Human collagen produced in plants
More than just another molecule

Oded Shoseyov1,*, Yehudit Posen2, and Frida Grynspan2

1Robert H Smith Institute of Plant Science and Genetics; Robert H Smith Faculty of Agriculture, Food and Environment; Hebrew University of Jerusalem; Rehovot, Israel; 2CollPlant Ltd; Ness-Ziona, Israel; Scintax; Rehovot, Israel

Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-à-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homo- genic, heterotrimeric, thermally stable “virgin” collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications.

Collagen, the most abundant macromolecule of the extracellular matrix (ECM) and connective tissue, is intimately involved in tissue development, remodeling and repair, by providing essential architectural support and affinity-driven regulation of key signaling cascades. A deficient or defective collagen supply gives rise to a variety of severe hereditary ECM disorders, affecting the vasculature, bone, tendons, gums, hair, and skin. Type I collagen is a heterotrimeric protein, composed of two α1 and one α2 polypeptide chains, encoded by the COL1A1 and COL1A2 genes, which are regulated by cytokines and signal transducers and activators of transcription (STATs). The collagen protein undergoes extensive post-translational modifications, before reaching its fully mature and functional state, which require the orchestrated activities of a variety of enzymes, including collagen-specific hydroxylases, glycosyl-trans- ferases, proteinases and one oxidase. The activity of the prolyl 4-hydroxylase (P4H) complex directs the helical conformation of collagen, which dictates the protein’s final thermal stability and viability. In parallel, lysine hydroxylation, driven by the lysyl hydroxylases differentially expressed in tissues (LH1–3), plays a central role in collagen fibrillogenesis, fibril stabilization, and ECM mineralization.5

For centuries, collagen has served as the central element of a myriad of medical and cosmetic products, which harness its biological role in tissue structure and repair processes. Its benefits have been exploited in the design of biomaterials such as wound dressings, dermal patches and fillers, bone and tendon substitutes, and engineered...
tissues, which can be impregnated with exogenous growth factors, drugs, and/or cells. Its function as an integral scaffolding component of the ECM has made it a prime source material in tissue fabrication, which has brought to market functional restoration to injured tissues.1 Such tissue-specific patches have proven particularly advantageous in support of the embedded cells, during both pre- and postimplantation stages, and release cues that promote cell infiltration and vascularization in vivo.3 Its close mimicry of normal environs and dynamic crosstalk with its surroundings enables generation of niches tailored to highly specific applications, such as regeneration of cardiac or bone tissues.4 More specifically, the clinical prospects of processes, such as autologous stem cell transplants or cartilage repair,5 promise to be significantly advanced by the integration of collagen-based biomaterials. Moreover, as a fibroblast attractant, introduction of collagen scaffolds elicits further collagen deposition at the site of treatment,6 triggering a positive feedback loop accelerating regeneration and repair. Due to its considerable biocompatibility, collagen-based products are generally viewed as safe for application, injection, implantation and oral ingestion, while its biodegradability obviates the need for device extraction.

Traditionally, commercial supplies of collagen are extracted from scarce cadaver sources, or from animal sources, where the latter has been reported to evoke both cellular and humoral immune responses in 3–10% of treated patients.8 While these self-limiting reactions generally resolve within a few months, premature resorption and impaired implant function have been observed in association with these adverse responses, which were generally treated with immunosuppressants.9,10 Thus, collagen-based products are explicitly contraindicated in patients demonstrating hypersensitivity to either collagen or to other bovine products or meat. The prevailing pretreatment protocol requires a skin test, where repeat testing, 2–4 weeks after initial testing, is advocated by many practitioners, in efforts to identify the 1–2% of the population which acquires allergy upon subsequent exposure to collagen,11 limiting its use in emergency treatments. In addition to its immunogenicity, animal-derived collagen-based biomaterials bear a risk of prion transmission to human cells.12 In efforts to sidestep these threats, regulatory authorities have limited bovine extraction to either closed herds or herds raised in countries where bovine spongiform encephalopathy (BSE) has never been reported.

While use of human-derived collagens overcomes a number of the drawbacks associated with bovine or porcine-derived collagen, the age, environmental setting, ethnicity and genotypes of the source tissues, dictate the biophysical profile of the derived collagen, yielding marked variability in sample quality. With age, collagen networks undergo intermolecular crosslinking, which has been thought to underlie loss of its osmotic swelling capacities, manifested by reduced elasticity13 and acid solubility,14 and increased resistance to collagenase. In addition, extraction processes introduce unwarranted inter- and intramolecular crosslinks within the collagen, where close to 30% of the total collagen weight can be comprised of molecular structures other than the

Figure 1. A schematic presentation of the key differences between tissue-extracted vs. plant-derived human collagen. Plant-derived human collagen Type I (hCol1) exhibits a natural α-helical structure, with natural cell binding domains, while tissue-extracted collagen is stripped of many of its clinically relevant binding domains, alongside introduction of unwarranted crosslinks, which impact the protein structure and function. Plant-derived human collagen forms functional 3D matrices, surpassing the capacities of their tissue-extracted counterparts. hCol1 provides an optimal medium for cell proliferation and accelerated wound healing, with no concerns of antigenicity and immunogenicity.
The resulting "virgin" collagen lysine residues similar to that of human with a degree of hydroxylated proline and low weight contaminants and decorated oligomer atellocollagen, free of high molecular weight contaminants. The extracted protein is a pure, heterotrimeric atellocollagen, free of high molecular weight contaminants. The resulting material βα and β subunits. The resulting material demonstrates suboptimal solubility and capacity to assemble into highly structured scaffolds.

These limitations, alongside the expanding need for collagen-based therapeutics, have spawned the development of tobacco plant-based expression of recombinant human collagen (rhCOL1). The platform drives simultaneous vacuole-targeted expression of procollagen, P4H-α, P4H-β, and LH3, empowering post-translational modifications critical to collagen maturation, formation of a triple helix structure, and self-assembly of thermally stable, densely packed fibrils. The extracted protein is a pure, heterotrimeric atellocollagen, free of high molecular weight contaminants and decorated with a degree of hydroxylated proline and lysine residues similar to that of human collagen. The resulting "virgin" collagen assembles into a 3D structure with a preserved native α-helical structure, sharply contrasting that of the tissue-extracted collagen structure, a high surface area, integrin binding sites and close-to-perfect "shape memory." Moreover, rhCOL1 fibrils exhibit D-band striations, characteristic of natural collagen fibers (Fig. 1), which play a critical role in the mechanical properties and biofunctionality of collagen. Furthermore, the resulting protein is highly hydrophilic (contact angle of absorption = 0), time of absorption: microseconds), with profound water retaining capacities. This versatile expression system produces considerable yields of highly uniform collagen batches, with physicochemical properties identical to those of its natural "virgin" counterpart, while fully abrogating concerns of anti- genicity, immunogenicity and disease transmission.

Assessment of rhCOL1 scaffolding properties was performed by fabricating electrospun or freeze-dried rhCOL1-based vs. bovine collagen-based scaffolds and sponges. rhCOL1 processing proved simpler and faster (20 min vs. 48 h) and produced rounder fibers of more uniform diameter, when compared with bovine collagen, at concentrations >12% (w/v). In addition, its biocompatibility surpassed that of bovine collagen scaffolds, as manifested by enhanced proliferation of primary cells and approximately 2-fold lower IL-1 secretion upon macrophage exposure to the scaffold. rhCOL1 scaffolds embedded with primary human dermal fibroblasts and primary human epithelial keratinocytes, supported epidermal differentiation and eventual formation of engineered skin, which reached normal values of human capacitance within 21 d in culture. Its capacity to facilitate wound healing processes was evaluated in a comparative study of the performance of an rhCOL1-based gel (VergenixTMFG) to that of a commercial flowable bovine collagen- or human cadaver-based gel applied to full-thickness cutaneous wounds in rats. VergenixTMFG initiated a more rapid healing process, where wound size contracted within 24 h of treatment and 66% closure was observed within 6 d of VergenixTMFG application, in parallel to enhanced reepithelialization of the wound site. Similar results were reported in a porcine full-thickness wound model, where VergenixTMFG brought to 95% wound closure within 21 d, in comparison to the 68% closure achieved with the reference flowable bovine collagen gel product.

The homogenous plant-derived rhCOL1 has also proven a reliable source material for generation of highly ordered collagen surfaces, a feature essential to the mechanically supportive role of

| Table 1. Key physical and biological features of rhCOL1 |
|-----------------|-----------------|-----------------|
| Feature | Advantage | Benefit |
| Human amino acid sequence | Non-immunogenic | Improved biocompatibility |
| Triple helix structure | Improved cell adhesion and cell proliferation | Accelerated healing |
| Non-cross-linked collagen molecules | Higher solubility | Optimal healing processes |
| Homogeneity, liquid crystal formation | Manipulable physical properties (e.g., compression/tensile strength, modulus of elasticity) | Scaffold optimization for various indications |
| Plant-derived material | Virgin non-recycled material | Improved safety |
| Hydrophilicity | Higher solubility | Improved safety |

©2013 Landes Bioscience. Do not distribute
load-bearing tissues. Optimal organiza-
tional hierarchy and collagen fiber align-
ment is essential when attempting to
closely mimic natural microenvironments,
which in turn can promote and elasticity
load-bearing tissues. Optimal organiza-
tional hierarchy and collagen fiber align-
ment is essential when attempting to
closely mimic natural microenvironments,
which in turn can promote and elasticity

References

1. Petropoulos S, Darras WR, Michal M, Yamasaki M. Overexpression of tropoelastin in the dermis in tissue engineering. J Tissue Eng Regen Med 2013; 7: 348-56; PMID:23991038; http://dx.doi.org/10.1002/ term.1245.

2. Hansson LG, Karlsson F. The treatment of bovine collagen allergy with cyclosporin. Dermatol Surg 2009; 35: 925-30; PMID:20010346; http://dx.doi.org/10.1111/j.1524-4725.2008.00767.x.

3. Fisher GJ, Voorhees JJ. Decreased collagen produc-
tion in chronologically aged skin: roles of age-
dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 1998; 153: 1353-8; PMID:9811324; http://dx.doi.org/10.2353/ajpath.2006.051302.

4. Varshney S, Masiarz FR, Sabo KM. Age-related changes in the content of the human skin fibroblasts. J Gerontol 1960; 15:10-4; PMID:14410568; http://dx.doi.org/10.1016/j.biomaterials.2010.12.026.

5. Merken HS, Griffiths CE, Fisher GJ, Hamilton
6. M. Collagen solubility testing, a quality assurance
triggered heterotrimetric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 2008; 19:1307-17; PMID:18854124; http://dx.doi.org/10.1021/bm801053r.

7. Talavera M, Shiiba M. Lysine hydroxylation in varicose veins: a developmental and disability related condition? J Bone Miner Res 2005; 20:81-9; PMID:15619673; http://dx.doi.org/10.1046/j.1524-4705.2004.01075.x.

8. H, Nie L, Wang D, Dai J. Stem-cell-capturing col-
en scaffolds. Tissue Eng Part A 2011; 17:2879-89; http://dx.doi.org/10.1089/ten.tea.2012.0345.

9. Zhang J, Chen B, Xiao Z, Zhang J, Chen L, Zhao Y, Shi Y, Chen X, Yuan S, Li C, Feng Y, Guan J, Zhu Y, Wang C, Yang J, Wei C, Xu Z, Lou Y, Wang D, Dai J. Improved cellularization of articular chondrocytes on a matrix derived from rhCOL1 can set the stage for focused design of tissue-specific specimens applicable in a broad spectrum of medical and pharmaceutical disciplines.

Disclosures of Potential Conflicts of Interest

No potential conflict of interest was

28. Zenggla DE, Li B, Lora RR, Chua CK, Bacharachi M. Collagen solubility testing a quality assurance

to renewable electro-spin nano-fiber fab-

A technical note. J Biomater Sci Polym Ed 2009; 20:1597-606; http://dx.doi.org/10.1080/09205060902974313.

29. Stein H, Wiskinui K, Tzipfis R, Rosenthal M, Anir R, Attas AA, Oksi K, Digan O, Yaron A, Shoskey O. Production of biosynthetic, post-translationally modified, heterotrimetric, human recombinant type-I collagen by a multi-cytoblock in vitro method. J Biomater Sci Polym Ed 2009; 20:1597-606; http://dx.doi.org/10.1080/09205060902974313.

30. Mundy GR, Songmanit RR. Topical tetracyclines in the treatment of biopsy collagen hypersensitivity. Dermatol Surg 2001; 27:990-9; PMID:11503067; http://dx.doi.org/10.1097/00001108-200109000-00015.

31. Klein AW. Techniques for tissue engineering: an ‘a to z’. J Clin Dermatol 2006; 35:107-20; http://dx.doi.org/10.1097/01.JDD.0000268594.87020.3.

32. Finlay WW. Age changes in the redding capacity of the human skin. J Invest Dermatol 1995; 105:285-90; PMID:7543550; http://dx.doi.org/10.1089/ten.2012.0345.

33. Varshney S, Masiarz FR, Sabo KM. Age-related changes in the content of the human skin fibroblasts. J Gerontol 1960; 15:10-4; PMID:14410568; http://dx.doi.org/10.1016/j.biomaterials.2010.12.026.

34. Merken HS, Griffiths CE, Fisher GJ, Hamilton
6. M. Collagen solubility testing, a quality assurance
triggered heterotrimetric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 2008; 19:1307-17; PMID:18854124; http://dx.doi.org/10.1021/bm801053r.

7. Talavera M, Shiiba M. Lysine hydroxylation in varicose veins: a developmental and disability related condition? J Bone Miner Res 2005; 20:81-9; PMID:15619673; http://dx.doi.org/10.1046/j.1524-4705.2004.01075.x.

8. H, Nie L, Wang D, Dai J. Stem-cell-capturing col-
en scaffolds. Tissue Eng Part A 2011; 17:2879-89; http://dx.doi.org/10.1089/ten.tea.2012.0345.

9. Zhang J, Chen B, Xiao Z, Zhang J, Chen L, Zhao Y, Shi Y, Chen X, Yuan S, Li C, Feng Y, Guan J, Zhu Y, Wang C, Yang J, Wei C, Xu Z, Lou Y, Wang D, Dai J. Improved cellularization of articular chondrocytes on a matrix derived from rhCOL1 can set the stage for focused design of tissue-specific specimens applicable in a broad spectrum of medical and pharmaceutical disciplines.

Disclosures of Potential Conflicts of Interest

No potential conflict of interest was

28. Zenggla DE, Li B, Lora RR, Chua CK, Bacharachi M. Collagen solubility testing a quality assurance

to renewable electro-spin nano-fiber fab-

A technical note. J Biomater Sci Polym Ed 2009; 20:1597-606; http://dx.doi.org/10.1080/09205060902974313.

29. Stein H, Wiskinui K, Tzipfis R, Rosenthal M, Anir R, Attas AA, Oksi K, Digan O, Yaron A, Shoskey O. Production of biosynthetic, post-translationally modified, heterotrimetric, human recombinant type-I collagen by a multi-cytoblock in vitro method. J Biomater Sci Polym Ed 2009; 20:1597-606; http://dx.doi.org/10.1080/09205060902974313.

30. Mundy GR, Songmanit RR. Topical tetracyclines in the treatment of biopsy collagen hypersensitivity. Dermatol Surg 2001; 27:990-9; PMID:11503067; http://dx.doi.org/10.1097/00001108-200109000-00015.

31. Klein AW. Techniques for tissue engineering: an ‘a to z’. J Clin Dermatol 2006; 35:107-20; http://dx.doi.org/10.1097/01.JDD.0000268594.87020.3.

32. Finlay WW. Age changes in the redding capacity of the human skin. J Invest Dermatol 1995; 105:285-90; PMID:7543550; http://dx.doi.org/10.1089/ten.2012.0345.