SUPPLEMENTARY MATERIAL

Prolactin as immune cell regulator in *Toxocara canis* somatic larvae chronic infection.

Víctor Hugo Del Río-Araiza\(^a\), Karen Elizabeth Nava-Castro\(^b\), Fernando Alba-Hurtado\(^c\), Andrés Quintanar-Stephan\(^d\), Hugo Aguilar-Díaz\(^e\), Marco Antonio Muñoz-Guzmán\(^c\), Pedro Ostoa-Saloma\(^a\), María Dolores Ponce-Regalado\(^f\) and Jorge Morales-Montor\(^a\)*

\(^a\) Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, México D.F. 04510, México.

\(^b\) Departamento de Genotoxicología, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México.

\(^c\) Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, México.

\(^d\) Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.

\(^e\) Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, INIFAP. Jiutepec, Morelos, México.

\(^f\) Universidad de Guadalajara. Centro Universitario de los Altos - Departamento de clínicas. Carretera a Yahualica, Km. 7.5. Tepatitlán de Morelos, Jalisco, México.

Jorge Morales-Montor *Corresponding author: Tel: +5255 56232673; E-mail address:

jmontor66@biomedicas.unam.mx, jmontor66@hotmail.com
Supplementary Figure 1. Cell population analysis. Immune cell populations were defined according to the following analysis: Cells were first gated by size and complexity, then we selected them as T cells (CD3+); B cells (CD45RA+); NK (CD161+) or Tγδ cells (TCRγδ+). T cells were then gated as T helper (CD4+) or T cytotoxic (CD8+). In all cases, the percentage of PRLR+ cells was defined in histograms according to the unspecific staining in each mice of the secondary antibody used to detect the anti-PRLR.

Supplementary Figure 2. Immune cell subpopulations comparison among experimental groups in the spleen. Representative dot plots showing the analysis of the percentage of T helper (CD4+) vs. T cytotoxic (CD8+) cells (upper row); T cells (CD3+) vs. B cells (CD45RA+) (middle row); and NK (CD161+) vs Tγδ cells (TCRγδ+) (lower row) in the spleen of the experimental groups (from left to right): Intact Non-infected (Intact Control); Intact Infected (Intact Infx); Sham-HPRL Non-infected (Sh-HPRL Ctrl); Sham-HPRL Infected (Sh-HPRL Infx); HPRL Non-infected (HPRL Ctrl); and HPRL Infected (Sh-HPRL Infx).

Supplementary Figure 3. Immune cell subpopulations comparison among experimental groups in peripheral lymph nodes (PLN). Representative dot plots showing the analysis of the percentage of T helper (CD4+) vs. T cytotoxic (CD8+) cells (upper row); T cells (CD3+) vs. B cells (CD45RA+) (middle row); and NK (CD161+) vs Tγδ cells (TCRγδ+) (lower row) in PLN's of the experimental groups (from left to right): Intact Non-infected (Intact Control); Intact Infected (Intact Infx); Sham-HPRL Non-infected (Sh-HPRL Ctrl); Sham-HPRL Infected (Sh-HPRL Infx); HPRL Non-infected (HPRL Ctrl); and HPRL Infected (Sh-HPRL Infx).

Supplementary Figure 4. Immune cell subpopulations comparison among experimental groups in mesenteric lymph nodes (MLN). Representative dot plots showing the analysis of the percentage of T helper (CD4+) vs. T cytotoxic (CD8+) cells (upper row); T cells (CD3+) vs. B cells (CD45RA+) (middle row); and NK (CD161+) vs Tγδ cells (TCRγδ+) (lower row) in
MLN’s of the experimental groups (from left to right): Intact Non-infected (Intact Control); Intact Infected (Intact Infx); Sham-HPRL Non-infected (Sh-HPRL Ctrl); Sham-HPRL Infected (Sh-HPRL Infx); HPRL Non-infected 1 (HPRL Ctrl); and HPRL Infected (Sh-HPRL Infx).
