Evaluation of some properties of recycled polymethylmethacrylate incorporated to the acrylic resin

Amrah Y. Al Jmmal¹, Nada Z. Mohammed¹, Amer A. Taqa*²

¹Department of Prosthodontic, Mosul University, Dentistry College, Mosul, Iraq
²Department of DBS, Mosul University, Dentistry College, Mosul, Iraq

Article History:
Received on: 05 Nov 2019
Revised on: 10 Dec 2019
Accepted on: 19 Dec 2019

Keywords:
heat cure acrylic resin, filler, physical properties

ABSTRACT

Many attempts have been made enhancing properties of PMMA denture base material. Adding fillers to PMMA was a commonly used method to improve physical and mechanical properties. To estimate the effects of incorporating recycled polymethylmethacrylate with a different percentage with conventional heat-cured acrylic resin on some properties of heat-cured denture base resin. The recycled polymethylmethacrylate (Chaini-HKG) particles dissolved at (5%, 10%, 15%) was added to heat-cured polymethylmethacrylate (Spofadental, Czech Republic) polymer and mixed with a ratio of 2:1 with the polymethylmethacrylate monomer. A total number of specimens were 80, which divided into three experimental groups (5%, 10%, 15%) and control group. Each group have 20 specimens. The surface hardness, water sorption, solubility and residual monomer of test groups measured as well as compared to that of control groups. Fourier transform infrared spectroscopy test (FTIR) was done for three experimental and control group. This study shows a statistically significant difference at (p<0.01) in the hardness of recycled polymethylmethacrylate incorporated material (10%, 15%) groups compared with a control group; while recycled polymethylmethacrylate incorporated (5%) group show no significant difference, group with 15% shows the highest Vickers hardness value. The mean values of water sorption test solubility test and residual monomer were decreased with the increase of incorporating a percentage of recycled polymethylmethacrylate as compared to the mean value of the control group. The incorporation of recycled polymethylmethacrylate to heat acrylic resin at different percentage improves some of its properties.

INTRODUCTION

The acceptance of PPMA resin was accredited to easy processing, low cost, perfect aesthetic properties hardness, lightweight, low solubility and water sorption, and ability to easy repair (Meng and Latta, 2005).

Polymethylmethacrylate absorbs moderate amounts of water if placed in an aqueous environment, water exerts a significant effect on the mechanical and dimensional properties of polymer (Al-Nori et al., 2007).

Numerous studies showed with goal of enhancing the properties of PMMA by adding fillers inside the
composition. Addition of fillers and fibers to PMMA is a commonly used technique to develop physical and mechanical properties (Alla et al., 2015; Hamouda and Beyari, 2014).

Hardness is the main physical property of PPMA resin. It is used for manufacturing denture bases, that get up from occlusion that growing durability of dental prostheses (Pinto et al., 2010).

The addition of inorganic filler in acrylic resin alter properties of end product depend on the kind, sizes, shape, concentration and interaction among polymer matrix itself (Hameed and Rahman, 2015).

Fourier transform infrared spectroscopy, mainly common spectroscopic technique used for an organic and inorganic chemist, used to detect any chemical modification occurs (Swann and Patwardhan, 2011).

Aim of our study

Estimate effect of higher amount incorporation of recycled polymethylmethacrylate with a different percentage to heat-cured acrylic resin on more than property of PMMA resin.

MATERIALS AND METHODS

Experimental Part

Preparation of incorporate material

Five, ten and fifteen gram of recycled polymethylmethacrylate (Chaini-HKG) particles dissolved in 10 ml of monomer separately, then mixed until all particles completely dissolved to obtain 5%, 10% and 15% of the additive of recycled polymethylmethacrylate. Incorporate material (5%, 10%, 15%) were added to heat-cured acrylic resin (Spofa dental, Czech Republic) amount of mixing (2:1). A wax pattern measurement was (30mm diameter * 2mm width). After curing, finishing and polishing for all specimens. Freshly dried silica used to dry acrylic specimens, which found in an Incubator at 37° ± 2°C at 24 hours. A total number of specimens were 80, were divided into three experimental groups (5%, 10%, 15%) and control group, each group have 20specimens. The surface hardness, water sorption, solubility and residual monomer of test groups measured and compared to that of the control group. Fourier transform infrared spectroscopy test (FTIR) were recorded for experimental groups (5%, 10%, 15%) and control group.

Hardness test (Vickers hardness)

Hardness tested (Microhardness tester- Shimadzu, Japan), to determine Vickers value, a specimen was measured by applying a load under 25g load at 30s.
penetration. Three readings were recorded for each specimen (one on the middle and two on the boundary) the mean value was calculated for each specimen.

Water Sorption and solubility test

The specimens were dipped in water seven days at 37°C. After specimens removed from the water, specimens dried in desiccators contain dry silica gel (37 ± 2°C for 24 hrs.) weighed with 0.1 mg in a weighing balance. This sequence repeated until the weight of each disk stabilized. Water sorption for specimen taken by using this equation: (mass of specimen after immersion (mg) conditioned mass(mg) W1) /surface area. The final weight obtained in the water sorption test; this value signifies (W3). Formula of solubility(mg/cm²) = (W1 - W3)/SA.

Residual monomer test

The spectrophotometer used measure a residual monomer concentration. Should be construct a standard dilution curve to comparison with reading values taken from spectrophotometer and decide the exact concentrations of residual monomer in all group’s samples collected.

Fourier Transform Infrared Spectroscopy

Establish changing in chemical of specimens of three experimental groups (5%,10%,15%) and control group recorded by (FTIR). The measurements are taken by (Alfa Burke instrument) University of Mosul, Dentistry College.

RESULTS

Hardness test

Figure 1 displayed the average mean value of hardness of the three experimental groups (5%,10%,15%) and the control group. Statistically significant difference at(p<0.01) detect in recycled polymethylmethacrylate incorporate material (10%,15%) groups, when compare with control, while recycled polymethyl methacrylate incorporated (5%) group show no significant difference, group with 15% show the highest Vickers hardness value, as display in Table 1.

Water sorption and solubility

Figures 2 and 3 displayed the average mean value of water sorption and solubility, respectively of control and recycled polymethylmethacrylate incorporated material (5%,10%,15%) groups. Statistically significant difference at (p<0.01) detected in recycled polymethylmethacrylate incorporated material (5%,10%,15%) groups, when compared with control for water sorption and solubility respectively as display in Tables 2 and 3. A group with 15% of incorporated material show the lowest value of water sorption and solubility when compare with control.

Residual monomer test

For residual monomer release Figure 4, displayed the average mean value of residual monomer of three experimental groups (5%,10%,15%) and control group, decreasing in the residual monomer of acrylic specimens with increasing incorporated of recycled polymethylmethacrylate. There is statistically significant, as shown in Table 4.

FTIR test

Shift bands at 1196,1156 which as singed to c=c bond after polymerization. The FTIR chart showed in Figure 5 dispensed this band or moved to the lower frequency in all three concentration groups, especially to the c=c bands. This confirms the polymerization process.

Discussion

Hardness

Vickers microhardness test is very effective method to evaluate the stiff polymers and capability of material that resist the diffusion of load (Anusavice, 2003).

According to the result in the current study, the hardness value was increased with increase filler material (recycled polymethylmethacrylate incorporated material). This due the insertion and linkage of filler to heat cure resin, create polymerization of acrylic resin and appeared more stiff and lower deformation. Increase of hardness is a result of cross-linking agent occurred to neutralize by result of residual monomer substance.
Figure 5: FTAR of three experimental groups (5%, 10%, 15%) and control group.

Table 1: Dunnett test for hardness

Upper Bound	Lower Bound	Sig	Std Error	Mean Difference (I-J)	Dunnett(2-sided)
7.3190	-3.3190	.651	2.05183	2.00000	1.00 2.00
12.9190	2.2810	.005	2.05183	7.60000	1.00 3.00
15.7190	5.0810	.000	2.05183	10.40000	1.00 4.00

Table 2: Dunnett test for (water sorption).

Upper Bound	Lower Bound	Sig	Std Error	Mean Difference (I-J)	Dunnett(2-sided)
-.1311	-.5889	.002	.08832	-.36000	1.00 2.00
-.4711	-.9289	.000	.08832	-.70000	1.00 3.00
-.5711	-1.0289	.000	.08832	-.80000	1.00 4.00
Table 3: Dennett test for (water solubility).

Upper Bound	Lower Bound	Sig	Std Error	Mean Difference (I-J)	Dunnett(2-sided)
-.5693	-.7467	.000	.03423	-.65800	1.00
-1.3113	-1.4887	.000	.03423	-1.40000	1.00
-1.9113	-2.0887	.000	.03423	-2.00000	1.00

Table 4: Dunnett test for (residual monomer).

Upper Bound	Lower Bound	Sig	Std Error	Mean Difference (I-J)	Dunnett(2-sided)
-.6000	-.6000	.000	.00000	-.6000	1.00
-1.5000	-1.5000	.000	.00000	-1.50000	1.00
-1.9000	-1.9000	.000	.00000	-1.90000	1.00

(Ana et al., 2012) showed that the acrylic resin displayed higher hardness values with glass fiber reinforcement (GFR). This agrees with my study.

(Shirkavand and Moslehifard, 2014) demonstrated that increasing in filler amount leads these particles to agglomerate and presentation at stress directed in the center of matrix hence negatively influence the mechanical properties after polymerization.

(Hasratiningsih et al., 2017) said that "13% reinforced ZrO2-Al2O3-SiO2 filler system at 700°C showed the highest hardness increased about 25% comparison to calcination temperature 550 - 700°C".

(Asopa et al., 2015) "said that a greater filler content reducing the strength and the resin cannot adding more filler particles. This leads to a disturbance in the resin matrix that leads to reduce the strength of the reinforced specimens. Addition fillers with different percentages may decrease the hardness value compared to the control group; a decrease of hardness was found when the filler added more than eleven per cent of filler".

Water sorption and water solubility

PMMa will remain the favourite material of select for the construction of acrylic denture. Try to improve the strength features of the material that lead in lengthening the durability of acrylic denture. Reinforcement of acrylic resin with any type of fillers have revealed a significant improvement in mechanical properties (Rama et al., 2013; Mohammed et al., 2017).

The procedure employed for the incorporation of a higher percentage of filler to PPMA resin affected the water sorption and water solubility, with the increase ratio of incorporated material, water sorption and water solubility decrease, this agrees with my study (Amrah et al., 2018).

Our result shows that water (sorption, solubility) decrease as compared to control group, incorporated material with 15% of recycled polymethylmethacrylate material have lowest mean value for water (sorption, solubility, this due to water destroyed the fiber polymer matrix bond and polymer matrix by water molecules and lead to plasticization.

(Ozlem et al., 2006) studied the strengthening of a denture (PMMA) with milled glass fiber, which leads to reduce water sorption and generally unaltered solubility. This agrees with our result.

(Al-Nori et al., 2007) Demonstrated that (PMMA) absorbs water little by little over a period of time when located inside an aqueous environment. That lead to mechanical characteristics of the resin and becomes more low.

Since silver fillers and glass fibers cause decreasing in value of water sorption and alteration of heat cure acrylic resin with adequate amounts of silver particles and glass fibers, can useful into avoiding an unwanted physical change of dentures resultant from oral fluids (Hamouda and Beyari, 2015; Polat et al., 2003).

(Neelu et al., 2011), said that "silver fillers, sapphire fillers are purported to be better fillers for the reinforcement of polymethylmethacrylate resin. This is because they have potential as added components in denture bases to provide increased flexural strength, thermal diffusivity and decreased water sorption".

Study of copolymerization via incorporated
monomer in dental materials makes available reinforcement method. Heat cure acrylic resin material exhibit lesser residual monomer content than of self-cure material (Elif and Rukiye, 2013; Long G, Hilde M. Kopperud & MaritOil, 2017).

Residual monomer

Results of the study show residual monomer release decreased with increase of incorporated recycled polymethylmethacrylate in comparison with the control group. Residual monomer release associated with a type of resin used. Added recycled polymethylmethacrylate causes alteration of a molecular matrix of heat cure acrylic resin. (Rodrigo and Oliveira, 2014) "said that residual monomer release is relative to the type of resin employed rather than the polymerization cycle". (Ihab et al., 2016) studied the addition of zinc oxide powder to heat cure acrylic reduces its water sorption and porosity. (Vojdani et al., 2010) said that "quantity residual monomers are influenced by the kind, curing method, and thickness of acrylic resins, adding filler'. While (Mohammed et al., 2008), demonstrated that different method of polymerization affects the residual monomer. Heat cure material depicts a higher tensile strain, tensile strength than self-cure.

FTAR test

The FTAR result indicate that the polymerization process leads to a decrease in monomer release; this was confirmed by an increase of the degree of conversions (Amrah et al., 2018).

CONCLUSIONS

The incorporation of recycled polymethylmethacrylate to heat acrylic resin with different percentages decrease the water sorption and solubility while hardness means value increase, this leads to improving some properties of heat acrylic resins.

Conflict of Interest

None.

Funding Support

None.

REFERENCES

Al-Nori, A., Hussain, A., Rejab, L. 2007. Water sorption of heat–cured acrylic resin. Al-Rafidain Dental Journal, 7(2):186–194.

Alla, R. K., Swamy, K. N., Vyas, R., Konakanchi, A. 2015. Conventional and Contemporary polymers for the fabrication of denture prosthesis: part I - Overview, composition and properties. International Journal of Applied Dental Sciences, 1:82–89.

Amrah, Y., Nada, Z., A. A. 2018. The effect of recycled polymethylmethacrylate on some physical and chemical properties of acrylic resin denture base. 7:2319–7463.

Ana, F., Doglas, C., Rodrigo, G., Soares, G., Andre, L., Jessica, M., Koyama, T., Marcelo, O., Marcelo, F. 2012. Evaluation of Vickers hardness of different types of acrylic denture base resins with and without glass fibre reinforcement. Gerodontontology, 29(2).

Anusavice, J. 2003. Philip’s. Science of Dental Materials.11thedn. St. Louis: Elsevier Science, pages 140–160.

Asopa, V., Suresh, S., Khandelwal, M., Sharma, V., Asopa, S. S., Kaira, L. S. 2015. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. The Saudi Journal for Dental Research, 6(2):146–151.

Elif, A., Rukiye, D. 2013. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties. International Journal of Oral Science, 5(4):229–235.

Hameed, H. K., Rahman, H. A. 2015. The Effect of Addition Nano Particle ZrO2 on Some Properties of Autoclave Processed Heat Cure Acrylic Denture Base Material. Journal of Baghdad College of Dentistry, 27(1):32–39.

Hamouda, I., Beyari, M. 2014. Effect of glass fibers or metallic filler on the linear dimensional changes and water sorption of acrylic resin denture base material. Journal of Dentistry and Oral Care, 1(4):2377–8075.

Hamouda, I., Beyari, M. 2015. Addition of glass fibers and titanium dioxide nano particles to the acrylic resin denture base material: comparative study with the conventional and high impact types. Oral Health Dent Manag, 13:107–112.

Hasratiningsih, Z., Takarini, V., Cahyanto, A., Faza, Y., Asri, L. A. T. W., Purwasasmita, B. S. 2017. Hardness evaluation of PMMA reinforced with two different calcinations temperatures of ZrO2-Al2O3-SiO2 filler system. IOP Conference Series: Materials Science and Engineering, 172:012067–012067.

Ihab, N., Yassin, A. A., Abdulmajeed, F. A. 2016. The effect of adding micro zinc oxide filler to heat-polymerizing acrylic resin on some physical properties. Muthanna Medical Journal, 3(2):80–86.

Long G, Hilde M. Kopperud & MaritOil. 2017. Water
sorption and solubility of polyamide denture base materials. *Acta Biomaterialia Odontologica Scandinavica*, 3(1):47–52.

Meng, T. R., Latta, M. A. 2005. Physical Properties of Four Acrylic Denture Base Resins. *The Journal of Contemporary Dental Practice*, 6(4):93–100.

Mohammed, M., Shaimaa, M., Fahad, A., Al-Harbi1, R., R. A. 2017. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. *Int J Nanomedicine*, 12:3801–3812.

Mohammed, S., Al-Jadi, M., Ajaal, T. 2008. Using of HPLC Analysis for Evaluation of Residual Monomer Content in Denture Base Material and Their Effect on Mechanical Properties. *Journal of Physical Science*, 19(2):127–135.

Neelu, A., Venna, J., Anoop, C., Vijay, M. 2011. Effect of Addition of Sapphire (Aluminium Oxide) or Silver Fillers on the Flexural Strength Thermal Diffusivity and Water Sorption of Heat Polymerized Acrylic Resins. *International Journal of Prosthodontics and Restorative Dentistry*, 1(1):21–27.

Ozlem, G., Fatma, U., Pinar, K., Turkey 2006. Water sorption and solubility of denture teeth acrylic resin reinforced with milled glass fiber. IV.

Pinto, L., Acosta, E., Vora, F. T., Silva, P., Carvalho, V. 2010. Effect of repeated cycles of chemical disinfection on the roughness and hardness of hard reline acrylic resins. *Gerodontology*, 27(2):147–153.

Polat, T. N., Karacaer, Ö., Tezvergil, A., Lassila, L. V. J., Vallittu, P. K. 2003. Water Sorption, Solubility and Dimensional Changes of Denture Base Polymers Reinforced with Short Glass Fibers. *Journal of Biomaterials Applications*, 17(4):321–335.

Rama, A., Suresh, S., Venkata, A., Kishore, G., Nagaraj, U. 2013. Influence of Fiber Reinforcement on the Properties of Denture Base Resins. *Journal of Biomaterials and Nanobiotechnology*, 04(01):91–97.

Rodrigo, E., Oliveira, A. 2014. Porosity, residual monomer and water sorption of conventional heat-cured, microwave-cured and crosslinked acrylic resins. *Clinical and Laboratorial Research in Dentistry*, 20(3):137–137.

Shirkavand, S., MoslehiFard, E. 2014. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins. *Dental Clinics, Dental Prospects*, 8(4):197–203.

Swann, I., Patwardhan, S. 2011. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research.

Vojdani, M., Sattari, M., Khajehoseini, S., Farzin, M. 2010. Cytotoxicity of Resin-Based Cleansers: An In Vitro Study. *Iranian Red Crescent Medical Journal*, 12(2):158–162.