Análisis sísmico comparativo de una estructura irregular torsionalmente flexible aplicando NSP, MPA, NLRHA

Comparative seismic analysis of a torsionally-flexible unsymmetric structure by applying NSP, MPA, NLRHA

C. Medina*, D. Galarza*

* Universidad Técnica de Ambato – Ambato, ECUADOR

Abstract

The applicability of nonlinear analysis methods: pushover (NSP) and multimodal pushover (MPA) is verified for torsionally – flexible structures whose natural vibration period is larger than 1sec. The results are confronted with nonlinear response history analysis (NLRHA). The procedure is applied to an irregular 10-story concrete framed structure, built in the 70's. A mathematical three-dimensional finite element-based model was developed using material properties based on (Mander, 1984) concrete model and Park (1975) steel model. Seismic hazard is established for the design basis earthquake with 10% probability of exceedance in 50 years; and, for 3 pair of ground motions properly matched and scaled to DBE. It was determined that for structures with 1sec or more natural vibration period, NSP underestimates the maximum displacement capacity, since it does not consider the contribution of higher vibration modes to the total response of the system. MPA fits more to NLRHA and is mainly applicable to regular framed buildings, since inconsistencies are generated when a considerable percentage of torsion occurs in translational vibration modes.

Keywords: Seismic performance; nonlinear analysis; NSP; MPA; NLRHA

Resumen

Se verifica la aplicabilidad de los métodos de análisis no lineal: pushover (NSP) y pushover multimodal (MPA) para estructuras torsionalmente flexibles cuyo período de vibración fundamental es mayor a 1s, confrontando los resultados con un análisis de historia de respuesta no lineal (NLRHA). El análisis se aplica a un edificio irregular en planta y elevación de 10 pisos porticado en concreto reforzado construido en los años 70’s. Se construyó un modelo matemático tridimensional basado en elementos finitos, utilizando propiedades no lineales de los materiales en base a los modelos constitutivos de Mander (1988) y Park (1975) para el concreto y acero respectivamente. La demanda se estableció para el sismo de diseño definido por NEC-SE-DS2015 cuya probabilidad de excedencia es de el 10% en 50 años; y para 3 pares de registros sísmicos propiamente seleccionados, ajustados y escalados al espectro de diseño. Se determinó que para estructuras de más de 1s de período de vibración el NSP subestima la capacidad de desplazamiento máximo, puesto que no considera el aporte de los modos de vibración superiores a la respuesta total del sistema. El MPA se ajusta más al NLRHA y es aplicable principalmente en estructuras regulares, pues se generan inconsistencias cuando se presenta un porcentaje de torsión considerable en modos de vibración translacionales.

Palabras clave: Desempeño sísmico; análisis no lineal; NSP; MPA; NLRHA

1. Introducción

Las edificaciones de hormigón armado construidas hace décadas son vulnerables debido a que responden al nivel de conocimiento, avance computacional y calidad de materiales de la época. Estas construcciones existen en grandes ciudades lo que hace urgente verificar el desempeño de estas estructuras ante eventos sísmicos (Aguiar, 2016) (Mouzzoun et al., 2013).

Es así que, para la evaluación de estructuras de edificación se tienen disponibles varios procedimientos de análisis inelásticos con debilidades y fortalezas cuya selección depende principalmente del nivel aceptado de incertidumbre y la cantidad de recursos disponibles (ATC-40, 1996). Entre los métodos de análisis se destacan análisis estático no lineal Pushover, análisis pushover multimodal y análisis no lineal de historia de respuesta.

El método pushover (NSP) es un eficiente procedimiento para evaluar la capacidad de una estructura que consiste en simplificarla en un modelo matemático de un grado de libertad, sometido a la aplicación incremental. Se verifica la aplicabilidad de los métodos de análisis no lineal: pushover (NSP) y pushover multimodal (MPA) para estructuras torsionalmente flexibles cuyo período de vibración fundamental es mayor a 1s, confrontando los resultados con un análisis de historia de respuesta no lineal (NLRHA). La demanda se estableció para el sismo de diseño definido por NEC-SE-DS2015 cuya probabilidad de excedencia es de el 10% en 50 años; y para 3 pares de registros sísmicos propiamente seleccionados, ajustados y escalados al espectro de diseño. Se determinó que para estructuras de más de 1s de período de vibración el NSP subestima la capacidad de desplazamiento máximo, puesto que no considera el aporte de los modos de vibración superiores a la respuesta total del sistema. El MPA se ajusta más al NLRHA y es aplicable principalmente en estructuras regulares, pues se generan inconsistencias cuando se presenta un porcentaje de torsión considerable en modos de vibración translacionales.

Fecha de Recepción: 10/12/2019
Fecha de Aceptación: 01/05/2020
PAG 257-274

Palabras clave: Desempeño sísmico; análisis no lineal; NSP; MPA; NLRHA

1 Autor de Correspondencia:
Universidad Técnica de Ambato – Ambato, ECUADOR
E-mail: cd.medina@uta.edu.ec
Por esta razón, dado que el comportamiento de estos edificios bajo cargas sísmicas no puede ser descrito solo en el primer modo de vibración, se podría considerar un análisis pushover multimodal (MPA) que toma en cuenta el aporte de modos de vibración superiores en la respuesta dinámica, sobre todo en estructuras de período de vibración natural mayor a 1 segundo (Campbell et al., 2010) (Campbell, 2008).

El MPA se fundamenta en que la respuesta máxima de la estructura elástica debido a su n modo de vibración puede ser estimado exactamente realizando un análisis pushover de la estructura, sujeta a cargas laterales distribuidas en la altura del edificio acorde a la forma modal del n modo \(\varphi_n \).

\[
s_n = m \ast \varphi_n \quad (1)
\]

La estructura es empujada hasta un desplazamiento en el techo \(u_{rno} \) determinado a partir de la deformación pico del n modo del sistema elástico de 1 grado de libertad.

\[
u_{rno} = f_n \ast \varphi_{rn} \ast D_n \quad (2)
\]

Luego, utilizando un proceso de combinación modal (ej. SRSS, CQC) se combinan las respuestas máximas de cada modo de vibración conduciendo al procedimiento del MPA (Chopra y Goel, 2001).

Esta metodología es ampliamente aplicada a estructuras cuyos modos de vibración superiores influyen significativamente en la respuesta dinámica. Sin embargo, el procedimiento se limita estructuras rígidas a torsión cuyos dos primeros modos de vibración son predominantemente traslacionales, ya que la respuesta estática de la estructura es cualitativamente similar al comportamiento dinámico, por lo tanto, se considera solo modos traslacionales; en tanto que, si aparece un porcentaje de torsión significativo en los modos traslacionales, la respuesta puede verse distorsionada (Chopra y Goel, 2003).

Es así como, el análisis historia de respuesta no lineal (NLRHA) es la alternativa que presenta mejores resultados de respuesta ante demandas sísmicas, pero por su complejidad y altos estándares, va más allá de aplicación práctica y es apropiado para temas de investigación y análisis de estructuras de especial importancia.

El método consiste en una sofisticada aproximación para examinar las demandas inelásticas producidas en una estructura por un conjunto de historias de aceleración del suelo (ASCE/SEI 41-17, 2017). La relación fuerza – deformación de cada elemento estructural sujeto a deformaciones cíclicas, ahora debe ajustarse a un modelo de histéresis. La curva de carga inicial es no lineal a mayores amplitudes de deformación, y las curvas de descarga difieren de la rama de carga inicial. Esto define el comportamiento local de los elementos, que analizados en conjunto dan como resultado la historia de respuesta global de la estructura para cada paso de tiempo (Chopra, 2016).

En este sentido el objetivo de la investigación es el de realizar un análisis sísmico comparativo de una estructura torsionalmente flexible y cuyo período de vibración es mayor a 1 segundo con el fin de verificar la aplicabilidad de los métodos de análisis no lineal pushover (NSP) y pushover multimodal (MPA) en comparación con el análisis no lineal de historia de respuesta (NLRHA).

2. Metodología

El análisis comparativo se aplica a un edificio porticado en hormigón armado de 10 pisos altos y un subsuelo. Presenta irregularidad en planta del tipo 2 esquinas entrantes excesivas lo cual la hace susceptible de ser torsionalmente flexible; e irregularidad en elevación del tipo 3 irregularidad geométrica vertical.

Para representarla se emplea un modelo matemático tridimensional basado en elementos finitos cuyos materiales simulan el comportamiento no lineal a través de sus modelos constitutivos. Para monitorear el comportamiento de los elementos estructurales se utilizó el modelo de plastificación concentrada en los sitios de esperada no linealidad basado en un modelo de fibras. En la (Figura 1) se muestra el modelo empleado.
2.1 Materiales Constitutivos: Hormigón

La resistencia del hormigón verificada en campo mediante ensayo no destructivo es de 28MPa. El modelo constitutivo utilizado corresponde al propuesto por (Mander et al., 1988), el cual considera la resistencia y ductilidad adicionales que el refuerzo de confinamiento proporciona al núcleo de hormigón. En cuanto a los criterios de aceptación, para el nivel de ocupación inmediata se estableció una deformación de 0.003 correspondiente al límite antes del desprendimiento del recubrimiento no confinado; para el nivel de seguridad de vida se estableció un valor cercano a la deformación correspondiente al esfuerzo máximo del concreto confinado; y para el nivel de prevención al colapso se limitó a 2 veces la deformación de seguridad de vida, previo a la fractura del núcleo de concreto confinado (Priestley et al., 2007). La (Figura 2) muestra el modelo empleado.
En el análisis no lineal dinámico se considera el modelo de Takeda 1970 mostrado en la (Figura 3), apropiado para materiales de naturaleza frágil dado que utiliza una curva histéresis degradada en la descarga a lo largo de los segmentos elásticos. Al cargar nuevamente, la curva sigue una línea secante a la curva de carga en la dirección opuesta. El punto objetivo de esta secante se produce a la máxima deformación que ocurre en esa dirección bajo los ciclos de carga previos. Esto resulta en una cantidad decreciente de disipación de energía con grandes deformaciones (Takeda et al., 1970).

![Figura 3. Modelo de histéresis del hormigón](image)

2.2 Materiales Constitutivos: Acero

El valor de la resistencia a la fluencia del acero transversal y longitudinal del edificio es de 280MPa debido a la época de construcción. Se empleó el modelo de comportamiento de (Park y Paulay, 1975) que considera el endurecimiento post fluencia del hormigón con tendencia parabólica hasta la rotura, mostrado en la (Figura 4). El límite de deformación para ocupación inmediata se estableció en 0.010 correspondiente al inicio del endurecimiento post fluencia; para el nivel de seguridad de vida se limitó a 0.020 que corresponde al inicio del posible pandeo en las varillas longitudinales; y para prevención de colapso, una deformación equivalente al 60% de la deformación de rotura.

En el análisis no lineal dinámico NLRHA se empleó un modelo de histéresis con endurecimiento cinemático, apropiado para materiales de naturaleza dúctil que permite disipar grandes cantidades de energía, el cual, en el proceso de carga y descarga, la curva sigue una trayectoria hecha de segmentos paralelos y de la misma longitud que los segmentos cargados previamente. El modelo se muestra en la (Figura 5).

![Figura 4. Modelo constitutivo del acero](image)
2.3 Modelos constitutivos: Secciones H.A.

La no-linealidad de las secciones se ha representado a través de un modelo de plastificación concentrada basado en fibras uniaxiales distribuidas en la sección transversal, cuyas constitutivas corresponden a las curvas de esfuerzo deformación y modelos de histéresis definidos previamente. De manera general se emplean 3 tipos de fibras: para el concreto confinado, para el concreto sin confinar y para el acero. El mallado consiste en nueve fibras para representar el recubrimiento de la sección, nueve fibras para representar el núcleo de concreto confinado y una fibra por cada barra de acero. La (Figura 6) ilustra un ejemplo del modelo de la sección de una columna utilizado en los análisis).
2.4 Análisis Estático No Lineal Pushover NSP

En el modelo se han considerado únicamente los elementos estructurales primarios que aportan al sistema estructural resistente a carga lateral, por lo que se han descartado gradas y ascensores.

El patron que se debe adoptar depende de las características dinámicas de la estructura, es así como, cuando el porcentaje de participación modal de la masa asociada al modo fundamental supera el 75% en la dirección de análisis, se puede distribuir la carga de acuerdo con los valores de cortante de piso obtenidos mediante el análisis estático; o en su defecto, la carga se puede distribuir de acuerdo con la forma modal asociada al modo de vibración fundamental en la dirección en análisis.

Dado que en este caso en el primer modo no se logra acumular el 75% de masa modal en ninguna de las direcciones, el patron adoptado se lo hace en función de la forma modal.

La demanda sísmica se la estima para el sismo de diseño acorde a (NEC-SE-DS, 2015), para una probabilidad de excedencia del 10% en 50 años con un período de retorno de 475 años. La estructura se sitúa sobre un suelo de rigidez media C, en una zona de peligro sísmico alto $PGA_{RDC} = 0.40 g$.

2.5 Análisis Multimodal Pushover MPA

Se realizó el análisis modal de la estructura con el fin de obtener los modos de vibración y porcentajes de participación de masa modal, que una vez analizados se agruparon según el sentido predominante de traslación.

La distribución espacial de las fuerzas sísmicas efectivas \mathbf{M}_l puede expandirse como una suma de la distribución de la fuerza de inercia modal de la siguiente forma:

$$\mathbf{M}_l(t) = \sum_{n=1}^{3N} \left(s_n^l \right) \mathbf{M}_n \phi_n$$

Se tomaron 4 modos de vibración para cada dirección ortogonal con la intención de excitar la mayor cantidad de masa modal; es así como, para el sentido de análisis X se agruparon los modos de vibración 2, 5, 8, 11; mientras que para el sentido Y se agruparon los modos 1, 4, 7, 10.

La (Tabla 1) muestra que, aunque en estos modos predomina la traslación, si se presenta cierto porcentaje de torsión, característica de una estructura torsionalmente flexible. Se observa que en el sentido Y se presenta mayor porcentaje de masa excitada en rotación.

Tabla 1. Factores de participación de masa modal

Modo	Período	ux	uy	rz	Direction
1	1.66	0.003	0.44	0.241	Y
2	1.56	0.592	0.014	0.07	X
3	0.57	0.082	0.01	0	X
4	0.55	0	0.021	0.073	Torsional
5	0.36	0.009	0.02	0.004	Y
6	0.34	0.022	0.011	0.002	X
7	0.32	0.002	0.003	0.024	Torsional
8	0.241	0.0072	0.0109	0.0031	Y
9	0.232	0.0105	0.0094	0.0019	X
10	0.222	0.0032	0.0008	0.0136	Torsional
En las (Figura 7) y (Figura 8) se muestran las formas modales de la estructura para cada dirección ortogonal utilizadas para el MPA.

Figura 7. Formas modales dirección X

Figura 8. Formas modales dirección Y
Con estas distribuciones de fuerzas se realiza el análisis pushover para cada modal de vibración. Cabe anotar que el análisis pushover 3D se limita a edificios rígidos a torsión en los cuales los dos primeros periodos de vibración son predominantemente translacionales. La respuesta estática es cualitativamente similar al comportamiento dinámico.

Como se pudo observar en la (Tabla 1) existe un cierto porcentaje de torsión en los dos primeros modos de vibración por lo que uno de los objetivos del estudio es determinar qué tan confiables son los resultados del MPA para estructuras torsionalmente flexibles.

La combinación modal utilizada para obtener la respuesta total corresponde a la raíz de la sumatoria de los cuadrados de la forma:

\[r_o \approx \left(\sum_{n=1}^{N} r_{no}^2 \right)^{1/2} \quad (4) \]

Esta regla proporciona excelentes estimaciones de la respuesta para estructuras con frecuencias naturales muy separadas (Chopra, 2016).

2.6 Análisis No Lineal de Historia de Respuesta NLRHA

Tres pares de registros sísmicos fueron utilizados para determinar la demanda de desplazamiento, de los cuales se tomó la respuesta máxima (ASCE/SEI 41-17, 2017). La selección se realizó en base a las características tectónicas del sitio de implantación de la estructura, la cual está asentada sobre un suelo rígido de alta densidad en un régimen de fallas inversas superficiales. Se tomó como referencia el sismo de Ambato (1949/8/5) Mw = 6.8, y profundidad < 15km (Instituto Geofísico: Escuela Politécnica Nacional, 2013).

Los registros que cumplen con las condiciones indicadas se muestran en la (Tabla 2) y en la (Figura 9).

Inicio / Evento	Northridge	San Fernando	Loma Prieta
Fecha	1994/01/17	1971/02/09	1989/10/17
Estación	Sylmar	Sylmar	Corralitos
Tipo de suelo	C	C	C
Distancia (km)	19.2	7.3	7.1
Mw	6.4	6.6	7.0
PGA (g)	1.53	1.251	0.64
Mecanismo de falla	Crustal	Crustal	Crustal
Profundidad (km)	19	9	18
2.7 Ajuste Espectral

Se realizó el ajuste al espectro objetivo en el dominio del tiempo dado que implica mayor precisión en la obtención de resultados. Este método ajusta las historias de aceleración en el dominio del tiempo añadiendo wavelets. Una wavelet es una función matemática que define una forma de onda de duración efectiva limitada que tiene un porcentaje de cero. Generalmente inicia en cero, crece y decrece nuevamente a cero. Mientras el procedimiento de ajuste espectral en el dominio del tiempo es generalmente más complicado que la aproximación

Figura 9. Registros de aceleración seleccionados
en el dominio de la frecuencia, este tiene buena convergencia y en la mayoría de los casos conserva el carácter no estacionario de la serie temporal de referencia (Al Atik y Abrahamson, 2010).

Los registros se escalaron de tal forma que el valor promedio de los espectros provenientes de la raíz cuadrada de la suma de los cuadrados de los espectros de los registros no se encuentre por debajo del espectro objetivo para períodos entre 0.2T y 1.5T (ASCE/SEI 41-17, 2017) (ASCE/SEI 41-17, 2017), que para el caso en estudio corresponde de 0.33 s – 2.5 s para el sentido X y 0.31 s – 2.35 s para el sentido Y.

El proceso de ajuste y escalado consta de dos partes. En primera instancia, se realizó el ajuste en el dominio del tiempo previamente mencionado. Sin embargo, en vista de que ciertas ordenadas espectrales del promedio del SRSS se encontraban aún por debajo del espectro objetivo, se procedió a aplicar valores de escala adicionales que se muestran en la (Tabla 3).

La (Figura 10) muestra el espectro objetivo y el espectro promedio de la raíz de la suma de los cuadrados SRSS de los pares de los registros, como resultado del proceso de ajuste y escalado spectral.

Tabla 3. Factores de escala para los registros sísmicos

Evento	Componente	Factor
Northridge	E-O	1.13
	N-S	1.13
San Fernando	E-O	1.14
	N-S	1.14
Loma Prieta	E-O	1.12
	N-S	1.12

Figura 10. Ajuste y escalado spectral
3. Resultados Y Discusión

3.1 Análisis Pushover

Las (Figura 11) y (Figura 12) muestran las curvas de capacidad de la estructura para las direcciones horizontales X e Y respectivamente. Se hace una comparativa entre la curva del NSP y las curvas del MPA para cada modo de vibración.

Se observa que el patrón de cargas considerado en el análisis pushover influye de gran manera en la rigidez con la que la estructura responde; es así como, mientras más alto es el modo de vibración, la rigidez de la estructura es mayor, pero su capacidad de desplazamiento es menor. Adicionalmente, se muestra que la curva de capacidad obtenida con el patrón de cargas para el 1er modo de vibración es muy similar a la obtenida con el patrón de cargas obtenido del método de fuerza lateral equivalente.

![Figura 11. Análisis pushover dirección X](image)

![Figura 12. Análisis pushover dirección Y](image)
3.2 Desplazamientos de piso

La (Tabla 4) muestra los resultados en desplazamientos en el sentido X para los tres tipos de análisis realizados.

Método	Despl. max X (m)	Despl. max Y (m)
NSP	0.1946	0.2283
MPA	0.2083	0.2591
NLRHA	0.2674	0.2219

Se desprende que en el sentido X, los desplazamientos obtenidos mediante MPA son similares a los obtenidos mediante NSP, con un error de apenas el -5.57%.

Sin embargo, aunque los resultados del MPA son los más cercanos al NLRHA el error alcanza el -22.87%, lo cual muestra la falencia del MPA y NSP aplicado a estructuras torsionalmente flexibles. En la (Figura 13) se muestra la diferencia de desplazamientos en todos los pisos.

Por otro lado, en el sentido Y de la estructura, los desplazamientos más ajustados al NLRHA se los obtiene mediante el NSP, con un error apenas del 2.9%. Cabe anotar que en este sentido de análisis la estructura presenta mayor irregularidad, por lo que los datos del MPA tienden a sobreestimar la capacidad de desplazamiento de la estructura. La (Figura 14) muestra los desplazamientos por piso para el sentido Y.
3.3 Derivas de piso

Las diferencias entre los 3 tipos de análisis son más notables en las derivas de piso. Por un lado, en la (Figura 15) se observa que en el sentido X al igual que en los desplazamientos, las derivas en todos los pisos son mucho mayores a las obtenidas mediante NSP y MPA, siendo el NSP el más aproximado. El error en la deriva máxima llega al -36.51%.

En el sentido Y la mayor demanda de desplazamiento fue obtenida mediante MPA. Sin embargo, se observa que la deriva máxima (piso 3) se la obtiene mediante NLRHA, lo cual indica que no siempre un mayor desplazamiento resulta en la obtención de mayores derivas (Figura 16).
3.4 Número de Modos para el MPA

En el análisis MPA el número de modos considerados, influye de manera significativa en la respuesta, puesto que los resultados se acercan más al NLRHA mientras mayor cantidad de masa modal se logre excitar.

Al considerar 1 modo para el sentido X se alcanza a excitar únicamente el 59.2% de masa modal, por lo que los resultados son tienden a ser imprecisos. Adicionalmente, se observa claramente en la (Figura 17) la influencia de modos de vibración superiores en la respuesta sobre todo de los últimos pisos.

Figura 16. Derivas en el CM dirección Y

Figura 17. Derivas de piso estimadas por MPA incluyendo 1,2,3 y 4 modos. Dirección X

Similares resultados se obtienen en el sentido Y, en el cual en el primer modo se acumula un 44% de masa modal, lo que hace necesario que se deban utilizar mayor número de modos de vibración para lograr mayor precisión (Figura 18).
3.5 Mecanismo de Daño

En cuanto al mecanismo de daño, en la (Figura 19) se muestra que mediante NLRHA, el daño se concentra en los pisos intermedios de la estructura (3er y 4to piso) lo cual gobierna el colapso de la estructura.

Sin embargo, también existe daño considerable en las columnas del último piso, las cuales sobrepasan el nivel de prevención de colapso. Esto es evidencia del efecto que tienen los modos de vibración superiores en estructuras con $T > 1s$.

Figura 18. Derivias de piso estimadas por MPA incluyendo 1,2,3 y 4 modos. Dirección Y

Figura 19. Ubicación de rótulas plásticas determinadas mediante NLRHA para el sismo de Loma Prieta
En el análisis MPA, se observa que para el modo fundamental el daño se concentra en los pisos intermedios al igual que en el NLRHA, mientras que los pisos superiores permanecen elásticos. Es por ello por lo que para lograr que estos pisos contribuyan a la respuesta, se requiere de la consideración de los modos 2, 3 y 4, en los cuales el daño se concentra en los pisos superiores. Los resultados se muestran en la (Figura 20).

Figura 20. Ubicación de rótulas plásticas determinadas mediante MPA para el 1er, 2do, 3er, y 4to modos

Finalmente, mediante NSP el daño únicamente se concentra en los pisos intermedios, permaneciendo elásticos el resto de los pisos, por lo que los resultados son muy alejados de lo reflejado por el NLRHA (Figura 21).
4. Conclusiones

Se comprueba que los resultados de desplazamiento obtenidos mediante NSP, no reflejan completamente la respuesta en desplazamientos de estructuras irregulares, cuya masa modal excitada en el primer modo de vibración es menor al 75%.

De igual manera, si bien el MPA es aplicable a estructuras cuyos modos de vibración superiores influyen considerablemente en la respuesta de desplazamientos, no es aplicable cuando la estructura es torsionalmente flexible, característica de estructuras irregulares. En todo caso esta metodología presenta menor error que NSP en comparación con NLRHA.

El desplazamiento máximo obtenido con el MPA es mayor al obtenido mediante NLRHA para el sentido Y. Esto se da debido a que en esta dirección la estructura presenta mayor irregularidad puesto que el porcentaje de masa modal excitada en torsión alcanza el 24.1% en el modo fundamental. En este sentido, los resultados en desplazamientos del MPA tienden a magnificarse mostrando una falsa capacidad de la estructura.

Se comprobó que, aunque la distribución de derivas en altura obtenida por los tres métodos es similar (Figuras 14) y (Figura 15), tanto NSP como MPA subestiman las derivas inelásticas máximas. Si bien en una de las direcciones el desplazamiento por MPA es mayor al NLRHA esto no garantiza que la deriva sea mayor.

El número de modos es influyente en el error que se tiene al determinar la respuesta mediante MPA. Se determinó que para lograr que la respuesta sea lo más cercano posible al NLRHA se consideren los 4 modos traslacionales en la dirección de análisis.

Por otro lado, al analizar el mecanismo de daño se estableció que los resultados obtenidos de la respuesta combinada del MPA incluyendo 4 modos de vibración, son muy similares a los resultados obtenidos mediante NLRHA. En el primer modo el daño se concentra en pisos intermedios, mientras que para modos superiores se aprecia el daño generado en los pisos superiores.

En tanto que, el mecanismo de daño obtenido mediante NSP no refleja el aporte de los pisos superiores en la respuesta, dado que estos permanecen elásticos.

En conclusión, en el caso de NSP los resultados tanto en desplazamientos como en el mecanismo de daño, pueden resultar imprecisos al tratarse de estructuras con T>1s, y en el caso de MPA se pierde precisión en la respuesta de desplazamientos al tratarse de estructuras irregulares, pero en cuanto al mecanismo de daño los resultados son precisos. Por esta razón en dichos casos los resultados deben ser corroborados mediante NLRHA.
5. Referencias

Aguiar, R. (2016). Análisis Sísmico por Desempeño. Quito: Universidad de las Fuerzas Armadas ESPE.

Al Atik, L.; Abrahamson, N. (2010). An Improved Method for Nonstationary Spectral Matching. Earthquake Spectra, 26(3), 601-617. doi:https://doi.org/10.1193/1.3459159

ASCE/SEI 41-17. (2017). Seismic evaluation and retrofit of existing buildings. Reston, VA: American Society of Civil Engineers.

ASCE/SEI 7-16. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers.

ATC-40. (1996). Seismic evaluation and retrofit of concrete buildings. Redwood City, CA: Applied Technology Council.

Balic, I.; Mihanovic, A.; Togrlic B. (2013). Target acceleration in multimodal pushover method for R/C frames. Gradevinar, 65 (1), 305-318. doi:https://doi.org/10.14256/JCE.799.2012

Boulanger, B.; Paulter, P.; Lamarche, C. (2013). Analysis of a damaged 12-storey frame-wall concrete building during the 2010 Haiti earthquake — Part II: Nonlinear numerical simulations. Canadian Journal of Civil Engineering, 40 (8), 803-814. doi:https://doi.org/10.1139/cjce-2012-0099

Campbell, J.; Norda, H.; Meskouris, K. (2010). Improved methods for multimodal pushover analysis. 14th European Conference on Earthquake Engineering. Ohrid.

Campbell, J. (2008). Procedimiento demanda-capacidad multimodal modificado. XXXIII Jornadas Sudamericanas de Ingeniería Estructural.

Chopra A. K.; Goel, R. (2003). A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Berkeley, CA: Earthquake Engineering Research Center.

Chopra, A. (2016). Dynamics of structures: Theory and Applications to Earthquake Engineering. Upper Saddle River: Pearson.

Chopra, A. K.; Goel, R. K. (2001). A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary evaluation. Berkeley, CA: Pacific Earthquake Engineering Research Center. Obtenido de https://digitalcommons.calpoly.edu/cenv_fac/55

Chopra, A.; Goel, R.; Chintanapakdee, C. (2004). Evaluation of a Modified MPA Procedure Assuming Higher Modes as Elastic to Estimate Seismic Demands. Earthquake Spectra, 20(3), 757-778.

FEMA 440. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures. Washington DC: Federal Emergency Management Agency.

Handana M.A.P.; Karolina, R.; Steven. (2018). Performance evaluation of existing building structure with pushover analysis. IOP Conference Series: Materials Science and Engineering, 309(1).

Instituto Geofísico: Escuela Politécnica Nacional. (2013). Terremoto del 5 de agosto de 1949. Quito: IGEPN.

Mander, J.; Priestley, M.; Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114 (8), 1804-1826.

Mouzzoun, M.; Moustachi, A.; Jalal, S. (2013). Seismic performance assessment of reinforced concrete buildings using pushover analysis. J. Mech. Civ. Eng., 5 (1), 44-49.

NEC-SE-DS. (2015). Norma Ecuatoriana de Construcción. Diseño Sismoresistente. Quito: MIDUVI.

Park, R.; Paulay, T. (1975). Reinforced Concrete Structures. Canada: John Wiley and Sons Inc.

Priestley, M.; Calvi, G.; Kowalsky, M. (2007). Displacement-Based Design of Structures. Pavia, Italia: Fondazione EUCENTRE.

Rana, R.; Jin, L.; Zekioglu, A. (2004). Pushover analysis of a 19 story concrete shear wall building. 13th World Conference on Earthquake Engineering.

Sobaih, M.; Ghazali, A. (2016). Seismic evaluation of reinforced concrete frames in the harsh environment using pushover analysis. Open Journal of Civil Engineering, 6(4), 685-696. doi:10.4236/ojce.2016.64055

Takeda, T.; Sozen, M.; Nielsen, N. (1970). Reinforced concrete response to simulated earthquakes. OHBAYASHI-GUMI Technical Research Report(5), 19-26.

Yu, Q.; Pugliesi, R.; Allen, M.; Bischoff, C. (2004). Assessment of modal pushover analysis procedure and its application to seismic evaluation of existing buildings. 13th World Conference on Earthquake Engineering.