Original Research Article

Novel unsymmetric diimines: Synthesis and biological evaluation against pathogenic microorganisms

Dilek Nartopa,*, Hatice Öğütçüb

a Department of Polymer Engineering, Faculty of Technology, Düzce University, Düzce, Turkey
b Department of Field Crops, Faculty of Agriculture, Ahi Evran University, Kırşehir, Turkey

\textbf{ARTICLE INFORMATION}

- Received: 25 December 2019
- Received in revised: 03 January 2020
- Accepted: 24 February 2020
- Available online: 03 March 2020
- DOI: \texttt{10.26655/jmchemsci.2020.3.3}

\textbf{ABSTRACT}

In this research study, three new unsymmetric diimines (3a-3c) were prepared using a two-step process. The synthesized unsymmetric tetradentate diimines were elucidated by FT-IR, 1H-NMR, LC-MS, elemental analysis techniques. The antimicrobial and the antifungal properties of newly synthesized unsymmetrical diimines (3a-3c) and previously reported by one of us unsymmetrical diimines (4a-4c) were evaluated against \textit{L. monocytogenes} 4b, \textit{B. cereus} sp., \textit{S. typhi} H, \textit{Br. abortus}, \textit{S. epidermis} sp., \textit{M. Luteus} sp., \textit{E. coli}, \textit{P. putida} sp. \textit{Sh. dys. typ. 7 ve C. albicans}. 3b, 3c, 4a and 4c are showed the highest antimicrobial activity against \textit{B.cereus} sp. 3a and 4b are exhibited the highest activity against \textit{S.epidermis} sp. and \textit{Br. abortus}, respectively. In addition, all unsymmetrical diimines are showed high antifungal activity against \textit{C. albicans}.

\textbf{KEYWORDS}

Antibacterial agents
Reduction
Sodium dithionite
Unsymmetric diimine

Graphical Abstract

\begin{center}
\includegraphics[width=0.8\textwidth]{graphical_abstract.png}
\end{center}

Corresponding author, email: dileknartop@duzce.edu.tr (D. Nartop).
Tel.: +903805421133
Introduction

Schiff bases are also called as imine or azomethine and are obtained from the reaction of amines and aldehyde or a ketone [1]. They have been widely investigated due to their potential applications in many fields. Imines and their metal complexes can act as catalysts, pigments, dyes, intermediates and cation carriers in various systems, such as, biological, biochemical, enzymatic, organic, and potentiometric sensor [2-6]. Some imine complexes show plant growth regulator activity and insecticidal activity [7]. Most of the imines have antimicrobial and antifungal efficacy against different microorganisms [8, 9]. Schiff bases have a broad range of biological efficacy as they include azomethine [10, 11]. They have some features such as antimalarial, antimicrobial, antitumor, antinflammatory, and antiviral. They have also anticancer, antioxidant, antidepressant, and antitubercular activities [12-17]. Symmetrical Schiff bases (i.e. \(-C_aH=N_a-aryl-N_b=CH-\) or \(-N_n=HC_b=aryl-C_bH=N_n-\)) could be directly by condensation reaction of aromatic diamines/or dialdehydes and aldehydes/or amines. However, the symmetrical Schiff bases (i.e. \(-C_aH=N_a-aryl-C_bH=N_b-\)) cannot be obtained directly due to a reaction formed between \(-NH_2\) and \(-CHO\) groups in the same aromatic ring. These type unsymmetrical ligands were first reported by one of us proposing a novel two-stage procedure [18]. Hereafter, studies on these type Schiff bases containing usymmetric imines on the same aromatic ring were followed due to their special structures [19-23]. In this study, we report the preparation and elucidate of novel three unsymmetrical diimines. Previously, synthesis of different three unsymmetric ligands was reported by one of us [24]. We also investigated the biological efficacy of six unsymmetrical imines against selected pathogenic microorganisms with yeast.

Experimental

All the substances were obtained from Sigma-Aldrich and Merck. Elemental analysis was performed using the Leco CHNS-932 spectrometer. Infrared spectroscopy analysis was obtained using a Mattson-5000 FT-IR spectrophotometer. \(^1\)H-NMR spectra were performed using a Bruker Avance 500 MHz spectrometer. Mass spectra were acquired with an Agilent Technologies 6410 Triple Quad.

General procedure for synthesis of unsymmetric diimines 3a-3c

The starting Schiff bases \(1a\) (\(1b\) or \(1c\)) were obtained by reacting 50 mmol of 2-aminophenol (or 2-amino-4-chlorophenol or 2-amino-4-methylphenol) with 1-nitro-2-naphthaldehyde (50 mmol) in ethyl alcohol (100 mL) and heated for 1 h at 60 °C as we described previously [24]. The unsymmetric diimines 3a-3c were synthesised with two-stage procedure (Figure 1). Firstly, the starting Schiff base \(1a\) (or \(1b\) or \(1c\)) (2 mmol) was solved in 100 mL ethyl alcohol-water mixture (1v:1v) at 70 °C. To obtain the amino derivative of the unsymmetric diimines, reduction proceeding was done using 5 mmol sodium dithionite (Na\(_2\)S\(_2\)O\(_4\)). At this stage, the solid Na\(_2\)S\(_2\)O\(_4\) was added to the mixture in 1 h. The boiling and stirring prosess was continued for a further 1 h at 45 °C. Secondly, to prepared the unsymmetrical diimines 3a-3c, 5-fluoro-2-hydroxybenzaldehyde (2 mmol) was dissolved in ethyl alcohol (25 mL) and added to the solution and was heated for 2 h at 55 °C under reflux. The solution was cooled at room temperature for 1 day and the orange solid was obtained.
Figure 1. Synthesis of unsymmetric diimines 3a-3c

Compound 3a:

It was obtained as orange product. Yield: 65%, m.p: 187 °C; IR (KBr, ν cm\(^{-1}\)): 3316 (OH), 3051 (CH\(_{\text{arom.}}\)), 1594-1549 (C=C) \(^1\)H-NMR (500 MHz, DMSO-\(d_6\), δ ppm): 13.42 (s, 1H, OH), 10.20 (s, 1H, OH), 9.89 (s, 1H, CH=N), 8.95 (s, 1H, CH=N), 6.30-8.48 (m, arom.-H); MS \(m/z\): 386.3 \([\text{M+2H}^+]\). Anal. calcd. for C\(_{24}\)H\(_{17}\)N\(_2\)O\(_2\): C, 75.00, H, 4.43, N, 7.29; found: C, 73.26, H, 4.22, N, 6.82.

Compound 3b:

It was obtained as orange product. Yield: 61%, m.p: 196 °C; IR (KBr, ν cm\(^{-1}\)): 3451 (OH), 3057 (CH\(_{\text{arom.}}\)), 1588 (C=N), 1547-1460 (C=C) \(^1\)H-NMR (500 MHz, DMSO-\(d_6\), δ ppm): 13.04 (s, 1H, OH), 10.03 (s, 1H, OH), 9.54 (s, 1H, CH=N), 8.80 (s, 1H, CH=N), 6.52-8.43 (m, arom.-H); MS \(m/z\): 421.0 \([\text{M+3H}^+]\). Anal. calcd. for C\(_{24}\)H\(_{16}\)N\(_2\)O\(_2\)F: C, 68.82, H, 3.82, N, 6.69; found: C, 70.15, H, 3.14, N, 7.21.

Compound 3c:

It was obtained as orange product. Yield: 59%, m.p: 204 °C; IR (KBr, ν cm\(^{-1}\)): 3310 (OH), 3056 (CH\(_{\text{arom.}}\)), 1610, 1594 (C=N), 1545-1465 (C=C) \(^1\)H-NMR (500 MHz, DMSO-\(d_6\), δ ppm): 13.50 (s, 1H, OH), 10.18 (s, 1H, OH), 9.88 (s, 1H, CH=N), 9.69 (s, 1H, CH=N), 6.52-8.48 (m, arom.-H), 2.50 (s, CH\(_3\)); MS \(m/z\): 400.0 \([\text{M+2H}^+]\). Anal. calcd. for C\(_{25}\)H\(_{19}\)N\(_2\)O\(_2\)F: C, 75.38, H, 4.43, N, 7.29; found: C, 74.77, H, 4.52, N, 6.26.

General procedure for synthesis of unsymmetric diimines 4a-4c

As we described earlier, the unsymmetrical diimines 4a-4c were synthesized and demonstrated in Figure 2 [24]. Primarily, the starting Schiff bases 1a (1b or 1c) were obtained by reacting 50 mmol of 2-aminophenol or its derivatives (2-amin-4-chlorophenol, 2-amino-4-methylphenol) with 1-nitro-2-naphthaldehyde (50 mmol) in ethyl alcohol (100 mL). To obtain amino derivative of the unsymmetric diimines, reduction proceeding was done using 5 mmol Na\(_2\)S\(_2\)O\(_4\). Lastly, to prepared the unsymmetrical diimines 4a-4c, 2-hydroxy-5-chlorobenzaldehyde (2 mmol) was dissolved in ethyl alcohol (25 mL) and added to the solution.
Spectroscopic data for compound 4a-4c were reported [24].

![Diagram of unsymmetric diimines synthesis](image)

Figure 2. Synthesis of unsymmetric diimines 4a-4c

Detection of antimicrobial activity

The antimicrobial and antifungal efficacy of the unsymmetric diimines were studied using well-diffusion method against *Sh. dys. typ. 7* (NCTC-9363), *L. monocytogenes* 4b (ATCC 19115), *E. coli* (ATCC 1230), *S. typhi H* (NCTC 901.8394), *S. epidermis sp.* (ATCC 12228), *Br. abortus* (RSKK-03026), *M. Luteus sp.* (ATCC 93419), *B. cereus sp.*, *P. putida sp.* and *C. albicans* (Y-1200-NIH).

In this screening, the dimethylformamide (DMF) was used as solvent control. It was found to have no antimicrobial activity against any of the tested organisms. All unsymmetrical diimines were kept dry at room temperature and solved (3.5 µg/mL) in DMF 1% (v/v) of a 24-h broth culture including 106 CFU/mL was poured into sterile Petri dishes. Molten nutrient agar was studied for culturing the test bacteria and it was stored at ca. 45 °C. The molten agar was poured into sterile petri dishes and was left for solidification. Later, holes of 6 mm diameter were pierced with sterile cork borer and the test solutions were filled into each of the bores. As the last stage, the plates were incubated at 37 °C for 24 h. Average value determined for all the holes were used to compute the zone of inhibition growth. Pathogenic bacterial cultures and yeast were tested for resistance to five antibiotics (produced by Oxoid Ltd., Basingstoke, UK): kanamycin, sulphamethoxazol, ampicillin, amoxicillin, and nystatin. Their properties are as follows: kanamycin (used in the treatment of infections susceptible to microorganisms), sulphamethoxazol (it affects the synthesis of folic acid in sensitive bacteria), ampicillin (it inhibits the growth of gram (-) bacteria), amoxicillin (it is a penicillin effective against gram (+) and gram (-) microorganisms and it is a broad spectrum antibiotic with bactericidal
effect), nystatin (it binds with the sterols in the cell membrane of fungus and changes the membrane permeability).

Results and Discussion

Chemistry

The ligands 3a-3c reported herein are unsymmetric in terms of the 'location' of the azomethine bond (–C=N–arah–C=N–arah–) and in terms of the groups on the terminal phenolic residues. 3a, 3b and 3c are N₂O₂ type tetradeutate ligands with two imine nitrogens and two phenolic oxygens (Figure 3). These unsymmetric diimines are less soluble in polar solvents and insoluble in water and are stable at room temperature, insoluble in water, and slightly soluble in polar organic solvents. The spectral data of these unsymmetric diimines 3a-3c is presented in Table 1-3.

The spectroscopic data of unsymmetrical ligands 4a-4c were presented [24].

![Figure 3. Structures of unsymmetric diimines 3a-3c and 4a-4c](image)

The elemental analyses and MS data of unsymmetric diimines are presented in Table 1. The elemental analyses are compatible with the chemical formulas of the unsymmetric diimines. The molecular ion peaks and the fragmentation products are also compatible with the suggested structures of unsymmetric ligands. The molecular ion peaks are determined at the foreseen values of m/z : 386.3 [M+2H]⁺ 3a, 421.0 [M+3H]⁺ 3b and 400.0 [M+2H]⁺ 3c. The highest intensity peak for 3a at m/z : 232.1, m/z : 283.0 for 3b and m/z : 329.1 for 3c, respectively, are assigned to the loss of the different fragmentation pathways.

Compound	Formula	Colour	Mass spectrum	Elemental analysis (calc. %)	Mass spectrum	
3a	C₂₄H₁₇N₂O₂F	Orange	C	73.26 (75.00)	386.3 (75.38)	17.5 [M+2H]⁺
3b	C₂₄H₁₆N₂O₂Cl	Orange	C	70.15 (68.82)	421.0 (66.93)	3.9 [M+3H]⁺
3c	C₂₅H₁₉N₂O₂F	Orange	C	74.77 (75.38)	400.0 (47.04)	15.0 [M+2H]⁺
The characteristic peak of the unsymmetric diimines 3a-3c are presented in Table 2. The IR spectra of all diimines indicate two strong bands in the region 1588-1629 cm\(^{-1}\), associated to νC=N. These peaks are observed due to the two unsymmetrical imine groups. The νC=C bands of all ligands are observed in the ranges 1459-1594 cm\(^{-1}\). The νOH and νCH\(_{\text{arom.}}\) are appeared in the 3310-3451 cm\(^{-1}\) with 3051-3057 cm\(^{-1}\) regions, respectively.

Compound	ν(OH)	ν(CH\(_{\text{ammm.}}\))	ν(C=N)	ν(C=C)\(_{\text{ring}}\)	OH	CH=N	Arom.-H	CH\(_3\)
3a	3316	3051	1629	1594-1609	1H	1H	6.30-8.48	-
3b	3451	3057	1603	1547-1588	1H	1H	6.36-8.43	-
3c	3310	3056	1610	1545-1594	1H	1H	6.52-8.48	2.50 (s)

The \(^1\)H-NMR spectra for unsymmetric diimines 3a-3c are presented in Table 2. Due to the different chemical environments of the asymmetric imines, the \(^1\)H-NMR spectra of all ligands display two signals in the range 8.80-9.69 ppm and 9.54-9.89 ppm. The two phenolic protons are observed in the region 10.03-10.20 ppm and 13.04-13.50 ppm for all ligands. The aromatic protons are revealed in the ranges 6.30-8.48 ppm. Furthermore, the peak attributable to CH\(_3\) in 3c is appeared at 2.50 ppm.

Biological evaluation

The antimicrobial activities for all unsymmetric diimines 3a-3c and 4a-4c are presented in Table 3. The unsymmetrical diimines were screened for antimicrobial activity against gram (+) *L. monocytogenes* 4b, *S. epidermis*, *M. luteus* sp., *B. cereus* sp., gram (-) *Sh. dys. typ. 7*, *E. coli*, *S. typhi* H, *Br. abortus*, *P. putida* sp. and the fungus *C. albicans* in DMF solvent control. All unsymmetric diimines and antibiotics are shown varying degree of inhibitory influences on the growth of varied selected strains. It can be said that the functional substituents (H, F and Cl) on the benzene ring a very important factor in influencing the biological efficacy of the unsymmetric ligands [25]. 3b, 3c, 4a and 4c are exhibited the highest antimicrobial activity against *B. cereus* sp. The bacteria is known as opportunist pathogens, a food-poisoning organism, and common contaminating organisms [26]. 3a and 4b are showed a significant activity against *B. cereus* sp. At the same time, 3a and 4b are showed the highest activity against *S. epidermis* sp. and *Br. abortus*, respectively. *S. epidermis* sp. is an opportunistic microorganism. It is major skin associated bacteria. The bacteria is regarded as one of the main cause of nosocomial infections [27]. *Br. abortus*, is an intracellular pathogen leading to bacteremia and chronic infections in humans.
Additionality, 4b is exhibited a significant activity against *S.epidermis* sp., too. The compounds (3b, 3c, 4b and 4c) that have electron-withdrawing groups F and Cl are more active than the compounds (3a and 4a) that including H atom for *B.cereus*, *S.epidermis* and *Br. abortus* (except 4c for *Br. abortus*). 3a and 4c are inactive against *Sh.dys. typ 7* and *Br. abortus*, respectively. All unsymmetrical ligands are showed high antifungal activity against *C. albicans*. It is formed various infections in humans and animals for antifungal activity [29]. In general, the results of antimicrobial screening point out that 4a-4c groups showed more activity than the other 3a-3c groups. As a result, it can be said that all unsymmetric diimines are pharmacologically active compounds. According to the results, it can be said that researches of such unsymmetric Schiff bases can be important. Additionally, the antimicrobial activity of the unsymmetric diimines was also check against five commercial antibiotics, so-called Kanamycin, Sulfamethoxazol, Ampicillin, Amoxycillin and Nystatin. The obtained the unsymmetrical diimines were found to be as effective as the indicated antibiotics.

Table 3. Antimicrobial activities of unsymmetric diimines (diameter of zone of inhibition (mm))

Microorganisms	Compound	3a	3b	3c	4a	4b	4c
S.aureus		14	14	12	19	16	16
Sh.dys. typ 7			22	22	15	20	20
L.monocytogenes	4b	13	15	20	19	19	24
E.coli		17	15	14	23	20	20
S.typhi H		13	13	14	20	15	20
S.epidermis sp.		21	25	23	25	28	30
Br. abortus		12	20	13	25	30	-
M.luteus sp.		16	25	19	24	22	30
B.cereus sp.		19	28	24	26	28	33
P.putida sp.		18	18	16	25	23	28
Candida albicans (Fungus)		25	25	22	26	29	25
DMF (solvent control)		-	-	-	-	-	-
Positive Control							
L.monocytogenes		15	25	20	-	14	-
E.coli		11	18	17	-	18	-
S.typhi H		16	10	11	-	8	-
Br.abortus		22	14	19	-	15	-
P.putida		-	-	-	-	-	20

Standart reagents: K30 Kanamycin 30 µg, SXT25 Sulfamethoxazol 25 µg, AMP10 Ampicillin 10 µg, AMC30 Amoxycillin 30 µg, NYS100 Nystatin 100 µg.

Conclusions

Novel unsymmetric diimines 3a-3c were obtained using a two-stage method. Herein, particulary these type ligands were selected...
due to the unsymmetrical nature of the imine bond. The synthesized compounds were structurally identified using the spectral analysis. In addition, antibacterial and antifungal activities of the unsymmetric diimines 3a-3c and 4a-4c were researched against some pathogenic microorganisms. According to these antimicrobial results, it can be stated that these unsymmetric diimines might be used in potential biomedical applications owing to their antimicrobial properties.

Acknowledgements

This work was supported by the Nevşehir Hacı Bektaş Veli University Research Foundation (Project number: 2010/17).

Conflict of interest

We have no conflicts of interest to disclose.

References

[1] Da Silva C.M., Da Silva D.L., Modolo L.V., Alves R.B., de Resende M.A., Martins C.V.B., de Fatima A., J. Adv. Res., 2011, 2:1
[2] Katarzyna B., Chruscinska E.L., Chemik International, 2014, 68:129
[3] Gupta A.K., Pal R., World J. Pharm. Sci., 2014, 4:386
[4] Sabet R.A., Khoshshima H., Dyes & Pigments, 2010, 87:95
[5] Bandi K.R., Singh A.K., Upadhyay A., Electrochim. Acta, 2013, 105:654
[6] Sarı N., Pişkin N., Öğütçü H., Kurnaz N., Medicinal Chemistry Research, 2012, 22:580
[7] Kumar S., Dhar D.N., Saxena P.N., J. Sci. Ind. Res., 2009, 68:181
[8] Anand P., Patil V.M., Sharma V.K., Khosa R.L., Masand N., Int. J. Drug Discov., 2012, 3:851
[9] Ronad P.M., Noolvi M.N., Sapkal S., Dharbhamulla S., Maddi S., Eur. J. Med. Chem., 2010, 45:85
[10] Zoubi W. A., Int. J. Org. Chem., 2013, 3:73
[11] Bringmann G., Dreyer M., Faber J.H., Dalsgaard P.W., Staerk D., Jaroszewski J.W., Ndangalasi H., Mbago F., Brun R., Christensen S.B., J. Nat. Prod., 2004, 67:743
[12] Rupesh K.R., Deepalatha S., Krishnaveni M., Venkatesan R., Jayachandran S., Eur. J. Med. Chem., 2006, 41:1494
[13] Dhar D.N., Taploo C.L., J. Sci. Ind. Res., 1982, 41:501
[14] Mohammed I.A., Subrahmanyam E.V.S., Acta Pharma. Sci., 2009, 51:163
[15] Amanullah M., Sadozai S.K., Rehman W., Hassan Z., Rauf A., Iqbal M., African J. Biotech., 2011, 10:209
[16] Jesmin M., Ali M.M., Khanam J.A., J. Pharm. Sci., 2010, 34:20
[17] Fatima T.E., Omar F.K., Khamis A., Abdel E.M., Ra’ad T.O., Doa’a M., Drug Chem. Toxicol., 2016, 39:41
[18] Nartop D., Gürkan P., Sarı N., Servet S., J. Coord. Chem., 2008, 61:3516
[19] Gungör Ö., Gürkan P., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77:304
[20] Nartop D., Gürkan P., Chinese J. Inorg. Chem., 2013, 6:1227
[21] Gungör Ö., Gürkan P., Arab. J. Chem., 2015, doi:10.1016/j.arabjc.2015.02.009
[22] Özdemir Ö.: J. Mol. Struct., 2016, 1125:260
[23] Nartop D., Özdemir Ö., Gürkan P., Mor. J. Chem., 2017, 5:560
[24] Nartop D., Clegg W., Harrington R. W., Henderson R.A., Wills C.Y., Dalton Trans., 2014, 43:3372
[25] Koçoğlu S., Öğütçü H., Hayvalı Z., Res. Chem. Intermediat., doi.org/10.1007/s11164-019-03741-3
[26] Logan N.A., J. Med. Microbiol., 1988, 25:157
[27] Namvar A.E., Bastarhanging S., Abbasi N., Ghehi G.S., Farahdbaktiarian S., Arezi P., Hosseini M., Baravati S.Z., Jokar Z., Chermahin S.G., GMS Hyg. Infect. Control, 2014, 9
[28] Detilleux P.G., Deyoe B.L., Cheville N.F., Infect Immun., 1990, 58:2320
[29] Gloria M., Diez-Orejas R., Navarro-Garcia F., Lucía M., Jesús P., Concha G., Miguel S.P., César N., Internatl. Microbiol., 1998, 1:95

How to cite this manuscript: Dilek Nartop*, Hatice Öğütçü. Novel unsymmetric diimines: Synthesis and biological evaluation against pathogenic microorganisms. Journal of Medicinal and Chemical Sciences, 2020, 3(3), 219-227. DOI: 10.26655/jmchemsci.2020.3.3