The use of R_z roughness parameter for evaluation of materials behavior to cavitation erosion

I Bordeasu1, M O Popoviciu2, C Ghera1, L M Micu3, L D Pirvulescu1 and T Bena1

1Politehnica University of Timisoara, Mechanical Machines, Equipment and Transportation, Mihai Viteazul str., no. 1, 300222 Timisoara, Romania
2Academy of Romanian Scientists, Bd. Mihai Viteazul, no. 1, Timisoara, Romania
3University of Agricultural Sciences and Veterinary Medicine of Banat King Mihai I from Romania, Calea Aradului str., no.119, 300645 Timisoara, Romania

E-mail: ilarica59@gmail.com

Abstract. It is well known that the cavitation eroded surfaces have a porous appearance with a pronounced roughness. The cause is the pitting resulted from the impact with the micro jets as well as the shock waves both determined by the implosion of cavitation bubbles. The height and the shape of roughness is undoubtedly an expression of the resistance of the surface to the cavitation stresses. The paper put into evidence the possibility of using the roughness parameter R_z for estimating the material resistance to cavitation phenomena. For this purpose, the mean depth erosion penetration (MDE-parameter, recommended by the ASTM G32-2010 Standard) was compared with the roughness of three different materials (an annealed bronze, the same bronze subjected to quenching and an annealed alloyed steel), both measured at four cavitation erosion exposure (30, 75, 120 and 165 minutes). The roughness measurements were made in 18 different zones, disposed after two perpendicular diameters, along a measuring lengths of 4 mm. The results confirm the possibility of using the parameter R_z for estimating the cavitation erosion resistance of a material. The differences between the measured values of R_z and those of the characteristic parameter MDE are of the same order of magnitude as those obtained for MDE determination, using more samples of the same material.

1. Introduction

In practice, for hydraulic equipment the evaluation of the cavitation damage is done on the base of both the area and the volume eroded. The volume is frequently appreciated upon the consumed electrodes volume used for the repair work [1-3]. In research laboratories the evaluation is more complex, being used specialized devices which allow to obtain details upon the cavitation erosion evolution. In our laboratory, this device was realized upon the recommendations ASTM G32-2010 Standard and the tests are conducted following also the recommendations of this standard [4]. In parallel, many researchers are interested also by the possibility to evaluate the cavitation erosion resistance by using the roughness parameters [5-10]. Till now, there were presented in various papers the profile diagram of the roughness’s [11], [9] but till the present it was not obtained a clear method to correlate directly the cavitation erosion with the roughness. The motive is the implication of different factors such as: the irregular shape of the roughness’s in materials with different physical-mechanical parameters and various structures as well as the complexity of the cavitation bubble implosions [9], [11-15].
From this motive, the researchers working in the Cavitation Laboratory of Timisoara Polytechnic University have realized, in the last period, beside the cavitation erosion resistance with the well-known methods also researches about the eroded surfaces. The profile diagram was obtained using a Mitutoyo device after the final stage of cavitation erosion [8], [11]. All materials were tested in a cavitation erosion device which respect integrally the conditions imposed by the ASTM G32-2010 Standard. It was reached the conclusion that between the roughness parameter R_z and the MDE value exist a good dependence which allow to use R_z for the evaluation of materials subjected to cavitation erosion.

2. Analyzed materials
In order to obtain a reliable conclusion, for the beginning, there were chosen three different materials which were also subjected to heat treatments for increasing the resistance to cavitation erosion. These materials are:
- alloyed steel 16MnCr5 – annealed and carburized;
- CuAl10Ni5Fe2.5Mn1 - bronze subjected to volume quenching (the cavitation erosion of this steel was carefully analyzed in the doctoral degree thesis of eng. Oancă [14], and in the present work was subjected to new cavitation erosion experiments in order to measure the roughness parameters);
- alloyed steel 42CrMo4 (DIN 17200) - in annealed state (this steel is used for manufacturing some details of the hydraulic control devices).

3. Experimental procedure. Results and discussions
For each material, with the exception of steel 16MnCr5 – annealed and carburized, there were tested in the Standard Cavitation Erosion Device three specimens in agreement with the G32-2010 Standard and the laboratory customs [12], [9], [10], [16]. For one specimen the eroded surface was divide in 9 square zones (one in the central part and the others on two concentric circles) in which there were measured with the Mitutoyo device the roughness R_z on two perpendicular diameters (in total 18 measurements), in conformity with Figure 1. Those measurements were realized after (0, 30, 75, 120 and 160) minutes of cavitation exposure. Thus for each specimen were realized 90 measurements. In Table 1 are presented images with the cavitation erosion evolution, for the 5 measured times.

![Figure 1. The 18 measuring zones for the R_z, roughness parameter](image-url)
For each specimen, in Figures 2-4 is given four diagrams with the profile of the eroded area obtained with the Mitutoyo apparatus. It is presented the central area in which the greatest erosion occurs.

Table 1. Images of the cavitation erosion evolution

Cavitation exposure in minutes	0	30	75	120	165
16MnCr5 steel – annealed and carburized	![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)	![Image](image5)
CuAl10Ni5Fe2.5Mn1- bronze volume quenched (procedure described in [10])	![Image](image6)	![Image](image7)	![Image](image8)	![Image](image9)	![Image](image10)
42CrMo4 steel – annealed	![Image](image11)	![Image](image12)	![Image](image13)	![Image](image14)	![Image](image15)

Figure 2. Mitutoyo roughness measurements for different exposure (Steel 16MnCr5-annealed and carburized)
In Tables 2-4 are given the 18 values of the R_z parameter as well as the mean values for all the 9 measuring zones presented in Figure 1. The parameter R_z gives the closer value to the mean depth erosion MDE [8], [15].
Specification: in MDE (t) diagrams, are presented the computed mean values of penetration for the entire area subjected to cavitation erosion.

Table 2. The values of parameter R_z [µm] (16MnCr5 steel-annealed and carburized)

	0 min.	30 min.	75 min.	120 min.	165 min.
Measured	0.02	1.488	5.943	9.925	13.694
Mean	0.02	1.721	5.672	9.841	13.589
	0.02	1.698	5.011	10.153	13.715
	0.02	1.822	5.352	9.953	13.512
	0.02	1.751	5.224	9.942	13.672
	0.02	1.771	5.932	10.281	13.883
	0.02	1.834	5.725	10.185	13.516
	0.02	1.811	5.639	10.173	13.703
	0.02	1.831	5.211	9.889	13.011
	0.02	1.792	5.867	9.921	13.785
	0.02	1.761	5.825	9.924	13.653
	0.02	1.699	5.021	9.872	13.901
	0.02	1.602	5.724	10.212	13.504
	0.02	1.912	5.201	10.552	13.622
	0.02	1.756	5.411	9.901	12.672
	0.02	1.842	5.103	9.952	13.443
	0.02	1.795	5.972	10.425	13.362
	0.02	1.587	5.895	9.898	13.198

Table 3. The values of parameter R_z [µm] (Bronze CuAl10Ni5Fe2.5Mn1-TT)

	0 min.	30 min.	75 min.	120 min.	165 min.
Measured	0.02	0.425	2.233	4.071	6.208
Mean	0.02	0.407	2.314	3.912	6.411
	0.02	0.493	2.021	4.071	6.118
	0.02	0.488	2.225	4.071	6.189
	0.02	0.525	2.146	4.104	5.998
	0.02	0.421	2.306	3.896	6.385
	0.02	0.511	2.198	3.903	6.012
	0.02	0.412	2.187	3.845	6.214
	0.02	0.455	2.316	3.941	6.14
	0.02	0.385	2.279	4.104	6.142
	0.02	0.401	2.323	4.202	6.421
	0.02	0.447	2.365	3.825	5.892
	0.02	0.411	2.402	3.925	6.141
	0.02	0.489	2.065	4.143	6.272
	0.02	0.443	2.204	4.059	6.301
	0.02	0.407	2.199	3.809	6.175
	0.02	0.491	2.285	3.998	6.007
	0.02	0.489	2.351	3.642	5.901
	0.02	0.501	2.389	4.188	6.415
Table 4. The values of parameter R_z [µm] (42CrMo4 alloyed steel)

	0 min.	30 min.	75 min.	120 min.	165 min.
Measured	0.02	3.44	9.46	15.41	21.24
Measured	0.02	3.375	9.375	15.521	21.272
Measured	0.02	3.425	9.285	15.495	21.181
Measured	0.02	3.555	9.572	15.312	21.239
Measured	0.02	3.604	9.369	15.422	21.248
Measured	0.02	3.402	9.522	15.495	21.421
Measured	0.02	3.476	9.421	15.467	20.918
Measured	0.02	3.421	9.389	15.502	21.361
Measured	0.02	3.446	9.578	15.461	21.311
Measured	0.02	3.618	9.422	15.456	21.255
Measured	0.02	3.572	9.551	15.498	21.304
			3.469	9.432	15.435
			9.432		21.242

In the histograms presented in Figures 5-7 there are compared the measured mean values of R_z for a single tested specimen, with the mean dept erosion values for three tested specimens. It resulted the following conclusions:
- before cavitation erosion tests the roughness has evidently a given value but the mean depth erosion is absent;
- for small exposure time (30-70 minutes) the difference is enough great, the MDE indicator having enhanced values than R_z;
- for long exposure time (120-165 minutes) the differences remains but are very small.
These differences have the following explanations: when the cavitation phenomenon appears (first 15-30 minutes) the metallic dust resulted from the manufacturing procedure, strongly inserted between
the roughnesses as well as the sharp apexes are easily removed and the volume losses being great the mean depth erosion is also very great. As the exposure time increases the influence of this important mass loses decreases sharply and the differences became without importance.

For very long exposures (120-165) minutes the losses for the same interval of exposure decreases as result of the superficial layer hardening as a result of the stresses delivered by the implosion of the cavitation bubbles [5], [12], [13], [15]. These conclusions are in agreement also with the zone III (erosion attenuation) and zone IV (erosion stabilization) which appear in the curves mean depth erosion rate [17].

In the diagrams of Figures 8-10 are presented the mean depth erosion curves, realized with the statistical relation for each material, as well as the R_z measured values. It was found out that the scatter is very small having the order of magnitude of the MDE values.

![Diagram](image)

Figure 8. R_z parameter scatter from the curve approximating the experimental values of mean depth erosion – steel 16MnCr5-annealed and carburized
Figure 9. R_z parameter scatter from the curve approximating the experimental values of mean depth erosion - bronze CuAl10Ni5Fe2.5Mn1-TT

Figure 10a. R_z parameter scatter from the curve approximating the experimental values of mean depth erosion steel. 42CrMo4 – annealed
4. Conclusions
The profile diagrams, graphically recorded with the Mitutoyo device show that the roughness shape and level is given by the resistance of the material against cavitation stresses.

It was confirmed the possibility of using the R_z parameter to estimate the resistance to cavitation erosion. The differences obtained between the measured values of R_z and MDE (see Figures 8-10) does not exceed the differences realized by MDE test results for various samples manufactured from the same material and tested in equal conditions.

The R_z parameter has smaller values than MDE for the first minutes of attack. Those differences occur because in this time interval MDE has greater loss values by elimination of the dust remained between the roughnesses of the surface which cannot be quantified the profiles measured with the Mitutoyo device.

As a general conclusion we can say that measurements of the R_z parameter represent an excellent method to record the cavitation erosion of materials.

References
[1] Anton I 1985 Cavitatia, vol. II, Editura Academiei RSR, Bucureşti
[2] Bordeasu I 2006 Eroziunea cavitățională a materialelor, Editura Politehnica, Timișoara
[3] Popoviciu O M and Bordeasu I 1998 Tehnologia fabricației sistemelor hidraulice, Editura Politehnica, Timișoara, Romania
[4] ***ASTM G32-2010, Standard test method for cavitation erosion using vibratory apparatus, ASTM International
[5] Bordeasu I, Popoviciu M O, Ghera C, Salcianu L C, Micu L M and Podoleanu C E 2016 Cavitation erosion behavior of the steel 17CrNiMo6, Machine Design 8(4) 149-154
[6] Jurchela A D 2012 Cercetări asupra eroziunii produse prin caviatia vibratori la oțelurile inoxidabile cu conținut constant în crom și variabil de nichel, University Politehnica Timisoara, Romania, Doctoral Thesis
[7] Karabenciov A 2013 Cercetări asupra eroziunii produse prin caviatia vibratori la oțelurile inoxidabile cu conținut constant în nichel și variabil de crom, University Politehnica Timisoara, Romania, Doctoral Thesis
[8] Katona S E 2017 Eroziunea cavitățională a oțelurilor inoxidabile cu transformare martensitică indirectă, University Politehnica Timisoara, Romania, Doctoral Thesis
[9] Mitelea I, Micu L M, Bordeasu I and Craciunescu C M 2016 Cavitation erosion of sensitized
UNS S31803 Duplex Stainless Steels, *Journal of Materials engineering and performance* **25** (5) 1939 – 1944

[10] Oanca O 2013 *Tehnici de optimizare a rezistenței la eroziunea prin cavitație a unor aliaje CuAlNiFeMn destinate execuției elicelor navale*, University Politehnica Timisoara, Romania, Doctoral Thesis

[11] Mitelea I, Ghera C, Bordeasu I and Craciunescu C M 2015 Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel, *International Journal of Materials Research* **106**(4) 391-397

[12] Bordeasu I, Popoviciu M O, Mitelea I, Balasoiu V, Ghiban B and Tucu D 2007 Chemical and mechanical aspects of the cavitation phenomena, *Revista de Chimie* **58**(12) 1300-1304

[13] Franc J P, Kueny J L, Karimi A, Fruman D H, Fréchou D, Briançon-Marjollet L, Billard J Y, Belahadji B, Avellan F and Michel J M 1995 *La cavitation. Mécanismes physiques et aspects industriels*, Press Universitaires de Grenoble, Grenoble, France

[14] Franc J P, Riondet M, Karimi A and Chahine G L 2012 Material and velocity effects on cavitation erosion pitting, *Wear* **274-275** 248-259

[15] Garcia R, Hammitt F G and Nystrom R E 1960 Correlation of cavitation damage with other material and fluid properties, *Erosion by Cavitation or Impingement, ASTM, STP 408* Atlantic City, New Jersey, U.S.A

[16] Mitelea I, Bordeasu I, Pelle M and Craciunescu C M 2015 Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure, *Ultrasonics Sonochemistry* **23** 385-390

[17] Thiruvengadam A and Preiser H S 1963 *On testing materials for cavitation damage resistance*, Report 233 – 3