Poly I: C stimulates, Mx transcript and promotes an antiviral state in blood of *Labeo catla* (Hamilton 1822)

SOUMYA PRASAD PANDA¹, DHANANJAY SOREN³, KAUSALYA K. NAYAK⁴, PROGYAN ROY¹ AND B. K. DAS²
¹Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga Bhubaneswar - 751 012, Odisha, India
²Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata - 700 120 West Bengal, India
³Department of Zoology, Ravenshaw University, Cuttack - 753 003, Odisha, India
⁴KBDAV College, Nirakarpur, Khurda - 752 019, Odisha, India
e-mail:basantakumard@gmail.com

ABSTRACT

In the current investigation, the kinetics of Mx transcripts expression in the blood of *Labeo catla* (Hamilton 1822) inoculated with poly I: C, was studied for 14 days. The level of Mx transcript in the blood cells increased as compared to control fish inoculated with phosphate buffered saline. The level of Mx transcript was quantified along with semi-quantitative expression for β-actin. The level of Mx transcript was maximum on day 2 and 3 (β-actin: Mx ratio of about 0.8) which reduced after day 4 and the response disappeared on day 7. Western blots of the blood showed an immune-reactive band of 72 kDa, which is typical for *L. catla* Mx protein. Results suggest an increase in levels of Mx transcript after poly I: C injection which can stimulate an antiviral phase and the appropriateness of Mx expression investigation as an indicator to assess protective action.

Keywords: Immuno-histochemistry, Myxovirus resistance, Poly I: C, Reverse transcriptase, Western blotting

Introduction

Indian aquaculture is growing day by day and different culture practices with species diversification are emerging in the country. Various diseases of known and unknown etiology are stumbling blocks for successful farming. The diseases are caused by various factors including bacteria, parasites, fungi and viruses. The conventional approaches towards control of diseases is use of antibiotics and other chemotherapeutants. The indiscriminate use of these measures renders many unwanted risks in terms of development of antibiotic resistance as well as loss of aquatic microflora. Viruses can effectively be controlled by the application of vaccines, which is not economically feasible in Indian aquaculture scenario. Indian aquaculture revolves around the Indian major carps (IMCs) particularly *Labeo rohita* and *Labeo catla*. *L. catla* is considered as a priced fish which has better consumer preferences and it has good tolerance towards varying environmental conditions. The intensification in culture practices leads to development of disease havoc in culture systems and viruses are becoming increasingly reported in Indian aquaculture. Therefore there is a need to establish and explore new prophylactic measures and health management strategies for successful fish farming in Indian conditions. Antiviral defense is a vital component in the success of aquaculture operations. The Mx protein is an interferon-induced protein that defends against viral infections, which is widespread in eukaryotes. The Mx protein has antiviral actions and slow down the multiplication of viruses by interfering with viral replication in the early stage. However, their antiviral action is still not clear and the findings vary amongst various Indian major carp species. Therefore, the present study was undertaken to evaluate the assumed Mx antiviral action in *L. catla* which would give an insight into its role in protection against viral infection.

The most important anti-viral activity is understood to be governed by interferons. The interferon-stimulated Mx protein is one of the best-studied determinants of immunity to viral infection. Mx protein exhibited to have anti-viral activity against a variety of viruses and should be liable for most of the antiviral effects of type-I interferons. IFNs are molecules that are quickly broken down once they are activated. Mx proteins, on the opposite, can continue for weeks following a single virus infection. Hence, it has been used as a molecular indicator for IFN secretion and viral infection in mammals (Roers et al., 1994; Trobridge et al., 1997; Nygaard et al.,...
2000; Plant et al., 2005). Recognition of Mx proteins in the blood leukocytes could be employed as a method for non-lethal investigation for virus infection. The present study intended to monitor the kinetics of expression of Mx mRNA and Mx protein in blood cells, after induction of an IFN reaction by inoculating poly I: C (a synthetic analogue of ds RNA) in L. catla.

The Mx proteins are often initiated in diverse nature of organisms, including invertebrates to higher animals where they exhibit their vital role against viral infections (Leong et al., 1998; De Zoysa et al., 2007). In most of the species, an erratic existence of Mx genes have been recognised. In addition, allelic polymorphisms at Mx locus have also been described in mice and chickens, which influence the probability of survival after virus infections (Lindenmann, 1962; Ko et al., 2002). In addition, several studies have shown that fish viruses, such as channel catfish virus (CCV) in channel catfish, infectious pancreatic necrosis virus (IPNV) in salmonids, the infectious salmon anaemia virus (ISAV) in Atlantic salmon, infectious haematopoietic necrosis virus (IHNV) in salmon and trout, can induce Mx expression (Jensen and Robertsen, 2000).

Aquatic birnaviruses are the most important and diverse group of viruses within the family of the Birnaviridae (Blake et al., 2001), which are morphologically similar and genome is ds RNA (Dobos et al., 1979; Wu and Chi, 2007; Shen et al., 2018). IPNV is the only important diverse group antigenically within the family Birnaviridae. It is the etiological agent of an acute disease of salmonids in the juvenile stage (Wolf et al., 1960) and have also been reported from several species of fish (Castric et al., 1987; Mortensen et al., 1990). In the recent past, tilapia lake virus, has been found to exhibit significant mortality in fish species including tilapia and rohu in South-east Asia (Pradhan et al., 2020). This shows cosmopolitan nature and etiology of the tilapia lake virus. The spread of virus is triggered due to fluctuating environmental conditions.

Mx is not only an antiviral interferon-inducible gene but also induced by several biotic and abiotic stressors including disease pathogenesis. The induction of Mx gene expression by poly I: C in L. rohita and C. mrigala was recently reported (Das et al., 2019; Roy et al., 2019). In this study, the L. catla Mx gene expression after stimulation with poly I:C is reported. There is no such literature available on Mx expression in blood cells of fish particularly, L. catla. In this backdrop, our study is an attempt to investigate the expression kinetics of Mx in blood cells of L. catla.

Materials and methods

Fish maintenance

One hundred numbers of adult L. catla (average weight 100±12.5 g) were collected from the fish farm of ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar, India. Fish were acclimatised in a circular 500 l FRP (fibreglass reinforced plastic) tank with sufficient aeration. During the acclimatisation period, the fish were fed with artificial feed and water was changed (30-50%) routinely to remove the excretory wastes and unutilised feed. After acclimisation, before starting the experiment, ten fish were randomly selected and checked for the presence of any parasite or any clinical signs of diseases.

Poly I: C treatment and blood sample collection

A set of 56 nos. of healthy catla fishes were selected for the experiment and were distributed into two groups of 28 nos. each, out of which fishes of one group (treatment group) were intraperitoneally injected with 0.1 ml Poly I:C solution, as prescribed previously (Das et al., 2019; Roy et al., 2019). The second set of 28 fishes were maintained as control group. Whole blood and serum samples were collected from four fishes each sampled on day 1, 2, 3, 4, 5, 7 and 14 following poly I:C injection. Control fishes were also sampled in a similar manner. Fishes were anesthetised using tricaine methane sulfonate (0.1 ppm) and whole blood was drawn from the caudal vein from each fish with a heparinised 2 ml syringe and smears were prepared on clean glass slides. The slides were dried and immunostained for Mx protein as per the protocol of Das et al. (2007) and the remaining blood samples were transferred to separate sterile nuclease free plastic vials and frozen quickly in liquid nitrogen and stored at -80°C, until used for extraction of RNA and in PBS for protein profiling.

RNA extraction and cDNA synthesis

Total RNA was isolated from blood tissue samples, following the Guanidium Thiocyanate method as per Chomczynski and Sacchi (1987). cDNA was synthesised using oligo d(T)s primers and M-MLV polymerase (New England Biolabs, UK), as per manufacturer’s instructions. The reverse transcription was confirmed by PCR using β-actin primers as positive control.

PCR amplification of catla Mx cDNA fragment

To amplify the partial cDNA sequence of catla Mx gene, primers were designed using fast PCR software from the conserved region of reported fish Mx cDNA sequence of catla (Gene bank accession No KP282448). PCR was run using Mx primer pair
(6F-5'-GTCAGTACCACATGCTGGACC-3' and 7R-5'-TTCGAGCAGGAGATGGGACTG-3' and 5'-GCATCCTGTCAGCAATGCCA-3') of product size 254 bp was used as a reference housekeeping gene. PCR products were purified using gel purification kit (Sigma) and sub-cloned into pGEMT easy vector (Promega). Multiple clones were sequenced using automatic sequencer ABI 3700 (Applied Biosystems). The Mx and β-actin amplified products were run on a 1.5% agarose gel and visualised by ethidium bromide staining and observed in an image analyser (Gene Genius Bio Imaging System, SynGene). The results of the expression study were quantified by calculating Mx: β-actin ratio.

Real-time PCR for Mx expression
For quantification of Mx mRNA transcript expression, qPCR was performed.

Protein profiling
Protein was extracted from blood tissue samples (Chomczynski and Sacchi, 1987) and electrophoresed on Sodium dodecyl Sulphate Polyacrylamide Gel (SDS-PAGE) in discontinuous buffer system according to the method described by Laemmli (1970) in a BIORAD mini-protein-II electrophoresis unit.

Western blot analysis of Mx antiserum
For in vitro analysis of Mx protein, blood tissue samples were processed at 48 and 72 h post-induction, blood samples were lysed in 200 µl of SDS sample buffer and boiled for 3 min and then 15 µl of each sample was loaded per well. Samples were electrophoresed in an SDS-10% polyacrylamide gel and the separated proteins were transferred on to a nitrocellulose membrane. Primary antibody developed in rabbit (diluted 1:500 using blocking solution) was added and incubated overnight at 4ºC. The membrane was washed thrice in PBST (phosphate buffered saline with 0.1% Tween 20) and incubated with the secondary antibody (horse anti-rabbit alkaline phosphatase conjugate) (Vecta Stain, USA) at 1:200 dilution for 60 min at room temperature. The membrane was washed in PBST thrice. In order to identify biotinylated standards, Avidin-AP conjugate (AB reagent, Sigma) was added and incubated for 30 min. The membrane was washed two times in PBST and finally in PBS for 15 min each and then developed using AEC (3-Amino-9-ethylcarbazole) reagent (Sigma, USA).

Data analysis
SPSS software (version 16.0 SPSS Inc., USA) was applied for estimating the differences between means. Dunnett’s post-hoc test was performed for comparing the differences between treatments (p<0.05).

Results
Kinetics of Mx in blood tissue
The expression of Mx transcript in blood tissue was noticed from day 1 to 14. Control catla showed faint expression during the same time (Fig. 1). In the qPCR assay, Mx was highly expressed on the second day (21 fold) and third day (25 fold) of post-induction which gradually decreased after the fourth (15 fold) day and became almost similar to control after seven days (Fig. 2).

Mx protein in blood
The Mx protein band was observed at 72 kDa on 3rd and 4th days after poly I: C inoculation. No band was observed in untreated fish. A faint band of 72 kDa was observed on 1st day of induction. A number of putative bands of different molecular weights were observed in control fish. Stable Mx expression in catla was observed up to four days and then a steady decline in expression was observed for up to 14 days (Fig. 3). The same trend was observed in the western blotting analysis of Mx protein (Fig. 4).

Fig. 1. Expression of Mx transcript in catla blood tissue after induction of ploy I:C
M - 100 bp DNA ladder: Lane 1: Mx in Control; Lane 2: β-actin in Control; Lane 3: Mx on day1; Lane 4: β-actin on day1; Lane 5: Mx on day2; Lane 6: β-actin on day2; Lane 7: Mx on day3; Lane 8: β-actin on day3; Lane 9: Mx on day4; Lane10: β-actin on day4; Lane 11: Mx on day5; Lane 12: β-actin on day5; Lane 13: Mx on day7; Lane 14: β-actin on day7; Lane 15: Mx on day14; Lane 16: β-actin on day14
Immunostaining of blood

Upon immunostaining of the blood smear, immature RBCs were found to express Mx protein (Fig. 5b). Besides immature RBCs, monocytes, lymphocytes and neutrophils too expressed Mx protein (Fig. 5a). The immunostaining was intense on days 2 and 3 which gradually reduced afterwards. In control samples, faint staining was noticed in blood cells indicating its basal expression.

Discussion

The Mx proteins are considered as vital components in IFN stimulated anti-viral phase of RNA viruses. The availability of information on the role of interferons in fishes and conserved nature of Mx, offer Mx, a great role
to play in evolutionary genetics and biology (Roers et al., 1994; Trobridge et al., 1997; Nygaard et al., 2000; Plant et al., 2005). During the present investigation, absolute amounts of Mx mRNA molecules were measured in catla blood cells following poly I:C induction. Furthermore, greater poly I:C induced mx transcript was seen at 12 h and with these evidences it can be concluded that Mx has an anti-viral effect. Though, the Mx responses seem to be similar in fish, intrinsic factors such as stage, age and sex of the species impart a great role in response modulation (Salinas et al., 2004). A previous study in Senegalese sole showed that, following poly I:C induction, greatest peak of Mx response was seen in spleen, kidney, liver, gill and intestine at 24 h as measured by relative quantification (Fernandez-Trujillo et al., 2006).

In the present study, the expression of Mx mRNA in catla blood was measured following poly-I:C stimulation for a period of 14 days. The expression of Mx was found to be upregulated from the second to the fourth day post-induction, as compared with the control fish. The role of poly I:C induced Mx in viral defence of bony fishes has already been established. Cunningham (1973) reported Mx expression of various isoforms in trout and eel following poly I:C stimulation. Study revealed that Mx isomers elevated considerably to their respective transcript level across the organs with maximum expression in intestine as 510 folds and in muscle 211 folds at 6 h post-challenge. In seabream, the expression of Mx in viral organs was significantly upregulated (Lee et al., 2000). It has been reported that in human beings, the peripheral blood cells were found to express basal level of Mx transcript (Ronni et al., 1993). After inoculation, the human blood cells including monocytes, granulocytes and lymphocytes were observed to positively stain for Mx protein at 4, 6 and 24 h, correspondingly and thereafter it appeared more intense (Towbin et al., 1992; Al-Masri et al., 1997). In the current experiment, blood cells were found to stain positively for Mx protein at 4, 6 and 24 h, correspondingly and thereafter it appeared more intense (Towbin et al., 1992; Al-Masri et al., 1997). In the current experiment, blood cells were found to stain positively for Mx expression. Das et al. (2009) have mentioned an elevated level of Mx expression at 4 weeks following administration of poly I:C in Atlantic salmon parr.

The existence of Mx protein in catla was witnessed with qPCR and immunostaining of the blood of catla. The Mx transcript was observed by western blotting of poly I:C stimulated blood cells with a band at 72 kDa in L. catla and C. mrigala (Roy et al., 2017). Similarly, an assumed Mx protein of approximately 76 kDa was reported across the organs of poly I: C treated Atlantic halibut and Atlantic salmon parr (Das et al., 2007; Lockhart et al., 2007). The difference could be attributed to different fish species and climatic conditions that are triggering the expression of Mx induced protein.

The present study investigated the expression kinetics of induced Mx mRNA in L. catla. A dose of 500 µg poly I: C was inoculated to arouse IFNs in salmonids (Eaton, 1990; Nygaard et al., 2000). The poly I:C induced a strong expression of Mx mRNA in diverse groups of fish but more percentage occurred in viral infected 3rd day induced catla. This is in agreement with the present study in which, Mx ascertained a peak by day 2 (mean Mx:β-actin, 0.75) and was considerably greater than the control group on day 4 and 5 and afterwards a decline was observed. The present study showed a decline in the level of expression of Mx and its protein, which is in accordance to the study of Jensen et al. (2002) who reported a low level of Mx in Atlantic salmon parr.

Although, the present study covered the expression kinetics of Mx, transcript, Mx protein and immunostaining of blood cells, further studies to elucidate the steadiness of Mx protein and its organisation with the mRNA levels are compulsory to build up a complete visualisation of the defensive reaction initiated by poly I:C and the precise role of Mx protein against viruses in catla. The Poly I: C is an artificial double-stranded polynucleotide capable of stimulating type I interferons. The current investigation provides proof of subsequent initiation of interferons by inoculation of poly I: C in L. catla and also furnishes baseline information for further downline applications of the findings in fish disease management.

Acknowledgments

This work is a part of Ph. D. thesis of the first author under the supervision of the corresponding author. The authors are grateful to the Director ICAR-CIFA, Bhubaneswar for giving facilities to carry out the research work.

Reference

Al-Masri, A. N., Werfel, T., Jakschies, D. and Von Wussow, P. 1997. Intracellular staining of Mx proteins in cells from peripheral blood, bone marrow and skin. Mol. Pathol., 50: 9.

Blake, S., Ma, J. Y., Caporale, D. A., Jairath, S. and Nicholson, B. L. 2001. Phylogenetic relationships of aquatic birnaviruses based on deduced amino acid sequences of genome segment A cDNA. Dis. Aquat. Org., 45: 89-102.

Bonami, J. R., Coussevans, F., Weppe, M. and Hill, B. J. 1983. Mortalities in hatchery-reared sea bass fry associated with a birnavirus. Bull. Eur. Ass. Fish Pathol., 3: 4.

Castric, J., Baudin-Laurencin, F., Coustans, M. F. and Auffret, M. 1987. Isolation of infectious pancreatic necrosis virus, Ab serotype, from an epizootic in farmed turbot, Scophthalmus maximus. Aquaculture, 67: 117-126. https://doi.org/10.1016/0044-8486(87)90016-0.
Poly I: C stimulates antiviral state in *Labeo catla*

Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.*, 162: 156-159. doi: 10.1006/abio.1987.9999.

Cunningham, C. H. 1973. Quantal and enumerative titration of virus in cell cultures, In: *Tissue culture, Elsevier*, p. 527-532.

Das, B. K., Ellis, A. E. and Collet, B. 2009. Induction and persistence of Mx protein in tissues, blood and plasma of *Atlantic salmon* parr, *Salmo salar*, injected with poly I:C. *Fish Shellfish Immunol.*, 26: 40-48. https://doi.org/10.1016/j.fsi.2008.03.009.

Das, B. K., Nayak, K. K., Fournier, M., Collet, B., Snow, M. and Ellis, A. E. 2007. Expression of Mx protein in tissues of *Atlantic salmon* post-smolts - An immunohistochemical study. *Fish Shellfish Immunol.*, 23: 1209-1217. https://doi.org/10.1016/j.fsi.2007.06.001.

Das, B. K., Roy, P., Rout, A. K., Sahoo, D. R., Panda, S. P., Pattanaik, S., Debury, B., Behera, B. K. and Mishra, S. S. 2019. Molecular cloning, GTP recognition mechanism and tissue-specific expression profiling of myxovirus resistance (Mx) protein in *Labeo rohita* (Hamilton) after Poly I:C induction. *Sci. Rep.*, 9. https://doi.org/10.1038/s41598-019-40323-0.

De Zoysa, M., Kang, H. -S., Song, Y. -B., Lee, Y., Lee, Y. -D. and Lee, J. 2007. First report of invertebrate Mx: Cloning, characterization and expression analysis of Mx cDNA from Senegalese sole (*Solea senegalensis*). *Fish Shellfish Immunol.*, 23: 86-96.

Dobos, P., Hill, B. J., Hallett, R., Kells, D. T., Becht, H. and Teninges, D. 1979. Biophysical and biochemical characterisation of five animal viruses with bisegmented double-stranded RNA genomes. *J. Virol.*, 32: 593-605. doi: 10.1128/VI.32.2.593-605.1979.

Eaton, W. D. 1990. Anti-viral activity in four species of salmonids following exposure to poly inosinic: Cytidylic acid. *Dis. Aquat. Org.*, 9: 193-198.

Fernandez-Trujillo, M. A., Porta, J., Borrego, J. J., Alonso, M. C., Alvarez, M. C. and Bejar, J. 2006. Cloning and expression analysis of Mx cDNA from Senegalese sole (*Solea senegalensis*). *Fish Shellfish Immunol.*, 21: 577582.

Jensen, I., Albuquerque, A., Sommer, A. I. and Robertsens, B. 2002. Effect of poly I: C on the expression of Mx proteins and resistance against infection by infectious salmon anemia virus in *Atlantic salmon*. *Fish Shellfish Immunol.*, 13: 311-326.

Jensen, V. and Robertsens, B. 2000. Cloning of an Mx cDNA from *Atlantic halibut* (*Hippoglossus hippoglossus*) and characterisation of Mx mRNA expression in response to double-stranded RNA or infectious pancreatic necrosis virus. *J. Interferon Cytokine Res.*, 20: 701-710. doi:10.1089/10799900050116408.

Ko, J. H., Jin, H. K., Asano, A., Takada, A., Ninomiya, A., Kida, H., Hokiama, H., Ohara, M., Tsuzki, M. and Nishihori, M. 2002. Polymorphisms and the differential antiviral activity of the chicken Mx gene. *Genome Res.*, 12: 595-601. doi: 10.1101/gr.210702.

Laemmli, U. K. 1970. SDS-page Laemmli method. *Nature*, 227: 680-685.

Lee, J. Y., Hirono, I. and Aoki, T. 2000. Cloning and analysis of expression of Mx cDNA in *Japanese flounder, Paralichthys olivaceus*. *Dev. Comp. Immunol.*, 24: 407-415.

Leong, J. C., Trobridge, G. D., Kim, C. H. Y., Johnson, M. and Simon, B. 1998. Interferon-inducible Mx proteins in fish. *Immunol. Rev.*, 166: 349-363.

Lindenmann, J. 1962. Resistance of mice to mouse-adapted influenza A virus. *Virology*, 16: 203-204. doi:10.1016/0042-6822(62)90297-0.

Lockhart, K., McBeath, A. J. A., Collet, B., Snow, M. and Ellis, A. E. 2007. Expression of Mx mRNA following infection with IPNV is greater in IPN-susceptible *Atlantic salmon* post-smolts than in IPN-resistant *Atlantic salmon* parr. *Fish Shellfish Immunol.*, 22: 151-156. https://doi.org/10.1016/j.fsi.2006.04.002.

Mortensen, S. H., Hjeltnes, B., Rosdeth, O., Krogsrud, J. K. and Christie, K. E. 1990. Infectious pancreatic necrosis virus, serotype N1, isolated from Norwegian halibut (*Hippoglossus hippoglossus*), turbot (*Scophthalmus maximus*) and scallops (*Pecten maximus*). *Bull. Eur. Ass. Fish Pathol.*, 10: 42-43.

Nygaard, R., Husgard, S., Sommer, A. I., Leong, J. A. C. and Robertsens, B. 2000. Induction of Mx protein by interferon and double-stranded RNA in salmonid cells. *Fish Shellfish Immunol.*, 10: 435-450.

Plant, K. P., Harbottle, H. and Thune, R. L. 2005. Poly I: C induces an antiviral state against Ictalurid Herpesvirus 1 and Mx1 transcription in the channel catfish (*Ictalurus punctatus*). *Dev. Comp. Immunol.*, 29: 627-635. doi:10.1016/j.dci.2004.09.008.

Pradhan, P. K., Paria, A., Yadav, M. K., Verma, D. K., Gupta, S., Swaminathan, T. R., Rathore, G., Sood, N. and Lal, K. K. 2020. Susceptibility of Indian major carp *Labeo rohita* to tilapia lake virus. *Aquaculture*, 515: 734567.

Roers, A., Hochkeppel, H. K., Horisberger, M. A., Hovanessian, A. and Haller, O. 1994. MxA gene expression after live virus vaccination: a sensitive marker for endogenous type I interferon. *J. Infect. Dis.*, 169: 807-813. https://doi.org/10.1093/infdis/169.4.807.

Ronni, T., Melen, K., Malygin, A. and Julkunen, I. 1993. Control of IFN-inducible MxA gene expression in human cells. *J. Immunol.*, 150: 1715-1726.

Roy, P., Panda, S. P., Pal, A., Jayasanker, P. and Das, B. K. 2017. Ontogenetic profile of Antiviral Mx gene and its role in innate immunity in mirgal, *Cirrhinus mirgala* (Hamilton 1822). *Aquac. Res.*, 48: 3230-3243. https://doi.org/10.1111/arc.13153.
Roy, P., Rout, A. K., Maharana, J., Sahoo, D. R., Panda, S. P., Pal, A., Nayak, K. K., Behera, B. K. and Das, B. K. 2019. Molecular characterisation, constitutive expression and GTP binding mechanism of *Cirrhinus mrigala* (Hamilton, 1822) Myxovirus resistance (Mx) protein. *Int. J. Biol. Macromol.*, 136: 1258-1272.

Salinas, I., Lockhart, K., Bowden, T. J., Collet, B., Secombes, C. J. and Ellis, A. E., 2004. An assessment of immunostimulants as Mx inducers in Atlantic salmon (*Salmo salar* L.) parr and the effect of temperature on the kinetics of Mx responses. *Fish Shellfish Immunol.*, 17: 159-170. https://doi.org/10.1016/j.fsi.2004.01.003.

Shen, Y., Wang, D., Zhao, J. and Chen, X. 2018. Fish red blood cells express immune genes and responses. *Aquac. Fish.*, 3: 14-21. https://doi.org/10.1016/j.aaf.2018.01.001.

Towbin, H., Schmitz, A., Jakschies, D., Von Wussow, P. and Horisberger, M. A. 1992. A whole blood immunoassay for the interferon-inducible human Mx protein. *J. Interferon Res.*, 12: 67-74.

Trobridge, G. D., Chiou, P. P., Kim, C. H. and Leong, J. C. 1997. Induction of the Mx protein of rainbow trout *Oncorhynchus mykiss* in vitro and in vivo with poly I: C dsRNA and infectious hematopoietic necrosis virus. *Dis. Aquat. Org.*, 30: 91-98.

Wolf, K., Snieszko, S. F., Dunbar, C. E. and Pyle, E. 1960. Virus nature of infectious pancreatic necrosis in trout. *Proc. Soc. Exp. Biol. Med.*, 104: 105-108. doi: 10.3181/0037-9727-104-25743.

Wu, Y. C. and Chi, S. C. 2007. Cloning and analysis of antiviral activity of a barramundi (*Lates calcarifer*) Mx gene. *Fish Shellfish Immunol.*, 23: 97-108. https://doi.org/10.1016/j.fsi.2006.09.008.