DROEMS: EXPERIMENTAL MATHEMATICS, INFORMATICS AND INFINITE DIMENSIONAL GEOMETRY

D.V. Juriev

"Thalassa Aitheria" Research Center for Mathematical Physics and Informatics
E-mail: denis@juriev.msk.ru

This paper being addressed as to mathematicians-theorists specializing in geometry, algebra, functional analysis, theory of dynamical and controlled systems and interested in modern applications of their disciplines to problems of information technologies (an organization of real-time interactive dynamical videosystems for accelerated computer and telecommunications) as to specialists, who elaborate such systems with an accent on mathematical methods of interactive computer graphics in real time, is devoted to an analysis of a certain apparently rather perspective as well as an interesting from the pure (as experimental as theoretical) mathematics point of view approach to solution of one problem of the information technologies.

The main difficulty that lays obstacles to the further development of real-time interactive systems for accelerated computer and telecommunications is the essential scantiness of a volume of information transmitted per unit of time. If for the non-interactive systems and for the conventional time interactive systems arranged for accelerated communications this difficulty may be more or less overcome by the using of various methods of compression and encoding as well as by the simultaneous development of the material (technical) basis then for the real-time interactive systems it becomes almost insurmountable under a naive approach. Moreover, the using of the real-time interactive systems for accelerated communications on large distances produces a new difficulty related to the impossibility to synchronize the internal rhythms of subjects of a communication caused by the relativistic effects; thus, if the distance is about N thousand of kilometers then a deviation in synchronization is theoretically not less than $N/300$ second and practically much more.

1 This is an English translation of the original Russian version, which is located at the end of the article as an appendix. I regret that the translation is too far from the precision of the original so in a case of any differences between English and Russian versions caused by a translation the last has the priority as the original one. A remark is convenient: the term “informatics” widely adopted in Russian literature as for “computer science” as for “information science” and sometimes for the whole cybernetics (as it was proposed by N.Wiener) is used in the article without any specification of its meaning. Some other terms of Latin form common in Russian literature (e.g. of French origin) are used instead of their sometimes slightly different English equivalents. The same is true also for the terms of a Greek root. Moreover, some purely Russian terms are directly transliterated in English if their translation is not adopted and any variant is not adequate.
All these difficulties produce a necessity in a new organization of information and its transmission in the real-time interactive systems for accelerated communications. One of the possibilities, by the way used in systems of ordinary communications, is in a transmission the pointers to objects instead of their descriptors with the following dynamical reconstruction of the objects themselves. Under the using of this possibility in the interactive real-time psychoinformation videosystems for accelerated nonverbal cognitive communications, which seem to be the most perspective to the author by many reasons, which will be clarified below, the connection between pointers and objects themselves as well as the process of dynamical reconstruction performed in real time and as a sequence at least partially subconsciously that realizes its characteristic feature, which differs the dynamical reconstruction of droems from ordinary reconstruction—"decoding", become nontrivial, potentially very pithy but almost unexplored as experimentally as theoretically. However, it is namely the knowledge of mathematical foundations, which lie in their basis, may provide with reduction of excessive claims to the apparatus base of the systems allowing to realize them by widely available sources and on another hand may be a startpoint for elaboration of convenient and relatively simple software.

In view of all these circumstances this article is an attempt to explicate the mathematical foundations for the prescribed approach to organization of information and its transmission in the interactive real-time psychoinformation videosystems for accelerated nonverbal cognitive communications; on this way the key role is played by the droems ("dynamically reconstructed objects of experimental mathematics") and interpretational figures as pointers to them.

The article is organized in the following manner: four paragraphs are devoted to (1) an exposition of basic notions of the interpretational geometry, (2) the operator methods in the theory of interactive dynamical videosystems, (3) the general concept of the organization of integrated interactive real-time videocognitive systems, (4) the dynamically reconstructed objects of experimental mathematics and processes of their dynamical reconstruction, where the general notions are illustrated by a concrete example related to the infinite dimensional geometry. The exposition is presumably heuristic and conceptual (the first and the third paragraphs) though some particular aspects such as content of the second and the fourth paragraphs, which allow deeper formalization and detailing in present, are exposed on the mathematical level of rigor.

Note also that the motivations for particular statements exposed in the article lie in the concrete solutions used in various learning and communication systems, however, the consistent and systematic experimentally mathematical approach to the theme is contained in literature for the first time.

§1. Interpretational geometry

This paragraph is devoted to an exposition of various aspects of interpretational geometry, which have a relation to the organization of information and its transmission in interactive videosystems of computer and telecommunications. The main attention is paid to interpretational figures, which will be of interest below as pointers to droems, and to forms of their transmission, otherwords, to the specific features of interpretational geometry in the multi-user mode.

1.1. *Interpretational figures [1,2:App.A]*. Geometry described below is related to a class of interactive information systems. Let us call an interactive in-
formation system computer graphic (or interactive information videosystem) if the information stream “computer–user” is organized as a stream of geometric graphical data on a screen of monitor; an interactive information system will be called psychoinformation if an information transmitted by the channel “user–computer” is (completely or partially) subconscious. Thus, in the interactive systems that we are interested in the control is coupled with unknown or incompletely known feedback, systems with such control will be called interactively controlled. In general, an investigation of interactively controlled (psychoinformation) systems for an experimental and a theoretical explication of possibilities contained in them, which are interesting for mathematical sciences themselves, and of “hidden” abstract mathematical objects, whose observation and analysis are actually and potentially realizable by these possibilities, is an important problem itself. So below there will be defined the notions of an interpretational figure and its symbolic drawing that undoubtedly play a key role in the description of a computer–geometric representation of mathematical data in interactive information systems. Below, however, the accents will be focused a bit more on applications to informatics preserving a general experimentally mathematical view, the interpretational figures (see below) will be used as pointers to dreams and interactive real-time psychoinformation videosystems will be regarded as components of integrated interactive videocognitive systems for accelerated nonverbal cognitive communications.

In interactive information systems mathematical data exist in the form of an interrelation between the geometric internal image (figure) in the subjective space of the observer and the computer-graphic external representation. The latter includes visible (drawings of the figure) and invisible (analytic expressions and algorithms for constructing these images) elements. Identifying geometric images (figures) in the internal space of the observer with computer-graphic representations (visible and invisible elements) is called a translation, in this way the visible object may be not identical with the figure, so that separate visible elements may be considered as modules whose translation is realized independently. The translation is called an interpretation if the translation of separate modules is performed depending on the results of the translation of preceding ones.

Definition 1. The figure obtained as a result of interpretation is called an interpretational figure.

Note that the interpretational figure may have no usual formal definition; namely, only if the process of interpretation admits an equivalent process of compilation definition of the figure is reduced to definitions of its drawings that is not true in general. So the drawing of an interpretational figure defines only dynamical “technology of visual perception” but not its “image”, such drawings will be called symbolic.

The computer-geometric description of mathematical data in interactive information systems is closely connected with the concept of anomalous virtual reality.
1.2. Intentional anomalous virtual realities [1,2:App.A].

Definition 2 (cf.[1,2:App.A]). (A). Anomalous virtual reality (AVR) in a narrow sense means some system of rules of a nonstandard descriptive geometry adapted for realization on videocomputers (or multisensorial systems of “virtual reality” [3-6]). Anomalous virtual reality in a wide sense also involves an image in cyberspace formed in accordance with said system of rules. We shall use the term in its narrow sense. (B). Naturalization is the constructing of an AVR from some abstract geometry or physical model. We say that anomalous virtual reality naturalizes the abstract model and the model transcendizes the naturalizing anomalous virtual reality. (C). Visualization is the constructing of certain image or visual dynamics in some anomalous virtual reality (realized by hardware and software of a computer-grafic interface of the concrete videosystem) from the objects of an abstract geometry or processes in a physical model. (D). Anomalous virtual reality, whose objects depend on the observer, is called an intentional anomalous virtual reality (IAVR). the generalized perspective laws for IAVR contain the interactive dynamical equations for the observed objects in addition to standard (geometric) perspective laws. In IAVR the observation process consists of a physical process of observation and a virtual process of intentional governing of the evolution of images in accordance with the dynamical perspective laws.

In intentional anomalous virtual reality (IAVR) that is realized by hardware and software of the computer-graphic interface of the interactive videosystem being geometrically modelled by this IAVR (on the level of descriptive geometry whereas the model transcending this IAVR realizes the same on the level of abstract geometry) respectively, the observed objects are demonstrated as connected with the observer who acts on them and determines, or fixes, their observed states so that the objects are thought only as a potentiality of states from the given spectrum whose realization depends also on the observer. The symbolic drawings of interpretational figures may be considered as states of some IAVR.

Note that mathematical theory of anomalous virtual realities (AVR) including the basic procedures of naturalization and transcending connected AVR with the abstract geometry is a specific branch of modern nonclassical descriptive (computer) geometry.

Definition 2D. The set of all continuously distributed visual characteristics of the image in anomalous virtual reality is called an anomalous color space; the anomalous color space elements of noncolor nature are called overcolors, and the quantities transcending them in an abstract model are called “latent lights”. The set of the generalized perspective laws in a fixed anomalous color space is called a color-perspective system; two AVRs are called equivalent if their color-perspective systems coincide; AVR equivalent to one realized on the videocomputer (but not realized itself) is called marginal.

1.3. Non-Alexandrian interpretational geometry [7,2:App.A]. Note that the majority of classical geometries use a postulate that we shall call an Alexandrian postulate but do not include it explicitly in their axiomatics.

The Alexandrian postulate. Any statement valid for a certain geometrical configuration continues to be valid if this configuration is considered as a part of a larger configuration.
Thus, the Alexandrian postulate means that an addition of any subsidiary objects to the given geometrical configuration produces no effects on it. The Alexandrian postulate is used, for instance, in constructive proofs of geometrical theorems realized by the explicit step-by-step construction of the objects, whose existence is stated by the theorem. In case of a violation of the Alexandrian postulate the process of constructive proof on each its step may use only configurations compatible with preceeding ones, i.e. not changing the properties that are the initial data of the theorem.

As an example of non-Alexandrian geometry one may consider the Einstein geometry [7,2:App.A]. The kinematics and the process of scattering of figures may be illustrated in the important example of another non-Alexandrian geometry, the geometry of solitons [7,2:App.A]. All soliton geometries confirm the assumption that the breaking of the Alexandrian postulate is connected with the interaction of geometric figures, and in particular such interaction may be caused by the nonlinear character of an evolution.

Let us consider the process of scattering of figures in interpretational geometry. As noted above, an interpretational figure is described by the pair $(\Phi^\text{int}, \Phi^\text{ext})$, where Φ^int is an internal image in the subjective space of the observer, and Φ^ext is its drawing; Φ^int is the result of the interpretation of Φ^ext. It is antural to assume that Φ^int depends on Φ^ext functionally: $\Phi^\text{int}_t = \Phi^\text{int}_t[\Phi^\text{ext}_\tau]_{\tau \leq t}$ and, as a rule, nonlinearly; moreover, if Φ^ext is asymptotically free then Φ^int is also asymptotically free. Consequently, the nontrivial scattering of interpretational figures is observed even for the linear dynamics of Φ^ext, so the interpretational figures are non-Alexandrian.

Thus, interpretational geometries realize a class of non-Alexandrian geometries. The constructive proof in the interpretational geometry, therefore, is in the explicit construction of the object, whose existence is stated by the theorem, as a result of a step-by-step process of constructing of intermediate configurations of interpretational figures, whereas the correctness of proof is guaranteed on each step of the proof by the claim for properties of the startpoint configuration that are initial data of the theorem to be unchanged in the process of interpretation. If the least is verified experimentally for each concrete process then the proof has an experimentally mathematical character being based on the incomplete induction; note that the similar procedures are used in many self-educating systems of artificial intelligence, in which possible combinations of steps are realized (sometimes statistically) with subsequent verification of their correctness (a method of the random seeking for solutions).

1.4. Informational aspects of interpretational geometries: interpretational figures in the multi-user mode and IAVR-teleæsthesy. This paragraph contains a brief exposition (without detailing) of general results of the second part of the article [7], which were not included into an appendix A to the article [2] and which treats information aspects of interpretational geometries. The motivation for such consideration lies in the remark of [7] that informatics may be considered as a point of view on mathematical objects complementary to geometric one (in view of the fundamental opposition of “logical” and “eidietical”). So it is convenient to reformulate the main geometrical definitions in terms of informatics. Thus, the introduced in the second part of the article [7] concepts of AVR-photodosy and its formal grammar are a natural parallel to concepts of anomalous virtual reality and transcending abstract model. Note, however, that in view of methodological
considerations these concepts are considered now only purely formally and as realizing the “lower” or “external” visual level of “multifibred” videocognitive semantic stream. Their deeper (but more than incomplete) analysis was performed in the fourth paragraph of the article.

Definition 3A. An information transmission via anomalous virtual reality by “latent lights” is called *AVR-photodosy*; the system of algebraic structures of the initial abstract model, which characterize AVR-photodosy under a naturalization, is called the *formal grammar* of AVR-photodosy.

Note that the concepts of AVR-photodosy and its formal grammar are deeply related to one of anomalous color space because it is namely using of such spaces allows to transmit diverse information in various forms and as a sequence the investigation of problems of information transmission via AVR, whose character depends on the structure of an anomalous color space, is an important mathematical problem (cf. [8]). A structure of AVR-photodosy is determined by its formal grammar. As it will be shown in the next paragraph the formal grammar of interpretational geometries may have a quantum character and, therefore, the related AVR-photodosy obeys quantum logic [9]; this fact undoubtly claims an intent attention as theoretically obtained complex perceptive-cognitive analog of very interesting and carefully investigated by scientific groups of mathematicians, physicists, psychologists and neurophysiologists (as theoretically as experimentally) purely cognitive processes, which obey quantum logic. Note that the formal grammar of AVR-photodosy in some concrete models of interpretational geometry was discussed in the second part of the article [7] with the citing of numerous literature.

It is necessary to note that IAVR is polysemantic as a rule; it means that a volume and a structure of information received by AVR-photodosy via it depends on observer; so a natural problem is in the description of informatics of interactive psychoinformation systems with more than one observer, in particular, the correlation of different observations. Such systems may be considered as realizing an interactive MISD (Multiple Instruction–Single Data) architecture with parallel interpretation processes for different observeres (this fact should be regarded in the context of a remark on the quantum–logical character of AVR-photodosy); on such way we encounter a phenomenon specific for such systems but perhapse having a general meaning: namely, the observation process for different observers generate an information exchange between them.

Definition 3B. AVR-photodosy via IAVR from an observer to another is called the *IAVR-teleæsthesy*; if in the process of IAVR-teleæsthesy AVR-photodosies from different observers do not obey the superposition principle, we shall say that a *collective effect* appears in the IAVR-teleæsthesy.

Note that (1) the process of IAVR-teleæsthesy has a two-sided character; observers entering IAVR-teleæsthetic communication are simultaneously inductors (who send an informations) and receptiens (who receive it), moreover, a volume and a structure of received information depends on a receptient as well as on an inductor; (2) a collective effect in IAVR-teleæsthesy means that in IAVR the inductors are not considered as independent, the transmitted information is not a sum of informations sent by particular observers because the partial information streams from each inductor participate in the exchange interaction and form a specific information received by a receptient. In this aspect it should be marked a relation
of the origin of IAVR-teleæsthesy to the fact that interactive psychoinformation
videosystems realize an interactive MIRD architecture.

Definition 3C. An observer in the marginal AVR, to which none observer can
be related in the AVR realized on videocomputer, is called *virtual*; and virtual
observer, whose observation process depend on several real observers, is called the
collective virtual observer.

A presence of virtual observer means that a part of received information is inter-
preted as an information sent by this really non-existing observer. A presence
of collective virtual observer is not obligatory but common for interactive videosys-
tems in a multi-user mode; this fact should be also considered in the context of
a remark that such systems realize an interactive virtual MIRD architecture with
parallel interpretation processes for different observers.

In the second part of the article [2] the exposed general concepts are illustrated
on a concrete model of interpretational geometry, in particular an example of col-
clective virtual observer is given that clarify its meaning. Thus, it is mentioned
that (1) only a part of received information is interpreted as an information sent
by collective virtual observer (i.e. its presence does not demolish a presence of
real observers), (2) the process of intentional govern by collective virtual observer
is completely determined by interactions of real observers (i.e. collective virtual
observer is represented as a specific unified state of real observers in the interac-
tive psychoinformation system in a multi-user mode), (3) collective virtual observer
enters an information exchange with real observers being interpreted (at least, for-
mally) as an independent observer. In this case it is an important but completely
unexplored question on an interaction of individual real observers with collective
virtual observer, on a decomposition of the latter on the non-correlated components
(*quasisubjects*) and on their interaction with each other.

In conclusion let us formulate a proposition proved at the end of the second part
of the article [7] by an explicit construction.

Proposition. There exist models of interpretational geometries in which there are
interpretational figures observed only in a multi-user mode.

It is rather interesting to explicate a meaning of mechanics of observation of such
figures in a context of general mathematical game theory [10,11].

Unfortunately, in spite of all its advantages the described mechanism of IAVR-
teleæsthesy apparently does not allow to transmit cognitive information directly.
Namely to a description of an attempt to adapt IAVR-teleæsthesy for a realization
of the accelerated nonverbal cognitive communication in integrated *videocognitive*
interactive systems the third and the fourth paragraphs of the article are devoted.

§2. **Operator (quantum-field and stochastic) methods
in the theory of interactive dynamical videosystems
and noncommutative descriptive geometry**

This paragraph is devoted to formalization and detailing of the exposed in the
previous one intuitively clear geometric picture and to elaboration of the adequate
algebraic and analytic methods. As a result of realization of such intentions we shall
have a possibility of a more precise mathematical description of concrete models as
for further explication of general geometric aspects as for concrete hardware and
software elaboration for concrete interactive real-time videosystems.
2.1. General operator aspects of interactive dynamical videosystems and noncommutative descriptive geometry. There exist several widely used general ways to define an evolution of images in the real-time interactive dynamical videosystems. Let us expose some of them:

(1) Euler formulas [12]:

\[\dot{\Phi}(t) = A(t, u, \dot{u}, \xi)\Phi(t), \]

where \(u = u(t) \in \mathbb{C} \cong \mathbb{R}^2 \) is a current position of a sight point (the screen is considered as a part of the complex plane \(\mathbb{C} \cong \mathbb{R}^2 \)), \(\dot{u} = \dot{u}(t) \) is the relative velocity of its movement, \(\xi = \xi(t) \) are additional parameters of an interactive control, \(\Phi = \Phi(t) \) is a set of continuously distributed chiral (i.e. holomorphically-antiholomorphically decomposed, see [1]) visual characteristics of an image (colors and overcolors), \(A = A(t, u, \dot{u}, \xi) \) is a linear operator. The linear operator \(A \) as a function on \(u \) and \(\dot{u} \) is called the angular operator field, the field \(A \) (unbounded, in general) holomorphically depends on \(u \) and \(\dot{u} \) and (weakly) continuous on \(\xi \) in suitable (not obligatory metrizable) general topology on the space of parameters of the interactive control (e.g. biopotentials of EEG and ERG, dynamical parameters of a respiratory rythm, etc., and also functional complexes of these magnitudes). The dynamics of angular operator field on the variable \(t \) may obey some differential equation (e.g. Euler-Arnold equation [13]).

(2) Euler-Belavkin-Kolokoltsov formulas [2]:

\[d\Phi(t, [\omega]) = A(t, u, \dot{u}, \xi)\Phi(t)dt + \sum_{\alpha} B_{\alpha}(t, u, \dot{u}, \xi)\Phi(t, [\omega])d\omega^{(\alpha)}, \]

where \(d\omega^{(\alpha)} \) is a set of stochastic differentials. In practice, sometimes the fields \(A(u, \dot{u}) \) and \(B_{\alpha}(u, \dot{u}) \) may include (weak) nonlinearities. The dynamics of fields by the variable \(t \) may obey just as in the deterministic case to some differential equation such as Euler-Arnold equation [13].

(3) Models with dynamical interactive screening [1]: In these models the collection of colors and overcolors \(\Psi = \Psi(t) \) is represented as

\[\Psi(t) = J(t, u, \dot{u}, \xi)\Phi(t), \]

where \(\Phi = \Phi(t) \) obey Euler formulas or Euler-Belavkin-Kolokoltsov formulas whereas \(J = J(t, u, \dot{u}, \xi) \) is a linear operator (a projector with nontrivial kernel as a rule), which as a (holomorphic) function on \(u \) and \(\dot{u} \) is called the screening operator field; the screening operator field as well as the angular and other operator fields accounted in the evolution equations for an image, is (weakly) continuous on \(\xi \) in a suitable (not obligatory metrizable and, perhaps, specific for each operator field) general topology on the space of parameters of the interactive control.

(4) Models with memory [1]: In this case the dynamics of colors and overcolors depends on the history (e.g. is integrodifferential in time).

Some concrete realizations of dynamics described above are rather well investigated experimentally (for instance, the so-called systems with partial dragging and masking – see [1]).
The operator (quantum-field and stochastic) methods play an important role in the analysis of all these models (on the stability of image, etc.) (see e.g. [1,2,7,12,13]). As a rule the using of quantum-field methods is based on the following supposition, which is called the operator algebra hypothesis, namely that the coefficients of expansions of operator fields, which enter the dynamical equations, by all variables except \(u \) being operator fields on \(u \) form a closed operator algebra of quantum field theory. So it is supposed that some magnitudes characterizing an evolution of the system form an algebraic object, whose definition is below. Note that in some specific classes of models the hypothesis of operator algebra may be formally proved.

Definition 4A. The QFT–operator algebra (the operator algebra of quantum field theory) is a linear space \(H \) supplied with an operation \(m_{\vec{x}}(\cdot, \cdot) \) depending on the parameter \(\vec{x} \) from \(\mathbb{R}^n \) or \(\mathbb{C}^n \), for which the identity \(m_{\vec{x}}(\cdot, m_{\vec{y}}(\cdot, \cdot)) = m_{\vec{y}}(m_{\vec{x}-\vec{y}}(\cdot, \cdot), \cdot) \) holds. Otherwise, QFT–operator algebra is a pair \((H, t_{ij}^k(\vec{x}))\), where \(H \) is a linear space and \(t_{ij}^k(\vec{y}) \) is a \(H \)-valued tensor field on \(\mathbb{R}^n \) or \(\mathbb{C}^n \) such that \(t_{im}^l(\vec{x})t_{jk}^m(\vec{y}) = t_{lj}^m(\vec{y} - \vec{x})t_{mk}^l(\vec{y}) \). The field \(t_{ij}^k(\vec{x}) \) realizes the operation \(m_{\vec{x}}(\cdot, \cdot) \): \(m_{\vec{x}}(e_i, e_j) = t_{ij}^k(\vec{x})e_k \), where \(\{e_k\} \) is an arbitrary basis in \(H \).

Let us introduce the operators \(l_{\vec{x}}(e_i)e_j = t_{ij}^k(\vec{x})e_k \) (operators of the multiplication from the left in QFT–operator algebra) then the following identities: \(l_{\vec{x}}(e_i)l_{\vec{y}}(e_j) = t_{ij}^k(\vec{x} - \vec{y})l_{\vec{y}}(e_k) \) (operator product expansion) \(l_{\vec{x}}(e_i)l_{\vec{y}}(e_j) = l_{\vec{y}}(l_{\vec{x}-\vec{y}}(e_i)e_j) \) (duality) hold.

As a rule in the literature on mathematical physics the notation \(\varphi(\vec{x}) \) is used for operators \(l_{\vec{x}}(\varphi) \) \((\varphi \in H) \). The quantities \(\varphi(\vec{x}) \) are called operator fields. In terms of operator fields the operator product expansions are written as

\[
\varphi_1(\vec{x})\varphi_2(\vec{y}) = F_\alpha(\vec{x} - \vec{y})\psi_\alpha(\vec{y})
\]

that means the decomposability of products of operator fields by operator fields of QFT-operator algebra themselves. If a set of concrete operator fields is closed under such decompositions then they represent an abstract QFT-operator algebra.

If \(dt_{ij}^k = 0 \) then QFT-operator algebra is an ordinary associative algebra. An element \(\varphi \) of QFT-operator algebra is called the left divisor of zero if \(l_{\vec{x}}(\varphi) \equiv 0 \); the unit in the QFT-operator algebra \(H \) is an element \(1 \) such that \(l_{\vec{x}}(1) \equiv \text{id} \); the identity \(l_{\vec{x}}(\varphi)|_{\vec{x}=0} = \varphi \) holds in any QFT-operator algebra with unit and without left divisors of zero; if \(V \) is the linear space of left divisors of zero in the QFT-operator algebra \(H \) then \((\forall \varphi \in H)l_{\vec{x}}(\varphi)V \subseteq V \) and \(H/V \) is a QFT-operator algebra without left divisors of zero. There is defined the operator \(\mathbf{L} \) (the operator of infinitesimal translations) in any QFT-operator algebra with unit \(1 \): \(\mathbf{L}\varphi = \frac{d}{d\vec{x}}(l_{\vec{x}}(\varphi)1)|_{\vec{x}=0} \), the operator of infinitesimal translations \(\mathbf{L} \) is a derivative of QFT-operator algebra \(H \) without left divisors of zero, i.e. for each \(\varphi \) from \(H \) the identity \([\mathbf{L}, l_{\vec{x}}(\varphi)] = l_{\vec{x}}(\mathbf{L}\varphi) \) holds; as a sequence \(l_{\vec{x}}(\varphi)1 = \exp(\vec{x} \cdot \mathbf{L})\varphi \). If \(H \) is an arbitrary QFT-operator algebra and \(\mathbf{L} \) is its derivative then the linear space \(\hat{H} = H \oplus \langle 1 \rangle \) is supplied by the structure of a QFT-operator algebra with unit \(1 \): \(l_{\vec{x}}(\varphi)1 = \exp(\vec{x} \cdot \mathbf{L})\varphi \), \(l_{\vec{x}}(1) = \text{id} \).

Instead of QFT-operator algebras it is reasonable sometimes to consider the related local field algebras, the ordinary associative algebras, which are received from QFT-operator algebras by a renormalization of the pointwise product of operator
fields (note that as a rule tensor fields $t^k_{ij}(\vec{x})$ are singular at the point $\vec{x} = 0$ and, therefore, the pointwise product of operator fields is either formally infinite or indefinite). A procedure of renormalization was described in the article [14]. For simplicity let us consider the specific case when $\vec{x} = u$ is from the complex plane and operator fields are meromorphic on u.

Besides the operator fields $\varphi(u)$ parametrized the elements φ of the space H let us consider the expressions

$$\varphi(f) = \text{res}_{u=0} \left\{ f(u)\varphi(u) \frac{du}{u} \right\} = \lim_{u \to 0} \{ f(u)\varphi(u) - \text{singualrities} \}.$$

The operator $\varphi(f)$ is corresponded to an element φ of the space H and to a meromorphic function $f(u)$ (or to a meromorphic 1-form $f(u)\frac{du}{u}$). In view of operator product expansions the product $\varphi_\alpha(f)\varphi_\beta(g)$ of two operators $\varphi_\alpha(f)$ and $\varphi_\beta(g)$ is correctly defined and admits a representation

$$(*) \quad \varphi_\alpha(f)\varphi_\beta(g) = \varphi_\gamma(h^\gamma_{\alpha\beta}), \text{ where } h^\gamma_{\alpha\beta}(u) = \text{res}_{v=u} \left\{ t^\gamma_{\alpha\beta}(v-u)f(v)\frac{dv}{v} \right\} g(u).$$

This procedure is a renormalization of the pointwise product of operator fields in QFT-operator algebra. The operator product expansions are interpreted as a regularization of the pointwise product and functions f and g as parameters, on which a result of renormalization depends. An influence of change of functional parameters on the result of renormalization (renorm-invariance) is described by formulas $(*).$

Operators $\varphi(f)$ are closed under their multiplication and form an associative algebra $\mathfrak{A}(H)$. This associative algebra is called the local field algebra corresponded to the QFT-operator algebra H. As a rule the noncommutative local field algebra $\mathfrak{A}(H)$ for the meromorphic QFT-operator algebra H may be regarded as a structural ring of some noncommutative manifold (noncommutative bundle over \mathbb{CP}^1 or noncommutative covering \mathbb{CP}^1) (cf. [15-17]), and, thus, to interpret the operator methods in the theory of the real-time interactive dynamical videosystems as the noncommutative descriptive geometry (cf. [13]).

2.2. Group theoretical and algebraic aspects of the interactive dynamical videosystems

As a rule it is reasonable to consider those concrete models of interactive dynamical videosystems, which possess some form of invariance with respect to geometrical transformations of image or internal transformations of the color space. One of the simplest form of a geometric invariance is one with respect to projective transformations of \mathbb{CP}^1, i.e. the group $\text{PSL}(2, \mathbb{C})$ or its Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ though in a concrete realization really the models may be considered with an invariance broken to translations and scaling transformations (an example is the cutting off angular field in the article [1]). The presence of projective invariance means the invariance of evolution equations (Euler formulas, Euler-Belavkin-Kolokoltsov formulas, etc.) that put some conditions on operators and operator fields entering these equations. Projective invariance of operator fields allows specify their form in a certain extent (in particular, to describe their analytical dependence on u and \dot{u}) what was done in [12]. On another hand the projective invariance of operator fields implies the projective invariance of all constructed algebraic structures (QFT-operator algebras and local field algebras). A systematical
analysis of the projectively invariant structures (operator algebras of quantum projective field theory and local projective field algebras) was done in the article [18]. Let us expose the necessary definitions and results following [18,19].

Definition 4B [18,19]. A QFT-operator algebra \((H, t^k_{ij}(u); u \in \mathbb{C})\) is called the QPFT-operator algebra (the operator algebra of quantum projective field theory) if (1) the space \(H\) is a sum of Verma modules \(V_\alpha\) over \(\mathfrak{sl}(2, \mathbb{C})\) with extremal vectors \(v_\alpha\) and extremal weights \(h_\alpha\), (2) \(L_k, u(v_\alpha)\) is a primary field of spin \(h_\alpha\), i.e., \([L_k, u(v_\alpha)] = (-u)^k(u\partial_u + (k+1)h_\alpha)l_u(v_\alpha)\), where \(L_k\) are \(\mathfrak{sl}(2, \mathbb{C})\)-generators \([L_i, L_j] = (i-j)L_{i+j}, i, j = -1, 0, 1\), (3) the descendant generation rule \(L_{-1}l_u(f) = l_u(L_{-1}f)\) holds. A QFT-operator algebra \((H, w^k_{ij}(u); u \in \mathbb{C})\) is called the derived QPFT-operator algebra if the conditions (1) and (2) hold together with the derived descendant generation rule: \([L_{-1}, l_u(f)] = l_u(L_{-1}f)\).

As it was shown in the article [19] the categories of QPFT-operator algebras and of derived QPFT-operator algebras are equivalent. An explicit construction of their equivalence is presented there. As a sequence QPFT-operator algebras and derived QPFT-operator algebras may be regarded as different recordings of the same object and the most convenient one may be used in a concrete situation.

It is necessary to note that \(L = \text{ad}(L_{-1})\) in QPFT-operator algebras with unit whereas \(L = L_{-1}\) in derived QPFT-operator algebras with unit. Examples of QPFT-operator algebras were considered in [18,13].

In the structural theory of QPFT-operator algebras a crucial role is played by one concrete QPFT-operator algebra, the algebra \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) of vertex operators for the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\), whose construction is contained in [18,19]. This algebra is realized in the skladen’ (= ‘unfolding’ in Russian, here we use a direct transliteration) of Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) and admits a strict representation by operator fields in the model of Verma modules over \(\mathfrak{sl}(2, \mathbb{C})\). The meaning of this algebra is explicated by the following theorem.

Theorem 1 (see [18]). An arbitrary abstract QPFT-operator algebra may be realized as a subalgebra in the algebra \(\text{Mat}_n(\text{Vert}(\mathfrak{sl}(2, \mathbb{C})))\) of matrices with coefficients in \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) for some \(n\) (finite if the QPFT-operator algebra contains a finite number of primary fields and infinite otherwise).

The algebra \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) of vertex operators for the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) has some additional features. Thus, for instance, its primary fields form an infinite dimensional Zamolodchikov algebra [18].

A detailed information on this algebra, other QPFT-operator algebras, local projective field algebras (LPFAs), their structural theory and relations to classical algebraic structures may be found in [18,19].

Besides spatial symmetries the models of interactive dynamical videosystems may possess internal symmetries, for instance, color ones [1]. If such symmetries are described by the group \(G\) then the related evolution equations should be \(G\)-invariant and algebraic structures characterizing the equations should possess \(G\) as a symmetry group. The mechanisms of that were carefully investigated in the article [13] (see also [1]). In this case the main algebraic objects are the so-called projective \(G\)-hypermultiplets, whose definition is given below.

Definition 4C [13]. A QPFT-operator algebra (derived QPFT-operator algebra) \((H, t^k_{ij}(u); u \in \mathbb{C})\)
The linear spaces of the extremal vectors of the fixed weight form subrepresentations of the group G, which are called the *multiplets* of the projective G–hypermultiplet. Projective G–hypermultiplets with $G \supseteq SU(3)$ describe the algebraic structure of a color space in projectively invariant IAVR [1]. Some concrete projective G–hypermultiplets (canonical and hypercanonical ones as well as their specific cases, the q_R–conformal field theories) were investigated in details in the articles [13,1,18]. Note also that directly of after a slight modification many methods of a well-elaborated quantum conformal field theory are applicable to these concrete projective G–hypermultiplets [13,18] (in particular, one may adapt the Sugawara construction, Fubini-Veneziano fields and vertex constructions, Virasoro master equations, modular functor, etc. to them).

§3. Organization of the integrated real-time interactive videocognitive systems

This paragraph is devoted to general principles of an organization of integrated real-time interactive videocognitive systems. Integrated systems consist of two simultaneously working subsystems, one of which is artificial (an interactive dynamical videosystem as a rule) and another is natural (sensorial, respiratory, cognitive or complex). It is necessary to mention that the most of all real videosystems are implicitly or explicitly integrated videocognitive ones, so it is a strong interest namely to the integrated interactive systems. However, before to begin an investigation of integrated interactive system it is necessary to give an analysis of natural interactive systems to understand the laws of their working as parts of integrated systems. It is reasonable to begin from the simplest sensorial–type systems, then to transit to the related integrated systems (videosensorial and videorespiratory) and only then to concentrate an attention on the properly videocognitive systems.

3.1. Virtualization as method of the description of a class of physical interactive information systems [18,20]. Let us expose following [18,20] the general principles of virtualization of natural physical interactive systems as a method of their kinematical description.

Definition 5 [20]. The *image of a natural interactive system by artificial interactive videosystem* is the fixing of an algorithm of the construction of a dynamical image of any interactive process in the natural system by use of the intentional anomalous virtual reality realized by the computer–graphic interface of the artificial interactive videosystem. The *virtualization of a natural interactive system* is the constructing of its image by the artificial interactive videosystem using some set of experimental data on the system in the stationary regime. The initial natural interactive system will be called the *realisation* of the artificial interactive system.

Otherwords, virtualiation of a natural interactive system allows to construct a dynamical image of any arbitrary (not obligatory self-oscillating) interactive process by some artificial interactive system using only characteristics of a certain finite
set of self-oscillating interactive processes. A choice of the term “virtualization” is motivated by the fact that a dynamical image of the interactive process is an anomalous virtual reality in a wide sense.

In view of the decomposition of the natural interactive systems of our interest onto an active and a passive components (the active and the passive agents) the characteristics of the stationary self-oscillating process are divided on the graphical data on the dynamical state of the passive agent and the amplitude-frequency characteristics of the active agent. Virtualization of a natural interactive system is reduced to an algorithm of the secondary synthesis [20] of graphical data on a dynamical state of the passive agent in any interactive process by the fixed collection of such data for some set of the stationary self-oscillating processes as well as of the corresponding amplitude-frequency characteristics of the active agent in such processes; the principal structurally algorithmic scheme of virtualization of natural interactive systems based on the using of the secondary synthesis is exposed in the article [20].

The criterion of the adequacy of an image and of the correctness of virtualization [20]. A virtualization of the natural interactive system is correct if the received image of this system by some artificial interactive videosystem is adequate to the initial system, i.e. under the simultaneous working of both artificial and natural interactive systems with the same active agent the reproducing of an image of certain interactive process (under the certain state and decision of the active agent) allows to provoke its controlled performance in the natural interactive system.

Certainly, the image may be constructed one time on the basis of the experimental data on the working of the natural interactive system with an active agent different from that acts in the reproducing of the image. Note also that under the reproducing of the image a simultaneous collective working of two different interactive (artificial and natural) systems with the same subject is supposed. Thus, the main difference of the virtualization from the mathematical model is in the fact that the least is a pure descriptor of the physical process whereas the first is its descriptor–constructor.

Let us formulate some phenomenological principles, whose fulfilment is apparently necessary for a correctness of virtualization:
– The principle of isostructural ideographicity of virtualization [20]: Virtualization of a natural interactive system should be performed in a manner that the obtained image and the initial system have the same structures;
– The principle of dynamical equivalency of intentions [20]: Virtualization of a natural interactive system should be performed in a manner that the parameters characterizing the intensity of intension of a subject on an object coincide for its and its image during the dynamical subject-object interaction. One may consider a correlation of the behavioral reactions of a subject and dynamical characteristics of an object as such parameter.
3.2. Examples of an organization of the integrated interactive systems and perspectives for their development [20]. The interactive systems may be divided on the following classes:

- *By the origin:* on artificial, natural and integrated.
- *By the type of interface* on videosystems, audiosystems, general sensorial (including tactile), respiratory and complex (audiovideo systems, videosensorial, videorespiratory, etc.).
- *By the goals:* on the systems of management, the systems of observation, analysis and accumulation of information, the systems for self-regulation and autotraining, the communication systems.
- *By the number of users:* on the systems in one- and multi-user modes.

The most interesting systems (among many others) are the following types of the interactive systems: (1) artificial videosystems of the “automatical arrangement of perception”, including multi-user ones based on the secondary image synthesis (SIS) [20], (2) the systems, which include the preceeding ones as a subsystems, the integrated videosensorial systems of an interactive vision, (3) the integrated videorespiratory systems for self-regulation, autotraining and cognitive stimulation, (4) integrated multi-user videocognitive systems for an accelerated nonverbal communication.

The most perspective in the SIS systems [20], which play a key role in the projecting of many integrated systems, is apparently an investigation of intellectual SIS systems with a dynamical interactive tuning (as well as an elaboration of portative videosystems of synchronous SIS and complex multi-user systems). The SIS systems with dynamical interactive tuning may be considered as systems of the “automatical arrangement of perception” in the context of an activity on the computer systems of the interactive “automatical painting” as well as of investigations of the synthetical perception. It is reasonable to study octonionic anomalous 3D stereosynthesis [1], chiral dissimmetry of the visual analyzer in interactive processes and its influence on the stereosynthesis. It is important to investigate the simultaneous working of natural interactive systems and their virtualizations for an elaboration of the integrated interactive systems realizing an “integrated reality” as an alternative to the systems of “virtual reality”. To the integrated systems, which include the artificial interactive videosystems for the automatical arrangement of perception as parts, one should attribute the integrated videosensorial systems of the interactive vision with a natural sensorial subsystem and the integrated videorespiratory interactive systems (i.e. interactive videosystems with a respiratory modulation or, in general, a transformation of visual interactive processes) for the psychophysiological autotraining (as passively relaxational as actively dynamical).

3.3. An organization of the integrated real-time videocognitive systems for the accelerated nonverbal cognitive communication. Some cognitive aspects of the interactive computer graphics in general were considered in the monograph [21]. In this article we are interested in the cognitive aspects of the communication real-time interactive videosystems (as well as their integrated videosensorial counterparts).

As it was marked above the direct using of IAVR–teleæsthesy does not apparently allow to realize a cognitive information transfer. On another hand integrated videocognitive communication interactive systems can “inherit” the useful properties of their subsystems realizing IAVR–teleæsthesy but also can transfer a com-
plex cognitive information. Thus, an approach to elaboration of such “derived” integrated systems for an accelerated nonverbal cognitive communication based on application of IAVR–teleæsthesy (see above) as a mechanism of the preliminary recognition and the interactive self-tuning of communications “keys” of subjects as well as their dynamical synchronization should provide the users by the channelwise interactive establishing of the communication “keys” and, therefore, the principal noninterpretability (nondecipherability) of the communication from the outside.

The realizability of such scheme is based on several circumstances: (1) the presence of interpretational figures observed only in the multi-user mode together with other features of the multi-user mode in interpretational geometry discussed above (e.g. the polysemanticity and quantum logical character of communication, which allows to use some ideas and methods of quantum cryptography [22-25]), (2) the ability of interpretational figures to be pointers on the videocognitive objects on another nature, which are dynamically reconstructed in real time by users during the communication. Such objects will be called the dynamically reconstructed objects of experimental mathematics of briefly “droems”. So the stream of visual information between users, which was analyzed in §1.4, organizes a more complex stream of videocognitive information between them (note that though the transmitted information is cognitive the process of its transmission has an interactively controlled and partially subconscious character so that the two-sided stream of the interactive videoinformation may be considered as a psychosemantical context of the cognitive information exchange). The initial interpretational geometry (more precisely, the interactive videosystem, its “bearer”) is a virtualization (a descriptor-constructor) of the realized cognitive interactive system. To a discussion of the mathematical aspects of the theme, namely, to droems and their dynamical reconstruction we shall transit in the following paragraph.

§4. Droems and their dynamical reconstruction

This paragraph is devoted to droems and their dynamical reconstruction. Though in general this process as well as a general nature of droems are not completely clear even on a conceptual level (though droems are apparently related to the so-called dynamical simulacres of notions [20:note 5]) some individual examples may be analyzed rather formally, that makes clear some general mechanisms. The example, which will be treated below, is related to the infinite dimensional geometry and may be characterized as an answer on the question whether it is possible to observe infinite dimensional objects, otherwords, whether the descriptive infinite dimensional geometry is possible and how. As we shall see the using of the interactive videocognitive systems, droems and their dynamical reconstruction solves this question positively in principle in some sense that allows to use the methods of experimental (computer) mathematics for an investigation of infinite dimensional geometrical objects. Note that some aspects of the infinite dimensional descriptive geometry were theoretically discussed in [26].

It is convenient to discuss two technical questions (see 4.1. and 4.2. below) to the example itself (see 4.3., 4.4. below).

4.1. Organization of the cyberspace [7,2:App.A]. For simplicity let our image dynamics be defined by the Euler formulas, which are coupled with some explicit dependence of angular fields on time, so that their collection is projective-invariant in scope. The cyberspace consists of the image space V_I with the fundamental...
length (the step of lattice) Δ_I and the observation space V_O with the fundamental length Δ_O; the space V_I is one for images whereas V_O is used for data on the eye motions; it is naturally to claim that $\Delta_I \gg \Delta_O$. The Euler formulas may be written as $\dot{\Phi}_t = A_{t, \xi}(u, \dot{u})\Phi_t$, we shall suppose that the components of a decomposition of the angular field $A_{t, \xi}(u, \dot{u})$ by \dot{u} generate a QPFT–operator algebra of q_R–conformal field theory [18], i.e. they are the $\mathfrak{sl}(2, \mathbb{C})$–primary fields in the Verma module V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$. The angular field $A_{t, \xi}(u, \dot{u})$ may be approximately represented as $M_1(t, \xi)\dot{u}V_1(u) + M_2(t, \xi)\dot{u}^2V_2(u) + \cdots + M_n(t, \xi)\dot{u}^nV_n(u)$, where the magnitudes $M_i(t, \xi)$ realize the explicit dependence of the angular field on time and nongeometric dynamical parameters such as biopotentials of EEG or data on the respiratory rhythm, and $V_i(u)$ are $\mathfrak{sl}(2, \mathbb{C})$–primary fields of spin i in the Verma module V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$. The explicit formulas for these fields are written, for instance, in [16], as well as their discrete (lattice) counterparts, which are used in practice (in this case n is equal either to 2 or 3).

4.2. Cutting off the angular field [1]. From the practical point of view it is reasonable to consider the cutting off $A^\text{cut}(u, \dot{u})$ the angular field $A(u, \dot{u})$ in its regular part, which does not contain the degrees of u more than N. It is supposed that $A^\text{cut}(u, \dot{u})$ is translation and scaling invariant whereas the dilatation invariance is broken. For instance, the components of the cut-off q_R–affine current $J^\text{cut}(u)$ ($\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 1 in Verma module V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$) are defined by the operators $J^\text{cut}_k = J_k = \partial_z^k, J^\text{cut}_{-k} = z^k \Delta_k^L P(z\partial_z) (\Delta_z f(x) = f(x + 1) - f(x))$, where $P(z\partial_z)$ is a polynomial of a degree N; for instance, such that $P(z\partial_z)z^i = \frac{1}{2h+i}z^i, i \leq N$. The Verma module V_h is realized in the space of polynomials of a variable z, $\mathfrak{sl}(2, \mathbb{C})$–generators have the form $L_1 = (z\partial_z + 1h)\partial_z$, $L_0 = z\partial_z + h, L_{-1} = z$. The polynomial $P(z\partial_z)$ uniquely determines an operator L^cut_1 such that $[L^\text{cut}_1, J^\text{cut}_1] = 1, [L^\text{cut}_1, L_0] = L^\text{cut}_1, L^\text{cut}_0$ is the cut-off dilatation operator: $L^\text{cut}_1 = zP^{-1}(z\partial_z)$. The operators $L^\text{cut}_1, L_0, L_{-1}$ form the so-called nonlinear \mathfrak{sl}_2 [27] with relations

$$[L_0, L_{-1}] = L_{-1}, \quad [L^\text{cut}_1, L_0] = L^\text{cut}_1, \quad [L^\text{cut}_1, L_{-1}] = h(L_0),$$

where $h(x) = \frac{1}{P(x+1)} - \frac{1}{P(x)}$. This nonlinear \mathfrak{sl}_2 describes a breaking of projective invariance under the cutting off procedure.

In particular cases the cutting off procedure at $N = 1$ and $A(u, \dot{u}) = J(u)\dot{u}$ realizes an interactive videosystem with a partial dragging and masking, i.e.

$$\Phi(x) = \Phi_u(x) = f(|x - u|)\Phi_0(x - \gamma u),$$

where γ is the dragging coefficient, f is the masking function, $u = u(t)$ is the sight point position. Videodata may be multifibred with the dragging coefficient and the masking function specific for each fiber.

A transition to the discrete (lattice) version after the cutting off does not provoke any problems.

4.3. Infinite dimensional dynamical symmetries of the interactively controlled videosystems. The infinite dimensional dynamical symmetries of the interactively controlled videosystems, whose evolution is described by the Euler formulas or Euler-Belavin-Kolokoltsov formulas (perhaps coupled with Euler-Arnold equations) with operator fields generating a QPFT–operator algebra of q_R–conformal field theory may be constructed in one of three equivalent ways.
Mode 1 [18]. Generators of the infinite dimensional dynamical symmetries are just the $\mathfrak{sl}(2, \mathbb{C})$–tensor operators in Verma modules V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$, which are transformed under an action $\mathfrak{sl}(2, \mathbb{C})$ as holomorphic n–differentials in the unit complex disk $D_+ (n \in \mathbb{Z}_+)$, i.e. as m–polyvector fields ($m \in \mathbb{Z}_+$). Therefore, the generating functions for generators of the infinite dimensional dynamical symmetries are $\mathfrak{sl}(2, \mathbb{C})$–primary operator fields in V_h of spin m.

Mode 2. The action of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ in its Verma module V_h may be extended to the representation T of the Lie algebra W_1 of formal vector fields on a line [28]. Namely, if the Verma module V_h is realized in the space of polynomials of a complex variable z and $\mathfrak{sl}(2, \mathbb{C})$–generators have the form $L_{-1} = z$, $L_0 = z \partial_z + h$, $L_1 = z \partial_z^2 + 2h \partial_z$ then other generators of the Lie algebra W_1 are defined by the operators $L_k = z \partial_z^{k+1} + (k + 1)h \partial_z^k$ ($k \geq 2$). If the Verma module V_h is unitarizable then the generators of the infinite dimensional dynamical symmetries corresponded to the $\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 2 are represented in the form $T(X)$ or $T^*(X)$, where $X \in W_1$. In the nonunitarizable case one should use an analytical continuation on the parameter h. To receive generators of the infinite dimensional dynamical symmetries related to the $\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 1 it is necessary to extend the action of the Lie algebra W_1 in the Verma module V_h to the representation \tilde{T} of the semi-direct sum of this algebra and the abelian Lie algebra $\mathbb{C}[z]$ in V_h. This representation being reduced onto $\mathbb{C}[z]$ is a representation of this algebra not only as abelian Lie algebra but also as a commutative associative algebra, its generator z is mapped to the operator ∂_z. The generators of the infinite dimensional dynamical symmetries related to the $\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 1 has the form $\tilde{T}(X)$ or $\tilde{T}^*(X)$, where $X \in \mathbb{C}[z]$. An analogous slightly more complicated construction allows to receive other infinite dimensional dynamical symmetries.

Mode 3. Let us extend the representation of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ in its Verma module V_h to a representation T of the Lie algebra $\text{Vect}^\mathbb{C}(S^1)$ of smooth \mathbb{C}–valued vector fields on a circle S^1 (more precisely, of the \mathbb{Z}–graded Witt algebra of polynomial vector fields) in the module of functional dimension 1. Let us denote by P the natural $\mathfrak{sl}(2, \mathbb{C})$–invariant projector of the space $\text{End}(V_h)$ onto the space $\text{End}(V_h)$. The infinite dimensional dynamical symmetries corresponded to the $\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 2 have the form $P(T(X))$ ($X \in \text{Vect}^\mathbb{C}(S^1)$). To receive other infinite dimensional dynamical symmetries it is necessary to consider the Lie algebra $\text{DOP}^\mathbb{C}_{[\cdot,\cdot]}(S^1)$ of all differential operators instead of the Lie algebra $\text{Vect}^\mathbb{C}(S^1)$ of all vector fields.

An algebraic structure of these infinite dimensional dynamical symmetries was unraveled in the articles [29,30]. Let us give the final formulation of results.

Theorem 2A. The infinite dimensional dynamical symmetries corresponded to the $\mathfrak{sl}(2, \mathbb{C})$–primary field of spin 2 form a \mathcal{HS}–projective representation of the Lie algebra $\text{Vect}^\mathbb{C}(S^1)$ in the unitarizable Verma module V_h (i.e. a representation up to Hilbert-Schmidt operators) as well as an asymptotic representation of this algebra “mod $O(h)$” (in sense of [31]; $h = h - \frac{1}{\pi}$). All collection of the infinite dimensional dynamical symmetries form a \mathcal{HS}–projective and asymptotical “mod $O(h)$” representations of the Lie algebra $\text{DOP}^\mathbb{C}_{[\cdot,\cdot]}(S^1)$.

The statement of the theorem can be easily derived from the third mode to define the infinite dimensional dynamical symmetries.

A part of the infinite dimensional dynamical symmetries may be “globalized”
Let us formulate the final result.

Theorem 2B. The infinite dimensional dynamical symmetries corresponded to the \(\mathfrak{sl}(2,\mathbb{C})\)-primary fields of spin 1 and 2 are exponentiated to a projective HS-pseudorepresentation [30] of a semi-direct product of the group \(\text{Diff}_+(S^1)\) of diffeomorphisms of a circle and the loop group \(\text{Map}(S^1, U(1))\), which is also an asymptotic representation “mod \(O(\hbar)\)”.

The theorem 2B admits an analog for the infinite dimensional dynamical symmetries for dynamics in arbitrary canonical projective \(G\)-hypermultiplets [13,1]. For that one should change the abelian group \(U(1)\) to the group \(G\).

Let us consider an approximation of the angular field with \(n = 2\) (see 4.1.). In this case the angular field is represented in the form of generators of the infinite dimensional dynamical symmetries with coefficients depending on the control parameters. Hence, the dynamics is integrated up to Hilbert-Schmidt operators or asymptotically “mod \(O(\hbar)\)” and is defined by the interactively controlled group element of the semi-direct product of the group of diffeomorphisms of a circle and the loop group.

4.4. Infinite dimensional droems and their dynamical reconstruction

From the results of 4.3. it follows that the interpretational figures in the models defined by canonical projective \(G\)-hypermultiplets may be pointers to the infinite dimensional droems realized by use of geometrical objects related to the groups of diffeomorphisms of a circle and the loop groups (see [26,32-35,17] and refs wherein). The process of a dynamical reconstruction is in the restoring of the infinite dimensional object by an interactive process in the dynamical videosystem. The infinite dimensional object itself may be as interpretational as static (compilational). For instance, interpretational figures may be pointers to static “image” on the “infinite dimensional screen” – the space of the universal deformation of a complex disc [33,34]. Droems may be looked for among numerous (sometimes, rather exotic) infinite dimensional objects of the geometrical theory of second quantized strings [35] as it was marked in the third part of the article [35]; so it is reasonable to speak on the *descriptive string geometry* in the context of a general mathematical formalism for string theory (see e.g.[36]).

Note that a transition to the lattice version should apparently produce quantum analogs of infinite dimensional Lie groups and Lie algebras (cf.[37]), however, the geometrical consequences of the cutting off procedure (see 4.2. above) are not known.

An importance of the infinite dimensional geometry was stressed in [26]; this article may be regarded as a development of the thesis of the naturality of a language of infinite dimensional geometry formulated in [26]. Note that droems (in particular, infinite dimensional) and their dynamical reconstruction besides the described applied problem of an organization of accelerated nonverbal cognitive computer and telecommunications being very important for experimental mathematics and, therefore, for the whole complex of mathematical sciences are of interest for theoretical mathematical psychology, structural linguistics and linguistic psychology in the context as of investigations of nonverbal cognitive communications in various external conditions (e.g. with stimulations), which became actual recently, as for more traditional themes such as investigations of origins and development of verbal communications, early stages of speech and education processes. So it is of a
special interest to consider dynamical reconstruction of droems in the multi-user
mode (cf.1.4), for instance, in the interactive videocognitive games (the games with
an interactive control, see 1.1.).

References

[1] Juriev D.V., Octonions and binocular mobilevision [in Russian]. Fundam.Prikl.Matem.
1998, to appear [Draft English e-version: hep-th/9401047 (1994)].
[2] Juriev D.V., Belavkin-Kolokoltsov watch-dog effects in interactively controlled stochastic
dynamical videosystems. Theor.Math.Phys. 106 (1996) 276-290.
[3] Kalawsky R.S., The science of virtual reality and virtual environments. Addison-Wesley,
1993.
[4] Virtual reality: applications and explorations. Ed.A.Wexelblat. Acad.Publ., Boston, 1993.
[5] Burdea G., Coiffet Ph., Virtual reality technology. J.Wiley & Sons, 1994.
[6] Forman N., Wilson P., Using of virtual reality for psychological investigations [in Russian].
Psihol.Zhurn. 17(2) (1996) 64-79.
[7] Juriev D., Visualizing 2D quantum field theory: geometry and informatics of mobilevision:
Report RCMPI-96/02 (1996) [Draft e-version: hep-th/9401067+ hep-th/9404137 (1994)].
[8] Saaty T.L., Speculating on the future of Mathematics. Appl.Math.Lett. 1 (1988) 79-82.
[9] Beltrametti E.G., Cassinelli G., The logic of quantum mechanics. Encycl.Math.Appl.15,
Addison-Wesley Publ., London, 1981.
[10] Owen G., Game theory. Saunders, Philadelphia, 1968.
[11] Vorob’ev N.N., Game theory [in Russian]. Leningrad, 1985.
[12] Juriev D.V., Quantum projective field theory: quantum-field analogs of the Euler formul-
as. Theor.Math.Phys. 92 (1992) 814-816.
[13] Juriev D.V., Quantum projective field theory: quantum field analogs of the Euler-Arnold
equations in projective G–hypermultiplets. Theor.Math.Phys. 98 (1994) 147-161.
[14] Juriev D.V., QPFT–operator algebras and commutative exterior differential calculus.
Theor.Math. Phys. 93 (1992) 1101-1105.
[15] Witten E., Non-commutative geometry and string field theory. Nucl.Phys. B268 (1986)
253-291.
[16] Witten E., Quantum field theory, grassmannians and algebraic curves. Commun.Math.Phys.
113 (1988) 529-600.
[17] Juriev D.V., Quantum conformal field theory as infinite dimensional geometry. Russian
Math.Surveys 46(4) (1991) 135-163.
[18] Juriev D.V., Complex projective geometry and quantum projective field theory. Theor.Math.Phys.
101 (1994) 1387-1403.
[19] Bychkov S.A., Juriev D.V., Three algebraic structures of quantum projective (sl(2, C)–
 Invariant) field theory. Theor.Math.Phys. 97 (1993) 1333-1339.
[20] Juriev D.V., On the description of a class of physical interactive information systems [in
Russian]: Report RCMPI-96/05 (1996) [e-version: mp–arc/96-459 (1996)].
[21] Zenkin A.A., Cognitive computer graphics [in Russian]. Moscow, Nauka, 1991.
[22] Wiesner S., Conjugate coding. SIGACT News 15(1) (1983) 78-88.
[23] Roček M., Representation theory of the nonlinear SU(2) algebra. Phys.Lett. B255 (1991)
554-557.
[24] Fuks D.B., Cohomology of infinite dimensional Lie algebras [in Russian]. Moscow, Nauka,
1983.
[31] Karasev M.V., Maslov V.P., Nonlinear Poisson brackets. Geometry and quantization. Amer. Math. Soc., Providence, R.I., 1993.

[32] Juriev D.V., Non-Euclidean geometry of mirrors and pre-quantization on the homogeneous Kähler manifold $M = \text{Diff}_+(S^1)/\text{Rot}(S^1)$ [in Russian]. Uspekhi Matem. Nauk. 43(2) (1988) 187-188.

[33] Juriev D.V., A model of Verma modules over the Virasoro algebra. St. Petersburg Math. J. 2 (1991) 401-417.

[34] Juriev D., Infinite-dimensional geometry of the universal deformation of the complex disk. Russian J. Math. Phys. 2 (1994) 111-121.

[35] Juriev D., Infinite dimensional geometry and quantum field theory of strings. I-III. Alg. Groups Geom. 11 (1994) 145-179 [e-version: hep-th/9403068 (1994)]; Russian J. Math. Phys. 4 (1996) 287-314; J. Geom. Phys. 16 (1995) 275-300.

[36] Green M., Schwarz J, Witten E., Superstring theory. Cambridge Univ. Press, Cambridge, 1987.

[37] Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups. Lett. Math. Phys. 19 (1990) 133-142.
ДРОЭМЫ: ЭКСПЕРИМЕНТАЛЬНАЯ МАТЕМАТИКА, ИНФОРМАТИКА И БЕСКОНЕЧНОМЕРНАЯ ГЕОМЕТРИЯ

Д.В. Юрьев

Центр математического физики и информатики “Таласса Этерия”
E-mail: denis@juriev.msk.ru

cs.НС/9809119

Данная работа, адресованная как математикам-теоретикам, специализирующимся в геометрии, алгебре, функциональном анализе, теории динамических и управляемых систем, интересующимся современными приложениями их дисциплин к задачам информационных технологий (организация интерактивных динамических видеосистем реального времени для ускоренных компьютерных и телекоммуникаций), так и прикладникам, занимающимся разработкой указанных систем с акцентом на математические методы интерактивной компьютерной графики в реальном времени, посвящена анализу определенного, по-видимому, достаточно перспективного, с одной стороны, а с другой — небезынтересного с точки зрения чисто (как экспериментального, так и теоретического) математики подхода к решению одной проблемы информационных технологий.

Основной трудностью, препятствующей дальнейшему развитию интерактивных систем реального времени для ускоренных компьютерных и телекоммуникаций, является существенная ограниченность объема информации, передаваемой за единицу времени. Если для неинтерактивных систем и интерактивных систем условного времени, предназначенных для осуществления ускоренных коммуникаций, эта трудность более или менее преодолевается благодаря использованию различных приемов сжатия и кодирования при одновременном совершенствовании материальной (технической) базы, то для интерактивных систем реального времени при наивном подходе она становится почти непреодолимой. Кроме того, применение интерактивных систем реального времени для организации ускоренных коммуникаций на больших расстояниях порождает дополнительную трудность, связанную с вызванной кинематическими и динамическими эффектами невозможностью синхронизации ритмов субъектов коммуникации; так, при расстоянии в \(N \) тысяч километров погрешность в синхронизации теоретически не меньше, чем \(N/300 \) секунд, а практически начиная со значительно больше.
Перечисленные трудности приводят к необходимости ино-организации информации и её передачи в интерактивных системах реального времени для ускоренных коммуникации. Одно из таких возможностей, кстати используемое в системах обычных коммуникаций, является передача по каналам связи не дескрипторов объектов, а указателей на них, с использованием последующей динамической реконструкции самих объектов. При использовании этого возможности в интерактивных психоинформационных видеосистемах реального времени для ускоренного невербального когнитивного коммуникационного реконструирования, представляющихся автору в силу многих причин, некоторые из которых станут ясными в процессе изложения материала статьи, наиболее перспективными, связь между указателями и самими объектами, а также процесс динамической реконструкции, осуществляемой в реальном времени и, как следствие, по крайней мере отчасти, на безсознательном уровне, что, в целом, составляет её характерную черту, отличающую динамическую реконструкцию дровом от обычного реконструкции-"расшифровки", становятся нервивыми, потенциально весьма содержательными как экспериментально, так и теоретически. Однако, именно знание математического фундамента, лежащего в их основе, с одной стороны, может обеспечить значительное снижение чрезмерных требований к аппаратному базе систем, позволив реализовать их на основе имеющихся в наличии и общедоступных средств, а с другой стороны, может служить основанием для разработки удобного и сравнительно простого программного обеспечения.

Ввиду сказанного в данной работе мы пытаемся выявить математические основы отмеченного выше подхода к организации информации и её передачи в интерактивных психоинформационных видеосистемах реального времени для ускоренного невербального когнитивного коммуникации; на этом пути ключевую роль играют дровом ("динамически реконструируемые объекты экспериментальной математики") и интерпретационные фигуры как указатели на них.

Статья организована следующим образом: первый параграф посвящён изложению необходимых основ интерпретационной геометрии, второй — операторным методам в теории интерактивных динамических видеосистем и некоммутативной начертательной геометрии, третий — общей концепции организации интегрированных интерактивных видеокогнитивных систем реального времени, четвертый — динамически реконструируемым объектам экспериментальной математики и процессам их динамической реконструкции, при этом общие понятия иллюстрируются интересным конкретным примером, связанным с бесконечномерной геометрией. Изложение носит, в основном, эвристический и концептуальный характер (первый и третий параграфы), хотя некоторые частные аспекты такие, как, например, материал второго и четвертого параграфа, допускающие в настоящий момент более глубокую формализацию и детализацию, излагаются на математическом уровне строгости.

Отметим также, что основанием для отдельных положений, излагаемых в работе, послужили конкретные решения, используемые в различных обучающих и коммуникационных системах, однако, последовательный и систематически экспериментально-математический подход к теме содержится в литературе впервые.
§1. Интерпретационная геометрия

Данный параграф посвящен изложению различных сторон интерпре-
тационної геометрии, имеющих отношение к организации информации и ее передачи в интерактивных видеоосистемах компьютерного и телекомму-
никации. Основное внимание уделяется интерпретационным фигурам, ко-
торые в дальнейшем будут служить указателями на дроэмы и способам их передачи, иными словами, особенностям интерпретационної геометрии в многопользовательском режиме.

1.1. Интерпретационные фигуры [1,2:Прилож.А]. Геометрия, описы-
ваемая ниже, связана с некоторым классом интерактивных информацион-
ных систем. Будем называть интерактивную информационную систему компьютерной (или интерактивної информационної видеосис-
темы), если информационный поток “компьютер-пользователь” организо-
ван как поток геометрических графических данных на экране монитора; интерактивная информационная видеосистема будет называться психоин-
формационної, если информация, передаваемая по каналу “пользователь-
компьютер” носит (полностью или отчасти) бессознательный характер. Таким образом, в интересующих нас интерактивных системах управление спарено с неизвестностью или не вполне известной обратной связью, системы с таким управлением будем называть интерактивно управляемыми. В целом, рассмотрение интерактивно управляемых (психоинформационных) систем, с целью как экспериментального, так и теоретического выявления заключенных в них возможностей, представляющих интерес для матема-
тических наук самих по себе, и “скрытых” абстрактных математических объективов, наблюдение и анализ которых актуально или потенциально ре-
ализуемы благодаря указанным возможностям, является важной задачей как таковой. Поэтому далее будут определены понятия интерпретационної фигуры и ее символического чертежа, которые, по-видимому, играют ключе-
вую роль в описании компьютерно-геометрического представления матема-
тических данных в интерактивных информационных системах. В дальнейшем, однако, при сохранении общего экспериментально-математического плана акценты будут смешены несколько в сторону приложений к информатике, интерпретационные фигуры (см. ниже) будут использоваться как указа-
тели на дроэмы, а интерактивные психоинформационные видеосистемы реального времени как компоненты интегрированных интерактивных видеоког-
нитивных систем для ускоренной невербальної когнитивной коммуника-
ции.

Математические данные в интерактивных информационных видеоосис-
темах существуют в виде взаимосвязи внутреннего геометрического образа (фигуры) в субъективном пространстве наблюдателя (пользователя) и внешнего компьютерного представления, при этом внешнее пред-
ставление включает видимые элементы (чертежи фигур), а также неви-
димые элементы (аналитические выражения и алгоритмы для построения данных чертежа). Процесс сопоставления геометрического образа (фигуры) во внутреннем пространстве наблюдателя внешнему представлению (видимым и невидимым элементам) будет называться трансляцией, при этом видимої объект может быть нетождествен самої фигуре, в этом случае частные видимые элементы могут рассматриваться как модули,
чья трансляция реализуется независимо, ввиду чего будем называть транслация интерпретацию, если трансляция частных модулей реализуется в зависимости от результата трансляции предыдущих, и компиляцию в противном случае.

Определение 1. Фигура, получаемая как результат интерпретации, называется интерпретационной фигурой.

Подчеркнем, что интерпретационная фигура может не иметь обычного формального определения; а именно, только если процесс интерпретации допускает эквивалентный процесс компиляции определение фигуры сводит к определению ее чертежа, что в общем случае не имеет место. Тем самым, чертеж интерпретационной фигуры определяет всего лишь динамическую “технологию зрительного восприятия”, а не ее “образ”; подобные чертежи будут называться символическими.

Компьютерно-геометрическое описание математических данных в интерактивных информационных системах тесно связано с концепцией аномальных виртуальных реальностей.

1.2. Интенциональные аномальные виртуальные реальности [1,2:Прилож.А].

Определение 2 (ср.[1,2:Прилож.А]). (A). Аномальная виртуальная реальностью (АВР) в узком смысле называется некоторая определенная система правил нестандартной начертательной геометрии, приспособленной к реализации на видеокомпьютере (или мультисенсорной системе “виртуальной реальности” [3-6]). Аномальная виртуальная реальность в широком смысле включает в себя также изображение в киберпространстве, выполненное согласно указанно системе правил. В дальнейшем термин будет использоваться в узком смысле. (B). Натуралайзация называется процесс сопоставления аномальной виртуальной реальности некоторой абстрактной геометрии или физической модели. Будем говорить, что аномальная виртуальная реальность натуралайзует абстрактную модель, а модель трансцендирует натурализующую ее аномальную виртуальную реальность. (B). Визуализация называется процесс сопоставления некоторого изображения или визуальной динамики в некоторой аномальной виртуальной реальности (реализованной аппаратно и программно компьютерном интерфейсом конкретной ведосистемы) объектам абстрактной геометрии или процессам в физически модели. (G). Аномальная виртуальная реальность, изображения в которой зависят от наблюдателя, называется интенциональной аномальной виртуальной реальностью (IАВР). Обобщенные законы перспективы в IАВР включают уравнения интерактивной динамики наблюдаемых объектов наряду со стандартными (геометрическими) законами перспективы. Процесс наблюдения в IАВР состоит из физического процесса наблюдения и виртуального процесса интендирирования, который управляет эволюцией изображения согласно динамическим законам перспективы.

В интенциональной аномальной виртуальной реальности (IАВР), реализованной (аппаратно и программно) компьютерном интерфейсом интерактивной видеосистемы, который в свою очередь указанная IАВР геометрически моделирует (на уровне начертательной геометрии, в то
время как модель, трансцендирующая данную ИАВР, осуществляет это уже на уровне абстрактной геометрии), наблюдаемые объекты представляют как бы связанными с наблюдателем, который определенным образом воздействует на них, фиксирует их наблюдаемое состояние, так что объект мыслится только как потенциальность состояния из заданного спектра, но само состояние зависит и от наблюдателя. Символические чертежи интерпретационных фигур могут рассматриваться как состояния некоторой ИАВР.

Отметим, что математическая теория аномальных виртуальных реальности (АВР), в том числе основные процедуры натурализации и трансцендирования, связывающие АВР с абстрактной геометрией, представляет собой особеный раздел современного неклассического начертательного (компьютерного) геометрии.

Определение 2Д. Множество непрерывно распределенных визуальных характеристик изображения в аномальной виртуальной реальности называется аномальным цветовым пространством; элементы аномального цветового пространства нецветового природы называются общечетверыми, а величины, трансцендирующие их в абстрактной модели, называются "скрытыми светами". Цветоперспективное системой называется заданная совокупность общенных законов перспективы в заданном аномальном цветовом пространстве; две АВР называются эквивалентными, если их цветоперспективные системы совпадают; АВР, эквивалентная реализованной на видеокомпьютере (но не реализованной сама) называется маргинальной.

1.3. Неалександрийская интерпретационная геометрия [7,2:Приложение.А]. Отметим, что большинство классических геометрии использует некоторый постулат, который мы будем называть александрийским, но не включает явно его в свою аксиому.

Александрийский постулат. Любое утверждение, справедливое для некоторой геометрической конфигурации, остается в силе, если эта конфигурация рассматривается как часть некоторой большей конфигурации.

Таким образом, александрийский постулат означает, что добавление каких бы то ни было дополнительных объектов к данному геометрической конфигурации не оказывает влияния на эту конфигурацию. Александрийский постулат используется, например, в конструктивных доказательствах геометрических теорем, осуществляемых путем явного пошагового построения объекта, существование которого составляет утверждение теоремы. В случае нарушения александрийского постулаты в процессе конструктивного доказательства на каждом шаге могут использоваться только конфигуратии, совместимые в некотором смысле с предыдущими, т.е. не меняющими те их свойства, которые составляют исходные данные теоремы.

В качестве примера неалександрийской геометрии можно привести эйниш-теённую геометрию [7,2:Приложение.А]. Кинематика и процесс рассеяния фигур могут быть продемонстрированы на другом важном примере неалександрийской геометрии – геометрии солитонов [7,2:Приложение.А]. Все примеры солитонных геометрии подтверждают предположение, что нарушение александрийского постулаты связано с взаимодействием геометрических фигур, и, в частности, подобное взаимодействие может определяться нелинейным характером эволюции.
Рассмотрим процесс рассеяния фигур в интерпретационно-геометрии. Как отмечалось выше, интерпретационная figura описывается парой \((\Phi^\text{int}, \Phi^\text{ext})\), где \(\Phi^\text{int}\) – внутренний образ в субъективном пространстве наблюдателя, а \(\Phi^\text{ext}\) – его чертеж; \(\Phi^\text{int}\) – результат интерпретации \(\Phi^\text{ext}\). Естественно предположить, что \(\Phi^\text{int}\) зависит от \(\Phi^\text{ext}\) функционально:
\[
\Phi^\text{int}_t = \Phi^\text{int} \left[\Phi^\text{ext}_{\tau \leq t} \right]
\]
и, как правило, нелинейно; более того, если \(\Phi^\text{ext}\) обладает асимптотической свободой, то \(\Phi^\text{int}\) также обладает ею. Как следствие, даже при линейной динамике \(\Phi^\text{ext}\) имеет место нетривиальное рассеяние интерпретационных фигур, таким образом, интерпретационные фигуры являются неалександрийскими.

Таким образом, интерпретационные геометрии реализуют некоторый класс неалександрийских геометрий. Конструктивное доказательство в интерпретационной геометрии, тем самым, состоит в явном построении объекта, чье существование утверждает теорему, как результата пошагового процесса построения промежуточных конфигураций интерпретационных фигур, а корректность доказательства заключается в том, что на каждом шагу свойства начальной конфигурации, составляющие исходные данные теоремы, остаются неизменными в процессе интерпретации. Если последнее проверяется экспериментально для каждого конкретного процесса, то доказательство носит экспериментально-математически характер, будучи основанным на неполном индукции; отметим, что сходные процедуры используются во многих самообучающихся системах искусственного интеллекта, в которых реализуются (иногда статистически) возможные комбинации шагов с последующей проверкой их корректности (метод случайного поиска решений).

1.4. Информационные аспекты интерпретационных геометрий: интерпретационные фигуры в многопользовательском режиме и ИАВР-телестезия. В данном пункте содержится краткое изложение без детализации общих результатов второй части работы [7], не вошедших в приложение к работе [2] и касающихся информационных аспектов интерпретационных геометрий. Предпосылкою для такого рассмотрения служит отмечавшееся в [7] обстоятельство, что информатика может рассматриваться как точка зрения на математические объекты, дополнительная к геометрической (в свете фундаментальной оппозиции “логического” и “эдетического”). В силу этого полезно переформулировать основные геометрические определения в информационных терминах. Так, описанные во второй части работы [7] понятия АВР-фотодосии и ее формальной грамматики представляют естественную параллель к понятиям аномальной виртуальной реальности и трансцедентирующей абстрактной модели. Отметим, однако, что указанные понятия в силу методологических соображений рассматриваются пока лишь чисто формально и как реализующие “нижний” или “внешний” визуальный уровень “многослойного” видеокогнитивного смыслового потока. Их более глубокому (но далеко не полному) анализу будет посвящен четвертый параграф работы.

Определение 3А. Передача информации через аномальную виртуальную реальность с помощью “скрытых светов” называется АВР-фотодосией; система алгебраических структур изначальной абстрактной модели, характеризующих при натурализации процесс АВР-фотодосии, называется формами.
Отметим, что понятия АВР-фотодоси и ее формально-тесно связаны с понятием аномального цветового пространства, поскольку именно использование подобных пространств позволяет передавать разнообразную информацию в различных формах, и как следствие, изучение проблем передачи информации через АВР, характер которой зависит от структуры цветового пространства, является важной математической проблемы (ср. [8]). Структура АВР-фотодоси определяется ее формально-грамматико. Как будет показано в следующем параграфе формальная грамматика интерпретационных геометри может носить квантовый характер и, таким образом, соответствующая АВР-фотодосия подчиняется квантовой логике [9]; этот факт заслуживает самого пристального внимания как теоретически полученный перцептивно-когнитивный аналог весьма интересных и чрезвычайно перспективных научными коллективами математиков, физиков, психологов и неэргономов (как теоретически, так и экспериментально) чисто когнитивных процессов, удовлетворяющих квантовой логике. Отметим, что формальная грамматика АВР-фотодоси в некоторых конкретных моделях интерпретационных геометрии обсуждалась во второй части работы [7] с цитированием многочисленных литератур.

Необходимо отметить, что ИАВР, как правило, полисемантична; это означает, что объем и структура информации, получаемой при АВР-фотодоси через нее, зависит от наблюдателя; таким образом, статистическая проблема состоит в описании информации интерактивных психоинформационных видеосистем, содержащих более одного наблюдателя, в частности, коррелированность различных наблюдений. Подобные системы могут рассматриваться как реализующие интерактивную MISD (Multiple Instruction–Single Data) архитектуру с параллельными интерпретационными процессами для различных наблюдателей (это факт следует рассматривать в контексте замечания о квантово-логическом характере АВР-фотодоси); на этом пути мы сталкиваемся с явлением, специфическим для подобных систем, и он, возможно, имеющим и более общее значение: а именно, процессы наблюдения различными наблюдателями порождают информационные обмен между ними.

Определение 3Б. АВР-фотодосия через ИАВР от одного наблюдателя к другому называется ИАВР-телестезией; если в процессе ИАВР-телестезии АВР-фотодоси от различных наблюдателей не удовлетворяют принципу суперпозиции, будем говорить, что имеет место коллективный эффект в ИАВР-телестезии.

Отметим, что (1) процесс ИАВР-телестезии носит двусторонний характер; наблюдатели, участвующие в ИАВР-телестетической коммуникативной, выступают одновременно и как индукторы (посылающие информацию), и как реципиенты (принимающие ее), более того, объем и структура получаемой информации зависит от реципиента так же как и от индуктора; (2) коллективный эффект в ИАВР-телестезии означает, что индукторы в ИАВР не воспринимаются как независимые — передаваемая информация не является суммой информаций, посылаемых отдельными наблюдателями, так как парциальные информационные потоки от каж-
дого индуктора участвуют в обменном взаимодействии, формируя спет-
сифическую информацию, воспринимаемую рецепентом. В этом аспекте
должно быть особо отмечено отношение происхождения ИАВР-телестезии
к тому факту, что интерактивные психоинформационные видеосистемы ре-
ализуют интерактивную MISD архитектуру.

Определение 3В. Наблюдатель в маргинально́й АВР, которому не соот-
ветствует никакой наблюдатель в АВР, реализованной на видеокомпьютере,
называется виртуальным; а виртуальный наблюдатель, чьё процесс наблю-
дения зависит от нескольких реальных наблюдателей, называется колле-
ктивным виртуальным наблюдателем.

Присутствие виртуального наблюдателя означает, что часть прини-
маёмой информации интерпретируется как информация, посылаемая указан-
ным реально не существующим наблюдателем. Присутствие коллективного
вирурального наблюдателя не обязательно, но обычно для интерактивных
видеосистем в многопользовательском режиме; этот факт также следует
рассматривать в контексте замечания о том, что указанные системы реал-
изуют интерактивную виртуальную MISD архитектуру с параллельными
интерпретационными процессами для различных наблюдателей.

Во второ́й части работы [7] изложенные общие понятия проиллюстрированы
на конкретное́ модели интерпретационнно́й геометрии, в частности, дан
пример коллективного виртуального наблюдателя, проясняющё его смысл.
Так отмечается, что (1) только часть принимаемой информации интерпретирует-
ся как информация, посылаемая коллективным виртуальным наблюдателем
(т.о. его наличие не нарушает присутствия реальных наблюдателей), (2)
процесс интендирования коллективного виртуального наблюдателя ве-
стимо определяется взаимодействием реальных наблюдателей (т.е. коллек-
тивный виртуальный наблюдатель представляет собоё специфическое объединенное
состояние реальных наблюдателей в интерактивно́й психоинформационно́й
видеосистеме в многопользовательском режиме), (3) коллективный вир-
туальный наблюдатель участвует в информационном обмене с реальными
наблюдателями, будучи интерпретируемым (по крайне́й мере, формально)
как независимый наблюдатель. В связи с этим представляется весьма
важным почти не исследованный вопрос о взаимодействии индивидуальных
реальных наблюдателей с коллективным виртуальным наблюдателем, а
также о разложении последнего на некоррелированные составляющие (квазисубъективы)
и их взаимодействиях между собоё.

В заключение сформулируем предложение, доказываемое в конце второ́й
части работы [7] путем явного построения.

Предложение. Существуют модели интерпретационных геометрий, в ко-
торых имеются интерпретационные фигуры, наблюдаемые только в много-
пользовательском режиме.

Представляет интерес выявление значения механизма наблюдения подоб-
ных фигур в рамках общей математической теории игр [10,11].

К сожалению, несмотря на свои достоинства описанный выше меха-
низм ИАВР-телестезии, по-видимому, не позволяет непосредственно ос-
уществлять передачу когнитивной информации. Описанию попытки тем не
менее использовать ИАВР-телестезию для реализации ускорённо-невербально-когнитивной коммуникации в рамках интегрированных видеоокогнитивных интерактивных систем посвящены третий и четвертый параграф данної статьи.

§2. Операторные (квантово-полевые и стохастические) методы в теории интерактивных динамических видеоисистем и некоммутативная начертательная геометрия

Данный параграф посвящён формализации и детализации изложенному в предыдущем параграфе интуитивно прозрачной геометрической картины и разработке соответствующего алгебраического и аналитического аппарата. В результате осуществления этого мы будем обладать возможностью более строгого математического описания конкретных моделей как с целью дальнейшего прояснения общих геометрических аспектов, так и конкретно-аппаратно-программно-разработки конкретных интерактивных видеоисистем реального времени.

2.1. Общие операторные аспекты интерактивных динамических видеоисистем и некоммутативная геометрия. Существует несколько широко употребляемых общих способов задания эволюции изображений в интерактивных динамических видеоисистемах реального времени. Приведём некоторые из них:

(1) Формулы Эйлера [12]:

$$\dot{\Phi}(t) = A(t, u, \dot{u}, \xi)\Phi(t),$$

где $u = u(t) \in \mathbb{C} \simeq \mathbb{R}^2$ — текущее положение точки взора (таким образом, экран рассматривается как часть комплексной плоскости $\mathbb{C} \simeq \mathbb{R}^2$), $\dot{u} = \dot{u}(t)$ — относительная скорость ее смещения, $\xi = \xi(t)$ — дополнительные динамические параметры интерактивного управления, $\Phi = \Phi(t)$ — совокупность непрерывно распределенных киральных (т.е. голографно-антиголографно расщепленных, см.[11]) визуальных характеристик изображения (цветов и оберцветов), $A = A(t, u, \dot{u}, \xi)$ — линейный оператор. Линейный оператор A как функция u и \dot{u} называется угловым операторным полем, поле A (вообще говоря, неограниченное) голографно зависит от u и \dot{u} (слабо) непрерывно по ξ в подходящем (не обязательно метризуемом) общей топологии на пространстве параметров интерактивного управления (например, биопотенциалов ЭЭГ и ЭРГ, динамических параметров респираторного ритма и т.п., а также функциональных комплексов перечисленных величин). Динамика углового операторного поля по переменной t может в свою очередь удовлетворять некоторому дифференциальному уравнению (например, уравнению Эйлера-Арнольда [13]).

(2) Формулы Эйлера-Белавкина-Колокольцова [2]:

$$d\Phi(t, [\omega]) = A(t, u, \dot{u}, \xi)\Phi(t)dt + \sum_\alpha B_\alpha(t, u, \dot{u}, \xi)\Phi(t, [\omega])d\omega^{(\alpha)},$$
где $d\omega^{(\alpha)}$ – набор стохастических дифференциалов. При этом, иногда на практике поля $A(u, \dot{u})$ и $B_\alpha(u, \dot{u})$ могут включать (слабые) нелинейности. Динамика полеё по переменной t может в свою очередь как и в детерминированных случаях удовлетворять некоторому дифференциальному уравнению типа уравнения Эйлера-Арньолда [13].

(3) Модель с динамическим интерактивным экранированием [1]: В этих моделях совокупность цветов и оберцветов $\Psi = \Psi(t)$ представляет в виде

$$\Psi(t) = J(t, u, \dot{u}, \xi)\Phi(t),$$

где $\Phi = \Phi(t)$ удовлетворяет формулам Эйлера или формулам Эйлера-Белавкина-Колокольцова, а $J = J(t, u, \dot{u}, \xi)$ – линейный оператор (как правило, проектор с нетривиальным ядром), который как (голоморфная) функция от u и \dot{u} называется экранирующим операторным полем, экранирующим операторное поле, такое как угловое и все остальные поля, входящие в уравнения эволюции изображения, (слабо) непрерывно по ξ в подходящё (не обязательно метризуемё и, возможно, своё для каждого операторного поля) общей топологии на пространстве параметров интерактивного управления.

(4) Модель с памятью [1]: В этом случае динамика цветов и оберцветов зависит от предыстории (например, является интегродифференциальной по времени).

Некоторые конкретные реализации динамик, описанных выше, достаточно хорошо исследованы экспериментально (например, т.н. системы с частичным увлечением и маскированием – см. [1]).

При анализе перечисленных моделей (на устойчивость изображения и т.п.) важную роль играют операторные (квантово-полевые и стохастические) методы (см.например [1,2,7,12,13]). Использование квантово-полевых методов, как правило, основывается на следующем допущении, называемом гипотезо операторной алгебры, а именно, что коэффициенты разложения операторных полей, входящих в динамические уравнения, по всем переменным u, образуют замкнутую операторную алгебру квантовой теории поля будучи операторными полями по u. Таким образом, предполагаеться, что некоторые величины, полностью характеризующие эволюцию системы, образуют некоторые алгебраический объект, определение которого приводится ниже. Отметим, что в некоторых частных классах модели гипотезу операторной алгебры удается формально доказать.

Определение 4А. КТП–операторная алгебра (квантово-полевая теория поля) называется линейное пространство H, снабженное зависящим от параметра \vec{x}, пробегающего \mathbb{R}^n, или \mathbb{C}^n, операцией $m_\vec{x}(\cdot, \cdot)$, для которой выполняется следующее тождество: $m_\vec{x}(\cdot, m_\vec{y}(\cdot, \cdot)) = m_\vec{x}m_\vec{y}(\cdot, \cdot, \cdot)$. Иными словами, КТП–операторная алгебра является парой $(H, t_{ij}^k(\vec{x}))$, где H – линейное пространство, а $t_{ij}^k(\vec{y}) = H$–значное тензорное поле на \mathbb{R}^n или \mathbb{C}^n такое, что $t_{\imath\jmath}^{\imath\kappa}(\vec{x})t_{\imath\kappa}^{\jmath\kappa}(\vec{y}) = t_{\imath\jmath}^{\imath\kappa}(\vec{y} - \vec{x})t_{\imath\kappa}^{\jmath\kappa}(\vec{y})$. Поле $t_{ij}^k(\vec{x})$ реализует операцию $m_\vec{x}(\cdot, \cdot)$ следующим образом: $m_\vec{x}(e_i, e_j) = t_{ij}^k(\vec{x})e_k$, где $\{e_k\}$ – произвольный базис в H.

Введем операторы $l_\vec{e}(e_i)e_j = t_{ij}^k(\vec{x})e_k$ (операторы умножения слева в КТП–операторной алгебре), тогда будут иметь место следующие тождества:
\[l_\vec{x}(e_i)l_\vec{y}(e_j) = t^k_{ij}(\vec{x} - \vec{y})l_\vec{y}(e_k) \quad \text{(операторное разложение)} \] и \[l_\vec{x}(e_i)l_\vec{y}(e_j) = l_\vec{y}(l_\vec{x} - \vec{y})(e_i)e_j \quad \text{(определенство duality).} \]

В литературе по метематической физике, как правило, используется обозначение \(\varphi(\vec{x}) \) для операторов \(l_\vec{x}(\varphi) \) \((\varphi \in H) \). Величины \(\varphi(\vec{x}) \) называются операторными полями. В терминах операторных полей операторные разложения принимают вид

\[\varphi_1(\vec{x})\varphi_2(\vec{y}) = F_\alpha(\vec{x} - \vec{y})\psi_\alpha(\vec{y}), \]

который означает разложимость произведения операторных полей по операторным полям КТП-операторной алгебры. Если набор конкретных операторных полей замкнут относительно подобных разложений, то им может быть сопоставлена абстрактная КТП-операторная алгебра, элементы которой они представляют.

Если \(dt^k_{ij} \equiv 0 \), то КТП-операторная алгебра является обычно ассоциативной алгеброй. Элемент \(\varphi \) КТП-операторной алгебры называется левым делителем нуля, если \(l_\vec{x}(\varphi) \equiv 0 \); единице в КТП-операторной алгебре \(H \) называется элемент \(1 \) так, что \(l_\vec{x}(1) = \text{id} \); в КТП-операторной алгебре с единицей и без левых делителей нуля \(l_\vec{x}(\varphi)|_{\vec{x}=0} = \varphi \); если \(V \) — линейное пространство левых делителей нуля в КТП-операторной алгебре \(H \), то \((\forall \varphi \in H)l_\vec{x}(\varphi)V \subseteq V \) и \(H/V \) — КТП-операторная алгебра без левых делителей нуля. В КТП-операторной алгебре с единицей \(1 \) определен оператор \(\vec{L} \) (\textit{оператор инфинитезимальных трансляций}): \[\vec{L}\varphi = \left. \frac{d}{d\vec{x}}(l_\vec{x}(\varphi)) \right|_{\vec{x}=0} , \] оператор инфинитезимальных трансляций \(\vec{L} \) является дифференцированием КТП-операторной алгебры \(H \) без левых делителей нуля, т.е. для любого \(\varphi \) из \(H \) имеем место равенство \[\left[\vec{L}, l_\vec{x}(\varphi) \right] = l_\vec{x}(\vec{L}\varphi) \]; как следствие \(l_\vec{x}(\varphi)1 = \exp(\vec{x} \cdot \vec{L})\varphi \). Если \(H \) — произвольная КТП-операторная алгебра и \(\vec{L} \) — некоторое ее дифференцирование, то в линейном пространстве \(\vec{H} = H \oplus \{1\} \) задана структура КТП-операторной алгебры с единицей \(1 \):

\[l_\vec{x}(\varphi)1 = \exp(\vec{x} \cdot \vec{L})\varphi , \; l_\vec{x}(1) = \text{id}. \]

Вместо КТП-операторных алгебр иногда имеет смысл рассматривать отвечающие им локальные полевые алгебры, обычные ассоциативные алгебры, получающиеся из КТП-операторных алгебр перенормированной поточечного умножения операторных полей (отметим, что тензорные поля \(t^k_{ij}(\vec{x}) \), как правило, сингулярны в точке \(\vec{x} = 0 \), и поэтому поточечное произведение операторных полей формально бесконечно или неопределено). Процедура перенормировки описана в работе [14]. Рассмотрим для простоты интересующий нас случай, когда \(\vec{x} = u \) пробегает комплексную плоскость, а операторные поля мероморфны по \(u \).

Рассмотрим, наряду с операторными полями \(\varphi(u) \), параметризуемыми элементами \(\varphi \) пространства \(H \), выражения

\[\varphi(f) = \text{res}_{u=0} \left\{ f(u)\varphi(u)\frac{du}{u} \right\} = \lim_{u \to 0} \{ f(u)\varphi(u) - \text{сингулярности} \}. \]

Оператор \(\varphi(f) \) задается элементом \(\varphi \) пространства \(H \) и мероморфной функцией \(f(u) \) (или мероморфно \(1 \)-формо \(f(u)\frac{du}{u} \)). В силу операторных ра-
ложение произведение $\varphi_\alpha(f)\varphi_\beta(g)$ двух операторов $\varphi_\alpha(f)$ и $\varphi_\beta(g)$ корректно определено и допускает представление

\[(*) \quad \varphi_\alpha(f)\varphi_\beta(g) = \varphi_\gamma(h^\gamma_{\alpha\beta}), \quad \text{где} \quad h^\gamma_{\alpha\beta}(u) = \res_{v=u} \left\{ t^\gamma_{\alpha\beta}(v-u)f(v)\frac{dv}{v} \right\} g(u). \]

Указанная процедура представляет собою перенормировку поточечного произведения операторных полей в КТП-операторной алгебре. При этом операторные разложения интерпретируются как регуляризация поточечного произведения, а функции f и g — как параметры, от которых зависит результат перенормировки. Влияние замены функциональных параметров на результат операции перенормировки (перенормировочная инвариантность) описывается формулами (*)

Операторы $\varphi(f)$ замкнуты относительно умножения и образуют ассоциативную алгебру $\mathfrak{A}(H)$. Эта ассоциативная алгебра называется локальной полевое алгеброй, отвечающей КТП-операторной алгебре H. Как правило, некоммутативную локальную полевую алгебру $\mathfrak{A}(H)$ для мероморфноё КТП-операторной алгебры H можно рассматривать как структурное кольцо некоторого некоммутативного многообразия (некоммутативного расслоения над \mathbb{CP}^1 или некоммутативного накрытия \mathbb{CP}^1) (ср.[15-17]), а тем самым интерпретировать совокупность операторных методов в теории интерактивных динамических видеоистем реального времени как некоммутативную начертательную геометрию (ср.[13]).

2.2. Теоретико-групповые и алгебраические аспекты интерактивных динамических видеоистем. Как правило, разумно рассматривать те конкретные модели интерактивных динамических видеоистем, которые обладают тё или иного формё инвариантности по отношению к геометрическим преобразованиям изображения или внутренним преобразованиям цветового пространства. Однё из простейших форм геометрической инвариантности является инвариантность относительно проективных преобразования \mathbb{CP}^1, т.е. группы $\text{PSL}(2, \mathbb{C})$ или ее алгебры $\text{sl}(2, \mathbb{C})$, хотя реально в силу тех или иных причин, обусловленных конкретной реализации, могут рассматриваться модели с инвариантностью, нарушенё до трансляционных и масштабных преобразований (пример тому – обрезание углового поля из работы [1])). Наличие проективной инвариантности модели означает инвариантность эволюционных уравнений (формул Эллера, Эллера-Белавкина-Колокольцова и т.д.), что в свою очередь задает условия на операторы и операторные поля, входящие в эти уравнения. Проективная инвариантность операторных полей позволяет в значительной степени специфицировать их вид (в частности, аналитически описать их зависимость от u и \dot{u}), что было проделано в [12]. С другой стороны, проективная инвариантность операторных полей влечет проективную инвариантность всех построенных с их помощью алгебраических структур (КТП-операторных алгебра и локальных полевых алгебра). Систематическому анализ соответствующих проективно-инвариантных структур (операторных алгебра квантовой проективной теории поля и локальных проективных полевых алгебр) был дан в статье [18]. Изложим кратко необходимые определения и результаты, следуя [18,19].
Определение 4Б [18,19]. КТП-операторная алгебра \((H, t^k_{ij}(u); u \in \mathbb{C})\) называется КПТП-операторной алгеброй (операторной алгеброй квантовой проективной теории поля), если (1) пространство \(H\) является суммой модуляй Верма \(V_\alpha\) над \(\mathfrak{sl}(2, \mathbb{C})\) с экстремальными векторами \(v_\alpha\) и экстремальными весами \(h_\alpha\), (2) \(l_u(v_\alpha)\) является первичным полем спина \(h_\alpha\), т.е. \([L_k, l_u(v_\alpha)] = (-u)^k (u \partial_u + (k+1)h_\alpha) l_u(v_\alpha)\), где \(L_k - \mathfrak{sl}(2, \mathbb{C})\)-генераторы \(\{L_i, L_j\} = (i-j)L_{i+j}\), \(i, j = -1, 0, 1\), (3) имеет место правило порождения потомков: \(L_{-1} l_u(f) = l_u(L_{-1} f)\). КТП-операторная алгебра \((H, w^k_{ij}(u); u \in \mathbb{C})\) называется производным КПТП-операторной алгеброй, если выполняются условия (1) и (2) вместе с производным правилом порождения потомков: \([L_{-1}, l_u(f)] = l_u(L_{-1} f)\).

Как показано в работе [19] категории КПТП-операторных алгебр и производных КПТП-операторных алгебр эквивалентны. Явная конструкция эквивалентности предъявлена там же. Как следствие, КПТП-операторные алгебры и производные КПТП-операторные алгебры могут рассматриваться как разные записи одного и того же объекта, и в конкретной ситуации может использоваться наиболее удобная из них.

Необходимо отметить, что в КТП-операторных алгебрах с единицею \(L = \text{ad}(L_{-1})\), а в производных КТП-операторных алгебрах \(L = L_{-1}\). Примеры КТП-операторных алгебр рассматривались в [18,1,13].

Важную роль в структурной теории КПТП-операторных алгебр играет одна конкретная КПТП-операторная алгебра — алгебра \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) вершинных операторов для алгебры \(\mathfrak{sl}(2, \mathbb{C})\), конструкция которой содержится в [18,19]. Эта алгебра реализуется в складе модуля Верма над алгебрёй \(\mathfrak{sl}(2, \mathbb{C})\) и допускает точное представление операторными полями в модели модуля Верма над \(\mathfrak{sl}(2, \mathbb{C})\). Значение этой алгебры выявляется следующей теоремой.

Теорема 1 (см.[18]). Произвольная абстрактная КПТП-операторная алгебра может быть реализована как подалgebra в алгебре \(\text{Mat}_n(\text{Vert}(\mathfrak{sl}(2, \mathbb{C})))\) матриц с коэффициентами в \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) при некотором \(n\) (конечном, если КПТП-операторная алгебра содержит конечное число первичных полеё, и бесконечном в противном случае).

Алгебра \(\text{Vert}(\mathfrak{sl}(2, \mathbb{C}))\) вершинных операторов для алгебры \(\mathfrak{sl}(2, \mathbb{C})\) обладает рядом дополнительных интересных свойств. так, например, первичные поля в этой алгебре образуют бесконечночленную алгебру Замолодчикова [18].

Более подробно с этой алгебрёй, другими КПТП-операторными алгебрами, локальными проективными полевыми алгебрами (ЛППА), их структурной теорией, а также связями перечисленных объектов с классическими алгебраическими структурами можно познакомиться по работам [18,19].

Помимо пространственных симметрий модели интерактивных динамических видеосистем могут обладать внутренними симметриями, например, цветовыми [1]. Если эти симметрии определяются группоё
\(G\), то соответствующие эволюционные уравнения должны быть \(G\)-инвариантными, а алгебраические структуры, характеризующие эти уравнения, допускать \(G\) в качестве группы симметрий. Соответствующие механизмы подробно исследовались в работе [13] (см.также [1]). Основными алгебраическими
объектами в этом случае будут т.н. проективные G–гипермультитэты, определение которых дается ниже.

Определение 4В [13]. КПТП–операторная алгебра (производная КПТП–операторная алгебра) $(H, t^k_i(u))$ называется проективным G–гипермультитэтом, если группа G действует в её автоморфизмами, иными словами, пространство H допускает структуру представления группы G, операторы представления $T(g)$ коммутируют с действием $sl(2, \mathbb{C})$ и $l_u(T(g)f) = T(g)l_u(f)T(g^{-1})$.

Линейные пространства экстремальных векторов заданного веса образуют подпредставления группы G, которые называются мультитэлами проективного G–гипермультитэта. Проективные G–гипермультитэты с $G \supseteq SU(3)$ описывают алгебраическую структуру цветового пространства в проективно-инвариантных ИАВР [1]. Конкретные проективные G–гипермультитэты (канонические и гиперканонические, и их частные случаи – q_R–конформные теории поля) подробно исследовались в работах [13,1,18]. Отметим также, что многие методы хорошо разработанное квантово-конформное теории поля непосредственно или после некоторой модификации оказываются применимыми и в перечисленным конкретным проективным G–гипермультитэтом [13,18] (в частности, к ним относятся конструкция Сугавара, поля Фубини-Венецiana и вершинные конструкции, Virasoro master equations, модульный функтор и т.д.).

§3. Организация интегрированных интерактивных видеокогнитивных систем реального времени

Данный параграф посвящен общим принципам организации интегрированных интерактивных видеокогнитивных систем реального времени. Интегрированность понимается как совместное функционирование двух подсистем, одна из которых – искусственная (это, как правило, интрактивная динамическая видеосистема), а другая – естественная (сенсорная, в т.ч. визуальная, респираторная, когнитивная или смешанная). Необходимо отметить, что большая часть реальных видеосистем, так или иначе носит явный или скрытый видеокогнитивный интегрированный характер, поэтому представляет интерес изучение именно интегрированных интерактивных систем.

Однако, прежде чем перейти к изучению интегрированных интерактивных систем, необходимо дать анализ естественных интерактивных систем, для того чтобы понимать закономерности их функционирования в составе интегрированных систем. При этом, разумно рассматривать простейшие системы сенсорного типа, затем перейти к соответствующим интегрированным системам (видеосенсорным и видеореспираторным), и лишь после этого сконцентрировать внимание на собственно видеокогнитивных системах.

3.1. Виртуализация как метод описания класса физических интерактивных информационных систем [18,20]. Изложим следующий [18,20] основные принципы виртуализации естественных физических интерактивных систем как метода их кинематического описания.

Определение 5 [20]. Изображением естественной интерактивной системы с помощью искусственной интерактивной видеосистемы будем называть...
задание алгоритма построения динамического изображения произвольного протекающего в естественнон системе интерактивного процесса посредством интенционально аномального виртуальной реальности, реализуемой компьютерограммным интерфейсом искусственной интерактивной видео-системы. Виртуализация естественной интерактивной системы будем называть сопоставление её её изображения с помощью искусственной интерактивной видеосистемы по определённой совокупности экспериментальных данных о системе в установившемся автоколебательном режиме. В свою очередь исходную интерактивную систему будем назвывать реализацию интерактивной системы.

Иными словами, виртуализация естественной интерактивной системы позволяет по характеристикам некоторого ограниченного множества автоколебательных интерактивных процессов формировать динамическое изображение произвольного (не обязательно автоколебательного) интерактивного процесса посредством некоторой искусственной интерактивной системы. Выбор термина "виртуализация" связан с тем, что динамическое изображение интерактивного процесса представляет собой аномальную виртуальную реальность в широком смысле этого понятия.

Ввиду деления интересующих нас естественных интерактивных систем на активную и пассивную составляющие (активного и пассивного агента) характеристики установившегося автоколебательного процесса подразделяются на графические данные о динамическом состоянии пассивного агента и амплитудно-частотные характеристики активного агента. Виртуализация естественной интерактивной системы заключается в задании алгоритма вторичного синтеза [20] графических данных о динамическом состоянии пассивного агента при любом интерактивном процессе по заданной совокупности указанных данных при установившихся автоколебательных процессах из некоторого множества, а также соответствующих амплитудно-частотных характеристик активного агента в этих процессах; принципиальная структурно-алгоритмическая схема виртуализации естественных интерактивных систем, основанная на использовании вторичного синтеза изображён пряведена в работе [20].

Критерий адекватности изображения и корректности виртуализации [20]. Виртуализация естественной интерактивной системы является корректной, если получающееся в результате ее изображение этой системы посредством некоторой искусственной интерактивной видеосистемы адекватно исходной системе, т.e. при одновременном функционировании как естественного, так и естественной интерактивных систем с одним и тем же активным агентом воспроизведение изображения заданного интерактивного процесса позволяет (при определенном состоянии и решении активного агента) вызвать его управляющее протекание в естественной инетарктива системе.

Разумеется, изображение может быть однократно построено на основании экспериментальных данных о функционировании естественной интерактивной системы с другим активным агентом нежели тот, который участвует в воспроизведении изображения. Отметим также, что при воспроизведении изображение предусматривается совместное одновременное функционирование двух различных интерактивных систем (искусственной и естественной) с одним субъектом. Таким образом, основное отличие вир-
туализации от математического модели заключается в том, что последняя является ЧИСТЫМ ДЕСКРИПТОРОМ физического процесса, в то время как первая — ДЕСКРИПТОРОМ—Конструиктором.

Сформулируем ряд феноменологических принципов, выполнение которых, по-видимому, необходимо для корректности виртуализации:
— Принцип изоструктуруённой идеографичности виртуализации [20]: Виртуализация естественново интерактивной системы должна быть построена так, что получающеся посредством нее изображение имело ту же внутреннюю алгебраическую структуру, что и исходная система;
— Принцип динамической эквивалентности интенции [20]: Виртуализация естественново интерактивной системы должна быть построена так, чтобы параметры, характеризующие интенсивность интенции субъекта на объект, для нее и ее изображения совпадали в процессе динамического субъект-объектного взаимодействия. В качестве подобного параметра можно рассматривать корреляцию поведенческих реакций субъекта и динамических характеристик объекта.

3.2. Примеры организации интегрированных интерактивных систем и перспективы развития [20]. Интерактивные системы подразделяются на следующие классы:
— По происхождению: на искусственные, естественные и интегрированные.
— По типу интерфейса на видеосистемы, аудиосистемы, общие сенсорные (включая тактильные), респираторные и комплексыые (аудиовидеосистемы, видеоосенсорные, видеореспираторные и т.д.).
— По цели функционирования: на системы управления, системы наблюдения, обработки и хранения информации, системы саморегуляции и аутотренинга, системы коммуникации.
— По числу пользователей: на одно- и многопользовательские.

К наиболее интересным относятся среди многих других следующие виды интерактивных систем: (1) искусственные видеосистемы “автоматическая аранжировка восприятия”, в том числе многопользовательские, использующие вторичный синтез изображения (ВСИ) [20], (2) включающие предыдущий вид в качестве подсистемы интегрированные видеосенсорные системы интерактивного зрения, (3) интегрированные видеореспираторные системы саморегуляции, аутотренинга и когнитивной стимуляции, (4) интегрированные многопользовательские видеокогнитивные системы ускорённой невербальной коммуникации.

Перспективным в области систем ВСИ [20], играющих ключевую роль при проектировании многих интегрированных систем, является, по-видимому, изучение интеллектуальных систем ВСИ с динамической интерактивной настройкой (а также разработка портативных видеоистем синхронного ВСИ и комплексных многопользовательских систем). Системы ВСИ с динамической интерактивной настройкой могут рассматриваться как системы “автоматической аранжировки восприятия” в рамках деятельности, связанной с компьютерными системами интерактивного “автоматического письма”, а также исследований синтетической перцепции. Имеет смысл и изучение октовионного аномального 3D стереосинтеза [1], кириальнодиссимметрии зрительного анализатора в интерактивных процессах и ее
влияния на стереосинтез. Представляется важным изучение совместного функционирования естественных интерактивных систем и их виртуализации при разработке интегрированных интерактивных систем (реализующих “интегрированную реальность” как альтернативу системам “виртуальной реальности”). К интегрированным системам, включающим в себя искусственные интерактивные видеоподсистемы автоматического аранжирования восприятия, относятся интегрированные видеосенсорные системы интерактивного зрения с естественно сенсорной подсистемой и интегрированные видеорецепторные интерактивные системы (т.е. интерактивные видеосистемы с респираторно-модуляторной или, в более общем случае, трансформацией визуальных интерактивных процессов) психофизиологической аутотерапии (как пассивно-релаксационного, так и активно динамического).

3.3. Организация интегрированных видеокогнитивных систем реального времени для ускоренного невербального когнитивного коммуникации. Некоторые когнитивные аспекты интерактивной компьютерной графики в целом рассматривались в монографии [21]. В данной работе мы интересуемся когнитивными аспектами коммуникационных интерактивных видеосистем реального времени (а также и интегрированных видеосенсорных аналогов).

Как отмечалось ранее, непосредственное использование ИАВР-телестезии, по-видимому, не позволяет осуществлять передачу когнитивной информации. С другой стороны, интегрированные видеокогнитивные коммуникационные интерактивные системы могут “наследовать” полезные свойства своих видеоподсистем, реализующих ИАВР-телестезию, но при этом передавать и сложную когнитивную информацию. Так, подход к разработке подобных “производных” интегрированных систем ускоренной невербальной когнитивной коммуникации, базирующихся на применении ИАВР-телестезии (см. выше) в качестве аппарата предварительного распознавания и интерактивной самонастройки коммуникационных “ключевого” субъекта, а также их динамической синхронизации, призван обеспечить поканальную интерактивную определяемость “ключевой” связи и, таким образом, принципиальную неинтерпретируемость (недешифруемость) сообщения извне. Реализуемость подобной схемы опирается на ряд обстоятельств: (1) наличие интерпретационных фигур, наблюдаемых только в многопользовательском режиме, наряду с другими особенностями многопользовательского режима в интерпретационной геометрии, обсуждавшимся выше (например, полисемантичностью и квантово-логическим характером коммуникации, позволяющим применить некоторые идеи и методы квантовой криптографии [22-25]), (2) способность интерпретационных фигур служить указателями на видео-когнитивные объекты отличное от них природы, динамически реконструируемые в реальном времени пользователями в процессе коммуникации. Указанные объекты будем называть динамически реконструируемыми объектами экспериментальной математики или кратко “фразами”. Таким образом, поток визуальной информации между пользователями, анализировавшись в §1.4, организует более сложный поток видеокогнитивной информации, возникающий между ними (отметим, что хотя передаваемая информация когнитива, процесс ее передачи носит интерактивно управляемый и, отчасти, бессознательный характер, причем двусторонний поток интерак-
тивной видеинформации может рассматриваться как психосемантический контекст когнитивного информационного обмена. При этом исходная интерпретационная геометрия (точнее, интерактивная видеосистема – ее “носитель”) служит виртуализации (дескриптором-конструктором) реализуемой когнитивной интерактивной системы. К обсуждению математических аспектов темы, а именно, дроэмам и их динамической реконструкции мы перейдем в следующем параграфе.

§4. Дроэмы и их динамическая реконструкция

Данный параграф посвящен дроэмам и их динамической реконструкции. Хотя, в целом, указанный процесс, как впрочем и общая природа дроэм, не вполне ясен даже на концептуальном уровне (хотя, по-видимому, дроэмы как-то связаны с т.н. динамическими симуляками понятием [20:Прим.5]), отдельные примеры могут быть разобраны достаточно формально, тем самым проясняя некоторые общие механизмы. Пример, который подробно разбирается ниже, связан с бесконечномерной геометрией, и может быть охарактеризован как ответ на вопрос “можно ли наблюдать бесконечномерные объекты?”, иными словами, возможна ли и как начертательная бесконечномерная геометрия. Как мы увидим использование интерактивных видеокогнитивных систем, дроэмов и их динамической реконструкции в определенном смысле решает этот вопрос положительно в принципе, что позволяет использовать методы экспериментальной (компьютерной) математики при изучении бесконечномерных геометрических объектов. Отметим, что некоторые аспекты бесконечномерной начертательной геометрии теоретически обсуждались в работе [26].

Рассмотрению самого примера (пп.4.3.,4.4.) целесообразно предшествовать обсуждение двух технических вопросов (пп.4.1.,4.2.).

4.1. Организация киберпространства [7,2:Прилож.А]. Пуск для простоты динамика изображения задается формулами Эёлера, которые спарены с некоторой явной зависимостью угловых полей от времени, так что в целом их совокупность проективно-инвариантна. Киберпространство состоит из пространства изображений V_I с фундаментальной длиной (шагом решетки) Δ_I и пространства наблюдения V_O с фундаментальной длиной Δ_O; в пространстве V_I формируются изображения, в то время как пространство V_O используется для данных о движении глаз; естественно потребовать $\Delta_I \gg \Delta_O$. Формулы Эёлера записываются в виде $\Phi_t = A_t(\xi(u, \dot{u}))\Phi_t$, будем считать, что компоненты разложения углового поля $A_t(\xi(u, \dot{u}))$ по \dot{u} порождают КППП-операторную алгебру qR-конформной теории поля [18], т.е. являются $s{l}(2, \mathbb{C})$-первичными полями в модуле Верма V_h над алгеброй Ли $s{l}(2, \mathbb{C})$. Угловое поле $A_t(\xi(u, \dot{u}))$ может быть приближенно представлено в виде $M_1(t, \xi)uV_1(u) + M_2(t, \xi)u^2V_2(u) + \cdots + M_n(t, \xi)u^nV_n(u)$, где величины $M_i(t, \xi)$ реализуют явную зависимость углового поля от времени и неограниченных динамических параметров типа бипотенциалов ЭЭГ или данных респираторного ритма, а $V_i(u)$ являются $s{l}(2, \mathbb{C})$-первичными полями спина i в модуле Верма V_h над алгеброй Ли $s{l}(2, \mathbb{C})$. Явные формулы для этих полей приведены, например, в [16], также как их дискретные (решеточные) аналоги, которые и используются на практике (при этом n равно 2 или 3).
4.2. Обрезание углового поля [1]. Из практических соображений имеет смысл рассматривать обрезание $A_{\text{cut}}(u, \dot{u})$ углового поля $A(u, \dot{u})$ в регулярной части, не содержащей степени u с показателем большим заданного N. Предполагается, что $A_{\text{cut}}(u, \dot{u})$ остается трансляционно и масштабно инвариантным, а дилатационная инвариантность нарушается. Например, компоненты обрезанного $q_{\mathcal{R}}$–аффинного тона $J_{\text{cut}}(u)$ (sl(2, \mathbb{C})–первичного поля сина 1 в модуле Верма $V_{\mathcal{h}}$ над алгеброи Li sl(2, \mathbb{C})) задают операторами $J_{\text{cut}}^k = J_k = \partial_z^k$, $J_{\text{cut}}^\alpha = z^k \Delta^k P(z \partial_z)$ ($\Delta f(x) = f(x+1) - f(x)$), где $P(z \partial_z)$ – многочлен степени N, например, такой, что $P(z \partial_z) z^i = \frac{1}{i!+1} z^i$, $i \leq N$. Модуль Верма $V_{\mathcal{h}}$ реализован в пространстве многочленов от одного переменного z, sl(2, \mathbb{C})–генераторы имеют вид $L_1 = (z \partial_z + 1) \partial_z$, $L_0 = z \partial_z + h$, $L_{-1} = z$. Многочлен $P(z \partial_z)$ однозначно определяет оператор L_{cut} так же, что $[L_{\text{cut}}^1, J_{\text{cut}}^{-1}] = 1$, $[L_{\text{cut}}^1, L_0] = L_{\text{cut}}^1$, L_{cut}^1 является обрезанным оператором дилатации: $L_{\text{cut}}^1 = z P^{-1}(z \partial_z)$. Операторы L_{cut}^1, L_0, L_{-1} порождают т.н. нелинейную sl$_2$ [27] с соотношениями

$$[L_0, L_{-1}] = L_{-1}, \quad [L_{\text{cut}}^1, L_0] = L_{\text{cut}}^1, \quad [L_{\text{cut}}^1, L_{-1}] = h(L_0),$$

где $h(x) = \frac{1}{P(x+1)} - \frac{1}{P(x)}$. Указанная нелинейная sl$_2$ описывает нарушение проективной инвариантности при процедуре обрезания.

Процедура обрезания при $N = 1$ и $A(u, \dot{u}) = J(u)\dot{u}$ в частных случаях реализует интерактивную видеосистему с частичным увлечением и маскированием, т.е.

$$\Phi(x) = \Phi_u(x) = f(|x - u|) \Phi_0(x - \gamma u),$$

где γ – коэффициент увлечения, f – функция маскирования, $u = u(t)$ – положение точки взора. Видеоданные могут быть многослойными с коэффициентом увлечения и функцией маскирования своими для каждого слоя.

Переход к дискретной (решеточной) версии в случае обрезания не вызывает проблем.

4.3. Бесконечномерные динамические симметрии интерактивно управляемых видеосистем. Бесконечномерные динамические симметрии интерактивно управляемых видеосистем, эволюция которых описывается формулами Эйлера или Эйлера-Белавкина-Колокольцова (возможно, спаренными с уравнениями Эйлера-Арнольда) с операторными полями, порождающими КПП–операторную алгебру $q_{\mathcal{R}}$–конформной теории поля, могут быть построены одним из следующих трех эквивалентных способов.

Способ 1 [18]. Генераторы бесконечномерных динамических симметрий суть sl(2, \mathbb{C})–тензорные операторы в модулях Верма $V_{\mathcal{h}}$ над алгеброи Li sl(2, \mathbb{C}), преобразующиеся под действием sl(2, \mathbb{C}) как гомоморфные n–дифференциалы в единичном комплексном диске D_+ ($n \in \mathbb{Z}_+$), т.е. m–поливекторные поля ($m \in \mathbb{Z}_+$). Таким образом, производящие функции для генераторов бесконечномерных динамических симметрий суть sl(2, \mathbb{C})–первичные операторные поля в $V_{\mathcal{h}}$ спина m.

Способ 2. Действие алгебры Li sl(2, \mathbb{C}) в модуле Верма $V_{\mathcal{h}}$ продолжается до представления T алгебры Li W_1 формальных векторных полю на прямоен [28]. А именно, если модуль Верма $V_{\mathcal{h}}$ реализован в пространстве многочленов одночкомplexно переменного z, а генераторы sl(2, \mathbb{C}) имеют
вид $L_{-1} = z$, $L_0 = z\partial_z + h$, $L_1 = z\partial_z^2 + 2h\partial_z$, то остальные генераторы алгебры Ли W_1 задаются операторами $L_k = z\partial_z^{k+1} + (k+1)h\partial_z^k$ $(k \geq 2)$. Если модуль Верма V_h унитаризуем, то генераторы бесконечномерных динамических симметрий, отвечающих $sl(2, \mathbb{C})$–первичному полу спина 2, представляются в виде $T(X)$ или $T^*(X)$, где $X \in W_1$. В неунитаризуемом случае следует воспользоваться аналитическим продолжением по параметру h. Чтобы получить генераторы бесконечномерных динамических симметрий, отвечающих $sl(2, \mathbb{C})$–первичному полу спина 1, необходимо проделать действие алгебры Ли W_1 в модуле Верма V_h до представления \bar{T} полученного суммы эти алгебры и абелеевой алгебры Ли $\mathbb{C}[z]$ в V_h. Это представление при ограничении на $\mathbb{C}[z]$ является представлением указанной алгебры не только как абелеевой алгебры Ли, но и как коммутативной ассоциативной алгебры, образующей z отвечает оператор ∂_z. Генераторы бесконечномерных динамических симметрий, отвечающих $sl(2, \mathbb{C})$–первичному полу спина 1, имеют вид $\bar{T}(X)$ или $\bar{T}^*(X)$, где $X \in \mathbb{C}[z]$. При помощи аналогичной, но несколько более сложной конструкции можно получить и остальные бесконечномерные динамические симметрии.

Способ 3. Продолжим представление алгебры Ли $sl(2, \mathbb{C})$ в модуле Верма V_h до представления T алгебры Ли $\text{Vect}^C(S^1)$ гладких \mathbb{C}–значных векторных полей на окружности S^1 (более точно, \mathbb{Z}–градуированоё алгебры Витта полиномиальных векторных полей) в модуле $V(h)$ функционального размерности 1. Обозначим P естественныё $sl(2, \mathbb{C})$–инвариантный проектор пространства $\text{End}(V(h))$ на пространство $\text{End}(V_h)$. Бесконечномерные динамические симметрии, отвечающие $sl(2, \mathbb{C})$–первичному полу спина 2, имеют вид $P(T(X))$ $(X \in \text{ Vect}^C(S^1))$. Чтобы получить все остальные бесконечномерные динамические симметрии необходимо рассмотреть алгебру Ли $DOP^C_{[1],[1]}(S^1)$ дифференциальных операторов вместо алгебры Ли $\text{ Vect}^C(S^1)$ векторных полей.

Алгебраическая структура описанных бесконечномерных динамических симметрий была раскрыта в работах [29,30]. Дадим окончательную формулировку результата.

Теорема 2А. Бесконечномерные динамические симметрии, отвечающие $sl(2, \mathbb{C})$–первичному полу спина 2, образуют HS–проективное представление алгебры Ли $\text{ Vect}^C(S^1)$ в унитаризуемом модуле Верма V_h (т.е. представление по модулю операторов Гильберта-Шмидта), а также асимптотическое представление указанной алгебры “mod $O(h)$” (в смысле [31]; $h = h - \frac{1}{2}$). Вся совокупность бесконечномерных динамических симметрий образует HS–проективное и асимптотическое “mod $O(h)$” представления алгебры $DOP^C_{[1],[1]}(S^1)$.

Утверждение теоремы легко выводится из третьего способа определения бесконечномерных динамических симметрий.

Часть из бесконечномерных динамических симметрий может быть “глобализована” [30]. Сформулируем окончательный результат.

Теорема 2Б. Бесконечномерные динамические симметрии, отвечающие $sl(2, \mathbb{C})$–первичным полям спинов 1 и 2, экспоненцируются до проективного HS–псевдопредставления [30] полупрямого произведения группы $\text{Diff}_+(S^1)$ диффероморфизмов окружности и группы петель $\text{Map}(S^1, U(1))$, являющегося асимптотическим представлением “mod $O(h)$”.
Теорема 2 допускает аналог для бесконечномерных динамических симметрий для динамик в произвольных канонических G–гипермультплетах [13,1]. Для этого надо заменить абелеву группу $U(1)$ на группу G.

Рассмотрим приближение углового поля с $n = 2$ (см.4.1.). В этом случае угловое поле представляется в виде генераторов бесконечномерных динамических симметрий с коэффициентами, зависящими от параметров управления. Как следствие, динамика интегрируется по модулю операторов Гильберта-Шмидта или асимптотически “mod $O(h)$” и задается интерактивно управляемым групповым элементом полупрямого произведения группы диффеоморфизмов окружности и группы петель.

4.4. Бесконечномерные дроэмы и их динамическая реконструкция. Из результатов предыдущего пункта следует, что интерпретационные фигуры в моделях, задаваемых каноническими проективными G–гипермультплетами, могут служить указателями на бесконечномерные дроэмы, реализуемые при помощи геометрических объектов, связанных с группами диффеоморфизмов окружности и групп петель (см.[26,32-35,17] и ссылки в них). Процесс динамической реконструкции заключается в восстановлении бесконечномерного объекта по интерактивному процессу в динамической видео-системе. Сам бесконечномерный объект может быть как интерпретационным, так и статическим (компиляционным). Например, интерпретационные фигуры могут служить указателями на статическое “изображение” на “бесконечномерном экране” – пространстве универсально деформации комплексного диска [33,34]. В качестве дроэмов могут выступать и многочисленные (подчеркнём, подчас весьма экзотические) бесконечномерные объекты геометрической теории вторичноквантованных струн [35], что отмечалось в третьей части работы [35]; таким образом, имеет смысл говорить о начертательной струнной геометрии в контексте общего математического формализма теории струн (см.напр.[36]).

Отметим, что переход к решеточьёй версии, по-видимому, должен приводить к квантовым аналогам бесконечномерных групп и алгебр Ли (ср.[37]), однако, геометрические последовательности процедуры обозрения (см.выше п.4.2.) неизвестны.

Важность языка бесконечномерной геометрии отмечалась в [26]; данная работа может рассматриваться как развитие сформулированного в [26] тезиса о естественности языка бесконечномерной геометрии. Отметим, что дроэмы (в частности, бесконечномерные) и их динамическая реконструкция помимо описанной прикладной проблемы организации ускоренных невербальных когнитивных компьютерных и телекоммуникаций будучи весьма важными для экспериментальной математики и, как следствие, для всего комплекса математических (в том числе теоретических) наук, представляют интерес и для теоретической математической психологии, структурной лингвистики и лингвистической психологии в контексте как ставших актуальными сравнительно недавно исследованию невербальных когнитивных коммуникаций в различных внешних условиях (в том числе при наличии стимуляции), так и в контексте таких более традиционных тем, как изучение возникновения и развития вербальных коммуникаций, ранних этапов формирования речи и процессов обучения. В этой связи представляет особый интерес динамическая реконструкция дроэмов в мно-
гопользовательском режиме (ср.п.1.4.), например, в интерактивных видеокогнитивных играх (играх с интерактивным управлением, см.п.1.1.).

Список литературы

[1] Юрьев Д.В., Октоунин и бинокулярное “подвижное видение” // ФПМ. 1998, в печати [Draft English e-version: hep-th/9401047 (1994)].
[2] Юрьев Д.В., Watch-dog эффекты Белавкина-Колокольцова в интерактивно управляемых стохастических динамических видеосистемах // ТМФ. 1996. Т.106, вып.2. С.333-352.
[3] Kalawsky R.S., The science of virtual reality and virtual environments. Addison-Wesley, 1993.
[4] Virtual reality: applications and explorations. Ed.A.Wexelblat. Acad.Publ., Boston, 1993.
[5] Burdea G., Coiffet Ph., Virtual reality technology. J.Wiley & Sons, 1994.
[6] Форман Н., Вильсов Н., Использование виртуальной реальности в психологических исследованиях // Психол.журн. 1996. Т.17. вып.2. С.64-79.
[7] Juriev D., Visualizing 2D quantum field theory: geometry and infomations of mobilevision: Report RCPMI-96/02 (1996) [Draft e-version: hep-th/9401067+ hep-th/9404137 (1994)].
[8] Saaty T.L., Speculating on the future of Mathematics // Appl.Math.Lett. 1988. V.1. P.79-82.
[9] Beltrametti E.G., Cassinelli G., The logic of quantum mechanics. Encycl.Math.Appl.15, Addison-Wesley Publ., London, 1981.
[10] Овсян Г., Теория игр. М., 1971.
[11] Воробьёв Н.Н., Теория игр. Л., 1985.
[12] Юрьев Д.В., Квантовая проективная теория поля: квантово-полевые анализы формулу Эйлера // ТМФ. 1992. Т.92, вып.1. С.172-176.
[13] Юрьев Д.В., Квантовая проективная теория поля: квантово-полевые анализы уравнения Эйлера-Арнольда в проективных G-гиермультплиталетах // ТМФ. 1994. Т.98, вып.2. С.220-240.
[14] Юрьев Д.В., КППП-операторные алгебры и коммутативное внешнее дифференциальное исчисление // ТМФ. 1992. Т.93, вып.1. С.32-38.
[15] Witten E., Non-commutative geometry and string field theory // Nucl.Phys.B 1986. V.268. P.253-291.
[16] Witten E., Quantum field theory, grassmannians and algebraic curves // Commun.Math.Phys, 1988. V.113. P.529-600.
[17] Юрьев Д.В., Квантовая конформная теория поля как бесконечномерная некоммутативная геометрия // УМН. 1991. Т.46, вып.4. С.115-138.
[18] Юрьев Д.В., Комплексная проективная геометрия и квантовая проективная теория поля // ТМФ. 1994. Т.101, вып.3. С.331-348.
[19] Бычков С.А., Юрьев Д.В., Три алгебраические структуры квантовой проективно-$(2,C)$-инвариантной теории поля // ТМФ. 1993. Т.97, вып.3. С.336-347.
[20] Юрьев Д.В., К описанию класса физических интерактивных информационных систем: Report RCPMI-96/05 (1996) [e-version: mp_arc/96-459 (1996)].
[21] Zenkin A.A., Kognitivna/kom/ь/yu terna/ya grafika. M., Nauka, 1991.
[22] Wiesner S., Conjugate coding // SIGACT News. 1983. V.15, no.1. P.78-88.
[23] Wiedemann D., Quantum cryptography // SIGACT News. 1989. V.18, no.2. P.28-30.
[24] Bennett C.H., Brassard G., The dawn of a new era for quantum cryptography: the experimental prototype is working // SIGACT News. 1989. V.20, no.2. P.78-82.
[25] Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K., Teleporting and unknown quantum state via dual classical and EPR channels // Phys.Rev.Lett. 1993. V.70. P.1895-1899.
[26] Juriev D., The vocabulary of geometry and harmonic analysis on the infinite–dimensional manifold $\text{Diff}_+(S^1)/S^1$ // Adv.Soviet Math. 1991. V.2. P.233-247.
[27] Roček M., Representation theory of the nonlinear $\text{SU}(2)$ algebra // Phys.Lett.B. 1991. V.255. P.554-557.
[28] Фукс Д.Б., Когомологии бесконечномерных алгебр Лин., Наука, 1983.
[29] Juriev D., Topics in hidden symmetries. V. E-print: funct-an/9611003.
[30] Juriev D., On the infinite-dimensional hidden symmetries. I-III. E-prints: funct-an/9612004, funct-an/9701009, funct-an/9702002.

[31] Karasev M.V., Maslov V.P., Nelineénye skobki Puassona. Geometriya i kvantovanie. M., Nauka, 1991.

[32] Юрьев Д.В., Неевклидова геометрия зеркал и предквантование на однородном кэлеровом многообразии $M = \text{Diff}_+(S^1)/\text{Rot}(S^1)$ // УМН. 1988. Т.43. вып.2. С.187-188.

[33] Юрьев Д.В., Модель модуляй Верма над алгеброй Вирасоро // Алгебра и анал. 1990. Т.2. вып.2. С.209-226.

[34] Juriev D., Infinite–dimensional geometry of the universal deformation of the complex disk // Russian J.Math.Phys. 1994. V.2. P.111-121.

[35] Juriev D., Infinite dimensional geometry and quantum field theory of strings. I-III // Alg.Groups Geom. 1994. V.11. P.145-179 [e-version: hep-th/9403068 (1994)]; Russian J.Math.Phys. 1996. V.4. P.287-314; J.Geom.Phys. 1995. V.16. P.275-300.

[36] Грин М., Шварц Дж., Виттен Э., Теория суперструн. М., Мир, 1990.

[37] Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., Central extensions of quantum current groups // Lett.Math.Phys. 1990. V.19. P.133-142.