Interannual variation of reactive nitrogen emissions and their impacts on PM$_{2.5}$ air pollution in China during 2005–2015

To cite this article: Youfan Chen et al 2021 Environ. Res. Lett. 16 125004

View the article online for updates and enhancements.
ENVIROMENTAL RESEARCH LETTERS

LETTER

Interannual variation of reactive nitrogen emissions and their impacts on PM$_{2.5}$ air pollution in China during 2005–2015

Youfan Chen1,2, Lin Zhang3,4, Daven Henze2,4, Yuanhong Zhao5, Xiao Lu6, Wilfried Winiwarter6,7,8, Yixin Guo9, Xuejun Liu2, Zhang Wen10, Yuepeng Pan11 and Yu Song12

1 Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People’s Republic of China
2 Sichuan Academy of Environmental policy and planning, Chengdu, Sichuan 610041, People’s Republic of China
3 Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
4 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, People’s Republic of China
5 School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, People’s Republic of China
6 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
7 The Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
8 Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People’s Republic of China
9 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People’s Republic of China
10 State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, People’s Republic of China

* Authors to whom any correspondence should be addressed.

E-mail: zhanglg@pku.edu.cn and daven.henze@colorado.edu

Keywords: reactive nitrogen, ammonia, air pollution, satellite observations, fine particulate matter, emission inversion

Supplementary material for this article is available online

Abstract

Emissions of reactive nitrogen as ammonia (NH$_3$) and nitrogen oxides (NO$_x$), together with sulfur dioxide (SO$_2$), contribute to formation of secondary PM$_{2.5}$ in the atmosphere. Satellite observations of atmospheric NH$_3$, NO$_2$, and SO$_2$ levels since the 2000s provide valuable information to constrain the spatial and temporal variability of their emissions. Here we present a bottom-up Chinese NH$_3$ emission inventory combined with top-down estimates of Chinese NO$_x$ and SO$_2$ emissions using ozone monitoring instrument satellite observations, aiming to quantify the interannual variations of reactive nitrogen emissions in China and their contributions to PM$_{2.5}$ air pollution over 2005–2015. We find small interannual changes in the total Chinese anthropogenic NH$_3$ emissions during 2005–2016 (12.0–13.3 Tg with over 85% from agricultural sources), but large interannual change in top-down Chinese NO$_x$ and SO$_2$ emissions. Chinese NO$_x$ emissions peaked around 2011 and declined by 22% during 2011–2015, and Chinese SO$_2$ emissions declined by 55% in 2015 relative to that in 2007. Using the GEOS-Chem chemical transport model simulations, we find that rising atmospheric NH$_3$ levels in eastern China since 2011 as observed by infrared atmospheric sounding interferometer and atmospheric infrared sounder satellites are mainly driven by rapid reductions in SO$_2$ emissions. The 2011–2015 Chinese NO$_x$ emission reductions have decreased regional annual mean PM$_{2.5}$ by 2.3–3.8 µg m$^{-3}$. Interannual PM$_{2.5}$ changes due to NH$_3$ emission changes are relatively small, but further control of agricultural NH$_3$ emissions can be effective for PM$_{2.5}$ pollution mitigation in eastern China.

1. Introduction

Nitrogen (N) is an essential element for life, but most N in the Earth cannot be used directly by ecosystems. The productivity of the ecosystem depends on the abundance of reactive N (Nr or fixed N) (Vitousek et al 2002). Excessive reactive N will, however, induce negative environmental effects, such as causing soil acidification, eutrophication, decreasing the diversity of ecosystems (Galloway 2001, Galloway et al 2003),...
and increasing nitric oxide (NO) and nitrous oxide (N$_2$O) emissions contributing to air pollution and global warming (Pilegaard et al 2006, Eickenscheidt et al 2011). China is one of the regions with the most intensive reactive nitrogen emissions in the globe due to its rapid industrialization, urbanization, as well as high demand for food production (Liu et al 2013). Recent satellite observations have recorded significant changes in atmospheric ammonia (NH$_3$) and nitrogen dioxide (NO$_2$) levels over China since the 2000s (Qu et al 2017, van der A et al 2017, Warner et al 2017, Liu et al 2018a). Here we will use these satellite observations to constrain NR emissions in China over 2005–2015 and to assess their impacts on the PM$_{2.5}$ air quality.

Emissions of NR to the atmosphere are mainly in the forms of NH$_3$ and nitrogen oxides (NO$_x$ = NO + NO$_2$). NH$_3$ is the most abundant alkaline gas in the atmosphere. Over 85% of NH$_3$ is emitted from agricultural activities (Huang et al 2012, Paulot et al 2014, Zhang et al 2018), including nitrogen fertilizer application to farmland (Sha et al 2021) and livestock husbandry systems (Bai et al 2016). Chemical industry, residential, human wastes, and traffic are other important anthropogenic sources (Kean and Harley 2000, Sun et al 2017). NH$_3$ can also be released from rewetting processes of natural soils (Hickman et al 2018). NO$_x$ is mainly emitted as a byproduct of combustion at high temperature, such as from industry and transportation sectors. Soil and lightening are natural sources of NO$_x$ (Boersma et al 2005, Caïs et al 2014). Both NH$_3$ and NO$_x$ are precursors of secondary aerosols. NH$_3$ in the atmosphere reacts with sulfuric acid (H$_2$SO$_4$; produced from the oxidation of SO$_2$) and nitric acid (HNO$_3$; produced from the oxidation of NO$_x$) to form ammonium sulfate and ammonium nitrate aerosols.

Previous studies have shown that the SNA sulfate–nitrate–ammonium aerosols account for 20%–57% of PM$_{2.5}$ (particulate matter with an aerodynamic diameter less than 2.5 μm) in Chinese cities (Wang et al 2011, Huang et al 2014, Liu et al 2018b). Changes in Nr and SO$_2$ emissions can thus strongly affect the SNA fraction of PM$_{2.5}$. Surface measurements have recorded large decreases in sulfate aerosol concentrations and weak decreases or even increases in nitrate aerosol levels over North China in recent years (Li et al 2019a, Zhai et al 2021), as driven by the recent clean air actions targeting emissions of SO$_2$, NO$_x$, and primary aerosols (Zheng et al 2018, Zhang et al 2019). NH$_3$ emissions have not been effectively regulated so far in China, and they have drawn increasing attentions for understanding their mitigation potentials and impacts on PM$_{2.5}$ air pollution (Liu et al 2019, Liu et al 2021, Guo et al 2020). For example, Liu et al (2019) reported that 50% NH$_3$ emission reductions combined with 15% reductions of SO$_2$ and NO$_x$ emissions could remove 11%–17% of the total PM$_{2.5}$ in China. Here we aim to understand how interannual variations of Chinese NH$_3$ emissions might have contributed to changes in PM$_{2.5}$ concentrations over China in the recent past.

In this work, we extend our bottom-up estimates of Chinese NH$_3$ emissions (Zhang et al 2018) to the years 2005–2016, and we evaluate the GEOS-Chem model simulated atmospheric NH$_3$ concentrations against satellite NH$_3$ observations. Satellite observations of NO$_x$ and SO$_2$ columns are also applied to constrain the interannual variations of Chinese NO$_x$ and SO$_2$ emissions over this time period (2005–2015). We further quantify the changes of PM$_{2.5}$ concentrations in China contributed by the interannual changes in anthropogenic NH$_3$, NO$_x$, and SO$_2$ emissions, respectively, over 2005–2015 using the GEOS-Chem model simulations.

2. Model description and observations

2.1. The GEOS-chem model

Here we use GEOS-Chem v12.1.1 (http://acmg.seas.harvard.edu/geos/), a three-dimensional global chemical transport model to simulate the chemical and physical processes of Nr in the atmosphere from 2005 to 2015 in China. The model is driven by the MERRA-2 assimilated meteorological data provided by the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA). Meteorology fields such as temperature, relative and specific humidity, vertical pressure velocity, and surface pressure have a temporal resolution of 3 h, and sea level pressure, tropopause pressure, and other surface variables are at 1 h resolution. The model has 47 vertical layers from surface to 0.01 hPa, and the lowest layer is centered at 58 m above sea level.

GEOS-Chem simulates a detailed tropospheric O$_3$–NO$_x$–hydrocarbon–aerosol–halogen chemistry as described by Park et al (2004) and Mao et al (2010). The chemistry system fully couples the H$_2$SO$_4$–HNO$_3$–NH$_3$ inorganic aerosol thermodynamics system from the ISORROPIA-II thermodynamical model (Fountoukis and Nenes 2007). NH$_3$ preferably reacts with sulfuric acid to form ammonium bisulfate and ammonium sulfate, then excess NH$_3$ would combine with nitric acid to form ammonium nitrate (Binkowski and Roselle 2003). NO$_x$ is also a precursor tropospheric ozone, affecting atmospheric oxidizing capacity and the formation of secondary organic aerosols (SOA). In this study we do not analyze SOA, and focus on the SNA components that are directly related to Nr emissions. Both Nr gases and aerosols deposit to the surface via wet deposition (convective scavenging and largescale precipitation) following the parameterization of Liu et al (2001) and dry deposition using a standard resistance-in-series model (Wesely 1989, Zhang et al 2001). The GEOS-Chem model simulation of Nr concentrations and deposition over China have been evaluated in a number of previous studies (Wang et al 2013, Zhang et al 2015, Zhang et al 2016, ...
Zhao et al 2015, Shao et al 2019, Lu et al 2021, Zhai et al 2021).

Emissions in GEOS-Chem v12.1.1 are processed through HEMCO (Harvard–NASA Emission Component) (Keller et al 2014). We used the Community Emissions Data System (Hoelsy et al 2018) for global anthropogenic emissions, overwritten by regional emissions inventories including 2011 NEI (National Emissions Inventory) from EPA (United States Environmental Protection Agency) for US (NEI-2011), EMEP (European Monitoring and Evaluation Programme; www.emep.int/index.html) emissions over Europe, and Canada’s Air Pollutant Emissions Inventory. Emissions over Asia are overwritten by the MIX inventory (Li et al 2017) that includes the MEIC inventory (Multi-resolution Emission Inventory for China; http://meicmodel.org/) over China except for NH$_3$, NO$_x$, and SO$_2$ emissions in China as will be described below. Natural NO$_x$ sources from soil and lightning are also included (Lu et al 2021).

In this study we have conducted four sets of GEOS-Chem model simulations for 2005–2015 at the global 2° latitudes by 2.5° longitude resolution. The standard simulation (BASE) uses the emission setting as described above that accounts for the interannual variations of Chinese Nr and SO$_2$ anthropogenic emissions. Three sets of sensitivity simulations by fixing the Chinese anthropogenic NH$_3$, Nr (NH$_3$ + NO$_x$), and additionally SO$_2$ (Nr + SO$_2$) emissions, respectively, to the year 2005 are conducted (i.e. FixNH$_3$, FixNr, and FixALL), and their differences with the BASE simulation and with each other estimate the impacts from their emissions’ interannual variations. For better evaluating the model results, we have also conducted a nested GEOS-Chem simulation using the BASE emission conditions for the years 2005–2015 at a higher 0.5° latitude × 0.625° longitude resolution over Asia and 2° latitudes × 2.5° longitude for the rest of the world. All the simulations are initiated after one year spin-up.

2.2. Observations

We have compiled an ensemble of surface and satellite observations to evaluate our estimates of Nr emissions and resulting model simulations. We use observed surface NH$_3$ concentration data at 53 sites for 2015 over China from AMoN-China (Pan et al 2018), measurements of sulfate, nitrate and ammonium aerosol concentrations from CAWNET (Zhang et al 2012) over 2006–2007 and from Zhang et al (2019) over 2013–2015. We also use wet deposition observations of ammonium and nitrate, including 57 sites from EANET from 2005 to 2015 (EANET 2005–2015), ten sites from the Regional Atmospheric Deposition Observation Network on the North China Plain (Pan et al 2012) during 2008–2010, and 43 sites from the Nationwide Nitrogen Deposition Monitoring Network (Xu et al 2015) during 2010–2012.

We use satellite observations of atmospheric NH$_3$ concentrations from the infrared atmospheric sounding interferometer (IASI) and the atmospheric infrared sounder (AIRS). IASI is passive Fourier transform spectrometer aboard the MetOp-A satellite in a polar sun-synchronous orbit with equator crossing local time of 09:30 in the morning and 21:30 at night (Van Damme et al 2014). Here we use the level 2 dataset of Artificial Neural Network for IASI–NH$_3$–v2.2 R-I (Van Damme et al 2017). Morning observations have lower relative errors than those at night, so that we only use morning data with relative errors less than 100%, and then apply the relative error weighted mean method (Van Damme et al 2014) to compute monthly mean observations on a 0.25° latitude × 0.25° longitude grid over 2008–2015. The AIRS instrument aboard the NASA’s Aqua satellite platform provides atmospheric NH$_3$ retrievals since 2002 (Warner et al 2016). Here we use the AIRS NH$_3$ data at 918 hPa where the retrieval sensitivity peaks from September 2002 to August 2016 over China as presented by Warner et al (2016), Warner et al (2017).

We also use satellite observations of NO$_2$ and SO$_2$ columns from the ozone monitoring instrument (OMI). OMI aboard the NASA’s Aura satellite launched in 2004 measures backscattered solar radiation with a nadir-scanning resolution of 13 × 24 km2 and at local passing time of 13:45 (Levitt et al 2006). We use the NASA standard products of daily Level-3 NO$_2$ tropospheric column (Krotkov et al 2019; https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary?keywords=TROP OMf%20NO2) and SO$_2$ planetary boundary layer column (PBL) column (Li et al 2020; https://disc.gsfc.nasa.gov/datasets/OMSO2e_003/summary?keywords=OM SO2e) for the period of 2005–2015. Both products have a spatial resolution of 0.25° × 0.25°, and are regridded to the model 2° × 2.5° resolution.

We further evaluate the model simulated surface PM$_{2.5}$ concentrations with available PM$_{2.5}$ datasets. We use the nationwide PM$_{2.5}$ surface measurements for 2013–2015 obtained from the China National Environmental Monitoring Center (CNEMC; https://air.cnemc.cn:18007/). Ground-level PM$_{2.5}$ products derived from satellite observations of aerosol optical depth over 2005–2015 are also applied (Hammer et al 2020; https://sites.wustl.edu/acag/datasets/surface-pm2.5/#V4.CH.03). The products have a spatial resolution of 0.1° × 0.1° and are regridded to 0.5° × 0.625°.

In addition, the land cover datasets retrieved from the moderate resolution imaging spectroradiometer (MODIS) aboard the Terra and Aqua satellites are applied to identify the changes of crop-land distributions in China. We use the Terra-Aqua combined land cover product (MCD12Q1) (https://modis-land.gsfc.nasa.gov/landcover.html), in which
the types of land cover at 500 m resolution are identified to 17 classes, including 11 natural vegetation classes, three human-altered classes, and three non-vegetated classes. We extract the grids classified as cropland and calculate the cropland areas at the model $0.5^\circ \times 0.625^\circ$ resolution. The MCD12Q1 products covers the period of 2005–2012, and the latest available year 2012 data is applied to the years afterwards in this study.

3. Results and discussion

3.1. Estimates of Chinese NH$_3$ emissions over 2005–2016

Previously we have developed a bottom-up inventory of Chinese agricultural NH$_3$ emissions for the year 2008 (Zhang et al 2018). Here we extend the bottom-up estimates of Chinese agricultural NH$_3$ emissions to 2005–2016. Details of the bottom-up method can be found in Zhang et al (2018). Below we provide a brief summary and describe our improvements for estimating the interannual variations of Chinese NH$_3$ emissions over 2005–2016.

The NH$_3$ emissions from fertilizer use are based on practical fertilizer application information, including cropland area, fertilizer application timing and rate for 21 types of crops, vegetables, and fruits. Emission factors are calculated as a function of fertilizer type, application mode, soil pH, and soil cation exchange capacity, and further modulated by local surface temperature and wind speed. We previously used a baseline cropland area for the year 2000 (Zhang et al 2018). Here we scale the baseline cropland area to match those observed by MODIS as described in the section above to account for their interannual changes in China. The fertilizer application amount and types have also changed substantially during this period. We use the year-specific statistics of provincial fertilizer application amounts from the China Rural Statistical Yearbook (National Bureau of Statistics (NBSC) 2006–2017), and associated changes in the fractions of synthetic fertilizer types are estimated by the International Fertilizer Association (www.fertilizer.org).

NH$_3$ emissions from livestock account for six categories of animals, including beef cattle, dairy cows, goat, sheep, pig, and poultry raised in three raising systems: free-range, intensive, and grazing (Zhang et al 2018). The most common system in the rural area is free-range, which is the traditional way to raise livestock leading to large NH$_3$ emissions. The intensive raising system becomes the most popular way near megacities due to its high efficiency and easiness to manage the shelter environment. Grazing mostly occurs in Northwest China. We use the livestock manure mass-flow methodology and emission factors from Huang et al (2012), and further consider the meteorology conditions (2 m air temperature and 10 m wind speed) effects on emission factors (Zhang et al 2018). The numbers of animals raised in intensive and grazing systems of each province are divided based on the Chinese Animal Husbandry and Veterinary Yearbook (Editorial Committee of China animal husbandry and veterinary Yearbook 2006–2017). In addition to the agricultural sources, we also include NH$_3$ emitted from vehicles, biomass burning, residential burning, industry, and waste disposal estimated by Kang et al (2016) from 2005 to 2012. To further account for changes in some of these sources over 2013–2016, we assume that NH$_3$ emissions from vehicle, industry, and residential burning follow the same interannual variations as SO$_2$ emissions for each source, and apply the corresponding SO$_2$ emission changes estimated from the MEIC inventory.

Figure 1 shows the spatial distribution of anthropogenic NH$_3$ emissions over China for the year 2015, and interannual changes in Chinese NH$_3$ emissions from different sources over 2005–2016. High NH$_3$ emissions can be found in the eastern China, in particular, over the key regions such as the North China Plain (including Beijing–Tianjin–Hebei (BTH) and surrounding areas), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB) (see figure S1 available online at stacks.iop.org/ERL/16/125004/mmedia for their locations). These regions are highly populated and also have intense agricultural activities. The annual total Chinese anthropogenic NH$_3$ emissions are 12.5 Tg NH$_3$ in 2015, and range from 12.0–13.3 Tg during 2005–2016, with 37%–42% from fertilizer application and 46%–53% from livestock manure management. The national total NH$_3$ emissions show relative weak interannual variations, while spatially they generally increase in western China and decrease in eastern China relative to 2005 for both the fertilizer application and livestock sources (figure S2). The increases of NH$_3$ emissions in western China are largely driven by increasing fertilizer application amount and livestock number, different from those in eastern China and national totals as discussed below.

We find that the national total NH$_3$ emissions from fertilizer applications are about 5.0 Tg in 2005, increase to 5.3 Tg in 2012, then decrease to 4.5 Tg in 2016 (figure 1). The trend is different from that for the national synthetic fertilizer application amounts, which increase from 24.2 Tg N in 2005 to 27.1 Tg N in 2014, and then decrease to 26.3 Tg N in 2016. Differences in trends of fertilizer use and fertilizer NH$_3$ can be mainly attributed to the switch of fertilizer type from ammonium bicarbonate (ABC) to urea and compound fertilizer with the latter have lower emission factors (figure S3) as also pointed out by Kang et al (2016) and Adalibieke et al (2021). NH$_3$ emissions from livestock are 6.0 Tg in China over 2005–2016, reaching 7.0 Tg in 2005 then dropping to 5.8 Tg in 2007 due to diseases among pigs and increased
costs to raise cattle. The livestock NH$_3$ emissions then remained nearly unchanged from 2007 to 2016, although the livestock numbers have increased over this time period, due to a shift of raising systems from free-range to large intensive systems since 2007 (figure S3). Figure 1 also compares our estimates of Chinese NH$_3$ emissions estimates with emission estimates in previous studies. Our results are well in the range of the existing inventories, and the interannual variations are similar to estimates of Kang et al (2016) and MEIC (Zheng et al 2018).

3.2. Top-down estimates of Chinese NO$_x$ and SO$_2$ emissions during 2005–2015
We use OMI satellite observations of NO$_2$ tropospheric columns and SO$_2$ PBL columns to constrain the interannual variations of NO$_x$ and SO$_2$ emissions in China over the period of 2005–2015. We follow the finite-difference mass-balance inversion method from Geddes and Martin (2017). We have conducted two sets of 11 year (2005–2015) GEOS-Chem simulations at the 2$^\circ$ × 2.5$^\circ$ resolution: one with the Chinese SO$_2$ and NO$_x$ emissions fixed to
those from the MEIC inventory in the year 2010, and the other applies +30% perturbations on the Chinese SO₂ and NOₓ emissions based on the first simulation setup. We then calculate the changes in simulated NO₂ tropospheric columns and SO₂ PBL columns, and estimate the interannual variations of their emissions for years 2005–2015 using the formula below

\[
E_{\text{topdown}} = E_{\text{prior}} \times \left(1 + \frac{\Delta E}{E_{\text{prior}}} \times \frac{\Omega_{\text{prior}} - \Omega_{\text{sat}}}{\Omega_{\text{prior}}} \right),
\]

where \(E_{\text{topdown}} \) is the top-down SO₂ or NOₓ emissions; \(E_{\text{prior}} \) is prior SO₂ or NOₓ emissions based on the 2010 MEIC estimates; \(\Delta E \) is 30% perturbation of \(E_{\text{prior}} \); \(\Omega_{\text{prior}} \) is simulated SO₂ or NOₓ columns with prior emissions; \(\Delta \Omega \) is simulated changes of SO₂ or NOₓ columns between prior and 30% perturbation emissions; \(\Omega_{\text{sat}} \) is SO₂ or NOₓ columns observed from OMI. The top-down emissions are calculated monthly and then integrated to annual totals. Here we use the MEIC SO₂ and NOₓ emissions for the year 2010 as the base conditions, and apply the satellite derived interannual variability over 2005–2015 at each model grid in order to avoid any systematic bias in the satellite observations (Lamsal et al 2011, Cooper et al 2017, Geddes and Martin 2017).

Figure 2 shows the OMI satellite observations of NO₂ and SO₂ over China in selected 6 years during 2005–2015. Large interannual variations can be seen from these satellite observations, indicating rapid economic development as well as the implementation of emission control measures in China over the time period. Such interannual variations are reflected in the top-down estimates of Chinese NOₓ and SO₂ emissions. Figure 1 also shows the spatial distributions of the top-down Chinese NOₓ (as NO) and SO₂ emissions in 2015 and interannual variations of national totals over 2005–2015 in the context of comparisons with other previous studies. We can see that, according to the OMI satellite observations, NOₓ emissions (as NO) have increased from 14.7 Tg in 2005 to 20.4 Tg in 2011, and then decreased to 15.8 Tg in 2015. The interannual variability of top-down NOₓ emissions are similar to that from the MEIC estimates, although MEIC suggests a later peaking year.
and slightly higher emission in 2012 than 2011. The previous studies such as Liu et al (2016) and Qu et al (2017) also identified that Chinese NO\textsubscript{2} emissions peaked in 2011 and declined by 21% over 2011–2015 by combining OMI satellite observations and emission inventories. This is consistent with our analysis of 22% NO\textsubscript{2} emission reduction over 2011–2015, and can be mainly attributed to regulations of power plants and vehicle emissions (Liu et al 2016). Over the whole period NO\textsubscript{2} emissions in China still show an increase of 1.1 Tg (7.5%) in 2015 relative to 2005.

The Chinese SO\textsubscript{2} emission reductions have occurred earlier due to the application of flue-gas desulfurization devices in power plants since 2006 (Lu et al 2010). Our top-down estimates show that Chinese SO\textsubscript{2} emissions are 46.3 Tg in 2007 and then decrease at a rate of about −5.9 Tg yr−1. The small peak in 2011 can be found in other top-down SO\textsubscript{2} emission studies (Koukouli et al 2018, Qu et al 2019), although our estimates show a much larger interannual variability. The peaks of top-down Chinese SO\textsubscript{2} emissions in the years 2007 and 2011 mainly reflect the high SO\textsubscript{2} columns observed from OMI in the two years as can be seen in figure 2. Overall we estimate that SO\textsubscript{2} emissions in China have decreased from 37.4 Tg in 2005 to 21.0 Tg in 2015 (−43.8%); the trends are similar to the MEIC estimates (Zheng et al 2018). It should be noted that the top-down inferred NO\textsubscript{2} and SO\textsubscript{2} interannual changes are subject to uncertainties in the OMI retrievals, such as the reduced spatial coverage due to OMI row anomaly since 2007. The OMI products used in this study also treat aerosols implicitly in the retrieval algorithm, which may affect the observed interannual variations over polluted regions with changing aerosol levels (Lin et al 2015, Lamsal et al 2021).

3.3. Impacts of interannual variations of \(\text{Nr} \) emissions

Figures S4–S7 evaluate the BASE simulation with the ensemble of measurements as described above. The BASE model in general reproduces the measured near surface NH\textsubscript{3} concentrations and nitrogen (NH\textsubscript{4}+ and NO\textsubscript{3}−) wet deposition fluxes with correlation coefficients of 0.51–0.82 and normalized mean biases (NMBs) within 30%. The model results underestimate the measured NH\textsubscript{3} concentrations and NH\textsubscript{4}+ wet deposition fluxes in summer by 41.9% (2015) and 25.0% (2008–2012 average), respectively, likely reflecting that our estimates of Chinese NH\textsubscript{3} emissions in summer are still biased low. The BASE model results are also in good agreement with the measured surface SNA aerosol concentrations (figure S6). Further evaluations of the model simulated surface PM\textsubscript{2.5} concentrations with CNEMC measurements and satellite products show consistent spatial distributions in eastern China (figure S7).

Figure 3 shows the IASI satellite observed spatial distribution of atmospheric NH\textsubscript{3} columns and the corresponding model results averaged over 2008–2015. The comparison of IASI observations and model results shows a high spatial correlation coefficient of 0.82. The model captures the observed high NH\textsubscript{3} levels over North China, while there is an overall low bias of −35.6% relative to the IASI observations, as can be seen from the comparisons over the southern China and western China. In addition to the possible low bias in the NH\textsubscript{3} emission estimates, IASI NH\textsubscript{3} measurements may also biased high due to the relative error weighted method, which tends to give more weight to high values (Van Damme et al 2015).

We also compare the simulated monthly mean NH\textsubscript{3} concentrations in January, April, July and October 2005–2015 with AIRS observations at 918 hPa (Warner et al 2017) in figure S8. AIRS NH\textsubscript{3} observations mainly cover the intense agricultural regions of China. We find that compared with the AIRS observations, the seasonal variations of simulated NH\textsubscript{3} concentrations in China are consistent with a high correlation coefficient (0.85) and a small low bias (−5.5%).

Figure 3 also compares IASI observed and model simulated 2008–2015 interannual variations of NH\textsubscript{3} columns over the four most densely populated Chinese regions: BTH, YRD, PRD, and SCB. Despite the small interannual variations and decreases since 2012 in the Chinese NH\textsubscript{3} emissions (figure 1), both IASI satellite observations and model results show increases in atmospheric NH\textsubscript{3} concentrations since 2011 over the four regions. The BASE model results well capture the IASI observed NH\textsubscript{3} interannual variation over these regions, although there are considerable underestimates (−43% −−−47%) of NH\textsubscript{3} concentrations over YRD and SCB. Previous studies have reported the increases in atmospheric NH\textsubscript{3} over the North China (i.e. BTH and surrounding areas) observed by IASI and AIRS, and mainly attributed such NH\textsubscript{3} increases to SO\textsubscript{2} emission reductions (Warner et al 2017, Liu et al 2018a). Here we use our sensitivity simulations (section 2.1) to identify drivers of NH\textsubscript{3} interannual variations over broader regions of China. We find that over the four regions SO\textsubscript{2} emission reductions are the dominant factor driving the NH\textsubscript{3} concentration increases (figure S9). Decreases in NO\textsubscript{x} emissions since 2011 also show small contributions over BTH and YRD. As explained by Liu et al (2018a), reductions in SO\textsubscript{2} and NO\textsubscript{x} emissions would lower the formation of SNA and thus enhance the NH\textsubscript{3} gas-phase partitioning. Changes in the NH\textsubscript{3} concentration are generally weak except for the sudden drop from 2006 to 2007 over BTH, consistent with the changes in NH\textsubscript{3} emissions (figure 1).

We now quantify the changes in PM\textsubscript{2.5} air pollution attributable to the interannual changes in NH\textsubscript{3}, NO\textsubscript{x}, and SO\textsubscript{2} emissions over China. Figure 4 shows the simulated seasonal and annual mean surface SNA aerosol concentrations over China for the year 2015, and also their changes due to the changes in Chinese
NH$_3$, NO$_x$, and SO$_2$ emissions from 2005 to 2015. We calculate the national population-weighted SNA concentrations and changes using the population dataset of the Gridded Population of the World version 4 (Center for International Earth Science Information Network (CIESIN) Columbia University 2018).

The national mean population-weighted SNA concentrations are 38.3 µg m$^{-3}$ annually, peaking in winter (50.2 µg m$^{-3}$) and being the lowest in summer (28.9 µg m$^{-3}$). Such strong seasonal variations are largely caused by the higher pollutants’ emissions and more frequent stagnant weather conditions.
over eastern China in winter than summer, and more effective removal of air pollution by precipitation in summer than winter as well (Liu et al 2018b).

Changes in Chinese NH$_3$, NO$_x$, and SO$_2$ emissions in 2015 relative to 2005 have led to large changes in the SNA aerosol concentrations. As shown in figure 4, due to the large reductions in SO$_2$ emissions, the annual mean population weighted SNA aerosol concentrations have reduced by 8.3 μg m$^{-3}$. There is a higher reduction of 9.9 μg m$^{-3}$ in summer than 6.1 μg m$^{-3}$ in winter, reflecting higher efficiency of SO$_2$ photochemical oxidation to sulfuric acid in summer. Spatially, in the BTH and SCB, the 2005–2015 SO$_2$ emission reductions can reduce seasonal and annual mean SNA aerosol concentrations by more than 20 μg m$^{-3}$. Compared to the effects of SO$_2$ emission reductions, changes in SNA aerosol concentrations due to 2005–2015 NH$_3$ and NO$_x$ emission changes are weaker. The 2005–2015 reduction of Chinese NH$_3$ emissions by 0.8 Tg (−6%) lead to −0.9 μg m$^{-3}$ changes in SNA, increases of NO emissions by 1.1 Tg (7.5%) enhance SNA by 1.6 μg m$^{-3}$, while changes in Chinese SO$_2$ emissions by 16.4 Tg (−48.3%) cause −8.3 μg m$^{-3}$ reduction. Thus, percentage changes in Nr emissions have shown similar efficiency affecting PM$_{2.5}$ air pollution than SO$_2$ emissions change in China. Together, changes in Nr and SO$_2$ emissions from 2005 to 2015 could have decreased the annual population weighted PM$_{2.5}$ by −7.5 μg m$^{-3}$ in China (−9.7 μg m$^{-3}$ in summer and −5.0 μg m$^{-3}$ in winter).

These changes in the SNA aerosol concentration largely reflect the changes of their precursor emissions, but can also be influenced by the changes in atmospheric oxidants affecting the SNA aerosol formation. For example, NO$_x$ emission changes would affect tropospheric ozone concentrations and thus affect the oxidation of SO$_2$ to form sulfate aerosol. In turn, changes in aerosol levels would also affect ozone concentrations via aerosol chemistry and photolysis pathways (Li et al 2019b). Figure S10 shows the simulated changes in seasonal and annual mean surface ozone concentrations over China caused by changes in Chinese NH$_3$, NO$_x$, and SO$_2$ emissions from 2005 to 2015. Compared with figure 4, the aerosol concentration changes driven by NH$_3$ and SO$_2$ emission changes tend to be negatively correlated with the ozone concentration changes, likely reflecting the suppression of ozone formation via aerosol radiative effect or the ozone sink via aerosol chemistry. The increases of NO$_x$ emissions from 2005 to 2015 could also decrease seasonal mean ozone levels due to titration at night and in winter, except in summer when photochemistry is active. Future work is needed to quantify the interaction of interannual changes in SNA aerosol and ozone concentrations.

Analyzing the interannual variations of emission changes (figure S11), we can see strong influences on the regional SNA aerosol concentration from changes in Chinese NO$_x$ emissions. We estimate that over the study period the Chinese NO$_x$ emissions peak in 2011. Increases in NO$_x$ emissions from 2005 to 2011 increased the annual mean PM$_{2.5}$ concentrations by 6.5 μg m$^{-3}$ in BTH, 4.6 μg m$^{-3}$ in YRD, and 2.8 μg m$^{-3}$ in SCB, offsetting or even exceeding the PM$_{2.5}$ decreases due to SO$_2$ emission reductions. Estimated changes in Nr emissions and their effects on PM$_{2.5}$ over PRD are small over this period. Reductions in Chinese NO$_x$ emissions after 2011 have accelerated the PM$_{2.5}$ decreases. The 2011–2015 Chinese NO$_x$ emission reduction reduced regional mean PM$_{2.5}$ by 3.8 μg m$^{-3}$ in BTH, 3.2 μg m$^{-3}$ in YRD, and 2.3 μg m$^{-3}$ in SCB. Together changes in Chinese Nr and SO$_2$ emissions over 2011–2015 have decreased the regional mean PM$_{2.5}$ by 12.5 μg m$^{-3}$ in BTH, 8.8 μg m$^{-3}$ in YRD, and 9.7 μg m$^{-3}$ in SCB, with changes in Nr emissions contributing 20%–36% of the decreases. According to the CNEMC measurements (figure S7), PM$_{2.5}$, SO$_2$ concentrations have decreased rapidly in eastern China since 2013 due to stringent air pollution control actions, e.g. decreased by ~29 μg m$^{-3}$ over 2013–2015 in BTH. Our results suggest that ~40% of the decreases can be attributed to changes in Nr and SO$_2$ emissions over China.

4. Conclusions

We have analyzed the interannual variations of Nr (NH$_3$ + NO$_x$) emissions in China over 2005–2015 and quantified their contributions to PM$_{2.5}$ air pollution. Satellite observations of NH$_3$, NO$_x$, and SO$_2$ atmospheric concentrations during this time period are used to constrain Chinese Nr and SO$_2$ emissions. We have applied a bottom-up approach to estimate Chinese NH$_3$ emissions, and a top-down approach for NO$_x$ and SO$_2$ emission estimates. The bottom-up estimates of NH$_3$ emissions resolve the interannual variations of agricultural activities such as changes in fertilizer application amounts and types and livestock numbers. We find small interannual changes in the total Chinese anthropogenic NH$_3$ emissions, ranging 12.0–13.3 Tg during 2005–2016, with 37%–42% from fertilizer application and 46%–53% from livestock manure management. Although fertilizer and livestock amounts have increased over the time period, the shifts of fertilizer types (from ABC to urea and nitrogen compounds) and livestock raising systems (from free-range to intensive systems) keep the total Chinese NH$_3$ emissions relatively stable or even slightly decreasing after 2012.

In contrast to NH$_3$, Chinese NO$_x$ and SO$_2$ emissions as inferred from the satellite observations show large interannual changes. We estimate that Chinese NO$_x$ emissions (as NO) have increased from 14.7 Tg in 2005 to 20.4 Tg in 2011, and then decreased to 15.8 Tg in 2015. Chinese SO$_2$ emissions peaked at 46.3 Tg in 2007 and rapidly decreased over 2011–2015, reaching 21.0 Tg in 2015. Based on these
Chinese NH$_3$, NO$_x$, and SO$_2$ emissions over 2005–2015, the GEOS-Chem model simulation can well capture the increases of atmospheric NH$_3$ levels after 2011 in eastern China as observed by the IASI satellite observations (although with some low biases in the model results) and attribute the atmospheric NH$_3$ increases mainly to the rapid SO$_2$ emission reductions.

We find that interannual variations of Nr and SO$_2$ emission changes have strongly influenced the regional SNA components of PM$_{2.5}$ in eastern China over 2005–2015. The Chinese NH$_3$ emission changes in 2015 relative to 2005 (−6%) lead to 0.9 µg m$^{-3}$ reductions in the national population weighted mean SNA concentration, compared with an increase of 1.6 µg m$^{-3}$ due to 7.5% NO$_x$ emission increases, and a decrease of 8.3 µg m$^{-3}$ due to 48.3% SO$_2$ emission reductions. The 2011–2015 Chinese NO$_x$ emission reductions decreased regional mean PM$_{2.5}$ by 2.3–3.8 µg m$^{-3}$, also becoming an important driver of recent PM$_{2.5}$ air quality improvements. The Chinese air pollution control actions after 2011 have mainly focused on power plant, industry, and transportation sectors that have significantly lowered NO$_x$ and SO$_2$ emissions (Zheng et al. 2018). Our analyses indicate that strengthening agricultural NH$_3$ emission reduction can achieve similar effectiveness for further improving PM$_{2.5}$ air quality in eastern China.

Data availability statement

All data that support the findings of this study are available from the corresponding author on reasonable request.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC, 41922037), by Grant No. 80NSSLSC18K0689 (NASA, USA), and also contributes to UNUNET, a project funded under the JPI Urban Europe/China collaboration, Project Nos. 71961137011 (NSFC, China), UMO-2018/29/Z/ST10/02986 (NCN, Poland), and 870234 (FFG, Austria). We thank Dr Juhying X. Warner at University of Maryland for providing the AIRS NH$_3$ observations. This work is supported by the National Natural Science Foundation of China (NSFC, 41922037), by Grant No. 80NSSLSC18K0689 (NASA, USA), and also contributes to UNUNET, a project funded under the JPI Urban Europe/China collaboration, Project Nos. 71961137011 (NSFC, China), UMO-2018/29/Z/ST10/02986 (NCN, Poland), and 870234 (FFG, Austria). We thank Dr Juhying X. Warner at University of Maryland for providing the AIRS NH$_3$ observations.

ORCID iDs

Lin Zhang https://orcid.org/0000-0003-2383-8431
Xiao Lu https://orcid.org/0000-0002-5989-0912
Wilfried Winiwarter https://orcid.org/0000-0001-7131-1496

References

Adalibieke W, Zhan X, Cui X, Reis S, Winiwarter W and Zhou F 2021 Decoupling between ammonia emission and crop production in China due to policy interventions Glob. Change Biol. 27 5877–88

Bai Z, Ma L, Jin S, Ma W, Velthof G L, Oenema O, Liu L, Chadwick D and Zhang F 2016 Nitrogen, phosphorus, and potassium flows through the manure management chain in China Environ. Sci. Technol. 50 13409–18

Binkowski F S and Roselle S J 2003 Models-3 community multiscale air quality (CMAQ) model aerosol component 1. Model description J. Geophys. Res. 108 4183

Boersma K F, Eskes H J, Meijer E W and Kelder H M 2005 Estimates of lightning NO$_x$ production from GOME satellite observations Atmos. Chem. Phys. 5 2311–31

Center for International Earth Science Information Network (CIESIN) Columbia University 2018 Gridded population of the world, version 4 (GPWv4): population count, revision 11 (Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC)) (available at: https://doi.org/10.7927/H4JW88X5) (Accessed 1 January 2020)

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Chabrara A, DeFries R, Galloway J and Heimann M 2014 Carbon and other biogeochemical cycles, climate change 2013 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pp 465–570

Cooper M, Martin R V, Padmanabhan A and Henze D K 2017 Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions J. Geophys. Res. Atmos. 122 4718–34

Editorial committee of china animal husbandry and veterinary yearbook 2006–2017 China Animal Husbandry and Veterinary Yearbook (Beijing: China Agriculture Press) in Chinese

Eickenscheidt N, Brumme R and Veldkamp E 2011 Direct contribution of nitrogen deposition to nitrous oxide emissions in a temperate beech and spruce forest—a 15N tracer study Biogeochemistry 8 621–35

Fountoukis C and Nenes A 2007 ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K$^+$–Ca$^{2+}$–Mg$^{2+}$–NH$_4^+$–Na$^+$–SO$_4^{2–}$–NO$_3^{–}$–Cl$^–$–H$_2$O aerosols Atmos. Chem. Phys. 7 4639–59

Galloway J N 2001 Acidification of the world: natural and anthropogenic Water Air Soil Pollut. 130 17–24

Galloway J N, Aber J D, Erisman J W, Seitzinger S P, Howarth R W, Cowling E B and Cosby B J 2003 The nitrogen cascade BioScience 53 341–56

Geddes J A and Martin R V 2017 Global deposition of total reactive nitrogen oxides from 1990 to 2014 constrained with satellite observations of NO$_2$ columns Atmos. Chem. Phys. 17 10071–91

Guo Y et al 2020 Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management Nat. Food 1 648–58

Hammer M S et al 2020 Global estimates and long-term trends of fine particulate matter concentrations (1998–2018) Environ. Sci. Technol. 54 7878–90

Hickman J E, Dammers E, Galy-Lacaux C and van der Werf G R 2014 Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (CEDS) Geosci. Model. Dev. 11 369–408

Hickman J E, Dammers E, Galy-Lacaux C and van der Werf G R 2014 Satellite evidence of substantial rain-induced soil emissions of ammonia across the Sahel Atmos. Chem. Phys. 18 16713–27

Hoekstra A and van der Meer P 2012 Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (CEDS) Geosci. Model. Dev. 11 369–408

Huang R-J, Chen S, Pan L, van der Werf G R, Boersma K F, Eskes H J, Meijer E W and Kelder H M 2005 Evaluation of lightning NO$_x$ production from GOME satellite observations Atmos. Chem. Phys. 5 2311–31

Center for International Earth Science Information Network (CIESIN) Columbia University for providing the AIRS NH$_3$ observations.
Liu Z, Zhou M, Chen Y, Chen D, Pan Y, Song T, Ji D, Chen Q and Zhang I 2021 The nonlinear response of fine particulate matter pollution to ammonia emission reductions in North China Environ. Res. Lett. 16 034014
Lu X et al 2021 The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China Nat. Commun. 12 2021
Lu Z, Streets D G, Zhang Q, Wang S, Carmichael G R, Cheng Y F, Wei G, Chiu M T and Tan Q 2010 Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000 Atmos. Chem. Phys. 10 6311–31
Mao J et al 2010 Chemistry of hydrogen oxide radicals (HOx) in the arctic troposphere in spring Atmos. Chem. Phys. 10 5823–38
National Bureau of Statistics (NBSC) 2006–2017 China Rural Statistical Yearbook (Beijing: China Statistics) (in Chinese)
Pan Y, Wang Y S, Tang G Q and Wu D 2012 Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China Atmos. Chem. Phys. 12 6515–35
Pan Y et al 2018 Identifying ammonia hotspots in China using a national observation network Environ. Sci. Technol. 52 3926–34
Park R J, Jacob D J, Field B D and Yantosca R M 2004 Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for global anthropogenic policy J. Geophys. Res. 109 D15304
Poulet F, Jacob D J, Pinder R W, Bash J O, Travis K and Henze D K 2014 Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE, NH3), J. Geophys. Res. Atmos. 119 4343–64
Pilegaard K et al 2006 Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and NO2) Biogeosciences 3 651–61
Qu et al 2019 SO2 emission estimates using OMI SO2 retrievals for 2005–2017 J. Geophys. Res. Atmos. 124 8336–59
Qu Z, Wang J and Keller M 2017 Monthly top-down NOx emissions for China (2005–2012): a hybrid inversion method and trend analysis J. Geophys. Res. Atmos. 122 4600–25
Sha Z, Liu H, Wang J, Ma X, Liu X and Misselbrook T 2021 Improved soil-crop system management aids in NH3 emission mitigation in China Environ. Pollut. 289 117844
Shao J et al 2019 Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing Atmos. Chem. Phys. 19 6107–23
Sun K et al 2017 Vehicle emissions as an important urban ammonia source: the United States and China Environ. Sci. Technol. 51 2572–81
The acid deposition monitoring network in East Asia (available at: www.leanet.asia/) (Accessed 1 January 2020)
Van Damme M et al 2015 Towards validation of ammonia (NH3) measurements from the IASI satellite Atmos. Meas. Tech. 8 1575–91
Van Damme M, Clarisse L, Heald C L, Hurtmans D, Ngadi Y, Clerbaux C and Coheur P F 2017 Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets Atmos. Meas. Tech. 10 6995–14
Vitousk P M, Häberle S, Olander L and Allison S 2002 Nitrogen and Nature AMBIO A J. Hum. Environ. 31 97–101
van der A R J, Milijing D, Koukouli M E, Liu F, Li Q, Mao H and Theye N 2017 Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China Atmos. Chem. Phys. 17 1775–89
Wang S, Xing J, Jang C, Zhu Y, Fu J S and Hao J 2011 Impact assessment of ammonia emissions on inorganic aerosols in
East China using response surface modeling technique

Wang Y, Zhang Q Q, He K, Zhang Q and Chai L 2013
Sulfate-nitrate-ammonium aerosols over China: response
to 2000–2015 emission changes of sulfur dioxide,
nitrogen oxides, and ammonia Atmos. Chem. Phys. 13 2635–52

Warner J X, Dickerson R R, Wei Z, Strow L L, Wang Y and
Liang Q 2017 Increased atmospheric ammonia over the
world’s major agricultural areas detected from space
Geophys. Res. Lett. 44 2875–84

Warner J X, Wei Z, Strow L L, Dickerson R R and Nowak J B 2016
The global tropospheric ammonia distribution as seen in the
13-year AIRS measurement record Atmos. Chem. Phys. 16 5467–79

Wesely M L 1989 Parameterization of surface resistances to
gaseous dry deposition in regional-scale numerical models
Atmos. Environ. 23 1293–304

Xu W et al 2015 Quantifying atmospheric nitrogen deposition
through a nationwide monitoring network across China
Atmos. Chem. Phys. 15 12345–60

Zhai S et al 2021 Control of particulate nitrate pollution in China
Nat. Geosci. 14 389–95

Zhang L et al 2018 Agricultural ammonia emissions in China:
reconciling bottom-up and top-down estimates Atmos.
Chem. Phys. 18 339–55

Zhang L, Gong S, Padro J and Barrie L 2001 A size-segregated
particle dry deposition scheme for an atmospheric aerosol
module Atmos. Environ. 35 549–60

Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L,
Fu T-M, Zhang Q and Wang Y 2015 Source attribution of
particulate matter pollution over North China with the
adjoint method Environ. Res. Lett. 10 084011

Zhang L, Shao J, Lu X, Zhao Y, Hu Y, Henze D K, Liao H, Gong S
and Zhang Q 2016 Sources and processes affecting fine
particulate matter pollution over north China: an adjoint
analysis of the Beijing APEC period Environ. Sci. Technol.
50 8731–40

Zhang Q et al 2019 Drivers of improved PM$_{2.5}$ air quality in China
from 2013 to 2017 Proc. Natl Acad. Sci. USA 116 24463–9

Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M
and Sun J Y 2012 Atmospheric aerosol compositions in
China: spatial/temporal variability, chemical signature,
regional haze distribution and comparisons with global
aerosols Atmos. Chem. Phys. 12 779–99

Zhao Y, Zhang L, Pan Y, Wang Y, Paulot F and Henze D K 2015
Atmospheric nitrogen deposition to the northwestern
Pacific: seasonal variation and source attribution Atmos.
Chem. Phys. 15 10905–24

Zheng B et al 2018 Trends in China’s anthropogenic emissions
since 2010 as the consequence of clean air actions Atmos.
Chem. Phys. 18 14095–111