Epidemiology of gastric cancer

Katherine D Crew, Alfred I Neugut

Abstract
The incidence and mortality of gastric cancer have fallen dramatically in US and elsewhere over the past several decades. Nonetheless, gastric cancer remains a major public health issue as the fourth most common cancer and the second leading cause of cancer death worldwide. Demographic trends differ by tumor location and histology. While there has been a marked decline in distal, intestinal type gastric cancers, the incidence of proximal, diffuse type adenocarcinomas of the gastric cardia has been increasing, particularly in the Western countries. Incidence by tumor sub-site also varies widely based on geographic location, race, and socio-economic status. Distal gastric cancer predominates in developing countries, among blacks, and in lower socio-economic groups, whereas proximal tumors are more common in developed countries, among whites, and in higher socio-economic classes. Diverging trends in the incidence of gastric cancer by tumor location suggest that they may represent two diseases with different etiologies. The main risk factors for distal gastric cancer include *Helicobacter pylori* infection and dietary factors, whereas gastrosphageal reflux disease and obesity play important roles in the development of proximal stomach cancer. The purpose of this review is to examine the epidemiology and risk factors of gastric cancer, and to discuss strategies for primary prevention.

PATHOLOGIC CONSIDERATIONS
About 90% of stomach tumors are adenocarcinomas, which are subdivided into two main histologic types: (1) well-differentiated or intestinal type, and (2) undifferentiated or diffuse type. The intestinal type is related to corpus-dominant gastritis with gastric atrophy and intestinal metaplasia, whereas the diffuse type usually originates in pangastritis without atrophy.

The intestinal type is more common in males, blacks, and older age groups, whereas the diffuse type has a more equal male-to-female ratio and is more frequent in younger individuals. Intestinal type tumors predominate in high-risk geographic areas, such as East Asia, Eastern Europe, Central and South America, and account for much of the international variation of gastric cancer. Diffuse type adenocarcinomas of the stomach have a more uniform geographic distribution. A decline in the incidence of the intestinal type tumors in the corpus of the stomach accounts for most of the recent decrease in gastric cancer rates worldwide. In contrast, the incidence of diffuse type gastric carcinoma, particularly the signet ring type, has been increasing.

DEMOGRAPHIC TRENDS

Time trends
In the 1930s, gastric cancer was the most common cause of cancer death in US and Europe. During the past 70 years, mortality rates have fallen dramatically.
in all developed countries largely due to unplanned prevention. However, in the past 30 years, the incidence of gastric cardia adenocarcinoma rose by five- to six-fold in developed countries\(^{[13-19]}\). Gastric cardia tumors now account for nearly half of all stomach cancers among men from US and UK\(^{[6,20]}\). There has also been a rising trend in esophageal adenocarcinoma, in which obesity, gastroesophageal reflux disease (GERD), and Barrett's esophagus are major etiologic factors. Gastric cardia cancers share certain epidemiologic features with adenocarcinomas of the distal esophagus and gastroesophageal (GE) junction, suggesting that they represent a similar disease entity.

Geographic variation

Gastric cancer incidence rates vary by up to ten-fold throughout the world. Nearly two-thirds of stomach cancers occur in developing countries\(^{[19]}\). Japan and Korea have the highest gastric cancer rates in the world\(^{[20,22]}\). High-incidence areas for noncardia gastric adenocarcinoma include East Asia, Eastern Europe, and Central and South America\(^{[20,28]}\). Low incidence rates are found in South Asia, North and East Africa, North America, Australia, and New Zealand (Figure 1A).

In Japan, gastric cancer remains the most common type of cancer among both men and women. Age-standardized incidence rates in Japan are 69.2 per 100 000 in men and 28.6 per 100 000 in women\(^{[19]}\). In contrast to the increasing incidence of proximal tumors in the West, distal tumors continue to predominate in Japan. However, even in Japan, the proportion of proximal stomach cancers has increased among men\(^{[23]}\).

Migrant populations from high-risk areas such as Japan show a marked reduction in risk when they move to low-incidence regions such as the US\(^{[25]}\). Subsequent generations acquire risk levels approximating those of the host country\(^{[25,23]}\).

Sex, race, and age distribution

Noncardia gastric cancer has a male-to-female ratio of approximately 2:1\(^{[20,23]}\). Incidence rates are significantly higher among blacks and lower socio-economic groups, and in developing countries\(^{[20]}\). Incidence rises progressively with age, with a peak incidence between 50 and 70 years.

In contrast, for gastric cardia carcinomas, men are affected five times more than women and whites twice as much as blacks\(^{[20]}\). In addition, the incidence rates of proximal gastric cancers are relatively higher in the professional classes\(^{[20]}\). Different rates of genetic polymorphisms according to tumor sub-site suggest variation in susceptibility to stomach cancer by tumor location\(^{[28]}\). These findings suggest that noncardia and cardia adenocarcinomas are distinct biological entities.

SURVIVAL

For the past few decades, gastric cancer mortality has decreased markedly in most areas of the world\(^{[29,30]}\). However, gastric cancer remains a disease of poor prognosis and high mortality, second only to lung cancer as the leading cause of cancer-related death worldwide. In general, countries with higher incidence rates of gastric cancer show better survival rates than countries with lower incidence\(^{[31]}\). This association is largely due to a difference in survival rates based on tumor location within the stomach. Tumors located in the gastric cardia have a much poorer prognosis compared to those in the pyloric antrum, with lower 5-year survival and higher operative mortality\(^{[32]}\).

In addition, the availability of screening for early detection in high-risk areas has led to a decrease in mortality. In Japan where mass screening programs are in place, mortality rates for gastric cancer in men have more than halved since the early 1970s\(^{[33]}\). When disease is confined to the inner lining of the stomach wall, 5-year survival is on the order of 95%. In contrast, few gastric cancers are discovered at an early stage in US, leading to 5-year relative survival rates of less than 20%\(^{[34]}\). Similarly in European countries, the 5-year relative survival rates for gastric cancer vary from 10% to 20%\(^{[35,36]}\). Host-related factors may also affect prognosis, as a US study demonstrated that gastric cancers in persons of Asian descent had a better prognosis compared to non-Asians\(^{[37]}\).

RISK FACTORS

Gastric cancer is a multifactorial disease. The marked geographic variation, time trends, and the migratory effect on gastric cancer incidence suggest that environmental or lifestyle factors are major contributors to the etiology of this disease.

Helicobacter pylori infection

H pylori is a gram-negative bacillus that colonizes the stomach and may be the most common chronic bacterial
infection worldwide\(^{[39]}\). Countries with high gastric cancer rates typically have a high prevalence of \(H\) pylori infection, and the decline in \(H\) pylori prevalence in developed countries parallels the decreasing incidence of gastric cancer\(^{[39,40]}\) (Figure 1B). In US, the prevalence of \(H\) pylori infection is \(<20\%\) at the age 20 years and 50\% at 50 years\(^{[41]}\). In Japan, it is also \(<20\%\) at 20 years, but increases to \(80\%\) over the age of 40 years\(^{[42]}\) and in Korea, 90\% of asymptomatic adults over the age of 20 years are infected by \(H\) pylori\(^{[43]}\). The increase in prevalence with age is largely due to a birth cohort effect rather than late acquisition of infection. \(H\) pylori infection is mainly acquired during early childhood, likely through oral ingestion, and infection persists throughout life\(^{[44]}\). Prevalence is closely linked to socio-economic factors, such as low income and poor education, and living conditions during childhood, such as poor sanitation and overcrowding\(^{[45-49]}\).

The association between chronic \(H\) pylori infection and the development of gastric cancer is well established\(^{[50-53]}\). In 1994, the International Agency for Research on Cancer classified \(H\) pylori as a type I (definite) carcinogen in human beings\(^{[54]}\). In Correa’s model of gastric carcinogenesis, \(H\) pylori infection triggers the progressive sequence of gastric lesions from chronic gastritis, gastric atrophy, intestinal metaplasia, dysplasia, and finally, gastric adenocarcinoma\(^{[55]}\). Several case-control studies have shown significant associations between \(H\) pylori seropositivity and gastric cancer risk, with about a 2.1- to 16.7-fold greater risk compared to seronegative individuals\(^{[56-62]}\). Prospective studies have also supported the association between \(H\) pylori infection and gastric cancer risk\(^{[63-68]}\). Perhaps the most compelling evidence for the link between \(H\) pylori and gastric cancer comes from a prospective study of 1.526 Japanese participants in which gastric cancers developed in 2.9\% of infected people and in none of the uninfected individuals\(^{[64]}\). Interestingly, gastric carcinomas were detected in 4.7\% of \(H\) pylori-infected individuals with non-ulcer dyspepsia.

The vast majority of \(H\) pylori-infected individuals remain asymptomatic without any clinical sequelae. Cofactors, which determine that \(H\) pylori-infected people are at particular risk for gastric cancer, include bacterial virulence factors and proinflammatory host factors. Gastric cancer risk is enhanced by infection with a more virulent strain of \(H\) pylori carrying the cytotoxin-associated gene \(A\) (cag\(A\)\(^{[64,66]}\). Compared to cag\(A\)- strains, infection by \(H\) pylori cag\(A\)+ strains was associated with an increased risk of severe atrophic gastritis and distal gastric cancer\(^{[67-70]}\). In the Western countries, about 60\% of \(H\) pylori isolates are cag\(A\)+\(^{[71]}\), whereas in Japan, nearly 100\% of the strains possess functional cag\(A\)\(^{[72,73]}\). Host factors associated with an increased risk of gastric cancer include genetic polymorphisms which lead to high-level of expression of the proinflammatory cytokine, interleukin-1\(\beta\)\(^{[74,75]}\).

The effects of \(H\) pylori on gastric tumor development may vary by anatomical site. The falling incidence of \(H\) pylori infection and noncardia gastric cancer in developed countries has been diametrically opposed to the rapid increase in the incidence of gastric cardia adenocarcinoma\(^{[76]}\). Based on a meta-analysis of prospective cohort studies, \(H\) pylori infection was associated with the risk of noncardia gastric cancer, but not cardia cancer\(^{[77]}\). Other studies demonstrated a significant inverse association between \(H\) pylori infection, particularly cag\(A\)+ strains, and the development of gastric cardia and esophageal adenocarcinomas\(^{[78,79]}\). In the Western countries, where the prevalence of \(H\) pylori infection is falling, GERD and its sequelae are increasing. Studies have shown that severe atrophic gastritis and reduced acid production associated with \(H\) pylori infection significantly reduced the risk of GERD\(^{[80-83]}\). However, recent studies have found conflicting results on whether \(H\) pylori eradication therapy increases the risk of esophagitis and gastric cardia adenocarcinoma\(^{[84,85]}\). Thus, the protective effect of \(H\) pylori against cardia tumors remains controversial.

Dietary factors

It is unlikely that \(H\) pylori infection alone is responsible for the development of gastric cancer. Rather, \(H\) pylori may produce an environment conducive to carcinogenesis and interact with other lifestyle and environmental exposures. There is evidence that consumption of salty foods and N-nitroso compounds and low intake of fresh fruits and vegetables increases the risk of gastric cancer. \(H\) pylori gastritis facilitates the growth of nitrosating bacteria, which catalyze the production of carcinogenic N-nitroso compounds\(^{[92]}\). In addition, \(H\) pylori infection is known to inhibit gastric secretion of ascorbic acid, which is an important scavenger of N-nitroso compounds and oxygen free radicals\(^{[93]}\).

Salt-preserved foods and dietary nitrite found in preserved meats are potentially carcinogenic. Intake of salted food may increase the risk of \(H\) pylori infection and act synergistically to promote the development of gastric cancer. In animal models, ingestion of salt is known to cause gastritis and enhance the effects of gastric carcinogens\(^{[84,85]}\). Mucosal damage induced by salt may increase the possibility of persistent infection with \(H\) pylori\(^{[90]}\). Several case-control studies have shown that a high intake of salt and salt-preserved food was associated with gastric cancer risk\(^{[91,92]}\), but evidence from prospective studies is inconsistent\(^{[93,94]}\). N-nitroso compounds are carcinogenic in animal models and are formed in the human stomach from dietary nitrite. However, case-control studies have shown a weak, nonsignificant increased risk of gastric cancer for high vs low nitrite intake\(^{[95-100]}\). Prospective studies have reported significant reductions in gastric cancer risk arising from fruit and vegetable consumption\(^{[111-114]}\). The worldwide decline in gastric cancer incidence may be attributable to the advent of refrigeration, which led to decreased consumption of preserved foods and increased intake of fresh fruits and vegetables.

Animal studies have shown that polyphenols in green tea have antitumor and anti-inflammatory effects. In preclinical studies, polyphenols have antioxidant activities and the ability to inhibit nitrosation, which have been implicated as etiologic factors of gastric cancer\(^{[115-117]}\). Although various case-control studies have shown a reduced risk of gastric cancer in relation to green tea consumption\(^{[118,121]}\), recent prospective cohort studies found no protective effect of green tea on gastric cancer risk\(^{[122-125]}\).
Because gastric cancer is often associated with a poor prognosis, the main strategy for improving clinical outcomes is through primary prevention. Reduction in gastric cancer mortality is largely due to unplanned prevention. The widespread introduction of refrigeration has led to a decrease in the intake of chemically preserved foods and increased consumption of fresh fruits and vegetables. A decline in the prevalence of H. pylori infection may be due to improvements in sanitary and housing conditions, as well as the use of eradication therapy. In addition, reduced tobacco smoking at least in males may have contributed to the decline in gastric cancer incidence. Therefore, modifiable risk factors, such as high salt and nitrite consumption, low fruit and vegetable intake, cigarette smoking, and H. pylori infection, may be targeted for prevention.

Helicobacter pylori eradication

Public health measures to improve sanitation and housing conditions are the key factors in reducing the worldwide prevalence of H. pylori infection. H. pylori eradication therapy is another potential strategy for gastric cancer chemoprevention. A 7 to 14 d course of two antibiotics and an antisecretory agent has a cure rate of about 80% with durable responses. However, higher reinfection rates are seen in developing countries after people have had effective eradication therapy. In Japanese patients treated for early gastric cancer, H. pylori eradication therapy resulted in a significantly lower rate of gastric cancer recurrence. A randomized controlled chemoprevention trial showed that antimicrobial therapy directed against H. pylori or dietary supplementation with antioxidants increased the regression rate of gastric atrophy and intestinal metaplasia compared to placebo. In a randomized, placebo-controlled primary prevention trial conducted in a high-risk region of China, 1 630 healthy carriers of H. pylori infection were randomized to a 2-wk course of eradication treatment or placebo. Although the incidence of gastric cancer was similar in both groups after 7.5 years of follow-up, post hoc analysis of a subgroup of H. pylori carriers without precancerous lesions at baseline showed a significant decrease in the development of gastric cancer with eradication therapy.

Several large-scale chemoprevention trials of H. pylori eradication therapy with gastric cancer endpoints are ongoing. Potential downsides of widespread eradication therapy in asymptomatic carriers include developing antibiotic-resistant strains of H. pylori and perhaps increasing the risk of GERD and adenocarcinoma of the esophagus and gastric cardia.

Antioxidants

High intake of antioxidants, such as vitamins C and E and β-carotene, may have a protective effect on the risk of gastric cancer. High serum levels of α-carotene, β-carotene, lycopene, and vitamin C were significantly associated with reduced risk of gastric cancer in a cohort from Shanghai, China. A randomized trial in Linxian, China showed a reduced risk of both cardia and noncardia gastric cancers in individuals supplemented with a combination of selenium, β-carotene, and α-tocopherol. However, a randomized trial from...
Finland showed no association between α-tocopherol or β-carotene supplementation and the prevalence of gastric cancer in elderly men with atrophic gastritis[153]. Another prospective study from the US Cancer Prevention Study II cohort found that vitamin supplementation did not significantly reduce the risk of stomach cancer mortality[158]. Therefore, dietary supplementation may only play a preventive role in populations with high rates of gastric cancer and low intake of micronutrients.

CONCLUSION

In summary, cardia and noncardia gastric cancers exhibit unique epidemiologic features characterized by marked geographic variation, diverging time trends, and differences based on race, sex, and socio-economic status. *H pylori* infection and dietary factors appear to be the main causative agents for distal gastric cancer, whereas GERD and obesity play a primary role in proximal gastric cancer. Future directions in primary prevention should target modifiable risk factors in high-risk populations. In the planning and evaluation of gastric cancer control activities, detailed demographic analyses will inform future screening and intervention studies.

REFERENCES

1. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. *Int J Cancer* 1993; 54: 594-606
2. Parkin DM, Bray Fl, Devesa SS. Cancer burden in the year 2000. The global picture. *Eur J Cancer* 2001; 37 Suppl 8: S4-66
3. Parkin DM. International variation. *Oncogene* 2004; 23: 6329-6340
4. Stewart BW, Kleihues P. World Cancer Report. Lyon: IARC Press, 2003
5. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF. Rising incidence of adenocarcinoma of the esophagus and gastric cardi. *JAMA* 1991; 265: 1287-1289
6. Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States. *Surg Oncol Clin N Am* 2002; 11: 235-256
7. Lauren P. The two histologic main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. *Acta Pathol Microbiol Scand* 1965; 64: 31-49
8. Corea P, Sasoano N, Stemmermann GN, Haenszel W. Pathology of gastric carcinoma in Japanese populations: comparisons between Miyagi prefecture, Japan, and Hawaii. *J Natl Cancer Inst* 1973; 51: 1449-1459
9. Munoz N. Gastric Carcinogenesis. In: Reed PI, Hill MJ, eds. Gastric carcinogenesis: proceedings of the 6th Annual Symposium of the European Organization for Cooperation in Cancer Prevention Studies (ECP). Amsterdam: Elsevier Science, 1988: 51-69
10. Muñoz N, Corea P, Cuello C, Duque E. Histologic types of gastric carcinoma in high- and low-risk areas. *Int J Cancer* 1968; 3: 809-818
11. Kaneko S, Yoshimura T. Time trend analysis of gastric cancer incidence in Japan by histological types, 1975-1989. *Br J Cancer* 2001; 84: 400-405
12. Henson DE, Dittus C, Younes M, Nguyen H, Albores-Saavedra J. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. *Arch Pathol Lab Med* 2004; 128: 765-770
13. Pera M, Cameron AJ, Trastek VF, Carpenter HA, Zinsmeister AR. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. *Gastroenterology* 1993; 104: 510-513
14. Hansen S, Wiig JN, Giercksky KE, Tretli S. Esophageal and gastric carcinoma in Norway 1958-1992: incidence time trend variability according to morphological subtypes and organ subsites. *Int J Cancer* 1997; 71: 340-344
15. Møller H. Incidence of cancer of oesophagus, cardia and stomach in Denmark. *Eur J Cancer Prev* 1992; 1: 159-164
16. Harrison SL, Goldacre MJ, Seagroatt V. Trends in registered incidence of oesophageal and stomach cancer in the Oxford region, 1974-88. *Eur J Cancer Prev* 1992; 1: 271-274
17. Levi F, La Vecchia C, Te VC. Descriptive epidemiology of adenocarcinomas of the cardia and distal stomach in the Swiss Canton of Vaud. *Tumori* 1990; 76: 167-171
18. Armstrong BW, Borman B. Trends in incidence rates of adenocarcinoma of the oesophagus and gastric cardia in New Zealand, 1978-1992. *Int J Epidemiol* 1996; 25: 941-947
19. Thomas RJ, Lade S, Giles GC, Thursfield V. Incidence trends in oesophageal and proximal gastric carcinoma in Victoria. *Aust N Z J Surg* 1996; 66: 271-275

COX-2 INHIBITORS

Cyclooxygenase-2 (COX-2) plays a role in cell proliferation, apoptosis, and angiogenesis, and may be involved in gastric carcinogenesis[157,158]. Increasing levels of COX-2 are present in the progression from atrophic gastritis to intestinal metaplasia and adenocarcinoma of the stomach[139]. Exposure to cigarette smoke, acidic conditions, and *H pylori* infection all induce COX-2 expression[160-162]. Furthermore, McCarthy et al. showed that COX-2 expression in the antral mucosa was reduced in the epithelium after successful eradication of *H pylori*[163]. Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) are thought to inhibit cancer cell growth primarily through the inhibition of COX-2, and evidence is mounting that COX-2 inhibitors may be beneficial in preventing upper gastrointestinal malignancies. Compared to colorectal cancer, the association between NSAID use and the development of gastric cancer has been studied less extensively[164-166]. A recent meta-analysis showed that NSAID use was associated with a reduced risk of noncardia gastric adenocarcinoma[167]. Thus, COX-2 inhibitors may provide a chemopreventive strategy against gastric carcinogenesis.

Endoscopic Screening and Surveillance

Because of the high risk of gastric cancer in Japan, there has been a national endoscopic surveillance program within the commercial workforce. Annual screening with a double-contrast barium technique and endoscopy is recommended for persons over the age of 40 years[168]. With mass screening, about half of gastric tumors are being detected at an early stage in asymptomatic individuals and the mortality rate from gastric cancer has more than halved since the early 1970s[13]. An intervention study in China is underway which involves a comprehensive approach to gastric cancer prevention, including *H pylori* eradication, nutritional supplements, and aggressive screening with double contrast X-ray and endoscopic examination. In the first four years after intervention, the relative risk of overall mortality with this intervention for a high-risk group was 0.51 (95% CI, 0.35-0.74)[169]. This study suggests that targeting high-risk populations for aggressive screening and prevention may decrease gastric cancer mortality.
20 Parkin DM, Whelan SL, Ferlay J. Cancer Incidence in Five Continents. Vol VII. Lyon, France: International Agency for Research on Cancer, 1997: 822-823
21 Yamamoto S. Stomach cancer incidence in the world. Ipn J Clin Oncol 2001; 31: 47
22 Ahn YO, Park BJ, Yoo KY, Kim NK, Heo DS, Lee JK, Ahn HS, Kang DH, Kim H, Lee MS. Incidence estimation of stomach cancer among Koreans. J Korean Med Sci 1991; 6: 7-14
23 Nomura A. Stomach Cancer. In: Schottenfeld D, Fraumeni JF, eds. Cancer Epidemiology and Prevention. 2nd ed. New York: Oxford University Press, 1996: 707-724
24 Liu Y, Kaneko S, Soubir T. Trends in reported incidences of gastric cancer by tumour location, from 1975 to 1989 in Japan. Int J Epidemiol 2004; 33: 808-815
25 McMichael AJ, McCaill MG, Hartshorne JM, Woodings TL. Patterns of gastro-intestinal cancer in European migrants to Australia: the role of dietary change. Int J Cancer 1980; 25: 431-437
26 El-Serag HB, Mason AC, Petersen N, Key CR. Epidemiological differences between adenocarcinoma of the oesophagus and adenocarcinoma of the gastric cardia in the USA. Gut 2002; 50: 368-372
27 Powell J, McConkey CC. The rising trend in oesophageal adenocarcinoma and gastric cardia. Eur J Cancer Prev 1992; 1: 265-269
28 Shen H, Xu Y, Qian Y, Yu R, Qin Y, Zhou L, Wang X, Spitz MR, Wei Q. Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population. Int J Cancer 2000; 88: 601-606
29 Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin 2002; 52: 23-47
30 Ries LA, Kosary CL, Hankey BF. SEER Cancer Statistics Review 1973-1995. Bethesda: U.S. Dept of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, 1998
31 Verdecchia A, Corazziari I, Gatta G, Lisi D, Faivre J, Forman D. Explaining gastric cancer survival differences among European countries. Int J Cancer 2004; 109: 737-741
32 Fielding JW, Powell J, Allum WH. Cancer of the Stomach. London: The Macmillan Press, 1989
33 IARC Unit of Descriptive Epidemiology: WHO cancer mortality databank. Cancer Mondial, 2001. Available from: URL: http://www-dep.iarc.fr/atava/globocan/who.htm
34 Ries LAG, Kosary CL, Hankey BF, Miller BA, Harras A, Edwards BK. SEER Cancer Statistics Review 1973-1994, National Cancer Institute, NIH Publication No. 97-2789. Bethesda: Department of Health and Human Services, 1997
35 Faivre J, Forman D, Esteve J, Gatta G. Survival of patients with oesophageal and gastric cancers in Europe. EUROCASE Working Group. Eur J Cancer 1998; 34: 2167-2175
36 Berrino F, Capocaccia R, Esteve J. Survival of Cancer Patients in Europe: The EUROCASE-2 Study. IARC Scientific Publications No. 151. Lyon: IARC, 1999
37 Howson CP, Hiayama T, Wynder EL. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev 1986; 8: 1-27
38 Marshall BJ, Warren JR. Identification of a microorganism as the cause of chronic active gastritis. Lancet 1984; 1: 1311-1315
39 Parsonnet J. The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther 1995; 9 Suppl 2: 45-51
40 Howson CP, Hiayama T, Wynder EL. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev 1986; 8: 1-27
41 Dooley CP, Cohen H, Fitzgibbons PL, Bauer M, Appleman MD, Perez-Perez GI, Blaser MJ. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med 1989; 321: 1562-1566
42 Asaka M, Kimura T, Kudo M, Takada H, Mitani S, Miyazaki T, Mikki K, Graham DY. Relationship of Helicobacter pylori to serum pepsinogens in an asymptomatic Japanese population. Gastroenterology 1992; 102: 760-766
43 Youn HS, Ko GH, Chung MH, Lee WK, Cho MJ, Rhee KH. Pathogenesis and prevention of stomach cancer. J Korean Med Sci 1996; 11: 373-385
44 Feldman RA. Epidemiologic observations and open questions about disease and infection caused by Helicobacter pylori. In: Achtman M, Serbaum S. Helicobacter pylori: Molecular and Cellular Biology. Wymondham: Horizon Scientific, 2001: 29-51
45 Buckley MJ, O’Shea J, Grace A, English L, Keane C, Hourihan D, O’Morain CA. A community-based study of the epidemiology of Helicobacter pylori infection and associated asymptomatic gastroduodenal pathology. Eur J Gastroenterol Hepatol 1998; 10: 375-379
46 Webb PM, Knight T, Greaves S, Wilson A, Newell DG, Elder J, Forman D. Relation between infection with Helicobacter pylori and living conditions in childhood: evidence for person to person transmission in early life. BMJ 1994; 308: 750-753
47 Kurosawa M, Kikuchi S, Inaba Y, Ishibashi T, Kobayashi F. Helicobacter pylori infection among Japanese children. J Gastroenterol Hepatol 2000; 15: 1382-1385
48 Olmos JA, Rios H, Higa R. Prevalence of Helicobacter pylori infection in Argentina: results of a nationwide epidemiologic study. Argentinean Hp Epidemiologic Study Group. J Clin Gastroenterol 2000; 31: 33-37
49 Goodman KJ, Correa P. Transmission of Helicobacter pylori among siblings. Lancet 2000; 355: 358-362
50 Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325: 1127-1131
51 Forman D, Newell DG, Fullerton F, Yarnell JW, Stacey AR, Wald N, Sitas F. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 1991; 302: 1302-1305
52 Nomura A, Stemmermann GN, Chouy PH, Kato I, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 1991; 325: 1132-1136
53 An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet 1993; 341: 1359-1362
54 International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, Liver Flukes, and Helicobacter pylori. Lyon: International Agency for Research on Cancer, 1994: 177-240
55 Correa P. Helicobacter pylori and gastric cancer: state of the art. Cancer Epidemiol Biomarkers Prev 1996; 5: 477-481
56 Sipponen P, Kosunen TU, Valle J, Riihela M, Seppälä K. Helicobacter pylori infection and chronic gastritis in gastric cancer. J Clin Pathol 1992; 45: 319-323
57 Hansson LE, Engstrand L, Nygren E, Evans DJ, Lindgren A, Bergström R, Andersson B, Athlin L, Bendsten O, Tracz P. Helicobacter pylori infection: independent risk indicator of adenocarcinoma of the stomach. Gastroenterology 1993; 105: 1088-1103
58 Hu PJ, Mitchell HM, Li YY, Zhou MH, Hazell SL. Association of Helicobacter pylori with gastric cancer and observations on the detection of this bacterium in gastric cancer cases. Am J Gastroenterol 1994; 89: 1806-1810
59 Kikuchi S, Wada O, Nakajima T, Nishi T, Kobayashi O, Konishi T, Inaba Y. Serum anti-Helicobacter pylori antibody and gastric carcinoma among young adults. Research Group on Prevention of Gastric Carcinoma among Young Adults. Cancer 1995; 75: 2589-2593
60 Kokkola A, Valle J, Haapiainen R, Sipponen P, Kivilaakso E, Paalakainen P, Helicobacter pylori infection in young patients with gastric carcinoma. Scand J Gastroenterol 1996; 31: 643-647
61 Barreto-Zuñiga R, Maruyama M, Kato Y, Aizou K, Ohta H, Takekoshi T, Bernal SF. Significance of Helicobacter pylori infection as a risk factor in gastric cancer: serological and histological studies. J Gastroenterol 1997; 32: 289-294
62 Miehlke S, Hackelberger A, Meining A, von Arnim U, Müller P, Ochsenschlän T, Lehn N, Malfertheiner P, Stolte M, Bayerdörfer E. Histological diagnosis of Helicobacter pylori gastritis is predictive of a high risk of gastric carcinoma. Int J Cancer 1997; 67: 649-651

www.wignet.com
Nomura AM, Stemmermann GN, Chyou PH. Gastric cancer among the Japanese in Hawaii. Jpn J Cancer Res 1995; 86: 916-923.

Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamagishi M, Takahara K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 784-789.

Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton G, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirks EF, Peterson S, Loftus R, Richardson D, Radosh KL, Hugl GD, Alm, McKenney K, Fitzgeralld LM, Lee N, Adams MD, Hickey EK, Berg LS, bierne JD, Utterback TR, Peterson J, Kelley JM, Cotton MD, Weidman JM, Fuji C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997; 388: 539-547.

Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, de Jonge BL, Carmel G, Smith HO, Adams MD, Hickey S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson B, Fleischmann RD, Glodek A, Venter JC. The seroprevalence of cagA-positive Helicobacter pylori infection in the United States. J Natl Cancer Inst 1997; 89: 1777-1780.

Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyoi PH, Stehmann GN, Nomura A. Infection with H. pylori and the development of gastric cancer. N Engl J Med 2001; 345: 784-789.

Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, de Jonge BL, Carmel G, Smith HO, Adams MD, Hickey S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson B, Fleischmann RD, Glodek A, Venter JC. The seroprevalence of cagA-positive Helicobacter pylori infection in the United States. J Natl Cancer Inst 1997; 89: 1777-1780.

Vicari JJ, Peek RM, Falk GW, Goldblum JR, Easley KA, Schnell J, Perez-Perez GI, Halter SA, Rice TW, Blaser MJ, Richter JE. The seroprevalence of cagA-positive Helicobacter pylori strains in the United States. J Gastroenterol 1998; 33: 50-57.

Ito Y, Azuma T, Ito S, Miyaji H, Hiramai Y, Yamaizaki Y, Kato T, Kohli Y, Kuriyama M. Analysis and typing of the vacA gene from cagA-positive strains of Helicobacter pylori isolated in Japan. J Clin Microbiol 1997; 35: 1710-1714.

Azuma T, Yamakawa A, Yamaizaki S, Fukuta K, Ohtani M, Ito Y, Dojo M, Yamazaki Y, Kuriyama M. Correlation between variation of the 3' region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis 2002; 186: 1621-1630.

El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Blaser MJ, Rabkin CS. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000; 404: 398-402.

El-Omar EM, Rabkin CS, Gammond MD, Vaughan TL, Risch HA, Schoenberg JB, Stanford JL, Mayne ST, Goedert J, Blot WJ, Fraumeni JF, Chow WH. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003; 125: 1636-1644.

Blaser MJ, Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. J Infect Dis 1999; 179: 1523-1530.

Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 2001; 49: 347-353.

Hansen S, Melby KK, Aase S, Jellum E, Vollset SE. Helicobacter pylori infection and risk of gastric cancer and non-cardia gastric cancer. A nested case-control study. Scand J Gastroenterol 1999; 34: 553-561.

Chow WH, Blaser MJ, Blot WJ, Gammond MD, Vaughan TL, Risch HA, Perez-Perez GI, Schoenberg JB, Stanford JL, Rotterdam H, West AB, Fraumeni JF. An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. Cancer Res 1998; 58: 588-590.

Warburton-Timms VJ, Charlott A, Valori RM, Uff JS, Shepherd N, Barr H, McKinlay J. The significance of cagA(+) Helicobacter pylori in reflux oesophagitis. Gut 2001; 49: 341-346.

El-Serag HB, Sonnenberg A, Jamal MM, Inadomi JM, Crooks LA, Feddersen RM. Corpus gastritis is protective against reflux oesophagitis. Gut 1999; 45: 181-185.

Koike T, Ohara S, Sekine H, Iijima K, Abe Y, Kato T, Toyota T, Shimosegawa T. Helicobacter pylori infection prevents erosive reflux oesophagitis by decreasing gastric acid secretion. Gut 2001; 49: 330-335.

Raghnath A, Hungin AP, Wood D, Childs S. Prevalence of Helicobacter pylori in patients with gastro-oesophageal reflux disease: systematic review. BMJ 2003; 326: 737.

Labenz J, Malfertheiner P. Helicobacter pylori in gastro-oesophageal reflux disease: causal agent, independent or protective factor? Gut 1997; 41: 277-280.

Bytzer P, Aalylkke C, Rune S, Weyward L, Gjerup T, Erikson J, Bonnevie O, Bekker C, Kromann-Andersen H, Kjaergaard J, Rask-Madsen J, Vilien M, Hansen J, Justesen T, Vyberg M, Teglbjaerg PS. Eradication of Helicobacter pylori compared with long-term acid suppression in duodenal ulcer disease. A randomized trial with 2-year follow-up. The Danish Ulcer Study Group. Scand J Gastroenterol 2000; 35: 1023-1032.

Vakil N, Hahn B, McSorley D. Recurrent symptoms and gastro-oesophageal reflux disease in patients with duodenal ulcer treated for Helicobacter pylori infection. Aliment Pharmacol Ther 2000; 14: 45-51.

McColl KE, Dickson A, El-Nuimi A, El-Omar E, Kelman J. Symptomatic benefit 1-3 years after H. pylori eradication in ulcer patients: impact of gastro-oesophageal reflux disease. Am J Gastroenterol 2000; 95: 101-105.

Manes G, Mosca S, De Nucci C, Lombardi G, Lioniello M, Balzano A. High prevalence of reflux symptoms in duodenal ulcer patients who develop gastro-oesophageal reflux disease after curing Helicobacter pylori infection. Dig Liver Dis 2001; 33: 665-670.

Befrits R, Sjostedt S, Oldman B, Storgard H, Lindberg G. Curing Helicobacter pylori infection in patients with duodenal ulcer does not provoke gastroesophageal reflux disease. Helicobacter 2000; 5: 202-205.

Sasaki A, Haruma K, Manabe N, Tanaka S, Yoshihara M, Chayama K. Long-term observation of reflux oesophagitis developing after Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 2003; 17: 1529-1534.

Laine L, Sugg J. Effect of Helicobacter pylori eradication on development of erosive oesophagitis and gastroesophageal reflux disease symptoms: a post hoc analysis of eight double blind prospective studies. Am J Gastroenterol 2002; 97: 2992-2997.

Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrugger RW. Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther 2001; 15: 379-388.

O'Connor HJ, Schorah CJ, Habibzedah N, Axon AT, Cockel R. Vitamin C in the human stomach: relation to gastric pH, gastroduodenal disease, and possible sources. Gut 1989; 30: 436-442.

Tatematsu M, Takahashi M, Fukushima S, Hananouchi M, Shirai T. Effects of rats of sodium chloride on experimental gastric cancers induced by N-methyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline-1-oxide. J Natl Cancer Inst 1975; 55: 101-106.

Takahashi M, Hasegawa R. Enhancing effects of dietary salt on both initiation and promotion stages of rat gastric carcinogenesis. Princess Takamatsu Symp 1985; 16: 169-182.

Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57Bl/6 mice. Cancer Res 1999; 59: 4823-4828.

Kono S, Hirohata T. Nutrition and stomach cancer. Cancer
