Precision measurement of reactor antineutrino oscillation at kilometer-scale baselines by Daya Bay

F. P. An,1 W. D. Bai,1 A. B. Balantekin,2 M. Bishai,3 S. Blyth,4 G. F. Cao,5 J. Cao,5 J. F. Chang,5 Y. Chang,6 H. S. Chen,5 H. Y. Chen,7 S. M. Chen,7 Y. Chen,8,1 Y. X. Chen,9 Z. Y. Chen,5 J. Cheng,9 Z. K. Cheng,1 J. J. Cherwinka,2 M. C. Chu,10 J. P. Cummings,11 O. Dalager,12 F. S. Deng,13 Y. Y. Ding,5 X. Y. Ding,14 M. V. Diwan,3 T. Doihal,15 D. Dolzhikov,16 J. Dove,17 H. Y. Duyang,14 D. A. Dywer,18 J. P. Gallo,19 M. Gonchar,16 G. H. Gong,7 H. Gong,7 W. Q. Gu,3 J. Y. Guo,1 L. Guo,7 X. H. Guo,20 Y. H. Guo,21 Z. Guo,7 R. W. Hackenburg,5 Y. Han,1 S. Hans,5 M. He,5 K. M. Heeger,22 Y. K. Heng,5 Y. K. Hor,1 Y. B. Hsiung,4 B. Z. Hu,4 J. R. Hu,5 T. Hu,5 Z. J. Hu,1 H. X. Huang,23 J. H. Huang,14 Y. B. Huang,24 P. Huber,25 D. E. Jaffe,3 K. L. Jen,26 X. L. Ji,5 X. P. Ji,3 R. A. Johnson,27 D. Jones,28 L. Kang,25 S. H. Kettell,3 S. Kohn,30 M. Kramer,18,30 T. J. Langford,22 J. Lee,18 J. H. C. Lee,31 R. T. Lei,29 R. Leitner,15 J. K. C. Leung,31 F. Li,5 H. L. Li,5 J. J. Li,7 Q. J. Li,5 R. H. Li,5 S. Li,29 S. C. Li,25 W. D. Li,5 X. N. Li,5 X. Q. Li,32 Y. F. Li,5 Z. B. Li,1 H. Liang,13 C. J. Lin,13 G. L. Lin,26 S. Lin,29 J. J. Ling,1 J. M. Link,25 L. Littenberg,3 B. R. Littlejohn,19 J. C. Liu,5 J. L. Liu,35 C. Lu,34 H. Q. Lu,5 K. B. Luk,30,18,35 B. Z. Ma,14 X. B. Ma,9 X. Y. Ma,5 Y. Q. Ma,5 R. C. Mandujano,12 C. Marshall,1814 K. T. McDonald,34 R. D. McKeown,36,37 Y. Meng,33 J. Napolitano,28 D. Naumov,16 E. Naumova,16 T. M. T. Nguyen,26 J. P. Ochoa-Ricoux,12 A. Olsheskiy,16 H.-R. Pan,4 J. Park,25 S. Patton,18 J. C. Peng,17 C. S. J. Pun,31 F. Z. Qi,5 M. Qi,38 X. Qian,3 N. Raper,1 J. Ren,23 C. Morales Reveco,12 R. Rosero,6 B. Roskovec,15 X. C. Ruan,23 B. Russell,18 H. Steiner,30,18 J. L. Sun,39 T. Tnej,15 K. Treskov,16 W.-H. Tse,10 C. E. Tull,18 B. Vireo,13 V. Vorobel,15 C. H. Wang,6 J. Wang,5 M. Wang,14 N. Y. Wang,20 R. G. Wang,5 W. Wang,1,37 X. Wang,40 Y. Wang,38 Y. F. Wang,5 Z. Wang,5 Z. Wang,7 Z. M. Wang,5 H. Y. Wei,3 Q. L. Wei,5 W. Wei,14 L. J. Wen,5 K. Whisnant,41 C. G. White,19 H. L. Hong,30,18 E. Worcester,3 D. R. Wu,9 Q. Wu,14 W. J. Wu,8 D. M. Xia,42 Z. Q. Xie,5 Z. Z. Xing,5 H. K. Xu,5 J. L. Xu,5 T. Xu,7 T. Xue,7 C. G. Yang,5 L. Yang,29 Y. Z. Yang,7 H. F. Yao,5 M. Ye,5 M. Yeh,3 B. L. Young,41 H. Z. Yu,1 Z. Y. Yu,5 B. B. Yue,1 V. Zavadskyi,16 S. Zeng,5 Y. Zeng,1 L. Zhan,5 C. Zhang,3 F. Y. Zhang,32 H. H. Zhang,32 J. L. Zhang,38 J. W. Zhang,5 Q. M. Zhang,21 S. Q. Zhang,1 X. T. Zhang,5 Y. M. Zhang,1 Y. X. Zhang,39 Y. Y. Zhang,33 Z. J. Zhang,29 Z. P. Zhang,13 Z. Y. Zhang,5 J. Zhao,5 R. Z. Zhao,5 L. Zhou,5 H. L. Zhuang,5 and J. H. Zou5

(Daya Bay Collaboration)

1Sun Yat-Sen (Zhongshan) University, Guangzhou
2University of Wisconsin, Madison, Wisconsin 53706
3Brookhaven National Laboratory, Upton, New York 11973
4Department of Physics, National Taiwan University, Taipei
5Institute of High Energy Physics, Beijing
6National United University, Miao-Li
7Department of Engineering Physics, Tsinghua University, Beijing
8Shenzhen University, Shenzhen
9North China Electric Power University, Beijing
10Chinese University of Hong Kong, Hong Kong
11Siena College, Loudonville, New York 12211
12Department of Physics and Astronomy, University of California, Irvine, California 92697
13University of Science and Technology of China, Hefei
14Shandong University, Jinan
15Charles University, Faculty of Mathematics and Physics, Prague
16Joint Institute for Nuclear Research, Dubna, Moscow Region
17Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
18Lawrence Berkeley National Laboratory, Berkeley, California 94720
19Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
20Beijing Normal University, Beijing
21Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an
22Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
23China Institute of Atomic Energy, Beijing
24Guangxi University, No.100 Dazue East Road, Nanning
25Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
26Institute of Physics, National Chiao-Tung University, Hsinchu
27Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
28Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
29Dongguan University of Technology, Dongguan

arXiv:2211.14988v1 [hep-ex] 28 Nov 2022
Neutrino oscillation has been firmly established by multiple observations since its discovery in 1998 [1]. As this phenomenon is not required by the Standard Model, it offers opportunities to search for new interactions and physical principles. The three-neutrino paradigm of neutrino oscillation can be parametrized by three mixing angles, two mass-squared differences, and a CP violation in neutrino oscillation [5, 6]. This framework has been very successful in explaining most of the observations made with accelerator, atmospheric, reactor and solar neutrinos. Our knowledge of the smallest neutrino mixing angle θ_{13} has been steadily improving since the first definitive determination in 2012 [3]. Besides being the best-measured neutrino mixing angle at present, precise knowledge of θ_{13} is important for testing the three-neutrino paradigm of neutrino mixing and as an invaluable input to model-building and to other experiments, most notably in resolving the neutrino mass hierarchy [4] and the search for CP violation in neutrino oscillation [5, 6].

Nuclear reactors produce low-energy electron antineutrinos, $\bar{\nu}_e$s, that are ideal for determining θ_{13} and the mass-squared difference Δm^2_{32} through the study of $\bar{\nu}_e$ disappearance. This is best accomplished by comparing the energy spectra obtained with identically designed detectors positioned at different distances from the reactors. This relative approach cancels the uncertainties in the absolute detection efficiency that are correlated between detectors and heavily suppresses the effect of the uncertainty in the reactor $\bar{\nu}_e$ flux determination, thus enabling precision measurement of the oscillation parameters. The $\bar{\nu}_e$s are detected via the inverse beta-decay reaction (IBD), $\bar{\nu}_e + p \rightarrow e^+ + n$, with the kinetic-energy loss and annihilation of the positron giving rise to a prompt-energy (E_p) signal, and the subsequent neutron capture to a delayed-energy (E_d) signal. The energy of the $\bar{\nu}_e$, $E_{\bar{\nu}}$, central to measurements of neutrino oscillation, is inferred from E_p with $E_{\bar{\nu}} \approx E_p + 0.78$ MeV.

In this Letter we report a new measurement of $\sin^2 2\theta_{13}$ and Δm^2_{32} using a final sample of 5.55×10^6 IBD candidates with the final-state neutron captured on gadolinium. This sample was selected from the complete data set obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation. Compared to the previous Daya Bay results, selection of IBD candidates has been optimized, energy calibration refined, and treatment of backgrounds further improved. The resulting oscillation parameters are $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$, $\Delta m^2_{32} = (2.466 \pm 0.060) \times 10^{-3}$ eV2 for the normal mass ordering or $\Delta m^2_{32} = -(2.571 \pm 0.060) \times 10^{-3}$ eV2 for the inverted mass ordering.

We present a new determination of the smallest neutrino mixing angle θ_{13} and the mass-squared difference Δm^2_{32} using a final sample of 5.55×10^6 IBD candidates with the final-state neutron captured on gadolinium. This sample was selected from the complete data set obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation. Compared to the previous Daya Bay results, selection of IBD candidates has been optimized, energy calibration refined, and treatment of backgrounds further improved. The resulting oscillation parameters are $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$, $\Delta m^2_{32} = (2.466 \pm 0.060) \times 10^{-3}$ eV2 for the normal mass ordering or $\Delta m^2_{32} = -(2.571 \pm 0.060) \times 10^{-3}$ eV2 for the inverted mass ordering.

PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g

Keywords: neutrino oscillation, neutrino mixing, reactor, Daya Bay
(PMTs) covering the barrel surface of the AD \cite{10}. The PMTs were arranged in 8 horizontal rings and 24 vertical columns. Highly reflective disks sandwiching the 4-m acrylic vessel were used to enhance the detection efficiency of scintillation photons. Radioactive sources and LEDs were stored in three automatic calibration units (ACUs) on top of each AD \cite{11}\cite{12}. Detailed information of the experiment can be found in Refs. \cite{13}\cite{14}. For each AD, a cylindrical coordinate system with the vertical \(z \) axis being the symmetry axis and \(z = 0 \) at the AD center was used.

The Daya Bay experiment was operated with three different configurations of ADs in the three EHs. From 24 December 2011 to 28 July 2012 (217 days), the experiment ran in an initial six-AD configuration with 2 ADs in EH1, 1 AD in EH2 and 3 ADs in EH3 that resulted in the first observation of \(\bar{\nu}e \) disappearance at \(\mathcal{O}(1 \text{ km}) \) baselines \cite{3}. An AD was added to both EH2 and EH3 during the summer of 2012 and this eight-AD configuration was operated from 19 October 2012 until 20 December 2016 (1524 days). Seven-AD operation occurred from 26 January 2017 until 12 December 2020 (1417 days) with one AD in EH1 re-purposed for liquid scintillator R&D for the JUNO experiment \cite{15}.

The results presented in this Letter are based on the data collected in the three configurations. Throughout the entire data analysis process, multiple groups within the collaboration provided validation and cross-checks.

Details of the analysis process and techniques can be found in Refs. \cite{16}\cite{17}. In this Letter we focus on the improvements to the analysis techniques.

Accurate and precise measurement of the prompt energy \(E_p \) is essential for extracting the oscillation parameters from the spectra. After the gain of each PMT was calibrated with the single-photoelectron peak from dark noise, a correction for the non-linear response of the electronics was applied to each channel. This correction was derived from the waveform output from a flash-ADC readout system running in parallel with the default ADC system of EH1-AD1 in 2016 \cite{18}. The observed charge profile was then used to reconstruct the position of the event using Reconstruction B in Ref. \cite{10}.

To obtain the reconstructed energy (\(E_{\text{rec}} \)), an additional correction to the non-uniform detector response was applied to account for a few non-functional PMTs toward the end of data collection. We used the energy deposited by spallation neutron capture on Gd in the GdLS and delayed \(\alpha \)-particles from correlated decays of natural radioactivity, \(^{214}\text{Bi} \rightarrow ^{214}\text{Po} \rightarrow ^{210}\text{Pb} \), in the LS to determine this additional position-dependent correction. The active volume of each AD was divided into 100 voxels in \(z \) and \(r^2 \), where \(r \) is the radial distance from the \(z \)-axis. For each voxel, the correction was defined as the ratio of the reconstructed energy to the reconstructed energy averaged over the entire GdLS volume. The temporal dependence of this correction was accommodated by two calibration periods, before and after 31 March 2017. The largest additional per-voxel correction was about 3%.

In this study, the prompt energy was obtained by directly correcting \(E_{\text{rec}} \) for the non-linear response of the LS which was determined from calibration \cite{19}. Weekly calibration was performed by remotely lowering the calibration sources into the ADs from the ACUs. Specialized calibration runs were taken during the re-configuration periods \cite{20}. The positron response model of Ref. \cite{19} was updated, taking into account the measured responses of \(\gamma \)-rays from various sources and electrons from \(\beta \)-decay of cosmogenic \(^{12}\text{B} \) of the full dataset as inputs. The best-fit model had a Birks’ coefficient \(k_B = 0.0143 \text{ g/cm}^2/\text{MeV} \) for the quenching effect and \(k_C = 0.023 \) for the contribution of Cherenkov radiation to the non-linearity; both parameters agreed well with the previous result \cite{19}.

The improved energy response model for the positron achieved a precision of < 0.5% for \(E_p > 2 \text{ MeV} \).

IBD candidates were selected with the following criteria. Events caused by spontaneous light emission of the PMTs, so-called flashes, were removed. Candidates must have a prompt-like signal with 0.7 MeV < \(E_p < 12 \text{ MeV} \) separated by 1 to 200 \(\mu \text{s} \) from a delayed-like signal with 6 MeV < \(E_d < 12 \text{ MeV} \). Candidate pairs were vetoed if their delayed-like events occurred (i) within a \((-202 \mu \text{s}, 600 \mu \text{s})\) time-window with respect to an IWS or OWS trigger with a PMT-hit multiplicity (nHit) > 12, or (ii) within a \((-202 \mu \text{s}, 410 \mu \text{s})\) time-window with respect to an IWS trigger with 6 < nHit < 12, or (iii) within a \((-202 \mu \text{s}, 1400 \mu \text{s})\) time-window with respect to triggers in the same AD with energy between 20 MeV and 2 GeV or (iv) within a \((-202 \mu \text{s}, 0.4 \text{s})\) time-window with respect to triggers in the same AD with energy higher than 2 GeV. This targeted muon veto efficiently removed spurious triggers that followed a muon as well as most muon-induced spallation products and muon decays. To remove any ambiguity in the candidate-pair selection, no additional AD triggers with energy between 0.7 MeV and 20 MeV were allowed within \((-400 \mu \text{s}, 200 \mu \text{s})\) of the delayed candidate.

A new source of flashes was observed in the 7-AD operation period that were not suppressed by the previous criteria \cite{16}. Additional selection criteria targeting the characteristic charge pattern and temporal distribution of these new flashes were devised that rejected over 99% of this instrumental background with an IBD selection efficiency over 99.99%.

The selected IBD candidates consisted of genuine IBD and background events. The background comprised uncorrelated accidental pairs, and correlated prompt-and-delayed signals coming from fast neutrons, \(\beta \)-n decays of spallation \(^9\text{Li}/^{8}\text{He} \), neutrons leaking from the \(^{211}\text{Am}/^{13}\text{C} \) calibration sources and \(^{13}\text{C}(\alpha, n)^{16}\text{O} \) with the \(\alpha \) coming from natural radioactivity. The latter two correlated backgrounds and the accidental background, detailed in Ref. \cite{16}, did not require any improved treatment in this
analysis. The muon detection efficiency of the IWS and OWS dropped with time due to the gradual loss of functional PMTs near the top of the water pools, particularly in the 7-AD period. With this loss of detection efficiency, a new background, dubbed “muon-x” (described below), became apparent.

The largest correlated background is β-n decay of cosmogenic radio-isotopes 9Li and 8He. To determine this background, muons were paired with all IBD candidates within ± 2 s. To improve discrimination of 9Li/8He from other processes, candidate events were separated into several samples based on the visible energy deposited by the muon (E_μ) in the AD and the distance between the prompt and delayed signals, Δt. The rates and energy spectra of the dominant cosmogenic radio-isotopes were extracted with a simultaneous fit to 12 two-dimensional spectra. The prompt- and delayed-energy spectra of data samples before the 7-AD period with and without masking the PMTs that failed subsequently. Consistent results were obtained.

Table I summarizes the IBD candidates and backgrounds for the final n-Gd sample. We obtained a total of 4.8 million IBD candidates at the near halls and 0.76 million at the far hall with less than 2% background.

The τ_e flux without oscillation at each AD was predicted by using the thermal-power data and fission fractions of each fuel cycle, provided by the power plant operator, as a function of burn-up. The power data carried an uncorrelated uncertainty of 0.5% per core, while a 0.6% uncorrelated uncertainty per core in the τ_e yield was introduced by the uncertainties of the fission fractions. Due to the nature of the near-far relative measurement, 95% of the uncorrelated uncertainty of each core cancelled and extraction of the oscillation parameters was insensitive to the spectral shape of the no-oscillation prediction.

The detector-related uncertainties have been presented in Ref. 16. Detection efficiency uncertainties that are correlated between detectors did not contribute to this near-far relative measurement. The total uncorrelated uncertainty in the detection efficiency remained at 0.13%. The largest contribution of 0.10% coming from the fraction of neutrons captured on gadolinium was obtained by comparing the capture-time distributions of the ADs. The next largest uncorrelated uncertainty of 0.08% in the delayed-energy selection criterion was due to a 0.2% spread in the relative energy scale among the ADs. The relative detection efficiency estimate was validated by comparing the τ_e rates of neighboring ADs in each EH for each data-taking period 22. The rates were consis-
TABLE I. Summary of IBD signal and background. Rates are corrected for the muon veto and multiplicity selection efficiencies $\varepsilon_\mu \times \varepsilon_m$. The sum of the fast neutron and muon-x background rates is reported as “Fast n + muon-x”. The AD numbering scheme reflects the time order of AD fabrication and deployment.

	AD1	AD2	AD3	AD4	AD5	AD6	AD7	
$\bar{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2501.531	
$\varepsilon_\mu \times \varepsilon_m$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513
Accidental [day$^{-1}$]	7.11 ± 0.01	6.76 ± 0.01	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast n + muon-x [day$^{-1}$]	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	
9Li/8He [AD$^{-1}$ day$^{-1}$]	2.92 ± 0.78	2.45 ± 0.57	0.26 ± 0.04					
241Am-13C [day$^{-1}$]	0.16 ± 0.07	0.13 ± 0.06	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
13C(α, n)16O [day$^{-1}$]	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$\bar{\nu}_e$ rate [day$^{-1}$]	657.16 ± 1.10	685.13 ± 1.00	599.47 ± 0.78	591.71 ± 0.79	75.02 ± 0.18	75.21 ± 0.18	74.41 ± 0.18	74.93 ± 0.18

Hence consistent with the predictions that took the tiny variations in the baseline and number of protons into account. Furthermore, no significant deviation in the spectral distributions among the ADs in the same experimental hall was found.

We extracted the oscillation parameters using the survival probability of three-flavor oscillation given by

$$P = 1 - \cos^2\theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{13} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} \right)$$

(1)

where $\Delta_{ij} = 1.267 \Delta m^2_{ij} / E$ with Δm^2_{ij} in eV2. L is the baseline in meters between an AD and a reactor core and E is the energy of the $\bar{\nu}_e$ in MeV. We used $\sin^2 \theta_{12} = 0.307 \pm 0.013$ and $\Delta m^2_{31} = (7.53 \pm 0.18) \times 10^{-5}$ eV2 [2]. Alternatively, for short baselines of a few kilometers, the survival probability can be parametrized as

$$P = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} \Delta_{\nu}$$

(2)

Here, the effective mass-squared difference $\Delta m^2_{\nu e}$ is related to the wavelength of the oscillation observed at Daya Bay, and is independent of the choice of neutrino mass ordering as well as the value and uncertainty of the mixing angle θ_{12} [16].

We adopted fitting Method B reported in Ref. [16] to extract the oscillation parameters. The fit minimized a χ^2 function defined as [21]:

$$\chi^2(\theta_{13}, \Delta m^2, \nu) = \chi^2_{\text{stat}}(\theta_{13}, \Delta m^2, \nu) + \chi^2_{\text{syst}}(\nu)$$

(3)

where χ^2_{stat} is the standard statistical term that compares all the measured background-subtracted prompt-energy spectra with the predictions. For each period of operation, the spectrum of each AD was divided into 26 bins. The predictions were derived from the calculated reactor $\bar{\nu}_e$ flux, survival probability, IBD cross section [23] and detector response obtained with a detailed Geant4-based simulation [24,26]. The term $\chi^2_{\text{syst}}(\nu)$ contains the detector and background systematic uncertainties as pulls of the nuisance parameters expressed as a vector ν.

Figure 1 shows the covariance contours in the $\Delta m^2_{\nu e}$-$\sin^2 2\theta_{13}$ space. The best-fit point with χ^2/ndf = 559/517 yields $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$, and $\Delta m^2_{32} = (2.466 \pm 0.060) \times 10^{-3}$ eV2 for the normal mass hierarchy or $\Delta m^2_{32} = -(2.571 \pm 0.060) \times 10^{-3}$ eV2 for the inverted mass hierarchy. Using Eq. [2] we obtained $\sin^2 2\theta_{13} = 0.0852 \pm 0.0024$ and $\Delta m^2_{\nu e} = (2.519 \pm 0.060) \times 10^{-3}$ eV2 with the same reduced-χ^2 value. Results determined with the other fitting methods described in Ref. [16] were consistent to < 0.2 standard deviations.

The best-fit prompt-energy distribution is in excellent agreement with the observed spectra in each experimental hall, as shown in Fig. 1.

Figure 2 depicts the normalized signal rate of the three halls as a function of $L_{\text{eff}} / \langle E_{\nu} \rangle$ with the best-fit curve superimposed, where L_{eff} and $\langle E_{\nu} \rangle$ are the effective baseline and average E_{ν} energy, respectively [16]. The oscillation pattern related to θ_{13} is unambiguous.
The present improved result in $\sin^2\theta_{13}$ is consistent with our previous determinations \cite{9} \cite{16} \cite{17} and agrees with other measurements of reactor ν_e disappearance by RENO \cite{27} and Double Chooz \cite{28} \cite{29} as well as electron neutrino and antineutrino appearance measurements by T2K \cite{6}. Daya Bay’s measured Δm^2_{32} is consistent with the results of NOvA \cite{3} T2K \cite{6}, MINOS/MINOS+ \cite{30}, IceCube \cite{31} and SuperK \cite{32} that were obtained with muon (anti)neutrino disappearance. The agreement in $\sin^2\theta_{13}$ and Δm^2_{32} between Daya Bay measurements using ν_e and the muon neutrino and antineutrino determinations provides strong support of the three-neutrino paradigm.

To conclude, we have presented a new determination of $\sin^2\theta_{13}$ with a precision of 2.8\% and the mass-squared differences reaching a precision of about 2.4\%. The reported $\sin^2\theta_{13}$ will likely remain the most precise measurement of θ_{13} in the foreseeable future and be crucial to the investigation of the mass hierarchy and CP violation in neutrino oscillation.

The Daya Bay experiment is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the Ministry of Education in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth, and Sports of the Czech Republic, the Charles University Research Centre UNCE, and the Joint Institute of Nuclear Research in Dubna, Russia. We acknowledge Yellow River Engineering Consulting Co., Ltd., and China Railway 15th Bureau Group Co., Ltd., for building the underground laboratory. We are grateful for the cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company.

* Now at Department of Chemistry and Chemical Technology, Bronx Community College, Bronx, New York 10453
† Now at Department of Chemistry and Chemical Technology, Bronx Community College, Bronx, New York 10453
‡ Now at Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
§ Now at Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
\cite{1} Y. Fukuda \textit{et al.} (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998) [arXiv:hep-ex/9807003]
