Comparison of full-endoscopic and minimally invasive decompression for lumbar spinal stenosis in the setting of degenerative scoliosis and spondylolisthesis

Saqib Hasan, MD, Lynn B. McGrath Jr., MD, Rajeev D. Sen, MD, Jason K. Barber, MS, and Christoph P. Hofstetter, MD, PhD

Department of Neurological Surgery, University of Washington, Seattle, Washington

OBJECTIVE The management of lumbar spinal stenosis (LSS) with concurrent scoliosis and/or spondylolisthesis remains controversial. Full-endoscopic unilateral laminotomy for bilateral decompression (ULBD) facilitates neural decompression while preserving stabilizing osseoligamentous structures and may be uniquely suited for the treatment of LSS with concurrent mild to moderate degenerative deformity. The safety and efficacy of full-endoscopic versus minimally invasive surgery (MIS) ULBD in this patient population is studied here for the first time.

METHODS A retrospective analysis of prospectively collected data was conducted on 45 consecutive LSS patients with concurrent scoliosis (≥ 10° coronal Cobb angle) and/or spondylolisthesis (≥ 3 mm). Patient demographics, operative details, complications, and imaging characteristics were reviewed. Outcomes were quantified using back and leg visual analog scale (VAS) scores and the Oswestry Disability Index (ODI) at 2 weeks, 3 months, and 1 year.

RESULTS A total of 26 patients underwent full-endoscopic and 19 underwent MIS-ULBD with an average follow-up period of 12 months. The endoscopic cohort experienced a significantly shorter hospital length of stay (p = 0.014) and fewer adverse events (p = 0.010). Both cohorts experienced significant improvements in VAS and ODI scores at all time points (p < 0.001), but the endoscopic cohort demonstrated significantly better early ODI scores (p = 0.024).

CONCLUSIONS Endoscopic and MIS-ULBD result in similar functional outcomes for LSS with mild to moderate deformity, while the endoscopic approach demonstrates a favorable rate of complications. Further studies are required to better delineate the characteristics of spinal deformities amenable to this approach and the durability of functional results.

https://thejns.org/doi/abs/10.3171/2019.2.FOCUS195

KEYWORDS endoscopic spine surgery; stenosis; radiculopathy; minimally invasive spine surgery; MIS; scoliosis; unilateral laminotomy for bilateral decompression; ULBD

Lumbar spinal stenosis (LSS) represents the most common indication for spine surgery in patients older than 65 years, with its prevalence expected to rise 59% to 64 million elderly adults by the year 2025. While the treatment of patients with LSS without existing deformity or instability is primarily a decompressive procedure, there is a large subset of patients who have coexisting spondylolisthesis and/or degenerative deformity; the optimal treatment for these patients remains controversial.

The incidence and prevalence of degenerative scoliosis affecting adults has been reported variably, with curves greater than 10° present in more than 50% of elderly females with back pain and osteoporosis and a new onset of deformity observed in over 30% of elderly patients. A population-based study using the National (Nationwide) Inpatient Sample database found that 82.7% of patients with LSS with coexisting spondylolisthesis and 67.6% of patients with coexisting scoliosis underwent a fusion procedure, while only 26.2% of patients with LSS without instability underwent a fusion procedure.

Treatment options depend largely on patient factors and clinical presentation; patients with severe back pain and disability from significant sagittal or coronal imbalance are unlikely to benefit from a minimalist decompressive approach given the underlying structural problem. Patients whose symptoms are predominantly radiculopathy may be...
candidates for decompression-only procedures; however, even in this cohort, controversy remains, given early experiences with poor outcomes and curve progression following traditional open laminectomies.26,28

Minimally invasive decompressive techniques seek to minimize collateral damage and preserve the posterior elements with the purported advantage of preventing iatrogenic instability and curve progression associated with open techniques.3,22,52 While minimally invasive surgery using tubular-based unilateral laminotomy for bilateral decompression (MIS-ULBD) has been shown to be a clinically effective procedure in the treatment of a subset of LSS patients with degenerative scoliosis,23,37,38 there is a paucity of data on the effectiveness of the lumbar endoscopic ULBD (LE-ULBD) technique for this same cohort.

Endoscopic spine surgery represents the evolution of minimally invasive surgical access to spinal pathology. Multiple studies27,34,40,45,49,56 have demonstrated that endoscopic lumbar decompression in the setting of LSS provides equivalent outcomes to microsurgical or tubular techniques with shorter hospital stay and less collateral tissue injury.7,20,41,42 The purpose of this study was to evaluate and compare the clinical efficacy of LE-ULBD and MIS-ULBD decompression in patients with LSS and coexisting degenerative deformity.

Methods

Patient Selection

All participating patients provided written informed consent prior to undergoing the procedures as detailed. Collection of standard perioperative and postoperative outcome data are routinely performed as part of the University of Washington Spine Care Quality Initiative. Our prospectively collected database was retrospectively queried for ULBD performed with either a working channel endoscope (LE-ULBD) or an MIS technique using tubular retractors and the microscope (MIS-ULBD).71 Forty-five consecutive procedures were performed at the University of Washington between September 2014 and June 2016, with the majority treated in 2015. Among patients in the MIS cohort undergoing ULBD, 53% underwent traditional open laminectomy, 26% underwent LE-ULBD, and 21% underwent MIS-ULBD. Preoperative data were available for 87% of our entire cohort. There were 19 patients who underwent MIS-ULBD and 26 patients who underwent LE-ULBD. Preoperative demographic and clinical characteristics, listed in Table 1, demonstrated no significant differences between cohorts. Based on the American Society of Anesthesiologists (ASA) physical status classification system, 59% of patients across cohorts were categorized as having severe systemic disease (ASA class III). Prior to surgery, patients in both cohorts were classified as severely disabled as indicated by a mean ODI score of 50.6 ± 13.0.

The decision to treat each patient with MIS or endoscopic technique was primarily related to equipment availability rather than surgical preference. All patients in the MIS cohort underwent surgery between September 2014 and June 2016, with the majority treated in 2015. After endoscopy equipment was adopted at the University of Washington, the endoscopic technique was performed al-
most exclusively from June 2016 until the endpoint of the study in February 2017. One important exception to this was a tendency to perform the MIS technique in the case of 3-level decompressions, which were rare.

Patient operative data are listed in Table 1. The total number of operative levels was 75, with 32 operative levels in the MIS-ULBD cohort and 43 operative levels in the LE-ULBD cohort. Within the MIS-ULBD cohort, 42% of patients underwent 1-level surgery and 58% of patients underwent multilevel surgery. Within the LE-ULBD cohort, 46% of patients underwent 1-level surgery and 54% of patients underwent multilevel surgery. The majority of

TABLE 1. Patient demographics and preoperative clinical data

	Overall	MIS-ULBD	LE-ULBD	p Value
No. of patients	45	19	26	
Mean age, yrs (SD)	68.5 (10.3)	66.6 (8.0)	69.9 (11.6)	0.171
Sex				
Male	24 (53%)	12 (63%)	12 (46%)	0.366
Female	21 (47%)	7 (37%)	14 (54%)	
Mean BMI (SD)	30.1 (7.8)	28.3 (4.6)	31.4 (9.3)	0.368
ASA class				0.934
I	2 (5%)	0 (0%)	2 (8%)	
II	16 (36%)	8 (42%)	8 (32%)	
III	26 (59%)	11 (58%)	15 (60%)	
IV	0 (0%)	0 (0%)	0 (0%)	
Mean preop back VAS score (SD)	6.3 (2.7)	7.1 (2.2)	5.8 (2.9)	0.187
Mean preop leg VAS score (SD)	6.5 (2.3)	6.3 (2.4)	6.6 (2.3)	0.755
Mean preop ODI (SD)	50.6 (13.0)	46.6 (16.0)	52.8 (10.7)	0.125
No. of levels				
Mean (SD)	1.7 (0.8)	1.8 (0.9)	1.6 (0.7)	0.790
Single	20 (44%)	8 (42%)	12 (46%)	>0.99
Multiple	25 (56%)	11 (58%)	14 (54%)	
2	21 (84%)	8 (73%)	13 (93%)	0.434
3	2 (8%)	2 (18%)	0 (0%)	
4	2 (8%)	1 (9%)	1 (7%)	
Surgical level (multiple possible)				
T12–L1	1 (2%)	0 (0%)	1 (4%)	>0.99
L1–2	4 (9%)	1 (5%)	3 (12%)	0.627
L2–3	13 (29%)	6 (32%)	7 (27%)	0.751
L3–4	23 (51%)	11 (58%)	12 (46%)	0.550
L4–5	28 (62%)	13 (68%)	15 (58%)	0.543
L5–S1	6 (13%)	1 (5%)	5 (19%)	0.222
Pathology				
LSS only	36 (80%)	16 (84%)	20 (77%)	0.407
LSS + disc herniation	5 (11%)	3 (16%)	2 (8%)	
LSS + synovial cyst	2 (4%)	0 (0%)	2 (8%)	
LSS + foraminal stenosis	2 (4%)	0 (0%)	2 (8%)	
Presence of deformity				
Spondylolisthesis only	6 (13%)	2 (11%)	4 (15%)	0.158
Scoliosis only	16 (36%)	4 (21%)	12 (46%)	0.877
Scoliosis w/ spondylolisthesis	23 (51%)	13 (68%)	10 (38%)	
Mean PI-LL mismatch, ° (SD)	15.6 (11.5)	14.4 (9.4)	16.6 (13.3)	<0.001
Mean EBL, mL (SD)	17.3 (16.7)	30.0 (18.9)	3.1 (5.0)	<0.001
Mean length of stay, days (SD)	1.2 (1.1)	1.7 (1.2)	0.9 (0.8)	0.014

EBL = estimated blood loss.

Values are presented as the number of patients (%) unless stated otherwise. Boldface type indicates statistical significance by Mann-Whitney and Fisher’s exact test as appropriate.
patients in both groups were treated for central and lateral recess stenosis; 9 patients were treated for additional pathology including nonsequestered disc herniation (11%), synovial cyst (4%), and foraminal stenosis (4%). The most common surgical level was L4–5, with 62% of patients undergoing surgery at this level. Average estimated blood loss was significantly less in the MIS-ULBD cohort (0.9 ± 0.8 days) (p = 0.014). Average hospital length of stay was significantly greater in the MIS-ULBD cohort (1.7 ± 1.2 days) than in the LE-ULBD cohort (0.9 ± 0.6 days) (p < 0.001). Average hospital length of stay was significantly greater in the LE-ULBD cohort (1.7 ± 1.2 days) than in the MIS-ULBD cohort (0.9 ± 0.8 days) (p = 0.014).

With regard to presence of deformity, 13% of our cohort had spondylolisthesis with no coexisting scoliosis, 36% of our cohort had scoliosis with no coexisting spondylolisthesis, and 51% had the presence of both spondylolisthesis and scoliosis. There were no significant differences in presence or degree of deformity across cohorts. Preoperative radiographic data are listed in Tables 2 and 3. Patients with scoliosis presented with an average Cobb angle of 15.9° ± 7.6°, and 59% of patients demonstrated lateral listhesis (mean 6.1 ± 2.4 mm). Patients with spondylolisthesis presented with an average slip of 6.2 ± 2.8 mm. The average disc height was 9.2 ± 3.2 mm, and the average axial facet angle was 47.9° ± 15.5°. The average pelvic incidence–lumbar lordosis (PI-LL) mismatch for the entire cohort was 15.6° ± 11.5°.

Patient-reported outcomes at all follow-up intervals are reported in Tables 3 and 4. Patients in the total cohort experienced significant improvement in VAS back pain, VAS leg pain, and ODI when comparing preoperative values to all postoperative time points (p < 0.001, Fig. 1). When comparing outcomes between the MIS-ULBD and LE-ULBD, the endoscopic cohort demonstrated significantly better early ODI scores (p = 0.024); however, there were no significant differences at later time points. The percentage of patients reaching MCID for VAS leg pain in the MIS-ULBD and LE-ULBD groups was 82% and 95%, respectively (Table 5). The percentage of patients reaching MCID for ODI in the MID-ULBD group and LE-ULBD group was 86% for both groups. There was no significant difference in the percentage of patients reaching MCID for both outcome measures.

The number of total adverse events experienced can be found in Table 5. An adverse event was defined as any perioperative medical event (any medical event requiring medical consultation or delaying discharge), intraoperative complications such as incidental durotomy, infection, or any reoperation within the follow-up period. The total number of perioperative medical events for patients in the MIS-ULBD cohort was greater than those experienced in the LE-ULBD cohort (5 [26%] vs 2 [8%] events); however, this difference was not statistically significant. Perioperative medical complications included urinary retention (n = 4), syncope (n = 1), stroke (n = 1), and laboratory abnormalities requiring medical consultation (n = 1). Two patients (11%) in the MIS-ULBD group and 0 patients (0%) in the LE-ULBD group sustained an incidental durotomy (p = 0.173). There were no infections in either group.

Two patients requiring reoperation, with a total reoperation rate of 4%. The reoperation rate at 1 year for the MIS-ULBD cohort was 11% versus 0% in the LE-ULBD cohort, although this was not statistically significant (p = 0.173). All reoperations in the MIS-ULBD cohort occurred at an average time to reoperation of 6 months. All patients who required reoperation had recurrent leg symptoms at the index level and were treated with endoscopic transforaminal decompression. When looking at all adverse events, including all perioperative complications and

TABLE 2. Radiographic data by subgroup
Spondylolisthesis subgroup
Mean PI, ° (SD)
Overall 59.5 (12.2)
MIS-ULBD 58.0 (14.8)
LE-ULBD 60.6 (10.1)
p Value 0.373
Mean LL, ° (SD)
Overall 49.0 (10.1)
MIS-ULBD 51.0 (11.2)
LE-ULBD 46.9 (8.9)
p Value 0.306
Mean PI-LL mismatch, ° (SD)
Overall 13.6 (10.7)
MIS-ULBD 13.6 (11.3)
LE-ULBD 13.7 (10.6)
p Value 0.979
Mean disc height, mm (SD)
Overall 9.2 (3.2)
MIS-ULBD 9.2 (3.3)
LE-ULBD 9.3 (3.1)
p Value 0.594
Mean slip measurement, mm (SD)
Overall 6.2 (2.8)
MIS-ULBD 6.5 (3.4)
LE-ULBD 5.9 (2.1)
p Value 0.941
Mean axial facet angle, ° (SD)
Overall 47.9 (15.5)
MIS-ULBD 48.3 (12.8)
LE-ULBD 47.5 (18.6)
p Value 0.642
Scoliosis subgroup
Mean Cobb angle, ° (SD)
Overall 15.9 (7.6)
MIS-ULBD 15.6 (6.0)
LE-ULBD 16.1 (8.7)
p Value >0.99
Mean PI, ° (SD)
Overall 60.0 (12.3)
MIS-ULBD 62.5 (14.9)
LE-ULBD 58.5 (10.6)
p Value 0.674
Mean LL, ° (SD)
Overall 46.9 (11.1)
MIS-ULBD 49.7 (10.9)
LE-ULBD 44.9 (11.0)
p Value 0.171
Mean PI-LL mismatch, ° (SD)
Overall 14.9 (11.8)
MIS-ULBD 14.9 (10.8)
LE-ULBD 15.0 (12.7)
p Value 0.827
Mean disc height, mm (SD)
Overall 9.0 (3.0)
MIS-ULBD 9.6 (2.7)
LE-ULBD 8.7 (3.1)
p Value 0.204
Mean axial facet angle, ° (SD)
Overall 46.4 (15.4)
MIS-ULBD 48.8 (12.4)
LE-ULBD 44.7 (17.2)
p Value 0.580
Lateral listhesis, no.
None 27 (41%)
Positive 39 (59%)
p Value 0.610
Mean, mm (SD)
Overall 6.1 (2.4)
MIS-ULBD 6.1 (1.8)
LE-ULBD 6.0 (2.7)
p Value 0.945

Statistical significance by Mann-Whitney (patients) and mixed-effects rank-linear and logistic regression (surgery levels).
TABLE 3. Outcome over time
VAS back
Preop
2 wks
3 mos
1 yr
VAS leg
Preop
2 wks
3 mos
1 yr
ODI
Preop
2 wks
3 mos
1 yr

Mod = modeled difference.

Boldface type indicates statistical significance by mixed-effects linear regression, unadjusted for other covariates. All statistically significant differences survived adjustment for multiple comparisons (Benjamini-Hochberg procedure, m = 36).
reoperations, the MIS-ULBD cohort was found to have a statistically significant greater number of adverse events (n = 8) than the LE-ULBD cohort (n = 2) (p = 0.010). No patient experienced postoperative iatrogenic motor or sensory deficits.

A poor outcome was defined as any reoperation or failure to reach MCID for leg VAS and ODI score. Univariate analyses were used to predict poor outcomes from preoperative radiographic data (Tables 6 and 7). There was a trend toward poor outcome with larger Cobb angles, larger disc heights, and more sagittally oriented facet angles; however, this was not statistically significant after adjusting for multiple comparisons. No other radiographic variables were found to be predictive of poor outcomes.

TABLE 4. Effects of surgery group on outcome (over time)

Score	MIS-ULBD	LE-ULBD	ΔFrom Preop	Model Estimates					
	MIS-ULBD	LE-ULBD	MIS-ULBD	LE-ULBD	95% CI	p Value	Favor		
VAS back									
Preop	7.14	5.79							
2 wks	4.67	3.48	-2.47	-2.31	0.16	0.00	-1.99 to 2.00	0.997	MIS-ULBD
3 mos	1.93	2.52	-5.21	-3.27	1.94	1.81	-0.18 to 3.80	0.075	MIS-ULBD
1 yr	2.50	1.80	-4.64	-3.99	0.65	0.63	-1.35 to 2.60	0.531	MIS-ULBD
VAS leg									
Preop	6.32	6.56							
2 wks	2.47	2.39	-3.86	-4.17	-0.31	-0.32	-2.33 to 1.69	0.754	LE-ULBD
3 mos	1.53	2.00	-4.79	-4.56	0.23	0.14	-1.88 to 2.15	0.894	MIS-ULBD
1 yr	2.22	1.45	-4.10	-5.11	-1.01	-1.20	-3.17 to 0.78	0.233	LE-ULBD
ODI									
Preop	46.6	52.8							
2 wks	38.7	29.1	-7.8	-23.8	-15.9	-15.0	-28.0 to -2.0	0.024	LE-ULBD
3 mos	15.1	23.0	-31.5	-29.8	1.7	0.1	-13.1 to 13.2	0.991	MIS-ULBD
1 yr	22.1	19.9	-24.5	-32.9	-8.5	-7.5	-20.5 to 5.4	0.252	LE-ULBD

Boldface type indicates statistical significance by mixed-effects linear regression, unadjusted for other covariates. No statistically significant differences after adjusting for multiple comparisons (Benjamini-Hochberg, m = 12).

FIG. 1. Patients in the total cohort experienced significant improvement in VAS back pain, VAS leg pain, and ODI when comparing preoperative values to all postoperative time points (p < 0.001). When comparing outcomes between the MIS-ULBD and LE-ULBD cohorts, the endoscopic cohort demonstrated significantly better early ODI scores (p = 0.024); however, there were no significant differences at later time points. Means and SDs are shown.
Discussion

Surgical decompression without fusion has been well accepted as the optimal treatment for patients with uncomplicated LSS causing neurogenic claudication. Clinical decision-making becomes more challenging when patients with LSS present with coexisting spondylolisthesis and/or degenerative scoliosis. The ongoing debate regarding decompression alone versus decompression with fusion in this specific cohort has largely been informed by data pertaining to decompression via conventional midline laminectomy. In their landmark controlled trial, Herkowitz and Kurz demonstrated a high failure rate in patients with spondylolisthesis after a conventional midline muscle-stripping laminectomy. Consequently, this resulted in the widespread investigation of fusion with decompression for any patient with LSS and concomitant structural abnormalities. In the United States, 96% of patients with degenerative spondylolisthesis undergo fusion surgery as an adjunct to decompression, and approximately 70% of patients with LSS and coexisting scoliosis undergo a fusion procedure.

Fusion itself, however, can be complicated by pseudarthrosis and adjacent-segment disease, ultimately leading to loss of therapeutic sustainability over time. A large analysis of registry data showed that the addition of fusion surgery to decompression surgery for spinal stenosis doubled the risk of severe adverse events. The potential risks and complications are significantly amplified when the alternative to decompression includes long hardware constructs, with some series showing complication rates greater than 50%. Based on the available literature, there is considerable variability in outcomes following decompression to address stenosis in the setting of degenerative scoliosis and spondylolisthesis. Several early studies have reported high rates of progressive deformity and failure of conventional laminectomy in patients with deformity and symptomatic stenosis. More recent literature regarding conventional laminectomy has painted a conflicting picture. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups.

Discussion

Surgical decompression without fusion has been well accepted as the optimal treatment for patients with uncomplicated LSS causing neurogenic claudication. Clinical decision-making becomes more challenging when patients with LSS present with coexisting spondylolisthesis and/or degenerative scoliosis. The ongoing debate regarding decompression alone versus decompression with fusion in this specific cohort has largely been informed by data pertaining to decompression via conventional midline laminectomy. In their landmark controlled trial, Herkowitz and Kurz demonstrated a high failure rate in patients with spondylolisthesis after a conventional midline muscle-stripping laminectomy. Consequently, this resulted in the widespread investigation of fusion with decompression for any patient with LSS and concomitant structural abnormalities. In the United States, 96% of patients with degenerative spondylolisthesis undergo fusion surgery as an adjunct to decompression, and approximately 70% of patients with LSS and coexisting scoliosis undergo a fusion procedure.

Fusion itself, however, can be complicated by pseudarthrosis and adjacent-segment disease, ultimately leading to loss of therapeutic sustainability over time. A large analysis of registry data showed that the addition of fusion surgery to decompression surgery for spinal stenosis doubled the risk of severe adverse events. The potential risks and complications are significantly amplified when the alternative to decompression includes long hardware constructs, with some series showing complication rates greater than 50%. Based on the available literature, there is considerable variability in outcomes following decompression to address stenosis in the setting of degenerative scoliosis and spondylolisthesis. Several early studies have reported high rates of progressive deformity and failure of conventional laminectomy in patients with deformity and symptomatic stenosis. More recent literature regarding conventional laminectomy has painted a conflicting picture. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups. One study found lower functional outcome scores and higher complication rates (56% vs 10%) in patients undergoing large construct fusion with decompression than in patients receiving decompression alone; however, patients in the decompression group were less likely to respond favorably to questionnaires regarding patient satisfaction than those in the fusion groups.

Table 5: Adverse events and MCID effects of surgery group on outcome (over time)

Adverse events	Overall	MIS-ULBD	LE-ULBD	p Value
Any adverse event	10 (22)	8 (42)	2 (8)	0.010
Periop medical event	7 (16)	5 (26)	2 (8)	0.114
Intraop durotomy	2 (4)	2 (11)	0 (0)	0.173
Infection	0 (0)	0 (0)	0 (0)	0.173
Reop	2 (4)	2 (11)	0 (0)	0.173

MCID for VAS leg at 1 yr

	No	4 (11)	3 (18)	1 (5)	0.326
	Yes	32 (89)	14 (82)	18 (95)	

MCID for ODI at 1 yr

	No	5 (14)	2 (14)	3 (14)	>0.99
	Yes	30 (86)	12 (86)	18 (86)	

Table 6: Univariate prediction of poor outcome from radiographic data

Patient characteristics	Poor Outcome	OR	95% CI	p Value
Spondylolisthesis	1.39	0.18–17.4	>0.99	
Scoliosis	0.60	0.06–8.55	0.958	
Cobb angle (per 5°)	0.67	0.36–1.16	0.166	
Level characteristics				
Disc height (per mm)	1.19	0.92–1.58	0.186	
Axial facet angle (per 5°)	1.17	0.93–1.51	0.188	
Lateral listhesis	0.56	0.11–2.70	0.614	

Statistical significance by exact logistic regression. No statistically significant differences after adjusting for multiple comparisons (Benjamini-Hochberg, m = 6).

* Poor outcome defined as any of 1) reoperation, 2) no MCID for VAS leg, or 3) no MCID for ODI.
patients with coexisting deformity, whereby removal of bony elements and soft-tissue disruption have the potential to exacerbate existing structural instability and cause recurrence of symptoms.

Kelleher et al. conducted a retrospective review of 75 patients undergoing tubular MIS-ULBD for focal spinal stenosis with or without coexisting scoliosis (mean Cobb angle 14°) with a mean 47.5-month follow-up. The authors reported significant improvements in ODI scores in patients with deformity with no significant progression of scoliosis; however, there was a 25% reoperation rate, with 50% of these failures in patients with concurrent lateral listhesis. Conversely, a recent 2017 prospective study with 50% of these failures in patients with concurrent lateral listhesis. Conversely, a recent 2017 prospective study with 5-year follow-up outcomes in 207 patients with spinal stenosis with or without coexisting scoliosis (mean Cobb angle 14°) following tubular MIS-ULBD and found significant increases in functional outcomes in all patients with an 8% reoperation rate, which was associated with preoperative scoliotic disc wedging (Cobb angle ≥ 3°) and lateral listhesis. Our tubular MIS-ULBD cohort was found to have a reoperation rate of 11%, which is consistent with rates reported in the literature. Interestingly, no patients in our endoscopic cohort underwent reoperation within the 1-year follow-up period.

To our knowledge, there are limited data regarding the use of decompressive endoscopic spine techniques to treat lumbar spinal stenosis in the setting of deformity and spondylolisthesis. Telfeian et al. reported a series of 4 patients who underwent transforaminal endoscopic decompression to treat unilateral radiculopathy from a disc herniation in who underwent transforaminal endoscopic decompression for lateral listhesis. Conversely, a recent prospective study with 50% of these failures in patients with concurrent lateral listhesis. Conversely, a recent prospective study with 5-year follow-up outcomes in 207 patients with spinal stenosis with or without coexisting scoliosis (mean Cobb angle 14°) following tubular MIS-ULBD and found significant increases in functional outcomes in all patients with an 8% reoperation rate, which was associated with preoperative scoliotic disc wedging (Cobb angle ≥ 3°) and lateral listhesis.

Our study represents the first and largest series investigating interlaminar endoscopic decompression in patients with LSS in the setting of degenerative scoliosis and spondylolisthesis. Our results show that endoscopic decompression is a safe and effective alternative for this patient cohort, as there were significant improvements in all patient-reported outcome measures with a minimum of complications reported at 1 year. Patients in the endoscopic cohort achieved MCID for leg pain VAS score in 95% of cases compared with 82% of patients achieving MCID in the MIS-ULBD cohort, which, while not significantly different, indicates likely equipoise across techniques. Furthermore, while complication rates were very low in both cohorts, we feel that endoscopic decompression has a more favorable risk profile than MIS-ULBD with fewer overall adverse events and a lower reoperation rate. Most adverse events experienced in the MIS cohort consisted of urinary retention, which, while a relatively minor complication, can contribute to increased hospital length of stay and should be considered meaningful. Endoscopic decompression also results in significantly faster recovery, reflected by a shorter hospital length of stay and more rapid improvement in ODI during early follow-up.

Our univariate analysis was not able to identify any preoperative factors to predict poor outcome or reoperation. Previous studies, however, postulated that preoperative scoliotic disc wedging (Cobb angle ≥ 3°) and lateral listhesis are associated with reoperation, while spur formation on the concave side of scoliotic curves may be a protective factor in curve progression. Blumenthal et al. reported that in patients with degenerative grade I lumbar spondylolisthesis who underwent conventional laminectomy, a facet angle > 50° was associated with a 39% rate of reoperation, and a disc height > 6.5 mm was associated with a 45% rate of reoperation. While our patient population demonstrated a trend toward worse outcomes with increasing disc height, Cobb angle, and facet angle measurements, there were no statistically significant radiographic parameters that predicted poor outcomes after adjusting for multiple comparisons.

Although sagittal spinal parameters are critical elements in optimizing outcomes, the inability to restore

| TABLE 7. Univariate prediction of reoperation and inability to reach MCID from radiographic data |
|---|---------------|---------------|---------------|
| Patient characteristics | Reop | No MCID for VAS Leg | No MCID for ODI |
| Spondylolisthesis | 1.36 | 0.16 to 0.620 | 0.40 | 0.93 to 0.712 | 3.09 | 0.51 to 0.327 |
| Scoliosis (per 5°) | 0.37 | 0.04 to 0.99 | 1.12 | 0.17 to 0.931 | 0.18 | 0.01 to 2.95 |
| Cobb angle (per 5°) | 0.75 | 0.26 to 1.76 | 0.91 | 0.46 to 1.68 | 0.52 | 0.23 to 1.02 |
| PI-LL mismatch | 1.02 | 0.89 to 1.14 | 0.90 | 0.67 to 1.07 | 0.96 | 0.82 to 1.07 |
| Level characteristics | | | | | | |
| Disc height (per mm) | 1.14 | 0.78 to 1.78 | 1.01 | 0.74 to 1.40 | 0.99 | 1.20 to 4.03 |
| Slip (per mm) | 0.82 | 0.37 to 1.47 | 0.84 | 0.40 to 1.49 | 0.76 | 0.43 to 1.16 |
| Axial facet angle (per 5°) | 1.61 | 0.96 to 3.17 | 0.89 | 0.67 to 1.19 | 1.35 | 0.95 to 2.09 |
| Lateral listhesis | 3.50 | 0.52 to 0.293 | 0.21 | 0.00 to 2.33 | 0.05 | 0.00 to 1.62 |
| Lateral listhesis (per mm) | 0.95 | 0.57 to 1.59 | 0.83 | 0.22 to 2.11 | 0.35 | 0.01 to 1.29 |

Statistical significance by exact logistic regression, unadjusted for within-subject correlations (due to low event counts). No statistically significant differences after adjusting for multiple comparisons (Benjamini-Hochberg, m = 30).
sagittal alignment in patients undergoing decompression for spinal stenosis in the setting of degenerative scoliosis (without major instability) has not been shown to have an impact on outcomes. 3 Our patient cohort represents patients with mild to moderate coronal deformity (mean Cobb angle 15.9°) and minimal sagittal imbalance (PI-LL mismatch = 15.6°). Patients with clinically significant deformity and sagittal imbalance are unlikely to benefit from these minimally invasive techniques.

While we present evidence that full-endoscopic decompression is a viable alternative to current treatment options, our report has several limitations. This study is a retrospective review of prospectively collected data in a relatively small patient cohort with 1-year follow-up. Our patient selection was not randomized but rather reflects an evolution in practice, which may introduce selection bias. Patients who underwent tubular MIS decompression in our study achieved VAS leg pain score reductions (−4.1), which is comparable with those published in the literature at ≥ 1-year follow-up (−4.6). 3 The reduction in ODI score in our MIS group was 24.5, with 86% of these patients achieving an MCID in ODI score. This is comparable to previously reported outcomes after MIS-ULBD (ODI score reduction: 16.4; proportion of MCID: 54.8%). Therefore, we are confident that our tubular MIS decompression outcomes represent an appropriate reference for comparison to the endoscopic decompression cohort.

We anticipate that with longer follow-up, additional patients in the endoscopic group may require reoperation due to the degenerative cascade. We have not routinely performed imaging in patients without new symptomatology and are thus unable to report the radiographic follow-up for our study group; however, we emphasize that clinical outcomes and not radiographic measurements were used as the basis by which to draw conclusions. Our results may not apply to patients who suffer from symptomatic imbalance with progressive degeneration and inability to stand or walk. These patients were excluded from the present study, which might lead to a selection bias; however, the focus of this analysis was on patients whose predominant complaints are related to lumbar spinal stenosis in the setting of mild to moderate deformity.

Conclusions

Full-endoscopic decompression represents a promising treatment option for patients with lumbar spinal stenosis and concurrent mild to moderate degenerative scoliosis and spondylolisthesis. While the decision to perform a decompression, short-segment, or long-segment fusion will ultimately depend on a variety of patient factors and surgeon preference, the endoscopic approach offers an effective option with a favorable risk profile in the appropriately selected patient. Future research is needed to determine the long-term benefits and cost-effectiveness of endoscopic decompression when treating this particular patient cohort.

References

1. Aebi M: The adult scoliosis. Eur Spine J 14:925–948, 2005
2. Ahn Y: Percutaneous endoscopic decompression for lumbar spinal stenosis. Expert Rev Med Devices 11:605–616, 2014

3. Alimi M, Hofstetter CP, Pyo SY, Paulo D, Härtil R: Minimally invasive laminectomy for lumbar spinal stenosis in patients with and without preoperative spondylolisthesis: clinical outcome and reoperation rates. J Neurosurg Spine 22:339–352, 2015

4. Bae HW, Rajaei SS, Kanim LE: Nationwide trends in the surgical management of lumbar spinal stenosis. Spine (Phila Pa 1976) 38:916–926, 2013

5. Bayerl SH, Pöhllmann F, Finger T, Onken J, Franke J, Czabanka M, et al: The sagittal balance does not influence the 1 year clinical outcome of patients with lumbar spinal stenosis without obvious instability after microsurgical decompression. Spine (Phila Pa 1976) 40:1014–1021, 2015

6. Benner B, Ehni G: Degenerative lumbar scoliosis. Spine (Phila Pa 1976) 4:548–552, 1979

7. Berven SH, Deviren V, Mitchell B, Wahba G, Hu SS, Bradford DS: Operative management of degenerative scoliosis: an evidence-based approach to surgical strategies based on clinical and radiographic outcomes. Neurosurg Clin N Am 18:261–272, 2007

8. Beurskens AJ, de Vet HC, Köke AJ, van der Heijden GJ, Knipschild PG: Measuring the functional status of patients with low back pain. Assessment of the quality of four disease-specific questionnaires. Spine (Phila Pa 1976) 20:1017–1028, 1995

9. Birjandian Z, Emerson S, Telfeian AE, Hofstetter CP: Interlaminar endoscopic lateral recess decompression-surgical technique and early clinical results. J Spine Surg 3:123–132, 2017

10. Blumenthal C, Curran J, Benzel EC, Potter R, Magne SN, Harrington JF Jr, et al: Radiographic predictors of delayed instability following decompression without fusion for degenerative grade I lumbar spondylolisthesis. J Neurosurg Spine 18:340–346, 2013

11. Boukebir MA, Berlin CD, Navarro-Ramirez R, Heiland T, Schöller K, Rawanduzu C, et al: Ten-step minimally invasive spine lumbar decompression and dural repair through tubular retractors. Oper Neurosurg (Hagerstown) 13:232–245, 2017

12. Brodke DS, Annis P, Lawrence BD, Woodbury AM, Daubs MD: Reoperation and revision rates of 3 surgical treatment methods for lumbar stenosis associated with degenerative scoliosis and spondylolisthesis. Spine (Phila Pa 1976) 38:2287–2294, 2013

13. Deyo RA: Treatment of lumbar spinal stenosis: a balancing act. Spine J 10:625–627, 2010

14. Deyo RA, Martin BI, Ching A, Tosteson AN, Jarvik JG, Kreuter W, et al: Interspinous spacers compared with decompression or fusion for lumbar stenosis: complications and repeat operations in the Medicare population. Spine (Phila Pa 1976) 38:865–872, 2013

15. Deyo RA, Mirza SK, Martin BI: Back pain prevalence and visit rates: estimates from U.S. national surveys, 2002. Spine (Phila Pa 1976) 31:2724–2727, 2006

16. Deyo RA, Mirza SK, Martin BI, Kreuter W, Goodman DC, Jarvik JG: Trends, major medical complications, and charges associated with surgery for lumbar spinal stenosis in older adults. JAMA 303:1259–1265, 2010

17. Epstein JA, Epstein BS, Jones MD: Symptomatic lumbar scoliosis with degenerative changes in the elderly. Spine (Phila Pa 1976) 4:542–547, 1979

18. Etminan M, Girardi FP, Khan SN, Cammisa FP Jr: Revision strategies for lumbar pseudarthrosis. Orthop Clin North Am 33:381–392, 2002

19. Fairbank JC, Pynsent PB: The Oswestry Disability Index. Spine (Phila Pa 1976) 25:2940–2952, 2000

20. Farrarr JT, Portenoy RK, Berlin JA, Kimman JL, Strom BL: Defining the clinically important difference in pain outcome measures. Pain 88:287–294, 2000
21. Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM: Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. *Pain* 94(1–2):151–157, 2001
22. Foley KT, Smith MM, Rampersaud YR: Microendoscopic approach to far-lateral lumbar disc herniation. *Neurosurg Focus* 7(5):e5, 1999
23. Fontes RB, Fessler RG: Lumbar radiculopathy in the setting of degenerative spondylolisthesis: MIS decompression and limited correction are better options. *Neurosurg Clin N Am* 28:335–339, 2017
24. Frazier DD, Lipson SJ, Fossel AH, Katz JN: Associations between spinal deformity and outcomes after decompression for spinal stenosis. *Spine* (Phila Pa 1976) 22:2025–2029, 1997
25. Fritze PL, Hägg O, Nordwall A: Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. *Eur Spine J* 12:178–189, 2003
26. Ghogawala Z, Dzurak J, Butler WE, Dai F, Terrin N, Magge SN, et al: Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. *N Engl J Med* 374:1424–1434, 2016
27. Gibson JNA, Subramanian AS, Scott CEH: A randomised controlled trial of transforaminal endoscopic discectomy vs microdiscectomy. *Eur Spine J* 26:847–856, 2017
28. Guha D, Heary RF, Shamji MF: Iatrogenic spondylolisthesis following laminectomy for degenerative lumbar stenosis: systematic review and current concepts. *Neurosurg Focus* 39(4):E9, 2015
29. Hägg O, Fritze PL, Ekselius L, Nordwall A: Predictors of outcome in fusion surgery for chronic low back pain. A report from the Swedish Lumbar Spine Study. *Eur Spine J* 12:22–33, 2003
30. Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC: Biomechanical assessment of minimally invasive decompression for lumbar spinal canal stenosis: a cadaver study. *J Spinal Disord Tech* 22:486–491, 2009
31. Hasegawa K, Kato S, Shimoda H, Hara T: Biomechanical evaluation of destabilization following minimally invasive decompression for lumbar spinal canal stenosis. *J Neurosurg Spine* 18:504–510, 2013
32. Healey JH, Lane JM: Structural scoliosis in osteoporotic women. *Clin Orthop Relat Res* (195):216–223, 1985
33. Herkowitz HN, Kurz LT: Degenerative lumbar spondylolisthesis with spinal stenosis. A prospective study comparing decompression with decompression and intertransverse process arthrodesis. *J Bone Joint Surg Am* 73:802–808, 1991
34. Hoogland T, Schubert M, Miklitz B, Ramirez A: Transforaminal posterolateral endoscopic discectomy with or without the combination of a low-dose chymopapain: a prospective randomized study in 280 consecutive cases. *Spine* (Phila Pa 1976) 31:E890–E897, 2006
35. Hosogane N, Watanabe K, Kono H, Saito M, Toyama Y, Matsubara M: Curve progression after decompression surgery in patients with mild degenerative scoliosis. *J Neurosurg Spine* 18:321–326, 2013
36. Houten JK, Naso T: Symptomatic progression of degenerative scoliosis after decompression and limited fusion surgery for lumbar spinal stenosis. *J Clin Neurosci* 20:613–615, 2013
37. Kato M, Namikawa T, Matsumura A, Konishi S, Nakamura H: Radiographic risk factors of reoperation following minimally invasive decompression for lumbar canal stenosis associated with degenerative scoliosis and spondylolisthesis. *Global Spine J* 7:498–505, 2017
38. Kelleher MO, Timlin M, Persaud O, Rampersaud YR: Success and failure of minimally invasive decompression for focal lumbar spinal stenosis in patients with and without deformity. *Spine* (Phila Pa 1976) 35:E981–E987, 2010
39. Kepler CK, Vaicciro AR, Hilibrand AS, Anderson DG, Rihn JA, Albert TJ, et al: National trends in the use of fusion techniques to treat degenerative spondylolisthesis. *Spine* (Phila Pa 1976) 39:1584–1589, 2014
40. Komp M, Hahn P, Oezdemir S, Giannakopoulos A, Heikened R, Kasch R, et al: Bilateral spinal decompression of lumbar central stenosis with the full-endoscopic interlaminar versus microsurgical laminotomy technique: a prospective, randomized, controlled study. *Pain Physician* 18:61–70, 2015
41. Lee CH, Choi M, Ryu DS, Choi I, Kim CH, Kim HS, et al: Efficacy and safety of full-endoscopic decompression via interlaminar approach for central or lateral recess spinal stenosis of the lumbar spine: a meta-analysis. *Spine* (Phila Pa 1976) 43:1756–1764, 2018
42. Madhavan K, Chieng LO, McGrath L, Hofstetter CP, Wang MY: Early experience with endoscopic foraminotomy in patients with moderate degenerative deformity. *Neurosurg Focus* 40(2):E6, 2016
43. Martin Y, Takahashi K, Hanaoka E, Utsumi T, Yamagata M, Moriya H: Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis. *Spine* (Phila Pa 1976) 27:2268–2273, 2002
44. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE: Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. *Spine* (Phila Pa 1976) 29:1938–1944, 2004
45. Ruetten S, Komp M, Merkel H, Godolias G: Surgical treatment for lumbar lateral recess stenosis with the full-endoscopic interlaminar approach versus conventional microsurgical technique: a prospective, randomized, controlled study. *J Neurosurg Spine* 10:476–485, 2009
46. Siryok K, Goel VK, Masuda A, Biyani A, Ebraheim N, Mishiro T, et al: Biomechanical rationale of endoscopic decompression for lumbar spondylolisthesis as an effective minimally invasive procedure—a study based on the finite element analysis. *Minim Invasive Neurosurg* 48:119–122, 2005
47. Siepe CJ, Sauer D, Michael Mayer H: Full endoscopic, bilateral over-the-top decompression for lumbar spinal stenosis. *Eur Spine J* 27(Suppl 4):S563–S565, 2018
48. Simmons ED: Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis. *Clin Orthop Relat Res* 384:45–53, 2001
49. Tecconi L, Baldo S, Merci G, Serra G: Transforaminal percutaneous endoscopic lumbar discectomy: outcome and complications in 270 cases. *J Neurosurg Sci* [epub ahead of print], 2018
50. Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, et al: Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. Technical note. *J Neurosurg* 98:205–213, 2003
51. Telefian AE, Oyelose A, Fridley J, Gokaslan ZL: Transforaminal endoscopic decompression in the setting of lateral lumbar spondylolisthesis. *World Neurosurg* 117:321–325, 2018
52. Thomé C, Zevgaridis D, Leheta O, Bäzner H, Pöckler-Schöller S: Minimally invasive decompression for lumbar spondylolisthesis as an effective minimally invasive procedure—a study based on the finite element analysis. *Minim Invasive Neurosurg* 31:129–141, 2005
53. Transfeldt EE, Topp R, Chad A, Winter RB: Surgical outcomes of decompression, decompression with limited fusion, and decompression with full curve fusion for degenerative scoliosis with radiculopathy. *Spine* (Phila Pa 1976) 35:1872–1875, 2010
54. Weinstein JN, Tosteson TD, Lurie JD, Tosteson A, Blood E, Herkowitz H, et al: Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the Spine Patient Outcomes Research Trial. *Spine (Phila Pa 1976)* 35:1329–1338, 2010

55. Zanirato A, Damilano M, Formica M, Piazzolla A, Lovi A, Villafañe JH, et al: Complications in adult spine deformity surgery: a systematic review of the recent literature with reporting of aggregated incidences. *Eur Spine J* 27:2272–2284, 2018

56. Zhang B, Liu S, Liu J, Yu B, Guo W, Li Y, et al: Transforaminal endoscopic discectomy versus conventional microdiscectomy for lumbar disc herniation: a systematic review and meta-analysis. *J Orthop Surg Res* 13:169, 2018

Disclosures

Dr. Hofstetter: consultant for Johnson & Johnson, Globus, and Joimax.

Author Contributions

Conception and design: Hofstetter, Hasan, McGrath, Sen. Acquisition of data: Hofstetter, Hasan, McGrath, Sen. Analysis and interpretation of data: Hasan, McGrath, Sen, Barber. Drafting the article: Hofstetter, McGrath, Sen. Critically revising the article: Hofstetter, McGrath. Reviewed submitted version of manuscript: Hofstetter, McGrath. Statistical analysis: McGrath, Barber.

Correspondence

Christoph Hofstetter: University of Washington, Seattle, WA. chh9045@uw.edu.