Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Full length article

Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review

Akram Yarmohammadi a, Mostafa Yarmohammadi a, Sajad Fakhri b,*, Haroon Khan c,**

a Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
b Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
c Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan

ARTICLE INFO

Keywords:
COVID-19
Inflammatory pathways
Cytokines
Interleukin
TLR
JAK/STAT

ABSTRACT

As an emerging global health crisis, coronavirus disease 2019 (COVID-19) has been labeled a worldwide pandemic. Growing evidence is revealing further pathophysiological mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amongst these dysregulated pathways inflammation seems to play a more critical role toward COVID-19 complications. In the present study, precise inflammatory pathways triggered by SARS-CoV-2, along with potential therapeutic candidates have been discussed.

Prevailing evidence has indicated a close correlation of inflammatory cascades with severity, pathological progression, and organ damages in COVID-19 patients. From the mechanistic point of view, interleukin-6, interleukin-1β receptor, interferon-gamma, tumor necrosis factor-alpha receptor, toll-like receptor, receptor tyrosine kinases, growth factor receptor, Janus kinase/signal transducers and transcription pathway, mammalian target of rapamycin, cytokine storm and macrophage activation have shown to play critical roles in COVID-19 complications. So, there is an urgent need to provide novel mechanistic-based anti-inflammatory agents. This review highlights inflammatory signaling pathways of SARS-CoV-2. Several therapeutic targets and treatment strategies have also been provided in an attempt to tackle COVID-19 complications.

1. Introduction

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) happened at the end of 2019 Wuhan, Hubei, China, and resulted in a disease named coronavirus disease 2019 (COVID-19) (Lai et al., 2020a; Ruan et al., 2020). The outbreak was declared a Public Health Emergency of International Concern by World Health Organization on March 11, 2020. Based on the data released from clinical trials of China, about 20% of the patients infected with SARS-CoV-2 ended with severe illness, while possessing common symptoms (Zhang et al., 2020c). The patients showed exacerbated symptoms suddenly within 1–2 weeks after the disease onset, accompanied by low peripheral blood lymphocyte, particularly natural killer cells and low lymphocyte count in lymphoid organs. The atrophy of spleen and lymph nodes with bilateral involvement of lungs in computed tomography (CT) of the chest were also shown in COVID-19 patients (Jin et al., 2020). From a histological perspective, the alveolar damage was associated with a huge number of eosinophil, formation of hyaline membrane, high mono- and poly-nucleated cells, pneumocyte hyperplasia, and thickening of interstitial fluid. Additionally, high levels of monocytes and macrophages were obvious in lung lesions (Peiris et al., 2010).

In terms of pharmacological mechanisms, oxidative stress, inflammation, and post-virus entry apoptosis seem to play destructive roles in the aforementioned pathological conditions during COVID-19 (Fakhri et al., 2020). Following the virus entry, the first defense line is the innate immune system, that recognizes the pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRR), including NOD-like receptors (NLR), toll-like receptors (TLR-3,4,7,8,9) (Ky and Mann, 2020), RIG like receptors (RLR) (Channappanavar and Perlman, 2017) and angiotensin receptor (South et al., 2020). After that, the inflammatory pathways will be activated, followed by dendritic cells maturation and macrophage activation (Lampropoulou et al., 2016). Accordingly, pro-inflammatory agents will be produced and released by the stimulation of T-helper cells (Chen et al., 2016), and complement system compartments will take part in the war against the virus. The defense strategy of the coronavirus against T cells is based on apoptosis

* Corresponding author.
** Corresponding author.
E-mail addresses: sajad.fakhri@kums.ac.ir, pharmacy.sajad@yahoo.com (S. Fakhri), haroonkhan@awkum.edu.pk, hkdr2006@gmail.com (H. Khan).

https://doi.org/10.1016/j.ejphar.2020.173620
Received 8 June 2020; Received in revised form 15 September 2020; Accepted 29 September 2020
Available online 7 October 2020
0014-2999/© 2020 Published by Elsevier B.V.
induction in these cells. Consequently, overactivation of the immune system leads to the production of huge amounts of inflammatory and apoptotic agents and their increased local levels, finally resulting in organ damage (Mathern and Heeger, 2015; Traggiai et al., 2004). Enhanced levels of pro-inflammatory receptors along with their downstream mediators, including interleukin (IL)-6, IL-1β, IL-18, and tumor necrosis factor-alpha (TNF-α) (Peiris et al., 2010; Wan et al., 2020), Janus kinase/signal transducers and activator of transcription (JAK/STAT), c-reactive protein (CRP), as well as ferritin (Perricone et al., 2020) have been observed during the disease. COVID-19 patients have also shown dysregulated levels of IL-2,7,10, granulocyte-colony stimulating factor (G-CSF), interferon-γ (IFN-γ), induced protein-10 (IP-10), macrophage inflammatory protein 1-a (MIP-1α), and monocyte chemo attractant protein-1 (MCP-1) (Ky and Mann, 2020).

A recent study focused on the blockade of IL-6 to tackle COVID-19 cytokine release (Liu et al., 2020). Some other studies have also reported inflammation as a promising target in combating COVID-19 (Cancio et al., 2020; Jose and Manuel, 2020; Siebing et al., 2020b). There is yet a deep need to reveal all the inflammatory receptor/pathways involved in the pathogenesis of COVID-19. This is the first review that highlights the predominant inflammatory pathways, as well as potential targets, and therapeutic candidates for the management of COVID-19.

2. Virology and pathogenesis of SARS-CoV-2

Since now, efforts to find the origin of the SARS-CoV-2 have not achieved a final outcome and investigations are going on. Although based on the evolutionary and genome sequencing analyses, the primary natural host of the novel virus is bat with unknown intermediate hosts responsible for transmission (Yi et al., 2020).

Based on their differences in genotype and serological parameters, coronaviruses have been divided into four types, including α, β, γ, and δ-CoVs (de Wilde et al., 2019; Weiss and Leibowitz, 2005). After isolation of the novel virus from alveolar fluid samples of the patient’s lungs, analyses showed that α and β types of the coronaviruses are the main causes of the disease (Zhu et al., 2019). SARS-CoV-2 consists of a nucleocapsid containing RNA and phosphorylated protein. It possesses a positive-sense single-stranded and wrapped RNA with a size of about 29.9 kb. A bilayer phospholipid is wrapped around the nucleocapsid and two kinds of proteins exist in the bilayer phospholipid called spike proteins (Khailany et al., 2020), including S and hemagglutinin esterase. In the viral envelope, membrane protein (M) and envelope protein are also located on the virus with 60–100 nm size and round/oval shape (Fehr and Perlman, 2015). This novel virus entitled “Public enemy number 1” by World Health Organization, which is the third type of crisis after SARS and Middle East Respiratory Syndrome (MERS) (Yan et al., 2020).

From another point of view, a wide range of complications are caused by this virus, including enteric, respiratory, neurological, and hepatic ones (Jin et al., 2020; Pan et al., 2020). More common clinical manifestations in patients infected with SARS-CoV-2 are fever, dyspnea, cough, myalgia, fatigue, sputum production, shortness of breath, sore throat, headache, decreased leukocytes count and radiographic lung with pneumonia. Besides, some patients presented gastrointestinal symptoms like diarrhea and vomiting. Overall, fever and respiratory complications are the most common symptoms of COVID-19 (Chen et al., 2019; Ren et al., 2020). There were also patients who showed no respiratory symptoms but kidney failure, heart and liver injuries, as well as testicular involvement could lead to infertility in young patients (Juang et al., 2020). Most of the adults and children showed mild flu-like symptoms without any serious complication (Yi et al., 2020).

The exact pathogenesis of SARS-CoV-2 is not fully understood owing to its novelty but the pathogenicity of SARS-CoV and MERS-CoV gives us a lot of clues. The main routes of transmission are contact and respiratory droplets, but recent studies have reported the existence of the virus in stool and urine samples of the patients, suggesting the fecal-oral way of transmission (Bellani et al., 2016). In general, revealing the mechanisms of SARS-CoV-2 pathogenesis could pave the road for finding promising agents in combating COVID-19.

2.1. SARS-CoV-2 entry and replication

Some receptors and mediators have been found to be involved in facilitating the entrance of SARS-CoV-2. Among those, renin-angiotensin (Ang) system (RAS) and its regulator angiotensin-converting enzyme 2 (ACE2) seem to play critical roles. The RAS and ACE2 has shown an important role in maintaining proper physiological functions of kidneys, heart, and lungs. Any malfunction of this system may lead to the pathogenicity of these organs (Zou et al., 2020). ACE2 is most abundantly expressed in kidneys, heart, lungs, and endothelium (Donoghue et al., 2000). Moreover, ACE2 plays regulatory roles in the hemostasis of the local concentrations of Ang II and Ang1-7 in cardiovascular system (Michot et al., 2020). Ang II is a potent vasoconstrictor and pro-inflammatory agent which enhances fibrosis and is one of the main constituents of RAS. Besides, Ang I is the main substrate of ACE1 which is degraded to Ang II by a carboxypeptidase enzyme. Its carboxypeptidase activity is different from dipeptidase activity of ACE. Therefore, ACE inhibitors (ACEI) have no antagonizing effect on ACE2 (Yong et al., 2016). Virus entry into the cell is initiated by binding of S protein-ligand on the virus and ACE2 receptors on the tissue cell. The spike protein on the virus membrane binds to its receptor and direct membrane fusion of host cell and virus is the first step of viral entrance (Zhou et al., 2020). After virus entrance, its RNA genome and translation products including two polyprotein/structural proteins will be released. The first site of virus replication is epithelial cells of the upper respiratory tract and further proliferation occurs at the lower respiratory tract and gastrointestinal mucosa (Li et al., 2003). Besides, transmembrane serine protease type 2 (TMPRSS2) cleaves the S protein of the virus and exposes the fusion component of the virus. After this step, fusion of the virus envelope with the host cell membrane will be facilitated and virus entry takes place (McCreary et al., 2020). Besides, AP2 associated protein kinase 1 (AAK1) is one of the other regulators of SARS-CoV-2 endocytosis into the host cell. Several inflammatory receptors and downstream mediators, as well as ACE and AAK1 are also gateways involved in the pathogenesis of COVID-19 (Zhai et al., 2020). Thus, their targeting would be of great importance.

3. General therapeutics used in COVID-19

Several strategies are examined to manage SARS-CoV-2, including supportive care, and those targeting of several deleterious pathways (Zhang et al., 2020b). From the therapeutic point of view, at first, agents like IFN-α, broad-spectrum antibiotics, and antivirals were used. Among the applied agents, just remdesivir alone or in combination with chloroquine or IFN-β showed satisfying results (Holshue et al., 2020). During a clinical trial in Shanghai, clinicians also used the plasma of recovered patients which yielded promising results (Ky and Mann, 2020). As previously described, several host factors are also involved in the pathogenesis of COVID-19. In this line, transmembrane serine protease type 2 (TMPRSS2) cleaves the S protein of the virus, thereby exposing the fusion component of the virus. Afterwards, fusion of the virus envelope with the host cell membrane will be facilitated and virus entry takes place. Based on the aforementioned role of TMPRSS2, this component could be considered a reasonable therapeutic target of serine protease inhibitors, like camostate mesylate (McCreary et al., 2020). Camostate mesylate has already shown promising efficacy in inhibiting the replication of influenza and parainfluenza viruses. The function of cysteine protease cathepsin L (which activates S protein) is pH-dependent. Hence, altering the endosomal pH could be used to inhibit the activity of cysteine protease beside the agents that directly block cathepsin L (Ky and Mann, 2020). Consequently, chloroquine and hydroxychloroquine...
novel virus in cultured cells, although hydroxychloroquine was more potent than chloroquine. In addition to suppressing the production and release of TNF-α and IL-6, chloroquine also inhibits autophagy. In a clinical trial, it was observed that viral clearance rate is significantly increased compared with the control group of patients not taking hydroxychloroquine (Gao et al., 2020). Remdesivir, a nucleoside analog, is one of the broad-spectrum antiviral agents. It inhibits viral RNA production by interfering with RNA polymerase (McCreary et al., 2020). First American COVID-19 patients were treated by remdesivir (Gordon et al., 2020). In the line of using antiviral agents, favipiravir is another antiviral drug that inhibits RNA polymerase of the virus. Favipiravir and remdesivir are both prodrugs that are converted to active metabolites in body. Although favipiravir is not FDA approved, studies have shown that it is more potent than lopinavir/ritonavir, as virus protease inhibitors (Du and Chen, 2020). On the other hand, a prompt decrease of viral load by adding anti-retroviral drugs avoided immunosuppression and macrophage activation syndrome (MAS) which is vital for disease treatment (Choy et al., 2020). Lopinavir in a fixed-dose combination with another protease inhibitor, ritonavir, is used for the treatment of HIV. In a clinical trial, combination of these two drugs as a 14-days regimen containing 400 mg lopinavir and 100 mg ritonavir (daily) was used. The viral load of COVID-19 in Korean patients following the use of lopinavir/ritonavir was significantly reduced (Kim et al., 2016). On the contrary, in a randomized, controlled, open-label trial in hospitalized adult patients with severe COVID-19, no benefit was attained with lopinavir/ritonavir beyond standard-care groups (Cao et al., 2020). Another protease inhibitor that could be added to ritonavir is darunavir, which is under investigation (Chu et al., 2004; Gordon et al., 2020). Besides, in Shanghai Public Health Clinical Center, treatment with lopinavir/ritonavir, and arbidol in COVID-19 patients with pneumonia showed promising results (de Wilde et al., 2014). Abidol is one of the antiviral drugs that inhibits replication of virus. It is used as treatment and prophylaxis in SARS and MERS (McCreary et al., 2020). As another nucleoside analog, ribavirin is a prodrug similar to the two already mentioned drugs. The metabolites of this agent resemble adenosine and guanine nucleosides that merge with the virus RNA and prevent viral RNA replication. Ribavirin (FDA approved) in combination with peginterferon α-2a is used for the treatment of chronic hepatitis type C (McCreary et al., 2020). Consistently, after viral infection, IFNs activate the innate immune system. There are two types of IFNs. Type 1 IFNs (α and β) are produced in almost all the cells in response to a viral infection and type 2 (γ) is produced by cells of the immune system after activation by antigens (Morgenstern et al., 2005). Both types of IFNs have shown antiviral effects through the inhibition of mononuclear macrophage-mediated pro-inflammation, reducing the immigration of the neutrophils to the site of inflammation, and blocking the activation of epithelial cells IFN-γ (Mustafa et al., 2018). IFN also exerts antiviral effects without over-activation of the immune system which is ideal for therapeutic purposes. Using IFNs at the early phase of the disease lowers the viral burden, hence reducing symptoms of the disease. However, the reduction in mortality has not been proven as the benefit of IFN therapy in COVID-19 (McCreary et al., 2020). As another complication in COVID-19, thromboembolism could cause disseminated intravascular coagulation and denote a primary causes of death during COVID-19. Prevailing results suggest that thrombotic events in COVID-19 is in a near link with multiple dysregulated pathway of the coagulation system, including a significant increment of D-dimer. Cavalli et al. reported that the thromboembolic events and disseminated intravascular coagulation (DIC) provoked by SARS-CoV-2 may reveal a secondary anti-phospholipid antibody syndrome (Cavalli et al., 2020a). Fogarty et al. represented that using heparin in COVID-19 patients significantly reduced DIC (Fogarty et al., 2020) and lowered their mortality rate (Tang et al., 2020).

Besides the aforementioned strategies used for controlling COVID-19 and related pathogenic mechanisms, a deep appreciation of the inflammatory mechanisms responsible for the disease pathogenesis seems valuable with the aim of developing more efficient therapies.

4. Inflammatory pathways involved in the pathogenesis of COVID-19: advances in related anti-inflammatory treatments

Multiple dysregulated pathways are responsible for the pathogenesis of COVID-19, among which several inflammatory receptors/mediators/pathways, including receptor tyrosine kinases (RTK), growth factor receptors (GFRs), IL-6 receptor, IFN-γ, TNF-α receptor, TLR, JAK/STAT pathway, cytokine storm, macrophage activation and mammalian target of rapamycin (mTOR) play pivotal destructive roles.

4.1. Receptor tyrosine kinases and growth receptors

Essentially, viruses are parasites that use the intracellular machinery to live and proliferate. After the lysis of host cells viruses invade other neighboring cells (Walls et al., 2020). RTKs family are responsible for cell multiplication, apoptosis, and migration (Robinson et al., 2000). Enzyme activation is the first consequence of ligand binding to the extracellular part of the receptor. Following the activation of these receptors, the downstream signaling cascades will be triggered by the signaling molecules, resulting in the dysregulation of downstream events that finally lead to biological responses including cell growth, apoptosis inhibition, stimulation of angiogenesis, and cell motility (Yamaoka et al., 2018). GFRs belonging to transmembrane proteins bind extracellular growth factors with a high affinity. Consequently, a chain of reactions takes place with the leading role of protein kinases that results in the growth modulation. GFRs have been noted as golden gates for some kinds of viruses, like coronaviruses to enter cells and take part in viral proliferation (Honerdarmark et al., 2020). Currently, drugs that target GFRs and their downstream signaling pathways are used in the treatment of malignancies. They also could be of potential benefits in fighting viral infections but require more clinical trials to be approved (Honerdarmark et al., 2020). In this line, heparan sulfate has been shown to play a crucial role in the activation of fibroblast growth factor receptors (FGFRs). Besides, it can be combined with proteoglycan complexes to form heparan sulfate proteoglycans (HSPGs) thereby creating entry points for virus entry into the cells (Madu et al., 2007). This mechanism of invasion was first observed in herpes simplex viruses (WuDunn and Spear, 1989). HSPGs employment to attach cell membrane is also proven for coronaviruses in several studies. Based on these data, it is also reasonable to assume this way of cell attachment for SARS-CoV-2 (Milewska et al., 2018).

In addition to GFRs, RTKs show the potential of being targeted by therapeutic agents in combating COVID-19. Blockade of tyrosine kinase activity inside the cells is achieved through applying tyrosine kinase inhibitors (TKIs) to shut down the downstream signaling pathways. First studies on these agents were conducted to survey their ability in targeting EGFR family. Therefore, they were initially used in oncology trials (Ciardiello and Tortora, 2008). Just to mention the names of those agents, first-generation EGFR TKIs, gefitinib and erlotinib, as well as second-generation EGFR TKIs, afatinib and dacomitinib have been widely used in the treatment of malignancies (Sim et al., 2018). Considering their close link with downstream inflammatory mediators, RTKs could be promising targets in fighting COVID-19.

Overall, the role of GFRs, RTKs, and the co-receptors like HSPGs in...
the entrance and proliferation of coronaviruses is undeniable and their targeting could envisage a bright future in combating COVID-19 (Hondermarck et al., 2020).

4.2. IL-6 receptor, and IFN-γ

IL-6 is a glycoprotein, secreted by various cells, including B and T cells, endothelial cells, monocytes, keratinocytes, and adipose cells. It plays a key role in many processes of the body like inflammation, synthesis of acute phase proteins, immune responses against antigens, and hemopoiesis (Hirano et al., 1986). IL-6 receptor is also expressed in many cells like B and T cells, monocytes, neutrophils, and hepatocytes.

There are two types of IL-6 receptors (Hibi et al., 1990), including trans-membrane (mIL-6 receptor), which is located on the cell surface, and soluble (sIL-6 receptor) which exists in circulation and is synthesized either by the enzymatic cleavage of mIL-6 receptor through ADAM-17 (a disintegrin and metalloproteinase enzyme) activity or by alternative splicing (McGonagle et al., 2020). Due to their short cytoplasmic domains, glycoprotein 130 (gp130) is needed for proper functioning of these two types of receptors to transduce intracellular signals. After ligation of gp130 to IL-6/IL-6 receptor complex, it forms a high-affinity homo-dimer complex responsible for the activation of tyrosine kinases that result in the phosphorylation of transcription factors (Mihara et al., 2011). Soluble gp130 (sgp130) binds to IL-6–sIL-6 receptor complex and inhibits the binding of IL-6–sIL-6 receptor complex to membrane-bound gp130 (mgp130), thereby playing a key role as a natural inhibitor of the IL-6 signaling pathway (McGonagle et al., 2020).

Stimulation of the IL-6 receptor with IL-6 leads to the activation of JAK/STAT3 pathway. STAT3 enters the nucleolus following activation. Controlling of STAT3 could be achieved via the inhibition of cytokine signaling components and inhibitors of STAT proteins (Martens et al., 2000). Another signaling pathway governed by IL-6 is phosphoinositide-3 kinase (PI3K)/protein kinase B (PKB)/Akt. Activation of PI3K is performed by JAK, after which the phosphorylated PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3, 4,5-trisphosphate (PIP3). Then, PIP3 phosphorylates PKB/Akt serine/threonine kinase, as a modulator of cell survival genes expression (Narazaki et al., 1993).

Viral infection results in increased levels of IL-6 and elimination of the inhibitory sources of IL-6. IL-6 dysregulation is also observed in many autoimmune and chronic inflammatory diseases. In the presence of any inflammatory damage, synthesized IL-6 is transported to the liver and causes extensive production of acute phase proteins like CRP, serum amyloid A, fibrinogen, haptoglobin, and a1-antichymotrypsin. IL-6 also plays a key role in lungs immunopathogenesis and leads to acute respiratory distress syndrome (ARDS). Any doubt about IL-6 involvement in the COVID-19 associated MAS can be answered by presence of the aforementioned biomarkers (Lu, 2019). High levels of other inflammatory biomarkers like CRP and ferritin are also among common features of COVID-19 patients. In patients with MAS/HLH, the levels of these markers raised similarly to what is observed in patients with COVID-19 pneumonia. Another similarity between COVID-19 pneumonia and MAS/HLH is increased levels of cytokines, including TNF, IL-1β,2,6,8,17 and CCL2 (de Wit et al., 2016). These common features of COVID-19 pneumonia and MAS/HLH enforced the idea of immunosuppressive therapeutic strategies for COVID-19 pneumonia. Besides, previous studies have shown the efficacy of IL-6 antagonist therapy in patients suffering from SARS coronavirus (Scheller et al., 2006). Patients with all types of ARDS exhibited high levels of IL-6 with a poor survival rate. As augmented IL-6 level is a common feature in ARDS, MAS, and HLH, and cannot be considered as a reliable marker for differential diagnosis in COVID-19 pneumonia. In patients with COVID-19 pneumonia, severe ARDS and lymphopenia-induced immunosuppression with profound down-regulation of IFNs are present. After any irritation of the lung tissue by viral infections or chemical irritants, IL-6 takes part in lung remodeling. This feature of IL-6 is a key point to be taken into consideration for defining the exact timing of anti-IL-6 therapy. On the other hand, a prompt decrease of viral load by anti-retroviral drugs prevented immunosuppression and MAS, which are vital in the treatment course (Kennedy et al., 2014). According to the current data, it is not possible to precisely clarify whether raised levels of IL-6 are beneficial or harmful. The dual function of IL-6 in suppressing or facilitating virus replication necessitates more research to exactly determine IL-6 effects in COVID-19. A recent study showed that early administration of anti-IL-6 may decrease the clearance of the virus and conducting further clinical trials to assess the proper timing of medication are mandatory (Mihara et al., 2011).

Tocilizumab (TCZ) is a recombinant anti-human IL-6 monoclonal antibody. It binds to IL-6 (soluble and membrane-bound) and hence blocks the related downstream signaling pathways. Its main indication is for rheumatoid diseases like rheumatoid arthritis and cytokine storm in patients treated with chimeric antigen receptor (CAR) T cell therapy (McCreary et al., 2020; Tanaka et al., 2016). Accordingly, a study was carried out on the efficacy of TCZ in the management of critical patients infected with SARS-CoV-2. In their study, 20 patients were taken 400 mg of TCZ (i.v. Once daily). After a few days, fever and other symptoms vanished, oxygenation improved in 75% of patients, lung CT scans of 90% of patients got better, and 52.6% of patients experienced return of peripheral lymphocyte counts to normal. So, the results indicated a good therapeutic response in COVID-19 patients treated with TCZ (Fu et al., 2020). Additionally, sarilumab, a human monoclonal antibody against IL-6 with a labeled indication for rheumatoid arthritis. This antibody has also been evaluated in the treatment of COVID-19 (McCreary et al., 2020). As a humanized murine chimeric monoclonal antibody which directly binds IL-6, silutzumab is used for the treatment of cytokine storm, although it has not hitherto received FDA approval. It has been studied as an option in COVID-19 patients (Chen et al., 2020).

Due to the major role IL-6 plays in inflammatory responses, it could be considered a reasonable target for the treatment of COVID-19
patients. Although the role of IL-6 in inflammation associated pathogenesis is more focused, the roles of other cytokines including IFN-γ, IL-18, IL-1α, IL-1β and their related pathways should be also taken into consideration (Ye et al., 2020). Canakinumab is a monoclonal antibody against human IL-1β that is used in MAS (Ruperto et al., 2012). Besides, rilonacept has been also used in MAS which neutralizes IL-1p and IL-1α (Ilowite et al., 2014). In this regard, taking alfa, as a recombinant human IL-18-binding protein, has also shown beneficial results in MAS (Canna et al., 2017).

In addition to the critical role of ILs in COVID-19, IFN-γ seems to be another key mediator. IFN-γ is another player of immune and inflammatory responses with dual roles in viral complications. Receptors of IFN-γ are expressed on both malignant and non-malignant cells. Following the activation of IFN-γ receptors, JAK1 and JAK2 are activated, leading to homodimerization of STAT1, nuclear translocation, and activation of various genes. Its role in combating pathogens, including viruses, has been also established (Davidson et al., 2016). Increased levels of IFN-γ in COVID-19 patients with ARDS have also been reported. In addition to its beneficial effects as a protective agent in COVID-19, it has also been attributed to deteriorating effects with respect to cytokine storm and induction of IL-6 production. Accordingly, trials on using anti-IFN-γ emapalumab in combination with the IL-1 receptor antagonist anakinra for COVID-19 is ongoing (Lu). Additionally, ponatinib by inhibiting breakpoint cluster region-Abelson kinase and regulating type I IFNs, is in the preclinical stage to counteract cytokine storms in influenza infection. Consistently, emapalumab, an antibody that binds to soluble and receptor-bound forms of IFN-γ, is approved for HLH treatment (Locatelli et al., 2020).

In general, antagonizing inflammatory ILs and modulating IFN-γ could be of potential importance in reducing SARS-CoV-2 complication and suppressing COVID-19.

Fig. 1 shows the dysregulated inflammatory pathways in COVID-19, as well as selective anti-inflammatory drugs.

4.3. TNF-α receptor and TLR

Growing evidence is focusing on the importance of TNF-α receptor, and TLRs in inflammatory cascades. In this regard, TNF-α plays key roles in immune responses and tissue homeostasis. Despite the role of TNF-α signaling in combating viral infections, high levels of TNF-α in some diseases like influenza and COVID-19 are associated with lung injuries. Studies have demonstrated that high levels of TNF-α are observed in plasma and alveolar fluid lavage of patients with ARDS. Elevated levels of cytokines lead to increased endothelial permeability and decreased alveolar fluid clearance caused by down-regulation of sodium channels in the epithelium, and the main sources of TNF-α are activated monocytes, fibroblasts, and endothelial cells. The initial form of TNF-α is a membrane protein which turns into a soluble form via ADAM17 (Ma...
Several monoclonal antibodies against TNF-α are recommended for the treatment of COVID-19. Infliximab is a TNF-α antibody with the main indication in inflammatory bowel diseases, rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and plaque psoriasis (Qiu et al., 2013). Etanercept is a TNF-α receptor blocker fused to immunoglobulin G (IgG) Fc, which is indicated for the treatment of ankylosing spondylitis, rheumatoid arthritis, plaque psoriasis and psoriatic arthritis (Chadwick et al., 2018; Mordaca et al., 2018).

As other anti-TNF-α antibodies, adalimumab and golimumab were indicated for the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn’s disease, psoriatic arthritis and plaque psoriasis (Choquette et al., 2019). Certolizumab pegol is another anti-TNF-α antibody conjugated to a 40 kDa polyethylene glycol indicated for decreasing symptoms and signs in Crohn’s disease and the treatment of ankylosing spondylitis, rheumatoid arthritis and psoriatic arthritis (Pelsenstein et al., 2020; Tosi et al., 2019). Along with the beneficial role of anti-TNF-α agents, there are also some concerns regarding their usage. In China, studies have demonstrated limited benefits from anti-TNF-α therapy in the management of SARS-CoV-2 infected patients which underscores targeting other alternative pathways like TNF-α downstream signaling pathways as potential therapeutic options (Channappanavar et al., 2016; Ma et al., 2020; McDermott et al., 2016). Of other concerns related to using anti-TNF-α agents is secondary infections caused by bacterial and fungal germs. Thus, patients with latent tuberculosis are not recommended to take such medications (Channappanavar and Perlman, 2017; Ma et al., 2020; McDermott et al.).

Among other compounds with inhibitory effects on TNF-α, ulinastatin, as a glycoprotein naturally occurring in the body inhibits the release of the pro-inflammatory mediators such as TNF-α, IL-6, and IFN-γ, while increasing levels of the anti-inflammatory cytokine IL-10, thereby protecting the vascular system. Its main clinical use is in pancreatitis and circulatory failure. The advantage of ulinastatin usage over glucocorticoids is that it doesn’t suppress the immune system, hence it can be widely used in COVID-19 patients (Ju et al., 2019). But currently, it is not included in the treatment of COVID-19 patients and studies are going on (Ye et al., 2020).

In addition to the critical role of TNF-α in COVID-19 complications, TLRs have been shown to play key roles, as well. TLRs play an important role in the induction of immune responses through recognizing PAMPs. They are present in a wide range of creatures from primitive nematodes to the most advanced creatures namely human being (Vijay, 2018). TLRs are PRRs with critical roles in the initiation of the innate immune response through recognizing potentially harmful pathogens. PRRs initiate multiple signaling pathways in the host cell. TLRs signaling trigger the release of IFNs, chemokines, and host defense peptides leading to macrophages and neutrophils activation (Medzhitov et al., 1997). TLRs dysregulation, which causes the secretion of cytokines and chemokines, occurs in autoimmune disorders. From the therapeutic view, TLRs could be targeted in two ways. The first is applying TLRs agonists that bind TLRs and activate them hence acting like a vaccine. Another way is the inhibition of TLRs by specific antibodies. But, so far not enough research has been carried out on TLRs targeted therapeutic modalities in COVID-19 patients and studies are going on (Arora et al., 2019). We have previously shown the role of TLR modulators in the prevention/treatment of viral diseases (Pour et al., 2019). Consistently, diacerein, a slow-acting medicine of the anthraquinone class for joint diseases, has been hypothesized to be a potent multi-target agent through various mechanisms, including TLR-4 suppression (de Oliveira et al., 2020). Consequently, TAK-242 was a TLR-4 non-competitive inhibitor (Ji et al., 2006) in a phase III clinical trial on sepsis patients; however, it was failed (Rico et al., 2010). Besides, calixarenes (Sahuja and Sekhon, 2013), alpinetin (He et al., 2016), furelic acid (Rehman et al., 2019), some opioid derivatives (Northcutt et al., 2015), as well as anionic and cationic monosaccharide-based (Peri and Romerio, 2020), small molecule inhibitors (e.g. statins), antibodies (e.g. NI-0101 and 1A6), lipid A analog (e.g. Eritoran), and miRNAs are other TLR-4 antagonists have been explored in various experimental and clinical phases (Gao et al., 2017). Amongst other TLR-4 inhibitors, VXG-1027 has shown modulatory effects on cytokine synthesis with preventive potential on autoimmune diseases in murine models. It modulated the production of IL-1β, TNF-α and IL-10 in response to stimuli activating TLRs. In this line, a reduced activation of nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) pathways along with increased extracellular signal-regulated kinase (ERK) were also demonstrated (Stojanovic et al., 2007). From the therapeutic point of view, VXG-1027 is a safe and generally well tolerated agent with no toxicological concern towards clinical development (Lee et al., 2016). Altogether, the modulators of TLRs and TNF-α could pave the way in combating inflammatory complications of COVID-19.

4.4. JAK/STAT pathway

In addition to importance of the aforementioned receptors/mediators in the pathogenesis of COVID-19, blockade of their downstream signaling pathway (i.e., JAK/STAT) could also be of great value. The mechanism of action includes tyrosine phosphorylation of cytoplasmic domains of gp130 by JAK1 and STAT3. Several pro-inflammatory cytokines can activate JAK/STAT signaling pathways which are upregulated in COVID-19 patients (Yamaoka et al., 2018).

Based on the aforementioned mediators, JAK inhibitors are being tried to treat COVID-19 inflammatory complications. The efficacy/potential of using JAK inhibitors comes from this fact that, SARS-CoV-2 targets immune cells using cytokine receptors, and downstream JAK/STAT signaling pathway. In this line, phase III clinical trial of ruxolitinib (NCT04120090, NCT03533790) and phase II of fedratinib (Wu and Yang, 2020) are going on in the treatment of patients with pneumonia associated COVID-19. Agents with desired selectivity for JAK/STAT pathway include peficitinib, upadacitinib, fedratinib and tofacitinib (Seif et al., 2020).

Since the JAK/STAT pathway is present in the tissues possessing Ang I receptors and immune cells, and respond to cytokine through their receptors, the idea of manipulating this pathway by JAK inhibitors as a strategy for managing COVID-19 hospitalized patients sounds good. JAK/STAT signaling pathway is the main pathway through which Ang II functions and causes vasoconstriction, chronic injuries and hypertension. Ang II exerts its cardiovascular effects by Ang I receptor, suggesting the therapeutic potential of Ang I receptor blockers (ARBs) in COVID-19 patients although contraindications should be considered when using these agents (Liu et al., 2020c). JAK/STAT pathway mediating Ang II functions is present in the cardiovascular system, proximal tubular epithelial cells of kidney, astrocytes of brainstem, hepatocytes and mesangial cells. In this way, JAK2, which is activated by Ang I receptor, activates one of the STAT family members. (i.e., STAT1, 2, 3, 4, 5A, 5B, and 6). A study showed that the use of ARBs in elderly patients (age > 65) with hypertension, caused a lower incidence of respiratory complications (Zou et al., 2020).

Some biological agents capable of blocking related upstream inflammatory pathways are being explored in the way of counteracting different inflammatory complications of COVID-19 (Seif et al., 2020). Tofacitinib, which is an orally-administered medication, blocks JAK1/2/3 and has been approved by FDA for arthritis rheumatoid (Seif et al., 2017). Besides, some cytokines like IL-2, IL-7, and IL-6 which use JAK3 as a signaling mediator, can be blocked effectively by tofacitinib (Lee et al., 2014). Until now there hasn’t been any report declaring the use of tofacitinib in the treatment of COVID-19.

Baricitinib, as a selective JAK1/2 blocker, is used in arthritis rheumatoid. It also inhibits AAK1 (an endocytosis regulator) to serve as a potential medication of choice in treating COVID-19 patients. To reach the plasma concentration of therapeutic effect, 2–4 mg once daily dosage of baricitinib was sufficient for COVID-19 patients (Cantini et al., 2020). Thus, blockade of this pathway in COVID-19 patients can be
curative and the recent trials exploiting baricitinib in the treatment of ARDS in COVID-19 patients have shown promising results (Liu et al., 2020). AAK1 is one of the regulators of SARS-CoV-2 endocytosis into the host cell, in parallel to JAK/STAT pathway. Therefore, intervening the process of endocytosis by AAK1 inhibitors could be a way of combating COVID-19 (Cron and Chatham, 2020), as baricitinib does (Stebbing et al., 2020). Besides, combination therapy of baricitinib with antivirals like lopinavir or ritonavir and remdesivir have shown a decreased rate of viral infection with a lower incidence of uncontrolled immune responses (Pardanani et al., 2015). Other JAK1/2 inhibitors, including ruxolitinib, momelotinib, and oclacitinib have also shown potentials to be used in COVID-19 with ongoing research (Furqan et al., 2013).

Despite the advantages of their use, one of the disadvantages of JAK inhibition is the blockade of type 1 and type 2 IFNs which play remarkable beneficial roles in downregulating virus activity (Cron and Chatham, 2020; Li et al., 2020). Other JAK inhibitors adverse effects that should be concerned are generally increased risk of viral infections, lower gastrointestinal complications, anemia and leukopenia (Al-Qah et al., 2020). Celecoxib in combination with oseltamivir is used in phase III clinical trial for influenza A infection (Capuano et al., 2020.). There are studies suggesting the use of anti-inflammatory medications before the initiation of cytokine storm and overwhelming inflammatory cascades in COVID-19. Thus, using corticosteroids and cytokine inhibitors such as TCZ (an IL-6 inhibitor) and anakinra (IL-1 receptor antagonist) might be appropriate options in COVID-19. Additionally, modulation of a hyper-inflammatory state can be achieved by using intravenous immune globulins (IVIG). It has been shown that IVIG administration as adjuvant treatment for COVID-19 ICU patients with pneumonia reduced the use of mechanical ventilation, hospital/ICU length of stay, and mortality of patients (Xie et al., 2020).

When patients go through storm stage, recovery will be difficult and many efforts should be made to avoid the starting of cytokine storm (Tanaka et al., 2014). In this line, etoposide by selective deletion of T cells and effectual suppression of pro-inflammatory cytokines is widely used for HLH in co-administration with cyclosporine and corticosteroids (Bergsten et al., 2017.). Peroxisome proliferative activator receptors (PPARs) are transcription factors belonging to the ligand-activated nuclear hormone receptors family that have shown the ability to regulate inflammation (Al-Qahtani et al., 2017.). They play crucial roles in the metabolism of lipid/glucose, cell multiplication/differentiation/migration, malignancy, atherosclerosis, and vascular remodeling. Therefore, controlling inflammation by activating PPARs seems to be an option in coping with cytokine storm. There are three subtypes of PPARs, including α, β/δ, and γ (Berger and Moller, 2002). Among these subtypes, PPARγ agonists (pioglitazone and rosiglitazone) as members of thiazolidinediones (TZDs) are the best choices to be used accordingly. The main approved clinical use of TZDs are for diabetes mellitus type 2. Natural sources and foods enriched with PPAR agonists can be used as modulators of inflammatory responses (Ciarella et al., 2020; Russell et al., 2020), with possible potentials for use against the cytokine storm in COVID-19.

As another modulator of inflammation, sphingosine-1-phosphate (SIP) which is a signaling sphingolipid, also known as lysosphingolipid, is involved in the stimulation, synthesis and release of cytokines. Since SARS-CoV-2 mainly evades the lungs epithelial/endothelial cells, SIP could be a good target in the treatment of COVID-19 through reducing cytokine responses. The drug belonging to this category is siponimod approved to be used in multiple sclerosis. Further investigations are needed to provide enough evidence for its use in SARS-CoV-2 infection (Cheng et al., 2015; Ye et al., 2020).

The main concern of using anti-inflammatory medications is putting the patient at the risk of secondary infections particularly in immunocompromised patients causing the virus to last for a longer time in the patient’s body (Ciarella et al., 2020). Other disadvantage of using steroids, in addition to the latter, is causing nonvascular osteonecrosis which makes the prognosis poorer. High doses of steroids were not beneficial in severe respiratory compromised patients with SARS and SARS-CoV-2 but low to moderate doses and short duration of therapy were found to be helpful in COVID-19 patients (Mehta et al., 2020). In
4.6. Macrophage activation

When infection occurs with a RNA virus, TLR-7 stimulation leads to pro-inflammatory responses of mononuclear macrophages. According to the high number of mononuclear macrophages (MNP) in inflammation sites, the idea of using TLR-7 antagonists seems to be promising (Xu et al., 2020). It has been shown that alveolar macrophages in patients suffering from ARDS exert their pathologic effects through agents, including proteases, reactive oxygen species (ROS), eicosanoids, phospholipids and cytokines such as IL-1, IL-6 and TNF-α (Aznaldez et al., 2020). MNPs and pro-inflammatory molecules are more observed in severe patients in comparison to mild patients (Mehra et al., 2020). Composition of the MNPs in severe patients revealed lower counts of resident macrophages and higher numbers of pro-inflammatory monocyte-derived macrophages. Macrophages present in alveolar fluid samples showed the features of fibrosis promotion similar to macrophages involved in lung cirrhosis. This observation guided researchers to the lung pathogenesis management afforded by proper management of immune responses via macrophages (Bracaglia et al., 2017). Immuno-staining of samples taken from dead COVID-19 patients indicated that CD169⁺ macrophages expressed ACE2 receptor and showed the evidence of virus infection as they were positive for SARS-CoV-2 nucleoproteins. Expression of the ACE2 receptor on the macrophages may be induced by inflammatory signals through type I IFN or other receptors like CD147 that could take part in virus entry into the cell. Since now it is unclear whether the presence of the nucleoproteins in macrophages is the result of their direct infection or is due to engulfment of virus-infected cells. Prolonged activation of recruited monocytes and monocyte-derived macrophages may induce type I IFN, oxidative stress, anti-spike IgG immune complexes, as well as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation (Kim and Nam, 2020; McGonagle et al., 2020). Virus infected macrophages expressed IL-6 and lymphocytes were severely depleted in spleen and lymph nodes. On the other hand, transcriptomic analysis confirmed the preferential activation of B lymphocytes in the lungs of patients with COVID-19 (Cavalli et al., 2020). Other organs of the COVID-19 patients also showed the existence of macrophages like CD68⁺ cells in kidneys that were associated with tubular damage. Other organs that may be injured throughout this disease are liver, spleen (with necrosis), lymph nodes (with focal necrosis), and heart (Stunault et al., 2018). Researchers should go on to comprehend the exact cause of monocyte and macrophage activation, as well as so many other factors contributing to this phenomenon. It isn’t still clearly established that cytokines are drivers of macrophage activation or viral infection/detection is the cause. It has also been found that prior infections before SARS-CoV-2 may have roles in monocytes/macrophage activation. The tissue inflammatory responses are also important. In this regard, balancing between the presence of tissue-resident macrophages and monocyte-derived macrophages is also determinant in combating COVID-19 (Abd El-Aziz and Stockand, 2020; Stunault et al., 2018).

4.7. Mammalian target of rapamycin inhibition

Preventing the dysregulation of mTOR handles the metabolism, general, fighting pathogens without the involvement of inflammation as an immune system response is unimaginable. The battle starts with pathogen detection and immune cells recruit to battlefield for the elimination of invader and repairing the left damages (Ye et al.). During cytokine storm, there are so many cytokines participating in the inflammation and using a medication with the capability of blocking an individual cytokine can’t avoid the overall devastating result of the storm. On such a basis, employing multi-target blockers looks instrumental.

So, it is important to subjugate the unleashed storm while modulating the immune system positively (Claivarella et al., 2020).

Drug	Clinical phase	Mechanism	References
Tocilizumab	phase IV	human monoclone	De Benedetti et al. (2012);
	SARS-CoV-2	anti-IL-6	Kennedy et al. (2014); Xu
		antibody	et al. (2020)
Sarilumab	phase II/III	anti-IL-6	Zhang et al. (2007)
	study	antibody	
Siltuximab	patients	anti-IL-6	Chen et al. (2016)
	requiring	antibody	Al-Salama (2019)
	ICU admission		
Emapalumab	approval for	anti-IFN-γ	
	primary	antibody	
	HLH		
Anakirin	phase I for	IL-1 receptor	Hzenan et al. (2006);
	MAS	antagonist	Neurath (2020)
	(NCT02780583,		
	phase II for		
	MAS and sepsis		
	(NCT03332225)		
Infliximab	phase II for	human	
	HLH	monoclonal	
	Phase I/II for	anti-TNF-α	
	GvHD	antibody	
	(NCT00228839,		
	NCT00228839,		
	NCT00201799,		
	Phase IV for		
	GvHD in		
	combination		
	with daclizumab		
Etanercept	Phase II/III	competitively	Kitko et al. (2016)
	for GvHD	inhibiting TNF-	
	(NCT00726375,	α	
	NCT00141739		
	NCT00141713,		
	NCT00224874,		
Adalimumab	not available	anti-TNF-α	Sanchez-Piedra et al.
		antibody	(2020)
Certilizumab	not available	anti-TNF-α	Feldmann et al. (2020)
Golimumab	not available	anti-TNF-α	Feldmann et al. (2020)
Ruxolitinib	phase III for	JAK inhibitor	Goker Bagca and Biray Avci
	HLH		(2020); Spinelli et al.
	(NCT04120090,		(2020)
	NCT03335790,)		
	Phase IV for		
	GvHD (ChiCTR		
	1900024408)		
Fedratinib	not available	JAK inhibitor	Di Lorenzo et al. (2020)
Ruxolitinib	not available	JAK inhibitor	Bergeten et al. (2017)
Peficitinib	not available	JAK inhibitor	Bracaglia et al. (2017)
Upadacitinib	not available	JAK inhibitor	Luo et al. (2020)
Fedratanib	not available	JAK inhibitors	
Tolofacitinib	not available	JAK inhibitors	
Baricitinib	phase IV for	selective JAK/1	Park et al. (2010); Zhang
	SARS-CoV-2	2 blocker	et al. (2020a); Ko et al.
	severe	humanized	et al. (2019); Rochwerger
	pneumonia	monoclonal	et al. (2018a); Zha et al.
	clinical trial	antibody	
	in China for	targeting VEGF	
	COVID-19	dampen pro-	
	(NCT04275414)	inflammatory	
Corticosteroids	phase II/III	cytokines and	
	for SARS-	possess	
	CoV-2 severe	anti-biotic	
	pneumonia	property	
	(NCT04263402,		
	ChiTR00029386,		
	ChiTR00029656)		
IVIG	phase II/III	provides	Aljietas-Rieq et al. (2020);
	for SARS-	passive immunity	Emmeneeger et al. (2001)
	CoV-2 (NCT04261426)		

(continued on next page)
proliferation, growth, and survival of diverse immune cells during the migration and expression of myeloid immune cells and cytokine. Administration of mTOR inhibitors seems to enhance the T-cell stimulatory activity of dendritic cells, promotes the autophagy of macrophage, blocks murine B-cell proliferation, and suppresses early B-cell production in germinal centers, also enhances the magnitude and quality of viral specific CD8+ T-cell responses to vaccination in macaques, thereby play important roles in the prevention/treatment of COVID-19 complications (Zheng et al., 2020).

On the other hand, in an in vitro study, rapamycin (a mTOR inhibitor) inhibited the replication of MERS-CoV (Kindrachuk et al., 2015). Accordingly, adjuvant treatment with mTOR inhibitors improve the outcome in ICU patients affected by H1N1 influenza virus (Wang et al., 2014). Additionally, mTOR has also been introduced as a multifunctional target in combating HIV (Nicolelli et al., 2011). In this line, rapamycin showed a powerful antiviral effect against R5 strains of HIV, in vivo (Nicolelli et al., 2009). In another study, the inhibition of mTOR suppressed multiple steps of HIV life cycle, including reverse transcription, integrase and protease (Heredia et al., 2015). In recent studies, mTOR inhibitors have also been introduced as promising candidates in combating SARS-CoV-2 (Fagone et al., 2020; Ramaiah, 2020).

Considering the role of mTOR inhibitors in limiting the proliferation of memory B cells and T-cell responses, patients treated with mTOR inhibitors are expected to a reduced early production of cross-reactive antibody, less antibody-dependent enhancement and fewer severe symptoms in COVID-19. Such promising results could draw a bright future for mTOR inhibitors in combating COVID-19.

Table 1 shows the mechanistic basis of drugs in COVID-19.

5. Conclusion

Multiple destructive signaling pathways are implicated in COVID-19 pathogenesis. Although a low level of inflammation helps toward a successful elimination of pathogens, SARS-CoV-2 utilizes overactivated inflammatory pathways leading to multiple-organ damages, physiological deterioration and eventually death. In this line, identifying the precise inflammatory pathways and therapeutic targets in COVID-19 is of high value. Growing evidence has shown the critical role of IL-6, IL-1β receptor, IFN-γ, TNF-α, TLR, JAK/STAT, RTKs and growth factor receptors in the pathogenesis of COVID-19. In the current study, the results of targeting the aforementioned inflammatory pathways in COVID-19 patients have been reviewed. Besides, we also revealed several interconnected dysregulated pathways, including PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, and TRAF/TRADD/caspase as promising future targets in fighting against COVID-19.

Considering the controversial results obtained in the treatment of COVID-19, further in-depth investigations are waiting to unravel novel SARS-CoV-2 related therapeutic targets and signaling pathways to be employed for the prevention and treatment of COVID-19. Additional studies are still required to decipher more critical inflammatory pathways triggered by SARS-CoV-2.

Author contributions

Conceptualization, S.F., and H.K.; Software, S.F.; drafting the manuscript, A.Y., M.Y., and S.F.; review and editing the paper: A.Y., M.Y., S.F., and H.K; revising: A.Y., S.F., and H.K.

Funding

This study was supported by the Student Research Committee (Grant no. 3010679) of Kermanshah University of Medical Sciences, Kermanshah, Iran and approved by Ethic Committee (IR.KUMS.REC.1399.688).

Conflicts of Interest

Nothing for declaration.

References

Abd El-Aziz, T.M., Stockand, J.D., 2020. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect. Genet. Evol. 83, 104327.

Al-Jeabis-Reig, J., Esteve-Valverde, E., Belzina, C., Selva-O’Callaghan, A., Pardos-Gea, J., Quintana, A., Mekinian, A., Amanniciad-Junnell, A., Miró-Mur, F., 2020. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: a comprehensive review. Autoimmun. Rev. 19, 102569–102569.

Al-Qahtani, A.A., Lyroni, K., Anassourou, M., Tsolliou, M., Al-Anazi, M.R., Al-Abdul, M.N., Akhtiani, S., Sourvinos, G., Tzartas, C., 2017. Middle east respiratory syndrome corona virus spike glycoprotein suppresses macrophage responses via DPP4-mediated induction of IRAK-M and PAFAR, Oncotarget 8, 9053–9066.

Al-Soliman, Z.A., 2019. Emphasophosh: first global approval. Drugs 79, 99–103.

Arnaldez, F.I., O’Day, S.J., Drake, C.G., Fox, B.A., Fu, B., Urba, W.J., Montesarchio, V., Weber, J.S., Wei, H., Wigginton, J.M., Asciero, P.A.O.-X., 2020. The Society for Immunotherapy of Cancer perspective on regulation of interleukin-6 signaling in COVID-19 related systemic inflammatory response. In: J Immunother Cancer 8 LID -. LID 009390. https://doi.org/10.1158/2326-9247.jimm.2020.04.017 [doi].

Arora, S., Ahmad, S., Irshad, R., Goyal, Y., Rafat, S., Siddiqui, N., Ali, S., Mohan, A., Syed, M.A., 2019. TLRs in pulmonary diseases. Life Sci. 233, 116671–116671.

Bellani, G., Laffey, J.G., Pham, T., Fan, E., Brochard, L., Esteban, A., Gattinoni, L., van der Zwan, H., Larsson, A., McAuley, D.F., Ranieri, M., Rubenfeld, G., Thompson, B.T., Wrigge, H., Slutsky, A.S., Pesarini, A., 2016. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 315, 788–800.

Berger, J., Moller, D.E., 2002. The Mechanisms of Action of PPARs. Ann Rev Med 53, 409–435.

Bergsten, E., Horne, A., Aricó, M., Antigarragga, I., Egler, M., Filipovich, A.H., Ishii, E., Janka, G., Ladhisch, S., Lehmburg, K., McClain, K.L., Minkov, M., Montgomery, S., Nanduri, V., Rosso, D., Henter, J.I., 2017. Confirmed Efficacy of Etoposide and Dexamethasone in HLH Treatment: Long-Term Results of the Cooperative HLH-2004 Study. Blood 130, 2728–2738.

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., Kuchroo, V.K., 2006. Reciprocal Developmental Pathways for the Generation of Pathogenic Effector Th17 and Regulatory T Cells. Nature 441, 235–238.

Bracaglia, C., de Graaf, K., Pires Marafon, D., Guilhot, F., Ferlin, W., Prencipe, G., Bracaglia, C., Prencipe, G., De Benedetti, F., 2017. Macrophage Activation Syndrome: Different Mechanisms Leading to a One Clinical Syndrome. Pediatr Rheumatol Online J 15.

Camerino, M.J., Bermejo-Martin, J.F., Danesh, A., Muller, M.P., Kelvin, D.J., 2008. Human Immunopathogenesis of Severe Acute Respiratory Syndrome (SARS). Virus Res 133, 13–19.

Candela, M., Ciccioppo, R., Rocco, P., Levine, B., Bronte, V., Bollaard, C.M., Weins, D., Boelens, J., Hanley, P.J., 2020. Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy 22, 374–481.

Candela, M., Girard, C., Mallo, L., de Jesus, A., Romberg, N., Kelson, J., Surray, L.F., Russo, P., Sleight, A., Schifrin, E., Gabay, C., Goldbach-Mansky, R., Behrens, E.M., 2017. Life-threatening NLRC4-associated hyperinflammation successfully treated with ritonavir in adults hospitalized with severe Covid-19. Allergy Clin Immunol 139, 1698–1701.

Cao, R., Wang, Y., Wen, D., Li, W., Wang, F., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., 2020. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382, 1787–1792.

Cantini, F., Niccoli, L., Matarrese, D., Nicastri, E., Stobbione, P., Goletti, D., 2020. Batiritsch Therapy in COVID-19: A Pilot Study on Safety and Clinical Impact. J Infect. 81, 318-356. Lid - 10361-4453/20(3)00228-0 (pij) Lid - 10.1016/j. jinf.2020.04.017 [doi].

Capuano, A., Scavo, C., Racagni, G., Scaglioni, F., 2020. NSAIDs in patients with viral infections, including COVID-19: victims or perpetrators? Pharmacol Res 157, 104849.
Cavalli, E., Bramanti, A., Curielos, R., Tchobravon, A.I., Giordano, A., Fagone, P., Belzina, C., Bramanti, P., Shoenfeld, Y., Nicolletti, F., 2020a. Estimating COVID-19 associated thrombosis in a secondary antiphospholipid antibody syndrome: a thrombosis and thrombocytopenia study: Pathogenetic imaging and treatment perspectives. Int. J. Mol. Med. 46, 903–912.

Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Wong, M.M.L., Chan, K.H., Chan, K.S., Kao, R.Y.T., Poon, L.L.M., Wong, C.L.P., Yan, Q., Peiris, J.S.M., Yuen, K.Y., 2020. Role of Iopamine/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 59, 252–256.

Ciavarella, C., Motta, I., Valente, S., Pasquinelli, G.A.O.-O., 2020. Pharmacological (Or Synthetic) and Nutritional Agonists of FPAR-4 as Candidates for Cytokine Storm Moderation in COVID-19 disease. Molecules. 25, 2076. LID - E2076 [pii] LID - 10.3390/molecules25092076 [doi].

Cavalli, E., Petralia, M.C., Basile, M.S., Bramanti, A., Bramanti, P., Nicolletti, F., Spadoni, D.A., Fagone, P., 2020b. Towards an Antigenic Approach: Bicalutamic Eluates of COVID-19 lungs and bronchoalveolar lavage fluid samples reveals predominant B cell activation responses to infection. Int. J. Mol. Med. 46, 1266–1273.

Chadwick, L., Zhao, S., Mysler, E., Moots, R.J., 2018. Review of Biosimilar Trials and Data on Etanercept in Rheumatoid Arthritis. Curr Rheumatol Rep 20, 84.

Channappanavar, R., Fehr, A.R., Vijay, R., Mack, Z., Zhao, J., Miyeholz, D.K., Perlmutter, S., 2016. Dysregulated Type I Interferon and Immunomodulatory Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 19, 181–193.

Channappanavar, R., Perlmutter, S., 2017. Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunomodulation. Semin Immunopathol 39, 529–539.

Chen, S., Liu, G., Chen, J., Hu, A., Zhang, L., Sun, W., Tong, W., Liu, C., Zhang, H., Ke, C., Wu, J., Chen, X., 2019. Ponatinib Protects Mice from Lethal Infection by Suppressing Cytokine Storm. Front Immunol 10, 1393.

Chen, L., Liu, H.G., Liu, W., Liu, J., Kong, J., Deng, Y., Wei, S., 2020. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Xi Hu Xi Za Zhi 43, 203–208.

Chen, F., Teachey, D.T., Pequignot, E., Frey, N., Porter, D., Maude, S.L., Grupp, S.A., Teachey, D.T., Pequignot, E., Frey, N., Porter, D., Maude, S.L., Grupp, S.A., 2020. Dysregulated Type I Interferon and Immunomodulatory Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe 19, 181–193.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., Zhang, L., 2020. Epidemiological and Clinical Characteristics of 99 Novel Coronavirus Pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513.

Cheng, Q., Ma, S., Lin, D., Mei, Y., Gong, H., Lei, L., Chen, Y., Zhao, Y., Hu, B., Wu, Y., Yu, X., Zhao, L., Liu, H., 2015. The S1PR receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell Mol Immunol 12, 681–691.

Choquette, D., Besalte, L., Alemoa, E., Harasi, B., Postema, R., Raynauld, J.P., Goupl, L., 2019. Persistence rates of abatacept and TNF inhibitors used as first or subsequent biologic DMARDs in the treatment of rheumatoid arthritis: 9 years of experience from the Rhumadata clinical database and registry. Arthritis Res Ther 21, 138.

Choy, K.T., Wong, A.Y., Kaeswespeer, P., Sia, S.F., Chen, D., Hui, K.P.Y., Chu, D.K.W., Chan, M.C.W., Cheung, P.P., Huang, X., Perlmutter, S., 2020. Lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Lancet 395, 497–500.

de Oliveira, P.G., Termini, L., Durigon, E.L., Lepique, A.P., 2020. Diacerein: a potential multi-target therapeutic drug for COVID-19. 144.

Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R.E., Acton, S., 2020. Transcriptomic analysis of COVID-19 (ACE2) Converts Angiotensin I to Angiotensin. Circ Res 87, 1–7.

Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Pinheiro, I., 2020. Translation in Advances in the Treatment of Cardiovascular Diseases and a Journey from Molecular to Nano Therapeutics. Drug Discov Today 25, 2385–2395.

Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., 2020. Synthetic) and Nutritional Agonists of PPAR-Rx as Promising Therapy for Inflammatory Bowel Disease. J Rheumatol 47, 639–642.

Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R.E., Acton, S., 2020. A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin. Curr Rait 87, 1–9.
Park, H.B., Oh, K., Garma, N., Seo, M.W., Boyou, O.J., Lee, H.Y., Lee, D.S., 2010. CP-690,550, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host disease in a murine model. Front. Immunol. 1, 1–8.

Perricone, C., Trigiassine, P., Bartoloni, E., Caffaro, G., Bonifaci, A.F., Bursi, R., Perricone, R., Gerli, R., 2020. The anti-viral face of anti-rheumatic drugs: lessons from COVID-19. J. Autoimmun. 102/103, 102504.

Petralia, M.C., Mazzon, E., Fagone, P., Basile, M.S., Lenzo, V., Quattropani, M.C., Bendtzen, K., Nicotera, F., 2020a. Genetic contribution of the Macrophage migration inhibitory factor family to major depressive disorder and emerging therapeutic targets. J. Affect. Disord. 263, 15–24.

Petralia, M.C., Mazzon, E., Fagone, P., Basile, M.S., Lenzo, V., Quattropani, M.C., Di Nuovo, S., Bendtzen, K., Nicotera, F., 2020b. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun. Rev. 20, 102504.

Pour, P.M., Fahkri, S., Asgary, S., Farzaei, M.H., 2020. The signaling approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol. 11, 102077.

Pui, C., Cai, X., Sun, J., Welsh, J., Natanson, C., Eichacker, P.Q., 2013. Calixarenes and cucurbiturils: pharmaceutical and medicinal perspectives. Eur. J. Med. Chem. 66, 321–330.

Qiu, P., Cai, X., Sun, J., Welsh, J., Natanson, C., Eichacker, P.Q., 2013. Calixarenes and cucurbiturils: pharmaceutical and medicinal perspectives. Eur. J. Med. Chem. 66, 321–330.

Ren, L.L., Wang, Y.M., Wu, Z.Q., Xiang, Z.C., Guo, L., Xu, T., Jiang, Y.Z., Xiong, Y., Li, Y., 2020. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl) 133, 1015–1024.

Rice, T.W., Wheeler, A.P., Bernard, G.R., Vincent, J.-L., Angus, D.C., 2020. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet 395, 1064–1075.

Rochwerg, B., Oczkowski, S.J., Siemieniuk, R.A.C., Agoritsas, T., Belley-Cote, E., 2020. CRITICAL APPROACHES AND CLINICAL PERSPECTIVES OF ANTHOCYANINS IN THE MANAGEMENT OF VARIOUS DISEASES. Curr. Opin. Crit. Care 26, 15–24.

Ruperto, N., Brunner Hi, Quartier, P., Constantin, T., Wulffraat, N., Horneff, G., Brik, R., 2020. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet 395, 1064–1075.

Ruan, Q., Yang, K., Wang, W., Jiang, L., Song, J., 2020. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China.

Ruperto, N., Brunner Hi, Quartier, P., Constantin, T., Wulffraat, N., Horneff, G., Brik, R., 2020. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet 395, 1064–1075.

Sang, J., Antonelli, M., Ziemssen, F., 2020. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemostasis 18, 1094–1099.

Seif, F., Aazami, H., Kamali, M., Mohsenzadegan, M., Pornour, M., 2019. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 signaling pathway in the microglia. Front. Immunol. 10, 1376.

Shi, J., Aazami, H., Kamali, M., Mohsenzadegan, M., Pornour, M., 2019. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 signaling pathway in the microglia. Front. Immunol. 10, 1376.

Stefanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.

Stojanovic, I., Cuzzocrea, S., Mangano, K., Mazzon, E., Miljkovic, D., Wang, M., Donia, M., Ab Abid, Y., Kim, J., Nicotera, F., 2007. In vitro, ex vivo and in vivo pharmacological activities of the isoxazoline compound VX-929: modulation of cytokine synthesis and prevention of both organ-specific and systemic autoimmune diseases in murine models. Clin. Immunol. 123, 311–323.
Zheng, Y., Li, R., Liu, S., 2020. Immunoregulation with mTOR inhibitors to prevent COVID-19 severity: a novel intervention strategy beyond vaccines and specific antiviral medicines. J. Med. Virol.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2019. A Novel Coronavirus from Patients with Pneumonia in China.

Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F., Shi, Z.L., 2020. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 579, 270–273.

Zhu, S., Guo, X., Geary, K., Zhang, D., 2020. Emerging therapeutic strategies for COVID-19 patients. Discoveries (Craiova) 8 e105-e105.

Ziai, S.A., Rezaei, M., Fakhri, S., Pouriran, R., 2020. ACE2: its potential role and regulation in severe acute respiratory syndrome and COVID-19. J. Cell. Physiol. https://doi.org/10.1002/jcp.30041.

Zou, X., Chen, K., Zou, J., Han, P., Hao, J., Han, Z., 2020. Single-cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front Med 14, 185–192.