RESEARCH ARTICLE

Gene expression association study in feline mammary carcinomas

Daniela Ferreira¹,², Bárbbara Martins¹, Maria Soares³, Jorge Correia⁴, Filomena Adega¹,², Fernando Ferreira⁴, Raquel Chaves¹,²*

¹ CAG - Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, ² BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal, ³ CBiOS - Research Center for Biosciences & Health Technologies, Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal, ⁴ CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal

* These authors contributed equally to this work.

OPEN ACCESS

Citation: Ferreira D, Martins B, Soares M, Correia J, Adega F, Ferreira F, et al. (2019) Gene expression association study in feline mammary carcinomas. PLoS ONE 14(8): e0221776. https://doi.org/10.1371/journal.pone.0221776

Editor: Yves St-Pierre, Institut national de la recherche scientifique, CANADA

Received: May 28, 2019
Accepted: August 14, 2019
Published: August 28, 2019

Copyright: © 2019 Ferreira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

Funding: This research was funded by Fundação para a Ciência e Tecnologia (Portugal) through the projects PTDC/CVT-EPI/0638/2014 (MS, JC, FA, FF and RC), CIISA-UID/CVT/00276/2019 (FF), the PhD grant SFRH/BD/70720/2010 (MS) and the UID/MULTI/04046/2019 Research Unit grant (FA and RC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Abstract

Works on cancer-related genes expression using feline mammary carcinomas (FMCs) are scarce but crucial, not only to validate these tumours as models for human breast cancer studies but also to improve small animal practice. Here, the expression of the cancer-related genes TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2 was evaluated by real-time RT-qPCR, in a population of FMCs clinically characterized and compared with the disease-free tissue of the same individual. In most of the FMCs analysed, RNA quantification revealed normal expression levels for TP53, c-MYC and YBX1, but overexpression in the genes CCND1, PTBP1 and PKM2. The expression levels of these cancer-related genes are strongly correlated with each other, with exception of c-MYC and PKM2 genes. The integration of clinicopathological data with the transcriptional levels revealed several associations. The oral contraceptive administration showed to be positively related with the TP53, YBX1, CCND1, FUS and PTBP1 RNA levels. Positive associations were found between tumour size and YBX1 RNA, and lymph node metastasis with c-MYC RNA levels. This work allowed to verify that many of these cancer-related genes are associated but may also, indirectly, influence other genes, creating a complex molecular cancer network that in the future can provide new cancer biomarkers.

Introduction

Feline mammary carcinomas (FMC) have been emerging as valuable models for human breast cancer (HBC), allowing to uncover the mechanisms underlying tumorigenesis, to understand its origin/progression and to assist in the development of novel therapies [1]. The domestic cat is highly affected by spontaneous mammary tumours which are, in many aspects (e.g., clinico-pathologically or histologically [2], among others) similar to HBC. Although the number of
studies claiming the importance of FMC models is increasing, there is still a lack of consistency among them [1]. One of the drawbacks of this situation is the scarcity of association studies regarding cancer-related gene expression, which will allow to better characterize FMCs at the molecular level. Although several are the genes associated with HBC, in this study, we have chosen a specific set of cancer-related genes as such: TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2. This cancer gene panel was selected based on the following assumptions: the information in FMCs about these genes is scarce or inexistent; these genes are conserved between cat and human; the function of these genes that is ascribed in HBC; and the pathways in which the products of these genes are involved, establishing a molecular cancer network that is important to analyse as a whole.

TP53 is a tumour suppressor gene frequently mutated in human cancers [3, 4] but is still controversial its value as a prognostic marker in HBC [5]. P53 is a key player in cell cycle regulation and DNA damage response [3, 6] and its loss results in uncontrolled proliferation of damaged cells [6, 7]. Few mutations on *TP53* were reported in cat tumour tissues [1, 8], as well as, the accumulation of P53 protein in 35–45% of the FMCs already analysed [9, 10].

Cyclin D1 (coded by CCND1 gene) is an oncoprotein overexpressed in about 50% HBCs and associated with cancer onset and progression [11, 12] due to its role in cell cycle initiation. Also, CCND1 is amplified in 5–20% of HBCs and this occurs preferentially in ER positive tumours, being its prognostic significance proposed by different authors [13–15]. In cat, Murakami and collaborators evaluated the expression of Cyclin D1 protein in 37 feline mammary carcinomas and only 2 cases showed overexpression [9].

Fused in Sarcoma (FUS) is an RNA/DNA binding protein, being an important player in alternative splicing, transcription, DNA damage repair and stress response. Little is known about its contribution to cancer [16–18], but it is possible that this protein regulates the expression of many cancer-related genes, promoting tumorigenesis [19].

Y-box binding protein 1 (YBX1) is an oncoprotein that binds to the Y-box motif of gene promoters [20, 21], and its overexpression in HBC is related with more aggressive tumours, poor prognosis, relapse and drug resistance, indicating its potential as a prognostic biomarker [20, 22]. YBX1 has also been linked to the expression of other cancer-related genes (e.g., c-MYC, CCND1) [23–25].

Polyypyrimidine tract-binding protein 1 (PTBP1) is an RNA-binding protein with functions at mRNA stability, transport, polyadenylation and splicing [26, 27]. This protein is overexpressed in different human cancers [27, 28], including breast cancer, promoting metastasis and cell proliferation [28].

c-MYC is a DNA-binding transcription factor that regulates numerous genes involved in critical biological processes [29, 30], being upregulated in several human cancer types, and associated with tumour aggressiveness and poor clinical outcome [31]. In HBC, c-MYC RNA expression is increased in 22–35% of the tumours analysed and protein expression is reported to be increased in up to 70% of all the cases studied [32–34]. Regarding FMCs, only one recent report stated that c-MYC gene was upregulated in 60% of the feline mammary adenocarcinomas analysed (in a small number of samples, n = 5) [35].

Pyruvate Kinase Muscle Isozyme (PKM2) is a moonlight protein (def., multifunctional protein that performs autonomous and often unrelated functions, without partitioning these functions into different domains of the protein [36]), acting as a pyruvate kinase at the cytoplasm and as a protein kinase at the cell nucleus. At the nucleus, PKM2 is a coactivator for the expression of several genes such as CCND1 and c-MYC [37]. PKM2 is also spliced by PTBP1, which in turn depends on c-MYC as its transcription factor [38–40]. In HBC, PKM2 gene is frequently overexpressed (both at the protein and RNA levels) and associated with poor prognosis and overall survival and is involved in chemosensitivity to certain drugs [39, 41].
To our best knowledge, in FMCs no studies were performed to evaluate the expression of the following genes: FUS, YBX1, PTBP1 and PKM2.

Bearing in mind the objective of contributing to deep knowledge on a panel of cancer-related genes (TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2) in FMCs and its relation with clinicopathological parameters. We established an association study to disclose its RNA profiles (through absolute quantification by real-time RT-qPCR) in a group of FMCs, using the disease-free tissue (DFT) from each individual, as reference.

Materials and methods

Mammary tissues collection and characterization

The 27 mammary malignant tumours collected from female cats and the corresponding disease-free tissues were received from different veterinary hospitals and private practices, with the owner’s consent and in accordance with the EU Directive 2010/63/EU and the ethical approval was obtained in the frame of a project from the Science and Technology Foundation (FCT) of the Portuguese government with the reference PTDC/CVT-EPI/3638/2014. The tumours were histologically classified according to the World Health Organization (WHO) criteria for canine and feline mammary neoplasms and the Elston & Ellis (EE) grading system [42] and the Mills grading system (adapted for FMC) [43] were used to determine the malignancy grade. Cats from different breeds and age ranging from 7 to 17 years old were clinically evaluated, in particular, the mammary glands and regional lymph nodes were physically inspected. The disease-free tissues were collected from another mammary gland and a histopathological confirmation of the absence of preneoplastic alterations was performed. The following clinicopathological parameters were recorded when possible: size of the tumour (T1 < 2 cm; T2 > 2 cm and < 3 cm; T3 > 3 cm), reproductive status, administration of oral contraception, mastectomy accompanied by ovariohysterectomy (OVH), presence of multiple tumours, lymph node metastasis, necrosis, lymphovascular invasion and lymphocytic inflammation and skin ulceration. Surgical excision of the tumours and normal mammary tissues was performed for all the animals and the tissues were immediately preserved in an RNA stabilization solution (RNA Later Tissue Collection, Ambion) and frozen at (−80°C) to prevent RNA degradation by RNases. A piece of the sample was formalin-fixed and paraffin embedded for the immunohistochemistry (IHC) analysis, being also collected a sample of blood of each animal for the serum analysis. Clinical staging was performed using the TNM system and animals were classified in four stages [44]. All the animals were followed up after the tumours removal for the survival, recurrence and type of recurrence. The IHC detection of the proteins HER2 (Human Epidermal growth factor Receptor 2, classified as positive when 3+, equivocal 2 + and negative 1+ or 0), Ki-67 (that is a proliferation marker protein, considered low when <14% and high ≥14%), PR (Progesterone Receptor, evaluated as negative when <3 and positive when ≥3), ER (Estrogen Receptor, classified as negative when <3 and positive when ≥3) and CKS/6 (Cytokeratin 5/6, positive when >1% of cells were immunoreactive) and its quantification analysis in the mammary tumours were performed according to the method described in Soares et al. [45]. The analysis of these five proteins allowed us to obtain a molecular classification of the tumours, applying the St. Gallen International Expert Consensus panel [2, 46].

Genomic DNA and RNA extraction

RNA was isolated with the mirVana™ miRNA Isolation Kit (Ambion, Life Technologies) as described by the manufacturer and thereafter submitted to DNA degradation with the TURBO DNA-free Kit (Ambion, Life Technologies).
RNA expression analysis by real-time RT-qPCR

For TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2 RNA quantification (primers in S1 Table), was used the standard curve method described in Chaves et al. [47] (standard curve parameters in S2 Table). For the expression quantification, it was used 80 ng of RNA and the Verso 1-Step RT-qPCR kit, SYBR Green, ROX (Thermo Scientific) following the recommendations of the manufacturer. The reactions were carried out in a 48-well optical plate (StepOne real-time PCR system, Applied Biosystems, Thermo Fisher Scientific) at 50 °C for 15 min and 95 °C for 15 min, followed by 40 cycles of 95 °C for 15 sec and 60°C for 1 min. Subsequently, a melt curve was performed to evaluate the primers specificity. All reactions were performed in triplicate, and negative controls (without RNA and without Reverse Transcriptase enzyme) were also included in the plate. The data were analysed using the same parameters and the StepOne software (version 2.2.2, Applied Biosystems, Thermo Fisher Scientific).

Statistical analysis

The statistical software SPSS (Statistical Package for the Social Sciences, version 17.0), the GraphPad Prism 6 (version 6.01) and the R software (The R Foundation for Statistical Computing, 3.3.1 version) were used for the statistical analysis. The Student’s t-test (two-tailed) was applied for the analysis of the real-time RT-qPCR results. Statistical associations among the clinicopathological parameters and the RNA data were evaluated using the ANOVA test (for analysing continuous variables with categorical variables). The Pearson’s correlation test was performed in order to verify the correlation between continuous variables. As the RNA quantification data did not present a Gaussian distribution, the values were transformed with the log function in order to normalize the its distribution. The correlogram was made with GraphPad Prism 6 (version 6.01) and R software’s (The R Foundation for Statistical Computing, 3.3.1 version). The correlogram representation is the output of the R software but r-values were corrected by the ones from GraphPad software (some analysis presented a different “n”). All values are expressed as mean ± SD (standard deviation). The exceptions are the data presented in the box-plot graphics that represents the median, quartiles, and extreme values within a category. In all statistical comparisons, \(p < 0.05 \) was established as representing significant difference.

Results

Gene expression profiling in feline mammary carcinomas

A great number of cancer-related genes expression remains to be properly characterized in FMCs. In this work, we have quantified the expression (RNA) of several cancer-related genes in a set of FMCs and in the DFT from the same individual (used as reference), by real-time RT-qPCR. An overexpressed gene was considered when the FMC presents an increase of \(\geq 2 \)-folds, a decreased in the gene expression corresponds to values of \(\leq 0.50 \)-fold and finally a maintained gene expression present values between 0.5 and 2-folds. All this analysis is always based in comparison with the respective DFT. In most of the FMCs, our analysis revealed that: the expression of TP53 is maintained in 63% (15/24) and overexpressed in 33% (8/24) (Fig 1a and S3 Table); CCND1 gene is overexpressed in 52% (14/27) (Fig 1b and S4 Table); the expression of c-MYC gene is maintained in 61.5% (16/26) and increased in 27% (7/26) (Fig 1c and S5 Table); PKM2 is overexpressed in 67% (18/27) (Fig 1d and S6 Table); the expression of YBX1 is maintained in 44% (11/25), being the number of cases that presented overexpression similar (10/25, 40%) (Fig 1e and S7 Table); FUS gene expression levels is maintained in 46% (11/24) with 33% of FMCs showing increased expression (8/24) (Fig 1f and S8 Table); and, finally, the gene expression of PTBP1 is increased in 46% (11/24) (Fig 1g and S9 Table). In all
Fig 1. Profiling the RNA levels of cancer-related genes in the analysed FMCs. Fold change of TP53 (a), CCND1 (b), c-MYC (c), PKM2 (d), YBX1 (e), FUS (f) and PTBP1 (g) RNAs in FMC, evaluated by real-time RT-qPCR and using a DFT (disease-free tissue) sample of the same individual as reference. Each quantification graphic also presents the percentage of tumours with increase (≥2-folds), maintenance (between 0.5 and 2-folds) or decrease (<0.5-folds) RNA levels of each gene. Values are mean ± SD of three replicates. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001 was determined by Student’s t-test.

https://doi.org/10.1371/journal.pone.0221776.g001
the FMCs analysed and for the gene panel used, only a small number of FMCs presented a decreased expression.

Also, the analysis between the RNA quantification data of all the genes under study allowed us to verify that all the expression levels in the FMCs are correlated in a statistically significant fashion (with the r-value ranging between 0.42 and 0.97, the p-value between 0.044 and >0.0001, n = 24 or 25) with exception of c-MYC and PKM2 (r = 0.36, p = 0.073, n = 26) (Fig 2).

Cancer-related genes expression association with clinicopathological parameters

When the different clinicopathological data were analysed concerning the RNA levels of the cancer-critical genes, an interesting association was found between the oral contraceptive administration and RNA levels of TP53 (p = 0.015, Fig 3, Table 1), YBX1 (p = 0.020, Fig 4b,
Table 2), CCND1 (p = 0.013, Fig 5, Table 3), FUS (p = 0.020, Fig 6, Table 4) and PTBP1 (p = 0.010, Fig 7, Table 5). In fact, the expression levels of all these genes are inferior in animals' subjected to oral contraceptive administration. The association between oral contraception administration (compared to animals which were never exposed to oral contraceptives) and the expression of these cancer-related genes has not yet been reported in cats. Regarding tumour size, YBX1 expression was significantly higher in T2 (2–3 cm) tumours than in T1 (<2 cm) tumours (p = 0.012, Fig 4a, Table 2). The tumours with more than 3 cm (classified as T3) didn’t present an association with YBX1 RNA levels. TP53 RNA levels also demonstrated an association with tumour size (in the one-way ANOVA, Table 1) but the Post-Hoc tests are not statistically significant. Regarding c-MYC, a positive association with the lymph node metastasis (p = 0.027, n = 25) (Fig 8, Table 6) was found; that is, the levels of c-MYC RNA are higher in cats with the tumours and lymph node metastasis. Even if it was observed a positive association of c-MYC RNA levels with skin ulceration (p < 0.0001, n = 26), a higher number of animals is required for further validation. PKM2 RNA levels demonstrated to be associated with the malignancy grade by EE grading system [42] (p = 0.008, n = 27) (Table 7). The cases with malignancy grade I are those that presented the highest PKM2 expression levels. However, cases with malignancy grade II demonstrated the lowest expression of PKM2. Nevertheless, when the FMCs are classified concerning the malignancy grade by the Mills grading system (published for FMCs [43]), its association with PKM2 RNA levels is not statistically significant. PKM2 RNA levels also demonstrated to be related with the molecular classification (p < 0.001, n = 27) (Table 7). The subtypes LA (luminal A) and LB (Luminal B) presented higher PKM2 expression, whereas the TN (triple negative) subtype had the lowest levels. Nevertheless, the
Table 1. **TP53 RNA relation with clinicopathological parameters.** This analysis was performed using one-way ANOVA.

Clinicopathological parameter	TP53 RNA	P	Clinicopathological parameter	TP53 RNA	P
Tumour size			**Lymphovascular invasion**		
T1 (< 2 cm)	1.12	0.041†	Present	2.70	0.280
T2 (2–3 cm)	2.80		Absent	1.83	
T3 (> 3 cm)	1.39				
Ck5/6 index			**Lymphocytic inflammation**		
High	2.22	0.471†	Present	2.64	0.285†
Low	1.73		Absent	1.52	
Sterilized			**Ki-67 index**		
Yes	2.13	0.701†	High	2.17	0.284†
No	1.88		Low	1.23	
Oral contraceptive			**FR status**		
Yes	1.35	0.015†	Positive	2.19	0.445†
No	2.67		Negative	1.66	
OVH with mastectomy			**ER status**		
Yes	1.95	0.799†	Positive	2.01	0.993
No	1.57		Negative	2.02	
Multiple tumours			**HER2 status**		
No	1.64	0.598†	Positive	1.66	0.350†
Multicentric	2.20		Equivocal	2.68	
Multicentric/multifocal	2.50		Negative	1.68	
Lymph node metastasis		0.055†	**Molecular classification**		0.818†
Present	2.51		LB	1.73	
Absent	1.37		HER2	2.35	
			LBHER2	2.54	
Tumour stage		0.486†	**TN status**		
1	1.25		LA	-	
2	2.28		TN normal	1.03	
3	2.20		TN basal	1.73	
EE grading Malignancy grade		0.584†	**Necrosis**		0.111†
I	0.50		Present	2.34	
II	1.72		Absent	1.22	
III	2.13				
Mills grading Malignancy grade					
I	0.387‡				
II	2.22				
III	1.61				

* Indicates p≤0.05.

OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t001

Fig 4. YBX1 RNA association with clinicopathological parameters. Box plot graphical representation of the analysis of YBX1 RNA levels with tumour size classes (a) and oral contraceptive administration (b). The p-value is presented in each graphic and obtained by using the one-way ANOVA test (Tukey Post Hoc Multiple Comparisons).

https://doi.org/10.1371/journal.pone.0221776.g004
Table 2. YBX1 RNA association with clinicopathological parameters. This analysis was performed using one-way ANOVA test.

Clinicopathological parameter	YBX1 RNA Mean	P	Clinicopathological parameter	YBX1 RNA Mean	P	
Tumour size						
T1 (< 2 cm)	0.75	0.012*	Lymphovascular invasion	Present	3.75	0.697
T2 (2–3 cm)	5.05			Absent	3.05	
T3 (> 3 cm)	1.75					
Skin ulceration						
Present	6.92	0.285		Present	3.57	0.440
Absent	3.03			Absent	2.38	
Sterilized						
Yes	3.17	0.837				
No	2.87					
Oral contraceptive						
Yes	1.94	0.020*				
No	5.69					
OVH with mastectomy						
Yes	3.42	0.267				
No	0.37					
Multiple tumours						
No	3.55	0.919				
Multicentric	3.00					
Multicentric/multifocal	2.81					
Lymph node metastasis						
Present	3.94	0.260				
Absent	2.29					
Tumour stage						
1	0.68	0.130				
2	5.07					
3	3.40					
EE grading Malignancy grade						
I	0.83	0.421				
II	1.10					
III	3.60					
Mills grading Malignancy grade						
I	0.271	0.485				
II	2.65					
III	4.33					

* Indicates p ≤ 0.05

OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t002

Fig 5. CCND1 RNA association with clinicopathological parameters. Box plot graphical representation of the analysis of CCND1 RNA with oral contraceptive administration. The p-value is presented and obtained by using the one-way ANOVA test.

https://doi.org/10.1371/journal.pone.0221776.g005
malignancy grade I (by EE grading system) and LA tumours are underrepresented in our sample set (FMC are often highly aggressive). In the future, it will be important to increase the number of tumours with these features to obtain more robust results. Although survival data and prognostic analyses were taken into consideration in our evaluation, no statistically significant results were achieved, and for that reason, these data are not shown.

Table 3. CCND1 RNA relation with clinicopathological parameters

This analysis was performed using one-way ANOVA test.

Clinicopathological parameter	CCND1 RNA Mean	p	Clinicopathological parameter	CCND1 RNA Mean	p
Tumour size			**Lymphovascular invasion**		
T1 (< 2 cm)	2.30	0.306 (n = 25)	Present	33.49	0.120 (n = 25)
T2 (2–3 cm)	22.89	0.973 (n = 25)	Absent	7.97	
T3 (> 3 cm)	2.64				
Skin ulceration			**Lymphocytic inflammation**		
Present	11.95	0.589 (n = 24)	Present	17.16	0.373 (n = 25)
Absent	13.12		Absent	4.40	
Sterilized			**Ki-67 index**		
Yes	9.64	0.013* (n = 19)	High	15.51	0.468 (n = 25)
No	17.24		Low	3.34	
Oral contraceptive			**PR status**		
Yes	2.82	0.611 (n = 11)	Positive	15.43	0.641 (n = 25)
No	19.71		Negative	8.89	
OVH with mastectomy			**ER status**		
Yes	20.86	0.742 (n = 25)	Positive	5.01	0.499 (n = 25)
No	0.95		Negative	15.62	
Multiple tumours			**HER2 status**		
No	10.69	0.172 (n = 19)	Positive	1.66	0.379 (n = 25)
Multicentric	18.44		Equivocal	25.33	
Multicentric/multifocal	4.26		Negative	6.83	
Lymph node metastasis			**Molecular classification**		
Present	21.58	0.740 (n = 25)	LB	7.60	0.890 (n = 25)
Absent	3.19		LA	-	
Tumour stage			**TN normal**		
1	2.84	0.765 (n = 25)	HER2	17.53	
2	13.29		LBHER2	22.34	
3	16.41		Negative	5.54	
EE grading Malignancy grade		**Necrosis**			
I	0.89	0.635 (n = 25)	Present	15.07	
II	1.99		Absent	7.95	
III	15.24				
Mills grading Malignancy grade		**Ck5/6 index**			
I	0.638 (n = 25)		High	18.07	0.399 (n = 25)
II	15.24		Low	6.71	
III	8.47				

* Indicates p ≤ 0.05

OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t003

Discussion

FMCs have emerged as good models for HBC studies, besides its importance in fundamental research such as the discovery of cancer-related genes and its cellular pathways, and development of new treatments [1]. However, studies on the characterization of cancer-related genes expression in FMCs are still scarce. In this work, we analysed the expression of seven genes (TP53, CCND1, FUS, YBX1, PTBP1, c-MYC and PKM2) in 27 FMCs using disease-free tissue (from the same individual) as reference. Using this approach, we were able to overcome the genetic background variations among individuals, making the present analysis more accurate in identifying the alterations involved in these tumours [48, 49].

* OVH–ovariohysterectomy.*
Most of the FMCs analysed maintained the RNA levels of TP53 (63%), c-MYC (61.5%), YBX1 (44%) and FUS (46%) when compared with the DFTs. These same genes are overexpressed in 33%, 27%, 40% and 33% respectively, of the FMCs analysed. In this study, the proportion of tumours presenting an upregulation of TP53 (33%) is similar to the reported in a similar work in FMCs [50]. With regard to c-MYC, its overexpression in 27% of the FMCs analysed is consistent with the report, that refers an overexpression of this gene in 22–35% of HBC [32], contrasting to what have been reported in FMCs, where it appears to be upregulated (60%) (but in a small set of samples analysed) [35]. Also, the percentage of tumours that present YBX1 upregulated is consistent with the data found for its protein in HBC [22, 51]. Regarding the other RNAs analysed, they revealed to be upregulated in most of the tumours, namely CCND1 (52%), PKM2 (67%) and PTBP1 (46%). Indeed, in our study, the expression levels of CCND1 RNA are in agreement with the ones presented for the respective protein levels in HBC [12], where the expression levels of CCND1 RNA and protein showed a good correlation [52]. In parallel, the upregulation scenario of PKM2 RNA found in the FMCs analysed is similar to that reported for the PKM2 protein in HBC [41, 53].

When the expression levels of these genes in the different FMCs samples was evaluated, a strong positive correlation was observed between almost all the cancer-related genes under study (except for c-MYC and PKM2). Some of these associations are the focus of some studies, even if in some cases its function is not fully understood. It is already reported the connection of P53, a transcription factor, with the proteins: YBX1 (P53 is essential for YBX1 nuclear location and YBX1 can affect the P53-regulated transcription) [23]; and c-MYC (this protein can be repressed in a P53-dependent manner) [54]. YBX1 is also linked to c-MYC (it can activate the transcription of the c-MYC gene) [23]. Also, Cyclin D1 is reported to interact with: FUS (FUS inhibits protein Cyclin D1 expression in human) [17]; YBX1 (suppression of YBX1 expression decreases the amount of Cyclin D1) [23]; and PKM2 (PKM2 is part of the transcriptional complex for CCND1 gene expression) [39]. PKM2 is related to: c-MYC (similarly to
Table 4. FUS RNA relation with clinicopathological parameters. This analysis was performed using one-way ANOVA.

Clinicopathological parameter	FUS RNA Mean	P	Clinicopathological parameter	FUS RNA Mean	P	
Tumour size						
T1 (< 2 cm)	0.87	0.106	T1 (< 2 cm)	0.87	0.106	
T2 (2–3 cm)	5.25		T2 (2–3 cm)	5.25		
T3 (> 3 cm)	1.69		T3 (> 3 cm)	1.69		
CK5/6 index						
High	3.10	0.882	Lymphovascular invasion	Present	2.76	0.809
Low	3.41		Absent	Absent	3.35	
Sterilized						
Yes	4.37	0.208	Lymphocytic inflammation	Present	3.88	0.359
No	1.88		Absent	Absent	1.94	
Oral contraceptive						
Yes	1.77	0.020	Ki-67 index	High	3.68	0.306
No	7.49		Low	Low	0.96	
OVH with mastectomy						
Yes	2.25	0.202	PR status	Positive	3.04	0.792
No	0.21		Negative	Negative	3.61	
Multiple tumours						
No	4.76	0.427	HER2 status	Positive	1.50	0.740
Multicentric	2.01		Equivocal	Equivocal	4.19	
Multicentric/multifocal	2.46		Negative	Negative	2.93	
Lymph node metastasis						
Present	3.25	0.234	Molecular classification	LB	3.45	0.460
Absent	1.81		HER2	HER2	6.67	
Tumour stage				LBHER2	1.94	
1	0.96	0.147	LA	LA	-	
2	6.66		TN normal	TN normal	0.74	
3	2.82		TN basal	TN basal	1.15	
EE grading Malignancy grade				Necrosis		
I	1.33	0.701	Present	Present	3.53	0.641
II	1.33		Absent	Absent	2.50	
III	3.61					
Mills grading Malignancy grade						
I	0.693	0.014				
II	2.95					
III	3.79					

* Indicates p ≤ 0.05

OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t004

Fig 7. PTBP1 RNA association with clinicopathological parameters. Box plot graphical representation of the analysis of PTBP1 RNA with oral contraceptive administration. The p-value is presented and obtained by using the one-way ANOVA test.

https://doi.org/10.1371/journal.pone.0221776.g007
the relation with CCND1, is also part of the transcriptional complex for c-MYC gene expression) [39]; and PTBP1 (which promotes the expression of PKM2 by alternative splicing, repressing the expression of PKM1) [55]. Assembling this last data, a complex positive feedback-loop occurs between PKM2/c-MYC/PTBP1. Also, our correlation analysis highly supports some of these gene associations (with exception of FUS/CCND1, c-MYC/TP53 and c-MYC/PKM2), either being direct or indirect interactions. Nevertheless, it is important to highlight that some of these associations occur between the RNA and the protein and for that reason, it would be interesting to evaluate their protein levels to further validate the relation between these gene products in FMCs. Although the evaluation of the proteins in FMC will be interesting, the lack of fresh tumour samples challenges this type of studies. Moreover, most of the works evaluate the protein expression instead of RNA, making difficult to compare our data, but at the same time reinforcing the significance of this work.

The FMC samples here analysed were previously well characterized regarding a considerable set of clinicopathological parameters, making possible to integrate them with the expression data. The parameter tumour size was significantly associated with the expression of YBX1

Table 5. PTBP1 RNA relation with clinicopathological parameters. This analysis was performed using one-way ANOVA.

Clinicopathological parameter	PTBP1 RNA Mean	P	Clinicopathological parameter	PTBP1 RNA Mean	P		
Tumour size	T1 (< 2 cm)	0.88	0.059 (n = 24)	Lymphovascular invasion	Present	3.76	0.542 (n = 24)
	T2 (2–3 cm)	4.52		Absent	2.67		
	T3 (> 3 cm)	1.84					
Cks5/6 index	High	3.27	0.541 (n = 24)	Lymphocytic inflammation	Present	3.30	0.433 (n = 24)
	Low	2.37		Absent	2.09		
Sterilized	Yes	3.36	0.494 (n = 24)	Ki-67 index	High	3.31	0.201 (n = 24)
	No	2.35		Low	0.84		
Oral contraceptive	Yes	1.70	0.010* (n = 19)	PR status	Positive	3.07	0.731 (n = 24)
	No	5.59		Negative	2.54		
OVH with mastectomy	Yes	2.85	0.304 (n = 11)	ER status	Positive	1.76	0.424 (n = 24)
	No	5.12		Negative	3.19		
Multiple tumours	No	3.51	0.755 (n = 24)	HER2 status	Positive	1.29	0.611 (n = 24)
	Multicentric	2.61		Equivocal	3.80		
	Multicentric/multifocal	2.07		Negative	2.61		
Lymph node metastasis	Present	3.49	0.152 (n = 23)	Molecular classification	LB	3.04	0.754 (n = 24)
	Absent	1.72		HER2	5.01		
				LBHER2	2.56		
Tumour stage	1	0.99	0.259 (n = 24)	NECROSIS	Present	3.23	0.472 (n = 24)
	2	4.64		Absent	2.08		
	3	2.95					
EE grading Malignancy grade	I	0.89	0.575 (n = 24)				
	II	1.28					
	III	3.24					
Mills grading Malignancy grade	I	2.71	0.718 (n = 24)				
	II	2.71					
	III	3.27					

* Indicates \(p \leq 0.05 \)

OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t005
and TP53. TP53 overexpression was already reported to be associated with tumour size in HBC [57], as well as, YBX1 [58] at the protein level. However, the TP53 RNA association with tumour size, in Post hoc Tests, was not significant between size categories, possibly due to the limited number of tumours in some groups, highlighting the need to increase the population to further evaluate this parameter. In parallel, the presence of skin ulceration in cats was found to be associated with c-MYC’s expression, and it was already reported that c-MYC plays a role in the inhibition of epithelialization and wound healing [59]. Furthermore, lymph node metastasis was positively associated with c-MYC expression; an association also found for c-MYC protein levels in HBC patients [32].

Malignancy grade is a helpful tool in HBC and has been suggested as a prognostic biomarker in FMCs [60]. In our analysis when using the EE grading system [42] for the malignancy classification, a relation was found between this parameter and PKM2 RNA levels, being the sample less malignant, the one that register the highest expression level. However, two of the categories rely on a small number of individuals. In addition, when we classified the malignancy grade by the Mills grading system [43], we did not find any statistically significant result. In the future, it will be important to increase the population studied, specifically with the inclusion of individuals with different tumour grading. Furthermore, our analysis revealed an association between the expression of PKM2 and the molecular classification of the tumours. The tumours were classified in six molecular subtypes: Luminal A, Luminal B, Luminal B/HER2-negative, HER2-positive, Triple negative basal-like and Triple negative normal-like. Interestingly, an increase in PKM2 expression was observed in Luminal A tumours and a decrease of this gene expression was found in the Triple negative normal-like tumours, which are associated with better and worse outcomes, respectively [2], suggesting that PKM2 RNA levels can be used as cancer biomarker. Also, it is important to highlight that PKM2 expression can be influenced by different signalling pathways, which can be stimulated by the tumour

Fig 8. c-MYC RNA association with clinicopathological parameters. Box plot graphical representation of the analysis of c-MYC RNA with Lymph node metastasis. The p-value is presented and obtained by using the one-way ANOVA test (Tukey Post Hoc Multiple Comparisons).

https://doi.org/10.1371/journal.pone.0221776.g008
microenvironment (hypoxia and nutrient status), mutations, growth factors (it is described that the PKM2 function and/or transcription is influenced by the signalling of tyrosine kinase receptors as EGFR) and hormones [61], what can be related with our data.

Finally, in our study, the clinicopathological parameter that showed to be preferentially associated with the expression levels was the oral contraceptive administration, being linked with the overexpression of TP53, CCND1, FUS, YBX1 and PTBP1. In fact, the administration of oral contraceptive to domestic animals has been associated with an increased risk in developing tumours, including mammary tumours [62]. Some authors support that over the past forty years, cats have received an excessive dosage of hormones to control reproductive cycles and believe that the administration of lower doses of such compounds and the option for more recent molecules would be potentially safer [63].

This work demonstrated that many of the cancer-related genes here in analysis are directly associated with each other but may also, indirectly, influence many others, creating a complex molecular cancer network. To further understand this association, we performed a Reactome pathway analysis [64], which revealed that these seven genes are involved in almost 25 interconnected pathways (sum of pathways in which these genes play a role, Fig 9), associated with

Table 6. c-MYC RNA relation with clinicopathological parameters. This analysis was performed using one-way ANOVA test.

Clinicopathological parameter	c-MYC RNA Mean	P	Clinicopathological parameter	c-MYC RNA Mean	P	
Tumour size						
T1 (< 2 cm)	0.87	0.218 (n = 26)	Lymphovascular invasion	Present	1.42	0.501 (n = 26)
T2 (2-3 cm)	3.04		Absent	2.35		
T3 (> 3 cm)	1.80					
Skin ulceration						
Present	9.53	<0.001* (n = 26)	Lymphocytic inflammation	Present	2.66	0.170 (n = 26)
Absent	1.56		Absent	1.07		
Sterilized						
Yes	1.97	0.588 (n = 25)	Ki-67 index	High	1.98	0.476 (n = 26)
No	1.56		Low	2.96		
Oral contraceptive						
Yes	1.53	0.345 (n = 20)	PR status	Positive	1.54	0.134 (n = 26)
No	2.47		Negative	3.18		
OVH with mastectomy						
Yes	1.27	0.404 (n = 12)	ER status	Positive	3.18	0.305 (n = 26)
No	2.42		Negative	1.87		
Multiple tumours						
No	1.91	0.791 (n = 26)	HER2 status	Positive	0.77	0.367 (n = 26)
Multicentric	2.06		Equivocal	3.16		
Multicentric/multifocal	2.93		Negative	1.76		
Lymph node metastasis						
Present	3.17	0.027* (n = 25)	Molecular classification	LB	1.49	0.798 (n = 26)
Absent	0.91		HER2	2.59		
Tumour stage						
1	0.68	0.406 (n = 26)	Necrosis	Present	2.52	0.286 (n = 26)
2	2.47		Absent	1.22		
3	2.54					
EE grading Malignancy grade						
I	0.80	0.725 (n = 26)	Ck5/6 index	High	1.96	0.650 (n = 26)
II	1.27		Low	2.46		
III	2.35					
Mills grading Malignancy grade						
I	2.16	0.989 (n = 26)				
II	2.18					

* Indicates p ≤ 0.05
OVH–ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t006
Table 7. **PKM2 RNA relation with clinicopathological parameters.** This analysis was performed using one-way ANOVA.

Clinicopathological parameter	PKM2 RNA Mean	P	Clinicopathological parameter	PKM2 RNA Mean	P
Tumour size					
T1 (< 2 cm)	2.34	0.222	T2 (2–3 cm)	17.51	
T3 (> 3 cm)	7.22				
Skin ulceration					
Present	16.54		Tumour stage		
Absent	10.87		1	2.67	0.127
			2	25.08	
			3	8.82	
Oral contraceptive					
Yes	13.54	0.688	HER2 status		
No	9.12		Positive	1.88	0.0.367
			Equivocal	5.37	
			Negative	15.80	
OvH with mastectomy					
Yes	5.39	0.281	Molecular classification	LB	11.93
No	10.91		HER2	HER2	1.50
				LBHER2	5.95
				LA	99.04
				TN normal	0.55
				TN basal	7.33
Multiple tumours					
Yes	7.18	0.180	Necrosis	Present	13.35
No	24.55		Absent	5.40	
Lymph node metastasis					
Present	8.70	0.511		LB	11.93
Absent	14.05			HER2	1.50
				LBHER2	5.95
				LA	99.04
				TN normal	0.55
				TN basal	7.33
EE grading Malignancy grade					
I	49.80	0.008		Present	13.35
II	1.63		Absent	5.40	
III	9.11				
Mills grading Malignancy grade					
I	0.782			High	15.51
II	10.52			Low	5.16
III	12.83				

* Indicates p ≤ 0.05

OVH—ovariohysterectomy.

https://doi.org/10.1371/journal.pone.0221776.t007

Fig 9. Reactome pathway analysis output. Pathway enrichment analysis of the seven studied genes.

https://doi.org/10.1371/journal.pone.0221776.g009
cell proliferation, apoptosis, cell invasion, gene expression regulation, among others. We found that several of these genes (as $CCND1$, $TP53$, MYC and $YBX1$) are involved in the Notch signalling pathway. This pathway is aberrantly activated in breast cancer and have multiple roles during breast tumour progression, including cell proliferation, apoptosis and cancer stem cell activity. Furthermore, elevated Notch signalling has been correlated with therapy resistance in estrogen receptor-positive breast cancer, with the inhibition of Notch receptors and ligands being proposed as a tool to develop efficient therapies [65, 66]. These data explain the obtained results regarding the correlation between the expression levels of the genes in study and justifies further research in this issue. Furthermore, our data highlight the similarities between the molecular pathways of HBC and FMCs since the expression data for most of the genes are comparable.

Conclusions

This work brings new insights in the transcription levels of some cancer-related genes, namely $TP53$, $CCND1$, FUS, $YBX1$, $PTBP1$, c-MYC and $PKM2$ in FMCs following an approach that overcome the germline polymorphisms (since the disease-free tissue from the same animal was used as reference). Some interesting data were obtained regarding the associations found with the clinicopathological parameters. Besides, with this work, was possible to verify that many of these cancer-related genes are correlated but may also, indirectly, influence others genes, creating a complex molecular cancer network. In sum, this type of work, which is focused on the association of cancer-related genes, is essential because it emphasizes the importance of FMCs as a model for HBC research and allows the discovery of putative cancer biomarkers.

Supporting information

S1 Table. Sequence of the primers used in this work.
(DOCX)

S2 Table. Standard curve parameters.
(DOCX)

S3 Table. $TP53$ RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.
(DOCX)

S4 Table. $CCND1$ RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.
(DOCX)

S5 Table. FUS RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.
(DOCX)

S6 Table. $YBX1$ RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.
(DOCX)

S7 Table. $PTBP1$ RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.
(DOCX)
S8 Table. \(c\)-MYC RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.

S9 Table. PKM2 RNA quantification of each FMC sample using the DFT sample from the same individual as reference. Values are mean ± SD.

Author Contributions

Conceptualization: Raquel Chaves.

Data curation: Daniela Ferreira, Maria Soares.

Formal analysis: Daniela Ferreira, Bárbara Martins.

Funding acquisition: Fernando Ferreira, Raquel Chaves.

Investigation: Daniela Ferreira, Bárbara Martins, Maria Soares, Jorge Correia, Filomena Adega, Fernando Ferreira, Raquel Chaves.

Methodology: Daniela Ferreira, Bárbara Martins, Maria Soares, Jorge Correia, Filomena Adega, Fernando Ferreira, Raquel Chaves.

Project administration: Fernando Ferreira, Raquel Chaves.

Resources: Fernando Ferreira, Raquel Chaves.

Supervision: Fernando Ferreira, Raquel Chaves.

Validation: Daniela Ferreira, Raquel Chaves.

Writing – original draft: Daniela Ferreira.

Writing – review & editing: Bárbara Martins, Maria Soares, Jorge Correia, Filomena Adega, Fernando Ferreira, Raquel Chaves.

References

1. Adega F, Borges A, Chaves R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet Sci. 2016; 3(3):17. https://doi.org/10.3390/vetsci3030017 PMID: 29056725
2. Soares M, Madeira S, Correia J, Peleteiro M, Cardoso F, Ferreira F. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization. Breast. 2016; 27:44–51. https://doi.org/10.1016/j.breast.2016.02.016 PMID: 27212699
3. Kim S. New and emerging factors in tumorigenesis: an overview. Cancer Manag Res. 2015; 7:225–39. https://doi.org/10.2147/CMAR.S47797 PMID: 26251629
4. Dai X, Xiang L, Li T, Bai Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J Cancer. 2016; 7(10):1281–94. https://doi.org/10.7150/jca.13141 PMID: 27390604
5. Duffy MJ, Synnott NC, Crown J. Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 2018; 170(2):213–9. https://doi.org/10.1007/s10549-018-4753-7 PMID: 29564741
6. Shrestha M, Park PH. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells. Korean J Physiol Pharmacol. 2016; 20(5):487–98. https://doi.org/10.4196/kjpp.2016.20.5.487 PMID: 27610035
7. Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011; 2(4):466–74. https://doi.org/10.1177/1947619111408889 PMID: 21779514
8. Cardellino U, Ciribilli Y, Andreotti V, Modesto P, Menichini P, Fronza G, et al. Transcriptional properties of feline p53 and its tumour-associated mutants: a yeast-based approach. Mutagenesis. 2007; 22(6):417–23. https://doi.org/10.1093/mutage/gem036 PMID: 17947339
9. Murakami Y, Tateyama S, Rungisipatat A, Uchida K, Yamaguchi R. Immunohistochemical analysis of cyclin A, cyclin D1 and P53 in mammary tumors, squamous cell carcinomas and basal cell tumors of dogs and cats. J Vet Med Sci. 2000; 62(7):743–50. https://doi.org/10.1292/jvms.62.743 PMID: 10945293

10. Nasir L, Krasner H, Argyle DJ, Williams A. Immunocytochemical analysis of the tumour suppressor protein (p53) in feline neoplasia. Cancer Lett. 2000; 155(1):1–7. https://doi.org/10.1016/s0304-3835(00)00337-2 PMID: 10814873

11. Guo L, Liu S, Jakulin A, Yilamu D, Wang B, Yan J. Positive expression of cyclin D1 is an indicator for the evaluation of the prognosis of breast cancer. Int J Clin Exp Med. 2015; 8(10):18656–64. PMID: 26770479

12. Huang W, Nie W, Zhang W, Wang Y, Zhu A, Guan X. The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer. Onco Targets Ther. 2016; 9:4377–85. https://doi.org/10.2147/OTT.S94703 PMID: 27499632

13. Li Z, Cui J, Yu Q, Wu X, Pan A, Li L. Evaluation of CCND1 amplification and CyclinD1 expression: diffuse and strong staining of CyclinD1 could have same predictive roles as CCND1 amplification in ER positive breast cancers. Am J Transl Res. 2016; 8(1):142–53. PMID: 27069548

14. Lundberg A, Lindstrom LS, Li J, Harrell JC, Darai-Ramqvist E, Sifakis EG, et al. The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours. Breast Cancer Res. 2019; 21(1):34. https://doi.org/10.1186/s13058-019-1211-4 PMID: 30819233

15. Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast cancer. PLoS One. 2017; 12(11):e0188068. https://doi.org/10.1371/journal.pone.0188068 PMID: 29140993

16. Lanson NA Jr, Pandey UB. FUS-related proteinopathies: lessons from animal models. Brain Res. 2012; 1462:44–60. https://doi.org/10.1016/j.brainres.2012.01.039 PMID: 22342159

17. Ward CL, Boggio KJ, Johnson BN, Boyd JB, Douthwright S, Shaffer SA, et al. A loss of FUS/TLS function leads to impaired cellular proliferation. Cell Death Dis. 2014; 5:e1572. https://doi.org/10.1038/cddis.2014.508 PMID: 25501833

18. Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, et al. NEAT1 is Required for Survival of Breast Cancer Cells Through FUS and miR-548. Gene Regul Syst Biol. 2011; 7(1):11–7. https://doi.org/10.4137/GRSB.S29414 PMID: 27147820

19. Tan AY, Manley JL. TLS/FUS: a protein in cancer and ALS. Cell cycle. 2012; 11(18):3349–50. https://doi.org/10.4161/cc.21875 PMID: 22918236

20. Castellana B, Aasen T, Moreno-Bueno G, Dunn SE, y Cajal SR. Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells. Oncotarget. 2015; 6(35):38239–56. https://doi.org/10.18632/oncotarget.5664 PMID: 26512918

21. Ma JW, Hung CM, Lin YC, Ho CT, Kao JY, Way TD. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget. 2016; 7:58915–30. https://doi.org/10.18632/oncotarget.10410 PMID: 27391337

22. Lee A, Woo J, Park H, Sung SH, Seoh JY, Lim W, et al. The value of cytoplasmic Y-box-binding protein 1 as a prognostic marker for breast cancer in Korean. Breast Cancer. 2016; 23(5):685–91. https://doi.org/10.1007/s12282-015-0625-8 PMID: 26193840

23. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc). 2011; 76(13):1402–33. https://doi.org/10.1134/S0006297911130049 PMID: 22339596

24. Wang X, Guo X-B, Shen X-C, Zhou H, Han D-W, Xue X-F, et al. Progmin expression in breast cancer: a meta-analysis. Int J Clin Exp Med. 2015; 8(2):1780. PMID: 25932106

25. Arena V, Riccardi M, Pennachia I, Franceschini G, Di Leone A, Masetti R. YB-1 in breast cancer. Our laboratory data. Eur J Surg Oncol. 2016; 42(3):433–4. https://doi.org/10.1016/j.ejso.2015.11.005 PMID: 26687068

26. He X, Pool M, Darcy K, Lim S, Auersperg N, Coon J, et al. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene. 2007; 26(34):4961–8. https://doi.org/10.1038/sj.oto.17010993

27. Takahashi H, Nishimura J, Kagawa Y, Kano Y, Takahashi Y, Wu X, et al. Significance of Polypyrimidine Tract-Binding Protein 1 Expression in Colorectal Cancer. Mol Cancer Ther. 2015; 14(7):1705–16. https://doi.org/10.1158/1535-7163.MCT-14-0142 PMID: 25904505

28. Wang X, Li Y, Fan Y, Yu X, Mao X, Jin F. PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy. J Cell Physiol. 2018; 233(11):8930–9. https://doi.org/10.1002/jcp.26623 PMID: 29856478
29. Arnold HK, Sears RC. Protein phosphatase 2A regulatory subunit B56α associates with c-Myc and negatively regulates c-Myc accumulation. Mol Cell Biol. 2006; 26(7):2832–44. https://doi.org/10.1128/MCB.26.7.2832-2844.2006 PMID: 16537924
30. Farrell AS, Sears RC. MYC degradation. Cold Spring Harb Perspect Med. 2014; 4(3). https://doi.org/10.1101/cshperspect.a014365 PMID: 24591536
31. Jung M, Russell AJ, Liu B, George J, Liu PY, Liu T, et al. A Myc Activity Signature Predicts Poor Clinical Outcomes in Myc-Associated Cancers. Cancer Res. 2017; 77(4):971–81. https://doi.org/10.1158/0008-5472.CAN-15-2906 PMID: 27923830
32. Green AR, Aleskandarany MA, Agarwal D, Elsheikh S, Nolan CC, Diez-Rodriguez M, et al. MYC functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br J Cancer. 2016; 114(8):917–28. https://doi.org/10.1038/bjc.2016.46 PMID: 26954716
33. Bleche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R, et al. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res. 1999; 59(12):2759–65. PMID: 10383126
34. Chrzan P, Sokowksi J, Karmolinski A, Pawelczyk T. Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clin Biochem. 2001; 34(7):557–62. https://doi.org/10.1016/S0009-9120(01)00260-0 PMID: 11738392
35. Manzoor S, Raza Awan A, Wajid A, Lidereau R, et al. Pyruvate kinase M2 at a glance. J Cell Sci. 2015; 128(9):1655–60. https://doi.org/10.1242/jcs.166629 PMID: 25770102
36. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, et al. PKM2 and cancer: The function of PKM2 beyond glycolysis (Review). Oncotarget. 2019; 8(1):1628–40. https://doi.org/10.18632/aging.102079 PMID: 31113336
37. Soares M, Ribeiro R, Carvalho S, Menezes-da-Silva A, Meles S, Adega F. FA-SAT is an old satellite DNA frozen in several Bilateria genomes. Genome Biol Evol. 2017; 9(11):3073–87. https://doi.org/10.1093/gbe/evx212 PMID: 29608678
38. Soares M, Ribeiro R, Carvalho S, Menezes-da-Silva A, Meles S, Adega F. FA-SAT is an old satellite DNA frozen in several Bilateria genomes. Genome Biol Evol. 2017; 9(11):3073–87. https://doi.org/10.1093/gbe/evx212 PMID: 29608678
49. Ferreira D, Escudeiro A, Adega F, Chaves R. DNA Methylation Patterns of a Satellite Non-coding Sequence—FA-SAT in Cancer Cells: Its Expression Cannot Be Explained Solely by DNA Methylation. Front Genet. 2019; 10:101. https://doi.org/10.3389/fgene.2019.00101 PMID: 30809250

50. De Maria R, Olivero M, Iussich S, Nakaichi M, Murata T, Biolatti B, et al. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res. 2005; 65(3):907–12. PMID: 15705889

51. Mylona E, Melissaris S, Giannopoulou I, Theohari I, Papadimitriou C, Keramopoulou A, et al. Y-box-binding protein 1 (YB1) in breast carcinomas: relation to aggressive tumor phenotype and identification of patients at high risk for relapse. Eur J Surg Oncol. 2014; 40(3):289–96. https://doi.org/10.1016/j.ejso.2013.09.008 PMID: 24075827

52. Peurala E, Koivunen P, Haapasaa K-M, Bloigu R, Jukkola-Vuorinen A. The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer. Breast Cancer Res. 2013; 15(1):R5. https://doi.org/10.1186/bcr3376 PMID: 26339369

53. Porter JR, Fisher BE, Baranello L, Liu JC, Kambach DM, Nie Z, et al. Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Mol Cell. 2017; 67(6):103–25.e9. https://doi.org/10.1016/j.molcel.2017.07.028 PMID: 28867293

54. He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cell growth and malignant properties. Oncogenesis. 2014; 3:e84. https://doi.org/10.1038/oncsis.2013.47 PMID: 24418892

55. David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010; 463(7279):364–8. https://doi.org/10.1038/nature08697 PMID: 20010808

56. Kim HS, Yom CK, Kim HJ, Lee JW, Sohn JH, Kim JH, et al. Overexpression of p53 is correlated with poor outcome in premenopausal women with breast cancer treated with tamoxifen after chemotherapy. Breast Cancer Res Treat. 2010; 121(3):777–88. https://doi.org/10.1007/s10549-009-0560-5 PMID: 19806450

57. Yu YN, Yip GWC, Tan PH, Thike AA, Matsumoto K, Tsujimoto M, et al. Y-box binding protein 1 is upregulated in proliferative breast cancer and its inhibition deregulates the cell cycle. Int J Oncol. 2010; 37(2):483–92. https://doi.org/10.3892/ijo_0000097 PMID: 20596676

58. Stojadinovic O, Brem H, Younghuis C, Lee B, Fallon J, Stallcup M, et al. Molecular pathogenesis of chronic wounds: the role of β-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005; 167(1):59–69. https://doi.org/10.1016/s0002-9440(10)62953-7 PMID: 15972952

59. Seixas F, Palmeira C, Pires MA, Bento MJ, Lopes C. Grade is an independent prognostic factor for feline mammary carcinomas: a clinicopathological and survival analysis. Vet J. 2011; 187(1):65–71. https://doi.org/10.1016/j.tvjl.2009.10.030 PMID: 19955006

60. Prakash G, Iqbal MA, Barnezai RKN, Mazurek S. Posttranslational Modifications of Pyruvate Kinase M2: Tweaks that Benefit Cancer. Front Oncol. 2018; 8:22. https://doi.org/10.3389/fonc.2018.00022 PMID: 29468140

61. Millián C, Guí-Luna S, Reymundo C, Sánchez-Céspedes R, de las Mulas JMn. Sex steroid hormones and tumors in domestic animals. Insights from Veterinary Medicine. InTech; 2013.

62. Romagnoli S. Progestins to control feline reproductive hormone function and potentially safe use of low doses. J Feline Med Surg. 2015; 17(9):743–52. https://doi.org/10.1177/1098612X15594987 PMID: 26323797

63. Labriola L, Fiderle J, Jardim MA, D’Andrea C, Gilleret P, Maeder M, et al. Biodegradable microparticles enhance tumor cell delivery of a dendritic cell vaccine. PLoS ONE. 2017; 12(11):e0189856. https://doi.org/10.1371/journal.pone.0189856

64. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics. 2017; 18(1):142. https://doi.org/10.1186/s12859-017-1559-2 PMID: 28249561

65. Kontomanolis EN, Kallagadisoud S, Poulitou S, Anthoulaki X, Georgiou N, Papamanolis V, et al. The Notch Pathway in Breast Cancer Progression. ScientificWorldJournal. 2018; 2018:2415489. https://doi.org/10.1155/2018/2415489 PMID: 30119899

66. Acar A, Simoes BM, Clarke RB, Brennan K. A Role for Notch Signalling in Breast Cancer and Endocrine Resistance. Stem Cells Int. 2016; 2016:2498764. https://doi.org/10.1155/2016/2498764 PMID: 26880941