Human error analysis using sherpa and heart method in Batik Cap production process

I Pratiwi*, M Masita, H Munawir and R Fitriadi
Department of Industrial Engineering, Universitas Muhammadiyah Surakarta, Jalan Jendral A Yani Tromol Pos 1 Pabelan – Surakarta, Indonesia

* Email: Indah.Pratiwi@ums.ac.id

Abstract. The batik industry is one of the creative industries which development keeps increasing every year. Almost all of Batik Cap production process activities are done manually. Therefore, production operators play an important role in influencing the quality of Batik Cap. This research was conducted to identify the human error factor that happened in the Batik Cap production process using SHERPA and HEART method. The potential for human error that occurs is described with SHERPA tabulation. The human error assessment is calculated using the HEART method of human error probability value that occurs in the production process operator. The result of this research is 26 potential errors of overall activity in 6 work stations divided into 19 error in action error, 5 error on checking error and 2 error in selecting error. The highest probability of human error value in stamping the work station on the fabric stamping activity.

Keywords: Batik Cap, Human Error, SHERPA, HEART

1. Introduction
Human Reliability is the probability of human success in carrying out his work elements. The goal is to identify high-risk areas, identify the factors that lead to human error and how to repair an existing system so as to reduce adverse human error and pose a hazard. The most commonly used method is Systematic Human Error Reduction and Prediction (SHERPA) because it is suitable for errors related to human skills and habits, more detailed and consistent in error identification. The next method is Human Error Assessment and Reduction Technique (HEART) is a method designed as a method of quantifying human error risk quickly, simply and easily understood by engineers and human factors specialists [1]. Small businesses Batik Supiyarso in the District Laweyan Surakarta, where the process of making Batik done with the stamping known as Batik Cap. Stages of the production process are the process of cutting the fabric, the process of stamping, the coloring process, the "penglorodan" process, the process of drying, and the process of arrangement of batik fabric [2]. Produced batik quality is determined by the quality of the process being undertaken and also the quality of raw materials. The most influential production process of batik quality in outline occurs in the stamping and coloring. In the coloring section, the most common defects are in the form of uneven color gradations (5%), curved fabric (2%), and uneven dyeing (3%) [3]. Research in the textile industry with the highest Human Error probability results in Dyeing Department at occupation number 6, human error probability value 54.4% [4].

Humans have limitations in their work to make mistakes. Analysis of the occurrence of human error associated with skills and habits more detailed and consistent in the identification of errors using
the input hierarchy of the basic level task is the method of SHERPA \cite{5}\cite{6}. While the HEART method is used in determining the chances of error in every job activity \cite{7}. The HEART method is based on the principle that every time a task is performed there is a possibility of failure and this possibility is affected by one or more EPC (Error Producing Condition), the factors that have a significant effect on performance are indicated by the largest HEP value. This condition can then be applied to the best-case scenario of the estimated probability of failure under ideal conditions to then get a chance of final error \cite{8}.

This study attempted to find an alternative quality improvement of batik produced by identifying the possibility of human error that occurs in the process of Batik Cap so that it can be searched way to reduce the existence of the error.

2. Method

This study was conducted to identify the type of error operator/human error that contribute to the occurrence of defective products. Also to know the magnitude of operator error probability in every product defect event.

The data was collected through interviews directly to the person in charge of production and 9 operators by giving a questionnaire to determine the frequency of factors causing the error to occur, ie 0 to 1 value for each of the driving factors. The assessment range is the range of the probability value of the contribution to the occurrence of human error in order to assess the value of APOA (Assessed Proportion of Affect) by determining the probability value of error for each factor that has been identified.

After the data successfully collected proceed to the stage of data processing, namely:

1) Hierarchical Task Analysis (HTA). Error identification data is then performed breakdown task into sub-task using HTA which is used as reference determination identification of the work failure operator.

2) Data Processing SHERPA

 a) Human Error Identification (HEI), HTA Data is used to identify errors related to human error using SHERPA Error Mode table reference.
 b) Consequence Analysis, which occurs due to human error that may occur.
 c) Ordinal Analysis Probability, indicated by low, medium, and high.
 d) Analysis of Strategy, explains remedial solutions to overcome human error which may occur.

3) HEART Data Processing

 a) Classify the task type to one of 8 GTT categories. HTA data used for the identification of errors related to human error using the reference table owned by GTT HEART.
 b) Determine EPCs and APOA. The result of error identification is translated into EPCs language to determine EPC value and used as a reference for a questionnaire to determine APOA value.
 c) Calculates the HEP value. To determine the highest error probability level of each work station.

3. Results and Discussion

Making HTA for 6 work stations making Batik Cap. Mori Cutting Working Station with 2 female workers, 35-40 years old. Stamping Working Station with 5 male workers, age 48-60 years old. Coloring Working Station with 2 male workers, 35-37 years of age. Penglorodan Working Station, with 1 male worker, age 55 years. Drying Working Station, with 1 male worker, 37 years old. Batik Stacking Working Station with 1 female worker, age 56 years.
Table 1. Hierarchical Task Analysis In “Batik Cap” making Process

Working Station	Hierarchical Task Analysis
1. Mori Fabric Cutting	1.1. Measuring Fabrics
	1.2. Cutting Fabrics
	1.3. Stacking Fabrics on Hangers
2. Stamping	2.1. Cutting the Wax
	2.2. Setting up the work table
	2.3. Installing Fabrics on the Work Desk
	2.4. Taste the Fabrics
	2.5. Folding Fabrics that have been stamped
3. Coloring	3.1. Color mixing
	3.2. Pouring colors into Peder Machine
	3.3. Installing a fabric
	3.4. Coloring and Color Locking Process
4. Penglorodan	4.1. Boiling Fabrics
	4.2. Washing Fabrics
5. Drying	5.1. Lifting Fabrics to the Dryer
	5.2. Pulling Fabrics from the Dryer
6. Stacking Batik Fabrics	6.1. Sorting Fabrics
	6.2. Packing Fabrics

The data of work failure identification was obtained from an interview and brainstorming with Batik business owners and also with a total of 9 employees (Table 2).

Table 2. Identification of Operator’s Working Failure

Activity Description	Failure Description	Cause of Failure	Failure Effect	Corrective action		
1.1 Measuring Fabrics	Incorrect size of fabric	The operator forgot to count the size The operator is not focused due to the intervention of the other party	The wrong size of fabric / missed	Repeat again		
1.2 Cutting Fabrics	Fabric is hard to cut Pieces of fabric are not symmetrical	The cutter/scissors are not sharp The operator is not used to cutting The operator is not focused due to the intervention of the other party	Cain defects	Cutting the defect fabric		
1.3 Stacking Fabrics on Hangers	There are pieces of fabrics that are still folded / not tidy	The operator did not inspect the fabric after it was laid out The operator hurried when setting the fabric	Fabric is not tidy, hard to taste	Repeat again		
2.1 Cutting the Wax	The operator did not cut the wax	Cutlery can not be used	It will not fit in the frying pan	Sharpen the cutting tool		
2.2 Preparing the Work Desk	Plastic cover of wet foam torned	The operator did not check the desk when it’s going to be used The operator is less aware because of their age	Wet fabric can not be stamped	Drain the fabric		
2.3 Stacking Fabrics on the Work Desk	There are pieces of fabrics that are still folded	The operator missed to check the fabric The operator hurried when setting up the fabric	Fabric is not tidy, hard to taste	Repeat again		
No	Task	Activity Description	Failure Description	Cause of Failure	Failure Effect	Corrective action
------	-------------------------------	---------------------------------------	------------------------------	---	-------------------------------------	-------------------
2.4	Stamping the Fabrics	Wrong stamping	The stamping tool can not be used	The operator hurriedly stamping the fabric	The tasting does not fit the motive	Can not be fixed
				Operators are less aware because of their age		
2.5	Folding the stamped fabrics	The operator folds the fabric imperfectly	The operator hurried while folding the fabric	Damage the wax on the fabric	Repeat again	
3.1	Color mixing	Incorrect color	The operator did not check the results	Less experienced operators	Caint defects	Repeat
3.2	Pouring Color into Peder Machine	The operator pours the color with a less precise dose	The operator hurries when pouring colors	Spilled color solution	Can not be fixed	
3.3	Laying the Fabrics	The operator puts the fabric in the wrong position	The operator is not accustomed to installing the fabric to the peder	Fabric wrinkled	Can not be fixed	
3.4	Coloring and Color Locking Process	Uneven or dirty staining results	Did not do color testing on fabric	Fabric color does not match	Can not be fixed	
			Inexperienced operator	Peder machine not cleaned		
4.1	Boiling Fabrics	The color of the fabric is faded	Boiling too long	The color of the fabric is faded	Can not be fixed	
			Too much starch solution			
	Washing Fabrics	Waxes are still attached	Boiling is not stirred continuously	Waxes are still attached	Repeat again	
			Too little starch solution			
5.1	Lifting Fabrics into Dryer	Uneven drying	The operator does not level the fabric in the dryer	Inhibits work	Repeat again	
5.2	Pulling Fabrics from the Dryer	Uneven drying	The operator did not pull the fabric on the dryer	Inhibits work	Repeat again	
6.1	Sorting Fabrics	False sorting of good/bad quality fabrics	The operator did not check thoroughly	Incorrect placement of fabric sort	Complete check	
6.2	Packing Fabrics	The packaging is not strong	The operator hurriedly packs batik fabric	The packaging results are easily removed	Re-checking	

After making HTA and collecting work failure identification data, it is then used as a reference for making a tabulation of SHERPA (Table 3).
Task number	Task	Error Mode	Error Description	Consequences	Correction	Error Probability
1.1	Measuring Fabrics	A8	The operator did not measure the size of the fabric	Inhibits work	Repeat again	Low
		A2	The operator wrongly calculates the size of the fabric	Inhibits work	Repeat again	Medium
		A7	The operator cuts the fabric not straight	Fabric defects	Cut out a defective fabric	Medium
1.2	Cutting Fabrics	C2	The operator did not check the crumpled fabric	Difficult to be stamped	Repeat again	Low
1.3	Stacking Fabric on Hangers	A8	The operator Did not give the fabric on the wet sponge	Interfere the work	Wetting the sponge	Low
		C2	The fabric is hollow	Wet fabric can not be stamped	Replace the glass fabric	Medium
2.1	Cut out the candle	A8	The operator Did not cut the wax	It is not fit in the frying pan	Cut out the candle	Low
2.2	Prepare the Work Desk	A8	The operator did not wet the sponge with water	Interfere the work	Wetting the sponge	Low
		A8	The operator Did not give the fabric on the wet sponge	Interfere the work	Do it again	Low
		C2	The fabric is hollow	Wet fabric can not be stamped	Wet fabric can not be stamped	Medium
2.3	Stacking Fabrics at the Work Desk	A9	The operator organizes the fabric not straight	Inhibits work	Repeat again	High
2.4	Taste the Fabrics	A7	The Operator wrongly stamped the motive	wrong fabric motive	Can not be fixed	Medium
2.5	Folding Stamped Fabrics	A9	The operator folds the fabric not thoroughly	Damage the wax on the fabric	Can not be fixed	Medium
3.1	Color mix	S2	The operator chooses a wrong mix	Fabric color is wrong	Do it again	Medium
3.2	Pouring Color to Water Glass	A6	The operator pours the colors not on the color box	Color does not appear	Do it again	Low
3.3	Laying Fabric	A2	The operator did not tie the fabric to the clamp	Inhibits work	Do it again	Low
3.4	Coloring and Color Locking Process	C1	The operator did not clean the peder	Color does not match	Can not be fixed	Medium
4.1	Boiling Fabrics	A8	The operator did not pour the starch solution	Waxes stuck together again	Repeat again	Low
		A4	The dose of starch solution is less	Waxes are still attached	Repeat again	Medium
		A4	The dose of starch solution is excess	The color of the fabric is faded	Can not be fixed	Low
		A8	Not stirring at the time of penglorodan	Waxes are still attached	Repeat again	Low
4.2	Washing Fabrics	C2	Checking of fabric is incomplete	Waxes are still attached	Repeat again	Low
5.1	Lifting Fabric to Dryer	A9	Not leveling the fabric in the fabric	Uneven drying	Repeat again	Low
5.2	Pulling Fabric from the Dryer	A2	Not pulling fabric from the dryer	Uneven drying	Repeat again	Low
6.1	Sorting Batik Fabric	A4	Wrong choosing good/bad quality fabric	Incorrect packing location	Recheck	Low
6.2	Packing Batik Fabric	A4	Not folding in the same size	Not tidy	Repeat again	Medium
		A3	Packaging is not strong	The packaging results are easy to open	Repeat again	Low
After making HTA, the lowest level of HTA is used as a reference in HEART data processing (Table 4).

Table 4. Calculation of Human Error Assessment and Reduction Technique

Task	Generic Task	Human Unreliability Value	Calculation	HEP
	E	0.02	EPC 16	0.032768
1.1			Total HEART Effect 36	
			Proportion 0.106	
			Assessed Effect 1.024	
	E	0.02	EPC 23	0.0270766
1.2			Total HEART Effect 31	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 31	0.0211744
1.3			Total HEART Effect 36	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 23	0.0236
2.1			Total HEART Effect 16	
			Proportion 0.106	
			Assessed Effect 1.118	
	E	0.02	EPC 17	0.04032
2.2			Total HEART Effect 38	
			Proportion 0.106	
			Assessed Effect 1.008	
	E	0.02	EPC 17	0.044592
2.3			Total HEART Effect 36	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 15	0.0513
2.4			Total HEART Effect 23	
			Proportion 0.106	
			Assessed Effect 1.118	
	E	0.02	EPC 31	0.0228
2.5			Total HEART Effect 36	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 31	0.0354
3.1			Total HEART Effect 17	
			Proportion 0.106	
			Assessed Effect 1.024	
	E	0.02	EPC 31	0.02036
3.2			Total HEART Effect 1.06	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 31	0.0228
3.3			Total HEART Effect 1.06	
			Proportion 0.106	
			Assessed Effect 1.018	
	E	0.02	EPC 17	0.0354
3.4			Total HEART Effect 31	
			Proportion 0.106	
			Assessed Effect 1.024	
	E	0.02	EPC 31	0.02442
4.1			Total HEART Effect 1.06	
			Proportion 0.106	
			Assessed Effect 1.102	
Based on observations and interviews that is tabulated in the SHERPA tabulation (Table 5).

Table 5. Classification of Error Types

Number	Error Types	Total
1	Action Error	19
2	Checking Error	5
3	Selecting Error	2

Based on Table 5, the total of 18 tasks generated 26 error descriptions which are included in 3 types of errors classified according to SHERPA error mode ie error in action error, checking error and selecting error. The entire error description generated the consequences that have been described so that with the explanation there is a potential error that need to be wary of.

In table 6 HEP values are sorted from the largest to the smallest values to find out which task has the highest probability of operator failure.

Table 6. The sequence of Human Error Probability On Operator Production of “Batik Cap”

No	HEP	Task
1	0.0513	2.4 Stamping the Fabrics
2	0.0448	2.3 Organize the Fabric on the Work Desk
3	0.0403	2.2 Preparing the Work Desk
4	0.0354	3.1 Mixing Color
5	0.0348	3.4 Coloring and Color Locking Process
6	0.0328	1.1 Measuring Fabrics
7	0.0271	1.2 Cutting Fabrics
8	0.0238	4.1 Boil the Fabrics
Based on Table 6, the result of the HEP calculation shows the probability of human error in the production process of Batik Cap, which is 0.0204-0.0513. The biggest potential error occurs in the task of stapling the fabric with HEP of 0.0513. This Task has the highest number of EPCs that is 4 EPC, meaning it has the most number of error types where each EPC shows errors contained in this task. Description of the error in the task of stapling the fabric is one of the stapling motives, because the canting stamping tool is less reliable due to some eroded angle, the operator in a hurry to do the stapling, the operator is exhausted due to standing position and exposed to heat radiation from the stove for 7 hours. operators are subject to limitations due to the influence of age and less experienced operators. The errors found did not fully show that the operator is wrong with the stapling motive, it is only the stapling results that are irregular and messy. There is also the effect of stapling sticking less visible so that the wax less attached to the fabric resulting in leakage color during the coloring process.

When compared to the value of HEP obtained, the size of HEP through measurement using the HEART method is determined not only by how much the proportion weighting which is the result of the questionnaire, also determined by the Generic task that is the Human unreliability selection which determines the general characteristics of each job. There are a number of 9 Generic tasks that indicate the level of operator unreliability, and EPC selection that indicates the conditions in the task that may cause errors. The larger the selected EPC number the smaller the EPC value is obtained. EPC is adjusted to the conditions in each job. The type of EPC varies depending on the situation that can lead to human error.

Processes that occurred on the production floor have a risk of accident because when the operator uses the machine, it must be equipped with personal protective equipment used to reduce the risk of accidents [9]. The results of the evaluation and analysis of the work system can provide suggestions for improvement to prevent the occurrence of occupational diseases or decreased productivity [10].

4. Conclusion
There are 26 human error potential descriptions of all Batik Cap production activities at 6 work stations divided into 19 errors during action error, 5 error at checking error and 2 error at the time of selecting error. The result of the probability assessment of human error is indicated by the HEP value of 0.0204-0.0513. The biggest potential error occurs in the task of stapling the fabric with the HEP of 0.0513. This is because the canting stamping tool is less reliable due to several corners that have been eroded, operators in a hurry to stamp, operators who are exhausted due to standing position and exposed to radiation heat from the stove for 7 hours, operators are subject to limitations due to the influence of age and less experienced operators.

Reference
[1] Bell J, Holroyd J 2009 Heal Saf Exec Res Rep ;RR679
[2] Pratiwi I, Kartikasari I 2018 AIP Conf Proc 1977. 2018;20051:20051-1-0020051–6.
[3] Agus Widaryanto, Bariyah C 2015 Pros Simp Nas Teknol Terap ;114.
[4] Abbas FA, Ariwibowo B 1994 Proceeding 8th Int Semin Ind Eng Manag ;108–10.
[5] Stanton N 2005 Handbook of Human Factors and Ergonomics Methods ©
[6] Harahap FA 2012 Skripsi Fak Tek Univ Indones Depok.
[7] Rahmania T, Ginting E, Buchar 2013 e-Jurnal Tek Ind FT USU ;2(1):58–65.
[8] Safitri DM, Astriaty AR, Rizani NC 2015 Human Reliability Assessment dengan Metode Human Error Assessment and Reduction Technique pada Operator Stasiun Shroud PT . X. J Rekayasa Sist Ind ;4(1):1–7.
[9] Putro FC, Helianty Y, Desrianty A 2015 J Reka Integr Jur Tekik Ind Itenas ;3(2):173–84.
[10] Pratiwi I, Nurkhasanah 2017 Pros Semin Nas Teknol Terap ;147–55.