Second Hankel determinant for certain subclasses of bi-univalent functions

MURAT ÇAĞLAR
ERHAN DENİZ
HARI MOHAN SRIVASTAVA

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
ÇAĞLAR, MURAT; DENİZ, ERHAN; and SRIVASTAVA, HARI MOHAN (2017) "Second Hankel determinant for certain subclasses of bi-univalent functions," Turkish Journal of Mathematics: Vol. 41: No. 3, Article 19.
https://doi.org/10.3906/mat-1602-25
Available at: https://journals.tubitak.gov.tr/math/vol41/iss3/19

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Second Hankel determinant for certain subclasses of bi-univalent functions

Murat ÇAĞLAR¹,* Erhan DENİZ¹, Hari Mohan SRIVASTAVA²,³
¹Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey
²Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
³Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China

Received: 08.02.2016 • Accepted/Published Online: 30.06.2016 • Final Version: 22.05.2017

Abstract: In the present paper, we obtain the upper bounds for the second Hankel determinant for certain subclasses of analytic and bi-univalent functions. Moreover, several interesting applications of the results presented here are also discussed.

Key words: Analytic functions, univalent functions, bi-univalent functions, subordination between analytic functions, Hankel determinant

1. Introduction and definitions

Let \(\mathcal{A} \) denote the family of functions \(f \) analytic in the open unit disk

\[
\mathcal{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}
\]

of the form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \tag{1.1}
\]

Let \(\mathcal{S} \) denote the class of all functions in \(\mathcal{A} \) that are univalent in \(\mathcal{U} \). The Koebe one-quarter theorem (see, for example, [9]) ensures that the image of \(\mathcal{U} \) under every \(f \in \mathcal{S} \) contains a disk of radius \(1/4 \). Clearly, every \(f \in \mathcal{S} \) has an inverse function \(f^{-1} \) satisfying \(f^{-1}(f(z)) = z \) (\(z \in \mathcal{U} \)) and \(f(f^{-1}(w)) = w \) (\(|w| < r_0(f); \ r_0(f) \geq 1/4 \)),

where

\[
f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \cdots.
\]

A function \(f \in \mathcal{A} \) is said to be bi-univalent in \(\mathcal{U} \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(\mathcal{U} \). Let \(\sigma \) denote the class of bi-univalent functions in \(\mathcal{U} \) given by (1.1).

In 1967, Lewin [21] showed that, for every function \(f \in \sigma \) of the form (1.1), the second coefficient of \(f \) satisfies the estimate \(|a_2| < 1.51 \). In 1967, Brannan and Clunie [2] conjectured that \(|a_2| \leq \sqrt{2} \) for \(f \in \sigma \). Later, Netanyahu [22] proved that \(\max_{f \in \sigma} |a_2| = \frac{4}{3} \). In 1985, Kedzierawski [17] proved the Brannan–Clunie conjecture for bi-starlike functions. In 1985, Tan [31] obtained the bound for \(a_2 \), namely that \(|a_2| < 1.485 \), which is the best

*Correspondence: mcaglar25@gmail.com
2010 AMS Mathematics Subject Classification: Primary 30C45, 30C50; Secondary 30C80.
known estimate for functions in the class σ. Brannan and Taha [3] obtained estimates on the initial coefficients $|a_2|$ and $|a_3|$ for functions in the classes of bi-starlike functions of order β and bi-convex functions of order β.

The study of bi-univalent functions was revived in recent years by Srivastava et al. [30] and a considerably large number of sequels to the work of Srivastava et al. [30] have appeared in the literature since then. In particular, several results on coefficient estimates for the initial coefficients $|a_2|$, $|a_3|$, and $|a_4|$ were proved for various subclasses of σ (see, for example, [1, 4, 5, 10, 12, 14, 16, 25, 28, 29, 32, 33]).

Recently, Deniz [7] and Kumar et al. [19] both extended and improved the results of Brannan and Taha [3] by generalizing their classes by means of the principle of subordination between analytic functions. The problem of estimating the coefficients $|a_n|$ ($n \geq 2$) is still open (see also [29] in this connection).

Among the important tools in the theory of univalent functions are Hankel determinants, which are used, for example, in showing that a function of bounded characteristic in U, that is, a function that is a ratio of two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [6]. The Hankel determinants $H_q(n)$ ($n = 1, 2, 3, \cdots, q = 1, 2, 3, \cdots$) of the function f are defined by (see [23])

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix} (a_1 = 1).$$

This determinant was discussed by several authors with $q = 2$. For example, we know that the functional $H_2(1) = a_3 - a_2^2$ is known as the Fekete–Szegő functional and one usually considers the further generalized functional $a_3 - \mu a_2^2$ where μ is some real number (see [11]). Estimating for the upper bound of $|a_3 - \mu a_2^2|$ is known as the Fekete–Szegő problem. In 1969, Keogh and Merkes [18] solved the Fekete–Szegő problem for the classes of starlike and convex functions. One can see the Fekete–Szegő problem for the classes of starlike functions of order β and convex functions of order β in special cases in the paper of Orhan et al. [24]. On the other hand, quite recently, Zaprawa (see [34, 35]) studied the Fekete–Szegő problem for some classes of bi-univalent functions. In special cases, he gave the Fekete–Szegő problem for the classes of bi-starlike functions of order β and bi-convex functions of order β.

The second Hankel determinant $H_2(2)$ is given by $H_2(2) = a_2a_4 - a_3^2$. The bounds for the second Hankel determinant $H_2(2)$ were obtained for the classes of starlike and convex functions in [15]. Lee et al. [20] established the sharp bound for $|H_2(2)|$ by generalizing their classes by means of the principle of subordination between analytic functions. In their paper [20], one can find the sharp bound for $|H_2(2)|$ for the functions in the classes of starlike functions of order β and convex functions of order β. Recently, Deniz et al. [8] and Orhan et al. [26] found the upper bound for the functional $H_2(2) = a_2a_4 - a_3^2$ for the subclasses of bi-univalent functions.

The object of the present paper is to seek the upper bound for the functional $|a_2a_4 - a_3^2|$ for $f \in N_\sigma(\beta)$ and $f \in N_\sigma(\beta)$, which are defined as follows.

Definition 1 (see [30]) A function $f(z)$ given by (1.1) is said to be in the class $f \in N_\sigma(\beta)$ ($0 \leq \beta < 1$) if the following conditions are satisfied:

$$f \in \sigma \quad \text{and} \quad \Re (f'(z)) > \beta \quad (z \in \mathbb{U}; \quad 0 \leq \beta < 1) \quad (1.2)$$
and
\[\Re (g'(w)) > \beta \quad (w \in \mathbb{U}; 0 \leq \beta < 1), \]
(1.3)

where the function \(g \) is given by
\[g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots. \]
(1.4)

Definition 2 *(see [30])* A function \(f(z) \) given by *(1.1)* is said to be in the class \(\mathcal{N}_\alpha^\sigma \) \((0 < \alpha \leq 1)\) if the following conditions are satisfied:
\[f \in \sigma \quad \text{and} \quad |\arg (f'(z))| \leq \frac{\alpha \pi}{2} \quad (z \in \mathbb{U}; 0 < \alpha \leq 1) \]
(1.5)

and
\[|\arg (g'(w))| < \frac{\alpha \pi}{2} \quad (w \in \mathbb{U}; 0 < \alpha \leq 1), \]
(1.6)

where the function \(g \) is defined by *(1.4).*

For special values of the parameters \(\alpha \) and \(\beta \), we have
\[\mathcal{N}_\alpha(0) = \mathcal{N}_\alpha = \mathcal{N}_\sigma. \]

Let \(\mathcal{P} \) be the class of functions with positive real part consisting of all analytic functions \(\mathcal{P} : \mathbb{U} \rightarrow \mathbb{C} \) satisfying \(p(0) = 1 \) and \(\Re (p(z)) > 0 \).

To establish our main results, we shall require the following lemmas.

Lemma 1 *(see, for example, [27])* If the function \(p \in \mathcal{P} \) is given by the following series:
\[p(z) = 1 + c_1 z + c_2 z^2 + \cdots, \]
(1.7)

then the sharp estimate given by
\[|c_k| \leq 2 \quad (k = 1, 2, 3, \ldots) \]
holds true.

Lemma 2 *(see [13])* If the function \(p \in \mathcal{P} \) is given by the series *(1.7)*, then
\[2c_2 = c_1^2 + x(4 - c_1^2), \]
(1.8)

\[4c_3 = c_1^3 + 2(4 - c_1^3)c_1 x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2) \left(1 - |x|^2 \right) z \]
(1.9)

for some \(x \) and \(z \) with \(|x| \leq 1 \) and \(|z| \leq 1 \).

2. **Main results**

Our first main result for the class \(f \in \mathcal{N}_\alpha(\beta) \) is stated as follows:

Theorem 1 Let \(f(z) \) given by *(1.1)* be in the class \(\mathcal{N}_\alpha(\beta) \) \((0 \leq \beta < 1)\). Then
\[|a_2a_4 - a_3^2| \leq \begin{cases} \frac{(1-\beta)^2}{2} \left(2(1 - \beta)^2 + 1 \right) & (\beta \in \left[0, \frac{11 - \sqrt{37}}{12} \right]), \\ \frac{(1-\beta)^2}{16} \left(\frac{60\beta^2 - 84\beta - 25}{93\beta^2 - 15\beta + 1} \right) & (\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1 \right)). \end{cases} \]
(2.1)
Proof Let $f \in \mathcal{N}_\sigma(\beta)$ and $g = f^{-1}$. Then

\[f'(z) = \beta + (1 - \beta)p(z) \quad \text{and} \quad g'(w) = \beta + (1 - \beta)q(w) \quad (2.2) \]

where the functions $p(z)$ and $q(z)$ given by

\[p(z) = 1 + c_1z + c_2z^2 + \cdots \]

and

\[q(w) = 1 + d_1w + d_2w^2 + \cdots \]

are in class \mathcal{P}.

Comparing the coefficients in (2.2), we have

\[2a_2 = (1 - \beta)c_1, \quad (2.3) \]
\[3a_3 = (1 - \beta)c_2, \quad (2.4) \]
\[4a_4 = (1 - \beta)c_3, \quad (2.5) \]

and

\[-2a_2 = (1 - \beta)d_1, \quad (2.6) \]
\[3 \left(2a_2^2 - a_3 \right) = (1 - \beta)d_2, \quad (2.7) \]
\[-4 \left(5a_3^2 - 5a_3a_2 + a_4 \right) = (1 - \beta)d_3. \quad (2.8) \]

From (2.3) and (2.6), we find that

\[c_1 = -d_1 \quad (2.9) \]

and

\[a_2 = \frac{(1 - \beta)}{2} c_1. \quad (2.10) \]

Now, from (2.4), (2.7) and (2.10), we get

\[a_3 = \frac{(1 - \beta)^2}{4} c_1^2 + \frac{(1 - \beta)}{6} (c_2 - d_2). \quad (2.11) \]

Also, from (2.5) and (2.8), we find that

\[a_4 = \frac{5 (1 - \beta)^2}{24} c_1 (c_2 - d_2) + \frac{(1 - \beta)}{8} (c_3 - d_3). \quad (2.12) \]

Thus, we can easily establish that

\[
|a_2a_4 - a_3^2| = \left| \frac{(1 - \beta)^4}{16} c_1^4 + \frac{(1 - \beta)^3}{48} c_1^2 (c_2 - d_2) + \frac{(1 - \beta)^2}{16} c_1 (c_3 - d_3) - \frac{(1 - \beta)^2}{36} (c_2 - d_2)^2 \right|. \quad (2.13)
\]
According to Lemma 2 and (2.9), we write

\[
2c_2 = c_1^2 + x(4 - c_1^2) \quad 2d_2 = d_1^2 + y(4 - d_1^2) \quad \Rightarrow \quad c_2 - d_2 = \frac{4 - c_1^2}{2}(x - y)
\]

(2.14)

and

\[
4c_3 = c_1^3 + 2(4 - c_1^2)c_1x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)\left(1 - |x|^2\right)z,
\]

\[
4d_3 = d_1^3 + 2(4 - d_1^2)d_1y - d_1(4 - d_1^2)y^2 + 2(4 - d_1^2)\left(1 - |y|^2\right)w.
\]

Moreover, we have

\[
c_3 - d_3 = \frac{c_1^3}{2} + \frac{c_1(4 - c_1^2)}{2}(x + y) - \frac{c_1(4 - c_1^2)}{4}(x^2 + y^2)
\]

\[
+ \frac{4 - c_1^2}{2}\left(\left(1 - |x|^2\right)z - \left(1 - |y|^2\right)w\right),
\]

(2.15)

\[
c_2 + d_2 = c_1^2 + \frac{4 - c_1^2}{2}(x + y)
\]

(2.16)

for some \(x, y\) and \(z, w\) with \(|x| \leq 1, |y| \leq 1, |z| \leq 1\) and \(|w| \leq 1\). Using (2.14) and (2.15) in (2.13), and applying the triangle inequality, we have

\[
|a_2a_4 - a_3^2| = \left| -\frac{(1 - \beta)^4}{16}c_1^4 + \frac{(1 - \beta)^3}{96}c_1^2(4 - c_1^2)(x - y)
\]

\[
+ \frac{(1 - \beta)^2}{16}c_1 \left[\frac{c_1^3}{2} + \frac{4 - c_1^2}{2}(x + y) - \frac{(4 - c_1^2)c_1}{4}(x^2 + y^2) + \frac{4 - c_1^2}{2}\left(1 - |x|^2\right)z - \left(1 - |y|^2\right)w\right]
\]

\[
- \frac{(1 - \beta)^2}{144}(4 - c_1^2)^2(x - y)^2 \right|
\]

\[
\leq \frac{(1 - \beta)^4}{16}c_1^4 + \frac{(1 - \beta)^2}{32}c_1^4 + \frac{(1 - \beta)^2}{16}c_1(4 - c_1^2)
\]

\[
+ \left[\frac{(1 - \beta)^3}{96}c_1^2(4 - c_1^2) + \frac{(1 - \beta)^2}{32}c_1^2(4 - c_1^2) \right] (|x| + |y|)
\]

\[
+ \left[\frac{(1 - \beta)^2}{64}c_1^2(4 - c_1^2) - \frac{(1 - \beta)^2}{32}c_1(4 - c_1^2) \right] (|x|^2 + |y|^2) + \frac{(1 - \beta)^2}{144}(4 - c_1^2)^2(|x| + |y|)^2.
\]

Since \(p \in \mathcal{P}\), we have \(|c_1| \leq 2\). Letting \(c_1 = c\), we may assume without loss of generality that \(c \in [0, 2]\). Thus, for \(\lambda = |x| \leq 1\) and \(\mu = |y| \leq 1\), we obtain

\[
|a_2a_4 - a_3^2| \leq T_1 + T_2(\lambda + \mu) + T_3(\lambda^2 + \mu^2) + T_4(\lambda + \mu)^2 = F(\lambda, \mu),
\]

where
where

\[
T_1 = T_1(c) = \frac{(1-\beta)^2}{32} c \left(1 + 2 (1-\beta)^2 \right) c^3 + 2(4-c^2) \gtrless 0,
\]

\[
T_2 = T_2(c) = \frac{(1-\beta)^2}{96} c^2(4-c^2)(4-\beta) \gtrless 0,
\]

\[
T_3 = T_3(c) = \frac{(1-\beta)^2}{64} c(4-c^2)(c-2) \lesssim 0,
\]

\[
T_4 = T_4(c) = \frac{(1-\beta)^2}{144} (4-c^2)^2 \gtrless 0.
\]

Now we need to maximize \(F(\lambda, \mu) \) in the closed square \(S = \{(\lambda, \mu) : 0 \leq \lambda \leq 1, 0 \leq \mu \leq 1\} \) for \(c \in [0, 2] \). We must investigate the maximum of \(F(\lambda, \mu) \) according to \(c = (0, 2), c = 0 \) and \(c = 2 \), keeping in view the sign of \(F_{\lambda\lambda} F_{\mu\mu} - (F_{\lambda\mu})^2 \).

First, let \(c \in (0, 2) \). Since \(T_3 < 0 \) and \(T_3 + 2T_4 > 0 \) for \(c \in (0, 2) \), we conclude that

\[
F_{\lambda\lambda} F_{\mu\mu} - (F_{\lambda\mu})^2 < 0.
\]

Thus, the function \(F \) cannot have a local maximum in the interior of the square \(S \). Now we investigate the maximum of \(F \) on the boundary of the square \(S \).

For \(\lambda = 0 \) and \(0 \leq \mu \leq 1 \), we obtain

\[
F(0, \mu) = G(\mu) = (T_3 + T_4) \mu^2 + 2\mu + T_1.
\]

We consider the following two cases separately.

Case 1. Let \(T_3 + T_4 \gtrless 0 \). In this case, for \(0 < \mu < 1 \) and for any fixed \(c \) with \(0 < c < 2 \), it is clear that

\[
G'(\mu) = 2 (T_3 + T_4) \mu + T_2 > 0 \quad (0 < \mu < 1),
\]

that is, that \(G(\mu) \) is an increasing function. Hence, for fixed \(c \in (0, 2) \), the maximum of \(G(\mu) \) occurs at \(\mu = 1 \), and

\[
\max G(\mu) = G(1) = T_1 + T_2 + T_3 + T_4.
\]

Case 2. Let \(T_3 + T_4 < 0 \). Since

\[
T_2 + 2 (T_3 + T_4) \gtrsim 0
\]

for any fixed \(c \) with \(0 < c < 2 \), it is clear (in this case) that

\[
T_2 + 2 (T_3 + T_4) < 2 (T_3 + T_4) \mu + T_2 < T_2 \quad (0 < \mu < 1),
\]

which shows that \(G'(\mu) > 0 \). Hence, for fixed \(c \in (0, 2) \), the maximum of \(G(\mu) \) occurs at \(\mu = 1 \). Similarly, for \(\mu = 0 \) and \(0 \leq \lambda \leq 1 \), we get

\[
\max F(\lambda, 0) = \max G(\lambda) = G(1) = T_1 + T_2 + T_3 + T_4.
\]

For \(\lambda = 1 \) and \(0 \leq \mu \leq 1 \), we obtain

\[
F(1, \mu) = H(\mu) = (T_3 + T_4) \mu^2 + (T_2 + 2T_4) \mu + T_1 + T_2 + T_3 + T_4.
\]
Thus, from the above Case 1 and Case 2 for \(T_3 + T_4 \), we get
\[
\max\{H(\mu)\} = H(1) = T_1 + 2T_2 + 2T_3 + 4T_4.
\]
Similarly, for \(\mu = 1 \) and \(0 \leq \lambda \leq 1 \), we have
\[
\max\{F(\lambda, 1)\} = \max\{H(\lambda)\} = H(1) = T_1 + 2T_2 + 2T_3 + 4T_4.
\]
Since \(G(1) \leq H(1) \) for \(c \in (0, 2) \), we have
\[
\max\{F(\lambda, \mu)\} = F(1, 1)
\]
on the boundary of the square \(S \). Thus, clearly, the maximum of the function \(F(\lambda, \mu) \) occurs when \(\lambda = 1 \) and \(\mu = 1 \) in the closed square \(S \) and for \(c \in (0, 2) \).

Let \(K : (0, 2) \to \mathbb{R} \) be given by
\[
K(c) = \max\{F(\lambda, \mu)\} = F(1, 1) = T_1 + 2T_2 + 2T_3 + 4T_4. \tag{2.17}
\]
Substituting the values of \(T_1, T_2, T_3, \) and \(T_4 \) into the function \(K(c) \) defined by (2.17) yields
\[
K(c) = \frac{(1 - \beta)^2}{144} \left[(9\beta^2 - 15\beta + 1) c^4 + (34 - 12\beta)c^2 + 64 \right].
\]
We now investigate the maximum value of \(K(c) \) in the interval \((0, 2) \). By elementary calculation, we find that
\[
K'(c) = \frac{(1 - \beta)^2}{36} \left[(9\beta^2 - 15\beta + 1) c^3 + (17 - 6\beta)c \right]. \tag{2.18}
\]
As a result of some calculations, we can accomplish the following results.

Result 1. Let
\[
9\beta^2 - 15\beta + 1 \geq 0,
\]
that is,
\[
\beta \in \left[0, \frac{5 - \sqrt{21}}{6} \right].
\]
Then \(K'(c) > 0 \) for every \(c \in (0, 2) \). Furthermore, since \(K(c) \) is an increasing function in the interval \((0, 2) \), it has no maximum value in this interval.

Result 2. Let
\[
9\beta^2 - 15\beta + 1 < 0,
\]
that is,
\[
\beta \in \left(\frac{5 - \sqrt{21}}{6}, 1 \right).
\]
Then $K'(c) = 0$ implies the real critical point given by
\[c_0 = \sqrt[9]{\frac{6\beta - 17}{9\beta^2 - 15\beta + 1}}. \]

In the case when
\[\beta \in \left(\frac{5 - \sqrt{21}}{6}, \frac{11 - \sqrt{37}}{12}\right), \]
then $c_0 \geq 2$, that is, c_0 lies outside of the interval $(0, 2)$. In the case when
\[\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1\right), \]
then $c_0 < 2$, that is, c_0 is in the interior of the interval $[0, 2]$. Furthermore, since $K''(c_0) < 0$, the maximum value of $K(c)$ occurs at $c = c_0$ for
\[\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1\right). \]

Thus, clearly, it is observed that
\[\max_{0 < c < 2} \{K(c)\} = K(c_0) = K\left(\sqrt[9]{\frac{6\beta - 17}{9\beta^2 - 15\beta + 1}}\right) = \frac{(1 - \beta)^2}{2} \left(\frac{15\beta^2 - 21\beta - \frac{25}{4}}{18\beta^2 - 30\beta + 2}\right) \] (2.19)
for
\[\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1\right). \]

Secondly, let $c = 2$ and $(\lambda, \mu) \in \mathbb{S}$. We then obtain a constant function of the dependent variables λ and μ as follows:
\[F(\lambda, \mu) = \frac{(1 - \beta)^2}{2} (2\beta^2 - 4\beta + 3) \] (2.20)
for every $0 \leq \beta < 1$.

Finally, let $c = 0$ and $(\lambda, \mu) \in \mathbb{S}$. We then find that
\[F(\lambda, \mu) = \frac{(1 - \beta)^2}{9} (\lambda + \mu)^2. \]

We can easily see that the maximum of $F(\lambda, \mu)$ occurs at $\lambda = \mu = 1$ and we have
\[\max\{F(\lambda, \mu)\} = F(1, 1) = \frac{4(1 - \beta)^2}{9} \] (2.21)
for every $\beta \ (0 \leq \beta < 1)$.

701
From (2.19), (2.20), and (2.21), it is easily seen that
\[
\frac{4(1 - \beta)^2}{9} < \frac{(1 - \beta)^2}{2}(2\beta^2 - 4\beta + 3) < \frac{(1 - \beta)^2}{2}\left(\frac{15\beta^2 - 21\beta - \frac{25}{4}}{18\beta^2 - 30\beta + 2}\right)
\]
for
\[
\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1\right).
\]
We thus obtain the second inequality of (2.1) for
\[
\beta \in \left(\frac{11 - \sqrt{37}}{12}, 1\right).
\]
On the other hand, since the following inequality:
\[
\frac{4(1 - \beta)^2}{9} < \frac{(1 - \beta)^2}{2}(2\beta^2 - 4\beta + 3)
\]
is satisfied for every \(\beta\ (0 \leq \beta < 1)\), we obtain the first inequality of (2.1) for
\[
\beta \in \left[0, \frac{11 - \sqrt{37}}{12}\right].
\]

This completes the proof of Theorem 1.

Our second main result for the class \(N_\sigma\) is given by Theorem 2 below.

Theorem 2 Let the function \(f(z)\) given by (1.1) be in the class \(N_\sigma^\alpha\) \((0 < \alpha \leq 1)\). Then
\[
|a_2a_4 - a_3^2| \leq \begin{cases}
\frac{4\alpha^2}{9} & \text{if } (0 < \alpha \leq \frac{7}{24}), \\
\frac{\alpha^2}{38}\left(\frac{64\alpha^2 - 144\alpha + 5}{12\alpha^2 - 12\alpha + 1}\right) & \text{if } \left(\frac{7}{24} \leq \alpha \leq \frac{1 + \sqrt{2}}{4}\right), \\
\frac{\alpha^2(8\alpha^2 + 1)}{6} & \text{if } \left(\frac{1 + \sqrt{2}}{4} \leq \alpha \leq 1\right).
\end{cases}
\]
(2.22)

Proof Let \(f \in N_\sigma^\alpha\), \(0 < \alpha \leq 1\), and \(g = f^{-1}\). Then
\[
f'(z) = [p(z)]^\alpha \quad \text{and} \quad g'(w) = [q(w)]^\alpha,
\]
(2.23)
where the functions \(p(z)\) and \(q(z)\) given by
\[
p(z) = 1 + c_1z + c_2z^2 + \cdots \quad \text{and} \quad q(w) = 1 + d_1w + d_2w^2 + \cdots
\]
are in class \(\mathcal{P}\).
Now, upon equating the coefficients in (2.23), we have
\[2a_2 = \alpha c_1, \quad (2.24)\]
\[3a_3 = \alpha c_2 + \frac{\alpha (\alpha - 1)}{2} c_1^2, \quad (2.25)\]
\[4a_4 = \alpha c_3 + \alpha (\alpha - 1) c_1 c_2 + \frac{\alpha (\alpha - 1) (\alpha - 2) c_1^3}{6}, \quad (2.26)\]
and
\[-2a_2 = \alpha d_1, \quad (2.27)\]
\[3 (2a_2^2 - a_3) = \alpha d_2 + \frac{\alpha (\alpha - 1)}{2} d_1^2, \quad (2.28)\]
\[-4 (5a_2^3 - 5a_2 a_3 + a_4) = \alpha d_3 + \alpha (\alpha - 1) d_1 d_2 + \frac{\alpha (\alpha - 1) (\alpha - 2) d_1^3}{6}. \quad (2.29)\]

From (2.24) and (2.27), we obtain
\[c_1 = -d_1 \quad (2.30)\]
and
\[a_2 = \frac{\alpha c_1}{2}. \quad (2.31)\]

Now, from (2.25), (2.28), and (2.31), we find that
\[a_3 = \frac{\alpha^2 c_1^2}{4} + \frac{\alpha (c_2 - d_2)}{6}. \quad (2.32)\]

Also, from (2.26) and (2.29), we get
\[a_4 = \frac{\alpha (\alpha - 1) (\alpha - 2) c_1^3}{24} + \frac{5\alpha^2 c_1 (c_2 - d_2)}{24} + \frac{\alpha (c_3 - d_3)}{8} + \frac{\alpha (\alpha - 1) c_1 (c_2 + d_2)}{8}. \quad (2.33)\]

We can thus easily establish that
\[|a_2 a_4 - a_3^2| = \left| \frac{\alpha^2 (\alpha - 1) (\alpha - 2) c_1^4}{48} - \frac{\alpha^4 c_1^4}{16} + \frac{\alpha^3 c_1^2 (c_2 - d_2)}{48} \right| + \frac{\alpha^2 c_1 (c_3 - d_3)}{16} - \frac{\alpha^2 (c_2 - d_2)^2}{36} + \frac{\alpha^2 (\alpha - 1) c_1^2 (c_2 + d_2)}{16}. \quad (2.34)\]

Using (2.14), (2.15), and (2.16) in (2.34), we have
\[|a_2 a_4 - a_3^2| \leq \frac{\alpha^2 (\alpha - 1) (\alpha - 2) c_1^4}{48} + \frac{\alpha^4 c_1^4}{16} + \frac{\alpha^2 (\alpha - 1) c_1^4}{16} + \frac{\alpha^2 c_1 (4 - c_1^2)}{16} \]
\[+ \frac{\alpha^2 c_1^2 (4 - c_1^2)}{24} (|x| + |y|) + \frac{\alpha^2 c_1 (4 - c_1^2) (c_1 - 1)}{64} (|x|^2 + |y|^2) + \frac{\alpha^2 (4 - c_1^2)^2}{144} (|x| + |y|)^2. \]

Since \(p(z) \in \mathcal{P} \), we obtain \(|c_1| \leq 2\). Taking \(c_1 = c \), we may assume without any loss of generality that \(c \in [0, 2] \). Thus, for
\[\lambda = |x| \leq 1 \quad \text{and} \quad \mu = |y| \leq 1, \quad 703\]
we obtain

\[|a_2a_4 - a_3^2| \leq M_1 + M_2(\lambda + \mu) + M_3(\lambda^2 + \mu^2) + M_4(\lambda + \mu)^2 = \Psi(\lambda, \mu), \]

where

\[
M_1 = M_1(c) = \frac{\alpha^2}{96} [(8\alpha^2 + 1) c^4 - 6c^3 + 24c] \geq 0, \\
M_2 = M_2(c) = \frac{\alpha^3}{24}c^2(4 - c^2) \geq 0, \\
M_3 = M_3(c) = \frac{\alpha^2}{64}c(4 - c^2)(c - 2) \leq 0, \\
M_4 = M_4(c) = \frac{\alpha^2}{144}(4 - c^2)^2 \geq 0.
\]

Therefore, we need to maximize \(\Psi(\lambda, \mu) \) in the closed square \(S \) given by

\[S = \{ (\lambda, \mu) : 0 \leq \lambda \leq 1 \text{ and } 0 \leq \mu \leq 1 \}. \]

In order to determine the maximum of \(\Psi(\lambda, \mu) \), we can analogously follow the derivation of the maximum of \(F(\lambda, \mu) \) in Theorem 1. Thus, clearly, the maximum of \(\Psi(\lambda, \mu) \) occurs at \(\lambda = 1 \) and \(\mu = 1 \) in the closed square \(S \). Let \(\Phi : (0,2) \rightarrow \mathbb{R} \) defined by

\[\Phi(c) = \max \{ \Psi(\lambda, \mu) \} = \Psi(1,1) = M_1 + 2(M_2 + M_3) + 4M_4. \quad (2.35) \]

Substituting the values of \(M_1, M_2, M_3, \) and \(M_4 \) into the function \(\Phi(c) \) given by (2.35), we get

\[\Phi(c) = \frac{\alpha^2}{144} [(12\alpha^2 - 12\alpha + 1) c^4 + (48\alpha - 14)c^2 + 64]. \]

Let

\[P = 12\alpha^2 - 12\alpha + 1, \quad Q = 48\alpha - 14, \quad \text{and} \quad R = 64. \quad (2.36) \]

Then, since

\[
\max_{0 \leq t \leq 4} \{ (Pt^2 + Qt + R) \} = \begin{cases}
R & (Q \leq 0; P \leq -\frac{Q}{4}), \\
16P + 4Q + R & \left(Q \geq 0 \text{ and } P \geq -\frac{Q}{8} \text{ or } Q \leq 0 \text{ and } P \geq -\frac{Q}{4} \right), \\
\frac{4PR - Q^2}{4P} & (Q > 0; P \leq -\frac{Q}{8}),
\end{cases} \quad (2.37)
\]

we have

\[
|a_2a_4 - a_3^2| \leq \frac{\alpha^2}{144} \begin{cases}
R & (Q \leq 0; P \leq -\frac{Q}{4}), \\
16P + 4Q + R & \left(Q \geq 0 \text{ and } P \geq -\frac{Q}{8} \text{ or } Q \leq 0 \text{ and } P \geq -\frac{Q}{4} \right), \\
\frac{4PR - Q^2}{4P} & (Q > 0; P \leq -\frac{Q}{8}),
\end{cases}
\]
where $P, Q,$ and R are given by (2.36).

This completes the proof of Theorem 2.

For $\beta = 0$ in Theorem 1 or for $\alpha = 1$ in Theorem 2, we obtain the coefficient estimate given by the corollary below.

Corollary. Let $f(z)$ given by (1.1) be in the class N_{α}. Then

$$|a_2a_4 - a_3^2| \leq \frac{3}{2}.$$

Acknowledgment

The authors wish to thank the referees for their valuable suggestions.

References

[1] Altnkaya Ş, Yalçın Ş. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C R Acad Sci Paris Sr I 2015; 353: 1075-1080.

[2] Brannan DA, Clunie JG. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute Held at the University of Durham. New York, NY, USA: Academic Press, 1980.

[3] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS, editors. KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.

[4] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C R Acad Sci Paris Sr I 2014; 352: 479-484.

[5] Çağlar M, Orhan H, Yağmur N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27: 1165-1171.

[6] Cantor DG. Power series with integral coefficients. B Am Math Soc 1963; 69: 362-366.

[7] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J Class Anal 2013; 2: 49-60.

[8] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl Math Comput 2015; 271: 301-307.

[9] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Berlin, Germany: Springer, 1983.

[10] Eker SS. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk J Math 2016; 40: 641-646.

[11] Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J London Math Soc 1933; 8: 85-89 (in German).

[12] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.

[13] Grenander U, Szegö G. Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. Berkeley, CA, USA: University California Press, 1958.

[14] Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C R Acad Sci Paris Sr I 2014; 352: 17-20.

[15] Janteng A, Halim SA, Darus M. Hankel Determinant for starlike and convex functions. Int J Math Anal 2007; 1: 619-625.

[16] Kanas S, Kim SA, Sivasubramanian S. Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent function. Ann Polon Math 2015; 113: 295-304.
[17] Kedziersawski AW. Some remarks on bi-univalent functions. Ann Univ Mariae Curie-Sklodowska Sect A 1985; 39: 77-81.
[18] Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions. P Am Math Soc 1969; 20: 8-12.
[19] Kumar SS, Kumar V, Ravichandran V. Estimates for the initial coefficients of bi-univalent functions. Tamsui Oxford Journal of Information and Mathematical Sciences 2013; 29: 487-504.
[20] Lee SK, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. J Inequal Appl 2013; 2031: 281.
[21] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[22] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$. Arch Rational Mech Anal 1969; 32: 100-112.
[23] Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p-valent functions. T Am Math Soc 1976; 223: 337-346.
[24] Orhan H, Deniz E, Raducanu D. The Fekete-Szegő problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comput Math Appl 2010; 59: 283-295.
[25] Orhan H, Magesh N, Balaji VK. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015; 29: 1259-1267.
[26] Orhan H, Magesh N, Yamini J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turk J Math 2016; 40: 679-687.
[27] Pommerenke C. Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
[28] Srivastava HM, Bulut S, Çağlar M, Yaşmur N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013; 27: 831-842.
[29] Srivastava HM, Eker SS, Ali RM. Coefficient estimates for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
[30] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
[31] Tan DL. Coefficient estimates for bi-univalent functions. Chinese Ann Math Ser A 1984; 5: 559-568.
[32] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl Math Lett 2012; 25: 990-994.
[33] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl Math Comput 2012; 218: 11461-11465.
[34] Zaprawa P. On the Fekete-Szegő problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21: 169-178.
[35] Zaprawa P. Estimates of initial coefficients for bi-univalent functions. Abstr Appl Anal 2014; 2014: 357480.