A cellular algebra with specific decomposition of the unity

Mufida M. Hmaida

Abstract. Let A be a cellular algebra over a field F with a decomposition of the identity 1_A into orthogonal idempotents e_i, $i \in I$ (for some finite set I) satisfying some properties. We describe the entire Loewy structure of cell modules of the algebra A by using the representation theory of the algebra $e_i A e_i$ for each i. Moreover, we also study the block theory of A by using this decomposition.

1 Introduction

Let $T_{n,m}(\delta_0, \ldots, \delta_{m-1})$, or simply $T_{n,m}$, be the bubble algebra with m-different colours, $\delta_i \in F$, which is defined in Grimm and Martin[2]. In the same paper, it has been showed that it is semi-simple when none of the parameters δ_i is a root of unity. Later, Jegan[4] showed that the bubble algebra is a cellular algebra in the sense of Graham and Lehrer[1]. The identity of the algebra $T_{n,m}$ is the summation of all the different multi-colour partitions that their diagrams connect j only to j' with any colour for each $1 \leq j \leq n$, these multi-colour partitions are orthogonal idempotents. The goal of this paper is to generalize the technique that we use to study the representation theory of $T_{n,m}$ in [3].

Wada[8] consider a decomposition of the unit element into orthogonal idempotents and a certain map α to define a Levi type subalgebra and a parabolic subalgebra of the algebra A, and then the relation between the representation theory of each one has been studied. With using the same decomposition, we construct a Levi type subalgebra \bar{A} (without using any map), and classify the blocks of A by using the representation theory of the algebra \bar{A}.

2 Cellular algebras

We start by reviewing the definition of a cellular algebra, which was introduced by Graham and Lehrer[1] over a ring but we replace it by a field, since we need this assumption later.

Definition 2.1. [1, Definition 1.1]. A cellular algebra over F is an associative unital algebra A, together with a tuple $(\Lambda, T(\cdot), C, \ast)$ such that

1. The set Λ is finite and partially ordered by the relation \geq.

2. For every $\lambda \in \Lambda$, there is a non-empty finite set $T(\lambda)$ such that for an pair $(s, t) \in T(\lambda) \times T(\lambda)$ we have an element $c^\lambda_{st} \in A$, and the set $C := \{c^\lambda_{st} \mid s, t \in T(\lambda) \text{ for some } \lambda \in \Lambda\}$ forms a free F-basis of A.

3. The map \(\ast : \mathbb{A} \to \mathbb{A} \) is \(\mathbb{F} \)-linear involution (This means that \(\ast \) is an anti-automorphism with \(\ast^2 = \text{id}_\mathbb{A} \) and \((c^\lambda u_b)^\ast = c^{\lambda}_t \) for all \(\lambda \in \Lambda, \ s, t \in T(\lambda) \)).

4. For \(\lambda \in \Lambda, s, t \in T(\lambda) \) and \(a \in \mathbb{A} \) we have
 \[
 ac^{\lambda}_{st} \equiv \sum_{u \in T(\lambda)} r^{(u,s)}_a c^\lambda_{ut} \mod \mathbb{A}^{>\lambda},
 \]
 where \(r^{(u,s)}_a \in \mathbb{F} \) depends only on \(a, u \) and \(s \). Here \(\mathbb{A}^{>\lambda} \) denotes the \(\mathbb{F} \)-span of all basis elements with upper index strictly greater than \(\lambda \).

For each \(\lambda \in \Lambda \), the cell module \(\Delta(\lambda) \) is the left \(\mathbb{A} \)-module with an \(\mathbb{F} \)-basis \(\mathbb{B} := \{ c^\lambda_s \mid s \in T(\lambda) \} \) and an action defined by
 \[
 ac^\lambda_s = \sum_{u \in T(\lambda)} r^{(s,u)}_a c^\lambda_u \quad (a \in \mathbb{A}, \ s \in T(\lambda)),
 \]
 where \(r^{(s,u)}_a \in \mathbb{F} \) is the same coefficient that in (1).

A bilinear form \(\langle \ , \ \rangle : \Delta(\lambda) \times \Delta(\lambda) \to \mathbb{F} \) can be defined by
 \[
 \langle c^\lambda_s, c^\lambda_t \rangle c^\lambda_{ub} \equiv c^{\lambda}_{us} c^{\lambda}_{tb} \mod \mathbb{A}^{>\lambda} \quad (s, t, u, b \in T(\lambda)).
 \]

Note that this definition does not depend on the choice of \(u, b \in T(\lambda) \).

Let \(G_\lambda \) be the Gram matrix for \(\Delta(\lambda) \) of the previous bilinear form with respect to the basis \(\mathbb{B} \). All Gram matrices of cell modules that will be mentioned in this paper are with respect to the basis \(\mathbb{B} \) with the bilinear form defined by (2).

Let \(\Lambda^0 \) be the subset \(\{ \lambda \in \Lambda \mid \langle \ , \ \rangle \neq 0 \} \). The radical
 \[
 \text{Rad}(\Delta(\lambda)) = \{ x \in \Delta(\lambda) \mid \langle x, y \rangle = 0 \text{ for any } y \in \Delta(\lambda) \}
 \]
 of the form \(\langle \ , \ \rangle \) is an \(\mathbb{A} \)-submodule of \(\Delta(\lambda) \).

Theorem 2.2. ([24], Chapter 2). Let \(\mathbb{A} \) be a cellular algebra over a field \(\mathbb{F} \). Then

1. \(\mathbb{A} \) is semi-simple if and only if \(\det G_\lambda \neq 0 \) for each \(\lambda \in \Lambda \).

2. The quotient module \(\Delta(\lambda)/\text{Rad}(\Delta(\lambda)) \) is either irreducible or zero. That means that \(\text{Rad}(\Delta(\lambda)) \) is the radical of the module \(\Delta(\lambda) \) if \(\langle \ , \ \rangle \neq 0 \).

3. The set \(\{ L(\lambda) := \Delta(\lambda)/\text{Rad}(\Delta(\lambda)) \mid \lambda \in \Lambda^0 \} \) consists of all non-isomorphic irreducible \(\mathbb{A} \)-modules.

4. Each cell module \(\Delta(\lambda) \) of \(\mathbb{A} \) has a composition series with sub-quotients isomorphic to \(L(\mu) \), where \(\mu \in \Lambda^0 \). The multiplicity of \(L(\mu) \) is the same in any composition series of \(\Delta(\lambda) \) and we write \(d_{\lambda\mu} = [\Delta(\lambda) : L(\mu)] \) for this multiplicity.

5. The decomposition matrix \(D = (d_{\lambda\mu})_{\lambda,\mu \in \Lambda^0} \) is upper uni-triangular, i.e. \(d_{\lambda\mu} = 0 \) unless \(\lambda \leq \mu \) and \(d_{\lambda\lambda} = 1 \) for \(\lambda \in \Lambda^0 \).

6. If \(\Lambda \) is a finite set and \(C \) is the Cartan matrix of \(\mathbb{A} \), then \(C = D^t D \).
3 A Levi type sub-algebra

In this section, we construct a Levi type subalgebra \(\tilde{\mathbb{A}} \) of \(\mathbb{A} \) and study its representation theory.

The second and the third parts of the following assumption existed in Assumption 2.1 in \[8\].

Assumption 3.1. Throughout the remainder of this paper, we assume the following statements (A1) – (A4).

(A1) There exists a finite set \(I \).

(A2) The unit element \(1_{\mathbb{A}} \) of \(\mathbb{A} \) is decomposed as \(1_{\mathbb{A}} = \sum_{i \in I} e_i \) with \(e_i \neq 0 \) and \(e_i e_j = 0 \) for all \(i \neq j \) and \(e_i^2 = e_i \).

(A3) For each \(\lambda \in \Lambda \) and each \(t \in T(\lambda) \), there exists an element \(i \in I \) such that

\[
e_i c_{ts}^\lambda = c_{ts}^\lambda \quad \text{for any } s \in T(\lambda). \tag{3}\]

(A4) \(e_i^* = e_i \) for each \(i \in I \). Note that from \[8\], for each \(\lambda \in \Lambda \) and each \(t \in T(\lambda) \) we have

\[
c_{st}^\lambda e_i = c_{st}^\lambda e_i^* = (e_i c_{ts}^\lambda)^* = (c_{ts}^\lambda)^* = c_{st}^\lambda \quad \text{for any } s \in T(\lambda). \tag{4}\]

From (A2) and (A3), we obtain the next lemma.

Lemma 3.2. \[8, Lemma 2.2\]. Let \(t \in T(\lambda) \), where \(\lambda \in \Lambda \), and \(i \in I \) be such that \(e_i c_{ts}^\lambda = c_{ts}^\lambda \) for any \(s \in T(\lambda) \). Then for any \(j \in I \) such that \(j \neq i \), we have \(e_j c_{ts}^\lambda = 0 \) for any \(s \in T(\lambda) \). In particular, for each \(t \in T(\lambda) \), there exists a unique \(i \in I \) such that \(e_i c_{ts}^\lambda = c_{ts}^\lambda \) for any \(s \in T(\lambda) \).

For \(\lambda \in \Lambda \) and \(i \in I \), we define

\[
T(\lambda, i) = \{ t \in T(\lambda) \mid e_i c_{ts}^\lambda = c_{ts}^\lambda \text{ for any } s \in T(\lambda) \};
\]

\[
\Lambda_i = \{ \lambda \in \Lambda \mid T(\lambda, i) \neq \emptyset \};
\]

\[
I_\lambda = \{ i \in I \mid \lambda \in \Lambda_i \}.
\]

By Lemma \[3.2\], we have

\[
T(\lambda) = \prod_{i \in I} T(\lambda, i).
\]

Note that \(\Lambda_i \) is a poset with the same order relation on \(\Lambda \) and \(\Lambda = \bigcup_{i \in I} \Lambda_i \). Moreover, \(\Lambda_i \neq \emptyset \) for each \(i \in I \), and that because of \(0 \neq e_i \in \mathbb{A} \) and \(e_i^2 = e_i \).

From (A3) and Lemma \[3.2\] the element \(e_i \) can be written in the form

\[
\sum_{\lambda \in \Lambda, s,t \in T(\lambda, i)} b_{s,t,\lambda} c_{st}^\lambda
\]

where \(b_{s,t,\lambda} \in \mathbb{F} \).
Theorem 3.3. The algebra $e_i A_i e_i$ is a cellular algebra with a cellular basis $C_i := \{c_{st}^\lambda \mid s, t \in T(\lambda, i) \text{ for some } \lambda \in \Lambda_i \}$ with respect to the poset Λ_i and the index set $T(\lambda, i)$ for $\lambda \in \Lambda_i$, i.e. the following property holds:

1. An \mathbb{F}-linear map $*: e_i A_i e_i \to e_i A_i e_i$ defined by $c_{st}^\lambda \to c_{st}^\lambda$ for all $c_{st}^\lambda \in C_i$ gives an algebra anti-automorphism of $e_i A_i e_i$.

2. For any $a \in e_i A_i e_i$, $c_{st}^\lambda \in C_i$, we have

$$ac_{st}^\lambda = \sum_{u \in T(\lambda)} r_{u,s}^{(u,s)} c_{ut}^\lambda \mod (e_i A_i e_i)^{>\lambda},$$

where $(e_i A_i e_i)^{>\lambda}$ is an \mathbb{F}-submodule of $e_i A_i e_i$ spanned by $\{C_{st}^\lambda \mid s, t \in T(\lambda', i) \text{ for some } \lambda' \in \Lambda_i \text{ such that } \lambda' > \lambda \}$, and $r_{u,s}^{(u,s)}$ does not depend on the choice of $t \in T(\lambda, i)$.

Proof. Since C is a basis of A, $e_i a e_i = a$ for all $a \in e_i A_i e_i$ and

$$e_i c_{st}^\lambda e_i = \begin{cases} c_{st}^\lambda & \text{if } s, t \in T(\lambda, i), \\ 0 & \text{otherwise}, \end{cases}$$

so the set C_i is a basis of the algebra $e_i A_i e_i$. The first part follows from the fact the map $*$ on the algebra A leaves $e_i A_i e_i$ invariant. For the second part, from (1) we have

$$ac_{st}^\lambda = \sum_{u \in T(\lambda)} r_{u,s}^{(u,s)} c_{ut}^\lambda \mod A^{>\lambda},$$

where $r_{u,s}^{(u,s)} \in \mathbb{F}$ depends only on a, u and s. But $e_i a = a$, so

$$ac_{st}^\lambda = \sum_{u \in T(\lambda)} r_{u,s}^{(u,s)} c_{ut}^\lambda \mod A^{>\lambda} = \sum_{u \in T(\lambda', i)} r_{u,s}^{(u,s)} c_{ut}^\lambda \mod A^{>\lambda}.$$}

Also by using Lemma 3.2, we can show $e_i A^{>\lambda} e_i = (e_i A_i e_i)^{>\lambda}$, we are done. Moreover, cell modules $V(\lambda, i)$ for the algebra $e_i A_i e_i$ can be defined as follows:

$$V(\lambda, i) := e_i \Delta(\lambda) \quad (\lambda \in \Lambda_i).$$

The set $B_i := \{c_s^\lambda \mid s \in T(\lambda, i)\}$ is a basis of the module $V(\lambda, i)$.

Define the algebra \tilde{A} to be $\sum_{i \in I} e_i A_i e_i$ (which is the same as $\bigoplus_{i \in I} e_i A_i e_i$ since $e_i e_j = 0$ for all $i \neq j$). The identity of the algebra $e_i A_i e_i$ is the idempotent e_i, so $\tilde{A} \hookrightarrow A$. Moreover, the algebra \tilde{A} turns out to be cellular with cell modules:

$$V(\lambda, i) = e_i \Delta(\lambda) \quad (\lambda \in \Lambda_i, i \in I).$$

We put $V(\lambda, i) = \{0\}$ in the case λ is not an element in Λ_i.

Lemma 3.4. Let $\lambda \in \Lambda$, then

$$\Delta(\lambda) = \bigoplus_{i \in I} V(\lambda, i)$$

as an \tilde{A}-module.

Proof. It comes directly from the fact that $1_{\tilde{A}} = \sum_{i \in I} e_i$ and $e_i e_j = 0$ if $i \neq j$.

4 Idempotent localization

In this section we compute the radical and Gram matrix of each cell module of the algebra A by using the ones of the algebra \bar{A}.

Let $c_{u \lambda s}^{\lambda} c_{tv}^{\lambda} \in C$ where $s \in T(\lambda, i)$ and $t \in T(\lambda, j)$ for some $i, j \in I$. If $i \neq j$, then $c_{u \lambda s}^{\lambda} c_{tv}^{\lambda} = 0$ which means $\langle c_{u \lambda s}^{\lambda}, c_{tv}^{\lambda} \rangle = 0$ in $\Delta(\lambda)$. If $i = j$, then $c_{u \lambda s}^{\lambda} c_{tv}^{\lambda} \equiv \langle c_{u \lambda s}^{\lambda}, c_{tv}^{\lambda} \rangle c_{uv}^{\lambda} \mod A^{>\lambda}$.

Since u, v do not have a role here, we can assume $u, v \in T(\lambda, i)$ and then

\[c_{u \lambda s}^{\lambda} c_{tv}^{\lambda} \equiv \langle c_{u \lambda s}^{\lambda}, c_{tv}^{\lambda} \rangle c_{uv}^{\lambda} \mod (e_i A e_i)^{>\lambda}. \]

Hence the inner product $\langle c_{u \lambda s}^{\lambda}, c_{tv}^{\lambda} \rangle$ in $\Delta(\lambda)$ and the inner product $\langle c_{u \lambda s}^{\lambda}, c_{tv}^{\lambda} \rangle$ in $V(\lambda, i)$ have the same value. Let $M(\lambda, i)$ be the Gram matrix of this inner product on the module $V(\lambda, i)$ with respect to the basis B_i, then

\[G(\lambda) = \bigoplus_{i \in I_\lambda} M(\lambda, i). \quad (5) \]

We can show the previous result by using the facts $B = \bigsqcup_{i \in I} B_i$, $B_i \cap B_j = \emptyset$ whenever $i \neq j$ and $\langle x, y \rangle = 0$ in $\Delta(\lambda)$ whenever $x \in V(\lambda, i)$, $y \in V(\lambda, j)$ where $i \neq j$.

The previous equation show that $\det G(\lambda) \neq 0$ if and only if $\det M(\lambda, i) \neq 0$ for each $i \in I$ such that $\lambda \in \Lambda_i$, then the following fact is straightforward.

Theorem 4.1. The algebra A is semi-simple if and only if the algebra $e_i A e_i$ is semi-simple for each i.

Proof. It comes directly from (5) and from Theorem 2.2.

Lemma 4.2. Let $\lambda \in \Lambda^0$. The head of the module $\Delta(\lambda)$, denoted by $L(\lambda)$, satisfies the relation

\[\dim L(\lambda) = \sum_{i \in I_\lambda} \dim V(\lambda, i), \]

where $\overline{V}(\lambda, i)$ is the head of the $e_i A e_i$-module $V(\lambda, i)$. We put $\dim \overline{V}(\lambda, i) = 0$ if λ is not contained in Λ^0_i.

Proof. This follows from the fact that $\dim L(\lambda) = \text{rank}(G(\lambda))$ as the algebra is over a field and $\lambda \in \Lambda^0$ and by using (5).

Theorem 4.3. Let $\lambda \in \Lambda$, then

\[\text{Rad}(\Delta(\lambda)) \cong \bigoplus_{i \in I_\lambda} \text{Rad}(V(\lambda, i)) \]

as a vector space and

\[\text{Rad}(\Delta(\lambda)) \cong \sum_{i \in I_\lambda} \text{Rad}(V(\lambda, i)) \]

as an A-module.
Proof. First part comes directly from the fact that they have the same dimension:

$$\dim \text{Rad}(\Delta(\lambda)) = \dim \Delta(\lambda) - \dim L(\lambda),$$

$$= \sum_{i \in I} \dim V(\lambda, i) - \text{rank } \left(\bigoplus_{i \in I_\lambda} M(\lambda, i) \right)$$

$$= \sum_{i \in I_\lambda} \left(\dim V(\lambda, i) - \text{rank } M(\lambda, i) \right),$$

$$= \sum_{i \in I_\lambda} \dim \text{Rad}(V(\lambda, i)).$$

Note that $V(\lambda, i) = \{0\}$ if i is not in I_λ.

Next part is coming from the fact that the basis B of the module $\Delta(\lambda)$ equals $\bigsqcup_{i \in I_\lambda} B_i$ and $B_i = \{c_s^\lambda \mid s \in T(\lambda, i)\}$ is a basis the module $V(\lambda, i)$, also $\langle c_s^\lambda, c_t^\mu \rangle = 0$ whenever $s \in T(\lambda, i)$ and $t \in T(\lambda, j)$ such that $i \neq j$. Let $x \in \text{Rad}(V(\lambda, i))$ for some $i \in I_\lambda$, so $\langle c_s^\lambda, x \rangle = 0$ for all $s \in T(\lambda, i)$. Moreover, it is clear that $\langle c_t^\mu, x \rangle = 0$ for all $t \in T(\lambda, j)$ where $i \neq j$, then $x \in \text{Rad}(\Delta(\lambda))$. Thus

$$\sum_{i \in I_\lambda} \text{Rad}(V(\lambda, i)) \subseteq \text{Rad}(\Delta(\lambda)), $$

but both of them have the same dimension thus they are identical.

Corollary 4.4. Let $\lambda \in \Lambda^0$, then

$$L(\lambda) \cong \sum_{i \in I_\lambda} V(\lambda, i),$$

as an A-module.

Proof. As $V(\lambda, i) \cap V(\lambda, j) = \{0\}$ whenever $i \neq j$, so

$$L(\lambda) = \sum_{i \in I_\lambda} \frac{V(\lambda, i)}{\text{Rad}(V(\lambda, i))} \cong \sum_{i \in I_\lambda} V(\lambda, i).$$

5 The block decomposition of A

The aim of this section is to describe the blocks of the algebra A over a field \mathbb{F} by studying the homomorphisms between cell modules of A.

We say $\lambda \in \Lambda$ and $\mu \in \Lambda^0$ are cell-linked if $d_{\lambda\mu} \neq 0$. A cell-block of A is an equivalence class of the equivalence relation on Λ generated by this cell-linkage. From Theorem 2.2 each block of A is an intersection of a cell-block with Λ^0, see [1]. Thus, if there a non-zero homomorphism between $\Delta(\lambda)$ and $\Delta(\mu)$ where $\lambda, \mu \in \Lambda^0$, then they belong to the same block.

Let $\theta : \Delta(\lambda) \to \Delta(\mu)$ be a homomorphism defined by $c_s^\lambda \mapsto \sum_{u \in T(\mu, i)} \alpha_u c_u^\mu$. Now if $s \in T(\lambda, i)$ for some $i \in I$, then $u \in T(\mu, i)$ since $\theta(c_s^\lambda) = \theta(c_t^\lambda) = \sum_{u \in T(\mu, i)} \alpha_u c_u^\mu$, so

$$\theta(c_s^\lambda) = \sum_{u \in T(\mu, i)} \alpha_u c_u^\mu.$$
Hence the map θ can be restricted to define a homomorphism

$$\theta \downarrow_{e_iA_e_i}: V(\lambda, i) \to V(\mu, i)$$

Now if $\theta \neq 0$, then there is c_δ^i such that $\theta(c_\delta^i) \neq 0$. Assume that $s \in T(\lambda, i)$ for some i, then $\theta \downarrow_{e_iA_e_i} \neq 0$, which means that both the sets $T(\lambda, i), T(\mu, i)$ don’t equal the empty set.

Let $\lambda, \mu \in \Lambda_i$ for some i, and $\tau: V(\lambda, i) \to V(\mu, i)$ be a homomorphism $e_iA_e_i$-modules. By extending the map τ, we obtain a homomorphism $\tau: \Delta(\lambda) \to \Delta(\mu)$. Thus

$$\text{Hom}_A(\Delta(\lambda), \Delta(\mu)) = \{0\}$$

if and only if

$$\text{Hom}_{e_iA_e_i}(V(\lambda, i), V(\mu, i)) = \{0\}$$

for each $i \in I$. From this fact, we obtain the next theorem.

Theorem 5.1. Let $\Lambda = \Lambda^0$. Two weights λ and μ in Λ are in the same block of A if and only if there exist ν_0, \ldots, ν_r in Λ such that all the following hold:

1. λ and ν_0 are in the same cell-block of $e_iA_e_i$ for some $i \in I$.
2. For each $j = 0, \ldots, r - 1$, ν_j and ν_{j+1} are in the same cell-block of $e_iA_e_i$ for some $i \in I$.
3. μ and ν_r are in the same cell-block of $e_iA_e_i$ for some $i \in I$.

6 Examples

In this section, we use some simple example to illustrate the facts that have been showed in the previous sections.

Let $A = M_{n \times n}(\mathbb{F})$ be an $n \times n$ matrix algebra over \mathbb{F}. This algebra is cellular with indexing set $\Lambda = \{n\}$ and $I = T(n) = \{1, \ldots, n\}$. For each $i, j \in T(n)$, we take $c_{ij}^n = E_{ij}$ where E_{ij} is the matrix with 1 at the (i, j)-entry and 0 elsewhere. As we have $1_A = \sum_{i \in I} E_{ii}$ and the elements E_{ii} satisfy all the assumptions in 3.1, thus we can apply our results from the previous sections. Note that $E_{ii}Ae_{ii}$ is isomorphic to \mathbb{F} for each i, so A is semi-simple see Theorem 4.1.

For the second example, let A be the algebra which is given by the quiver

$$1 \xleftrightarrow{a_{12}} 2 \xleftrightarrow{a_{21}}$$

with the relation $a_{12}a_{21}a_{12} = a_{21}a_{12}a_{21} = 0$. The algebra is spanned by the elements

$$e_1, e_2, a_{12}, a_{21}, a_{12}a_{21}, a_{21}a_{12},$$

where e_i is the path of length zero on the vertex i. As left module A is isomorphic to

$$\mathbb{F}\langle e_1, a_{21}, a_{12}a_{21} \rangle \oplus \mathbb{F}\langle e_2, a_{12}, a_{21}a_{12} \rangle.$$
The algebra A is a cellular algebra with anti-automorphism defined by $a_{ij}^{*} = a_{ji}$ and $\Lambda = \{\lambda_0, \lambda_1, \lambda_2\}$ where $\lambda_0 > \lambda_1 > \lambda_2$ and

$$T(\lambda_0) = \{1\}, \quad T(\lambda_1) = \{1, 2\}, \quad T(\lambda_2) = \{2\}.$$

We define

$$c_{11}^{\lambda_0} = a_{12}a_{21}, \quad \left(\begin{array}{cc} c_{11}^{\lambda_1} & c_{12}^{\lambda_1} \\ c_{21}^{\lambda_2} & c_{22}^{\lambda_2} \end{array} \right) = \left(\begin{array}{cc} e_1 & a_{12} \\ a_{21} & a_{22} \end{array} \right), \quad c_{22}^{\lambda_2} = e_2.$$

The set $C = \{c_{st}^{\lambda} \mid s, t \in T(\lambda) \text{ for some } \lambda \in \Lambda\}$ is a cellular basis of A. Note that λ_0 is not in Λ^0 although $\Delta(\lambda_0)$ is simple.

The identity 1_A equals $e_1 + e_2$ and this decomposition satisfies all the conditions in Assumption 3.3. Also we have

$$e_1 A e_1 = \mathbb{F}\langle e_1, a_{12}a_{21} \rangle \quad \Lambda_1 = \{\lambda_0, \lambda_1\},$$
$$e_2 A e_2 = \mathbb{F}\langle e_2, a_{21}a_{12} \rangle \quad \Lambda_2 = \{\lambda_1, \lambda_2\}.$$

Note that $J = \mathbb{F}\langle a_{12}a_{21} \rangle$ is a nilpotent ideal of $e_1 A e_1$ and $J' = \mathbb{F}\langle a_{21}a_{12} \rangle$ is a nilpotent ideal of $e_2 A e_2$, so A is not semi-simple, from Theorem 1.1. Let $B = \{e_1, a_{21}\}$ be a basis of the module $\Delta(\lambda_1)$, so $V(\lambda_1, 1) = \mathbb{F}\langle e_1 \rangle$ and $V(\lambda_1, 2) = \mathbb{F}\langle a_{21} \rangle$. Also we have $V(\lambda_2, 1) = \{0\}$ and $V(\lambda_2, 2) = \mathbb{F}\langle e_2 \rangle$. It is easy to show that $V(\lambda_2, 2), V(\lambda_1, 2)$ are isomorphic as $e_2 A e_2$, so they are cell-linked. From Theorem 5.1 the modules $\Delta(\lambda_1)$ and $\Delta(\lambda_2)$ are in the same block of A. Moreover,

$$\text{Rad}(\Delta(\lambda_1)) = \text{Rad}(\mathbb{F}\langle e_1, a_{21} \rangle) \cong \text{Rad}(V(\lambda_1, 1) + V(\lambda_1, 2))$$
$$= V(\lambda_1, 2) \cong V(\lambda_2, 2) = \Delta(\lambda_2).$$

6.1 The multi-colour partition algebra

For $n \in \mathbb{N}$, the symbol \mathcal{P}_n denotes the set of all partitions of the set $\underline{n} \cup \underline{n'}$, where $\underline{n} = \{1, \ldots, n\}$ and $\underline{n'} = \{1', \ldots, n'\}$.

Each individual set partition can be represented by a graph, as it is described in \cite{5}. Any diagrams are regarded as the same diagram if they representing the same partition.

Now the composition $\beta \circ \alpha$ in \mathcal{P}_n, where $\alpha, \beta \in \mathcal{P}_n$, is the partition obtained by placing α above β, identifying the bottom vertices of α with the top vertices of β, and ignoring any connected components that are isolated from boundaries. This product on \mathcal{P}_n is associative and well-defined up to equivalence.

A (n_1, n_2)-partition diagram for any $n_1, n_2 \in \mathbb{N}^+$ is a diagram representing a set partition of the set $n_1 \cup n'_2$ in the obvious way.

The product on \mathcal{P}_n can be generalised to define a product of (n, m)-partition diagrams when it is defined. For example, see the following figure.

![Partition Diagrams](attachment.png)

Let n, m be positive integers, c_0, \ldots, c_{m-1} be different colours where none of them is white, and $\delta_0, \ldots, \delta_{m-1}$ be scalars corresponding to these colours.

Define the set $\Phi^{n,m}$ to be

$$\{(A_0, \ldots, A_{m-1}) \mid \{A_0, \ldots, A_{m-1}\} \in \mathcal{P}_n\}.$$
Let \((A_0, \ldots, A_{m-1}) \in \Phi^{n,m}\) (note that some of these subsets can be an empty set). Define \(\mathcal{P}_{A_0,\ldots,A_{m-1}}\) to be the set \(\prod_{i=0}^{m-1} \mathcal{P}_{A_i}\), where \(\mathcal{P}_{A_i}\) is the set of all partitions of \(A_i\), and

\[
\mathcal{P}_{n,m} := \bigcup_{(A_0, \ldots, A_{m-1}) \in \Phi^{n,m}} \mathcal{P}_{A_0,\ldots,A_{m-1}}.
\]

The element \(d = (d_0, \ldots, d_{m-1}) \in \prod_{i=0}^{m-1} \mathcal{P}_{A_i}\) can be represented by the same diagram of the partition \(\cup_{i=0}^{m-1} d_i \in \mathcal{P}_n\) after colouring it as follows: we use the colour \(c_i\) to draw all the edges and the nodes in the partition \(d_i\).

A diagram represents an element in \(\mathcal{P}_{n,m}\) is not unique. We say two diagrams are equivalent if they represent the same tuple of partitions. The term multi-colour partition diagram will be used to mean an equivalence class of a given diagram. For example, the following diagrams

![Diagrams](image)

are equivalent.

We define the following sets for each element \(d \in \prod \mathcal{P}_{A_i}\):

\[
\text{top}(d_i) = A_i \cap n, \quad \text{bot}(d_i) = A_i \cap n', \quad \text{top}(d) = (\text{top}(d_0), \ldots, \text{top}(d_{m-1})), \quad \text{bot}(d) = (\text{bot}(d_0), \ldots, \text{bot}(d_{m-1})).
\]

Let \(\mathbb{F}_{n,m}(\delta_0, \ldots, \delta_{m-1})\) be \(\mathbb{F}\)-vector space with the basis \(\mathcal{P}_{n,m}\), as it is defined in [3], and with the composition:

\[
(\alpha_i)(\beta_i) = \begin{cases}
\prod_{i=0}^{m-1} \delta_i(\beta_j \circ \alpha_j) & \text{if } \text{bot}(\alpha) = \text{top}(\beta), \\
0 & \text{otherwise},
\end{cases}
\]

where \(\delta_i \in \mathbb{F}\), \(\alpha, \beta \in \mathcal{P}_{n,m}\), \(c_i\) is the number of removed connected components from the middle row when computing the product \(\beta_i \circ \alpha_i\) for each \(i = 0, \ldots, m-1\) and \(\circ\) is the normal composition of partition diagrams.

The vector space \(\mathbb{F}_{n,m}(\delta_0, \ldots, \delta_{m-1})\) is an associative algebra, called the **multi-colour partition algebra**, with identity:

\[
1_{\mathbb{F}_{n,m}} = \sum_{(A_0, \ldots, A_{m-1}) \in \Xi^{n,m}} 1_{(A_0, \ldots, A_{m-1})} := \sum_{(A_0, \ldots, A_{m-1}) \in \Xi^{n,m}} (1_{A_0}, \ldots, 1_{A_{m-1}}),
\]

where \(\Xi^{n,m} := \{(A_0, \ldots, A_{m-1}) \mid \cup_{i=0}^{m-1} A_i = n, A_i \cap A_j = \emptyset \forall i \neq j\}\), \(1_{A_i}\) is the partition of the set \(A_i \cup A_i'\) where any node \(j\) is only connected with the node \(j'\) for all \(j \in A_i\) and \(A_i' = \{j' \mid j \in A_i\}\), for all \(0 \leq i \leq m - 1\). This means the identity is the summation of all the different multi-colour partitions that their diagrams connect \(i\) only to \(i'\) with any colour for each \(1 \leq i \leq n\).

The diagrams of shape \(id \in \mathfrak{S}_n\) are orthogonal idempotents, since

\[
1_{(A_0, \ldots, A_{m-1})}1_{(B_0, \ldots, B_{m-1})} = \begin{cases}
0 & \text{if } (A_i) \neq (B_i), \\
1_{(A_0, \ldots, A_{m-1})} & \text{if } (A_i) = (B_i),
\end{cases}
\]

for all \((A_i), (B_i) \in \Xi^{n,m}\). Thus we have a decomposition of the identity as a sum of orthogonal idempotents since

\[
1_{\mathbb{F}_{n,m}} = \sum_{(A_i) \in \Xi^{n,m}} 1_{(A_0, \ldots, A_{m-1})}.
\]

As it have been showed in
the algebra $\mathbb{P}_{n,m}(\delta_0, \ldots, \delta_{m-1})$ is cellular and the last decomposition satisfies all the conditions in Assumption 3.1.

Let $(A_i) \in \Xi^{n,m}$, then

$$1_{(A_i)} \mathbb{P}_{n,m}(\delta_0, \ldots, \delta_{m-1}) 1_{(A_i)} \cong \mathbb{P}|A_0| (\delta_0) \otimes \mathbb{F} \cdots \otimes \mathbb{F} \mathbb{P}|A_{m-1}| (\delta_{m-1}),$$

where $\mathbb{P}|A_i| (\delta_i)$ is the normal partition algebra and $|A_i|$ is the cardinality of A_i, for the proof see Chapter 2 in [3].

Theorem 6.1. The algebra $\mathbb{P}_{n,m}(\delta_0, \ldots, \delta_{m-1})$ is semisimple over \mathbb{C} for each integers $n \geq 0$ and $m \geq 1$ if and only if none of the parameters δ_i is a a natural number less than $2n$.

Proof. As the algebra $\mathbb{P}_n(\delta)$ is semi-simple over \mathbb{C} whenever δ is not an integer in the range $[0, 2n-1]$, see Corollary 10.3 in [7], we obtain this theorem. \qed

References

[1] J. Graham and G. Lehrer, *Cellular algebras*. Inventiones Mathematicae, 123(1) : 1-34, 1996.

[2] U. Grimm and P. Martin, *The bubble algebra: structure of a two-colour Temperley-Lieb Algebra*, J. of Physics, 36(42) : 10551−10571, 2003.

[3] M. Hmaida, *Representation theory of algebras related to the bubble algebra*, PhD thesis, The university of Leeds, 2016.

[4] M. Jegan, *Homomorphisms between bubble algebra modules*, PhD thesis, City university London, 2013.

[5] P. Martin, *The structure of the partition algebras*, J. Algebra, 183(2) : 319 − 358, 1996.

[6] A. Mathas, *Iwahori–Hecke algebras and Schur algebras of the symmetric group*, American Mathematical Society, 1999.

[7] P. Martin and H. Saleur, *On an algebraic approach to higher dimensional statistical mechanics*, Communications in Mathematical Physics, 158(1) : 155 − 190, 1993.

[8] K. Wada, *A cellular algebra with certain idempotent decomposition*, arXiv preprint arXiv:0805.1147, 2008.