Original Article

Antimicrobial and cytotoxic evaluation of some herbal essential oils in comparison with common antibiotics in bioassay condition

Shahin Gavanjia,*, Elmira Mohammadib, Behrouz Larkia, Azizollah Bakhtaric

a Young Researchers and Elite Club, Khorasgan Branch, Islamic Azad University, Khorasgan, Isfahan, Iran
b Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
c Isfahan University of Technology, Department of Animal Science, Isfahan, Iran

\textbf{Article info}

\textbf{Article history:}
Received 3 April 2014
Received in revised form
29 June 2014
Accepted 7 July 2014
Available online 21 July 2014

\textbf{Keywords:}
antibacterial activity
disk diffusion method
essential oil
minimal bactericidal concentrations
minimal inhibitory concentrations

\textbf{Abstract}

\textbf{Background:} Since ancient times, various infectious diseases have been treated using herbal drugs. Today, efforts regarding the discovery of the effectual components of plants possessing antimicrobial properties are advanced. Herbal essential oils are widely used for treatment of various diseases, and they play an important role in health care considerations.

\textbf{Methods:} The antibacterial activity of \textit{Artemisia kermanensis}, \textit{Lavandula officinalis}, and \textit{Zataria multiflora} essential oils against \textit{Staphylococcus aureus} (ATCC 25923), \textit{Pseudomonas aeruginosa} (PTCC 1310), and \textit{Klebsiella pneumonia} (PTCC 1053) was evaluated using the disk diffusion method as well as determination of the minimal inhibitory concentration and minimal bactericidal concentration. The composition of the three essential oils was determined with gas chromatography-mass spectrometry. Variable amounts of different components (such as oxygenated monoterpenes, thymol, carvacrol, and 1,8-cineol) were found in all three oils. Among the tested bacteria, \textit{S. aureus} was the most sensitive to the three essential oils.

\textbf{Results:} The obtained results showed that each of the three essential oils has an inhibitory effect on pathogenic strains. Of these three oils, \textit{Z. multiflora} Boiss essential oil showed the highest inhibitory effect on microbial strains. Furthermore, comparison of the antibacterial effects of these three essential oils with ampicillin and tetracycline revealed that these antibiotics have a better effect in controlling pathogenic strains.

\textbf{Conclusion:} The essential oils used in the present study with different components showed antibacterial activity (especially \textit{Z. multiflora} Boiss essential oil), and therefore they can be used as a new antibacterial substance.

© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Young Researchers and Elite Club, Khorasgan Branch, Islamic Azad University, Khorasgan, Isfahan, Iran
E-mail addresses: shahin.gavanji@khuisf.ac.ir, shahin.gavanji@yahoo.com (S. Gavanji).

http://dx.doi.org/10.1016/j.imr.2014.07.001
2213-4220/© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, increasingly drug-resistant bacteria have been a major concern. Drug resistance is common among pathogenic staphylococci. Staphylococcus aureus is a facultative anaerobic Gram-positive coccobacillus naturally found in parts of the skin and nasal cavity. The inherent virulence of S. aureus and its ability to create a diverse array to life-threatening infections and capacity to adapt to different environmental conditions are the main concerns about this pathogen. Pseudomonas aeruginosa is Gram-negative aerobic motile basil. This bacterium is commonly found in most environments in hospitals. P. aeruginosa often exist in small numbers in the normal intestinal flora and on human skin. It becomes pathogenic only when introduced into areas without normal defenses such as the skin and the mucus layer. This bacterium can express a variety of efficient efflux pump and antibiotic inactivating enzymes, so it can be resistant to antibiotics. Klebsiella pneumonia (which belongs to the Enterobacteriaceae family) is a nonmobile and encapsulated Gram-negative, facultative anaerobic bacillus, and is found in the normal flora of intestines. This bacterium causes infections in hospitals and communities. The majority of hospital infections caused by K. pneumonia are nosocomial pneumonia, urinary tract infections, diarrhea, and intra-abdominal infections. K. pneumonia may be attributable to multidrug efflux systems. The mounting concern about drug resistance has led researchers to focus more attention on natural products, including plants, with antimicrobial properties as the future source of antimicrobial agents. For thousands of years, humans have been using natural products derived from plants for therapeutic purposes. The World Health Organization reported that in 2008, more than 80% of the world population depended on traditional medicine for their primary health care needs. Artemisia is a genus belonging to the Asteraceae family. Many members of this genus are important medicinal plants. Artemisia kermanensis is an endemic plant in Iran and important medicinal plant in the south of Kerman Province. Lavandula officinalis (L. angustifolia) is an important species of the family Lamiaceae, and is widely distributed in the Mediterranean region. In Iranian flora, lavender is chiefly distributed in the northern parts of the country. Lavender oil is known for its excellent aroma and is widely used in flavor, perfume, and cosmetic industries; it is also recommended for its anti-inflammatory and anti-inflammatory effects. In Europe, lavender is used as an antispasmodic, carminative, and mild tranquilizer for digestive and mild nervous disorders. Lavender oil’s antifungal and antibacterial activities oil have been reported. Moreover, it has been found that lavender oil is active against many species of bacteria and fungi. For example, L. angustifolia oil was indicated to have in vitro antibacterial activity against methicillin-resistant S. aureus and vancomycin-resistant Enterococcus faecalis at a concentration of < 1%. Zataria multiflora Boiss, a member of the Labiatae family, is a native plant of Iran, Pakistan, and Afghanistan. It is traditionally used for anesthetic, antiseptic, and antispasmodic purposes. Z. multiflora has also been shown to have anti-inflammatory analgesic effects. This plant is also used as a condiment and has many therapeutic applications in traditional folk medicine (Iranian Herbal Pharmacopoeia). In this study, we examined the antibacterial activity of A. kermanensis, L. officinalis, and Z. multiflora Boiss against three pathogenic bacteria (P. aeruginosa, S. aureus, and K. pneumonia).

2. Materials and methods

2.1. Origin and isolation of essential oils

Fresh Z. multiflora, L. officinalis, and A. kermanensis plants were gathered from Lorestan and Chaharmahal provinces in Iran (2012). Their scientific names were searched through the Herbarium part of Institution of Traditional Medicine in Iran (nos. 2359, 2360, and 2361, respectively). At first, the aerial parts of the herbs were kept at room temperature for 3 days, and after complete dryness was attained, the parts were powdered by mill. Making of essential oil was done with water using the essential making machine, Clevenger apparatus (model BP, Ashke Shisheh Co., Tehran, Iran & mantle model H610, Fater Electronic, Tehran, Iran) based on boiling point. For each batch, 100 g of the powder was placed in a 1-L balloon of Clevenger, and then water was added. After 5 hours of distillation, the essence—which was a yellow to green liquid with a good smell—was gathered. The oils were dried over anhydrous Na2SO4 and stored at 4°C in sealed amber vials until use.

2.2. Gas chromatography-mass spectrometry

Analysis was carried out using a GC-mass chromatograph with an HP-5MS column (30 m × 0.25 mm, film thickness 0.25 m). Helium was used as the carrier gas at a flow rate of 0.8 mL/minute. The column temperature was kept at 50°C for 2 minutes, and then it was programmed to 200°C at a rate of 3°C/minute and kept constant at 200°C for 10 minutes. The injection was performed in split mode with ratio of 50:1 at 250°C. The compounds were identified by comparison of the relative retention indices with those reported in the literature and also by comparison of their mass spectra with published mass spectra. The retention indices for all the components were determined according to the Van Den Dool method using n-alkanes as standards.

2.3. Antimicrobial activities assays

2.3.1. Preparation of bacterial cells

The bacterial species consisted of S. aureus (ATCC 25923), P. aeruginosa (PTCC 1310), and K. pneumonia (PTCC 1053), which were prepared at the Traditional Medicine Institute of Isfahan (Isfahan, Iran). First, the Muller-Hinton agar (MHA) medium was prepared and transferred in sterilized Petri dishes (5 cm thick). Under aseptic conditions, the samples of bacteria were taken from basal culture using an applicator and then inoculated in the medium.

2.3.2. Antibacterial assay

In order to evaluate the antimicrobial effect, the disk diffusion method (which is known as Kirby–Bauer and
is the most common form of antimicrobial assay) and assessment of minimal inhibitory and minimal bactericidal concentrations (MIC and MBC, respectively), were applied. After 18 hours of culture, liquid containing bacteria, with a standard density (1 × 10⁶ CFU/ml) of 0.5 McFarland in MHB, was prepared, and by using Sampler, 500 μL of the liquid was transferred to MHA. The liquid was gently distributed on the surface of MHA using sterile loop. There were blank disks with 6 mm in diameter containing 30 μL with concentrations of 0.08 μg/disk, 0.16 μg/disk, 0.31 μg/disk, 0.63 μg/disk, 1.25 μg/disk, 2.5 μg/disk, 5 μg/disk, 10 μg/disk, 20 μg/disk, 40 μg/disk, 60 μg/disk, 80 μg/disk, and 100 μg/disk on MHA. A disk containing ampicillin, penicillin, and tetracycline was used as positive control, and the diameter of inhibition of zone was measured after 24 hours of incubation at 37°C and MBC value (the lowest concentration required to kill certain bacteria) for S. aureus, P. aeruginosa, and K. pneumonia. The suspension of bacterial strain was prepared from the liquid culture with a standard darkness of 0.5 McFarland. The essential oils were prepared, and different dilutions (6 dilutions) were added to the pipes containing 10 mL liquid culture medium. In this step, in order to determine MIC, the 96-well plate was used. To every well, 95 μL Mueller–Hinton broth and 5 μL microbial suspension were added. Next, 100 μL of the essential oil with a concentration of 500 μg/mL was added to the first well. Then, 100 μL was taken from the first well and transferred to the next well. This process went on until the sixth well. The last well contained 195 μL MHB culture medium and 5 μL of microbial suspension without any essential oil as negative control. In the next step, the ingredients of every well were mixed using a rotary shaker for 20 minutes. Then it was put in an incubator for 24 hours at a suitable temperature (37°C). The microbial growth was measured at 600 nm.

2.4 In vitro analyses

2.4.1 Cell culture

The L929 fibroblast cell line of mouse (NCBI code 161) was obtained from the Pasteur Institute of Iran (Tehran, Iran), then grown in Dulbecco’s modified Eagle’s medium supplemented with 5% fetal calf serum, 100 U/ml penicillin (Gibco), and 100 μg/mL streptomycin (Gibco, Carlsbad, CA, USA), at 37°C in a humidified atmosphere containing 90% air and 5% CO2.

2.4.2 Cytotoxicity assay

In order to determine the cytotoxicity effect of essential oils, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used. This method is based on a mitochondrial succinate dehydrogenase activity that changes the yellow dye of MTT to the violet dye of Formosan. Formosan can dissolve in dimethyl sulfoxide, and its optical density (OD) could be measured using enzyme-linked immunosorbent assay. The cells were cultured in T25, and after 90% confluency, they were removed from the culture dishes using trypsinization and suspended in 10 mL culture medium. Next, they were seeded with a cell count of 5 × 10⁴ for L929 cells per well in 96-well plates for 24 hours. After that, the cultured cells were treated with different concentrations of essential oils (0 μg/mL, 0.75 μg/mL, 1.56 μg/mL, 3.12 μg/mL, 6.25 μg/mL, 12.5 μg/mL, 25 μg/mL, 50 μg/mL, 100 μg/mL, 150 μg/mL, 200 μg/mL, 250 μg/mL, 300 μg/mL, and 350 μg/mL), and the plate was incubated for 48 hours in a CO2 incubator at 37°C. Next, 20 μL MTT solution was added to the wells and these were incubated for 4 hours. For dissolving Formosan christa, 100 μL dimethyl sulfoxide was added. The absorbance of MTT was measured at 560 nm. The vital percent of cells in negative control was considered 100, and it can be obtained using the following equation. A concentration from the essential oil that reduces cells’ vitality to half is observed as CC50.

\[
\text{Percentage of cell survival} = \frac{\text{Test compound OD} - \text{Blank OD}}{\text{Negative control OD} - \text{Blank OD}} \times 100
\]

3. Results

Data analysis was performed using SPSS version 20 (SPSS Inc., Chicago, IL, USA), analysis of variance (ANOVA), and Tukey’s comparison procedure. After ANOVA showed significantly different values between treatment groups, Turkey’s HSD (Honestly Significant Difference) test was performed for all pairwise comparisons which allows to rank means and put them into significant treatment groups, while controlling maximum experiment-wise error rate under null hypothesis. The effects of different concentrations of A. kermanensis, P. officinalis, and Z. multiflora Boiss essential oils were examined against the three bacteria (S. aureus, K. pneumonia, and P. aeruginosa) at 24 hours, 48 hours, and 72 hours using the disk diffusion method (Tables 1–3). The results showed that the concentration of 100 μg/disk of each of the three essential oils was more efficient compared with lower concentrations on the bacteria (p<0.0001).

In the highest concentration of A. kermanensis essential oil (100 μg/disk), most of the antibacterial effects was observed against K. pneumonia. However, at lower concentrations (from
Table 1 – Antibacterial activity of different concentrations of *Artemisia kermansensis* essential oil against three bacteria using disk diffusion method (zone of inhibition)*

Artemisia kermansensis (μg/disk)	*Staphylococcus aureus*	Mean ± SE	*Klebsiella pneumonia*	Mean ± SE	*Pseudomonas aeruginosa*	Mean ± SE		
		24	48	72		24	48	72
0.08		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
0.16		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
0.31		0.50 ± 0.06a	0.63 ± 0.07a	0.63 ± 0.07a		0.17 ± 0.17a	0.27 ± 0.14a	0.27 ± 0.14a
0.63		2.49 ± 0.09b	2.67 ± 0.33b	2.67 ± 0.03b		1.20 ± 0.15b	1.37 ± 0.18b	1.50 ± 0.15b
1.25		4.20 ± 0.11c	4.33 ± 0.17c	4.40 ± 0.20c		2.27 ± 0.12c	2.50 ± 0.10c	2.63 ± 0.18c
2.5		6.48 ± 0.02d	6.51 ± 0.01d	6.52 ± 0.01d		4.00 ± 0.06d	4.13 ± 0.13d	4.37 ± 0.14d
5		7.90 ± 0.40a	8.02 ± 0.38d	8.11 ± 0.38a		6.57 ± 0.18a	6.73 ± 0.12a	6.90 ± 0.10a
10		9.64 ± 0.54f	10.02 ± 0.50a	11.16 ± 0.13f		8.27 ± 0.13f	8.70 ± 0.11f	8.70 ± 0.11f
20		12.13 ± 0.13f	13.30 ± 0.21f	13.40 ± 0.15f		13.20 ± 0.11f	13.80 ± 0.11f	13.80 ± 0.11f
40		14.43 ± 0.12bc	14.70 ± 0.15f	14.87 ± 0.01f		15.17 ± 0.09f	15.77 ± 0.27h	15.97 ± 0.22h
60		16.70 ± 0.51f	17.23 ± 0.68f	17.50 ± 0.81h		17.13 ± 0.33f	17.57 ± 0.28f	17.57 ± 0.28f
80		19.77 ± 0.23j	20.10 ± 0.49b	20.17 ± 0.44i		19.97 ± 0.32j	20.23 ± 0.18i	20.40 ± 0.15j
100		22.27 ± 0.14k	22.73 ± 0.18i	22.73 ± 0.18j		25.70 ± 0.32k	26.37 ± 0.23k	26.37 ± 0.23k

* Different letters on every column represent a meaningful difference (p < 0.0001).

SE, standard error.

Table 2 – Antibacterial activity of different concentrations of *Lavandula officinalis* essential oil against three bacteria using disk diffusion method (zone of inhibition)*

Lavandula officinalis (μg/disk)	*Staphylococcus aureus*	Mean ± SE	*Klebsiella pneumonia*	Mean ± SE	*Pseudomonas aeruginosa*	Mean ± SE		
		24	48	72		24	48	72
0.08		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
0.16		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
0.31		0.37 ± 0.18a	0.40 ± 0.20a	0.40 ± 0.20a		0.00 ± 0.00a	0.00 ± 0.00a	0.00 ± 0.00a
0.63		1.50 ± 0.06b	1.70 ± 0.06c	1.70 ± 0.06b		0.20 ± 0.20b	0.23 ± 0.23b	0.23 ± 0.23b
1.25		3.42 ± 0.21c	3.62 ± 0.21c	3.73 ± 0.09f		1.45 ± 0.23c	1.60 ± 0.21c	1.63 ± 0.23c
2.5		5.39 ± 0.05d	5.67 ± 0.12d	5.72 ± 0.16c		3.40 ± 0.25d	3.53 ± 0.24d	3.53 ± 0.24d
5		6.63 ± 0.20e	6.77 ± 0.18e	6.77 ± 0.18e		5.23 ± 0.14e	5.47 ± 0.09e	5.57 ± 0.09e
10		8.47 ± 0.12f	8.70 ± 0.12f	8.80 ± 0.15f		7.27 ± 0.14f	7.40 ± 0.11f	7.50 ± 0.11f
20		11.77 ± 0.19f	12.33 ± 0.18e	12.63 ± 0.18e		9.00 ± 0.25f	9.37 ± 0.28e	9.87 ± 0.13f
40		14.67 ± 0.20h	15.13 ± 0.09h	15.13 ± 0.09h		12.53 ± 0.09h	13.03 ± 0.09h	13.27 ± 0.14h
60		16.13 ± 0.07i	16.50 ± 0.06c	16.50 ± 0.06c		15.07 ± 0.18i	16.00 ± 0.40c	16.47 ± 0.34c
80		18.50 ± 0.06j	18.63 ± 0.09f	18.63 ± 0.09f		18.87 ± 0.09j	19.10 ± 0.15i	19.43 ± 0.22f
100		20.17 ± 0.09k	20.47 ± 0.09k	20.47 ± 0.09k		21.23 ± 0.56k	21.93 ± 0.54k	21.93 ± 0.54k

* Different letters on every column represent meaningful difference (p < 0.0001).

SE, standard error.
Table 3 – Antibacterial activity of different concentrations of *Zataria multiflora* Boiss essential oil against three bacteria using disk diffusion method (zone of inhibition)*

Concentration (µg/disk)	Staphylococcus aureus (Mean ± SE)	Klebsiella pneumonia (Mean ± SE)	Pseudomonas aeruginosa (Mean ± SE)
0.08	0.00 ± 0.00*	0.00 ± 0.00a	0.00 ± 0.00a
0.16	0.60 ± 0.23a	0.87 ± 0.23a	0.67 ± 0.14a
0.31	1.93 ± 0.29b	2.37 ± 0.24b	1.43 ± 0.27b
0.63	3.56 ± 0.29c	3.73 ± 0.18c	2.40 ± 0.15c
1.25	5.62 ± 0.06d	5.87 ± 0.09d	4.00 ± 0.00d
2.5	7.81 ± 0.13e	7.87 ± 0.13e	6.47 ± 0.03e
5	10.10 ± 0.45f	8.11 ± 0.38f	8.44 ± 0.34f
10	11.54 ± 0.12f	11.80 ± 0.06f	11.35 ± 0.05f
20	13.57 ± 0.12h	14.73 ± 0.13h	14.70 ± 0.26h
40	16.43 ± 0.09i	17.30 ± 0.15i	17.00 ± 0.11i
60	20.37 ± 0.20j	21.27 ± 0.14j	21.77 ± 0.09j
80	24.67 ± 0.03k	25.20 ± 0.15k	25.33 ± 0.20k
100	27.80 ± 0.20l	28.67 ± 0.33l	28.10 ± 0.21l

* Different letters on every column represent meaningful difference (p < 0.0001).

SE, standard error.

Table 4 – Comparison of different common essential oils concentrations and antibiotics effect on *Staphylococcus aureus*, *Klebsiella pneumonia*, and *Pseudomonas aeruginosa*

Treatment	Staphylococcus aureus (Mean ± SE)	Klebsiella pneumonia (Mean ± SE)	Pseudomonas aeruginosa (Mean ± SE)
Artemisia kermanensis (100)	22.27 ± 0.14*	22.73 ± 0.18d	27.80 ± 0.20l
Lavandula officinalis (100)	20.17 ± 0.09b	20.47 ± 0.09d	27.80 ± 0.20d
Zataria multiflora (100)	27.80 ± 0.20d	28.67 ± 0.33a	28.67 ± 0.33a
Ampicillin (10)	16.44 ± 0.29b	16.80 ± 0.25a	16.91 ± 0.31b
Penicillin (10)	14.93 ± 0.52b	14.93 ± 0.52a	14.93 ± 0.52a
Tetracycline (30)	19.47 ± 0.73c	19.63 ± 0.63c	19.63 ± 0.63c

* Different letters on every column represent meaningful difference (p < 0.0001).

SE, standard error.
Fig. 2 – Effect of *Zataria multiflora* Boiss essential oil on three species of bacteria.

At concentrations < 20 μg/disk, a similar effect was observed on both *S. aureus* and *K. pneumonia*. At concentrations > 20 μg/disk, a minimal antibacterial effect was observed against *K. pneumonia*. In a broad range of *A. kermanensis* essential oil concentrations used, *P. aeruginosa* (with the smallest inhibition zone compared with other bacteria) showed more resistance toward this oil (Fig. 1).

In concentrations < 20 μg/disk, *Z. multiflora* Boiss essential oil is more effective against *S. aureus* than against the two other bacteria (in these concentrations, the antibacterial effects against *K. pneumonia* and *P. aeruginosa* were rather similar). But with increasing concentrations (20–100 μg/disk), it had the same effect on both *S. aureus* and *K. pneumonia*. In a broad range of *Z. multiflora* Boiss essential oil concentrations used, *P. aeruginosa*, which has the smallest inhibition zone compared to other bacteria, showed more resistance toward this oil (Fig. 2).

At high concentrations (80 μg/disk and 100 μg/disk), the essential oil of *L. officinalis* performed more effectively against *K. pneumonia* compared with the two other bacteria. However, at concentrations < 80 μg/disk, it was found to be more effective against *S. aureus*. In a broad range of *L. officinalis* essential oil concentrations used, *P. aeruginosa*, which has the smallest inhibition zone compared to the other bacteria, proved to be more resistant toward this oil (Fig. 3).

A comparison between the three plant essential oils (at a concentration of 100 μg/disk) and positive control antibiotics (ampicillin, penicillin, and tetracycline) demonstrated that *Z. multiflora* Boiss essential oil (at all time intervals) had a stronger antibacterial effect (bigger inhibition zone) against the three bacteria (Table 4).

The MIC and MBC results demonstrated that *Z. multiflora* essential oil, with lower MIC and MBC values than *L. officinalis* and *A. kermanensis* essential oils, showed a higher antibacterial activity against the three bacteria (Tables 5–7). Compared with *L. officinalis* essential oil, *A. kermanensis* essential oil had a higher antibacterial activity (lower MIC and MBC values) against the three bacteria (Tables 5–7).

3.1. Cytotoxic effects on viability of L929 cells

Results from the cytotoxicity test showed that *Z. multiflora* and *A. kermanensis* essential oils have no cellular toxic effect up to 6.25 μg/mL, and *L. officinalis* oil showed no cellular toxic effect up to 12.5 μg/mL. With the increase in essential oil concentration, cellular resistance is considerably decreased. The CC50 for *Z. multiflora*, *L. officinalis*, and *A. kermanensis* is 123 μg/mL, 218 μg/mL, and 154 μg/mL, respectively (Fig. 4).

4. Discussion

Nowadays, the resistance of bacteria is increasing against antibiotics. Consequently, research on exploration of new materials having antimicrobial properties is growing. As essences and herbal extracts have been historically used in treatment of diseases, they can be good candidates in such studies. Herbal extracts possessing antimicrobial effects on a broad range of organisms, nutrient applicability, and fewer side effects (compared with common antibiotics), can be a replacement for antibiotics. Various studies have documented the antimicrobial activity of essential oils and plant extracts, such as *A. kermanensis*, *L. officinalis*, and *Z. multiflora* Boiss. In this study, we evaluated the antibacterial activity of *A. kermanensis*, *L. officinalis*, *Z. multiflora* Boiss essential oils against *P. aeruginosa*, *S. aureus*, and *K. pneumonia*. The results
Table 5 – MIC and MBC of essential oils on *Pseudomonas aeruginosa*

No.	Extract	MIC (µg/mL)	MBC (µg/mL)	
		MIC 50	MIC 90	
1	*Artemisia kermanensis*	37	62	71
2	*Zataria multiflora*	31	58	63
3	*Lavandula officinalis*	41	75	92
4	Ampicillin	12	21	25
5	Penicillin	12	20	25
6	Tetracycline	6	11	15

MBC, minimal bactericidal concentration; MIC, minimal inhibitory concentration.

Table 6 – MIC and MBC of the essential oils on *Klebsiella pneumonia*

No.	Extract	MIC (µg/mL)	MBC (µg/mL)	
		MIC 50	MIC 90	
1	*Artemisia kermanensis*	30	54	68
2	*Zataria multiflora*	25	47	51
3	*Lavandula officinalis*	39	63	76
4	Ampicillin	10	17	24
5	Penicillin	13	19	26
6	Tetracycline	11	17	22

MBC, minimal bactericidal concentration; MIC, minimal inhibitory concentration.

Table 7 – MIC and MBC of the essential oils on *Staphylococcus aureus*

No.	Extract	MIC (µg/mL)	MBC (µg/mL)	
		MIC 50	MIC 90	
1	*Artemisia kermanensis*	28	48	57
2	*Zataria multiflora*	18	35	43
3	*Lavandula officinalis*	32	52	69
4	Ampicillin	4	6	9
5	Penicillin	6	9	10
6	Tetracycline	5	7	10

MBC, minimal bactericidal concentration; MIC, minimal inhibitory concentration.

showed that the extract of *Z. multiflora* has the highest effect on all species of bacteria used. The highest effect was observed against *S. aureus*, with an MBC of 43 µg/mL (Table 7). Motevasel and coworkers36 reported that the high concentration of Zataria extract showed the best antimicrobial activities and killed numerous types of bacteria with no difference between pathogens and nonpathogens. In a research by Sharififar and coworkers,37 the effect of this extract was tested on *K. pneumoniae* and *S. aureus*, in which MIC was measured as 30 µg/mL and 21 µg/mL, respectively. In our study, the MIC90 of *Z. multiflora* against *K. pneumonia* and *S. aureus* was measured as 25 µg/mL and 18 µg/mL, respectively. Our results are compatible with those obtained by Sharififar et al.37 Owlia and coworkers38 tested the effect of the extract on *P. aeruginosa*, and their results showed an MIC of 64 µg/mL and an MBC of 128 µg/mL. In our study, the MIC and MBC of *Z. multiflora* essential oil on *P. aeruginosa* were measured as 31 µg/mL and 63 µg/mL, respectively. This indicates that the essential oil used in our study has a better effect. Moreover, in another study by El-Shoumy and coworkers,39 the researchers determined the effect of *Thymus vulgaris* essential oil on *P. aeruginosa*, which is resistant to common antibiotics. The MIC was measured as 0.32 mg/mL (320 µg/mL). Another experiment reported the effect of *T. vulgaris* essential oil on *S. aureus* ATCC 25923, and yielded an MIC of 1.33 mg/mL.38,40 Another experiment in 2008 reported the effect of *Z. multiflora* on *K. pneumonia*. The MIC was reported to be between 312 µg/mL and 624 µg/mL.41 Results of the study indicated that the essential oils possess a better effect on pathogens. The analysis of *Z. multiflora* Boiss essential oil with gas chromatography–mass spectrometry (GC-MS) showed 34 constituents representing 96.94% of the total oil. The major components consisted of thymol (33.05%), carvacrol (25.88%), and p-cymene (11.34%) (Table 8). Govaris and coworkers42 reported that carvacrol (80.15%) and thymol (4.82%) were the major components of *Z. multiflora*. Different studies indicated that essential oils containing thymol, carvacrol, or eugenol possess the highest antimicrobial properties.43 The antimicrobial effect of essential oil components such as thymol, menthol, and linalyl acetate may be caused by a perturbation of the lipid fractions of bacterial plasma membranes, which might be influenced by the membrane permeability and leakage of intracellular materials. *Z. multiflora* essential oil, with a high percentage of thymol and carvacrol, has a considerable antimicrobial activity.44 According to our results and previous research, thymol is the major compound of *Z. multiflora* oil. Sharif Roohani and coworkers
respectively. In our study, the MIC of and reported an MIC of 32 μg/mL, 128 μg/mL, and 128 μg/mL, respectively. In our study, the MIC of L. officinalis essential oil was more effective in terms of its inhibitory effect on K. pneumoniae and S. aureus. Changes in the antimicrobial properties of the essential oil in different concentrations can be attributable to the different amounts of flavonoid compositions or different active forms of flavonoids. According to GC-MS results, 69 constituents were identified in L. officinalis essential oil, representing 83.99% of the total oil and major components, and these included 1,8-cineole (12.01%), camphore (9.16%), verbenone (8.47%), alpha-pinene (7.58%), thymol (6.23%) (Table 9). Soković and coworkers also reported that linalyl acetate (27.54%) and linalool (27.21%) are the most abundant components in L. angustifolia (L. officinalis) oil. Meanwhile, Hamad and coworkers reported that the major components of L. langustifolia oil are linalool (24.63%) and camphor (13.58%), 1,8-Cineole and camphor, which are used as useful substances in producing numerous drugs, have antiseptic properties.

Derakhchan and coworkers investigated the effect of Artemisia turcomanica, Artemisia khorassanica, Artemisia kopetdaghensis, and Artemisia cinifermis extracts against S. aureus ATCC 25923, and their results showed MIC to be 3 mg/mL, 2 mg/mL, 2 mg/mL, and 1.5 mg/mL, respectively. Another study reported on the effect of Artemisia absinthium extract on S. aureus, and reported an MIC of 52 μg/mL. We also investigated the effect of A. kermanensis extract on S. aureus. Our results yielded an MIC of 48 μg/mL (Table 7), which is compatible with that obtained by Blagojevic et al. in 2006. Konatchiev and coworkers examined the effect of Artemisia distans extract on S. aureus. They reported an MIC of 20 μg/mL. A comparison between our results with those of Konatchiev et al. shows that the A. distans extract possesses a better inhibitory effect on S. aureus compared with the A. kermanensis extract. Generally, in reference to different studies, it is revealed that the essential oil and extract of different species of Artemisia have an inhibitory effect against P. aeruginosa, K. kermanensis, and S. aureus. Generally, Gram-positive bacteria are more sensitive to herbal extracts when compared with Gram-negative ones. This can be attributed to their different cell wall structures. Gram-positive bacteria have mucopeptide compositions, whereas Gram-negative bacteria just have a thin layer of mucopeptide and most of their cell wall is made of lipoprotein and lipopolysaccharide. Hence, they are more resistant against antibacterial materials. In A. kermanensis oil, 50 constituents were identified representing 75.84% of the total oil. The major components were alpha-thujone (13.83%), camphor (10.23%), and p-mentha-1,5-dien-8-ol (4.38%) (Table 10). Kazemi and coworkers determined the constituents of A. kermanensis oil using GC-flame ionization detection and GC-MS methods. They reported that the major components of this oil were isoborneol (21.5%) and camphor (9.8%). Sardashti and Pourramazani Harati also analyzed A. kermanensis oil with GC-MS, and reported the following results: 1,8-cineole (56.55%), borneol (5.28%), and camphene (4.48%). Oxygenated monoterpenes (examples of this substance include linalool, alpha-terpineol, 1,8-cineole, borneol, camphor, and alpha, beta-thujone) are prevalent components of essential oils. Oxygenated monoterpenes have shown variable antibacterial activities. Based on

Table 8 – Chemical composition of the essential oil of Artemisia kermanensis

No	Compositions	%	RI
1	Artemislatriene	0.41	926
2	a-Pinene	0.54	934
3	Camphene	0.93	949
4	Verbenene	1.88	954
5	Benzaldehyde	0.11	960
6	p-Menthiene	0.08	977
7	p-Menthatriene	0.57	993
8	Yomogi alcohol	2.67	1001
9	a-Terpineiene	0.2	1016
10	p-Cymene	1.88	1024
11	1,8-Cineole	1.82	1030
12	Artemisia ketone	0.11	1032
13	trans-Carane	0.13	1050
14	gamma-Terpineine	1.0	1056
15	Artemisia alcohol	1.48	1082
16	Styrene	0.82	1087
17	a-Thujone	13.83	1108
18	beta-Thujone	6.23	1117
19	trans-Pinocarveol	1.39	1138
20	Camphene	4.13	1142
21	Camphore	10.23	1144
22	p-Menth-1,5-dien-8-ol	2.04	1147
23	1-Menthene	0.49	1156
24	Pinocarvone	1.37	1160
25	Borneol	1.97	1164
26	p-Mentha-1,5-dien-8-ol	4.38	1166
27	Terpinene-4-ol	1.01	1175
28	Naphthalene	0.73	1178
29	p-Cymen-3-ol	1.26	1182
30	a-Terpineol	0.72	1188
31	Verbenone	1.53	1206
32	Norborneole	0.36	1215
33	Cuminic aldehyde	1.1	1235
34	(+)-Carvone	0.48	1239
35	Carvonatetone	0.28	1243
36	cis-Myrtanol	0.15	1247
37	Carvenone	0.12	1253
38	Chrysantheyl acetate	1	1256
39	Cinnamic aldehyde-E	0.16	1264
40	Bornyl acetate	2.3	1280
41	Thymol	1.29	1286
42	Carvacrol	1.78	1297
43	a-Copene	0.23	1368
44	Methyl cinamate	0.15	1375.7
45	(2)-Jasmine	0.22	1393.1
46	Methyleugenol	0.15	1399.3
47	trans-Caryophyllene	0.3	1395.6
48	a-Curcumen	0.15	1475.4
49	Spathalenol	0.25	1569
50	Caryophyllene	0.07	1644.5

Total 75.84
Table 9 – Chemical composition of the essential oil of *Lavandula officinalis*

No	Compositions	%	RI
1	δ-Pinene	7.58	938
2	Camphene	4.51	952
3	Verbenene	0.64	955
4	1,3,5-Cycloheptatriene	0.03	972
5	β-Pineene	0.49	979
6	3-Octanone	2.19	988
7	β-Myrcene	1.18	993
8	3-Octanol	0.36	997
9	α-Phellandrene	0.05	1007
10	α-Isopropenyltoluene	0.08	1014
11	α-Terpine	0.12	1017
12	β-Cymene	2.96	1025
13	1,8-Cineole	0.08	1057
14	Linalool oxide	0.06	1072
15	Methyl banzoate	0.99	1088
16	Linalool	2.45	1100
17	Thujancis	0.81	1103
18	D-Fenchyl alcohol	0.12	1112
19	Pinocarveol	9.16	1144
20	Pinocarveol	0.12	1138
21	Camphene	0.13	1160
22	Pinocamphone	0.39	1171
23	Terpen-4-ol	1.27	1174
24	naphtalene	0.08	1177
25	p-Cymen-8-ol	0.23	1183
26	p-Cymen-8-ol	0.23	1183
27	α-Phellandrene	0.67	1191
28	δ-Caryophyllene	1.32	1239
29	p-Cymenate	0.77	1239
30	Carvacrol	0.77	1239
31	Camphor	0.13	1225
32	Pinocamphone	0.09	1235
33	Pulegone	0.04	1250
34	Piperitone	0.05	1265
35	Cinnamaldehyde	2.41	1281
36	Borneol acetate	6.23	1288
37	Thymol	0.17	1290
38	Carvacrol	4.14	1297
39	α-Terpine	0.15	1329
40	Piperitone	0.37	1335
41	α-Cubebene	0.06	1343
42	Thymyl acetate	0.06	1349
43	α-Copaene	0.43	1369
44	trans-Caryophyllene	0.47	1412
45	α-Humulene	0.22	1446
46	Farnesene	0.08	1451
47	β-Acoradiene	0.09	1460
48	camphene	0.16	1473
49	Zingiberene	0.1	1488
50	β-Himachalene	0.28	1492
51	delta-Cadinene	0.27	1516
52	α-Cedrene	0.15	1524
53	Germacrene B	0.06	1548
54	spathulenol	0.26	1567
55	Caryophyllene oxide	0.29	1572
56	α-Farnesene	0.06	1587
57	Buitidenephthalide	0.15	1642
58	3N Butylphthalide	4.62	1687
59	Butylidene dihydro-phthalide	0.09	1720
	Total	83.99	

Table 10 – Chemical composition of the essential oil of *Zataria multiflora Boiss*

No	Compositions	%	RI
1	δ-Thujene	0.34	931
2	δ-Pinene	3.88	937
3	Camphene	0.18	951
4	Verbenene	0.02	956
5	Sabine	0.02	974
6	δ-Pineene	0.68	979
7	β-Myrcene	0.68	993
8	α-Phellandrene	0.11	1007
9	δ-3-Carene	0.04	1012
10	α-Terpine	1.32	1016
11	β-Cymene	11.34	1025
12	Limonene	0.67	1032
13	1,8-Cineole	0.55	1030
14	gamma-Terpine	4.73	1057
15	trans-Sabinene hydrate	0.27	1087
16	Linalool	1.46	1098
17	Borneol	0.37	1162
18	Terpinen-4-ol	0.82	1186
19	α-Terpine	0.67	1191
20	Carvacrol methyl ether	0.77	1239
21	Carvol	0.77	1239
22	trans-Anethole	2.46	1281
23	Thymol	3.35	1285
24	Carvacrol	25.88	1297
25	Thymyl acetate	1.03	1311
26	Carvacryl acetate	0.69	1371
27	β-Caryophyllene	1.83	1412
28	Aromadendrene	0.84	1437
29	α-Humulene	0.09	1443
30	Germacrene-D	0.13	1473
31	Ledene	0.77	1491
32	cis-α-Bisabolene	0.09	1537
33	(+)Spathulenol	0.24	1579
34	Caryophyllene oxide	0.15	1589
	Total	96.94	

Season, geographical location, and the location of plants, the overall quality and quantity of the essential oil of species vary. Climate and soil conditions can also affect the composition of the oil, and the differences in the major constituents of the different compounds of the essential oils can likely be attributable to differences in habitat conditions.57,58

5. Conclusion

Essential oils possess a range of volatile molecules such as terpenes and terpenoids, and phenol-derived aromatic and aliphatic compounds, which might have bactericidal, virucidal, and fungicidal consequences. Essential oils directly affect the cell membrane of the pathogenic microorganism by causing an increase in permeability and leakage of vital intracellular elements, and finally disorder the cell respiration and microbial enzyme system.59,60 In this study, three essential oils showed antibacterial effects against tested bacterial strains. *Z. multiflora* Boiss essential oil showed stronger antibacterial effects than the other essential oils. *Z. multiflora* oil has also been found to be active against clinical isolates of a broad spectrum of beta-lactamase-producing *K. pneumoniae*.61 It has been shown that *Z. multiflora* extract can inhibit the release of the deoxyribonuclease (DNase) enzyme and the
making of enterotoxin in S. aureus. Due to the increasing problem of antibiotic resistance in bacteria, using these essential oils as natural and new antimicrobial substances can be useful.

Conflicts of interest

The authors declare no conflict of interest.

References

1. Klyuytmans J, Van Belkum A, Verbrugh H. Nasal carriage of *Staphylococcus aureus*: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 1997;10:505–20.
2. Lowy FD. *Staphylococcus aureus* infections. New Engl J Med 1998;339:520–32.
3. Brooks GF, Butel JS, Ornston LN. *Jawetz, Melnick & Adelberg's Medical Microbiology*. New York: McGraw-Hill; 1991.
4. Gavanji S, Larki B, Zand Jalali A, Mohammadi E, Mehrasa M, Taraghian AM. Comparative effects of propolis of honey bee (A. R.) King and Robinson and *Zataria multiflora* Boiss extracts in mice and rats. J Ethnopharmacol 2000;73:379–85.
5. Ramezani M, Hosseinzadeh H, Samizadeh S. Antinociceptive effects of *Zataria multiflora* Boiss fractions in mice. J Ethnopharmacol 2004;91:167–70.
6. Ghani A, Ebrahimipour A, Tehranifar A, Hassanzadeh Khayat M. Evaluation of growth and development adaptability and medicinal–ornamental potential of Clary sage (*Salvia sclarea* L.) cultivated in Mashhad climatic conditions. J Plant Prod 2010;17:77–90.
7. Adams RP. Identification of essential oil components by gas chromatography–quadrupole mass spectrometry. J Am Soc Mass Spectrom 2005;16:1902–3.
8. Sparkman OD. Identification of essential oil components by gas chromatography–quadrupole mass spectrometry. J Am Soc Mass Spectrom 1997;8:671–2.
9. Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 1963;11:463–71.
10. Khsoravi AD, Behzadi A. Evaluation of the antibacterial activity of the seed hull of *Quercus branti* on some Gram negative bacteria. Pakistan J Med Sci 2006;22:429–32.
11. Hamad KJ, Al-Shaheen SJA, Kaskoos RA, Ahamad J, Mir SR. Antimicrobial activity and cytotoxicity of essential oils from aromatic plants. Afr J Pharm Pharmacol 2009;3:511–8.
12. Lopez-Lutz D, Alviano SD, Alviano SC, Kolodziejczyk PP. *Artemisia*. In: Rechinger KH, Hedge IC, eds. Flora of Iranica, Compositae. Graz, Austria: AcademischeDruck and Verlagsanstalt; 1980:185–216.
13. Deguchi T, Kawamura T, Yasuda M, Nakano M, Fukuda H, Kato H, et al. In vivo selection of *Klebsiella pneumoniae* strains with enhanced quinolone resistance during fluoroquinolone treatment of urinary tract infections. Antimicrob Agents Chemother 1997;41:1609–11.
14. Butler MS. Natural products to drugs: natural product–derived compounds in clinical trials. Nat Prod Rep 2008;25:475–516.
15. Vital PG, Rivera WL. Antimicrobial activity and cytotoxicity of *Chromolaena odorata* (L. f.) King and Robinson and *Uncaria perrottetii* (A. Rich). Merr. extrs. J Med Plants Res 2009;3:511–8.
16. Rechinger KH. Artemisia. In: Rechinger KH, Hedge IC, eds. Flora of Iranica, compositeae. 158. Graz, Austria: AcademischeDruck und Verlagsanstalt; 1980:185–216.
17. Lopez-Lutz D, Alviano SD, Alviano SC, Kolodziejczyk PP. Screening of chemical composition of microbial and antioxidant activities of *Artemisia* essential oils. Flavour Frag J 2008;3:131–7.
18. Hamad KJ, Al-Shaheen SJA, Kaskoos RA, Ahamad J, Mir SR. Essential oil composition and antioxidant activity of *Lavandula angustifolia* from Iraq. Int J Pharm 2013;4:117–20.
19. Cavanagh H, Wilkinson J. Biological activities of the essential oils and methanol extract of *Origanum vulgare* ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004;15:549–57.
20. Rota C, Carraminana J, Burillo J, Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot 2004;67:1252–6.
21. Buttke TM, McBrey JA, Owen TC. Use of an aqueous soluble tetractol/foramazan assay to measure viability and proliferation of lymphokine-dependent. Cancer Commun 1991;3:207–12.
22. Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetractol-based assay. Cancer Res 1989;49:4435–40.
23. Besharat M, Rahimian M, Ghani A, Ebrahimpour A, Tehranifar A, Hassanzadeh Khayat M. Evaluation of growth and development adaptability and medicinal–ornamental potential of Clary sage (*Salvia sclarea* L.) cultivated in Mashhad climatic conditions. J Plant Prod 2010;17:77–90.
24. S¸ahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Poliaisli M, et al. Biological activities of the essential oils and methanol extract of *Origanum vulgare* ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004;15:549–57.
25. Gardini F. Use of natural aroma compounds to improve shelf life and safety of minimally processed fruits. J Food Sci Technol 2004;15:201–8.
26. Murphy Cowan M. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;2:564–82.
27. Ghani A, Ebrahimipour A, Tehranifar A, Hassanzadeh Khayat M. Evaluation of growth and development adaptability and medicinal–ornamental potential of Clary sage (*Salvia sclarea* L.) cultivated in Mashhad climatic conditions. J Plant Prod 2010;17:77–90.
28. Shahrokhivard M, Behzadi A. Evaluation of the antibacterial activity of the seed hull of *Quercus branti* on some Gram negative bacteria. Pakistan J Med Sci 2006;22:429–32.
29. Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetractol-based assay. Cancer Res 1989;49:4435–40.
30. Besharat M, Rahimian M, Ghani A, Ebrahimpour A, Tehranifar A, Hassanzadeh Khayat M. Evaluation of growth and development adaptability and medicinal–ornamental potential of Clary sage (*Salvia sclarea* L.) cultivated in Mashhad climatic conditions. J Plant Prod 2010;17:77–90.
31. Murphy Cowan M. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;2:564–82.
32. Gavanji S, Larki B, Bakhtari A. The effect of extract of *Zataria multiflora* Boiss on antibacterial activity and cytotoxicity of *Punica granatum* var. *pleniﬂora* for treatment of minor recurrent aphthous stomatitis. Integr Med Res 2014;3:83–90.
33. Sajedi H, Sahebkar A, Iranshahi M. *Zataria multiflora* Boiss. (Shirazi thyme)—an ancient condiment with modern pharmaceutical uses. J Ethnopharmacol 2013;145:686–98.
34. Mahboobi M, Shahcheraghi F, Feizabadi MM. Bactericidal effects of essential oils from clove, lavender and geranium...
on multi-drug resistant isolates of *Pseudomonas aeruginosa*. Iranian J Biotechnol 2006;4:137–40.

36. Motevasel M, Zomorodian K, Asghar Mansouri M, Farshad S, Haghighzeh A, Hadaegh M, et al. The anti-bacterial effects of *Zataria multiflora* extract on common pathogenic Gram positive cocci, pathogenic Gram negative bacilli and non-pathogenic bacteria. *Afj Mircobiol Res* 2011;5:4993–6.

37. Sharififar F, Moshaﬁ MH, Mansouri SH, Khodashehas M, Khooshnoodi M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic *Zataria multiflora* Boiss. *Food Control* 2007;18:800–5.

38. Owlia F, Sadei H, Basouli I, Sefidkon F. Antimicrobial characteristics of some herbal oils on *Pseudomonas aeruginosa* with special reference to their chemical compositions. *Iranian J Pharmicol Res* 2009;8:107–14.

39. El-Shouny WA, Magama S. Sensitivity of multi-drug resistant *Pseudomonas aeruginosa* isolated from surgical wound-infections to essential oils and plant extracts. *World J Med Sci* 2009;4(2):104–11.

40. Imelouane B, Amhamdi H, Wathelet JP, Ankit M, Khedid K, El Bachiri A. Chemical composition and antimicrobial activity of essential oil of thyme (*Thymus vulgaris*) from Eastern Morocco. *Int J Agric Biol* 2009;11:205–8.

41. Abbasgholizadeh N, Ettehad GH, Arab R, Nemati A, Barak M, Pirzadeh A, et al. Antibacterial efect of *Zataria multiflora* Boiss (Shiraz oregano essence) on Entrobactericea species. *Res J Biol Sci* 2008;3:345–7.

42. Govaris A, Solomakos N, Pexara N, Chatzopoulou PS. The antimicrobial eect of oregano essential oil, nisin and their combination against *Salmonella enteritidis* in minced sheep meat during refrigerated storage. *Int J Food Microbiol* 2010;137:175–80.

43. Yousefzadi M, Sonboli A, Ebrahimi SN, Hashemi SH. Atividade antimicrobiana do oleo essencial e principais constituintes dos *Chlorolucu salvia*. *Z Naturforsch* 2008;63:337–40.

44. Shafiee A, Javidnia K, Tabatabai M. Volatile constituents and antimicrobial activity of *Zataria multiflora*, population Iran. *Iranian J Chem Chem Eng* 1999;18:1–5.

45. Mahboubi M, GhazianBidgoli F. In vitro synergistic eect of combination of amphotericin B with *Myrtus communis* essential oil against clinical isolates of *Candida albicans*. *Phytomedicine* 2010;17:771–4.

46. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F. Chemical composition of essential oils in *Zataria multiflora* Boiss from different parts of Iran and their antioxidant and antimicrobial eacy. *Food Chem Toxicol* 2010;48:1562–7.

47. Orhan IE, Ozcelik B, Kartal M, Kan Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. *Turf J Biol* 2012;36:239–46.

48. Hajhashemi V, Ghannaei A, Sharif B. Anti-inammatory and analgesic properties of the leaf extracts and essential oil of *Lavandula angustifolia* Mill. *J Ethnopharmacol* 2003;89:67–71.

49. Sardashti AR, Pourramazani Harati M. Chemical composition of the essential oil of *A. kermanensis* from Taftanaera by GC/MS technique. *Int J Agric Crop Sci* 2012;4:561–3.

50. Sokovic M, Martin PD, Britic D, van Griensven LLJD. Chemical composition and antibacterial activity of essential oils of ten aromatic plants against human pathogenic bacteria. *Food 2007;1:220–6.

51. Derakhshan S, Sattari M, Bigdeli M, Zarei-Eskikand N. Antiinflammatory activity of essential oils from Artemisia and Cumin plants against *Staphylococcus aureus* and *Vibrio cholera*. *J Gazvin Med Sci* 2011;16–14.

52. Blagovejic F, Radulovic N, Palic R, Stojanovic G. Chemical composition of the essential oils of Serbian wild-growing *Artemisia absinthium* and *Artemisia vulgaris*. *J Afric Food Chem* 2006;5:4780–9.

53. Konatchiev A, Todorova M, Mikhova B, Vitkova A, Najbentli H. Composition and antimicrobial activity of *Artemisia distans* essential oil. *Nat Prod Commun* 2011;6:905–6.

54. Tassou CC, Nychas GJ. Antimicrobial activity of the essential oil of *Mastic* on gram positive and gram negative bacteria in broth and model food systems. *Int Biodeter Biodegrad* 1995;36:411–20.

55. Zakarya D, Fkih-Tetouani S, Hajji F. Chemical composition antimicrobial activity relationship of *Eucalyptus* essential oils. *Plants Med Phytother* 1999;26:319–33.

56. Kazemi M, Dakhili M, Dadkhah A, Yasrebifar Z, Larjiani K. Composition, antimicrobial and antioxidant activities of the essential oil of *Artemisia kermanensis* Podl., an endemic species from Iran. *J Med Plants Res* 2011;5:4481–6.

57. Arnold N, Valentinii G, Bellomaria B, Hocine L. Comparative study of the essential oils from *Rosmarinus erekaylx* Jordan & Fourn from Algeria and *R. officinalis* L. from other countries. *J Essent Oil Res* 1997;9:167–75.

58. Ghasemi E, Yamini Y, Bahramifar N, Sefidkon F. Comparative analysis of the oil and supercritical *CO*$_2$ extract of *Artemisia sieberi*. *J Food Eng* 2007;79:306–11.

59. Akhtar MS, Degaga B, Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. *Bio Sci Pharm Res* 2014;2:1–7.

60. Eftekhar F, Zamani S, Yusefzadi M, Hadian J, Nejad Ebrahimi S. Antibacterial activity of *Zataria multiflora* Boiss. essential oil against extended spectrum b lactamase produced by urinary isolates of *Klebsiella pneumonia*. *Jundishapur J Microbiol* 2011;4:43–9.

61. Zaringhalam M, Sattari M, Zaringhalam J, Rezaazadeh S. Effect of black pepper, red pepper and *Zataria multiflora* Boiss. alcholic extracts on growth and *DNa*se activity of *Staphylococcus aureus*. *J Med Plants 2007;6:17–21.*

62. Parsaeimehr M, Basti AA, Radmehr B, Misaghi A, Abbasifar A, Karim G, et al. Effect of *Zataria multiflora* Boiss. essential oil, nisin, and their combination on the production of enterotoxin C and alfa-hemolysin by *Staphylococcus aureus*. *Foodborne Pathog Dis* 2010;7:299–305.