Associations between vitamin D receptor genetic variants and tuberculosis: a meta-analysis

Xun Xu and Minghao Shen

Abstract
We performed a meta-analysis to evaluate potential associations between vitamin D receptor (VDR) genetic variants and tuberculosis (TB). Systematic literature research was conducted in PubMed, Web of Science, and Embase. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) to estimate strength of associations in all possible genetic models, and P values ≤ 0.05 were considered to be statistically significant. In total, 42 studies were enrolled for analyses. Pooled overall analyses suggested that VDR rs1544410 (dominant model: $P = 0.02$; allele model: $P = 0.03$) and rs731236 (dominant model: $P = 0.04$; recessive model: $P = 0.02$; allele model: $P = 0.01$) variants were significantly associated with TB. Further subgroup analyses by ethnicity revealed that rs1544410 (dominant and allele models) and rs731236 (dominant, recessive, and allele models) variants were both significantly associated with TB in South Asians. When we stratified data by type of disease, positive results were detected for rs7975232 variant in EPTB (dominant, recessive, over-dominant, and allele models) subgroup, and for rs2228570 variant in PTB (dominant, recessive, and allele models) and EPTB (dominant, recessive, over-dominant, and allele models) subgroups. Our meta-analysis supported that rs7975232, rs1544410, rs2228570, and rs731236 variants might serve as genetic biomarkers of certain types of TB.

Keywords
Vitamin D receptor, gene variants, tuberculosis, pulmonary tuberculosis, extrapulmonary tuberculosis, meta-analysis

Date Received: 20 January 2019; revised 27 February 2019; accepted: 4 March 2019

Introduction
Tuberculosis (TB) is a commonly seen chronic infectious disorder which includes pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB). In spite of rapid advancements achieved in early diagnosis and pharmacological therapy over the past few decades, TB remains a serious public health problem. According to a recent investigation, over 30% of the general population is infected with Mycobacterium tuberculosis (MTB), and around 5–10% of these infected individuals will eventually develop active TB. The course of MTB infection depends on a complex interaction of pathogen, host, and environmental factors, and the fact that only a small portion of infected individuals finally develop active TB suggests that host genetic background may play a crucial role in its development.3,4

Recently, it became evident that the vitamin D metabolic pathway might be involved in the pathogenesis of TB. First, previous epidemiological investigations showed that vitamin D deficiency was much more prevalent in patients with TB, and the serum level of vitamin D was inversely correlated with disease severity. Second, several experimental studies demonstrated that vitamin D could activate macrophages and promote elimination of MTB. It is well acknowledged that vitamin D exerts its biological functions by binding with vitamin D receptor (VDR). Therefore, it is possible that VDR variants, which may result in diminished function of vitamin D, might also be involved in the development of TB.

Department of Infectious Diseases, Yu Yao People’s Hospital, Yuyao, China

Corresponding author:
Minghao Shen, Department of Infectious Diseases, Yu Yao People’s Hospital, No. 800 Chengdong Road, Yuyao 315400, Zhejiang, China. Email: shenminghao68@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
To date, numerous studies already investigated potential associations between VDR variants and TB. But the results of these studies were not consistent. Thus, we performed the present meta-analysis to obtain a more conclusive result.

Materials and methods

Literature search and inclusion criteria

This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We searched electronic databases and obtained a total of 370 records. After removing duplicates, 362 records remained. Of these, 275 were excluded after reading titles and abstracts. We assessed 87 articles for eligibility, excluding 45 articles due to various reasons: reviews/comments/letters (27), incomplete data (9), and no control (9). In total, 42 studies were included in the qualitative synthesis (systematic review) and 42 studies were included in the quantitative synthesis (meta-analysis).

Figure 1. PRISMA diagram for the selection of studies of the present meta-analysis.
Table 1. The characteristics of included studies.

First author, year	Country	Ethnicity	Type of disease	Sample size	Genotype distribution	P Value for HWE	NOS score	
Alagarasu, 2009	India	South Asian	PTB	185/146	AA/AC/CC	0.096	7	
Babb, 2007	South Africa	African	PTB	249/352	101/108/40	0.914	7	
Bornman, 2004	UK	African	PTB	343/634	152/153/28	0.762	8	
Devi, 2018	India	South Asian	PTB	169/227	50/83/36	0.225	8	
Fernández-Mestre, 2015	Venezuela	African	PTB	89/101	27/42/20	0.062	7	
Apal rs7975232	India	South Asian	PTB	179/146	42/73/64	0.077	7	
Alagarasu, 2009	India	South Asian	PTB	187/144	116/173/23	0.012	7	
Babb, 2007	South Africa	African	PTB	248/352	132/103/13	0.934	7	
(continued)								
First author, year	Country	Ethnicity	Type of disease	Sample size	Genotype distribution	P Value for HWE	NOS score	
-------------------	---------	-----------	----------------	-------------	-----------------------	----------------	-----------	
Banoei, 2010	Iran	South Asian	PTB	60/62	30/21/9	0.938	8	
Bornman, 2004	UK	African	PTB	416/718	258/138/20	0.893	8	
Devi, 2018	India	South Asian	PTB	169/227	59/106/4	0.865	8	
Fernández-Mestre, 2015	Venezuela	African	PTB	93/102	34/47/12	0.058	7	
Jafari, 2016	Iran	South Asian	PTB	96/121	41/50/5	0.018	7	
Jin, 2017	China	East Asian	PTB	180/100	51/104/25	0.104	8	
Joshi, 2014	India	South Asian	PTB	110/115	51/46/13	0.266	8	
Kang, 2011	Korea	East Asian	PTB	103/105	30/58/15	0.124	8	
Lee, 2016	Taiwan	East Asian	PTB	198/170	44/104/50	0.634	8	
Lombard, 2006	South Africa	African	PTB	95/117	62/30/3	0.373	7	
Medapati, 2017	India	South Asian	PTB	89/83	5/76/8	<0.001	7	
Merza, 2009	Iran	South Asian	PTB	117/60	67/46/4	0.042	7	
Olesen, 2007	Taiwan	East Asian	PTB	435/416	288/128/19	0.273	7	
Vidyarani, 2009	India	South Asian	PTB	40/49	23/14/3	0.003	8	
Wang, 2017	China	East Asian	EPTB	150/175	75/53/22	0.289	8	
Wilbur, 2007	USA	African	EPTB	91/926	64/26/1	0.388	7	
Wilkinson, 2000	USA	South Asian	PTB	91/116	52/3/16	0.418	8	
Wu, 2015	China	East Asian	EPTB	151/453	57/70/4	0.277	7	
Zhang, 2018	China	East Asian	EPTB	110/102	51/43/16	0.433	7	
Zhang, 2018	China	East Asian	EPTB	180/59	21/80/79	0.294	8	
TaqI rs731236 AA/AG/GG	Alagarasu, 2009	India	South Asian	PTB	184/146	71/80/33	0.960	7
Ates, 2011	Turkey	Caucasian	EPTB	39/120	49/65/14	0.766	7	
Babb, 2007	South Africa	African	PTB	249/356	136/94/99	0.442	7	
Banneo, 2010	Iran	South Asian	PTB	60/62	8/33/19	0.829	8	
Bellamy, 2000	UK	African	PTB	408/414	204/177/27	0.460	7	
Bornman, 2004	UK	African	PTB	343/634	174/132/27	0.864	8	
Delgado, 2002	USA	East Asian	PTB	358/106	325/30/3	0.610	7	
Devi, 2018	India	South Asian	PTB	169/227	86/73/10	0.143	8	
Fernández-Mestre, 2015	Venezuela	African	PTB	86/97	51/33/2	0.053	7	
Fitness, 2004	UK	African	PTB	397/672	261/118/18	0.279	7	
Harishankar, 2016	India	South Asian	PTB	90/89	36/39/15	0.805	7	
Jafari, 2016	Iran	South Asian	PTB	96/120	38/46/12	0.063	7	
Kang, 2011	Korea	East Asian	PTB	149/94	134/14/1	0.133	8	
Lee, 2016	Taiwan	East Asian	PTB	198/170	186/12/0	0.715	8	
Lombard, 2006	South Africa	African	PTB	95/117	56/33/6	0.013	7	
Medapati, 2017	India	South Asian	PTB	91/85	27/56/8	<0.001	7	
Olesen, 2007	Ghana	African	PTB	320/345	150/145/25	0.913	8	
Panwar, 2016	India	South Asian	PTB	106/106	66/28/12	0.122	8	
Panwar, 2016	India	South Asian	EPTB	106/106	58/34/14	0.122	8	
Rashedi, 2014	Iran	South Asian	TB	84/90	44/33/7	0.388	8	

(continued)
Potentially relevant literature published before January 2019 was retrieved from PubMed, Web of Science, and Embase using the following searching strategy: (vitamin D receptor OR VDR) AND (polymorphism OR variant OR mutation OR genotype OR allele) AND (tuberculosis OR TB). We also checked the references of enrolled articles to identify other potentially related studies.

To test the research hypothesis of this meta-analysis, included studies must meet all the following criteria: (1) case-control study on associations between VDR variants and TB; (2) provide genotypic/allelic frequency of investigated VDR variants in cases and controls; (3) full text in English available. Studies were excluded if one of the following criteria was fulfilled: (1) not relevant to VDR variants and TB; (2) case reports or case series; (3) abstracts, reviews, comments, letters, and conference presentations. For repeated reports, we only included the study with the largest sample size for analyses.

Data extraction and quality assessment

We extracted following data from included studies: (1) the name of the first author; (2) publication time; (3) country and ethnicity; (4) sample size; and (5) genotypic/allelic distribution of VDR variants in cases and controls. The P value of the Hardy–Weinberg equilibrium (HWE) was also calculated. When necessary, we wrote to the corresponding authors for extra information. We used the Newcastle–Ottawa scale (NOS) to assess the quality of eligible studies. This scale has a score range of 0–9, and studies with a score of more than 7 were thought to be of high quality. Data extraction and quality assessment were performed by two independent reviewers. Any disagreement between two reviewers was solved by discussion until a consensus was reached.

Statistical analyses

We used Review Manager Version 5.3.3 (The Cochrane Collaboration, Software Update) to conduct statistical analyses. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) to estimate strength of associations in all possible genetic models, and P values ≤ 0.05 were considered to be statistically significant. Q test and I² statistic were employed to assess between-study heterogeneities. If the P value of Q test was less than 0.1 or I² was greater than 50%, random-effect models (REMs) were used to pool the data. Otherwise, fixed-effect models (FEMs) were applied for synthetic analyses. Subgroup analyses by ethnicity of participants and type of disease were performed. Stabilities of synthetic results were evaluated with sensitivity analyses, and publication biases were evaluated with funnel plots.

Results

Characteristics of included studies

We found 370 potentially relevant articles. Among these articles, 42 eligible studies were finally included for pooled analyses (see Figure 1). The NOS score of eligible articles ranged from 7 to 8, which indicated that all
Table 2. Results of overall and subgroup analyses.

Polymorphisms	Population	Sample size	Dominant comparison	Recessive comparison	Over-dominant comparison	Allele comparison
			P Value OR (95% CI)	P Value OR (95% CI)	P Value OR (95% CI)	P Value OR (95% CI)
Apal rs7975232	Overall	3893/4873	0.20 0.88 (0.73–1.07)	0.85 1.01 (0.88–1.16)	0.23 1.09 (0.94–1.27)	0.14 0.89 (0.77–1.04)
	South Asian	1653/2126	0.10 0.75 (0.54–1.06)	0.17 1.16 (0.94–1.42)	0.12 1.24 (0.95–1.61)	0.06 0.78 (0.60–1.01)
	East Asian	378/229	0.47 0.88 (0.63–1.24)	0.46 1.26 (0.68–2.34)	0.75 1.06 (0.75–1.50)	0.37 0.88 (0.68–1.16)
	African	1862/2518	0.46 1.05 (0.93–1.18)	0.20 0.88 (0.72–1.07)	0.94 1.00 (0.89–1.14)	0.25 1.06 (0.96–1.16)
	PTB	3509/4444	0.65 0.98 (0.89–1.07)	0.43 1.06 (0.92–1.23)	0.35 1.05 (0.95–1.15)	0.97 1.00 (0.93–1.07)
	EPTB	300/339	**0.008 0.33 (0.15–0.75)**	0.09 2.64 (0.85–8.17)	**0.007 2.34 (1.26–4.34)**	**0.03 0.39 (0.17–0.91)**
BsmI rs1544410	Overall	4206/4763	**0.02 0.79 (0.65–0.96)**	0.82 1.03 (0.81–1.30)	0.09 1.18 (0.97–1.43)	**0.03 0.86 (0.75–0.99)**
	South Asian	2447/2733	**0.01 0.70 (0.53–0.92)**	0.71 1.05 (0.81–1.37)	0.07 1.31 (0.98–1.75)	**0.02 0.81 (0.68–0.96)**
	East Asian	528/312	0.29 0.78 (0.49–1.23)	0.59 1.56 (0.32–7.64)	0.19 0.73 (0.45–1.17)	0.43 0.84 (0.54–1.30)
	African	1103/1638	0.42 1.07 (0.91–1.25)	0.06 0.74 (0.55–1.01)	0.85 1.02 (0.87–1.19)	0.15 1.10 (0.97–1.24)
	PTB	3930/4490	0.06 0.83 (0.68–1.01)	0.88 1.02 (0.79–1.30)	0.16 1.16 (0.94–1.43)	0.11 0.89 (0.77–1.03)
Fold rs2228570	Overall	5378/6494	0.35 0.93 (0.79–1.09)	0.23 1.16 (0.91–1.50)	0.67 1.03 (0.90–1.17)	0.22 0.91 (0.79–1.05)
	South Asian	2419/2795	0.18 0.86 (0.69–1.07)	0.15 1.40 (0.89–2.20)	0.50 1.08 (0.86–1.34)	0.13 0.88 (0.74–1.04)
	East Asian	892/1038	0.62 0.85 (0.45–1.62)	0.92 1.03 (0.59–1.79)	0.73 1.05 (0.79–1.40)	0.78 0.93 (0.59–1.49)
	African	1739/2380	0.66 0.94 (0.70–1.25)	0.56 1.04 (0.91–1.18)	0.70 0.97 (0.85–1.11)	0.56 0.90 (0.65–1.27)
	PTB	4842/5970	**0.03 0.84 (0.72–0.98)**	<0.0001 2.39 (1.73–3.30)	**0.007 0.65 (0.47–0.89)**	<0.0001 0.51 (0.40–0.64)
TaqI rs731236	Overall	6550/7557	**0.04 0.85 (0.73–1.00)**	**0.02 1.18 (1.05–1.32)**	0.39 1.06 (0.93–1.20)	**0.01 0.84 (0.74–0.97)**
	South Asian	2924/2938	**0.002 0.68 (0.53–0.87)**	**0.004 1.79 (1.20–2.65)**	0.07 1.22 (0.99–1.51)	**0.0005 0.69 (0.55–0.85)**
	East Asian	1036/882	0.78 0.82 (0.21–3.26)	0.13 1.29 (0.92–1.81)	0.12 0.76 (0.54–1.07)	0.16 0.79 (0.57–1.10)
	African	2692/3757	0.19 1.07 (0.97–1.18)	0.79 0.96 (0.69–1.32)	0.40 0.96 (0.86–1.06)	0.50 1.04 (0.92–1.17)
	PTB	6038/7049	0.21 0.91 (0.79–1.05)	0.05 1.35 (1.00–1.82)	0.68 0.98 (0.91–1.06)	0.08 0.89 (0.78–1.01)
	EPTB	300/338	0.07 0.40 (0.15–0.80)	0.09 2.91 (0.85–9.98)	0.10 2.00 (0.89–4.52)	0.07 0.42 (0.16–1.08)

OR, odds ratio; CI, confidence interval; NA, not available; PTB, pulmonary tuberculosis; EPTB, extrapulmonary tuberculosis.

The values in bold indicate that there are statistically significant differences between cases and controls.
included studies were of high quality. Baseline characteristics of included studies are summarized in Table 1. Overall and subgroup analyses

Pooled overall analyses suggested that VDR rs1544410 (dominant model: $P = 0.02$, OR = 0.79, 95% CI 0.65–0.96, $I^2 = 71\%$, REM; allele model: $P = 0.03$, OR = 0.86, 95% CI 0.75–0.99, $I^2 = 70\%$, REM) and rs731236 (dominant model: $P = 0.04$, OR = 0.85, 95% CI 0.73–1.00, $I^2 = 74\%$, REM; recessive model: $P = 0.02$, OR = 1.38, 95% CI 1.05–1.82, $I^2 = 69\%$, REM; allele model: $P = 0.01$, OR = 0.84, 95% CI 0.74–0.97, $I^2 = 79\%$, REM) variants were both significantly associated with TB.

Further subgroup analyses by ethnicity revealed that rs1544410 (dominant and allele models) and rs731236 (dominant, recessive, and allele models) variants were both significantly associated with TB in South Asians. When we stratified data by type of disease, positive results were detected for rs7975232 variant in EPTB (dominant, recessive, over-dominant, and allele models) subgroup, and for rs2228570 variant in PTB (dominant, recessive and allele models) and EPTB (dominant, recessive, over-dominant, and allele models) subgroups. No any other positive findings were observed in overall and subgroup analyses (see Table 2 and Supplemental Figure 1).

Sensitivity analyses

We performed sensitivity analyses to test stabilities of pooled results by excluding studies that violated HWE. No any altered results were observed in overall and subgroup comparisons, which indicated that our findings were statistically stable.

Publication biases

We used funnel plots to assess publication biases. We did not find obvious asymmetry of funnel plots in any comparisons, which suggested that our findings were unlikely to be impacted by severe publication biases.

Discussion

To the best of our knowledge, this is so far the most comprehensive meta-analysis on roles of VDR variants in TB, and our pooled analyses suggested that VDR rs7975232, rs1544410, rs2228570, and rs731236 variants were all significantly associated with certain types of TB.

There are several points that need to be addressed about this meta-analysis. First, although the investigated VDR variants were intensively analyzed with regard to their potential associations with TB, the functional significances of these variants were still undetermined, and future investigations still need to explore the underlying molecular mechanisms of our positive findings. Second, the pathogenic mechanism of TB is highly complex, and therefore it is unlikely that a single genetic variant could significantly contribute to their development. So to better illustrate potential associations of certain genetic variants with TB, we strongly recommend further studies to perform haplotype analyses and explore potential gene-gene interactions.

As with all meta-analysis, this study certainly has some limitations. First, our results were based on unadjusted analyses, and we have to admit that lack of further adjusted analyses for potential confounding factors might impact the reliability of our findings. Second, associations between VDR variants and TB might also be modified by gene–gene and gene–environmental interactions. However, most eligible studies ignore these potential interactions, which impeded us to perform relevant analyses accordingly. Third, only retrospective case-control studies were included in this meta-analysis, and thus direct causal relation between investigated variants and TB could not be established. On account of above mentioned limitations, our findings should be cautiously interpreted.

In conclusion, our meta-analysis suggested that VDR rs7975232, rs1544410, rs2228570, and rs731236 variants might serve as genetic biomarkers of certain types of TB. However, further well-designed studies are still warranted to confirm our findings. Moreover, future investigations also need to explore potential roles of other VDR variants in the development of TB.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Minghao Shen http://orcid.org/0000-0001-6892-3221

Supplemental material

Supplemental material is available for this article online.
References
1. Sgaragli G and Frosini M. Human tuberculosis I. Epidemiology, diagnosis and pathogenetic mechanisms.
Curr Med Chem 2016; 23: 2836–2873.
2. Trébucq A and Schwoebel V. Numbers of tuberculosis cases: dreams and reality. Int J Tuberc Lung Dis 2016; 20: 1288–1292.
3. Abel L and Casanova JL. Genetic predisposition to clinical tuberculosis: bridging the gap between simple and complex inheritance. Am J Hum Genet 2000; 67: 274–277.
4. O’Garra A, Redford PS, McNab FW, et al. The immune response in tuberculosis. Annu Rev Immunol 2013; 31: 475–527.
5. Gou X, Pan L, Tang F, et al. The association between vitamin D status and tuberculosis in children: a meta-analysis. Medicine 2018; 97: e12179.
6. Brighenti S, Bergman P and Martineau AR. Vitamin D and tuberculosis: where next? J Intern Med Epub ahead of print (27 May 2018). DOI: 10.1111/joim.12777.
7. Joo MH, Han MA, Park SM, et al. Vitamin D deficiency among adults with history of pulmonary tuberculosis in Korea based on a nationwide survey. Int J Environ Res Public Health 2017; 14: E399.
8. Sassi F, Tamone C and D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients 2018; 10: E1656.
9. Kim EW, Teles RMB, Haile S, et al. Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. PLoS Negl Trop Dis 2018; 12: e0006608.
10. Vanherwegen AS, Gysemans C and Mathieu C. Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin North Am 2017; 46: 1061–1094.
11. Acen EL, Worodria W, Mulamba P, et al. The frequency distribution of vitamin D receptor fok I gene polymorphism among Ugandan pulmonary TB patients. F1000Research, 29 July 2016; 5. 10.12688/f1000research.9109.1.
12. Alagarasu K, Selvaraj P, Swaminathan S, et al. 5’ Regulatory and 3’ untranslated region polymorphisms of vitamin D receptor gene in south Indian HIV and HIV-TB patients. J Clin Immunol 2009; 29: 196–204.
13. Ates O, Dolek B, Dalyan L, et al. The association between BsmI variant of vitamin D receptor gene and susceptibility to tuberculosis. Mol Biol Rep 2011; 38: 2633–2636.
14. Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis 2007; 87: 295–302.
15. Banoei MM, Mirsaedi MS, Houshmand M, et al. Vitamin D receptor homozgyote mutant tt and bb are associated with susceptibility to pulmonary tuberculosis in the Iranian population. Int J Infect Dis 2010; 14: e84–e85.
16. Bellamy R. Identifying genetic susceptibility factors for tuberculosis in Africans: a combined approach using a candidate gene study and a genome-wide screen. Clin Sci 2000; 98: 245–250.
17. Bornlman L, Campbell SJ, Fielding K, et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study. J Infect Dis 2004; 190: 1631–1641.
18. Delgado JC, Baena A, Thim S, et al. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002; 186: 1463–1468.
19. Devi KR, Mukherjee K, Chelleng PK, et al. Association of VDR gene polymorphisms and 22 bp deletions in the promoter region of TLR2A22 (-196-174) with increased risk of pulmonary tuberculosis: a case-control study in tea garden communities of Assam. J Clin Lab Anal 2018; 32: e22562.
20. Fernández-Mestre M, Villasmil Á, Takiff H, et al. NRAMP1 and VDR gene polymorphisms in susceptibility to tuberculosis in Venezuelan population. Dis Markers 2015; 2015: 860628.
21. Fitness J, Floyd S, Warndorff DK, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004; 71: 341–349.
22. Harishankar M and Selvaraj P. Regulatory role of Cdx-2 and Taq I polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis. Hum Immunol 2016; 77: 498–505.
23. Hu Q, Chen Z, Liang G, et al. Vitamin D receptor gene associations with pulmonary tuberculosis in a Tibetan Chinese population. BMC Infect Dis 2016; 16: 469.
24. Jafari M, Nasiri MR, Sanaei R, et al. The NRAMP1, VDR, TNF-α, ICAM1, TLR2 and TLR4 gene polymorphisms in Iranian patients with pulmonary tuberculosis: a case-control study. Infect Genet Evol 2016; 39: 92–98.
25. Jin W, Du R and Cao T. Association of vitamin D with its receptor genetic polymorphism site FokI in newly diagnosed pulmonary tuberculosis. Clin Lung J 2017; 22: 1655–1658.
26. Joshi L, Ponnana M, Pennetsa SR, et al. Serum vitamin D levels and VDR polymorphisms (BsmI and FokI) in patients and their household contacts susceptible to tuberculosis. Scand J Immunol 2014; 79: 113–119.
27. Kang TJ, Jin SH, Yeum CE, et al. Vitamin D receptor gene TaqI, BsmI and FokI polymorphisms in Korean patients with tuberculosis. Immune Netw 2011; 11: 253–257.
28. Lee SW, Chuang TY, Huang HH, et al. VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population. J Microbiol Immunol Infect 2016; 49: 783–787.
29. Lombard Z, Dalton DL, Venter PA, et al. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 2006; 67: 643–654.
30. Medapati RV, Suvvari S, Godi S, et al. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: a case-control study. BMC Pulm Med 2017; 17: 89.
31. Merza M, Farnia P, Anoosheh S, et al. The NRAMP1, VDR and TNF-alpha gene polymorphisms in Iranian...
tuberculosis patients: the study on host susceptibility. *Braz J Infect Dis* 2009; 13: 252–256.

32. Olesen R, Wejse C, Velez DR, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. *Genes Immun* 2007; 8: 456–467.

33. Panwar A, Garg RK, Malhotra HS, et al. 25-Hydroxy vitamin D, vitamin D receptor and Toll-like receptor 2 polymorphisms in spinal tuberculosis: a case-control study. *Medicine* 2016; 95: e3418.

34. Rashedi J, Asgharzadeh M, Moaddab SR, et al. Vitamin D receptor gene polymorphism and vitamin D plasma concentration: correlation with susceptibility to tuberculosis. *Adv Pharm Bull* 2014; 4: 607–611.

35. Rathored J, Sharma SK, Singh B, et al. Risk and outcome of multidrug-resistant tuberculosis: vitamin D receptor polymorphisms and serum 25(OH)D. *Int J Tuberc Lung Dis* 2012; 16: 1522–1528.

36. Rizvi I, Garg RK, Jain A, et al. Vitamin D status, vitamin D receptor and Toll like receptor-2 polymorphisms in tuberculosis meningitis: a case-control study. *Infection* 2016; 44: 633–640.

37. Roth DE, Soto G, Arenas F, et al. Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. *J Infect Dis* 2004; 190: 920–927.

38. Salimi S, Farajian-Mashhadi F, Alavi-Naini R, et al. Association between vitamin D receptor polymorphisms and haplotypes with pulmonary tuberculosis. *Biomed Rep* 2015; 3: 189–194.

39. Selvaraj P, Kurian SM, Chandra G, et al. Vitamin D receptor gene variants of BsmI, ApaI, TaqI, and FokI polymorphisms in spinal tuberculosis. *Clin Genet* 2004; 65: 73–76.

40. Selvaraj P, Vidyarani M, Alagarasu K, et al. Regulatory role of promoter and 3’ UTR variants of vitamin D receptor gene on cytokine response in pulmonary tuberculosis. *J Clin Immunol* 2008; 28: 306–313.

41. Selvaraj P, Prabhu Anand S, Harishankar M, et al. Plasma 1,25 dihydroxy vitamin D3 level and expression of vitamin d receptor and cathelicidin in pulmonary tuberculosis. *J Clin Immunol* 2009; 29: 470–478.

42. Sharma PR, Singh S, Jena M, et al. Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. *Infect Genet Evol* 2011; 11: 1456–1461.

43. Sinaga BY, Amin M, Siregar Y, et al. Correlation between Vitamin D receptor gene FOKI and BSMI polymorphisms and the susceptibility to pulmonary tuberculosis in an Indonesian Batak-ethnic population. *Acta Med Indones* 2014; 46: 275–282.

44. Singh A, Gaughan JP and Kashyap VK. SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. *Int J Tuberc Lung Dis* 2011; 15: 1468–1474.

45. Soborg C, Andersen AB, Range N, et al. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. *Mol Immunol* 2007; 44: 2213–2220.

46. Vidyarani M, Selvaraj P, Raghavan S, et al. Regulatory role of 1,25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis. *Exp Mol Pathol* 2009; 86: 69–73.

47. Wang G, Xie L, Hu J, et al. Osteopontin, bone morphogenetic protein-4, and vitamin D receptor gene polymorphisms in the susceptibility and clinical severity of spinal tuberculosis. *Cell Physiol Biochem* 2017; 41: 1881–1893.

48. Wilbur AK, Kubatko LS, Hurtado AM, et al. Vitamin D receptor gene polymorphisms and susceptibility to *M. tuberculosis* in native Paraguayans. *Tuberculosis* 2007; 87: 329–337.

49. Wilkinson RJ, Llewelyn M, Toossi Z, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. *Lancet* 2000; 355: 618–621.

50. Wu L, Deng H, Zheng Y, et al. An association study of NRAMP1, VDR, MBL and their interaction with the susceptibility to tuberculosis in a Chinese population. *Int J Infect Dis* 2015; 38: 129–135.

51. Zhang HQ, Deng A, Guo CF, et al. Association between FokI polymorphism in vitamin D receptor gene and susceptibility to spinal tuberculosis in Chinese Han population. *Arch Med Res* 2010; 41: 46–49.

52. Zhang Y, Zhu H, Yang X, et al. Serum vitamin D level and vitamin D receptor genotypes may be associated with tuberculosis clinical characteristics: a case-control study. *Medicine* 2018; 97: e11732.

53. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009; 151: 264–269.

54. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010; 25: 603–605.

55. Uitterlinden AG, Fang Y, Van Meurs JB, et al. Genetics and biology of vitamin D receptor polymorphisms. *Gene* 2004; 338: 143–156.

56. Valdivielso JM and Fernandez E. Vitamin D receptor polymorphisms and diseases. *Clin Chim Acta* 2006; 371: 1–12.

57. Xie X, Shi X and Liu M. The roles of TLR gene variants in atherosclerosis: a systematic review and meta-analysis of 35,317 subjects. *Scand J Immunol* 2017; 86: 50–58.

58. Shi X, Xie X, Jia Y, et al. Associations of insulin receptor and insulin receptor substrates genetic variants with polycystic ovary syndrome: a systematic review and meta-analysis. *J Obstet Gynaecol Res* 2016; 42: 844–854.

59. Zhu Y, Zheng G and Hu Z. Association between SERT insertion/deletion polymorphism and the susceptibility of asthma: a meta-analysis. *Exp Mol Pathol* 2018; 105: 411–416.