Transformation formulas of a character analogue
of \(\log \theta_2 (z) \)

Merve Çelebi Boztaş\(^\ast\) and Mümün Can\(\dagger\)
Department of Mathematics, Akdeniz University, Antalya, 07058, Turkey

Abstract

In this paper, transformation formulas for the function

\[
A_1 (z, s : \chi) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \chi(n) \chi(m) (-1)^{m-1} \frac{e^{2\pi i mnz/k}}{n^s-1}
\]

are obtained. Sums that appear in transformation formulas are generalizations of the Hardy–Berndt sums \(s_j(d, c), j = 1, 2, 5 \). As applications of these transformation formulas, reciprocity formulas for these sums are derived and several series relations are presented.

Keywords: Dedekind sums; Hardy-Berndt sums; Bernoulli and Euler polynomials.

Mathematics Subject Classification 2010: 11F20, 11B68.

1 Introduction

Hardy sums or Berndt’s arithmetic sums are defined for \(c > 0 \) by

\[
S(d, c) = \sum_{n=1}^{c-1} (-1)^{n+1+\lfloor dn/c \rfloor}, \quad s_1(d, c) = \sum_{n=1}^{c-1} (-1)^{\lfloor dn/c \rfloor} \mathcal{B}_1 \left(\frac{n}{c} \right),
\]

\[
s_2(d, c) = \sum_{n=1}^{c-1} (-1)^n \mathcal{P}_1 \left(\frac{n}{c} \right) \mathcal{P}_1 \left(\frac{dn}{c} \right), \quad s_3(d, c) = \sum_{n=1}^{c-1} (-1)^n \mathcal{P}_1 \left(\frac{dn}{c} \right),
\]

\[
s_4(d, c) = \sum_{n=1}^{c-1} (-1)^{\lfloor dn/c \rfloor}, \quad s_5(d, c) = \sum_{n=1}^{c-1} (-1)^{n+\lfloor dn/c \rfloor} \mathcal{P}_1 \left(\frac{n}{c} \right),
\]

where \(\mathcal{P}_p (x) \) are the Bernoulli functions (see Section 2) and \(\lfloor x \rfloor \) denotes the greatest integer not exceeding \(x \). These sums arise in transformation formulas for the logarithms of the classical theta functions \([6, 17]\). In particular,
Hardy–Berndt sums $s_j(d, c)$ ($j = 1, 2, 5$) appear in transformation formulas of $\log \theta_2(z)$:

Let $Tz = (az + b)/(cz + d)$ where a, b, c and d are integers with $ad - bc = 1$ and $c > 0$. Berndt [6] proves that if d is even, then

$$\log \theta_2(Tz) = \log \theta_4(z) + \frac{1}{2} \log(cz + d) - \frac{\pi i a}{4c} - \frac{\pi i}{4} + \frac{\pi i}{2} s_1(d, c), \quad (1.1)$$

if c is even, then

$$\log \theta_2(Tz) = \log \theta_2(z) + \frac{1}{2} \log(cz + d) + \frac{\pi i a + d}{4c} - \frac{\pi i}{4} - \pi i s_2(d, c), \quad (1.2)$$

and Goldberg [17] shows that if c and d are odd, then

$$\log \theta_2(Tz) = \log \theta_3(z) + \frac{1}{2} \log(cz + d) - \frac{\pi i a}{4c} - \frac{\pi i}{4} + \frac{\pi i}{2} s_5(d, c). \quad (1.3)$$

Moreover, Goldberg [17] shows that these sums also arise in the theory of $r_m(n)$, the number of representations of n as a sum of m integral squares and in the study of the Fourier coefficients of the reciprocals of $\theta_j(z)$, $j = 2, 3, 4$. Analogous to Dedekind sums, these sums also satisfy reciprocity formulas: For coprime positive integers d and c we have [6,17]

$$s_1(d, c) - 2s_2(c, d) = \frac{1}{2} - \frac{1}{2} \left(\frac{1}{dc} + \frac{c}{d} \right), \quad \text{if } d \text{ is even}, \quad (1.4)$$

$$s_5(d, c) + s_5(c, d) = \frac{1}{2} - \frac{1}{2cd}, \quad \text{if } c \text{ and } d \text{ are odd.} \quad (1.5)$$

Various properties of Hardy–Berndt sums have been investigated ([2,6–8,17,22–24,26–32]) and several generalizations have been studied ([9–11,14,15,20,21,25]).

A character analogue of classical Dedekind sum, called as Dedekind character sum, appears in the transformation formula of a generalized Eisenstein series $G(z, s: \chi; r_1, r_2)$ (see (2.8) below) associated to a non-principle primitive character χ of modulus k [3, p. 12]. This sum is defined by

$$s(d, c : \chi) = \sum_{n=1}^{ck} \chi(n) \mathfrak{B}_{1,\chi} \left(\frac{dn}{c} \right) \mathfrak{B}_1 \left(\frac{n}{ck} \right)$$

and possesses the reciprocity formula [3, Theorem 4]

$$s(c, d : \chi) + s(d, c : \overline{\chi}) = B_{1,\chi} B_{1,\overline{\chi}}.$$
and corresponding reciprocity formula is established [13].

Generalizations of Hardy–Berndt sums $S(d, c)$, $s_3(d, c)$ and $s_4(d, c)$, in the sense of $s_p (d, c : \chi)$, are presented in [10] by obtaining transformation formulas for the function

$$B(z, s : \chi) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} \chi(m) \chi(2n+1) (2n+1)^{s-1} e^{\pi i m(2n+1)z/k},$$

(1.6)

which is a character extension of $\log \theta_4 (z)$.

Inspiring by [3, 10] and the fact

$$\log \left(\frac{\theta_2 (z)}{2 e^{\pi i z/4}} \right) = -\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (-1)^m n^{-1} e^{2\pi i n z}$$

we set the function $A_1 (z, s : \chi)$ to be

$$A_1 (z, s : \chi) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (-1)^m \chi(m) \chi(n) n^{s-1} e^{2\pi i n z/k},$$

for $\text{Im} (z) > 0$ and for all s.

In this paper, we derive transformation formulas for the function $A_1 (z, s : \chi)$. Sums appearing in transformation formulas are generalizations, involving characters and generalized Bernoulli and Euler functions, of Hardy–Berndt sums $s_1(d, c)$, $s_2(d, c)$ and $s_5(d, c)$. These new sums still obey reciprocity formulas.

2 Preliminaries

Throughout this paper χ denotes a non-principal primitive character of modulus k. The letter p always denotes positive integer. We use the modular transformation $(az + b)/(cz + d)$ where a, b, c and d are integers with $ad - bc = 1$ and $c > 0$. The upper half-plane $\{ x + iy : y > 0 \}$ will be denoted by \mathbb{H} and the upper quarter-plane $\{ x + iy : x > -d/c, y > 0 \}$ by \mathbb{K}. We use the notation $\{ x \}$ for the fractional part of x. Unless otherwise stated, we assume that the branch of the argument is defined by $-\pi \leq \text{arg} z < \pi$.

The Bernoulli polynomials $B_n(x)$ and the Euler polynomials $E_n(x)$ are defined by means of the generating functions

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad |t| < 2\pi, \quad \text{and} \quad \frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \quad |t| < \pi,$$

respectively (see [18]). $B_n(0) = B_n$ are the Bernoulli numbers with $B_0 = 1$, $B_1 = -1/2$ and $B_{2n-1} (1/2) = B_{2n+1} = 0$ for $n \geq 1$. For $0 \leq x < 1$ and $m \in \mathbb{Z}$, the Bernoulli functions $\mathfrak{B}_n (x)$ are defined by

$$\mathfrak{B}_n (x + m) = B_n (x) \quad \text{when} \ n \neq 1 \ \text{or} \ x \neq 0, \ \text{and} \ \mathfrak{B}_1 (m) = \mathfrak{B}_1 (0) = 0$$
and satisfy Raabe theorem for any \(x \)

\[
\sum_{j=0}^{r-1} B_n \left(x + \frac{j}{r} \right) = r^{1-n} B_n (rx). \tag{2.1}
\]

Also we have [12, Eq. (4.5)]

\[
r^{n-1} \sum_{j=0}^{r-1} (-1)^j B_n \left(\frac{x + j}{r} \right) = -\frac{n}{2} E_{n-1} (x) \tag{2.2}
\]

for even \(r \) and any \(x \). Here \(E_n (x) \) are the Euler functions defined by

\[
E_n (x) = E_n (x) \quad \text{and} \quad E_n (x + m) = (-1)^m E_n (x) \tag{2.3}
\]

for \(0 \leq x < 1 \) and \(m \in \mathbb{Z} \). The generalized Bernoulli function \(B_{m, \chi} (x) \) are defined by Berndt [4]. We will often use the following property that can confer as a definition

\[
B_{m, \chi} (x) = k^{m-1} \sum_{j=0}^{k-1} \overline{\chi} (j) B_m \left(\frac{j + x}{k} \right), \quad m \geq 1, \tag{2.4}
\]

and satisfy

\[
B_{m, \chi} (x + nk) = B_{m, \chi} (x), \quad B_{m, \chi} (-x) = (-1)^m \chi (-1) B_{m, \chi} (x). \tag{2.5}
\]

For the convenience with the definition of \(B_{m, \chi} (x) \), let the character Euler function \(E_{m, \chi} (x) \) be defined by

\[
E_{m, \chi} (x) = k^m \sum_{j=0}^{k-1} (-1)^j \overline{\chi} (j) E_m \left(\frac{j + x}{k} \right), \quad m \geq 0 \tag{2.6}
\]

for odd \(k \), the modulus of \(\chi \). It is easily seen that

\[
E_{m, \chi} (x + nk) = (-1)^n E_{m, \chi} (x), \quad E_{m, \chi} (-x) = (-1)^{m-1} \chi (-1) E_{m, \chi} (x). \tag{2.7}
\]

The Gauss sum \(G (z, \chi) \) is defined by

\[
G (z, \chi) = \sum_{v=0}^{k-1} \chi (v) e^{2\pi ivz/k}.
\]

We put \(G (1, \chi) = G (\chi) \). If \(n \) is an integer, then [1, p. 168]

\[
G (n, \chi) = \overline{\chi} (n) G (\chi).
\]

Let \(r_1 \) and \(r_2 \) be arbitrary real numbers. For \(z \in \mathbb{H} \) and \(\text{Re} (s) > 2 \), Berndt [3] defines the function

\[
G (z, s : \chi ; r_1, r_2) = \sum_{m, n = -\infty}^{\infty} \frac{\chi(m) \overline{\chi}(n)}{(m + r_1) z + n + r_2), \tag{2.8}
\]
where the dash means that the possible pair \(m = -r_1, n = -r_2 \) is omitted from the summation. In accordance with the subject of this study we present Berndt’s formulas for \(r_1 = r_2 = 0 \). Set \(G(z, s : \chi) = G(z, s : \chi : 0, 0) \) and

\[
A(z, s : \chi) = \sum_{m=1}^{\infty} \chi(m) \sum_{n=1}^{\infty} \chi(n)n^{s-1}e^{2\pi inmz/k}, \quad z \in \mathbb{H} \text{ and } s \in \mathbb{C}.
\]

Then, it is shown that

\[
\Gamma(s) G(z, s : \chi) = G(\bar{\chi}) \left(-\frac{2\pi i}{k} \right)^s H(z, s : \chi)
\]

where \(H(z, s : \chi) = (1 + e^{\pi is}) A(z, s : \chi). \)

The following lemma is due to Lewittes \([19, \text{Lemma } 1]\).

Lemma 2.1 Let \(A, B, C \) and \(D \) be real with \(A \neq 0 \) and \(C \neq 0 \). Then for \(z \in \mathbb{H} \),

\[
\arg((Az + B) / (Cz + D)) = \arg(Az + B) - \arg(Cz + D) + 2\pi l,
\]

where \(l \) is independent of \(z \) and \(l = \begin{cases} 1, & A \leq 0 \text{ and } AD - BC > 0, \\ 0, & \text{otherwise}. \end{cases} \)

We need the following Berndt’s transformation formulas (see \([16, \text{Theorem } 1] \) and \([25, \text{Theorem } 2] \) for generalizations).

Theorem 2.2 \([3, \text{Theorem } 2] \) Let \(Tz = (az + b) / (cz + d) \). Suppose first that \(a \equiv d \equiv 0 \text{(mod } k) \). Then for \(z \in \mathbb{K} \) and \(s \in \mathbb{C} \),

\[
(z + d)^{s} \Gamma(s) G(Tz, s : \chi) = \bar{\chi}(b) \chi(c) \Gamma(s) G(z, s : \bar{\chi})
\]

\[
+ \bar{\chi}(b) \chi(c)e^{-\pi is} \sum_{j=1}^{c} \sum_{\mu=0}^{k-1} \sum_{\nu=0}^{k-1} \chi(\mu c + j) \chi\left(\left[\frac{d\mu}{c}\right] + \nu\right) f(z, s, c, d),
\]

where

\[
f(z, s, c, d) = \int_C \frac{e^{-(\mu c + j)(cz + d)u/c \mu + 0} + \nu(\mu c + j)u}{e^{ku} - 1} \frac{u^{s-1}du}{u^{s-1}}.
\]

where \(C \) is a loop beginning at \(+\infty \), proceeding in the upper half-plane, encircling the origin in the positive direction so that \(u = 0 \) is the only zero of \((e^{-(cz + d)ku} - 1) / (e^{ku} - 1) \) lying “inside” the loop, and then returning to \(+\infty \) in the lower half-plane. Here we choose the branch of \(u^s \) with \(0 < \arg u < 2\pi \).

Secondly, if \(b \equiv c \equiv 0 \text{(mod } k) \), we have for \(z \in \mathbb{K} \) and \(s \in \mathbb{C} \),

\[
(z + d)^{-s} \Gamma(s) G(Tz, s : \chi) = \bar{\chi}(a) \chi(d) \Gamma(s) G(z, s : \chi)
\]

\[
+ \bar{\chi}(a) \chi(d)e^{-\pi is} \sum_{j=1}^{c} \sum_{\mu=0}^{k-1} \sum_{\nu=0}^{k-1} \chi(j) \chi\left(\left[\frac{d\mu}{c}\right] + d\mu - \nu\right) f(z, s, c, d).
\]
3 Transformation Formulas

In the sequel, unless otherwise stated, we assume that k is odd.

From definition, $A_1 (z, s; \chi)$ can be written in terms of $A (z, s; \chi)$ as

$$A_1 (z, s; \chi) = 2 \chi (2) A (2z, s; \chi) - A (z, s; \chi).$$

Thus, transformation formulas can be achieved for the function $H_1 (z, s; \chi) = (1 + e^{\pi i s}) A_1 (z, s; \chi)$ with the help of Theorem 2.2. We have following transformation formulas according to d or c is even.

Theorem 3.1 Let $Tz = (az + b) / (cz + d)$ and d be even. If $a \equiv d \equiv 0 \pmod{k}$, then for $z \in \mathbb{K}$ and $s \in \mathbb{C}$

$$G (\bar{\chi}) (cz + d)^{-s} H_1 (Tz, s; \chi) = \bar{\chi} (b) \chi (c) G (\chi) 2^{1-s} \chi (2) B_1 (z, s; \chi)$$

$$+ \bar{\chi} (b) \chi (c) \left(-\frac{k}{2\pi i} \right)^s e^{-\pi i s} \sum_{j=1}^{c-1} \sum_{\mu=0}^{k-1} \frac{\chi (j)}{\sum_{\nu=0}^{e}} + \bar{\chi} (\mu + j)$$

$$\times \left\{ \frac{\chi (2)}{2^{s-1} \chi} \left(\left[\frac{dj}{2c} \right] - \nu \right) f \left(\frac{z}{2}, s, \frac{d}{2} \right) - \chi \left(\left[\frac{dj}{c} \right] - \nu \right) f \left(z, s, c, d \right) \right\},$$

(3.1)

where $B_1 (z, s; \chi) = (1 + e^{\pi i s}) B (z, s; \chi)$ is given by (1.6) and $f (z, s, c, d)$ is given by (2.9). If $b \equiv c \equiv 0 \pmod{k}$, then

$$G (\bar{\chi}) (cz + d)^{-s} H_1 (Tz, s; \chi) = \bar{\chi} (a) \chi (d) G (\bar{\chi}) 2^{1-s} \chi (2) B_1 (z, s; \chi)$$

$$+ \bar{\chi} (a) \chi (d) \left(-\frac{k}{2\pi i} \right)^s e^{-\pi i s} \sum_{j=1}^{c-1} \sum_{\mu=0}^{k-1} \frac{\chi (j)}{\sum_{\nu=0}^{e}}$$

$$\times \left\{ 2^{1-s} \chi \left(\left[\frac{dj}{2c} \right] + \frac{d}{2} \mu - \nu \right) f \left(\frac{z}{2}, s, c, \frac{d}{2} \right) - \chi \left(\left[\frac{dj}{c} \right] + d \mu - \nu \right) f \left(z, s, c, d \right) \right\}.$$

Proof. For even d, let $S_z = (2az + b) / (cz + d/2)$. Since $S (z/2) = 2T (z)$, one can write

$$H_1 (Tz, s; \chi) = 2 \chi (2) H (S (z/2), s; \chi) - H (Tz, s; \chi).$$

(3.2)

Thus, the desired result follows from (3.2) and Theorem 2.2 with [10, Eq. (3.1)]

$$2^{1-s} \chi (2) H \left(\frac{z}{2}, s; \chi \right) - H (z, s; \chi) = 2^{1-s} \chi (2) B_1 (z, s; \chi).$$

Theorem 3.2 Let $Tz = (az + b) / (cz + d)$ and let c be even. If $a \equiv d \equiv 0 \pmod{k}$, then for $z \in \mathbb{K}$ and all $s \in \mathbb{C}$

$$G (\bar{\chi}) (cz + d)^{-s} H_1 (Tz, s; \chi) = \bar{\chi} (b) \chi (c) G (\chi) H_1 (z, s; \chi)$$

$$- \bar{\chi} (b) \chi (c) \left(-\frac{k}{2\pi i} \right)^s e^{-\pi i s} \sum_{\mu=0}^{k-1} \sum_{\nu=0}^{e} \frac{\chi (j)}{\sum_{\nu=0}^{e}} + \bar{\chi} (\mu + j)$$

$$\times \left\{ \frac{\chi (2)}{2^{s-1} \chi} \left(\left[\frac{dj}{2c} \right] - \nu \right) f \left(\frac{z}{2}, s, \frac{d}{2} \right) - \chi \left(\left[\frac{dj}{c} \right] - \nu \right) f \left(z, s, c, d \right) \right\}.$$
\begin{align*}
&\times \left\{ \sum_{j=1}^c \bar{\chi} (\mu c + j) \chi \left(\left[\frac{dj}{c} \right] - \nu \right) f (z, s, c, d) \\
&- \sum_{j=1}^{c/2} 2\bar{\chi} (2) \bar{\chi} \left(\left[\frac{2dj}{c} \right] - \nu \right) f \left(2z, s, \frac{c}{2}, d \right) \right\}.
\end{align*}

If \(b \equiv c \equiv 0 \pmod{k} \), then
\begin{align*}
(cz + d)^{-s} G (\bar{\chi}) H_1 (Tz, s : \chi) &= \bar{\chi} (a) \chi (d) G (\bar{\chi}) H_1 (z, s : \chi) \\
&- \bar{\chi} (a) \chi (d) \left(- \frac{k}{2\pi i} \right)^s e^{-\pi is} \sum_{\mu = 0}^{k-1} \sum_{\nu = 0}^{k-1} \\
&\times \sum_{j=1}^c \chi (j) \chi \left(\left[\frac{dj}{c} \right] + d\mu - \nu \right) f (z, s, c, d) \\
&- \sum_{j=1}^{c/2} 2\chi (2) \chi (j) \chi \left(\left[\frac{2dj}{c} \right] + d\mu - \nu \right) f \left(2z, s, \frac{c}{2}, d \right) \right\}.
\end{align*}

Proof. For even \(c \), if we set \(Vz = (az + 2b) / \left(\frac{c}{2} z + d \right) \), then \(V (2z) = 2T (z) \) and
\begin{equation}
H_1 (Tz, s : \chi) = 2\chi (2) H (V (2z), s : \chi) - H (Tz, s : \chi). \tag{3.3}
\end{equation}
Using (3.3) and Theorem 2.2 completes the proof. \(\blacksquare \)

Theorem 3.1 and Theorem 3.2 can be simplified when \(s = 1 - p \) is an integer for \(p \geq 1 \). In this case, by the residue theorem, we have
\begin{equation}
f (z, 1 - p, c, d) = \frac{2\pi ik^{p-1}}{(p+1)!} \sum_{m=0}^{p+1} \binom{p+1}{m} \left(- (cz + d) \right)^{m-1} \\
\times B_{p+1-m} \left(\frac{\nu + \left\{ \frac{dj}{c} \right\}}{k} \right) B_m \left(\frac{\mu c + j}{ek} \right). \tag{3.4}
\end{equation}

The following is character extension of (1.1).

Theorem 3.3 Let \(p \geq 1 \) be odd and \(d \) be even. If \(a \equiv d \equiv 0 \pmod{k} \), then for \(z \in \mathbb{H} \)
\begin{align*}
G (\bar{\chi}) (cz + d)^{p-1} H_1 (Tz, 1 - p : \chi) \\
= \bar{\chi} (b) \chi (c) \left(2^p \chi (2) G (\chi) B_1 (z, 1 - p : \bar{\chi}) - \frac{\chi (-1) (2\pi i)^p}{2 (p!)} g_1 (c, d, z, p, \bar{\chi}) \right), \tag{3.5}
\end{align*}
where
\begin{equation}
g_1 (c, d, z, p, \chi)
\end{equation
\[
\sum_{m=1}^{p} \left(\frac{p}{m} \right) k^{m-p} (- (cz + d))^{m-1} \sum_{n=1}^{ck} \chi(n) \mathcal{E}_{p-m, \chi} \left(\frac{dn}{c} \right) \mathfrak{B}_m \left(\frac{n}{ck} \right). \tag{3.6}
\]

If \(b \equiv c \equiv 0 \) (mod \(k \)), then for \(z \in \mathbb{H} \)
\[
G(\bar{\chi})(cz + d)_{p-1} H_1(Tz, 1 - p : \chi)
= \bar{\chi}(a) \chi(d) \left(2^p \bar{\chi}(2) G(\bar{\chi}) B_1(z, 1 - p : \chi) - \frac{\chi(-1) (2\pi i)^p}{2 (p!)} g_1(c, d, z, \chi) \right).
\]

Proof. Let us consider the case \(a \equiv d \equiv 0 \) (mod \(k \)). By aid of (3.4), equation (3.1) turns into
\[
G(\bar{\chi})(cz + d)_{p-1} H_1(Tz, 1 - p : \chi)
= \bar{\chi}(b) \chi(c) G(\bar{\chi}) (2^p \chi(2)) B_1(z, 1 - p : \bar{\chi})
+ \bar{\chi}(b) \chi(c) \frac{(2\pi i)^p}{(p+1)!} \sum_{m=1}^{p} \left(\frac{m+1}{m} \right) (- (cz + d))^{m-1} (T_1 - T_2),
\]
where
\[
T_1 = 2^{p+1-m} \chi(2) \sum_{j=1}^{c} \sum_{k=0}^{k-1} \sum_{\mu=0}^{k-1} \bar{\chi}(\mu c + j) \chi(\left\lfloor \frac{dj}{2c} \right\rfloor - \nu) \times B_{p+1-m} \left(\frac{\nu + (dj/2c)}{k} \right) B_{p+1-m} \left(\frac{\mu c + j}{c} \right), \tag{3.7}
\]
\[
T_2 = \sum_{j=1}^{c} \sum_{k=0}^{k-1} \sum_{\mu=0}^{k-1} \bar{\chi}(\mu c + j) \chi(\left\lfloor \frac{dj}{c} \right\rfloor - \nu) B_{p+1-m} \left(\frac{\nu + (dj/c)}{k} \right) B_{p+1-m} \left(\frac{\mu c + j}{c} \right)
\]
and we have used that the sum over \(\mu \) is zero for \(m = 0 \) and the sum over \(\nu \) is zero for \(m = p+1 \). We first note that the triple sum in (3.7) is invariant by replacing \(B_{p+1-m} \left(\frac{\nu + (dj/2c)}{k} \right) \) by \(\mathfrak{B}_{p+1-m} \left(\frac{\nu + (dj/2c)}{k} \right) \) since \(B_{p+1-m} \left(\frac{\nu + (dj/2c)}{k} \right) = \mathfrak{B}_{p+1-m} \left(\frac{\nu + (dj/2c)}{k} \right) \) for \(0 < \frac{\nu + (dj/2c)}{k} < 1 \), and \(\chi(d/2) = 0 \) (\(d \equiv 0 \) (mod \(k \)) and \(k \) is odd) for \(\nu + (dj/2c) \leq 0 \). Similarly, one can write \(\mathfrak{B}_m \left(\frac{\nu + j}{c} \right) \) in place of \(B_m \left(\frac{\nu + j}{c} \right) \). After some manipulations, we see that
\[
T_1 = 2^{p+1-m} \chi(-2) k^{m-p} \sum_{n=1}^{ck} \bar{\chi}(n) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{2c} \right) \mathfrak{B}_m \left(\frac{n}{ck} \right)
\]
and
\[
T_2 = \chi(-1) k^{m-p} \sum_{n=1}^{ck} \bar{\chi}(n) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{c} \right) \mathfrak{B}_m \left(\frac{n}{ck} \right).
\]
So, we have
\[
G(\bar{\chi})(cz + d)_{p-1} H_1(Tz, 1 - p : \chi)
\]
\[= \bar{\chi} (b) \chi (c) G (\chi) 2^p \chi (2) B_1 (z, 1 - p : \bar{\chi})
+ \bar{\chi} (b) \chi (-c) \frac{(2\pi i)^p}{(p + 1)!} \sum_{m=1}^{p} \left(\frac{p + 1}{m} \right)^{k^m} \left((cz + d)^{m-1} \right)
\times \sum_{n=1}^{c_k} \bar{\chi} (n) \mathfrak{B}_m \left(\frac{n}{c k} \right) \left(2^{p+1-m} \chi (2) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{2c} \right) - \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{c} \right) \right). \tag{3.8}\]

Now, consider the difference
\[T_3 = 2^{p+1-m} \chi (2) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{2c} \right) - \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{dn}{c} \right). \]

Using the property \[10, \text{Eq. (3.13)}\]
\[r - 1 \sum_{j=0}^{r-1} B_{m, \chi} (x + j k) = \chi (r) r^{1-m} \mathfrak{B}_{m, \chi} (r x) \tag{3.9}\]
for \(r = 2\) and \(x = dn/2c\), and utilizing (2.2) we find that
\[T_3 = (2k)^{p-m} \sum_{\mu=0}^{k-1} \chi (2\mu) \left(\mathfrak{B}_{p+1-m} \left(\frac{\mu + dn/2c}{k} \right) - \mathfrak{B}_{p+1-m} \left(\frac{\mu + dn/2c}{k} + \frac{1}{2} \right) \right)
= - \frac{p + 1 - m}{2} k^{p-m} \sum_{\mu=0}^{k-1} \chi (2\mu) \mathcal{E}_m \left(\frac{2\mu + dn/c}{k} \right). \tag{3.10}\]

The sum in the last line can be evaluated as
\[\sum_{\mu=0}^{(k-1)/2} \chi (2\mu) \mathcal{E}_m \left(\frac{2\mu + x}{k} \right) + \sum_{\mu=(k+1)/2}^{k-1} \chi (2\mu) \mathcal{E}_m \left(\frac{2\mu + x}{k} \right)
= \sum_{\mu=0}^{k-1} \chi (2\mu) \mathcal{E}_m \left(\frac{2\mu + x}{k} \right) - \sum_{\mu=0}^{k-1} \chi (2\mu + 1) \mathcal{E}_m \left(\frac{2\mu + 1 + x}{k} \right)
= \sum_{\mu=0}^{k-1} (-1)^{\mu} \chi (\mu) \mathcal{E}_m \left(\frac{\mu + x}{k} \right). \tag{3.11}\]

Setting this in (3.10) and using (2.6) give
\[2^{p+1-m} \chi (2) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{x}{2} \right) - \mathfrak{B}_{p+1-m, \bar{\chi}} (x) = - \frac{p + 1 - m}{2} \mathcal{E}_{p-m, \bar{\chi}} (x). \tag{3.12}\]

Therefore, we arrive at
\[G (\bar{\chi}) (cz + d)^{p-1} H_1 (T z, 1 - p : \chi)\]
\[G(\bar{z}) = \sum_{n=1}^{ck} \bar{\chi}(n) E_{p-m,\bar{\chi}} \left(\frac{dn}{c} \right) \mathcal{B}_m \left(\frac{n}{ck} \right). \]

The result holds for \(z \in \mathbb{H} \) by analytic continuation.

The proof for \(b \equiv c \equiv 0 \pmod{k} \) is completely analogous. ■

Note that for odd \(d \) and \(c \), if we take \(Tz = T(z + k) = \frac{az + b + ak}{cz + d + ck} \) instead of \(Tz = \frac{az + b}{cz + d} \) in Theorem 3.3, then the function \(g_1(c, d + ck, z, p, \chi) \) turns into

\[g_1(c, d + ck, z, p, \chi) = \sum_{m=1}^{p} \left(\frac{p}{m} \right) k^{m-p} (- (cz + d + ck))^{m-1} \]

\[\times \sum_{n=1}^{ck} (-1)^n \chi(n) E_{p-m,\chi} \left(\frac{dn}{c} \right) \mathcal{B}_m \left(\frac{n}{ck} \right), \tag{3.13} \]

by (2.7). So, it is convenient to present the following theorem since it is observed a new sum.

Theorem 3.4 Let \(p \geq 1 \) be odd and \(Rz = (az + b + ak) / (cz + d + ck) \) with \(d \) and \(c \) odd. If \(a \equiv d \equiv 0 \pmod{k} \), for \(z \in \mathbb{H} \),

\[G(\bar{z}) (cz + d + ck)^{p-1} H_1(Rz, 1 - p : \chi) \]

\[= \bar{\chi}(b) \chi(c) G(\chi) 2^p \chi(2) B_1(z, 1 - p : \bar{\chi}) - \frac{\bar{\chi}(b) \chi(-c) (2\pi i)^p}{2 p!} g_1(c, d + ck, z, p, \bar{\chi}), \tag{3.14} \]

where \(g_1(c, d + ck, z, p, \chi) \) is given by (3.13).

If \(b \equiv c \equiv 0 \pmod{k} \), for \(z \in \mathbb{H} \),

\[G(\bar{z}) (cz + d + ck)^{p-1} H_1(Rz, 1 - p : \chi) \]

\[= \bar{\chi}(a) \chi(d) G(\chi) 2^p \bar{\chi}(2) B_1(z, 1 - p : \bar{\chi}) - \frac{\bar{\chi}(a) \chi(-d) (2\pi i)^p}{2 p!} g_1(c, d + ck, z, p, \chi). \tag{3.15} \]

For \(s = 1 - p \), Theorem 3.2 turns into following, which is character analogous of (1.2).

Theorem 3.5 Let \(p \geq 1 \) be odd and let \(c \) be even. If \(a \equiv d \equiv 0 \pmod{k} \), for \(z \in \mathbb{H} \),

\[G(\bar{z}) (cz + d)^{p-1} H_1(Tz, 1 - p : \chi) \]

\[= \bar{\chi}(b) \chi(c) G(\chi) H_1(z, 1 - p : \bar{\chi}) + \bar{\chi}(-b) \chi(c) \frac{(2\pi i)^p}{(p+1)!} g_2(c, d, z, p, \bar{\chi}), \tag{3.16} \]
where
\[
g_2(c, d, z, p, \chi) = \sum_{m=1}^{p} \binom{p+1}{m} (- (cz + d))^{m-1} k^{m-p} \\
\times \sum_{n=1}^{ck} (-1)^n \chi(n) \mathfrak{B}_{p+1-m,\chi} \left(\frac{dn}{c}\right) \mathfrak{B}_m \left(\frac{n}{ck}\right).
\]
(3.17)

If \(b \equiv c \equiv 0 \pmod{k} \), for \(z \in \mathbb{H} \),
\[
G(\bar{\chi}) (cz + d)^{p-1} H_1(Tz, 1-p: \chi) \\
= \bar{\chi}(a) \chi(d) G(\bar{\chi}) H_1(z, 1-p: \chi) + \bar{\chi}(a) \chi(-d) \frac{(2\pi i)^p}{(p+1)!} g_2(c, d, z, p, \chi).
\]
(3.18)

Proof. Similar to (3.8), it can be found that
\[
G(\bar{\chi})(cz + d)^{p-1} H_1(Tz, 1-p: \chi) \\
= \bar{\chi}(b) \chi(c) G(\chi) H_1(z, 1-p: \chi) \\
- \bar{\chi}(-b) \chi(c) \frac{(2\pi i)^p}{(p+1)!} \sum_{m=1}^{p} \binom{p+1}{m} (- (cz + d))^{m-1} k^{m-p} \\
\times \left(\sum_{n=1}^{ck} \bar{\chi}(n) \mathfrak{B}_{p+1-m,\chi} \left(\frac{dn}{c}\right) \mathfrak{B}_m \left(\frac{n}{ck}\right) \right) \\
- 2 \sum_{n=1}^{ck/2} \bar{\chi}(2n) \mathfrak{B}_{p+1-m,\bar{\chi}} \left(\frac{2dn}{c}\right) \mathfrak{B}_m \left(\frac{2n}{ck}\right).
\]

Then, (3.16) follows from
\[
2 \sum_{n=1}^{ck/2} \bar{\chi}(2n) \mathfrak{B}_{p+1-m,\bar{\chi}} \left(\frac{2dn}{c}\right) \mathfrak{B}_m \left(\frac{2n}{ck}\right) \\
- \sum_{n=1}^{ck} \bar{\chi}(n) \mathfrak{B}_{p+1-m,\bar{\chi}} \left(\frac{dn}{c}\right) \mathfrak{B}_m \left(\frac{n}{ck}\right) \\
= \sum_{n=1}^{ck} (-1)^n \chi(n) \mathfrak{B}_{p+1-m,\bar{\chi}} \left(\frac{dn}{c}\right) \mathfrak{B}_m \left(\frac{n}{ck}\right).
\]

The proof for \(b \equiv c \equiv 0 \pmod{k} \) is completely analogous. □

Note that for \(p = 1 \) transformation formulas (3.16) and (3.18) coincide with Meyer’s [25] second formulas in Theorems 10 and 11, respectively.

4 Reciprocity Theorems

In this section, we first give reciprocity formulas for the functions \(g_1(d, c + dk, z, p, \chi) \), \(g_1(d, c, z, p, \chi) \) and \(g_2(d, c, z, p, \chi) \). In particular, these formulas yield reciprocity formulas analogues to the reciprocity formulas (1.4) and (1.5).

We need the following theorem, offered by Can and Kurt [10].
Theorem 4.1 (see [10, Eqs. (3.4) and (3.20)]) Let \(p \geq 1 \) be odd integer and \(Tz = (az + b) / (cz + d) \). If \(b \) is even and \(a \equiv d \equiv 0 \pmod{k} \), then for \(z \in \mathbb{H} \)

\[
(cz + d)^{p-1} G(\bar{\chi}) B_1(Tz, 1 - p : \chi)
= \bar{\chi}(b) \chi(2c) G(\chi) B_1(z, 1 - p : \bar{\chi})
- \bar{\chi}(b) \chi(-2c) \frac{(2\pi i)^p}{(p+1)!} \sum_{m=1}^{p+1} \left(\frac{p+1}{m} \right) k^{m-p} (- (cz + d))^{m-1}
\times \frac{m}{2m} \sum_{n=1}^{ck} \chi(n) \mathfrak{B}_{p+1-m, \chi} \left(\frac{dn}{2c} \right) \mathcal{E}_{m-1} \left(\frac{n}{ck} \right).
\]

(4.1)

If \(a \) is even and \(a \equiv d \equiv 0 \pmod{k} \), then for \(z \in \mathbb{H} \)

\[
2^p \bar{\chi}(2) (cz + d)^{p-1} G(\bar{\chi}) B_1(Tz, 1 - p : \chi)
= \bar{\chi}(b) \chi(c) G(\chi) H_1(z, 1 - p : \bar{\chi})
+ \bar{\chi}(b) \chi(-c) \frac{(2\pi i)^p}{(p+1)!} \sum_{m=1}^{p+1} \left(\frac{p+1}{m} \right) (- (cz + d))^{m-1} k^{m-p}
\times \left(- \frac{m}{2} \sum_{n=1}^{ck} (-1)^n \chi(n) \mathfrak{B}_{p+1-m, \chi} \left(\frac{dn}{c} \right) \mathcal{E}_{m-1} \left(\frac{n}{ck} \right) \right).
\]

(4.2)

The function \(g_1(d, c + dk, z, p, \chi) \), given by (3.13), satisfies the following reciprocity formula:

Theorem 4.2 Let \(p \geq 1 \) be odd and \(d \) and \(c \) be coprime integers. If \(d \) or \(c \equiv 0 \pmod{k} \), then

\[
g_1(d, -c - dk, z, p, \chi) - \chi(-1)(z - k)^{p-1} g_1(c, d + ck, V_1(z), p, \bar{\chi})
= \bar{\chi}(4) \frac{p}{2kp^r} \sum_{m=0}^{p-1} \left(\frac{p-1}{m} \right) (z - k)^m \mathcal{E}_{p-1-m, \chi}(0) \mathcal{E}_{m, \chi}(0),
\]

where \(V_1(z) = \frac{-kz + k^2 - 1}{z - k} \).

Proof. For even \((c + d)\), consider the modular substitutions \(R(z) = \frac{az + b + ak}{cz + d + ck}, \) \(R^*(z) = \frac{bz - a - bk}{dz - c - dk} \) and \(V_1(z) = \frac{-kz + k^2 - 1}{z - k} \). Suppose \(a \equiv d \equiv 0 \pmod{k} \).

Replacing \(z \) by \(V_1(z) \) in (3.14) gives

\[
G(\bar{\chi}) \left(\frac{dz - c - dk}{z - k} \right)^{p-1} H_1(R^*(z), 1 - p : \chi)
= \bar{\chi}(b) \chi(c) 2^p \chi(2) G(\chi) B_1(V_1(z), 1 - p : \bar{\chi})
\]

12
Replacing $R (z)$ by $R^* (z)$ in (3.15) yields

$$G (\tilde{\chi}) (dz - c - dk)^{p-1} H_1 (R^* (z), 1 - p : \chi)$$

$$= \tilde{\chi} (b) \chi (c) \left(2^p \tilde{\chi} (-2) G (\tilde{\chi}) B_1 (z, 1 - p : \chi) - \frac{(2\pi i)^p}{2 (pl)} g_1 (d, -c - dk, z, p, \tilde{\chi}) \right).$$

(4.4)

Taking $a = -k, b = k^2 - 1, c = 1$ and $d = -k$ and writing $\tilde{\chi}$ in place of χ in (4.1) lead to

$$(z - k)^{p-1} 2^p \chi (2) G (\chi) B_1 (V_1 (z), 1 - p : \tilde{\chi})$$

$$= \chi \left(\frac{k^2 - 1}{2} \right) \tilde{\chi} (2) 2^p \chi (2) G (\tilde{\chi}) B_1 (z, 1 - p : \tilde{\chi})$$

$$- \chi \left(\frac{k^2 - 1}{2} \right) \chi (-1) 2^p \left(\frac{2\pi i}{p+1} \right)^p \sum_{m=1}^{p} \left(\frac{p+1}{m} \right) k^{m-p} (- (z - k))^{m-1}$$

$$\times \frac{m}{2^m} \sum_{n=1}^{k} \tilde{\chi} (n) \mathcal{B}_{p+1-m,\tilde{\chi}} \left(- \frac{kn}{2} \right) \mathcal{E}_{m-1} \left(\frac{n}{k} \right).$$

(4.5)

Thus, consider (4.4) and (4.5) with multiplying both sides of (4.3) by $(z - k)^{p-1}$ to obtain

$$g_1 (d, -c - dk, z, p, \tilde{\chi}) - \chi (-1) (z - k)^{p-1} g_1 (c, d + ck, V_1 (z), p, \tilde{\chi})$$

$$= \tilde{\chi} (-2) \frac{2^{p+1}}{p+1} \sum_{m=1}^{p} \left(\frac{p+1}{m} \right) k^{m-p} (- (z - k))^{m-1}$$

$$\times \frac{m}{2^m} \sum_{n=1}^{k} \tilde{\chi} (n) \mathcal{B}_{p+1-m,\tilde{\chi}} \left(- \frac{kn}{2} \right) \mathcal{E}_{m-1} \left(\frac{n}{k} \right).$$

(4.6)

Now, let us concern the sum over n in (4.6). Using (3.9) for $r = 2$ yields

$$\sum_{n=1}^{k} \tilde{\chi} (n) \mathcal{B}_{p+1-m,\tilde{\chi}} \left(- \frac{kn}{2} \right) \mathcal{E}_{m-1} \left(\frac{n}{k} \right)$$

$$= \mathcal{B}_{p+1-m,\tilde{\chi}} (0) \sum_{n} \tilde{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right) + \mathcal{B}_{p+1-m,\tilde{\chi}} \left(\frac{k}{2} \right) \sum_{n} \tilde{\chi} (2n - 1) \mathcal{E}_{m-1} \left(\frac{2n - 1}{k} \right)$$

$$= \left\{ \mathcal{B}_{p+1-m,\tilde{\chi}} (0) + \mathcal{B}_{p+1-m,\tilde{\chi}} \left(\frac{k}{2} \right) \right\} \sum_{n} \tilde{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right)$$

$$- \mathcal{B}_{p+1-m,\tilde{\chi}} \left(\frac{k}{2} \right) \sum_{n=0}^{k-1} (-1)^n \tilde{\chi} (n) \mathcal{E}_{m-1} \left(\frac{n}{k} \right).$$
\[= 2^{m-p} \chi (2) \mathfrak{B}_{p+1-m, \bar{\chi}} (0) \sum_{n=0}^{(k-1)/2} \bar{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right) \]

\[- \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{k}{2} \right) k^{1-m} \mathcal{E}_{m-1, \bar{\chi}} (0). \]

It follows from (2.3) that

\[
\sum_{\mu=0}^{k-1} \chi (2\mu) \mathcal{E}_{m-1} \left(\frac{2\mu}{k} \right) = \sum_{\mu=0}^{(k-1)/2} \chi (2\mu) \mathcal{E}_{m-1} \left(\frac{2\mu}{k} \right) + \sum_{\mu=0}^{(k-1)/2} \chi (2\mu) \mathcal{E}_{m-1} \left(\frac{2\mu}{k} \right)
\]

\[
= \sum_{\mu=0}^{(k-1)/2} \chi (2\mu) \mathcal{E}_{m-1} \left(\frac{2\mu}{k} \right) + \sum_{\mu=1}^{(k-1)/2} \chi (-2\mu) \mathcal{E}_{m-1} \left(\frac{-2\mu}{k} \right)
\]

\[
= (1 + (-1)^m \chi (-1)) \sum_{\mu=1}^{(k-1)/2} \chi (2\mu) \mathcal{E}_{m-1} \left(\frac{2\mu}{k} \right). \]

So, using (2.5) gives

\[
\mathfrak{B}_{p+1-m, \bar{\chi}} (0) \sum_{n=0}^{k-1} \bar{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right) = \{ \mathfrak{B}_{p+1-m, \bar{\chi}} (0) + (-1)^m \chi (-1) \mathfrak{B}_{p+1-m, \bar{\chi}} (0) \} \sum_{n=1}^{(k-1)/2} \bar{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right)
\]

\[
= 2 \mathfrak{B}_{p+1-m, \bar{\chi}} (0) \sum_{n=1}^{(k-1)/2} \bar{\chi} (2n) \mathcal{E}_{m-1} \left(\frac{2n}{k} \right). \]

Here, using (3.11) and taking \(x = k \) in (3.12) give rise to

\[
\sum_{n=1}^{k} \bar{\chi} (n) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{-kn}{2} \right) \mathcal{E}_{m-1} \left(\frac{n}{k} \right)
\]

\[
= \frac{\bar{\chi} (2)}{2^{p+1-m}} \left\{ \mathfrak{B}_{p+1-m, \bar{\chi}} (0) - 2^{p+1-m} \chi (2) \mathfrak{B}_{p+1-m, \bar{\chi}} \left(\frac{k}{2} \right) \right\} k^{1-m} \mathcal{E}_{m-1, \bar{\chi}} (0)
\]

\[
= k^{1-m} 2^{m-p-2} \bar{\chi} (2) (p + 1 - m) \mathcal{E}_{p-m, \bar{\chi}} (k) \mathcal{E}_{m-1, \bar{\chi}} (0). \] \hspace{1cm} (4.7)

Gathering (4.6), (4.7) and (2.7) completes the proof. \(\blacksquare \)

Theorem 4.2 can be simplified according to special values of \(z \). Firstly, let us consider the case \(z = \frac{c}{d} + k \). Then,

\[
g_1 \left(d, -c - dk, \frac{c}{d} + k, p, \chi \right) = \frac{p}{k^{p-1}} \sum_{n=1}^{dk} (-1)^n \chi (n) \mathcal{E}_{p-1, \chi} \left(\frac{-cn}{d} \right) \mathfrak{B}_1 \left(\frac{n}{dk} \right) \] \hspace{1cm} (4.8)
and
\[
\left(\frac{c}{d}\right)^{p-1} g_1\left(c, d + ck, V_1\left(\frac{c}{d} + k\right), p, \tilde{\chi}\right) = \left(\frac{c}{kd}\right)^{p-1} p \sum_{n=1}^{ck} \left(-1\right)^n \tilde{\chi}(n) \mathcal{E}_{p-1, \tilde{\chi}}\left(\frac{dn}{c}\right) \mathfrak{B}_1\left(\frac{n}{ck}\right). \tag{4.9}
\]

Since \(E_0(x) = (-1)^{|x|} E_0(\{x\}) = (-1)^{|x|}\) and
\[
s_5(d, c) = \sum_{n=1}^{c} (-1)^{n+\lfloor dn/c \rfloor} \mathfrak{B}_1\left(\frac{n}{c}\right) = \sum_{n=1}^{c} (-1)^{n} E_0\left(\frac{dn}{c}\right) \mathfrak{B}_1\left(\frac{n}{c}\right),
\]
it is convenient to make the following definition.

Definition 4.3 The character Hardy–Berndt sum \(s_{5,p}(d, c : \tilde{\chi})\) is defined for \(c > 0\) by
\[
s_{5,p}(d, c : \tilde{\chi}) = \sum_{n=1}^{ck} (-1)^n \tilde{\chi}(n) E_{p-1, \tilde{\chi}}\left(\frac{dn}{c}\right) \mathfrak{B}_1\left(\frac{n}{ck}\right).
\]

Observing that
\[
s_{5,p}(-c, d : \chi) = -\chi(-1) s_{5,p}(c, d : \chi),
\]
by (2.7), and using (4.8) and (4.9) in Theorem 4.2 we have proved the following reciprocity formula.

Theorem 4.4 Let \(p \geq 1\) be odd and \(d\) and \(c\) be odd coprime integers. If \(c\) or \(d \equiv 0 \pmod{k}\), then
\[
\begin{align*}
 cdp s_{5,p}(c, d : \chi) + dc^p s_{5,p}(d, c : \tilde{\chi}) &= -\frac{\tilde{\chi}(-4)}{2} \sum_{m=0}^{p-1} \binom{m+1}{m} c^{m+1} d^{p-m} E_{p-1-m, \tilde{\chi}}(0) E_{m, \chi}(0).
\end{align*}
\]

In particular, we have the character analogue of (1.5) as
\[
s_5(c, d : \chi) + s_5(d, c : \tilde{\chi}) = -\frac{\tilde{\chi}(-4)}{2} E_{0, \tilde{\chi}}(0) E_{0, \chi}(0),
\]
where \(s_5(c, d : \chi) = s_{5,1}(c, d : \chi)\).

Now we let \(z = k\) in Theorem 4.2. Then
\[
g_1(d, c - dk, z, p, \chi)|_{z=k} = \sum_{m=1}^{p} \binom{p}{m} k^{m-p} c^{m-1} d^k \sum_{n=1}^{dk} (-1)^n \chi(n) E_{p-m, \chi}\left(\frac{-cn}{d}\right) \mathfrak{B}_m\left(\frac{n}{dk}\right)
\]

15
and

\[(z - k)^{p-1} g_1 (c, d + ck, V_1 (z), p, \bar{\chi}) |_{z=k} \]

\[= \sum_{m=1}^{p} \binom{p}{m} k^{m-p} \left(- (c (-kz + k^2 - 1) + (d + ck) (z - k)) \right)^{m-1} (z - k)^{p-m} |_{z=k} \]

\[\times \sum_{n=1}^{ck} (-1)^n \bar{\chi} (n) \mathcal{E}_{p-m, \bar{\chi}} \left(\frac{dn}{c} \right) \mathcal{B}_m \left(\frac{n}{ck} \right) \]

\[= e^{n-1} \sum_{n=1}^{ck} (-1)^n \bar{\chi} (n) \mathcal{E}_{0, \bar{\chi}} \left(\frac{dn}{c} \right) \mathcal{B}_p \left(\frac{n}{ck} \right). \]

If we define

\[s_{5,p+1-m,m} (c, d : \chi) = \sum_{n=1}^{dk} (-1)^n \chi (n) \mathcal{E}_{p-m, \chi} \left(\frac{cn}{d} \right) \mathcal{B}_m \left(\frac{n}{dk} \right) \]

and use (2.7), then we see that

\[\sum_{m=1}^{p} \binom{p}{m} (-kc)^m s_{5,p+1-m,m} (c, d : \chi) \]

\[= - (kc)^{p-1} s_{5,1,p} (d, c : \bar{\chi}) - \bar{\chi} (-4) \frac{p}{2} \mathcal{E}_{p-1, \bar{\chi}} (0) \mathcal{E}_{0, \chi} (0). \]

Conditions \(d\) even and \(c\) even in Theorem 3.3 and Theorem 3.5 do not allow to present reciprocity theorems in the sense of Theorem 4.2 for the functions \(g_1(d, c, z, p, \chi)\) and \(g_2(d, c, z, p, \chi)\), respectively. However, the following relation is valid for these functions.

Theorem 4.5 Let \(d\) be even. If \(d \equiv 0 \pmod{k}\), then

\[\frac{p + 1}{2} z^{p-1} g_1 \left(c, d, -\frac{1}{z}, p, \bar{\chi} \right) + g_2 \left(d, -c, z, p, \chi \right) \]

\[= - \frac{\chi (-1)}{k^{p-1}} \sum_{m=1}^{p} \binom{p + 1}{m} m \left(-z \right)^{m-1} \mathcal{B}_{p+1-m, \chi} (0) \mathcal{E}_{m-1, \bar{\chi}} (0), \quad (4.10) \]

where the functions \(g_1(d, c, z, p, \chi)\) and \(g_2(d, c, z, p, \chi)\) are given by (3.6) and (3.17), respectively.

Proof. For even \(d\), consider \(T(z) = (az + b) / (cz + d)\) and \(T^*(z) = (bz - a) / (dz - c) = T (-1/z)\) and \(a \equiv d \equiv 0 \pmod{k}\). Then, (4.10) follows by applying \(T^*(z)\) in (3.18) and replacing \(z\) by \(-1/z\) in (3.5), and then replacing \(T(z)\) by \(-1/z\) in (4.2).

To simplify Theorem 4.5 we first consider \(z = c/d\). Then,

\[g_1 \left(c, d, -\frac{d}{c}, p, \bar{\chi} \right) = \frac{p}{k^{p-1}} \sum_{n=1}^{ck} \bar{\chi} (n) \mathcal{E}_{p-1, \bar{\chi}} \left(\frac{dn}{c} \right) \mathcal{B}_1 \left(\frac{n}{ck} \right) \]

\[= \frac{p}{k^{p-1}} \sum_{n=1}^{ck} \bar{\chi} (n) \mathcal{E}_{p-1, \bar{\chi}} \left(\frac{dn}{c} \right) \mathcal{B}_1 \left(\frac{n}{ck} \right). \quad (4.11) \]
\[
g_2 \left(d, -c, \frac{c}{d}, p, \bar{\chi} \right) = \frac{p + 1}{kp - 1} \sum_{n=1}^{dk} (-1)^n \chi(n) \mathfrak{B}_{p,\bar{\chi}} \left(\frac{-cn}{d} \right) \mathfrak{B}_1 \left(\frac{n}{dk} \right). \quad (4.12)
\]

Definition 4.6 The character Hardy–Berndt sums \(s_{1,p}(d,c,\chi)\) and \(s_{2,p}(d,c,\chi)\) are defined for \(c > 0\) by

\[
s_{1,p}(d,c) = \sum_{n=1}^{ck} \chi(n) \mathcal{E}_{-1,\chi} \left(\frac{dn}{c} \right) \mathfrak{B}_1 \left(\frac{n}{ck} \right),
\]

\[
s_{2,p}(d,c) = \sum_{n=1}^{ck} (-1)^n \chi(n) \mathfrak{B}_{p,\chi} \left(\frac{dn}{c} \right) \mathfrak{B}_1 \left(\frac{n}{ck} \right).
\]

Using (4.11) and (4.12) in Theorem 4.5 we have proved the following reciprocity formula for \(s_{1,p}(d,c,\chi)\) and \(s_{2,p}(d,c,\chi)\).

Theorem 4.7 Let \(p \geq 1\) be odd, \((d,c) = 1\) and \(d\) be even. If \(d\) or \(c \equiv 0 \pmod{k}\), then

\[
pdc^{p}s_{1,p}(d,c) - \chi(-1) 2cdp s_{2,p}(c,d)
\]

\[
= \chi(-1) \sum_{m=1}^{p} (-1)^m \binom{p}{m-1} d^{p+1-m}s_{p+1-m,\chi}(0) \mathcal{E}_{m-1,\bar{\chi}}(0).
\]

In particular,

\[
s_1(d,c) - 2\chi(-1)s_2(c,d) = -\chi(-1) \mathfrak{B}_{1,\chi}(0) \mathcal{E}_{0,\bar{\chi}}(0).
\]

Remark 4.8 The sum \(s_2(c,d)\) is first presented by Meyer [25, Definition 6] as \(s_1^*(c,d)\).
\[s_{2,p+1-m,m} (d, c : \chi) = \sum_{n=1}^{ck} (-1)^n \chi(n) \mathfrak{B}_{p+1-m,\chi} \left(\frac{dn}{c} \right) \mathfrak{B}_m \left(\frac{n}{ck} \right). \]

Using (2.5), Theorem 4.5 reduces to
\[
\sum_{m=1}^{p} \binom{p+1}{m} (-ck)^{m-1} s_{2,p+1-m,m} (c, d : \bar{\chi})
= \frac{p+1}{2} \left(\chi(-1)(ck)^{p-1} s_{1,1,p} (d, c : \chi) + \mathfrak{B}_{p,\chi}(0) \mathcal{E}_0(\bar{\chi}(0)) \right).
\]

The following lemma shows that reciprocity formulas given by Theorems 4.4 and 4.7 are still valid for \(\gcd(d, c) = q \).

Lemma 4.9 Let \(q \in \mathbb{N} \), \(p \geq 1 \), \((d, c) = 1 \) and \(c > 0 \). If \(p \) is odd and \(d \) is even,
\[s_{1,p} (qd, qc : \chi) = s_{1,p} (d, c : \chi), \]
if \(p \) is odd and \(c \) is even,
\[s_{2,p} (qd, qc : \chi) = s_{2,p} (d, c : \chi), \]
if \(p \) is odd and \((d+c) \) is even,
\[s_{5,p} (qd, qc : \chi) = s_{5,p} (d, c : \chi). \]
Furthermore, \(s_{1,p} (d, c : \chi) = 0 \) if \((d+p) \) is even, \(s_{2,p} (d, c : \chi) = 0 \) if \((c+p) \) is even and \(s_{5,p} (d, c : \chi) = 0 \) if \((d+c+p) \) is even.

Proof. Let \(p \) be odd and \(d \) be even. Then, setting \(\mu = n + mck \), \(1 \leq n \leq ck \), \(0 \leq m \leq q-1 \) and using (2.1) and (2.7) yield
\[
\begin{align*}
\sum_{\mu=1}^{qck} \chi(\mu) \mathcal{E}_{p-1,\mu} \left(\frac{d\mu}{c} \right) \mathfrak{B}_1 \left(\frac{\mu}{qck} \right) \\
= \sum_{n=1}^{ck} \chi(n) \mathcal{E}_{p-1,n} \left(\frac{dn}{c} \right) \sum_{m=0}^{q-1} (-1)^{dm} \mathfrak{B}_1 \left(\frac{n}{qck} + \frac{m}{q} \right) \\
= s_{1,p} (d, c : \chi).
\end{align*}
\]
On the other hand, using (2.7),
\[
\begin{align*}
\sum_{n=1}^{ck} \chi(n) \mathcal{E}_{p-1,n} \left(\frac{dn}{c} \right) \mathfrak{B}_1 \left(\frac{n}{ck} \right) \\
= \sum_{n=1}^{ck} \chi(-n) \mathcal{E}_{p-1,-n} \left(dk - \frac{dn}{c} \right) \mathfrak{B}_1 \left(1 - \frac{n}{ck} \right) \\
= (-1)^{d+p+1} s_{1,p} (d, c : \chi)
\end{align*}
\]
which leads to \(s_{1,p} (d, c : \chi) = 0 \) for even \(d+p \).

Other statements can be shown in a similar way. \(\blacksquare \)
5 Some series relations

In this final section, we deal with (3.5) and (3.16) for special values of Tz to present series relations, motivated by [5] (see also [16, 25]).

Summing over m we see that

$$G(\bar{\chi}) A_1(z, 1 - p : \chi) = - \sum_{j=1}^{k-1} \bar{\chi}(j) \sum_{n=1}^\infty \frac{\chi(n)}{n^p (e^{-2\pi i (j+nx)/k} + 1)}$$

and

$$G(\chi) B(z, 1 - p : \bar{\chi}) = \sum_{j=1}^{k-1} \chi(j) \sum_{n=0}^\infty \frac{\bar{\chi}(2n+1)}{(2n+1)^p (e^{-\pi i (2n+(2n+1))z/k} - 1)}.$$ (5.2)

Theorem 5.1 Let $p \geq 1$ be odd and $\alpha \beta = (\pi/k)^2$ with $\alpha, \beta > 0$. Then,

$$(-\beta)^{(p-1)/2} \sum_{j=1}^{k-1} \bar{\chi}(j) \sum_{n=1}^\infty \frac{\chi(n)}{n^p (e^{2\pi i - 2\pi ij/k} + 1)}$$

$$+ 2^p \alpha^{(p-1)/2} \sum_{j=1}^{k-1} \chi(j) \sum_{n=0}^\infty \frac{\bar{\chi}(2n+1)}{(2n+1)^p (e^{2\pi j - 2\pi ij/k} - 1)}$$

$$= 2^{p-2} \frac{k}{p!} \sum_{m=1}^p \binom{p}{m} (i)^{p+1-m} \mathcal{E}_{p-m,\bar{\chi}}(0) \mathcal{B}_{m,\chi}(0) \alpha^{p-m/2} \beta^{(p+m)/2}.$$ (5.2)

Proof. We put $a = d = 0$, $b = -1$ and $c = 1$ in (3.5) to obtain

$$z^{p-1} G(\bar{\chi}) A_1 \left(-\frac{1}{z}; 1 - p : \chi \right) = 2^p \chi(-2) G(\chi) B(z, 1 - p : \bar{\chi})$$

$$- \frac{k}{4} \frac{(2\pi i/k)^p}{p!} \sum_{m=1}^p \binom{p}{m} \mathcal{E}_{p-m,\bar{\chi}}(0) \mathcal{B}_{m,\chi}(0) (-z)^{m-1}.$$ (5.2)

Then, the proof follows by setting $z = \pi i/k\alpha$ and using (5.1), (5.2) and that $\alpha \beta = (\pi/k)^2$, and then multiplying both sides by $\alpha^{(p-1)/2}$. ■

Corollary 5.2 Let $p \geq 1$ be odd and let χ be the primitive character of modulus 3 defined by

$$\chi(n) = \begin{cases} 1, & n \equiv 1 \pmod{3}, \\ -1, & n \equiv 2 \pmod{3}, \\ 0, & n \equiv 0 \pmod{3}. \end{cases}$$ (5.3)

Then,

$$\sum_{n=1}^\infty \frac{(-1)^n(\pi/3)\chi(n)}{n^p (2 \cosh (n\pi/3) - (-1)^n)}$$
we have

\[\sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n (2 \cosh (n \pi/3) - (-1)^n)} = -\frac{\pi}{4 \sqrt{3}} \mathcal{E}_{0, \chi}(0) \mathfrak{B}_{1, \chi}(0) = -\frac{\pi}{6 \sqrt{3}} \]

and

\[\sum_{n=1}^{\infty} \frac{\chi(n)}{n^3 (2 \cosh (n \pi/3) - (-1)^n)} = \frac{(\pi/3)^3}{8 \sqrt{3}} (\mathcal{E}_{0, \chi}(0) \mathfrak{B}_{3, \chi}(0) - 3 \mathcal{E}_{2, \chi}(0) \mathfrak{B}_{1, \chi}(0)) \]

Proof. Setting \(\alpha = \beta = \pi/3 \) in Theorem 5.1 we have

\[
\begin{align*}
(-1)^{(p-1)/2} &\sum_{n=1}^{\infty} \frac{\chi(n)}{n^p} \frac{1}{e^{2n\alpha - 2\pi n/3} + 1} - \frac{1}{e^{2n\alpha - 4\pi n/3} + 1} \\
+ 2^p &\sum_{n=0}^{\infty} \frac{\chi(2n+1)}{(2n+1)^p} \frac{1}{e^{(2n+1)\alpha - 2\pi n/3} - 1} - \frac{1}{e^{(2n+1)\alpha - 4\pi n/3} - 1} \\
= 2^{p-2} &\frac{3}{p!} \left(\frac{\pi}{3} \right)^p \sum_{m=1}^{p} \left(\frac{p}{m} \right) (i)^{p-m} \mathcal{E}_{p-m, \chi}(0) \mathfrak{B}_{m, \chi}(0) .
\end{align*}
\]

Some simplification gives

\[
\begin{align*}
\sum_{n=1}^{\infty} \frac{(-1)^{(p+1)/2} \chi(2n)}{(2n)^p (2 \cosh 2n\alpha - 1)} + \sum_{n=0}^{\infty} \frac{\chi(2n+1)}{(2n+1)^p (2 \cosh (2n+1) \alpha + 1)} \\
= \frac{1}{4 \sqrt{3}} &\frac{3}{p!} \left(\frac{\pi}{3} \right)^p \sum_{m=1}^{p} \left(\frac{p}{m} \right) (i)^{p-m} \mathcal{E}_{p-m, \chi}(0) \mathfrak{B}_{m, \chi}(0) ,
\end{align*}
\]

which is equivalent to (5.4).

Observe that for \(\alpha = \beta = \pi/3 \) and real-valued primitive character \(\chi \), Theorem 5.1 can be composed as

\[
\begin{align*}
\chi(2) &\sum_{j=1}^{k-1} \chi(j) \sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n^p \left(e^{2n\alpha - 2\pi ij/k} + (-1)^n \right)} \\
= \frac{(-1)^{(p-1)/2}}{4} &\left(\frac{\pi}{k} \right)^p \frac{k}{p!} \sum_{m=1}^{p} \left(\frac{p}{m} \right) (i)^{p-m} \mathcal{E}_{p-m, \chi}(0) \mathfrak{B}_{m, \chi}(0) ,
\end{align*}
\]

where \(\delta = \begin{cases} (p-1)/2, & \text{if } \chi(-1) = 1, \\ (p+1)/2, & \text{if } \chi(-1) = -1. \end{cases} \)

Theorem 5.3 Let \(\alpha \beta = (\pi/3)^2 \) with \(\alpha, \beta > 0 \) and let \(\chi \) be the primitive character of modulus 3 given by (5.3). Then

\[
\sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n (2 \cosh 2n\alpha - (-1)^n)} + \sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n (2 \cosh 2n\beta - (-1)^n)} = -\frac{\pi}{3 \sqrt{3}} .
\]

20
In particular,
\[\sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n(2 \cosh \frac{2n\pi}{3} - (-1)^n)} = -\frac{\pi}{6\sqrt{3}}. \]

Proof. We apply (3.16) with \(a = d = 3, b = 4 \) and \(c = 2 \). Setting \(2z + 3 = \pi i/3 \alpha \) we have \(Tz = 3(1 - \alpha/\pi i)/2 \) and \(z = -3(1 + \beta/\pi i)/2 \), where \(\alpha \beta = (\pi/3)^2 \).

Straightforward calculation gives
\[
\sum_{n=1}^{\infty} \frac{\chi(n)}{n(2 \cosh (2n\alpha - n\pi i) - 1)} + \sum_{n=1}^{\infty} \frac{\chi(n)}{n(2 \cosh (2n\beta + n\pi i) - 1)} = -\frac{\pi}{\sqrt{3}} \sum_{j=1}^{5} (-1)^j \chi(j) \mathfrak{B}_{1,\chi} \left(\frac{3j}{2} \right) \mathfrak{B}_1 \left(\frac{j}{6} \right).
\]

Using (2.4) and the fact \(\mathfrak{B}_1 (x + 1) = \mathfrak{B}_1 (x) = x - 1/2 \) when \(0 < x < 1 \), we find that
\[
\sum_{j=1}^{5} (-1)^j \chi(j) \mathfrak{B}_{1,\chi} \left(\frac{3j}{2} \right) \mathfrak{B}_1 \left(\frac{j}{6} \right) = \frac{1}{3}
\]
which completes the proof. ■

References

[1] T. M. Apostol, *Introduction to Analytic Number Theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York 1976.

[2] T. M. Apostol and T. H. Vu, Elementary proofs of Berndt’s reciprocity laws, *Pacific J. Math.* 98 (1982) 17–23.

[3] B. C. Berndt, Character transformation formulæ similar to those for the Dedekind Eta-function, *in ‘Analytic Number Theory’, Proc. Sym. Pure Math. XXIV*, Amer. Math. Soc., Providence, R. I., (1973) 9–30.

[4] B. C. Berndt, Character analogues of Poisson and Euler–Maclaurin summation formulæ with applications, *J. Number Theory* 7 (1975) 413–445.

[5] B. C. Berndt, Modular transformations and generalizations of several formulæ of Ramanujan, *Rocky Mt. J. Math.* 7(1977) 147–190.

[6] B. C. Berndt, Analytic Eisenstein series, theta functions and series relations in the spirit of Ramanujan, *J. Reine Angew. Math.* 303/304 (1978) 332–365.

[7] B. C. Berndt and L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta functions, *Siam J. Math. Anal.* 15 (1) (1984) 143–150.
[8] M. Can, Some arithmetic on the Hardy sums $s_2(h,k)$ and $s_3(h,k)$, Acta Math. Sin. Engl. Ser. 20 (2) (2004) 193–200.

[9] M. Can, M. Cenkci and V. Kurt, Generalized Hardy–Berndt sums, Proc. Jangjeon Math. Soc. 9 (1) (2006) 19–38.

[10] M. Can and V. Kurt, Character analogues of certain Hardy–Berndt sums, Int. J. Number Theory 10 (2014) 737–762.

[11] M. Can and M. C. Dağlı, Character analogue of the Boole summation formula with applications, Turk. J. Math. (accepted).

[12] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (5) (1959) 247–260.

[13] M. Cenkci, M. Can and V. Kurt, Degenerate and character Dedekind sums, J. Number Theory 124 (2007) 346–363.

[14] M. C. Dağlı and M. Can, A new generalization of Hardy–Berndt sums, Proc. Indian Acad. Sci. (Math. Sci.) 123 (2) (2013) 177–192.

[15] M. C. Dağlı and M. Can, On reciprocity formulas for Apostol’s Dedekind sums and their analogues, J. Integer Seq. 17 (2014) Article 14.5.4.

[16] M. C. Dağlı and M. Can, Periodic analogues of Dedekind sums and transformation formulas of Eisenstein series, Ramanujan J. doi: 10.1007/s11139-016-9808-y.

[17] L. A. Goldberg, Transformations of theta-functions and analogues of Dedekind sums, thesis, University of Illinois, Urbana, 1981.

[18] C. Jordan, Calculus of Finite Differences, Chelsea, New York 1965.

[19] J. Lewittes, Analytic continuation of the Eisenstein series, Trans. Amer. Math. Soc. 171 (1972) 469–490.

[20] H. Liu and W. Zhang, Generalized Cochrane sums and Cochrane–Hardy sums, J. Number Theory 122 (2) (2007) 415–428.

[21] H. Liu and J. Gao, Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums, Czech. Math. J. 62 (2012) 1147–1159.

[22] J. L. Meyer, Analogues of Dedekind sums, thesis, University of Illinois, Urbana, 1997.

[23] J. L. Meyer Properties of certain integer-valued analogues of Dedekind sums, Acta Arith. LXXXII (3) (1997) 229–242.

[24] J. L. Meyer, A reciprocity congruence for an analogue of the Dedekind sum and quadratic reciprocity, J. Théor. Nombres Bordeaux 12 (1) (2000) 93–101.
[25] J. L. Meyer, Character analogues of Dedekind sums and transformations of analytic Eisenstein series, *Pacific J. Math.* 194 (1) (2000) 137–164.

[26] W. Peng and T. Zhang, Some identities involving certain Hardy sum and Kloosterman sum, *J. Number Theory* 165 (2016) 355–362.

[27] M. R. Pettet and R. Sitaramachandrarao, Three-term relations for Hardy sums, *J. Number Theory* 25 (3) (1987) 328–339.

[28] Y. Simsek, Relations between theta functions, Hardy sums, Eisenstein and Lambert series in the transformation formulae of $\log \eta_{g,h}(z)$, *J. Number Theory* 99 (2003) 338–360.

[29] R. Sitaramachandrarao, Dedekind and Hardy sums, *Acta Arith.* XLIII (1987) 325–340.

[30] W. Wang and D. Han, An identity involving certain Hardy sums and Ramanujan’s sum, *Adv. Difference Equ.* (2013) 2013:261.

[31] Z. Xu and W. Zhang, The mean value of Hardy sums over short intervals, *Proc. R. Soc. Edinburgh* 137 (2007) 885–894.

[32] H. Zhang and W. Zhang, On the identity involving certain Hardy sums and Kloosterman sums, *J. Inequal. Appl.* (2014) 2014:52.