Abstract
MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review focuses on recent advances in identification, validation and functional analyses for such microRNAs in colorectal cancer, and potential applications of these altered microRNAs.
and treatment can greatly reduce the incidence and mortality. All these depend on the achievements in a comprehensive understanding of every aspect of colorectal cancer at molecular and cellular levels. More and more evidence shows that epigenetic modifications, such as hyper- or hypo-methylation at specific sites in DNAs or proteins, acetylation or de-acetylation of nucleosome histones and conditionally specifically expressed non-coding RNAs like microRNAs, are involved in the carcinogenesis of many types of cancer including colorectal cancer[2-4], and some of the epigenetic modifications can serve as markers for diagnosis, treatment efficacy monitoring and prognosis, or be developed into targets for therapeutic interventions.

MicroRNAs are evolutionarily conserved small non-coding RNA molecules that are encoded by eukaryotic genomic DNA. Located in the spacer regions between protein-coding genes or in the introns of protein-encoding genes, microRNA coding sequences have their own promoters or utilizes the same promoters as protein-coding genes, and are transcribed as primary microRNAs (pri-microRNAs) in the same manner as the messenger RNAs of the protein-coding genes do. Pri-microRNAs are processed into microRNA precursors (pre-microRNAs) in the nucleus and transported to the cytoplasm and further processed into mature microRNAs, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational suppression of imperfectly matched mRNAs or degradation of perfectly matched mRNAs[5]. Both strands of a pre-microRNA may be processed into two mature microRNAs, with similar efficiencies which are discriminated by -5p and -3p, or with one dominantly processed and the recessive one star-labeled (*), which function differently against different target genes. This post-transcriptional regulation of expression of multiple genes represents one of the major types of epigenetic modification and exhibits important impacts in all aspects of cellular activities, under both physiological and pathological conditions. Many of the known microRNAs appear in clusters on a single polycistronic transcript[6], which may modulate the expression of genes whose products work together to fulfill the same task.

It is now well documented that microRNAs play important roles in the pathogenesis of many human diseases including cancer. Aberrant expression of microRNAs has been observed in cancers of various tissues such as lung, breast, liver, colon and rectum, and prostate. Up-regulation of certain specific microRNAs may suppress genes responsible for growth/proliferation inhibition, down-regulation of other specific microRNAs may augment genes responsible for growth/proliferation promotion, and either may result in the development and progression of cancer. The specifically altered microRNA expression patterns may serve as diagnostic/prognostic markers, and correction of these aberrant microRNAs may reverse the malignant phenotypes of cancer cells and therefore provide means for cancer treatment[7-9].

Numerous investigations on screening for altered expression of microRNAs in various types of cancer have been conducted during the past decade, with more and more functional validations in recent years. The aberrantly expressed microRNAs exert their functions by modulating oncogenic or tumor-suppressive genes and play important roles in the development and progression of cancers, therefore exhibit their potentials as “oncogenic” or “tumor-suppressive” microRNAs. Some of the alterations are common among different cancers, while others are type-specific. MicroRNAs function in a multi-target manner that one microRNA may modulate the expression of multiple genes, and one target gene may also be modulated by multiple microRNAs. While the microRNA-modulated gene expression is one kind of epigenetic modification, the expression of microRNA itself is modulated by other epigenetic modifications such as hyper- or hypo-methylation. This review focuses on the most recent advances in studies on some extensively investigated microRNAs in colorectal cancer, especially with regards to the potentials as bio-markers or therapeutic targets.

Oncogenic MicroRNAs as Potential Markers and Targets in Colorectal Cancer

MiR-21

MiR-21 is one of the most extensively investigated oncogenic microRNAs whose expression is frequently upregulated in colorectal cancer. The identified target genes regulated by miR-21 include programmed cell death 4, RhöB and transforming growth factor beta receptor 2 (TGFBR2). MiR-21 regulates cell proliferation, invasion and apoptosis, and induces stemness. Through its pro-metastatic effect, ectopic stromal miR-21 expression associates with increased epithelial invasiveness. The expression level of miR-21 correlates with clinical stage, and increases with advanced disease, decreased recurrence-free cancer-specific survival and shorter overall survival (OS). There is higher stool level of miR-21 in patients with colorectal cancer but not polyps. Plasma/serum miR-21 can be served as a potential diagnostic and prognostic marker. The post-therapeutic miR-21 level in colorectal cancer is lower and can predict the pathological tumor response to chemotherapy. Down-regulation of miR-21 reduces cell proliferation, migration and invasion, induces apoptosis and inhibits cell cycle progression, up-regulates Sply2 and phosphatase and tensin homologue deleted on chromosome 10 and enhances the cytotoxic effects of 5-fluorouracil and metformin, and also leads to differentiation of chemoresistant cells, therefore inhibition of miR-21 may serve as a novel therapeutic approach[10-13].

MiR-155

Up-regulation of oncogenic miR-155 in colorectal cancer cells promotes cell proliferation, migration and inva-
sion, increases chemoresistance and correlates with poor prognosis. Claudin-1, a member of integral membrane proteins that constitute tight junctions, is the identified target gene modulated by miR-155. Low expression of claudin-1 is associated with lymphatic involvement, histological differentiation, extent of poorly differentiated component, reduced disease-free and overall survival of colorectal cancer patients.

MiR-31

With rat sarcoma viral oncogene homolog (RAS) p21 Guanosine-5'-triphosphatase (GTPase) activating protein 1 (RASA1) gene as the target gene, miR-31 overexpression activates oncogene RAS by repressing RASA1, and elevated expression of miR-31 is associated with aggressive mucinous phenotype. For metastatic colorectal cancer patients with wild-type kirsten rat sarcoma viral oncogene homolog/v-raf murine sarcoma viral oncogene homolog B (KRAS/BRAF) who received anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) treatment, significant miR-31* up-regulation appeared in progressive disease and is disease control, and can be used to predict the benefits of anti-EGFR mAb treatment.

MiR-92a

The overexpression of miR-92a correlates with tumor metastasis and poor prognosis. Higher miR-92a level in stool in patients with colorectal cancer and polyps can be detected. BCL-2-interacting mediator of Cell Death (BIM) is the target gene of miR-92a. As the down-regulation of BIM gene by over-expressed miR-92a in colon cancer cells may lead to the evasion of apoptosis, anti-miR-92a strategy effectively induces apoptosis of colorectal cancer cells, which suggests a potential new therapeutic approach.

MiR-17

Elevated in colon cancer, miR-17 expression is associated with poor survival and is an independent prognostic marker. By targeting tumor suppressor gene Rho family GTPase 3 (RND3), miR-17 promotes proliferation, growth and cell cycle progression. Moreover, elevated oncofetal miR-17-5p expression resulted in shorter overall survival rates by repressing its target gene retinoblastoma-like protein 2 (P130), but caused a better response to adjuvant chemotherapy.

MiR-106a and miR-106b

MiR-106a is highly expressed in metastatic colorectal cancer cells and regulates migration and invasion. Tumor suppressor Rb1 is one of the target genes of miR-106a, and the regulatory role for Rb1 may happen in sporadic colorectal cancer. Similar to miR-21, miR-106a also inhibits the expression of TGFBR2, leading to increased colorectal cancercell migration and invasion.

Interestingly, miR-106b is upregulated in cancer stromal tissues compared with normal stroma, and thestromal miR-106b expression level is associated with clinicopathologic factors, suggesting the possibility that miRNAs in cancer stroma are crucially involved in cancer progression, a similar phenomenon observed for stromal miR-21.

MiR-135a and miR-135b

Oncogenic miR-135b promotes the growth and invasion of colorectal cancer cells in vitro by repressing its target gene metastasis suppressor 1. The level of miR-135b is also elevated in colorectal cancer, which correlates with clinical stage, liver metastasis, and both disease-free survival (DFS) and cancer-specific survival of patients, and inhibition of miR-135b leads to decreased viability of colorectal cancer cells in vitro.

TUMOR SUPPRESSIVE MICRONRNAS AS POTENTIAL MARKERS AND TARGETS IN COLORECTAL CANCER

Let-7

The let-7 family is one of the most ancient and conserved microRNAs, which functions as a well-recognized tumor suppressor targeting oncogenic KRAS and whose expression is deregulated in many types of cancer including colorectal cancer.

Recent studies on let-7 family members showed that: let-7a expression is elevated in metastatic colorectal cancer with KRAS mutation compared to normal mucosa or non-metastatic disease, and the high level of let-7a in KRAS-mutated colorectal cancer may rescue anti-EGFR therapy effects; decreased expression of let-7b at tumor invasion front is an adverse prognostic marker for recurrence and OS of colorectal cancer patients; let-7c is a metastasis suppressor in colorectal cancer by targeting matrix metalloprotease 11 and pre-B-cell leukemia homeobox 3; and let-7e is overexpressed in responders to neoadjuvant chemoradiotherapy.

Another current research focus is the correlation between a functional polymorphism in let-7 complementary site within the 3’ untranslated region (3’-UTR) of KRAS (rs61764370) and the risk for development of colorectal cancer, pathological and clinical parameters, clinical outcome, progression-free survival (PFS) or OS in metastatic colorectal cancer patients.

All these novel findings for the Let-7 family member microRNAs provide us further predictive/prognostic markers in the management of colorectal cancer patients.

MiR-143

MiR-143 targets hexokinase 2 (HK2) gene and metastasis-associated in colon cancer-1 gene, and inhibit invasion/migration of colorectal cancer cells. Loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells. The complementary strand miR-143* is down-regulated in colon cancer cells and forced expression significantly abrogated invasive potential.

MiR-143 is often down-regulated in colorectal cancer, especially at liver invasion front, and the reduced ex-
MiR-145 [14,28,53,60,64-68] exerts its tumor suppressive function by modulating several target genes: it can block the activation of AKT and ERK1/2 pathways and the expression of HIF-1 and vascular endothelial growth factor via directly targeting neuroblastoma RAS viral oncogene homolog and insulin receptor substrate 1, down-regulate phosphorylated-extracellular signal-regulated kinase 1 and lead to inhibition of tumor growth by targeting p21 protein-activated kinase 4.

MiR-145 is down-regulated in plasma and cancer tissues and suppresses the growth of cancer cells. The expression of miR-148b is significantly down-regulated in human colorectal cancer tissues and correlates with tumor size, and is important in the cancer transformation process. Forced expression of miR-148b in colorectal cancer cells inhibits cell proliferation in vitro and suppresses tumorigenicity in vivo. miR-148b can be further evaluated as a biomarker and therapeutic tool against colorectal cancer.

Table 1 Colorectal cancer-associated microRNAs with identified targets

MiR (family)	Role/potential	Identified targets	Ref.
9	ON	E-cadherin	[36,81,82]
16	TS	COX-2, cyclin D1, survivin, CDK6	[84-86]
17	ON	RND3, PI30	[18,42-45]
21	ON	PDCD4, RhoB, TGFBR2	[10-30]
22	TS	p21	[90-91]
31	ON	RASA1	[14,17,35-38]
33a	TS	Pim-1	[67]
34 family	TS	Axin2	[33,70,101-103]
92a	ON	BIM	[14,26,39,40-43]
95	ON	Nexin1	[106]
139	TS	RAF1B, IKR1	[37,121,122]
143	TS	HK2, MACC1	[28,37,53,59-65]
145 family	TS	PAK4, NRAS, IRS1	[14,28,53,64-66,68]
148 family	TS	Bcl-2, CCK-2 receptor	[69-72]
155	ON	Claudin-1	[30-33]
215	TS	DTL	[20,55,73-75]
320a	TS	Neurophilin 1, β-catenin	[147,148]
339-5p	TS	PRL-1	[151]
342	TS	DNMT1	[152]
365	TS	Cyclin D1, Bcl-2	[155]
373	TS	RAB22A	[162]
499-5p	ON	FOXO4, PDCD4	[162]
506	ON	PPARα	[164]
1915	TS	Bcl-2	[170]
Let-7 family	TS	MMP11, PBX3	[24,38,52-57]

MiR-148a and 148b

Tumor suppressive miR-148a [84-86] promotes apoptosis via repressing anti-apoptotic Bcl-2 expression. Hypermethylation leads to down-regulation of miR-148a in advanced CRC. Low miR-148a expression is associated with significantly shorter DFS, a worse therapeutic response, and poor OS. The miR-148a level can serve as a disease progression follow-up marker, and has prognostic/predictive value in chemotherapy as well.

MiR-148a [2] also acts as a tumor suppressor in colorectal cancer by targeting the cholecystokinin-2 receptor which functions depending on the gastrin in colorectal cancer, and suppresses the growth of cancer cells. The expression of miR-148b is significantly down-regulated in human colorectal cancer tissues and correlates with tumor size, and is important in the cancer transformation process. Forced expression of miR-148b in colorectal cancer cells inhibits cell proliferation in vitro and suppresses tumorigenicity in vivo. miR-148b can be further evaluated as a biomarker and therapeutic tool against colorectal cancer.

MiR-215

As a tumor suppressor candidate, miR-215 [20,73-75] level is decreased in cancer tissues of colorectal cancer patients, especially those relapsed patients. The expression level of miR-215 is an independent predictive marker for relapse and associated with poor OS. However, overexpressed miR-215 can be observed in non-responders to neoadjuvant chemoradiotherapy, and the high miR-215 level confers chemoresistance due to cell cycle arrest and reduced proliferation by targeted inhibition of thymidylate synthase, dihydrofolate reductase and denticellous protein homolog, genes that play essential roles in DNA synthesis, cell cycle progression, proliferation, and differentiation.

OTHER COLORECTAL CANCER-ASSOCIATED MICRONNAS

In addition to the above microRNAs, there are other microRNAs that have been identified to be involved in the development/progression of colorectal cancer. A.
Ye JJ et al. MicroRNAs in colorectal cancer

Table 2 Colorectal cancer-associated microRNAs without identified target

MiR (family)	Role/potential	Ref.
1	TS	[76-78]
7	TS	[79,80]
10b	Marker, +, chemo	[83]
15a	TS	[84]
18a	ON	[87,88]
19 family	Marker, +, chemo	[18,53,89]
23a	ON	[94,95]
27b	TS	[96]
29 family	Marker, +	[55,87,97,98]
30a-5p	ON	[99]
93	ON	[100]
96	Marker, +	[17]
101	ON	[14,107,108]
101/107	ON	[109]
106 family	ON	[14,42,46,47]
122	ON	[110]
124	TS	[111-113]
125 family	TS	[114]
126	Marker, +	[115]
127-3p	Marker, +	[40]
129	ON	[116]
130a/301a/454	ON	[117]
133 family	Marker, -	[78,118]
135 family	ON	[17,20,24,48,49]
137	TS	[112,119,120]
140	Marker, +	[38,123]
141	Circ, Marker, +	[124]
144	Marker, -	[125,126]
146a	SNP	[127,128]
149	Marker, -	[129]
150	Marker, -	[130]
181a	ON	[131]
185	Marker, +	[132]
185	Marker, +	[118]
186, 216b, 337-3p	Marker, +, chemo	[33]
196b	Marker, +, chemo	[35]
193a-3p, 338-5p	Circ, Marker, +	[94]
194	Marker	[53,74]
19, 512, 801, 246	Marker, +	[123]
196a2	SNP	[134-138]
199a-5p	TS	[139]
206	Marker, +	[24]
211	ON	[148]
212	TS	[141]
218	TS	[142]
221a, 224	TS	[143]
222	TS	[144]
223	TS	[145]
297	TS	[146]
328	TS	[149]
330	TS	[150]
340	TS	[151]
345	TS	[152]
362-3p	TS	[154]
367	SNP	[156]
372	Marker, +	[21]
375, 422a	ON	[20]
378	Marker, -	[20,40]
409-3p	ON	[22]
424	ON	[40]
424*	ON	[40]
450 family, 99a* Marker, -, chemo	[35]	
451	TS	[159]
486-3p	Marker, +	[40]

CONCLUSION

As discussed above, a number of alterations of microRNAs play important roles in the development and progression of colorectal cancer, and even alterations of the microRNA processing machinery components are of prognostic value. The expression of microRNAs is regulated not only by other epigenetic modifications such as hyper- or hypomethylation, but also by other interacting molecules, i.e., LIN28 and let-7, and in a clustered manner. Moreover, the polymorphisms of either microRNAs or targeted genes have a significant impact on colorectal cancer risk, even in population-based studies, and the responses to chemotherapy and prognosis as well.

We can expect that the altered expression of microRNAs detection will serve as effective biomarkers for screening, diagnosis, monitoring therapy and prognosis of colorectal cancer in the future, as they can be detected from various kinds of samples including cell-free plasma/serum, circulating tumor cells, mucosal wash fluid, feces, and formalin-fixed paraffin-embedded tissues.

Based on the achievements in this field, we can also expect that novel therapeutics be developed to re-normalize the altered microRNAs in colorectal cancer, not only by directly restoring down-regulated microRNAs or knocking down the up-regulated microRNAs, but also by epigenetic therapy.

REFERENCES

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. *CA Cancer J Clin* 2011; 61: 69-90 [PMID: 2196855 DOI: 10.3322/caac.20107]
2. Goel A, Boland CR. Epigenetics of colorectal cancer. *Gastroenterology* 2012; 143: 1442-1460.e1 [PMID: 23000599 DOI: 10.1053/j.gastro.2012.09.032]
3. Li BQ, Yu H, Wang Z, Ding GH, Liu L. MicroRNA mediated network and DNA methylation in colorectal cancer. *Protein Pept Lett* 2013; 20: 352-363 [PMID: 22591477]
MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology 2009; 136: 17-25 [PMID: 19049808 DOI: 10.1053/j.gastro.2008.11.028]

Tanzler A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol 2004; 339: 327-335 [PMID: 15136036]

Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis 2012; 33: 1126-1133 [PMID: 22491715 DOI: 10.1093/carcin/bgs160]

Janssen MD, Lund AR. MicroRNA and cancer. Mol Oncol 2012; 6: 590-610 [PMID: 23102669 DOI: 10.1016/j.molonc.2012.09.006]

Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapies. A comprehensive review. EMBO Mol Med 2012; 4: 143-159 [PMID: 22351564 DOI: 10.1002/emmm.201100209]

Bullock MD, Pickard KM, Nielsen BS, Sayan AE, Jenei V, Melione M, Mitter R, Primrose JN, Thomas GJ, Packham GK, Mirmezami AH. Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression. Cell Death Dis 2013; 4: e684 [PMID: 23788041 DOI: 10.1038/cddis.2013.213]

Toiyama Y, Takahashi M, Hurr K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 2013; 105: 849-859 [PMID: 23704278]

Yu Y, Sarkar FH, Majumdar AP. Down-regulation of miR-21 Induces Differentiation of Chemoresistant Colon Cancer Cells and Enhances Susceptibility to Therapeutic Regimens. Transl Oncol 2013; 6: 180-186 [PMID: 23544710]

Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 2013; 42: 219-228 [PMID: 23174819 DOI: 10.3892/ijoi.2012.1707]

Scheel K, Boye K, Abrahamson TW, Pedstad O, Flatmark K. Clinical relevance of microRNA miR-21, miR-31, miR-92a, miR-101, miR-106a and miR-145 in colorectal cancer. BMC Cancer 2012; 12: 505 [PMID: 23212186 DOI: 10.1186/1471-2407-12-505]

Kjaer-Frifeldt S, Aarup M, Nielsen BS, Boisen TS, Christensen RO, Jakobsen A. The prognostic importance of miR-21 in stage II colon cancer: a population-based study. Br J Cancer 2012; 107: 1169-1175 [PMID: 22911541 DOI: 10.1038/bjc.2012.265]

Kanaan Z, Rai SN, Eichenberger MR, Roberts H, Keskey B, Lorimer IA, Maroun J, Lorimer IA, Goss GD, Dimitroulakos J. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis 2012; 29: 123-132 [PMID: 22120473 DOI: 10.1007/s10585-011-9435-3]

Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, Majumdar AP. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis 2012; 33: 68-76 [PMID: 22072622 DOI: 10.1093/carcin/bgr246]

Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, Wong YN, Chan FK, Yu J, Sung JJ. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012; 61: 739-745 [PMID: 22061769 DOI: 10.1136/gut.2011.305732]

Liu M, Tang Q, Qiu M, Li N, Li M, Zheng Y, Bi F. miR-21 targets the tumor suppressor RHOB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett 2011; 585: 2998-3005 [PMID: 21872591 DOI: 10.1016/j.febslet.2011.08.014]

Drebbeler U, Lay M, Wedemeyer I, Vollböhmer D, Bölschweiler E, Brabender J, Mönig SP, Hölsccher AH, Dienes HP, Odenthal M. Altered levels of the onco-microRNA miR-21 and the tumor-suppressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol 2011; 39: 409-415 [PMID: 21567082 DOI: 10.3892/ijoi.2011.1036]

Chang KH, Miller N, Khereiseed EA, Ingoldsby H, Hennessy E, Curran CE, Curran S, Smith MJ, Regan M, McAnenya OJ, Kerin MJ. MicroRNA-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol 2011; 37: 597-603 [PMID: 21546206 DOI: 10.1016/j.ejso.2010.05.035]

Shibuya H, Iinuma H, Shimada R, Horuchi A, Watanabe T. Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 2010; 79: 313-320 [PMID: 21412018 DOI: 10.1159/000322383]

Zhang GJ, Xiao HX, Tian HP, Liu ZL, Xia SS, Zhou T. Up-regulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med 2013; 31: 1375-1380 [PMID: 23588569 DOI: 10.3892/ijmm.2013.1348]

Pu J, Bai D, Yang X, Lu X, Xu L, Lu J. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155. Biochim Biophys Acta 2012; 428: 210-215 [PMID: 23056199 DOI: 10.1016/j.bbrc.2012.09.126]

Wang N, Zhang P, Li Y, Liu G, Zhou B, Zhan L, Zhou Z, Sun X. The quantitative reverse transcription-PCR stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Mol Oncol 2012; 6: 3113-3118 [PMID: 22562822 DOI: 10.1007/s12935-012-0241-9]

Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H, Hirakawa K. Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer. Anticancer Res 2013; 33;
Ye JJ et al. MicroRNAs in colorectal cancer

3301-3306
35 Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J. Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS GTPase activating protein 1 (RASA1). J Biol Chem 2013; 288: 9508-9518 [PMID: 23322774 DOI: 10.1074/jbc.M112.367763]

36 Cekalea I, Rantala JK, Bruun J, Gurbir M, Agenes TH, Danielsen SA, Lind GE, Nesbakken A, Kallioniemi O, Lothe RA, Skothoeven RJ. miR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia 2012; 14: 85-97 [PMID: 23091418]

37 Chang KH, Miller N, Kheirelnoori EA, Lemetre C, Ball GR, Miller N, Kheirelnoi EA, Lemetre C, Ball GR, Meziane Frankel M, Gurtlerova-Albright M, Gurtlerova E, Elkahloun A, et al. MicroRNA-106a promotes growth and invasion of colorectal cancer via repressing its target gene P130. Cancer Genet 2012; 217: 135a [PMID: 23178825 DOI: 10.1016/j.yexmp.2012.11.002]

38 Aralica G, Cacev T, Loncar B, Kapitanovic M, Gudat F, Suzuki T, Allen P, et al. miR-106a regulates expression of genes involved in colorectal cancer progression. Exp Mol Pathol 2012; 92: 148-154 [PMID: 23178825 DOI: 10.1016/j.yexmp.2012.11.002]

39 Feng B, Dong TT, Wang XL, Zhou HM, Zhao HC, Dong F, Zheng MH. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One 2012; 7: e43452 [PMID: 22912677 DOI: 10.1371/journal.pone.0043452]

40 Zhou W, Li X, Liu F, Xiao Z, He M, Shen S, Liu S. MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochin Biophys Sin (Shanghai) 2012; 44: 838-846 [PMID: 23017832]

41 Gaedcke J, Grade M, Camps J, Sakilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Motler S, Beisshackel T, Red T, Litman T. The rectal cancer microRNAome–microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 2012; 18: 4919-4930 [PMID: 2285056]

42 Jérôme T, Laurie P, Louis B, Pierre C. Enjoy the Silence: The Story of let-7 MicroRNA and Cancer. Curr Genomics 2007; 8: 229-233 [PMID: 18645597]

43 Thomor JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol 2012; 22: 474-482 [PMID: 22784607 DOI: 10.1016/j.tcb.2012.06.001]

44 Ruzzo A, Graziano F, Vincenzi B, Canestrairi E, Perrone G, Galluccio N, Catalano V, Loupakis F, Rabitti C, Santini D, Tonini G, Fiorentini G, Rossi D, Falcone A, Magnani M. High let-7a microRNA levels in KRAS-mutated colorectal carcinomas may rescue anti-EGFR therapy effects in patients with chemotherapy-refractory metastatic disease. Oncologist 2012; 17: 823-829 [PMID: 22884453 DOI: 10.1634/theoncologist.2012-0081]

45 Kahler C, Klupp F, Brand K, Lasitschka F, Diederichs S, Klupp F, Brand K, Lasitschka F, Diederichs S, et al. MicroRNA profiling predicts survival in anti-EGFR treated colorectal cancer. Mol Cancer 2011; 10: 88 [PMID: 21791966 DOI: 10.1007/s12087-011-0079-4]

46 Mosakhani N, Lahti L, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuttila S, Sarhari VK. MicroRNA profiling predicts survival in anti-EGFR treated colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 2012; 205: 545-551 [PMID: 23089991 DOI: 10.1016/j.cancergen.2012.08.003]

47 Sengupta D, Bandopadhyay S. Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer. Mol Biotechnol 2013; 59: 1360-1371 [PMID: 23477160 DOI: 10.1007/s12033-2012-255186]

48 Mosakhani N, Sarhari VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuttila S. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Gene Expresses 2012; 51: 1-9 [PMID: 21922590 DOI: 10.1002/gcx.20025]

49 Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Gene Expresses 2012; 51: 1-9 [PMID: 21922590 DOI: 10.1002/gcx.20025]

50 Tsujita A, Inoue K, Wu X, Birjgin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M. miR-92 is a key oncogenic MicroRNA in human colorectal cancer. Mol Cancer 2011; 10: 226-227 [PMID: 21836944 DOI: 10.1111/j.1349-7006.2010.02081.x]

51 Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Sugihara K, Doki Y, Mori M. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res 2012; 18: 3054-3070 [PMID: 22452939 DOI: 10.1158/1078-0432.CCR-11-1278]

52 Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ, Wan J. Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol 2012; 106: 232-237 [PMID: 22655434 DOI: 10.1002/jso.22138]

53 Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofova S, Sekvickova S, Bienertova-Vasku J, Vasku A, Svoboda M, Vyzula R. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 2013; 65: 247-254 [PMID: 23446122 DOI: 10.1080/01381575.2012.675530]

54 Ma Y, Zhang P, Wang F, Zhang H, Yang Y, Shi C, Xia Y, Peng J, Liu W, Yang Z, Qin H. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun 2012; 3: 1291 [PMID: 22350421 DOI: 10.1038/ncomms2276]

55 Catela Ivkovic T, Aralica G, Cacev T, Loncar B, Kapitanovic M, Gudat F, Suzuki T, et al. MicroRNA-106a overexpression and pRb downregulation in sporadic colorectal cancer. Exp Mol Pathol 2013; 94: 148-154 [PMID: 23178825 DOI: 10.1016/j.yexmp.2012.11.002]

56 Feng B, Dong TT, Wang XL, Zhou HM, Zhao HC, Dong F, Zheng MH. Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One 2012; 7: e43452 [PMID: 22912677 DOI: 10.1371/journal.pone.0043452]

57 Zhou W, Li X, Liu F, Xiao Z, He M, Shen S, Liu S. MicroRNA-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochin Biophys Sin (Shanghai) 2012; 44: 838-846 [PMID: 23017832]
Ye J et al. MicroRNAs in colorectal cancer

dependent proliferation. Mol Cancer Res 2012; 10: 504-515 [PMID: 2243615 DOI: 10.1158/1533-7786.MCR-11-0342]

Migliore C, Martin V, Leoni VP, Restivo A, Atzori L, Petrelli A, Isella C, Zorcillo L, Sarotto I, Casula G, Comoglio PM, Cumbranovo A, Giordano S. MiR-1 downregulation cooperates with MACCI in promoting MET overexpression in human colon cancer. Clin Cancer Res 2012; 18: 737-747 [PMID: 22179665 DOI: 10.1158/1078-0432.CCR-11-1699]

Chen WS, Leung CM, Pan HW, Hu LY, Li SC, Ho MR, Tsai KW. Silencing of miR-1 and miR-133a-2 cluster expression by DNA hypermethylation in colorectal cancer. Oncol Rep 2012; 28: 1069-1076 [PMID: 22766605 DOI: 10.3892/ or.2012.1899]

Wang S, Xiang J, Li Z, Lu S, Hu J, Gao X, Yu L, Wang L, Wang J, Wu Y, Chen Z, Zhu H. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer 2013 May 2, Epub ahead of print [PMID: 23456911 DOI: 10.1002/ijc.28138]

Zhang N, Li X, Wu CW, Dong Y, Cai M, Mok MT, Wang H, Chen J, Ng SS, Chen M, Sung J, Yu J. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene 2013; 32: 5078-5088 [PMID: 23284895 DOI: 10.1038/ onc.2012.526]

Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 2012; 18: 6416-6425 [PMID: 23045246 DOI: 10.1158/1078-0432.CCR-12-0832]

Wang J, Xiang J, Li Z, Lu S, Hu J, Gao X, Yu L, Wang L, Wang J, Wu Y, Chen Z, Zhu H. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer 2013 May 2, Epub ahead of print [PMID: 23456911 DOI: 10.1002/ijc.28138]
Yamakuchi M, Yagi S, Ito T, Lowenstein CJ. MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 2011; 6: e20921 [PMID: 21629773 DOI: 10.1371/journal.pone.0020921]

Li J, Zhang Y, Zhao J, Kong F, Chen Y. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol Cell Biochem 2011; 357: 31-38 [PMID: 21594688 DOI: 10.1007/s11010-011-0872-8]

Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiyara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y, Sugiyama Y, Aburatani H, Harris CC, Nakagama H. Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 2011; 71: 4628-4639 [PMID: 21565979 DOI: 10.1158/0008-5472.CAN-10-2475]

Yong FL, Law CW, Wang CW. Potentiality of a triple microRNA classifier: miR-193a-3p, miR-25a and miR-338-5p for early detection of colorectal cancer. BMC Cancer 2013; 13: 280 [PMID: 23758639]

Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW, Sikandar SS, Gümüt ZH, Lipkin SM. miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov 2012; 2: 540-553 [PMID: 22628407 DOI: 10.1158/2159-8290.CD-11-0267]

Ye J, Wu X, Wu D, Pu N, Ci C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. microRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 2013; 8: e60687 [PMID: 23593282 DOI: 10.1371/journal.pone.0060687]

Weissmann-Brenner A, Kushnir M, Lithwick Yanai G, Aharony R, Gibori H, Purim O, Kundel Y, Morgenstern S, Halperin M, Niv Y, Brenner B. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol 2012; 40: 2097-2103 [PMID: 22426940 DOI: 10.3892/ijco.2012.1405]

Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 2012; 36: e61-e67 [PMID: 22018950 DOI: 10.1016/j.canep.2011.05.002]

Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zöllner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W, Hahn SA. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 2012; 72: 3631-3641 [PMID: 22953189 DOI: 10.1158/0008-5472.CAN-12-0667]

Di Lena M, Travaglio E, Altomare DF. New strategies for colorectal cancer screening. World J Gastroenterol 2013; 19: 1855-1860 [PMID: 23569331 DOI: 10.3748/wg.v19.i12.1855]

Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T, Qi H. MicroRNA-NA124 regulates the proliferation of colorectal cancer cells by targeting iASPP. Biomed Res Int 2013; 2013: 867537 [PMID: 24691514 DOI: 10.1155/2013/867537]

Sun Y, Zhao X, Zhou Y, Hu Y. microRNA-124, miR-340 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep 2012, 28: 1346-1352 [PMID: 22895557 DOI: 10.3892/or.2012.1958]

Wang MJ, Li Y, Wang R, Wang C, Yu Y, Yang L, Zhang Y, Zhou B, Zhou ZG, Sun XF. Downregulation of microRNA-124 is an independent prognostic factor in patients with colorectal cancer. Int J Colorectal Dis 2013; 28: 183-189 [PMID: 22885837 DOI: 10.1007/s00384-012-1550-3]

Chen J, Chen Y, Chen Z. microRNA-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer. Cancer Invest 2013; 31: 17-23 [PMID: 23327190 DOI: 10.3109/07357907.2012.735790 DOI: 10.1093/carcin/bgr200]

Hansen TF, Andersen CL, Nielsen BS, Spindler KL, Sørensen FB, Lindebjerg J, Branslund J, Jakobsen A. Elevated microRNA-NA126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer. Oncol Lett 2011; 2: 1101-1106 [PMID: 22848274]

Karaayvaz M, Zhai H, Ju miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis 2013; 4: e659 [PMID: 23744359 DOI: 10.1038/cddis.2013.193]

Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. J Surg Oncol 2012; 115: 379-389 [PMID: 23275153 DOI: 10.1002/jso.23174]
In colorectal cancer, miR-182 expression is up-regulated with poor prognosis of colorectal cancer. Dong Z, Li W, Zheng G, Wang C. Up-regulation of miR-182 with poor prognosis of colorectal cancer. Gut 2012; 61: 291-300 [PMID: 22569260 DOI: 10.1038/gut.2012.0304]

Mimori K, Takemasa I, Mizushima T, Ikeda M, Sekimoto M, Ishii H, Doki Y, Mori M. microRNA-181a is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis 2012; 33: 2391-2397 [PMID: 22983984 DOI: 10.1093/carcin/bgs288]

Ma L, Zhang X, Zhao Y, Shu W, Liu Y, Gu X. MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5. PLoS One 2012; 7: e92750 [PMID: 22353338 DOI: 10.1371/journal.pone.0029750]

He X, Dong Y, Yu W, Zhao Z, Ng SS, Chan FK, Sung JJ, Ju Y. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating Bmi1 polycomb ring finger oncogene. Mol Cancer 2012; 11: 1491-1498 [PMID: 22350074 DOI: 10.2119/molcancer.2012.0304]

Yuan K, Xie X, Liu Q, Zhao J, Gao H. miRNA-212 regulates colorectal tumor metastasis via dysregulation of MsnD. Gastroenterology 2013; 145: 426-436.e1-e6 [PMID: 23583431 DOI: 10.1013/j.gastro.2013.04.004]

Ye J et al. MicroRNAs in colorectal cancer

MicroRNAs in colorectal cancer by down-regulating ADAM-17. Exp Cell Res 2012; 318: 2168-2177 [PMID: 22670742 DOI: 10.1016/j.yexcr.2012.04.014]

Wu L, Li H, Jia CY, Cheng W, Yu M, Peng M, Zhu Y, Zhao Q, Dong YW, Shao K, Wu A, Wu XZ. MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBBS Lett 2012; 586: 1038-1043 [PMID: 22569260 DOI: 10.1016/j.febslet.2012.02.050]

Xu K, Liang X, Shen K, Cui D, Zheng Y, Xu J, Fan Z, Qiu Y, Li Q, Ni L, Liu J. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J 2012; 446: 291-300 [PMID: 22766133 DOI: 10.1042/BJ20120386]

Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, Yan B, Bian YQ, Zhao J, Wang WZ, Yang AG, Zhang R. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin. Biochem Biophys Res Commun 2012; 420: 787-792 [PMID: 22439450 DOI: 10.1016/
Ye JJ et al. MicroRNAs in colorectal cancer

MicroRNAs in colorectal cancer

Ye JJ, Wang J, Li X, Zhang XD. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2013; 32: 1910-1920 [PMID: 22701713 DOI: 10.1038/onc.2012.214]

Liu X, Zhang Z, Sun L, Chen X, Ou P, Jin J, Hu H, Nie Y, Wang X, Wu K, Jin H, Fan D. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis 2011; 32: 1798-1805 [PMID: 21934092 DOI: 10.1093/carcin/bgr213]

Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene 2013; 32: 1570-1579 [PMID: 22850605 DOI: 10.1038/onc.2012.167]

Tong J, Zhang CP, Nie F, Xu XT, Zhu MM, Xiao SD, Ran ZH. MicroRNA 506 regulates expression of PPAR alpha in hydrocortisone-resistant human colon cancer cells. FEBS Lett 2011; 585: 3560-3568 [PMID: 22036718 DOI: 10.1016/j.febslet.2011.10.021]

Ji S, Ye G, Zhang J, Wang L, Wang T, Zhang Z, Zhang T, Wang G, Guo Z, Luo Y, Cai J, Yang J. miR-574-5p negatively regulates KRAS to impact β-catenin/Wnt signalling and the development of colorectal cancer. Gut 2013; 62: 716-726 [PMID: 22490519 DOI: 10.1136/gutjnl-2011-30083]

Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, Huang D, Tan C, Sheng W, Du X. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One 2012; 7: e44398 [PMID: 22970209 DOI: 10.1371/journal.pone.0044398]

Ryan BM, McClary AC, Valeri N, Robinson D, Paone A, Bowman ED, Robles AJ, Croce C, Harris CC. rs4919510 in isomiR-608 is associated with outcome but not risk of colorectal cancer. PLoS One 2013; 7: e36306 [PMID: 22606253 DOI: 10.1371/journal.pone.0036306]

Rasmussen MH, Jensen NF, Tarpgaard LS, Qvortrup C, Romer MU, Stenvang J, Christophersen LL, Lindebjerg J, Hansen TF, Pfeiffer P, Brunner N, Orntoft TF, Andersen CL. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol 2013; 7: 637-646 [PMID: 23506979 DOI: 10.1016/j.molonc.2013.02.016]

Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 2013; 145: 437-446 [PMID: 23619147 DOI: 10.1053/j.gastro.2013.04.012]

Xu K, Liang X, Cui D, Wu Y, Shi W, Liu J. miR-1915 inhibits Bcl-2 to modulate multidrug resistance by increasing drug-sensitivity in human colorectal carcinoma cells. Mol Carcinog 2013; 52: 70-78 [PMID: 22121083 DOI: 10.1002/mc.21832]

Kim B, Lee JH, Park JW, Kwon TK, Back SK, Hwang I, Kim S. An essential microRNA maturing microprocessor complex component DGCRI is up-regulated in colorectal carcinomas. Clin Exp Med 2013; 13: 251-256 [PMID: 23757303]

Faggad A, Kasajima A, Weichert W, Stenzinger A, Elwali NE, Dietel M, Denkert C. Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology 2012; 61: 552-561 [PMID: 22716222 DOI: 10.1111/j.1365-2559.2011.04110.x]

King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. Cancer Res 2011; 71: 4260-4268 [PMID: 21521536 DOI: 10.1158/0008-5472.CAN-10-4637]

Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, Levy M, Polakova V, Lipska L, Vodicka P. Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis 2012; 33: 1346-1351 [PMID: 22588186 DOI: 10.1093/carcin/bgs172]

Wang J, Wang Q, Liu H, Shao N, Tan B, Zhang G, Wang K, Jia Y, Ma W, Wang N, Cheng Y. The association of miR-146a
rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. *Mutagenesis* 2012; 27: 779-788 [PMID: 22992151 DOI: 10.1095/mutage geomet]

176 Lv M, Dong W, Li L, Zhang L, Su X, Wang L, Gao L, Zhang L. Association between genetic variants in pro-miRNA and colorectal cancer risk in a Chinese population. *J Cancer Res Clin Oncol* 2013; 139: 1405-1410 [PMID: 23728616]

177 He B, Pan Y, Cho WC, Xu Y, Gu L, Nie Z, Chen L, Song G, Gao T, Li R, Wang S. The association between four genetic variants in microRNAs (rs11614913, rs2910164, rs3746444, rs2292832) and cancer risk: evidence from published studies. *PLoS One* 2012; 7: e49032 [PMID: 23155448 DOI: 10.1371/journal.pone.0049032]

178 Azimzadeh P, Romani S, Mohebbi SR, Mahmoudi T, Vahedi M, Fatemi SR, Zali N, Zali MR. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population. *Cancer Genet* 2012; 205: 501-507 [PMID: 22939228 DOI: 10.1016/j.cancergen.2012.05.013]

179 Bovell LC, Shanmugam C, Putcha BD, Katkooi VR, Zhang B, Bae S, Singh KP, Grizzle WE, Manne U. The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. *Clin Cancer Res* 2013; 19: 3955-3965 [PMID: 23719259]

180 Xing J, Wan S, Zhou F, Qu F, Li B, Myers RE, Fu X, Palazzo JP, He X, Chen Z, Yang H. Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer. *Cancer Epidemiol Biomarkers Prev* 2012; 21: 217-227 [DOI: 10.1158/1055-9965.EPI-11-0624]

181 Luo X, Stock C, Burwinkel B, Brenner H. Identification and evaluation of plasma microRNAs for early detection of colorectal cancer. *PLoS One* 2013; 8: e62880 [PMID: 23690963 DOI: 10.1371/journal.pone.0062880]

182 Blanco-Calvo M, Calvo L, Figueroa A, Haz-Conde M, Antón-Aparicio L, Valladares-Ayebres M. Circulating microRNAs: molecular microsensors in gastrointestinal cancer. *Sensors* (Basel) 2012; 12: 9349-9362 [PMID: 23012546]

183 Menéndez P, Villarejo P, Padilla D, Menéndez JM, Montes JA. Diagnostic and prognostic significance of serum microRNAs in colorectal cancer. *J Surg Oncol* 2013; 107: 217-220 [PMID: 22903548 DOI: 10.1002/jso.23245]

184 Luo X, Burwinkel B, Tao S, Brenner H. MicroRNA signatures: novel biomarker for colorectal cancer? *Cancer Epidemiol Biomarkers Prev* 2011; 20: 1272-1286 [PMID: 21551242 DOI: 10.1158/1055-9965.EPI-11-0035]

185 Mostert B, Sieuwerts AM, Martens JW, Sleijfer S. Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. *Expert Rev Mol Diagn* 2011; 11: 259-275 [PMID: 21463236 DOI: 10.1586/erm.11.11]

186 Kaminas S, Yamamoto E, Yamin HO, Nijima M, Suzuki H, Ashida M, Hatahira T, Sato A, Kimura T, Yoshikawa K, Harada T, Hayashi S, Takamuru H, Maruyama R, Kai M, Nishiwaki M, Sugai T, Sasaki Y, Tokino T, Shinomura Y, Imai K, Toyota M. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. *Cancer Prev Res* (Phila) 2011; 4: 674-683 [PMID: 21543345 DOI: 10.1158/1940-6207.CAPR-10-0214]

187 Yamazaki N, Koga Y, Yamamoto S, Kakugawa Y, Otake Y, Hayashi R, Saito N, Matsumura Y. Application of the fecal microRNA test to the residuum from the fecal occult blood test. *Jpn J Clin Oncol* 2013; 43: 726-733 [PMID: 23677957]

188 Cho WC. Epigenetic alteration of microRNAs in feces of colorectal cancer and its clinical significance. *Expert Rev Mol Diagn* 2011; 11: 691-694 [PMID: 21902530 DOI: 10.1586/erm.11.57]

189 Bovell L, Shanmugam C, Katkooi VR, Zhang B, Vogtmann E, Grizzle WE, Manne U. miRNAs are stable in colorectal cancer archival tissue blocks. *Front Biosci (Elite Ed)* 2012; 4: 1937-1940 [PMID: 22202009]

190 Dassow H, Aigner A. MicroRNAs (miRNAs) in colorectal cancer: from aberrant expression towards therapy. *Curr Pharm Des* 2013; 19: 1242-1252 [PMID: 23570052]

191 Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nijima M, Maruyama R, Kai M, Yamano HO, Sasaki Y, Tokino T, Shinomura Y, Imai K, Toyota M. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. *Cancer Res* 2011; 71: 5646-5658 [PMID: 21734013 DOI: 10.1158/0008-5472.CAN-11-1076]

P- Reviewers: Lakatos PL, Wig JD S- Editor: Gou SX L- Editor: Wang TQ E- Editor: Wu HL
