Correspondence

Screening for in vitro phototoxic activity of methanol extracts of Croton campestris A., Ocimum gratissimum L. & Cordia verbenaceae DC.

Sir,

Medicinal plants have been the subject of intense research due to their potential as sources of commercial drugs or as lead compounds in drug development\(^1,2\). Various aspects of the photochemistry and photobiology of natural products, including their potential as therapeutic agents, have been reviewed\(^3-7\).

An increasing number of natural products from plants have been shown to exhibit light-mediated biological activity against viruses, microorganisms, cells and insects\(^8\). Although there is a great amount of published data regarding the antimicrobial properties of medicinal plants, there is no information on light-activated biological activities from this natural resource, that could represent an interesting source of photosentizers\(^9,10\).

The species Croton campestris is a shrub endemic to Brazil, and is used to combat various diseases\(^11\). Ocimum gratissimum L. is an aromatic subshrub from Asia and Africa\(^12\). The essential oil from the leaves of this species has shown antimicrobial activity against various microorganisms such as Staphylococcus aureus, Bacillus spp, Pseudomonas aeruginosae, Klebsiella pneumoniae, Proteus mirabilis and Leishmania amazonensis\(^12-14\). The species of the genus Cordia are found in all tropical and subtropical regions\(^15\). The crude extract of the aerial part is utilized by indigenous people against inflammatory processes with topical use. It has been suggested that the flavonoid artemetin is the compound responsible for the anti-inflammatory activity of this species\(^16\).

Many medicinal plants contain substances that can initiate adverse reactions, requiring a rigorous control of the quality of cultivation, collection of the plants, extraction of their constituents, and in the preparation of the final product\(^17\). Focusing on the concept of photochemistry and photochemotherapy, we examined three potentially useful Brazilian medicinal plants and found their extracts to show light-mediated antimicrobial activities.

The present investigation was a preliminary screening for phototoxic activity in natural products with antibacterial activities from medicinal plants used in Brazil. The extracts of Croton campestris A., Ocimum gratissimum L. and Cordia verbenaceae DC. were tested as sources of phototoxic compounds.

The bacterial strains used were: Escherichia coli (ATCC 8538) and Staphylococcus aureus (ATCC 6538). All strains were maintained on heart infusion agar slants (HIA, Difco Laboratories Ltd., USA) and prior to assay, the cells were grown overnight at 37°C in brain heart infusion (BHI, Difco Laboratories Ltd., USA). 8-Methoxy psoralen (8-MOP) (Sigma Chemical Co., USA) was dissolved in sterile water. Disks with norfloxacin were obtained from Laborclin, Brazil. Leaves of C. campestris A., O. gratissimum L. and C. verbenaceae DC. were collected in the county of Crato, Ceará State, Brazil. The plant material was identified and a voucher specimen was deposited with the respective identification numbers (Table I).

Family	Species	Abbreviation	Number	Herbarium
Euphorbiaceae	Croton campestris	MECC	#7095	UFRN
Boraginaceae	Cordia verbenacea	MECV	#044171	Prisco Bezerra-UFC
Lamiaceae	Ocimum gratissimum	MEOG	#3978	Dârđano Andrade Lima-URCA

Table I. Botanical families, species and voucher number of the plants used in this study
Amounts of 31.2, 58.82 and 31.4 g of leaves from *C. campestris*, *O. Gratissimum* and *C. verbenacea*, respectively, were dried at room temperature and powdered. The material was extracted by maceration using 1 L of methanol as solvent at room temperature, and the homogenate was allowed to stand for 72 h at room temperature. The extracts were then filtered and concentrated under vacuum in a rotary evaporator (model Q-344B – Quimis, Brazil) using a warm-water bath (model Q-214M2 - Quimis, Brazil). Each plant material yielded 1.74, 2.49 and 1.74 g of extract, respectively. For the tests, the dry extract material was dissolved in DMSO (10 mg/ml).

Assays were performed according to Lopez et al.\(^4\). As positive controls, a disk of norfloxacin was used as a standard antibiotic for bacteria with photoactivated properties. 8-MOP (10 mg/ml) in water was utilized as a positive control requiring light for activation. Twenty microlitres of each extract were added to blank disks with 5 mm of diameter. These disks were placed on the surface of the medium inoculated by spread plate method with bacteria. To monitor for light-activated antimicrobial activities, two replicate experiments were carried out. One replicate plate was exposed to ultraviolet (UV) light (5 W/m\(^2\), 320-400 nm from four Sylvania F20T12-BLB lamps, maximum emission at 350 nm) for 2 h, while the other was kept in the dark. The plates were incubated at 37ºC overnight; the inhibition zones were determined and recorded (Table II).

A substantial phototoxic effect was seen with the three extracts against the *S. aureus* but not against the *E. coli* strain. Methanol extract of *O. gratissimum* (MEOG) and *C. verbenaceae* (MECV) were the extracts that showed the highest phototoxic activity. Besides the enhancement of the light mediated toxic activity of the extracts, these activities were lower than that observed by the norfloxacin and 8-MOP (Table II). Our results indicated the phototoxic potential of these extracts and highlight the necessity of more studies to evaluate the possible applications of these natural products.

Many plant substances when exposed to UV or visible light exhibit phototoxicity and are referred to as phototoxins or photosensitizers\(^18\). A large variety of plants and fungi of various families possess phototoxic substances, possibly serving as natural defense agents against insects and nematodes or against predation or herbivory\(^8,19\). This activity is due to two mechanisms: an indirect effect, through the production of free radicals, or a direct effect, such as with furocumarins which interact with DNA\(^20\).

Some compounds with phototoxic activity have been shown to have biological activity when photoactivated. Hypericin and hypocrelin, isolated from *Hypericum perforatum* and *Hypocrella bambuase*, respectively, have shown anti-HIV and antitumour activity\(^8\), while other studies demonstrated antibacterial activity with UV light activation\(^20\).

The results of the present study show that light can be utilized for antimicrobial activity of phytoconstituents obtained from methanol extracts of the species *C. campestris*, *O. Gratissimum* and *C. verbenacea*, suggesting that phytochemical investigations are necessary to determine if these plants could serve as a source of natural products with phototoxic activities, which could be an interesting and alternative source of natural compounds to be used in the treatment of skin disorders and bacterial infections.

	SA6538	EC8539				
	UV-	UV+	Enhancement (%)	UV-	UV+	Enhancement (%)
MECC	5 ± 0	8 ± 0	60	5 ± 0	5 ± 0	0
MEOG	5 ± 0	12 ± 2	140	5 ± 0	5 ± 0	0
MECV	5 ± 0	12 ± 0	140	5 ± 0	5 ± 0	0
NOR\(^a\)	26 ± 1	35.5 ± 4.5	36.5	14.5 ± 2	34 ± 5	137.9
8MOP\(^b\)	7.5 ± 0.5	26 ± 2	246.7	5 ± 0	18 ± 0	260

Values are mean ± SD of three observations

MECC, methanol extract of *Croton campestris*; MEOG, methanol extract of *Ocimum gratissimum*; MECV, methanol extract of *Cordia verbenacea*; UV, without UV irradiation; UV+, with UV irradiation; -, no inhibition; "Norfloxacin (10 µg/disk): positive standard;

\(^a\)8-Methoxyl-psoralen (10 mg/ml); SD, standard deviation

MATIAS et al: SCREENING OF PHOTOTOXIC ACTIVITY

521
Edinardo F.F. Matias*, KarlaK.A. Santos*, José Galberto M. Costa** & Henrique D.M. Coutinho*+

*Laboratory of Microbiology & Molecular Biology & **Laboratory of Research on Natural Products, University of the Region of Cariri Crato (CE), Brazil

*For correspondence: H.D.M. Coutinho

Departamento de Ciências Físicas e Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antonio Luis 1161, Pimenta 63105-000, Crato (CE), Brazil hdmcoutinho@gmail.com

References

1. Cordell GA, Beecher CWW, Pezzuto JM. Can ethnopharmacology contribute to the development of new anticancer drugs? J Ethnopharmacol 1991; 32: 117-33.

2. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci USA 1999; 96: 1152-6.

3. Dalla-Via L, Magno SM. Photochemotherapy in the treatment of cancer. Curr Med Chem 2001; 8 : 1405-18.

4. Lopez A, Hudson JB, Towers GHN. Antiviral and antimicrobial activities of Colombian medicinal plants. J Ethnopharmacol 2001; 77 : 189-96.

5. Violla G, Dall’aquae F. Photosensitization of biomolecules by phenothiazine derivatives. Curr Drug Targets 2006; 7: 1135-54.

6. Breuckmann F, Gambichler T, Altmeier P, Kreuter A. UV/UVAI phototherapy and PUVA phototherapy in connective tissue diseases and related disorders: a research based review. BMC Dermatol 2004; 4: 11.

7. Hannuksela M, Karvonen J, Husa M, Jokela R, Katajamäki L, Leppisaari M. Ultraviolet light therapy in atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 1995; 114: 137-9.

8. Towers GHN, Page J, Hudson JB. Light-mediated biological activities of natural products from plants and fungi. Curr Org Chem 1997; 1 : 395-414.

9. Boonyatavej S, Hayodom M, Praruggamo S, Veerachato G, Pyramann K. Phytochemical screening tests in Thai medicinal plants III. J Sci Res 1983; 8: 93-5.

10. Tip-pany S, Sathanasaiwak S, Kokpol U, Phuwapraisirisan P. Antibacterial flavonoids from Boesenbergia pandurata. ACGC Chem Res Commun 2000; 10 : 21-6.

11. Heluani CS, Catalan CAN, Hernández LR, Tapia EB, Natan PJ. Three new diterpenoids based on novel sarcopetalene skeleton from Croton sarcopetalus. J Nat Prod 2000; 63 : 222-5.

12. Martins JR, Alvarenga AA, Castro EM, Silva APO, Oliveira C, Alves E. Leaf anatomy of alfavaca-cravo plants cultivated under colored nets. Cienc Rural 2008; 39: 82-7.

13. Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, Korehsia Maza P, Prado Dias Filho B, Aparicio Garcia Cortez D, et al. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 2006; 55 : 99-105.

14. Matasoyh LG, Matasoyh JC, Wachira FN, Kinyua MG, Muigai AWT, Mukiama TK. Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. Afr J Biotechnol 2007; 6 : 760-5.

15. Ficarra R, Ficarra P, Tommasni S. Leaf extracts of some Cordia species analgesic and anti-inflammatory activities as well as their chromatographic analysis. Fármaco 1995; 50 : 245-56.

16. Sertié JAA, Basile AC, Panizza S, Matida AK, Zelnik R. Anti-inflammatory activity and sub-acute toxicity of arteometin. Planta Medica 1990; 56 : 36-40.

17. Turolla MSR, Nascimento ES. Toxicological information of some herbal medicines used in Brazil. Rev Bras Cienc Farm 2006; 42 : 289-306.

18. Coutinho HDM, Costa JGM, Lima EO, Siqueira JP Jr. In vitro phototoxic activity of Eugenia jambolana L. and Hyptis maritissii Benth. J Photochem Photobiol B: Biology 2009; 96 : 63-5.

19. Matias EFF, Santos KKA, Costa JGM, Coutinho HDM. Light-enhanced antibiotic activity of Brazilian medical plants (Croton campestris A, Ocimum gratissimum L and Cordia verbeneaceae DC). Asian Biomed 2010; 4: 183-6.

20. Song PS, Tapley KJ. Photochemistry and photobiology of psoralens. Photochem Photobiol 1979; 29 : 1177-97.