Neutrino mass and mass hierarchy in various dark energy

Zhenjie Liua Haitao Miaoa,1

aSchool of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Road, Tangjia, Zhuhai, People’s Republic of China

E-mail: liuzhj26@mail2.sysu.edu.cn, miaoht3@mail2.sysu.edu.cn

Abstract. Combined with various cosmology observations, one can obtain constraints on the sum of the active neutrino masses M_ν. However, the bounds on the sum of neutrino masses M_ν depend on the dark energy (DE) models. We consider three dark energy models, the cosmological constant (ΛCDM) model, a phenomenological emergent dark energy (PEDE) model and a model-independent quintessential parametrization (HBK). Based on these models with cosmic microwave background (CMB) data from Planck 2018, Baryon Acoustic Oscillations (BAO) measurements and Type Ia supernovae (SNe Ia) data, we obtain the bounds on total neutrino masses with the approximation of degenerate neutrino masses. In the HBK model, we conform the conclusion from a few pioneer works that the quintessence prior of dark energy tends to tighten the cosmological constraint on M_ν. On the other hand, in the PEDE model, we get a larger M_ν and a nonzero lower bound. Besides, we also explore the correlation between three different neutrino hierarchies and dark energy models.

Keywords: neutrino masses, dark energy, neutrino mass hierarchy

1Corresponding author.
1 Introduction

The standard model of particle physics predicts that neutrinos are massless, whereas the discovery of neutrino oscillations, a phenomenon where neutrinos can switch their flavour to others, suggests that they are massive. The neutrino oscillation experiments only can accurately measure the squared mass differences between two types of individual neutrino instead of their absolute masses. From neutrino oscillation data, we know the values of mass-squared splittings: $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 \approx 7.54^{+0.26}_{-0.22} \times 10^{-5}$ eV2, $|\Delta m_{31}^2| \equiv |m_3^2 - m_1^2| \approx 2.46^{+0.06}_{-0.06} \times 10^{-3}$ eV2. As we do not know whether Δm_{31}^2 is positive or negative, two kinds of neutrino mass ordering, normal hierarchy (NH, $m_3 \gg m_2 > m_1$) and inverted hierarchy (IH, $m_2 > m_1 \gg m_3$), are possible. Additionally, the degenerate hierarchy (DH, $m_1 = m_2 = m_3$) is also widely used in the cosmological parameter estimations while it is not physical. Hence, which ordering is more favoured by the nature has become a hot topic. Furthermore, different orderings of neutrino mass have different minimums of their total masses ($M_\nu = \sum_i m_i$): for NH scheme given by $(M_\nu)_{\text{min}} = \sqrt{\Delta m_{21}^2} + \sqrt{|\Delta m_{31}^2|} \approx 0.06$ eV, while for IH scheme we have $(M_\nu)_{\text{min}} = \sqrt{|\Delta m_{31}^2|} + \sqrt{|\Delta m_{31}^2| - \Delta m_{21}^2} \approx 0.1$ eV. So, the absolute neutrino mass scale is also unknown.

Nowadays, cosmology has been an effective tool to detect neutrinos, which can provide the most robust bounds on the neutrino masses. Massive neutrino play an important role in some cosmic phenomena, such as the formation of the large-scale structure (LSS), the big bang nucleosynthesis (BBN), the anisotropy of the cosmic microwave background (CMB) etc [1, 2]. Neutrinos have distinct effects on the evolution of the universe and leave traces on the CMB power spectrum and LSS power spectrum, so we can find their signatures in cosmological observations. Gerstein and Zeldovich were the first to derive the cosmological upper limit on the total neutrino masses [1]. Since then, further investigations have been carried out in the literature [2–10]. Up to now, current cosmological observations are primarily sensitive to the sum of neutrino masses. However, the bounds on the sum of neutrino masses depend on dark energy model [11–13]. According to the recent works [14–16], the constraints on M_ν in quintessence model are found to be tighter than those obtained in ΛCDM model. There are also studies talk about neutrino hierarchy from cosmology [3, 8, 14, 17–26]. In
most studies, though the current cosmological data is not sensitive enough to distinguish the two hierarchies, normal hierarchy and inverted hierarchy, there is a slight preference to NH [3, 8, 12, 14, 19, 20, 22, 25, 27].

Recently, a simple phenomenological emergent dark energy (PEDE) model has been proposed to resolve the Hubble Tension [28, 29]. This model assumes that dark energy does not exit effectively in the past but emerges at later time. The equation of state (EOS) \(w_{de}\) of dark energy goes from \(-\frac{2}{3}\ln 10\) to \(-1\) in the past and to \(-1\) in the future. Additionally, an analytic approximation of EOS has been derived based on a minimally coupled and slowly or moderately rolling quintessence field \(\phi\) with a smooth potential \(V(\phi)\) (HBK model) [30]. Based on the PEDE model, the HBK model and the \(\Lambda\)CDM model with CMB data from Planck 2018, BAO measurements and SNe Ia, we investigate the bounds on the sum of neutrino masses \(M_\nu\) with the approximation of degenerate neutrino masses. We also explore the correlation between three different neutrino hierarchies and dark energy models.

This article is organized as follows. Sec. 2 describes the methodology and the observational data used in our analysis. We discuss our results in Sec. 3. In Sec. 4, conclusion and discussion are given.

2 Methodology and Datasets

In our analysis, we apply three dark energy models with different types of dark energy evolution. To perform bayesian analysis of the cosmological dataset, we modify the publicly available markov chain monte carlo (MCMC) package CosmoMC [31]. The priors on the main cosmological parameters used for all models are listed in Tab. 1. We also study the impacts of neutrinos on the CMB temperature spectrum and the matter power spectrum, using the Boltzmann solver CAMB [32]. Here is an introduction to the dark energy models and datasets.

2.1 Dark Energy Models

The \(\Lambda\)CDM + \(M_\nu\) model. The parameter space of the \(\Lambda\)CDM model is

\[
\mathcal{P} \equiv \{\Omega_b h^2, \Omega_c h^2, 100\Theta_{MC}, \tau, n_s, \ln(10^{10} A_s), M_\nu\},
\]

Table 1. Priors on the main cosmological parameters included in this paper.

Parameters	Prior
\(\Omega_b h^2\)	[0.005, 0.1]
\(\Omega_c h^2\)	[0.01, 0.99]
\(10^3 \Theta_{MC}\)	[0.5, 10]
\(\tau\)	[0.1, 0.8]
\(n_s\)	[0.8, 1.2]
\(\ln(10^{10} A_s)\)	[1.6, 3.9]
\(M_\nu\) (eV)	[0, 3]
\(\epsilon_s\)	[0, 0.5]
\(\epsilon_{\phi, \infty}\)	[0, 1]
\(\zeta_s\)	[-1, 1]
\(H_0\) (km/s/Mpc)	[40, 100]
which has the minimum number of parameters compared to other models. $\Omega_b h^2$ and $\Omega_c h^2$ describe the baryon and cold dark matter densities today. Θ_{MC} is an approximation to the angular size of sound horizon at the time of decoupling. τ is the optical depth due to reionization. n_s and A_s refer to the spectral index and the amplitude of initial power spectrum related to early universe cosmology. The EOS for ΛCDM model remains a constant, i.e. $w_{de} = -1$.

The PEDE model. It is a phenomenological model of emergent dark energy, which did not exist effectively in the past until later time [28, 29]. It has the same parameter space \mathcal{P} as the minimal ΛCDM cosmology, namely it does not use any additional degrees of freedom. The EOS are given by

$$w_{de} = -1 - \frac{1}{3 \ln 10} \times [1 - \text{tanh}(\log_{10} a)],$$

(2.2)

The dark energy evolves as

$$\rho_{de} = \rho_{de,0} \times [1 + \text{tanh}(\log_{10} a)],$$

(2.3)

where a is a scale factor normalized to unity today. From the Eq.2.2, we can derive that the dark energy state equation goes from $-\frac{2}{3 \ln 10} - 1$ in the past to -1 in the future.

The HBK model. We use an analytic approximation of w_{de} in quintessence models proposed by Huang et al. [30]. It fits well the ensemble of trajectories for a wide class of potentials $V(\phi)$ with three additional parameters compared with the ΛCDM model. The EOS takes the following form

$$w_{de} = -1 + \frac{2}{3} \left\{ \sqrt{\epsilon_{\phi,\infty}} + \left(\sqrt{\epsilon_s} - \sqrt{\frac{2 \epsilon_{\phi,\infty}}{1 - \Omega_k}} \right) \times \left[F\left(\Omega_k a_{eq}, a_{eq}, a_{eq}\right) + \zeta_s F_2\left(\frac{a}{a_{eq}}\right)\right] \right\}^2,$$

(2.4)

where the parameter ϵ_s describes the slope of the potential $V(\phi)$ at $a = a_{eq}$, i.e. the dark energy density is equal to matter density. The tracking parameter $\epsilon_{\phi,\infty}$ characterizes the curvature of the scalar-field logarithm potential at the pivot, and the running parameter ζ_s is the initial velocity of the scalar field. The functions F and F_2 are given by

$$F(\lambda, x) \equiv \frac{3}{x^3} \int_0^x \sqrt{\frac{t^7}{1 + \lambda t + t^3}} dt,$$

(2.5)

$$F_2(x) \equiv \sqrt{2}\left[1 - \ln(1 + x^3)\right] - \frac{\sqrt{1 + x^4}}{x^{3/2}} + \frac{\ln[x^{3/2} + \sqrt{1 + x^4}]}{x^3},$$

(2.6)

respectively. The detailed derivation can be seen in Refs. [30, 33].

2.2 Dataset

We process the most recent datasets from Planck 2018 [34] in combination with other low-redshift observations. We use the Planck 2018 CMB low-l ($2 \leq l \leq 29$) and high-l ($30 \leq l \leq 2508$) TT likelihood, high-l E mode polarization and temperature-polarisation cross correlation likelihood, and low-l E mode polarization likehood. We also include the CMB lensing data. The low-redshift observations contain the Baryon acoustic oscillations (BAO) measurements and Type Ia supernovae (SNe Ia) data. BAO measurements cover 6dFGS [35], SDSS-MGS [36] and BOSS DR12 [37] surveys. SNe Ia data are taken from the latest Pantheon Sample [38], including the information of 1048 type Ia supernovae in the range of redshift $(0.01 < z < 2.3)$.

-- 3 --
3 results

In this section, we present the bounds on neutrino masses for three models and we analyse the correlation between three different neutrino hierarchies and dark energy models. We use three data combinations mentioned above, CMB + BAO + SNe Ia, in all the models.
3.1 Bounds on neutrino masses

Here, we talk about the sum of neutrino masses within the assumption of DH. In Tab. 2, we list the bounds on the sum of the neutrino masses for three dark energy models. When using Planck 2018 data for ΛCDM model, we find that the upper bound on M_ν is $M_\nu < 0.114$ eV at 95% confidence level (CL), which is more stringent than the result from Vagnozzi et al. [15] with Planck 2015 data. Moreover, we find a tighter upper bound on $M_\nu < 0.087$ eV for HBK model, which conforms the conclusion that the constraints on the sum of neutrino masses in quintessence models are tighter than the results in ΛCDM model. In particular, for PEDE model, we find the constraints on the sum of neutrino masses M_ν is $0.2123^{+0.1293}_{-0.1367}$ at 2σ. We note that PEDE model tends to have a larger value of the sum of neutrino masses and it even gives a nonzero lower bound. As is studied in Ref.[39], there is an anti-correlation between M_ν and w_{de}, a smaller w_{de} tends to a larger M_ν.

In Fig. 3, we plot the theoretical prediction on the CMB temperature spectrum C_l^{TT} and the matter power spectrum $P(k)$ to explore the impacts of w_{de}. For HBK model, we take $\epsilon_s = 0, 0.5, 1$, with $\epsilon_{\phi\infty} = 0$, $\zeta_s = 0$ and other parameters kept fixed, as examples. Notice that, when $\epsilon_s = 0$, $\epsilon_{\phi\infty} = 0$ and $\zeta_s = 0$, the HBK model corresponds to ΛCDM model. We also display the case of PEDE model for comparison. According to Eq. 2.4, w_{de} would increase as the increase of ϵ_s. Therefore, we can see that the significant variations for low-l tail ($2 < l < 50$) of CMB temperature spectrum from left panel and $P(k)$ is gradually suppressed from the right panel. We can also know from the Refs. [4, 16, 40] that, a larger M_ν can also cause the suppression on the CMB temperature spectrum at the low multipoles (late Integrated Sachs-Wolfe effect) and the matter power spectrum. Therefore, it implies that, as w_{de} gets smaller, M_ν would become larger to compensate the variation caused by w_{de} on power spectrum.

From only CMB data, there is a strong anti-correlation between Hubble constant H_0 and M_ν, however, the degeneracy would be broken more effectively when combined with BAO and SNe data [12]. In Fig. 1, we show the marginalized 68.3% CL and 95.4% CL constraints on H_0 and M_ν. We can note that releasing M_ν does not help to relieve the H_0 tension between low-redshift measurement and high-redshift measurement. Particularly, when considering massive neutrinos for PEDE model, the Hubble tension can still be alleviated.

3.2 Neutrino mass hierarchy

In Tabs. 3, 4 and 5, we present the constraints of some selected parameters and the values of χ^2_{min} from MCMC analysis for ΛCDM, HBK and PEDE models, respectively. In Fig. 2, we show comparison of 1-D marginalized posterior distribution on M_ν for three dark energy models with different hierarchies, which have been normalized. We can note that, though considering different hierarchy, the results that the quintessence prior of dark energy tends to tighten the cosmological constraint on M_ν still holds for each neutrino ordering. In PEDE model, the constraints on the total neutrino masses with different neutrino hierarchies are almost uniform.
Inverted Hierarchy
0.224\pm 0.0001
0.0224\pm 0.0001
0.0225\pm 0.0001

\Theta_s
1.0140\pm 0.003
1.0410\pm 0.003
1.0410\pm 0.003

\nu
0.9671\pm 0.0038
0.9673\pm 0.0037
0.9676\pm 0.0037

\ln(10^{10}A_s)
3.0449\pm 0.0143
3.0490\pm 0.0150
3.0527\pm 0.0142

\nu\ (eV)
< 0.114
< 0.150
< 0.170

\sigma_8
0.8145\pm 0.0097
0.8044\pm 0.0085
0.7982\pm 0.0080

H_0
67.8936\pm 0.4860
67.5201\pm 0.4590
67.3298\pm 0.4334

\Omega_m0
0.3085\pm 0.0061
0.3127\pm 0.0060
0.3189\pm 0.0063

\chi^2_{min}
1910.795
1911.990
1913.325

| Table 3. | Marginalized constraints on cosmological parameters of the \(\Lambda \)CDM model for different neutrino hierarchies, which are given at 1\(\sigma \) errors except the upper bounds on \(M_\nu \) are given at 2\(\sigma \) errors. |

| Table 4. | Marginalized constraints on cosmological parameters of the HBK model for different neutrino hierarchies, which are given at 1\(\sigma \) errors except the upper bounds on \(M_\nu \) and the dark energy parameters are given at 2\(\sigma \) errors. |

Figs. 4, 5 and 6 depict the 1D marginalized posterior distributions and 2D joint contours at 68\% and 95\% CL for some selected cosmological parameters of the \(\Lambda \)CDM, HBK and PEDE models. In the \(\Lambda \)CDM and HBK models, different hierarchies lead to some slight effects on other cosmological parameters because of the degeneracy, as shown in Fig. 4 and Fig. 5. For instance, as the value of \(M_\nu \) increases from the degenerate approximation to normal hierarchy to inverted case, the value of \(H_0 \) and \(\sigma_8 \) decrease and \(\Omega_m0 \) increase. Moreover, as neutrinos masses get larger due to the different hierarchy, the dark energy parameters \(\epsilon_s \) and \(\epsilon_{\phi\infty} \) get...
Parameter	Degenerate Hierarchy	Normal Hierarchy	Inverted Hierarchy
Ω_bh^2	0.0223 $^{+0.0001}_{-0.0001}$	0.0223 $^{+0.0001}_{-0.0001}$	0.0223 $^{+0.0001}_{-0.0001}$
Ω_ch^2	0.1212 $^{+0.0008}_{-0.0008}$	0.1212 $^{+0.0008}_{-0.0008}$	0.1212 $^{+0.0008}_{-0.0008}$
Θ_s	1.0407 $^{+0.0003}_{-0.0003}$	1.0407 $^{+0.0003}_{-0.0003}$	1.0407 $^{+0.0003}_{-0.0003}$
τ	0.0530 $^{+0.0075}_{-0.0075}$	0.0535 $^{+0.0068}_{-0.0075}$	0.0541 $^{+0.0074}_{-0.0074}$
n_s	0.9619 $^{+0.0036}_{-0.0036}$	0.9622 $^{+0.0036}_{-0.0036}$	0.9619 $^{+0.0037}_{-0.0036}$
$\ln(10^{10}A_s)$	3.0444 $^{+0.0148}_{-0.0148}$	3.0453 $^{+0.0134}_{-0.0147}$	3.0464 $^{+0.0151}_{-0.0151}$
M_{ν} (eV)	0.2123 $^{+0.0666+0.1293}_{-0.0642-0.1367}$	0.2188 $^{+0.0647+0.0123}_{-0.0648-0.1357}$	0.8257 $^{+0.0774+0.1094}_{-0.0711-0.1249}$
σ_8	0.8239 $^{+0.0164}_{-0.0164}$	0.8227 $^{+0.0164}_{-0.0162}$	0.8215 $^{+0.0174}_{-0.0145}$
H_0	70.0558 $^{+0.7255}_{-0.7279}$	69.9905 $^{+0.7851}_{-0.7908}$	69.9210 $^{+0.7932}_{-0.7230}$
Ω_{m0}	0.2971 $^{+0.0081}_{-0.0081}$	0.2977 $^{+0.0087}_{-0.0087}$	0.2985 $^{+0.0077}_{-0.0076}$
χ^2_{min}	1918.044	1918.425	1917.067

Table 5. Marginalized constraints on cosmological parameters of the PEDE model for different neutrino hierarchies, which are given at 1σ errors and also given at 2σ errors on M_{ν}.

Figure 4. 68% and 95% CL contour plot in the ΛCDM model.
Figure 5. 68% and 95% CL contour plot in the HBK model.

smaller since the anti-correlation between M_ν and w_{de}. However, these variations are not significant enough and the impact of neutrino hierarchy on dark energy parameters is only at a few percent level. In PEDE model, because the constraints on M_ν are similar in three hierarchies, all the cosmological parameters almost coincide. Therefore, with the improvement of observation accuracy, we may not be able to solve the neutrino mass hierarchy problem for PEDE model in the future. Besides, we present the value of χ^2_{min} calculated at best-fit points for each case in tables. Current cosmological observations can not provide a rigorous statistical treatment of the preference for hierarchy. The differences between the values of χ^2_{min} for normal hierarchy and for inverted hierarchy are not significant. However, there is a kind of interesting point that the PEDE model slightly prefers IH, which is different from the ΛCDM and HBK models which slightly prefer NH.

We also show the theoretical predictions on the CMB temperature spectrum and matter power spectrum for the three models with three hierarchies in Fig. 7. We assumed the best-fit values generated by MCMC analysis above. When the neutrino hierarchies are considered,
one can not find significant variations on the power spectrum. Therefore, neutrino hierarchy has very slight impacts on other cosmological parameters whichever type of dark energy we apply.

4 Conclusion

Cosmology can be used to address the problems about the total neutrino masses and the mass hierarchy. Current observations can provide constraints on the sum of the neutrino masses \(M_\nu \). However, the bounds on \(M_\nu \) from cosmology are model-dependent. In this work, we investigated cosmological constraints on \(M_\nu \) within the \(\Lambda \)CDM model, the HBK model and PEDE model. These models are well constrained by the latest observational data, CMB + BAO + SNe Ia. For ACMD model, when we use the latest Planck 2018 CMB data, we obtain tighter upper bounds on total neutrino masses. For HBK model, we find the quintessence prior of dark energy tends to tighten the cosmological constraints on \(M_\nu \), as previously stated. On the other hand, the phantom prior in PEDE model tends to make the constraints on \(M_\nu \) looser and its value larger and we can even obtain the lower bounds (95%CL) on \(M_\nu \).

In addition, we also consider different neutrino hierarchies for the three models. It leads to some impacts on cosmological parameters due to the variations of \(M_\nu \). However, those
Figure 7. The impacts of neutrino hierarchies on the CMB temperature power spectrum C_l^{TT} and on the matter power spectrum for PEDE, Λ CDM, and HBK models.

variations are not significant enough. Especially, in the PEDE model, the change of neutrino hierarchy nearly has no impacts on other cosmological parameters.

5 Acknowledgements

First, we would like to express gratitude to our tutor, Prof. Zhiqi Huang. He usually provided us valuable advice and enlightenment for ideas. Additionally, we would like to thank Miaoxin Liu for providing us technical advisory assistance.
References

[1] A. D. Dolgov, *Neutrinos in cosmology*, Phys. Rept. **370** (2002) 333–535, [hep-ph/0202122].

[2] J. Lesgourgues and S. Pastor, *Massive neutrinos and cosmology*, Phys. Rept. **429** (2006) 307–379, [astro-ph/0603494].

[3] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, *Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy*, Phys. Rev. **D96** (2017), no. 12 123503, [arXiv:1701.0817].

[4] J. Lesgourgues and S. Pastor, *Neutrino mass from Cosmology*, Adv. High Energy Phys. **2012** (2012) 608515, [arXiv:1212.6154].

[5] M. Gerbino, M. Lattanzi, and A. Melchiorri, *Iν generation: Present and future constraints on neutrino masses from global analysis of cosmology and laboratory experiments*, Phys. Rev. **D93** (2016), no. 3 033001, [arXiv:1507.0861].

[6] M. Archidiacono, T. Brinckmann, J. Lesgourgues, and V. Poulin, *Physical effects involved in the measurements of neutrino masses with future cosmological data*, JCAP **1702** (2017), no. 02 052, [arXiv:1610.0985].

[7] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and K. Freese, *Improvement of cosmological neutrino mass bounds*, Phys. Rev. **D94** (2016), no. 8 083522, [arXiv:1605.0432].

[8] S. Gariazzo, M. Archidiacono, P. F. de Salas, O. Mena, C. A. Ternes, and M. Tåström, *Neutrino masses and their ordering: Global Data, Priors and Models*, JCAP **1803** (2018), no. 03 011, [arXiv:1801.0494].

[9] E. Giusarma, S. Vagnozzi, S. Ho, S. Ferraro, K. Freese, R. Kamen-Rubio, and K.-B. Luk, *Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses*, Phys. Rev. **D98** (2018), no. 12 123526, [arXiv:1802.0869].

[10] S. Vagnozzi, T. Brinckmann, M. Archidiacono, K. Freese, M. Gerbino, J. Lesgourgues, and T. Sprenger, *Bias due to neutrinos must not uncorrect’d go*, JCAP **1809** (2018), no. 09 001, [arXiv:1807.0467].

[11] S. Roy Choudhury and S. Choubey, *Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios*, JCAP **1809** (2018), no. 09 017, [arXiv:1806.1083].

[12] S. Roy Choudhury and S. Hannestad, *Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods*, arXiv:1907.1259.

[13] S. Roy Choudhury and A. Naskar, *Strong Bounds on Sum of Neutrino Masses in a 12 Parameter Extended Scenario with Non-Phantom Dynamical Dark Energy (w(z) ≥ −1) with CPL parameterization*, Eur. Phys. J. **C79** (2019), no. 3 262, [arXiv:1807.0286].

[14] X. Zhang, *Weighing neutrinos in dynamical dark energy models*, Sci. China Phys. Mech. Astron. **60** (2017), no. 6 060431, [arXiv:1703.0065].

[15] S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar, and O. Mena, *Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ −1 are tighter than those obtained in ΛCDM*, Phys. Rev. **D98** (2018), no. 8 083501, [arXiv:1801.0855].

[16] Y. Chen and L. Xu, *Galaxy clustering, CMB and supernova data constraints on Î”CDM model with massive neutrinos*, Phys. Lett. **B752** (2016) 66–75, [arXiv:1507.0200].

[17] W. Yang, R. C. Nunes, S. Pan, and D. F. Mota, *Effects of neutrino mass hierarchies on dynamical dark energy models*, Phys. Rev. **D95** (2017), no. 10 103522, [arXiv:1703.0255].

[18] A. J. Long, M. Raveri, W. Hu, and S. Dodelson, *Neutrino Mass Priors for Cosmology from Random Matrices*, Phys. Rev. **D97** (2018), no. 4 043510, [arXiv:1711.0843].

[19] M. Gerbino, M. Lattanzi, O. Mena, and K. Freese, *A novel approach to quantifying the
sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling, Phys. Lett. B775 (2017) 239–250, [arXiv:1611.0784].

[20] J.-F. Zhang, B. Wang, and X. Zhang, Forecast for weighing neutrinos in cosmology with SKA, arXiv:1907.0017.

[21] T. Schwetz, K. Freese, M. Gerbino, E. Giusarma, S. Hannestad, M. Lattanzi, O. Mena, and S. Vagnozzi, Comment on "Strong Evidence for the Normal Neutrino Hierarchy", arXiv:1703.0458.

[22] S. Wang, Y.-F. Wang, D.-M. Xia, and X. Zhang, Impacts of dark energy on weighing neutrinos: mass hierarchies considered, Phys. Rev. D94 (2016), no. 8 083519, [arXiv:1608.0067].

[23] F. Simpson, R. Jimenez, C. Pena-Garay, and L. Verde, Strong Bayesian Evidence for the Normal Neutrino Hierarchy, JCAP 1706 (2017), no. 06 029, [arXiv:1703.0342].

[24] A. F. Heavens and E. Sellentin, Objective Bayesian analysis of neutrino masses and hierarchy, JCAP 1804 (2018), no. 04 047, [arXiv:1802.0945].

[25] F. Simpson, R. Jimenez, C. Pena-Garay, and L. Verde, Strong Bayesian Evidence for the Normal Neutrino Hierarchy, JCAP 1706 (2017), no. 06 029, [arXiv:1703.0342].

[26] P. F. De Salas, S. Gariazzo, O. Mena, C. A. Ternes, and M. Tärtola, Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects, Front. Astron. Space Sci. 5 (2018) 36, [arXiv:1806.1105].

[27] M. Gerbino, K. Freese, S. Vagnozzi, M. Lattanzi, O. Mena, E. Giusarma, and S. Ho, Impact of neutrino properties on the estimation of inflationary parameters from current and future observations, Phys. Rev. D95 (2017), no. 4 043512, [arXiv:1610.0833].

[28] C. Mahony, B. Leistedt, H. V. Peiris, J. Braden, B. Joachimi, A. Korn, L. Cremonesi, and R. Nichol, Target Neutrino Mass Precision for Determining the Neutrino Hierarchy, arXiv:1907.0433.

[29] X. Li and A. Shafieloo, A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension, Astrophys. J. 883 (2019), no. 1 L3, [arXiv:1906.0827]. [Astrophys. J. Lett.883,L3(2019)].

[30] S. Pan, W. Yang, E. Di Valentino, A. Shafieloo, and S. Chakraborty, Reconciling H0 tension in a six parameter space?, arXiv:1907.1255.

[31] Z. Huang, J. R. Bond, and L. Kofman, Parameterizing and Measuring Dark Energy Trajectories from Late-Inflatons, Astrophys. J. 726 (2011) 64, [arXiv:1007.5297].

[32] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D66 (2002) 103511, [astro-ph/0205436].

[33] A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473–476, [astro-ph/9911177].

[34] H. Miao and Z. Huang, The H0 Tension in Non-flat QCDM Cosmology, Astrophys. J. 868 (2018), no. 1 20, [arXiv:1803.0732].

[35] Planck Collaboration, N. Aghanim et al., Planck 2018 results. V. CMB power spectra and likelihoods, arXiv:1907.1287.

[36] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6df galaxy survey: baryon acoustic oscillations and the local hubble constant, Monthly Notices of the Royal Astronomical Society 416 (2011), no. 4 3017âŞ3032, [arXiv:1106.3366].

[37] BOSS Collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,
Mon. Not. Roy. Astron. Soc. 470 (2017), no. 3 2617–2652, [arXiv:1607.0315].

[38] D. M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859 (2018), no. 2 101, [arXiv:1710.0084].

[39] S. Hannestad, Neutrino masses and the dark energy equation of state - Relaxing the cosmological neutrino mass bound, Phys. Rev. Lett. 95 (2005) 221301, [astro-ph/0505551].

[40] M.-M. Zhao, Y.-H. Li, J.-F. Zhang, and X. Zhang, Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to ΛCDM cosmology, Mon. Not. Roy. Astron. Soc. 469 (2017), no. 2 1713–1724, [arXiv:1608.0121].