T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1
Oscar Maiques | Carla Barceló | Anaïs Panosa | Jordi Pijuan | Jose L. Orgaz | Irene Rodríguez-Hernandez | Clara Matas-Nadal | Gemma Tell | Ramón Vilella | Angels Fabra | Susana Puig | Victoria Sanz-Moreno | Xavier Matias-Guiu | Carles Canti | Judit Herreros | Rosa M. Marti | Anna Macià

DOI: 10.1111/pcmr.12690
Volume 31, Issue 4, Pages 484–495
If you wish to order reprints of this article, please see the guidelines here

Supporting Information for this article is freely available here

EMAIL ALERTS
Receive free email alerts and stay up-to-date on what is published in Pigment Cell & Melanoma Research – click here

Submit your next paper to PCMR online at http://mc.manuscriptcentral.com/pcmr

Subscribe to PCMR and stay up-to-date with the only journal committed to publishing basic research in melanoma and pigment cell biology

As a member of the IFPCS or the SMR you automatically get online access to PCMR. Sign up as a member today at www.ifpcs.org or at www.societymelanomaresearch.org

To take out a personal subscription, please click here
More information about Pigment Cell & Melanoma Research at www.pigment.org
T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1

Oscar Maiques1* | Carla Barceló1* | Anaïs Panosa1 | Jordi Pijuan1 | Jose L. Orgaz2 |
Irene Rodriguez-Hernandez2 | Clara Matas-Nadal3 | Gemma Tell4,5 | Ramón Vilella6 |
Angels Fabra7 | Susana Puig4,5 | Victoria Sanz-Moreno2 | Xavier Matias-Guiu8,9 |
Carles Cantí1 | Judit Herreros1 | Rosa M. Martí3,9† | Anna Macià1†

1University of Lleida, IRBLleida, Lleida, Spain
2Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London, UK
3Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
4Melanoma Unit, Department of Dermatology, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
5Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
6Department of Immunology, Hospital Clinic, Barcelona, Spain
7Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
8Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
9Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain

*These authors are first authors
†These authors are senior authors

Correspondence
A. Macià
Email: amacia@irblleida.cat

Summary
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).

Keywords
autophagy, BRAFV600E, melanoma, migration/invasion, T-type calcium channels
Cutaneous melanoma is a malignant neoplasm derived from skin melanocytes. Melanoma cells have a high ability of local invasion and metastasis, even when arise from very small volume tumors (Gray-Schopfer, Wellbrock, & Marais, 2007). Once disseminated, melanoma is highly resistant to conventional anticancer treatments, and its prognosis is poor (Pollack et al., 2011). As melanoma can present in young and medium age adults (Lee et al., 2016; Rios et al., 2013), it causes disproportionate mortality in such population being responsible of one of the highest rate of loss of potential life for adult-onset cancers (Ekwueme et al., 2011). Although available therapies for metastatic melanoma have evolved substantially in the last years, especially with the introduction of targeted and immunotherapies (Hao et al., 2015), melanoma is still a serious healthcare problem, and melanoma cell behavior is an important subject of research.

Several genetic mutations have been associated with melanoma development and progression. Overall, around 40%–50% of melanomas carry mutations in the \textit{BRAF} gene. Of these, 90% bear the \textit{BRAFV600E} mutation (Banzi et al., 2016; Dhomen et al., 2009). About 20% of melanomas harbor mutations in the \textit{NRAS} gene, mostly affecting codon Q61 (Jakob et al., 2012). Moreover, many other genetic alterations have been described that confer gain/loss function of genes that trigger abnormal signaling pathways like KIT, \textit{GNAQ/GNA11}, \textit{CDKN2A}, \textit{PTEN}, NF1, \textit{BAP1}, among others (Griewank et al., 2014). Some studies advocate that patients with primary \textit{BRAFV600E} or \textit{NRAS} melanoma have worse survival rate compared with wild-type (WT) \textit{BRAF} melanoma patients (Davies et al., 2002; Long et al., 2011). However it seems that, once disseminated, \textit{BRAF} and \textit{NRAS} mutation status does not influence survival in metastatic melanoma (Carlino et al., 2014).

The expression of \textit{T-type calcium channels} (TTCCs) is increased in a number of tumors, where they promote cell proliferation (Dziegielewska, Gray, & Dziegielewski, 2014; Macià, Herreros, Martí, & Canti, 2015). Human melanoma cells overexpress Cav3.1 and Cav3.2 isoforms of TTCCs, compared with untransformed melanocytes (Das et al., 2012). Importantly, TTCC pharmacological blockers not only reduce the proliferation of melanoma cells, but also trigger apoptotic cell death, partially through the activation of caspases (Das et al., 2013). We found that such apoptotic process is preceded by ER stress and blockage of the autophagic flux (Das et al., 2013). Therefore, TTCCs may be valuable therapeutic targets against melanoma progression (Das et al., 2012; Das et al., 2013; Macià et al., 2015; Maiques et al., 2017).

Macroautophagy (hereafter autophagy) is a housekeeping cell process that plays a significant role in tumor progression (Kroemer, Mariño, & Levine, 2010; Mizushima & Komatsu, 2011) and resistance to therapy (Amaravadi, 2011; Corazzari et al., 2015; Ma et al., 2011). Autophagy is constitutively induced in melanoma cells and may be further induced during chemotherapy (Corazzari et al., 2015; Das et al., 2013; Ma et al., 2011). In addition, autophagy blockade results in decreased tumor cell migration and invasion (Lu et al., 2016; Mowers, Sharifi, & Macleod, 2016; Sharifi et al., 2016). Hence, autophagy modulation is an emerging therapeutic strategy also in melanoma.

Melanoma cell invasion and subsequent metastasis are hallmarks of melanoma dissemination (Chin, Garraway, & Fisher, 2006). Snail1 is a major transcription factor that induces epithelial-mesenchymal transition (EMT) and has been shown to be crucial during tumor progression and invasion (Cano et al., 2000; Thiery, 2002). In melanoma cells, Snail1 is upregulated (Poser et al., 2001) and promotes cell motility and invasiveness (Hao, Ha, Kuzel, Garcia, & Persad, 2012; Olmeda, Jordá, Peinado, Fabra, & Cano, 2007). Consequently, downregulation of Snail1 in melanoma cells reduces tumor growth, metastasis, and immunosuppression (Kudo-Saito, Shirako, Takeuchi, & Kawakami, 2009; Pearlman, Montes de Oca, Pal, & Afaq, 2017).

2 | RESULTS

2.1 | Expression of TTCCs in melanoma cells with different genetic profile

We first studied the expression of TTCCs by RT-PCR in a wide range of melanoma cell lines bearing different molecular features (Table S1). Different levels and patterns were observed in all melanoma cell lines regarding transcripts for Cav3.1 (Figure 1a), Cav3.2 (Figure 1b), and Cav3.3 (Figure 1c) isoforms. However, Cav3.1 levels were frequently higher than in untransformed melanocytes (HEMn-LP). The expression of Cav3.1 and Cav3.3 mRNA was increased in \textit{BRAFV600E} melanoma cell lines compared with \textit{NRASQ61H/K/L/R} (Figure 1d–f), whereas no significant differences were observed regarding Cav3.2 mRNA levels (Figure 1e).
2.2 | TTCC blockers block basal autophagy in all melanoma cell lines

Autophagy in melanoma cells is constitutively active (Arindam Das et al., 2013; Maes & Agostinis, 2014). To study autophagy, we measured LC3I/II, an autophagic marker (Sahani, Itakura, & Mizushima, 2014), by Western blot (WB) in melanoma cell lines. We observed an increase of LC3II levels in most of the BRAFV600E melanoma (Figure 1g). When cells were treated with TTCC blockers (mibebradil (Mib) and pimozide (Pim)), increased levels of LC3II and p62 were detected in BRAFV600E (Figure 1h, Figure S1a) and NRAS (Figure 1i, Figure S1b) melanoma cell lines. These data are suggestive of autophagy blockade at a step following autophagosome biogenesis.

Treatment of the melanoma cell lines with chloroquine (CQ), that prevents the fusion of autophagosomes (AP) with lysosomes (Boya et al., 2005), led to similar increases of LC3II and p62 proteins in all cell lines (Figure 1j,k, Figure S1c,d). To further confirm these changes on autophagy observed by Western blot, LC3B immunofluorescence (IF) was used as a marker for AP (Mizushima, Yoshimori, & Levine, 2010). A significant increase of AP puncta was observed both in M3 (BRAFV600E) and in Skmel-147 (NRASQ61R) cell lines when they were subjected to Mib or CQ treatment (Figure 1l). Moreover, addition of chloroquine to mibebradil-treated cultures did not further increase the levels of p62 and LC3II (Figure S1e). Taken together, these results indicate that TTCC blockers block autophagy, regardless of the specific mutation present in melanoma cell lines.

FIGURE 1 TTCCs are expressed in melanoma cell lines and TTCC blockers inhibit macroautophagy. qRT-PCR of (a) Cav3.1, (b) Cav3.2, and (c) Cav3.3 in BRAFV600E- or NRAS-mutated melanoma cell lines and normalized to GAPDH expression. The mRNA levels from melanocytes (HEMn-LP) are shown for comparison. Comparison of the mRNA levels of (d) Cav3.1, (e) Cav3.2, and (f) Cav3.3 between cell line groups. The statistical analysis used was Mann–Whitney test, (*p < .05; n.s non-significant). (g) Analysis of LC3I/II by WB from total protein lysates. WB analysis to test p62 and LC3 protein levels from (h) BRAFV600E and (i) NRAS mutant melanoma cells exposed to mibebradil (Mib, 10 μM) and pimozide (Pim, 10 μM) for 24 hr. (j) BRAFV600E and (k) NRAS mutant melanoma cells treated with CQ (25 μM) for 24 hr. β-actin was used as a loading control. (l) Immunofluorescence images and graphs of LC3B positive puncta in M3 (BRAFV600E) and Skmel-147 (NRASQ61R) cell lines in untreated, Mib or, CQ treatments. AP: Autophagosomes. Statistical analysis was performed using ANOVA and Bonferroni tests (*p < .05; **p < .01; ***p < .001; n.s., non-significant) [Colour figure can be viewed at wileyonlinelibrary.com]
2.3 | Autophagy blockade inhibits collective migration of BRAFV600E melanoma cell lines

Cell migration is a key process during melanoma metastasis. We assessed the effect of TTCC blockers on melanoma migration using a wound-healing assay that measures collective migration. Both TTCC blockers decreased the percentage of BRAFV600E melanoma cells migrating into the wound (Figure 2). Consistently, treatment of BRAFV600E cell lines with CQ also reduced the migration rate (Figure 2a,b, Figure S2a–c). Interestingly, migration was unaffected in NRAS mutant melanoma cells treated with TTCC blockers or CQ (Figure 2c,d, Figure S2d–f) even when autophagy was blocked.

Using time-lapse microscopy, we found slower migration of BRAFV600E cells (M3 and M249) treated with mibefradil or CQ when compared to control, even after 8-h treatment (Figure S3a,b). Furthermore, the healing speed of BRAFV600E cells decreased after treatment with either mibefradil or CQ (Figure 2a,b, Figure S3a,b and Movies S1–S3 (M3)).

In contrast, mibefradil or CQ treatments did not affect neither the percentage of wound healing nor the healing speed of the NRAS mutant cells (Figure 2c,d, Figure S3c,d and Movies S4–S6 (Smel147)).

To further study how autophagy inhibition affects melanoma cell migration, we knocked down Atg5, an autophagy-related protein required for autophagosome formation (Pyo et al., 2005), by lentivirus-driven shRNA. Silencing of Atg5 induced a decrease of LC3II in both BRAFV600E and NRAS mutant cell lines (Figure 2e). It also decreased the migration of BRAFV600E (M3) melanoma

FIGURE 2 Blocking macroautophagy inhibits migration of BRAFV600E melanoma cells. Representative pictures and graphs of wound-healing assay of (a,b) BRAFV600E and (c,d) NRAS mutant cells treated with mibefradil (10 μM, Mib), pimozide (10 μM, Pim), and CQ (25 μM) during 24 hr. Panels on the left of each cell line represent the percentage of wound closure as a result of at least three independent experiments. Panels on the right represent the healing speed (μm²/hr) of cells after treatment compared with the control analyzed by estimated linear regression. (e) WB analysis shows the downregulation of ATG5 and LC3I/II levels. β-actin was used as a loading control. Percentage of wound closure in (f) M3 and (g) WM-1366 cells control (Vector) or upon ATG5 silencing (shATG5). Statistical analysis was performed using ANOVA and Bonferroni tests or t test (*p < .05; **p < .01; ***p < .001; n.s., nonsignificant)
cells (Figure 2f), but not of the NRAS mutant cells (WM-1366) (Figure 2g).

Overall, these results show that the BRAFV600E cell lines are less motile after treatment with mibefradil, pimozide, CQ, or silencing Atg5 expression, suggesting that TTCC blockers inhibit the migration of BRAFV600E cells by blocking the autophagic process.

2.4 | Mibefradil and CQ inhibit single-cell migration in BRAFV600E melanoma cells

To analyze the effect of TTCC blockers on cell migration independent of cell–cell interactions, we studied single-cell random migration by time-lapse. For these experiments, melanoma cells were plated at lower density compared with previous approaches, and mibefradil and CQ concentrations were halved (12.5 μM and 5 μM, respectively) in order to maximize cell survival and also halted basal autophagy (Figure S4). Analysis of individually tracked cells revealed that the accumulated distance and the migration speed of BRAFV600E cells were significantly reduced when treated with mibefradil or CQ (Figure 3a,b, Movies S7-S9 [M3]). In line with our findings, neither the distance nor the velocity was significantly affected by either treatment in NRAS mutant cells (Figure 3c,d, Movies S10-S12 [Skmel147]).

These results show that mibefradil and CQ decrease single-cell migration in BRAFV600E melanoma cells by blocking the autophagic flux.

2.5 | Autophagy blockade inhibits invasion of BRAFV600E melanoma cell lines

We next investigated the effect of TTCC blockers on the invasive capacity of melanoma cells. Treatment with mibefradil or CQ for 24 hr inhibited the invasive capacity of BRAFV600E melanoma cells (Figure 4a,b). Similar results were observed upon 24-h treatment with pimozide (Figure S5a,b). On the contrary, neither TTCC blockers nor CQ affected the invasion ability of the NRAS mutant cell lines (Figure 4a,b). Silencing Atg5 expression (Figure 2e) also reduced the invasive capacity of BRAFV600E (M3) melanoma cells. Again, differences were not significant in NRAS (WM-1366) mutant cells (Figure 4c,d). These results indicate that autophagy inhibition or blockade might be used to control the invasive potential of BRAFV600E melanoma cells.

FIGURE 3 Mibefradil and CQ reduce single-cell migration in BRAFV600E melanoma cells. Cell tracking analysis was carried out for 24 hr at a rate of 1 frame per 20 min. The total accumulated length migrated (μm) and the migration speed (μm/hr) of treated and untreated cells were analyzed in (a,b) BRAFV600E and (c,d) NRAS mutant cells. Around 25 significant tracks of control and treated cells were plotted in the trajectory graphs in the right side of the figure. Trajectories of each group of cells were standardized to all begin at the same starting point. The statistical analysis was performed using ANOVA and Bonferroni tests (*p < .05; **p < .01; ***p < .001)
2.6 | Gene silencing of TTCCs reduces the invasion ability of BRAFV600E melanoma cell lines

Previously, we showed that TTCC silencing leads to autophagy impairment that mimics the effect of TTCC blockers (Arindam Das et al., 2013). To investigate the possible involvement of TTCCs in the invasion capacity of BRAFV600E melanoma cells, we knocked down TTCCs in M3 cells using lentiviral constructs carrying shRNA specific to Cav3.1 and Cav3.2 (Figure S5c–e). When measured in transwell assays, both TTCC silencing inhibited the invasive capability of M3 cells (Figure 4e,f). An increase of p62 and LC3II protein levels was observed when either Cav3.1 or Cav3.2 isoforms were silenced (Figure S5f), thus mimicking the effects of mibefradil, pimozide, or CQ. These results indicate that TTCCs lead to induce invasion in BRAFV600E melanoma cell lines.

2.7 | Analysis of expression of TTCCs in biopsies from patients with melanoma

To extend our observations to the clinical settings, we used a cohort of 33 primary and 28 metastatic melanomas biopsies. Such cohort was divided into two main groups according to their BRAF genetic status (mutant BRAFV600E/K vs BRAFWT) analyzed by PCR sequencing (Table S2). The expression levels (histoscore) of TTCCs (Cav3.1 and Cav3.2) and LC3 were assessed by IHC. All melanoma samples bearing BRAFV600E/K gene mutations showed a higher immunoeexpression of Cav3.1 compared with the WT BRAFWT cohort (Figure 5a,b), thus confirming our previous results (Maiques et al., 2017). In contrast, Cav3.2 immunoeexpression did not show significant differences between the two groups (Figure 5c,d).

We additionally checked whether the mutation status of melanoma cells had an impact on macroautophagy, by quantifying the expression of LC3. The immunoeexpression of LC3 was elevated in the BRAFV600E/K biopsies compared with the BRAFWT group (Figure 5e,f), suggesting an enhanced basal autophagy of BRAFV600E/K biopsies.

2.8 | Snail1 expression is higher in BRAFV600E melanomas and decreases upon autophagy blockade

Snail1 plays several roles in cell migration and EMT process (Cano et al., 2000). To understand if autophagy was regulating cell migration and invasion controlling Snail1, we quantified the expression of Snail1 in our melanoma cell lines by WB and RT-PCR and found that both protein (Figure 6a) and mRNA (Figure 6b) levels were augmented in BRAFV600E, compared with NRAS mutant cells.

FIGURE 4 Autophagy blockade and silencing of Cav3.1 and Cav3.2 reduce cell invasion in BRAFV600E melanoma cell lines. (a) Representative images of nuclear Hoechst staining after the cotton swap (microscopic field ×10). (b) Percentage (%) of cells that invaded the Matrigel after treatment with Mib and CQ compared to the control. (c,d) M3 and WM-1366 cells were infected with control lentiviruses (Vector, control) or lentiviruses expressing a shRNA of ATG5. (c) Representative nuclear Hoechst staining of cells that invaded the Matrigel and (d) graph representing the % of invasive cells. (e) Representative images of nuclear Hoechst staining after the cotton swap in M3 cell line infected with shRNA of Cav3.1 and Cav3.2 compared with control (Vector, scrambled shRNA). (f) Percentage (%) of invaded cells. Pictures magnification 10×. The statistical analysis was performed using ANOVA and Bonferroni test (*p < .05; **p < .01; ***p < .001; n.s., non-significant).
Snail1 was reduced in BRAFV600E cell lines that were treated with TTCC blockers (Figure 6c), or subjected to gene silencing of TTCCs (Figure 6f). In addition, treatment of BRAFV600E cells with CQ (Figure 6d) or gene silencing of ATG5 (Figure 6e) consistently decreased the levels of Snail1, showing that the expression of Snail1 was related to the status of the autophagic flux. It has been shown that Snail1 plays an important role in melanoma progression (Hao et al., 2012; Olmeda et al., 2007). Indeed, Snail1 knockdown impaired cell migration and invasion (Figure 6g,h) of BRAFV600E cells, mimicking the effect of TTCC blockers, and CQ. To further study whether Snail1 can modulate autophagy in melanoma cells, we stably overexpressed Snail1 (PLX-Snail1) in an NRAS mutant cell line, SKMEL147. Snail1 overexpression induced an increase in p62 and LC3I/II levels compared with PLX-empty vector cells (Figure 6i). Moreover, immunofluorescence of LC3B showed a slight increase of AP puncta when Snail1 was overexpressed and such increase was higher after a short treatment of CQ, suggesting a possible increase of basal autophagy. In addition, mibebradil treatment increased LC3B-positive puncta in cells, independently on Snail1 expression (Figure 6j).

To investigate whether Snail1 takes part in migration/invasion process during modulation of autophagic flux, we treated Snail1-overexpressing cells with Mib or CQ. There was an impairment of migration (Figure 6k) and invasion (Figure 6m) in Snail1-overexpressing cells when autophagy was blocked. Furthermore, mibebradil decreased single-cell migration in Snail1-overexpressing cells (Figure 6l). These results suggest that Snail1 could be essential to impair migration/invasion when autophagy is blocked, particularly by targeting TTCCs. To complement these approaches, we used the publicly available database TCGA and found that Snail1 expression was increased in melanoma biopsies of patients harboring BRAFV600E mutation, compared to that BRAFWT (Figure 6n). Cell migration and invasion are key steps during metastatic dissemination; therefore, we performed Snail1 IHC analysis in metastatic vs primary melanoma biopsies. Snail1 nuclear staining (active form) was significantly higher in metastatic compared with primary lesions only in patients harboring BRAFV600E/K mutations (Figure 6o). Moreover, we observed a higher Snail1 score in BRAFV600E/K metastasis, compared with BRAFWT metastatic tumors. These results indicate an important role of Snail1 during metastatic spread of BRAFV600E melanomas.

3 DISCUSSION

We have previously shown that the immunoexpression of TTCCs increases gradually from melanocytes to primary and metastatic melanoma biopsies and relates to poor prognosis (Maiques et al., 2017). Here, we describe (in both cultured cell lines and FFPE biopsies) a possible increase in the expression of Snail1 in melanoma cells in response to the modulation of autophagy. This finding suggests that Snail1 could be a potential target for the treatment of melanoma metastasis.

FIGURE 5 Differential expressions of Cav3.1, Cav3.2, and LC3 in melanoma depending on BRAF mutational status. Differential immunoexpression (Histoscore, mean ± SD) and representative images of the immunostaining for (a,b) Cav3.1 (mean HS BRAFV600E/K vs WT: 85 vs 37.5), (c,d) Cav3.2 (mean HS BRAFV600E/K vs WT: 147.5 and 146.6) and (e,f) LC3 (mean HS BRAFV600E/K vs WT: 84 vs 44.6) analyzed in BRAF mutant melanoma biopsies compared with BRAFWT melanoma samples. Pictures magnification 20×. The statistical analysis was performed using Mann–Whitney test (*p < .05; **p < .01; ***p < .001; n.s., non-significant) [Colour figure can be viewed at wileyonlinelibrary.com]
melanoma biopsies) that the Cav3.1 isoform is upregulated in BRAFV600E melanomas, which is accompanied by increased levels of LC3-II proteins, compared with NRAS mutant. BRAFV600E melanoma cells display an enhanced autophagy (Armstrong et al., 2011; Corazzari et al., 2015; Giglio, Fimia, Lovat, Piacentini, & Corazzari, 2015; Maddodi et al., 2010). Thus, autophagy inhibition could be a therapeutic tool to enhance the antitumor activity of BRAF inhibitors. Furthermore, this strategy may also prevent tumor resistance, as autophagy preceded by ER stress is a likely mechanism of resistance to BRAF inhibitors in melanoma (Ma et al., 2014). In support of this, combination of Atg5 knockdown and MEK inhibition

FIGURE 6 BRAFV600 melanomas express higher levels of Snail1, which decrease upon autophagy blockade. (a) WB and (b) mRNA Snail1 levels between BRAFV600E- and NRAS-mutated melanoma cell lines. WB analysis of Snail1 in BRAFV600E and NRAS mutant cells treated with (c) mibebradil, pimozone, or (d) CQ. WB analysis of Snail1 in BRAFV600E cells silenced for (e) ATG5, (f) Cav3.1, Cav3.2, and (g) Snail1. (g) Wound-healing assay and (h) Transwell assay of BRAFV600E after Snail1 silencing vs control cells (vector). (i) WB analysis of LC3/I and P62 in PLX-Snail1 vs PLX-vector cells. Endogenous immunofluorescence of LC3B when cells were treated with (j) chloroquine (CQ, 3 hr) or mibebradil (Mib, 24 hr). (k) Wound-healing assay, (l) Single-cell migration assay, and (m) Transwell assay of PLX-Snail1 vs PLX-vector cells treated with (k,m,) mibebradil 10 μM or (l) 5 μM and (k) CQ 25 μM during 24 hr. Statistical analysis was performed using ANOVA and Bonferroni tests (*p < .05; **p < .01; ***p < .001; n.s., non-significant). (n) SNAI1 expression in BRAFV600E and BRAFWT melanoma samples using normalized mRNA expression data from TCGA database. (o) Graph and representative images (magnifications 10× and 40×) of nuclear four-tiered (0–3) score immunostaining of Snail1 in biopsies with BRAF characterized mutation. The statistical analysis was performed using Mann–Whitney test (*p < .05; **p < .01; ***p < .001; n.s., non-significant) [Colour figure can be viewed at wileyonlinelibrary.com]
increases cell death in vemurafenib-resistant melanoma cell lines (Martin et al., 2015).

Importantly, autophagy also plays a role in melanoma metastasis. For instance, Xie et al. showed that autophagy inhibition by deletion of Atg7 or treatment with CQ suppresses melanoma tumor growth and increases survival of mice driving oncogenic BRAFV600E expression and PTEN deficiency in melanocytes (Xie, Koh, Price, White, & Mehnert, 2015). Furthermore, CQ reduces tumor growth and impairs melanoma cell invasion and metastasis (Maes et al., 2014). In addition, Sharifi and coworkers revealed that autophagy inhibition reduces cell migration and invasion (in breast cancer and melanoma) and attenuates the induction of metastasis by disrupting the focal adhesion turnover (Sharifi et al., 2016). We studied the role of autophagy in the migration/invasion of BRAFV600E and NRAS melanomas. Our results demonstrate that TTCC blockers, mibebradil and pimozide, impair migration and invasion of BRAFV600E cells, an effect exerted also by CQ or Atg5 knockdown. In contrast, cell motility in vitro is largely unaffected by autophagy inhibition in NRAS melanoma cell lines.

We evaluated Snail1 expression, a master transcription factor that induces EMT and invasion in melanoma cells (Hao et al., 2012; Olmeda et al., 2007). Our results indicate that Snail1 expression is higher in BRAFV600E melanoma cells compared with BRAFWT cells. Interestingly, Snail1 levels decrease when autophagy is blocked by chloroquine or by TTCC blockers, thus inhibiting migration and invasion. Furthermore, when we overexpressed Snail1 in NRAS mutant melanoma cell line, we show an impairment of migration/invasion abilities when autophagy is blocked. Therefore, autophagy appears to regulate cell motility through different mechanisms depending on the cell type and context (Kenific, Thorburn, & Debnath, 2010).

BRAF and NRAS mutations are mutually exclusive in melanoma (Davies et al., 2002). Common to them is the direct or concomitant hyperactivation of signaling pathways like MEK-ERK and PI3K (Griewank et al., 2014; Vu & Aplin, 2016). However, our studies indicate that BRAFV600E and NRASQ61 activate distinct cellular mechanisms related to melanoma progression. It has been shown that activation of ERK, the main target of BRAFV600E, is an upstream signaling mechanism responsible for high constitutive Snail1 expression in melanoma cells (Massoumi et al., 2009). In addition, Snail1 knockdown disrupts tumor growth and impairs melanoma progression and migration, similar to results reported here (Hao et al., 2012; Massoumi et al., 2009). In BRAFV600E melanomas, the phosphorylation of cortactin and the exocyst subunit Exo70 upon ERK activation, which regulates the secretion of matrix metalloprotease-2, appears as a relevant mechanism for cell migration (Lu et al., 2016; Sandri et al., 2016).

Our findings reveal an unknown link between autophagy and Snail1 expression that regulates the migration and invasion of BRAFV600E melanoma cells. It has been described that p62 modulates the stability of Snail1, a mediator of TGFβ/Smad signaling, through its UBA domain (Bertrand et al., 2015). New evidences indicate that autophagy is not only involved in the intracellular degradation of damaged proteins, but also plays an important role in protein secretion (Kraya et al., 2015; Narita et al., 2011). In addition, autophagy-related secretion affects the tumor microenvironment and reflects the autophagy dynamics of tumor cells (Kraya et al., 2015). A recent paper further revealed that the TGFβ/Snail signaling pathway induces EMT-like process in a paracrine manner in melanoma (Lv et al., 2017). Moreover, knock-out mice of GABARAP, an Atg8/LC3 family member implicated in the induction of autophagy, showed reduced amounts of TGFβ in serum and inhibition of tumor initiation and progression, through the enhancement of both antitumor immunity and cell death signaling (Salah et al., 2016). Therefore, all these data may suggest that the secretion of TGFβ through autophagy could lead to increased expression of Snail1, during the induction of migration/invasion of BRAFV600E melanoma cells. Nevertheless, the mechanism by which Snail1 levels decrease upon autophagy blockade in BRAFV600E melanoma cells requires further investigation. A possibility would be that Snail1 proteasomal degradation (Muqbil, Wu, Aboukameel, Mohammad, & Azmi, 2014) is deregulated after autophagy blockade.

In conclusion, our findings indicate that BRAV600E melanoma cells display higher levels of the Cav3.1 TTCC and an increased basal autophagy, compared with other types of melanoma cells. In addition, the migration and invasion capabilities of BRAFV600E cells are sensitive to the genetic ablation or pharmacological inhibition of autophagy and depend on Snail1 levels. Thus, chemotherapeutic strategies targeting TTCCs and/or autophagy appear especially suitable to tackle metastasis in the most common type of melanoma.

4 | METHODS

4.1 | Cell lines

Twelve human malignant melanoma cell lines were used and sequenced (BRAF or NRAS mutation) (Table S1). For cell culture conditions, see Supplemental Experimental Procedures.

4.2 | Real-time RT-PCR

Total RNA was extracted with a SurePrep Total RNA Isolation kit (Applied Biosystems). Total RNA 2 μg was used to generate cDNA with TaqMan technology from Applied Biosystems. Relative expression was calculated using the comparative ΔΔCT method. Levels of both calcium channels were expressed as fold change relative to mRNA from melanocytes (HEMn-LP). Probes used are detailed in Supplemental Experimental Procedures.

4.3 | Western blot

Melanoma cells were lysed in 2% sodium dodecyl sulfate (SDS), 125 mM Tris–HCl, pH 6.8. Western blot was conducted as described (Arindam Das et al., 2013). The antibodies used are detailed in Supplemental Experimental Procedures.
4.4 Immunofluorescence

Melanoma cells were fixed with 100% methanol (10 min 4°C), and blocked with 0.2% Triton X-100 (1 hr RT). Cells were incubated with anti-MAP1LC3B (1:200, rabbit polyclonal, Cell Signaling Technology, 4°C o/n).

4.5 Lentiviral infection

The lentiviral vector containing the sequences of the shRNA of Cav3.1 (TRCN0000044239), Cav3.2 (TRCN0000044209), Snail1 (TRCN00000063818), and control (shRNA SCR; MFCD07785395) was purchased from Sigma. The lentiviral vector comprising the sequence of shRNA of ATG5 was kindly provided by Yeramian A. We used pLX304-Snail1 (NM_005985.3) recombinant lentiviral plasmid to overexpress Snail1 in melanoma cells. See Supplemental Experimental Procedures for shRNA sequences and lentiviruses generation.

4.6 Wound healing

A confluent monolayer of cells was scratched with yellow tip. Thereafter, cells were treated, and we captured an image of the scratch at time 0 hr and after 24 hr to calculate the percentage of the wound filled by cells. For time-lapse wound-healing assay movies, see Data S1.

4.7 Single-cell migration assay

Cells were plated at low density (6000 cell/cm²) to minimize cell–cell interactions. Cells were treated and captured an image every 20 min for 20 hr. Cells were tracked using ImageJ plugin, and the accumulated distance (μm) and the velocity (μm/hr) of the single cells were evaluated using Chemotaxis and Migration Tool (Ibidi).

4.8 Transwell experiments

We first treated the cells during 24 hr. Then, cells were trypsinized and plated in the upper chamber of the Transwell (8 μm pore, Falcon) coated with Matrigel in serum-free medium. We used 10% of FBS as a chemoattractant. After 24 hr, cells were fixed with paraformaldehyde 4% and stained with Hoechst (5 μg/ml). Finally, cells were pictured under an epifluorescence microscope (Leica), before and after the cotton swap, and we counted (ImageJ) to have the percentage of the migrated cells.

4.9 Tissue microarray and immunohistochemical study

One tissue microarray (TMA) was constructed from 61 formalin-fixed, paraffin-embedded (FFPE) melanoma tumors (primary and metastatic Table S2). Assessment of TTCC immunostaining and LC3 was made as detailed in Maiques et al. (2017). Antibodies used and IHC protocol of Snail1 and scoring, are detailed in Data S1.

4.10 In silico studies

SNAI1 expression was analyzed in 243 human melanoma samples (109 BRAFV600E, 134 BRAFWT) from The Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.gov/). Only samples with greater than 70% tumor cell content were considered. Normalized mRNA expression data were downloaded from cBioPortal (Cerami et al., 2012; Gao et al., 2013) and analyzed using GraphPad Prism.

4.11 Ethics statement

Studies using human samples were approved by the Ethics Committee on Clinical Investigation of the Hospital Universitari Arnau de Vilanova (HUAV, Lleida, Spain), and all patients gave their informed consent.

4.12 Statistical analysis

Statistical analysis was carried out using GraphPad Prism software. All data were expressed as mean ± SD from at least three independent experiments. Statistical significance was checked by application of Kolmogorov–Smirnov normality test followed by t test or ANOVA and Bonferroni test (parametric Test), or Mann–Whitney test or Kruskal–Wallis test (nonparametric test). p-values are indicated by asterisks *p < .05; **p < .01; ***p < .001.

ACKNOWLEDGEMENTS

Supported by grants from ISCIII/FEDER "Una manera de hacer Europa" (FIS-PI1200260 and PI15001980 to JH and CIBERONC-CB16/12/00231 to XMG), Fundació la Marató de TV3 (FMTV 2013-31 to SP, -30 to RMM, and -32 to AF), Generalitat de Catalunya (2014/SGR138 to XMG); and Cancer Research UK grants C33043/A12065 and C33043/A24478 (VSM, JLO). OM holds a predoctoral fellowship from IRBLleida/Diputació de Lleida and CB a predoctoral fellowship from University of Lleida. AM holds a postdoctoral fellowship from AECC Scientific Foundation. IRH is supported by Marie Skłodowska-Curie Action (H2020-MSCA-IF-2014-EF-ST). Tumor samples were obtained with the support of Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya (XBTC) and IRBLleida Biobank (B.0000682) and PLATAFORMA BIOBANCOS (PT17/0015/0027).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Amaravadi, R. K. (2011). Cancer. Autophagy in tumor immunity. Science (New York, NY), 334(6062), 1501-1502. https://doi.org/10.1126/science.1216428

Armstrong, J. L., Corazzari, M., Martin, S., Pagliarini, V., Falasca, L., Hill, D. S., ... Lovat, P. E. (2011). Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition. Clinical
Das, A., Pushparaj, C., Bahí, N., Sorolla, A., Herreros, J., Pamplona, Dziegielewska, B., Gray-L, S., & Dziegielewski, J. (2014). T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell & Melanoma Research, 27(6), 874–885. https://doi.org/10.1111/picm.12155

Chin, L., Garraway, L. A., & Fisher, D. E. (2006). Malignant melanoma: Current prognostic factors and new targeted therapy. Nature Rev. Mol. Cell Biol., 7(5), 399–411. https://doi.org/10.1038/nrm1912

Kroemer, G., Mariño, G., & Levine, B. (2010). Autophagy and the integration of oncogenic BRAF, ER stress, and autophagy in human melanoma. Molecular & Cellular Oncology, 3(2), e995016. https://doi.org/10.4161/23723556.2014.995016

Gray-Schopfer, V., Weillbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130), 851–857. https://doi.org/10.1038/nature05661

Griewank, K. G., Scoller, R. A., Thompson, J. F., Flaherty, K. T., Schadendorf, D., & Murali, R. (2014). Genetic alterations and personalized medicine in melanoma: Progress and future prospects. Journal of the National Cancer Institute, 106(2), djt435. https://doi.org/10.1093/jnci/djt435

Hao, L., Ha, J. R., Kuzel, P., Garcia, E., & Persad, S. (2012). Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. British Journal of Dermatology, 166(6), 1184–1197. https://doi.org/10.1111/j.1365-2133.2012.10824.x

Hao, M., Song, F., Xu, X., Wang, G., Yang, Y., Chen, K., & Yang, J. (2015). Advances in targeted therapy for unresectable melanoma: New drugs and combinations. Cancer Letters, 359(1), 1–8. https://doi.org/10.1016/j.canlet.2014.12.050

Jakob, J. A., Bassett, R. L., Ng, C. S., Curry, J. L., Joseph, R. W., Alvarado, G. C., ... Davies, M. A. (2012). NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer, 118(16), 4014–4023. https://doi.org/10.1002/cncr.26724

Kenific, C. M., Thorburn, A., & Debnath, J. (2010). Autophagy and metastasis: Another double-edged sword. Current Opinion in Cell Biology, 22(2), 241–245. https://doi.org/10.1016/j.ceb.2009.10.008

Kraya, A. A., Piao, S., Xu, X., Zhang, G., Herlyn, M., Gimotty, P., ... Speicher, D. W. (2015). Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy, 11(1), 60–74. https://doi.org/10.4161/15548627.2014.984273

Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell, 15(3), 195–206. https://doi.org/10.1016/j.ccell.2009.01.023

Lee, J. S., DuBois, S. G., Coccia, P. F., Bleyer, A., Olin, R. L., & Goldsby, R. E. (2016). Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer, 122(1), 116–123. https://doi.org/10.1002/cncr.29685

Long, G. V., Menzies, A. M., Nagrial, A. M., Haydu, L. E., Hamilton, A. L., Mann, G. J., ... Keﬀord, R. F. (2011). Prognostic and Clinicopathologic Associations of Oncogenic BRAF in Metastatic Melanoma. Journal of Clinical Oncology, 29(10), 1239–1246. https://doi.org/10.1200/jco.2010.32.4327

Luo, H., Liu, S., Zhang, G., Kwong, L. N., Zhu, Y., Miller, J. P., ... Guo, W. (2016). Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Reports, 15(9), 2012–2024. https://doi.org/10.1016/j.celrep.2016.04.073

Lv, C., Dai, H., Sun, M., Zhao, H., Wu, K., Zhu, J., ... Xue, C. (2017). Mesenchymal stem cells induce epithelial mesenchymal transition in melanoma by paracrine secretion of transforming growth factor-β. Melanoma Research, 27(2), 74–84. https://doi.org/10.1097/CMR.0000000000000325

Ma, X.-H., Piao, S.-F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., ... Amaravadi, R. K. (2014). Targeting ER stress-induced autophagy
overcomes BRAF inhibitor resistance in melanoma. The Journal of Clinical Investigation, 124(3), 1406–1417. https://doi.org/10.1172/jci70454
Ma, X.-H., Piao, S., Wang, D., McAfee, Q. W., Nathanson, K. L., Lum, J. J., ... Amaravadi, R. K. (2011). Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(10), 3478–3489. https://doi.org/10.1158/1078-0432.crr-10-2372
Macià, A., Herreros, J., Martí, R. M., & Cantí, C. (2015). Calcium channel expression and applicability as targeted therapies in melanoma. BioMed Research International, 2015, 587135. https://doi.org/10.1155/2015/587135
Maddodi, N., Huang, W., Havighurst, T., Kim, K., Longley, B. J., & Setaluri, V. (2010). Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncopgenic BRAF. Journal of Investigative Dermatology, 130(6), 1657–1667. https://doi.org/10.1038/jid.2010.26
Maes, H., & Agostinis, P. (2014). Autophagy and mitophagy interplay in melanoma progression. Mitochondrion, 19(Pt A), 58–68. https://doi.org/10.1016/j.mito.2014.07.003
Maes, H., Kuchnio, A., Peric, A., Moens, S., Nys, K., DeBock, K., ... Carmeliet, P. (2014). Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell, 26(2), 190–206. https://doi.org/10.1016/j.ccr.2014.06.025
Maíques, O., Macià, A., Moreno, S., Barceló, C., Santacana, M., Vea, A., ... Martí, R. M. (2017). Immunohistochemical analysis of T-type calcium channels in acquired melanocytic nevi and melanoma. The British Journal of Dermatology, 176(5), 1247–1258. https://doi.org/10.1111/bjd.15121
Martin, S., Dudek-Perić, A. M., Maes, H., Garg, A. D., Gabrysiak, M., Demirsoy, S., ... Agostinis, P. (2015). Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochemical Pharmacology, 93(3), 290–304. https://doi.org/10.1016/j.bcp.2014.12.003
Massoumi, R., Kuphal, S., Hellerbrand, C., Haas, B., Wild, P., Spruss, T., ... Bosserhoff, A. K. (2009). Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. The Journal of Experimental Medicine, 206(1), 221–232. https://doi.org/10.1084/jem.20082044
Mizushima, N., & Komatsu, M. (2011). Autophagy: Renovation of Cells and Tissues. Cell, 147(4), 728–741. https://doi.org/10.1016/j.cell.2011.10.026
Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313–326. https://doi.org/10.1016/j.cell.2010.01.028
Mowers, E. E., Sharifi, M. N., & Macleod, K. F. (2016). Autophagy in cancer metastasis. Oncogene. https://doi.org/10.1038/onc.2016.333
Muqbil, I., Wu, J., Aboukameel, A., Mohammad, R. M., & Azmi, A. S. (2014). Snail nuclear transport: The gates regulating epithelial-to-mesenchymal transition? Seminars in Cancer Biology, 27, 39–45. https://doi.org/10.1016/j.semcancer.2014.06.003
Narita, M., Young, A. R. J., Arakawa, S., Samarajiwa, S. A., Nakashima, T., Yoshida, S., ... Narita, M. (2011). Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science, 332(6032), 966–970. https://doi.org/10.1126/science.1205407
Olmeda, D., Jordà, M., Peinado, H., Fabra, Á., & Cano, A. (2007). Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 26(13), 1862–1874. https://doi.org/10.1038/sj.onc.1209997
Pearlman, R. L., Montes de Oca, M. K., Pal, H. C., & Afaq, F. (2017). Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Letters, 391, 125–140. https://doi.org/10.1016/j.canlet.2017.01.029
Pollack, L. A., Li, J., Berkowitz, Z., Weir, H. K., Wu, X.-C., Aji, U. A., ... Pollack, B. P. (2011). Melanoma survival in the United States, 1992 to 2005. Journal of the American Academy of Dermatology, 65(5 Suppl 1), 7, 8–86. https://doi.org/10.1016/j.jaad.2011.05.030
Poser, I., Domínguez, D., de Herreros, A. G., Varnai, A., Buettner, R., & Bosserhoff, A. K. (2001). Loss of E-cadherin Expression in Melanoma Cells Involves Up-regulation of the Transcriptional Repressor Snail. Journal of Biological Chemistry, 276(27), 24661–24666. https://doi.org/10.1074/jbc.M011224200
Pyo, J.-O., Jang, M.-H., Kwon, Y.-K., Lee, H.-J., Jun, J.-I., Woo, H.-N., ... Yoo, J.-K. (2005). Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death. The Journal of Biological Chemistry, 280(21), 20722–20729. https://doi.org/10.1074/jbc.M413934200
Rios, L., Nagore, E., López, J. L., Redondo, P., Martí, R. M., Fernández-de-Misa, R., & Soler, B. (2013). Registro nacional de melanoma cutáneo. Características del tumor en el momento del diagnóstico: 15 años de experiencia. Actas Derma-Sifiliográficas, 104(9), 789–799. https://doi.org/10.1016/j.ad.2013.02.003
Sahani, M. H., Itakura, E., & Mizushima, N. (2014). Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy, 10(3), 431–441. https://doi.org/10.4161/auto.27344
Salah, F. S., Ebbinghaus, M., Muley, V. Y., Zhou, Z., Al-Saadi, K. R. D., Pacyna-Gengelbach, M., ... Petersen, I. (2016). Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death and Disease, 7(4), e2205. https://doi.org/10.1038/cddis.2016.93
Sandri, S., Faía -Flores, F., Tiago, M., Pennacchi, P. C., Massaro, R. R., Alves-Fernandes, D. K., ... Maria-Engler, S. S. (2016). Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacological Research, 111, 523–533. https://doi.org/10.1016/j.phrs.2016.07.017
Sharifi, M. N. N., Mowers, E. E. E., Drake, L. E. E., Collier, C., Chen, H., Zamora, M., ... Macleod, K. K. F. (2016). Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. Cell Reports, 15(8), 1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065
Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454. https://doi.org/10.1038/nrc822
Vu, H. L., & Aplin, A. E. (2016). Targeting mutant NRAS signaling pathways in melanoma. Pharmacological Research, 107, 111–116. https://doi.org/10.1016/j.phrs.2016.03.007
Xie, Y., Koh, J. Y., Price, S., White, E., & Mehmert, J. M. (2015). Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma. Cancer Discovery, 5(4), 410–423. https://doi.org/10.1158/2159-8290.CD-14-1473

SUPPORTING INFORMATION
Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Maíques O, Barceló C, Panosa A, et al. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res. 2018;31:484–495. https://doi.org/10.1111/jpcm.12690