Introduction: Melasma is a hyperpigmentation disorder affecting a significant population, especially individuals with skin types IV to VI, and those living in areas with intense Ultraviolet (UV) radiation. Synonym of melasma are chloasma, black color or black spot[1,2]. Melasma conventional treatments includes eliminating causative agents, coupled with sunscreening, and using hyperpigmenting agents in combination with other therapies. Also, pigmentation disorder is common to those with IV-VI skin type, and people living in intense Ultraviolet environment. However, its pathophysiology is uncertain, as it appears to be present in female hormonal activity because it occurs more frequently in females than it does in males. Meanwhile, it commonly develops or worsens during pregnancy when using oral contraceptive pills. Indeed, one-half of cases presented were during pregnancy. Additionally, the expression of estrogen receptors appears to be up-regulated in melasma lesions[3,4]. The most important factor in its development is the exposure to sunlight. Ultraviolet radiation is known to induce increased production of alpha-melanocyte–stimulating hormone (alpha-MSH), corticotropin, interleukin1(IL-1), and endothelin 1, as they all contributed to increase melanin production by intra-epidermal melanocytes. The fibroblasts located in the skin's epidermal layer also contribute to its development. Moreover, overexpression of the tyrosine kinase receptor c-kit and certain stem cell factors have been identified in melasma lesions, which increase melanogenesis[5]. Prevalence in Latin women from...
South America was reportedly around 8.8%, which was high as 40% population of Southeast Asia. Furthermore, this pigmentation disorder is more common in people with skin types IV-VI, especially Hispanic, Caribbean, and Asian women living in areas with high exposure to ultraviolet light. In Indonesia, women’s to men’s ratio of the disorder is 24:1 respectively. Also it is commonly seen in childbearing women with sun exposure history. Subsequently, the highest incident recorded was between the age of 30 and 44 years[6]. The human pigmentation system consists of two cells namely, melanocytes and keratinocytes, along with cellular components that interact to form an end product called melanin pigment. Melanocytes are exocrine cells, which are located in the basal layer of the epidermis and the hair bulb matrix. Each melanocyte basal layer is connected through melanocyte dendrites with 36 keratinocytes in the epidermal malphigius layer. This is called epidermal layer melanin unit. Melanocytes produce tyrosinase and melanosomes. Also within, melanocytes produce two melanin subtypes namely, eumelanin and pheomelanin. Tyrosinase plays a role in these two melanin subtypes’ formation [7].

Materials and Methods:

This is an experimental study, in which a cross-sectional with randomized control study was done at Dr. Moewardi General Hospital from June to August 2019. The patients were proficiently grouped based on age, occupation, education, and melasma type. The melanin index measurement uses Mexameter®MX-18 (CourageKhazaka), and for accuracy Melasma Area and Severity Index (MASI) score used. The comparative test was conducted based on Mann-Whitney statistical analysis only when the distribution was irregular. The cream combination used in the experiment includes: phenylethyl-resorcinol 0.1%, lactic acid 0.04%, palmitol tripeptide-5 0.01% and retinol 0.01% as non-hydroquinone cream. Modified Kligman’s formula which consist of hidrokuinon 2%, tretinoin 0.05%, and dexamethasone 0.1% was used as control. Therefore, the statistical analysis used was the Mann Whitney test and Pearson Chi square.

Results

Thirty-two patients were examine and divided into two groups. Group A used a cream, containing a combination of non-hydroquinone (phenylethyl-resorcinol, lactic acid, palmitol tripeptide-5, retinol phenylethyl-resorcinol 0.1%, lactic acid 0.04%, palmitol tripeptide-5 0.01%, and retinol 0.01) compared to the modified Kligman’s formula (hidrokuinon 2%, tretinoin 0.05%, and dexamethasone 0.1%) on melasma patients. Age of patients that participated ranged from 20 to 50 years. Based on (Table 1) demographic data, the most age groups were 31-50 years (62.5%). In group A more patients were found at age 41-50 years (21.8%) compared to group B (12.5%). Among our patients, 6 (18.6%) were housewives, 19 (59%) were private workers, 1 (3.1%) was a student, and 5 patients (15.5%) were office workers.

The melanin index in melasma is an indicator for pigmentation assessment, using the Mexameter® MX 18 tool (Courage & Khazaka electronic GmbH. Cologne, Germany). This tool is a narrow-band reflectance spectrophotometer designed to measure melanin pigmentation based on the absorption of light from the skin. The Mexameter® can show measurements for light absorbed and reflected at red and infrared wavelengths for melanin. Based on (Table 2), a significant difference was found only in the improvement measurement, from baseline to week 8 (p <0.05)

Based on (Table 3), a significant difference was found on the effect of non-hydorquinone creams at week 2 and week 4 compared to control (p < 0.05), however at week 8 there was no significant correlation in the two groups (p > 0.05). Based on (Table 4). A similar significant difference was also found based on Modified Melasma Area and Severity Index (mMASI) in the two group (p < 0.05).

Table 1: Demographic Data
Age (years)
21-30
31-40
41-50
>50
Occupation
Government
Private
Housewife
Farmer
Student
Melasma Types
Epidermal
Dermal
Campuran
Table 2: Melanin index using non-hydroquinone cream and modified Kligman’s formula cream

Time of visit	Group A (Mean)	Group B (Mean)	p value
V0-V2	1.1261	3.3971	0.920
V0-V3	1.6822	7.3500	0.17
V0-V4	2.1300	6.2464	0.54
V0-V5	0.8394	11.7221	0.04

Table 3: Correlation of therapeutic effect using non-hydroquinone cream and modified Kligman’s formula cream (Pearson Chi square)

Time of visit	Coefficient contingency	p value
V0-V2	.409	0.04
V0-V3	.285	0.243
V0-V4	.449	0.044
V0-V5	.316	0.05

Table 4: Modified MASI score

Time of visit	Group A (Mean)	Group B (Mean)	p value
V0-V2	3.333	2.4500	0.034
V0-V3	3.1278	2.1785	0.014
V0-V4	2.7056	2.1071	0.104
V0-V5	5.399	4.890	0.345

Discussion

In group A, more patients were found at age 41-50 years (21.8%) compared to group B (12.5%). Among our patients, 6 (18.6%) were housewives, 19 (59%) were private workers, 1 (3.1%) was student, and 5 patients (15.5%) were office workers. The incidence of melasma increases among individuals with outdoor activities as sun exposure aggravates its effect, however, housewives with less sun exposure develop other factors inducing melasma pathophysiology, such as hormonal influence. In addition, 50% and 18.8% patients had mixed and epidermal melasma respectively. Wood’s lamp examination is helpful in classifying melasma into epidermal, dermal, mixed, and indeterminate lesions accentuating under Wood’s lamp. Consequently, epidermal melasma responds to local treatment, while dermal and mixed are less or non-responsive. But Wood’s lamp examination is not completely reliable in predicting response to treatment especially dark-skinned populations [8].

Retinoids reduce hyperpigmentation by stimulating melanin, which is released through increased epidermal turnover. Also by reducing the following, melanosomes transfer from melanocytes to keratinocytes, the duration of melanosomes on keratinocytes, and melanogenesis through inhibition of tyrosinase transcription [9]. Retinoids and its derivatives were reportedly effective in treating melasma, with some side effects that often arise, such as irritation or redness and peeling on the area that was smeared, and sometimes hyperpigmentation as well [10]. Although retinoic acid takes longer than non-hydroquinone to elicit a response in melasma (clinically, an enlightening effect appears after 24 weeks), when it was combined with lactic acid (7%) or ascorbic acid (10%) its effect was not only good but also fast [8]. Phenylethyl resorcinol is an antioxidant that is considered effective in influencing the formation of pigmentation, therefore can brighten the skin [11]. According to research published by Symrise, phenylethyl resorcinol was proved to be more effective than B-Arbutin for hair lightening, and also for exposed skin lightening. Its 0.5% concentration is more effective than 0.1% kojic acid concentration [12]. Other forms of resorcinol derivatives such as butyl resorcinol are also able to inhibit the tyrosinase enzyme, which is useful in melasma therapy [13].

Conclusion

A significant difference was obtained in melanin index with non-hydroquinone cream especially at week 4 of visit, while in group B, using modified Kligman’s formula, a significant difference also was obtained as seen in week 2, and 4 of visit.
The Difference of Melanin Index in Treatment of Melasma Using Non-Hydroquinone Cream and Kligman’s Formula

References

1. Pandya AG, Hynan LS, Bhave R, Riley FC, Guevara IL, Grimes P. Reliability Assessment and Validation of the Melasma Area and Severity Index (MASI) and a New Modified MASI Scoring Method. J Am Acad Dermatol. 2011;64(1):80-88.

2. Lapeere H, Boone B, Schepper SD, Verhaghe E, Ongenae K, Van Gelle N, et al. Hypomelanoses & Hypermelanoses. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffel D & Wolff K. Fitzpatrick’s Dermatology in General Medicine. 8th edition. New York: McGraw-Hill. 2012:804-826.

3. Jang YH, Lee JY, Kang HY, Lee ES, Kim YC. Oestrogen and Progesterone Receptor Expression in Melasma: An Immunohistochemical Analysis. J Eur Acad Dermatol Venereol. 2010;24(11):1312-1316.

4. DamevskaK. New Aspects of Melasma. Serbian J Dermatology Venereol. 2014;6(1):5-18.

5. Ortonne JP, Arellano I, Berneburg M, Cestari T, Chan H, Grimes P, et al. A Global Survey of the Role of Ultraviolet Radiation and Hormonal Influences in the Development of Melasma. J Eur Acad Dermatol Venereol. 2009;23(11):1254-1262.

6. Kang S, Sober AJ. Disturbance of melanin pigmentation. In: Moschella SL, Hurley HJ. Editor. Dermatology. 3rd ed. London: WB Saunders. 1992:1321-1374.

7. Jimbow K, Minamitsuji Y. Topical Therapies for Melasma and Disorders of Hyperpigmentation. Dermatol Ther. 2001;14:35-45.

8. Aswanonda P, Tyalo CR. Woods Light in Dermatology. Int J Dermatol. 1999;38:801-807.

9. Khanna N, Rasool S. Facial Melanoses: Indian perspective. Indian J Dermatol Venereol Leprol. 2011;77(5):552-564.

10. Ebanks JP, Wickett RR, Boissy RE. Mechanisms Regulating Skin Pigmentation: The rise and Fall of Complexion Coloration. Int J Mol Sci. 2009;10(9):4066-4087.

11. Gold MH & Biron JA. Retrospective Study on the Clinical Presentation and Treatment Free-Skin Brightening Cream in Patients with Melasma. J Cosmet Dermatol. 2011;10:189-196.

12. Zeinker S. Bleach Peeling for Melasma: An Effective Approach to Treatment. JAN. 2018;7(3):136-143.

13. Kaliterna D, Zuzul K, Kovacevic I. Melasma-Review of Current Treatment Modalities and Efficacy Assessment of a New Resorcinol-Based Topical Formulation. J Clin Cosmet Dermatol. 2017;10(3):1-4.