Wetland Medicinal Plants of Eastern Himalayan Highlands of Gasa District, Bhutan

Sangay Tenzin* and Pema Tendar

*Department of Science, Chundu Armed Forces Public School, Ministry of Education, Haa, Bhutan.

Authors’ contribution

This work was carried out in collaboration between both authors. Author ST designed the study, wrote the protocol and wrote the first draft of the manuscript. Author PT performed the statistical analysis and literature searches. Both the authors read and approved the final manuscript.

Article Information

DOI: 10.9734/APRJ/2021/v7i230149
(1) Dr. Shiamala Devi Ramaiya, Universiti Putra Malaysia (UPM), Malaysia.
(2) A. B. M. Helal Uddin, International Islamic University Malaysia, Malaysia.
(2) Divya Jain, Banasthali Vidyapith, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/65257

ABSTRACT

This paper documents the medicinal plant species in wetlands of the Eastern Himalayan Highlands of Gasa District, Bhutan. A random quadrat sampling method was used to assess the presence-absence of species. The study was conducted at Khatoed and Khamaed gewogs (blocks), Gasa District between January and December 2018. Identification of medicinal plant species and families were done in consultation with a botanist at the herbarium in Thimphu and volumes of Flora of Bhutan were referred. Based on the published and authentic scientific literature, information on medical uses of plant parts was collected. A total of 74 species of medicinal plant species in the wetlands, distributed in 69 genera and 43 families have been recorded. The study suggests preserving invaluable wetland medicinal plants and integrating ethno-medicinal practices in our lives.

Keywords: Wetlands; medicinal plants; diseases; Bhutan; Himalaya.

1. INTRODUCTION

Medicinal plants play a vital role in the lives of almost all people. About 65-80% of the world population uses ethno-medicine for their primary health cares [1]. World Health Organization [2] reported an increase in use of herbal remedies as increased number of governments and health
practitioners accepted and integrated ethno-botanical practices. In the world, plant-based companies like traditional medicine and aromatic cosmetic industries uses more than 13,000 plant species of which 8,000 species are used in South Asia alone [3,4]. From South Asian countries, India and China is reported to use 20% and 18.5% of their plants flora as medicinal plants respectively [5]. Muzzafar et al. [6] also confirmed that 85% of ethno-medicines used for primary health cares are from the plant derivatives.

Bhutan practiced traditional medicine similar to neighboring Tibet and Mongolia since 2500 years ago and known as the ‘men-jong’ the ‘Land of Medicinal Plant’ for possessing wealth of medicinal plant species [1,7]. This may be true because Bhutan has currently 70.46% of forest cover [8], which is greater than the constitutionally mandated 60% [9]. These abundant invaluable ethno-botanical and ethno-medicinal plants has provided main source of livelihood for rural and semi-urban people of Bhutan [8,10]. Bhutanese people in the past had used raw medicinal plants for ailment against many diseases due to high cost and inaccessible to conventional modern medicines. Plant species having medicinal, social and economical values were found mostly concentrated in wetland ecosystem [11,12]. In addition, wetland biodiversity is also known to provide mostly medicine, food and fodder [4] besides being critical habitat for animal and plant communities and serving as the bases of food chain [12,13].

In 1967, Bhutanese Government recognized traditional medicine as an alternative healthcare system by entrusting Pharmaceutical and Research Unit (PRU) under Institute of Traditional Medicine Service (ITMS) with manufacturing of traditional medicines in the country [7]. More than 5603 high altitude plant species are recorded in the pharmacopoeia of Bhutanese traditional medicine [5]. Currently, ITMS formulates 98 traditional herbal compounds using 267 species [7]. The medicinal plants in commercially viable amount were collected from 267 species [7]. The medicinal plants in ITMS formulates 98 traditional herbal compounds Bhutanese traditional medicine as an alternative healthcare system and the ecosystem of the nature.

In pursuit of protecting, promoting and promulgating Traditional Medicine and preserving rich wetland biodiversity, the current paper is undertaken with the following objectives: (a) to provide checklist of medicinal plants in wetlands, (b) categorize medicinal plant parts for different medical uses found in wetland vegetation in Bhutan.

2. MATERIALS AND METHODS

2.1 Study Area

Study was conducted in Khamaed and Khatoed gewogs of Gasa District. The study area is a part of Jigme Dorji National Park in Bhutan. The wetlands studied, mainly occurred in the slopes, bottomlands, edges of ericaceous shrub lands, in depressions, fallow lands, adjoining managed wetlands, along small streams, and forest fragments bordered by natural vegetation [13]. The elevation for the wetlands ranges from 1597 to 2538 m above sea level, that extends roughly 28 km between these two blocks. The area experiences the mean annual (2008-2017) rainfall and air temperature from 498-1824 mm and 5.16 – 15.63°C, respectively (National Center for Hydrology and Meteorology, 2018).

2.2 Data Collections and Plant Identifications

Prior to field survey, a research permit (Applicant ID: 18623722325AIECE2754986, dated 05/01/2018) was obtained from the Ugyen Wangchuk Institute for Conservation and Environment Research, MoAF, RGoB, Bhutan. Floristic inventory and collection of specimens were done from January to December 2018. A random quadrat sampling method was used to assess the presence-absence of species [16]. The plant species from each site were collected with nametag, date and brief description of their habitat. These collected plant specimens were taken to Herbarium, Thimphu, Bhutan for confirmation in consultation with experienced staff/Botanists. Flora of Bhutan [17,18,19,20, 21,22,23,24,25] was used for the identification of.
species and families. All the voucher specimens were deposited at the Herbarium, National Biodiversity Center, Thimphu, Bhutan.

The information on medicinal uses of plant parts (roots, rhizomes, stems, flowers, bulbs, barks, fruits, leaves, whole parts) were collected from published and authentic scientific literatures; journals, practical guidebooks, and thesis books [26]. The category of disease groups [27] and life form groups [7] were followed with slight modifications.

3. RESULTS AND DISCUSSION

3.1 Medicinal Plants and their Life form

A total of 74 species of medicinal plants in the wetlands, distributed in 69 genera and 43 families have been recorded. The three most dominant families represented for medicinal plants were Rosaceae, Ericaceae and Asteraceae, and Orchidaceae, having 7, 6, and 4 species, respectively (Table 1). This indicates that these species representation are from the wetland habitat as they are acid loving plants [16]. Similar study conducted in Eastern Bhutan also reported that the most represented medicinal plant families were Asteraceae and Rosaceae [8]. This presence of family dominance indicates that their collections of specimens may be from wetland areas. However, similar study conducted in Nepal and China recorded Asteraceae in the top three dominant families (Poaceae, Cyperaceae, Asteraceae) of wetland vegetation [11,4].

The herbaceous and shrub life form were the most abundant species represented with 58% and 30% while the trees and lianas were least represented at 7% and 5% of the total species (Fig. 2). An occurrence of higher proportion of shrubs and herbs is an indication of wetland vegetation [16]. Such distribution may be considered as the typical distribution in Himalayan temperate region [26] including lower montane areas [8]. This result is limited to present study and may not represent the actual status of life form of medicinal plants within wetlands in Bhutan. Every species recorded is provided with family name, life form, medicinal use and the part used (Table 1 and Fig. 3).

Fig. 1. Gasa, the location for study sites
Fig. 2. The proportion of life form occurred in wetland vegetation

Fig. 3. Representative medicinal plants in wetlands: (a) *Acorus calamus* L., (b) *Houttuynia cordata* Thunb., (c) *Colocasia esculenta* (L.) Schott, (d) *Spiranthes sinensis* (Pers.) Ames (e) *Dichroa febrifuga* lour., (f) *Rosa brunonii* Lindl. (g) *Holboellia latifolia* Wall., (h) *Berberis aristata* DC. (i) *Rubus paniculatus* Sm., (j) *Cannabis sativa* L., (k) *Enkianthus deflexus* (Griff.) C.K. Schneid., (l) *Rubus ellipticus* Sm
Table 1. List of medicinal plants occurred in wetland vegetation of Gasa, Bhutan

Sl. No.	Scientific name	Family	Life form	Part use	Medicinal uses
1	Acorus calamus L.	Acoraceae	Herb	Rhizome/shoot	Used in fever, constipation, bronchitis, cough, diarrhea, dysentery, piles [28], asthma, digestive problems (gas, bloating, colic) [29], nervine, [30], eupeptic, allay indigestion [15], scabies, fracture, edema and gout [23]
2	Ageratina adenophora (Spreng.) R.M. King & H. Rob.	Asteraceae	Shrub	Leaf	Used to cure cut and fever [31]
3	Ainsliaea latifolia (D. Don) Sch. Bip.	Asteraceae	Herb	Root	Used in digestive problem i.e., colic [32]
4	Alnus nepalensis D. Don Betulaceae	Tree	Leaf/branch	Used in reducing swelling and preventing sweating [15].	
5	Anseraema flavum (Forssk.) Schott	Araceae	Herb	Bulb	Used in chronic trachitis, bronchitis, tetanus, epilepsy, and skin diseases [32]
6	Artemisia indica Wild. Asteraceae	Herb	leaf/young shoot	Used to treat fever, cut, scabies, anthelmintic [31], vomiting, dizziness, high blood pressure, headache and skin diseases [33]	
7	Aster neoelegans Grierson Asteraceae	Herb	whole plant/aerial parts	Used for reducing fever arising from poisoning and heals wounds, mumps and body swelling [7,34].	
8	Astilbe rivularis Buch.-Ham. ex D. Don Saxifragaceae	Herb	leaf/root	Used for blood purification, toothache [32], tonic, diarrhea, dysentery [31], body ache, sprain and post-partum recovery [33]	
9	Berberis aristata DC. Berberidaceae	Shrub	root/bark	Used in eye diseases, diarrhea, jaundice, skin diseases, syphilis, chronic rheumatism, urinary disorders, diabetes, jaundice, gastrointestinal problem [29,35], malaria fever, in relieving pyrexia, as a wash for ulcer sores, as an eye lotion in conjunctivitis [36,37], allays chronic cough and cold [15,34].	
10	Cannabis sativa L.	Cannabaceae	Herb	leaf/flower/seed	Used in bronchitis, cuts, dyspepsia, skin disorders, cold, cough, epilepsy, sores [28], stomach disorders [15], diarrhea and head ache [31].
11	Centella asiatica (L.) Urb. Apiceae	Herb	whole plant/leaf/root	Used for mental peace, as a blood purifier, for skin diseases [37], to treat cuts [15], nervine tonic, anti-ulcerative [30], heat sickness, to improve memory and diuretic [31].	
12	Cirsium falconeri (Hook. fil.) Petr. Asteraceae	Herb	-	Used as medicinal plant [15]	
13	Coelogyne stricta (D. Don) Schltr. Orchidaceae	Herb	Pseudobulb	Used for headache and fever [38].	
14	Colocasia esculenta (L.) Schott Araceae	Herb	leaf/rhizome	Used for fever and cough [15,39].	
15	Commelina diffusa Burm. f. Commelinaceae	Herb	stem /leaf	Treatment of abscess, boils, malaria, for treatment of insect, snake and bug bites, edema, laryngitis, sore throats, acute tonsillitis, otitis media, in nose bleeding [40], boils, burns, and itches [11,39].	
16	Commelina paludosa Blume Commelinaceae	Herb	whole plant	Used in treatment of sexual impotency [29].	
17	Crassocephalum crepidoïdes (Benth.) S. Moore Asteraceae	Herb	whole plant	Stops wound bleeding and cure headache [15].	
18	Cymbidium iridioides D. Don Orchidaceae	Herb	Leaf	Used in blood clotting in deep wounds [38].	
Sl. No.	Scientific name	Family	Life form	Part use	Medicinal uses
--------	--------------------------	--------------	-----------	-----------------------	--
19	Cynoglossum lanceolatum Forssk.	Boraginaceae	Herb	Aerial parts/leaf/stem	Used in cold sores, afts, headache [41] and chest [42].
20	Daphne bholua Buch.-Ham. ex D. Don	Thymelaeaceae	Shrub	bark/root/stem	To treat fever [15] and to expel intestinal worms [43].
21	Dendrobium fimbriatum Hook.	Orchidaceae	Herb	Whole plant	Used in liver upsets and nervous debility [38].
22	Dichroa febrifuga lour.	Hydrangeaceae	Shrub	shoot/root	To prepare a febrifuge (anti-fever) [19,15], and to cure fever [31].
23	Dipacus inermis Wall.	Caprifoliaceae	Herb	Root/leaf	Used as medicine [6].
24	Drynaria propinqua (Wall. ex Mett.) Bedd	Polypodiaceae	Herb	stem/rhizome	Used in fracture [31], antidote, detoxifier, and poisoning [44,15].
25	Dryopteris juxtaporosa Christ	Dryopteridaceae	Herb	leaf	Used to cure chest and intestinal problems [42].
26	Elsholtzia fruticosa (D. Don) Rehder	Lamiaceae	Shrub	leaf/seed	To treat headache and anodyne [32].
27	Enkianthus deflexus (Griff.) C.K. Schneid.	Ericaceae	Shrub	Twig	To relieve gastric and indigestion problems [45].
28	Erythrina arborescens	Fabaceae	Tree	Seed/bark	Used to treat dysentery [31], febrifuge for kidney disorders, urine infection, back pain, giddiness, and disabilities [44].
29	Fragaria rubicola (Hook. f.) Lindl. ex Lacaita	Rosaceae	Herb	Whole plant/fruit	Anthelmintic and heals neurological and chest infections, and lung inflammation [34,6]
30	Gaulium aparine L.	Rubiaceae	Herb	whole plant/aerial parts	Used for migraine, sinusitis, jaundice [1], aperients and diuretic [46].
31	Gaultheria nummularioides D. Don	Ericaceae	Shrub	leaf/fruit	Antiseptic, carminative and neural stimulant [32].
32	Geranium procurrens Yeo	Geraniaceae	Herb	Root	Useful for cough and cold, bronchitis, the swelling of limbs, anti diarrheal, antitoxic and antimalarial [34].
33	Girardinia diversifolia (Link) Friis	Urticaceae	Herb	leaf/twig/bark	Used to treat gonorrhea [32,15], diabetes, fibre and fracture [31].
34	Halenia elliptica D. Don	Gentianaceae	Herb	Aerial parts	Heals wounds, allays common cough & cold, and headaches caused by the disturbances in blood and bile [7].
35	Hedera nepalensis K. Koch	Araliaceae	Liana	whole plant	Stimulant, diaphoretic, cathartic, rheumatism and emmenogouge [32]
36	Holboellia latifolia Wall.	Lardizabalaceae	Liana	fruit	Used for treating rheumatism [15].
37	Houttuynia cordata Thunb.	Saururaceae	Herb	Whole plant/root	Used against dysentery/diarrhea [15], indigestion and skin diseases [31].
38	Hydrocotyle sibbithorpioides Lam.	Araliaceae	Herb	leaf	Used against dysentery, diarrhea, piles, rheumatism, digestive [29], and treating urinary problems [11].
39	Impatiens arguta Hook. f. & Thomson	Balsaminaceae	Herb	Leaf	Used to treat old wounds [43].
40	Impatiens racemosa DC	Balsaminaceae	Herb	Seed/fruit	Used to cure cold and cough [32].
41	Jasminum humile L.	Oleaceae	Shrub	Leaf/bark/fruit	Used in wounds [31], sinus and skin disorders [32].
Sl. No.	Scientific name	Family	Life form	Part use	Medicinal uses
--------	---	----------------	-----------	-------------------	--
42	*Juglans regia* L.	Juglandaceae	Tree	whole plant/nut/bark/b ranch	Used for cleaning of teeth, applied on teeth during pain, valuable for enhancing the memory [36], used against diabetes [47], anthelmintic [31], heals air disorders such as headache, nausea, blurred vision [15]
43	*Ligustrum confusum* Decne.	Oleaceae	Shrub	leaf	Used as diuretic [21].
44	*Lyonia ovalifolia* (Wall.) Drude	Ericaceae	Shrub	stem/leaf	Used to treat boils, pimples, skin eruptions, worms, wounds [32], and scabies [31].
45	*Mahonia nepalensis* DC.	Berberidaceae	Shrub	stem/wood	Used for the treatment of skin diseases like eczema and psoriasis [48]
46	*Nasturtium officinale* W.T. Aiton	Brassicaceae	Herb	Leaf/whole plant	Used for the treatment of allergic problems and as diuretic, tonic to recover health and strength [49], constipation, goiter and vermifuge [32].
47	*Oenanthe javanica* (Blume) DC.	Apiaceae	Herb	Leaf/whole parts	Used in anti-diabetic, anti-arrhythmic, anti-inflammatory, neuroprotective, alcohol detoxification, anti-toxic, anti-coagulant, hepatoprotective, anti-HBV and memory improvement [50]
48	*Parochetus communis* Buch.-Ham. ex D. Don	Fabaceae	Herb	leaf	Used for stomach disease of babies, and earache [32].
49	*Persicaria nepalensis* (Meisn.) H. Gross	Polygonaceae	Herb	whole plant	Used against swelling in the body parts [32].
50	*Pieris formosa* (Wall.) D. Don	Ericaceae	Shrub	Leaf/twig	Used to treat irritating skin diseases, however, extract of leaves & twigs are highly poisonous to people and local animals [43].
51	*Plantago eosa* Wall.	Plantaginaceae	Herb	seed/root/leaf	Used against diarrhea [51], bone fracture, and inflammation [32]
52	*Potamogeton crispus* L.	Potamogetonaceae	Herb	whole plant	Used as diuretic and treatment of urinary tract infections [50].
53	*Primula denticulata* Sm.	Primulaceae	Herb	Flower/leaf	Used to treat diabetes, urinary ailments [32] and eye infections [42].
54	*Prinsepia utilis* Royle	Rosaceae	Shrub	fruit/root	Used against burns, cuts and rheumatic [32]
55	*Prunella vulgaris* L.	Lamiaceae	Herb	whole plant	To treat breath problems, lung complaints, liver & cerebral complaints, cold, fever, gastric complaints and headache [32,6].
56	*Quercus griffithii* Hook.f. & Thomson ex Miq.	Fagaceae	Tree	Nut	Used against diarrhea [15]
57	*Ranunculus fluitus* DC	Ranunculaceae	Herb	whole plant/leaf	Used to treat skin infection [52] and boils [32].
58	*Rhododendron arboreum* Sm.	Ericaceae	Shrub	Flower/leaf	Used to treat mental retardation, dysentery, headache, eye cataract, wounds, rheumatism [53,31,32], diarrhea [15], and heart problems [36].
59	*Rosa brunonii* Lindl.	Rosaceae	Shrub	Root	Used to relief pain [32].
60	*Rosa sericea* Lindl.	Rosaceae	Shrub	flower	Useful for bile and air related disorders [7,19].
Sl. No.	Scientific name	Family	Life form	Part use	Medicinal uses
--------	---------------------------------	-----------------	-----------	-------------------	--
61	Rubus biflorus Buch.-Ham. ex Sm.	Rosaceae	Shrub	stem without bark	Useful for reducing blood pressure, common cold, and pleural effusion [7].
62	Rubus ellipticus Sm.	Rosaceae	Liana	fruit/shoot/root/ bark	Used in treatment of fevers, diarrhea [48], gastric troubles, dysentery, colic, coughs [15], sore throat, skin diseases, wounds, tumors, cholera [36], jaundice, typhoid [31] and has antioxidant properties [29].
63	Rubus paniculatus Sm.	Rosaceae	Liana	fruit	Used against diarrhea and stomach disorders [32].
64	Rumex nepalensis Spreng.	Polygonaceae	Herb	leaf/root/twig	Used in treatment of colic, headache [47], skin diseases, wound healing and anti-allergic properties [29], against hair loss [15], boils, diuretic, purgative, scurvy and swelling of muscle [32].
65	Scurrula elata (Edgew.) Danser	Loranthaceae	Shrub	leaf	Reduce galls [31].
66	Spiranthes sinensis (Pers.) Ames	Orchidaceae	Herb	Root/stem	Used in curing sores [38].
67	Strobilanthes auriculata Nees	Acanthaceae	Shrub	Inflorescence	To increase stamina and immunity against diseases [54].
68	Swertia bimaculata (Siebold & Zucc.) Hook. f. & Thomson ex C.B. Clarke	Gentianaceae	Herb	Leaf	Used for the treatment of stomach disorders [43].
69	Taxus baccata L.	Taxaceae	Tree	leaf/bark/axil	Used against asthma, bronchitis, lumbago, indigestion, cancer [53], cough [36], swelling, contraceptive [32] and as medicine [17].
70	Thalictrum foliolosum DC.	Ranunculaceae	Herb	Root	Used to treat abdominal pain, blood purification, boils, earache, eczema, eye diseases, fever, leucoderma, piles, rheumatism, gout, tonic and toothache [32,18].
71	Trifolium repens L.	Fabaceae	Herb	whole plant	Used against dandruff [32].
72	Vaccinium dunalianum Wight	Ericaceae	shrub	Leaf	Used to treat intestinal worms [43].
73	Viburnum mullaha Buch.-Ham. ex D. Don	Adoxaceae	Shrub	leaf/fruit	Used to treat stomachache and stimulant [32]
74	Zanthoxylum acahanpodiunum DC.	Rutaceae	shrub	Leaf/fruit/twig	Used externally to relieve abdominal pain and to relieve indigestion problems [45].
Table 2. Category of diseases that could be treated by medicinal plants in wetlands of Gasa, Bhutan

Sl.no.	Category of disease	Common diseases/problems	No. of species counted	% of species counted
1	Digestive diseases	Dysentery, constipation, colic, tetanus, dyspepsia, aperients, vermifuge, diarrhea, anthelmintic and eupeptic	47	20.2
2	Skin diseases	Scabies, boils, wounds, cut, abscess and sore	35	15.0
3	Respiratory diseases	Bronchitis, lungs problem, cough and cold, throat problem and tracheitis	24	10.3
4	Weather sickness	Fever, headache, sickness, flu, malaria, anodyne and migraine	23	9.9
5	Neurological diseases	Nervine, epilepsy, dizziness and stimulants	17	7.3
6	Tonic	Kidney, liver, heart, blood, health, oedema, blood clotting and sinus	16	6.9
7	Kidney diseases	Diabetes, diuretic and urinary disorders	16	6.9
8	Ear, nose and ear (ENT) diseases	Red eye/conjunctivitis, nose bleeds, jaundice and otitis	13	5.6
9	Osteoarthritis diseases	Joint pains, arthritis, fracture, mumps, sprains and rheumatism	13	5.6
10	Detoxification	Food allergy, insect allergy, poisoning and antidote	9	3.9
11	Stomach diseases	Stomach pain, ulcers, colonic problems	8	3.4
12	Hot diseases in body	Heat sickness, burns, inflammation and diaphoretic	6	2.5
13	Disease of mouth	Tooth decay and halitosis	3	1.2
14	Blood pressure diseases	High and low blood pressure	2	0.9
15	Disease caused by animal bites	Snake and insect bites	1	0.4
3.2 Medicinal Plants and their Usage

Almost every part of plants (leaf, bark, stem, shoot, flower, etc.) or sometime whole part is collected for the medicinal purposes. The three most plant parts used for medicine were leaf (47%), whole plant (23%) and root (22%) (Fig. 4), and this representation may differ on part usages [8]. The locally prepared drugs were regularly used and proven to be effective, cheap and beneficial with almost no side effect compared to the allopathic drugs [42]. The local population use indigenous knowledge to cure various diseases [42] and keep the practices intact through personal experiences and ancestral prescription [8]. Given the current trend of modernization, much of this knowledge is disappearing along with the traditional lifestyle and retreats of wetland [4]. Therefore, study of traditional knowledge on wetland medicinal plants is needed, while such knowledge still exists. This would enable the traditional medicine to complements the modern medicines adequately.

These wetland medicinal plant species were found effective against 15 categories of diseases (Table 2). Common diseases such as digestion (20.2%), skin (15%), respiratory (10.3%) and weather sicknesses (9.9%), were mostly treated which may be caused due to unhygienic practices at home. The use of medicinal plants against snake and insect bites were least (0.4%) represented, which may be due to collection difficulties or not able to identify these plants (Table 2). Uses of these medicinal plants against diseases varied from region to region. For instance, people of Rampur Ghol, Nepal use Centella asiatica (L.) Urb. for fever, diarrhea, and dysentery [11], while people of Kilikhar, Mongar, eastern Bhutan use it for hypertension and improving memory power [8]. The difference in the way medicinal plants are used for curing different diseases may be due to the local ethnobotanical practices and the prevalence of endemics diseases in the specific localities.

Species such as Acorus calamus L. is found richly in shallow fresh marsh of Bhutan [13]. However, it is vulnerable in Himachal Pradesh [54,55,26]. Similarly, the Thalictrum foliolosum DC species occurred in wetlands of Bhutan but is considered endangered in Himachal Pradesh, India [55]. The reasons may be due to lack of awareness of its uses by Bhutanese people and over harvesting in India, respectively. The root, rhizome, bark and shoot of these species were found to be effective against many diseases (Table 2). This may encourage illegal, unsustainable and irrational non-scientific harvesting method like uprooting whole plant and potentially causing extinction. To preserve such invaluable wetland medicinal plants and integrate ethno-medicinal practices in our lives, sensitization on the uses of medicinal plants in their locality is recommended.

4. CONCLUSION

The wetland plants provide different ailments against different categories of diseases. Uses of medicinal plant parts differed according to the local communities and prevalence of endemic diseases. Families of medicinal plants such as Rosaceae, Ericaceae and Asteraceae were found dominant in the wetlands. In-depth study is recommended to explore other potentially important plants species in the wetlands in Bhutan. Our data may be useful for science education program in school or for species-level conservation measures by concerned agencies. Additionally, it may be useful for carrying out bioprospecting and phytochemical studies in future to formulate more traditional herbal remedies by ITMS and to add on to the list of the pharmacopoeia of Bhutanese traditional medicine. Thus, it is imperative for local communities, herbalist, park services and ITMS to collaborate for better planning and management of the wetland vegetation in Bhutan.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

We would like to thank Watershed Management Division, DoFPS, Thimphu, Bhutan for the financial support and Mr. Kezang Tobgay, Herbarium, National Biodiversity Centre for helping us with the identification of specimens. Authors would also like to extend appreciation to Mr. Kezang Choial, student at TTI, Samthang, Wangdue, Bhutan and Mr. Karma Tenzin, currently studying at Sharda University, Greater Noida, India for their field assistance during the sample collections. Nevertheless, we also acknowledged the reviewers for the feedback and comments.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Wangchuk P. Health impacts of traditional medicines and bioprospecting. A World Scenario Accentuating Bhutan’s Perspective. 2008:18(5):116-134.
2. World Health Organization. WHO traditional medicine strategy: 2014-2023, Geneva; 2013.
3. Wangchuk P, Olsen A. Risk factors for the sustainability of medicinal plants in Bhutan. Asian Medicine. 2010;6(1):123-136: DOI.org/10.1163/157342110X606897
4. Zhang Y, Xu H, Chen H, Wang F, Huai H. Diversity of wetland plants used traditionally in China: A literature review. Journal Of Ethnobiology And Ethnomedicine; 2014. PMCID: PMC4210556.
5. Wangchuk P, Tobgay T. Contributions of medicinal plants to the gross national happiness and biodiscovery in Bhutan. Journal of Ethnobiology and Ethnomedicine. 2015;11(48). DOI: 10.1186/s13002-015-0035-1
6. Muzzafar A, Modi S, Javaid M, Nisar N. Ethnobotanical studies of medicinal plants of barie/sarbal mountain range in District Anantnag of South Kashmir, J and K, India. Journal of Medicinal Plants Studies. 2019;7(5):07-12.
7. Wangchuk P, Samten, Ugyen. High altitude medicinal plants in Bhutan: An illustrated guide for practical use. Pharmaceutical and Research Unit, Institute of Traditional Medicine services, Thimphu; 2009.
8. Chetri BK, Wangdi P, Penjor T. Ethnomedicinal practices in kilikhar, mongar. Asian Plant Research Journal. 2018;1(2):1-13: DOI: 10.9734/APRJ/2018/v12i26275
9. The constitution of the kingdom of Bhutan. Thimphu, Bhutan; 2008.
10. Mukhial PK, Sinclair B, Peldon S. Impacts of harvesting methods on the sustainability of four wild medicinal plant species in Lingshi, Thimphu, Bhutan. Pharmaceutical Research. 2011;5(7).
11. Dangol DR, Gautam B, Oli BB. Wetland Plants and their local use: Observation from Rampur Ghol, Chitwan, Nepal. Nat. Hist. Mus. 2014;28:142-159.
12. Siwakoti M. An overview of floral diversity in wetlands of Terai region of Nepal. Our Nature. 2006;4:83-90.
13. Tendar P, Cooper DJ, Sridith K. Wetland plant communities of the Eastern Himalayan highlands in northern Bhutan. Wetlands. 2020;40:2477-2488. DOI: 10.1007/s13157-020-01339-9
14. Penjor D, Tshering T, Bhattacharya G, Namgay T. The study of ethnobotanical uses by local healers in Taktse chiwog from central Bhutan. Asian Plant Research Journal. 2020;6(4):19-39.
15. Jamba N, Kumar BM. Medicinal plants in the broad-leaf mixed coniferous forest of tsothang Chiwog, Bhutan: Floristic attributes, vegetation structure, ethnobotany, and socioeconomic Aspects. Front. Environ. Sci. 2018;5(96). DOI:10.3389/fenvs.2017.00096
16. Tendar P, Sridith K. Vegetation structure of wetlands in eastern Himalayan highlands of Gasa, Bhutan. Science Asia [in press]; 2021. DOI:10.2306/scienceasia1513-1874.2021.007
17. Grierson AJC, Long DG. Flora of Bhutan: Including a record of plants from Sikkim, Royal Botanic Garden, Edinburgh. 1983;1(1). Grierson AJC, Long DG. Flora of Bhutan: Including a record of plants from Sikkim, Royal Botanic Garden, Edinburgh. 1984;1(2).
18. Grierson AJC, Long DG. Flora of Bhutan: Including a record of plants from Sikkim, Royal Botanic Garden, Edinburgh. 1987;1(3). Grierson AJC, Long DG. Flora of Bhutan: Including a record of plants from Sikkim, Royal Botanic Garden, Edinburgh. 1991;1(1).
19. Noltie HJ. Flora of Bhutan: Including a record of plants from Sikkim and Darjeeling, Royal Botanic Garden, Edinburgh. 1994;3(1).
24. Noltie HJ. Flora of Bhutan: Including a record of plants from Sikkim and Darjeeling: The grasses of Bhutan, Royal Botanic Garden, Edinburgh. 2000;3(2).
25. Pearce NR, Cribb PJ. Flora of Bhutan: Including a record of plants from Sikkim and Darjeeling: The orchids of Bhutan, Royal Botanic Garden, Edinburgh. 2002;3(3).
26. Adnan M, Bibi R, Azizulah A, Andaleeb R, Mussarat S, Tariq A et al. Ethno medicinal plants used against common digestive problems. African Journal Of Traditional, Complementary And Alternative Medicines. 2015;12(5):99-117. DOI.org/10.4314/ajtcam.v12i5.15
27. Hop NV, Xiong CC, Yun XL, Ha NT, Hanh NT. Diversity and indigenous knowledge of using medicinal plants of the Dao people in Ta Dung National Park, Vietnam. Journal of Medicinal Plants Studies. 2020;8(1):45-49.
28. Chopra N, Pandey N, Tewari LM, Tewari A. Floristic composition of ethnomedicinal plants used by indigenous people in Tarai region, Kumaun Himalaya. Journal of Medicinal Plants Studies. 2019;7(4):139-143.
29. Dwivedi T, Kanta C, Singh LR, Sharma IP. A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India Journal of Medicinal Plants Studies. 2019;7(2):106-116.
30. Santhan P. A field study on Indian medicinal plants. Journal of Medicinal Plants Studies. 2020;8(4):198-205.
31. Tamang R, Thakur CK, Koirala DR, Chapagain N. Ethno-medicinal Plants Used by Chepang Community in Nepal. Journal of Plant Resources. 2017;15(1):21-30.
32. Man SR, Samant SS. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya. Indian Journal of Traditional Knowledge. 2011; 10(3):439-459.
33. Bhattarai KR. Ethnomedicinal practices of the lepcha community in Ilam, East Nepal. Journal of Plant Resources. 2017;15(1):31-44.
34. Wangchuk P, Namgay K, Gayleg K and Dorji Y. Medicinal plants of dagala region in Bhutan: their diversity, distribution, uses and economic potential. Journal of Ethnobiology and Ethnomedicine. 2016; 12(28). DOI: 10.1186/s13002-016-0098-7
35. Kala CP. Problems and prospects in the conservation and development of Himalayan medicinal plants sector, International Journal of Sustainable Development. 2006;9(4):370-389. DOI: 10.1504/IJSD.2006.014221
36. Rawat N, Upadhyay ML. Diversity of the medicinal plants of Almora district, Uttarakhand and their Ethno-medical use. Journal of Medicinal Plants Studies. 2020;8(3):89-101.
37. Prasad S, Tomar JMS. Distribution and utilization pattern of herbal medicinal plants in Uttarakhand Himalaya: A case study Journal of Medicinal Plants Studies. 2020: 8(3): 107-111.
38. Vaidya BM, Shrestha N. Joshee. Report on Nepalese orchid species with medicinal properties. In The Himalayan plants, can they save us? Proceeding of Nepal-Japan joint symposium on conservation and utilization of Himalayan medicinal resources (Eds.T Watanabe, A. Takano, M.S. Bista and H.K. Saiju), Society for the Conservation and Development of Himalayan Medicinal Resources (SCDHMR), Japan. 2000:146-152.
39. Adenuga DA, Ewekeye TS, Sharaibi OJ, Ogundele FO. Inventory of medicinal plants diversity in Atan Okansoso village, APA, Badagry, Lagos state, Nigeria Journal of Medicinal Plants Studies. 2020;8(4):176-182.
40. Khan, MAA, Islam MT, Sadhu SK. Evaluation of phytochemical and antimicrobial properties of commelina diffusa Bum. f. Oriental Pharmacy and Experimental Medicine. 2011;11:235-241. DOI: org/10.1007/s13596-011-0028-0
41. Bussmann RW, Swartzinsky P, Worede A et al. Plant use in Odo-Bulu and Demaro, Bale region, Ethiopia. J Ethnobiology Ethnomedicine; 2011. DOI.org/10.1186/1746-4269-7-28
42. Adnan M, Begum S, Khan AL, Tareen AM, Lee I. Medicinal plants and their uses in selected temperate zones of Pakistani Hindukush-Himalaya. Journal of Medicinal Plants Research. 2012;6(24):4113-4127. DOI: 10.5897/JMPR12.656
43. Panda S. Threatened ethnomedicinal plants of singalila national park in Darjeeling Himalaya, including their ethnic
drug dosimetry: A Report on an extensive field survey. Hartmann, Barclay and Weipert: Biodiversität und Naturausstattung im Himalaya VI. - Erfurt; 2018.

44. Pandey V, Bhatt ID, Nandi SK. Environmental stresses in Himalayan medicinal plants: research needs and future priorities. Biodiversity and Conservation; 2019. DOI.org/10.1007/s10531-019-01776-x

45. Wangchuk P, Yeshi K, Jamphel K. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integrative Medicine Research. 2017;6:372-387. DOI.org/10.1016/j.imr.2017.08.002

46. Tariq F, Inzimam S, Natasha K, Ahmad J, Ahmad F, Adnan et al. Ethno medicinal study of various plants in lone valley, district Chitral, KPK, Pakistan. 2019;7(3):24-28.

47. Azeem A, Zeb A, Umer S, Ali G, Khan Y. Ethno botanical studies of Tatta Pani Valley, Kotli, Azad Jammu and Kashmir (AJK) Pakistan journal of Medicinal Plants Studies. 2020;8(3):14-20.

48. Thusa R, Mulmi S. Analysis of phytoconstituents and biological activities of different parts of Mahonia nepalensis and berberis aristata. Nepal Journal of Biotechnology. 2017;5(1):5-13.

49. Ali M, Iqbal IM, Shabbir A, Khan Z, Khan MTA. Ethno medicinal studies on aquatic plants of tehsil Shakargarh, Punjab, Pakistan Journal of Medicinal Plants Studies. 2020;8(1):15-19.

50. Chan EWC, Wong SK, Chan HT. Ulam herbs of oenanthe javanica and cosmos caudatus: An overview on their medicinal properties. Journal of Natural Remedies; 2016. DOI: 10.18311/jnr/2016/8370

51. Wangchuck P. Bioactive alkaloids from medicinal plants of Bhutan. A thesis submitted in fulfillment of the requirements for the award of the degree master of science (research). The university of Wollongong. Department of Chemistry, University of Wollongong, Australia; 2004.

52. Arya P, Mehta JP. A review on antimicrobial and phytochemical screening of traditionally used Himalayan medicinal plants. Environment Conservation Journal. 2017;18(1,2):49-62.

53. Ningombam DS, Konsam SC, Singh PK. Nutritive value of strobilanthes auriculata nees (Acanthaceae) a pleistial plant of manipur, northeast India. International Journal of Scientific Research. 2014;3(1):2277-8197.

54. Samant, Shreekar Pant, Man Singh, Monohar Lal, Ashok Singh, Aman Sharma, Sakshi Bhandari. Medicinal plants in Himachal Pradesh, north western Himalaya, India, The International Journal of Biodiversity Science and Management. 2007;3(4):234-251. Doi: 10.1080/17451590709618177

55. Pal DK, Kumar A, Dutt B. Floristic diversity of Theog forest division, Himachal Pradesh, Western Himalaya. Check List. 2014;10:1083-1103.