Predicting Lyα escape fractions with a simple observable

Lyα in emission as an empirically calibrated star formation rate indicator

David Sobral1,2* and Jorryt Matthee2

1 Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
2 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands
March 28, 2018

ABSTRACT

Lyman-α (Lyα) is intrinsically the brightest line emitted from active galaxies. While it originates from many physical processes, for star-forming galaxies, the intrinsic Lyα luminosity is a direct tracer of the Lyman-continuum (LyC) radiation produced by the most massive O- and early-type B-stars (Mα ≥ 10M☉) with lifetimes of a few Myrs. As such, Lyα luminosity should be an excellent instantaneous star formation rate (SFR) indicator. However, its resonant nature and susceptibility to dust as a rest-frame UV photon makes Lyα very hard to interpret due to the uncertain Lyα escape fraction, fesc, Lyα. Here we explore results from the CALibrating LYMan-α with Hz (CALSYMHA) survey at z = 2.2, follow-up of Lyα emitters (LAEs) at z = 2.2 − 2.6 and a z ∼ 0 − 0.3 compilation of LAEs to directly measure fesc, Lyα with Hz. We derive a simple empirical relation that robustly retrieves fesc, Lyα as a function of Lyα rest-frame EW (EWα 0048): fesc, Lyα = 0.0048 EWα [Å] ± 0.05 and we show that the relation is driven by a tight sequence between high ionisation efficiencies and low dust extinction in LAEs. Observed Lyα luminosities and EWα are easy measurable quantities at high redshift, thus making our relation a practical tool to estimate intrinsic Lyα and LyC luminosities under well controlled and simple assumptions. Our results allow observed Lyα luminosities to be used to compute SFRs for LAEs at z ∼ 0 − 2.6 within ±0.2 dex of the Hz dust corrected SFRs. We apply our empirical SFR(Lyα,EWα) calibration to several sources at z > 2.6 to find that star-forming LAEs have SFRs typically ranging from 0.1 to 20M⊙ yr−1 and that our calibration might be even applicable for luminous LAEs within the epoch of re-ionisation. Our results imply higher than canonical ionisation efficiencies and low dust content in LAEs across cosmic time, and will be easily tested with future observations with JWST which can obtain Hz and Hβ measurements for high-redshift LAEs.

Keywords. Galaxies: star formation, starburst, evolution, statistics, general, high-redshift; Ultraviolet: galaxies.

1. Introduction

With a vacuum rest-frame wavelength of 1215.67 Å, the Lyman-α (Lyα) recombination line (n = 2 → n = 1) plays a key role in the energy release from ionised hydrogen gas, being intrinsically the strongest emission line in the rest-frame UV and optical (e.g. Partridge & Peebles 1967; Pritchet 1994). Lyα is emitted from ionised gas around star-forming regions (e.g. Charlot & Fall 1993; Pritchet 1994) and AGN (e.g. Milev & De Breuck 2008) and it is routinely used as a way to find high redshift sources (z ∼ 2 − 7; see e.g. Malhotra & Rhoads 2004).

Several searches for Lyα-emitting sources (Lyα emitters; LAEs) have led to samples of thousands of star-forming galaxies (SFGs) and AGN (e.g. Sobral et al. 2018b, and references therein). LAEs are typically faint in the rest-frame UV, including many that are too faint to be detected by continuum based searches even with the Hubble Space Telescope (e.g. Bacon et al. 2015). The techniques used to detect LAEs include narrow-band surveys (e.g. Rhoads et al. 2000; Ouchi et al. 2008; Hu et al. 2010; Mattei et al. 2015), Integral Field Unit (IFU) surveys (e.g. van Breukelen et al. 2005; Drake et al. 2017) and blind slit spectroscopy (e.g. Martin & Sawicki 2004; Rauch et al. 2008; Cassata et al. 2011). Galaxies selected through their Lyα emission allow for easy spectroscopic follow-up due to their high EWs (e.g. Hashimoto et al. 2017) and typically probe low stellar masses (see e.g. Gawiser et al. 2007; Hagen et al. 2016).

The intrinsic Lyα luminosity is a direct tracer of the ionising Lyman-continuum (LyC) luminosity and thus a tracer of instantaneous star formation rate (SFR), in the same way as Hz is (e.g. Kennicutt 1998). Unfortunately, inferring intrinsic properties of galaxies from Lyα observations is extremely challenging. This is due to the complex resonant nature and sensitivity to dust of Lyα (see e.g. Dijkstra 2017, for a detailed review on Lyα), which contrasts with Hz. For example, a significant fraction of Lyα photons is scattered in the Inter-Stellar Medium (ISM) and in the Circum-Galactic Medium (CGM) as evidenced by the presence of extended Lyα halos in LAEs (e.g. Momose et al. 2014; Wisotzki et al. 2016), but also in the more general population of z ∼ 2 SFGs sampled by Hz emitters (Matthee et al. 2016), and the bluer component of such population traced by UV-continuum selected galaxies (e.g. Steidel et al. 2011). Such scattering leads to kpc-long random-walks which take millions of years and that significantly increase the probability of Lyα photons being absorbed by dust particles. The complex scattering and consequent higher susceptibility to dust absorption typically leads to low and uncertain Lyα escape fractions (fesc, Lyα; the ratio between observed and intrinsic Lyα luminosity; see e.g. Atek et al. 2008).

“Typical" star-forming galaxies at z ∼ 2 have low fesc, Lyα (∼ 1 − 5%; e.g. Oteo et al. 2015; Cassata et al. 2015), likely because significant amounts of dust present in their ISM easily absorb Lyα photons (e.g. Ciardullo et al. 2014; Oteo et al. 2015;
Oyarzún et al. (2017). However, sources selected through their Lyα emission typically have ~ 10 times higher f_{esc,Lyα} (e.g. Song et al. 2014; Sobral et al. 2017), with Lyα escaping over ≈ 2× larger radii than Hα (Sobral et al. 2017).

Furthermore, one expects f_{esc,Lyα} to depend on several physical properties which could be used as predictors of f_{esc,Lyα}. For example, f_{esc,Lyα} anti-correlates with stellar mass (e.g. Oyarzún et al. 2017), dust attenuation (e.g. Verhamme et al. 2008; Hayes et al. 2011; Matthee et al. 2016; An et al. 2017) and SFR (e.g. Matthee et al. 2016). However, most of these relations require derived properties (e.g. Yang et al. 2017), show a large scatter, may evolve with redshift and sometimes reveal complicated trends (e.g. dust dependence; see Matthee et al. 2016).

Interestingly, the Lyα rest-frame equivalent width (EW_{Lyα}), a simple observable, seems to be the simplest direct predictor of f_{esc,Lyα} in LAEs (Sobral et al. 2017; Verhamme et al. 2017) with a relation that shows no strong evolution from z ~ 0 to z ~ 2 (Sobral et al. 2017) and that might be applicable at least up to z ~ 5 (Harikane et al. 2017). Such empirical relation may hold the key for a simple but useful calibration of Lyα as a direct tracer of the intrinsic LyC luminosity by providing a way to estimate f_{esc,LyC}, and thus as a good SFR indicator for LAEs (see also Dijkstra & Westra 2010). We fully explore such possibility and its implications in this work. In §2 we present the samples at different redshifts and methods used to compute f_{esc,Lyα}. In §3 we present and discuss the results, their physical interpretation and our proposed empirical calibration of Lyα as a SFR indicator. Finally, we present the conclusions in §4. We adopt a flat cosmology with Ω_m = 0.3, Ω_Λ = 0.7, and H_0 = 70 km s^{-1} Mpc^{-1}.

2. Sample and Methods

2.1. LAEs at low redshift (z ≤ 0.3)

For our lower redshift sample, we explore a compilation of 30 sources presented in Verhamme et al. (2017) which have accurate (Hα derived) f_{esc,Lyα} measurements and sample a range of galaxy properties. The sample includes high EW Hα emitters (HAEs) from the Lyman Alpha Reference Sample at z ~ 0.02 – 0.2 (LARS, e.g. Hayes et al. 2013, 2014), a sample of LyC leakers (LyCLeas) investigated in Verhamme et al. (2017) at z ~ 0.3 (Izotov et al. 2016a,b) and a more general ‘green pea’ (GPs) sample (e.g. Cardamone et al. 2009; Henry et al. 2015; Yang et al. 2016, 2017). These are all LAEs at low redshift with available Lyα, Hα and dust extinction information required to estimate f_{esc,Lyα} (see §2.4) and for which Lyα EWs are available. For more details on the sample, see Verhamme et al. (2017) and references therein.

2.2. LAEs at cosmic noon (z = 2.2 – 2.6)

For our sample at the peak of star formation history we use 188 narrow-band selected LAEs with Hα measurements from the CALYMHA survey at z = 2.2 (Matthee et al. 2016; Sobral et al. 2017) presented in Sobral et al. (2017), for which f_{esc,Lyα} measurements are provided as a function of EW_{0}. In addition, we explore spectroscopic follow-up of CALYMHA sources with X-SHOOTER on the VLT (Sobral et al. 2018a) and individual measurements for four sources (CALYMHA-67, -93, -147 and -373; see Sobral et al. 2018a). For those sources we measure Lyα, Hα and Hβ. Furthermore, we also use a sample of 29 narrow-band selected LAEs at z ~ 2.6 presented by Trainor et al. (2016), for which Lyα and Hα measurements are available.

2.3. Higher redshift LAEs (2.6 ≤ z ≤ 6)

As an application of our results, we explore the publicly available sample of 3,908 LAEs in the COSMOS field (SC4K survey; Sobral et al. 2018b) which provides Lyα luminosities and rest-frame EWs for all LAEs. We also explore published median or average values for the latest MUSE samples, containing 417 LAEs (e.g. Hashimoto et al. 2017). Note that for all these higher redshift samples, Hα is not directly available, thus f_{esc,Lyα} cannot be directly measured (but see Harikane et al. 2017).

2.4. Measuring the Lyα escape fraction (f_{esc,Lyα}) with Hα

We use dust corrected Hα luminosity to predict the intrinsic Lyα luminosity. We then compare the latter to the observed Lyα luminosity to obtain the Lyα escape fraction (f_{esc,Lyα}). Assuming case B recombination (e.g. Sobral et al. 2018b), a temperature of 10^4 K and an electron density of 350 cm^{-3}, we can use the observed Lyα luminosity (L_{Lyα}), the observed Hα luminosity (L_{Hα}) and the dust extinction affecting L_{Hα} (A_{Hα}) in mag to compute f_{esc,Lyα} as:

\[f_{esc,Lyα} = \frac{L_{Lyα}}{L_{Hα} \times 10^{0.4 \times A_{Hα}}} \]

This means that with our assumptions so far, and provided that we know f_{esc,Lyα}, we can use the observed L_{Lyα} to obtain the intrinsic Hα luminosity. Therefore, one can use Lyα as a star formation rate (SFR) indicator following Kennicutt (1998) for a Salpeter (Chabrier) IMF (0.1 – 100 M⊙):

\[\text{SFR}_{Lyα} [M_⊙ \text{yr}^{-1}] = \frac{7.9(4.4) \times 10^{-42}}{1 - f_{esc,Lyα}} \frac{L_{Lyα}}{8.7 f_{esc,Lyα}} \]

where f_{esc,LyC} is the escape fraction of ionising LyC photons (see e.g. Sobral et al. 2018b). In practice, f_{esc,LyC} is typically assumed to be ≈ 0, but it may be ≈ 0.1 – 0.15 for LAEs (see discussions in e.g. Matthee et al. 2017a; Verhamme et al. 2017).

2.5. Statistical fits and errors

For all fits and relations in this work (e.g. f_{esc,Lyα} vs. EW_{0}), we vary each data-point within its full Gaussian probability distribution function independently (both in EW_{0} and f_{esc,Lyα}, and re-fit 10,000 times. We present the best-fit relation as the median of all fits, and the uncertainties (lower and upper) are the 16 and 90 percentiles. For bootstrapped quantities (e.g. for fitting the low redshift sample) we obtain 10,000 samples randomly picking half of the total number of sources and computing that specific quantity. We fit relations in the form y = A x + B.

3. Results and Discussion

3.1. The observed f_{esc,Lyα} – EW_{0} relation at z ~ 0.1 – 2.6

Figure 1 shows that f_{esc,Lyα} correlates with Lyα EW_{0} with apparently no redshift evolution between z = 0 – 2.6 (see also Verhamme et al. 2017; Sobral et al. 2017). We find that f_{esc,Lyα} varies continuously from ≈ 0.2 to ≈ 0.7 for LAEs from the lowest (≈ 30 Å) to the highest (≈ 120 – 160 Å) Lyα rest-frame EWs.

\footnote{We use Lyα/Hα = 8.7, but vary the Lyα/Hα case B ratio between 8.0 and 9.0 to test for its effect; see §3.5.}

\footnote{With our case B assumptions the intrinsic Balmer decrement is: Hα/Hβ = 2.86. Using a Calzetti et al. (2000) dust law we use A_{Hα} = 6.531 \log_{10}(Hα/Hβ) – 2.981 (see details in e.g. Sobral et al. 2012).}

\footnote{For continuous star formation over 10 Myr timescales.}
We use our samples at $z \sim 0 - 0.3$ and $z \sim 2.2 - 2.6$, separately and together, to obtain linear fits to the relation between $f_{\text{esc,Ly}\alpha}$ and Lyα EW$_0$ (see §2.5). These fits allow us to provide a more quantitative view on the empirical relation and evaluate any subtle redshift evolution; see Table 1.

The relation between $f_{\text{esc,Ly}\alpha}$ and Lyα EW$_0$ is statistically significant at 5 to 10σ for all redshifts. We note that all linear fits are consistent with a zero escape fraction for a null EW$_0$. Nevertheless, we note that there is minor evidence for a shallower relation at lower redshift for the highest EW$_0$ (Figure 1), but this could be driven by current samples selecting sources with more extreme properties (including LyC leakers). Given our findings, we decide to combine the samples and obtain joint fits, with the results shown in Table 1. The slope of the relation is consistent with being $= 0.005$ with a null $f_{\text{esc,Ly}\alpha}$ for EW$_0 = 0$ Å.

3.2. The $f_{\text{esc,Ly}\alpha}$-EW$_0$ relation: expectation vs. reality

The existence of a relation between observed Lyα luminosity and EW$_0$ (Figure 1) is not surprising. This is because Lyα EW$_0$ is sensitive to the ratio between Lyα and the UV, which can be used as a proxy of the $f_{\text{esc,Ly}\alpha}$ (see Sobral et al. 2018b). However, the slope, normalisation and scatter of such relation depend on complex physical conditions such as dust obscuration, differential dust geometry, scattering of Lyα photons and the production efficiency of ionising photons compared to the UV luminosity, ξ_{ion} (see e.g. Matthee et al. 2017a; Shivaeei et al. 2017).

While a relation between $f_{\text{esc,Ly}\alpha}$ and EW$_0$ is expected, we can investigate if it simply follows what would be predicted given that both the UV and Lyα trace SFRs. In order to predict $f_{\text{esc,Ly}\alpha}$ based on Lyα EW$_0$ we follow Dijkstra & Westra (2010) who use the Kennicutt (1998) SFR calibrations for a Salpeter IMF. As in Dijkstra & Westra (2010), we assume two different UV slopes: $\beta = -2.0$ and $\beta = -1.0$, which encompass the majority of LAEs (note that a steeper β results in an even more significant disagreement with observations) and can predict that $f_{\text{esc,Ly}\alpha} = C \times \frac{\text{EW}_0}{\nu_{\lambda_{\text{Ly}\alpha}}^2}$, with $E_V = 76$ Å and $C = 2 \times 10^{-6}$. We use $C = 0.89$ and $C = 0.75$ for the different β slopes as in Dijkstra & Westra (2010). Note that this methodology implicitly results in assuming a “canonical”, constant $\xi_{\text{ion}} = 1.3 \times 10^{25}$ Hz erg$^{-1}$

Table 1. The results from fitting the relation between $f_{\text{esc,Ly}\alpha}$ and Lyα EW$_0$ as $f_{\text{esc,Ly}\alpha} = A \times \text{EW}_0 + B$, with EW$_0$ in Å (see §2.5). [i: individual sources used for fitting; b: binned/averaged quantity used for fitting; B: bootstrap analysis when fitting each of the 10,000 times; G: each data bin is perturbed along its Gaussian probability distribution.]

Sample	A (Å$^{-1}$)	B [notes]
$z \sim 0 - 0.3$	$0.0041_{-0.0004}^{+0.0006}$	$0.00_{-0.02}^{+0.03}$ [i,B]
$z \sim 2.2$	$0.0056_{-0.0011}^{+0.0012}$	$0.00_{-0.05}^{+0.08}$ [b,G]
$z \sim 2.6$	$0.0054_{-0.0014}^{+0.0016}$	$0.01_{-0.11}^{+0.11}$ [b,G]
$z \sim 0 - 2.2$	$0.0045_{-0.0007}^{+0.0008}$	$0.00_{-0.06}^{+0.08}$ [b,G]
$z \sim 2.2 - 2.6$	$0.0056_{-0.0012}^{+0.0012}$	$0.00_{-0.08}^{+0.08}$ [b,G]
$z \sim 0 - 2.6$	$0.0048_{-0.0007}^{+0.0007}$	$0.00_{-0.05}^{+0.05}$ [b,G]
short time-scale variations in SFRs, leading to a higher Lyα (as indicated by the dot-dashed lines in Figure 1). Observations (Kennicutt 1998) and a unit ratio between Lyα and UV SFRs (see Sobral et al. 2018b).

Predicting $f_{\text{esc,Ly} \alpha}$ based on the ratio of Lyα to UV using EW$_0$ (see Dijkstra & Westra 2010) significantly overestimates $f_{\text{esc,Ly} \alpha}$ (as indicated by the dot-dashed lines in Figure 1). Observations reveal higher Lyα EW$_0$ (by a factor of just over ~ 2) than expected for a given $f_{\text{esc,Ly} \alpha}$, with the offset between the simple prediction and observations potentially being larger for increasing EW$_0$. These reveals processes that can boost the ratio between Lyα and UV (boosting EW$_0$), particularly by boosting Lyα, or processes that reduce $f_{\text{esc,Ly} \alpha}$. Potential explanations include scattering, (differential) dust extinction, excitation due to shocks originating from stellar winds and/or AGN activity, and short time-scale variations in SFRs, leading to a higher ξ_{ion} (see Figure 1). High ξ_{ion} values ($\xi_{\text{ion}} \approx 3 \times 10^{28}$ Hz erg$^{-1}$) seem to be typical for LAEs (e.g. Matthee et al. 2017a; Nakajima et al. 2018) and may explain the observed relation, even more so if ξ_{ion} rises with increasing EW$_0$ (e.g. Matthee et al. 2017a), but dust extinction likely also plays a role (Figure 1).

3.3. The $f_{\text{esc,Ly} \alpha}$-EW$_0$ relation: physical interpretation

In order to further interpret the role of dust ($E(B-V)$) and ξ_{ion} on the observed $f_{\text{esc,Ly} \alpha}$-EW$_0$ and what the relation may be telling us, we produce a simple analytical model (see details in Appendix A). We independently vary SFRs, $E(B-V)$ and ξ_{ion}. The toy model follows our framework using a Calzetti et al. (2000) dust law and the Kennicutt (1998) calibrations and relations between UV and Hz. We also vary some assumptions independently, which include the intrinsic Lyα/Hz ratio and $f_{\text{esc,Ly} \alpha}$. Furthermore, we introduce an extra parameter to further vary $f_{\text{esc,Ly} \alpha}$ and mimic processes which are hard to model, such as scattering, which can significantly reduce or even boost $f_{\text{esc,Ly} \alpha}$ (Neufeld 1991). We compute observed Lyα EW$_0$ and compare them with $f_{\text{esc,Ly} \alpha}$ for 20,000 galaxy realisations. Further details are given in Appendix A.

The key results from our toy model are shown in Figure 2. We find that both $E(B-V)$ and ξ_{ion} likely play a role in setting the $f_{\text{esc,Ly} \alpha}$-EW$_0$ relation and changing it from simple predictions to the observed relation (see §3.2). As the left panel of Figure 2 shows, observed LAEs on the $f_{\text{esc,Ly} \alpha}$-EW$_0$ relation seem to have low $E(B-V) \approx 0.1 - 0.2$, with the lowest EW$_0$ sources displaying typically higher $E(B-V)$ of $0.2-0.3$ and the highest EW$_0$ sources likely having lower $E(B-V)$ of < 0.1. Furthermore, as the right panel of Figure 2 shows, high EW$_0$ LAEs have higher ξ_{ion}, potentially varying from $\log_{10}(\xi_{\text{ion}}$/Hz erg$^{-1}$) ≈ 25 to $\log_{10}(\xi_{\text{ion}}$/Hz erg$^{-1}$) $\approx 25.4 - 25.5$. Our toy model interpretation is consistent with recent results (e.g. Trairon et al. 2016; Matthee et al. 2017a; Nakajima et al. 2018) for high EW$_0$ LAEs. Overall, a simple way to explain the $f_{\text{esc,Ly} \alpha}$-EW$_0$ relation at $z \sim 0 - 2.6$ is for LAEs to have narrow ranges of low $E(B-V) \approx 0.1 - 0.2$, that decrease slightly as a function of EW$_0$ and a relatively narrow range of high ξ_{ion} values that increase with EW$_0$.

Our toy model explores the full range of physical conditions independently without making any assumptions on how parameters may correlate, in order to interpret the observations in a simple unbiased way. However, the fact that observed LAEs follow a relatively tight relation between $f_{\text{esc,Ly} \alpha}$ and EW$_0$ suggests that there are important correlations between e.g. dust, age and ξ_{ion}. By selecting simulated sources in our toy model that lie on the observed relation (see Appendix A.1), we recover a tight correlation between ξ_{ion} and $E(B-V)$, while the full generated population in our toy model shows no correlation at all by definition (see Figure A.1). This implies that the observed $f_{\text{esc,Ly} \alpha}$-EW$_0$ is likely a consequence of an evolutionary $\xi_{\text{ion}}-E(B-V)$ sequence for LAEs. For further details, see Appendix A.1.

3.4. Estimating $f_{\text{esc,Ly} \alpha}$ with a simple observable: Lyα EW$_0$

We find that LAEs follow a simple relation between $f_{\text{esc,Ly} \alpha}$ and Lyα EW$_0$ roughly independently of redshift (for $z \lesssim 2.6$). Motivated by this, we propose the following empirical estimator (see Table 1) for $f_{\text{esc,Ly} \alpha}$ as a function of Lyα EW$_0$ (\widetilde{A}):

$$f_{\text{esc,Ly} \alpha} = 0.0048^{+0.0007}_{-0.0007} \text{EW}_0 \pm 0.05 \ [0 < \text{EW}_0 < 160].$$

This relation may hold up to $\text{EW}_0 \approx 210 \widetilde{A}$, above which we would predict $f_{\text{esc,Ly} \alpha} \approx 1$. This relation suggests that it is possible to estimate $f_{\text{esc,Ly} \alpha}$ for LAEs within 0.2 dex even if only

4 $\xi_{\text{ion}} = 1.3 \times 10^{28} \frac{\text{SFR}}{\text{H}_2 \text{erg}}$ (Hz erg$^{-1}$).
...parameter space may lead to the necessity of a more complicated relation. Larger data-sets with dust corrected Hα luminosities are essentially equal to intrinsic Lyα luminosity and EWα of the Lyα line (e.g. Yang et al. 2017), has a measured fesc of 0.06-0.1 dex. Further, in principle, Equation 3 could also be explored to transform EW0 distributions (e.g. Hashimoto et al. 2017, and references therein) into distributions of fesc,Lyα for LAEs.

We further test the validity of Equation 3 by measuring the ratio between the real (Hα-based) fesc,Lyα fraction and that inferred from the simple predicting relation. We conclude that while the escape of Lyα photons can depend on a range of properties in a very complex way (see e.g. Hayes et al. 2010; Matthee et al. 2016; Yang et al. 2017), using EW0 and Equation 3 leads to predicting fesc,Lyα within ≈ 0.1 - 0.2 dex of real values. This compares with a larger scatter of ≈ 0.3 dex for relations with derivative or more difficult parameters to measure such as dust extinction or the red peak velocity of the Lyα line (e.g. Yang et al. 2017). Equation 3 may thus be applied to estimate fesc,Lyα for a range of LAEs in the low and higher redshift Universe. For example, J1154+2443 (Izotov et al. 2018), has a measured fesc,Lyα directly from dust corrected Hα luminosity of ≈ 0.7 - 0.8\(^2\), while Equation 3 would imply ≈ 0.6 - 0.7 based on the EW0 ≈ 133 Å for Lyα, thus implying a difference of only 0.06-0.1 dex. Furthermore, in principle, Equation 3 could also be explored to transform EW0 distributions (e.g. Hashimoto et al. 2017, and references therein) into distributions of fesc,Lyα for LAEs.

5 This may be up to ≈ 0.98 if Hβ is used; see (Izotov et al. 2018).

3.5. Lyα as a SFR indicator: empirical calibration and errors

Driven by the simple relation found up to z ~ 2.6, we derive an empirical calibration to obtain SFRs based on two simple, direct observables for LAEs at high redshift: 1) Lyα EW0 and 2) observed Lyα luminosity. This calibration is based on observables, but predicts the dust-corrected SFR. Based on Equations 2 and 3, for a Salpeter (Chabrier) IMF we can derive6:

\[
SFR_{Lyα} = \frac{L_{Lyα} \times 7.9 \times 10^{-42}}{(1 - f_{esc,Lyα})(0.042 EW0)} (\pm 15\%)
\]

The current best estimate of the scatter in Equation 3 (the uncertainty in the relation to calculate fesc,Lyα is ±0.05) implies a ±0.07 dex uncertainty in the extinction corrected SFRs from Lyα with our empirical calculation. In order to investigate other systematic errors, we conduct a Monte Carlo analysis by randomly varying fesc,Lyα (0.0 to 0.2) and the case B coefficient (from 8.0 to 9.0), along with perturbing fesc,Lyα from -0.05 to +0.05. We assume that all properties are independent, and thus this can be seen as a conservative approach to estimate the uncertainties. We find that the uncertainty in fesc,Lyα is the dominant source of uncertainty (12%) with the uncertainty on fesc,Lyα and the case B coefficient contributing an additional 3% for a total of 15%. This leads to an expected uncertainty of Equation 4 of 0.08 dex.

3.6. Lyα as a SFR indicator: performance and implications

In Figure 3 we apply Equation 4 to compare the estimated SFRs (from Lyα) with those computed with dust corrected Hα luminosities. We also include individual sources at z ~ 2.2 (S18; Sobral et al. 2018a) and recent results from Harikane et al. (2017) at

6 Note that the constant 0.042 has units of Å\(^{-1}\), and results from 8.7 × 0.0048 Å\(^{-1}\).
Our new empirical calibration of Lyα as a SFR indicator allows to estimate SFRs of LAEs at high redshift. The global Lyα luminosity function at $z \sim 3 - 6$ has a typical Lyα luminosity of $10^{42.5}$ erg s$^{-1}$ (Sobral et al. 2018b), with these LAEs having EW$_{0} \approx 80$ Å (suggesting $f_{esc, Ly\alpha} = 0.38 \pm 0.05$ with Equation 3), which implies SFRs of $\approx 20 M_{\odot}$ yr$^{-1}$. If we explore the public SC4K sample of LAEs at $z \sim 2 - 6$ (Sobral et al. 2018b), limiting it to sources with up to EW$_{0} = 210$ Å and that are consistent with being star-forming galaxies ($L_{Ly\alpha} < 10^{43.2}$ erg s$^{-1}$; see Sobral et al. 2018a), we find a median SFR for LAEs of 12^{+9}_{-8} M_{\odot} yr$^{-1}$, ranging from $\approx 2 M_{\odot}$ yr$^{-1}$ to $\approx 90 M_{\odot}$ yr$^{-1}$ at $z \sim 2 - 6$. These reveal that “typical” to luminous LAEs are forming stars below our simple empirical calibration of Lyα as a SFR is able to recover dust corrected UV SFRs with a typical scatter of ≈ 0.2 dex, being slightly higher for the more luminous LAEs than for the continuum selected LAEs which probe down to lower SFRs (scatter ≈ 0.08 dex which is very close to the systematic scatter expected; see §3.5). We also compute SFRs in the same way with observables from our toy model and show the results of our simulation. We find that the scatter in our toy model is much larger, with this being driven by $E(B-V)$ being able to vary from 0.0 to 0.5, e.g. Bouwens et al. 2009), while for the luminous LAEs we use $\beta = -1.9 \pm 0.2$ dex. We predict their SFRs using $L_{Ly\alpha}$ and EW$_{0}$ only (Equation 4) and compare with SFRs measured from dust-corrected UV luminosities (Kennicutt 1998); see Table A.2. We make the same assumptions and follow the same methodology to transform the observables of our toy model into SFRs (see Fig. 4). We note that, as our simulation shows, one expects a correlation even if our calibration of Lyα as a SFR indicator is invalid at high redshift. Therefore, we focus our discussion on the normalisation of the relation and particularly on the scatter, not on the existence of a relation. We also note that our calibration is based on dust corrected Hα luminosities at $z \sim 0 - 2.6$, and that UV luminosities are not used prior to this Section.

Our results are shown in Figure 4 (see Table A.2 for details on individual sources), which contains sources at a variety of redshifts, from $z \sim 6$ to $z \sim 8$ (e.g. Oesch et al. 2015; Stark et al. 2017). We find a remarkable agreement between our predicted Lyα SFRs based solely on Lyα luminosities and EW$_{0}$ and the dust corrected UV SFRs for a range of sources at $z \sim 6 - 8$. We find that the scatter between UV-based and Lyα based SFRs to be ≈ 0.2 dex. Interestingly, we find a larger scatter for sources selected as LAEs (0.23 dex) than those that were selected using UV continuum using e.g. HST (although they are also LAEs), for which we find a scatter of only 0.08 dex.

Overall, our results and application to higher redshift reveals that Equation 4 is able to retrieve SFRs with very simple observ-
ables even for LAEs within re-ionisation (e.g. Ono et al. 2012; Stark et al. 2015c, 2017; Schmidt et al. 2017). In the early Universe the fraction of sources that are LAEs is higher, thus making our calibration applicable to a larger fraction of the galaxy population, perhaps with an even smaller scatter due to the expected narrower range of physical properties. Our calibration of Lyα as a SFR indicator is simple, directly calibrated with Hα, and should not have a significant dependence on e.g. metallicity, unlike other proposed SFRs tracers at high redshift such as [CII] luminosity or other weak UV metal lines.

It is nonetheless surprising that our calibration apparently still works even at z ∼ 7–8 for luminous LAEs. This seems to indicate that the IGM may not play a significant role for these Lyα-visible sources, potentially due to early ionised bubbles (Matthee et al. 2015) or velocity offsets of Lyα with respect to systemic (see e.g. Stark et al. 2017).

3.9. A tool for re-ionisation: predicting the LyC luminosity

Based on our results and assumptions (see §2.4), we follow Matthee et al. (2017a) and derive a simple expression to predict the number of produced LyC photons per second, Q_{ion} (s$^{-1}$) with direct Lyα observables (L_{LyC} and E_{W}):

$$Q_{\text{ion, Lyα}} \ [\text{s}^{-1}] = \frac{L_{\text{LyC}}}{c_{\text{Hα}} (1 - f_{\text{esc, LyC}})(0.042E_{\text{W0}})}, \quad (5)$$

where $c_{\text{Hα}} = 1.36 \times 10^{-12}$ erg (e.g. Kennicutt 1998; Schaerer 2003), under our case B recombination assumption (see §2.4).

Recent work by e.g. Verhamme et al. (2017) show that LyC leaks are stronger LAEs, and that $f_{\text{esc, LyC}}$ is linked and/or can be used to predict $f_{\text{esc, Lyα}}$ (see Chisholm et al. 2018). Equation 5 provides an extra useful tool: an empirical simple estimator of Q_{ion} for LAEs given observed Lyα luminosities and E_{W0}. Note that Equation 5 does not require measuring UV luminosities or ξ_{ion}, but instead direct, simple observables. Matthee et al. (2017c) already used a similar method to predict ξ_{ion} at high redshift. Coupled with an accurate estimate of the escape fraction of LyC photons from LAEs, which can be obtained with HST, a robust estimate of the full number density of LAEs from faint to the brightest sources (Sobral et al. 2018b) and their redshift evolution, Equation 5 may provide a simple tool to further understand if LAEs were able to re-ionize the Universe.

4. Conclusions

Lyα is intrinsically the brightest emission-line in active galaxies, and should be a good SFR indicator. However, the uncertain and difficult to measure $f_{\text{esc, Lyα}}$ has limited the interpretation and use of Lyα luminosities. In order to make progress, we have explored samples of LAEs at $z = 0 - 2.6$ with direct Lyα escape fractions measured from dust corrected Hα luminosities which do not require any SED fitting, ξ_{ion} or other complex assumptions based on derivative quantities. Our main results are:

- There is a simple, linear relation between $f_{\text{esc, Lyα}}$ and Lyα E_{W}: $f_{\text{esc, Lyα}} = 0.0048E_{\text{W}}[\text{Å}] \pm 0.05$ (Equation 3) which is shallower than simple expectations, due to both more ionising photons per UV luminosity (ξ_{ion}) and declining dust extinction ($E(B-V)$) for LAEs with increasing E_{W} (Figure 1).

This allows the prediction of $f_{\text{esc, Lyα}}$ based on a simple direct observable, and thus to compute the intrinsic Lyα luminosity of LAEs at high redshift.

- The observed $f_{\text{esc, Lyα}} = E_{\text{W}}$ implies a tight $\xi_{\text{ion}} = (B-V)$ sequence for LAEs, with higher ξ_{ion} at lower $E(B-V)$ and vice versa. Both ξ_{ion} and $E(B-V)$ seem to depend on E_{W} (Figure 2). Our results imply that the higher the E_{W} selection, the higher the ξ_{ion} and the lower the $E(B-V)$.

- The $f_{\text{esc, Lyα}} = E_{\text{W}}$ relation reveals a scatter of only 0.1-0.2 dex for LAEs, and there is evidence for the relation to hold up to $z \sim 5$ (Figure 3). The scatter is higher towards lower E_{W}, consistent with a larger range in dust properties for sources with the lowest E_{W}. At the highest E_{W}, on the contrary, the scatter may be as small as ≈ 0.1 dex, consistent with high E_{W} LAEs being an even more homogeneous population of dust-poor, high ionisation star-forming galaxies.

- We use our results to calibrate Lyα as a SFR indicator for LAEs (Equation 4) and find a global scatter of 0.2 dex between measurements using Lyα only and those using dust-corrected Hα luminosities. Our results also allow us to derive a simple estimator of the number of LyC photons produced per second (Equation 5) with applications to studies of the epoch of re-ionisation.

- Equation 4 implies that star-forming LAEs at $z = 2 - 6$ have SFRs typically ranging from 0.1 to 20 M_{\odot} yr$^{-1}$, with MUSE LAEs expected to have typical SFRs of $1.7 \pm 0.3 M_{\odot}$ yr$^{-1}$, and more luminous LAEs having SFRs of $12^{+3}_{-2} M_{\odot}$ yr$^{-1}$.

- SFRs based on Equation 4 are in very good agreement with dust corrected UV SFRs even within the epoch of re-ionisation and for a range of sources, hinting for it to be applicable in the very early Universe. If shown to be the case, our results have implications for the minor role of the IGM in significantly changing Lyα luminosities and E_{W} for luminous LAEs within the epoch of re-ionisation, and show that measuring $L_{\text{Lyα}}$ and E_{W0} provide apparently reliable SFRs.

Our results provide a simple interpretation of the tight $f_{\text{esc, Lyα}} = E_{\text{W}}$ relation. Most importantly, we provide simple and practical tools to estimate $f_{\text{esc, Lyα}}$ at high redshift with two direct observables and thus to use Lyα as a SFR indicator and to measure the number of ionising photons from LAEs. The empirical calibrations presented here can be easily tested with future observations with JWST which can obtain Hα and Hβ measurements for high-redshift LAEs.

Acknowledgements. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We have benefited greatly from the publicly available programming language Python, including the NumPy and SciPy (Van Der Walt et al. 2011; Jones et al. 2001), Matplotlib (Hunter 2007) and Astropy (Astropy Collaboration et al. 2013) packages, and the Topcat analysis program (Taylor 2013). The results and samples of LAEs used for this paper are publicly available (see e.g. Sobral et al. 2017, 2018b) and we also provide the toy model used as a python script.

References

An, F. X., Zheng, X. Z., Hao, C.-N., Huang, J.-S., & Xia, X.-Y. 2017, ApJ, 835, 116
Astropy Collaboration et al. 2013, A&A, 558, A33
Atek, H., Kunth, D., Hayes, M., Östlin, G., & Mas-Hesse, J. M. 2008, A&A, 488, 491
Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&AR, 575, A75
Bouwens, R. J., Illingworth, G. D., Franx, M., et al. 2009, ApJ, 705, 936
Cai, Z., Fan, X., Jiang, L., et al. 2015, ApJ, 799, L19
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Cardamone, C. et al. 2009, MNRAS, 399, 1191

Article number, page 7 of 9
Appendix A: Toy-model for $f_{\text{esc,Ly}C}$ dependencies

We construct a simple analytical toy-model to produce observable Hα, UV and Lyα luminosities and EW$_{0}$ from a range of input physical conditions (see Table A.1). We independently sample in steps of 0.01 or 0.01 dex combinations of SFR, $f_{\text{esc,Ly}C}$, case B Lyα/Hα intrinsic ratio, log$_{10}$(f_{ion}/Hz erg$^{-1}$), $E(B-V)$ with a Calzetti et al. (2000) dust law and a parameter to control $f_{\text{esc,Ly}C}$ (from e.g. scattering leading to higher dust absorption or scattering Lyα photons away from the observers’ line of sight) which acts as a further factor affecting $f_{\text{esc,Ly}C}$; see Table A.1 for the range in parameters explored independently. We follow Kennicutt (1998) and all definitions and assumptions mentioned in this paper. We publicly release our simple python script which can be used for similar studies and/or to study different ranges in the parameter space, or conduct studies in which properties are intrinsically related/linked as one expects for realistic galaxies.

Appendix A.1: The $f_{\text{esc,Ly}C}$-EW$_{0}$ results from a tight ξ_{ion}-$(E-B)$ sequence for LAEs

We use our simple analytical model to further interpret the observed relation between $f_{\text{esc,Ly}C}$-EW$_{0}$ and its tightness. We take all artificially generated sources and select those that satisfy the observed relation given in Equation 3, including its scatter (see Figure A.1). We further restrict the sample to sources with Lyα EW$_{0}$ > 25 Å. We find that along the observed $f_{\text{esc,Ly}C}$-EW$_{0}$ relation, LAEs become less affected by dust extinction as a function of increasing EW$_{0}$, while ξ_{ion} increases as shown in §3.3 and Figure 2.

In the right panel of Figure A.1 we show the full parameter range explored in ξ_{ion}-$(E-B)$ (\sim). By constraining the simulated sources with the observed $f_{\text{esc,Ly}C}$-EW$_{0}$ relation, we obtain a tight (±0.1 dex), linear relation between log$_{10}$(ξ_{ion} and $E(B-V)$ given by log$_{10}$(ξ_{ion}/Hz erg$^{-1}$) = $-1.76 \times (E(B-V) + 25.6$. This means that in order for simulated sources to reproduce observations, LAEs should follow a very well defined ξ_{ion}-$(E-B)$ sequence with high ξ_{ion} values corresponding to very low $E(B-V)$ (mostly at high EW$_{0}$ and high $f_{\text{esc,Ly}C}$), and higher $E(B-V)$ to lower ξ_{ion} (mostly at low EW$_{0}$ and high $f_{\text{esc,Ly}C}$). Our results thus hint for the $f_{\text{esc,Ly}C}$-EW$_{0}$ to be driven by the physics (and diversity) of young and metal poor stellar populations and their evolution.

Appendix B: Data used for the high-redshift comparison between UV and Lyα SFRs

Table A.2 provides the data used for Figure 4, including individual measurements per source, their name and reference. Note that the data is taken from a compilation from Matthee et al. (2017c) with minor modifications for a few LAEs, as indicated in Table A.2.

Property	Minimum	Maximum	Δ param.
SFR (M$_{\odot}$ yr$^{-1}$)	0.1	100	0.01 dex
log$_{10}$(f_{ion}/Hz erg$^{-1}$)	24.7	25.7	0.01 dex
$f_{\text{esc,Ly}C}$	0.0	0.15	0.01
Lyα/Hα	8.0	9.0	0.01
$E(B-V)$	0.0	0.5	0.01
Extra $f_{\text{esc,Ly}C}$	0.0	1.3	0.01

Table A.1. The parameters varied in our simple toy model of 20,000 sources to interpret the observational results (see Appendix A).
Fig. A.1. Left: The predicted relation between \(f_{\text{esc, Ly}\alpha} \) and Ly\(\alpha \) EW\(_0\) for our toy model, which shows little to no correlation by sampling all physical parameters independently (see Table A.1). We also show the observed range (\(\pm 3\sigma \)) which is well constrained at \(z \sim 0 - 2.6 \). We use simulated sources that are consistent with observations of LAEs to explore the potential reason behind the observed tight \(f_{\text{esc, Ly}\alpha}, \text{EW}_0 \) correlation for LAEs. Right: By restricting our toy model to the observed relation and its scatter, we find a relatively tight \(\xi_{\text{int}} \)-E(B – V) sequence for LAEs (EW\(_0 \) > 20 – 25 Å); \(\log_{10}(\text{EW}_{0}/\text{Hz} \; \text{erg}^{-1}) \approx -1.76 \times \text{E}(B - V) + 25.6 \). The highest observed EW\(_0\) correspond to the highest \(\xi_{\text{int}} \), and the lowest \(E(B-V) \), while lower EW\(_0\) leads to a lower \(\xi_{\text{int}} \) and a higher \(E(B-V) \). Our results thus show that the tight \(f_{\text{esc, Ly}\alpha} - \text{EW}_0 \) correlation for LAEs at \(z \sim 0 - 2.6 \) is likely driven by a \(\xi_{\text{int}} - \text{E}(B-V) \) sequence that may be related with important physics such as the age of the stellar populations, their metallicity, dust production and how those evolve together.

Table A.2. Application to high redshift UV-continuum and Ly\(\alpha \) selected LAEs (see compilation by Mathee et al. 2017c). Errors on Ly\(\alpha \) luminosity and EW\(_0\) are assumed to be \(\pm 0.1 \) dex, while errors on M\(_{\text{UV}}\) are taken as \(\pm 0.2 \) dex. We compute the UV SFRs (SFR\(_{\text{UV}}\), dust corrected) using Kennicutt (1998) and \(\beta = -1.6 \pm 0.2 \) for UV-selected and \(\beta = -1.9 \pm 0.2 \) for Ly\(\alpha \) selected sources. Ly\(\alpha \) SFRs (SFR\(_{\text{Ly}\alpha}\), calibrated to be dust-corrected) are computed with our Equation 4. Notes: 1: EW\(_0\) have been recomputed and rest-framed when compared to original reference; 2: M\(_{\text{UV}}\) have been recomputed when compared to original reference; 3: Values used are from Zabl et al. (2015). 4: Computed as in Matthee et al. (2017b). This table is also provided in rrs format.

Name (UV selected)	\(z \)	\(\log_{10}(L_{\text{Ly}\alpha}) \) [erg s\(^{-1}\)]	EW\(_0\) [Å]	M\(_{\text{UV}}\) [mag]	SFR\(_{\text{UV}}\) [M\(_{\odot}\) yr\(^{-1}\)]	SFR\(_{\text{Ly}\alpha}\) [M\(_{\odot}\) yr\(^{-1}\)]	Reference
A383-5.2	6.03	42.8	138	–19.3	\(10^{5.7} \)	\(11^{7.7} \)	Stark et al. (2015c)
RXCJ2248.7-4431-ID3	6.11	42.5	40	–20.1	\(21^{6.5} \)	\(16^{7.5} \)	Mainiali et al. (2017)
RXCJ2248.7-4431	6.11	42.9	68	–20.2	\(23^{7.5} \)	\(25^{7.5} \)	Schmidt et al. (2017)
SDF-46975	6.84	43.2	43	–21.5	\(76^{17.8} \)	\(76^{17.7} \)	Ono et al. (2012)
IOK-1	6.96	43.0	42	–21.3	\(63^{17.4} \)	\(57^{7.17} \)	Ono et al. (2012)
BDF-521	7.01	43.0	64	–20.6	\(34^{3.9} \)	\(34^{1.9} \)	Cai et al. (2015)
A1703 zd6	7.04	42.5	65	–19.3	\(10^{5.3} \)	\(10^{7.3} \)	Stark et al. (2015b)
BDF-3299	7.11	42.8	50	–20.6	\(33^{8.8} \)	\(30^{6.7} \)	Vanzella et al. (2011)
GLASS-stack	7.20	43.0	210	–19.7	\(15^{7.3} \)	\(10^{7.2} \)	Smidt et al. (2016)
EGS-zs8-2	7.48	42.7	9	–21.9	\(110^{7.25} \)	103^{7.25}	Stark et al. (2015a)
FIGS GN1 1292	7.51	42.8	49	–21.2	\(58^{11.3} \)	\(31^{7.3} \)	Tilvi et al. (2016)
GN-108036	7.21	43.2	33	–21.8	\(101^{7.24} \)	99^{7.24}	Stark et al. (2015a)
EGS-zs8-1	7.73	43.1	21	–22.1	\(131^{7.30} \)	124^{7.30}	Oesch et al. (2015)

(Ly\(\alpha \) selected)

Name	\(z \)	\(\log_{10}(L_{\text{Ly}\alpha}) \) [erg s\(^{-1}\)]	EW\(_0\) [Å]	M\(_{\text{UV}}\) [mag]	SFR\(_{\text{UV}}\) [M\(_{\odot}\) yr\(^{-1}\)]	SFR\(_{\text{Ly}\alpha}\) [M\(_{\odot}\) yr\(^{-1}\)]	Reference
SR6†	5.68	43.4	210	–21.1	\(30^{7.9} \)	\(26^{7.9} \)	Matthee et al. (2017c)
Ding-3	5.69	42.8	62	–20.9	\(25^{7.6} \)	\(25^{7.6} \)	Ding et al. (2017)
Ding-4	5.69	42.3	106	–20.5	\(18^{7.8} \)	\(4^{7.8} \)	Ding et al. (2017)
Ding-5	5.69	43.2	79	–21.0	\(28^{7.6} \)	\(44^{7.6} \)	Ouchi et al. (2008)
Ding-1	5.70	43.0	21	–22.2	\(85^{20.5} \)	\(104^{20.5} \)	Ding et al. (2017)
J233454²	5.73	43.7	210	–21.5	\(44^{10.1} \)	\(51^{10.1} \)	Shibuya et al. (2018)
J021835	5.76	43.7	107	–21.7	\(53^{11.1} \)	\(93^{11.1} \)	Shibuya et al. (2018)
VR7†	6.53	43.4	35	–22.5	\(111^{26.4} \)	149^{26.4}	Matthee et al. (2017c)
J160226²	6.54	43.9	99	–22.8	\(146^{24.4} \)	170^{24.4}	Shibuya et al. (2018)
J1602343	6.58	43.5	81	–21.9	\(64^{15.9} \)	88^{15.9}	Shibuya et al. (2018)
Himiko³	6.59	43.6	65	–22.1	\(77^{18.1} \)	143^{18.1}	Ouchi et al. (2009)
CR7⁴	6.60	43.9	211	–22.2	\(84^{26.9} \)	\(87^{26.9} \)	Sobral et al. (2015)