Legal Judgment Prediction via Event Extraction with Constraints

Yi Feng1, Chuanyi Li1 and Vincent Ng2

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Human Language Technology Research Institute, University of Texas at Dallas, USA
Legal Judgment Prediction (LJP)

- predicts the court’s outcome given the facts of a legal case
- has been investigated in the context of different languages
Chinese Legal Judgment Prediction

- Three subtasks: (1) **law article prediction**, (2) **charge prediction** and (3) **terms of penalty prediction**

- Input: a fact statement
- Outputs: law article -> charge -> term of penalty
Two Weaknesses of Existing LJP Models

- **Weakness 1:** failure to locate the key event information that determines the judgment results.
- **Example:** wrongly predicting the law article related to illegal search for a robbery case since many words describe the break-in process even though the main point is about robbery.

Predicted Article

Article 245: [Crime of Illegal Search] Anyone who illegally searches another person's body or residence, or illegally *invades* another person's residence…

Fact Description

On April 1, 2019, Mike *violently* broke into Jessica’s *home* and *robbed* a gold ring. After identification, the ring is worth 1,535 RMB.

Ground-truth Article

Article 263: [Crime of Robbery] Anyone who *robs public* or *private property* is guilty of the crime of robbery…
Two Weaknesses of Existing LJP Models

- **Weakness 2**: inconsistent model outputs
- **Example**: wrongly predicting 5-7 years imprisonment, whereas the law article stipulates that the maximum prison term is 5 years.

Fact Statement

The criminal Song gave birth to a baby boy in the bathroom of the Beijing-Shanghai Expressway Service Area at about 9:30 on March 29, 2016, and abandoned the baby boy in the bathroom.

Predicted	Ground-truth
Article 261; Crime of abandoning babies; **5-7 years** imprisonment	Article 261; Crime of abandoning babies; **9-12 months** imprisonment
Goal

- Improve Chinese legal judgment prediction by addressing the aforementioned weaknesses
 - failure to locate the key event information that determines the judgment results
 - inconsistent model outputs
Addressing Weakness 1 (Failure to locate key event info)

- **Observations:**
 - A law article consists of two parts: (1) the **event pattern**, which stipulates the behavior that violates the law and (2) the **judgment**, which describes the corresponding penalties
 - if we can detect the event pattern of a law article in the facts of a case, we can infer the judgment from the law article

- **Idea:** extract the fine-grained key event information and use it to match the event pattern.

Fact Statement

On April 1, 2019, Mike violently broke into Jessica’s home and robbed a gold ring. After identification, the ring is worth 1,535 RMB.

Law Article

Article 263: [Crime of Robbery] Anyone who robs public or private property is guilty of the crime of robbery. The criminal shall be sentenced to imprisonment of not less than three years but not more than ten years...

Charge

Crime of Robbery

Term of Penalty

An imprisonment of three years

Judgment Results

Who is the criminal?	Argument	Role
Mike	Jessica	Criminal
Who is the victim		Victim
What happened?		Trigger-Rob
What were robbed?		Property
What is the price of swag?	1,535 RMB	Quantity

Article 263, Robbery, three-year imprisonment
How to implement the idea?

- **Step 1**
 - Propose a hierarchical event definition referring to the hierarchy of law articles

- **Step 2**
 - Manually annotate a legal event dataset according to this definition
 - No existing datasets provide event annotations and judgments simultaneously
Defining the Event Hierarchy

- Event definition
 - Hierarchical events
 - Trigger and role types

Statistics: 4 superordinate and 16 subordinate roles; 6 superordinate and 15 subordinate trigger types
Collecting our Event-Annotated Dataset: LJP-E

- Step 1: judgment document collection
 - collect documents from the CAIL dataset

- Step 2: event trigger and argument role annotation
 - (1) highlight the salient words that correlate well with the event pattern of the law article
 - (2) select a trigger word and assign it a subordinate trigger type
 - (3) assign a subordinate role type to each of its arguments from a predefined role list

Statistics: 1367 cases in total
Addressing Weakness 2 (Inconsistent outputs)

- Introduce cross-task consistency constraints
 - If a law article is detected, the allowable charges and range of term of penalty should be detected.

- Design output constraints on event extraction
 - Event-based constraints
 - Absolute constraint
 - the trigger must appear exactly once and certain roles are compulsory
 - Event-based consistency constraints
 - If a trigger type is detected, all and only its related roles should be detected
Our model: EPM

Model structure

○ Hierarchical Event Extraction
○ Incorporating law article semantics
○ Legal judgment prediction layer

…On April 1, 2019, Mike violently broke into Jessica’s home and robbed a gold ring. After identification, the ring is worth 1,535 RMB…
Public dataset CAIL

- a large-scale publicly available Chinese legal document dataset that has been widely used.

Dataset	CAIL-small	CAIL-big
#Training Set Cases	96,540	1,489,932
#Validation Set Cases	12,903	–
#Testing Set Cases	24,848	185,647
#Law Articles	101	127
#Charges	117	140
#Term of Penalty	11	11
Evaluation Setting

- **Training**
 - Pre-train EPM without event components on CAIL, and then fine-tune EPM on LJP-E

- **Testing**
 - use the pretrained version of EPM to predict samples that do not belong to the 15 types
 - use the fine-tuned version of EPM to predict samples that belong to one of the 15 types

- **Baselines**
 - SOTA models: MLAC, TOPJUDGE, MBPFN, LADAN, NeurJudge

- **Metrics**
 - Accuracy (Acc), Macro-Precision (MP), Macro-Recall (MR) and Macro-F1 (F1)
Results

	Law Article		Charge		Term of Penalty								
	Acc%	MP%	MR%	F1%	Acc%	MP%	MR%	F1%	Acc%	MP%	MR%	F1%	
1	MLAC	94.90	79.06	66.91	69.41	94.72	83.42	72.38	75.62	56.43	46.87	40.43	41.89
2	TOPJUDGE	95.83	82.10	71.94	74.32	95.77	85.95	77.11	79.58	58.09	47.73	42.47	44.07
3	MBPFN	95.67	84.00	74.40	76.44	94.37	85.60	75.86	77.98	55.48	47.27	38.26	40.01
4	LADAN	95.78	84.93	75.88	78.79	94.58	85.52	77.36	80.04	56.34	47.76	40.48	42.02
5	NeurJudge	95.59	84.01	75.54	77.06	94.12	85.48	77.21	79.83	55.52	47.25	40.76	42.03
6	EPM	96.63	85.93	77.60	79.72	95.88	88.67	79.49	81.99	58.19	51.50	43.25	44.99
7	EPM@G	96.72	85.79	79.68	81.77	96.45	88.78	81.93	82.84	58.67	53.93	45.86	46.58
8	MLAC+EPM	95.50	79.71	70.29	72.81	95.45	84.18	73.14	75.86	57.39	47.08	41.53	43.07
9	TOPJUDGE+EPM	96.01	83.68	74.77	77.26	95.86	86.21	78.67	81.23	58.11	48.20	44.30	45.07
10	MBPFN+EPM	95.81	83.36	74.61	76.39	95.62	86.34	77.34	79.35	57.53	50.04	40.46	42.01
11	LADAN+EPM	96.15	84.90	76.54	79.26	95.96	88.07	78.98	81.79	58.40	50.36	42.71	44.17
12	NeurJudge+EPM	96.20	85.16	77.83	78.21	94.77	89.75	77.46	80.19	57.81	49.36	41.77	43.79
13	TOPJUDGE+Event	95.93	83.55	73.03	75.86	95.82	86.34	77.20	80.29	58.21	47.73	44.36	45.00

Table 4: Comparisons with the SOTA models on CAIL-big.

- EPM (row 6) achieves the best results, outperforming the five SOTA models
Results

	Law Article					Charge				Term of Penalty			
	Acc%	MP%	MR%	F1%	Acc%	MP%	MR%	F1%	Acc%	MP%	MR%	F1%	
1 MLAC	94.90	79.06	66.91	69.41	94.72	83.42	72.38	75.62	56.43	46.87	40.43	41.89	
2 TOPJUDGE	95.83	82.10	71.94	74.32	95.77	85.95	77.11	79.58	58.09	47.73	42.47	44.07	
3 MBPFN	95.67	84.00	74.40	76.44	94.37	85.60	75.86	77.98	55.48	47.27	38.26	40.01	
4 LADAN	95.78	84.93	75.88	78.79	94.58	85.52	77.36	80.04	56.34	47.76	40.48	42.02	
5 NeurJudge	95.59	84.01	75.54	77.06	94.12	85.48	77.21	79.83	55.52	47.25	40.76	42.03	
6 EPM	96.63	85.93	77.60	79.72	95.88	88.67	79.49	81.99	58.19	51.50	43.25	44.99	
7 EPM@G	96.72	85.79	79.68	81.77	96.45	88.78	81.93	82.84	58.67	53.93	45.86	46.58	
8 MLAC+EPM	95.50	79.71	70.29	72.81	95.45	84.18	73.14	75.86	57.39	47.08	41.53	43.07	
9 TOPJUDGE+EPM	96.01	83.68	74.77	77.26	95.86	86.21	78.67	81.23	58.11	48.20	44.30	45.07	
10 MPBFN+EPM	95.81	83.36	74.61	76.39	95.62	86.34	77.34	79.35	57.53	50.04	40.46	42.01	
11 LADAN+EPM	96.15	84.90	76.54	79.26	95.96	88.07	78.98	81.79	58.40	50.36	42.71	44.17	
12 NeurJudge+EPM	96.20	85.16	77.83	78.21	94.77	89.75	77.46	80.19	57.81	49.36	41.77	43.79	
13 TOPJUDGE+Event	95.93	83.55	73.03	75.86	95.82	86.34	77.20	80.29	58.21	47.73	44.36	45.00	

Table 4: Comparisons with the SOTA models on CAIL-big.

- EPM can improve the performance of the five SOTA models
Better LJP results can be achieved by pre-train + fine-tune strategy rather than modifying the model to learn from event annotations.
Summary

- presented the first study on leveraging event extraction from case facts to solve LJP tasks
- defined a hierarchical event structure for legal cases
- collected a new LJP dataset with event annotations
- proposed a model that learns LJP and event extraction jointly subject to two kinds of constraints
- our model surpasses the existing SOTA models in performance
Thank you!