Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis

Wenhui Hu,1 Yueqi Chen,1,2 Ce Dou,1,2 Shiwu Dong1,2,3

ABSTRACT
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of the ‘OC–CC crosstalk’ and describe the various pathways by which the two cell types might interact. Based on the ‘OC–CC crosstalk’, we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge—subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.

INTRODUCTION
Osteoarthritis (OA) is the most frequent form of arthritis with a high incidence and a prolonged course.1 OA affects articular and periarticular tissues, such as articular cartilage, subchondral bone and synovium.2 Over recent years, the role of subchondral bone during OA progression has gradually attracted researchers’ attention.3 4 Imaging techniques have revealed microstructural alterations in subchondral bone in OA joints, including early-stage bone loss, late-stage bone sclerosis and histopathological alterations, caused by subchondral bone cysts, bone marrow edema-like lesions (BMOLs) and osteophyte formation.5 These alterations are caused by biological processes involving uncoupling and coupling interactions among osteocytes, osteoblasts (OBs), osteoclasts (OCs), endothelial cells (ECs) and sensory neurons in the subchondral bone microenvironment,6 and therefore they will help in understanding OA pathogenesis from the perspective of subchondral bone. Notably, bone remodelling rates are altered during the development of OA due to the spontaneous activation or inactivation of osteoclastic bone resorption activity. As a result, activation of bone resorption may be evident in the subchondral bone microenvironment in early-stage OA, while late-stage OA is characterised by inactivation of bone resorption activity and a bias towards activation of bone formation activity.7 Subchondral bone and cartilage form a functional complex called the bone–cartilage unit, which is involved in the pathophysiology of OA at the biochemical and mechanical levels.8 9 In this review, we summarise the various pathways by which OCs interact with CCs, thus providing a novel research direction for the investigation of the crosstalk between these two types of cells in OA. Furthermore, we have noted the reported and potential communication pathways between OCs and CCs, and we propose promising therapeutic strategies to restrain the progression of OA by targeting the subchondral bone microenvironment. Moreover, arthritic pain is a major complaint of patients with OA during the progression of the disease. Recent studies indicate that neuronal factors may contribute to the innervation of pain-related sensory nerves in OA subchondral bone.10 11 Intriguingly, the evidence suggests a close relationship between OCs/OBs and sensory nerves in the microenvironment of subchondral bone.10 11 Based on this, it may be useful to develop specific drugs for the treatment of OA-related pain by targeting the subchondral bone microenvironment.

OSTEOARTHRITIC SUBCHONDRAL BONE MICROENVIRONMENT
Normal subchondral bone architecture
Subchondral bone is divided into two anatomical entities: the subchondral bone plate and subchondral trabeculae. Subchondral bone plate is a thin cortical plate subjacent to calcified cartilage. It is a penetrable structure with interconnected porosity. Numerous vessels and nerves pass through the porosity, sending branches into calcified cartilage.12 The subchondral trabeculae, which are subjacent to the subchondral bone plate, are porous structures with abundant vessels and nerves that play an important role in load absorption and structural support as well as nutritional supply to cartilage.13 Subchondral bone adapts to mechanical forces exerted on the joint dynamically via coordinated bone remodelling.14 Bone remodelling involves the coupling of osteoclastic bone resorption and osteoblastic bone formation to replace damaged bone with new bone.15 However, subchondral bone and cartilage exhibit distinct capacities of mechanical adaptation. Although cartilage modulates the functional state in response to mechanical damage, its capacity to repair and modify the surrounding extracellular matrix is more limited than that of cartilage.16
subchondral bone. Subchondral bone responds rapidly to mechanical loading by bone remodelling and then re-establishes normal physiological conditions.

Microstructural and histopathological alterations in OA subchondral bone

The occurrence of cartilage degeneration and subchondral bone destruction has always been a controversial issue. Not all patients with OA exhibit the progression from abnormal bone formation in subchondral bone. Moreover, a fraction of patients with OA exhibit the earliest changes at the sites of subchondral bone. OA is commonly thought to be a degenerative disease related to ageing and trauma. In ageing-induced OA, it could be confirmed that aberrant chondrocyte metabolism plays a crucial role in the occurrence of cartilage damage prior to abnormal subchondral bone formation. Conversely, early microdamage at the sites of subchondral bone is detected in trauma-induced OA. Notably, the alterations of subchondral bone are not exactly the same in different articulating joints in OA. There is good evidence that pathological alterations in different joints (such as the knee, spine and temporomandibular joint) exhibit several kinds of features.

At different stages of OA, there are distinct microstructural alterations in subchondral bone. In early OA, enhanced subchondral bone turnover is observed. In addition, the subchondral bone sclerosis is observed during the advanced and late stages. In early OA, subchondral bone plate becomes thinner and more porous during the initial cartilage degeneration. Subchondral trabeculae deteriorate, with increased trabecular separation and decreased trabecular thickness. Conversely, the subchondral bone plate and trabeculae become thicker, which is accompanied by subchondral bone sclerosis and decreased bone marrow spacing in late OA. At the same time, non-calcified cartilage shows progressive damage, and becomes thicker with tidemark replication. Despite the increased bone volume, high local bone turnover and a decreased calcium:collagen ratio lead to insufficient bone mineralisation and a decreased bone tissue elastic modulus. Consequently, the mechanical property is compromised, and it becomes easier to deform bone under mechanical loads (figure 1).

Abnormal cellular interactions in the OA subchondral bone microenvironment

Subchondral bone in OA undergoes an uncoupling of remodelling process, in which enhanced osteoclast-mediated bone resorption and osteoblast-mediated bone formation could be displayed at different stages during OA progression. Normally, biomechanical coupling of articular cartilage and subchondral bone has been well established. In early-stage OA, the self-repair of articular cartilage reduces excessive mechanical loads on subjacent subchondral bone. As a result, loading of subchondral bone falls below a predetermined level. In turn, this underloading increases the ratio of the expression of receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) in osteocytes, which leads to excessive osteoclastogenesis and enhanced bone resorption activity. Overactivated bone remodelling is commonly found at microdamage sites in subchondral bone in patients with OA and OA animal models. Osteocytes directly adjacent to microdamage sites undergo apoptosis, whereas osteocytes adjacent to apoptotic populations upregulate the expression of pro-osteoclastic molecules at the early stage of OA. Conversely, osteocytes also regulate osteoblast mineralisation by activating the Wnt signalling pathway via increased production of Wnt proteins and decreased secretion of sclerostin (SOST) in response to increased mechanical loading, which is caused by progressive cartilage destruction in OA during progression to the advanced and late stages. In addition, it was confirmed in vitro that transforming growth factor-β1 (TGF-β1) from osteocytes could enhance osteoblast-mediated bone anabolic metabolism by activating Smad2/3 in the subchondral bone in advanced-stage OA. As a result, the concomitant increase in osteoblast activity leads to spatial remineralisation and osteosclerosis in the end stage of OA.

In parallel, osteoclastic bone resorption leads to a sharp increase in active TGF-β1 in OA subchondral bone, recruiting osteoprogenitors to bone remodelling sites via activation of the Smad2/3 pathway to promote the formation of osteoid islets. Abnormal mechanical strain triggers dysregulated metabolism in osteoblasts, which is characterised by increased expression of interleukin (IL)–6, prostaglandin E2 (PGE2), the degradative metalloproteinases matrix metalloproteinase (MMP)–3,
Evidence has shown that the crosstalk between osteoblast or osteoblast lineage cells and type H ECs promotes subchondral angiogenesis and aggravates subchondral bone remodelling. Type H ECs surrounded by osterix-expressing osteoprogenitors produce high levels of angiocrine factors (such as platelet-derived growth factor (PDGF)-A, TGF-β1 and fibroblast growth factor (FGF)−1), stimulating survival, proliferation and differentiation of these osteoprogenitors to promote local bone formation. Type H ECs intercommunicate via the intercellular Notch/delta-like protein 4 (DLL4) signalling pathway to induce the production of Noggin, which stimulates the differentiation of osteoprogenitors surrounding vessels. Type H vessels also stimulate osteoclast migration and differentiation

Hu W, et al. Ann Rheum Dis 2021;80:413–422. doi:10.1136/annrheumdis-2020-218089
plays a relatively

On the other hand, high turnover of subchondral bone leads to alterations in the biomechanical properties of bone tissue in early OA, transferring shear forces to the cartilage layer and causing continued cartilage damage (figure 3).58

Regulation of chondrocytes by osteoclasts promotes cartilage deterioration

Growth factors released from the bone matrix through osteoclastic bone resorption regulate chondrocyte metabolism and participate in cartilage deterioration. Mature osteoclasts attach to the bone surface through sealing zones and dissolve bone during bone remodelling. Consequently, various factors are released from the bone matrix, including TGF-β1, insulin-like growth factor (IGF)–1 and calcium-phosphate complexes.69 Zhang et al60 found that the expression of TGF-β1 in osteoclasts was significantly upregulated in a time-dependent and dose-dependent manner under mechanical stimulation. Meanwhile, chondrocytes showed increased apoptosis when cultured with osteoclasts. Furthermore, intraperitoneal injection of TGF-β1R inhibitors reversed chondrocyte apoptosis and reduced cartilage degradation in a rat OA model.70 TGF-β1 is not derived from osteoclastic bone resorption in the study, no matter what, it implied that TGF-β1 in subchondral bone could be transferred to the cartilage layer by diffusion or blood transport to adversely affect chondrocytes. Intriguingly, IGF-1, another bone-released growth factor, was shown to play a protective role in chondrocyte anabolism. IGF-1 promotes the expression of Col2a1 and inhibits the expression and enzyme activity of MMP-13 by activating the phosphatidylinositol 3 kinase (PI3K)/Akt and ERK1/2 signalling protects chondrocytes from apoptosis by reducing caspase-3 activity and DNA fragmentation.71 In addition, IGF-1 signalling promotes chondrocytes from apoptosis by reducing caspase-3 activity and DNA fragmentation.71 Cartilage also obtains calcium–phosphate complexes from subchondral bone, which increases the production of MMP-13 in chondrocytes via activation of nuclear factor-kappa B (NF-κB), p38 and ERK1/2, and signal transducer and activator of transcription 3 (STAT3) signalling.72 Lu et al60 reported a nutrient-sensing mechanism in which vascular-derived nutrients (such as amino acids) induced hypertrophic differentiation by activating mechanistic target of rapamycin complex 1 (mTORC1). Osteoclasts at distinct stages

REGULATION FEEDBACK LOOP OF ‘OSTEOCLAST–CHONDROCYTE CROSSTALK’

Various pathways for the ‘osteoclast–chondrocyte crosstalk’

A large number of vessels from subchondral bone penetrate calcified cartilage and invade non-calcified cartilage through vertical microcracks observed in OA joints.62 Consequently, mediators originating from osteoclasts and chondrocytes may diffuse and transport across microcracks or via invasive vessels. Intriguingly, osteoclast precursors invade the hypertrophic area of cartilage during the growth of perioseal vessels and then function together with hypertrophic chondrocytes to remodel cartilage matrix and form a primary ossification centre.63–64 Similarly, an in vivo cell tracking technique revealed that bone marrow–derived CX3CR1-positive osteoclast precursors enter the inflammatory cartilage layer via the blood circulation and differentiate into mature osteoclasts, promoting cartilage destruction in rheumatoid arthritis.65 Collectively, these data suggest that osteoclast precursors migrate into the cartilage layer and then make direct contact with hypertrophic chondrocytes and even interact with chondrocytes with normal phenotype. In addition, recent data have identified the capability of osteoclasts to degrade the osteochondral junction and articular cartilage in an MMP-dependent and cysteine protease–dependent manner,66 indicating the potential of mature osteoclasts to function as direct regulators of neighbour chondrocytes. During ‘mechanical OC–CC crosstalk’, on the one hand, the cartilage layer exhibits abnormal alterations in OA progression, which reduce its ability to absorb mechanical pressure and result in excessive loads on subchondral bone.67 On the other hand, high turnover of subchondral bone leads

Figure 3 Various pathways for the ‘osteoclast–chondrocyte crosstalk’. (A) Osteoclasts (OC) and chondrocytes (CC) interplay through secreted mediators crossing microcracks and vessels. (B) Bone marrow mononuclear cells are brought to the cartilage layer through invasive vessels. Osteoclast lineage cells directly contact with chondrocytes at different stages of differentiation. (C) Mature osteoclasts tunnel their way into subchondral bone and overlying cartilage and interact with chondrocytes in the cartilage layer. (D) Subchondral bone destruction mediated by osteoclasts transfers shear forces to the cartilage layer and consequently leads to abnormal chondrocyte metabolism. In turn, osteocytes and osteoblasts sense overloads from the damaged cartilage layer and send pro-osteoclastic signals, resulting in accelerated subchondral bone remodelling.
of differentiation derived from bone marrow mononuclear cells (BMMCs) may affect the normal phenotype of chondrocytes. Our group reported that exosomal let-7a-5p from preosteoclasts and mature osteoclasts targets Smad2 to promote the hypertrophic differentiation of chondrocytes, providing insights into ‘OC–CC coupling’ during OA progression.

Regulation of osteoclasts by chondrocytes promotes subchondral bone loss
Subchondral bone cells may be exposed to various pro-inflammatory cytokines produced by OA chondrocytes. Changes in joint biomechanical properties induce the upregulation of IL-1β in primary chondrocytes. IL-1β upregulates the expression of RANKL by osteoblasts to indirectly induce osteoclast formation and directly induces osteoclast precursors to form multinucleated osteoclasts. The excessive production of tumour necrosis factor (TNF)-α and IL-6 in chondrocytes in OA was detected in a surgical OA model of destabilisation of the medial meniscus. TNF-α directly induces osteoclast differentiation by activating NF-κB and c-Jun NH2-terminal protein kinase (JNK) in a RANKL-independent manner and indirectly induces osteoclastogenesis by stimulating osteoclasts to express RANKL. IL-6 induces CD14-positive peripheral blood mononuclear cells to form tartrate-resistant acid phosphatase (TRAP) and calcitonin receptor–positive osteoclasts in a RANKL-independent manner by activating the signal transduction factor gp130. In addition, VEGF-positive and RANKL-positive chondrocytes are increased in the hypertrophic layer by applying mechanical stress to the temporomandibular joint. In parallel, TRAP-positive osteoclasts increase in the mineralised layer subjacent to the hypertrophic layer. Furthermore, RANKL and VEGF induced osteoclast chemotaxis through the phosphorylation of ERK1/2 in a modified model of osteoclasts cultured in a Boyden chamber. High-mobility group box 1 (HMGB1) is expressed in and around OA chondrocytes in vivo. Taniguchi et al. analysed the bone development of Hmgb1−/− in hypertrophic chondrocytes in the growth plate of mice and found that the endochondral bone formation was disrupted due to the delayed invasion of osteoclast precursors into the primary ossification centre. In addition, senescent chondrocytes occur alongside hypertrophic chondrocytes, which produce catabolic enzymes, pro-inflammatory mediators and chemokines (collectively known as the senescence-associated secretory phenotype (SASP)), potentially modulating the behaviours of subchondral osteoclast lineage cells.

The presence of chondrocytes with morphological features consistent with apoptosis in OA cartilage is positively correlated with OA severity. Tang et al. found that the conditioned
medium of apoptotic chondrocytes following dexamethasone treatment enhanced the recruitment of RAW264.7 osteoclast precursor cells and increased their differentiation potential. Further explorations confirmed that CXC motif chemokine 12 (CXCL12) released from apoptotic chondrocytes had the strongest pro-osteoclastic effect by activating the ERK1/2 and p38 pathways in BMMCs.83 AMD3100 (an inhibitor of CXCR4) effectively prevented subchondral trabecular destruction and cartilage loss in the tibia of mice after anterior cruciate ligament transection (ACLT).92 93 The cartilage matrix is the main obstacle for phagocytic cells, resulting in late apoptotic chondrocytes undergoing the transition to necrosis, which is called secondary necrosis.94 Necrosis causes plasma membrane rupture and the release of damage-associated molecular patterns (DAMPs), such as nucleotides, HMGB1 and proinflammatory cytokines.95 DAMPs act on nearby cartilage and synovium to trigger inflammation, and may regulate the behaviours of subchondral osteoclast lineage cells (figure 4, table 1).

TARGETING THE SUBCHONDROL BONE MICROENVIRONMENT FOR THE TREATMENT OF OA
Restoring abnormal subchondral bone remodelling
In fact, the efficacy of antiresorptive agents in OA treatment has been evaluated in clinical trials by restoring abnormal subchondral bone remodelling. Regrettably, there are currently few or no data on the beneficial effect of strategies targeting abnormal bone remodelling in patients with OA. Bisphosphonates approved for osteoporosis management belong to classical antiresorptive agents. Risedronate reduced biochemical markers of cartilage degradation but did not improve signs or symptoms or slow radiographic progression in a prospective 2-year trial involving 2483 patients with medial compartment knee OA at dosages of 5 mg/day, 15 mg/day, 35 mg/week or 50 mg/week.96 Alendronate treatment improved the Western Ontario and McMaster University Osteoarthritis Index pain score, decreased biochemical markers and increased the BMD in a prospective 2-year trial involving 520 patients with knee OA at dosages of 35 mg/week or 70 mg/week.97

Table 1

Origins	Factors	Effects	References
Bone resorption	TGF-β1	Induce endothelial progenitor cell and osteogenitor migration and chondrocyte hypertrophy and apoptosis	42 60 70
Preosteoclast	PDGF-BB	Modulate chondrocytes through abnormal angiogenesis	61
Mature osteoclast	Exosomal let-7a-5p	Promote the hypertrophic differentiation of chondrocytes by targeting Smad2	75
Type H endothelial cell	MMP-9, RANKL	Stimulate osteoclast migration to indirectly affect chondrocytes	56
Mature osteoblast	IL-6, PGE2	Enhance osteoclast formation to indirectly regulate chondrocytes	43–45
	VEGF, RANKL	Stimulate angiogenesis and osteoclast recruitment to indirectly affect chondrocytes	46 47
	MMP-9	Promote osteoclast recruitment to indirectly affect chondrocytes	43
	SLIT3, TGF-β1	Induce subchondral angiogenesis to indirectly affect chondrocytes	57–59
Osteocyte	VEGF,	Stimulate angiogenesis to indirectly regulate chondrocytes	33 34 41
	TGF-β1		
	RANKL	Induce osteoclast recruitment and differentiation to indirectly modulate chondrocytes	33 34
Hypertrophic chondrocyte	IL-1β,	Induce osteoclast differentiation directly or indirectly	76–81
	IL-6, TNF-α		
	RANKL, VEGF	Induce osteoclast chemotaxis and differentiation	82 83
	HMGB1	Promote osteoclast recruitment to indirectly affect chondrocytes	84 85
Senescent chondrocyte	SASP	Promote osteoclast chemotaxis and differentiation	86 87
Apoptotic chondrocyte	CXCL12	Enhance osteoclast recruitment and differentiation	91–93
Necrotic chondrocyte	DAMPs	Promote osteoclast formation	94 95

Table 2

Therapeutic strategy	Agents	Effects	References
Restoring abnormal subchondral bone	Bisphosphonate, osteoprotegerin, cathepsin K inhibitor,	Relieve pain, improve joint structure, and reduce bone and cartilage degradation markers	96–101
remodelling	strontium ranelate		
	Calcitonin	Prevent bone pathology development and promote chondrocyte anabolism	102 103
	TGF-β1 inhibitor	Reform subchondral bone remodelling and inhibit subchondral angiogenesis	60
Blocking the bridge—subchondral type	Bevacizumab	Attenuate subchondral angiogenesis	50
H vessels	Halofuginone	Restore coupled bone remodelling and alleviate type H vessel formation by inhibiting	105
		TGF-β1 signalling	
Ameliorating OA-related pain by	Tanzezumab	Reduce pain and improve joint function by binding NGF specifically	111 112
modulating the subchondral bone	SB366791, APEx2	Improve acidic subchondral bone microenvironment and acid-induced pain by inhibiting	110 115
microenvironment	COX2 inhibitor, Na, 1,8 inhibitor, EP4 receptor inhibitor	TRPV1 and ASIC3, respectively	
		Blunt nociceptive signals in subchondral sensory neurons	11 113 114
involving 50 patients with symptomatic hip OA. Moreover, compared with those receiving placebo, patients with symptomatic knee OA who received intravenous zoledronic acid yearly did not show a significant reduction in cartilage volume loss, the size of BMOLs or the pain score over 24 months. There are other antiresorptive agents (such as OPG, cathepsin K (CTSK) inhibitors and strontium ranelate) that may exert protective effects on subchondral bone and cartilage in animal models and serve as disease-modifying OA drugs for clinical treatment of OA. Intriguingly, calcitonin, which is known for targeting subchondral bone and therefore subchondral TGF-β1 signalling in subchondral bone, reduces excessive PGE2 production by osteoblasts and alleviates OA-related pain by modulating subchondral bone microenvironment.

Blocking the bridge—subchondral type H vessels
Invasive subchondral type H vessels serve as a bridge between subchondral bone and articular cartilage. Current treatments for OA focus on the inhibition of inflammation and subchondral bone remodelling, while therapeutic strategies targeting subchondral angiogenesis are limited. In fact, blocking type H vessel formation in animal models of OA has been shown to reduce cartilage destruction and subchondral bone loss. For example, bevacizumab (a VEGF blocking antibody) attenuated the formation of subchondral type H vessels in an OA model, thereby inhibiting chondrocyte hypertrophy and delaying OA progression. In addition to pharmacological VEGF inhibition, secretory factors derived from osteoclast or osteoblast lineage cells in the OA subchondral bone microenvironment, such as TGF-β1, PDGF-BB and SLIT3, promote subchondral angiogenesis. Therefore, antagonists of those molecules might be developed as potential agents for OA. For example, the small molecule compound halofuginone inhibits Smad2/3-dependent TGF-β1 signalling to restore the coupling of subchondral bone remodelling, alleviate type H vessel formation and attenuate cartilage degradation in the rodent ACLT joint.

Ameliorating OA-related pain by modulating subchondral bone microenvironment
The detailed mechanisms of OA contributing to pain remained unclear for decades until recent studies found that particular neuronal factors related to aberrant bone remodelling cause the innervation of sensory nerves in the subchondral bone of patients with OA. Bone-resorbing osteoclasts create an acidic microenvironment by secreting H+ to cause bone pain in animal models of bone metastasis. Mechanistically, acidosis induces the expression and activation of acid-sensing receptor transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglia (DRGs). TRPV1 activation promotes extracellular Ca2+ influx and then activates calmodulin-dependent protein kinase II (CaMKII) and transcription factor cAMP-responsive element-binding protein (CREB), leading to the transcriptional activation of the pain-related molecule calcitonin gene-related peptide (CGRP). Similarly, acid-sensing ion channel 3 (ASIC3) is upregulated in mono-iodoacetate-induced OA model and is associated with hyperalgesia caused by increased Ca2+ influx. Netrin-1 secreted by osteoclasts induces sensory innervation and pain in OA through its receptor deleted in colon cancer (DCC). Preosteoclasts produce nerve growth factor (NGF), serving as key drivers of subchondral nerve innervation during OA development. In addition, PGE2 is synthesised by osteoblasts in response to low bone density and contributes to skeletal alldynia in OA mice by upregulating the voltage-gated sodium channel Na+1.8 and increasing Na+ influx in subchondral nociceptive neurons.

Pain medications recommended in the current guidelines for OA include non-steroidal anti-inflammatory drugs, paracetamol, opioids and corticosteroids administered via the oral, topical or intraarticular route. Several new pain treatments are currently moving forward in preclinical and clinical evaluation processes, potentially marking the beginning of a new era in the management of OA-related pain. Tanezumab (a human monoclonal antibody against NGF) is significantly superior to placebo in reducing pain and improving joint function with fewer adverse events based on a meta-analysis of 10 studies. Evidence suggests that a small molecule conjugate linking the TGF-βR inhibitor TLY-2109761 and alendronate substantially reduces excessive PGE2 production by osteoblasts and alleviates OA-induced pain in OA mice by restoring aberrant bone remodelling. In addition, nociceptive signals were blunted in subchondral sensory neurons in OA mice by the administration of a cyclooxygenase 2 (COX2) inhibitor, the Na+1.8 inhibitor A-803467 and an EP4 receptor antagonist. Furthermore, Ca2+ influx into the cytoplasm in sensory neuron was inhibited by the TRPV1 antagonist SB366791 and theASIC3 antagonist APETx2 to reduce acid-induced pain in a murine model of bone cancer pain and a rat model of OA, respectively. Collectively, further exploration of how the subchondral bone microenvironment is related to OA pain may be an excellent approach to develop specific drugs useful for the treatment of OA (table 2).

CONCLUSION AND PERSPECTIVE
The bone-cartilage unit composed of subchondral bone and cartilage plays a significant role in joint homeostasis and OA development. During OA progression, the two joint compartments of the functional unit experience abnormal alterations in tissue structure and cellular activity. Therefore, therapeutic strategies targeting one of the abnormal joint compartments could restrain the progression of the pathology of the whole joint. Furthermore, this strategy may be an effective disease-modifying method to block pathological interactions between the two joint compartments through pharmacological interventions. More extensive cellular and molecular studies of bone–cartilage interface crosstalk will help us to better understand the pathophysiology of OA and modify existing OA therapies. In particular, the microenvironment in subchondral bone serves as the predominant regulator of the development of OA. Therefore, future studies should focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction and OA pain and the development of novel drugs to treat OA by targeting the subchondral bone microenvironment.
REFERENCES

1 Glynn-Jones S, Palmer AR, Agricola R, et al. Osteoarthritis. Lancet 2015;386:376–87.

2 Perrot S. Osteoarthritis pain. Best Pract Res Clin Rheumatol 2015;29:90–7.

3 Hoshi H, Akagi R, Yamaguchi S, et al. Effect of inhibiting MMP13 and ADAMTSS by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res 2017;368:379–87.

4 Castañeda S, Roman-Bias JA, Largo R, et al. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 2012;83:315–23.

5 Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insights into risk factors and microstructural changes. Arthritis Thes Res 2013;15:223.

6 Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporsis Int 2012;23:847–51.

7 Funck-Brentano T, Cohen-Solal M. Crossover between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev 2011;22:91–7.

8 Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone 2009;12:201–14.

9 Goldring SR. Role of bone in osteoarthritis pathogenesis. Med Clin North Am 2009;93:25–35.

10 Zhu S, Zhu J, Zhen G, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019;129:1076–93.

11 Zhu J, Zhen G, An S, et al. Ablent subchondral osteoblast metabolism modifies Na,1.b for osteoarthritis in mice. Bone 2009;45:657–66.

12 Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010;1192:230–7.

13 Holopainen JT, Brama PAJ, Halmešmäki E, et al. Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 2008;43:1108–14.

14 Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 2012;4:249–58.

15 Hu W, Zhang L, Dong Y, et al. Tumour dormancy in inflammatory microenvironment: a promising therapeutic strategy for cancer-related bone metastasis. Cell Mol Life Sci 2020. doi:10.1007/s00018-020-03572-1. [Epub ahead of print: 16 Jun 2020].

16 Day JS, Van Der Linden JC, Bank RA, et al. Adaptation of subchondral bone in osteoarthritis. Biophysics 2004;41:359–68.

17 Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and carilage-bone crosstalk. Nat Rev Rheumatol 2016;12:632–44.

18 Thielen N, van der Kraan P, van Caam A. TGFβ/BMP signalling pathway in cartilage homeostasis. Cells 2019;8:969.

19 Peffers MJ, Chabrotanova A, Balaskas P, et al. SmoRNA signatures in cartilage ageing and osteoarthritis. Sci Rep 2020;10:61064.

20 Barton KI, Shekarforoush M, Heard BL, et al. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J Orthop Res 2017;35:454–65.

21 Goode AP, Carey TS, Jordan JM. Low back pain and lumbar spine osteoarthritis: how are they related? Curr Rheumatol Rep 2019;15:205.

22 Courties A. [Is there one or more osteoarthritides?]. Rev Prat 2019;69:502–4.

23 Gellhorn AC, Katz JN, Suri P. Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol 2013;9:216–24.

24 Laheim TA, Hol C, Ottersen MK, et al. The role of imaging in the diagnosis of temporomandibular joint pathology. Oral Maxillofac Surg Clin North Am 2018;30:239–49.

25 Morales H, Cornelius R. Imaging approach to temporomandibular joint disorders. Clin Neuroradiol 2016;26:5–22.

26 Bhatia P, Cline G, Hart DL, et al. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 2002;46:3178–84.

27 Klose-Jenssen R, Hartlev LB, Boel WLT, et al. Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint. Osteoarthritis Cartilage 2015;23:2167–73.

28 Botter SM, van Osh GJM, Clockearts S, et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 2011;63:1914–23.

29 Burr DB. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage 2004;12:20–30.

30 Pu P, Qiuangyu M, Weishan W, et al. Protein-degrading enzymes in osteoarthritis, Z Orthop Unfall 2019. doi:10.1055/a-1019-8117. [Epub ahead of print: 19 Nov 2019].

31 Cabahug-Zuckerman P, frikha-Benayid D, Majeska RJ, et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res 2016;31:1356–65.

32 Plotkin UL, Gortazar AR, Davis HM, et al. Inhibition of osteocyte apoptosis prevents the increase in osteocyte receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloaded. J Biol Chem 2015;290:18934–42.

33 Lacourt M, Gao C, Li A, et al. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis. Osteoarthritis Cartilage 2012;20:572–83.

34 Boydé A, Firth EC. High resolution microscopic survey of third metacarpal articular cartilage and subchondral bone in the juvenile horse: possible implications in chondro-osseous disease. Microsc Res Tech 2008;71:477–88.

35 Kennedy OD, Herman BC, Lauder DM, et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 2012;50:1115–22.

36 Kennedy OD, Lauder DM, Majeska RJ, et al. Osteocyte apoptosis is required for production of osteodegradative signals following bone fatigue in vivo. Bone 2012;46:132–7.

37 Li J, Yue J, Jing Y, et al. SOST deficiency aggravates osteoarthritis in mice by promoting sclerosis of subchondral bone. Biomed Res Int 2019;2019:1–8.

38 Ganesh T, Laughrey LE, Niroobakhsh M, et al. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system. Bone 2020;137:115328.

39 Dai G, Xiao H, Liao J, et al. Osteocyte TGFβ1-Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis. Int J Mol Med 2020;46:167–78.

40 Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014;35:227–36.

41 Ni G-X, Zhan L-Q, Gao M-Q, et al. Matrix metalloproteinase-3 inhibitor retards treadmill running-induced cartilage degradation in rats. Arthritis Res Ther 2011;13:R192.

42 Liu X-H, Kirschenbaum A, Yao S, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci 2006;1068:225–33.

43 Liu X-H, Kirschenbaum A, Yao S, et al. Cross-talk between the interleukin-6 and prostaglandin E2 signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/ receptor activator of nuclear factor-κB (RANK) ligand/RANK system. Endocrinology 2005;146:1991–8.

44 Sanchez C, Deberg MA, bellahcene A, et al. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 2008;58:442–55.

45 Lee SE, Woo KM, Kim SK, et al. The phosphodiesterase-3 kinase, p38, and extracellular-signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002;30:71–7.

46 Paiva KBS, Grangeiro JM. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog Mol Biol Transl Sci 2017;148:203–303.

47 Zhu S, Bennett S, Kuek V, et al. Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics 2020;10:3967–85.

48 Lu J, Zhang H, Cai D, et al. Positive-feedback regulation of subchondral H-type vessel formation by chondrocyte promotes osteoarthritis development in mice. J Bone Miner Res 2018;33:909–20.
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020.

Hasegawa T, Tsuchiya E, Abe M, et al. Cellular interplay of bone cells and vascular endothelial cells in bone. Clin Calcium 2016;26:677–82.

Peng Y, Wu S, Li Y, et al. Type H blood vessels in bone modeling and remodeling. Thrombosis 2020;10:426–36.

Ramsamy SK, Kusumase AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nat 2014;507:376–80.

Kusumase AP, Ramsamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vascular subtype in bone. Nature 2014;507:323–8.

Romeo SG, Alawi KM, Rodrigues J, et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol 2019;21:430–41.

Sanchez C, Mazucchelli G, Lambert C, et al. Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subcondral bone in oa: a pilot study. PLoS One 2018;13:e0194591.

Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–8.

Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med 2018;24:823–33.

Zhen GM, Wen C, Jia X, et al. Inhibition of TGF-$
\beta$ signaling in mesenchymal stem cells of subcondral bone attenuates osteoarthritis. Nat Med 2013;19:704–12.

Xie H, Cui Z, Wang L, et al. PDGF-BB secreted by proosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 2014;20:1270–8.

Chen Y, Yang T, Guan M, et al. Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis. Osteoarthritis Cartilage 2015;23:2174–83.

Tonna S, Poulton IJ, Taykar F, et al. Chondrocyte ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development 2016;143:648–57.

Wang B, Jin H, Shu B, et al. Chondrocytes-specific expression of proteoglycan modulates osteoclast formation in metaphyseal bone. Sci Rep 2015;5:13567.

Hasegawa T, Kikutaka J, Sudo T, et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FOXO1. Nat Immunol 2019;20:1631–43.

Lövblad H, Newbold H, Karsdal MA, et al. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res Ther 2018;20:67.

Chen L, Yao F, Wang T, et al. Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann Rheum Dis 2020;79:811–8.

Yuan XL, Meng HY, Wang YC, et al. Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014;22:1077–89.

Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighborhood. Nat Rev Cancer 2016;16:373–86.

Zhang R-K, Li G-W, Zeng C, et al. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β). Bone Joint Res 2018;7:587–94.

Zhang M, Zhou Q, Liang Q-Q, et al. IGF-1 regulation of type II collagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartilage 2009;17:100–6.

Párnitzas M, Saltiel AR, Leforoth D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3’-kinase and mitogen-activated protein kinase pathways. J Biol Chem 1997;272:154–61.

Looser RF, Shanker G. Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 2000;43:1552–5.

Jung YK, Han M-A, Park H-R, et al. Calcium-phosphate complex increased during subcondral bone remodeling affects earlystage osteoarthritis. Sci Rep 2018;8:487.

Dai J, Dong R, Han X, et al. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol 2020. doi:10.1152/ajpcell.00399.2020. [Epub ahead of print: 06 May 2020].

Fujisawa T, Hattori T, Takahashi K, et al. Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 1999;125:966–75.

Cao Y, Jansen IDC, Sprangers S, et al. IL-1β differently stimulates proliferation and matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 1999;125:966–75.

Zhou Q, Liang Q-Q, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J Biomed Sci 2007;14:2874–53.

Yi J, Kondo Y, et al. Stage-specific secretion of VEGF in chondrocytes regulates endochondral ossification. Mol Cell Biol 2007;27:5650–63.

Engi MT, Chen QJ, Yu TH, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000;151:879–90.

Kim Y, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci 2020;21:2358.

Riegger J, Brenner RE. Pathomechanisms of posttraumatic osteoarthritis: chondrocyte behavior and fate in a precartilageous environment. Int J Mol Sci 2020;21:1560.

Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000;106:1481–8.

Uldin A, Yallowitz A, Qin A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone 2003;32:1–7.

Takahashi K, Kondo Y, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem Cell Biol 2005;123:275–81.

Hinokuma K, Karsdal M, Delaisse J-M, et al. Rankl and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J Biomed Sci 2003;10:478–94.

Enzi MG, Stoppa P, Nelke T, et al. Stage-specific secretion of VEGF in cartilage regulates endochondral ossification. Mol Cell Biol 2007;27:6715–26.

Sanchez C, Mazzucchelli G, Lambert C, et al. Secretion of VEGF from vascular endothelial cells derived from sclerotic versus non-sclerotic subcondral bone in OA: a pilot study. PLoS One 2018;13:e0194591.

Gerber HP, Vu TH, Ryan AM, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–8.

Zhang R-Q, Cao Y, et al. IL-1β differently stimulates proliferation and matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Bone Joint Res 2010;20:1270–8.

Yam Y, Li Y, Wu S, et al. Osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Bone 2010;46:115–20.
Review

107 Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. *Rheumatology* 2010;49:1852–61.

108 Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. *J Bone Miner Metab* 2007;25:99–104.

109 Yoneda T, Hiasa M, Nagata Y, et al. Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain. *Biochim Biophys Acta* 2015;1848:2677–84.

110 Izumi M, Ikeuchi M, Ji Q, et al. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. *J Biomed Sci* 2012;19:77.

111 Chen J, Li J, Li R, et al. Efficacy and safety of tanezumab on osteoarthritis knee and hip pains: a meta-analysis of randomized controlled trials. *Pain Med* 2017;18:374–85.

112 Tive L, Bello AE, Radin D, et al. Pooled analysis of tanezumab efficacy and safety with subgroup analyses of phase III clinical trials in patients with osteoarthritis pain of the knee or hip. *J Pain Res* 2019;12:975–95.

113 Liu B, Ji C, Shao Y, et al. Etoricoxib decreases subchondral bone mass and attenuates biomechanical properties at the early stage of osteoarthritis in a mouse model. *Biomed Pharmacother* 2020;127:110144.

114 Abdel-Magid AF. Selective EP4 antagonist may be useful in treating arthritis and arthritic pain. *ACS Med Chem Lett* 2014;5:104–5.

115 Niiyama Y, Kawamata T, Yamamoto J, et al. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. *Br J Anaesth* 2009;102:251–6.