WITTEN DEFORMATION OF RAY-SINGER ANALYTIC TORSION

MAXIM BRAVERMAN

August, 1994

Abstract. Let F be a flat vector bundle over a compact Riemannian manifold M and let $f : M \rightarrow \mathbb{R}$ be a self-indexing Morse function. Let g^F be a smooth Euclidean metric on F, let $g^F_t = e^{-2tf}g^F$ and let $\rho^{RS}(t)$ be the Ray-Singer analytic torsion of F associated to the metric g^F_t. Assuming that ∇f satisfies the Morse-Smale transversality conditions, we provide an asymptotic expansion for $\log \rho^{RS}(t)$ for $t \rightarrow \infty$ of the form $a_0 + a_1 t + b \log (\frac{t}{\pi}) + o(1)$. We present explicit formulae for coefficients a_0, a_1 and b. In particular, we show that b is a half integer.

0. Introduction

0.1. The Ray-Singer analytic torsion. Let M be a compact manifold of dimension n and let F be a flat vector bundle on M. Let g^F and g^{TM} be smooth metrics on F and TM respectively.

In [RS] Ray and Singer introduced a numerical invariant of these data which is called the Ray-Singer analytic torsion of F and which we shall denote by ρ^{RS}.

0.2. The Witten deformation. Suppose $f : M \rightarrow \mathbb{R}$ is a Morse function. For $t > 0$, we denote by g^F_t the smooth metric on F

\begin{equation}
(0.1)
\quad g^F_t = e^{-2tf}g^F.
\end{equation}

Let $\rho^{RS}(t)$ be the Ray-Singer torsion on F associated to the metrics g^F_t and g^{TM}.

Denote by ∇f the gradient vector field of f with respect to the metric g^{TM}. Let B be the finite set of zeroes of ∇f.

We shall assume that the following conditions are satisfied (cf. [BFK3, page 5]):

(1) $f : M \rightarrow \mathbb{R}$ is a self-indexing Morse function (i.e. $f(x) = \text{index}(x)$ for any critical point x of f).

\begin{itemize}
\item 1991 Mathematics Subject Classification. Primary: 58G26.
\item Key words and phrases. Analytic torsion, Witten deformation, Asymptotic expansion, Ray-Singer metric, Milnor metric.
\end{itemize}
(2) The gradient vector field ∇f satisfies the Smale transversality conditions [Sm1, Sm2] (for any two critical points x and y of f the stable manifold $W^s(x)$ and the unstable manifold $W^u(y)$, with respect to ∇f, intersect transversally).

(3) For any $x \in B$, the metric g^F is flat near B and there is a system of coordinates $y = (y^1, \ldots, y^n)$ centered at x such that near x

$$g^{TM} = \sum_{i=1}^n |dy^i|^2, \quad f(y) = f(x) - \frac{1}{2} \sum_{i=1}^{\text{index}(x)} |y^i|^2 + \frac{1}{2} \sum_{i=\text{index}(x)+1}^n |y^i|^2.$$

0.3. Asymptotic expansion of the torsion. Burghelea, Friedlander and Kappeler ([BFK3]) have shown that the function $\log \rho^{RS}(t)$ has asymptotic expansion for $t \to \infty$ of the form

$$\log \rho^{RS}(t) = \sum_{j=0}^{n+1} a_j t^j + b \log t + o(1).$$

The coefficient a_0 is calculated in [BFK3] in terms of the parametrix of the Laplace-Beltrami operator.

In the present paper we shall calculate all coefficients in the asymptotic expansion [BFK3]. In fact, we shall show that the coefficients $a_j = 0$ for $j > 1$ and the coefficient b is a half integer.

0.4. To formulate our result, we need to introduce some notation (cf. [BZ1]).

Let ∇^{TM} be the Levi-Civita connection on TM corresponding to the metric g^{TM}, and let $e(TM, \nabla^{TM})$ be the associated representative of the Euler class of TM in Chern-Weil theory.

Let $\psi(TM, \nabla^{TM})$ be the Mathai-Quillen ([MQ]) $n - 1$ current on TM (see also [BGS, Section 3] and [BZ1, Section IIId]).

Let ∇^F be the flat connection on F and let $\theta(F, g^F)$ be the 1-form on M defined by (cf. [BZ1, Section IVd])

$$\theta(F, g^F) = \text{Tr} \left[(g^F)^{-1} \nabla^F g^F \right].$$

Set

$$\chi(F) = \sum_{i=0}^n (-1)^i \dim H^i(M, F),$$

$$\chi'(F) = \sum_{i=0}^n (-1)^i i \dim H^i(M, F).$$

Let ρ^M be the torsion of the Thom-Smale complex (cf. Section 1).
Theorem 0.5. The function \(\log \rho^{RS}(t) \) admits an asymptotic expansion for \(t \to \infty \) of the form

\[
(0.6) \quad \log \rho^{RS}(t) = a_0 + a_1 t + b \log \left(\frac{t}{\pi} \right) + o(1),
\]

where the coefficients \(a_0, a_1 \) and \(b \) are given by the formulas

\[
(0.7) \quad a_0 = \log \rho^M - \frac{1}{2} \int_M \theta(F, g^F)(\nabla f)^*(TM, \nabla^{TM});
\]

\[
(0.8) \quad a_1 = -\text{rk}(F) \int_M f e(TM, \nabla^{TM}) + \chi'(F);
\]

and

\[
(0.9) \quad b = \frac{n}{4} \chi(F) - \frac{1}{2} \chi'(F).
\]

Remark 0.6. Note that \(\chi(F) = 0 \) if \(n \) is odd. Hence, (0.9) implies that the coefficient \(b \) is a half integer for any \(n \).

0.7. The method of the proof. Our method is completely different from that of [BFK3]. In [BFK3] the asymptotic expansion (0.3) is proved by direct analytic arguments and, then is applied to get a new proof of the Ray-Singer conjecture [RS].

In the present paper we use the Bismut-Zhang extension of this conjecture ([BZ1]) in order to obtain the Theorem 0.5.

Acknowledgments. It is a great pleasure for me to express my deep gratitude to Michael Farber for bringing the papers [BFK2, BFK3] to my attention and for valuable discussions.

1. Milnor metric and Milnor torsion

In this section we follow [BZ1, Chapter I].

1.1. The determinant line of the cohomology. Let \(H^\bullet(M, F) = \bigoplus_{i=0}^n H^i(M, F) \) be the cohomology of \(M \) with coefficients in \(F \) and let \(\det H^\bullet(M, F) \) be the line

\[
(1.1) \quad \det H^\bullet(M, F) = \bigotimes_{i=0}^n \left(\det H^i(M, F) \right)^{(-1)^i}.
\]
1.2. The Thom-Smale complex. Suppose \(f : M \rightarrow \mathbb{R} \) is a Morse function satisfying the Smale transversality conditions [Sm1, Sm2] (for any two critical points \(x \) and \(y \) of \(f \) the stable manifold \(W^s(x) \) and the unstable manifold \(W^u(y) \), with respect to \(\nabla f \), intersect transversally).

Let \(B \) be the set of critical points of \(f \). If \(x \in B \), we denote by \(F_x \) the fiber of \(F \) over \(x \) and by \([W^u(x)]\) the real line generated by \(W^u(x) \). For \(0 \leq i \leq n \), set

\[
C^i(W^u, F) = \bigoplus_{x \in B \atop \text{index}(x) = i} [W^u(x)] \otimes \mathbb{R} F_x.
\]

By a basic result of Thom ([Th]) and Smale ([Sm2]) (see also [BZ1, pages 28–30]), there is a well defined linear operators \(\partial : C^i(W^u, F) \rightarrow C^{i+1}(W^u, F) \), such that the pair \((C^*(W^u, F), \partial)\) is a complex and there is a canonical identification of \(\mathbb{Z} \)-graded vector spaces \(H^\ast(C^*(W^u, F), \partial) \simeq H^\ast(M, F) \). By [KMu] there is a canonical isomorphism

\[
\det H^\ast(M, F) \simeq \det C^*(W^u, F).
\]

1.3. The Milnor metric. The metric \(g^F \) on \(F \) determines the structure of Euclidean vector space on \(C^*(W^u, F) \).

Definition 1.4. The Milnor metric \(\| \cdot \|_{\det H^\ast(M, F)}^M \) on the line \(\det H^\ast(M, F) \) is the metric corresponding to the obvious metric on \(\det C^*(W^u, F) \) via the canonical isomorphism (1.3).

Remark 1.5. By Milnor [Mi1, Theorem 9.3], if \(g^F \) is a flat metric on \(F \) then the Milnor metric coincides with the Reidemeister metric defined through a smooth triangulation of \(M \). In this case \(\| \cdot \|_{\det H^\ast(M, F)}^M \) does not depend upon \(F \) and \(g^TM \) and, hence, is a topological invariant of the flat Euclidean vector bundle \(F \).

1.6. The Milnor torsion. Let \(\partial^* \) be the adjoint of \(\partial \) with respect to the Euclidean structure on \(C^*(W^u, F) \). Using the finite dimensional Hodge theory, we have the canonical identification

\[
H^i(C^*(W^u, F), \partial) \simeq \{ v \in C^i(W^u, F) : \partial v = 0, \partial^* v = 0 \}, \quad 0 \leq i \leq n.
\]

As a vector subspace of \(C^i(W^u, F) \), the vector space in the right-hand side of (1.4) inherits the Euclidean metric. We denote by \(| \cdot |_{\det H^\ast(M, F)}^M \) the corresponding metric on \(\det H^\ast(M, F) \).

The metrics \(\| \cdot \|_{\det H^\ast(M, F)}^M \) and \(| \cdot |_{\det H^\ast(M, F)}^M \) do not coincide in general. We shall describe the discrepancy.

Set \(\Delta = \partial \partial^* + \partial^* \partial \) and let \(P : C^*(W^u, F) \rightarrow \text{Ker} \Delta \) be the orthogonal projection. Set \(\Pi^\perp = 1 - \Pi \).
Let N and τ be the operators on $C^\bullet(W^u, F)$ acting on $C^i(W^u, F)$ ($0 \leq i \leq n$) by multiplication by i and $(-1)^i$ respectively. If $A \in \text{End}(C^\bullet(W^u, F))$, we define the supertrace $\text{Tr}_s[A]$ by the formula

$$\text{Tr}_s[A] = \text{Tr}[\tau A].$$

For $s \in \mathbb{C}$, set

$$\eta^M(s) = -\text{Tr}_s \left[N(\Delta)^{-s} \Pi^\perp \right].$$

Definition 1.7. The Milnor torsion is the number

$$\rho^M = \exp \left(\frac{1}{2} \frac{d\eta^M(0)}{ds} \right).$$

The following result is proved in [BGS, Proposition 1.5]

$$\| \cdot \|_{\det H^\bullet(M, F)}^M = \| \cdot \|_{\det H^\bullet(M, F), t}^M \cdot \rho^M.$$

1.8. Deformation of Milnor metric. The metric $\| \cdot \|_{\det H^\bullet(M, F)}^M$ depends on the metric g^F. Let $g^F_t = e^{-2tf}g^F$ and let $\| \cdot \|_{\det H^\bullet(M, F), t}^M$ be the corresponding Milnor metric. Set

$$\tilde{\chi}'(F) = \text{rk}(F) \sum_{x \in B} (-1)^{\text{index}(x)} \text{index}(x).$$

As f is a self-indexing Morse function

$$\text{rk}(F) \sum_{x \in B} (-1)^{\text{index}(x)} f(x) = \tilde{\chi}'(F).$$

Obviously,

$$\| \cdot \|_{\det H^\bullet(M, F), t}^M = e^{-i\tilde{\chi}'(F)} \cdot \| \cdot \|_{\det H^\bullet(M, F)}^M.$$

2. Ray-Singer metric and Ray-Singer torsion

2.1. L_2 metric on the determinant line. Let $(\Omega^\bullet(M, F), d^F)$ be the de Rahm complex of the smooth sections of $\Lambda(T^*M) \otimes F$ equipped with the coboundary operator d^F. The cohomology of this complex is canonically isomorphic to $H^\bullet(M, F)$.

Let $*$ be the Hodge operator associated to the metric g^{TM}. We equip $\Omega^\bullet(M, F)$ with the inner product

$$\langle \alpha, \alpha' \rangle_{\Omega^\bullet(M, F)} = \int_M \langle \alpha \wedge \ast \alpha' \rangle_{g^F}.$$

By Hodge theory, we can identify $H^\bullet(M, F)$ to the corresponding harmonic forms in $\Omega^\bullet(M, F)$. These forms inherit the Euclidean product (2.1). Thus the line $\det H^\bullet(M, F)$ inherits a metric $\| \cdot \|_{\det H^\bullet(M, F)}^{\text{RS}}$, which is also called the L_2 metric.
2.2. The Ray-Singer torsion. Let dF^* be the formal adjoint of dF with respect to the metrics g^{TM} and g^F.

Set $\Delta = dF dF^* + dF^* dF$ and let $\Pi : \Omega^\bullet(M, F) \to \text{Ker } \Delta$ be the orthogonal projection. Set $\Pi^\perp = 1 - \Pi$.

Let N be the operator defining the \mathbb{Z}-grading of $\Omega^\bullet(M, F)$, i.e. N acts on $\Omega^i(M, F)$ by multiplication by i.

If an operator $A : \Omega^\bullet(M, F) \to \Omega^\bullet(M, F)$ is trace class, we define its supertrace $\text{Tr}^s[A]$ as in (1.5).

For $s \in \mathbb{C}$, set
$$
\eta^{RS}(s) = - \text{Tr}_s \left[N(\Delta)^{-s} \Pi^\perp \right].
$$

By a result of Seeley [Se], $\eta^{RS}(s)$ extends to a meromorphic function of $s \in \mathbb{C}$, which is holomorphic at $s = 0$.

Definition 2.3. The Ray-Singer torsion is the number

$$
\rho^{RS} = \exp \left(\frac{1}{2} \frac{d\eta^{RS}(0)}{ds} \right).
$$

2.4. The Ray-Singer metric. We now remind the following definition (cf. [BZ1, Definition 2.2]):

Definition 2.5. The Ray-Singer metric $\| \cdot \|^{RS}_{\text{det } H^\bullet(M, F)}$ on the line $\text{det } H^\bullet(M, F)$ is the product

$$
\| \cdot \|^{RS}_{\text{det } H^\bullet(M, F)} = | \cdot |^{RS}_{\text{det } H^\bullet(M, F)} \cdot \rho^{RS}.
$$

Remark 2.6. When M is odd dimensional, Ray and Singer [RS, Theorem 2.1] proved that the metric $\| \cdot \|^{RS}_{\text{det } H^\bullet(M, F)}$ is a topological invariant, i.e. does not depend on the metrics g^{TM} or g^F. Bismut and Zhang [BZ1, Theorem 0.1] described explicitly the dependents of $\| \cdot \|^{RS}_{\text{det } H^\bullet(M, F)}$ on g^{TM} and g^F in the case when $\text{dim } M$ is odd.

2.7. Bismut-Zhang theorem. Let ∇^{TM} be the Levi-Civita connection on TM corresponding to the metric g^{TM}, and let $e(TM, \nabla^{TM})$ be the associated representative of the Euler class of TM in Chern-Weil theory.

Let $\psi(TM, \nabla^{TM})$ be the Mathai-Quillen ([MQ]) $n - 1$ current on TM (see also [BGS, Section3] and [BZ1, Section IIId]).

Let ∇^F be the flat connection on F and let $\theta(F, g^F)$ be the 1-form on M defined by (cf. [BZ1, Section IVd])

$$
\theta(F, g^F) = \text{Tr} \left[(g^F)^{-1} \nabla^F g^F \right].
$$

Now we remind the following theorem by Bismut and Zhang [BZ1, Theorem 0.2].
Theorem 2.8 (Bismut-Zhang). The following identity holds

$$\log \left(\frac{\| \cdot \|_{RS}^{H^\bullet(M,F)} \|}{\| \cdot \|_{H^\bullet(M,F)}^{M}} \right)^2 = -\int_M \theta(F, g^F) (\nabla f)^* \psi(TM, \nabla TM).$$

2.9. Dependence on the metric. The metrics $\| \cdot \|_{RS}^{H^\bullet(M,F)}$ and $\| \cdot \|_{H^\bullet(M,F)}^{M}$ depend, in general, on the metric g^F. Let $g_t^F = e^{-2t} g^F$ and let $\| \cdot \|_{RS}^{H^\bullet(M,F),t}$ and $\| \cdot \|_{M_H^\bullet(M,F),t}$ be the Ray-Singer and Milnor metrics on $H^\bullet(M, F)$ associated to the metrics g_t^F and g^{TM}.

By [BZ1, Theorem 6.3]

$$\int_M \theta(F, g_t^F) (\nabla f)^* \psi(TM, \nabla TM) = \int_M \theta(F, g^F) (\nabla f)^* \psi(TM, \nabla TM) + 2t \text{rk}(F) \int_M f e(TM, \nabla TM) - 2t \chi'(F).$$

From (1.9), (2.5) and (2.6), we get

$$\log \left(\frac{\| \cdot \|_{RS}^{H^\bullet(M,F),t}}{\| \cdot \|_{H^\bullet(M,F),t}^{M}} \right)^2 = -\int_M \theta(F, g^F) (\nabla f)^* \psi(TM, \nabla TM) - 2t \text{rk}(F) \int_M f e(TM, \nabla TM).$$

3. The main result

In this section we prove Theorem 0.5, which we restate for convenience.

Theorem 3.1. The function $\log \rho^{RS}(t)$ admits an asymptotic expansion for $t \to \infty$ of the form

$$\log \rho^{RS}(t) = a_0 + a_1 t + b \log \left(\frac{t}{\pi} \right) + o(1),$$

where the coefficients a_0, a_1 and b are given by the formulas

$$a_0 = \log \rho^{M} - \frac{1}{2} \int_M \theta(F, g^F) (\nabla f)^* \psi(TM, \nabla TM);$$

$$a_1 = -\text{rk}(F) \int_M f e(TM, \nabla TM) + \chi'(F);$$

and

$$b = \frac{n}{4} \chi(F) - \frac{1}{2} \chi'(F).$$
Proof. For each \(t > 0 \) we equip \(\Omega^\bullet(M, F) \) with the inner product
\[
\langle \alpha, \alpha' \rangle_{\Omega^\bullet(M, F), t} = \int_M \langle \alpha \wedge \star \alpha' \rangle_{g^F}.
\]
and we denote by \(| \cdot |_{RS |_{\det H^\bullet(M,F),t}} \) the \(L_2 \) metric on \(\det H^\bullet(M, F) \) (cf. Section 2.1) associated to this inner product.

From (1.7), (2.3) and (2.7), we get
\[
\log \rho_{RS}^\bullet(t) = -\frac{1}{2} \int_M \theta(F, g^F) (\nabla f)^\star \psi(TM, \nabla TM) \hspace{1cm} (3.6)
\]
and
\[
\int_M f e(TM, \nabla TM) + \log \rho^M + \log \left(\frac{| \cdot |_{\det H^\bullet(M,F),t}}{| \cdot |_{RS |_{\det H^\bullet(M,F),t}}} \right) \hspace{1cm} (3.7)
\]
Let \(dF^\star \) be the formal adjoint of \(dF \) with respect to the inner product (3.5). Set
\[
\Delta_t = dF dF^\star + dF^\star dF.
\]
Let \(\Omega^\bullet_t^{[0,1]}(M, F) \) be the direct sum of the eigenspaces of \(\Delta_t \) associated to eigenvalues \(\lambda \in [0, 1] \). The pair \((\Omega^\bullet_t^{[0,1]}(M, F), dF) \) is a subcomplex of \((\Omega^\bullet(M, F), dF) \).

We denote by \(\| \cdot \|_{\Omega^\bullet(M,F)} \) the norm on \(\Omega^\bullet(M, F) \) determined by inner product (3.5), and by \(\| \cdot \|_{C^\bullet(W^u,F)} \) the norm on \(C^\bullet(W^u, F) \) determined by \(g^F \) (cf. Section 1.3).

In the sequel, \(o(1) \) denotes an element of End \((C^\bullet(W^u, F)) \) which preserves the \(\mathbb{Z} \)-grading and is \(o(1) \) as \(t \to \infty \).

It is shown in [BZ2, Theorem 6.9] that if \(t > 0 \) is large enough, there exists an isomorphism
\[
e_t : C^\bullet(W^u, F) \to \Omega^\bullet_t^{[0,1]}(M, F)
\]
of \(\mathbb{Z} \)-graded Euclidean vector spaces such that
\[
e_t^\star e_t = 1 + o(1). \hspace{1cm} (3.7)
\]
By [BZ2, Theorem 6.11], for any \(t > 0 \) there is a quasi-isomorphism of complexes
\[
P_t : \left(\Omega^\bullet_t^{[0,1]}(M, F), dF \right) \to \left(C^\bullet(W^u, F), \partial \right),
\]
which induces the canonical isomorphism
\[
H^\bullet(M, F) \simeq H^\bullet(\Omega^\bullet_t^{[0,1]}(M, F), dF) \simeq H^\bullet(C^\bullet(W^u, F), \partial) \hspace{1cm} (3.8)
\]
and such that
\[
P_t e_t = e_t^N \left(\frac{t}{\pi} \right)^{n/4-N/2} \left(1 + o(1) \right) \hspace{1cm} (3.9)
\]
Here \(e_t^N \left(\frac{t}{\pi} \right)^{n/4-N/2} \) denotes the operator on \(C^\bullet(W^u, F) \) acting on \(C^i(W^u, F) \) by multiplication by \(e^{ti} \left(\frac{t}{\pi} \right)^{n/4-i/2} \).

It follows from (3.9), that, for \(t > 0 \) large enough, \(P_t \) is one to one.
From (3.7), (3.9) we get

\[(3.10)\quad P_t P_t^* = e^{2t N} \left(\frac{t}{\pi} \right)^{n/2-N} \left(1 + o(1) \right).\]

Fix \(\sigma \in H^i(M, F) \) (0 \(\leq i \leq n \)) and let \(\omega_t \in \text{Ker} \Delta_t \) be the harmonic form representing \(\sigma \).

Let \(\Pi : C^\bullet(W^u, F) \rightarrow \text{Ker} \partial \) be the orthogonal projection. Then \(\Pi P_t \omega_t \in C^i(W^u, F) \) corresponds to \(\sigma \) via the canonical isomorphisms (1.4), (3.8).

Obviously,

\[(3.11)\quad P_t \omega_t \in \text{Ker} \partial, \quad e^{2t \left(\frac{t}{\pi} \right)^{n/2-i}} \left(P_t^* \right)^{-1} \omega_t \in \text{Ker} \partial^*.\]

By (3.10), we get

\[(3.12)\quad \left\| \Pi P_t \omega_t \right\|_{C^\bullet(W^u, F)} = \left\| P_t \omega_t \right\|_{C^\bullet(W^u, F)} \left(1 + o(1) \right).\]

From (3.10), (3.12) we obtain

\[(3.13)\quad \left\| \Pi P_t \omega_t \right\|_{C^\bullet(W^u, F)} = e^{t \left(\frac{t}{\pi} \right)^{n/4-i/2}} \left\| \omega_t \right\|_{\Omega^\bullet(M, F), t} \left(1 + o(t) \right).\]

It follows from (3.13) and from the definitions of the metrics \(\cdot \left| \cdot \right|_{\det H^\bullet(M, F), t}, \cdot \left| \cdot \right|_{\det H^\bullet(M, F), t}^{RS} \) that

\[(3.14)\quad \log \left(\frac{\left| \cdot \right|_{\det H^\bullet(M, F), t}}{\left| \cdot \right|_{\det H^\bullet(M, F), t}^{RS}(t)} \right) = t \chi'(F) + \left(\frac{n}{4} \chi(F) - \frac{1}{2} \chi'(F) \right) \log \left(\frac{t}{\pi} \right) + o(1).\]

From (3.6), (3.14) we get

\[(3.15)\quad \log \rho^{RS}(t) = -\frac{1}{2} \int_M \theta(F, g F)(\nabla f)^* \psi(TM, \nabla^{TM}) - t \text{rk}(F) \int_M f e(TM, \nabla^{TM}) + \log \rho^M + t \chi'(F) + \left(\frac{n}{4} \chi(F) - \frac{1}{2} \chi'(F) \right) \log \left(\frac{t}{\pi} \right) + o(1).\]

The proof of Theorem 3.1 is completed.

References

[BGS] J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles, I, Comm. Math. Phys. 115 (1988) 49-78.
[BZ1] J.-M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque 205 (1992)
[BZ2] J.-M. Bismut, Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, GAFA 4 (1994) 136–212.
[BFK1] D. Burghelea, L. Friedlander, T. Kappeler, Mayer-Vietoris type formula for determinants of elliptic differential operators, Journal of Funct. Anal. 107 (1992) 34–65.

[BFK2] , Analytic torsion equals Reidemeister torsion, a new proof, Preprint (1992), Ohio State University.

[BFK3] , Asymptotic expansion of the Witten deformation of the analytic torsion, preprint, 1994.

[Ch] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979) 259–300

[DM] X. Dai, R.B. Melrose, Adiabatic limit of the analytic torsion, Preprint

[Fa] M. Farber, Singularities of analytic torsion, Preprint (1993), Tel-Aviv University

[KMu] F.F. Knudsen, D. Mumford, The projectivity of the moduli spaces of stable curves, I: Preliminaries on "det" and "div", Math. Scand. 39 (1976) 19–55.

[MQ] V. Mathai, D. Quillen, Superconnections, Thom class, and equivariant differential forms, Topology 25 (1986) 85–110.

[Mi1] J. Milnor, Whitehead torsion, Bull. AMS 72 (1966) 358–426

[Mi2] , A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137–147.

[Mii1] W. Müller, Analytic torsion and R-torsion on Riemannian manifolds, Adv. in Math 28 (1978) 233–305

[Mii2] , Analytic torsion and R-torsion for unimodular representations, Jour. of AMS 6 (1993) 721–753.

[RS] D. Ray, I. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math 7 (1971) 145–210

[Se] R. Seeley, Complex powers of elliptic operators, Proc. Symp. Pure and Appl. Math. AMS 10 (1967) 288–307

[Sm1] S. Smale, On gradient dynamical systems, Ann. of Math. 74 (1961) 199–206.

[Sm2] , Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967) 747–817.

[Th] R. Thom, Sur une partition en cellules associée à une fonction sur une variété, C.R. Acad. Sc. Paris, Série A, 228 (1949) 661–692.

[Wi] E. Witten, Supersymmetry and Morse Theory, J. of Diff. Geom. 17 (1982) 661–692

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel

E-mail address: maxim@math.tau.ac.il