On r-Stirling Type Numbers of the First Kind

Cristina B. Corcino¹, Roberto B. Corcino²,*

¹Mathematics Department, Cebu Normal University, Cebu City, Philippines 6000
²Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City, Philippines 6000
*Corresponding author: rcorcino@yahoo.com

Received March 25, 2019; Revised April 28, 2019; Accepted May 16, 2019

Abstract Some combinatorial properties of r-Stirling numbers are proved. Moreover, two asymptotic formulas for r-Stirling numbers of the first kind derived using different methods are discussed and corresponding asymptotic formulas for the r-Stirling type numbers of the first kind are obtained as corollaries.

Mathematics Subject Classification (2010). 11B73, 41A60.

Keywords: asymptotic analysis, asymptotic formula, Stirling numbers, generalized Stirling numbers

Cite This Article: Cristina B. Corcino, and Roberto B. Corcino, “On r-Stirling Type Numbers of the First Kind.”
Turkish Journal of Analysis and Number Theory, vol. 7, no. 3 (2019): 65-69. doi: 10.12691/tjant-7-3-2.

1. Introduction

The r-Stirling numbers and r-Stirling type numbers are generalizations of the classical Stirling Numbers of the first kind. Introduced first by Andrei Broder [1], the r-Stirling numbers of the first kind count the number of permutations of the set $\{1,2,\ldots,n\}$ with m cycles such that the first r elements are in distinct cycles. Broder denoted these numbers by n m_r. Since $\text{n m}_r=0$ for $m<r$, this study considers the r-Stirling numbers of the first kind n m+r_r, where n,m,r are positive integers. These numbers satisfy the relation

\[z(z+1)(z+2)\ldots(z+(n-1))=\sum_{m=0}^{n} \text{n m+r}_r (z-r)^m. \]

where α,γ are complex numbers. Taking $\alpha = -1$ and $\gamma = r$, (3) becomes

\[z(z+1)(z+2)\ldots(z+(n-1))=\sum_{m=0}^{n} S^{-1,r}_{n,m} (z-r)^m, \]

which is exactly (1). Thus,

\[\text{n m+r}_r = S^{-1,r}_{n,m}. \]

Taking $\alpha = -\lambda$ and $\gamma = r$, (3) becomes

\[z(z+\lambda)(z+2\lambda)\ldots(z+(n-1)\lambda)=\sum_{m=0}^{n} S^{-\lambda,r}_{n,m} (z-r)^m \]

which is exactly (2). Thus,

\[\text{n m+r}_r = S^{-\lambda,r}_{n,m}. \]

In this paper, some combinatorial formulas for r-Stirling numbers are obtained. Moreover, two asymptotic formulas for these numbers derived using two different methods are mentioned and corresponding asymptotic formulas for the r-Stirling type numbers of the first kind are obtained as corollaries. These formulas may be used to compute values of these numbers when the parameters m and n are large within a certain range of m.

2. Some Combinatorial Properties

The r-Stirling numbers of the second kind, denoted by $\{n\}_k$, are defined by A.Z. Broder as the number of ways to partition the set $\{1,2,\ldots,n\}$ into k nonempty subsets such that the first r elements in S must be in different
subsets. The total number of partitions is defined to be the \(r \)-Bell numbers \([3]\) denoted by \(B_{n,r} \). That is,

\[
B_{n,r} = \sum_{k=1}^{n} (-1)^{n-k} \left\{ \sum_{j=0}^{k} j^{k} \right\} \binom{n}{k}.
\] (7)

If the linear order of the elements in each subset of the partition counts, then the number of ways to partition \(S \) into \(k \) nonempty subsets such that the first \(r \) elements in \(S \) must be in different subsets is equal to the \(r \)-Bell numbers, denoted by \(\left[\begin{array}{c} n \\ k \end{array} \right] _{r} \). Motivated by the work of Feng Qi \([4]\) the \(r \)-Bell numbers can also be expressed in terms of \(r \)-Lah numbers \([5]\) and \(r \)-Stirling numbers of the second kind as follows,

\[
B_{n,r} = \sum_{k=1}^{n} (-1)^{n-k} \left\{ \sum_{j=0}^{k} j^{k} \right\} \binom{n}{k}.
\] (8)

The proof makes use of the following identity in \([5]\)

\[
\binom{n}{k} = \sum_{j=k}^{n} (-1)^{n-j} \left\{ j \right\} \binom{j}{k},
\] (9)

and inverse relation

\[
b_{n} = \sum_{j=0}^{n} a_{j} \Leftrightarrow a_{n} = \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} b_{j}.
\]

An identity that involves \(r \)-Stirling numbers of the first kind parallel to (8) is given in the following theorem.

Theorem 2.1. For \(n \) and \(r \) positive integers, the following explicit formula holds

\[
r + 1_{m} = \sum_{j=0}^{n} (-1)^{j-k} \left\{ \sum_{j=0}^{k} j^{k} \right\} \binom{n}{j} j \binom{n}{j}.
\] (10)

Proof. To establish (10), another form of inverse relation will be needed. Using the orthogonality relation

\[
\sum_{j=k}^{n} (-1)^{j-k} \binom{n}{j} j^{k} \binom{j}{k} = \delta_{n,k},
\]

where \(\delta_{n,k} \) is the Kronecker delta, one can easily prove that

\[
b_{k} = \sum_{j=k}^{n} j^{k} \binom{n}{j} j \binom{n}{j}.
\] (11)

Note that (9) can be expressed as

\[
(-1)^{k} \binom{n}{k} = \sum_{j=k}^{n} (-1)^{j-k} \binom{j}{k} (-1)^{j} \binom{n}{j}.
\] (12)

By making use of inverse relation in (11), the identity (12) with

\[
a_{k} = (-1)^{k} \binom{n}{k} \quad \text{and} \quad b_{j} = (-1)^{j} \binom{n}{j},
\]

can be expressed as

\[
(-1)^{k} \binom{n}{k} = \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \binom{n}{j},
\]

which gives

\[
\binom{n}{k} = \sum_{j=0}^{n} (-1)^{j-k} \binom{j}{k} \binom{n}{j}.
\]

Summing up both sides over \(k \) from 0 to \(n \) yields

\[
\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} (-1)^{j-k} \binom{j}{k} \binom{n}{j}.
\]

This is equivalent to

\[
r + 1_{m} = \sum_{j=0}^{n} (-1)^{j-k} \left\{ \sum_{j=0}^{k} j^{k} \right\} \binom{n}{j} j \binom{n}{j},
\] (13)

where \((x)_n = x(x + 1)(x + 2) \ldots (x + n - 1) \).

The preceding equation counts the total number of permutations of \(S \) such that the first \(r \) elements of \(S \) are in distinct cycles. We observe that the structure of the identity (13) is analogous to (8). Thus, one may try to construct another combinatorial interpretation for \(r \)-Bell numbers using (8) which may be the basis to construct another combinatorial interpretation for \((r + 1)_n \).

The first values of the classical Stirling numbers of the first kind can be computed using the recurrence relation

\[
s(n,k) = s(n-1,k-1) - s(n-1,k),
\] (14)

and the Schlömilch formula

\[
s(n,k) = \sum_{r=0}^{n-k} (-1)^{i+r} \binom{n}{j} \binom{n-1+r}{j-k} \binom{2n-k}{n-k-r} \frac{(r-j)^{r-k+n}}{r!}.
\] (15)

On the other hand, the first values of \(r \)-Stirling numbers of the first kind can also be computed using the recurrence relation (see \([1]\))

\[
\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}.
\] (16)

And the Schlömilch-type formula \([6]\)

\[
\binom{n+m}{k+r} = \sum_{m-k}^{n} \sum_{h=0}^{m-k} (-1)^{m+k+h+i} \binom{n}{m} \binom{h}{j} \binom{m-h}{m-k-h} \frac{(h-j)^{m-k+h}}{h!} r_{m}.\]
(17)

This explicit formula is derived in \([6]\) using the following exponential generating function

\[
\sum_{n} \frac{n^{r}}{k+r} z^{n} = \frac{1}{k!} \left[\frac{1}{1-z} \right] \left[\ln \left(\frac{1}{1-z} \right) \right]^{k}.
\] (18)

and the facts that
In this paper,11 \(ln !! 1 \)

Theorem 3.1. \([\text{C.B. Corcino, L.C. Hsu and E.L. Tan, [8]}]\)

approximation: \(\text{Cauchy-Integral Formula to (1) gives} \)

holds,

and \(\) the desired explicit formula for \(r\)-Stirling numbers of the first kind is easily obtained.

3. Asymptotic Formulas for \(r\)-Stirling Numbers of the First Kind

Let \(C \) be any closed contour enclosing \(r \). Applying the Cauchy-Integral Formula to (1) gives

\[
\left[\frac{n+r}{m+r} \right]_{r} = \frac{1}{2\pi i} \int_{C} \frac{z(z+1)(z+2)\ldots(z+n-1)}{(z-r)^{m+1}} dz. \tag{21}
\]

A modified saddle point method used in \([7]\) was applied to the integral above to obtain the following asymptotic approximation:

Theorem 3.1. \([\text{C.B. Corcino, L.C. Hsu and E.L. Tan, [8]}]\)

For positive integers \(m, n \) and \(r \), the asymptotic formula holds,

\[
\left[\frac{n+r}{m+r} \right]_{r} \sim e^{B} g(s_{0}) (n-1)_{m} r^{a-m-1} \frac{R^{a-m-1}}{m!}, \tag{22}
\]

as \(n \to \infty \) valid uniformly with \(m \) in the range \(0 < m < n \), where

\[
s_{0} = \frac{nr}{n-m}, \tag{21}
\]

\[
B = \phi(z_{0}) - nlog s_{0} + nlog(s_{0} - r), \tag{24}
\]

and

\[
g(s_{0}) = \frac{1}{z_{0} - r} \sqrt{s_{0}(s_{0} - r)(n-m)} \phi''(z_{0}). \tag{25}
\]

The number \(z_{0} \) is the unique positive solution to the equation \(\phi(z) = 0 \), the function \(\phi(z) \) is

\[
\phi(z) = log[z(z+1)(z+2)\ldots(z+n-1)] - mlog(z-r), \tag{26}
\]

and

\[
(n-1)_{m} = (n-1)(n-2)\ldots(n-1-m+1). \tag{26}
\]

Remark: The number \(z_{0} \) may be obtained using mathematica.

Using the method in \([9]\), Vega and Corcino \([10]\) obtained an asymptotic formula for the generalized Stirling numbers of the first kind which is given by

\[
S_{n,m}^{\alpha,r} \sim \frac{(\alpha)^{-m} R^{a} (R-n) + 1 + 3C_{4} H^{2} - 15C_{3} H^{2}}{(2\pi H)^{1/2} R^{m} \Gamma(R) \Gamma(R-n)} \tag{27}
\]

as \(n \to \infty \) valid for \(m \) in the range \(h(n) < m < n - O(n^{1/2}), \) where \(h(n) \) is a function such that \(\lim_{n \to \infty} h(n) = \infty \) and \(0 < \delta < 1, \) \(\Gamma(x) \) is the gamma function,

\[
\nu = \frac{a}{2} < 1. \tag{27}
\]

In this paper, \(h(n) = log n \) and \(\delta = \frac{1}{2} \). The \(H \) that appears in (27) is

\[
H = \sum_{h=1}^{n-1} \frac{(h-\nu) R}{R + h - \nu}, \tag{28}
\]

and \(R \) is the unique positive solution to the equation

\[
\sum_{h=1}^{n-1} \frac{R}{R + h - \nu} = m - 1. \tag{29}
\]

The constants \(C_{3} \) and \(C_{4} \) are given by

\[
C_{3} = \frac{1}{6} \left(3H - 2(m-1) + 2 \sum_{h=1}^{n-1} \frac{R^{3}}{R + h - \nu} \right), \tag{30}
\]

and

\[
C_{4} = \frac{1}{24} \left[36C_{3} - 11H + 6(m-1) - 6 \sum_{h=1}^{n-1} \frac{R^{4}}{R + h - \nu} \right]. \tag{31}
\]

With a little modification in the computations in \([10]\), the same formula as (27) is obtained when

\[
H = \sum_{h=0}^{n-1} \frac{(h-\nu) R}{R + h - \nu}, \tag{32}
\]

and \(R \) is the unique positive solution to the equation

\[
\sum_{h=0}^{n-1} \frac{R}{R + h - \nu} = m. \tag{33}
\]

Since \(\left[\frac{n+r}{m+r} \right]_{r} = S_{n,m}^{a,r} \) \([\text{see [6]}]\), taking \(a = -1, \gamma = r \) in (27), the following asymptotic formula for the \(r\)-Stirling numbers of the first kind is obtained:

Theorem 3.2. \((\text{Corcino-Corcino, [11]}\) \)

For positive integers \(m, n \) and \(r \), and as \(n \to \infty \), the following asymptotic formula for the \(r\)-Stirling numbers of the first kind holds:

\[
\left[\frac{n+r}{m+r} \right]_{r} = \frac{\Gamma(R+r+n)}{(2\pi H)^{1/2} R^{m} \Gamma(R)} \left[1 + \frac{3C_{4}}{H^{2}} - \frac{15C_{3}^{2}}{H^{2}} \right], \tag{34}
\]

valid for \(m \) in the range \(log n < m < n - O(n^{1/2}) \), where \(R \) is the unique positive solution to the equation

\[
\sum_{h=0}^{n-1} \frac{R}{R + h + r} = m, \tag{35}
\]

and

\[
H = \sum_{h=0}^{n-1} \frac{(h+r) R}{R + h + r}, \tag{36}
\]
The corresponding constants C_3 and C_4 are as follows,

$$C_3 = \frac{1}{6} \sum_{h=0}^{n-1} \frac{R(h+r)(3R+h+r)}{(R+h+r)^3}, \quad (37)$$

$$C_4 = \frac{1}{24} \sum_{h=0}^{n-1} \frac{R(h+r)[(-3R^2 + 4R(h+r)+(h+r)^2]}{(R+h+r)^4}. \quad (38)$$

The next lemma gives the connection formula for the z_0 defined in Theorem 3.1. and the number R defined in Theorem 3.2.

Lemma 3.3. (Corcino-Corcino, [11]) The numbers z_0 and R satisfy the relation $z_0 = R + r$.

4. r-Stirling Type Numbers of the First Kind

Applying the Cauchy Integral Formula to (2) we obtain

$$\left[\begin{array}{c} n+r \\ m+r \end{array} \right]_{\lambda,r} = \frac{1}{2\pi i} \int_{C} \frac{z^{\lambda} (z+2\lambda) \ldots (z+n-1\lambda)}{(z-r)^{m+1}} \, dz$$

$$= \lambda^{n-m} \frac{1}{2\pi i} \int_{C} \frac{u(u+1)(u+2) \ldots (u+n-1)}{(u-\eta)^{m+1}} \, du$$

$$= \lambda^{n-m} \left[\begin{array}{c} n+\eta \\ m+\eta \end{array} \right]_{\eta} = \lambda^{n-m} S_{n,m}^{1,\eta}, \quad (41)$$

where $\eta = \frac{r}{\lambda}, u = \frac{z}{\lambda}$.

Following (17) and (41), we have the following corollary.

Corollary 4.1. The r-Stirling type numbers satisfy

$$\left[\begin{array}{c} n+r \\ m+r \end{array} \right]_{\lambda,r} = \lambda^{n-m} \sum_{m=1}^{n} \sum_{h=0}^{n-m} \sum_{j=0}^{m-k} \frac{(-1)^{m-k+h+j}}{m! j!} \binom{n}{m} \binom{h}{j} \binom{m-k}{h} \eta^{h-m}.$$

where $\eta = \frac{r}{\lambda}$.

The asymptotic formula corresponding to (22) is given in Corollary 4.2.

Corollary 4.2. For positive integers n, m and r,

$$\left[\begin{array}{c} n+r \\ m+r \end{array} \right]_{\lambda,r} \sim \lambda^{n-m} e^B g(s_0) \frac{(n-1)_m \eta^{n-m-1}}{m!}, \quad (43)$$

as $r \to \infty$, where

$$s_0 = \frac{m\eta}{n-m}.$$

$$B = \phi(u_0) - m \log s_0 + m \log (s_0 - \eta),$$

$$\phi(u) = \log \left[u(u+1)(u+2) \ldots (u+n-1) \right] - m \log (u-\eta),$$

u_0 is the unique positive solution to the equation

$$\phi(u) = 0,$$

and

$$g(s_0) = \frac{1}{u_0 - \eta} \int_0^{s_0} \frac{1}{\phi''(u_0)} \, du.$$

Proof. That $R = u_0 - \eta$ follows from Lemma 3.3. With (27), where $\nu = -\eta$ and (41), the corollary is then an immediate consequence of Theorem 3.2.

Remark. The asymptotic formulas in Theorem 3.1 and Theorem 3.2 can be shown to be asymptotically equivalent in the range of m where both are valid. Proof for the equivalence is done in [11]. This implies the equivalence of the asymptotic formulas in Corollary 4.2 and 4.3.

References

[1] A.Z. Broder, *The r-Stirling Numbers*, Discrete Math 49 (1984), 241-259.

[2] L.C. Hsu and P.J.S. Shuie, *A unified approach to generalized Stirling numbers*, Advances in applied mathematics, (1998), pp. 366-384.

[3] C.B. Corcino, *An asymptotic formula for the r-Bell numbers*, Matimyas Matematika, Jan 2001 Vol. 24 No. 1 pp 9-18.

[4] F. Qi, *An explicit formula for the Bell numbers in terms of Lah and Stirling numbers*, J. Math. Ineq. 9 (2) (2015), pp. 565-573.

[5] N.M. Temme, *Asymptotic estimates of Stirling numbers*, Matematicheskie Zametki 13 (1973), pp. 233-243.

[6] C.B. Corcino, L.C. Hsu, and E.L. Tan, *Asymptotic approximations of r-Stirling numbers*, Approximation Theory and its Applications, 15:3 (1999), pp. 13-25.
[9] L. Moser and M. Wyman, *Asymptotic development of the Stirling numbers of the first kind*, J. London Math. Soc., 33, 1958, 133-146.

[10] M.A.R.P. Vega and C.B. Corcino, *An Asymptotic Formula of the Generalized Stirling Numbers of the First Kind*, Util. Math., 73 (2007), 129-141.

[11] C. Corcino and R. Corcino, *Equivalent Asymptotic Formulas for r-Stirling Numbers of the First Kind*, Journal of Inequalities and Special Functions, Volume 9(1)(2018), pp. 34-44.

© The Author(s) 2019. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).