Constraints on running vacuum model with $H(z)$ and $f \sigma_8$

Chao-Qiang Geng, Chung-Chi Lee and Lu Yin

aChongqing University of Posts & Telecommunications, Chongqing, 400065, China
bDepartment of Physics, National Tsing Hua University, Hsinchu, 300 Taiwan
cNational Center for Theoretical Sciences, Hsinchu, 300 Taiwan
dDAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, U.K.

E-mail: geng@phys.nthu.edu.tw, lee.chungchi16@gmail.com, yinlumail@foxmail.com

Received May 9, 2017
Revised July 16, 2017
Accepted August 10, 2017
Published August 25, 2017

Abstract. We examine the running vacuum model with $\Lambda(H) = 3\nu H^2 + \Lambda_0$, where ν is the model parameter and Λ_0 is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter $H(z)$ and weighted linear growth $f(z)\sigma_8(z)$ measurements, we find that $\nu = (1.37^{+0.72}_{-0.95}) \times 10^{-4}$ with the best fitted χ^2 value slightly smaller than that in the ΛCDM model.

Keywords: cosmological parameters from CMBR, cosmological perturbation theory, cosmological simulations, dark energy theory

ArXiv ePrint: 1704.02136
1 Introduction

To understand the accelerated expansion of the universe discovered in 1998 [1, 2], dark energy is introduced [3]. In a variety scenarios of dark energy, the Lambda cold dark matter (ΛCDM) model is the simplest one, which can explain the current cosmological observations very well. Unfortunately, this model accompanies several theoretical difficulties, such as “fine-tuning” [4, 5] and “coincidence” [6, 7] problems.

The running vacuum model (RVM) is one of the popular attempts to solve the “coincidence” problem [8–20]. In this model, the cosmological constant Λ is described by a function of the Hubble parameter and decays to matter and radiation in the expansion of the universe [8]. It has been shown that the RVM is suitable in describing the cosmological evolution on both background and linear perturbation levels [21–30].

In this work, we focus on the specific model with the running cosmological constant $\Lambda = 3\nu H^2 + \Lambda_0$, where ν is the model parameter and Λ_0 is the cosmological constant in the ΛCDM model. Clearly, in this RVM, the ΛCDM limit corresponds to $\nu = 0$. Naively, it is expected that the value of ν should be arbitrarily close to zero in order to fit the current cosmological observations. However, it has been recently shown that $\nu \sim O(10^{-2}) - O(10^{-3})$ in this RVM with the exclusion of the ΛCDM model within 2σ confidence level in the literature [31–36], which indicates that this model is a better theory to describe the evolution history of our universe. In this study, we plan to reexamine this RVM by using the latest observational data. In particular, we include the measurements of the time dependent Hubble parameter $H(z)$ and weighted linear growth $f(z)\sigma_8(z)$ in our analysis. We will use the CAMB [37] and CosmoMC [38] packages with the Markov chain Monte Carlo (MCMC) method.

This paper is organized as follows. In section 2, we introduce the RVM and derive the evolution equations for matter and radiation in the linear perturbation theory. In section 3, we perform the numerical calculations to obtain the observational constraints on the model parameter ν and cosmological observables in several datasets. Finally, our conclusions are given in section 4.

2 The running vacuum model

2.1 Formalism

We start from the Einstein equation,

$$ R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi GT_{\mu\nu}, $$ (2.1)
where \(R = g^{\mu
u}R_{\mu\nu} \), \(\Lambda \) and \(T^M_{\mu\nu} \) are the Ricci scalar, cosmological constant and energy-momentum tensor of matter and radiation, respectively. Considering the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
\[
ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j,
\]
we obtain the Friedmann equations,
\[
H^2 = \frac{8\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda),
\]
\[
\dot{H} = -4\pi G(\rho_m + \rho_r + \rho_\Lambda + P_m + P_r + P_\Lambda),
\]
where \(H = da/(adt) \) is the Hubble parameter, \(\rho_\alpha \) (\(P_\alpha \)) with \(\alpha = r, m \) and \(\Lambda \) represent the energy densities (pressures) of matter, radiation and dark energy, respectively. Furthermore, it is convenient to define the corresponding equations of state, given by
\[
w_{m,r,\Lambda} = \frac{P_{m,r,\Lambda}}{\rho_{m,r,\Lambda}} = 0, \frac{1}{3}, -1.
\]

In the RVM, dark energy decays to radiation and matter in the evolution of the universe, so that the continuity equations can be written as,
\[
\dot{\rho}_M + 3H(1 + w_M)\rho_M = Q,
\]
\[
\dot{\rho}_\Lambda + 3H(1 + w_\Lambda)\rho_\Lambda = -Q,
\]
where \(\rho_M = \rho_m + \rho_r \), \(w_M = (P_m + P_r)/\rho_M \) and \(Q = Q_m + Q_r \) with \(Q_{m(r)} \) the decay rate of dark energy to matter (radiation). In this work, we consider \(\Lambda \) to be a function of the Hubble parameter, which might originate from the cosmological renormalization group [25], given by
\[
\Lambda = 3\nu H^2 + \Lambda_0,
\]
where \(\nu \) and \(\Lambda_0 \) are two free parameters with the ΛCDM model recovered by taking \(\nu = 0 \).

If dark energy only couples to matter (radiation), there will be too many non-relativistic (relativistic) particles created in the early (late) time of the universe in terms of the current observations. By combining eqs. (2.6) and (2.8), the coupling \(Q_\alpha \) (\(\alpha = m \) or \(r \)) is given by
\[
Q_\alpha = -\frac{\dot{\rho}_\Lambda(\rho_\alpha + P_\alpha)}{\rho_M + P_M} = 3\nu H(1 + w_\alpha)\rho_\alpha,
\]
with \(P_M = P_m + P_r \), where \(\alpha \) represents matter or radiation. As a result, the energy density of \(\alpha \) can be derived from eq. (2.6) as,
\[
\rho_\alpha = \rho_\alpha^{(0)} a^{-3(1+w_\alpha)} \xi,
\]
where \(\xi = 1 - \nu \) and \(\rho_\alpha^{(0)} \) is the energy density at \(z = 0 \). Note that \(\nu \geq 0 \) is chosen to avoid the negative dark energy density in the early universe.
2.2 Linear perturbation theory

We follow the standard linear perturbation theory [39] and derive the growth equation of the density perturbation in the RVM. The metric with the synchronous gauge is given by,

$$ds^2 = a^2(\tau)[-d\tau^2 + (\delta_{ij} + h_{ij})dx^idx^j],$$

(2.11)

with $i, j = 1, 2, 3$, τ the conformal time and

$$h_{ij} = \int d^3k e^{i\vec{k}\vec{x}} \left[\tilde{k}_i\tilde{k}_j \tilde{h}(\tilde{k}, \tau) + 6 \left(\tilde{k}_i\tilde{k}_j - \frac{1}{3}\delta_{ij} \right) \eta(\tilde{k}, \tau) \right],$$

(2.12)

where $h(\tilde{k}, \tau)$ and $\eta(\tilde{k}, \tau)$ are two scalar perturbations, and $\tilde{k} = \tilde{k}/k$ is the k-space unit vector. By using the conservation equation $\nabla^\nu(T_{\mu\nu}^M + T_{\mu\nu}^\Lambda) = 0$ with $\delta T_{00}^\Lambda = \delta \rho_{\Lambda}$, $\delta T_{ij}^\Lambda = -T_{ij}^\Lambda = (\rho_{M} + P_{M})v_i^\Lambda$ and $\delta T_{ij}^\Lambda = \delta P_{M}\delta_{ij}$, one gets the growth equations of the matter and radiation as follows,

$$\delta_\alpha = -(1 + w_\alpha) \left(\theta_\alpha \frac{\dot{a}}{2} - 3H \frac{\delta P_\alpha}{\delta \rho_\alpha} - w_\alpha \right) \delta_\alpha - \frac{Q_\alpha}{\rho_\alpha} \delta_\alpha,$$

(2.13)

$$\dot{\theta}_\alpha = -H(1 - 3w_\alpha)\theta_\alpha - \frac{\dot{w}_\alpha}{1 + w_\alpha} \theta_\alpha + \frac{\delta P_\alpha}{\delta \rho_\alpha} \frac{k^2}{a^2} \delta_\alpha - \frac{Q_\alpha}{\rho_\alpha} \theta_\alpha,$$

(2.14)

where $\delta_\alpha \equiv \delta \rho_\alpha/\rho_\alpha$ and $\theta_\alpha = ik_i v_\alpha^\Lambda$ are the density fluctuation and the divergence of fluid velocity, respectively.

In principle, the dark energy density fluctuation should be taken into account when the dynamical model is considered. To explore the dynamics of dark energy, the time dependent cosmological constant should be rewritten as a Lorentz scalar at the field equation level in eq. (2.1). For example, in refs. [27, 33–36, 40–47], the vacuum energy is given as $\Lambda = \Lambda(H)$ with $H = \nabla_\mu U^\mu/3$ and $U^\mu = dx^\mu/ds$. However, the dark energy perturbation plays an important role to the evolution of δ_m at the subhorizon scale, leading to a strong interaction between dark energy and matter fields, which must be ruled out by the astrophysical observations. In addition, the expression of H is not unique, and the cosmological behavior significantly depends on the explicit form. Due to these two reasons and without losing the generality, we concentrate on the homogeneous and isotropic dark energy model, i.e., $\delta \rho_{\Lambda} = 0$. Consequently, we have $\delta_\Lambda = \theta_\Lambda = 0$, so that the particles, created from the dark energy decays, homogeneously distribute to the universe, smoothing the density fluctuation by the factor Q_α/ρ_α.

In the RVM, due to the background evolution of the Hubble parameter, one has

$$\frac{H^2}{H_0^2} = \frac{\Omega_m a^{-3\xi} + \Omega_r a^{-4\epsilon} + \Omega_\Lambda^*}{1 - \nu},$$

(2.15)

where $\Omega_{m(r)} = \rho_{m(r)}/3H_0^2$, $\Omega_\Lambda^* = \Omega_\Lambda - \nu = \rho_{\Lambda}^{(z=0)}/3H_0^2 - \nu$ and $\Omega_m + \Omega_r + \Omega_\Lambda^* = 1$. As discussed in ref. [30], the larger ν is, the smaller $H(z)$ behaves in the high redshift regime.

It is known that the spectrum of the cosmic matter fluctuations can give important constraints on theoretical models about the structure formation [48–52]. These fluctuations can be described by the weighted linear growth $f(z)\sigma_8(z)$, where

$$f(z) = -(1 + z) \frac{d\ln \delta_m}{dz}$$

(2.16)
Table 1. $H(z)$ data points.

	z	$H(z)$ (km/s/Mpc)	Ref.								
1	0.07	69.0±19.6	[61]	13	0.4	95.0±17.0	[63]	25	0.9	117.0±23.0	[63]
2	0.09	69.0±12.0	[62]	14	0.4004	77.0±10.2	[66]	26	1.037	154.0±20.0	[64]
3	0.12	68.6±26.2	[61]	15	0.4247	87.1±11.2	[66]	27	1.3	168.0±17.0	[63]
4	0.17	83.0±8.0	[63]	16	0.4497	92.8±12.9	[66]	28	1.363	160.0±33.6	[69]
5	0.179	75.0±4.0	[64]	17	0.4783	80.9±9.0	[66]	29	1.43	177.0±18.0	[63]
6	0.199	75.0±5.0	[64]	18	0.48	97.0±62.0	[67]	30	1.53	140.0±14.0	[63]
7	0.2	72.9±29.6	[61]	19	0.57	92.4±4.5	[68]	31	1.75	202.0±40.0	[63]
8	0.27	77.0±14.0	[63]	20	0.5929	104.0±13.0	[64]	32	1.965	186.5±50.4	[69]
9	0.24	79.69±2.65	[65]	21	0.6797	92.0±8.0	[64]	33	2.3	224±8	[70]
10	0.28	88.8±36.6	[61]	22	0.7812	105.0±12.0	[64]	34	2.34	222±7	[71]
11	0.352	83.0±14.0	[64]	23	0.8754	125.0±17.0	[64]	35	2.36	226±8	[72]
12	0.3802	83.0±13.5	[66]	24	0.88	90.0±40.0	[67]				

is the growth factor and $\sigma_8(z)$ is the root-mean-square matter fluctuation amplitude on the scale of $R_8 = 8h^{-1}\text{Mpc}$ at the redshift z, given by

$$\sigma_8^2(z) = \delta_m^2(z) \int \frac{dk}{(2\pi)^3} P(k, \vec{p}) W^2(kR_8),$$

with $P(k, \vec{p})$ the ordinary linear matter power spectrum and $W(kR_8)$ the top-hat smoothing function (see e.g. [27] for details). Several methods have been used to estimate σ_8, such as the measurements of the abundance of galaxy clusters [53–56], cosmic shear analyses [57, 58], combined analysis of galaxy redshift survey [59] and CMB data [60].

We note that the RVM modifies not only the background evolution but also the perturbation one. The creations of matter and radiation from the decays of dark energy suppress the growths of the density fluctuations, as demonstrated in eqs. (2.13) and (2.14). If ν is large, the suppression effect on δ_m should be significant, leading to a “lowering effect” on $f(z)\sigma_8(z)$ [27, 33–36, 44–47]. Clearly, it is interesting to examine the RVM by using the data from the large scale structure observations, such as the baryon acoustic oscillation (BAO) and $f\sigma_8$.

3 Numerical calculations

In tables 1 and 2, we list 35 and 27 points for $H(z)$ and $f(z)\sigma_8(z)$ from the time dependent Hubble parameter and large scale structure formation measurements, respectively. By performing the CosmoMC program [38], we fit the RVM from the observational data with the MCMC method. The dataset includes those from $H(z)$ and $f(z)\sigma_8(z)$ along with the CMB temperature fluctuation from Planck 2015 with TT, TE, EE, low-l polarization from SMICA [91–93], the weak lensing (WL) data from CFHTLenS [94] and the BAO data from...
Table 2. $f\sigma_8$ data points.

z	$f\sigma_8$	Ref	z	$f\sigma_8$	Ref	z	$f\sigma_8$	Ref
1	1.36 0.482 ± 0.116	[75]	10	0.59 0.488 ± 0.06	[83]	19	0.35 0.440 ± 0.05	[78, 86]
2	0.8 0.470 ± 0.08	[76]	11	0.57 0.444 ± 0.038	[84]	20	0.32 0.394 ± 0.062	[84]
3	0.78 0.38 ± 0.04	[77]	12	0.51 0.452 ± 0.057	[81]	21	0.3 0.407 ± 0.055	[82]
4	0.77 0.490 ± 0.18	[78, 79]	13	0.5 0.427 ± 0.043	[82]	22	0.25 0.351 ± 0.058	[85]
5	0.73 0.437 ± 0.072	[80]	14	0.44 0.413 ± 0.080	[80]	23	0.22 0.42 ± 0.07	[77]
6	0.61 0.457 ± 0.052	[81]	15	0.41 0.45 ± 0.04	[77]	24	0.17 0.51 ± 0.06	[78, 87]
7	0.60 0.390 ± 0.063	[80]	16	0.4 0.419 ± 0.041	[82]	25	0.15 0.49 ± 0.15	[88]
8	0.6 0.433 ± 0.067	[82]	17	0.38 0.430 ± 0.054	[81]	26	0.067 0.423 ± 0.055	[89]
9	0.60 0.43 ± 0.04	[77]	18	0.37 0.460 ± 0.038	[85]	27	0.02 0.36 ± 0.04	[90]

Table 3. Priors for cosmological parameters with $\Lambda = 3\nu H^2 + \Lambda_0$.

Parameter	Prior
Model parameter ν	$0 \leq \nu \leq 3 \times 10^{-4}$
Baryon density	$0.5 \leq 100 \Omega_b h^2 \leq 10$
CDM density	$10^{-3} \leq \Omega_c h^2 \leq 0.99$
Optical depth	$0.01 \leq \tau \leq 0.8$
Neutrino mass sum	$0 \leq \Sigma m_\nu \leq 2\text{eV}$
Sound horizon	$0.5 \leq 100 \theta_{MC} \leq 10$
Angular diameter distance	
Scalar power spectrum amplitude	$2 \leq \ln(10^{10} A_s) \leq 4$
Spectral index	$0.8 \leq n_s \leq 1.2$

6dF Galaxy Survey [95] and BOSS [96]. In addition, the χ^2 function for the data from $H(z)$ or $f(z)\sigma_8(z)$ is taken to be

$$\chi_c^2 = \sum_{i=1}^n \frac{(T_c(z_i) - O_c(z_i))^2}{E_c^i},$$

where the subscript c, representing $H(z)$ or $f(z)\sigma_8(z)$, denotes the category of the data at the redshift z_i from different data, n is the number of the data in each dataset, T_c is the theoretical prediction, calculated from CAMB, and O_c (E_c) is the observational value (covariance). The priors of the various parameters are listed in table 3.

In figure 1 and table 4, we present our global fit result from various datasets, and the values in the brackets correspond to the best-fit results in the ΛCDM model, where the values of σ_8 are given at $z = 0$. From the combined datasets of (A), (B), (C) and (D), we find that $\nu = 1.35, 1.91, 1.55$ and 1.23×10^{-4} with the best fitted χ^2 values being 13487.7, 13509.9, 13511.3 and 13531.2 in the RVM, which are all slightly smaller than 13488.9, 13512.2, 13512.8
Figure 1. One and two-dimensional distributions of $\Omega_c h^2$, $100\theta_{MC}$, τ, $\sum m_\nu$, $10^4 \nu$, σ_8, where the contour lines represent 68% and 95% C.L., respectively.

and 13534.7 in the ΛCDM model, respectively. This combined dataset leads to the lowest χ^2 value in comparison with that in the ΛCDM model as shown in table 4. We note that a part of the $H(z)$ data in table 1 is derived by using the BC03 stellar models [73], which shows tensions from those by the MaStro models [74] at high redshift regime, as pointed out in ref. [64]. Specifically, the $H(z)$ data point at $z = 1.037$ in the MaStro models is 1.6σ lower than that in the BC03 one. From eq. (2.15), we can estimate that with the same initial conditions $H(z)$ with ν_1 is smaller than that with ν_2 if $\nu_1 > \nu_2$, so that the constraint on ν should be slightly relaxed when the BC03 data are replaced by the MaStro ones.

Although the cosmological observables in the RVM do not significantly deviate from those in ΛCDM, the best χ^2 fits in the RVM are better than those in the ΛCDM model in all the datasets. It clearly indicates that the RVM is good in describing the evolution history of our universe. It should be noted that our result of $\nu \sim \mathcal{O}(10^{-4})$ is about one to two orders stronger than those of $\nu \sim \mathcal{O}(10^{-3}) - \mathcal{O}(10^{-2})$ in the literature [31–36]. Because the constraints on ν only slightly change when the $f(z)\sigma_8(z)$ and $H(z)$ data are taken into account, the RVM might be strongly constrained by the CMB temperature fluctuation. Moreover, we are unable to exclude the ΛCDM model more than 1.5σ confidence level, which is different from the 2σ exclusion statement in refs. [31–36]. Since the creation of particles from the decaying dark energy restrains the growths of δ_m is also suppressed in the RVM. In addition, it is known that the free streaming massive neutrinos suppress the matter density fluctuation, which also smoothen the density fluctuation. As a result, as shown in table 4, the allowed window for Σm_ν is further restricted.
Parameter	(A) Planck + WL + BAO	(B) Planck + WL + BAO + $f\sigma_s$	(C) Planck + WL + BAO + $H(z)$	(D) Planck + WL + BAO + $f\sigma_s + H(z)$	
Model parameter	$10^4\nu$	< 1.83	< 2.09	< 1.80	< 2.09
Baryon density	$100\Omega_b h^2$	2.23 ± 0.03 (2.23)	$2.23^{+0.04}_{-0.03}$ (2.24)	$2.23^{+0.02}_{-0.03}$ (2.23)	2.22 ± 0.03 (2.24)
CDM density	$100\Omega_c h^2$	11.8 ± 0.2 (11.8)	11.7 ± 0.2 (11.7)	11.7 ± 0.2 (11.7)	$11.7^{+0.2}_{-0.3}$ (11.7)
Optical depth	100τ	$6.67^{+2.83}_{-2.70}$ (6.96)	$6.48^{+3.23}_{-3.03}$ (6.99)	$6.84^{+2.76}_{-2.61}$ (7.13)	$6.49^{+3.08}_{-2.91}$ (6.96)
Neutrino mass	σ_8	$0.806^{+0.025}_{-0.026}$ (0.810)	$0.787^{+0.027}_{-0.028}$ (0.788)	$0.809^{+0.023}_{-0.024}$ (0.812)	$0.792^{+0.025}_{-0.026}$ (0.793)
Neutrino mass	$\Sigma m_\nu/eV$	< 0.188 (0 < 0.198)	< 0.278 (0 < 0.301)	< 0.161 (0 < 0.176)	< 0.235 (0 < 0.262)
Neutrino mass	$\chi^2_{\text{best-fit}}$	13487.7 (13488.9)	13509.9 (13512.2)	13511.3 (13512.8)	13531.2 (13534.7)

Table 4. The 1D marginalized fitting results for the RVM with $\Lambda = 3\nu H^2 + \Lambda_0$, where the limits are given at 95% C.L. with ν calculated within 68% C.L., and the numbers in the bracket represent the central values in the ΛCDM model.

4 Conclusions

We have explored the allowed window for the model parameter in the RVM with $\Lambda(H) = 3\nu H^2 + \Lambda_0$ and shown that the constraint on the RVM becomes much very stronger with $\nu \sim O(10^{-4})$ after considering the CMB temperature fluctuation along with the $H(z)$ and $f(z)\sigma_8(z)$ measurements, which is different from the results in the previous studies in the literature, which might be due to the accurate measurement on the photon power spectrum. Clearly, this statement should be further studied in the future. Explicitly, the value of $\nu = (1.37^{+0.72}_{-0.92}) \times 10^{-4}$ is found at 68% C.L. by fitting the combined data of the CMB, WL, BAO, $H(z)$ and $f(z)\sigma_8(z)$. We have also found that $\chi^2_{\text{RVM}} \lesssim \chi^2_{\text{ACDM}}$ in all the datasets of our discussions, denoting that the RVM is a good theory to describe the evolution of the universe at both background and linear perturbation levels. However, concerning the existence of an extra degree of freedom in the RVM to ΛCDM, it is hard to claim that the RVM is preferred by the observational data at the current stage yet. In addition, since dark energy decays to matter and radiation in the evolution of the universe, the matter density fluctuation δ_m is suppressed, leading to the best fitted value of Σm_{ν} is relatively smaller than the corresponding one in the ΛCDM model.

Acknowledgments

We thank Prof. J. Sola for useful comments and discussions. This work was partially supported by National Center for Theoretical Sciences, MoST (MoST-104-2112-M-007-003-MY3 and MoST-106-2917-I-564-055) and the Newton International Fellowship (NF160058) from the Royal Society (U.K.).
References

[1] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [nSPIRE].

[2] Supernova Cosmology Project collaboration, S. Perlmutter et al.,Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [nSPIRE].

[3] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [nSPIRE].

[4] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [nSPIRE].

[5] S. Weinberg, Gravitation and Cosmology, Wiley and Sons, New York U.S.A. (1972).

[6] J.P. Ostriker and P.J. Steinhardt, Cosmic concordance, astro-ph/9505066 [nSPIRE].

[7] N. Arkani-Hamed, L.J. Hall, C.F. Kolda and H. Murayama, A New perspective on cosmic coincidence problems, Phys. Rev. Lett. 85 (2000) 4434 [astro-ph/0005111] [nSPIRE].

[8] M. Ozer and M.O. Taha, A Solution to the Main Cosmological Problems, Phys. Lett. B 171 (1986) 363 [nSPIRE].

[9] J.C. Carvalho, J.A.S. Lima and I. Waga, On the cosmological consequences of a time dependent lambda term, Phys. Rev. D 46 (1992) 2404 [nSPIRE].

[10] J.A.S. Lima and J.M.F. Maia, Deflationary cosmology with decaying vacuum energy density, Phys. Rev. D 49 (1994) 5597 [nSPIRE].

[11] J.A.S. Lima and M. Trodden, Decaying vacuum energy and deflationary cosmology in open and closed universes, Phys. Rev. D 53 (1996) 4280 [astro-ph/9506049] [nSPIRE].

[12] J.M. Overduin and F.I. Cooperstock, Evolution of the scale factor with a variable cosmological term, Phys. Rev. D 58 (1998) 043506 [astro-ph/9805260] [nSPIRE].

[13] I. Dymnikova and M. Khlopov, Decay of cosmological constant as Bose condensate evaporation, Mod. Phys. Lett. A 15 (2000) 2305 [astro-ph/0102094] [nSPIRE].

[14] S. Carneiro and J.A.S. Lima, Decaying Lambda cosmology, varying G and holography, Int. J. Mod. Phys. A 20 (2005) 2465 [gr-qc/0405141] [nSPIRE].

[15] F. Bauer, The Running of the cosmological and the Newton constant controlled by the cosmological event horizon, Class. Quant. Grav. 22 (2005) 3533 [gr-qc/0501078] [nSPIRE].

[16] J.S. Alcaniz and J.A.S. Lima, Interpreting cosmological vacuum decay, Phys. Rev. D 72 (2005) 063516 [astro-ph/0507372] [nSPIRE].

[17] J.D. Barrow and T. Clifton, Cosmologies with energy exchange, Phys. Rev. D 73 (2006) 103520 [gr-qc/0604063] [nSPIRE].

[18] I.L. Shapiro and J. Solà, On the possible running of the cosmological 'constant', Phys. Lett. B 682 (2009) 105 [arXiv:0910.4925] [nSPIRE].

[19] C.-Q. Geng and C.-C. Lee, Deflation of the cosmological constant associated with inflation and dark energy, JCAP 06 (2016) 039 [arXiv:1603.06691] [nSPIRE].

[20] C.-Q. Geng, C.-C. Lee and K. Zhang, Running cosmological constant with observational tests, Phys. Lett. B 760 (2016) 422 [arXiv:1607.02567] [nSPIRE].

[21] I.L. Shapiro, J. Solà and H. Stefancic, Running G and Lambda at low energies from physics at M(X): Possible cosmological and astrophysical implications, JCAP 01 (2005) 012 [hep-ph/0410095] [nSPIRE].

[22] R.C. Arcuri and I. Waga, Growth of density inhomogeneities in Newtonian cosmological models with variable Lambda, Phys. Rev. D 50 (1994) 2928 [nSPIRE].
[23] C. Espana-Bonet, P. Ruiz-Lapuente, I.L. Shapiro and J. Solà, Testing the running of the cosmological constant with type-Ia supernovae at high z, *JCAP* **02** (2004) 006 [hep-ph/0311171] [inSPIRE].

[24] S. Basilakos, M. Plionis and J. Solà, Hubble expansion and Structure Formation in Time Varying Vacuum Models, *Phys. Rev.* **D 80** (2009) 083511 [arXiv:0907.4555] [inSPIRE].

[25] J. Solà, Cosmological constant and vacuum energy: old and new ideas, *J. Phys. Conf. Ser.* **453** (2013) 012015 [arXiv:1306.1527] [inSPIRE].

[26] F.E.M. Costa, J.A.S. Lima and F.A. Oliveira, Decaying Vacuum Cosmology and its Scalar Field Description, *Class. Quant. Grav.* **31** (2014) 045004 [arXiv:1204.1864] [inSPIRE].

[27] A. Gómez-Valent, J. Solà and S. Basilakos, Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study, *JCAP* **01** (2015) 004 [arXiv:1409.7048] [inSPIRE].

[28] J. Solà, Vacuum energy and cosmological evolution, *AIP Conf. Proc.* **1606** (2014) 19 [arXiv:1402.7049] [inSPIRE].

[29] D.A. Tamayo, J.A.S. Lima and D.F.A. Bessada, Production of primordial gravitational waves in a simple class of running vacuum cosmologies, *Int. J. Mod. Phys.* **D 26** (2017) 1750093 [arXiv:1503.06110] [inSPIRE].

[30] H. Fritzsch, J. Solà and R.C. Nunes, Running vacuum in the Universe and the time variation of the fundamental constants of Nature, *Eur. Phys. J.* **C 77** (2017) 193 [arXiv:1605.06104] [inSPIRE].

[31] J. Solà, Running Vacuum in the Universe: current phenomenological status, [arXiv:1601.01668] [inSPIRE].

[32] A. Gomez-Valent and J. Solà, Vacuum models with a linear and a quadratic term in H: structure formation and number counts analysis, *Mon. Not. Roy. Astron. Soc.* **448** (2015) 2810 [arXiv:1412.3785] [inSPIRE].

[33] J. Solà, A. Gomez-Valent and J. de Cruz Pérez, Hints of dynamical vacuum energy in the expanding Universe, *Astrophys. J.* **811** (2015) L14 [arXiv:1506.05793] [inSPIRE].

[34] A. Gomez-Valent, E. Karimkhani and J. Solà, Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter, *JCAP* **12** (2015) 048 [arXiv:1509.03298] [inSPIRE].

[35] J. Solà, A. Gómez-Valent and J. de Cruz Pérez, First evidence of running cosmic vacuum: challenging the concordance model, *Astrophys. J.* **836** (2017) 43 [arXiv:1602.02103] [inSPIRE].

[36] J. Solà, J. de Cruz Pérez, A. Gomez-Valent and R.C. Nunes, Dynamical Vacuum against a rigid Cosmological Constant, [arXiv:1606.00450] [inSPIRE].

[37] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, *Astrophys. J.* **538** (2000) 473 [astro-ph/9911177] [inSPIRE].

[38] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, *Phys. Rev. D* **66** (2002) 103511 [astro-ph/0205436] [inSPIRE].

[39] C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, *Astrophys. J.* **455** (1995) 7 [astro-ph/9506072] [inSPIRE].

[40] J.C. Fabris, I.L. Shapiro and J. Solà, Density Perturbations for Running Cosmological Constant, *JCAP* **02** (2007) 016 [gr-qc/0609017] [inSPIRE].

[41] H.A. Borges, S. Carneiro and J.C. Fabris, Evolution of density perturbations in decaying vacuum cosmology: The case of non-zero perturbations in the cosmological term, *Phys. Rev. D* **78** (2008) 123522 [arXiv:0809.4939] [inSPIRE].

[42] A.M. Velasquez-Toribio, Cosmological Perturbations and the Running Cosmological Constant Model, *Int. J. Mod. Phys.* **D 21** (2012) 1250026 [arXiv:0907.3518] [inSPIRE].
[43] C.-Q. Geng and C.-C. Lee, Matter density perturbation and power spectrum in running vacuum model, Mon. Not. Roy. Astron. Soc. 464 (2017) 2462 [arXiv:1607.07296] [inSPIRE].

[44] J. Solà and A. Gómez-Valent, The ΛCDM cosmology: From inflation to dark energy through running Λ, Int. J. Mod. Phys. D 24 (2015) 1541003 [arXiv:1501.03832] [inSPIRE].

[45] S. Basilakos and J. Solà, Growth index of matter perturbations in running vacuum models, Phys. Rev. D 92 (2015) 123501 [arXiv:1509.06732] [inSPIRE].

[46] J. Solà, Cosmological constant vis-a-vis dynamical vacuum: bold challenging the ΛCDM, Int. J. Mod. Phys. A 31 (2016) 1630035 [arXiv:1612.02449] [inSPIRE].

[47] J. Solà, J.d.C. Perez and A. Gomez-Valent, Towards the firsts compelling signs of vacuum dynamics in modern cosmological observations, arXiv:1703.08218 [inSPIRE].

[48] W.H. Press and P. Schechter, Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation, Astrophys. J. 187 (1974) 425 [inSPIRE].

[49] J.R. Bond, S. Cole, G. Efstathiou and N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys. J. 379 (1991) 440 [inSPIRE].

[50] R.G. Bower, The Evolution of groups of galaxies in the Press-Schechter formalism, Mon. Not. Roy. Astron. Soc. 248 (1991) 332 [inSPIRE].

[51] G. Kauffmann and S.D.M. White, The merging history of dark matter haloes in a hierarchical universe., Mon. Not. Roy. Astron. Soc. 261 (1993) 921 [inSPIRE].

[52] C.G. Lacey and S. Cole, Merger rates in hierarchical models of galaxy formation, Mon. Not. Roy. Astron. Soc. 262 (1993) 627 [inSPIRE].

[53] V.R. Eke, S. Cole and C.S. Frenk, Using the evolution of clusters to constrain Omega, Mon. Not. Roy. Astron. Soc. 282 (1996) 263 [astro-ph/9601088] [inSPIRE].

[54] M.L. Brown, A.N. Taylor, D.J. Bacon, M.E. Gray, S.Dye, K. Meisenheimer and C. Wolf, The Shear power spectrum from the COMBO-17 Survey, Mon. Not. Roy. Astron. Soc. 341 (2003) 100 [astro-ph/0210213].

[55] J.R. Bond et al., The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000, Astrophys. J. 626 (2005) 12 [astro-ph/0205386] [inSPIRE].

[56] O. Lahav et al., The 2dF Galaxy Redshift Survey: The Amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing, Mon. Not. Roy. Astron. Soc. 333 (2002) 961 [astro-ph/0112162].

[57] C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang and Y.-C. Sun, Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven, Res. Astron. Astrophys. 14 (2014) 1221 [arXiv:1207.4541] [inSPIRE].

[58] R. Jimenez, L. Verde, T. Treu and D. Stern, Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB, Astrophys. J. 593 (2003) 622 [astro-ph/0302560] [inSPIRE].
Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71 (2005) 123001 [astro-ph/0412269] [inSPIRE].

[64] M. Moresco et al., Improved constraints on the expansion rate of the Universe up to $z = 1.1$ from the spectroscopic evolution of cosmic chronometers, JCAP 08 (2012) 006 [arXiv:1201.3609] [inSPIRE].

[65] E. Gaztanaga, A. Cabre and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of $H(z)$, Mon. Not. Roy. Astron. Soc. 399 (2009) 1663 [arXiv:0807.3551] [inSPIRE].

[66] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde et al., A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration, JCAP 05 (2016) 014 [arXiv:1601.01701] [inSPIRE].

[67] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S.A. Stanford, Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: $H(z)$ Measurements, JCAP 02 (2010) 008 [arXiv:0907.3149] [inSPIRE].

[68] B.A. Reid et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at $z = 0.57$ from anisotropic clustering, Mon. Not. Roy. Astron. Soc. 426 (2012) 2719 [arXiv:1203.6641] [inSPIRE].

[69] M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$, Mon. Not. Roy. Astron. Soc. 450 (2015) L16 [arXiv:1503.01116] [inSPIRE].

[70] N.G. Busca et al., Baryon Acoustic Oscillations in the Ly-α forest of BOSS quasars, Astron. Astrophys. 552 (2013) A96 [arXiv:1211.2616] [inSPIRE].

[71] Y. Hu, M. Li and Z. Zhang, Test ΛCDM model with High Redshift data from Baryon Acoustic Oscillations, arXiv:1406.7695 [inSPIRE].

[72] BOSS collaboration, A. Font-Ribera et al., Quasar-Lyman α Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations, JCAP 05 (2014) 027 [arXiv:1311.1767] [inSPIRE].

[73] G. Bruzual and S. Charlot, Stellar population synthesis at the resolution of 2003, Mon. Not. Roy. Astron. Soc. 344 (2003) 1000 [astro-ph/0309134] [inSPIRE].

[74] C. Maraston and G. Stromback, Stellar population models at high spectral resolution, Mon. Not. Roy. Astron. Soc. 418 (2011) 2785 [arXiv:1109.0543] [inSPIRE].

[75] H. Okada et al., The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The Emission Line Catalog and Properties of Emission Line Galaxies, Publ. Astron. Soc. Jap. 68 (2016) 17 [arXiv:1504.05592] [inSPIRE].

[76] S. de la Torre et al., The VIMOS Public Extragalactic Redshift Survey (VIPERS). Galaxy clustering and redshift-space distortions at $z = 0.8$ in the first data release, Astron. Astrophys. 557 (2013) A54 [arXiv:1303.2622] [inSPIRE].

[77] C. Blake et al., The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift $z = 0.9$, Mon. Not. Roy. Astron. Soc. 415 (2011) 2876 [arXiv:1104.2948].

[78] Y.-S. Song and W.J. Percival, Reconstructing the history of structure formation using Redshift Distortions, JCAP 10 (2009) 004 [arXiv:0807.0810] [inSPIRE].

[79] L. Guzzo et al., A test of the nature of cosmic acceleration using galaxy redshift distortions, Nature 451 (2008) 541 [arXiv:0802.1944] [inSPIRE].

[80] C. Blake et al., The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at $z < 1$, Mon. Not. Roy. Astron. Soc. 425 (2012) 405 [arXiv:1204.3674] [inSPIRE].
[81] BOSS collaboration, S. Satpathy et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: On the measurement of growth rate using galaxy correlation functions, Mon. Not. Roy. Astron. Soc. (2016) [arXiv:1607.03148] [nSPIRE].

[82] R. Tojeiro et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies, Mon. Not. Roy. Astron. Soc. 424 (2012) 2339 [arXiv:1203.6565] [nSPIRE].

[83] C.-H. Chuang et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering, Mon. Not. Roy. Astron. Soc. 461 (2016) 3781 [arXiv:1312.4889] [nSPIRE].

[84] H. Gil-Marín et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Mon. Not. Roy. Astron. Soc. 460 (2016) 4188 [arXiv:1509.06386] [nSPIRE].

[85] L. Samushia, W.J. Percival and A. Raccanelli, Interpreting large-scale redshift-space distortion measurements, Mon. Not. Roy. Astron. Soc. 420 (2012) 2102 [arXiv:1102.1014].

[86] SDSS collaboration, M. Tegmark et al., Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys. Rev. D 74 (2006) 123507 [astro-ph/0608632].

[87] 2dFGRS collaboration, W.J. Percival et al., The 2dF Galaxy Redshift Survey: Spherical harmonics analysis of fluctuations in the final catalogue, Mon. Not. Roy. Astron. Soc. 353 (2004) 1201 [astro-ph/0406513].

[88] C. Howlett, A. Ross, L. Samushia, W. Percival and M. Manera, The clustering of the SDSS main galaxy sample II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 848 [arXiv:1409.3238] [nSPIRE].

[89] F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith, G.B. Poole et al., The 6dF Galaxy Survey: z ≈ 0 measurement of the growth rate and σ8, Mon. Not. Roy. Astron. Soc. 423 (2012) 3430 [arXiv:1204.4725] [nSPIRE].

[90] M.J. Hudson and S.J. Turnbull, The growth rate of cosmic structure from peculiar velocities at low and high redshifts, Astrophys. J. 751 (2013) L30 [arXiv:1204.4814] [nSPIRE].

[91] PLANck collaboration, R. Adam et al., Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, Astron. Astrophys. 594 (2016) A11 [arXiv:1507.02704] [nSPIRE].

[92] PLANck collaboration, P.A.R. Ade et al., Planck 2015 results. XV. Gravitational lensing, Astron. Astrophys. 594 (2016) A15 [arXiv:1502.01591] [nSPIRE].

[93] C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Mon. Not. Roy. Astron. Soc. 432 (2013) 2433 [arXiv:1303.1808] [nSPIRE].

[94] F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith, L. Campbell et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [nSPIRE].

[95] BOSS collaboration, L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, Mon. Not. Roy. Astron. Soc. 441 (2014) 24 [arXiv:1312.4877] [nSPIRE].