PERIOD DETERMINANT OF AN IRREGULAR CONNECTION
OVER AN ELLIPTIC CURVE

BYUNGHEUP JUN

ABSTRACT. In this article, we calculate the period of an irregular singular connection \(\nabla = d + dy \) on the Legendre curve \(U : y^2 = x(x-1)(x-\lambda) \). We calculate its de Rham cohomology and the cycles in the homology of the dual connection and describe the period matrix. Terasoma’s work is introduced to approximate the direct image connection \(\pi^* (\nabla) \) by a sequence of regular connections as an intermediate step where \(\pi : U \to \mathbb{A}^1 = \text{Spec} k[y], (x, y) \mapsto y \). Finally, we will make the comparison of the period obtained by this approximation and that \(\nabla \) over \(U \).

CONTENTS

1. Introduction 1
2. De Rham cohomology and homology for irregular singular connections 2
3. Direct image connection 3
4. Product formula; Terasoma’s work 4
5. Period integral 7
6. Comparison 11
7. Exceptional case: \(\lambda^2 - \lambda + 1 = 0 \) 14
References 16

1. INTRODUCTION

In this article, we will calculate the period determinant of the connection \(\nabla = d + dy \) over the Legendre elliptic curve: \(y^2 = x(x-1)(x-\lambda) \). \(\nabla \) has an irregular singularity at \(\infty \). The period for irregular connection is defined as a pairing of de Rham cohomology and a newly defined homology in [I]. It is shown to be perfect.

For a regular singular connection, the period is defined as a pairing of de Rham cohomology and the homology relative to the singularities valued in its dual local system, via a singular integration. From the view of the theory of characteristic classes, it was discussed profoundly by T. Saito and T. Terasoma in [II]. Especially, on \(\mathbb{P}^1 \), it is described explicitly as a product formula written in terms of the Gamma factors and the tame symbols by Terasoma in [III].

As for the irregular connections, very few cases are known. On \(\mathbb{A}^1 - \{ \lambda_1, \ldots, \lambda_n \} \), when the connection is of the form \(d + \sum \frac{1}{x - \lambda_i} + dF \) for a polynomial \(f \) and positive real numbers \(s_i \), the period determinant is calculated via approximation by series of rank 1 regular singular period also by Terasoma(cf. [IV]).
In our case, the period determinant involves some elliptic integrals, which are not easily calculated. The main idea is to calculate the period of its direct image connection under the second projection \(\pi : U \to \mathbb{A}^1 \), \((x, y) \mapsto y\) in order to make it a higher rank connection on \(\mathbb{P}^1 \). Then at least those integrations are on \(\mathbb{A}^1 \), so that it can be approximated by a sequence of periods of properly chosen regular singular connections on \(\mathbb{P}^1 \) converging to the irregular connection. Those periods of regular connections still do not satisfy some additional conditions for applying the product formula: specially those on the eigenvalues of the residues at the auxiliary regular singular points obtained while projecting down. Let \(D \in \mathbb{P}^1 \) be those ramification points and \(d_D \) be the standard exterior differentiation of \(\mathcal{O}(-D) \) in \(\mathcal{O} \). Tensored with \(d_D \), \(\pi_* (\nabla) \) is approximated by connections whose periods are computable using the product formula.

Returning to the original connection, we take another connection \(\nabla_\Sigma = \nabla \otimes d_\Sigma \), where \(\Sigma := \pi^{-1} D \). This new connection on \(U \) produces same periods as \(d_D \otimes \pi_* (\nabla) \) since they share an isomorphic relative homology group as well as an isomorphic de Rham cohomology. We will compare the period of \(\nabla \) with that of \(\nabla_\Sigma \) through the long exact sequences of de Rham cohomology and of the homology to produce exact value of the period determinant of \(\nabla \) on \(U \). It will be treated in the generic case: \(\lambda^2 - \lambda + 1 \neq 0 \).

At the end, we calculate separately the period determinant at the special value of \(\lambda \).

Acknowledgement. This article is prepared as a part of the Ph.D thesis of the author. He thanks to the thesis advisor Hélène Esnault for sharing her idea, time and for encouragement. He also thanks to Marco Hien and Spencer Bloch for showing their interests and useful discussions on this work.

2. **De Rham cohomology and homology for irregular singular connections**

In this section, we calculate and describe the de Rham cohomology and the homology for \(\nabla = d + dy \) over an affine Legendre elliptic curve \(U : y^2 = x(x-1)(x-\lambda) \). Let \(X \) be the completion of \(U \) in \(\mathbb{P}^2 \) (i.e., \(U = X - \{\infty\} \)). Generally, for an integrable connection, the de Rham cohomology is defined as the hypercohomology of the de Rham complex.

Since \(\nabla \) admits no solution, \(H^0_{dR}(U, \nabla) = 0 \) and

Proposition 1.

\[
H^1_{dR}(U, \nabla) = \frac{\Gamma(X, \Omega_X(5 \cdot \infty))}{\nabla \Gamma(X, \mathcal{O}_X(\infty))}
\]

Therefore, \(H^1_{dR}(U, \nabla) \) is generated by \(\frac{dx}{y}, x \frac{dx}{y}, dx, xdx \).

Proof. Since we take the cohomology on an affine variety, we have the identification \(H^1_{dR}(U, \nabla) = \Gamma(X, \Omega_X(*\infty))/\nabla \Gamma(X, \mathcal{O}_X(*\infty)) \). It follows that the map \(\Gamma(X, \Omega((n+4) \cdot \infty)) \xrightarrow{\alpha} H^1_{dR}(U, \nabla) \) has the kernel \(\nabla \Gamma(X, \mathcal{O}(n \cdot \infty)) \) and is surjective for \(n \gg 0 \). As \(\dim \alpha \Gamma(X, \Omega((n+4) \cdot \infty)) = h^0(X, \Omega((n+4) \cdot \infty)) - h^0(X, \mathcal{O}(n \cdot \infty)) = 4 \) for \(n \geq 0 \). Therefore, we have the identification. Since \(\frac{dx}{y}, x \frac{dx}{y}, dx, xdx, dy \) generates \(\Gamma(X, \Omega(4 \cdot \infty)) \) and \(dy = \nabla(1), \frac{dx}{y}, x \frac{dx}{y}, dx, xdx \) is a basis for \(H^1_{dR}(U, \nabla) \). \(\square \)

We denote by \(H^*_\text{irreg} \) the homology for irregular connections defined by Bloch and Esnault in \([1]\). This homology is defined and studied over curves. It is known
to make a perfect pair with the de Rham cohomology of the dual connection. The homology group has cycles that decays rapidly, as well as topological cycles.

From the duality, we see \(\dim H^2_{\text{irreg}}(U, \nabla^*) = 0 \) and \(\dim H^1_{\text{irreg}}(U, \nabla^*) = 4 \), where \(\nabla^* \) is the dual connection of \(\nabla = d + dy \) over \(U \).

Let \(\Delta \) be a small disk around \(\infty \). Then the irregular homology groups are plugged into the following exact sequence:

\[
0 \to H_1(U, \mathbb{C}) \xrightarrow{\exp y} H^1_{\text{irreg}}(U, \nabla^*) \to H^1_{\text{irreg}}(\Delta^*, \partial \Delta, \nabla^*) \to 0
\]

In the above, \(H_1(U, \mathbb{C}) = H_1(X, \mathbb{C}) \) generated by \(\gamma_1, \gamma_2 \). The other cycles in \(H^1_{\text{irreg}}(U, \mathbb{C}) \) are in the kernel of \(\delta \). With the identification \(H_0(U, \mathbb{C}) = \mathbb{C} < \exp y > \), fixing a local parameter \(t = -(1/y)^{1/3} \) at \(\infty \), we have the three rapid sectors where the solution decays rapidly:

\[
\frac{2(i-1)\pi}{3} - \frac{\pi}{6} < \arg t < \frac{2(i-1)\pi}{3} + \frac{\pi}{6} \quad \text{for} \quad i = 1, 2, 3
\]

We call it the \(i \)-th rapid decay sector. Let \(\eta_i \) be a chain from a fixed point \(p \) at \(\partial \Delta \) to \(\infty \) along the \(i \)-th rapid decay sector. \(\eta_i \otimes \exp y \) for \(i = 1, 2, 3 \) generate \(H^1_{\text{irreg}}(\Delta^*, \partial \Delta, \nabla^*) \). \(\delta \) is the augmentation map \(\sum_i a_i \eta_i \otimes \exp y \mapsto \sum_i a_i < \exp y > \) given by \((\eta_1 - \eta_2) \otimes \exp y \) and \((\eta_2 - \eta_3) \otimes \exp y \).

Therefore we obtain the following:

Proposition 2. Let \(\gamma_1, \gamma_2 \) be the two generators of \(H_1(X, \mathbb{Z}) \) and \(\gamma_3 \) (resp. \(\gamma_4 \)) be the chain \(\eta_2 - \eta_1 \) (resp. \(\eta_3 - \eta_2 \)). \(H^1_{\text{irreg}}(U, \nabla^*) \) has a basis \(\gamma_i \otimes \exp y \) for \(i = 1, 2, 3, 4 \).

Let \(w_i \) for \(i = 1, 2, 3, 4 \) be a basis of \(H^1_{\text{dir}}(U, \nabla) \). A period is the pairing of a cycle in \(H^1_{\text{irreg}}(U, \nabla^*) \) and a cocycle in \(H^1_{\text{dir}}(U, \nabla) \), which is given by the integration

\[
\langle \eta_i \otimes \exp y, \omega_j \rangle := \int_{\eta_i} \exp y \cdot \omega_j.
\]

The period determinant is the determinant of the period matrix:

\[
\text{per}(U, \nabla) := \det \left(\langle \eta_i \otimes \exp y, \omega_j \rangle \right)_{i,j=1,2,3,4}.
\]

Let \(k \) be the field of definition of \(U \). It is not a well-defined number in \(\mathbb{C} \) since we can change the basis of the \(k \)-vector space \(H^1_{\text{dir}}(U, \nabla) \) by a matrix in \(\text{GL}(H^1_{\text{dir}}(U, \nabla)) = \text{GL}_4(k) \). Moreover, we don’t have a canonical choice of a basis in \(H^1_{\text{irreg}}(U, \nabla^*) \). It depends on the choice of local solution of \(\nabla^* \).

Throughout this article, we choose \(\exp y \) for the basis. Hence the period determinant is well-defined in \(\mathbb{C}^*/k^* \).

3. Direct Image Connection

We will keep the same convention as in the previous section.

In the previous section, we have expressed the period as an exponential elliptic integration. As it is known, elliptic integrations are difficult to evaluate, thus we take its direct image \(\pi_* (\nabla) \) onto \(\mathbb{A}^1 \) where \(\pi : (x, y) \mapsto y \) for \((x, y) \in U \). Note \(\nabla = \pi^*(d + dy) \). Using the projection formula, we have

\[
\pi_* (\mathcal{O}_U, \nabla) = \pi_* (\pi^*(\mathcal{O}_{\mathbb{A}^1}), d + dy) = (\mathcal{O}_{\mathbb{A}^1}, d + dy) \otimes \pi_* (\mathcal{O}_U, d)
\]
Let $f(x)$ be $x(x - 1)(x - \lambda)$ throughout this article and L be the function field of the elliptic curve $k(x, y)/(y^2 - f(x))$. The trace map of L in $k(y)$ induces a map

$$\pi_*(\mathcal{O}_U) \to \mathcal{O}_{\mathbb{A}^1}.$$

Since this map has a section and flat, we have splitting of $(\pi_*(\mathcal{O}_U), d)$ as connection:

$$(\pi_*(\mathcal{O}_U), d) = (\mathcal{O}_{\mathbb{A}^1}, d) \oplus (V, \nabla')$$

for a rank 2 connection on the kernel of $\text{Tr}_{L/k(y)}$, which is generated by $v_1 := -\lambda + 1 + x$ and $v_2 := -\lambda^2 + 1 + x^2$. Therefore we have

$$\pi_*(\mathcal{O}_U, \nabla) = (\mathcal{O}_{\mathbb{A}^1}, d + dy) \oplus ((\mathcal{O}_{\mathbb{A}^1}, d + dy) \oplus (V, \nabla')).$$

Let x_1, x_2 be the roots of $f'(x)$. Note that $\pi_*(\mathcal{O}_U, \nabla)$ obtains regular singularities via ramifications at the points $(x_i, \pm \sqrt{f(x_i)})$ for $i = 1, 2$, which are concentrated in (V, ∇').

With respect to the basis $\{v_1, v_2\}$, the connection matrix of ∇' is

$$
\begin{pmatrix}
\frac{2gdy}{3(y^2 - f(x_1))(y^2 - f(x_2))}
& \left(\frac{1}{3} \left(\frac{2}{3} \lambda + 1 \right)^2 - \frac{2}{3} \lambda + 1 \right) + y^2 \\
-\frac{1}{3} \left(\frac{2}{3} \lambda + 1 \right) + y^2
& \left(-\frac{1}{3} \left(\frac{3}{2} \lambda + 1 \right)^2 + \frac{3}{2} \lambda + 1 \right)
\end{pmatrix}
$$

which has simple poles at the zeroes of $y = \pm \sqrt{f(x_i)}$ for $i = 1, 2$.

We have two different configurations of singularities after λ: one is the generic case when $\lambda^2 - \lambda + 1 \neq 0$ and the other is when $\lambda^2 - \lambda + 1 = 0$. In the first case, we have four different singular points at $y = \pm \sqrt{f(x_1)}, \pm \sqrt{f(x_2)}$. In the second case, we have only two singular points $y = \pm \sqrt{f(x_1)}$.

In each case, we will approximate the answer by a sequence of regular singular connections over \mathbb{P}^1.

4. Product formula: Terasoma’s work

In this section, we recall the main theorem in [6]. The theorem tells the exact value of the period determinant of a regular singular connection on \mathbb{A}^1 for a canonical choice of basis of de Rham cohomology and relative homology valued in the dual local system, assuming some extra conditions. This result will be applied for the approximation later.

We will firstly recall some necessary notions for the result.

Let $D = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ be n distinct points in \mathbb{A}^1. A logarithmic connection with poles at $D \cup \{\infty\}$

$$\nabla : V \to V \otimes \Omega_{\mathbb{P}^1} (\log(D + \infty))$$

on a trivial vector bundle V of rank r can be written as

$$\nabla = d + \sum_{i=1}^{n} B^{(i)} \frac{1}{x - \lambda_i}$$

where $B^{(i)} = \text{Res}_{x=\lambda_i}(\nabla) \in \text{End}(\mathbb{C}^r)$ is the residue of ∇ at λ_i. And the residue at ∞ is $B^{(\infty)} := \sum_{i=1}^{n} (-B^{(i)})$. Throughout this section, we assume that no two eigenvalues of the residue are different by an integer and that they have positive real part.

Definition 3. Let (V, ∇) be a connection on $\mathbb{A}^1 - D$. $(\tilde{V}, \tilde{\nabla})$ be its logarithmic extension to \mathbb{P}^1. If no eigenvalue of the residue of ∇ at D is a non-positive integer, it is called a small extension of ∇ along D.
When ∇ is small at D, then the de Rham cohomology $H^1_{dR}(\mathbb{A}^1, \nabla)$ of the logarithmic de Rham complex is generated by

$$\left(\frac{1}{x - \lambda_i} - \frac{1}{x - \lambda_{i+1}}\right)dx \otimes w, \quad \text{for } i = 1, 2, \ldots, n - 1$$

where w is a vector in V. Thus $\text{rank } H^1_{dR}(\mathbb{A}^1, \nabla) = r(n - 1)$, which is canonically isomorphic to $H^1(\mathbb{A}^1, j_*j^*(\nabla))$, where $j : \mathbb{A}^1 - D \rightarrow \mathbb{A}^1$ is the open embedding (cf. [4], [6]).

Now we need the corresponding homology theory to yield a perfect pairing with the previously described de Rham cohomology. This is the relative homology of ∇. Let γ be the Gamma factor as a generalization of the Gamma function for the residue:

$$\Gamma_\lambda(\nabla) := \left\{ \begin{array}{ll}
\det(\int_0^\infty x^{\text{Res}_A(\nabla)} e^{-x} \frac{dx}{x}) & \text{for } \lambda \in D, \\
\det(\int_0^\infty x^{-\text{Res}_A(\nabla)} e^{-x} \frac{dx}{x}) & \text{for } \lambda = \infty
\end{array} \right.$$

The product formula `a la Terasoma shows that the above pairing is perfect. To state the formula we need to introduce the tame symbol and the Gamma factor of a connection.

For a rank 1 connection $\nabla = d + \sum_{i=1}^n b_i x - \lambda_i$ over \mathbb{A}^1 with log poles at $\lambda_1, \ldots, \lambda_n$, where $b_i \in \mathbb{C}$ is the residue at λ_i. Assume, as before, b_i have positive real part. Let p be a fixed point in $\mathbb{A}^1 - \{\lambda_1, \ldots, \lambda_n\}$ and γ_i be a fixed path from p to λ_i. ∇^* has a multi-valued solution $\prod_{i=1}^n (x - \lambda_i)^{b_i}$. Fix a branch of $\log(x - \lambda_i)$ around λ_i to have real value at $\lambda_i + \epsilon$ for small $\epsilon \in \mathbb{R} > 0$, thus we have fixed the branch of $(x - \lambda_i)^{b_i} = \exp(b_i \log(x - \lambda_i))$ as well. Let $D(x)_{\gamma_i}$ be the branch of the above solution of ∇^* on γ_i according to the chosen branch of the logarithm.

The tame symbol of the rank 1 connection ∇ is a value depending on the path from p to λ_i:

$$\langle \nabla, (x - \lambda_i) \rangle_{\gamma_i} := \lim_{x \rightarrow \lambda_i \text{ along } \gamma_i} \frac{D(x)_{\gamma_i}}{(x - \lambda_i)^{b_i}} = \prod_{j \neq i} (\lambda_i - \lambda)^{b_i}$$

and for a path γ_∞ from p to ∞,

$$\langle \nabla, \frac{1}{x} \rangle_{\gamma_\infty} := \lim_{x \rightarrow \infty} D(x)_{\gamma_\infty} x^{b_\infty}.$$
Let ∇ be a connection with log poles at $D = \{\lambda_1, \ldots, \lambda_n\}$ and ∞. Assume the eigenvalues of Res_{∞} has positive real parts and they are not different by an integer. Let $\{e_i\}_{i=1, \ldots, r}$ be a basis for the underlying vector space where the connection values and $\{e_i^*\}$ be the dual basis. Let $\delta_j := \gamma_j - \gamma_{j-1}$ and $\text{Sol}(\nabla^*)(e_q^*)$ be the branch of $\text{Sol}(\nabla^*)$ analytically continued along γ_i with the initial value e_q^* at p. We take basis

$$\omega_i(e_p) := \left(\frac{1}{x - \lambda_i} - \frac{1}{x - \lambda_{i+1}} \right) dx \otimes e_p \quad \text{in } H^1_{dR}(\mathbb{A}^1, \nabla),$$

and

$$\delta_j(e_q^*) := \delta_j \otimes \text{Sol}(\nabla^*)(e_q^*),$$

to define a period matrix for (i, j) as

$$A_{ij} := \left(< \delta_j(e_q^*), \omega_i(e_p) > \right)_{1 \leq p, q \leq r}.$$

Theorem 4 (Terasoma). *The determinant of the period matrix with respect to the above basis of $H^1_{dR}(\mathbb{A}^1, \nabla)$ and $H_1(\mathbb{A}^1, D, \nabla^*)$ is

$$\det(A_{ij})_{1 \leq i, j \leq n-1} = \prod_{i=1}^{n} (\nabla, x - \lambda_i)_\gamma \cdot (\nabla, 1)_\eta^{-1} \prod_{i=1}^{n} \Gamma_{\lambda_i}(\nabla) \cdot \Gamma_\infty(\nabla)^{-1}$$

in \mathbb{C}^*. Therefore $H^1_{dR}(\mathbb{A}^1, \nabla)$ and $H_1(\mathbb{A}^1, D, \nabla^*)$ make a perfect pairing because tame symbols and Gamma factors never vanish.*

Proof. See [2].

We can take a different basis for $H^1_{dR}(\mathbb{A}^1, \nabla)$ to evaluate the period determinant:

$$\eta_i(e_p) := \frac{x^{l-1}}{\prod_{k=1}^{n}(x - \lambda_k)} \otimes e_p, \quad \text{for } i = 1, \ldots, n-1 \text{ and } p = 1, \ldots, r.$$

Proposition 5. *The period determinant of the pairing of $H^1_{dR}(\mathbb{A}^1, \nabla)$ and $H_1(\mathbb{A}^1, D, \nabla^*)$ with respect to the basis $\eta_i(e_p)$ and $\delta_j(e_q^*)$ is

$$\det(\int_{\delta_j(e_q^*)} (\eta_i(e_p))) = \frac{\det(\int_{\delta_j(e_q^*)} \omega_i(e_p))}{\Delta(\lambda_1, \ldots, \lambda_n)^r}$$

in \mathbb{C}^* where $\Delta(\lambda_1, \ldots, \lambda_n) = \prod_{i<j}(\lambda_i - \lambda_j)$ the vandermonde determinant of $(\lambda_1, \ldots, \lambda_n)$.*

Proof. We will prove it for rank 1 case. It will be directly generalize for higher rank cases. Set $\eta'_i = \prod_{k=1}^{i-1}(x - \lambda_k)\eta_i$ for $\eta_i = \frac{x^{l-1}dx}{\prod_{k=1}^{n}(x - \lambda_k)}$. Then we have $x\eta'_i = \eta'_{i+1} + \lambda_i \eta_i$. By induction on i, it follows that $\eta_i = \eta'_i + \sum_{k>i} c_k \eta_k'$ for some constants c_k. Hence

$$\det(\int_{\delta_j} \eta_i) = \det(\int_{\delta_j} \eta'_i).$$

Whereas, for $a_i = \text{Res}_{\lambda_i} \eta'_i$, $\eta'_i = \sum_{k=1}^{n} \frac{a_i dx}{x - \lambda_k} = \sum_{k=1}^{n} \sum_{\ell=1}^{k} a_{\ell} \omega_k + \sum_{\ell=1}^{n} \frac{a_{\ell} dx}{x - \lambda_{\ell}}$. Since $\text{Res}_{\infty} \eta'_i = 0$, $\sum_{k=1}^{n} a_{\ell}$ the sum of all residues of η'_i is 0.

$a_i = \text{Res}_{\lambda_i} \eta'_i = \prod_{k=1}^{n}(\lambda_i - \lambda_k)$ and we have $\eta'_i = \frac{\omega_i}{\prod_{k=(\lambda_i - \lambda_k)}} + \sum_{k>i} c_k \omega_k$ for some constants c_k.

Therefore the period determinant is

$$\det(\int_{\delta_j} \eta_i) = \frac{1}{\prod_{i<j}(\lambda_i - \lambda_j)} \det(\int_{\delta_j} \omega_i),$$
which finishes the proof for rank 1 case. In higher rank case, we have multiple contribution of the constant to its rank. Hence we obtain the power of the vandermonde matrix in the denominator.

In [5] and [8], the authors treat the determinant of the period matrix

\[
\left(\int_{\delta_j} \prod_{k=1}^n (x - \lambda_k)^{s_k-1} x^{i-1} dx \right)_{1 \leq i, j \leq n-1},
\]

where \(\delta_j\) is as above. The integration of each entry is, in fact, the pairing

\[
\int_{\delta_j} \prod_{k=1}^n (x - \lambda_k)^{s_k-1} x^{i-1} dx = < \delta_j \otimes \prod_{k=1}^n (x - \lambda_k)^{s_k}, \eta_i >
\]

for a rank 1 connection \(\nabla = d + \sum_{k=1}^n \frac{s_k}{\lambda_k - x} dx\) on \(\mathbb{A}^1\) and \(\eta_i\) are the same as we have described before.

Using Proposition 6, we obtain the period determinant of the above connection as

\[
\det \left(\int_{\delta_j} \prod_{k=1}^n (x - \lambda_k)^{s_k-1} x^{i-1} dx \right) = \frac{\Gamma(s_i) \cdots \Gamma(s_n)}{\Gamma(s_1 + \cdots + s_n)} \prod_{i<j} (\lambda_j - \lambda_i) \prod_{i=1}^n (\lambda_i - \eta_i)^{n-1}
\]

in \(\mathbb{C}^*\).

5. Period integral

In this section, we want to evaluate the integration via an approximation. As we have seen earlier, \(\pi_*(\nabla)\) splits into \((O_{\mathbb{A}^1}, d + dy) \oplus (V, \nabla')\) for a rank 2 connection \(\nabla'\). Firstly, before applying the results of Terasoma for the approximation, we have to check if the rank 2 part of \(\pi_*(\nabla)\) satisfies the condition on eigenvalues of the residues. Let \(D = \{z_1, \cdots, z_n\}\) be a nonempty set of points in \(\mathbb{A}^1\). For a connection \(\nabla\) over \(\mathbb{A}^1\), possibly singular, we denote by \(dD\) the standard exterior differentiation on \(O_{\mathbb{A}^1}(-D)\) and define \(\nabla_D := \nabla \otimes dD\).

When \(\lambda^2 - \lambda + 1 \neq 0\), the residue of \(\nabla'\) at \(\{\pm \sqrt{f(x_i)}\}\) has two eigenvalues 0 and \(-1/2\). This means Terasoma’s result is not directly applicable. In case \(\lambda^2 - \lambda + 1 = 0\), the eigenvalues are \(1/3, 2/3\).

For the generic case \(\lambda^2 - \lambda + 1 \neq 0\), we modify \(\nabla\) to satisfy the eigenvalue condition, tensoring the rank 1 connection \((O_{\mathbb{A}^1}(-D), d + \varkappa)\) where \(\varkappa = (\frac{1}{y - \sqrt{f(x_i)}} + \frac{1}{y + \sqrt{f(x_i)}}) dy\). Then the new connection obtained is \((O_{\mathbb{A}^1}(-D), d + \varkappa) \otimes \pi_*(O_{\mathbb{A}^1}, \nabla) = \pi_* \pi^*(O_{\mathbb{A}^1}(-D), d + dy + \varkappa)\) and this has regular singularities at \(D\) with the eigenvalues 1, 3/2 of the residues at \(D\).

We will calculate the period determinant for the above connection \(\pi_*(\nabla_D)\). The generic case \(\lambda^2 - \lambda + 1 \neq 0\) will be treated first. Since \(\pi_*(\nabla_D)\) splits into a direct sum of a rank 1 connection and a rank 2 connection, the period determinant is the product of the period of rank 1 part and that of rank 2 part. The period determinant of a rank 1 irregular connection of the form \(\nabla' = d + dF + \sum_{i=1}^n \frac{s_i dx}{x - \lambda_i}\) was evaluated by Terasoma:

Theorem 6 (Terasoma[4]). Let \(\nabla' = d + dF + \sum_{i=1}^n \frac{s_i dx}{x - \lambda_i}\) be a connection on \(\mathbb{A}^1\) for a polynomial \(F\). Let \(I_i\) be a fixed path from \(\lambda_i\) to \(\lambda_{i+1}\) for \(i = 1, \cdots, n - 1\) and \(J_i\) be a fixed path from \(\lambda_n\) to \(\infty\) along the \(i\)-th rapid decay sector for \(i = 1, \cdots, \deg(F)\). Taking the basis \(\eta_j = \frac{x^{j-1} dx}{\prod_{i=1}^n (x - \lambda_i)}\) of \(H^1_{dR}(\mathbb{A}^1, \nabla)\) and the basis \(\delta_j :=\)
\(I_j \otimes \prod_{k=1}^{n}(x-\lambda_k)^{s_k} \exp(F(x)) \) \((i=1, \ldots, n-1)\) and \(J_j \otimes \prod_{k=1}^{n}(x-\lambda_k)^{s_k} \exp(F(x)) \) \((j=1, \ldots, \deg(F))\), we have the determinant of the period matrix
\[
D = \det(< \delta_j, \eta_i >) = (2\pi)^{(d-1)/2} \Gamma(s_1) \cdots \Gamma(s_n) (da_d)^{s-\delta(d-1)/2}(-1)^{d-s+d(d-1)/4}
\]
\[
\times \prod_{i=1}^{n} \prod_{j \neq i}^{n} (\lambda_i - \lambda_j)^{s_i-1} \prod_{i<j} (\lambda_j - \lambda_i))
\]
\[
\times \prod_{i=1}^{n} \exp(F(\lambda_i)) \prod_{F(u)=0} \exp(F(u)),
\]
in \(\mathbb{C}^* \), where \(s = s_1 + \cdots + s_n \).

The rank 1 part of \(\pi_*(\nabla_D) \) is \(d + dy + \varpi \). Applying the formula, we have the period determinant of the rank 1 part
\[
D = (\sqrt{f(x_1)} + \sqrt{f(x_2)})(2\sqrt{f(x_1)}2\sqrt{f(x_2)})(\sqrt{f(x_1)} - \sqrt{f(x_2)})
\]
\[
\times (\sqrt{f(x_1)} - \sqrt{f(x_2)})(-2\sqrt{f(x_2)})(-\sqrt{f(x_2)} - \sqrt{f(x_1)})
\]
\[
= 2 \sqrt{f(x_1)} \sqrt{f(x_2)}(f(x_1) - f(x_2))^2
\]
in \(\mathbb{C}^* \).

For simplicity, we will denote
\[
\omega = \frac{2ydy}{3(y^2-f(x_1))(y^2-f(x_2))} \in \Gamma(A^1, \Omega(\log D)).
\]

The rank 2 part has the connection
\[
\nabla_1 = (d + dy) \otimes \nabla_D
\]
\[
= d + Idy + \varpi
\]
\[
+ \left(\frac{1}{2} \lambda(\lambda+1)(2\lambda^2-3\lambda+2) + y^2 - \frac{2}{9} \lambda(\lambda+1) - \frac{2}{9} \lambda(\lambda+1)^2 + 2y^2 \right) \omega.
\]

We are now prepared to approximate the integrations. Note that the residue of the new rank 2 connection has 1,3/2 at each point of \(D \).

Let \(e_1, e_2 \) be the standard basis of \(\Gamma(F^1, \mathcal{O}^{\otimes 2}) \) and \(e_1^*, e_2^* \) be the dual so that \(< e_i, e_j^* > = \delta_{ij} \). Let \(\gamma_i \) be a fixed path from 0 to \(-\sqrt{f(x_1)}, \sqrt{f(x_1)}, -\sqrt{f(x_2)}, \sqrt{f(x_2)}\) respectively, for \(i = 1, 2, 3, 4 \). \(\gamma_\infty \) is a path from 0 to \(\infty \) along the rapid decaying sector around \(\infty \). \(I_j \) is the chain \(\gamma_{i+1} - \gamma_i \) for \(i = 1, 2, 3 \) and \(I_4 := \gamma_\infty - \gamma_4 \). With this notation, we have the following cycles as a basis for \(H_{1, \text{reg}}(A^1, D, \nabla_1^*) \):
\[
C_{j,b} := I_j \otimes (\exp y \cdot \text{Sol}(\nabla_1^*)) (e_b^*), \quad \text{for } j = 1, \ldots, 4 \text{ and } b = 1, 2 \text{ and } H_{1, \text{dR}}(A^1, \nabla_1) \text{ has a basis}
\]
\[
\eta_{h,a} := \frac{y^{i-1}dy}{(y-\sqrt{f(x_1)})(y+\sqrt{f(x_1)})(y-\sqrt{f(x_2)})(y+\sqrt{f(x_2))}} \otimes e_a
\]
for \(i = 1, 2, 3, 4 \) and \(a = 1, 2 \).

The pairing of \(\eta_{h,a} \) and \(C_{j,b} \) is the integration
\[
P_{h,j,b} := < \eta_{h,a}, C_{j,b} >
\]
\[
= \int_{I_j} \frac{y^{i-1} \exp y < e_a, \text{Sol}(\nabla_1^*)(e_b^*) > dy}{(y-\sqrt{f(x_1)})(y+\sqrt{f(x_1)})(y-\sqrt{f(x_2)})(y+\sqrt{f(x_2))}}
\]
Let \(I_j^{(m)} \) be \(I_j \) for \(i = 1, 2, 3 \) and \(I_4^{(m)} \) be \(\gamma_{(-m)} - \gamma_4 \), where \(\gamma_{(-m)} \) is a path from 0 to \(-m\) sitting in the rapid decay sector of \(\nabla_1^* \) near \(\infty \) and converges uniformly to \(\gamma_\infty \). The above integration is approximated by

\[
P_{(m),i,j,a,b} = \int_{I_j^{(m)}} \frac{y^{i-1}(1 + \frac{m}{2})^m < e_a, \text{Sol} (\nabla_1^*) (e_b^*) > dy}{(y - \sqrt{f(x_1)})(y + \sqrt{f(x_1)})(y - \sqrt{f(x_2)})(y + \sqrt{f(x_2))}}
\]

\[
= \left(\frac{1}{m} \right)^m \int_{I_j^{(m)}} \frac{y^{i-1}(y + m)^{m+1} < e_a, \text{Sol} (\nabla_1^*) (e_b^*) > dy}{(y - \sqrt{f(x_1)})(y + \sqrt{f(x_1)})(y - \sqrt{f(x_2)})(y + \sqrt{f(x_2))}}
\]
as \(m \) tends to \(\infty \).

This appears as the period integration of a regular singular connection

\[
\nabla_{(m)} = (d + \frac{(m + 1)dy}{y + m}) \otimes \nabla' = d + I(m + 1)dy \quad \text{and} \quad I \omega \quad \text{as follows:}
\]

\[
\begin{align*}
(\nabla_{(m)}, y - \sqrt{f(x_1)})\gamma_1 &= (2 \sqrt{f(x_1)})^{5/2}(f(x_1) - f(x_2))^{5/2}(\sqrt{f(x_1)} + m)^{2(m + 1)}, \\
(\nabla_{(m)}, y + \sqrt{f(x_1)})\gamma_2 &= (-2 \sqrt{f(x_1)})^{5/2}(f(x_1) - f(x_2))^{5/2}(-\sqrt{f(x_1)} + m)^{2(m + 1)}, \\
(\nabla_{(m)}, y - \sqrt{f(x_2)})\gamma_3 &= (2 \sqrt{f(x_2)})^{5/2}(f(x_2) - f(x_1))^{5/2}(\sqrt{f(x_2)} + m)^{2(m + 1)}, \\
(\nabla_{(m)}, y + \sqrt{f(x_2)})\gamma_4 &= (-2 \sqrt{f(x_2)})^{5/2}(f(x_2) - f(x_1))^{5/2}(-\sqrt{f(x_2)} + m)^{2(m + 1)}, \\
(\nabla_{(m)}, y + m)^{\gamma_{-m}} &= (m^2 - f(x_1))^{5/2}(m^2 - f(x_2))^{5/2} \quad \text{and} \\
(\nabla_{(m)}, \frac{1}{y})_{\gamma_{\infty}} &= 1.
\end{align*}
\]

The Gamma factors are

\[
\Gamma_{\pm \sqrt{f(x)}}(\nabla_{(m)}) = \Gamma(1)\Gamma(\frac{3}{2}) - \frac{1}{2} = \frac{\sqrt{\pi}}{2}
\]

\[
\Gamma_{-m}(\nabla_{(m)}) = \Gamma(m + 1)^2
\]

and

\[
\Gamma_{\infty}(\nabla_{(m)}) = \Gamma((m + 1) + \frac{14}{3}) \cdot \Gamma((m + 1) + \frac{16}{3}).
\]
With the above factors, we have the period determinant for the regular singular connection $\nabla_{(m)}$ with respect to the basis chosen below.

$$C_{j, b}^{(m)} := I_j^{(m)} \otimes \text{Sol}(\nabla_{(m)})(e_b^i)$$

$$\omega_{1a}^{(m)} := \frac{1}{y + \sqrt{f(x_1)}} - \frac{1}{y - \sqrt{f(x_1)}} dy \otimes e_a,$$

$$\omega_{2a}^{(m)} := \frac{1}{y - \sqrt{f(x_1)}} - \frac{1}{y + \sqrt{f(x_2)}} dy \otimes e_a,$$

$$\omega_{3a}^{(m)} := \frac{1}{y + \sqrt{f(x_2)}} - \frac{1}{y - \sqrt{f(x_2)}} dy \otimes e_a,$$

$$\omega_{4a}^{(m)} := \frac{1}{y - \sqrt{f(x_2)}} - \frac{1}{y + m} dy \otimes e_a.$$

The period determinant of $\nabla_{(m)}$ with respect to $\omega_{i,a}^{(m)}$ and $C_{j,b}^{(m)}$ obtained by the application of Theorem 4 is as follows:

$$D_{(m)} = \det(< C_{j, b}^{(m)}, \omega_{i,a}^{(m)}>)$$

$$= 2^6 \pi^2 f(x_1)^{5/2} f(x_2)^{5/2} (f(x_1) - f(x_2))$$

$$\times (m^2 - f(x_1))^2(m+1+5/2)(m^2 - f(x_2))^2(m+1+5/2)$$

$$\times \frac{\Gamma(m + 1)^2}{\Gamma((m + 1) + \frac{12}{5}) \Gamma((m + 1) + \frac{18}{5})}.$$

The above value will not converge, but using Proposition 5 we obtain a convergent sequence of period determinants

$$P_{(m)} := \det(P_{(m),i,j,a,b}) = (\frac{1}{m})^{8m} \frac{D_{(m)}}{\Delta_{(m)}}$$

where $\Delta_{(m)}$ is the Vandermonde determinant for $\pm \sqrt{f(x_1)}, \pm \sqrt{f(x_2)}, -m$ and $\Delta_{(m)}$ is equal to

$$-2^2 \sqrt{f(x_1)} \sqrt{f(x_2)} (f(x_2) - f(x_1))^2 (m^2 - f(x_1))(m^2 - f(x_2)).$$

Together with the above, the period determinant of $\nabla_{(m)}$ with respect to $\eta_{i,a}^{(m)}$ and $C_{j,b}^{(m)}$ is

$$P_{(m)} = \det(P_{(m),i,j,a,b}) = \det(< \eta_{i,a}^{(m)}, C_{j,b}^{(m)}>)$$

$$= (\frac{1}{m})^{8m} \frac{D_{(m)}}{\Delta_{(m)}}$$

$$= \frac{2^2 \pi^2 f(x_1)^{3/2} f(x_2)^{3/2}}{(f(x_1) - f(x_2))^3}$$

$$\times (\frac{1}{m})^{8m} (m^2 - f(x_1))^{2m}(m^2 - f(x_2))^{2m}$$

$$\times m^{-10} (m^2 - f(x_1))^{5/2}(m^2 - f(x_2))^{5/2}$$

$$\times m^{10} \frac{\Gamma(m + 1)^2}{\Gamma((m + 1) + \frac{12}{5}) \Gamma((m + 1) + \frac{18}{5})},$$
which converges to P the period determinant of ∇_1. Each term in the above converges as follows:

\[
\begin{align*}
\left(\frac{1}{m}\right)^{8m}(m^2 - f(x_1))^2m(m^2 - f(x_2))^{2m} & \rightarrow 1 \\
(m^{-10}(m^2 - f(x_1))^{5/2}(m^2 - f(x_2))^{5/2} & \rightarrow 1 \\
\frac{m^{10}}{\Gamma((m + 1)^2)} & \rightarrow 1.
\end{align*}
\]

Therefore P is

\[
\frac{2^{2\pi^2}f(x_1)^{3/2}f(x_2)^{3/2}}{(f(x_1) - f(x_2))^3}.
\]

Note the above value is found in \mathbb{C}^*.

The period determinant of $\pi_*(\nabla)_D = \pi_*(\pi^*(d + dy + \omega))$ is then,

\[
(\text{Period of } (\mathcal{O}_A, d + dy + \omega)) \times (\text{Period of } \nabla_1)
\]

\[
= \frac{2^{4\pi^2}f(x_1)^2f(x_2)^2}{f(x_1) - f(x_2)}.
\]

6. Comparision

Recall that U is the affine Legendre elliptic curve defined by the equation $y^2 = x(x-1)(x-\lambda)$ and $\nabla = d + dy$. Let D be as in the previous section and $\Sigma := \pi^{-1}D$ in U. Then using the projection formula, $\pi_*(\nabla)_D = d_D \otimes \pi_*\nabla$, where d_D and ∇_D are defined as before. In the same manner, we denote by ∇_Σ, the twisted connection $d_\Sigma \otimes \nabla$ on $\mathcal{O}(-\Sigma)$.

Then π induces a canonical isomorphism of de Rham cohomologies:

\[\pi^*: H^1_{dR}(\mathbb{A}^1, \nabla_D) \rightarrow H^1_{dR}(U, \nabla_\Sigma).\]

If $\omega = \pi^*\eta$ a de Rham form in $H^1_{dR}(U, \nabla_\Sigma)$ for a η in $H^1_{dR}(\mathbb{A}^1, \nabla_D)$, then the functoriality of the pairing implies $< \gamma, \omega > = < \gamma, \pi^*\eta > = < \pi_*\gamma, \eta >$. Hence the period of $\pi_*(\nabla)_D$ that we calculated previously is the same as that of ∇_Σ on U.

The following short exact sequence of de Rham complexes

\[
\begin{align*}
\mathcal{O}_U(-\Sigma) \longrightarrow \mathcal{O}_U \longrightarrow \mathcal{O}_\Sigma, \\
\nabla_\Sigma \longrightarrow \nabla \longrightarrow \Omega_U \longrightarrow 0
\end{align*}
\]

yields

\[
H^0_{dR}(U, \nabla) \rightarrow H^0(U, \mathcal{O}_\Sigma) \rightarrow H^1_{dR}(U, \nabla_\Sigma) \rightarrow H^1_{dR}(U, \nabla) \rightarrow H^1(U, \mathcal{O}_\Sigma).
\]

Since ∇ admits no (single-valued) solution on U, $H^0_{dR}(U, \nabla) = 0$ and $H^1(U, \mathcal{O}_\Sigma)$ vanishes by dimension reason, $H^1_{dR}(U, \nabla_\Sigma)$ is an extension of $H^1_{dR}(U, \nabla)$ by $H^0(U, \mathcal{O}_\Sigma)$.

In the homology side, $\mathcal{H}^1_{irreg}(\Sigma, \nabla^*)$ is isomorphic to $\mathcal{H}^1_{irreg}(\mathbb{A}^1, D, \pi_*(\nabla^*))$ via π_*. The relative cohomology appears in the short exact sequence of the singular complexes valued in ∇^*:

\[
0 \rightarrow C^*_{\text{irreg}}(\Sigma, \nabla^*) \rightarrow C^*_{\text{irreg}}(U, \nabla^*) \rightarrow C^*_{\text{irreg}}(U, \Sigma, \nabla^*) \rightarrow 0,
\]

which also yields a long exact sequence of homologies:

\[
\begin{align*}
H^1_{\text{irreg}}(\Sigma, \nabla^*) \rightarrow H^1_{\text{irreg}}(U, \nabla^*) \rightarrow H^1_{\text{irreg}}(U, \Sigma, \nabla^*) \rightarrow H^0_{\text{irreg}}(\Sigma, \nabla^*) \rightarrow H^0_{\text{irreg}}(U, \nabla^*)
\end{align*}
\]
In the above sequence, as in cohomology side, we have vanishing $H^1_{\text{irreg}}(\Sigma, \nabla^*)$ and $H^0_{\text{irreg}}(U, \nabla^*)$, respectively, by dimension reason and by the duality of de Rham cohomology and homology for irregular connections.

Theorem 7. Let $\gamma \otimes \text{Sol}(\nabla^*)$ be a cycle in $H^1_{\text{irreg}}(U, \nabla^*)$, thus a cycle in $H^1_{\text{irreg}}(U, \Sigma, \nabla^*)$. Suppose $\omega = \nabla f$ for a function f in $H^0(U, \mathcal{O}_\Sigma)$, then the pairing of $\gamma \times \text{Sol}(\nabla^*)$ with ∇f is 0.

Proof. The pairing is the integration $\langle \gamma \otimes \text{Sol}(\nabla^*), \nabla \rangle = \int_\gamma < \text{Sol}(\nabla^*), \nabla f >$. This is equal to

$$\int_\gamma (d < \text{Sol}(\nabla^*), f > - < \nabla^*(\text{Sol}(\nabla^*)), f >)$$

(20)

$$= \int_\gamma d < \text{Sol}(\nabla^*), f >= \int_{\partial \gamma} < \text{Sol}(\nabla^*), f >$$

by Stokes’ theorem.

For a closed cycle γ, $\partial \gamma = 0$. In this case we have nothing to prove. Otherwise, a tubular neighborhood of $\partial \gamma$ in γ lies in the rapid decay sector of ∇^* around ∞, thus the integration yields 0. \qed

Using the previous theorem, we conclude the following:

Corollary 8. The period determinant of ∇_Σ is

$$\text{per}(U, \Sigma, \nabla_\Sigma) = \text{per}(U, \nabla) \times \text{per}(\Sigma, \nabla)$$

in \mathbb{C}^*/k^*.

Σ is given by the principal ideal $I := ((y^2 - f(x_1))(y^2 - f(x_2)))$ in $R := k[x, y]/(y^2 - f(x))$. It follows $H^0(U, \mathcal{O}_\Sigma) = R/I$. So we have a basis: $\{1, y, y^2, y^3, x, xy, xy^2, xy^3\}$ of $H^0(U, \mathcal{O}_\Sigma)$, whereas $H^0_{\text{irreg}}(\Sigma, \nabla^*)$ has a basis $\{p \otimes \exp y | p \in \Sigma\}$.

Let x_3 (resp. x_4) be the root of $f(x) - f(x_1)$ (resp. of $f(x) - f(x_2)$) such that $x_3 \neq x_1$ (resp. $x_4 \neq x_2$). For a point $p = (x_i, \pm \sqrt{f(x_i)})$, $\langle p \otimes \exp y, x^a y^b > = x^a_i (\pm \sqrt{f(x_i)})^b \exp(\pm \sqrt{f(x_i)})$, for $a = 0, 1$ and $b = 1, 2, 3, 4$. M_i is the following (2×4)-matrix:

$$M_i := \begin{pmatrix}
1 & \sqrt{f(x_i)} & f(x_i) & f(x_i) \sqrt{f(x_i)} \\
1 & -\sqrt{f(x_i)} & f(x_i) & -f(x_i) \sqrt{f(x_i)}
\end{pmatrix}.$$

The period matrix in consideration is

$$Q := L \begin{pmatrix}
M_1 & x_1 M_1 \\
M_2 & x_2 M_2 \\
M_1 & x_3 M_1 \\
M_2 & x_4 M_2
\end{pmatrix},$$

where $L = (l_{ij})$ is a $(8, 8)$-diagonal matrix with entries

$$l_{ii} = \begin{cases}
\exp(f(x_i)) & \text{for } i \equiv 1 \pmod{4} \\
\exp(-f(x_1)) & \text{for } i \equiv 2 \pmod{4} \\
\exp(f(x_2)) & \text{for } i \equiv 3 \pmod{4} \\
\exp(-f(x_2)) & \text{for } i \equiv 0 \pmod{4}
\end{cases}.$$
It follows
\[
\det Q = \det \begin{pmatrix}
M_1 & x_1M_1 \\
M_2 & x_2M_2 \\
M_1 & x_3M_1 \\
M_2 & x_4M_2
\end{pmatrix}
\]

(21)
\[
= \det \begin{pmatrix}
M_1 & x_1M_1 \\
M_2 & x_2M_2 \\
0 & (x_3 - x_1)M_1 \\
0 & (x_4 - x_2)M_2
\end{pmatrix}
\]
\[
= (x_3 - x_1)^2(x_4 - x_2)^2\Delta^2_{\Sigma},
\]

where Δ_{Σ} is the Vandermonde determinant for $\sqrt{f(x_1)}$, $-\sqrt{f(x_1)}$, $\sqrt{f(x_2)}$ and $-\sqrt{f(x_2)}$. This is $\Delta_{\Sigma} = 2^2 \sqrt{f(x_1)\sqrt{f(x_2)(f(x_2) - f(x_1))}}$.

\[x_1, x_3\text{ are the two roots of}
\]
\[
\frac{f(x) - f(x_1)}{x - x_1} = x^2 + (x_1 - (\lambda + 1))x + x_1^2 - (\lambda + 1)x_1 + \lambda.
\]

So,
\[
(x_1 - x_3)^2 = \frac{-3x_1^2 + 2(\lambda + 1)x_1 + (\lambda + 1)^2}{4}.
\]

By the same way, we obtain
\[
(x_2 - x_4)^2 = \frac{-3x_2^2 + 2(\lambda + 1)x_2 + (\lambda + 1)^2}{4}
\]
and thus we have
\[
(x_1 - x_3)^2(x_2 - x_4)^2 = 2^{-4}(\lambda^2 - \lambda + 1)^2.
\]

(22)

Altogether,
\[
\det Q = (x_3 - x_1)^2(x_4 - x_2)^2\Delta_{\Sigma}^2,
\]
\[
= (\lambda^2 - \lambda + 1)^2 f(x_1)f(x_2)(f(x_2) - f(x_1))^4.
\]

After all, we obtain the period of $\nabla = d + dy$ over U:
\[
\frac{2^2\pi^2 f(x_1)f(x_2)}{(\lambda^2 - \lambda + 1)^2(f(x_1) - f(x_2))^2}.
\]

To see the value explicitly, we need the values of $f(x_1) - f(x_2)$ and $f(x_1)f(x_2)$.
\[
f(x_1)f(x_2) = -\frac{1}{33}\lambda^2(\lambda - 1)^2,
\]
and
\[
(f(x_1) - f(x_2))^2 = (f(x_1) + f(x_2))^2 - 4f(x_1)f(x_2)
\]
\[
= \frac{2^4}{3^9}(\lambda^2 - \lambda + 1)^3.
\]

It follows $f(x_1) - f(x_2) = \frac{2^2}{3^9}(\lambda^2 - \lambda + 1)\sqrt{\lambda^2 - \lambda + 1}$, for a suitable choice of the branch of the square root.

Finally, we have the period explicitly:
Theorem 9. The period determinant of $\nabla = d + dy$ over the affine Legendre elliptic curve $y^2 = x(x-1)(x-\lambda)$ for $\lambda \neq 0, 1, \frac{\lambda + 1}{3}$ is

$$-2^{-6}3^{12}\pi^2 \frac{\lambda^2(\lambda - 1)^2}{(\lambda^2 - \lambda + 1)^9\sqrt{\lambda^2 - \lambda + 1}}$$

in \mathbb{C}^*/k^*.

7. Exceptional case: $\lambda^2 - \lambda + 1 = 0$

Finally, we handle the case $\lambda^2 - \lambda + 1 = 0$. Recall that $x_1 = \frac{\lambda + 1}{3}$ is a double root of $f'(x)$ as well as a triple root of $f(x) - f(x_1)$.

Again using the projection formula, we see $\pi_*(\nabla) \simeq (\mathcal{O}_{\Lambda^1}, d + dy) \oplus (\ker \text{Tr}, (d + dy) \otimes \nabla')$, where ∇' is, as before, the connection on the rank 2 part of $\pi_*(\mathcal{O}_U, d)$:

$$\nabla' = d + \begin{pmatrix} 1 & -\frac{2}{3}(\lambda + 1) \\ 0 & 2 \end{pmatrix} \omega'$$

with $\omega' = \frac{2\pi dy}{3(\sqrt{f(x_1)})}$. $$(d + dy) \otimes \nabla'$$ has regular singularities at $D = \{ \pm \sqrt{f(x_1)} \}$. At each point of D, the residue of ∇' has two eigenvalues $1/3, 2/3$.

Note $H^1_{dR}(\Lambda^1, d + dy)$ is trivial, so the period of $\pi_*(\nabla)$ is equal to that of $(\ker \text{Tr}, (d + dy) \otimes \nabla')$.

Let $\Sigma := \pi^{-1}D = \{ x_1, \pm \sqrt{f(x_1)} \} \subset U$. As we have seen in the previous section, we have the following short exact sequence:

$$0 \to H^0(\Sigma, \mathcal{O}_\Sigma) \to H^1_{dR}(U, \nabla_\Sigma) \to H^1_{dR}(U, \nabla) \to 0.$$ Note that π^* induces a canonical isomorphism between $H^1_{dR}(U, \nabla_\Sigma)$ and $H^1_{dR}(\Lambda^1, \pi_*(\nabla)_D)$.

In the other hand the homologies make the short exact sequence:

$$0 \to H^1_{\text{irreg}}(U, \nabla^*) \to H^1_{\text{irreg}}(U, \Sigma, \nabla^*) \to H^1_{\text{irreg}}(\Sigma, \nabla^*) \to 0.$$ Therefore the period in consideration $\text{per}(U, \nabla)$ satisfies

$$\text{per}(U, \nabla_\Sigma) = \text{per}(\Sigma, \nabla) \cdot \text{per}(U, \nabla).$$

Using the identification $\text{per}(U, \nabla_\Sigma) = \text{per}(\Lambda^1, \pi_*(\nabla))$ will be approximated as in the previous section.

For the approximation, we have to find the cycles generating $H^1_{\text{irreg}}(\Lambda^1, ((d + dy) \otimes \nabla')^*)$. Let γ_1, γ_2 be a fixed path from 0 to $-\sqrt{f(x_1)}$ and to $\sqrt{f(x_1)}$ in Λ^1 respectively. γ_m is a path from 0 to $-m$. Define $I_1^{(m)} := \gamma_2 - \gamma_1$ and $I_2^{(m)} := \gamma_m - \gamma_2$. Note that $I_1^{(m)}$ is independent of m and $I_2^{(m)}$ goes to ∞ along the rapid decay sector of ∇^*. Let $I_1 = I_1^{(m)}$ and $I_2 = \lim_{m \to \infty} I_2^{(m)}$. Then $I_i \otimes \text{Sol}(\nabla^*)(e_q^*)$ for $i, p = 1, 2$ make a basis for $H^1_{\text{irreg}}(\Lambda^1, ((d + dy) \otimes \nabla')^*)$.

In the other hand, $\eta_i(e_q) := \frac{y^{i-1}}{y^2 - f(x_1)} dy \otimes e_q$ for $i = 1, 2$, which is a basis for $H^1_{dR}(\Lambda^1, (d + dy) \otimes \nabla')$.

Let $\eta_i = \frac{y^{i-1} dy}{y^2 - f(x_1)}$. We introduce a new connection $\nabla^{(m)} := (d + \frac{m+1}{m} dy) \otimes \nabla'$ which approximates the rank 2 part of $\pi_*(\nabla)$. Then the (i, j, p, q) entry of the
period matrix is

\[
< I_j \otimes \exp y \text{Sol}(\nabla'^*)(e^*_p), \eta_i(e_q) > = \int_{I_j} < \text{Sol}(\nabla'^*_1)(e^*_p), e_q > \exp y \cdot \eta_i
\]

(24)

\[
= \lim_{m \to \infty} \frac{1}{m^m} \int_{I_j^{(m)}} < \text{Sol}(\nabla'^*_1)(e^*_p), e_q > \frac{(y + m)^m y^{i-1}}{y^2 - f(x_1)} dy
\]

\[
= \lim_{m \to \infty} \frac{1}{m^m} < I_j^{(m)} \otimes \text{Sol}(\nabla^{(m)})(e^*_p), \eta^{(m)}_i(e_p) >
\]

where \(\eta^{(m)}_i(e_p)\) is the de Rham form \(\eta^i - \frac{1}{y} dy (y^2 - f(x_1))^{m} \otimes e_p\).

We denote the determinant of the above period matrix by \(P(m)\).

Applying the product formula, we obtain

\[
P(m) = \frac{1}{m^{4m} \Delta_{(m)}^2} (\nabla^{(m)}, y - \sqrt{f(x_1)})_{\gamma_1} \cdot (\nabla^{(m)}, y + \sqrt{f(x_1)})_{\gamma_2}
\]

(25)

\[
\times (\nabla^{(m)}, y + m)_{\gamma_m} \cdot (\nabla^{(m)}, \frac{1}{y})^{-1}_{\infty}
\]

\[
\times \Gamma(\nabla^{(m)})_{-\sqrt{f(x_1)}} \cdot \Gamma(\nabla^{(m)})_{\sqrt{f(x_1)}} \cdot \Gamma(\nabla^{(m)})_{-m} \cdot \Gamma(\nabla^{(m)})^{-1}_{\infty}.
\]

The tame symbols are

(26) \((\nabla^{(m)}, y - \sqrt{f(x_1)})_{\gamma_1} = 2\sqrt{f(x_1)} (\sqrt{f(x_1)} + m)^{2(m + 1)},\)

(27) \((\nabla^{(m)}, y + \sqrt{f(x_1)})_{\gamma_2} = -2\sqrt{f(x_1)} (-\sqrt{f(x_1)} + m)^{2(m + 1)},\)

(28) \((\nabla^{(m)}, y + m)_{\gamma_m} = m^2 - f(x_1),\)

and

(29) \((\nabla^{(m)}, \frac{1}{y})_{\infty} = 1.\)

And the Gamma factors are

(30) \(\Gamma_{\pm \sqrt{f(x_1)}}(\nabla^{(m)}) = \Gamma(\frac{1}{3}) \Gamma(\frac{2}{3}),\)

(31) \(\Gamma_{-m}(\nabla^{(m)}) = \Gamma(m + 1)^2,\)

(32) \(\Gamma_{\infty}(\nabla^{(m)}) = \Gamma(\frac{2}{3} + (m + 1)) \cdot \Gamma(\frac{4}{3} + (m + 1)).\)

The period determinant \(P(m)\) is the product of the followings, which converges:

(33) \(\Gamma(\frac{1}{3})^2 \Gamma(\frac{2}{3})^2\)

(34) \(\frac{(m^2 - f(x_1))^{2m}}{m^{4m}} \to 1\)

(35) \(\frac{m^2 - f(x_1)}{m^2} \to 1\)
From the functional equation \(\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)} \) satisfied by the Gamma function, we obtain
\[
\frac{m^2 \Gamma(m+1)}{\Gamma\left(\frac{2}{3} + (m+1)\right)\Gamma\left(\frac{4}{3} + (m+1)\right)} \to 1
\]
Therefore, \(\text{per}(U, \nabla) = \Gamma\left(\frac{1}{3}\right)^2 \Gamma\left(\frac{2}{3}\right)^2 = \frac{8\pi^2}{3} \).
Since \(1, y \) is a basis of \(\Gamma(U, \mathcal{O}_\Sigma) \),
\[
\text{per}(\Sigma, \nabla) = \det\begin{pmatrix} 1 & -\sqrt{f(x_1)} \\ 1 & \sqrt{f(x_1)} \end{pmatrix} = 2\sqrt{f(x_1)}.
\]
From \(x_1 = \frac{\lambda+1}{3} \) and \(\lambda^2 - \lambda + 1 = 0 \), it follows \(f(x_1) = \frac{2\lambda-1}{9} = \pm \frac{\sqrt{3}}{9} \).
Finally, we obtain the period determinant
\[
\text{per}(U, \nabla) = \frac{\text{per}(U, \nabla)}{\text{per}(\Sigma, \nabla)} = \frac{2^2 \cdot 3^{-1} \pi^2}{2 \cdot 3 (-3)^{1/4}} = \frac{2\pi^2}{(-3)^{1/4}}
\]
in \(\mathbb{C}^*/k^* \).

References

[1] Bloch, S., Esnault, H.: Homology for irregular connections, preprint, Essen, 16 pages, (1999)
[2] Deligne, P.: Equations différentielles à points singuliers réguliers, Springer Lecture Notes in Math. 163 (1970)
[3] Malgrange, B.: Équations différentielles à coefficients polynomiaux, Progress in Math., Birkhäuser 96 (1991)
[4] Saito, T., Terasoma, T.: Determinant of period integrals, J. of AMS, Vol. 10, No. 4, 865–937 (1997)
[5] Terasoma, T.: Exponential Kummer coverings and determinants of hypergeometric functions, Tokyo J. Math. Vol. 16, No. 2, 497–508 (1993)
[6] Terasoma, T.: A product formula for period integrals, Math. Ann. 298, 577–589 (1994)
[7] Terasoma, T.: Confluent hypergeometric functions and wild ramification, J. of Alg. 195, 1–18 (1996)
[8] Varchenko, A. N.: The Euler beta function, the Vandermonde determinant, Legendre’s equation and critical values of linear functions on a configuration of hyperplanes. I, II, Math. USSR Izv., 35, 543–571 (1990); ibid., 36, 155–167 (1991)
[9] Whittaker, E. T., Watson, G. N.: A course of modern analysis , Cambridge University Press (1963)

School of Mathematics, KIAS, Seoul, Korea
E-mail address: bhjun@kias.re.kr