The handle http://hdl.handle.net/1887/29855 holds various files of this Leiden University dissertation.

Author: Cox, Fieke Maria Elisabeth
Title: Inclusion body myositis. Clinical aspects
Issue Date: 2014-11-25
Chapter 4

The heart in sporadic inclusion body myositis: a study in 51 patients

F.M.E. Cox¹
V. Delgado²
J.J.G.M. Verschuuren¹
B.E. Ballieux³
J.J. Bax²
A.R. Wintzen¹
U.A. Badrising¹
for the Dutch IBM study group*

Department of Neurology¹, Cardiology² and Clinical Chemistry³, Leiden University Medical Center, Leiden, The Netherlands

* Authors and investigators of the Dutch IBM Study Group include, from the Departments of Neurology:
M.L.C. Maat-Schieman (Leiden University Medical Center); P.A. van Doorn (Erasmus Medical Center Rotterdam); B.G.M. van Engelen (Radboud University Nijmegen Medical Center); C.G. Faber (Maastricht University Medical Center); J.E. Hoogendijk (University Medical Center Utrecht) and M. de Visser (Academic Medical Center Amsterdam)

J Neurol 2010; 257:447-451
Abstract

The purpose of this study was to explore the prevalence and nature of cardiac abnormalities in sporadic inclusion body myositis (IBM). Fifty-one sporadic IBM patients were cross-sectionally studied using history-taking, physical examination, measurements of serum creatine kinase activity, the MB fraction (CK-MB), cardiac troponin T (cTnT) and I (cTnI), a 12-lead electrocardiogram (ECG) and 2-D echocardiography. Present cardiac history was abnormal in 12 (24%) out of 51 patients, 12 (24%) patients had abnormalities on ECG, mostly aspecific, and in 12 (24%) patients the echocardiograph showed abnormalities. Elevated CK-MB was present in 42 (82%) patients and 40 (78%) had an elevated cTnT in the absence of acute cardiac pathology. In contrast, in one patient (2%) cTnI was elevated. There was no apparent association between elevated biomarkers, ECG or echocardiographic abnormalities.

The prevalence of cardiac abnormalities in sporadic IBM does not seem to be higher than would be expected in these elderly patients. Elevated CK-MB and cTnT levels are common, in contrast to cTnI, but do not reflect cardiac pathology.
Introduction

Sporadic inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy of striated skeletal muscle, particularly affecting the quadriceps muscles, forearm flexors and pharyngeal muscles. Symptoms usually occur after the age of forty.1,2

Muscle biopsy specimens show predominantly endomyosal inflammation, with CD8+ T-cells invading non-necrotic muscle fibres. These infiltrates resemble those in polymyositis (PM). Essential differences with PM are the presence of rimmed vacuoles and intracellular deposits of a host of proteins, including β-amyloid and hyperphosphorylated tau in sporadic IBM.

Cardiovascular studies in PM and dermatomyositis (DM), cross-sectional or retrospective, reported abnormalities in 32.5-85% of the patients, comprising congestive heart failure, conduction abnormalities, myocarditis, arrhythmias and cardiomyopathy.3-6 At the time these studies were done, sporadic IBM was not yet considered a distinct disease entity and the Bohan and Peter criteria then used, resulted in the inclusion of patients with sporadic IBM into the PM groups.7,8 Cardiovascular case series in sporadic IBM have not been published as far as we know.

The present study explored the possible involvement of the heart in sporadic IBM patients using non-invasive techniques.

Methods

Study population
The study comprised 51 patients diagnosed with sporadic IBM, selected from a national cohort of 86 IBM patients. The recruitment procedure has been previously described in detail.9 In short, a database of sporadic IBM patients was started through a national survey in all large neurologic and rheumatologic centers in the Netherlands in order to identify as many sporadic IBM patients as possible. Clinical data and biopsy specimens of all patients previously coded with a diagnosis of sporadic IBM, a chronic or refractory myositis or progressive myopathy of unknown origin, with an onset after the age of 45 years were reevaluated for sporadic IBM characteristics. Included patients fulfilled the ENMC criteria for definite or probable sporadic IBM.10 The study protocol included a cross-sectional clinical evaluation, blood sample analysis, 12-lead electrocardiography (ECG) and transthoracic echocardiography. The studies were done at Leiden University Medical Centre after approval by the Ethics committee and attaining informed consent of all patients. From the remaining 35 patients who were not
included in the present study, 13 refrained from participation, 5 could not be located, 6 died before starting the protocol (1 patient due to adenocarcinoma of the lung, one due to gastric bleeding, and 4 to causes unknown) and 11 did not undergo cardiac evaluation due to logistic difficulties.

Clinical evaluation

History-taking focused on the presence of cardiovascular risk factors and previous history of ischemic heart disease, heart failure, cardiac arrhythmias and pericardial disease.

The physical examination comprised 12 automated blood pressure and pulse rate measurements taken within 30 minutes while seated, and a heart examination.

Blood sample analysis

Serum creatine kinase activity (sCK), the MB fraction (CK-MB) and cardiac Troponin T (cTnT) and Troponin I (cTnI) were analyzed. Normal values for sCK were ≤ 170 U/L in women and ≤ 200 U/L in men and for CK-MB ≤ 10 μg/L. The cut off value for cTnT was 0.03 μg/L and for cTnI 0.2 μg/L.

Electrocardiography

The presence of any conduction disturbance, arrhythmia, myocardial ischemia or infarction was evaluated by ECG (25 mm/sec) as follows: heart rhythm was classified as sinus rhythm, atrial fibrillation or flutter, or paced rhythm. A QRS axis between -30° and -90° indicated a left axis deviation, an axis between +90° and +180° indicated right axis deviation. Complete bundle branch block (BBB) was defined by a QRS complex duration of >120 ms. Extrasystolic beats, sinus bradycardia (<60 beats/min) and -tachycardia (>100 beats/min) were noted.

ST-segment depression >1 mm and abnormal negative T-waves in 2 consecutive leads suggested myocardial ischemia. Pathological Q-waves in at least 2 consecutive leads, with a duration >0.04 s and a depth >25% of the R-wave voltage, indicated previous myocardial infarction.

Left ventricular (LV) hypertrophy was assessed using the Sokolow index. The corrected QT-interval (QTc) was calculated according to Bazett’s formula.

Echocardiography

Patients were imaged in the left lateral decubitus position using a commercially available system (Vingmed system Vivid-5; General Electric-Vingmed, Milwaukee, WI, USA). Standard 2-dimensional and color Doppler data, triggered to the QRS complex, were obtained using a 3.5 MHz transducer, at a depth of 16 cm in the parasternal (long- and
short-axis) and apical (2- and 4-chamber, long-axis) views. The images were stored for off-line analysis (EchoPac 6.0.1, General Electric Vingmed Ultrasound, Milwaukee, USA).

Both ECG and echocardiography were analyzed by one independent cardiologist blinded with regard to the clinical status of the patient, but aware of the diagnosis sporadic IBM.

LV dimensions and function were measured from M-mode images. LV wall motion was classified as abnormal when hypokinesia was observed. LV mass was calculated by the cube formula and using the correction formula proposed by Devereux et al.14 LV mass index (LVMI) was calculated after correction for body surface area. A value of LVMI >110 g/m2 in women and >135 g/m2 in men defined LV hypertrophy.15

LV diastolic function was evaluated by the pulsed wave Doppler recordings of the transmitral inflow velocity.16 Diastolic transmitral peak velocities (E-wave and A-wave), the E/A ratio and the E-deceleration time were measured. Valvular function was evaluated with color Doppler echocardiography and standard continuous and pulsed wave Doppler examinations.

Statistical analysis

Continuous variables were compared using the Mann-Whitney U-test. Categorical variables were compared using the Fisher exact test. Laboratory data are stated as median (range), other data are presented as mean ± standard deviation.

Results

Study population and clinical evaluation

All 51 sporadic IBM patients (67 ± 9 years, 34 men) completed the study protocol. Mean disease duration was 11 ± 6 years. The investigated group did not differ significantly from the original population group of 86 patients with regard to sex distribution, age (at onset) and disease duration. The cardiovascular history profile up to inclusion is summarized in Table 1.

The majority of the patients (n = 39, 76%) reported no cardiovascular symptoms at the time of history taking. The remaining 12 patients (24%) disclosed exertion-induced chest pain, dyspnea, nycturia or palpitations. None of the patients had had a myocardial infarction within 3 months prior to evaluation. The mean systolic and diastolic blood pressures at examination were 133 ± 19 and 77 ± 12 respectively. A cardiac murmur was noted in 7 (14%) patients.
Laboratory data

Elevated sCK levels were observed in 42 (82%) patients, 506 U/L (64 – 3360) in men, 246 U/L (44 – 802) in women. Elevated CK-MB levels were measured in 42 (82%) patients, 18 μg/L (2-124). Elevated cTnT levels were observed in 40 (78%) patients, (0.08 μg/L (0.01 – 0.99)), and an elevated cTnl level of 0.22 μg/L was found in one patient. CK-MB was elevated in four patients with a normal sCK.

Electrocardiographic data

Most patients were in sinus rhythm (n = 47, 92%). Three (6%) patients had atrial fibrillation and 1 (2%) a paced rhythm. Mean heart rate was 69 ± 15 beats/min.

Table 1. Cardiovascular profile*

Cardiovascular risk factors	
Hypertension	12 (24%)
Hypercholesterolemia	1 (2%)
Diabetes Mellitus	1 (2%)
Obesity (BMI > 30 kg/m²)	5 (10%)
Cigarette smoking	
Present	5 (10%)
Previous	15 (29%)

Previous cardiac history	
Myocardial infarction	8 (16%)
Coronary revascularisation	3 (6%)
Conduction abnormalities	5 (10%)
Requiring pacemaker	2 (4%)
Pericarditis	1 (2%)
Heart failure	1 (2%)
Mitral valve abnormalities	2 (4%)
Requiring valve replacement	1 (2%)

Cardiovascular medications	
β-blockers	10 (20%)
Calcium-antagonists	4 (8%)
ACE-inhibitors	7 (14%)
Diuretics	8 (16%)

BMI = Body Mass Index, ACE-inhibitors = angiotensin converting enzyme inhibitors.

* Multiple items possible per patient
The mean QRS duration was 91 ± 20 ms. Thirty-four (67%) patients showed a normal QRS axis, two (4%) a right axis deviation and 13 (25%) a left axis deviation. Two (4%) patients had complete BBB whereas 5 (10%) patients had incomplete BBB. Seven (14%) patients had signs of previous myocardial infarction whereas four (8%) had signs corresponding to our definition of myocardial ischemia.

Nine (18%) patients had LV hypertrophy. Mean QTc duration was normal.

Echocardiographic data

Most patients had a non-dilated LV with preserved function. Impaired systolic function (LV ejection fraction <50%) was observed in 4(8%) patients. Fourteen (27%) patients met the echocardiographic criteria of LV hypertrophy. The LV diastolic function could be reliably assessed in 45 patients. The mean E/A ratio was 0.9 ± 0.6, which is in the normal range above the age of fifty.

The majority of the patients had normal valvular function. Mild mitral (n=7, 14%), aortic (n=8, 16%), and tricuspid (n=7, 14%) regurgitation were infrequently found and only 1 (2%) patient had moderate tricuspid regurgitation.

Myocardial damage evaluation by combining serum levels of cardiac biomarkers, ECG and echocardiographic findings

To evaluate the clinical significance of the raised biomarkers, we compared the values of biomarkers between patients with and without abnormalities on ECG and echocardiography. For this purpose, pathologic ECG (n=12, 24%) was defined by the presence of any conduction abnormality, pathologic ST-segment depression or pathologic Q waves, whereas pathologic echocardiography (n=12, 24%) was defined by the presence of impaired systolic LV function or wall motion abnormalities.

Of the patients with a normal ECG or echocardiography, 79% had raised CK-MB levels versus 100% in patients with a pathologic ECG or echocardiography (p = 0.2). For cTnT, these numbers were 79 and 85 % respectively (p = 0.8). CK-MB and cTnT levels did not differ between the groups with and without pathologic ECG or echocardiography either (p = 0.8 and 0.09, respectively).

The only patient with an elevated cTnI had pathologic findings on ECG and echocardiography, including a wall motion abnormality with an ejection fraction of 18%.

Thus, raised cardiac biomarkers were not associated with pathologic findings on ECG or echocardiography and furthermore, the majority of the patients with raised cardiac biomarkers had a normal ECG or echocardiography.
Discussion

The present study showed that the vast majority of patients with sporadic IBM were asymptomatic with regard to cardiac symptoms at the time of investigation. The frequencies of ECG and echocardiography abnormalities approximate those from large epidemiological studies in several cohorts from general populations with a similar age distribution as the present study. Therefore, the prevalence and nature of the found abnormalities are considered to be unrelated to sporadic IBM. Consequently, standard cardiac evaluation in sporadic IBM is not considered mandatory. This is different from previous findings in PM and DM.

In the last decade, cardiac troponins (cTnT or cTnI) have emerged as more specific biomarkers of cardiac damage as compared to sCK or CK-MB, and particularly acute myocardial ischemia is based upon raised troponin levels. Elevation of cTnT has been described in PM, DM and sporadic IBM patients without apparent cardiac ischemia. In addition, one study and one case report describe normal cTnI levels in the presence of elevated cTnT in myositis. In contrast to the present study, possible cardiac involvement was not studied by ECG, nor by echocardiography.

It has been hypothesized that CK-MB and cTnT, both expressed in fetal muscle, but down-regulated during development, are re-expressed in regenerating muscle fibers. These fibers are common in PM, DM and sporadic IBM muscle biopsies. Consequently, CK-MB and cTnT elevations arise in the absence of cardiac ischemia. Contrarily, cTnI, exclusively expressed in cardiac muscle, remains normal.

In the present study, CK-MB and cTnT were commonly elevated in the absence of cardiac pathology. The only patient with an elevated cTnI had a severe cardiomyopathy, explaining this elevation. These outcomes support the hypothesis that elevated CK-MB and cTnT levels in IBM are not of cardiac origin, but originate from skeletal muscle tissue.

The present study does not show evidence for cardiac involvement in sporadic IBM, and therefore we do not recommend routine comprehensive cardiac evaluation in patients with sporadic IBM without cardiac symptoms. Increased cardiac biomarkers, i.e., CK-MB and cTnT in sporadic IBM do not necessarily suggest cardiac damage. To detect cardiac ischemia in IBM patients cTnI is likely the most informative and recommended biomarker.
References

1. Badrising UA, Maat-Schieman ML, van Houwelingen JC et al. Inclusion body myositis. Clinical features and clinical course of the disease in 64 patients. J Neurol 2005;252(12):1448-1454.
2. Needham M, James I, Corbett A et al. Sporadic inclusion body myositis: Phenotypic variability and influence of HLA-DR3 in a cohort of 57 Australian cases. J Neurol Neurosurg Psychiatry 2008;79:1056-1060.
3. Gonzalez-Lopez L, Gamez-Nava JI, Sanchez L et al. Cardiac manifestations in dermato-polymyositis. Clin Exp Rheumatol 1996;14(4):373-379.
4. Gottdiener JS, Sherber HS, Hawley RJ, Engel WK. Cardiac manifestations in polymyositis. Am J Cardiol 1978;41(7):1141-1149.
5. Oka M, Raasakka T. Cardiac involvement in polymyositis. Scand J Rheumatol 1978;7(4):203-208.
6. Stern R, Godbold JH, Chess Q, Kagen LJ. ECG abnormalities in polymyositis. Arch Intern Med 1984;144(11):2185-2189.
7. Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med 1975;292(8):403-407.
8. Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med 1975;292(7):344-347.
9. Badrising UA, Maat-Schieman M, van Duinen SG et al. Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 2000;55(9):1385-1387.
10. Verschuuren JJ, Badrising UA, Wintzen AR, Engelen B, van der Hoeven H, Hoogendijk JE. Inclusion Body Myositis. In: Emery A, editor. Diagnostic Criteria for Neuromuscular Disorders. London: Royal Society of Medicine Press, European Neuromuscular Center; 1997:81-84.
11. Kadish AH, Buxton AE, Kennedy HL et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography). J Am Coll Cardiol 2001;38(7):2091-2100.
12. Sokolow M, Lyon TP. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am Heart J 1949;37(2):161-186.
13. Bazett HC. An analysis of time-relations of electrocardiograms. Heart 1920;7:353-370.
14. Devereux RB, Alonso DR, Lutas EM et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57(6):450-458.
15. van Thiel SW, Bax JJ, Biermasz NR et al. Persistent diastolic dysfunction despite successful long-term octreotide treatment in acromegaly. Eur J Endocrinol 2005;153(2):231-238.
16. Pereira AM, van Thiel SW, Lindner JR et al. Increased prevalence of regurgitant valvular heart disease in acromegaly. J Clin Endocrinol Metab 2004;89(1):71-75.
17. Ashley EA, Raxwal V, Froelicher V. An evidence-based review of the resting electrocardiogram as a screening technique for heart disease. Prg Cardiovasc Dis 2001;44(1):55-67.
18. Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation 1998;98(22):2494-2500.
19. Stefano G, Fox K, Schuchter M, Hoit BD. Prevalence of unsuspected and significant mitral and aortic regurgitation. J Am Soc Echocardiogr 2008;21(1):38-42.
20. His H, Lam B. Electrocardiographic findings in 122,043 individuals. Circulation 1962;25:947-961.
21. Ham WC, Goldmann BU, Heesch C, Kreymann G, Berger J, Meinertz T. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N Engl J Med 1997;337(23):1648-1653.
22. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R, Jr. National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 1999;45(7);1104-1121.
23. Erlacher P, Lercher A, Falkensammer J et al. Cardiac troponin and beta-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis. Clin Chim Acta 2001;306(1-2):27-33.
24. Lindberg C, Klintberg L, Oldfors A. Raised troponin T in inclusion body myositis is common and serum levels are persistent over time. Neuromuscul Disord 2006;16(8):495-497.
25. Schwarzmeier JD, Hamwi A, Preisel M et al. Positive troponin T without cardiac involvement in inclusion body myositis. Hum Pathol 2005;36(8):917-921.
26. Bodor GS, Survant L, Voss EM, Porterfield D, Apple FS. Cardiac troponin T composition in normal and regenerating human skeletal muscle. Clin Chem 1997;43(3):476-484.
27. Larca LJ, Coppola JT, Honig S. Creatine kinase MB isoenzyme in dermatomyositis: a noncardiac source. Ann Intern Med 1981;94(3):341-343.
28. Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem 1995;41(12 Pt 1):1710-1715.
29. Ammann P, Pfisterer M, Fehr T, Rickli H. Raised cardiac troponins. BMJ 2004;328(7447):1028-1029.