Network Modeling Examples in RNFA and PNFA

The consideration of mixing and separation steps constitutes the main difference of Process Network Flux Analysis (PNFA)\(^1\) in comparison to Reaction Network Flux Analysis (RNFA).\(^2\) Figure S1 illustrates the specific differences of RNFA and PNFA flux modeling for the mole balance formulation of this study given in Eqs. 1 and 2 of the main text. In the following, the three examples of Figure S1 are explained.

Figure S1(a) shows the flux modeling of the reaction \(A + B \rightarrow C + D\). In RNFA, this is modeled as a single conversion step \(r_1\). In contrast, in PNFA, first A and B are mixed in a mixing step \(m_1\) to form the pseudo-component AB. Then, the reaction \(r_1\) takes place, which converts AB to CD. The pseudo-component CD is converted into pure C and pure D in the separation step \(t_1\). PNFA accounts for the separation of stoichiometric by-products,
Figure S1: Comparison of processing path modeling in RNFA and PNFA.

(a) Reaction $A + B \rightarrow C + D$, no solvents, inerts and high per-pass conversion $X_{r_1} \geq X_{\text{limit}}$.

(b) Reaction $E \rightarrow F$ with solvent/inert G and high per-pass conversion $X_{r_2} \geq X_{\text{limit}}$.

(c) Reaction $H \rightarrow K$ without solvent/inerts and low per-pass conversion $X_{r_3} \leq X_{\text{limit}}$.
but considers ideal separation of side products, w_i, that stem from parallel side reactions. This assumption is necessary since the exact properties of the side products are generally not known and hence, in these cases it is not possible to determine a valid separation step. Furthermore, in most reactions, selectivities are high, so only small amounts of side products are produced. Therefore, it is assumed that, compared to the separation of stoichiometric by-products, the separation of side products does not have a large impact on the overall process performance and can therefore be neglected.

In Figure S1(b) the reaction $E \rightarrow F$ is modeled which proceeds in the presence of the inert G. In RNFA, inerts and products are separated spontaneously and with full recovery, therefore, inerts do not appear in the net molar balance. In a real process, however, the inert, e.g., a solvent, is typically mixed with the reactant before the reaction takes place. After converting the reactants into products during the reaction, products and inerts (as well as unconverted reactants) are separated. PNFA assumes no loss of inerts during the reaction. Thus, the yield of inerts in the reaction is unity. This is modeled by adding the inert only after the reaction takes place in a mixing step m_2. Subsequently, inert and product are separated in a separation step t_2. In order to distinguish between the unrefined product formed after reaction and the final product gained after separation, the pseudo-component F' has to be introduced which has the same physico-chemical properties as the final product F but only occurs in the reaction network as an intermediate which has to be mixed with the solvent before it can be turned into final product F.

Figure S1(a) and S1(b) refer to reactions with high per-pass conversions $X_{r_1}, X_{r_2} \geq X_{\text{limit}}$, so it is assumed that no modeling of recycle streams is necessary. Figure S1(c) gives an example of a reaction with low per-pass conversion $X_{r_3} \leq X_{\text{limit}}$. In case of RNFA, ideal separation is assumed, therefore, irrespective of the per-pass conversion, the recycle stream does not have to be modeled explicitly. Here, the reaction yield remains $Y_{r_3} = S_{r_3}$. In PNFA, however, the mixing step m_3 adds unconverted reactant H to the pseudo-product component K' after the reaction occurred. The recycle stream is then incorporated in the separation step.
\(t_3 \) where product K and reactant H are separated. Again, to distinguish the unrefined product leaving the reactor and the purified product retrieved after separation, the pseudo-component \(K' \) is added to the reaction network.

Reaction Parameters

Tab. S1 shows the reaction pathways that are only considered in RNFA but not PNFA, whereas Tab. S2 shows the reaction conditions of reactions considered in both RNFA and PNFA screening.

Due to the assumption of ideal recycles, yield \(Y_j \) is effectively set equal to selectivity \(S_j \) without any purges. For RNFA, only yield information \(Y_j = S_j \) is needed whereas for PNFA, conversion data, \(X_j \), solvent information, as well as pressure conditions, \(p \), are also required. The specification of the type of processing step are needed for the investment cost calculation in both RNFA and PNFA. Here, a reaction is considered a gas-phase processing step (g) if gaseous components are within the reactants since, in these cases, compression of reactants to reactor pressure and higher standards of apparatus materials lead to an increase of investment costs.

Table S1: Input for the reaction network for RNFA only. †: Assumption; ‡: selectivity is increased as it is assumed that the side products can still be recycled and turned into final product *selectivity to different product fraction already incorporated in stoichiometry.

Reaction	\(Y_j/S_j \) [mol/mol]	\(X_j \) [mol/mol]	Solvent/inerts/non-stoichiometric compositions	\(p_j \) [bar]	Phase	Ref.
BR72	0.94	0.98	excess \(H_2 \)	1	g	4
HR18	1.00	1.00	nitrogen	1	g	5
HR19	0.93	0.99	nitrogen	1⇒	g	6
HR20	0.98	0.28	nitrogen	1⇒	g	7
HR21	1.00	0.91	water	2	g	8
HR22	0.94	0.92	nitrogen, water	1⇒	g	9
HR24	1.00†	0.92	excess dimethoxymethane	1	l	9
HR25	1.00†	0.94	excess methanol	1⇒	l	10
HR26	1.00†	0.91	excess diethoxymethane	1	l	11
HR27	0.85	1.00†	-	1	g	12
HR29	1.00*	0.95	-	30	g	11
HR31	1.00*	1.00†	-	8	g	11
HR32	1.00*	0.86	-	35	1	11
Table S2: Input for the reaction network of RNFA and PNFA. †Assumption; ‡Selectivity is increased as it is assumed that some of the side products can still be recycled and turned into final product; § recycles needed due to $X \leq X_{\text{limit}}$ *Only for cellulose, CO does not exhibit selectivity losses.

Reaction	$Y_j = S_j$ [mol/mol]	X_j [mol/mol]	Solvent/inerts/non-stoichiometric compositions	p [bar]	Phase liquid(l)/gas(g)	Ref.
BR1	0.97	-	-	-	1	1†
BR4	1	0.90	water	1	1	1
BR5	1	0.90	water	1	1	13
BR6	0.95	1.00†	water	1	1	14
BR7	0.85	1.00†	water	1	1	14
BR8	0.70	1.00†	water	32	1	15
BR9	1.00	1.00	water	18	1	15
BR10	0.97	1.00†	-	1†	1	16
BR11	0.96	1.00†	water	44	1	17
BR12	0.99	1.00†	dimethyl sulfoxide	1	1	18
BR15	0.90	0.90	water	60	1	19
BR16	0.99	1.00†	water	8	g	20
BR19	0.96	0.98	2-methyltetrahydrofuran	50	1	21
BR25	0.95	1.00†	-	1	1	22
BR26	0.99	1.00†	-	1	1	23
BR27	0.99	1.00†	1,4-dioxane	1	1	24
BR28	0.84	1.00†	-	1	1	25
BR29	1.00	1.00†	water	35	1	26
BR30	0.95	1.00	water	1†	1	27
BR31	0.68	1.00†	water, γ-butyrolactone	40	1	28
BR32	0.60	1.00†	water	1†	1	29
BR33	0.55	1.00†	water, γ-butyrolactone	40	1	29
BR35	0.98	1.00†	water	1†	1	30
BR38	0.75	1.00†	water	1†	1	31
BR39	0.76	1.00†	methylene chloride	1†	1	32
BR40	0.72	1.00†	water	1†	1	33
BR41	0.94	0.97	water	1	1	34
BR42	0.68	1.00†	water	1†	1	35
BR43	0.68	1.00†	- †	1	g	36
BR44	0.68	1.00†	- †	1	g	36
BR45	0.77	1.00†	- †	1	g	36
BR46	0.39	1.00†	- †	1	g	36
BR52	0.38	0.81	water, benzene	21	g	37
BR53	0.68	1.00†	water, benzene	21	g	38
BR54	0.68	1.00†	tetrahydrofuran	1	g	39
BR57	0.40	1.00†	dioxane	15	g	40
BR58	0.89	1.00	dioxane	21	g	41
BR70	0.47	1.00†	benzene	21	g	42
BR71	0.95	0.95	dioxane	1	1	42
BR90	0.60*	1.00	2-methyltetrahydrofuran, water	100	g	43,44
BR91	1.00	1.00	2-methyltetrahydrofuran, water	50	1	43,44
BR91	1.00	1.00	2-methyltetrahydrofuran, water	50	1	43,44
HR1	0.98	0.93	small amounts of nitrogen (neglected)	1	g	45
HR2	1.00	0.55	-	1	g	46
HR3	1.00	1.00	-	3	g	47
HR4	1.00†	0.47†	small amounts of argon (neglected)	184	g	48
HR5	0.98	0.143	excess CO	100	g	49
HR6	0.83	0.99	nitrogen, excess CH$_4$	50	g	50
HR7	0.45	0.41†	-	54	g	51
HR8	0.95	0.70†	argon (neglected), water	1	g	51
HR9	0.95	0.90	argon (neglected), water	1	g	51
HR10	0.60	0.453	helium	1	g	52
HR11	1.00	1.00	helium	1	g	53
HR12	0.88	0.84	oxygen, nitrogen	1†	g	54
HR13	0.60	0.433	excess H$_2$	102	g	55
HR15	0.99	0.80	water	10	g	56
HR16	0.99†	0.123	-	20	g	57
HR17	1.00†	0.9	small amounts of Ar and CO$_2$ (neglected)	40	g	58
BHR1	1.00†	1.00‡	ethanol	80	g	59
BHR2b	0.95	1.00†	excess methanol	1	l	60
BHR3	1.00	1.00	-	1	g	61
Energy Requirements of Separation Steps

The energy demands of separations are determined using different models which are briefly listed in the following. The flash2 model of Aspen Plus62 is applied to calculate the energy demands of evaporation (E). Permanent gases are assumed to be separated ideally from liquid components in a flash unit (F). The energy requirements of distillation (D), heteroazeotropic distillation (HD), and pressure swing distillation (PSD) are determined with pinch-based separation models.63,64 CO\textsubscript{2} removal from a gaseous mixture is modeled by a pinch-based model for physical absorption (A)65 and a desorption distillation unit (D). Here, either methanol or propylene carbonate are used as they are suitable solvent for CO\textsubscript{2} gas removal.66 Phase splits are calculated by means of the vapor-liquid-liquid-equilibrium assuming a decanter (Dec) with no utility requirements. The energy demands of gaseous compression are determined assuming polytropic compression of an ideal gas while compression of liquids is neglected due to the much lower energy demand of pumps.

In general separation steps are incorporated in the investment cost function as a separate gas-phase processing step. In case of very simple units, i.e., a flash unit (F) or a decanter (Dec), no investment costs are assumed. In contrast, absorption steps and heat-integrated separation steps, i.e., vapor recompression columns (VRC), are counted as two units in the investment cost function as more equipment is needed.

Separations are modeled using the NRTL model for thermodynamics and the Antoine model for vapor pressure. Additionally, Henry coefficients are needed for the absorption model. NRTL parameters and Henry coefficients are taken either from Aspen Plus62 or by estimation with COSMO-RS.67 Antoine parameters are retrieved from Aspen Plus.62

Tab. S3, S4, S5, S6, and S7 give an overview of the thermal separation steps incorporated in PNFA as well as the corresponding reactions, reactor effluent composition, type of separation, pressure, p, as well as heating, cooling, electricity, and refrigeration duties.

Tab. S6 refers to heat-integrated separations by means of vapor recompression while Tab. S7 gives an overview of separations needed for an concentration increase.
Table S3: Non-heat integrated energy requirement of thermal separations. Separations BT2 to BT51 are taken from Ulonska et al.¹ Heat.: Heating, Cool.: Cooling, MTHF: 2-methyltetrahydrofuran, HMF: 2,5-hydroxymethylfurfural.

Sep.	Reaction	Comp. 1	Comp. 2	Comp. 3	x₁	x₂	x₃	x₄	Type	p [bar]	Heat. (kJ/mol)	Cool. (kJ/mol)	
BT2	BR4, BR5	water	ethanol	CO₂	0.957	0.201	0.201	-	F, PSD	1/10	30	29	
BT3	BR12	HMF	dimethyl sulfoxide	water	0.071	0.718	214	-	D	48	46		
BT4	BR12	water	dimethyl sulfoxide	-	0.231	0.769	-	D	1	20	15		
BT5	BR8	HMF	water	-	0.040	0.960	-	D	1	40	40		
BT6	BR19	furfurylalcohol	MTHF	CO	0.002	0.219	0.02	-	F	1	2	18	
BT9	BR16	furfurylalcohol	water	-	0.018	0.982	-	D	1	133	132		
BT10	BR10	ethyl levulinate	water	ethanol	0.333	0.334	0.333	-	D	1	38	28	
BT11	BR10	ethyl levulinate	water	-	0.500	0.500	-	PSD	1/10	690	690		
BT12	BR25	ethyl levulinate	ethanol	-	0.029	0.971	-	-	D	1	39	39	
BT14	BR26	ethyl levulinate	ethanol	CO	0.040	0.920	0.040	-	F, D	1	37	36	
BT15	BR28	ethyl levulinate	formic acid	water	ethanol	0.004	0.004	0.008	0.984	D	1	51	51
BT16	BR28	formic acid	water	ethanol	-	0.004	0.008	0.986	-	D	5	107	107
BT17	BR28	ethanol	water	-	0.902	0.008	-	-	D	1/10	217	217	
BT18	BR9	levulinic acid	formic acid	water	-	0.048	0.048	0.904	-	D	1	40	38
BT19	BR9	formic acid	water	-	0.050	0.950	-	-	D	9	234	234	
BT20	BR30	levulinic acid	formic acid	water	-	0.017	0.017	0.966	-	D	1	41	40
BT21	BR30	formic acid	water	-	0.018	0.982	-	-	D	9	240	240	
BT22	BR32	levulinic acid	formic acid	water	-	0.003	0.003	0.994	-	D	1	41	41
BT24	BR32	formic acid	water	-	0.003	0.007	-	-	D	9	239	239	
BT25	BR40	levulinic acid	formic acid	water	-	0.007	0.057	0.986	-	D	1	41	41
BT27	BR40	formic acid	water	-	0.007	0.993	-	-	D	9	241	241	
BT30	BR27	γ-valerolactone	ethanol	dioxane	CO₂	0.071	0.071	0.786	0.071	F, D	1	33	32
BT31	BR27	ethanol	dioxane	-	0.083	0.917	-	-	D	2	22	22	
BT32	BR29	γ-valerolactone	water	CO₂	0.027	0.946	0.027	-	F, D	1	94	93	
BT35	BR31, BR33	γ-valerolactone	γ-butyrolactone	water	CO₂	0.023	0.442	0.512	0.023	F, D	1	35	28
BT36	BR31, BR33	γ-valerolactone	γ-butyrolactone	-	0.050	0.950	-	-	D	1	894	894	
BT38	BR38	iso-butanol	water	CO₂	0.004	0.080	0.013	-	F, HD	1	6	5	
BT41	BR37	2-butanone	methylene chloride	hydrogen	-	0.016	0.669	0.016	-	F, D	1	30	30
BT43	BR39	2-butanone	methylene chloride	hydrogen	-	0.003	0.994	0.003	-	F, D	1	30	30
BT44	BR41	2-butanone	water	-	0.167	0.833	-	-	HD	3	40	39	
BT46	BR42	2-butanone	water	CO₂	0.003	0.994	0.003	-	F, HD	0.5	7	5	
BT47	BR35	2,3-butanediol	water	CO₂	0.019	0.944	0.037	-	D	1	49	48	
BT49	BR11	fructose	water	-	0.002	0.998	-	-	E	1	48	0	
BT55	BR57	2,5-dimethylfuran	water	tetrahydrofuran	-	0.004	0.020	0.976	-	D	1	31	31
BT56	BR57	water	tetrahydrofuran	dioxane	-	0.027	0.054	0.919	-	D	1	41	41
BT57	BR58	2,5-dimethylfuran	water	dioxane	-	0.056	0.944	-	-	PSD	1/0.4	44	44
BT58	BR58	water	dioxane	-	0.056	0.944	-	-	PSD	1/0.4	49	49	
BT59	BR52, BR53	methylfurfural	water	benzene	-	0.006	0.693	0.300	-	Dec	1	0	0
BT60	BR52, BR53	methylfurfural	water	-	0.013	0.987	-	-	D	1	33	30	
BT61	BR52, BR53	benzene	benzene	-	0.004	0.996	-	-	D	1	40	40	
BT62	BR53a	methylfurfural	water	benzene	-	0.009	0.802	0.190	-	Dec	1	0	0
BT63	BR53a	methylfurfural	benzene	-	0.020	0.983	-	-	D	1	43	30	
BT64	BR53a	methylfurfural	water	-	0.006	0.994	-	-	D	1	40	40	
Table S4: Non-heat integrated energy requirement of thermal separations (continued), †: physical solvent: methanol ‡: physical solvent: propylene carbonate; *: modeled as methyl oleate; Heat.: Heating, Cool.: Cooling, Elec.: Electricity, Refrig.: Refrigeration, MTHF: 2-methyltetrahydrofuran, DEM: diethoxymethane.

Sep	Reaction	Comp. 1	Comp. 2	Comp. 3	Comp. 4	x1	x2	x3	x4	Type	p [bar]	Heat.	Cool.	Elec.	Refrig.
BT65	BR70	methylfurfural	water	benzene	-	0.008	0.815	0.177	-	Dec	1	0	0	0	0
BT66	BR70	methylfurfural	benzene	-	-	0.019	0.981	-	-	D	1	34	30	0	0
BT67	BR70	methylfurfural	water	-	-	0.006	0.994	-	-	D	1	40	40	0	0
BT68	BR71	2-methylfuran	CO	dioxane	-	0.017	0.177	0.967	-	F,D	1	16	16	0	0
BT69	BR90	methylfurfural	water	MTHF	CO2	0.037	0.444	0.481	0.037	F,Dec	1	0	0	0	0
BT70	BR91	2-methylfuran	water	MTHF	CO	0.042	0.367	0.549	0.042	D	1	1	0	0	0
BT71	BR91	2-methylfuran	water	-	-	0.830	0.167	-	-	HD	1	1369	739	0	0
BHT1	BHR1	DEM	ethanol	water	-	0.020	0.939	0.041	-	D	9.9	157	157	0	0
BHT2	BHR1	DEM	ethanol	-	-	0.026	0.974	-	-	D	14.8	216	216	0	0
BHT3	BHR1	ethanol	water	-	-	0.818	0.182	-	-	PSD	1/10	1116	1110	0	0
BHT6	BHR2b	methanol	glycerol	FAME*	-	0.692	0.077	0.231	-	HD	1	19	16	0	0
BHT7	BHR2b	methanol	glycerol	FAME*	-	0.502	0.038	0.459	-	HD	1	123	24	0	0
HT1	HR1	methane	water	-	-	0.333	0.667	-	-	F	1	0	0	0	0
HT2	HR2	CO	hydrogen	CO2	water	0.275	0.225	0.225	0.275	F	1	0	0	0	0
HT3	HR2	CO	hydrogen	CO2	-	0.379	0.311	0.311	-	F	10	0	0	0	0
HT30	HR2	CO	hydrogen	CO2	-	0.549	0.451	-	-	F	10	0	0	0	0
HT4	HR3	methane	water	-	-	0.500	0.500	-	-	F	1	0	0	0	0
HT6	HR4	water	methanol	hydrogen	CO2	0.154	0.154	0.519	0.174	F	1	0	0	0	0
HT7	HR4	water	methanol	hydrogen	CO2	0.500	0.500	-	-	D	1	33	32	0	0
HT8	HR5	methanol	CO	hydrogen	-	0.078	0.500	0.422	-	F	1	0	0	0	0
HT9	HR6	methanol	methane	nitrogen	-	0.111	0.667	0.222	-	F	1	0	0	0	0
HT10	HR6	methanol	methane	nitrogen	-	0.75	0.25	-	-	D	4	1	0	5	7
HT11	HR7	ethanol	water	hydrogen	CO	0.092	0.092	0.543	0.272	F,PSD	1/10	128	127	0	0
HT22	HR8	ethanol	water	hydrogen	CO2	0.275	0.537	0.451	0.568	F	1	5	4	0	0
HT28	HR8	hydrogen	CO2	-	-	0.520	0.471	-	-	A,D	42/1	28	19	1	0
HT13	HR8/9	ethanol	water	CO2	-	0.018	0.946	0.036	-	F	1	0	0	0	0
HT14	HR8/9	ethanol	water	hydrogen	-	0.019	0.981	-	-	F	1	0	0	0	0
HT15	HR13	hydrogen	CO	ethane	CO2	0.653	0.222	0.042	0.084	F,PSD	1/10	25	25	0	0
HT16	HR13	hydrogen	CO	ethane	-	0.712	0.242	0.046	-	D	4	1	0	5	3
HT17	HR13	hydrogen	CO	-	-	0.746	0.254	-	-	E	10	0	0	10	8
HR17	HR15	dimethyl ether	water	-	0.448	0.556	-	-	F	1	0	0	0	0	
HR18	HR16	dimethyl ether	water	CO2	hydrogen	0.016	0.049	0.234	0.701	F	1	0	0	0	0
HR19	HR16	dimethyl ether	water	CO2	hydrogen	0.017	0.246	0.737	-	F	1	0	0	0	0
HR27	HR4,HT18	hydrogen	CO2	-	-	0.750	0.250	-	-	A,D	42/1	23	19	0	0
HR29	HR17	CO2	hydrogen	dimethyl ether	-	0.238	0.524	0.238	-	D	1	5	0	0	10
Table S5: Non-heat integrated energy requirement of thermal separations (continued), †: physical solvent: methanol Heat.: Heating, Elec.: Electricity, Refrig.: Refrigeration.

Sep.	Reaction	Comp. 1	Comp. 2	Comp. 3	Comp. 4	x1	x2	x3	x4	x5	Type	p [bar]	Heat. [kJ mol⁻¹]	Cool. [kJ mol⁻¹]	Elec. [kJ mol⁻¹]	Refrig. [kJ mol⁻¹]		
HT21	HR10	ethylene	water	helium	methane	oxygen	0.011	0.021	0.930	0.026	0.013	P	1	0	0	0	0	0
HT22	HR10	ethylene	helium	methane	oxygen	-	0.011	0.950	0.026	0.013	-	E	10	0	0	0	10	14
HT34	HR10	helium	methane	oxygen	-	-	0.960	0.026	0.013	-	-	E	10	0	0	0	10	5
HT35	HR10	helium	oxygen	-	-	0.986	0.014	-	-	-	E	10	0	0	0	10	5	
HT36	HR10	helium	methane	oxygen	-	-	0.960	0.026	0.013	-	-	E	10	0	0	0	10	5
HT37	HR10	methane	oxygen	-	-	0.667	0.334	-	-	-	E	10	0	0	5	8		
HT23	HR11	ethylene	helium	water	-	0.037	0.926	0.037	-	-	F	1	0	0	0	0		
HT24	HR11	ethylene	helium	-	-	0.038	0.962	-	-	-	E	1	0	0	0	0		
HT25	HR12	ethylene	oxygen	nitrogen	water	-	0.095	0.048	0.762	0.095	-	F	1	0	0	0	0	
HT26	HR12	ethylene	oxygen	nitrogen	-	-	0.105	0.053	0.842	-	-	D	4	1	0	5	4	
HT38	BR43-44	hydrogen	CO	CO₂	-	0.586	0.241	0.172	-	-	A, D	42/1	17	0	19	0		
HT41	BR43-44	hydrogen	CO	-	-	0.708	0.292	-	-	-	E	10	0	0	0	10	8	
HT39	BR45	hydrogen	CO	CO₂	-	0.583	0.250	0.167	-	-	A, D	42/1	17	0	19	0		
HT42	BR45	hydrogen	CO	-	-	0.700	0.300	-	-	-	E	10	0	0	0	10	8	
HT40	BR46	hydrogen	CO	CO₂	-	0.643	0.179	0.179	-	-	A, D	42/1	19	0	19	0		
HT43	BR46	hydrogen	CO	-	-	0.783	0.217	-	-	-	E	10	0	0	0	10	7	
HT44	BR43-46	hydrogen	CO	-	-	0.952	0.048	-	-	-	E	10	0	0	0	10	6	
Table S6: Energy requirement for heat-integrated thermal separation by means of VRC. Only separations for which VRC is an efficient technique for heat integration are presented. VRC2 to VRC49 are taken from Ulonska et al.,"Electricity, Refrig.; Refrigeration, MTHF: 2-methyltetrahydrofuran, HMF: 2,5-hydroxymethylfurfural.

Sep.	Reaction	Comp. 1	Comp. 2	Comp. 3	Comp. 4	x1	x2	x3	x4	Type	p [bar]	Heat.	Elec.
VRCBHT1	BHR1	DEM	ethanol	water	-	0.020	0.939	0.041	-	D	9.9	0.027	6.3
VRCBHT2	BHR1	DEM	ethanol	water	-	0.026	0.974	-	-	D	14.8	0	29
VRCBHT3	BHR1	DEM	ethanol	CO₂	-	0.957	0.021	0.021	-	D	1	5	5
VRC2	BR4, BR5	water	ethanol	CO₂	-	0.231	0.769	-	-	D	1	5	5
VRC4	BR12	water	dimethyl sulfoxide	-	-	0.040	0.960	-	-	D	1	5	5
VRC5	BR8	HMF	water	-	-	0.018	0.982	-	-	D	1	5	5
VRC9	BR16	furfurylalcohol	water	-	-	0.500	0.500	-	-	PSD	1/10	4	52
VRC11	BR10	ethanol	water	-	-	0.029	0.971	-	-	D	1	1	18
VRC12	BR25	ethyl levulinate	ethanol	-	-	0.040	0.920	0.040	-	F,D	1	1	16
VRC14	BR26	ethyl levulinate	ethanol	CO	-	0.004	0.004	0.008	0.984	D	1	0	24
VRC16	BR28	formic acid	water	ethanol	-	0.004	0.008	0.988	-	D	5	0	15
VRC17	BR28	ethanol	water	-	-	0.992	0.008	-	-	D	1/10	19	4
VRC19	BR9	formic acid	water	-	-	0.050	0.950	-	-	D	9	0	15
VRC21	BR30	formic acid	water	-	-	0.188	0.983	-	-	D	9	0	15
VRC24	BR32	formic acid	water	-	-	0.003	0.997	-	-	D	9	0	15
VRC27	BR40	formic acid	water	-	-	0.007	0.993	-	-	D	9	0	15
VRC31	BR27	ethanol	dioxane	-	-	0.083	0.917	-	-	D	2	0	3
VRC33	BR29	γ-valerolactone	water	CO₂	-	0.027	0.946	0.027	-	F,D	1	1	40
VRC35	BR31, BR33	γ-valerolactone	γ-butyrolactone	water	CO₂	0.023	0.442	0.512	0.023	F,D	1	7	12
VRC36	BR31, BR33	γ-valerolactone	γ-butyrolactone	water	CO₂	0.050	0.950	-	-	D	1	0	22
VRC41	BR37	2-butanone	methylene chloride	H₂	-	0.016	0.969	0.016	-	F,D	1	0	5
VRC43	BR39	2-butanone	methylene chloride	H₂	-	0.003	0.994	0.003	-	F,D	1	0	5
VRC47	BR35	2,3-butanediol	water	CO₂	-	0.019	0.944	0.037	-	F,D	1	1	15
VRC49	BR11	fructose	water	-	-	0.002	0.998	-	-	F	1/0.3	22	2
VRC77	HR4	water	methanol	-	-	0.500	0.500	-	-	D	1	1	5
VRC78	HR6	methane	nitrogen	-	-	0.75	0.25	-	-	D	1/10	0	10
VRC79	HR7	ethanol	water	hydrogen	CO	0.092	0.092	0.543	0.272	F,P,S,D	1/10	1	52
VRC80	HR8/9	ethanol	water	-	-	0.019	0.981	-	-	PSD	1/10	1	2
Table S7: Energy requirement for concentration increase is presented associated with the respective reactions. BT6, VRC6, BT22, VRC22, BT25, VRC25, BT28, VRC28, BT48, and VRC48 taken from Ulonska et al.1 Heat.: Heating, Cool.: Cooling, Elec.: Electricity, HMF: 2,5-hydroxymethylfurfural.

Sep.	Reaction	Target R.	Comp. 1	Comp. 2	Comp. 3	x1	x2	x3	Type	p	Heat. [kJ mol-1]	Cool. [kJ mol-1]	Elec. [kJ mol-1]
BT6	BR8	BR9	HMF	water	-	0.040	0.960	-	D	1	6	6	0
	VRC6					0.045	0.955	-	VRC-D	1	0	6	0
BT22	BR30	BR29	levulinic acid	formic acid	water	0.017	0.017	0.966	D	1	611	611	0
	VRC22					0.028	0.028	0.944	VRC-D	1	0	0	11
BT25	BR32	BR29	levulinic acid	formic acid	water	0.003	0.003	0.994	D	1	108	108	0
	VRC25					0.028	0.028	0.944	VRC-D	1	0	0	15
BT28	BR40	BR29	levulinic acid	formic acid	water	0.007	0.007	0.986	D	1	251	251	0
	VRC28					0.028	0.028	0.944	VRC-D	1	0	0	31
BT48	BR35	BR41	2,3-butanediol	water	CO\textsubscript{2}	0.019	0.944	0.037	D	1	39	39	0
	VRC48					0.200	0.800	-	F,D	1	1	1	15
BT50	BR11	BR30	fructose	water	-	0.002	0.998	-	D	1	32	32	0
	VRC50					0.018	0.982	-	VRC-E	1	0	0	1
BT54	BR11	BR31	fructose	water	-	0.002	0.998	-	D	1	36	36	0
	VRC51					0.048	0.952	-	VRC-E	1	0	0	1
BT54	BR11	BR53	fructose	water	-	0.011	0.988	-	D	1	32	32	0
	VRC53					0.011	0.988	-	VRC-E	1	0	0	1
Other Model Parameters

Tab. S8 gives an overview of the feedstock, auxiliary, and utility prices. Solvent and utility prices are only needed for PNFA.

Table S8: Feedstock, auxiliary and utility prices. †Average value ‡only needed for PNFA; MTHF: 2-methyltetrahydrofuran.

Parameter	Unit	Value	Ref.	Assumption
\(P_{\text{lignocell. biomass}} \)	USD/\(\text{kg}_{\text{biomass}} \)	0.05	68	-
\(P_{\text{H}_2} \)	USD/\(\text{kg}_{\text{H}_2} \)	5.8†	69	electrolysis using wind power only
\(P_{\text{waste veg. oil}} \)	USD/\(\text{kg}_{\text{oil}} \)	0.93†	70	purified waste vegetable oil; conversion rate 0.9078 EUR = 1 USD†71
\(P_{\text{CO}_2} \)	USD/\(\text{kg}_{\text{CO}_2} \)	0.04†	72	capture from steel plant exhaust gases
\(P_{\text{water}} \)‡	USD/\(\text{kg}_{\text{water}} \)	0.0005	73	-
\(P_{\text{dimethyl sulfoxide}} \)‡	USD/\(\text{kg}_{\text{dimethyl sulfoxide}} \)	1.48	74	-
\(P_{\text{MTHF}} \)‡	USD/\(\text{kg}_{\text{MTHF}} \)	7.5	75	-
\(P_{\text{methylene chloride}} \)‡	USD/\(\text{kg}_{\text{methylene chloride}} \)	0.55	76	-
\(P_{\gamma-\text{butyrolactone}} \)‡	USD/\(\text{kg}_{\text{GBL}} \)	1.417	77	-
\(P_{1,4-\text{dioxane}} \)‡	USD/\(\text{kg}_{\text{dioxane}} \)	2.70	78	-
\(P_{\text{cooling water}} \)‡	USD/\(\text{m}^3_{\text{water}} \)	0.065	79	-
\(P_{\text{steam}} \)‡	USD/\(\text{ton}_{\text{steam}} \)	9.5	79	-
\(P_{\text{electricity}} \)‡	USD/\(\text{kWh}_{\text{elec}} \)	0.075	79	fuel production uses grid electricity
\(P_{\text{refrigeration}} \)‡	USD/\(\text{kWh}_{\text{refrig}} \)	0.12	79	-
\(P_{\text{waste}} \)‡	USD/\(\text{kg}_{\text{waste}} \)	0.0004	80	-

Furthermore, Tab. S9 summarizes the GWP-related parameters used in PNFA for all main feedstocks. These rely on the energy demand of the upstream chains and do not account for any transportation-related aspects. Finally, the composition of the two types of biomass, lignocellulosic biomass and waste vegetable oil, is given in Tab. S11 along with the representative molecules that are used in the modeling.
Table S9: GWP-related parameters of all main feedstocks used in PNFA.

Parameter	Unit	Value	Ref	Assumption
gwp\text{heat}	gCO$_2$,eq / MJ$_{fuel}$	86	81	German industry mix (2020)
gwp\text{elec}	gCO$_2$,eq / MJ$_{fuel}$	152	81	German industry mix (2020)
gwp\text{refrig}	gCO$_2$,eq / MJ$_{fuel}$	179	81	propane (2005)
gwp\text{ignocell. biomass}	kCO$_2$,eq / kg$_{biomass}$	0	81	residual biomass
gwp\text{waste veg. oil}	kCO$_2$,eq / kg$_{oil}$	0.18	82	same GWP as for extraction and refining of fresh rapeseed oil
gwp\text{CO}_2	kCO$_2$,eq / kg$_{CO}_2$	0.033	81,83	energy demand of carbon capture; German electricity mix (2020)
gwp\text{H}_2	kCO$_2$,eq / kg$_{H}_2$	0.2556	81,84	energy demand of electrolysis; off-shore wind power (2020)

Additionally, other economic parameters relevant to RNFA and PNFA investment cost calculations are given in Tab. S10.

Table S10: Economic Parameters for RNFA and PNFA.

Parameter	Unit	Value	Ref
interest rate ir	yr$^{-1}$	0.08	-
plant run time t	year	10	-
CEPCI (2010)	-	550.8	85
CEPCI (2016)	-	541.7	85
Inv$_{11}$	-	7000	79
Inv$_{21}$	-	0.68	79
Inv$_{1g}$	-	36000	79
Inv$_{2g}$	-	0.62	79

Table S11: Biomass composition and representative molecules used in RNFA and PNFA. Data of lignocellulosic biomass is taken from Voll86 and Ulonska et al.1

Parameter	Lower bound [mol-%]	Upper bound [mol-%]	representative molecule
Lignocellulosic biomass			
cellulose	0.40	0.75	C$_6$H$_{10}$O$_5$
hemicellulose	0.16	0.32	C$_5$H$_{10}$O$_5$
lignin	0.09	0.23	C$_{10}$H$_{12}$O$_3$
Waste vegetable oil			
Triglycerides	1.00	1.00	C$_{57}$H$_{104}$O$_6$

13
Performance Curve of the Linear Combination

This section presents a derivation of the performance curve of the linear combination seen in Figure 4 of the main text. The two performance criteria in RNFA are cost and carbon loss (CL). At a fleet level, the overall production volume can be either covered by several identical hybrid plants, or by a combination of plants that either represent the minCL (n_{minCL}) or the minCost (n_{minCost}) design.

The overall performance of the linear combination is determined from the performances of minCL and minCost and their plant fraction $\lambda_{\text{minCost}} = \frac{n_{\text{minCost}}}{n_{\text{all plants}}} = 1 - \frac{n_{\text{minCL}}}{n_{\text{all plants}}} = 1 - \lambda_{\text{minCL}}$.

The specific production cost of the fleet, Cost_{lc}, can be determined by linear interpolation using the plant fractions λ,

$$\text{Cost}_{lc} = \frac{\text{TAC}_{\text{all plants}}}{\alpha \cdot n_{\text{all plants}}} = \frac{n_{\text{minCost}} \cdot \text{TAC}_{\text{minCost}} + n_{\text{minCL}} \cdot \text{TAC}_{\text{minCL}}}{\alpha \cdot n_{\text{all plants}}} = \lambda_{\text{minCost}} \cdot \text{Cost}_{\text{minCost}} + \lambda_{\text{minCL}} \cdot \text{Cost}_{\text{minCL}}.$$ \hspace{1cm} (S1)

with TAC being the total annual costs and α representing the fixed production volume of each plant in MJ per year. The carbon loss of the linear combination CL_{lc} cannot be derived from a simple linear interpolation. Instead, it is calculated as follows,

$$\text{CL}_{lc} = \frac{\#C_{\text{lost, all plants}}}{\#C_{\text{input, all plants}}} = \frac{n_{\text{minCost}} \cdot \#C_{\text{lost, minCost}} + n_{\text{minCL}} \cdot \#C_{\text{lost, minCL}}}{n_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + n_{\text{minCL}} \cdot \#C_{\text{input, minCL}}} \quad \text{= } \lambda_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input, minCL}} \quad \text{(S3)}$$

$$\text{CL}_{lc} = \frac{n_{\text{all plants}} (\lambda_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input, minCL}})}{\#C_{\text{input, all plants}}} \quad \text{= } \frac{\lambda_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input, minCL}}}{\lambda_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input, minCL}}} \quad \text{(S4)}$$

$$= 1 - \frac{\lambda_{\text{minCost}} \cdot \#C_{\text{fuel, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{fuel, minCL}}}{\lambda_{\text{minCost}} \cdot \#C_{\text{input, minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input, minCL}}} \quad \text{(S5)}$$

$$= 1 - \frac{\text{CL}_{\text{minCost}} + \text{CL}_{\text{minCL}}}{\text{CL}_{\text{minCost}} + \text{CL}_{\text{minCL}}}.$$
Since the capacity of each plant is fixed to α and the same fuel is considered at both minCL and minCost, at each plant the same number of carbon atoms is put into the fuel, i.e., $\#C_{\text{fuel}, \text{minCL}} = \#C_{\text{fuel}, \text{minCost}} = \#C_{\text{fuel}}$. Thus, Eq. S3 can be further simplified to

$$
\text{CL}_{lc} = 1 - \frac{\#C_{\text{fuel}}}{\lambda_{\text{minCost}} \cdot \#C_{\text{input}, \text{minCost}} + \lambda_{\text{minCL}} \cdot \#C_{\text{input}, \text{minCL}}}
$$

(S7)

$$
= 1 - \frac{1}{\frac{\lambda_{\text{minCost}} \cdot \#C_{\text{input}, \text{minCost}}}{\#C_{\text{input}, \text{minCost}} - \#C_{\text{lost}, \text{minCost}}} + \frac{\lambda_{\text{minCL}} \cdot \#C_{\text{input}, \text{minCL}}}{1 - \#C_{\text{input}, \text{minCL}} - \#C_{\text{lost}, \text{minCL}}}}
$$

(S8)

$$
= 1 - \frac{1}{\frac{\lambda_{\text{minCost}}}{1 - \text{CL}_{\text{minCost}}} + \frac{\lambda_{\text{minCL}}}{1 - \text{CL}_{\text{minCL}}}}.
$$

(S9)

Cost$_{lc}$ and CL$_{lc}$ are calculated for different λ values using Eqs. S2 and S9 as well as the respective minCL and minCost values from RNFA (PNFA). For RNFA, they are plotted in Fig. 4 (dashed curve) of the main text and for PNFA, the corresponding performance curve is seen in Fig. S3 (dashed curve) of the next section.

Cost and CL Optimization Using PNFA

Similar to RNFA, PNFA results of CL and cost optimization are presented as Pareto fronts in Fig. S2 sorted by their respective optimal production types. Like in RNFA, FAME and uFAME obtain favorable performances while the performance of other products, e.g., DEM, has worsened relatively to the other fuels. In the following, first, the deviations between RNFA and are briefly explained. Then, it is discussed whether the synergies of hybrid designs discovered in RNFA are visible in PNFA.

In contrast to RNFA, PNFA gives a more detailed cost analysis that also includes utility costs and investment costs of downstream processing units. Thus, the production costs of PNFA, Cost$_{\text{PNFA}}$, are higher than those calculated by RNFA, Cost$_{\text{RNFA}}$.

The environmental objective, CL, is calculated in the same way in both RNFA and PNFA. Nevertheless, for many fuels, the more detailed analysis of PNFA leads to small
Figure S2: PNFA results of CL and cost optimization with Pareto fronts for each considered fuel product sorted by the active production types. Every point represents a Pareto-optimal pathway design for the considered fuel with ethanol as benchmark in every graph (△). The data points are connected by curves to guide the eye.

*: 2-MF is produced via BR90, BR91 without the use of H\textsubscript{2} directly from cellulose. Hence, even though biomass is pretreated, no biochemical pathways are present. For simplicity, it is still considered to be a BC-based route.

additional carbon losses. For example, the downstream processing steps of FAME, uFAME, γ-valerolactone, and DMF production are associated to small carbon losses. Furthermore, in PNFA, syngas fermentation steps, HR8 and HR9, are linked by the separation of the same solvent phase and can thus only be activated jointly. Due to the additional yield losses of HR9, a higher CL is determined for ethanol and fuels that require ethanol as intermediate.

Although in PNFA higher costs and carbon losses are estimated, the optimal pathway designs are typically similar to those of RNFA (cf. Tab. S12 - S15). In particular, PNFA results confirm that e-based feedstocks are preferred at minCL whereas biomass is favorable at minCost.

Exceptions concern routes that only require small amounts of H\textsubscript{2}. In V-routes, for example, e-based methanol synthesis is preferred in PNFA even at minCost. This is due to the fact that
only little methanol is needed and thus, the additional investment costs of implementing a
gasification step with subsequent gas cleaning to produce methanol from TC-routes is higher
for the given production capacity than the savings made from using a cheaper raw material.
Similar effects are visible for DMF production that requires H₂ in a hydrogenation step.

Figure S3: Pareto front of ethanol determined with PNFA (dotted curve) and comparison
to linear combination of plants (dashed curve). On the right, optimal pathway designs are
shown for the point of minimal cost (minCost), the point of minimal carbon loss (minCL) as
well as one exemplary hybrid design in the middle section of the Pareto front. For simplicity,
solvent separation or recycle steps are not visualized.

Fig. S3 shows the Pareto front for ethanol, the optimal pathway designs at minCost and
minCL, as well as a hybrid design in the middle of the Pareto front. The linear combination
metric manifests as a nonlinear curve in the Pareto graph (cf. previous section for derivation).
By comparing the Pareto front to the linear combination curve, it can be seen that the hybrid
designs show synergies. This is due to the efficient utilization of the hemicellulose fraction
and the CO₂ emitted during fermentation. In contrast, lignin gasification, which is optimal
in RNFA, is only activated in one hybrid design, next to the minCL design, in PNFA (cf.
Tab. S16), as in all other cases, the additional investment costs and the costly gas cleaning
leads to the exclusion of the route. When examining each integration option separately, it
is found that the utilization of CO₂ emitted during glucose fermentation generally leads
to better performances than hydrolysis and fermentation of hemicellulose. No additional investment costs are needed for CO₂ utilization neither does it require any additional utility costs, thus rendering it a promising low-cost CL-reduction option, especially in combination with hemicellulose hydrolysis and fermentation that provides additional CO₂.

Active Fluxes

Tab. S12 (alcohols, alkanes, furans, ketones) and Tab. S13 (esters, ethers) present all the active fluxes of RNFA. The pathway designs are categorized by the main feedstocks they utilize, i.e. e-based hydrogen (E), waste vegetable oil (V), lignocellulosic biomass by means of thermochemical pathways (TC), and/or lignocellulosis-based by means of biochemical pathways (BC).

Tab. S14 (alcohols, alkanes, furans) and Tab. S15 (esters, ketones, ethers) give an overview of the active fluxes of PNFA at all points of the Pareto front for all fuel products when carbon loss and cost are the objectives.

When PNFA is optimized for cost ($\text{Cost}_{\text{PNFA}}$) and global warming potential (GWP), the fluxes shown in Tab. S16 (alcohols, alkanes, furans, ketones) and S17 (esters, ethers) are activated.
Table S12: Active reaction fluxes in RNFA for all points of the Pareto curve of alcohols, alkanes, furans, and ketones. Cost \((Cost_{RNFA})\) and carbon loss (CL) are taken as objectives.

Fuel	min Cost (1)	2	3	4	5	min CL (6)
alcohols						
methanol	TC (BR43, HR5)	E, TC (BR43, HR4, HR5)	E (HR4)			
ethanol	BC (BR1, BR5, BR6)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, HR8)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, HR8)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, HR8)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, HR8, HR9)	E (HR8)
iso-butanol	BC (BR1, BR5, BR38)					
alkanes						
methane	TC (BR43, HR3)	TC, E (BR43, HR2, HR3)	E (HR2, HR3)			
FT-gasoline	TC (BR43, HR30)	TC, E (BR43, HR2, HR30)	E (HR2, HR30)			
FT-diesel	TC (BR43, HR29, HR32)	TC, E (BR43, HR2, HR29, HR32)	E (HR2, HR29, HR32)			
furans						
2-MF	BC, TC (BR1, BR5, BR11, BR12, BR19, BR46, BR72)	BC, TC (BR1, BR5, BR11, BR12, BR19, BR46, BR72)	BC, TC (BR1, BR5, BR11, BR12, BR15, BR16, BR19, BR46, BR72)	BC, TC (BR1, BR5, BR11, BR12, BR15, BR16, BR19, BR46, BR72)	BC, TC (BR1, BR5, BR11, BR12, BR15, BR16, BR19, BR46, BR72)	BC, TC (BR1, BR5, BR11, BR12, BR15, BR16, BR19, BR46, BR72)
DMF	BC, TC (BR1, BR5, BR11, BR12, BR46, BR58)	BC, TC (BR1, BR5, BR11, BR12, BR46, BR58)	BC, TC (BR1, BR5, BR11, BR12, BR45, BR46, BR58)	BC, TC (BR1, BR5, BR11, BR12, BR45, BR46, BR58)	BC, TC (BR1, BR5, BR11, BR12, BR45, BR46, BR58)	BC, TC (BR1, BR5, BR11, BR12, BR45, BR46, BR58)
ketones						
2-butanone	BC (BR1, BR5, BR35, BR41)					
Table S13: Active reaction fluxes in RNFA for all points of the Pareto fronts of esters and ethers. Cost ($Cost_{RNFA}$) and carbon loss (CL) are taken as objectives.

Fuel	min Cost (1)	2	3	4	5	min CL (6)
ester						
ethyl levulinate	BC (BR1, BR5, BR6, BR11, BR12, BR26)	BC (BR1, BR4, BR5, BR6, BR7, BR11, BR12, BR26)	BC, TC (BR1, BR4, BR5, BR6, BR7, BR11, BR12, BR26, BR46, HR9)	BC, TC, E (BR1, BR4, BR5, BR7, BR11, BR12, BR26, BR46, HR2, HR9)	BC, TC, E (BR1, BR4, BR5, BR7, BR11, BR12, BR26, BR46, HR2, HR9)	BC, TC, E (BR1, BR4, BR5, BR7, BR11, BR12, BR26, BR46, HR9)
γ-valerolactone	BC (BR1, BR5, BR11, BR29, BR30)	BC (BR1, BR5, BR9, BR11, BR12, BR29)				
FAME	TC, V (BR43, BHR2b, HR5)	E, V (BHR2b, HR4)				
uFAME	BC, TC, V (BR1, BR5, BR6, BR43, BHR2b, BHR3, HR5, HR11)	BC, E, V (BR1, BR5, BR6, BHR2b, BHR3, HR4, HR11)	BC, E, V (BR1, BR5, BR6, BHR2b, BHR3, HR4, HR11)	BC, E, V (BR1, BR4, BR5, BR6, BHR, HR11)	BC, E, V (BR1, BR4, BR5, BR6, BHR, HR11)	BC, E, V (BR1, BR4, BR5, BR6, BHR, HR11)
ether						
DME	TC (BR43, HR16)	TC (BR43, HR2, HR17)	TC, E (BR43, HR16, HR17)	TC, E (BR43, HR2, HR17)	TC, E (BR43, HR2, HR17)	E (HR2, HR17)
DMM	TC (BR43, HR5, HR18, HR21)	TC, E (BR43, HR4, HR5, HR18, HR21)	E (HR4, HR18, HR21)			
DEM	BC, TC (BR1, BR5, BR6, BR46, BHR1)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, BHR1)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, BHR1, HR8)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, BHR1, HR8)	BC, TC, E (BR1, BR4, BR5, BR6, BR7, BR46, BHR1, HR8)	E (BHR1, HR8)
OMDME	TC (BR43, HR5, HR18, HR20, HR25)	TC (BR43, HR4, HR5, HR18, HR20, HR25)	E (HR4, HR18, HR20, HR25)			
OMDEE	BC, TC (BR1, BR5, BR6, BR43, BHR1, HR5, HR18, HR20, HR26)	BC, TC (BR1, BR5, BR6, BR45, BR46, BHR1, HR4, HR5, HR18, HR20, HR26)	BC, TC (BR1, BR5, BR6, BR45, BR46, BHR1, HR4, HR5, HR18, HR20, HR26)	BC, TC (BR1, BR5, BR6, BR45, BR46, BHR1, HR4, HR5, HR18, HR20, HR26)	BC, TC (BR1, BR5, BR6, BR45, BR46, BHR1, HR4, HR5, HR18, HR20, HR26)	E (BHR1, HR4, HR8, HR18, HR20, HR26)
Table S14: Active reaction fluxes in PNFA for all points of the Pareto fronts of alcohols, alkanes, and furans. Cost ($Cost_{PNFA}$) and carbon loss (CL) are optimized. *: biomass is fractionated but no subsequent hydrolysis or fermentation occurs; for simplicity, it is still counted to the BC-route, even though no biochemical reaction occurs.

Fuel	min Cost (1)	2	3	4	5	min CL (6)
alcohols						
methanol	TC (HR5, BR43, HT8, HT38)	TC, E (HR4, HR5, BR43, HT6, HT7, HT8, HT38, HT44)	TC, E (HR4, HR5, BR43, HT6, HT7, HT8, HT38, HT44)	TC, E (HR4, HR5, BR43, HT6, HT7, HT8, HT38, HT44)	E (HR4, HT6, HT7)	E (HR4, HT6, HT7)
ethanol	BC (BR1, BR5, BR6, VRC2)	BC, E (HR2, HR8, HR9, BR1, BR4, BR5, BR6, BR7, VRC2, HT2, HT3, HT12, HT13, HT14)	BC, E (HR2, HR8, HR9, BR1, BR4, BR5, BR6, BR7, VRC2, HT2, HT3, HT12, HT13, HT14)	BC, E (HR2, HR8, HR9, BR1, BR4, BR5, BR6, BR7, VRC2, HT2, HT3, HT12, HT13, HT14)	E (HR2, HR8, HR9, BR1, BR4, BR5, BR6, BR7, BR46, BT2, HT2, HT3, HT12, HT13, HT14, HT40)	E (HR2, HR8, HR9, HT2, HT3, HT12, HT13, VRC HT14)
iso-butanol	BC (BR1, BR5, BR38, BT39)					
alkanes						
methane	TC (HR3, BR43, HT4, HT38)	TC, E (HR1, HR3, BR43, HT1, HT4, HT38)	TC, E (HR1, HR3, BR43, HT1, HT4, HT38)	TC, E (HR1, HR3, BR43, HT1, HT4, HT38)	E (HR2, HR3, HT2, HT3, HT4)	
furans						
2-MF	BC* (BR1, BR90, BR91, BT69, BT70, BT71)					
DMF	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)	BC, E (BR1, BR5, BR8, BR11, BR12, BR58, BT3, BT4, BT5, BT57, BT58, VRC49)
Table S15: Active reaction fluxes in PNFA for all points of the Pareto fronts of esters, ketones, and ethers. Cost \((\text{Cost}_{PNFA})\) and carbon loss (CL) are optimized.

Fuel	min Cost (1)	2	3	4	5	min CL (6)
esters						
ethyl levulinate	BC (BR1, BR5, BR6, BR8, BR26, BT2, BT5, BT14)	BC (BR1, BR4, BR5, BR7, BR8, BR26, BT2, BT5, BT14)	BC, E (HR8, HR9, BR1, BR4, BR5, BR6, BR7, BR8, BR26, BT2, BT5, BT14, HT12, HT13, HT14)	BC, E (HR8, HR9, BR1, BR4, BR5, BR6, BR8, BR15, BR16, BR25, BR26, BT2, BT5, BT14, HT12, HT13, HT14)	BC, E (HR8, HR9, BR1, BR4, BR5, BR6, BR7, BR11, BR12, BR26, BT2, BT3, BT4, BT14, VRC49, HT12, HT13, HT14)	
γ-valerolactone	BC (BR1, BR5, BR33, VRC35, VRC36)	BC (BR1, BR5, BR8, BR9, BR29, BT6, BT33)	BC (BR1, BR5, BR8, BR9, BR29, BT6, BT33)	BC (BR1, BR5, BR11, BR29, BR30, BT33, VRC22, VRC50)	BC (BR1, BR5, BR11, BR29, BR30, BT33, VRC22, VRC50)	
FAME	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	
uFAME	V, E, BC (HR4, HR11, BR1, BR5, BR6, BHR2b, BHR3, BHT6, BHT7, BT2, BT6, HT7, HT23, HT24)	V, E, BC (HR4, HR11, BR1, BR4, BR5, BR6, BHR2b, BHR3, BHT6, BHT7, BT2, BT6, HT7, HT23, HT24)	V, E, BC (HR4, HR11, BR1, BR5, BR8, BR9, BR29, BT6, HT7)	V, E, BC (HR4, HR11, BR1, BR5, BR8, BR9, BR29, HT6, HT7)	V, E, BC (HR4, HR11, BR1, BR5, BR8, BR9, BR29, HT6, HT7)	
ketones						
2-butanone	BC (BR1, BR5, BR35, BR41, BT44, BT48)					
ethers						
DME	TC (HR5, HR15, BR43, HT8, HT17, HT38)	TC, E (HR16, HR17, BR43, HT18, HT19, HT20, HT38, HT44)	TC, E (HR16, HR17, BR43, HT18, HT19, HT20, HT38, HT44)	TC, E (HR16, HT18, HT19, HT20, HT38, HT44)	E (HR16, HT18, HT19)	
DEM	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR4, BR5, BR6, BR7, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (HR2, HR7, BR1, BR4, BR5, BR6, BR7, BHR1, BHT1, BHT2, VRCBHT1, VRCBHT2, VRCBHT3, HT2, HT3, HT11)	E (HR2, HR8, HR9, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, HT2, HT3, HT12, HT13, HT14)	E (HR2, HR8, HR9, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, HT2, HT3, HT12, HT13, HT14)	
Table S16: Active reaction fluxes in the PNFA for all points of the Pareto fronts of alcohols, alkanes, furans, and ketones. Cost ($\text{Cost}_{\text{PNFA}}$) and global warming potential (GWP) are optimized. *: biomass is fractionated but no subsequent hydrolysis or fermentation occurs; for simplicity, it is still counted to the BC-route, even though no biochemical reaction occurs.

Fuel	min Cost (1)	2	3	4	5	min GWP (6)
alcohols						
methanol	TC (BR43, HR5, HT8, HT38)	TC, E (BR43, HR1, HR5, HR6, HT1, HT8, HT9, HT38, HT44)	TC, E (BR43, HR1, HR5, HR6, HT1, HT8, HT9, HT38)	TC, E (BR43, HR1, HR5, HR6, HT1, HT8, HT9, HT38)	E (HR1, HR4, HR6, HT1, HT6, HT7, HT9)	E (HR1, HR6, HT1, HT9)
ethanol	BC (BR1, BR5, BR6, VRC2)					
iso-butanol	BC (BR1, BR5, BR38, BT39)					
alkanes						
methane	TC (BR43, HR3, HT4, HT38)	TC, E (BR43, HR1, HR3, HT1, HT4, HT38)	TC, E (BR43, HR1, HR3, HT1, HT4, HT38)	TC, E (BR43, HR1, HR3, HT1, HT4, HT38)	TC, E (BR43, HR1, HR3, HT1, HT4, HT38)	E (HR1, HT1)
furans						
2-MF	BC* (BR1, BR90, BR91, BT69, BT70, BT71)					
DMF	BC, E (BR1, BR5, BR8, BR58, BT5, BT57, BT58, VRC5)	BC, E (BR1, BR5, BR8, BR58, BT57, BT58, VRC5)	BC, E (BR1, BR5, BR8, BR58, BT57, BT58, VRC5)	BC, E (BR1, BR5, BR8, BR58, BT57, BT58, VRC5)	BC, E (BR1, BR5, BR8, BR58, BT57, BT58, VRC5)	BC, E (BR1, BR5, BR8, BR58, BT57, BT58, VRC5)
ketones						
2-butane	BC (BR1, BR5, BR35, BR41, BT44, VRC47)					
Table S17: Active reaction fluxes in the PNFA for all points of the Pareto curve of esters and ethers. Cost ($Cost_{PNFA}$) and global warming potential (GWP) are optimized.

Fuel	min Cost (1)	2	3	4	5	min CL (6)
ester						
ethyl levulinate	BC (BR1, BR5, BR6, BR8, BR26, BT2, BT5, BT14)	BC (BR1, BR5, BR6, BR8, BR26, BT5, BT14, VRC2)	BC (BR1, BR5, BR6, BR8, BR26, BT5, BT14, VRC2)	BC (BR1, BR5, BR6, BR8, BR26, BT5, BT14, VRC2)	BC (BR1, BR5, BR6, BR8, BR26, VRC2, VRC5, VRC14)	BC (BR1, BR5, BR6, BR8, BR9, BR10, BT10, BT18, VRC2, VRC6, VRC11)
γ-valerolactone	BC (BR1, BR5, BR33, VRC35, VRC36)					
FAME	V, E (HR4, BHR2b, BHT6, BHT7, HT6, HT7)	V, E (HR1, HR6, BHR2b, BHT6, BHT7, HT1, HT9)	V, E (HR1, HR6, BHR2b, BHT6, BHT7, HT1, HT9)	V, E (HR1, HR6, BHR2b, BHT6, BHT7, HT1, HT9)	V, E (HR1, HR6, BHR2b, BHT6, BHT7, HT1, HT9)	V, E (HR1, HR6, BHR2b, BHT6, BHT7, HT1, HT9)
uFAME	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, BT2, HT6, HT7, HT23, HT24)	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, VRC2, HT6, HT7, HT23, HT24)	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, VRC2, HT6, HT7, HT23, HT24)	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, VRC2, HT6, HT7, HT23, HT24)	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, VRC2, HT6, HT7, HT23, HT24)	V, E, BC (BR1, BR5, BR6, HR4, HR11, BHR2b, BHR3, BHT6, BHT7, VRC2, HT6, HT7, HT23, HT24)
ether						
DME	TC (BR43, HR5, HR15, HT8, HT17, HT38)	TC, E (BR43, HR16, HR17, HT18, HT19, HT20, HT38, HT44)	TC, E (BR43, HR16, HR17, HT18, HT19, HT20, HT38, HT44)	E (HR16, HT18, HT19)	E (HR1, HR6, HR15, HT16, HT1, HT9, HT17, HT18, HT19)	E (HR1, HR6, HR15, HT1, HT9, HT17)
DEM	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)	BC, E (BR1, BR5, BR6, BHR1, VRCBHT1, VRCBHT2, VRCBHT3, VRC2)
References

(1) Ulonska, K.; Skiborowski, M.; Mitsos, A.; Viell, J. Early-stage evaluation of biorefinery processing pathways using process network flux analysis. *AIChE J.* 2016, 62, 3096–3108.

(2) Voll, A.; Marquardt, W. Reaction network flux analysis: Optimization-based evaluation of reaction pathways for biorenewables processing. *AIChE J.* 2012, 58, 1788–1801.

(3) Zheng, H.-Y.; Zhu, Y.-L.; Teng, B.-T.; Bai, Z.-Q.; Zhang, C.-H.; Xiang, H.-W.; Li, Y.-W. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. *J. Mol. Catal. A. Chem.* 2006, 246, 18–23.

(4) Said, A. E.-A. A.; El-Aal, M. A. Direct dehydrogenation of methanol to anhydrous formaldehyde over Ag2O/γ-Al2O3 nanocatalysts at relatively low temperature. *Res. Chem. Intermed.* 2017, 43, 3205–3217.

(5) Conca, E.; Carlo, R.; Marchi, M. Method for Preparing a Catalyst for Oxidation of Methanol to Formaldehyde. Patent No.: US 7,572,752 B2. 2009.

(6) Werner, H.; Schweers, E.; Olschewski, F.; Geiss, G.; Elfriede, H.; Helmut, T.; Alexander, H. (Ticona GmbH). Trimerization of Formaldehyde in Gas Phase. Patent No.: US 6,313,323 B1. 2001.

(7) Weidert, J.-O.; Burger, J.; Renner, M.; Blagov, S.; Hasse, H. Development of an Integrated Reaction–Distillation Process for the Production of Methylal. *Ind. Eng. Chem. Res.* 2017, 56, 575–582.

(8) Masamoto, J.; Ohtake, J.; Kawamura, M. Process for producing formaldehyde and derivatives thereof. Pub. No.: 0 327 343 B1. 1994.

(9) Lautenschütz, L. P. Inaugural-Dissertation: Neue Erkenntnisse in der Syntheseoptimiierung oligomerer Oxymethylendimethylether aus Dimethoxymethan und Trioxan. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, 2015.
(10) Pathak, D. D.; Gerald, J. J. An Efficient and Convenient Method for the Synthesis of Dialkoxymethanes Using Kaolinite as a Catalyst. *Synth. Commun.* **2003**, *33*, 1557–1561.

(11) van Vliet, O. P.; Faaij, A. P.; Turkenburg, W. C. Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. *Energy Convers. Manag.* **2009**, *50*, 855–876.

(12) Leckel, D.; Liwanga-Ehumbu, M. Diesel-Selective Hydrocracking of an Iron-Based Fischer–Tropsch Wax Fraction (C 15 –C 45) Using a MoO 3 -Modified Noble Metal Catalyst. *Energy Fuels* **2006**, *20*, 2330–2336.

(13) Manonmani, H. K.; Sreekantiah, K. R. Saccharification of sugar-cane bagasse with enzymes from Aspergillus ustus and Trichoderma viride. *Enzyme Microb. Technol.* **1987**, *9*, 484–488.

(14) Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover: Technical Report NREL/TP-5100-47764 National Renewable Energy Laboratory. 2011; http://www.nrel.gov/biomass/pdfs/47764.pdf, accessed on 2015-08-28.

(15) Kamm, B.; Gruber, P. R.; Kamm, M. *Biorefineries - Industrial processes and products: status quo and future directions*; Wiley-VCH: Weinheim, 2006.

(16) Bartoli, G.; Bosco, M.; Carlone, A.; Dalpozzo, R.; Marcantoni, E.; Melchiorre, P.; Sambri, L. Reaction of Dicarbonates with Carboxylic Acids Catalyzed by Weak Lewis Acids: General Method for the Synthesis of Anhydrides and Esters. *Synthesis* **2007**, *22*, 3489–3496.

(17) Neidleman, S. L.; Amon, W. F.; Geigert, J. Process for the production of fructose. Pub. No: US 4246347. 1981.
(18) Szmant, H. H.; Chundury, D. D. The preparation of 5-hydroxymethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. *J. Chem. Technol. Biotechnol.* **1981**, *31*, 131–145.

(19) Marcotullio, G.; Jong, W. d. Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions. *Green Chem.* **2010**, *12*, 1739–1746.

(20) Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. *Chem. Commun.* **2013**, *49*, 7034–7036.

(21) Geilen, F. M. A.; Vom Stein, T.; Engendahl, B.; Winterle, S.; Liauw, M. A.; Klanker-mayer, J.; Leitner, W. Highly Selective Decarbonylation of 5-(Hydroxymethyl)furfural in the Presence of Compressed Carbon Dioxide. *Angew. Chem. Int. Ed. Engl.* **2011**, *50*, 6831–6834.

(22) Yang, Z.; Huang, Y.-B.; Guo, Q.-X.; Fu, Y. RANEY(R) Ni catalyzed transfer hydrogenation of levulinate esters to gamma-valerolactone at room temperature. *Chem. Commun.* **2013**, *49*, 5328–5330.

(23) Lanzafame, P.; Temi, D. M.; Perathoner, S.; Centi, G.; Macario, A.; Aloise, A.; Gior-dano, G. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. *Catal. Today* **2011**, *175*, 435–441.

(24) Fu, S. Y.; Li, Y. Z.; Chu, W.; Li, C.; Tong, D. G. Monodisperse CuB23 nanoparticles grown on graphene as highly efficient catalysts for unactivated alkyl halide Heck coupling and levulinic acid hydrogenation. **2015**, *5*, 1638–1649.

(25) Liu, R.; Chen, J.; Huang, X.; Chen, L.; Ma, L.; Li, X. Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. *Green Chem.* **2013**, *15*, 2895.
(26) Dumesic, J. A.; Ruiz, J.; West, R. M. Catalytic Conversion of Cellulose to Liquid Hydrocarbon Fuels by Progressive Removal of Oxygen to Facilitate Separation Processes and Achieve High Selectivities. Pub. No.: US 2010/0324310 A1. 2010.

(27) Badarinarayana, V.; Rodwogin, M. D.; Mullen, B. D.; Purtle, I.; Molitor, E. J. Process to prepare levulinic acid. Pub. No.: WO2014189991 A1. 2014.

(28) Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zheng, H.; Zhu, Y.; Li, Y. Direct conversion of carbohydrates to γ-valerolactone facilitated by a solvent effect. *Green Chem.* **2015**, 17, 3084–3089.

(29) Ren, J.; Di Xu,; Cao, H.; Wei, S.; Dong, L.; Goodsite, M. E. Sustainability decision support framework for industrial system prioritization. *AIChE J.* **2016**, 62, 108–130.

(30) Ji, X.-J.; Huang, H.; Ouyang, P.-K. Microbial 2,3-butanediol production: a state-of-the-art review. *Biotechnol. Adv.* **2011**, 29, 351–364.

(31) Smith, K. M.; Liao, J. C. An evolutionary strategy for isobutanol production strain development in Escherichia coli. *Metab. Eng.* **2011**, 13, 674–681.

(32) Thilagavathi, N.; Jayabalakrishnan, C. Synthesis, characterization, catalytic and antimicrobial studies of ruthenium (III) complexes. *Cent. Eur. J. Chem.* **2010**, 8, 842–851.

(33) Potvin, J.; Sorlien, E.; Hegner, J.; DeBoef, B.; Lucht, B. L. Effect of NaCl on the conversion of cellulose to glucose and levulinic acid via solid supported acid catalysis. *Tetrahedron Lett.* **2011**, 52, 5891–5893.

(34) Zhang, W.; Yu, D.; Ji, X.; Huang, H. Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites. *Green Chem.* **2012**, 14, 3441.

(35) Gong, Y.; Lin, L.; Shi, J.; Liu, S. Oxidative decarboxylation of levulinic acid by cupric oxides. *Molecules* **2010**, 15, 7946–7960.
(36) Gil, J.; Corella, J.; Aznar, M. P.; Caballero, M. A. Biomass gasification in atmospheric and bubbling fluidized bed: Effect of the type of gasifying agent on the product distribution. *Biomass Bioenergy* **1999**, *17*, 389–403.

(37) Sen, A.; Yang, W. One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels. Pub. No.: US 2011/0282079 A1. 2011.

(38) Yang, W.; Grochowski, M. R.; Sen, A. Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. *ChemSusChem* **2012**, *5*, 1218–1222.

(39) Nishimura, S.; Ikeda, N.; Ebitani, K. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. *Catal. Today* **2014**, *232*, 89–98.

(40) Kong, X.; Zhu, Y.; Zheng, H.; Dong, F.; Zhu, Y.; Li, Y.-W. Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst. *RSC Adv* **2014**, *4*, 60467–60472.

(41) Grochowski, M. R.; Yang, W.; Sen, A. Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. *Chemistry* **2012**, *18*, 12363–12371.

(42) Mitra, J.; Zhou, X.; Rauchfuss, T. Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. *Green Chem.* **2015**, *17*, 307–313.

(43) Leitner, W.; Klankermayer, J.; Pischinger, S.; Pitsch, H.; Kohse-Höinghaus, K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. *Angew. Chem. Int. Ed. Engl.* **2017**, *56*, 5412–5452.
(44) Wanders, S. Reaction Conditions for Hydrogen-Free Synthesis of 2-Methylfuran: personal communication. 2014.

(45) Müller, K.; Städter, M.; Rachow, F.; Hoffmannbeck, D.; Schmeißer, D. Sabatier-based CO2-methanation by catalytic conversion. *Environ. Earth Sci.* **2013**, 70, 3771–3778.

(46) Lu, B.; Kawamoto, K. Preparation of monodispersed NiO particles in SBA-15, and its enhanced selectivity for reverse water gas shift reaction. *J. Environ. Chem. Eng.* **2013**, 1, 300–309.

(47) Tao, M.; Xin, Z.; Meng, X.; Bian, Z.; Lv, Y. Highly dispersed nickel within mesochannels of SBA-15 for CO methanation with enhanced activity and excellent thermostability. *Fuel* **2017**, *188*, 267–276.

(48) Gaikwad, R.; Bansode, A.; Urakawa, A. High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. *J. Catal.* **2016**, *343*, 127–132.

(49) Feng, W.; Knopf, F. C.; Dooley, K. M. Effects of pressure, third bodies, and temperature profiling on the noncatalytic partial oxidation of methane. *Energy Fuels* **1994**, *8*, 815–822.

(50) Subramani, V.; Gangwal, S. K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. *Energy Fuels* **2008**, *22*, 814–839.

(51) Phillips, J. R.; Klasson, K. T.; Clausen, E. C.; Gaddy, J. L. Biological production of ethanol from coal synthesis gas. *Appl. Biochem. Biotechnol.* **1993**, *39-40*, 559–571.

(52) Otsuka, K.; Liu, Q.; Hatano, M.; Morikawa, A. Synthesis of ethylene by partial oxidation of methane over the oxides of transitions elements with LiCl. *Chem. Lett.* **1986**, *15*, 903–906.
(53) Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of Ethanol into Ethylene over Solid Acid Catalysts. Catal. Lett. 2005, 105, 249–252.

(54) Zhao, Y. B.; Tan, W. W.; Li, H.; Jia, X. H.; Wan, H. L. Oxidative dehydrogenation of ethane to ethene over a superbase supported LiCl system. Chin. Chem. Lett. 2010, 21, 1366–1369.

(55) Chang, C. D.; Socha, R. F. (Mobil Oil Corporation). Conversion of Synthesis Gas to Ethane. Pub. No.: US4472535A. 1984.

(56) Park, S. R.; Kim, G. R.; Kim, G. T.; Oh, S. H.; Kim, C. J.; Choi, H. C.; Noh, K. S. (SK Innovation Co Ltd). Process for preparing dimethyl ether. Pub. No.: US 2010/0240932 A1. 2010.

(57) Qi, G.-X.; Fei, J.-H.; Zheng, X.-M.; Hou, Z.-Y. DME synthesis from carbon dioxide and hydrogen over Cu–Mo/HZSM-5. Catal. Lett. 2001, 72, 121–124.

(58) García-Trenco, A.; Martínez, A. Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity. Appl. Catal., A 2012, 411-412, 170–179.

(59) Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Ruthenium-Catalyzed Synthesis of Dialkoxy methane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen. Angew. Chem. Int. Ed. Engl. 2016, 55, 12266–12269.

(60) Saba, T.; Estephane, J.; El Khoury, B.; El Khoury, M.; Khazma, M.; El Zakhem, H.; Aouad, S. Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renew. Energy 2016, 90, 301–306.

(61) Pfister, K. F.; Baader, S.; Baader, M.; Berndt, S.; Goosen, L. J. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines. Sci. Adv. 2017, 3, e1602624.
(62) Aspen Technology, I. Aspen Plus V.8.8. 2015; www.aspentech.com, accessed on 2018-04-15.

(63) Bausa, J.; Watzdorf, R. v.; Marquardt, W. Shortcut methods for nonideal multicomponent distillation: I. Simple columns. *AIChE J.* 1998, 44, 2181–2198.

(64) Kraemer, K.; Harwardt, A.; Skiborowski, M.; Mitra, S.; Marquardt, W. Shortcut-based design of multicomponent heteroazeotropic distillation. *Chem. Eng. Res. Des.* 2011, 89, 1168–1189.

(65) Redepenning, C. Pinch-based Screening Methods for Absorption and Extraction Processes and Solvents. Dissertation;, RWTH Aachen University, Aachen, 2017.

(66) Burr, B.; Lyddon, L. A comparison of physical solvents for acid gas removal. 2008; http://www.digitalrefining.com/article/1000560#.W1nxAbpCS70, accessed on 2018-07-26.

(67) Klamt, A. COSMOthermX17. www.cosmologic.de, accessed on 2018-07-18.

(68) Ruth, M. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review: Technical Report DE-AC36-08GO28308 National Renewable Energy Laboratory. 2011; https://www.hydrogen.energy.gov/pdfs/51726.pdf, 2016-01-08.

(69) Grube, T.; Höhlein, B. In *Wasserstoff und Brennstoffzelle*; Töpler, J., Lehmann, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 225–239.

(70) Toop, G.; Alberici, S.; Spoettle, M.; van Steen, H. Trends in the UCO market. 2013; https://assets.publishing.service.gov.uk/government/...data/.../trends-uco-market.pdf, accessed on 2018-07-26.

(71) XE Corporation, x-rates - monthly average. 2016; http://www.x-rates.com/average/?from=USD&to=EUR&amount=1&year=2016, accessed on 2018-04-01.
(72) Quader, M. A.; Ahmed, S.; Raja Ghazilla, R. A.; Ahmed, S.; Dahari, M. Evaluation of criteria for CO2 capture and storage in the iron and steel industry using the 2-tuple DEMATEL technique. *J. Clean Prod.* 2016, 120, 207–220.

(73) Sinnott, R. K.; Coulson, J. M.; Richardson, J. F. *Chemical engineering design (4th edition)*; Coulson & Richardson’s chemical engineering; Elsevier Butterworth-Heinemann: Oxford, 2005; Vol. 6.

(74) Anhui Jinao Chemical Co. Ltd, FOB price for Dimethyl Sulfoxide. 2016; http://www.alibaba.com/product-detail/Dimethyl-Sulfoxide-DMSO_1180950251.html?spm=a2700.7724857.29.3.owKOBk&s=p, accessed on 2016-01-08.

(75) Wuhan Benjamin Pharmaceutical Chemical Co. Ltd, FOB price for 2-Methyltetrahydrofuran. 2016; http://www.alibaba.com/product-detail/96-47-9-2-Methyltetrahydrofuran_1920680121.html?spm=a2700.7724838.30.157.JBNcME, accessed on 2016-01-08.

(76) Shanghai Polymet Commodities Ltd, FOB price for dichloromethane. 2016; http://www.alibaba.com/product-detail/dichloromethane_370296049.html?spm=a2700.7724857.29.21.93y0E7&s=p, accessed on 2016-01-08.

(77) Zauba Technologies,; Data Services Pvt Ltd, Detailed Import Data of gamma butyrolactone. Accessed November 4, 2015; https://www.zauba.com/import-gamma-butyrolactone-hs-code.html, accessed on 2016-01-08.

(78) Jiangsu Senxuan Pharmaceutical,; Chemical Co. Ltd, FOB Price for 1,4-Dioxane. 2016; http://www.alibaba.com/product-detail/1-4-Dioxane_966670201.html?spm=a2700.7724857.29.12.MU6DzM&s=p, accessed on 2016-01-08.

(79) El-Halwagi, M. M. *Sustainable design through process integration: Fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement*; Butterworth-Heinemann: Boston, MA, 2012.
(80) Ulrich, G. D.; Vasudevan, P. T. Predesign for Pollution Prevention and Control. *Chem. Eng. Prog.* **2007**, *127*, 53–60.

(81) International Institute for Sustainability Analysis and Strategy, GEMIS Software. 2015; http://www.iinas.org/gemis-de.html, accessed on 2018-03-15.

(82) Schneider, L.; Finkbeiner, M. Life Cycle Assessment of EU Oilseed Crushing and Vegetable Oil Refining. http://www.fediol.eu/data/Full%20FEDIOL%20LCA%20report_05062013_CR%20statement.pdf, accessed on 2017-10-01.

(83) Kasten, P.; Blanck, R.; Loreck, C.; Hacker, F.; Forin, S. Working Paper - Strombasierte Kraftstoffe im Vergleich – Stand heute und die Langfristperspektive. 2013; www.oeko.de/oekodoc/1826/2013-496-de.pdf, accessed on 2018-04-01.

(84) Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. *Renew. Energy* **2016**, *85*, 1371–1390.

(85) Lozowski, D. Economic Indicators: Chemical Engineering Plant Cost Index. *Chem. Eng.* **2017**, *6*, 80.

(86) Voll, A. Model-based screening of reaction pathways for processing of biorenewables. Ph.D. thesis, RWTH Aachen University, Aachen, 2014.