THE MICRO- AND NANOSECOND DISCHARGES IN GAS BUBBLES FOR WATER DISINFECTION AND PURIFICATION

Purpose. Comparison of electrical circuits of experimental plants for obtaining micro- and nanosecond discharges in gas bubbles in water and comparing the experimental results obtained for disinfecting water using such discharges. Methodology. To obtain high-voltage pulses on the load in the form of a gas bubbles and a layer of water with a frequency of more than 2000 pulses per second, a method of generating micro- and nanosecond pulses using high-voltage pulse generators based on a pulse transformer (PT) according to Tesla, with a transistor opening switch IGBT in the low-voltage part of the circuit. A current-limiting resistor with a resistance $R_c = 24 \, k\Omega$ is used to protect the transistor switch at microsecond discharges. At nanosecond discharges, a multi-gap spark gap is used to sharpen the front of high-voltage pulses. We used a capacitive voltage divider with a division factor of $K_d = 7653$ to measure voltage pulses, a shunt with a resistance of $R_s = 2.5 \, \Omega$ for measuring current pulses. RIGOL DS1102E digital oscilloscope with a 100 MHz bandwidth was used as a recording device. Results. The effect of micro- and nanosecond discharges in gas bubbles on microorganisms was experimentally investigated. It was possible to reduce the biochemical oxygen consumption of water during microsecond discharges, reduce the turbidity of water, and improve its organoleptic qualities. The energy released in a single pulse with microsecond discharges $W_{\mu} \approx 17 \, mJ$, with nanosecond discharges $W_n \approx 7.95 \, mJ$. At nanosecond discharges, complete inactivation of E.coli bacteria was achieved. The disinfecting and purifying action of nanosecond discharges in gas bubbles at low specific energy consumption has been experimentally shown. Practical value. The obtained experimental results on water disinfection using micro- and nanosecond discharges offer the prospect of industrial application of installations using such discharges for disinfecting and purification wastewater, swimming pools, and post-treatment of tap water. References 9, figures 3.

Key words: high-voltage generator, micro- and nanosecond pulses, discharge in gas bubbles, water disinfection and water purification by discharges, inactivation of microorganisms.
Micro- and nanosecond discharges in gas bubbles [2, 3]. The use of short electric pulses of voltage (current) for water treatment allows to avoid large ohmic losses due to its heating, to increase the electrical strength of the water, as well as affecting the intracellular contents, including the formation in the cell membranes of microorganisms, as well as degradation and destruction, and, thereby, increasing the efficiency of microbiological disinfection of water.

Pulsed electrical discharge is also a source of broadband radiation. It follows from [5, 6] that such radiation has damaging effects on bacteria, leading to their degradation and destruction, and, thereby, increasing the efficiency of microbiological disinfection of water.

Micro- and nanosecond discharges in gas bubbles inside the treated volume of water cause the formation of active microparticles with a high value of oxidative potential, measured in volts. The highest value of the oxidation potential for ozone (O₃) is 2.07 V, for atomic oxygen (O) is 2.42 V, for hydroxyl (OH) is 2.85 V, and for hydrogen peroxide (H₂O₂) is 1.77 V [7].

Ozonation is widely used for disinfection of drinking water, as well as water in swimming pools. However, OH hydroxyls, which are formed in discharges in the presence of water, have a higher oxidative potential and are able to destroy persistent chemical compounds, unlike ozone [8]. The use of OH can improve the efficiency of disinfection and chemical treatment of water. The lifetime of OH particles in the air is hundreds of microseconds. Therefore, radicals should be created in the immediate vicinity of the surface of the separation of water and gas bubbles in it [1, 9].

Installations using this type of discharge can be widely used for the treatment of wastewater, waters of swimming pools and the purification of tap water.

The goal of the work is a comparison of the electrical circuits of experimental installations for obtaining micro- and nanosecond discharges in gas bubbles in water, as well as a comparison of the experimental results obtained for disinfecting water using such discharges.

Electric circuits of experimental installations. Figures 1.a,b show the electric circuits of experimental installations for water treatment using micro- and nanosecond discharges in gas bubbles [2, 3].

In Fig. 1.a,b, the capacitance Cₑ is charged from the mains (220 V, 50 Hz) to the voltage Uₑ. T is the transistor switch of IGBT-transistors of type IRG4PH50UD, operating as a breaker. Pulse transformer (PT) according to the Tesla scheme is presented in the form of an equivalent circuit, where \(L_p \) is the magnetization inductance; \(L_{sh}, L'_{sh} \) are the primary leakage inductance and reduced secondary leakage inductance; \(D \) are the reverse diodes of the IGBT-key built into the transistors; \(C_{ec} \geq 1 \) nF is the «emitter collector» capacitance of the IGBT-key; \(C_d < C_{ec} << C_{st} \); \(R' \) is the reduced resistance of the measuring shunt in the high-voltage circuit of the generator; \(R_{1} = 300 \Omega \); \(R_{2} = 60 \Omega \) are the matching resistances of the shunt \(R_{s} = 2.5 \Omega \); \(C_{1} \), \(C_{2} \) are the reduced
capacitances of high-voltage (CVD) with matching resistance \(R_c \). Here, the unreduced (i.e., real) values of the capacitances were \(C_1 = 2.7 \times 10^{-12} \) F, \(C_2 = 20.4 \times 10^{-9} \) F, and the division ratio of CVD is \(K_D \approx 7650 \). In the electric circuit of the reactor, \(C_d, R_d \) are the capacitance and nonlinear active resistance of the discharge gap (DG), and \(C, R \) are the capacitance and nonlinear resistance of the water layer between the DG and a low-voltage (grounded) electrode \((C_d, R_d, C', R''\) are the reduced to the primary winding of PT values of these quantities), respectively.

Principal differences between the electric circuits of experimental installations. In the diagram in Fig. 1, \(a \) a current-limiting resistor with resistance \(R'_{ch} = 24 \) k\(\Omega \) is used to protect the transistor switch by current. The dissipation of active power on the resistor leads to additional ohmic losses. \(C_d = 940 \) \(\mu \)F (2 capacitors TAMICON 470 \(\mu \)F in parallel), \(T \) is the transistor switch consisting of 2 transistors connected in parallel. In the diagram in Fig. 1, \(b \) \(C_d = 4230 \) \(\mu \)F (9 capacitors TAMICON 470 \(\mu \)F in parallel), the transistor switch \(T \) consists of four parallel-connected transistors.

The pulse duration, the front and the shape are determined by the discharge circuit \(C_{hv} - SD - L_{ld} - (R_d \) in parallel with \(C_d) - (R \) in parallel with \(C) - R_{sh} - C_{hv} \). The sharpening of the pulse front occurs when a multichannel multi-gap spark discharger \(SD \) operates. The distance between the gaps is 1 mm, it is possible to adjust, the number \(n \) of gaps is \(1 \leq n \leq 5 \). The pulse duration is determined by the presence in the discharge circuit of a low-inductance capacitive energy storage device \(C_{hv} = 150 \) pF assembled from six KBI-2 capacitors with capacitance of 100 pF each, calculated for voltage 20 kV (two consecutive chains of three capacitors in parallel). All voltage from \(C_{hv} \) is applied to series-connected discharger \(SD \) and discharge gap DG in the reactor – a gas bubble in water. The inductance \(L_{ld} \) of the load discharge circuit is \(L_{ld} \approx 0.5 \) \(\mu \)H.

Experimental results. Figures 2,\(a,b \) show oscillograms of voltage (current) pulses obtained at disinfecting water treatment using micro- and nanosecond discharges.

![Fig. 2. Oscillograms of voltage (curves 1) and current (curves 2) pulses:](Image)

\(a \) – at microsecond discharges; \(b \) – at nanosecond discharges

At microsecond discharges (see Fig. 2,\(a \)), the voltage amplitude reaches 8 kV, and the current amplitude is 0.2 A at a pulse repetition rate of \(f \approx 2200 \) Hz. The division along the process axis is 4 kV/div for voltage oscillograms, and 0.1 A/div for current oscillograms. Oscillograms of voltage and current in the load (in the form of a working chamber with water processed by microsecond discharges) have the shape of bipolar pulses.

At nanosecond discharges, the amplitude (see Fig. 2,\(b \)) of the voltage across the load reaches 30 kV, and the amplitude of the current is 35 A at a pulse repetition rate of \(f \approx 2200 \) Hz. The division along the process axis for voltage oscillograms is 7.9 kV/div, and for current oscillograms it is 11.7 A/div. At nanosecond discharges, the shape of the voltage and current pulses in the load is close to the decaying exponential with a steep front and superimposed oscillations. A capacitive voltage divider with division factor \(K_D \approx 7653 \) was used to register voltage pulses, and a shunt with resistance \(R_s = 2.5 \) \(\Omega \) \((R_1 = 300 \) \(\Omega \), \(R_2 = 60 \) \(\Omega \) – matching shunt resistances) was used to register current pulses. A RIGOL DS1102E digital oscilloscope with a bandwidth of 100 MHz was used as a recording device.

Current and voltage on the oscillograms of Fig. 2,\(a,b \) are close in shape and practically not shifted relative to each other in time. In the first approximation, we can assume that the load is active and all the energy \(W \) is released in the working chamber. Calculate the energy \(W \), based on the relation of the form

\[
W = \int_0^t U(t) I(t) dt.
\]

For the estimated calculation of energy, we represent the positive part of the pulses in Fig. 2,\(a \) in the form of two rectangular regions with sides along the time axis \(t_1 \approx 10 \) \(\mu \)s, and negative one in the form of two triangular regions with the same base size along the time axis \(t_2 \approx 10 \) \(\mu \)s. Then the pulse energy \(W_p \) is defined as the sum of the areas of the selected areas \(W_p \approx U \cdot I_t_1 + 0.5 \cdot U \cdot I_t_2 \approx \approx 6000 \ V \cdot 0.15 \cdot 10^{-10} \ s + 0.5 \cdot 8000 \ V \cdot 0.2 \cdot 10^{-10} \ s \approx \approx (0.009 + 0.008) \ J \approx 17 \) mJ.

Oscillograms of Fig. 2,\(b \) with nanosecond pulses for the estimated calculation of the pulse energy are divided.
into triangular areas. The first two triangular regions are selected at the front when the current and voltage on the load reach maximum values during \(t_1 \approx 10 \text{ ns} \). To take into account the pulse energy released in the load on the flat part of the pulse decay, we choose the second two triangular regions with duration along the time axis \(t_2 \approx 150 \text{ ns} \), where the amplitudes of voltage and current reach values \(U_2 = 6 \text{ kV}, \ I_2 = 6 \text{ A} \), respectively. The energy \(W_a \) released in each nanosecond pulse, we define as the sum of the areas of selected areas \(W_a = 0.5 U_1 I_1 t_1 + 0.5 U_2 I_2 t_2 \approx (0.5 \times 30000 \times 35 \times 10^{-9} + 0.5 \times 6000 \times 6 \times 150 \times 10^{-9}) \approx (0.00525 + 0.0027) J \approx 7.95 \text{ mJ} \)

The ratio of the energy \(W_a \) released in the load at each microsecond pulse to the energy \(W_a \) released in the load at each nanosecond pulse in this work is equal to \(W_a/W_n \approx 17/7.95 \approx 2.1 \).

By increasing the electric strength of the discharge gap in gas bubbles at nanosecond pulses, it was possible to obtain pulsed voltages with amplitude of 30 kV on the load. The operation of the circuit without protective resistance, an increase in the electrical strength of the gap and a decrease in the capacitance resistance of water at nanosecond pulses allowed, compared to microsecond pulses, to increase the current amplitude 175 times and to reach its value of 35 A. Therefore, the disinfecting and cleaning action of nanosecond pulses is better than with microsecond pulses. And this is achieved at a significantly lower energy in the nanosecond pulse. In microsecond pulses, most of the energy is consumed less efficiently: the degree of water disinfection is less, and unwanted heating of water is more.

Figures 3, a, b show the luminescence at nanosecond and microsecond discharges in gas bubbles in water. It has been established that the intensity of luminescence at nanosecond discharges is greater (see Fig. 3, a) due to the increase in their amplitudes of the pulsed voltage and current in gas bubbles.

A series of experiments on microbiological disinfection and purification of water using micro- and nanosecond discharges in gas bubbles was carried out. During water purification (the sample was taken from the Kharkiv river in a volume of 3 liters) using microsecond discharges in gas bubbles (see Fig. 2, a), the processing time was 10 minutes, the volume of processing was 1.5 liters (three portions of 0.5 l each). The treated water was filtered with a paper filter before being sent to the laboratory (Communal Enterprise «Sanepidservice», Kharkiv). Biochemical oxygen consumption decreased from 3.84 mgO₂/dm³ (in the control sample) to 3.67 mgO₂/dm³ (in the treated samples), at a rate of \(\leq 6 \text{ mgO}_2/\text{dm}^3 \), i.e. it was possible to additionally clean the fairly clean source water. The turbidity of water has decreased, the organoleptic properties of water have improved. When processing the water temperature increased by 17-20 °C.

When treating tap water contaminated with \(E.\text{coli} \) bacteria with a dilution of \(10^8 \) in 3 liters of water (at the Communal Enterprise «Sanepidservice», Kharkiv), using nanosecond discharges (see Fig. 2, b) in gas bubbles, the processing time was 7 minutes, the volume of the processed material 1.5 l (three portions of 0.5 l), complete (100 %) inactivation of bacteria has been achieved. The temperature of the treated water increased by 7-8 °C.

The estimated energy released in the load when treating water using discharges in gas bubbles in the case of using nanosecond discharges was about 2.1 times less than when using microsecond discharges. Therefore, the heating of water at nanosecond discharges is also less. The pulse repetition rate was the same for both processing modes, including nano- and microsecond discharges, respectively.

Conclusions. The results of the experiments on the disinfection and purification of water using micro- and nanosecond discharges in gas bubbles showed the promise of further study and practical application of these types of discharges. Nanosecond discharges seem to be more promising for industrial applications. When using nanosecond discharges, complete inactivation of \(E.\text{coli} \) bacteria is achieved, water heating is insignificant, and the intensity of broadband radiation at such discharges, compared with microsecond discharges, is higher due to large amplitudes of pulsed currents and amplitudes of pulsed electric field strengths. The energy in the pulse with nanosecond discharges is 2.1 times less than with microsecond discharges.

REFERENCES

1. Gershman S., Mozgina O., Belkind A., Becker K., Kunhardt E. Pulsed Electrical Discharge in Bubbled Water. *Contributions*
1. Boyko M.I., Makogon A.V. Experimental plant for water purification with the help of discharges in gas bubbles. *Technical Electrodynamics*, 2017, no.5, pp. 89-95. doi: [10.15407/techned2017.05.089](https://doi.org/10.15407/techned2017.05.089).

2. Boyko N.I., Makogon A.V. Generator of high-voltage nanosecond pulses with repetition rate more than 2000 pulses per second for water purification by the discharges in gas bubbles. *Technical Electrodynamics*, 2018, no.4, pp. 37-40. doi: [10.15407/techned2018.04.037](https://doi.org/10.15407/techned2018.04.037).

3. Boyko M.I., Makogon A.V., Marynin A.I. Energy efficiency of the disinfection treatment of liquid foodstuffs by high-voltage pulse effects. *Electrical engineering & electromechanics*, 2018, no.3, pp. 53-60. doi: [10.20998/2074-272X.2018.3.07](https://doi.org/10.20998/2074-272X.2018.3.07).

4. Trofimova S.V., Ivanova I.P., Bugrova M.L. The analysis of structural changes of prokaryotic and eukaryotic cell under the influence of plasma spark radiation. *Fundamental research*, 2013, no.4(part 1), pp. 130-133. (Rus).

5. Ivanova I.P., Trofimova S.V., Piskaryov I.M., Burkina O.E., Sysoeva V.A., Karpel Vel Leitner N. The Study of Biocidal Mechanisms of Spark Discharge Plasma Radiation. *Modern Technologies in Medicine*, 2012, no.3, pp. 12-18. (Rus).

6. Available at: http://www.chem.msu.su/rus/handbook/redox/elem_dat/o.html (accessed 13 June 2018). (Rus).

7. Nazarenko O.B, Shubin E.G. Investigation of Electric Discharge Treatment of Water for Ammonium Nitrogen Removal. *Proceedings of the 2nd Environmental Physics Conference*, 18-22 Feb. 2006, Alexandria, Egypt, pp. 85-90.

8. Iavorovskii N.A., Kornev Ya.L, Preis S.V., Pel’sman S.S., Khaskel’berg M.B., Chen B.N. Pulsed barrier discharge as a method of water treatment: active particles-oxidizing agents in the water-air flow. *Bulletin of the Tomsk Polytechnic University*, 2006, vol.309, no.2, pp. 108-113. (Rus).

Received 27.02.2019

M.I. Boyko1, Doctor of Technical Science, Professor,

A.V. Makogon1, Postgraduate Student,

1 National Technical University «Kharkiv Polytechnic Institute»,

2, Kyrychova Str., Kharkiv, 61002, Ukraine,

phone +380 57 7076245,

e-mail: qnaboyg@gmail.com

How to cite this article: Boyko M.I., Makogon A.V. The micro- and nanosecond discharges in gas bubbles for water disinfection and purification. *Electrical engineering & electromechanics*, 2019, no.3, pp. 50-54. doi: [10.20998/2074-272X.2019.3.08](https://doi.org/10.20998/2074-272X.2019.3.08).