We obtained data regarding the metabolites from flowers, the skin pulp, green beans, and peaberry green beans of the robusta coffee plant (*Coffea canephora*). The beans were processed using a wet-hulled method. The volatile compounds from the flowers were extracted using a solid-phase microextraction. Secondary metabolites from the skin pulp, green beans, and peaberry green beans were extracted by a maceration method using methanol as a solvent. The separation and identification of metabolites were conducted using gas chromatography-mass spectrometry. The flower's volatile compounds were identified by matching the generated spectra with the NIST14 library as a reference, whereas the metabolites in the skin pulp, green beans, and peaberry green beans were identified using the WILLEY09TH library as a reference. The identified volatile compounds in flowers have been listed in Table 1, and the identified skin pulp, green bean, and peaberry green bean metabolite compounds have been listed in Table 2.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data description

These raw data include information on the volatile compounds of the robusta coffee flowers and the profiles on the secondary metabolites of the skin pulp, green beans, and peaberry green beans of the robusta coffee. The raw data have been provided in a Microsoft Excel Worksheet (Tables 1 and 2) and have been presented with retention times, identified volatile compounds, and peak areas.

2. Experimental design, materials, and methods

a. Preparation and analysis of the flower samples

All samples were collected from a low land robusta coffee orchard (at 680 m above sea level). Only fresh anthesis flowers were picked for analysis. Three sets of samples (10 fresh anthesis of the robusta coffee flowers, approximately 1.5 g) were placed in 22-mL clear glass bottles for SPME with PTFE/Silicon septa (Supelco Co., Bellefonte, PA, USA). After 24 h, the flowers were extracted and identified by
Table 1
Retention times, identified compounds, and relative peak areas (%) from the GC chromatogram of Robusta coffee flower.

Retention Time (min.) (n = 3)	Compounds	Relative Peak Area (%) (n = 3)
1.794	Ethanol	3.62 n.d 3.3
4.309	Cyclobutylcarboxylic acid	n.d 0.34 n.d
6.450	Butanoic acid, 3-methyl, ethyl ester	0.17 n.d 0.27
6.515	1H-Indole, 5-methyl-2-phenyl-	n.d 0.05 n.d
7.009	1-Butanol	n.d 0.04 n.d
7.693	Carboxylic acid, methyl-, ethyl ester	n.d n.d 0.02
8.073	2-Heptanol	n.d n.d 0.16
8.076	2-Pentadecanol	0.11 n.d n.d
8.079	4-Methyl-2-hexanol	n.d 0.04 n.d
10.303	Benzaldehyde	0.23 0.13 1.0
11.308	β-Myrcene	0.67 0.73 0.54
12.574	α-Limonene	0.15 0.18 0.12
16.754	Benzyl alcohol	4.92 3.23 3.09
14.073	Ethyl 2-(5-methyl-5-vinyltetrahydrofur-2-yl)propan-2-yl carbonate	0.69 0.53 n.d
14.810	trans-Linalool oxide (furanoid)	n.d 0.60 0.48
15.440	Linalool	2.70 1.15 1.62
15.642	Phenylethyl Alcohol	22.29 27.03 22.23
15.993	2,4,6-Octatriene, 2,6-dimethyl-, (E)-	0.13 0.13 0.10
16.754	Benzyl nitrile	14.56 0.04 n.d
17.135	3,6-Dimethyl-2,3,3a,4,5,7a-hexahydrobenezofuran	n.d n.d 0.05
17.343	Benzoic acid, methyl ester	1.50 0.88 1.37
17.498	Deltacyclene	2.03 n.d n.d
17.509	5H-1-Pyrindine	n.d 1.74 1.54
17.670	Indole	1.50 1.33 1.17
17.896	α-Terpineol	0.02 0.02 0.01
18.009	Methyl salicylate	n.d 0.29 n.d
18.027	Dodecane	0.19 n.d 0.18
18.687	6-Octen-1-ol, 7-methyl-3-methylene	0.03 0.03 0.02
19.020	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	1.96 2.62 1.84
19.127	3,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	0.20 0.10 0.19
19.317	2,6-Octadienal, 3,7-dimethyl-, (Z) Citral	0.15 0.22 0.12
19.418	Benzenacetic acid, ethyl ester	0.24 n.d 0.38
19.781	Geraniol	1.76 2.07 1.59
20.155	2,6-Octadienal, 3,7-dimethyl-, (E)	0.29 n.d 0.31
20.173	2,6-Octadienal, 3,7-dimethyl-	n.d 0.38 n.d
20.322	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	0.02 n.d n.d
20.405	2,6-Octadienoic acid, 3,7-dimethyl-, methyl ester	n.d n.d 0.01
20.548	5-Tridecene, (E)-	0.04 n.d n.d
20.554	6-Tridecene, (E)-	n.d 0.04 0.03
21.018	Tridecane	5.50 5.01 5.46
21.291	Indole	0.02 0.01 0.02
21.582	trans-Geranic acid methyl ester	0.10 n.d 0.11
22.153	Methyl anthranilate	0.76 0.65 0.58
22.278	Benzenepropanoic acid, ethyl ester	0.14 n.d 0.11
23.087	5-Tridecane, (E)-	n.d 0.02 n.d
23.087	3-Tridecane, (Z)-	n.d n.d 0.01
23.081	7-Tridecane, (Z)-	0.01 0.00 n.d
23.331	3-Tridecane, (E)-	0.03 0.03 0.03
23.551	Tetradecane	0.41 0.38 0.43
23.872	Benzoic acid, 2-(methylamino)-, methyl ester	0.01 0.01 0.01
24.175	Caryophyllene	n.d 0.00 n.d

(continued on next page)
an SPME connected with a GC-MS (GC: 7890A, MS: 5975C, Agilent) following the procedure reported by Syamsudin et al. [1]. Coffee flowers in the SPME bottles were extracted at 40 °C for 45 min. The extract was injected into a gas chromatograph at 250 °C for 5 min using a splitless mode. The oven temperature was initially set to 50 °C and held for 5 min. Then, the temperature was increased to 150 °C (5 °C/min for 2 min) and then to 250 °C (5 °C/min for 5 min). An HP-5MS (30 m × 250 μm × 0.25 μm) column was used to separate the volatile compounds with helium as the carrier gas injected at 0.8 mL/min. The flower volatile compounds were identified by matching the generated spectra with the spectra in the NIST14 library as references.

Retention Time (min.)	Compounds	Relative Peak Area (%)
(n = 3)		(n = 3)
25.754 25.751 25.750	1-Tridecene	4.56 4.36 4.60
25.858	n-Tridecan-1-ol	1.07 n.d n.d
25.858 25.857	Cyclopentadecane	n.d 1.00 1.09
26.583 26.583 26.607	Pentadecane	18.68 17.12 19.24
28.064	Succinic acid, di(3-methylbut-3-enyl) ester	0.00 n.d n.d
28.069	Succinic acid, hex-4-yn-3-yl 3-methylbut-3-en-1-yl ester	n.d n.d 0.00
28.064	Supraene	n.d 0.00 n.d
28.301	Benzene, [2,2-dimethylcyclopropyl]methyl]-	0.00 n.d n.d
28.593 28.593 (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene	0.07 n.d 0.09	
28.593	Squalene	n.d 0.00 n.d
29.134 29.128 29.134	Hexadecane	0.07 0.05 0.06
29.532	Pentadecanal	0.03 n.d n.d
31.072 31.072 31.072	6,9-Heptadecadiene	0.27 0.05 0.28
31.209	1,4-Cyclooctadiene, (Z,Z)-	0.17 n.d 0.16
31.209	Tricyclo[4.2.1.1(2,5)]decan-3-ol	n.d 0.18 n.d
31.411 31.399 31.411	8-Heptadecane	3.51 2.86 3.34
31.893 31.881 31.893	Heptadecane	1.21 0.95 1.22
32.089	Pentadecfluorooctanoic acid, dodecyl ester	n.d 0.01 n.d
32.095 32.243	Cyclopentane, pentyl-	0.01 n.d 0.00
32.244	3,6-Octadecen-3,7-dimethyl-	0.01 n.d n.d
32.244	Cyclohexene, 4-methyl-	n.d 0.01 n.d
32.434	3,4-Octadecen-7,7-methyl-	n.d 0.01 n.d
32.440	Cyclobaldecene, (E)-	0.01 n.d n.d
32.440	E,E-10,12-Hexadecadien	n.d n.d 0.00
33.260 33.260 33.266	ZZ-10,12-Hexadecadien	0.00 0.00 0.00
34.241 34.247	Octadecane	n.d 0.03 0.03
34.247	Dodecane, 2,6,11-trimethyl-	0.03 n.d n.d
34.396 34.396	cis-11-Hexadecenal	0.00 0.01 n.d
34.669 34.670	Tetradecanol, (Z)-	0.16 0.18 n.d
34.669	Hexadecanol	n.d n.d 0.17
34.872	Isopropyl myristate	0.00 n.d n.d
35.692	9-Tetradecen-1-ol, acetate, (Z)-	n.d n.d 0.01
35.698	1,9-Tetradecadiene	0.01 n.d n.d
35.787	Z-1,6-Tridecadiene	0.01 n.d n.d
35.787 35.787	Cyclooctadecene	0.01 n.d 0.01
35.924 35.924 35.924	9,12,15-Octadecatrien	0.01 n.d n.d
36.019 36.138	9-Nonadecene	0.02 0.00 n.d
36.019 36.019	Z-5-Nonadecene	n.d 0.02 0.02
36.120	Cyclotetradecane	n.d n.d 0.02
36.126	1-Nonadecene	0.02 n.d n.d
36.501 36.501 36.507	Nonadecane	0.47 0.46 0.55
38.546 38.540	Eicosane	0.01 0.01 0.01
40.479 40.479 40.479	Heneicosane	0.02 0.02 0.06
43.594 43.600 43.594	9-Tricosene, (Z)-	0.00 0.00 0.00
Table 2
Retention times, identified compounds, and relative peak areas (%) in the GC chromatogram from skin-pulp, pea berry skin-pulp, green bean and pea berry green bean.

Retention Time (min.) (n = 2)	Compounds	Relative Peak Area (%) (n = 2)					
Skin-Pulp	Pea berry skin-pulp	Green bean	Pea berry green bean				
1.919	1.989	1.728	2.032	2.005	1.935	2.162	1.905
2.330	2.345	2.379	2.387	2.531	2.787	2.842	2.917
3.119	3.120	3.471	3.441	4.771	7.282	5.080	5.135
5.166	5.080	5.135	5.123	5.098	5.098	5.071	5.414
6.215	6.194	6.141	6.216	6.372	6.315	6.372	6.577
7.252	7.247	8.019	5.098	5.071	5.135	5.123	5.098

(continued on next page)
Retention Time (min.)	Compounds	Relative Peak Area (%)																		
Skin-Pulp skin-pulp	1 2 1 2 1 2 1 2	1 2 1 2 1 2 1 2																		
Pea berry skin-pulp	1 2 1 2 1 2	1 2																		
Green bean	1 2 1 2 1 2	1 2																		
Pea berry green bean	1 2 1 2 1 2	1 2																		
7.962	9.004	12.12 12.12	0.60 n.d n.d n.d n.d n.d n.d n.d																	
8.378	9.411	8.244 8.336 8.340 8.440	8.604 8.449 8.453	9.18 7.71 5.36 6.62 1.07 0.6 2.59 1.23																
8.587	9.611	n.d n.d	0.78 n.d n.d n.d n.d																	
9.966	10.726	9.779 9.983 9.684	9.731 9.620 9.779	7.87 n.d n.d 6.93 n.d n.d n.d n.d																
10.510	10.810	4-Ethylcatechol	0.43 n.d n.d n.d n.d n.d n.d n.d 0.14																	
11.578	11.613	1,2-Benzenediol, 4-methyl-	7.87 n.d n.d 6.93 n.d n.d n.d n.d																	
12.12	12.12	1,3-Dimethyl-5-(isopropyl)pyrazole	n.d n.d n.d n.d n.d n.d 0.24 n.d																	
15.540	15.575	14.618	n.d n.d n.d n.d n.d n.d n.d n.d 0.76																	
15.891	15.805	2,1,3-Benzothiadiazole	n.d n.d n.d n.d n.d n.d n.d n.d 0.14																	
16.715	16.664	2,1,4-Dimethyl-3,5,6-trimethylpyrazin-2-yl) ethanol	n.d n.d n.d n.d n.d n.d n.d n.d 0.32																	
17.730	17.676	12-Octadecadienoic acid, methyl ester	n.d n.d n.d n.d n.d n.d n.d																	
18.263	18.468	18.285	15.14 5.12 5.12 5.12 5.12 5.12 5.12 5.12	1.64 5.12 5.12 5.12 5.12 5.12 5.12 5.12	6.04 1.43 1.43 1.43 1.43 1.43 1.43 1.43	3.41 1.43 1.43 1.43 1.43 1.43 1.43 1.43	8.05 1.43 1.43 1.43 1.43 1.43 1.43 1.43	5.4 1.43 1.43 1.43 1.43 1.43 1.43 1.43	2.20 1.43 1.43 1.43 1.43 1.43 1.43 1.43	2.63 1.43 1.43 1.43 1.43 1.43 1.43 1.43										
			1,2-Epoxy-1-vinylcyclododecene	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	Octadecanoic acid	Eicosanoic acid	Palmitoyl chloride	Glycerol 1-palmitate	Nonadecanoic acid	7,9-Dimethoxy-8-isopropyl-4-methyl-1H-phenalen-1-one	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	Benzene, (1-methyl-1-butanyl)-	(R)-(-)-14-Methyl-8-hexadecn-1-ol	2-Methyl-ZZ-3,13-octadecadienol	1,3,12-Nonadecatriene	5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl-, (E,E)-	9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester	6-methyl-2,3-dihydro-1H-imidazo[1,2-a]pyrimidin-7-one	1H-Purin-2-amine, 6-methoxy-Vitamin E	Ergost-5-en-3-ol, (3,β,)-2-[(4-tert-butylphenyl)methyl]propane-1,3-diol
-----	-----	-----	-------------------------------	--	-------------------	-----------------	-------------------	---------------------	-----------------	---	---	---------------------------	---	---	---	---	---	---	---	
18.297	18.290	n.d																		
18.302	18.290	n.d	n.d	2.02	n.d	1.58	n.d	n.d	n.d	n.d										
18.420	18.407	18.423	n.d	2.88	n.d	2.39	n.d	1.73	n.d	0.09										
20.041	20.044	20.054	n.d	0.45	n.d	n.d	n.d	0.38	n.d	0.14										
21.319	21.337	21.216	0.46	n.d	0.47	0.44	n.d	n.d	n.d	n.d										
21.787	21.658	21.663	n.d	n.d	0.59	n.d	n.d	n.d	n.d	n.d										
21.787	21.658	21.663	23.195	0.53	1.85	n.d	0.73	n.d	n.d	4.92	n.d									
22.571	21.219	22.563	21.216	n.d	n.d	n.d	0.45	0.93	1.75	0.61	0.33									
22.571	21.219	22.563	21.216	n.d	n.d	n.d	n.d	n.d	n.d	0.28	n.d									
22.672	21.219	22.563	21.216	n.d																
22.672	21.219	22.563	21.216	n.d	0.61	n.d	n.d	n.d	n.d	n.d	n.d									
22.672	21.219	22.563	21.216	n.d	n.d	0.59	n.d	n.d	n.d	n.d	n.d									
22.685	21.219	22.563	21.216	n.d	n.d	0.64	n.d	n.d	n.d	n.d	n.d									
22.685	21.219	22.563	21.216	n.d																
23.370	21.219	22.563	21.216	n.d	n.d	n.d	0.27	n.d	n.d	n.d	n.d									
24.785	22.576	22.576	n.d	n.d	n.d	n.d	0.99	4.24	n.d	n.d										
24.785	22.576	22.576	n.d	n.d	n.d	n.d	1.03	n.d	n.d	n.d										
24.987	22.576	22.576	n.d	n.d	n.d	n.d	n.d	n.d	0.15	n.d	n.d									
24.987	22.576	22.576	n.d																	
25.803	25.803	n.d	n.d	n.d	n.d	0.94	n.d	n.d	n.d	n.d	n.d									
25.975	25.975	n.d	n.d	n.d	n.d	n.d	0.51	n.d	n.d	n.d	n.d									
27.111	26.899	27.115	26.891	26.877	26.733	0.78	n.d	n.d	n.d	0.45	1.07	0.87	0.62	n.d	0.32	n.d	n.d	n.d	n.d	

(continued on next page)
Table 2 (continued)

Retention Time (min.) (n = 2)	Compounds	Relative Peak Area (%) (n = 2)											
Skin-Pulp	Pea berry skin-pulp	Green bean	Pea berry green bean	Skin-Pulp	Pea berry skin-pulp	Green bean	Pea berry green bean						
1	2	1	2	1	2	1	2	1	2	1	2	1	2
27.242	27.242	(24S)-ergosta-5,22(E)-dien-3β-ol	n.d	0.58	n.d	n.d	n.d	n.d	n.d	0.23			
27.780	4,7-Methano-1H-indene, octahydro-	n.d	0.13										
28.186	27.953	28.186	27.917	32.445	β-Sitosterol	1.61	2.82	2.50	n.d	2.02	0.52	0.73	n.d
29.025	29.000	β-Tocopherol	n.d	n.d	n.d	n.d	0.20	n.d	0.22	n.d			
30.154	30.111	dl-α-Tocopherol	n.d	n.d	n.d	n.d	0.33	n.d	0.34	n.d			
31.718	31.676	Campesterol	n.d	n.d	n.d	n.d	n.d	n.d	0.23	n.d			
32.496	34.488	Stigmasterol	n.d	n.d	n.d	n.d	0.73	n.d	0.54	n.d			
32.770	32.700	γ-Sitosterol	n.d	n.d	n.d	n.d	0.69	n.d	n.d	n.d			
34.488	9,19-Cyclolanostan-3-ol, 24-methylene-, (3β)-Fucosterol	n.d	n.d	n.d	n.d	0.33	n.d	n.d	n.d				
Preparation and analysis of skin pulp and bean samples

Only red fruits of the coffee plants were included in this analysis. All fruits (‘normal’ beans and peaberries) were picked by hand from the orchard and processed using the wet-hulled method. Washed coffee fruits were then peeled to obtain the skin pulp. The seeds (beans) were fermented anaerobically for 12 h in a sealed plastic bag, and the mucilage was then washed away. The skin pulp and beans were dried in a screen house (temperature: 32.90 °C ± 5.87 °C; relative humidity: 46.14% ± 16.26%) for 3 weeks. According to standard agricultural practices, the skin pulp and beans were kept at room temperature (24–26 °C). Then, the skin pulp and beans were freeze dried for 24 h and crushed using a coffee grinder (Cyprus International 200W). Next, 100 mg powder of each sample (skin pulp beans, skin pulp peaberry beans, green beans, and peaberry green beans) was macerated for 4 × 24 h using methanol. All extracted samples were evaluated in duplicate. The extract was filtered (Whatman paper No. 91) then evaporated with a rotary evaporator. The macerated samples were redissolved in 1 mL methanol (chromatography-grade; Merck LiChrosolv Reag. Ph Eur). Before injecting into the GC-MS, the sample was filtered with a 0.22-μm/25 mm PTFE filter syringe (Axiva Sichem Biotech Pvt. Ltd. India).

Extraction of the skin pulp and beans was performed with the Sunarharum method [2] using GC-MS with some modifications. The extract was injected into the GC-MS (GC: 6890N, MS: 5973; Agilent Technologies Inc.) at 290 °C using a split mode. The initial oven temperature for green bean and peaberry green bean extracts was set to 50 °C. The temperature was increased to 220 °C (10 °C/min) and then to 290 °C (5 °C/min for 10 min). For ‘normal’ bean skin pulp and peaberry skin pulp extracts, the temperature was increased to 290 °C at 10 °C/min for 15 min. An HP-5MS (30 m × 250 μm × 0.25 μm) column was used to separate volatile compounds with helium as the carrier gas at 1.0 mL/min. The compounds were identified by matching the generated spectra with the spectra from the WILLEY09TH library database.

Acknowledgments

This research was funded by Program Penelitian, Pengabdian Kepada Masyarakat dan Inovasi Institut Teknologi Bandung (P3MIITB) - Indonesia to Tati Suryati Syamsudin, Grant No. 2010/I1.C02.2/KU/2019. We also acknowledge Desi Arofah from Flavour Laboratory of Indonesian Centre for Rice Research (ICCRI) who has operating the GC-MS.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105219.

References

[1] T.S. Syamsudin, H. Hafsah, I. Iriawati, Data set on volatile compound of coffee flowers at different annual rainfall, Data In Brief 26 (2019) 104418, https://doi.org/10.1016/j.dib.2019.104418.
[2] W.B. Sunarharum, The Compositional Basis of Coffee Flavour, The University of Queensland, Dissertation, 2016, https://doi.org/10.14264/uql.2016.1110.