_{i+1} as the strict transform of Y_i on M_{i+1} for every i. Note that Y_i is a simple normal crossing divisor on M_i for every i.

We define $\Delta_{Y_{i+1}}$ by

$$K_{Y_{i+1}} + \Delta_{Y_{i+1}} = \sigma_{i+1}^*(K_Y + \Delta_Y)$$

for every i.

There exists an \mathbb{R}-divisor B on M_k such that $\text{Supp}(B + Y_k)$ is a simple normal crossing divisor on M_k, B and Y_k have no common irreducible components, and $B|_{Y_k} = \Delta_{Y_k}$.

$\sigma_*\mathcal{O}_{Y_k}(\gamma - \Delta_{Y_k}^{<1}) \simeq \mathcal{O}_Y(\gamma - \Delta_Y^{<1})$ where $\sigma = \sigma_1 \circ \cdots \circ \sigma_k : M_k \to M$.

Proof. All we have to do is to check the property (5). The other properties are obvious by the construction of blow-ups. By

$$K_{Y_{i+1}} + \Delta_{Y_{i+1}} = \sigma_{i+1}^*(K_Y + \Delta_Y),$$

we have

$$K_{Y_{i+1}} = \sigma_{i+1}^*(K_Y + \{\Delta_Y\} + \Delta_{Y_i}^{=1})$$

$$+ \sigma_{i+1}^*\Delta_{Y_i}^{<1} - \lambda \Delta_{Y_{i+1}}^{<1} + \Delta_{Y_{i+1}}^{=1} - \{\Delta_{Y_{i+1}}\}.$$

We can easily check that $\sigma_{i+1}^*\Delta_{Y_i}^{<1} - \lambda \Delta_{Y_{i+1}}^{<1}$ is an effective σ_{i+1}-exceptional Cartier divisor on Y_{i+1}. It is because $a(\nu, Y, \{\Delta_Y\} + \Delta_{Y_i}^{=1}) = -1$ for a prime divisor ν over Y_i implies $a(\nu, Y, \Delta_Y) = -1$. Thus, we can write

$$\sigma_{i+1}^*\gamma - \Delta_{Y_i}^{<1} + E = \gamma - \Delta_{Y_{i+1}}^{<1}$$

where E is an effective σ_{i+1}-exceptional Cartier divisor on Y_{i+1}. This implies that $\sigma_{i+1}^*\mathcal{O}_{Y_{i+1}}(\gamma - \Delta_{Y_{i+1}}^{<1}) \simeq \mathcal{O}_Y(\gamma - \Delta_Y^{<1})$ for every i. Thus, $\sigma_*\mathcal{O}_{Y_k}(\gamma - \Delta_{Y_k}^{<1}) \simeq \mathcal{O}_Y(\gamma - \Delta_Y^{<1})$.

Although we do not need the following theorem explicitly, it is very important and useful. It helps the reader to understand quasi-log structures.

Theorem 3.4 (cf. [F1, Proposition 4.8], [F6, Theorem 3.45]). Let $[X, \omega]$ be a qlc pair. Then we have the following properties.

(i) The intersection of two qlc centers is a union of qlc centers.

(ii) For any point $P \in X$, the set of all qlc centers passing through P has a unique element W. Moreover, W is normal at P.

By Theorem 1.2 (5) and Theorem 3.4, we have an obvious corollary.
Corollary 3.5. Let (X, Δ) be a quasi-projective semi log canonical pair and let W be a minimal slc stratum of the pair (X, Δ). Then W is normal.

The following result is a key lemma for the proof of Theorem 3.4 (ii). We contain it for the reader’s convenience.

Lemma 3.6. Let $f : X \to Y$ be a proper surjective morphism from a simple normal crossing variety X to an irreducible variety Y. Assume that every stratum of X is dominant onto Y and that $f_* \mathcal{O}_X \cong \mathcal{O}_Y$.

Then Y is normal.

Proof. Let $\nu : Y' \to Y$ be the normalization. By applying [BM, Theorem 1.5] to the graph of the rational map $\nu^{-1} \circ f : X \dashrightarrow Y'$, we obtain the following commutative diagram:

\[
\begin{array}{ccc}
Z & \overset{\alpha}{\longrightarrow} & X \\
\beta \downarrow & & \downarrow f \\
Y' & \overset{\nu}{\longrightarrow} & Y
\end{array}
\]

such that

(i) Z is a simple normal crossing variety, and

(ii) there is a Zariski open set U (resp. V) of Z (resp. X) such that U (resp. V) contains the generic point of any stratum of Z (resp. X) and that $\alpha|_U : U \to V$ is an isomorphism.

Then it is easy to see that $\alpha_* \mathcal{O}_Z \cong \mathcal{O}_X$. Therefore,

$\mathcal{O}_Y \cong f_* \mathcal{O}_X \cong f_* \alpha_* \mathcal{O}_Z \cong \nu_* \beta_* \mathcal{O}_Z \supset \nu_* \mathcal{O}_{Y'}$.

This implies that $\mathcal{O}_Y \cong \nu_* \mathcal{O}_{Y'}$. So, we obtain that Y is normal. \qed

We recommend the reader to see [F7] for the basic properties of qlc pairs. Note that adjunction and vanishing theorem (cf. [F7, Theorem 3.6]) for qlc pairs is one of the most important properties of qlc pairs.

4. Proof of the Main Theorem

Let us start the proof of the main theorem: Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into several steps. We repeatedly use [BM], [BP], and [Ko2, 9.4. Semi-log-resolution]. We prove Theorem 1.2 simultaneously with Remark 1.4.

Step 1. Let X^{ncp} denote the open subset of X consisting of smooth points, double normal crossing points and pinch points. Then, by [BM, Theorem 1.17], there exists a morphism $f_1 : X_1 \to X$ which is a finite composite of admissible blow-ups, such that
(i) $X_1 = X_{1}^{ncp}$,
(ii) f_1 is an isomorphism over X_{ncp}, and
(iii) $\text{Sing} X_1$ maps birationally onto the closure of $\text{Sing} X_{ncp}$.

Since X satisfies Serre’s S_2 condition and $\text{codim}_X(X \setminus X_{ncp}) \geq 2$, we can easily check that $f_1_\ast \mathcal{O}_{X_1} \simeq \mathcal{O}_X$.

Remark 4.1 (cf. [Ko2, Corollary 9.54]). In Step 1, we assume that the irreducible components of X have no self-intersection in codimension one. Let X_{snc2} be the open subset of X which has only smooth points and simple normal crossing points of multiplicity ≤ 2. Then there is a projective birational morphism $f_1 : X_1 \to X$ such that
(i) $X_1 = X_{1}^{snc2}$,
(ii) f_1 is an isomorphism over X_{snc2}, and
(iii) $\text{Sing} X_1$ maps birationally onto the closure of $\text{Sing} X_{snc2}$.

Step 2 (cf. [Ko2, Proposition 9.60]). By the construction in Step 1, X_1 is quasi-projective. Therefore, we can embed X_1 into \mathbb{P}^N. We pick a finite set $W \subset X_1$ such that each irreducible component of $\text{Sing} X_1$ contains a point of W. We take a sufficiently large positive integer d such that the scheme theoretic base locus of $|\mathcal{O}_{\mathbb{P}^N}(d) \otimes I_{\overline{X}_1}|$ is X_1 near every point of W, where \overline{X}_1 is the closure of X_1 in \mathbb{P}^N and $I_{\overline{X}_1}$ is the defining ideal sheaf of \overline{X}_1 in \mathbb{P}^N. By taking a complete intersection of $(N - \dim X_1 - 1)$ general members of $|\mathcal{O}_{\mathbb{P}^N}(d) \otimes I_{\overline{X}_1}|$, we obtain $Y \supset X_1$ such that Y is smooth at every point of W. Note that we used the fact that X_1 has only hypersurface singularities near W. By replacing Y with $Y \setminus (\overline{X}_1 \setminus X_1)$, we may assume that X_1 is closed in Y.

Step 3. Let $g : Y_2 \to Y$ be a resolution, which is a finite composite of admissible blow-ups. Let X_2 be the strict transform of X_1 on Y_2. Note that $f_2 = g|_{X_2} : X_2 \to X_1$ is an isomorphism over the generic point of any irreducible component of $\text{Sing} X_1$ because Y is smooth at every point of W.

Step 4. Apply [BM, Theorem 1.17] to $X_2 \subset Y_2$ (see also Proof of Theorem 1.17 in [BM]). We obtain a projective birational morphism $g_3 : Y_3 \to Y_2$, which is a finite composite of admissible blow-ups, from a smooth variety Y_3 with the following properties (i), (ii), and (iii). Note that X_3 is the strict transform of X_2 on Y_3 and $f_3 = g_3|_{Y_3} : X_3 \to X_2$.
(i) $X_3 = X_{3}^{ncp}$,
(ii) f_3 is an isomorphism over X_{3}^{ncp}, and
(iii) $\text{Sing} X_3$ maps birationally onto the closure of $\text{Sing} X_{3}^{ncp}$.

Let E be an irreducible component of $\text{Sing} X_3$. If $E \to (f_2 \circ f_3)(E)$ is not birational, then we take a blow-up of Y_3 along E and replace X_3
with its strict transform. After finitely many blow-ups, we may assume that X_3 satisfies (i), (ii), and
(iv) $\text{Sing} X_3$ maps birationally onto $\text{Sing} X_1$ by $f_2 \circ f_3$.

From now on, we do not require the property (iii) above. By the above constructions, we can easily check that $(f_2 \circ f_3)_* \mathcal{O}_{X_3} \simeq \mathcal{O}_{X_1}$ since X_1 satisfies Serre’s S_2 condition.

Remark 4.2. When X_1 is a simple normal crossing variety, we apply Szabó’s resolution lemma to the pair (Y_2, X_2) in Step 4. Then we have the following properties.

(i) $X_3 = X_3^{\text{snc}}$, and
(ii) f_3 is an isomorphism over X_2^{snc}.

By taking more blow-ups if necessary, we may further assume
(iv) $\text{Sing} X_3$ maps birationally onto $\text{Sing} X_1$ by $f_2 \circ f_3$.

Step 5. We put

$$K_{X_1} + \Delta_1 = f_1^*(K_X + \Delta)$$

and

$$K_{X_3} + \Delta_3 = (f_1 \circ f_2 \circ f_3)^*(K_X + \Delta).$$

Note that X_1 and X_3 have only Gorenstein singularities. Therefore, Δ_1 and Δ_3 are \mathbb{R}-Cartier \mathbb{R}-divisors. We also note that the support of Δ_1 (resp. Δ_3) does not contain any irreducible components of the conductor of X_1 (resp. X_3). Let $\nu_3 : X_3^\nu \to X_3$ be the normalization. We put

$$K_{X_3^\nu} + \Theta_3 = \nu_3^*(K_{X_3} + \Delta_3).$$

Then the pair (X_3^ν, Θ_3) is sub log canonical because (X, Δ) is semi log canonical.

Step 6. Let X_3^{snc} denote the simple normal crossing locus of X_3. Let C be an irreducible component of $X_3 \setminus X_3^{\text{snc}}$. Then C is smooth and $\dim C = \dim X_3 - 1$. Let $\alpha : W \to Y_3$ be the blow-up along C and let V be $\alpha^{-1}(X_3)$ with the reduced structure. Then we can directly check that $\beta_* \mathcal{O}_V \simeq \mathcal{O}_{X_3}$ where $\beta = \alpha|_V$. We put

$$K_V + \Delta_V = \beta^*(K_{X_3} + \Delta_3).$$

Note that $K_V = \beta^*K_{X_3}$ and $\Delta_V = \beta^*\Delta_3$. Let $\nu : V^\nu \to V$ be the normalization of V. Then (V^ν, Θ_{V^ν}) is sub log canonical, where $K_{V^\nu} + \Theta_{V^\nu} = \nu^*(K_V + \Delta_V)$. When C is a double normal crossing points locus, it is almost obvious. If C is a pinch points locus, then it follows from Lemma 4.4 below. By repeating this process finitely many times, we obtain a projective birational morphism $g_4 : Y_4 \to Y_3$ from a smooth
variety Y_4 and a simple normal crossing divisor X_4 on Y_4 with the following properties.

(i) $f_4^* \mathcal{O}_{X_4} \simeq \mathcal{O}_{X_3}$ where $f_4 = g_4|_{X_4}$.
(ii) We put

$$K_{X_4} + \Delta_4 = f_4^*(K_{X_3} + \Delta_3).$$

Then (X_4', Θ_4) is sub log canonical where $\nu_4 : X_4' \to X_4$ is the normalization and $K_{X_4'} + \Theta_4 = \nu_4^*(K_{X_4} + \Delta_4)$.

Remark 4.3. We can skip Step 6 if $X_3 = X_3^{\text{sc}}$. Therefore, we can make $h : Z \to X$ birational when the irreducible components of X have no self-intersection in codimension one (cf. Remarks 4.1 and 4.2). It is because f_5 in Step 7 below is always birational.

Step 7 (cf. [BP, Section 5]). Let U be the largest Zariski open subset of X_4 such that $(U, \Delta_4|_U)$ is a simple normal crossing pair. Then there is a projective birational morphism $g_5 : Y_5 \to Y_4$ given by a composite of blow-ups with smooth centers with the following properties.

(i) Let X_5 be the strict transform of X_4 on Y_5. Then $f_5 = g_5|_{X_5} : X_5 \to X_4$ is an isomorphism over U.
(ii) $(X_5, f_5^{-1}\Delta_4 + \text{Exc}(f_5))$ is a simple normal crossing pair, where $\text{Exc}(f_5)$ is the exceptional locus of f_5. By the construction, we can check that $f_5^* \mathcal{O}_{X_5} \simeq \mathcal{O}_{X_4}$.

Step 8. We put $M = Y_5$, $Z = X_5$, and $h = f_1 \circ f_2 \circ f_3 \circ f_4 \circ f_5 : Z = X_5 \to X$. Note that M is a smooth quasi-projective variety and Z is a simple normal crossing divisor on M. We put

$$K_Z + \Delta_Z = h^*(K_X + \Delta).$$

Then (Z, Δ_Z) is a simple normal crossing pair by the above construction. Note that Δ_Z is a subboundary \mathbb{R}-divisor on Z.

For the proof of Theorem 1.2 we have to see that $h_* \mathcal{O}_Z(\gamma - \Delta_Z^{\leq 1\gamma}) \simeq \mathcal{O}_X$. We will prove it in the subsequent steps.

Step 9. It is obvious that

$$f_1_* \mathcal{O}_{X_1}(\gamma - \Delta_1^{\leq 1\gamma}) \simeq \mathcal{O}_X.$$

It is because $\gamma - \Delta_1^{\leq 1\gamma}$ is effective and f_1-exceptional. Note that $f_1_* \mathcal{O}_{X_1} \simeq \mathcal{O}_X$.

Step 10. We can easily check that

$$\mathcal{O}_{X_1} \subset (f_2 \circ f_3)_* \mathcal{O}_{X_3}(\gamma - \Delta_3^{\leq 1\gamma}) \subset \mathcal{O}_{X_1}(\gamma - \Delta_1^{\leq 1\gamma}).$$

We note that $\gamma - \Delta_3^{\leq 1\gamma}$ is effective. Therefore,

$$(f_1 \circ f_2 \circ f_3)_* \mathcal{O}_{X_3}(\gamma - \Delta_3^{\leq 1\gamma}) \simeq \mathcal{O}_X.$$
Step 11. We use the notation in Step 6. Let $\alpha : W \to Y_3$ be the blow-up in Step 6. Note that $\Delta_V = \beta^* \Delta_3$ and $K_V = \beta^* K_{X_3}$. Therefore, we have

$$0 \leq \gamma - \Delta_{V}^{\leq 1} \gamma \leq \beta^*(\gamma - \Delta_3^{\leq 1}) \gamma.$$

See the description of the blow-up in Lemma 4.4 when $\alpha : W \to Y_3$ is a blow-up along a pinch points locus. Thus

$$\mathcal{O}_{X_3} \subset \beta_\ast \mathcal{O}_V(\gamma - \Delta_V^{\leq 1}) \subset \mathcal{O}_{X_3}(\gamma - \Delta_3^{\leq 1}).$$

since $\beta_\ast \mathcal{O}_V \simeq \mathcal{O}_{X_3}$. Therefore, we obtain that

$$\mathcal{O}_{X_3} \subset f_{4*} \mathcal{O}_{X_4}(\gamma - \Delta_4^{\leq 1}) \subset \mathcal{O}_{X_3}(\gamma - \Delta_3^{\leq 1}).$$

This implies that $(f_1 \circ f_2 \circ f_3 \circ f_4)_* \mathcal{O}_{X_4}(\gamma - \Delta_4^{\leq 1}) \simeq \mathcal{O}_X$.

Step 12. It is easy to see that

$$\mathcal{O}_{X_4} \subset f_{5*} \mathcal{O}_{X_5}(\gamma - \Delta_5^{\leq 1}) \subset \mathcal{O}_{X_4}(\gamma - \Delta_4^{\leq 1})$$

because f_5 is a birational map. Thus

$$(f_1 \circ f_2 \circ f_3 \circ f_4 \circ f_5)_* \mathcal{O}_{X_5}(\gamma - \Delta_5^{\leq 1}) \simeq \mathcal{O}_X.$$

So we obtain $f_\ast \mathcal{O}_Z(\gamma - \Delta_Z^{\leq 1}) \simeq \mathcal{O}_X$. It means that $h : (Z, \Delta_Z) \to X$ is a quasi-log resolution of $[X, K_X + \Delta]$.

Step 13. By the construction, it is easy to see that $K_Z + \Delta_Z \simeq h^*(K_X + \Delta)$ and that W is an slc stratum of (X, Δ) if and only if W is the h-image of some stratum of the simple normal crossing pair (Z, Δ_Z) (cf. Lemma 4.4).

By applying Lemma 3.3, we may assume that there is an \mathbb{R}-Cartier \mathbb{R}-divisor B on M such that B and Z have no common irreducible components, Supp($B + Z$) is a simple normal crossing divisor on M, and $B|_Z = \Delta_Z$ after taking some blow-ups. We complete the proof of Theorem 1.2.

The following easy local calculation played a crucial role in the proof of Theorem 1.2.

Lemma 4.4. We consider

$$V = (x_1^2 - x_2^2 x_3 = 0) \subset \mathbb{A}^{n+1} = \text{Spec} \mathbb{C}[x_1, \ldots, x_{n+1}]$$

and

$$C = (x_1 = x_2 = 0) \subset V \subset \mathbb{A}^{n+1}.$$

Let $\varphi : \text{Bl}_C \mathbb{A}^{n+1} \to \mathbb{A}^{n+1}$ be the blow-up whose center is C. Let $W \simeq C \times \mathbb{P}^1$ be the exceptional divisor of the above blow-up and let $\pi = \varphi|_W : W \to C$ be the natural projection. We put $D = V'|_W$ where V' is the strict transform of V on $\text{Bl}_C \mathbb{A}^{n+1}$. Assume that B is an \mathbb{R}-Cartier
\(\mathbb{R} \)-divisor on \(C \) such that \((D, \pi^* B |_D)\) is sub log canonical. Then the pair \((W, D + \pi^* B)\) is sub log canonical.

Furthermore, we obtain the following description. A closed subset \(Q \) of \(C \) is the \(\pi \)-image of some lc center of \((W, D + \pi^* B)\) if and only if \(Q = C \) or \(Q \) is the \(\pi|_D \)-image of some lc center of \((D, \pi^* B |_D)\).

Proof. We can check that \(K_W + D = \pi^* (K_V |_C) \) because

\[
K_{B_{C \subset A^{n+1}} + V'} + W = \varphi^*(K_{A^{n+1}} + V).
\]

Therefore, \(K_W + D + \pi^* B = \pi^* (K_V |_C + B) \). Note that it is easy to see that \(D \) is a smooth divisor on \(W \) and that \(\pi|_D : D \to C \) is a finite morphism with deg \(\pi|_D = 2 \) which ramifies only over \(A \), where

\[
A = (x_1 = x_2 = x_3 = 0) \subset C \subset V \subset A^{n+1}.
\]

By adjunction, \(K_D = (\pi|_D)^* (K_V |_C) \). We consider the following base change diagram

\[
\begin{array}{c}
W \\ \downarrow \pi \\
C \leftarrow D
\end{array}
\]

where \(\widetilde{W} = W \times_C D \). Then we obtain

\[
K_{\widetilde{W}} - q^* \left(\frac{1}{2} \pi^* A \right) + q^* D = p^* K_D
\]

by \(K_W + D = \pi^* (K_V |_C) \) and \(K_D = (\pi|_D)^* (K_V |_C) \), and have

\[
(\heartsuit) \quad K_{\widetilde{W}} - q^* \left(\frac{1}{2} \pi^* A \right) + q^* D + q^* \pi^* B = p^* (K_D + \pi^* B |_D).
\]

Note that \(q^* D = D_1 + D_2 \) such that \(D_1 \) and \(D_2 \) are sections of \(p : \widetilde{W} \to D \). By the construction, we can check that \(D_1 |_{D_1} = q^* \left(\frac{1}{2} \pi^* A \right) |_{D_1} \) and \(D_2 |_{D_1} = q^* \left(\frac{1}{2} \pi^* A \right) |_{D_1} \). We also note that \(p \) is smooth and \(p : D_1 \cap D_2 \simeq \frac{1}{2} (\pi|_D)^* A \). We take a resolution of singularities \(\alpha : D^\dagger \to D \) of the pair \((D, \pi^*(A + B)|_D)\), which is a finite composite of blow-ups whose centers are smooth. We consider the base change of \(p : \widetilde{W} \to D \) by \(\alpha \).

\[
\begin{array}{c}
\widetilde{W} \\ \downarrow p \\
\widetilde{W} \times_D D^\dagger
\end{array}
\]

Then \(W^\dagger = \widetilde{W} \times_D D^\dagger \) is smooth since \(p \) is smooth. By the above construction, we can easily see that all the discrepancy coefficients of
(\tilde{\mathcal{W}}, -q^* \left(\frac{1}{2} \pi^* A \right) + q^* D + q^* \pi^* B) are \geq -1 since (D, \pi^* B|_D) is sub log canonical and the equation (\bigvee) holds. Therefore, (\tilde{\mathcal{W}}, -q^* \left(\frac{1}{2} \pi^* A \right) + q^* D + q^* \pi^* B) is sub log canonical. Since

\[K_{\tilde{\mathcal{W}}} - q^* \left(\frac{1}{2} \pi^* A \right) + q^* D + q^* \pi^* B = q^*(K_W + D + \pi^* B), \]

we have that (W, D + \pi^* B) has only sub log canonical singularities.

The description of the \pi-images of lc centers of (W, D + \pi^* B) is almost obvious by the above discussions. □

5. PROOFS OF THE FUNDAMENTAL THEOREMS

In this section, we prove the theorems in Section 1. First, let us recall Kollár’s double covering trick.

Lemma 5.1 (A natural double cover due to Kollár). Let \((X, \Delta)\) be a semi log canonical pair. Then we can construct a finite morphism \(p : \tilde{X} \to X\) with the following properties.

(1) Let \(X^0\) be the largest Zariski open subset whose singularities are double normal crossing points only. Then

\[p^0 = p|_{p^{-1}(X^0)} : \tilde{X}^0 := p^{-1}(X^0) \to X^0 \]

is an étale double cover.

(2) \(\tilde{X}\) satisfies Serre’s \(S_2\) condition, \(p\) is étale in codimension one, the normalization of \(\tilde{X}\) is a disjoint union of two copies of the normalization of \(X\).

(3) The irreducible components of \(\tilde{X}\) are smooth in codimension one.

In particular, \((\tilde{X}, \tilde{\Delta})\) is semi log canonical where \(K_{\tilde{X}} + \tilde{\Delta} = p^*(K_X + \Delta)\).

For the construction and related topics, see [Ko2, 5.21]. Let us start the proofs of the fundamental theorems in Section 1.

Proof of Theorem 1.6 and Theorem 1.8. It is sufficient to prove Theorem 1.8. It is because Theorem 1.6 is a special case of Theorem 1.8. By Lemma 5.1, we can take a double cover \(p : \tilde{X} \to X\). Since \(\mathcal{O}_X(D)\) is a direct summand of \(p_*\mathcal{O}_{\tilde{X}}(p^* D)\), we may assume that the irreducible components of \(X\) are smooth in codimension one by replacing \(X\) with \(\tilde{X}\). Without loss of generality, we may assume that \(S\) is affine by shrinking \(S\). Therefore, \(X\) is quasi-projective. By Theorem 1.2, we can construct a quasi-log resolution \(h : Z \to X\). Note that we may assume that \(h\) is birational by Remark 1.4. We may further assume that
Supp $h^*D \cup \text{Supp} \Delta_Z$ is a simple normal crossing divisor on Z by [BP, Theorem 1.2] when D is not a Cartier divisor. By the construction,

$$h^*D + r \Delta_Z^{\leq 1} - (K_Z + \Delta_Z^z + \{\Delta_Z\}) \sim_R -h^*(K_X + \Delta).$$

If D is Cartier, then

$$R^i \pi_* h_* O_Z(h^*D + r \Delta_Z^{\leq 1}) \simeq R^i \pi_* O_X(D) = 0$$

for every $i > 0$ by [F6, Theorem 3.39]. Note that E and $\cup h^*D_j$ are both Cartier divisors on Z. It is because Supp $h^*D \cup \text{Supp} \Delta_Z$ is a simple normal crossing divisor on Z and h^*D and Δ_Z are \mathbb{R}-Cartier \mathbb{R}-divisors on Z. By [F6, Theorem 3.39], we obtain that

$$R^i \pi_* h_* O_Z(\cup h^*D_j + E) = 0$$

for every $i > 0$. Therefore, $R^i \pi_* O_X(D) = 0$ for every $i > 0$ since $h_* O_Z(\cup h^*D_j + E) \simeq O_X(D)$. □

Proof of Theorem 1.9. Since the claim is local, we may assume that S is quasi-projective by shrinking S. By Theorem 1.2, $[X, K_X + \Delta]$ has a quasi-log structure induced by the semi log canonical structure of (X, Δ) since X is quasi-projective. Therefore, $R^i \pi_* (\mathcal{I}_{X'} \otimes O_X(D)) = 0$ for every $i > 0$ by [F6, Theorem 3.39]. □

Remark 5.2. Let $\{C_i\}_{i \in I}$ be the set of slc strata of (X, Δ). We put

$$I_1 = \{ i \in I \mid C_i \subset X' \}$$

and

$$I_2 = \{ i \in I \mid C_i \not\subset X' \}.$$

Then, for the vanishing theorem: Theorem 1.9, the following weaker assumption is sufficient.

- $D - (K_X + \Delta)$ is nef over S and $(D - (K_X + \Delta))|_{C_i}$ is big over S for every $i \in I_2$.

It is obvious by the proof given in [F6, Theorem 3.39].
Proof of Theorem 1.10. It is obvious that the claim holds for $\pi_*\mathcal{O}_X(D)$. By Lemma 5.1, we can take a natural double cover $p : \tilde{X} \to X$. Since $\mathcal{O}_X(D)$ is a direct summand of $p_*\mathcal{O}_X(p^*D)$, we may assume that the irreducible components of X have no self-intersection in codimension one by replacing X with \tilde{X}. Without loss of generality, we may assume that S is affine by shrinking S. Therefore, X is quasi-projective and we can apply Theorem 1.2. Let $h : Z \to X$ be a morphism constructed in Theorem 1.2. We may assume that h is birational (cf. Remark 1.4). Note that
\[h^*D + \gamma - \Delta_Z^{\leq 1} - (K_Z + \{\Delta_Z\} + \Delta_Z^{\leq 1}) \sim_R h^*H. \]
As in the proof of Theorem 1.6 and Theorem 1.8 we can write
\[\ll h^*D + E - (K_Z + \Delta_Z^{\leq 1} + F) \sim_R h^*H \]
when D is not Cartier. Therefore, every associated prime of $R^i(\pi \circ h)_*\mathcal{O}_Z(\ll h^*D + E)$ is the generic point of the π-image of some slc stratum of (X, Δ) for every i (cf. [F6] Theorem 2.52). Since
\[
R^1\pi_*\mathcal{O}_X(D) \simeq R^1\pi_*(h_*\mathcal{O}_Z(\ll h^*D + E)) \\
\subset R^1(\pi \circ h)_*\mathcal{O}_Z(\ll h^*D + E),
\]
the claim holds for $R^1\pi_*\mathcal{O}_X(D)$. When D is Cartier, it is sufficient to replace $\ll h^*D + E$ with $h^*D + \gamma - \Delta_Z^{\leq 1}$ in the above arguments. Let A be a sufficiently π-ample general effective Cartier divisor on X. By considering the short exact sequence
\[0 \to \mathcal{O}_X(D) \to \mathcal{O}_X(D + A) \to \mathcal{O}_A(D + A) \to 0, \]
we obtain
\[R^i\pi_*\mathcal{O}_X(D) \simeq R^{i-1}(\pi|_A)_*\mathcal{O}_A(D + A) \]
for every $i \geq 2$ since $R^i\pi_*\mathcal{O}_X(D + A) = 0$ for $i \geq 1$. By induction on dimension, every associated prime of $R^{i-1}(\pi|_A)_*\mathcal{O}_A(D + A)$ is the generic point of the $\pi|_A$-image of some slc stratum of $(A, \Delta|_A)$ for every i. Note that $(A, \Delta|_A)$ is semi log canonical with $(K_X + A + \Delta)|_A = K_A + \Delta|_A$ and that $h^*A = h^{-1}_*A$ and Supp$(h^{-1}_*A + \Delta_Z)$ are simple normal crossing divisors on Z since A is general. Therefore, the claim holds for $R^i\pi_*\mathcal{O}_X(D) \simeq R^{i-1}(\pi|_A)_*\mathcal{O}_A(D + A)$ for every $i \geq 2$. We complete the proof.

Proof of Theorem 1.11. By Theorem 1.2, $[X, K_X + \Delta]$ has a quasi-log structure. Note that W is an slc stratum of (X, Δ) if and only if W is a qlc center of $[X, K_X + \Delta]$ by Theorem 1.2(5). Therefore, by adjunction for quasi-log varieties (cf. [F6] Theorem 3.39 and [F7] Theorem 3.6), $[X', (K_X + \Delta)|_{X'}]$ has a natural quasi-log structure induced by the
quasi-log structure of \([X, K_X + \Delta]\). Since \([X', (K_X + \Delta)|_{X'}]\) is a qlc pair, \(X'\) is semi-normal (cf. [F6, Remark 3.33] and [F7, Remark 3.2]). □

Proof of Theorem 1.12 Without loss of generality, we may assume that \(S\) is affine by shrinking \(S\). Therefore, we may assume that \(X\) is quasi-projective and \([X, K_X + \Delta]\) has a quasi-log structure by Theorem 1.2. By Theorem 1.11 \([X', (K_X + \Delta)|_{X'}]\) has a natural quasi-log structure induced by that of \([X, K_X + \Delta]\). Therefore, this theorem is a special case of the vanishing theorem for quasi-log varieties (cf. [F6, Theorem 3.39 (ii)]). □

Remark 5.3. In Theorems 1.8, 1.9, 1.10, 1.11, and 1.12 if \((X, \Delta)\) is log canonical, then it is sufficient to assume that \(\pi\) is proper. It is because \((X, \Delta)\) has a natural quasi-log structure when \((X, \Delta)\) is log canonical (cf. [F6, Example 3.42] and [F7, Proposition 3.3]).

Proof of Theorem 1.13 and Theorem 1.14. By shrinking \(S\), we may assume that \(S\) is affine and \(X\) is quasi-projective. Therefore, by applying Theorem 1.2 \((X, \Delta)\) has a natural quasi-log structure. Thus, by [F6, Theorem 3.36] and [F6, Theorem 4.1], we obtain that \(\mathcal{O}_X(mD)\) is \(\pi\)-generated for every \(m \gg 0\). □

Proof of Theorem 1.16 The proof of [F9, Theorem 15.1] works with minor modifications by Theorem 1.9. We do not need the theory of quasi-log varieties for the proof of the rationality theorem. □

Proof of Theorem 1.17 The proof of [F9, Theorem 16.1] works with minor modifications by Theorem 1.16 and Theorem 1.13. Here we only give a supplementary argument on (1). Let \(R\) be a \((K_X + \Delta)\)-negative extremal ray. Then there is a contraction morphism \(\varphi_R : X \to \mathbb{Z}\) over \(S\) associated to \(R\) (cf. (3)). Note that \(-(K_X + \Delta)\) is \(\varphi_R\)-ample. Let \(\nu : X' \to X\) be the normalization. We put \(K_{X'} + \Theta = \nu^*(K_X + \Delta)\). Then \(-(K_{X'} + \Theta)\) is \((\varphi_R \circ \nu)\)-ample and \(\varphi_R \circ \nu\) is nontrivial. Note that \((X', \Theta)\) is log canonical. By [F9, Theorem 18.2], we can find a rational curve \(C'\) on \(X'\) such that \(-(K_{X'} + \Theta)\cdot C' \leq 2 \dim X'\) and \((\varphi_R \circ \nu)(C')\) is a point. We put \(C = \nu(C')\). Then \(C\) is a rational curve on \(X\) and \(-(K_X + \Delta)\cdot C \leq 2 \dim X\) such that \(\varphi_R(C)\) is a point. Therefore, \(C\) is a desired curve in (1). □

We close this section with an important example. This example shows that we can not run the minimal model program even for semi log canonical surfaces.

Example 5.4 (cf. [F6, Example 3.76]). We consider the first projection \(p : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1\). We take a blow-up \(\mu : Z \to \mathbb{P}^1 \times \mathbb{P}^1\) at \((0, \infty)\). Let
A_∞ (resp. A_0) be the strict transform of $\mathbb{P}^1 \times \{\infty\}$ (resp. $\mathbb{P}^1 \times \{0\}$) on Z. We define $M = \mathbb{P}_Z(\mathcal{O}_Z \oplus \mathcal{O}_Z(A_0))$ and X is the restriction of M on $(p \circ \mu)^{-1}(0)$. Then X is a simple normal crossing divisor on M. More explicitly, X is a \mathbb{P}^1-bundle over $(p \circ \mu)^{-1}(0)$ and is obtained by gluing $X_1 = \mathbb{P}^1 \times \mathbb{P}^1$ and $X_2 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_\mathbb{P}^1 \oplus \mathcal{O}_\mathbb{P}^1(1))$ along a fiber. In particular, $(X, 0)$ is a semi log canonical surface. By the construction, $M \to Z$ has two sections. Let D^+ (resp. D^-) be the restriction of the section of $M \to Z$ corresponding to $\mathcal{O}_Z \oplus \mathcal{O}_Z(A_0) \to \mathcal{O}_Z(A_0) \to 0$ (resp. $\mathcal{O}_Z \oplus \mathcal{O}_Z(A_0) \to \mathcal{O}_Z \to 0$). Then it is easy to see that D^+ is a nef Cartier divisor on X and that the linear system $|mD^+|$ is free for every $m > 0$. Note that M is a projective toric variety. Let E be the section of $M \to Z$ corresponding to $\mathcal{O}_Z \oplus \mathcal{O}_Z(A_0) \to \mathcal{O}_Z(A_0) \to 0$. Then, it is easy to see that E is a nef Cartier divisor on M. Therefore, the linear system $|E|$ is free. In particular, $|D^+|$ is free on X since $D^+ = E|_X$. So, $|mD^+|$ is free for every $m > 0$. We take a general member $B_0 \in |mD^+|$ with $m \geq 2$. We consider $K_X + B$ with $B = D^- + B_0 + B_1 + B_2$, where B_1 and B_2 are general fibers of $X_1 = \mathbb{P}^1 \times \mathbb{P}^1 \subset X$. We note that B_0 does not intersect D^-. Then (X, B) is an embedded simple normal crossing pair. In particular, (X, B) is a semi log canonical surface. It is easy to see that there exists only one integral curve C on $X_2 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1)) \subset X$ such that $C \cdot (K_X + B) < 0$. Note that C is nothing but the negative section of $X_2 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1)) \to \mathbb{P}^1$. We also note that $(K_X + B)|_{X_1}$ is ample on X_1. By the cone theorem (cf. Theorem 1.17), we obtain

$$\overline{NE}(X) = \overline{NE}(X)_{(K_X + B) \geq 0} + \mathbb{R}_{\geq 0}[C].$$

By the contraction theorem (cf. Theorem 1.17), we have $\varphi : X \to W$ which contracts C. We can easily see that $K_W + B_W$, where $B_W = \varphi_*B$, is not \mathbb{Q}-Cartier because C is not \mathbb{Q}-Cartier on X. Therefore, we cannot run the minimal model program for semi log canonical surfaces.

For a new framework of the minimal model program for log surfaces, see [F10], [FT], [T1], and [T2].

6. Appendix: Big \mathbb{R}-divisors

In this section, we discuss the notion of big \mathbb{R}-divisors on singular varieties. The basic references of big \mathbb{R}-divisors are [L] 2.2 and [N] II. 33 and 55. Since we have to consider big \mathbb{R}-divisors on non-normal varieties, we give supplementary definitions and arguments to [L] and [N].

First, let us quickly recall the definition of big Cartier divisors on normal complete varieties. For details, see, for example, [KMM] 0-3.
Definition 6.1 (Big Cartier divisors). Let X be a normal complete variety and let D be a Cartier divisor on X. Then D is *big* if one of the following equivalent conditions holds.

1. $\max_{m \in \mathbb{N}} \{ \dim \Phi_{|mD|}(X) \} = \dim X$, where $\Phi_{|mD|} : X \to \mathbb{P}^N$ is the rational map associated to the linear system $|mD|$ and $\Phi_{|mD|}(X)$ is the image of $\Phi_{|mD|}$.
2. There exist a rational number α and a positive integer m_0 such that
 \[\alpha m^{\dim X} \leq \dim H^0(X, \mathcal{O}_X(mm_0D)). \]

It is well known that we can take $m_0 = 1$ in the condition (2).

One of the most important properties of big Cartier divisors is known as Kodaira’s lemma.

Lemma 6.2 (Kodaira’s lemma). Let X be a normal complete variety and let D be a big Cartier divisor on X. Then, for an arbitrary Cartier divisor M, we have $H^0(X, \mathcal{O}_X(lD - M)) \neq 0$ for $l \gg 0$.

Proof. By replacing X with its resolution, we can assume that X is smooth and projective. Then it is sufficient to show that for a sufficiently ample Cartier divisor A, $H^0(X, \mathcal{O}_X(lD - A)) \neq 0$ for $l \gg 0$.

Since we have the exact sequence
\[0 \to \mathcal{O}_X(lD - A) \to \mathcal{O}_X(lD) \to \mathcal{O}_Y(lD) \to 0, \]
where Y is a general member of $|A|$, and since there exist positive rational numbers α, β such that $\alpha l^{\dim X} \leq \dim H^0(X, \mathcal{O}_X(lD))$ and $\dim H^0(Y, \mathcal{O}_Y(lD)) \leq \beta l^{\dim Y}$ for $l \gg 0$, we have $H^0(X, \mathcal{O}_X(lD - A)) \neq 0$ for $l \gg 0$. \[\square \]

For non-normal varieties, we need the following definition.

Definition 6.3 (Big Cartier divisors on non-normal varieties). Let X be a complete irreducible variety and let D be a Cartier divisor on X. Then D is *big* if ν^*D is big on X^ν, where $\nu : X^\nu \to X$ is the normalization.

Before we define big \mathbb{R}-divisors, let us recall the definition of big \mathbb{Q}-divisors.

Definition 6.4 (Big \mathbb{Q}-divisors). Let X be a complete irreducible variety and let D be a \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. Then D is *big* if mD is a big Cartier divisor for some positive integer m.

We note the following obvious lemma.
Lemma 6.5. Let $f : W \to V$ be a birational morphism between normal varieties and let D be a \mathbb{Q}-Cartier \mathbb{Q}-divisor on V. Then D is big if and only if so is f^*D.

Next, let us start to consider big \mathbb{R}-divisors.

Definition 6.6 (Big \mathbb{R}-divisors on complete varieties). An \mathbb{R}-Cartier \mathbb{R}-divisor D on a complete irreducible variety X is big if it can be written in the form

$$D = \sum_i a_i D_i$$

where each D_i is a big Cartier divisor and a_i is a positive real number for every i.

Let us recall an easy but very important lemma.

Lemma 6.7 (cf. [N, 2.11. Lemma]). Let $f : Y \to X$ be a proper surjective morphism between normal varieties with connected fibers. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then we have a canonical isomorphism

$$\mathcal{O}_X(\lfloor D \rfloor) \cong f_* \mathcal{O}_Y(\lfloor f^* D \rfloor).$$

Lemma 6.8. Let D be a big \mathbb{R}-Cartier \mathbb{R}-divisor on a smooth projective variety X. Then there exist a positive rational number α and a positive integer m_0 such that

$$\alpha m \dim X \leq \dim H^0(X, \mathcal{O}_X(\lfloor mm_0 D \rfloor))$$

for $m \gg 0$.

Proof. By using Lemma 6.2, we can find an effective \mathbb{R}-Cartier \mathbb{R}-divisor E on X such that $D - E$ is ample. Therefore, there exists a positive integer m_0 such that $A = \lfloor m_0 D - m_0 E \rfloor$ is ample. We note that $m_0 D = A + \{ m_0 D - m_0 E \} + m_0 E$. This implies that $mA \leq mm_0 D$ for any positive integer m. Therefore,

$$\dim H^0(X, \mathcal{O}_X(mA)) \leq \dim H^0(X, \mathcal{O}_X(\lfloor mm_0 D \rfloor)).$$

So, we can find a positive rational number α such that

$$\alpha m \dim X \leq \dim H^0(X, \mathcal{O}_X(\lfloor mm_0 D \rfloor)).$$

It is the desired inequality. \qed

Remark 6.9. By Lemma 6.5 and Lemma 6.8, Definition 6.6 is compatible with Definition 6.4.

Lemma 6.10 (Weak Kodaira’s lemma). Let X be a projective irreducible variety and let D be a big \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then we can write

$$D \sim_\mathbb{R} A + E,$$
where A is an ample \mathbb{Q}-divisor on X and E is an effective \mathbb{R}-Cartier \mathbb{R}-divisor on X.

Proof. Let B be a big Cartier divisor on X and let H be a general very ample Cartier divisor on X. We consider the short exact sequence

$$0 \rightarrow \mathcal{O}_X(lB - H) \rightarrow \mathcal{O}_X(lB) \rightarrow \mathcal{O}_H(lB) \rightarrow 0$$

for every l. It is easy to see that $\dim H^0(X, \mathcal{O}_X(lB)) \geq \alpha l \dim X$ and $\dim H^0(H, \mathcal{O}_H(lB)) \leq \beta l \dim H$ for some positive rational numbers α, β, and for $l \gg 0$. Therefore, $H^0(X, \mathcal{O}_X(lB - H)) \neq 0$ for some large l. This means that $lB \sim H + G$ for some effective Cartier divisor G. By Definition 6.6 we can write $D = \sum_i a_i D_i$ where a_i is a positive real number and D_i is a big Cartier divisor for every i. By applying the above argument to each D_i, we can easily obtain the desired decomposition $D \sim \mathbb{R} A + E$. □

We prepare an important lemma.

Lemma 6.11. Let X be a complete irreducible variety and let N be a numerically trivial \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then N can be written in the form

$$N = \sum_i r_i N_i$$

where each N_i is a numerically trivial Cartier divisor and r_i is a real number for every i.

Proof. Let Z_j be an integral 1-cycle on X for $1 \leq j \leq \rho = \rho(X)$ such that $\{[Z_1], \cdots, [Z_\rho]\}$ is a basis of the vector space $N_1(X)$. The condition that an \mathbb{R}-Cartier \mathbb{R}-divisor $B = \sum_i b_i B_i$ is Cartier for every i, is numerically trivial is given by the integer linear equations

$$\sum_i b_i (B_i \cdot Z_j) = 0$$

on b_i for $1 \leq j \leq \rho$. Any real solution to these equations is an \mathbb{R}-linear combination of integral ones. Thus, we obtain the desired expression $N = \sum_i r_i N_i$. □

The following proposition seems to be very important.

Proposition 6.12. Let X be a complete irreducible variety. Let D and D' be \mathbb{R}-Cartier \mathbb{R}-divisors on X. If $D \equiv D'$, then D is big if and only if so is D'.

Proof. We put $N = D' - D$. Then N is a numerically trivial \mathbb{R}-Cartier \mathbb{R}-divisor on X. By Lemma 6.11 we can write $N = \sum_i r_i N_i$, where r_i is a real number and N_i is a numerically trivial Cartier divisor for every i. By Definition 6.6 we are reduced to showing that if B is a big Cartier divisor and G is a numerically trivial Cartier divisor, then $B + rG$ is big for any real number r. If r is not a rational number, we can write

$$B + rG = t(B + r_1 G) + (1 - t)(B + r_2 G)$$

where r_1 and r_2 are rational, $r_1 < r < r_2$, and t is a real number with $0 < t < 1$. Therefore, we can assume that r is rational. Let $f : Y \to X$ be a resolution. Then it is sufficient to check that $f^*B + rf^*G$ is big by Lemma 6.5 and Definitions 6.3. So, we can assume that X is smooth and projective. By Kodaira’s lemma (cf. Lemma 6.2), we can write $lB \sim A + E$, where A is an ample Cartier divisor, E is an effective Cartier divisor, and l is a positive integer. Thus, $l(B + rG) \sim (A + lrG) + E$. We note that $A + lrG$ is an ample \mathbb{Q}-divisor. This implies that $B + rG$ is a big \mathbb{Q}-Cartier \mathbb{Q}-divisor. We finish the proof. □

Proposition 6.13 seems to be missing in the literature.

Proposition 6.13. Let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on a normal complete variety X. Then the following conditions are equivalent.

1. D is big.
2. There exist a positive rational number α and a positive integer m_0 such that
 $$\alpha m^{\dim X} \leq \dim H^0(X, O_X(\lfloor mm_0 D \rfloor))$$
 for $m \gg 0$.

Proof. First, we assume (2). Let $f : Y \to X$ be a resolution such that Y is projective. By Lemma 6.7 we have

$$\alpha m^{\dim X} \leq \dim H^0(X, O_X(\lfloor mm_0 f^* D \rfloor)).$$

By the usual argument as in the proof of Kodaira’s lemma (cf. Lemma 6.2), we can write $f^*D \equiv A + E$, where A is an ample \mathbb{Q}-Cartier \mathbb{Q}-divisor and E is an effective \mathbb{R}-Cartier \mathbb{R}-divisor on Y. By using Lemma 6.14 and Lemma 6.15 below, we can write $A + E \equiv \sum a_i G_i$ where a_i is a positive real number and G_i is a big Cartier divisor for every i. By Proposition 6.12, f^*D is a big \mathbb{R}-Cartier \mathbb{R}-divisor on Y. Let D' be a \mathbb{Q}-Cartier \mathbb{Q}-divisor on X whose coefficients are very close to those of D. Then $A + f^* D' - f^* D$ is an ample \mathbb{R}-Cartier \mathbb{R}-divisor on Y. Therefore, $f^* D' \equiv (A + f^* D' - f^* D) + E$ is also a big \mathbb{Q}-divisor on Y as above. By Lemma 6.5, D' is a big \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. This
means that there exists a big Cartier divisor M on X (see Example 6.13 below). By the assumption, we can write $lD \sim M + E'$, where E' is an effective \mathbb{R}-Cartier \mathbb{R}-divisor (see, for example, the usual proof of Kodaira’s lemma: Lemma 6.2). By using Lemma 6.14 and Lemma 6.15 below, we can write $M + E' = \sum a'_i G'_i$, where a'_i is a positive real number and G'_i is a big Cartier divisor for every i. By Proposition 6.12 D is a big \mathbb{R}-divisor on X.

Next, we assume (1). Let $f : Y \to X$ be a resolution. Then $f^* D$ is big by Definition 6.6 and Lemma 6.5. By Lemma 6.7 and Lemma 6.8, we obtain the desired estimate in (2). \qed

We have already used the following lemmas in the proof of Proposition 6.13.

Lemma 6.14. Let X be a normal variety and let B be an effective \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then B can be written in the form

$$B = \sum_i b_i B_i$$

where each B_i is an effective Cartier divisor and b_i is a positive real number for every i.

Proof. We can write $B = \sum_{j=1}^l d_j D_j$, where d_j is a real number and D_j is Cartier for every j. We put $E = \cup_j \text{Supp} D_j$. Let $E = \sum_{k=1}^m E_k$ be the irreducible decomposition. We can write $D_j = \sum_{k=1}^m a_k^j E_k$ for every j. Note that a_k^j is integer for every j and k. We can also write $B = \sum_{k=1}^m c_k E_k$ with $c_k \geq 0$ for every k. We consider

$$\mathcal{E} = \left\{(r_1, \ldots, r_l) \in \mathbb{R}^l \mid \sum_{j=1}^l r_j a_k^j \geq 0 \text{ for every } k\right\} \subset \mathbb{R}^l.$$

Then \mathcal{E} is a rational convex polyhedral cone and $(d_1, \ldots, d_l) \in \mathcal{E}$. Therefore, we can find effective Cartier divisors B_i and positive real numbers b_i such that $B = \sum_i b_i B_i$. \qed

Lemma 6.15. Let B be a big Cartier divisor on a normal variety X and let G be an effective Cartier divisor on X. Then $B + rG$ is big for any positive real number r.

Proof. If r is rational, then this lemma is obvious by the definition of big \mathbb{Q}-divisors. If r is not rational, then we can write

$$B + rG = t(B + r_1 G) + (1 - t)(B + r_2 G)$$

where r_1 and r_2 are rational, $0 < r_1 < r < r_2$, and t is a real number with $0 < t < 1$. By Definition 6.6 $B + rG$ is a big \mathbb{R}-divisor. \qed
Example 6.16 implies that a normal complete variety does not always have big Cartier divisors. For the details of Example 6.16 see [F3, Section 4].

Example 6.16. Let Δ be the fan in \mathbb{R}^3 whose rays are generated by $v_1 = (1, 0, 1)$, $v_2 = (0, 1, 1)$, $v_3 = (-1, -2, 1)$, $v_4 = (1, 0, -1)$, $v_5 = (0, 1, -1)$, $v_6 = (-1, -1, -1)$ and whose maximal cones are

$$\langle v_1, v_2, v_3, v_5, v_6 \rangle, \langle v_2, v_3, v_5, v_6 \rangle, \langle v_1, v_3, v_4, v_6 \rangle, \langle v_1, v_2, v_3 \rangle, \langle v_4, v_5, v_6 \rangle.$$

Then the associated toric threefold X is complete with $\rho(X) = 0$. More precisely, every Cartier divisor on X is linearly equivalent to zero.

Let $f : Y \to X$ be the blow-up along $v_7 = (0, 0, -1)$ and let E be the f-exceptional divisor on Y. Then we can check that $\rho(Y) = 1$ and that $\mathcal{O}_Y(E)$ is a generator of $\text{Pic}(Y)$. Therefore, there are no big Cartier divisors on Y.

The next lemma is almost obvious.

Lemma 6.17. Let V be a complete irreducible variety and let D be a big \mathbb{R}-Cartier \mathbb{R}-divisor on V. Let $g : W \to V$ be an arbitrary proper birational morphism from an irreducible variety W. Then g^*D is big.

Proof. By Definition 6.6 we can assume that D is Cartier. We obtain the following commutative diagram.

$$
\begin{array}{ccc}
W & \xleftarrow{\mu} & W' \\
g \downarrow & & \downarrow h \\
V & \xleftarrow{\nu} & V'
\end{array}
$$

Here, $\mu : W' \to W$ and $\nu : V' \to V$ are the normalizations. Since ν^*D is big, $h^*\nu^*D = \mu^*g^*D$ is also big. We note that h is a birational morphism between normal varieties (cf. Lemma 6.5). Thus, g^*D is big by Definition 6.3. \hfill \square

Kodaira’s lemma for big \mathbb{R}-Cartier \mathbb{R}-divisors on normal varieties is also obvious by Proposition 6.13. See also the proof of Lemma 6.2.

Lemma 6.18 (Kodaira’s lemma for big \mathbb{R}-divisors on normal varieties). Let X be a complete irreducible normal variety and let D be a big \mathbb{R}-Cartier \mathbb{R}-divisor on X. Let M be an arbitrary Cartier divisor on X. Then there exist a positive integer l and an effective \mathbb{R}-Cartier \mathbb{R}-divisor E on X such that $lD - M \sim E$.

Finally, we discuss relatively big \mathbb{R}-divisors.
Definition 6.19 (Relatively big \mathbb{R}-divisors). Let $\pi : X \rightarrow S$ be a proper morphism from an irreducible variety X onto a variety S and let D be an \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then D is called π-big (or, big over S) if $D|_{X_\eta}$ is big on X_η, where X_η is the generic fiber of π.

We need the following lemma for the proof of the Kawamata–Viehweg vanishing theorem for \mathbb{R}-divisors.

Lemma 6.20 (cf. [KMM, Corollary 0-3-6]). Let $\pi : X \rightarrow S$ be a proper surjective morphism from an irreducible variety X onto a quasi-projective variety S and let D be a π-nef and π-big \mathbb{R}-Cartier \mathbb{R}-divisor on X. Then there exist a proper birational morphism $\mu : Y \rightarrow X$ from a smooth variety Y projective over S and divisors F_α's on Y such that $\text{Supp} \mu^*D \cup (\cup F_\alpha)$ is a simple normal crossing divisor and such that $\mu^*D - \sum \delta_\alpha F_\alpha$ is $\pi \circ \mu$-ample for some δ_α with $0 < \delta_\alpha \ll 1$.

We can check Lemma 6.20 by Lemma 6.18 and Hironaka’s resolution theorem.

References

[A] F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), Birational. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 220–239; translation in Proc. Steklov Inst. Math. 2003, no. 1 (240), 214–233

[BM] E. Bierstone, P. D. Milman, Resolution except for minimal singularities I, preprint (2011).

[BP] E. Bierstone, F. Vera Pacheco, Resolution of singularities of pairs preserving semi-simple normal crossings, preprint (2011).

[F1] O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no. 3, 513–532.

[F2] O. Fujino, Higher direct images of log canonical divisors, J. Differential Geom. 66 (2004), no. 3, 453–479.

[F3] O. Fujino, On the Kleiman–Mori cone, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 5, 80–84.

[F4] O. Fujino, What is log terminal?, Flips for 3-folds and 4-folds, 49–62, Oxford Lecture Ser. Math. Appl., 35, Oxford Univ. Press, Oxford, 2007.

[F5] O. Fujino, On injectivity, vanishing and torsion-free theorems for algebraic varieties, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 8, 95–100.

[F6] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint (2009).

[F7] O. Fujino, Introduction to the theory of quasi-log varieties, Classification of algebraic varieties, 289–303, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.

[F8] O. Fujino, Non-vanishing theorem for log canonical pairs, J. Algebraic Geom. 20 (2011), no. 4, 771–783.

[F9] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789.
[F10] O. Fujino, Minimal model theory for log surfaces, to appear in Publ. Res. Inst. Math. Sci.

[F11] O. Fujino, Vanishing theorems, preprint (2011).

[FF] O. Fujino, T. Fujisawa, Variations of mixed Hodge structure and semi-positivity theorems, preprint (2011).

[FG] O. Fujino, Y. Gongyo, Log pluricanonical representations and abundance conjecture, preprint (2011).

[FT] O. Fujino, H. Tanaka, On log surfaces, preprint (2011).

[G] Y. Gongyo, Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs, to appear in J. Algebraic Geom.

[HX] C. D. Hacon, C. Xu, On finiteness of B-representation and semi-log canonical abundance, preprint (2011).

[KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, *Algebraic geometry, Sendai, 1985*, 283–360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.

[Ko1] J. Kollár, Moduli of varieties of general type, preprint (2010).

[Ko2] J. Kollár, *Singularities of the Minimal Model Program*, preprint (2011).

[KS] J. Kollár, N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338.

[FA] J. Kollár, et al., *Flips and Abundance for algebraic threefolds*, Astérisque, 211 (1992).

[Kv] S. Kovács, Young person’s guide to moduli of higher dimensional varieties, *Algebraic geometry—Seattle 2005. Part 2*, 711–743, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.

[KSS] S. J. Kovács, K. Schwede, K. E. Smith, The canonical sheaf of Du Bois singularities, Adv. Math. 224 (2010), no. 4, 1618–1640.

[L] R. Lazarsfeld, *Positivity in algebraic geometry. I. Classical setting: line bundles and linear series*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48. Springer-Verlag, Berlin, 2004.

[N] N. Nakayama, *Zariski-decomposition and abundance*, MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004.

[T1] H. Tanaka, Minimal models and abundance for positive characteristic log surfaces, preprint (2012).

[T2] H. Tanaka, X-method for klt surfaces in positive characteristic, preprint (2012).

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp