Potential Roles of Vitamins in the Management of COVID-19: A Comprehensive Review

Homa Rezaeia,b,c, Sajad Khialia, Haleigh Rezaeea, Taher Entezari-Malekia,d,1

a Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

b Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

c Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

d Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Running title
Roles of Vitamins in COVID-19

1Corresponding author:

Taher Entezari-Maleki, Drug Applied Research Center and Cardiovascular Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

Address: Daneshgah St. Tabriz, Iran, P.O. Box: 51664-14766

E-mail: tentezari@gmail.com, entezarim@tbzmed.ac.ir

Tel & Fax: +98-41-33363317
ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has caused a public health crisis worldwide. However, data regarding the protective factors of the disease is limited. Consequently, preventive health measures that can decrease the risk of infection, progression, and severity are dreadfully required. It is well-documented that people with immunodeficiency, such as the elderly, people who already have comorbidities (e.g., diabetes mellitus, hypertension, respiratory and cardiovascular disorders), and underrepresented minorities, are placed in a group with a higher risk of getting infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A diet rich in vitamins, minerals, and antioxidants plays an essential role in strengthening the immune system and fighting against invading pathogens. The present comprehensive review has discussed published literature regarding the potential role of vitamins in strengthening the immune system and managing viral infections, particularly SARS-CoV-2 infection. Although there are controversial data regarding the plasma level of vitamin D and the severity of the disease, according to the limited evidence, vitamin D may lower the mortality rate. Moreover, vitamin C could reduce the development of inflammatory response; however, the results of ongoing clinical trials are required to confirm these primary findings.

Keywords: COVID-19; Nutritional Supplements; Immunity; Vitamins; SARS-CoV-2

Introduction

The pandemic of novel coronavirus disease 2019 (COVID-19) has been the major global health crisis of our time with high economic and social impact. The overall mortality rate per confirmed
COVID-19 cases was reported as approximately 4.5%, but the actual number would be greater because of the undetected population. People with immunodeficiency, such as the elderly, people who already have comorbidities (e.g., diabetes, hypertension, respiratory and cardiovascular disorders), and underrepresented minorities, are categorized in high-risk groups.1-3

The severity and recovery of the disease depend greatly on the genetic, age, nutrition, and overall strength of the host immune system. Given that to date no direct medication or vaccine has been approved by the Food and Drug Administration (FDA) for the treatment of individuals with COVID-19, the rational solutions are hygiene protocols, social distancing, the global vaccination program, and a healthy diet to help function and strengthen the immune system until providing definitive treatment. Malnutrition is considered one of the most common reasons for immunodeficiency.4,5 Hence, a healthy diet and adequate vitamin intake are critical in the management of numerous diseases such as malignancies, allergies, autoimmune diseases, and infections, such as COVID-19. Besides, the importance of immune system dysregulation in the clinical progression of the infection has been well recognized. This fact increases the interest in using vitamins and antioxidant supplements in the management of COVID-19. Considering these points, we reviewed the current evidence regarding the importance of potential vitamins in the prevention and treatment of COVID-19.

The immune system

The immune system comprises two defense lines called innate immunity as a non-specific and rapid immunological mechanism and adaptive immunity as an antigen-specific mechanism for
fighting against invading pathogens. So that in the phase of innate immunity, immune cells respond by producing neutrophils, mast cells, phagocytes, dendritic cells, eosinophils, and some other white blood cells (WBC). In contrast, adaptive immunity involves action from cytotoxic T cells, T helper (Th) cells, and B cells. Cytotoxic T cells are responsible for destroying infected cells, and Th cells coordinate the responses of other immune cells. In comparison, B cells are in charge of the production of pathogenic antigen-specific antibodies. The strength of our immune cell response is highly dependent on the availability of minerals vitamins as cofactors. Consequently, vitamin supplementation could boost the immune system.6-10

Fat-soluble vitamins

Vitamin D (ergocalciferol-D2, cholecalciferol-D3, alfacalcidol)

Numerous studies have evaluated the effect of vitamin D on the immune system.11-16 Vitamin D is an immune system regulator and plays a series of important roles in the replication and maturation of macrophages and monocytes, physiological functions of mineral homeostasis such as calcium, phosphate, and magnesium.17-19 Besides, there is mounting evidence supporting the potential beneficial effects of vitamin D in the numerous viral and bacterial infections such as human immunodeficiency virus (HIV),19,20 and tuberculosis.21

Notably, it has been shown that vitamin D deficiency prevalence seems to be high, particularly among individuals who are taking some pharmaceutical agents (e.g., antiepileptics and antihypertensives) because of impaired vitamin D metabolism, elderly population, and those with limited time outdoors and reduced epidermal synthesis.22 Several preclinical and clinical studies have evaluated the efficacy and safety of vitamin D supplementation in the management of infectious diseases.
Hayashi et al. showed that long-term administration of 25-hydroxyvitamin D3 (25(OH) D3) could relieve the clinical appearance of infectious diseases prophylactically in a mouse model by decreasing the viral replication and production of inflammatory cytokines. A diet containing a high dose of 25(OH) D3 led to significantly lower viral titers and IL-5 and interferon-γ levels in this study.23 Ginde et al. conducted a randomized controlled trial to evaluate the efficacy and safety of high-dose vitamin D compared with the standard dose supplementation for the prevention of acute respiratory infection in 107 individuals older than 65 years of age from 2010 to 2014. In the standard-dose group, individuals taking <400 IU/day received 12,000 IU of vitamin D3 every month, and those taking 400-1,000 international units (IU)/day were given a placebo, while cases in the high-dose group received 100,000 IU vitamin D3 every month. Data analysis showed that 0.67 and 1.11 acute respiratory infection per person-year were reported for the high-dose the standard-dose groups, respectively (incidence rate ratio (IRR) = 0.60, 95% confidence interval (CI) = 0.38-0.94, P = 0.02). Moreover, fractures were rare in both groups (0.10 vs. 0.19 per person-year; P = 0.31). Moreover, falls were more prevalent in the high-dose group compared with the standard dose group (1.47 vs. 0.63 per person-year; IRR = 2.33, 95% CI = 1.49-3.63, P < 0.001). Finally, hypercalcemia kidney stones were not observed in the study groups.24

Seventy-two continuous patients with chronic hepatitis C virus (HCV) genotype one were randomized into two groups to assess whether adding vitamin D improve the response of HCV to antiviral therapy or not. Patients in the in the treatment (n = 36, 50% male, mean age 47 ± 11 years) and control groups (n = 36, 60% male, mean age 49 ± 7 years) received peginterferon alfa-2b (1.5 μg/kg per week), ribavirin (1000-1200 mg/day) as the standard care. The individuals in the treatment group were given vitamin D3 (2000 IU/day, target serum level > 32 ng/mL) in addition to the standard treatment. A higher mean body mass index (27 ± 4 kg/m2 vs. 24 ± 3 kg/m2; P <
0.01), viral load (50% vs. 42%, P < 0.01), and fibrosis score (> F2: 42% vs. 19%, P < 0.001) was observed in treatment group than the controls. After 12 weeks of infection, 34 and 17 patients in the treatment and control groups were HCV-ribonucleic acid (RNA) negative, respectively (P < 0.001). Furthermore, at week 4, 44% and 17% of cases in the treatment and control were HCV-RNA negative, respectively (P < 0.001). At week 24, 31 patients in the intervention group and 15 in the control group were HCV-RNA negative (P < 0.001).25

Aglipay et al. carried out a randomized clinical trial in patients with ages 1 to 5 years to evaluate the efficacy of high-dose vitamin D compared with standard-dose on respiratory tract infections. A total of 703 patients were randomized to receive 400 IU/day (standard-dose group; n=354) or 2000 IU/day (high-dose group; n=349) vitamin D for at least 4 months. Among them, 99.4% completed the trial. The mean number of upper respiratory tract infections were 1.03 (95% CI, 0.90-1.16) and 1.05 (95% CI, 0.91-1.19) per case in the standard-dose and high-dose groups, respectively. No significant difference was observed in the number of infections between the study groups (IRR, 0.97; 95% CI, 0.80-1.16). Moreover, no statistically significant difference was observed in the median time to the first infection ((3.29 months (95% CI, 2.66-4.14 months) vs. 3.95 months (95% CI, 3.02-5.95 months)) and the number of parent-reported upper respiratory tract diseases (600 vs. 625; IRR, 1.01; 95% CI, 0.88-1.16). Finally at the end of trial, levels of serum 25 (OH) vitamin D were 36.8 ng/mL (95% CI, 35.4-38.2 ng/mL) and 48.7 ng/mL (95% CI, 46.9-50.5 ng/mL) in the standard-dose and high-dose groups, respectively.26

The advantages and disadvantages of using vitamin D in the medication regimen of COVID-19 patients should be carefully evaluated.27 Some articles have addressed the role of vitamin D in decreasing the risk of acute upper respiratory tract infections, so the idea of using this vitamin in response to COVID-19 came to mind.28,29 Vitamin D has been widely investigated in intensive
care unit (ICU) patients before and during the COVID-19 pandemic, and these studies have shown conflicting results. According to two ecological studies, there are inverse correlations between incidence and mortality of COVID-19 with national estimates of vitamin D status. It has been shown that patients with vitamin D deficiency are more susceptible to COVID-19 and have a higher risk for severe forms of the disease.16,29-35

Amrein et al., in a randomized clinical trial, showed that high dose vitamin D supplementation could reduce the mortality rate only in patients with vitamin D deficiency. The use of vitamin D3 (10,000 IU/day for a few weeks followed by 5000 IU/day) has been suggested to decrease the possibility of infection in the population at risk of COVID-19. In contrast, Martínez and colleagues concluded that vitamin D could not decrease virus replication in both animal and clinical data.36-39

A recent systematic review and meta-analysis of four studies involving 259 patients40 showed that vitamin D supplementation led to a statistically significant lower mortality rate in patients with COVID-19 (OR=0.264, 95\% CI=0.099–0.708, p-value=0.008). Moreover, Rastogi et al.41 showed that vitamin D supplementation could significantly decrease serum levels of fibrinogen and inflammatory markers; however, no major difference was observed in the levels of procalcitonin, C-reactive protein, D-dimer, and ferritin. Furthermore, Castillo et al. showed a lower rate of ICU admission in those who received vitamin D (p < 0.001).42 Finally, there was a significant decrease in the COVID-19 ordinal scale of clinical improvement in the patients who received vitamin D.43,44

\textit{Vitamin E (alpha-tocopherol, tocopherol, tocotrienol)}

Vitamin E is a lipid ingredient of the biological membrane, and as a lipid-soluble compound, its metabolism, regulation, and excretion occur in the liver. It plays a critical role as a major component in antioxidant defense in mammalian systems, with the capability of mitigating the
membrane lipid peroxidation by neutralization reactive oxygen species (ROS) and free radicals, protecting against air pollution and ultraviolet radiations. It is also essential for recovery after a chronic viral infection by supporting the integrity of respiratory epithelial barriers; however, it seems that vitamin E has no protective effects on respiratory tract infections. Vitamin E could decrease the inflammatory parameters.

Vitamin E has the capability of boosting the immune response via the following mechanisms: starting the T-lymphocytes signals, reduction in producing nitrogen oxide, which leads to prohibition of cyclooxygenase-2 and reduction of prostaglandin E2 release by macrophages, modulation of Th1/Th2 balance, production of interferon-γ, interleukin 2 (IL-2) and supporting the activation of immune synapses between Th cells and enhancing the amount of antigen-experienced memory T-cells. Vitamin E effective dosage has been reported 50-200 mg per day. Vitamin E deficiency is rare in humans but results in impaired humoral and cell-mediated adaptive immunity, an increased possibility of infection with high virulent strains and severe pathologies, and reduction in specific antibody production following vaccination, natural killer (NK) cell activity, neutrophils phagocytosis, and lymphocyte proliferation.

Taking vitamin E supplementation on a regular basis enhances resistance to respiratory infections, in particular, the risk of infection by SARS-CoV-2 by improving overall immune functions and reducing virus load in lung tissues. Nevertheless, data regarding the potential beneficial effects of vitamin E is limited in patients with COVID-19.

Numerous animal studies have been conducted to investigate the association between vitamin E deficiency and the impairment of humoral and cell- mediated immune functions. It has been
shown that vitamin E deficiency leads to impaired lymphocyte proliferation in rats, lambs, dogs, chickens, and pigs and lower antibody production in rat and mouse models.

A randomized, double-blind, placebo-controlled trial was carried out to evaluate the effects of vitamin E supplementation on lower respiratory tract infections in 617 elderly individuals nursing home residents. The patients were randomized to receive vitamin E (200 IU) for 12 months or a placebo. Results showed that vitamin E supplementation had no statistically significant effect on the number of days with respiratory tract infections and incidence of the infections. Furthermore, antibiotic use was not significantly different between the study groups. Nevertheless, the number of patients with at least one respiratory tract infection was lower in the cases that received vitamin E compared with placebo (60% vs. 68%; risk ratio, 0.88; 95% CI, 0.76-1.00; P = .048). Moreover, post hoc subgroup analysis indicated that the incidence of the common cold was in the vitamin E group compared with the placebo group. (0.67 vs. 0.81 per person-year; risk ratio, 0.83; 95% CI, 0.68-1.01; P = .06). Notably, It has been indicated that different doses of vitamin E supplementation (60 to 800 mg/day) could enhance Th-1 cell-mediated immunity and vaccination responses to hepatitis B (HBV) virus so that significantly higher normalization of hepatitis HBV-deoxyribonucleic acid (DNA) negativization and liver enzymes were obtained.

Vitamin A (retinol, retinal, retinoic acid, beta-carotene)

Vitamin A plays a fundamental role in regulating innate and adaptive arms of immune response by supporting the production of antibodies by B cells, supporting oxidative burst and phagocytic
activities of macrophages, adjusting both the function and number of NK cells, differentiating phenotypes of Th1/Th2, increasing the secretion of IL-2, and T cells development.44,49,78

It also preserves the normal antibody-mediated Th2 responses by downregulating of IL-2, interferon-γ, and tumor-necrosis factor α (TNF-α), which is produced by Th1 cells. Besides, vitamin A is required for natural secretion, function, structure, and differentiation of epithelial tissues (i.e., mucosa, gastric, and nasal epithelium) as well as for preserving the integrity of barriers. It is also termed "anti-inflammatory vitamin".79-83

Toxicity of retinol will occur after administrating doses bigger than the tolerable upper limit (TUL) that is reported 3000 mcg or >10,000 IU of retinol or retinol esters over the course of several months for individuals who do not have deficiencies. In comparison, perfect prevention of viral replication will be observed at doses ranging from 20,000 – 25,000 IU or 6,000 –7,500 mcg. To date, there is no reported toxic effect of remedy protocol for patients with virus infections, which is involved 20,000 – 25,000 IU for 7-14 days.84-87

Children and patients with renal dysfunction need much lower concentrations of vitamin A. Furthermore, the consumption of higher doses during pregnancy increases the risk of teratogenicity.87 Owing to vitamin C and retinol synergistic immunological functions, their co-administration is recommended.45

Retinoic acid is considered as the most active retinoid, which adjusts the transcription of more than 500 genes by the following binding mechanism: The retinoic acid receptor (RAR) α/β/γ to its retinoid X counterpart.15,88 Many review articles discussed the role of vitamin A and its metabolites in immunity, which we have summarized in this section.78,81,82,89-93
Retinol indirectly affects the composition of the gut microbiome to prevent the transition of the virus into the bloodstream at the level of the gut due to enhancing the relative dominance of Lactobacillus spp. Prescribing vitamin A supplements could decrease the occurrence of some infections, such as Mycoplasma pneumonia infection that is regarded as a usual post-viral secondary bacterial infection in patients with COVID-19, HIV infection, measles, diarrhea, and malaria. Moreover, it has been shown that vitamin A supplementation could reduce the risk of morbidity and mortality from infectious diseases. However, there is conflicting data about pneumonia.62,94-96

Consequently, Vitamin A deficiency is considered an important risk factor for the augmented susceptibility to measles, diarrhea, and, more especially, infections, which are related to the virus-induced respiratory tract. So that sufficient protective immunologic responses to the nanoparticle bovine respiratory syncytial virus (BRSV-NP) vaccine were not obtained in young cows with the effects of vitamin A deficiency; therefore, they developed subsequent lung infections after being challenged by a virus. Moreover, chickens with the viral infection that showed lower levels of vitamin A experienced an improved rate of epithelial damage to tissues, while adequate concentrations of vitamin A enhances antibody titer responses after vaccination for influenza and measles.44,62,82,97-100

Siddiqui et al. carried out a study to investigate the effects of supplementation with vitamin A on the antibody titer after a course of antirabies vaccine (5 injections over 30 days). The age ranged from 10-35 years. Data analysis showed that individuals in the intervention group had significantly greater serum antibodies compared with the control group.101
The link between vitamin A and the incidence of respiratory diseases has been investigated even at subclinical levels. Human respiratory syncytial virus (hRSV) is one of the most important respiratory pathogens in young children and causes up to 70% of hospitalized bronchiolitis cases in industrialized countries is associated with endemic vitamin A deficiency. It is important to mention that hRSV is closely related to BRSV, the cause of severe acute lower respiratory tract disease in young cattle in terms of similarities in innate and adaptive immune responses, age dependence, and disease pathogenesis. McGill et al. showed the capacity of the host to respond to an intranasal, polyanhydride NP vaccine and to resist the subsequent viral challenge are severely affected by vitamin A deficiency. Inflammatory cytokine profiles have changed in the lungs of calves with vitamin A deficiency, and cellular immune responses or virus-specific immunoglobulin A (IgA) did not produce in lungs or peripheral blood. It seems that supplementation with vitamin A may be logical for faster recovery from COVID-19 in deficient and malnourished patients; however, the potential adverse effects of vitamin A should be considered.

Water-soluble vitamins

Vitamin B

Vitamin B complexes are commonly seen in prescriptions of orthopedic surgeons for a wide range of disorders, including chronic regional pain syndrome, stress fractures, peripheral neuropathy, and stress fractures. There is a need to highlight the beneficial role of the vitamin B complex because of its pivotal effects on promoting timely activation of both innate and adaptive immune responses, energy metabolism, cell functioning, preserving endothelial integrity, enhancing
respiratory function, reducing the length of hospitalization, preventing hypercoagulability, and reduction of pro-inflammatory cytokine levels so that it regulates the generation of cytokine/chemokine and interferes in the interaction with immune cells concerned in inflammation environment and pathophysiological pathways. Vitamin B2, B3, and B6 are documented to augment the immune response.114-117

Vitamin B complex deficiency leads to impaired immune function and inflammation because of hyperhomocysteinemia.115,118-121 Some studies have evaluated the promising effects of B complex vitamins, which are categorized as water-soluble vitamins, in treating patients with COVID-19. It has already been used against Bovine Coronavirus, Avian Coronavirus, and Middle East respiratory syndrome (MERS).115,122-124

Dubeski et al. investigated the effects of vitamin B supplementation on immunity and infection in 12 beef steer calves (153 ± 8 kg) which were limit-fed, weaned, and deprived of feed. In this study, a combination of B vitamins and ascorbic acid was administrated every 48 hours to 6 calves prior to bovine herpesvirus type 1 (BHV1) inoculation (for 28 days). Notably, in all calves, a mild respiratory infection was observed with no difference. In other words, vitamins administration was not associated with a significant change in interferon titers in nasal secretions and lymphocyte blastogenesis; however, injection of B vitamins tended to increase serum IgG titers to BHV1 on both days 14 (P = .115) and 28 (P = .37) after infection.124

Aiming to the utilization of existing approved drugs in the treatment of COVID-19 patients, a recent study after examination of the crystal structure of SARS-CoV-2 protein, ranked vitamin B12 and B3 at the fourth and sixth place.125,126 However, the SARS-CoV-2 can impair intestinal microbial proliferation via interfering with vitamin B12 metabolism.120 A clinical study
demonstrated that consumption of vitamin B12 supplements (500 μg), vitamin D (1000 IU), and magnesium has a potential role in decreasing the severity of COVID-19 symptoms as well as the intensive care support and need for oxygen.127

\textit{Vitamin B\textsubscript{1} (Thiamine)}:

Vitamin B1 plays an important in the production of energy and protein, fat, and glucose metabolism due to its action as a coenzyme in phosphorylated forms and is considered as a precursor of coenzymes in amino acid and sugar catabolism. Impairment of synthesis of cholesterol and fatty acid in the nervous system, neuronal cell death as a result of induction of overexpression of pro-inflammatory mediators like cyclooxygenase-2, IL-6, IL-1, and TNF-α are results of vitamin B1 deficiency in the body.15,128

Generation of nicotinamide adenine dinucleotide phosphate (NADP) and glutathione cycling as a main antioxidant pathway requires thiamine and niacin.129 In a trial of patients with septic shock, administration of vitamin B1 and its functional pathways have been studied and concluded that it could enhance mortality and reduce lactate concentration130,131 and as a result of a number of studies, the combination of vitamin C (1500 mg every 6 hours), thiamine (200 mg every 12 hours), and hydrocortisone (50 mg every 6 hours) has beneficial effects in patients with sepsis by enhancement in time to shock reversal, organ injury, mortality and severe pneumonia.123,132

Protocol aiming at prophylactic and treatment for COVID-19 is a 1:1 combination of vitamin B1-vitamin B6, daily dose 250 mg and 250 mg, respectively for four weeks, and therapeutic treatment for mild and moderate symptomatic COVID-19 patients is a 1:1 combination of
vitamin B1–vitamin B6 daily dose 750 mg and 750 mg, respectively divided into three daily doses for ten days.133

\textit{Vitamin B2 (Riboflavin)}

Vitamin B2 acts as a precursor of coenzymes required for the flavoprotein enzyme reaction. Zhang & Liu115 documented the effectiveness of vitamin B2 together with ultraviolet light in vitro studies to diminish the titers of the MERS-CoV to below the limit of detection after inoculating the virus into human plasma because of disturbance of replication of pathogen due to irreversible damage to nucleic acids, offering it could also be effective against SARS-CoV-2.134,135 Furthermore, it has been shown that riboflavin could decrease the risk of infection with MERS-CoV in humans based on molecular and physiologic mechanisms.115

\textit{Vitamin B3 (Nicotinamide, Niacin)}

Vitamin B3 has a considerable role in the creation of an intense anti-inflammatory effect owing to preventing infiltration of neutrophils into the lungs during induction of lung injury by the ventilator.115,136,137 Briefly, niacin can reduce IL-1\(\beta\), IL-6, and TNF-\(\alpha\) in stimulated alveolar macrophages and prevents nuclear factor kappa-light-chain-enhancer of activated B cells activation.116,138-140 Notably, the importance of this issue is that targeting IL-6 with tocilizumab or sarilumab is a promising solution to control the inflammatory storm in COVID-19 patients.141 It is considered as a precursor of coenzymes demanded in many metabolic processes.15 As also, when chronic systemic inflammation occurs, niacin acts as a building block of NAD and NADP.120,142
One strategy for reducing the cellular inflammation in COVID-19 patients is increasing the expression of angiotensin-converting enzyme 2 (ACE2) receptors, the receptor with the important responsibility of binding the SAR-CoV2 viral spike and inducing COVID-19 infection.143,144 The COVID-19 infection has an effective role in downregulating ACE-2 receptors by binding to infection-related transcription factors at the ACE2 regulatory regions.143 Respiratory affliction in patients with COVID-19 and MERS is likely correlated with reduced expression of ACE2 receptor.143-146

A number of common compounds, including vitamin B3,147 aspirin,148 vitamin D,149 nicotine,150 vitamin C,148,151 resveratrol,152,153 and metformin154 have the capability of enhancing the expression of ACE2.155 Therefore, niacin may be beneficial as an adjunct treatment for COVID-19 patients due to its lung-protective property; however, future studies are warranted to identify the clinical importance of the observed effects.115,156

\textit{Vitamin B5 (Pantothenic acid)}

There are finite investigations showing the effect of Vitamin B5 on immune responses, and it is under research scrutiny; nevertheless, it is regarded as a precursor of coenzyme A and has some roles, including improvement of mental health, including cholesterol and triglyceride-lowering properties, diminishing inflammation, and enhancing wound healing.118
Vitamin B6 (Pyridoxine, Pyridoxal, Pyridoxamine, Pyridoxal 5’-phosphate)

Vitamin B6 plays a critical role as a coenzyme in the metabolism of cytokines and antibodies. Vitamin B6 deficiency leads to the impaired proliferation of lymphocytes, low blood T lymphocyte numbers, diminished IL-2 production in response to mitogens, and decreased antibody production as a result of a collision with an immunization, thymus and spleen atrophy, impaired T lymphocyte-mediated immune responses and reduced NK cell numbers. Taking vitamin B6 at levels below recommended over 21 days has not the ability to return the immune system function to the initial number, but repletion at recommended doses (22.5 μg/kg body weight per day) has. In antiviral defense, the activity of NK cells and the positive cluster of differentiation (CD8+) cytotoxic T lymphocytes are so essential, and Vitamins B6, folate, and B12 all boost this acting.

The European Union granted health claims to vitamin B6 and B12 for participating in the physiological function of the immune system. Based on physiologic mechanistic pathways, vitamin B6 can present a novel insight for the treatment of patients with COVID-19.

In a recent investigation, 96% of patients with COVID-19 were deficient in pyridoxal or 4-pyridoxic acid (4PA), and lonely 6% were deficient in pyridoxal-5-phosphate (PLP, the active form of vitamin B6). A new preprint demonstrated that PLP reduced COVID-19 symptoms via mitigating pro-inflammatory cytokines, adjusting immune responses, hampering hypercoagulability, and maintaining endothelial integrity. Besides, a reduction of abnormalities in blood clot formation phenomenon and platelet aggregation is observed due to the consumption of PLP. Ataxia is sensory neuropathy are adverse effects that may be associated with vitamin B6 supplements.
Vitamin B9 (folate, folic acid):

Folate is considered as a precursor demand for protein and DNA synthesis and repair, particularly during rapid cell division, and has a potential binding affinity to the SARS-CoV-2 protease.15,171

Folate deficiency leads to pan-hypogammaglobulinemia, megaloblastic anemia, decline cell-mediated immunity, altered pro-inflammatory cytokine profile, failure to thrive, and infections as a result of ruined T-cell proliferation response along with immunodeficiency.15,172,173

It was reported one decade ago that patients with chronic obstructive pulmonary disease have lower levels of folate and vitamin B12.174 However, there is not much evidence of the importance of supplementation on enhancing pulmonary function, length of hospitalization, and promoting symptoms.175

Furin is introduced as an enzyme related to viral and bacterial infections and could be a promising target for the treatment of infections in pharmaceutical and biotechnological industries, and folic acid, as a furin inhibitor, hampers the binding of spike protein, cell entry, and turnover of SARS-CoV-2.176 Kumar et al. have been shown firm and powerful binding affinity against SARS-CoV-2 by folic acid and its derivatives (i.e., tetrahydrofolic acid, 5-methyl tetrahydrofolic acid) via structure-based molecular docking.177

Vitamin B12 (cobalamins, cyanocobalamin, methylcobalamin)

Vitamin B12 acts as a coenzyme in metabolic reactions affecting fatty acids, DNA, and amino acid metabolism with potential binding affinity to the SARS-CoV-2 protease.15,125 It is also responsible for inducing an imbalance in the cytokine and growth factor network in the central nervous system,
enhancing the activity of NK cells as an essential factor in antiviral defense, myelin synthesis, and modulating the gut microbiota.

Cobalamin deficiency is commonly observed in elderly individuals owing to decreased absorption secondary to their clinical situations and medicines, and is associated with the reduced phagocytic and bacterial killing capacity of neutrophils, low NK cell activity, low CD8+ T lymphocyte count, impaired antibody response to the synthesis of specific Ig and pneumococcal polysaccharide vaccine due to the unavailability of vitamin B12 for swiftly proliferating lymphocytes, increased oxidative stress, inflammation, and ROS.

There is little data about the effectiveness of vitamin B12 in the treatment of patients with COVID-19. One study has demonstrated that a combination of Vitamin B12, ribavirin, nicotinamide, and telbivudine can be administrated for the management of COVID-19. The clinical significance of the effects has not been adequately defined yet.

Vitamin C (ascorbic acid)

Vitamin C, as a cofactor for some enzymatic reactions, is required in the biosynthesis of norepinephrine, collagen hydroxylation, regulation of hypoxia-inducible factor (HIF), amidation of peptide hormones, HIF hydroxylation, tyrosine metabolism, carnitine biosynthesis, and histone demethylation.

Intake of this supplement, as an immunity-boosting nutrient is associated with enhancing the growth of lymphocytes and phagocytes, hampering and reducing inflammation due to its antioxidant properties through attenuation of nuclear factor- kappa B activation, reducing the risk of respiratory infections, augmenting immune responses, the help of repairing tissues.
promotion of maturation and development of T-lymphocytes and enhancement of lung epithelial barrier function. It may also be involved in mediating the adrenocortical stress response, especially in sepsis. Severe respiratory infections, in particular, are regarded as common complications of severe vitamin C deficiency. Results of placebo-controlled trials testing 200 micrograms per day and even higher doses of oral ascorbic acid for treatment and preventing the common cold, reduction of incidence did not observe in the general population, but it can be helpful for patients who experienced short periods of intense physical exercise and in high concentrations for patients with active cold symptoms and as a candidate for the treatment of individuals with sepsis and acute respiratory distress syndrome (ARDS).

Vasopressor sparing effects, a decreased need for mechanical ventilation, and reduced time of ICU stay without much impact on overall mortality have been observed in a meta-analysis of intravenous vitamin C in patients with sepsis, burns, and septic shock. A clinical study in Switzerland showed that the best-desired effects of vitamin C were obtained in conjunction with zinc, and in association with vitamin A. It has the capability of generating firm antigen-specific regulatory T cells in animal models of autoimmune or acute graft versus host diseases.

Considering the anti-inflammatory properties of vitamin C and consequential effects on cellular immunity and vascular integrity, the potential role of high doses of vitamin C in SARS-CoV-2 induced ARDS and sepsis has been evaluated. Results of these studies have indicated that high doses of vitamin C (10 g to 20 g) improved the oxygenation index in 50 patients with moderate and severe COVID-19. Importantly, all of the patients were cured and discharged. Based on the National Institutes of Health (NIH) expert panel document, vitamin C (1.5 g/kg body weight) is safe and has no major adverse events. Despite all mentioned immune-boosting properties of folic acid and beneficial effects of vitamin C against SARS coronavirus and even 82% comparability
between SARS-CoV-2 and SARS, we have to wait for the elucidation of ongoing investigations.115,204-211

Cai et al. conducted a study to investigate the effects of vitamin C on influenza virus infection and pneumonia in a restraint-stressed mouse model. Fulminant viral pneumonia, severe inflammation, and considerable damage were detected in the restraint stress-loaded infected mouse model. Data analysis showed that administration of vitamin C (125 and 250 mg/kg) in mice is associated with increased survival rates and prolonging survival time. In addition, vitamin C could decrease the levels of inflammatory cytokines four days after infection. They concluded that vitamin C could prevent influenza virus infection and subsequent pneumonia in the restraint-stressed mouse model.212 Furthermore, according to the limited data, vitamin C administration could lead to the reduction of cytokine storm during the late stage of COVID-19. Following the observed effects of vitamin C in preclinical studies, promising results have also shown the effectiveness of intravenous vitamin C administration for the treatment of COVID-19. It has been shown that vitamin C could reduce the risk of the development of cytokine storm during the late stage of COVID-19.213-215 Also, high doses of intravenous vitamin C could improve the clinical outcome in patients with moderate (10 g daily) and severe (20 g daily) COVID-19. Moreover, vitamin C supplementation could reduce the duration of hospital stay (3–5 days).213,216,217

Furthermore, the combination of vitamin C with other medications also has shown favorable results. For example, it has been shown that the administration of vitamin C, curcumin, and glycyrrhizic acid could prevent excessive inflammatory response and improve innate antiviral immunological response.213,218 Moreover, the administration of vitamin C in combination with diammonium glycyrrhizinate and quercetin resulted in significant relief of symptoms of non-hospitalized patients with COVID-19213,219 and a synergistic antiviral effect, respectively211,213 The
studies that have been conducted to determine the efficacy of vitamins in the prevention and treatment of respiratory tract infections are summarized in Table 1.

Ongoing clinical trials on vitamins in COVID-19

Numerous studies are underway to evaluate the effectiveness of vitamins in the prevention and treatment of patients with COVID-19, which are listed in Table 2. A total of 30 studies are conducting in several countries, including Turkey, Egypt, Canada, Argentina, the United Kingdom, the United States of America, Mexico, Australia, Spain, France, Iran, Denmark, Saudi Arabia, New Zealand, and Brazil with sample size ranges from 20 to 27000, with a cumulative sample size of 45593 and an age range of 1 to 100 years in diverse population including healthcare workers, pregnant women, pediatric patients and people in a nursing home and various issues such as its effects on prevention and reducing the risk, severity, mortality, morbidity, improvement of outcome after infection, its role as a prognostic marker in COVID-19, its relationship with inflammatory immune status, etc. have been studied. Type of studies are interventional and, in limited cases are observational. In some studies, the effectiveness of vitamin D with other minerals and vitamins such as zinc and vitamin B12 and some medications like aspirin and famotidine has also been evaluated. The efficacy of vitamin C in lessening organ dysfunction and clinical outcome of patients infected with COVID-19 are being investigated in eight studies alone or in combination with minerals, zinc citrate, vitamin D3, vitamin B12 azithromycin, hydroxychloroquine, famotidine, quercetin, and bromelain. Several outcomes like days of stay at the hospital after treatment and discharge, day of negative conversion for nasopharyngeal swab for reverse transcription-polymerase chain reaction (RT-PCR), mechanical ventilation requirement, mortality
rate, and duration of hospital and ICU stay, WBC count, days free of dialysis, and serum levels of inflammatory biomarkers such as C-reactive proteins, ferritin, and D-dimer are being evaluated. Furthermore, one ongoing study is being carried out in the USA with a sample size of 800 and the age range of 55-120 to evaluate the efficacy and safety of B complex (alongside Nitazoxanide) for the prophylaxis of COVID-19 and other respiratory illnesses in the elderly individuals. Another trial evaluates the effects of B3 on the clinical outcome of COVID-19 in the elderly over 70 years with a sample size of 100 in Denmark.

Conclusion

The SARS-CoV-2 is not the first pathogen to pose a global challenge, and it will not be the last. It has drawn the world's attention to our immune system. Diet plays a critical role in regulating overall homeostasis by modifying/manipulating master nutrient-sensing pathways. Therefore, it is of particular importance not only in patients but also in healthcare workers. Besides, malnutrition leads to impaired immunity and severe complications for human health. Therefore, the need to understand the importance of proper nutrition, especially during this pandemic, needs special attention. Although according to the NIH guidelines, there are not sufficient data to recommend for or against the administration of vitamins in the management of patients with COVID-19 and, owing to the vital role of vitamins in the normal function immune system as well as controversial evidence regarding the inverse association between the severity of the disease and plasma levels of vitamins, screening and treating patients with insufficient vitamins should be considered in the pandemic mode. Data regarding their higher doses of beneficial effects in the acute treatment of COVID-19 is not adequate to draw a conclusion. According to the limited available data, vitamin
C could reduce the development of hyperinflammatory responses and improve antiviral immunological responses as well as vitamin D may lower mortality rate, probably through effects against acute respiratory infections. Finally, the results of ongoing studies are desired to determine the exact effects of vitamins in the pathogenesis, prevention, and treatment of COVID-19.

Author Contributions
TEM, HR¹, and SK: Acquisition and drafting the work, HR¹, SK: Drafting the work, HR², SK, MP: Drafting the work and revision, HR¹, SK, and TEM: Analysis, and interpretation of data and revision. All authors have read and agreed to the published version of the manuscript.

Conflict of Interest
The authors have no the conflict of interest.
References:

1. scAgarwal S, Saha S, Deb T, Darbar S. Immunity augmenting food supplements for susceptible individuals in combating pandemic COVID-19. Parana Journal of Science and Education. 2020; 6(4):79-88. DOI:10.5281/zenodo.3880638

2. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020; 1;109:102433. DOI: 10.1016/j.jaut.2020.102433

3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Respir Med. 2020; 395(10223):497-506. DOI: 10.1016/S0140-6736(20)30183-5

4. Stanwell-Smith R. Hygiene and the immune system. J. Infect. 2001; 43(1):61-4. DOI: 10.1053/jinf.2001.0859

5. Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutr. 2020; 74:110834. DOI: 10.1016/j.nut.2020.110834

6. Aristizábal B, González Á. Innate immune system. InAutoimmunity: From Bench to Bedside. El Rosario University Press. 2013.

7. Van Wyk J, Banfield N, Gibas K. COVID-19 World Tour: Glucose fan-support. J. Metab. Syndr. 2020. DOI: 10.37421/JMS.2020.9.254

8. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome?. Nat. Rev. Immunol. 2010;10(7):514-26. DOI: 10.1038/nri2802

9. Warrington R, Silviu-Dan F. Drug allergy. AACI. 2011; 7(1):1-8. DOI: 10.1186/1710-1492-7-S1-S10

10. Alam S, Bhuiyan FR, Emoh TH, Hasan M. Prospects of nutritional interventions in the care of COVID-19 patients. Heliyon. 2021. DOI: 10.1016/j.heliyon.2021.e06285

11. Minnelli N, Gibbs L, Larrivee J, Sahu KK. Challenges of Maintaining Optimal Nutrition Status in COVID-19 Patients in Intensive Care Settings. J PEN J. 2020; 44(8):1439-46. DOI: 10.1002/jpen.1996

12. Sengupta S, Dey S. Unearthing Asymptomatic COVID-19 Cases: How Nutrition and Dietary Management Can Render Immunity Against Pandemics? 2020.
13. Boumediene KM, Nada B. The role of nutrition in strengthening immune system against newly emerging viral diseases: case of SARS-CoV-2. NAJFNR. 2020; 4(1):240-4. DOI: 10.51745/najfnr.4.7.240-244

14. de Faria Coelho-Ravagnani C, Corgosinho FC, Sanches FL, Prado CM, Laviano A, Mota JF. Dietary recommendations during the COVID-19 pandemic. Nutr. Rev. 2021; 79(4):382-93. DOI: 10.1093/nutrit/nuaa067

15. Ridley M. It is time to take seriously the link between Vitamin D deficiency and more serious Covid-19 symptoms. The Telegraph. 2020. DOI: 10.1016/j.cgh.2020.08.003

16. Jovic TH, Ali SR, Ibrahim N, Jessop ZM, Tarassoli SP, Dobbs TD, et al. Could vitamins help in the fight against COVID-19?. Nutr. 2020; 12(9):2550. DOI: 10.3390/nu12092550

17. THAKUR A, CHITRA U, CHITRA P. BALANCING ORAL HEALTH AND NUTRITION IN THE TIME OF COVID-19. Ann. Romanian Soc. Cell Biol. 2021; 25(6):16852-66.

18. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. FRONT IMMUNOL. 2019; 9:3160. DOI: 10.3389/fimmu.2018.03160

19. Beard JA, Bearden A, Striker R. Vitamin D and the anti-viral state. J. Clin. Virol. 2011; 50(3):194-200. DOI: 10.1016/j.jcv.2010.12.006

20. Spector SA. Vitamin D and HIV: letting the sun shine in. Topics in antiviral medicine. 2011; 19(1):6.

21. Campbell GR, Spector SA. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy. 2012; 8(10):1523-5. DOI: 10.4161/auto.21154

22. Gröber U, Kisters K. Influence of drugs on vitamin D and calcium metabolism. Dermatoendocrinol. 2012; 4(2):158-66. DOI: 10.4161/derm.20731

23. Hayashi H, Okamatsu M, Ogasawara H, Tsugawa N, Isoda N, Matsuno K, et al. Oral Supplementation of the Vitamin D Metabolite 25 (OH) D3 Against Influenza Virus Infection in Mice. Nutr. 2020; 12(7):2000. DOI: 10.3390/nu12072000

24. Ginde AA, Blatchford P, Breese K, Zarrabi L, Linnebur SA, Wallace JI, et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care
residents: a randomized clinical trial. J AM GERIATR SOC. 2017; 65(3):496-503. DOI: 10.1111/jgs.14679

25. Abu-Mouch S, Fireman Z, Jarchovsky J, Zeina AR, Assy N. Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naïve patients. WJG. 2011; 17(47):5184. DOI: 10.3748/wjg.v17.i47.5184

26. Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y, et al. Effect of high-dose vs standard-dose wintertime vitamin D supplementation on viral upper respiratory tract infections in young healthy children. Jama. 2017; 318(3):245-54. DOI: 10.1001/jama.2017.8708

27. D’Avolio A, Avataneo V, Manca A, Cusato J, De Nicolò A, Lucchini R, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutr. 2020; 12(5):1359. DOI: 10.3390/nu12051359

28. Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 2020; 14(4):367-82. DOI: 10.1016/j.dsx.2020.04.015

29. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutr. 2020; 12(4):988. DOI: 10.3390/nu12040988

30. Grant WB, Baggerly CA, Lahore H. Reply: “Vitamin D Supplementation in Influenza and COVID-19 Infections. Comment on: Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutr. 2020; 12(6):1620. DOI: 10.3390/nu12061620

31. Kow CS, Hadi MA, Hasan SS. Vitamin D supplementation in influenza and COVID-19 infections comment on: “evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths”. Nutr. 2020; 12(6):1626. DOI: 10.3390/nu12061620

32. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311(5768):1770-3. DOI: 10.1126/science.1123933
33. Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, et al. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J Immunol. 2009; 182(7):4289-95. DOI: 10.4049/jimmunol.0803736
34. Panarese A, Shahini E. COVID-19, and vitamin D. ALIMENT PHARM THER. 2020; 51(10):993. DOI: 10.1111/apt.15752
35. Jakovac H. COVID-19 and vitamin D—Is there a link and an opportunity for intervention?. Am. J. Physiol. Endocrinol. Metab. AM J PHYSIOL-ENDOC M. 2020; 318(5):E589-. DOI: 10.1152/ajpendo.00138.2020
36. Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. Jama. 2014; 312(15):1520-30. DOI: 10.1001/jama.2014.13204
37. Christopher KB. Vitamin D and critical illness outcomes. Curr Opin Crit Care CURR OPIN CRIT CARE. 2016; 22(4):332-8. DOI: 10.1097/MCC.0000000000000328
38. Kow CS, Hadi MA, Hasan SS. Vitamin D supplementation in influenza and COVID-19 infections comment on:“evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths” nutrients 2020, 12 (4), 988. Nutr. 2020; 12(6):1626. DOI: 10.3390/nu12061626
39. Martínez-Moreno J, Hernandez JC, Urcuqui-Inchima S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. MOL CELL BIOCHEM. 2020; 464(1):169-80. DOI: 10.1007/s11010-019-03658-w
40. Nikniaz L, Akbarzadeh MA, Hosseinifard H, Hosseini MS. The impact of vitamin D supplementation on mortality rate and clinical outcomes of COVID-19 patients: A systematic review and meta-analysis. Pharm Sci. 2021. DOI: 10.34172/PS.2021.13.
41. Rastogi A, Bhansali A, Khare N, Suri V, Yaddanapudi N, Sachdeva N, et al. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study). Mol. Cell. Biochem. MOL CELL BIOCHEM. 2020. DOI: 10.1136/postgradmedj-2020-139065
42. Castillo ME, Costa LM, Barrios JM, Díaz JF, Miranda JL, Bouillon R, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive
care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020; 203:105751. DOI: 10.1016/j.jsbmb.2020.105751

43. Annweiler C. 9X COVID-19 survival in nursing home if had 80,000 IU dose of vitamin D in previous month–Oct 2020. J. Steroid Biochem. Mol. Biol. 2020.

44. Annweiler G, Corvaisier M, Gautier J, Dubée V, Legrand E, Sacco G, et al. Vitamin D supplementation associated to better survival in hospitalized frail elderly COVID-19 patients: the GERIA-COVID quasi-experimental study. Nutr. 2020; 12(11):3377. DOI: 10.3390/nu12113377

45. Maggini S, Beveridge S, Sorbara PJ, Senatore G. Feeding the immune system: the role of micronutrients in restoring resistance to infections. CAB Rev. 2008; 3(098):1-21. DOI: 10.1079/PAVSNNR20083098

46. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutr. 2020; 12(4):1181. DOI: 10.3390/nu12041181

47. Daosukho C, Chen Y, Noel T, Sompol P, Nithipongvanitch R, Velez JM, et al. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic. Biol. Med. 2007; 42(12):1818-25. DOI: 10.1016/j.freeradbiomed.2007.03.007

48. Mileva M, Galabov AS. Vitamin E and influenza virus infection. Vitamin E in health and disease. 2018; 67. DOI: 10.5772/intechopen.80954

49. Ferrante LE, Pisani MA, Murphy TE, Gahbauer EA, Leo-Summers LS, Gill TM. The association of frailty with post-ICU disability, nursing home admission, and mortality: a longitudinal study. Chest. 2018; 153(6):1378-86. DOI: 10.1016/j.chest.2018.03.007

50. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutr. 2018; 10(10):1531. DOI: 10.3390/nu10101531

51. Drewnowski A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods. AM J CLIN NUTR. 2010; 91(4):1095S-101S. DOI:

52. Haryanto B, Sukmasari T, Wintergerst E, Maggini S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam. Miner. 2015; 4:1-5. DOI: 10.3945/ajcn.2010.28450D
53. Wu D, Nikbin Meydani S. Age-associated changes in immune function: impact of vitamin E intervention and the underlying mechanisms. Endocr Metab Immune Disord Drug Targets. 2014; 14(4):283-9.

54. Lee GY, Han SN. The role of vitamin E in immunity. Nutr. 2018; 10(11):1614. DOI: 10.3390/nu10111614

55. Han SN, Wu D, Ha WK, Beharka A, Smith DE, Bender BS, et al. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology. 2000; 100(4):487-93. DOI: 10.1046/j.1365-2567.2000.00070.x

56. De la Fuente M, Hernanz A, Guayerbas N, Manuel Victor V, Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008; 42(3):272-80. DOI: 10.1080/10715760801898838

57. Han SN, Adolfsson O, LEE CK, Prolla TA, Ordovas J, Meydani SN. Vitamin E and gene expression in immune cells. Ann. N. Y. Acad. Sci. 2004; 1031(1):96-101. DOI: 10.1196/annals.1331.010

58. Hemilä H. Vitamin E administration may decrease the incidence of pneumonia in elderly males. Clin Interv Aging. 2016; 11:1379. DOI: 10.2147/CIA.S114515

59. Calder PC. Nutrition, immunity and COVID-19. BMJ nutr. prev. health. 2020; 3(1):74. DOI: 10.1136/bmjnph-2020-000085

60. Saeed F, Nadeem M, Ahmed RS, Tahir Nadeem M, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds–a review. Food Agric Immunol. 2016; 27(2):205-29. DOI: 10.1080/09540105.2015.1079600

61. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007; 43(1):4-15. DOI: 10.1016/j.freeradbiomed.2007.03.024

62. Beck MA. Selenium and vitamin E status: impact on viral pathogenicity. Nutr. J. 2007; 137(5):1338-40. DOI: 10.1093/jn/137.5.1338

63. Prentice S. They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response?. FRONT IMMUNOL. 2017; 8:1641. DOI: 10.3389/fimmu.2017.01641
64. Wu D, Meydani SN. Vitamin E, immune function, and protection against infection. Vitamin E in Human Health. 2019; 371-84. DOI: 10.1007/978-3-030-05315-4_26
65. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses. 2020; 143:109878. DOI: 10.1016/j.mehy.2020.109878
66. Meydani SN, Leka LS, Fine BC, Dallal GE, Keusch GT, Singh MF, et al. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. Jama. 2004; 292(7):828-36. DOI: 10.1001/jama.292.7.828
67. Shakoor H, Feehan J, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19?. Maturitas. 2020. DOI: 10.1016/j.maturitas.2020.08.003
68. Han SN, Meydani SN. Impact of vitamin E on immune function and its clinical implications. Expert Rev. Clin. Immunol. 2006; 2(4):561-7. DOI: 10.1586/1744666X.2.4.561
69. Eskew ML, Scholz RW, Reddy CC, Todhunter DA, Zarkower A. Effects of vitamin E and selenium deficiencies on rat immune function. J. Immunol. Res. 1985; 54(1):173.
70. Turner RJ, Finch JM. Immunological malfunctions associated with low selenium-vitamin E diets in lambs. J. Comp. Pathol. 1990; 102(1):99-109. DOI: 10.1016/S0021-9975(08)80012-6
71. Langweiler M, Schultz RD, Sheffy BE. Effect of vitamin E deficiency on the proliferative response of canine lymphocytes. Am. J. Vet. Res. 1981; 42(10):1681-5.
72. Chang WP, Hom JS, Dietert RR, Combs GF, Marsh JA. Effect of dietary vitamin E and selenium deficiency on chicken Splenocyte Proliferan and cell surface marker Expresssion. Immunopharmacol. Immunotoxicol. 1994; 16(2):203-23. DOI: 10.3109/08923979409007091
73. Jensen M, Fossum C, Ederoth M, Hakkarainen RV. The effect of vitamin E on the cell-mediated immune response in pigs. J. Vet. Med, Series B. 1988; 35(1-10):549-55. DOI: 10.1111/j.1439-0450.1988.tb00528.x
74. Tengerdy RP, Heinzerling RH, Brown GL, Mathias MM. Enhancement of the humoral immune response by vitamin E. Int Arch Allergy Immunol. 1973; 44(2):221-32. DOI: 10.1159/000230931
75. Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, Cannon JG, et al. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. AM J CLIN NUTR. 1990; 52(3):557-63. DOI: 10.1093/ajcn/52.3.557

76. Meydani SN, Meydani M, Blumberg JB, Leka LS, Siber G, Loszewski R, et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial. Jama. 1997; 277(17):1380-6. DOI: 10.1001/jama.1997.03540410058031

77. Andreone P, Fiorino S, Cursaro C, Gramenzi A, Margotti M, Di Giammarino L, et al. Vitamin E as treatment for chronic hepatitis B: results of a randomized controlled pilot trial. Antivir. Res. 2001; 49(2):75-81. DOI: 10.1016/S0166-3542(00)00141-8

78. Ross AC. Vitamin A and retinoic acid in T cell–related immunity. AM J CLIN NUTR. 2012; 96(5):1166S-72S. DOI: 10.3945/ajcn.112.034637

79. Carr AC, Maggini S. Vitamin C and immune function. Nutr. 2017; 9(11):1211. DOI: 10.3390/nu9111211

80. Mora JR, Iwata M, Von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 2008; 8(9):685-98. DOI: 10.1038/nri2378

81. Villamor E, Fawzi WW. Effects of vitamin A supplementation on immune responses and correlation with clinical outcomes. CLIN MICROBIOL REV. 2005; 18(3):446. DOI: 10.1128/CMR.18.3.446-464.2005

82. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J. Clin. Med. Res. 2018; 7(9):258. DOI: 10.3390/jcm7090258

83. Sirisinha S. The pleiotropic role of vitamin A in regulating mucosal immunity. ASIAN PAC J ALLERGY. 2015; 33(2).

84. Russell RM, Beard JL, Cousins RJ, Dunn JT, Ferland G, Hambidge KM, et al. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. A Report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board Institute of Medicine. 2001. DOI: 10.17226/10026
85. Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL. Evaluation of vitamin A toxicity. AM J CLIN NUTR. 1990; 52(2):183-202. DOI: 10.1093/ajcn/52.2.183

86. Soye KJ, Trottier C, Di Lenardo TZ, Restori KH, Reichman L, Miller WH, et al. In vitro inhibition of mumps virus by retinoids. Virol. 2013; 10(1):1-3. DOI: 10.1186/1743-422X-10-337

87. Ayseli YI, Aytekin N, Buyukkayhan D, Aslan I, Ayseli MT. Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends Food Sci. Technol. 2020. DOI: 10.1016/j.tifs.2020.09.001

88. Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. Vitam. Horm. VITAM HORM. 2005; 70:199-264. DOI: 10.1016/s0083-6729(05)70007-8

89. Oliveira LD, Teixeira FM, Sato MN. Impact of retinoic acid on immune cells and inflammatory diseases. MEDIAT INFLAMM. 2018; 2018. DOI: 10.1155/2018/3067126

90. Erkelens MN, Mebius RE. Retinoic acid and immune homeostasis: a balancing act. Trends Immunol. 2017; 38(3):168-80. DOI: 10.1016/j.it.2016.12.006

91. Larange A, Cheroutre H. Retinoic acid and retinoic acid receptors as pleiotropic modulators of the immune system. Annu. Rev. Immunol. 2016; 34:369-94. DOI: 10.1146/annurev-immunol-041015-055427

92. Brown CC, Noelle RJ. Seeing through the dark: new insights into the immune regulatory functions of vitamin A. Eur. 2015; 45(5):1287-95. DOI: 10.1002/eji.201344398

93. Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic acid. J. Immunol. Res. 2014; 192(7):2953-8. DOI: 10.4049/jimmunol.1303245

94. Pettifor JM, Zlotkin S, editors. Micronutrient deficiencies during the weaning period and the first years of life. Karger Medical and Scientific Publishers; 2004.

95. Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, et al. Micronutrients as immunomodulatory tools for COVID-19 management. J. Clin. Immunol. 2020. DOI: 10.1016/j.clim.2020.108545

96. Semba RD. Vitamin A and immunity to viral, bacterial and protozoan infections. P NUTR SOC. 1999; 58(3):719-27. DOI: 10.1017/S0029665199000944
97. Calder PC. Feeding the immune system. P NUTR SOC. 2013; 72(3):299-309. DOI: 10.1017/S0029665113001286

98. Shils ME, Olson JA, Shike M. Modern nutrition in health and disease. Am. J. Clin. Nutr. 1994. DOI: 10.1093/ajcn/70.5.948

99. McGill JL, Kelly SM, Guerra-Maupome M, Winkley E, Henningson J, Narasimhan B, et al. Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Sci. Rep. 2019; 9(1):1-4. DOI: 10.1038/s41598-019-51684-x

100. West CE, Sijtsma SR, Kouwenhoven B, Rombout JH, van der Zijpp AJ. Epithelia-damaging virus infections affect vitamin A status in chickens. Nutr. 1992; 122(2):333-9. DOI: 10.1093/jn/122.2.333

101. Siddiqui FQ, Ahmad MM, Kakar F, Akhtar S. The role of vitamin A in enhancing humoral immunity produced by antirabies vaccine. E MEDITERR HEALTH J. 2001; 7 (4-5), 799-804. DOI: who.int/iris/handle/10665/119091

102. Timoneda J, Rodríguez-Fernández L, Zaragozá R, Marín MP, Cabezuelo MT, Torres L, et al. Vitamin A deficiency and the lung. Nutr. 2018; 10(9):1132. DOI: 10.3390/nu10091132

103. Stephens D, Jackson PL, Gutierrez Y. Subclinical vitamin A deficiency: a potentially unrecognized problem in the United States. J. Pediatr. Nurs. 1996; 22(5):377-93.

104. Sommer A, Katz J, Tarwotjo I. Increased risk of respiratory disease and diarrhea in children with preexisting mild vitamin A deficiency. AM J CLIN NUTR. 1984; 40(5):1090-5. DOI: 10.1093/ajcn/40.5.1090

105. Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res. 2011; 162(1-2):80-99. DOI: 10.1016/j.virusres.2011.09.020

106. Welliver Sr RC, Checchia PA, Bauman JH, Fernandes AW, Mahadevia PJ, Hall CB. Fatality rates in published reports of RSV hospitalizations among high-risk and otherwise healthy children. Curr. Med. Res. Opin. 2010; 26(9):2175-81. DOI: 10.1185/03007995.2010.505126

107. Hall CB. Respiratory syncytial virus and parainfluenza virus. N Engl J Med. 2001; 344(25):1917-28. DOI: 10.1056/NEJM200106213442507
108. World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005: WHO global database on vitamin A deficiency. Accessed July 10th, 2021.

109. Bem RA, Domachowske JB, Rosenberg HF. Animal models of human respiratory syncytial virus disease. Am. J. Physiol. Lung Cell Mol. Physiol. AM J PHYSIOL-LUNG C. 2011; 301(2):L148-56. DOI: 10.1152/ajplung.00065.2011

110. Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet. Pathol. 2014; 51(2):427-36. DOI: 10.1177/0300985813501341

111. Sacco RE, Nonnecke BJ, Palmer MV, Waters WR, Lippolis JD, Reinhardt TA. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D 3. PloS one. 2012; 7(3):e33074. DOI: 10.1371/journal.pone.0033074

112. de Andrade MI, de Macêdo PF, de Oliveira TL, da Silva Lima NM, da Costa Ribeiro I, Santos TM. Vitamin A and D deficiencies in the prognosis of respiratory tract infections: A systematic review with perspectives for COVID-19 and a critical analysis on supplementation. SciELOPreprints. 2020. DOI: 10.1590/SciELOPreprints.839

113. Tan SH, Hong CC, Saha S, Murphy D, Hui JH. Medications in COVID-19 patients: summarizing the current literature from an orthopaedic perspective. Int. Orthop. 2020; 44:1599-603. DOI: 10.1007/s00264-020-04643-5

114. Spinas E, Saggini A, Kritas SK, Cerulli G, Caraffa A, Antinolfi P, et al. Crosstalk between vitamin B and immunity. J. Biol. Regul. Homeost. Agents. 2015; 29(2):283-8.

115. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020; 92(5):479-90. DOI: 10.1002/jmv.25707

116. Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas. 2017; 96:58-71. DOI: 10.1016/j.maturitas.2016.11.012

117. Young LM, Pipingas A, White DJ, Gauci S, Scholey A. A systematic review and meta-analysis of B vitamin supplementation on depressive symptoms, anxiety, and stress: Effects on healthy and ‘at-risk’individuals. Nutr. 2019; 11(9):2232. DOI: 10.3390/nu11092232
118. Mikkelsen K, Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the Immune System. Nutrition and immunity. 2019. DOI: 10.1007/978-3-030-16073-9_7
119. Michele CA, Angel B, Valeria L, Teresa M, Giuseppe C, Giovanni M, et al. Vitamin supplements in the Era of SARS-Cov2 pandemic. GSCBPS. 2020; 11(2):007-19. DOI: 10.30574/gscbps.2020.11.2.0114
120. Shakoor H, Feehan J, Mikkelsen K, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, et al. Be well: A potential role for vitamin B in COVID-19. Maturitas. 2021; 144:108-11. DOI: 10.1016/j.maturitas.2020.08.007
121. Axelrod AE. Role of the B vitamins in the immune response. Diet and Resistance to Disease. 1981. DOI: 10.1007/978-1-4615-9200-6_5
122. Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutr. 2020; 12(10):3198. DOI: 10.3390/nu12103198
123. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017; 151(6):1229-38. DOI: 10.1016/j.chest.2016.11.036
124. Dubeski PL, d'Offay JM, Owens FN, Gill DR. Effects of B vitamin injection on bovine herpesvirus-1 infection and immunity in feed-restricted beef calves. Anim. Sci. J. 1996; 74(6):1367-74. DOI: 10.2527/1996.7461367x
125. Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. 2020; 251:117627. DOI: 10.1016/j.lfs.2020.11.17627
126. Liu X, Zhang B, Jin Z, Yang H, Rao Z. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature. 2020. DOI: 10.1101/2020.02.26.964882
127. Tan CW, Ho LP, Kalimuddin S, Cherg BP, Teh YE, Thien SY, et al. A cohort study to evaluate the effect of combination Vitamin D, Magnesium and Vitamin B12 (DMB) on progression to severe outcome in older COVID-19 patients. medRxiv. 2020. DOI: 10.1101/2020.06.01.20112334
128. Neri M, Cantatore S, Pomara C, Riezzo I, Bello S, Turillazzi E, et al. Immunohistochemical expression of proinflammatory cytokines IL-1β, IL-6, TNF-α and
involvement of COX-2, quantitatively confirmed by Western blot analysis, in Wernicke's encephalopathy. Pathol. Res. Pract. 2011; 207(10):652-8. DOI: 10.1016/j.prp.2011.07.005

129. Teagarden AM, Leland BD, Rowan CM, Lutfi R. Thiamine deficiency leading to refractory lactic acidosis in a pediatric patient. Case Rep Crit Care. 2017. DOI: 10.1155/2017/5121032

130. Mallat J, Lemyze M, Thevenin D. Do not forget to give thiamine to your septic shock patient!. J. Thorac. Dis. 2016; 8(6):1062. DOI: 10.21037/jtd.2016.04.32

131. Donnino MW, Andersen LW, Chase M, Berg KM, Tidswell M, Giberson T, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit. Care Med. 2016; 44(2):360. DOI: 10.1097/CCM.0000000000001572

132. Kim WY, Jo EJ, Eom JS, Mok J, Kim MH, Kim KU, et al. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J. Crit. Care. 2018; 47:211-8. DOI: 10.1016/j.jcrc.2018.07.004

133. Benarba B, Gouri A. Pre-exposure and Post-exposure new prophylactic treatments against COVID-19 in healthcare workers. Nor. Afr. J. Food Nutr. Res. 2020; 7(4):260-7.

134. Keil SD, Bowen R, Marschner S. Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion. 2016; 56(12):2948-52. DOI: 10.1111/trf.13860

135. Ragan I, Hartson L, Pidcoke H, Bowen R, Goodrich R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One. 2020; 15(5):e0233947. DOI: 10.1371/journal.pone.0233947

136. Flaatten H, De Lange DW, Morandi A, Andersen FH, Artigas A, Bertolini G, et al. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years). Intensive Care Med. 2017; 43(12):1820-8. DOI: 10.1007/s00134-017-4940-8
137. Nagai A, Matsumiya H, Hayashi M, Yasui S, Okamoto H, Konno K. Effects of nicotinamide and niacin on bleomycin-induced acute injury and subsequent fibrosis in hamster lungs. Exp. Lung Res. 1994; 20(4):263-81. DOI: 10.3109/01902149409064387
138. Zhou E, Li Y, Yao M, Wei Z, Fu Y, Yang Z. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms. Int. Immunopharmacol. 2014; 23(1):121-6. DOI: 10.1016/j.intimp.2014.07.006
139. Mikkelsen K, Apostolopoulos V. B vitamins and ageing. Biochemistry and Cell Biology of Ageing: Biomed. Sci. 2018. DOI: 10.1007/978-981-13-2835-0_15
140. Mikkelsen K, Stojanovska L, Apostolopoulos V. The effects of vitamin B in depression. Curr. Med. Chem. 2016; 23(38):4317-37.
141. Khiali S, Rezagholizadeh A, Entezari-Maleki T. A comprehensive review on sarilumab in COVID-19. Expert Opin Biol Ther. 2021; 21(5):615-626. DOI: 10.1080/14712598.2021.1847269.
142. Boergeling Y, Ludwig S. Targeting a metabolic pathway to fight the flu. FEBS J. 2017; 284(2):218-21. DOI: 10.1111/febs.13997
143. Vaduganathan M, Vardeny O, Michel T, McMurray JJ, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. NEJM. 2020; 382(17):1653-9. DOI: 10.1056/NEJMsr2005760
144. Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua jie he he hu xi za zhi. 2020; 43:E014-. DOI: 10.3760/cma.j.issn.1001-0939.2020.0014
145. Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020; 92(7):726-30. DOI: 10.1002/jmv.25785
146. Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 2010; 84(2):1198. DOI: 10.1128/JVI.01248-09
147. Hong G, Zheng D, Zhang L, Ni R, Wang G, Fan GC, et al. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic. Biol. Med. 2018; 123:125-37. DOI: 10.1016/j.freeradbiomed.2018.05.073

148. Aşcı H, Saygın M, Yeşilot Ş, Topsakal Ş, Cankara FN, Özmen Ö, et al. Protective effects of aspirin and vitamin C against corn syrup consumption-induced cardiac damage through sirtuin-1 and HIF-1a pathway. Anatol. 2016; 16(9):648. DOI: 10.5152/AnatolJCardiol.2015.6418

149. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 2017; 16(5):7432-8. DOI: 10.3892/mmr.2017.7546

150. Olds JL, Kabbani N. Is nicotine exposure linked to cardiopulmonary vulnerability to COVID-19 in the general population?. FEBS J. 2020; 287(17):3651-5. DOI: 10.1111/febs.15303

151. Qi MZ, Yao Y, Xie RL, Sun SL, Sun WW, Wang JL, et al. Intravenous Vitamin C attenuates hemorrhagic shock-related renal injury through the induction of SIRT1 in rats. BIOCHEM BIOPH RES CO. 2018; 501(2):358-64. DOI: 10.1016/j.bbrc.2018.04.111

152. Kim EN, Kim MY, Lim JH, Kim Y, Shin SJ, Park CW, et al. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system. Atherosclerosis. 2018; 270:123-31. DOI: 10.1016/j.atherosclerosis.2018.01.043

153. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 2005; 280(17):17187-95. DOI: 10.1074/jbc.M501250200

154. Cuyàs E, Verdura S, Llorach-Parés L, Fernández-Arroyo S, Joven J, Martin-Castillo B, et al. Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation. Front. Endocrinol. 2018; 9:657. DOI: 10.3389/fendo.2018.00657

155. McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin. Hypertens. 2020; 26(1):1-3. DOI: 10.1186/s40885-020-00147-x

156. Mehmel M, Jovanović N, Spitz U. Nicotinamide riboside—the current State of research and therapeutic uses. Nutr. 2020; 12(6):1616. DOI: 10.3390/nu12061616

157. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to vitamin B6 and protein and
glycogen metabolism (ID 65, 70, 71), function of the nervous system (ID 66), red blood cell formation (ID 67, 72, 186), function of the immune system (ID 68), regulation of hormonal activity (ID 69) and mental performance (ID 185) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA Journal. 2009 Oct;7(10):1225.

158. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007; 51(4):301-23. DOI: 10.1159/000107673

159. Freundlich M, Thomsen RW, Pedersen L, West H, Schønheyder HC. Aminoglycoside treatment and mortality after bacteraemia in patients given appropriate empirical therapy: a Danish hospital-based cohort study. J. Antimicrob. Chemother. 2007; 60(5):1115-23. DOI: 10.1093/jac/dkm354

160. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 1999; 116(1):28-32. DOI: 10.1046/j.1365-2249.1999.00870.x

161. Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. FRONT NUTR. 2019; 6:48. DOI: 10.3389/fnut.2019.00048

162. European Union. EU Register on Nutrition and Health Claims. Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/register/public. Accessed July 10th, 2021.

163. Harch PG. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure. Med. Gas Res. 2020; 10(2):61. DOI: 10.4103/2045-9912.282177

164. Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. IJID. 2020; 100:390-3. DOI: 10.1016/j.ijid.2020.08.018

165. Paul L, Ueland PM, Selhub J. Mechanistic perspective on the relationship between pyridoxal 5'-phosphate and inflammation. Nutr. Rev. 2013; 71(4):239-44. DOI: 10.1111/nure.12014

166. Desbarats J. Pyridoxal 5'-phosphate to mitigate immune dysregulation and coagulopathy in COVID-19. MDPI Initiatives. 2020. DOI: 10.20944/preprints202005.0144.v1
167. Van Wyk V, Luus HG, Heyns AD. The in vivo effect in humans of pyridoxal-5′-phosphate on platelet function and blood coagulation. Thromb. Res. 1992; 66(6):657-68. DOI: 10.1016/0049-3848(92)90042-9

168. Fairfield KM, Fletcher RH. Vitamins for chronic disease prevention in adults: scientific review. Jama. 2002; 287(23):3116-26. DOI: 10.1001/jama.287.23.3116

169. Oakley Jr GP. Eat right and take a multivitamin. NEJM. 1998. DOI: 10.1056/NEJM199804093381509

170. Wooltorton E. Too much of a good thing? Toxic effects of vitamin and mineral supplements. Cmaj. 2003; 169(1):47-8.

171. Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: two Natural Compounds and Folic acid as Potential Inhibitors of 2019-novel coronavirus Main Protease (2019-nCoVMpro), molecular docking and SAR study. Curr Comput Aided Drug Des. 2020. DOI: 10.2174/1573409916666200422075440

172. Kishimoto K, Kobayashi R, Sano H, Suzuki D, Maruoka H, Yasuda K, et al. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption. J. Clin. Immunol. 2014; 153(1):17-22. DOI: 10.1016/j.clim.2014.03.014

173. Sharma L. Dietary management to build adaptive immunity against COVID-19. eISSN. 2020; 2(2):e1000016. DOI: 10.5281/zenodo.3774086

174. Fimognari FL, Loffredo L, Di Simone S, Sampietro F, Pastorelli R, Monaldo M, et al. Hyperhomocysteinaemia and poor vitamin B status in chronic obstructive pulmonary disease. Nutr Metab Cardiovasc Dis. 2009; 19(9):654-9. DOI: 10.1016/j.numecd.2008.12.006

175. Tsiligianni IG, van der Molen T. A systematic review of the role of vitamin insufficiencies and supplementation in COPD. Respir. Res. 2010; 11(1):1-8. DOI: 10.1186/1465-9921-11-171

176. Sheybani Z, Dokoohaki MH, Negahdaripour M, Dehdashti M, Zolghadr H, Moghadami M, et al. The role of folic acid in the management of respiratory disease caused by COVID-19. ChemRxiv. Preprint. 2020. DOI: 10.26434/chemrxiv.12034980.v1
177. Kumar V, Kancharla S, Jena MK. In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. Virusdisease. 2021; 32(1):29-37. DOI: 10.1007/s13337-020-00643-6

178. Jafari D, Esmailzadeh A, Mohammadi-Kordkhayli M, Rezaei N. Vitamin C and the immune system. Nutrition and Immunity. 2019. DOI: 10.1007/978-3-030-16073-9_5

179. Todorova TT, Ermenlieva N, Tsankova G. Vitamin B12: Could It Be a Promising Immunotherapy?. Immunotherapy: Myths, Reality, Ideas, Future. 2017. DOI: 10.5772/65729

180. Vogiatzoglou A, Refsum H, Johnston C, Smith SM, Bradley KM, De Jager C, et al. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. J. Neurol. 2008; 71(11):826-32. DOI: 10.1212/01.wnl.0000325581.26991.f2

181. Bresson JL, Flynn A, Heinonen M, Hulshof K, Korhonen H, Lagiou P, et al. Scientific Opinion on the substantiation of health claims related to vitamin B12 and red blood cell formation (ID 92, 101), cell division (ID 93), energy-yielding metabolism (ID 99, 190) and function of the immune system (ID 107) pursuant to Article 13 (1) of Regulation (EC) No 1924/2006: Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. EFSA J. 2009;7(10 (1223)). DOI: 10.2903/j.efsa.2009.1223

182. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016; 22(6):463-93. DOI: 10.1111/odi.12446

183. Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol. 2007; 81(16):8692. DOI: 10.1128/JVI.00527-07

184. Crawford TC, Crawford SA. Synthesis of L-ascorbic acid. Adv. Carbohydr. Chem. Biochem. 1980; 37:79-155. DOI: 10.1016/S0065-2318(08)60020-7

185. Chen Y, Luo G, Yuan J, Wang Y, Yang X, Wang X, et al. Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. MEDIAT INFLAMM. 2014. DOI: 10.1155/2014/426740

186. Marik PE. Vitamin C: an essential “stress hormone” during sepsis. J. Thorac. Dis. 2020. DOI: 10.21037/jtd.2019.12.64
187. Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Wegelin JA, Brophy D, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol. Lung Cell Mol. Physiol. AM J PHYSIOL-LUNG C. 2012. DOI: 10.1152/ajplung.00300.2011

188. Gorton HC, Jarvis K. The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. JMPT. 1999; 22(8):530-3. DOI: 10.1016/S0161-4754(99)70005-9

189. Chen Q, Vissers MC, editors. Vitamin C: New Biochemical and Functional Insights (Oxidative Stress and Disease) 1st Edition. CRC Press; 1st edition (February 3, 2020).

190. Douglas RM, Chalker EB, Treacy B. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2000. DOI: 10.1002/14651858.CD000980.pub4

191. Hemilä H. Vitamin C and infections. Nutr. 2017 Apr;9(4):339. DOI: 10.3390/nu9040339

192. Peters EM, Goetzsche JM, Grobbelaar B, Noakes TD. Vitamin C supplementation reduces the incidence of postrace symptoms of upper-respiratory-tract infection in ultramarathon runners. Am. J. Clin. Nutr. 1993; 57(2):170-4. DOI: 10.1093/ajcn/57.2.170

193. Peters EM, Goetzsche JM, Joseph LE, Noakes TD. Vitamin C as effective as combinations of anti-oxidant nutrients in reducing symptoms of upper respiratory tract infection in ultramarathon runners. S. Afr. J. Sports Med. 1996; 11(3):23-7.

194. Town, C. and Main Author Moolla. “Moolla ME. The effect of supplemental anti-oxidants on the incidence and severity of upper respiratory infections in Ultra Marathon runners [MSc thesis]. Cape Town, South Africa: University of Capetown, 1996.” (2007).

195. Sabiston BH, Radomski MW. Health problems and vitamin C in Canadian northern military operations. DCIEM. 74-R-M2. 1974.

196. Hemilä H, Chalker E. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutr. 2019; 11(4):708. DOI: 10.3390/nu11040708

197. Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: A systematic review and meta-analysis. SAGE Open Med. 2018; 6:2050312118807615. DOI: 10.1177/2050312118807615
198. Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab. ANN NUTR METAB. 2006; 50(2):85-94. DOI: 10.1159/000090495

199. Fiorino S, Gallo C, Zippi M, Sabattani S, Manfredi R, Moretti R, et al. COVID-19 Perfect Storm (Part II): Role of Vitamins as Therapy or Preventive Strategy in Aged People. Preprints 2020.DOI: 202005.0304.v1

200. Bhela S, Varanasi SK, Jaggi U, Sloan SS, Rajasagi NK, Rouse BT. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions. J. Immunol. Res. 2017; 199(4):1342-52. DOI: 10.4049/jimmunol.1700520

201. Kasahara H, Kondo T, Nakatsukasa H, Chikuma S, Ito M, Ando M, et al. Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. Int. Immunol. 2017; 29(10):457-69. DOI: 10.1093/intimm/dxx060

202. U.S. National Library of Medicine. Use of Ascorbic Acid in Patients with COVID 19. https://clinicaltrials.gov/ct2/show/NCT04323514. Accessed July 10th, 2021

203. Vitamin C. infusion for the treatment of severe 2019-nCoV infected pneumonia. ClinicalTrials. gov. NCT04264533 https://clinicaltrials. gov/ct2/show/NCT04264533. 2020. Accessed July 10th, 2021.

204. Hemilä H. Vitamin C and SARS coronavirus. J. Antimicrob. Chemother. 2003; 52(6):1049-50. DOI: 10.1093/jac/dkh002

205. Zhang N, Wang L, Deng X, Liang R, Su M, He C, et al. Recent advances in the detection of respiratory virus infection in humans. J Med Virol. 2020; 92(4):408-17. DOI: 10.1002/jmv.25674

206. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. EMERG MICROBES INFEC. 2020; 9(1):221-36. DOI: 10.1080/22221751.2020.1719902

207. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus. 2020; 12(4). DOI: 10.7759/cureus.7560
208. Arabi YM, Fowler R, Hayden FG. Critical care management of adults with community-acquired severe respiratory viral infection. Intensive Care Med. 2020; 46(2):315-28. DOI: 10.1007/s00134-020-05943-5

209. Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. Jama. 2019; 322(13):1261-70. DOI: 10.1001/jama.2019.11825

210. Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care Med. 2020; 24(1):1-2. DOI: 10.1186/s13054-020-02851-4

211. Colunga Biancatelli RM, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). FRONT IMMUNOL. 2020; 11:1451. DOI: 10.3389/fimmu.2020.01451

212. Cai Y, Li YF, Tang LP, Tsoi B, Chen M, Chen H, et al. A new mechanism of vitamin C effects on A/FM/1/47 (H1N1) virus-induced pneumonia in restraint-stressed mice. Biomed Res. Int. 2015. DOI: 10.1155/2015/675149

213. Abobaker A, Alzwi A, Alraied AH. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep. 2020. DOI: /10.1007/s43440-020-00176-1

214. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020. DOI: 10.1016/j.phanu.2020.100190

215. Rozga M, Cheng FW, Moloney L, Handu D. Effects of micronutrients or conditional amino acids on COVID-19-related outcomes: an evidence analysis center scoping review. J Acad Nutr Diet. 2020. DOI: 10.1016/j.jand.2020.05.015

216. Anderson PS. Intravenous Ascorbic Acid (IVAA) for COVID-19: supportive treatment in hospitalized COVID-19 patients: based on use in China and US settings. 2020. https://hdl.handle.net/20.500.12663/1095. Accessed July 10th, 2021.

217. Cheng R. Hospital treatment of serious and critical COVID-19 infection with high-dose vitamin C. Cheng Integrative Health Center Blog http://www. drwlc.com/blog/2020/03/18/hospital-treatment-of-serious-and-critical-covid-19-infection-with-high-dose-vitamin-c. 2020. Accessed July 10th, 2021.
218. Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, et al. A novel combination of vitamin C, curcumin and glycyrrhizic acid potentially regulates immune and inflammatory response associated with coronavirus infections: a perspective from system biology analysis. Nutr. 2020; 12(4):1193. DOI: 10.3390/nu12041193

219. Ding H, Deng W, Ding L, Ye X, Yin S, Huang W. Glycyrrhetinic acid and its derivatives as potential alternative medicine to relieve symptoms in nonhospitalized COVID-19 patients. J Med Virol. 2020; 92(10):2200-4. DOI: 10.1002/jmv.26064

220. Patel N, Penkert RR, Jones BG, Sealy RE, Surman SL, Sun Y, et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses. 2019; 11(10):907. DOI: 10.3390/v11100907

221. Goncalves-Mendes N, Talvas J, Dualé C, Guttmann A, Corbin V, Marceau G, et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. FRONT IMMUNOL. 2019; 10:65. DOI: 10.3389/fimmu.2019.00065

222. Nimer A, Mouch A. Vitamin D improves viral response in hepatitis C genotype 2-3 naïve patients. WJG. 2012; 18(8):800. DOI: 10.3748/wjg.v18.i8.800

223. Fiorino S, Bacchi-Reggiani ML, Leandri P, Loggi E, Andreone P. Vitamin E for the treatment of children with hepatitis B e antigen-positive chronic hepatitis: a systematic review and meta-analysis. World J. Hepatol. 2017; 9(6):333. DOI: 10.4254/wjh.v9.i6.333

224. Hemilä H, Kaprio J. Vitamin E supplementation and pneumonia risk in males who initiated smoking at an early age: effect modification by body weight and dietary vitamin C. Nutr. 2008; 7(1):1-9. DOI: 10.1186/1475-2891-7-33

225. Girodon F, Galan P, Monget AL, Boutron-Ruault MC, Brunet-Lecomte P, Preziosi P, et al. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. Arch. Intern. Med. 1999; 159(7):748-54. DOI: 10.1001/archinte.159.7.748

226. Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. Jama. 2002; 288(6):715-21.DOI: 10.1001/jama.288.6.715
| Author; Published Year | Nutrient | Purpose | Intervention; Control; Dose/Frequency | Study population; Sample size (I/C); Male/Female; Age (years) | Study design; Duration; Jadad score | Significant anti-viral outcome | | | |
|---|---|---|---|---|---|---|---|---|---|
| Ginde et al. 2017 | Vitamin D | Evaluation effects of high dose vitamin D in acute respiratory infection among elderly care residents. | IG: Vitamin D$_3$ 100,000 IU/month CG: Placebo, for participants receiving 400–1000 IU/day; 12000 IU of vitamin D$_3$/month for those receiving <400 IU/day | Elderly cases; 55/52; 45/62; ≥60 | R, DB, PC; 12 months; 5 points | Incidence of acute respiratory infections was lower in cases in IG group compared with CG. |
| Abu-Mouch et al. 2011 | Vitamin D | Assessment of Vitamin D effects on HCV response to antiviral therapy. | IG: Vitamin D$_3$ (2000 IU/day) with antiviral treatment CG: Antiviral treatment | Chronic HCV patients; 36/36; 39/33; 18–65 | R, C; 48 weeks; 1 point | Number of patients with negative HCV-RNA was significantly more in those received vitamin D compared with CG. Supplementation with vitamin D led to sustained virologic response. |
| Aglipay et al. 2017 | Vitamin D | Comparing effects of standard dose of vitamin D compared with high-dose in viral respiratory tract infections. | IG: Vitamin D$_3$ high dose (2000 IU/day) CG: Vitamin D$_3$ standard dose (400 IU/day) | Healthy children; 349/354; 404/296; 1–5 | R, DB, C; 4–8 months; 5 points | Incidence of respiratory tract infections was lower in IG group compared with CG |
| Meydani et al. 2004 | Vitamin E | Evaluation efficacy of vitamin E on respiratory infections in elderly nursing home residents. | IG: Vitamin E (α-tocopherol, 200 IU) in soybean oil, one capsule/day CG: Placebo (4 IU of vitamin E) in soybean oil, one capsule/day | Elderly participants; 231/220; 113/338; ≥65 | R, DB, PC; 12 months; 5 points | Vitamin E had no statistically significant effect on incidence of lower respiratory tract infections, while it could have a protective effect on common cold. |
| Andreone et al. 2001 | Vitamin E | Evaluation effects vitamin E supplement in the treatment of Chronic HBV. | IG: Vitamin E (300 mg twice daily) CG: No treatment | Chronic HBV patients; 15/17; NM; I: 37 C: 42 | R, C; 3 months; 2 points | Patients in IG experienced significantly higher rate of complete response, alanine aminotransferase normalization, and HBV-DNA negativization compared with CG. |
| Authors | Vitamin Type | Study Title | IG: Vitamin (IU/day and duration and form) | CG: Vaccine (Type and Duration) | Age Group | Sex | Duration | Points | Results |
|---------------------------------|--------------|---|--|---------------------------------|------------|-----|----------|--------|--|
| Siddiqui et al. 2001 | Vitamin A | Evaluation effects of Vitamin A on humoral immunity after anti-rabies vaccine.| IG: Vitamin A (100000 IU on 1st vaccine day and 100000 IU on the following day) and anti-rabies vaccine | CG: Anti-rabies vaccine | Healthy participants; 30 days; 20/20; 30/10; 10–35 | NAIG group had significantly higher serum anti-rabies titer compared with CG. |
| Patel et al. 2019 | Vitamin A and Vitamin D | Evaluation effects of vitamins A and D on humoral immune responses after pediatric influenza vaccination. | IG: Oral gummy (Vitamin A 20,000 IU and Vitamin D 2000 IU), on days 0 and 28 | CG: Placebo | Healthy children; R, DB, PC; 28 days; 39/40; 33/46; 2–8 | Supplementation with vitamins A and D could improve immune responses to vaccines among those with insufficient baseline levels of vitamin A and D. |
| Goncalves-Mendes et al. 2019 | Vitamin D | Evaluation effects of Vitamin D in elderly individuals on influenza infection and immune response. | IG: Vitamin D (6 doses 100,000 IU, 1 vial/15 days) and influenza vaccine | CG: Placebo (6 doses, 1 vial/15 days) and influenza vaccine | Elderly participants (Vitamin D deficient); R, DB, PC; 3 months; 19/19 | Individuals in IG had a higher TGFβ plasma level after influenza vaccination with no improvement in antibody response. |
| Nimer & Mouch 2012 | Vitamin D | Assessment of effects of vitamin D on viral response therapeutic outcomes of patients with HCV genotype 2–3. | IG: Vitamin D3 (2000 IU/day) with antiviral therapy | CG: Antiviral therapy | Chronic HCV patients; R, C; 24 weeks; 20/30; 31/19; 18–24 | After 24 weeks, individual in IG group experienced sustained virological response compared with CG. Supplementation with vitamin D is a predictor of viral response. |
| Fiorino et al. 2017 | Vitamin E | Assessment the efficacy and safety of vitamin E for the treatment of individuals with HBe-antigen positive chronic HBV. | IG: Vitamin E (15 mg/kg/day) | CG: No treatment | Children with chronic HBV; R, C; 12 months; 23/23; 34/12; 2–17 | Supplementation with vitamin E could lead to significantly higher virologic response and anti-HBe seroconversion. |
| Hemilä & Kaprio 2008 | Vitamin E and β-carotene | Evaluation effects of vitamin E on pneumonia risk in individuals who started smoking at early ages. | IG: Vitamin E (α-tocopheryl acetate, 50 mg/day), or β-carotene (20 mg/day), or | Cases who smoked at least 5 cigarettes/day and initiated smoking at ≤ 20 years; | Cases who smoked at least 5 cigarettes/day and initiated smoking at ≤ 20 years; | Vitamin E had no significant effect on the risk of pneumonia in cases with body weight of 70 to 89 kg; however, it could increase the risk of pneumonia in those with body weight of less than 60 kg and more |
| Author(s) | Year | Type | Intervention | Design | Participants | Outcomes |
|-----------|------|------|--------------|--------|--------------|----------|
| Girodon et al.\(^{225}\) | 1999 | Multi-nutrient | Investigation efficacy of long-term vitamin and trace elements on incidence of infections and immunity in institutionalized elderlies. | IG: Trace element (Zinc 20 mg plus Selenium 100 μg), or ascorbic acid (120 mg) plus beta carotene (6 mg) plus α-tocopherol (15 mg), or trace elements and vitamins CG: Placebo group | Elderly participants: 182:180:181/182; 185/540; 5–103 | 4 points |
| Graat et al.\(^{226}\) | 2002 | Multi-nutrient | Evaluation effects of supplementation with vitamin E and multivitamin-mineral on acute respiratory tract infections in elderly. | IG: Multivitamin-mineral, or Vitamin E (200 mg), or multivitamin-mineral Plus vitamin E CG: Placebo | Elderly individuals: 163:164:172/153 | 5 points |

Both vitamin E and β-carotene:
- CG: Placebo

10,784/10,873; Males only; 50–69

than 100 kg.

Zinc and selenium supplementation could lead to significant improvement in these individuals through increasing the humoral response following vaccination. It could reduce morbidity from respiratory tract infections.

Multivitamin mineral supplementation at physiological dose and vitamin E had no significant beneficial effects on acute respiratory tract infections in well-nourished non-institutionalized elderly case.

C – Controlled; CG – Control group; DB – Double blind; DNA – deoxyribonucleic acid; HBV – Hepatitis B virus; HBeAg – Hepatitis B e-antigen; – Hepatitis B HCV – Hepatitis C virus; IG – Interventional group; IU – International units; NA – Not applicable; PC – Placebo controlled; R – Randomized; RNA – Ribonucleic acid; RBP – Retinol binding protein; TGF – Transforming growth factor.
Table 2. Ongoing clinical trials on vitamins in COVID-19

ID	Status	Study Design	Country	Phase	Number Enrolled	Intervention group(s)	Comparison group(s)	Age	Outcome measure
NCT04370288	Recruiting	Phase 1, Randomized clinical trial	Iran	1	20	Drug: MCN (Methylene blue, vitamin C, N-acetyl cysteine)	None	18 Years to 90 Years (Adult, Older Adult)	Percentage of individuals remaining free of need for mechanical ventilation
NCT04386850	Recruiting	Phase 2, Randomized double blinded placebo-controlled clinical trial	Iran	2	1500	Drug: Oral 25-Hydroxyvitamin D3	None	18 Years to 75 Years (Adult, Older Adult)	COVID-19 infection, Mortality rate, Pao2/Fio2 ratio improvement
NCT04360980	Recruiting	Phase 2, Randomized Double Blind Clinical Trial	Iran	2	80	Drug: Colchicine Standard care including vitamins C 3 gram and D (dose is not defined)	Standard care including vitamins C 3 gram and D	18 Years and older (Adult, Older Adult)	CRP change, Clinical deterioration by the WHO definition, PCR Viral Load
NCT04394390	Enrolling by invitation	Case-Control	Turkey	No	100	Dietary Supplement: vitamin D (dose is not defined)	None	Child, Adult, Older Adult	Laboratory measured vitamin D levels
NCT04487951	Recruiting	Case-Control	Egypt	No	100	Vitamin D (dose is not defined)	Pro BNP	18 Years and older	Evaluation of correlations between vitamin D and NT-pro-BNP and mechanical ventilation requirement or death in patients with COVID-19
NCT04385940	Not yet recruiting	Phase 3, Randomized double blinded clinical trial	None	3	64	Dietary Supplement: Ddrops® products, 50,000 IU, Oral D3 (dose is not defined)	None	17 Years and older	Symptoms recovery, Hospitalization, Blood white blood cell count
NCT04483635	Not yet recruiting	Phase 3, Randomized clinical trial	Canada	3	2414	Dietary Supplement: Vitamin D (dose is not defined)	Dietary Supplement: Placebo	18 Years to 69 Years	Laboratory-confirmed COVID-19 incidence, COVID-19 positivity length, Disease severity distribution
NCT04411446	Recruiting	Phase 4, Randomized, controlled, double-blind, clinical trial	Argentina	4	1265	Vitamin D (dose is not defined)	Placebo	18 Years and older	Respiratory SOFA, Oxygen or mechanical ventilation requirement, Oxygen saturation variations
NCT045 19034	Not yet recruiting	Retrospective	United Kingdom	No	27000	None	None	1 Year to 100 Years	COVID-19 screening results collecting together with laboratory results.
-------------	------------------	--------------	----------------	----	-------	------	------	------------------	---
NCT045 35791	Recruiting	Phase 3	Mexico	3	400	Cholecalciferol (dose is not defined)	None	18 Years to 70 Years	Number of individuals with COVID-19 and hospitalization cases with COVID-19
NCT045 36298	Not yet recruiting	Phase 3, Cluster-Randomized, Double-Blind, Placebo-Controlled clinical trial	United States	3	2700	Vitamin D (dose is not defined)	Placebo	30 Years and older	Mortality or hospitalization Severity of disease Time to mortality or hospitalization
NCT044 01150	Recruiting	Phase 3, Multicentre concealed-allocation parallel-group blinded randomized controlled trial	Canada	3	800	Vitamin C (dose is not defined)	Control	18 Years and older	Mortality or persistent organ dysfunction ICU-free days Persistent organ dysfunction-free days in ICU
NCT044 07572	Completed	Case-Control	Turkey	No	44	Zinc, vitamin D, vitamin B12	None	18 Years to 45 Years	Serum vitamins D and B12 levels Zinc levels Symptoms
NCT043 95768	Recruiting	Phase 2, Randomized investigator-blinded controlled trial	Australia	2	200	Vitamin C (dose is not defined), Hydroxychloroquine, Azithromycin Daily Vitamin D3 (bolus)	None	18 Years and older	Hospital stay length Invasive mechanical ventilation or death
NCT044 82673	Recruiting	Phase 4, Randomized clinical trial	United States	4	140	Cholecalciferol (dose is not defined)	Placebo (bolus)	50 Years and older	Change serum levels of vitamin D and SARS-CoV-2 antibody titers in patients with COVID-19 Percentage of individuals developing COVID-19 according to a symptom score.
NCT045 79640	Not yet recruiting	Phase 3 Randomized clinical trial	United Kingdom	3	5440	Vitamin D (dose is not defined)	None	16 Years and older	Mortality Admission to ICU Time of hospitalization
NCT045 52951	Recruiting	Phase 4, Randomized clinical trial	Spain	4	80	Cholecalciferol (dose is not defined)	None	Child, Adult, Older Adult	Interleukins (IL-2,6,7,10) (pg/ml) Ferritin (ng/ml), D-dimer, Vitamin D (ng/ml)
NCT045 02667	Recruiting	Phase 3, Open controlled clinical trial (Open Label)	Mexico	3	40	Cholecalciferol (dose is not defined)	None	1 Month to 17 Years	Serum zinc before and after treatment
NCT044 68139	Recruiting	Phase 4, Single Group Assignment (open label)	Saudi Arabia	4	60	Quercetin, bromelain, Zinc, Vitamin C (dose is not defined)	None	18 Years and older	Hospitalization
NCT043 63840	Not yet recruiting	Phase 2, Multi-center, prospective, randomized controlled trial (open label)	None	2	1080	Aspirin 81 mg, Vitamin D (dose is not defined)	None	18 Years and older	Hospitalization
NCT044 00890	Recruiting	Phase 2, Randomized Double-Blind Placebo-Controlled clinical trial	United States	2	200	Plant Polyphenol, Vitamin D3 (dose is not defined)	None	45 Years and older	Hospitalization due to COVID-19 ICU admission Invasive ventilation
NCT044 35119	Completed Cohort	France	No	96	vitamin D3 (bolus)	None	70 Years and older	Mortality among nursing-home residents with COVID-19 (any cause)	
NCT043 44041	Recruiting	Phase 3, Multicenter Randomized Controlled Trial (open label)	France	3	260	cholecalciferol 200,000 IU cholecalciferol 50,000 IU	None	65 Years and older	Mortality (any cause) during 14 and 28 days after the inclusion and intervention.
NCT042 79197	Recruiting	Phase 2, Multicenter Randomized Controlled Trial Masking: Triple (Participant, Care Provider, Investigator)	China	2	160	Fuzheng Huayu Tablet Vitamin C (dose is not defined)	Placebo	18 Years to 70 Years	Pulmonary fibrosis improvement Blood oxygen saturation Clinical symptom score
NCT043 43248	Recruiting	Phase 3, Randomized, Double-Blind, Placebo Controlled Trial	United States	3	800	Nitazoxanide, Vitamin Super B-Complex	Placebo	55 Years to 120 Years	Symptomatic laboratory-confirmed COVID-19 and other viral infections
NCT044 07390	Recruiting	Phase 2, Randomized Double-blind, Placebo-controlled Trial	Denmark	2	100	Nicotinamide riboside	Placebo	70 Years and older	Hypoxic respiratory failure, Mortality, Sepsis
NCT044 07286	Recruiting	Phase 1, open label treatment study	United States	1	100	Vitamin D3 (dose is not defined)	None	18 Years and older	None
NCT033 33278	Completed Multi-centre, Randomised, Open-label controlled Trial (open label)	Multi-country	No	216	Vitamin C (1.5 g every 6 hours), thiamine (200 mg every 12 hours), and hydrocortisone (50 mg every 6 hours)	Hydrocortisone (50 mg every 6 hours)	mean age, 61.7 years	Time alive and vasopressor free Mortality (hospital, ICU) Alive and ICU-free days SOFA score Hospitalized and RRT length	
CVIT-3334	Completed Cohort	China	No	78	Vitamin C 12 gram every 12 h for 7 days	Placebo	\(\geq 18 \) and \(< 80 \) years	Mortality ICU Stay length PaO2/FiO2 ratio Inflammatory markers levels Vasopressor or invasive mechanical ventilation requirement	
NCT04264533	Completed	Phase 2, Randomized Clinical Trial	China Phase 2	56	Vitamin C (dose was not defined)	Placebo (Sterile Water for Injection)	≥18	Ventilation-free days 28-days mortality ICU length of stay	
--------------	-----------	-----------------------------------	---------------	----	-------------------------------	-------------------------------------	-----	--	

COVID-19: coronavirus disease 2019; CRP: C-reactive protein; PCR: Polymerase chain reaction; WHO: World Health Organization; NT-pro-BNP: N-terminal pro b-type natriuretic peptide; SOFA: Sequential Organ Failure Assessment; BMI: Body mass index; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ICU: intensive care unit; RRT, renal replacement therapy.