Zero gravity of free-surface flow under a sluice gate

L.H. Wiryanto
Department of Mathematics, Bandung Institute of Technology, Jl. Ganesha 10
Bandung, Indonesia

wwwiryanto@yahoo.co.id

Abstract. Free surface flow is a classical problem in hydrodynamics, such as flow under a sluice gate. The ratio between the uniform depth at far downstream and the height of the gate, called contraction coefficient, is important in building the sluice gate. In this report, that number is calculated based on a model of potential flow, without involving gravity. A conformal mapping and defining an analytical function can are the main mathematical problem that should be done, before solving the model. Here, we mainly determine the coordinates of the free surface of thow from the gate, they are calculated by integral form, and at far downstream we obtain the fluid depth as used to calculate the contraction coefficient, i.e. 0.611.

1. Introduction
This paper is concerned with the formulation of an integral equation from a free-surface flow under a sluice gate. Here, we define the free surface is the boundary of fluid flow contacted to air, so that the boundary is free and unknown. Physically, the water occupies a dam having a slit at the bottom corner, and the water depth is much higher than the width of the slit. When the slit is opened, the water comes through the slit and it forms stream uniformly far from the slit. This flow can be determined by knowing the free surface profile. Most works relating to sluice gate flow are for finite depth of the fluid far upstream. The model is an integral equation, and solved by boundary element method. See for example Frangmeier and Strelkoff [1]; Loroch [2]; Chung [3]; also in Asavanant and Vanden Broeck [4]; Vanden Broeck [5]; Binder and Vanden Broeck [6], Wiryanto [7] and Wiryanto et. al. [8]. The solutions are characterized by uniform and supercritical flow far downstream, and the flow at upstream can be supercritical or subcritical. However, the calculation is basically relatively close to the gate, so that it produces contraction coefficient (the ratio between the uniform depth at far downstream and the height of the gate) less accurate, since the numerical procedure is done by truncating the domain.

Alternatively, the sluice gate flow is modelled without involving gravity. It is simpler but we need to construct an analytical function. When it is done the analytical solution can be obtained, and the uniform depth at the downstream can be calculated, representing the contraction coefficient as the problem has been worked in non-dimensional with respect to the height of the gate.

2. Problem formulation
The free surface flow that we consider is illustrated in Figure 1. The flow domain is bounded by horizontal and vertical walls, and a free surface. The vertical wall is lifted up above the horizontal wall, forming a slit width H, so that the fluid flows through the slit. Since the upstream fluid is relatively deeper than height of the slit, we assume that the volume flux is Q crossing a quarter of circle far from
the slit. The fluid velocity decreases for larger circle. As the coordinates, we choose Cartesian with the x axis along the horizontal wall and the y axis at the vertical wall.

The flow domain is between streamline along the horizontal bottom wall and streamline of vertical wall continued by free surface. So that the flow domain can be expressed in complex potential $f = \phi + i\psi$ of non-dimentional so that it is in strip-line $0 < \psi < 1, -\infty < \phi < \infty$. Any point in that domain has velocity $\frac{df}{dz} = e^{\Omega}$, where $\Omega = \tau - i\theta$, the speed related to τ, and the direction corresponds to θ. So, physically the boundary has $\theta = 0$ along the bottom wall and $\theta = -\pi/2$ along the vertical wall. Our task is to determine θ along the free surface. This can be obtained when we know the relation between θ and τ, through an analytical function. Both then satisfies the dynamics condition, i.e. the pressure is zero along the surface, presented by Bernoulli equation.

![Figure 1: sketch of the flow and the coordinates.](image)

3. Analytical function

The mathematical description of the problem is presented in non-dimensional variables, base on unity of the velocity and length at uniform flow downstream. First, the flow domain in f plane is transformed in an artificial domain $\zeta = \xi + i\eta$, by using $f = -\frac{1}{\pi} \log \zeta$, the strip line is mapped into half below ζ plane. The streamlines $\psi = 0$ and $\psi = 1$ as the boundary of the flow are transformed into the real axis of ζ, where the horizontal bottom wall is mapped into $\eta = 0$, $\xi > 0$, the vertical wall is mapped into $\eta = 0, \xi < -1$, and the free surface is mapped into $\eta = 0, -1 < \xi < 0$.

Along the solid boundary, the value of θ follows the direction of the stream on the walls. Meanwhile the value along the free boundary $-1 < \xi < 0$ is unknown, but θ and τ must satisfy the dynamic condition as representative of the velocity and the surface elevation related by

$$\frac{dz}{d\xi} = \frac{dz}{df} \frac{df}{d\xi} = e^{-\Omega} \left(-\frac{1}{\pi \xi}\right).$$

The real and imaginary parts of that relation give

$$\frac{dx}{d\xi} = -e^{-\tau} \cos \theta, \quad \frac{dy}{d\xi} = -e^{-\tau} \sin \theta$$

for $-1 < \xi < 0$. These are later used to evaluate the coordinates of the free surface. The dynamic condition is Bernoulli equation

$$\frac{1}{2} e^{2\tau} + gy = \frac{1}{2} + g$$
with flow at downstream as the reference. In case the gravity is neglected, that condition gives $e^{2\tau} = 1$, on the other hand we have $\tau = 0$ for $-1 < \xi < 0$.

Now, we construct the analytical function to get the relation between τ and θ. Base on the singular points $\zeta = -1$ and $\zeta = 0$, they represent the separation point at the edge of the vertical wall, and the uniform flow far downstream. At those points, the function has order square root, see in [9, 10, 11]. The appropriate function is

$$
\chi(\zeta) = \Omega(\zeta + 1)^{-1/2} \xi^{-1/2}
$$

The function is then written along the real axis as

$$
\chi = \begin{cases}
\sqrt{\xi(\zeta + 1)} & \xi < -1 \\
\frac{-\theta}{\sqrt{-\xi(\zeta + 1)}} & -1 < \xi < 0 \\
\frac{\tau}{\sqrt{\xi(\zeta + 1)}} & \xi > 0
\end{cases}
$$

after substituting the condition along the solid boundary for θ and the free boundary $\zeta = 0$, from Bernoulli equation. Hence, the unknown function θ can be obtained by applying (2) to Cauchy integral theorem. The real part of the integral gives

$$
\theta(\zeta) = \frac{1}{2} \int_{-\infty}^{\zeta} \frac{ds}{\sqrt{(s - \xi)(s + 1)}}
$$

for $-1 < \xi < 0$. From table of integration we apply this

$$
\int \frac{dx}{\sqrt{x^2 - a^2(x - b)}} = \frac{2 \tan^{-1} \left[\frac{\sqrt{(a + b)(x - a)}}{\sqrt{a^2 - b^2}} \right]}{\sqrt{a^2 - b^2}} + \text{constant}
$$

where a and b are constant, so that the integral in (3) gives

$$
\theta(\zeta) = \frac{-\pi}{2} + \arctan \left(\frac{\sqrt{\zeta}}{-\zeta} \right)
$$

The analytical solution for θ is then used to determine the free surface profile following (1). They are then solved numerically. x is integrated from $\xi = -1$, where $x(-1) = 0$, and y is integrated from $\xi = 0$, where $y(0) = 1$. So, they write in integral form

$$
x(\xi) = \int_{-1}^{\xi} \cos \theta \frac{ds}{\pi s \sin \theta}
$$

$$
y(\xi) = 1 - \int_{0}^{\xi} \frac{ds}{\pi s}
$$

θ in both integrations uses (4). The result of those is then plotted as the coordinates (x, y). We present the free surface profile, as given in Figure 2. Flow from the left part of the gate passes over the gate and produces flow with free boundary having those coordinates. The solid lines, vertical and horizontal, are the wall of the sluice gate, and the curve connected to the vertical wall is the free surface. Since we can calculate the integration exactly, it is not truncated such as obtained in the model involving gravity. Therefore, we compare the height of the uniform depth $y(0) = 1$ and the width of the slit $y(-1) = 1.6366$ as the contraction coefficient, i.e. $x(0)/x(-1) = 0.611$. This number confirms to the result in references such as in Batchelor [11], i.e. $\pi/2 + \pi$.

Fig. 2: Free surface profile for the case of zero gravity

Conclusion
Free surface flow under a sluice gate has been solved for case of zero gravity by constructing an analytical complex function on the artificial domain. This model is able to calculate the contraction coefficient, and agrees to the analytical work.

Acknowledgement
The Author grateful acknowledged to RISTEKDIKTI-Indonesia for financial supporting of the research of this paper under Research Grant, in year 2019.

Reference:
[1] D.D. Frangmeier, T.S. Strelkoff, “Solution for gravity flow under a sluice gate”, ASCE J. Engng. Mech. Div., Vol. 94, 153-176, 1968.
[2] B.E. Lorock, “Gravity-affected flow from planer sluice gate”, ASCE J. Engng. Mech. Div., Vol. 96, 1211-1226, 1969.
[3] Y.K. Chung, “Solution of flow under sluice gates”, ASCE J. Engng. Mech. Div., Vol. 98, 121-140, 1972.
[4] J. Asavanant, J.-M. Vanden-Broeck, “Nonlinear free surface flows emerging from vessels and flows under a sluice gate”, J. Austral. Math. Soc., Vol. 38, 63-86, 1996.
[5] J. -M. Vanden-Broeck, “Numerical calculations of the free-surface flow under a sluice gate”, J. Fluid Mech., Vol. 330, 339-347, 1996.
[6] B.J. Binder, J. –M. Vanden-Broeck, “Free surface flows past surfboards and sluice gates”, Eur. J. Appl. Maths., Vol. 16, 601-619, 2005.
[7] L.H. Wiryanto, “A jet emerging from a slit at the corner of quarter plane”, J. KSIAM, Vol. 13(4), 237-245, 2009.
[8] L.H. Wiryanto, J. Wijaya, B. Supriyanto, “Free surface flow under a sluice gate from deep water”, Bull. Malay. Math. Sci. Soc., 34(3), 601-609, 2011.
[9] L.H. Wiryanto, “Zero gravity of a jet emerging from a slit”, J. Indones. Math. Soc., Vol. 12, 89-98, 2006.
[10] L.H. Wiryanto, “Zero gravity of free-surface over a weir”, Proc. ITB, Vol. 31, 1-4, 1999.
[11] L.H. Wiryanto, “Zero gravity of Borda Mouthpiece”, Proc. Int. Conf. Tech. Social Innovations-Bangkok, GS 02, 2019.
[12] Batchelor, G.K., An Introduction in Fluid Dynamics, Cambridge University Press, 496, 1994.