A rare case of intrathoracic *fetus in fetu* / mature teratoma – pathological and imagistic aspects

Alin Dragoș Demetrian¹, Alexandra Floriana Nemes², Adrian Macovei³, Camelia Demetrian⁴, Dana Maria Albulescu⁵, Cristian Constantin⁵

¹Department of Thoracic Surgery, University of Medicine and Pharmacy of Craiova, Romania
²Department of Neonatology, Louis Țurcanu Clinical Emergency Hospital for Children, Timișoara, Romania
³Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, Romania
⁴Department of Pulmonology, Victor Babes Hospital of Infectious Diseases and Pneumothiolesiology, Craiova, Romania
⁵Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, Romania

Abstract

Fetus in fetu (FIF) is a rare entity, with a difficult preoperative diagnosis, frequently being an intraoperative surprise. In recent literature, theories pertaining to its development either assimilate the tumor with a monochorionic twin that halted its evolution, or with a highly differentiated mature teratoma. We present the case of a 27-year-old patient, with a cystic tumor in the anterior mediastinum, which intraoperatively proved to be a rare case of intrathoracic FIF. The clinical presentation lacked any specific clues that would infer such a diagnosis; imaging was partially useful as it showed the possible existence of bone structures, heterogeneously mixed with fatty inclusions and other types of tissue. Upon surgery, the nature of said tumor was clear, and pathology confirmed the FIF diagnosis, showing different types of epithelia and tissue of several organ-like structures that halted in evolution at an early stage. Concluding our presentation, we can say that the presence of an axial skeleton as well as differentiated tissue types of several organs could confirm our case of FIF.

Keywords: *fetus in fetu*, mediastinum, tumor, pathological aspects, imaging.

Introduction

Fetus in fetu (FIF) is a rare congenital anomaly with an incidence of one per 500 000 births [1]. Taher et al. found 224 FIF reported cases [2]. There are two main theories regarding FIF development: the most prominent is that FIF is in fact a monochorionic twin, which is stopped in evolution and then incorporated into one’s body [3]. According to Rahman et al., the mechanism could be either fissional or fusional, more evidence pointing toward fusional (dianiotic) mechanism [4]. A more fringe one is that a FIF in fact a highly differentiated “fetiform” mature teratoma, a nongerminomatous germ cell tumor (NGGCT) class [5].

Johann Friedrich Meckel introduced the FIF concept as early as 18th century, were advanced genetic and histological test were largely unavailable, but little progress has been showing since, and as today a FIF case definition still includes morphological features, and as per Willis’ definition, a well-developed vertebral axis is mandatory for case definition. Well-developed organs are not mandatory for case definition but are often encountered in reports. Because highly developed teratoma have also been reported, the Willis requirement of fetal-like appearance beyond notochord–neural tube–spine development is still, as today, the marker for FIF. The difference is important as mature teratomas are associated with higher malignant transformation risk, so the surgery should follow oncological principles [6].

The most common site for FIF is retroperitoneum, but they have in found in cranial cavity [7, 8], oral cavity [9], neck, thorax [10], liver [11], spleen, adrenal gland and sacrococcygeal regions [12]. Normally, most cases are reported in infants, but several cases have been reported in adults. The diagnostic is most commonly put by ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) being indicated for differential diagnostic and preoperative setup. Certitude diagnostic is based solely on after operatory histological examination. Of course, the only treatment is surgical sanction [13].

There are genetic criteria for study FIF, but in a 1999–2013 metanalysis, the genetic testing was seldom use [14]. Regarding FIF in adults, Menon study found six male cases (20–47 years old) and two female cases (17–30 years old), all located retroperitoneal, with one exception [15], already mentioned. There are reports of thoracic FIF, but most in infants [10, 16, 17]. The only report like our case that was found was Massad et al. [18]. The FIF mediastinal location is rare, with only five cases described so far, only two of which were located in the anterior mediastinum [5].

Aim

We present a rare case of anterior mediastinal tumor that presented both characteristic features of FIF and mature teratoma aspects. These aspects of the mediastinal tumor were analyzed by CT and after surgical resection by macroscopically and microscopically morphopathological and histological study of the surgical specimen.
Case presentation

We present the case of a 27-year-old man, currently smoking, with a very good clinical status, who was admitted in our Department of Thoracic Surgery for chest discomfort as the only and non-permanent symptom. The chest X-ray showed an oval opacity, well-defined, of sub-mediastinal intensity, with the most likely mediastinal affiliation (Figure 1).

A CT scan examination with contrast substance was decided, which revealed the following aspects: well-defined 10/8 cm mediastinal mass, located in the anterior mediastinum, containing fat densities, soft parts, and bone-like structures; sagittal and coronal reconstructions demonstrated the existence of vertebrae and cox bones (Figure 2).

The radio-imaging investigations led us to the suspicion of a mature mediastinal teratoma, and after checking the biochemical exams (normal values), as well as the results of cardiology and cardiac US, we decided surgical resection. Because of the relatively large size and location of the tumor, it has been decided to use the median completes sternotomy as the surgical approach. Intraoperatively, a cystic tumor of approximately 10/6 cm located in the left anterior part of the mediastinum, with thickened walls, relatively well delimited, excepting a tight adherence to the aortic arch.

Initially, a complete excision was attempted, but due to adherence to the aortic arch, it was necessary to previously puncture the tumor. After a small incision of the anterior wall, 50 mL of pus was evacuated, as well as hair tangles that were in contact with a solid tumor of tough, bony, irregular structure with dimensions of about 6/5 cm that did not have adhesions to the external cystic wall. This internal structure was mobile and floating in the liquid pus so that it could easily be extracted after widening the cystic wall incision. The solid inner tumor was macroscopically examined (and subsequently measured and photographed – Figure 3) having an unusual look very similar to a fetal skull: almost perfectly round shape, hair tresses, palpebral and auricular sketches and even a well-developed canine (Figure 4).

After the removal of this inner tumor, the remaining pus content was also evacuated. The quasi-complete excision of the cystic wall was practiced, with the abandonment of a minimum area of approximately 1/1 cm on the arch of the aorta.

The entire intervention was carried out without major blood losses and without the opening of the pleural spaces despite the large dimensions of the tumor. After thoroughly washing with hydrogen peroxide and drainage of the anterior mediastinum, the sternotomy was closed with three stainless steel wires.

The postoperative course was simple, uneventful, allowing rapid suppression of the mediastinal drain and patient discharge on the fourth postoperative day. Sternotomy was cured per primam, the radiological control was normal, the postoperative pain was minimal and rapid postoperative recovery was achieved.

The anatomopathological examination revealed respiratory and mucosal epithelial gland (Figure 5), adipose tissue with giant multinucleated cells (Figure 6), skin with sebaceous glands and hair (Figure 7), compact bone tissue and bone marrow (Figure 8).
A rare case of intrathoracic fetus in fetu / mature teratoma – pathological and imagistic aspects

Figure 4 – (A–C) Macroscopic details and size of the tumor, as observed immediately after surgical removal.

Figure 5 – Respiratory epithelium and mucoserous glands (HE staining, ×200). HE: Hematoxylin–Eosin.

Figure 6 – Adipose tissue with inflammatory infiltration and giant multinucleated cells (HE staining, ×200).

Figure 7 – Tegmentum with sebaceous glands and hair (HE staining, ×200).

Figure 8 – Compact bone tissue and bone marrow (HE staining, ×100).

Discussion

The presence of a well-defined vertebral axis is crucial for Willis’ definition, but in Prescher’s metaanalysis the presence of a well-developed vertebral column was identified in 76% of the included cases. Prescher concludes that FIF and mature teratoma are not a different pathology, but the same one stopped in different development stages [14]. The differentiation can clearly be made with other types of tumors, including metastases from other cancers [19], and postoperative recovery is usually satisfactory [20].

According to Willis’ definition, cited by Prescher [14], the features that distinguish a FIF from a fetiform teratoma are: (i) a separate spinal column, evidence of a neural tube development, followed by metamerization, (ii) symmetrical development, (iii) organs developed in a “synchronized” way, so they have a similar degree of maturation.

Prescher [14] review found that a quarter of cases had no spinal column, so many reports of a FIF lack this element.

The Gunaydin et al. report [17] found a well-developed spine in two of the three cases of thoracic FIF in infants. Mohta & Khurana [21] suggested that at least 10% of FIF cases reported in the literature have no evidence of an axial skeleton. To complicate matters even further, there are reports of synchronous or sequential FIF–teratoma, with genetic grouping showing identical results in the affected infant and FIF/teratoma.

Gangopadhyay et al. [22] showed a clear identification of a vertebral column proving that fetal development of the included twin had advanced at least beyond the primitive streak stage (12 to 15 days of gestation) to a notochord, which is the precursor of the vertebral column.

Spencer [6] proved that due to statistically significant association of the FIF/teratomas in conjoined twins, all those anomalies formed a “development continuum”. Common patterns found were the history of familiar twinning, female dominance, and frequent twin/triplet presentation. Wobenjo & Osawa [23] case report states...
that FIF and teratomas can coexist, supporting Spencer theory of development continuum.

Spencer [6] proposed as the principal etiological factor the absence of heart development, subsequently followed by brain maldevelopment. Sharma also proposed a similar mechanism by following vascular distribution in FIF. He proposed the following as diagnostic criteria for FIF: (i) amniotic sac, (ii) normal skin, (iii) well-developed anatomical parts, (iv) attached by proper vasculature.

Pace et al. [24] defined in a case report the fetiform teratoma, a subset of mature teratoma. According to Pace et al., mature fetiform teratoma is even rarer than FIF, with about 25 cases being reported so far.

Although Pace et al. gives credit to classical FIF definition, admits that a differential diagnostic between fetiform teratoma and FIF is sometimes hard to make.

According to Sharma et al. [25], common organs for FIF include spine and limbs, with gastrointestinal and thymic tissues more often encountered. Thyroid, parathyroid, pancreas, spleen, kidney, adrenal, tests, ovaries, urinary bladder, tongue, salivary glands, lymph nodes, trachea, and teeth tissues were also reported. Surana et al. [8] showed that most FIF report have spinal column (over 90%) and limbs (over 80%), and all were anencephalic. Most site was retroperitoneal with abdomen, scrotum, cranium, limbs (over 80%), and all were anencephalic. They also add that skeletal musculature was never found in a teratoma.

Weiss et al. [39] classified as teratoma a case with rudimentary spine, although many similar cases were reported as FIF. They also add that skeletal musculature was never found in a teratoma.

Kumar et al. [38] case report showed that although their case did not follow exactly Willis or Spencer rules, the evidence of skin and bone formation would be strong enough support for FIF, also calling for a revised definition based on Spencer modified criteria.

Weiss et al. [39] classified as teratoma a case with rudimentary spine, although many similar cases were reported as FIF. They also add that skeletal musculature was never found in a teratoma.

Cingel et al. [5] described the fourth reported case of FIF located in the thorax, and the second case located in the anterior mediastinum.

Recent reports of FIF cases in adults were scarce. In our case, the mediastinal mass presented two vertebrae, ribs and cox bones anteriorly articulated, so we can state the presence of the axial skeleton as the basic feature of the FIF. But we have not found individual organs or limbs. Our histopathological analysis revealed the presence of tegument, fat, bone tissue, respiratory epithelium.

Depending on the tumor-adjacent anatomical structures, clinical manifestations may vary from a simple chest discomfort to respiratory or cardiac disorders due to the compressive effect of the tumor on the airway, heart, or large vessels.

There are also described cases of broken teratomas in respiratory tract or lung tissue, followed by infectious syndrome.

The small-size teratomas with no mass effect on adjacent mediastinal structures may remain undiagnosed, and their discovery may be incidental when conducting radio-imaging investigations for another pathology.

The pluripotency of teratomas (i.e., the ability to form several types of cells), derives from the fact that they can give birth to very varied anatomical structures including hair, tooth, pituitary gland, and even fully formed eyeball.

So remains this question: mature teratoma or FIF?

In our case, we have the following aspects: vertebrae are present; there is a tissue differentiation close to the organ differentiation of the three embryonic layers: ectoderm (sebaceous glands, hair), mesoderm (bones, adipose tissue) and endoderm (respiratory epithelium). Also, the mediastinal location, although very rare, is more common in fetus than in teratoma (present in gonads – most often ovaries-dermoid
cysts or pelvis). But the epithelium surrounding the formation is pavementous, characteristic of the teratoma and not cubic, as mentioned in the FIF cases.

We will follow the case for at least two years and then will report the presence/absence of recurrences or malignant transformation.

Conclusions

The presence of anatomical structures of the axial skeleton, but the absence of well differentiated organs in our case, demonstrates that the two entities, the FIF and the mature teratoma, cannot be distinguished clearly.

Conflict of interests

The authors declare that they have no conflict of interests.

Authors’ contribution

Alin Dragoș Demetrian and Alexandra Floriana Nemeș equally contributed to this article and share main authorship.

References

[1] Matsubara N, Akasaka Y, Kanagaki M, Okamoto S. A case report of fetus in fetu with an aorta-like structure visualized by contrast-enhanced CT. Radiol Case Rep, 2020, 15(12):2645–2648. https://doi.org/10.1016/j.radcr.2020.10.006 PMID: 3308830 PMCID: PMC7567927

[2] Taher HMA, Abdellatif M, Wishahy AMK, Waheeb S, Saadeldin Y, Kaddish S, Abdussattar AH, Osman MA, El Tagh GH, Elbarbary MM, Khairi A, Tawfik S, Anis S, Anis E, Farouk M, Abdellatiffah AH, Muenterer OJ. Fetus in fetu: lessons learned from a large multicenter cohort study. Eur J Pediatr Surg, 2020, 30(4):342–349. https://doi.org/10.1055/s-0039-1697675 PMID: 31770763

[3] Basu A, Jagdish S, Iyengar KR, Basu D. Fetus in fetu or differentiated teratomas? Indian J Pathol Microbiol, 2006, 49(4):563–565. PMID: 17183856

[4] Rahman MM, Chakravarti S, Barua T. Fetus in fetu: a case report from a Bangladeshi girl. Hum Pathol Case Rep, 2020, 22:200450. https://doi.org/10.1016/j.epch.2020.0450 https://www.sciencedirect.com/science/article/pii/S2214330020300997?via%3Dihub

[5] Cingel V, Durdik S, Babala J, Polak S, Varga I. Fetus in fetu: review of the literature. Pediatr Surg Int, 2012, 28(9):975–982. https://doi.org/10.1007/s00385-012-2373-x PMID: 22391033

[6] Spencer R. Parasitic conjoined twins: external, internal (fetuses or fetiform teratoma?), and detached (acardiacs). Clin Anat, 2006, 19(1):286–288. https://doi.org/10.1002/ca.20133 PMID: 16224779

[7] Yang ST, Leow SW. Intracranial fetus-in-fetu: CT diagnosis. AJNR Am J Neuroradiol, 1992, 13(5):1326–1329. PMID: 14148222 PMCID: PMC3835217

[8] Surana A, Aggarwal A, Krishnan V, Malik A, Misra RN. Intracranial fetus-in-fetu – a pediatric rarity. World Neurosurg, 2020, 139:286–288. https://doi.org/10.1016/j.wneu.2020.03.156 PMID: 32247796

[9] Aslanabadi S, Spinner RJ, Zarintan S, Ghasemi B, Jabbari-Moghaddam Y, Khaki AA, Sadat AD. A neonate with cleft palate and a fetal mass in the oral cavity: a rare case of an oral fetus-in-fetu. Int J Pediatr Otorhinolaryngol, 2007, 71(10):1617–1622. https://doi.org/10.1016/j.ijporl.2007.05.033 PMID: 17626706

[10] Reddy RK, Kanniyani L, Srimurup S, Malleboyina R, Irfan GM, Sharab H, Kannepalli S. Thoracic fetus in fetu. J Indian Assoc Pediatr Surg, 2012, 17(4):178–179. https://doi.org/10.4103/1016/s002-2348(979)09033-0 PMID: 10626875

[11] Ji Y, Song B, Chen S, Jiang X, Yang G, Gao X, Xiang B. Fetus in fetu in the scrotal sac: case report and literature review. Medicine (Baltimore), 2015, 94(32):e1322. https://doi.org/10.1097/MD.0000000000011202 PMID: 26266375 PMCID: PMC4616709

[12] Ruffo G, Di Meglio L, Di Meglio L, Sica C, Resta A, Cicatiello R. Fetus-in-fetu: two case reports. J Matern Fetal Neonatal Med, 2019, 32(17):2812–2819. https://doi.org/10.1080/14767058.2018.1494207 PMID: 29804477

[13] Kumar A, Paswan SS, Kumar B, Kumar P. Fetus in fetu in an adult woman. BMJ Case Rep, 2019, 12(8):e230835. https://doi.org/10.1136/bcr-2019-230835 PMID: 31409619 PMCID: PMC6770597

[14] Xiao wen M, Lingxi C, Song L, Shengbao P, Xiaohong Y, Xinghai Y. Rare fetus-in-fetu: experience from a large tertiary pediatric referral center. Front Pediatr, 2021, 9:678479. https://doi.org/10.3389/fped.2021.678479 PMID: 34109141 PMCID: PMC8180561

[15] Jiao J, Rong X, Zhen D, Zhi C, Xian Y. Fetus in fetu: a rare condition or common occurrence? Cases J, 2009, 2:e929247. https://doi.org/10.12659/AJCR.929247 PMID: 19719443 PMCID: PMC3208714

[16] Gangopadhyay AN, Srivastava A, Srivastava P, Gupta DK, Sharma SP, Kumar V. Twins fetus in fetu – a pediatric rarity. World Neurosurg, 2020, 134:292–296. https://doi.org/10.1016/j.wneu.2020.03.156 PMID: 32247796

[17] Prate P, Sacks MA, Goodman LF, Tagge EP, Radulescu A. Fetus in fetu – a continued controversy. Indian J Surg, 2011, 73(5):372–374. https://doi.org/10.1007/s12262-011-0251-4 PMID: 23024547 PMCID: PMC3208714

[18] Mohta A, Khurana N. Fetus-in-fetu or well-differentiated teratoma – a continued controversy. Indian J Surg, 2017, 79(5):372–374. https://doi.org/10.1007/s12262-011-0251-4 PMID: 23024547 PMCID: PMC3208714

[19] Fang Y, Liu X, Hu Y. Ultrasound prenatal diagnosis of retroperitoneal cystic mass: fetiform teratoma or fetus in fetu? Case Rep Radiol, 2021, 2021:6660277. https://doi.org/10.1155/2021/6660277 PMID: 33628563 PMCID: PMC7895588

[20] Faizi FR, Radosky N, Aam MT. Fetus in fetu or fetiform teratoma? Report of two cases. J Pediatr Surg Case Rep, 2020, 61:101605. https://doi.org/10.1016/j.epsc.2020.101605 https://www.sciencedirect.com/science/article/pii/S2213576202032967?via%3Dihub

[21] Heffetz SA, Alrabeaeh A, Brown BS, Lau H. Fetus in fetus: a fetiform teratoma. Pediatr Pathol, 1988, 8(2):215–226. https://doi.org/10.3109/15513818809022299 PMID: 3045784

[22] Gonzalez-Crusi F, Winkle RF, Mirkin DL. Sacrococcygeal teratomas in infants and children: relationship of histology and prognosis in 40 cases. Arch Pathol Lab Med, 1978, 102(8):420–425. PMID: 580884

[23] Estabrook MS, Klein RB, Wilson K, Yoon YS, Dayan MC. Ultrasound prenatal diagnosis of fetus-in-fetu. Ultrasound Obstet Gynecol, 2001, 18(1):98–99. https://doi.org/10.1046/j.1460-3766.2001.00469.x PMID: 11489230
[32] Boyce MJ, Lockyer JW, Wood CB. Foetus in foetu: serological assessment of monozygotic origin by automated analysis. J Clin Pathol, 1972, 25(9):793–798. https://doi.org/10.1136/jcp.25.9.793 PMID: 4673613 PMCID: PMC477513

[33] Harms D, Zahn S, Göbel U, Schneider DT. Pathology and molecular biology of teratomas in childhood and adolescence. Klin Padiatr, 2006, 218(6):296–302. https://doi.org/10.1055/s-2006-942271 PMID: 17080330

[34] Miura S, Miura K, Yamamoto T, Yamanaka M, Saito K, Hirabuki T, Kurosawa K, Harada N, Ishizaki-Yamasaki Y, Matumoto N, Hirahara F, Yoshiura K, Masuzaki H, Nikawa N. Origin and mechanisms of formation of fetus-in-fetu: two cases with genotype and methylation analyses. Am J Med Genet A, 2006, 140(16):1737–1743. https://doi.org/10.1002/ajmg.a.31362 PMID: 16835914

[35] Ji Y, Chen S, Zhong L, Jin S, Kong F, Wang Q, Li C, Xiang B. Fetus in fetu: two case reports and literature review. BMC Pediatr, 2014, 14:88. https://doi.org/10.1186/1471-2431-14-88 PMID: 24693883 PMCID: PMC3996905

[36] Peterson CM, Buckley C, Holley S, Menias CO. Teratomas: a multimodality review. Curr Probl Diagn Radiol, 2012, 41(6):210–219. https://doi.org/10.1067/j.cpradiol.2012.02.001 PMID: 23009771

[37] Carter BW, Marom EM, Deterbeck FC. Approaching the patient with an anterior mediastinal mass: a guide for clinicians. J Thorac Oncol, 2014, 9(9 Suppl 2):S102–S109. https://doi.org/10.1097/JTO.0000000000000294 PMID: 25396308

[38] Kumar AN, Chandak GR, Rajasekhar A, Reddy NC, Singh L. Fetus-in-fetu: a case report with molecular analysis. J Pediatr Surg, 1999, 34(4):641–644. https://doi.org/10.1016/s0022-3468(99)90095-7 PMID: 1023534

[39] Weiss JR, Burgess JR, Kaplan KJ. Fetiform teratoma (homunculus). Arch Pathol Lab Med, 2006, 130(10):1552–1556. https://doi.org/10.1097/01.lab.0000220141.45099.7e PMID: 17090201

[40] Asteriou C, Barbetakis N, Kleontas A, Konstantinou D. Giant mediastinal teratoma presenting with paroxysmal atrial fibrillation. Interact Cardiovasc Thorac Surg, 2011, 12(2):308–310. https://doi.org/10.1093/icvts/2010.253039 PMID: 21075832

[41] Man MA, Arghir OC, Man S, Streba CT, Olteanu M, Nitu M. Fatal paradoxical cryptic military tuberculosis and immune reconstitution disease in a young non-HIV immunocompromised male patient: case report with autopsy findings. Rom J Morphol Embryol, 2014, 55(2):453–457. PMID: 24970001

[42] Serraj M, Lakrabi M, Ghalimi J, Ouadnouni Y, Smahi M. Mediastinal mature teratoma with complex rupture into the lung, bronchus and skin: a case report. World J Surg Oncol, 2013, 11:453–457. PMID: 24970001

[43] de Lagausie P, de Napoli Cacci S, Stempfle N, Truong QD, Vuillard E, Ferkadji L, Aigrain Y. Highly differentiated teratoma and fetus-in-fetu: a single pathology? J Pediatr Surg, 1997, 32(1):115–116. https://doi.org/10.1016/s0022-3468(97)90112-3 PMID: 9021587

Corresponding authors
Dana Maria Albulescu, MD, PhD, Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Dolj County, Romania; Phone +40742–745 748, e-mail: med73danam@yahoo.com
Adrian Macovei, Teaching Assistant, MD, PhD, Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Dolj County, Romania; Phone +40351–443 561, e-mail: adrian.macovei@gmail.com

Received: August 25, 2021
Accepted: December 30, 2021