AMALGAMATION OF RINGS DEFINED BY BEZOUT-LIKE CONDITIONS

MOHAMMED KABBOUR AND NAJIB MAHDOU

Abstract. Let \(f : A \rightarrow B \) be a ring homomorphism and let \(J \) be an ideal of \(B \). In this paper, we investigate the transfer of notions elementary divisor ring, Hermite ring and Bézout ring to the amalgamation \(A \bowtie^f J \). We provide necessary and sufficient conditions for \(A \bowtie^f J \) to be an elementary divisor ring where \(A \) and \(B \) are integral domains. In this case it is shown that \(A \bowtie^f J \) is an Hermite ring if and only it is a Bézout ring. In particular, we study the transfer of the previous notions to the amalgamated duplication of a ring \(A \) along an \(A \)-submodule \(E \) of \(Q(A) \) such that \(E^2 \subseteq E \).

1. Introduction

All rings considered in this paper are assumed to be commutative, and have identity element and all modules are unitary.

A ring \(R \) is called an elementary divisor ring (resp. Hermite ring) if for every matrix \(M \) over \(R \) there exist non singular matrices \(P, Q \) such that \(PMQ \) (resp. \(MQ \)) is a diagonal matrix (resp. triangular matrix). It proved in [7] that a ring \(R \) is an Hermite ring if and only if for all \(a, b \in R \), there exist \(a_1, b_1, d \in R \) such that \(a = a_1 d \), \(b = b_1 d \), and \(Ra_1 + Rb_1 = R \). A ring is a Bézout ring if every finitely generated ideal is principal. It is clear that every elementary divisor ring is an Hermite ring, and that every Hermite ring is a Bézout ring. Following Kaplansky [10] a ring \(R \) is said to be a valuation ring if for any two elements in \(R \), one divides the other. Kaplansky proved that any valuation ring is an elementary divisor ring.

Let \(A \) and \(B \) be rings, \(J \) an ideal of \(B \) and let \(f : A \rightarrow B \) be a ring homomorphism. In [4] the amalgamation of \(A \) with \(B \) along \(J \) with respect to \(f \) is the sub-ring of \(A \times B \) defined by:

\[
A \bowtie^f J = \{(a, f(a) + j) \mid a \in A, j \in J\}.
\]

This construction is a generalization of the amalgamated duplication of a ring along an ideal introduced and studied in [5], [2] and in [6]. Moreover, several classical construction such as \(A + xK[x] \) and \(A + xK[[x]] \) can be

2000 Mathematics Subject Classification. 13D05, 13D02.

Key words and phrases. Elementary divisor ring, Hermite ring, Bézout ring and amalgamation of rings.
studied as particular case of the amalgamation.

We denote $Q(A)$ the total ring of quotients of A. Let E be an A–submodule of $Q(A)$ such that $E^2 \subseteq E$, $A + E$ is a sub-ring of $Q(A)$ and E is an ideal of $A + E$. The amalgamated duplication of A along E:

$$A \bowtie E = \{(a, a + e) ; a \in A, e \in E\}$$

is also a particular case of the amalgamation of A with $A + E$ along E with to respect f, where $f : A \hookrightarrow A + E$ is the inclusion map. In fact, the amalgamated duplication of A along E can be studied in the frame of amalgamation construction. Our aim in this paper is to give a characterization for $A \bowtie^f J$ to be an elementary divisor ring, an Hermite ring and a Bézout ring.

2. Main Results

The set of all $n \times n$ matrices with entries from a ring R will be denoted by $\mathcal{M}_n(R)$. We will let $\mathcal{U}_n(R)$ denote the units in $\mathcal{M}_n(R)$. Let A and B be rings, for every matrix $M = ((a_{i,j}, b_{i,j}))_{1 \leq i,j \leq n} \in \mathcal{M}_n(A \times B)$ we shall use the notation $M_a = (a_{i,j})_{1 \leq i,j \leq n}$, $M_b = (b_{i,j})_{1 \leq i,j \leq n}$ and $M = M_a \times M_b$. Let $M, N \in \mathcal{M}_n(A \times B)$, it is easy to see that the product MN of M and N is giving by $MN = (M_aN_a) \times (M_bN_b)$.

The following lemma will be useful to provide us many statements in this paper.

Lemma 2.1. Let A and B a pair of integral domains, $f : A \rightarrow B$ a ring homomorphism and let J be a proper ideal of B.

1. If $A \bowtie^f J$ is a Bézout ring then $f(A) \cap J = 0$.
2. If $A \bowtie^f J$ is a Bézout ring and f is not injective then $J = 0$.

Proof. (1) Suppose the statement is false i.e $f(A) \cap J \neq 0$, and choose an element $a \in A$ such that $0 \neq f(a) \in J$. Then $(0, f(a))$ is an element of $A \bowtie^f J$. Since $A \bowtie^f J$ is a Bézout ring the ideal generated by $(0, f(a))$ and $(a, f(a))$ is principal. Hence, there exists $(d, f(d) + j) \in A \bowtie^f J$ such that

$$(a, f(a)) \left(A \bowtie^f J \right) + (0, f(a)) \left(A \bowtie^f J \right) = (d, f(d) + j) \left(A \bowtie^f J \right).$$

So, there exist $(b, f(b) + x), (c, f(c) + y), (\alpha, f(\alpha) + s)$ and $(\beta, f(\beta) + t)$ in $A \bowtie^f J$ such that

\[
\begin{cases}
(0, f(a)) = (d, f(d) + j)(b, f(b) + x) \\
(a, f(a)) = (d, f(d) + j)(c, f(c) + y) \\
(d, f(d) + j) = (0, f(a))(\alpha, f(\alpha) + s) + (a, f(a))(\beta, f(\beta) + t).
\end{cases}
\]
It follows that \(d \neq 0 \) since \(a = cd \) and \(f(a) \neq 0 \). Also \(b = 0 \) since \(bd = 0 \) and \(A \) is an integral domain. From the previous equalities we deduce that \(f(a) = (f(d)+j)x = (f(d)+j)(f(c)+y) \) and \(f(d)+j = f(a)(f(\alpha)+f(\beta)+s+t) \).

Multiplying the above equality by \(x \), we get that \(1 = x(f(\alpha)+f(\beta)+s+t) \) since \(B \) is an integral domain. We conclude that \(x \) is a unit, but \(x \in J \) hence \(J = B \) which is absurd. We have the desired result.

(2) Assume that \(J \neq 0 \) and let \(0 \neq u \in J \). Since \(f \) is non injective there exists \(0 \neq a \in \ker f \). From the assumption we can write

\[
(a, u) \left(A \cong^f J \right) + (0, u) \left(A \cong^f J \right) = (d, f(d) + j) \left(A \cong^f J \right)
\]

for some \((d, f(d) + j) \in A \cong^f J \). With similar proof as in the statement (1), we get that \(J = B \). This completes the proof of Lemma 2.4. \(\square \)

Lemma 2.2. The following assertions holds:

(1) Let \(A \) and \(B \) be rings. Then \(A \times B \) is an elementary divisor ring if and only if so \(A \) and \(B \).

(2) Let \(f : A \rightarrow B \) be a ring homomorphism and let \(J \) be an ideal of \(B \). If \(A \cong^f J \) is an elementary divisor ring then so is \(A \) and \(f(A) + J \).

Proof. (1) We begin by showing that if \(M \in \mathcal{M}_n(A \times B) \) then \(M \) is invertible if and only if so \(M_a \) and \(M_b \). We put \(M = ((a_{i,j}, b_{i,j}))_{1 \leq i,j \leq n} \). The determinant of \(M \) is giving by

\[
\det M = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^{n} (a_{i,\sigma(i)}, b_{i,\sigma(i)})
\]

where \(S_n \) denotes the set of all permutations on \(n \) letters and \(\varepsilon(\sigma) \) denotes the sign of \(\sigma \), for every \(\sigma \in S_n \). Thus \(\det M = (\det M_a, \det M_b) \). We say that \(M \) is invertible if and only if \(\det M \) is a unit. Then we have the desired result.

Assume that \(A \times B \) is an elementary divisor ring. Let \(U \in \mathcal{M}_n(A) \) then \(U \times 0 \) is equivalent to a diagonal matrix \(D \) with entries from \(A \times B \). There is some \(P, Q \in GL_n(A \times B) \) such that \(P(U \times 0)Q = D \). It follows that \(P_aUQ_a = D_a \) and so \(A \) is an elementary divisor ring. By the same way we get that \(B \) is an elementary divisor ring.

Conversely, assume that \(A \) and \(B \) are elementary divisor rings and let \(M \in \mathcal{M}_n(A \times B) \). Then there exist two invertible matrices \(P_1 \) and \(Q_1 \) (resp., \(P_2 \) and \(Q_2 \)) and a diagonal matrix \(D \) (resp., \(\Delta \)) with entries from \(A \) (resp., \(B \)) such that \(P_1M_aQ_1 = D \) (resp., \(P_2M_bQ_2 = \Delta \)). It follows that

\[
(P_1 \times P_2)M(Q_1 \times Q_2) = (P_1M_aQ_1) \times (P_2M_bQ_2) = D \times \Delta,
\]

which is a diagonal matrix. From the previous part of the proof \(P_1 \times P_2, Q_1 \times Q_2 \in GL_n(A \times B) \). This completes the proof of (1).

(2) Let \(U = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(A) \) and let \(M \) be the matrix defined by \(M = ((a_{i,j}, f(a_{i,j})))_{1 \leq i,j \leq n} \) with entries from \(A \cong^f J \). We have the equality
Remark 2.3. Let \(f : A \to B \) be a ring homomorphism, \(J \) an ideal of \(B \) and let \(M \in \mathcal{M}_n(A \bowtie^f J) \). Then \(M \) is invertible if and only if so is \(M_a \) and \(M_b \).

Proof. It is sufficient to prove that if \(M_a \in GL_n(A) \) and \(M_b \in GL_n(B) \) then \(M_a^{-1} \times M_b^{-1} \in GL_n(A \bowtie^f J) \). Let \((a, f(a) + j) \in A \bowtie^f J \) which is a unit in the ring \(A \times B \). We put \(x = -f(a^{-1})(f(a) + j)^{-1}j \). Since \(J \) is an ideal of \(B \), \(x \in J \). It is easy to get the following equality

\[
(a^{-1}, f(a^{-1}) + x)(a, f(a) + j) = (1, 1).
\]

Thus \((a, f(a) + j)^{-1} \in A \bowtie^f J \). We say that \(\det M \) is an element of \(A \bowtie^f J \) which is a unit in \(A \times B \), therefore \((\det M)^{-1} \in A \bowtie^f J \). Consequently, \(M^{-1} \in \mathcal{M}_n(A \bowtie^f J) \).

Theorem 2.4. Let \(A \) and \(B \) a pair of integral domains, \(f : A \to B \) a ring homomorphism and let \(J \) be an ideal of \(B \).

1. Assume that \(f \) is injective.
 - If \(J = B \) then \(A \bowtie^f J \) is an elementary divisor ring if and only if so is \(A \) and \(B \).
 - If \(J \neq B \) then \(A \bowtie^f J \) is an elementary divisor ring if and only if so is \(f(A) + J \) and \(f(A) \cap J = 0 \).

2. Assume that \(f \) is not injective. Then \(A \bowtie^f J \) is an elementary divisor ring if and only if one of the following conditions holds:
 - \(J = 0 \) and \(A \) is an elementary divisor ring.
 - \(J = B \) and \((A, B) \) is a pair of elementary divisor rings.

Proof. (1) Two cases will be considered.

Case 1: If \(J = B \) then \(A \bowtie^f J = A \times B \). By applying condition (1) of Lemma 2.2, we get that \(A \bowtie^f J \) is an elementary divisor ring if and only if so is \(A \) and \(B \).

Case 2: If \(J \neq B \) and \(A \bowtie^f J \) is elementary divisor ring then \(f(A) \cap J = 0 \) by Lemma 2.2 since every elementary divisor ring is a Bézout ring. On the other hand \(f(A) + J \) is an elementary divisor ring by Lemma 2.2. Conversely, assume that \(f(A) + J \) is an elementary divisor ring and \(f(A) \cap J = 0 \). We claim that the natural projection \(p_B : A \bowtie^f J \to f(A) + J \) is a ring isomorphism. Indeed,

\[
f(a) + j = 0 \implies f(a) = j = 0 \implies a = 0
\]
The conclusion is now straightforward.

(2) Assume that \(A \bowtie J \) is an elementary divisor ring. By using Lemma 2.1 we get that \(J = 0 \) or \(J = B \). In the first case \(A \bowtie J \simeq A \), then \(A \) is an elementary divisor ring. In the second case \(A \bowtie J = A \times B \). Hence \(A \) and \(B \) are elementary divisor rings by Lemma 2.2. The converse of (2) is an immediate consequence of Lemma 2.2. \(\square \)

Theorem 2.4 enriches the literature with a new example of a non valuation elementary divisor ring.

Let \(f : A \longrightarrow B \) be a ring homomorphism and let \(J \) be an ideal of \(B \). It is easy to see that: if \(A \bowtie f J \) is a valuation ring then so is \(A \).

Example 2.5. Let \(A \) be an elementary divisor domain which is not a valuation ring (for instance \(A = \mathbb{Z} \)), and let \(K \) its field of fractions. Let \(K[[x]] \) denote the ring of formal power series over \(K \) in a indeterminate \(x \). By [9], Example 1 p.161, \(A + (xK[[x]]) \) is an elementary divisor ring. We conclude that \(A \bowtie (xK[[x]]) \), where \(i \) is the inclusion map of \(A \) into \(K[[x]] \), is an elementary divisor ring. On the other hand \(A \bowtie i (xK[[x]]) \) is not a valuation ring. Thus \(\mathbb{Z} \bowtie i (x\mathbb{Q}[[x]]) \) is an elementary divisor ring which is not a valuation ring.

Corollary 2.6. Let \(A \) be an integral domain, \(K \) its quotient field and let \(E \) be a nonzero \(A \)-submodule of \(K \) such that \(E^2 \subseteq E \). Then \(A \bowtie E \) is an elementary divisor ring if and only if so is \(A \) and \(A \subseteq E \).

Proof. We first prove that: Any ring \(R' \) between an elementary divisor ring \(R \) and its total ring \(Q(R) \), is also an elementary divisor ring.

Let \(M = \left(\frac{a_{i,j}}{d} \right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(R') \), where \(a_{i,j} \in R \) for each \(1 \leq i,j \leq n \) and \(d \) is a nonzero divisor element of \(R \). There is some invertible matrices \(P \) and \(Q \) with entries from \(R \) such that \(P \left(a_{i,j} \right)_{1 \leq i,j \leq n} Q = \text{diag}(\lambda_1, ..., \lambda_n) \). Multiplying this equality by \(\frac{1}{d} \), we get that \(PMQ = \text{diag} \left(\frac{\lambda_1}{d}, ..., \frac{\lambda_n}{d} \right) \). Since \(PMQ \in \mathcal{M}_n(R') \) the result follows.

Now suppose that \(A \) is an elementary divisor ring and \(A \subseteq E \). We have \(A \bowtie E = A \times E \). From the previous part of the proof and condition (1) of Lemma 2.2, we get that \(A \bowtie E \) is an elementary divisor ring. Conversely, assume that \(A \bowtie E \) is an elementary divisor ring. We have \(A \bowtie E = A \bowtie i E \), where \(i : A \hookrightarrow A + E \) is the inclusion map. By using the condition (1) of Theorem 2.4 we obtain the following result:

- If \(E = A + E \) (i.e \(A \subseteq E \)) then \(A \) and \(A + E \) are elementary divisor rings.
- Otherwise \((A + E) \cap E = 0 \) and \(A + E \) is elementary divisor ring.
From the assumption \((A + E) \cap E \neq 0\) since \(E \subseteq A + E\). We conclude that \(A \subseteq E\) and \(A\) is an elementary divisor ring. \(\square\)

Example 2.7. Let \(A\) be an integral domain and let \(I\) be a nonzero ideal of \(A\). Then \(A \cong I\) is an elementary divisor ring if and only if so is \(A\) and \(I = A\).

Lemma 2.8. Let \(A\) and \(B\) be a pair of rings. Then:

1. \(A \times B\) is a Bézout ring if and only if so is \(A\) and \(B\).
2. \(A \times B\) is an Hermite ring if and only if so is \(A\) and \(B\).

Proof. (1) Suppose that \(A\) and \(B\) are Bézout rings and let \(I\) be a finitely generated ideal of \(A \times B\). There is some ideal \(I_1\) of \(A\) and \(I_2\) of \(B\) such that \(I = I_1 \times I_2\). If the subset \(\{(a_1, b_1), \ldots, (a_n, b_n)\}\) of \(A \times B\) generate \(I\) then \(I_1 = Aa_1 + \cdots + Aa_n\). Thus \(I_1\) is a principal ideal of \(A\). There exists \(a \in I_1\) such that \(I_1 = Aa\). By the same way, we get that there exists \(b \in I_2\) such that \(I_2 = Bb\). We deduce that \(I = (A \times B)(a, b)\). Conversely assume that \(A \times B\) is a Bézout ring. Let \(J_1\) be a finitely generated ideal of \(A\) and let \(J = J_1 \times 0\). Then \(J\) is also finitely generated ideal of \(A \times B\), we get that \(J\) is a principal ideal of \(A \times B\). Hence so is \(J_1\), therefore \(A\) is a Bézout ring. Also \(B\) is a Bézout ring since \(A \times B \simeq B \times A\). (2) Assume that \(A \times B\) is an Hermite ring. Let \(a, a' \in A\) then there exist \((a_1, b_1), (a'_1, b'_1), (d, \delta) \in A \times B\) such that

\[
\begin{align*}
(a, 0) &= (a_1, b_1)(d, \delta) \\
(a', 0) &= (a'_1, b'_1)(d, \delta) \\
A \times B &= (a_1, b_1)(A \times B) + (a'_1, b'_1)(A \times B).
\end{align*}
\]

Let \((\alpha, \beta), (\alpha', \beta') \in A \times B\) such that \((\alpha, \beta)(a_1, b_1)+(\alpha', \beta')(a'_1, b'_1) = (1, 1)\). It follows that \(a = a_1d, a' = a'_1d\) and \(\alpha a_1 + \beta a'_1 = 1\). We conclude that \(A\) and \(B\) is a pair of Hermite rings since \(A \times B \simeq B \times A\). The converse of the statement is obvious. \(\square\)

Theorem 2.9. Let \(A\) and \(B\) be a pair of integral domains, \(J\) an ideal of \(B\) and let \(f : A \to B\) be an injective ring homomorphism. Then the following properties are equivalent:

1. \(A \cong J\) is an Hermite ring.
2. \(A \cong J\) is a Bézout ring.
3. One of the following conditions holds:
 - \(J = B\), \(A\) and \(B\) are Bézout rings.
 - \(J \neq B\), \(f(A) \cap J = 0\) and \(f(A) + J\) is a Bézout ring.

Proof. (1) \(\Rightarrow\) (2): Clear.
(2) \(\Rightarrow\) (3): Assume that \(J \neq B\). By Lemma 2.1, \(f(A) \cap J = 0\). Then the natural projection \(p_B : A \cong J \to f(A) + J; (p_B(a, f(a) + j) = f(a) + j\) is
a ring isomorphism since \(f \) is injective. Therefore \(f(A) + J \) is a Bézout ring. If \(J = B \) then \(A \) and \(B \) are Bézout rings by the condition (1) of Lemma 2.8 since \(A \triangleleft \triangleleft J = A \times B \).

(3) \(\Rightarrow\) (1): If \(J = B \) then \(A \) and \(B \) are Bézout rings since every Bézout domain is an Hermite ring. Hence \(A \triangleleft \triangleleft J = A \times B \) is an Hermite ring.

Now we assume that \(J \neq B \). Then \(A \triangleleft \triangleleft f(J) \cong f(A) + J \) and so \(A \triangleleft \triangleleft J \) is a Bézout domain. This completes the proof of Theorem 2.9.

Example 2.10. Let \(A \) be a Bézout domain, \(K \) its quotient field, and let \(K[[x]] \) denote the ring of formal power series over \(K \) in an indeterminate \(x \). Then \(A \triangleleft \triangleleft (xK[[x]]) \), where \(i : A \hookrightarrow K[[x]] \) is the inclusion map, is an Hermite ring.

Proof. Let \(f = \sum_{n=0}^{\infty} a_n x^n, g = \sum_{n=0}^{\infty} b_n x^n \) be nonzero elements of \(R = A + (xK[[x]]) \), and let \(p \) (resp. \(q \)) denote the least integer such that \(a_p \neq 0 \) (resp., \(b_q \neq 0 \)). We can write \(f = a_p x^p (1 + x f_1) \) and \(g = b_q x^q (1 + x g_1) \), where \(f_1, g_1 \in K[[x]] \). Since \(1 + x f_1, 1 + x g_1 \) are units of \(R \),

\[
fR + gR = a_p x^p R + b_q x^q R.
\]

If \(p < q \) (resp., \(q < p \)) then \(fR + gR = a_p x^p R \) (resp., \(b_q x^q R \)). Suppose that \(p = q \) and write \(a_p = \frac{a}{d} \) and \(b_q = \frac{b}{d} \) for some nonzero elements \(a, b, d \) of \(A \) (where \(d = 1 \) if \(p = q = 0 \)). By the assumption there exist \(c, a', b' \in A \) such that \(a = a'c, b = b'c \) and \(a'A + b'A = A \). It is easy to get that \(fR + gR = \frac{c}{d} x^p R \). This completes the proof that \(A \triangleleft \triangleleft (xK[[x]]) \) is an Hermite ring.

Corollary 2.11. Let \(A \) be an integral domain, \(K \) its quotient field and let \(E \) be a nonzero \(A \)-submodule of \(K \) such that \(E^2 \subseteq E \). Then the following statements are equivalent:

1. \(A \triangleleft \triangleleft E \) is an Hermite ring.
2. \(A \triangleleft \triangleleft E \) is a Bézout ring.
3. \(A \) is a Bézout ring and \(A \subseteq E \).

Proof. (2) \(\Rightarrow\) (3): Let \(0 \neq \frac{a}{b} \in E \). Then \(0 \neq a \in A \cap E \) and so \(A \cap E \neq 0 \). By applying Theorem 2.9, we get that \(A + E = E \) and \((A, A + E) \) is a pair of Bézout rings. It follows that \(A \subseteq E \) and \(A \) is a Bézout ring.

(3) \(\Rightarrow\) (1): By applying Lemma 2.8 and the condition (3) of Theorem 2.9 it is sufficient to prove that every ring between a Bézout domain and its quotient field is also Bézout domain. Let \(R \) be a Bézout domain and let \(R' \)
be a ring such that \(R \subseteq R' \subseteq qf(R) \). Let \(\frac{a}{d}, \frac{b}{d} \in R' \) then we can write

\[
\begin{cases}
 a = a'c \\
 b = b'c \\
 \alpha a' + \beta b' = 1
\end{cases}
\]

for some elements \(a', b', c, \alpha, \beta \) in \(R \). Hence \(\frac{c}{d} = \frac{\alpha a}{d} + \frac{\beta b}{d} \) is an element of \(R' \). Thus \(\frac{c}{d} \in R' \) and \(R' \frac{a}{d} + R' \frac{b}{d} \subseteq R \frac{c}{d} \). On the other hand, we have:

\[
\frac{c}{d} \in R' \frac{a}{d} + R' \frac{b}{d} \subseteq R' \frac{a}{d} + R' \frac{b}{d}.
\]

It follows that \(R' \frac{a}{d} + R' \frac{b}{d} = R' \frac{c}{d} \). Finally, \(R' \) is a Bézout domain. \(\square \)

Example 2.12. Let \(A \) be an integral domain and let \(I \) be a nonzero ideal of \(A \). Then \(A \bowtie I \) is a Bézout ring if and only if so is \(A \) and \(I = A \).

Theorem 2.13. Let \(A \) and \(B \) be a pair of integral domains, \(J \) an ideal of \(B \) and let \(f : A \rightarrow B \) be a non injective ring homomorphism. Then the following statements are equivalent:

1. \(A \bowtie_f J \) is an Hermite ring.
2. \(A \bowtie_f J \) is a Bézout ring.
3. One of the following conditions holds:
 - \(J = B \), \(A \) and \(B \) are Bézout rings.
 - \(J = 0 \), and \(A \) is a Bézout ring.

Proof. (2) \(\Rightarrow \) (3): By applying condition (2) of Lemma 2.8 we get that \(J = 0 \) or \(J = B \). If \(J = 0 \) then \(A \bowtie_f J \asymp A \) otherwise \(A \bowtie_f J = A \times B \). By using Lemma 2.8 we have the desired implication.

(3) \(\Rightarrow \) (1): If \(J = 0 \) then \(A \bowtie_f J \asymp A \) and \(A \) is an Hermite ring (since \(A \) is an integral domain). If \(J = B \) then \(A \bowtie_f J = A \times B \) is an Hermite ring by condition (2) of Lemma 2.8. \(\square \)

References

1. W.C. Brown; *Matrices over commutative rings*, Pure and applied mathematics, 169 (1993).
2. M. D’Anna; *A construction of Gorenstein rings*, J. Algebra 306 (2006) 507-519.
3. M. D’Anna, C.A. Finacchiaro, and M. Fontana; *Amalgamated algebras along an ideal*, Commutative Algebra and Applications, Walter De Gruyter, (2009) 155 - 172.
4. M. D’Anna, C.A. Finacchiaro, and M. Fontana; *Properties of chains of prime ideals in amalgamated algebra along an ideal*, arxiv 1001.0472v1(2010).
5. M. D’Anna and M. Fontana; *An amalgamated duplication of a ring along an ideal: the basic properties*, J. Algebra Appl.6 (2007), 443-459.
6. M. D’Anna and M. Fontana; *An amalgamated duplication of a ring along a multiplicative-canonical ideal*, Arkiv Mat. 6 (2007), 241-252.
7. L. Gillman and M. Henriksen; *Some remarks about elementary divisor rings*, Trans. Amer. Math. Soc. 82 (1956) 362-365. MR 18.9.
8. S. Glaz; *Commutative coherent rings*, Springer-Verlag. Lecture Notes in Mathematics, 1371 (1989).
9. M. Henriksen; *Some remarks on elementary divisors rings II*, Michigan Math.J., 3 (1956) 159 - 163.
10. I. Kaplansky; *Elementary divisors and modules*, Proc. Amer. Math. Soc. 66 (1949) 464-491.
11. M.D. Larsen; W.J. Lewis, and T.S. Shores; *Elementary divisors rings and finitely presented modules*, American Mathematical society, volume 187 (1974) 231 - 248.
12. J.J. Rotman; *An introduction to homological algebra*, Academic Press, New York, (1979).
13. T.S. Shores; *Modules over semihereditary Bzout rings*, Proc. Amer. Math. Soc. volume 46 (1974) 211 - 213.

Mohammed Kabbour, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

E-mail address: mkabbour@gmail.com

Najib Mahdou, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.

E-mail address: mahdou@hotmail.com