Single Nucleotide Polymorphisms of the Sirtuin 1 (SIRT1) Gene are Associated With age-Related Macular Degeneration in Chinese Han Individuals

Zhiqing Chen, MD, Yi Zhai, MD, Wei Zhang, PhD, Yan Teng, BS, and Ke Yao, MD, PhD

Abstract: To investigate whether 3 variants in sirtuin 1 (SIRT1) gene contributed differently in patients with age-related macular degeneration (AMD) in a Chinese Han population.

We conducted a case–control study in a group of Chinese patients with AMD (n = 253) and contrasted the results against a control group (n = 292). Three single nucleotide polymorphisms (SNPs) of SIRT1 gene including rs12778366, rs3740051, and rs4746720 were genotyped using improved multiplex ligase detection reaction. The association between targeted SNPs and AMD was then analyzed by codominant, dominant, recessive, and allelic models.

The genotyping data of rs12778366, rs3740051, and rs4746720 revealed significant deviations from Hardy–Weinberg equilibrium tests in the AMD group but not in the control group.

We detected significantly differences of rs12778366 allele distribution between 2 groups in recessive and codominant model (P < 0.05). Homozygous carriers of the risk allele C displayed a higher chance of developing AMD (P = 0.036, odds ratio = 3.227; 95% confidence interval: 1.015–10.265).

Our study, for the first time, raises the possibility that genetic variations of SIRT1 could be implicated in the pathophysiology of AMD in the Chinese Han population.

INTRODUCTION

Age-related macular degeneration (AMD) is 1 of the leading causes of severe visual loss in developed countries1,2 and in China.3 Late AMD can be divided into 2 subtypes: geographic atrophy (dry AMD) and neovascular AMD (wet AMD). Some scientists suggested that frequency of AMD subtypes in Asians may be different from Caucasians.4,5 In Asian populations, neovascular AMD is the major subtype of late AMD and is featured with choroidal neovascular membrane (CNV).6 The pathologic hallmark of this disease is drusen, deposits of proteins and lipids, in the Bruch’s membrane; these deposits, along with pigmentary irregularities, constitute early AMD.7 Though, several genes have been reported to be associated with this disease,8,9,10 the pathophysiology of AMD is still not well understood yet.

The sirtuins (SIRT) are a highly conserved family of NAD-dependent class III deacetylases that helps to regulate the lifespan of diverse organisms. Mammalian sirtuins consist of 7 members, SIRT1–SIRT7, and some of them, especially SIRT1, have been shown to play crucial roles in the regulation of aging, longevity, or in the pathogenesis of age-related metabolic diseases.11,12 In human eyes, SIRT1 expression has also been observed in the lens epithelium of patients with age-related cataract,13 adult retinas,14 and corneal epithelium.15 SIRT1 protects the retinal cells from oxidative stress-related retinal damage, apoptotic retinal death, and anti-inflammation.16 Bhattacharya et al17 showed that P53 acetylation Lys379 in primary human retinal pigment epithelium (RPE) increased though the SIRT1 inhibition, and hypothesized that treatment target inhibition of p53 phophorylation or acetylation may prevent RPE cells from apoptosis. Recently, Maloney et al examined SIRT1 expression in excised human choroidal neovascularization membranes and non-AMD donor eyes by immunohistochemistry. They found SIRT1 levels elevated in human choroidal neovascularization membranes compared with control eyes.18

These observations suggest the possibility that SIRT1 is a candidate for conferring susceptibility to AMD. In order to test this hypothesis, we investigated the association between the single nucleotide polymorphisms (SNPs) within the SIRT1 gene and AMD in Chinese subjects. Three well-studied SNPs were analyzed: rs1277836619–21 and rs374005122,23 in the 5'-flanking region of the SIRT1 gene and rs474672024,25 in the 3'-untranslated region.
MATERIALS AND METHODS

Patients Recruitment

The protocol adhered to the tenets of the Declaration of Helsinki. This study was approved by the Ethics Committee of Zhejiang University. Written informed consents were obtained from all subjects. This case–control study included 253 unrelated Chinese patients with AMD in at least 1 eye and 292 unrelated control subjects recruited in the Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China from 2011 to 2014. The diagnosis of AMD was confirmed in case group by ophthalmoscopy examination, color fundus photography, uorescence and indocyanine green angiography, and optical coherence tomography. Patients having any of the following characteristics were excluded from the study: high myopia (spherical equivalent >6.00 diopters); macular atrophy caused by other reason such as trauma, inflammation, and vascular disease; other neovascularized maculopathies such as angioid streaks, retinal angiomatous, proliferation; and poloidal choroidal vasculopathy. The control subjects were recruited among patients who underwent routine health examinations, and willing to participate in the study. All control subjects were aged ≥45 years. They all had visual acuity measurements, slit-lamp biomicroscopy, ophthalmoscopy examination, and color fundus photography.

Genotyping

DNA was isolated from peripheral blood mononuclear cell of the recipients using the QIAamp DNA blood mini kit (Qiagen, Inc., Hilden, Germany). The SNP genotyping was performed using a patented improved multiplex ligation detection reaction technique (iMLDR, Genesky Bio-Tech Cod., Ltd., Shanghai, China). The primer and probe information in 2 mixtures are described in Tables 1 and 2, respectively. The multiplex polymerase chain reaction (PCR) was carried out on the ABI Veriti thermal cycler (Applied Biosystems) in a total volume of 10 μL, including 1 μL genomic DNA (contain 5–10 ng DNA), 1 μL 1× GC-1 buffer (Takara, China), 3.0 mM Mg²⁺ (Takara), 0.3 mM dNTPs, 1 μL primer mix (1 μM each primer), and 1 U HotStarTaq polymerase (Qiagen Inc.). Cycling parameters were as follows: 95°C for 2 min; 11 cycles at 94°C for 20 s, 65°C and −0.5°C per cycle for 40 s, 72°C for 1.5 min; 24 cycles at 94°C for 20 s, 59°C for 30 s, 72°C for 1.5 min; then 4°C forever. Thereafter, 5U shrimp alkaline phosphatase (SAP) and 2U Exonuclease I (EXO1) were added to 10 μL of PCR product for purification. The mixture was incubated at 37°C for 60 min, followed by incubation at 75°C for 15 min. Then, 2 μL purified PCR product was mixed with 1 μL 10× ligase buffer, 0.25 μL ligase, 0.4 μL 5' ligation probe mixture (1 μM), and 0.4 μL 3' ligation probe mixture (2 μM), and 6 μL ultrapure water for ligation reaction. The ligation detection reaction (LDR) parameters were as follows: 38 cycles at 94°C for 1 min and 56°C for 4 min, then 4°C forever. Following the LDR reaction, 0.5 μL LDR reaction product was mixed with 0.5 μL Liz 500 size standard and 9 μL Hi-Di, and incubated at 95°C for 5 min before loaded onto an ABI3730XL Genetic Analyzer (ABI). Data were analyzed using GeneMapper software (version 4.1, Applied Biosystems).

Statistical Analysis

All SNPs were evaluated for Hardy–Weinberg equilibrium (HWE) using the χ² test (1 degree of freedom) with STATA software, Version12.0 (StataCorp LP, College Station, TX). The χ² test was used to compare categorical allelic and genotype distributions between cases and controls. The odds ratio (OR) and corresponding 95% confidence interval (CI) were calculated relative to the major allele and the wild type homozygote. Analyses were performed with the SPSS 13.0 for Windows (SPSS Inc., Chicago, IL). Significance levels were set at P < 0.05.

RESULTS

A total of 545 subjects were enrolled in this study, including 253 patients with AMD and 292 control individuals. Demographic information about the cases and controls are listed in Table 3. In AMD group, 200 patients are affected with neovascular AMD and 53 patients are with atrophic AMD. Among those who diagnosed with neovascular AMD, 134 are with classic

Table 1. Primer Sequence and Concentration in PCR Mixture

Primer Name	Primer Sequence
rs12778366F	CACCGCAACCAAGATGTTTT
rs12778366R	TCCCTGAAATTCGGCACACTG
rs3740051F	CGGTTGAGGAGTGGAGAAG
rs3740051R	CAAATCAGTCCGGCACAG
rs4746720F	TTTCACAAAGGCCTCGGAAGTGT
rs4746720R	CCACAGTTTGGGAAATGCCAGT

For 15 min, then, 2 μL purified PCR product was mixed with 1 μL 10× ligase buffer, 0.25 μL ligase, 0.4 μL 5’ ligation probe mixture (1 μM), and 0.4 μL 3’ ligation probe mixture (2 μM), and 6 μL ultrapure water for ligation reaction. The ligation detection reaction (LDR) parameters were as follows: 38 cycles at 94°C for 1 min and 56°C for 4 min, then 4°C forever. Following the LDR reaction, 0.5 μL LDR reaction product was mixed with 0.5 μL Liz 500 size standard and 9 μL Hi-Di, and incubated at 95°C for 5 min before loaded onto an ABI3730XL Genetic Analyzer (ABI). Data were analyzed using GeneMapper software (version 4.1, Applied Biosystems).

Table 2. Probe Sequence and Concentration in Probe Mixture

Probe Name	Target Allele	Probe Sequence
rs12778366RT	T	TACGGTTATTCGGGCTCGTCTCTCCGACCAGTA
rs12778366RC	C	TCCCCGGTTCGGACTGATATCATCTGTCACCAGT
rs12778366RP	TG	TCTATCTTCTGGAAAGATCATCTCTCCAGT
rs3740051FA	A	TGTTCGTGACAGCGGATATTGCTGCTTTCCTTGTCTTCTTACAGT
rs3740051FG	G	TCTCTCGGTATCATTGGCTGCTTTCCTCTCTTCTTACAGT
rs3740051FP	T	TACACAAACAGAACAGCATCTCCAGT
rs4746720RC	C	TACGGTTATTCGGGCTCGTCTCTGCAAGTGTAGTTAAAAATAATCGAGTAAAGAG
rs4746720RP	AAGTTCAGGTACAGATTTGAGTACTCAGA	

PCR = polymerase chain reaction.
The genotyping data of rs12778366, rs3740051, and rs4746720 showed significant deviations from Hardy–Weinberg equilibrium tests in the AMD group but not in the control group ($P > 0.05$, Table 4).

The details of the allele, genotype frequencies, and summary statistics for these 3 SNPs are shown in Table 5. None of the codominant, dominant, recessive, or allele model revealed any significant association between rs3740051 and rs4746720 with AMD ($P > 0.05$). However, rs12778366 was found to be significantly associated with AMD in recessive and codominant model ($P < 0.05$). We estimated the OR for homozygous carriers of the risk allele C to be 3.227 (95% CI: $1.015–10.265$; $P = 0.036$) for AMD.

DISCUSSION

Mutations in SIRT1 gene have been implicated in obesity, diabetes, Parkinson disease, and myocardial infarctions. After literature reviewed, we selected 3 well-studied SNPs in the SIRT gene, and genotyped a sample of individuals with AMD. rs12778366 and rs3740051 are located at the 5'-flanking region of SIRT1 gene, and rs4746720 located at 3'-UTR of SIRT1 gene. According to the NCBI database, none of these 3 SNPs has definite functional significance. However, some evidences indicated that these 3 SNPs might have potential regulatory function in gene expression. 19,24 In our control group, the minor allele frequency (MAF) of rs12778366, rs3740051, and rs4746720 are 0.151, 0.249, and 0.431, respectively. In HapMap3 database, the MAF of these 3 SNPs in CHB (Han Chinese in Beijing, China) population are 0.144, 0.311, and 0.4, respectively. We showed that the SIRT1 rs12778366 polymorphism is associated significantly with AMD, and estimated the OR in recessive model for homozygous carriers of rs12778366-C at 3.227 for AMD. We also adjusted this result by gender and age using logistic regression analysis, and got a corrected P value of 0.016. Subtype regression analysis also showed significant in both neovascular AMD and atrophy AMD group ($P = 0.030$ and $P = 0.007$, respectively). Though genotyping data showed significant deviations from Hardy–Weinberg equilibrium tests in AMD group, lots of association studies do not require patients group to be in HWE. These studies
consider departure from Hardy–Weinberg equilibrium in patients group as a biological consequence rather than genotyping error, and only require control samples to be in HWE. 29–31

AMD is the leading cause of irreversible central vision loss in elderly Chinese population. Linkage and association studies have implicated genetic modulators of AMD risk related to many mechanistic pathways, including oxidative stress, complement system dysregulation, DNA repair, mitochondrial dysfunction, neovascularization, and microglial recruitment.3,25 Researchers have tried to find genetic determinants for AMD and have proved that SNPs of many genes (eg, CFH, ARM52,34 ELN,35 SKIV2L36) associated with AMD. The expression levels of SIRT1 are different in diverse types of tissues and organs. Jaliffa et al 37 reported that SIRT1 is localized in the nucleus and cytoplasm of cells in all normal ocular structures. Peng et al 38 examined SIRT1 expression, while down-regulation of SIRT1 causes retinal damage through multiple mechanisms.3,8,40,41 These results suggest that SIRT1 may play a role in the protection of the retina and optic nerve against degeneration. There are an increasing number of papers assessing the relationship between SIRT1 and AMD in animal and in vitro studies.17,18,42 rs12778366 located in the promoter region of SIRT1 gene and has been studied in the schizophrenia, type 2 diabetes, systemic lupus erythematosus, glucose tolerance, and longevity patients.20,23,43,44 Lots of studies showed rs12778366 is a possible functional SNP in SIRT1 gene. Sylvia et al reported that carriers of the minor allele of SNP rs12778366 had better glucose tolerance. Recently, Hu et al45 implied that rs12778366 CC homozygous may affect the SIRT1 mRNA expression. These results indicated that rs12778366 in SIRT1 may play a crucial role in gene function. We hypothesize that variants in rs12778366 may account for down-regulation of the protein, since this SNP is located in transcription factor binding site (TFBS).

The major limitation of this study is the relatively small sample size and lack of replication group. Since the molecular mechanism how this genetic mutation influences AMD pathogenesis is not fully understood yet, larger size studies from different population are necessary to confirm the association between this variant with AMD. Furthermore, functional studies of rs12778366 should be conducted for further investigation.

In conclusion, we found that the rs12778366 within the promoter region of SIRT1 was nominally associated with susceptibility to AMD in this Chinese Han population. This finding provides further insight into the underlying genetic character and pathophysiology of the development of AMD.

ACKNOWLEDGMENT

We wish to thank all subjects for participating in our study.

REFERENCES

1. Mitchell P, Wang JJ, Foran S, et al. Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study. Ophthalmology. 2002;109:1092–1097.
2. Klein R, Klein BE, Jensen SC, et al. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology. 1997;104:7–21.
3. Ye H, Zhang Q, Liu X, et al. Prevalence of age-related macular degeneration in an elderly urban Chinese population in China: the Jiangning Eye Study. Invest Ophthalmol Vis Sci. 2014;55:6374–6380.
4. Lavanya R, Jeganathan VS, Zheng Y, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthal Epidemiol. 2009;16:325–336.
5. Laude A, Cackett PD, Vithana EN, et al. Polyoidial choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29.
6. Nakata I, Yamashiro K, Akagi-Kurashige Y, et al. Association of genetic variants on 8p21 and 4q12 with age-related macular degeneration in Asian populations. Invest Ophthalmol Vis Sci. 2012;53:6576–6581.
7. Thakkinstian A, McEvoy M, Chakravarthy U, et al. The association between complement component 2/complement factor B polymorphisms and age-related macular degeneration: a HuGE review and meta-analysis. Am J Epidemiol. 2012;176:361–372.
8. Edwards AO, Ritter R III, Abel KJ, et al. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–424.
9. Gold B, Merriam JE, Zernant J, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–462.
10. Seitsonen SP, Onkamo P, Peng G, et al. Multifactor effects and evidence of potential interaction between complement factor H Y402H and LOC387715 A69S in age-related macular degeneration. PLoS ONE. 2008;3:e3833.
11. Maeda S, Koya D, Araki S, et al. Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. Clin Exp Nephrol. 2011;15:381–390.
12. Dong Y, Guo T, Traurig M, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab. 2011;104:661–665.
13. Zheng T, Lu Y. Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans. Curr Eye Res. 2011;36:449–455.
14. Maloney SC, Antecka E, Odashiro AN, et al. Expression of SIRT1 and DBC1 in developing and adult retinas. Stem Cells Int. 2012;2012:908183.
15. Alves LF, Fernandez BF, Burnier JV, et al. Expression of SIRT1 in ocular surface squamous neoplasia. Cornea. 2012;31:817–819.
16. Mimura T, Kaji Y, Noma H, et al. The role of SIRT1 in ocular aging. Exp Eye Res. 2013;116:17–26.
17. Bhattacharya S, Chaum E, Johnson DA, et al. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p33-Mdm2 association. Invest Ophthalmol Vis Sci. 2012;53:8350–8366.
18. Maloney SC, Antecka E, Granner T, et al. Expression of SIRT1 in choroidal neovascular membranes. Retina. 2013;33:862–866.
19. Figarska SM, Vonk JM, Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS ONE. 2013;8:e58636.
20. Rai E, Sharma S, Kaul S, et al. The interactive effect of SIRT1 promoter region polymorphism on type 2 diabetes susceptibility in the North Indian population. PLoS ONE. 2012;7:e48621.
21. Kishi T, Fukuo Y, Okochi T, et al. No significant association between SIRT1 gene and methamphetamine-induced psychosis in the Japanese population. Hum Psychopharmacol. 2011;26:445–450.
22. Kedenko L, Lamina C, Kedenko I, et al. Genetic polymorphisms at SIRT1 and FOXO1 are associated with carotid atherosclerosis in the SAPHIR cohort. *BMC Med Genet.* 2014;15:112.

23. Cui Y, Wang H, Chen H, et al. Genetic analysis of the SIRT1 gene promoter in myocardial infarction. *Biochem Biophys Res Commun.* 2012;426:232–236.

24. Zhang WG, Bai XJ, Chen XM. SIRT1 variants are associated with aging in a healthy Han Chinese population. *Clin Chim Acta.* 2010;411:1679–1683.

25. Kishi T, Fukuo Y, Kitajima T, et al. SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. *Genes Brain Behav.* 2011;10:257–263.

26. Kilic U, Gok O, Elibol-Can B, et al. SIRT1 gene variants are related to risk of childhood obesity. *Eur J Pediatr.* 2014.

27. Bisson-Lauber A, Boni-Schnetzler M, Hubbard BP, et al. Identification of a SIRT1 mutation in a family with type 1 diabetes. *Cell Metab.* 2013;17:448–455.

28. Zhang A, Wang H, Qin X, et al. Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. *Biochem Biophys Res Commun.* 2012;422:693–696.

29. Oka A, Tamiya G, Tomizawa M, et al. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. *Hum Mol Genet.* 1999;8:2165–2170.

30. Levecque C, Elbaz A, Clavel J, et al. Association between Parkinson’s disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study. *Hum Mol Genet.* 2003;12:79–86.

31. Nejentsev S, Laaksonen M, Tiemari PJ, et al. Intercellular adhesion molecule-1 K469E polymorphism: study of association with multiple sclerosis. *Hum Immunol.* 2003;64:345–349.

32. Liu MM, Chan CC, Tuo J. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics. *Hum Genomics.* 2012;6:13.

33. Huang L, Li Y, Guo S, et al. Different hereditary contribution of the CFH gene between polypoidal choroidal vasculopathy and age-related macular degeneration in Chinese Han people. *Invest Ophthalmol Vis Sci.* 2014;55:2534–2538.

34. Sundaresan P, Vashist P, Ravindran RD, et al. Polymorphisms in ARMS2/HTRA1 and complement genes and age-related macular degeneration in India: findings from the INDEYE study. *Invest Ophthalmol Vis Sci.* 2012;53:7492–7497.

35. Tanaka K, Nakayama T, Yuzawa M, et al. Analysis of candidate genes for age-related macular degeneration subtypes in the Japanese population. *Mol Vision.* 2011;17:2751–2758.

36. Lu F, Shi Y, Qu C, et al. A genetic variant in the SKIV2L gene is significantly associated with age-related macular degeneration in a Han Chinese population. *Invest Ophthalmol Vis Sci.* 2013;54:2911–2917.

37. Jaliffa C, Ameqrane I, Dansault A, et al. Sirt1 involvement in rd10 mouse retinal degeneration. *Invest Ophthalmol Vis Sci.* 2009;50:3562–3572.

38. Peng CH, Cherng JY, Chiou GY, et al. Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. *Biomaterials.* 2011;32:9077–9088.

39. Anekonda TS, Adamus G. Resveratrol prevents antibody-induced apoptotic death of retinal cells through upregulation of Sir1 and Ku70. *BMC Res Notes.* 2008;1:122.

40. Kubota S, Ozawa Y, Kurihara T, et al. Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. *Invest Ophthalmol Vis Sci.* 2011;52:9142–9148.

41. Kubota S, Kurihara T, Ebinuma M, et al. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. *Am J Pathol.* 2010;177:1725–1731.

42. Zhuge CC, Xu JY, Zhang J, et al. Fullerol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. *Invest Ophthalmol Vis Sci.* 2014;55:4628–4638.

43. Consiglio CR, Juliana da Silveira S, Montecioleta O, et al. SIRT1 promoter polymorphisms as clinical modifiers on systemic lupus erythematosus. *Mol Biol Rep.* 2014;41:4233–4239.

44. Han J, Atzmon G, Barzilai N, et al. Genetic variation in Sirtuin 1 (SIRT1) is associated with lipid profiles but not with longevity in Ashkenazi Jews. *Transl Res.* 2014.

45. Hu Y, Wang L, Chen S, et al. Association between the SIRT1 mRNA expression and acute coronary syndrome. *J Atheroscler Thromb.* 2015;22:165–182.