Soybean genotypes selection with resistance to White Mold and agronomic performance from moderately resistant parents

Lorraine Cristina Polloni-Barros1*, Osvaldo Toshiyuki Hamawaki2, Lorena Polloni1, Heber Leão Silva Barros3, Tâmara Prado de Morais4, Raphael Lemes Hamawaki2, Cristiane Divina Lemes Hamawaki2, Fernando Cezar Juliatti2, Heber Leão Silva Barros3, Ana Paula Oliveira Nogueira1

1Universidade Federal de Uberlândia/Instituto de Biotecnologia, Av. Pará, 1720 – 38400-90 – Uberlândia, MG – Brasil.
2Universidade Federal de Uberlândia/Instituto de Ciências Agrárias, BR-050, km 78, s/n – 38410-337 – Uberlândia, MG – Brasil.
3Universidade Federal de Uberlândia/Instituto de Ciências Biomédicas, Av. Maranhão, 1783 – 38405-318 – Uberlândia, MG – Brasil.
4Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Rod. Machado-Paraguaçu, km 3, s/n – 37750-000 – Machado, MG – Brasil.

*Corresponding author <lorrainepolloni@gmail.com>

Edited by: Alencar Xavier

Received March 03, 2021
Accepted June 29, 2021

Abstract: White Mold (WM) is a yield-limiting disease found in soybean. However, up to now no cultivars have been genetically resistant to this disease. Given this context, the present study aimed to develop superior soybean lines with resistance to WM, while maintaining other desirable agronomic traits. Two early maturing soybean cultivars (i.e., EMGOPA 316 and MG/BR 46–Conquista), moderately resistant to WM were used for biparental crosses from which the analyzed population was derived. Therefore, we assessed the resistance to WM in early generation testing of this population. Additionally, we determined the agronomic traits, genetic parameters and selection gains. From 348 F1 genotypes, 35 transgressive genotypes moderately resistant to WM were identified, amongst which 22 genotypes showed desirable agronomic traits for early cycle and grain yield. Moreover, 69 lines were selected as the most promising genotypes for each agronomic trait (i.e. based on the number of days to flowering and maturity, plant height at flowering and maturity, number of nodes on main stem at flowering and maturity, number of pods, grain yield, etc.). Among these selected lines, ten progenies emerged as the superior genotypes for grain yield and early cycle. All together, these results demonstrated that the cross between EMGOPA 316 x MG/BR 46 (Conquista) revealed promising progenies with moderate resistance to WM and/or desirable agronomic traits. Thus, these lines could be used as future resources for breeding efforts aimed at improving resistance to WM.

Keywords: Glycine max, generation analysis, genetic parameters, disease resistance, plant breeding

Introduction

Soybean [Glycine max (L.) Merr] is one of the most important commodities of international agricultural trading (Gale et al., 2019), with 361 million metric tons produced globally in 2020/21. Currently, Brazil is the world’s top producer followed by the United States and Argentina (USDA, 2021).

Importantly, one of the main factors that can limit soybean production worldwide is the occurrence of diseases (Martins et al., 2018). Soybean white mold (WM), caused by Sclerotinia sclerotiorum [Lib.] de Bary, is a yield-limiting disease found in soybean that causes reductions in productivity as high as 60% to growers when environmental conditions are favorable (Cunha et al., 2010; McCaghey et al., 2017). This necrotrophic and polyphagous fungus is capable of infecting up to 400 different species (Boland and Hall, 1994).

Currently, no cultivars genetically resistant to S. sclerotiorum are available (Kandel et al., 2018). However, several studies have demonstrated that individual cultivars can differ in susceptibility, which represent a key element for breeding programs (Juliatti et al., 2014; Kandel et al., 2018; Roth et al., 2020).

Indeed, the main objective of any breeding program is to identify among the segregating populations the few lines with the best genetic combinations, including grain quality, grain yield, adaptation and disease resistance. This decision to select the most promising lines should be vested in the earliest possible generations (Ribeiro et al., 2009). In this regard, an efficient estimation of genetic parameters such as variance components, heritability and selection gain can result in a more efficient selection process to obtain promising genotypes from segregating populations (Hamawaki et al., 2012; Silva et al., 2014).

Therefore, in this study, the main purpose was to develop a segregant soybean population, from parents with moderate resistance to WM, that exhibit favorable agronomics traits such as high yields and disease resistance. This would allow for the use of these lines in breeding programs as a source of WM resistance to accelerate the development of elite cultivars.

Materials and Methods

All the experiments were carried out throughout the seasons 2017–2019, in the municipality of Uberlândia, in the state of Minas Gerais, Brazil [19°52’ S, 48°20’ W, altitude of 805 m].

Plant materials

Two early maturing soybean cultivars moderately resistant to the fungus S. sclerotiorum [i.e. EMGOPA 316 (maturity group: 7.5) and MG/BR 46 – Conquista (maturity group: 8.1)] were used for biparental crosses from which the analyzed population was derived. The cultivar EMGOPA 316 is a result of the crossing...
between FT 79–2564 × Emgopa 302 cultivars, carried out in Goiânia, in the state of Goiás, Brazil. MG/BR 46 (Conquistã) is a cultivar resulting from the crossing of Lo 76–4484 × Numbaíra, carried out in Uberaba, in the state of Minas Gerais, Brazil.

F₁ segregating generations

To obtain the first generation of hybridization (F₁), parental materials were sown in four plastic pots every 4 days in a greenhouse for 4 months, starting Jan/2017, where each plastic pot contained two plants. The plants were grown in 17.5 cm × 17.5 cm × 20 cm (Height × Width × Length) plastic pots containing substrate (1/3 organic matter and 2/3 soil), with daily irrigation, and fertilized with NPK (8:28:16) every 15 days, in accordance with the manufacturer’s recommendations. A sulphur fungicide treatment was used once a week to control mildew, also in accordance with the manufacturer’s recommendations. The temperature was measured daily. During vegetative growth, at the V5 stage (Fehr and Caviness, 1977), the meristems were removed to favor the branch structure. Artificial hybridizations were made using EMGOPA 316 as the female genitor (P1) and MG/BR 46 (Conquistã) as the male genitor (P2). Temperatures ranged from 19 °C to 40 °C during the experimental period. Subsequently, to obtain the second generation (F₂), F₁ seeds were sown and the hybrids were self-polinated. Artificial hybridizations P1 × P2 were crossed again to obtain more F₂ seeds. For this experimental stage, three pots of P1, P2 and F₁ were sown every 5 days over two months, starting June/2017, and each plastic pot contained two plants. Sowing and management were carried out as previously described in this section. Confirmation of the hybridization of the F₁ plants was obtained by comparing the female parental, using the hypocotyl and flower colors as markers (Arantes, 1996; Nunes Júnior et al., 2001). The temperature inside the greenhouse during the experimental period varied from 11 °C to 40 °C.

Genetic and phenotypic parameters

In order to evaluate the resistance to WM, the agronomic traits and the genetic parameters of this population, five seeds from P2, F₁ and F₂ generations were sown in plastic pots (17.5 cm × 17.5 cm × 20 cm – Height × Width × Length) containing substrate (1/3 organic matter and 2/3 soil). A total of 20 P2 pots, 12 F₁ pots and 174 F₂ pots were sown in a greenhouse in Jan/2018. Two plants were placed in each plastic pot and tutored with bamboo sticks. Plants were irrigated daily. Fertilization was carried out with NPK (8:28:16) every 15 days, in accordance with the manufacturer’s recommendations. A sulphur fungicide treatment was used once a week to control mildew, in accordance with the manufacturer’s recommendations. Temperatures were measured daily, and ranged from 21 °C to 35 °C during the experimental period.

Aiming to evaluate the resistance to WM, fungal inoculum was prepared from the sclerotia in the laboratory, according to the methodology defined by Juliatti et al. (2014). The isolate was obtained from commercial fields in Jataí, in the state of Goiás – Brazil. The sclerotia were previously disinfected in 70 % ethanol and 0.5 % sodium hypochlorite diluted in sterile distilled water during 30 and 60 sec, respectively. After that, they were transferred to Petri dishes containing Potato Dextrose Agar (PDA) medium and incubated at 22 ± 3 °C in 12 h of photoperiod for the mycelium formation. For the inoculation, PDA medium plugs (8 mm in diameter) containing 5 day–old fungal mycelia were used. In the greenhouse, at the R1 stage of the plants (Fehr and Caviness, 1977), the lateral stem of the first trifoliate axillary bud was cut horizontally. An inoculation with a 200 microliter pipette tip containing fungal mycelium was given, with the mycelial side towards the plant (Chawla et al., 2013; Hüller et al., 2016). The severity of disease development was evaluated 5 days after inoculation, based on the proportion of the stem lesion length in comparison with the total stem length (both measured with a ruler). F₁ plants with greater resistance were considered transgressive segregates and were selected for further evaluation as F₂ genotypes.

The following agronomic traits were evaluated in the greenhouse: 1) number of days to flowering (NDF): corresponding to the period between emergence (VE stage) and the opening of the first flower (R1 stage); 2) number of days to maturity (NDM): corresponding to the period between the VE stage to the day on which approximately 95 % of the pods appeared to be mature (R8 stage); 3) plant height at flowering (PHF): which corresponds to the distance in centimeters measured between the soil level and the most distal inflorescence insertion on the main stem, assessed at the R1 stage; 4) plant height at maturity (PHM): which corresponds to the distance (cm) measured from the soil surface and the farthest flower bud on the main stem, evaluated at the R8 stage; 5) number of nodes on the main stem at flowering (NNF): all visible nodes were counted in the main stem at the R1 stage; 6) number of nodes on the main stem at maturity (NNM): all visible nodes were counted on the main stem at the R8 stage; 7) number of pods with 1 grain (PN1G), 8) number of pods with 2 grains (PN2G), 9) number of pods with 3 grains (PN3G) and 10) total number of pods (TNP): after harvest, all pods of each plant were counted; 11) number of seeds per pod (SNP): after harvesting and processing, seeds from each plant were counted; 12) one hundred seed weight (HSW): weight of one hundred grains of each plant, with three replications, was determined; and 13) grain yield (GY): the total weight of grains of each plant, with three replications, was also determined. The plant stage was defined according to Fehr and Caviness (1977).
Genetic parameters

The averages and variances were estimated by the phenotypic data obtained from parental (P2), hybrid (F1) and segregating populations (F2). The variances were estimated by the expression: \(\sigma^2_P = \sigma^2_P + \sigma^2_e \), in which the environmental variance \(\sigma^2_e \) was calculated using the following expression: \(\sigma^2_e = \sigma^2_{P2} \), where \(\sigma^2_{P2} \) is the phenotypic variance of P2. Genetic variance \(\sigma^2_G \) was estimated by the equation: \(\sigma^2_G = \sigma^2_{P2} - \sigma^2_e \). Broad sense heritability \(h^2 \) was calculated using the following equation:

\[
h^2 = \frac{\sigma^2_G}{\sigma^2_P} \times 100.
\]

The average degree of dominance \(K_m \) was calculated according to the equation:

\[
K_m = \frac{2F_1 - (F_1 + P_2)}{F_1 - P_2},
\]

where: \(F_1 \) is the phenotypic average of parental one, \(P_2 \) the phenotypic average of parental two, and \(F_1 \) the phenotypic average of \(F_2 \) generation. The number of genes involved in determining trait \(n \) was calculated by the equation:

\[
n = \frac{R^2(1 + 0.5K^2)}{8\sigma^2_{DF}}\]

where \(R \) is the amplitude between parent averages \((R = F_1 - P_2) \). The selection gain rates \(GS \) were determined by the following expression: \(GS = DS \cdot h^2 \) and \(GS\% = \frac{GS}{X_o} \),

where: \(GS \) is the selection gain, \(DS \) is the differential selection \((DS = X_o - X_o) \), is the observed average and \(X_o \) is the average of selected individuals. The genetic parameters were estimated using the GENES software program.

Resistance of transgressive segregation

To assess the resistance of the \(F_{2:3} \) genotypes, fungal inocula were prepared as aforementioned [Julia et al., 2014]. During Sept/2019, five seeds of P1, P2, BMX Desafio, BRSGO-7560 and F2:3 genotypes were sown in polystyrene trays (72-cells), containing substrate, each individual cell with one plant. A randomized complete block design was used, with three replications under greenhouse conditions. The soybean cultivars BMX Desafio and BRSGO-7560 were used as a susceptible standard. Temperatures were measured daily at the greenhouse (18 °C - 36 °C). At V2-V3 stage [Fehr and Cavinness, 1977], the main stem of the plants was cut horizontally. Inoculation was given according to Julia et al. [2014]. Subsequently, plants were kept at 22 ± 2 °C in a Bio-chemical Oxygen Demand (B.O.D) incubator with a photoperiod of 12 h. The severity of disease development was evaluated ten days after inoculation, based on the proportion of the stem lesion length in comparison with the total stem length (both measured with a ruler). The heritability and resistance trait were estimated using the GENES software program. The data for resistance trait were normalized by the equation \(\sqrt{k + x} \), and the values were compared by the Scott–Knott test \(p \leq 0.05 \). The estimation of heritability was calculated using analysis of variance (ANOVA).

Results and Discussion

Disease severity evaluations

The resistance of 348 \(F_2 \) genotypes was tested in the greenhouse inoculation test [Lateral Stem]. All genotypes exhibited different levels of symptoms and signs of WM. The severity in the \(F_2 \) generation ranged from 17 % to 100 % (Table 1). From among these genotypes, 50 lines with phenotype for resistance to WM (severity levels < 50 %) were identified (Table 2). These transgressive genotypes were tested by the Main Stem method, and all genotypes showed typical symptoms and signs of WM (severity ranged from 28 % to 75 % – Tables 1 and 2).

Soybean breeding programs for resistance to white mold (WM) still face a challenge as the majority of methods have low to moderate correlation values between field and laboratory tests for resistance [Boland and Hall, 1987; Kim and Diers, 2000; Kandel et al., 2018]. However, several studies have shown that the inoculation methods bear a strong relationship with the field results. Furthermore, compared to the cotyledon and detached leaf methods, the inoculation methods were found to be more precise [Kull et al., 2003; Koga et al., 2014; Martins et al., 2018].

The use of the Main Stem method allowed for discriminating different resistance levels of this population, based on the reactions to WM. Necrotic lesions and white fluffy mycelia were distinctly visible on the apical meristems and main stems. The development and progress of the disease occurred very

Table 1 – Severity range assigned based on the assessments of the inoculation methods of Sclerotinia sclerotiorum (%) in \(F_2 \) and \(F_{2:3} \) genotypes from the cross EMGOPA 316 × MG/BR46 (Conquista).

Generation	\(N \)	Severities Lateral Stem method	\(N \)	Severities Main Stem method
		%		%
P1	–	–	15	13.4 – 28.7
P2	40	15.5 – 36.6	15	14.4 – 25.7
\(F_2 \)	348	17.6 – 100	–	–
\(F_{2:3} \)	–	–	750	27.53 – 74.77
BMX Desafio	–	–	15	86.0 – 96.1
BRSGO–7560	–	–	15	85.6 – 92.3

P1 = EMGOPA 316; P2 = MG/BR46 (Conquista); \(F_2 \) = self-pollination of \(F_2 \) plants; \(F_{2:3} \) = self-pollination of \(F_{2:3} \) plants; \(N \) = number of individuals inoculated in the Lateral Stem method; \(N \) = number of individuals inoculated in the Main Stem method.
rapidly in susceptible plants, whereas in resistant plants, disease progress was limited to the apical meristem.

As shown in Table 3, the results revealed the existence of genetic variance between soybean progenies for severity to WM ($p \leq 0.05$). Furthermore, h^2 was 47 %, thus indicating that most of the phenotypic variance of the resistance to WM is environmentally controlled. Nevertheless, this should not infer that genetic components are necessarily negligible. However, according to the findings of this study and others reported in the literature (Guo et al., 2008; Kim and Dias, 2000; Kandel et al., 2018), WM resistance has a low to moderate h^2 estimate. Kandel et al. (2018) stated that the development of resistant genotypes has proven to be difficult due to the highly polygenic nature of inheritance, and the low heritability of the trait. Thus, there is still a need to identify cultivars that sustain heritable resistance both across environments, and with multiple isolates of S. sclerotiorum.

Therefore, in order to compare the averages of the severity of WM on genotypes, the Scott–Knott test was performed. Table 2 shows the formation of two response groups to WM: group “a” with incidence scores between 45 % and 90 %, composed of 24 F$_{2:3}$ genotypes, including the soybean cultivars BMX Desafio and BRSGO–7560 as a susceptibility standard commercial cultivars; group “b” with incidence ranging from 20 % to 45 %, consisting of 26 genotypes and two commercial cultivars, EMGOPA 316 and MG/BR 46 (Conquista).

We also observed that 15 F$_{2:3}$ evaluated genotypes were classified as susceptible and 35 were moderately resistant to the WM (Table 2). The rank of each genotype varied according to each experiment (Lateral Stem method and Main Stem method) (Table 1).

Table 2 – Averages of severity and resistance classification to white mold in transgressive genotypes from the cross EMGOPA 316 × MG/BR46 (Conquista).

Genotypes	Severity	Resistance Classification
BMX DESAFIO	90.10 a	S
BRSGO–7560	88.73 a	S
UFUA7P1	74.77 a	S
UFUA160P1	70.90 a	S
UFUA155P4	67.20 a	S
UFUA104P1	60.90 a	S
UFUA158P1	60.00 a	S
UFUA134P2	58.77 a	S
UFUA148P1	57.30 a	S
UFUA142P3	53.97 a	S
UFUA150P1	53.00 a	S
UFUA10P2	52.53 a	S
UFUA78P3	52.43 a	S
UFUA107P2	51.80 a	S
UFUA33P1	51.57 a	S
UFUA156P1	51.40 a	S
UFUA7P2	50.53 a	S
UFUA113P2	49.27 a	MR
UFUA96P1	48.00 a	MR
UFUA86P1	47.33 a	MR
UFUA105P2	47.07 a	MR
UFUA48P1	46.73 a	MR
UFUA138P3	45.57 a	MR
UFUA134P3	45.50 a	MR
UFUA43P3	45.23 a	MR
UFUA84P2	45.17 b	MR
UFUA14P1	44.27 b	MR
UFUA46P1	43.67 b	MR
UFUA83P1	42.83 b	MR
UFUA106P1	42.77 b	MR
UFUA12P2	42.73 b	MR
UFUA20P1	42.43 b	MR
UFUA143P1	41.60 b	MR
UFUA144P2	39.59 b	MR
UFUA94P1	39.10 b	MR
UFUA79P1	38.70 b	MR
UFUA38P2	38.40 b	MR
UFUA140P1	37.70 b	MR
UFUA136P3	37.03 b	MR
UFUA145P2	36.00 b	MR
UFUA91P1	35.97 b	MR
UFUA28P1	35.57 b	MR
UFUA27P2	35.03 b	MR
UFUA93P2	34.50 b	MR
UFUA25P1	34.47 b	MR
UFUA86P3	33.97 b	MR
UFUA82P1	33.63 b	MR
UFUA36P1	32.90 b	MR
UFUA81P1	32.67 b	MR
UFUA96P2	29.47 b	MR
UFUA85P2	27.53 b	MR
EMGOPA 316	20.53 b	R
CONQUISTA	20.07 b	R

S = susceptible; MS = moderately susceptible; MR = moderately resistant; R = resistant; \bar{X} = averages of severity followed by different letters are statistically different according to the Scott-Knott test ($p \leq 0.05$). 1According to Garcia and Juliatti (2012).

Table 3 – Summary of analysis of variance and heritability (h^2) of segregating soybean progenies inoculated with Sclerotinia sclerotiorum from the cross EMGOPA 316 × MG/BR46 (Conquista).

Source of Variation	DF	MS	F_{value}
Blocks	2	0.567878	
Genotypes	53	0.270026	1.899**
Residual	106	0.142191	
CV (%)	10.03		
h^2 (%)	47.34		

VS = variation source; DF = degree of freedom; MS = mean square; CV = coefficient of variation; h^2 = heritability; **Probability (%) = 0.27.
The results herein suggested that both methods are capable of promoting the reaction of soybean genotypes to WM. Nevertheless, when the two methods were compared, despite different developmental stages, the responses of the genotypes to the pathogen varied. A number of studies have described the reproductive growth stages as the most appropriate for inoculations in controlled environments because it reproduces the natural conditions of infection (Huzar–Novakowiski and Dorrance, 2018; Peltier et al., 2009). On the other hand, other scientific evidence claims that the vegetative growth stages are more convenient as they provide results more quickly, thus accelerating the stages of the breeding program (Castro et al., 2016; Willbur et al., 2017). The presence of susceptible soybean genotypes reiterates the highly polygenic nature of the inheritance and the moderate heritability of the trait, as shown in Table 3. These findings indicate that low–intensity selection in the first generations should be used for this trait, so that in later generations the truly superior individuals or progenies may be identified.

Cycle and production from the moderately resistant genotypes

Certain traits are critical for all cultivars in order to enter the market such as high yield potential and tolerance and/or resistance to the major diseases. According to Table 4, it was possible to identify superior genotypes in this population. In addition to reporting moderate resistance to WM, the transgressive genotypes showed an early cycle (NDM = 96 days to 116 days) and, for the most part, high production levels.

Several studies have shown that partial resistance to WM in soybean has been identified, but current resistance sources of commercial cultivars are limited and do not prevent significant crop yield loss (Andrade et al., 2018; Kim and Diers, 2000). Based on the grain yield (GY), 11 transgressive genotypes stood out in this population for their higher grain yield (GY = 31.74 to 52.50 grams) (Table 4). The results demonstrated the potential of these transgressive genotypes to become resistance sources to WM in breeding programs.

These findings indicate that early selection may be efficient in soybeans, as long as it is applied with moderate intensity. Numerous studies reported favorable results with early generation testing (Friedrichs et al., 2016; Hegstad et al., 2019; Saint–Martin and Geraldi, 2002). It is noteworthy that eliminating low potential progenies is an important strategy since it enables efforts and resources to be concentrated in those with high potential for desirable traits.

Agronomic trait statistics in the segregating population

The average and variability parameters are useful statistical tools for breeders, since they allow for inferring the genetic potential of the segregating population (Bhering, 2017). As shown in Table 5, no significant average difference was found in most of the agronomic traits between the parental and the generations, but variability was identified between the traits. This variability is an important aspect since sufficient variability must be available to successfully develop high–yielding cultivars in breeding programs.

Table 4 – Cycle and production in transgressive genotypes from the cross EMGOPA 316 × MG/BR46 (Conquista).

Genotype	Trait	NDF	NDM	HSW	GY
UFUA113P2	NDF	42	98	15.62	16.98
UFUA96P1	NDM	47	108	21.91	24.82
UFUA86P1	HSW	44	98	17.23	25.84
UFUA105P2	GY	43	116	15.47	19.91
UFUA48P1	NDF	44	108	26.01	38.42
UFUA138P3	NDM	39	100	10.28	15.36
UFUA138P3	HSW	40	109	14.79	21.44
UFUA38P2	GY	41	100	13.85	35.11
UFUA85P1	NDF	44	110	19.64	36.93
UFUA94P1	NDM	45	104	18.82	35.27
UFUA94P1	HSW	45	100	9.69	13.86
UFUA79P1	GY	47	100	9.69	13.86
UFUA38P2	NDF	47	103	7.53	12.34
UFUA136P3	NDM	42	105	31.72	34.23
UFUA136P3	HSW	38	97	9.16	9.35
UFUA145P2	GY	42	105	13.94	25.65
UFUA27P2	NDF	42	105	20.85	36.91
UFUA143P1	NDM	42	101	5.51	13.44
UFUA143P1	HSW	40	109	16.59	32.35
UFUA85P2	GY	40	109	16.59	32.35
UFUA93P1	NDF	40	112	18.19	33.84
UFUA92P1	NDM	40	108	15.18	20.90
UFUA86P3	HSW	40	108	14.97	31.74
UFUA81P1	GY	48	112	14.79	51.92
UFUA86P2	NDF	48	106	25.27	28.71
UFUA85P2	NDM	40	105	16.13	16.46
UFUA106P1	HSW	41	104	8.64	16.61
UFUA142P1	GY	41	104	27.70	29.12

NDF = number of days to flowering; NDM = number of days to maturity; HSW = one hundred seed weight (grams); GY = grain yield (grams).
Table 5 – Estimation of averages and variability of agronomic traits obtained in the generations P2, F1 and F2 in soybean grown in greenhouse in 2018 harvested in Uberlândia, Minas Gerais State, Brazil.

Trait	P2	F1	F2
NDF	41.37	40.50	38.68
NDM	109.05	109.29	107.03
PHF	83.07	81.00	83.26
PHM	115.00	123.25	123.37
NNF	10.00	11.21	9.24
NNM	15.27	17.83	15.63
NP1G	2.40	11.66	5.12
NP2G	18.00	33.73	22.44
NP3G	36.02	31.75	23.18
TNP	56.42	80.75	50.74
NSP	0.26	0.22	0.23
HSW	16.13	17.72	16.49
GY	26.14	33.07	20.62

The number of nodes on the main stem is a critical yield component, since it is associated with the processes that determine the number of pods and seeds [Egli, 2005; Egli, 2013]. The average for NNF (number of nodes on the main stem at flowering) and NNM (number of nodes on the main stem at maturity) were similar among P2 (NNF = 10.00 nodes and NNM = 15.27 nodes), F1 (NNF = 11.21 nodes and NNM = 17.83 nodes), and F2 (NNF = 9.24 nodes and NNM = 15.63 nodes) (Table 5). Accordingly, a greater number of nodes on a soybean plant usually means more pods and seeds. The variable number of pods per plant (TNP), number of seeds per pod (NSP) and one hundred seed weight (HSW) are pivotal components for the yield. The average values for TNP and NSP were 56.42 pods and 2.62 seeds, respectively, for P2, 80.75 pods and 2.25 seeds for F1, and 50.74 pods and 2.36 seeds for F2 (Table 5).

It is known that the higher the number of pods with three grains (NP3G), the greater will be the yield. The P2 averages for NP1G, NP2G and NP3G were 2.4, 11.66 and 36.02 pods, respectively. These results were slightly better than those found in F1 (NP1G = 11.66; NP2G = 37.33 and NP3G = 31.37) and F2 (NP1G = 5.12; NP2G = 22.44 and NP3G = 23.18) generations, since P2 showed a lower number of NP1G and NP2G and a higher number of NP3G (Table 5).

The one hundred seed weight (HSW) trait exhibits wider variation in ranges [Xin et al., 2016]. The modern elite soybean cultivars report HSW above 18 grams [Yan et al., 2015]. We observed that HSW average values were similar in P2 (16.13 grams), F1 (17.72 grams), and F2 (16.42 grams) (Table 5). All generations revealed HSW close to the minimum limit of 18 grams.

There were differences in GY (grain yield) averages between the P2 (26.14 grams), F1 (33.07 grams), and F2 (16.42 grams) generations. The highest GY value observed for the F1 generation can be attributed to the heterosis or hybrid vigor phenomenon, since heterosis is defined as the superiority of individuals from the F1 generation compared to its parents (Fehr, 1987).

We evaluated the variance components for heritability, average degree of dominance, and number of genes to agronomic traits, which play a pivotal role for the conduct of a breeding program, as well as for decision-making. As shown in Table 5, phenotypic variance oscillated from 0.04 (SNP) to 1000.41 (TNP), and genetic variance had an amplitude from 0.03 (SNP) to 431.75 (TNP). Variation in genotype is an important tool for determining the likelihood of success in breeding selection.

The environmental variance ranged from 0.01 (SNP) to 568.66 (TNP). The predominance of genetic variance higher than the environmental variance was observed in the traits NDF, PHM, NNF, NNM, PN1G, PN2G, SNP and HSW (Table 6). Selection was favorable for these traits, as indicated by the high values of genetic variance. The phenotype reflects the genotype once the genotypic variance, in absolute values, had exceeded the environmental variance.
In the current study, the heritability for the agronomic traits ranged from zero to 82%. The traits NDF (80%), PHM (75%), NNF (67%), NNM (82%), PN1G (83%), PN2G (69%), NSP (71%) and HSW (74%) reported high h^2 estimates (Table 6). These findings indicate that most of the phenotypic variance of these agronomic traits were genetically controlled. Moreover, high heritability makes the selection of individuals in the initial generations of self-fertilization viable. In agreement with our results, various studies have described high h^2 for the same traits studied herein (Leite et al., 2016; Volpato et al., 2019; Zhang et al., 2015). In turn, PHF (41%), TNP (43%), and GY (29%) presented lower h^2 values (Table 6), which means that the selection for these traits should be practiced in advanced generations (trials conducted in various locations and years) for the identification of superior genotypes as a result of the influence of the environmental interaction.

We also investigated the selection gain once it had highlighted the superior individuals in a base population. Furthermore, the variable is considered an efficient guide to breeders. In order to obtain selection gain, the existence of genetic variability inside a base population is necessary, and the magnitude of the effects that it masks (environmental components and interaction) (Hamawaki et al., 2012). With the objective of selecting the best individuals, considering the reduction in the vegetative cycle and increase in the other traits, a selection intensity of 20% was applied in various locations and years) for the identification of superior genotypes as a result of the influence of the environmental interaction.

Finally, it was possible to select ten genotypes for the traits NDM and GY (UFUA22P2, UFUA70P3, UFUA74P1, UFUA103P2, UFUA104P1, UFUA114P2, UFUA116P1, UFUA117P1, UFUA130P1 and UFUA142P3). These genotypes were the most productive and early cycle. The individuals UFUA9P1, UFUA11P2, UFUA12P1, UFUA12P2, UFUA13P1, UFUA22P2, UFUA24P2, UFUA34P2, UFUA40P2, UFUA43P3, UFUA44P3, UFUA52P3, UFUA53P2, UFUA63P1, UFUA65P1, UFUA104P1, UFUA110P2, UFUA117P1, UFUA126P2, and UFUA132P2 showed an earlier cycle. However, they are not among the most productive genotypes. The genotypes UFUA38P1 and UFUA48P1 were selected most for the traits, except for the NDM, SNP, and GY (Tables 7 and 8).
Table 7 – Selected individuals in F2 soybean population from the cross EMGOPA 316 × MG/BR46 (Conquista), average of selected individuals (Xsi) and selection gain (GSi) of agronomic characters.

SI	NDM	SI	NNF	SI	NNM		
UFUA1P1	92	UFUA7P1	100	UFUA2P1	155	UFUA2P1	12
UFUA5P2	93	UFUA11P3	74	UFUA2P2	144	UFUA14P1	11
UFUA8P3	97	UFUA29P2	84	UFUA7P1	145	UFUA19P1	13
UFUA9P1	97	UFUA31P1	104	UFUA13P1	180	UFUA20P1	11
UFUA9P2	97	UFUA33P1	95	UFUA33P1	158	UFUA21P1	11
UFUA9P3	97	UFUA36P1	106	UFUA34P1	141	UFUA22P1	12
UFUA11P2	92	UFUA38P1	98	UFUA36P1	143	UFUA25P1	12
UFUA12P1	96	UFUA38P2	102	UFUA36P2	174	UFUA29P1	11
UFUA12P2	96	UFUA42P1	118	UFUA38P1	151	UFUA29P2	11
UFUA13P1	97	UFUA42P2	116	UFUA42P2	152	UFUA31P1	12
UFUA16P2	97	UFUA46P2	104	UFUA42P2	152	UFUA33P1	11
UFUA20P2	97	UFUA46P3	98	UFUA43P1	152	UFUA33P1	11
UFUA21P2	97	UFUA47P2	94	UFUA44P1	147	UFUA34P1	12
UFUA22P2	97	UFUA48P1	107	UFUA44P1	165	UFUA34P2	11
UFUA24P2	97	UFUA49P1	98	UFUA45P1	141	UFUA36P1	13
UFUA34P2	97	UFUA49P2	103	UFUA46P1	157	UFUA38P1	12
UFUA40P2	93	UFUA51P1	101	UFUA47P2	140	UFUA40P1	11
UFUA43P3	97	UFUA53P1	97	UFUA48P1	151	UFUA40P2	15
UFUA44P3	97	UFUA58P1	111	UFUA49P2	150	UFUA41P1	13
UFUA46P2	93	UFUA58P2	106	UFUA51P1	140	UFUA42P1	12
UFUA52P3	99	UFUA62P2	100	UFUA51P2	153	UFUA42P1	12
UFUA53P2	92	UFUA64P2	96	UFUA52P1	162	UFUA45P1	15
UFUA55P1	97	UFUA66P1	97	UFUA53P1	146	UFUA48P1	11
UFUA55P2	97	UFUA66P2	105	UFUA54P1	162	UFUA57P1	14
UFUA63P1	96	UFUA68P1	100	UFUA58P1	142	UFUA58P1	13
UFUA64P1	97	UFUA68P2	106	UFUA58P2	157	UFUA58P2	12
UFUA64P2	97	UFUA69P2	106	UFUA61P1	151	UFUA60P1	12
UFUA65P1	97	UFUA70P2	98	UFUA64P1	156	UFUA69P1	12
UFUA65P2	97	UFUA70P3	104	UFUA66P2	153	UFUA73P1	11
UFUA65P3	97	UFUA72P2	108	UFUA66P4	150	UFUA75P1	13
UFUA67P2	97	UFUA74P1	94	UFUA68P1	147	UFUA76P1	14
UFUA69P2	97	UFUA76P1	95	UFUA69P1	144	UFUA77P1	11
UFUA70P3	95	UFUA78P2	95	UFUA70P1	143	UFUA78P1	12
UFUA72P2	93	UFUA85P1	112	UFUA70P2	150	UFUA78P2	12
UFUA74P1	97	UFUA91P1	102	UFUA73P1	150	UFUA80P1	11
UFUA79P2	97	UFUA93P1	97	UFUA80P2	162	UFUA82P1	14
UFUA79P3	97	UFUA95P1	94	UFUA85P1	141	UFUA85P1	12
UFUA86P2	97	UFUA98P1	94	UFUA85P1	141	UFUA85P1	12
UFUA102P2	97	UFUA99P1	104.5	UFUA105P1	166	UFUA91P1	12
UFUA103P2	97	UFUA103P2	94	UFUA107P2	156	UFUA92P1	14
UFUA104P1	97	UFUA107P2	115	UFUA110P1	145	UFUA93P1	12
UFUA104P2	97	UFUA110P1	110	UFUA112P2	145	UFUA94P1	12
UFUA110P2	93	UFUA111P1	105.5	UFUA112P3	161	UFUA96P1	12
UFUA111P2	97	UFUA114P2	96	UFUA113P2	145	UFUA96P3	12
UFUA114P2	95	UFUA116P1	104	UFUA113P3	169	UFUA98P1	13
UFUA116P1	97	UFUA116P2	98	UFUA115P1	153	UFUA99P1	12
UFUA117P1	92	UFUA120P2	96	UFUA116P2	148	UFUA101P1	12
UFUA120P2	93	UFUA121P3	105	UFUA117P1	141	UFUA106P1	13
UFUA120P3	93	UFUA122P1	95	UFUA123P1	141	UFUA109P2	12
UFUA121P2	97	UFUA122P2	101	UFUA124P1	143	UFUA110P1	13
UFUA126P2	93	UFUA124P1	103	UFUA129P2	143	UFUA111P1	14
UFUA128P1	97	UFUA124P3	108	UFUA134P1	165	UFUA117P1	12
UFUA128P2	97	UFUA131P1	100	UFUA135P1	141	UFUA123P1	13
UFUA128P3	96	UFUA135P1	103	UFUA135P2	142	UFUA125P1	13
Continue...							
Table 7 – Continuation.

UFUA130P1	UFUA135P3	UFUA136P1	UFUA137P2	UFUA127P2	UFUA137P1	UFUA120P1	UFUA139P1
97	105	142	12	20	19	22	
UFUA130P2	UFUA136P2	UFUA139P2	UFUA131P1	UFUA130P1	UFUA139P2	UFUA130P1	UFUA139P2
97	100	158	12	20	19	22	
UFUA130P3	UFUA137P3	UFUA140P2	UFUA131P1	UFUA130P1	UFUA140P2	UFUA131P1	UFUA139P2
94	97	151	13	22	21	20	
UFUA132P2	UFUA138P1	UFUA148P2	UFUA138P3	UFUA138P3	UFUA140P2	UFUA138P3	UFUA140P2
97	96	153	12	20	19	22	
UFUA135P3	UFUA138P3	UFUA149P1	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2
96	101	172	13	21	21	20	
UFUA136P2	UFUA139P2	UFUA152P2	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2
97	114	142	13	21	21	20	
UFUA137P2	UFUA140P2	UFUA153P3	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2	UFUA141P2
97	95	181	13	21	21	20	
UFUA138P1	UFUA137P1	UFUA154P3	UFUA142P1	UFUA142P1	UFUA142P1	UFUA142P1	UFUA142P1
95	103	141	12	21	21	20	
UFUA142P2	UFUA155P2	UFUA156P2	UFUA144P1	UFUA144P1	UFUA144P1	UFUA144P1	UFUA144P1
95	98	151	12	21	21	20	
UFUA145P3	UFUA156P1	UFUA157P3	UFUA158P1	UFUA158P1	UFUA158P1	UFUA158P1	UFUA158P1
93	97	154	13	21	21	20	
UFUA146P3	UFUA157P1	UFUA157P2	UFUA159P1	UFUA159P1	UFUA159P1	UFUA159P1	UFUA159P1
93	111	146	12	23	23	22	
UFUA147P3	UFUA157P2	UFUA157P3	UFUA157P2	UFUA157P2	UFUA157P2	UFUA157P2	UFUA157P2
96	104	151	12	23	23	22	
UFUA155P2	UFUA162P3	UFUA163P3	UFUA162P3	UFUA162P3	UFUA162P3	UFUA162P3	UFUA162P3
96	93	149	12	19	19	18	
UFUA157P3	UFUA162P3	UFUA163P2	UFUA162P3	UFUA162P3	UFUA162P3	UFUA162P3	UFUA162P3
95	94	144	12	19	19	18	
SI	GS%	SI	GS%	SI	GS%	SI	GS%
95.59	14.68	101.62	9.04	151.59	17.32	12.25	21.90

SI = Selected individuals; NDF = number of days to flowering; NDM = number of days to maturity; PHF = plant height at flowering; PHM = plant height at maturity; NNF = number of nodes on the main stem at flowering; NNM = number of nodes on the main stem at maturity; \bar{x}_s = mean of selected individuals; \bar{G}_s% = selection gain.

Table 8 – Selected individuals in F$_2$ soybean population from the cross EMGOPA 316 × MG/BR46 (Conquista), average of selected individuals (\bar{x}_s) and selection gains (GS%) of agronomic characters.

UFUA2P1	UFUA2P2	UFUA2P3	UFUA2P4	UFUA2P5	UFUA2P6	UFUA2P7
8	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
UFUA10P1	UFUA10P2	UFUA10P3	UFUA10P4	UFUA10P5	UFUA10P6	UFUA10P7
10	12	8	9	11	11	12
Table 8 – Continuation.

UFUA77P1	26	UFUA80P1	44	UFUA77P1	144	UFUA82P2	2.57	UFUA80P2	20.05	UFUA83P2	35.11
UFUA80P2	9	UFUA82P1	76	UFUA82P2	165	UFUA83P2	2.72	UFUA84P1	19.56	UFUA84P1	35.40
UFUA81P1	15	UFUA83P2	33	UFUA84P1	97	UFUA84P1	2.66	UFUA87P1	21.55	UFUA86P3	32.35
UFUA82P1	34	UFUA86P3	35	UFUA85P1	79	UFUA84P2	2.56	UFUA91P2	20.38	UFUA87P1	42.24
UFUA89P1	24	UFUA89P1	35	UFUA89P1	145	UFUA87P1	2.65	UFUA95P1	24.09	UFUA87P2	67.43
UFUA93P1	12	UFUA94P1	78	UFUA91P1	82	UFUA90P1	2.66	UFUA96P1	21.91	UFUA89P2	31.35
UFUA94P1	18	UFUA96P1	35	UFUA92P1	89	UFUA90P2	2.66	UFUA96P2	25.27	UFUA90P1	42.36
UFUA96P1	8	UFUA98P1	35	UFUA94P1	128	UFUA93P1	2.78	UFUA97P3	19.84	UFUA92P1	42.62
UFUA101P2	10	UFUA101P1	41	UFUA95P1	94	UFUA94P1	2.54	UFUA110P1	30.71	UFUA93P1	33.51
UFUA105P1	13	UFUA105P1	46	UFUA96P1	110	UFUA97P3	2.74	UFUA114P1	36.16	UFUA94P1	52.50
UFUA107P1	12	UFUA106P2	41	UFUA98P1	82	UFUA98P1	2.56	UFUA116P3	21.48	UFUA95P2	29.94
UFUA113P2	8	UFUA110P1	63	UFUA99P1	118	UFUA102P2	2.57	UFUA112P1	26.06	UFUA96P3	36.96
UFUA113P3	11	UFUA114P1	50	UFUA105P1	127	UFUA104P1	2.64	UFUA132P2	27.78	UFUA97P3	61.40
UFUA114P1	10	UFUA115P1	39	UFUA107P1	85	UFUA105P1	2.72	UFUA133P1	25.55	UFUA99P1	35.66
UFUA115P1	17	UFUA117P1	35	UFUA110P1	146	UFUA108P2	2.66	UFUA134P1	24.88	UFUA103P2	38.77
UFUA117P1	11	UFUA125P1	47	UFUA114P1	92	UFUA113P1	2.63	UFUA134P1	28.37	UFUA104P1	31.11
UFUA119P1	18	UFUA130P2	33	UFUA115P1	81	UFUA119P1	2.57	UFUA138P1	20.09	UFUA104P3	29.86
UFUA119P2	10	UFUA131P2	34	UFUA117P1	122	UFUA122P3	2.55	UFUA140P1	31.72	UFUA106P2	51.59
UFUA122P2	8	UFUA132P2	35	UFUA119P1	115	UFUA122P3	2.65	UFUA141P1	20.04	UFUA112P2	32.56
UFUA122P3	8	UFUA134P1	42	UFUA125P1	114	UFUA124P3	2.55	UFUA144P1	19.29	UFUA114P2	37.24
UFUA125P1	11	UFUA137P2	60	UFUA131P1	98	UFUA128P4	2.55	UFUA144P2	27.70	UFUA131P1	38.46
UFUA130P2	8	UFUA139P1	50	UFUA132P2	89	UFUA132P2	2.71	UFUA145P1	24.72	UFUA116P1	32.02
UFUA132P2	14	UFUA140P1	39	UFUA134P1	99	UFUA137P2	2.61	UFUA147P3	22.67	UFUA117P1	30.78
UFUA134P1	19	UFUA141P1	40	UFUA137P2	96	UFUA138P1	2.64	UFUA148P1	22.29	UFUA127P2	33.07
UFUA134P3	15	UFUA141P2	40	UFUA139P1	99	UFUA142P1	2.60	UFUA148P2	21.24	UFUA128P4	38.35
UFUA144P1	12	UFUA142P1	59	UFUA140P2	75	UFUA142P3	2.71	UFUA148P3	19.80	UFUA130P1	34.25
UFUA144P1	11	UFUA143P1	35	UFUA141P2	77	UFUA144P1	2.55	UFUA152P2	35.55	UFUA137P1	31.49
UFUA144P1	20	UFUA144P1	35	UFUA142P1	102	UFUA145P2	2.63	UFUA153P3	23.60	UFUA138P1	39.77
SF	13.98	SF	45.55	SF	103.17	SF	2.63	SF	24.18	SF	40.15
G%	114.80	G%	71.47	G%	44.58	G%	8.08	G%	34.92	G%	28.25

SI = Selected individuals; PN1G = number of pods with 1 grain; PN2G = number of pods with 2 grains; TNP = total number of pods; SNP = number of seeds per pod; HSW = one hundred seed weight; GY = grain yield; \bar{x} = mean of selected individuals; GSI = selection gain.

As for the genotypes analyzed, the cross between EMGOPA 316 × MG/BR (Conquista) proved to be promising in the identification of WM resistance. The 22 lines selected with moderate resistance to WM also possessed additional desirable agronomic traits (i.e. early cycle and higher yield). The combination of early maturity with higher yield potential in a genotype that possesses WM tolerance can be decisive for the success of a cultivar among soybean growers.

Additionally, ten superior soybean lines were also selected due to their desirable traits of early maturity and higher yield. The significant expansion of off-season corn cultivation throughout the Cerrado region in Brazil has dramatically shortened the maturity time of the soybean cultivars preferred by growers. Therefore, the early maturity trait is now considered a prerequisite for a soybean genotype to be regarded as a promising line.

The data and findings presented in this work may be of substantial value and use by breeding programs seeking to improve soybean lines with WM resistance. Moreover, soybean lines that associate disease resistance with other desirable agronomic traits can considerably accelerate the development of elite cultivars. While the molecular mechanisms responsible for the resistance trait remain to be explored, further assessments of advanced generations of this population using molecular techniques can unveil regions in the genome linked to WM resistance.
Authors’ Contributions

Conceptualization: Polloni-Barros, L.C.; Juliatti, F.C.; Nogueira, A.P.O.; Hamawaki, O.T. Data acquisition: Polloni-Barros, L.C.; Polloni, L.; Barros, H.L.S.; Morais, T.P. Data analysis: Polloni-Barros, L.C.; Juliatti, F.C.; Nogueira, A.P.O.; Hamawaki, R.L.; Hamawaki, C.D.L. Design of methodology: Polloni-Barros, L.C.; Juliatti, F.C.; Nogueira, A.P.O.; Hamawaki, O.T. Software development: Polloni–Barros, L.C.; Nogueira, A.P.O. Writing and editing: Polloni–Barros, L.C.; Polloni, L.; Barros, H.L.S.; Juliatti, F.C.; Nogueira, A.P.O.

Acknowledgments

The authors thank the Federal University of Uberlândia (UFU), Brazil, Minas Gerais State Agency for Research and Development [FAPEMIG] [CAG – PPM– 00739–16] and UFU – Soybean Breeding Program, for providing financial support for this study.

References

Andrade, G.C.G.; Carrer Filho, R.; Cunha, M.G. 2018. Resistance of soybean genotypes to white mold in distinct agroecosystems. Journal of Neotropical Agriculture 5: 7-16.

Arantes, N.E. 1996. Morphologic and agronomic characteristics: reaction to disease = Características morfológicas e agronômicas: reação às doenças. Embrapa Soja, Londrina, PR, Brazil (in Portuguese).

Boland, G.J.; Hall, R. 1987. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Disease 71: 934-936.

Boland, G.J.; Hall, R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16: 93-108.

Bhering, L.L. 2017. Ribio: a tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology 17: 187-190.

Castro, L.H.S.; Figueiró, A.A.; Nogueira, A.O.N.; Clough, S.J.; Clough, F.C. 2016. Resistance of soybean genotypes to Sclerotinia sclerotiorum isolates in different incubation environments. Genetics and Molecular Research 15: 1-13.

Cunha, W.G.; Tinoco, M.L.P.; Pancoti, H.L.; Ribeiro, R.E.; Aragão, F.J.L. 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathology 59: 654-660.

Chawla, S.; Bowen, C.R.; Slaminko, T.L.; Hobbs, H.A.; Hartman, G.L. 2013. A public program to evaluate commercial soybean cultivars for pathogen and pest resistance. Plant Disease 97: 568-578.

Egli, D.B. 2005. Flowering, pod set, and reproductive success in soya bean. Journal of Agronomy and Crop Science 191: 283-291.

Egli, D.B. 2013. The relationship between the number of nodes and pods in soybean communities. Crop Science 53: 1668-1676.

Fehr, W.R.; Caviness, C.B. 1977. Stages of Soybean Development. Iowa State University, Ames, IA, USA. (Special Report, 87).

Available at: https://lib.dr.iastate.edu/specialreports/87 [Accessed Dec 26, 2020]

Fehr, W.R. 1987. Principles of Cultivar Development. MacMillan, New York, NY, USA.

Friedrichs, M.R.; Burton, J.W.; Brownie, C. 2016. Heterosis and genetic variance in soybean recombinant inbred line populations. Crop Science 56: 2072-2079.

Gale, F.; Valdes, C.; Ash, M. 2019. The Interdependence of China, the United States, and Brazil in Soybean Trade. USDA, Washington, DC, USA. Available at: https://www.ers.usda.gov/webdocs/outlooks/93390/ocs-19f-01.pdf?v=1370.3 [Accessed Dec 26, 2020]

Garcia, R.; Juliatti, F.C. 2012. Evaluation of soybean resistance to Sclerotinia sclerotiorum at different phenological stages and inoculum exposure periods = Avaliação da resistência de soja a Sclerotinia sclerotiorum em diferentes estádios fenológicos e períodos de exposição a inóculo. Tropical Plant Pathology 37: 196-203 (in Portuguese).

Guo, X.; Wang, D.; Gordon, S.G.; Hellwell, E.; Smith, T.; Berry, S.A. 2008. Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 39269+A and PI 391589B. Crop Science 48: 1129-1139.

Hamawaki, O.T.; Sousa, L.B.; Romanato, F.N.; Nogueira, A.P.O.; Santos Júnior, C.D.; Polizel, A.C. 2012. Genetic parameters and variability in soybean genotypes. Comunica Scienzitae 3: 76-83.

Hegstad, J.M.; Nelson, R.L.; Chaky, J.M. 2019. Method for early generation soybean population selection using F2 high-parent heterosis testing. Crop Science 59: 1021-1029.

Hüller, G.C.; Jaccoud Filho, D.S.; Pierre, M.L.C.; Tollio, H.E.; Grabinski, E.M.G.; Juliatti, F.C. 2016. Different methods of assessing susceptibility of soybean genotypes to white mold. Bioscience Journal 32: 389-402.

Huzar-Novakowski, J.; Dorrance, A.E. 2018. Ascospore inoculum density and characterization of components of partial resistance to Sclerotinia sclerotiorum in soybean. Plant Disease 102: 1326-1333.

Juliatti, F.C.; Sagata, E.; Jaccoud Filho, D.S.; Juliatti, B.C.M. 2014. Inoculation methods to Sclerotinia sclerotiorum reaction resistance on Soybean = Métodos de inoculação e avaliação da resistência de genótipos de soja à Sclerotinia sclerotiorum. Bioscience Journal 30: 958-968 [in Portuguese].

Kandel, R.; Chen, C.Y.; Grau, C.R.; Dorrance, A.E.; Liu, J.Q.; Wang, Y.; Wang, D. 2018. Soybean resistance to white mold: evaluation of soybean germplasm under different conditions and validation of QTL Frontiers. Plant Science 9: 1-12.

Kim, H.S.; Diers, B.W. 2000. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Science 40: 55-61.

Koga, L.J.; Bowen, C.R.; Godoy, C.V.; Oliveira, M.C.N.; Hartman, G.L. 2014. Mycelial compatibility and aggressiveness of Sclerotinia sclerotiorum isolates from Brazil and the United States. Pesquisa Agropecuária Brasileira 49: 265-272.

Kull, L.S.; Vuong, T.D.; Powers, K.S.; Eskridge, K.M.; Steadman, J.R.; Hartman, G.L. 2003. Evaluation of resistance screening methods for Sclerotinia stem rot of soybean and dry bean. Plant Disease 87: 1471-1476.

Leite, W.S.; Pavan, B.E.; Matos Filho, C.H.A.; Alcantara Neto, F. 2016. Genetic parameters estimation, correlations and selection indexes for six agronomic traits in soybean lines F8. Comunicata Scientiae 7: 302-310 [in Portuguese, with abstract in English].
Polloni-Barros et al. WM resistance and agronomic traits

Martins, J.A.S.; Alves, A.B.; Garcez, M.; Juliatti, F.C. 2018. Partial resistance of soybean lines to Asian Rust and White Mold. Bioscience Journal 34: 1281-1286.

McCaghey, M.; Willbur, J.; Ranjan, A.; Grau, C.R.; Chapman, S.; Diers, B.; Groves, C.; Kabbage, M.; Smith, D.L. 2017. Development and evaluation of Glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum. Frontiers in Plant Science 8: 1495.

Nunes Júnior, J.; Faria, L.C.; Monteiro, P.M.F.O.; Assunção, M.S.; Arantes, N.E.; Souza, P.I.M.; Guerzoni, R.A. 2001. EMGOPA-316 Soy Cultivar Behavior in Minas Gerais and Mato Grosso States = Comportamento da Cultivar de Soja EMGOPA-316 no Estado de Minas Gerais e Mato Grosso. Embrapa Soja, Londrina, PR, Brazil [in Portuguese].

Peltier, A.J.; Hatfield, R.D.; Grau, C.R. 2009. Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. Plant Disease 93: 149-154.

Ribeiro, A.S.; Toledo, J.F.F.; Ramalho, M.A.P. 2009. Interference of genotypes X environments interaction in the genetic control of resistance to Asian Rust soybean. Pesquisa Agropecuária Brasileira 44: 1160-1167.

Roth, M.G.; Webster, R.W.; Mueller, D.S.; Chilvers, M.I.; Faske, T.R.; Mathew, F.M.; Bradley, C.A.; Damicone, J.P.; Kabbage, M.; Smith, D.L. 2020. Integrated management of important soybean pathogens of the United States in changing climate. Journal of Integrated Pest Management 11: 1-28.

Saint-Martin, S.K.; Gerald, I.O. 2002. Comparison of three procedures for early generations testing of soybean. Science 45: 705-709.

Silva, F.C.; Melo, P.G.S.; Pereira, H.S.; Melo, L.C. 2014. Genetic control and estimation of genetic parameters for seed-coat darkening of carioca beans. Genetics and Molecular Research 13: 6486-6496.

United States Department of Agriculture [USDA]. 2021. Oilseeds: world markets and trade. Available at: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. [Accessed Mar 01, 2021]

Volpato, L.; Alves, R.S.; Teodoro, P.E.; Resende, M.D.V.; Nascimento, M.; Nascimento, A.C.C.; Ludke, W.H.; Silva, F.L.; Borém, A. 2019. Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. PLoS One 14: e0215315.

Willbur, J.F.; Ding, S.; Marks, M.E.; Lucas, L.; Grau, C.R.; Groves, C.L.; Kabbage, M.; Smith, D.L. 2017. Comprehensive Sclerotinia stem rot screening of soybean germplasm requires multiple isolates of Sclerotinia sclerotiorum. Plant Disease 101: 1344-1353.

Xin, D.; Qi, Z.; Jiang, H.; Hu, Z.; Zhu, R.; Hu, J.; Han, H.; Hu, G.; Liu, C.; Chen, Q. 2016. QTL location and epistatic effect analysis of 100-seed weight using wild soybean [Glycine sojaSieb and Zucc.] chromosome segment substitution lines. PLoS One 11: e0149380.

Yang, X.B.; Lundeen, P.; Uphoff, M.D. 1999. Soybean varietal response and yield loss caused by Sclerotinia sclerotiorum. Plant Disease 83: 456-461.

Zhang, J.; Song, Q.; Cregan, P.B.; Nelson, R.L. 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean [Glycine max] germplasm. BMC Genomics 16: 1-15.