ORIGIN, HABITAT AND ECOLOGICAL CLASSIFICATION OF SOME BONY FISHES AVAILABLE IN KHULNA DIVISION, BANGLADESH

M.K. Rahman¹*, J.N. Akhter¹, S. Mondal¹, M. Mostafa² and K.A. Huq²

¹Freshwater Sub-Station, Bangladesh Fisheries Research Institute, Jessore-7402
²Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna-9208

KUS-08/41-140708
Manuscript received: July 14, 2008; Accepted: June 28, 2008

Abstract: The study identified the origin, habitat and ecological classification of 78 bony fish species belonging to 30 families available in Khulna division. Of the total fish species, 9 were found exotic. Among the collected 78 species, a total of 69 fish species were inhabitants of freshwaters while 4 were found in both fresh and brackish waters and the rest 5 species were found in both brackish and marine waters. The collected fishes belonged to eight trophic guilds; carnivore (43) was the dominant group followed by omnivore (16), insectivore (5), planktivore (5), benthivore (4) and larvivore (1). The fishes also represented eight reproductive guilds; phytolithophil (35) was the most dominant guild followed by phytophil (20), pelagophil (6), psammophil (6), guarder (4), bubble nester (4) and mouth brooder (1). The present study indicates that Khulna Division is very rich in fish biodiversity having diverse forms of trophic and reproduction guilds.

Key words: Fish, origin, habitat, ecological classification, Khulna

Introduction

Fish is found in almost all conceivable aquatic habitats ranging from hot soda springs (e.g. Sarotherodon grahami in Lake Magadi, Kenya) where temperatures exceed 40°C (Lowe-McConnel, 1987) to the waters beneath the Antarctic ice-sheet (e.g. Dallia pectoralis) where the temperature is below 0°C (DeVries, 1980). Fish are found in high mountain lakes from approximately 5 km above sea level (e.g. Schizothorax plagiostomus, in the Tritican Lake) to more than 11 km below the sea level (e.g. deepsea ateleopid, Ateleopus japonicus in the Mariana Trench, Pacific Ocean) (Lagler et al., 1977), in stagnant waters (e.g. taki, Channa punctatus), fast-flowing waters (e.g. masheer, Tor tor), and even in the deep caves (e.g. cavefish, Anoptichthys jordani) where there is total darkness (Jobling, 1995). Fish are numerically the largest group of vertebrates and account for roughly half of all vertebrate species (Jobling, 1995).

There are about 25 625 recognised species of teleost fishes in the world (Nelson, 1994; Anon., 2000; Anon., 2007). In South America there are over 2 400 freshwater species, while it is 2 500 in Africa (Wootton, 1990) and 2000 in South and South East Asia (Hora, 1937). Inland waters of Bangladesh harbour 260 fish species belonging to 145 genera representing 55 families (Day and Buchanan, 1877; Rahman, 2005; Rahman and Akhter, 2007) while 475 species belonging to 133 genera of marine and brackish water fishes are found in the Bay of Bengal and Sundarban (Day, 1878; Azadi, 1985). Khulna division, the Southwest region of Bangladesh is criss-crossed by...
rivers and canals occupying the world-largest mangrove forest, the Sundarban. A total of 281 fish species belonging to 79 families inhabit in fresh, brackish and marine waters of Khulna division (Rahman and Akhter, 2008). Binomial classification of these fishes is available (Rahman, 2005) but information on the origin, habitat use and ecological classification are scanty. In view of the above, the present study was undertaken to prepare a checklist of fishes of Khulna division with information on origin, habitat use and ecological classification, which might help fishery scientists, students, hatchery operators, farmers and policy makers to formulate a comprehensive strategy for proper management and conservation of the resource.

Materials and Methods

The survey was conducted from May 2006 to December 2007 to collect different fish species available in the Khulna division. Survey sites included Bheramara, Jhenaidaha, Kaligang, Kotchandpur, Jessore, Magura, Narail, Debhata, Satkhira, Khulna and Paikgacha. Collected fish samples were taken to the laboratory of the Freshwater Sub-Station of the Bangladesh Fisheries Research Institute, Jessore. Information on origin, habitat use trophic and reproductive guilds of the collected fishes were obtained from different books (Jordan and Evermann, 1917; Hamilton, 1822; Day and Buchanan, 1877; Day, 1878; Bhuiyan, 1964; Gibson, 1978; Billard and Breton, 1979; Jayaram, 1981; Ameen, 1987; Jhingran, 1991; Khan, 1994; Jobling, 1995), from reports (Azadi, 1985; Anon., 1994; Felts et al., 1997; Hora, 1945) and from journals (Khan, 1924 and 1934; Ahmed, 1944 and 1955; Khanna, 1958; Aliskunhi and Sukumar, 1964; Doha, 1973; Balon et al., 1977; Jayaram, 1977; Johannes, 1978; Kramer, 1978; Dewan and Doha, 1979; Huda and Rahman, 1983; Austen et al., 1994; Lyons et al., 1996; Akhter and Rahman, 2008; Rahman and Akhter, 2008) while ecological classification was done according to Balon (1975 and 1981). For ecological classification the following definitions were used:

Trophic guilds:

Planktivores: Mainly depend on phytoplankton and zooplankton. Diet of the adult fish of this trophic guild consists of more than 75% zooplankton and/or phytoplankton (Lyons et al., 1995).

Herbivores: Primarily feed on higher aquatic plants/vegetation. Diet of the adult fish consists of more than 75% plant material (Lyons et al., 1995).

Omnivores: Take all possible food materials both of plant and animal origin. Choice of food depends on availability (Lyons et al., 1995).

Detritivores: Take detritus as food (Goldstein and Simon, 1999).

Insectivores/Invertivores: Take all kind of insects/invertebrates as the main food (Lyons et al., 1995).

Larvivores: Specialist feeders that feed on larvae of insects, fish and other organisms (Goldstein and Simon, 1999).

Benthivores: Mainly feed on benthic organisms (Goldstein and Simon, 1999).

Molluscivores: Specialist feeders depending on mollusks and isopods (Goldstein and Simon, 1999).

Carnivores: Primarily feed on animal matters. Diet of the adult fish consists of more than 75% animal materials (Lyons et al., 1995).

Parasitic: Parasitism being a form of carnivorism in which the parasite is smaller in body size than the host (Goldstein and Simon, 1999).
Reproductive guilds:

Pelagophils/Broadcaster: Non-adhesive and non-photophobic eggs that are released and scattered in open waters, in areas where the direction of the water current is favourable for their distribution and survival (Balon et al., 1977).

Lithopelagophils: Eggs deposited on rocks and gravel. Embryos and larvae are not photophobic (Balon et al., 1977).

Lithophils: Fish spawns exclusively on gravel, rocks, stones, rubble or pebbles where their embryos and larvae develop. Embryos are highly photophobic (Balon, 1975).

Phytophils: Fish scatters or deposits eggs with an adhesive membrane that sticks to submerged, live or dead aquatic plants, or to recently flooded terrestrial plants; sometimes they deposit eggs on logs and branches but never on the bottom. Embryos and larvae are not photophobic (Balon, 1975).

Phytolithophils: Fish deposits eggs in relatively clear water habitats on submerged plants, if available, or on other submerged items such as logs, gravel and rocks. Embryos and larvae are photophobic (Balon, 1975).

Psammophils: Fish scatter eggs directly on the clean sand/mud or near fine roots of plants that hang over sandy bottom. Eggs are small and adhesive, and the embryos are photophobic (Balon, 1975).

Nest builders: Build nests with plant materials or bubbles in rocks, gravels and sand or hard bottom. Eggs are adhesive and embryos are photophobic (Balon et al., 1977).

Guarders: Choose rocks, gravel and submerged plants for attachment of their eggs. Usually the male guard and fan the eggs but in many species both sexes are reported to guard the eggs (Balon et al., 1977).

Mouth brooders: Incubate their eggs in the buccal cavity. Usually the male takes eggs in its mouth (Balon et al., 1977).

Live bearers: Eggs are fertilized internally before they are expelled from the body cavity (Balon et al., 1977).

Results

A total of 78 fish species (69 native and 9 exotic) belong to 30 families were recorded from the 11 survey sites (Table 1). Three families namely Catostomidae, Characidae and Cichlidae were found exotic to Bangladesh. Of the 69 freshwater fish species, 4 were found in both fresh and brackish waters while 5 in both brackish and marine waters (Table 1). Collected fishes belong to 8 trophic guilds; carnivore (43) was the most dominant guild followed by omnivore (16), insectivore (5), planktivore (5) and benthivore (4). Only one larvivore species was recorded (Table 1). No molluscivores and parasitic fishes were recorded. Fishes of the study areas displayed a wide range of feeding habits and occupied many trophic guilds from detritivores to secondary carnivores. Similarly, collected fishes represented 8 reproductive guilds. Phytolithophil (35) was the most dominant guild, followed by phytophil (20), pelagophil (6), psammophil (6), guarder (4) and bubble nester (4). Only one mouth brooder species was recorded from the survey sites (Table 1). No lithopelagophils and livebearers were recorded.
Sl	Family/Fishbase/Scientific name	English common name	Bangla name	Origin	Habitat use	TG	RG
	Family 1: Cyprinidae						
1	Amblypomus mola (Hamilton)	Mola carplet	Mola/Molongi	Bangladesh	F	P	Ph
2	Aspistoria jaya (Hamilton)	Jaya	Jaya	Bangladesh	F	O	Ph
3	Carassius auratus (L.)	Goldfish	Goldfish	Europe	F	O	Ph
4	Carassius carassius (Hamilton)	Crucian carp	Crucian carp	China	F	O	Ph
5	Catla catla (Hamilton)	Katla/ Katal	Katla/ Katal	Bangladesh	F	P	Pe
6	Chela cachius (Hamilton)	Silver hachet	Chep chela	Bangladesh	F	O	Pe
7	Cirrhinus mirgala (Hamilton)	Mirgal/ Mirka	Mirgal/ Mirka	Bangladesh	F	B	Pe
8	Cirrhinus reba (Hamilton)	Tatkini/ Raik	Tatkini/ Raik	Bangladesh	F	O	Pe
9	Cyprinus carpio L.	Scale carp	Scale carp	China	F	O	Ph
10	Cyprinus carpio L.	Koi carp	Koi carp	China	F	O	Ph
11	Labeo calbasu (Hamilton)	Orange fin labeo	Kalibaus/Baus/Kalia	Bangladesh	F	B	Pe
12	Labeo rohita (Hamilton)	Labeo	Rui/ Rohu	Bangladesh	F	P	Pe
13	Puntius conchonius (Hamilton)	Rosy barb	Kanchan punti	Bangladesh	F	H	Ph
14	Puntius gonionotus (Bloeker)	Silver barb	Thai Sarpunti	Thailand	F	H	Ph
15	Puntius sophore (Hamilton)	Spotted barb	Jatpunti/ Vadi punti	Bangladesh	F	O	Ph
16	Puntius ticto (Hamilton)	Tic-tac-toe barb	Til punti	Bangladesh	F	O	Ph
17	Puntius guganios (Hamilton)	Glass barb	Mola punti	Bangladesh	F	O	Ph
18	Puntius casuatis (Hamilton)	Kosusti barb	Kosuati	Bangladesh	F	O	Ph
19	Rohett coto (Hamilton)	Barb	Dhela/ Dipali	Bangladesh	F	O	Ph
20	Securicula gora (Hamilton)	Razorbellcy minnow	Gora chela	Bangladesh	F	O	Ph
21	Salmotomma bacia (Hamilton)	Large razorbellcy minnow	Katari	Bangladesh	F	O	Ph
22	Tor pullowora (Hamilton)	Mahascer	Mohashol	Bangladesh	F	B	Li
	Family 2: Characidae						
23	Serrasalmus nattereri (Kner)	Common piranha	Piranha	South America	F	C	Ph
	Family 3: Channidae						
24	Channa gachua (Hamilton)	Walking snakehead	Cheng/ Raga	Bangladesh	F	C	Gr
25	Channa marulius (Hamilton)	Great snakehead	Gozard/ Gajal	Bangladesh	F	C	Gr
26	Channa punctatus (Bloch)	Spotted snakehead	Taki/ Lata/ Okol	Bangladesh	F	C	Gr
27	Channa striatus (Bloch)	Striped snakehead	Shol	Bangladesh	F	C	Gr
	Family 4: Cichildae						
28	Oreochromis niloticus GIFT (Peters)	GIFT Tilapia	GIFT Tilapia	Africa	F & B	O	Mb
29	Nandus nandus (Hamilton)	Mud perch	Meni/ Veda	Bangladesh	F	C	Pl
30	Nandus nandus (Hamilton)	Mud perch	Meni/ Veda	Bangladesh	F	C	Pl

Table 1 Origin, habitat use and ecological classification of some collected fish species (n=78) of Khulna division.
No.	Scientific Name	Common Name	Habitat	Family	
31	Ompok pabda (Hamilton)	Butter catfish	Madhu pabda	Pl	
32	Ompok pabo (Hamilton)	Pabo catfish	Pabda	Pl	
33	Anabas oligolepis (Bloch)	Spotted perch	Thai koi	Pl	
34	Anabas testudineus (Bloch)	Climbing perch	Koi	Pl	
35	Colisa fasciata (Bleck & Schneider)	Giant gourami	Khailsha/ Khaila	Pl	
36	Colisa lalia (Hamilton)	Doarf gourami	Lal Khailsha/Boisa	Pl	
37	Ctenops nobilis McClelland	Frail gourami	Neftami	Pl	
38	Tetraodon cuccutus (Hamilton)	Freshwater puffer	Potka/ Tepa/ Kutkuitta	Pl	
39	Tarutia aculeata (Bloch)	Spotted spinyeel	Tengra	Pl	
40	Mastacembelus armatus (Lacèpède)	Stripped spinyeel	Sal baim/ Baim	Pl	
41	Mastacembelus pancalus (Hamilton)	Spinyeel	Guchi/ Pankal/ Chikra	Pl	
42	Batalio tengara (Hamilton)	Bagrid catfish	Tengra	Pl	
43	Mystus bleekeri (Day)	Day's mustus	Golsha tengra	Pl	
44	Mystus gulio (Hamilton)	Long whiskers catfish	Nona tengra	F & B	
45	Mystus tengara (Hamilton)	Bagrid catfish	Guitta tengra	Pl	
46	Sperata aor (Hamilton)	Long whiskered catfish	Ayre	Pl	
47	Chanda nama Hamilton	Glassy fish	Nama chanda	Pl	
48	Pseudeutropius atherinoides	Indian river shad	Chapila	Pl	
49	Ailia coila (Hamilton)	Gangetic ailia	Kajuli/ Baspata	Pl	
50	Eutropiichthys vacha (Hamilton)	Bacha	Bepha	Pl	
51	Pseudeutropius atherinoides (Bloch)	Indian potasi	Batasi	Pl	
52	Silonia silonida (Hamilton)	Silond catfish	Shilong	Pl	
53	Notopterus chitala (Hamilton)	Clown knife fish	Chitol	Pl	
54	Notopterus notopterus (Pallas)	Bronge feather back	Foli	Pl	
55	Apocypris bato (Hamilton)	Mud skipper	Chiring/ Rutta	Ps	
No.	Scientific Name	Common Name	Habitat	Trophic Guild	Reproductive Guild
-----	----------------	-------------	---------	---------------	---------------------
61	Awaous guamensis (Valenciennes)	Mud skipper	Budbaillya/Bele	Bangladesh	F C Ps
62	Glossogobius giuris (Hamilton)	Tank goby	Bele/ Bailla	Bangladesh	F C Ps
63	Lepidolophus guentzi (Hamilton)	Guntea loach	Gatum/ Puiya	Bangladesh	F C Ps
64	Claris batrachus (L.)	Walking catfish	Magur	Bangladesh	F D Pl
65	Heteropeynesides fossili (Bloch)	Stinging catfish	Shingi/ Shing	Bangladesh	F D Pl
66	Gobioides rubicundus (Hamilton)	Red chewa	Lal chewa	Bangladesh	F & B C Ps
67	Rhinomugil corsula (Hamilton)	Freshwater mullet	Khalla/Arwari/Ural	Bangladesh	F P Ph
68	Aplachius panchax (Hamilton)	Blue panchax	Kanpona/Choukani	Bangladesh	F L Ph
69	Eleutheronoma tetractylum (Shaw)	Four finger threadfin	Tailla	Bangladesh	B & M C Pe
70	Polynemous paradiseus L.	Paradise fish	Tapasi/ Muni	Bangladesh	F & B C Ps
71	Setipina taty (Valenciennes)	Scaly hairfin anchovy	Teli phasa	Bangladesh	B & M C Pl
72	Thryssa pusivus (Hamilton)	Oblique jaw thryssa	Ram phasa	Bangladesh	B & M C Pl
73	Toxotes chatareus (Hamilton)	Archer fish	Archer fish	Bangladesh	B & M C Pl
74	Johnius coitor (Hamilton)	Croaker	Koitor/Koitor poa	Bangladesh	B & M C Pl
75	Chaca chaca (Hamilton)	Squarehead catfish	Cheka/Gangainna	Bangladesh	F C Li
76	Hypostomus plecostomus	Black sucker fish	Black sucker fish	North America	F B Pl
77	Hyporhamphus guamardi (Valenciennes)	Half beak	Ek thuita	Bangladesh	F C Pl
78	Anguilla bengalensis	Gray & Hardwicke	Bambish	Bangladesh	F C Pl

B = Brackishwater, Be = Benthivore, Bn = Babble nester, C = Carnivore, D = Detritivore, F = Freshwater, Gr = Guarder, I = Insectivore, L = Larvivore, Li = Lithophil, M = Molluscivore, Mb = Mouth-brooder, O = Omnivore, P = Planktivore, Pa = Parasitic, Pe = Pelagophil, Ph = Phytophil, Pl = Phyto-lithophil, Ps = Psammophil, RG = Reproductive guild, TG = Trophic guild.
Discussion

Result of the present study indicate that aquatic habitats of Khulna division have high fish species diversity, which demand attention for their management. The present findings are on line with the works of Rahman and Akhter (2007) and Akhter and Rahman (2008). Information on trophic and reproductive guilds of the collected samples were determined to provide guildlines to develop strategies for conservation of the fishery resources. The concept of the ecological classification was developed to simplify analysis and to assist in the prediction of community change (Austen et al. 1994). Guild concept may be used to classify fish species according to their habitat preference, feeding habit, reproductive strategy, and tolerance of water quality degradation (Root, 1967). The studied fish samples displayed a wide range of feeding habits. They exhibit diverse trophic guilds from detritivores to secondary carnivores. However, it is rare for fish to specialise in one particular food category throughout the entire life cycle. There is often a correlation between morphological traits and trophic role because morphology determines how a fish can feed. Generally body shape, mouth morphology, teeth, gill rakers and the structure of the alimentary canal are used to determine pattern of diet selection. Presence of high percentage of carnivores and omnivores indicates a healthy trophic structure in the aquatic habitats of Khulna division.

Presence of high percentage of phytolithophils and phytophils indicating availability of the quality spawning habitats for the fishes in Khulna division, which is supported by Rahman and Akhter (2007) who reported that ichthyodiversity in the Khulna division is high. Reproductive processes are diverse in fish populations. Each group of fishes has their own reproductive strategies and tactics, which require different habitats and climatic conditions. Majority of fish in the world are seasonal breeders and each species has its own periods of breeding. Each species shows a series of regular temporal changes in its reproductive activity, which are repeated annually, and therefore, make up the annual reproductive cycle (Gibson 1978, Johannes 1978, Billard & Breton 1979). Spawning requirements are different in different groups of fishes and generally fish reproduce en masse. Therefore, it is recommended to undertake detailed studies on habitat use and ecological classification of fish species available in the Khulna division by exploring all possible fish habitats.

Conclusion

Present study indicates that the aquatic habitats of Khulna Division have high fish diversity. A healthy trophic structure in the aquatic habitats is also proved through the presence of high percentage of carnivores and omnivores. Also, the presence of phytolithophils and phytophils in high percentage indicate the availability of quality spawning habitats. However, more detailed study on the resource and its habitats is recommended. Attention should also be taken for maintaining proper management and conservation to keep hold the status of the fish resources in the Division.

Disclaimer: The views expressed in this paper represent those of the authors and not necessarily those of the Bangladesh Fisheries Research Institute (BFRI) or Khulna University.
References

Ahmed, N. 1944. The spawning habits and early stages in the development of the carp, *Labeo gonius* (Hamilton) with hints for distinguishing eggs, embryos and larvae of *Labeo gonius*, *Cirrhina mrigala* and *Wallagonia attu*. *Proceedings of the National Institute of Science, India*, 10(3):343-354.

Ahmed, N. 1955. Certain observations on the spawning of major carps in the River Halda of Chittagong (East Pakistan). *Journal of Zoological Society of India*, 7(1):101-103.

Akhter, J. N. and Rahman, M. K. 2008. Ichthyodiversity in the rivers and estuaries of Barisal Division, *Bangladesh. Bangladesh Journal of Training and Development*, (In press).

Alikunhi, K. H. and Sukumaran, K. K. 1964. Preliminary observations on the Chinese carps in India. *Proceedings of the Indian Academy of Science*, 60B (3):171-188.

Ameen, M. 1987. *Fisheries Resources and Opportunities in Freshwater Fish Culture in Bangladesh*. PAT, NDR-II/DANIDA, Dhanshish Mudrayan, Dhaka, 244 pp.

Anon. 1994. *Fisheries Studies and Pilot Project*: An annotated bibliography (1940-1992) on the River and Floodplain fisheries biology and production in Bangladesh and South Asia. Flood Action Plan-17, Final Report (Draft). Supporting Volume No. 26. Overseas Development Administration (ODA), UK, 94 pp.

Anon. 2000. *FAO Fishstat Plus*. [On-line] http://www.fao.org/fi/statist, Accessed on 15 December 2000.

Anon. 2007. *List of Freshwater, Marine, Diadromous and Exotic Fishes in Bangladesh*. FISHBASE, http://www.fishbase.org/Country/CountrySearchList.cf. Accessed on 18 March 2007.

Austen, D. J.; Bayley, P. B. and Menzel, B. W. 1994. Importance of the Guild Concept to Fisheries Research and Management. *Fishes*, 19(6):12-20.

Azadi, M. A. 1985. Spawning of commercial freshwater fish and brackish and marine water shrimps of Bangladesh. *Fisheries Information Bulletin*. Bangladesh Fisheries Resources Survey System, DoF, BGD/79/015, 2(2):1-74.

Balon, E. K. 1975. Reproductive guilds of fishes- a proposal and definition. *Journal of Fisheries Research Board of Canada, 32*(6):821-864.

Balon, E. K. 1981. Additions and amendments to the classification of reproductive styles in fishes. *Environmental Biology of Fishes*, 6(3-4):377-389.

Balon, E. K.; Momot, W. T. and Regier, H. A. 1977. Reproductive guilds of percids: results of the paleogeographical history and ecological succession. *Journal of the Fisheries Research Board of Canada*, 34:1910-1921.

Bhuiyan, A. L. 1964. *Fishes of Dacca*. Published by the Asiatic Society of Bangladesh. Dhaka. Publication No. 13, 148 pp.

Billard, R. and Breton, B. 1979. Rhythms of reproduction in teleost fish. In: Thorpe, J. E. (ed.), *Rhythmic Activity of Fishes*. Academic Press, NY, USA, pp. 31-53.

Day, F. E. 1878. *The Fishes of India: being a Natural History of the Fishes known to inhabit the Seas and Freshwater of India, Burma and Ceylon*. Reproduced in 1958 by William Dawson and Sons, London, UK. Vol. 1, 778 pp.

Day, F. E. and Buchanan (Hamilton), F. 1877. The fish and fisheries of Bengal. In: Hunter, W. W. (ed.), *A Statistical Account of Bengal*. Trabrier, London, United Kingdom. Vol. 20, 120 pp.

De Vries, A. L. 1980. Freezing resistance in Antarctic fishes. In: Holdgate, M. W. (ed.) *Antarctic Ecology I*. Academic Press, New York, USA. pp. 320-328.

Dewan, S. and Doha, S. 1979. Spawning and fecundity of certain pond fishes. *Bangladesh Journal of Agriculture*, 4(1):1-8.

Doha, S. 1973. Fishes of the districts of Mymensingh and Tangail. *Bangladesh Journal of Zoology*, 1(1):1-10.

Felts, R. A.; Ahmed, K. and Aktheruzzaman, M. (eds.). 1997. Small Indigenous Fish Culture in Bangladesh. *Proceedings of the National Workshop on Small Indigenous Fish Culture in Bangladesh*. Rajshahi University, 156 pp.

Gibson, R. N. 1978. Lunar and tidal rhythms in fish. In: J. E. Thorpe (ed.) *Rhythmic Activity of Fishes*. Academic Press, New York, pp. 201-213.

Goldstein, R. M. and Simon, T. P. 1999. Toward a United Definition of Guild Structure for Feeding Ecology of North American Freshwater Fishes. In: Simon, T. P. (ed.), *Assessing the Sustainability and
Rahman, M.K.; Akhter, J.N.; Mondal, S.; Mostafa, M. and Huq, K.A. 2008. Origin, Habitat and Ecological Classification of Some Bony Fishes Available in Khulna Division, Bangladesh. Khulna University Studies, 9(2): 281-290.

Biological Integrity of Water Resources Using Fish Communities. CRC Press LLC, Boca Raton, USA, pp. 123-220.

Hamilton, F. 1822. An account of the Fishes found in the River Ganges and its Branches. Archibald Constable and Co., Edinburgh and London, United Kingdom (Reprinted in 1981), 405 pp.

Hora, S. L. 1937. Geographical distribution of Indian freshwater fishes and its bearing on the probable land connector between India and the adjacent countries. Current Science, 7:351-356.

Hora, S. L. 1945. Analysis of factors influencing the spawning of major carps. Proceedings of the National Institute of Sciences, India, 11(3): 303-312.

Huda, K. M. N. and Rahman, M. 1983. Mosquito control potential of some indigenous fishes in Bangladesh. Bangladesh Journal of Zoology, 10(2):145-147.

Jayaram, K. C. 1977. Zoogeography of Indian freshwater fishes. Proceedings of the Indian Academy of Sciences, 86B(4):265-274.

Jayaram, K. C. 1981. The Freshwater Fishes of India, Pakistan, Bangladesh, Burma and Sri Lanka - A Handbook. Zoological Survey of India, Calcutta, 475 pp.

Jhingran, V. G. 1991. Fish and Fisheries of India. 3rd Edition. Hindustan Publishing Corporation, Delhi, India, 727 pp.

Jobling, M. 1995. Environmental Biology of Fishes. Fish and Fisheries Series 16. Chapman & Hall, London, 455 pp.

Johannes, R. E. 1978. Reproductive strategies of coastal marine fishes in the tropics. Environmental Biology of Fishes, 3: 65-84.

Jordan, D. S. and Evermann, B. W. 1917. The genera of fishes. Stanford, Stanford University, 576 pp.

Khan, H. 1924. Observations on the breeding habits of some freshwater fishes in the Punjab. Journal of Bombay Natural History Society, 29(4): 958-962.

Khan, H. 1934. Habits and habitats of food fishes in the Punjab. Journal of Bombay Natural History Society, 37(3):655-658.

Khanna, D. V. 1958. Observations on the spawning of major carps at a fish farm in the Punjab. Indian Journal of Fisheries, 5:283-290.

Kramer, D. L. 1978. Reproductive seasonality of the fishes of a tropical stream. Ecology, 59:976-985.

Lagler, K. F.; Bardach, J. E.; Miller, R. R. and Passino, D. R. M. 1977. Ichthyology. Second edition. John Wiley & Sons, New York, 506 pp.

Lowe-McConnell, R. M. 1987. Ecological Studies in Tropical Fish Communities. Cambridge University Press, Cambridge, UK, 252 pp.

Lyons, J.; Navarro-Perez, S.; Cochrane, P.A.; Santana, C. E. and Guzman-Arroyo, M. 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in West-Central Mexico. Conservation Biology, 9(3):569-584.

Nelson, J. S. 1994. Fishes of the World. 3rd edition., J. Wiley, New York, USA, 628 pp.

Rahman, A. K. A. 2005. Freshwater Fishes of Bangladesh. 2nd Edition. Zoological Society of Bangladesh, Dhaka, 394 pp.

Rahman, M. K. and Akhter, J. N. 2007. Ichthyo-diversity in the rivers of Bangladesh: A review. Journal of Taxonomy and Biodiversity Research, 1(1):53-58.

Rahman, M. K. and Akhter, J. N. 2008. Ichthyo-diversity in the rivers and estuaries of Khulna Division, Bangladesh. Journal of Taxonomy and Biodiversity Research, (Communicated).

Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37: 317-350.

Wootton, R. J. 1990. Ecology of Teleost Fishes. Fish and Fisheries Series 1. Chapman & Hall Ltd., London, UK, 455 pp.
Rahman, M.K.; Akhter, J.N.; Mondal, S.; Mostafa, M. and Huq, K.A. 2008. Origin, Habitat and Ecological Classification of Some Bony Fishes Available in Khulna Division, Bangladesh. *Khulna University Studies, 9*(2): 281-290.