This study presents a fast method to estimate sensory parameters of commercial capsules of roasted coffee using flow injection analysis coupled to high-resolution mass spectrometry (FIA–HRMS) as an alternative to traditional sensory analysis, which is a laborious and subjective method. Over 25 types of coffee capsules were studied. The samples were partitioned into an aqueous and organic extract, which were analyzed by FIA–HRMS in the positive and negative ionization modes. Data fusion of such mass spectra was performed to explore the complementary information of sample preparation and ionization conditions. Orthogonalized partial least square discriminant analysis (OPLS–DA) models were built and trained to determine the type of capsule and to estimate important coffee parameters (e.g., acidity, bitterness, body, intensity, and roasting level), achieving accuracy values higher than 91.1%. In addition, variable importance in projection (VIP) scores enabled assignment of the elemental composition and, in some cases, putative identification of compounds in coffee (e.g., caffeine, caffearine, and quinides) that exhibited an important role in class discrimination.

Keywords: chemical fingerprint, chemometrics, food and beverage analysis, high throughput, sensory assessment.

INTRODUCTION

Coffee is one of the most consumed beverages worldwide, attracting a large number of consumers due to its enjoyable flavor [1-3]. Coffee has played an important role in the global economy with a total trade of US$30 bi in 2019 [4]. In the same year, Brazil was the top exporter of coffee responsible for almost half
of the global trade together with Vietnam, Colombia, Germany, and Switzerland, in this order of export volume [4]. In this context, the coffee industry requires extensive and oriented product development to meet current consumer demands in an ever increasing and diversified coffee market. Numerous types of coffee can be prepared by blending different types of coffee and/or modifying process parameters to increase the quality and improve the sensory coverage of the product.

The evaluation of coffee relies on sensory analysis by estimating their acidity, bitterness, and body, for instance. Sensory assessment is the characterization of products based on their organoleptic properties using the five human senses [5]. This process is based on a range of methods to obtain responses about taste, smell, texture, appearance, and other properties [5]. However, sensory analysis is a complex and time-consuming task that depends on professional tasters [6]. Despite the rigorous training of the sensory panel, sensory analysis remains a very subjective process and it is affected by physiological and physical factors, which may result in low accuracy and poor repeatability [6,7]. In the coffee industry, sensory analysis is even more challenging due to the overwhelming quantity of samples [7].

Alternatives to sensory analysis are instrumental techniques that have been applied to estimate the sensory parameters of coffee, like vibrational spectroscopy [8,9] and chromatography coupled to mass spectrometry (MS) [10-12]. The former approach may be limited by the low selectivity of the analytical signal, while chromatographic methods may struggle to provide compatible sample throughput required for large studies, such as over 200 samples per day. An interesting alternative to contemporary techniques is direct analysis using high-resolution mass spectrometry (HRMS) for fingerprinting purposes. After suitable sample preparation, HRMS analyses can provide molecular-level information in just a few seconds [13-16], which is an important feature for coffee analysis. Liquid samples may be introduced into the HRMS by flow injection analysis (FIA–HRMS), providing fast and reliable results [15,17]. FIA–HRMS–based methods have been successfully applied in the analysis of glyphosate in fruits, berries, and cereals [18], milk adulteration [19], discrimination of peppermints [20], and aerosols assessment in tobacco products [21].

Despite the obvious advantages of HRMS, the direct analysis may be unsuitable for the identification of sensory active compounds, providing instead only putative identification. In order to fully explore the potential of HRMS for fingerprinting, multivariate data analysis is mandatory to establish meaningful and statistically valid correlations between mass spectra and sensory properties, especially if very large data comprising hundreds of mass spectra are available for chemometric modeling [15-17].

In this study, we report an analytical method for coffee classification using FIA–HRMS and chemometric modelling. The FIA–HRMS provided the ideal platform for high sample throughput analyses compatible with the logistics of a typical coffee cooperative. OPLS–DA [22] was used to train the statistical model and predict the sensory properties of coffee samples using the MS–based coffee fingerprinting [23]. Important properties were successfully assigned using the OPLS–DA model, like the type of capsule and many sensory parameters (e.g., acidity, bitterness, body, intensity, and roasting level). We believe that this solution represents an important development in the coffee industry, providing rigorous quality control and intelligence for coffee production, moving towards the industry 4.0 [24].

MATERIALS AND METHODS

Reagents

Water, methanol, chloroform, formic acid, and acetonitrile (Chromasolv – MS grade) were purchased from Honeywell Riedel–de–Haën™ (Germany). Ultrapure water (resistivity below 18.2 MΩ.cm and TOC below 5 ppb) was obtained from a Milli–Q® purifier (Millipore®, USA). All the materials used in the analytical procedures were carefully washed using MS grade solvents and/or ultrapure water.

Coffee samples

The study used 25 capsules of espresso coffee produced by the same manufacturer, containing different blends and sensory properties. The samples were purchased in the local market. The manufacturer
provided coffee blend information about acidity, bitterness, body, intensity, and roasting on its website, which is also available in Table S1 (Supplementary Material). The samples were analyzed in triplicates on the same day over three different days, totaling 9 analyses per sample. For 25 samples, 225 analyses were performed.

Sample preparation

Approximately 100 mg of coffee from the capsule was weighed in analytical balance ATX–224 (Shimadzu Corporation, Japan) and placed in 2 mL Eppendorf Tubes. The compounds were extracted using a modified Folch method through a ultrasound assisted dispersive liquid-liquid microextraction (UA-DLLME) [25,26], which was performed by adding a mixture of 400 µL of water and 400 µL of methanol, and then 800 µL of chloroform. The extractions were assisted by ultrasound for 15 min in an Q5.9L ultrasound bath (Eco–Sonics, Brazil), followed by vortexing at 3200 rpm during 15 min in a Vortex–Genie 2 (Scientific Industries, United States), and centrifuged at 13400 rpm for 15 min in a MiniSpin® (Eppendorf, Germany). After phase separation, the organic extract was composed of chloroform and the aqueous extract was a mixture of water and methanol. Each extract was filtered through Millex® syringe filters (Merck, United States) with a diameter of 13 mm and 0.22 µm pore size membranes, being polyvinylene fluoride (PVDF) and polytetrafluoroethylene (PTFE) membranes to filtrate aqueous (hydrophilic) and organic (hydrophobic) extracts, respectively. Aliquots containing 80 µL of extract were transferred to 2 mL vials and diluted 1–20 with acetonitrile for the organic extract, and 1:1 (v/v) acetonitrile:water solution for the aqueous extract. After those steps of sample preparation, the samples were analyzed by FIA–HRMS. Blank samples were prepared using the extraction procedure without powdered coffee.

Instrumentation

The analyses were performed using a Xevo G2–XS hybrid quadrupole time–of–flight sequential mass spectrometer (QTOFMS) (Waters Corporation, United States). The FIA system employed an ultra–high performance liquid chromatography (UHPLC) to introduce the sample into the QTOF. The UHPLC autosampler was directly connected to the electrospray ionization (ESI) source, bypassing the use of a chromatographic column. An injection volume of 0.3 µL and a constant volumetric flow rate of 100 µL min⁻¹ were used for the analyses. The mobile phase was water acidified with 0.1% (v/v) formic acid. Each sample extract (organic and aqueous) was analyzed separately using ESI in the positive (ESI+) and negative (ESI−) modes. The mass spectra were recorded from 100 Da to 1000 Da in the high–resolution mode. The mass resolving power was approximately 30,000 at m/z 400. The interested reader is directed elsewhere for a complete description of the MS conditions [25,26]. A total of four mass spectra per sample were available for modelling. Before the analysis, a system suitability check was performed, i.e., detector check and mass calibration. A solution of leucine enkephalin (1 µg mL⁻¹) was used for mass correction.

Data analysis

By combinatorics, two extraction phases and two ionization modes provided four blocks of mass spectra, which were imported to MATLAB R2016b (MathWorks, United States). These blocks were normalized by the length and concatenated into a unique data matrix by data fusion of the individual MS analyses, containing 5253 m/z signals for each one of 225 fused mass spectra. The m/z peaks were filtered by removing signals with relative intensity lower than 0.001%. Next, the signals were scaled by Pareto scaling to reduce signal magnitude (mask effect) without amplifying deviations and spectral noise. The 225 mass spectra were randomly organized and divided into training (60%) and validation (40%) data, being 135 and 90 spectra, respectively. Also, we have kept the same-day replicates together.

PLS_Toolbox 8.6 (Eigenvector, United States) was used to train the OPLS–DA [22] models for each property modelled (i.e., acidity, bitterness, body, intensity, and roasting level, and type of capsule). To train discriminant analysis models through OPLS, we have used OPLS2–DA, which models the classes through a single model instead of the OPLS1–DA, which models the classes singly. The selection of the number
of latent variables (LV) was according to the lowest average error of cross-validation (CV), which was performed by 10-fold venetian blinds. To ensure no overfitting in the trained models, the permutation test was performed by random permutation of sample labels for 50 times, aiming to find significant differences between permuted and unpermuted models [15,27]. The VIP score algorithm was applied to identify the most important variables for class discrimination, providing a suitable variable selection [28,29]. Thus, the m/z peaks that presented VIP scores below 1 were excluded from the data of each model, since they were not relevant for class discrimination [28,29]. Finally, the models were trained again, following the same criterion to select the number of LV.

The results were evaluated using the accuracy values (Equation 1), instead of the sensitivity and specificity values, due to the high number of classes. The accuracy takes into account the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) by predicting the test sets [30]. Sensitivity (Equation 2) and specificity (Equation 3) were also used to evaluate the trained models [30].

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \quad \text{Equation 1}
\]

\[
\text{Sensitivity} = \frac{TP}{TP + FN} \quad \text{Equation 2}
\]

\[
\text{Specificity} = \frac{TN}{TN + FP} \quad \text{Equation 3}
\]

RESULTS AND DISCUSSION

FIA-HRMS analysis

An important concern about sample preparation was the quality of the extraction to obtain a reliable measurement by preserving the original characteristics of the sample matrix [31,32]. Hence, mild extraction conditions were employed to avoid sample deterioration and/or contamination. A modified Folch method [25,26] was used to obtain the hydrophilic and hydrophobic extracts from coffee to increase the molecular coverage of the mass spectra (i.e., a broad range of polarity and molecular weights). Hydrophilic extraction promoted the extraction of polar compounds, such as sugars, alkaloids, acids, quinides, and polyphenols [11]. Conversely, hydrophobic extraction promoted the extraction of nonpolar compounds, such as fatty acids, terpenes, and carotenoids [11]. Figure 1 shows the mass spectra of a COL sample highlighting the diversity of m/z peaks according to the ionization mode and extraction steps. Each block of mass spectra contained important and complementary information for class discrimination. Therefore, the individual blocks were normalized and concatenated for chemometric modelling using data fusion.
Figure 1. Mass spectra of a COL coffee obtained by the FIA–HRMS analysis and (a) hydrophobic extraction and negative ionization (NEG–HB), (b) hydrophilic extraction and negative ionization (NEG–HF), (c) hydrophobic extraction and positive ionization (POS–HB), and (d) hydrophilic extraction and positive ionization (POS–HF).

OPLS–DA models for sensory parameter evaluation

OPLS–DA models were trained for each sensory property evaluated, namely, acidity, bitterness, body, intensity, and roasting level, and type of capsule. The number of LV was estimated using CV, as shown in Figure 2. The high number of LV was explained due to the challenging heterogeneity of the sample composition and the extremely broad set of sensory properties. For example, the data input consisted of over 25 types of coffee blends with different species and origins, in addition to the four blocks of mass spectra (both extraction methods and ionization modes). The permutation test alongside the training sets ascertained the lack of model overfitting. Noteworthy, the number of LV depended on the sensory property, ranging from 33 to 57 LVs, which is related to many non-correlated m/z values (Table I), to the variability of samples (25 types of capsules), and to the number of classes (from 5 to 25 modelled classes). Thus, a good analytical system must capture various variation sources as cited above, increasing the number of LV as in these OPLS–DA models. The blocks X and y presented at least 95% and 98% of the cumulative explained variance, respectively, as shown in Table I.
Figure 2. The average error of training and CV of OPLS–DA models according to the number of latent variables for each sensory assessment modelled.

Overall, the models presented an excellent performance to discriminate samples of the validation set, providing high accuracy values (Table I). The worst models evaluated the bitterness and intensity of coffees, achieving 91.1% of accuracy due to the misclassification of 8 amongst 90 samples (Figure 3). Conversely, evaluation of acidity provided the best results with an accuracy of 97.8% with only 2 mismatched from 90 samples (Figure 3). Also, Tables S2–S7 (Supplementary Material) provide the sensitivity and specificity values for each class and sensory property. Overall, the minimum values were 66.7% for sensitivity and 93.1% for specificity, but more than 75% of the sensitivity values were higher than 90%, indicating excellent performance. Such results indicate that the predictive models are well–fitted, i.e., without under–or overfitting.
Parameter	Cumulative variance on X-block (%)	Cumulative variance on y-block (%)	Number of Variables	Number of LV	Accuracy of validation set (%)
Acidity	95.22	99.02	1638	33	97.8
Bitterness	95.49	99.03	1500	33	91.1
Body	95.85	99.11	1534	33	93.3
Intensity	97.17	99.15	1778	42	91.1
Roasting Level	95.76	99.23	1625	34	96.7
Type of Capsule	97.83	98.43	2164	57	93.3

The results provided by the models are very promising in the field of coffee analysis due to the high accuracy in the prediction of non-modelled and external samples (validation sets). This is an advantage over sensory analysis, which even performed by well-trained tasters are prone to large deviations between tasters [33,34]. Similarly, mid- [35,36] and near-infrared [8,37] spectroscopy have been used to estimate parameters of coffee, but achieving high accuracy is still a limitation due to the low selectivity of the spectral bands. This fact ascertains a benefit of using rich-information MS-based methods to obtain reliable models. For instance, our acidity model exhibited 97.8% of accuracy, whereas a previous model featured results with sensibility as low as 75% [35]. In addition, the body model presented in this study provided 93.3% of accuracy, compared to a previous model with a correlation coefficient lower than 0.8 [8].

The high accuracies provided by FIA–HRMS indicate that this method has high scalability, i.e., it can be easily automatized, being ideal for industrial applications to analyze coffee. Furthermore, the high sample throughput is important to significantly expand the number of samples analyzed per day when compared to conventional sensory analysis [15,21]. Although FIA–HRMS might exhibit a higher capital expenditure (CAPEX) is substantially higher due to the instrument price, compared to spectroscopy instruments, its operational expenditure (OPEX) is much more attractive, costing less than US$2 per analysis.
Evaluation of important variables

VIP scores algorithm was used to evaluate the most important variables to discriminate classes in all trained models. Table II presents the m/z peaks of the signals with the highest VIP score values alongside the respective elemental composition. A putative identification was supplied for common analytes found in coffee. The VIP scores threshold chosen was 4 for acidity, bitterness, body, roasting, and type of capsule, and 5 for the intensity model due to a larger number of important compounds in the latter.
Table II. VIP assignment of the OPLS-DA models and the sensory properties

Adduct type	Measured m/z	Accurate mass	Empirical formula	DBE	Error (ppm)	Putative identification	Property modelled
NEG – HB	[M-H]: 265.1465	266.1538	C_{10}H_{18}N_{4}	10	4.5	-	4,6
	[M-H]: 293.1768	294.1841	C_{18}H_{22}N_{4}	10	0.7	-	4,6
	[M-H]: 335.0769	336.0842	C_{16}H_{10}O_{8}	9	0.7	Caffeoyl-quinides [38,39] and caffeoyl-shikimic acids [39,40]	1,2,3,4,5,6
	[M-H]: 349.0926	350.0999	C_{17}H_{16}O_{8}	9	0.8	Feruloyl-quinides [38-40]	2,3,4,6
	[M-H]: 353.0912	354.0985	-	-	-	-	1,2,3,5,6
	[M-H]: 502.1079	503.1152	-	-	-	-	1,2,4,5
	[M-H]: 565.3018	566.3091	C_{25}H_{43}O_{5}N_{8}P	9	0.4	Unknown monophosphate metabolite	1
	[M-H]: 569.2942	570.3015	-	-	-	-	4
	[M-H]: 725.4456	726.4529	-	-	-	-	6
NEG – HF	[M-H]: 335.0766	336.0839	C_{10}H_{16}O_{8}	9	0.2	Caffeoyl-quinides [38,39] and caffeoyl-shikimic acids [39,40]	1,2,3,4,5,6
	[M-H]: 341.8730	342.8803	-	-	-	-	1,2,3,4,5,6
	[M-H]: 353.0876	354.0949	C_{17}H_{18}O_{8}	9	0.2	Caffeoylquinic acids [38-41]	1,2,3,4,5,6
POS – HB	[M+H]: 195.0883	194.0810	C_{8}H_{10}O_{2}N_{4}	6	6	Caffeine [41]	1,2,3,4,5,6
	[M+H]: 647.4593	646.4520	-	-	-	-	1,2,4,5,6
	[M+H]: 758.5700	757.5627	-	-	-	-	3
	[M+H]: 782.5699	781.5626	-	-	-	-	3
POS – HF	[M+H]: 138.0557	137.0484	C_{7}H_{12}O_{4}N	5	9.2	Caffearine [41]	1,2,4,5,6
	[M+H]: 138.0767	137.0694	C_{6}H_{10}N_{5}	5	1.4	-	4,6
	[M+H]: 195.0882	194.0809	C_{6}H_{12}O_{2}N_{4}	1	5.5	Caffeine [41]	1,2,4,5,6
	[M+H]: 229.1416	228.1343	C_{12}H_{20}O_{4}	3	5.7	-	6
	[M+H]: 453.1675	452.1602	-	-	-	-	6
	[M+H]: 589.2253	588.2180	-	-	-	-	1,2,4,5,6
	[M+H]: 732.2697	731.2624	-	-	-	-	3,5,6

Properties: 1 – acidity, 2 – bitterness, 3 – body, 4 – intensity, 5 – roasting, 6 – type of capsule. DBE – double bond equivalent.
Some important peaks assigned by the VIP algorithm (Table II) were tentatively identified using previous reports of coffee analysis [38-41]. The positive blocks provided information based on nitrogen-containing compounds in coffee. Caffeine [41], the most famous compound in coffee, presented important relevance to discriminate classes in the hydrophobic and hydrophilic positive blocks. In turn, caffearine [41], an alkaloid, also known as trigonelline, presented relevance only in the latter block. The negative block provided information based on oxygen–containing compounds. Caffeoyl–quinides [38,39] and caffeoyl shikimic acid [39,40] information presented relevance in both negative blocks, feruloyl–quinides [38-40] only in the hydrophobic negative block, and caffeoylquinic acids [38-41] only in the hydrophilic negative block.

CONCLUSIONS

This proof–of–concept study showed that FIA–HRMS combined with OPLS–DA can successfully estimate parameters of coffee blends, providing high values of accuracy. The models could estimate the acidity, bitterness, body, intensity, roasting level, and type of capsule with accuracy values higher than 91.1%, indicating excellent performance. The acidity estimation was the best model, achieving 97.8% of accuracy. VIP scores from OPLS–DA models indicated that various compounds in coffee already described in the literature, e.g., caffeine, quinides, and caffearine, were responsible for the class discrimination. We believe that this method has great potential for routine analysis in the coffee industry due to its high–throughput, scalability, and low OPEX, meeting the requirements of smart production and industry 4.0.

Conflicts of interest

The authors declare there are no conflicts of interest.

Acknowledgements

The São Paulo Research Foundation (FAPESP) [Grant N. 2020/01064-6], National Council for Scientific and Technological Development (CNPq) [Grant N. 302748/2018-0], Coordination for the Improvement of Higher Education Personnel (CAPES) (Finance code 001), Waters Corporation are acknowledged for supporting our research.

REFERENCES

1. Bona, E.; Marquetti, I.; Link, J. V.; Makimori, G. Y. F.; Arca, V. C.; Lemes, A. L.; Ferreira, J. M. G.; Scholz, M. B. S.; Valderrama, P.; Poppi, R. J. LWT - Food Sci. Technol., 2017, 76, pp 330–336 (https://doi.org/10.1016/j.lwt.2016.04.048).
2. Forchetti, D. A. P.; Poppi, R. J. Food Anal. Methods, 2020, 13, pp 44–49 (https://doi.org/10.1007/s12161-019-01502-x).
3. Ayseli, M. T.; Kelebek, H.; Selli, S. Food Chem., 2021, 338, 127821 (https://doi.org/10.1016/j.foodchem.2020.127821).
4. https://oec.world/en/profile/hs92/coffee?growthSelector=value2&yearSelector2=tradeYear24 [Accessed March 17, 2021].
5. Yu, P.; Low, M. Y.; Zhou, W. Trends Food Sci. Technol., 2018, 71, pp 202–215 (https://doi.org/10.1016/j.tifs.2017.11.013).
6. Hernández-Ramos, P.; Vivar-Quintana, A. M.; Revilla, I.; González-Martín, M. I.; Hernández-Jíménez, M.; Martínez-Martín, I. Sensors (Switzerland), 2020, 20, 5624 (https://doi.org/10.3390/s20195624).
7. Liu, P.; Zhu, X.; Hu, X.; Xiong, A.; Wen, J.; Li, H.; Ai, S.; Wu, R. Vib. Spectrosc., 2019, 103, 102923 (https://doi.org/10.1016/j.vibspec.2019.05.005).
8. Baqueta, M. R.; Coqueiro, A.; Valderrama, P. J. Food Sci., 2019, 84, 1247 (https://doi.org/10.1111/1750-3841.14617).
9. Ribeiro, J. S.; Ferreira, M. M. C.; Salva, T. J. G. Talanta, 2011, 83, 1352 (https://doi.org/10.1016/j.talanta.2010.11.001).
10. Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M. R.; Bicchi, C. *Food Chem.*, 2017, 214, pp 218–226 (https://doi.org/10.1016/j.foodchem.2016.07.088).
11. Rocchetti, G.; Braceschi, P. G.; Odello, L.; Bertuzzi, T.; Trevisan, M.; Lucini, L. *Metabolomics*, 2020, 16, 127 (https://doi.org/10.1007/s11306-020-01751-6).
12. Pua, A.; Lau, H.; Liu, S. Q.; Tan, L. P.; Goh, R. M. V.; Lassabliere, B.; Leong, K. C.; Sun, J.; Cornuz, M.; Yu, B. *Food Chem.*, 2020, 302, 125370 (https://doi.org/10.1016/j.foodchem.2019.125370).
13. Quintanilla-Casas, B.; Dulsat-Serra, N.; Cortés-Francisco, N.; Caixach, J.; Vichi, S. *LWT - Food Sci. Technol.*, 2015, 64, 1085 (https://doi.org/10.1016/j.lwt.2015.07.010).
14. Sittipod, S.; Schwartz, E.; Paravisini, L.; Tello, E.; Peterson, D. G. *J. Agric. Food Chem.*, 2020, 68, 10424 (https://doi.org/10.1021/acs.jafc.0c01479).
15. Kaiser, S.; Dias, J. C.; Ardila, J. A.; Soares, F. L. F.; Marcelo, M. C. A.; Porte, L. M. F.; Gonçalves, C.; Canova, L. dos S.; Pontes, O. F. S.; Sabin, G. P. *Talanta*, 2018, 190, pp 363–374 (https://doi.org/10.1016/j.talanta.2018.08.007).
16. Schwanz, T. G.; Bokowski, L. V. V.; Marcelo, M. C. A.; Jandrey, A. C.; Dias, J. C.; Maximiano, D. H.; Canova, L. S.; Pontes, O. F. S.; Sabin, G. P.; Kaiser, S. *Talanta*, 2019, 202, pp 74–89 (https://doi.org/10.1016/j.talanta.2019.04.060).
17. Kaiser, S.; Soares, F. L. F.; Ardila, J. A.; Marcelo, M. C. A.; Dias, J. C.; Porte, L. M. F.; Gonçalves, C.; Pontes, O. F. S.; Sabin, G. P.; Kaiser, S. *J. Chemom.*, 2020, 34, e3297 (https://doi.org/10.1002/cem.3297).
18. Ergon, R. *J. Chemom.*, 2005, 19, pp 1–4 (https://doi.org/10.1002/cem.899).
19. Draper, J.; Lloyd, A. J.; Goodacre, R.; Beckmann, M. *Metabolomics*, 2013, 9, pp 4–29 (https://doi.org/10.1007/s11306-012-0449-x).
20. Fuhrer, T.; Zamboni, N. *Curr. Opin. Biotechnol.*, 2015, 31, pp 73–78 (https://doi.org/10.1016/j.copbio.2014.08.006).
21. Cardoso, V. G. K.; Sabin, G. P.; Hantao, L. W. *Microchem. J.*, 2021, 164, 106052 (https://doi.org/10.1016/j.microc.2021.106052).
22. Cardoso, V. G. K.; Poppi, R. J. *Food Control*, 2021, 125, 107917 (https://doi.org/10.1016/j.foodcont.2021.107917).
23. Mehmood, T.; Liland, K. H.; Snipen, L.; Sæbø, S. *Chemom. Intell. Lab. Syst.*, 2012, 118, pp 62–69 (https://doi.org/10.1016/j.chemolab.2012.07.010).
24. De Vos, R. C. H.; Moco, S.; Lommen, A.; Keurentjes, J. J. B.; Bino, R. J.; Hall, R. D. *Nat. Protoc.*, 2007, 2, pp 778–791 (https://doi.org/10.1038/nprot.2007.95).
33. Pereira, L. L.; Cardoso, W. S.; Guarçoni, R. C.; da Fonseca, A. F. A.; Moreira, T. R.; Caten, C. S. *Eur. Food Res. Technol.*, **2017**, 243, pp 1545–1554 (https://doi.org/10.1007/s00217-017-2863-9).

34. Nebesny, E.; Budryn, G. *Eur. Food Res. Technol.*, **2006**, 224, pp 159–165 (https://doi.org/10.1007/s00217-006-0308-y).

35. Belchior, V.; Botelho, B. G.; Oliveira, L. S.; Franca, A. S. *Food Chem.*, **2019**, 273, pp 178–185 (https://doi.org/10.1016/j.foodchem.2017.12.026).

36. Craig, A. P.; Botelho, B. G.; Oliveira, L. S.; Franca, A. S. *Food Chem.*, **2018**, 245, pp 1052–1061 (https://doi.org/10.1016/j.foodchem.2017.11.066).

37. Baqueta, M. R.; Coqueiro, A.; Março, P. H.; Valderrama, P. *Food Anal. Methods*, **2020**, 13, pp 50–60 (https://doi.org/10.1007/s12161-019-01503-w).

38. Frank, O.; Zehentbauer, G.; Hofmann, T. *Dev. Food Sci.*, **2006**, 43, pp 165–168 (https://doi.org/10.1016/S0167-4501(06)80039-7).

39. Jaiswal, R.; Matei, M. F.; Golon, A.; Witt, M.; Kuhnert, N. *Food Funct.*, **2012**, 3, pp 976–984 (https://doi.org/10.1039/c2fo10260a).

40. Correia, R. M.; Loureiro, L. B.; Rodrigues, R. R. T.; Costa, H. B.; Oliveira, B. G.; Filgueiras, P. R.; Thompson, C. J.; Lacerda Jr, V.; Romão, W. *Anal. Methods*, **2016**, 8, pp 7678–7688 (https://doi.org/10.1039/c6ay02501c).

41. Jeszka-Skowron, M.; Zgola-Grześkowiak, A.; Grześkowiak, T. *Eur. Food Res. Technol.*, **2015**, 240, pp 19–31 (https://doi.org/10.1007/s00217-014-2356-z).
Table S1. Codes and sensory assessment of each class used in to train the models

Code	Acidity	Bitterness	Body	Intensity	Roasting level	Type of capsule
ARP	2	4	4	9	4	1
ARP_DEC*	2	4	4	9	4	2
CAP	3	3	2	5	2	3
CAR	3	3	3	6	3	4
CIO	3	3	3	6	3	5
COL	4	3	3	5	3	6
COS	5	1	1	4	1	7
DHA	1	5	4	11	5	8
ENV	1	4	4	9	4	9
ETH	4	2	2	4	2	10
FOR	2	3	3	8	4	11
IND	1	5	4	11	5	12
INN	2	3	4	8	4	13
KAZ	1	5	5	12	5	14
LIN	1	1	2	4	2	15
LIV	3	3	3	6	3	16
NIC	2	2	2	5	2	17
RIS	3	4	4	10	4	18
RIS_DEC*	3	4	4	10	4	19
ROM	4	4	3	8	3	20
VAN	3	3	3	6	3	21
VIV	2	2	2	4	3	22
VIV_DEC*	2	2	2	4	3	23
VOL	3	2	2	4	2	24
VOL_DEC*	3	2	2	4	2	25

Decaffeinated capsules
Table S2. Sensitivity and specificity of validation set of acidity model according to each class

Acidity	Class	Sensitivity	Specificity
1	100%	100%	
2	100%	100%	
3	97.0%	98.2%	
4	91.7%	98.7%	
5	100%	100%	

Table S3. Sensitivity and specificity of validation set of bitterness model according to each class

Bitterness	Class	Sensitivity	Specificity
1	100%	97.6%	
2	92.6%	100%	
3	100%	93.1%	
4	83.3%	98.3%	
5	88.9%	100%	

Table S4. Sensitivity and specificity of validation set of body model according to each class

Body	Class	Sensitivity	Specificity
1	100%	99.0%	
2	100%	94.2%	
3	91.7%	100%	
4	89.7%	98.0%	
5	100%	100%	
Table S5. Sensitivity and specificity of validation set of intensity model according to each class

Intensity	Class	Sensitivity	Specificity
4	95.2%	95.7%	
5	88.9%	100%	
6	100%	100%	
8	100%	96.3%	
9	86.7%	97.3%	
10	66.7%	100%	
11	100%	100%	
12	100%	100%	

Table S6. Sensitivity and specificity of validation set of roasting-level model according to each class

Roasting level	Class	Sensitivity	Specificity
1	100%	100%	
2	100%	97.1%	
3	93.9%	100%	
4	100%	98.5%	
5	88.9%	100%	

Table S7. Sensitivity and specificity of validation set of type-of-capsule model according to each class

Type of Capsule	Class	Sensitivity	Specificity
1	100%	100%	
2	100%	98.9%	
3	100%	100%	
Table S7. Sensitivity and specificity of validation set of type-of-capsule model according to each class (Continuation)

Class	Sensitivity	Specificity
4	100%	96.6%
5	100%	98.9%
6	66.7%	100%
7	100%	100%
8	100%	100%
9	66.7%	100%
10	100%	100%
11	100%	98.9%
12	100%	100%
13	100%	100%
14	100%	100%
15	100%	100%
16	100%	100%
17	83.3%	100%
18	100%	100%
19	83.3%	100%
20	100%	100%
21	100%	100%
22	100%	100%
23	83.3%	100%
24	66.7%	100%
25	100%	100%