Outcomes of Patients With Breast Cancer Treated With or Without Internal Mammary Irradiation: A Single-Center, Retrospective Propensity Score—Matched Study

Tanun Jitwatcharakomol, MD, Jiraporn Setakoranukul, MD, Suthinee Ithimakin, MD, Runroj Krittayaphong, MD, and Kullathorn Thephamongkhol, MD*

Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand

Received December 21, 2021; accepted September 6, 2022

Abstract

Purpose: Internal mammary lymph node radiation therapy (IMN-RT) has unclear benefits. Historical data were based on only conventional (2-dimensional) radiation techniques. In this 3-dimensional radiation therapy era, we compared the distant metastasis-free survival (DMFS) rates of patients receiving IMN-RT with those who did not include coverage of the IMN (non–IMN-RT). This study aimed to determine the relationship between IMN-RT and distant metastasis control in patients with lymph node–positive breast cancer.

Methods and Materials: This was a single-center retrospective cohort study. Patients were divided into 2 groups: IMN-RT and non–IMN-RT. The criterion of the IMN-RT group was that 80% of the prescribed dose covered ≥98% of the Clinical Target Volume of IMN. The primary outcome was 4-year DMFS, and the secondary outcomes were 4-year overall survival, 4-year disease-free survival, and cardiac toxicity.

Results: From January 2012 to December 2018, 570 patients were evaluated (IMN-RT, 143 patients; non–IMN-RT, 427 patients). Propensity score matching decreased the number of patients in each group to 139. The median follow-up was 4.3 years. The 4-year DMFS rates were as follows: IMN-RT, 79.1% (95% confidence interval [CI], 70.1%-85.6%), and non–IMN-RT, 82.8% (95% CI, 74.2%-88.7%; P = .43). The groups’ 4-year overall survival and disease-free survival rates did not differ. The 4-year overall survival rates were 84.3% (95% CI, 76.4%-89.8%) for IMN-RT and 88.1% (95% CI, 81.0%-92.7%; P = .39) for non–IMN-RT. The 4-year disease-free survival rates were 77.1% (95% CI, 68.1%-83.8%) for IMN-RT and 82.1% (95% CI, 73.6%-88.1%; P = .29) for non–IMN-RT. There was no significant difference in cardiac toxicity (IMN-RT, 1.4%; non–IMN-RT, 1.4%; P = 1.0).

Conclusions: In the modern radiation technique era with real-world data, we could not find a benefit of internal mammary irradiation.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Breast cancer is the most common malignancy in women and is increasing in incidence. Nevertheless, the optimal treatment is still controversial, especially concerning radiation use. Regional lymph nodes (supraclavicular, axillary, and internal mammary) are frequently included in the radiation volume. However, internal mammary lymph node irradiation has not yet shown clear benefits.

The internal mammary lymph nodes are of concern because they are hypothesized to be a core area for micrometastases, increasing the risk of distant metastases in the future. However, irradiation of the internal mammary lymph nodes inevitably increases the dose to the lung and heart. Data from Darby et al. found a 7.4% increase in relative cardiovascular risk for every 1 Gy of heart dose. Therefore, the benefit of internal mammary lymph node irradiation must be proven.

In a landmark, large-scale trial, the Danish Breast Cancer Cooperative Group—Internal Mammary Lymph Node investigated the effect of internal mammary lymph node irradiation. The research compared the outcomes of 2 groups: 3089 patients with early-stage, lymph node-positive breast cancer (1) who received internal mammary lymph node irradiation (right-sided disease) and (2) non-irradiated patients (left-sided disease). The median follow-up time was 14.8 years. The results showed that the patients who received internal mammary irradiation had a better 15-year overall survival, a lower breast cancer-specific mortality, and a lower distant recurrence rate.

Another landmark trial showed inconsistent results. The French Internal Mammary Lymph Node Study investigated 1334 patients with positive axillary nodes or central/medial tumors with or without positive axillary nodes. The median follow-up time was 11.3 years. The results did not show statistical significance for the 10-year overall survival or disease-free survival of patients receiving internal mammary irradiation and nonirradiated patients.

The results of the 2 landmark trials created controversy about the use of internal mammary irradiation. However, both trials were carried out in the conventional (2-dimensional) radiation therapy era. Since then, radiation techniques have advanced substantially. Three-dimensional conformal radiation therapy (3D-CRT) is now widely available. These sophisticated techniques allow the irradiation area to be well defined and evaluated.

The recently published KROG 08-06 trial, which used an advanced radiation technique, investigated 735 patients with histologically confirmed node-positive breast cancer. The median follow-up time was 8.4 years. There was no significant difference in the 7-year disease-free survival of patients receiving internal mammary irradiation and nonirradiated patients.

Because there have been few investigations on internal mammary irradiation in the 3D-CRT era, the available data are limited. The present study compared the 4-year distant metastasis-free survival (DMFS), overall survival, disease-free survival, and cardiac toxicity of patients receiving IMN-RT via the 3D-CRT technique with the results of patients who did not have internal mammary lymph node coverage.

Methods and Materials

Study population

Eligible patients were newly diagnosed female patients who had pathologically confirmed breast cancer between 2012 and 2018; underwent mastectomy or conservative breast surgery with biopsy or dissection of the axillary lymph nodes; had pathologically confirmed positive lymph nodes; had complete staging, including evaluations of the bones, liver, and lungs; and received postoperative 3D-CRT with computed tomography (CT)—based simulation. Exclusion criteria were metastatic disease (stage M1, according to the eighth edition of the American Joint Committee on Cancer), neoadjuvant chemotherapy, bilateral breast cancer, preexisting internal mammary lymph nodes in preradiation imaging, multiple primary cancers, and progressive disease before radiation.

Patients were observed with a clinical examination at 3- to 4-month intervals for 2 to 3 years and biannually after that. Mammogram plus ultrasound was performed annually. If symptoms suspicious for recurrence occurred, additional tests were investigated.

Study design

The study was designed as a single-center, retrospective cohort at Siriraj Hospital, Thailand. Before starting the research, its protocol was approved by the Siriraj Ethical Review Board. The internal mammary lymph nodes (Clinical Target Volume of IMN; CTVIMN) between the first and third intercostal space and the heart were retrospectively redelineated in all patients using the Radiation Therapy Oncology Group guidelines. This approach allowed the doses to be calculated. The patients were arranged into 2 groups: an internal mammary irradiation group (IMN-RT) and an absence of internal mammary irradiation group (non—IMN-RT). The criterion for the IMN-RT group was 80% of the prescribed dose covered ≥98% of the CTVIMN (Volume of CTV IMN that received 80% of prescribed dose ≥98% ; V80% of prescribed dose ≥98%). The primary outcome was 4-year DMFS, and the secondary outcomes were 4-year overall survival, 4-year disease-free survival, and cardiac toxicity. Subgroups
were divided based on N stage (N1mi/1, N2, N3), intrinsic subtypes (luminal A/B: estrogen receptor (ER)/progesterone receptor (PR) positive, HER2 negative; HER2 positive: ER/PR negative, HER2 positive; triple negative: ER/PR/HER2 negative), and location (outer, center, inner) to analyze the 4-year DMFS rate of each subgroup.

Statistical analysis

Propensity scores were calculated to balance confounders using R version 4.0.3 (R Foundation for Statistical Computing). Based on historical data, the variables placed in our model were age, laterality (left, right), T stage, N stage, grade, in-breast location (inner, central, outer), luminal status, and menstruation status. We matched the patients using MatchIt version 4.1.0 in R version 4.0.3 (R Foundation for Statistical Computing) with a caliper of 0.26. With a caliper used to stabilize the model and better match the results, a few patients from the IMN-RT group dropped at this point. Data were extracted from R software and analyzed using Stata 16.1 (StataCorp).

The characteristics of the patients and their treatments were compared. Categorical data were evaluated using the Fisher exact test, and continuous data were analyzed with a t test. The final analysis of DMFS, overall survival, and disease-free survival was performed on the matched population. We used the Kaplan-Meier method and log-rank tests to compare study groups, and the Fisher exact test was used for cardiac toxicity.

Subgroups based on N stage (N1mi/1, N2, N3), intrinsic subtypes (luminal A/B, HER2 positive, triple negative), and in-breast locations (outer, center, inner) were performed to analyze DMFS. We used the Kaplan-Meier method and log-rank tests to compare groups in each subgroup.

Results

From January 2012 to December 2018, a total of 1808 newly diagnosed patients with breast cancer received surgery and postoperative radiation with 3D-CRT. After excluding ineligible patients, 570 remained (Fig. 1).

We reviewed all the contours and treatment plans before allocating the patients into 2 groups, according to the IMN-RT criteria. Eventually, 143 IMN-RT patients and 427 non–IMN-RT patients were available for the analyses.

![Figure 1](CONSORT (Consolidated Standards of Reporting Trials) diagram.)
Comparisons were made of the baseline characteristics of the whole population and the baseline characteristics after using the matching propensity scores (Tables 1 and 2). The mean age of the IMN-RT group was 55.1 years, while that of the non–IMN-RT group was 53.1 years. Most of the IMN-RT group had an inner location (38.3%), whereas most patients in the non–IMN-RT group had an outer location (67.9%). The most common T stage of both groups was T2 (IMN-RT, 64.3%; non–IMN-RT, 60.2%).

Characteristic	Whole population	Propensity match				
	IMN-RT (n = 143)	Non–IMN-RT (n = 427)	P value	IMN-RT (n = 139)	Non–IMN-RT (n = 139)	P value
Age (y), mean (SD)	55.1 (10.9)	53.1 (10.5)	.06	55.1 (10.8)	54.6 (9.5)	.72
Menstruation						
Premenstruation	95 (66.4%)	262 (61.4%)	.32	92 (66.2%)	93 (66.9%)	1.00
Postmenstruation	48 (33.6%)	165 (38.6%)		47 (33.8%)	46 (33.1%)	
Laterality						
Right	59 (41.3%)	202 (47.3%)	.24	57 (41.0%)	60 (43.2%)	.81
Left	84 (58.7%)	225 (52.7%)		82 (59.0%)	79 (56.8%)	
In-breast location						
Outer	47 (32.9%)	286 (67.0%)	<.001	47 (33.8%)	48 (34.5%)	.93
Center	40 (27.9%)	64 (15.0%)		39 (28.1%)	36 (25.9%)	
Inner	54 (37.8%)	71 (16.6%)		53 (38.1%)	55 (39.6%)	
Indeterminate	2 (1.4%)	6 (1.4%)		0 (0%)	0 (0%)	
T stage						
T0	0 (0%)	3 (0.7%)	.44	0 (0%)	0 (0%)	.99
Tis	0 (0%)	1 (0.2%)		0 (0%)	0 (0%)	
T1	31 (21.7%)	122 (28.6%)	.44	31 (22.3%)	30 (31.6%)	
T2	92 (64.3%)	257 (60.2%)		88 (63.3%)	90 (64.7%)	
T3	14 (9.8%)	29 (6.8%)		14 (10.1%)	14 (10.1%)	
T4	6 (4.2%)	15 (3.5%)		6 (4.3%)	5 (3.6%)	
N stage						
N1mi	1 (0.7%)	21 (4.9%)	.003	1 (0.7%)	5 (3.6%)	.46
N1	56 (39.2%)	212 (49.6%)		56 (40.3%)	57 (41.0%)	
N2	50 (35.0%)	126 (29.5%)		50 (36.0%)	47 (33.8%)	
N3	36 (25.2%)	68 (15.9%)		32 (23.0%)	30 (21.6%)	
Grade						
1	7 (4.9%)	21 (4.9%)	.96	7 (5.0%)	6 (4.3%)	.79
2	89 (62.2%)	259 (60.7%)		88 (63.3%)	94 (67.6%)	
3	47 (32.9%)	147 (34.4%)		44 (31.7%)	39 (28.1%)	
LVSI						
Negative	54 (37.8%)	191 (44.7%)	.23	54 (38.8%)	56 (40.3%)	.94
Positive	75 (52.4%)	188 (44.0%)		71 (51.1%)	68 (48.9%)	
Indeterminate	14 (9.8%)	48 (11.2%)		14 (10.1%)	15 (10.8%)	
Luminal status						
Luminal A/B	121 (84.6%)	345 (80.8%)	.12	117 (84.2%)	116 (83.5%)	1.00
HER2 positive	14 (9.8%)	34 (8.0%)		14 (10.1%)	15 (10.8%)	
Triple negative	8 (5.6%)	48 (11.2%)		8 (5.8%)	8 (5.8%)	
LN positive, median (IQR)	4 (2-8)	3 (1-7)	<.001	4 (2-8)	4 (1-8)	.26
Extranodal extension						
No	26 (18.2%)	122 (28.6%)	.043	24 (17.3%)	34 (24.5%)	.26
Yes	108 (75.5%)	108 (75.5%)		106 (76.3%)	94 (67.6%)	
Indeterminate	9 (6.3%)	9 (6.3%)		9 (6.5%)	11 (7.9%)	
Surgical margin status						
Negative	13 (93.0%)	409 (95.8%)	.19	129 (92.8%)	136 (97.8%)	.085
Positive	10 (7%)	18 (4.2%)		10 (7.2%)	3 (2.2%)	

Abbreviations: IMN-RT = internal mammary lymph node radiation therapy; IQR = interquartile range; LN = lymph node; LVSI = lymphovascular space invasion.
Data are presented as n (%) unless otherwise indicated.
were mainly N2 and N3 (60.2%), but the non–IMN-RT group mainly had N1 and N2 (84.0%). Most of the patients had luminal A/B subtypes. The irradiated IMN volumes were 99.7% for the IMN-RT group and 53.2% for the non–IMN-RT group. All patients underwent 3D-CRT, deep inspiratory breath hold was used in a low percentage due to lack of tools and experience at that point of time. Most patients received adequate systemic treatment.

The median follow-up was 4.3 years for the entire population.

Propensity score matching was required because the IMN and non–IMN groups had markedly different distributions of their baseline variables. Even though the number of patients decreased to 139 per group, the variables were balanced (Tables 1 and 2).

After matching the propensity scores, the data were analyzed (Fig. 2). IMN irradiation demonstrated no benefit for DMFS. The 4-year DMFS was 79.1% (95% confidence interval [CI], 70.1%-85.6%) for the IMN-RT group and 82.8% (95% CI, 74.2%-88.7%) for the non–IMN-RT group (P = .43).

There were no differences between the groups’ overall survival and disease-free survival rates. For the IMN-RT group, the 4-year overall survival was 84.3% (95% CI, 76.4%-89.8%), while for the non–IMN-RT group, it was 88.1% (95% CI, 81.0%-92.7%; P = .39). The 4-year disease-free survival was 77.1% (95% CI, 68.1%-83.8%) for the IMN-RT group and 82.1% (95% CI, 73.6%-88.1%) for the non–IMN-RT group (P = .29). There was no significant difference in cardiac toxicity (Table 3): 1.4% for the IMN-RT group and 1.4% for the non–IMN-RT group (P = 1.0).

Subgroup analyses were performed on propensity score-matched populations. The subgroups included for analysis were N stage (N1mi/1, N2, N3), intrinsic subtype (luminal A/B, HER2 positive, triple negative), and in-breast location (outer, center, inner). IMN-RT did not significantly improve the 4-year DMFS in any subgroup (Fig. E1).

Multivariable analysis for DMFS of the whole population (n = 570) was also performed to identify the effect of each variable (Table E2). The highest impact was observed for the N3 stage (hazard ratio [HR], 5.1; 95% CI, 2.8-9.3).

Discussion

This study demonstrated no significant advantages for IMN-irradiated patients regarding their DMFS, overall survival, or disease-free survival.

According to a recently published, Kaidar-Person et al13 found that radiation techniques did affect the oncologic outcomes of the patients. They compared radiation techniques used in the EORTC22922/10925 trial between standard technique versus standard-modified technique
versus individualized technique. The absolute improvements of oncological outcomes in terms of disease-free survival, overall survival, and breast cancer–specific mortality with internal mammary and medial supraclavicular lymph node RT compared with no internal mammary and medial supraclavicular lymph node RT were 6.8%, 4.9%, and 5.8% for the individualized technique versus 1.6%, 2.9%, and 4.3% for modified standard and 1.4%, 1.1%, and 3% for standard technique, respectively. These findings suggest that the use of more individualized RT techniques is associated with higher rates of oncological improvements.

The 3D-CRT technique is considered one of the individualized techniques. CT-based simulation helps physicians contour IMNs well and evaluate IMN radiation doses, neither of which historical trials could do. This technique can also evaluate heart and lung doses. If the mean heart dose exceeds the accepted tolerance level, physicians can perform the more advanced technique, deep inspiratory breath hold, to decrease the mean heart

Figure 2 Distant metastasis–free survival, overall survival, and disease-free survival.
dose. Nevertheless, this study could not demonstrate a benefit of IMN-RT.

There are 3 possible reasons for the results. First, the proportion of distant metastasis events was much lower than expected.\(^{14,15}\) We observed only 13.86% for the whole population. The reason might be improvements in systemic treatments such as chemotherapy or targeted therapy such as trastuzumab, which are now widely used. The effect of the low proportion of events is a lack of power to determine the benefits of IMN radiation.

Second, this study had a relatively short follow-up period, with a median follow-up of only 4.3 years. This duration contrasts markedly with the periods of the previously mentioned landmark trials, which had a follow-up of at least a decade. A longer follow-up could have increased the differences between our 2 study groups.

Third, the non−IMN-RT group received an incidental dose. When evaluated with the 80% prescribed dose, the mean IMN volume across all non−IMN-RT patients was 53.2%. The level of 53.2% may have interfered with our interpretations when comparing the IMN-irradiated and non−IMN-irradiated groups. This is because 80% of the prescribed dose might be sufficient to eradicate micrometastases in the internal mammary lymph nodes.

The results of this study are consistent with the French Internal Mammary Lymph Node Study\(^7\) and a recent randomized controlled trial in Korea (KROG-0806).\(^8\)

The French Internal Mammary Lymph Node Study was conducted in the 2-dimensional era. It investigated 1334 patients with positive axillary nodes or central/medial tumors with or without positive axillary nodes. The results did not show significance in the 10-year overall survival (IMN-RT, 62.6%; non−IMN-RT, 59.3%; \(P = .8\)). Prestratified subgroups, which were based on tumor location, histopathology nodal status, and adjuvant chemotherapy, also failed to demonstrate a benefit of IMN-RT.\(^7\)

KROG-0806 was conducted in the 3D era. It randomly assigned 735 patients with histologically confirmed node-positive breast cancer to IMN-RT and non−IMN-RT groups. The 2 groups’ 7-year disease-free survival rates did not significantly differ (IMN-RT, 85.3%; non−IMN-RT, 81.9%; \(P = .22\)).\(^8\)

The only large-scale landmark trial that established a benefit of IMN-RT was the Danish Breast Cancer Cooperative Group—Internal Mammary Lymph Node (DBCG-IMN). It enrolled 3089 patients with early-stage lymph node-positive breast cancer. The research found that patients who received internal mammary irradiation had a better 15-year overall survival, a reduced breast cancer−specific mortality, and a lower distant recurrence rate. The corresponding 15-year overall survival rates were 60.1% and 55.4%. The adjusted HR for death was 0.86 (95% CI, 0.77-0.96; \(P = .007\)) in favor of IMN irradiation.\(^6\)

The chief difference between DBCG-IMN and the other studies is that the number of patients was much more substantial. This increased size could improve the analytical power sufficiently to enable the detection of even a small benefit from administering IMN-RT.

The IMN area is usually included in radiation fields when tumors are in the central or inner quadrants due to the lymphatic drainage pathways. Regarding KROG-0806, an ad hoc subgroup analysis showed significantly higher disease-free survival rates with IMN-RT among patients with mediocentrally located tumors.\(^8\) In this subgroup, the 7-year disease-free survival rates were 81.6% without IMN-RT versus 91.8% with IMN-RT (HR, 0.42; 95% CI, 0.22-0.82; log-rank \(P = .008\)) and the 7-year

Table 3 Cardiac toxicity

	Whole population	Propensity match				
	IMN-RT (n = 143)	Non−IMN-RT (n = 427)	P value	IMN-RT (n = 139)	Non−IMN-RT (n = 139)	P value
Cardiac event, n (%)	2 (1.4%)	5 (1.2%)	1.0	2 (1.4%)	2 (1.4%)*	1.0

Patients details

IMN-RT (2 patients)

Patient 1	Moderate pericardiac effusion + valvular heart disease	Heart dose (Gy)	RTOG grading
		4.128	3
Patient 2	Cardiomyopathy + coronary artery disease	8.693	1

Non−IMN-RT (5 patients)

Patient 1	Valvular heart disease	10.29	1
Patient 2	Cardiomyopathy	0.737	1
Patient 3	Cardiomyopathy + minimal pericardial effusion	12.969	3
Patient 4	Coronary artery disease	4.206	2
Patient 5	Coronary artery disease	2.258	1

Abbreviations: IMN-RT = internal mammary lymph node radiation therapy; RTOG = Radiation Therapy Oncology Group.

* Patients 1 and 4 in non-IMN groups were left after propensity matching.
breast cancer mortality rates were 10.2% without IMN-RT versus 4.9% with IMN-RT (HR, 0.41; 95% CI, 0.17-0.99; log-rank \(P = .04 \)). Therefore, we performed a subgroup analysis; it indicated that IMN-RT did not show any benefits in these locations.

According to the MA.20 trial,3 ER- and PR-negative patients benefited from regional lymph node irradiation. We performed a subgroup analysis based on intrinsic subtypes. No benefit of IMN-RT was found for any subtype.

N stage is another principal factor that might increase the risk of IMN metastasis. Based on DBCG-IMN subgroup analysis, IMN-RT was more pronounced in patients with 4 or more positive axillary nodes. Thus, an N-stage subgroup analysis was performed. However, no benefit of IMN-RT is observed in any N-stage subgroup.

In terms of toxicity, cardiac toxicity is of most concern. In this study, the heart was redelineated for all patients. The mean heart dose was 7.1 Gy for the IMN-irradiated group and 3.7 Gy for the non IMN-irradiated group. However, the cardiac outcome did not show any difference between the groups. There were only 2 patients with Radiation Therapy Oncology Group grade 3 (1 in each group; Table 3). We explored the heart toxicity of each patient, but no dose correlation was found.

The limitations of this study were small sample size after propensity score matching (n = 278), short-term follow-up time (4.3 years), retrospective study, and small target volume (CTV\textsubscript{IMN}). At the time of the study design, we adapted the IMN group criteria from the MA.20 trial focusing on CTV\textsubscript{IMN} rather than on the planning target volume. However, this should be interpreted carefully because with an evaluation lack of planning target volume could be a contributing factor to the lack of benefit of IMN-RT.

Finally, when considering first-event failure (Table 4), it is apparent that there were high proportions of distant metastases in both groups without IMN recurrence. This finding may reject our hypothesis that IMN was the cause of distant metastasis. Currently, high percentages of distant failure lead to an increasing tendency of neoadjuvant chemotherapy. Therefore, the role of IMN-RT in patients treated with neoadjuvant chemotherapy should be further investigated.

Conclusion

In the modern radiation technique era with real-world data, we could not find a benefit of internal mammary irradiation.

Acknowledgments

Dr Jitwatcharakomol gives special thanks to his advisor, Dr Thephamongkhol, and coadvisor, Dr Setakoranukul, for their guidance and support. The authors give many thanks to Drs Ithimakin, Krittayaphong, and Tri-khiristhit for trial design and advice. The authors also thank Nataya Samasant for coordinating things in need, and they gratefully acknowledge the professional editing of this paper by David Park.
Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.adro.2022.101072.

References

1. McGale P, Correa C, Cutter D, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383:2127-2135.
2. Poortmans PM, Weltens C, Fortpied C, et al. Internal mammary and medial supraclavicular lymph node chain irradiation in stage I-III breast cancer (EORTC 22922/10925): 15-year results of a randomised, phase 3 trial. Lancet Oncol. 2020;21:1602-1610.
3. Whelan TJ, Olivia IA, Parulekar WR, et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med. 2015;373:307-316.
4. Stojanoski S, Ristevska N, Pop-Gjorcheva D, Antevski B, Petrushevsk G. Internal mammary sentinel lymph nodes in breast cancer - Effects on disease prognosis and therapeutic protocols - A case report. Open Access Maced J Med Sci. 2015;3:139-142.
5. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987-998.
6. Thorsen LBJ, Overgaard J, Matthiessen I.W, et al. Internal Mammary node irradiation in patients with node-positive early breast cancer: Fifteen-year results from the Danish breast cancer group internal mammary node study. J Clin Oncol. 2022;JCO2200044.
7. Henneguin C, Bossard N, Servagi-Vernat S, et al. Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy. Int J Radiat Oncol Biol Phys. 2013;86:860-866.
8. Kim YB, Byun HK, Kim DY, et al. Effect of elective internal mammary node irradiation on disease-free survival in women with node-positive breast cancer: A randomized phase 3 clinical trial. JAMA Oncol. 2022;8:96-105.
9. Li XA, Tai A, Arthur DW, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: An RTOG multi-institutional and multiobserver study. Int J Radiat Oncol Biol Phys. 2009;73:944-951.
10. Feng M, Moran JM, Koelling T, et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79:10-18.
11. Cho WK, Chang JS, Park SG, et al. Internal mammary node irradiation in node-positive breast cancer treated with mastectomy and taxane-based chemotherapy. Breast. 2021;59:37-43.
12. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341-1346.
13. Kaidar-Person O, Fortpied C, Hol S, et al. The association of internal mammary and medial supraclavicular lymph node radiation technique with clinical outcomes: Results from the EORTC 22922/10925 randomised trial. Radiother Oncol. 2022;172:99-110.
14. Stranzl H, Mayer R, Ofner P, Peintinger F, Prettenhofer U, Hackl A. Extracapsular extension in positive axillary lymph nodes in female breast cancer patients. Patterns of failure and indications for postoperative locoregional irradiation. Strahlenther Onkol. 2004;180:31-37.
15. Wu SG, He ZY, Li Q, et al. Prognostic value of metastatic axillary lymph node ratio for Chinese breast cancer patients. PLoS One. 2013;8:e61410.